

DO YOUR CHRISTMAS SHOPPING THE EASY WAY - THE BREDHURST WAY TO ORDER ANY OF THE ITEMS LISTED BELOW SIMPLY WRITE ENCLOSING A CHEQUE OR PHONE QUOTE YOUR CREDIT CARD NO.
-WE DO THE REST!

EDITORIAL OFFICES
Practical Wireless Westover House West Quay Road Poole, Dorset BH15 1JG f Poole 71191

Geoff Arnold T.Eng(CEI) G3GSR
Editor
Dick Ganderton C.Eng., MIERE,G8VFH
Assistant Editor
Peter Metalli
Art Editor
John Fell G8MCP
Technical Editor
Alan Martin G8ZPW
News \& Production Editor
Elaine Howard G4LFM
Technical Sub-Editor
Rob Mackie Technical Artist

Keith Woodruff Assistant Art Editor

Sylvia Barrett

Secretarial

ADVERTISEMENT OFFICES

Practical Wireless King's Reach Tower Stamford Street London SE1 9LS
Telex: 915748 MAGDIV-G
Dennis Brough
Advertisement Manager f01-261 6636
801-2616872
Roger Hall G8TNT (Sam) Ad. Sales Executive f 01-2616807

Claire Gerrish

Secretary
601-2616636
Barbara Blake Classified Supervisor (01-2615897

Dave Kerindi
 Make-up \& Copy f01-2616570

COPYRIGHT

© IPC Magazines Limited 1982. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by
Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.
Prices are those current as we go to press.

JANUARY 1982 VOL. 58 NO. 1 ISSUE 898

contents

20 Where are You? Where am I?
M. W. Dixon PhD G3PFR

25 PW "Winton'" Stereo Tuner-4
E. A. Rule G3FEW

31 Synchronous Detector-2
R. Myers G8LUL

39 RAE-Nothing to it!
H. A. Crookes

40 Radio Special Product Report
Icom IC-25E 2m f.m. Mobile
44 RF Noise Bridge
E. A. Rule G3FEW

50 Obituary-T. Graham Farish
53 Passport to Amateur Radio-6
John Thornton-Lawrence GW3JGA
59 Air Test
SMC-HS358 70cm 3-element Colinear
Drae v.h.f. Wavemeter
60 Morse Practice Oscillator
Jeff Maynard G4EJA
Next Month
On the Air
Out of Thin Air
Production Lines
Services
Uncle Ed

TS-830S has every conceivable operating feature built in for full and lasting enjoyment of the HF bands. It combines VBT (variable band width tuning), IF shift and an. IF notch filter as well as very sharp filters in the 455 KHz second IF.

TS-830

$£ 694.83$ inc VAT Securicor carr. $£ 4.50$

The TS-530S is an HF transceiver based on the reputation of the TS-520 series. Included are, of course, the new bands and the rig has both digital and analogue frequency readout.

-®-5 S S O

$£ 534.98$ inc VAT Securicor carr. $£ 4.50$

The TS-130S is the mobile 200 watts Pep HF transceiver from Trio, again featuring the three new bands. Just the rig for mobile high power operation. Also available the TS130 V - a 20 watt Pep version

TS-130S

$£ 525.09$ inc VAT TS-130V $£ 445.05$ inc VAT

MAKE MOBILE OPERATION A PLEASURE

A digital frequency remote controller complete with up/down microphone and having four memories. Ideal for simpler mobile operation. Compatible with the TS-830S, TS-530S, TS-130S and V and the TS-120 series.

DFC-230

£179.86 inc VAT Securicor carr. £4.50

LOWE IN LONDON

NOW OPEN, OUR SHOP IN THE CITY
278 PENTONVILLE ROAD, LONDON N1 9NP.

RECEIVERS \& ACCESSORIESSRX300 Digital readout HF receiver. $500 \mathrm{KHz}-30 \mathrm{MHz}$. AM/SSB/CW................. 215.004 .50

UL-1000
 $£ 39.50$ inc VAT. carr. $£ 1.50$

The UL-1000 is a new concept in receiving station accessories and will help any keen listener to improve the performance of his station, particularly in the difficult conditions existing in the medium wave band (500 KHz 1.6 MHz).

The UL-1000 is a self-contained variable gain, tuned preamplifier suitable for use with various aerial systems. A particular feature of the $\mathrm{UL}-1000$ is the use of a high Q loop aerial for the $500 \mathrm{KHz}-1.6 \mathrm{MHz}$ band.

THE DAIWA FAMILY

CN520 18.60MHzmini cross needle nower/SWR
$\begin{array}{lllllll}\text { CN540 } & 50-150 \mathrm{MHz} \text { mini cross needle power/SWR meter } & \mathbf{3 0 . 4 4} & \mathbf{3 5 . 0 0} & 1.50\end{array}$
\qquad $\begin{array}{lll} & \text { Inc VAT Cart } \\ 28.26 & \mathbf{3 2 5 0} & 1.50\end{array}$

CN620A \quad I.8-150MHz cross pointer power and SWR meter. Up to 1 KW
coss pointe... 40-450MHz cros.
Up to 200 W 45.9252811 .50

CN630 $\quad 140-450 \mathrm{MHz}$ cross pointer power and SWR meter Up to 200 W .
2.2.5GHz cross
\qquad

$\begin{array}{lllllll}\text { CN650 } & 1.2-2.56 \mathrm{~Hz} \text { cross pointer power and SWR meter. Up to 20W... } & 82.61 & 95.00 & 1.50 \\ \text { CNW518 } & 3-30 \mathrm{MHz} 8 \text { band hi power tuner and cross needle power } & & & \end{array}$ $6522 \quad 75.00 \quad 1.50$

CNW518 $3-30 \mathrm{MHz} 8$ band hi power tuner and cross needle power
CNA1001A Fully automatic all band ATU. Includes cross pointer power meter
$15217175.00 \quad 200$

 Not cross pointer.. 26.00 29.901 .25
\qquad 2.00

THE AOR FAMILY

AR740 70cm FM synthesised handheld transceiver..................................... $195.00 \quad \begin{array}{r}\text { Inc VAT } \\ 200\end{array}$
AR240A 2 mFM WW synthesised handheld complete with NiCad pack etc.............................158.00 200 AR245 2m FM 5W synthesised handheld complete with NiCad etc 178.00200 ARMS External mic/speaker ... 10.501 .00
ARCC Cartying Case .. 4.10 . 15
ARHA
ARBC
$\begin{array}{llllll}\text { AR30 } & 12 \mathrm{~V} \text { battery charger. (Mains charger included with transceiver)............ } & 4.10 & .75 \\ & 25 W & 2 \text { metre linear. RF switched } 12 \mathrm{~V} \text { powered } & 38.50 & 1.75\end{array}$

The TR9500, a 70 cm multimode mobile giving SSB, FM and CW operation in a compact rig based on the phenomenally successful 2 metre 9000. Combining the convenience of FM with the "DX ability" of SSB on the 70 cm band this is the rig all discerning VHF and UHF amateurs have been waiting for.

TR-9500
 70 cm multimode

£449.88 inc VAT carriage $£ 4.50$

©TRIO

pacesetter in amateur radio

Trio 8400 the new way to 70 cm FM mobile, a fully synthesized 430 440 MHz 10 watt output, mobile transceiver with memories, 2 separate VFO's all in a truly amazing compact package. Complete with up/down frequency shift microphone and car mounting bracket the TR8400 is the way to $\mathrm{go} . .70 \mathrm{~cm}$ is on the move.

TR-8400
 70 cm FM mobile

 $£ 334.88$ inc VAT. Securicor carriage $£ 4.50$

TR-9000 The exciting TR-9000 2-metre all-mode transceiver combining the convenience of FM with long distance SSB and CW in a very compact, very affordable package. Because of its compactness the TR-9000 is ideal for mobile installation, add on its fixed station accessories and it becomes the obvious choice for your shack.

TR-9000

2 Metre Multimode
£374.00 inc VAT. Carriage by Securicor $£ 4.50$

TR-7800 Trio's remarkable TR-7800 2-metre FM mobile transceiver provides all the features you could desire for maximum operating enjoyment. Frequency selection is easier than ever, and the rig incorporates new memory development for repeater shift, priority, and scan. The TR-7800 by Trio, the only FM mobile.

TR-7800
 The Ultimate 2 Metre Mobile FM rig

£284.97 inc VAT. Carriage by Securicor $£ 4.50$

PRICES \& SPECIFICATION SUBJECT TO CHANGE WITHOUT NOTICE

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
"A" levels
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

Engineering
Farming Industrial Management Mechanical

Purchasing Sales Storekeeping Work Study

BUILD A PAIR OF MICRO MONITORS!
Just a few hours easy and
interesting work and you'll have
a surerb pair of compact
loudspeakers for about half the price of equivalent 'assembled' models.
The Wilmsiow Audio Micro Monitor will stand comparison with any speaker of similar size at any price!). Don't take our word for it - call for a demonstration/

The Micro Monitor kit contains all the components needed - a pair of cabinets in flat-pack form - accurately machined for easy assembly, all drive units, crossover networks, acoustic wadding, grille foam, velcro, nuts and bolts, etc. No electronic or woodworking knowledge required simple, foolproof instructions supplied. The cabinets can be stained, painted or finished with iron-on veneer. Dimensions of assembled cabinet: $32 \times 24 \times 20 \mathrm{cms}$. Suitable for amplifiers of $20-50$ watts.

Price: $\mathbf{£ 1 0 3 . 9 5}$ per pair including VAT. Carriage and insurance $£ 5.95$

8
 0625529599

35/39 Church Street, Wilmisow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders! Please allow 7 days for delivery.

WATERS \& STANTON ELECTRONICS
 18/20 MAIN ROAD. HOCKLEY.

 ESSEX. TEL (0702) 206835
4,000 SQ FT DEVOTED TO RADIO COMMUNICATION

24 HOUR TURN ROUND ON ALL ORDERS!
"SUCH NICE PEOPLE"

5 miles from Southend-on-Sea
Why not bring the whole family for a day out? (Early Closing:Wednesday 1.00 pm)

SR9 VHF RECEIVER AMATEUR/ MARINE £46 inc. VAT The SR9 must be one of the most popula' monitors for 2 metre amateur radio enthusiasts. (Also available as a marine version at the same price). It
is fully tuneable across the band with the option of also installing up to 11 xtal controlled channels. Power requirements are 12 v DC negative earth at 200ma approx. The unit comes complete with mobile mounting kit and built-in speaker.

PROFESSIONAL AIRCRAFT MONITOR $R 517 \quad £ 49.50$
(as supplied to pilots, ground crew etc.)
The R517 is a professional aircraft monitor receiver, having superb sensitivity and capable of tuning across the entire aircraft band 118143 mHz . For easy tuning there is both a coarse and fine tuning conboth In addition there is a 3 position
trol switch for selecting, xtal controlled channels (xtals $£ 3.00$ extra) for your local airport. The unit is completely portable

AR22 VHF FM MONITOR
OUR PRICE f83 inc. VAT
Truly amazing! The AR22 tunes across the 2 metre FM band 142148 mHz (also includes Police and Fire Brigade) in 5 kHz steps. So small it will fit into a shirt pocket and yet nothing is sacrificed in terms of performance. Price includes rechargeable batteries, mains charger, fly aerial etc. You won't find a smaller monitor anywhere.

TUNE INTO THE WORLD . . . FROM YOUR ARMCHAIR!

FRG7700 £309
Here's a complete monitoring system that builds up into a comprehensive listening systern for a wide variety of
transmissions, both locally and from the other side of the World. As communications engineers, we know there is transmissions, both locally and from the other side of the World. As communications engineers, we know there is gocd
equipment and poor equipment. We rate the FRG7700 very highly. It forms the main unit of the system and provides one of the most cost effective ways of listening to the entire shortwave band. Listen to all the World news direct as it comes in from stations stretching round the Globe, international farnily requests from Australia and New Zealand, sport from America, topical news comment from Russia and China. If you're interested in Amateur Radio then the SSB facility lets
you listen in on conversations with amateurs from places far and you listen in on conversations with amateurs from places far and
near. Hear a mobile operator motoring through the traffic in near. Hear a mobile operator motoring through the traffic in
Manchester or going home from work in Perth, Australia. Listen AERIAL TUNER $£ \mathbf{£ 3 4 . 0 0}$ to expeditions in Africa or the Antarctic. It's all possible and the more skilled the operator, the more interesting it becomes. The possibilities are endless, ship to shore radio, aircraft on the
Atlantic run, foreign news agencies, etc. And if this is not enough plug in the opt
listen to private, commercial and military air traffic over the U.K. local airports, local shipping, taxis, radio air tratficur over the U.K., many other interesting transmissions. To improve reception there's also the matching aerial tuning unit. So why not send
S.A.E. today for full coloured leaflets and enjoy a new hobby from the comfort of your fireside. Go on - treat yourself!

AERIAL TUNER	$£ 34.00$
VHF CONVERTER	$£ 63.00$

REMEMBER!

We can supply almost any make of radio communications equipment for the hobbyist from stock. We carry the full range of Yaesu, Trio, FDK, Azden, Sony, etc. We are staffed by enthusiasts and have comprehensive service facilities which you are welcome to inspect at any time. Don't take risks, come to the specialists for both service and competitive prices or send 14p. stamp for our new 16 page mail order catalogue.

FDK

NEW FROM SONY -

 ICF-2001The new SONY ICF-2001 is a
desk top receiver that covers the World. 150 kHz to 30 mHz SSB and AM plus FM $76-108 \mathrm{mHz}$. Full digital readout, scanning and memories are included and controlled by a microprocessor. Power requirements are either 230 v AC, 12 v DC or internal HP2 cells. At present deliveries are slow so please phone for latest information.

STOP PRESS:- SEND 14p STAMP FOR NEW 1982 CATALOGUE ON RADIO COMMUNICATIONS MAIL ORDER SLIP to: Waters \& Stanton Electronics, Warren House, Main Road, Hockley, Essex.
Name. \qquad Goods required \qquad
Address..
\qquad

IC290E. TWO METRE MULTIMODE MOBILE. 10W RF output on SSB, CW and FM. Standard and non-standard repeater shifts. 5 memories and priority channel. Memory scan and band scan, controlled at front panel or microphone. Two VFO's. LED S-meter. 25 KHz and 1 KHz on $\mathrm{FM}-1 \mathrm{KHz}$ and 100 Hz tuning steps. Instant rev-repeat.

IC25E. 25W 2M FM MOBILE. Amazingly small. Two VFO's, five memories, priority channel, full duplex and reverse, LED S-meter, 25 KHz or 5 KHz step tuning, same multi-scanning functions as the 290 from mic or front panel.

IC24G. 10W 2M FM MOBILE. This is the low-cost, easy to use economy model. Full band -80 channels at 25 KHz spacing by easy to use press button switches. $12 \frac{1}{2} \mathrm{KHz}$ spacing if reqd. and the same reliable performance as the famous IC240. Price $£ 169$.

THE POPULAR IC2E HANDY TALKY - EVERYBODY HAS ONE!

CHECK THE FEATURES:
FULLY SYNTHESIZED - Covering 144-145 99s in 4005 kHz steps.
POWER OUTPUT - 1.5 W with the 9 V rechargeable battery pack as supplied - but lower or higher output available with the optional 6 V or 12 V packs.
BNC ANTENNA OUTPUT SOCKET - 50 ohms for connecting to another antenna or use the Rubber Duck supplied.
SEND/BATTERY INDICATOR - Lights during transmit, but when battery power falls below 6 V it doesn't light indicating the need for a recharge.
FREQUENCY SELECTION - by thumbwheel switches, indicating the frequency.
$+\mathbf{5 k H z}$ SWITCH - adds 5 kHz to the indicated frequency.
DUPLEX SIMPLEX SWITCH - gives simplex or plus 600 kHz or minus 600 kHz Transmit.
HI-LOW SWITCH - reduces power output from 1.5 W to 150 mW reducing battery drain.
EXTERNAL MICROPHONE JACK - If you do not wish to use the built-in electret condenser mic an optional microphone/speaker with PTT control can be used. Useful for pocket operation.
EXTERNAL SPEAKER JACK - for speaker or earphone. This little beauty is supplied ready to go complete with nicad battery pack, charger, rubber duck.

A full range of accessories in stock

IC ML1

10 Watt Mobile Booster for IC2E
BP5 11 Volt Battery Pack
BP4 Empty Battery Case ror, $6 \times$ AA Cells BP3 Standard Battery Pack
BP2 6 Volt Pack
BC30 Base Charger For Above BC25 Mains Charger As Supplied DC1 12 Volt Adapter Pack HM9 Speaker/Microphone CP1 Mobile Charging Lead IC1/2/3 Cases

BUY DIRECT FROM US OR OUR AGENTS AND GET TWO FULL YEARS WARRANTY ON ALL EQUIPIMENT

IC730. 100W HF ALL BAND MOBILE. $80-10 \mathrm{M}$, 8 bands SSB, AM and CW. Two VFO's with $10 \mathrm{~Hz}-100 \mathrm{~Hz}$ and 1 KHz steps. Memory for each band. Noise blanker, vox, CW monitor, APC and SWR detector. Speech processor and fan. Switchable RF pre-amp and WWV. 13V DC operation or use ICPS15 mains.

IC720A. 100W HF + GEN COVERAGE TRANSCEIVER. This is the best money can buy. AM, SSB, RTTY and CW. Built-in fan, speech processor, two VFO's and APC. Tuning rates down to 10 Hz and memories. General coverage receiver from 100 KHz to 30 MHz (transmit too if you have a licence!). Run from 13V DC or use PS15 mains PSU.
And to match the IC720A:- IC2KL 500W output all mode linear amplifier. Similar size and completely automatic - no tuning. ICAT500 completely automatic antenna tuner.

IC251E \& IC451. 2M and 70 cm ALL MODE BASE STATIONS. Both well proven designs with twin VFO's, variable tuning rates and power output, scanners and memory channels, automatic repeater operation with full reverse, 144-146 or 430-440, 10W output on FM, SSB and CW, built-in 12 and 240 V supplies. None other like them.

PLEASE RING US FOR THE LATEST PRICES, YOU MAY CALL AFTER HOURS USING OUR ANSAFONE ON 0227363850

 ALL TONO PRODUCTS NOW IN STOCK| TONO PRICE LIST | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| Communications | | | | | |
| 7000 E | CW/RTTY/ASCII Terminal Tx/Rx | 599.00 | | Preamps | |
| | CW/RTTY/ASCII Terminal Rx Only | 259.00 | RX-144 | Mast Head Preamp For 2 Metres | |
| CRT120G | VDU 12 inch Green Screen Mains Power | 125.00 | RX-430 | | 70.00 |
| HC900 HC800 | Intelligent Line Printer 4 Cases + | 590.00 | RX-430 | Mast Head Preamp For 2 Metres | |
| HC800 | Line Printer Centronics | 449.00 | | SWR/Power | |
| SK7 | Plug Adaptor For Printers | 8.50 | ASW-180 | 1.8-160 Mhz | 45.80 |
| | Linears | | ASW-430 | 430 Mhz | 49.50 |
| 2M-50W | 40Watt Linear For 2 Metres | 65.00 | | | |
| 2M-100W | 90Watt Linear For 2 Metres | 115.00 | | TASCOTELEREADER | |
| MR-150W | 140Watt Linear For 2 Metres | 159.00 | | Communications | |
| MR-250W | 210Watt Linear For 2 Metres | 259.00 | CWR-685 | CW/RTTY Terminal + VDU + Keyboard. Tx \& Rx | |
| MR28 | 100Watt Linear For 10 Metres | 65.00 | CWR-680 | CW/RTTY Terminal Rx Only No VDU | 189.00 |
| UC70 | 50 Watt Linear For 70 cms | 149.00 | CWR-670 | As Above But De-Luxe Model | 259.00 |

Unable to summon help in one of these emergencies?

FIRE

NOW!

Phone Alarm automatically phones an alarm at a touch of a button, if you fall to the ground, are overcome by smoke or by intruders. Ideal for invalids, the elderly or anybody vulnerable.

Send today for details of alarm systems. Available both for home and business.
British Telecom certified and non-certified systems available. Equipment subject to HO Licensing Regulations.

REGD. OFFICE, PARK CHAMBERS, 7 INVERNESS PLACE, LONDON, W2 4RG, ENGLAND.

FT-101 Mk III

The tried and tested Yaesu HF base station, now with audio peak filter and reject notch filter as standard and choice of AM or FM. PHONE FOR PRICES INCLUDING FREE COOLING FAN AND MIC.

FT-208R/FT-708R
Yaesu's marvellous new hand-held for either 2 m or 70 cm operation. Its LCD display (with night-lamp feature) is coupled to a 4 -bit microprocessor giving 10 memories, up/down scanning in 12.5/25/50kc steps (manual or auto) plus memory scan and scanning between two desired frequencies, priority channel with search-back, keyboard entry allowing split frequency for non-standard repeaters \ldots. and lots more.
PHONE FOR PRICES incl. FREE 12V DC to DC CONVERTER

LICENSED CREDIT BROKERS * Ask for written quotation. INSTANTHPAND 6-MONTHS NO-INTERESTHP TERMS AVAILABLE FOR LICENSED AMATEURS AND BANK/CREDIT CARD HOLDERS

Credit card sales by telephone

SX-200N

Another of our sophisticated scanning receivers. Similar functions to the BEARCAT, but even wider frequency coverage, and with AM and FM right across its range. $£ \mathbf{2 6 2 . 7 5}$ inc. VAT.

FRG-7700
Yaesu's latest receiver with FM right across the band now offers all these optional extras *Memory facility *FRT-7700 Aerial Tuning Unit at only $£ \mathbf{£ 7 . 8 5}{ }^{*}$ Four VHF converters running from 50 MHz up to 170 MHz .
bASIC RECEIVER $\mathbf{f 3 1 9}$ inc. VAT and FREE HELISCAN AERIAL Converter specifications * Phone for Prices
FRV-7700A $\quad 118-130 \mathrm{MHz} \quad 130-140 \mathrm{MHz} \quad 140-150 \mathrm{MHz}$ FRV-7700B $\quad 118-130 \mathrm{MHz} \quad 140-150 \mathrm{MHz} \quad 50-60 \mathrm{MHz}$ FRV-7700C $\quad 140-150 \mathrm{MHz} \quad 150-160 \mathrm{MHz} \quad 160-170 \mathrm{MHz}$ FRV-7700D $\quad 118-130 \mathrm{MHz} \quad 140-150 \mathrm{MHz} \quad 70-80 \mathrm{MHz}$

2 NORTHFIELD ROAD, EALING, LONDON, W13 9SY.
Tel: 01-579 5311 Closed Wednesday, but use our 24-hour Ansafone service. So easy for Overseas visitors. Northfields is just seven stops from Heathrow on the Piccadilly Line.

STOP PRESS!! Some price increases notified by manufacturers, but we will hold advertised figures while stocks last.
All prices include VAT, but p\&p/carriage are extra. Please allow 14 days for delivery.

SMC SERVICE

Free Finance on many items. Twoyear guarantee on Yaesu. Free Securicor on major Yaesu items. Access and Barclaycard over the telephone. Biggest Branch, Agent and Dealer network. Ably staffed, courteous, Service Department. "B Services" Securicor contract at $€ 3.50$!! Biggest stocks of amateur equipment in UK. Twenty-two years of professional experience.

FREE FINANCE

On regular priced items from: Yaesu, Ascot SMCHS CDE, HyGain, Channel Master, Hansen, SMC, MFJ, KLM, Mirage and Hy Mound, on invoices over £100 SMC offers Free Finance! How is it done? Simple, pay 20%, split the balance equally over 6 months or pay 50% down and split the balance over a year. You pay no more than the cash price!!

YAESU MUSEN

SMC are proud to be UK agents for Yaesu Musen the brand leader in Amateur Radio. Their exclusive concentration on communications equipment - The most diverse product line and a reputation for continuous innovation are your assurances that SMC and Yaesu can provide equipment to exactly fit your needs and you will be at, and remain at, the forefront of today's high technology.

GUARANTEE

Yaesu's own warranty does not extend outside Japan. Repairs are the responsibility of the UK dealer selling the set. SMC's two-year guarantee is backed, as UK distributors, by daily contact with the factory and many tens of thousands of pounds of spares and test equipment. Avoid hawkers offering sets without serial numbers, spares, service or advice back-up.

FT ONE £1295

 (inc. VAT)
COVERAGE

RX; $150 \mathrm{KHz}-30 \mathrm{MHz}$. Continuous general coverage.
TX; 160-10m (9 bands). $1.5-30 \mathrm{MHz}$ commercial version.

MODES

All modes; AM, CW, FM, FSK, LSB, USB.
Tx and $R x$ on opposite sidebands possible.

FREQUENCY SELECTION

No bandswitch. Multiple methods of frequency setting. Main dial; "velvet smooth" 10 Hz resolution, 3 speeds; Set MHz, KHz/R - Normal, KHz/R - Fine, Controls RIT or offset (synthesised clarifier).
Inbuilt Keypad; direct digital entry to 100 Hz , Fast/slow, up/down tuning, Scanning manual or auto mode.

RECEIVER

Receiver dynamic range up to 100 dB . Pair of low noise power transistors in RF. Ring mixer with LO injection at 10 dBm . Advanced variable threshold noise blanker. AGC: slow-fast-off. Squelch control. Variable RF attenuator and RF gain circuits. SSB; Variable bandwidth and IF shift. 3 CW and 2 FSK bandwidth positions. $300 \mathrm{~Hz}, 600 \mathrm{~Hz}, 2,400 \rightarrow 300 \mathrm{~Hz}, 6 \mathrm{KHz}$, 12 KHz .

TRANSMITTER

100w RF, (50% duty FSK) all solid state. No preselector, no "plate" tune, no loading controls. Mains and 12V DC. Switch-mode PSU built in. CW change over delay adjustable through to full break in. Electronic keyer built in. Drive level control. Front panel adjustable VOX. Signal monitor feature. RF processor, compression control concentric with mic gain. Auto mic gain, reduces extraneous off mic noises.

MEMORY

Two memory banks ($\mathrm{A}+\mathrm{B}$) each with 10 slots. Simplex or Semi duplex A, B, R×A/TxB, $T \times A / R \times B$. ANY frequency storable. ANY TX-RX split within coverage. RIT offset stored together with memory channel.

METERING

Two large moving coil meters (+3 digitals and 12 leds). R.H. ($\mathrm{Rx}-\mathrm{TX}$);'S' (1-9, $+20,+40,+60 \mathrm{~dB}$) and ALC level. L.H. switched; Ic (20A), Va, Discriminator (FMzero), Compression ($0-25 \mathrm{~dB}$), Forward, Reflected. Digital readout to 100 Hz . Analogue markings for "feel". Dedicated digital readout of RIT offset to ± 9.9 KHz . Digital readout of memory channel number recalled. LED's; Processor, Noise blanker, Auto mic gain, Monitor, Peak - Notch filter, Scan, Transceive, TX - RX Clarify, Dial Lock, Tx Disabled.

FT207R

£169.00 buys you a Yaesu FT207R an IC2F or an AR240 (with $£ 10.00$ change) synthesised handheld transceiver. The FT207R steps in $12 \frac{1}{2} \mathrm{KHz}$ (Not 10 KHz with added " 5 up" switch) it scans for occupied or empty channels (no scanning) it has 4 channels of memory (none) and "auto revert" priority mode (none), programmable and $\pm 600 \mathrm{KHz}$ splits $(\pm 600$ KHz only), one could go on - but we would probably not have any left by the time you read this!!

FT720

A unique modular VHF/UHF FM transceiver system at a remarkable price. Take a tiny FT720R control head for £ 115.00 plug in a $720 \mathrm{R}^{\prime} 2 \mathrm{M}$ ('V 10 w $£ 130.00$, VH $25 \mathrm{w} £ 140.00$) or 70 cm ('U $10 \mathrm{w} £ 150.00$) RF deck or operate it remotely with a 200 cm or 400 cm (E72S $£ 15.00$ or E72L $£ 20.00$) extension cable. Better still, buy a switching box (S72 $£ 55.00$) to enable control of a 2 m and a 70 cms deck from one control head, for the neatest installation around.

FT208R £209.00 2.5w, 2m $12.5 / 25 \mathrm{KHz}$ Synthesised

S. M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton

G3zUL G13KDR GM8GEC G13WWY GW3TMP GW8EBB GJ4ICD G4EOS	Brian John Jack Mervyn Howarth Peter Geoff Simon

CHESTERFIELD
S.M.C. (Jack Tweedy) Ltd

102 High Street,
Chew Whittington, Chesterfield.
Chesterfield (0246) 453
$9-5$ Tueeday-Saturday

9-5.30 Mondoy-Saturday

WOODHALL SPA
S.M.C. (Jack Tweedy) LTD 150 Hormcassto Road,
Woodhall Spa, Unecoinanho.
$9-5$ Tuosday-Saturiday

IPTOROTDIS VhUHORMOLAE

New production capacity at Canterbury has increased our range, decreased our prices, improved our special customer design service. Choose from toroidal transformers in a range of 98 types.

Your Official Yaesu Dealer in Greater
Manchester for the North West.
Distributor of Jaybeam Antennas.
Main Cushcraft Dealer. Agent for TAL,
LAR, Microwave Modules, Western,
Wevco, Mosley, Drae, Shure.
We carry a full range of station
Meters, Connectors, Co-Axial Cables
and Switches, Rotators, Power
Supplies and a Full Stock of RSGB
Books and Maps.
Our prices are competitive. Just send
SAE for our catalogue and price list.
Special package deal for new
licensees setting up station.
Credit Card and Hire Purchase
facilities with written quote on
request. Telephone answering
machine after hours. Open Tuesday to
Saturday. Monday by appointment.
AUTO MARINE

BADAYIIDN DBTHCCIOBS

THIS OOSIMETER
WILL AUTOMATICALLY DETECT WILL AUTOMATICALLY
GAMMA AND X-RAYS

- UNIT IS SIZE OF FOUNTAIN PEN \& CLIPS ONTO TOP POCKET - PRECISION INSTRUMENT METAL CASEO WEIGHT 202 BE PREPARED
- MANUFACTURERS CURRENT PRICE OF A SIMILAR MODEL OVDR £25 EACH British design \& manutacture Tested \& fully guaranteed
f6-95 ${ }_{\text {Posis }}^{\text {mis fact } 600}$
Ideal for the experimenter COMPLETE WITH DATA

404 EDGWARE ROAD LONDON W2 IED

It's on it's way

 the brand new 1982 edition of the
World Radio TV Handbook.

The only authoritative directory of International Broadcasting! The standard reference of DXer's, SWL's and professionals! latest SW receivers, including some brand new models.

- Top U.S. DXer Jerry Berg gives an experienced reader's views on using WRTH.
- Plus various stories and features of interest to listeners around the world.
* Completely updated reference section with frequencies, times, languages, addresses, and details of all known SW, and most MW stations.
* UK price only $£ 9.95$

Special articles will include:-

* Listing by frequency of the worlds SW/MW/LW stations, and essential information for the ative listener.

W.R.T.H. will be published 1st February 1982
 Available from your bookseller or direct from:-

> UK TRADE Argus Books Ltd. 14 St. James Rd. Watford Herts.

USA

Billboard Publications Watson Guptill One Astor Plaza New York 10036

EUROPE
J. Frost

Soliljevej 44
2650 Hvidovre
Denmark

A SQUARE DEAL

THE CQ CENTRE

10 MERTON PARK PARADE 5435150
 (Adj Merton Hall Rd)
 KINGSTON RD SW19

A sincere welcome to all Radio Amateurs and short wave listeners. We would like to thank all our customers who supported us at Leicester, and the organisers of the show.
CB becomes legal on the 2nd November, and we will be stocking a quality range of transceivers and accessories at our usual realistic prices - this we feel will be the gateway for many to the world of amateur radio.
On the amateur front we shall be continuing our wide range of new and second hand equipment including all the popular names

- Yaesu - Trio - Icom - FDK - Microwave Modules - Jaybeam etc and we are still urgently seeking second hand equipment to
purchase, working or not - try us last for a sensible price. Free $5 / 8$ drill mount antenna (British made) with every new or second hand VHF rig.
Always in stock are the HB9CV beam and Slim Jim antennas, at $£ 7.50$ and $£ 6.50$ respectively, but due to changes in postal regulations it is not practical to mail order these singly. An extensive range of aerial equipment in stock - everything you should need, such as poles ($1+2$ inch), wall brackets $(T+F)$, chimney lashing kits, clamps, guy rings and wire, tensioners and masts etc.
Please note that we are open till 8 pm Wednesdays and Fridays, 6 pm otherwise including Saturday, so call in or ring, for helpful advice.

Equipment may also be sold on a sale or return basis, for a nọminal charge.
Latest lines include the Microwave Modules morse talker and the new 11/8 mobile aerial (7.5dB).
HF - VHF - UHF
CB - AMATEUR - PMR - MARINE
ACCESS - BARCLAYCARD - HP (6 MTHS INTEREST FREE)
73's from Bob, lan and Paul at
LONDON'S BRIGHTEST \& NEWEST EMPORIUM . .

T. POWELL

IONISER KIT

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
£12.50
All parts, PCB and full instructions $\mathbf{£ 6 . 5 0}$

A suitable case, in P.W. KITS
 PW NIMBUS - Complete kit still available $\mathbf{£ 8 0 . 0 0}$ (without xtals) Add-on base unit .. £38.00
 Wideband RF Pre-Amp...
 AF Speech Processor .. 18.00
 Beginners 2 meter Convertor ... £15.00
 Model Railway Controller ... £21.50
 VHF/UHF Repeater Station Timer (Main board only) £22.50
 Active receiving Antenna ...50
 Beginners Short Wave Receiver (Components only) ...

 Automatic Cut Out Power Supply ..

SPECIAL OFFERS
FUSEHOLDERS (20 mm chassis mounting) 10 for 30p FUSEHOLDERS (20mm chassis mounting) ... $\mathbf{1 0} \mathbf{~} 2.50$ T̈ÖS̈HIBA TA 7205 .. $£ 1.50$ PHILIPS SCOPE TUBES - 5" CV 2 191/DG 132........................ £12.65 MULLARD COMPUTER ELECTROLYTICS $21,000 / 40 \mathrm{~V}54 .50$ All prices include VAT and postage \& packing. Please allow 28 days for delivery.
Callers: Please ring to check availability of kits before calling. PLEASE NOTE OUR NEW ADDRESS: Advance Works, 44 Wallace Rd., London N1.

Our 'Phone number is still: 2261489

CHATTER

Realistic is the biggest name in Citizens Band Radio and accessories - and you will be able to buy the full range at Tandy - the world's largest retailer of CB equipment!

PEALIStIC
 CBfromTandy

WATCH PRESS FOR FORTHCOMING ANNOUNCEMENTS BASIC Pocket Computer

FX-702P
RRP
$£ 134.95$
ONLY
$£ 119.95$

Plus FREE MiCROL Professional Programming Pack* (RRP $£ 9.95$) Flattens the Sharp PC1211
Alpha/numeric dot matrix scrolling LCD. Variable input from 1680 steps 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR:NEXT looping; 8 levels. Debugging and Editing. 55 built-in functions, including Regression and Correlation, all usable in programs. Program/Data storage on cassette via optional FA-2 adaptor

World's Fastest Programmable?

FX-602P

* LCD alpha/numeric (dot matrix) scrolling display.
\star Variable input from 32 program steps with 88 memories, to 512 steps with 22 memories.
\star Memory and program retention when switched off
- Up to 10 pairs unconditional jumps (GOTO).
- Conditional jumps and count jumps. Indirect addressing. Manual jump. \star Up to 9 subroutines, up to 9 levels. $\star 50$ scientific functions, all usable in programs.
- PAM (Algebraic) with 33 brackets at 11 levels.
\star Program and data storage on cassette tape using optional FA-2 remote control adaptor, $£ 19.95$. \star Compatible with the FX-501P and FX-502P.
$\star 9.6 \times 71 \times 141.2 \mathrm{~mm} .100 \mathrm{~g}$.
ONLY $£ 74.95$
(RRP £84.95)
Plus FREE MiCROL Professional Programming Pack* (RRP £9.95).
FP-10 MINI PRINTER
For FX-702P, FX-602P, FX-502P, FX-501P.
Available soon. Price and delivery on application

CASIO FX-702P SOFTWARE
 Produced by MiCROL exclusively for Tempus

10\% discount on software, if you purchase your hardware from us.
MiCROL 702 USER SUPPORT
Professional Programming Pack. Get the best from your FX-702P with:
PROFESSIONAL PROGRAMMING - practical 702 programming from the ground up plus 702 REFERENCE MANUAL - definitive guide to every 702 program command - INVALUABLE! MiCROL 702PPP. Price $£ 9.95$
Advanced Professional Programming. Create power-packed programs with MiCROL's down-to-earth guide to the advanced 702 program commands. Create simple solutions to complex problems!
Available December, 1981 .

MiCROL 802 APP. Price $\mathbf{£ 7 . 9 5}$
MiCROL 702 APPLICATIONS SOFTWARE
MiCROL 702 Super:Calc. At last! The power of a VISICALC-type modelling system in a pocket computer! For all scientific, statistical, business and general computing users, SUPER:CALC has to be used to be believed - create powerful programs in minutes - answer 'what if questions - analyse trends - cut PRINT options FAplus Program List for direct entry Available December
Available December, 1981.
MiCROL 702 S:C. Price $£ 14.95$
MiCROL 702 Basie:Plus. Add the power of up to 20 new commands to your programs! Custom-made to ease advanced programming - features include: String - number conversions; single-shot, await, timed KEY with user-controiled return values: programmable RAN \#generator;DATA-PACKING - up to 2000 single digit, single name variables; INTEGRATED DISPLAY COMMANDS display data and text with extra-low memory overheads. Modular design uses minimum memory; easy to customise. Full-detail User Manual plus Program List
Available December, 1981.
MiCROL $\mathbf{7 0 2}$ B:P. Price $£ 14.95$

SHORT FORM CATALOGUE

of latest calculators. keyboards and watches available on request. 14 p stamp appreciated.
${ }^{*}$ Only on request, at time of ordering. RRP of 702P/602P versions, $\mathbf{£ 9 . 9 5}$.
Price includes VAT, P\&P. Delivery normally by return of post.
Orders received by Dec. 18th should be delivered in time for Christmas.
Send cheques, P.O., or 'phone your Access or B'card number to:-

PACKER COMMUNICATIONS

2 METRE ATU

IMPROVE YOUR VSWR, POWER OUT AND RECEIVED SIGNALS with an ATU 145 antenna tuning unit as featured in Practical Wireless of July 1981. £19.95

2 METRE WAVEMETER

REMEMBER You need a wavemeter to comply with the conditions of your licence. Our WM-2 keeps you legal.
£22.45
TVI? We think that our UL-8 high pass filter is the best you can buy, but why not judge for yourself? For Ham and CB use.
£6.85
For a full list of all our filters please send a S.A.E.
P-40. The no-compromise CB AND 2 METRE Mobile antenna. Hi grade steel whip $5 / 8$ on $2 \mathrm{~m}, 1.3 \mathrm{~m}$ on CB (within HO spec).
$\mathbf{£ 2 9 . 4 5}$ (plus $£ 4.95$ carriage)
Unit 4,
Station Industrial Estate, Coniston, Cumbria. Phone:- 09664678.

BARCLAYCARD

COMPONENTS AT REALISTIC PRICES

A random selection from our large range. Lists Enclosed with First Order.
ELECTROLYTICS Rad. Lead. (Voltages stocked to 350 V)
1.0/50 5p. 2.2/40 5p. 4.7/35 5p. 10/50 6p 22/166 6p. 47/10 6p. 100/40 9p. 220/10 7p. $470 / 4015 \mathrm{p}$. $1000 / 1012 \mathrm{p}$. $1000 / 63$ Tag ended can. 50 p .
POLYSTYRENE CAPACITORS (Axial Lead)
$15 \mathrm{p} / 125,47 / 125,68 / 30,100 / 25,150 / 63,220 / 160,470 / 25,680 / 125$ etc. etc..........3p each RED COATED RADIAL' POLYSTYRENES
80pt/63. 330/63, 560/63, 680/63
MINIATURE 500V CERAMIC DISCS :."p (50 V \& 250 V Discs also stocked)
$2.2 \mathrm{pf}, 10 \mathrm{pf}, 47 \mathrm{pf}, 100 \mathrm{pf}, 220 \mathrm{pf}, 470 \mathrm{pf}$, 680pf, 1000pf etc. etc....................................4p each
$5.6 \mathrm{p} / 350,27 / 350,47 / 120,150 / 63$ 8p. 220/750, 270/350 10p. 470/250 15p. 4700/500 25p.
HIGH VOLTAGE DISCS $27 \mathrm{p} / 2 \mathrm{KV} 6$ p. $100 / 3.5 \mathrm{KV} 10 \mathrm{p} .150 / 4 \mathrm{KV}$ 11p. $470 / 3 \mathrm{KV}$ 14p. $500 / 16 \mathrm{KV} \mathbf{2 5 p .} 1000 / 1 \mathrm{KV} \mathbf{6 p}$. $4700 / 4 \mathrm{KV} 15 \mathrm{p} .01 / 1 \mathrm{KV} 8 \mathrm{p} .01 / 3 \mathrm{KV}$ 12p, etc. etc.
CAPACITORS 50 V to 10 KV
Miniature Polypropylene 6p. Polyester 4p. Polycarbonate 10 p .
.1/35, 22/35, 33/35, 47/35, 68/35, 1/35 10p. 2.2/16, 3.3/16, 4.7/16 12p. 4.7/35, 6.8/25 $14 \mathrm{p} .6 .8 / 3515 \mathrm{p} .10 / 16,22 / 6.316$ p. 22/10 20p. 22/16 25p. 33/10, 47/6 25p. 47/16 40p. MISCELLANEOUS
5 pin DIN chassis skts. $180^{\circ} 10 \mathrm{p}$. $1 \mathrm{uf} / 220 \mathrm{~V}$ Mains Filter ITT 40p. 15 KV Potted Silicon Diode FLAMEPROOF CERAMIC WIRE WOUND RESISTORS
4.7 ohm 7 w 12 p .120 ohm 3 w 8 p etc.

THERE IS A FURTHER REDUCTION FOR QUANTITIES OF 10 OFF. SEE LISTS. Post and Packing, add 50 p per order. Post paid on orders over $\mathrm{E6.00}$. Send or telephone for sts. Please add 15% VAT. Callers by appointment only, Goods by return
C. H. J. Supplies,

4 Station Road, Cuffley, Herts. Tol. 01-440 8959.

"IRRESISTABLE

RESISTOR BARGAINS',

Pak Ma.	Qts*	Description Pr	Price
SX10	400	Mixed "All Type" Resistors	£1
SXI1	400	Pre-formed $\%$-1/2 watt Carbon	
		Resistors	¢1
SX12	200	\% watt Carbon Resistors	[1
5×13	200	1/4 watt Carbon Resistors	£1
SX14	150	$1 / 2$ watt Resistors 22 ohm-	
		2 m 2 Mixed	£1
SX15	100	1 and 2 watt Resistors 22	

"Quantities approximate, count by weight.

"CAPABLE

 CAPACITOR PAKS"| Pak Mo. | Ots* | Description | ce |
| :---: | :---: | :---: | :---: |
| SX16 | 250 | Capacitors Mixed Types | ¢1 |
| 5X17 | 200 | Ceramic Capacitors Miniature Mixed | E1 |
| SX18 | 100 | Mixed Ceramics 1pf. 56pl | ¢1 |
| 5 $\times 19$ | 100 | Mixed Ceramics 68 pl - 0.5 mi | E1 |
| 5 $\times 20$ | 100 | Assorted Polyester/Polystyrene Capacitors | E1 |
| S×21 | 60 | Mixed C280 type capacitors metal forl | E1 |
| S×22 | 100 | Electrolytics, all sorts | ¢1 |
| \$ $\times 23$ | 50 | Quality Electrolytics $50-1000 \mathrm{mf}$ | ¢1 |
| 5×24 | 20 | Tantalum Beads, maxed | ¢1 |

*Quantities approximate, count by weight.

AUDIO PLUGS, SOCKETS

 AND ACCESSORIES25 pieces of Audio Plugs. Sockets and Connectors Speakers, Phono, Jack, Stereo and Mono, etc. etc. Valued at well over $£ 3$ normal. Order No. $\$ \times 25$. Out Price $£ 150$ per pak. Guaranteed to save you money.

SX26 3 Pis of 6 pin 240° DIN Plugs and Chassis Sockets
$\mathbf{S \times 2 7} 1 \times$ Right Angle Stereo Jack Plug 6.3 mm plus matching metal chassis mounting socket. Sx28 4 Phono plugs and 2 dual phono connectors $\$ \times 291 \times 2.5 \mathrm{~mm}$ Plug to 3.5 mm Socket adaptor. S×31 $1 \times 3.5 \mathrm{~mm}$ Plug to Phono Socket adaptot:

TRIACS - PLASTIC
4 AMP - 400r- TO202 - TAG 136G

Everyday Electronics Teach-in ' 81
Kit $1 \subset 15.65$ (Kits 182 combined Kit 2 § 8.94 price $£ 23.00$)

SX40 250 Silicon Diodes-Switching like IN4148 DO-35. All good-uncoded. Worth doubleour price. 45 v 75 mA . $£ 1.25$ Sx41 250 Silicon Diodes-General Purpose, like OA200/202. BAX13/16. Uncoded. 30.100 v 200 mA .00 .7
£1.25 $105 A$ SCR's TO64. $3 \times 50 \mathrm{v} .3 \times 100 \mathrm{v}, 2 \times$
200 v , $2 \times 400 \mathrm{v}$. Super value less than $1 / 2$ $200 \mathrm{v}, 2 \times 400 \mathrm{v}$. Super value less than $1 / 2$ price.
SX45 105 A SCR's T066. $2 \times 50 \mathrm{v} .2 \times 100 \mathrm{v}, 4 \times$ $200 \mathrm{v}, 2 \times 400 \mathrm{v}$. All coded. Brand new, a giveawayat

SEMICONDUCTORS FROM AROUND THE WORLD

100
 which are current everyday usable devices.

Guaranteed Value over $£ 10$ at Normal Retail Price

$$
\begin{aligned}
& \text { 54:00 } \\
& \begin{array}{l}
\text { every pak, } \\
\text { Order No. } \mathrm{SX} 56
\end{array}
\end{aligned}
$$

- $)$

BI-PAK'S OPTO BARGAIN OF THE YEARI

Vaived at ove fil-Normal Retail-we olfer roo a pack of 250 pto
dences to include EED's Large and Small in Red. Green. Yellow and Cleas. 7 Segment Displays both Common Caithode and Common Anoe
 OCP71 Photo Detectors-
dences will cost you ust

AND we guarantee your money back if you are not Order No. sX57.

MORE BARGAINSI

wo metres PVC c
wre single and s wire single and stranded. Mixed SX58 colours

25 Assorted ITL Gates 7400 Series. 7401.7460 ITIL Assorted lis Flops and MSI TTL
20 Ass 20 Assorted Slider
SX61 Potentiometers
Rotary. Dual etc Potentiomets. Rotary. Dual, etc.
40 Assorted 40 Assorted Pie. Sets Hor/Vert
etc. SK79 ${ }_{10}$ 3 Micro Switches - glass type

STILL MORE!

 SLIDER POTENTIOMETERS Plastic 40 mm Travel Mono $S \times 635 \times 470$ ohms Lin $\underset{S \times 68}{ } \times 5 \times 47 \mathrm{kLLn}$ $\begin{array}{ll}5 \times 645 \times 1 \mathrm{kLun} & \$ \times 685 \times 400 \mathrm{kLin} \\ \$ \times 695 \times 10\end{array}$ $\begin{array}{lll}5 \times 655 \times 22 \mathrm{kLin} & 5 \times 695 \times 100 \mathrm{k} \\ 5 \times 705 \times 1 \text { meg Lin }\end{array}$ $\$ \times 665 \times 22 \mathrm{k}$ Log 5x71 50 BCI 108 "Fallouts" Manu so bCip ha ian Youtest. speconvolsonde ol Copper clad Board. Fibre Sx72 A mixed bundie ornd Single and double sided. A glass and papensํ78 Genuine MULLARD OC71 Ger

5 watt (RMS) Audio Amp

Hugh Quality audio amplifier Module. Ideal for use in record players, tape recorders, stereo amps and cassette playets, etc. Full data and back-up diagrams with each module.
Specilication

- Power Output 5 watts RMS - Laad Impedance 8-16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db}$ Sensitivity 70 mv for full output © Input Impedance 50 k ohms \bullet Size $85 \times 64 \times 30 \mathrm{~mm} \bullet$ Total Harmonic distortion less than. 5%
52.25

You could not Build one for this price.

BJ-PAK's COMPLETELY NEW CATALOGUE
Completely re-designed. full of the type of components you require, plus some very interesting ones you will soon be using and of course, the largest range of semiconductors for the Amateur and Professional you could hope to find
There are no wasted pages of useless information 50 often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what we have available. But remember, B1-Pak's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.
BI-PAK'S COMPLETELY MEW CATALOGUE is now avalable to you You will be amazed how much you can save when you shop for Electronic Components with a Br-Pak Catalogue. Have one by you all the time-it pars to buy BI-PAK

To recevere your copy send $\mathbf{7 5 p}$ plus 25 p p\&
5×38100 Silicon NPN Tiansistors-all perfect Coded mixed types with data and equt. sheet No rejects Real value $\quad \mathbf{£ 2 . 5 0}$
SX39 100 Silicon PNP Transistors-all perfect Coded muxed types with data and equt sheet No rejects Fantastic value. $£ 2.50$

2 M3055 The best known Power Iransistors in the World - 2 N3055 NPN 115 w . Our B1-PAK Special Offer Price $\begin{array}{lll}10 \text { off } & 50 \text { off } & 100 \text { of } \\ & 53.50 & £ 16.00 \\ £ 30.00\end{array}$

80312 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2 N3055.
Equivalent MJ2955-80312 - T03 SPECIN PRICE 50.70 each 10 of $£ 6.50$

Use rour credit card. Ring us on Ware 3182 NOW and get rour order even faster. Goods nomally sent 2nd Class Mal.
Remember you must add VAT at 15° o to your ordet Total. Pestage add 50 p pet Total orde'

Buy from the Short Wave Specialists every time . . . you'll get good service from professionals who know your hobby well. For example:

HOW TO BUY!

By post - or 'phone your Barclaycard, Access or LAR Creditcard number. Altematively, call in for a chat. The shop is just 10 minutes from Leeds City Station and there's easy parking if you travel by car. *Instant HP for licensed Amateurs *Extended Credit Terms Available. A QUOTATION ON ALL CREDIT ITEMS IS AVAILABLE.
*Open $9.15-6.00 \mathrm{pm}$, Saturday $9.15-5.30 \mathrm{pm}$.

FROM THE SHOP - We're close to the station and car parks. Do call in and see Uncle Tom's cabin!

HERE IS A SELECTION OF TOP BUYS

TRIO EQUIPMENT
HS5 Communications headphones, tailored response
..£21.85
HS4 Communications headphones, tailored response
..£10.35
LAR 1kWP.E.P. 3-way antenna switch.... £16.95
LAR Antenna traps for multi-band dipole .. $£ 12.50$
VHF AMATEUR RECEIVERS
WOLFSEN Tuneable/crystal 2m FM receiver
$1200 \quad 144146 \mathrm{MHz}$
$£ 49.50$
AMR217B Scanner. The best mains/battery
operated FM Receiver $144-146 \mathrm{MHz}$
...£120.75
VHF/UHF CUSHCRAFT products available
Famous Ringo Ranger 2 m co-linear $£ 32.00$
GDX2 VHF/UHF Discone Antenna 50-480MHz .£39.50
NEW HF VERTICAL ANTENNA
HF5 HF5R
8010 m vertical
. $£ 48.50$
HF5R Optional radial kit for roof mounting
£30.50
LAR-Omni-Match S.W.L. Antenna tuner
200KHZ to 30MHZ
.£29.95
CX3A 3-way S.W.L. Antenna Switch............. 5.50
All TRIO and ICOM Transeivers normally in stock.
We always have a good selection of second-hand equipment plus a comprehensive range of accessories.

Leeds Amateur Radio 27 Cookridge Street, Leeds LS2 3AG Tel: (0532) 452657 (Shop) Mail Order/Service Department: 600 Green Road, Meanwood, Leeds LS6 4JP. Tel: (0532) 782224 Goods by Return.

Frustration

WELL! We paid our $£ 12.50$ over to the Home Office, and on June 11 we were issued with our very own "Evaluation and Demonstration Licence for Citizens Band Radio Apparatus" to the new UK 27 MHz and 934 MHz f.m. specifications. And here we are at the end of October, still waiting to lay hands on some rigs.

We've seen some; we've even heard some working (not too impressed), but as for having a couple to try out and review - no luck! We've talked to a dozen manufacturers and importers, but they don't actually seem to have any sets that they're prepared to let out of their sight, though some do say they'll have lots ready for legalisation day.

By the time this appears in print, that fateful November 2 will have passed, but I wonder what the state of CB in the UK will be.

We seem to be getting more and more letters and phone calls from readers having problems in getting their copy of Practical Wireless each month. So far as UK readers are concerned, there is the choice of going to a newsagent or station bookstall, or taking out a subscription (see details below). Some smaller newsagents may not normally stock $P W$, but they can all get it from their wholesaler if you place an order. If you do have difficulties, please write and let me know, but do include the name and address of your newsagent or bookstall.

Without that information it's impossible for us to check out the problem.

For overseas readers, the subscription can actually work out cheaper in some countries than buying locally through a newsstand. And PW isn't distributed in every country - we're trying to improve that situation but there are still quite a few gaps.

If you do want to get hold of a past issue, write first to our Post Sales Department (details below again), stating the month and year. Some copies of each month's PW are put aside, but demand is rapidly outstripping the warehouse space we can afford to allot to back numbers, and many issues are now out of print. If it's a particular article that you're after, say so, as we may be able to help you with just that item if the whole magazine isn't available.

But if you want to avoid the frustration and disappointment of missing an issue or an article, there's only one thing to do: either place a regular order or take out a subscription.

Pi I

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. For more ifficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

PROJECT COST

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this will be mentioned in the Buying Guide.

CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

Advanced

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 13.00$ per annum, from "Practical Wireless" Subscription Department, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at 95 p each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 4.30$ to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Departmont, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.

Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

One of the prime requirements of effective mierowave operation is the ability of the operator to align his antenna (dish) accurately on the station he is trying to work. Beam widths of a few degrees are usual and not all microwave operating takes place in weather-which allows the operator to align his antenna by optical sighting. On the longer paths, above say 40 km , this is usually impossible anyway, since the clarity of the British atmosphere is seldom good enough to allow sightings of more than 30 to 50 km ! Once antenna alignment is corfect, whether the path works or not is dependent on the topography of the path and the equipment and operator capability.
Thus, femiliarity with the use of the Ordnance Survey (OS) maps, the use of the National Grid Reference (NGR), the use of the compass and the calculation of bearings and distances becomes essential.

The British Isles is well mapped and a whole series of highly detailed, different-scaled maps is availatle frem the OS. Perkaps the most generally useful series is the 1:50000 ($1 \mathrm{kx}=2 \mathrm{~cm}$ or approximately 1 mile $=1.25 \mathrm{in}$ ches) which usessome 200 plus individual sheets to gover the mainland of England, Scotland and Wales, together with outlying islands, but omits Eire, the Channel Islands and, obviously, the Continent.

However, it is the purpose of this article to concentrate on the fundamentals of map reading, bearing calculation and distance estimation so that the beginner in the microwave field can go out to his mountain top with reasonable confidence that he will be able to beam his

WHEREAREFOUZ
 signals in the right direction! It should be added that it is

 not essential for the operator to be equipped with the 200 or so OS sheets mentioned above-only those of the areas of interest (begged or borrowed) so that an operating site can be chosen and its NGR ascertained.As a preliminary to site selection, it should be mentioned that the OS publishes a 1:625000 scale (about 10 miles to 1 inch) Physical Map of Great Britain. Sheet 2 is of particular interest, covering the whole of the mainland from the Lake District and North Yorkshire Moors southwards. This map will give the operator a chance to assess his particular mountain top with respect to other potential sites of interest. IT is a simple, colour-contoured map showing names and spo heights of the more important hills, river courses and the like; it contains no other detail such as roads, railways, forests or towns.

Looking at the Map

The reader should open out his OS map at this point and note a number of important features. Firstly, that the map is divided into 1 km squares by a series of light blue lipes-the Grid Lines. Alongside these lines at each edge Of the map are a series of figures. It is these figures which are used to make up the so-called National Grid Reference. It is important that the figuxes are noted in a particular way in order to be able to writedown a correct NGR.

On the right-hand margin of each map there is a diagram which gives the Grid Letter of the particular map, for instance Sheet 109, Manchester, covers part of Grid

Letter references SD (Northern half) and SJ (Southern half). In the example to be given, reference will be made to a well-known microwave path-that from Winter Hill near Bolton to Brown Clee Hill near Ludlow, a distance of 128 km , which is easily workable at the $1-4 \mathrm{~mW}$ level on 10 GHz under normal weather and propagation conditions, using such equipment as the $P W$ "Exe".

Winter Hill uses the Grid Letters SD, and Brown Clee SO. Next to be read are the so-called "Eastings"-these are the figures at the top and bottom of the map. Take the nearest grid line to the left (west) of the point and note the figures. Then, estimate the tenths of a square from the left hand grid line already noted, giving a three figure reference. For example, Winter Hill is 66 (main grid line), plus three tenths, giving 663. Repeat the exercise for the "Northings", the figures on the left and right margins of the map, this time taking the grid line immediately below (south) the reference point and estimating tenths as before. Winter Hill, again, is 14 (main grid line) plus six tenths, giving 146. Thus, the full NGR becomes SD663.146 for Winter Hill and, similarly, Brown Clee is SO594.867. It should be noted that these references are accurate to 100 metres or about 330 feet.

Bearings and Distance

The direction from the home station to the distant station, and their distance apart, can be calculated once the two NGRs have been worked out in the manner described and converted into a numerical grid reference.

The first step is to convert the Grid Letters into the corresponding numbers (Table 1): when the whole grid reference is expressed as numbers, the resultant gives the number of kilometres East (West) or North (South) of the National Grid origin and enables standard trigonometry to be applied to the references in order to work out angles (bearings) and distances. Converted in this way, Winter Hill (SD663.146) becomes $366 \cdot 3,414 \cdot 6$ and Brown Clee (SO594.867) becomes $359.4,286 \cdot 7$. These figures are now in a usable form at last!

Referring now to the figure, what we want to calculate is the bearing θ from the home station to the distant station and the distance D. This is done using the following trigonometrical expression:

$$
\text { Angle } \theta=\frac{1}{\tan } \frac{|\Delta E|}{|\Delta N|}=\arctan \frac{|\Delta E|}{|\Delta N|}
$$

where $\Delta \mathrm{E}$ is the difference between distant Easting and home Easting (the first group of four figures for the distant and home stations), and $\Delta \mathrm{N}$ is the difference between distant Northing and home Northing (the second group of four figures in each case). The vertical bars on each side of ΔN and ΔE in the expression means that the values are taken as positive even if they are actually negative.

Let us now work out the actual example

Distant
NGR Brown Clee 359.4, $286 \cdot 7$
DN $=286.7$
$\mathrm{DE}=359.4$
$\Delta \mathrm{E}=\mathrm{DE}-\mathrm{HE}=359.4-366.3=-6.9$
Angle $\theta=\arctan \frac{6.9}{127.9}=3.08^{\circ}$. (Using tables or a scientific calculator)
To calculate the actual bearing, a further small sum must be done, this time taking note of the signs (+ or -) of the values of ΔN and ΔE.

Table 1

Letters	Numbers E,N	Letters	Numbers E,N
NR	1,6	SM	1,2
NS	2,6	SN	2,2
NT	3,6	So	3,2
NU	4,6	SP	4,2
NX	2,5	TL	5,2
NY	3,5	TM	6,2
NZ	4,5	SS	2,1
SC	2,4	ST	3,1
SD	3,4	Su	4,1
SE	4,4	то	5,1
TA	5,4	TR	6,1
SH	2,3	SW	1,0
SJ	3,3	SX	2,0
SK	4,3	SY	3,0
TF	5,3	sz	4,0
TG	6,3	TV	5,0

If $\Delta N+$ ve and $\Delta E+$ ve	Bearing $=\theta$
$\Delta N-$ ve and $\Delta E+$ ve	Bearing $=180-\theta$
$\Delta N-$ ve and $\Delta E-v e$	Bearing $=180+\theta$
$\Delta N+v e$ and $\Delta E-$ ve	Bearing $=360-\theta$

Thus, in our example, since ΔN and ΔE are both negative, the bearing becomes $180^{\circ}+3^{\circ}=183^{\circ}$. The answer indicates that the distant station is almost due (Grid) south of the home station. However, in order to be able to take a bearing using a compass, a correction has to be made since the magnetic north, as indicated by the compass, differs from the Grid North which has been used in the calculation. The actual magnetic deviation varies from place to place in the country: for example, it is $6^{\circ} \mathrm{W}$ of North near the East Coast and $9^{\circ} \mathrm{W}$ of North in Wales. An average figure can be taken as $7.5^{\circ} \mathrm{W}$ of North, but the actual figure is, again, given on each OS sheet in the right hand margin. This magnetic deviation must be added to the calculated bearing. In the example given, the correct bearing becomes

$$
183^{\circ}+7.5^{\circ}=190 \cdot 5^{\circ} \text { magnetic }
$$

Using the ΔE and ΔN values obtained above, it is now possible to calculate the length of the path (distance D in the figure) using

$$
D=\sqrt{\Delta E^{2}+\Delta N^{2}}
$$

In this case

$$
\begin{aligned}
\mathrm{D} & =\sqrt{127 \cdot 9^{2}+6 \cdot 9^{2}} \\
& =\sqrt{16358+47 \cdot 6} \\
& =128 \mathrm{~km}
\end{aligned}
$$

You did remember that "the square of the hypotenuse equals the sum of the squares of the other two sides", didn't you?
The calculation of bearing and distance has taken much more time to describe than to carry out! The potential operator should practise the method by taking NGRs from his map and calculating: perhaps two points a few kilometres apart which are clearly visible. This will enable him to check by sighting that the calculated bearings are indeed verified by the compass in the field.

Beware, when taking bearings with the compass, that any large ferrous object-car, fence wire, electricity pylon, etc.-can affect the accuracy of the compass. Microwave operation will often take place in the vicinity of your car. Be sure to get far enough away for the compass bearings to be correct!
It is not intended to describe how to use a compass in the field: the leaflet which comes with any good compass, e.g. Silva, Suunto, will tell the user the correct method, but please buy a good compass of reputable make!

The QRA System

One exchange of information needed in microwave contacts, and used on both v.h.f. and u.h.f., is the QRA locator. This information is essential if, for instance, the operator wishes to enter contests or claim one of the QRA Square awards (RSGB) available on v.h.f., u.h.f. and microwaves.

Once again, the information needed to calculate your QRA is contained on the OS map as figures on the extreme edge of the sheet-indeed, the information 'frames' the actual map. These figures give the station's latitude and longitude in degrees and minutes (seconds must be estimated) North and West respectively. For Winter Hill, the latitude is $53^{\circ} 37^{\prime} 30^{\prime \prime}$ North, longitude $2^{\circ} 30^{\prime} 35^{\prime \prime}$ West. The calculation is as follows:
Refer to Tables 2, 3, 4, 5 and 6.
Step 1 Subtract from the longitude the largest number in Table 2 which will leave a positive remainder. The letter corresponding to this number is the first letter of the QRA. Note the letter.
Step 2 Subtract from the latitude the largest number in Table 3 which will leave a positive remainder. The letter corresponding to this number is the second letter of the QRA. Note the letter.
Step 3 Subtract, from the remainder of Step 1, the largest number in Table 4 which will leave a positive remainder. Note the corresponding number.
Step 4 Subtract, from the remainder of Step 2, the largest number in Table 5 which will leave a positive remainder. Note the corresponding number.
Step 5 Add together the numbers derived from Steps 3 and 4. This will give the number part of the QRA.
Step 6 From inspection of Table 6, decide the combination of numbers which, when subtracted from the remainders of Steps 3 and 4, give the smallest positive remainders. The letter corresponding to this combination of numbers is the last letter of the locator.

Further tables are needed for locators east of the Greenwich Meridian. Although seldom used in microwave operation (since the vast majority of activity is to the west of the Greenwich Meridian) Tables 7, 8 and 9 give the additional information needed for such stations. Table 7 is used in Step 1, Table 8 in Step 3, and Table 9 in Step 6 instead of Tables 2, 4 and 5 respectively. Otherwise the method is identical.

Let us actually work out the QRA for Winter Hill!

Table 2

First Letter
Longitude
$0^{\circ} \mathrm{W}=\mathrm{Z}$
$2^{\circ} \mathrm{W}=Y$
$4^{\circ} W=X$
$6^{\circ} \mathrm{W}=\mathrm{W}$

Table 4
Number
Longitude
$0^{\prime} W=10$
$12^{\prime} W=09$
$24^{\prime} W=08$
$36^{\prime} W=07$
$48^{\prime} W=06$
$1^{\circ} 0^{\prime} W=05$
$1^{\circ} 12^{\prime} W=04$
$1^{\circ} 24^{\prime} W=03$
$1^{\circ} 36^{\prime} W=02$
$1^{\circ} 48^{\prime} W=01$

Table 6

Last Letter Latitude and Longitude
$4^{\prime} \mathrm{W}+5^{\prime} \quad 0^{\prime \prime} \mathrm{N}=\mathrm{A}$
$0^{\prime} W+5^{\prime} \quad 0^{\prime \prime} N=B$
$0^{\prime} \mathrm{W}+2^{\prime} 30^{\prime \prime} \mathrm{N}=\mathrm{C}$
$0^{\prime} \mathrm{W}+0^{\prime} \quad 0^{\prime \prime} \mathrm{N}=\mathrm{D}$
$4^{\prime} \mathrm{W}+0^{\prime} \quad 0^{\prime \prime} \mathrm{N}=\mathrm{E}$
$8^{\prime} W+0^{\prime} \quad 0^{\prime \prime} N=F$
$8^{\prime} \mathrm{W}+2^{\prime} 30^{\prime \prime} \mathrm{N}=\mathrm{G}$
$8^{\prime} \mathrm{W}+5^{\prime} \quad 0^{\prime \prime} \mathrm{N}=\mathrm{H}$
$4^{\prime} \mathrm{W}+2^{\prime} 30^{\prime \prime} \mathrm{N}=\mathrm{J}$

Table 8

Number
Longitude

$$
\begin{aligned}
0^{\prime} \mathrm{E} & =01 \\
12^{\prime} \mathrm{E} & =02 \\
24^{\prime} \mathrm{E} & =03 \\
36^{\prime} \mathrm{E} & =04 \\
48^{\prime} \mathrm{E} & =05 \\
1^{\circ} 0^{\prime} \mathrm{E} & =06 \\
1^{\circ} 12^{\prime} \mathrm{E} & =07 \\
1^{\circ} 24^{\prime} \mathrm{E} & =08 \\
1^{\circ} 36^{\prime} \mathrm{E} & =09 \\
1^{\circ} 48^{\prime} \mathrm{E} & =10
\end{aligned}
$$

$0^{\circ} \mathrm{E}=\mathrm{A}$
Table 3
Second Letter Latitude
$50^{\circ} \mathrm{N}=\mathrm{K}$
$51^{\circ} \mathrm{N}=\mathrm{L}$
$52^{\circ} \mathrm{N}=\mathrm{M}$
$53^{\circ} \mathrm{N}=\mathrm{N}$
$54^{\circ} \mathrm{N}=0$

Table 5

Number
Latitude

$$
\begin{aligned}
& 0^{\prime} 00^{\prime \prime} \mathrm{N}=70 \\
& 7^{\prime} 30^{\prime \prime} \mathrm{N}=60 \\
& 15^{\prime} 0^{\prime \prime} \mathrm{N}=50 \\
& 22^{\prime} 30^{\prime \prime} \mathrm{N}=40 \\
& 30^{\prime} 0^{\prime \prime} \mathrm{N}=30 \\
& 37^{\prime} 30^{\prime \prime} \mathrm{N}=20 \\
& 45^{\prime} 0^{\prime \prime} \mathrm{N}=10 \\
& 52^{\prime} 30^{\prime \prime} \mathrm{N}=0
\end{aligned}
$$

Table 7

First Letter Longitude
$2^{\circ} \mathrm{E}=\mathrm{B}$
$4^{\circ} \mathrm{E}=\mathrm{C}$
$6^{\circ} \mathrm{E}=\mathrm{D}$

Table 9

Last Letter
Latitude and Longitude
$4^{\prime} E+5^{\prime} \quad 0^{\prime \prime} N=A$
$8^{\prime} E+5^{\prime} \quad 0^{\prime \prime} N=B$
$8^{\prime} \mathrm{E}+2^{\prime} 30^{\prime \prime} \mathrm{N}=\mathrm{C}$
$8^{\prime} E+0^{\prime} \quad 0^{\prime \prime} N=D$
$4^{\prime} E+0^{\prime} \quad 0^{\prime \prime} N=E$
$O^{\prime} E+O^{\prime} \quad O^{\prime \prime} N=F$
$0^{\prime} \mathrm{E}+2^{\prime} 30^{\prime \prime} \mathrm{N}=\mathrm{G}$
$0^{\prime} \mathrm{E}+5^{\prime} \quad 0^{\prime \prime} \mathrm{N}=\mathrm{H}$
$4^{\prime} \mathrm{E}+2^{\prime} 30^{\prime \prime} \mathrm{N}=\mathrm{J}$

AMCOMM

by two way FREEPOST

MICROWAVE MODULES
MMT 432/28S
MMR 432/144R
MMT 28/144
MMT 144/28
MMC 28/136
MMC 28/156
MMC 28/144
MMC 144/any IF
MMC 144/28LO
MMC 70/any IF
MMC $432 / 28 S$
MMC $432 / 144 S$
MMC 1296/any IF
MMC 050/500
MMA 28 preamp
MMA 144 V preamp MMV 1296/28 MML 144/100 linamp
MML 432/100 linamp MML 144/25 linamp MML 432/50 linamp MM2000
MM2000
£149.00
£149.00
£184.00
£184.00
£199.00
£ 199.00
$\mathbf{f} 990$ $£ 27.90$ $£ 27.90$ £27.90 £27.90
$£ 27.90$ £29.90 £27.90 $£ 34.90$ $£ 34.90$ £32.20 £32.20
$\mathbf{f} 69.00$ £14.95 £34.90 £32.20 £142.60 £228.85 £59.00 £119.00 £169.00 £115.00

Model A	$\mathbf{£ 6 3 . 0 0}$
Model B	$\mathbf{£ 6 9 . 0 0}$
Model C	$\mathbf{£ 6 5 . 0 0}$
Model D	$\mathbf{£ 6 6 . 0 0}$

YAESU CONVERTERS 7700 Series

ROTATORS

Skyking SU 400
Hirschmann 250
$£ 92.00$
Emoto 502CXX
KR 400RC
AR 40
KR 950 2A
Rotor Bearing
ait

UNADILLA/REYCO
 Antenna Traps-

Antenna Traps-
Precision moulded coil forms stainless - hardware - Aluminium tube irridit finish - Coated aluminium wire. Fully waterproofed.
Available 7/14/21 MHz
£12.99

W2AU BALUN
$3.5 / 30 \mathrm{MHz} 2.5 \mathrm{Kw}$ with Lighting Arrestor - Suitable Vees, Yagis, Doublets, Quads etc. $\quad £ 12.99$

STANDARD
C8800 2m, Tcvr
C7800 70cms Tevr
£252.00
£275.00

TRONIXPSU

British made, 5 amp constant, 7 amp surge, fully regulated and protected.
$£ 27.90$

ICOM IC 730. All bands $10-80 \mathrm{~m}$ including 30 m .17 m and 12 m . 100 w RF out and 40 W AM. Twin VFO, digital readout, 3 speed tuning down to 10 Hz . Dial lock, for H.P. details.

SWR/RF POWER METERS

SWR $253.5 / 170 \mathrm{MHz} \quad £ 12.94$
LEADER LPM $885-\mathrm{HF} 1 \mathrm{Kw} £ 58.00$
HANSON $3.5 / 150 \mathrm{MHz} 200 \mathrm{w}$
£28.75
REECE UHF 74 144/432 £16.28
HANSON FS 500H
$1.8 / 60 \mathrm{MHz} 2 \mathrm{Kw} \quad \mathbf{£ 6 7 . 8 5}$
OSKAR SWR 200
3.30 MHz 2 Kw

FDK Multi 700EX
£199.00
FDK Multi 750E
$£ 299.00$
:---:
bumper bundle
literature

LINEAR AMPLIFIERS

$2 \mathrm{M} 10-80 \mathrm{P} \quad 144 \mathrm{MHz} 10 \mathrm{~W}$ input/80W output with 9 dB preamp 44 MHz 25 W input 150 W 144 MHz 10 W input/150W $2 \mathrm{M} 10-150 \mathrm{P}$ 144MHz 10 W input 150 W
output with 9 dB preamp
$2 \mathrm{M} 3-150 \mathrm{P}$ (144Mz 3 M inpu 150 W 144 MHz 3 W input/150W £209.88 output with 9dB preamp
£209.88
G. WHIP Mobile Antennas

Tribander 10-20 Slide
L.F. Coil 40/80/160 MTS
L.F. Whip Telescopic Multimobile 10-20 Auto M/Mobile Coil 40/80/160 M/Mobile Whip Telescopic Flexiwhip 10M Mast F/Whip Coils 40/80/160
Base Standard
Base Heavy Duty Extenarod
£138.00 £184.00 2M3-150P
-
s
c

MORSE KEYS
HK 707 Straight Up/Down keyer £11.44 BK 100 Semi-automatic mechanical bug $£ 17.88$ MK 702 Up/Down keyer on marble base
MK 702 Manipulator $£ 22.43$
MK 704 Squeeze paddle
MK 705 Squeeze paddle on marble base
1 M Morse code practice oscillator $\quad \mathbf{£ 2 2 . 4 3}$ MK 1024 Morse code practice oscillator $£ 8.63$ MK 1024 Automatic memory keyer $£ 135.13$ $\begin{array}{lrr}\text { EK } 150 & \text { Semi/Automatic keyer } & \mathbf{£ 1 3 5 . 1 3} \\ \mathbf{£ 7 4 . 7 5}\end{array}$

SHURE MICS

201	Hand ceramic omnidirectional high impedance Hand ceramic noise reducing high impedance	$£ 14.49$
202	Hand controlled magnetic	$\mathbf{£ 1 5 . 1 8}$
401A	high impedance	
401 B	Hand controlled mag. low impedance (200 ohms)	$\mathbf{£ 1 6 . 5 6}$
444	Desk adjustable height controlled magnetic	$£ \mathbf{£ 3 2 . 4 3}$
$526 T$	Desk controlled response transistor preamp	$£ \mathbf{£ 3 . 3 3}$

STILL HELPING WHERE IT HURTS

Here's a list below to make buying easier for you Work it out yourself - You'll see - It really is easy!

Product	List Price	Deposit	12 Payments
Yaesu FT 902DM	£885	399	£40.55
Yaesu FRG 7700/S	£329	£139	£15.89
Yaesu FRG 7700/M	£409	£180	£19.01
Yaesu FT 1012D/FM	£665	£300	£30.41
Yaesu FT 1012D/AM	£650	£275	£31.29
Yaesu FT 101Z/FM	£590	£250	£28.27
Yaesu FT 101Z/AM	£575	£225	£29.15
Yaesu FL2100Z	£425	£185	£20.08
Yaesu FT1	£1295	£600	£57.91
Yaesu FT 480R	£379	£185	£16.18
Yaesu FT 707	£569	£230	£28.27
Yaesu FT 290	£249	£120	£10.82
Standard C78	£219	£99	£10.04
Standard C58	£247	£107	£11.69
ICOM 730	£574	£250	£27.00
ICOM 720A	£883	£400	£40.26
ICOM 290	£366	£166	£16.67

If you don't like easy payments call us anyway for price.

Choose your AMTECH here
Amtech 100 Mobile Match
Amtech 200 Random Wire ATU $10-160 \mathrm{~m}$ 200w pep $£ 16.95$
Amtech 300 Random and Coax Fed ATU 300w pep
Amtech CW 250 - The most outstanding CW filter available
Amtech Channelguard - A plug in device to eliminate those unwanted stations

Decoder Sender
Amtech FM7: FM Demodulator for FRG 7

ANTENNAS

Wide range in stock including JAYBEAM - HYGAIN - GOTHAM - TELECON

- HOKUSHIN etc.

Bantex $5 / 8$ whip complete antenna
Bantex $\frac{1}{4} w$ whip complete antenna
£8. 99
NO्OPOSTAGE REQUIRED
AMCOMM SERVICES (PW1),
FREEPOST,
HARROW HA2 OBR.
| Please send me.
at...enclosed cheque/P.O. for
..or charge my VISA/ACCESS

Nr

Name
Address

PM COMPONENTS LTD. valve \& components spegalists DEPT. P, CONINGSBY HOUSE, WROTHAM RD, MEOPHAM, KENT DA13 OHN PHONE 0474 813225. TELEX 965966 WEST ST G

NEW BRANDED VALVES

\section*{| A2087 | $\mathbf{1 1 . 5 0}$ | ECF86 | $\mathbf{1 . 5 0}$ | EZ80 | $\mathbf{0 . 5 6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A2134 | | | | | |}

A2087	$\mathbf{1 1 . 5 0}$	ECF86	$\mathbf{1 . 5 0}$	EZ80	$\mathbf{0 . 5 6}$
A2134	$\mathbf{9 . 0 0}$	ECF812	$\mathbf{1 . 2 0}$	EZ81	$\mathbf{0 . 5 6}$
A2293	$\mathbf{7 2 0}$	ECH3	$\mathbf{2} .50$	EZ90	$\mathbf{0}$

BF197
BF198

Many other items available

Please phone send list for quote

CALLERS WELCOME

\star Entrance on
Wrotham Rd. (A227) Mon.-Fri. 9.30-5.30 Near Meopham Stn. Saturday 9.30-12.00 P. \& P. 50p. Please add V.A.T. at 15\% * 24-HOUR ANSAPHONE SERVICE \star

GTITEMOSTOU OFAMAIEURBADO

It's the ANTENNA
 that really matters

A fine hobby is often restricted by lack of space or other practical inhibitions-problems seem without solution. Even when you do get going, what about TVI? And for all bands-an aerial farm? But there is an answer with two

COMPACT, EFFICIENT ANTENNAS FOR TRANSMITTER OR SWL

JOYFRAME $23^{\prime \prime} \times 23^{\prime \prime} \times 23^{\prime \prime}$ triangular, works indoors, stand ontop your rig, hand rotatable. $3.5-30 \mathrm{Mhz}$., incl. "new" bands., 27 MHz . CB., PLUS 2 metres.
JOYFRAME (SWL version)
$£ 60.00$
JOYFRAME (TX version)
El 10.00
PARTRIDGE MINI ANTENNAS for HF bands etc., all BC SW Bands for SWL's. Miraculous TWO FOOT LONG unit.
PARTRIDGE MINI ANTENNA (SWL version) $£ 50.00$ With 10^{\prime} Feeder (fitted) and tuner.
PARTRIDGE MINI ANTENNA (TX version) $\quad \mathbf{E 8 0 . 0 0}$ With 10° Feeder (fitted): SUPERMATCH ATU and JOYRADIAL art. earth. (Choose either $80 / 10 \mathrm{~m}$ or CB with 2 m). COMPLETE MULTIBAND ANTENNA SYSTEM.
WALL or STACK support for the MINI $£ 6.00$. Extra FEEDER, supplied fitted 54 p. per 10 feet.
These antennas exhibit low angle radiation properties (DX-sensitive, power saving), also omni-directional. TVI-PROOF! Power capability on Tx 150w. (d.c. rating). Prices include postal delivery UK. Free technical after sales advice for owner/users. Send cheque or money order or SAE for FREE literature. Goods despatched within 48 hours.

G3CED
PARTRIDCE (PW)
(Callers by appointment only).
TEL: 084353073 (Orders) 6
TEL: 084353073 (Orders) 62839 (Tech.
Enquiry). Enquiry).

WOOD \& DOUGLAS

Your Winter Project could be:-

Project	Code	Kit	Assembled
70 cms Transmitter (0.5W)	70FM05T4	23.10	38.10
70 cms Receiver	70FM05R5	48.25	68.25
70 cms Synthesiser	70SY25B	60.25	84.95
70 cms Pre-Amplifier	70PA2	5.95	7.90
70 cms Converter	70R×2/2	20.10	27.10
70 cms 0.5 W Synthesiser Package	70PAC2	128.00	163.00
70 cms 10W Power Amp/Pre-Amp	70PA/FM 10	34.65	48.70
2M Transmitter (1.5W)	144FM2T2	22.25	36.40
2M Receiver	144FM2R2	45.76	64.35
2M Synthesiser	144SY25B	59.95	78.25
2M 1.5W Synthesised Package	144 PAC	105.00	138.00
2M 10W Linear	144 LIN 10B	26.95	35.60
2M 10W Power Amplifier	144FM10B	25.95	33.35
2M Miniature Pre-Amplifier	144 PA 3	6.95	8.10
2M Low Noise Pre-Amplifier	144PA4	7.95	10.95
2M RF Switched Pre-Amplifier	144PA4/S	14.40	18.95
Toneburst	TB2	3.85	6.20
Piptone	PT2	3.95	6.90
Kay Tone	PTK1	5.95	8.20
Regulator	REG1	4.25	6.80
Microphone Pre-Amplifier	MPA1	2.95	5.40
CW Filter	CWF1	4.75	6.40
Reflectometer	SWR 1	5.35	6.35

Full details will be forwarded on receipt of a large SAE. Non-technical enquiries only can be taken during the day on 07356 5324. Technical enquiries between 7-9 pm on either 073565324 or 0256 24611. Kits when stock will be return of post when humanly possible otherwise allow 28 days. Assembled items 20-40 days. Stock is held also at Amateur Radio Exchange in Ealing and J. Birkett in Lincoln.
(Prices include VAT at the current rate, please add $70 p$ for postage.)

9 HILLCREST, TADLEY

 BASINGSTOKE, HANTS RG26 6JB
THE
 Pin'VINTON' Stereo Tuner

Part 4

In this part of the Winton series we will deal with the construction of the chassis. When cutting the aluminium great care should be taken as accuracy is absolutely essential.

Note the diagrams of the chassis and fascia panels are shown half full size.

Next month we will finish with the interwiring and full setting up instructions.

Chassis

The main chassis is made in the form of a folded " U " from aluminium sheet and the overall size before bending is $461 \times 298 \mathrm{~mm}$ plus twice the bend allowance for the thickness of metal used. Therefore when using 1.2 mm thick (18 s.w.g.) aluminium the size will be $461 \times$ 300.4 mm . It is possible to get aluminium sheet cut to size at most d.i.y. suppliers and it is well worth having this done as it ensures that the metal has "square sides" and makes measurements more accurate.

The blank sheet should be marked out as shown in Fig. 13. but be sure not to forget the two lines scribed to allow for the metal thickness when bending. The centre height of the push-button knobs must be within 0.5 mm of 20.5 mm for smooth operation and this is the reason for two scribed lines; if the bottom line is used as a guide line in the bender the holes should be correctly positioned after bending.

Cut-Outs

After drilling the cut-outs, all the holes should be deburred and the edges of the large cut-outs should be lightly filed to leave a smooth finish. These large cut-outs are so that in the event of service being required it will be possible to get to the underside of the p.c.b.s for taking voltage measurements or changing components. This task would be impossible if the cut-outs were not present. Once all the holes and cut-outs have been made the chassis can be bent up. but do make sure that you bend it the correct way!

A useful tool for making the large cut-outs is a standard hacksaw fitted with an Abrafile blade. This is a round
blade and makes cutting odd-shaped holes a very easy task.

Front Fascia Panel

The front fascia panel is made to the same drawing as the front part of the chassis (Fig. 12) and the use of 2 mm thick aluminium is recommended but be sure to allow the extra length of metal on all four sides. This is to provide an overlap when fitting into the cabinet. Note that the extra depth allowed is larger along the bottom edge; this is to allow for the bend thickness of the chassis and because the height of the screw fixing under the chassis prevents the chassis lying "flat" onto the bottom of the cabinet. Note that the five countersunk holes are not required on the fascia panel. only on the chassis.

Cut-Out Covers

The cut-out covers are simply rectangular pieces of metal drilled as shown in Fig. 12 and fitted over the cutouts when the tuner is completed so that screening is maintained.

Meter Cut-Outs

The meter cut-outs should be cut out so that the meters to be used are a firm push-fit into the hole. Cut the required hole slightly smaller than that finally required and file to the correct size to ensure a firm fit of the meter into the cut-out. Do not force the meters into place.

The a.m. r.f. unit has a number of fairly large pins protruding from the bottom and these have to be fitted into the holes of the p.c.b. The best method is to "walk" them into place in the same manner as the push-button switches, i.e.. start from one side with the whole unit at a slight angle and lower the pins into the holes in turn as the unit is lowered. Make sure that all the pins are through before soldering.

A monthly look at some aspect of the radio/electronics hobby that seems to bug the beginner, or occasionally a more advanced topic seen from an unusual angle.

DECIBELS-2

In the first article on decibels, I talked about what happens when P2 or V2 are larger than P1 or V1, though I did hint that things could be the other way round. This happens when you are looking at the effect of an attenuator on a circuit, or of turning the volume control on your radio down (Ah, peace!).

Now, if P2 is less than P1, then the ratio P2/P1 will be less than unity (unity just means the number "one"). To be a little more exact, it must also be greater than "zero"-in other words it must be a positive number less than "one". If you can harken back to your school days again, you may recall that the \log of 1 is zero, and the log of a number less than 1 is negative. Thus if $P 2$ is a tenth of $P 1$ the ratio $P 2 / P 1$ will be 0.1 , its \log is 1.0 or -1.0 (depending upon which school you went to) and so
$N_{\mathrm{dB}}=10 \log _{10} \frac{\mathrm{P} 2}{\mathrm{P} 1}$

$$
=-10
$$

In Fig. 2, which is really just a mirror image of Fig. 1 in the previous article, you can see the relationship between power ratio and decibels up to $1: 1000(-30 \mathrm{~dB})$. Again, the scales could be extended, but this time to the left. The OdB points of Fig. 1 and Fig. 2 are the same point, and you could join the two end-to-end.

Negative decibels (meaning the signal has been attenuated) are frequently encountered when talking about the selectivity of tuned circuits. Figures often quoted are: 1. The bandwidth at the points where the power has dropped to one half of its value at the frequency of maximum response. Half power is equivalent to -3 dB and this bandwidth is called the 3 dB bandwidth. Because of the square-law relationship between power and voltage, the signal voltage at this point is 0.707 of the maximum $\left(0.707^{2}=0.5 \mathrm{ap}-\right.$ prox). 2. Other figures of interest are bandwidth at the -6 dB points, where the signal voltage is halved and the power is reduced to a quarter $\left(0.5^{2}=0.25\right)$ and the -60 dB points, where the signal voltage is reduced to a thousandth of the

maximum. The ratio of the bandwidths at the -60 dB and -6 dB points is an indication of the selectivity of the tuned circuit. The smaller this ratio, called the shape factor, the better (nearer the ideal) is the tuned circuit. Thus, in Fig. 3, circuit " A " is far better than circuit " B ". Note that shape factor is always greater than 1 .

When talking about response curves, there is often confusion between positive and negative decibel ratios. At the point where the response is at -6 dB , we also say it is 6 dB down, or the attenuation is 6 dB . In the same way, an interfering signal at frequency f_{2} in Fig. 3 would be attenuated by 60 dB by circuit " B ". If f_{2} was the frequency of the channel next to the one we were listening on (f_{1}), called the adjacent channel, we would say we have an adjacent channel rejection of 60 dB . Many people (including me) tend to be a little lazy sometimes about whether we should put the minus sign in or not, which can confuse the beginner.

"Special" Decibels

There's really nothing different about these decibels; it's just that one or more letters are added to the abbreviation $d B$ to indicate what the reference point (the P 1 or V 1 value) is. Here are some of the most commonly encountered.

First, two connected with antenna performance measurements: dBi-gain compared with that from an isotropic antenna (one with equal response in every direction); dBdgain compared with that from a dipole antenna, normally in its most favourable direction (at right angles to its length).

Next, two which state voltage levels, often encountered when specifying the input to apply to a receiver from a test signal generator: dBV-level compared with 1 volt; $\mathbf{d B} \mu \mathbf{V}$-level compared with 1 microvolt. These two are of course directly related, so that $1 \mathrm{~V}=0 \mathrm{dBV}=120 \mathrm{~dB} \mu \mathrm{~V}$. Also, $1 \mu \mathrm{~V}=0 \mathrm{~dB} \mu \mathrm{~V}=-120 \mathrm{dBV}$.

Where the receiver input impedance is known, the voltage applied will cause a known power to be dissipated in that impedance, and we can set our reference (OdB) level as a certain power. This is often a milliwatt ($1 / 1000$ watt) and the abbreviation used is $\mathbf{d B m}$. For a 600Ω circuit, $0 \mathrm{dBm}=$ 0.775 V . For a 75Ω circuit, $0 \mathrm{dBm}=0.274 \mathrm{~V}$, and for a 50Ω circuit $0 \mathrm{dBm}=0.224 \mathrm{~V}$. Thus a -3 dBm signal in 50Ω would be 0.158 V . Remember that a figure in dBm is meaningless if the circuit impedance is not known. You may sometimes come across dBW, which means level compared with 1 watt. You might encounter the abbreviation $\mathbf{~ d B m O}$ if you stray into professional communications literature, but it's rather too complicated to explain here.

I mentioned last month that for the square-law relationship between voltage gain and power gain in an amplifier to hold good, the input and output impedance must be

ATATIUREEGTROICSUK Your number one source for

 ZAESU RUSEX

FT-101ZD MkIII
YAESU's FT-101ZD with FM is the most popular HF rig on the market thanks to its very comprehensive specification and competitive price. Incorporates notch filter, audio peak filter, variable IF bandwidth plus many other features.
FT-480R High technology all-mode 2 metre mobile
FT-707 All solid-state HF mobile transceiver
 mobile available today - USB, LSB, FM, CW full scanning with priority channel, 4 memory channels, dual synthesized VFO system.

FRG-7 General coverage receiver
 reputation. YAESU's famous FRG-7 out-performs many a more expensive set. Rugged and reliable, it features high sensitivity and Wadley loop stability - a delight to use for the established amateur and new SWL alike
\square FREE SECUAIGOR DELIVEBY Amateur Electronics UK 508-516 Alum Rock Road-Birmingham 8 Tel: 021-327 1497 or 021-327 6313 Telex: 337045
OPEN: $9.30-5.30$ Tues-Sat CLOSED: All day Mon

as factory appointed distributors we offer you- widest choice, largest stocks,quickest deal and fast sure service right through-

The definitive HF mobile rig, digital, variable IF bandwidth, 100 watts PEP SSB. AM, CW (pictured here with 12 channel memory VFO). Latest bands.

YAESU's top of range receiver. All mode capability USB, LSB, CW, AM and FM 12 memory channels with back up. Digital quartz clock feature with timer Pictured here with matching FRT-7700 Antenna tuner and FRV-7700 VHF converter

THE VERSATILE BEARCAT 220FB

HOW TO PROGRAMME YOUR BEARCAT 220FB TO SEARCH
OUTSIDE ITS SPECIFIED RANGES
1.) Press 88
5.) Press LIMIT
2.) Press ENTER 6.) Press SEARCH
3.) Press LIMIT 7.) Press LIMIT
4.) Press 144 8.) Press SEARCH Receiver searches 144 to 88 MHz .

Since these additional frequencies are outside the specifications, there
is no guarantee that sensitivity figures will apply.

30p STAMPS FOR DETAILS INCLUDING ALL
OUR OTHER LINES

Just around the corner from
West Hampstead Station, Jubilee Line
188 BROADHURST GARDENS, LONDON NW6 3AY

PLYMOUTH TELECOM SERVICES
 (Formerly Radiofon)

Larger range of antennas \& accessories for the
CB : AMATEUR : MARINE : BUSINESS MOBILE RADIO USER + comprehensive range of components, books, tools, test gear etc. available from our
= CONSTRUCTORS CORNER =

Larger shop - better value than ever

96 UNION STREET PLYMOUTH PL1 3EZ

Tel. (0752) 21581 (Opp. Palace Theatre)
OPEN 9 a.m.-5.30 p.m. MON-SAT INC.

Having looked at the principle of Synchronous Detection of a.m. signals in Part 1, the design aspects of a complete radio module which takes full advantage of the synchronous technique will next be described in detail.

The well-known range of Plessey SL600/1600 devices have been used throughout this design, along with comprehensive operational amplifier support systems. The circuitry is of particular interest (several of the techniques are the subject of patent applications) and will be explained in complete sections as they appear in Fig. 9.

Synchronous Detector Section

The Plessey Semiconductors SL624 i.c. contains a double balanced mixer and a limiting amplifier, necessary to achieve synchronous detection, with the added advantage of an audio output easily able to drive a power output stage or headphones direct, together with a wide range d.c. controlled audio gain stage. A block diagram of the SL624 is shown in Figure 7.

The AGC Problem

The SL624, while being an excellent synchronous detector, suffers the disadvantage of having no easily usable a.g.c. output. Application notes for the device have suggested the use of a separate amplifier/detector, connected to monitor the input to the synchronous detector, a.g.c. being derived from this auxiliary system. As the auxiliary a.g.c. detector is of the simple (non-synchronous) type, it therefore responds to broad-band noise and will in consequence produce an a.g.c. output on the noise, even if the synchronous detector sees nothing coherent.

As the whole idea of a.g.c. is to hold steady the signal being listened to, correct automatic control of gain can only be achieved by allowing the a.g.c. system to operate by reference to the levels produced by the synchronous detector itself.

Fig. 7: Block diagram of the SL624

Extracting the AGC Voltage

As mentioned in Part 1 of this article, a synchronous detector does produce a standing d.c. level if a steady carrier is applied to its input. In order that the desired a.g.c. action may be achieved, this d.c. level must first be reliably extracted from the SL624.

Fortunately the differential outputs of the product detector contained on the SL624 chip are brought out to pins 10 and 11, in order that a capacitor may be connected between them, thus removing the high order mixing products and tailoring the audio rolloff point. It is to these pins that an external system may be connected which, provided it does not load the standing bias levels of the SL624, may be used to measure the differential output and translate it into a voltage with respect to some reference point-usually the zero rail for an a.g.c. system.

Fig. 8: The self-balancing bridge circuit
The standing bias on these pins varies markedly with temperature but is typically 8.4 volts at $20^{\circ} \mathrm{C}$, with both sitting at this level if there is no input carrier. As the input signal increases, pin 11 moves proportionally more positive, pin 10 more negative, with respect to the standing bias level.

To reliably translate the differential output into a single ended voltage, with respect to the zero rail, a form of selfbalancing bridge is used. Figure 8 shows the schematic layout of such a device.

The interesting thing about the circuit of Fig. 8 is that it will totally ignore any change in voltage made to both inputs X and Y , due to temperature variation of the SL624, but will reliably respond to any differential change produced by a signal input to the detector.

To test this, consider the effect of connecting X and Y and taking them to a convenient level, for easy maths let's say 8 volts. As the Vref. point has in this example been connected to the zero rail, the two $100 \mathrm{k} \Omega$ resistors in the left hand section of the bridge bring point A to 4 volts. The op. amp. responds by swinging its output until point B is

[^0]Fig. 9: The complete circuit diagram of the Myers Electronic Research AMS synchronous detector module

also 4 volts: this can only occur when the output has become in this case zero. This is what is required-there is no differential input and consequently, no output with respect to the Vref. point. With the inputs X and Y shorted, the output always sits at the same level as the Vref. point.

Next. test the effect of raising point X to 10 volts and lowering point Y to 6 volts, a differential input of 4 volts. As X is at 10 volts, point A will be potential divided to 5 volts. Remembering that the op. amp. will always arrange the voltage at point B to be equal to that at point A, the output must sit at the anticipated 4 volts.

The output voltage from the op. amp. could be used directly for a.g.c. purposes (after a suitable CR time constant), as it is linearly proportional to the synchronously detected output of the SL624. The AMS module however employs a far more sophisticated a.g.c. system; the explanation of the self-balancing bridge is only a step on the way to full understanding.*

AGC Generator System

The a.g.c. generator of the AMS module uses a Plessey Semiconductors SL621/1621 audio based a.g.c. i.c. in a highly unusual manner in order to derive carrier based gain control.*

The SL1621 was designed to produce intelligent a.g.c. action by reference to the audio output of an s.s.b. detector. It contains the equivalent of 24 semiconductors and has the ability to deal with different types of noise and fading in the most appropriate manner. It would occupy too much space to describe the device fully, but the relevant data sheets should be consulted for detailed information. The technique used in the AMS module allows all the advanced features of the SL1621 to be applied to controlling an a.m. synchronous detector system by reference to the level of the input carrier.*

To explain how this has been achieved, the internal input circuitry of the SL621/1621 must first be considered, shown schematically in Fig. 10.

The input consists of a two transistor inverting amplifier followed by more gain, shown here simply as a block. The gain block is connected back to the input transistor base via a $24 \mathrm{k} \Omega$ resistor, the loop therefore being self biasing, the output voltage rises until the two base-emitter junctions switch on, at typically 1.2 volts at $20^{\circ} \mathrm{C}$. The input signal in conventional use is an audio waveform capacitorcoupled to pin 1, the i.c. functioning by measuring the amplitude of the negative-going peaks of the audio, or noise, waveform. The d.c. component produced by a carrier is lost due to the necessity for the coupling capacitor.

Drift Problem

Any attempt to couple the voltage output of an a.m. detector directly to the input of the SL1621 is doomed, as only 7 mV input swing is required for full a.g.c. output, but
the drift with temperature of the two base-emitter junctions amounts to 4 mV per ${ }^{\circ} \mathrm{C}$. The a.g.c. threshold would therefore drift wildly with temperature, just two degrees changing the threshold by more than two, a figure totally unacceptable in a high quality system.

The Solution

The key phrase to overcoming all such problems is constant current. If the a.m. detector output voltage is first converted to current, by some form of constant current generator, this current can be sunk from the input pin of the SL1621 i.c.. thus fooling it into seeing the negativegoing peak of an audio signal.

As the current is sunk by a constant current device, any voltage drift of the SL1621 input pin, due to the temperature dependence of the two base-emitter junctions, causes no ill-effect whatsoever. The instantaneous value of the current is directly proportional to the voltage output of the detector stage and, although varying with carrier strength and modulation, is termed constant, as the change in bias voltage on the SL1621 input pin is unable to alter it.

This arrangement is a most significant step, allowing the SL1621 to produce advanced a.g.c. in an absolutely reliable and drift free manner, by reference to both the carrier and audio components of a signal applied to the SL624 synchronous detector. To complete the step requires the voltage output of the detector to be converted to constant current.

Producing a Constant Current Sink

The output of the self-balancing bridge explained previously consists of a voltage proportional to the strength of carrier injected into the SL624 synchronous detector. The circuit can be easily modified to produce constant current operation, but does require explanation.

Referring to the AMS module circuit diagram shown in Fig. 9, there are two sections of op. amp. IC4 directly below the SL624 detector. The upper section of IC4 is easily recognised as being part of the self-balancing bridge. the resistors R6. R7. R9 and R11 being the bridge network. Notice that the lower end of R9 is the Vref. point explained earlier. At this stage it is best to forget resistors R10 and R29, as they only serve to assist the op. amp. outputs in pulling down to near zero volts, to guarantee correct operation of the a.g.c. system under simultaneous worst case components and maximum temperature conditions. The lower section of IC4 serves only as a buffer, any voltage applied to the input pin 3 appearing at very low impedance at output pin 1 .

In a similar manner to the explanation of the balanced bridge, imagine pins 10 and 11 on the SL624 to be shorted. Having therefore no differential input, the output of the self-balancing bridge, pin 7 of IC4, will sit at whatever voltage the Vref. point has been taken to. As the lower section of IC4 buffers the Vref. point, the input pin 3 of IC4 becomes the reference input of the system.

Looking carefully at the circuit it can be seen that pin 1 of the SL1621, which sits at about 1.2 volts at $20^{\circ} \mathrm{C}$, is acting as the reference as it is connected to input pin 3 of IC4. The balanced bridge output, pin 7, consequently sits at the same voltage as the SL1621 input pin, resulting in no current being sunk from the SL1621 as both ends of the $39 \mathrm{k} \Omega$ resistor. R13, are at the same potential.

If the SL624 detector applies a differential voltage to the balanced bridge inputs, that voltage will appear by the same means across R13 and therefore cause a current to be pulled out of the SL1621 input pin. Any drift of the SLI621 input bias voltage, due to temperature change,
merely shifts the Vref. input to the balanced bridge and consequently has no effect on the current whatsoever. The capacitor C 16 ensures h.f. stability of the constant current system and has no effect on any audio frequency input to the SL1621. The optional components C13 and R12 shunt RI3 at audio frequency, giving a degree of audio levelling by increasing the gain of the system at audio frequencies only.

"S" Meter Drive

As the AMS module offers precision measuring ability, it is necessary to allow for the change in resistance of an " S " meter winding with temperature, a swing of $10^{\circ} \mathrm{C}$ will otherwise cause typically $4 \cdot 3$ per cent change in reading for any fixed input signal strength.

The a.g.c. output of the SL1621 is metered by a quite separate system which drives constant current through the " S " meter winding. The impedance of resistors R15 and R16 is arranged to allow a 1 mA f.s.d. meter movement to hit the stop as the r.f. input reaches the maximum level before overload of the SL1612 input stage. The voltage ratio of these resistors permits the meter to begin moving only as the a.g.c. voltage applied to the SL1612 stages reaches the gain reduction threshold.

Diode DI serves merely to prevent the meter touching the back stop when there is no input signal. The temperature dependence of this diode has no effect as both it and the meter movement are in the feedback loop of IC4. The capacitor C20 may be required to damp any meter swing. but with a good movement is normally found unnecessary. The " S " meter provides a usefully open scale for low signal strengths, becoming less sensitive towards the end stop. This makes the stop suitably hard to reach, a not insignificant 500 mV peak-to-peak being required with a typical meter.

Temperature Compensation of IF Gain

Unfortunately, when gain control voltage is applied to the SL1612 devices, the degree of gain reduction for any fixed a.g.c. voltage varies with temperature.

The SL1612 amplifiers exhibit this behaviour as they have two uncompensated base/emitter junctions in their a.g.c. input circuits. In order to correct this, the a.g.c. output of the SL1621 is first processed to have equal, but opposite. characteristics by the remaining section of IC4. The temperature compensation diodes D2 and D3 are mounted physically close to the SL1612 stages and the current density in them is arranged to be equal to that of the internal junction of the SL1612, by the value of R17. Temperature compensation obtained by this method is excellent and also helps straighten the non-linear voltage versus gain curve of the SL1612. This completes the description of the advanced a.g.c. generator functions.

IF Amplifier

The gain section of the module consists of two SL1612 amplifiers coupled by 100 pF capacitors, this value allowing operation well into the long wave band should it be required. The maximum voltage gain of the two stages is 2500. The a.g.c. input, pin 7, of each stage has a $C R$ filter, to prevent any unwanted r.f. coupling between stages, which has no effect on the normal a.g.c. time constant.

Muting System

The mute system operates by monitoring either signal to noise ratio or signal level. In the signal to noise mode,
reference is made to the output of the limiting amplifier in the synchronous detector. If there is a clean r.f. sinewave present at the input of the detector stage, the output of the limiting amplifier will be a symmetrical squarewave at the signal frequency.

The average of a symmetrical squarewave at any frequency is half its amplitude, the resistor R8 and capacitor C21 performing the averaging. Resistor R8 is placed as close as possible to the limiting amplifier output pin to reduce capacitive loading to the minimum.

If the input signal contains noise, the zero crossing points of the limiting amp. will be interfered with, causing the limiting amp. to switch alternately early and late as the input noise either adds to, or subtracts from, the i.f. sinewave. As the limited output is no longer a steady symmetrical squarewave, but one which randomly varies about the mean. the average voltage appearing at the top of C2I begins to vary. The two left hand sections of op. amp. IC6 act as an amplifier/detector for this noise signal, the detected d.c. output appearing at the top of the filter capacitor C25.

The next section of IC6 is the threshold switch which compares the output of the noise detector or a.g.c. level (link selectable) with the setting of VR2, the user mute control. Resistor R26 provides a degree of hysteresis which reduces when the pot is set to detect signals well in the noise. and increases when the user wishes the module to take only excellent signals. Once the threshold is reached, pin 8 of IC 6 swings cleanly either to near zero or supply rail. depending on the signal being better or worse than the set condition.

The remaining section of IC6 is used as a true integrator which linearly ramps the audio gain control voltage applied to the SL624 providing fast but click free on/off switching of the audio with no unnecessary squelch "noise tail" as exhibited by many systems.

Typical Applications

As the AMS module operates over a wide range of frequencies without adjustment, it may be considered to be a universal i.f. system as it will easily deal with all the common intermediate frequencies.

If the module is used to add true a.m. detection to an existing s.s.b. or f.m. receiver, it may be connected at will to the first or second conversion i.f. strip of that receiver to quickly determine where the best signal to noise ratio is obtained.

As the module has excellent a.g.c. range, it may similarly be used to trace a signal through a receiver to check if adjustments made to a particular stage are improving the signal to noise ratio. This measurement is very easy as the AMS module has monitoring points for both its signal level and signal to noise detecting systems, allowing meters to be used to help sort out what goes on at any stage in a receiver.

Fig. 11: A basic m.w. receiver

Complete Receiver

The module becomes a complete receiver with the addition of a suitable tuned circuit. A simple $L C$ combination tuning the medium wave band using a ferrite rod antenna, allows broadcast signals to be synchronously detected.

The optional audio levelling provided by the module is particularly valuable in car radio applications as the audio level may be set just above the vehicle noise, the system holding the desired level despite changes in signal strength and modulation depth. This helps to prevent the continual adjustment of the volume control as the program content changes.

Direction Finder

If a ferrite rod tuned circuit covering the I.w. band is used. a compact and highly stable marine beacon receiver may be constructed and operated direct from a 12 volt supply.

Fig. 12: DF application Ferrite rod
Maplin LB12N

As the input signal levels are measured with extreme precision and repeatability, the readings produced by known beacons in line of sight may be noted to give an accurate idea of distance, should fog prevent a visual estimate. The open meter scale at the lower signal levels allows easy detection of the null when rotating the ferrite rod for d.f. purposes.

Modification for SSB/CW

The basic a.m. board can be easily modified for s.s.b. and c.w. reception. First locate and remove 100 pF capacitor C8. Next, identify the vacated pad connected to pin 3 of IC 3, this is the b.f.o. injection point. All that remains to be done to complete the conversion is to connect. via miniature screened cable, the b.f.o. Connect the cable screen to an earth post on the underside of the AMS board nearest to the old C8 location, and the centre core to pin 3 as detailed above. As the injection point is highly sensitive. only a few millivolts of b.f.o. injection are required. It is recommended that the cable centre core insulation is left intact at the b.f.o. end, just wrapping a turn or two of the centre core around a suitable point in the b.f.o. should suffice. Do not connect d.c. or high level b.f.o. output to the injection point.

Fig. 13: Direct conversion of s.s.b./c.w.

Direct Conversion

The AMS module provides the basis for an excellent direct conversion receiver. For Top Band use, for instance, a ferrite rod or conventional tuned circuit may be used to preselect the frequency of interest.

Injecting a 1.8 to 2.0 MHz v.f.o. into the AMS module limiting amp. input allows the required s.s.b./c.w. station to be tuned with the v.f.o. When used in this way the module functions as a "superhet" with an i.f. of zero. The front end tuned circuit needs to be high Q and/or multisection to keep the monster m.w. broadcast signals out of the amplifier stages.

General Information

The AMS Synchronous Detection Module is a new device offering advanced receiver facilities on a single board and making the synchronous technique easily available to the experimenter. The input frequency may lie between 200 kHz and 20 MHz , the filter or tuned circuit applied to the input totally defining the operating frequency with no other adjustments. The module may therefore be used as a complete i.f. unit or a tunable receiver. Due to the extreme stability of the signal measuring functions. long term checks and adjustments to antennas, pre-amps or converters feeding the module may be made with absolute confidence in the meter reading.

Items in the text marked * are the subject of patent applications by Myers Electronic Research.

UNCLE ED'S PAGE

\rightarrow continued from page 28
equal. For voltage amplifiers, where power levels are so low as to be unimportant, the abbreviation $\mathbf{d B V g}$ (decibels of voltage gain) may be encountered-here the input and output impedances may be different.

One which has always seemed a bit unnecessary to me is $\mathbf{d B r}$, meaning dB relative. Relative to what? Well, what it was before you started making adjustments, or to what the specification says it should be.

Working With Decibels

To close, a few useful pointers to help you get used to decibels. An amplifier with a gain of 13 dB -what does that mean in power ratios? Well, 10 dB is "times $10^{\prime \prime}$, and 3 dB is "times 2": 13dB is "times 20", so in other words, you multiply the power ratios but you add the corresponding decibel figures. Just like using logarithms to solve multiplication problems.

You may find it helpful to draw out your own versions of Figs. 1 and 2 for voltage values, remembering that all the decibel values on the bottom scales are then multiplied by 2 . You'll often be using an oscilloscope or voltmeter to check signal levels, and these indicate voltage, not power. Output powers quoted in specifications are easily converted to voltages using the formula $V=\sqrt{W R}$, where R is the load impedance.

If you're checking out an amplifier frequency response, using a voltmeter to measure the output, remember that the -1 dB point is very nearly equal to the point where the reading has fallen by 10 per cent from your starting value.

Out of Thin Air

It gives us great pleasure to announce that the Practical Wireless publication, Out of Thin Air-A Guide to Aerial Theory, Design and Propagation, has been reprinted.

For further details and an order form, see page 38.

Catalogues

Marco Trading inform me of the availability of their latest components catalogue which includes in its lists i.c.s, transistors, resistors, diodes etc. In addition, they have produced a "special" test equipment catalogue in which all the products listed are offered at very reduced prices. One example of these products is a Russian built multimeter, type U4324, which has an impressive list of functions and features a meter with a taut band suspension movement. The U4324 is offered at only $£ 10.50$ plus $£ 1.50$ p \& p.

To obtain your copies of the catalogues, send an s.a.e. to: Marco Trading, The Old School, Edstaston, Wem, Shropshire SY4 5RJ. Tel: Whixall (094 872) 464/465.

First Ch. 4 TV TXs Ready To Go

The first pair of TV transmitters for the Independent Broadcasting Authority's Channel 4 service have been connected to their channel combiners and handed over ready for use when the IBA brings Channel 4 into service during 1982.

The two transmitters, Marconi 15 kW Type B7445 u.h.f. equipments, have been installed and commissioned at Winterhill, Lancashire, by Marconi Communication Systems Ltd. Marconi is equipping a further eleven sites throughout the UK with similar suites, as well as installing a one-B7445/oneB7442 (4kW) u.h.f. combination at a further thirteen sites, all for the Fourth Channel network. All these, as well as some twenty-five further sites throughout the UK, are being equipped with Marconi-designed channel combining units which will enable all four TV channels $(2 \times B B C$ and $2 \times I B A)$ to be transmitted from the same mast.

Marconi Communication Systems Ltd., Marconi House, Chelmsford CM1 $1 P L$.

Computing on Short Wave

An experiment, thought to be the first of its kind, was conducted recently by Radio Netherlands during its regular "Media Network" international short wave broadcast programme.

A simple direction and bearing computer program devised by Professor John Campbell, Head of the Computer Science Department at Exeter University, in easy-to-use BASIC was transmitted from the Lopik, Holland transmitters and via satellite linked relay stations at Bonaire and Madagascar.

No modifications were made to the
standard a.m. broadcast signal, used to pass the tone encoded data. Results fed back to Radio Netherlands indicated 42 per cent of listeners who participated in the experiment obtained successful results; of those listeners unable to retrieve the program, problems relating to tape recording levels and too narrow bandwidth appeared to be the most prominent.

If you are interested in participating in the next experiment, which is scheduled for 28 January, 1982, send 1 IRC (for postage, obtainable from main post offices) for a frequency listing to: Radio Nederland, P.O. Box 222, 1200 JG Hilversum, Holland, marked Computer Information Release.

Solar/Wind Powered TV

The use of natural, renewable energy sources has been a matter of concern to IBA engineers not only from the viewpoint of energy conservation but also as potentially providing an alternative energy source in locations where it would be unduly expensive to install cables from the electricity mains supply, for communities numbering a few hundred people. The result of this concern has been the installation of the first TV transmitting station in the UK to be powered by the wind and sun at Bossiney in Cornwall.

All power for the transmitting station will normally be provided by either the wind or solar generators or from a bank of 36 large lead-acid batteries (about 1000 Ah) that will be kept charged by excess power from the generators.

The wind generator has an output of 150 W at a windspeed of 7 metres/second and the array of 24 solar panels, comprising 864 silicon solar cells, can provide a maximum of 780 W in peak sunlight. The transmitting equipment has a power consumption of about 150W.

The attraction in the UK of both wind and solar power is that weather conditions can usually be expected to favour one or other of these energy sources. Only in long periods of still fog-unusual in Cornwall-is there thought to be any risk of the batteries becoming fully discharged.

Although this experimental station is connected to the electricity mains sup-

ply, this source of power will normally only be used to operate the sophisticated data recording system that will provide some 30,000 readings over the next five years.

Independent Broadcasting Authority, 70 Brompton Road, London SW3 1EY. Tel: 01-584 7011.

Book Catalogue

Babani Books have their new 1982 catalogue of Radio, Electronic and Computer Books available.

To obtain your free copy, send your name and address to: Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF. Tel: 01-603 2581/7296.

Rallies and Events

Leeds and District Amateur Radio Society will be holding their Christmas Rally on Sunday, 13 December 1981 at the Pudsey Civic Centre, Dawsons Corner, Pudsey, West Yorkshire, commencing at 1100 hrs . There will be all the usual rally attractions plus a number of "non-radio" stalls which should appeal to wives and families.

Further details from: The Secretary, Chris Gledhill G6CNP, tel: Pudsey (O532) 567702.

CB Day

2 November, 1981, the day Citizens Band Radio became legal, saw at the "early-opening" post office at Trafalgar Square, Mr Al Gross the first ever CB'er applying for the first CB licence to be issued in the UK.

Later in the day, yours truly G8ZPW met AI W8PAL at the Eyeball Bistro, 2 Princes Street, London W1 and the
photograph shows us examining some of the original experimental CB prototypes, designed and built by Al , to operate on 250 MHz .

Among many CB licences for experimental work on 250 MHz and $460-$ 470 MHz , issued between 1944 and 1948, Al holds the first official American CB licence, 19W0001, issued on 22 March 1948.

Aerials and aerial accessories are very definitely among the most popular topics covered in Practical Wireless. In response to requests from readers, we've reprinted a selection of articles from the past three years, plus two new features-one by Ron Ham on v.h.f. propagation, the other describing the "Ultra-Slim Jim", a new version of that most popular 2-metre aerial design by Fred Judd.

Out of Thin Air has 80 pages, $295 \times 216 \mathrm{~mm}$, and is available from W. H. Smith price $£ 1.25$, or by post from Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, price f1.50 including postage and packing to UK addresses, or $£ 1.80$ by surface mail overseas. Please ensure that your name and address are clearly legible.

OUT OF THIN AIR

Please send your order and remittance to:
IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF
Please send me........copies at $£ 1.50$ each to include postage and packing ($£ 1.80$ surface mail overseas
I enclose P.O./Cheque No \qquad .Value UK remittances must be by crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME

(BLOCK LETTERS)

ADDRESS
(BLOCK LETTERS)
\qquad . Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

I got involved in the world of "Amateur Radio" in a rather precarious way, taking my life-not to mention the soldering iron-in my hands in installing the antenna and suffering many scathing remarks from my wife. But, undaunted, I am now the proud owner of a "communications receiver" and quite a few QSL cards. Also a rather depleted bank balance.

Well, one evening I was seated at the receiver, weary and ill at ease-weary with having cleaned up the solder I had dropped on the carpet and ill at ease thinking of what excuse I could tell the wife-when I had this brilliant idea. Why not go in for the RAE and transmit? I could see it all now-me in front of the "rig", microphone in one hand, Morse key in the other, the cat watching in utter amazement. The more I thought about it the more excited I got.

At that moment the wife came in and noticing how excited I was-she's very quick at noticing things, especially the solder still stuck to the carpet-said "That's it! I knew you would. You've electrocuted the cat!" She calmed down a bit when the cat appeared unharmed. Now, I thought, is the moment to tell her-the wife, not the cat-about my bright idea. When she had stopped laughing she gave me some encouraging remarks like

"Pass the maths? You can't add up to ten without using a calculator!" and similar ego boosters.

I could not sleep that night thinking about the RAE and how I could get the rest of the solder off the carpet short of cutting a six inch square hole out of it. I decided to ignore the carpet and concentrate on the RAE. The following morning I purchased a pencil, ruler and a book on maths. The pencil and ruler I could understand, the book on maths I could not, so I used it to cover up the hole in the carpet. Next I thought "How do I study?" Now evening classes are OK if you can attend regularly but I had already run out of excuses for dodging doing the decorating and to say I was going out two nights a week ... well I am in enough trouble about the carpet as it is. Then I had another brilliant idea-do a home study course. You can study when you like and where you like so I sent for some details, brochures and an estimate for a new carpet. In due course they arrived, the brochures and the carpet estimate. Now, being rather crafty I first

showed the wife the estimate for the carpet and while she was imagining an Axminster with a four inch pile, I mentioned the home study course, not too loudly you understand, and the Gods must have been smiling because she said yes, what a good idea. Afterwards she said she was referring to the carpet, not my course. But by then it was too late. I had enrolled, or rather I had signed the form and sent the money.

I could hardly wait for the course to arrive. I fully expected at least one book but when it did come it consisted of twenty-four. When I came home from work that evening the wife said, "Dinner is ready"-but how can you even consider food when all day you have been putting yourself on a level with Einstein, Newton and other brainy people. I wanted to devour the course, not food, so I immediately cleared the table, putting all the dishes, cutlery etc in the sink but in my enthusiasm I inadvertently put the cat in as well. Anyway, peace was restored and the cat dried out by the fire and the wife dried up the dishes.

Now the great moment had arrived. I opened the first book, "Elementary Maths". I really did think they would have given me a chance and started me off on tables. But no, there were things like fractions and decimals and all sorts of other complicated ways to add two numbers together. My confidence was, like my bank balance, ebbing away fast. But by eleven o'clock that evening and after countless cups of coffee I had mastered it-yes, I could do fractions, and decimals were not as bad as they at first seemed.

Well, I sent my first test off and waited for the results and to my utter amazement I passed so I started on the next and so on. I plodded on and on through all the books and logarithms, roots and all and passed each test. By now I am so confident I have applied to take the RAE in May but that will be another story. So you see, if I can do it, then why not you? Admittedly it cost me a new carpet and a lot of hard work but should I pass in May then it will be another step up the ladder of this addiction they call "Amateur Radio".

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">SPECIAL</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">PRODUCT</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">REPORT</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">SPECIAL</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">PRODUCT</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">REPORT</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">SPECIAL</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">PRODUCT</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">REPORT</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| SPECIAL |
| :---: |
| PRODUCT |
| REPORT |</table-markdown></div>
 |c-25l micom

 号

 号 2mFM MOBIIF TRAMSCEIVER

Not another 2 metre f.m. only rig you sigh! Ah well it seems that the clever gents from the Land of the Rising Sun reckon that we will change our rigs at the drop of a hat as soon as they make our present model obsolete.

Icom's IC-25E could fall into that category but on closer inspection it does offer several different and useful features.

First impressions are that Icom have toned down their styling. Gone is the angular almost military look although the front panel layout still bears a resemblance to previous Icom mobile rigs. The overall size is much smaller than the IC255E which it is intended to replace. In fact the rig is not much larger than a conventional car radio and this should make it easier to find somewhere to install it. The speaker is fitted into the bottom of the rig and in most installations will face downwards. Provision is made, however, on the back panel for an external speaker.

The most obvious difference between the two rigs is the way in which the repeater shift is obtained. The IC-25E has an independent split and this is set to 600 kHz on initial switch-on. If it is required the split can be re-programmed but for most UK users this will not be necessary.

The two v.f.o.s are used in a novel way. One tunes in steps of 5 kHz and can also have its frequency set into any of the five memory channels while the second v.f.o. tunes in 25 kHz steps but cannot be used to set the memories up.

Setting the five memories up is simple, the vFo/memory switch is set to vfo and the desired frequency selected with the tuning knob. The vFo/memory switch is then turned to select the required memory and the write button pushed. It took me some time to get used to the fact that the display changes from the desired frequency to whatever happens to be in the memories as the switch is operated, but the memories are retained so long as power is connected to the rig.

A priority channel facility is built in so that any of the five memory channels can be automatically monitored every five seconds. This is a very useful facility.

Full scanning facilities are provided and these can be controlled from the microphone as well as the front panel. It is
possible to select two frequencies and then scan all frequencies between them. As supplied the rig scans for busy channels but it can be changed to scan for vacant ones by an internal plug and socket change. Scan speed and dwell time can also be altered internally.

The two independent v.f.o.s allow you to scan for a free channel with one v.f.o. while retaining your original operating frequency in the other. A simple push of the vFo button returns you to the original frequency while retaining the vacant channel in the second v.f.o.

For repeater operation a 1750 Hz toneburst is fitted and this is operated by pushing the tone button. This is convenient but is a bit of a problem if your repeater needs an immediate period of valid audio after the tone. You need to be an octopus to operate the tONE button followed immediately by the p.t.t. button and drive the car. (The cure lies not with the rig designers but with the repeater logic designers who dream up these tortuous access routines.)

In real mobile use the IC-25E proved to be easy to driveonce fully programmed-and put out a very good signal with reports of excellent audio quality. The controls are compact but not fiddly to use and Icom seems to have at last taken note of the comments on the action of their tuning controls and this one is very smooth and pleasant to use.

The mobile mounting bracket is Icom's standard hinged and clipped style which makes for very rapid and simple removal and installation and also allows you to fit a small padlock for improved security, a very useful point with the increase in stolen rigs.

The construction is up to Icom's usual high standards and initial reports from the importers indicate a very high level of reliability. The p.a. is modular and even with long overs the heat sink did not get over hot.

The instruction manual is in the Icom tradition and is comprehensive including a full circuit diagram and p.c.b. layouts to aid with fault-finding if needed.

There was a certain amount of audible synthesiser hum breaking through on to the final audio stages and this was very noticeable with no signal present and the squelch ad-

vanced. The volume control made no difference to the level of this hum. Reports from other stations indicated that there was no trace of the hum on the transmitted signals and with a signal being received the hum was not noticeable.

This rig is certainly very nice both to look at and to use
and its very compact dimensions coupled with 25 W of r.f. output should make it very popular although I can't help thinking that it would be even better if it was a multimode and not just f.m. I may be wrong but many of the features seem to be wasted on f.m. operation.
specifications

Frequency coverage: Frequency resolution: Frequency control:	$144.000-145.995 \mathrm{MHz}$ 5 kHz and 25 kHz steps Microcomputer based 5 kHz step digital p.I.I. synthesiser. Independent dual v.f.o. capability
Frequency stability:	Within $\pm 1.5 \mathrm{kHz}$
Memories:	5 channels
Antenna impedance:	50Ω unbalanced
Power supply:	$13 \cdot 8 \mathrm{~V}$ d.c. $\pm 15 \%$ (negative ground) 6A max
Current drain	
(at 13-8V d.c.):	Transmit 25W 4.8A 1W 1.3A
	Receive At max audio output 0.6A Squelched 0.4A
Dimensions:	$50 \times 140 \times 177 \mathrm{~mm}$
Weight:	1.5 kg
TRANSMITTER	
Output power:	25W, 1W (24.5W, 0.6W)
Emission mode:	F3E
Modulation system:	Variable reactance frequency modulation
Max deviation:	$\pm 5 \mathrm{kHz}$
Spurious emission:	60 dB below carrier
Microphone:	$1.3 \mathrm{k} \Omega$ dynamic microphone with built-in preamplifier and push-to-talk switch
Operating mode:	Simplex, Duplex (any inband split)
Tone burst:	$1750 \mathrm{~Hz} \pm 0 \cdot 1 \mathrm{~Hz}$
RECEIVER	
Receiving system:	Double-convérsion superheterodyne
Intermediate frequency: 1 st : 16.9 MHz	
	2nd: 455 kHz
Sensitivity:	$>30 \mathrm{~dB}$ SINAD at $1 \mu \mathrm{~V}$
	$<0 \cdot 6 \mu \mathrm{~V}$ for 20 dB quieting
Squelch sensitivity:	$<0.4 \mu \mathrm{~V}$
Spurious response rejection ratio:	$>60 \mathrm{~dB}$
Selectivity:	$> \pm 7.5 \mathrm{kHz}$ at -6 dB point $< \pm 15 \mathrm{kHz}$ at -60 dB point
Audio output power:	2.0 W
Audio output impedance:	4 to 8Ω
Test results in italics	

Our thanks go to Thanet Electronics, 143 Reculver Road, Beltinge, Herne Bay, Kent. Tel: 0227363859 for the loan of the review sample.

Price

The IC-25E costs $£ 259.00$ including VAT and is equipped with a scanning microphone as standard.

WHERE ARE YOU? WHERE AM I?
\rightarrow continued from page 22

Long.$2^{\circ} 30^{\prime} 35^{\prime \prime} \mathrm{W}$			$\stackrel{\text { Lat. }}{53^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{N}}$	
From $2+3$	$0^{\prime} 0^{\prime \prime}$	$=\mathrm{Y}$	$53^{\circ} 0^{\prime} 0^{\prime \prime}$	$=\mathrm{N}$
Remainder	$30^{\prime} 35^{\prime \prime}$		$37^{\prime \prime} 30^{\prime \prime}$	
From 4+5	$24^{\prime} 0^{\prime \prime}$	$=08$	$30^{\prime} 0^{\prime \prime}$	$=30$
Remainder	$6^{\prime} 35^{\prime \prime}$		$7^{\prime} 30^{\prime \prime}$	
From 6	$4^{\prime} 0^{\prime \prime}$		$5^{\prime} 0^{\prime \prime}$	$=\mathrm{A}$
Remainder	$\begin{gathered} 2^{\prime} 35^{\prime \prime} \\ \text { (Ignore) } \end{gathered}$		$\begin{gathered} 2^{\prime} 30^{\prime \prime} \\ \text { (Ignore) } \end{gathered}$	

QRA locator $=\mathrm{YN} 38 \mathrm{~A}$
Again, the reader is advised to try it out for himself until the method becomes familiar.

Finale

Now you know how to work out where you are and the station you wish to work is located! Having set up the dish direction correctly, all will be lost if the dish alignment in the vertical plane is not exact. Thus, by means of a small circular spirit level attached to the top of the transceiver box, ensure that the equipment is level. All should then be set up correctly and the attempted QSO can commence!

The use of a talk-back 2 m frequency of 144.33 MHz is mentioned in the "Exe" series. This should be regarded only as a microwave "calling frequency". Once 2 metre contact has been established, the operators should move up or down in frequency to a channel which will not interfere with the most-used s.s.b. frequencies. It is common to move off to a frequency below $144 \cdot 20 \mathrm{MHz}$.

The methods of calculating bearings, distances and QRA locators are 'frequency independent'. That is, they are universally applicable to any band and the accuracy of antenna setting which is possible using the figures is only perhaps appropriate to the very narrow beam-widths of the parabolic dish antennas commonly used at microwave frequencies.

The beginner should aim to increase the distances worked step-by-step, first of all over a few kilometres, then over tens of kilometres, and finally to the magic figure of " 150 km plus". For those operators who are members of the RSGB, there are awards available for varying degrees of operating skill (and luck!). A certificate is available for distance worked (Table 10) on all the major microwave bands and other certificates for QRA squares worked (on $10 \mathrm{GHz}, 5$ or more). These awards really are earned by dint of patience, perseverance and planning.

Good Luck!
Table 10 Distance Awards (RSGB)

Band	Distance (First contact) any mode/any power
1.3 GHz	$600 \mathrm{~km}+$
2.3 GHz	$500 \mathrm{~km}+$
3.4 GHz	$400 \mathrm{~km}+$
5.7 GHz	$300 \mathrm{~km}+$
10.0 GHz	$150 \mathrm{~km}+$
24.0 GHz	$150 \mathrm{~km}+$
Note: all claims must be supported by OSL cards and	
are only available to members.	

IMPORTANT-The ideas presented here are suggestions only, and as they are untried by this magazine, we cannot accept responsibility for any resultant damage, however caused. Before alterations are attempted, care should be taken to ensure that any guarantee is not invalidated, and it should also be borne in mind that modifications usually have an adverse effect on resale prices. In cases where specialist skills or equipment are needed, most dealers will undertake the work for a reasonable fee.

Roger Hall G8TNT(Sam)

No. 12

Mods this month is devoted entirely to the Trio TR-9000. The first mod, which was sent in by Mr. B. R. Abrams G8CCI, provides battery back-up for the 5 memories so that you don't have to reload them every time you disconnect the rig.

Memory Back-up

First remove the bottom cover and locate the blue wire that runs from the memory back-up socket on the back of the set-it's harnessed with some other wires and they are all in a channel on the right-hand side of the rig between the outer side rail and the inner chassis.

Cut this wire approximately halfway along its length and then make up the series circuit shown in Fig. 1.

Strip back the insulation from the newly cut end of the part of the blue wire which runs back to the socket and solder it to the free end of the 1 N914 diode. Sleeve the resistor/diode assembly with approximately 40 mm of suitable heat-shrink sleeving and then slide it back to show the free end of the resistor. Strip the insulation from the remaining cut end of the blue wire and solder this, along with the positive lead from a PP3 connector, to the free end of the resistor. Slide the heat-shrink sleeving back along the assembly so that it covers all the joints and then shrink it. Now carefully introduce this assembly back into the harness along the side of the rig.

Solder the negative wire from the PP3 connector to any convenient chassis earth point. Plug in a PP3 NiCad to the connector and use double-sided foam sticky things to attach it to the bottom cover. There are several possible positions but you must make sure that there is sufficient clearance when the cover is replaced.

With this mod, the NiCad is charging all the time that the set is connected to a 12 volt supply and when the supply is disconnected, memory back-up can be maintained for up to 36 hours. Mr. Abrams points out that this mod is valid only if a supply is normally maintained on the power socket, as the resistor value that has been chosen to provide the charging current will dictate a charging time of approximately 24 hours to fully charge a totally discharged battery. The charging rate is within the limits for continuous charging of a PP3 NiCad.

Semi-Reverse Repeater

The second mod this month is for semi-reverse repeater (listen on the input) and it was sent in by Jim GI6BSQ. Jim has not supplied the "nuts and bolts" details for this mod, just the outlines, but I'm sure that most of you will be able to carry it out from the information that has been given.

To achieve a 600 kHz shift it is necessary to break into the digital output lines which lead from the control board to the p.l.1. board. Connections 31 and 23 on the p.l.l. printed circuit board must then be made to reverse their logic states, i.e. 31 which is I must be made 0 and 23 which is 0 must be made 1 .

Jim mentions that this could be done very simply with a double-pole change-over switch but he has not used this method because it would mean cutting a hole in the case to mount the switch assembly. Instead he has used a quad 2 -input NAND integrated circuit, either a 4011 or a 4093. This is connected up as in Fig. 3 and then the entire circuit, which was mounted on a piece of strip-board, can be wrapped in cling film, for insulation, and then fitted into the set. Jim recommends allowing it to lie at the front of the rig, just behind the display, as the interior of the TR-9000 is very cramped.

 E. A. RULE G3FEW

This simply constructed but accurate unit will allow antennas to be matched over a wide frequency range. It can also be used to check the input impedance of receivers and antenna pre-amplifiers as well as signal generators. It has an impedance measuring range of from 10 to 100 ohms to cover the normal 50 and 75 ohm impedances used in practice, and will measure over a frequency range of from a few hundred kilohertz to above 146 MHz .

As a broad-band noise generator it also has a number of other uses and should be a useful tool to the experimenter. Construction is simple and only a few components are required. The author makes no claim that it is an original design as the circuit is based on well tried and proven techniques.

Circuit

The diagram (Fig. 1) shows a block layout of the r.f. bridge. It consists of a noise generator feeding a bridge circuit which allows an unknown impedance to be compared with a known one. The output from the bridge is fed into a receiver which acts as a frequency-selective null indicator.

The complete circuit is shown in Fig. 6. Zener diode D1 acts as a broad-band noise generator, its noise output amplified by the three stage broad-band amplifier $\operatorname{Tr} 1, \operatorname{Tr} 2$ and Tr 3 . The output from Tr 3 is fed via a short length of coaxial cable to the bridge. The l.e.d. D2 acts as power on indicator, and is wired in series with the supply so that it operates using the current already flowing into the amplifier and noise diode circuit. This keeps the battery drain to a minimum. The slight voltage drop across the l.e.d. will not affect the operation of the circuit. Capacitors C1, C5, C6 and C8 decouple the supply rail and also prevent r.f. noise from getting into these circuits and re-radiating into the bridge, preventing an accurate balance from being obtained at v.h.f.

The RF Bridge

Although simple, this part of the circuit is critical and the construction details should be followed carefully if good results are to be obtained at v.h.f. Carefully constructed the bridge will enable measurements to be made at frequencies in excess of 146 MHz .

The heart of the bridge is a Mullard toroid core type FX1598 or Neosid 28-511-35. This is wound with four identical windings of five turns each. L1 and L2 form the primary winding, L3 and L4 form the secondary. To keep the stray capacities even, L2 is used to maintain even distribution of winding capacity even though one end is not

connected. This end is, in fact, adjusted by bending it closer to or further from the core to obtain balance of the stray capacity at v.h.f. and will be dealt with later in the section on setting up. The centre tap of the secondary is fed, via a suitable socket, to the receiver being used to indicate the null. If the unknown impedance is the same value as the impedance of R 9 , then the output at the centre tap will be at a minimum. At other values the secondary circuit will not be balanced and some noise output will be obtained and indicated on the receiver. A receiver with an " S " meter is to be preferred.

Construction

The bridge is built into a suitable diecast metal box. The actual size is not critical providing it is large enough to house the components without difficulty, but do not try to use a smaller box than that shown as it is important that the actual bridge part of the circuit be spaced apart from the noise generator.

Fig. 1: Block diagram of the Noise Bridge

Fig. 2: The physical layout and wiring of the completed noise bridge showing the relative positions of the components. The p.c.b. is held in place with Sticky Fixers. In this model the two individual pieces of tinplate have been replaced by one piece cut to shape

The sockets can be BNC, Belling Lee, SO239, or any other good quality r.f. socket. Do not be tempted to use screw terminals as balancing the bridge will be almost impossible.

Toroidal Transformer

Although the toroidal transformer is simple, its actual construction is very critical if good balance at v.h.f. is to be obtained. First, measure four lengths of wire. These should each be 200 mm long and completely free of any kinks. It is a good idea to stretch the wire slightly to remove any kinks. Place the four wires side by side and

Fig. 3a: (Left) winding details of the toroidal transformer. Fig. 3b: (Right) details of the method of connecting the various windings

Fig. 4: (Top) the p.c.b. copper track pattern shown full size. Fig. 5: (Above) the component placement diagram for the printed circuit board
wind evenly around the core as shown in Fig. 3a. Do not rush this part of the construction. The ideal winding is where all four windings are exactly the same; in practice this is not easy, but the closer you can get to this ideal, the easier it will be to get a good v.h.f. balance.

When you have finished winding, prepare and tin the ends. Check that the start and finish of each winding is as shown, this can be checked with an ohmmeter or battery and lamp. Once you have identified the windings, connect them as shown in Fig. 3b. The ends to be joined together should be twisted close to the core and tinned along the full length of the twist. Recheck that you have, in fact, made the correct connections, as it will not work unless these are as shown.

Circuit Board

As the circuit is so simple, the writer did not use a printed circuit board but used plain matrix board, using the component wires to connect up on the back of the board. However, a p.c.b. makes construction simpler and Fig. 5 shows the layout of the board.

The potentiometer R9 must be the type specified with a Cermet track (e.g. RS type 162-776). A wire-wound type is not suitable and will not work.

Assembly

The general assembly and final wiring is shown in Fig. 2. First, fit the toggle switch, not forgetting the solder tag underneath. Next, fit the sockets with the tinplate backing plate as shown. This backing plate is to enable good soldered earth connections to be obtained around the r.f. section and should not be left out. R9 should then be fitted and the pins arranged as shown ready for soldering to the tinplate earthing strip shown in Fig. 2.
Before fitting the component board, the two connections must be made. First, solder a short positive supply lead to the junction of R5 and R8. Connect a length of coaxial cable to the output of C7 and the earth solder tag. This coaxial cable should be 50 mm long with about 5 mm extra for the ends. Keep the braided connection as short as possible and use a heat shunt to avoid melting the inner insulation when soldering the braid. The board can now be fitted into the diecast box. Next, solder the tinplate earthing strip to the two pins of R9 as shown, and solder the other end of the earthing strip to the tin backing plate. Bend the strip to suit.

The toroid can now be wired into place. It is selfsupporting. Solder the earth connection first (junction L1

CONSTRUCTION RATINE Intermediate

BUYING GUIDE

Readers should have little difficulty in obtaining the components for this useful project.

The diecast box used for the prototype model was an Eldon Compact Series CM160 and is provided with a rubber seal for the lid as well as being painted. A standard diecast box could be used if it is desired to cut the cost to minimum but at the expense of the protection afforded by the sealed box.

The toroid can be either the Mullard or Neosid types and the latter is available direct from Neosid Small Orders Department.

APPROXIMATE COST £15

should light up and there should be a considerable increase in the noise present on the receiver. Adjust R9, the noise present on the receiver should reach a null at one setting of R9, and this should be very sharp. If the bridge is working, the unit can be calibrated and setting up proceeded with.

Calibration

Switch the bridge off and disconnect the receiver and dummy loads. Connect an ohmmeter to the antenna socket. The meter should be able to read accurately over the range of 10 to 100 ohms. Turn R9 to zero resistance (fully clockwise) and mark the scale. Turn R9 to maximum resistance (anti-clockwise) and mark the scale. These are the two end limits of the scale. Now turn R9 from maximum and mark off each division of ten ohms, starting with 100 , then 90,80 , etc. down to 10 ohms.

If an ohmmeter is not available mark the two limits as before and then divide the scale into equal divisions: as R9 is linear, this should provide a reasonably accurate calibration except at the two ends where some error will occur. An ohmmeter is the only real way to calibrate the bridge.

Once the scale has been calibrated, the unit can be checked at r.f. Connect the receiver back to the receiver socket and the 50 ohm dummy load to the antenna socket. Switch the bridge on. The null should now occur when the scale pointer is set to 50 ohms. Tune the receiver to the highest frequency to be used. This should be around

components

Resistors		

Miscellaneous

Toroid core Mullard FX1598 or Neosid 28-511-35; Min. toggle switch s.p.s.t.; Battery connector, Diecast box $80 \times 125 \times 54 \mathrm{~mm}$ Eldon CM160; p.c.b.; Sockets, see text (2); Knob; Tinplate, wire, etc; 50Ω dummy load.

145 MHz if possible. Set the scale pointer to 50 ohms (with the 50 ohm dummy load); there should be a null, but it may be broad and not so sharply defined as at the lower frequencies.

With the pointer set to the 50 ohm mark, adjust the floating end of L2 for best balance. Then slightly adjust the other ends of L3 and L4 for best balance. Re-adjust the floating end of L2. Repeat these adjustments until a sharp null is obtained at the 50 ohm scale marking. Failure to obtain a sharp null means that either the bridge is still unbalanced due to stray winding capacities or that there is a reactive component in the dummy load or possibly long connecting leads. Once correctly set up, the bridge should indicate the same point of balance at all frequencies up to around 146 MHz when used with the dummy load (assuming that the dummy load is suitable at v.h.f.-many are not).

Using the Bridge

All measurements are made at the working frequency of the impedance being tested. An antenna for, say, 14 MHz must be checked with the receiver also at 14 MHz . Connect the unknown load to the antenna socket. Tune the receiver to the required frequency and switch the bridge on. There should be an increase in the receiver noise level. Adjust R9 for the best null and read off the impedance. If the null is sharp, it means that the unknown impedance is mainly resistive. But if the null is broad and uncertain, it means that there is an amount of inductive or capacitive reactance present in the unknown load. A perfect match will be mainly resistive and a good null should be obtained. Adjustments to the load can be made, and a re-check done, until the best null is obtained.

Coaxial cable can be checked by connecting a dummy load at the far end, and then checking on the bridge for a null. A mismatched cable will show an uncertain null while a perfect match will show the same sharpness of null as when the dummy load is directly connected to the bridge. However, remember that when measurements are made at high frequencies, a short length of lead between the load and bridge can upset the results by a large amount.

Other Uses

The bridge can also be used as a broad-band noise source which can be used for peaking up tuned circuits of receivers, etc. It will provide a useful noise output down to the audio frequencies and up to around 500 MHz or higher. However, do not expect the actual bridge to function much above 150 MHz . To use as a broad-band noise source, connect the ANTENNA socket to the equipment being checked and leave the receiver socket disconnected. The potentiometer R9 should be set at minimum resistance. Note, the noise output is not uniform over the frequency range and comparisons should not be made of, say, receiver sensitivity at different frequencies. They may be made between different receivers at the same frequency.

To check the actual antenna input impedance of a receiver, two receivers are required. One is used as the null indicator as before; the receiver to be tested is connected to the antenna socket and treated as if it were the load being tested. Both receivers must be tuned to the same frequency. The bridge will then measure the input impedance of the receiver under test. Antenna pre-amps can also be tested in this way for optimum matching.

The output impedance of a signal generator can also be checked in the same way.

Cillowtilulare
 ALAN MARTIN GBZPW

2m Preamplifier

muTek Ltd., the Devon based r.f. specialists, have recently announced the availability of the SNLA144s r.f. switched, low-noise 2 m pre-amplifier.

The unit features excellent bandpass filtering-greater than 40 dB rejection at 130 and 160 MHz , a typical gain of 15 dB and an associated noise figure of 1.2 dB .

Switching controls allow considerable flexibility in operation, for instance, r.f. sensing with switch selectable "fast" or "hang" modes, hard switching via grounded transmit line and r.f. override of the hard option which should eliminate the bulk of expensive accidents. Straighthrough, bypass operation occurs in the poweroff situation. Power requirements are 11 to 15 V d.c. at approximately 50 mA .

Housed in a diecast box measuring $100 \times 50 \times 25 \mathrm{~mm}$, the SNLA144s is supplied with 50Ω BNC r.f. connectors and costs $£ 33.90$ which includes VAT plus 60p p\&p.

Further information is available from: muTek Ltd., Bradworthy, Holsworthy, Devon EX22 7TU. Tel: (040 924) 543.

Antenna Rotators

South Midland Communications Ltd. inform me that they have recently extended their range of antenna rotators to include the new Kenpro series.

The photograph shows the KR400RC which has been designed to accommodate medium sized antennas, such as those for v.h.f. band II and TV, or compact h.f. beams.

Most of the range are supplied with the new, stylish 360° meter indicator which gives an instant reading of the antenna heading.

For further details contact: S.M.C. Ltd., S.M. House, Osborne Road, Totton, Southampton SO4 4DN. Tel: (0703) 867333.

Pre-amp Microphone Offer

Thanet Electronics Ltd. have available, at a heavily discounted price, approximately 100 HM7 microphones which feature built-in pre-amplifier and p.t.t. switch.

The HM7 microphone was originally supplied, by Icom, with the IC251E, IC255E and IC720E; however, when Thanet sold these rigs they fitted the HM10 Up/Down scanning microphone, which left them with these HM7s in stock.

Supplied with full wiring data, the HM7 can be adapted for use with the IC240, IC211E, IC2O2S and IC701E by merely changing the connector, as these rigs have a power facility wired to the microphone socket.

The HM7 can be used with most rigs; however it should be noted that the microphone insert impedance is 600Ω but the output impedance of the pre-amp is $1.3 \mathrm{k} \Omega$.

Priced at only $£ 6.50$ which includes VAT and carriage, the HM7 is obtainable on a first-come-first-served basis from: Thanet Electronics Ltd., 143 Reculver Road, Herne Bay, Kent. Tel: (O2273) 63859.

Latest from MM

Microwave Modules Ltd. have sent me information on two of their latest products.

First, the MMS2 Advanced Morse Trainer, which possesses all the facilities of their speech synthesised

Morse Tutor, MMS1, plus the additional feature of providing talkback of Morse keyed into the unit by the pupil.

Speed range is 6 to 32 wpm , with six learning levels, and variable group length and single character facility. Price is $£ 155$ including VAT.

Second, the MM1000 and MM1000KB ASCII to Morse Converter. This microprocessor controlled converter enables any parallel ASCII keyboard to send variable speed Morse in the range 12 to 32 wpm . A high speed facility of 600 characters per minute is included for meteor scatter use etc.

The converter has a 50 character memory store together with a 40 character keyboard buffer store. Character set includes: A-Z, 0-9, including punctuation () ?: : . ./ plus four merged or barred characters are programmed for single key operation, they are $\overline{\mathrm{AR}}, \overline{\mathrm{BK}}, \overline{\mathrm{SK}}$ and $\overline{\mathrm{KN}}$.

The VAT inclusive prices are $£ 59$ or with the keyboard $£ 89$. These products should be available by the time this issue of $P W$ is on sale.

Further details from: Microwave Modules Ltd., Brookfield Drive, Aintree, Liverpool L9 7AN. Tel: 051-523 4011.

Laries

ALAN MAARTIN GBZPW

Portable 20MHz Oscilloscope

Electronic Brokers have added to their range of test instruments the new Hameg Model HM2O3, a 20 MHz bandwidth general-purpose dual trace oscilloscope.

Main features are stable sweep triggering (to 30 MHz) and high measuring accuracy ($\pm 3 \%$). The display area is approximately $100 \times 80 \mathrm{~mm}$ and with the aid of the electronic stabilisation of all operating voltages plus the thermically favourable arrangement of the drift sensitive components, an outstanding display stability is obtained. Both brightness and display definition of the c.r.t. are excellent.

Optional accessories include: attenuator probes $\times 1, \times 10$ and $\times 100$; demodulating probe; various test cables; component tester; four channel unit; viewing hood; carrying case etc.

Priced at only $£ 220.00$ plus VAT, the HM2O3 is available from: Electronic Brokers Ltd., 61/65 Kings Cross Road, London WC1X 9LN. Tel: 01-278 3461.

Speaking Clock

Silicon Speech Systems (a Powertran subsidiary) has recently introduced a speaking clock called Speechtime which should be particularly useful to blind people.

The clock has at its heart a speech synthesiser i.c. (type SCO2) which has a 24 word vocabulary; $0,1,2,3,4,5$, $6,7,8,9,10,11,12,13,14,15,16$, $17,18,19,20,30,40,50$, and by combining these words it is possible for the unit to speak any time in hours and minutes. The clock is timed by a 32.768 kHz standard clock crystal and a trimmer capacitor which allows a $\pm 1 \mathrm{~Hz}$ variation to this frequency.

Measuring only $122 \times 66 \times 20 \mathrm{~mm}$ and powered by a PP3 battery, the Speechtime has a claimed accuracy of one minute per year.

The Speechtime is offered at a special Christmas offer price of $£ 24.50$ for the kit and £29.50 ready-built. Both prices include VAT and $p \& p$ and the unit is obtainable from: Silicon Speech Systems, Portway Industrial Estate, Andover, Hants SP10 3NN. Tel: (0264) 64455.

Economy 10m Dipole

Bredhurst Electronics have in stock a number of 11 metre $\lambda / 2$ dipoles of tubular aluminium construction, which have been rendered illegal-to-use by the Home Office regulations for 27 MHz CB.

Naturally, at this frequency the antennas are quite large and are supplied complete with mounting bracket at only $£ 7.50$, to personal callers.

Anyone looking for a 10 m dipole, and able to spend a few minutes trimming these antennas to resonance, will recognise the excellent value for money they represent.

Further details from: Bredhurst Electronics, High Street, Handcross, West Sussex. Tel: (0444) 400786.

If you please

Please mention "Production Lines", when applying to manufacturers or suppliers featured on these pages.

CB Mobile Antenna

Recently introduced by C-Brit Ltd. is the Whiplash, a CB mobile antenna which F. C. Judd, the respected antenna designer and $P W$ contributor, has found in field trials to match the performance of a well-known American manufactured antenna which retails at over $£ 25.00$. The Whiplash retails at $£ 11.95$.

With an overall height of 1.5 m and a base loading coil, the Whiplash totally conforms to the CB Licence requirements. Designed specifically to work efficiently over the legal 27 MHz frequency range, v.s.w.r. is a nominal $1 \cdot 1: 1$ at the band centre, rising to no more than $1 \cdot 5: 1$ at the band ends. Impedance is 50 ohms and power handling has been safety-tested up to 100 watts.

The Whiplash is available now from C-Brit and electrical dealers nationally. Anyone who has difficulty in obtaining the antenna should contact the distributors: C-Brit Ltd., Unit 3-5 Wembley Commercial Centre, East Lane, Wembley, Middlesex HA9 7XD.

OBITUARY

T. Graham Farish

To most of our readers the name of Graham Farish means small scale electric model railways. However, the more senior reader will remember well the early days of PW when Graham Farish was in the forefront of wireless components and broadcasting in general.

Thomas Graham Farish founded the company which still bears his name in 1920. His aim was to make the most of what he saw as a potential boom industry and this he very successfully did until the market changed some thirteen years or so later and he decided not to enter the manufacture of completed wireless sets.

After this he successfully steered his company through electric fires, snap vacuum seals for jam jars, land mines, and Plantoids-ingenious tablets of plant food. The company now makes model railways at a factory he bought near Wareham in Dorset.

Practical Wireless had been hoping to interview Mr. Graham Farish but this was not to be. He died peacefully at his home in Poole on Saturday 10 October 1981 in his eightieth year.

Graham Farish advertised regularly in PW from the very first issue in 1932 and the advertisement reproduced below is typical of his company's style in the early '30s.

The following books are published by Bernard Babani (publishing) Ltd.

AN INTRODUCTION TO RADIO DXING

by R. A. Penfold
96 pages, $175 \times 112 \mathrm{~mm}$. Price $£ 1.95$
This book introduces the reader to the various forms of radio DXing with advice on suitable equipment and the techniques employed when using that equipment. Divided into two main sections one on amateur band reception and one on broadcast reception.

POWER SUPPLY PROJECTS

by R. A. Penfold

91 pages, $180 \times 109 \mathrm{~mm}$. Price $£ 1.75$
Mains power supplies are an essential part of many electronic projects, and this book gives a number of suitable designs. The information included in the book should guide the reader towards designing his own power supplies.

ELECTRONIC TEST EQUIPMENT CONSTRUCTION

by F. G. Rayer T.Eng (CEI), Assoc. IERE
92 pages, $180 \times 107 \mathrm{~mm}$. Price $£ 1.75$
This book describes the way in which simple test equipment is constructed and how to use that equipment.

ELECTRONIC PROJECTS USING SOLAR CELLS by Owen Bishop

110 pages, $177 \times 112 \mathrm{~mm}$. Price $£ 1.95$

Most of the projects in this book were designed to operate at low voltages and to consume small current making them ideal for using small arrays of solar cells.

ELEMENTS OF ELECTRONICS

by F. A. Wilson

Book 4-Microprocessing Systems and Circuits
231 pages, $180 \times 109 \mathrm{~mm}$. Price $£ 2.95$
Continuing on the same principles as its three predecessors book four in the series deals with the fundamentals of microprocessors. Topics include computers, the microprocessor, microprocessing systems and microprocessing circuits.

ELEMENTS OF ELECTRONICS

by F. A. Wilson

Book 5-Communication

$\mathbf{2 4 8}$ pages, $180 \times 109 \mathrm{~mm}$. Price $\mathbf{£ 2 . 9 5}$
Written basically for readers who are finding an interest in electronics or those who need revision. A good book for those who intend to study at technical colleges and also for the person who wishes to study at home. The subject of mathematics is dealt with as the reader progresses through the book and not all at once.

CUT IT OUT!
 A 'Western Which Report' about:-

ROTATORS
Various advertisers will naturally try to persuade you that their product is best (and we are no exception, of course!) but what we will not do is mis-lead you. So the following are FACTS taken from Manulacturers' specifications on their products.
Fact 1. Even small rotators will turn a fairly large antenna, what they will not do is KEEP IT STATIONARY under strong wind conditions. To do this requires good BRAKE TORQUE. This is measured in $\mathrm{Kg} . \mathrm{cms}$.
Low voltage rotators $(24 \mathrm{v}$ ac)
Fact 2. Low voltage rotators $(24 \mathrm{v}$ ac) require higher current. This causes a greater voltage loss along the cable than with a higher voltage motor unit. Cable voltage loss will reduce rotational torque.
Fact 3. Some rotators use un-balanced braking. Under strong winds, this places an un-balanced stress on the casing of the motor unit and can cause it to fracture, Balanced braking is thus superior.

Position	Make	Model	Brake Torque Kg.cms	Price	Comment	
$1=$	CDE	AR22XL	520	49.45		
$1=$	CDE	AR40	520	65.55		
3	Ken	KR250	600	44.85		
$4=$	CDE	CD. 45	920	113.85		
$4=$	CDE	Big Talk	920	91.42		
6	Western	WE-1145	1000	34.95	63\% better braking torque than CD45	cheaply!
$7=$	Western	FU. 400	1500	64.95	Very goad value for maney	And here's another FACT. When we used to sell another brand of rotator, we had to increase
$7=$	Emoto	103sax	1500	86.25		spares to over $£ 1,200$ to ensure that we had adequate spares! We have been able to reduce
$9=$	Ken	KR400RC	2000	101.00		by 90\% by selling Emoto due to their reliability.
$9=$	Daiwa	DR-7500	2000	108.00		You don't believe us? Then next time you go to an exhibition just take a look at the Emo
$11=$	Ken	KR600RC	4000	132.25		then the other brands. See which ones have grotty little screws underneath to which you and attach the multi-way cable! See which have decent input plugs. See which have st
$11=$	Daiwa	DR-7600	4000	144.90		hatdware and then come back and tell us (We told you sol).
$11=$	Emoto	502 sax	4000	125.35		
14	CDE	Ham-4	5700	189.75	Un-balanced braking	
15	Emoto	1102	10000	189.75	75% better braking torque than Ham. Has 2 balanced brakes	
16	Ken	KR2000RC	10000			
17	CDE	T2X	11300	270.25	Costs 42% more than Emoto 1102	

WHAT OUR COMPETITORS SAY

We have 'Yonks' of protessional experience. We have the biggest stocks!

We have the best Service Dept.
We are the 'Greatest'
We have the best showroom
We have the most experience

WHAT WE SAY

So have the LADIES OF PICCADILLY.
Jolly good! Hope you're not one of the customers to get an older set which hasn't got the latest 'mods' on! Our stocks are smaller, turned over faster so that you get the latest factory released equipment.
(So when did they walk round ours?) All we claim is that we have a very extensive (and expensivel) Department with everything from a crowbar (for those fine adjustments!) to a H.P. Spectrum Analyser (just back after service, incidentally, at a cost of $\mathrm{f1200}$!) And you think your service charge was expensive!
Perhaps you are! It depends what you'te talking about. If it is size of land, we are on a ONE ACRE site! Haven't been around our competitors to compare fand who cares!
Maybe you have been round all the Showrooms: we haven't. Ours is set out with YAESU AND TRID: we have no axe to grind one way or the other. We haven't seen one larger than ours but then we don't claim to have seen them all.
Who first introduced the brand name of YAESU MUSEN to the UK? (Answer, Western Electronics of 24, Hook St., Hook, Swindon in 1970.) So who has most experience with Yaesu!
Talking about experience, our M.D. has considerable HF operating experience having been: 2nd. World wide SSB Contest
1st. RSGB \& Mhz SSB Contest
1st. RSGB $21 / 28 \mathrm{Mhz}$ Contests (So who's kidding whom about experience!)
We'll give you "FREE" (this, that and the other!) So you really believe that you can get something for nothing in this World! Take a look at the prices in this periodical. We presume that you know that RETAIL PRICE MAINTENANGE IS ILLEGAL!
Now which Company do you think you should support? The 'Con Merchants'? The Price Rings? The Scare Mongers? OR WESTERN
YAESU PRICES (inc. VAT/Delivery)

FT-1	£1240	FT-1012/FM	£570	FT-107M	f699	FT-707	¢549	FT.9020M	£850
FRG-7	f189	FF-10120	$£ 599$	FI. 227 RB	£229	FP. 707	f119	Fl-21002	£399
FT-1012	f539	FT-10120/AM	f619	FT-290R	£235	FT. 720 RV	£239	FRG-7700	£315
FT-1012/AM	¢555	FT-10120/FM	£635	FT.480R	£360	FT-720RU	£264		

We will not be under-cut! Phone for prices of many other items not listed here. Please note: Prices may have changed by the time this advert appears due to changes in the rate of exchange of the f .

TRIO PRICES (inc. VAT/Delivery)

B0-9	£35.00	MC-50	£2295	AT-230	£119.00	YK-88SN	f24.50	SP. 100	£22.50	ST-1	¢42.95	TR-7800	£259.00
HC-10	£49.00	MB-100	£16.50	DFC-230	f165.00	TS.820S	£559.00	TR-2300	f164.95	SC. 3	£10.95	TR-8400	f299.00
PS-20	¢ 47.95	SP-120	f23.00	SP-230	f 35.00	TS.830S	£699.00	VB. 2300	£45.00	BC. 5	£16.50	TR-9000	f359.00
PS-30	£89.00	TS-130S	£525.00	TS.530S	£539.00	DS-2	£39.00	MB-2	£16.50	PB-24K	£16.95	TR. 9500	£459.00
MC-30S	f12.95	AT-130	f79.00	YK.88CN	f29.95	R-1000	£295.00	TR-2400	f198	C-24			

VALVES Post/Packing $£ 1$. Minimum order value $£ 3$.

6AH6	£1.61	6BM8	£1.15	6eas	¢0.86	6KD6	f5.75	12BY7A	¢1.49	6146B	¢5.75
GAN8	f0.92	6BN8	¢0.86	6 EH7	£0.75	6106	¢2.87	12006	£2.87	7360	¢8.62
6AV6	¢0.80	6805	£0.69	6 EJ 7	£0.86	648 A	f1.09	$12 \mathrm{GB7}$	f230	00v06.40A	¢13.80
6AW8	f1.10	6826	¢0.69	6EW6	£0.75	$12 \mathrm{AT7}$	f1.09	5728	£28.17	3.5002	¢85.00
6BA6	£0.69	6C86	¢0.75	6GK6	f0.86	12AU7	£1.09	5763	f. 2.59	8874	f99.00
6BE6	f0.69	6CL6	£2.01	6JS6C	f5. 17	12AX7	¢1.09				

AMPLIFIER. Bargain! The 'Clipperton L' at only $£ 399$ (Carr. $£ 5.75$)

TOWER BARGAIN! A self-supporting tower for only $£ 179$!

Fantastic stock clearance bargain! Due to large volume production we are able to offer this extremely strong galvanised steel sectional tower at a special price only until stocks are sold. Each section is 3.535 m long ($11^{\prime} 7^{\prime \prime}$) and is approx. $13^{\prime \prime}$ wide. You can go up to 300^{\prime} if you wish (without guys, of coursel) FIRST COME. FIRST SERVED. Rush your order in today! Takes HF beams in 100 m.ph. winds with no guys because of special high grade steel.
Order Tower type WT-26P at $£ 179$ (carriage and VAT paid). Scotland plus $£ 7$.

Wertern Electronics (UK) Itd FAIRFIELD ESTATE LOUTH, LINCS LN11 OJH
 Tel: Louth (0507) 604955/6/7 Telex: 56121 WEST G HOURS OPEN: 9-12. 1-4.30 Mon-Fri. 9-12 Saturday.

The 'Western' gang, including our agents at:
Southampton, Alan Paxton, G4BIZ (0703) 58218
N. Ireland, Mike Matthews, G18MNQ, Newton (0247) 815859
extend to you and 'yours'
SINCERE CHRISTMAS GREETINGS

NORTHERN COMMUNICATIONS

AMATEUR - COMMERCIAL - MARINE

AND NOW FOR

 SOMETHING REALLY NEW!

> -12 V DC earth $144-146 \mathrm{MHzz}$ or VHF Marine.
$15 \times 19 \times 5 \mathrm{cms}$. Mobile bracket + Int speaker inc.

A VHF monitor receiver with VFO plus 12 optional scanning channels for $\quad \mathbf{4 6 . 0 0}$ inc. VAT. Crystals $£ \mathbf{2} .25$ each. Carriage free.

NORCONE 512 (66-512 MHz) It's here! A no compromise, precision made full 16 element discone antenna made in Britain. Standard S0239 connector, with cover. Supplied with 1 " diameter, $30^{\prime \prime}$ mounting support mast and complete instructions. An ideal partner for the SX200N "Bearcat" and other scanning receivers. It may also be used for transmission and in particular where antenna space is limited.
Full coverage of $70.144,432 \mathrm{MHz}$ Amateur bands plus Aircraft, Marine and Commercial bands.
£25.95 p.p. $£ 1.75$ MK-1. In line vertical mounting kit for $1^{\prime \prime}$ top $2^{\prime \prime}$ mast £2.45 р.р. £0. 75

MK-2.

Chimney lashing kit, including hardware and lashing wire.
£2.95 р.р. $£ 1.00$
CK-1. Low loss coaxial cable kit, 10 metres, with connectors and fixing clips.
£3.75 p.p.f0.75
ZL-12 COMPACT YAGI
13 db gain, compact 2 metre Yagi. $10^{\prime} 6^{\prime \prime}$ boom, lightweight rugged design. Hundreds of this award winning antenna already in use. Send for details.
$£ 28.75$ p.p. $£ 1.75$
ZL-8 SUPER COMPACT YAGI
9 db gain, super compact 2 metre Yagi. $6^{\prime} 0^{\prime \prime}$ boom, lightweight rugged design. Ideal for limited spaces and portable operation. Send for details.
$\mathbf{£ 1 7 . 9 5}$ fi.p.

SX200N HOT NEWS!

Scanning Receiver NEW MODEL!

New model of this superb unit now with:
Plug in modules - for easy service.
Increased AF Output - for better reception.
As reviewed in this issue. Frequency range
$26 \mathrm{MHz}-5$ 4 MHz
Improved Image Rejection - to cut out unwanted signals. Increased Selectivity - to cut out adjacent channels. Plus many more interesting features.
£264.00 inc. VAT. Carriage $£ 1.50$
SPECIAL OFFER!
SX200N Norcone 512. Complete inc. VAT. and delivery.
£285.00

BEARCAT 220FBE (AM/FM)

New U.K. specifications with AM capability on all ranges.
Built in PSU or 12 V operation. Superior BEARCAT selectivity Superior BEARCAT performance.

ONLY £259 inc. VAT. Carriage $£ 1.50$
SPECIAL OFFER!
BEARCAT 220FB + Norcone 512.
Complete inc VAT and delivery $\mathbf{£ 2 8 0}$

STANDARD C78 UHF PORTABLE
 Amazing new 70 cms Transceiver. Send for details. £209.00
 Prices include VAT@15\%

299-303, Claremount Road, Halifax HX3 6AW, West Yorkshire. G3UGF. Tues-Sat. 9.45am-5.30pm. Telephone (0422) 40792. 24 hour Ansafone Service.

COMMUNICATION CENTRE OFTHENORTH

The largest range of communications equipment available in the North. Full range of receivers, transceivers, antennas, power supplies, meters. Ali tubing - wall brackets etc.
We are the only official TRIO stockists in the North West. Full range of equipment on display. Guaranteed after sales service.
We can offer a full range of receiver from the SR9 2 m $\mathbf{£ 4 6 . 0 0}$ to the Drake R7 at $\mathbf{£ 9 8 9}$ and the NRD515 at $£ 1,090$.
We are now stocking a range of top quality CB equipment and accessories.
MK II MULTITUNER. In 1977 we introduced our latest design in antenna tuners. This has now been exported to over 75 countries and recommended on Overseas World Broadcasts including HCJB. Will match practically any antenna to most receivers.

$\mathbf{£ 3 5 . 0 0}$ inc. VAT\& POST

Part Exchanges welcome. Second hand lists daily. Send S.A.E. for details of any equipment. HP terms. Access/Barclaycard facilities. Open 6 days a week. 24 Hour Mail Order Service. Phone 0942-676790.

StephensJames Ltd.

47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA.

WE CARRY A RANGE OF SWR AND POWER METERS. ANTENNA SWITCHES - DUMMY LOADS - ROTATORS - REVCO WHIPS CABLES - CONNECTORS ETC.

ACCESS/BARCLAY HPTERMS

6 NEW ST., BARNSLEY, SOUTH YORKS.
Phone: 02265031

In this part of the series we continue with transformers and then move on to oscillation, semiconductors and circuits.

Iron Core Transformers

This type of construction is only suitable for mains power and audio frequencies. The core is formed into a closed magnetic loop to ensure that practically all the field set up by the current in the primary will cut the turns of the secondary coil.

Fig. 37: Transformer core arrangements
A most useful feature of the iron cored transformer lies in its ability to transfer electrical energy from one circuit to another without a direct connection. In the process it can also readily change it from one voltage to another. For example a supply of 12 V a.c. can readily be obtained from the 240 V a.c. mains supply by the use of a suitable "mains" transformer.

Turns and Voltage Ratio

For a particular magnetic field, the voltage or e.m.f. induced in a coil in the field will be proportional to the number of turns in a coil. In the case of a transformer with a
closed core, the primary and secondary coils will experience the same magnetic field, so it follows that the induced voltages will be proportional to the number of turns in each coil. In the primary, the induced e.m.f. is practically equal to and "opposes" the applied voltage (see the section on self-inductance) and the induced voltage in the secondary, ignoring any losses, is given by:
$\mathrm{V}_{\text {out }}=\frac{\mathrm{N}_{\text {sec }}}{\mathrm{N}_{\text {pri }}} \times \mathrm{V}_{\text {in }}$
where $\mathrm{V}_{\text {out }}=$ secondary voltage
$\mathrm{V}_{\text {in }}=$ primary voltage
$\mathrm{N}_{\text {sec }}=$ number of secondary turns
$\mathrm{N}_{\mathrm{pri}}=$ number of primary turns
The ratio of secondary to primary turns, $\mathrm{N}_{\text {sec }}: \mathrm{N}_{\text {pri }}$, is known as the turns ratio of the transformer. For example:

A 240 V mains transformer has a primary winding of 1200 turns and a secondary of 60 turns (turns ratio 20:1). What is the output voltage?

$$
\begin{aligned}
\mathrm{V}_{\text {out }} & =\frac{60}{1200} \times 240 \\
& =\frac{1}{20} \times 240 \\
& =12 \mathrm{~V}
\end{aligned}
$$

Effects of Secondary Current

The small current that flows in the primary winding when no current is being drawn from the secondary is known as the magnetising current. For a well designed transformer this will be quite low, just sufficient to supply the losses due to core material and resistance of the primary winding.

When power is taken from the secondary winding, the current in the secondary produces a magnetic field which opposes that produced by the primary current. The primary current must now increase to restore the field to its original strength so that the induced e.m.f. in the primary equals the applied voltage.

Ignoring any losses, the total current flowing in the primary is entirely due to the current being delivered by the secondary. Assuming that the magnetic fields set up by the primary and secondary currents are equal, the primary current multiplied by the number of primary turns must equal the secondary current multiplied by the secondary turns.

$$
\text { in }=\frac{\mathrm{N}_{\mathrm{sec}}}{\mathrm{~N}_{\mathrm{pri}}} \times \mathrm{I}_{\mathrm{out}}
$$

For example:
The current drawn from the secondary of the transformer described in the previous example is 2 amps , ignoring any losses, what is the primary current?

$$
\begin{aligned}
\mathrm{I}_{\text {in }} & =\frac{60}{1200} \times 2 \mathrm{~A} \\
& =\frac{1}{20} \times 2 \mathrm{~A} \\
& =0.1 \mathrm{~A}
\end{aligned}
$$

Construction

The mains transformer has windings designed to suit the expected operating conditions. If the transformer has to provide a high value of current (as in the example) then the windings are of heavy gauge (thick) wire, appropriate to the current, so that the overall resistance of the winding is small and the power lost is also small. The mains
transformer often has an electrostatic screen between the primary and secondary windings. This is connected to "earth" and prevents any capacitive leakage or other effects from affecting the secondary windings. The windings themselves consist of enamelled copper wire wound on a bobbin with layers of insulating material between cach winding.

The core is made up of thin laminations of special iron to reduce "eddy current" losses. Eddy currents are produced in the core by induction (remember that iron is also a conductor), and the laminations provide many breaks in the electrical continuity of the core material, thus preventing the flow of eddy currents while leaving its magnetic properties largely unaffected.

Transformers for audio frequencies are similar in construction to power transformers but the core material is specially made to operate over a wide frequency range and to cause negligible distortion.

Fig. 38: The physical construction of a mains transformer

Intermediate frequency transformers usually consist of two windings which are each tuned to the operating frequency by associated capacitors and adjustable tuning iron-dust cores. The magnetic coupling between the windings is critical and is set in manufacture to provide the desired selectivity characteristic.

Radio frequency transformers vary widely in design and construction and may be wound on a former with or without an adjustable core. RF transformers for use over a wide range of frequencies are sometimes wound on a ferrite ring. The secondary winding may be separate from or interwound with the primary.

Because of the imperfect coupling between the primary and secondary of resonant i.f. and r.f. transformers, the turns ratio becomes an approximation and the working "Q" and tightness of coupling become the dominant factors.

The RF Oscillator

The oscillator circuit is one of the most fundamental but vital parts of a transmitter or receiver. It is used in the superheterodyne receiver to perform the tuning function and as a carrier insertion or beat frequency oscillator in a communications receiver. It is the essential part of any transmitter as the fundamental frequency source, variable or locked, and as the heterodyne oscillator in a mixer system.

More has probably been written about oscillators than any other radio circuit. Many eminent engineers have their name associated with a particular oscillator circuit arrangement, for example Colpitts, Clapp, Franklin, Hartley, Gouriet etc. All have the same objectives, to maintain
oscillation in a resonant circuit whilst retaining good frequency stability.

Tuned Circuits

A mechanical approximation to the parallel tuned circuit is given by the pendulum. In Fig. 39 (a) the pendulum and the parallel tuned circuit are shown in the rest or zero position.
WRM463

(a)

(b)

(c)

(d)

(e)

Fig. 39: Tuned circuit and pendulum analogy
In (b), the pendulum is raised to one side and then released. It then swings with increasing speed until it reaches the zero position (c) where it overshoots and, with decreasing speed, comes to rest on the opposite side at a point (d), equal in height to its starting point. The sequence is then repeated but in the opposite direction (e) and (f).

Fig. 40: Amplifier maintains oscillation in resonant tuned circuit

In the electrical circuit at (b) the capacitor is charged externally in the direction shown, the charge then causes current to flow through the coil producing an increasing magnetic field until the capacitor is discharged (c). The magnetic field then begins to collapse inducing a reverse e.m.f. which recharges the capacitor in the opposite direction (d). As in the pendulum, the sequence is then reversed (e) and (f).

In perfect conditions, the process, once started, would continue indefinitely. However, frictional losses in the pendulum and electrical losses in the tuned circuit damp the oscillation so that the amplitude of each swing becomes progressively smaller until all the initial energy is dissipated.

To maintain continuous oscillation in a tuned circuit (as in a clock pendulum) a small "kick" of energy must be injected into the circuit, in the correct direction and at the correct time to counteract the energy losses.

This can easily be done by taking a little of the energy circulating in the tuned circuit, amplifying it, then returning it in the correct phase to maintain oscillation. A block diagram and typical circuit is shown in Fig. 40.

If too much energy is fed back, the amplitude of the oscillations build up until increasing losses once again stabilise the amplitude. A change in amplitude does not directly cause any change in the frequency of oscillation.

For good stability of the oscillation frequency, the Q of the tuned circuit should be made as high as possible by keeping the losses in the coil and capacitor very low. The coupling to the amplifier should be minimal but sufficient to start and maintain reliable oscillation.

The frequency stability of a "good" oscillator will be determined almost entirely by the resonant circuit itself. In an $L C$ resonant circuit the inductor (coil) usually has a positive temperature coefficient; in other words, its inductance increases with increasing temperature (causing a decrease in resonant frequency). To combat this effect, the tuning capacitance is sometimes made up of a combination of different capacitors, some having a negative temperature coefficient (decrease of capacitance with increasing temperature). The overall effect is to improve the oscillator stability by reducing the effect of ambient and equipment temperature.

The output from an oscillator has to be fed to the next stage in the equipment. To prevent this loading or adversely affecting the oscillator performance, an intermediate buffer stage is often used. An emitter-follower or commoncollector stage (see next section) is ideal for this purpose, having a high input impedance and low output impedance.

Semiconductor Devices

Several of the reference books listed at the beginning of this series contain sections on the nature and behaviour of semiconductor materials and so we will omit these and
pass on to describe briefly the construction and applications of the semiconductor diode and transistor.

Semiconductor Diode

A semiconductor junction diode consists of a piece of p-type semiconductor and a piece of n-type semiconductor joined together as shown in Fig. 41 (a).

The p-type material has an excess of holes and the n type has an excess of electrons. At the junction, electrons and holes cross the junction and re-combine leaving a region virtually depleted of all charge carriers, known as the depletion layer. Since the p-type has lost a few holes it acquires a slight negative charge and the converse is true for the n-type which acquires a slight positive charge. Thus there exists a small reverse bias across the junction.

Fig. 41: The semiconductor diode: (a) without external bias, (b) forward biased and (c) reverse biased. $\ln (d)$ is shown the current/voltage characteristic

In Fig. 41 (b) we show the forward biased condition. The applied voltage has first to exceed this built-in reverse bias before current will flow. For silicon materials, this is $0.6-0.7$ volts and for germanium, $0.2-0.3$ volts. Once this potential has been exceeded, current flows readily in the forward direction.

The reverse biased condition is shown in Fig. 41 (c). Here the depletion layer has been increased in width, i.e. there is a large region where there are no free charge carriers and only a very small leakage current flows.

Increasing the voltage to a very high level will eventually cause the diode to break down. If the current is not limited in any way this will permanently damage or destroy the diode. The characteristic of a semiconductor diode is shown in Fig. 41 (d).

Semiconductor diodes have many applications as rectifiers in power supplies, detectors, demodulators, switches etc.

Diode Applications

Power Supplies: Radio and electronic equipment operating from the a.c. mains supply commonly contains a power supply circuit consisting of:
a. A mains transformer to provide the appropriate a.c. voltage.
b. A rectifier which converts the alternating supply into a unidirectional but pulsating output.
c. A filter or smoothing circuit which reduces the pulsations to give a steady direct voltage output.

Fig. 42(a): A half-wave rectifier circuit with voltage waveforms produced at various points

A power supply circuit employing a single diode in a half-wave rectifier circuit is shown in Fig. 42 (a). Alternating voltage is fed to the diode anode and as the diode conducts only in the forward direction when the anode is more positive than the cathode, the current only flows during the positive half-cycles. This results in only the positive half-cycles appearing across the load resistor R_{L}.

By connecting a capacitor across the load, to act as a "reservoir", the pulsating voltage can be smoothed to give an almost constant output. The capacitor is charged or
recharged on each positive half-cycle and is discharged by a small amount between each half-cycle by the current drawn by the load. The output voltage waveforms are shown in Fig. 42 (a).

By adding an extra diode and a further winding to the transformer, in which the voltage is of the opposite phase to the existing one, a full-wave rectifier is produced in which the two diodes conduct alternately on each halfcycle as shown in Fig. 42 (b). This has the effect of doubling the ripple frequency and reducing significantly the ripple across the smoothing capacitor. Further reduction of ripple can be obtained in each case by adding a chokecapacitor or resistor-capacitor filter.

WRM465

Fig. 42(b): A full-wave rectifier circuit with waveforms. The ripple frequency is doubled compared with the half-wave case easing the smoothing problems

Full Wave Bridge Rectifier: By arranging four diodes in the form of a "bridge", full-wave rectification from a single transformer winding can be obtained. This arrangement is very popular because of its relatively low overall cost. The forward current flow around the diode bridge circuit is shown in Fig. 43.

Semiconductor diodes used in power supplies are chosen to have adequate ratings in terms of average forward current and peak reverse voltage.
Diode Detector: The circuit in Fig. 44 shows a simple amplitude modulation detector stage. The circuit resembles the half-wave rectifier power supply circuit in Fig. 42 (a) but here the alternating voltage is taken from the secondary winding of a receiver i.f. transformer. The diode rectifies the i.f. signal voltage and filtering is provided by C1. The audio modulation appears superimposed on the

Fig. 43: Current flow around a bridge rectifier circuit
average d.c. level across R1, the a.f. gain control. The d.c. component of the signal is removed by the coupling capacitor C2 and the remaining a.f. signal is fed to the audio stages of the receiver.

AD018

Fig. 44: A diode detector circuit with waveforms produced at various points

Transistors

The diagram in Fig. 45 shows an $n p n$ transistor. Note that the base-emitter junction (a) is forward biased whilst the base-collector junction (b) is reverse biased.

The base region in a transistor is made very thin so that current carriers, entering from the emitter, experience the attraction of the collector voltage and are able to pass right through the base region and cross the base-collector
junction to the collector. A small proportion of current carriers from the emitter will recombine in the base region and these form the base current.

These currents can be expressed simply as:

$$
\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\mathrm{b}}
$$

For example, typical values might be:

$$
\operatorname{ImA}\left(\mathrm{I}_{\mathrm{c}}\right)=0.98 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{c}}\right)+0.02 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{b}}\right)
$$

The actual ratio of the emitter, base and collector currents depends on the type and construction of the transistor.

The ratio of the collector to emitter current is known as the d.c. alpha.

$$
\text { d.c. alpha }(a)=\frac{I_{c}}{I_{c}} \text { e.g. } \frac{0.98 \mathrm{~mA}}{1 \cdot 00 \mathrm{~mA}}=0.98
$$

and the ratio of collector to base current is known as the d.c. beta or $h_{\text {FE }}$.

$$
\text { d.c. beta or } \mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}} \text { e.g. } \frac{0.98 \mathrm{~mA}}{0.02 \mathrm{~mA}}=49
$$

The d.c. beta or $h_{\text {FE }}$ is the usual method of quoting the d.c. current gain of a transistor.

As you can see, there is a fixed relationship between the currents in a particular transistor, if you vary one then the other two will also vary in proportion.

INPUT OUTPUT IMPEDANCE IMPEDANCE	CURRENT GAIN	POWER GAIN	INVERSION OF SIGNAL
	0.99	$\begin{aligned} & 1000 \\ & (30 \mathrm{~dB}) \end{aligned}$	NO
	50	$\begin{aligned} & 10,000 \\ & (40 \mathrm{~dB}) \end{aligned}$	YES
	50	$\begin{gathered} 40 \\ (16 \mathrm{~dB}) \end{gathered}$	NO AD024

Fig. 46: General characteristics of circuit configurations

In transistor amplifiers, input signals may be applied to the emitter or the base and the output taken from the collector or emitter. The general characteristics of each type of circuit configuration are shown in Fig. 46. The circuits have the biasing and supplies omitted for the sake of clarity.

In the common-base arrangement (where the input signal is applied to the emitter), the emitter and collector currents are almost equal but, because the input impedance is low (forward-biased junction) and the output impedance is high (reverse-biased junction), there is a power gain. The signal power ($\mathrm{I}^{2} \mathrm{R}$) in the collector is higher than the power $\left(\mathrm{I}^{2} \mathrm{R}\right)$ in the emitter.

In the common-emitter arrangement not only is there some power gain due to the output impedance being higher than the input, but there is also current gain (beta) from the base to the collector, giving the highest power gain of all the configurations. It is also the circuit which inverts the signal (positive-going signal in produces a negativegoing signal out). The common collector-circuit, or emitter-follower as it is popularly known, has less power gain but its useful features are a high input impedance and a low output impedance.

RAE Practice Questions

1 The output voltage ripple frequency of a 50 Hz full-wave mains bridge rectifier is

a	25 Hz
b	50 Hz
c	150 Hz
d	100 Hz

2 The circuit shown above is a bridge rectifier. The a.c. supply would be connected to

a	d and b
b	a and c
c	a and b
d	a and d

3 The input impedance of a common-base transistor amplifier is
a medium
b very high
c the same as the output impedance
d low
4 The increase in the inductance of a coil in an oscillator circuit due to a rise in temperature can be minimised by the use of a
a Zener diode
b Capacitor with a negative temperature coefficient
c Tunnel diode
d Capacitor with a positive temperature coefficient
5. In the transformer circuit shown below the secondary voltage will be?
a. 4000 V
b. 1000 V
c. 62.5 V
d. 50 V

6. In the transformer circuit shown below the current drawn from the secondary is 1 amp ; assuming no losses, the primary current will be?
a. 1 amp
b. 0.25 amp
c. 4 mps
d. $3 \cdot 14 \mathrm{amps}$

WAM063

Answers

MODS No. 12

- ${ }^{\text {Pcontinued from page } 43}$

The connection numbers are marked on the p.l.1. board, which is easy to get at as it is inside the top of the rig, under a cover. The control board is almost inaccessible.

It should be noted that the display is driven differently and it will not show the frequency change.

This mod can be activated by a switch on the microphone (Fig. 4) but you will need to change the microphone cable for one that has more cores. Jim used one from a Yaesu FT-707 microphone. It is not possible to change the whole microphone assembly instead of the cable because the Yaesu switches (UP, DOwn etc) do not close to low resistance contacts and so they are incompatible with the Trio.

As you will have gathered from the lack of constructional details, you should attempt this mod only if you know what you are doing.
Next month we will continue with more mods for the TR-9000.

USER REPORTS ON SETS AND SUNDRIES

SMC-HS 358 $3 \times \frac{5}{8} \lambda 432 \mathrm{MHz}$ Co-linear Mobile Antenna

On the basis that the more metal you put up into the aether the better you will get out with your signal, then a three-element antenna must be better than a similar two-element structure. SMC's three-element co-linear for 432 MHz certainly seems to bear this out.

I have been using this antenna for mobile use for about a year instead of the original two-element version from the same manufacturer. During this time it has given excellent service both from an electrical and mechanical viewpoint.

The antenna fits onto the SMC gutter mounting bracket simply screwing into the SO239M socket on the mount. This enables it to be quickly removed when leaving the vehicle in a public car park. For easy parking in a garage or other low roofed areas the main antenna can be lifted against a spring and hinged over the roof of the car. In this respect I preferred the screwed locking ring of the two-element version as offering a more positive electrical connection than the spring-loaded taper seat of the three-element antenna.

Wind noise was no greater than that from the two-element type although wind loading on the mount is obviously greatly increased. In fact the threeelement antenna was mounted onto a magnetic base in the centre of the roof of the Maxi during some of our tests and at speeds over $65 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. the magnetic mount was actually pulled off the roof with a terrifying bang. The antenna survived this treatment twice with no more damage than the loss of the small metal ball at the very tip.

The various elements are held together with socket-headed grub screws and this also allows the antenna to be trimmed for best v.s.w.r.

when fitted. The kit comes with full instructions, the appropriate Allen keys and a large nut which has no apparent use. (If anyone has found a use for it then several people I know would appreciate the answer.) Over the test period none of the grub screws has come loose and the v.s.w.r. has not changed.

The overall length of the threeelement co-linear is 1.36 m , and after the two-element version the extra length twanging around on low trees takes a bit of getting used to. However this is worth putting up with for the improved performance obtained. SMC claim a 6.3 dB gain over a $\frac{1}{4}$ wave for the three element compared with 5.5 dB for the two element. The improved performance probably stems from the fact that the three-element version is really the two-element one mounted on top of another $\frac{5}{8} \lambda$ element

so raising it almost half a metre higher and away from the car.

I also found that it loaded acceptably for use with a 2 m rig on the few occasions when I work such low frequencies.

Taken overall the three-element colinear antenna offers a good performance coupled with mechanical reliability.

Dick Ganderton

We would like to thank SMC Ltd., SM House, Osborne Road, Totton, Southampton, SO4 4DN Tel: 0703 867333 for the loan of the antenna. The SMC-HS Model 358 threeelement co-linear antenna costs $£ 14.37$ including VAT. The SMCGCD gutter mounting together with the SMCSOCA cable assembly costs £6.90 including VAT.

DRAE VHF Wavemeter

"A licensee must:-(a) be able to verify that his transmissions are within the authorised frequency band (ie that no appreciable energy is radiated outside the band). (b) use a satisfactory method of frequency control. (c) ensure that his transmissions do not contain unwanted frequencies (ie harmonics and spurious frequencies).

When his station is inspected by officers authorised by the Secretary of State, the licensee will be expected to demonstrate that he can conform with the requirements of (a) to (c) above."

This project provides details of a versatile audio oscillator designed primarily for morse practice, but shown here with two other possible functions. No doubt the inventive streak in the readership of $P W$ will devise a number of other uses!

A morse practice oscillator requires the minimum of sophistication, indeed some would argue that a buzzer and battery are sufficient. However, if the unit is to be used at home, even in a spare bedroom, then the benefits (if only to the rest of the family) of a volume control will be most evident. For long periods of use it is also helpful to have the ability to adjust the tone of the output signal to suit the user.

Basic Oscillator

The practice oscillator shown here uses the ubiquitous 555 timer for all the active functions. Figure 1 shows the basic circuit, the frequency of oscillation being given by the formula:

$$
f=\frac{1.44}{(\mathrm{Ra}+2 \mathrm{Rb}) \mathrm{C}}
$$

A number of manufacturers' handbooks provide nomographs for the selection of suitable values of components for a particular frequency or range of frequencies.

The dotted line from the reset pin 4 indicates the method used to activate the oscillator, resistor R4 being included to maintain a low potential. With pin 4 unconnected the oscillator does not function; when pin 4 is taken to V_{CC} the oscillator produces its output. The output from pin 3 can sink or source up to 200 mA and so can directly

drive a small speaker. The prototype used a telephone handset earpiece as the output transducer, simply because one was available.

To implement the oscillator and provide the facilities outlined earlier as desirable Ra, Rb and C are replaced by suitable components. These are shown in Figure 2, the complete circuit diagram, as R1, R2 and C1. By adjusting R2 the user can select a suitable pitch of operation or if desired replace R2 with a fixed value resistor giving the desired pitch.

The output is fed via potentiometer R3 to provide volume adjustment. The morse key is connected across sockets SK 1 and SK2; closure of the key contacts, in the key down situation. enables the oscillator and drives the speaker.

Fig. 2: Morse practice oscillator/continuity tester circuit

Alternative Uses

Instead of a morse key the user may connect a pair of probes to SK1 and SK2 to provide a continuity tester function. Similarly the completed unit could be used in any circumstances that require a tone to be produced with a contact closure action.

Once the morse test is passed and the Class A licence obtained, the unit can be put to a new use with the additional components shown in Figure 3. This additional

CONSTRUCTION RATING Beginner

BUYING GUIDE

Constructors of this project should have no difficulty obtaining the components from advertisers in the magazine

APPROXIMATE
cost

components

Fig. 3: Multi-function oscillator circuit diagram
circuitry uses the property of the 555 requiring a high level on pin 4 , to enable the device to provide an r.f. activated sidetone oscillator.

The circuit of Figure 3 will oscillate in the presence of a strong r.f. field, so the unit placed near to a transmitter being keyed for morse will provide sidetone. The circuit will only operate, of course, for c.w. type A1-A1A, carrier on/off telegraphy. This will add the facility of sidetone without the need to modify the transmitter.

A short length of wire is usually more than adequate as an antenna. Additional sensitivity can be obtained, if necessary, by wrapping the end of the antenna wire around the coaxial cable feeding the transmitter output to the main antenna system.

Fig. 4: Track pattern and component layout

Construction

Construction of the unit requires no special considerations. A printed circuit board layout is provided although such a simple circuit can be readily put together on veroboard if preferred. The unit complete with 6-F22 (PP3) 9 volt battery and speaker can be housed in any small plastics or metallic enclosure. If the sidetone oscillator function is not required components S1, D1, R4. C3, C4 and RFC1 can be omitted.

The standby current of the 555 i.c. is quite high. typically 5 to 10 mA and so an on/off switch should be incorporated in the power supply lead, ideally in combination with volume control potentiometer R3. Note that the lower power c.m.o.s. version of the 555 has a much lower quiescent current but it will not drive the earpiece directly.

Many readers realise that it is pretty pointless spending something akin to $£ 300$ or so on a communications receiver covering at least 1.8 to 30 MHz and then feeding it with a simple dipole antenna that is cut for resonance on, say, the 20 m band. where it performs quite well but is rather poor on the rest of the bands. Since a separate antenna for each band is out on several scores, including cost, it comes down to a multiband antenna.
The final choice is often the trapped dipole. But which one? And what's this W3DZZ job? What's the difference? Why has one design got only one pair of traps and another several traps? All good questions. The basic object of all these types of antenna is to get resonance on a number of h.f. bands and yet require only a single low-impedance feeder and, preferably. no tuning unit. The trapped dipole goes a long way towards achieving this by inserting high-impedance parallel tuned circuits at the ends of what is a half-wave antenna for the highest frequency band under consideration. Fig. 1(a). thus electrically cutting off whatever may be beyond the two traps. Fig. 1(b).

The whole antenna works as a halfwave antenna at the, usually, next lower frequency band. but is shorter than a standard half-wave because of the electrical loading effect of the inductor in the trap. Fig. 1(c).

Now, as the antenna is a half-wave electrically on both bands the polar diagram will be the same on both bands, namely the standard pattern at right angles to the wire, Fig. 2(a). The W3DZZ variation of the standard trapped dipole is ingenious insofar as. if the dimensions of the antenna are chosen carefully, it will work reasonably well on all bands from 10 to 80 m . It will even work on the new 18 MHz band! The centre dipole is cut for the 40 m band, the parallel traps being made resonant at about $7 \cdot 1 \mathrm{MHz}$ before being inserted. The outer wires make up, with the loading effect of the inductor, a half-wave on the 80 m band.

Now for the clever bit! On the 20 m band the overall length approximates to three half-waves, the centre impedance being a bit high for the usual 70Ω feeder often used with trap dipoles, but acceptable in practice. On the 40 and 80 m bands the antenna is a half-wave as before. but on the 10 and 15 m bands it is a multi-half-wave antenna. It should be evident that the centre impedance must vary over such a wide band of frequencies so the transmitting amateur may be wise to arrange the lengths of the wires to give minimum standing wave ratio (s.w.r.) on a couple of bands that are used more than others. For the listener this point is of no great importance.

Now we come to the major differences between the first trapped dipole described, and the W3DZZ version. The first has maximum radiation at right angles. Fig. 2(a) on the 40 and 80 m bands but on the other bands the W3DZZ takes

Fig. 1(a) Typical trapped dipole configuration. In (b) the traps effectively isolate the centre section, cut for a particular band, from the outer sections. On the next lower frequency band (c) the effect of the trap capacitors is negligible but the inductors act as loading coils with the outer section

Fig. 2(a) The polar pattern for a half-wave antenna with maximum radiation/reception at right angles to the wire. As the number of halfwaves on the wire is increased, (b) and (c), the lobes of the pattern move in towards the wire

You generally did not seem too keen on the smaller type we used for the past two months, so we are going back to the old size, but keeping the smaller headings, etc. Thank you to all who wrote with their views.
on the characteristics of a wire carrying several half-waves, Fig. 2(b) and (c). As the number of half-waves increases so the lobes of the pattern move towards the line of the wire.

This effect explains why some readers are often puzzled because they can receive, say, the Pacific area well on 20 m but poorly on the higher frequency bands. The polar pattern is changing with the number of half-waves on the wire. The multi-trap dipole is one answer to this problem as each pair of traps isolates the appropriate centre section of the antenna so that only a half-wave is being used on any band. Hence the radiation/reception is always at right angles to the line of the antenna.

It is worth noting that the two bands covered by a trapped dipole do not have to be related in any way as long as the traps are resonant at the higher frequency. It could be a 10 m centre section,

BIGEAR 500A

Another Super 2 Metre
 Rig from UNIDEN

Ideal for mobile or base use. Covers $144-148 \mathrm{MHz}$ with 800 synthesised 5 KHz channels, 1 dial programmable memory channel and 4 diode matrix programmable scan channels. 25 and 1 watt power switch, LED readout of transmit, receive and offset frequencies. Programmable offset $+/-0.6,0.7,1.0,1.2$ and 1.6 MHz . Automatic 1750 Hz tone burst. 1.2 watt Audio output.
PRICE: $£ 199.00$ inc VAT

328 FM SCANNING MONITOR

A tailor made, no compromise unit designed for the UK market. Covers 55-88, 144-174 and $400-470 \mathrm{MHz}$ in 12.5 KHz steps. Features include:- Frequency synthesis with continuous display of active channel. 2 speed scan with priority and channel lockout. 20 memory channels. Auxilliary equipment control. Block frequency search option between programmable limits. Mains or battery operation. Vehicle mount provided.
Acclaimed by the "Snoopers" of Britain as the BEST
PRICE: $£ 198.00$ inc VAT (Carr and packing $£ 3.00$)

Zycomm 25800 Hand Portable

A no nonsense sythesised rig, free of gimmicks yet offering high power and good sensitivity. Covers $144-148 \mathrm{HMz}$ with channels in 5 KHz spacing selected by decade switches. Slide switches control simplex or repeater and high or low
 power operation. Low power level is adjustable by internal preset. Maximum power (5 watts nominal) may exceed 7.5 watts from internal NiCd battery pack. Antenna has BNC connector.
PRICE: Z5800, Desk Charger and Remote Mic/ Speaker $£ 199.00$ inc VAT

Ci-110Mk2 POWER AMP

A Solid State, all modes unit covering 1.7 to 38 MHz . Typical power output 130 watts for 215 watts DC input and 4-7 watts drive (15 watts SSB). RF sensing VOX circuit. Switchable receive pre-amp. Supply requirements: 13.8 V at 20A, Negative Earth.
Size $5^{\prime \prime} w \times 7^{\prime \prime} \mid \times 3^{\prime \prime} h$. Weight: 2.5 lbs .

Price - f99.00 inc VAT Similar model available for 49 MHz available shortly.

STABILISED POWER SUPPLIES

Rugged professional quality units at realistic prices
5 Amp - E18.40 inc VAT $7 \mathrm{Amp}-\mathrm{E} 32.00 \mathrm{inc}$ VAT

AZDEN ASOO6 COMMUNICATIONS SPEAKER

Adds punch to any rig rated up to 6 watts. Supplied with moulded jack plug and mounting bracket.
Price f11.50inc VAT
Please address all Amateur Equipment correspondence for the attention of Lou Glover (G4GKJ)

4 COU! Electronics Lid.

47/51 Pentrich Rd., Ripley, Derby DE5 3DS Tel Ripley (0773) 44281 Telex 377466

Agents

Clem Tabor (G3UGR), Banksia, Queen Camel, Yeovil, Somerset $0935-850463$: Evenings \& Weekends only)
Alan Kenyon (GW4DOO), 24 Connaught Street, Port Talbot, Glamorgan 0639-887963
Bob Finch (G4DDM). REF Electronics. Church Road. Pen, High Wycombe 049481.4483
Ted Bowen (G4JKQ), Coalville Communications, 6 Ashby Road. Coalville, Leicestershire 0530-38779 (Day) 0530-60396 (Evenings)

GAREX

RESISTOR KITS a top-selling line for many years. E12 series, 5\% carbon firm, 10Ω to $1 \mathrm{M}, 61$ values, general purpose ratings $\frac{1}{4} \mathrm{~W}$ or $\frac{1}{2} \mathrm{~W}$ (state which)
Starter pack 5 each value ($\mathbf{3 0 5}$ pieces) $£ 3.10$
Standard pack 10 each value ($\mathbf{6 1 0}$ pieces) $£ 5.55$
Mixed pack, 5 each $\frac{1}{4} W+\frac{1}{2} W(610$ pieces) $£ 5.55$
Giant pack, 25 each value (1525 pieces) $\mathbf{£ 1 3 . 6 0}$
NICAD RECHARGEABLES physically as dry cell: AA(U7) £1.30; C(U11) £3.35; PP3 £5.55. Any $5+$: less 10%, any $10+$: less 20%.
CRYSTALS FOR 28.5 MHz 3rd. overtone, suit most 'CB' rigs. 28.5 MHz Tx and 28.045 MHz Rx. HC18U $£ 4.60$ per pair

CRYSTAL FILTER $10.7 \mathrm{MHz}, 12 \frac{1}{2} \mathrm{kHz}$ spacing, ITT $901 \mathrm{C} \mathbf{£ 6 . 9 0}$ CO-AXIAL CONNECTORS \& ADAPTORS sae full list.
PL259 UHF plug with reducer 75p; SO239 UHF socket, panel mtd. 60p; Inline coupler ($2 \times$ sockets) $£ 1.00$; Inline coupler ($2 \times$ plugs) £1.00. Any $5+$ connectors: less 10\%
HT TRANSFORMER multi-tap pri.; 5 secs.: $35 \mathrm{v} 200 \mathrm{~mA}, 115 \mathrm{v}$ $150 \mathrm{~mA}, 50 \mathrm{v} 500 \mathrm{~mA}, 150 \mathrm{v} 300 \mathrm{~mA}, 220 \mathrm{v} 300 \mathrm{~mA} £ 5$
HT CHOKE top grade type, $9 \mathrm{H} \mathbf{2 4 0 \mathrm { mA } £ 3 . 5 0}$
PYE CAMBRIDGE SPARES (our speciality, sae full list). Ex. equip., fully guaranteed. Rx RF board $68-88 \mathrm{MHz} £ 5.95 .10 .7 \mathrm{MHz}$ I.F. £3.65. 2nd mixer 10.7 MHz to $455 \mathrm{kHz} £ 3.455 \mathrm{kHz}$ block filter $12 \frac{1}{2} \mathrm{kHz} £ 9.40$, ditto $25 \mathrm{kHz} £ 3.455 \mathrm{kHz}$ AM I.F. £3.65. Audio bd. $£ 1.95$, and many more. Vanguard \& Westminster spares also.
GAREX FM DETECTOR \& squelch conversion for Pye R/T equipment. Ready assembled, full instructions. Tailor-made, easy-fit design, replaces existing squelch board, with minimum of modifications. For AM Cambridge £5.95; for Vanguard AM25B (Valve RX) £5.75; for Transistor Vanguard AM25T £6.60

(G3ZV1)

MONITOR RECEIVERS
SX-200N VHF-UHF AM-FM SCANNER
Covers $26-88 \mathrm{MHz}, 108 / 180 \mathrm{MHz}$ and $380-514 \mathrm{MHz}, A M+F M$ (especially for U.K. market) it scans, seeks, memorises and beats all the others. GAREX are the U.K. MAIN SERVICE \& SALES AGENT for the SX-200-N. No one else can give you a better overall deal. Sae full details.

SR-9 top-selling monitor: 2 m FM with $144-146 \mathrm{MHz}$ full coverage VFO +11 xtal controlled channels; ideal for fixed, /M./P use. 12 V DC operation $£ \mathbf{4 7 . 5 0}$
Marine band SR-9, $156-162 \mathrm{MHz}$, same spec. and price.
CRYSTALS FOR NR-56, SR-9, SR-11, HF-12, TM-56B All 2 m channels from $0(145.00)$ to $32(145.80)$ incl. at $\mathbf{£ 2 . 4 6}(+\mathbf{2 0 p}$ post per order). Over 40 popular marine channels at $\mathbf{£ 2 . 8 5}$ ($+\mathbf{2 0 p}$ post).
'SCAN-X' VHF/UHF BROADBAND FIXED STATION AERIAL $£ 19.90$ Ideal for SX-200 and other VHF/UHF receivers.

We also stock the:
KDK 2025 2m SYNTHESISED TRANSCEIVER Full band coverage 25 or $12 \frac{1}{2} \mathrm{kHz}$ steps/ 10 channel memory/scans memories or selected band portion/3W or 25 W Tx/all the features you need at $£ 199$
YAESU FRG 7700 GENERAL COVERAGE RECEIVER 150 kHz $30 \mathrm{MHz} \mathrm{AM} / \mathrm{USB} / \mathrm{LSB} / \mathrm{CW}$ and FM £309

MAINS PSU British made 12 volt 1 Amp regulated, $\mathbf{£ 1 5 . 9 5} .12$ volt 5 Amp regulated, $£ \mathbf{2 6 . 9 5}$

MAIN DISTRIBUTOR OF REVCO AERIALS \& SPECIAL PRODUCTS (trade enquiries welcome)
PRICES INCLUDE UK POST \& PACKING \& 15\% VAT.
GAREX ELECTRONICS
7 NORVIC ROAD, MARSWORTH, TRING, HERTS HP23 4LS.
Phone 0296 668684 . Callers by appointment only.

with 10 m traps, and end sections to resonate on the medium wave band, if you have enough space!

Top Band addicts can always extend the standard W3DZZ 10 to 80 m trapped dipole by adding 80 m traps at the ends and then adding about 16.5 metres of wire to these traps and adjusting to resonance on Top Band.

Around the Clubs

Clubs are still reporting an influx of new members derived from the CB fraternity, and very welcome they are, too. However, one or two clubs have had to put a temporary stop to recruitment because of the inadequacy of club premises. Let us hope that they can soon deal with this problem. Every encouragement should be given to CBers, legal and otherwise, to move up to amateur radio.

Horndean \& District ARC Second Tuesday of the month at Merchiston Hall, Horndean at 7.30 pm with future events including talks on home-brew antennas, film shows, and not forgetting the Christmas party! A Horndean Award is promised for the new year, says the new sec Dan Bernard of 33 Greenfield Crescent, Cowplain, Portsmouth, Hants or H'dean 593429. Seems members of the club have been asking why, in this age of computers, the Home Office should take so long to issue new amateur licences! A good question, but note the rate at which the new CB licences will be issued at $£ 10$ a throw!

Braintree \& District ARS New publicity secretary is Norma Willicombe who says the club meets first and third Mondays at the B'tree Comunity Centre, Victoria Street, next to the bus station. Next event of importance is the social pm on Dec 18, a good occasion to take your first peep at the club's activities. Special meetings for junior members are also held. Norma can be found at 355 Cressing Road, B'tree, Essex or on B'tree 45058.

Edgware \& District RS The committee is hard at work getting events organised for ' 82 with the necessary co-operation with the Verulam, Harrow and Grafton clubs to avoid clashes of dates, which sounds a jolly good idea! Don't forget it is second and fourth Thursdays, 8pm, Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware, Middx with next event being a surplus equipment sale on Dec 10. No excuse for any "B" tickets at this club, with G3ASR giving code classes and on-the-air practice. Drop a line if you are interested to sec Howard Drury G4HMD, 39 Wemborough Road, Stanmore, Middx or 01 9526462.

Salop ARS First time, I think, in these columns. Edwin Arnold G6AKE says you should all congregate at the Albert Hotel, Smithfield Road, Shrewsbury, every Thursday at 8 pm ; or he will gladly send a copy of the club's newsletter if you'll contact him c/o 30 Leamore Crescent, Belle Vue, Shrewsbury or on (0743) 66969.

Southdown ARS First Monday, Chaseley Home for Disabled Ex-
servicemen, Eastbourne at 7.30 pm . Editor of club newsletter D. G. Morgan G4FDW wonders if any members ever read that fount of all information judging by the lack of response to requests for news and articles! He comments "at least $P W$ and $S W M$ read it, passing on info about our society. Wonder when RSGB will get round to reading it!" G4FDW can give details of two RAE courses being run in Eastbourne. if it's not too late. Try him at 3 Aylesbury Avenue, Eastbourne or $31620 . \mathrm{Sec}$ is R. E. Holtham G4EKS. 2 Benbow Avenue, E'bourne or 32777.

Worcester \& District ARC "Meetings more and more popular with new faces appearing every month" so says new sec Dave Pritt G8TZE of 15 Paxhill Lane, Twyning, near Tewkesbury, or try (0684) 293890 or even the office on Cheltenham (0242) 32301, replacing long-time reporter Mike G4EKG. So it's first Monday at the Old Pheasant, New Street, Worcester around 8 pm . Dec 7 is c.w. operating techniques night expounded by Ray Dobdinson G3RGD, aimed at encouraging the " B " lads to go one up. Time to tell you also of Dick Marshall G4ERP (nice!) talking on earth-moon-earth (eme) communications on Jan 4.
Royal Naval ARS Not the usual run of societies covered in this column but mammoth 54 -page newsletter gives some idea of the wide coverage of interests of the society's members, many of whom also belong to local clubs, of course. Seems a communications interest in the RN or any other navy is basic qualification for membership but sec CRS M. Puttick G3LIK. 21 Sandifield Crescent, Cowplain. Portsmouth will explain all, or try Waterlooville 55880.

Cheltenham ARA Meets at the Old Bakery. Chester Walk. Clarence Street, C'ham. with Dec 18 designated natternight but contact Grant Cratchley G4ILI. 47 Golden Miller Road, C'ham or 43891 for more info.

Chelmsford ARS A. C. Mead G4KQE. 9 Abraham Drive, Silver End, Witham. Essex says the club meets first Tuesday of the month. 7.30 pm , at the Marconi College. Arbour Lane. C'ford. Too late to tell you of early Dec activities but Jan 5 is the annual film show of RSGB and other productions. Intending to win next year's NFD a Datong Morse Tutor has been bought by the club! (unfortunately something more than that is needed - experience!). Still it's an idea that could be copied to advantage by other clubs.

Derby \& District ARS Every Wednesday at 7.30 pm at 119 Green Lane, Derby. plus Tuesdays and Thursdays for Morse classes from 7 to 9 pm . Membership has reached new club record totalling 208! "Where they all come from is a mystery" says club chairman Richard Buckby G3VGW, "we hear that similar things are happening at other East Midland clubs". No prize for the first correct answer! Ah. yes. Dec 9 is a night on the air, 16th constructor's contest, 23rd Christmas Party (hurrah!) and the 30th "the year in retrospect" (boo-hoo). Still. Jenny Shardlow G4EYM. 19 Portreath Drive. Darley Abbey, Derby is
around to fill you in on the details of this very old club's activities. or on (0332) 556875.

Radio Club of Thanet Pleasant variation on the usual run of club titles, meets at the Birchington Village Centre at 8 pm . Dec 6 is "Rig Evening" while Jan 9 is devoted to a social evening. Try Ian Gane G8HLG, 17 Penshant Road (hope that's right) Ramsgate, Kent or (0843) 54154.

Chesham \& District ARS Second Wed at the Whitehill Centre, Chesham, Bucks and, if you hurry up. Andy G8PUC (QTHR) or (0494) 785625 will tell you all about the exciting foxhunt organised on the 2 m band. The programme for 1982 is under active consideration by the committee so there's plenty to look forward to.

Collingwood RS At HMS Collingwood, Newgate Lane, Fareham, Hants, and open to present or past members of RN, RM, RNR and civvies employed by the $\operatorname{MOD}(\mathrm{N})$ with regular lectures and film shows plus construction projects always under way. Wednesdays at 8pm ought to be OK but contact R. N. Byford G4MKR at the above QTH for more information.

St Neots \& District ARS "Alternate Mondays", which, working forwards looks like Dec 7 and 21 at the Ernulf Community School, at 7.30 pm , with regular outside visits, plus talks, being planned for 1982. Darryl Davies G6EDB of 4 Winchfield, Great Gransden, Sandy, Beds (076) 77623 sent the info but advises contacting either G8TQI on Huntingdon 74642 or G8GRT on H'don 890737 for more gen.

St Helens \& District ARC Weekly, Thursdays, at the Conservative Club, Boundary Road, St. Helens at 7.45 pm with code classes for half an hour beforehand. Club call is now G4LCK, with club net on S23 at 1130am Sundays. Four foxhunts a year are held with a "ladder" established for the leading teams. Mark Edwards G4LHL, 2 Oliver Road, Toll Bar, St Helens, Merseyside. which is also St H. 31846.

Harwell ARS Ann Stevens G8NVI, 78 Whitehorns Way, Drayton, Abingdon. Oxon says the club's AGM-cumconstruction contest takes place on Dec 15 at the East Wing of the Social Club at the AERE at Harwell. With the local RAE courses overbooked the club is thinking of starting up one of its own so if you are interested give Ann a tinkle on Drayton 430 soonest.

Wolverhampton ARS HQ at the W'hampton Chamber of Commerce and Industry, 93 Tettenhall Street, W'hampton, with a slide history of the club on Dec 7, "Canals of the W. Mids" by G8ZZU on the 14th, social evening on the 21 st, with no meeting on the 28th as is only to be expected! Excellent newsletter keeps members au fait with all the club goings-on. John Cook G8EDG, 75 Windmill Lane, Castlecroft waits to hear from prospective members, or a bell on W'hampton 763617.

Wirral ARS First and third Weds at 7.45 pm , but note new club QTH is Minto House School, Birkenhead Road, Hoylake, so says G. O. O'Keefe-Wilson G4MIA (congrats OM!) of 20 South

Drive, Upton, or 677 1531. New venue has ample facilities for constructional work and antennas plus parking space, apart from being easy to reach. Only event in Dec seems to be the Christmas Party so contact G4MIA for details.

Silverthorn RC Fridays from 7.30pm at the Friday Hill House, Simmons Lane, Chingford, London E4 reports sec C. J. Hoare G4AJA, 41 Lynton Road, Chingford, London E4 9EA. Typical activities include construction contests, film shows, contest operation plus the annual camp near to Gilwell Park using special call GB4SRC. Magazine reports that the camp long wire for 80 m "reached OZ, SP and LA". Some wire! Yes, I really do read all your newsletters!

Sefton ARC Public interest in the GB2NG station at the National Giro event was most marked especially with the RTTY set-up. Future events include a foxhunt. talk and demo on electronic organs. G8ZWZ on WWII radio equipment. pirate BC stations by G6BPE, and, hopefully, a visit from local RSGB rep. Len Gurney G4LBJ, 1 Endborne Road, Orrell Park, Liverpool L9 8DP or 0515236074 is the source of more info on the club's activities.

White Rose ARS A warm winter welcome for visitors to the Moortown RUFC, Moss Valley, King Lane, Leeds around 8 pm on a Wednesday evening. Programme details from Dave Coomber G8UYZ at the above QTH or QTHR.

Sutton Coldfield RS Gathers at the SC Public Library with next meeting on Dec 14 at 7.30 pm with microprocessors and a.t.u.s the order of the day. Visitors always assured of a ready hand says sec Derek Turner G8TUR, 10 Jervis Crescent, Sutton Coldfield, W. Mids B74 4PW.

Southgate RC Second Thursday of the month at 7.30 pm at St Thomas Church Hall, Prince George Avenue, Oakwood, London N14 but check for meeting details with sec V. Austin G4MCD, on 01-360 5832.

Verulam ARC Dec 22 AGM and social evening at the Charles Morris Memorial Hall, Tyttenhanger Green, near St Albans, at 7.30 pm . Hilary Claytonsmith G4JKS, 115 Marshalswick Lane. St Albans, Herts, has all you need to know on the formal meetings as well as the second Tuesday of the month informal gatherings, at the RAFA HQ, Victoria Street, St Albans.
Fareham \& District ARC Room 12, Portchester Community Centre, at 7.30 on Wednesdays with a night-on-the-air on Dec 9 and a slide show from G8VOI on the 16th, with advance notice of Jan 6 when G4ITF discourses on Logic. It's Brian Davey G4ITG, 31 Somervell Drive, Fareham, Hants for further details.

Mid-Sussex ARS Meets at the Marle Place Further Education Centre, Leylands Road, Burgess Hill, West Sussex at 7.30 pm from which QTH G3ZMS will be glad to answer your queries on dates. An RAE course is in full swing under instructor G3BPV.

Torbay ARS Club calls G3NJA and G8IUI at Bath Lane. rear of 94 Belgrave Road. Torquay, with informal meetings every Friday at 7.30 pm and more formal
meets on the last Saturday of the month, same place, same time. Club is gloating at the moment having got top spot on 1.8 MHz in NFD. Sec is Hugh Davies G4DZH, 18 Bowland Close, Paignton or 523063.

DX Corner

Welcome first letter from C. A. Cowan of Rugeley, Staffs who got fed up with abuse. QRM and idiots on CB a.m. and sold his gear in favour of a Yaesu FRDX400 with 2 and 4 m bands fitted, a step that will not be regretted! Antennas are Windom, 10 m vertical and 2 m Slim Jim. Enrolment on RAE course run by G4DBR should result in a pass at least in May '82. On 10 m C.A.C. found VK6YO and ZM4BU while 15 m came up with 9NIMM, 9VITL. CT3CN, KA1FCQ/P/6W8, VK9NYG and ZL2BFU with J73CB (Box 389, Roseau, Dominica) as outstanding on 20 m .

Jim Dunnett (Prestatyn) has been busy with a tuning unit for his RTTY set-up but TVI seems to get into everything, he reports. Still, with his SRX-30/AR88D/DC-receiver plus several long wires he did manage to copy a lot of c.w. on 20 m like YAICP, FG7BP and UA3XBP/4K1 in Antarctica. On 15 m it was J87WW, FM7WO and JY9RV, leaving only 10 m where he got OA4AWD. 8RIJ, VU2BK and VK6IA. In the s.s.b. mode on 15 m VP2VD, J6LOU. KA2MZS/SV9 (Crete) showed up. John Hayes of Edmonton, London N9 wrote again to say he's added an MM2000 reader to his RTTY rig which runs from an FRG-7700/FRT-7700 plus long wire which brought in VE3JEV. However s.s.b. won the day with HCINP, OA7TS, TU2JD, YC3FM, ZD8RH and 5N6GGJ on 10 m , DUIEO, HS1BV, KA2MZS/P/SV9. 7P8BJ and 8 P 6 CC on 15 m , plus, on 20 m CE0AE (QSL WA3HUP), KL7EC and VK9NL, finishing with ZL4KF on 80 m .

In Edinburgh Anne Edmondson BRS47285 has got away from her RAE studies long enough to visit local clubs and to finish off an a.t.u. for her Realistic DX200. Much better than buying one, eh? She reports A71AD asking for cards to the QTH of A7XD in the ' 81 callbook, and that the A7XM on c.w. on 20 m is a phoney. Her DX looks like all 20 m , all s.s.b. with A71AD, CT2CY, JY2RZ, SV0AO, V3AWS (QSL Box 306, Belize City - was VPIWS). YKIAA and 6Y5MS.

Allan Stevens (Crowthorne. Berks) found 10 m amazing during the month to mid-Oct, topped by the launch of UOSAT, he says. His Trio 9R59DS has a PR40 preselector but fed only by a 2 metre whip, however he has now acquired a 2 m receiver, so looks like we could lose Allan to the Ron Ham mob! DX on 28 MHz was noted for CO2OM, VK8GF, VU2VTM and IV3OSH/5R8, with only KL7EC of note on 21 MHz . In Llanmorlais, Swansea, Philip Morris is getting along fine with his CR100 now, having fitted a stabiliser to the h.t. line. He is also BRS48851 now though time goes mainly
on " A " level studies, but on 7 MHz he did find TR8DX, 9K2DR and VU2NKA, while 14 MHz supplied T30DB, C21AH (QSL ZL1AQB), ZK2EL (QSL OE2DYL), a fine one in JT1AN and FG7TD/FS7. On 21 MHz he logged HV3SJ, A22ZM and 5H3JR.

In Wadhurst, E. Sussex, Rob Gibson was delighted to log W6RO located on the Queen Mary in Californian waters, and to get a QSL. Enrolment for the Dec RAE is coupled with code practice to take his $\mathrm{G} 4+3$ right away. In the meantime his FRG-7 plus a.t.u. plus pre-amp and dipole at 10 metres produced the following on $10 \mathrm{~m}: 9 \mathrm{X} 5 \mathrm{SL}$, HL9FR, J28DP, P29KM, VS6CT, XT2AN and ZP5RG, with T32AB on 20 m .
D. Coggins (Knutsford, Cheshire) found 7 MHz in very good shape with things like CO5GV, FR7CE, HMIEJ, KB7IJ/KH2 on Guam, VE8YQ on King William Is, on his FRG-7700/FRT-7700 and 30 metres of wire. On 14 MHz his setup provided AH8A on American Samoa, CE0AE, FK0RR, KH3AB on Johnson Is, VK9NS, VR6TC, ZL3PA/C on Chatham Is, 3B8LH (QSL DLOLH) and 3 XIZ . Things came good on 28 MHz with A22BW, DU1RD, FG7BG, FR0FLO/P/J if you can credit such a callsign, G3MUV/CE0 on Easter Is and QSL to KA4MGH, H5AK, S79WHW, S83W, YJ8NPS, ZS2FDC portable in Namibia, 9V1TL (on c.w.) and 9Q5FL (QSL K4AEB).

Ed Baker, sec of ISWL, bemoans missing K7LAY/BY, but I think everyone else did OM! Present rumour has ZA2HAM on a DX-pedition with some EAs and EA2DK as QSL manager. David Warr (Weymouth) is all excited about the Dec RAE so good luck OM and don't get distracted by the DX in the meantime, you'll be working it soon. The 9R59DS and ZLSpecial antenna for 15 m brought in A22ZM (QSL ZS5CU). A71AD, FPOFSZ who is really VOIFB larking about, ZB2GW, ZD8TC, 7P8BT and 9X5SL.

Now this is where your scribe eats humble pie! John East of Highworth, Wilts, wrote in for the first time to say he'd built an HAC three-transistor receiver which, with 10 metres of wire, got him a list of stuff on 20 m s.s.b. as long as the proverbial arm. I suggested he might be listening to the wrong end of some of the nets but as he had some 15 years previous experience at the game I had to give him best! Apologies OM. So from the 140 choice stations listed I give a few like A71AD, AP2LB, C5AAP, CE6COR. CE9AH, DU7GB, FY7BW, HCIGZ. J3AH. lots of JAs, JW5OD, KC 4 VZ , millions of PYs, TA2KS (skip the VKs and ZLs). VP2MH. VP2VB, VP8AJL, VP8QI, VP9CP, VU2AU, 5N2IATT. 5T5ZZ, 8P6OR. 9M2GD, 9 X 5 NH and 9Y4NP. Don't know what he'd do with a proper receiver!

Pet grievance of Basil Woodcock of Leeds at the moment is the lack of courtesy of stations that do not QSL even when sent IRCs and s.a.e.s. The RSGB bureau is a laugh he says, with 27 returns from over 200 QSLs sent that way. Well, OM. I'd prefer to place the blame on the overseas bureaux as I'd consider ours to
be one of the best. Simple answer, get your ticket and a ZA call and I'll guarantee 100 per cent returns! Anyway the JR310 turned in A6XJC, 9Q5FL, TA1AB and XZ9A on $10 \mathrm{~m}, \mathrm{~A} 22 \mathrm{ZM}$, HK1KO, V3AWS in Belize, and YK $1 A O$ on 15 m , ending with $5 \mathrm{~N} 21 \mathrm{CRN}, 7 \mathrm{P} 8 \mathrm{BJ}, \mathrm{TA} 2 \mathrm{KS}, 5 \mathrm{~T} 5 \mathrm{ZZ}$ and YJ8RG on 20 m . Looks like the 5 N boys are having a 21st.

Bill Rendell, Truro, Cornwall professes not to have too much time to spare at the moment for his HRO but managed J73FP, VK2AVA and ZL4AV on 7 MHz , with 28 MHz giving DU6LL (Box 797. Bacolod City, Philippines), FR7CB (QSL Box 9743, Santa Marie), VP2MFL, YC1CBL, and 9Q5L with cards to K3FN.

From Seaton, Devon, comes word from Stephen Littley that 28 MHz has been very good although he seems to have looked at most of the bands with his FRG- 7 and long wire. On $3 \cdot 5 \mathrm{MHz}$ HH2MC was a useful one, with OA4AKD and 6 Y 5 MJ on 7 MHz , plus UKIPGO (in Franz Josef Land), and VP8AGY on Rothera Base on 14 MHz . Nice ones on 21 MHz were A7XD, JTIWA, S79WHL and TL8DC with 28 fetching up with ZE1JC and VPIBEH. A log only from Len Stockwell in Grays, Essex says he used an FRG-7 with a Datong active antenna to get 5 B 4 JM on $10 \mathrm{~m}, 5 \mathrm{H} 3 \mathrm{JR}$ and J6AW on 15 m , and NL7D, TU2CJ, ZC4NB and
$3 \mathrm{~B} 8 \mathrm{AE} / \mathrm{P} / 3 \mathrm{~B} 9$ on 20 m .
Regular 15-year-old reader Andrew Chadwick of Bury, Lancs, has deserted the BC bands I'm glad to say and has been using his Heathkit RA1 plus just 3 metres of wire in his bedroom to log such stuff as AP2IZ, C5ACG, J28DG, J6LB (QSL Box 732, Castries City, St Lucia), KG6RN, PJ4CR via WB2LCH, TA2KS (QSL G3SCP), TU2JL, UK1PGO QSL to UK3SAB, VK9NL, VP5BAM, VP8QI, VQ9CI, 5N0FCA and 6Y5MC all on 14 MHz s.s.b. Catches on 28 MHz were EL9B, VK9NS of Box 19, Norfolk Is, and 5H3TM of Box 429, Mbeya.

Final Notes

Dr Bernard Peter Bint of Altea, Spain, thinks that he has found a very old friend in J. R. Cond mentioned in the column recently. The Doc was a BRS before the war and was stationed at Hendon when things began to happen. Now it's thumbs up with the May RAE results and a bash at the code exam in Gibraltar very soon. Funnily enough Doc was in the Royal Signals for seven years in WWII but never touched the code. We'll be looking for you soon from EA-land OM.

Archie Magrath near Ramsgate couldn't find a suitable club in his area but with G4KEJ they got together and formed one at Birchington now thriving with 40 members and new faces every week. Just shows what can be done with a
bit of initiative. If you can't find a club, form one! Archie is all set for the RAE in December but in the meantime has acquired an R-1000, plus 22 metres of wire in the loft. He is also BRS48064 for the time being.

Alec Bell G4MHQ of Lee-on-theSolent was so pleased with an unusual QSO he had with WD9HCY that he decided to tell me all about it. At 0525 Z one morning he put out a CQ on the 10 m band, optimistically I'd have thought, and heard the WD9 way down in the noise. Anyway it transpired that he was using between 2 and 3 W input on s.s.b. to a home-brew rig for the first QSO with the UK at that power level. Alec was using an FT-101ZD and HF5 vertical antenna.

> On page 65 of December PW I stated that cards can be sent out via the RSGB's QSL Bureau even if one is not a member of the Society. This is incorrect. One must be a member to use this facility. Non-members can collect cards from sub-managers by sending an s.a.e. to them. My apologies to the RSGB and QSL Bureau manager E. G. Allen G3DRN for any inconvenience caused.

Right, that's that for another year. Hope it has been a good year for you and may it be an even better one in 1982. A Very Happy Christmas to one and all.

by Charles Molloy G8BUS
Repports to: Charles Molloy G8BuS
132 Segars Lane, Southport PR8 3JG.

Last time we looked at ways in which we could improve reception on the medium waves. We examined the directional properties of the internal ferrite rod antenna to be found in the majority of m.w. receivers these days, and saw how to use this antenna to cut down interference from other stations and to reduce electrical noise and static. We also found out that an outdoor antenna positioned away from the house would pick up more signal and less noise than an indoor one, to give an improved signal-to-noise ratio. Is there anything else we can do?

Overloading

Modern receivers are more prone to overloading than older valved types and if we connect an outdoor antenna to the former we may end up with crossmodulation, whistles and spurious responses with stations appearing on more than one part of the dial.

If the receiver does not have an antenna socket then wrap the lead from the outdoor antenna round the receiver in a single turn. Coupling between antenna and receiver will be by induction and should be loose enough to avoid overloading. If the receiver does have an antenna socket then you could also try putting an attenuator between the antenna plug and the receiver's antenna socket. Fig. 1 shows a simple attenuator which can be mounted in a small box beside the receiver. Adjust the attenuator for the loudest output that does not cause overloading.

At first sight we seem to have put up an outdoor antenna to pick up more signal only to reduce it again either by loose coupling or an attenuator. Even if we do end up with a signal not much stronger than before, the station will be cleaner and easier to listen to, as we have reduced noise, static, etc., and improved the signal-to-noise ratio.

Fig. 1: A simple attenuator

Fading

Reader B. A. Watt of Shepton Mallet is interested in AFN Frankfurt, West Germany on 873 kHz which he can pick up during the day. He wonders why it fades after dark. During the day it is the ground wave that is arriving at his receiver. Any radiation upwards from the transmitting antenna is absorbed by the D layer of the ionosphere. After dark the D layer disappears and the sky wave now travels higher into the ionosphere to the E layer where it is bent back to the earth. At the receiving antenna the ground and sky waves combine. Sometimes they are in step and add together, on other occasions they are out of step and subtract. The two signals go in and out of phase with one another because of the ever-changing length of the path of the sky wave and fading is the result. If we go farther away from the transmitter, beyond the range of the ground wave we will still get fading, this time from signals that have travelled on different paths through the ionosphere due to different angles of radiation from the transmitter.

What can be done about fading? If you sit beside your receiver and turn down the gain (volume) as the signal increases in strength and turn it up again as the signal fades, you can (if the fading is slow, as it usually is on the medium waves) counter fading. A tedious method that does work but only to the point when the gain control is set to maximum. If the signal continues to fade then our efforts to counter it will now fail.

No need to manually adjust the gain
control. Modern receivers are equipped with Automatic Gain Control (a.g.c.) which will do the job for us, but only with moderate to strong signals. The remedy is obvious. Put up a good outdoor antenna, feed more signal to the receiver (overloading permitting) and give the a.g.c. a chance to work properly.

TV Buzz

Fred Ainslie, who is a TV service technician as well as a m.w. DXer, refers to the line timebase radiation from TV receivers which he says comes mainly from the scan coils and to a lesser extent from the line output transformer. "The scan coils can be likened to a ferrite antenna connected to a transmitter. It is worse in colour than monochrome TVs due to the larger scan power. Due to live chassis circuitry the TV cannot be earthed, so a certain amount of the noise is fed into the mains wiring for distribution all over the house."

Fred reckons the only real solution for the DXer, who picks up TV timebase harmonics across the medium waveband, is to get his antenna as high and as far away from the TV as possible. He uses a loft antenna fed by coaxial cable which cuts out TV buzz quite well, and disconnected the mains earth from his receiver which is now earthed direct to the garden, which brings an improvement.

DX Heard

Seventeen-year-old Keith Dwyer of Presbury in RSA uses an old Concerto valved receiver with a 30 metre-long wire

CKOM is in Saskatoon

for m.w. DXing. He reports hearing Malawi on 740 kHz with a fair signal at 2145. BBC Cyprus on 1323 kHz at 2200 and Islam (Duba in Saudi Arabia) fair on 1521 kHz at 2235. Fred Ainslie (Hartlepool) has a home-brew receiver which uses a combination of valves and f.e.t.s and has a s.s.b. mechanical filter to get 2.7 kHz bandwidth with good skirt selectivity. When connected to his loft long wire this rig pulled in CJYQ St John's in Newfoundland on 930 kHz , CHNS Halifax Nova Scotia on 960 kHz , WINS New York City on 1010 kHz and WCAU Philadelphia on 1210 kHz .

An FRG-7 and one-metre loop with differential matching amplifier are in use at Letchworth by Mike Barraclough whose log includes a good bag of DX from the Caribbean. Stations heard include ZDK in Antigua on 1100 kHz at 0058, Radio Globo Sao Paulo, Brazil on the same channel at 2215 , Radio Iracema at Fortaleza in Brazil on 1300 kHz at

2345, Radio Cayman, Cayman Islands on 1555 kHz at 0010 , Caribbean Beacon in Anguilla on 1610 at 2330 plus WITS P ston on 1510 kHz at 2314 .

Beyond 1600 kHz

The medium waveband ends on 1602 kHz , which is the top channel of the Geneva Plan though there is usually a certain amount of illegal activity beyond the band edge. The station that interests me most in this region is Radio Ierapetra which is located on the southern coast of Crete and is currently listed in the World Radio and TV Handbook as being on 1614 kHz with a power of 1 kW . R. Ierapetra is not a pirate as it is licensed by the Greek government, and recently it has been joined by two other official broadcasters. Vatican Radio has been heard for a while now on 1610 kHz and Caribbean Lighthouse, reported by Mike Barraclough, would probably be logged more often if DXers knew it was on 161 kHz . The address of Caribbean Lighthouse is PO Box 690, The Valley, Anguilla, West Indies.

Transmitting Stations

According to Sweden Calling DXers, a new edition of a pocket guide called Transmitting Stations is now available from the IBA. It lists all ITV and ILR stations in the UK and can be had free of charge from the IBA Information Service, Crawley Court, Winchester, Hants SO21 2QA. A useful addition to the local radio DXer's library.

As regular readers of this column will have noticed. I use the SIO reporting code instead of the more complicated SINPO. SIO is used by the BBC and RCI and I prefer it because it is simple. unambiguous and gives an adequate description of how a signal is coming in. Reader Keith Sholton has re-opened the subject of reporting codes by sending me a copy of an interesting article called Easy SINPO which appeared in a recent issue of the RBI Journal Radio Berlin International. The article discusses the validity of some SINPO ratings and suggests a way in which listener reports could be made less subjective. For the benefit of newcomers it might be useful to
have another look at the SINPO code, before going on to RBI's comments on it.

SINPO

The five letters SINPO are the initial letters of the five parameters used in the code. S stands for Signal Strength, I for Interference from other stations, N for Atmospheric Noise (Static), P for Propagation Disturbance, O for Overall Merit. P is often taken to mean fading and the code is therefore sometimes called SINFO. Each letter is given a rating in the range 1 to 5 .

	S	I.N.P.	O
5	Excellent	Nil	Excellent
4	Good	Slight	Good
3	Fair	Moderate	Fair
2	Poor	Severe	Poor 1 Boarely Extreme audible

Problems arise with the letter O as it seems to be a matter of opinion what is meant by overall merit. To quote from RBI, "Now and then our engineers come across ratings in our mail bag which are strange if not unbelievable. The DXers SINPO numbers in other words contradict the SINPO system. Although we
must admit here that it is not easy to use the SINPO signal rating system".

RBI then go on to argue that a rating of 55552 does not exist. "The overall merit O can't be poor if all the other code letters are excellent" a conclusion most of us would accept. How about a rating of 25555? Some DXers including Keith and myself feel that the rating for O should not be higher than the lowest of the other numbers i.e. the rating should be 25552 . Others maintain that O should be the average of the first four i.e. 25554. It seems pointless to use this method of assessing O as it does not convey any additional information. If you only recorded SINP then the station could work out O for itself. RBI quotes another system, which is not new. O should stand for readability (QRK). On this basis 25555 is legitimate "every detail of the transmission is understood at weak signal strength: QRK5".
"Easy SINPO" then suggests less subjective ratings for the letters I, N and P, ratings which could be used when reporting to RBI. This leaves S, the rating for signal strength, untouched though one wonders how subjective it may be. If you use an " S " meter don't rely on the readings too much. They are only relative values and clearly they will depend on the antenna in use.

Lee Iedronics try

TELECOM ANTENNAS - YAESU MUSEN - ICOM - F.D.K. - STANDARD Etc.

MORSE TUTOR

The uniquely effective method o improving and maintaining Morse Code proficiency. Effectiveness proven by thousands of users world-wide.

* Practise anywhere, anytime at
 your convenience.
* Generates a random stream of perfect Morse in five character groups.
* D70's unique "DELAY" control allows you to learn each character with its correct high speed sound. Start with a long delay between each character and as you improve reduce the delay. The speed within each character always
remains as set on the independent "SPEED" control.
* Features: long life battery operation, compact size, built-in loudspeaker plus personal earpiece.

ACTIVE RECEIVING

Price $£ 49.45$
ANTENNAS
Datong active antennas are ideal for modern broadband communications receivers - especially where space is limited.

* highly sensitive (comparable to fullsize dipoles).
* Broadband coverage (below 200 kHz to over 30 MHz).
\star needs no tuning, matching or other adjustments.
\star two versions AD270 for indoo. mounting or AD370 (illustrated) for outdoor use.
\star very compact, only 3 metres overall length.
\star professional performance standards.
Prices: Model AD270 (indoor use only) $£ 42.55$ Model AD370 (for outdoor use) $£ 56.35$ Both prices include mains power unit

VERY LOW FREQUENCY CONVERTER
If your communications receiver gives poor results below 500 kHz Model VLF is the answer.

* Connects between antenna and receiver input.

Converts signals between DC and 500 kHz to the range 28 to 28.5 MHz with low noise and high sensitivity.

* Crystal controlled for high stability.
\star Quality construction in diecast aluminium box (size $112 \times 62 \times 31 \mathrm{~mm}$), SO239 connectors, LED indicator, in/out switch.
* Operates from internal 9 volt battery or external supply ($5-15$ volts DC).

Price: only $£ \mathbf{2 5 . 3 0}$
Our full catalogue plus further details of any product are available free on request.
All prices include VAT and postage and packing.

Spence Mills. Mill Lane.
Bramley. Leeds LS13 3HE
England.
Tel: (0532) 552461

M\&B RADIO

INVERTED

ONLY £32.00 VEE DIPOLES
MULTIBAND 10-11-15-20-40-80 meters - 2kW Handling Power

- Heavy Duty Stranded Non-corrosive \& Plastic Coated
- Total Length 26 meters

RADIATION DETECTOR

ONLY £2.70 COMPLETE WITH INFORMATION $\begin{array}{ll}\text { - Metal Cased } & \text { Quartz Fibre Type } \\ \text { - Contains } 3 \text { Lenses } & \text { Only the Size of a Pen }\end{array}$ DETECT RADIATIONS BEFORE IT IS TOO LATE

RACAL RA17L Communication Receiver $500 \mathrm{kc} / \mathrm{s}-30 \mathrm{MHz}$ £125 $\begin{array}{llr}\text { RACAL RA17 Communication Receiver } 500 \mathrm{kc} / \mathrm{s}-30 \mathrm{MHz} & \mathbf{£ 1 0 0} \\ \text { GEC BRT402K Communication Receiver } 150 \mathrm{kc} / \mathrm{s}-30 \mathrm{MHz} & \mathbf{£ 7 5}\end{array}$ EDDYSTONE 880 Receivers $100 \mathrm{kc} / \mathrm{s}-31 \mathrm{MHz}$ from $\mathbf{£ 1 5 5}$ BOSCH 2.5 kV 40 uF Capacitors $\mathbf{£ 8 . 0 0}$ VAT p\&p extra. VAT \& P\&P EXTRA UNLESS STATED

M\&B RADIO 86 BISHOPSGATE STREET
TEL (0532) 35649
LEEDS LS1 4BB

An interesting project for a DX club meeting would be to play a few recordings of DX signals and then ask the audience to write down the SINPO rating of each. I'd like to hear from anyone who tries it. In the meantime though I'll stick to SIO though I do feel a little uneasy when I think of the suggestion made over $D X$ Digest some time ago that an SI code would do instead! Incidentally RCI's DX Digest has been renamed Short Wave Listeners Digest, an indication perhaps of changing times on the short wave bands.

Receiver Shopping List

"Can you recommend a short wave receiver?" is a question often asked by readers who do not realise that there isn't a simple answer to this apparently simple question. What is suitable depends on what you want to use it for, how much you are prepared to spend, whether you want a portable, the type of antenna available and so on.
Receivers currently in use range in price from about $£ 30$ to $£ 900$. The lowest priced will, with their own antenna, pull in major broadcasters from all over the world, but if you want to listen to the weaker ones or to DX, then you will need something better. Do you want to listen to amateurs, if so you will want to receive s.s.b. which is a facility usually found on communications receivers but seldom on other types. Can you put up an outside antenna? You might be better off with a portable if you can't. There is also personal choice-you have to like a receiver to derive any pleasure from it.

The Receiver Shopping List has been produced by Radio Netherlands in response to requests from listeners for information about receiver types. The list is in price order. Receivers are divided into four categories and there is a section giving general hints to guide readers into
making a suitable choice. In reply to reader Colin Gillibrant, I suggest you obtain a copy of this list which is available free of charge from Media Network, Radio Netherlands, PO Box 222, Hilversum, Holland.

Radio Free Grenada

The London Office of the High Commissioner for Grenada has written to explain the QSL policy of Radio Free Grenada (RFG). Correspondence of a technical nature is appreciated by the station "for how else can RFG ascertain the quality of its reception world-wide?" The letter goes on to say that the station is short-staffed and along with other government departments operates on a very limited budget which has led to a "less than speedy response to correspondence, which should have by now been rectified."

Many thanks to the High Commission for providing this information and it is gratifying to learn that there is at least one broadcaster who is interested in DXers. RFG is currently on $15 \cdot 10 \mathrm{MHz}$, its address being PO Box 34, Morne Rouge, St George's, Grenada, and it would seem to be a good idea to enclose at least one IRC with the reception report.

Readers' Letters

Twelve-year-old Peter Manson of Glasgow has a Grundig Melody Boy which pulled in Radio Algiers on 9.151 MHz and Brazil on 17.81 MHz . He joined the World DX Club (WDXC) seven months ago which "helped me no end with everything about DXing." Mike Barraclough has sent me a copy of the September issue of Contact which is the monthly bulletin of the WDXC and is packed with information on all aspects of DXing. Mike referred to the mid-monthly

Martin Whittington's exotic QSL card from Hawaii

Express News Service which has 16 pages of up-to-date DX news and station schedules and is available for an additional subscription. A sample copy of Contact can be had for 40 p or three IRCs from 17 Motspur Drive. Northampton, NN2 6LY.

Broadcasts Heard

An FRG-7 with 60 metre-long wire, Codar RQ10 Q Multiplier and Datong Audio Filter are in use at Letchworth by Mike Barraclough who reports hearing Mauritius on 4.855 MHz at 1640 , Cayenne in French Guyana on 6.17 MHz between 2330 and 0100 sign-off, AWR Sri Lanka on 9.72 MHz on Sundays between 1500 and 1530. Radio Singapore on 5.052 MHz in English at 1530 (sign-off at 1630). Martin Whittington (Dartford) used a Sony ICF 5900 with internal antenna to pick up Alma Ata in Kazakhstan USSR on 9.78 MHz at 2300 and KTWR Trans World Radio in Guam on $15 \cdot 13 \mathrm{MHz}$ at 2130. Martin also received a QSL card from WWVH in Hawaii which is a time signal station operating on both 10 MHz and 15 MHz with a power of 10 kW . The address taken from the QSL is: Radio Station WWVH, PO Box 417. Kekaha, Hawaii 96752.

When conditions are about average and there is little DX to shout about, do not give up, because, as records show, an unexpected solar event can suddenly liven things up. This is why the first item in this column is usually devoted to the sun and the second to the 10 m band and the signals from the propagation beacons.

From observations with his reflecting telescope in Bristol, Ted Waring counted 33 sunspots on September 22, 29 on the 30th and 40 on October 2nd and 13th, and Cmdr Henry Hatfield, Sevenoaks and I recorded several individual bursts of solar radio noise between October 9 and 17 and noise storms on days 9,12 , $13,14,15$ and 18 , at 136 and 143 MHz
respectively. During the morning of the 13th, Henry located 8 sunspot groups with his spectrohelioscope and noted that one group looked active and contained 3 large spots and about 20 small ones. Also on the 13th, Phil Hodson G8RBY, Melton Mowbray, received a warning from Charlie Newton G2FKZ, the RSGB auroral coordinator, that a major proton burst had occurred on the sun and in turn, Phil telephoned a list of interested observers. During the life of the solar storm, Henry noted that the MSF beacon on 60 kHz , which he monitors daily, took on a rough tone and Phil said that a weak aurora, lasting about 45 minutes, manifested during the late evening of Oc tober 14. Between 1332 and 1350 on the 13th the normally consistent MSF signal jumped up in strength, having dropped down at 1256 for about 20 minutes.

The 10 m Band

Among those enjoying the DX on 10 m is Harold Brodribb, St Leonards-on-Sea, whose \log shows signals from Bahrain,

Indonesia and the USSR on September 20, many from Canada and the USA on the 28th, several from the USA amid a high noise level on October 4, Canada and the USSR on the 5th and strong signals from the USSR on the 9th. Harold also listens to the harmonics on 10 m from the lower frequency broadcast stations and often hears Alma Ata around 29.80 MHz which he positively identified last year. "October 5 was an especially good day with utilities heard up to 41 MHz " writes Harold, who often spends time hunting through the World Radio TV Handbook looking for the origin of the harmonics. Apart from a few short periods of blackout, due to solar activity, between October 8 and 14, the band was generally good and although I received signals from JA, VE, VK and W on most days between September 22 and October 18, I only heard ZLs on September 30 and October 1 and 6 and the New Zealand beacon ZL2MHF on September 23, 24 and 30. Barry Ainsworth G4GPW, Lancing, noted that 10 m was dead during the morning of October 8
and said that 20 m dropped out during the previous evening. I noticed pronounced echoes on signals from France on September 24 , UK on the 30th and especially DJs and a QSO between the scout station GB2CLD and VK6DT on October 18. In fact it sounded as though both these stations were in a box.

10 m Beacons

Arthur Swatton, Westcliff-on-Sea, listens on the 10 m beacon frequencies for about 30 minutes during the morning and afternoon using a valved converter into an early domestic receiver and a Windom antenna cut to 28 MHz . During the $27-$ day period between September 22 and October 18, I received signals from the International Beacon Project stations, at varying strengths, in Australia VK2WI on 17 days and VK5WI on 5 days, Bermuda V.P9BA on 15 days, Caracas YV5AYV on 11 days, Cyprus 5B4CY on 18 days and Germany DLOIGI on 19 days.

Gerald Clothier RS31665, Bristol using a FRG-7 and a long wire antenna for 28 MHz , has heard the Hong Kong beacon, VS $6 \mathrm{HK} 28 \cdot 290 \mathrm{MHz}$, once and I heard it for the first time at 1332 on October 13 and again around 0900 on the 18th. "September was a good month for ZS signals" writes Ted Waring from Bristol who logged the South African beacons ZS6DN on 23 days and ZS6PW on 15 days. Ted's previous best month for ZS signals was May and says "It's interesting that May and September were the peak months for ZS here in 1980". A good observation Ted, these are the sort of points that are brought out by consistent observations. While I heard signals from the Hungarian beacon, HG2BHA at 1330 on September 22, Henry Hatfield, also using an FRG-7 and a long wire antenna, received it on the 20th and 22nd. It was heard too by Gerald on October 5 and Arthur on the 10 th.

Between September 20 and October 14, Henry received signals almost daily from DL0IGI, VP9BA, YV5AYV and $5 B 4 C Y$. Arthur also received these between October 5 and 10 and they both heard the Canadian beacon VE2TEN. Between September 15 and October 14, Ted logged VE2TEN on 17 days, VP9BA on 22 days and YV5AYV on 19 days. Henry, Ted and I noted that the Bahrain beacon, A9XC, came up again on October 8 having been off the air or not audible in the UK for several weeks. Phil Hodson and Henry commented about the foul tone on 5B4CY which developed, according to my log, on October 15. I see from Gerald's log that he received signals from ZE2VV on September 24 and October 3 and 5.

The 6 m Band

"I am very interested in 6 m DX and during September I went on holiday, about 2000 km north of Broome, in the north west of VK6 to work JAs" writes Graham Rogers VK6RO, from Bunbury, Western Australia. On this occasion,

Graham used a FT-680R (6 m version of 480R) with 10 W s.s.b., IW f.m., 3W a.m., or 10 W or 1 W c.w. and a homebrew $1 / 4$ wave antenna on the car roof. Between September 3 and 15, Graham worked a total of $434 \mathrm{JAs}, 233$ on s.s.b., 89 on a.m., 65 on f.m. and 47 on the key. Between 0830 and 1000 on the 5th, he heard the beacon VK8VF at 539 , "unusual for this time of the year" said Graham, and on the 6th he heard Malayan TV sound on 53.75 MHz , for about 3 hours. At 0310 on the 9th, he received a 519 signal from the Japanese beacon JA2IGY on 50.008 MHz and very strong f.m. broadcast, possibly Chinese on 50.642 MHz . Since October 1979, Graham has worked 754 JAs on 6 m from his mobile plus KG6DX and HL2JD. A fascinating report Graham and I will look forward to hearing more about your exploits.

RTTY

In answer to many questions, it really is simple to use a microprocessor RTTY-to-TV converter, in the loudspeaker circuit of a communications receiver, to resolve teleprinter signals and give no end of pleasure to the short wave listener. Although RTTY signals can be heard on most amateur bands, I find $14 \cdot 090 \mathrm{MHz}$ is consistent and most rewarding. For instance, between September 22 and October 18, I copied 122 stations spread over 19 countries, DF, EA, F, G, HB9, I, LZ, OE, OH, OK, SM, SV, UA, VE, VK, W, YU, YV and 3 A . Of these 116 were on 20 m and the other 6 were on 15 m and 10 m received during the CARTG contest on October 17 and 18, when the h.f. RTTY slots were packed with action and I wished I had more time to tune around. Although the majority of the signals I copied were one sided or CQ calls, I did copy two-way QSOs between EA7CLH and YU7BCD around 1330 on September 22, EA7CFW and DF2ME at 1350 on October 1, DA2KT and DJ7CO at 1334 and DF6UD and I7OGB at 1851 on the 5th, UA3HR and VK5XO at 0825 on the 11th, and during the contest, K8ND and SM4AIQ, K8ND and 3A2EE, DK0OW and ON7AZ, GB2ES and HB9JV and DK0ED and HB9LP. The event was full of interest and in a mere 12 minutes from about 0820 on the 17th, I logged 12 stations in 7 countries

Fig. 1: Ralph Barrett with his WS18 with Peter Penfold winding the generator
ranging from Europe through Scandinavia to the USA.

Another RTTY enthusiast is Jim Dunnett, Prestatyn, who uses two communications receivers, AR88D and SRX30, with separate RTTY terminal units, one the BARTG ST-5 and the other is digital with facilities for putting traffic on to magnetic tape. Jim's h.f. antennas are two long wires feeding the sets via a.t.u.s, and for 2 m he has a vertical two-element beam in the loft and an early $P W$ design converter. Looking through Jim's \log I counted 4 countries on $80 \mathrm{~m}, 13$ on 20 m , 10 on $15 \mathrm{~m}, 1$ on 10 m and 2 on 2 m . I am always pleased to hear the news and views from RTTY enthusiasts.

Tropospheric

There is little wonder that v.h.f. conditions were generally poor between September 21 and October 18 when we consider that the atmospheric pressure, measured at my QTH at midday on the 21st was $29.5 \mathrm{in}(998 \mathrm{mb})$ and apart from a few hours at $30 \cdot 1$ in $(1019 \mathrm{mb})$ on October 7 and 16 , it remained below 30.0 in (1015 mb) until October 18 , with real lows of 29.3 in (992 mb) on September 26 and 29.

Band II

Although Simon Hamer feels that v.h.f. DXing "came down with a bump" after an enjoyable sporadic-E season, his \log for Band 11. despite the poor tropospheric conditions, looks to me as good as ever. He received programmes from TDF France, Brest, Caen and Lille, on September 20, 24 and October 3, 4 and 11. BRT Belgium on the 24th and October 3, and bursts of signal from SDF-1 W. Germany, between 1122 and 1222 on the 4th. At the same time short bursts of signal from the French station at Rouen blocked out Simon's reception of BBC Radio Derby. On October 13 and 14. Nick Brown, Rugby, heard the IBA test transmissions from the new ILR station Chiltern Radio due to serve Beds. Bucks and Herts on $97 \cdot 5 \mathrm{MHz}$.

News Items

Can anyone help James Bennett, 10 Glendevon Rd, Huyton, L36 0XL, with a circuit or operational information on the ex-Govt receiver type 1359 which covers 130 to 520 MHz . James is an instructor with the Sea Cadet Corps and would also like circuits using Nixie tubes for clocks and counters, etc., to aid his instructions.
N. Beadsworth, Londonderry, asked about BRS numbers for station identification. These are allocated to non-licensed members of the Radio Society of Great Britain and application forms for membership are available from RSGB, 35 Doughty St, London WCIN 2AE.
"Hams here in Bergen are beaming west nearly every day" writes Arild Garmannslund LA8WAA, from Norway,
who uses a FT-480R and a 10 -element Yagi on 2 m . On August 29 he worked GM4LBE in the Shetlands and on the 30th he worked about 30 stations, some direct and others through the repeaters in Aberdeen GB3GN R7. Elgin GB3SS R0 and the Faeroes.

Among the visitors to the Chalk Pits Museum, Amberley, Sussex, on October 4 were our readers, Andrew and Russel Tyler from Horsham, and while Andrew uses a Lowe SRX-30 communications receiver with a long wire antenna on 21 and 28 MHz and is studying for the RAE and Morse, Russel is a collector of early 1950s broadcast sets and enjoys hunting through boxes of junk.

Congratulations to my fellow MidSussex Amateur Radio Club member, Tony Bailey G3WPO, who was awarded the Ostermeyer Trophy by the RSGB for his article, The RX80 MK2 featured in several issues of the Society's journal, Radio Communication. Tony, first licensed in 1967 and a founder member of AMSAT UK, has always been a keen home constructor and one of his early designs was a frequency counter used as a club project followed by a 2 m scanning transceiver nick-named the "WOPO BOX" by club members, a hand-held and then the RX80 h.f. receiver. Tony's dedication to amateur radio was
honoured a few years ago when he became an honorary life member of the Mid-Sussex club.

Readers wishing to join $10-\mathrm{UK}$, an organisation for promoting the use of 10 m , should contact J. Harris G3LWM, The Oaks, Cricketfield Lane, Bishop's Stortford, Herts with a membership fee of £3.50.

Among my regular contributors to join in the special "Wireless Day" at the Chalk Pits Museum on September 27 were Simon Hamer who travelled from Mid-Wales, the Brownlow family who operated two stations, Alan Baker G4GNX, with his home-brew electronic keyer, Ralph Barrett with his wartime transmitters, Fig. 1, Stan Williams G3LQI operating h.f. c.w. from his car, Ron Allen and Ern Downer with their microwave gear and Ken Smith and Peter Penfold who acted as stewards. My thanks to them and to the members of Chichester ARC who ran the "junk" sale, Crawley ARC for their direction-finding exhibit, the Medway ARTS contest group with their exhibition station, members of Sussex Raynet, British Telecomms radio interference vehicle, the Home Office for their display of official radio equipment, members of the British Vintage Wireless Society, Mike Tatham G3RSY for his display of QSL cards and RSGB council
member Robin Bellerby G3ZYE, who all helped to make the day a great success.

Although Gerry Brownlow, G3WMU/P found the h.f. bands quiet on October 11, while operating his station at the Chalk Pits grand open day, he was visited by Brian Jackson G3NZM, licensed around 1960, Ed Dennett G8XJY from Petersfield, Hants, who is a member of the UKFM (Southern) Group and oldtimer Ken Salmon G2AKM, first licensed in 1939, who has always operated on the key with 15 watts from a home-brew rig, a "best bent wire" antenna and an HRO communications receiver. Among the exhibitors was Gerry Kennedy, G3OGK/VP8LZ with his collection of vintage sparking plugs, a working 1929 Bradford stationary engine which he fully restored and a 1940 JAP engine, running very sweetly having been fully restored by his 11 -year-old daughter, Dorli. Incidentally, can anyone help Gerry, QTHR, with a Champion spark plug made about 1910 with a tap on the side.

During the day I met father and son, Les and Jeremy Miller from Smallfield, Nr Horley, Sussex, who told me that they were taking an RAE course and that the Passport to Amateur Radio series in PW had proved most helpful, good luck lads and let me know your callsigns when you get them.

Although the 1981 sporadic-E season has finished and the openings during the next few months will be mainly tropospheric and confined to Bands III and V, it is still worth an early morning check on Chs. E2 and R1 for television DX coming via the F2 region of the ionosphere. Such pictures are smeary and not easy to identify, but your vigilance and consequential reports on any distinguishing features will, as usual, be much appreciated.

Amateur TV

Despite the poor weather conditions prior to September 27, Wireless Day at the Chalk Pits Museum, Amberley, Sussex, was, apart from one short shower, predominantly sunny and a good time was had by all concerned. One of the highly successful exhibits was that of the Worthing Amateur Television Group, G3UEQ, G4JEI, G6AIW and G8s KOE, VEH, WXS, XEU, XRX and ZWM, who established a base station in a tent, with several receivers running. Some members of the group wandered around the museum's 36 acres with "back pack" transmitter, camera and recording equipment, interviewing people and in general televising the whole show. They even took their gear for a ride on top of the museum's open-top bus, and their efforts added a great deal of humour to the day.

Both the Chairman, Mike Rowe G8JVE, and Secretary, Sid Talbot G8FCX. of the Chichester Amateur Radio Club are now operational with ATV equipment and are working in conjunction with the Worthing Group. Mike uses a Pye Lynx camera, and a Trio 2300 feeding a Microwave Modules Transverter giving about 6 watts on 70 cm to a MBM48 antenna at 8 m a.g.l., while Sid uses a Philips camera and a Microwave Modules Transverter, fed from a homebrew 2 m transmitter, into a crossed- 12 Yagi.

Mike and Sid use similar home-brew converters in front of a domestic TV set for receiving the ATV signals.
"There is a great interest in ATV in the Chichester club" Mike told me. and I am not surprised because this is yet another field which is still wide open for the amateur radio experimenter. I would be pleased to hear from any other clubs or individuals who are active in this field.

Mystery Signal

During the 1981 sporadic-E season, Fraser Lees, Ringmer, Sussex, received a test card in Band I. Fig. I, which he cannot identify, and asks if any of my readers can help.

Sporadic-E

At 1100 on September 14. Harold Brodribb, St Leonards-on-Sea, Sussex, received weak pictures from Norway on Ch. E2 48.25 MHz . On September 22 , Nick Brown, Rugby, received the RAI-1 test card from Italy on Ch. 1 A 53.75 MHz and pictures in the late afternoon of the 23rd from TVE Spain on

Chs. E2, E3 55.25 MHz and E4 $62 \cdot 25 \mathrm{MHz}$. "The E2 signal came from the TVE-2 transmitter at Santiago and the E3 from Gamonitiero," writes Nick, who also noted the RTP-1 pattern from Portugal. floating over the Spanish signal on E3. Between 1055 and 1132 on October 5 . Nick received the circular test pattern from TSS, Russia on Ch. R1, and an unidentifiable station transmitting colour bars on Ch. R2 59.25 MHz . "Any ideas?" says Nick.

I received long bursts of test card from Austria, Czechoslovakia and Poland at 1350 on September 23. Poland at 0900 on the 25 th, Austria, Czechoslovakia and the USSR at 0905 on October 2, Switzerland at 1335 on the 6th, Poland's clock at 0900 on the 10 th and Poland at 1310 on the 12th and 0800 on the 17th. A final showing of my Ch. R1 videotape covering the sporadic-E events in early September revealed a language

Fig. 1: The mystery test-card pattern from Fraser Lees

Fig. 2: Russian language programme received by the author on Ch. R1
programme, Figs. 2 and 3, a programme about puppets, Figs. 4 and 5 and an eyecatching YL announcer, Fig. 6. I cannot positively identify the countries from whence these pictures came, so any help you can give will enhance the records.

F2

I saw the first sign of the winter TV DX via the F2 region of the ionosphere at 1340 on October 15, again at 1245 on the 16th and at 0835 on the 17 th and 18th. At first I heard the television synchronising pulses come up on Ch. R1 followed by the usual mixture of strong, smeary unidentifiable pictures which were still there when I checked again at 1400 on the 17 th. Early on the 18th, in addition to the pictures, I could hear music on the Ch. RI sound frequency 56.25 MHz which is another good DX spot to keep a watch on.

Way up North

Congratulations to Ian Anderson, Lerwick, on his article and pictures in the September issue of Shetland Life entitled

Fig. 3: Russian language programme received by the author on Ch. R1

Fig. 5: Part of a puppet programme received by the author on Ch. R1

Long distance radio and TV reception in Shetland. Ian has given the lay reader an insight into the enjoyment that we all get from DXTV and made the point that even with simplified equipment. longdistance reception requires that dedication to search the bands daily.

In Norway, Arild Garmannslund uses a 14 in Panasonic receiver and a 2 element beam on Band I, and during the 1981 sporadic-E season he received pic-

Fig. 4: Part of a puppet programme received by the author on Ch. R1

Fig. 6: Announcer received on Ch. R1 by the author in September
tures from Germany and Holland. On July 22, Arild logged both sound and pictures for nearly 12 hours from Radiotelevision Beograd.

From Wales comes a good tip from DXer, Simon Hamer, who suggests that the Heute Direkt programme on BBC2 should be ideal for seeing news captions, YL announcers and other identifying points from German-speaking TV stations.

AIR TEST

\rightarrow continued from page 59

The above is an extract from the written advice given by the Home Office to all amateur licensees, but how many amateurs could demonstrate at very little notice that they could meet these requirements?

If you run a crystal controlled rig on 2 metres then the Drae VHF Wavemeter will meet the basic conditions of enabling you to check up to and above the third harmonic.

The instrument is housed in a small plastics box with the meter, range switch and tuning knob all mounted on the front panel. The unit is powered by a PP3 dry battery which can only be replaced by removing the front panel.

According to the information supplied by the manufacturers the wavemeter uses p.c.b. coils to give the desired stability and hyper-abrupt varicap diodes to pick out the desired frequency. A Schottky diode detector rectifies the signal to drive the meter

and it is claimed that it will work efficiently at frequencies up to 450 MHz .

Operation proved to be simple but the tuning scale is a little vague. However the instruction leaflet supplied with the instrument explains how to use it and interpret the results obtained.

The Drae VHF Wavemeter is well made, inexpensive and should prove very useful for the 2 metre fanatic. But when-oh when will the 70 cm operator get a similar instrument at a reasonable price? What about it Davtrend?

Dick Ganderton

Our thanks to Davtrend Ltd., 89 Kimbolton Road, Portsmouth, Hants., PO3 6DA. Tel: 0705 816237 for the loan of the review instrument. The Wavemeter costs $£ 24.95$ and is available direct from the makers or selected retailers.

G4JDT
 HARVEY
 EAST LONDON HAM STORE

H. LEXTON LIMITED
 191 FRANCIS ROAD LEYTON E. 10 TEL 01-558 0854 TELEX 8953609 LEXTON G

RADIO \& ELECTRONIC ENGINEERS ENGINEERS ALWAYS AVAILABLE ON THE PREMISES

MAIN (UK) SERVICE CONTRACTOR TO HITACHI SALES (UK) LTD

EXCLUSIVE TO US IN THE UK. 1kW input 600W ssb 350FM 2MTR LINEAR!!

BUILT-IN POWER SUPPLY, ELECTRONIC WARM UP, VARIABLE INPUT ATTENUATOR. ADAPTS EXCITERS FROM 2W-25W. RADIAL BLOWER LED's FOR READY, TX, OVERLOAD, PTT \& RF VOX with VARIABLE DELAY CHOICE OF EIMAC TUBES. $4 \times 150 A$ OR $4 C \times 250 B$ OR $4 C \times 250 R$ ELECTRONIC PLATE CURRENT FUSE - NO THERMAL DAMAGE OF P.A. TUBE POSSIBLE. SIZE: H. $88 \mathrm{~mm}, \mathbf{W} .318 \mathrm{~mm}, \mathrm{D} .375 \mathrm{~mm}$. FROM $£ 300.00$ D $70 \mathrm{C} \quad 70 \mathrm{cms} .10 \mathrm{~W}$ in -200 W out $\quad £ 489$ All these linears have adjustable inputs and outputs and they are all fully D 200 S 2 mtr . 1 kW p.e.p. ssb. (650 FM) £599 protected
D 200 2mtr. 500 W p.e.p. ssb. (400 FM) £475
D 200C 2 mtr . 350W p.e.p. ssb. (150 FM)
£300
ALSO AVAILABLE:- 18 db Gasfet masthead preamplifier which suits the output of these linears and which is also powered by them via the antenna co-ax

ICOM
PORTABLES
IC2E FM 2 m
£169.00
IC2O2 SSB
£169.00
IC402 70cm
£242.00
All accessories available see below AVAILABLE SOON IC 4E 70CM

JAYBEAM ANTENNAS

8Y/2M 8 ELE YAGI $£ 15.50$ 10Y/2M 10 ELE YAGI £33.00 PBM 10/2M 10 ELEMENT

PARABEAM
8 $6 / 2 \mathrm{M} / \mathrm{X} 12 / 70$ YAGI
BAND $/ 70 C M$ DUAL
£41.40 MANY OTHERS IN STOCK
COM ACCESSORIES
BP5 IIV Pack BP3 STA Nase for BP2 $\quad £ 15.50$ BP2 6V Pack $£ 22.00$ BC30 Base charger $\quad £ 39.00$ DC1 12 V adaptor $\quad £ 8.40$ WM9 Mic speaker $£ 12.00$ CP1 Mobile Charging load $£ 3.20$ LC1/2/3 cases
LC1/2/3 cases
ICMLI 10W Mobile booster for 2E
BC30 Bas £ 39.00 MML 10W Booster £ 49.00

TRIO/KENWOOD

TS830S HF Transceiver $£ 700.00$ TS130S HF Transceiver $£ 530.00$ TR8400 UHF Mobile $£ 320.00$ TR9500 UHF Multimode $£ 470.00$ TR7800 VHF mobile $£ 268.00$ TR7840 HP FM $2 m$ POA TR7730 2m FM TBA TR9000 £370.00 TR2400 Portable $\quad £ 195.00$ PS30 201 amp PSU $£ 85.00$ Many Trio/Kenwood accessories available

YAESU/SOMMERKAMP

FT902DM

FT1012
FT101ZDFM
FT101ZDAM
FT707 200W PEP
FP707 PSU
FL707 ATU
FL707 ATU
FV707DM VFO
(FT707 + FI707 + FL707
SPECIAL PRICE POA)
FT2772D SPECIAL PRICE POAl extras inc.
FT7670X
FT902DM Solo
FC902 ATU
FV901 DM VFO
SP901 Speaker
Y0901P Scope
FTV901 Transvertor
FT208 VHF
$\begin{array}{ll}\mathrm{FT} 708 \mathrm{UHF} & \mathrm{E209.00}\end{array}$
All accessories available
FT290 Multimode
FRG7700+ Opt memory
£219.00
£219.00
£249.00 POA

> MICROWAVE MODULES
> MMA 144 V 2 m Preamp $£ 34.90$ MML 144/25 RFAMP $£ 59.00$ MML 144/40 $£ 77.00$ MML 144/100S New with Preamp $\underset{\text { f129.95 }}{ }$ MMT 432/144 2-70 Transverte E129.95
> £184.00 MMT 28/144 10 m Transverter $£ 99.00$ MM2000 RTTY Receiver $£ 169.00$ MMI Morse Talker $£ 99.00$ MM 4000 RTTY
> SEE IT WORKING AT OUR SHOP $£ 269.00$ + keyboard Full range stocked.
> STANDARD
> C8800 2 mtr mobile C78700 70 cm mobile C78 70 cm portable C58 2 mtr port. SSB/FM
CH68 Mounting

ICOM FM MOBILES

IC24G
£165.00
£259.00
£586.00
$\begin{array}{lr} & £ 586.00 \\ \text { IC2KL 500W linear } & £ 839.00 \\ \text { IC2KLPS Power supply } & £ 211.00\end{array}$

CUSHCRAFT AMATEUR ANTENNA

HF, A3 20/15/10 3 ele
beam 8bD $\quad £ 165.00$
ATV3 20, 15, 10 Trapped vertical $£ 38.30$ ATV5 10.15.20.40.80

Trapped vertical $£ 83.69$
214B 14 ele boomer
$15.2 \mathrm{db} \quad £ 55.77$

ARX 2 Ringo Ranger 6 dB vertical $£ 28.00$ CS100 Speaker $\quad £ 13.00$ A144.4 ele Yagi $\quad \mathbf{£ 1 8 . 2 5}$ A144.7 ele Yagi $£ \mathbf{£ 2 2 . 8 2}$ A 144.111 ele Yagi $£ 28.94 \quad 144+10 T+$ Yagi \quad OSCAR $\begin{array}{llr}\text { A144-1 } 11 \text { ele Yagi } & £ 28.94 & \mathbf{1 4 4}+\mathbf{2 0 T}+\text { Yagi } \\ \text { ARX2B Ringo Mk } 11 & £ 33.00 & \text { For vertical and }\end{array}$
ARB2K Conversion kit RINGO

For vertical and horizontal
Oscar specials

ROTATORS ETC

DIAWA
DR7600X £135.00
DR7600R £144.00
DR7500R £105.00 CN620 1.8 150MHz Pwr/swr £52.00 CN2002 2.5 kW PEP auto ATU KENPRO KR250
£190.00 KR400RC $\begin{array}{lr} & £ 44.85 \\ \text { CHANNEL MASTER } & £ 90.00 \\ & £ 50.00\end{array}$ CN620 1.8 150 M CN2002 CN2002 $2 \cdot 5 \mathrm{~kW}$ PEP auto ATU
£190.00 CARRIAGE FREE MAINLAND
SWAN/CUBIC
$102 \mathrm{~B} \times 235 \mathrm{~W}+\mathrm{PS} 5 \mathbf{£ 8 0 0 . 0 0}$ 103BX WARC 235W £1000.00 PS6 Power Supply $£ 145.00$ 150M \times Digital SP £561.00
15002 Linear
ST2A ATU £406.00

ST3A ATU
TBA
HF Mobile ant
TBA
£80.00

RECEIVERS ALL ON SPECIAL OFFER R1000 Kenwood FRG7700 Yaesu FRG / / UU Miemory IC2001 Search II Sony Search II $\quad 2$ metre Soundmaster 150 Kc 470 MHz Digital display
SSB/AM/FM etc.
ALL POA ARE ON SPECIAL

* $01-5561415$ *

NOW STOCKING dnt 40 channel CB rigs + Handhelds + Base Station, we don't only sell these but we have an in car fitting service if needed and a full service back up. These sets are designed in Germany and built by a German Company.

ALL ACCESSORIES AVAILABLE - PLUGS SKTS CO-AX 2MTR COLINEAR £31.50, 70CM COLINEAR £31.50

Access

Sinclair 2X81 Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair $Z \times 81$ is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to

Every ZX81 comes with a comprehensive, specially- written manual - a complete course in BASIC programming, from first principles to complex programs

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4!

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

 - Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

uter-

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by $16!$

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Available nowthe IX Printer for only $£ 49.95$

Designed exclusively for use with the ZX 81 (and ZX 80 with 8 K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your ZX81
BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.

HOW TO SUCGEED IN THE ELECTRONICS BUSINESS:

			VALVE MAIL ORDER CO. Climax House 159 Fallsbrook Road, London SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE						
AZ31	${ }_{1.10}^{\text {fp }}$	EM87 EN91	1.50 3.50		0.84 0.80				
CL33		EY	1.75	PY83	0.70	6AA5	0.96	6 SC 7	50
DY86/7	0.84	EY86	0.84	PY88	0.88	6AR	1.98	$6 \mathrm{SJ7}$	1.60
DY802	0.84 3.36		1.75	PY500A	1.80	6AS	4.98	$6 \mathrm{SK7}$	1.30
E880	3.36 8.40	EY500A	1.94	PY800	0.84	6AS7GA	6.75	6SL7GT	2.68
E180F	$\begin{array}{r}8.40 \\ 14.47 \\ \hline\end{array}$	EZ80	0.84 0.84	PY801	0.84	6 6AT6	0.85	6SN7GT	1.60
EABC80	1.20	GY501	0.84 2.75	OQvo3-10		6AU5	4.32 1.08	6SSG7M	1.80 2.50
E891	0.82	Gz32	1.25		5.80	6AW8	3.39		0.80
E8F80	0.50	GZ33	4.00	Qav03-2	A	687	1.50	6V6GT	1.60
E8F89	0.85	Gz34	2.50		17.50	688	1.75	6×4	1.25
${ }_{\text {ECC9 }}$	7.56 3.50	GZ37	4.00 3.50	QQV06-4	55.10	68A6	1.00 5.12	${ }_{7}^{6 \times 5}$	0.85 2.95
ECC35	3.50	KT66	10.00	Qv03-12	4.46	6BE6	1.08	$7 \mathrm{C6}$	2.25
ECC81	0.88	KT77	8.00	R18	4.25	${ }^{68} \mathbf{8 6}$	1.52	$7{ }^{\text {7 }} 7$	2.25
$\mathrm{ECCC}^{\text {CRC }}$	0.72	${ }^{\mathrm{K} 788}$	12.00	R19	1.20	${ }^{68, J 6}$	1.08	12AT6	1.20
EC	0.88 1.20	N78	9.00 2.00	SP41	6.00	68N6	1.65	12 AT7	0.88
ECC88	1.90	OA2	2.55	SP61	2.00 13.75	6807A	3.72 4.00	$12 \mathrm{AU7}$	0.72
ECCS	8.93	$\mathrm{OC}^{\text {O }}$	1.92	425	1.16	68R8	1.75	$12 \mathrm{BA6}$	2.19
ECFE	21.8	$0{ }^{0} 3$	1.92	${ }^{4} 26$	1.44	${ }^{6857}$	4.00	$128 E 6$	2.43
ECH35	2.00 1.15	${ }^{\text {PC86 }}$	1.40 1.40	UABC80	9.00 1.25	68W6 $68 W 7$	4.00 1.52	$128 Y 7$ $128 Y 7$ 128	2.70 2.70
ECH81	1.20	PC92	1.28	UBF89	1.20	${ }^{6826}$	2.37	$12 \mathrm{HG7}$	4.17
ECL80	1.00 1.00	${ }^{\text {PC97 }}$	1.20 1.20	${ }_{\text {U }}^{\substack{\mathrm{UCH} \\ \mathrm{CH} 42}}$	1.20 2.32	${ }_{6}^{6 C 6}$	0.88 1.75	30FL1/2	1.12 1.20
ECL83	1.50	PCF80	1.00	UCL82	1.04	${ }_{6} 68$	2.49	30 P 19	1.20
ECL86	1.20	PCF82	1.00	UCL83	1.44	6CD6G	5.07	30 PL 13	1.80
EF37A	3.50	PCF86	1.60	UF89	1.44	${ }_{6} \mathrm{CL} 6$	£3.72	30 PL 14	1.68
EF39	2.75	PCF801	1.60	UL41	2.50	6 C		75 Cl	2.35
EFF41	2.00 2.00	${ }^{\text {PCF802 }}$	1.60	UL84	1.20 1.25	$6 \mathrm{CW} / 4$ 606	7.68 1.75		2.
EF	1.50	PCF808	1.60	UY85	1.04	6005	5.94	15082	3.02
EF54	5.00	${ }^{\text {PCH2OO }}$	1.60	VR105/30	1.92	GEAB	2.94	150 C 2	1.92
EFF80	2.50 0.80	${ }_{\text {PCLL82 }}$	1.00 2.00	VR150/30	16.92 16	${ }_{6}^{66} 6$	1.85 1.75	150C4	27.59
EF86	1.52	${ }^{\mathrm{PCL}} \mathbf{8} 4$	1.00	28030	7.90	6Gk6	2.67	805	20.00
EF91	1.80 5.81	${ }^{\text {PCLL }}$ PC15	1.08	2021	3.50 14.35	${ }^{6} \mathrm{H} 6$	1.50	807	3.75 18.33
EFF183	5.81 0.80	${ }^{\text {PCLL86 }}$ PCL805	1.08	3828 $4 C \times 2508$		6 HS $6 \mathrm{JJ5}$	3.77 2.50	811 $812 A$	18.33 18.33
EF184	0.84	PD50	3.60			$6{ }^{6} 6$	3.50	813	79.26
EH3O	1.40	PFL2	1.80	5R4GY	3.50	6 J 7	2.50	866 A	15.27
EL32	1.50 3.50	${ }_{\text {PL81 }}$	1.20 1.20	5 V 4 G 5 V 4 G	1.52 1.52	6JB6A 6JS6C	4.56 5.58	${ }^{8724} 9$	21.47 15.78
EL34	2.20		1.20	$5 \mathrm{53GT}$	0.85	${ }_{6}^{654 N}$	5.58 1.25	2050	15.78 6.96
Et36		${ }^{\text {PL83 }}$	2.22	523	1.50	$6 \mathrm{6KGT}$	1.30	5763	3.75 3 3
EL81	3.56 1.00	${ }^{\text {PL84 }}$	1.08 1.40 10	524 GT	1.50	${ }_{6}^{617}$	1.55	5814 A	3.72
EL86	2.50	${ }^{\text {PL5504 }}$	1.80	${ }_{6 \text { 6/3 }}$	1.56 1.50	6K8	1.75 6.36	5842 6080	12.09 6.85
EL91	7.14	PL509	3.20	6AH6	4.71	${ }^{6 L 6 G}$	2.50	6146 A	10.64
${ }_{\text {EL95 }}^{\text {El3 }}$	1.32 8.50 180	PL519	$\begin{array}{r}3.20 \\ \\ \hline\end{array}$					61468 68838	8.12 12.73
$\begin{aligned} & \text { EL360 } \\ & \text { EM81 } \end{aligned}$	8.50 1.00	PL802 PY33	2.96 1.10	$\begin{aligned} & \text { 6ALL } \\ & \text { 6AM6 } \end{aligned}$	0.82 1.80	${ }_{6}^{6 L 7}{ }^{\text {6LO6 }}$	2.00 6.72	${ }_{6}^{68838} 6$	12.73 3.87
Open daily to callers: Mon-Fri 9 a.m.- 5 p.m. 7586 10.14 Valves, Tubes and Transistors :Closed Saturday 7587 17.49 									
Prices excludingVAT add 15%		Terms C.W.O Quotations for any types not listed S.A.E. Post and packing 35p per order					$\begin{gathered} \text { Telex } \\ 946708 \end{gathered}$	Prices correct when going to press	

MIGHTY NINETY PACKS ALL 90p ${ }_{\text {Ea. Inc. vat }}$ BUY SIX PACKS AND GET A SEVENTH PACK FREEI POSTAGE 15p PER PACK			
MN1	$300 \div$ watt pre-formed resistors.	MN23	300 n
MN2		MN31	15 assorted trimmer caps.
MN3	1001 and 2 watt resistors.	MN32	1330 pF beehive trimmers.
MN4	50 wire wound resistors.	MN34	25 min. glass reed switch.
MN5	100 metal oxide resistors.	MN40	50 polystyrene capacitors.
MN6	12 assorted potentiometers.	MN42	10 BC 107 transistors
MN7	25 assorted pre-set resistors.	MN43	10 BC 108 transistors
MN8	50 assorted electrolytic caps.	MN44	10 slide switches sp/co.
MN9	100 assorted ceramic caps.	MN45	35 asstd. diodes - zener, rect.,
MN10	100 mixed caps, poly, ceramic,		switching, signal.
	elect, mica, etc.	MN51	10.2 " red led.
MN13	20 assorted transistors.	MN53	200.1 mfd 25 V ceramic dis
MN14	40 1N4 148 diodes.	MN54	200.01 mfd 25 V ceramic disc.
MN20	1240-110 to 12 volt 100mA	MN56	1014 pin low profile I.C. so
	transformer.	MN57	1016 pin low profile I.C. sock
MN22	$8 \cdot 2^{\prime \prime}$ LED's with clips 4 red,	MN58	$2 \times$ CA723 voltage reg.
	2 vellow, 2 areen.	MN64	5 oress-to-make min switches.
Microwave Modules as described in Practical Wireless "Exe". Project (Wessex Alarms) complete with horn. $\mathbf{£ 8 . 0 0 + 5 0 p}$ postage.			
CHORDGATE LTD (Dept C)			
75 Faringdon Road, Swindon, Wilts. Tel. (0793) 33877 official orders schools and colleges welcome Retail premises at above address.			

ATTENTION FT 101 OWNERS

MAKE YOUR ORIGINAL FT 101 BETTER THAN FT 101E! G3LLL RF CLIPPER Over 1,000 sold in U.S.A. improves RX plus harmonic distortion-free speech processing - doesn't sound like a "one man pile-up", e35 inc. V.A.T. Very easy to fit, for FT101 Mk 1 - B, state which.
D.I.Y? P/C board wired and tested $£ 25$.

G3LLL FM ATTACHMENT. £35 use on 29.6 FM, TX \& RX, transvert to $2 m$ (tone burst and rpt shift $£ 12$); or listen to legal C.B. $27.5-28 \mathrm{MHz}$ Xtal, $£ 3.75$ - all for FT 101 MkI - FT101E, not Z/ZD.
G3LLL DBM. Replaces first mixer on FT101 MkI - E, much quieter receiver, and doesn't "fall apart" on 40m after dark, £11.50, MklI - E. £12 FT101 Mkl version. FT290 now fitted listen on input by us (distributor approved).
FT101Z/ZD, FT480, FT902, FDK, DATONG, J-BEAM, LOWE etc. in stock. SECURICOR DELIVERY possible.
FREQUENCY COUNTERS Soar FC841 (S.A.E. for P.W. review August/81), $£ 52$ inc. mains unit. New 600 MHz 9 -digit counter $£ 106$ S.A.E. details. DATONG. Most items in stock.
SECURICOR DELIVERY POSSIBLE.
HOLDINGS PHOTO/AUDIO CENTRE,
39/41 Mincing Lane, BLACKBURN, BB2 2AF.
Tel: 59595/6. Access/Barclaycard.
Closed Thursday.

MASIMFR THTFGYRONTCS INOWT The PRACHTCAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?GetintoElectronics Now!
\square COURSE IN ELECTRONICS as described above RADIO AMATEUR LICENCE MICROPROCESSORS LOGIC COURSE

BritishNational Radioo\&Flectronics School Reading, Berks.RGII7BR

UNITED KINGDOM OMENEXLTD.
THUGHENDEN ROAD
HASTINGS SUSEXTN34 STG
TEL:HASTINGS (0424) 428131

ELECTRONIC COMPONENTS

600 MHz Digital Frequency Counter

The basis of the design is an LSt chip which is a seven decade counter. This is extended to full 8 digits by feeding the processed signal to a single decade counter that is then decoded and fed to the least significant digit (LSD), for display. The LSI then counts, decodes and feeds the digit drivers for the other seven most significant digits (MSD sl.
A further LSi chip which performs the functions of Xtal oscillator, gating dividers and driver
Other complex discrete circuitry provides for signal conditioning, shaping, amplification and protection.
A pre-scaler and amplifier provide facilities for extending the 8 digit counter block to 600 MHz This is switched in from the front panel. Also provided is switching for gate time and power. A Power LED indicates when the count is active.
power supply required is $100-240 \mathrm{~V}$ AC $40-60 \mathrm{~Hz}$, feeding a 5 volt IC stabiliser and filter. A for mobile use. Reverse polarity protection is included.
Display is an optically filtered multiplexed 8 digit presentation of $0.5^{\prime \prime}$ LEDs driven to high brightness by discrete and IC display drivers. The displays are of the latest reflector technology lighting.

Range $1 \mathrm{~Hz}-60 \mathrm{Mhz}$
R -600 Mhz
Resolution 1 Hz
Sensitivity Typically 10 mv 600 Mhz .

Iitial Accuracy $\pm 1 \mathrm{ppm}$.
Short term stability $\pm 1 \mathrm{ppm}$
after 30 mins.
ong term stability ± 1 ppm per 1000 hours.

Temp stability ± 2 ppm Line voltage $\pm 10 \%$. Better

MODEL NUMBER UK522
Input $\quad \begin{aligned} & 1 \mathrm{MQ} \text { in parallel with } 15 \mathrm{pf} \text { at } 60 \mathrm{Mhz} \text {. } \\ & 500 \text { with }\end{aligned}$ 50Ω with pre-scaler
Protection Up to 200 V pp.
Gate $\quad \begin{aligned} & \text { Xtal, } 5.24288 \mathrm{Mhz} \text {. } \\ & 1.0 \text { or } 0.1 \mathrm{sec} \text { by }\end{aligned}$
$£ 108$ inc. vat $100-240 \mathrm{~V} \mathrm{AC} 40-60 \mathrm{~Hz}+10 \%$ at 10 watts.
$9-16 \mathrm{~V} \mathrm{DC} \mathrm{at} 800 \mathrm{ma}$ Typical

OISTRIEUTOR FOR SOLID STATE MICROWAVE TTHOMPSON CSFI RF PRODUCTS
ITT $107 \mathrm{MHz} \times \mathrm{KL}$ Fitters 25 KHz
HP 50822800 Hot Cat Diodes HP 50822800 Hot Car Diodes
HP 50822835 Hot Cat Diodes HP 50822835 Hot Car Diodes
HP 50823080 Pin Swatch Diodes $\begin{array}{ll}\text { HP } 50823080 \text { Pin Switch Diodes } & \text { C0.98 } \\ \text { Matarola MC120131 } & 10 \text { Prescaler IC } \\ \end{array}$ Motorola MC12013L + 10 Prescaler IC with full
data uinstuctinns B8103 Varicap Diodes
T1P33 f0.58; 2N918 50.50 ; BF 180 C0.50; 日F1 10.50
 2N5179 £0.82: BFY90 61.15 ; ST2 110 - $\mathrm{BS} \times 20 / 2 \mathrm{~N} 2369^{3}$ C0.30.

TRIMMERS

Tetter PTFE $1-10 \mathrm{pF} 44 \mathrm{p}$. DAU PIFE Film 1 to 9 pF of 1.5 18 pF 34 p . Surplus 25.25 pF 22 p .
SPRAGUE (Grade 1) Mica Trimmers (500v) lor R.F. Amps 2.5 .7 pF 81 p . 4.20 pF 86 p .7 .40 pF 86 p . 16.100 pF 98 p . 25-150pf f1.09. 40-200pf $\mathbf{£ 1 . 1 5}$.
HEATSINKS single sided ideal for RF amps. Redpoint 6MI 26 deg w

FINISHED MADE UP AND TESTED EQUIPMENT

PA2 Preamplifier lot 2 meters. using the latest UHF stigatue MOSFET the BF900 1 ", square for fitting in the ${ }^{13} 50 \Omega$ in'out ump Duly $\mathbf{8 8 , 0 5}$ with instructions. PAU2 432MHz Preamp, striphne using the BFR34a $14 d \mathrm{~B}$ gam NF < 2dB 18.63 .
LOW NOISE SMALL SIGNAL SEMICONDUCTORS.
BfR90 Mul I Pack $25 \mathrm{~dB} \mathrm{N/F} 16 \mathrm{~Hz}$ [282
BfR91 Mul I Pack 25 dB NF 1.2 GHz
BrR34a I Pack 4dB N/F GHz
BFT66 Low Intermod. T072
S0306 "0" MOS MOSFE
40673 RCA MOSFEI
BF900 UHF MOSFEI Equiv 3SK8
LINEAR AMPLIFIER MODULES, without ChOver Sue $55 \times 92 \mathrm{~mm}$ with thermal miteflace 50Ω PM2 1004 w in 10 w out 138 v PM2 1515 w m 15 w out 138 v PM2 25 4w m 25 w out $138 \mathrm{vv} \quad \mathrm{f} 19.55$ CPM LINEAR AMPS with full RF Changeover size 82×102 unn preamp can be fitted in RX SPEC AS FOR PM Series Specity CPM type and add 67.48 in PM seties prices
UNELCO Cased RF Mica Caps. following Pfs 10'20'30'40/50/60'70/80pF f1.61; 100/150/180/250pF £1.73; 1000 pF f 1.84.
PIff Sheet 025 min 300 min Square
PRESCALER BOARD $\div 10$ Sure $55 \times 93 \mathrm{~mm}$ with ingut umpliter $(2 \times$ BFR34a) sems 40 mV 432 mc uses MOT E sipgly

S.E.M.

BOX 6, CASTLETOWN, ISLE OF MAN.

 TEL: MAROWN (0624) 851277S.E.M. ACTIVE MULTIFILTER

Will improve ANY receiver on ANY mode. Gives "passband tuning" and "Variable selectivity"' Switched Hi-pass, Lo-pass, peak or notch. Selectivity $2.5 \mathrm{KHz}-20 \mathrm{~Hz}$ tunable
from 2.5 KHz to 250 Hz . PLUS another notch which can be used in any switch position and covers 100 Hz to 10 KHz . TRY ONE ON 14 DAYS APPROVAL $£ 57.00$ ex stock.

S.E.M. EZITUNE

"In my fifty years on the air, this is the most useful gadget l've ever seen". Connects in aerial lead, produces S $9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U. for minimum noise. You have now put an exact 50 ohms load onto your transceiver. Fully protected, you
can transmit through it, to save your P.A. and stop QRM. $£ 25^{\circ}$ ex stock. S.E.M. TRANZMATCH

The most VERSATILE Ant Matching system. Will match from $15-5000$ Ohms BALANCED or UNBALANCED at up to $\mathrm{lkW}^{\text {k }}$. Link. coupled balun means no connection to the equipment which can cure TVI both ways. SO239 and 4 mm connections for co-ax or wire feed. 160-10 metres TRAN Z MATCH £65.00. 80-10 metres £58.00. EZITUNE THE SENTINEL AUTO Mk 112 or 4 metre PRE-AMPLIFIER
THE SENTINELAUTO MK IION crir metr PRE-AMPLIFIER
Completely new third peneration DUAL GATE MOSFET pre-amp through power rating. completely new third generation DUAL GATE MOSFET pre-amp giving IdB N.F. and
20dB gain with GAIN CONTROL and OFF switch (straight through when OFF). The High O tuned circuits for high selectivity.
Size: $1 \frac{1}{2 "}^{\prime \prime} \times 2 \frac{1}{n}^{\prime \prime} \times 4^{\prime \prime} £ 25.00^{*}$ ex stock. Without RF Switch $\mathbf{£ 1 5}$.
SENTINEL STANDARD MK 112 or 4 metre PRE-AMPLIFIER
PA3
${ }_{\text {ONE }}$ PA3 cubic inch miniature 2 metre pre-amplifier. Same circuit as above. $\mathbf{£ 7 . 9 5}$ ex stock 70 cms versions $\mathbf{£ 4 . 0 0}$ extra. Marine Band ex stock. Other frequencies to order.
SENTINEL 2 METRE LINEAR POWER AMPLIFIER/PRE-AMPLIFIER
These units use the latest techniques and transistors for highest reliability and performance. Infinite SWR PROTECTED devices. ULTRA LINEAR, all modes. R.F. switched. Same POWER GAIN at lower drive powers. Supply 13.8 V nominal. SO239s.

1. SENTINEL 35 Twelve times power gain. $3 W$ IN 36 W OUT. 4 amps. Max. drive 5 W . $6^{\prime \prime} \times 21^{\prime \prime}$ front panel, $4 \frac{1}{2 " ~}^{\prime \prime}$ deep. $\mathbf{£ 5 7 . 5 0 \text { ex estock. }} \mathbf{2}$. SENTINEL 50 Five times power gain. 10W IN 50W OUT. Max drive 16 W . Same size as the Sentinel $\mathbf{3 5}$. $\mathbf{£ 6 9 . 5 0}$ ex stock.
2. SENTINEL 100
3. SENTINEL 100 Ten times power gain. 10W IN 100W OUT. Max drive 16 W . Size: $6 \frac{1_{2}}{}{ }^{\prime \prime} \times 4^{\prime \prime}$, front panel, $3 \frac{1}{2}{ }^{*}$ deep. 12 amps . $\mathbf{£ 1 2 6 . 5 0 ~ e x ~ s t o c k ~}$ All available less pre-amp for $\mathbf{£ 8 . 0 0}$ less.
SENTINEL H.F. WIDEBAND PRE-AMPLIFIER $2-40 \mathrm{MHz} \quad 15 \mathrm{~dB}$ gain. Ideal for 15 and 10 metres and OSCAR OR AN ACTIVE AERIAL $9-12 \mathrm{~V}$. Size: $2 \frac{1}{n}^{\prime \prime} \times 1 \frac{1}{n}^{\prime \prime} \times 3^{\prime \prime}$ Two versions. 1. STANDARD Performance as above. £10.00* ex stock. 2. AUTO Sam performance as above with a change over relay r.f. operated by your transceiver for direct FREQUENCY CONVERTERS
FREQUENCY CONVERTERS
N.F. 2 dB Gain 30 dB . IFs 2 metres: $2-4 \mathrm{MHz}, 4-6 \mathrm{MHz}, 28-30 \mathrm{MHz} .4$ metres: 28 $28.7 \mathrm{MHz} .9-12 \mathrm{~V}$. 15 mA . $£ 24.73$ ex stock. SENTINEL X 2 METRE CONVERTER Same as above plus mains power supply.
$£ 28.80$ ex stock. 70 cm to $28-30 \mathrm{MHz} £ 28.80$ ex stock. SENTINEL L.F. CONVERTER $10 \mathrm{KHz}-2 \mathrm{MHz}$ IN $28-30 \mathrm{MHz}$ OUT, $9-12 \mathrm{~V}$, 5 mA . £20.80 ex stock. SENTINEL TOP
BAND CONVERTER $1.8-2.3 \mathrm{MHz}$ IN $14-4.5 \mathrm{MHz}$ OUT. $9-12 \mathrm{~V} 5 \mathrm{~mA}$ £20.80 ex stock. BAND CONVERTER $1.8-2.3 \mathrm{MHz}$ IN $14-4.5 \mathrm{MHz}$ OUT. $9-12 \mathrm{~V} 5 \mathrm{~mA} £ 20.80$ ex stock.
S.E.M. IAMBIC KEYER The ultimate auto keyer using the CURTIS custom LSICMOS S.E.M. IAMBIC KEYER The ultimate auto keyer using the CURTIS custom LSICMOS *Means. Belling Lee sockets, add $£ 1.90$ for SO239s or BNC sockets. Ring or write for
more information. Place orders or request information on our Ansaphone at cheap times. 12 MONTHS COMPLETE GUARANTEE
Prices include delivery. C.W.O. or credit card number for same day service.
U.H.F. RECEIVER TYPE R278 designed by Collins Radio used as ground station Rx provides up to 1750 channels spaced in 100 Kc steps in freq. range 225 to $400 \mathrm{Mc} / \mathrm{s}$ any 10 of these can be selected from front panel plus one service channel, unit is triple conversion with some 38 crystals, no ext crystals are required, all controls etc are on front panel for use on 230 v 50 c , AF O/P 600 ohm 2 watts. Also provision for remote chan selection, $19^{\prime \prime}$ rack mounting unit about 50 Kg supplied with circ \& manual. £87.

MARCONI AIRCRAFT H.F. Rx high grade 6 band Rx covers 150/510Kc in two bands \& 2 to $18.5 \mathrm{Mc} / \mathrm{s}$ in 4 bands uses 11 min valves with $2 x$ RF, BFO, Xtal Cal, AF O/P for low imp phones, reqs 28 v DC supply, as high resolution film scale for the 4 HF bands, compact unit weight 10 Kg supplied with circ. $£ 75$.

COMMUNICATIONS Rx made by Murphy Radio for RN covers $60 / 560 \mathrm{Kx}$ in two bands \& 1.5 to $30 \mathrm{Mc} / \mathrm{s}$ in 3 bands uses 13 miniature valves with $2 \times \mathrm{RF}, 3 \times \mathrm{IFs}$ at $800 \mathrm{Kc}, \mathrm{BFO}, \mathrm{Xtal} \mathrm{Cal}$ etc Swt Selectivity of $8,3,1 \mathrm{Kc} \& 200 \mathrm{c} / \mathrm{s}$, AF $0 /$ P for 100 ohm phones or 2 watts into 600 ohm, in case size $13 \times 14 \times 14^{\prime \prime}$ supplied tested with handbook, note these require ext supplies of 250 v HT 100 Ma 150 v Stab \& 6.3v AC at 4 amps . $£ 115$.

PAN \& TILT HEADS HD type for outdoor use for 240v mains give 360^{\prime} pan $\& \pm 45^{\prime}$ tilt fixing by $6^{\prime \prime}$ dia ring possible use as Aerial or Dish mounts $£ 35$.
RADIOSONDE UNIT TYPE 11 older type unit as 3 valves, AF Osc, Mod \& RF Osc at $27 \mathrm{Mc} / \mathrm{s}$ (reqs $90 \mathrm{vht} \& 2 \mathrm{v} \mathrm{lt}$) as 3 var freq osc in range $600 / 1000 \mathrm{c} / \mathrm{s}$ for Temp. Press \& RH these are selected in turn by swt unit and are used to mod the RF from Tx. Supplied in new cond with chart \& circ. $\mathbf{£ 6 . 5 0}$ also have a few M. 60 R/S at £12.50.
RECEIVER UNIT part of Army 128 Set tunes 2 to $8 \mathrm{Mc} / \mathrm{s}$ in two bands $4 \times \mathrm{min}$ valves plus BFO in case size $8 \times 5 \times 4^{\prime \prime}$ req $135 \mathrm{v} \& 1.5 \mathrm{v}$ O/P for HR phones with circ. $£ 15$. Batteries $£ 4.50,2$ for $£ 8$.

Above prices include Carr/Postage \& VAT
Please allow approx. 14 days for delivery
Goods ex equipment unless stated new, SAE with enquiry or

REGULATED POWER SUPPLY With short circuit protection. Nominal 13.8 intermittent, made for use with CB rigs, bu
in this power supply is equally suitable for any other 12 v equipment. Nicely made in ventitated metal case with switch and pilot ligh on front and t

+ Post $£ 1.50$.
HOME BASE POWER SUPPLY
HOME BASE POWER SUPPLY
13.8 v 20 mp - built and regularly used by G3VCJ, all regular features including protec ion trip. 500 watt transformer and all parts including case. $£ 39.50$, carriage $£ 5.00$. TRANSMITTER SURVEILLANCE* Tiny, easily hidden but which will enable con-
versation to be picked up with FM radio. versation to be picked up with FM radio. Can
be made in a matchbox - all electronic parts be made in a matchbox - all electronic parts RADIO MIKE.
RADIO MIKE ${ }^{*}$
Ideal for discos and garden parties, allows complete freedom of movement. Play th
FM radio/tuner amp. $\mathbf{£ 6 . 9 0}$ comp. kit. 6 WAVEBAND SHORTWAVE RADIO KIT Bandspread covering 13.5 to 32 metres. Com plete kit includes case. Nothing else to buy if you have an amplifier to connect it to or a MW \& 2 SHORT - CRYSTAL RADIO
MW MW \& 2 SHORT-CRYSTAL RADIO
All the parts to make up the beginner's All the parts to make up the beginner's model
Price $£ 2.30$. Crystal earpiece 65 p. High resistance $h /$ phones (gives best results) $£ 3.75$. Kit includes front but not case.
INTERRUPTED BEAM
This kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main components relay, photo-transistor, resistors, caps, etc. CAR STARTER AND CHAPGER KIT CAR STARTER AND CHARGER KIT You can start car immediately or bring your
battery up to full charge in a couple of hours. battery up to full charge in a couple of hours
The kit comprises: 250 w mains transformer bridge rectifiers, start/charge switch and full instructions. Price $£ 11.50+£ 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER In case measuring onty $5 \%^{\prime \prime} \times 3 \%^{\prime \prime} \times 1 \%^{-"}$ is an extremely high gain (70 db) solid state amp designed for use as a signal tracer on GPO as a signal tracer. By connecting a simple coil to the input socketa useful mains cable tracer can be made. Many other uses including general purpose amp, cueing amp, etc. An absolute
bargain at only f 1.85 , suitable 80 ohm e/p 69 .

FREEI OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS MULLARD UNILEX

A mains operated

operated
$4+4$ stereo
system.
system.
Rated one
of the finest
performers in the
stereo field this would
make a wonderful gift
almost anyone. In easy to assemble
modular form this should sell at about
E30 but due to a special bulk buy and as an incentive to buy, we offer the system complete at only $£ 16.75$ inc. VAT + post. PLUS FREE
GIFT - buy this month and you will receive a pair of Goodmans eliptical $8^{\prime \prime} \times 5^{\prime \prime}$ speakers to match this amplifier.

TIME SWITCH BARGAIN

Large clear mains frequency controlled clock, which will always show you the correct time complete with knobs. $£ 2.50$.
8 POWERFUL BATTERY MOTORS
For models, Meccanos, drills, remote control planes, boats, etc. $£ 2.50$.
WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element
wound on a fibre-glass coil and then covered with PVC, dozens of uses - around water pipes, under grow boxes in gloves and socks. 23p/metre. MORSE TRAINER KIT
Consists of morse tone module, morse key, battery connector, case \& instructions. $£ 2.99$. AERIAL DIRECTION INDICATOR Kit includes 16 reed switches, magnet, 16 LED's and chart which has the 16 compass points and lights up where aerial is pointing. $\mathbf{E 5 . 9 0}$. AERIAL ROTATOR
Comprises mains motor with pulley and vee belt, electro-mechanical aerial base unit and mast in any direction. $£ 19.50$. carriage $£ 5$. RADIO STETHOSCOPE
Easy to find fault - start at the aerial and work towards the speaker - when signal stops you have found the fault. Complete kit $£ 4.95$.
Cash, P.O. or cheque with order. Orders under $£ 10.00$, add 60 p. Access \& B/card orders by phone to Haywards Heath (0444)

SOUND INVESTMENT

Replacement tape heads from Monolith could mean a big improvement in sound quality from your tape recorder. A fall catalogue is available, price 50 p, which features a wide range of heads for cassette and reel to reel machines, as well as replacement motors, tape transports, etc.

Universal cassette heads to EIAJ standard, hole centres 17 mm apart, 12 mm from head face:

B12.02	Mono record/playback	$£ 4.62$
B24.01	Stereo playback	$£ 4.62$
B24-02	Stereo r/p	$£ 7.66$
B24.07	Stereo r/p for Dolby systems	$£ 9.05$
C42RPH20	Stereo r/p sendust head, suitable for chrome \&	
	metal tapes	$£ 10.67$
C42RPH04	Stereo r/p glass ferrite, the ultimate long life,	
	high performance head	$£ 13.34$
C42RPS18	Stereo twin gap r/p long life head for record	
	monitoring	$£ 28.99$
C21ES18	Mono/Stereo erase head	$£ 2.13$
C44RPH03	Four channel/track r/p	$£ 15.15$
C22ES04	Twin half track erase	$£ 5.43$

Ex stock deliveries, all prices include VAT. Post and packing 40p.

MONOLITH electronic products

The Monolith Electronics Co. Ltd., 5/7 Church Street, Crewkerne, Somerset TA18 7HR. Tel: 0460 74321. Telex: 46306 MONLTH G.

FAST RESPONSE STRIP CHART RECORDERS

Basic error: 2.5\% Sensitivity: 8 mA F.S.D. Response: 0.2 sec . Width of each channel: Single and three-pen recorders: Five-pen recorders: $\begin{aligned} & 80 \mathrm{~mm} \\ & 50 \mathrm{~mm}\end{aligned}$

Chart speeds, selected by push buttons: 0.1-0.2-0.5-1.0-2.5-5.0-$12.5-25 \mathrm{~mm} / \mathrm{sec}$.
Chart drive: $200-250 V 50 \mathrm{~Hz}$
Recording: Syphon pen directly attached to moving coil frames. Curvlinear co-ordinates.
Equipment: Marker pen, timer pen, paper footage indicator, 5 rolls of paper, connectors, ink etc.
H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high ...PRICE £46 H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ highPRICE $\mathbf{E 6 9}$
H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high ... 105
All recorders supplied complete in a sturdy custom built wooden carrying case.

Carriage: $£ 10.00$ per recorder.

MULTIMETER - TYPE U4324-20,000 O.P.N.
D.C. Current: $\quad 0.06-0.6-60-600 \mathrm{~mA}-3 \mathrm{~A}$
A.C. Current: $\quad 0.3-3-30-300 \mathrm{~mA}-3 \mathrm{~A}$
D.C. Voltage: $\quad 0.6-1.2-3-12-30-60-120-600-1200 \mathrm{~V}$ A.C. Voltage: $3-6-15-60-150-300-600-900 \mathrm{~V}$

Resistance: $500 \Omega-5-50-500 \mathrm{k} \Omega$
Accuracy: d.C. 2.5% : A.C. 4% (of F.S.D.)
PRICE complete with test leads and fibreboard storage case £10.50 inclusive of vat

Packing and postage $£ 1.20$

Measurements

ranges, $A C / D C$:
Accuracy:
Chart width:
Chart drive:
Chart speed:
PRICE: $£ 70.00$

5-15-150-250-
$500 \mathrm{~mA}, 1.5-5 \mathrm{Amps}$ 5-15-150-250-500V 1.5% DC, 2.5% AC 100 mm 220-250V AC mains 20-60-180-600-$1800-5400 \mathrm{~mm} /$ hour Carriage $£ 6.00$

EDUCATIONAL METER A range of small portable meters eminently suitable for
 experiments and demonstration work. Moving coil movements with centre pole-piece. 69 mm long open scale. Basic calibration accuracy - 4\%.
The following ranges are available:
10 Amps DC (Basic movement 30 mA)
Overall dimensions: $80 \times 100 \times 48 \mathrm{~mm}$ Meters are supplied complete with buil-in respective shunts or series resistors. PRICE $£ 250$ P/P 45p.
Prices include 15\% VAT
Send your orders to:
MARCO TRADING, (Dept. WW1)
The Old School, Edstaston,
WEM, Shropshire SY4 5RJ.
Tel: Whixall (094872) 464/465
Send for list of other reduced equipment and component lists. Official orders welcome Wholesale prices upon request. Callers at our office welcome.

MICROSCOPE

Illuminated pocket microscope zooms in
 for 50 X magnification

Measuring only $130 \times 40 \times 18 \mathrm{~mm}$, this Intel illuminated pocket microscope has a normal magnification of $30 \times$ which can be increased to 50 X by using the zoom facility. Focus control and illumination are built-in so that the instrument can typically be used in the close inspection of specimens, samples and tissues by medical students, doctors, technicians and medical laboratory scientists. It uses longlife batteries and comes in a plastic case.

For immediate despatch send cheque with order to:

HAVE YOU BEEN CONVERTED?

Our wide range of high quality VHF \& UHF frequency converters and preamplifiers will expand your existing equipment (YAESU FRG7, TRIO R1000, etc.), to provide coverage of the 'ever-popular VHF \& UHF bands, at the least expense possible. No modifications to your equipment are necessary. Just put one of our converters in place of your existing aerial connection, connect a suitable aerial, a 12 volt DC supply - and that's all there is to it!! DO YOURSELF AND YOUR RECEIVER A JUSTICE, BUY ONE OF OUR TOP QUALITY PRODUCTS - AND SEE WHAT YOU'VE BEEN MISSING!!

MMC 144/28	MMA 144V	MM 2000	
2 METRE DOWN TO 10 METRE CONVERTER Gain: 30dB typ. Noise figure: 2.5 dB max. Image rejection: 65 dB typ. Our "old faithful" will give you a 2 metre facility, immediately. JUST £27.90 inc. VAT ($p+\rho 80 p$)	2 METRE ULTRA LOW NOISE RF SWITCHED PREAMPLIFIER This preamplifier is an essential addition for the serious operator. Gain: 15 dB typ. Noise figure: 1.3 d 8 max. This unit is designed to be left in the aerial lead at all times, and will accept a through power of 100 watt $£ 34.90$ inc. VAT ($p+p 80$)		
MMC 70/28	MMA 28	MMC 28/144	
4 METRE DOWN TO 10 METRE CONVERTER Gain: 30dB typ. Noise figure: 2.5 dB max. Image rejection: 65 dB typ. JUST £27.90 inc. VAT ($p+\rho 80 p$)	10 METRE LOW NOISE PREAMPLIFIER Now that the winter months are nearing, and HF conditions will be better, hot up the performance of your 10 metre receiver with this low-noise preamp. Gain: 20dB typ. Noise figure: 1.8 dB max. $\underset{(p+p 80 p)}{£ 14.95 \text { inc. VAT }}$	10 METRE DOWN TO 2 METRE CONVERTER For those of you with an existing 2 metre receiver, here is a simple means of listening to the 10 metre band. Gain: 15dB typ. Noise figure: 1.8 dB max. $\underset{(p+p 80 p)}{£ 27.90 \text { inc. VAT }}$	70 CM DOWN TO 10 METRE = CONVERTER (with dual range coverage) This 70 cm converter covers $432-434 \mathrm{MHz}$ and 434.436 MHz in two switched ranges, both for an IF output of 28-30 MHz . This facility allows satellite and repeater coverage as well as the usual simplex mode. Gain: 30dB typ. Noise figute: 3.0 dB max. A/so available with an IF of 144.146 MHz - IMMC 432/144-S). $\underset{(p+p 80 p)}{£ 34.90 \text { inc. VAT }}$

BARCLAYCARD AND ACCESS WELCOME
MICRDWAVE MDDULES with both efficiently and courteously by BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, EN

Telephone: 051-523 4011 Telex 628608 MICRO G Callers are welcome, please telephone first.

 \section*{\title{
PLEASE MENTION
 \section*{\title{
PLEASE MENTION PRACTICAL PRACTICAL WIRELESS WIRELESS

 WHEN REPLYING TO

 WHEN REPLYING TO ADVERTISEMENTS
}} ADVERTISEMENTS
}}

HIGH GAIN AERIAL BOOSTERS

B45 H/G UHF Television Tunable over the complete UHF band. Gain above 20 dB , noise 2.8 dBs .

B14-Band 3 VHF Television Tunable over the complete Band 3 (Channels (E) 5 to 13). Gain above 28 dBs . Noise 2.8 dB .

PRICE each £8.70.
Signal Injectors with (pre-set) variable AF, which emits RF harmonic into the UHF band. Protected up to 300 volts DC. Complete with leads $£ 5.70$ each.

All Prices Include VAT at 15\%. P \& P per Order 30p. S.A.E. for Leaflets. Access Cards.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW.
Tel Rams (070 682) 3036.

TTLs BY TEXAS				74221	160p	74LS192	140p	57	$7{ }^{250 p}$	LINEAR I.C.s AY1-0212 600p		TRANSISTORS						TIP41C TIP42A TiP42C	$\begin{aligned} & 78 p \\ & 70 p \end{aligned}$	$\begin{array}{r} \text { 2N } 38666 \\ 2 N 3903 / 4 \\ \text { 2N3905/6 } \end{array}$	$\begin{aligned} & 90 \mathrm{p} \\ & \text { 18p } \end{aligned}$	${ }_{\text {BY127 }}^{\text {DIODES }}$
7400				74251	140 p	74LS193	140 p	74 C 160	O 155p			MC1496	100p	AC127/8	20p	BFY51/2	22p					
7401	12p	100	130 p	74259	250p	74LS195	140 p	74C161	1 155p	AYY-1313	668p	MC3340	120p	AD149	70p	BFY56	33p					
7402	14p	74104	65 p	74265	90 p	74LS196	120 p	74C162	2155 p	AY1-5050	212p	MC3360	1200	AD161/2	45p	BFY90	90p	TiP2955	78 p	2N4036	65 p	OA81 15p
7403	14p	74105		74278	290p	74LS221	100p	74C163	3 155p	AY5-1224A	225p		750	BC107/8	11p	BRY39	45p	TIP3055	70 p	2N4058/9		OA85 15p
7404	14p	74107	34p	74279	140 p	74LS240	175p	74C164	4 120p	AY5-1315	600p	NE531	1000	BC109	11p	BSX19/20	20p	TIS43	34p	2 N 4060	12p	OA90 9p
7405	18p	74109	55p	74283	190p	74 LS241	175 p	74C173	3120p	AY5-1317	780 p	NE543K	225p	BC147/8	9 p	BU105	190p	TIS93	30p	2N $4061 / 2$	18p	OA91 9p
7406	32p	74110	55p	74284	400 p	74 LS 242	175p	74 C 174	160p	AY5-1320	320p	NE555	25p	BC149	10p	BU108	250p	$2 \mathrm{Z} \times 108$		2N4123/4		OA95 9p
7407	32p	74111	70p	74285	400 p	74LS243	175 ${ }^{\text {D }}$	74 C 175	210p	CA5019	80p	NE556	70p	BC157/8	10p	BU205	220p	2TX300	11 p	$2 \mathrm{~N} 4125 / 6$	22p	OA200 9p
7408	19p	74116	200p	74290	150 p	74LS244	${ }^{1959}$	74 C 192	${ }^{\text {2 }}$ 150p	CA3046	70p	NE5618	425 p	BC159	11p	BU208	240p	2 T $\times 500$	18p	${ }_{2 N 4401 / 3}$	27p	OA202 10p
09	19p	74118	130p	74294	150p	744S245	280p	${ }^{74 \mathrm{Cl} 193}$	3 150p	CA3048	225p	NE5628	425 p	BC169C	12p	BU406	145p	ZTX504	30 p	2N4427	90 p	1N914 ${ }^{\text {1 N916 }}$ 7p
7410	15p	74119	210p	74298	200 p	74LS257	120p	74 C 195	5 110p	CA 3080 E	725	NE566	155p	BC172	12 p	M ${ }^{2} 2501$	225p		250p	2N4871	60 p	1N4148 4p
7411	24p	74120	110p	74365	150p	74LS259	175p	74 C 221	175 p	CA3089E	225p	NE566	175p	BC177/8	17p	M J2955	100 p	2N696	235p	2 N 5087	27p	1N $4001 / 2$ 5p
741	20 p 30 p			74366	150p	74LS298	249p	4000 S	SERIES	CA3130E	100p	RC4151	400p	BC179	18 p	M J3001	225p	2N697	25p	2N5089	27p	1N4003/4 6p
7414	60 p	${ }_{74123}$	48	74367	150p	74LS373	p	4000	15 p	CA3140E	70p	SP8515	750p	BC184	11p	MJE340	65p	2N697	45p	2N5172	27p	1N4005 6p
7416	27p	74125	55p	74368	150p	74LS374	5p	4001	25p	CA3160E	75p	TBA641B11		BC187	30p	MJE2955	100p	2N706A	20p	2N5179	27p	1N4006/7 7p
17	27p	74126	60p	74390	200 p	81 SS95	140 p	4002	20p	FX209	750p		225p			MJE3055	70p	2N708A	20p	2N5191	83p	1N5401/3 14p
7420	17p	74128	75p	74393	200p	LS96	140 p	4006	95 p	ICL7106	925 p	TBA800	${ }_{90}{ }^{25}$	$\mathrm{BC}^{\text {BC212/3 }}$	11 p	MPF102	45p	2N918	30 p	2N5194	90 p	1N5404/7 ${ }^{\text {19p }}$
7421	40p	74132	75p	74490	225p	8159		4007	25p	ICL8038	340p	TBA810	100p	${ }^{\text {BCC461 }}$	12 p	MPF103/	440p	2N930	18p	2N5245	40p	ZENERS
742	22p	74136	60 p	74 LS		${ }^{81 \text { 81598 }}$		4008	80 p	LM301A	36p	TBA820	90p	BC47		MPF105/	640p	2N1131/2	20p	2 N 5296	55p	$2.7 \mathrm{~V}-33 \mathrm{~V}$
7423	34p	74141	70p	SERIES		8728	23	4009	40p	LM311	190p		175p			MPSA06	30p	2N1613	25p	2 N	50p	400 mW 9 p
7425	30p	74142	200p	74LS00	14p	9301		4010	50p	LM318	200p	TDA4500	250p	$8 \mathrm{BC516} 78$	50p	MPSA12	50p	2N1711	25p	2N5457/8	40p	1 W 15p
7426	40p	74145	90p	74LS02	18p	9302	316 p	4011	$25 p$	LM324	70p	TOA1004	325p	BC549C	18	MPSA56	32p	2N2102	60p	2N5459	40p	SPECIAL
7427	34p	74147	190p	74LS04	14p	9308	316 p	4012	18p	LM339	90p	TDA1008	300p	BC557B	16 p	MPSU06	${ }^{63 p}$	2N2160	120p	2N5460	40 p	OFFERS
7428	36p	74148	150p	74LS08	22p	9310	275 p	4013	50p	LM348	95p	TDA1022	600p	BC559C	18 p	MP		2N2219A	30 p	2 N 5485	44p	$100+741$
7430	17p	74150	100p	74LS10	20p	9311	\%	4014	84p	LM377	175p	XR2206	400p	BCY70	${ }^{18 \mathrm{p}}$	OC28	130p	2 N 2222 A	20p	2 N 6027	48p	£16
7432	30p	74151A	70p	74LS13	38p	${ }_{9314} 9312$	160p	4015	84 p	LM380	75 p	XR2207	400p	BCY70	22p	OC35	130p	2N2369A	30 p	2N6247	190p	$100+555$
7433	40p	74153	70p	74.514	78 p	9316		4016	45p	LM381AN	150p	XR2216	675p	BD131/2				2N2484 2N2646	30p	2N6254	${ }^{130 p}$	¢20
7437	35 p	74154	100p	74LS20	22p	9322	225p	4017	80 p	LM389N	140p	XR:240	400p	BDY56	200p	R20088	200p	2N2646 2N2904/5A	${ }^{50 \mathrm{p}}$	2N6290	65 p	100+ ${ }^{\text {RCA }}$ 2N3055
7438	$35 p$ 17 p	74155		74LS22	28 p	${ }_{9368}^{9322}$	200p	4018	p	LM709	36p	ZN414	90p	BF200	200p	R2010B		2N2904/5A	$\begin{aligned} & 30 p \\ & 24 p \end{aligned}$	2N6292	$65 p$ 120 p	RCA 2 2N3055
7441	70p	74157	70p	74LS30	32 p	9370	200p	4020	100p	LM710	50p	ZN424E	135 p	BF244B	35p	TIP29A	40p	2N2907A	30p	3N140	100p	BRIDGE
7442A	60p	74159	190p	74LS47	90 p	9374	200 p	4021	110 p	LM733	100p	ZN425E	400p	BF256B	70p	TIP29C	55p	2N2926	9 p	3N201	110p	RECTIFIERS
7443	112p	74160	100p	74LS55	30 p	${ }_{9602}^{9601}$	${ }_{2} 100 \mathrm{n}$	4022	100p	LM741	29p	ZN1034E	200p	BF257/8	32p	TIP30A	48p	2N3053	30p	3N204	100p	1 A 50 V 21 p
7444	112p	74161	100p	74LS 73	50 p	302		4023	22 p	LM747	70p		800 p	BF259	36p	TIP30C	${ }^{60} \mathrm{p}$	2N3054	65p	40290	250p	1A 100V 22p
7445	100p	74162	100p	74LS74	40 p	INTE	ACE	4024	50p	LM748	35p			8FR39	27 p	TIP31A	58p	2N3055	48p	40360	40p	1A 400V 30p
7446A	93p	74163	1000	74LS75	50p	I.C.s		4025	20p	LM3900				EFR40	27p	TIP31C	62 p	2 N 3442	140p	40361/2	45p	2A 50V ${ }^{30}$
7447A	70p	74164	100p	74LS83	110p	MC1488	100p	4026	130p	LM3911	130p			BFR41 BFR79	$27 p$	TIP32A	68p	2N3553	240p	40364	120p	2A 100V 35p
7448	80p	74165	130p	74LS85	100p	MC148	100 p	4027	50p	LM4:36	120p			BFR79	27p	TIP32C	82 p	2N3565	30p	40408	70p	2A 400V 45p
7450	17p	74166	$100 p$	74LS86	40p	75107	160 p	4028	84 p	MC1310P	150p			BFRBO	${ }^{27}{ }^{\text {p }}$	TIP33A	90 p	2N3643/4		40409	65 p	3 A 200V 60p
7451	17p	74167	200p	74LS90	${ }^{60} \mathrm{p}$	75182	230 p	4029	100p	MC1458	48p			FR81	${ }^{27}$ p	TIP33C	114p	2N3702/3		40410	65p	3 A 600 V 72 p
7453	17p	74170	240p	74LS93	60 p	75450	120 p	4030	55p	MC1495	400 p			BFX29	30p	TIP34A	115p	2N3704/5	12p	40411	300p	4A 100V 95p
7454	17p	74172	720p	74LS107	45p	75451/2	72 p	4031	200p					BFX30	34 p	TIP34C	160p	2N3706/7	12p	40594	97p	4 A 400 V 100 p
7460	17p	74173	120p	74LS112	100p	75491/2	96p	4033	180p	VOLTAGE	REG	LATORS		BFX84/5	30p	TIP35A	225p	2N3708/9	12p	40595	105p	6A 50V 90p
7470	36p	74174	93p	74LS123	75p	C-MOS	I.C.s	4034	200p	Fixed Pla	ic T	-220		BFX86/7	30p	TIP35C	290p	2N3773	300 p	40673	$75 p$	6A 100V 100p
7472	30 p	74175	85 p	74LS132	900p	$74 \mathrm{C00}$	25p	4035	110p	1A + ve		1 A -ve		BFX38	30p	TIP36A	270p	2N3819	25p	40841	90p	6A 400V 120p
7473	34 p	74176	90 p	74LS133	${ }^{60} \mathrm{p}$	$74 \mathrm{CO2}$	25p	4040	100p	5 V 7805	60p	5 V 7905	70p	BFW10	${ }^{90} \mathrm{p}$	TIP36C	340p	2N3820	50p	40871/2	90p	10A 400V 200p
7474	30 p	74177	90 p	74LS138	${ }^{60} \mathrm{p}$	$74 \mathrm{CO4}$	27p	4041	80p	12V 7812	60p	12V 7912	70 p	BFY50	22p	TIP41A	65p	2N3823	70p			25A 400V 400p
7475	330	74178	160p	74LS139	60p	74.08	27p	4042	80 p	15V 7815	60p	15V 7915	90p									
7476	35 p	74180	${ }^{900}$	74LS151	100p	$74 \mathrm{Cl10}$	27p	4043	90 p	18V 7818	90p	18V 7918	90p	RED	S				ull	s please	sen	S.A.E. or see
7480	50 p	74181	200p	74LS153	${ }^{60} \mathrm{p}$	$74 \mathrm{Cl4}$	90 p	4044	90 p	24 V 7824	90p	24 V 7924	sop	$0.125^{\prime \prime}$	12p	50			ull	ge adver	ertisem	ents in P.E.,
74	100p	74182	90 p	74LS157	${ }^{60}$	74 C 20 $74 \mathrm{C}^{3} 0$	${ }^{27 p}$	4046	110p	100 mA T	O-92	100 mA	-92	$0.2^{\prime \prime}$		$50+$, W	less Wor		
7483 A	90p	74185	150p	74LS160	100p	74 C 32	36 p	4048	55 p	SV 78L05	35p	5V 79L0's										
7484	100p	74186	800p	74LS161	100p	74 C 42	110p	4049	40 p	15 V 78 L 15	350	15 V 79 L 15										
7485	110p	74190	100p	74LS162	140p	$74 \mathrm{C48}$	250 p	4050	49 p			ATORS				at 15						
7486	34p	74191	100p	74LS163	100p	$74 \mathrm{C73}$	75p	4051	${ }^{80 p}$	OTHER	135	ATORS		pap		at 15\%						
7489	17 sp	84192	100p	74LS164	120p	$74 \mathrm{C74}$	70p	4052	${ }^{80 p}$	LM309K	135 p	TBA625B	${ }_{65}^{120 \mathrm{p}}$	Govt	ol	es, et						
7490A	300	74193	100p	74LS165	${ }^{80 p}$	74.885	200p	4053	${ }^{80} \mathrm{p}$	LM317T	200p	TL430	${ }^{65 p}$	orders	accep	pted.						
749192	36 p 46 p	74194 74195	100p	74LS173 74LS174	110p 110 p	$74 \mathrm{C86}$ 74 C 90	65p 950	4055 4056	${ }_{135} 125$	LM323K	625 37	78HO5KC		Callers	we	-		17 BU	NL	Y ROA		
7493A	36p	74196	95 p	74LS175	110p	74 C 95	130 p	4059	600p					MON	RI	0-5.3						
7494	36p	74197	80 p	74LS181	320p	74 C 107	125p	4060	115p	OPTO-EL				SATU	DAY	10.30-4		N				
7495A	70p	74198	150p	74LS190	100p	74 C 150	250p	4063	120p	2N5777	OR	12 90p ORP61		Stock it	ems	硡ally						
7	65p	74199	150p	74LS191	100p	74 C 151	260p	4066	55p	OCP71 130p	p ORP6	5090 p TIL78	70p	y retur	of	t.		el.)	1500		9228

\section*{AJH ELECTRONICS
 20 BARBY LANE, HILLMORTON, RUGBY, WARWICKSHIRE CV22 50.J. TEL: 76473 EVE 71066.
 Mail Order Only or callers by appointment.
 All prices include VAT but add 50p post \& packing. VHF RF POWER TRANSISTORS:-
 | VHF RF | TRANSIS | S:-- | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Gain (db) | Output | Volts | Freq. ${ }_{175}(\mathrm{MHz})$ | Price $\mathbf{¢ 6 . 5 0}$ |
| 2N6083 | 5.7 | 30 w | 12 | 175 | ¢6.50 |
| PT4555 | 8 | 25w | 12 | 150 | £4.00 |
| SD1212-6 | 8.2 | 3w min. | 12 | 175 | ¢2.50 |
| PT4556 | 7 | 40w | 12 | 80 | ¢4.50 |
| PT4236A | 10 | 1 w min. | 12 | 175 | £0.75 |
| PT4236B | 10 | 11w | 12 | 88 | £3.00 |
| PT4236C | 6 | 35w | 12 | 88 | £4.50 |
| 2N5070 | 13 | 25w pep | 24 | 30 | £5.00 |
| BFW16A | 10 | 1w | 12 | 175 | ¢0.75 |
| 2N3866 | 10 | 1 w | 28 | 175 | £0.75 |

CB 27 MHz RF POWER TRANSISTORS:-
2SC2028 £1.90, 2SC2078 £2.90, 2SC1306 £2.75, 2SC1307£3.25. 2SC1909 £2.75. TA7205P 6 watt audio IC 12 v . ex-new equipment \& tested $£ 1.50$.
TDA1010 9 watt audio IC = 14 v , single in line type $£ 1.50$ ea.
MDA800 8 amp 50 volt bridge rectifier OK for 12 volt PSU 70
LOW PROFILE RELAY 12 volt 2 pole change over OK for 50 watts RF $=145 \mathrm{MHz}$. New only F2.25, MOSFETS:-
3SK51 (40673) 70p, 3SK60 (sim. 3N204) 80p, 3 SK88 26 db gain 1.1 db NF $=150 \mathrm{MHz}$ £1.40, BFR84 18db $3 \mathrm{db} \mathrm{nf}=200 \mathrm{MHz} 75 \mathrm{p}$, E5565 (2N3919) 30p, TIS88A 40p, BF256 38p, 2N4381 "P" chan. 40p
BIPOLAR VHF/UHF BIPOLAR VHF/UHF RF AMPS:-
 VHF/UHF SWITCHING DIODES BA2 43 (VHF) 20p. BA244 (UHF) 25
VHF/UHF VARICAP DIODES ITT210 20p, BB105 set of $4 \mathbf{4 0 p}$, BB14i 25p.
TIL209B LEDS $\frac{1}{}$ "dia. "red" only 10p, 10 for 75 p .
PL259 PLUGS 50 p , reducers for UR43/UR76 15p.
PL259 PLUGS 50 p, reducers for UR433/UR7615p. PL259 right angle plug for RG58U 65p
SO239 SOCKETS 50p. PL258 couplers 60p. SO239 SOCKETS 50p. PL258 co
BNC 50 Ohm flange sockets 70 p.
CO-AXIAL disc ceramics 100 pf 100 volt OK UHF/SHF decoupling-pkt 20 for $\mathbf{2 5 p}$.
10.7 MHz CRYSTAL FILTER $\pm 3.5 \mathrm{KHz}-3 \mathrm{db}, 910$ ohm, ITTO24DE/923L $£ 7.00$.

10.7 MHz CRYSTAL FILTER $\pm 7 \frac{1}{2} \mathrm{KHz}=3 \mathrm{db}, 910 \mathrm{ohm}$. LQU/445/901B ex-equipment ${ }^{\mathbf{f 6} 6.7 \mathrm{MH}} \mathbf{H z}$ CRYSTAL FILTER SSB type BP4 133 (LSB only available), 200 ohm imp. small size $38 \times 18 \times 15 \mathrm{~mm}$. New $£ 4.00$ each.
21.4 MHz CRYSTAL FILTER $=7 \frac{1}{2} \mathrm{KHz}-3 \mathrm{db}$. imp. approx. 2 k ohm. New $£ 5.00$. 2 KILO BOX BROKEN CAR RADIO BOARDS OK for spares $£ 3.00$ plus $£ 1.50 \mathrm{pp}$ OXLEY PTFE FEEDTHROUGH INSULATORS 4 mm hole size 6 p each. 25 for $£ 1.00$. GLASS FEEDTHROUGH INSULATORS solder in type silver plated requires 4 mm hole $\mathbf{6 0 p}$ 1000pf 500 v . FEEDTHROUGH CAPACITORS solder in type requires $3 \frac{1}{2} \mathrm{~mm}$ hole 30 p per MixED DISC CERAMIC CAPS. 1 to 220pf bag of 100 , ideal for the VHF constructor. All
Erie miniature types $£ 1.40$ per 100 . Erie miniature types $\mathbf{£ 1 . 4 0}$ per 100 .
MIXED BAG RESISTORS all $\frac{1}{2}$ watt vertical pre-formed type with long leads. Bag of 250 plus $£ 1.60$.
1000pf 250v LEEDLESS DISC CERAMICS 5 mm dia. 10 for 25p.
"YEASU MUSEN" EQUIPMENT LET US QUOTE YOU COMPETITIVE PRICES

YES EVERYTHING!
SWR'S - POWER SUPPLIES - ANTENNAS P.A. HORNS - RECEIVERS - RIGS SPARES AND MUCH MUCH MORE
WE ALSO STOCK WATCHES - CORDLESS
PHONES - WALKIE TALKIES - VIDEO TAPES ELECTRONIC GAMES AND ACCESSORIES. TRADE ONLY

B. BAMBER ELECTRONICS

COMMUNICATIONS HOUSE 5 STATION ROAD - LITTLEPORT - CAMBS. TEL: ELY (0353) 860185

EVERYTHING YOU'LL NEED TO SELL IN CB RADIO

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

AUTOMATIC MORSE DECODER - Low cost. casy build 9 v circuit. Accepts audio input or practice key. Gives continuous readout on 12 character alphanumeric display. Send $£ 3.95$ plus large S.A.E. for fully detailed 17 page construction data. Parts and p.c.b. available. MacRitchic (Micros). 100 Drakies Avenue. Inverness IV2 3SD.

BRAND NEW COMPONENTS BY RETURN

HIGH STABILITY RESISTORS

$\frac{1}{6}$ W Carbon Film E12 Series 1R-10M. (E24 2R-6M2) 1 p $\frac{1}{4} W$. $\frac{1}{2} W$ \& $1 W$ Metal Film E12 Series 1OR-2M2-2p METAL FILM $\frac{1}{2} \mathrm{w} 1 \% \mathrm{E} 12$ series 1OR to 1 MO-3p CAPACITORS.
MULLARD Min. Ceramic E12 100V 2% 1.8pt. to 47pf. - 3 p

 E12 22pt. to
 0.68-11p. 1.0-15p. 1.5-20p. 2.2-22p

ELECTROLYTIC. Wira Ended (Mdds/Volits).
On

THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffield S8 ORN.
V.A.T. Inclusive Prices, Postage 15p (FREE over $£ 5.00$)

SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 10.70$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

FREE COMPONENT GRAB BAGS. Details, and Price list: SAE T.H.D. Electronics (Dept P.W.). 90 Longford, Yate. Bristol.

1920 to 1950
 Receivers, valves, components, service data, historical research books, magazines, repairs and restorations. A complete service for the collector and enthusiast of vintage radio.
 a.e. with enquiries and for monthly newsheet. THE VINTAGE WIRELESS COMPANY, 64, Broad Street, Staple Hill, Bristol BS16 5NL.'Tel., Bristol 565472 .

P.W. CIRCUIT BOARDS. Most Boards 1979 onwards eg Jan 79 Sandbanks $£ 2.90$. Aug 81 Microwave Transceiver £3.00. Urgent Orders. Telephone 0343-3227 (24 hours). We will send board and invoice you. Lists SAE please. H.T.E. Electronics. 50. Milnefield Avenue. Elgin. Morayshire.

CRYSTALS MADE TO ORDER within 6 weeks. 4105 MHz , wires or pins. $£ 3.90$ each inclusive. Hartley Crystals, Green Lane. Milford. Godalming. Surrey GU8 5BG.

KWIKMAIL ELECTRONICS

FREE OFFER

Super Bag. Containing 60 components incl. transistors. I.C.s. resistors. caps. diodes + our free catalogue containing thousands of items at unbeatable prices. Please send 45 p P\&P.
Dept. PW, 195 Charlton Rd., London N9 8HL

VHF CONVERTER $45-220 \mathrm{MHz}, 28-30 \mathrm{MHz}$ tuneable IF £8. TVDX VHF-UHF converter. Receive VHF signals on UHF TV set $£ 10.80$. SAE Data, Lists. H. Cocks. Cripps Corner. Robertsbridge. Sussex. Tel: 058083-317.

VALVES. Radio, T.V., Industrial transmitting, despatched to all parts of the world by post, 6000 types in stock. Quotation S.A.E. Cox Radio (Sussex) Ltd., The Parade, East Wittering, Sussex. 2023 (024366).

CRYSTALS Brand new high-precision. You benefit from
very large stocks held for industrial supplies. All normal frea very large stocks held for industrial supplies. All normal freq
standards, baud rates. MPU, and all magazine projects inc:
 $5 \cdot 0,6 \cdot 0,7 \cdot 0.8 \cdot 0.9 \cdot 0,10 \cdot 0,10 \cdot 7,12 \cdot 0,15 \cdot 0,16 \cdot 0.18 \cdot 0$
$20 \cdot 0,38 \cdot 6667 \mathrm{MHz}, \mathbf{£ 3} \cdot \mathbf{3 5}$. Selected freqs stocked in Glider, Marine and 277^{MHz} bands. Any freq made to order in 8 weeks from £4-10. 2-3 week service available. FILTERS Your best source for 6 and 8 pole and monolithics
for AM, CW, SSB, FM, on $455 \mathrm{kHz}, 1.6,9.0,10.7,21.4$ for AM, CW, SSB, FM, on $455 \mathrm{kHz} .1 .6,9.0,10.7$. 21.4 MHz , etc.
Prices inc.

P. R. GOLLEDGE ELECTRONICS

G3EDW, Merriott, Somerset, TA16 5NS.

WE REPAIR/RESTORE valve type communication receivers with a one year guarantee. For a free quote telephone Corby 61697. Vintage British Radio Components Co.. 22 Thurso Walk, Corby, Northants.

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies) late Holdenhurst Rd. now at 36, Ashley Rd., Boscombe. Tel. 302204. Closed Weds.

Books and Publications

WORLD RADIO TV HANDBOOK. The world-famous guide to broadcasting schedules. indispensable for serious listeners - $£ 10.49$ or state Access/Visa number. Pointsea Research. 25 Westgate. North Berwick, East Lothian.

UNIQUE T.V. REPAIR MANUALS and other books. SAE brings newsletter, price lists. etc. AUS, P.W., 68. Montgomery Street. Larkhall. Lanarkshire ML9 2AD.

Aerials

COPPER AERIAL WIRE 14 swg hard drawn $70^{\prime} £ 5.34$. $140^{\prime} £ 8.84$ inc. VAT. Postage $£ 1.75$ T.M.P. Electronics, Supplies, Britannia Stores, Leeswood, Nr. Mold. N. Wales.

G2DYM ANTI-INTERFERENCE ANTI-TVI TRAP DIPOLES

 TRANSMITTING \& S.W.L. MODELS Data Sheets Large SAE. Aerial Guide 50p. Indoor and Invisible Aerials £3.50.Callers welcome Tel: 03986-215
G2DYM, Uplowman, Tiverton, Devon.

Services

OSCILLOSCOPE repair and calibration. Quick service. competitive rates. W.I.R. Electronics 01-367-6816.

Record Accessories

STYLI for Music Centres etc. Free list for S.A.E.. includes other accessories. FELSTEAD ELECTRONICS, Longley Lanc. Gatley. Cheadle. Cheshire SK8 4EE.

Courses

DATONG MORSE TUTOR $£ 5.75$ for first month. Keep it longer if you like. Send $£ 20$ deposit (or Access/Visa number) to Pointsea Research. 25 Westgate. North Berwick, East Lothian.

COURSES - RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and ob tain your licence, with any RRC Home Study Course. For details of this and other courses (GCE, professional examinations. etc.) write or phone - THE RAPID RESULTS COLLEGE, DEPT JXI. Tuition House, London SW19 4DS. Tel: 01.9477272 ($9 \mathrm{am}-5 \mathrm{pm}$) or use our 24 hr Recordacall Service: 01-946 1102 quoting Dept. JX1.

Situations Vacant

AMATEUR RADIO SERVICE ENGINEER

We are looking for an experienced service engineer who is also an active licensed amateur for an expanding service department. There are excellent promotional prospects for a mature engineer.

```
For further details contact: MrF. B. Rendell at
Amateur Electronics UK Ltd.
021-327-1497/6313
```


Service Sheets

G.T TECHNICAL INFORMATION SERVICE
 Any published full size service sheet - still only $£ 1$ + s.a.e. Repair data your named T.V. $\mathbf{£ 6 . 5 0}$ (with circuits $\mathbf{£ 8 . 5 0}$)

Giant collections exploded diagrams of domestic equipment (many representative circuits) most leading manufacturers - 2 huge binders for $\mathbf{£ 2 6 . 5 0}$ with free 1 year's updating service.
S.A.E. for free newsletter, price lists, any quotation, bargain offers, unique T.V. publications.

2 big catalogues list thousands service sheets/manuals plus $£ 4$ vouchers for $\mathbf{£ 2}+$ large s.a.e. Complete British Colour TV circuits, etc. in 3 huge binders only $£ \mathbf{3 9 . 5 0}$.
Phone: 0698883334 anytime. Callers 4-6 pm weekdays, Sat. 11-1.
bell's television services for Service Shects on Radio. TV etc. $£ 1.25$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S.. 190 Kings Road. Harrogate. N. Yorkshire. Tel. (0423) 55885.
SERVICE SHEETS, Radio, TV etc.. 10,000 models. Catalogue 25 p, plus S.A.E. with orders, enquiries, TELRAY, 5 Henderson Street, Preston PRI 7XP.

SERVICE SHEETS, Radio. Television. Stereo, etc.. from 50p. Catalogue 25p. S.A.E. with orders, enquiries. Hamiltons. 47 Bohemia Road. St. Leonards. Sussex.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list - Offer by return - WALTONS, 55A Worcester Street. Wolverhampton.

TWO ECLL80 VALVES. Savage "Ronada". Margaret Road. Liverpool, L23 6TR.

For Sale

NEW BACK ISSUES OF "PRACTICAL WIRELESS" available 90p each. post free. Cheque or uncrossed P/O returned if not in stock - BELL'S TELEVISION SERVICE. 190 Kings Road. Harrogate. N. Yorks. Tel. (0423) 55885.

PRACTICAL WIRELESS 1971 to 1975 unbound. Offers to: G. Morgan. 2, Mill Lane, Gromscote, nr. Toncester, Northants.

GRUNDIG SATELLIT 3000 RECEIVER. Excellent condition. $£ 260$. Phone Sittingbourne 73011 or 72774 .

EDDYSTON COMMUNICATION EC10 wireless 1.5-30 MCS $550-1500 \mathrm{KC}$. Offers. Phone Burton-on-Trent. 221870.
50Ω DUMMY LOAD RESISTORS. Dissipates 250 W oil immersed. $£ 20$. G. Loades. 30. Edmonton Road, Woodsmoor. Stockport. Cheshire.

SONY ICF-2001 RECEIVER and Power Unit. One month old. Perfect. $£ 135.00$ inclusive. 0742-369116 (Sheffield).

APPROX. 1000 COPIES WIRELESS WORLD, Practical Wireless, also others from 1925, some bound. Offers complete collection.

Personal

CHRISTIAN SINGLES HOLIDAYS. Weekend houseparties. Friendship contacts nationwide. C.F.F. Dept/B89, Edenthorpe, Doncaster.

Miscellaneous

UK AIRCRAFT FREQUENCIES LIST including spot frequencies of airports, air traffic control services, weather reports. navigation beacons. etc. $£ 1$. UK MARINE FREQUENCIES LIST including spot frequencies of coast stations. (plus broadcast times) port operations, navigation beacons. etc. $£ 1$. INTERNATIONAL DISTRESS FREQUENCIES CHART 75p. prices include postage, same day despatch. PLH ELECTRONICS, 20, Vallis Road. Frome. Somerset. BA 11 3EH.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Telephone 015311568				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 oz	2 oz
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
35 to 39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	5.90	3.40	2.39	2.00
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 то 30	3.85	2.36	1.34	0.90
Prices incl. P\&P and VAT. Orders under $£ 2$ add 20 p. SAE for list of Copper/Resistance Wire. Dealer enquiries welcome. Reg. Office 22, Coningsby Gardens.				

CENTURION BURGLAR ALARM EQUIPMENT. Send SAE for list or a cheque/PO for $£ 11.50$ for our special offer of a full sized signwritten bell cover, to: Centurion, Dept PW, 265 Wakefield Road, Huddersfield, W. Yorkshire. Access \& Barclaycard. Telephone orders on 0484-35527.

ELECTRONIC KITS. Largest range of kits in the U.K. Everything from stroboscopic lights to transmitters, at unbeatable prices. Send S.A.E. for free catalogue to: Eastling Electronics (Kits), 64B, Hawthorne Road, Winton, Bournemouth.

RADIO'S PRE AND POST WAR, also valves English and American. Telephone Guiseley 77929.

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low $£ 1.05$. Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI, (Dept No. 25), St. Wilfrid's. Foundry Lane. Halton, Lancaster LA1 6LT,

PARAPHYSICS JOURNAL (Russian translations): Psychotronic generators, kirlianography, gravity lazers, telekinesis. Details: SAE $4 \times 9^{\prime \prime}$. Paralab, Downton, Wilts.

LOSING DX?

UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, between your receiver and speaker, BOOST your DX/QRM ratio, 40 dB notch, bypassed when off, hear WEAK DX, £13.80.
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver $\mathbf{£ 1 6 . 5 0}$.

TIME WRONG? MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for computer etc, receives paralle BCD output for computer etc, receives na. 1000 Km range, GET the TIME RIGHT, only £62.80.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage etc, money back assurance so GET yours NOW.

CAMBRIDGE KITS,
45(PA), Old School Lane, Milton, Cambridge.

ALUMINIUM TUBES FOR AERIALS. Various sizes available. Nerva Metals. 01-904 4647.

QUALITY PERSONAL CALLSIGN TIES. Callsign, off white 3 mm symbols on navy, wine or green background. Minimum order is two ties on same background, $£ 9.70$ the pair incl. 5/6 weeks delivery, CWO to: Garrison Radio, Catterick Garrison, N. Yorks. DL9 3JD. Tel: 0748833311.

WAVEGUIDE, FLANGES \& DISHES. All standard sizes \& alloys stock. Special sizes to order. Call Earth Stations. 01-228 7876. 22. Howie Street, London SW11 4AR.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showrooms opposite Odsal Stadium.

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-25 w.p.m. for professional examination preparation. Each cassette is type C90
Morse Key and Buzzer unit for sending practice.
Price each Cassette (including booklets) $\mathbf{£ 4 . 7 5}$. Morse Key and Buzzer $\mathbf{£ 4 . 7 5}$.
Prices include postage etc. Overseas Airmail $£ 1.50$ extra. MHEL ELECTRONICS (Dept 2), 12 Longshore Way, Milton, Portsmouth PO4 8LS.
Q.S.L. CARDS $£ 5.00$ per 100 C.W.O. Stamp for samples. Worsley Press, 42, Lancaster Road, Marsh Green, Wigan, Lancs.

PRE-PACKED. Screws, nuts, washer, solder tags studding. Send for price list. AI Sales (PW). P.O. Box 402, London SW6 6LU.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics).

ALL DEVICES BRAND NEW．FULL SPEC．AND FULLY GUARANTEED．ORDERS DESPATCHED BY RETURN OF POST．TERMS OF BUSINESS： CASH／CHEQUE／P．O．S OR BANKERS DRAFT WITH ORDER．GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED （TELEPHONE ORDERS BY ACCESS NOW ACCEPTED Minimum $\mathbf{~} 10.00$ ploaso）． TRADE AND EXPORT INQUIRY WELCOME．P \＆P ADD 50p TO ALL ORDERS UNDER £10．00．（excluding VAT）．OVERSEAS ORDERS POSTAGE AT COST．		
Export orders no VAT．Applicable to U．K．Customers only．Unless stated otherwise，all prices are exclusive of VAT．Please add 15% to the total cost including p \＆p ．		
We stock many more items．It pays to visit us．We are situated behind Watford Football Ground．Nearest Underground／Br．Rail Station：Watford High Street．Open Monday to Saturday 9 a．m．－6 p．m．Ample Free Car Parking space available．		
POLYESTER RADIAL LEAD CAPACITORS：250V； $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 6 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n}, 220 \mathrm{n} 10 \mathrm{p}$ ； 330n，470n 13p；680n 19p； $1 \mu 23 \mathrm{p}$ ； $1 \mu 5$ 40p； $2 \mu 2$ 46p．		
ELECTROLYTIC CAPACITORS（Values in $\mu \mathrm{F}$ ）．500V： 10 52p； 47 78p；63V：0．47，1．0． 1．5．2．2．3．3．8p；4．7 9p；6．8， $1010 \mathrm{p} ; 15,2212 \mathrm{p} ; 3315 \mathrm{p} ; 4712 \mathrm{p} ; 10019 \mathrm{p} ; 1000$ 70p；50V： 47 12p； 68 20p； 220 24p； 470 32p； 2200 90p；40V：4－7，15，22，9p； 3300 90p； 4700 120p；25V：1．5， $68,10,228 \mathrm{p} ; 33 \mathrm{gp} ; 47 \mathrm{8p} ; 10011 \mathrm{p} ; 15012 \mathrm{pp} ; 22015 \mathrm{p} ;$ $33022 \mathrm{p} ; 47025 \mathrm{p} ; 680,100034 \mathrm{p} ; 220050 \mathrm{p} ; 330076 \mathrm{p} ; 4700 \mathrm{92p} ; 16 \mathrm{~V}: 40,47,100$ $9 \mathrm{p} ; 125$ 12p；220 13p；47020p；680 34p；100027p；150031p；220036p；330074p； 9p； 12512 TAG－END TYPE：70V： 4700 245p；64V： 3300 198p； 2200 139p；50V： 3300 154p； 2200 110p；40V： 4700 160p；25V： 10,000 320p；15，000 345p．		
TANTALUM BEAD CAPACITORS： 35V： $01 \mu, 0.22,0.3315 \mathrm{p} ; 047,0.68$ ． $10,1.5$ 16p； $22,3.318 \mathrm{p} ; 47,68$ 22p； 10 28p；16V： $22,33.16 \mathrm{p} ; 47$ 6．8． 10 18p； 15 36p； 22 30p；33， 47 40p； $10075 \mathrm{p} ; 22088 \mathrm{p} ; 10 \mathrm{~V}: 15,22$ 26p；33， 47 35p； 100 55p．	47	wit
POLYESTER（MYLAR）CAPACITORS： 100V： $1 \mathrm{nF}, 2 \mathrm{n}, 4 \mathrm{n}, 4 \mathrm{n} 7,10 \mathrm{n} 6 \mathrm{p} ; 15 \mathrm{nF}$ ， $22 \mathrm{n}, 30 \mathrm{n}, 40,477 \mathrm{p} ; 56,100 \mathrm{n}, 2009 \mathrm{p}$ ； 50V： 470 nF 12p．	SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear values 60 mm track $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Single gang 70 p $\begin{array}{lr}10 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega \text { Dual gang } & \text { 110p } \\ \text { Self－Stick graduated Alum．Bezels } & 40 \mathrm{p}\end{array}$	
CERAMIC CAPACITORS 50V Range： $0-5 \mathrm{pf}$ to 10 nf $15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF}$ 7p		
	PRESET POTENTIOMETERS 0－1W 500－2 2M Mint．Vert．\＆Horiz． 0.25 W 100 $-3.3 \mathrm{M} \Omega$ Horiz．targer 25W 250＠－4 7MQ Vert．	
POLYSTYRENE CAPACITORS 10 pF to $1 \mathrm{nF}, 8 \mathrm{p} \quad 1.5 \mathrm{nF}$ to $12 \mathrm{nF}, 10 \mathrm{p}$ ．		
RESISTORS－5\％carbon，High Stab． Miniature，Low Noise．		
	Red or Grn 150	RYSTA
	115	
		5
	5	

 				 い 			のఠのర్య＂ 				
 							 			－	
 							\square 				
\qquad											
 －							 				

J. BIRKETT
 (Partners: J. H. Birkett, J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1 JF Telephone: 20767

SPECIAL MICROPHONE INSERTS, SUB-MINIATURE ELECTRET \& £1.50, KNOWES MAGNETIC 300 ohm \& 50 p , Magnetic, 1000 ohm , 50 p , CRYSTAL TYPE \& 50 p .
ERG WIRE WOUND RESISTORS 2.5 watt 4.7 ohm \& 3 for 18 p .
14 PIN DIL 741 OP-AMPS \& 4 for 50 p .
CMOS CD 4022 OCTAL COUNTER DIVIDER \& 40p.

2 POLE 3 WAY MINIATURE LEVER SWITCH © 60 peach.
MINIATURE TANTALUM BEAD CAPACITORS
4.7uf $16 \mathrm{v} . \mathrm{w} .$, , $4.7 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} .$, , 6.8 uf 35 v .w. . 10uf $10 \mathrm{v}, \mathrm{w}$., 10 uf 25 v .w. $35 \mathrm{v} . \mathrm{w} ., 2.2 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. . $25 \mathrm{v} . \mathrm{w} .=15 \mathrm{p}, 22 \mathrm{uf} 25 \mathrm{v} . \mathrm{w} .=25 \mathrm{p}, 33 \mathrm{uf}$ iov.w. $=\mathbf{2 5 p}, 47 \mathrm{uf} 10 \mathrm{v} . \mathrm{w} .=30 \mathrm{p}, 100 \mathrm{uf} 20 \mathrm{v} . \mathrm{w}$. -
 NKT 213, NKT 214, NKT 215, NKT 216, NKT 222, NKT 238 , NKT 240 , NKT 241 , NKT 245,
NKT 262, NKT 264, NKT 271, NKT 272, NKT 274, NKT 278, NKT 713, NKT 736, NKT 781 , All at 25p each.
CLOSE TOLERANCE CAPACITORS . O1uf $63 \mathrm{v} . \mathrm{w} ., 1 \%, 033 \mathrm{uf} 63 \mathrm{v} . \mathrm{w} ., 1 \%$. Both 10p each. CRYSTAL FILTERS 10.7 MHz B.W. $\pm 7.5 \mathrm{KHz}$ af5 each.
PLASTIC TRANSISTORS BC 548 or BC 549 at 10 p , 6 for 50 p .
CMOS 1204×4 RAM TYPE 6S14/5 with data e fi. 60 .
SILICONEX ANALOG SWITCH DG182BA with data = $\mathbf{£ 1 . 3 0}$.
VARIABLE CAPACITORS 5 pf a 60 p, $10+10+10$ pf a $75 \mathrm{p}, 250+250$ pf $(500 \mathrm{pf})=\mathbf{8 5 p}$. WITH S.M. DRIVE $250+250+20+20+20 \mathrm{pf}$ a 75 p . 60 pf, All 15 p each.
CERAMIC TRIMMERS 2.5 to 6 pf , 3 to $10 \mathrm{pf}, 4$ to $20 \mathrm{pf}, 7$ to $35 \mathrm{pf}, 10$ to $40 \mathrm{pf}, 10$ to 60 pf .
All at 15p each.
VHF FETS U304 at 30p, BF 256 C at 4 for 75 p.
TRANSMIT-RECEIVE SWITCHING P.I.N. DIODES, 1 Amp RMS With circuits at 40p $\mathbf{~ e a c h}$ GHz STRIPLINE NPN TRANSISTORS at $£ 1$ each.

Ef1.
MINIATURE CERAMIC TAG STRIPS 12 Way +15 p , 21 Way 20 p .
FERRITE BEADS FX 1115 \& $15 p$ doz. ${ }^{\prime \prime}$ "Long Type 6 for 10 p .
BDIGIT 600 MHz FREQUENCY COUNTER Price $£ 108$.
8 DIGIT 600 MHz FREQUENCY COUNTER Price $£ 108$.

DUAL GATE MOS FETS LIKE 40673 at 33 p , 4 for $£ 1.10$.
SUB-MINIATURE DISCS EMCAP O1 uf $100 \mathrm{v} . \mathrm{w}$., at 5 p each,
X BAND GUNN DIODES with data \sim \&1.65 each.,
TRIACS 200 PIV $800 \mathrm{~mA} \& 20 \mathrm{p}, 100$ PIV 2 Amp 25 p .
TRIACS 200 PIV $800 \mathrm{~mA}+20 \mathrm{p}, 100$ PIV $2 \mathrm{Amp}=25 \mathrm{p}$.
FERRANTI TRANSISTORS ZX 108 or ZTX 213 . Both $\& 6$ for $\mathbf{5 0 p}$.
FERRANTI TRANSISTORS ZIX 108 or ZTX 213 . Both $=6$
Please add 30p for post and packing. Orders over t .3 post free.

Popular components trom "CATALOGUE BZ', sll prime stock no seconds or fall-outs.
Buy in quantiof for wen better value. Buy in quantity for wen better value.
COMPONENT PACKS
CP1 100 ceramic capacitors from $1 \cdot 8 \mathrm{p}$ to $\cdot 1 \mathrm{u}$. The selection is determined by the popularity of different values. $\mathbf{£ 4} \mathbf{- 2 0}$.
Resistor Decade Pack 1/3W, 5\% tolerance; each pack 100 items, selection determined by relative popularity of each value: Price $£ 1.50$ each pack.
RD: 1R0-8RT; RD2: 10R-82R; RD3: $100 \mathrm{R}-820 \mathrm{R}$;
RD4: 1K-8K2: RD5: 10K-82K; RD6: 100K-82K;
RD7: $1 \mathrm{M}-10-10 \mathrm{M}$. f 1.50 each Decade Pack.
SEMICONDUCTOR PACKS
LD30A red LED's (2.9 mm): 25 for $\mathbf{£ 1 . 5 7 .}$
LD41A red LED's (5 mm): 25 for $£ 1$. 57.
1N4148 diodes: 25 for 68p.
1N4007 (1000V, 1A) diodes: $\mathbf{2 5}$ for $£ \mathbf{£ 1 - 3 0}$.
1N5402 (200V, 3A) diodes: 25 for $£ 2.80$.
BC107/BC109: 25 for $£ 2.97$.
BC182/182L/183/183L/184/184L: 25 for £2.00. BC212/212L/213/214/214L: 25 for $\mathbf{£ 2} \mathbf{0 0}$.
Other popular items: unit prices.

SPECIAL OFFER

Please mentian this journal when ordering or writing.

CATALOGUE
82
ESSENTIAL READING FOR THE
Electronics Enthusiast Computing Freak Equipment Manufacturer PACKED WITH INFORMATION ON MORE THAN 6.000 STOCK ITEMS: Active and Passive
Camponants Boxes, Cases, Computer Housings, Kaobs, Pots. Everything from R's and C 's to Computing
Systems.

ALL ITEMS BRAND NEW AND GUARANTEED SPEEDY MAIL order service
No P/P charges on U.K. C.W.D. orders over $£ 5.75$ inc. V.A.T. (add 40p handling charge if under) When ordering please add 15% V.A.T. to total value of all orders. Shop Hours: 9-5.30 Saturdays: 9.1 pm . To obtain your copy of
CATALOGUE 82
Send 70 , post tree Send 70 p , post tree
includes 7 p voucher includes 70 p voucher
to be relcaimed against orders valued $f 10.00$ or over).

ELECTROVALUE LTD. DEPT. PW182 28 St. Judes Road, Englefield Groen, Egham, Surrey TW20 OHB.
Phone Egham 33603 (STD 0784 . London 87). Telax 264475

INDEX TO ADVERTISERS

```
A.J.H. Electronic
Allen, George
Allweld Engineering
Amateur Electronics
Amateur Electronics (U.K.) Ltd.
Amateur Radio Exchange
Ambit International
Amcomm Services
Antex Electronics
Auto Marine Development Company
Bamber Electronics,
Bedford Audio
Bi-Pak
Birkett J.
Bredhurst Electronics
British National Radio & Electronics School
Bull, J.
C.H.J.
C.R.Supply
C.Q. Centre
Cambridge Kits
Catronics
Colomor Electronics LId,
Crimson Components Ltd.
Datong Electronics
Electrovalue Ltd.
Electronic Mail Order Ltd
Garex Electronics
Gemini Communication
Goliedge Electronics
G.1. Technical Information Service
G2 Dym Aerials & Projects
Greens Telecom
H.A.C. Shortwave
Henry's Radio
Hart Electronics
Holdings
Home Radio Components
Intel Electronic Components
I.L.P. Electronics
A.J.H. Electronic Allen, George
Amateur Electronics
Amateur Redio Exch U.K.) Ltd.
Ambit International
Anglia Components
Auto Marine Development Company
Bamber Electronics
Barrie Electronics Ltd.
Bedford Audio
Bi-Pak
Birkett J.
Bredhurst Electronics
British National Radio \& Electronics Schoo
C.H.J.
C.R. Supply
Cambridge Kits
Chordgate Ltd
Crimson Components Ltd.
P.M. Components Ltd

Packer Electronics
Partridge
Photo Aco
Powell T.
Plymouth Telecom (Radiofon)
Progressive Radio
R.S.T. Valve Mail Order Radio Component Specialists Radio Shack

Sinclair Research LId.
Scientific Wire Co. Lid.
South Midlands Communications Ltd.
Stephens-James Ltd.
Tandy Corporation (UK) Ltd.
Technomatic Ltd.
Tempus

V \& F Smalicraft Ltd
Vintage Wireless Co
Waters \& Stanton
Watford Electronics
Williams A.R.
Wilmslow Audio
Wood \& Douglas
World Radio T.V. Handbook
Zycomm Electronics

\section*{융 소 오 且}

\section*{AMATEUR AERIALS DESIGNED BY AMATEURS BUILT BY PROFESSIONALS!}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{2 Metres} & \multirow[t]{2}{*}{Carr.} \\
\hline STRAIGHT 5 YAGI & & \\
\hline 10 dBi gain & 10.70 & 2.00 \\
\hline FOLDI version for hill stations & 13.00 & 1.75 \\
\hline TWIN vertical omni 5 dBi & 14.95 & 2.00 \\
\hline HALO for mobile SSB (with mast) & 5.00 & 1.50 \\
\hline QUAD 4 11dBi \(33^{\prime \prime}\) turning circle & 16.10 & 4.50 \\
\hline QUAD 6 13dBi 52" turning circle & 23.00 & 4.50 \\
\hline 70 cms & & \\
\hline LINEAR 5 10dBi gain & 7.50 & 1.50 \\
\hline LOG PERIODIC 24 element 14 dBi & 15.00 & 2.50 \\
\hline Suction mast steadiers for & (pair) & \\
\hline rallies etc. & 4.50 & 0.75 \\
\hline
\end{tabular}

All aerials include mounting bracket
MAIN DEALERS FOR:
YAESU, FDK, STANDARD, BANTEX, JAYBEAM, M/M, R80B PUBLICATIONS ETC.


76 BEDFORD ROAD, KEMPSTON, BEDS
CREDIT SALE, ACCESS, BARCLAYCARD, CREDITCHARGE.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{BAKER LOUDSPEAKERS "SPECIAL PRICES" POST £2} \\
\hline Model & Ohms & Inch & Watts & Type & Price \\
\hline Major & 4, 8, 16 & 12 & 30 & \(\mathrm{Hi}-\mathrm{Fi}\) & £14 \\
\hline Deluxe Mk II & 8 & 12 & 15 & \(\mathrm{Hi}-\mathrm{Fi}\) & £14 \\
\hline Superb & 8, 16 & 12 & 30 & \(\mathrm{Hi}-\mathrm{Fi}\) & ¢24 \\
\hline Auditorium & 8, 16 & 12 & 45 & \(\mathrm{Hi}-\mathrm{Fl}\) & £22 \\
\hline Auditorium & 8, 16 & 15 & 60 & Hi-Fi & £34 \\
\hline Group 45 & 4, 8, 16 & 12 & 45 & PA & £14 \\
\hline Group 75 & 4, 8, 16 & 12 & 75 & PA & £22 \\
\hline Group 100 & 8, 16 & 12 & 100 & PA & £24 \\
\hline Group 100 & 8, 16 & 15 & 100 & PA & £32 \\
\hline Disco 100 & 8, 16 & 12 & 100 & Disco & £24 \\
\hline Disco 100 & 8, 16 & 15 & 100 & Disco & £34 \\
\hline
\end{tabular}

DE-LUXE DISCO MIXER. \(240 \mathrm{~V}, 4\) stereo channels, 2 magnetic, 2 ceramic/tape, 1 mono mic channel, twin v.u. or panel or desk mounting, attractive grained aluminium st \(£ 1\)
2 CHANNEL STEREO MIXER. 9 volt operated \(£ 9.50\) p\& p 85p.
MINI MODULE LOUDSPEAKERKIT
R.C.S. \(15 \times 8 \frac{1}{2 i n}\). 3 -way Loudspeaker Baffle, 5 in . Bass, 5 in . Middie, Jin. IWeeter: 3 -way Crossover \& Ready Cut Baffle. Full assembly instructions supplied. Response 60 to
20.000 c.p.s. 12 watt RMS 8 ohms \(£ 10\) per kit. Two kits \(\mathbf{£ 1 8 . 5 0}\). Suitable Bookshelf Cabinet \(\mathbf{£ 1 0 . 5 0}\) each. Post \(£ 2\).
GARRARD 6-200 SINGLE PLAYER DECK Brushed Aluminium Arm with stereo ceramic cartridge and Diamond Stylus, 3-speeds. Manual and Auto Stop/ Start. Large Metal Turntable.
Cueing Device and Pause Control.
£22. Post \(£ 2\).
METAL PLINTH CUT FOR GARRARD
Size: \(16 \times 14 \times 3 \mathrm{in} . £ 3.00\). Silver or Black finish. Post \(£ 2\). ISKRA SINGLE RECORD PLAYER £
 a.c. mains 240 V 3 speed plays all size records. Post \(£ 1\). B.S.R. SINGLE PLAYER P170/2 £20.00 3-speeds 11 in . aluminium turntable. "slim" arm, cueing sator, adjustable stylus cartridge, silver trim, bias compensuspension, 240 V AC. Post \(£ 2\).
B.S.R. DE-LUXE AUTOCHANGER £20 with stereo cartridge, plays all sire records. Post £2 WOODEN PLINTHS CUT FOR B.S.R. £3 Size: \(15 \times 15 \times 3 i n\). Teak effect. Post \(£ 2\). DECCA-GARRARD B.S.R. TEAK PLINTH \(18 \frac{3}{4} \times 1\) Space tor small amplitier. Special price \(\mathbf{£ 5 . 9 5}\) post paid. Large Motor Board can be re-cut for transcription decks atc TINTED PLASTIC COVERS POST £2 Sizes: \(14 \frac{1}{2} \times 12 \frac{1}{\frac{1}{2}} \times 3\) in. \(\mathbf{£ 5}, 17 \frac{1}{4} \times 9 \frac{1}{2} \times 3 \frac{1}{\frac{1}{2} \text { in. } £ 3.14 \times 13}\) \(\times 3\) 글 \(\mathrm{in} . \mathbf{£ 5} .18 \times 12 \frac{1}{2} \times 3 \mathrm{in}, \mathbf{£ 6} .16 \frac{1}{6} \times 13 \times 4 \mathrm{in}, \mathbf{£} 6\). R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
£2.95 Post 65p All parts and instructions with Zener diode printed circuit,
mains transformer 240 V a.c. Output 6 or \(7 \frac{1}{2}\) or 9 or 12 V d.c up to 100 mA or less. Please state voltage required. PP BATTERY ELIMINATOR BRITISH Mains stabilized power-pack 9 volt 400 mA max.
overload cut out. Size \(5 \times 3 \frac{1}{4} \times 2 \frac{1}{\mathrm{j}} \mathrm{in}, \mathbf{~} 4 \cdot 50\). Post 50 o . Switched \(3: 6: 7 \frac{1}{2}: 9\) volt 400 ma . Stabilized, \(£ 7.50\). Post \(£ 1\)


 ALUMINIUM PANELS, \(18 \mathrm{~s} . \mathrm{w.g} .6 \times 4 \mathrm{in}, 36 \mathrm{p}: 8 \times 6 \mathrm{in}\) \({ }^{90 \mathrm{p} ;} 14 \times 9 \mathrm{in}, 1 \cdot 20 ; 12 \times 12 \mathrm{in} . £ 1 \cdot 30: 16 \times 10 \mathrm{in} . £ 1 \cdot 40\).


HIGH VOLTAGE ELECTROLYTICS
 \(\begin{array}{lrlll}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 20+20 / 450 \mathrm{~V} & \mathbf{7 5 p} & 100+100 / 275 \mathrm{~V} \\ 50 / 500 \mathrm{~V} & \mathbf{£ 1 . 2 0} & 32+32 / 350 \mathrm{~V} & \mathbf{7 5 p} & 150+200 / 275 \mathrm{~V}\end{array}\) \(8 / 800 \mathrm{~V} \quad £ 1 \cdot 20 \quad 32+32+32 / 325 \mathrm{~V} 90 \mathrm{p} \quad 220 / 450 \mathrm{~V} 95 \mathrm{p}\)
Delivery 7/10 days. Access-Barclay-Visa. Lists 28p. Minimum post 65p. Closed Wed.

\section*{Radio Component} Specialists
337 WHITEHORSE ROAD
CROYDON, SURREY, U.K. Tel. 01-684 1665

\section*{H.A.C short-wave KITS}

WORLD-WIDE RECEPTION T-TWIN
TRANSISTOR RECEIVER
for use with headphones or small speaker.
Students - this receiver is ideal for your radio project. Simple to construct sensitive selective.

\section*{£19.00}
for the complete Kit.
All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"н.A.c."
SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmili Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ.

\section*{HART KITS}

WINTON TUNER
Complete designer approved kits (including pre aligned AM front end) will be available from us for this excellent design. Phone or write for your free copy of lists.

\section*{WINTON AMPLIFIER}

We have taken over the supply of kits for this high performance 'PW' design. Size and appearance match above tuner. Reprints of all articles describing design 85p VAT and post free.
VFL 910 VERTICAL FRONT LOADING CASSETTE DECK
Very high quality cassette mechanism as used in our Linsley Hood cassette recorder kit. Wow and flutter .09\%. Memory counter. Sendust alloy head. 12 V DC. Frequency generating feedb
SF925 FRONT LOADING SOLENOID CONTROL CASSETTE DECK
Having full solenoid control of all functions this deck has numerous uses, most obvious is microcomputer drive, particularly since there is facility to read the tape in the fast modes. Deck is full hi fi quality and is fitted with memory counter Hall IC for auto stop and stereo R/P head. Price only £ 38.90 , VAT.
HART TRIPLE E PURPOSE TEST CASSETTE TC 1
Sets up tape speed, head azimuth and VU level all without test instruments. Fantastic value at only \(\mathbf{£ 2 . 7 0}\). VAT
CASSETTE HEADS
We hold large stocks of cassette heads ranging rom mono to 4 track for domestic and industria use including the fabulous HS16 sendust alloy machine is only as good as its head A worn head will lose the high frequency information on the tape and a very worn head will chew up the tape as well. Full technical spec of all heads is in our lists.

Write or phone for your copy of our free lists

\section*{HART ELECTRONIC KITS LTD}

Penylan Mill,
Oswestry, Shropshire'SY10 9AF.
Telex: 35661 HARTELG.


SOCKETS GOLDT.I. 8 PIN 6p. 16 PIN 7p. 16 PIN 8 p .
LOW PROF. SILV. STANFORD 24 PIN 1p. 40 PIN 27 p.
RESISTORS E \(12 \frac{\ddagger}{6} W=\) C. FILM \(5 \% ~ 1 p\). M. FILM \(2 \% 4\) p.


\section*{Wéve actually
done it! \\ Improved on Antex \\ Soldering Irons}

Made them tougher, lighter, better for getting into tight corners.

Re-designed the hook to double up as a finger protector and made it detachable.

Of course we kept the Antex efficiency, low leakage and energy saving features. Bits that slide on and off and cover the elements and that superb insulation with a ceramic shaft inside the stainless steel one.


\section*{Model TCSU1 Soldering Station}
to control the temperature of 24 volt Antex 40 watt \(\times{ }^{4} \mathrm{C}\) or 30 watt CTC miniature irons.
Tip temperature can be set anywhere between \(65^{\circ}\) and \(420^{\circ} \mathrm{C}-2 \%\) accuracy R.R.P. £ 38.00 plus VAT (complete with either XTC or CTC iron)
The ANTEX XTC and CTC 24 volt irons fitted with temperature sensors, transparent handles and LED indicators. R.R.P. £9.75 plus VAT


\title{
 ATARI PERSONAL COMPUTERS
}

3 consoles available
Atari 400 with 16K RAM (AF36P) £345 Atari 400 with 32K RAM (AF37S) \(£ 395\)
\[
\text { Atari } 800 \text { with 16K RAM (AFO2C) } £ 645
\]
(expandable to 48 K )
All consoles when connected to a standard UK colour (o: black and white) TV set can generate the most amazing graphics you've ever seen.

\section*{Look at what you get:}
* Background colour, plotting colour, text colour and border colour settable to any one of 16 colours with 8 levels of illuminance!
* Video display has upper and lower case characters with true descenders, double and quad size text and inverse video.
* 57-Key keyboard (touch type on Atari 400) and four function keys.
* Full screen editing and four-way cursor control.
* 29 keystroke graphics and plottable points up to \(320 \times 192(160 \times 96\) only with 8 K RAM).
* 40 character by 24 line display.
* Extended graphics control and high speed action using a DMA chip with its own character set.
* Player missile graphics.
* Four programmable sound generators can be played individually or together and each has 1785 possible sounds playable at any one of eight volume settings, for game sounds or music.
* Full software control of pitch, timbre and duration of notes in 4 -octave range.
* Four joystick or paddle ports, sounds output to TV.
* BASIC cartridge and 10K ROM operating system and full documentation.


Maplin Electronic Supplies Ltd PW/1/82 P.O. Box 3, Rayleigh, Essex.

Tel: Southend (0702) 552911/554155

\section*{MORE HARDWARE}

Atari 410 Cassette Recorder (AF28F) £50
Atari 810 Disk Drive (AFO6G) \(£ 345\)
Atari 82240 -column Thermal Printer (AF04E)
£265
Atari 850 Interface (AF29G) \(£ 135\)
Joystick Controllers (AC37S) £13.95
Paddle Controllers (AC29G) \(£ 13.95\)
16K RAM Memory Module (AFO8J £65
MUCH MORE FOR ATARI COMING SOON

\section*{SOFTWARE}

Lots and lots of amazing software for Atari available NOW
\(\star\) Word Processor \(\star\) VISI.CALC
\(\star\) ADVENTURE GAMES \(\star\) Arcade Games
\(\star\) Trek Games \(\star\) ASSEMBLER \&
DISASSEMBLER \(\star\) FORTH \(\star\) Teaching \(\star 30\) GRAPHICS \(\star\) Character Set Generator
SEND S.A.E. NOW FOR OUR LEAFLET (XH52G)

\section*{LE STICK}

For Atari Computer or Video Game Replaces standard joystick, but much easier to use. Internal motion detectors sense hand movements. Large pushbutton on top of Stick. Squeeze Stick to freeze motion. A MUST for SPACE INVADERS, STAR RAIDERS \& ASTEROIDS. ONLY \(£ 24.95\) (AC45

> VERSAWRITER
> \(121 / 2 \times\) 8in. drawing board. Drawing on board is reproduced on TV via Atari with 32K RAM and Disk Drive. Closed areas may be filled in with one of 3 colours. Text may be added in any one of 4 fonts. Paint brush mode: select size of brush and paint away. Air brush mode: shade in your drawing - colour and density is up to you. Plus many more features. S.a.e. for price and further details.

Note: Order codes shown in brackets. All prices include VAT \& Shipment by Datapost.
(Errors excluded).


Atari 800 Console

\section*{SPECIAL PACKAGE OFFER}

Disk-based system for \(£ 725\) with LeStick The Atari 400 Console Special 32K RAM Module
Atari 810 Disk Drive
Disk Operating System
Documentation
Interconnecting Leads
Everything in "Look at what you ger" list.
Can any other computer on the market
offer all this at anything like this price?


Demonstrations at our onstrats NOW
shops shops indon Road, See Atari at 284 Londo Essex. Westcliff-on-Sea, Ens at
Tel: (0702) 554000 and at W6. 159.161 King St., Tel: 01-748 0926```


[^0]:    *Myers Electronic Research

