

TRANSCEIVERS

COICOM Two metres \square
 IC 2E f159
 inc. VAT \& CARRIAGE

- Fully synthesized - covering 144-145.295 in

5 KHz steps.

- 1.5 W power output with 9 V battery as
supplied.
- Optional 6 V
- BNC antenna
external antenna.
- Weight - only 450 g
battery pack and helical.
- Send/battery indicator - indicates transmit
until time for battery recharge.
- Dupler/Simpler switch - Hi/Low power
switch.
- Optional external speaker micruphone available now.
- Full 12 months guarantec for all nigs sought from Bredhurst Electronics.

H.F

H.F. TSI 30 V (New Model) TRIO TS130S (New Model) TRIO TS 520 SE (Still a Favourite)
$\underset{\text { £ } 404.00}{ }$ £491.00
$£ 437.00$ £437.00
$£ 499.00$ £499.00
£ 488.00 2488.00
$£ 569.00$
$£ 639.00$ 25639.00
$\mathbf{~} 679.00$ £679.00
$£ 690.00$ YAESU FT101ZD (New Bands)
TRIO TS8 30 (The New Onc) TRIO TS830S (The New Onc
TRIO TSISOS (with DFC)

2.M. MOBILES

FDK Multi 700EX
STANDARD C8800.
ICOM IC255E.
TRIO TR 7800 .
£199.00
$£ 199.00$
c 250.00
c 25550 $£ 255.00$
$£ 265.00$
HANDHELDS
FDK PALM 11.
FDK PALII IV
TRIO TR 2300
AOR AR245A.
TRIO TR2400
2.M. MULTIMODES

FDK MULTI 7501
ICOM IC260E
TRIO TR9000
YAESU FT 480 R
YAESU FT480R
ICOM IC 251 E

FDK MULTI 700EX
The 700 EX is a mobile F.M. transceiver with built in speaker and comes complete with microphone, mobile mounting bracket and D.C. lead. Power output is variable between $1-25$ watts on the front panel. Tuning is 25 kHz or 12.5 kHz steps from $144-146 \mathrm{MHz}$. Full repeater shifts are built-in including instant reverse repeater operation and also a scanning facility is included.
f199

RECEIVERS

the BEARCAT 220 FB
For $\mathbf{4 M}, 2 \mathrm{M}, 70 \mathrm{~cm}$ FM Amateur, Low Band Mobile, Aircraft, Public Service, Marine, UHF.
f258 inc. VAT, CARRIAGE.
Suitable antenna for $\mathbf{4 0 - 7 0 0} \mathbf{~ M H z}$
Discone DCX, $£ 13.80$, carriage $£ 3.00$

FDK TM56B

VHF, FM RECEIVER for Amateur or Marine.
Supplied with 10 Xtals for ONLY $£ 79$ inc. VAT \& Carriage.
Telephone enquiries welcome. Ask for details of our Credit Schemes.

YAESU FRG 7700 the NEW RECEIVER

BASIC UNIT $£ 309$
FRG 7700M with Memory $£ 389$ Memory Unit Only $£ 83.95$

These prices include VAT \& Carriage

ACCESSORIES

MOBILE ANTENNAE (All with PL259 fring) Carriage	RS
$14 \mathrm{MHz} \mathrm{1/4} \mathrm{(20SE)} \mathrm{............................} £$.13.80 ($£ 1.50$)	YW 3 TWIN METER $£ 11.50$ ($£ 0.50$)
$21 \mathrm{MHz} 1 / 4$ (15SE) ¢11.50 (£1.50)	
$28 \mathrm{MHz} \mathrm{1/4} \mathrm{(10SE)...........................} £$.11.50 (£1.50)	DAIWA SWIIOA (1.8.150 MHz)£35.00 ($\mathbf{2 0 . 7 5)}$
144 MHz 1/4 (0dB) $£ 1.50$ (50.50)	WELZ SP 200 (1.8.150 MHz) $\mathbf{E 4 9 . 9 5}$ ($\mathbf{E 0 . 7 5}$)
	WEL.7. SP 400 (130.500 MHz)£49.95 ($\mathbf{5 0 . 7 5)}$
$144 \mathrm{MHz} 7 / 8(4.5 \mathrm{~dB})$	DAIWA CN 620A (1.8.150 MHz) 55280 (-)
$432 \mathrm{MHz} 2 \times 5 / 8$ (5-5dB) $£ 11.50$ ($£ 1.00$)	WELZ SP 300 (1.8-500 MHz) $£ 69.95$
CABLE MOUNT $£ 3.50$ (20.50)	DAIWA CN 6300 (140.500 MHz)................ $£ 71.00$
GUTTER CLIP £3.15 (£0.50)	SAFETY MICROPHONES
MAGNETIC MOUNT 56.95 ($£ 0.50$)	ADONIS MM 202 S (CLIP ON) $£ 20.95$ ($£ 0.50$)
BOOT LIP MOUNT.............................£3.50 (£0.50)	ADONIS MM 202H (Head Band - Up/Down) $£ 29.00$ ($\mathbf{0 0 . 5 0}$
MICROWAVE MODULES	ADONIS MM 202 FU (Swan Neck - Up/Down) 330.00 (0.50)
MMC $144 \mathrm{MHz} 5 / 8$.	DAIWA RM 940 INFRA RED LINK $£ 45.00$ ($\mathbf{(0 . 5 0}$)
MMC $432 \mathrm{MHz} 2 \times 5 / 8$.	DESK MICROPHONES
MMC $432 / 144 \mathrm{~S} 70 \mathrm{~cm}$ CONVERTER $£ 29.90$ (-)	YAESU YD 148 (Dual Imp.).................. $£ 20.95$ ($\mathbf{\Sigma 0 . 7 5)}$
MMT 14. 282 I TRANSVERTER............. $£ 99.00$	
MMT 432/285 70 cm TRANSVERTER	
MMT $432 / 144 \mathrm{R} 70 \mathrm{~cm}$ TRANSVERTER£173.65 (-)	ADONIS AM 502 Compressor Mic. $\mathbf{£ 3 9 . 0 0}$ ($£ 0.75$)
MML 14. 25 2M 25 W LINEAR	A.T.U.'s
MML 14.100 2M 100W LINEAR 148260	KX2 (Listeners A.T.U.) £29.95 (£0.75)
MML 14/4/40 2 M 40W LINEAR 569.00	MFJ.901 ... $£ 50.95$ ($£ 0.75$)
MML $432 / 2070 \mathrm{~cm}$ 20W LINEAR $£ 69.00$	TRIO AT i30 17200 (-)
MML $432 / 10070 \mathrm{~cm}$ 100W LINEAR.............f228.65 (-)	
MMD 50.500500 MHz COUNTER.............. $\mathbf{£ 6 9 . 0 0}$	TRES AF 200 28.18200
MMA 28 10M PREAMP14.95	DAIWA CNA 1001 A (Automatic A.T.U.) 1129.00 (-)
MMA 14.1V 2M RF Switched PREAMP $£ 29.90$	TEST EQUIPMENT
MMF 144 2M FILTER $£ 6.90$	FX1 Wave Meter................................ £28.00 ($£ 0.75$)
MMF 432 7 cm FILTER $\mathbf{\Sigma 6 . 9 0}$ (-)	I Dip Meter 551.00 ($\mathbf{\Sigma 0 . 7 5)}$

MAIL ORDER - RETAIL CALLERS 9-5.30 PM. HIGH ST.,HANDCROSS, W.SUSSEX. 0444400786

EDITORIAL OFFICES
Practical Wireless Westover House West Quay Road
Poole, Dorset BH 15 1JG f Poole 71191

Geoff Arnold G3GSR Editor

Dick Ganderton C.Eng., MIERE,G8VFH Assistant Editor

Peter Metalli Art Editor

John Fell G8MCP Technical Editor

Alan Martin G8ZPW News \& Production Editor

Elaine Howard Technical Sub-Editor

Rob Mackie Technical Artist

Keith Woodruff Assistant Art Editor

Sylvia Barrett, Sharron Breeze Secretarial

ADVERTISEMENT OFFICES
Practical Wireless King's Reach Tower Stamford Street London SE1 9LS Telex: 915748 MAGDIV-G

Dennis Brough
Advertisement Manager f 01-261 6636

Roger Hall G8TNT (Sam) Ad. Sales Executive

6 01-261 6807

Claire Gerrish

 Secretary 801-2616636Colin R. Brown
Classified Advertisements f 01-261 5762

Dave Kerindi Make-up \& Copy 6 01-261 6570

COPYRIGHT

(c) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

Risitico
FEBRUARY 1981 VOL. 57 NO. 2 ISSUE 887

20 The Basics of TV DXing-2
 Roger Bunney

24 PW "Twynham'' Digital/Analogue Multimeter-3
M. Tooley \& D. Whitfield

27 IC of the Month- μ A714 Precision Op. Amp. Brian Dance

31 Accented Metronome
R. A. Penfold

34 Understanding Receiver Parameters-1
Peter Chadwick G3RZP
42 PW "'Helford'' HF SSB Transceiver-3
Vic Goom G4AMW
48 PW Morse Tutor
Ian Hickman
58 PW '"Nimbus" 2m System-9 (16-channel Scanner)
M. Tooley G8CKT \& D. Whitfield G8FTB

65 Air Test
SX-200 Scanning Receiver
Mizuho LA-2X 2m Linear Amplifier
69 Tape/Slide Controller-2
Fred Judd

95	Advert Index	40	Production Lines
17	Comment	17	Services
18	News	56	Sketchbook
47	Next Month	41	Uncle Ed
74	On the Air		

SPARKRITE $\times 5$ is a high performance. $t(0)$ quality mductive discharge electronic ignition system designe d for the electronics D.I Y. world It has been tried, tested and proven to be: utterly reliable. Assembly only takes $1 \cdot 21$:ours andirstallatıor even less due to the patented 'clip on' easy fitting The superb techancal design of the: Sparkritecircuit eliminates problems of the: contact breaker There is no misfire: due: to contact breaker bounce whinchiselimuated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R P M Contact breaker burn is elimmated by reducing the current by 95° of the: nerm

There: is also a unique extesided dwe:l circuit which allows the coil a lemeger period of time to storents energy inefore discharguct to the plug̣s The: imut melueles built in statice timmeg lightit. Systems func:ion light: and security changeover switch Will work all rev cormeters

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISESEVERYTHING NEEDED
Die pressed case Ready drilled. alumumum extruded base and heat sunk, coil mounting clips and accessories All kıt components are guaranteed for a per ;oxi of 2 years from date of purchase. Fully illustrated assemi)ly and installation mstructions are. included
 Roger Clark the world famous rally driver says"Sparkrite electronic ignition systems are the best you can buy."

Electronics Design Associates, Dept. PW281 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

Wilmslow

 Audio
THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST

 CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.
AUDAX • AUDIOMASTER • BAKER • BOWER \& WILKINS - CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD decca - eagle - ELAC - EMI - FANE GAUSS - GOODMANS - HARBETH ISOPHON - I.M.F. - JORDAN - JORDAN WATTS - KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN • SEAS © SHACKMAN • STAG - TANNOY - VIDEOTONE - WHARFEDALE •

WILMSLOW AUDIO (Dept. P.W.)

35/39 CHURCH STREET, WILMSLOW, CHESHIRE SK9 1AS

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

J. BIRKETT

(Partners: J. H. Birkett. J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1JF

SINCLAIR NI-CAD BATTERY CHARGER - £3.30
SUB-MINIATURE MULLARD DISC CERAMICS 1000 pf 63v.w. $\mathbf{2 5 p}$ doz.
MULLARD TYPE 808 FILM TRIMMERS 4 pf , 8 pt , 20pt, 60 pf Ail 15 p each.
SOLDER-IN FEED THRU'S 6.8pf. 27pf, 300pi, 1000pf All 20p doz EDDYSTONE TRANSMITTING VARIABLE CAPACITOR 30 . $30 \mathrm{pf}(60 \mathrm{pf})$ - £2.20. $10 \mathrm{Kv}-50 \mathrm{p}, 0.0005 \mathrm{uf}$ CAPACITORS $75 \mathrm{Kv}=75 \mathrm{p}$. $05 \mathrm{uf} 1 \mathrm{Kv}=\mathbf{2 5 p}, 0.0005 u f 25 \mathrm{Kv}=40 \mathrm{p}, 0.05 \mathrm{ut}$
ELECTROLI'YTICS $16+16 \mathrm{uf} 450 \mathrm{v} . \mathrm{w} .$, . $25 \mathrm{p}, 50$ - $50 \mathrm{uf} 450 \mathrm{v} . \mathrm{w}$. -40 p .
AIR SPACED MINIATURE VARIABLES $250+250 \mathrm{pf}$ (500pf) . 85p.
50. BC 107-8-9 METAL TRANSISTORS Assorted untested -60 p.

VERNITRON FM4 10.7MHz FILTERS. $50 \mathrm{p}, 3$ for $£ 1$.
SUB-MINIATURE AIR SPACED TRIMMERS 10 pf
VHF-UHF FETS BF 256 C - 4 for 75 p , E304, 30p, 4 for $\mathrm{E1}$.
MINIATURE 12 WAY CERAMIC TAG STRIPS: 15p, 21 Way - 20p.
3 GANG VARIABLES $10+10+10 \mathrm{pf}$ at 75 p .
2N918 VHF TRANSISTOR
2N918 VHF TRANSISTOR : 25p, STRIPLINE BF 362 : 25p.
ERIE RED CAP MINIATURE DISC. O1uf 100v.w. at 5 p each.
10.7 MHz CRYSTAL FILTERS Bandwidth 7.5 KHz . 5 .
TRANSMITTING PRE-SET BUTTERFLY VARIABLE CAPACITORS $25 \times 25 \mathrm{pf} \sim 50 \mathrm{p}$, $38 \times 38 \mathrm{pf} .60 \mathrm{p}, 38 \times 38 \mathrm{pf}$ Wide Spaced 65 p .
X BAND GUNN DIODES with data at $£ 1.65$.
H.P. HOT CARRIER DIODES $5082-2800.40 \mathrm{p}$ each.

X BAND MULTIPLIER DIODES at 6 for $\mathbf{~ E 1 . ~}$
$\mathbf{3} / 16^{"}$ COIL FORMERS with core at 6 for $\mathbf{2 5 p}$.
TTL I.C's House Coded 7400 - 10p, 7410 - 10p, 74L00 - 10p, 7453 - 10p, 7430 = 10p, VHF WIRE ENDED R.F. CHOKES 3OU.F., 25 for 50 p.
PAPER CAPACITORS 10u.f. 37OVAC size $5 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{)^{\prime \prime}}-\mathbf{£ 1 . 5 0}$
50. OC 71 TRANSISTORS untested 75 p .

80 METRE CRYSTALS $10 X$ Type $3642.5 \mathrm{KHz}, 3750 \mathrm{KHz}$. Both 40p each
B7G MHz $10 \times$ CRYSTALS $8010 \mathrm{KHz}, 8050 \mathrm{KHz}$ Both 40 p each
B7G GLASS CRYSTALS $327.56 \mathrm{KHz}, 327.86 \mathrm{KHz}, 10.025 \mathrm{MHz}^{2}$, Dual Type 20.1875 MHz
3 GANG VARIABLES Air Spaced $365+365-365$ SM Drive - 95p
VHF SIGNALTRANSISTORS $2 N 918$ - 25p, 2N 5179 - 50 p, $2 \mathrm{~N} 5180=50 \mathrm{p}$, AF 239 SOp, $2 N 4123$ 15p.
UHF POWER MODULE 50 mW Input 2.5 Watt Out $420-480 \mathrm{MHz} 13$ Volt 50 Ohm Type VERY USEFUL HF-VHF POWER TRANSISTORS $587 B L Y 27 \mathrm{MHz}$ To 70 MHz SSB, FM 40 watt 24 Volt with data - $\mathbf{£ 3}$.
BLY55
BLY97
245 MHz
4
VOlt
175 MHz
12

VHF POWER TRANSISTORS Unmarked good $2 N 3866$ - 3 for 75
$\mathbf{G H H z}$ STRIPLINE NPN TRANSISTORS $£ 1$ each.
$\mathbf{5 G H z}$ LOW NOISE STRIPLINE
5 GHz LOW NOISE STRIPLINE with data sheets - $£ 3$.
PIN DIODES FOR TRANSMIT-RECEEVE IN MOB
PIN DIODES FOR TRANSMIT-RECEIVE IN MOBILE RADIOS Pass 1 Amp RMS with data at 40 p each
SUB-MINIATURE PVC CABLE 13 Strand .019 at £10. Cart, Paid
MIKE INSERTS TYPE YAB548 FRS with core Dia. 4 mm 9 mm Long - 7p. 6 for 35p. HIGE POWER VHF TRANSISTOR 45 Watt 175 MHz 28 Volt FM or SSB 5 watt Drive 570
BLY with data. £8.20.

Postage 30p. Orders over $£ 3$ post paid.

For Conference details write to: The Conference Administrator IPC Conferences Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ

For * advance exhibition tickets at $£ 1$ each, write to: Microsystems Tickets
IPC Exhibitions Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ
*Please note applications for tickets cannot be accepted after February 23, although tickets will be available at the door price $£ 1$. Cheques should be made payable in UK sterling to IPC Business Press Limited.

COMMUNICATIONS RECEIVERS made by Murphy Radio for Navy; high grade Rx covering 60 to 560 Kc in two bands and 1.5 to $30 \mathrm{Mc} / \mathrm{s}$ in 3 bands, uses 13.137 g type valves as 2 RF stages, $3 \times \mathrm{IF}$ stages at 800 Kc . Det.N.Lim. AVC $2 \times \mathrm{AF}$ stages. BFO and 800 Kc crystal Cal . the O / P stage matches to 100 ohm phones or 2 watts into 600 ohm. Controls, Main, Tune Band Sel. RF gain, LF gain. Phone gain, AVC On/off, Selectivity at $8,3,1 \mathrm{Kc}$. or $200 \mathrm{c} / \mathrm{s}$ the 1 Kc sel uses Bandpass Crystal filter the 200c uses Crystal plus Audio Filter, the BFO can be swt to upper or lower beat i.e. 801 or 799 Kc int set, also 800 Kc for tune. There are two $0 / \mathrm{P}$ jacks for phones and one for spk. on front panel, provision for 75 ohm Ae I/P or long wire. Complete in steel case size $13^{\prime \prime} \times 14^{\prime \prime}$ deep. Note these Rx require external power supply giving 250 v 100 Ma and 150 v Stab DC 6.3 v AC at 4 amps . There is room inside the case to build an internal P.U. Supplied tested with circ. and 40 page handbook. $£ 115$.
VIDEO RECORDERS Philips type LDL1000 portable monochrome 625 line reel to reel type $\frac{1}{2}{ }^{\prime \prime}$ tape $75 \mathrm{ohm} \mathrm{I} / \mathrm{P}$ and $0 / P 1 \mathrm{v}$ sig. .4 v Vid ext size $42 \times 34 \times 20 \mathrm{Cm}$ weight 12 Kg $240 \mathrm{v} 50 \mathrm{c} 1 / \mathrm{P}$ supplied in good cond with 80 page handbook untested with $2 x$ tapes, fuller spec on request $£ 185$.

TEST SET CT373 Audio bench set Osc 17 c to 170 Kc . AF VTVM Dist meas set new cond with book, full spec on request £80.

Above prices include carr./postage \& VAT. Goods ex equipment unless stated new. 2×10 p stamps for list $25 / 1$.

A. H. SUPPLIES

122 Handsworth Road, Sheffield S9 4AE.
 Tel. 444278 (0742)

P.W. KITS

P. W. NIMBUS

Transceiver (PCB \& all components except channel xtals)
$£ 46.00$
Modulator (PCB \& all components) $\quad \mathbf{£ 4 . 5 0}$
General Assembly (Aerial, mike, box, speakers
etc.) $£ 32.50$
Complete Kit (if all parts purchased) $\quad \mathbf{£ 8 0 . 0 0}$

ADD ON BASE UNIT
 Complete Kit

£38.00
Many other P.W. kits available including:-
Wideband RF Pre-Amp $\mathbf{£ 7 . 5 0 A F}$ Speech Processor $\mathbf{£ 1 7 . 0 0}$ Beginners 2 m Converter $\mathbf{£ 1 5 . 0 0}$ Model Railway Controller $£ \mathbf{£ 1 . 5 0}$ VHF/UHF Repeater Station Timer (main board only) £22.50. Linear Frequency Meter Tone burst and Timer Module. Also: Philips $5^{\prime \prime}$ Scope Tubes (CV2191/DG132) $£ 12.50$.

We also stock Kits for projects published in most magazines. Personal callers welcome - but please phone first to check availability. All Prices include post and VAT.
T. POWELL 306 St. Paul's Road, Highbury Corner, London N1. Telephone: 01-226 1489.

ACCESS/VISA ACCEPTED

Shop open: Mon. to Fri. 9-5.30. Sat. 9-4.30.

PCB'S FOR PRACTICAL WIRELESS PROJECTS

Jan. 80. Jan. 80 Jan. 80 Jan. 80. Jan. 80 April 80 April 80 April 80 PW. Nimbus Modulator Nimbus Transceiver May 80. Hundred Second Photo Timer June 80. Audio Limiter Main Board June 80. Audio Limiter
June 80. Audio Limiter RF Input Board June 80. VHF/UHF Repeater Timer Main June 80. P.W. Nimbus Base Station Adpt June 80. Acoustic Flash Trigger Aug. 80. Model Railway Controller
Sept. 80 Transceiver Power Unit
Sept. 80. P.W. Nimbus Tonedurst/ Timer Module
Sept. 80. Beginners 2 m Converter
Sept. 80. P.W. Tamar Board 1
Sept. 80. P.W. Tamar Board 2
Sept. 80. P.W. Tamar Board 3
Sept. 80. P.W. Tamar Board 4
Oct. 80. P.W. Tamar Board 5
Oct. 80. P.W. Tamar Board 6
Oct. 80. P.W. Nimbus 7 Mains PSU/Charger
Oct. 80. Direct Conversion Receiver
$\begin{array}{ll}\text { Nov. } 80 . & \text { Linear Scale Resistance Meter } \\ \text { Nov. } 80 . & \text { Model Radio Control Field }\end{array}$
Nov. 80. Model Radio Control Field
Nov. 80. M.R.C.F.T.V.
Nov. 80 M.R.C.F. T.V.
Nov. 80 . P.W. Helford
Nov. 80 . P.W. Sherborne Synth Boards
Dec. 80. P.W. Helford
Dec. 80. Bird Scarer
Dec. 80. Bird Scarer
$\begin{array}{ll}\text { Dec. 80. Buffer Amp } & \text { WRO } 102 \text { £ } 1.05 \text { per set } 30 \text { pence p\&p. }\end{array}$
Dec. 80. Buffer Amp WRO103 90p per set 30 pence $\mathrm{p} \& \mathrm{p}$.
full range of rs components avaliable
C. BOWES ELECTRONICS

252A Stockport Road, Cheadle Heath, Stockport, Cheshire SK3 OLX.

Tel: 061-4284497

TV SPARE PARTS \& COMPONENTS

The Practical Wireless TV Sound Tuner. Still unsurpassed! Parts still available. Price List, copy of original article supplied on request. (cost of set of parts $£ 28.40 \mathrm{incl} . \mathrm{p} / \mathrm{p}$ \& VAT)

Callers still welcome at shop premises.

MANOR SUPPLIES

(Tel. 01-794 8751)
172 WEST END LANE, LONDON NW6.
(near W. Hampstead Jubilee and British Rail Stations).

L.B. ELECTRONICS

SPECIAL OFFER: $5^{\prime \prime}$ LED displays. FND500 Full spec. 50p each, larger quantities P.O.A. P/P 25p.
FULL SPEC JUSI ARRIVED: Battery eliminator 6 V 200 mA , brand new 95p each. P/P 35p. 5 K Multi turn trim pots, PCB Mounting, pack of $14 £ \mathbf{£ 2 . 5 0}$. P/P 25 p . CAPACITOR SCOOP: 1600uf at 10 V . 160 uf at 25 V axial lead 24 at $£ 1.00$ (mixed). P/P $25 p$.
GIVE AWAY: 22 pin low profile Dil socket, gold plated 12p each. 10 at £1.00. P/P 25p.
PEWEC: Mini fans 80 mm .80 mm approx. $115 \mathrm{~V} £ 4.50$. P/P $£ 1.00$.
TANTULUM CAPACITORS: 4.7 uf at $25 \mathrm{~V}, 14$ for $£ 1.00$. P/P 25 p .
LEDS: $2^{\prime \prime}$ Red 12 p . TIL209 10 p . OCP 70 25p, 2114 (450NS) £1.85 each P/P 25p. 2708 (45ONS) £3.00, 2526 (Character Generator) £2.95. 2716 Eprom (single rail full spec.) £6.95 P/P 25p.
*ALLI.C's POSTAGE AND PACKING 25p \star
MANY SURPLUS COMPUTER BARGAINS \star
ACCESS AND BARCLAYCARD ACCEPTED
L.B. ELECTRONICS

11 Hercies Road, Hillingdon, Middlesex UB10 9LS. Telephone: (89) 55399.

LOOK!Here's how you master electronics. the practical way.
 This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
 You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.
 All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but al so later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3. Carry out over 40 experiments

 on basic circuits.We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

4. Free Gift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:-

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

4 Cleveland Road, Jersey, Channel Islands.
NAME
ADDRESS

32 page
 Colour Brochure

> VALVES

> A1065 1.40 | | |
| :--- | :--- |
| | 2293 | 8.80 $\begin{array}{ll}\text { AR8 } & 0.75 \\ \text { ARP3 } & \mathbf{0 . 7 0}\end{array}$ $\begin{array}{ll}\text { ARP3 } & 0.70 \\ \text { ATP4 } & 0.60 \\ \text { B12H } & \mathbf{3 9 0}\end{array}$ $\begin{array}{ll}812 \mathrm{H} & 3.90 \\ \text { CY31 } & 1.40 \\ & 1.70\end{array}$ $\begin{array}{ll}\text { DAF96 } & 0.70 \\ \text { DET22 } & 21.9\end{array}$ $\begin{array}{ll}\text { DFE66 } & 0.70 \\ \text { DK96 } & 1.20\end{array}$ DH 76

D 92 OY86/8
OY802 E551
E888C E88CC $\begin{array}{ll} & 3.10 \\ \text { E92CC } & 1.20 \\ \text { E180CC } & 2.80 \\ \text { E180F } & 8.30 \\ \text { E182CC } & 4.35\end{array}$ E182CC
EA76 EA76
EABC
EB91

> | EBF |
| :--- |
| EBF |
| EBF |

> m
> m
> 令
> EC
> ECF
ECF
ECH

POSTAGE: $\mathrm{f1} \mathrm{f3} 30 \mathrm{p}$ e $\mathrm{E3}-\mathrm{f5} 40 \mathrm{p}$. 60 p . Over f 15 tree A ot of these valves are VALVES AND imported and prices TRANSISTORS so we reserve the right. Telephone so we reserve the right felephone enquiries
to change prices for valves, transisto change prices for tors, etc.; retall
new stock when un- 749 ' 3934 , trade and avoldable. \quad export 7430899.

WOOD \& DOUGLAS

With the winter evenings approaching, the constructional season for radio amateurs is about to begin. If you are undecided on your winter project perhaps you can find something in our range of over 30 kits and modules to suit you.
70FM05TR In case you missed October's review of this single channel FM transceiver for 70 cms here are a few details. The receiver sensitivity is typically $0.4 \mu \mathrm{~V}$ and uses dual gate MOSFETS and a high quality crystal filter. The audio output drives an 8Ω speaker. The transmitter gives 500 mW of RF and has a modulator on the pcb. Both boards use readily available crystals and measure a very compact $6^{\prime \prime}$ by less than $1 \frac{11^{\prime \prime}}{}{ }^{\prime \prime}$.
Kit
$\begin{aligned} & R X £ 38.50 \\ & T X £ 17.80\end{aligned}$
Assembled RX£47.25
70MC06TR When one channel is not enough the $£ 25.95$ this two pcb set you will have 6 channels on $t x / r x$. This includes a toneburst for repeaters and a scanner to ease monitoring.
Kit RX £18.60
Assembled RX £26.05
TX £11.30
TX $£ 18.10$
144 SY 25 B An FM synthesiser for 25 KHz steps at 144146 MHz . The output frequencies are $5.5,11,22$ or 45 MHz on receive and 6,12 or 24 MHz on transmit. This will feed most commercial radio telephones and also the PW NIMBUS. So for the cost of ten crystal channels you get full band coverage, crystal controlled toneburst, repeater $\pm 600 \mathrm{KHz}$ offset, out of lock inhibit and channel selection by channel number.
Kit $£ 50.95$
Assembled $\mathbf{£ 6 9 . 7 0}$
INTERESTED? If you would like further details of these and our many other products then send a large SAE (please!) for the latest lists. The above prices include VAT at the current rate but please add $60 \mathrm{p} p \& \mathrm{p}$ on the total order. The prices include all items to make a working pcb module. We do not supply external hardware such as boxes or switches etc. This leaves you free to use the modules in whatever configuration you wish and yet have confidence that the electronics will perform well. We will gladly service any of our products providing it has been built as directed. We make a small charge for this facility depending on complexity. Kits when in stock are return of post otherwise 10-14 days. Assembled items 10-20 days.
9 HILLCREST, TADLEY
BASINGSTOKE, HANTS RG26 6JB

Bl-and Save sale-81

GERM. DIODES

200 OAB-9, Mived $1 \times 34 / 50$ DO-7. Coded and uncoded - You to Case
O/No. SJ127. £1.00 per Pak
SIL DIODES

200 Mixed Diodes - mainly SILICON case DO-7 OA200/202 General purpose 200 mA marked and uncoded - you to sort \& test Outstanding Value!
/ No. SJ128. £1.00 per Pak.
AUDIO AMPLIFIER
5 watt Audio Amplifier Module.
Special Clearance Offor
O/No. AL20. £2.50

HEADPHONES

NEW Improved Lightweight Stereo padded earcups - Impedance 8 ohms - Frequency $30-18000 \mathrm{~Hz}$ ALL Black.

O/No. 885. £4.00
As above but with coiled lead and rotary volume controls.

O/No. 884. £7.00

HEADPHONE ACCESSORIES

7 metre Headphone Extension Lead.
O/No. 136. £1.50

ANTEX

Antex $\times 25$ Iron - 25 watt soldering iron. OUR
SUPER SALE PRICE.Great reduction. O/No. 1931. £4.00
ST3 Iron Stand - Suitable for above - OUR Sale Price

O/No. 1939. £1.25 each

POPULAR CMOS

CD4001 1 Off each normal price CD4007 £1.80 for 5 - our price $\mathbf{£ 1 . 3 0}$ CD4011
CD4017
CD4081 O/No. SJ1245

PLUGS \& SOCKETS	
Set of 4 1-metre Colour coiled leads with phono plug ends- ideal for audio and test use. Outstanding Value. O/No. SJ122. £1.00 per Pak	
1 mm Plugs \& Sockets in Red \& Black. O/No. SJ123. 5 prs $£ 1.00$	
CAPACITORS SJ11 150 Caps. mixed types \& values. $\quad \mathbf{£ 0 . 5 0}$ SJ12 60 Electrolitics all sorts mixed. $\mathbf{£ 0 . 5 0}$ SJ13 40 Polyester/polystyrene capacitors mixed. £ 0.50 S.114 50 C280 type capacitors mixed. $£ 1.00$ 15 Polyester Caps $\cdot 1.160 \mathrm{v} \quad £ \mathbf{£ . 5 0}$ SJ16 40 Low volts electrolitics mixed values up to 10 v . $\mathbf{£ 0 . 5 0}$	
TRANSFORMERS	
MINIATURE MAINS Primary 240v	
No. Secondary $20216 \mathrm{v}-0-6 \mathrm{v} 100 \mathrm{~mA}$ $\mathbf{£ 0 . 7 5}$ $20229 \mathrm{v}-0.9 \mathrm{v} 100 \mathrm{~mA}$ $\mathbf{£ 0 . 7 5}$ $202312 \mathrm{v}-0.12 \mathrm{v} 100 \mathrm{~mA}$ $\mathbf{£ 0 . 9 5}$ 2035 240v Primary 0-55v 2A Secondary	

BC108 FALLOUTS
50 NPN BC107/108 SJ124 £1
Manufacturers out of spec on volts or gain or neither - Metal TO18 case - You test.
50 PNP BC177/178 SJ1244 f1
DIODES
300 in 148 Type- uncoded Silicon Diodes Case DO-35 - you to test. O/No. SJ129. $\mathbf{£ 1 . 0 0}$ per Pak Silicon Fast Switch NPN - like $2 \mathrm{~N} 708 / 2 \mathrm{~N} 2369$
You select by tent! O/No. SJ125. 50 for $£ 1.00$

Special Introductory Offer COMPUTERIC's
EPROM $2708 \oplus £ 3.00$ EPROM 2516/

2716 ef6.00
D.RAMS 4116 e $£ 2.25$

Special Introductory Offer
SPECIAL OFFER LINEAR IC's

NE5555	$\mathbf{5}$ for $\mathbf{£ 0 . 9 0}$
$\mathbf{7 4 1 P}$	$\mathbf{5}$ for $\mathbf{£ 0 . 8 0}$
NE556	5 for $\mathbf{£ 2 . 5 0}$
LM380	5 for $\mathbf{£ 3 . 5 0}$
72723	

LM380 $\quad 5$ for $£ 3.50$
7272314 pin $\quad 5$ for $£ 1.75$

NPN

BD131 TO-126-NPN untested. O/No. SJ84. $\mathbf{2 5}$ for $\mathbf{£ 1 . 0 0}$ SCR's
TO60 SCR's 5 Amp - ALL
volt - good yield $400+$.
O/No. SJ130. 10 for $£ 1.00$
AERIALS O/No. 107.40p each HI-FI CAR AERIAL
4-section fully retractable \& \& locking SPECIAL O/No. 109. £1.40 each

BI-PAK'S OPTO BARGAIN!

Valued at over £10 Normal Retail
We offer you a pack of 25 Opto devices to Yellow and Clear. 7 segment Displays both Common Cathode and Common Anode PLUS bubble type displays - - like OL-33. Photo Transistors - similar to OCP7 and Photo Detectors will cost you just £4.00!
and we guarantee your money back if you are not completely satisfied. Full data etc included
O/No. SJ120.

Semiconductors from Around the World

A collection of Transistors, Diodes, Rectifiers, Bridges.
IC's, SCR's, Triacs both Logic and Linear + Opto's all of IC's. SCR's. Triacs both Logic and Linear +
which are current everyday usable devices.

Guaranteed Value over $£ 10$ at Normal Retail Price yours for only $\mathbf{£ 4 . 0 0}$

Data etc in every pak. Order No. SJ220

SILICON TRANS

$\begin{array}{ll}\text { SJ25 } & 100 \text { Silicon NPN transistors all perfect } \\ \& \text { coded }- \text { mixed types with data - }\end{array}$ a coded - mixed types with data
equivalent sheet - no rejects
$\mathbf{£ 2 . 5 0}$ SJ26 ${ }_{8}^{\text {equivalent sheet - no rejects }} 100$ Silicon PNP transistors all pefect \& coded - mixed types and cases, data
S.27 \& equivalent sheet 50 Assorted pieces of SCR's. diodes \& rectifiers incl. stud types, all perfect - -
no rejects, fully coded -data incl. $£ 2.50$

TL's

SJ28 20 TTL74 series gates - assorted 7401 -
SJ53 Mammoth IC Pak. Approx 200 assorted fall-out integrated circuits including logic 74 series - Linear audio and DTL.Many coded devices but some unmarked - you to identify $\mathbf{£ 1 . 0 0}$

RJ1 200 Resistors mixed values

SJ2 200 Resistors mixed values. \quad Carbon resistors $\quad \frac{1-\frac{1}{2}}{\mathbf{C 0 . 5 0}} \begin{aligned} & \text { watt }\end{aligned}$
SJ3 $\begin{aligned} & \text { preformed. } \\ & 100 \\ & \frac{1}{8} \\ & \text { watt miniature resistors mixed } \\ & \text { c0.50 }\end{aligned}$

| $\mathrm{SJ4}$ | values. |
| :--- | :--- | :--- |
| 60 t watt resistors mixed values | $£ 0.50$ |
| $£ 0.50$ | |

${ }^{\text {SJJ }} 550 \quad 1-2$ watt resistors mixed pot values.

$\mathrm{SJ7} 302-10$ watt wirewound resistors	
mixed.	$\begin{array}{l}\text { £0.50 } \\ \mathbf{£ 0 . 5 0}\end{array}$

CASSETTES SUPER VALUE \& C120 Dindy Cassettes Low noise - astounding value and sound. O/No. SJ32. 10 for $\mathbf{£ 3 . 5 0}$

NPN TRANSISTORS

$\frac{\text { TRIACS }}{4 \text { 4 400v TO-202 non-isolated }}$

TAG136D
$8 A 400 \mathrm{v}$ TO- 220 isolated
TAG425
Diac D32/BR100
SCR C106D plastic case

IC SOCKET PACKS

Texas NPN silicon transistors metal can -
perfect and coded. $2 \mathrm{~S} 503=\mathrm{BC} 108 \mathrm{TO}-18$. $0 / \mathrm{No}$. SJ29. 50 off $£ 2.50$,

AUDIO ACCESSORIES

SJ75 FM coax cable - plain copper conduction cellular polythene insulated \& plain copper braided PVC sheath - impedSJ76 $\begin{aligned} & \text { ance } \\ & 1\end{aligned}$ Board containing $\quad \mathbf{£ 0 . 1 0} \mathbf{2 \times 5}$ per metre SJ76 8oard containing 2×5 pin DIN sockets
sock
EO.
EO. SJ77 A 5-pin DIN 180° chassis/normal socket
incl. DPDT switch
$\mathbf{£ 0 . 2 0}$

DISC CERAMIC CAP

100 Disc Ceramic Cap. Mixed values covering complete range $3 \mathrm{PF}-4,700 \mathrm{PF}$.

SUPER VALUE

O/No. SJ121. £1.00

SWITCHES

Push-to-make, 6 mm panel mounting. $0 / \mathrm{No}$. SJ131. 5 for $\mathbf{£ 0 . 5 0}$

Push-to-break as above. O/No. SJ132, 4 for $\mathbf{£ 0 . 5 0}$ Silicon Heat Sink Compound £0. 25
3 mL in syringe

L.E.D.	
2nd Quality Paks	
150710 Assorted colours \& sizes	$£ 0.65$
S122 10.125 RED	¢0.50
S123 10.2 RED	¢0.50
LED CLIPS	
1508/125.125	5 for $£ 0.10$
1508/2 . 2	5 for $£ 0.12$

SJ20 2 Large croc clips 25A rated - ideal S. 21 for battery chargers etc. SJ21 Large $7 \frac{1}{2}$ Mains Neon Tester - $\begin{aligned} & \text { screw- } \\ & \text { driver chrome finish. } \\ & \text { §0.85 }\end{aligned}$ SJ22 Small pocket size
SJ23 screwdriver. $\begin{gathered}\text { Siemens } 220 \mathrm{~V} \text { AC relay DPDT contacts } \\ \text { S0. }\end{gathered}$ 0 amp rating - housed in plastic case.

ODDMENTS
1617050 metres asst. colours single strand
wire.
$\mathbf{£ 0 . 5 0}$ 16187 wire. 30 metres stranded wire mixed colours.
161785 Main slider switches assorted. $£ 0.50$ SJ76 $\begin{aligned} & 1 \text { Board containing } 2 \times 5 \text {-pin DIN } \\ & \text { sockets } 180^{\circ} \& \& 2 \times 2 \text {-pin DIN loud- } \\ & \text { speaker sockets. }\end{aligned} . \begin{aligned} & \text { DO } 30\end{aligned}$.

KNOBS

SJ62 515 mm chrome knobs standard push
SJ63 $\begin{aligned} & \text { fit. } \\ & \text { Instrument } \\ & \text { innob - black } \\ & \text { winged }\end{aligned}$
Instrument knob - black winged
$(29 \times 20 \mathrm{~mm})$ with pointer. ${ }^{2}$ " standard screw fit.
instrument
SJ64 $\begin{aligned} & \text { Instrument } \\ & \text { aluminium top } \\ & \text { standard }\end{aligned} \quad \begin{gathered}\text { knob } \\ (17 \overline{7} \times 15 \mathrm{~mm}) \text {. } \\ \text { black }\end{gathered}$

Send your orders to: Dept PW2, BI-PAK, PO BOX 6, WARE, HERTS. SHOP AT: 3 BALDOCK ST, WARE, HERTS.
TERMS: CASH WITH ORDER, SAME DAY DESPATCH, ACCESS, BARCLAYCARD ALSO ACCEPTED. TEL: (0920) 3182. GIRO 3887006 ADD 15\% VAT AND 50p PER ORDER POSTAGE AND PACKING.

OFF THE SHELF
 DELIVERY ON THESE B
 FLUKE

BRAND NEW FROM FLUKE . NOW AVAILABLE THE 8024A HAND HELD DMM

This model incorporates all the features of the 8020A but in addition has:
A peak hoid switch which can be used in AC or DC for volts and current functions.
Audible continuity testing and level detection for sensing logic levels.
A temperature $\left({ }^{\circ} \mathrm{C}\right)$ range for use with a thermocouple.

Carriage and Insurance f 3
The following accessories are in stock now
 $\begin{array}{ll}\mathbf{8 0 1 - 1 5 0 C} \\ 801-600 \text { Clamp-on AC Current Probe } & \text { C } \\ & \mathbf{£ 5 5 . 0 0}\end{array}$

HEREIT IS

 THE EVER POPULAR 8022A HAND-HELD DMMConsicier the following features: 6 resistance ranges from 200 ohm . 20 ohms.
current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ C/DC
10 voltage ranges from 200 m 1000 vC-200 mc-750V AC.
Pocket size - weighing only 3 Pocket size - weighing only 370 gull
full overload protection - will withs and 6 kv spikes.
Rugged cons
Meestructable. meoof
proof
in line, pushbutton operation for single-handed useage.
Incoryorates low power cmos chip for lon power consumption. All th.s plus a 2 -year full guarantee.

NOW only $£ 75$

-arriage and insurance 13

Soft carrying case £7 extra

Even more sophisticated the Fluke 8020A. Identical in most respects to the 8022A but in addition incorporates a conductance range from $2 \mathrm{mS}-200 \mathrm{nS}$.

Price $\mathbf{f 1 1 2}$

Carriage and Insurance $£ 3.00$
A handsome soft carrying case is included (this model only)

8010A AND 8012A BENCH MODEL D.M.M.s

The 8010A is a general purpose, bench/portable digital multimeter with more functions and features than ever offered for such a low price. Its companion, the 8012A. has identical characteristics except that it has two additional low resistance ranges, 2Ω and 20Ω to replace the 8010A's 10 ampere current range.

the 8010A and 8012A feature

10 voltage ranges from $200 \mathrm{mv}-1000 \mathrm{v} \mathrm{dc} .200 \mathrm{mv}-75 \mathrm{v}$ ac. 3 conductance ranges from $2 \mathrm{mS}-200 \mathrm{nS}$.
6 resistance ranges from $200 \Omega-20 \mathrm{~m} \Omega$ - the 8012 A has two additional resistance ranges 2Ω and 20Ω.
10 current ranges from $200 \mu \mathrm{~A}-2 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$ - the 8010 has two additional current ranges 10A AC and 10A DC.
8010A £159 8012A £199
Carriage and Insurance f3.
The 8010A is also available with two rechargeable Nicad size C batteries installed in option -01 a $+\mathbf{£ 1 7 9 . 0 0}$.

PLEASE ADD 15\% VAT TO ALL ORDERS except where items marked 'VAT Included'. CALLERS WELCOME.
We are open 9 a.m.-6 p.m. Monday-Saturdays. We carry a very large selection of electronic components and electro-mechanical items. Special quotations on quantities.

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

NICKEL CADMIUM BATTERIES

	$\begin{aligned} & \text { AA (HP7) } \\ & 0.5 \mathrm{AHr} \end{aligned}$	$\begin{aligned} & \text { SUB 'C' } \\ & \text { 1.2AHr } \end{aligned}$	$\begin{aligned} & \text { 'C' (HP11) } \\ & \text { 1.65AHr } \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{C}^{\prime}(\mathrm{HP} 11) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 'D' (HP2) } \\ & \text { 4.0AHr } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AHr} \end{aligned}$
1-24	¢0.85	£1.38	£1.69	£2.25	£2.97	£3.79
25-49	¢0.82	£1.28	£1.58	£2.10	¢2.77	
50-99	£0.80	£1.24	£1.62	£2.02	£2.67	
100 up	¢0.70	£1.15	£1.41	$\mathrm{E1.87}$	$\mathbf{8 2 . 4 7}$	

All cells are brand new full spec devices from reputable mnfrs. All Nickel Cadmium cells (except All cells are
PP 3re supplied complete with solder tags and are 'VENTED' ' devices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3, AA or SUB 'C' cells in 12-14 hrs (chargers will with flying leads. Number of cells (10 max) in series and type must be specified for each re quired O / P when ordering.

SINGLE O/P CHARGER $£ 5.04$ DUAL O/P CHARGER £5.72
TRANSFORMERS - as used in chargers, 2×12 volt 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each.

Data and charging circuits free with orders over £ 10 otherwise 30p post. order over E10. Prices DO NOT INCLUDE VAT and this should be added to the total order.

Cheques, P.O.'s Mail Order to:-
SOLID STATE SECURITY, Dept. (PW), Bradshaw Lane. Parbold, Wigan, Lancs. Telephone 02576-3018

START THE NEW YEAR WELL with a HOME RADIO CATALOGUE

- About 2,000 items clearly listed. - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list, order form and 2 coupons each worth 25p
Price $£ 1$, plus 50 p for post, packing and insurance.
Send cheque or P.O. for $£ 1.50$
HOME RADIO Components LTD Dept. PW, P.O. Box 92, 215 London Road,
Mitcham, Surrey.
$01-5435659$

AND THERE＇S MORE WHERE THIS CAME FROM

It＇s a long time since one of our adverts was presented in＇list＇form－but simply because we do not try to squeeze this lot in every time doesn＇t mean that it＇s not available．Our new style price list（now some 40 pages long）includes all this and more，including quantity prices and a brief description．The kits，modules and specialized RF components－such as TOKO coils，filters etc．are covered in the general price list－so send now for a free copy（with an SAE please）．Part 4 of the catalogue is due out now（incorporating a revised version of pt．1）．

LINEAR ICS．NUMERIC LISTINGS | TRA120S |
| :--- |
| L2200 | 12200

$\mathrm{U2} 27 \mathrm{~B}$
U 247 B

M M 301H
LM 301 N

LM308H

LM M330N
LM39N

LM348N

LF351N
LF353N

$\mathrm{CH}_{3} 7_{4 \mathrm{~N}}$
$\mathrm{LH}_{380} \mathrm{NN}_{14}$发 を NES44N NEES60N
高药资
穿

NESTON
SL624

STE24
TRA51

LA709HC
LA709PC
LAA710BC
以
WA74
WA75
UA75
告
TBABAOOMS

सन
 －

$\begin{array}{lll}1.00 & \text { KB4413 } & 1.95 \\ 1.95 & \text { KB4417 } & 1.80\end{array}$

KB4413	1.95
KB4417	1.80
TDA4420	2.25
KB4420B	1.09
KB4423	2.30
KB4424	1.65
KB4431	1.95
KB4432	1.95
KB4433	1.52
KB4436	2.53
KB4437	1.75
KB4438	2.22
KB4441	1.35
KB4445	1.29
KB4446	2.75
KB4448	1.65
NRS044N	2.26
NE5532N	1.85
SD6000	3.75
SL6270	2.03
SL6310	2.03
SL6600	3.75
SL6640	2.75
SL6690	3.20
SL6700	2.35
ICL8038CC	4.50
MSL9362	1.75
MSL9363	1.75
HA11211	1.95
HA11223	2.15
HA11225	1.45
HA12002	1.45
HA12017	0.80
HA12402	1.95
HA12411	1.20
HA12412	1.55
LF13741	0.33
SN76660N	0.80
FRE	

> $\begin{array}{ll} \\ \text { TDA1074A } & 2.69 \\ \text { TDA1083 } & 1.04 \\ \text { TDA1090 } & 3.95\end{array}$
－
MC1
HA137
HAl 38
눈SLL611
SL1612
SL1613
SL1620SLL620pSL1623PSL624CSL1626PSL1630P
SL1641P
TDA2020
ULNR2838CA3089E
CA3090AO
CA3123ECA3123E
CA3140E
CA3189ECA3189E
LM3900N
LM3909NLM39099N
L43914NLM3915NLM3915N
KB4400
KB4406$\begin{array}{ll}\text { KB4400 } & 0.80 \\ \text { KB4406 } & 0.60 \\ \text { KB4412 } & 1.95\end{array}$

ITL N and LSN

7400N	0.13
74LS00	0.20
7401N	0.13

$\begin{array}{llllll}744 \mathrm{~N} & 1.15 & 74 L S 112 & 0.38 & 74 L S 169 & 2.00 \\ 7444 \mathrm{~N} & 1.12 & 744 S 113 & 0.38 & 74170 \mathrm{~N} & 2.30\end{array}$

7444 N	1.12	74LS113	0.38	74170 N	2.30
7445 N	0.94	74 LSI14	0.38	74LS170	2.00
7446 N	0.94	74118 N	0.83	74515174	1.20
741547	0.89	74120 N	1.15	74175 N	0.87
7448 N	0.56	74121 N	0.42	74.5175	1.10
74.548	0.99	74122 N	0.46	74176 N	0.75
741549	0.99	74123 N	0.73	74177N	0.78
7451N	0.17	7415124	1.75	74181 N	1.65
74LS51	0.24	74125 N	0.38	74LS181	3.50
7453N	0.17	74LS125	0.44	74LS183	2.10
7454 N	0.17	74126 N	0.57	74184 N	1.35
74LS54	0.24	$74 \mathrm{LS126}$	0.44	74185 N	1.34
74LS5	0.24	74128 N	0.74	74LS190	0.92
7460 N	0.17	74132 N	0.73	74192 N	1.05
74.563	1.24	745132	0.78	7415192	1.80
7470 N	0.28	74 LSI36	0.40	74193N	1.05
7472 N	0.28	74LS138	0.60	74 LS193	1.80
7473 N	0.32	74141 N	0.56	74194N	1.05
745873	0.38	74142 N	2.65	74196 N	0.99
7474 N	0.27	74143 N	3.12	74 LS196	1.10
74.5874	0.28	74144 N	3.12	74.5197	1.10
7475N	0.38	74 LS 145	0.97	74198 N	1.50
7476N	0.37	74147 N	1.75	74199N	1.60
74.576	0.38	74148 N	1.09	74.5247	0.93
74 LS78	0.38	$74 \mathrm{LS148}$	1.19	74 LS257	1.08
7480 N	0.48	74150 N	0.99	74LS260	1.53
7481 N	0.86	74151 N	0.55	74LS279	0.52
7482N	0.69	74LS151	0.84	74LS283	1.20
7485 N	1.04	74153 N	0.64	74 LS293	0.95
74LS85	0.99	74LS153	0.54	74LS365	0.49
74 LS86	0.40	74154 N	0.96	74LS366	0.49
7489N	2.05	74155 N	0.54	745 S367	0.43
7490 N	0.33	74LS155	1.10	74LS368	0.49
74 LS90	0.90	74156 N	0.80	74 LS374	1.80
7491N	0.76	74157 N	0.67	74 LS377	1.95
$74 \mathrm{LS91}$	1.10	74 LS 157	0.55	74LS379	1.30
7492N	0.38	$74 \mathrm{LS158}$	0.60	74LS393	． 40

VARICAP

TUNING DIODES | BA102 | 0.30 |
| :--- | :--- |
| BA121 | 0.30 |
| ITT210 | 0.30 |
| BB204B | 0.36 | $\begin{array}{ll}\text { IT1210 } & 0.30 \\ \text { BB204B } & 0.36 \\ \text { BB105B } & 0.36\end{array}$ $\begin{array}{ll}\text { B81058 } & 0.36 \\ \text { BB109 } & 0.27\end{array}$ $\begin{array}{ll}\text { B8109 } & 0.27 \\ \text { MVM125 } & 1.05\end{array}$ $\begin{array}{lll}\text { MB2 } 25 & 1.05 \\ \text { BR212 } & 1.95 \\ \text { KV1210 } & 2.45\end{array}$ $\begin{array}{ll}\text { KV1210 } & 2.45 \\ \text { KV1211 } & 1.75\end{array}$ $\begin{array}{ll}\text { KV1211 } & 1.75 \\ \text { KV1226 }\end{array}$ $\begin{array}{lll}\text { KV1226 } & 1.95 \\ \text { KV1225 } & 2.75\end{array}$ $\begin{array}{lll}\text { KV1225 } 2.75 \\ \text { KV1215 } & 2.55\end{array}$ KV1215 2.55

KV1225 2.75 SWITCHING AND PINDIODES SHOTTKY DIODES | RA182 | 0.19 |
| :--- | :--- | $\begin{array}{ll}\text { BA182 } & 0.19 \\ \text { BA244 } & 0.17\end{array}$ $\begin{array}{ll}\text { BA3 } \\ \text { BA79 } & 0.35 \\ \text { TDA1061 } & 0.95\end{array}$ SIGNAL DIODES QRECTIFIERS IN4148 0.06 1N4001 0.06 $\begin{array}{lll}1 N 4002 & 0.07 \\ \text { IN5402 } & 0.15\end{array}$ OA91 0.07 AAll2 0.25 BRIDEES：

$\begin{array}{ll}\text { 1A／50N } & 0.35 \\ 6 R\end{array}$
6A／2000 0.75

TRANSISTORS AUDIO DEVICES
$\begin{array}{ll}\text { BC237 } & 0.08 \\ \text { BC238 } & 0.08 \\ & \end{array}$

$\begin{array}{ll}\text { BC238 } & 0.08 \\ \text { BC239 } & 0.08 \\ & 0.08\end{array}$ | 1 | |
| :--- | :--- |
| BC 307 | 0.08 | | BC2307 | 0.08 |
| :--- | :--- |
| BC308 | 0.08 | BC309 0.08 BC413

0.10 BC414 0.11 $\begin{array}{ll}\text { BC415 } & 0.07\end{array}$ $\begin{array}{ll}\text { BC416 } & 0.08 \\ \text { BC546 } & 0.12\end{array}$ $\begin{array}{ll}\text { BC546 } & 0.12 \\ \text { BC556 } & 0.12\end{array}$ $\begin{array}{ll}\text { BC556 } & 0.12 \\ \text { BCS50 } & 0.12\end{array}$ BC560 0.12 | BC6 39 | 0.22 |
| :--- | :--- | $\begin{array}{ll}\text { BC640 } & 0.23 \\ 2041775\end{array}$ $\begin{array}{ll}\text { 2SC1775 } & 0.18 \\ 2 S A 872 A & 0.14\end{array}$ $\begin{array}{ll}\text { 2SA872A } & 0.14 \\ \text { 2SD666A } & 0.30\end{array}$ $\begin{array}{ll}\text { ZSDC66AA } & 0.30 \\ \text { 2SB646A } & 0.30\end{array}$ $\begin{array}{lll}\text { 2SB646A } & 0.30 \\ \text { 2SD668A } & 0.40 \\ \text { 2SB648A } & 0.40\end{array}$ 2SB648A 0.40 $\begin{array}{ll}\text { 2SN760 } & 0.45 \\ 2 S 8720 & 0.45\end{array}$ $\begin{array}{ll}2 S 87720 & 0.45 \\ 2 S C 2546 & 0.19\end{array}$ 2SA1084 0.20 $\begin{array}{ll}2 S N C 2547 & 0.19 \\ 2 S N 1085 & 0.20\end{array}$ AUDIO POWER DEVICES

2S8753 2.34 $\begin{array}{ll}\text { 2SB723 } & 2.34 \\ \text { 2SK133 } & 3.00 \\ \text { 2SJ } 48 & 3.00\end{array}$ \begin{tabular}{l}
2 SK134 3.10

2 2SK135

\hline

2SK135 3.75

2SJ 503.75

\hline

$2 S J$ \& 30

E0535 \& 0.52

\hline
\end{tabular} $\begin{array}{ll}\text { BO535 } & 0.52 \\ \text { BD536 } & 0.52\end{array}$ $\begin{array}{ll}\text { BD3 } \\ \text { BD } 377 & 0.33\end{array}$ $\begin{array}{ll}\text { BD378 } & 0.33 \\ \text { RD165 } & 0.30\end{array}$ $\begin{array}{ll}\text { BD165 } & 0.30 \\ \text { BD166 } & 0.31\end{array}$ SMALL SIGNAL RF DEVICES

BF194 0.18 BF195 0.18 $\begin{array}{ll}\text { BF224 } & 0.22 \\ \text { BF241 } & 0.18\end{array}$ $\begin{array}{ll}\text { BF241 } & 0.18 \\ \text { BF274 } & 0.18\end{array}$ $\begin{array}{ll}\text { BF440 } & 0.21 \\ \text { BF441 } & 0.21\end{array}$ $\begin{array}{ll}\text { BF362 } & 0.49\end{array}$ BF395
0.18
BF479 BF679S 0.55 BFPP1 1.33 $\begin{array}{ll}\text { BFW92 } & 0.60 \\ & 0.69\end{array}$ $\begin{array}{ll}\text { BFT95 } & 0.99 \\ \text { BFY90 } & 0.90\end{array}$ $40238 \quad 0.85$
RFPOWE
VN66AF 0.95
2N3866 0.85

SMALL SIGNAL RFFET／MOSFET RF FET／MOSFET $\begin{array}{ll}\text { BF256 } & \mathbf{0 . 3 8} \\ \text { 2SKS5 } & 0.28\end{array}$ $\begin{array}{ll}\text { 2SK55 } & 0.28 \\ \text { 2SK168 } & 0.35\end{array}$ $\begin{array}{ll}J 310 & 0.69 \\ J 176 & 0.65\end{array}$ $\begin{array}{ll}1776 & 0.65 \\ 40823 & 0.65\end{array}$ $\begin{array}{ll}40673 & 35851\end{array}$ $\begin{array}{ll}\text { 3SK45 } & 0.49 \\ \text { 3SK51 } & 0.54\end{array}$ $\begin{array}{ll}\text { 3SK51 } & 0.54 \\ 3 S K 60 & 0.58\end{array}$ \begin{tabular}{|ll}
3SK60 \& 0.58

MEM680 \& 0.75

BE961 \& 0.70

BF960 \& 1.24

 $\begin{array}{ll}\text { BF960 } & 1.24 \\ 35 K 48 & 1.64\end{array}$ SCHOTIKY DIOCE BAL MIXERS（SBLL＝MDI08） SBL $1-500 \mathrm{NHz}$

SBLL

SRL1－8 \& $.1-200 \mathrm{MHz}$ \& 4.55

\hline
\end{tabular} $\begin{array}{ll}\text { SBL } \\ \text { SBL } 1-X ~ & 10-10000 H Z \\ 5.75\end{array}$ SRAI－5－500NHZ $\begin{array}{ll}\text { SRA1 }-5-500 \mathrm{HHz} & 8.45 \\ \text { SRA1－1 } & 1-500 \mathrm{NHz} \\ 9.25\end{array}$ SRALH $.5-500 \mathrm{NHz} 13.35$ SRA3． $025-200 \mathrm{Hzz} 10.25$

LCD Module
CM161．
Miniature clock， $12 / 24 \mathrm{hr}$ ．，
day，date，
backlight．
All for．．．．．．9．95

CAPACITORS
All 5 mm or less spacing CERAMIC：50v
$2 \mathrm{P} 2,3 \mathrm{P} 3,4 \mathrm{P} 7,618$ $8 \mathrm{P} 2,10 \mathrm{P}, 15 \mathrm{P}, 18 \mathrm{P}, .0 .04$
$22 \mathrm{P}, 27 \mathrm{P}, 35 \mathrm{P}, 47 \mathrm{P}$ 22P，27P，33P，47P
56P，68P，82P， $56 \mathrm{P}, 68 \mathrm{P}, 82 \mathrm{P}, 100 \mathrm{P}$
$150 \mathrm{P}, 220 \mathrm{P}, 270 \mathrm{P}$
150P，220P， $330 \mathrm{P}, 390 \mathrm{P}, 470 \mathrm{P}$
330P，390P，470P．．．0．055 1N0，2N2，3N3，4N7． 0.06
$10 \mathrm{~N}(0.01 \mathrm{uF}) \ldots .05$ 10N $22 \mathrm{~N}, 47 \mathrm{~N} . \ldots0 .0 .05$ $2 \mathrm{~N}, 47 \mathrm{~N} . \ldots \ldots . . .0 .0 .06$
$100 \mathrm{~N}, 220 \mathrm{~N}0 .09$ MONOLITHIC CERAMIC MONOLITHIC CERAMIC FEDTHRU
INO SOLDER IN．．．． 0.09 POLYESTER（SIEMENS） 10 mm LEAD SPACING $10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N}0 .17$
$4 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}0 .0 .19$ 220N，470N．．．．．．．．．．0．22 luF．．．．．．．．．．．．．．．．．．．
10 mim LEAD SPACING
$10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .06$ 47N， $68 \mathrm{~N}, 100 \mathrm{~N}0 .08$
220N．．．．．．．．．．．．．．．．．．．．11 20mm IEAD SPACING $220 \mathrm{~N}, 330 \mathrm{~N}, 470 \mathrm{~N} . \ldots .0 .18$ MYLAR
5 mm LEAD SPACING
$1 \mathrm{NO}, 10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .08$
$100 \mathrm{~N}0 .09$
20 mm LEAD SPACING
POLYSTYRENE
$10 \mathrm{P}, 15 \mathrm{P}, 18 \mathrm{P}, 22 \mathrm{P}$ ，
27P，47P，56P，68P．．0．08 $100 \mathrm{P}, 180 \mathrm{P}, 220 \mathrm{P}$ ，
270p，330p，390P．．．0．09
470p，680p，820P．．．0．10 470P，680P，820P．．．0．10
1NO，1N2，1N5，1N8． 0.11 1N0，1N2，1N5，1N8．．0．11 2N2，2N7，3N3， $3 \mathrm{~N} 9 \ldots 0.12$
$4 \mathrm{~N} 7,5 \mathrm{~N} 6,6 \mathrm{NB}, 10 \mathrm{~N} . .0 .13$ TANTALLM BEAD CAPS 16v：0．22，0．33， $0.68,1.0 . \ldots \ldots . .0 .18$
$16 \mathrm{v}: 2.2,4.7,10 . .0 .19$ 6v3： $22,47 \ldots \ldots .0 .30$ ALUMIN ELECTROLYTICS RADIAL（VERT．MOUNT） （uF／voltage） $1 / 63,2.2 / 50,4.7 / 35$ 33／6．3．．．．．．．．．．．． 0.08 33／6．3．．．．．．，
$22 / 16,33 / 10$,
47／10．．．．．．．．．．．． 0.09
$10 / 63,22 / 50,33 / 50$
47／16，100／16．．．．．0． 10
$47 / 63,100 / 25,220 / 16$
47／63，100／25，220／16
$470 / 6.3 \ldots \ldots \ldots .0 .12$ 100／63，470／16， $1000 / 10 . \ldots0 .18$ $1000 / 16,470 / 63 \ldots 0.23$
$1000 / 63,2200 / 16 \ldots 0.30$ $1300 / 25 . \ldots0 .69$
$1000 / 1000 .88$ 1000／100．． 10000／70．．．．．．．．．．．．3．00 AXIAL（HORIZ．MOUNT 1／25，4．7／16，6．4／25 10／16．．．．．．．．．．．．．．0．08 $4.7 / 63,22 / 10,22 / 16$ $33 / 16 \ldots \ldots \ldots . .0 .09$
$47 / 25,100 / 16 \ldots .0 .10$ 100／25．．．．．．．．．．．．．．． 11 $1000 / 16 \ldots \ldots \ldots .0 .25$
$200 / 16,1000 / 25 . .0 .36$ $2200 / 16,1000 / 25 . .0 .36$
$1000 / 35,4700 / 16 . .0 .45$ 1000／50．．．．．．．．．．．． 0.58

RESISTORS

0.25 W ， 58 El2 CARBON $10 h m-10 M0 .02$
0.25 W 18 E12 METAL FILM 0.25 W 18 El2 METAL FILM
$1.10 \mathrm{hm}-1 \mathrm{M}0 .05$ HORIZ CARBON PRESETS 10mm TYPE
$100 \mathrm{chms}-2 \mathrm{MS}$
100chms－2M5 ．．．．．． 0.12 HORIZ CERMET PRESETS
$1 \mathrm{k}, 10 \mathrm{k} . \ldots \ldots \ldots27$

Please send an SAE with all enquiries． Access／Barclayod （ $\mathbf{m i n} \mathrm{£} 5$ please） Callers welcome

2 \＆3．．．．60p as
4．．．．．．．．．．．．75p
（4 inc．rev．of part 1）
ALL PARTS ：

Dramatic changes in Motorcycle design are just around the corner! We survey the trends and preview the options.

SUZUKI GS1000ET AND GT

The latest chain and shaft models evaluated in our comprehensive road tests.

CZ 250 SINGLE

Bargain basement biking can be cheap without being nasty.

PLUSI
^YAMAHA RD350LC ROAD TEST * HONDA CB250RS SERVICE * and all the regular features!

RSI
VALVE MAIL ORDER CO. Climax House 159 Fallsbrook Road, London SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

	£p	EM87	1.50	PY81 0.84	6AN5	4.74	6	5
AZ31	1.10	EN91	3.50	PY82 1080	6ANBA	3.45	6SA7	1.45
CL33	2.00	EY51	1.75	PY83 0.70	6 A05	0.96	6SC7	1.50
DY86/7	0.84	EY86	0.84	PY88 0.88	6AR5	1.98	6S.J7	1.60
DY802	0.84	EY88	1.75	PY500A 1.80	6AS6	4.98	6SK7	$1 \cdot 30$
E88CC	3.36	EY500A	1.94	PY800 0.84	6AS7GA	6.75	6SL7GT	2.68
E180F	8.40	EZ80	0.84	PY801 0.84	6AT6	D.85	6SN7GT	1.60
E810F	14.47	E281	0.84	QQVO2-6 12.56	6AU5GT	4.32	6SS7	1.80
EABC80	1.20	GY501	2.75	Qav03-10	6AU6	1.08	6SG7M	2.50
E891	0.82	GZ32	1.25	5.80	6AW8A	3.39	$6 \cup 8$	0.80
EBF80	0.50	GZ33	4.00	QQV03-20A	687	1.50	6V6GT	1.60
E8F89	0.85	G234	2.50	17.50	6B8	1.75	6×4	1.20
EC91	7.56	GZ37	4.00	QV06-40A	6BA6	1.00	$6 \times 5 \mathrm{GT}$	0.85
ECC33	3.50	KT61	3.50	36.34	6BA7	5.12	$7 \mathrm{C5}$	2.95
ECC35	3.50	KT66	10.00	Qvo3-12 4.46	6BE6	1.08	$7 \mathrm{C6}$	2.25
ECC81	0.88	KT77	8.00	R18 R19	6BH6	1.52	$7{ }^{\text {S7 }}$	2.25
ECC82	0.72	KT88	12.00	R19 1.20	68J6	1.08	12AT6	1.20
ECC83	0.88	N78	9.00	SP41 6.00	6BN6	1.65	12AT7	0.88
ECC85	1.20	OA2	1.92	SP61 13.00	6807A	3.72	$12 \mathrm{AU7}$	0.72
ECC88	1.90	OB2	2.55	$\begin{array}{ll}\text { U19 } & 13.75\end{array}$	$68 \mathrm{B7}$	4.00	$12 \mathrm{AX7}$	0.88
ECC91	8.93	OC3	1.92	U25 1.16	6BR8	1.75	12BA6	2.19
ECF80	1.08	OD3	1.92	U26 1.44	6BS7	4.00	128 E 6	2.43
ECH35	2.00	PC86	1.40	$\begin{array}{ll}437 & 9.00\end{array}$	68W6	4.00	12 BY 7	2.70
ECH42	1.15	PC88	1.40	$\begin{array}{ll}\text { UABC8O } & 1.25\end{array}$	6BW7	1.52	12BY7A	2.70
ECH81	1.20	PC92	1.28	UBF89 1.20	6BZ6	2.37	12 HG 7	4.17
ECL80	1.00	PC97	1.20	$\begin{array}{ll}\text { UCH42 } & \mathbf{1 . 2 0}\end{array}$	6 C 4	0.88	30FL1/2	1.12
ECL82	1.00	PC900	1.20	$\begin{array}{ll}\text { UCH81 } & \mathbf{2} .32\end{array}$	6 C 6	1.75	30P4	1.20
ECL83	1.50	PCF80	1.00	$\begin{array}{ll}\text { UCL82 } & \mathbf{1 . 0 4}\end{array}$	6CB6A	2.49	30 P 19	1.20
ECL86	1.20	PCF82	1.00	$\begin{array}{ll}\text { UCL83 } & 1.44\end{array}$	6CD6GA	5.07	30 PL 13	1.80
EF37A	3.50	PCF86	1.60	$\begin{array}{ll}\text { UF89 } & 1.44\end{array}$	6 CH 6	8.50	30 PL 14	1.68
EF39	2.75	PCF801	1.60	UL41 $\quad \mathbf{2 . 5 0}$	6CL6	3.72	75 Cl	$2 \cdot 35$
EF41	2.00	PCF802	1.90	UL84 $\quad 1.20$	6CW4	7.68	85A2	2.39
EF42	2.00	PCF805	1.60	$\begin{array}{ll}\text { UY41 } & 1.25\end{array}$	6D6	1.75	90 Cl	2.44
EF50	1.50	PCF808	1.60	UY85 1.04	$6 \mathrm{DO5}$	5.94	15082	3.02
EF54	5.00	PCH200	1.60	VR 105/30 1.92	6 EAB	2.94	150 C 2	1.92
EF55	2.50	PCL82	1.00	VR150/30 1.92	$6 \mathrm{EH5}$	1.85	$150 \mathrm{C4}$	2.39
EF80	0.80	PCL83	2.00	Z759 16.80	6 F 6	1.75	5728	27.50
EF86	1.52	PCL84	1.00	$28030 \quad 7.90$	6Gk6	2.67	805	20.00
EF91	1.80	PCL185	1.08	$2 \mathrm{~L} 21 \quad 3.50$	6 H 6	1.50	807	3.75
EF92	5.81	PCL86	1.08	3828 16.80	6HS6	3.77	811 A	15.93
EF183	0.80	PCL805	1.08	$4 \mathrm{CX250B}$	6 J 5	2.50	812 A	15.88
EF184	0.84	PD500	$3 \cdot 60$	27.50	6 J 6	3.50	813	74.67
EH90	1.40	PFL200	1.80	5 F 4 GY 2.00	6 J 7	2.50	866A	8.85
EL32	1.50	PL36	1.20	$5 \mathrm{~L} 4 \mathrm{G} \quad 1.52$	6JB6A	4.56		
EL33	3.50	PL81	1.20	5 V 4 G [1.52	$6 \mathrm{JS6C}$	5.58	931 A	14.76
EL34	2.20	PL82	1.20	5Y3GT 0.85	6 K 4 N	1.25	2050	6.96 3.75
EL36	1.60	PL83	2.22	523 T 1.50	6 K 6 GT	1.30	5763	3.75
EL81	2.50	${ }^{\text {PL84 }}$	1.08	$524 \mathrm{GT} \quad 1.50$	6 K 7	1.50	5814 A	3.72
EL84	1.00	PL504	1.40	$\begin{array}{ll}6 / 3 \mathrm{DL2} & 1.56\end{array}$	6 K 8	1.75		12.09
EL86	2.50	PL508	1.80	$\begin{array}{ll}6 A B 7 & 1.50\end{array}$	$6 \mathrm{KD6}$	6.36	6080	6.85
EL91	7.14	PL509	3.20	6AH6 4.71	6L6G	2.50	6146A	8.96
EL95	1.32	PL519	3.20	6AK5 $\quad 3.60$	6L6GC	2.50	6146 B	7.06
EL360	8.50	PL802	2.96	6AL5 0.82	6 L 7	2.00	68838	11.19
EM81	1.00	PY33	1.10	6AM6 $\quad \mathbf{1 . 8 0}$	6LQ6	6.72	6973	3.87
Open daily to callers: Mon-Fri 9 a.m. -5 p.m. Valves. Tubes and Transistors. Closed Saturday Terms C.W.O. only Tel. 01-677 2424-7. g Quotations for any types not listed S.A.E. Post and Packing 30p per order							$\begin{aligned} & 7586 \\ & 7587 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.96 \\ 17.14 \\ \hline \end{array}$
							Prices correct when going to press	

Size/Cell 4.8V Pack 6.0V Pack 6.0V Pack
9.6 Pack

VARTA BUTTONS (1-24V PER CELL)

225 mA DKZ
25 mm dia $\times 9 \mathrm{~mm}$ £3.20

CYLINDRICAL NICADS HP7 Size $£ 1.00$ only: HP11 Size $£ 2.35$; HP2 Size £3.20: PP3 £4.00: PP3 Charger $£ 5.00$.
CONSTANT CURRENT CHARGER - Switched $9 \mathrm{~mA} / 25 \mathrm{~mA} / 50 \mathrm{~mA}$ $120 \mathrm{~mA} / 200 \mathrm{~mA} / 400 \mathrm{~mA}$ output - charges 1 to 12 nicads - $£ 13.95$.

V \& F SMALLCRAFT (POPLAR) LTD
38, STONELEIGH ROAD, CLAYHALL, ILFORD, ESSEX Tel: 01-550-6642
LIMITED TRADE DISCOUNTS POSSIBLE ON DEACS.

250 V d.c. working POLYESTER
CAPACITORS
Prices per pack of five
$.01 \mathrm{uF}, .022 \mathrm{uF}, .047 \mathrm{uF}, .1 \mathrm{uF}$ 35p.
-22uF-47uF 60p. $1.0 \mathrm{uF}-2 \cdot 2 \mathrm{uF} £ 1 \cdot 60$.
Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads $£ 5.70$ each.

All Prices include VAT at 15\%. \& \& P per Order 30p. SA.E. for Leaflets. Access Cards.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW.
Tel Rams (070 682) 3036.

POPULAR KITS AND PARTS

TRANSMITTER SURVEILLANCE

Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can be made in a matchbox-al electronic parts and circuit. £2.30.

RADIO MIKE

ideal for discos and garden parties, allows complete freedom

SAFE BLOCK
 Mains quick connector will save you valuable time. Features

 on and off switch. Complete kit £1.95.LIGHT CHASER
Gives a brilliant display-a psychedelic light show for discos, parties and pop groups. These have three modes of flashing, two chase-patterns and a strobe effect. Total output power 750
watts per channel. Complete kit. Price £16. Ready made up watts per
e4 extra.
FISH BITE INDICATOR enables anglers to set up several lines then sit down and read a book. As soon as one has a
bite the loudspeakers emits a shrill note. Kit. Price £4-90. 6 WAVEBAND SHORTWAVE RADIO KIT Bandspread covering 13.5 to 32 metres. Based on circuit which appeared in a recent issue of Radio Constructor. Complete kit.
includes case materials, six transistors, and diodes, con densers, resistors, Inductors, switches, etc. Nothing else to buy, if you have an amplifier to connect it to on a pair of high SHORT WAVE CRYSTAL RADIO
SHORT WAVE CRYSTAL RADIO
All the parts to make up the beginner's model. Price £2.30. Aly the parts to make up the beginner's model. Price $£ 2 \cdot$
Crystal earpiece 65 p . High resistance headphones (give best
results) $£ 3.75$. Kit includes chassis and front but not case. RADIO STETHOSCOPE
Easy to fault find-start at the aerial and work towards the speaker - when signal stops you have found the fault. Complete kit £4-95.
INTERRUPTED BEAM KIT
This kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main components-relay, photo transistor, resistors and caps etc.
Circuit diagram but no case, Price $£ 2 \cdot 30$.
OUR CAR STARTER AND CHARGER KIT has no doubt you can start car off mains or bring your battery up to full charge in a couple of hours. The kit comprises: 250 w mains transformer, two 10 amp bridge rectifiers, start/charge switch and full instructions. You can assemble this in the evening. box it up or leave it on the shelf in the garage, whichever suits
G,P.O. HIGH GAIN AMP/SIGNAL TRACER. In case
measuring only $5 \frac{1}{2} \mathrm{in} \times$ an in $\times 1 \frac{1}{2}$ in is an extremely high gain measuring only $5 \frac{1}{2}$ in $\times 3 \frac{1}{2}$ in $\times 1 \frac{1}{2}$ in is an extremely high gain
$(70 \mathrm{DB})$ solid state amplifier designed for use as a signal racer on GPO cables etc. With a radio it functions very wel as a signal tracer. By connecting a simple coil to the input socket a useful mains cable tracer can be made. Runs on standard 4iv battery and has input, output sockets and on-off
volume control, mounted flush on the top. Many other uses volume control, mounted flush on the top. Many other uses
include general purpose amp. cueing amp, etc. An absolute bargain at only £1-85. Suitable 80 ohm earpiece 69 p .
VU METER
Edgewise mounting, through hole size $1 \frac{1}{\prime \prime \prime} \times \frac{1^{\prime \prime}}{}$ approx.
These are 100 micro amp f.s.d. and fitted with internal 6 volt bulb for scale illumination, also have zero reset. The scale is not callbrated but has very modern appearance. Price $£ 2.88$ p. BALANCE METER
Edgewise mounting 100 UA centre zero, Price $£ 2 \cdot \mathbf{3 0}$ p.
1iv. SQUARE PANEL METER
Eagle full vision plastic front, 50 UA. Price $\mathbf{£ 4} \cdot \mathbf{6 0 p} 1 \mathrm{~mA}$ Eagle full vis
Price $\in 4 \cdot 03 \mathrm{p}$.

WATERPROOF HEATING WIRE

60 ohms per yard. This is a heating element wound on a fibre around water pipes, under grow boxes in gloves and socks. 23p metre.
DIAL INDICATOR
As used in tool making and other precision measuring operations, the famous John Bull accurately shows differences
of 0.1 mm . A beautifully made precision instrument, price in of 0.1 mm . A beautifully made precision instrument, price in
most tool shops would be $£ 12-£ 15$. We have a fair quantity. Price $59-20$ p.

COMPONENT BOARD Kef. W0998.

This is a modern fibre glass board which contains a multitude of very useful parts, most important of which are: 35 assorted diodes and rectifiers including four 3 amo 400 v types (made up
in a bridge) 8 transistors type BC 107 and 2 type BFY 51 in a bridge) 8 transistors type BC 107 and 2 type BFY 51
electrolytic condensers, SCR ref. 2N 506225 Ouf 100v DC and
100 uf 25 v DC and over 100 other parts including variable, fixed and wire wound resistors, electrolytic and other condensers. A real snip at $£ 1 \cdot 15$.
FRUIT MACHINE HEART. 4 wheels with all fruits, motorised and with solenoids for stopping the wheels with a $\mathrm{E} 9 \cdot 95+£ 4$ carriage.

DESOLDERING PUMP

as for for removing components from computer boards as wel as for service work generally. Price $£ 6 \cdot 35$.
4-CORE FLEX CABLE
White pyc for telephone extensions, disco lights, etc. 10 MUGGER DETERRENT
A high-note bleeper, push latching switch, plastic case and battery connector. Will scare away any villain and bring help. $\mathbf{£ 2} \mathbf{5 0}$ complete kit.

HUMIDITY SWITCH

American made by Honeywell. The action of this device and trigger a sensitive microswitch. Very sensitive breathing
and on it for instance will switch it on. Micro 3 amp at 250 V a.c.
Only $£ 1$. 15 .

MINI-MULTI TESTER
Deluxe pocket size precision mov-
ing coil instrument, jewelled
bearings- 2000 mirrored scale.
11 instant range measure:
DC volts $10,50,250,1000$.
AC volts $10,50,250,1000$.
AC volts $10,50,250,1000$.
DC amps $0-100 \mathrm{~mA}$.
Continuity and resistance 0-1 meg ohms in two ranges. Complete with
Test Prods and instruction book Test Prods and instruction book
showing how to measure capacity and inductance as well.
Unbelievable value only Unbelievable value only $\mathbf{£ 6 . 7 5}+$
50p post and insurance.
FREE Amps ranges kit to enable you to read DC current from
$0-10$ amps, directly on the $0-10$ scale. It's free if you purchase $0-10$ amps, directly on the $0-10$ scale, It's free if you purchase
quickly but if you already own a mini-tester and would like

SUPER HI-FI SPEAKER CABINETS Made for an expensive Hi-fi outfit-will suit
any decor, Resonance free cut-outs for $8^{\prime \prime}$ anoofer and $4^{\prime \prime}$ tweeter. The front material
wore is carved Dacron, which is thick and does not need to be stuck in and the completed unit is most pleasing. Colour black. Supplied in pairs, price $\mathbf{5 6} \cdot \mathbf{9 0}$ per pair (this is cabinet) carriage $£ 3$ the pair.

3 wave band radio with stereo amplifier. Made for incorporation in a high-class
radiogram, this has a quality of output which can only be described as superb. It is truly hi-f.i. The chassis size is approximately $14^{\prime \prime}$. Push buttons select long.
medium, short and gram. Control are medium, short and gram. Control are
balance, volume, treble and bass. Mains balance, volume, treble and bass. Mains
power supply. The output is $6+6$ watts. power supply. The output is $6+6$ watts.
Brand new and in perfect working order,
offered at less than value of stereo amp

MULLARD UNILEX

A mains-operated $4+4$ stereo
system. Rated one of the finest performers in the stereo field this would make a wonderful gift for
almost anyone. In easy-to almost anyone. In easy-to-
assemble modular form this
should sell at about should sell at about £30-but due
to a special bulk buy and as an to a special bulk buy and as an
incentive for you to buy this incentive for you to buy this
month we offer the system
complete at only $£ 16$ including V.A.T. and postage.
FREE GIFT-Buy this month and FREE GIFT-Buy this month and
you will receive a pair of Goodyou will receive a pair of Good-
man's elliptical $8^{\prime \prime} \times 5^{\prime \prime}$ speakers

to match this amplifier.

THIS MONTH'S SNIP We all know how especially in the cold weather p.v.c. leads lose a lot of their flexibility, in fact some poor grade p.v.c. can be quite stiff
and awkward and will not stay put. We recently purchased a quantity of an extra flexible twin cable. This is highly suitable for lead lamps, vacuum cleaners, in fact any portable device which does not need an earth. The regular price of this very flexible cable which is suitable
for up to 7.5 amps is 30 p per metre, and that is buying for up to 7.5 amps is 30 p per metre, and that is buying
1,000 metres at a time. However, this month you can buy 1,000 metres at a time. However, this month y
50 metres for $£ 6 \cdot 35$ or 250 metres for $£ 28 \cdot 00$.

WALL MOUNTING THERMOSTAT, Danfoss, a handsome 2 tone this is in-
tended for living rooms but is just as tended for living rooms but is just as
efficient in a greenhouse or store. It is
suitable suitable for normal air temperature range
$32 \mathrm{~F}-30 \mathrm{~F}$-price $£ 4 \cdot 60$. $32 \mathrm{~F}-30 \mathrm{~F}$-price $£ 4$ - 60 .

TANGENTIAL HEATER UNIT

A most efficient and quiet running blower-heater by Solatron-
standard replacement in many standard replacement in many
famous name heaters-comprises mains induction motorlong turbo fan-split heating
element and thermostatic safety element and thermostatic safety
trip-simply connect to the trip-simply connect to the

mains for immediate heatmount in a simple wooden or metal case or mount direct into | base of say kitchen unit. Price |
| :--- |
| $£ 5.95$, post $£ 1.50$. Control switch | £5.95, post $£ 1.50$. Control switch

to give $2 \mathrm{kw}, 1 \mathrm{kw}$, cold blow or off to gilable 60 kw extra. 3 kw model
available
$£ 6.95$. Control Switch 95 p .
3 KW Mode
$£ 6.95$
$+\quad £ 1.50 \mathrm{P} \& \mathrm{P}$

3-CHANNEL SOUND TO LIGHT KIT
Complete kit of parts for a three-channel sound to light unit
controlling over 2,000 watts of lighting. Use this at home if you wish but it is plenty rugged enoush for Disco work. The unit is housed in an attractive two-tone metal case and has controls for each channel, and a master on/of. The audio fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of connecting lamps. Special snip price is $£ 13 \cdot 50$ in kit form or $£ 16 \cdot 50$ assembled and tested.

TERMS: Cash with order-but orders under £10 must add 50p to offset packing, etc.
BULK ENQUIRIES INVITED. PHONE: 0444-54563.
ACCESS \& BARCLAYCARD WELCOMED.

J. Bull [[eecrircal] Ltd.

(DEPT. EE1)
34-36 AMERICA LANE, HAYWARDS HEATH SUSSEX. RH16 3QU

IT'S FREE

Our monthly Advance Advertising Bargains List gives dhich sell oargains arriving or just arrived-often bargains an interesting list and it's free-iisement can appear-it's an interesting list and it's free-just send S.A.E. Below
are a few of the Bargains still available from previous ines.

DUE TO THE HIGH \& RISING PRICES OF FUEL many around for ways of saving some of this cost One looking bought a number of fans from us and fitted these on the ceiling of their workshops where the hot air tends to collect and they blow this hot air downwards. Another Company has bought lans from us to suck the exhaust from their oil fired central heaters through a zig zag of asbestos pipes, the asbestos chamber, the hot air from this is blown through ducting to whare ever it is needed. Basically, they have cut out the normal chimney and replaced this with one of our high power extraclor fans. If you have any other good ideas on heat cost saving,
let us know and we will pass it on to other readers.

PING PONG BALL BLOWER-UPPERS Have you got to Thenanise a Christmas Party or Charity Fund-Raising Event? up and down and being caught. We have some powerful lowers and these should be ideal for this, and of course for more serious purposes. They are 4 stage blowers, coupled to have a terrific suction as well as a high velocity blow. Ex computers, price $£ 26 \cdot 00$.
TWO MORE BLOWERS Both 'snail' type, one very small and compact and suitable for cooling projectors or other quipment. Impeller size $2^{\prime \prime} \times 1^{\prime \prime}$, coupled to mains voltage induction motor, outlet size approximately $11^{\prime \prime \prime} \times 1^{\prime \prime}$. Price
$\mathbf{5 5 . 5 0}+68 \mathrm{p}$. The other is a larger FLANGED BLOWER for direct coupling to ducting, outlet size $3 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}+1^{\prime \prime}$ flange,
holed for easy fixing to trunking. Impeller size $5 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$; holed for easy fixing to trunking. Impeller size $5 \frac{1}{\prime \prime}_{\prime \prime} \times 1 \frac{1}{\prime \prime}^{\prime \prime}$:
Powered by $1 / 12 \mathrm{~h} . \mathrm{p}$. mains motor, £11.75.

RECHARGEABLE SOLID GEL BATTERY 12 v 5 AH new and unused made by or for Elpower Corporation of Callifornia. imilar batteries, R.S. Components is $£ 26^{\circ} \mathbf{0 0}$. Limited quanlity available at $£ 15 \cdot 80$.

DUAL DIGITAL TIMER Short delay, left timer adjustable Ldd., catalogue no. 010 18/1. We have very little instruments on these, but they are battery operated, to use you simply set the digital switches in the desired position, turning the rotary
indicator to the chosen time. The lamp will light up when the indicator to the chosen time. The lamp will light up when the right timer is in operation. Periodic or single action possible. We understand that these cost over $£ 60 \cdot 00$ from the Makers. limited quantity only at $£ 23 \cdot 00$.
SOLID STATE VARIACS By Lewis and Holtzman Lidtheir "Elvar". 230-240v AC in and out. 10 amp model is cylin5 amp model, again cylindrical, $2 \frac{1}{\prime \prime}_{\prime \prime}{ }^{\prime \prime}$ diameter, $4 \mathrm{i}^{\prime \prime}$ deeo. Price 59.20 .
\&
E.H.T. UNITS One of our specialities has always bsen E.H.T Iransformers, and we probably have bigger stocks than mos! of our contemporaries. It is surprising what uses these high
voltages can be put to-killing flies and weeds, lighting central heating boilers, lifting paper, extracting dusi, lighting A new one this month is 14.5 KV . (dc) $0.5 \mathrm{~mA} \rightarrow$ made by ADVANCE ELECTRONICS-this unit is completely enclosed and has input and output sockets-size of the unit is approximately $6^{\prime \prime} \times 3^{\prime \prime} \times 32^{\prime \prime}$, price $£ 15 \cdot 38$ post $£ 1$.
To remind you of the E.H. T. Transformers
list: $\begin{array}{rll}\text { a } \\ 3-4 \mathrm{KV} & 3 \mathrm{~mA} & \text { ex equipment } \\ 5 \mathrm{KV} & 5 \mathrm{~mA} & \text { ex new equipment }\end{array}$

LEDS are used increasingly and are now being recommended for nearly all indicators and for games and novelties. Due to
a fortunate purchase, this month we are able to offer 10 red led's for $£ 1$. These are the small ones equivalent to the TIL
209. Bulk price $£ 60 \cdot 00$ per $1,000+\mathrm{V}$. A.T.

FIG. 8. FLEX is always in demand, especially when doing
the Christmas decorations. We are able to offer white Fig. 8 5 amp type on 5) metre roll for $£ 2.80$, ditto but dark orey with 5 amp type on 55 metre roll for $£ 2 \cdot 80$, ditto but dark arey with
tracer lead, suitable for speaker extensions, 50 metres $£ 3.38$

500 WATT MERCURY VAPOUR LAMP Mazda, ref. 90-5104 MAT/V blended. These give a really powerful light but, of expecting to get this control gear early in the New Year. Price of the lamp is $£ 3 \cdot 38+38 \mathrm{p}$. Post 50 p .

ANTI FROST THERMOSTAT The normal refrigerator ispe thermostat, switches off as the temperature falls and so stat-this switches on as the temperature falls and is set to switch on just above freezing point. It is a skeleton stat so would require boxing, but the price is modest at $£ 1 \cdot 10$.

THIN CONNECTING WIRE 500 metre drums, 7 stranded copper core p.v.c. covered available in 10 different colours.
Price $£ 7 \cdot 15$.

OCTOBER/NOVEMBER CONSTRUCTOR'S SNIP Here's a super bargain for you. 100 twist dris, regular tool shop price over £50, yours for only £11-50. With these you holes in P.C.B. right up to about $\frac{1}{4}^{\prime \prime}$. Don't miss this snipsend your order today.

SUPER BREAKDOWN PARCEL with iree gift of a desoldering pump, perhaps the most useful break-down parcel we have ever offered. Consists of 50 nearly all different computer over 200 transistors and many hundred other parts, resistors, condensors, multi turn pots, rectifiers, SCR etc. etc. for only $£ 8 \cdot 50$, which when you deduct the value of the desoldering
pump, works out to just a little over $4 p$ per panel, $+£ 1 \cdot 27$ pump, works out to just a little o
VAT $+£ 2$ post (it's a big parcel).

TIME SWITCH BARGAIN Large clear mains frequency controlled
clock, which will always show you the correct time + start and stop switches with dials. Complete with knobs
$£ 2 \cdot 50$.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting

Qualify for a New Career

Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
" A " levels
Accountancy
Air
Conditioning
Building
Engineering Purchasing
Farming Sales
Storekeeping
Work Study
Industrial
Management
Mechanical

POST OR PHONE TODAY FOR FREE BOOKLET.

R
 To: International Correspondence Schools

SINCE 1890

Dept. 277D Intertext House, London
SW8 4UJ or telephone 6229911

Subject of Interest

Name
Address

95 HIGH STREET SELSEY, Nr CHICHESTER,
MODULAR ELECTRONICS SUSSEX. TEL: SELSEY (024361) 2916
DISTRIGUTOR FOR SOUD STATE MCROWAVE (THOMPSON CSF) AF PROOUCTS

We now supply the extremely reliable and cost conscious LEADER range of testgear.

LBO	510A 5	$6^{-1} 4 \mathrm{MH}=20 \mathrm{mV}$	¢125 00
L80	512A 5	S-10MH/ 10 mV	117000
L80	b13A 5	S- 10MH\% 10 mV	¢21500
LBO)	307 A 5	b- 20MH\% 10 mV	¢73900
dUAL Thact uscit lustupts			
LBG	308S 3	3 20Mm, 2 mV	¢419,00
LHO	5c8A 5	\% $202 \mathrm{HH} \% 10 \mathrm{mV}$	¢29900
LBG	5204 b	b- 34, mi/ 5 mlV	[475 00
LNO	314 b	¢ 10Mmic somv	125, 00
IV HADHO HSS Lit Alt			
15t,	16 s	Suphal Gernetaton	1. 4900
LSG)	231 F	FM Sterer Supan trmetatia	f16900
ıc,	3970 P		¢ 18900
AUDH TIST Gt AK			
LAG,	26 A	Aubler Gornerator	¢ 6000
LAG	170A A	Austur Gexncotur	f11900
LDM	1/0 1	Onstortum Mitou	¢22500
WM	39^ W	Wenv Fluthe Mrow +hay	f24900
LfM	39 A W	Winv Flution Mretey (1)w..	f29900
Lav	191 A	Authe Tester	¢24900
tas,	125 L		f27900
GI NE RAL TIST GEAH			
Le\%	$140 \quad 1$	LCB Brater	$\bigcirc 13500$
LIC.	905A 1	Transstor Chucter	f 9000
LVt	13 F	Fet Transstur Chersa	f11900
ITC.	90) 1	Thansotor Cierker	¢13900
LAT	41 A	Altemustor	¢135 00
LAI	45 A	Altencator	(7500
L16.	1300 S		f29900
AMAIf UR RADIO			
LOS 1	815	Dip Mtom	f. 4300
L19,	870A A		f 4100
LPM	880 H	HF Powey Mreter	f 6900
LPa	885 S	SWR Watt Meter	f 4400
LAC	895 A	Antrona Coupler	f 85.00
LAC	896	Anterna Counter	f 4100
	897 A	Asterna Cimaplat	f 4100

Please send large SAE for special catalogue. All prices exclusive VAT/carriage.

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc. Available by post, UK 75p post paid: Europe 95 p post paid: Rest of world $£ 1.35$ post paid.

A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, I London NW6 4TA Industrial Sales: 01-328 1009
Mail Order: 01-624 858224 hr service Alsu teltul shons 325 Edgware Road London W?

The 2001 sweeps the board at only £75

Why the Sinclair 2X80 is Britain's best-selling

Built: £99.95

Including VAT, post and packing, free course in computing, free mains adaptor.

Including VAT, post and packing, free course in computing.

This is the ZX80. A really powerful, full-facility computer, matching or surpassing other personal computers at several times the price. 'Personal Computer World' gave it 5 stars for 'excellent value'. Benchmark tests say it's faster than all previous personal computers.

Programmed in BASIC-the world's most popular language - the $Z X 80$ is suitable for beginners and experts alike. And response from enthusiasts has been tremendousover 20,000 ZX80s have been sold so far!

Powerful ROM and BASIC interpreter

The 4K BASIC ROM offers remarkable programming advantages:

* Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
* Unique syntax check. A cursor identifies errors immediately.
* Excellent string-handling capabilitytakes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison).
* Up to 26 single dimension arrays.
* FOR/NEXT loops nested up to 26 .
* Variable names of any length.
* BASIC language also handles full Boolean arithmetic, condition expressions, etc.
* Randomise function, useful for games and secret codes, as well as more serious applications.
* Timer under program control.
* PEEK and POKE enable entry of machine code instructions.
* High-resolution graphics.
* Lines of unlimited length.

Unique RAM

The ZX80's 1 K -BYTE RAM is the equivalent of up to 4 K BYTES in a conventional computer-typically storing 100 lines of BASIC.

No other personal computer offers this unique combination of high capability and low price.

The ZX80 as a family learning aid. Children of 10 years and upwards are quick to understand the principles of computing-and enjoy their personal computer.

The Sinclair teach-yourself
 BASIC manual

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128-page book (free with every ZX80). The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming-from first principles to complex programs.

Kit or built-it's up to you

In kit form, the ZX80 is pleasantly easy to assemble, using a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9V DC nominal unregulated. If not, see the coupon.

Both kit and built versions come complete with all necessary leads to connect to your TV (colour or black and white) and cassette recorder. Plug in and you're ready to go. (Built versions come with mains adaptor.)

personal computer.

 \section*{Now available for the $2 X 30 .$. .in New $16 K-B T T E R A M ~ p a c k ~$

 \section*{Now available for the $2 X 30 .$. .in New $16 K-B T T E R A M ~ p a c k ~$

 Now available for the $2 X 30 .$. .in New $16 K-B T T E R A M ~ p a c k ~$

}

 Now available for the $2 X 30 .$. .in
New $16 K-B T T E R A M ~ p a c k ~$}
}

before you can buy cassette-based software using the full $16 \mathrm{~K}-\mathrm{BYTE}$ RAM. So keep an eye on the personal computer magazines-and brush up your chess perhaps!

The RAM pack simply plugs into the existing expansion port on the rear of the ZX80. No wires, no soldering. It's a matter of seconds and you don't need another power supply. You can only add one RAM pack to your ZX80-but with 16K-BYTES who could want more!

How to order

Demand for the ZX80 exceeds all other personal computers put together! So use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX 80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1YY.
Remember: all prices shown include VAT, postage and packing. No hidden extras. Please send me:

Qty	Item	Code	Item price Σ	Total Σ
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual. excludes mains adaptor.	02	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual and mains adaptor.	01	99.95	
	Mains Adaptor(s) (600 mA at 9V DC nominal unregulated).	03	8.95	
	16K-BYTE RAM pack(s).	18	49.95	
	Sinclair ZX80 Manual(s). (Manual free with every ZX80 kit or ready-made computer).	06	5.00	

NB. Your Sinclair ZX80 may qualify as a business expense.
TOTAL: £
I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$
Please print
Name: Mr/Mrs/Miss \qquad

Address

PRACTICAL ELECTRONICS PROJECT 125 WATT POWER AMP KIT

SPECIFICATIONS

Max. Output power Operating voltage (DC) Loads $50-80 \mathrm{Max}$.
4.16 ohms Sensitivity for 100 watts $\quad 400 \mathrm{mV} @ 47 \mathrm{~K}$ Typical T.H.D. @ 50 watts 4 ohms load Dimensions $\quad 205 \times 90$ and $190 \times 36 \mathrm{~mm}$
The P.E. power amp kit is a module for high power applications-disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short cirtuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated components, the
output stage uses four 115 watt transistors normally only two would be used, result, a high powered rugged unit. The PC Board is backprinted, etched and ready to drill for ease of construction, and the aluminium chassis is preformed and ready to use. supplied with all parts
and circuit diagrams.
f9. 50
 ACCESSORIES $\mathbf{f 1 . 0 0}{ }^{\text {ounvopeop }}$ Suitable L.S. coupling electrolyic
Suitable Mains Power Supply Unit

AS FEATURED IN PRACTICAL ELECTRONICS OCTOBER ISSUE

DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES

MULLARD STEREO PREAMP MODULES AND TWO 12 WATT POWER AMP KITS.

In easy to build form P.C.B.s backprinted, etched and drilled ready to use.

BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER ACCESSORIES AND L.S. KIT EXTRA (not available separately)
 f6.00

DIY PACK $12 \times$ power amp kits LP1182/ preamp module, suitable for ceramic and auxiliary inputs. DIY PACK $22 \times$ power amp kits LP1184 preamp module suitable for magnetic ceramic and auxiliary inputs. DIY SPEAKER KIT Two $8^{\prime \prime} \times 5^{\prime \prime}$ approx.

DIY ACCESSORIES Mains translormer smoothing capacitor rectifier $4 \times$ slider controls, for base, treble and volume. ${ }^{f 3.00}$ plus $f 1.60 \mathrm{p} \& \mathrm{p}$

ACCESSORIES: Available only at time of purchase of Bargain Packs

12 + 12 WATT AMPLIFIER

KIT NOTE: for use with 4 to 8 ohms speakers.
With up-to-the-minute teatures. To complete you just supply screws, connecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape or tunet. Outputs-tape, speakers and headphones. By the press of a button it transforms into a 24 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP1183 pre-amp module, plus 2 power amplifier assembly kits and mains power supply. Also featured 4 slider level controls, rotary bass and treble controis and 6 push button switches. Silver finish fascia panel with matching knobs. Easy to assemble teak simulate cabinet and ready made metal work. For further information instructions are available price 50 p. Free with kit.
Size $9 \%{ }^{\prime \prime} \times 8 \%{ }^{\prime \prime} \times 4$ " approx.
NOTE:
for use with 4 to 8 ohms speakers.

plus $\mathrm{f} .55 \mathrm{p} \& \mathrm{p}$

BSR chassis record deck with manual set down and return, comand return, com-
plete with stereo plete with stereo ceramic cartridge £8.50 plus $f 2.75 \mathrm{p}$ \& p when purchased with amplifier. Available separately f 10.50 plus $\mathrm{f} 2.75 \mathrm{p} \& \mathrm{p}$. $8^{\prime \prime}$ SPEAKER KIT. 2 Philips 8 " approx. speakers. $\mathbf{f 4 . 7 5}$ pet stereo pair plus $f 1.50$ p\&p when purchased with amplifier. Available separately $£ 6.75$ plus $f 1.50 \mathrm{p} \& \mathrm{p}$. STEREO MAGNETIC PRE-AMP CONVERSION KIT all components including P.C.B. to convert yout ceramic input on the $12+12$ amp to magnetic. f 2.00 when purchased with kit featured above. $\mathbf{f 4 . 0 0}$ separately inc $p \& p$.

BSR Manual single play record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco use.
$f 12.25$

PHILLIPS RECORD PLAYER DECK GC037 Hi Fi record player deck 2 speed, Size approx $15 \%^{\prime \prime} \times 12 \%^{\prime \prime}$ damped cueing, auto shut-off, belt 4. 4 drive with floating sub chassis to plete with GP401 stereo magnetic cartridge-LIMITED STOCK. UNBEATABLE OFFER AT
£27.50 complete
plus $f 2.75 \mathrm{p} \& \mathrm{p}$

PRACTICAL ELECTRONICS CAR RADIO KIT
(Constructors pack 7)

7)
plus $f 1.75 \mathrm{p} \& \mathrm{p}$
 - 6 watt output * Ready etched \& punched P.C.B.
*Incorporates suppression circuits *Now with tape input socket
All the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options, black illuminated tuning scale, with matching rotary control knobs. one, combining on/off volume and tone-control, the other for manual tuning, each set on wood simulated fascia.
The P.E. Traveller has a 6 watts output, neg ground and incorporates an integrated circuit output stage, a Mullard IF module LP1181 ceramic filter type, pre-aligned and assembled and a Bire pre-aligned push button tuning unit. The radio fits easily in or under dashboards.
Complete with instructions.

> CONSTRUCTORS PACK 7A
> Suitable stainless steel fully retractable locking aerial and speaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$) is $\mathbf{f 1} 95$ per pack available as a kit complete $\mathbf{I 1 . 9 5}$ p\&p $f 1.00$ Pack 7A may only be purchased at the same time as Pack 7 NOTE: Constructor's pack 7A
> sold complete with radio kit $\mathbf{£ 1 5 . 2 0}$ including p\&p. FEATURED PROJECT IN PRACTICAL ELECTRONICS.

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching fascia, red mains indicator and stereo jack socket. Functions swith for mic magnetic and crystal pickups, tape and auxiliary. Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size $143 / 4 \times 10^{\prime \prime}$ approx.
READY To PLAY $£ \mathbf{3 2 . 9 0}$ plus
f3.30 p

> 323 EDGWARE ROAD, LONDON W2 2IC HIGH STREET, ACTON W3 6NG ACTON: Mail Order only. No callers ALL PRICES INCLUDE VAT AT 15\% All items subject to availability. Price correct at 18.11.80 and subject to change without notice. For further information send for instructions 20p plus stamped addressed envelope.
> NOTE:
> Persons under 16 years not served without parent's authorisation.

ARISTON PICK UP

Ariston pick-up arm manufactured in Japan.
Complete with headshell.
f11.95
Listed price over $£ 30.00$

> OUR PRICE

100 WATT
MONO DISCO AMPLIFIER
Brushed aluminium fascia and rotary controls. Size approx $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$. Five vertical slide controls, master volume, tape leverl, mic level, deck level, PLUS INTER DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level controls (PRL) lets YOU hear next disc before fading it in. VU meter monitors output level. Output 100 watts RMS 200 watts peak

50 WATT MONO DISCO AMPLIFIER

Size appox $13 \hbar^{\prime \prime} \times 5 \%^{\prime \prime} \times 6 \% \%^{\prime \prime} .50$ watts rms. 100 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume. $f 30.60$
plus 63.20 p\&p

Parsonal Shoppers EDGWARE ROAD LONDON W2 Tel: $01-723$ 8432. 9.30am-5.30pm. Closed all day Thursday ACTON: Mail Order only. No callers goons oesparched to mamlamo ano m. iRELumo omir
... READ THE INSTRUCTIONS! So goes a well-known saying, which is apparently not borne in mind by some of our readers. We often get letters and telephone calls posing questions about a project which are answered in the article itself, or else in an advertisement in the same issue of the magazine. When I am reading a book or magazine article, I always feel it a matter of pride to make every effort to find the answer to a query myself, without asking anyone else, but some constructors will put pen to paper quite unnecessarily.

One reader, not many months ago, was puzzled over something in a circuit diagram. When it was pointed out to him that the accompanying caption specifically referred to his problem, he admitted that he hadn't read the caption. Just last week, another reader telephoned to point out an error in the PW "Twynham" multimeter project, for which we were very grateful. But he then went on to complain that we hadn't given enough information in our December issue to enable him to build it, not realising that it was only the first part of the article, although this had been mentioned in no less than four places in that issue.

I would be the first to admit that we sometimes don't give all the information about a project that we should or might do, and in any case we always try to answer any queries which we receive. But, it
may save you the cost of a letter plus return postage, and waiting for the answer to come back, if you read the whole of the relevant article carefully, just to make sure that the solution to your problem wasn't there all the time.

Having said all the above, we do like getting your letters nevertheless. We simply can't cope with technical queries by telephone, though, they just take up too much time that we should be devoting to preparing future issues of $P W$. And when writing, don't forget to include a stamped, self-addressed envelope, or for overseas readers, an International Reply Coupon.

Incidentally, though I quite understand how frustrating it can be, waiting for the remaining parts of an article to appear before a project can be completed, we can not give out information in advance of publication, no matter how pressing the need.

Pin

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. For more diffficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

PROJECT COST

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this will be mentioned in the Buying Guide.

CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

Advanced

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. Constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 11.80$ per annum, from "Practical Wireless" Subscription Department, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at 95 p each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 4,30$ to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Departmont, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate.

Please make cheques, postal orders, etc. payable to IPC Magazines Limited.

Club News

A new amateur radio club has been formed, the Rolls-Royce R. A. C., Barnoldswick Division, with the callsign G3RR.

The club meets at the Rolls-Royce Sports and Social Club, Barnoldswick, on the first Wednesday of the month at 2000 hr , and a c.w. class is held every Monday evening, starting at 1915.

Visitors are very welcome and further details can be obtained from: The Secretary, L. Logan, 19 Fenton Avenue, Barnoldswick, Colne, Lancs. BB8 6HB.

The RRRAC QSL card

State of the Art

In a design Centre exhibition, open from Wednesday, 7 January 1981 until Saturday, 7 March, the public will be able to see and try out microelectronic products for the home, and have a glimpse of things to come.

In the form of central heating programmers, electronic chess sets and other products, microelectronics are gradually moving into the home. They are to be found in modern versions of familiar household items such as alarm clocks, toys or burglar alarms, but it is the opportunities microelectronics offer in previously undeveloped product areas that will arouse the most interest. Some designers are already taking advantage of the way in which microelectronics has enabled the shape of the product to be related to the needs of the user rather than its mechanical function. Their imaginative ideas will be a main feature of the exhibition.

The Design Council, 28 Haymarket, London SW1Y 4SU. TeI: 01-839 8000.

Technical Literature

Mullard Ltd. have produced two new publications which give details of practical hi-fi power amplifiers using Darlingtons.

The first publication, Ref. M800058, describes a $10 / 20 \mathrm{~W}$ amplifier incorporating Darlingtons Type BDT80 and BDT61.
The second, Ref. M80-0057, deals with a $25 / 30 \mathrm{~W}$ amplifier using BDT62 ($p-n-p$) and BDT63 ($n-p-n$) Đarlingtons.

In addition to describing the circuits, both publications give advice on the preparation of suitable p.c.b.s.

Copies are available from: Technical Publications Department, Mitcham New Road, Mitcham, Surrey CR4 4XY. Tel: 01-648 3471.

New Research Fellowship

Racal Electronics Ltd. has established a new Research Fellowship in Radio Communications at the University of Surrey, to promote the imaginative study of some aspects of radio communications systems. The Racal Fellowship is to be held in the University's Department of Electronic and Electrical Engineering, initially for a period of four years.

The first holder of the Fellowship is Mr A . K. Brown, a physics graduate of the University of East Anglia (1974), who joined Marconi Research Laboratories, Great Baddow, Essex, where he was particularly concerned in the design of the Post Office Goonhilly IV Earth Station. He then joined Standard Telecommunication Laboratories, Harlow, where he was involved in research and development on a variety of antenna systems.

During his tenure of the Fellowship, Mr Brown will continue to work on antennas. His personal interests lie in microstrip antenna arrays and adaptive systems and it is likely that his efforts will be concentrated in these areas.

His programme of work will be undertaken in association with related work on antennas, both at Racal Research Ltd. and at Racal-Decca Ltd. Mr Brown will also contribute his knowledge to the design of the microwave antennas for UOSAT, the
small satellite for schools and radio amateurs which is now being built at the University and is scheduled for launch in September 1981.

University of Surrey, Guildford, Surrey GU2 5XH. TeI: (0483) 71281.

BBC's 1000th Colour TV Transmitter

On Friday, 7 November 1980, the BBC's 1000th colour TV transmitter came into operation at Hedleyhope, in County Durham.

The Hedleyhope relay station has been built to provide television services for about 1000 residents of Waterhouses, Esh Winning and East Hedleyhope in the Deerness Valley.

In order to take advantage of the station, viewers will need to install suitable aerials. Group B aerials should be used, they should be mounted outside where there is a clear view of the relay station and should be fitted with their elements horizontal.

The channels used at Hedleyhope are: BBC1 (North-East) Ch. 40; BBC2 Ch. 46; ITV (Tyne Tees) Ch. 50. The BBC channels carry the Ceefax information service for viewers with teletext receivers.

BBC Engineering Information Department, Broadcasting House, London W1A 1AA.

Inside the Hedleyhope relay station

Free Catalogues

Babani Books, the technical book publishers, inform me their latest catalogue is now available.

The 24-page catalogue lists nearly 90 separate titles which cover virtually every aspect of electronics.

To obtain your free copy of the catalogue apply to: Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF. Tel: 01-603 2581/7296.

Visitors to the PETSHOW held at the Cafe Royal in June 1980 will have witnessed a large selection of British software and hardware developments for Commodore's PET microcomputer systems. All products exhibited were featuring as Commodore approved products and as part of Commodore's Endorsement Scheme. Complemented by several new additions, details on these Commodore Approved products are available from the 200 regional PET dealers. The new Approved Products Catalogue now contains over 50 such products from business software, business peripherals, educational programs, medical construction and building services, engineering software, mains power control, hardware and interfacing programmer's aids/utilities to literature, furniture and field maintenance service.

Copies are available, free, on application to: Commodore Business Machines, Commodore Information Centre, 360 Euston Road, London N1. Tel: 01-388 5702.

Verospeed, the Hampshire based electronic component distributors, have announced a massive increase in the number of stocked product lines in the new Autumn ' 80 edition of their catalogue.

Over 400 new product lines have been added to the existing range, including Resistors, Capacitors, Fuses and Fuse Holders, Batteries and Chargers, Voltage Selectors, High Quality DIP Sockets, Audio XLR Connectors, PC Rotary Switches, Test Leads, Multimeters, Electronic DPM's and Counters, Engineers' and Technicians' Tool Kits, Component Storage Cabinets, Modular Bezels, Panel Mounting DIN Enclosures, Extruded Aluminium Boxes, Battery WireWrapping Tools, Power Supplies and many more.

The catalogue is free, and as always, is fully priced, with many of the existing product lines showing significant reductions.

Verospeed Limited, Stansted Road, Boyatt Wood Industrial Estate, Eastleigh, Hampshire SO5 4ZY. Tel: (0703) 618525.

On The Move

Electronics Brokers have recently moved to new premises. The move became necessary following the company's rapid growth in the second-user market for test equipment, mini computers and peripherals, and the need to provide improved facilities for refurbishing and calibration.

The larger premises and special equipment installed, allow Electronic Brokers to carry greater and much more varied stocks. Also, specialised facilities in the new premises enable the company to offer thorough demonstration of all the equipment it sells. The new premises are at: 61/65 King's Cross Road, London WC1X 9LN. Tel: 01-278 3461.

New Catalogue

Marshall's latest 1980/81 catalogue is now available. The 60-page catalogue covers a number of important new product areas which include NiCad batteries and chargers and test equipment from the Leader company.

Priced at $60 p$, the catalogue is available free to bona fide companies ordering on their headed paper, or by mail order for $75 p$ which includes $p \& p$, from: A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA. Tel: 01-624 8582.

Silver Jubilee for GB2SM

The Science Museum Radio Station, GB2SM, has been demonstrating the practice of radio communication to visitors for the past 25 years and during this time tens of thousands of contacts have been made throughout the world.

It has progressed from a simple table-top layout into a large purposebuilt console which enables the visitor to see all that is happening. This was manufactured to the Museum's design by Imhof-Bedco Ltd. and allows flexibility in the use of equipment and its accessibility to the operator. During times of maximum activity it provides for three separate operating positions to be worked simultaneously, thus
enabling more than one mode to be demonstrated.

The main position utilises a Collins KWM-2 and a 30L-1 with a 75S3-B and Racal 1772 receivers also available. An alternative position uses a KW 2000E integrated with an Eddystone EA12. VHF operation is covered by a Trio TS-700 and linear amplifier. Eight aerials, located on the roof of the Museum, provide for both local and long distance communication to be demonstrated.

Geoff Voller G3JUL, has been the staff operator of the station since it started in 1955 but assistance has been given by a number of volunteers, all experienced operators, and many being members of F.O.C. These people started as a contest team and were
world leaders during the station's early days. Their operation is now mainly at weekends and their expertise is much appreciated, when besides providing a high standard of operating they are ambassadors of Amateur Radio, helping the visitor to understand the world of radio communication and encouraging people to enter the field of electronics.

The station can be viewed during normal Museum opening hours and demonstrations are at 1130 and 1600 Monday to Friday and 1500-1730 on Saturdays. Special demonstrations can be arranged for parties visiting the Museum if advance notice is given.

Science Museum, South Kensington, London SW7 2DD. Tel: 015893456.

Last month we looked at the types of propagation which make long-distance reception of TV programmes at v.h.f. and u.h.f. possible. We complete this short series by talking about aerials and accessories and give information on aerial supplies and further reading.

Aerials

We have covered signal reception by both Tropospheric and Ionospheric modes, and general practice dictates a different philosophy for each type of reception. The Tropospheric signal at Band III and u.h.f. is weak, and a high-gain system will be required. Certainly the size of the array will relate to its gain, i.e., the bigger the power gain, the bigger the structure. I feel that the beginner in the hobby should confine "Tropo" reception to the u.h.f. spectrum, where a wealth of equipment is available. Since reception will be required over the whole u.h.f. band, a cost-effective system for the beginner will suggest wideband coverage with a single aerial array.

There are many wideband types, including the multipledirector format (the " X " type director) but inevitably such a Yagi system will have a rising gain throughout the spectrum, which in part compensates for increasing losses in cable and tuner performances with increase in frequency. Unfortunately such arrays can be expensive, but given a favourable location the array may provide an alternative ITV programme for domestic viewing. Another type of system that has a wideband characteristic is the stacked bowtie (much favoured in North America) which has a flat response throughout the band (at least within about 3 dB). Whereas the Yagi is very directional, the bowtie tends to have a much broader forward acceptance lobe at -3 dB points, which has both advantages and disadvantages. The bowtie system tends to be much cheaper.
Typical beamwidths at -3 dB points for a multiple element Yagi would be 30°, whereas a stacked bowtie could be 50° or more (at the low frequency end in both cases). Power gain with a multiple wideband Yagi typically is around 11 dB to 17 dB (a rising gain response throughout the band peaking at around Ch. E60), whereas a bowtie will hover around the $12-14 \mathrm{~dB}$ mark throughout the band. Cost for these systems again varies according to mànufacturer and source. The Yagi can range from $£ 29$ to just under $£ 50$, whereas the bowtie tends to be lower, between $£ 14$ and $£ 16$.

Head amplifiers are invaluable at u.h.f. when long coaxial cable runs are encountered, although with the contin-

A grouped u.h.f. multiple-director long Yagi, the JBX14 by Jaybeam. Wideband multiple-director arreys are produced by several UK manufacturers

An example of a wideband u.h.f. stacked bowtie array, the "Colour King" by Wolsey. The overall height is around 760 mm

We are proud to announce that we are now stockists of CUSHCRAFT for the London area - also Sommerkamp/Yaesu, Standard, Swan/Cubic, Sony.
We are the main UK Service Contractors to Hitachi Sales UK Ltd and we have fully trained engineers on the premises. We have been in the service industry for 15 years and we know what we are doing.
Here are some of the products available at the EAST LONDON HAM STORE:-

THE STANDARD TWINS

 C7800 C8800

SOMMERKAMP
FT767Dx HF. £525.00 TS280FM 50W £199.00 TS280LP 10W £169.00 FRG7................... £189.00 FT277ZD £589.00 FT480RE £359.00 £270 £250
 SPECIAL OFFER TS802 only $£ 129$

YAESU
FT227RB £258.75
FT207.................. £196.00
YM24 $\mathbf{£ 1 6 . 2 7}$
N9C£7.50

FT101ZD £569.00

FULL RANGE OF FDK EQUIPMENT AVAILABLE SWAN

h.f. CUSHCRAFT AMATEUR ANTENNAS

A3 20/15/10 3ele Beam 8dB gain $\mathbf{£ 1 4 7 . 0 0}$ ATV5 80-10 Trapped Vertical £74.40
ATV3 20/15/10 Trapped Vertical £34.00
ATV4 40/20/15/10 Trapped Vertical.................. $\mathbf{£ 6 8 . 0 0}$

VHF (144 MHz)

A3219 19ele Long 'Boomer' Yagi 16.2 dB gain $\mathbf{£ 6 2 . 0 0}$
214B 14ele Jnr 'Boomer' Yagi 15.2dB gain £49.50
ARX2 Ringo Ranger 6dB gain vertical................. £24.75
A144-4 4ele Yagi 9.0dB gain.............................. £16.25

A144-7	7ele Yagi	£20.31
A144-11	11ele Yagi 11.3dB gain	£25.72
DX120	20ele Array 13.2 dB gain	£47.20
ARX2B	Ringo Ranger II	£28.75
ARB2K	Conversion Kit for Ringo to Mk II version	£12.75
CS100	Communication Speakers	£11.50
TAP3009	5/8 Side Mount and snap in 2MTR.- $144-174 \mathrm{MHz}$.	T.B.A.
TAP677		£18.50
K220	Mag Mounts Base 17' Cable \& PL259	£8.67
TAP/432	$\mathbf{M H z}$ Snap in for K220	TBA

Full range of accessories, plugs, sockets etc. available. We also supply and fit in-car entertainment - Hitachi - Pioneer - Sharp - National Panasonic

Also available:-Video - Hi-Fi - T.V. - Music Centres, e.g. Hitachi SDT 300 auto-reverse music centre with pre-set FM, Dolby, strobe turntable, $25+25 \mathrm{~W}$ per channel, including speakers only $£ \mathbf{2 6 9 . 9 5}$ - These are either Sample or Demonstration units. Many other Hitachi Demonstration models available, Hi-Fi, Portable Stereo Radio Cassettes etc.
Telephone 01-558 0854 BARCLAYCARD

191 FRANCIS ROAD, LEYTON, LONDON E10 Opening Times: 9-5.30 Mon.-Fri.
$10.00-1.00 \mathrm{pm}$ Sat.
or any time by appointment.

Telex 8953609

uing improvement of u.h.f. tuner front ends, unless a head amplifier with very low noise is used, it may be found that the noise figure of the tuner is better (i.e., lower) than the amplifier, and little improvement is noted. In a wideband aerial amplifier for u.h.f., one could expect a gain in excess of 20 dB and a noise figure of under 4 dB . In fact, the writer has recently noted advertisements in the technical press for a head amplifier for u.h.f. Group operation with a gain of 20 dB and a noise figure of just $1 \cdot 2 \mathrm{~dB}$. That is just about as low as one will get with the current state of the artunfortunately the price of the latter unit is rather high!

In the event of the operator living within 15 miles of a high-powered local transmitter (u.h.f.), it may be found that a wideband amplifier will tend to overload the front end of the tuner, causing cross-modulation and "spread" of the local channels onto other channels that would normally be empty. In such cases the DXer is advised to make use of notch filtering prior to external amplification, and it may be found more practical to use ultra-low-loss coaxial cable feeder, site the amplifier indoors and insert filtering as and when necessary to reduce the impact of the "local" on immediately adjacent channels. One would obviously select an amplifier that can handle high-level signals since this type is less likely to increase the problem. Typical prices for low-noise, high-signal handling head amplifiers range from about $£ 21$ (also needing a power supply for "up the cable powering", which would be typically from about $£ 11$). Notch filters vary according to notch depth but simple types for in-line use cost around £6.

Band I DX will generally appear between $48-64 \mathrm{MHz}$ (video carriers) and as with u.h.f., a single wideband array will be efficient, cost-effective and avoid the drama of aerial changing when changing channel. Wideband Band I aerials can be purchased in a variety of types, ranging from a single dipole to a higher gain $4 / 5$ element beam, or for the practical enthusiast they can be constructed. A single dipole for Band I using 12 mm diameter elements will have a bandwidth of perhaps $4-5 \mathrm{MHz}$, certainly insufficient to cover all of Band I. Wide-banding a Band I system is at best a compromise, but losses encountered with mismatch will be much lower than would occur at u.h.f. A wideband aerial therefore contains more than one element, the elements resonating at various parts of the design bandwidth and coupled into the main dipole to effect (hopefully!) a reasonable performance over Band I. In practice, however, results over many years confirm that acceptable wideband performances can be obtained on simple home-constructed arrays. An outline design for a simple array for wideband coverage of Band I is given in Fig. 4. It is suitable for use with 75Ω coaxial cable. I will not pursue use of head amplifiers on Band I since cable losses are minimal and inevitably some sort of filtering will be needed to reduce local interference sources.

Prices for commercial wideband Band I arrays range upwards from around $£ 21$ for a 3 -element. Antiference manufacture a wideband u.h.f. system (for use in Band I and Band III) and intended for export. This has been used by enthusiasts with some success. The Band I section comprises 3 elements and the Band III section either 8 or 11 elements depending on the type purchased. The approximate cost for the smaller version (at the time of writing) is $£ 41.25$ including VAT and subject to production runs.

One aerial that has proved extremely popular for Band I work is the omni-directional system comprising two wideband dipoles (half-wave dipoles actually) mounted at right angles, the two dipoles combining with equal lengths of coaxial cable in a ferrite-cored wideband coupler such as the Labgear CM6011/OS. Such an array can give reception over 360° when mounted horizontally. Indeed,

Fig. 4: Directional wideband Band I array ($48-64 \mathrm{MHz}$) based on the patented Antiference "Trumatch" system. All elements 12 mm o.d. and the boom 25 mm o.d. hard-drawn seamless alloy tube
all Band I and u.h.f. arrays should be mounted in the horizontal plane since most European countries use this polarisation, and with our vertical polarisation from BBC 405 -line main stations a useful reduction in local Band I interference is obtained.

Depending upon the type of array in use (and certainly with the u.h.f. arrays) it will need to be rotated, either by a home-brew system or the more costly rotor system (usually from around £42). Since each house/flat is different, I will not detail any aerial supporting masts/structures, but perhaps give a few ideas. A cheap and sturdy mast is constructed from scaffold (alloy preferred), mounted on a 1.2 m putlock hammered into the ground. A scaffold swivel clamp is used to hold the scaffold pole and lift it to the vertical, and then to secure it against the house,

Double-hop Sporadic E from Amman, Jordan, Ch. E3 (55.25 MHz) received by Ryn Muntjewerff. A department store bargain sale advertisement

A classic station identification. The Ch. E3 Nigerian TV transmitter at Jaradi/Sokoto, received by David Martin in north Dorset at over 3000 miles via multi-hop Sporadic E

Reception via F2 layer at $\mathbf{6 0 0 0}$ miles by Ryn Muntjewerff in Holland. An eastern USSR station on Ch. R1
etc. The eaves of a typical house can be nearly 9 m high and with quite simple TV bracketry one can put aerials to over 11 m with ease. Many enthusiasts use their Band I arrays inside the roof space with success, and this can give the added bonus of all-weather access for experiments and changes. The u.h.f. array should, when possible, be mounted outside to avoid the much higher losses encountered when inside the roof space.

Amplifiers

The wideband aerial amplifier can give a useful increase in received signal in all bands. There are many types commercially available that fulfil the function of medium gain and low noise. Designs appear from time to time in our sister magazine Television, and indeed several appear in my own book. For use with an up-converter I would suggest that a low- to medium-gain v.h.f. amplifier is used, to avoid taking the up-converter stages into crossmodulation. In the July 1978 issue of Television was
featured an interesting hybrid i.c. amplifier covering $30-900 \mathrm{MHz}$ with a flat gain of around 18 dB and noise figure of 5dB maximum. The SGS amplifier Type SH221 can be recommended for DXTV use (I have two in service), and being ready assembled on a small chip one need only supply 24 V d.c. to pin 4 . Care must be taken with construction, and lead lengths minimised with the earth pins directly grounded. The data sheet can be obtained from SGS-ATES UK Ltd., Planar House, Walton Street, Aylesbury, Bucks-enclose an s.a.e. The SH221 can be obtained directly from Hawnt Electronics Ltd., Firswood Road, Birmingham B33 0TQ at $£ 8.35$ plus 25 p handling and 15% VAT, a total of $£ 9.89$.

Conclusion

It is hoped that his article has given the reader an insight into the setting up of a DXTV installation, and of the problems likely to be encountered and how to resolve them. No two installations are the same, and difficulties found in one will usually differ from another even when in the same town. It is obviously impossible to be truly detailed when writing an article aimed at a readership that can range from young schoolboys to doctors of science, since the subject is so technically complicated. Hopefully this article has succeeded in giving some enlightenment, that more DXTV enthusiasts will take up the banner and that those already established will look to technical improvements in their existing installation.

Several of the illustrations used in this series have previously appeared in Television. Our thanks to the Editor of that magazine for permission to reproduce them here.

Further information can be obtained from:

Practical Aerial Manual, 2nd edition, by Gordon King (NewnesButterworth).
Long Distance Television Reception (DXTV) for the Enthusiast, by Roger Bunney (Babani Publishing Ltd., Book No: BP52).
Television Magazine (IPC Magazines Ltd.), a monthly DXTV column.

Suppliers of equipment:

High Cocks Television Services, Bre Cottage, Cripps Corner, Staplecross, Robertsbridge, East Sussex TN32 5RY, can supply modified TV receivers, varicap tuner units, miscellaneous components and "one-off" DX accessories. S.a.e. with all enquiries.
South West Aerial Systems, 10 Old Boundary Road, Shaftesbury, North Dorset. Tel: 0747 4370. Suppliers of TV and f.m. receiving aerial equipment for local, fringe and DXing installations. Customer advisory service. Catalogue 25 p or s.a.e. with enquiries.

"You are $\mathrm{S} 9+30$ here. Could I have your name and OTH as I didn't get them.'
... heard by G4BWV

[^0]
Michael TOOLEY B A \& David WHITFIELD MA MSc

The ultimate accuracy of the digital multimeter depends largely on the care taken during the calibration process. It is therefore important that the following steps are taken before relying upon any indications given by the instrument!

1. Initial Calibration of the $\mathbf{7 1 0 7}$ Reference Voltage:

This is carried out by connecting an external meter (preferably another digital meter) between pin 36 of the 7107 and the 0 V rail. R33 is then adjusted for a reading of exactly 1 V d.c. at this point.

2. DC Voltage Ranges:

The 2 V d.c. range should not need any calibration and no further adjustment is necessary on this range. The arrangement for calibrating the d.c. voltage ranges is shown in Fig. 22 and Table 1. R5 and R6 are adjusted in conjunction with an external meter, as shown.

WAD732
Fig. 22: DC voltage range calibration
Table 1. Adjustments for calibration of d.c. voltages

DMM Range	2 V d.c.	20 V d.c.	200 V d.c.
$\mathrm{V}_{\text {cal }}$	1 V d.c.	10 V d.c.	20 V d.c.
R 1	$100 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	Zero
Adjust	none	R 5	R 6
Desired Indication	1.000	10.00	20.0

3. AC Voltage Ranges:

Provided that the precision rectifier is functioning correctly no calibration of the a.c. voltage ranges should be required. The arrangement shown in Fig. 23 and Table 2 will, however, provide a means of checking the instrument on the a.c. ranges. Note that any changes made to the settings of R5 and R6 will affect both the a.c. and d.c. range calibrations.

Fig. 23: AC voltage range checks and calibration
Table 2. Adjustments for calibration of a.c. voltages

DMM Range	2 V a.c.	20 V a.c.	200 V a.c.
$\mathrm{V}_{\text {cal }}$	1 V a.c.	10 V a.c.	20 V a.c.
Adjust	none	R5 but see text	R 6 but see text
Desired Indication	1.000	10.00	20.0

4. DC Current Ranges:

Calibration of the direct current ranges may be carried out using the arrangement of Fig. 24 and Table 3. Before starting to calibrate the current ranges it is first necessary to short-circuit the input terminals of the multimeter and adjust R20 for zero indication on the most sensitive (20 mA full-scale) range. This adjustment compensates for the offset current associated with IC1c.

WAD734
Fig. 24: Direct current range calibration

Table 3. Adjustments for calibration of direct current ranges

DMM Range	2 A	200 mA	20 mA
$I_{\text {cal }}$	100 mA	100 mA	10 mA
R_{1}	100Ω $5 \% 1 \mathrm{~W}$ carbon	100Ω $5 \% 1 \mathrm{~W}$ carbon	$1 \mathrm{k} \Omega$ 2% metal oxide
Adjust	none	R 24	R 25
Desired Indication	.100	100.0	10.00

5. Resistance Ranges:

The arrangement shown in Fig. 25 and Table 4 should be used. Before attempting to calibrate the instrument on the ohms ranges it is wise to set R9, R10 and R11 to midposition, this avoids excessive currents in Tr 2 which would occur if the variable resistors were left at the extreme short-circuit setting.

(No standard meter is required)
Fig. 25: Resistance range calibration

Table 4. Adjustments for calibration of resistance ranges

DMM Range	$2 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$
$\mathrm{R}_{\text {cal }}\left(\frac{1}{2} \mathrm{~W} 2 \%\right)$	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
Adjust	R 9	R 10	R 11
Desired Indication	1.000	10.00	100.0

6. Junction Test Facility

This can be checked by connecting known silicon and germanium diodes to the meter in the manner shown in Fig. 26. Typical indications of forward voltage (in volts) will be given on the $2 \mathrm{k} \Omega$ resistance range. On this range the junction is tested at a current of 0.1 mA . When the
$20 \mathrm{k} \Omega$ and $200 \mathrm{k} \Omega$ ranges are selected the test currents are $100 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ respectively. The forward voltage will then appear in mV but the position of the decimal point should be ignored.

Fig. 26(a): Checks for junction test facility using a silicon diode 4

Fig. 26(b): Checks for junction test facility using a germanium diode \mathbf{V}

Operational Notes

As with any piece of test gear the digital multimeter will need plenty of familiarisation before the user can extract the maximum benefit from it. One particular pitfall for the newcomer is that of relying on the last digit or two rather than using the full $3 \frac{1}{2}$ digits to obtain maximum accuracy and resolution. The range switching should always be used where possible to provide a display of at least three digits.

With the exceptionally high values of input impedance associated with the 7107 and j.f.e.t. operational amplifiers of the LF347 care must be taken not to operate the digital multimeter in stray fields created by other mains-operated equipment in the vicinity.

For maximum hum and noise reduction it is recommended that the metal body of the shafting assembly be connected to the $0 V$ rail. In some cases it may also be necessary to earth the core of the mains transformer.

Where the meter is used extensively to measure quantities which are referenced to earth it is recommended that the 0 V rail be linked to the mains supply earth (Fig. 13). This again reduces hum and noise pick-up. If, however, the meter is required to be fully "floating", this link should not be connected.

Fig. 27: Construction of the a.c. voltage probe $\boldsymbol{\Delta}$

Fig. 28: Construction of the plug-in a.c. current shunt \boldsymbol{V}

Where the instrument is used to measure alternating voltages in the presence of a d.c. level, a capacitor of 10 nF 400 V d.c. working should be connected in the live " + " signal lead. Details of a suitable a.c. probe are given in Fig. 27. This may readily be constructed using the body of a discarded pen and a 3.5 mm jack plug. For measurements

Fig. 29(a): Testing npn transistors
of alternating currents the instrument should be used on the 2 V a.c. range in conjunction with a suitable shunt as shown in Fig. 28. If a $1 \Omega 2 \cdot 5 \mathrm{~W}$ resistor is used the 2 V a.c. range will read 2 A full-scale. If, alternatively, a $10 \Omega 1 \mathrm{~W}$ resistor is used the indication will be 200 mA full-scale.

Transistor junctions may be tested as shown in Figs. 29(a) and 29(b). In both cases the meter should be switched to the $2 \mathrm{k} \Omega$ resistance range and the input leads are alternately reversed to forward and reverse bias each junction. Unmarked transistors may thus be checked and identified as "good" germanium or silicon types. Note that this does not provide any measure of the current gain!

Fig. 29(b): Testing pnp transistors

The brilliance of the l.e.d. display may, if desired, be varied using the circuit of Fig. 30. This gives a range of control from "dim" to "very bright" and can be useful where the instrument is used under a wide range of lighting conditions. In either case the use of a display bezel and filter (RS Components 586-790) is highly recommended.

WAD740
Fig. 30: Circuit for varying the display brightness
This completes the $P W$ Twynham digital multimeter with analogue readout. You should find this a very useful instrument to have around the shack or workshop.

The Fairchild $\mu \mathrm{A} 714$ Precision Op. Amp.

The Fairchild $\mu \mathrm{A} 714$ has been designed for precise, lowlevel signal applications. It offers low-noise, low-drift and accurate closed-loop gain which make it particularly suited for certain of the more exacting instrumentation applications, such as bio-medical instruments, precision measuring and data conversion applications.

Package

The device is housed in a T099 circular, 8 lead, metal package with the connections as shown in Fig. 1. The absolute maximum permissible operating voltage is $\pm 18 \mathrm{~V}$ for the L version, and $\pm 22 \mathrm{~V}$ for the $\mu \mathrm{A} 714, \mu \mathrm{~A} 714 \mathrm{E}$ and $\mu \mathrm{A} 714 \mathrm{C}$, but it is wise to set an upper limit of a few volts less than these maximum values to allow for tolerances, and drift in supply voltages.

Fig. 1: Connections to the μ A714 circular metal package

A particular feature of the $\mu \mathrm{A} 714$ is its low input offset voltage which has a maximum value of $250 \mu \mathrm{~V}$ in the case of the $\mu \mathrm{A} 714 \mathrm{~L}$ and $75 \mu \mathrm{~V}$ in the case of the $\mu \mathrm{A} 714$ with typical values of $30 \mu \mathrm{~V}$. These compare with a maximum input offset voltage of up to 6 mV in a 741 op . amp.

A variable resistor is used in many operational amplifier circuits to null the input offset voltage; the potentiometer being adjusted so that the output voltage of the operational amplifier is zero when the same voltage is present at the non-inverting (+) and inverting (-) inputs. Unfortunately this external nulling technique has a number of disadvantages, including extra component cost and space for the variable resistor, the resulting degradation of the offset characteristics with temperature changes and the requirements for setting up time and setting up equipment. Other nulling techniques such as signal chopping and an internally heated input stage also have their own disadvantages.

In the $\mu \mathrm{A} 714$ the input offset voltage is greatly reduced by a technique known as "Zener zapping" so that a nulling circuit is often not required, but when external nulling is used, only a very small adjustment is needed. Zener zapping is used only during the manufacture of the operational amplifier. The device offset voltage is measured by the production equipment which is programmed to send a large current through certain internal Zener diodes so that their electrodes are melted together; the device then has a much lower input offset voltage. Only selected Zeners are fused in each particular $\mu \mathrm{A} 714$ to achieve optimum performance in that particular device.

Low Input Current

Another special feature of the $\mu \mathrm{A} 714$ is its low input bias current (maximum $\pm 30 \mathrm{nA}$ for the $\mu \mathrm{A} 714 \mathrm{~L}$, typically lnA for the $\mu \mathrm{A} 714$). This input current is roughly thirty times lower than the 741 (maximum 500 nA). The $\mu \mathrm{A} 714$ does not have such a small input current as the types with f.e.t. input devices, such as the μ AF771 series with a maximum of 100 pA input current, but f.e.t. input devices do not have such small input voltage offset values and the bias current doubles for each $10^{\circ} \mathrm{C}$ rise.

Various other parameters such as the large signal voltage gain, the input resistance and the common mode rejection ratio are well up on the same parameters of the 741 device, as is the noise performance which is not even specified for the 741. The $\mu \mathrm{A} 714$ is not a fast device and its slew rate is even less than that of the 741.

A number of applications for the $\mu \mathrm{A} 714$ have been described by Jeff Thompson in Fairchild application note 348 dated 1979. Most of these applications are of the instrumentation type where the features of the $\mu \mathrm{A} 714$ are put to good use.

Thermocouple Amplifier

The circuit of Fig. 2 shows the use of the $\mu \mathrm{A} 714$ to compare the potentials from the two thermocouple junctions V1 (which is at the temperature to be measured) and V2 (which is at a reference temperature). This type of application is a very demanding one for an operational amplifier, since the small differential voltage between the two junctions has to be measured in the presence of large common mode voltages present at both inputs. It is therefore important that the amplifier used should have excellent common mode rejection of such signals. In addition, the change of input offset voltage with temperature must be very small and the offset must be stable over a long time period.

In order to obtain optimum common mode rejection in the Fig. 2 circuit, the ratio of R1/R2 should be matched to that of R3/R4, preferably to 0.01 per cent. If the value of R1 and R3 is of the order of $1 \mathrm{k} \Omega$, this will decrease the voltage drops due to input bias currents.

Fig. 2: A high stability thermocouple amplifier

Two Stage Amplifier

The circuit of Fig. 3 employs a $\mu \mathrm{A} 714$ in the input stage for a very small input offset voltage together with a μ AF771 output stage. The use of this output device enables a slew rate of $13 \mathrm{~V} / \mu \mathrm{s}$ to be obtained as opposed to the $0.17 \mathrm{~V} / \mu \mathrm{s}$ of the $\mu \mathrm{A} 714$ device alone. This means that the output voltage can change more rapidly and hence larger output voltage swings can be handled at higher frequencies than with a $\mu \mathrm{A} 714$ alone. This two-stage approach is less expensive than the use of an amplifier device which has both a good input voltage offset performance and a high slew rate.

Fig. 3: A two-stage amplifier with high slew rate and low input offset voltage

The low input bias current of the $\mu \mathrm{AF} 771$ allows the value of R 2 to be as high as $5 \mathrm{k} \Omega$, but the use of higher values of R2 will start to produce appreciable errors in the output voltage. The junction of R2 and R3 is forced to a potential equal to the offset of the $\mu \mathrm{AF} 771$. The gain is set by the ratio R2/R1.

DC Power Amplifier

The use of a $\mu \mathrm{A} 714$ in the input circuit of Fig. 4 and a $\mu \mathrm{A} 759$ power operational amplifier in the output circuit enables the low input offset voltage of the $\mu \mathrm{A} 714$ to be combined with the high output current of the $\mu \mathrm{A} 759$ which is at least 352 mA . The input signal is connected to the non-inverting input of the $\mu \mathrm{A} 714$ and the output of the latter is connected to the non-inverting input of the $\mu \mathrm{A} 759$ so that a positive going input voltage produces a positive going output voltage.

The resistor R4 provides negative feedback over the second stage and the resistor R5 over the whole of the two stages. The gain of the whole circuit is set by the ratio of R5/R2. Thus the values shown produce a gain of $100 \mathrm{k} \Omega$ $\div 1 \mathrm{k} \Omega=100$, but R 5 could, for example, be doubled to double the gain.

The output voltage of this circuit can swing to $\pm 10 \mathrm{~V}$ d.c. into a 100Ω load for an output current of 100 mA . A suitable heatsink should be fitted to the $\mu \mathrm{A} 759$ power operational amplifier. The offset referred to the input is less than $100 \mu \mathrm{~V}$, so with an overall gain of 100 , the output d.c. shift is less than 10 mV .

Fig. 4: A d.c. power amplifier using two stages

Voltage Follower

The circuit of Fig. 5 is a buffer stage for large signals with a gain of unity which can be used as an interface between two stages which could be connected directly together because of impedance matching problems.

The low offset voltage of the $\mu \mathrm{A} 714$ combined with its high common mode rejection ratio ensures that the output voltage is kept accurately at the same value as the input voltage-hence the name "voltage follower" for this type of circuit, since the output voltage "follows" that of the input.

Fig. 5: A large-signal voltage follower

Conclusion

The $\mu \mathrm{A} 714$ device is suitable for many of those applications where one requires a device with a performance that is significantly better than that offered by products such as the 741 . The $\mu \mathrm{A} 714$ is one of the quietest of the current range of operational amplifiers.

WATERS \& STANTON ELECTRONICS

18/20 MAIN ROAD. HOCKLEY
ESSEX. TEL (0702) 206835

4,000 SQ FT
DEVOTED TO RADIO COMMUNICATION

SR9 VHF
 RECEIVER AMATEUR/ MARINE
£46 inc. VAT
The SR9 must be one of the most popular monitors for 2 metre amateur radio enthusiasts. (Also is fully tuneable across the band with the option of also installing up to 11 xtal controlled channels. Power requirements are $12 v$ DC negative earth 200 ma approx. The unit comes complete with mobile mounting kit and built-in speaker.

PROFESSIONAL AIRCRAFT MONITOR R517 £49.50 (as supplied to pilots, ground crew etc.) The R517 is a professional aircraft monitor receiver, having superb sensitivity and capable of tuning across the entire aircraft band 118 143 mHz . For easy tuning there is both a coarse and fine tuning con-
trol. In addition there is a 3 position switch for selecting xtal controlled channels (xtals $£ 3.00$ extra) for your local airport. The unit is completely portable running off self-contained batteries.

TRIO R1000
COMMUNICATIONS RECEIVER OUR PRICE f285 ($\left.\begin{array}{c}\text { Free Securicor } \\ \text { Delivery }\end{array}\right)$

The R1000 has really caused a stir in the receiver market! Its performance matches professional receivers costing many times more and with our new competitive price of $£ 285$ it must be the best value on the market today. Full digital readout from 200 kHz (actually it operates right down to 20 kHz but with reduced sensitivity) means accurate tuning and the 30 position band selector switch means really good bandspread for easy operation. Other features include noise blanker (a really good onel) built-in speaker, digital clock/timer and both 230 v $\mathrm{AC} / 12 \mathrm{v}$ DC operation. (Yes we include the 12 v DC kit freel) Each model is fully checked and delivered anywhere in the U.K. within 24 hours of receipt of payment!

YAESU COMMUNICATIONS
 RECEIVER

FRG7700 £309
FRG7700MEM $£ 380$
pLUS FREE GLOBAL $3-30 \mathrm{mHz}$ Aerial
Free Securicor
Delivery
The FR7700 is a new model from Yaesu that replaces the FRG7000. Full coverage is provided between 200 kHz and 30 mHz with bright digital readout that also doubles as a clock. Features include noise blanker, FM detector, internal speaker, 230 volt AC operation and built-in timer. As an optional extra there is also a memory unit which enables up to 12 selected frequencies to be stored and selected.

PS134 4 AMP 13.8 v POWER SUPPLY. STABILISED \& SHORT CIRCUIT PROOF £23 plus $£ 1.50$ p\&p

This is the power supply that we've been advertising and selling for several months. It really is a robust little unit with a transformer 50% larger than its competitors. Some cheap power supplies get hot, hum and even go bangl This one stays silent and keeps on working. It is fully protectd against short circuit and overload and is capable of delivering 4 amps continually at 13.8 v DC. Ideal for transceivers.

SWR/POWER/FIELD STRENGTH MEASURING METER OFFER £11.50 +50p p\&p As used by CB and Amateur radio operators. The YW3 is used by amateur radio and CB operators around the World. It's offered to you at a really low price because we import them direct from Japan. It tells you the VSWR. power output and field strength and covers 3.5 to 150 mHz . If you want the strongest signal in town - you'll find the YW3 the sure answer.

FM TX MONITOR NOW YOU CAN MONITOR YOUR OWN TRANSMISSIONS
(15 watts max.)
£12.95
Now at last you can actually hear your own FM transmissions in 2 metres. Simply plug this unit into your transmitter aerial lead in order to hear your own transmitted audio. At this price there really is no excuse for not having one.

GLOBAL SHORT WAVE AERIALS

The new Global short wave aerials mean better reception for short wave listeners. These fully comreception for short wave listeners. These fully comprehensive kits provide all the materials you need to erect a really efficient, long lasting aerial. All wire corrosive.
INVERTED ' L ' This covers $3-30 \mathrm{mHz}$ and requires a
garden length of 30 ft £9.95
BROAD BAND DIPOLE This covers a $3-30 \mathrm{mHz}$ and requires a garden length of 65 ft . Also included in 50 ft . of special low loss coax cable.

$$
£ 29.00
$$

For further details send S.A.E.

AR22 VHF FM MONITOR OUR PRICE £83 inc. VAT

Truly amazing! The AR22 tunes across the 2 metre FM band 142 148 mHz (also includes Police and Fire Brigade) in 5 kHz steps. So small it will fit into a shirt pocke and yet nothing is sacrificed in terms of performance. Price includes rechargeable batteries, mains charger, fly serial etc. You won't find a smaller monitor anywhere.

M161 FM SCANNER AMATEUR OR MARINE MODEL £59 inc. VAT

This highly compact monitor can be supplied either for the 2 metre amateur band or the marine band. It has the capability of scanning up to 16 channels and hunting out and locking on to any signal that appears. Ideal for mobile or base operation an external 12 v DC supply is required but unit has builtin speaker, mobile mounting brackets, etc. The receiver comes with the national calling channel. Additional crystals for channels are $£ 3$ each.

STOP PRESS:- SEND 14p STAMP FOR NEW 1981 CATALOGUE ON RADIO COMMUNICATIONS
MAIL ORDER SLIP to: Waters \& Stanton Electronics, Warren House, Main Road, Hockley, Essex.
Name. \qquad Good required. \qquad
Address \qquad

Please rush me the above. Cheque enclosed for $£$.
/Please charge to credit card No

RSGB Publications

A Guide to Amateur Radio (18th edn, paverback)........£2.99 A Guide to Amateur Radio (18th edn, hardback)£6.18 Amateur Radio Awards (2nd edn)
Amateur Radio Operating Manual $\mathbf{£ 4 . 9 6}$
Amateur Radio Techniques (new 7th edn) $\mathbf{f 6 . 0 8}$
Amateur Rado Techniques hew 7th edn) .. $\mathbf{£ 1} \mathbf{2 8}$
Morse Code for Radio Amateurs ...
RSGB Amateur Radio Call Book (latest 1981 edn)............... $\mathbf{£ 4 . 2 9}$
Radio Amateurs' Examination Manual (8th edn).................... $\mathbf{£ 2 . 6 5}$
Radio Communication Handbook (5th edn) Vol 1.............£9.76
Radio Communication Handbook (5th edn) Vol 2.............£8.50
Radio Data Reference Book (4th edn) $\mathbf{£ 4 . 8 2}$
Test Equipment for the Radio Amateur (2nd edn).................................
TVI Manual (2nd edn).. $\mathbf{1} 1$.
VHF/UHF Manual (3rd edn) ... 24
World at their Fingertips .. $\mathbf{8 . 9 8}$

Logbooks

Amateur Radio Logbook ...£2.83
Mobile Logbook..

Wall maps
Great Circle DX Map...£2.10
IARU QTH Locator Map of Europe..
QTH Locator Map of Western Europe1.30
World Prefix Map...£2.21
Morse instruction
Morse Code Cassette Stage 1 (5 wpm)£3.82

Other Publications

A Course in Radio Fundamentals (ARRL) £3.10
Active Filter Cookbook (Sams) ...212.69
All About Cubical Quad Antennas (RPI) ..
Amateur Television (BATC) ...22.28
Antenna Anthology (ARRL) ..£3.66
ARRL Electronics Data Book...33
Beam Antenna Handbook (RPI).. $\mathbf{£ 4} \mathbf{0 2}$
Better Short Wave Reception (RPI) $\mathbf{4} .56$
Care \& Feeding of Power Grid Tubes (Varian)98
CMOS Cookbook (Sams)...£9.54
FM \& Repeaters for the Radio Amateur (ARRL)...........................88
Hints and Kinks for the Radio Amateur (ARRL)£3.26
Practical Antennas for the Radio Amateur (SCELBI).....£7.94
Radio Frequency Interference (ARRL) .. $\mathbf{. 1}$
Simple Low-cost Wire Antennas (RPI)...27
Single Sideband for the Radio Amateur (ARRL)
Solid-state Basics (ARRL)..4.67
Solid-state Design for the Radio Amateur (ARRL)f6.09
The ARRL Antenna Book .. $\mathbf{£ 4 . 1 3}$
The Complete Handbook of Slow Scan TV (Tab)...............f.5.72
The Radio Amateurs VHF Manual (ARRL) $\mathbf{£ 4 . 0 3}$
Understanding Amateur Radio (ARRL) ..£3.87
World Atlas (RACI)...88
World Radio TV Handbook, 1980 (Billboard)........................99.75
80m DXing (CTI) ...£3.03

Prices include postage, packing and VAT where applicable. Postal terms: cheques/POs with order (not stamps or book tokens). Goods are obtainable (less P \& P) at RSGB HQ, 9.30-5pm, Monday - Friday.

The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby, including listeners. The Society also publishes a complete range of books, log books and maps for the radio amateur. Contact the membership services section for more information about amateur radio, the RSGB and its publications.

LAR THESHORT WAVE WIZARDS

TRIO R1000 PLL SWL Receiver 200 kHz to $30 \mathrm{MHz} £ 297.85$

(Securicor delivery arranged if required)

Trio R1000 C\&L SWL Communications Receiver 200 KHz to 30 MHz .

TRIO EQUIPMENT

R820 The ultimate SWL receiver. SP820 Matching Extension Speaker. £690.00
HS5 Communications Headphones. £37.95

HS4 Communications Headphones. £21.85

Full range of Trio Transceivers in stock.

COMMUNICATIONS RECEIVERS

Lowe SRX30 still the best value.
£158.00
YAESU FRG7 General Coverage. £199.00 YAESU FRG7000 Digital Readout. All YAESU Transceivers available.

ICOM AMATEUR EQUIPMENT

LAR are Yorkshires largest stockists of the full ICOM range of transceivers.

VHF AMATEUR RECEIVERS

Search SR9 VFO for crystal control 2M FM 144 to 146 MHz .
$\mathbf{£ 4 6 . 0 0}$
(Marine 156 to 162 MHz also available).
AMR 2178 2M FM Scanner $144-146 \mathrm{MHz}$.
Fitted 8 crystals battery/mains.
The best and most popular 2 m . monitor. £120.00
Extra crystals for the above receiver.
£2.50

TUNERS, SWITCHES AND SHACK CLOCKS

$\mathrm{K} \times 2$ SWL Antenna Tuner 500 KHz to 30 MHz . $\quad \mathbf{£ 2 9 . 9 0}$ LAR Omni Match (HF, VHF, Mobile \& Linear, send 20p for details).
Cx/3 SWL 3 Way Antenna Switch. $\quad \mathbf{£ 5 . 6 0}$
LAR 1 kW PEP Feeder Switch (switch to quality). $\mathbf{£ 1 6 . 9 5}$
COPAL 24 Hour Digital Clock, mains operated. £12.95

AIR BAND RECEIVERS

Sharp F $\times 213$ AU hand held portable.
£16.00
SILY ACE R517 VFO and crystal control.
£49.50 SIGNAL R512 Scanner fitted 5 channels. $£ 138.00$ Crystals for R517 or R512.
Regency Digital flight scan (no crystals required). $\mathbf{£ 2 3 0 . 0 0}$ BEARCAT 220 FB. Scanner 66 to 512 MHz . $£ 258.75$ SX200 Programmable Scanner 26 to $514 \mathrm{MHz} . £ 239.00$
(All prices include VAT. Securicor delivery arranged on request.

Buy by post or phone your Barclaycard, Access, or LAR Creditcard number. Alternatively, call in for a chat. The shop is just 10 minutes from Leeds City Station, and there's easy parking if you travel by car. *Instant HP for licensed amateurs. *Extended Credit Terms Available.

Send 50p for Catalogue and Price List.

TRIO DISTRIBUTOR. LAR are area distributors for Jay Beams, Antenna Specialists, Hilomast Icom and Microwave Modules and Ascot products.

The majority of metronome projects that appear in the amateur electronics magazines are designed to simulate an ordinary mechanical metronome (or Maelzel's metronome as it is sometimes called after its originator). There is a type of mechanical metronome that can be set to ring a bell on every second, third or fourth beat, and this design is really just an electronic equivalent of such an instrument. Apart from the normal characteristic regular clicking sound, the accentuation takes the form of a distinct lowering in the pitch of the output signal. A beat of about 40 to 270 beats per minute is covered in a single continuously variable range.

Operation

Before going on to consider the operation in detail it may be helpful to consider the basic way in which the device functions.

A NE555V astable is adjusted to oscillate at the desired beat rate, and this functions as a clock oscillator. The output of the clock generator is used to trigger a monostable multivibrator, which is formed from one of the two monostables contained in a c.m.o.s. 4098 device. This circuit will produce a short output pulse each time it receives a positive going input signal, and this pulse is used to drive a loudspeaker via a simple single-transistor output stage. In this way the basic metronome sound is generated.

The output from the clock oscillator is also used to drive a c.m.o.s. digital divider circuit. When the function switch S1 is in position 1, the clock enable terminal of the divider is taken to the positive supply rail voltage by resistor R9. This terminal must be taken low (logic 0 or the 0 V rail) in order to connect the clock signal through to the divider circuitry. The metronome therefore acts as an ordinary non-accented type with switch S1b in position 1 .
In the other three positions of S1b, the clock enable terminal is connected to the 0 V supply rail and the divider circuit is able to operate. The divider used is a 4022 divide-by-eight device, but this is also a one-of-eight decoder, and it is this mode that is used in the device.

For those who are unfamiliar with one-of-eight decoders, these are devices which have eight outputs, usually designated 0 to 7 . Before the circuit starts to count, or when it is reset, the 0 output is high and the other seven outputs are low. On the rising edge of the first clock input cycle the 0 output goes low and the 1 output goes high. On the next clock cycle the 1 output goes low and the 2 output
goes high. On subsequent clock cycles outputs 3 to 7 go high in sequence, and then the circuit resets itself and starts once again from the beginning.

In this case the 1 output is connected to the input of a second positive-edge monostable circuit which is formed by the other section of the 4098 device. This produces an output pulse which is about five times longer than that generated by the first monostable, and it is used to drive the output stage and loudspeaker.

If the 4022 was left to function normally, on every eighth clock cycle the 1 output would go high and trigger the second monostable. This would result in a longer output pulse from the speaker.

The extended output pulse would contain lower frequency components than the normal pulse produced, and this would give a noticeably lower pitch. Its longer length would also tend to make its sound somewhat louder than the normal output pulses. This would give the required accentuation, but only on one pulse in eight. In order to obtain the accentuation on every second, third and fourth beat it is necessary to make the 4022 reset itself at the required time. This is accomplished by connecting the reset terminal to outputs 2,3 and 4 respectively, using S1 to select the appropriate output for the desired division rate.

CONSTRUCTION RATINE Beginner

BUYING GUIDE

Constructors should have little difficulty obtaining the components for the Accented Metronome. The box used in the prototype was the Verocase Type 75-141 1D $205 \times 140 \times 75 \mathrm{~mm}$.

APPROXIMATE

 cost £16Fig. 1: Full size p.c.b. copper track pattern of the Accented Metronome

Fig. 2: Component placement layout

Fig. 3: Complete circuit diagram of the metronome

Thus in position 3 , for example, outputs 0,1 and 2 will each go high for one clock cycle, then at the beginning of the next clock cycle output 3 goes high and resets the counter back to zero. The circuit continuously cycles in this manner with output 1 going high on every third clock cycle, and with every third beat emphasised in consequence. The beat rate of the clock generator, IC 1, can be varied by adjusting R1. One problem with this type of circuit is that it is necessary to use an electrolytic capacitor (C2) in the timing network due to the fairly low frequencies involved. With the wide tolerance range of electrolytics (even before allowances are made for other timing components) there is a strong likelihood of more than the required frequency range being covered. This is overcome by including R4 in the circuit. It shunts an internal potential divider circuit of IC1 which determines the threshold voltage at which C2 begins to be discharged. By raising this voltage, the range of output frequencies are all reduced, and reducing this voltage has the opposite effect. This enables the circuit to compensate for any inaccuracy in the timing component values, provided there is not an unreasonably large discrepancy.

The output signal at pin 3 of IC1 is compatible with the c.m.o.s. devices it is used to drive. A timing network for the first monostable is provided by R5 and C3, and they set the output pulse length at about 0.5 ms . The second timing network is set by R 8 and C 4 , producing an output pulse of a little under 2.5 ms in duration.

Transistor Tr 1 is used as a simple common-emitter output stage having the loudspeaker as its load. Its base is driven from the Q outputs of the monostables via current-

\star components

Resistors$\frac{1}{4} W 5 \%$		
$1 \mathrm{k} \Omega$	2	R6,7
$1.8 \mathrm{k} \Omega$	1	R3
$15 \mathrm{k} \Omega$	1	R2
$100 \mathrm{k} \Omega$	3	R5,8,9
Potentiometers		
$22 \mathrm{k} \Omega$	1	R4 (hor
$100 \mathrm{k} \Omega \mathrm{lin}$	1	R1
Capacitors Electrolytic		
$100 \mu \mathrm{~F} 25 \mathrm{~V}$	1	C1
$10 \mu \mathrm{~F} 10 \mathrm{~V}$	1	C2
Polyester		
$\begin{aligned} & 10 \mathrm{nF} \\ & 47 \mathrm{nF} \end{aligned}$	1	$\begin{aligned} & \mathrm{C} 3 \\ & \mathrm{C} 4 \end{aligned}$
Semiconductors		
BC109	1	Tr 1
Integrated Circuits		
555		IC1
4022	1	IC3
4098	1	IC2
Miscellaneous		
4 w 3 p rotary switch (1); Toggle switch s.p.s.t. (1); Loudspeaker 35-80』; Verocase (Type 75-1411D)		
$205 \times 140 \times 75 \mathrm{~mm}$; Cont battery and connectors.		

limiting resistors R6 and R7, and so Tr 1 is normally cut off and will only be driven into conduction for periods when one or both of the outputs are in the high state.

The divider circuit of IC3 is almost identical to the arrangement outlined previously. The only and very minor difference is that the reset terminal is connected to the 2 output in position 1 of S1. This is merely done as IC3 is a c.m.o.s. device and should not have any input left floating. It is tied to the 2 output merely because it is the most convenient point. S2 provides on/off switching, and C1 is the only supply decoupling component that is needed.

Construction

The prototype was housed in a Verocase with the loudspeaker and controls mounted on the front panel. Apart from the battery, the remaining components are all mounted on a printed circuit board. Although the cabinet is made of plastics, it is advisable to space the panel slightly off the case for mechanical rather than electrical reasons; the panel might otherwise distort and possibly crack when it is bolted into position.

All c.m.o.s. devices have an inherently high input impedance and are very susceptible to damage by static discharge. Under no circumstances must you remove the device from its protective conductive foil packaging until ready to insert into circuit. This operation should be done on a metallic surface that is at earth potential. A metal draining board would usually suffice. Note one hand must be kept in contact with the metallic surface at all times to prevent the build up of body static. When soldering components to the board ensure the iron tip is earthed and if this is not so, allow it to reach working temperature and remove mains plug.

Internal view of the prototype

Adjustment

Initially R2 should be set with the slider at about the centre of its track. If the range covered by the unit errs on the low frequency side, then by adjusting R4 in a clockwise direction it should be possible to correct this. It should be adjusted in an anti-clockwise direction if a reduction in the frequencies covered is necessary.

Finally, a scale calibrated in beats per minute should be marked around the control knob of R1. The output frequency is easily determined simply by counting the number of beats produced in a one minute period.

PART 1
Peter CHADWICK G3RZP UNDERSTANDINGRESESUERIPARAMETERS

Radio receivers are fairly complex pieces of apparatus, with price tags capable of varying over a range of 500 to 1. Defining performance and achieving the best price compromise is therefore fairly important, and usually only by comparing the performance figures can any real choice be made. The number of figures required can be somewhat daunting, in so far as manufacturers describe parameter specifications emphasising the good points, whilst advertisers frequently make seemingly meaningless statements to blind the purchaser, not with science, but with pseudo engineering jargon. Furthermore, some of these parameters are not understood by many amateurs and, as a listen to 80 metres will show, in many cases a little knowledge can turn out to be a dangerous thing!

This article will attempt to shed some light on the various measurements that are required to evaluate the parameters of a receiver. Although biased towards h.f. communications, the principles involved are equally applicable to l.f. or v.h.f. receivers and, in some cases, to conventional broadcast receivers as well.
Sensitivity
The basic requirement of any radio receiver is good sensitivity. Sensitivity is a measure of the ability of the receiver to detect a signal, and provide a suitable output from it. The requirements in terms of absolute sensitivity are very variable, and as with most other parameters, are in the nature of a compromise. The sensitivity required for any particular receiver is dependent upon the job it has to do-anyone who watched the TV series The Secret War,
or read Dr R. V. Jones' book will probably remember that one of the clues that established the existence of the Knickebein Beams was the discovery of the unnecessarily high sensitivity of the Lorenz Beam Approach receiver fitted to captured pathfinder aircraft.

Receivers for the h.f. bands normally have a sensitivity of around $1 \mu \mathrm{~V}$ for a quoted signal-to-noise ratio. The absolute figure is somewhat variable, and it is necessary to define terms before we get hopelessly lost.

The first consideration is noise. Conduction of electricity is by means of moving electrons in a conductor, but this movement also occurs when current is not flowing. In any conductor that is above absolute zero temperature there is a random movement of electrons. Because this movement is non-polarised, there is no net movement-if there was, a voltage could appear across the ends of a piece of copper wire! In a resistance also, random movement of electrons causes voltages to appear, and although there is a net cancellation, a small fluctuating noise voltage appears across the resistance. The greater the random movement of electrons, the greater this noise voltage becomes. Similarly, for any given random current, the voltage is proportional to the resistance and also the bandwidth of the system. As already stated the random movement of the electrons is affected by the absolute temperature, and thus a relationship can be derived for the value of the noise voltage in terms of resistance, bandwidth and temperature. This relationship, derived from basic physics, gives an absolute limit on the sensitivity of any radio receiver. How much worse the receiver sensitivity is depends upon the design and the system requirements.

FRG7700 COMMUNICATIONS RECEIVER

$\star 150 \mathrm{kHz}-30 \mathrm{MHz}$ no gaps
\star SSB-CW-AM and FM
\star Up-conversion no preselector
$\star 12$ channel memory option
\star Mains and 12 volts dc option
\star Clock/timer built-in

General Coverage

From 30 MHz to 150 KHz (and at reduced spec down past 60 khz to almost DC !) in 1 MHz bands selected by a 40 way rotary switch calibrated 0-29 plus $1,3,7,10,14,18,21,24,28$ and 29 (for easy amateur band changes).

All Modes

SSB, (USB and LSB), CW, AM and FM. The inclusion of a N.B.F.M. detector and squelch opens new horizons. On 10 m FM simplex plus repeaters, and with a convertor, marine, PMR lab use, and of course, the VHF/UHF amateur bands, where the high quality noise blanker will be found to be most efficient.

Selectivity

4 filters fitted as standard! SSB, 2.7 KHz and FM 15 KHz . For $\mathrm{AM}, 3$ positions! Narrow 2.7 KHz , Medium 6 KHz and Wide 12 KHz , which with the tone control, and switchable AGC provides the operating flexibility demanded by discriminating BCL's in todays' crowded bands.

Sensitivity

Fraction of a microvolt sensitivity provided by the latest 3SK73 mosfet RF stage makes the best use of inefficient aerials for those difficult locations. A 20 dB switchable attenuator and a continuous RF attenuator on the front panel minimises problems with very powerful stations.

Ease of use

No preselectors! The use of the latest up conversion circuits with a 48 MHz first IF and professional grade crystal filter plus dual PLL system provides automatic selection of the input bandpass filter direct from the band sector or memory.
The VFO has both a pleasing bright, but dimmable digital readout and a back illuminated analogue scale. It is tuned by a comfortable $1 \frac{3}{4}$ " knob with a 'fast tune finger tip recess' through a zero backlash slow motion drive. The front panel is remarkably uncluttered, clearly labelled and the controls in logical positions. The illuminated meter is calibrated in both conventional ' S ' units $(0-9+20,+40,+60 \mathrm{~dB})$ and in SIMPO $1-5$ for broadcast station reporting.

Timer

An inbuilt quartz clock/timer is featured. Time is displayed in 12 hour format (with AM/PM indicators) on the digital frequency readout, ideal for accurate \log keeping. If the mains supply is disrupted the clock will continue to run (but does not of course, display) on the memory back up cells. For use with a tape recorder a 3.5 mm jack provides 100 mV of audio (irrespective of the position of the AF gain control) and relay contacts (15 V \& 1 A max) provide remote control. This relay is switched by the timer which may be programmed for switch on/switch off (and snooze allows up to 59 minutes of listening after switch off).

Antennas

On the rear panel a SO239 coax socket provides a 50 ohm input (230 MHz) for resonant antennas and convertors. In parallel, and in addition, are posts, for Earth, and for 500 ohm antenna input (up to 2 MHz).

Memory (option)

12 frequencies anywhere within the tuning range may be stored by simply touching the M button and then recalled by pressing the MR button, no preselector adjustment, no range switch adjustment. The memory is tunable by $\pm 1 \mathrm{KHz}$ and is kept alive year long by 3 ' AA ' dry cells. The memory may be used for storing all the frequencies of a particular broadcast station, and with a convertor, the common marine channels, 2 m FM channels (switch between the VFO and memory for repeater input/output) etc.

World Wide Portability

Power:- Mains 240-220 VAC easy adjustment $100-120 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ and 12 VDC external supply.

Size:- $13^{\prime \prime} \times 5^{\prime \prime} \times 9^{\prime \prime}$
Weight:- 14 lbs (with carrying handle)

Speaker:- Inbuilt 8 ohms, 1.5 W of AF, External 4-16 ohm unit. $\frac{1}{4}{ }^{\prime \prime}$ phone jack for personal listening or winkling out the weak ones.

Memory:- Going on a trip? Store Radio 4 and all the BBC World Services in the memory and keep in touch with the news.

FRG7700M £389.00

FREE SECURICOR DELIVERY

MEMORY £83.95

2 YEAR DISTRIBUTOR WARRANTY

G3ZUL	Brian	Stourbridge	(03843) 5917	S.M.C. (Leeds)	S.M.C. (Jack Tweedy) LTD	S.M.C. (Jack Tweedy) LTD
GM8GEC	Jack	Edinburgh	(031665) 2420		Roger Baines, G3YBO	Jack Tweedy, G 3ZY
GI3WWY	Mervyn	Tandragee	(0762) 84056	Colin Thomas, G3PSM 257 Otley Road,	Roger Baines, G3YBO 79 Chatsworth Road,	Jack Tweedy, G 3zY 150 Hornecastle Road,
GI3KDR	John	Bangor	(0247) 55162	Leeds 16, Yorkshire.	Chesterfield, Derbyshire	Woodhall Spa, Lincolnshire
GW3TMP	Howarth	Pontybodkin	(035287) 846/324	Leeds (0532) 782326	Chesterfield (0246) 34982	Woodhall Spa (0526) 52793
GW8EBB	Peter	Swansea	(0792) 8725250	9-5.30 Monday-Saturday	9-6: Tuesday-Saturday	9-5: Tuesday-Sat (- appointments)
GJ4ICD	Geoff	St. Saviour	Z0534) 26788			

MML 144/25
£48.30
MML 144/100
MML 144/40
MML 432/20
MML 432/50
MML 432/100 $£ 142.60$
$£ 69.00$
£69.00
$£ 113.85$
£228.65

2M PRE-AMPLIFIER
MMA 144V
ULTRA LOW NOISE
RF SWITCHED GAIN 15dB
NOISE FIGURE 1.3dB
ONLY £29.90

Bredhurst

electronics

HIGH ST, HANDCROSS, W. SUSSEX 0444400786 TRANSVERTERS

MMT 28/144 $£ 90.85$
MMT 144/28 $£ 99.00$
MMT 432/144R £173.00
MMT 70/144 £155.00

CONVERTERS

For further information on any of the above items, or any other MICROWAVE MODULES products please contact:

BREDHURST ELECTRONICS,

MAIL
The High Street, Handcross, Sussex. Tel. 0444400786 RETAIL ORDER ALL PRICES INCLUDE VAT, CARRIAGE AND A FULL 12 MONTH GUARANTEE CALLERS

TO ORDER ANY OF THE ABOVE ITEMS SIMPLY WRITE, ENCLOSING A CHEQUE OR PHONE YOUR CREDIT CARD NUMBER

COMPARE THESE FEATURES

\star MICROPROCESSOR CONTROLLED 32,000 CHANNELS
\star AM \& FM ALL BANDS
\star WIDER COVERAGE: 26-58, 58-88, 108-180, $380-514 \mathrm{MHz}$; includes $10 \mathrm{~m}, 4 \mathrm{~m}, 2 \mathrm{~m}, \& 70 \mathrm{~cm}$ Amateur bands.
$\star 5 \mathrm{kHz}$ \& $12 \frac{1}{2} \mathrm{kHz}$ FREQUENCY INCREMENTS

* 16 MEMORY CHANNELS WITH DIRECT ACCESS
* SELECTIVE PRIORITY CHANNELS WITH LOCKOUT
$\star 2$ SPEED SCAN SCAN DELAY CONTROL
$\star 2$ SPEED SEARCH UP AND DOWN
\star SEARCH BETWEEN PRESET LIMITS UP AND DOWN
$\star 3$ SQUELCH MODES inc. CARRIER \& AUDIO
\star Dx \& LOCAL CONTROL
* RELAY OUTPUT FOR Aux. CONTROL
\star INTERNAL SPEAKER
\star EXTERNAL SPEAKER \& TAPE OUTPUTS
\star LARGE GREEN DIGITRON DISPLAY BRIGHT/DIM
\star AM-PM CLOCK DISPLAY
$\star 12 v$ DC, 230 V AC OPERATION

> "SCAN-X" VHF/UHF BROADBAND FIXED STATION AERIAL £19.90.
> Ideal for SX-200 and other VHF/UHF receivers.

U.K. IMPORTERS \& DISTRIBUTORS: REVCO ELECTRONICS LTD.
POUNDWELL STREET
MODBURY, DEVON, PL21 ORQ
Tel: Modbury (0548) 830665
Dealer enquiries invited

SX200 THE ULTIMATE SCANNER
 SM200 THE ULTIMATE SCANNER

\author{

£241.50 INC. VAT Delivered

}

How much sensitivity can be used? This will depend upon the frequency of operation. Below about 2 MHz , noise levels are such that a minimum detectable signal of $20 \mu \mathrm{~V}$ is, in many cases, much better than is needed, whilst at $144 \mathrm{MHz}, 20$ or 30 nV is nearer the mark. For h.f. work, it is usual to talk in terms of a 10 or 20 dB signal-to-noise ratio at between $0.3 \mu \mathrm{~V}$ and $1 \mu \mathrm{~V}$ input. Nevertheless, a complication occurs when defining what this $1 \mu \mathrm{~V}$ input is, and Fig. 1 illustrates this point. A battery with a 1Ω internal resistance, with no load connected across it, has a terminal voltage for example, of 1.5 V . With a 1Ω load applied the terminal voltage will fall to 0.75 V , the difference between the e.m.f. or open-circuit value, and the p.d. (potential difference). In a matched impedance system, this variation is 2 to 1 , or 6 dB , which gives a marked indicated difference in sensitivity. The American and Japanese manufacturers probably tend to use p.d., because it makes the figure look 6 dB better! Some argument exists over which is correct-to assume that there is a 6 dB difference under all circumstances pre-supposes that the receiver input impedance is accurately known, which is rarely the case. When the receiver does not look like 50 or 75Ω, then tests can be very indeterminate. In these circumstances the actual input voltage depends upon the input impedance and the standing wave ratio on the cable from the signal generator to the receiver-a veritable Tom Tiddlers ground for results failing to agree.

A given receiver can therefore be seen to have a limit on its sensitivity governed by physics, a required sensitivity dependent upon application and a measured sensitivity dependent on the definition of what a $1 \mu \mathrm{~V}$ input is! No wonder confusion reigns!

Sensitivity Measurements

Basically, a receiver is a very high gain amplifier. Such amplifiers have active and passive components in them and the resulting random flow of electrons produces noise within these components that is amplified along with the wanted signal. If the noise produced by the amplifier is greater than the signal, quite obviously the signal will be drowned out. The measurement of sensitivity in terms of signal-to-noise ratio measures how much degradation there is in the receiver, and this degradation may be expressed in several ways. The simplest method, shown diagramatically in Fig. 2, is that of signal-plus-noise-tonoise ratio, where the output power is measured with the signal present, and then again without the signal and the resulting ratio expressed in decibels. For a.m. and f.m. this measurement is the ratio of output with modulation to output without modulation, as the presence of the carrier makes an appreciable difference to the noise output. This is a straightforward, simple measurement, and has been used for many years. However, the ratio is also dependent upon the bandwidth of the system-the greater the bandwidth, the greater the noise. A variation of this specification that is becoming more popular is the SINAD measurement-signal-pius-noise-plus-distortion to noise-plus-distortion. This is measured using a distortion factor meter, which measures the degradation of the signal, and treats the noise introduced as distortion. However, at low input signal levels, the noise is much greater than the distortion and so for SINAD ratios of 20 dB or less, it is therefore a close approximation to the signal-to-noise ratio method. The SINAD method does have the advantage that it correlates the signal-to-noise ratio and the distortion at high levels of input.

Finally, there is noise figure. Noise figure is the ratio by which input signal-to-noise ratio is degraded by the

Fig. 1: The difference between e.m.f. and p.d.
receiver, and because it is the ratio of two ratios, it can be shown to be independent of bandwidth. This is a great advantage when making comparisons, but measurement of noise figure is not easy, especially in f.m. systems. However, some correlation can be obtained from the signal-plus-noise-to-noise measurement as follows.

For a given input impedance, bandwidth and temperature, the signal-noise ratio is $X \mathrm{~dB}$. (This is derived from physical constants described previously.) If the measured signal-plus-noise-to-noise ratio is $Y \mathrm{~dB}$, then the degradation in signal-noise ratio is $(Y-X) \mathrm{dB}$. For a 50Ω input impedance with a 3 kHz bandwidth at room temperature, the value of X is -26 dB relative to $1 \mu \mathrm{~V}-$ so a receiver with a 10 dB noise figure will give a signal-plus-noise-to-noise ratio of 16 dB for an input of $1 \mu \mathrm{~V}$ e.m.f. For h.f. work, a noise figure of 10 dB is adequate for most purposes, although lower values can be useful where small aerials with very little pick up are used, and below 15 MHz , a noise figure of 15 dB is generally accepted as adequate. For OSCAR reception on 28 MHz , a lower noise figure still, may be useful in some conditions but as will be seen later, the use of such a low noise figure may not effectively improve the receiving system.

When the signal-plus-noise-to-noise ratio is measured on a.m., it will often be found that it is appreciably worse than on s.s.b. There are two reasons for this, these being:
(a) The bandwidth used on a.m. is greater than on s.s.b., so the noise is greater.
(b) The a.m. measurement is usually made with 30 per cent modulation, whilst the single tone used on s.s.b. represents a signal with 100 per cent modulation. This produces figures for a.m. that are 10 dB worse.

Fig. 2: Single signal measurement set-up

A further aspect of sensitivity measurement relates to the output power available from the receiver. Marine specifications require 50 mW for loudspeakers and 1 mW for headphones, for the input at which a 20 dB signal-plus-noise-to-noise ratio is obtained, but this is not very loud in applications with high ambient noise levels such as found in mobile use. Very few receiver specifications mention the output power developed at low values of input signal, such as $1 \mu \mathrm{~V}$.

Even more rarely specified is signal-to-noise improvement ratio-probably because of the fact that few receivers show up very well! Signal-to-noise improvement ratio is fairly important. Consider a receiver with a $1 \mu \mathrm{~V}$ input, and a 15 dB signal-to-noise ratio. (Note that signal-tonoise ratio, and signal-plus-noise-to-noise ratio are not quite the same thing, but the difference is not important for this particular discussion.)

If the input signal is increased by 20 dB , it is reasonable to expect that the signal-to-noise ratio will improve by 20 dB , and the amount of improvement is an excellent measure of the distribution of gain control.

Suppose for example that the gain control is by means of an attenuator at the input terminals of the receiver. Because of the decrease in signal level to produce the original input to the receiver, the improvement in signal-tonoise ratio will be zero. The signal-to-noise improvement ratio also governs the ultimate signal-to-noise ratio-the signal-to-noise ratio provided by a big input signal. Incidentally, any hum or supersonic oscillation in the a.f. stages shows up here as a degradation and of course, if the ultimate signal-to-noise ratio is about 30 dB , there is generally little point in going for very low a.f. distortion. Practically speaking, it is fair to assume that for a 20 dB increase in input signal from the 20 dB signal-noise level, the improvement should be to at least a 35 dB signal-to-noise ratio.
Measurement of noise figure is an area in which conflicting results are readily available, especially when talking in terms of 3 dB or better noise figures.

Summing up then, sensitivity is one of the parameters governing the output level of the receiver, and its capability for receiving weak signals. Other parameters governing this ability will be discussed later.

Selectivity

A radio receiver very rarely has to receive the wanted signal on its own. Especially in the bands up to 30 MHz , the number of signals adjacent in frequency to the wanted signal can be very large and the ability of the receiver to pick the wanted signal is called selectivity.

Selectivity is a function dependent upon the bandwidth of the signal to be received. Bandwidths vary from between approximately 200 Hz to 400 Hz for c.w. and RTTY and 150 kHz for broadcast f.m. An s.s.b. receiver requires a bandwidth of between 2 kHz and 3 kHz if the information transmitted is not to be lost. This bandwidth is that which hopefully can be passed without any attenuation of the signal at all but in practice is usually the frequency at which the signal is -6 dB relative to the strength at the peak of the response, which is generally at the centre frequency. However, the wanted signal may be very weak in comparison to the unwanted signal-perhaps by a ratio of as much as 70 dB or 80 dB . The ability of the receiver to reject the unwanted signal on an adjacent frequency is determined by its selectivity. If the rejection of a signal 10 kHz away from the wanted signal is 40 dB in one receiver and 60 dB in another, then all else being equal, the 60 dB receiver is better able to cope with interfering signals. So not only is the bandwidth at the 6 dB points im-
portant, but so is that at which the i.f. filters reject unwanted signals by 60 dB . For a good s.s.b. receiver, the ratio of the 6 dB to 60 dB bandwidths, called the Shape Factor, is about $1 \cdot 7: 1$, while figures of up to about $2 \cdot 4: 1$ are quite acceptable. For a.m. and c.w. worse shape factors are common, frequently for economic reasons connected with filter design. Receivers of the HRO, AR88, CR100 vintages have crystal filters with very poor shape factors by today's standards, although especially on c.w., the best selectivity is generally provided between the operators ears!
Measurement of selectivity is not at all easy. The best way is to attach an r.f. voltmeter just prior to the detector stage and to plot a graph of voltage against frequency. However, in modern receivers using integrated circuit i.f. strips, this can prove impossible. By varying the signal frequency with the receiver in the s.s.b. or c.w. mode, it is possible to measure the a.f. output level and to plot the result on a graph against frequency, but the response of the a.f. stages will then affect the measurements. The s.s.b. transceiver is possibly the easiest to measure as the common filter section response can be plotted on transmit. Becoming popular, however, is the Two-Signal Method of measuring selectivity, which will be dealt with later.

Fig. 3: Selectivity and filter bandwidth

Related to selectivity, but rarely mentioned is Electric Fidelity. This is a measure of the a.f. frequency response that the receiver is capable of and is easily measured by varying the modulation frequency over a wide range. It is of course, fairly important for broadcast receivers, especially for f.m.

Selectivity is a very important receiver parameter and is fairly easy to specify. As a result, it is generally properly specified, although the occasional "howler" is perpetrated.

Spurious Responses

Related in some ways to selectivity is the topic of spurious responses, i.e., outputs from the receiver caused
by inputs at frequencies other than the tuned frequency (external spurious) and whistles generated at particular frequencies (internal spurious). One of the most important external spurious responses in a superhet receiver is the Image or Second Channel frequency. This is produced as follows: Within a superheterodyne receiver the incoming radio frequency (the signal frequency) is fed into a mixer together with the local oscillator signal. The output of this mixer is the intermediate frequency and is either the sum or the difference of the signal and local oscillator frequencies. For example, a receiver is tuned to 14100 kHz and has a fixed i.f. of 455 kHz . The local oscillator is on 14555 kHz and the resulting difference (local oscillator $14555 \mathrm{kHz}-14100 \mathrm{kHz}$ signal) is thus the i.f. of 455 kHz . However, a signal on 15010 kHz would also produce an i.f. of 455 kHz and this unwanted signal is the image, or second channel signal. The local oscillator is occasionally on half or even a third of the required frequency, but this is not common. A signal on a frequency such that it can mix with the harmonics of the local oscillator to produce the i.f. will also give a spurious response and all these responses can be defined. It is rare for external spurious responses other than the image to be specified on receiver data sheets. Such responses should be at least 60 dB down on a well-designed modern receiver, but unfortunately are often nowhere near this. A further frequency that can cause trouble is the actual i.f and rejection at this frequency needs to be quite high, the actual figure depending upon its frequency. For example, early TV receivers with a 14 MHz i.f. suffered very badly from local amateur transmission breakthrough.

At the time of writing, the Band I TV transmitter at Crystal Palace, in South-East London, has sufficient radiated field on 41.5 MHz to interfere with TV sets using an i.f of $34-38 \mathrm{MHz}$. Indeed, the strength of signal is such that some manufactured sets are unusable close to the station, whilst others have to be modified for use in this area.

Internal spurii (spurious whistles) are generated in the receiver. A favourite one occurs in most amateur equipments with a v.f.o. covering $5 \cdot 0-5 \cdot 5 \mathrm{MHz}$, where the fourth harmonic of the v.f.o. causes a whistle at 21.200 MHz . Other frequencies can appear, and the mechanism of production is very varied. One professional receiver of some 15 years ago had an earth lead in a peculiar point on the chassis and moving this earth around made some of the whistles disappear. Probably the position of the earth lead was found on the prototype, and then just copied! These internal spurious are worst in the case of multiple-conversion receivers, and frequently are caused by earth loops. In receivers using a high first i.f. (above 30 MHz) the mechanism of spurious generation is frequently due to harmonics of the first local oscillator getting into the second mixer and mixing with harmonics of the second local oscillator. These harmonics can be in the hundreds of megahertz region and curing them can be very difficult, necessitating complex filters and castings. Incidentally, it can sometimes be achieved by perseverance with the p.c.b. layout, which is considerably cheaper!

The level of spurious whistles should be as low as possible and the ideal is not to have any there at all; or at least for them to be so low that the specified signal-to-noise ratio can be met in the presence of the whistle.

The final internal spurious problem can be harmonics produced by the b.f.o. or c.i.o. (carrier insertion oscillator) but these are restricted to spot frequencies. Those whistles caused by digital frequency counters are much harder to cure; generally, isolation between digital and analogue circuitry and careful screening is required.

All in all, the definition of a superhet given by Cathode Ray in Wireless World, pre-war, is nearer the truth than
was imagined at that time. Superhet, short for supersonic heterodyne-a very powerful type of radio receiver. Receives all stations at least once, and most of them more than twice. To which the cynic can add, with occasionally some justification-simultaneously!!

Automatic Gain Control

Automatic Gain Control, a.g.c., is almost universally fitted to receivers these days, even if its main purpose is to drive an " S " meter. The idea of a.g.c. is to maintain the a.f. output from the receiver constant over a wide range of input signals, but a completely flat a.g.c. characteristic, i.e., one that allows no change in output, is not desirable. This is because the noise in the absence of signal is brought up by action of the a.g.c. circuit to the same level as the signal was. For this reason, a rise of 6 dB in output for a 90 dB change in input is usual, although some sets boast of a 3 dB change. One of the problems that can arise is that if the a.g.c. starts acting with very little input signal, the signal-to-noise improvement ratio may suffer and for this reason, carefully designed delayed a.g.c. is required but rarely provided, except in very high priced, high performance professional receivers.

The a.g.c. line is universally used to drive the " S " meter, which leads to all sorts of problems. What is S9? The choice of some arbitrary value for S 9 on 3.5 MHz is all very well, but the " S " meter is then accused of being "Scotch" on the upper h.f. bands. Calibration of the " S " meter in " S " points of given numbers of dB, e.g., 6 dB per ;"S" point, is common, although it is extremely rare for the calibration to be correct over the full range of the meter. Unfortunately, " S " meters seem to be given a greater degree of uncritical belief and blind faith in their correctness than pocket calculators! Generally, some value between $20 \mu \mathrm{~V}$ to $50 \mu \mathrm{~V}$ is used for S 9 , but without very careful design of the i.f. strip, and indeed all the a.g.c. controlled stages, to obtain reproducible gain control characteristics and carefully defined gain, the reliance put on " S " meters is misplaced. From the manufacturers' viewpoint the cost of doing so is uneconomic.

Two-Signal Tests

So far in this article, we have only considered those measurements that can be made on a receiver using a single signal source. As has been mentioned earlier, the real world in which a radio receiver operates is such that a considerable number of signals are always present at the input terminals and the receiver must be able to sort out the desired one. Selectivity has been mentioned as one of the parameters involved, as have spurious responses, but there are other mechanisms which cause interference to the wanted signal. These are evaluated for performance comparisons under the heading of Two-Signal Tests and comprise Intermodulation, Cross Modulation, Blocking or Desensitisation, and Reciprocal Mixing. Many of these terms have been frequently misapplied, or even ignored, not only by amateurs, but by the manufacturers of quite advanced equipment.

NEXT MONTH

In Part 2 of this series we will deal with parameters related to two-signal test procedures

CHOMETMM LCNES

ALAN MARTIN CBZPW

Low-Cost Tape Eraser

With the increasing use of video recorders in this country, the new Bib Video Tape Eraser will be a most useful accessory for erasing both the video and audio signals from either VHS or Betamax video cassette tapes. Although this model has been specially developed for erasing video tapes, obviously it is suitable for $\frac{1}{4}$ in tape and audio cassette tapes.

It is often evident that poor image quality and unwanted background noise result from insufficient erasure of previously recorded material. Using the eraser ensures that tapes are signal free and are ready to accept new recordings. The powerful 1420 gauss magnetic field far exceeds the erasure capability of the standard domestic video recorder's erase head.

An on/off switch is located on the front of the unit and there is a red l.e.d. to indicate when the unit is operating. The eraser is mains powered and BSI approved.

The Bib Tape Eraser should be available from most leading video shops, price $£ 20.70$ including VAT.

Bib Hi-Fi Accessories Ltd., Kelsey House, Wood Lane End, Hemel Hempstead, Herts HP2 4RQ. Tel: (0442) 61291.

Four in One

"Four screwdrivers in one" is the latest addition to the Steadfast Screwmaster family of screwdrivers.

The new screwdriver adaptors incorporate the patented roller ratchet Screwmaster mechanism which was successfully launched earlier this year. There is a sleeve at the end of the driver shaft to hold all types of standard $\frac{1}{4}$ in A / F screwdriver bits.

Mini Travel Alarm

About the size of a bank card, the Systema S-283 travel alarm clock provides quartz accuracy timekeeping in two time zones. The large liquid crystal display shows hours, minutes, flashing seconds signal, am/pm indicator and alarm set symbol.
The high-pitched alarm can be expected to wake the weariest traveller, or may also be carried in a pocket to bleep reminders throughout the day. A large button on the face of the unit operates a five minute snooze feature and illuminates the display for viewing

The bit holder is available in two sizes. The Chubby model is only 76 mm in length and the larger model is 210 mm in length. Both sizes come with either a magnet or retaining clip at the base of the sleeve to hold the bit in place.

The magnet will also attract a screw-a particular feature if working in tight or awkward conditions. However, in situations where a magnetised blade is not suitable the retaining clip is the alternative.

The adaptor and bits are available separately or in kit form comprising an adaptor, together with No. 1 Pozidriv, No. 2 Pozidriv, 5 mm and 6 mm flat bits.

Retail prices range from $£ 3.35$ to $£ 4.90$, plus VAT, for the bit holders and $£ 5.95$ to $£ 7.50$, plus VAT, for the kit form. All are available through normal retail outlets.
J. Stead \& Co. Ltd., Greenland Road, Sheffield S9 5BW. Tel: (0742) 445472.

in the dark. Three small buttons on the side of the S-283 enable easy setting of alarm time and both time zones.

Finished in black and silver with an integral hinged stand, the mini travel alarm is fitted with long-life batteries and supplied in a soft carrying pouch. Overall measurements are $65 \times 50 \times$ 11 mm .

On sale at Selfridges and Harrods, the $\mathrm{S}-283$ is also available from Systema, at an inclusive price of £12.95.

Systema Watch Co. (England) Ltd., 371 Station Road, Harrow, Middlesex HA1 2AW. Tel: 01-427 2352.

New Multimeter

Lascar Electronics has recently introduced a new multimeter, the LMM-400, which possesses two extra functions for automotive applications.

The instrument features a.c./d.c. voltage measurements from 0.1 mV to 1 kV and a.c./d.c. current range up to 20 amps. The resistance range measures from 0.1Ω to $20 \mathrm{M} \Omega$.

The "engine" functions are implemented simply by placing the probe connectors between the vehicle earth and the I.t. side of the ignition coil. The instrument will measure r.p.m. (up to 20,000) and will also indicate the ignition dwell angle in degrees.

The LMM-400 is designed for use on vehicles with 4,6 or 8 cylinders, either positive or negative earth and with either conventional or electronic ignition systems. Measurements are indicated via an l.c.d. display with 12.7 mm high characters and inputs are fully protected.

Priced at $£ 69.80$, which includes VAT and $p \& p$, the LMM-400 is available from: Lascar Electronics Ltd., Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS13 1LH. Tel: (0268) 727383.

> A monthly look at some aspect of the radio/electronics hobby that seems to bug the beginner, or occasionally a more advanced topic seen from an unusual angle.

MORE DIODES

Last month, in Fig. 3, I showed a simple rectifier circuit with the supply of alternating voltage indicated by the general symbol of a circle with a "squiggle" in it. I suggested using a mains transformer as the source of that voltage, and Fig. 5 shows such an arrangement. At (a) and (b) are the voltage waveforms before and after the diode. You would see something like these waveforms on an oscilloscope connected to the points arrowed. As I said last month, the diode only passes current in one direction, so only half the waveform gets through it. Hence the name half-wave rectifier.

The big gaps between the voltage pulses in (b) are often a bit of a problem, and it would be nice to be able to fill them in. If we add a second transformer T2 and diode D2 as in Fig. 6 , we could do just that, providing the alternating voltages at the anodes of D1 and D2 were always of opposite polarity at any given moment. We speak of such voltages as being in anti-phase. In Fig. 6 the little black blobs indicate the ends of the windings that are in phase-another convention which you should know about.

Now, there is no reason why we shouldn't combine the two transformers of Fig. 6 into a single one (T3) as in Fig. 7. The secondary winding might be a single one with a centretap, in which case it might be labelled, for example " $6-0-6 \mathrm{~V}$ " or " $6 \mathrm{~V}-0-6 \mathrm{~V}$ ", or even described as " 12 V , centre-tapped", or it might be two separate windings as shown (each labelled, for example " 6 V " or " $0-6 \mathrm{~V}$ ") connected in series with the appropriate phase. The effect is the same.

Because the two diodes, between them, pass the full waveform to the load R1, this arrangement is known as a full-wave rectifier.

The output of Fig. 7 is a pulsating positive waveform, but we can get a negative waveform simply by turning the diodes round the opposite way, like D3 and D4 in Fig. 8. If we want both positive and negative outputs, we can do another crafty bit of economising by combining Figs. 7 and 8 to produce Fig. 9. You'll find that this is just like the arrangement used in the power supply of the PW "Twynham", as shown last December on page 22.

Now, Fig. 9 can be redrawn like Fig. 10, or even Fig. 11. They're all electrically identical. I'm sure you recognise the arrangement of the four diodes in Fig. 11-that's right, it's a
bridge. In fact, if you ignore the transformer centre-tap and earth connection in these circuits and merge R1 and R2 in each case, you have three ways of drawing a bridge rectifier circuit. This is another type of full-wave rectifier, using twice as many diodes but only half the amount of transformer secondary winding that was necessary for the arrangement of Fig. 7.

As I said, Figs. 9-11 show three ways of drawing a bridge rectifier, depending largely upon the whim of the draughtsman. Fig. 12 shows a common "shorthand" version of the bridge. Yet another variant occasionally encountered is shown in Fig. 13.

Figlo

Fig 11

WRM334

Incidentally, if you come across what looks like a bridge but with the diodes connected anode/cathode, anode/ cathode, anode/cathode, anode/cathode, so that all the "arrow-heads" point in the same direction, it's not a bridge at all, but a diode ring. These are commonly used in modulators and demodulators for s.s.b., and sometimes in frequency multipliers, and are most often drawn in the pattern of Fig. 13 but with diodes D2 and D4 with polarity reversed.

BHELFORD

HF SSB TRANSCEIVER Vic Goom G4AMW

Having completed the basic transceiver in the previous three parts we can now make a start on the transmitter power amplifier stages.

To get the full 100W r.f. output it is necessary to use two stages of r.f. amplification. In this part we will be dealing with the r.f. driver amplifier which takes the low power output from the Tx First Amplifier and produces an output of 5 W to drive the final p.a. stage.

The driver amplifier is based on a TRW Application Note for a 1.5 MHz to 30 MHz linear power amplifier intended for s.s.b. transmitter applications. The design is capable of providing 5 W in a Class A mode with better than -40 dB intermodulation distortion. By simply changing the bias supply voltage the design is capable of giving a full 25 W , as a Class AB amplifier, with better than -30 dB intermodulation distortion.

The complete amplifier has a capability of withstanding an infinite v.s.w.r. at full output power and it would be quite feasible to use the driver amplifier as the final p.a. stage with an output of 25 W instead of the 100 W of the full design.

The circuit diagram of the driver amplifier is shown in Fig. 13. The two TRW PT9795 transistors (Tr401,402) are operated as a single-stage push-pull amplifier. The required 50Ω input and output impedances are maintained by the use of matching transformers T401 and T403.

The driver amplifier is mounted onto a suitable heatsink which for the $P W$ Helford can be a 51 mm length of Redpoint MA Type with the height of the fins reduced to about 13 mm . The thermal rating of this heatsink is given by Redpoint as $2.8^{\circ} \mathrm{C} / \mathrm{W}$ and if a different make of heatsink is used then this is the figure to aim for.

Construction

The driver amplifier is built onto a single p.c.b. as shown in Fig. 14. This is a double-sided board with the underside being plain copper to act as a ground plane. The components are mounted onto the copper pads as shown in Fig. 15. The r.f. transistors should be handled with care and the board must be cut out to allow the metal body of the device to drop through and sit squarely on the heat-

Fig. 13: Circuit diagram of the driver amplifier. The values of the input circuit components are given in the components list

RADIO SHACK for BEARCAT 220 THE VERSATILE BEARCAT 220FB

Bearcat® 220FB Price:£258.75

Features

- 20 Channels/2 banks - Scan up to 20 frequencies at once or either of two banks of 10 channels.
- 7 Band Coverage - Includes Low, High, UHF, UHF-Gov't and UHF-T public service bands, the 2-meter amateur (Ham) band, plus the aircraft band.
- Automatic Search - Seek and find new, exciting frequencies.
- Aircraft Search - Automatically search the entire Aircraft Band.
- Marine Search - Automatically search Marine frequencies by pressing one button.
- Priority - Samples designated priority frequency on channel 1 every 2 seconds.
- Limit - Sets upper and lower frequencies of search range.
- Speed - Choice of either 5 or 15 channels per second scan and search speed for closer monitoring of desired frequencies.
- Automatic Lockout - Locks out channels and "skips" frequencies not of current interest.
- Selective Scan Delay - Adds a two-second delay on desired channels to prevent missing transmissions when "calls" and "answers" are on the same frequency. Patented by Electra.
- Simple Programming - Simply punch in the frequency you wish to monitor.
- Decimal Display - The large decimal display shows channels and frequency as well as features selected.
- Patented Track Tuning - Receive frequencies across the full band without adjustment. Circuitry is automatically aligned to each frequency monitored.
- Crystalless - Without ever buying a crystal you can select from all local frequencies.
- Automatic Search - Factory-set squelch automatically blocks out unwanted noise.
- Direct Channel Access - Move directly to desired channel without stepping through all channels.
- Deluxe Keyboard - Makes frequency and feature selection easy for simple programming.
- Space age Circuitry - Custom integrated circuits ... a Bearcat tradition in scanning radios.
- Rolling Zeros - This Bearcat exclusive tells you which channels your scanner is monitoring.
- AC/DC - Operates at home or in authorised vehicle.
- UL Listed/FCC Certified - Tested for sale, quality design and manufacture.

Specifications

Frequency Range:
Low B and Mobile
Aircraft
Amateur B and
Public Services \& Marine
UHF Amateur
UHF B and
UHF B and
66- 88 MHz $118-136 \mathrm{MHz}$ $144-148 \mathrm{MHz}$ $148-174 \mathrm{MHz}$ $420-450 \mathrm{MHz}$ $450-470 \mathrm{MHz}$ $470-512 \mathrm{MHz}$

Size:

$10 \frac{55^{\prime \prime}}{} \mathrm{W} \times 3^{\prime \prime} \mathrm{H} \times 7 \frac{5}{8} \mathrm{D}$
Weight:
5 lbs .
Power Requirements:
$240 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$.
12-15V DC, 8 Watts.

Hear It All With One Antenna Total Frequency Coverage -40 To 700 MHz

DISCONE

The Hustler Discone Model DCX is a wide band antenna and has complete coverage of all frequencies from 40 to 700 MHz . This design is especially suited for monitor radio reception of LOW-BAND, HIGH-BAND AND UHF. As a plus feature, use the Discone for outstanding $88-108 \mathrm{MHz}$. FM stereo reception.

The Discone is easy to assemble and install and may be used with any length coax cable. Manufactured from high strength solid aluminium rod, zinc plated hardware and mounting assembly, complete with SO-239 connector. Antenna mounts on vertical support up to $1 \frac{1}{4}^{\prime \prime}$ O.D. or on a flat surface. Cone elements, $55^{\prime \prime}$ in length. Disc elements, $20^{\prime \prime}$ in length. Shipping Wt. 2.5 lbs .
$\mathbf{£ 1 3 . 8 0}$
Discone With Cable
Discone antenna supplied with 50^{\prime} coax and factory installed connectors, PL-259 one end and monitor pin plug type on the other. Shipping Wt. 4.5 lbs .

£20.70

From the World-Record Joystick People!

A REVOLUTIONARY ANTENNA THEY CALLED "IMPOSSIBLE"

THE JOYFRAME (Patent Applied for)

Amateur Bands $3.5-30 \mathrm{Mhz}$.
The ultimate in small package, poor QTH, versatile antennas. Comes in easily assembled package which makes up to a $21 \cdot 21 ; 21$ (inches) triangle. The unit JUST STANDS ON TOP OF TX/RX! Two knob control - and is rotated by hand for directivity on 80 m . Is omnidirectional on higher freq is and for many SW BC stations. Incrediole low angle radiation. Tested at 2 watts (only) CW at our works - world wide contacts! "Soak test" with G2VF using only 30 watts has satisfyingly filled his \log with world wide OSO's. Loop TRANSMISSION performance with such a small unit has, we believe, never been seriously contemplated before, but rather written off as "impossible". Years of research from the firm that produced the JOYSTICK VFA and related systems now offers the JOYFRAME to the amateur fraternity and is the answer to the "maidens prayer" to everyone with a space problem. All the benefits of JOYSTICK products: substantially harmonic-free, low angle, efficiency. compact.
COMPLETE JOYFRAME (incl. ATU)
£60.00
(or write $-14 p$ - or phone for literature)

ANTENNAS ${ }_{\text {lour regular lines) }}$

THE JOYSTICK VFA (Variable Freq, Antenna)

- Only 230 cm long, easily assembled and installed.
- Continuous tuning $0.5-30 \mathrm{Mhz} \bullet$ Omni-directional
- Substantially harmonic-FREE

SYSTEM " A " For the SWL or 160 m . Tx. $£ 48.55$
THE JOYMASTER SUPERMATCH SYSTEM

- Newer development for higher power, improved performance and even greater capability in the awkward QTH! Includes matching ATU - Amateur Bands (Incl. 'new' bands) $3.5-30 \mathrm{MHz}$. 500 w.p.e.p.

NEW SUPERMATCH SYSTEM

with , 13' Joyradial 5 band radial
£82.00
SUPERMATCH ATU
available to improve performance of existing
antennas. Impressive, versatile, try it !
$£ 50.00$
JOYRADIAL (3.5-30миz)
£6.90

RECEIVERS

Get on the air in seconds!

- FRG7700 £309 ($£ 380$ with Memory) - FRG7 + free wire aerial ONLY £187 - Package "R.1" FRG7 + ATU + World Record VFA and FREE HEADPHONES £218 • Package "R.3" FRG7700 (without Memory), VFA, ATU, Headphones E345.50 - Package "R.4" FRG7700 (with Memory), VFA, ATU, Headphones $£ 425.50$.

TRANSCEIVERS ETC.

We reckon we're offering the

LOWEST YAESU PRICES

Try phoning us for your PERSONALISED quote with or without Partridge antennas. For example: - FT101ZD - only $£ 559$ - FT901DM - only $£ 795$ - FT7B - only $£ 395$.

JUST TELEPHONE

 YOUR CARD NUMBER084362535 (ext 5) (62839 after office hours) or send $14 p$ stamp for FREE literature. Prices correct as at press. NOTE Prompt service too, goods usually despatched WITHIN 48 Prompt se
HOURS!
5 Partridge House.
Prospect Road. Broadstairs. Kent CT10 1LD (Callers by appointment).

4

CB and AMATEUR RADIO

ANTENNAS - ACCESSORIES

- MAIL ORDER

NEW © NEW © NEW
SUPER SLIM JIM - 2 metre omni (LJ2). An even slimmer version of the famous SLIM JIM. An entirely new design by F. C. Judd G2BCX, even more efficient than the original
Only 44 inches long. can be used for BASE STATION or MOBILE OPERATION. Imp: 50 ohms. Completely enclosed and waterproof. Gain 3dB (EIA), Fittings for mast mounting. mobile magnetic or gutter mounting available extra. LJ2 price £17.25 including VAT. postage and packing-
THE BIG JIM -27 MHz omni - BJ27. An entirely new design - base cration antenna for CB radio. Only 9 feet long - no radials. Gain 3 dB (EIA). Low angle radiation for local or DX Two-way 27 MHz contacts between the UK and USA have produced S9 plus signals and $10-4$ copy. Mast or wall mounting fittings extra. Also tunable for 10 M Amateur band.
8 J 27 price $\mathbf{£ 6 7 . 0 0}$ including vat, postage and packing.
THE RED ALERT - VHF antenna checker and RF sensor (ZLS1). Will check any antenna for radiation, correct voltage and current distribution. Repeating audible bleep and visual
indication in presence of radiation. Operates any frequency $20-1000 \mathrm{MHz}$. Supplied complete with probe antenna. ZLS1 price $£ 12.00$ including VAT, postage and packing.
THE PERSUADER - Speech Processor (SP15). Increase your talk power by up to 32 times. Average effective speech power gain 15dB. Fully automatic in operation. Red and green indicators show correct operational setting. Operates for SSB, AM or FM. Tailored response for greater readability and harmonic filtering. Suitable all standard mics and rigs. SP15 price £38.18 including VAT, postage and packing.
DUMMY LOAD - Self indicating (ZL5O). Check TX power without radiating. Check coaxial cable runs and antenna match by comparison. Useable with all VSWR meters. Buils in LED power indicator. Automatic sensing insures impedance of 50 ohms to within better
than 0.5 ohm . Useable power up to 28 watts continuous or 100 watts intermittent Self VSWR 1 to 1 . Frequency limit 200 MHz . ZL50 price $£ 9.00$ including VAT, postage and packing.

SAE for further details of above.
CASH WITH ORDERS ONLY*. Choques, Postal Orders etc., payable to ZL COMMUNICATIONS

Wide selection of books on CB Radio. Electronics. Amateur Radio etc. Also CB T-Shirts, badges, car stickers and unique LEARN ALL ABOUT
CB cassette tape etc. Send 30 p stamps (not SAE) with name and address tor full catalogue and accessories list.

ZL COMMUNICATIONS

CANTLEY, NR. NORWICH, NORFOLK, NR13 3RT. Tel: 049370821 (9-5.30 Monday to Friday only). Callers by appointment only.

IMPORTANT NOTICE

Notice is hereby given that antennas for 2 metre operation called the ZL SPECIAL (series) and the SLIM JIM. which are currently being advertised in various journals as manufactured products, are NOT repeat NOT produced by ZL COMMUNICATIONS. Neither are these antennas approved in any way whatsoever by F. C. Judd (G2BCX).
Director of ZL. Communications, and who was responsible for their design in the first instance as published in various issues of Practical Wireless and the book "Two Metre Antenna Handbook

Wertern

THE COMMUNICATIONS SPECIALISTS EVERYTHING FOR THE RADIO AMATEUR

ANTENNAS...
 FOR THE HF BANDS
 BRITISH MADE BY IHertern

TRAP DIPOLES (3 types)

TD $1 / 10-80$	10,40 and 80 m	$\mathbf{£ 3 4 . 4 4}$
TD1 $115-80$	$15,20,40$ and 80 m	$\mathbf{8 3 0 . 4 8}$

TD1/15-80 15, 20, 40 and 80 m

£34.44

TD-P Portable type with winding spools $\quad \mathbf{£ 3 0 . 4 8}$
(TD1 are of 14 gauge copper; TD-P is copper/terylene braid)
VERTICAL
DX-5V 10-80 metres; approx 26ft high; slimline $\quad \mathbf{8 9 9 . 0 0}$
BEAM ANTENNAS (and Rotary Dipole)
DX-31 Rotary dipole for $10,15,20 \mathrm{~m} \quad \mathbf{£ 4 6 . 0 0}$
DX-32 2-element beam for 10, 15,20m \quad.. $\mathbf{8 0 . 5 0}$
DX-33 3- .. " $\underset{\text { £121.90 }}{ }$

DX-103	3-element monoband beam for 10 m	$\mathbf{~} \mathbf{7 4 . 7 5}$
DX-105	$5-$..
$\mathbf{5 9 7}$		

\star Other Antenna Accessories available - see our Price List *
ALL PRICES INCLUDE VAT (15\%) AND FREE DELIVERY UK.
Send large SAE for further details of this and other equipment - or use our Answerphone after hours.
Wertern Electronies (Uu) ItJ
HEAD OFFICE (All Mail/Enquiries)

FAIRFIELD ESTATE	ACCESS
LOUTH, LINCS, LN11 0JH	VISA
Tel: Louth (0507) $604955 / 6 / 7$	H.P.

Fig. 14 (top): Full-size p.c.b. copper track pattern for the driver amplifier. Fig. 15 (above): Shows the component layout of the driver amplifier. Note the components are on the copper track side of the board and that the other side is a copper ground plane
sink. The orientation of the two transistors must be noted and the four tabs carefully soldered to the appropriate pads on the p.c.b. ensuring that no strain is placed on the transistors (Fig. 16). The transistors themselves can now be used to mark out the positions of the fixing holes to be drilled in the heatsink for mounting the transistor bodies.

Care should be taken to follow closely the layout of components shown in Fig. 15 and all component leads should be as short as is practical. The reader is recommended to study this month's Constructors' Sketchbook on page 56 where he will find more details on this form of construction:

Transformers

The transformers are constructed around two small p.c.b.s which form the end cheeks and are connected together by two lengths of brass tube which are loaded with the appropriate number of ferrite cores and then soldered to the copper pads on the end cheeks. The wire is then wound through the brass tubes and soldered to the appropriate pad or ground plane as shown in Fig. 15. T401 is shorter than T402 and T403, and has only two brass tubes. T402 and T403 are constructed on one pair of end cheeks with T402 being wound on the upper set of brass tubes. When the transformers have been wound the end cheeks can be soldered directly to the p.c.b. pads as shown in Fig. 15.

Fig. 16: Section through the heatsink and p.c.b. of the driver amplifier showing the mounting details of the transistors Tr401,402. Extra support for the p.c.b. should be added using 6BA screves and washers

WR108
Fig. 17: The end cheeks of the transformers. One of each of the p.c.b.s shown here are required for each transformer. The brass tubes must be soldered to the copper pads which are on the outer ends of the transformers. The material is 3 mm copper-clad board

Bias Supply

The driver amplifier and the final p.a. both require a fully stabilised bias supply to set the working conditions of each amplifier. Both bias supplies use basically the same circuit and mechanical design, only component values change as required to set the different bias voltages needed.

The circuit design chosen is very simple and uses a standard 317 K variable voltage i.c. regulator capable of operating between 1.25 V and 37 V at up to 1.5 A . The circuit is shown in Fig. 18 and it can be seen that R801 sets the output voltage. The i.c. is fully short-circuit protected.

The output voltage is set by varying R801 and is governed by the formula $\mathrm{V}_{\text {out }}=1 \cdot 25(1+\mathrm{R} 801 / \mathrm{R} 802)$. With R801 adjustable between 0Ω and 100Ω the output voltage can be varied from 1.25 V to about 1.8 V .

Each regulator is built on a simple p.c.b. with the copper track pattern on the component side as shown in Fig. 19. The i.c. is mounted on the heatsink, using an insulating kit and heatsink compound to ensure good thermal contact. The heatsink is a plain sheet of aluminium alloy about 16 s.w.g. and folded into a "U" shape. All the other components are mounted onto the p.c.b. pads as shown in Fig. 19 ensuring that all leads are kept as short as possible.
continued on page 66

Transformer winding details

T401	Secondary is one turn centre tapped consisting of two lengths of brass tube 4.8mm o.d. \times 20.3 mm long. Primary is 4T 20 s.w.g. enamelled copper wire.
T402	Twisted pair of pvc covered $7 / 0 \cdot 2 \mathrm{~mm}$ stran- ded wires twisted at about one twist per mm passed through the top pair of brass tubes.
T403	As T401 but brass tubes are 35mm long. Secondary 3T 20 s.w.g. enamelled copper wire.

components

Fig. 18: The circuit diagram of the two bias regulators

The Commodore PET personal computer is a versatile beast and can be programmed to do all sorts of things, from abstruse mathematical or financial calculations to playing "rhino", and a host of other computer games. Playing "rhino" in particular (or one of its derivatives) is known to be habit-forming and as part of an effort to break the addiction Geoff Howells decided to write a program for a "computer game" which was not only fun to play but useful to boot. The result was "MORSE TEST", a "BASIC" program which runs on a PET and resides on cassette. The PET was slightly modified to include a bleeper, controlled by one bit of the input/output port but apart from this it is an entirely standard instrument.

In use, having loaded the program, the v.d.u. "visual display unit" displays the program title: "MORSE TEST" and on the next line "SPEED WORDS PER MINUTE?" It then waits for you to key in whatever rate you want to try your hand at, e.g., " 12 " if you wish to see if you stand any chance in the amateur licence Morse Test, displays your selected speed and on the next line "number of CHARACTERS?" Again it waits for you to key in your requirement, for example " 5 ", as the Morse Test consists of groups of five characters at 12 w.p.m. The machine then causes the bleeper to emit the chosen number of characters (randomly chosen) at the selected speed and waits for you to key in what you thought they were. Suppose you key in "SETLY", but got one wrong; having received the correct number of key entries the machine would then, for example, display "message was setpy your score was 80\%".

This program caused a good deal of interest and one of our colleagues demonstrated his skill by reading 10 characters on the trot at 25 w.p.m. four times over with 100 per cent success each time. This is more testing than a real Morse message, as the characters are truly random, whereas in real test there is redun-ancy to -elp yo- guess any letter-s you mis-ed. At this point our colleague retired gracefully (beads of perspiration on his forehead) on the
grounds that discretion is the better part of valouralways give up while you are still winning!

As a Morse tutor, the program was a great success, but not everyone owns, or has access to, a PET; particularly one with a special built-in bleeper! So it was that one lunchtime the authors found themselves discussing a special purpose Morse tutor, designed to do nothing else and costing only a tiny fraction of the price of a PET. Both the design of the electronics and the ergonomics were discussed; an important feature was to be some sort of feed-

CONSTRUETION RATINE INTERMEDIATE

BUYING GUIDE

Most of the components required are available from regular supply sources. A full kit of parts will be available from A. Marshall (London) Limited, including the ready programmed РROM. The case featured in this article is a Type NK 103 manufactured by Newrad. The data listing for the Prom is available from our editorial offices, price 50p.

APPROXIMATE

cost
£39
back to enable the user to check his accuracy. Cost ruled out a decoding system and alpha-numeric display, and displaying the dots and dashes which had been sent on a string of l.e.d.s seemed crude and cumbersome. In the end it was decided that the machine would provide a "NEW character" push-button, which on being depressed and released would send a randomly chosen character at a rate set by a "DOt rate" knob on the front panel. The user would then decide what the letter was and verify his decision with reference to a "Morse to English" dictionary, shown below.

The feedback is provided in the form of a "repeat" button, which will cause the last new character to be repeated as often as is necessary; if need be the dot rate can be reduced as well. For more advanced learners, another pushbutton causes a group of five random characters to be sent. The novel feature here is that another front panel knob, "between-character pause", can be set to provide any between letter gap from the correct spacing of one dash, up to a second or so, although the characters themselves are still sent at the speed selected by the "Dот rate" knob. The characters are sounded by a small loudspeaker behind the front panel, or alternatively this can be cut out by inserting the jack of a standard pair of low impedance stereo headphones, enabling the user to learn Morse in the comfort of the lounge whilst the rest of the family watch television.

Circuit Description

Fig. 3 shows the full circuit diagram of the $P W$ Morse Tutor, and in fact it is not as fearsomely complicated as may appear at first glance. The heart of the system is IC6, a 246×4 bit "PROM" (programmable read-only memory). Refer to buying guide block for details. The Prom, has eight "address lines", pins 1 to 7 and pin 15. These are connected to the outputs of an 8 -bit binary counter consisting of IC7 and IC8. When these are at a count of zero, i.e., 00000000 , the four outputs on pins $9,10,11$ and 12 of the Prom are $0,1,0,1$, reading from m.s.b. (most significant bit) to l.s.b. (least significant bit). When the

Fig. 1 (above): Basic c.m.o.s. squarewave generator
Fig. 2: Gated c.m.o.s. clock generator using NAND gates

8 -bit binary counter addresses location 1, i.e., its outputs are 00000001 , the four PROM outputs are $1,0,1,0$, and so on up to address 255 , i.e., 11111111 , when the outputs are again as it happens $1,0,1,0$. If the counter continually cycled sequentially through the addresses, the letters of the alphabet would all appear in sequence at pin 9 of the PROM as can be seen by reading down from m.s.b. column of Fig. 3, where a 1 indicates presence of tone for one dot period and a 0 represents silence. Each character would be separated from the next by one dot period, this period being marked by a 1 on pin 10 . Thus between the first two 1 s in the pin 10 column we have in the m.s.b. column (pin 9) 010111 read out on the first six consecutive clock pulses. These are fed via S5b to IC9b, which gates the tone produced by free-running oscillator IC9a to the loudspeaker only when a 1 is present at pin 10 . Thus in the above instance the loudspeaker would sound a dot followed by a dash, i.e., " A " in Morse.

The gap between dots and dashes of an individual character should equal one dot period and a dash should equal 3 dot periods. The method just described of producing Morse characters from a clocked Prom ensures these

THE MORSE CODE AND SOUND EQUIVALENTS

Alphabet					
A	.-	di-dah	N	-.	dah-dit
B	-...	dah-di-di-dit	0	-	dah-dah-dah
C	-. -	dah-di-dah-dit	P	---.	di-dah-dah-dit
D	-..	dah-di-dit	0	--.	dah-dah-di-dah
E	.	dit	R	-	di-dah-dit
F	..-.	di-di-dah-dit	S	...	di-di-dit
G	--.	dah-dah-dit	T	-	dah
H	di-di-di-dit	U	..-	di-di-dah
1	.	di-dit	v	...-	di-di-di-dah
J	-	di-dah-dah-dah	W	.--	di-dah-dah
K	-.-	dah-di-dah	X		dah-di-di-dah
L	--.	di-dah-di-dit	Y		dah-di-dah-dah
M	--	dah-dah	Z	--.	dah-dah-di-dit

Numerals

1	$\cdots--$	di-dah-dah-dah-dah	
2	\cdots	di-di-dah-dah-dah	
3	\cdots	-	di-di-di-dah-dah
4	\cdots	di-di-di-di-dah	
5	\cdots	di-di-di-di-dit	

[^1]
Punctuation

Full stop (.)
.-.-.- di-dah-di-dah-di-dah
Comma (.) --..-- dah-dah-di-di-dah-dah
Question mark (?) ...-.. di-di-dah-dah-di-dit
Fraction bar or solidus
-.... dah-di-di-dah-dit
Double hyphen ($=$)
-.... dah-di-di-di-dah
End of transmission .-.-. di-dah-di-dah-dit
Error
. di-di-di-di-di-di-di-dit

Spacing and Length of Signals

1. A dash is equal to three dots.
2. The space between the signals which form a letter is equal to one dot.
3. The space between two letters is equal to three dots.
4. The space between two words is equal to five dots.

criteria are met exactly. The gap between successive characters in a real Morse message should equal one dash (i.e., three dot) periods, but in the $P W$ Morse Tutor this gap is adjustable, as will be seen later.

The clock waveform to drive the 8 -bit binary counter IC7 and IC8 is derived from a free-running c.m.o.s. squarewave generator basically identical to the wellknown circuit of Fig. 2a. This consists of two inverters with local negative feedback via Ra and Rb round one, and a positive feedback loop via C and Ra round the pair. By using a NAND gate(s) for either (or both) inverter(s) as in Fig. 2b, the oscillator will only run when all the various enable inputs are "high", i.e., at logic 1.

There are two such oscillators in the full circuit of Fig. 3, namely IC5a and IC5c, and IC5b again with IC5c. The first, when enabled, runs at about 80 kHz (IC5a plus IC5c) whilst the second-the dot rate generator-when enabled runs at 3 Hz to 18 Hz , the exact frequency being adjustable by means of R19. This corresponds to a Morse transmission rate of about 6 to 32 words per minute.

When the instrument is switched on but not sending a character, neither clock oscillator is running, and the counters IC7 and IC8 are at a count such as 0000 1001, i.e., 6 in decimal notation, such that there is a 1 at pin 10 of the PROM.

The D type flip-flop IC3a and b (the two halves of the circuit are connected in parallel to provide extra drive capability) is normally in the SET condition, so the Q output is high. Thus with both inputs to two-input nand gate IC4b high, its output is low, disabling both the fast- and slow- (dot rate) clock generators at pins 2 and 3 of IC5a and b respectively. Note that as the Q output of IC3 goes to pin 4 of IC5b whilst the \bar{Q} output goes to pin 1 of IC5a, under no circumstances can both fast and slow clock oscillators be enabled simultaneously.

Monostable IC2a is only used when sending groups of five characters, its \bar{Q} output is therefore normally at logic 1 and so IC4a output sits at logic 0 as both its input pins are at logic 1. When the "SINGLE" button S2 is pressed, pin 1 of IC4a is grounded, so its output resets IC3, setting the latter's Q output to 0 and its $\overline{\mathrm{Q}}$ output to 1 . This causes IC4b's output to enable pin 2 of IC5a and also pin 3 of IC5b, but the slow clock generator cannot run because the zero Q output has disabled pin 4 . However pin 1 of IC5a is also enabled by the \bar{Q} output, so the fast clock generator runs for as long as S2 is depressed, clocking counters IC7 and IC8. These count down due to the 1 on their up/down inputs from $\overline{\mathrm{Q}}$ of IC3. Thus if the counter had been sitting at binary address 00000110 (6 in decimal) it will count through addresses $5,4,3,2,1,255,254$-etc., as long as $S 2$ is pressed. Even if S2 is given a quick jab, this is unlikely to be less than a tenth of a second-about 8000 clock pulses or 30 times round the whole PROM. The reset input at pins 4,10 of IC3 is an over-riding input, so that although a stream of 1s from IC6 pin 10 (the "letters end of character" bit of each 4 -bit nibble output from the PROM) will appear at the clock input of IC3, they will have no effect. However, as soon as S 2 is released, the next 1 from pin 10 of the PROM appearing at the clock inputs of IC3 will set it, as a 1 is permanently applied at the D inputs (pins 5 and 9). Thus with a 1 at the Q output of IC3 and also at pin 5 of IC4b, the latter's output will be a 0 disabling both clock generators. In addition, the 0 which has appeared at the \bar{Q} output of IC3 will disable pin 1 of IC5a and set the counters IC7 and 8 to up counting. So the whole system is now locked up, since even though the Q output of IC3 has enabled pin 4 of IC5b, IC4b output is low-but, the rising edge of IC3's Q output triggered monostable IC2b. This puts a temporary 0 on pin 13 of IC5c, whose other two inputs are both high. At the end of this short period pin 13 of IC 5 c is again at 1 , giving a 0 at its output and a 1 at IC4d

output. This clocks the counter address on by one count (now of course counting UP), thus stepping off the address which gave a 1 on the letters end of character output pin 10 of the prom. IC4b pin 5 therefore falls to 0 enabling pin 3 of IC 5 b and the dot rate generator runs. It does so at the speed selected by R19, causing IC7 and 8 to count up until the next end of character 1 appears at pin 10 of the prom, setting IC4b pin 5 high and stopping the dot rate clock generator. This time of course, IC3 being already set, there was no Q output rising edge to trigger monostable IC2b so the system is now back in its quiescent condition with both clock generators disabled, having read a Morse character out of pin 9 of the prom.

Pressing the repeat button S3 causes exactly the same sequence of events to be followed, but with one important difference. The differentiating action of C3,R1 is equivalent to pressing S2 for a couple of microsecondsrather difficult to do manually-so that although IC3 is reset (setting the counters to count down), the fast clock generator is only enabled for one or two clock periods before the reset at pins 4,10 of IC 3 is removed. The coun-

Fig. 4 (above): Track pattern of the underside of the main p.c.b. shown full size. Note that holes are not plated through

Fig. 5: Component locations and connections to controls

Fig. 6 (below): Track pattern of the component side of the p.c.b.
character pause (b.c.p.) control R18, and this has exactly the same effect as pressing the "single" button S2, generating a Morse character as previously described.

During the period when the fast clock generator is running, IC 3 Q output will be at 0 and therefore IC 4 b output at 1. C5 will therefore charge up via R7. During the change from fast to slow clock generator operation, IC4b will momentarily (i.e., for the duration of IC2b's negative going output pulse) return to zero, but so briefly that C 5 will not discharge to a level at which IC2a retriggers. However at the end of transmission of the first character of the group of five, IC4b's output will fall to 0 and stay there. This will retrigger IC2a, causing a re-run of the above sequence, and this will occur five times in all. On each occasion, IC1 will advance one count, until a 1 appears at the decoded 5 output (pin 1) which inhibits IC2a, terminating the sequence.

When set to minimum b.c.p., as for example when
sending groups of five at a fast rate, there would be a tendency to repeat long characters. This is because the fast clock generator speed is quite stable, and the same goes for the period of IC2a. Therefore, depending on the particular setting of b.c.p. control R18, we could have the situation where each time the number of fast clock pulses generated equals an equal multiple of 256 (or nearly so), finishing up with the same character being repeated. This is clearly more likely with a long character like Q than a short one like E. It is impossible to prevent repeats entirely, but unless something were done, the same letter could be sent five times over! So the decoded 1 and 3 outputs of IC1 at pins 2 and 7 respectively are used to change the speed of the fast clock generator on alternate characters of a group of five, by shunting R4 or R5 across one of the timing resistors at pin 8 of IC5a. There will still be occasional repeated characters.

Setting S5 to the other position selects the other two bits of each PRom output nibble, giving instead of letters, all the numerals, punctuation marks and other assorted characters such as "error", "end of message", etc.

Socket SK1 accepts a $\frac{1}{4}$ inch breakjack plug connection from a Morse key thus permitting the $P W$ Morse Tutor to be used for practice in sending Morse. The 0 V supply to IC 9 pin 7 is separate from all the other i.c.s, which are isolated by the breakjack action of SK 1. Thus for sending practice only IC9 is energised, and that only when the key is down.

Construction

The construction of the $P W$ Morse Tutor should present no problems as all components except for the front panel controls, power supply, speaker and sockets SK1 and SK2, are mounted on a single printed circuit board. The speaker is fixed to the bottom of the case with a quick-setting epoxy resin adhesive, and is positioned over the slots already cut in the case.
Before loading components onto any p.c.b. it is good practice to examine it carefully for any possible defects such as cracked track or solder bridge. This is particularly true with a double sided p.c.b. as used in the $P W$ Morse Tutor. Take great care when loading the i.c.s to get them in the right way round-note that IC3, 4 and 5 are the other way round from the rest. The same precaution applies to the polarised components, namely the electrolytic capacitors and the diodes.
To keep the cost of building the $P W$ Morse Tutor to a minimum, the p.c.b. does not use plated through holes. It should therefore be noted which i.c. pins need soldering to pads on the component side of the board instead of (or in some cases as well as) on the reverse of the board. As soldered connections to i.c. pins are required on the component side of the board, conventional i.c. sockets cannot be used.
Some of the i.c.s are c.m.o.s. devices, and most constructors will be aware of the precautions against static electricity which should be observed when handling these devices. It is a good idea to fit them to the board last as the other components will then provide shunt paths on the c.m.o.s. inputs, and of course a soldering iron with an earthed tip is a must. Check that its earth lead is in good order and makes good contact at the mains socket. Constructors are also referred to the hints on handling c.m.o.s. devices given on page 33 of this issue.

Power Supply

A conventional stabilised power supply capable of giving 5 V at 100 mA is used for this project and is built on a separate board. If it is thought desirable to be able to use
components

the $P W$ Morse Tutor in a car then 12 V can be fed into the stabiliser input at the point indicated in Fig. 7.

For those readers who want complete freedom from the mains supply the unit may be powered by four U2 cells in series. Note that in this case Link C must be replaced with a suitable diode (1N4001) to drop the 6 V provided by the batteries to nearer the 5 V needed for the logic i.c.s the bar of the diode should be away from the battery (i.e., connected to C 1 and C 2 positive).

ment is to calibrate the controls in terms of words per minute (w.p.m.). To do this, send groups of five characters and adjust the two controls to send Morse at the lowest speed possible subject to the b.c.p. being equal (as best you can estimate) to the correct gap of one dash. Now send groups of five with the gap between groups being approximately two dashes, and time how many groups occupy one minute. This is the w.p.m. rating for that setting of the controls and should be marked on the front panel for both controls. Similarly, mark higher w.p.m. settings up to the maximum obtainable. These calibrations will be useful to you as you work up your Morse speed.

Fig. 7 (above): Circuit diagram of the optional mains power supply. Dx and $R x$ are in series across C13

Fig. 8: Component locations on the p.s.u. board

Fig. 9: Track pattern of the power supply p.c.b. shown full size

Testing and Calibration

On completion of construction switch on and measure the current drawn by the circuit. This should be in the region of 100 mA . Check that pressing the single button S2 causes a single character to be sounded and that the repeat button S3 works. Check that the dot rate control R19 adjusts the dot rate from slow to fast clockwise. Set the CHARACTER SPACE control R 18 fully anticlockwise and press the Groups button S4. This should result in a group of five characters being sent, with a fair gap between each. Rotating R18 clockwise should reduce this gap but note that if rotated too far, the characters will run on with no gap; in this case R19 must be rotated further clockwise in sympathy.

Finally check that plugging a pair of stereo headphones into SK2 cuts out the internal loudspeaker and sounds via the 'phones instead, and that plugging a Morse key into SK 1 enables the instrument to be used as a Morse practice oscillator.

The equipment is now complete and operating and may be used as it is without further ado. However, a nice refine-

Using the PW Morse Tutor

The Tutor will prove of considerable use in learning Morse but to obtain the maximum benefit from it a few important points must be observed.

The first stage in learning Morse is to become thoroughly familiar with all the characters and many people will want to start with the letters, moving on to numerals, punctuation marks, etc., afterwards. So select letters with S5, press the single button and try to identify the random character sounded by the tutor.

Most people know a few Morse letters such as E, S, O, and older readers will of course remember V (for Victory!). If you don't know the letter it can very quickly be located in the "Morse to English" dictionary. It is important to use a fast dot rate from the start, at least corresponding to 12 w.p.m. and in fact it is really no more difficult to learn the individual Morse characters at a 15 w.p.m. dot rate from the outset.

If in the early stages you are not quite sure of the pattern of dots and dashes sounded, you can repeat it with the S3 repeat button, but on no account get into the habit of

components

The main control board and p.s.u. located on the cabinet base
using this regularly; if need be slacken off the dot rate temporarily. The ear very soon adapts to perceiving the dot/dash pattern sounded at a quite surprising speed and only a few hours practice are needed before you know all the characters. It is important however to try and avoid repeating the sound in your mind as an intermediary step to calling up the corresponding letter, as there will not be time to do this when receiving groups of five. (A group of five characters counts as a word as far as w.p.m. ratings go).

Groups

When you are thoroughly familiar with all the individual characters you can try groups of five. You should already be used to hearing and recognising the individual characters at a dot rate well in excess of that corresponding to 12 w.p.m., but at first you will need the b.c.p considerably longer than it should be. Do not set it so slow that you can get all five characters, better to work under pressure so that you get say two out of five-or three if you're lucky. And you must from the outset write the group of five down as you receive it, in cursive, not capitals, with dashes for missed letters.

You will find that the difficulty is not that you don't know the letter corresponding to each sound pattern, but that you cannot dredge it up quickly enough, viz before the next one is upon you. Nevertheless, by this time you really should not need repeats, though the repeat button S3 will repeat the last character of a group of five if need be.

Long sessions on the tutor prove very tiring due to the intense mental activity in trying rapidly to match sound patterns with characters; it is much better to have short sessions often and regularly.

Perseverence

A few minutes morning and evening and lunchtime as well if possible is the best way. Perseverence is necessary as learning Morse to 12 or 15 w.p.m is not easy, and don't let anyone tell you it is. When you can regularly get three or four characters out of each five it is time to listen in on the amateur bands to "real Morse", as this contains (despite all the abbreviations and contractions) a fair amount of redundancy, whereas the $P W$ Morse Tutor's output is entirely random, giving no help at all in this respect. In fact, the $P W$ Morse Tutor calibrated as described in w.p.m. ratings, gives rather a pessimistic indication of your Morse reading speed. The reason for this is as follows. The letter E plus its stop bit occupies two adjacent locations in the prom whereas a longer letter occupies many more, in the case of P for example, 13. Thus the $P W$ Morse Tutor sends the more difficult to learn longer characters much more frequently than the short simple ones, a P being $6 \frac{1}{2}$ times more probable than an E . This is a handy feature for learning the characters, but of course the Morse alphabet is designed on entirely the opposite principle; in a real message the short characters are in the majority. It is difficult to quantify the difference but it is probably true to say that your real w.p.m. rate will be at least thirty per cent faster that that indicated by the $P W$ Morse Tutor calibrated as described.

Don't forget also that your $P W$ Morse Tutor doubles as a Morse practice oscillator, enabling you to practice sending as well as receiving.

centinucrois

LAND CONSTRUCTION TECHNIQUES

THE COMPONENTS ARE MOUNTED ON THE COPPER SIDE OF THE PCB. THE LEADS MUST BE AS SHORT AS POSSIBLE AND ARE BENT SO THAT THE COMPONENT SITS NEATLY AS CLOSE TO THE BOARD AS IS PRACTICAL. IN THE PW HELFORD A MODIFIED FORM OF THIS CONSTRUCTION IS USED WHERE THE COMPONENTS ARE MOUNTED AS SHOWN BUT A GROUND PLANE COVERS THE UNDERSIDE OF THE BOARD AND THERE IS NO COPPER BETWEEN THE LANDS ON THE COMPONENT SIDE. GROUNDED LEADS PASS THROUGH HOLES IN THE PCB AND ARE SOLDERED TO THE GROUND PLANE ON THE UNDERSIDE.

FERRITE CORE TRANSFORMERS THESE TRANSFORMERS ARE USED IN THE PW HELFORD DRIVER AND P.A. STAGES. THE BRASS TUBES FORM A SINGLE TURN WINDING WHICH IS CENTRE-TAPPED BY SOLDERING THE BRASS TUBES TO THE COPPER CLADDING ON THE UNCUT END CHEEK, AND TERMINATED BY SOLDERING TO THE SEPARATE COPPER PADS ON THE OTHER END CHEEK. THE OTHER WINDINGS ARE WOUND THROUGH THE BRASS TUBES.

Lee ilefromies itd

WATCH THIS SPACE FOR

 THE FORTHCOMING ANNOUNCEMENT OF A NEW STANDARD PORTABLE
ITS THE BEST SO FAR!!!

TRIO R1000

BEAT THIS PRICE!! f289 inc. VAT FREE HEADPHONES WITH THIS SETAND WITH FRG7

- One-touch frequency selection from long wave to short wave with 12 channels capable direct memory circuitry. (With memory type only).
* 150 kHz to 29.999 MHz full coverage high stability dual PLL system.
- Strong for cross modulation.
* Automatic band pass filter selection.
- 3 filters for AM reception.
* 2 steps of AGC . . . fast/slow.
* Narrow band FM reception capability.
- Timer facility.
- Back up battery.
* Sinpo coded signal strength meter.
* Receiver noise blanker circuitry.
- 12 kinds of attenuator.
- High quality audio sound.

BASIC UNIT £309.

- Dimmer control.
* $A C+D C$ operation.

MEMORY UNIT ONLY £83.95 FRG7700 WITH MEMORY £389.

SWR25: This ever-popular twin SWR and Power meter covers VAT. P\&P 50p

DL-30 Dummy load 25W DC-150 MHz £6.35 inc. VAT. P\&P 25p.
T-100 80W Dummy load DC-500 MHz £24.10 inc. VAT. P\&P 25p. T-200 150W Dummy load P\&P 25p.

SWR200B swr/power meter covering $3-200 \mathrm{MHz}$ $50 / 75 \mathrm{Ohm}$ power range $3-30 \mathrm{MHz}, 20 / 200 / 2 \mathrm{~kW}$,
VHF $2 / 20 / 200 \mathrm{~W}$ VHF 2/20/200W £40.20. P\&P £ 1.00 .

T-435: VHF/UHF swr and power meter with 2/20/120 watt through line power measurement £ $\mathbf{3 4 . 4 5}$ inc. VAT. P\&P 75p.

Following the detailed description of the autoscanner control logic we continue this month with the remaining sections and complete constructional information.

Modular

2m Transceiver System

16~Channel Scanner

[Part 9)

Michael TOOLEY BA G8CKT

\&

David WHITFIELD BA MSc G8FTB

enable lines

Channel Oscillators

The channel oscillator banks for the transmitter and receiver are both of identical design. A block diagram is shown in Fig. 9. There are 16 electronically switched crystal oscillators whose outputs are summed to give a signal at the frequency of the currently selected channel. This signal is then amplified to compensate for the summing losses and used to drive the coaxial link to the transceiver. The selection of which of the two oscillator banks is active is performed by using the transceiver's receiver and transmitter d.c. supply rails to power the appropriate bank.

The circuit for the summer/amplifier stages, and for one of the channel oscillators is shown in Fig. 10. The d.c. supply to the 16 oscillators is stabilised by R53/D18, and decoupled by C18, C19, C21 and C22. In each oscillator Tra operates as an electronic switch. The open-collector output from the channel selector board is used to drive the ENABLE input, with Ra acting as the collector load for IC17. With the input high, Tra is held "off" and the oscillator is disabled. When the input goes Low, Tra turns "on". The supply to the oscillator transistor rises to almost the level of the stabilised rail voltage, and oscillation occurs.

The frequency of oscillation is set by Xa , with fine frequency adjustment provided by Ce . The range of adjustment provided by Ca has been found to be adequate for most receiver oscillators and crystals. With some transmitter channels, however, it may be necessary to add a parallel fixed capacitor of around 22 pF to adjust the oscillator frequency onto channel.

Fig. 9: Left. Block diagram of the channel oscillators

Fig. 10: Above. Channel oscillator circuit diagram

The output from each oscillator, measured at the emitter of Trb, is approximately 500 mV r.m.s. This is coupled to the summing junction by $\mathrm{Cd} / \mathrm{Re}$. The summing losses are compensated by the gain from the amplifier stage, $\operatorname{Tr} 2$. The signal is then buffered by an emitter follower stage, Tr 3 , and used to drive the coaxial link to the transceiver. The output to the link is typically 500 mV r.m.s., at 18 MHz , and the output impedance is approximately 33Ω. Current consumption for the oscillator bank is typically $20-30 \mathrm{~mA}$ at $+12 \cdot 5 \mathrm{~V}$.

Readers who intend to operate the $P W$ Nimbus should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Power Supplies

The autoscanner requires three d.c. power inputs from the associated transceiver in order to operate. These inputs are from the transmitter, the receiver, and from the main power supply of the transceiver, and are used to power the transmitter oscillator bank, the receiver oscillator bank, and the control logic respectively. If preferred, the supply to the control logic may be provided from an independent source. Typical current consumption figures are 50 mA each for the oscillator banks and 500 mA for the control logic. It is an inherent design feature of the control system that, if no power is supplied to the control logic, none of the oscillators in either of the two banks can be activated; power supply switch-on sequencing is thus rendered unnecessary.

Fig. 11: Suggested front panel layout

Fig. 12: Circuit diagram of the autoscanner power supply

A power supply circuit diagram is shown in Fig. 12 for the $\mathrm{Tx} / \mathrm{Rx}$ and control logic boards. Power connections are made to 4 mm insulated sockets on the rear of the diecast box. Each line is switched by the 4 -pole main power switch, S22, and decoupled to r.f. by the ferrite beads and C24/5/6. The diodes D19/21/23 are included for protection against incorrect supply polarity. Each line is monitored by l.e.d. indicators D20/2/4 and the two oscillator banks are then supplied directly. The control logic, however, requires a +5 V supply, and this is provided by means of the integrated regulator, IC20. The regulator uses the diecast box as a heatsink. Capacitors C27 and C 28 are essential to the operation of IC20. The +5 V supply is decoupled by C29, and by the various capacitors distributed along the power rails on the two logic boards.

Fig. 13: Test circuit for the signal strength meter

An internal view of the prototype

Fig. 14: Left. Component layout of the timing generator and sequencing logic p.c.b.

Construction

The first stage of construction is the assembly of the printed circuit boards for the Tx and Rx oscillator banks and for the two control boards. The copper track layouts for these boards should be related to the accompanying component layouts Figs. 14, 15 and 16. Note that the Tx and Rx boards are of identical layout and construction.

CHANNEL OSCILLATORS

1 set of the following required for each Tx_{x} and Rx channel fitted

Resistors

$\frac{1}{4}$ W 5% miniature carbon

$1 \mathrm{k} \Omega$	2	Rd, Re
$2 \cdot 2 \mathrm{k} \Omega$	1	Ra
$10 \mathrm{k} \Omega$	1	Rc
$22 \mathrm{k} \Omega$	1	Rb

Semiconductors
Transistors

2N 3904	1	Tra
BC108	1	Trb

Capacitors
Sub-miniature plate ceramic

100 pF	1	Cd
220 pF	2	Cb, Cc
4.7 nF	1	Ca

Miniature ceramic trimmer (Ambit) 2 pF to 22 pF 1 Ce

Miscellaneous

HC 25/U crystal (see text); HC 25/U crystal socket p.c.b. mounting.

LINE DRIVER

1 set of the following required for $T x$ and $R x$ boards

Resistors

$\frac{1}{4} W 5 \%$ miniature carbon

10Ω	1	R50
220Ω	2	R53,R55
470Ω	1	R54
820Ω	1	R52
$47 \mathrm{k} \Omega$	1	R 51
$100 \mathrm{k} \Omega$	1	R 49
Semiconductors		
Tansistors BC548	2	$\mathrm{Tr} 2, \mathrm{Tr} 3$
Diodes BZY 88C9V1	1	D 18

Capacitors

Ceramic
$4.7 n \mathrm{n} \quad 3 \quad \mathrm{C} 18, \mathrm{C} 22, \mathrm{C} 23$

Polyester 100 nF
Tantalum bead $10 \mu \mathrm{~F} 15 \mathrm{~V}$

Miscellaneous

Printed Circuit Boards (2); 0.040 Veropins; Coaxial socket (1).
 oscillator boards

There are no special handling considerations to be borne in mind when mounting the components on the boards, but care must be taken to ensure correct orientation of the integrated circuits before soldering in place. If preferred dual-in-line sockets may be used. Short board links are made from tinned copper wire with longer connections in insulated connecting wire.

Interconnections to the control logic boards are located around the edges and it is recommended that 0.040 in Veropins are used. This technique will allow inter-board wiring after the boards have been installed in the diecast box.

On the channel selector board, connections to the oscillator boards for the ENABLE lines are made by means of

a 16 -way ribbon cable whose conductors are soldered to the upper ends of R62-R77. These resistors stand vertically on the board, the lower end of each resistor being soldered to the p.c.b., and the top end (cut off to approximately 4 mm) acting as the terminal pin.

The component layout given in Fig. 15 shows the arrangement of components for the line driver/first oscillator, and for the 16 th oscillator/decoupling components. The layout of the intervening oscillators follows the pattern of the first.

Successful assembly of the channel oscillator boards requires the use of suitable components as space is at a premium. The use of plastic transistors will help to reduce the probability of inadvertent short circuits, but the use of sleeving on the component leads should not be necessary. The use of a fine-tipped soldering iron will be of considerable assistance during assembly.

It is worthwhile to experiment with the assembly of two adjacent oscillators (without necessarily soldering the components) to ensure the suitability of the components to be used. The line driver and the required number of oscillators may then safely be assembled. The use of Veropins for off-board wiring is again recommended as a means of simplifying the final assembly wiring.

After assembly, the track side of each board should be thoroughly cleaned with suitable solvent cleaner, and then carefully inspected for solder bridges or other inadvertent short circuits. Next measure the power consumption of each board in isolation (i.e., with no inputs/outputs connected). Each oscillator bank should consume approximately 20 mA at +12 V , with the logic boards consuming approximately 250 mA (timing/sequencing) and 200 mA (channel selector) at +5 V . Significant deviations from these figures should be investigated before the boards are installed in the box.

The autoscanner is built into an inverted standard diecast box, with the lid of the box acting as the base of the unit. All of the necessary fixing holes and cut-outs should be drilled before any of the components are fitted. A suggested front panel layout is shown in Fig. 11. Drilling instructions are not given as they will depend on the exact dimensions of the switches, etc., that are employed.

After the diecast box has been drilled, the switches, sockets and other components, with the exception of the two control logic p.c.b.s, are installed. The " S " meter should be attached to an aluminium bracket, using a suitable adhesive such as Araldite and mounted in the box so that the face of the meter is flush with the surface of the front panel.

When locating the printed circuit boards, a clear space of at least 3.5 cm should be left behind the front panel, and at least 2 cm behind the rear panel, to allow for wiring and ancillary components. The oscillator boards should be mounted on the removable lid of the box, directly above and in line with the control logic boards mounted on the bottom of the box. The channel selector board should be the board immediately behind the front panel.

The wiring of the "ACtive/IGNORE" switches (S6-S21 and R32-R47) and the "active channel" l.e.d.s (D2-D17 and R48) is shown in Fig. 18. This wiring is best installed at the front panel end before the channel selector p.c.b. is fitted. The connections between the front panel and the p.c.b. are conveniently made with lengths of 8 -way ribbon cable. The pull-up resistors R32-R47 are mounted, as shown in the inset on Fig. 18, on the rear of switches S6-S21, respectively.

Fig. 16: Component layout for the channel selector board

Fig. 18: Connections for the Active/Ignore switches and Active Channel l.e.d.s behind front panel

When the wiring behind the front panel has been completed, the two logic boards can be installed, taking care not to short either signal or d.c. lines to the case with the mounting hardware. The free ends of the ribbon cables are then connected to the appropriate pins on the channel selector board. The remainder of the interconnecting wiring follows the layout shown in Fig. 17. Again, the use of ribbon cable will produce a neat result and greatly assist in construction.

Finally the power and control lines, to the two lid mounted oscillator boards, are connected as shown in Fig. 19, output links are routed through suitable lengths of coaxial cable. The construction of the Autoscanner is now complete. Fig. 19 appears next month.

Next Issue

In the concluding part of this article comprehensive notes on setting up the scanner will be given along with modifications to allow for 8 -channel operation.

Autoscanner Tx/Rx oscillator banks and control logic p.c.b.s

Full-size paper prints of these p.c.b.s are available from the Editorial Office at Poole. Price 45p including $\mathrm{p} \& \mathrm{p}$ to UK addresses.

MIZUHO LA-2X 2 metre Linear Amplifier

The 2 metre hand-held transceiver has been shrinking in size and price as well as increasing in output power and channel capabilities. A lot of amateurs who possess one of these useful rigs would like to be able to use it either as a mobile unit or as a fixed station. This, of course, usually means that more output is desired as the one or two watts provided by the hand-held is obviously not enough.

For either mobile or fixed station operation the output power is not limited by the need to achieve a reasonably economic battery life since the rig can be externally powered.

Most of the current designs of handheld rigs have a receiver sensitivity that would be compatible with an r.f. output several times greater than that provided. For these all that is required to improve the performance is a suitable r.f. amplifier to boost the output from the one watt or so of the rig to around ten watts.

There are several linear amplifiers onthe market which could be used for this purpose. However, the Mizuho LA-2X amplifier is probably the lowest priced commercially available unit on the market. It provides ten watts of r.f. power for one watt input and is described as being linear. No receive pre-amplifier is fitted so there are no problems of degradation of the receiver side of the rig.

The LA- 2 X is designed to be used primarily with Mizuho's own SB-2XM one watt portable rig and so has no r.f. vox circuit to switch from receive to transmit mode. Instead the two relays used to effect the changeover are driven directly from the p.t.t. switch of the transceiver.

To use the LA- 2 X with any other rig requires access to the p.t.t. switch or alternatively the addition of a simple r.f. vox circuit to the amplifier to operate the two relays. There is enough room

inside the metal case to accommodate such a circuit.

The amplifier runs from a nominal 12 V d.c. supply and takes almost 2 A when delivering the full 10 W output. On test 10W was produced for 1 W input and grossly overloading the amplifier gave rise to no noticeable nasty effects.

The unit is well made and housed in a robust metal case $36 \times 56 \times$ 128 mm and weighing 430 g . A flying coaxial lead terminated with a PL259 UHF plug connects the amplifier to the transceiver while an SO239 UHF socket is used for the antenna connector. A pair of colour coded wires provide the means to supply the amplifier and a separate flying lead with a small plug on the end is used to operate the changeover relays, connecting it to the supply puts the amplifier into the transmit mode.

The opposite end of the case to the inputs and outputs has a slide switch fitted to switch the power on and off and two l.e.d.s one green and one red, to indicate POWER ON and TRANSMIT.

At a few pence under $£ 40$ including VAT the LA-2X linear amplifier is available from Lowe Electronics, Chesterfield Road, Matlock, Derbys. Tel: 06292817 to whom we offer our thanks for the loan of the review unit.

JIL SX-200 Scanning Monitor

The JIL SX-200 Scanning Monitor Receiver is a recent arrival in the UK, and offers one of the widest frequency ranges of all the currently available scanners.

When we reviewed the Bearcat 220 in our August 1980 issue, we remarked on the limitations imposed on radio listening in the UK by the Wireless Telegraphy Act. It is interesting to note that since then, legislation has been proposed in the USA which, if it is passed, will bring the regulations in the two countries closer together. Should this happen, it may well have an effect on the market for scanning monitor receivers in the US, and therefore their availability.

The $\mathrm{SX}-200$ covers $26-88 \mathrm{MHz}$, $108-180 \mathrm{MHz}$ and $380-514 \mathrm{MHz}$, with a.m. and f.m. modes available throughout. Frequency entry is by means of the keyboard. Sixteen memory channels are provided, which can be selected by individual pushbuttons, or can be scanned at a rate of 4 or 8 channels per second. Two scanning modes are provided: SCAN A, in which all the memory channels are covered, and SCAN B in which any number of these channels can be selected.

A 4-second scan delay can be switched in if desired.

Any selected band of frequencies can be searched at a rate of 5 or 10 channels per second, the channel spasing being 5 kHz below 58 MHz and between $108-180 \mathrm{MHz}$, and 12.5 kHz over the rest of the coverage. Three squelch modes are provided: SQ1, ordinary squelch operation; SQ2, audio-operated squelch, scan stops on carrier; SQ3, audio-operated squelch, scan stops on audio.

A 590 mm telescopic antenna screws into the top of the receiver, and a car-type socket is provided for connetting an external 50-75

The power supply requirement is a nominal 10 W at 13.8 V d.c., negative ground, and a 240 V a.c. mains adaptor comes as standard. Other facilities are a LOCAL/DISTANCE switch which controls a 20 dB attenuator, connections for extension loudspeaker (2 W into $4-8 \Omega$) and tape-recorder, and on/off control of auxiliary equipment (such as a taperecorder) in time with squelch operaton.

A 12 -hour digital clock is incorprorated in the SX-200, the bright blue fluorescent frequency display reverts to time automatically after five seconds, except when in the scan or search modes. A two-position dimmer switch is provided.

Results

Learning to "drive" the SX-200 so as to make full use of its facilities is not easy, due to an inadequate Operation Manual written in very poor English. The Squelch control instructions are perhaps the most incomprehensible, for example:
"SQ2. Audio Squelch Noise Stop. In case that the modulation (Voice) within a certain degree is not received, the voice will not come out of the speaker, even though a wave is received. Noisy sound during intermittent of conversation can be eliminated. That is, for only receiving carrier, scanning will stop."

Receive sensitivity is specified as $0.4 \mu \mathrm{~V}$ below 180 MHz and $1 \mu \mathrm{~V}$ above for 12 dB S/N on f.m., and $1 \mu \mathrm{~V}$ below 180 MHz and $2 \mu \mathrm{~V}$ above for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ on a.m. Measurements on the review model returned 12 dB SINAD for less than these inputs except for slight divergences at one or two points. Measured audio output was 1 W at onset of clipping and 1.5 W at 10% distorsion.

Tests at a QTH some three-quarters of a mile from GB3SC (R1) revealed a lack of adjacent channel selectivity,
since 'SC wiped out GB3WR on RO every time it came on the air, even though the latter station puts in a very respectable signal. The specification quotes adjacent channel selectivity on f.m. as better than 60 dB (method of measurement unspecified), but our tests showed that a +35 dB signal 25 kHz off frequency would degrade a 12 dB SINAD wanted signal by 6 dB , which would seem to support the poor on-air results on 2 m .

One facility which was felt to be lacking was the ability to step just one channel up or down. Pressing the UP or DOWN buttons sets the machine off scanning at a rate of knots, so the only way is to punch in the new frequency, even if it's only one channel away.
The SX-200 measures approximately $75 \times 210 \times 235 \mathrm{~mm}$ overall and weighs around 2.8 kg . It is wellconstructed, but would probably be rather difficult for the owner to service himself. The microprocessor control circuitry is housed in a soldered-up box.

The JIL SX-200, complete with mobile mounting kit, costs $£ 241.50$ including carriage and VAT from Garex Electronics, 7 Norvic Road, Marsworth, Tring, Herts HP23 4LS, telephone Cheddington (0296) 668684, to whom we offer our thanks for the loan of the review kit.

PW HELFORD-4

\rightarrow continued from page 46

Setting Up

The driver amplifier can be set up by adjusting the bias voltage to give the collector current applicable to the output required. For an output of 5 W , which is the requirement to drive the main p.a. to its maximum 100W of ref. power out, the collector current should be set to 2 A . For an output of around 25 W the quiescent collector current is set to about 150 mA . The current may be monitored via the supply line to the amplifier.

Testing should be carried out with a suitable dummy load on the output and a signal source on the input adjusted to give the required output.

During the initial setting up care should be taken not to over-run the transistors. Also keep an eye on the temperature of the driver amplifier heatsink and the bias supply heatsink.

Part 5

The next part will cover the main ref. power amplifier. With this the basic electronic and radio side of the $P W$ Helford will be complete, leaving the mechanical and metalwork side to finish off what should prove to be a very professional looking project.

Semi-Conductors • I.C.s • Onto-
devices \bullet Rs and C in great variety

- Pots • Switches • Knobs
Accessories \bullet Tools \bullet Materials •
Connectors

electrōalue

ELECTROVALUE LTD. (PW),

28 St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB.
Phone: 33603 (London 87) STD 0784. Telex 264475.
NORTHERN (Personal Shoppers Only): 680 Burnage Lane, Burnage,
Manchester M19 1NA. Phone (061) 4324945.
 service, or ring Martin (G4HKS) on 01-575 5291 for evening sales enquiries

LICENSED CREDIT BROKERS

INSTANT HP FOR LICENSED AMATEURS AND
6 MONTHS NO INTEREST HP TERMS AVAILABLE

YAESU MUSEN - FRG-7700

A NEW BREAKTHROUGH IN RECEIVER TECHNOLOGY

Yes indeed, the exciting new FRG-7700 GENERAL COVERAGE RECEIVER from YAESU MUSEN, the world's largest manufacturer of Amateur Radio equipment, will satisfy the demands of the most critical Short Wave Listener or Licensed Operator with it's superb performance and incredible specification -- just consider the following condensed details:

Frequence coverage $150 \mathrm{KHz}-29.999 \mathrm{MHz}$.
Modes AM (fitted Narrow, Medium and Wide Filters). USB, LSB, CW and FM.
Memory option with twelve channels and automatic band selection. CPU Digital Clock and Timer. State-of-the-Art Noise Blanker. FM Squelch Control. Mains or Battery operation. Digital and Analogue read-out.

Send today for full details of the new FRG-7700 or if you would like the full Yaesu catalogue as well 36 pence in stamps will bring you this together with our credit voucher for $£ 3.60$ - a 10 to 1 winning offer!

FRG-7700 $£ \mathbf{3 0 9}$. Memory unit $\mathbf{£ 8 3 . 9 5}$. FRG-7700M (with fitted memory) $£ \mathbf{3 8 9}$

FULL DETAILS AND THE NEW LOW FACTORY PRICE LIST FROM
BRITAIN'S NO. 1 IMPORTER
EX-STOCK - INSTANT CREDIT - FREE SECURICOR DELIVERY

NORTHERN COMMUNICATIONS
 AMATEUR - COMMERCIAL - MARINE

NORCONE 512 (66-512 MHz) It's here! A no compromise, precision made, full 16 element discone antenna, made in Britain. Standard SO239 connector, with cover. Supplied with 1" diameter, $30^{\prime \prime}$ mounting support mast and complete instructions.
An ideal partner for the SX200A. "Bearcat" and other scanning receivers. It may also be used for transmission and in particular where antenna space is limited.
Full coverage of 70.144 .432 MHz Amateur bands plus Aircraft, Marine and Commercial bands.
£24.95 р.p. $£ 1.50$
NCMK-1. In line vertical mounting kit for $1^{\prime \prime}$ to $2^{\prime \prime}$ mast.
SX200A SCANNER
HF-VHF-UHF Receiver, as reviewed in this issue.
£2.45 p.p. $£ 0.50$
£241.50
Special Offer SX200A + Norcone 512. Complete, inc. VAT-delivery
£260.00

ZL-12 COMPACT YAGI

13 db gain. compact 2 metre Yagi. $10^{\prime} 6^{\prime \prime}$ boom, lightweight rugged design. Hundreds of this award winning antenna already in use. Send for details.
$\mathbf{£ 2 8 . 7 5}$ p.p. £1.50
ZL-8 SUPER COMPACT YAGI
9 db gain, super compact 2 metre Yagi. $6^{\prime} 0^{\prime \prime}$ boom, lightweight rugged design. Ideal for limited spaces and portable operation. Send for details. $£ 17.25{ }_{£ 1.50}^{\text {p.p. }}$
YAESU FT480R. FDK 750E MULTIMODES
Both of these new 2 metre multimodes transceivers are amongst our full range of Amateur Radio equipment and accessories. Ring or call for complete information:
NEW YAESU FRG7700 RECEIVER
£309.00
Superb new addition to our range. Come in and try it for yourself.
299-303, Claremount Road, Halifax HX3 6AW, West Yorkshire. G3UGF. Tues-Sat. 9.45am-5.30pm. Telephone (0422) 40792. 24 hour Ansafone Service.

BARCIAYCARD
Vish

AH ELECTRONICS
 20 BARBY LANE, HILLMORTON, RUGBY, WARWICKSHIRE CV22 5Q.J.

 TEL: 76473 EVE 71066.Mail Order Only or callers by appointment. All prices include VAT but add 50 p post \& packing.
VHF RF. POWER TRANSISTORS:-

Type	Gain (db)	Output (watts)	Volts	Freq.	Price
2N6083	5.7	30w.	12	175 MHz	£6.50
BLY87A	9	8	12	175	£4.00
SD1212-6	8.2	3	12	175	£2.50
BLW16A	10	$\frac{3}{4}$	12	175	£0.75
PT4236A	10	1 min .	12	175	£0.75
PT4555	8	25	12	80	£3.50
PT4556C	7	40	12	80	£4.50
2N5070	13	25(pep)	24	30	£5.00

NDA800 8 amp 50 volt brid 25 (peplifier OK for $12 v$ PSU to 65p. 2 for $\mathbf{E 1 . 0 0}$ DUAL-GATE MOSFETS 3N204 $£ 1.25,3$ SK51 (40673) 80p, BFR84 75p. FETs E5565 (2N3819) 30p, TIS88A 40p, BF256C 40p, 2N4381 40p. FETs EL565 (2N3819) 30p, VHF RF amp. FT1200 MHz 20p, 2N4957 pnp VHF/UHF RF amp nf only $3 \frac{1}{3} \mathrm{db}=1 \mathrm{GHz} 30 \mathrm{p}, \mathrm{BF} 180 \mathrm{30}$ p, BF166 VHF RF amp

FF SWITCHING DIODES for switching oscillators etc. BA143 (VHF) 20p, BA144 (UHF) 25p.
AUDIO AMP IC. TBA1010 6 watt output adjustable to 9 watt, a 14 volt singleAUDIO AMP IC. TBA1010 6 watt output adjustable to 9 watt, a 14 vort single-h-line type \& idea for transceivers, receivers, BARGAIN OFFER ONLY $£ 1.35$ two for $£ 2.40$. Supplied with on 30 MHz RECEIVER PRE-AMP sheet (19 pages) 20p
performance above 25 MHz then one of our super pre-amps is what performance above 25 MHz then one of our super pre-amps is what you want:- 50
ohm imp. in $\&$ out 25 db gain with better than 1 db nf. ready built on PCB 60 mmx 40 mm , adjustable gain control only $£ 8.00$ or built into grey hammer finish die cast box with BNC sockets $£ 12.50$.
$\mathbf{1 0 . 7} \mathbf{M H z}$ CRYSTAL FILTER for AM/FM $12 \frac{1}{2} \mathrm{KHz}$ channel spacing $\pm 3 \frac{1}{2} \mathrm{KHz}$. only new \& unused small size $38 \mathrm{~mm} \times 18 \mathrm{~mm} \times 15 \mathrm{~mm} 200$ ohm imp. give away PRICE ONLY $£ 4.00$ each two for $£ 7.00$
$\mathbf{1 0 . 7} \mathbf{~ M H z}$ CRYSTAL FILTER for AM/FM $12 \frac{1}{2} \mathrm{KHz}$ channel spacing $+3 \frac{1}{2} \mathrm{KHz}=$ $3 \mathrm{db} 1 \pi \mathrm{type} 024 \mathrm{DE} / 923 \mathrm{~L}$. $£ 7.00$ ea.
MOTOROLA CAR RADIO PCBs complete less vol. cont. tuner etc. with circuit $\mathbf{8 0 p}$ ea. four for $£ 3.00$.
CAR RADIO 470 KHz IF AMPS with stereo pre-amp IC. with circuit 65p. CAR RADIO/CASSETTE PLAYER stereo amps 5 watt/chan. with multigan pot. matching amp to above if amp board. Contains 2 TA7205P ICs, with circuit 2.75

BAG MIXED ELECTROLYTIC CAPACITORS 2.2 mf - $1000 \mathrm{MFd} 100 £ 1.60$ BAG OF MIXED RESISTORS $\frac{1}{4}$ watt carbon film pre-formed type all with long leads plus some $\frac{1}{6}$ watt std types 250 for $£ 1.60$.
FEEDTHROUGH CAPACITORS 1000pf 500v solder in type $\frac{1}{1 / " ~ d i a . ~} 10$ tor 28p. FERRITE RINGS 12 mm dia 10p ea. FERRITE BEADS FX 111510 for 20p. PRICE LIST 15p STAMP - FREE WITH ORDER.

A full explanation of the circuitry together with the components list was given in Part 1. This part deals with the circuit boards, assembly and setting up the controller for operation with any stereo cassette or reel-to-reel recorder. Mono only recorders may also be used.

The Circuit Boards

There are three p.c.b.s mounted as shown in the photographs. The power supply and 50 Hz pulse circuit (Board 3) is shown in Figs. 13 and 14. Observe carefully the polarity of the electrolytic capacitors. The transformer T1 must have a $12 \mathrm{~V} 1 \mathrm{~A}(12 \mathrm{VA})$ secondary winding.

Board 2 contains the components and i.c.s for the 50 Hz and music pass filters with the printed tracks being shown in Fig. 11 and the component positions in Fig. 12. The relay is an RS Type 349-658 or Maplin YX98G and this should be used as the circuitry is designed around it. One

pair of contacts, normally open, are used for the projector slide control mechanism and another pair, also normally open, are for the l.e.d. indicator which lights up whenever the relay is actuated.

The remaining p.c.b. (Board 1) carries the whole of the -audio mixing circuitry. Printed tracks are shown in Fig. 9 and component positions in Fig. 10.

Point-to-point conventional wiring with components mounted on plain matrix board could be used, with component layout following as close as possible to that shown.

Initial Checking Out

Various adjustments must be carried out before fitting the unit into the box. The first check is to see that the requisite rail voltages are correct as indicated on the circuit diagrams. Some adjustment to the value of RX (nominally 270Ω) (Board 3) may be necessary to obtain the 15 V supply rail to the amplifier and filter circuits. Total current drawn on this rail should be in the region of 10 mA . Current drawn by the relay circuit (20 V rail) is approximately 85 mA with the relay actuated.

Check with an audio voltmeter or a.c. reading meter, that approximately 300 mV r.m.s. of 50 Hz signal is present at the junction of R51 and C29 on Board 3, and that about 1 V r.m.s. at 50 Hz is present at C34 and R54 on this board with the push-button depressed.

Filter Response Adjustment

The following deals with the adjustment of the filter circuit presets R18 and R37 so that each filter responds correctly to 50 Hz and music signals respectively. The adjustments can be made with only an a.c. reading voltmeter. However, if an audio signal generator and audio voltmeter are available, the procedure is as follows:

Connect the audio generator output to the socket marked "from tape out lh". Connect the audio voltmeter to the output socket marked "ext amplifier LH". Now set the generator to 1 kHz and adjust the level from it until about 200 mV of signal is present at the output socket. Next, set the generator to 50 Hz and adjust R18 to obtain the lowest level possible of 50 Hz signal at the output which should be in the region of 40 dB below the level obtained with the 1 kHz signal, i.e., 2 mV for 200 mV of

Internal view of the completed controller showing the layout of the p.c.b.s

1 kHz . The overall response obtained should then be close to that shown in the frequency response curves.

Leave the generator connected to the same socket, "From tape out" and connect the meter to the junction of C 25 and D1. Set the generator to 1 kHz and its output level to 100 mV . Now switch the generator to 50 Hz and adjust R37 until between 1 V and 1.5 V is present at C25 and D1 junction. At this point the relay should be actuated and the l.e.d. indicator lit up.

Critical Components

Component values in twin-T filters are fairly critical. If the above adjustments do not produce the requisite responses, i.e., the filters do not tune very close to 50 Hz , it may be necessary to increase the capacity slightly of C7 and C8 and/or C19 and C20, or both. The additional capacitors, if required, are marked on the circuit diagram as CX. Allowance for the connection of these has been

Fig. 11: Full-size copper track pattern for Board 2

made on Board 2. The amount of capacitance required may be between 1000 pF and 2000 pF so it would be as well to have capacitors of $1000 \mathrm{pF}, 1500 \mathrm{pF}$ and 2000 pF to hand.

When the foregoing adjustments have been made disconnect the generator and meter. Set the "override" switch S1 to ON (down) and press the push-button a few times. The relay should close and the l.e.d. light up each time.

Adjustment of the filters can be carried out with only an a.c. reading voltmeter and the use of the external amplifier that will normally be used with the tape-recorder.

Procedure for the 50 Hz pass filter IC3 is as follows: connect the meter between the junction of C 5 and D 1 and 0 V and use a range suitable to read $1 \cdot 5 \mathrm{~V}$, which should be obtained when the push-button is depressed. This voltage is obtained by adjustment of R37 and is a.c. at 50 Hz . By this time the relay will have actuated and the l.e.d. lit up. Each time the button is pressed the relay should operate.

The music pass filter IC2 is adjusted as follows: connect the amplifier LH channel output to the external amplifier. Either channel on the amplifier can be used for this. Press the pulse button and hold and adjust R18 until the

50 Hz pulse signal is audibly low as adjustment will allow.
If either of the filters do not respond as outlined above it may be necessary to add the small extra capacitance CX to the filter circuits as already explained.

If suitable instruments are available it would be worth checking the mixer circuits for frequency response as in Fig. 4 and for the requisite mic and line inputs sensitivity versus output level at the sockets marked "TO TAPE IN RH and LH " and which the actual audio outputs from the mixer section.

Setting up for Recording

There is only one final adjustment to make and this is to the preset R53 on Board 3. This controls the level of the 50 Hz pulse to the tape-recorder. Connect the controller to the tape-recorder as shown in Fig. 15. Set the recorder for recording and hold the tape with the pause control. Set the record level controls on the recorder to maximum and note they will always be used at maximum when recording with the slide controller. Press and hold the pulse push-button whereupon the left-hand record level meter will be reading the level of the 50 Hz signal. Adjust R53 until the meter

Fig. 15: Connecting the controller to a tape-recorder and audio amplifiers
reads between 6 dB and 10 dB below 0 dB record level. If the deck has through monitoring the controller relay will now be actuated. Release the button and press again to check that the relay operates positively. Set the recorder running and record pulses of about one second duration along the tape at intervals. With the tape re-run on replay the relay should now click in at each point where a pulse was recorded.

A suitable socket or other connector can be fitted to the rear panel of the controller for connection to the slide projector remote control socket or remote control pushbutton contacts.

A final test can now be carried out with the slide projector and with recorded speech or music on the tape. Always use the tape-recorder recording level controls at maximum and adjust speech and music recording level only with the gain controls R18 and R37 on the controller. The 50 Hz control pulse will now always be recorded at the preset level of between 6 dB and 10 dB below 0 dB record level. Make a 5 or 10 minute test recording of music with pulses at intervals which should actuate the projector slide change mechanism as they are recorded. If the recorder does not have through monitoring, then use the "override"
switch. This will still allow slide changes to take place whilst recording.

When the test recording is completed restore the projector slide carrier and re-run the test tape. The slides should change only when a pulse occurs. To obviate accidental change do not let any music or speech recording exceed normal level with no more than the occasional peak above 0dB.

Programming a Slide Show

A slide show can be greatly enhanced by good commentary, background music to suit the mood of the programme, and even background sounds and sound effects. Although the pictures are still, some illusion can be created by sound effects. For example, a cruising holiday may commence with a picture of the cruise liner at the dockside followed by various shots taken on board during the cruise. Some background, not overdone, of sea sounds and the odd seagull cry will impart realism and if a portable recorder is available, specific sounds, related to pictures, taken on the voyage, could be recorded and later dubbed for the slide programme.

A script for the commentary, music and sounds are worth preparing beforehand. A dummy run can be made and the slides actually run through on cue with the facility provided by the controller. If one has to stop anywhere during the final take, perhaps to change a record of music, etc., then the tape pause control can be used to advantage. If an error is made somewhere during the programme it is only necessary to return to that point (including the slides) and recommence from there.

As a final point of interest the prototype controller was tested with two different makes of typical domestic stereo cassette decks and a stereo reel-to-reel recorder. A test programme was made with music and commentary, etc., and replayed through a top grade hi-fi system. The 50 Hz control pulse is completely inaudible with average level of speech or music, since it is at least 40 dB below this.

The controller can be used with a single track (mono) recorder by using the left-hand channel only. Procedure is otherwise as already outlined.

One final note. Always use about a one second long pulse for slide changing. The pulse rectifier will not respond to very short pulses.

by Eric Dowdeswell G4AR

Reports to: Eric Dowdeswell G4AR
Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs by bands in alphabetical order.

As with any hobby there is a continual inflow of new blood into amateur radio, seeking advice and information, and eager to learn all about the subject as soon as possible. At first all is confusion especially over the jargon we use, much of which cannot be explained in a rational manner.

Regular writers on amateur radio must therefore repeat their words of wisdom and guidance from time to time for the benefit of the newcomer. Those of us already in the business accept and understand the strange symbols but to the outsider callsigns and Q -groups and the like are very much a mystery.

The one symbol that arouses most curiosity, and, at the same time, is most difficult of explanation, is "DX", and its derivatives like DXing and DXpedition. The point has been covered many times but I'd like to offer my own understanding of its meaning as I think that there is much more to "DX" than meets the eye.
"DX" is frequently written off as meaning a long distance (contact) between two amateur stations or a listener logging a station a long way away. Stemming from the early days of radio communication the origins of DX are quite vague but I like to think that it means Distance Xtra" or a bit further than is normal, for we have to relate distance, whether it be a few miles or a thousand miles, to the frequencies involved.

On, say, a v.h.f. band such as 2 m , normal contacts may be restricted to a few tens of miles depending upon antennas and antenna heights and suchlike, but if a tropospheric opening, or lift, occurs then suddenly DX is achieved by working or hearing stations hundreds of miles off. On the other hand the h.f. amateur bands can provide worldwide contacts, especially on the very popular 20 m band, on virtually any day of the year, with the modern commercial equipment in general use on these bands coupled to rotary beam antennas.

Thus although Australia (VK) is almost our antipodes it is hardly worth calling DX because it can be heard and worked comparatively easily, but let a VK appear from one of the rarely worked islands such as Lord Howe or Macquarrie and all hell is let loose with thousands of amateurs all round the world queuing to get a contact. That's real DX! Thus the term DX involves an element of rarity as well as distance. So when a station appears in a country or zone that is rarely worked, because of the lack of activity there by amateurs, it is going to be regarded as a highly desirable piece of DX by the fraternity chasing new awards and achievement certificates.

It might even apply to a station as near to the UK as one on Jan Mayen Island or the tiny state of San Marino because of the lack of any permanent amateurs in those places. It should not be overlooked that countries as understood by the amateur includes many islands and similar spots that the rest of humanity would consider belonged to some motherland nearby. For that reason amateur listings take in well over 375 countries.

So what is wanted every month in the logs for our DX corner? Well, half a dozen entries of choice DX would be ample, certainly not the routine loggings of Japanese, American or European stations unless, as mentioned before it is an unusual prefix or country. Actual frequencies are of no consequence with just about every station today able to move to any frequency in a band at will, mainly to avoid interference. A final note, do not just stick to the popular 20 m band because it seems to be open 24 hours a day, but try the other h.f. bands from time to time as some very interesting DX will be heard there. This applies particularly to the 80 and 160 m bands now that wintertime conditions are upon us.

In the Mail

Interesting letter from RTTY enthusiast Godfrey Manning G4GLM of 63 The Drive, Edgware, Middx. who has a $P W$ project going spare, the "Student" Oscilloscope, which can be easily converted for use as a tuning oscilloscope as per December PW, page 27. Anyone interested contact Godfrey or ring him on 01-958 5113. Some info on Friden Flexowriters is also available and Godfrey would be very happy to hear from other users of this machine.

Doing things the hard way is exemplified by young Jonathan Kempster BRS45205 of Northchurch, near Berkhampstead, Herts, who uses a Vega VEF206 for reception of s.s.b. on the amateur bands. As there is no

LOWE ELECTRONICS LTD

THE SHIMIZU SS105S 80-10 METRES SSB/CW TRANSCEIVER

This super new transceiver covers $80-10$ metres, gives 10 W out and is smaller than anything else we have seen so far. Ideal for transverter driving, the SS105S has FM transmit and receive options as well as excellent performance on SSB/CW for HF band use. The SS105S is supplied in semi kit form so as to keep down the price, but all the RF and mixer boards are ready built and aligned so no test equipment is required. All the cabinet work has been carried out so all you have to do is assemble the IF strip, xtal oscillator, and fit them to the completed chassis. Great idea and it brings back the flavour of home brew with added advantage that the rig will work when youve finished it. For more info, just ask us or come along and see it. It's a great little rig.

SS105S

SE-NB
SE-NB Noise blanker kit
SE-FMrx RX FM discriminator kit
SE-FMtx TX FM generator kit..
SE-MK RX marker kit
Optional band crystals

Net	Carr.	
225.00	258.75	4.50
6.75	7.76	.50
15.00	17.25	1.00
11.00	12.65	1.00
9.60	11.04	.50
19.50	22.43	.50
3.00	3.45	.25

AR 2452 metre HAND HELD FM SYNTHESIZED 144-148MHz TRANSCEIVER 5 WATTS or 1 WATT OUTPUT

"A staggering technical achievement"; "How can they get it into such a small size"; "Outperforms any rig l've ever had"; these are typical of the comments made by amateur radio operators after seeing and using the remarkable AR245 2 metre FM handheld transceiver. What does it mean to you? Well, at last you can really take your amateur radio with you, anywhere you want to go, because in this handheld unit, you have a complete synthesized 2 metre FM transceiver covering 144.000 to 147.995 kHz in 5 kHz steps. Also included are + and -600 kHz repeater shifts and a crystal controlled tone burst unit.

ALSO AVAILABLE, THE ORIGINAL AR 240A SAME OUTSTANDING FEATURES BUT $1 \frac{1}{2}$ WATTS

AOR 2455 watts high 1 watt low output AOR 240A $1 \frac{1}{2}$ watts output Carriage on above $£ 1.50$.
£178 inc. VAT
£158 inc. VAT

A0R AR22 2 metre FM Synthesised Receiver $£ 83.00$ inc. VAT carriage $£ 1.50$

SR9 DAIWA

2 metre FM Tuneable/Xtal Receiver £46.00 inc. VAT carriage $£ 1.50$

CRYSTALS FOR SR9 \& SL1600A £2.50 each

SL 1600A

16 channel 2 metre Scanning Receiver $£ 39.50$ inc. VAT carriage $£ 1.50$

HEAD OFFICE AND SERVICE CENTRE
CHESTERFIELD ROAD, MATLOCK, DERBYS. TEL: 0629-2817 or 2430 OPEN TUES-FRIDAY 9-5.30 SAT 9-5.00 CLOSED FOR LUNCH 12.30-1.30
FOR ALL THAT'S BEST IN HAM RADIO CONTACT US AT MATLOCK FOR FULL CATALOGUES SEND 48p IN STAMPS WITH YOUR ADDRESS. MARK ENQUIRY PW.

Eatronics PRESENT
 RTTY TERMINAL UNIT CT100
 as featured in December issue P.W. Incorporating COMPLETELY AUTOMATIC receive/transmit modes. Protected and buffered input provided for TTY keyboard. Automatic re-generation of incoming tones. Special r.f. interference suppression circuit, etc., etc.
 INPUTS FOR:
 Audio FSK signal in; Data in from VDU (e.g. G3PLX): TTY Keyboard or Tape Reader. to drive Transmitter
 Featuring a unique digitally controlled 'Autoprint' circuit which is a superior replacement for the 'Antispace' and 'Autostart' facilities found on some other terminal units. The terminal will ignore most CW and phone signals but will respond to a correct RTTY signal.
 All prices include VAT: CT101 Receive/Transmit VDU only $£ 99.60$. CT 103, with Teleprinter interface $\mathbf{£ 1 0 4 . 9 0}$. All models plus $£ 5.00$ delivery.
 ALSO A MATCHING VIDEO DISPLAY UNIT MODEL CD300
 especially designed for the RTTY ENTHUSIAST!

The video display unit is designed to be an all-electronic replacement for a Teleprinter, and therefore does NOT suffer the disadvantages of bulk, unreliability and noise.
The basic function is to take Murray Code - either from a Terminal Unit (on receive) or from a Keyboard - and produce a complete TV signal. This signal may be fed into a monitor or modulated and fed into the aerial of an ordinary domestic TV set.
It may also be used (with a keyboard) to send Murray Code signals for transmit purposes.

16 lines per page. $\quad 64$ characters per line.
TTL compatible input. Standard IV video output.
Flashing cursor. Auto-scroll at end of page. Front panel controls for:
Letter shift. Figure shift. Page reset.

Carriage return. Line feed.

Built-in mains P.S.U. Styled to match the Catronics CT100 Terminal Unit. Cabinet size $9^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime}$ approx.

Now with built-in UHF Modulator for only $\mathbf{£ 1 7 0} \mathbf{i n c l}$. VAT (plus $\mathbf{£ 5 . 0 0}$ delivery).

PLESSEY SL1600 Series ICs

[^2]
MORSE TUTOR

The uniquely effective method of improving and maintaining Morse Code proficiency. Effectiveness proven by thousands of users
world-wide.
\star Practise anywhere, anytime at your convenience.

* Generates a random stream of perfect Morse in five character groups.
* D70's unique "DELAY" control allows you to learn each character with its correct high speed sound. Start with a long delay between each character and as you improve reduce the delay. The speed within each character always remains as set on the independent "SPEED" control.
* Features: long life battery operation, compact size, built-in loudspeaker plus personal earpiece.

ACTIVE RECEIVING

ANTENNAS

Datong active antennas are ideal for modern broadband communications receivers - especially where space is
limited.

* highly sensitive (comparable to full-
size dipoles).
* Broadband coverage (below 200 kHz to over 30 MHz).
* needs no tuning, matching or other adjustments.
\star two versions AD270 for indoor mounting or AD370 (illustrated) for outdoor use
* very compact, only 3 metres overall length.
* professional performance standards.

Prices: Model AD270 (indoor use only) £42.55 Model AD370 (for outdoor use) $£ 56.35$ Both prices include mains power unit.

VERY LOW FREQUENCY CONVERTER

If your communications receiver gives poor results below 500 kHz Model VLF is the answer.
\star Connects between antenna and receiver input.
\star Converts signals between DC and 500 kHz to the range 28 to 28.5 MHz with low noise and high sensitivity.
\star Crystal controned

* Quality construction in diecast aluminium box (size $112 \times 62 \times 31 \mathrm{~mm}$), SO239
* Operates from internal 9 volt batteryitch

Our full catalogue plus further details of any product are available: only $£ \mathbf{£ 2 5 . 3 0}$
All prices include VAT and postage and packing.

$\underbrace{\text { Pitionconcs }}$
 LIMITED

Spence Mills, Mill Lane
Bramley, Leeds LS13 3HE
England.
Tel: (0532) 552461

STEPHENS-JAMES LIMITED

COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND
Telephone (0942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp .
Antenna switches-converters. Aluminium masts-clamps. Antenna rotators

Trio R1000 Receiver
Digital readout general coverage receiver
covering 200 KHz to 30 MHz synthesiser. Also incorporating quartz digita clock. £285.20.
Trio R820
Amateur Band Receiver $£ 690.00$
Send for full specifications of our full range of receivers covering from 200 KHz to 520 MHz . Our secondhand equipment changes daily Send SAE for up to date lists. Part exchang welcome. Good clean Equipment bought for cash.

We have a good range of secondhand equipment at all times. Send large S.A.E. for details or telephone. Open 6 days

Bearcat 220FB Receiver
Scanning Receiver. $66-88 \mathrm{MHz}-118$ -

136 MHz,	R eceiver,
$144-148$	
$\mathrm{MHz}-144-148-118$	

Send S.A.E, for details of our range Aircraft
Band Receivers.

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SRX30.

These units come complete, with only three wires to connect. The FDU7 for the Yeasu FRG7 can be fitted in place of the KHz dial. or can be supplied for external use. (Please state when ordering) The FDU 3 for the SRX30 is supplied for top of the set use only.
(FDU7) for FRG7
@ $\mathbf{f 4 4 . 7 7}$
(FDU3) for SRX30
@ $£ 44.77$

We alto manuffacture an R.T.T.Y. Converter
The MBGR (Receive only) and the MBGRTT (Receive/Transmit),

T.T.L.C MOS Logic Levelts and Oscilloscope Outputs are provided. Dimensions $(84 \times 304 \times 210)$.
(MB6R Double or single current) @ $£ 77.96$
(MB6R/T Double or single current) @ $£ 83.25$
(All Units are fully Guaranteed, and come complete)
(All prices inclusive of postage and V.A.T.)
(Payment by P.O.. Cheque or Access)
B. BROOKES ELECTRONICS, 69 Leicester Street,

NORWICH NR2 2DZ, ENGLAND. Tel: 0603-24573.
b.f.o. he "beats one station against the other"! The aerials are two dipoles with a common feeder. Main operation has been on the 80 m band until recently when Jonathan "found the 15 m band" after having been round to local G3VRY for a chat. His log has some quite good DX so one wonders what he would do with a proper receiver!

We have all complained at one time or another of the interference caused by BC stations operating on frequencies to which they are not entitled on the 7 MHz band, and despite continual protests nothing ever happens to mitigate the problem. The main QRM is to amateur services in the 7100 to 7300 kHz band in Region 2. The ITU has recently sent a notice to all administrations bringing this point to their attention. But you can bet your bottom dollar that precisely nothing will come of this, as usual, because the ITU is completely powerless to act effectively in this matter.

DX Notes

Good and bad news from P. C. Hawkes of Stourbridge, long-time contributor to this column. After being made redundant recently he has been able to get a job in Zim babwe and expects to be there in the New Year. His faithful AR88 goes with him, but not, I understand, as part of his personal baggage! Although plans to take the RAE here have been shelved I have suggested he does take the December RAE if at all possible so as to smooth the way for a licence out there when that becomes possible. Good luck OM and hope to work you from darkest Africa some day. DX logged lately on 10 m included HMØU (QSL JA6HNK) and 5N2ØATW with cards to POB 3197 Lagos. 3B8DB and J3AH were found in the Round Table net on 20 m , and a quick look around 0630 on 160 m revealed VE1BNN and VE1DXA, all on s.s.b.

Edward Baker of Gramlington, Northumberland, took time off from his duties as Editor of the ISWL magazine Monitor to tell of the DX he has logged on 160 m s.s.b., like OH2BNP, YU4FRS, UC2ACA, SP3BLG and W2HCW and a VE1 that got away. On 40 m Ed roped in 4S7KK, 8Q7AZ and A7XD with WA1YIG/3B8 on 15 m , ending with VQ9TT on 10 m , all s.s.b. Gear used is an SX100 or GR78 plus 100 ft wire and audio filters.

Bill Rendell of Feoch, near Truro, was pestered by oscillator instability on his HRO, eventually tracing it to a dry joint on the valveholder. Now he says the old faithful is a super performer even on the 10 m band where the HRO has never been particularly brilliant. So Bill's s.s.b. \log starts with ZL4AO on $3 \cdot 5 \mathrm{MHz}$, then J73PP on Dominica, VK3XI and VK7LZ plus YS9RVE on 7 MHz ; CE9AF, HK for 14 MHz , while 21 MHz came up with $\mathrm{FP} \emptyset \mathrm{GAP}$, VP2SAB, VP5B and ZD8TC. New signals heard on 28 MHz included A7XD, CO2OM (Box 3011 Havana), HK1CC1, K8YWG on Gibraltar Is. in Lake Erie, so a new island for Bill, VP8PP, VP8SB on Adelaide Is., and ZP5GLS who said QSL through W3HNK. Bill also noted EI7EB on 80 m operating from a hospital bed because he had "been such a good boy"! Get well soon OM!

Dave Coggins is still playing around with his phased verticals in Knutsford, Cheshire, which although designed for 20 m are doing quite well on other h.f. bands, he says, with less TV timebase QRM than he gets on his old 66 ft wire. Dave has been looking around Top Band too, sometimes with his frame antenna which netted KP4ES and 4U1ITU plus YU3LF. On the other bands the FRG-7 found FO8FO, HKøEHM, PJ2CC, TG9AL. VK7AE, YC1BMI, ZS1MZ and ZL4LZ all on the 40 m segment, with 10 m coming up with FGØDYM/FS7, VK9XW (Christmas Is.), VS6CT and ZD8KM. Nice finds on 15 m
included YC6MF/ \emptyset, VK9NC on Norfolk Is. not to mention VK9ZG located on Willis Is., a pair of fine rarities there OM!

In Birmingham, Dennis Court has been getting hot under the collar over some military stations operating in the 80 m band, interfering with the amateurs. Well Dennis I'm afraid that this band is a shared band meaning that all kinds of other radio services like shipping, aircraft, fixed and mobile services and point-to-point have just as much right there as us amateurs, or even more right if the truth were known, so afraid we just have to use our operating experience to get through all the QRM.

From Hull, Colin Frankland BRS45342, tells of excellent conditions on the bands generally in recent times. Biggest catch for him with his Trio 9R59DS and two indoor dipoles was VQ9AA on Diego Garcia, rapidly becoming a popular spot for reasons we'll not mention here, but likely to remain a rarity all the same. The nice, clear \log starts with 15 m listing C5ACA in the Gambia, CO1FL, KH6WU, SV $\emptyset B L$ on Rhodes, TU4AT, VP9BDA, VP2MPB on Montserrat, the VQ9AA, ZB2GK and YC1GJ. Only catch worthy of mention on 10 m was VP5WW and QSL to WB4EYX. Useful one on 20 m was S83W in the Transkei while VP5TCI on the Turks and Caicos Is. wants cards to POB 78 Grand Turk.

Clubland

New clubs being formed thick and fast all round the country can only be a good thing for our hobby. Hope the PROs concerned will see that everyone in their area is fully informed on club activities. Make the most of the free advertising available in local newspapers who are always looking for information on hobby interests.

Smiths Industries Radio Society. Just formed as a section of the Sports and Social Club, Cheltenham, SIRS is open to any with amateur or electronics interests. Meetings third Wednesday of the month at the Club House, Newlands, Bishop's Cleeve with emphasis on the practical and social aspects of the hobby. Morse classes courtesy of G3CXI with RAE courses at North Gloucestershire Technical College where lecturer is Terry Adams G4CHD. Much more info from Secretary Roger Hawkins G8UJJ on Bishop's Cleeve (0242 67) 3333 ext 2489 during office hours or B's Cleeve 2175 otherwise, not to forget channels S20 or R3 if you are on v.h.f.!

Leighton Linslade RC. But two months old! Meeting second and fourth Thursdays at 7.30 pm at the Pavilion, Mentmore Road, Leighton Buzzard. Naturally anyone interested will be made most welcome, says C. R. Wood G8UGN of 2 Stivers Way, Harlington, Dunstable, Beds, who will be glad to fill in with the details.

Verulam ARC. Fourth Tuesday at 7.30 pm , Charles Morris Memorial Hall, Tyttenhanger Green, near St. Albans, Herts. January meeting welcomes G3LHZ for a chat on antenna systems. Advance notice that well-known character Pat Hawker G3VA will be lecturing on direct conversion receivers at the March meeting. Informal meetings of the club are held on the second Tuesday at RAFA HQ, Victoria Street, St. Albans, if that is more convenient. Hilary Claytensmith G4JKS, 115 Marshalswick Lane, St. Albans, probably knows more about the details than anyone else.

Wolverhampton ARS. John Cook G8EDG, 75 Windmill Lane, Castlecroft, Wolverhampton tell me that the club meets every Monday 8pm at Neachells Cottage, Stockwell End, Tettenhall, Wolverhampton, so if you feel you'd like to go along you're welcome or write John for more info. He is also on Wolverhampton 763617.

Mid Lanark ARS. The Wrangholm Community Centre is home for the club GM3PXK every Friday 7.30pm, with a continuous programme of lectures and films that ought not to be missed if you can possibly make it. Doug Smillie GM4FKD knows all about the forthcoming attractions, at the club centre in Jerviston Street, New Stevenson, Motherwell.

Exmoor RC. Successful RAE courses seem to characterise this group which has club call G8SSS and over 20 licensed members. Every Thursday, 7.30 pm , at "Loughrigg", East Street, South Molton, and if you want someone to hold your hand when you get there try secretary Pat Jemmison, XYL of G8RZE, at "Homedale", Brayford, N. Devon.

Stevenage \& District RS. Another RAE courseconscious mob, to the extent of running two classes simultaneously, depending upon what you know when you start. So run along at 7.30 pm , to the Plant B Staff canteen, British Aerospace Dynamics, Stevenage, on any Tuesday and enjoy yourself.

Congleton ARC. Glad to hear from you for the first time with short but well-produced newsletter. Club call is G8PFY and secretary Neville Clayton G8UYT, 2 Moorfields, Leek, Staffs, or Leek 385992, will tell you all about the threatened lectures to come, about SSTV, RTTY and building a synthesiser for your rig. Congleton note: there are around 30 licensed amateurs within a two-mile radius of the Town Hall! Talk-in to the club should present no problems!

Thornton Cleveleys ARS. Another one new to the column. First and third Wednesdays, 7.45 pm , St. John Ambulance Hall, Fleetwood Road, Thornton, Lancs, "next to the Gardener's Arms". That ought to help! RAE classes plus slow Morse over the air from G3ZRZ are just two of the attractions. Coming events are "Looking at the Early Days" by G6DN on Jan. 7, and a film on the manufacture of transistors on Jan. 21, but A. Parr G3IWP, 43 Argyll Road, Poulton-le-Fylde, can tell you more.

Wakefield \& District ARS. Holmfield House, Denby Dale Road, Wakefield at 8 pm alternate Tuesdays, which, after a little calculation, means meetings on Jan. 4 and 18 but no details of programme so far. Contact Richard Sterry G4BLT, 1 Wavell Garth, Sandal, Wakefield, Yorks, who'll supply the details, or listen to the RSGB news from GB2RS on S22 at 9.30am Sundays.

Liverpool \& District ARS. Tuesdays, 8pm, Conservative Rooms, Church Road, Wavertree, with sale of surplus equipment on Jan. 6 and G8NNX chatting on commercial radio techniques on the 13th. G3AHD pumps out c.w. practice sessions on 2 m on Thursdays just to keep you out of trouble. Reg Simmons G3PNS, 62 Daneville Road, Liverpool L4 9RG, won't mind if you get in touch as he is new to the job of secretary and probably has nothing else to do!

Meirion ARS. First Thursdays, 7.30 pm , Ship Hotel, Dolgellau. That's nice and short! Jan. 8 has GW4BIF on s.w.r. problems, and discusses the G5RV aerial. Two for the price of one! Or try to make Feb. 5 for s.w.l. Bob Smith on power station instrumentation. Megawatts instead of milliwatts! More from Dave Morgan GW8PKA, Penybont, Gellilydan, Blaenau Ffestiniog, Gwynedd, or ring Maentwrog 341. Hope I've got all that right.

A note from the White Rose RS of Leeds tells me of a s.w.l. contest from Jan. 24 1500GMT to Jan. 25 0900 GMT on the $1 \cdot 8,3 \cdot 5$ and 7 MHz bands with c.w. and telephony sections, with "world-wide publicity" I have to say that with such a restricted operating period especially on the l.f. bands, there is not going to be much enthusiasm from outside the UK. However if you are interested drop a
line in advance to Dave Whitaker, Hillcourt, 57 Green Lane, Harrogate, Yorks, for more info.

"Do North American medium-wave stations QSL?" is a question often asked. Most will if you send a reception report giving details of the programme you heard. It should go to the Chief Engineer so that he, or one of his staff can check it against the station log which is held and compiled at the transmitter site. In the United States every station is obliged to maintain a log of what actually goes out over the air.

North American QSLs

What sort of information should be included in the report? Titles of pieces of music are not listed in the station log so it is a waste of time referring to them! Details of sponsors (jingles), time checks, weather reports, station identification, news items, titles of programmes, names of announcers, all these are the things to mention and most come over the air around the hour or the half-hour as programmes change and identifications are made. Ideally one should start five minutes before the hour or half-hour, but this may not be possible. There is a well-known law which ensures that if there is going to be a fade then it will occur at station identification time.

Model Reception Report

The following is the format I have used for many years:

The Chief Engineer	DXer's Address in
W.-. Radio	block capitals
New York City	Date
N.Y.	
USA	

Dear Sir,

I had the pleasure of listening to your programme on $\cdots \mathrm{kHz}$ at 1955hrs EST on Friday the 7th November 1980 (equivalent to 0055 hrs GMT on the 8 th November). This is what I heard:

1955 The--- show
1959 "brought to you by -..- beer"
2000 "W -...-Radio New York" News at 8 o'clock
2003 Weather report. Temperature 45 degrees
$2003 \frac{1}{2}$ Next news at 8.30
2004 Basketball Commentary
Reception was with a BRT400 communications receiver and a

medium-wave loop antenna. Your signal was strong with some fading and there was some interference from a station in Venezuela on the same channel.
I hope this report will be of interest to you and I would be very grateful if you could send me a verification of reception (QSL) if the above programme details agree with your station log. An International Reply Coupon, to cover return postage, is enclosed.

Many thanks
Yours sincerely
(Name in Block Capitals)

This is the format I have used for a number of years. The introduction and ending are a matter of personal choice but there are a number of things to note about the rest of the report. There is a change of date at midnight but you are listening to a time zone five hours back where yesterday's date still applies. Eastern USA is on EST (GMT-5), the Atlantic provinces of Canada are on AST (GMT-4) and Newfoundland is on NST (GMT-31 2). It is better to quote the date and local time at the station but it is possible to get into a muddle over summer (daylight saving) time which starts and finishes on different dates in the UK and North America. If in doubt quote GMT but not BST. Give the time to the nearest half-minute if you can.

Always send return postage in the form of an International Reply Coupon (IRC), which can be obtained from the stamp counter of larger post offices. You are outside the service area of your DX catch and the station is really doing you a favour by replying at all. Some DXers worry about not having the full postal address. I have used the type of address in the model report for a number of years and I have never had one returned by the Post Office. Provided you mention the callsign and the location announced over the air then your report should be delivered, but of course if you can get hold of the full address, then use it.

What sort of QSL can you expect? Usually a QSL card though some stations reply by letter. Cards make an attractive display when mounted in a photo album. How long should the report be? Unlike a s.w. report, which should indicate that the listener actually listened to the programme, a report to a medium-wave broadcaster does not have to be long provided it contains a number of verifiable items. A ten minute period starting five minutes before the hour will probably be enough, even if there is a fade in the middle of it.

Readers' Letters

"I have recently bought for a fiver an oldie wireless set called the Orion Imp," writes N. H. Parr of Lutterworth, who wonders if he can use a loop with the receiver's ferrite rod antenna switched out. The ferrite rod antenna in most receivers performs a dual function: as an antenna and as an antenna tuning coil. If you disconnect it then there will be no tuning coil and the receiver will not work.

One solution is to remove the ferrite rod antenna and fit a tuning coil in its place, if you can find a suitable inductor. A better solution is to construct a loop with a small shelf near the centre. The receiver is placed on this shelf in such a way that the nulls of the ferrite rod antenna and the loop coincide. Loop and receiver are now rotated together, coupling between them being by induction. There is no direct connection between the two and if a coupling winding is already fitted to the loop then it is left disconnected.

Reader G. S. Ferguson (Warrington) refers to the standard "40in" loop which is fitted with a 500 pF tuning capacitor and 220 pF fixed capacitor, which can be switched in parallel so that the medium waves are covered in two stages. He wonders what the two frequency ranges are. It may be possible to cover the band in a single range depending on the minimum capacitance of the main winding and of the tuning capacitor. If you cannot reach the l.f. end then a parallel capacitor and switch will be required and there will be quite an overlap between the two ranges.

DX Heard

From Barking in Essex comes a report of reception of the 5 kW WCSH on 970 kHz , which is located at Portland, Maine on the eastern seaboard of the United States. Andy Small, at the controls of his Hammarlund SP600JX and modified loop which was described last month, says: "I only heard this station for a few minutes with station identification, a weather check and a piece of music ---I was however able to convince the station of my reception." Andy thinks readers may be interested to know that with a difficult-to-hear station it is possible to receive a verification for a report that only contains a few programme details (depends on the details!).

WCSH, which has been on the air since 1926 is, at the time of writing, in the process of an ownership change.

WNYZ has been applied for as a new callsign and if this comes off then the call WCSH may soon disappear for good.

Local radio enthusiast Adrian Child of Dorchester uses a Starfinder II portable with internal ferrite rod antenna. He reports hearing Radio Carlisle on 756 kHz (397 m) at 0700 with QRM from West Germany; Radio Norfolk on 855 kHz (351m) at 1630 with QRM from Spain and Berlin; Manx Radio 1368 kHz (219 m) fading in at 1615 and Radio Birmingham/Radio London "fading slowly in a rhythmic pattern" on $1450 \mathrm{kHz}(206 \mathrm{~m})$. On 1152 kHz Birmingham and Plymouth Sound could be picked out by "turning the receiver towards the transmitters, thus making use of the directional properties of the internal aerial."

When I am asked which antenna is the best for short-wave reception I have to reply with another question. What do you want to listen to? There is no single antenna that will match the needs of the DXer on the one hand and the short-wave listener on the other. The DXer's aim is to pick up distant and perhaps weak stations for the sake of doing it. That is what that side of the hobby is all about and the programme value, if any, is of secondary importance. The s.w.l. is interested in programmes and he may be trying to listen to a moderately strong signal in a crowded band. The requirements of the two can be quite different although many DXers do some short-wave listening as well. A couple of examples from my own listening may illustrate what I mean.

Listening to DX

The English broadcast from the Argentine Foreign Radio is on 11710 kHz in the 25 m band at 2300 on Mondays to Fridays. At this hour, especially in winter, the band is not crowded and there is little danger of overloading the receiver with strong signals so I use the BRT400, long wire, antenna tuning unit and occasionally the Codar PR30 preselector as well.

Listening to Locals

As a regular listener to the Austrian Short-Wave Panorama on a Sunday evening, I have found that my long wire does not give satisfactory reception on 6155 kHz in the 49 m band. There is a lot of interference (QRM), splash, etc., which reduces the programme value of the signal. A shorter antenna used with the r.f. gain control turned right down usually provides a nice clean signal with
little QRM. This is with the BRT400 which is a valved receiver and is less prone to overloading than modern semiconductor sets.

Which Antenna is Best?

The simplest solution is to have more than one antenna. If you can, erect a long wire and match it to the receiver with an a.t.u. This is the set-up for listening to Latin America on 19 m and 25 m in the evening or to Radio New Zealand or Tahiti in the morning.

Indoor antennas are to be avoided wherever possible as they pick up electrical interference. TV receivers are the main culprits and they radiate directly as well as from the mains wiring, but other electrical equipment can cause trouble too. A whip mounted on the window ledge or on the roof, and fed to the receiver via a screened lead is better. An antenna switch, mounted close to the receiver, gives you the immediate choice of antenna and the opportunity for a comparison between them. It is always more interesting to experiment than to theorise as it is the results that count.

If you are using a portable with a built-in whip antenna then hesitate before connecting a long wire to it. You will certainly pick up more stations but you may, if you overload the receiver, hear several at once. If a receiver does not have an antenna socket then it is safe to assume that it is only intended for use with its own antenna.

Receiver Calibration

"How can I calibrate my receiver without using an expensive calibrator," asks reader A. Scott of Birmingham who uses a two-transistor home-made short-wave receiver. L. Harding of Upton-on-St Leonards has found a partial solution to the problem when using his Vega 206. He notes the position of the pointer relative to the figures on the tuning scale and he can find one station on the 31 m band simply by setting the pointer over the centre of the figure 9 of the 9.5 MHz mark.

Why not try the home-made logging scale described in the December 1980 issue of this column. You can then plot frequency against log scale reading on a piece of graph paper using known s.w. stations for calibration points. Many announce their frequency over the air and at the h.f. end of the 31 m band you will find a number of time and frequency standard stations on 10 MHz which are

EXTRA

 SPECIAL OFFER DUARTZWATCHES

AT 'GIVEAWAY' PRICES

SEIKO QUARTZ CALCULATOR/ALARM Only $£ 47.95+85$ p p\&p Continuous display of hours, minutes, seconds with day, alarm indicators. Optional display: month, date, AM/PM with day indicator. Calculator (16 key) performs arithmetic, percentage, constant and power calculations. 12 hour alarm with AM/PM indication, rings twice a second for 10 seconds, then four times a second for 10 seconds. Display flashes as battery life nears end. Back light. Water resistant. Adjustable stainless steel' strap.

SEIKO QUARTZ MEMORY BANK CALENDAR

 Only £27.95 + 85p p\&p Continuous display of hours, minutes, seconds, day, date; 12 hour or 24 hour cycle. Optional monthly calendar display of month, year and dates for designated month with Sunday dates flashing. (Any month Jan 1930 to Dec 2009). Memory bank stores up to 11 dates, displays 'MEMO' and flashes on designated dates. Display flashes as battery life nears end. Back light. Water resistant. Adjustable stainless steel strap.CITIZEN QUARTZ MULTI-ALARM with timer, stopwatch facilities. Only $£ 27.95+85 p$ p\&p Continuous display of hours, minutes, seconds with AM/PM indication. Optional display of month, date, day. 12 hour capacity timer, sounds alarm at end of countdown. Time signal chimes every hour on the hour. 12 hour capacity stopwatch. 12 hour alarm with AM/PM indication and spare alarm for added convenience. Indicator flashes as battery life nears end. Back light. Adjustable stainless steel strap. Available with black/white or black/grey face.

MITRAD PEN WATCH Only $£ 10.15+85 \mathrm{p}$ p\&p Elegant stainless steel ballpoint pen combined with a quartz precision timepiece. The five function LCD watch displays hours, minutes, seconds, month and date and has a computerised four year date memory. In presentation case with spare pen refill.

This is a representative selection from the collection of guaranteed leading make and own brand watches offered through Mitrad's 7 day distribution system and backed by Mitrad's own service organisation. For complete product range, ring or write for cotalogue. Trade price list available for bulk orders.

The premier mail order house specialising in quality products and superior after-sales care.

MITRAD 68/70 High Street, Kettering,
Northants. Tel: (0536) 522024

SOUND ADVICE - SOUND VALUE

A GOOD START is essential to short wave listening and expert advice is important in achieving this - So here's some - If you've made up your mind to buy a receiver you should be aware it will perform only as well as the antenna it sees. The old adage regarding wire antennas "As long and as high as you can" is still good, but at best is only good for PEAK PERFORMANCE on one or two frequencies, at worst none.
Whichever frequency you tune your receiver to, for PEAK PERFORMANCE on all frequencies you need good matching between your Receiver and Antenna to hear the best from it. If you plan to listen on the high frequency bands up to 30 MHz then you know you can't have an antenna for every frequency! Or can you? - Well, not quite! BUT we can offer you MUCH IMPROVED PERFORMANCE from your receiver by using an antenna tuning unit, that will electrically change the length of your antenna to match the frequency you select - In other words - A MATCH AT ALL FREQUENCIES.
You'll see many antennas being advertised under gimmicky names, but when it comes down to it they're only random wires or odd configurations. At the end of the day, if you're expecting the performance the manufacturers specified, then you'll still have to buy an antenna tuning unit.
Tell you what we'll do - we'll prove it to you - we'll give you one ABSOLUTELY FREE when you buy your FRG 7 or FRG 7700 and we'll give you complete advice on an antenna to suit your available space, which should only cost you a couple of pounds! So let's put the offer in big print for you!

1 YAESU FRG 7 + AMTECH 200 ATU £199.00 1 YAESU FRG 7700 + AMTECH 300 ATU VAT included

Opening hours: Tues-Sat 9.00-5.30. Sundays by appointment. Closed Monday.

THE LATEST 2M ALL-MODE MOBILE

 YAESU FT480R NOW IN STOCK

C8800 2m FM Mobile

The C8800 is a matching unit to the C7800 with the same features covering and S22 are pre-programmed and available at a touch of a button, the unit has a 3 position RF gain to attenuate strong signals such as repeaters. Provi-
sion is made for two repeater offsets (600k kz is fitted as standard) at $£ \mathbf{2 5 2}$
inc. VAT. sion is mT.
inc. VAT.

KDK 2025 2m SYNTHESIZED 25w TRANSCEIVER
\star Custom designed microprocessor control $\star 25 \mathrm{kHz}$ and 12.5 kHz synthesizer steps!! \star 'Instant QSY', 10 times rate button
$\star 25$ Watts of reliable RF output
\star Band scan between any 'easy set' limits
$\star 10$ write-in non-volatile memory channels
\star Standard $\pm 600 \mathrm{kHz}$ or any repeater split

As EK-150 but with four memories each capable of storing 256 bits making a total of 1,024 bits. This can be recalled separately or in sequence for one long message. £135 inc. VAT.

PX402 13.8V DC 3 amp continuous 4 amp max fully stabilized power supply with overload proection 22.95 inc. VAT P\&P £2.00.
PH5000, 5A continuous, PH5000, 5A continuous, continuous, 30A surge.

UH74 SWR \& power meter switchable HF, 2 m \& 432 MHz with remote heat at $£ 16.40$ inc. VAT.

[^3] or Access No.
$\mathrm{am}-5.30 \mathrm{pm}$

SWR25: This ever-popular twin SWR and Power meter covers $3 \cdot 5-150 \mathrm{MHz}$ at $£ 12.65$ inc. VAT. P\&P 50p.

DL-30 Dummy load 25W DC-150 MHz £6.35 inc. VAT. P\&P 25 p .
T-100 80W Dummy load DC-500 MHz £24.10 inc. T-200 150 W .
VAT P\&P VAT. P\&P 25p.

New Low Price £225.00 inc. VAT

SWR200B swr/power meter covering $3-200 \mathrm{MHz}$ $50 / 75$ Ohm power range $3-30 \mathrm{MHz}, 20 / 200 / 2 \mathrm{~kW}$.
VHF $2 / 20 / 200 \mathrm{~W}$ £40.20. VHF $2 / 20 / 200 \mathrm{~W}$ £40.20.

easily identified by their clock-type one second pulses. They are also to be found on $2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 15 \mathrm{MHz}$ and 20 MHz when propagation is favourable.

Short-Wave Radar

There have been a number of enquiries about the machine-gun type pulses that can be heard wandering about the short-wave bands in an unpredictable way. This is over-the-horizon radar which seems to be a permanent feature on the short-wave bands these days, though it is a lot less troublesome now than it used to be. This type of QRM started in the USSR a few years ago and was the subject of a number of complaints at the time, but it has been reported that other countries have become involved since then.

The reason for the apparent aimless wandering of the signal is rather interesting. It is thought that the transmitter is linked to ionospheric sounding equipment in such a way that the radar operates close to the critical frequency at any moment in order to obtain optimum propagation.

Beams and Bearings

Some readers are puzzled when they hear transmissions that are beamed away from them. Well, these beams are not like the pencil beam from a torch. A better analogy would be a light that is brighter in some directions than in others. There is also the possibility of round-the-world reception which takes about one seventh of a second. If you hear a broadcast with a pronounced echo on it then the echo may be from a signal that has travelled round the globe.

Radio waves travel along a Great Circle path and not "round the latitude" as one reader suggests. The GC path is the shortest distance between two places on the earth's surface. If you have a terrestrial globe then stick a pin in London and another in Vancouver. Stretch a piece of thread between the two pins and its track on the globe is the GC path between London and Vancouver which, rather surprisingly passes close to Iceland and is the route aircraft take. There are two GC Tracks between any two points on the earth, a long one and a short one. In the case of Australia the "short" path is across Russia, China and SE Asia, while the "long" path is the South Atlantic, South America and the South Pacific. You can obtain a Great Circle map centred on London, from the Radio Society of Great Britain, 35 Doughty Street, London WC1N 2 AE , for $£ 2.10$ post paid. This map which is on a flat surface and is completely unlike any other map (you won't recognise New Zealand), shows the GC track and enables you to measure the Great Circle distance from London to any place in the world.
It is useful to know the GC bearing if you are interested in directional antennas, but it is also valuable if you are concerned about propagation. VNG, which is the time signal station at Lyndhurst in Australia, can be heard on 7.5 MHz in the UK in the late afternoon during the winter. Propagation must be by the short path which is in darkness at this time, and VNG is a good pointer to propagation on this path. The signal does suffer from QRM from a Chinese station at times.

DX Heard

Iceland now seems to have a regular service on 12175 kHz in the evening. I've heard it on several occasions around 1930 with quite a good signal using the BRT400 and 60 ft long wire. Reader P. Harrison (Scunthorpe) has an Eddystone 730/10 and his log in-
cludes Uganda on $5025 \mathrm{kHz}(60 \mathrm{~m})$ at 1830 and Iran in English on out-of-band 9022 kHz at 2005.

A Trio R-1000, 150 ft long wire and Mizuho KYZ Skycoupler (a.t.u.) are in use at Wakefield by Stephen Bowler, who reports hearing Radio Australia on 21680 kHz at 1903, Radio Pakistan with English identification on 15485 kHz at 1830, and HCJB in Ecuador in English on 21480 at 2030.
"Can anyone explain the appearance of BBC1 (TV) sound on approximately 13700 kHz ?" asks Mark Slater who lives at Beckenham. Cen Rudd GW4BIQ of Swansea has an FRG-7 which he used with an 80 m trap dipole to pick up Radio Israel on 9815 kHz at 2000 . This programme is also transmitted on 11655, 9425 and 9009 at this time and on $11655,9815,9435$ and 7412 kHz at 2230.

Although more than 100 MHz apart, the 2 m and 10 m bands have a lot in common, mainly I think because both bands are subject to the whims of the earth's atmosphere and, each in their own special way, are good hunting grounds for the DXer. I was reminded of this early on November 3, when I heard an SM on 10 m telling a VK about the prevailing good conditions on 2 m .

Solar

Despite unfavourable weather conditions, Cmdr Henry Hatfield, Sevenoaks, used his spectrohelioscope at every opportunity between October 21 and November 11 . During his observations on October 22 he counted five sunspot groups, and on the 30th he saw approximately 12 groups and the remains of a large loop prominence near the north pole of the sun. On November 2 he could still see 12 groups, but one of them contained "a large ugly spot surrounded by seven small ones." Henry suggested that this was the cause of the severe noise storm that he was recording at 136 MHz and 198 MHz and I was recording at 143 MHz . Each of us recorded a variety of individual solar bursts during our radio observations on October 21, 23, 24 and 31 and November 1, 2, 3, 5, 6, 7 and 10 (Fig. 1).

During the morning of November 10, Henry counted four sunspot groups, one of which was a long chain of about 30 spots. Between 1126 and 1200, he saw a double flare in one group, a small flare in another, an eruptive prominence on the solar limb and the actual event which generated the burst of radio noise that we both recorded at 1139 (Fig. 2).

The 6 m Band

At 1500 on October 22, Hugh Cocks, near Battle, Sussex, using a Hallicrafters S27 receiver, heard c.w. signals from the USA. Around 1300 on the 29th a few Ws were calling, and about the same time on November 1 he

Fig. 1: Two solar bursts which overloaded the author's 143 MHz receiver around midday on November 3

Fig. 2: The solar burst recorded by the author at 1139 on November 10 and witnessed by Henry Hatfield with his spectrohelioscope
heard a VP2. For a short period around 1240 on October 30, Barry Ainsworth G4GPW, Lancing, received signals from the South African beacon ZS6PW on 50.032 MHz and at 1413 on November 5, I heard weak s.s.b. signals on the band.

The 10 m Band

For a large part of each of the 22 days between October 21 and November 11, the 10 m band has been generally wide open and giving many enthusiasts a chance of hearing or working some real and sometimes rare DX. Almost every morning, Japanese and Russian stations were predominant among the many signals on the band. For instance, at 0930 on October 28 I enjoyed armchair copy of a QSO between an LA and a JA, and at 0850 on November 1 I tuned among the strong stations and heard VK4NIC/Aeronautical Mobile working into the UK. At 0846 on the 10 th, it was fascinating to hear the very strong echoes on the signals of G4DXA when he was calling CQ and beaming toward VK and ZL, and on a French station when he replied to a JA.

Conditions on 10 m were also very good on November 11, and at 0750 I heard a 58 signal from ZL2AZU while he was working a DF, but when the German station replied his signals were subject to severe echoing, as were those of G3IIY when he worked the ZL soon after. "The bands have been alive, not only with 28 MHz amateurs but also with possibly Russian and certainly American utility stations, and on October 27 I heard American voices in short bursts as high as 53.9 MHz ," writes Harold Brodribb, from St Leonards-on-Sea, Sussex. Harold has logged amateur signals from most parts of the USA on 10 m , and has identified several of the harmonics from lower frequency broadcast stations that frequently come up between 28 MHz and 35 MHz when conditions are good.

One of the best ways of finding out what the band is like at any particular time is to listen for the signals from the various beacon transmitters which operate for 24 hours per day from strategic sites around the world. The October issue of the International Amateur Radio Union's Region 1 News lists 21 such stations (Table 1), most of which are operational and in the International Beacon Project scheme, co-ordinated by Alan Taylor G3DME, QTHR. I usually check the 10 m beacon frequencies around 0830 and 1345 each day using a long wire antenna into a Yaesu FR-101, and during the period in question I heard signals from A9XC on 22 days, DK0TE 16 days, DLOIGI 19 days, VP9BA (mainly at midday) 14 days, 3B8MS 12 days and 5B4CY 22 days. Although the average signal strength of DLOIGI was about 539 it did, as usual, reach

Table 1: Beacons on 28MHz

Callsign	Frequency kHz	Callsign	Frequency kHz
DLOIGI	28205	VE7TEN	28252
WD4MSN	28207	DKOTE	28257
3B8MS	28210	ZS6PW	28274
GB3SX	28215	DFOAAB	28277
5B4CY	28220	YV5AYV	28280
ZL2MHF	28230	VP8ADE	28284
VP9BA	28235	VS6HK	28290
LA5TEN	28237	W6IRT	28888
OA4CK	28240	WD9GOE	28894
A9XC	28245	DLONF	28992
EA2HB	28247		

599 when Sporadic E was about during the early morning of October 26. Ted Waring, Bristol, often hears the signals from the Canadian VE3TEN and South African ZS6DN beacons, not listed in Table 1, and during the last week of

October he was picking up signals from VE2TEN, a low power propagation study beacon in Quebec.
G. Clothier RS31665, Bristol, using an FRG-7 and a quarter-wave ground-plane in the loft, frequently listens for the 10 m beacon signals and when he hears YV4AYV on 28.282 MHz , another at present unlisted beacon, he then looks for DX in the South America region. Like me, RS31665 has found that A9XC is the most consistent beacon on the band. G. Clothier is a member of the RSGB Bristol Group; was a listener back in the 1920s and once held the RSGB number, BRS5! Readers' reports about the reception of beacon signals are always welcome by Alan Taylor for the RSGB, and me for publication in this column.

On November 1, Gerry Brownlow G3WMU, worked LA, LU, W6 and W8 from his home in Brighton, and during the afternoon of the 2nd he parked his car outside the radio building at the Chalk Pits Museum, Amberley, Sussex and with his FT-7 and a " G " whip antenna worked stations in Russia, Scandinavia and the USA.

Tropospheric

The prevailing high atmospheric pressure of 30.3 in (1026 mbar) on October 20 began to fall rapidly at 2300 , and by midnight on the 21 st it was down to $30 \cdot 0$ in (1015 mbar) and falling. It was therefore no surprise when I switched on the gear at 0730 on the 21st and heard a mobile station in Cornwall working GW mobiles through the Bristol Channel repeater GB3BC, R6 and several continental broadcast stations in Band II. This short-lived disturbance spread into the 70 cm band, and with a dipole feeding my receiver, I heard 579 signals from the beacon in Sutton Coldfield GB3SUT. The pressure remained low until midday on the 25 th when it rose to $30 \cdot 1$ in (1019 mbar), and by noon on the 30th it was back to $30 \cdot 3$ in where it stayed until about 0200 on November 1 . Then a gradual fall set in, and true to form a tropospheric opening took place which lasted for a few days.

Between 1200 and 1300 on October 26, Simon Hamer, Presteigne, Wales, listening in Band II, noticed a lift and heard Sandi Jones playing Haydn's Serenade by the Scottish Dragoon Guards on BBC Radio Solent, stereo signals from the ILR stations in London, Capital and LBC, and music from Lille. I first noticed the main disturbance at 0045 on November 1, when signals from GB3BC were just opening the squelch on my TM-56B. By 0800, the repeater's signals were very strong and remained so for most of the 1st and 2 nd . On the 1 st, Gerry Brownlow, using an FT-101, a Microwave Modules Transverter and a 9 -element Tonna aerial, heard two EAs and an HB9 on 2 m s.s.b., and later heard an F6 calling "CQ Scandinavia only".

Between 1850 and 2100 on the 1st, Ken Smith BRS20001, Horsham, heard very strong signals from several French broadcast stations in Band II, and from midday on the 1 st to late on the 2 nd I received signals, averaging 539, from GB3SUT. At 0148 on the 2nd, still using my humble dipole, I heard G8GXE calling CQ on 70 cm with his aerial beaming toward the north from Slough in Berkshire, suggesting that the troposphere was acting as a good reflector to part of his signal. Simon Hamer sent an interesting log for his Band II reception on November 1 and proved, by listening to Gershwin's Porgy and Bess from Caen, and music in stereo from Capital Radio and LBC, that DX hunting also has good entertainment value. During the evening, Simon logged 10 French broadcast stations between 88 MHz and 100 MHz , and at 1930 on the 4th he received signals from BBC Radio London in short bursts.

News Items

Congratulations to Jonathan Reed, Alresford, Hants, who at the age of 14 years and 10 months passed the RAE with credits in both parts and now sports the callsign, G8YMH. I will look forward to receiving your reports, Jonathan.

Alan Baker G4GNX, tells me that the Sussex Mobile Rally will be held, as before, at Race Hill in Brighton, on 19 July 1981.

"The F2 season started with a bang on October 14 with smeary colour bars at 0938 on Channel R2, and a smeary, circular electronic pattern on Channel R1," writes Nicholas Brown. Good news for the future: according to a report in the West Sussex Gazette (9 September 1980), the subject of a television satellite for taking programmes to and from member countries, has been under discussion in the European Parliament.

Pictures via F2

Between approximately 0830 and 1000 on almost every morning from October 22 to November 12, there was a jumble of strong pictures on Ch. R1, 49.75 MHz , due to natural changes taking place within the F2 (upper) region of the ionosphere. It is obvious from a careful study of the screen that more than one signal is present and it becomes even more obvious when listening to the variety of television sync pulses on a communications receiver tuned to 49.75 MHz . Owing to the multi-path reflections of the signals, these pictures are smeary, the captions are out of focus and it's not unusual to see several images, especially when a single figure is featured on the screen.

Hugh Cocks, near Battle, Sussex, using a Bush 125 receiver, a 4-element Band I beam and a pre-amp, has also seen the early-morning mixture on R1, but at 0830 on

Table 1: Far east 625-line television frequencies in Band I (Ref. WRTVH 34th Edition)

Country	Channel	Vision MHz	Sound MHz
Australia	0	46.25	51.75
Australia	1	57.25	62.75
Australia	2	64.25	69.75
China	$\mathrm{C}-1$	49.75	56.25
China	$\mathrm{C}-2$	57.75	64.25
China	$\mathrm{C}-3$	65.75	72.25
New Zealand	1	45.25	50.75
New Zealand	2	55.25	60.75
New Zealand	3	62.25	67.75

Fig. 1: Four SSTV pictures received from the USA by Sam Faulkner
Fig. 2: SSTV pictures from Argentina and Nigeria

October 24, he heard sync pulses on the Australian Channel $0,46 \cdot 25 \mathrm{MHz}$ (see Table 1), and around the same time on the 27th he resolved what looked like a news programme on that channel. Both Nicholas Brown, Rugby, and I saw the Russian test card (made up of small squares) emerge from the mixture on the 28th and 29th, and at 0948 on the 28th there were five clear images of an announcer wearing glasses.

At 0918 on the 31st there was the usual smeary mixture, then 10 minutes later the shape of an announcer appeared with only one image, I assume he was introducing a new programme, because at 0930, there was a strong picture of cliffs and the sea rolling in, but the captions were too blurred to read.

Tropospheric

At 0730 on October 21 , using my 405 -line receiver fed with a dipole at 30 ft a.g.l., I received strong pictures from the IBA transmitter at Lichfield on Ch. 8. This system serves me as an indicator for tropospheric conditions toward the north of England. When the atmospheric pressure is high and I am in the radio room, I leave this set running with just receiver noise on the screen, and if a picture builds up then I know that it's time to check the v.h.f. bands for DX.

This was proved at 0045 on November 1 when a weak picture from ATV on Channel 8 was one of the first indications I had that a tropospheric opening had begun, and by 0900 the picture was strong and subjected to cochannel interference. At 0900 on the 2nd, the HTV caption was riding up on the ATV colour bar test card on Ch. 8, and at 0905 the Good Morning caption from ATV was predominant once again. Ken Smith, Horsham, noted the severe patterning on several u.h.f. channels during the evening of the 1st, and said that both the BBC and IBA warned their viewers about the prevailing interference.

Ken also saw signs of French pictures around Ch. 21. "The current ridge of high pressure covering northern Europe has led to a number of excellent tropospheric catches from Finland (up to 200 miles away), undisturbed by local stations in the early morning, thanks to the one hour time difference," writes David Appleyard, from Uppsala, Sweden, who received almost perfect pictures from Aland on Ch. E5, $175 \cdot 25 \mathrm{MHz}$ and Turku Ch. E7, $189 \cdot 25 \mathrm{MHz}$ at 0700 on November 2 and 3. David was using an 8in National Panasonic receiver with its own telescopic aerial standing on the window sill of his fifthfloor flat.

Sporadic-E

During a brief period of Sporadic E around 0958 on October 26, I received pictures from Russia on Ch. R1 and bursts of sound on the R1 sound channel, $56 \cdot 25 \mathrm{MHz}$. During another short-lived event, David Appleyard watched an animal cartoon film followed by an ice hockey match on Ch. R2, $59 \cdot 25 \mathrm{MHz}$, between 1125 and 1155 on November 2.

SSTV

One of the delightful aspects of slow scan television is that it is possible to see the face behind the call, Sam Faulkner, Burton-on-Trent, has sent me four such pictures he received from the USA to prove the point, Fig. 1. During late September he also received pictures from Argentina LU5AN and Nigeria 5N0DOG, Fig. 2. It may not be generally known that one of the advantages of SSTV is that the pictures can be stored on a normal audio tape recorder and played back into the equipment when required. One of Sam's favourite monitoring spots is the SSTV calling channel on 28.680 MHz .

IT'S AS EASY AS A,B,C...

We use advanced winding technology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are appreciably more efficient. Our toroidals cost virtually the same as the older types which they are rapidly replacing. Induced hum is reduced by a factor of ten. Supplied with rigid mounting kit with centre bolt, steel and neoprene washers.

80 mm dia. $\times 35 \mathrm{~mm}$
Weight 0.9 Kg
$£ 5.19$ (+E1.10p.p. +0.94 VAT)

$80_{\text {va }}$

$6+6$	4.16
$9+9$	2.77
$12+12$	2.88
$15+15$	1.66
$18+18$	1.38
$22+22$	1.13
$25+25$	1.00
$30+30$	0.83
110	0.45
220	0.22
240	0.20

90 mm dia. $\times 30 \mathrm{~mm}$ Weight 1 Kg
$£ 5.76$ $(+$ El. 20 p.p. + E1.04 VAT)

3×010	$6+6$	6.64	$(+£ 1.60$ p.p. $+£ 2.08 \mathrm{VAT})$		
3×011	$9+9$	4.44	7X016	$25+25$	6.00
3×012	$12+12$	3.33	7×017	$30+30$	5.00
3×013	$15+15$	2.66	7X018	$35+35$	4.28
3×014	$18+18$	2.22	7×026	$40+40$	3.75
3×015	$22+22$	1.81	7×025	$45+45$	3.33
3×016	$25+25$	1.60	7×028	110	2.72
3×017	$30+30$	1.33	7×029	220	1.36
3×028 3×029	110	0.72	7X030	240	1.25
3×029 3×030	220	0.36 0.33			
120 VB	90 mm dia. $\times 40 \mathrm{~mm}$ Weight 1.2 Kg	5.72	500 va $\stackrel{140 \mathrm{~mm} \text { dia. } \times}{\text { Weight } 4 \mathrm{Kg}}$ (£1.70 p.p. +		
	(+21.30 p.p	1.20 VAT)	8×017	$30+30$	8.33
4×011 4×012	$9+9$ $12+12$	6.66 5.00	8×018 8×026	$35+35$ $40+40$	7.14 6.25
4×013	$15+15$	4.00	8×025	$45+45$	5.55
4×014	$18+18$	3.33	8×033	$50+50$	5.00
4×015	$22+22$	2.72	8×028	110	4.54
4×016	$25+25$	2.40	8×029	220	2.27
4×017	$30+30$	2.00	8×030	240	2.08
4×028	110	1.09 0.54	- I.L.P. TOROIDAL TRANSFORMERS		
4 4 030	240	0.50	ARE G	RRNTEE	YERRS

CHOICE OF 3 PRIMARY INPUTS

I.L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as ollows: (Secondaries can be connected in series or parallel)
For 110 V Primary insert 0 in place of " X " in type number.
For 240 V Primary (U. K) insert 2 in place of " X " X in ty type number
Example -120VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* CUSTOMER DESIGN ENQUIRIES INVITED.

QUANTITY PRICE LIST AVAILABLE.
FREEPOST facility.(U.K. only).
Simply address envelope to FREEPOST to address below. NO STAMP REQUIRED.
TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P Electronics Lld or quote your ACCESS or BARCLAYCARD account No. To pay C.O.D. add £1 extra to TOTAL value of order Also available from ELECTROVRLUE and MRRSHRLLS.

©- TRANSFORMERS A division of I.L.P. ELECTRONICS LTD
FREEPOST TI GRAHAM BELL HOUSE ROPER CLOSE
CKNTERBURY CT2 7EP
Phone (0227) 54778 Technical (0227) 64723 Telex 965780

A EXP 650 For microprocessor chips. $£ 3.60$
B EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $£ 5.75$
C EXP 600.6" centre channel makes this the Microprocessor Breadboard. £6.30
D EXP 4B An extra 4 bus-bars in one unit. $£ 2.30$
E EXP 325 Built in bus-bars accepts 8,14, 16 and up to 22 pin ICS. $£ 1.60$
F EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $£ 3.15$
G PB6 Professional breadboard in easily assembled kit form. $£ 9.20$ (Not illustrated.)
H PB 100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ (Not illustrated.)
\& IT'S AS EASY AS 1,2,3 with THE EXPERIMENTOR SYSTEM
SCRATCHBOARD
-BREADBOARD
pre-drilled PCB - £1.32
2. EXP 302 which includes three items. Three 50 sheet
3. Scratchboard workpads - $£ 1.68$
3. EXP 303 which includes three items. Two matchboards and 4. EXP 300 solderless breadboard - $\mathbf{£ 8 . 6 0}$.

- MATCHBOARD

4. EXP 304 which includes four items. Two matchboards and EXP 300 breadboard and a scratchboard workpad - £9.30

The above prices do not include P\&P and 15\% VAT

C.S.C. (UK) Limited, Dept. 6H, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ: Tel: Saffron Walden (0799) 21682 Telex: 817477 NAME

ADDRESS

I enclose cheque/PO for $£$
or debit my Barclaycard, Access, American Express card
No. \quad Exp. date
or Tel: (0799) 21682 with your card number and your order will be in the post immediately.
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { A EXP 650 } \\ £ 5.00\end{array} & \text { Qnty. Reqd. } & \begin{array}{c}\text { B EXP 300 } \\ £ 7.76\end{array} & \text { Qnty. Reqd. } \\ \hline \begin{array}{c}\text { C EXP 600 } \\ £ 8.39\end{array} & \text { Onty. Reqd. } & \begin{array}{c}\text { D EXP 4B } \\ £ 3.50\end{array} & \text { Onty. Reqd. } \\ \hline \begin{array}{c}\text { E EXP 325 } \\ £ 2.70\end{array} & \text { Qnty. Reqd. } & \text { F EXP 350 } \\ £ 4.48\end{array}\right]$ Onty. Reqd..

Experimentor System

1 EXP 300 PC £2.38	Qnty. Reqd.	2 EXP 302 £2.79	Qnty. Reqd.
3 EXP 303 $£ 11.04$	Qnty. Reqd.	4 EXP 304 $£ 11.85$	Qnty. Reqd.

Boxed prices include P \& P and 15\% VAT
If no dealer in your area contact CSC direct.

FREE catalogue

tick box \square

Continental Specialties Corporation, (U.K.) Limited, Dept. 6H Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex. Tel: (0799) 21682

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

BRAND NEW COMPONENTS BY RETURN

HIGH STABILITY RESISTORS

THE C. R. SUPPLY CO.

127, Chesterfield Road, Sheffield S8 ORN.
V.A.T. Inclusive Prices, Postage 15p
(FREE over £5.00)
PREWAR ONWARD VALVES, WIRELESS. SAE. Sole Electronics. 37 Stanley Street, Ormskirk, Lancs

> 1920 VMCR 1960
> Old wircless sets. valves and components. Repair, overhaul \& resloration. SAE Mor ists: COMMUNICATIONS RADIOS, The Old School, Staindrop,
> Tel: Staindrop (0833) 60452 or 60630
> (24 hour telephone answering service)

SMALL ADS

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 9.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

WE SUPPLY most Vintage Radio component parts with a friendly service worldwide. British Vintage Radio Components Co., 57, Weldon Park, Weldon, Nr. Corby, Northants. Tel. Corby 61875

PROFESSIONALTOOLS AT DISCOUNT PRICES

Send 14p. stamp for free catalogue and price list.

> TRI-tronic Marketing Ltd.,
> 9, Badby Leys, Rugby, CVV22 5 SR Tel: (0788) $\mathbf{8 1 2 8 9 5 .}$

CLEARANCE PARCELS: Transistors, Resistors. Boards. Hardware. 10lbs only $£ 5.80$! 1,000 Resistors $£ 4.25,500$ Capacitors $£ 3.75, \mathrm{BC} 108, \mathrm{BC} 171, \mathrm{BC} 204, \mathrm{BC} 230$ 2 N 5061 , CV7497 Transistors, $1070 \mathrm{p}, 100 £ 5.80$. 2 N 3055, 10 for $£ 3.50$. S.A.E. Lists: W.V.E. (1) 15 High Street, Lydney. Gloucestershire.

					$\underline{11.30}$
Mac 79	Sounditia Conv	66_{6}	Jun 80	Acwuric Flath	
Des 79	Rastio Control Ra	c1.50	Jun 80	Nimbur Bast Station	2260
Jen 80	Aadio Control Ent	C200	Ang 80	Railuay Controles	70
Jen 80	Radio Contral is	c1.50	Supt 80	Temar (iaia beorda)	$\mathbf{5 1 2 0 0}$
Jan 80	Speech Procrisar	1.60	Sapt 80	2 Merre Com	30
Jen 80	Wideband Amp	c2, 20	Oct 80	Dinect Con Px	so
Apr 80	Sipnal Centrator	C20	Oct 80	Nmbus PS.U.	ca.s0
${ }_{\text {Apr }} 80$	Nintas Trasctiort	4, ${ }^{\text {a }}$	Mov 80	Fiald Tent Set (2 boords)	11.50
Apr 80	Nimbus Modulatar	60.75	Ner 80	Renituoct Mover	
May 80	100S Timet ALL BOARDS TOP	C1.30 duality	$\begin{aligned} & \text { Dev } 80 \\ & \text { GLASS } \end{aligned}$	Bind Scarer (2 bourds) FIBRE POST FREE	11.50
Boards not listed sent on approval on resuest. We are always pleased to hear from readers who prefers to design their own circuits and can produce "one offs" at very reasonable charges. Send SAE for leaflet "How To Produce					
Atwork' H.T.E. (PRINTED CIRCUIT BOARDS) DEPT P.W. 50 Milnafield Avenue, Elgin. Moray IV30 3EL					

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Wells 31803.

CRYSTALS MADE TO ORDER within 6 weeks. 4.105 MHz , wire or pins. $£ 3.90$ each inclusive. HARTLEY CRYSTALS. Green Lane, Milford, Godalming, Surrey GU8 5BG.

VALVES

Radio - T.V. - Industrial - Transmitting
Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976. Obsolete types a speciality. List 50p. Quotations S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves,
Projector Lamps and Semiconductors.
COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering,
Sussex PO20 8BN
West Wittering 2023 (STD Code 024366)
BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 33 years. Forresters (National Radio Supplies) late Holdenhurst Rd. now at 36, Ashley Rd. Boscombe. Tel. 302204. Closed Weds.

8 PAGE LIST FREE. Thousands of different items, all at cut price. Send SAE to PC Electronics, Thornhill, Romsey Road, Whiteparish, Salisbury.

Southern Valve Co.

2nd Floor, 6 Potters Road, Now Barnot,' Herts.
Tel: 01-440 8641 for current prices \& availability. all popular valves slocked. Nat Despatch. Telephone afternoons preferred.

Valves. Tubes, Aerials etc by LEADING-MAKERS. Send SAE

 Lists or Phone for current prices. Nounter or MAIL ORDER. NO OD. Speedy Despatch assured. No order under $£$Philip Boarman, 6 Potters Road, Now Barnet, Herts. Tal: 01-449 1934/5 (1934 Recording Machine)

VHF CONVERTERS 50.500 MHz .28 .30 MHz IF output. Complete receivers also available. SAE data, lists. H Cocks. Cripps Corner. Robertsbridge. Sussex. Tel. 058083 317.

Books and Publications

FULL REPAIR data any named T.V. $£ 5.50$, with circuits. layouts, etc., £7. (AUSW) 76 Church Street, Larkhall, Lanarks ML9 IHE.

Build your own

P.A., GROUP \& DISCO SPEAKERS

Save money with this practical guide. Plans for 17 different designs. line source, I.8., Horn and Reflex types, for $8^{\prime \prime}-18^{\prime \prime}$ drive units. $\mathbf{8 3 . 9 5}$ post free ($\$ 8$ overseas).

THE INFRA-BASS LOUDSPEAKER
by G. Holliman
(full constructional details for versions using $15^{\prime \prime}, 12^{\prime \prime}$ and 10^{-} drive units.) $\mathbf{\ell 2} .95$ post free ($\$ 6$ overseas

THE DALESFORD SPEAKER BOOK
by R. F. C. Stephens
This book is a must for the keen home constructor, Latest technology DIY designs. Plans for I.B., and Reflex designs for
$10-100$ watts. Also unusual centre-bass system. $£ 2.20$ post 10-100 watts. Also unusual centre-bass

VAN KAREN PUBLISHING
5 SWAN STREET, WILMSLOW, CHESHIRE

Aerials

TONNA (F9FT) AMATEUR ANTENNAS for 2 m , 70 cm . and 23 cm bands. Send 30 p for full catalogue. RANDAM ELECTRONICS (PW), 12 Conduit Road. Abingdon. Oxon. OX14 IDB.

ANTI-TVI TRAP DIPOLES
 1981 Range: Shortwave Listener

Indoor models $£ 14.50$ \& $£ 27.50$
Outdoor models $£ 30.00$ \& $£ 36.00$
Lists 10×8 in 17p SAE, Aerial Guide 50p Indoor and Invisible Aerials $£ 3.50$
Callers Welcome
Tel: 03986-215
G2DYM, Uplowman, Tiverton, Devon.

COPPER AERIAL WIRE 14 swg hard drawn 70 ' $£ 3.50$, $140^{\prime} £ 7.00$ inc VAT. Postage $£ 1.75$. T.M.P. Electronics. Supplies, Britannia Stores, Leeswood, Nr. Mold, N. Wales.

TV-DX

FM-DX and all domestic reception requirements - Fringe or Local'. Aerials. Amplifiers. Boosters. Filters. Hardware - and the knowledge. Our new 1981 Catalogue costs 40p. SAE all enquiries. please.

SOUTH WEST AERIAL SYSTEMS
10, Old Boundary Road,
Shaftesbury, Dorset.
Tel. (0747) 4370.

Record Accessories

STYLI, Cartridges for Music Centres, etc. FREE List no, 29 for S.A.E. includes Leads. Mikes. Phones etc. FELSTEAD ELECTRONICS (PW). Longley Lane. Gatley, Cheadle. Ches. SK 8 4EE.

Software

SINCLAIR ZX80 COMPUTOR OWNERS, amateur radio programs, now available. SAE for list, J. Martin, 114, Briggs Fold Road. Egerton, Bolton. Lancs.

Wanted

WANTED. Single side band unit 2000 , for Grundig 2100 model. Phone 041-883-2371.

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list - Offer by return - WALTONS. 55A Worcester Street, Wolverhampton.

Clubs

ATTENTION ICOM, KENWOOD OWNERS!

If you'r not receiving our monthly Newsletter your equipment is not tuned into a wealth of information! Details S.A.S.E.

> c/o Users International Radio Clubs,
> 20, Thirlmere Court,

Felixstowe, Suffolk 1P1I'9SN.

Courses

COURSES - RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations etc) write or phone - THE RAPID RESULTS COLLEGE, DEPT. JXI, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24 hr Recordacall).

Educational

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 277D Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 277D Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)

State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 277D Intertext House, London SW8 4UJ Tel. 01-622 9911 (ail hours)

State if under 18
CAREERS in Marine Electronics, Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 8JS. Tel. 0391779123.

TELEVISION
 COMPUTER \& RADAR SYSTEMS SERVICING

TWO YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO TV \& CCTV
- COLOUR TV \& VCR
- DIGITALTECHNIQUES
- COMPUTERS \& MICROPROCESSORS
- RADAR

Each of the above Modules are 12 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) $£ 400$ per Module. - Computer Module $£ 500$.

Next session starts January 5th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar.)

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: PP, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

For Sale

PRACTICAL WIRELESS 1972-1977. Two copies missing. Offers? Neame. Tillsend, Stapleford. Salisbury, SP3 4LT.

PANASONIC RF2800 DIGITAL, quality portable. Value £220. As new, £85. 6, Athelstan Close, Axminster. Devon.
0.5 mm PVC EQUIPMENT WIRE on 200 m reels. Single and bicolours $£ 4.00$ per reel including $\mathrm{P}+\mathrm{P}$ and VAT. Selbac. 65. Penrhýn Avenue. Litherland, Liverpool. L21 6ND.

PW/PE/REC/TV 1964-75 50p. SAE for refund if sold. C. Redwood, 45A. Lulworth Avenue. Poole. Dorset.

TECH R.F. SIGNAL GENERATOR. 120 KC to 500 Mc £55. 051-9285619.

TWO HF TRANSCEIVERS

TYPE FT7B YAESU YC7B DIGITAL FREQUENCY AND AERIAL TUNER. STILL UNDER GUARANTEE
FOR QUICK SALE $£ 425$ EACH.
PLEASE PHONE 0244300555.
NEW BACK ISSUES OF "PRACTICAL WIRELESS" available 90 p each, post frec. Cheque or uncrossed P.O. returned if not in stock. BELL'S TELEVISION SERVICE. 190 Kings Road. Harrogate, N. Yorks. Tel: (0423) 55885.

UK AIRCRAFT FREQUENCIES List $£ 1$. UK Marine Frequencies List $£ 1$. Including HF VHF. PLH Electronics, 20, Vallis Road, Frome, Somerset.

FOR SALE. Regency VHF/UHF synthesized scanner receiver, perfect working order with mains P.S.U. $£ 120$. Ring Keynsham (near Bristol) 5164.

Service Sheets

30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE

TV Monos, Radios $\mathbf{£ 1 . 2 5}$ - Tuners $\mathbf{£ 1},-$ Tape Recorders,
Record Piayers, Transistors Record Players, Transistors from $£ 1.25-$ Car Radios,
Stereograms, Radiograms from $£ 1.25-$ Except Colour TV Stereograms, Radiograms from $£ 1.25$ - Except Colour TV
Circuits from $£ 2$. - State, if circuit will do, if sheets are not in stock. All TV sheets are full length $24 \times 12^{\prime \prime}$. not in Bits \& Pieces. All other Data full lengths. Free Fault Finding Chart or TV Catalogue with order. Crossed P.O.s returned, if sheets not in stock. S.A.E, please.
C. CARANNA

71, Beaufort Park, London NW11 6BX
$01-4584882$ (Mail Order)

SERVICE SHEETS. Radio. TV etc.. 10,000 models. Catalogue 24p. plus S.A.E. with orders, enquiries. TELRAY, I54 Brook Street. Preston PRI 7HP.

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc.. $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S.. 190 Kings Road. Harrogate, N. Yorkshire. Tel. (0423) 55885.

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25 p and S.A.E. Hamilton Radio. 47 Bohemia Road. St. Leonards. Sussex.

Q. TECHNICAL INFORMATION SERVICE
 \section*{76 CHURCH ST., LARKHALL, LANARKS.}

Any full size service sheet - still only $£ 1$ + s.a.e.
Thousands of different sheets \& manuals in stock (many of these only obtainable from us)

Repair data your named T.V. $\mathbf{£ 6}$ (with circuits $\mathbf{£ 8}$)

Domestic Equipment Manual Vol. $1 £ 13.50$ (updatings free for 1 year)

 S.A.E. for free newsletter, price lists, any quotation, bargain offers, unique T.V. publications. 2 big catalogues listing thousands of service sheets and manuals with $£ 4$ worth of vouchers special offer $£ 2+$ large s.a.e.Phone: 0698883334 anytime. Callers 4-6 pm weekdays, Sat. after 10.

Miscellaneous

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination Cassette B: 12-24 w.p.m. for professional examination preparation. Each Cassette are type C90.
Morse Key and Buzzer unit for sending practice.
Price each Cassezte (including booklets) $£ 4.75$. Morse Key
and Buzzer $£ 4.75$.
Prices include postage etc. Overseas Airmail $£ 1.50$ extra, MHEL ELECTRONICS (Dept 2), 12 Longshore Way, Milton, Portsmouth PO4 8LS.

SUPERB INSTRUMENT CASES by Bazelli. manufactured from P.V.C. Faced stecl. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low $£ 1.05$. Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI. (Dept No. 25). St Wilfrid's. Foundry Lane. Halton. Lancaster LAI 6LT.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Coningsby Gdns				
ENAMELLED COPPER WIRE				
SWG	1 tb	8 ox	4 oz	20 oz
10 to 29	3.10	1.86	1.10	. 80
30 to 34	3.50	2.00	1.15	. 80
35 to 39	3.95	2.36	1.34	. 98
40 to 43	5.10	2.97	2.28	1.42
44 to 46	6.00	3.60	2.50	1.91
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 22	5.30	3.03	1.85	1.20
24 to 30	6.50	3.75	2.20	1.40
Prices include P\&P and VAT. Orders under $£ 2$ please add 20p. SAE for list. Dealer enquiries welcome.				

C.W.A.S. ALARM. Send now for the latest discount catalogue of Professional Burglar Alarm Equipment. C.W.A.S. Alarm, 11 Denbrook Walk, Bradford BD4 0QS, W. Yorks. Phone 0274682674.

PSYCHOTRONIC GENERATORS, gravity lazers, electrokinesis, electrophotography, skinvision. SAE $4 \times 9^{\prime \prime}$ Paralab. Downton. Wilts.

ENAMELLED COPPER WIRE				
SWG	$\mathbf{1} \mathbf{~ l b}$	$\frac{1}{2} \mathbf{~ l b}$	$\frac{1}{4} \mathbf{~ l b}$	
10 to 19	2.95	1.70	0.85	
20 to 29	3.05	1.75	0.95	
30 to 34	3.45	1.90	1.00	
35 to 39	3.75	2.10	1.15	
40 to 43	4.95	2.75	2.15	
44 to 46	5.90	3.50	2.40	
FREE WIRE TABLES WITH EACH ORDER				
INDUSTRIAL SUPPLIES				
102 Parrswood Road, Withington,				
Manchester 20				
Prices include P \& P in UK				

If it's a case of making your project look good, then use one of ours.
Simply send a S.A.E. for

H.M. ELECTRONICS. ен. 271a/275a Fulwood Road. Broomhill Sheffield S10 3BD

OUT NOW!! The 1981 Greenweld Components Catalogue. 60p Discount Vouchers, Reply Paid Envelope. Free Bargain List \& Data Sheet. Only 75p. Greenweld, 443B. Millbrook Road. Southampton SOI OHX.

TIME EXACT?

MSF CLOCK is ALWAYS CORRECT - never gains or loses,
self setting at switch-On, 8 digits show Date, Hours, self setting at switch-on, 8 digits show Date, Hours,
Minutes and Seconds, auto $\mathrm{GMT} / \mathrm{BST}$ and leap year, also paralle! BCD output and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals,
built-in antenna. 1000 Km range, $£ 54.80$. LOUIIt-in antenna. 1000 Km range, $£ 54.80$. Notch Filter, between your receiver and speaker, BOOST

V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver £13.70.
CAN'T FIND DX? Get SPOT-ON with a Crystal Calibrator Cetween your antenna and receiver, $1 \mathrm{MHz}, 1000,25 \mathrm{KHz}$
ber markers to vht, bypassed when off, MORE DX, £19.80.
LONG WAVE DX? Exciting $100-600 \mathrm{KHz}$ Converter to 4.1-4.6MHZ, built-in anterna tuner, £13.90.
MISSING DX? Make then HEAR YOU with a Speech MISSMpressor, between your microphone and transmitter BOOST Your POWER Up to 4 times, £9.90.
GOKHZ RUGBY RECEIVER, as in MSF Clock, serial data output, builh-in antenna. 1000 Km range, $£ 15.70$. Each fun-to-build kit includes all parts, printed circuit, case,
postage etc, money back assurance so GET one NOW.

CAMBRIDGE KITS
45 (PP) Old School Lane, Milton, Cambridge.

P.W. PROJECT PCB'S (All Boards to be Pre-paid CWO) Please add P\&P @ 25p. to each Board.					
Sept. 80	WRO 95	63p	Oct. 80	WRO91	4.50p
Sept. 80	WAD 634	1.85p	Oct. 80	WRO 97	$95 p$
Sept. 80	WRO 96	${ }_{\text {L.85p }}$	Oct. 80	WRO 82	230p
Sept. 80	WRO 86	65p	Nov. 80	WAD 641	60p
Sept 80	WRO 87	${ }^{2.25 p}$	Nov. 80	WK 101	stp
Sept. 80	WRO 88	140p	Dec. 80	WR 103/103A	L40p
Sept. 80	WRO 89	${ }^{1.30 p}$	Dec. 80	WR 101	1.30 p
Oct. 80	WRO 90	4.50 p	Dec. 80	WR 102	1.30p
Fibreglass Strip Boards ($3^{\prime \prime} \times 4^{\prime \prime}$) 14 strips 60 p each PCB's made to your own specification. Prototypes or production runs. Fulf photographic facilities.					
Details or quotation from: WINSTON PROMOTIONS (P.W.) 9 HATTON PLACE, LONDON ECIN 8RU TELEPHONE 01-405 0960/4127					

KEEP ONE HANDY IN THE WORKSHOP ABNNEZIE

The unique aerosol treatment for minor burns and scalds. From Boots and other Chemists.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS.

HOMEBRU RADIO

(Mail order only)
Helford components:-

VFO P.C.B.	$\mathbf{£ 1 . 1 5}$
Buffer P.C.B.	$\mathbf{£ 1 . 1 5}$
G4CLF P.C.B.	$\mathbf{£ 4 . 2 4}$
SL1612	$\mathbf{£ 1 . 5 6}$
SL1621	$\mathbf{£ 2 . 0 7}$
SL6270	$\mathbf{£ 2 . 5 1}$
SL1640	$\mathbf{£ 2 . 0 7}$
SL6310	$\mathbf{£ 2 . 5 1}$
2N5771	$\mathbf{£ 0 . 3 1}$
BA182	$\mathbf{£ 0 . 3 6}$
78L06	$\mathbf{£ 0 . 5 9}$
J304	$\mathbf{£ 0 . 5 4}$
J310	f0.87
FX2249	per pair $\mathbf{£ 0 . 6 0}$
SBL-1 = (MD108)	$\mathbf{£ 4 . 9 0}$
SL560C	$\mathbf{£ 4 . 9 7}$

+ Postage \& Packing $£ 0.30$
VFO/CAP $+12: 1$.
4170/75/023
VFO6:1 ADJ/TORQ Ball Drive 5620
£4.41
4 Gang (Preselect) CAP. 5318/4/102
£7.73
(Preselect) Reduction Drive. 5870/3 £1.76
+ Postage \& Packing £0.45. HELFORD
(Troubleshooting by the designers.) Any problems send S.A.E. + Invoice Number.

HOMEBRU RADIO

(Mail order only) 55 Ashley Road, Parkstone, Poole BH14 9BT.

PROGRESSIVE RADIO

ALL ORDERS DESPATCHED BY RETURN POST

SEMICONDUCTORS. 2 N5062 (100V 800 mA) SCR 18p. BX504 opto isolator 25p. CA3130 $\mathbf{9 5 p}$. TBA800 50p. Tag 4443 SCR 45p. Texas R1038 power trans, 50p. TDA 1151 25p. SWITCHES. Min. toggles, SPST $8 \times 5 \times 7 \mathrm{~mm} 42 \mathrm{p}$. DPDT $8 \times 7 \times 7 \mathrm{~mm} 55 \mathrm{p}$. DPDT doff $12 \times 11 \times 9 \mathrm{~mm} 77$ p. HEAVY DUTY-DPDT 240VAC 10 Amp 35p. PUSH TYPE, push on $16 \times 6 \mathrm{~mm}$ 15p, push to break version 17p, MERCURY (TILT) SWITCH, ${ }^{\prime \prime} \times \chi^{\prime \prime}$ " 35 p .
ANTEX SOLDERING IRONS: Models C15, CX17 and X25 all £3.95 each. NSA1198 $8 \frac{1}{2}$ digit multiplexed displays, com. cath. with data sheet $\mathbf{£ 1 . 4 5 p}$. SPECIAL OFFER TIL209 Red LED's 10 for 75p. 0.2" LEDS, red, yellow, green 10p each.
LINEAR I.C.'s. LM300 40p, LM301 55p, LM308 £1.30, LM324 £1.00, LM388 95p, LM358 50p, LM386 90p, LM3900 80p, LM3909 75p, CA1310 £1.70, CA3018 £1.00, CA3028 £1.30, CA3035 £2.20, CA3046 85p, CA3098 95p, CA3130 95p, CA3140 37p, MC1303 £1.40, MC1312 £1.60, MC1330 £1.40, MC1458 40p, NE550 £1.00, NE544 £1.40, NE565 £1.70, NE566 £1.70, TAA550 40p, TAA621 £2.20, NE556 50p, C106D SCR 35p. GPO TELEPHONE DIALS $£ 1.00$ (new). JACKSONS C804 50pf var, capacitors 50p each. TOOLS. 5 piece precision screwdriver sets, individual handles only $\mathbf{£ 1 . 0 5}$ set.
JUMPER TEST LEAD SETS. 10 pairs of leads with insulated crocs each end 90p. 40KHZ TRANSDUCERS, RX/TX $£ 3.50$ pair.
STC BREAK GLASS FIRE ALARM UNITS, new with mounting box $\mathbf{£ 1 . 5 0} \mathbf{p}$.
MINIATURE SOLID STATE BUZZERS. 2 voltages available, 6 or 12 VDC 75 p each, Loud 12 volt buzzers 65p.
Cash with order please, official orders welcome from schools etc., please add 30 p postage and packing. VAT inclusive. SAE for latest illustrated stock list.

31, CHEAPSIDE, LIVERPOOL L2 2DY

SHARP COMPUTERS

 Add 15\% to all prices.

Sharp MZ80K Computer with Basic tape and a free tape of approx. 50 programs:- 20 K
version $£ 438.48 \mathrm{~K}$ version $£ 486$. MZ801/0 ©83. MZ80P3 £499. MZ80FD £772. PC1211 £83. CE121 £12. OHIO SCIENTIFIC COMPUTERS New Series 2 poa. New Superboard $3 € 159+15 \%$ VAT, post free with free power supply and modulator kit. We stock the widest range o add on kits for Superboard. Send sae for RINTE
800MST $£ 359$. Oki Microline 80 £349. Free interface and word processor for
Superboard 2 included. Add 15% VAT. SINCLAIR PRODUCTS
PFM200 $£ 51.95$, case $£ 2.07$, adaptor
E4.20, connector kit 13135 Microvision TV 489, mains adaptor $£ 6.88$. PDM35 $£ 34.23$ daptor £4.20, case £2.07. DM350 £85.21
 Accessories for all 3 models:- rechargeable batteries $£ 8$, adaptor/charger $£ 4.20$, case New SC110 10 MHz oscilloscope E 144.95 COMPUTER GAMES
Chess champion 6 £ 49.95 . Chess challenger
7 £ 79 . Sensory Chess Champion 8 £19,
7 £79. Sensory Chess Champion 8 £119. Star chess £62. Atari Videocomputer £107. TV GAMES
AY-3-8550 chip £4, kit £5.26. Stunt cycle AY-3-8765 chip $£ 14.00$, kit $£ 6.95$. 10 game AYdde 2 AY-3-8600 chip $£ 5.95$, kit £ 7.03 ,
Modified shoot kit $£ 5.28$. Colour generator Modified
kit $£ 9.95$,

kit $£ 9.95$

MAINS TRANSFORMERS
$6-0-6 \mathrm{~V} 100 \mathrm{ma} 96 \mathrm{p}, 1 \frac{1}{2} \mathrm{a}$ £3.32. $9-0-9 \mathrm{~V}$ $75 \mathrm{ma} 96 \mathrm{p} .1 \mathrm{a} £ 3.08,2 \mathrm{a} £ 4.93 .12-0-12 \mathrm{~V}$
$100 \mathrm{ma} £ 1.20$, 1 a £ $3.70,15-0-15 \mathrm{~V} 1 \mathrm{a}$ 100 ma
£3.98.
JC12 AND JC20 AMPLIFIERS
integrated circuit audio amplifier chips with
data and printed circuits. JC12 6 watts data and printed circuits.
CONTINENTAL SPEC. PRODUCTS
EXP300 £6.61. EXP350 £3.62, EXP325
£1.84. EXP650 £4.14, EXP4B £2.64.
PRINTED CIRCUIT MATERIALS
PC etching kits:- economy $£ 3.42$, standard
$\mathrm{£5} 76.40$ sq ins pcb 50 p . $1 \mathrm{~b} \mathrm{FeCl} £ 2.20$.
etch resist pens:- economy 50 p, dalo 90 p.
drill bits $1 / 32^{\prime \prime}$ or 1 mm 35 p . Etching dish
92 p . Laminate cutter f 1.30 . BI-PAK AUDIO MODULES BI-PAK AUDIO MODULES
AL30A £4.53. PA12 £9.31. PS 12 £1.75.
T538 £2.90. S450 227.90 . AL60 $£ 5.62$. T538 $£ 2.90$. S450 £27.90. AL60 £5.62.
PA100 £19.24. SPM80
E5.26. BMT80 PA100 £19.24. SPM80 £5.26. BMT8
£6.36. Stereo 30 £24.14. AL80 £8.56. S-DECS AND T-DECS
S-Dec £3.79. T-Dec E4.59. 16 dil adaptor BATT BATTERY ELIMINATORS 3-way types with switched output and 4 way $300 \mathrm{ma} £ 3.50$. 100 ma radio types with press stud connectors $9 \mathrm{v} £ 4.77,6 \mathrm{v} £ 4.77,41 \mathrm{v}$
$£ 4.77,9+9 \mathrm{v} £ 5.99,6+6 \mathrm{v} £ 5.994 \mathrm{t}$ $£ 4.77,9+9 \mathrm{v}$
$£ 55.99,6+6 \mathrm{v} £ 5.99,4 \frac{1}{2}+4 \frac{1}{\mathrm{v}} \mathrm{v}$
Fully stabilized model $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v}$ £5.99. Fully stabilized model $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v}$
400 ma e7.15. Car converters 12 v dc input, output $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 \mathrm{v} 800 \mathrm{ma} \mathrm{f} 3.04$. Output $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 v 800 \mathrm{ma}$ ELIMINATOR KITS BATrERY
100ma radio types with press-stud connec-
tors $4 \mathrm{tv} £ 1.64$. $6 \mathrm{v} £ 1.64,9 \mathrm{v} £ 1.64,4 \frac{1}{2}+4 \mathrm{tv}$ $£ 2.30,6+6 \mathrm{v} £ 2.30 .9+9 \mathrm{v} £ 2.30$. Heavy duty 13 way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 /$
$25 / 28 / 34 / 42 \mathrm{v} 1 \mathrm{~A}$
E6.82, 2 A E10.86. Car converter input 12 v dc , output $6 / 7 \frac{1}{2} / 9 \mathrm{v} 1 \mathrm{~A}$ stabilized $£ 1,62$. Stabilized TL, computer supply 5 v 2 A £8.38, 5v $4 \mathrm{~A} £ 14.16$. Stabi-
lized 8 -way types $3 / 4+/ 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v}$ lized 8 -way types
$100 \mathrm{ma} \mathrm{E} 3.12,1 \mathrm{~A} £ 8.10,2 \mathrm{~A} \quad \mathrm{E}$. 12.11 .
 100 ma £ $£ 3.12,1-30 \mathrm{v} 1 \mathrm{~A} £ 8.30,1-30 \mathrm{v} 2 \mathrm{~A}$
$£ 14.82 .12$ E14.82.

COMPONENTS

1N4148 0.9p. 1N4002 3.1p. 7418 dil $20 p$.
bc182, bc184, bc212, bc2 14, be547, bc549 bc182, bc184, bc2 12, bc2 14, bc547, bc549
6.1 p . tip41c 48 p . bd 132 32p. fuses $20 \mathrm{~mm} \times$ 6.1 p . tip41c 48 p, bd 13232 p . fuses 20 mmx
5 mm cartridge $.15, .25,5,1,2,3,5 A$ quick blow 2 p . Resistors 5%. 1 W Ei2, 10 RA to 10 M
1.5 p . 0.8 p for $50+$ of one value P 1.5 p . 0.8 p for $50+$ of one value. Polyester
capacitors $160 \mathrm{v} .015, .068 \mathrm{mf} 2.6 \mathrm{p}$. 1 mf $4.0 \mathrm{p}, .01 \mathrm{mf} 3.0 \mathrm{p}, .022, .033 \mathrm{mf} 3.3 \mathrm{p}, .047 \mathrm{mf}$ styrene capacitors E12 63 v 10 to 1000 pf 4 p . 1 n 2 to 10 n 5 p . Ceramic capacitors 50 v E6.
22 pf to 47 n 2.5 p . Electrolytic capacitors 50 22 pf to 47 n 2.5 p . Electrolytic capacitors 50 v
$.5,1,2 \mathrm{mf} 6 \mathrm{p}, 25 \mathrm{v}, 10 \mathrm{mf} 6 \mathrm{p}, 16 \mathrm{v} 22,33 \mathrm{mf}$ 5. $1,2 \mathrm{mf} 6 \mathrm{p}, 25 \mathrm{v} 5,10 \mathrm{mf} 6 \mathrm{p}, 16 \mathrm{v} 22,33 \mathrm{mf}$
$6 \mathrm{p}, 47,68 \mathrm{mf} 5 \mathrm{p} .100 \mathrm{mf} 7 \mathrm{p}, 330,470 \mathrm{mf} 9 \mathrm{p}$
 33 v 7 p . Preset pots subminiature 0.1 W
horiz or vert 100 to 4 M 78 p . Red LEDs 11 p . horiz or vert 100 to 4 M 78 p . Red LEDs 11 p
IC sockets 8 dil 8.7 p . 14 dil 10.1 p . 16 di
I2 12p. Memories 2114 £2.81, 4116 £3.26.

SWANLEY

 ELECTRONICSDEPT PW, 32 Godsel Rd.,
Mail order only. Please add 35 p postage.
Prices include VAT unless stated. Lists Prices include VAT unless stated. Lists
$27 p$ post free. Overseas customers deduct

MAILORDER PROTECTION SCHEME

INTRODUCTION
The Office of Fair Trading have agreed that the notice of the Mail Order Protection Scheme to appear in periodicals carrying mail order advertising should appear as follows:-

'MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.
Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery. Practical Electronics will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Practical Electronics summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.'
WATFORD ELEGTRONIES
33/35, CARDIFF ROAD, WATFORD, HERTS. ENGLAND
MAIL ORDER. CALLERS WELCOME. Tel. Watford $40588 / 9$

COPPER CLAD BOARDS
Fibre
Single.
Double

FERRIC CHLORIDE 1 tb 225p . 40pp\&p	EURO BREADBOARD 520p DALO ETCH RESIST PEN 95p VERO WIRING PEN - spool 325p
$\begin{aligned} & \text { SOLDERCON } \\ & \text { PINS } \\ & \text { 100 pins 60p; } \\ & 500 \text { pins 275p } \end{aligned}$	

JACKSONS VARIABLE CAPS.

$100 / 300 \mathrm{pF}$	$\mathbf{2 0 5 p}$	motion Drive	450p
500 pF	$\mathbf{2 5 0 p}$	$00208 / 176$	$\mathbf{3 9 5}$

4511/DAF
Dial Drive 4103 6:1/36
Drum 5
002365 pF
$00-2.500 \mathrm{pF}$

OSMABET LTD TRANSFORMERS TO ORDER

We make transformers

We have capacity for the supply of transformers to specification, either one off, or production runs, your enquiries please. LOW VOLTAGE TRANSFORMERS: Prim 240V ac. 6.3V 1.5A £3.00; 3A £4.15; 6A CT £7.90; 12V 1.5A
£3.75; 3A CT £7.90;6ACT £9.75; $15 \mathrm{~V} 0.5 \mathrm{~A} £ 3.00$; 18 V 1.5A CT £7.90; 24V 1.5A CT £7.90; 3A CT £9.75; 5A CT MIDGET RECTIFIER TRANSFORM
 $20-0-20 \mathrm{~V} 0.75 \mathrm{~A} \mathbf{5 4}-15$ each: $9-0-9 \mathrm{~V} 0.3 \mathrm{~A}$ or $12 \mathrm{~V}-0-12 \mathrm{~V}$ O.25A or $20 \mathrm{~V}-0-20 \mathrm{~V} 0.15 A \mathrm{f3} .00$ each.
 $24-30 \mathrm{~V} 2 \mathrm{~A} £ 8-25 ; 4 \mathrm{~A} £ 12.00 ; 0-20-30-60 \mathrm{~V}$ 1A 159.00 ; 2A £12-00; $0-40-50-60-80-100-110 \mathrm{~V}$ 1A $£ 12.00$.
AUTO \& ISOLATION TRANSFORMERS $240 / 110 \mathrm{~V}$ a.c 30 to 4000 watts, many types ex stock, Lists.
MAINS TRANSFORMERS. SPECIAL OFFER. Prim 240 V ac, $300-0-300 \mathrm{~V} 80 \mathrm{Ma}$; 6.3 V 1 ACT ; 6.3 V iA $\mathrm{E5.50}$; $250-0.250 \mathrm{~V} 60$ Ma: 6.3 V 1 A £3.00: 9 V 3A £2.5n;
25 V 300 Ma 90 p . $15-0-15 \mathrm{~V} 0.5 \mathrm{~A}$ £2.50. 12 V 4 A £4.00. 25V 300 Ma 90 p .
LOUDSPEAKERS
LOUDSPEAKERS
 systems $\mathbf{£ 6 . 5 0}$. Goodman $31{ }^{\prime \prime}$ " Twe mid range, C/M 825 watt
 SYSTEMANT" BULK CASSETTE/TAPE ERASER Instant erasure of cassettes, and any diameter of tape spools,
demagnetises tape heads, $200 / 240 \mathrm{~V}$ ac. leaflet $£ 8.00$. Cassette/Tape Head Demagnetiser, £3.50. EDGWISE LEVEL METER FSD 200 $/ \mu \mathrm{A}$
Size $19 \times 18 \times 20 \mathrm{~mm} 800$ @ $£ 1.50$.
CHARGINGMETERS $1 \frac{1}{2}$ in diametor
2A or 3 A $£ 1.25$ each; 5 A or $10 \mathrm{~A} £ 1.50$ each.
MINI FLEX CABLE
etc, white pvc, 10 metres $£ 2,100$ metres $£ 15$.
POWER SUPPLY, TWIN OUTPUT Prim 240V a
New. British manufacturer, smoothed d.c. output $20 \mathrm{~V}, 1.5 \mathrm{~A}$. plus STABILISED output of 15 V 100 Ma , plus further 12 V ac 0.5 A , complete with diagram, $\mathbf{£ 4 . 5 0}$.
O/P TRANSFORMERS FOR VALVE AMPLIFIERS P.P. sec tapped $3-8-15 \Omega$ A-A $6 \mathrm{~K} \Omega, 30 \mathrm{O} £ 17.50$; A-A $3 \mathrm{~K} \Omega$ G.E.C. MANUAL OF POWER AMPLIFIERS Covers valve amplifiers 30W to 400 W £1.25. MULTIWAY SCREENED CABLE, PVC COVERED 36 way £1, 25/75p; 14/50p; 6/25p; 4/20p.
CONDENSERS AC 50 Hz . $4.33 / 250 \mathrm{v} ; 6 / 330 \mathrm{v}, \mathbf{E 1 . 5 0}^{\text {E }}$
 40p; Paper tubular, W/E, $4 / 160 \mathrm{~V} ; 6 / 160 \mathrm{~V} 30 \mathrm{p}$ each, 2 mfd
150 V 25 p, ; $0.1 \mathrm{mfd} 2 \mathrm{KV} 50 \mathrm{p}, 150+200+200 / 300 \mathrm{v}, 75 \mathrm{p}$.

CARRIAGE EXTRA ON ALL ORDERS ALL PRICES INCLUDE V.A.T.

Callers by appointment only. S.A.E. Enquiries, Lists.
46, Kenilworth Road, Edgware, Middsx. HA8 8YG. Tel: 01-958 9314

H.A.C.
 SHORT-WAVE KITS WORLD-WIDE RECEPTION

'H.A.C.' well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories which have been up-dated to suit the novice and the expert.
£14.50 INCLUSIVE - the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components, drilled chassis, valve, accessories and full instructions.

AT LAST - a battery eliminator kit, which will last you a lifetime - for use in all H.A.C. valve receivers. H.T. batteries are now unobtainable, this will solve your problems for only £9.60.
T TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at $£ 17.50$ this receiver is outstanding value, and will give you hours of interest and entertainment.

NEW - TRIPLE-T RECEIVER, a more advanced super three transistor receiver, loud, clear reception, value unequalled at bargain introductory price of $£ 24 \cdot 00$.

All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RHI9 3SZ

INDEX TO ADVERTISERS

A.H. Supplies
A.J.H. Electronics

Amateur Electronics
Amateur Radio Exchange
Ambit International
Amcomm Services
Bamber Electronics B.
Barrie Electronics
Bi-Pak
Birkett J.
Bowes Electronics C.
Bredhurst Electronics
British National Radio \& Electronics School.
Brookes B.
Bull J.
Burneze
Cambridge Kits
Caranna C.
Catronics Ltd
Colomor (Electronics) Ltd
Continental Specialties Corporation
Cox Radio (Sussex) Ltd
Cox Radio (Suss
C.R. Supply Co.
Datong Electronics
E.D.A.

Electrovalue Ltd
Electro-Tech
Electronic Mail Order
Garex
Golledge Electronics P, R.
G T Technical Information Service
G2 Dym Aerials
H.M. Electronics

HAC Shortwave
HTE Electronics
Homebru Radio
Home Radio (Components) Ltd
ICS Intertext
ILP Electronics
Industrial Supplies
L B Electronics
Lee Electronics
Leeds Amateur Radio
Lexton. Harvey
London Electronics College

Lowe Electronics
Manor Supplies
Maplin Electronic Supplies
Marco Trading
Marshall A. (London) Ltd
Maurice Harknett Electronics
Microwave Modules
Mitrad
Modular Electronics
Monolith Electronics
Northern Communications
Osmabet
P. M. Components

Partridge Electronics
Powell T.
Powell T.
Progressive Radio
RST Valve Mail Order
Radio Component Specialists
Radio Shack
Radio Society of Great Britain
R. \& TV Components

Science of Cambridge
Scientific Wire Company
Solid State Security
Southern Valve
South Midlands Communications L...d
South West Aerials.
Stephens-James Ltd
Swanley Electronics
Technomatic Ltd
Tempus
...

Thanet Electronics \qquad

Users International Radio Club
V \& F Smallcraft
Van Karen Publishing
Vintage Modern \& Communications Club
Waters \& Stanton
Watford Electronics
Western Electronics
Wilmslow Audio
Winston Promotions
Wood \& Douglas
Z.L. Communications

BAKER SPEAKERS
Post
"STAR SOUND"
GROUP 45-12
$12 \mathrm{in}, 45$ watt
4,8 or 16 ohms.
GROUP 75-12
12in. 75 W professional
model. 4.8 or 16 ohms
Resis
Response $30-16,000$
DISCO 100/12
12 in 100 W m
8 or 16 ohm
DISCO 100-15
15 in .100 watt
8 or 16 ohms.
AUDITORIUM 15
Bass wooter 1 i5in. Special cone surround
Heavy duty cone. 60 watts. 20 to 8000 cps . $\mathbf{3 5}$
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE! With tweeter. And cro
10 W . State 3 or 8 ohm.
Illustrated

15 W model

GOODMANS 20 Watt
Size $12 \times 10 \mathrm{in} .4$ ohms.
Subber cone surround. Hi-Fi Bass unit.
GOODMANS TWIN AXIOM 8
8 in. 15 onm Hi-Fi Twin Cone
Special unit 15 watts
$£ 8.00$${ }_{9}^{\text {P }}$

> EMI MINI MODULE KIT ${ }^{3}$-way
Loudspeaker System, EMI 5in Loudspeaker System, EMI 5 in
Bass, 5 in Middle, 3 in Tweeter, with 3 -way Crossover and Ready Cut Baffle. $15 \times 8 \frac{1}{4}$ in.
> Full assembly instructions supplied. Response $=60$ to 20,000 cps 12 watt RMS. 8 ohm. $£ 10$ per kit. Postage $£ 1.50$.
£9.95
per kit. Wostage \mathbf{L}.
£10.95
Post E1

Wost £1

R.C.S. LOUDSPEAKER BARGAINS

 $12 \mathrm{in} . £ 4.50$. $10 \times 6 \mathrm{in}$. $£ 3.50$..

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
500 mF
12 V ' $5 \mathrm{p} ; 25 \mathrm{VV} 20 \mathrm{o}, 50 \mathrm{~V} 30 \mathrm{p}$:
100 mF
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 1200 \mathrm{mF} / 76 \mathrm{~V} 80 \mathrm{p}$
$2200 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 50 \mathrm{p} ; 2000 \mathrm{mF} / 10 \mathrm{~V}$ $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF}$ ' 25 V 50 p ; 50 V 65 p . $3300 \mathrm{mF} 63 \mathrm{~V} £ 1 \cdot 20 ; 4700 \mathrm{mF} 63 \mathrm{~V} £ 1 \cdot 20 ; 2700 \mathrm{mF} / 76 \mathrm{~V} £ 1$. $5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$; $5600 \mathrm{mF} 76 \mathrm{~V} £ 1.75$.

HIGH VOLTAGE ELECTROLYTICS

$8 / 350 \mathrm{~V}$	35 p	$8+8 / 450 \mathrm{~V}$	$\mathbf{7 5 p}$	$50+50 / 300 \mathrm{~V}$	$\mathbf{5 0 p}$
$16 / 350 \mathrm{~V}$	$\mathbf{4 5 p}$	$8+16 / 450 \mathrm{~V}$	$\mathbf{7 5 p}$	$32+32+32 / 325 \mathrm{~V}$	$\mathbf{7 5 p}$
$32 / 350 \mathrm{~V}$	$\mathbf{7 5 p}$	$20+20 / 450 \mathrm{~V}$	$\mathbf{7 5 p}$	$100+100 / 275 \mathrm{~V}$	$\mathbf{6 5 p}$
$50 / 350 \mathrm{~V}$	80 p	$32+32 / 350 \mathrm{~V}$	50 p	$150+200 / 275 \mathrm{~V}$	$\mathbf{7 0 p}$
$50 / 500 \mathrm{~V} \mathbf{£ 1 . 2 0}$	$50+50 / 500 \mathrm{~V}$	$\mathbf{£ 1 . 8 0}$	$\mathbf{2 2 0 / 4 5 0 \mathrm { V }}$	$\mathbf{9 5 p}$	

MANY OTHER ELECTROLYTICS IN STOCK
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$.
CONDENSERS VARIOUS, 1pF to $001 \mathrm{mF}, 3 \mathrm{p}$.
CONDENSERS VARIOUS, 1
PAPER 001 to 0.05 5p: 0.1 15p: 0.2525 p ; 0.47 35p.
400V-0.
MICRO SWITCH SINGLEPOLE CHANGEOVER 20p.
SUB-MIN MICRO SWITCH, 25p. Single pole change over
TWIN GANGS, 500pF £1; $365 \mathrm{pF} £ 1 ; 365 \cdot 365 \cdot 25 \cdot 25 \mathrm{pF}$ TWIN GANG, $385 \mathrm{pF} £ 1 ; 365 \mathrm{pF}$ £1; $365 ; 365 \quad 25 ; 25 \mathrm{pF}$
Slow motion drive $£ 1 ; 25 \mathrm{pF} 95 \mathrm{p} ; 120 \mathrm{pF} 50 \mathrm{p} ; 3$ gang $365 \mathrm{p} £ 2$. NEON PANEL INDICATORS 250 V . Amber or red 30 p . ILLUMINATED ROCKER SWITCH. Single pole. Red 65p RESISTORS. 10Ω to 10 M . $\frac{1}{2} \mathrm{~W}, \frac{1}{} \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{p} ; 2 \mathrm{~W}, 10 \mathrm{p}$. HIGH STABILITY. $\frac{1}{2}$ W $2 \% 10$ ohms to 11 meg.. 8 p
Ditto 5%. Preferred values 10 ohms to 10 meg., 3 p .
ALUMINIUM CHASSIS 18 s.w.g. Undrilled, 4 sides, riveted
corners; $6 \times 4 \times 2 \frac{1}{2}$ in. $-\mathbf{£ 1} \cdot 20 ; 8 \times 6 \times 2 \frac{1}{2}$ in. $\mathbf{£ 1} .50 ; 10 \times 7 \times$

 ALUMINIUM PANELS 18 . ANGLE $6 \times \frac{1}{2}$ in.- $\mathbf{2 5 p}$.

 $\mathbf{£ 1 . 4 0 ;} 16 \times 6$ in.- 90 p.
BLACK PLASTIC construction box with brushed aluminium
facia size $6 \frac{1}{4} \times 4!$
$2^{\prime \prime} £ 1.50$, Many facia size $6 \frac{1}{x} \times 4$? $2^{\prime \prime} £ 1 \cdot 50$. Many other sizes.
BRIDGE RECTIFIER $200 V$ PIV
BRIDGE RECTIFIER 200V PIV $\frac{1}{⿺} \mathrm{amp} 50 \mathrm{p} .2 \mathrm{amp} £ 1.00$.
$4 \mathrm{amp} £ 1.50 .8 \mathrm{amp} £ 2.50$.
4 amp £1.50. $8 \mathrm{amp} £ 2.50$.
MANY OTHER TOGGLES IN STOCK. Please enquire
MAN.

| BSR P207 BUDGET SINGLE PLAYER ideal for disco or |
| :--- | ---: |
| small two-speed Hi-Fi system with stereo cartridge $\mathbf{£ 1 5}$ |
| and cueing device. |
| Post $£ 2$ |

BSR STEREO CARTRIDGES SC7 medium SC8 High
output $£ 2$. Sonotone 9T AHC $£ 3 . \mathrm{V} .100$ Magnetic $£ 7$.
output $£ 2$. Sonotone $9 T$ AHC $£ 3 . V, 100 \mathrm{Magnetic} £ 7$.
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 15p.
CASSETTE MOTOR. 6 volt $£ 1 \cdot 00$.
MAINS TRANSFORMERS
Post
99p

	99p
	$6.0-6 \mathrm{~V} 100 \mathrm{~mA}$.
12V, 750 A $£ 1.75$	9-0-9V 50 mA $£ 1.50$
10-0-10V 2 ampe3-00	12 V .3 a, £3.50; , 5 a $£ 4.00$
$30 \mathrm{~V}, 5 \mathrm{amp}$ and	$10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{amp} . . £ 3.50$
$17 \mathrm{~V}-0-17 \mathrm{~V}, 2 \mathrm{amp} . . ¢ 4.00$	$20 \mathrm{~V}, 1 \mathrm{amp}$. $£ 3.00$
	20V-0-20V, 1 ampe.3-50
$9 \mathrm{~V}, 3 \mathrm{amp} ¢ 3 \cdot 50$	2 of 18V, 6 amp , each £11.00
15-0-15V 2 amp£3.00	12-0-12V, 2 amp£3-50
30V, 2 amp£3.50	9 V , $\frac{1}{4} \mathrm{amp}$. \ldots. $£ 1 \cdot 50$
$30 \mathrm{~V}, 1 \frac{1}{\text { amp }}$. $23 \cdot 30$	$28 \mathrm{~V}, 1 \mathrm{amp}+28 \mathrm{~V} 1 \mathrm{amp} £ 5.00$
$20 \mathrm{~V}, 40 \mathrm{~V}, 60 \mathrm{~V}, 1 \mathrm{amp}$..E4.00	32-0-32V 6-5A 111.00

Radio Components Specialists
CRovoon sumatiliki POST 50p. ACCESS-BARCLAY-VISA LISTS 20p.

Thanet for
CD
ICOM
 electronic components with thousands of photographs and illustrations and page after page of invaluable data. We stock just about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data,more pictures and a new layout to help you find things more quickly.

[^4]

[^0]: Have you heard any (printable) comments, funny peculiar or funny ha-ha? If so, why not send them in to our Editorial offices at Poole. We will pay for every one published.

[^1]: -. . .. dah-di-di-di-dit -.... dah-dah-di-di-dit ---. dah-dah-dah-di-dit ----. dah-dah-dah-dah-dit

[^2]: SL1621 £2.15 $\mathbf{S L 1 6 4 0} £ 2.15$ SL1641 $£ 2.15 \mid$ SL6310 £2.60
 Other parts for P.W. "HELFORD" SSB TX/RX including PCB and filter etc. also available. Ask for details and prices. ALL PRICES INCLUDE VAT but please add 40p min. postage. Access and Barclaycards welcome

 ## CATRONICS LTD.

 COMMUNICATIONS HOUSE
 20 WALLINGTON SQUARE, WALLINGTON, SURREY SM6 8RG Tel: 01-669 6700.
 Shop/showroom open Monday-Friday: 9-5.30
 (closed for lunch: 12.45-1.45) Saturdays: 9.00-1.00

[^3]: TERMS OF BUSINESS: Please note all above items PRICE INCLUDES VAT. Please send cheques or P.O's or quote Barclaycard
 or Access No. to: B. BAMBER ELECTRONICS, 24 HOUR PHONE SERVICE (0353) 860185. Callers welcome Tues, Sat. 9.00

[^4]: Maplin Electronic Supplies Ltd.
 All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
 Telephone: Southend (0702) 554155. Sales (0702) 552911
 Shops:
 159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926
 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend (0702) 554000.
 Both shops closed Mondays.

