

- MALLORDER OBREAALI

MAII ORDER THMUNICATION

roo
SIMPLY WR OUOTE YOUR CREDIT CA
AND QU
Bredhust electronics

WELZ SP15M

£29.00

SP15M SWR-PWR Meter HF/2M 200W SP200 SWR-PWR Meter $2 \mathrm{M} / 70 \mathrm{~cm}$ 100W
SP30
SWR-PWR Meter $\mathrm{H} . \mathrm{F} / 2 \mathrm{M} ~$
1 KW SP300 SWR-PWR Meter H.F $/ 2 \mathrm{M} / 70 \mathrm{~cm}$ $\begin{array}{ll}\text { SP400 } & \text { SWR-PWR Meter } 2 M / 70 \mathrm{~cm} \\ \text { SP10X } & \text { SWR-PWR Meter H.F } / 2 \mathrm{~m}\end{array}$

SP380 $\begin{gathered}\text { compact } \\ \text { SWR-PWR Meter H.F/2M/70cm }\end{gathered}$

$\begin{array}{ll}\text { AC38 } & \text { AT.U. } 3 \text {. } 5 \text { to to } 30 \mathrm{MHz} \text { 400W PEP } \\ \text { CT15A } & 15 / 50 \mathrm{~W} \text { Dummy }\end{array}$ $\begin{array}{ll}\text { CT15A } & \text { 15/50W Dummy Load (PL259) } \\ \text { CT15N } & \text { 15/50w Dummy Load (N type pl }\end{array}$ $\begin{array}{lll}\text { CT15N } & 15 / 50 \mathrm{~W} \text { Dummy Load (N type plug) } \\ \text { CT300 } & 300 / \mathrm{kW} \text { Dumimy Load } 250 \mathrm{MHz}\end{array}$ (SO239)

SWR - POWER METERS

 DAIWA CN630 \qquad DUMMY LOADS
DL30 PL259 30W MAX
WELZ CT 15A 50W MAX PLL5
WELZ CT 15N 5OW MAX N type
T100 100W MAX 450 MHz
$\begin{array}{lll}\text { T200 } & 200 \mathrm{~W} \text { MAX } & 450 \mathrm{MHz} \\ \text { OL600 } 600 \mathrm{~W} \text { MAX } & 350 \mathrm{MHz}\end{array}$
OL600 600 W MAX 350 MHz
WELZ CT300 1000 W MAX 250 MHz
YAES

F11	Superb H.F. Tran	1295.00	
FT9020	160-10m9 Band Transceiver	885.00)
FC902	All Band A.T.U.	135.00	(1.50)
SP901	External Speak	31.00	(1.50)
FT102	160-10m9 Band Transceiver	725.00	(-)
FT707	8 Band Transceiver 200W Pep	512.00	(-)
FP707	Matching Power Supply	125.00	(5.00)
FC707	Matching A.T.U.Power Meter	85.00	(1.00)
MMB2	Mobile Mounting Bracket for FT707	716.10	(1.00)
FRG7	General Coverage Receiv	.00	(-)
FRG7700	200 KHz -30MHz Gen. Coverage		
FRG7700M	As above but with Memories	329.00 409.00	
FRT7700	Antenna Tuning Unit	37.00	(1.00)
FRA7700	Active Antenna Unit	36.40	(1.00)
F7208R	2M FM Synthesised Handheld	209.00	-
FT708R	70 cm FM Synthesised Handheld	219.00	
NC7	Base Trickle Charger	26.88	(1.30)
NC8	Base Fast/Trickle Charger	44.10	(1.50)
NC9C	Compact Trickle Charger	8.00	(0.75)
F8A2	Battery Sleeve for use with NC7/8	3.05	(0.50)
FNB2	Spare Battery Pack	17.25	(0.75)
PA3	12 V DC Adaptor	13.40	(0.75)
FT480R	2M Synthesised Multimode	379.00	(-)
FT780R	70 cm Synthesised Multimode $(1.6 \mathrm{MHz}$ Shift)	459.00	-
FT290R	2M Portable Multimode	249.00	\rightarrow
FT790R	70 cm Portable Multimode	299.00	
MM811	Mobile Mounting Brack	22.25	(1.00)
CSC1	Soft Carrying Case	3.45	(0.75)
NC11C	240 V AC Trickle Charger	8.00	(0.75)
FL2010	Matching 10W Linear	64.40	1.20)
Nicads	2.2 AMP HR Nicads Each	2.50	
FF501	H.F. Low Pass Filter 1kW	23.00	(1.00)
FSP1	Mobile External Speaker 8 ohm 6 W	- 9.95	(0.75)
YH55	Headphones 8 ohm	9.90	(0.75)
YH77	Lightweight Headphones 8 ohm	9.90	(0.75)
CTR24D	World Clock (Quart)	28.00	(1.00)
YM24A	Speaker/Mic 207/208/708	16.85	(0.75)
YD148	Stand Microphone Dual IMP		
Yм38		21.10 24.90	(1.50)
FDK VHF/UHF EQUIPMEN			
Multi 750E	2M Multimode Mobile	259.00	-
Expander	70 cm Transverter for M750E	199.00	(-)
Power Supplies4 AMP27.95			
6 AMP 44	4.95 (2.00) 24 AMP	99.00	(3.00)
HF Waveme	eter $130-450 \mathrm{MHz}$	24.95	

\qquad			
IC720A	HF Transceiver \& Gen. Cov. Receiver	883.00	
PS15	Power Supply for 720A	99.00	
IC251E	2M Multimode Base Station	499.00	
IC25E	2 M Compact 25 W Mobile	239.00	
IC290E	2 M Multimode Mobile	366.00	
ICR70	Gen. Cov. Receiver	469.00	
IC2E	2M FM Synthesised Handheld	159.00	
IC L1/2/3	Soft Cases	4.25	
IC HM9	Speaker/Microphone	12.00	(1.00)
iC вс30	230 V AC Base Charger and Hod	45.00	(1.50)
iC BC25	$230 V$ AC Trickle Charger	5.00	(0.75)
IC CP1	Car Charging Lead	3.71	(0.50)
IC BP2	6 V Nicad Pack for IC2E	29.50	(1.00)
IC BP3	9 V Nicad Pack for IC2E	20.00	(1.00)
IC BP4	Empty Case for $6 \times$ AA Nicads	6.95	(0.75)
IC BP5	11.5V Nicad Pack for IC2E	39.50	1.00)
IC DC1	12 V Adaptor Pack for IC2E	9.75	(0.75)
IC MLI	10W Booster	59.00)
TV INTERFERENCE AIDS			
		20.00	(1.00)
Yaesu Low Pass Filter FF501DX 1 kW$23.00(1.00)$			
HP4A High	gh Pass Filter TV Down Lead		
ANTENNA BITS H1-Q Balun $1: 15 \mathrm{~kW}$ pep (PL259 Fitting) 10.95 (0.75)			
7.1 MHz Traps Pair $\quad 7.95$ (0.75)			
T Piece Polyprop Dipole Centre $\quad 1.20$ (0.30)			
Small Egg insulators $\quad 0.40$ (0.10)			
$\begin{array}{ll}\text { Large Egg Insulators } & 0.50 \\ 40.10)\end{array}$			
4mm Polyester Guy Rope(strength 400 kg) per metre			
${ }_{75}$ (strengt	(th 400 kg) per metre		
$\begin{array}{llll}75 & \mathrm{ohm} \text { Twin Feeder - Light Duty-Per Metre } & 0.16 & 0.10 .04) \\ 300 \mathrm{ohm} \text { Twin Feeder - Per Metre } & \\ & 0.14 & (0.04)\end{array}$			
$\begin{array}{llll}\text { URM67 Low Loss } 50 \text { ohm Coax-Per Metre } & 0.60 \\ \text { UR76 } 50 \text { ohm Coax-Per Metre } & 0.25 \\ \text { U }\end{array}$			
UR76 50 ohm Coax-Per MetrePlease send total postage indicated. Any excess0.25 will be refunded.			
Amateur band transceiver/General coverage receiver			
TRIO			
TS930S	New Transceive	115	
TS830S $160-10 \mathrm{~m}$ Transceiver 9 Bands			
	Digital V.F.O. with Memories	231.00	
AT230	All Band ATU/Power Me	129.00	
$\mathrm{SP}^{\text {SP230 }}$ External Speaker Unit $\quad 39.00$ (1.50)			
DFC230 Dig. Frequency Remote Controller $\quad 145.00$ (1.50)			
TS4305 160-10m Transceiver TBA (-)			
TS			
VFO120 External V.F.O.	External V.F.O.		
TL120 200W Pep Linear for TS $120 \mathrm{~V} \quad 159.00$			
M8100 Mobile Mount for TS 130/120 $\quad \mathbf{1 7 . 0 0}$ (1.50)			
SP120 Base Station External Speaker $\quad \mathbf{2 5 . 0 0}$ (1.50)			
AT130PS			
$\begin{array}{lll}\text { PS20 } & \text { AC Power Supply - TS } 130 \mathrm{~V} & 54.95(2.50) \\ \text { PS30 } & \text { AC Power Supply - TS } 130 \text { S } & \mathbf{9 6 . 3 5}(5.00)\end{array}$			
MC50 Dual Impeadance Desk Microphone 29.00 (1.50)			
MC35S Fist Microphone 50 K ohm IMP MC30S Fist Microphone 500 ohm IMP $\mathbf{1 4 . 0 0}(0.75)$ 14.00 (0.75)			
LF30A HF Low Pass Filter 1kW 20.00			
$\begin{array}{llr}\text { TR9130 } & \text { 2M Synthesised Multimode } & \mathbf{4 1 1 . 0 0} \\ \text { TR } \\ \text { B09A } & \text { Base Plinth for TR9130 }\end{array}$			
TR78002M Synthesised FM Mobile 25WTR77302M Synthesised FM Compact Mobile			
TR2300 2 LM Synthesised FM Portable $\quad 144.00$			
VB2300 10W Amplifier for TR2300 $\mathbf{6 2 . 0 0}$			
MB2 ${ }_{\text {MR3 }}$ Mobile Mount for TR2300 70 cm Handheld			
TR2500 2M FM Synthesised Handheld $\quad 220.00$			
ST2 Base Stand 49.450			
SC4 Soft Case $\quad 13.000 .50$)			
MS1SMC25			
$\begin{array}{llll}\text { SMC25 } & \text { Speaker Mike } & \\ \text { PB25 }\end{array}$			
$\begin{array}{cc}\text { TR8400 } 70 \mathrm{~cm} \text { FM Synthesised Mobile } \\ \text { Transceiver } & 299.00\end{array}$			
R2000 $200 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver			
$\begin{array}{llr}\text { R600 } & \text { Gen. Cov, Receiver } & \\ \text { SP100 } & \text { External Speaker Unit } & \mathbf{2 4 4 . 0 0} \\ & \mathbf{2 6 . 9 0}\end{array}$			
HC10 Digital Station World Time Clock 64.40 (1.50)			
$\begin{array}{lll}\text { HS5 } & \text { Deluxe Headphones } & \\ \text { HS4 } & \text { Economy Headphones } & \\ \text { HS4 }\end{array}$			
SP40	Mobile External Speaker	13.57	

TRIO
TS 930 S
£1154

Amateur band transceivar/General coverage receiver

TS830S $160-10 \mathrm{~m}$ Transceiver 9 Bands AT230 All Band ATU/Power Meter SP230 External Speaker Unit
DFC230

TS4305 $160-10 \mathrm{~m}$ Transceiver
TS130S 8 Band 200W Pep Transceive
TS 130 V 8 Band 20W Pep Transceiver VFO120 External V.F.O.
MB100 Mobile Mount for TS $130 / 120$
SP120 Base Station External Speaker
AT130 100W Antenna Tuner
PS30 AC Power Supply - TS130S
MC35S Fist Microphone 50 K ohm IMP MC30S Fist Microphone 500 ohm IMP LF30A HF Low Pass Filter 1 kW B09A Base Plinth for TR9130 TR7730 2M Synthesised FM Compact Mobile TR2300 2 M Synthesised FM Portable VB2300 10W Amplifier for TR2300 TR3500 70 cm Handheld
TR2500 2M FM Synthesised Handheld
ST2 Base Stand
SC4 Soft Case
SMC25 Speaker Mike
PB25 Spare Battery Pack
$\begin{array}{ll}\text { PS10 } & \text { Base Station Power Supply for } 8400 \\ \text { TR9500 } & 70 \mathrm{~cm} \text { Synthesised Multimode }\end{array}$
R2000 $200 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver $\begin{array}{ll}\text { R600 } & \text { Gen. Cov. Receiver } \\ \text { SP100 } & \text { External Speaker Unit }\end{array}$ Digital Station World Time Clock Economy Headphones

DESK MICROPHONES

SHURE 444D Dual Impeadance ADONIS AM 303 Preamp Mic. Wide Imp. ADONIS AM503 Compression Mic 1

MOBILE SAFETY MICROPHONES

ADONIS AM 202S Clip-on	
ADONIS AM 202F Swan Neck +Up/Down Buttons	21.00
33.00	$(-$

TEST EQUIPMENT

$\begin{array}{lll}\text { Drae VHF Wavemeter } & 130-450 \mathrm{MHz} & \mathbf{2 4 . 9 5}(-\mathbf{(-)} \\ \text { DM81 Trio Dip Meter }\end{array}$

DM81	Trio	Dip Meter
MMD50/500	Dig. Frequency meter (500 MHz)	$\mathbf{7 5 . 6 0}$

Co-AXIAL SWITCH

2 Way Diecast (V.H.F.) SA450	$10.00(0.75)$
2 Way Diecast with N sockets	$12.95(0.75)$
2 Way Toggle (V.H.F.)	$5.00(0.50)$
LAR 3 Way 1 KW. Switch	

LAR 3 Way 1 KW Switch 5.00 (0.50)

helial antennas

2 M BNC or PL259 (state which required) $\quad 4.50 \quad$ (0.50) $\begin{array}{lll}2 \mathrm{M} \text { Thread for TR2300 or FT290R (state which) } & 4.50 & (0.50) \\ 70 \mathrm{~cm} \text { BNC or Thread }\end{array}$ 70 cm BNC or Thread
MMT $144 / 28$ 2M Transverter for HF Rig $\begin{array}{ll}\text { MMTH32/28S } & 70 \mathrm{~cm} \text { Transverter for } \mathrm{HF} \text { Rig } \\ \text { MMT } 432 / 144 \mathrm{R} \\ 70 \mathrm{~cm} \text { Transverte }\end{array}$ $\begin{array}{ll}\text { MMT432/144R } 70 \mathrm{~cm} \text { Transverter for } 2 \mathrm{M} \text { Rig } \\ \text { MMT70/28 } & \text { 4M Transverter for }\end{array}$ $\begin{array}{ll}\text { MMT70/28 } & 4 \mathrm{M} \text { Transverter for } \mathrm{HF} \text { Rig } \\ \text { MMT7O/144 } & 4 \mathrm{M} \text { Transverter for } 2 \mathrm{M} \text { Ris }\end{array}$ MMT1296/144 $\quad 23 \mathrm{~cm}$ Transverter for 2M Rig MML $144 / 30 \quad 2 \mathrm{M} 30 \mathrm{~W}$ Linear Amp

 $\begin{array}{lll}\text { MML432/30 } & 70 \mathrm{~cm} 30 \mathrm{~W} \text { Linear Amp (3W1/P) } & 99.00 \text { (-) } \\ \text { MML432/50 } & 70 \mathrm{~cm} / 50 \mathrm{~W} \text { (-) }\end{array}$ $\begin{array}{ll}\text { MML432/50 } & 70 \mathrm{~cm} / 50 \mathrm{~W} \text { Linear Amp } \\ \text { MML432/100 } & 70 \mathrm{~cm} 10 / 100 \text { W Linear A }\end{array}$ MML432/100 70cm 10/100W Linear Amp MM2001
MM4000
MMC50/28 MMC70/28
MMC144/28 $\begin{array}{ll} & 6 \mathrm{M} \text { Converter to } \mathrm{HF} \text { Rig } \\ \text { MMC144/28 } & 4 \mathrm{M} \text { Converter to }\end{array}$ $\begin{array}{ll}\text { MMC432/28S } & 2 \mathrm{M} \text { Converter to } \mathrm{HF} \text { Rig } \\ 70 \mathrm{~cm} \text { Conver }\end{array}$ $\begin{array}{lll}\text { MMC432/28S } & 70 \mathrm{~cm} \text { Converter to } \mathrm{HFRig} \\ \text { MMC432/144S } \\ 70 \mathrm{~cm} \\ \text { Converter to } 2 \mathrm{M} \mathrm{Rig}\end{array}$ MMC435/600 $\quad 70 \mathrm{~cm}$ ATV Corverter MMK 1296/144 23 cm Converter to 2 M Rig MMD050/500 500 MHz Dig. Frequency Meter MMD600P $\quad 600 \mathrm{MHz}$ Prescaler $\begin{array}{ll}\text { MMDP1 } & \text { Frequency Counter Probe } \\ \text { MMA28 } & \text { 10M Prean }\end{array}$ MMA28 10M Preamp MMF144 2M RF Switched Preamp MMF432 2 M Band Pass Filter $\begin{array}{ll}\text { MMF432 } & 70 \mathrm{~cm} \text { Band Pass Filter } \\ \text { MMS } 1 & \text { The Morse Talker }\end{array}$

EDITORIAL OFFICES
 Practical Wireless Westover House West Quay Road Poole, Dorset BH15 1JG \& Poole 671191
 Geoff Arnold T.Eng(CEI) G3GSR
 Editor

Dick Ganderton C.Eng., MIERE,G8VFH
Assistant Editor
Steve Hunt Art Editor

John Fell G8MCP Technical Editor

Alan Martin G8ZPW News \& Production Editor

Elaine Howard G4LFM
Technical Sub-Editor
Rob Mackie Technical Artist

Keith Woodruff

 Assistant Art Editor
Sylvia Barrett

Secretarial
ADVERTISEMENT OFFICES
Practical Wireless King's Reach Tower Stamford Street London SE1 9LS Telex: 915748 MAGDIV-G
Dennis Brough
Advertisement Manager
\& $01-2616636$
\& $01-2616872$

Roger Hall G8TNT (Sam)
Ad. Sales Executive
6 01-2616807
Claire Gerrish
Secretary
f01-2616636
Barbara Blake
Classified Supervisor
f 01-261 5897

Dave Kerindi

Make-up \& Copy

- 01-2616570

COPYRIGHT
O IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

P.anter wiree eßs

FEBRUARY 1983 VOL. 59 NO. 2 ISSUE 911

contents

22 Antenna Wind Loading
 G3UDO

24 LMS Regenerative Receiver-1
R. F. Haigh

30 2m Beam Antenna
C. Loftus G6AFJ

31 Modifying the 3.5/7MHz G Whip Ian H. Crowther G3KLF

32 Are the Voltages Correct?-9
Roger Lancaster
38 Basic QSOs in German-1
G. W. Roberts GW4JXN

42 MW Loop Differential Amplifier
S. Whitt

44 Introducing OSCAR-1
Mervyn J. Axson G8WHG

46 RF Dummy Loads-2
F. C. Judd G2BCX

50 CB Rig Check
Lucas ACB888; Oscar CBM271; Planet 2000;
Shogun 82 with Sel-call; Telecomm TC9000
52 Passport to Amateur Radio-Reprint
54 Antennas-1
F. C. Judd G2BCX

Comment
76 Mods
19 News
43 Next Month
58 On the Air

37 Production Lines
18 PW RUIS
17 Services
52 \& 57 Swap Spot
29 Uncle Ed

four new models from Trio

for the HF man, the TS 430S

 £698.00 inc vat carriage $£ 5.00$

A new HF transceiver, taking into account the outstanding performance of the previous Trio rigs you could be forgiven for thinking that it would be impossible for them to improve on existing models and specifications. Alternatively of course, you might be of the opinion that engineers with the talents as displayed by the designers of such rigs as the TS830S, TS130V and TR2500 etc. would have no trouble in pushing forward the frontiers of transceiver technology s we know it today.
The new HF transceiver from Trio is the TS430S. Those who have seen it and the fortunate ones who have used it on the air are all agreed that here we have a major advance for the enthusiastic operator on todays busy bands. Not only does the transceiver have full amateur band coverage from 160 to 10 metres (including the three new bands) but it also incorporates a general coverage receiver (150 kHz to 30 MHz). The new transceivers features are many; USB, LSB, CW, and AM with FM available (optional FM430 board), compact size 270 mm wide $/ 96 \mathrm{~mm}$ high/275mm deep, continuous tuning over the entire frequency range, two separate VFO's and an up/down scan mode using the optional MC42S microphone. Eight memories, each of which can be used as a separate VFO are provided and frequency scan is programable between the two frequencies held in memory channels six and seven. Not only does the memory remember frequency but also the mode of operation, thus short wave DX and Broadcast stations can be stored alongside a SSB net channel and complete sense made as the frequencies are scanned. The by now normal Trio features are all included, IF shift, notch filter, speech processor and narrow/wide filter selection on CW, SSB and AM modes.
The TS430S, Trio's rig for todays operator.

for the SWL who deserves the best, the $\mathbf{R} \mathbf{2 0 0 0}$

£391.20 inc vat carriage $£ 5.00$

and

later in the year for the $\mathbf{R 2 0 0 0}$ a 118 to 174 MHz internal vhf converter.

Now from Trio, the R2000 general coverage receiver. By taking all the superb features of the R1000 and combining them with the latest in microprocessor control Trio have, in one step, completely revised the standard by which short wave receivers are judged. Among the many features provided for the discerning listener are programmable scan, memory scan, memory retention of the mode set for a particular frequency and last, but not least, Trio have included an FM mode - why FM after all this time and our repeated comment that for a shortwave broadcast receiver FM is not really necessary. Take a look at the rear panel of the R2000: a socket marked VHF converter. Wouldn't it be superb if Trio produced a VHF converter covering from 118 to 174 MHz - then you would require FM, you would also require AM. Study the features and I am sure you will agree the Trio R2000 is the receiver for you.
Continuous Coverage from 150 KHz to $\mathbf{3 0} \mathbf{~ M H z}$
Use of an innovative up conversion digitally controlled PLL circuit provides maximum ease of operation and superb receiver performance. Front panel up/ down band switches allow easy selection within the full coverage of the receiver. The VFO is continually tunable throughout the full $150 \mathrm{KHz}-30 \mathrm{MHz}$ range.
Ten Memories Store Frequency, Band and Mode Data
Each of the ten memories can be tuned by the VFO, thus operating as ten built in digital VFO's. The original memory frequency can be recalled by simply pressing the appropriate memory channel key. All information on frequency, band, and mode is stored in the selected memory. The "auto $\mathrm{M}^{\prime \prime}$ switch allows two types of memory storage: when the "auto $\mathrm{M}^{\prime \prime}$ switch is off, data is memorized by pressing the " M in" switch; when the "auto M " switch is on the frequency being used at that time is automatically memorized.

Memory Scan

Scans all memory channels or may be user programmed to scan specific channels. Frequency, band and mode are automatically selected in accordance with the memory channel being scanned.

Programmable Band Scan

Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish the scan limit frequencies. The hold switch interrupts the scanning process. However, the frequency may be adjusted using the tuning knob whilst in the scan hold position.
Three Built In Filters with Narrow/Wide Selector
In the AM mode 6 KHz wide or 2.7 KHz narrow may be selected. In the SSB mode 2.7 KHz is automatically selected. In the CW mode 2.7 KHz is again chosen and if the optional YG455C filter is installed then 500 Hz in the narrow position. In the FM mode 15 KHz bandwidth is automatically selected.
Other important features are: squelch on all modes, noise blanker, a large 4 inch
front mounted speaker, tone control, RF attenuato AGC switch, front mounted speaker, tone control, RF attenuator, AGC switch, high and low impedance antenna terminals, optional 13.8 V DC operation, record jack and, of course, provision for a VHF converter.
All in all, a truly remarkable receiver.

> LOWE IN LONDON, Open monday to saturday, six days a week lower sales floor, Hepworths, Pentonville Rd, London. telephone 01.837 .6702 LOWF IN GLASGOW, 4,5 Queen Margarets Rd, Glasgow. telephone 041.945 .2626
 the TR'7930 mobile transceiver

Any amateur who has used or owns a Trio TR7800 has had the finest piece of 2 metre mobile technology at his fingertips. The TR7800 had simply everything that the keen mobile operator could ever want. Of course, there were a few points which customers said could be improved on and, I must admit, we, in the majority of cases, agreed. Trio, with the introduction of the new TR7930, have taken note of this feedback of information and the result, I am sure you will agree, is as close to perfection as you will find in a rig.
The improvements are, a green floodlit LCD readout which does not disappear in strong sunlight, additional memory channels, both timed and carrier scan hold on occupied channels, selectable memory channel for the priority frequency and automatically corrected mode selection (simplex or repeater) without having to instruct the rig. The most significant change is the liquid crystal frequency readout on a green illuminated background, but closely following this must be the ability to omit specific memory channels when scanning, and the programmable scan between user designated frequencies. This gives the rig the ability to scan simplex channels only, without holding on repeaters.
The Trio TR7930. The mobile 2 metre FM rig designed with ease of operation coupled to outstanding performance.

for the UHF enthusiast, a handheld transceiver, the TR3500

Without a doubt one of life's great mysteries to me is why, when the two metre band is at times so busy, few people are to be found communicating on the wide open spaces of the seventy centimetre band.

I have come to the conclusion that misapprehensions exist about the band. The first being the lack of activity. From my first comments you will have gleaned the fact that seventy centimetres is not a busy band, however there are stations on, myself G8GIY, my colleagues David G4KFN and Roy G8ROR form the nucleus of a UHF group here in Matlock, there are many others like us up and down the country. Seventy centimetre repeaters abound and are a perfect means of communication, their somewhat shorter range serving well their immediate area and, please remember, in the words of that doyen of seventy centimetres Jack G5UM, "Activity breeds activity," simple but true. The second misapprehension is that the equipment is expensive. Not so, the Trio TR3500 costs only slightly more than its matching stable mate, the TR2500, and here again, with the same sensible approach which we have all come to expect from Trio, the accessories which you bought for your TR2500 are compatible with the new TR3500. The appearance, size and weight are similar to the TR2500, output power is 1.5 watts high and 300 milliwatts low, repeater shift is programmable, ten memory channels are provided and frequency scan between operator-defined limits is included. The conventional memory scan and reverse repeater facilities help to make operating a pleasure no matter how difficult the conditions. With the Trio TR3500 handheld as part of your station, you are equipped to expand your operating and begin communicating on the wide open spaces of the seventy centimetre band.

$£ 238.50$ inc vat carriage $£ 5.00$

and we now stock the superb vibroplex range of keys.

SHORT WAVE LISTENING BRINGS THE WORLD TO YOUR FINGERTIPS WIDE COVERAGE ALL MODE MEMORY RECEIVER; FRG7700M $£ 399$ inc

$\star 30 \mathrm{MHz}$ down to 150 kHz (and below).
$\star 12$ Channel memory with fine tune.
\star SSB (LSB/USB), CW, AM, FM.
$\star 2.7 \mathrm{kHz}, 6 \mathrm{kHz}, 12 \mathrm{kHz}, 15 \mathrm{kHz}$, @ - 6dB.
$\star 3$ Selectivities on AM, squelch on FM.
\star Up conversion, 48 MHz first IF.
$\star 1 \mathrm{kHz}$ digital, plus analogue, display.
\star Inbuilt quartz clock/timer.
\star No preselector, auto selected LPF's.

* Advanced noise blanker fitted.
\star Antenna 500Ω to $1.5 \mathrm{MHz}, 50 \Omega$ to 30 MHz .
$\star 20 \mathrm{~dB}$ pad plus continuous attenuator.
\star Switchable A.G.C. Variable tone.

' 7700 THE ONE WITH FM! Non memory version £335

VAT @ 15% + Securicor

COMMUNICATION RECEIVER; NRD 515 £825 Inc. VAT @ 15\% + Securicor.

$\star 30 \mathrm{MHz}$ to 100 KHz or lower, 100 Hz steps.
\star PLL digital VFO stability.
\star Backlash free, 10 KHz rev, 500 Hz analogue calib.

* Fast tune up/down switch, dial lockout.
\star SSB (USB/LSB), CW, AM, RTTY.
$\star 6$ and $2.4 \mathrm{KHz}, 600^{*}$ and $300^{\circ} \mathrm{Hz} @-6 \mathrm{~dB}$.
\star Passband tuning $\pm 2 \mathrm{KHz}$ on SSB and CW.
\star Variable BFO on CW for preferred tone.
\star Modular plug in design with mother board.
\star High reliability - low power schottky \& CMOS.
\star Designed for maximum ease of operation.
\star Noise blanker. $0-10-20 \mathrm{~dB}$ attenuator.
\star Small $(140 \times 340 \times 300 \mathrm{~mm})$ light $7 \frac{1}{2} \mathrm{Kg}$, rugged.

PROFESSIONAL
MONITOR
\star Up conversion, 70.455 MHz and 455 KHz . \star No R.F. amplifier, balance U310 mixer. \star Crystal filter before first IF amplifier. \star Transceiver provisions; mute, trip etc. \star Frequency data input/output port. NHD518 $96(4 \times 24)$ channel memory unit. NCM515 Remote frequency keypad controller, LCD readout. Up/down step tuning, 4 channel memory. CQE515 Junction unit (NCM515 to NHD518). NVA515 External 3W speaker $130 \times 140 \times$ 200 mm .
CFL260 600 Hz mechanical filter.
CFL230 300 Hz crystal filter.

TWO OR SEVENTY; FT230R, FT208R, FT708R, FT730, 2030, FT726 PLUS:-

\star Multimode USB, LSB, FM, CW.
$\star 100 \mathrm{~Hz}$ backlit LCD Frequency display. * 10 memory channels '5 year' backup. \star Any TX/Rx split with dual VFOs.
\star Up/Down tuning from microphone.
\star AF output 1W @ 10\% THD.
\star Bandwidth 2.4 kHz and $14 \mathrm{kHz} @-6 \mathrm{~dB}$.
\star LED's; 'On Air', 'Busy'. m/c meter; S, PO.
$\star 58(\mathrm{H}) \times 150(\mathrm{~W}) \times 195(\mathrm{D})$ (1.3kg).
SMC2.0C NiCad 2.0A/hr "C"
SMC8C Slow Charger (220 mA)
2.35
8.80

CSC1A Soft carrying case $\quad \mathbf{2 2 . 2 5}$
FL2010 Linear Amplifier 2m 10W 59.00
FL7010 Linear Amplifier 70 cms

FT290R

£265
Inc. VAT @ 15\%

+ Securicor.
FT790R
£325
Inc. VAT @ 15\%
+ Securicor.
$144-146 \mathrm{MHz}$ ($144-148$) possible. 2.5W PEP, 2.5W RMS 300 mW out. \star FM: 25 kHz and 12.5 kHz steps. \star SSB: 1 kHz and 100 Hz steps. $\star \quad \pm 600 \mathrm{kHz}$ repeater split 1750 Hz burst. \star Integral telescopic antenna.
\star Rx, $70 \mathrm{~mA}, \mathrm{Tx} ; 800 \mathrm{~mA}$ (FM maximum).
$430-330 \mathrm{MHz}$ (440-450 alternative). 1W PEP, $1 \mathrm{~W} / 250 \mathrm{~mW}$ FM/CW out. FM: 100 kHz and 25 kHz steps. SSB: 1 kHz and 100 Hz steps. 1.6 MHz shift with input monitor, 1750 Hz burst.
* Rx; $100 \mathrm{~mA} / 200 \mathrm{~mA}$. Tx $; 750 \mathrm{~mA}$ max. \star BNC Mounting $\frac{1}{2} \lambda$ flexi antenna.
\star USB-LSB-CW-FM (A 3j, A1, F3).
\star 30W PIP A3j, 10/1W out A1 F3.
\star Any Tx Rx split with dual VFO's.
\star Four easy write-in memory channels.
\star Memory scanning with slot display.
\star Up/down tuning/scanning from mic.
* Priority channel on any memory slot.
\star Digital RIT. Advanced noise blanker.
\star Satellite mode allows tuning on Tx .
\star Semi break in with side tone.
\star Very bright blue 100 Hz digital display.
\star Display shows Tx \& Rx freq (inc RIT).
\star String LED display for "S" and PO.
* LED's; "On Air" Clar, Hi/Low, FM mod.
\star Size (Case): $8.3^{\prime \prime} \mathrm{D}, 2.3^{\prime \prime} \mathrm{H}, 6.9^{\prime \prime} \mathrm{W}$.

6,2 or 70 !
$\star 110$ and 240 V ac, 12 Vdc option.

* Signal meter calibrated in "S" and SIMPO. \star Acc; Tuners, Converters, LPF, Memory. * FRT7700; $150 \mathrm{kHz}-30 \mathrm{MHz}$, Switch, etc. \star FRV7700A; 118-130, $130-140,140-150 \mathrm{MHz}$. \star FRV7700B; $118-130,140-150,50-59 \mathrm{MHz}$. \star FRV7700C; $140-150,150-160,160-170 \mathrm{MHz}$.
\star FRV7700D; $118-130,140-150,70-80 \mathrm{MHz}$.
\star FRV7700E; $118-130,140-150,150-160 \mathrm{MHz}$.
\star FRV7700F; $118-130,150-160,170-180 \mathrm{MHz}$.
* FF万; 500 kHz (for improved VLF reception).
* MEMGR7700; 12 Channels (internal fitting).
* FRA7700; Active Antenna.

HF TRANSCEIVERS; FTONE, FT980, FT707, FT101Z \& JST100 PLUS:

\star 160-10 metres including new allocations.
\star Audio Peak and independent notch controls.
FT902DM, £185 Inc. VAT @ 15% + Securicor.
\star AM, FSK, USB, LSB, CW, FM, (Tx and Rx).
\star Semi-break in, inbuilt Curtis IC Keyer.
\star Digital plus analogue frequency displays.
\star VOX built-in and adjustable.
\star Instant write in memory channel.
\star Tune up button (10 sec , of full power).
\star Switchable AGC and RF attenuator
$\star 350$ or 600 Hz CW, 6 kHz , AM filters.
\star Clarifier (RIT) switchable on Tx, Rx or both.
\star Plug in modular, computer style constructor.

* Fully adjustable RF Speech processor.
\star Ergonomically designed with necessary LEDS.
\star Incredible range of matching accessories.
\star Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC
FT102, £785 Inc. VAT @ $15 \%+$ Securicor.
\star All modes:- LSB, USB, CW, AM \ddagger, FM \ddagger, (\ddagger Option board).
\star Al

\star All modes:- LSB, USB, CW, AM \ddagger, FM \ddagger, ($\ddagger O p t i o n$
\star
Front end: extra high level, operates on 24 V DC.
\star RF stage bypassable boosts dynamic range over 100 dB !
\star Variable bandwidth $2.7 \mathrm{KHz} \rightarrow 500 \mathrm{~Hz}$ and If Shift.
* Fixed bandwidth filters, parallel or cascade configurations.
\star IF notch $(455 \mathrm{KHz})$ and independent audio peak.
\star Noise blanker adjustable for pulse width. (Woodpecker).
* External Rx and separate Rx antenna provisions.
\star Three 6146B in special configuration - 40 dB IMD!
\star Extra product detector for checking Tx IF signal.
\star Dual meter, peak hold ALC system.
* Mic amp with tunable audio network.
* SP102:- Speaker, Hi and Lo AF filters, 12 responses!
\star FV102:- VFO. 10Hz steps and readout, scanning, QSY.
* FC102:- ATU,1.2KW, 20/200/1200 W FSD PEP, wire.
\star FAS-1-4R:- 4 way remote waterproof antenna selector.

QRV?
 FER
 ICC I

The Word's most popular portables IC-2E £159. IC4E and now the marine version

Nearly everybody has an IC-2E, the most popular amateur transceiver in the world, now there is the 70 cm version which is every bit as good and takes the same accessories.
Fully synthesized - Covering 144145.995 in 4005 KHz steps. (430-439.99 $4 \mathrm{E})$. Power output - 1.5W. BNC antenna output socket. Send/Battery indicator. Frequency selection - by thumbwheel switches, indicating the frequency. 5 KHz switch-adds 5 KHz to the indicated frequency. Duplex Simplex switch - gives simplex or plus 600 KHz or minus 600 KHz transmit (1.6 MHz and listen input on 4E). Hi-Low switch-1.5W or 150 mW . External microphone jack. External speaker jack.
The IC-4E is revolutionising 70 cm !

Multimode Mobiles

 IC-290E IC-490E

290E-144-146 MHz/490E-430-440 MHz. 10 W RF output on SSB, CW and FM. Standard and non-standard repeater shifts. 5 memories and priority channel.

Memory scan and band scan, controlled at front panel or microphone. Two VFO's. LED S-meter. 25 KHz and 1 KHz on $\mathrm{FM}-$ 1 KHz and 100 KHz tuning steps on SSB. Instant listen for repeaters.

IC.720A Possibly the best choice in HF .

One way of keeping up with rapidly advancing technology is to look at what the IC-720A offers in it's BASIC form. How many of it's competitors have two VFO's as standard, or a memory which can be recalled, even when on a different band to the one in use, and result in instant retuning AND BANDCHANGING of the transceiver? How many include really excellent general coverage receiver covering all the way from 100 KHz to 30 MHz ? How many need 'no tuning or loading whatsoever? and take care of your PA, should you have a rotten antenna. How many have an automatic RIT which cancels itself when the main tuning dial is moved? How many will run full power out for long periods without overheating? How many have band data output to automatically change bands on a solid state linear AND an automatic antenna tuner unit?

The IC-720A may be just a little more expensive than some, but it's better than most! Make your choice an IC-720A.

IC-PS15 Mains PSU

Tono RTTY and CW computers 9000E

The TONO range of communication computers take a lot of beating when it comes to trying to read RTTY and CW in the noise. Others don't always quite make it!

Check the many facilities offered before you buy - especially look at the 9000 E which also throws in a Word Processor.
Call us for further information and a brochure.

IC-730 The best for mobile or economy base station

ICOM's answer to your HF mobile problems - the IC-730. This new $80 \mathrm{~m}-10 \mathrm{~m}$, 8 band transceiver offers 100W output on SSB, AM and CW. Outstanding receiver performance is achieved by an upconversion system using a high IF of 39 MHz offering excellent image and IF interference rejection, high sensitivity and above all, wide dynamic range. Built in Pass Band Shift allows you to continuously adjust the centre frequency of the IF pass band virtually eliminating close channel interference. Dual VFO's with $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1 kHz steps allows effortless tuning and what's more a memory is provided for one channel per hand. Further convenience circuits are provided such as Noise Blanker, Vox, CW Monitor APC and SWR Detector to name a few. A built in Speech Processor boosts talk power on transmit and a switchable RF PreAmp is a boon on today's crowded bands.

Great base stations IC-251 £499. IC-451
 base station range, ranging from 6 Meters through 2 Meters to 70 cms . Unfortunately you are not able to benefit from the 6 m product in this country, but you CAN own the IC-251E for your 2 Meter station and the 451 E for 70 cms .

QRVPFERICOM

IC-R70, The very latest from Icom!

Introducing the NEW IC-740.

Now that we have tried the R70, we believe that it is going to be a real winner.

The R-70 covers all modes (when the FM option is included), and uses 2 CPU-driven VFO's for split frequency working, and has 3 IF frequencies: $70 \mathrm{MHz}, 9 \mathrm{MHz}$ and 455 KHz , and a dynamic range of 100 dB .

Other R-70 features include: input switchability through a preamplifier, direct or via an attenuator, selectable tuning steps of $1 \mathrm{KHz}, 100 \mathrm{~Hz}$ or 10 Hz , adjustable IF bandwidth in 3 steps (455 KHz). Noise limiter, switchable AGC, tunable notch filter, squelch on all modes, RIT, tone control. Tuning LED for FM (discriminator centre indicator). Recorder output, dimmer control.

The R-70 also has separate antenna sockets for LW-MW with automatic switching, and a large, front mounted loudspeaker with 5.8 W output. The frequency stability for the 1 st . hour is $\pm 50 \mathrm{~Hz}$, sensitivity- SSB/CW/RTTY better than $0.32 \mu \mathrm{v}$ for $12 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) \div \mathrm{N}$, Am- $0.5 \mu \mathrm{~V}, \mathrm{FM}$ better than 0.32 for 12 dB Sinad. DC is optional on the R-70. It has a built-in mains supply.

The IC-R70 measures $286 \mathrm{~mm} \times 110 \mathrm{~mm} \times 276 \mathrm{~mm}$ and weighs 7.4 Kg ., making it a very attractive package indeed. Are you ready for this truly excellent receiver? You must hear it, we know you will be impressed!

IC-25E The Tiny Tiger

 And NOW the 70 cm version IC-45E.Amazingly small, yet very sensitive. Two VFO's, five memories,
 priority channel, full duplex and reverse, LED S-meter, 25 KHz or 5 KHz step tuning. Same multi-scanning functions as the 290 from mic or front panel. All in all the best 2 M and 70 cm . FM mobiles ICOM have ever made.
Remember we also stock Yaesu, Jaybeam, Datong, Welz G-Whip, Western, TAL, Bearcat, RSGB Publications.
Agents (phone first - all evenings and weekends only, except Scotland).
Scotland - Jack GM8 GEC (031 665 2420)
Midlands - Tony G8AVH (021 329-2305)
North West - Gordon G3LEQ Knutsford (0565)4040

W:नPA:

Once again YAESU lead the field with the exciting new FT-102 HF transceiverno other manufacturer offers so many innovative features.

Better Dynamic Range

The extra high-level receiver front end uses 24 VDC for both RF amplifier and mixer circuits. allowing an extremely wide dynamic range for solid copy of the weak signals even in the weekend crowds. For ultra clear quality on strong signals or noisy bands the high voltage JFET RF amplifier can be simply bypassed via a front panel switch, boosting dynamic range beyond 100 dB . A PLL system using six narrow band VCOs provides exceptionally clean local signals on all bands for both transmit and receive.
Total IF Flexibility
An extremely versatile IF Shift/Width system, using friction-linked concentric controls and a totally unique circuit design, gives the operator an infinite choice of bandwidths between 2.7 kHz and 500 Hz . which can then be tuned across the signal to the portion that provides the best copy sans QRM, even in a crowded band. A wide variety of crystal filters for fixed IF bandwidths are also available as options for both parallel and cascaded configurations. But that's not all; the 455 kHz third IF also allows an extremely effective IF notch tunable across the selected passband to remove interfering carriers, while an independent audio peak filter can also be activated for single-signal CW reception. New Noise Blanker
The new noise blanker design in the FT-102 enables front panel control of the blanking pulse
width, substantially increasing the number of types of noise interference that can be blanked, and vastly improving the utility of the noise blanker for all types of operation.
Commercial Quality Transmitter
The FT-102 represents significant strides in the advancement of amateur transmitter signal quality. introducing to amateur radio design concepts that have previously been restricted to top-of-the-line commercial transmitters: far above and beyond government standards in both freedom from distortion and purity of emissions.
Transmitter Audio Tailoring
The microphone amplifier circuit incorporates a tunable audio network which can be adjusted by the operator to tailor the transmitter response to his individual voice characteristics before the signal is applied to the superb internal RF speech processor.
IF Transmit Monitor
An extra product detector allows audio monitoring of the transmitter IF signal, which, along with the dual meters on the front panel, enables precise setting of the speech processor and transmit audio so that the operator knows exactly what signal is being put on the air in all modes. A new "peak hold" system is incorporated into the ALC metering circuit to further take the guesswork out of transmitter adjustment.

New Purity Standard
Three 6146B final tubes in a specifically configured circuit provide a freedom from IMD products and an overall purity of emission unattainable in twotube and transistor designs, while a new DC fan motor gives whisper-quiet cooling as a standard feature. For the amateur who wants a truly professional quality signal, the answer is the Yaesu FT-102.

New VFO Design

Using a new IC module developed especially for Yaesu, the VFO in the FT-102 exhibits exceptional stability under all operating conditions.

ANCILLARY EQUIPMENT

SP-102 EXTERNAL SPEAKER/AUDIO FILTER
The SP-102 features a large high-fidelity speaker with selectable low- and high-cut audio filters allowing twelve possible response curves. Headphones may also be connected to the SP-102 to take advantage of the filtering feature, which allows audio tailoring for each bandwidth and mode of operation to obtain optimum readability under a variety of conditions.
FC-102 1.2 KW ANTENNA COUPLER
FV-102DM SYNTHESIZED, SCANNING EXTERNAL VFO

A North West-Thanet Electronics Ltd. Gordon, G3LEQ, Knutsford (0565) 4040 Wales \& West-Ross Clare, GW3NWS. Gwent (O633) 880146
East Anglia-Amateur Electronics UK, East Anglia. Dr. T. Thirst (TIM) G4CTT. Norwich 060366189
North East - North East Amateur Radio, Darlington 032555969 North East - North East Amateur Radio, Darlington 032555969 Shropshire-Syd Poole G3IMP, Newport. Salop 0952814275

FT-290R All-mode 2 mportable

10 memories, 2 VFO's, C size battery, easy car mounting tray. 2.5 watts out

WISHING ALL OUR CUSTOMERS A HAPPY NEW YEAR
Come and see us at the N.E.C. Birmingham

or attractive H.P terms readily available for on-
the spottransactions. Full demon
the spottransactions. Full demon
stration facilities. Free Securicor delivery.
stration facilities. Free Securicor delivery For full details of these new and exciting models, send today for the latest
YAESU PRICE LIST \& LEAFLETS. All you need do to obtain the latest information about these exciting developments from the World's No. 1 manufacturer of amateur radio equipment is to send 36 p in stamps and as an added bonus you will get our credit voucher value $£ 3 \cdot 60-$ a 10 to 1 winner!

As factory appointed distributors we offer youwidest choice, largest stocks,quickest deal and fast sure service right through-

TET HF antennas are unique in that they employ dual driven elements with the following distinct advantages-

- Improved gain over conventional arrays.
- Broader bandwidth with lower SWR.
- Enhanced front to back ratio.
- Better matching into solid state transceivers without an A.T.U.
- High power handling capacity.

TET manufacture an exciting range of multi-element HF beams including superb monobanders plus HF verticals. Also there is a full range of VHF/UHF antennas most of which have multi-element drive or distinctive technical features.
$\left.\begin{array}{l|l|r|r}\text { Model } & \text { Description } & \text { incl. VAT } & \text { Carriage } \\ \hline \text { HB10F2T } & \begin{array}{l}\text { 2 Ele. Mono Band Beams } \\ \text { for 10 Meter Band } \\ 3 \text { Ele. Mono Band Beams } \\ \text { for 10 Meter Band }\end{array} & 51.50 & 2.75 \\ \text { HB10F3T } & \mathbf{7 4 . 9 5} & 2.75 \\ \text { HB15F2T Mono Band Beams } \\ \text { for } 15 \text { Meter Band }\end{array}\right)$

YOUR LOCAL TET STOCKISTS

Amateur Radio Exchange, 373 Uxbridge Road, Acton, London W3

Amcomm Services, 194A Northolt Road, South Harrow, Middlesex

Bredhurst Electronics, High Street, Handcross, Haywards Heath, West Sussex RH17 6BW

Stephens James Ltd., 47 Warrington Road, Leigh, Lancs. WN7 3EA

Uppington Tele Radio, 12-14 Pennywell Road, Bristol BS5 OJT

Full range of VHF/UHF Beams now in stock - an S.A.E. for full details please
$\square \square \square \square$ SOLE

Amateur Electronics UK

 504-516 Alum Rock Road-Birmingham 8 Telephone: 021-327 1497 or 021-327 6313 Telex:334312 PERLEC GOpening hours: $\mathbf{9 . 3 0}$ to $\mathbf{5 . 3 0}$ Tues. to Sat. continuous - CLOSED all day Monday.

(in)cushcrafi SUPER SALE! It's Monoband Month!

Now's your chance to pick up a bargain for your favourite band.
SUPER "SKYWALKER." 3 element 8db Yagis at an unbeatable price!
Don't wait for the weather - they'll all be gone! - order now.

| 10 metres |
| :---: | :---: |
| Rec $£ 64.00$ |
| Sale $£ 49.00$ |\quad| 15 metres |
| :---: | :---: |
| Rec $£ 87.00$ |
| Sele $£ 69.00$ |\quad| 20 metres |
| :--- | :--- |
| Rec $£ 153.00$ |
| Sale $£ 79.00$ |

$£ 5.00$ Securicor delivered! Full range of super Cushcraft models in stock. Send large SAE for details.

This new, revolutionary UHF Amateur Band Yagi, features stainless steel elements, fully insulated from the boom, for best performance plus a Silver - Yes - Silver driven element, with N type connector. Outstanding features include: low VSWR across a full 10 MHz range, light weight, rigid boom brace construction, complete with mast clamps.

ZL12 Super Compact Yagi "Mk 2"

2 metres

Now featuring boom brace, Stainless directors insulated from boom, plus mounting clamps. Hundreds of this award winning 13db gain, 2 metre yagi already in use. Now better than ever, boom still only 105^{*}.

ZL8 Super Compact Yagi "Mk 2"

2 metres

Now with Stainless directors, insulated from boom, 9db gain. Only $6^{\prime} 0^{\prime \prime}$ boom ideal for limited spaces and portable operation.
$£ 19.95$ inc. VAT £4.00 Securicor

AND NOW THE

Thin James"

2 metre Antenna

A very superior "Slim Jim" style antenna great for getting started on 2 metres, or as a base station/portable portable antenna. We think that you'll like the construction very much, with its mounting arm, easy tuning adjustment SO239 socket connection and full instructions.
NB see Norcone for MK2 \& CK1 kits.
$\mathbf{£ 6 . 5 0}$ inc. VAT £2.00 carriage

NORCONE 512 (66-512 MHz) It's here! A no compromise, precision made full 16 it's herel A no compromise, precision made full 16 element discone antenna made in Britain. Standiameter, $30^{\prime \prime}$ mounting support mast and complete instructions.
An ideal partner for the SX200N "Bearcat" and other scanning receivers. It may also be used for transmisscanning receivers. It may also be used for transmis-
sion and in particular where antenna space is limited. Full coverage of $70.144,432 \mathrm{MHz}$ Amateur bands plus Aircraft, Marine and Commercial bands.
£25.95 p.p. $£ 2.00$
£2.45 p.p. £1.00
MK-2.
Chimney lashing kit, including hardware and lashing wire.
£2.95 p.p. £1.00 and fixing clips.
£3.75 p.p. $£ 1.00$

NORTHERN COMMUNICATIONS

AMATEUR - COMMERCIAL - MARINE

[^0]

MORSE TUTOR

The uniquely effective method of improving and maintaining Morse Code proficiency. Effectiveness proven by thousands of users world-wide.
\star Practise anywhere, anytime at

your convenience.
\star Generates a random stream of perfect Morse in five character groups.
D70's unique "DELAY" control allows you to learn each character with its correct high speed sound. Start with a long delay between each character and as you improve reduce the delay. The speed within each character always remains as set on the independent "SPEED" control.

* Features: long life battery operation, compact size, built-in loudspeaker plus personal earpiece.

ACTIVE RECEIVING

ANTENNAS

Datong active antennas are ideal for modern broadband communications modern broadband communications
receivers - especially where space is limited.
\star high
size dipoles)
size dipoles).
needs no coverage (below 200 kHz to over 30 MHz)
\star two versions AD270 for indoor mounting or AD370 (illustrated) for outdoor use. \star very compact, only 3 metres overall length.
\star professional performance standards.
Prices: Model AD270 (indoor use only) $\mathbf{£ 5 1 . 7 5}$
Model AD370 (for outdoor use) $\mathbf{£ 6 9 . 0 0}$
Both prices include mains power unit.

VERY LOW FREQUENCY CONVERTER

If your communications receiver gives poor results below 500 kHz Model VLF is the answer.
\star Connects between antenna and receiver input.

* Converts signals between DC and 500 kHz to the range 28 to 28.5 MHz with low noise and high sensitivity.
* Crystal controlled for high stability.
* Quality construction in diecast aluminium box (size $112 \times 62 \times 31 \mathrm{~mm}$), SO239 connectors, LED indicator, in/out switch.
* Operates from internal 9 volt battery or external supply (5-15 volts DC).

Price: only $\mathbf{£ 2 9 . 9 0}$
Our full catalogue plus further details of any product are available free on request.
All prices include VAT and postage and packing.
Goods normally despatched within 3 days subject to availability.

\rightarrow
 DATONG
 ELECTRONICS
 LIMITED
 Spence Mills. Mill Lane
 Bramley. Leeds LS13 3HE
 England.
 Tel: (0532) 552461

Lee Flectronicstry

TWO NEW SLIMLINES FROM STANDARD

C7900 70cms - C8900 2mtr

Prices: C7900-£269 inc. \& C8900-£239 inc.

General

Frequency coverage Mode of operation
Voltage
Power drain
Polarity
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Weight
Transmitter
RF power output Spurious emission Maximum deviation
Modulation
Receiver
Sensitivity
Bandwidth
Receiver system Intermediate frequency

Selectivity
Squelch sensitivity
Audio output
$144-146 \mathrm{MHz}$ F3
DC 13.8 V
2.8 Amp TX. 0.4 Amp RX-Standby

Negative only
$31 \times 138 \times 178 \mathrm{~mm}$
1.1 Kg

10 watt minimum .
60 dB
$\pm 5 \mathrm{KHz}$
Reactance modulation

- 10dB (12 dB SINAD)
$\pm 7.5 \mathrm{KHz}(-6 \mathrm{~dB})$
Double superheterodyne
1st IF 10.7 MHz
2nd IF 455 KHz
More than 60 dB
$-16 \mathrm{~dB}$
2W (into 8 ohms with 10% THD)

The specifications for both sets are the same, it's the frequency that's different!!

We have improved and enlarged our workshop facilities to provide a better service for our customers.

> At long last Standard have released the C5800. They have taken a long time to satisfy themselves (and us) that there are no bugs to sort out. I hear you snigger "No Bugs?"
> Well, after 6 months of field testing what do you expect!! Now read on.
> SPECIFICATIONS
> 1. General Specifications
> Transmission frequency . $144.00000-147.99999 \mathrm{MHz}(\mathrm{E})$ $144.00000-145.99999 \mathrm{MHz}$ (W)
> Type of emissionFM (F3), SSB (AJJ), CW (A A_{1}) Frequency stability $\ldots \pm 300 \mathrm{~Hz}$ within $1-60$ minutes after power on 50 Hz every 30 minutes
> Power supply13.8VDC
> $\begin{array}{r}\text { Power consumption Transmission: H1, } \\ \text { Reception standby: } 450 \mathrm{~mA}\end{array}$
> $\begin{aligned} & \text { Microphone input impedance } 600 \Omega \\ & \text { Anetenna impedance } 50 \Omega\end{aligned}$
> Anetenna impedance $\ldots \ldots \ldots$ or 8Ω

> Dimensions 149mm (W), 55mm (H), 218mm (D)
> Weight
> 1.90 kg
> 2. Reception Specifications
> Reception system FM: Double super heterodyne
> SSB, CW: Single super heterodyne
> Intermediate frequency FM: 1st IF 10.7 MHz 2nd IF 455 kHz SSB, CW: 10.7 MHz
> Sensitivity
> FM: $0.19 \mu \mathrm{~V}$ (12dB SINAD)
> Pass bandwidthFM: $\pm 6 \mathrm{kHz}$, SSB, CW: 2.2 kHz Selectivity (60 dB) FM: 25 kHz , SSB, CW: 4.2 kHz Squelch selectivity …................................ 15 V (FM)
> AF output
> More than 2W (into 8 ohms with 10% THD)

C5800 MULTIMODE

3. Transmission Specifications

Power output
.25W/1W
Modulation
\qquad Mi. Reactance modulation SSB: Balanced modulation
Maximum frequency tolerance...........$\pm 15 \times 10^{\circ}$
$\left(-10-+50^{\circ} \mathrm{C}\right)$
Spurious attenuation60dB
Carrier suppression 40dB
Undesired side band suppression 40dB
Maximum deviation
$\pm 5 \mathrm{kHz}$

These specifications are subject to change without notice in the event of improvements.

400 EDGWARE ROAD
LONDON W2
01-723 5521 TIx 298765

Please allow up to 14 days
for delivery

OPENING TIMES:
$9.30 \mathrm{am}-5.30 \mathrm{pm}$ Mon, Tues, Wed, Fri.
$9.30 \mathrm{am}-1 \mathrm{pm}$ Thurs. $10 \mathrm{am}-4.30 \mathrm{pm}$ Sat.

A new venture totally unconnected with any other amateur radio retailer

THE ENFIELD EMPORIUM

DAVE, G8SYG \& MIKE, G6LHL

Would like to welcome you to their new emporium. It is just 1 mile from the North Circular Road in Enfield. There is plenty of room to park and cups of cocoa will be available to those in need of refreshment.

GOT AN IC 2E?

Why not let us MOD it? We can add an l.e.d. S-meter to your 2 E (or 4 E) while you wait!! We supply a completly new faceplate and the mod can either be carried out in our workshop ($£ 20: 25$ p) or we will supply a kit for you to fit yourself (£16).

LOAN SET - We will have two licensed engineers in attendance to help you with any problems that you may have and they will be willing to repair rigs that were bought elsewhere! We will even offer you the use of a LOAN SET while yours is being repaired!!!

WE STOCK THE FULL RANGE OF

EQUIPMENT AND ALL ACCESSORIES ARE AVAILABLE

WE CAN SUPPLY EQUIPMENT AND ACCESSORIES FOR

TRIO \& YAESU

WE ARE ASP ANTENNA STOCKISTS

TRIO - We are offering substantial reductions on TRIO prices to personal callers only.
(Trio 930S with built-in auto A.T.U. - now in stock)
$\star \star \star$
STANDARD - We now have in stock the C58, the C78 and the brand new multi-mode - the superb C5800 (25 watts) only $£ 359$.
$\star \star \star$
ANTENNAS - We now have in stock the full range of TONNA and JAYBEAM antennas. We also have some very special bargains such as:2 m Colinear (3dB) £17.50 (Base station) 2 m Colinear (6dB) .£33.00 (Base station)
10-15-20m Vert. trapped Dipole
£45.00
Halo (Sideband Mobile) .$f 5.75$
Aerial Poles ($1 \frac{1}{2}^{\prime \prime} \& 2^{\prime \prime}$) - Assorted lengths in stock. \quad Prices from $\mathbf{£ 6 . 5 0}$
Chimney lashing kits (Heavy duty)
.$£ 15.00$
Stand-off brackets - $12^{\prime \prime} £ 11-18^{\prime \prime} £ 12-24^{\prime \prime} £ 15.50$.
$\star \star \star$
ROTATORS - Kenpro KR 250 (Light Yagis) - KR 400 (Medium to Heavy) - KR 600 (Heavy) Daiwa DR 7600 (Heavy)-Hirschmann 250 (Heavy).
BARGAINS - Sleeving
$\star \star \star$
813 Valves (Normally 991.00 each)
4 pence per m.
807 Valves
£35 for TWO
We We cannot list all of the switches, coils, transformers and components that we have in stock so COME IN AND RUMMAGE.
$\star \star \star$
SWITCHES - Co-axial antenna switches from DAIWA - 4 Way $£ \mathbf{3 6 . 9 9 ;} 2$ Way $£ 10.50$. $\star \star \star$
CRYSTALS - We have in stock a large selection of crystals, some very rare . . . $\mathbf{£ 2 . 0 0} \mathbf{e a c h}$ $\star \star \star$
METERS - We stock the full range of DAIWA crossed needle SWR/Power meters.

Specifications:			15144 A
Antenna	4144 A	10144 A	15
No. Elements	4	10	15
Gain	8 dBd	11.4 dBd	14 dBd
Front/Back	20 dB	20 dB	26 dB
Front/Side	40 dB	40 dB	40 dB
Boom Length	1.1 m	4.5 m	6.45 m
Weight	1 Kg	3 Kg	5 Kg
Boom		3 sections	4 sections

D) 它

Model	Boom	Gain	
	Length	Annaboda*)	Claimed
15144 (A)	3.17	13.0 dBd	14.0 dBd
C. C. Boomer	3.2λ	12.8 dBd	16.2 dBd
14 el Parab	2.9入	12.7 dBd	13.7 dBd
Tonna	3.1λ	12.2 dBd	15.7 dBd

Opening hours:
Mon-Thur 9-6
Fri 9-8
Sat 9-6
AND NOW
SUN 9-1

THE LONG-AWAITED AMENDMENTS to the Wireless Telegraphy Acts 1949 and 1967, which presently control the use of radio in the UK, were included as part of the Telecommunications Bill', published on 19 November 1982. The provisions have two purposes: to rationalise and update the penalties for wireless telegraphy offences, and to introduce new powers to enable more effective enforcement of the law.

The provisions include: powers for the police or members of the Radio Interference Service of British Telecoms to seize apparatus for the purpose of proceedings; a limited power of arrest without warrant for the police in cases involving the illegal use of radio transmitters; power for the Secretary of State to control the sale and possession of specified wireless telegraphy equipment.

This last provision is aimed particularly at illegal CB transceivers, which are still generating about 1000 complaints of interference to domestic TV and radio reception every week. Under present legislation it is illegal to manufacture or import such transceivers. The new law would make it possible also to prohibit their advertisement, sale or possession. It is likely that a limited amnesty period-perhaps six months-would be allowed.

The powers of seizure and arrest should certainly improve the effectiveness of action against the illegal use of transmitters, jamming and the sending of misleading messages. The new Criminal Justice Act 1982 will raise the maximum fine for the unlicensed use of a transmitter from $£ 400$ to $£ 1000$.

The Telecommunications Bill was due to have its second reading in the House of Commons on November 29, and then goes into Committee. We have not yet had time to analyse the Bill in detail, but it appears at first sight to be a step in the right direction towards curbing some of the more antisocial abuses of radio, whilst not unduly restricting responsible users, among which the majority of licensed amateurs are to be numbered.
${ }^{1}$ Telecommunications Bill, $162 p p(010301583$ 3) $£ 7.60$

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 13$ per annum, from "Practical Wireless" Subscription Department, Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at $£ 1$ each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 5.00$ to UK addresses, $£ 5.25$ overseas, including post and packing) each accommodating one volume of $P W$. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Departmont, IPC Magazines Lid., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.
Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

INSURANCE

Turn to the following page for details of the PW Radio Users insurance Scheme, exclusive to our readers.

PIU Radio Users Insurance Scheme
 Practical Wireless Radio Users Insurance Scheme was devised by Registered

 Insurance Brokers B. A. LAYMOND \& PARTNERS LIMITED following consultation with PRACTICAL WIRELESS to formulate an exclusive scheme designed to meet the needs and requirements of:Amateur Radio Enthusiasts - CB Radio Users - Taxi Companies and Fleet Users with Radio Telephones and any individual or company needing cover for communications equipment which is legal to use and properly licensed.

SPECIAL FEATURES

- All Risks Cover
- "New Lamps for Old" Cover (as defined in policy)
- Index Linked Cover to combat inflation
- Licence protection-covers legal costs arising from any breach of your licence conditions
- Equipment covered anywhere in the UK, Channel Islands and Isle of Man, but not Northern Ireland and Eire
- Fixed Antennas (Aerials) covered
- Frequency, Power and SWR Meters and similar radio-related test equipment covered
- 30 days cover in Western Europe included Free of Charge
- Absolute Security as this scheme is underwritten by a leading member of the British Insurance Association on the London Insurance Market
- Practical Wireless radio receiver and transmitter projects covered (when stated in feature)
- Available to Clubs and Organisations ${ }^{\dagger}$
- Available to Companies ${ }^{+}$
†Write directly to B. A. LAYMOND \& PARTNERS LTD, 562 North Circular Road, London NW2 70Z, for a special application form and full details, enclosing the coupon below.
B. A. Laymond \& Partners Limited, Practical Wireless and the Underwriters wish to make it clear that it is an offence to install or use an unlicensed radio transmitter in the United Kingdom and it is not their deliberate intention to encourage or condone the illegal use of any radio communications equipment.

COST OF PRACTICAL WIRELESS RADIO USERS INSURANCE SCHEME:

Sum to Insure	$£ 100$	$£ 150$	$£ 300$	$£ 500$	$£ 750$	$£ 1000$	$£ 2000$
Annual Premium	$£ 6.00$	$£ 6.50$	$£ 8.00$	$£ 9.00$	$£ 10.00$	$£ 12.00$	$£ 14.00$

The premium is charged on sums insured in pre-selected bands. Thus equipment totalling $£ 250$ would be in the band up to $£ 300$. Quotations for larger sums available on application.

Claims will be settled after deduction of the Policy Excess which is: $£ 10$ on sums insured up to $£ 500$; $£ 25$ on sums insured up to $£ 3000$.

HOW TO INSURE: Complete the application form below to obtain immediate insurance cover. Photocopies will not be accepted.
APPLICATION FOR PRACTICAL WIRELESS RADIO USERSINSURANCE SCHEME
Name in full (State Mr, Mrs, Miss or Title)
Address

Occupation	Age		
	Phone No. (Home)	Pode	

I/We hereby apply to insure the equipment detailed below

| Manufacturer's
 Name | Model | Serial No. | Description of equipment to be insured
 e.g. Base station; Mobile; CB; etc. | VALUE |
| :--- | :--- | :--- | :--- | :--- | :--- |

DECLARATION: I/We hereby declare that: 1 . The sums insured represent the full replacement value of the equipment. 2. INe have not* had insurance cancelled, declined, restricted, or other terms imposed in any way other than the normal Policy terms. 3. This proposal shall be the basis of the contract and that the contract will be on the Underwriters normal terms and conditions for All Risks and Legal Costs/Expenses cover unless otherwise agreed. 4. I/We have not* sustained any loss or damage to any radio communications equipment or been involved in litigation relating to use of radio equipment during the past three years, whether insured or not. 5 . All the above statements made in connection with this proposal are true and no material information has been withheld. 6. 1/We understand no liability shall attach until this proposal shall have been accepted by Laymond's and the premium paid in full and a Certificate issued.

- If you have, please give details on a separate sheet.

Signed
Rush us details of PW Club Insurance \square PW Company Insurance \square
DELAY IN ARRANGING COVER COULD COST YOU A GREAT DEAL OF MONEY. COMPLETE THIS APPLICATION AND POST WITH YOUR PREMIUM MADE PAYABLE TO "LAYMOND'S" NOW. ADDRESS TO: PRACTICAL WIRELESS (INSURANCE), B. A. LAYMOND \& PARTNERS LTD., 562 NORTH CIRCULAR ROAD, LONDON NW2 $70 Z$.

Electronics Hobbies Fair - 1982

Following many months of preparation, Thursday 18 November 1982 arrived and for the staff of Practical Wireless, Practical Electronics and Everyday Electronics it was all systems go at the Electronics Hobbies Fair, our first venture into running an exhibition for the radio and electronics enthusiast.

The early arrivals queue

The Fair was held over four days in the new Alexandra Pavilion, next to Alexandra Palace. Most of the available stand space was taken, and the variety of exhibits included amateur radio equipment, live satellite TV programmes from the USSR, component suppliers, home computing and video games, holography display, robotics, demonstration by the Royal Corps of Signals and many other interesting stands.

G8VFH working 432 MHz

A talk-in station on S22 was run by the North London RAYNET Association and for our part we ran v.h.f., u.h.f. and h.f. stations, using the special event callsigns GB8EHF and GB2PW, we also demonstrated the reception of slow-scan ATV on the h.f. bands and a fast-scan ATV link, on 10 GHz , with the assistance of Wood and Douglas. Our transmissions on the 934 MHz CB service gave us contacts with mobile operators and two base stations in South London, distanced 13 and 18 miles away. The transceiver used was a Reftec 934 through a conventional (and legal) 4-element beam. This demonstration certainly generated a lot of interest among the more serious CB operators who visited the stand. Our antennas, other than the 32 m long trap dipole for the h.f. bands, were mounted on a 10 m mobile mast kindly loaned to us by Allweld Engineering.
$P W$ also ensured that interest for the radio enthusiast was guaranteed by arranging a stand for the RSGB plus demonstrations of radio control by Model Land and RTTY by the British Amateur Radio Teleprinter Group.

The Model Land demonstration with PW's stand beyond
With over 11000 visitors during the four days, the first Electronics Hobbies Fair represents for PW a great success, that encourages us to make the Fair an annual event. In fact plans are now under way for this year's Electronics Hobbies Fair on 27 to 30 October 1983.

ISKRA3 Now You See It, Now You Don't

Following a report by Tass News that a second amateur radio satellite, called ISKRA3, has been successfully launched by the crew of the Salyut 7 manned space laboratory currently circling the earth, Ron Broadbent G3AAJ, Hon Sec of AMSAT-UK, promptly sent us further information on the space vehicle.

ISKRA3 was launched, by hand, at 0756GMT on 18 November 1982, from the Salyut 7 spacecraft, and since then ground control tests confirm it was operating well. For the record the satellite carried a $21-28 \mathrm{MHz}$ active transponder with telemetry output on 28.587 MHz .

Unfortunately, the altitude and orbital velocity of this spacecraft dictated a rapid orbital decay and re-entry. By the time this issue of $P W$ is printed, ISKRA3 will, most likely, have reentered the Earth's atmosphere and deposited its burnt-up remains
somewhere in the Indian Ocean.
Reporting news of this satellite proves the need for constantly updated information, particularly if your interest lies with satellite communications. One of the best ways to obtain this information is to become either a member of AMSAT-UK or listen-in on the several nets AMSAT-UK run (which are open to non-members) where news is disseminated and questions can be asked. The most regular of these is on 3780 kHz (\pm QRM) every Sunday morning at 1015 UK local time. Other, more local nets take place from time to time: usually weekly and mostly on 144.28 MHz . There is also a half hour information net on 3780 kHz every weekday evening at 1900 hrs .

Further afield AMSAT-USA also run nets on Sunday evenings on 14.282 and $21 \cdot 280 \mathrm{MHz}$ usually at 1800 and 1900GMT.

For details of membership etc. contact: AMSAT-UK, 94 Herongate Road, Wanstead Park, London E12 5EQ.

M for the IC-720A \&
 IC-730

Owners or prospective purchasers of either the top of the range IC-720A base station or mobile/base station IC730 h.f. transceivers, will be pleased to know that purpose designed f.m. modules are now available.

For the IC-720A the module (FM04) costs $£ 79.00$ and for the IC-730 (FMO3) costs $£ 49 \cdot 00$. Both units are available from: Thanet Electronics, 143 Reculver Road, Herne Bay, Kent. Tel: (O2273) 63859.

GB3WD - 144MHz Repeater Project

When next you visit or are perhaps taking your annual holidays in the deep South West, take a look at R4 and if the current progress has been maintained, the West-Devon 144 MHz repeater GB3WD will probably be there.

The local repeater group has been formed there for some time with the prime objective of providing v.h.f. coverage into the exceedingly hilly geography of Devon, currently isolated from existing repeater coverage.

As is usually the case with such devices, the greatest practical problem facing this group has been the logistics of acquiring a suitable site. Many repeater groups throughout the UK have benefited from the exemplary policy of the BBC and IBA to assist by allowing the radio amateur to share the use of their sites in these ongoing experiments. Negotiations, over siting GB3WD, have progressed to an advanced state, not without considerable assistance from both the BBC and the RSGB Repeater Working Group. It is hoped that GB3WD will become operational in early 1983. from North Hessary Tor on Dartmoor.

The omni-directional antenna system will consist of two Jaybeam 7050 folded dipoles mounted 70 m a.g.l. on the NE and SW faces of the BBC mast, spaced off by $\lambda / 4$. A single run of Andrews LDF4-50 coaxial feeder will carry r.f. to the antenna, and the system's $\mathrm{RX} / T \mathrm{~T}$ isolation will be achieved by a locally constructed six section cavity diplexer. Control
functions will be handled by a GB3US logic system.

The group have modified an Icom IC-240 for the TX and RX sub-systems with an outboard 25 W p.a. stage for transmit.

A video film of the installation and constructional phases of the project is being prepared and will be made available to local radio clubs and any other interested parties.
Membership of the West Devon Repeater Group can be obtained for the modest sum of $£ 3.00$ per annum - each applicant will receive a comprehensive newsletter containing full technical details of the system etc., in addition, the first 150 applicants will receive an impressive "Founder Member" endorsed certificate.

If sheer enthusiasm were the only criteria for success, this group would achieve all its goals; however, as with all repeaters, their continued operation lies entirely in the hands of those who USE and support them. Think about it!

Further details of GB3WD, applications for group membership and offers of assistance/funds should be addressed to: Membership Secretary, Trevor Day G3ZYY, QTHR or tel: Saltash (075 55) 5913.

Testmex '82

Attendance at Testmex ' 82 was $12 \frac{1}{2}$ per cent up on the 1981 figure, quite an achievement at a time of generally declining exhibition attendances. Several new and exotic test and measurement instruments were on show, but the thing that really came home was the reversal of the trend towards digital test instruments, logic analysers and the like. Radio communications test gear was the "inthing", with particular interest being shown in spectrum analysers covering frequencies up to at least 2 GHz .

For your new diary, make a note that Trident, the organisers of Testmex for the past five years, will be staging their own show, called Test '83, at the Wembley Conference Centre between 15 and 17 November, 1983. This follows a serious disagreement with the SIMA Exhibition Committee as to the future shape of the Testmex exhibition.

Extension Course for Radio Amateurs

Readers living in the Bedford area may be interested in a course designed particularly for radio amateurs who have passed the RAE and wish to extend their knowledge.

Subject areas of the course are v.h.f./u.h.f. propagation, antennas, s.w.r., modulation and digital integrated circuits.

The course commences on Monday 17 January 1983 and will run for eight weekly sessions. The lecturer will be C. P. Meadows G4KWH.

For further details contact: Bedford College of Higher Education, (Mander) Cauldwell Street, Bedford MK42 9AH. Tel: (0234) 45151 Ext. 240.

PW ZX81 Programs - 1

The ZX81 programs described in the ZX Computing for the Radio Amateur supplement (December 1982) are available on a special cassette. The cassette costs $£ 3.50$, which includes post and packing, and is available from the Editorial Office at our Poole address. Please allow 28 days for delivery.

We hope soon to produce a version of these programs that is suitable for the Sinclair ZX Spectrum.

Old and New

Since the company's launch some 15 years ago to pioneer the concept of the second-user market in the UK-the purchase, refurbishment and resale of electronic test and measuring equipment-Electronic Brokers Ltd. has made that market both respectable and successful.

From a humble beginning, selling to small firms and the hobbyist, the company has grown to become the largest of its type in Europe, handling computers as well as T\&M.

Now Electronic Brokers have signed an agreement to distribute a wide range of new test instruments from Philips Electronics Instruments Division, and will have these on display at their 61/65 Kings Cross Road, London WC1 showroom. In charge of new products for EB is Tony Morris G4LCD.

Passport to Amateur Radio - Reprint

The long-awaited reprint of the very popular Passport to Amateur Radio series is now available. Full details of how to obtain a copy are published on page 52 of this issue.

First for British Telecom

The world's longest optical fibre telephone cable came into service on 22 July 1982, between London and Birmingham, the busiest trunk route in Britain. This is the latest addition to British Telecom's "Lightlines" optical fibre network.

Optical fibres are hair-thin strands of glass carrying messages and information as pulses of light. The glass used is so pure that a block 20 km (12 miles) thick would be as transparent as a window pane.

Each hair-thin strand is capable of carrying up to 2000 simultaneous telephone calls, and five strands, enough to carry 10000 calls, would pass through the eye of a needle.

Because the message is carried as digital light pulses, it means that more and different types of information can be carried, faster and with better reception. Optical fibres are immune to electrical interference, eliminating cross-talk and noise, and allowing perfectly clear transmission.

Traditional copper cable needs to have the signal boosted every two kilometres (just over one mile), whilst with optical fibres the signal requires boosting less frequently. With this installation, the new cable is the first in the UK to operate at long wavelength, and boosters can be placed ten kilometres (six miles) apart.

Other advantages in the system are, optical fibres take up less room than copper cable, allowing more calls to be carried using the same cable duct, and very important, is the fact that glass fibres are inexpensive, the raw material being sand, which is both cheap and abundant.

The cable has been made by BICC Telecommunication Cables Ltd. and Plessey Telecommunications Ltd. has supplied the associated electronic equipment.

RSGB's New HO

As reported last month, the RSGB are now well established in their new HQ. Visitors will no doubt be interested in this map of how to get there. The new
address, once again, is: RSGB, Alma House, Cranborne Road, Potters Bar, Hertfordshire EN6 3JW. Tel.: (0707) 59015.

US News

Morse code free licence: Against the unanimous recommendation of the ARRL executive (the US equivalent of the RSGB) the FCC is to introduce a "code free" licence as soon as the Goldwater Senate Bill and corresponding House of Representatives Bill amendments to the amateur licensing procedures have been adopted, and additionally, the ratification of the WARC 79 recommendations.

The FCC Commissioners approved the proposal, in a 7 to 0 vote, to introduce a "high technology" licence similar to the Canadian digital licence. To obtain the new licence, the applicant will, amongst other things, be capable of passing a "difficult" technical examination on digital theory. Privileges awarded to this category of licence holder will be the same as for the existing technician class for use on frequencies above 30 MHz . There are currently 74000 technician class licensed operators in the US.
Mobile r.f.i.: An interesting report in the October 1982 issue of $C Q$
magazine, is that the Japanese car manufacturer Subaru are warning potential customers to avoid installing CB or amateur radio transmitting equipment into their 1982 model vehicles. The reason being, the cars are fitted with electronically controlled carburation, and strong r.f. fields could cause all sorts of problems. The ramifications of this sort of problem could prove to be quite serious or indeed positively dangerous.
Cable TV: Current specified levels for maximum permitted equivalent radiation (r.f. leakage) from cable TV distribution systems are set by the FCC at $20 \mu \mathrm{~V} / \mathrm{m}$ at 3 m . The FCC are considering relaxing this level to between 50 and $100 \mu \mathrm{~V} / \mathrm{m}$ at 3 m , apparently in response to requests for a lowering of the specification from the cable industry. The cable industry's request is based on the results of extensive study and monitoring that has revealed that no significant interference has yet been caused to aeronautical frequencies. No similar study has been carried out as to the effects either to or from amateur radio transmissions.

For the growing number of radio amateurs and s.w.l.s putting up beams, it is useful to be able to calculate the wind resistance of the antenna and extension mast. A number of antenna manufacturers specify wind loadings, but in many cases these are not true figures as they include a factor of safety. This means you could end up using a tower, mast or rotator that is much larger than is really necessary for the antenna it carries.

It is a relatively simple matter to work out the wind resistance of an antenna so long as some basic rules are followed-there is no mystery.

Horizontal Antennas

A typical 5-element Yagi is shown in Fig. 1. To obtain the wind resistance, one must first find the maximum area that the antenna will present to the wind at any time. This is not the area of the side profile.

Fig. 1

To find the maximum area, we must first calculate the area of the antenna as viewed from the end " A ", and the area as viewed from the side " B ".

Area \mathbf{A} is the average area of a single element multiplied by the number of elements N in the antenna, though if the driven element is a folded dipole that counts as two. The average area is found by taking the average length L_{Y} and multiplying it by the diameter D . The average length is simply obtained by using the formula:

$$
\mathrm{L}_{\mathrm{Y}}=\frac{\mathrm{L}_{\mathrm{L}}+\mathrm{L}_{\mathrm{S}}}{2}
$$

Since the end profile of the boom is small in comparison to the area of the elements, it can be ignored except by the purists, so the Area A is:

$$
\mathrm{A}=\mathrm{D} \times \mathrm{L}_{\mathrm{Y}} \times \mathrm{N}
$$

Area B is basically the area of the boom, which is equal to its length L_{X} multiplied by its diameter d. Again, the ends of the elements can be ignored. Where traps are fitted, find the area of the circle corresponding to their diameter, multiply by the number of traps, and add this figure to the area of the boom.

Fig. 2
Referring to Fig. 2, you will see a right-angled triangle whose sides represent the areas in question. This shows that C is the maximum area to be found. This is obtained by using Pythagoras (remember him?), thus:

$$
\text { Area } C=\sqrt{(\text { Area } A)^{2}+(\text { Area } B)^{2}}
$$

The area calculated is as it would be for a flat plate of equivalent size at right angles to the air flow. However, if the antenna is made of round-section tubes or rods, it presents a much better aerodynamic shape, and the resulting wind pressure would be much less than that on the equivalent flat plate. This should be allowed for by multiplying the maximum area C by an aerodynamic factor of 0.6 .

Having got the maximum effective area of the antenna, the wind resistance is calculated by multiplying the area by the wind pressure relative to the wind speed being used. There are a number of variables that have to be considered in relation to wind speed and pressure, but in order not to confuse the issue, the wind speed used here is applicable to antennas at a height of 15 metres, situated in open country with scattered wind breaks.

The values of wind pressure quoted are taken from CP3, Chapter V, Part 2, 1972 and are as follows:

Wind speed (miles/hour)	50	60	70	80	90	100	110	120
Dynamic pressure $\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$	6.4	9.2	12.5	16.4	20.7	25.6	31.0	36.9

Note that CP3 states that the basic wind speed is taken as a 3 -second gust speed estimated to be exceeded on average once in 50 years. It is assessed for the UK on a statistical basis from continuous wind records.

Vertical Antennas

Antennas mounted with their elements in the vertical plane, i.e., for vertically polarised signals, are considered a little differently from those mounted horizontally. In this case the maximum wind force will result when the wind is sideways on to the antenna (Fig. 3). The effective area is then worked out as follows. Area of the longest element multiplied by the total number of elements, plus the area of the supporting boom. Thus:

$$
\text { Total area }=\left(\mathrm{L}_{\mathrm{L}} \times \mathrm{D} \times \mathrm{N}\right)+\left(\mathrm{L}_{\mathrm{X}} \times \mathrm{d}\right) \text {. }
$$

Fig. 3

If the boom and elements are made of round rod or tube, then the result must be multiplied by the aerodynamic factor of $0 \cdot 6$, as for horizontal antennas.

Television-type antennas are a little more difficult to deal with because they are generally constructed from flat formed strips screwed onto square section tube (Fig. 4). These behave quite differently from round tube in an air stream and produce more turbulence and drag, i.e. wind resistance. However, without going into the domain of pundits of aerodynamics, for our purpose it will be enough to consider the antenna as being made of flat strips or plates of the equivalent dimensions. The total area of the antenna can be worked out as before, but in this case no correction is made for aerodynamic effect as with round

Fig. 4
tube; i.e., total area $=$ effective area. In order to allow for "turbulence" add an extra 10 per cent to the wind pressure to get a reasonable approximation to the wind load.

When considering wind load for antennas, it is advisable to take into account the wind load of the supporting mast or extension, i.e., the bit above the rotator or mast top. The total area, effective area and wind pressure are worked out as for antennas using round section tube. However, there are two things to take into account (see Fig. 5): 1. The sideways load caused by the wind load of the antenna; 2. The sideways load due to the wind pressure on the extension mast itself. These two forces (loads) result in a bending load being exerted at the bottom of the extension tube, which is transmitted to the rotator or mast top.

The bending load due to the antenna is found by multiplying the antenna wind load at point Y by its distance above the bottom of the extension (M2). Taking these in pounds and inches respectively gives an answer in lb in.

Fig. 5

The wind load on the extension mast is taken as acting at the mid-point X of the exposed length H , i.e., half of the length which is above the rotator or mast. The bending load due to the wind resistance of the extension is then equal to the wind load at point X multiplied by its distance above the bottom of the extension (M1), which is half of the length H plus the bit inside the rotator clamp.

The total bending load at the bottom of the extension is the total of the two bending loads, again in lb in.

Ice

Iced-up antennas will present a greater area to the wind than a clear un-iced array as so far considered. However, we are now in no-man's-land with no real guidelines. For all practical purposes, iced-up conditions as applicable on average to the UK can be allowed for by adding 25 per cent to the final value of wind resistance calculated.

Conclusion

This is not intended as a scientifically precise method of getting a value for wind resistance, but is intended to enable the average radio amateur to get some idea of the forces acting upon the antenna he puts up.

LIMS REGENERATIVE RECEIVER R.F.HAIG

Abstract

Superhet receivers with general coverage of the long, medium and all of the short wave bands are expensive to buy and home construction is a daunting prospect for all but the more experienced amateur.

Simple regenerative receivers are, however, capable of very worthwhile results. Indeed, there can be few other circuits which give such high performance with so great an economy of components. Extremely weak signals can be rendered audible, and selectivity is increased to a very significant extent.

The technique of regeneration, which dates back to the early days of radio, is combined with modern components to form the receiver which is the subject of this articie. A novel method of connecting the tuning coils into circuit eliminates the problems associated with band change switching.

The Circuit

The complete circuit of the LMS receiver is given in Fig. 1, where inductor L1 couples the antenna to the tuned circuit formed by L2, C6, C8 and C9. The r.f. signal is applied, via C7, to gate 1 of the 40673 dual gate MOSFET transistor, $\operatorname{Tr} 1$. This transistor acts as the regenerative detector, the audio signal being developed across the drain load resistor, R5. Residual r.f. is filtered by R8, C11 and C 13 and the signal is fed, through the d.c. blocking capacitor, C14, to the base of Tr 2 .

Transistor $\operatorname{Tr} 2$ is used as a conventional grounded emitter audio amplifier stage to boost the low level output from the detector. The amplified signal is taken from the collector of Tr 2 and applied to the volume control, R12, via C16. Capacitor C17 imparts a measure of "top cut" and improves the general tonal quality of the receiver.

The slider of the volume control is connected to the input pin of IC1, a TBA820M integrated circuit audio power amplifier. The specified device is capable of supplying about 1.5 watts into the 3Ω loudspeaker LS1, when connected to a 9 volt d.c. supply. In this application, the amplifier is battery powered and the ripple rejection capacitor normally connected to pin 8 of the i.c. was found to be unnecessary.

Considerable a.f. gain is developed by the circuit, and decoupling has to be thorough in order to avoid low frequency instability or "motor boating". Accordingly, the supply decoupling capacitor, C15, has the rather high value of $1000 \mu \mathrm{~F}$.

Regeneration and Tuning

The effectiveness of a regenerative detector, especially one used for s.w. reception, is almost wholly determined by the smoothness and freedom from backlash of the reaction control. As the control is advanced and retarded, the detector should gently go into and out of oscillation, at any setting of the tuning capacitor. If this requirement is not met, it will be difficult or even impossible to make the critical adjustments necessary for the reception of weak signals. The reaction circuit of this receiver will be found to be extremely smooth and completely free from backlash.

Transistor Tr 1 source is connected, via R6, R7 and C12, to a tapping on the tuned winding, L2. Reaction is controlled by R2 which sets the voltage applied to gate 2 of $\operatorname{Tr} 1$ and thereby varies the gain of the device. The drain

Fig. 1: Circuit diagram of the LMS receiver. Inductors $\mathbf{L 1}$ and $\mathbf{L 2}$ are constructed as coil packs (Fig. 2). Headphone socket SK3 is wired to connect both earpieces in series
of Tr 1 is grounded at r.f. by C11. Many constructors will recognise this arrangement as the transistor equivalent of the electron coupled circuit, once popular for mains valve regenerative detectors and renowned for its stability and smoothness.

Some specimens of the 40673 mosFet oscillated more readily than others. Pre-set resistor R7 adjusts the source bias to compensate for this spread in characteristics and enables the performance of the detector to be optimised.

On the s.w. bands, it was found impossible to maintain completely smooth control of regeneration over tuning capacitor swings greater than about 200pF. Because of this, the 390 pF capacitor, C6, is connected in series with the tuning capacitors, C8 and C9, to reduce the combined maximum capacitance to approximately 195 pF . This tuning capacitance still permits continuous coverage from 190 kHz to 30 MHz with only six coils.
The larger of the two tuning capacitors, C 8 , is known as the bANDSET control, as it enables the tuning of the receiver to be set to one or other of the various amateur or broadcast bands. The smaller variable capacitor, C9, is known as the bandspread control. This permits the fine tuning of the receiver across an individual band.

Capacitors C1 to C5 prevent reaction "dead spots" which can sometimes arise when long wire antennas are connected directly to the receiver. The higher value capacitors will be effective on m.w. and l.w., whilst the lower value components should eliminate dead spots on the s.w. bands.

Coil Holder and Coils

Figure 2 gives full details of the construction of the coil holder and coil packs. The coils comprise one continuous winding, with tappings anchored to solder tags. The 6BA bolts which secure the tags, which are gripped by the coil holder clips, should preferably be new, brass or plated ones, as this will ensure a good contact. A pair of tweezers will be found useful for inserting the contact bolts into the holes in the middle of the formers.

The spacing of the bolts must, of course, accurately match the spacing of the crocodile clips on the holder.

Construction of these items should, therefore, begin by soldering the crocodile clips to the tag strip. The position of the holes on the coil formers can then be marked out by placing the formers against the ends of the clips.

A bar of insulating material is secured across the clips. When pressed, this opens all of the jaws at once. The bar can be cut from thick Perspex or Paxolin sheet, or the plastic barrel of a ball point pen. It is fixed to the outer clips by 8BA nuts and bolts.

Appropriate tags on the strip are carefully removed, and the holes gently enlarged to accept the 4BA bolts which rigidly secure the assembly to the platform inside the top of the cabinet. Make sure that the bolt heads and stand-offs are not shorting adjacent clips together.

Before commencing the coil winding, check that the 6BA contact bolts are correctly aligned and are gripped properly by the crocodile clips when the former is inserted into the holder. Winding the coils is not difficult, as the

CONGTAUCTION RATINE Beginner

BUYMNE BUMDE

All components for this project are available from a number of sources. Variable capacitors used in the prototype were obtained from Electrovalue. The coils are mounted on plastics overflow pipe available from most d.i.y. shops.

APPROXIMATE cost
 £18.50

Coil	Coverage		Number of turns		
		$1-2$	$2-3$	$3-4$	swg
1	$30 \mathrm{MHz}-10 \cdot 4 \mathrm{MHz}$	5 spaced over 38 mm	2	2	24
2	$12 \mathrm{MHz}-4 \cdot 8 \mathrm{MHz}$	20 spaced over 38 mm	1	4	24
3	$5 \mathrm{MHz}-2 \cdot 1 \mathrm{MHz}$	50 close wound	2	10	24
4	$2 \cdot 2 \mathrm{MHz}-900 \mathrm{kHz}$	90 close wound	4	60	38
5	$900 \mathrm{kHz}-400 \mathrm{kHz}$	208 4 piles of 52 turns	8	100	38
6	$400 \mathrm{kHz}-180 \mathrm{kHz}$	500 4 piles of 125 turns	10	200	38

2

3

4

5

Coil formers made
from stiff card

wire can be anchored to the solder tags at the beginning and end of the windings and at the tappings. Care must however be taken to completely remove the enamel, before wrapping the wire around the tags, to ensure good soldered connections.

All turns are wound in the same direction and can, if desired, be fixed in position on completion by a coat of clear cellulose or Denfix polystyrene cement.

The pile windings which make up the m.w. and l.w. coils are held in place by cardboard bobbins, which are slid onto the formers before the end contact bolts are inserted. Cut a strip of card as wide as the spacing between the bobbin cheeks, wind this round a former and glue it with balsa cement or other quick setting adhesive. Cut out the card rings which form the bobbin cheeks, slide these onto the former, and glue them to the paper strip with a liberal application of balsa cement. Note that the bobbins for the l.w. coil are slightly wider than those for the m,w. coil,

After the coils have been wound, the turns can be protected by a strip of masking tape.

Construction

All small components, with the exception of C1-C6, are mounted on the single-sided glassfibre p.c.b. Details of component placement and the p.c.b. track layout are given in Fig. 3. Vero pins inserted at the lead out points aid wiring up and the component layout shown should be adhered to. Of particular importance is the point at which the negative supply lead is connected to the p.c.b. track. Low frequency instability, or "motorboating", is almost certain to result if this lead is connected to the earth line close to the early stages of the receiver.

The layout of the remaining components is not critical, but interconnecting leads should be as short and direct as

* components

Resistors

W 5\% C		
1Ω	1	R14
47Ω	1	R13
470Ω	1	R3
$1 \mathrm{k} \Omega$	1	R8
$2.2 \mathrm{k} \Omega$	2	R6, 11
$10 \mathrm{k} \Omega$	2	R5, 10
$47 \mathrm{k} \Omega$	1	R1
$470 \mathrm{k} \Omega$	1	R4
$2.2 \mathrm{M} \Omega$	1	R9

Miniature horizontal preset $10 \mathrm{k} \Omega$

R7
Carbon track potentiometer

$4.7 \mathrm{k} \Omega(\mathrm{log})$	1	$R 12$
$4.7 \mathrm{k} \Omega$	1	R2 (with d.p. switch)

Capacitors

Miniature ceramic plate

10 pF	1	C 5
22 pF	1	C 4
47 pF	1	C 3
100 pF	1	C 2
220 pF	1	C 1
1 nF	2	$\mathrm{C} 11,13$
10 nF	2	$\mathrm{C} 12,17$
$0.1 \mu \mathrm{~F}$	1	C 19
$0.22 \mu \mathrm{~F}$	1	C 22

Polystyrene

100 pF	1	$\mathrm{C7}$
390 pF	1	$\mathrm{C6}$
680 pF	1	C 21

Electrolytic double-ended, 10 V

$100 \mu \mathrm{~F}$	2	$\mathrm{C} 18,20$
$1000 \mu \mathrm{~F}$	2	$\mathrm{C} 15,23$

Electrolytic double-ended, 25 V $10 \mu \mathrm{~F}$

3
C10, 14, 16

Variable		
25 pF	1	C9 (Jackson type C804)
365 pF	1	C8 (Jackson type 5250/1)

Semiconductors

Transistors

BC108	1	Tr2
40673	1	Tr1
ntegrated	Circuits	
TBA820M	1	IC1

Miscellaneous

 $177 \times 100 \mathrm{~mm} 3 \Omega$ speaker; 19 mm i.d. plastic pipe (see text); 24 s.w.g. and 38 s.w.g. enamelled copper wire. 3 pole jack socket (6 mm). Case materials.possible. It was not found necessary to screen the leads to R12. Figure 2 shows how $\mathrm{C} 1-\mathrm{C} 5$ are mounted on a tag strip located beneath the top shelf. The bolts which hold this tag strip also secure an identical strip above it, and holes bored through the shelf enable the two sets of tags to be connected together. Antenna and earth leads are attached to the appropriate upper tags by means of crocodile clips. This arrangement is cheaper than sockets or terminals and facilitates the quick selection of the most suitable antenna input capacitor. Capacitor C6 is soldered directly to the fixed vanes tag on C8.
Final part: Full setting up and operating details

Get it right from the start.

A GOOD START is essential to short wave listening and expert advice is important in achieving this. Firstly, a receiver is only as good as the antenna it sees. The old adage regarding wire antennas "as long and as high as you can" is still good, but at best is only good for PEAK PERFORMANCE on one or two frequencies, or at worst none.

For PEAK PERFORMANCE on all frequencies you need good matching between your Receiver and Antenna. If you plan to listen on the high frequency bands up to 30 MHz then you know you can't have an antenna for every frequency! BUT we can offer you MUCH IMPROVED PERFORMANCE from your receiver by using an antenna tuning unit that will electrically change the length of your antenna to match the frequency you select. In other wordsA MATCH FOR ALL FREQUENCIES.

You'll see many antennas being advertised under gimmicky names, but when it comes down to it they're only random wires or odd configurations, but at the end of the day, if you're expecting the performance the manufacturers specified, then you'll have to buy an antenna tuning unit. DON'T! We'll give you one ABSOLUTELY FREE when you buy your receiver from Amcomm, as well as complete advice on an antenna to suit your available space.

A monthly look at some aspect of the radio/electronics hobby that seems to bug the beginner, or occasionally a more advanced topic seen from an unusual angle.

TRANSFORMERS-3

The voltage rating of a mains transformer secondary winding is the voltage it should produce when on full load, when it is supplying its maximum rated current. When the winding is more lightly loaded, its output voltage will rise. The change between the "no-load" (or "off-load") output voltage and the "full-load" voltage is converted into a percentage and called the regulation of the transformer.

$$
\text { Regulation }=\frac{\text { Off-load voltage }- \text { full-load voltage }}{\text { Off-load voltage }} \times 100 \%
$$

Notice that it's the change versus the off-load voltage, in other words it's a measure of how much the output voltage falls when the load is connected. That fall is due to the resistance of the windings, and leakage of the magnetic flux linking primary and secondary. Typical values of regulation for a small low-voltage transformer range from about 10 to 25 per cent.

Losses of various sorts mean that any transformer is less than 100 per cent efficient. Therefore, more power ($\mathrm{V} \times \mathrm{A}$) will be taken by the primary than can be drawn from the secondary windings. As a general rule, efficiency is greater for high-power transformers than for low-power.

If you look at a text-book covering the basic theory of transformers, you'll find that the voltage step-up or stepdown from primary to secondary is proportional to the ratio of the number of turns in each winding. Say we had a transformer with a 240 V primary having 1200 turns. This works out at 5 turns per volt (fairly typical for a small transformer), so for a 12 V secondary winding the calculation would come out at $5 \times 12=60$ turns. If you actually wound a transformer like this though, you'd find that the output voltage was low by anything up to 10 per cent. This is again due to losses in the transformer, and the manufacturer will compensate for it by increasing the number of turns on the secondary winding. This does mean, though, that should you want to use a transformer "back-to-front"-applying the input to what was the secondary winding and taking the out-
put from the primary-you'll get a lower voltage out than you'd expected. An example would be a mains isolating transformer (240 V in $/ 240 \mathrm{~V}$ out) intended for use when servicing or testing live-chassis equipment like TV receivers. Connect that back-to-front and you'll be lucky to get as much as 220 V out even before you connect a load to it.
At one time, it was common to find a tag or terminal on a mains transformer labelled "E.S.", which stands for Electrostatic Screen. If the transformer you're using does have one, it should be connected to the equipment chassis or earth line. The electrostatic screen, which is an incomplete loop of copper foil, placed between the primary and secondary windings, serves two purposes. First, as its name implies, it serves as a screen to prevent noise pulses being coupled electrostatically from primary to secondary or vice versa. Secondly, it provides an earthed safety barrier between the windings, so that if the insulation on the primary turns should break down, the mains supply would leak first to the earthed screen, whereupon the input fuse should blow, instead of to the secondary winding where it could be very dangerous both to the equipment and the user.

Nowadays this second function (which is generally the most important) is often taken care of by the "split-bobbin" technique, where the primary and secondary windings are put on quite separate sections of the bobbin, side by side with a substantial plastics cheek between them, rather than being wound one over the other with just layers of fabric between as used to be normal. So, many transformers no longer have that E.S. terminal.

On the subject of winding insulation, remember that most transformers with more than one secondary are intended to be used with all those windings connected to circuits sitting at around the same potential. In a valved receiver of bygone days, there would typically be three secondary windings (Fig. 17), the h.t. (high tension) winding might give 250 V , an I.t. (low tension) winding would give 6.3 V to drive most of the valve heaters, and another I.t. winding might give 5 V to drive the heater of the rectifier valve. The valve heaters connected to the 6.3 V winding would be at or near chassis or earth potential, but the rectifier heater would be up at the voltage of the h.t. rail of the receiver, which could be in the region of +300 V d.c. So the rectifier heater winding would have to have insulation suitable for at least 300 V , even though it only gave out 5 V itself.

That sort of situation isn't come across very often in modern equipment, but it can happen. If you want to produce two 12 V supplies, one of which has one side earthed whilst the other has to be tied to a point in a circuit which is at high potential, it's wiser to use two separate transformers rather than two secondary windings on a single transformer. Unless, of course, the transformer manufacturer can assure you that his particular product is suitable for that purpose.

ANTENNA SPECIAL

: 3n: C.LOFTUS G6AFJ

* components

Broomstick or dowel; Motor car brake pipe 584 mm long (2 lengths): Aluminium tube 12.5 mm dia (2 m total); Wood block $75 \times 50 \times 12 \mathrm{~mm}$; Screws 2 BA \times 50 mm long with nuts and washers (6); Solder tags 2BA (2).

Simple antennas are always popular with $P W$ readers especially if they use easily obtainable and cheap materials. This design meets these criteria and offers a respectable
performance. The original antenna allowed the author to work into a Belgian repeater using one watt output from his home QTH in Birmingham.

Construction

The boom is a standard wooden broomstick to which the three elements are attached by long 2BA screws. The reflector and director are plain lengths of 12 mm diameter aluminium tube cut to the lengths shown in Fig. 1 with a 4.8 mm diameter hole drilled at the centre for the mounting screws.

The driven element is constructed from two lengths of car brake pipe. Flatten one end of each length of pipe using a vice and drill a 4.8 mm hole through the flattened ends to clear the 2BA fixing bolts. Carefully bend the pipes to the shape and dimensions shown and screw the two elements to a wood block as shown in Fig. 2.

Adjustment

The feed impedance with the driven element as shown should be 50Ω but the antenna can be tuned by altering the position of the bends in the folded elements to vary the gap. After the antenna has been successfully adjusted it can be given a coat of varnish to render the wooden boom waterproof.

Fig. 1
WAD089

CONETRUCTION RATINE Beginner

The aluminium tube used for the reflector and director can be obtained from your local aluminium stockist (Yellow Pages) while the brake pipe should be available from motor factors.

APPROXIMATE Cost $\mathbf{f 3}$

Modifying the $3.5 / 7 \mathrm{MHz}$ G-WHIP Ian H. CROWTHER G3KLF
 rod connector fitted to the G-Whip base mount using the

The arrangement described in this article has been used by the author for some time now, with good results, as an alternative to the full sized version recommended by the manufacturer.

The G-Whip has, of course, been used by h.f. mobiles world-wide for many years with great success. Indeed for the 14,21 and 28 MHz band (20,15 and 10 m) operation the antenna is an exceptional performer with an attractive appearance.
There is however a slight problem on the 3.5 and 7 MHz bands (40 and 80 m) in that the height of the antenna is about 2 metres. It also tends to be relatively rigid and noticeable to various sections of the public who might wish to steal or vandalise it.
At first, it seemed that this was just something to be lived with, and hopefully remembered prior to driving into multi-storey car parks etc. Then whilst browsing through the mobile antenna section of a popular radio handbook, it was noted that the inductance of a centre loading coil on a standard 2.6 metre mobile whip was about double that of the base loaded equivalent coil.

This fact promoted some thought as to whether the GWhip 3.5 MHz centre loading coil might function in a base loading mode, and if so, what length of element might be required above it to resonate over the 3.5 MHz band.

Adaptor

As the intention was to use the standard G-Whip base already fitted to the car, the first problem was to design or modify some sort of adaptor to join the coil to the base mount.

The coil was mounted in its normal way, i.e. threaded end uppermost to take the G-Whip telescopic whip and the

centre section of an Ascot v.h.f. mobile antenna base as shown in Fig. 1.
The Ascot base section was drilled to accept the coil rod connector at the narrow end and the G-Whip base mount thread at the other. Grub screws fitted to the Ascot section were used to secure the assembly.

Obviously any method of joining the coil to the G-Whip base mount would be satisfactory, but the method described is certainly quick and easy.
The antenna was assembled and the whip section extended to about the usual length necessary in the full size version. Using an Atlas transceiver about 100 watts of r.f. was applied and the s.w.r. observed.

To the author's amazement, sweeping the 3.5 MHz band indicated resonance at 3.7 MHz with unity s.w.r. Subsequently it was found that the entire 3.5 MHz band could be correctly matched by simple adjustment of the telescopic whip length. The overall length of the complete antenna was measured at around 900 mm .

The 7 MHz coil was tested in the same way and a similar result was obtained, this time with an overall length of around 760 mm at midband.

Tests

Obviously the big question was, how would the short antennas radiate? A series of tests on the 3.5 MHz and 7 MHz bands was required, comparing signal strengths between the short and normal versions of the G-Whip. On the 3.5 MHz band the short version was found to be about one " S " point down on the standard version, and on the 7 MHz band half an " S " point loss was noted.

In the author's opinion, this is acceptable in view of the absolute " S " meter readings obtained over the test distance of 250 km i.e. " S " 8 on the standard version and " S " 7 on the short version.

The author is now able to work the 3.5 and 7 MHz bands with an antenna scarcely longer than that used for the 144 MHz band. He can also forget the worries of losing the antenna under low bridges or in a car park! The GWhip can be quickly restored to full length if required by simply slackening off the two grub screws in the Ascot adaptor.

Solution to last month's problems: The circuit is reproduced here in Fig. 9.1.
No. 1: The estimated potential at Tr3 emitter was 0 V and that at Tr 4 collector was +20 V . A $20000 \Omega / \mathrm{V}$ meter was used to carry out these measurements and readings of +1.2 V and +19.5 V respectively were obtained. You were asked to decide whether these readings were reasonable or whether a fault existed.

The potential at Tr 1 collector was estimated to be +1.7 V and Tr 3 was shown to be non-conducting. This meant there was no path for D4 to conduct and so $\operatorname{Tr} 3$ emitter was "floating" and therefore at 0 V . When a meter is connected between the point and earth, however, a conduction path for the diode is completed. The equivalent circuit of this is shown in Fig. 9.2. Used on its 20V range, the meter's resistance will be $20 \times 20000=400 \mathrm{k} \Omega$. Since this is a large resistance and the applied voltage is only 1.7 V , there will be about 0.5 V across the slightlyconducting diode, leaving 1.2 V across the meter, which will be the voltage indicated: no fault, the reading is reasonable.

Transistor Tr4 was shown to be cut off and therefore its collector potential should be at +20 V . However, when the
meter is connected we have a potential divider, R9 and $\mathrm{R}_{\text {meter }}$, between the +20 V line and earth, as shown in Fig. 9.3. So the voltage across the meter will be
$\frac{400}{410} \times 20=19.5 \mathrm{~V}$, which the meter will show: again no fault, a reasonable reading.
No. 2: The circuit is reproduced here in Fig. 9.4. You were asked to estimate all transistor electrode potentials.

Diodes D1 and D2 conduct because there is a circuit through them and R2 between the -50 V line and earth. Thus there will be 0.6 V across D2, leaving the base of Tr 3 at $-\mathbf{0 . 6 V}$ and reverse biasing D3. Similarly, D4 conducts via R5 and therefore its cathode (and Tr1 emitter) is also at $\mathbf{0 . 6} \mathrm{V}$. With -0.6 V on both base and emitter, there is no forward bias for $\operatorname{Tr} 1$, which is therefore cut off. The only current which can flow through R4 is therefore the sum of any base currents of $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$. Since both these transistors have emitter resistors and we usually ignore base currents in these circumstances, there will be negligible voltage developed across R4 and Tr1 collector will therefore be at $+\mathbf{1 2 V}$.

Transistor Tr 2 will conduct heavily since its opencircuit base-emitter potential is $62 \mathrm{~V}(12 \mathrm{~V}$ plus 50 V$)$ and its

Fig. 9.1

Fig. 9.2

Fig. 9.3
base resistor is only $1 \mathrm{k} \Omega$. With its base at $+\mathbf{1 2 V}$ its emitter will be at about $+12-0 \cdot 8=+\mathbf{1 1 \cdot 2 V}$. Its collector is connected to the $+\mathbf{1 2 V}$ line direct.

Transistor $\operatorname{Tr} 3$ open-circuit base-emitter potential is 12 V and its base resistor is only $1 \mathrm{k} \Omega$ so it too will conduct heavily, with base at $+\mathbf{1 2 V}$, emitter at $+\mathbf{1 1} \cdot \mathbf{2 V}$ and collector connected to $+\mathbf{1 2 V}$.

In practice, since $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ are conducting heavily, base currents will be relatively high, so the collector potential of Tr 1 and the base and emitter potentials of Tr 2 and Tr 3 will all be slightly lower than our estimations. (When measured, these potentials were actually 0.2 V lower than estimated.)

The +12 V line is not quoted on the manufacturer's circuit diagram. It is one of those key points whose potential we must measure and accept as being correct until any faults have been repaired, as explained in part 8.

If you have been following this series from its commencement in the June 1982 issue, you should now be in a position where you can estimate potentials in any transistor circuit. It is an easy matter to put your knowledge to the test.

Take any item of transistor circuitry which is in good working order and estimate the emitter, base and collector potentials of all the transistors using the techniques described in this series. Then verify these by measurement. Whenever you are faced with a discrepancy between estimated and measured voltages, search for the reason: it may be meter resistance modifying the circuit, it could be due to an error in your calculations, something you have overlooked, or the reading might be accurate enough when you take into account base currents and/or resistor tolerances.

If you give yourself plenty of practice at this sort of exercise, you will gain confidence and develop valuable faultfinding skills which will stand you in good stead for the day when you are faced with a circuit which is faulty.

When looking for faults, remember they can be either component or wiring faults. If the circuit is newly constructed and has never been working, your suspicions should be biased towards wiring errors, whereas if the gear
was working satisfactorily before the fault occurred then component failure is perhaps more probable. Whichever type of fault it is, however, estimation of voltages and subsequent measurements within the suspect area will reveal the trouble in the vast majority of cases.

The remainder of this series will be devoted to voltage checks around various common circuit elements, such as f.e.t.s, i.c.s and valves.

Field Effect Transistors

FETs are characterised by high input impedance and are found in many applications, in particular r.f. amplifiers, oscillators and mixers. They are sometimes used simply as variable resistors whose resistance is controlled by voltage rather than by manual means.

There are several different types of f.e.t. and they will be considered separately.

JUGFETs

This term stands for junction gate field effect transistor. There are two main types: n-channel and p-channel. Their symbols are illustrated in Fig. 9.5 (a) and (b) respectively. Note the names of the electrodes are not part of the symbols.

(a)

(b)

WRM76

Fig. 9.5
The thick line represents the channel of semiconductor material between source and drain, the width (and hence the resistance) of which is controlled by the voltage on the gate electrode. It is useful to remember that, as with bipolar transistors, the arrow points towards n-type material (and away from p-type).

Before a gate voltage is applied, the source-drain resistance is very low (a few hundred ohms) but there is a $p-n$ junction between the gate and the channel and when this is reverse biased the resulting field causes a narrowing of the channel and hence an increase in source-drain resistance.

So when the gate-source bias is zero, the device conducts heavily from source to drain when a circuit is completed. The gate-source junction is normally reverse biased, however, thus limiting drain current. Small variations in g -s bias can cause large changes in s-d current, enabling the device to function as an amplifier.

Fig. 9.4

Since the g-s junction is reverse biased we shall not be certain what potential to expect across it beyond the fact that it is typically somewhere between 0 V and 8 V . We shall, however, know what its polarity should be: gate negative with respect to source for the n-channel and gate positive with respect to source for the p-channel.

The g-s bias voltage can be derived from its own separate supply line or it can come from an a.g.c. (automatic gain control) line, but usually it is derived by developing a voltage across a resistor in the source line, as shown in the circuit of a simple common-source amplifier (Fig. 9.6).

The source current $\left(\mathrm{I}_{\mathrm{s}}\right)$ develops a voltage across R_{s} to give the source a positive potential with respect to earth (in the case of the n-channel JUGFET here). There is virtually no current in the gate lead or R_{g} (because of the reverse biasing) as the gate is at 0 V with respect to earth. Thus the gate is negative with respect to source by the voltage developed across R_{s} (see "Points of Reference" in part 1).

The source current flows through both R_{s} and R_{d}, that is $I_{s}=I_{d}$. We cannot calculate this current without knowing a p.d., however, because we are unlikely to have sufficient information available to enable us to calculate the resistance of the channel under any particular operating conditions. All we can do is to check that the correct relationship between the electrode potentials exists.

Gate potential should be zero (no current through R_{p}). Source potential should be positive between 0 V and 8 V . Suppose we measure it and find it to be $+\mathbf{1 - 2 V}$. This seems reasonable, and we should now be able to calculate the drain potential from it.

$$
\mathrm{I}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{s}}}=\frac{1 \cdot 2}{2 \cdot 2}=0.55 \mathrm{~mA}
$$

This flows through R_{d}, so voltage across R_{d}

$$
=I_{d} R_{d}=0.55 \times 18=9.9 \mathrm{~V}
$$

Therefore, drain potential $=+15-9 \cdot 9=+5 \cdot 1 \mathrm{~V}$.
A p-channel circuit would be the same apart from all polarities being reversed.

Whatever the type of circuit, the same sort of relationship between the electrodes should be found.

Fig. 9.7 shows an r.f. amplifier circuit. Here the source resistance is variable to provide gain control. This means the source potential will vary with the setting of R_{s}. Gate potential will be 0 V via R_{g} regardless of the setting of R_{s}. Suppose R_{s} is set to maximum resistance and source potential is +4 V under these conditions.

$$
\mathrm{I}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{Rs}}}{\mathrm{R}_{\mathrm{s}}}=\frac{4}{10}=0.4 \mathrm{~mA}
$$

$\mathrm{V}_{\mathrm{Rd}}=\mathrm{I}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=0.4 \times 1.8=0.7 \mathrm{~V}$
Drain potential $=+12-0.7=+\mathbf{1 1 . 3 V}$
Very often there is no R_{d} and drain potential is then equal to the supply potential via the r.f. transformer primary.

If the voltages are unreasonable, we may suspect the f.e.t. itself, in which case it must be removed from the circuit (or at least two of its leads unsoldered) and tested by ohmmeter.

G-S and g-d readings should be similar to those of the b-e and b-c of a bipolar transistor. With one prod on the gate, g-s and g-d readings should be either both high

Fig. 9.7
resistance (needle barely moving off the back stop) or both low resistance (about $1 \mathrm{k} \Omega$). Reversing the prods, the two readings should again be the same as each other but opposite to that recorded in the first pair of tests. S-D resistance should be low (anything from 5Ω to $5 \mathrm{k} \Omega$), regardless of which way round the meter is connected.

If the f.e.t. passes the ohmmeter test, we measure the voltages with it out of circuit. These should be: source $=$ 0 V , gate $=0 \mathrm{~V}$, drain $=+15 \mathrm{~V}$ (Fig. 9.6) or +12 V (Fig. 9.7). Any errors here could point to a faulty component or wiring.

If these measurements still do not reveal the fault, take the readings with respect to the supply rail rather than earth (still with the f.e.t. out). These should be: source $=$ -15 V (Fig. 9.6) or -12 V (Fig. 9.7), drain $=0 \mathrm{~V}$.

The taking of gate potential with respect to the supply rail with the f.e.t. in circuit is not recommended as the meter resistance would provide a potential divider with R_{g} thus forward biasing the $g-s$ junction and resulting in totally misleading readings.

This month's problems are based on the mixer circuit of Fig. 9.8. The source potential was measured as +2 V with respect to earth when the circuit was working properly. Capacitor C2 is short-circuited during measurements to prevent oscillations upsetting the d.c. conditions (see part 7). Transformer T1 primary is shorted out to prevent any received signals doing the same (unlikely as this would be). Full solutions will be given next month.
No. 1: What should the gate and drain potentials be with respect to earth?
No. 2: Suppose the following voltage readings are measured with respect to earth with Tr 1 in circuit: source $=+4 \cdot 5 \mathrm{~V}$, gate $=0 \mathrm{~V}$, drain $=+5 \cdot 25 \mathrm{~V}$. The f.e.t. is removed, checked by ohmmeter and found to be good. The following voltages are measured with the f.e.t. still out of circuit (again with respect to earth): source $=0 \mathrm{~V}$, gate $=0 \mathrm{~V}$, drain $=+9 \mathrm{~V}$. Finally, still with the f.e.t. out of circuit, the following readings are obtained with respect to the +9 V line: source $=-9 \mathrm{~V}$, gate $=0 \mathrm{~V}$, drain $=0 \mathrm{~V}$.

Which component is faulty and what is wrong with it? Next month we shall be taking a look at igfets.

A selection from the range . . . LOWEST PRICES . . . FINE SERVICE YAESU WAS INTRODUCED TO THE UK BY 'WESTERN'. BUY WHERE EXPERIENCE COUNTS!

NEW! TR-9130 2m. ALL-MODE TRANSCEIVER

NEW! FT-102
 HF ALL-MODE TRANSCEIVER

Not only ...

but also ...
the...

NEW! TS-930S

Save at 'Western'! TS-930S, £990. TR-9130, £360. FT-102, $£ 690$.

YAESU PRICE LIST. 2 YR WARRANTY. FREE DELIVERY.

Prices in	clude CandVAT			1271	144TV	2M Unit for FTV-901R
HF EQU	IPMENT			$\begin{aligned} & 1272 \\ & 1239 \end{aligned}$	$\mathrm{Y} 0.901 \mathrm{P}$	Monitor scope/pan ad Mobile TCYR
$\begin{aligned} & \mathrm{Cat} \mathrm{Na}^{265} \\ & \hline 1265 \end{aligned}$	FT-1	$150 \mathrm{Khz}-30 \mathrm{Mhz}$ TCVR	1240.00	$\begin{aligned} & 1239 \\ & 1238 \end{aligned}$	FP.707	Mobils TCVR AC PSU
1222	F-1012	Transceiver	539.00	1237	FC-707	ATU for FT-707
1223	Fr-10120	Transceiver	599.00	1273	MR. 7	Rack for FT-707
1224	FT-101Z/AM	1012 plus AM unit.	555.00	1203	MMB-2	Mobile mount for ' 707
1225	FT-10120/AM	10120 plus AM unit, digital	619.00	1246	$\mathrm{FLL}^{2} \mathbf{2 1 0 0 2}$	HF 1200W linear
1226	FT-101/FM	1012 plus FM unit	570.00	1206	FRG-7	Recetiver
1227	FT-1012D/FM	10120 plus FM unit	635.00	1248	FRGG-7700	Rectiver
1263	FV-101	Remote VFO	109.00	1255	FRV-7700A	Conv 118/130 130/140 140/150Mhz
1274	Fan 8	Fan for FT. 101	1300	1254	FRVV.77000 FRT-7700	Conv $118 / 130$ 140/150 Antenna tunet
1275	DC Unit	OC/DC PSU for FT-101	40.00		Fri-7700	Antenna tunet
1230	F.107	Solid state broad band	699.00	VHF E	quipment	
1231	FP-107	PSU for FT-107	99.00	1233	F-227RB	2M FM 10W TCVR
1232	DMS-107	Memory for FT-107	89.00	1234	FT-2908	2M Multi-mode
1264	FV-107	VFO for FT-107	95.00	1202	CSC-1	Case for FT-290R
1265	SP-107	Speaker	28.00	1210	MMB-11	Mounting bracket 290
1286	FC-107	ATU	108.00	1211	NC-11C	Charger for FT-290月
1268	FT-9020M	SSB/AM/FM TCVR	850.00	1595	CNicads	Set ol 8 for FT-290R
1244	SP-901	Spkt for 1012/902	30.00	1348	Fl-2010	10W linear for FT-290R
1267	SP-901P	Phone patch/spkr	55.20	1252	FT-208R	2 M Hand held
1247	FV-9010M	Remote VFO for 901	250.00	1251	FT-7088	70 cm Hand held
1245	FC. 902	ATU for 1012/902	130.00	1236	FT-480R	2 M All mode
1269	FTV-901R	T.VTR plus 2 M unit	270.00	1243	FT-780R	70 cm Multi-mode
1270	430 IV	70 cm Unit for above	170.00	1220	FP.80A	AC PSU, 4.5A

95.00	1200	NC-1	Desk charger	19.00
315.00	1204	NC-2	Charger	39.00
549.00	1201	PA. 1	DC Unit	19.00
119.00	1205	FP. 4	AC PSU 4A. 138 v	4200
82.00	1258	NC.7	Base trickle charget	28.00
15.00	1253	NC.8	Base tast/trickle charget	4200
16.00	1260	FBA-2	Battery sleeve for NC-7, NC-8	300
399.00	1262	NC.SC	Compact trickle charger	8.00
189.00	1349	FNB-2	Spare battery pack	17.00
315.00	1350	FL-2050	Lintar amp FT-480R etc	120.00
69.75	1351	YM-24A	Spk//Mic, FT-208/708	1800
7245	1241	FT-720RU	70 cm FM mobile transceiver	264.00
37.00	1242	FT-720RV	2 m FM mobile transceiver	239.00
	1263	FT-230R	2 m FM mobile transceiver	229.00
	HEADPHONES, MICS, Etc.			
235.00				
390	1208	YE-7A	Hand mic., 600 otm	6.90
22.00	1213	OTR-240	Quartz 24hr clock	27.00
8.00	1215	YM-36	Noise cancelling mic	1300
21.20	1214	YM. 35	Hand, scanning	1300
6200	1352	YM-37	Hand mic	6.90
199.00	1353	YM-38	Desk scanning	24.00
209.00	1221	YD. 148	Desk mic	20.00
360.00	1216	YH.55	Headphones	10.00
435.00	1217	E72-L	Remote cable for FT- 720	19.50
59.00	1218	\$72	Switching box, FT-720	52.00

SSB POWER METER

GIVES STEADY READING ON SPEECH.

The PM-2000A is an accurate means of measuring put of power on SSB. The unit has been inspected by the home office and found suitable for its purpose. SWR measurements can also be made, but the PM 2000 does what all other SWR meters cannot do; i.e. tell you your peak output power licence. PRICE £56.35
PM-2000A 1.5-30MHz, 2Kw. PM-2001. 50-150MHz £46

THE CQ CENTRE 10 MERTON PARK PARADE, KINGSTON ROAD, LONDON SW19 (JUNCT. MERTON HALL RD) TEL. 01-543 5150

A MERRY XMAS TO ALL FRIENDS AND CUSTOMERS

 LARGE STOCK OF NEW AND S/HAND EQUIPMENT ICOM - YAESU - TRIO - STANDARD - FDK - AZDEN ETC.

STOP PRESS: Now available - a brand new Morse Tuition Tape from G4HXZ. Based on tried and tested subliminal techniques. Includes:- Alphabet - Numerals - Punctuation - Plain Language-simulated Post Office Amateur Morse Test at 12 w.p.m. Full
> instructions and check sheet included.
> INSTANT CREDIT NOW AVAILABLE THROUGH LOMBARD - TRICITY - PLEASE PHONE OR WRITE FOR QUOTATION

£6.50 inc. p\&p.

ALAN IVARTIN GBZPW

RTTY Breakthrough

The usual view of the radio amateur's shack running an RTTY mode transmission would include a large, very noisy, oily smelling electro-mechanical piece of equipment. Now a relatively cheap method of receiving and transmitting RTTY signals is available.

First, you must own a $\mathrm{ZX81}$ microcomputer, 16 K RAM pack and terminal unit, then with the addition of the Scarab RTTY cassette program and interface board, a RTTY mode station can be run without the previously mentioned drawbacks.
With the use of the 16 K RAM pack, the program, written by C. G. Barker, has five programmable memory stores enabling your callsign and other relevant station details to be called-up and transmitted by single key operation. Other features include "Scrolling Screen" presentation, auto carriage return and line feed plus an adjustable Baud rate.

The Scarab System. Note the components shown are available, but not included in the prices quoted

Circuit details of the interface board, which can be wired direct to the RAM pack thus avoiding the need to open the computer to make connections, are included with each cassette, and a predrilled p.c.b. is also available. The BARTG ST. 5 terminal unit can be used, with slight modification to convert the output to "logic level" (5V). Details of the circuit, the modifications and availability are also supplied by Scarab.
The VAT and $p \& p$ inclusive prices are, $£ 9.75$ for the cassette and $£ 3.70$ for the interface board. Both products are available from: Scarab Systems, 141 Nelson Road, Gillingham, Kent ME7 4LT. Tel: (0634) 575778.

Safety System for Mobile Operators

We have recently received reports of both radio amateurs and CB operators being stopped by the police and warned, that operating hand-held microphones whilst driving, could result in them being prosecuted for "not having proper control of the vehicle". I have details of a product that could provide the mobile operator with the means of avoiding police attention in this particular circumstance.

Called the Monolock Safety Microphone System, it comprises an Electret condenser microphone with clip for attaching to the lapel, and a small unit containing a send/receive switch, microphone pre-amp with adjustable gain control and time-out facility, which mounts on the car's gear lever.

The unit is simply installed on the gear lever and, using a suitable microphone socket for the particular rig in use, power to automatically recharge the NiCad cell is derived from the p.t.t. line.

The time-out facility allows approximately four minutes of transmit time, on any over, after which the unit automatically drops transmission until the circuit is reset by operating the concealed reset switch. The unit is also supplied with a connecting lead and connectors, for recharging the NiCad cell from the car's cigar lighter socket, should the charge drop over a period of months.

The inclusive price of the Monolock safety microphone system is $£ 31.45$ and is available from:Automatic Safety Lighting Ltd., 311 Lidgett Lane, Leeds 17, West Yorks. Tel: (0532) 682682.

432MHz Beam Antenna

Latest addition to the product range of Ant Products is the Silver 70, a 14 element, high gain long Yagi, for use on the $432 \mathrm{MHz}(70 \mathrm{~cm})$ band.

A major feature of the antenna is a silver plated driven element which requires no setting-up adjustments prior to use. The remaining elements are made from stainless steel, fastened into quick fitting clips insulating them from the boom. The makers claim that by using this combination of materials the antenna will retain its specified performance, and not suffer from atmospheric contamination with subsequent detuning effects.

Principal technical specifications for the antenna are: gain 16 dBd ; bandwidth at 2:1 v.s.w.r. is in excess of

10 MHz ; beamwidths at the half power points are 24° in the H -plane, 22° in the E-plane and the front-toback ratio is 24 dB .

The overall boom length of the Silver 70 is 2.7 m with a wind loading figure of 0.08 sq. metres and it weighs only 1.1 kg . Connection to the driven element is via an N-type connector, feeding a gamma match to the dipole assembly thus ensuring an accurate match to 50Ω coaxial cable.

The Silver 70 is manufactured in the UK from the highest quality materials, costs $£ 31.95$ plus $£ 4.00$ for delivery via Securicor and is available from: Ant Products, All Saints Industrial Estate, Baghill Lane, Pontefract, West Yorks. Tel: (0977) 700949.

The format and outline of this article is very similar to that in Basic QSOs in French which appeared in the June and July 1982 issues of $P W$. Thus, this article will not teach you how to speak German, it will only give you enough for a basic QSO with a German speaking contact.

German is spoken as the first language in Germany, both East and West, Switzerland (where approximately 70 per cent of the inhabitants speak German as their first language) and Austria. In addition, German is often spoken as a second language in many countries, and also by expatriate Germans around the world. The importance of German to us, however, is that it is not only an important commercial language but is the native language of a large number of very active and keen radio amateurs.

OTH Locations

It is possible to locate a station to a region in Austria from the number which follows "OE" e.g. OE6 is Steiermark around Graz, OE7 is the Tyrol. Similarly, the last letter of a callsign in East Germany denotes the district, e.g. "O" indicates Berlin, " A " is the area around Rostock, " M " is the area round Leipzig.

The author has found it very useful to have an atlas of Europe with a detailed index of place names, so that one can check fairly easily and predict the spelling of certain place names. The German alphabet is given in the appendix as this might be used instead of the International Phonetic Alphabet for the spelling of place names and operators' names. Again, the appendix has a list of first names to help make identification as easy as possible.

Bilingual Conversations

Many German speaking amateurs speak very good English and revel in the chance of using it, but this is not true of all, especially East Germans with whom contacts have, in my personal experience, tended to be rather short and formal. Many German speakers unexpectedly are pleased and relieved to speak German. Many such amateurs have admitted that they hadn't quite understood the English answers and repeated the questions in German! It is not unusual either to find it easier to overcome the interference on h.f. by speaking the other person's language, i.e. the German contact speaks English for your benefit and you speak German for his benefit. It is after all much easier to understand your own language than a foreign one in the QRM.

What we should learn from the Germans speaking English is that they are willing to try and speak English and we should try and speak German. Even a few words of German promotes a favourable reaction.

The German used in this Article

Many German stations can be heard on the $7 \mathrm{MHz}(40 \mathrm{~m})$ band but these are usually conversations between friends. These are unlikely to be of use to the English listener. The topics covered are much wider ranging than those covered in this short series. There is, furthermore, a much greater dialectal variation in German than say French and there is a great pride in these dialects. North German is different from Southern German, and Swiss and Austrian German can be quite distinctive. In talking to strangers and to foreigners, however, a standard German "Hochdeutsch", i.e. "book German" is used and this is the form used in the article.

The QTH is one metre above sea level

In using the information contained in the article please note that the amount of English technical words, e.g. "fading" instead of the German "Schwund", "callbook" instead of the "Rufzeichenliste", "das Sked" instead of "Verabredung" will vary from individual to individual. It is better to follow the lead given by the person you are talking to. Purity of German language can be appreciated by the speaker as a sign of politeness. The amount of "hamisms", e.g. the use of the Q Code will also vary - here the Q code is pronounced as in the German alphabet given in the appendix.

As there are variances in language usage the author would welcome any corrections or alternatives offered by native German speakers, though the contents are the result of many hours' listening on the air and checks on usage with native speakers over the air. The whole article has been checked for correctness and authenticity by linguistically sensitive German speakers.

Now a very short word about the nature of German. Historically German is more closely related to English than say French and, in fact, many children learning languages prefer German to French. However, German tends to use home-made long compound words rather than borrow an English/French word of possibly Latin/Greek origin. For example "Fernsprecher" in addition to "Telephon". Consequently, many words look strange. There is one great consolation - the pronunciation of German is much more closely related to the written form than either the French or English.

German is different to English in that it has "cases". This need not concern us too greatly in teaching such basic German but it does mean that you will see, for example, many words for "the", not just the masculine "der", the feminine "die", neuter "das" and plural "die". Do not be confused by them. German also has a very strict word order system, the verb sometimes comes at the end of the sentence. Try to stick accurately to the text given, you do not have the flexibility of French and English.

How to use this Article

I suggest that you choose from the different headings your own basic QSO by writing down suitable sentences from the article and keeping this by your rig. Later, when you have more practice and confidence, you can add to this and make your conversation longer. But if you do not try you will get nowhere, so try - even if your first attempt is only "auf Wiederhoren": "until we hear each other again" or "vielen Dank": "thank you very much".

German Pronunciation

The stress varies on German words and in the pronunciation hints with the article the stressed syllables are set in bold type. The following German consonants are to be noted:
" v " is pronounced as " f "; " w " is pronounced as " v " (remember Volkswagen); "ch" varies dialectally between "sh" and "ch" as in loch (technically it is in between them) and " z " is pronounced as "ts". All letters in a word are pronounced. Vowels followed by a single consonant are generally long, but two consonants are generally short. German has one accent, the "umlaut" which changes the sound of the vowels as follows:
ö becomes "oeuh"; ü like the French "u" or a sound between " i " and " w " and ä becomes "ay".

The author would like to thank Dr Jo Desch, Lector in German, University College of North Wales, Bangor and Manfred Grab DL7GAB for their help in preparation of this article.

Making a call CQ Germany, Switzerland, Austria or a German speaking country. This is (own callsign) calling CQ and standing by.	CQ Allgemeiner Anruf an Deutschland, die Schweiz, Österreich oder eine deutschprechende Station. Hier ruft (own callsign) mit einem allgemeinem Anruf und geht jetzt auf Empfang. Bitte kommen!	Tsay Koo Algoemainer anroof an doitshlant, dee Shwaits, Oesterraich odoe aine doitshshprechendoe shtatsion. Hear rwft (own callsign) mit ainem algemainem anroof unt gayht yetst awf empfang. Bitter komen.
Replying to a call (Other callsign phonetically) this is the British/English/ Welsh/Scottish/Irish/Australian/American/Canadian/New Zealand/South African station (own callsign) calling you/returning your call. The German speaking station this is ...	(Other callsign phonetically) Hier ruft der Britische/ Englische / Walisische / Schottische / Irische / Australische/ Amerikanische/Kanadische/Neuseeländische/Südafrikanische Sender (own callsign), der auf ihren Anruf zurückkommt. Die deutschsprechende Station hier ruft . . .	(Other callsign phonetically) Hear rooft der Britische / Englishe / Valisishe / Shohtische / Irishe / Awstralishe / Americanishe / Kanadishe / Noyzealendishe / Sidafrikanishe Zender (own callsign) der awf eehren anroof tswrikkomt. Dee Doitshshprechende shtatsion hear rooft . . .
After someone has replied to your call I heard more than one station replying. Go ahead (XYZ). Try again ($X Y Z$) please wait. This is (own callsign). Good morning/afternoon/evening old man. Thank you for returning my call. I think this is the first time we have worked each other.	Mehrere Sender haben gleichzeitig geantwortet. Bitte schön (XYZ). Versuchen Sie noch einmal (XYZ). Warten Sie bitte! Hier spricht (own callsign) Guten Morgen/Tag/Abend mein Lieber. Ich danke Ihnen für die Antwort auf meinen Ruf. Ich glaube das ist das erste Mal da β wir miteinander sprechen.	Merere zender haben glaichtsaitig goeantvortet. Bitter shoen (XYZ). Ferzoochen zee noch ainmal (XYZ). Varten zee bitter. Hear shpricht (own callsign) gooten Morgen/Taag/Abent main leahber. Ish danke eehnen fear dee antvort awf mainen roof. Ish glawbe das ist das erste mal das viir mitainander shprechen.

I think we have worked before. The name is ... I'll spell it for you phonetically. I repeat.	Ich glaube, wir haben schon miteinander gesprochen. Ich heisse. . . Ich buchstabiere phonetisch. Ich wiederhole.	Ish glawbe viir haben shoon mitainander geshprochen. Ish haise . . . Ish boochshtabiere foneetish. Ish veederhole.
Location		
The location is . . . I'll spell it for you, in the county of . . ./ state of . . . in North/South/West/East England/ Wales/Scotland/Ireland/Canada/USA etc.	Der QTH/Sendeort ist . . . ich buchstabiere ihn für Sie, in der Grafschaft von . . ./im Staat von . . . in Nord/Süd/West/Ost England/Wales/Schottland/Irland/Kanada/in der USA.	Der Koo Tay $\mathbf{H a}$ /Zenderort ist . . . Ish boochshtabiere een fear zee, in der grafshaft fon . . . / im shtaat von ... in Nord/Zid/Vest/Ost Englant/Vales/Shotlant/Irlant/Kanada/ in der Ooessah.
The location is in the centre of	Der Sendeort ist in der Mitte von	Der zenderort ist in der mite fon . . .
On the island of..	Auf der Insel	Awf der inzel
In the small/big town/city of	In der kleinen/grossen Stadt/Großstadt von	In der klainen/grossen shdat/Grossshdat fon
In the seaside town of...	Am Seebad...	Am zaybaat . . .
About . . . kilometres from . . .	Ungefähr . . . Kilometer von . . . entfernt.	Wingefayr . . . Kilometer fon . . . entfernt.
The longitude and the latitude is . . . degrees - minutes North/South, degrees - minutes East/West.	Die Länge und die Breite sind . . . Grad-Minuten nordlich/südlich, Grad-Minuten östlich/westlich.	Dee laynge unt dee braite zint... Graad-Minwwten nordlich/sidlich, Graad-Minwwten oestlich/vestlich.
Signal report		
You are five and nine in	Sie sind fünf und neun in	Zee sint finf wnt noin in
Your report is ...	Ihr Rapport ist ...	Ear rapor ist . . .
Your signal is variable/very weak/weak/strong/very strong/excellent.	Ihr Signal ist schwankend/sehr schwach/schwach/stark/sehr stark/ausgezeichnet.	Ear signal ist shwankend/seer shwach/shwach/shtark/seer shtark/awsgetsaichnet.
There is no interference.	Es gibt keine Störungen.	Es gibt kaine shtirwngen.
There is a lot of local interference.	Es gibt viele örtliche Störungen.	Es gibt feele oertliche shtoerwngen.
Your signals are fading.	Ihre Signale schwinden.	Eare signale shvinden.
Your modulation is good/bad.	Ihre Modulation ist gut/schlecht.	Eare modiwlatsion ist goot/shlecht.
I can understand you very easily.	Ich verstehe Sie ganz leicht.	Ish fershtayhe zea gants laicht.
I can understand you only with great difficulty.	Ich verstehe Sie nur mit grossen Schwierigkeiten.	Ish fershtayhe zea noor mit grossen Shveerigkaiten.
Asking for information and commands		
Please state your name/your location/your callsign.	Geben Sie mir bitte Ihren Namen/Ihren Standort/ihr Rufzeichen.	Geben zee mir bitter earen namen/earen shtandort/ear rooftsaichen.
What is your country?	In welchem Land sind Sie?	In velshem lant zint zee?
Please spell your name/location/callsign phonetically.	Buchstabieren Sie bitte Ihren Namen/Standort/Rufzeichen!	Bwchshtabearen zee bitter earen namen/shtandort/ rooftsaichen.
Please can you give me a report?	Könne॥ Sie mir bitte einen Rapport geben?	Koenen zee mir bitter ainen rapor gayben?
Please repeat.	Bitte wiederholen Sie.	Bitter veederholen zee.
Please speak more slowly.	Bitte sprechen Sie langsamer.	Bitter shprechen zee langzamer.
Do you have a lot of interference?	Haben Sie viele Störungen?	Haben zee feele shtoerwngen?
Are my signals fading?	Schwanken meine Signale?	Shvanken maine signale?
Have we worked each other before - on this band/on 10 , $15,20,40,80,160$ metres?	Waren wir schon mal verbunden - auf diesem Band/auf zehn, fünfzehn, zwanzig, vierzig, achtzig, hundertsechszig Metern.	Varen veer shon mal ferbwnden - awf deezem Bant/awf tsayn, finftsayn, tvantsig, feartsig, achttsig, hwndertsextig metern.
I'm sorry, I do not understand you.	Es tut mir leid, ich verstehe Sie nicht.	Es toot mir lait, ish fershtayhe zee nicht.
I do not understand/speak German very well.	Ich verstehe/spreche nicht sehr gut deutsch.	Ish fershtayhe/shpreche nicht zer goot doitsh.
Please stand by.	Warten Sie bitte.	Varten zee bitter.
Please go again.	Versuchen Sie es nochmal.	Ferzwchen zee es nochmal.
Do you receive/hear/understand me?	Können Sie mich aufnehmen/hören/verstehen?	Koenen zee mich awfnaymen/hoeren/fershtayhen?
How do you copy? Is this frequency free/occupied?	Wie nehmen Sie mich auf? Ist diese Frequenz frei/besetzt?	Vee naymen zee mich awf? Ist deeze freqvents frai/bezetst?

(i) ANTENNA SPECIAL

MW LOOP DIFFERENTIAL AMPLIFIER S.WHITT

Several years ago an article was published in $P W$ describing a differential amplifier for a m.w. loop antenna. The author constructed and used this circuit for some time and felt that the original design could be improved upon.

Despite a recently published design for a Q multiplier for a m.w. loop, there is still a need for a high performance balanced amplifier if the inherently balanced output of a loop is not to be upset by direct connection to the unbalanced input of a receiver.

Circuit Description

No great claim of originality is made for the circuit of Fig. 1, since the circuit shown will be found in many design books. However, it has a number of advantages over the design originally published.

Transistors Tr la and Trlb are an accurately matched pair of Siliconix n-channel j.f.e.t.s contained in one package. They form a long-tailed pair differential amplifier stage with a very high input impedance thus applying negligible loading to the loop tuned circuit.

Semiconductor Tr 3 operates as a constant current source ensuring satisfactory operation of the long-tailed pair. The use of a matched dual f.e.t. and 1 per cent tolerance components for R1 and R2 ensures an excellent
common-mode rejection ratio for the circuit, thus maintaining the sharpness of the loop's directional null.

The stage formed by Tr 2 operates as a unity gain source follower amplifier, acting as a buffer between the relatively high output impedance of the long-tailed pair and low impedance of the receiver input. The input bias resistors R6 and R7 are chosen to be $1 \mathrm{M} \Omega$ to prevent loading of the Q of the loop. In the original article these resistors were $47 \mathrm{k} \Omega$ and this would significantly degrade the performance of high Q loops. Table 1 provides details of loop loading variations. Note all measurements were made with the amplifier driving a 50 ohm load.
The overall amplifier has a 12 dB voltage gain and is happy handling large input signals, as shown in Table 2.

The circuit was constructed on a small p.c.b. as shown in the photographs and due to its simplicity should cause

Table 1: LOOP LOADING

UNLOADED LOOP Q	PARALLEL RESISTANCE	LOADED LOOP Q
70	$100 \mathrm{k} \Omega$	46
70	$2 \mathrm{M} \Omega$	70
100	$100 \mathrm{k} \Omega$	57
100	$2 \mathrm{M} \Omega$	100
140	$100 \mathrm{k} \Omega$	70
140	$2 \mathrm{M} \Omega$	132

Table 2: SIGNAL HANDLING@1 MHz

GAIN dB	INPUT LEVEL mV r.m.s.	COMPRESSION dB
11.9	1.16	0
11.9	3.67	0
11.9	11.6	0
11.8	36.7	0.1
11.7	116	0.2
11.5	223	0.4
11.3	366	0.6

Table 3: FREQUENCY RESPONSE

GAIN dB	FREQUENCY MHz	
12.4	0.5	
11.9	1.0	
10.9	1.5	
9.4	2.2	$(-3 \mathrm{~dB}$ point)
6.4	3.6	
0	8.3	

no constructional problems. Both Tr 1 and Tr 2 are obtainable from several sources including Semiconductor Specialists (UK) Ltd., of West Drayton, Middlesex. Total constructional cost of the amplifier and housing should be approximately $£ 7.50$.

Applications

Primarily this amplifier allows the easy interconnection of a loop antenna and a receiver input without degrading the loop's performance. The additional gain provided will help compensate for the proportionately smaller signal pick-up of small loops. However, large signals, from larger loops, are likely to overload the subsequent receiver input stages long before the amplifier is affected. If this problem does occur a solution is provided by the insertion of an attenuator between the amplifier and the receiver.

The prototype amplifier shown above was built and housed in a small diecast box attached to a 1.3 m diameter octagonal spiral loop and used in conjunction with an Eddystone 940 receiver. This combination produced some excellent DX and revealed no particular operating problems, although it was possible to overload the valve input stage of the receiver unless an attenuator (variable $1-31 \mathrm{~dB}$) was inserted in circuit.

> PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TOADVERTISERS

M.J.AXSON B.A.GBWHG

One of the attractions of Amateur Radio lies in the very wide range of activities which it covers, and the opportunity it gives to become involved in other branches of technology. Working DX on the v.h.f./u.h.f. bands through an OSCAR series communications satellite is a very good example (OSCAR stands for Orbital Satellite Carrying Amateur Radio).

In essence this is a very simple procedure. The satellite is in effect suspended high in the sky somewhere above you, and it contains a receiver and a transmitter, which operate on different frequencies. You transmit a signal up to it, which is then received and retransmitted (Fig. 1). Any other station within "line of sight" of the satellite can then receive your signal via the satellite.

Fig. 1: The basic principle of satellite communication between distant ground stations

The system is rather like the very familiar repeater units used on 144 MHz and 432 MHz for mobile/portable working, but with two main differences.

Firstly, the satellite is at a height of several hundred miles, so the line of sight from it extends over a very wide area, hence the possibility of DX communication. The second difference is that the satellite, which is about the size of a tea chest, is moving round the Earth at a speed of several km a second, so that the area which is in line of sight is constantly changing. Furthermore, the e.r.p. of its transmitter is only in the region of a few watts, so in theory it would seem that sophisticated tracking equipment would be required so as to keep your TX and RX antennas lined up on it. Fortunately, in practice this is not the case and many amateurs have had a lot of satisfying contacts using relatively simple equipment, so why not join them?

Orbit Principles

The first requirement is to know a little bit about the mechanics of satellites and their orbits, so that they can be located from the published data. There is no need to go into the mathematics involved, just simply to understand the basic principles and learn some of the associated jargon. Let us first consider the case of a satellite in a circular (or near circular) orbit, such as OSCAR 8.

We all know that what goes up must come down, but satellites don't, at least not for quite a long time in human terms, so why should this be so? Imagine that you are throwing stones or some other object parallel to the ground. You throw one fairly gently and it hits the ground close to you, throw a bit harder and it lands further away. The harder you throw, the further the object travels before hitting the ground. This is so elementary that babies learn it in their prams, but have you ever thought why it should be?

Fig. 2: The basic trajectory of a falling object is determined by two separate forces

Conveniently ignoring air resistance, there are two forces acting on the object. One is the force of gravity which pulls the object down to the ground. Near to the Earth's surface gravity gives an acceleration of $9.75 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$, which simply means that the object will fall 9.75 m in the first second after it is released, 19.50 m in the next second and so on, therefore if you are 9.75 m above ground level your object will hit the ground after one second.

Now for the other force which you supply by throwing the object. It is going to hit the ground after one second so, the greater its horizontal velocity, the further it will travel, Fig. 2. Of course if you are only 9.75 m above ground level no matter how much horizontal velocity you give to the object, it won't travel very far because a tree, house, or rise
in the ground will soon intrude and stop it abruptly. But, if you could stand on a point say 256 km high, these problems would not arise and the same basic principle applies: the greater the horizontal velocity given to the object, the further it will travel before hitting the ground, in this case after a period of approximately 250 seconds.

However, as the velocity rises and the distance travelled increases, the curvature of the Earth's surface comes into play, and although the object has fallen 256 km in 250 seconds the ground has curved beneath it and it still retains some height. Eventually, a velocity will be reached at which the fall due to gravity is matched by the curvature, so the object remains at a constant height above the Earth's surface; in other words it is in orbit, Fig. 3.

Fig. 3: At the correct velocity an object will remain in orbit above the earth

At an altitude of 256 km , this critical orbital velocity is approximately $28000 \mathrm{~km} / \mathrm{hr}$. It is thus easy to calculate the time required for the satellite to complete one orbit, which is known as its "period", and in this case it is about 90 minutes.

The gravitational pull of the Earth on any object decreases slowly with distance. At an altitude of 160 km it still has 99 per cent of its sea-level value, but at 1600 km it is down to 64 per cent and at 2720 km it is halved. This means that the object will fall through a lesser distance in any time period and so the orbital velocity is slower at greater heights. It is therefore obvious that the period will be longer, and this is of course accentuated by the fact that the distance it has to travel to complete one orbit has also increased. For orbital heights of 1600 km and 2720 km the periods are about 118 minutes and 143 minutes respectively.

Increment and Inclination

Having got the satellite into Earth orbit, we want to know what path it traces over the surface, so back to school geography, from which you will remember that the Earth rotates around an imaginary axis through the North and South poles in a west to east direction, completing one revolution in 24 hours.

This means that from the Earth's surface, on every orbit, the satellite's track will appear to move to the west. How far it moves depends on the period of the satellite since the Earth's rotation is a constant 360 degrees in 24 hours. The number of minutes in 24 hours is $24 \times 60=$ 1440 so the Earth rotates through 1440/360 degrees in
one minute. Hence the apparent westward move of the satellite will be its period in minutes $\times 0.25$ degrees e.g. period 90 minutes, westward move is $90 \times 0.25=22.5$ degrees. In the jargon, this is the "increment" of the satellite. OSCAR orbits are tilted at an angle with respect to the Earth's equator and this angle is called the "inclination", Fig. 4.

Fig. 4: The angle between the orbital plane and the equator is known as the inclination angle

Coverage Area

As has been said, the satellite has to be within line of sight in order to be used, and the area of the Earth's surface for which this is so at any moment in time is a circle whose centre lies directly below the satellite and whose diameter depends on the orbital height, Fig. 5.

Fig. 5

Since the satellite is moving round the Earth, this circle of visibility is also moving and the satellite can be seen for the longest period when its orbit passes directly overhead, Fig. 6. In practice, of course, most passes are to one side of your location and the visibility period, the time available to communicate via the satellite, is less.

Let us put some figures to these parameters for the OSCAR 8 satellite. In real life nothing is perfect and they vary slightly from time to time, so the figures are approximate, but near enough for our purpose. The orbital height is 904 km , inclination 98.9 degrees, increment 25.8 degrees, with a period of 103 minutes and a maximum ground range of 6400 km .

It is possible to work out the orbital details for yourself, but quite unnecessary since predictions are available from several sources, notably AMSAT-UK, and occasionally on the RSGB GB2RS News. Of course if you have a ZX81 you can use the program on the PW Radio Programs-1 cassette.

Look up tables are available which will then give the time of acquisition of satellite, bearing, elevation and loss of satellite. The predictions give the time of the start of the orbit, which is taken to occur when the satellite crosses the equator going north, and is given in Universal clock time.

This lower power version, similar to the h.f. dummy load described in Part 1, caters for frequencies above 30 MHz and up to 500 MHz with a slight rise in insertion v.s.w.r. in the region $400-500 \mathrm{MHz}$.

The load is housed in a small syrup tin as shown in the photograph with the load resistors mounted on a printed circuit board. As the circuit (Fig. 4) shows, nine 470 ohm 2 watt high stability carbon film resistors are used in parallel to give $470 / 9=52$ ohms. The diode and load resistors for the l.e.d. bring this down to 50 ohms ± 1 ohm.

Construction

The p.c.b. is shown in Fig. 6 and measures 60 mm diameter so as to fit inside the tin used. The 470 ohm 2 watt resistors R1 to R9 are mounted upright on the board as in Fig. 5 and the free-end wires all join in a tight bunch for soldering to the " N " type input socket. The resistor R10 is soldered vertically in the centre of the resistor assembly. Four 16 s.w.g. copper wires support the p.c.b. and are soldered to four solder tags bolted to the fixing bolts holding the " N " type input socket to the lid. Note that the centre resistor R10, which is part of the l.e.d. voltage network, is coupled across to the diode via the single printed circuit strip from the centre of the circuit board.

The final resistance will be 50 ohms ± 1 ohm but attempts to measure this with an ordinary ohmmeter may well give a false reading as such meters are not very accurate at low ranges. A number of assemblies of this dummy load were compared with a laboratory grade 50 ohm dummy load rated for use up to 500 MHz in conjunction with a Bird Thruline r.f. power meter and found to be within the tolerances given.

RF Power Meters for VHF

A meter such as the Daiwa model CN630 operates from 140 to approximately 500 MHz and will give direct r.f. power reading up to 200 watts as well as simultaneous indication of v.s.w.r. by means of the crossed-needles meter system employed in these instruments.

There may be others capable of providing this facility of course and one expensive but really accurate meter for use

CONSTRUCTION RATINE Beginner

BUYING GUIDE

All components are readily available from many of our regular advertisers. The " N " type socket must be a square-flange type (RS Components $455-769$ or similar). A suitable housing is a well washed-out syrup tin, small size, although a small rectangular aluminium box was successfully used by the author for one of the prototypes.

APPROXIMATE cost £3.50

A small syrup tin is a convenient source of a box for the dummy load

* components

```
Resistors
\frac{1}{4}W\mathrm{ Carbon film 5%}
    2.2k\Omega 2
        R10, 11
2W Carbon film high stability 5%
    470\Omega 9 R1 to 9
Semiconductors
Diodes
\begin{tabular}{lll} 
1N4148 & 1 & D1 \\
Red l.e.d. & 1 & D2
\end{tabular}
```


Miscellaneous

```
Socket "N" type (RS 455-769); Printed circuit board; Small syrup tin (see text).
```

Table 2

Constructional details of the v.h.f./u.h.f. 50Ω dummy load

	Power	Time	Can Temp.
Continuous carrier	10 W	Indefinite	$24^{\circ} \mathrm{C}$
	20 W	$6 \mathrm{~min} . \max$	$25^{\circ} \mathrm{C}$
Carrier with white noise or speech and s.s.b. mod.	25 W	$6 \mathrm{~min} . \max$	$27^{\circ} \mathrm{C}$
Carrier and/or peak s.s.b. power	100 W	$\frac{1}{2}-1 \mathrm{~min}$.	$27^{\circ} \mathrm{C}$

Fig. 4: The circuit diagram of the dummy load

Fig. 6: Full-size p.c.b. copper track pattern
in the region of 500 MHz (or higher) with suitable couplers is the Bird Thruline directional r.f. wattmeter model 43. Ordinary power/v.s.w.r. reference meters are of no use for direct measurement of power.
The only meter known to the writer that will give accurate "peak" power readings from s.s.b. modulated r.f. power in the v.h.f. range above 150 MHz is the Bird Thruline directional r.f. wattmeter model 4314/4311. There may also be other meters that have this facility as well but the reader should beware of cheap foreign-made instruments claiming to measure such parameters.

Meter Reading Errors

With the exception of high grade laboratory meters that will read with an accuracy, or rather inaccuracy, of around plus or minus 2 per cent, some may not be better than to within 20 per cent or more, which can give very false indication as the graph Fig. 7 illustrates. For example a negative inaccuracy of 20 per cent can account for nearly IdB. This may not sound much but does in fact account for about 1 watt out of 10 when the meter has for example a full scale reading of 10 watts. A study of meter accuracy specifications is always worthwhile.

Fig. 7 A
Fig. $8 \mathbf{V}$

Fig. 97

The inclusion of the other two graphs may be found useful to those new to amateur radio with Fig. 8 covering the v.s.w.r. range from 1 to 1 up to 1.3 to 1 . For higher ranges refer to the graph Fig. 9 which covers the range from 1.3 to 1 up to 8 to 1 . From these graphs it is interesting to note that a v.s.w.r. of 2 to 1 represents approximately a 10 per cent reflection of power from a poorly matched antenna and which is power lost. One should certainly aim for the lowest possible v.s.w.r. particularly with low power transmitters but how accurate is your v.s.w.r. meter?

dB or not dB and what is a dB Watt?

The new Home Office amateur licence schedules now quote permitted power output in dBW which simply means dB related to a reference power of 1 watt. It is important to understand that a decibel is not a measure of anything but merely a ratio of one power (or voltage, or current) level to another which is why a reference must always be given. The ratios for decibels in power are quite different to those of voltage or current and normally given as follows:-
Voltage and Current The formula is
$20 \log _{10} \frac{\mathrm{~V} 2}{\mathrm{~V} 1}$ or $\frac{\mathrm{I} 2}{\mathrm{I} 1}=$ positive dB where either V 1 or I 1 is
the reference. If the ratios are inverted e.g. $20 \log _{10} \frac{\mathrm{~V} 1}{\mathrm{~V} 2}$ then the dB ratio is negative.
Power The decibel power ratio is derived from

$$
\begin{aligned}
& 10 \log _{10} \frac{\mathrm{P} 2}{\mathrm{P} 1}=\text { positive } \mathrm{dB} \text { or } \\
& 10 \log _{10} \frac{\mathrm{P} 1}{\mathrm{P} 2}=\text { negative } \mathrm{dB} .
\end{aligned}
$$

The reference should be quoted as for example dBW which equals dB relative to a reference power of 1 watt, or as another example, dBd which is the power gain of an antenna with reference to a dipole (d) or we can have dBi which is antenna gain with reference to an isotropic (i) and so on.

Referring to the new amateur radio schedule we have for example peak envelope power for s.s.b. as 26 dBW for the h.f. bands 3.5 through to 29.7 MHz . So what is this in real watts? The answer may be found from $10^{y x}$ the index yx being derived from the figure given as dBW divided by 10. So for $26 \mathrm{dBW}, \mathrm{yx}=\frac{26}{10}$ or $2 \cdot 6$. The actual wattage is therefore $10^{2 \cdot 6}$ which is 398.107 watts. As another example we have a continuous power supplied to the antenna for the frequency band 1.81 to 1.85 MHz (top band) of 9 dBW . The power in watts will therefore be 10^{yx} where yx $=9 \div 10$ or 0.9 , the final answer being $100.9=7.943$ watts. For the 144 MHz band with continuous power to the antenna, as for f.m. operation, we have 20 dBW which is 10^{2} or 100 watts.

Finally the writer would like to thank Aspen Electronics Limited (UK), who are the agents for Bird RF Measuring Instruments, and Messrs. Bredhurst Electronics and Western Electronics for photographs and information on the meters mentioned in these articles.

> PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISERS

WATERS \& STANTON ELECTRONICS

18/20 MAIN ROAD, HOCKLEY, ESSEX. TEL (0702) 206835

TRIO - Official UK Dealers NEW FROM TRIO
TS 430 S HF TRANSCEIVER

SSB-CW-AM-FM Price T.B.A.

It really is a fantastic performer!

YAESU - Good stocks. Good prices $\&$ on the spot service.
LATEST FRG 7700 IN STOCK

F102	$160-10 \mathrm{~m} 9$ band trans. FM
Flioizo	160-10m
F7707	$80-10 \mathrm{~m} 8$ band trans. 10 w
FP707	230 vaC PSU
FC707	$160-10 \mathrm{~m}$ atu
FV7070M	Digital vto tor F7707
MMB2	Mobile mount
Fl21002	$160-10 \mathrm{~m} 1200$ watt linear
FT9020M	$160-10 \mathrm{~m} 9$ band receiver
FC902	All band ATU
FT208	2 M FM synthesised handheld
F7708	70 cm FM synthesised transcever
NCSC	Compack trickle charger
FT480R	$2 \mathrm{~m} 10 \mathrm{wSSB} / \mathrm{CW} / \mathrm{FM}$ transceiver
FT290R	2 m portable synthesised multimode
NC11C	240 v trickle charger
FRG7	General coverage teceiver
FRG7700	1981 version of FRG7000
FRT7700	Antenna tuning unit

6725.00 (n.c)
$\begin{array}{ll}\text { f725.00 } & \text { (n.c) } \\ \mathbf{f 5 8 9 . 0 0} & \text { (n.c.) }\end{array}$ $\begin{array}{ll}\mathbf{5} 589.00 & \text { (n.c.) } \\ \text { c589.00 } & \text { (n.c.) }\end{array}$ £689.00 (n.c)
f125.00
($£ 2.50$) $f 12500$
f8500 $(f 250)$
$(f) 50)$ f8500 (f1.50) $\begin{array}{rrr}\text { f20300 (n.c) } \\ \text { f16.10 } & \text { (f) } 50)\end{array}$ f16.10 (f) 50
$\mathbf{6 4 2 5} .00$ 6425.00 (nc)
6885.00 C885.00 (nc)
135.00 (f 150) f135.00 (f1 50)
f209.00 (nc) £209.00 (nc) E219.00 (ne)
f8.00 (E0.75) $\begin{array}{r}68.00 \text { (} £ 0.75 \text {) } \\ \hline\end{array}$ £36500 (n.c)
£249.00 (n.c) $\begin{aligned} & \\ & \mathrm{f} 8.00 \text { (£0.75) }\end{aligned}$ £ 189.00
(n.c) $\begin{array}{ll}\text { £ } 1899.00 & \text { (n.c) } \\ \text { (n.c.) }\end{array}$ £37.85 (£1.00)

SEND S.A.E. FOR 16 PAGE FULL CATALOGUE

ICOM - the full range stocked

IC720A DELUXE HF TRANSCEIVER

NEW!

2M SSB PORTABLE only £89!
144. 25 to 144.35 MHz .
Any 100 KHz s.egment possible
$\frac{1}{4}$ watt output powet.
Ideal lor driving amp.
SSB/CW with huilt in key.
Noise blanker.
Supert performance.
Rubber duck whip included.
Ext. mic and case extra.

DATONG MORSE TUTOR D70

Self contained
electronic morse
sender $£ 56.00$ sender $£ 56$. post free

NOTE: Some prices are about to increase because of exchange rate - please phone for latest details. tune into the airband with these two models

CD6000
Mobile or base

Range $-110-140 \mathrm{MHz}$ Display - Digital readout Steps - All 5 kHz steps Sens. - 0.50 v for 10 dB SN Audio - 1.5 watts 8 ohm Power - 12 v DC 400 ma

THESE ARE PROFESSIONAL MODELS FULLY GUARANTEED.
Prices correct at time of going to press. Carriage charges in brackets.
18-20 MAIN ROAD, HOCKLEY, ESSEX. Open Mon-Sat 9-5.30 \quad E.C. Wed 1.0 pm.
FASTEST MAIL ORDER SERVICE IN THE BUSINESS!

CB is a mobile short-range telephone system. You require a licence to use it, £10 p.a, from Post Offices.

From experience gained in testing an assortment of CB rigs in our laboratory, plus quite a lot of listening and a little talking on the band from 27.6 to 28 MHz , it seems that the transmitter function, fairly tightly defined in HO Specification MPT1320, is pretty much of a muchness. Speech quality varies a bit, and there are one or two "rogue" rigs around which put out signals
in places where they really didn't ought to!

A particular hate of mine at the home QTH is a mysterious spurio, apparently the result of a mixing process inside one or more models of CB transceiver, which comes up in the bottom megahertz of the 28 MHz amateur band. When the CBer is on Channel 1, the spurio is around 28.01 MHz , and when he's on Channel 40 it's at about 28.79 MHz . So the spurio shifts in frequency at twice the rate of the fundamental. If the CBer is " $\mathrm{S} 9+40 \mathrm{~dB}$ " with me (which one of these rigs is), the spurio is about " S 3 ". I haven't checked the " S " meter on that particular receiver, but if it's accurately calibrated it would mean that the spurio is about 76 dB down on the fundamental, which is within specification for that band segment under MPT1320 $(0.25 \mu \mathrm{~W}$ against 4 W$)$. Not that this is very much comfort when I'm trying to listen to a weak amateur signal.

Anyway, all the transmitters tested seem well behaved from the point of
view of frequency tolerance and stability, deviation limiting, power output and spurious radiation. What is becoming a real problem though, in areas with a large CB population, is receiver selectivity-particularly the ability to reject a signal on the adjacent channel.

So in the group of CB transceivers covered this month, I've concentrated on that very aspect of performance where lab tests are concerned, and tabulated them along with the other salient features of each set. The measurement method adopted was that laid down in BS6160: Part 3: 1981 (IEC 489-3: 1979) for testing f.m. receivers used in the mobile services. The outputs of two signal generators are mixed in a hybrid combiner and applied to the receiver antenna socket. One generator represents the wanted signal, with a level which is adjusted to give a standard receiver output SINAD ratio (12 dB), and then increased by 3 dB . The second generator, which must have very low noise, repre-

sents the unwanted signal on the adjacent channel, either 10 kHz up or 10 kHz down in the UK 27 MHz CB system. Its output level is increased until the receiver output SINAD level falls to 12 dB , due to the "interference". The ratio of the output level of generator 2 to the output level of generator 1 that originally gave 12 dB SINAD, is the adjacent channel selectivity of the receiver. If the results on the two adjacent channels differ, the worst one is taken. Generators used for these tests were Marconi Instruments 2019 and 2017 respectively, plus a Hatfield 3159 hybrid combiner and a Marconi Instruments TF2337A distortion and SINAD meter.

Accessories

A wide range of accessoriesantennas, power supplies, s.w.r. meters, etc., is available from most CB stockists, but some rig suppliers produce their own branded accessories
which have been designed and tested to complement their product.

Lucas produce voltage-dropping units which allow the ACB888 (and presumably any other 12 V equipment drawing a similar current) to be used in commercial vehicles having 24 V electrical systems.

The SMC Oscar range includes a wide variety of antennas and mounts for mobile and base station use, s.w.r. meters and extension loudspeakers. For base station operation, the RU-12-04-06 power supply gives 4A constant, 6A surge, and has proved very reliable and quite impervious to r.f. in our tests. Foldback current limiting is provided, and regulation was measured at 8.8 per cent. The Oscar 100LP30 low-pass filter is one of the most effective we've tested, giving 35 dB attenuation at the second harmonic of 27 MHz and an ultimate rejection of 70 dB , with a power rating of 100 W .

From Shogun comes a selective calling unit which simply plugs into the rear of their rig. It controls the receiver

The Shogun Selective Calling unit simply plugs into the rear of the rig, replacing a linked connector

so that the audio output is muted except when a call is received from another CB rig equipped with selective calling and transmitting the appropriate coded sequence of audio tones. A front-panel switch allows 40 different codes to be selected, although the total capacity is increased to 2560 possible codes by using an internal bank of six switches, providing $2^{6}=64$ sets of 40 codes. Once the called receiver has been alerted, its audio circuits remain operational, and further "overs" can proceed without use of the

| PLANET 2000 |
| :---: | :---: | :---: | :---: |

Some of South Midland Communications' range of CB accessories-at the top, a 12 V 4 A regulated p.s.u. and a 100 W lowpass filter; at the bottom, twinmeter and single-meter s.w.r. bridges. Note that the photographs are not all to the same scale

Sel-call. Until a selective call is acknowledged, the l.e.d. code-number indicator flashes to show that a call has been received. The Shogun Sel-call unit measures $38 \times 60 \times 102 \mathrm{~mm}$, and is provided with a CALL button and NORM/SEL switch, which selects the
mode of operation and also cancels the received call, to return the receiver to the muted state. Price of the unit is £49.50. The system worked reliably on tests with receiver input levels down to that giving $12 \mathrm{~dB} \operatorname{sinAD}$, which is below the squelch threshold of the rig.

Geoff Arnold

Acknowledgements

Our thanks for the loan of the review transceivers go to the following companies, who can also supply further information.
Lucas ACB888: Lucas Electrical Limited, Audio Service Department, Parts \& Service Division, Great Hampton Street, Birmingham B18 6AU.
Oscar CBM271: South Midlands Communications Ltd., 36-38 Rumbridge Street, Totton, Southampton.
Planet 2000: Amateur Electronics UK, 508-516 Alum Rock Road, Birmingham 8 .
Shogun 82: Sunrise Products-Japan, Colliers Farm, Frieth, Henley-onThames, Oxon RG9 6NR.
Telecomm TC-9000: Lee Electronics Ltd., 400 Edgware Road, London W2.

PASSPORT TO AMATEUR RADIO

You've asked for it-now you can get it! John Thornton Lawrence's popular series reprinted all in one book, along with a selection of other articles from Practical Wireless that will be useful to the up-and-coming student of amateur radio.

Passport to Amateur Radio reprint has 88 pages, $273 \times$ 203 mm , and is available from Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, price $£ 1.50$ including postage and packing to UK addresses, or $£ 1.80$ by surface mail overseas. Please ensure that your name and address are clearly legible on the coupon.

PASSPORT TO AMATEUR RADIO

Please send your order and remittance to:
IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF
Please send me........copies at $£ 1.50$ each to include postage and packing ($£ 1.80$ surface mail overseas
I enclose P.O./Cheque No.............Value
UK remittances must be by crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME

(BLOCK LETTERS)

ADDRESS
(BLOCK LETTERS)
. Post Code
Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International plc

ANTENNAS PART 1
 F.C.JUDD G2BCX

This series of articles is intended for newcomers to amateur radio, whether licensed for Class B operation on the v.h.f.-u.h.f. and microwave bands only, or for the Class A holder with access to the h.f. bands as well.

The influence of natural environment over the performance of any antenna is difficult, if not impossible to fully assess and express in meaningful terms. This is particularly so in view of the fact that amateur radio antenna installations differ widely, even though the same basic antenna may be used by a number of different stations.

Measurement Techniques

Evaluation of the normal electrical performance of antennas can be carried out under so called "free space" or ideal conditions so as to obviate the effects of proximity to ground and/or surrounding structures etc. Whilst this is not difficult to do at frequencies in the v.h.f./u.h.f. regions where a few wavelengths (λ) represent only a small physical distance or height difference, the problem becomes difficult where large h.f. band antennas are concerned and the wavelengths are therefore relatively long.

The measurement of general parameters such as gain, front-to-back ratio, and free-space radiation fields etc., should be made with the measuring equipment and its antenna at least 10λ from the antenna being tested. Both antennas should be at least that number of wavelengths above ground. Obviously it is not exactly a practical proposition to erect a tower 500 metres high and have a helicopter fly round and round in order to plot the freespace polar patterns of an h.f. antenna in both vertical and horizontal mode without the influence of ground! One alternative is to use very high frequency scale models of antennas so that heights and distances in wavelengths are reduced to convenient dimensions, permitting the freespace condition to be simulated.

Since accurately made high frequency models of low frequency antennas behave the same way electrically, so the various parameters mentioned can be measured with a reasonable degree of accuracy. On the other hand simulated effects due to other structures in the vicinity, as well as the effect of ground itself, can be introduced to obtain pretty close approximation of the performance of an antenna in what we may now call a normal environment.

It must be remembered that many h.f. band antennas rely on ground reflection to attain suitable vertical angles of radiation.
Some of the work carried out by the author in this direction has been previously published in $P W$ and by various investigators in other technical publications. However, the equipment shown for the first time in Fig. 1.1 was specially constructed by the author so that the radiation patterns of antennas at various heights above ground could be measured at all vertical angles through 180 degrees and all horizontal angles through 360 degrees.
The frequency of operation is $3000 \mathrm{MHz}(10 \mathrm{~cm})$ and the system is based on that used by the American National Bureau of Standards. Simulation of environmental effects, i.e. the presence of other structures, reflecting and conducting objects and wires, height of antenna above ground etc., can be introduced as required. Results obtained by simulation with models reveal very close approximations to what might be expected in "real size" situations.

Obviously natural radio propagation conditions cannot be simulated but answers to localised problems can usually be obtained. For example: will a different antenna, or re-siting the existing antenna, result in some worthwhile improvement? Would increasing the height of an existing antenna above ground prove more effective than using one with a higher gain factor at the original height?

In this series of articles we will delve into the performance of antennas generally, see what effects environment can have and at the same time investigate the merits of some of the popular commercially made antennas presently available for amateur radio use. For instance, are combination multi-band antennas as efficient as they are made out to be? How true are the claims made for gain from all

Fig. 1.1: The author's $\mathbf{3 G H z}(3000 \mathrm{MHz})$ antenna test table
regular types of antennas and so on and do such claims agree with recommendations laid down by the International Electro-Technical Commission.

We now have h.f. amateur bands based on $1 \cdot 8,3 \cdot 5,7$, $10,14,18,21,24$, and 28 MHz . What are the possibilities of combined, but efficient, antennas for at least the last five of these bands? The two most used v.h.f.-u.h.f. bands are 145 and 432 MHz and Class A licensees also have 70 MHz . Combination multi-band or broad-band antennas for these three bands seem feasible but would the higher efficiency of three separate and fully resonant antennas specifically designed for each band prove far more effective despite cost and space requirements?

Broad-band Omni-directional Antennas

Considerable interest has been aroused by the appearance on the market of "discone" type antennas intended for use with multi-frequency scanner receivers. The discone is a vertically polarised broad-band omnidirectional antenna capable of maintaining a v.s.w.r. of $1 \cdot 5: 1$, or less, over its working frequency spectrum.

Little real information is available on the electrical function of the discone but the general design dimensions are given in Fig. 1.2. The configuration of the discone is such that the dimension $\mathrm{L} \lambda$ of the equilaterally skirted bottom section (the cone) is approximately equal to the free-space $\lambda / 4$ at the lowest frequency at which the antenna is to be used. This is known as the design frequency and below this the v.s.w.r. rises rapidly. However, within the "resonant" region the antenna provides a reasonably good match to a 50 ohm source.

Fig. 1.2: The discone antenna configuration. Dimension $L \lambda$ equals $\lambda / 4$ at the lowest frequency of operation; see text regarding construction. The inset shows the J.D. Kraus dimensions referred to in the text

Because of its relatively large size the discone has little application for h.f. band operation but does offer possibilities at v.h.f. and u.h.f. If designed for a lowest frequency of around 70 MHz it will also operate on 144 and even up to 432 MHz , if the claims made for v.h.f.-u.h.f. discones of Japanese manufacture can be supported.

Construction for v.h.f. or u.h.f. operation does not require the use of sheet metal cones or discs as the diagrams might imply. Both can be made from aluminium rods or tubes spaced about 0.02λ apart as shown in Fig. 1.3, which illustrates a discone made by the author for operation with a lowest frequency of 70 MHz .

Fig. 1.3: Discone antenna constructed by the author to the dimensions given in Fig. 1.2

The disc section must be insulated from the cone and this is accomplished with a block of insulating material such as Tufnol or Delrin with a metal centre inserted and strong enough to support the disc. The inner of the coaxial cable feed to the antenna is connected directly to the disc and the shielding braid to the top of the cone, as in Fig. 1.2.

The optimum spacing or gap between the cone and disc is not critical in the v.h.f.-u.h.f. region and dimension G of Fig. 1.2 need be only about 25 mm . The vertical angle radiation is low and in fact virtually broadside to the antenna as indicated in Fig. 1.4, which also shows the relative omni-directional radiation pattern. The discone has unity gain over its working bandwidth, i.e. its gain may be referred to 0 dBd as direct comparison with a reference dipole has indicated.

Other Discone Dimensions

The dimensions given in Fig. 1.2 are generally used to obtain the lowest working frequency for a bandwidth which then extends upwards in frequency by about two octaves as illustrated in Fig. 1.7. The inset to Fig. 1.2 shows the J.D. Kraus Dimensions for the Centre Frequency of a Discone but it is estimated that the actual bandwidth will be about the same, i.e. two octaves. The commercially made Japanese discone antennas appear to
be dimensioned on the J.D. Kraus configuration although in some instances are modified to obtain an extended bandwidth by lengthening some of the cone spines.

A

B

Fig. 1.4: The discone antenna has an omni-directional radiation pattern (B) and vertical angle radiation (A) that is at right angles to the axis of the antenna. Gain = OdBd or unity

A selection of discone antennas are available from various UK suppliers including South Midlands Communications and some are quite suitable for transmitting on 144 and 432 MHz , including one which it is claimed will cover the 70 MHz band as well (Fig. 1.5). Amongst these are the SMC GDX1, SMC GDX2, SMC GDXA(N) and the TW435D which is a small discone for operation between 400 and 1200 MHz . This proved to be an excellent mobile antenna for 432 MHz when used on a standard

Fig. 1.5: Typical GDX discone antenna with extended cone spines. Frequency range is approximately 70 to 480 MHz
gutter mount. It is only about 380 mm high and rather unusual looking as can be seen from Fig. 1.6. Direct comparison between this and a 432 MHz version of the $P W$ Slim Jim for mobile operation proved to be interesting. This latter antenna design will be dealt with in Part 2 of this series.

Fig. 1.6: The SMC type TW435D 400 MHz to $1 \cdot 2 \mathrm{GHz}$ discone antenna, gutter mounted for mobile working on 432 MHz

Discone Bandwidth v VSWR

As already mentioned the discone antenna has a bandwidth of about two octaves and the v.s.w.r. remains fairly flat over the whole bandwidth, as shown in Fig. 1.7, rising sharply at the band ends. Tests carried out using the Yaesu FT-720R plus the FT-720RV and FT-720RU combination 144 and 432 MHz transceivers, revealed a flat v.s.w.r. over the complete frequency range of each band when using the $\operatorname{GDXA}(\mathrm{N})$ discone antenna, shown in Fig. 1.8.

In addition a duplexer unit, type HS770, was used so that two transceivers, one on 144 MHz and the other on 432 MHz , could be operated simultaneously. This device allowed the same antenna to be used with either, or both, transmitting or receiving at the same time, without either causing interference to the other. The HS770 duplexer has a channel separation of about 30 dB and an insertion loss of less than 0.5 dB on either frequency band.

Finally, for those who are multi-frequency scanner receiver operators, all of the discone antennas mentioned (the GDX series and the VHFL, which is an RX only device) were found to give excellent results with scanner sets such as the JIL SX200N and the Bearcat 220. It is recommended that ultra low loss semi-airspaced 50 ohm coaxial cable is used with these antennas, whether for

Fig. 1.7: Typical discone antenna v.s.w.r. curves over the designed bandwidth. (A) receiving type by JAIA $80-300 \mathrm{MHz}$, (B) JAIA (GDX type) transmitting $80-480 \mathrm{MHz}$. (From Japanese edition CQ Ham Radio No 4)
transmitting or receiving. Coaxial cable such as UR43 or similar will result in more than half the transmitted power (or received signal) being lost, even with a length as short as 6 metres. Cable such as RG8U or UR67 (MUR67) will also result in considerable loss at 432 MHz and higher when the cable length exceeds 30 metres.

Recommended 50 ohm coaxial cables for use at 432 MHz and higher frequencies are shown in Table 1 ; all these cables have a loss of 3 dB or less per 30 metres at up to 600 MHz .

Fig. 1.8: Plot of v.s.w.r. from discone antenna type GDXA(N) (a) over normal bandwidth, (b) 144 MHz band, (c) 432 M Hz band (including USA allocation)

Table 1

BICC No	RG Number	MUR Number
T3348	$221 U$	-
T3347	$220 U$	-
T3346	$219 U$	75
T3345	$218 U$	74

One discone antenna which has not been mentioned is the DC1/WB made by Jaybeam Ltd. Its physical appearance and size is similar to that shown in Fig. 1.3 except that the cone base diameter is wider. It has been designed for transmitting, has an input impedance of 50 ohms and a power handling capacity of 250 watts. Gain is unity and although the v.s.w.r. readout over the whole bandwidth may look a bit variable this is normal with most discones. However, as the graph of Fig. 1.9 shows, v.s.w.r. can be less than 1-5:1 for operation in the region
of both the $144-146 \mathrm{MHz}$ and $430-440 \mathrm{MHz}$ amateur bands. Further information on this antenna from Jaybeam Ltd. Northampton NN3 1QQ. The radiation patterns for this antenna would be similar to those shown in Fig. 1.4.

Details of the other discone antennas mentioned are available from South Midlands Communications Ltd., SM House, Rumbridge Street, Totton, Southampton SO 4 4DP.

Fig. 1.9: The v.s.w.r. readout of the Jaybeam Ltd. discone antenna type DC1/WB

References

Designing Discone Antennas. Nail J.J. ELECTRONICS. Vol. 26. August 1953, pp 167-169.
Discone $40-500 \mathrm{MHz}$ Skywire. Bower J.M. CQ Magazine. Vol. 5. July 1950. (Information by courtesy of The I.E.E.)

Part 2 of this series will provide full constructional details of a 432 MHz version of the $P W$ Slim Jim antenna, together with a discussion on other types of wide band antennas including helical and log-periodic dipole arrays.

INTRODUCING OSCAR-1

\mapsto continued from page 45
The point where this occurs is given in degrees west of Greenwich (the zero degree meridian), unlike longitude which uses degrees east and west of Greenwich.

Fig. 6: Satellite on overhead pass
Having got the details of the orbit, you will then know in what direction to point your antenna and what time to start listening.

The next article in this series will discuss the actual equipment required to operate through OSCAR 8.

by Eric Dowdeswell G4AR

Reports to: Eric Dowdeswell G4AR Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW.
Logs by bands in alphabetical order.

Although many readers are now running communications receivers which use the latest technology the constant complaint is still that of apparent interference between stations and of the set's inability to sort them out.

Given two s.s.b. signals on the same frequency and of reasonably similar strength there should not be any more difficulty in copying the wanted one than there would be in holding a conversation in a room with several other people talking at the same time. It has oft been said that the human ear is the best filter in the chain between the antenna and the brain, and I have certainly found this to be true.

It is not difficult, more a matter of experience, to develop the ability to pick out the signal YOU want from a mass of others.

This ability shows up particularly well on c.w. A good op will tell you that he can copy code from a station so weak that an inexperienced listener can't even hear it! He can also cope with c.w. beat notes that may be only a hundred or so hertz apart.

But what if one of the s.s.b. signals is much stronger than the other? Well, it should not be any more difficult than listening to someone talking when someone else is shouting. A few words might be missed here and there, but that doesn't matter very much. However, in the case of our receiver certain factors come into play that certainly do not help the op to resolve weak signals.

All receivers incorporate automatic gain control (a.g.c.) in which a bias voltage is derived from the amplified signal's carrier component and then fed back to the i.f. amplifying stages and frequently to the r.f. stages as well. This

Fig. 1: In this part circuit of a simple receiver the positive a.g.c. voltage is developed at D2 in IFT3 from the i.f. signal and applied to pin 5 of IFT1 and thence, via pin 6, to the base of the first i.f. stage transistor, feeding IFT2. The route is shown by a heavy line. An a.g.c. on-off switch can be inserted at point X
negative feedback means that the receiver's gain is reduced on strong signals and increased with weaker ones. The object is to keep the resultant audio signal at as constant a level as possible with the wide changes of signal level that are generally due to fading.

In older receivers (Fig. 1) a.g.c. was a permanent feature but nowadays on a communications set it can be switched off and there may be a choice of fast or slow a.g.c. As there is no carrier as such with an s.s.b. signal the a.g.c. has to be derived from the resultant audio signal but as the speech level fluctuates over a very wide range it is necessary to introduce a circuit which will "hold" the signal at a given level to prevent these violent fluctuations, reflected otherwise as variations in the set's noise level which would be very objectionable. The duration of the hold represents the fast and slow positions.

The reader may be surprised to learn that in the many receivers I have constructed over the years I have never incorporated a.g.c! Being mainly interested in contest operation, both c.w. and s.s.b., the average QSO only lasts a few seconds during which time the signal does not change very much, so why complicate matters with a.g.c.? It also means simpler circuitry, improved stability and a saving in components.

The benefits of a.g.c. fall down when there are, say, two signals in the receiver's i.f. passband (and probably more!) one weak and wanted and one strong and unwanted, Fig. 2. The a.g.c. will now operate on the stronger signal, pushing the set's gain down, possibly to the extent of reducing the wanted signal to inaudibility! All is not lost, as the simple answer is switch the a.g.c. off, and to read the wanted station through the unwanted one.

Where the two signals are slightly different in frequency the elegant solution is to move, electronically, the whole i.f. passband to one side or the other of the nominal i.f. (Fig. 3). Very few receivers have this added facility but it is becoming increasingly available on transceivers and it works amazingly well in practice, mainly because the principle is a sound one, for a change, rather than a sales gimmick.

For existing receivers the op is advised 'to keep the a.g.c. off for best results with weak signals. If an a.g.c. switch is not

WAD082
Fig. 2: The action of the a.g.c. voltage can reduce the level of the wanted signal to almost zero

Fig. 3: The "i.f. shift" facility allows the i.f. passband to be moved to accommodate a particular signal, often eliminating an unwanted signal. Unfortunately the filter response "curve" used here is an idealised one
fitted then one can be added which either breaks the a.g.c. line to the i.f. stages or shorts it to earth, depending upon the circuit. The maximum advantages of dispensing with a.g.c. on weak signals come when the receiver has separate r.f. and i.f. gain controls, which, when used carefully, can eliminate a lot of the crossmodulation that occurs between signals, which is generated in the receiver itself, a fact which seems to surprise some listeners.

Remember that the best results are not obtained with everything at maximum. The less r.f./i.f. gain the better for the signal-to-noise ratio, which, after all, is the ultimate target, not absolute signal strength. If you are one of the lucky ones prepared to dive inside your receiver then separating the r.f. gain control from the i.f. one will be the best move you can make towards improved reception, as well as switching the a.g.c. off, of course!

Contest News

Results are to hand of the 12th Cray Valley Radio Society SWL contest held in September. There were 40 entries from all over the world but as far as the UK was concerned our very own Jim Dunnett BRS30694, but a G4 by now, was second in the c.w. section, single op. The multi-op section was won by a couple of W5 SWLs. In the 'phone section for single op John Sutton BRS35509 came third, David Whitaker BRS25429 was fourth, David Stewart BRS40293 fifth, D. Gordon BRS43752 in GW Sixth, Paul Crankshaw BRS 48909 in GM made seventh place. A pretty creditable show all round, chaps, and I'm sure that they all benefited from the experience.

DX Doings

Good news from David Warr (Weymouth) with his new call G6HRV,
but as he will have got his code chitty by the end of November I'm wondering why he bothered about the G6! It only costs yet more money. A KW2000B is in the offing, a very good rig for the baptism on the air. Stuff heard on 21 MHz ran to J3AH, SVILK, VU9RX, 4N5G and 5 H 3 BH , with the FR50B, a.t.u. and long wire. The poor old FR50B got the chop in buying the 2000!

Sticking to 21 and 28 MHz in Ramsgate, Archie McGrath logged FM7CD, 3V0HA, TU2JL, OY9R, C6AEY and TR8JD on the former, and FY7BC and VP5RAC on 28 MHz . This with his Trio R1000, a.t.u. and long wire. Archie has been corresponding with K4NBN who expects to be over here next year, so a meeting is in the offing.

Very glad to get a c.w. log from Paul Williams of Whitehaven, Cumbria, who is pleased with his a.t.u., built in an evening for around $£ 10$. Sounds a lot to me! He's done it, and that's the main thing, improving reception on the long wire and Realistic DX 100L. So, it was 14 MHz for C31NP, CT3DJ, EA9KQ, FM7CT (QSL POB 630, Fort de France 97200), FY7YF, J3AJ, JX6RE (QSL LA6RE), VP9JR and 6 Y 5 SG . On the readerneglected 10 MHz band Paul caught KP4CKY, VP8ANT and 9HICG: all above on c.w.
Andy Durrant in Colchester has been troubled with local QRM via the mains on his AR88 but he did $\log 4$ N9YU (YU4FRS in disquise), 7X2LS, DF3NZ/CT2 (ST2??), 4Z6FR and JAlLFR, all on 14 MHz . New to our column and to amateur radio Gordon Carmichael of Lincoln runs a Realistic DX302 with the almost inevitable long wire and a.t.u. Goodies on $14 \mathrm{MHz}(20 \mathrm{~m})$ included C31YF, CT2ES, EA8ZO, 3 A 2 A and 9 GINO . On 21 MHz (15 m) FM0GA. S2Si ("Sealand" in the North Sea) of very doubtful legitimacy, VP2VDH, YA7AJH, and 4Y4W.

Much progress in his RAE studies is reported by Brian Patchett in Sheffield and being 15 w.p.m.-capable at the moment will go straight for his G4 if he does OK next May. The little listening done on the Grundig Satellit 1400 revealed CE3HUX and CP5CIC on 14 MHz and HH7PV, VP8ANT, VP8APK, VP9IB plus 5 H 3 DF on 21 MHz . A BC 348 limits Stephen Pearson in Arundel, W. Sussex, mainly to the $14 \mathrm{MHz}(20 \mathrm{~m})$ band where he found C53BT, VP2MF, VP8MY (POB 121, 15 James Street, Port Stanley), G4BUV/VS6, VP9AD, 6Y5MJ while the only bit of excitement on 1.8 MHz was 4 UlITU . All this on s.s.b.

School studies have kept David Freeborough (Sandbach, Cheshire) from his Panasonic RF3100 while a go at the RAE will be held over to late next year. Disappointing, but probably very wise. Heard on 14 MHz were EK $9 \mathrm{~F}, \mathrm{HI} 8 \mathrm{MPA}$, TI2J, VQ9IB, 4N9WG (YU-land) and 5 Z 4 CH . For David, and possibly others, QTHR simply means that a station's address is in the call book. Unfortunately the term is often used by newly-licensed stations whose QTH won't be in any call
book for up to a year. On to 21 MHz and HC5ML, HH5CB, KG6RA, TJIGH, VP5RAC, Z2IGW, 5T5TR, 6W8DT and 9 Y 4 PH .

Studying and listening are the life of Alan Galloway BRS5 1330 of Kincaidston, Ayr, with his Heathkit SB303 and inverted-V's, with hopes of taking the March RAE. The 14 MHz band came up with 7Q7LZ, VQ9N, VP2LY, VK9XI, 5 H 3 LV and JW7FO, while on 28 MHz it was just PZIDT. Jim Dunnett of Prestatyn, Clwyd, could be writing in for the last time as he has now passed his code test and is probably meeting the postman every morning! The FT101 didn't have much trouble bringing in CO2PY, FG7BP, FM7CF, TI2PI and VU9LO all on 28 MHz , then CO2GA, FK8CE, HK 1 QQ on 21 MHz , PY0ZZ on Noronha with cards to PY7ZZ, SV0BE/9, 5Y4ITU (via POB 45681, Nairobi), 9J2TS, and on to 18 MHz where only catch of note was G4CTQ/ZB2. So to 14 MHz and FR7CL, FY7YE, KL7AF, 5B4LY and 9HIDV, and then 10 MHz where DL2GG/YV5, JW5VAA, OY7ML and VK3MR were trapped. Sole DX reported on Top Band was ZB2EO on 1848 kHz . All these entries were for the c.w. mode.

Dave Coggins up in Knutsford, Cheshire, had fun in the CQ WW contest especially on Top Band where his FRG-7700 +7700 a.t.u. + delta beam for $28 \mathrm{MHz}+$ long wire brought in EA8AK, EA9EU, HZ1AB, K1PBW, RG6G, UK9ADT, VOIDN and 4 X 4 NJ on s.s.b., all on Top Band, I say again, in case you might think it was 14 MHz ! The 7 MHz band, deserted by virtually all readers except Dave, revealed HH2CQ, JHIFFQ, OX3JF, UH8EAA, ZL1BGK and 6W8DY. I know there is a lot of BC QRM there but the DX is there also with a bit of digging down. Delights on 14 MHz were T32AF on the Pacific Christmas Island and QSL to WH6AIF, UAOKBO in Chukotka, not too far from KL7-land, VR6TC and ZKICG on Cook Is. Not finished yet on 28 MHz were AHOB on Mariana 1 s , DL9EAJ/3B9 on Rodriguez Is, KH6IBA, HLOB, H44JE, UA0QEP Yakutsk, VS6CX and ZL2BFU. Phew! I'll be glad when he gets his ticket!

John Desmond in Cork, Eire, writes in to say with his FRG-7 and a long wire he logged LXIPD and EA9EU on 1.8 MHz plus VP2EC and 6 Y 5 MJ on 7 MHz , VQ9VB, C31YF, 9Y4NW, ZB2FA and VP9JR on 14 MHz ending with HPIXED, CPIFQ, J3AH, 5T5TO, YB5CE and VS6CT on 28 MHz . Everything was copied on s.s.b.

The FRG-7700 and a.t.u. and long wire, what else, have been busy on four bands, starting with 28 MHz and JW7FD and 9 J 2 BO , on to 21 MHz and FR0FLO, HL1AHZ, TL8KA, 5B8TL and 6 W 8 HL . The 14 MHz patch saw PZ5JR, $9 \mathrm{Y} 4 \mathrm{QU}, \mathrm{H} H 5 \mathrm{CB}, \mathrm{N} 3 \mathrm{BB} / \mathrm{VP9}$, PJ2DD, VP2KK, VP5GT, VP8AIB, VQ9EF and 3 A 2 CN , ending with CO6RCP, FP8DF, J88AB, VS6DO, 5W1DQ, 6D5AA in Mexico City, PJ9EE, 6Y5IC and

8P6OR, all on 7 MHz . All this, I should mention, from Viv Doidge who resides in Callington, Cornwall.

Just meeting the deadline this month is Jonathan Kempster BRS 45205 of Berkhamsted, Berks, who seems to have enjoyed himself in the CQ WW phone contest where 14 MHz produced KA2PFV/SV9, FM7CD, ZS3HL, RG6G, D44BC, VQ9CI, CS4YA, CE2AA, EW6V and ES3E. Victims on 21 MHz were FM 7 CD , YC2BSF, VP9AD, 6W8DY, N1GL/6Y5 and EA8ND passing on to 28 MHz and 5 Y 4 DE , HH2CQ, J6LOV, 9 Y 4 VT , SV0CT. 707LW, VP5KP, VP2EC, 4T4O, VP5B, DJ0QT/CT3 and HH2WW.

My own idea of fun in contests these days is trying to see how quickly I can work all continents!

News on ZD9 activity from Ean Retief ZS6UD reports the departure of Peter ZD9BW from the island. Cards are handled by Ean but he does not reckon to be able to start replying until January. The good news is that ZD9BX is now active on s.s.b. and ZD9BZ will concentrate on c.w. operation. Thanks, Ean.

The trouble with Keith Anderson's XYL comment is that she is dead right, of course!

Bits and Pieces

A very interesting letter from CE3EYN, David Calderwood, no less, residing in Santiago and working as an English language teacher, having been on the air there only since August last. Rig is a Trio TS130SE with a 7 MHz dipole and a quad loop on 28 MHz . David would like to work the UK and will be glad to QSL listener reports from his QTH at Colegie Redland, Cemina El Alba 11357, Las Condes, Santiago, Chile.

From Preston, Lancs, Keith Anderson began radio long before the war when as a young lad he plugged a pair of headphones into a socket he discovered on a wall in a new house, getting the BBC " $9+20$ " as he puts it, not realising till later that it was wired radio! Interest lapsed in the 50's until recently and now he is back in the fold with an FRG-7700 and matching a.t.u. with an outside wire. Keith's QSL, reproduced above, sums up a situation we have all come across one time or another!

Club Roundup

Acton, Brentford \& Chiswick ARC G3IIU If you have enjoyed the excellent programme of events over the last year you will get along to the AGM on Tuesday Jan 18 at the Chiswick Town Hall, High Road, Chiswick at 7.30 when potential members and visitors will be welcome, as well as regular members, of course. Try W. G. Dyer G3GEH, 188 Gunnersbury Avenue, Acton, London W3 for latest info on club activities.

Addiscombe ARC G4ALE Welcome to the column! Sec is Peter Hart G3SJX, 42 Gravel Hill, Croydon, Surrey, or 01 656 9054, with meetings every Tuesday at 9 pm , yes nine pm, at the Woolpack, Gloucester Road, Croydon. A monthly newsletter keeps the members in touch, from which it seems the club enters every contest going from 1.8 MHz to 1296 MHz !

Amateur Radio Club of Nottingham G3EKW, G6CW and G8IUT Thursdays at 7.30, Sherwood Community Assoc, Woodthorpe House, Mansfield Road, Sherwood, Nham. Jan 6 is a forum, a talk on QRP work on the 13th, station activity "on the air" Jan 20, plus a talk and lecture on the 27th. The shack is usually active after every meeting with a final break-up around 10.30. Call the sec P. G. Chapman G4IJL on (0602) 623828 or write via the club QTH.

Aylesbury Vale RS AGM on Tuesday Jan 25 at 8 pm sharp at Stone Village Hall, Stone, with the prospect of a natter plus coffee afterwards, not to mention a raffle. More on this and club events from sec Mike Marsden G8BQH, Hunters Moon, Buckingham Road, Hardwick, Aylesbury (0296) 641783.

Braintree \& District ARS G4JXG G6BRH Changes in the committee bring in new sec M. Jones G6DFZ, 26 Anson Way, Braintree, Essex, but meeting place is the same, namely the B'tree Community Centre, Victoria Street, B'tree, around 7.45 on first and third Mondays, informal and formal respectively. Informative and lively club mag BARSCOM is supplemented on non-club Mondays by a net at 8.45 pm on S15. In addition to a code class there are code practice tapes for members.

Carlisle \& District ARS The White Quay Inn, Durdar, Carlisle, at 7.30 any Monday, says Paul Boyd G8RJA, 13 Stackbraes Road, Longtown, Cumbria.

Cheltenham AR Association G5BK Good news in the form of an almost certain move to new club premises not too far from present one at the Old Bakery, Chester Walk, Clarence Street, Cheltenham, says club mag CARA News. It could all have happened by the time you read this so get on to sec John Holt G3GWW on Witcombe 3435 for latest news.

Conwy Valley ARC Last year was an excellent one for the club with membership topping the 100 mark and more than ever getting their tickets, reports hon \sec J. N. Wright GW4KGI who, unhappily, had a "long standing engagement
with the local hospital" when he wrote. Trust you are back home, safe and well, by now OM. Annual dinner takes place on Jan 6 at the Green Lawns Hotel, Bay View Road, Colwyn Bay, with an excellent cabaret to follow. The club meets at the same place on the second Thursday at 7.45 pm . More from GW4KGI at 46 The Dale, Woodlands, Abergele but it may be easier for all concerned to ring Abergele 823674.

Crawley ARC Meetings vary between members' homes and the Trinity Church Hall, Ifield, Crawley. One good idea that has been proposed is for members to bring in and demonstrate their test gear for, say, 15 mins. But David Hill G4IQM, the club sec will be glad to fill in with dates, etc., on Crawley 882641.

Derby \& District ARS Annual club contest on $144 \mathrm{MHz}(2 \mathrm{~m})$, all modes, happens on Jan 30 with transmitting and receiving sections. All meetings at 119 Green Lane, Derby at 7.30 every Wednesday, plus Morse code classes on Tuesdays and Thursdays, same place. Could this be in time for you to go to the New Year junk sale on Jan 5, I ask myself. Anyway, on the 12th talks on the history of the club by Fred G2CVV and he ought to know, he is the club! On to Jan 19 and a computer demo by John Jennings of ICL. Finally, on the 26th Ian Boston explains what contests are all about. If there is anything else you want to know you can have the pleasant task of contacting Jenny Shardlow G4EYM, 19 Portreath Drive, Darley Abbey, Derby, or D'by 556875.

Echelford ARS Second Mondays and last Thursdays at 7.30 in The Hall, St Martin's Court, Kingston Crescent, Ashford, Middx with Sunday net on 1930 kHz at ten in the morning, plus $144 \mathrm{MHz}(2 \mathrm{~m})$ net Weds at 8 on 144.575 MHz . The club newsletter describes the fun had by G8ALB making and flying a kite to support a long wire. Oh, yes, G4NNS transmits computerised slow Morse on Weds at 7 on 144.625 MHz . Sec is Anton Matthews G3VFB, 13a King Street, Twickenham, Middx, also 01-892 2229.

Edgware \& District RS G3ASR Jan 9 sees the club joining in the Affiliated Societies contest, followed by the AGM on the 13th. The club building project takes up the evening of the 27th. Note the beginners' evening on Feb 10 which could attract a lot of attention. Very advanced notice of a "Straight Key" evening on $3.5 \mathrm{MHz}(80 \mathrm{~m})$ c.w. on March 31 when iambic, triambic and anything more complicated than a good old-fashioned key will be taboo. So it's the second and fourth Thursdays at 8 pm at 145 Orange Hill Road, Burnt Oak, Edgware, Middx about which hon sec Howard Drury G4HMD, 11 Batchworth Lane, Northwood, Middx will tell you more, on Northwood 22776 if you wish. Or drop in on the club net on 1875 kHz Monday evenings at ten. The club programme of slow Morse from G3ASR is probably the most comprehensive in the country, on both Top Band and 144 MHz .

Volume purchase from Acorn brings massive savings for you!

1 10

Cash in on our misfortune! Over $£ 50$ offan Atom Microcomputer

We recently made a bulk purchase of over 800 Acorn Atoms for sale overseas. The deal fell through! We are now offering those Atoms to you at the price we paid for them.

The Atom normally retails at $£ 174.50$ inc. VAT we are offering it to you at a mail order price of only $£ 115$ inc. VAT - an incredible saving of $£ 59.50$ plus a free power supply and software worth over $£ 20$.

The Computer

The Atom has 2 K of RAM and 8 K of ROM but of course this can be boosted enormously.

The computer has a full sized keyboard laid out in a conventional way. To use it just connect the power supply and a cable into the aerial socket of a TV set.

As well as integral sound output and direct cassette and TV interface, a wide range of additional interface boards are available to fit inside the casing. Extra 64 K RAM, Colour. Printer, Laboratory, Cassette, $6522,80 \times 25$ VDU, Analogue, Econet etc etc allowing the user to build a very sophisticated application machine. Full details of all accessories, disc pack, software etc are supplied with each machine.

The language used by the ATOM is BASIC, the language used by most personal computers.

The Atom's version is very fast, making it ideal for real time applications.

Expansion Cards

Word Processing

Plotting + Graphics

Real time applications

It has all the normal functions you would expect plus many powerful extensions making it very easy for you to operate and write your own programs.

The Atom is fully guaranteed There are 80 nationwide authorised service centres. Just clip the coupon below or ring 01-930 1612 with your credit card number. Computer Marketplace Ltd,
20 Orange Street, London WC2H 7ED
To: Computer Marketplace Ltd. 20 Orange Street.
London WC 2II 7ED
Please send me__(qty) Acorn Atoms at £115 including p\&p/ins. Total $£$ \qquad
1 enclose my cheque.
Please debit my Access/Barclaycard

Please allow 21 days for delivery.

RSGB Publications

A Guide to Amateur Radio (18th edn) \qquad £5.37 Amateur Radio Awards (2nd edn) \qquad £3.41
Amateur Radio Operating Manual (2nd edn)£5.03
Amateur Radio Techniques (7th edn)£6.20
HF Antennas for All Locations ..£6.67
Radio Amateurs' Examination Manual (10th edn)£3.42
Radio Communication Handbook (paperback 5th edn) ...£11.15
RSGB Amateur Radio Call Book (latest 1983 edn)£5.70
Test Equipment for the Radio Amateur (2nd edn)86.07
Television Interference Manual (2nd edn)£1.95
VHF/UHF Manual (3rd edn) (out of print)
Logbooks
Amateur Radio Logbook ..£2.45
Mobile Logbook...£1.14
Receiving Station Logbook ...£2.72
Wall maps
Great Circle DX Map ..£2.12
IARU QTH Locator Map of Europe£1.37
QTH Locator Map of Western Europe£1.37
World Prefix Map (in full colour)£2.23
reublications
ABC's of Capacitors (Sams) ...£6.71
ABC's of Integrated Circuits (Sams)£4.79
A Course in Radio Fundamentals (ARRL)£3.24
Active Filter Cookbook (Sams)£12.71
All About Cubical Quad Antennas (RPI)£2.99
Amateur Television Handbook (BATC)£2.39
Antenna Anthology (ARRL) ...£3.32
ARRL Electronics Data Book ..£3.60
Beam Antenna Handbook (RPI)£4.13
Better Short Wave Reception (RPI)£3.42
Care \& Feeding of Power Grid Tubes (Varian)£2.98
Design of VMOS Circuits (Sams)£8.50
English-French QSO Instruction£1.78
FET Principles, Experiments and Projects (Sams)£8.04
FM \& Repeaters for the Radio Amateur (ARRL)£3.72
Hints and Kinks for the Radio Amateur (ARRL)£3.13
How to Program and Interface Your 6800 (Sams)£12.80
How to Troubleshoot and Repair AR Equip. (Sams)£7.13
IC Converter Cookbook (Sams)£11.51
Practical Antennas for the Radio Amateur (Scelbi)£8.10
Radio Frequency Interference (ARRL)£2.69
RTTY the Easy Way (BARTG) ...£1.44
SCRs and Related Thyristor Devices£7.99
Single Sideband for the Radio Amateur (ARRL)£3.32
Solid-state Basics (ARRL) ..£3.93
Solid-state Design for the Radio Amateur (ARRL)¢5.64
The ARRL Antenna Book (new 14th edn) (out of atock)
The Cheap Video Cookbook (Sams)£5.47
The 8080A Bugbook (Sams) ..£9.59
Troubleshooting with your Oscilloscope£7.05
TTL Cookbook (Sams) ...£8.55
Understanding Amateur Radio (ARRL)£4.14
World Atlas (RACI) ...£1.91
80m DXing (CTI) ..£3.12
6809 Microcomputer Programming (Sams)£10.89

Prices include postage, packing and VAT where applicable. Postal terms:
cheques/POs with order (not stamps or book tokens).

PLEASE ALLOW UP TO 28 DAYS FOR DELIVERY

The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby including listeners. The Society also publiahes a complete range of inclucing listeners. The society asoo pubiahes a complete range of books, \log books and maps for the radio amsteur. Contact the
membership sorvicea nection for more information about amateur memberhip sorvicea section for mo
indio, the RSGB and its publications.

SELECTRONIC SERVICES

THE FINEST ANTENNAS IN THE WORLD ARE NOW AVAlLABLE
No hi-fi specifications here, just antennas that are stronger, last longer and work better than any other antenna available today.
HF Antennas
10MHz Broadside, similar to classic bobtail array (10/BDA): gain 5 dBd with this wire array at only $£ 41.25$. 14 MHz Broadside, same specifications as $10 / \mathrm{BDA},(14 / \mathrm{BDA})$: £36.25.

4 m Quads

4 Ele quad (4/4EQ): gain 7dBd, $£ 58.50$; 6 Ele quad (4/6EQ): gain 9dBd, £60.50 2 m Quads
4 Ele quad (2/4EO): gain 7dBd, £45.25; 8 Ele quad (2/8Eq): gain 12d8d, long yagi spacing (12 ft boom), £62.50
All quad antennas have glass fibre booms and supports for strength and less corrosion and less effect on performance.
Helix range
70 cms , 6 turn ($6 / 7 \mathrm{OH}$): gain 12dBd, £42.85; 12 turn (12/7OH): gain $16 \mathrm{dBd}, \mathrm{f} 46.85$. $23 \mathrm{cms}, 6$ turn ($6 / 23 \mathrm{H}$): gain $12 \mathrm{dBd}, £ 34.50$; 12 turn ($12 / 23 \mathrm{H}$): gain $16 \mathrm{dBd}, £ 35.50 ; 20$ turn (20/23H): gain 17 dBd, £ 37.50
Helix range uses giass fibre booms and comes complete with ' N ' plug and socket. All helix antennas have a $50 \int$ feed impedance suitable for satellites, tropo, FM repeaters and ATV.
Stacked collinear arrays
$70 \mathrm{cms}, 16$ Ele (70/SC16): gain 14dBd, £45.20; 20 Ele (70/SC20): gain 16dBd, £49.20. $23 \mathrm{cms}, 16$ Ele (23/SC16): gain 13dBd, £43.50; 20 Ele (23/SC20): gain 14.5 dBd , $€ 38.50$.
Continuation to be placed after stacked collinear array specifications.

COMNING SOON!

Due to the massive response to our previous advertisements and many pleas for an HF minibeam "at a reasonable price that works and is not a rotatable dummy load on $20 \mathrm{~m}^{\prime \prime}$ I We are pleased to say that the research and development of a very high performance minibeam is well advanced. The price will be considerably lower than it's competitors and constructional techniques we use will ensure that they will last for years.
Thanks for the interest you have shown. Any suggestions? Please ring. (As long as they are decent). We hope to visit most rallys and exhibitions during 1983.

OVER 40 NEW ANTENNAS TO COME
The most comprehensive range of anntenas to suit every operator and every climatic condition.
Please enclose a stamped addressed envelope with all enquiries.
For further information contact:
SELECTRONIC SERVICES
Unit BT50/55B, Perry Avenue,
Teesside Industrial Estate, Thornaby, Stockton-on-Tees, Cleveland TS17 9LN.

Tel: (0642) 760093

ELE	6 NEW ST, BARNSLEY, S. YORKS TEL: 02265031	
ICOM	FRG7 199.00	TONO
IC740 699.00	FRG7700 329.00	$2 \mathrm{M}-50 \mathrm{~W} \quad 65.00$
IC720A 883.00	FRV7700 $\quad 72.50$	2M-100W (pre-amp) 115.00
IC290E 366.00	FRT7700 $\quad 37.00$	LA.R. MODULES
IC25E 239.00	MICROWAVE MODULES	VHF OMNI
IC2E 159.00		MATCH 29.95
ICR70 469.00		HF-OMNI MATCH
IC4E 199.00		MOBILE OMNI
YAESU/SOKA	MML/30LS $\quad 69.95$	MATCH ANTENNA BRIDGE 19.95
FT102 725.00	MML/50S 85.00 13505	SWL OMNI
F7707 $\quad 569.00$	MML/100S 139.95	MATCH 31.95
FT290R 259.00	$\begin{array}{ll}\text { MML/100LS } & 189.00 \\ \text { MM2001 }\end{array}$	Also Thander Test
FT480R $\quad 379.00$	MMC144/28 29.90	crati LBeam, Leader
TF280FM 159.00	MMA144V 34.90	Datinne, etc.

PROGRESSIVE RADIO
 ELECTRONIC COMPONENT SPECIALISTS

93 DALE STREET, LIVERPOOL L2 2JD

Great Yarmouth \& District ARC Don't forget, the new club QTH is the STC Sports \& Social Club, Beevor Road, South Denes, Gt Yarmouth, fortnightly at 7.30, which means Jan 6 and 20th. The club tries to cater for all ages and all interests in the field of electronics. Much more from A. D. Besford G3NHU, 49 Blake Road, Gt Yarmouth, Norfolk.

Guildford \& District RS It's Party Night on Friday Jan 14 says club newssheet The Natter, "bring something to eat and drink and, of course, your nearest and dearest, and that doesn't mean the new rig you got for Christmas"! Where this rave-up takes place I don't know but sec Helen Mullenger G4OJO will no doubt oblige on Aldershot 20384. Or you can drop in on the club nets, on 144 MHz (2 m) S 20 Sundays at 8 pm or the 28 MHz $(10 \mathrm{~m})$ band on 28.535 MHz on Monday 8pm.

Jersey ARS GJ3DVC Meets, I know not where, on Fridays from 7.30 to 10.30 and on Sunday mornings from 9.45 to 12.30. Anyone interested in amateur radio is most welcome, says new sec Phil Taylor GJ6BUK, 1 Don Terrace, Don Road, St Helier, Jersey CI.

Mid-Sussex ARS G3ZMS At Marle Place Adult Education Centre, Leylands Road, Burgess Hill, W. Sussex, 7.30 with submarine cables the subject for Jan 13, the AGM coming on the 27 th. Note for diary: surplus gear sale Feb 10. Newsy club newsletter Mid-Sussex Matters details all the club's activities. Ring Bob Hodge G4MMI on Hurstpierpoint 833559 for more gen.

Norfolk ARC G4ARN G6NRC It's the Crome Centre, Telegraph Lane, East Norwich at 7.45, says Paul Gunther G8XBT of Norwich 610247, on Wednesdays. On Jan 12 it's a visit and talk by RSGB regional rep G3PLF, with G3IOR dispensing info on matters auroral on the 26th. Intermediate Wednesdays are "short" meetings, probably more of a natter than anything else. An early date is the first meeting to discuss HF Field Day, on Feb 9.

North Bristol ARC G4GCT Every Friday at 7 at the Self-Help Enterprise 7, Braemar Crescent, Northville, Bristol, and you can go home at around 9.30 pm . The winter programme is about to be announced and who better to tell you of it than Ted Bidmead G4EUV, 4 Pine Grove, Northville, Bristol 7.

Northern Heights ARS Meets at the Bradford Tavern, Bradshaw, Halifax, on Wednesdays with Geoff Milner G8NWK at 3 Briggs Villas, Queensbury, Bradford, waiting to bring you up to date on meetings. You can also try B’ford 882945.

North Wakefield RC Gathers every Thursday at 7.45 at the Carr Gate Working Men's Club with Jan 6 welcoming G4DXA for a talk on Interference, another outside visit goes to the Wakefield power station on the 13th with yet another, to the Leeds Microcomputer Users Group, on Feb 3. Future plans call for a talk on the RSGB by G4DAX and one on computers in amateur radio. Steve

Thompson G6ELC, 3 Harlington Court, Morley, is also on (0532) 536633.

Radio Club of Thanet G2IC Meetings at the Birchington Village Centre at 8 pm or get there at 7.30 if you want to take part in the code practice. Every Friday with emphasis on Jan 7 when there is a talk on video tapes, Jan 21 when G3TRX of Racal gives a chat, then the 28th with a visit to the Richborough power station. G4PTE is the newly-elected sec but before he settles in drop a line to Ian Gane G4NEF, the chairman, of 17 Penshurst Road, Ramsgate, Kent, otherwise (0843) 54154.

Radio Society of Harrow Wellproduced club mag $Q Z Z$ covers a wide field of member interests, like construction contests, for sale and wanted feature, v.h.f. antenna construction, to club contest activity. If that has whetted your appetite you may like to call at the Harrow Arts Centre, High Road, Harrow Weald on Fridays at around 8. It may be the Roxeth Room or the Belmont Room but I'm sure you'll find it. Latest info on the club on GB2RS or from Chris Friel G4AUF, 17 Clitheroe Avenue, Harrow, Middx. Needless to say, there are also code classes on the go.

South Dorset RS Meets first Tuesdays at 7.30 at the Wyke Regis Army Bridging Camp, Weymouth. Might be too late for the film show on Jan 4 but there will be an interesting meeting on Feb 1 . Club sec R. Cridland G3ZGP is on Upwey 2893, or there is Andrew Prior G6HEL at Greenways, Dewlish, Dorchester, Dorset.

Southgate ARC Lectures, demos and other exciting events have already been planned for the coming year, and you can join in by getting along to St Thomas' Church Hall, Prince George Avenue, Oakwood, London N14 on the second Thursday of the month around 7.30 , where, need I say it, visitors will be made most welcome. Feature for Jan is G3JWI on interference suppression techniques with a related talk on radio interference and harmonic radiation at the Feb gathering. It's G8EWG, 16 Kent Drive, Cockfosters, Barnet, Herts.

Spalding \& District ARS G4DSP Nice to hear from sec Ian Buffham G3TMA, 45 Grange Drive, Spalding, Lincs (Spalding 3845) that the club meets on the second Friday at 7.30 at the White Hart Hotel, Market Place, Spalding. If you really want to know all about the club then jog along to the AGM on Jan 14.

Stevenage \& District ARS A reminder that the club's new venue is T. S. Andromeda, Shephall View, Bedwell, Stevenage, first and third Tuesdays at 8. Details of the Jan 4 and 18 meetings from Les Mather G8OKI, 63 Woodhall Lane, Welwyn Garden City, Herts.

Sutton Coldfield RS Special event on Jan 10 is the showing of the BBC's video tape "Secret Listeners" at the Central Library at 7.15 pm but I'd get there a bit earlier if you want to get a seat. More from sec Derek Turner G8TUR, 10 Jervis Crescent, Sutton Coldfield, or 021 3532061.

Torbay ARS G3NJA G8NJA Sec Arthur Cooper has had to resign with health problems but the XYL of G6GLP has stepped into the breach and Margaret Rider can be found at 7 Kingston Close, Kingkerswell or try 08047 5130. Meeting place is at Bath Lane, rear of 94 Belgrave Road, Torquay at 7.30 every Friday with main attraction in February being the RSGB's video tape on satellite communication. PRO TARS is Les Mays G2CWR, Atlantis, Clennon Avenue, Paignton, Devon.

Wakefield \& District RS It's "alternate Tuesdays" at Holmfield House, Denby Dale Road, Wakefield at 8 pm which means Jan 11, Jan 25 for an on-the-air evening, and Feb 8 for a visit to Radio Aire studios for which an early booking would be desirable. As usual it is sec Dick Sterry G4BLT, 1 Wavell Garth, Sandal, Wakefield, W. Yorks, otherwise W'field 255515.

Warrington ARC G4CDA Every Tuesday at 8 at the Grappenhall Youth \& Community Centre, Bell House Lane, Grappenhall, W'ton, Cheshire, with " A mug's guide to satellites" on Jan 11, a hot pot supper on the 18th (yum, yum) and, if I've got it right, an inter-club contest over the air with a fast scan TV set-up, with the Bury mob. Beat that for ingenuity! If I don't tell you now you'll miss G3LEQ revealing the secrets of the sun, earth and radio on Feb 1. All I can tell you about the sec M. W. Mansfield G6AWD is that it is QTHR.

West Kent ARS At the KEC Adult Education Centre, Monson Road, Tunbridge Wells, Kent, on Jan 7 with a chat on keyers and kindred subjects, and the 24th deals with computing in amateur radio. As for Feb 4 there is an energy conversion competition that night, which conjures up ideas of all sorts of gadgets! Drop a line to Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent or, alternatively (0732) 456708 at the shack, or 01-739 3464 ext 565 in the office.

Wimbledon \& District RS Get along to the St John Ambulance HQ, 124 Kingston Road, London SW19 round about 8 pm on second or last Friday, or, preferably, both, where you will be most welcome. Attraction on Jan 14 is a natter evening and general ragchew on the club's activities. It get's getter . . . on Jan 28 club sec Geoff Mellett G4MVS demonstrates to members how power measurements should be made in the s.s.b. mode. Could be a very popular lecture! Geoff hangs out at 26 Paget Avenue, Sutton, Surrey, likewise 01-644 8249.

Wirral ARS G3NWR First and third Weds at Minto House School, Birkenhead Road, Meols, at 7.45 , reports G4KPY, hon sec at 40 Westbourne Road, West Kirby, Wirral. Planned meetings read as follows:-Jan 5 surplus gear sale, Jan 19 building an a.t.u. by G3CSG, and on Feb 2 the hon sec on switched mode power supplies.

Worcester \& District ARC The Jan meeting doesn't follow the usual format
as it's on Jan 10, one week late (recovering from the celebrations?) at the Oddfellows Club, New Street, Worcester at 8 pm . That on Jan 17 will be held at the Old Pheasant Inn in the same street, also at 8 pm . Alasdair Lindsay G4NRD, 11 Durcott Road, Evesham, Worcs will be glad to fill in the gaps in info on Evesham 41508 if you so wish.

I'll finish this month with a brief description of the "home" of the Stratford-upon-Avon \& District ARC at the Control Tower, Bearley, which turns out to be on an old airfield outside Stratford, at a useful 107 m a.s.l. open in all directions! Antennas run to a 12 -element ZL Special for the 144 MHz band, 3element tribander for the h.f. bands plus a

5-element for the $70 \mathrm{MHz}(4 \mathrm{~m})$ band. I am assured that there is space for more if required! How about a few rhombics? New members, get in the queue. It's second and fourth Mondays at 7.30.

That's all folks, sorry if your club hasn't been mentioned but I'd need twice as many pages to get them all in! Don't forget the deadline, the 15 th of the month.

Loops crop up regularly in this column but this time the subject takes a new turn in a letter from Brian Russell of Runcorn who asks "Do you know the historical aspect of the loop?" Brian goes on to say that he has a 1941 Admiralty publication "which goes into loops as direction finding antennas."

Origin of the Loop

The "frame antenna" used in early broadcast receivers, which was really an enlarged antenna tuning coil, was certainly a descendant of the direction finding loop. The latter pre-dates broadcasting, in fact the Marconi Company were offering a DF set, with crossed loops, before World War I. It seems probable that the loop was derived from a pair of vertical antennas spaced half a wavelength apart. The directional effect of such an arrangement was known at the turn of the century. The Bellini-Tosi system started as four verticals. The tops were led to a single mast and eventually opposites were joined to form a pair of crossed triangular loops. I have been unable to trace the final step to the small rotatable DF loop whose size is small and is not related to the wavelength in use. Can anyone help?

While doing research on this item I dug out my copy of Direction and Position Finding by Wireless by R. Keen, published in 1922. This book, which was the fore-runner of the well known Wireless Direction Finding, contains quite a bit of information that was omitted from its successor. There is a fascinating chapter on aircraft DF with a photograph of an open cockpit and vertical foremast on the aircraft nose, which supported a fore and aft loop. We medium wave DXers are using techniques from the earliest days of radio when we rotate our loop to null out interference.

At the Controls

All modern receivers are fitted with automatic gain control, abbreviated a.g.c. and known at one time as automatic volume control (a.v.c.). AGC is used to counter fading. When the incoming signal is weak, the receiver gain (r.f.) is at a maximum. When the incoming signal is strong the gain is reduced. This is achieved electronically, automatically and quickly. You could do the job yourself if you were adept enough with the r.f. gain control. To some extent the a.g.c. counters the manual adjustment of the r.f. gain we were discussing last time so to get the best out of the r.f. gain control you have to switch off the a.g.c. When using my BRT400 for m.w. DXing I nearly always have the a.g.c. switched off but few modern receivers are fitted with an a.g.c. on/off switch. You will find though a variable attenuator as part of some receivers.

An attenuator is a device, usually a network of resistors, which absorbs electrical energy. The receiver's attenuator is located between the antenna and the receiver's r.f. stage. It can be adjusted to reduce the strength of the incoming signal and it has a similar overall effect to that obtained from the r.f. gain control. The attenuator is essentially an antioverloading device and the idea is to use as little attenuation as you can get away with.

My DX160- craftily combines attenuator and r.f./i.f. gain adjustment into a single control labelled r.f. gain. A twin

Fig. 1: RF attenuator in DX160
gang potentiometer is used, one section making up a simple attenuator and the other controlling receiver gain in the usual way. The value of the attenuator section of the potentiometer is not critical. If you already have one between 500Ω and $5 \mathrm{k} \Omega$ in value it is worth making up one for yourself. Fig. 1 shows the arrangement.

Which Direction

Can you define "daylight path and difficult path" asks reader Richard Hunt of Tadcaster. The first one is easy. It means simply that the path followed by radio waves when travelling between two places, is in daylight. A difficult path is one that presents problems. It may pass near the magnetic north pole which is in Northern Canada. Radio waves are absorbed here and consequently you are unlikely to log Alaska or Hawaii on the medium waves in the UK. On the short waves a difficult path can sometimes be a long one that is partly in daylight and partly in darkness making it difficult to find a suitable frequency.

Perhaps it is the word "path" that should be defined. I had a letter recently from a reader who assumed, quite reasonably, that radio waves on their journey from the West Coast of North America to the UK travelled overland to the East Coast of the United States before continuing their journey across the Atlantic. The maps in the average atlas would lead one to expect this. If you can get hold of a globe then stretch a piece of thread between San Francisco and London. The thread will mark out the Great Circle path which is the shortest distance between the two places and is the path taken by radio waves as they bounce up and down between the ionosphere and the earth's surface. This path passes over Canada and to the south of Iceland!

You can obtain a Great Circle DX Map, centred on London, from the RSGB, Alma House, Cranborne Road, Potters Bar, Herts, EN6 3JW for $£ 2.12$ post paid. You won't recognise Australia and New Zealand on this map but it does have the advantage that a straight line from London to New York, for example, is the G.C. track and if this line is con-

Fig. 2: Adding an external attenuator
tinued to the edge of the map you can read off the bearing. Distance is proportional to the length of the line. If you have a home computer (ZX81) you can load it with the Distance and Bearing Program from the PW Radio Programs Cassette, see December 1982 issue. If you know the latitude and longitude of two places then the computer will provide the range and bearing.

QSL cards from Radio Luxemburg and Radio Warsaw

Adrian Butcher

It is interesting to examine a G.C. map. Newfoundland, Boston, New York, New Orleans and Southern Mexico are all roughly on the same G.C. track from the UK while the reciprocal passes through Vienna and Istanbul. All these places are in the same direction from the point of view of a medium wave loop antenna which means that it cannot be used to separate stations that lie along this path.

Radio in the UK

This is the title of a 48 page A5 size booklet produced, in English, by Norwegian DXer Bernt Erfjord. It is mainly concerned with local radio stations. A section is devoted to each broadcaster, giving frequencies, including v.h.f. and some programme details. There is a list of possible verie signers, maps showing ILR and BBC local and national transmitters and a list of all medium and longwave transmitters in frequency order. The booklet is available for seven (7) International Reply Coupons or 25 Norwegian Kroner from Bernt Erfjord, N-4480 Kvinesdal, Norway/Norvega.

Next "some Norwegian information" continues Bernt who says that the old transmitter at Stavanger on 1314 kHz was closed down during this summer and replaced with a new transmitter complex at Kvitsoy Island, north of Stavanger. Two parallel transmitters of 600 kW pump a total of 1.2 MW into the air.

QSL card from RTE2 in Dublin
John Dennis Court

OSL card from Dakar in Senegal

DX Heard

If you haven't heard West Africa yet on the medium waves then listen on 765 kHz . Radio Dakar in Senegal is a strongish signal on this channel after Sottens in Switzerland signs-off at 2300 . This 200 kW transmitter carries the national programme in both English and local languages and the station does QSL. The address is BP 1765, Dakar, Senegal.

Newfoundland is the nearest part of Canada to the UK being no farther away than Egypt. It is only the high level of European interference that prevents some of their stations from having regular listeners in this country but some of them do come in well and have been heard at my QTH this winter, after midnight. Listen for CBNA at St Anthony on 600 kHz, CBN St John's on 640 kHz and CBGY at Bonavista on 750 kHz . All are outlets of the CBC (Canadian Broadcasting Corporation) and carry the same programme with the announcement "CBC Radio". There is a news bulletin at 0200 which is equivalent to 1030 local time, followed by the maritime weather forecast for Newfoundland.

The most consistent North American station is the commercially owned CJYQ at St John's whose slogan is "First with the news in Newfoundland". I have heard CJYQ several times before midnight this winter and the station is a good pointer to conditions on this path.

We are all familiar with domestic broadcasting on the long and medium waves and on v.h.f. Stations occupy the same spot on the dial year in, year out with
continuous programming throughout the day and often all night as well. The radio waves travel from the transmitter along the ground to the receiver giving reliable interference-free reception during the day. It is only at night on the medium and long waves that sky wave reception via the ionosphere is possible, which causes the heavy interference familiar to everyone.

Short Wave Broadcasting

The international short wave bands are to be found in the range 5.9 MHz to 26.1 MHz , a part of the spectrum shared with other users such as shipping, aircraft etc. Broadcasting takes place within bands, which are usually marked by small dashes on the receiver dial. The range of the ground wave is very limited on these
bands and you have to live quite close to the transmitting station to pick it up. On the other hand, sky wave reception via the ionosphere occurs during the day as well as night. Worldwide reception is not too difficult provided you choose the appropriate band for the time of day, the season of the year and the particular path that interests you.

Right away we notice one significant difference between local broadcasting and the short waves. You can leave your domestic radio permanently tuned to your favourite station and all you have to do is to switch on when you want to listen. Not so on the short waves. Even if the station you are looking for is on the air 24 hours a day, reception of it at your location may only be possible for part of the day.

Types of Programme

The programmes you hear on the short waves fall roughly into three categories. Those intended for ex-patriots, those intended for foreign audiences, relays of the domestic service. Domestic broadcasting on the short waves does still exist as it is an economic way of covering the area beyond the normal service area of a m.w. transmitter. It is also a useful way of covering large sparsely populated areas.

Since these programmes are intended for semi-local reception they are of more interest to the DXer than the general listener, but there are several that can be picked up easily in the UK. The West German regional stations come in well at my QTH during the daytime. Listen for Berlin/Munich on 6.005 MHz , Stuttgart on 6.03 MHz , Radio Bremen on $6 \cdot 19 \mathrm{MHz}$, all in the $6 \mathrm{MHz}(49 \mathrm{~m})$ band and for Sudwestfunk in Baden Baden on $7 \cdot 265 \mathrm{MHz}$ (41 m band). These stations relay the domestic service that goes out on the medium waves and they could be of interest to anyone studying the German language.

The Northern Service of the CBC (Canada) from Quebec can be found on 9.625 MHz (31 m band) during the evening and is often a reasonable signal before midnight. It broadeasts in English, French, Eskimo and Cree Indian. There is also the domestic service of the ABC (Australia) in Perth which sometimes pops up on 9.61 MHz during the afternoon, but we are now straying into the World of DX! Next time we will have a look at some programmes in English that are heard easily on the short waves, but in the meantime look around 6 MHz , above 7 MHz , below 10 MHz , below 12 MHz , above 15 MHz , below 18 MHz , above 21 MHz and around 26 MHz for international broadcasting on the short waves.

A card from Sudwestfunk on 7.265 M Hz Richard Hunt

Radiodiffusion Televisions Belge is on $5.965 \mathbf{M H z}$ Richard Hunt

Antennas for the SWL

There seems to be some confusion about the best type of antenna to use when listening on the short waves. Some readers who write to me have connected a longwire via an a.t.u. to a portable receiver with disappointing results. Another group have purchased a communications receiver which they use with a metre or so of wire hanging down from the antenna socket. This is not really giving the receiver a chance and again, disappointment follows.

Modern receivers, unlike their predecessors, are extremly sensitive and do not require a large outdoor antenna. A portable is designed to operate with its own antenna and if you take it out in the open, well away from buildings, you will find it quite adequate. The only justification for connecting an additional antenna to such a set is if it is being used in a place where radio waves are weakened-inside a caravan or metal framed building-or somewhere where electrical interference is high.

Modern living means that the average dwelling is surrounded by a haze of electrical intereference. The TV is the worst offender but other equipment such as calculators, dimmers, home computers, fluorescent lighting do their share. An example of the latter cropped up last summer while I was afloat. In order to listen to the midnight shipping forecast on 200 kHz I had to rotate the receiver and make use of the directional properties of the internal antenna to null out the cabin light, which was generating an awful din.

Antennas for use with a Portable

If you could detach the receiver's telescopic antenna and install it somewhere outdoors then the problem would be resolved. Siting the receiver near a window can bring an improvement. A car antenna or whip, mounted on the window ledge, pointing outwards is even better. A "short" longwire (more correctly, a random wire antenna) about 5 metres long and running away from the
house, is the only external antenna needed. A point easily overlooked is the receiver's own antenna. It should be retracted otherwise it will continue picking up the electrical interference you are trying to get away from.

Antennas for Communications Receivers

These sets do not have their own antenna and most of them have sockets marked Antenna, Earth, A AI (Balanced Input). You can use a screened lead with this type of set. Join a length of coaxial cable to the Antenna and Earth sockets, the inner going to A and the screen going to E. Lead the coaxial cable away from the set and connect it to the antenna. What sort of antenna? Well the field is open but the "short" longwire mentioned above will give good results. Join the

A pennant from HCJB in Ecuador
Richard Hunt

WOOD \& DOUGLAS

We have moved! Our new manufacturing facility in Berkshire will provide an even better service for our extensive range. Credit card orders can also now be taken, ring for details. PROJECT
70 cms EQUIPMENT
Transceiver Kits and Accesscries FM Transmitter (0.5 W) FM Receiver CODE

ASSEMBLED KIT

Synthesiser (2 pcb's) 70FMOST4
70FM05R5
70SY25B
A-X3U-06F
MOD 1
BPF 433
PSI 433
70RX2/2
70PAC2
TVUF2
TVPG1
TVM1
ATV-1
FVV-2
70FM1
70FM3
70FM10
70FM3/10
70FM45
70PAFM10
70LIN3/LT
70LIN3/10E
70PA2
70PA3
70PA2/S Synthesiser Modulator
Bandpass Filter
PIN RF Switch
Converter (2 M or 10 M i.t.)
FM Package 2 (Synthesised)
TV Products
Receive Converter (Ch 30)
Pattern Generato
TV Modulator
3W Transmitte: (bowed)
3'N Transceiver (toxec)
Power Amplifiers (F M / CW Use)
50 mW to 500 mW
500 mW to 3 W
WW
3 W to 10 W
10 W to 45 W
Combined Power Amp/Pre-Amp
Linears
500 mW to 3 W
3W to 10W (Compat. ATV1/2;
Pre-Amplifiers
Bipolar Miniature (13 dB gain) MOSFET Miniature (14 dB gain) RF Switched (30W Max)

2M EQUIPMENT
Transceiver Kits and Accessories
FM Transmitter (1.5W)
FM Receiver
Synthesiser (2 pcb's)
Synth Mult/Amp (1.5 W o/p)
Bandpass Filter
PIN RF Switch
Synthesised FM Package (1.5W)
Power Amplifiers/Linears
1.5 W to 10 W FM (No Changoover)
.5W to 10W FM (Auto-Changeover) .5W to 10 W SSB/FM (Al P C/o) 1.5 W to 10 W SSB/FM (Auto cio)

Pre-Amplifiers

Low Noise, Miniature
Low Noise, Improved Performance Low Noise, RF Switched
SYNTHESISER ACCESSORIES
Display Decoder/Driver

GENERAL ACCESSORIES

Toneburst

Piptone
Kaytone
Relayed Kaytone
Regulator
Solid State Supply Switch
Microphone Pre-Amplifier
Reflectometer
CW Filter
TVI Filter (Boxed)
MICROWAVE PROJECTS
Microwave Drive Source
Bandpass Filter
4M EQUIPMENT
FM Transmitter (1.5W)
FM Receiver
Pre-Amplifier
Pre-Amplifier, RF Switched
6M EQUIPPHENT
Converter (2 M)

DISP1/2	22.60	16.10
TB2	6.20	3.85
PT3	6.90	3.95
PTK3	6.80	4.25
PTK4R	9.95	7.75
REG1	6.80	4.25
SSR1	5.80	3.60
MPA1	5.40	2.95
SWR1	6.35	5.35
CWF1	6.40	4.75
HPF1	5.95	-
MD05T	29.50	20.40
BPF 384	5.10	3.25
4FM2T	34.75	21.20
4FM2R	61.65	43.15
4PA4	10.95	7.95
4PA4/S	18.95	14.40
GRX2	27.60	19.95

144FM2T	$\mathbf{3 6 . 4 0}$	22.25
144FM2R	64.35	45.76
i44SY25B	$\mathbf{7 8 . 2 5}$	59.95
SY2T	26.85	19.40
BPF 144	6.10	3.25
PSI 144	$\mathbf{9 . 1 0}$	7.75
144PAC	138.00	105.00
144FM10A	18.95	13.95
144FM10B	33.35	25.95
144LIN10A	26.80	19.87
144LIN10B	35.60	26.95
144PA3	8.10	6.95
144PA4	10.95	7.95
144PA4/S	18.95	14.40
S		22.60
DISP1/2		16.10

Enquiries by post should contain a SAE. Please restrict telephone technical enquiries between 6 pm and 9 pm in the evening on either 025624611 or 07356 5324. Access and Barclaycard orders can be taken on 073565324.

MAIN AGENTS J. Birkett, LINCOLN 0522-20767
Darwen Eiectronics, LANCS 0254-771497 Amateur Radio Exchange, ACTON 01-992 5765 Wood \& Douglas (Scandia) HB, SWEDEN 040-94-89-55
Prices include VAT at the current rate. Please add 75 p postage and handling to the total order. ATV-1 and ATV-2 orders should include $£ 2.00$ for postage and insurance. Please allow 28 days for delivery if not stock at time of ordering.

Unit 13, Youngs Development Aldermaston, Reading RG7 4PQ

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.
Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed".

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation
*Oualify for IET Associate Membership

Approved by CACC

Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of Interest
Name
Address

ICS School of Elect
160 Stewarts Road
01.6229911
|All Hours|

All prices include VAT and postage (Mainland Only)
Please allow 14 days for delivery.

A. H. THACKER $\&$ SONS LTD., High Street, Cheslyn Hay, Nr. Walsall, Staffs.

cable inner to the antenna but leave the coaxial screen disconnected at the antenna end of the cable. If you are interested in chasing after weak signals, i.e. DXing, then a longwire plus a.t.u. will help pull them in. Remember though, that such an antenna may be satisfactory on the 15 MHz band during the late evening when looking for Latin American DX but it may well overload the receiver when you tune across the same band during the daytime.

Screened Locations

Radio waves are weakened when they pass through solid objects such as buildings. The effect is only noticeable to the s.w.l. when metal is involved and can be significant inside a metal framed building. Some flat dwellers may be confronted with the double problem of weak
signal plus electrical noise. A window ledge whip should bring a dramatic improvement or you can follow the advice of reader John Dennis Court of Birmingham who says "if flat dwellers like myself are restricted by space, throw a longwire out of the window! It pulls in DX." I once knew someone who went the other way and supported a vertical by a met balloon filled with hydrogen but I feel such a solution could lead to other problems.

Events on the Bands

Radio New Zealand is still on the air according to their schedule, a copy of which reached me recently. It covers the period up to 5 March 1983, all times being in UTC (GMT).

Pacific Service. 11.96 MHz 0730 to 1115 and 1700 to 2000
15.485 MHz 1700 to 2000
$17 \cdot 705 \mathrm{MHz} 2015$ to 1715
Australian and NW Pacific Service. $15 \cdot 485 \mathrm{MHz} 2015$ to 1115

If you want a QSL (card) enclose four International Reply Coupons with your report. This may well be your last chance as the old 7.5 kW transmitters are worn out and no money is available for replacement. The address is PO Box 2092, Wellington, New Zealand.

The BBC weekly programme Waveguide can now be heard on the World Service at 0915 on Mondays and 1735 on Wednesdays. The best frequency at my QTH and probably for most of the UK is 5.975 MHz in the $6 \mathrm{MHz}(49 \mathrm{~m})$ band.

VHP Bond

by Ron Ham BRS15744
Reports to: Ron Ham BRS15744
Faraday, Greyfriars, Storrington,
Sussex RH20 4HE.
Sussex RH2O 4HE.

Czechoslovakia worked by tropo on 144 MHz , a transatlantic QSO on 6 m and more DX records on microwaves, what better headlines could a v.h.f. columnist ask for.

Solar

Although the overcast skies have hampered our optical observers, Ted Waring, Bristol, counted 28 sunspots on October 23,38 on the 27 th and 14 on November 10. He also saw active areas near the central meridian on October 24, 27 and November 9. Apart from a few small bursts of radio noise at 143 MHz on the 26th, 28th and 29th, the sun was quiet for most of October and up to November 10, when I recorded a large burst of noise (Fig. 1) which, true to form, heralded the beginning of a noise storm.

During the morning of November 15, Cmdr Henry Hatfield, Sevenoaks, using his spectrohelioscope counted approx-

Fig. 1: An isolated 10 minute burst of solar radio noise recorded by the author at 143 MHz at midday on Nov 1. Note the peaks at start and finish of the event
imately 30 sunspots in a very large chain of spots near the sun's equator just west of central meridian and no doubt was the cause of the noise storm that Henry and I recorded on the 13th, 14th and 15th.

The $50 \mathrm{MHz}(6 \mathrm{~m})$ Band

"I have been monitoring ' F 2 ' conditions in Band I and heard a few whispers of c.w. activity from VE on 50 MHz recently" writes Sam Faulkner, Burton-on-Trent, on November 12. This may well have been meteor "pings" Sam, because at 1345 on November 5, David Newman G4GLT, Leicester, heard "pings" of c.w. on $50 \cdot 100 \mathrm{MHz}$. At 1358 he made out "VEI" and during a longer burst at 1402 he read the complete callsign "VEIYX". Suddenly at 1403 "like a rocket out of the blue I heard VEIYX peaking 579 " said David, who, like Gordon Pheasant G4BPY, Walsall, called him and although the opening was brief, both David and Gordon were delighted to make this cross-band trans-
atlantic QSO on $50 / 28 \mathrm{MHz}$. Congratulations to all concerned and as you say David, "The moral of the story is that on 50 MHz you just have to keep listening".

At 1315 on October 17, David had a cross-band QSO, $50 / 28 \mathrm{MHz}$, with ZB2BL and between 1130 and 1348 on the 18th, he heard the South African beacons ZS6DN, ZS6LN and ZS6PW and enjoyed cross-band QSOs with ZS6BT and ZS6LN. "The most interesting point about this opening was that the ZSISTB beacon at Still-Bay was audible from 1145-1222, peaking 579 on 50.010 MHz ", writes David, who sent me a most impressive tape recording of the auroral signal he recorded from GB3SIX between 0656 and 0716 on September 22 and the fluttering signal of ZS6PW on 50.030 MHz during the TEP opening between 1931 and 1957 on October 2.

The 28MHz (10m) Band

"Conditions on the 28 MHz band have been excellent" writes Dave Coggins,

Fig. 2: Distribution of Beacon signals

Knutsford, who, as well as echoing the views of many of us, suggests that the most favourable time to listen for $\mathrm{VK} / \mathrm{ZL}$, on the long path, is after the band has closed following an opening to South America. Take note new readers, these are the tricks of the trade. Dave, using a Yaesu FRG-7700M receiver with a FRT-7700 a.t.u. and a 2 -element 28 MHz Delta quad antenna, logged KP21, K5FTC, NC4L, RA6LXB, VE3UK and WB8BTI on f.m. around 29.500 MHz .

I was delighted at 1015 on October 19 to hear a strong signal from ZL3ACP while he was working G3ALI, followed by signals from stations in Austria and Greece and from many parts of the USSR. Like many of my readers, I logged several JAs, VEs, VKs and Ws between October 19 and November 18 and at 1430 on October 28, I heard a very strong signal from a Canadian YL operator, Irene VE3LWZ, when she was working into Austria. In general, signals from stateside were very strong and Harold Brodribb, St Leonards-on-Sea, reports hearing Utility stations up to 39 MHz on October 16 and $17,40 \mathrm{MHz}$ on October 21 and November 7 and 11 and some 6 harmonics from lower frequency broadcast stations between 29 and 31 MHz on October 17. There were strong echoes on the signals of G3NSY when he answered a CQ from YO7DL at 0913 on November 7, G4KJF while he was working a VK around 0910 on the 10th and on several French stations early on the 13th.

28MHz Beacons

Norman Hyde G2AIH, Epsom Downs, uses a Trio TS-130S and a $\mathrm{NE} / \mathrm{SW}$ dipole on 28 MHz and along with the reports from Susan Beech, Dollar, Dave Coggins, George and John Coulter from Dover and Winchester respectively, Bert Glass BRS32693, Plymouth, using a FRG-7700 and a.t.u. David Newman and I, the list of beacons heard, (Fig. 2), was compiled. It's good to see this list getting longer and the signals being heard more frequently, which shows the band is really opening up. Most contributors reported hearing a new beacon, LUIUG on 28.245 MHz , which, says George Coulter, "According to the call-book, the station belongs to Radio Club of Pampeano". Among other beacons occasionally heard between October 19 and November 18 were Gough Island ZD9GI, New Zealand ZL2MHF and Spain EA6EU.

Tropospheric

The atmospheric pressure, an important factor in v.h.f. propagation, measured at my QTH rose sharply from 29.6 in $(1002 \mathrm{mb})$ on October 18th to 30.0 (1015) by midday on the 19th. Apart from a drop to 29.7 (1005) on the 22nd, it remained around 30.0 until 2000 on the 26 th when it took off, (Fig. 3), reaching 30.3 (1026) at midday on the 27th, peaked at 30.4 (1029) at midnight
on the 28 th. It then began falling slowly at 0400 on the 29 th, giving us a good tropo opening, to $30 \cdot 2(1022)$ at 1600 on the 31st. The pressure remained at this level until 0400 on November 5 when it rapidly fell to 29.2 (988) by 0200 on the 8 th and as the foul weather, which accompanied the low pressure, passed over, the pressure then rose slowly to $30 \cdot 15$ (1020) at midday on the 11th only to fall again to around 29.7 on the 14th.

During the lift between October 29 and 31, Don Hunter G8YCA, Wimborne, using a Trio 9130 and home-brew 16 element ZL antenna, worked 3 stations in Czechoslovakia on $144 \mathrm{MHz}(2 \mathrm{~m})$ s.s.b. as did John Cooper G8NGO, Cowfold, Sussex, who ended up the evening of the 30 th with $7 \mathrm{OK} / \mathrm{Ps}$, one of them OK $1 \mathrm{AFN} / \mathrm{P}$ was only running 2 watts, 3 East-Germans and 6 West-Germans. Don also worked into East-Germany bringing his total to 15 countries contacted on 144 MHz .

Fig. 3: Atmospheric pressure recorded by the author at the end of October
Back in Sussex, Ian Shaw G4MWD, made the most of the event by working DB8KJ, E12DJ and two first time contacts with OE5XDL and OK $1 \mathrm{KKH} / \mathrm{P}$, he also heard French stations working into Scandinavia. During this period Ian worked stations in PA0 and Y23 bringing his QTH square total to 106 spread through 22 countries on 144 MHz .

While the prevailing high pressure, with frontal systems, moved rapidly through the general south-coast area, Richard Bird GU6NBS, Guernsey, began a QSO on 934 MHz CB with a station in Torquay at 2300 on November 1 which lasted until around 0200 on the 2 nd. During the experiments, Richard went mobile over a 5 km course and the signals, received in Torquay, varied between 53 and 59 plus and rapid fading was experienced as the vehicle passed through areas of high buildings. Our Technical Editor, John Fell G8MCP, heard the signals from the re-built and re-sited beacon in Cornwall GB3CTC 432.970 MHz and the beacon in Crowborough GB3WHA $432 \cdot 810 \mathrm{MHz}$ on the 29th and a very strong signal from the Yorkshire beacon GB3EM 432.910 MHz on the 31st. John also proved that conditions on 432 MHz (70 cm) were good on November 1st when he received a 57 report from John Brakespear G8RZP on the Isle of Sheppey, using just 8 watts into a 20 element quad loop Yagi at 12 m a.g.l. from his home in Dorset. Up in Cheshire, Dave Coggins logged signals from the 144 MHz beacons in Angus

GB3ANG on October 17, 18 and November 6 and from Wrotham GB3VHF on October 23, 26, 27 and November 6 and on the 10th, John Cooper worked HWIKAR, a special callsign to commemorate the 60th anniversary of Radio Club Normandie, the oldest radio club in France. The club station at the time was being operated by Claude Roger FiFJT. Although 144 MHz conditions were flat around 1820 on the 15 th, John managed to work two German stations in a local contest and they were both very pleased to add a " G " call to their list of stations worked.

Band II

Ian Anderson, Eastbourne, using an AIWA R22 Tuner and a 6 -element rotatable antenna can normally receive v.h.f. broadcast signals from the Boulogne area of France and tells me that a fairly new station, Radio Boulogne Littoral, on 103.7 MHz is privately owned and operated by the Boulogne Town Council. "RBL broadcasts 24 hrs daily in French, but every Monday evening, starting at 2030GMT, the English service takes over," writes Ian who, as one of RBL's English presenters would like to know how many readers are able to hear this station.

With a change in the weather on October 26, John Williams, Cheltenham, heard a broadcast station from Eire come up alongside Severn Sound on 95 MHz and on October 29, 31 and November 3, Harold Brodribb received around 16 French broadcast stations in Band II increasing to 29 on November 1 and 22 on the 4th. With his mind very much on the prevailing atmospheric pressure, Harold sent the weather maps from his daily paper covering the period October 27 to November 2, clearly showing the movement into the continent of the high pressure system which gave us the DX.

During the evenings of October 28, 29 and 30 , Simon Hamer, Presteigne, received signals from the BBC radios Cambridge and Northamptonshire, ILRs Capital, Chiltern Radio and LBC, Opera

Fig. 4: Peter Lincoln in his shack in Aldershot

RESISTOR KITS a top-selling line for many years. E12 series, 5\% carbon film, 10Ω to $1 \mathrm{M}, 61$ values, ratings $\frac{1}{2} \mathrm{~W}$ or $\frac{1}{2} \mathrm{~W}$ (state which).
Starter pack 5 each value ($\mathbf{3 0 5}$ pieces) $£ 3.10$
Standard pack 10 each value (610 pieces) $£ 5.55$
Mixed pack, 5 each $\frac{1}{2} W+\frac{1}{2} W(610$ pieces) $£ 5.55$
Giant pack, 25 each value (1525 pieces) $£ 13.60$
SR-9 monitor: 2 m FM with $144-146 \mathrm{MHz}$ full coverage VFO +11 xtal controlled channels; ideal for fixed,/M,/P use. 12 V DC operation $£ 47.50$
Marine band SR-9, $156-162 \mathrm{MHz}$, same spec. and price.
CRYSTALS FOR NR-56, SR-9, SR-11, HF-12, TM-56B All $2 m$ channels from 0 (145.00) to 33 (145.825) incl. also 144.80, 144.825, 144.85 Raynet at $\mathbf{£ 2 . 4 6}$ (+20p post per order). Over 40 popular marine channels at $\mathbf{£ 2 . 8 5}$ ($\mathbf{+ 2 0 p}$ post).
CRYSTAL FILTER $10.7 \mathrm{MHz}, 12 \frac{1}{2} \mathrm{KHz}$ spacing, ITT $901 \mathrm{C} \mathbf{£ 6 . 9 0}$
CRYSTAL FILTER 25 KHz spacing type 914 B or $909 \mathrm{E} \mathbf{£ 6 . 9 0}$
PYE RADIOTELEPHONE SPARES (sae full list). Ex. equip., fully guaranteed. CAMBRIDGE AM10 10.7 MHz I.F. $£ 3.65$. 2nd mixer $£ 3$. 455 KHz block filter $121 \mathrm{KHz} £ 9.40$. Ditto $25 \mathrm{KHz} £ 3.455 \mathrm{KHz}$ AM I.F. £4.95. Audio bd. £1.95
WESTMINSTER W15/W30 AM RX RF $68-88 \mathrm{MHz}$ or $148 / 174 \mathrm{MHz}$ $\mathbf{£ 6 . 9 5} .10 .7 \mathrm{MHz}$ IF (inc. $12 \frac{1}{2} \mathrm{KHz}$ xtal filter) $\mathbf{£ 8 . 2 5}$. 2 nd Osc $£ 2.10$. 455 KHz IF $£ 5.65$. 455 KHz block filter $(121 \mathrm{KHz}) £ 7.35$. Squelch $£ 1.45$. QQ206-40a (quick-heat) RF tested $\mathbf{£ 1 1 . 9 5}$. Aerial relays $\mathbf{£ 1 . 5 0}$ PYE SPARES ARE OUR SPECIALITY - COMPLETE UNITS ARE ALSO AVAILABLE
GAREX FM DETECTOR \& squelch conversion for Pye R/T equipment. Ready assembled, full instructions. Tailor-made, easy-fit design, replaces existing squelch board, with minimum of modifications. For AM Cambridge £6.30; for Vanguard AM25B (Valve RX) £6.10; for Transistor Vanguard AM25T £6.95

MAIN DISTRIBUTOR OF REVCO AERIALS \& SPECIAL PRODUCTS
(trade enquiries welcome).
PRICES INCLUDE UK POST \& PACKING \& 15% VAT.

* MICROPROCESSOR CONTROLLED 32,000 CHANNELS
* AM \& FM ALL BANDS
* WIDER COVERAGE: $26-58,58-88,108-180,380-514 \mathrm{MHz}$; includes $10 \mathrm{~m}, 4 \mathrm{~m}, 2 \mathrm{~m}, \&$ 70 cm Amateur bands.
* 5 kHz \& 12 j kHz FREQUENCY INCREMENTS
- 16 MEMORY CHANNELS WITH DIRECT ACCESS
* SPECIALLY DESIGNED FOR EUROPEAN MARKET
$\star 2$ SPEED SCAN SCAN DELAY CONTROL
$\star 2$ SPEED SEARCH UP AND DOWN
\star SEARCH BETWEEN PRESET LIMITS UP AND DOWN
$\star 3$ SQUELCH MODES inc. CARRIER \& AUDIO
* RELAY OUTPUT FOR AUX. CONTROL
* INTERNAL SPEAKER, ALSO EXTERNAL SPEAKER \& TAPE OUTPUTS
* LARGE GREEN DIGITRON DISPLAY BRIGHT/DIM
* AM-PM CLOCK DISPLAY
* 12 V DC, 230 V AC OPERATION
* FACTORY-BACKED SPARES \& SERVICE, 12 MONTH WARRANTY \& THE ALLIMPORTANT PRE-DELIVERY CHECK BY GAREX, THE MAIN SERVICE \& SALES AGENTS.
£264.50 INC. VAT Delivered

-NEW•

\star REVCONE *
-NEW•
A new top quality 16 -element, all British made, VHF/UHF broadband
fixed station aerial from Revco. Ideally suited to SX200 and other VHF/UHF Receivers. PRICE $£ 24.95$ inc

GAREX ELECTRONICS

Goods normally despatched BARCLAYCARD by return
7 NORVIC ROAD, MARSWORTH, TRING, HERTS HP23 4LS. Phone 0296 668684. Callers by appointment only.

ZX81 - RTTY

A COMPLETE TRANSMIT/RECEIVE RTTY PACKAGE FOR THE ZX. 81 - 5 MEMORY STORES, AUTO-RUN, AUTO CARRIAGE RETURN AND LINE FEED, FULLY DOCUMENTED. SEND FOR DETAILS OF THIS AND OTHER AMATEUR RADIO SOFTWARE FROM

SCARAB SYSTEMS

PURCHASERS AND DISTRIBUTORS OF SOFTWARE 141 Nelson Road, Gillingham, Kent ME7 4LT. Medway (0634) 575778

ANTENNAS TONNA	(F9FT)	YOUR NUMBER ONE CHOICE FOR $6 \mathrm{~m}, 2 \mathrm{~m}, 70,24 \& 23 \mathrm{~cm}$ ANTENNAS
50 MHz		1250 MHz OR 1296 MHz
5 elemen	£31.74(a)	23 element \dagger ¢25.90(b)
144 MH		4×23 ele antennas - power
4 element	£13.01(a)	splitter - stacking frame $£ 140.00(\mathrm{a})$
9 element fix	£15.44(a)	Telescopic Portable Masts
9 element portable	£17.46(a)	$4 \times 1 \mathrm{~m} £ 15.96$ (a) $3 \times 2 \mathrm{~m} £ 19.15(\mathrm{a})$
9 element crossed \dagger	£28.52(a)	$4 \times 2 \mathrm{~m}$ ¢28.75 (a)
13 element portable \dagger	£27.21(a)	ANDREW HELIAX LDF4-50 COAXIAL CABLE
NEW 17 element fixed 435 MHz	£35.19(a)	Attenuation per 100 ft . $144 \mathrm{MHz}-0.8 \mathrm{~dB}$ $435 \mathrm{MHz}-1.6 \mathrm{~dB} .1296 \mathrm{MHz}-2.9 \mathrm{~dB}$.
19 element	£18.14(a)	£3.20 per metre (a). ' N ' Type
19 element crossed \dagger	£30.05(a)	connectors for LDF4-50 male or female
21 element 432 MHz	£26.00(a)	£10.35
21 element ATV $144 / 435 \mathrm{MHz}$	£26.00(a)	MICROWAVE MODULES - ROTATORS COAXIAL CABLES ETC.
Oscar Special 9 \& 19 element ${ }^{+}$	£30.05(a)	POWER SPLITTERS AVAILABLE FOR 2 OR 4 ANTENNAS
tDenotes 50Ω ONLY - all others 50Ω OR 75Ω impedance		
PLEASE AdD CARRIAGE AS SHOWN (a) $£ 4.00$. (b) f1.80. ALL Prices include vat at 15\%		
FOR FULL SPECIFICATION OF OUR RANGE SEND 30p FOR CATALOGUE Callers welcome, but by telephone appointment only please. Goods by return		
RANDAM ELECTRONICS (P) 12 Conduit Road, Abingdon, Oxon OX14 1DB. Tel: (Q235) 23080 (24 hours)		

AT LAST!! - A REALLY FINE RECEIVER FROM ICOM

SSB, CW, AM, RTTY AND FM WITH SUPERB PERFORMANCE ICR70 PRICE £469

- Call or write for more details.

143 RECULVER ROAD, HERNE BAY, KENT. Tel: 0227363859 Telex: 965179

FT 102 Range
FV 102DM External VF0
SP 102 External Speaker with audio filter.
SP 102P External Speaker with phone patch.
FC 102 Antenna Coupler.
AM/FM Unit
MD 1B8 Desk Microphone
MH 1B8 Hand Microphone
XF 8.2 HSN SB Filter (18 KHz)
XF 8.2 HC CW Filter (600 Hz)
XF 8.2 HCN CW Filter $(300 \mathrm{~Hz})$
XF 8.2 GA AM Filter (6 KHz)
XF 455 C CW Filter (500 Hz)
XF 455 CN CW Filter (270 Hz)
FAS-1-4R Remote Antenna Selector.

We hold probably the most comprehensive Yaesu Spares stock in Europe. What we do not have we will get in the shortest time, if available.

Entire YAESU Range Stocked.

BEARCAT - DEALER
Main SEAFARER Dealer

YAESU P.M.R. Equipment - Full Range.

WESTERN COMMUNICATIONS (GALWAY) LTD.
Unit 1, I.D.A. Cluster Development,
Tuam Road,
Galway, IRELAND

Phone: (091) 65166/65208
U.K./N.I. (0009) 65166/65208

International Dial - Int. (353)/(9)/65166/65208

Telex: $\mathbf{2 8 9 3 3}$ MHTC EI

IMPROVE YOUR V S W R!
We are often asked, 'Why and ATU at VHF?', well for exactly the same reason that apply at HF.
(1) Antennas are rarely 50Ω.
(2) Their VSWR is never constant across the band from CW, through SSB \& FM, to satellites.
(3) Many modern rigs are VSWR protected. Even a slight increase in VSWR can cause a dramatic loss in output.
(4) Roatation of a beam can cause reflections from nearby objects.

Many customers are experimenting with long wires and with our AT-145Z (built-in balun) feeding rhombics, Vees and G5RVs. For mobile our AT-145B incorporates a LW/MW splitter to allow BC reception from your $5 / 8 \mathrm{~s}$. Try loading an ordinary car aerial if you have a vandalism problem.

USE FIXED OR MOBILE MATCHES 50-10/500 Ω 500W

AT-145 £22.85 SO-239 standard. N or BNC £23.75
AT-145Z $\mathbf{E 2 9 . 4 5}$ SO-239 plus terminals for built-in balun.
$\begin{array}{llll}\text { AT-145B } & £ 27.35 & \text { SO-239 plus } 1 \mathrm{~m} \text { coax with car-radio plug. } \\ \text { AT-70 } & £ 24.55 & \text { Any connector to order, see you on } 4 \mathrm{ml}\end{array}$
$\begin{array}{llll}\text { AT-70 } & £ 24.55 & \text { Any connector to order, see you on } 4 \mathrm{~m} \text { ! } \\ \text { AT-432 } & £ 28.80 \quad \mathrm{~N} \text { standard, others to order, ideal for ATV. }\end{array}$
YOU MUST HAVE A WAVEMETER! Over two thousand of our WM-2 two meter wavemeters are now in use.
They cover $130-300 \mathrm{MHz}$, well past the second harmonic demanded by the Home Office, and are VERY sensitive. $£ 22.45$
WM-4 for 4 m , similar to WM-2 and the same price.
WM-7 for $70 \mathrm{~cm} 400-900 \mathrm{MHz} £ 24.35$
NEW ... NB-52 Noise Bridge. Due to many requests we have just produced this versatile piece of test gear. With a general coverage receiver you can measure impedance from 1-250 MHz. Calibrated 15-120』 SO-239, N or BNC. Makes antenna adjustments simple, and WITHOUT a VSWR meter. $\mathbf{2 3 4 . 2 5 .}$
2-XY POLARISATION SWITCH for XY antennas. Gives Vert, Horiz, righthand and lefthand polarisation. $£ 34.45$. With built-in antenna tuner $£ 44.95$

Access - Visa - American Express Cards welcome. Order by phone. Allow 14 days for delivery.
OLD STATION, CONISTON, CUMBRIA LA21 8HQ. 09664-678

ISHERWOOD ELECTRONICS

 bARGAINFM4 Tuners
ONLY £9.95
incl. P.\&P.
A complete AM/ FM tuner chassis covering L.W., M.W. \& V.H.F. (stereo). Brand new and boxed.
Condenser microphones inserts with built in F.E.T. amplifier 5 k IMP2. 20 mm diam.
£1.25 incl. P.\&P.
S.A.E. for lists:

HOZIER ST., BLACKBURN.
Tel: (0254 57616)
J. BIRKETT ${ }^{25}$ The Strath, Lincoln LN2 1JF.

MULLARD SUB-MINIATURE CERAMIC PLATE CAPACITORS
MULARD SUB-MINIATURE CERAMIC PLATE CAPACITORS 63 V.W. 1.5, 1.8, 3.9, $4.7,5.6,6.8,12,15,18,22,27,33,39,44,56,68,100,180,220,330,1000,1200$,
$1800,2200,3300,4700$ pf. And MICRO 0.01 uf. All at 25p doz 1800, 2200, 3300,4700 pf. And MICRO 0.01 uf. All at 25p doz,
TRANSISTORS. BSX 19, BS $\times 2$, BSX21, BC548, BC549, BC558, ZTX108, ZTX213,
ZTX 342 ZTX 450 All 6 for 50 ,
ZTX342, ZTX450. All@ 6 for 50 p .
FERRITE RODS. $6^{\prime \prime} \times z^{\prime \prime} @ 25 \mathrm{p}$, , FX1115 BEADS © 15p doz.
GREENPAR 50 OHM BNC SOCKETS @ 3 for $£ 1.15$.
GREENPAR 50 OHM BNC PUSH ON PLUGS @ 3 for $£ 1.15$.
25 VARI-CAP DIODES. Assorted for 50p.
30 ASSORTED SILVER MICA CAPACITORS for 50 p .
50 PLASTIC NPN TRANSISTORS. Untested for 60 p .
PHILLIPS CONCENTRIC TRIMMERS. 3 to 30 pf @ 15 p each.
VARLABLE CAPACITORS AIRSPACED. 5 pf @ ${ }^{\text {(}}$ 75p, $10+10+10 \mathrm{pf} @ 75 \mathrm{p}, 100+200 \mathrm{pf}$
$@ 85 \mathrm{p}, 200+30 \mathrm{pf}$ @ 85p, 250+250pf @ 85p, 250 $250+20+20+20 \mathrm{pf} @ 75 \mathrm{p}$.
X BAND GUNN DIODES with data @ $£ 1.65$ each.
L BAND MDER DIODES. 1 GHz @ 40 p , S. BAND MDXER DIODES CV 291 or CV 364. Both 40p each, X BAND DIODES @ 40p.
VHF CHANNEL LOW NOISE FET 400 MHz J 304 at 5 for $£ 1$.
10.7 MHz CRYSTAL FILTERS B.W. $\pm 6 \mathrm{KHz}$ at $\mathbf{5 5}$.

MULLARD BLY 9050 WATT 12.5 VOLT 550 MHz with data @ $\mathbf{E 7 . 5 0}$.
MULLARD BLY 53A 7.5 WATT 12 VOLT 470 MHz at 96.95 .
MULLARD BLY 974 WATT 24 VOLT 175 MHz with data @ $\mathbf{£ 3}$.
$1^{\prime \prime}$ COLL. FORMERS with can at 3 for 10 p .
Please add 30p for post and packing. Orders over 53 post free.
from BFBS Bielefeld, a variety of programmes from Belgium BRT-11 Egem and RTBF-1 Leglise, TDF Cultor and TDF Musique from France and from Germany NDR-2 Aurich and Hamburg and SDR-111 Heildelberg.
"The tropospheric opening on October 29 and 30 was amazing . . about the most intense opening I've known" writes Ian Kelly from Reading who, like Harold and Simon, received many strong stations from France between 88 and 104 MHz in addition to about 20 German stations, "of which a good number were in strong stereo" said Ian, adding "My best log was Radio Luxembourg, which gave me good reception around 0200 on the 30th on 92.5 MHz . The transmission was only in mono, but perfect". Well done Ian, another goody in the log. From Dollar in Scotland Alan Beech reports hearing Radio Merseyside on November 10.

Microwaves

During the good conditions on October 30, "G3AUS in Devon worked an OK station on $1296 \mathrm{MHz}(23 \mathrm{~cm})$ at 1576 km , a new DX record" writes John Tye G4BYV, Dereham, Norfolk, who
himself worked OK $1 \mathrm{AIY} / \mathrm{P}$ on $2 \cdot 3 \mathrm{GHz}$ $(13 \mathrm{~cm})$ at 1027 km . PA2DOL worked over 500 km on $3 \cdot 3 \mathrm{GHz}(9 \mathrm{~cm})$ establishing yet another DX record. Congratulations to all concerned, we at $P W$ are always pleased to hear about DX records, especially on microwaves, so what about it lads and lasses, drop me a line.

RTTY

The best RTTY DX during October for Peter Lincoln BRS 42979, Aldershot, (Fig. 4), was CE3JK, FY7BC, 5N22BSH and the Jamboree-on-the-Air station XT2AW/JAM. Among the other countries copied were HW6, OH, W, YU, Y2 and 4N7. Between October 11 and November 9, Norman Jennings, Rye, logged RTTY signals from most European countries on $14 \mathrm{MHz}(20 \mathrm{~m})$ VE, VP and plenty of Ws on $21 \mathrm{MHz}(15 \mathrm{~m})$ and a DJ and several Ws on $28 \mathrm{MHz}(10 \mathrm{~m})$.

Among the interesting two-way QSOs I copied were, a local contact between 2 DLs around 0830 on October 24, I1KUE and DJ4ET at 0929 on November 7, DF9KD and ZB2HL at 0914 on the 10th and at 1415 on the 7th, I logged N8ES in

Ohio calling CQ DARC contest on 28 MHz . There appeared to be plenty of activity for the RTTY enthusiasts between October 19 and November 17 because, even with the limited time I spend on the bands I managed to copy signals from 16 countries, DJ, EA, F, GI, GM, HB0, HB9, IT9, KP4, LA, OE, OK, OZ , SM, YU and ZB2 on $14 \mathrm{MHz}, 4$, EA, IT9 OH and SM on 21 MHz and $7, \mathrm{CN}$, HG, I, LZ, OH, W and 5B4 on 28 MHz .

Ted Double G8CDW, contests and awards manager of the British Amateur Teleprinter Group, reminds me that the BARTG Spring VHF/UHF RTTY Contest will take place between 1800GMT on April 9 and 1200 GMT on the 10th, on the 144,432 and 1296 MHz bands. All details from Ted, QTHR. I see that some of my readers were among the 23 entries in the single operator and the 9 in the multi-operator sections of the Autumn 144 MHz RTTY Contest and I congratulate Colin Desborough G3NNG and Jonathan Perkins G4IV V/A, the section winners and John Neal G4NQC and the Bournemouth Radio Society, the runners up respectively. During the event QSOs ranged from Belgium to Scotland and from Germany to Northern Ireland.
"I am very interested in becoming active on the TVDX scene and also interested in Amateur TV", writes Jim Byrne from Dublin, whose letter is typical of many which periodically appear in my postbag. As far as ATV is concerned, I recommend that you first join your local amateur radio club and get to know the television buffs and believe me, you will learn far more from them in a short while than you can by scratching around on your own. Whereas activity in the ATV world is being created all the time, DXTV requires a given amount of patience because the enthusiast must wait for an atmospheric disturbance, such as sporadic-E or a tropospheric opening, before receiving some of the juicy pictures that are published in my column.

The majority of the domestic TV channels are shared by international agreement and due to the normal limited range of a TV transmitter, many signals are transmitted on the same or similar channels without interference. The system works fine until an atmospheric disturbance occurs, and for a while the range of a multitude of TV transmitters is increased from about 80 to more than 2400 km and of course, creates what's commonly known as co-channel or adjacent channel interference, Fig. 1.

In general, television signals in Band I, approximately $40-70 \mathrm{MHz}$, are influenced by sporadic-E which, varying in intensity, occurs on most days between late April and mid-August and signals transmitted in Band III, approximately $175-225 \mathrm{MHz}$, and the u.h.f. bands are affected by disturbances in the troposphere which can occur at any time when the atmospheric pressure is high and the prevailing weather is fine and clear. The YL announcer and the speaker in Figs. 2 and 3 were received by the author on Ch. R1, 49.75 MHz from possibly Poland or the USSR during the 1982 sporadic-E season. The YL presenter, (Fig. 4), was received in colour, by the author, from Germany on Ch. E10 210.25 MHz during a tropo opening in September and the two German stations, Figs. 54 and 6, were received on Chs. 45 and 54 respectively by Nicholas Wythe, Folkestone, during a tropo opening in July.

When selecting a receiver for DXTV make sure that it has two TV tuners, one for v.h.f. covering Ch. E2-4 and E5-12 and the other for u.h.f. Chs. 21-69. Suitable sets are usually small screen portables and are made by such firms as Hitachi, JVC, National Panasonic, Plustron, Sanyo, Sony and no doubt others, which I am always pleased to hear about.

SSTV

Peter Lincoln BRS 42979, Aldershot, received slow scan television pictures from F3HD Fig. 7, K4BZY Fig. 8 and OH2BTX Fig. 9 with a Wraase SC-140 SSTV converter and a Hitachi $4 \cdot 5$ in por-
table receiver, both seen on the right of the operater's bench in Fig. 10. Peter also received pictures from stations in Finland, France, Germany and Spain and his best DX during October was LU5NA.

Amateur TV

Congratulations to Roy Humphreys G6AIW, Worthing, on winning the BATC Summer Cumulative ATV contest. Roy used his TV gear on each of 5 sessions at Chanctonbury Ring, a high spot on the Sussex Downs, and exchanged mono and colour pictures with stations as far apart as F3YX near Paris and G8VBC in Derby.

Our Technical Editor, John Fell G8MCP is now active on 432 MHz with a Wood and Douglas ATV-2 transmitter fed by a monochrome camera and a Sinclair ZX Spectrum computer for colour transmissions and fellow members of the Flight Refuelling Amateur Radio Society, Judith Richardson G6JGR and Mervyn Staton G4BGT, from Corfe Mullen, also have a Wood and Douglas ATV-2 plus 10W p.a. coupled to a 48 -element multibeam antenna and use a Hitachi C750 colour camera and a 6500 video recorder for film making. Judith and Mervyn have plans to operate ATV equipment on 1296 MHz , and are looking for skeds, on 432 MHz , with stations to the west of Corfe Mullen. Anyone interested, they are both QTHR.

Roy Humphreys and fellow members of the Worthing and District Video Repeater Group are prepared to give talks on the subject, in aid of their funds, so any clubs who are interested should contact Roy at Worthing on 090367764.

Band I

As a result of leaving the television gear ticking over whenever I am working in the shack I have seen frequent bursts of signal on Chs. E2 46.25 MHz and R1, long enough to identify, the test cards from Austria ORF-FSI, Czechoslovakia RSKH and Poland and such programmes as cartoons and music and, at 0845 on October 24, the caption "Fr" appeared. Any ideas?

Around 1220 on the 31st, Harold Brodribb, St Leonards-on-Sea, watched pictures of golf during a sports

Fig. 1: German caption received by the author on Ch. E10. Note the diagonal lines of co-channel interference

Fig. 4: ZDF programme presenter received by the author on Ch. E10

programme from Spain on Ch. E2 and, as the camera zoomed on a sign he saw the word " 7 pasa" and while using his v.h.f. communications receiver, at 1110 on November 3 he heard many short lived bursts of synchronising pulses on Ch. R1 which as Harold presumes were most likely coming from meteor trail reflection.

Dave Cawser G6NBY, Burton-onTrent, has shown that it is well worth keeping an eye on Band I outside the sporadic-E season, because at 0929 on October 24 he saw a Russian station identification, with a YL announcer and a clock showing 1229, on Ch. R1. Around

Fig. 2: Unidentified signal, received by the author via sporadic-E on Ch. R 1

Fig. 5: UHF picture received by Nicholas Wythe. Note the lines of co-channel interference

1045 on the 31st, he watched dancing from TVE Spain on Chs. E2 and 3 and at 1150 a weather forecast from RAI Italy on Ch. 1a 53.75 MHz . Both Dave and I saw a film about wild birds with their young during a mild sporadic-E disturbance around 0930 on November 14, which seemed to peak around Chs. E2 and R1.

Tropospheric

Around 1500 on October 29, Adrian Butcher, Washington, Sussex, using an Ultra 6808 and outside Yagi antenna

Fig. 3: Unidentified signal received by the author on Ch. R1

Fig. 6: UHF picture received by Nicholas Wythe

Figs. 7, 8 \& 9: Slow scan television picture logged by Peter Lincoin

on the air

received a strong test card from Belgium BRT TV2 Wavre on Ch. 25 and at 1550 I received BRT TV1 from Wavre on the much lower frequency of Ch. E10. This heralded good DX conditions for the following few days.

At 1930 a news programme came up on Ch. E10 with a YL presenter and reports about a European conference by Renate Butow and the Spanish General Election by Wolf Hanke, followed at 1915 by the weather charts and forecast and at 2225 the German ARD caption. The following morning my Band III beam was still pointing east and at 0804, using a Plustron TVRC7, I received the Dutch test card PTT NED-1 on Ch. E4, pictures of food and wine being prepared on Ch. E5, and colour test cards, from the W. German stations "hr 1 m " on Ch. E7, NDR1 on Ch. E10 and WDR1 on E11. At 1445 there was a war film in black and white, from the E. German station DDR on Ch. E6 followed by a YL announcer and a programme about dahlias, while concurrently, on Ch. E10, was a variety programme in full colour. The ARD clock appeared at 1900 and strong pictures continued on Chs. E6 and E10 for most of the evening.
"During the evening of October 30 BBC television announced that viewers

Fig. 10: Peter Lincoln's shack showing SSTV gear on the right of the bench
may experience interference to their programmes as Bands III, IV and V become disturbed" writes Sam Faulkner, Burton-on-Trent, who received a very strong IBA Ch. 4 test card from Sandy Heath on Ch. 21, the programme Heute and Das Aktuelle Sport Studio, from ZDF on Chs. 34, 35, 37 and 39 and from
"Hessischer Rundfunk" on Ch. 52. Also watching u.h.f. was Simon Hamer in Presteigne who received France TDF on Chs. 27, 35 and 45. "An ideal birthday present" said Simon who also received pictures from Belgium on Ch. E8 and Germany on Ch. E10.
"Very spectacular" thought Sam as he logged a test card from Denmark on Ch . E5, football from ARD on several Band III channels, news from DDR-1 on Ch. E5 and 12 and his best DX was Czechoslovakia CST, on Ch. R10, who were showing a "Your Letters" type programme which Sam had previously seen on the Band I channels called NAD, DOPISY, DIVAKU CST. It is worth noting that while Sam received TV pictures from CST on R10, 207.25 MHz , several radio amateurs in the UK were working into Czechoslovakia on the 144 MHz band. "The best results I've ever had from our set, four countries, all in one afternoon, including good colour pictures from Germany," writes Ian Kelly, Reading, who logged 3 editions of ZDF on Chs. E32, 34 and 35 and saw Charlie Brown, Heute, The Flintstones and adverts for German toys, in addition to pictures from Belgium and Holland and many negative pictures from stations in France.

Have Sony music system model HMK77 and two Sony speakers model SS2030. Would exchange for general coverage amateur transceiver with built-in power supply or separate. D. Jenkins, 40 Fraser St., Bedminster, Bristol BS3 4LZ.

P813

Have nearly complete set of Practical Electronics from onset to late seventies. Would exchange for general coverage receiver, age and condition immaterial, even one needing attention-for a keen s.w.l. Williams, 40 Salem Street South, Hendon, Sunderdand. Tel: 0783 653097.

P822

Have photographic colour processing equipment including Durst Enlarger, Melico analyser, timer, drum, filters etc., plus cine equipment. Would exchange for a 144 MHz transceiver, h.f. receiver CB transceiver w.h.y. Richard, Okehampton 08372484 (Devon). P829

Have 1956 Ekco TMB272 9in radio TV (portable), works but needs mains lead. Would exchange for short wave a.t.u. or two 3Ω speakers in cabinets or multimeter. Tel: Blagdon Hill (Somerset) 554.

P840

Have Kodak instant camera with accessories, also have TV DX converter or 144 MHz linear amplifier for IC-2E. A. Dunham, 5 King St., Wimblington, March, Cambs PE15 OQF. Tel: 740660.

P842

Have 1969 Nikon F camera with photomic head $50 \times 1.4,28 \times$ 3.5 Nikon lenses, 200×3.5 Vivitar. Would exchange for 144 MHz multimode or other 144 MHz equipment considered. Tel: Southport 070435775.

P860

Have Tektronix 5020A double beam oscilloscope with manual, and probes, in good working order. Would exchange for transceiver, receiver or w.h.y. W. Craig, 30 Titania St., Cregagh, Belfast BT6 8NT.

P867

Have Realistic PRO2001 f.m. scanner, $30-50 \mathrm{MHz}, 68-88 \mathrm{MHz}$, $144-174 \mathrm{MHz}$ and $430-512 \mathrm{MHz}$. Would exchange for a Plustron TVR5D TV. E. Eyre, 4 Park Road, Hoddesdon, Herts. Tel: 65165.

P868

Have 88 receiver, 8 -track player, computer panels and a 24 -hour timer switch. Will exchange the lot for tuner unit $30-80 \mathrm{MHz}$. Tel: Kennoway 350993.

P869

Have Bearcat 220FB scanner, boxed with manual. Would exchange for Trio R-1000 or similar type general coverage receiver. Cash adjustment if necessary. I. Baggett, 59 Leigham Vale Road, Bournemouth BH6 3LR. Tel: Bournemouth 420666.

P890

Have SLR camera Olympus OM1, Zuiko 1.550 mm lens with case, B/W Zenith 5 portable enlarger with timer, developing tank, dishes and Paterson paper exposure meter. Would exchange for used Microwave Modules MM200/1 RTTY to TV converter. Tel: evenings only, Claude 01-431 2919.

P891

Have Sommerkamp TS788DX. Would exchange for Reftec 934 MHz transceiver and antenna. Tel: 01-987 2296.

Have Ekco vintage receiver model No. 25, perfect working order. Would exchange for R208 or WS19 communications receiveroperational or otherwise, or w.h.y. P.H. Spencer James, 105 St. Andrews Road, Yeovil, Somerset BA20 2DF.

P901

Have DX302 general coverage receiver, 18 months old, digital readout, quartz locked circuit, 6 tunable pre-selectors, l.e.d. band indicators, b.f.o., u.s.b. and I.s.b. with built-in Morse practice. Would exchange for current model 144 MHz mobile multimode transceiver. J. Docherty, 12 Mallaig Road, Glasgow G51 4NE. Tel: 041-440 0223.

P911

IMPORTANT-The ideas presented here are suggestions only, and as they are untried by this magazine, we cannot accept responsibility for any resultant damage, however caused. Before alterations are attempted, care should be taken to ensure that any guarantee is not invalidated, and it should also be borne in mind that modifications usually have an adverse effect on resale prices. In cases where specialist skills or equipment are needed, most dealers will undertake the work for a reasonable fee.

Roger Hall G8TNT(Sam)

No. 19
 More mods for the FT-290R this month SSB Auto Pip-Tone

Tom's second mod is for automatic pip-tone on s.s.b. using the existing tone generator. It involves a fair amount of work but it should not prove too difficult for most people. Having gained access to the Regulator Unit, the first step is to open circuit the TC SW line on the print at Pin 10 of the connector. Either cut the print or remove the connection. Then open circuit the f.m. 6.8 V supply at 12 and 13 and replace it with a permanent 6.8 V supply which is available at Pin 5 using a short wire link. Now move to the component side of the board and note that the tone input is fed to the f.m. demodulator direct. This tone feedpoint must be altered to accommodate s.s.b. operation. Disconnect the two green tone-feed wires from their pillars near Q2004 and connect them to a potential divider of $12 \mathrm{k} \Omega$ and 100Ω to earth built across the microphone input pillars nearby, Fig. 7. Now the call button will activate the tone generator but not the transmitter, and the tone will be audible in the microphone.

The next stage starts by removing the battery housing and the bottom cover. Then connect a $2000 \mu \mathrm{~F}$ capacitor from the coil of RLO1, junction Q2011 collector to earth via the NOISE BLANKER switch, which should have had its original wires removed and been wired permanently on so that this switch is available for turning the pip-tone on and off. This capacitor provides a delay on the TX/RX relay which gives us the pip window at the end of the transmission. As it is such a large component, it may be necessary to house it in the battery compartment and run a wire round to the main board. Next make up the AND gate shown in Fig. 8 using any $n p n$ silicon BC147-107 type transistors and connect it to the points indicated. Install it straight on the back of the p.c.b. as flat as possible. Tom

Fig. 8
has put his near to the TX/RX relay as the TX s.s.b. $6 \cdot 8 \mathrm{~V}$ and p.t.t. line are nearby, but he has had to run a long piece of wire to the Regulator board. This mod is now complete and it works because when the p.t.t. is pressed, $\operatorname{Tr} 1$ is off and $\operatorname{Tr} 2$ is on. When the p.t.t. is released, approximately 4 V turns on Tr 1 and Tr 2 is still off because the $2000 \mu \mathrm{~F}$ capacitor is holding the relay in the transmit mode, thus supplying $\operatorname{Tr} 2$ with bias. Therefore the T. Call line at Tr 2 collector is taken towards earth, initiating tone until the capacitor discharges through RLO1 and the RX mode is established. Once on receive, $\operatorname{Tr} 2$ loses its bias and its collector rises causing the tone to cease. Even on receive, there is no tone in the microphone unless the call button is pressed. The pip-tone is automatically disabled when the f.m. mode is selected because there is no longer the s.s.b. TX 6.8 V on Tr 2 . The potential divider across the microphone is essential as the level of tone is very high.

3SK88

This is the first anti-mod that I have ever published and it will be a disappointment to all of you who are reading this page in the hope of finding out how to install a 3SK88 in the front end of your rig. Instead I am going to suggest that you do not carry out this mod. There was a time when dealers couldn't sell an FT-290R unless they had installed this device, but now most prospective customers are asking for unmodified rigs. The general consensus of opinion among the engineers that I have spoken to, and who work in the dealers' workshops, is that this mod not only does not work, it also degrades the performance of the rig. One of the problems seems to be the 3SK51 (Q1002) mixer which is an average performer but not up to handling the output from a 3SK88 and so it tends to overload. I have also been told of a.g.c. problems with this mod, but the most obvious symptom is nearly always cross-modulation.

Those engineers who have been interested enough to check out this mod on their test equipment have told me that there is a marginal improvement under controlled conditions but out in the real world where there are strong signals nearby, an outboard switchable pre-amplifier with a high Q would have more selectivity and less cross-mod and would be far more versatile. The standard FT-290 is very good when it comes to cross-modulation and it is logical to assume that it is as easy to buy a 3 SK 88 in Japan as it is in this country and so if the designers of this rig have decided not to use one, they probably had a very good reason. Two dealers have even told of stability problems on transmit which cleared up as soon as this device was removed, but neither of them could explain the cause. In his letter Tom G8HUH, said that he carried out the 3 SK 88 mod and the results were disappointing, but he managed to improve the performance by grounding the source, thereby removing the d.c. feedback to Gate 1. He also commented on the increased cross-modulation that his rig now suffers from. Most of the engineers who work on these rigs have said that the easiest, and probably the best way to improve the performance of the front end is to re-tune them so that they are peaked on 145 MHz .
Note: In the Squelch mod last month, T1007 is a transformer, not a transistor.

EAST LONDON HAM STORE H. LEXTON LIMITED ${ }^{1291}$ Rit

DRESSLER AMPLIFIERS

These are high power 240 V linears using $4 \mathrm{C} \times 150$ or $4 \mathrm{C} \times \mathbf{2 5 0}$ or $\mathbf{4 C} \times 350$ Eimac Tubes NOT using the grounded Grid system
Fully protected, no thermal damage to PA finals possible.

DRESSLER AMPLIFIERS
D70 70cm 200wfm 400 PEP D200c 2 mtr 125 wfm 200 w PEP $£ 495.00$ $\begin{array}{ll}\text { D200c } 2 \mathrm{mtr} 125 \mathrm{wfm} 200 \mathrm{w} \mathrm{PEP} & £ 285.00 \\ \text { D200 } 2 \mathrm{mtr} 300 \mathrm{wfm} 600 \mathrm{w} \text { PEP } & £ 495.00\end{array}$ $\begin{array}{ll}\text { D200 } 2 \mathrm{mtr} 300 \mathrm{wfm} 600 \mathrm{w} \text { PEP } & £ 495.00 \\ \text { D200S } 2 \mathrm{mtr} 400 \mathrm{wfm} 1 \mathrm{KW} \text { PEP } & \mathbf{£ 6 0 0 . 0 0}\end{array}$

GASFET DRESSLER PRE-AMPS

VV2

VV2GAAS 150 W VV200GAAS 750 W VV2000GAAS 1 kW VV2RPS S0259 VV2RPS N Type VV7RS S0259 Powered by the linear
Powered by the linear or with separate interface

£40.00

$£ 69.00$
$€ 79.00$
Non switching £22.00
£24.00
$£ 22.00$
$£ 24.00$
$0.7-0.9 \mathrm{~dB}$ signal to noise 0.2 dB insertion loss

35 K 97 GASFET Available separately $\mathrm{EA.50}^{2}$ GASFET MASTHEAD PREAMPS

ALLACCESSORIES AVAILABLE-PLUGS SKTS CO-AX 2MTR COLINEAR £31.50, 70CM COLINEAR £31.50

EFPAK BARGANS

 SX63 5×470 ohms Lin $\quad S \times 675 \times 47 \mathrm{k}$ Lin SX64 $5 \times 1 \mathrm{~kL}$ Lin SX68 $5 \times 47 \mathrm{kLog}$ $5 \times 655 \times 22 \mathrm{kLin} \quad S \times \in 5 \times 100 \mathrm{Lin}$ $S \times 665 \times 22 \mathrm{k} \log \quad S \times 705 \times 1$ meg Lin
5×40250 Silicon Diodes-Switching like iN4148 D0.35 All good-uncoded Worth
511250 Silicon Diodes-General Purpose. tike 0A200/202 BAX13/16 Uncoded

$30-100 \mathrm{v} 200 \mathrm{~mA} \mathrm{DO}-7$
\qquad

SI4 10 SA SCR's TO64 3×50r. 3×100 y $2 \times$ $200 \mathrm{v}, 2 \times 400 \mathrm{v}$ Super value less than is
SX45 price 105 SCR's $10662 \times 50 \mathrm{v} .2 \times 100 \mathrm{va}$: I 200 v . $2 \times 400 \mathrm{y}$ All coded Brand new. a -r give awayal
$\mathbf{1 1 . 2 5}$ giveamayal

MINATURE TOOLS FOR HOBBYISTS

ba mut driver set
Set of 5 BA spanner shafts plus universal handle in toll-up wallet. Sizes OBA 2-4.6-8BA Order no: T192
$E 2.75$ set
meom scaewoniver
7 fin made erter nes NS cos 5 p mect 5 jin blase orter ne Nis2 co.50p need

Satisfaction or your money back

 always been BI.PAX s GUARANTEE back it still is All these Sale items are in stock, in quantity and we will despatch the same day as your order is receivedIC SOCKETS
The lowest price ever.
the more you buy the cheaper they come
Pin 10 off 50 oll 100 ofl $\begin{array}{llll}10 \mathrm{pie} & \text { 35, } & 63.50 & 6800 \\ \text { i4 pin } & 30 & 63.75 & \text { f650 }\end{array}$

BI-PAK'S OPTO 83 SPECIAL

A selection of targe \& Small size LED's in Red Green, Yellow and Clear, plus shaped devices of different types. 7 Segment displays, photo transistors, emitters and detectors. Types like MEL11, FPT100 etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71. TOTAL OF 25 pieces. 2. valed. Normal Reat Normal Reta
Oat Pice
$£ 5.00$

SEMICONDUCTORS FROM AROUND THE WORLD

A Collection of Iransistors. Diodes. Rectitiers. Bridges. SCR's Itiacs. IC's both Logic and Linear plus Opto's all of which are current everyday usable devices.

Guaranteed Value over f 10 at Normal Retal Price
4. 000 Data etc. in
erery pak. Order No. 5×56

Plastic Boxes

Fize
Sil W H Lider SIZE ${ }^{\circ} \mathrm{L}$ W $\quad \mathrm{H}$ Order No Price
$\begin{array}{llll}14 \text { pin } & 30 \mathrm{p} & 62.75 & 6850 \\ 16 \text { pin } & 95 \mathrm{p} & 54.00 & 57.50\end{array}$

VOLTAGE REGULATORS $T 0220$
 $\begin{array}{ll}\text { Posive }+ & \text { Neqative + } \\ 705-50 & \\ 7905-559\end{array}$ $\begin{array}{cc}7812-50 p & 7905-55 p \\ 7912-55 p\end{array}$ $7815-50 p$ $7915-55 p$ $824-50 \mathrm{p}$ 7924-55p

16 pin	95%	54.00
	57.50	

-

MW398 NI-CAD CHARGER

 Universal Ni. Cad battery charger All plastic case with itt up lid Charge/Test switch LED inficators at each of the tive charging pointsCharges - Power - PP3 (9V) 220.240 VaC U12(1 5V penlite) Dims U11 115 V C) $210 \times 100 \times 50 \mathrm{~mm}$ U2 (15V D) E6.95 POWER SUPPLY OUR PRICE £3.25 Power supply ytis directly into 13 amp sockel Fused tor salety Polanity reversing socket Voltage switch Lead with mult plug Input - 240 VAC SOHZ Output - -346 75.9812 VOC Rating -300 ma MW88

1 Amp SILICON RECTIFIERS
 50 - 500 - uncoo. - rou stied bo VITS All Dealoct dences - NO ouvs Min Sov 50 tor §1.00 - woth dowie OROER NO SX76 Silicon General Pudose NPN Trasshas TO 18 Case lock th leads - cosed CV754 Simile io BC147 - BC107- ZTE9 NLL NEW VCE 7O ICSOOMA He $75-50$ 50 on 100 on 500 on 1000 on PRACE $£ 2.00 £ 3.80 £ 17.50 £ 30.00{ }^{8}$ Silcon Gemeal Pupose PNP Trosssisiors 10.5 Case
 bF K30 VC 60 IC 600 ma Mm Hes So NL NEW 50 on 100 on 500 on 1000 om

Silicon NPN'L'TypeTransitors

 T0.92 Plastic centre collector Like BC182L - 183L - 184L VCBO 45 VCEO 30 ICC200mA He $100-400$ E) ALL pertect devices - uncoded ORDER AS SXIB3L 50 of 100 oth 500 oth 1000 oth $\begin{array}{llll}1.50 & £ 2.50 \quad £ 10.00 \quad £ 17.00\end{array}$PNP SILICON TRANSISTORS:
Simila 2 IXS00 - ITX214 - E-Line VCEO 40 VCBO 35 lc 300 mA Hie 50.400 Brand New - Uncoded - Pelect Devices 50 of 100 of 500 ot 1000 off $\begin{array}{lllll}\mathbf{£ 2 . 0 0} & £ 3.50 & £ 15.00 & £ 25.00\end{array}$ Order as 1 IXPNP

MULTITESTERS

1.000 opv Inctuding lest leads b Banter $A C$ vols - 0-15-150-500-1.000 DC volts - 0-15-150-500-1,000 DC curtents $-0.1 \mathrm{ma}-150 \mathrm{ma}$ Ressstance - 0.25 K ohms 100 K ohms Dims. $90 \times 61 \times 30 \mathrm{~mm}$
. $0 / \mathrm{No}$. 1322.0 UR PRICE $\mathbf{~ f 6 . 5 0 ~ O N L Y ~}$

30,000 opv Including test leads and case AC volts $=0.25-10-25-100-250-500-1,000$ OC volis: $0.0 .25-1-25-10-25-100-250-1,000$. DC current- 0.50 ue $0.5 \mathrm{ma}-50 \mathrm{ma} 0.12 \mathrm{amps}$ Resistance- 0.6 K ohms-70K ohms-6meg ohms 60 meg ohms
Decibels - 20 db to plus 56db Shon test- Internal bunzer Dims. $160 \times 110 \times 50 \mathrm{~mm}$ $0 /$ No. 1315. OUR PRICE ONLY £24.75

SILICON BRIDGE

 RECTIFIERS Comprising $4 \times 1 \frac{1}{2}$ amp rectifiers mounted on PCB VRM - 150 vits IFM - 1.5 Amps Size: 1 inch square 10 off $£ 1.00$ 50 off $£ 4.50$ 100 off $£ 7.50$ Order No. As:4RI BRect.

8 Bit MICROPROCESSOR National INSSOBOAN 40 Pin DiL N Channel Silic
GATE MOS TECHNOLOGY AS Used in Nationals N8080 Micro Computer Family insoso Micto Compulet family Instruction Cycle Time 2 Supolied with functional
Biock Diagam Block Diagram
BRAND NEW BRAND NEW -
NOT seconds of reclams NOT seconds or reclaims
100% pertect 100% pertect ORDER NO 5×8080 Only
Normal Sell price 5450 each Normal Sell price 5450 each
Our BI-PAK Special Price $£ 2.00$ SO HURRY - LIMITED STOCKS
40 Pin IC Socket to tit $\mathrm{SX8080}$ Otter price ORDER NO $1609 \mathbf{3 0 p}$

REGULATED

 VARIABLEStabilised
POWER SUPPLY
Variable fiom 2.30 volts and 0.2 Amps. Kit incluses 1 - VPS30 Module. $1-25$ volt 2 amp transformer. $1-0.50 \mathrm{v} 2^{*}$ Panel Meter, $1-0.2 \mathrm{amp} 2^{\prime \prime}$ Panel Metec 1-470 ohm wirewound potentiometer, $1-4 \mathrm{~K} 7 \mathrm{ohm}$ wirebound potentiometer, Wring Diagram. included. Order No. VPS30 KIT $£ 20$. MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: $\frac{1}{}$ mile \quad ONLY $\begin{array}{ll}\text { Size: } 45 \times 20 \mathrm{~mm} \text {. Add: } 9 v \text { batt. } & \text { ONLY } \\ \text { Not licenced in U.K. } & \mathbf{5} .50\end{array}$ Not licenced in U.K. Ideal for: 007-MI5-FBI-CIAKGB etc.

Use your cretit card Ring is on Ware 3197 NOW and get your order even taster Goods normally sent 2 nd Class Mar
Remember vou must add vat at ther 10 vour order taisl Postage atd 50 p pet Tctal orde

T21 SCREWDRIVER SET
6 precision screwdrivers in minged plastic case Sizes -08.14 .2 .24

29 and $38 \mathrm{~mm} \quad$ £1.75
ST31 NUT DRIVER SET
5 precision nut drivers in hinged plastic case With turning rod
Sizes -3.354 .45 and 5 mm £1.75
$5 T 41$ TOOL SET
Sorecision instruments in minged plastic case Crosspoint (Phillps' screwdrivers
HO ano H 1 Hex key wrenches
152 and 25 mm £1.75
らJT WRENCH SET
5 precision wrenches in hinged plastic case Sizes - 4.4 .5 .5 .55 and $6 \mathrm{~mm} \mathbf{£ 1 . 7 5}$ BUY ALL FOUR SETS $5121-3 T 51$ and get HEX KEY SET FREE HEX KEY SEI ON RING Sizes 15.2 .25 .3
4.5 .5 .5 and 6 mm Made ot harcened steel $H X / 1 £ 1.25$

SIREN ALARM MODULE

 American Police type screamer powered from any 12 volt supply into 4 or 8 ohmspeaker. Ideal for car burglar alarm, speaker. Ideal for car burglar alarm,
freezer breakdown and other security reeerer
purposes. 5 watt, 12 v max.

BI-PAK SOLDER
 DESOLDER KIT

Kil comprises ORDER NO S×80
1 High Quality 40 watl General Purpose Lightweight Soldering Iron 240 v mains 3/16- (4 7mm) bt
1 Ouality Desoldering pump High Suction wind automatic ejection Knurled anti-corrosive casing and tetion nozzle
15 metres of De-soldering braid on plastic dispenser
2 yds (1 83m) Resin Cored Solder on Card 1 Heal Shunt tool Iweezer Type Total Retarl Value over $£ 12.00$ OUR SPECIAL KIT PRICE E8.95

"IARESISTABLE

 RESISTOR BARGAINS" Pulle ofo Description Price Sx11 400 Preformed 5 :- 4 watt Carbo $5 \times 12200 \quad \begin{aligned} & \text { Ressistors } \\ & \text { satt } \\ & 5\end{aligned}$ 5113200 wort Carbon Resistors 5×14150 mait Ressions Resistors $\begin{array}{llll}5 \times 15 & 100 & \begin{array}{lll}2 \text { and } \\ 1 / 2 \text { and } 2 \text { matt Resistors } 22\end{array}\end{array}$ Paks $5 \times 12 \cdot 15$ contain a range of Carbon film Ressito of assorted values from 22 ohms to 22 meg Save pounds on these ressistor paks and hare a full range to corer youl propects
-Quantities approumate. count by meight

GUARANTEEDTOSAVEYOU

 SX27A 50 Assot MONEYType 9500 Series PPD 28A 50 Assorted Silver Mica Cap 5. 6pF-150pF

SX29A 50 Assorted Silver Mica Caps $180 \mathrm{pF}-4700 \mathrm{pF}$
SX30A 50 High Voltage Disc Ceramics 750 V £1.00 up to 8 KV . Assorted useful values $\mathrm{£1.00}$ SX31A 50 Wirewound 9 watt (arg) Resistors.

Assorted values 1 ohm-12K
£1.00
AUTO SCREWDRIVERIDRILL Automatic spiral ratchet. Complete with screwdriver blades, $5 \& 65 \mathrm{~mm}$. 1 screwedrive
cross cross point No. 1 \& three drills $-2,28$ and 3.65mm - A MUST FOR ALL HOBBY-BUILDERS \& CONSTRUCTORS. Order No. ASD/1 $£ 3.50$ each.

I
 TheThird and

 Fourth Hand... you always need This heiptul unit with hod mounted horzontally on Heavy Base. Crocootie clips allached to rod ends SIx ball \& socket joints give intinite variation and positions through 360° also avaliable atlached to Rod a $21 / \%$ dian magnitier giving $25 \times$ magnitication Helping hand unit available with or without magnitier Our Price with magnitier as illustrated ORDER NO T402 $£ 5.50$Without magnitier ORDER NO T400 £4.75

BI-PAK PCB ETCHANT
 \section*{AND DRILL KIT}

Complete PCB Kit comprises
1 Expo Mini Drill 10.000 RPM 12v DC inc 3 collets $\& 1 \times 1 \mathrm{~mm}$ Twist Dit 1 Sheet PCB Translers $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ 1 Etch Resist Pen
$11 / 21 \mathrm{~b}$ pack FERRIC CHLORIDE crystals 3 sheets copper clad poard $?$ sheets Fibregiass copper ciad board Full instructions tor making your own PCB boards
Retal Value over $£ 15.00$ OUR BI-PAK SPECIAL KIT PRICE $£ 9.75$ ORDER NO SX81

BHPAK Send your orders to Degt. PWz 81 PAK Po Box 6 WARE HERTS.
SHPP AT 3 BALOOCK ST WARE HERTS

PROGRAMMABLE UNIJUNCTION TRANSISTOR PUT. case TO106 plastic MEU22 Similar to 2NGO27 6028 PN NS Slice: $1-910-49$
50.99 Price: $\begin{array}{llll}1-9 & 10-49 & 50-99 & 100-\quad \text { Normal Retail }\end{array}$ Each: 20p 18p 15p 13p Price $£ 0.35$ each
SX33A 6 small (min (SOST/SPDT Toggle
SX35A Rocker Switches
SX32A 25 Assorted Jack \& Phono \quad \&1.00
s.cckets and adapors. 2.5 m .
$35 . \mathrm{nm}$ and standard
$\begin{array}{ll}\text { SX71 } & 350^{\circ} \mathrm{mm} \text { and standard sizes } \\ & \end{array}$
£1.00 50 C108 "Fallouts"£1.00 ture: S out of spec on volts or
SX72 A Amixed bundle of Copper clad £1.00 Board Fibre glass and paper Single and double sided. A antastic bargain
$£ 1.00$
SX38 100 Silicon NPN Transistors-all pertect Coded mixed types with
data and eqvi sheet. No rejecls dala and equi sheet. No rejects.
5×39 Real value. all perfect PNP Transistorswith data and eqvit sheet. No reiects. Fantastic value.
2M3055 The best known Power Transistors in the World - 2 N3055 NPN 115 w . Our BI.PAK Special Offer Price $\begin{array}{lll}10 \text { oft } \\ 53.50 & 50 \text { of } \\ 50.00\end{array} \quad 100$ ot

BO312 COMPLIMENTARY PNP POWE TRANSISTORS: TO 2 N3055 Equiralent M12955-80312-T03 SPECIN PRICE 50.70 asch SPECIN PRICE 50.70 esch
10 otf 56.50

BRAND NEW LCD DISPLAY MULTITESTER.

RE 188 m

LCD 10 MEGOHM INPUT IMPEDANCE
$* 3 \%$ digit ${ }^{*} 16$ ranges plus hFE test facility to PNP and NPN transistors *Auto zero, auto polarity *Single-handed pushbutton operation *Over range indication * 125 mm ($1 / 2$-inch) large iCD readout \cdot Dioue check - Fust circuit protection * Test leads battery and instructions included
Maxindication 19930 ot - 1999
Polatity indication Negative only
Positive readings appear without + sign

input impedance 10 Megohms

Zero adjust Automatic
Sampling time 250 muliseconds
Temperature range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power Supply $1 \times \mathrm{PPP}$ or equivalent 9 v
Consumption 20 mW
Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$
DC Voitage 0.203 mV
$0 \cdot 2 \cdot 20 \cdot 200 \cdot 1000 \mathrm{~V}$ Acc 08% AC Voltage $0.200 \cdot 1000 \mathrm{~V}$ AcC 12% DC Current 0 200uA 0.2-20.200mA 0.10 A Acc 12%
Resistance $0-2 \cdot 20 \cdot 200 \mathrm{~K}$ ohms 0.2 Megohms Acc 1%

BI-PAK VERY LOWES! POSS PRICE
£35.00 each

SINGLE SIDED FIBREGLASS BOARD BOARD

Ord	Pieces	Ske	Sq. Ins.	
	4	9×23	100	
32	3	$11 \times 3^{\prime \prime}$	100	¢1.50
3	4	$13 \times 3^{\prime \prime}$	156	E2
DOUBLE SIDED FIBREGLASSBOARD				
F84	2	$14 \times 4{ }^{\prime \prime}$	110	
SILICON POWER TRANSISTORS				

NPN like 2 N3055 - but not full spec 100 watts 50 V min 10 for $£ 1.50$ - Very Good Value 100 sol uses - no duds Order No . $\mathrm{SX90}$

5 watf (RMIS) Audio Amp

High Quality audio amplitier Module Ideal for use in record players, tape recorders, stereo amps and cassette players etc full data and bach up diagrams Specification

- Max Power Supply 30v • Power Output 5 watts RMS - Load Impedance 8-16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db} \bullet$ Sensitivity 70 mv for full output • Input Impedance 50k ohms• Size $85 \times 64 \times 30 \mathrm{~mm} \bullet$ Total Harmonic
distortion less than $\cdot 5^{\circ}$. BI-PAK'S give away price
£2.25
You could not Build one
for this price.
for this price.

MORE BARGAINS!
5×5160 metres PYC covered Hook. UD wire single and stranded Mixed
558 Colours.
5×5825 Assorted TTL Gates 7400
SX59 10 Assorted llip Flops and MSi
IIL
5×6020 Assorted Slidet
SX62 $40 \begin{aligned} & \text { Potentiometer's } \\ & 40 \text { Assorted Pre-Sets } \\ & \end{aligned}$
$\begin{array}{ll} \\ 5 \times 79 & \text { etc } \\ 10 & \text { Ree }\end{array}$
Micro Switches - glass type

Use rour credit card Ring us on Wate 3182 NOW and tet rowi ader eren taster Gocds normall) sent 2 nd Class man
Remember rou must add val at 15^{\prime}, lo pout oider Toul Posuge add 75 pei Total order

COMMUNICATION CENTRE OFTHENORTH

The largest range of communications equipment available in the North. Full range of receivers, transceivers, antennas, power supplies, meters. Ali tubing - wall brackets etc.
We are the only official TRIO stockists in the North West. Full range of equipment on display. Guaranteed after sales service.
We can offer a full range of receiver from the SR9 2 m $\mathbf{£ 4 6 . 0 0}$ to the Drake R7 at $\mathbf{£ 9 8 9}$ and the NRD515 at $\mathbf{£ 9 8 5 . 0 0}$ + Antenna Tuning Units - Audio Filters - Indoor and Outdoor Antennas-Cable - Plugs etc.

RECEIVERS

TRIO R2000 Solid State Receiver due shortly. TRIO R600 Solid State Receiver 150 KHz to 30 MHz £235.00. Yaesu FRG7 Solid State Receiver $£ 199.00$. Yaesu FRG7700 Solid State Receiver $£ \mathbf{3 2 9 . 0 0}$.
For the caller a wide range of Aluminium Tubing, Clamps, etc. at competitive prices, i.e. $12^{\prime} \times 2^{\prime \prime}$ Ali Tubing $£ 9.00$. + VHF - Aircraft Band Converters and Receivers.
Part Exchanges welcome. Second hand lists daily. Send S.A.E. for details of any equipment. HP terms. Access/Barclaycard facilities.
Open 6 days a week. 24 Hour Mail Order Service.
Phone 0942-676790.
Stephens James Ltd.
47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA.
$\begin{array}{ll}\text { Made in U.S.A. } & \begin{array}{l}\text { Explore a new world of short wave } \\ \text { listening pleasure with the:- }\end{array}\end{array}$

A.E.A. MBA-RO MORSE/RTTY/ ASCII READER

- SIMPLE CONNECTION TO YOUR RECEIVER VIA SPEAKER OUTPUT.
- 32 CHARACTER FLUORESCENT DISPLAY (NO SEPARATE TV DISPLAY NEEDED).
- AUTOMATIC TRACKING AND DISPLAY OF MORSE SPEEDS TO 99 W.P.M.
- WIDE AND NARROW RTTY SHIFTS.
- 12V D.C. POWER INPUT.
- WELL PROVEN DESIGN - MANY THOUSANDS IN USE.

PRICE $\mathbf{£ 1 7 5}$ inc. ($\mathrm{P} \& \mathrm{P}$ \& ins $£ 2.50$)

A.E.A. ADVANCED MORSE KEYERS

Microprocessor controlled - multiple message memories beacon mode for VHF use - automatic contest serial number generation - programmable speeds - random character training program-SIMPLY THE WORLDS BEST!!

Prices as follows:
KT-2 Keyer/Trainer
$\mathbf{£ 8 9 . 0 0}$ inc.
CK-2 "Contester" Memory Keyer $£ 99.00$ inc.
MM-2 Morsematic Keyer \quad £119.00 inc.
(Post and packing £2)
The MM-2 includes all features listed. The KT-2 and CK-2 include subsets.
I.C.S. ELECTRONICS LTD
P.O. Box 2

Arundel, West Sussex BN18 0NX
Tel: 024365590
Please allow 7 days for Delivery

V			6AV6 6AX4GT 6AX5GT	$\begin{aligned} & 0.85 \\ & 1.30 \\ & 1.30 \end{aligned}$	6LD20 6KG6A 607G	$\begin{aligned} & 0.70 \\ & 2.70 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 19 \mathrm{AO5} \\ & 19 \mathrm{G3} \\ & 19 \mathrm{GK} \end{aligned}$	$\begin{array}{r} 0.85 \\ 11.50 \\ 8.50 \end{array}$
A1065 $\quad 1.40$	1 A 3	085	6BA6	0.50	6SA7	1.00	19 H 5	39.55
A2293 8.80	114	0.50	6BE6	0.60	6SG7	1.15	20 D 1	0.80
QQV03-25A	$1 \mathrm{1R5}$	0.60	6BG6G	1.60	$6 \mathrm{SJJ7}$	1.05	20.2	0.85
- 36.50	154	0.45	6 BJ 6	1.30	6SK7	0.95	20 EL	1.30
QQV06/40A	155	0.45	6807A	0.85	6SL7GT	0.85	20P1	0.65
16.10	174	0.45	$6 \mathrm{BR7}$	4.80	6SN7GT	0.80	20P3	0.75
QVO3-12 42.20	104	0.80	6BW6	6.20	6SR7	1.10	20 P 4	125
SP61 180	1×28	1.40	68W7	1.80	6SQ7	0.95	$20 \mathrm{P5}$	1.35
T121 $\quad 23.00$	2021	1.10	6 CA	0.50	6V6G	1.50	25L6GT	0.95
$1122 \quad 18.50$		1.85*	6 66	0.55	6V6GT	0.95	2524 G	0.75
U25 1.15	2K25	16.95	${ }^{6} \mathrm{CH} 6$	8.20	6×4	0.95	30 Cl 15	0.50
U26 1.15		24.50*	6CL6	2.75	$6 \times 4 \mathrm{WA}$	2.10	30 C 17	0.50
U 27 l	2X2	1.15	6CW4	8.50	$6 \times 5 \mathrm{GT}$	0.65	30 C 18	245
U191 085	3A4	0.70	$6 \mathrm{CX8}$	3.80	6 66G	0.90	$30 \mathrm{F5}$	1.15
$\mathrm{U} 281 \quad 0.70$	3AT2	2.40	6D6	0.70	624	0.70	30 FL 2	1.40
U301 0.65	$3 \mathrm{D6}$	0.50	$6 \mathrm{F6}$	1.60	787	1.75	30 FL 12	1.25
U600 11.50	3022	23.00	6F6GB	1.10	8BN8	2.95	$30 \mathrm{FL14}$	215
U801 0.90	3 E29	19.00	6 F7	2.80	902	0.70	30 L 15	1.10
UBC41 120	354	0.50	$6 \mathrm{CY5}$	1.15	9D6	2.90	$30 L 17$	1.10
UABC80 0.75	4832	18.25	6 FPG	0.85	10C2	0.85	30 P 12	1.15
UAF42 120	58/254M	16.90	6 FF 12	1.50	10 F 18	0.70	30 PL 13	125
UBF80 0.70	58/255M	14.50	$6 F 14$	1.15	10 P 13	1.50	$30 \mathrm{PL14}$	245
UBF89 0.70	58/258M	12.50	6 F 15	1.30	11 E 2	19.50	35L6GT	1.40
UCC84 0.85	5 C 22	29.90	6 F17	3.20	12A6	0.70	35W4	0.80
UCC85 0.70	5R4GY	120	6 F 23	0.75	12AT6	0.70	3524GT	0.80
UCF80 130	5 U 4 G	0.75	6 F 24	1.75	12AT]	0.65	50 C 5	1.15
UCH42 1.65	5 V 4 G	0.75	6 F33	10.50	$12 \mathrm{AU7}$	0.60	50CD6G	135
UCH81 0.75	5 53GT	0.95	6 FH8	4.20	12AV6	0.95	$75 \mathrm{B1}$	125
UC182 0.95	573	1.50	6GA8	1.95	$12 \mathrm{AX7}$	0.65	75 Cl	1.70
UF41 135	524G	0.75	6GH8A	0.95	12BA6	0.90	76	0.95
UF80 0.95	524GT	1.05	$6{ }^{6} 6$	1.60	128 EG	125	78	0.95
UF85 0.95	6/3012	0.90	6.14	1.35	12 BH 7	1.95	80	1.70
UL84 00.95	6AB7	0.70	6 J 4 WA	200	12BY7A	230	85 A2	1.40
UM80 00.90	6 AC7	1.15	6.55	230	$12 \mathrm{C8}$	0.65		2.55*
UM84 0.70	6AG5	0.60	6 J 5 GT	0.90	12 El	18.95	807	125
UY82 0.70	6 6AH6	1.15	6 J 6	0.65	12 J 5 GT	0.55		$1.90 \cdot$
UY85 085	6 6K5	0.65	6 J 6 W	0.90	12 K 7 GT	0.70	813	19.32
VR105/30 1.25	6AK8	0.60	6JE6C	295	12 K 8 GT	0.80		88.50 *
VR150/30 135	6 AL5	0.60	6JS6C	295	1207 GT	0.60	8298	14.00
$\begin{array}{ll}\text { X66 } & 0.95 \\ \times 6.9 & 1.70\end{array}$	6AL5W	0.85	6JU6	5.85	$12 \mathrm{SC7}$	0.65	832A	8.90
	6AM5	4.20 1.50	6 K 7	0.80	$12 \mathrm{SH7}$	0.65	866A	380
XR1-6400A ${ }^{12500}$	6AM6	1.50 250	$6 \mathrm{KD6} 6$	4.50	$12 \mathrm{SJ7}$	0.70	886 E	625
$2759 \begin{array}{lr}19.00 \\ & 19.00\end{array}$	${ }_{6 A O 4}^{6 A N A}$	2.50	${ }_{6}^{616 M}$	280	$12 \mathrm{Sa7}$	1.45	931 A	1380
27490.75	6A05	1.00	${ }^{6} \mathrm{LL6GC}$	2.65	12 Y 4	0.70	954 955	120
Z800U 3.45	6 A05W	1.80	6L6GT	125	13 O	0.70	956	1.00
Z801U 3.75	6AS6	1.15	6 CLFG	0.65	13 D 5	0.90	957	1.05
Z803U 16.00	6AT6	0.90	6 L18	0.70	1306	0.90	1625	180
Z900T 2.45	6AU6	0.60	6 L06	2.55	14S7	1.15	1629	1.85
VALVES and transistors Telephone enquiries for valves, transistors, etc: retail 7493934 , trade and export 7430899.				POSTAGE: $£ 1-£ 345$ p: $£ 3-£ 555 \mathrm{p} ; \mathrm{f}-\mathrm{f} 1060 \mathrm{p}: \mathrm{f} 10$ £15 75p; $£ 15-£ 2090$ p; over $£ 20$ tree PRICES MAY VARY Dolivery by return of post				
COLOMOR 907/3530 London (ELECTRONICS) LTD. 170 Goldhawk Rd., London W. 12				Tel. 01-749 3934 Open Monday to Friday 9-1 pm, 2.00-5.30 pm.				

ambit's new autumn/winter catalogue

ALL THE ‘USUAL' BITS
(Rs, Cs, Tr's, ICs etc)

+ ALL THE
TRICKY BITS

* TOKO COILS, INDUCTORS, LC FILTERS

* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND

KEYSWITCHES

* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES

DESPATCHED WITHIN 8 WORKING HOURS

* PHONE ORDER SERVICE - (NO MACHINES!)

PLEASE NOTE OUR NEW PHONE SYSTIM AUTOMATICAIIY SIACKS CALLS

> | $8 \mathrm{AM}-7 \mathrm{PM} \underset{0277}{230909}-\mathrm{SAON}$ |
| :---: |

* COMPUTER ORDER SERVICE - 'REWTEL'

6 PM - 9 AM 300 BAUD/RS232
(IT MAY BE 24 HRS BY THE TIME YOU READ THIS)
0277230959

MASMTR THTHYRONICS NOW!

 The PRACITICAT way!This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer? NewHoboby?Getinto.Electronics Now!
 Please send your brochure without any obligation to

BritishNational Radio\&e. Wlectronics School Reading,Berks.RGl BR
T. POWELL ${ }^{311}$ EdgWare Road. London w. 2 SPECIAL OPENING OFFER - A negative ion generator kit

This kit will saturate your home or office with millions of refreshing ions. Without fans or any moving parts it will put our a pleasant breeze. A pure flow of ions pours fans or any moving parts it water from a fountain. The result is that the air feels pure, crisp and wonderout like water fro
fully refreshing.
As a special opening offer we are selling the kit, complete with case for ONLY £18. We also stock PW kits including:-
Amateur TV UP Converter
Morse Practice Oscillator
R.F. Noise Bridge

Beginners Short-wave Receiver
(Components only)
Active Receiving Antenna
Beginners 2 metre Converter
AF Speech Processor

ZW22
ZW16 Jan'82
ZW15 Jan'82
ZW11 Sept '81
ZW10 March '81
ZW6 Sept '80
ZW14

Reprints of articles 40 p extra (+SAE if no kit required) Barclaycard/Access welcome.
Please allow 14 days for deliver
Please allow 14 days for delivery.
We have many millions of components in stock - personal callers are very welcome at our new shop at
311 EDGWARE ROAD, LONDON W2. 01-723 9246

PLEASE

$\mathbf{£ 3 8 1 . 7 4}$ inc. carriage
(Standard unit cost - VAT not included) 4 makome kow Forget all those messy wires, thicRODOT now

MTV435 435 MHz ATV 20 WATT TRANSMITTER * 20 WATTS PSP OUTPUT POWER * BUILT-IN TEST GENERATOR \star TWO VIDEO INPUTS * aERIAL CHANGEOVER FOR RX CONVERTER *TWOCHANNELUSINGPLUGINCRYSTALS This high performance ATV transmitter consists of a two channel exciter, video modulator and a two stage 20 watt linear amplifier. The unit will accept both colour and monochrome signals, and a sync-pulse clamp is incorporated to ensura maximum output. An internal pin diode aerial changeover switch allows connection of the aerial to a suitable receive converter when in the receive mode. (The MRCA35/600 is ideal for this application, and has an output on channel 35 £27.90 inc. VAT, p\&p f1). Full transmit/receive switching is included together with an internal wave form test generator. The unit is housed in a highly durable block diecast case and all circuitry is constructed on high quality glass-fibre printed circuit board. The two stage linear amplifier is housed in a separate intemal compartment, thus ensuring excellent stability.			$] \int$
		MML144/50-S	MML432/30-L
	FEATURES: RTTY TRANSCEIVER \star Complate Transceive Data Communication System using the Latest State of the Art Microprocessor \star Wide Range of Popular RTTY \& ASCII Speeds * 170, 425, 850 AND 1200 Hz Shifts Available on both RX and TX * Four Separate Message Stores \star Compatible with a Standard Parallel ASCII Keyboard and Printer * Stored Test Functions \star Auto Ca Call Facility \star Automatic Carriage Return/Line Feed \star Automatic Letter and Figure Shift * Upper \& Lower Case Display for ASCII Modes of operation Murray Coded RTTY - 45.5, 50, 75, 100 baud. Amatour Standard ASCII 110, 300, 600,1200 baud. In each of these modes the receive converter will accept FSK and AFSK signals. This MM4001KE unit, when simply connected to any HF or VHF transceiver, a standard TV set, and the supplied keyboard, provides a complete data communication capability at a cost of less than half of any similar system. The MM4001 ICB contains a terminal unit, a microprocessor controlled TV interface and the necessary transmit tone generators to enable transmission and reception of RTTY and ASCII, with the minimum of ancillary equipment.	144MHz 50 WATT LINEAR POWER AMPLIFIER A TRULY COST EFFECTIVE PRODUCT! - REAL VALUE FOR MONEY! This new product represents one of the best combinations of high power at a realistic cost. whilst still not requiring a huge power supply. FEATURES: * 50 WATTS OUTPUT POWER FOR 10 WATTS IN * LINEAR ALL MODE OPERATION * STRAIGHT THROUGH MODE AT THE FLICK OF A SWITCH * ULTRA LOW NOISE RECEIVE PREAMP 35K88 - SWITCH SELECTABLE \star RF VOX (WITH MANUAL OVERRIDE) * LED STATUS LIGHTS	432 MHz 30 WATT LINEAR POWER AMPLIFIER Following the success of the ever popular MML144/30-LS, comes a 70 cm equivalent. Designed to complement the many 1 or 3 watt hand held transceivers, this new product will provide an output power of 30 watts. (An internal attenuator controlled by a front panel switch allows the input sensitivity to be selected between $1 / 3$ watts.) An RF VOX circuit is provided to allow automatic changeover and switched delay times for SSB or FM can be selected on the front panel. A low noise receive preamp is included to provide an increased receiver sensitivity. FEATURES: * 30 WATTS OUTPUT POWER * SUITABLE FOR 1 OR 3 WATT TRANSCEIVERS * ULTRA LOW-NOISE RECEIVE PREAMPLIFIER \star RF VOX (WITH MANUAL OVERRIDE) * LINEAR ALL MODE OPERATION * LED STATUS LIGHTS \star SUPPLIED WITH ALL CONNECTORS
£149 inc VAT (p\&p £2.50)	£299 inc VAT (p\&p £4.00)	f85 inc VAT (p\&p £2.50)	f99 inc VAT (p\&p £3.00)
ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS (INCLUDING PA TRANSISTORS)			
	MICROWAVE MODULES BROOKFIELD DRIVE, AINTREE, LVERPOOL L9 TAN, ENGLAND Telephone: 051-523 4011 Telex: 628608 MICRO G CALIERS ARE WELCOME, PLEASE TELEPHONE FIRST		HOURS: MONDAY TO FRIDAY $9-12.30,1-5.00$

Uneaso
WELZ BRIDGES IN STOCK

LCOM.

VHF EQUIPMENT

FT 2908 2m all mode portable transceive

(inc charger)
FT $480 \mathrm{R} \quad 2 \mathrm{~m}$ all mode mobile/base station $£ 369$ FT $780 \quad 70 \mathrm{cms}$ version Sommerkamp SC 1 base station console for 480 \& 780 $\begin{array}{ll}\text { FT 208RE } 2 \mathrm{~m} \text { Hand portable transceiver } & \left.\begin{array}{l}\mathrm{£} 125 \\ £ 209 \\ \hline\end{array}\right)\end{array}$ FT 708 RE 70 cms version of above E 219 F207- SPECIAL OFEER
 TS 280 **NEWVERSION** 144-148 12 $12 / 25$ kHz Reverse repeater, 50 Watts output $\quad £ 229$ FT 725 FM mobile. SPECIAL OFFER

L0ี®0๋K SPECIAL PRICES
FT307
$\begin{aligned} & \text { Similar to FT10 } \\ & \text { but with all optio } \\ & \text { RRP £1050 }\end{aligned}$

Mobile base
2 metre multimode
RRP E279
\ddagger
549

VHF

Fr2soR
Mobilie/portable improved front end with free charger

$€ 239$
FT207R Hand portable complete.
All for £169 2m AMPLIFIERS

FL 2050 (100W)

FL 2010 (10W) Specially for use with FT290 $\quad \mathbf{£ 6 5}$

RECEIVERS

FRG 7700 (With memories fitted) FRG7 7
Bearcat 220FB. SPECIAL OFFER

STOP PRESS
4 dB colinear, only
We stock genuine Sommerkamp quality accessories

NT30 12V3A regulated P/S £23. NT60 12V3A regulated P/S £30. YS2000 SWR bridge \& power meter, reads 200W output from YS2000 SWR bridge \& power meter $1.8-150 \mathrm{MHz} \mathrm{f54}$.

ICOM

IC BC30
 IC BC30 IC BC25
 $\begin{array}{ll}\text { IC BC30 } & \text { 230V AC Base Charger and } \\ \text { IC BC25 } & \text { 230V AC Trickle Charger } \\ \text { IC CP1 } & \text { Car Charginglead }\end{array}$

IC BP2 6V Nicad Pack for IC2E IC BP3 gV Nicad Pack for IC2E IC BP4 Empty Case for $6 \times$ AA Nicads IC BP5 11.5 V Nicad Pack for IC2E IC DC1 12V Adaptor Pack for IC2E IC MLI 10W Booster IC730

FTT90 SOON IN STOCK
 We also carry a range of products from other manufacturers such as JAYBEAM, MICROWAVE MODULES, L.A.R., DATONG, CUSHCRAFT etc.

A selection of marine and commercial equipment is also available.

ALL PRICES MAY CHANGE OWING TO CURRENCY EXCHANGE FLUCTUATIONS.
VA
All prices include VAT. HP terms available. Part Exchange. Access and Barclaycard welcome, Goods normally despatched by return of post.

41 Sutton Road, Wigan Road, Bolton. G4GHE 800 yds from Junc. 5 M61. Easy Parking. Tel: (0204) 652233

E39.00 E4.25

IC720A 5 £3.20 PS15 $\mathbf{£ 2 2 0 0}$ IC251E
$\mathbf{~} 17.70$ IC25E
\qquad $\$ 5.80$ 30.50 IC290E
$\begin{array}{llll}\text { E. } 40 & \text { IC2E } & \text { 2M Multimode Mobile } & \text { E366.00 }\end{array}$ Receiver
Power Supply for 720A $\mathbf{6 9 9 . 0 0}$ Mynthesised Compact 25W M Multimode Mobile \quad E259.00 Soft Cynthesised Handhe Speaker/Microphone
$\mathbf{~} 3.50$
$\mathbf{£ 1 2 0 0}$

FT90R 70cms P.O.A.

FT102 ALL OPTIONS £779

HF
 EQUIPMENT

FT $7 B \& Y C 7 B$
£459
FP 12 (Matching p.s.u.) FT 767 ($=$ FT 707) mobile HE
f629
FT 27720 (=FT1012D) Sommer 662 FT101ZD) Sommerkamp unit with overything fitted (AM or FM, you The ultimate in HF transceivers. FT $1 \quad \begin{aligned} & \text { The ultimate in } \mathrm{HF} \text { transceivers. } \\ & \text { Supplied with all extras fitted P.O.A } \\ & \text { FL } 277 Z \mathrm{D} \\ & \text { HF Amplifier } 2 \mathrm{~kW}\end{aligned}$
$\mathbf{~ 4 4 3 9}$ FL 2772 ZD HF Amplifier 2 kW External spea
available

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

VALVES, RADIO, TV. Industrial transmitting, despatched to all parts of the world by post, 6000 parts in stock. Quotation S.A.E. Cox Radio (Sussex) Ltd., The Parade, East Wittering, Sussex. 2023 (024 366).
MAIDSTONE has its own Component Shop. Thyronics Control Systems, 8 Sandling Road, Maidstone. 675354.
BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies) late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel. 302204. Closed Weds.

BRAND NEW COMPONENTS BY RETURN

HIGH STABILITY MINIATURE FILM RESI

.125W E12 Series 10 R to $1 \mathrm{MB}-2 \mathrm{Z}$. 0.5 W E12 Series 1RO to 10 MO .- 1 Ip. 1.0 W E12 Series 10 R to $10 \mathrm{MO}-3 \mathrm{p}$. \ddagger W Metal Film E12 series 10 R to 1 MO 5\%-2p. 1\%-3p.

CAPACITORS.
SUBMINIATURE Coramic E12 100V 2\% 1.8 pf to 47 pt --3p 2% b6pt. to 330 pf . 4 p . $10 \% 390 \mathrm{pf}$. to 4700 pf . 4 p Plate Ceramic 50 V Wkg. Vertical Mounting.
E12 22 pf . to 1000 pf . E6 1 K 5 p . to 47 Kpf .- 2 p
 $0.68-11$ p. $1.0-15$ p. 1.5-20p. 2.2-22p ELECTROLYTIC. Wire Ended (Mfds/Volts).

0,47/50	59 22/25		100/25		470/25	11p
0/50	/50		00/5	8 p	470/40	
22/50	5p $47 / 16$		220/16		1000/15	
4.7/50	5p 47/25		220/25	8	1000/2	25p
10	47/50		220/5	$10 p$	1000/4	35p
116	6 p 100/1		470	11	2200/	
TANTALUM BEAD SUBMINIATURE ELECTROLYTICS $0.1,0.22,0.47 .1 .0,2.2,35 \mathrm{~V}$ \& $4.7=6.3 \mathrm{~V}-14 \mathrm{p}$ $4.7 / 16 \mathrm{~V}$ \& $25 \mathrm{VV}-15 \mathrm{p} .10 / 16$ \& 22/6-20p. $10 / 25-29 \mathrm{p}$ $10 / 35 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6.3 \mathrm{~V}, 68 / 3 \mathrm{~V}$ \& $100 / 3 \mathrm{~V}-30 \mathrm{p}$ 15/25, 22/25, 47/10-35p. 47/16-80p. 220/16-f1.20 Polystyrene 63 V Wkg. E12 Series Long Axial Wires. 10 pf. to 820 pf.-3p. 1000 pf. to 10,000 pf,-4p						
TRANSISTORS.						
	12p	BC182L	8 p	BF19		10
BC147/	/8/9 10p	8C184L	8 p	BFYS	50/5	
BC157/8	10p	BC212L	8p	BFX		25p
547	C/8C/9C 7p	BCY70	15p	2N2		7p
		195	10p			

 16p. 24 Pin-22p. 28 Pin-25p. 40 Pin-30p.
DIODES (p.t.v./amps).

$75 / 25 \mathrm{~mA}$	iN4148).	2p	1250/1A	8
100/1A	1N4002	4p	400/3A	1N5404
800/1A	IN4006	6p	60/1.5A	S1M1

1000/1A
$\begin{array}{ll}\text { N4006 } & \text { 6p } \\ \text { N4007 } & 7 p\end{array}$
$60 / 5 A$
$30 / 150 \mathrm{~mA}$
$\begin{array}{ll}\text { S1M1 } & 5 p \\ \text { AAY32 } & 12\end{array}$
ZENER DIODES
L.E.D.'s 3 mm . \& 5 to $33 \mathrm{~V} 400 \mathrm{~mW}-8 \mathrm{p}$. $1 \mathrm{~W}-14 \mathrm{p}$ Grommets for 3 mm . Red- 10 p . Green, Yellow- 14 p FUSES. 20 mm . Glass. 100 mA to $5 A$. Q.B. -5 p . A/S 8 p $5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}$ \& $24 \mathrm{~V}, 1 \mathrm{~A}-55 \mathrm{D}$
PRESET POTENTIOMETERS
PRESET POTENTIOMETERS
$50 \mathrm{~mW} \& \frac{1}{4} \mathrm{~W} 100 R$ to $1 \mathrm{MO}-7 \mathrm{p}$.
PAIRS BATTERY SNAPS PP3-6p. PP9-12p.
THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffield S8 ORN.
V.A.T. Inclusive Prices, Postage 15p (FREE over £5.00)

SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Dept., Practical Wireless, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in

 advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.
Abstract

BIG BARGAIN BOX Our Big Bargain Box contains over a thousand components - resistors, capacitors, pots, switches, diodes ransistors, panels, bits and pieces, odds and ends. Al useful stuff - would cost many times the price we are asking if bought separately. Approx. weight 4lbs. ONLY $£ 5.00$ inc. post - you're bound to come back for another!!!

ESP 147B, FOUNDRY LANE, SOUTHAMPTON, SO1 3LS. Lots of surplus bargains on our latest list - send an SAE for your copy now

RADIO CANADA, Radio Peking, Voice of America, Radio Moscow. A Vega 308 (short, medium, F.M.). Pulls these and dozens more, daily. £19.99 inclusive. Corrigan Radiowatch, Building 109, Prestwick Airport, KA9 2RT.

VHS CONVERTORS. $2 \mathrm{M}, 4 \mathrm{M}$, airband, marine. Mosfet RF stage 10.7 MHz IF. Feed SW receiver or IF strip. Mechanically tuned, $6: 1$ reduction. $£ 9$ each inc pp. SAE data, lists. H. Cocks, Cripps Corner, Roberts Bridge, Sussex. Tel: 058083 317.

GOVERNMENT SURPLUS components 8 equipment. Send SAE for list. A.F.R. Electronics, School Lane, Moulton, Northampton.

E GOVT NEW SURPLUS RELEAS

Ex GOVT. LEAD ACID ACCUMULATORS. Brand new 10V. 5Ah. Famous manufacture. Easily tapped in 2 v stages. Size only $\mathbf{7}^{\prime \prime} \times \mathbf{5}^{\circ} \times \mathbf{2}^{\prime}$. Ideal for emergency lighting and powe者
 despatched unfilled. Robust wooden tray with carrying handles. Holds 8 accumulators C .
CORDLESS INDUCTIVE LOOP HEADPHONES. Self powered. Input via loop or external min. BNC socket Contains transistorised high gain amplifier. Operates from iternal batteries. Noise excluding muffs. Switch on whe laced on head. Special offer whilst stocks last. ©6, p.p. $£ 2.2$ GHTWEIGHT HEA
GHTWEIGHT HEADSETS. (Gove Release). Brand 600 ohrms impedance. A bargain at $\mathbf{4 3} .50$, p.p. $\mathbf{6} 1.2$ pairs or 67 poss free
DICULOUS RESISTOR SALE. Brand new $\frac{1}{2}$ wat carbon film resistors. 5% tod. High quality resistors made to exacting specifications by automatic machines. E12 range. IRO
to 10 M . In lots of 1000 (25 per value). Only $\mathrm{E8}$ per 1000 . Lots of 5000 for $\$ 35.1 \mathrm{RO}$ to 10 M . 000 FCB per 10 resistor C2.50. Bull purchase emables us to offer 1000 mixed pre formed carbon film resistors 5% tol For PCB mounting. Huge ange of preferred values. $\mathbf{2 2 . 5 0}$ per 1000. 4000 for $\mathbf{8 8}$
GENUINE AFV TANK HEADSETS AND MIKE $\mathbf{6 3 . 5 0}$ per pair, p.p. $\mathrm{fI}, 2$ pairs 67 post free All headphones fitte with Ex ministry plug Sandard jack plugs anilable 25 peach 2 or 40 p . Headphone extersion sockets avihble at $\mathbf{2 5 p}$ each, 2 for 40p. Impedance of first two items 600 ohms. All head phones in good condition.
THE GOVT. SURPLU
THE GOVT. SURPLUS WIRELESS EQUIPMENT HANDBOOK. This useful handbook gives detailed information and circuit diagrams for British and American Government Surplus Receivers, Transmitters and Test Equipment etc. Also provements for Surplus equipment. Incorporated in this revised edition is a Surplus/Commercial cross referenced valve and transistor guide. Latest revised facsimile edition Limited number of copies of this invaluable book which is now standard reference work in this field. Only $\mathbf{\text { E7.50}}$, p.p. $\mathbf{C 1} .50$. No VA.T, on books.
New release of MODERN DYNAMIC MOVING COIL MICROPHONES. 200 ohms impedance. Switch incorporatd. Mostly with lead and DIN plug. Used but nice condition. 3 designs of case housing. Price one mike our choice $\mathbf{C 2}$ plus 50 p GENUINE EX-GOVT COLIAPIFIRIE
itly adiustable highly efficient whip aerial in 5 secioriALS. A $1 \frac{1}{1}$ metres. Closed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used on Ex Govt. Manpacks. Brand new in makers boxes. $\mathbf{£ 2} 50$ each, P.P. 75 . 2 for 25 post free.
HAVE YOU SEEN
HAVE YOU SEEN THE GREEN CAT. 1000 s of new components, radio, electronic, zudio at unbelievably low Srices. Send 50 P and receive catalogue and FREE RECORD SPEED INDICATOR Try a JUMBO PACK Contains transistors, resistors, caps, pots, switches, radio and electronic deMINI UMBO PACK (C20 worth) for ES, p.p. 1150 . PLEASE
5% V.A.T. to all orders including carriage and p.p.
MYERS ELECTRONICS Dept. PW
$12 / 14$ Harper Street, Leeds LS2 TEA. Leeds 452045. Callers wekome 9 to 5 Mon. to Sat. Sunday 10 till 3 pm. Govt. surplus items always in stock.

CRYSTALS Brand new high-precision. You benefit from very large stocks held for industrial supplies. All normal freq standards, baud rates, MPU, and all magazine projects inc:
$\mathrm{HC} 33 / \mathrm{U}: 1.0, £ 3.75,2.5625 \mathrm{MHz} £ 3.50$. $\mathrm{HC1} / \mathrm{U}: 4.0$, .0. 6.0 7.0. 8.0. 9.0. 10.0. 10.7. 12.0, 15.0, 16.0, 18.0, $20.0,38.6667 \mathrm{MHz}, £ 3.35$. Selected freqs stocked in Glider. Marine and 27 MHz bands. Any freq made to order in 8 weeks from $£ 4.50,2-3$ week service available. CB Beat "Bleed-Over" with our special $10.695 \mathrm{MHz}, 7 \mathrm{kHz}$
BW. HC $18 / \mathrm{U}$ Filters $\mathrm{E4.00}$ each. Quantity discounts. Many crystals stocked for 8 conversions.
Prices inc. VAT and UK post. SAE lists.

P. R. GOLLEDGE ELECTRONICS

 Tol: 046073718Surplus to our Industrial Usage.

POTENTIOMETERS
 SPINDLE \& PRESET

100 mix $£ 5.75$ inc. VAT, P \& P.
C.W.O. - cheque, P.O. or Access.

BLORE-BARTON LIMITED

Reedham House, Burnham, Bucks.

Aerials

AERIAL, WIRE 14G hand drawn copper $13 \mathrm{p} / \mathrm{m}$. 50 ft drawn copper $£ 5$ per 100^{\prime} coil. Aluminium 1.6 mm dia., $13 \mathrm{p} / \mathrm{m}$. Postage up to $20 \mathrm{~m}, £ 1.40$. Over $20 \mathrm{~m}, £ 2$. Add VAT to total. WESTERN ELECTRONICS (UK) LTD, Dept PW, Fairfield Estate, Louth, Lincs. LN11 0JH.
COPPER AERIAL WIRE 14 swg hard drawn $70^{\prime} £ 5.50,140^{\prime}$ $£ 8.90$ inc. VAT. Postage $£ 1.75$. T.M.P. ELECTRONIC SUPPLIES, Unit 27, Pinfold Workshops, Pinfold Lane, Buckley, Clwyd, North Wales.

AERIAL WIRE 16 swg (14 awg) hard drawn copper 50 metres $£ 5.90$ incl. postage. S. M. Tatham, 1 Orchard Way, Fontwell, Arundel, W. Sussex.
AERIAL BOOSTERS. Improve UHF/VHF Television, VHF Radio Reception. Price from £7. SAE leaflets. Electronic Mailorder Ltd, Ramsbottom, Lancashire, BL0 9AGW.

G2DYM ANTI-INTERFERENCE ANTI-TVI TRAP DIPOLES
 TX \& S.W.L. MODELS OR KITS

Data Sheets Large SAE. Aerial Guide
50 p. Indoor and Invisible Aerials $\mathfrak{£ 3 . 5 0}$.
Callers welcome
Tel: 03986-215

G2DYM, Uplowman, Tiverton,
 Devon.

Services

SHEET METAL WORK, fine or general front panels chassis, covers, boxes, prototypes. 1 off or batch work, fast turnround. 01-449 2695. M. Gear Ltd., 179a Victoria Road, New Barnet, Herts.

Software

RTTY ON BBC MICRO. Program cassette $£ 7.50$. SAE Details and Software list. Terminal units also available. R. Sterry, 1 Wavell Garth, Sandal, Wakefield, W. Yorkshire.

Books and Publications

AIRCRAFT COMMUNICATIONS HANDBOOK (UK/Europe) including spot MF, HF, VHF, UHF, frequencies, Military \& Civil Airports, Air Traffic Control Centres, Long Range Stations, Meteorological Broadcasts, Broadcast Times, Navigation Beacons, Co-ordinates, Callsigns, Maps, etc $£ 7.50, \mathrm{P} / \mathrm{P} £ 1$. PLH ELECTRONICS, 97 Broadway. Frome, Somerset, BAll 3HD.

ELECTRONICS BOOKS. International publishers. Lowest rates. Ask list. Business Promotion, 376 Lajpatrai Market, Delhi, India.

LIST SECONDHAND BOOKS for sale 100 Nos Wireless/TV/Telegraphy etc. SAE please, Gosing Books, 19 Moorside Road, West Moors, Dorset.

POPULAR FREQUENCY CHECKLIST (Europe \& U.K; medium \& long wave) with unique map for bearings anywhere. $£ 1$ postpaid or 7 IRC. - DIAL-SEARCH, 9 Thurrock Close, Eastbourne, BN20 9NF.
"WORLD RADIO TV HANDBOOK" 1983, write for price and publication date. Pointsea, 25 Westgate, North Berwick, East Lothian.

Personal

START YOUR OWN profitable home-based import/export business today. Free introductory offer. Worldwide Business Opportunities, Dept. B11, 151 Harefields, Oxford.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list - Offer by return - WALTONS, 55A Worcester Street, Wolverhampton.

Veteran \& Vintage

VINTAGE RADIO'S. Over 200 always in stock from 1920s to 1950s. Including T/V Service Sheets etc. Radio Vintage, 250 Seabrook Road, Seabrook, Nr Hythe, Kent, CT21 5RQ. Phone Anytime 0303-30693. (Late Clock Shop, Folkestone.)

For Sale

YAESU 7700M RECEIVER (12 memories), plus matching ATU. Mint condition. £345 o.n.o. Buyer collects. Tel. Newbury 46679.

DIY QSL CARDS. Just add your own callsign, etc. Also SWL design 50 for $£ 1.70 .100$ for $£ 3.00$ inc. P\&P. SAE for samples. LAM ELECTRONICS (PW) 47 Golden Miller Road, Cheltenham, Glos. Tel: 024243891 (24hr).

LIST-A-RIG. A service offered by G3RCQ Electronics to introduce buyers and sellers of used amateur equipment. Buying? its free, just send an S.A.E; Selling/Wanted? send S.A.E for details on how to join the fast growing list. List-ARig is sent and updated daily. No waiting no deadlines. List-A-Rig (PW) 65, Cecil Avenue, Hornchurch, Essex, RM11 2NA.

JULIAN G6HH

CALL SIGN LAPEL BADGES PROFESSIONALLY ENGRAVED AND BY RETURN OF POST
£1.50. State Name and Callsign.

AYLMER KELLY-P 2 PICKWICK ROAD, CORSHAM, WILTS. SN13 9BJ

24 VOLTS NI-CAD BATTERY (new) contains $20.5 \mathrm{~A} / \mathrm{H}$ cells. $£ 8$. Tel. Leeds 496048 after 7.00 pm .

RARE AUDIO AMP IC's Matsushita AN7140 small quantity. Only $£ 5.00$ each. Tel. 073566087 . Private.

YAESU FT101ZD (AM) MIC $£ 400$ o.n.o. Y0901 Monitorscope. Offers. Steve 66 i CN , Ware 68555 evenings.

LLOYTRON 12 BAND RECEIVER. Mains/battery. Boxed as new £85. Redditch 23921.

MORSE CODE CASSETTES. C90 $8-13 \mathrm{wpm}$ in groups of five. Plain language, 3 minutes sections, numbers, exam pieces etc, with readback! Inclusive price $£ 3.20$. S. M. Spain (Bromsgrove) Ltd, 2 New Road, Bromsgrove, Worcs. Phone 72460.

AMATEUR EQUIPMENT bought and sold. Cash waiting. Contact G3RCQ Hornchurch 55733 evenings.

BADGES PROFESSIONALLY ENGRAVED! Call signs, CB, clubs, management, sales teams, shops etc. SAE for details, or $£ 1.25$ with your Call Sign etc. Rugeley Electronics, 30 UpperBrook St., Rugeley, Staffs.

HAMEG HM412-4 OSCILLOSCOPE with case, probes, nearly new, $£ 325$ o.n.o. Phone Whitchurch (Shropshire) 3041.

SONY ICF 2001 RECEIVER with accessories as new $£ 95$. Tel. Dartford 76327 evenings.

SMALL REED SWITCHES 10p. Magnets 17p. Small DC Solenoids 35 p. Postage 25 p. Grimsby Electronics, Lambert Road, Grimsby, S. Humberside. Hundreds Bargains at shop. SAE List.

Miscellaneous

WAVEGUIDE, FLANGES \& DISHES. All standard sizes \& alloys stock. Special sizes to order. Call Earth Stations, 01-228 7876. 22 Howie Street, London SW11 4AR.

SUPERB INSTRUMENT CASES by Bazelli, manufacture from PVC. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low $£ 1.05$. Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI, (Dept. No. 25) St. Wilfrid's Lane, Halton, Lancaster LA1 6LT.
ALUMINIUM TUBES/RODS for masts/acrials. Nerva Metals, Wembley, Middlesex. Tel. 01-904 4647.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MORSE CODE CASSETTES LANGUAGE CASSETTES

Cassette A: 1-12 w.p.m. for amateur radio examination.
Cassette B: 12-25 w.p.m. for professional examination preparation. Each cassetten is type C90. Price each Cassette (including booklets) $\mathbf{£ 4 . 7 5}$ Rayles 'Speekeezy' Spanish, German, French or Italian $£ 4.95$ each.
Price includes postage etc. UK only.
MH ELECTRONICS (Dept PW),
12 Longshore Way, Milto
Portsmouth PO4 8LS.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E.4. Telephone 01-531 1568 ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 oz	2 oz
8 to 34	330	1.90	1.00	0.80
35 to 39	3.52	2.10	1.15	0.85
40 to 43	4.87	2.65	2.05	1.46
44 to 47	8.37	5.32	3.19	2.50
48 to 49 SILVER PLATED COPPER WIRE ${ }^{15.96}$				
14 to 30	7.09	4.20	2.43	1.72
TINNED COPPER WIRE				
14 to 30	- 3.97	2.41	1.39	0.94
FLUXCOR SOLDER				
	5.75	3.16		0.96
Prices include P\&P and VAT.				
SAE for list of Copper/Resistance Wire.				
Dealer enquiries welcome.				

Service Sheets

TECHNICAL INFORMATION SERVICE

SERVICE SHEETS: full size by return - radio, mono etc. $£ 2$ + large sae. CTVs \& Music Centres from $£ 3$.
SERVICE MANUALS: sole suppliers most obsolete equipment. Everything stocked to latest releases. Fantastic stocks CTVs/
videos. E.g. A823 $£ 6.50$; Autovox (early) $£ 6.50$.
TV AND VIDEO: unique repair manuals and collections of circuits - L.s.a.e. for price lists.
Quotations/free 50p magazine/pricelistsletc., for large s.a.e.
$£ 2$ plus $8^{\prime \prime} \times 10^{\prime \prime}$ s.a.e. for service sheet and manual catalogues with $£ 4$ vouchers.
PHONE 0698883334 FOR FAST QUOTES - Open 4-6 daily, 11-1 weekends T.I.S., 76 CHURCH ST., LARKHALL, LANARKSHIRE ML9 1 HE.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc., $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road. Harrogate, N. Yorkshire. Tel (0423) 55885.

Courses

CONQUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C1, Reading, Berks. RG1 IBR

Educational

COURSES - RADIO amateurs examination. City \& Guilds. Pass this important examination and obtain your licence, with any RRC Home Study Course. For details of this and other courses (GCE, professional examinations, etc.) write or phone - THE RAPID RESULTS COLLEGE, Dept JX6, Tuition House, London SW19 4DS. Tel: 01-947 7272 ($9 \mathrm{am}-5 \mathrm{pm}$) or use our 24 hr Recordacall Service: 01-946 (9am-5pm) or use our 24 .
1102 quoting Dept. JX6.

- E UNION MILLS, ISLE OF MAN
 Tel: MAROWN (0624) 851277

Going to Exhibitions lets us meet people, who are normally just 'phone voices or letters, to give us valuable "feedback". Comments like "Your Pre-amp/Poweramps are the BEST". "My SENTINEL 35 exceeds your spec." or "I experiment with antennas \& your TRANZMATCH \& EZITUNE will match ANYTHING" make the hard work seem worthwhile. So thanks to everybody in Leicester who came to buy, look or just pass comment.

SENTINEL 2M LINEAR POWER/PRE-AMPLIFIERS
Now feature either POWER AMP alone or PRE-AMP alone or both POWER AND PRE-AMP or STRAIGHT THROU when OFF. Plus a gain control on the PRE-AMP from 0 to 20 dB . N.F. around 1 dB with a neutralised strip line DUAL GATE MOSFET.
Ultra LINEAR for all modes and R.F. or P.T.T. switched. 13.8 V nominal supply. SO239 sockets.

1. SENTINEL 35 Twelve times power gain. 3 W IN 36W OUT. 4 amps. Max. drive $5 W .6^{\prime \prime} \times 23^{\prime \prime}$ front panel, $42^{\prime \prime}$ deep. $\mathbf{£ 6 2 . 5 0}$ Ex stock.
2. SENTINEL 50 Five times power gain. 10W IN 50W OUT. Max. drive 16W 6 amps. Same size as the Sentinel $35 . \mathbf{£ 7 4 . 5 0}$ Ex stock.
3. SENTINEL 100 Ten times power gain. 10W IN 100W OUT. Max. drive 16W Size: $62^{\prime \prime} \times 4^{\prime \prime}$ front panel, $32^{\prime \prime}$ deep. 12 amps. $\mathbf{£ 1 0 0}$ Ex stock.
POWER SUPPLIES for our linears $6 \mathrm{amp} £ 34.12 \mathrm{amp} £ 49$.
SENTINEL AUTO 2 METRE or 4 METRE PRE-AMPLIFIER
Around 1dB N.F. and 20dB gain, (gain control adjusts down to unity) 400W P.E.P through power rating. Use on any mode. 12 V 25 mA . Sizes: $1 \frac{1}{}^{\prime \prime} \times 2 \mathrm{l}^{\prime \prime} \times 4^{\prime \prime}, \mathbf{£ 2 8 . 0 0}$ Ex stock.
PA5 Same specification as the Auto including 240V P.S.U. $£ 33.00^{*}$ SENTINEL STANDARD PRE-AMPLIFIER £15.00* Ex stock.
PA3. 1 cubic inch p.c.b. to fit inside your equipment. $£ 10.00$ Ex stock. 70 cm versions of all these (except PA5) $\mathbf{£ 4 . 0 0}$ extra. All ex stock.
S.E.M. TRANZMATCH

The most VERSATILE Ant. Matching system. Will match from 15-5000 Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means no connection to the equipment which can cure TV1 both ways. SO239 and 4 mm connectors for co-ax or wire feed. 160-10 metres TRANZMATCH £69.60, 80-10 metres $£ 62.60$. EZITUNE built in for $\mathbf{£ 1 9 . 5 0}$ extra. (See below for details of EZITUNE). All ex stock.
3 WAY ANTENNA SWITCH 1 Kw SO239s. Good to 2 metres. $\mathbf{£ 1 5 . 0 0}$ Ex stock. S.E.M. 2 METRE TRANZMATCH. $51^{\prime \prime} \times 2^{\prime \prime}, 3^{\prime \prime}$ deep. SO239s, $\mathbf{2 4 . 9 0}$ Ex stock.

S.E.M. EZITUNE

Clean up the bands by tuning up without transmitting.
Connects in aerial lead, produces $\mathrm{S} 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U. or aerial for minimum noise. You have now put an exact 50 Ohms into your transceiver. Fully protected, you can transmit through it, save your P.A. and stop QRM. $\mathbf{£ 2 5 . 0 0 ^ { * }}$ Ex stock. P.c.b. + instructions to fit in any A.T.U. $£ 19.50$ Ex stock.
S.E.M. AUDIO MULTIFILTER

To improve ANY receiver on ANY mode. The most versatile filter available. Gives "passband" tuning, "variable selectivity" and one or two notches. Switched Hi-pass, Lo-pass, peak or notch. Selectivity from 2.5 KHz to $\mathbf{2 0 H z}$. Tunable from 2.5 Kz to 250 Hz . which covers 10 KHz to 100 Hz . 12 V supply. Sizes: $6^{\circ} \times 2 \frac{2}{}^{\prime \prime}$ front panel, $32^{\prime \prime}$ deep, all for only 557.00 Ex stock.
SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFIER $2-40 \mathrm{MHz}$, 15 dB gain. Straight through when OFF, $9-12 \mathrm{~V} .22^{l^{\prime}} \times 1 \frac{1}{}^{\prime \prime} \times 3^{\prime \prime} .200 \mathrm{~W}$ through power. $£ 19.55^{\circ}$ Ex stock. SENTINEL STANDARD H.F. PRE-AMPLIFIER. No R.F. switching. $\mathbf{£ 1 2 . 6 2 { } ^ { * }}$ Ex stock.
S.E.M. IAMBIC KEYER

The ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching. $\mathbf{£ 3 4 . 5 0}$ Ex stock. Twin paddle touch key. $\mathbf{£ 1 2 . 5 0}$ Ex stock.

S.E.M. VISA 80 METRE RECEIVER

Already a great success. If you want an 80 metre ($3.5-3.8 \mathrm{MHz}$) Rx. Only $2 j^{\prime \prime} \times 6^{\prime \prime} \times$ $3^{\prime \prime} .12$ volt operation. I.W. o/p. This is for you. Still only $£ 39.00$. FREQ. CONVERTERS from 10 KHz to 2 metres in stock.
12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.
Prices include VAT and delivery. C.W.O. or phone your credit card number for same day service.
*Means Belling Lee sockets, add $£ 1.90$ for S0239s or BNL sockets. Ring or write for more information. Place orders or request information on our Ansaphone at cheap rate times.

		159 Fallsbrook Road, Streatham, SW 16 6ED. SPECIAL EXPRESS MAIL ORDER SERVICE						
	${ }^{1}$	EM87		PY81 $\quad 1.50$			607	3.75
AZ31	2.75	EN91	7.05	PY82 1.50 PY83 125	6AQS	3.50 2.25	6SA7	3.00
$\mathrm{CL}^{3} 3$	4.00	EYSI	2.75	$\begin{array}{ll}\text { PY83 } & 1.25 \\ \text { PY88 } & 200\end{array}$	6ARS	3.50	$6 \mathrm{SC7}$	2.75
DY86/7	1.50	EY86	1.75	PY88 2.00	6AS6	8.66	6 Sy	3.25
DY802	1.50	EY88	1.75	PY500A 3.00	6AS7GA	8.75	$65 \mathrm{K7}$	3.50
E88CC	7.46	EYS00A	3.00	PY800 PY801 150	6AT6	1.25	6SL7GT	3.00
E180F	9.90	EZ80	1.50	PY801 1.50	6AUSGT	5.00	6SN7GT	3.00
E810F	21.25	EZ81	. 50	Covo -6i6.50	6AU6	2.50	6 SS7	2.75
EABC80		GY5O1	3.00	QQV03-10	6AW8A	3.75	6SG7M	2.50
E891	1.50	GZ32	2.50	- 14.10	687	3.25	6U8A	2.25
EBF80	50	GZ33	4.75	QQV03-20A	$6 \mathrm{B8}$	3.25	${ }^{6 V 6 G T}$	2.25
EBF89	1.50	GZ34	3.00	48.38	6BA6	1.50	6×4	2.00
EC91	8.00	GZ37	4.75	QQV06-40A	6BA7	5.00	6 X 5 GT	1.75
ECC33	4.50	KT61	5.00	48.38	6BE6	1.50	75 Cl	4.50
ECC35	4.50	KT66	8.00	QV03-12 6.80	68H6	2.50	85A2	4.45
ECC81	1.75	KT77	8.00	$\begin{array}{ll}\text { R18 } \\ \text { R19 } & 9.24\end{array}$	6 Bl 16	2.25	90 Cl	6.00
ECC82	1.75	KT88	11.00	$\begin{array}{ll}\text { R19 } & 2.50 \\ \text { SP41 }\end{array}$	68N6	2.00	15082	6.50
ECC83	1.75	N78	15.00	SP41 6.00	6897A	3.50	50 C	3.25
E	1.75	OA2	3.25	SP61 4.00	6BR7	6.00	150 C 4	6.00
ECC	2.10	$\mathrm{OB2}$	4.35	U19 13.75	6BRBA	3.50	$12 \mathrm{AX7}$	1.75
ECC91	8.93	$\mathrm{OC}^{\text {O }}$	2.50	U25 2.50	6BS7	6.00	12BA6	2.50
ECF80	1.55	OD^{2}	2.50	U 26	6BW6	6.00	$128 E 6$	2.50
ECH35	3.00	PC 86	2.50	U37 12.00	68W7	1.50	12BY7A	3.00
ECH 42	3.50	PC88	2.50	UABC80 1.25	6BZ6	2.75	$12 \mathrm{HG7}$	4.50
ECH81	3.00	PC92	1.75	UBF89 1.50	$6{ }^{6} 4$	1.25	30FLI/2	1.38
ECLB0	1.50	PC97	1.75	UCH42 2.50	${ }^{6} 6$	1.75	3004	2.50
EC182	1.50	PC900	1.75	UCH81 2.50	${ }^{6}$ CB6A	2.50	30 Pl 9	2.50
ECL83	3.00	${ }^{\text {PCFP80 }}$	2.00	UCL82 1.75	6CD6GA	5.00 3.75	30 PL 13	1.80
EC186	1.75	PCFP2	1.50	UCLB3 2.75	${ }^{6}{ }^{\text {CLL }}$	3.75	30 PL 14	1.80
EF37A	5.00	CFB6	2.50	UF89 2.00	${ }^{6} \mathrm{CH} 6$	13.00	75 Cl	4.50
EF39	2.75	PCF801	2.50	UL4 315	6 CW 4	8.00	85 A 2	4.45
EF41	3.50	PCF802	2.50	$\begin{array}{ll}\text { U184 } & 1.75 \\ \text { UY41 } & 2.25\end{array}$	606	1.75 600	90C1	6.00
EF42	4.50	PCF805	1.70		6 CO 5	6.00	15082	6.50
EF50	2.50	PCF808	1.70	UY85	6EAB 6EH5	3.00	150 C 2	3.25
EFS4	5.00 3.50	${ }^{\text {PCLH200 }}$	3.00 2.00	VR105330 2.50	6EHS 6 FG	1.85 3.00	150C4	6.00
EF80	1.75	PC183	3.00	$\begin{array}{ll}2759 & 25.00\end{array}$	6Gk6	2.75	805	45.00
EF86	1.75	PCL84	2.00	Z803U 19.00	6H6	3.00	807	3.75
EF91	2.95	PCL185	2.50	$2 \mathrm{D} 21 \quad 3.25$	6HS6	3.77	811A	18.33
EF92	6.37	CL86	2.50	3828	615	4.50	812A	18.33
EF183	2.00	PCL805	2.50	$4 \mathrm{CX2508} 40.00$	616	8.93	813	125.86
EF184	2.00	PD500	6.00	5R4GY 3.50	67	4.75	866A	20.03
EH90	1.75	PFL200	2.50	$\begin{array}{ll}\text { 5U4G } & 3.00 \\ 5 V 4 G & 2.50\end{array}$	6 B6A	5.00	872 A	20.00
E132	2.50	PL36	2.50			6.00	931 A	18.52
EL33	4.00	PL81	1.75	$\begin{array}{ll}\text { 5Y3GT } & 2.50 \\ 573 & 4.00\end{array}$	6 K 4 N	2.50	2050	7.00
E134	3.00 2.50	PL82	1.50	SZ3 52.00 2.50	6K6GT	2.75	5763 5814	4.50
EL36	2.50 5.25	${ }^{\text {PL84 }}$	2.00	$\begin{array}{ll}\text { 5/30L2 } & 1.75\end{array}$	617	3.00	58814 A	12.00
EL84	2.25	PLSO4	2.50	6 6AB7 $\quad 3.00$	${ }^{6 \mathrm{KKP}}$	3.00	6080	14.00
EL86	2.75	PL508	2.50	6AH6 $\quad 5.00$	${ }^{6 K D 6}$	7.00	6146A	8.25
EL91	9.69	PL509	6.00	6AK5 $\quad 5.99$	${ }^{6 L 6 G}$	3.00	6146 B	8.25
EL95	2.00	P519	6.00	6ALS $\quad 1.50$	616 l 6 L	2.25.	6883 B	8.25
EM81	2.50	PY33	2.50	6AN5 4.75			7360	0.00
		pen d	ca	Mon-Fri 9 am.-5			7587	18.50
Prices VAT ad	C.W.O xcludin d 15\%	only, allo Quotatio Post	7 days for ar d pac	delivery. Tel. 01 ypes not listed S. g 50p per orde	2424	$\begin{aligned} & \text { Telex } \\ & 946708 \end{aligned}$	Prices when to p	correct going press

ROTARY CONVERTERS I/P 24 v DC at 10 amp for full O/P, provides 230 v at $50 \mathrm{c} / \mathrm{s}$ max 150 watts Sine Wave contained in carrying case size $12 \times 10 \times 8^{\prime \prime} £ 45$ or convertor only $£ 27$.
POWER UNIT ASS 200/250v $1 / \mathrm{P}$ provides 4 separate smoothed HT O/P of 220 v at 80 Ma each also 7 v (for 6.3) at 6 amps , on $19^{\prime \prime}$ panel fitted fuses, ind lamps swts etx. $£ 18$.
PORTABLE LIGHT UNIT ex Army reqs $2 \times$ Sp. 2 batts as two light
units on flex leads, contained in neat case size $9 \times 5 \times 3^{\prime \prime}$ with 4 spare

AIRPORT TAPE RECORDERS. Comprises Deck, Rec Unit, Replay Unit, Mon Unit, 6 track, $z^{\prime \prime}$ tape, $83^{\prime \prime}$ spools, 8 Hr play at $15 / 16 \mathrm{th}$. All units for $19^{\prime \prime}$ rack mt , all transistor for use on 240 v with handbook. $\mathbf{£ 1 1 5}$ few decks only at $\mathbf{E 5 5}$.
VIDEO RECORDERS Philips N 1500 type colour no cassets with circ. $\mathbf{f 8 5}$.
ARMY TYPE HEADSETS with Throat mikes low res, as v.c \& swt $£ 7.50$.
VALVE KITS comprises CV type as follows 6 BA6 $\times 5,6 B E 6 \times 2$, EF91 $\times 4$, EB91×3, EL91 total $15 £ 10$.
AERIAL ROTATOR for use on 24 v DC supplied with 3 \& $5^{\prime \prime}$ dia 360^{\prime} Design type Ind units ex A/C ADF equip req approx 1 amp can be reversed. $£ 37$.
COAX CABLE type UR57 HD 75 ohm nom 10 mm OSD $£ 4.50$ for 10 Mts 30p mt over this.
MARCONI TF1102 ext AM modulator units enable RF to be modulated from ext source will handle sine, sq \& video, RF to $500 \mathrm{Mc} / \mathrm{s} 50$ ohm with book. $£ 25$.
H.F. TX TUNING ASS comprises 3 roller coaster coils ganged to single shaft tunes $2 / 18 \mathrm{Mc} / \mathrm{s}$ tunes 2 buffer \& PA stage in 100 watt Tx with circ. £12.50.
RADIOSCONDE UNIT MK. 11 works on $27 \mathrm{Mc} / \mathrm{s}$ and transmits in turn audio tones from three sensor, press, temp \& R.H. new cond with circ \& chart req 90 \& 2v DC $£ 7.50$.
AUTO TRANS $250 / 250 v$ to $115 v$ at 560 watts enclosed new cond. £14.50.
AERIAL ASS single dipole nom $200 \mathrm{Mc} / \mathrm{s}$ approx $27^{\prime \prime}$ long with $10^{\prime \prime}$ boom fitted 3 ft 50 ohms cable, as $75 / 50$ ohm matching stub in boom new cond. $£ 5.50$. 2 for $£ 9$.
RECORD PLAYERS ex MOD for 200/250v fitted Goldring single play 4 speed deck as push pull valve amp with int speaker approx 7 watts, can be used as P.A. amp ext spk of 4 or 15 ohms, in polished wood case size $17 \times 15 \times 11^{\prime \prime}$ with circ good cond. $£ 45$.
Above prices include Carr/Postage \& VAT. Goods ex equipment unless stated new, allow 14 days for delivery. SAE with enquiry or $2 \times 15 \frac{1}{2} \mathrm{p}$ stamps for list 29/1.

A. H. SUPPLIES

122, Handsworth Rd., Sheffield S9 4AE. Ph. 444278 (0742)

Н.A.C short-wave KITS
 WORLD-WIDE RECEPTION
 TRIPLE-T

TRANSISTOR RECEIVER
for use with headphones or small speaker.
Construct your own SHORTWAVE RECEIVER for only

£26.50

for the complete kit

All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.
SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C.'
SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ.

It's easy to complain about advertisements.

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

The Advertising
Standards Authority.

C6.50 post 50p L MINI-MULTI TESTER Deluxe pocket size precision moving
coil instrument. Impedance + Capacity coil instrument. impedance + Capacity
-4000 o.p.v. Battery included. 11 ins-
tant ranges measure: DC volts 5,25 , tant ranges measure: DC volts 5,25 .
250,500 . AC volts $10,50,500,1000$. 250,500 . AC volts $10,50,500,1000$.
DC amps $0-250 \mu \mathrm{a}: 0-250 \mathrm{ma}$. Continuity and resistance 0 to 600K ohms.

Do-Luxe Range Doubler Model,
50,000 o.p.v. $£ 18.50 .7 \times 5 \times 2$ in. Post $£ 1$
NEW PANEL METERS $£ 4.50$ $50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}$,
$5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 25$ volt, VU Meter, $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$ Facia $2 \frac{1}{2} \times 2 \times 1 \frac{1}{1}$ in. Post 50 p .
Stereo VU $3 t \times 1+\times 1 \mathrm{in} . \mathrm{f}$.

FAMOUS LOUDSPEAKERS				Post £2 each	
Make	Model	Size	Watts	Ohms	Price
Goodmans	Tweeter	$3 \frac{1}{2}$ in	25		£4.00
Wharfdale	Tweeter	3 $\frac{1}{2}$ in	30	8	¢7.50
Seas	Tweeter	4 in	50	8	¢9.50
Audax	Tweeter	4 in	30	8	£6.50
Audax	Mid-Range	4 in	50	8	¢7.50
Seas	Mid-Range	412 in	100	8	£12.50
Seas	Mid-Range	5 in	80	8	£12.00
Goodmans	Woofer	8 in	25	4 or 8	¢6.50
Wharfdale	Woofer	8 in	30	8	¢9.50
Audax	Woofer	8 in	40	8	£14.00
Audax	Woofer	8 in	40	8	£14.00
Audax	Woofer	10in	50	8	£16.00
Goodmans	8 HB	8 in	60	8	£12.50
Rigonda	Full-Range	10in	15	8	¢5.00
Baker Hi-Fi	Deluxe	12 in	15	8	£14.00
Baker Hi -Fi	Major	12 in	30	4/8/16	£14.00
Baker Hi -Fi	Superb	12 in	30	8/16	£24.00
Baker P.A.	Group 45	12 in	45	4/8/16	£14.00
Baker Hi -Fi	Auditorium	12in	45	8/16	£22.00
Baker $\mathrm{Hi}-\mathrm{Fi}$	Auditorium	15 in	60	8/16	£34.00
Baker P.A.	Group 75	12 in	75	4/8/16	£18.00
Goodmans	GR (Group)	12 in	90	8/16	£27.50
Baker P.A.	Group 100	12 in	100	8/16	¢24.00
Baker P.A.	Disco 100	12 in	100	8/16	£24.00
Baker P.A.	Group 100	15 in	100	8/16	£32.00
Baker P.A.	Disco 100	15 in	100	8/16	£32.00
Goodmans	HPD (Disco)	12 in	120	8	£29.50
EMI	450	13×8 in	10	3/8	£8.00
EMI	Bass	13×8 in	20	15	£12.50
Goodnians	HP (Bass)	18 in	230	8	£80.00

BATTERY ELIMINATOR MAINS to 9 VOLT DC Stabilised output, 9 volt 400 m.a. UK made with terminals. Overload cut out. $5 \times 3 \frac{1}{4} \times 2 \frac{1}{2} \mathrm{in}$. Transformer
Rectifier Unit. Suitable Radios. Cassettes. $\mathbf{~} 4.50$. Post 50 p Rectifier Unit. Suitable Radios. Cassettes. £4.50. Post 50p.
R.C.S. LOUDSPEAKER BARGAINS
 $8 \mathrm{ohm}, 2 \mathrm{in} .2 \mathrm{iin}, \mathbf{£ 2 . 0 0} ; 3 \mathrm{in} .5 \mathrm{in} .5 \times 3 \mathrm{in} .7 \times 4 \mathrm{in} . £ 2.50$.
$6 \mathrm{tin} . ~$
$\times 5 \mathrm{in} . £ 3 ; 8 \mathrm{in} . £ 4.50 ; 10 \mathrm{in}, \mathbf{£} 5 ; 12 \mathrm{in} . \mathbf{£ 6}$.

$\mathbf{2 5} \mathrm{ohm}, 3 \mathrm{in} .5 \times 3 \mathrm{in} .7 \times 4 \mathrm{in} . \mathbf{£ 2 . 5 0} ; 120 \mathrm{ohm}, 3 \frac{\mathrm{t}}{} \mathrm{in}$. dia. $\mathbf{£ 1 . 5 0}$.
LOW VOLTAGE ELECTROLYTICS

$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}:$
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p}: 25 \mathrm{~V} 35 \mathrm{p}$
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p}: 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 1200 \mathrm{mF} / 76 \mathrm{~V} 80 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 2000 \mathrm{mF} / 100 \mathrm{~V}$ \& 120. 2200 mF 63 V 90p; 2500 mF 50 V 70p; 3000 mF 25 V 50 p ; 50 V 65p.

$4700 \mathrm{mF} 30 \mathrm{~V} 85 \mathrm{p} ; 1000 \mathrm{mF} 100 \mathrm{~V} \mathrm{£1}$.
$8 / 450 \mathrm{~V} \quad 45 \mathrm{p}$ HH VOLTAGE ELECTROLYTICS

$\begin{array}{clllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8.8 / 450 \mathrm{~V} & \mathbf{7 5 p} & 50+50 / 300 \mathrm{~V} & \mathbf{5 0 p} \\ 16 / 350 \mathrm{~V} & \mathbf{4 5 p} & 8+16 / 450 \mathrm{~V} & \mathbf{7 5 p} & 32+32+32 / 325 \mathrm{~V} & \mathbf{7 5 p} \\ 32 / 350 \mathrm{~V} & \mathbf{7 5 p} & 20-20 / 450 \mathrm{~V} & \mathbf{7 5 p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p}\end{array}$ | $32 / 350 \mathrm{~V}$ | $\mathbf{7 5 p}$ | $20-20 / 450 \mathrm{~V}$ | 75 p | $100-100 / 275 \mathrm{~V}$ | $\mathbf{6 5 p}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $50 / 350 \mathrm{~V}$ | 80 p | $32.32 / 350 \mathrm{~V}$ | 85 p | $150+200 / 275 \mathrm{~V}$ | $\mathbf{7 0 p}$ |
| $50 / 450 \mathrm{~V}$ | 95 p | $32.32 / 500 \mathrm{~V}$ | $\mathbf{~ £ 1 . 8 0}$ | $220 / 450 \mathrm{~V}$ | $\mathbf{9 5 p}$ |

TRIMMERS 30pF, 50pF, 10p. 100pF, 150pF, 15p. 500pF 30p CONDENSERS VARIOUS, 1 pF to $0.01 \mathrm{mF} 350 \mathrm{~V}, 5 \mathrm{p}$.
$400 \mathrm{~V}-0.001$ to $0.055 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$

SINGLE SOLID DIELECTRIC 100pF, 500 pF £1.50.
GEARED TWIN GANGS $25 \mathrm{pF} 95 \mathrm{p} ; 365+365+25+25 \mathrm{pr}$ £1. SLOW MOTION DRIVE 6:1 90p. REVERSE VERNIER 60p.

NEON PANEL INDICATORSS 250 V . Red $1 \frac{1}{4}, i 45 \mathrm{p}$
RESISTORS. 10Ω to $10 \mathrm{M} . \frac{\mathrm{W}}{} \mathrm{W}, 1 \mathrm{~W}, 2 \mathrm{p}, 2 \mathrm{~W}, 10 \mathrm{p}$.
HIGH STABILITY. $\ddagger W 2 \% 10$ ohms to 1 meg.. $8 p$.
LOW OHM 1 watt 470 ohm to 3.9 ohm 10 p .
WIRE-WOUND 10 ohm to 10 K 5 watt, 10 watt, 20p.
BLANK ALUMINIUM CHASSIS. $6 \times 4 \mathrm{E} .45 ; 8 \times 6-£ 1.80$
$10 \times 7-£ 2.30 ; 12 \times 8-£ 2.60 ; 14 \times 9-£ 3.00 ; 16 \times 6-£ 2.90 ;$ $16 \times 10-\mathrm{f3.20}$. All $2 \frac{1}{2} \mathrm{in}$. 18 swg . ANGLE ALI. $6 \times \frac{3}{4} \times \frac{2}{2} \mathrm{in} .30 \mathrm{p}$. ALUMINIUM PANELS, $-18 \mathrm{swg} .6 \times 445 \mathrm{~F} ; 8 \times 6-75 \mathrm{p}$; $14 \times 3-75 p ; 10 \times 7-95 p ; 12 \times 8-\mathbf{E 1 . 1 0 ;} 12 \times 5-75 ;$ PLASTIC box with aluminium facia $6 \frac{1}{4} \times 3 \frac{2}{4} \times 2 \mathrm{in}$. $\mathbf{£ 1 . 5 0}$. ALUMINIUM BOXES WITH LIDS $3 \times 2 \times 1 £ 1,4 \times 2 \frac{1}{2} \times 2 £ 1$. $4 \times 4 \times 2 \frac{1}{2} £ 1.35 .6 \times 4 \times 2 £ 1.60 .7 \times 5 \times 3 £ 2.40 .8 \times 6 \times 3 £ 2.50$. $10 \times 7 \times 2 \frac{1}{2} £ 3.12 \times 5 \times 3 £ 2.75 .12 \times 8 \times 3 £ 3.60$
BRIDGE RECTIFIER 200V PIV $\ddagger \mathrm{amp} 50 \mathrm{p} .2 \mathrm{amp} £ 1.00$. 4 amp £1.50. 8 amp £2.50. DIODES $1 \mathrm{a}, \mathbf{1 0 p}$; 3a, 30p. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p.
MINIATURE TOGGLES SP, 40p; DPDT, 60p.
MAINS TRANSFORMERS

5-8-10-16V, $\frac{1}{2} \mathrm{~A}$	£2.50	80p	$24 \mathrm{~V} 2 \frac{1}{4} \mathrm{~A}$ Twice	£8.00 ¢2
$6 \mathrm{~V} \frac{1}{2}$	£2.00	E1	20 V 1 A	$\mathbf{8 3 . 0 0}$ £1
6-0.6V, $1 \frac{1}{2} \mathrm{~A}$	£3.50	E1	20-0-20V 1A	£3.50 11
9 V 250 ma	¢1.50	80p	20/40/60V 1 A	£4.00 ¢2
9 V 3 A	¢3.50	E1	$25-0-25 \mathrm{~V} 2 \mathrm{~A}$	¢4.50 $¢ 2$
9-0-9V 50 ma	£1.50	80p	28 V 1 A Twice	£5.00 £2
$10-0-10 \mathrm{~V} 2 \mathrm{~A}$	¢3.00	E1	30 V 14	¢3.50 ¢1
$10-30-40 \mathrm{~V} 2 \mathrm{~A}$	£3.50	E1	$30 \mathrm{~V} 5 \AA$ and	
12 V 100	¢2.00	80p	17-0-17V 2A	¢4.50 ¢2
12 V 3 A	¢3.50	¢1	35 V 2 A	¢4.00 1
12-0-12V, 2A	£3.50	E1	34-29-0	A¢12.00¢2
15-0-15V 2A	¢3.75	E1		

RADIO COMPONENT SPECIALISTS
Dept. 2, 337, WHITEHORSE ROAD, CROYDON,
SURREY, U.K. TEL: 01-684 1665
Post 50 , Minimum, Callers Welcome Closed Wed. Same day despatch. Access-Barclay-Visa. Lists 31p. Fha

NEW BRANDED VALVES

2 METER HIGH POWER LINEAR AMPLIFIER
Designed for the FT290R or any transceiver with an output of 2 to 3 i watts, provision internally to fit an attenuator for higher input levels. Minimum power output is 80 watts with $2 \frac{1}{2}$ watts of drive. with colour to match straight through operation when switched off. Built to high professional s andards for full output. The price is right too - ONLY $\mathbf{4 9 8 . 0 0}$.
$\mathbf{2 6 - 3 0} \mathrm{MHz}$ Receiver pre-amp board ready built on PCB size $60 \times 40 \mathrm{~mm}$. 25 dB gain IdB NF. Ideal for that deaf Rx or Tcrr. Very popular item many hundreds sold to date. Gain variable on PCB. E8.00.
NBFM ADAPTOR for the FTIOI (up to "E" model) we still produce this successful item which gives FM on Tx \& Rx just plugs into back of FTIOI no PCBs to fit inside, self contained unit colour to match FTIOI. Size only $185 \times 105 \times 42 \mathrm{~mm}$ professional quality unit. PRICE only $\mathbf{8 7 0 . 0 0}$. RADIOTELEPHONE MARKER OSCILLATORS available in frequencies of 455 KHz 10.695 MHz (CB IF FREQ.). $10.700 \mathrm{MHz}, 21.400 \mathrm{MHz}$ Other frequencies made to order, self contained in die cast box size $25 \times 100 \times 50 \mathrm{~mm}$. PRICE E20.00.

3SK88 DUAL-GATE MOSFET 26dB gain I.IdB NF @ 150 MHz Ideal as high gain replacement in most 2 mtr Tcrr's to improve the sensitivity, with data sheet CI .20 , or two for C2.20.
3SK87 DUAL-GATE MOSFET similar device to $35 K 88$ but 3 dB more gain, same price as

3SK60 (sim. to 3N204) 75p. 3SKSI (sim. to 40673) 70p. 3SK45 60p. BFR84 60p. TIS88A 40p. 2N3819 35p. BF256 35p. 2N4381 "p" chan fet 40p.
BOLT-IN FEEDTHROUGH CAPACITORS due to demand we had some of these made for us. 1000 pf 500v 2BA thread. PRICE 40p each.

OXLEY PTFE FEEDTHROUGH INSULATORS 31 mm dia 6 p ea. 25 for $\mathbf{6 1 . 0 0}$.
SOLDER-IN FEEDTHROUGH CAPACITORS 1000 pf 500 v 3 mm dia 50 p per 10.
SOLDER-IN FEEDTHROUGH INSULATORS 4 mm dia. glass insulation. 75p per 100.
LEADLESS DISC CERAMIC CAPACITORS 1000 pf 500 v 35 p per 10.
BAG OF 100 MIXED DISC CERAMIC CAPs. Ipf-470pf. CI.50.
BAG OF 250 MIXED RESISTORS all $\frac{t}{4}$ watt vertical pre-formed carbon film all long leads 61.50 per bag.

FILM TRIMMER CAPs. $2-25$ pf 10 mm dia. 10 p ea. $1-10$ pf 7 mm sq. 12 p ea. $1-10$ pf tetfer trimmer 35 p ea. (For other types send for list)
CRYSTAL FILTERS - 10.7 MHHz TTO $24 \mathrm{DE} \pm 3 \frac{1}{2} \mathrm{KHz}$ BW. imp. 920 ohm. New $\mathbf{6 6 . 0 0}$. BF4I 33 SSB 10.7 MHz LSB only a a ailable. $\mathbf{2 0 0}$ ohm imp. $\mathbf{6 5 . 0 0}$.
RF POWER TRANSISTORS - 2N6083 30 watt out @ 175 MHz 12v. FM/SSB. 7dB gain @ 145 MHz . With data sheet $\mathbf{~} 6.50$.
PT4236A I watt @ 175 MHz (TO39 case) 75p. 2N3866 75p. BFWI6A 75p. RCA $40081400 \mathrm{~m} / \mathrm{w}$ @ 28 MHz (TO39 case) 60 p . 2 N 507025 watt SSB 30 MHz 28 v stud mount new $\mathbf{6 5 . 0 0}$ with data sheet. 2SC1 909 (TO220 case) 5 watt AM/SSB 28MHz $\mathbf{2} .25$. 2 SC 1307 (TO220 case) 9 dB gain 12 v 28 MHz 25 watt SSB $\mathbf{E B . 0 0}^{2}$.
We also have a quantity of manuals for the Tektronix 545 \& 547 scopes \& plug-ins. Send your requirements \& for list.
Pleose add 60 p for post \& pocking. All goods where possible are sent by return of post. Callers only by oppointment pleose. All prices include VAT @ 15%

ELECTRONICS
20, Barby Lane, Hillmorton, Rugby, Warwickshire. Tel: Rugby (0788) 76473 \& 71066.

Western

 "BARGAIN CORNER"WATCH THIS CORNER EVERY MONTH! We have reserved this space so that you know exactly where to turn for those
SPECIAL OFFERS. Each month we shall feature item/s for A LIMITED PERIOD ONLY. THIS MONTH'S SPECIAL OFFERS

TRIO R-1000 only $\mathbf{f 2 7 9}$

Rush your order in now whilst stocks last.
"He who hesitates is lost"!
SAVE $\mathbf{f 6 5}$ TRIO/KENWOOD TS-530S $\mathbf{£ 4 6 9}$
Offers close 28 February 1983.
(Price includes free delivery and VAT) Plus 1 yr. parts warranty Hurryl Stocks are limited

WerternElectronics (UR) Ltd

FAIRFIELD ESTATE, LOUTH, LINCS LNi1 OJH
Tel: Louth (0507) 604955 Telex: 56121 WEST G.

[^1]

Post this coupon now for your copy of our 1983 catalogue, price $£ 1.25+25$ p p\&p. If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name
Address

ELECTRONIC

SUPPLIES LTD
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 552911/554155
Shops at:
159-161 King Street, Hammersmith, London W6 Tel: (01) 7480926 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292 284 London Road, Westcliff-on-Sea, Essex. Tel: (0702) 554000 All shops closed Mondays

[^0]: Send SAE today for details of these or any other Amateur Radio Products - Most major brand names available to:
 299-303, Claremount Road, Halifax HX3 6AW, West Yorkshire. Telephone (0422) 40792
 Access Tues-Sat 9.45 am- 5.30 pm

 Barclaycard

[^1]: Published approximately on the 15 th of each month by IPC Magazines Lid., Westover House, Wes
 Australia and New Zealand - Gordon \& Gotch (A/sia) Lid.; South Africa - Central News Agency Ltd.
 Subscriptions INLAND and OVERSEAS $£ 13-00$ payable to IPC Services, Oakffeld House, Perrymount Road, Haywards Heath. Sussex.
 Practical Electronics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade at more part of any publication or advertising, literary or pictorial matter whatsoever.

