radio\&fv guide

Tecknowledgey for sale. The Mark III FM Tuner DIY Hi-Fi will never seem the same again. Ambit's Mark 111 tuner system is electrically $\&$ tuner system is electrically \& Some superior to all others. Some options available, but reference series modules: £149.00 +£18.62 VAT

 Precision construction a Timen of all part.
 State of the art performance with \mid acilities for updates. using modiular plug in systems.
 or retion level calibrator
 All usual tuner features
 Disital Dorchester

Digital Dorchester All Band Broadcast Tuner: LW/WW/SW/SW/SW/FM stereo all features you would expect of designs of far greater complexity. The FM section uses a three section (air gang, tuned FET tunerhefd, with ceramic IF filters and interstation mute; AM employs a double balanced mixer input stage, with mechanical IF tilters - plus a BFO and MOSFET product detector for CW/SSB reception. Styled in a matching unit to the Mark III FM only tuner. employing the same degree of care in mechanical design to enable easy construction. NW/LW reception via a ferrite rod antenna
Electronics only (PCB and all components thereon)
Complete with digital frequency readout/clock-timer hardware $£ 99.00+£ 12.37 \mathrm{VAT}$ Complete with MA1023 clock/timer module with dial scale $£ 66.00+£ 8.25$ VAT

 Various other DFM systems described in our catalogue part 2 - including a one chip solution to providing digital display of $F R G 7 \mathrm{kHz}$ dial, combined with clock/timers etc.
 etc.

PW SANDBANKS PI METAL LOCATOR \quad Radio and Audio Modules : The biggest range/ best specs: Maintaining our professional approach to \quad EF5801/3/4 6 stage varicap tunerheads with LO feed and various home constructor kits, we offer the pulse induction 'Sandbanks'. Now with injection molded casing for greatly improved enviromental sealing. $\mathbf{5} 37.00+{ }^{*}$ E2.96vat. VHF MONITOR RX WITH PLESSEY IC 4/9 channel version af the PW design
but using standard 3 rr OT crystals and TOYO 8 pole crystal filter with matching transformers. Coil sets from our standard range to cover bands from 40 to 200 MH
Complete module kit $£ 3125+f 390 \mathrm{var}$ ETI - REMCON RADIO CONTROL A tried and testec RC system with a full set of supporting hardware from a
well known manufacturer. Please send for details - and watch our ads for further
levels of sophistication. New 5804 include pin AGC loop ' board'. 5801:£17.45+£2.18vat - 5803:£19.75+£2.47vat $5804: £ 24.95+£ 3.18$ vat. Frequencies in $40-180 \mathrm{MHz}$ on appcn.
EF5402 4 stage varicap with TDA1062, pompound FET/Bipolar input stage, low noise, balanced mixer, pin agc, osc output. A worthy successor to the $5400, £ 10.75+£ 1,34 \mathrm{vat}$
The 5402 is available centred on a wide range of frequencies from 30 MHz to 180 MHz . Non standard units $£ 14.75+£ 1.84-3$ weeks. 8319 RF ind age varicap tunerhead from Larsholt using MOSFET RF and mixer stages. New temperature compensated oscillato for wide ranges of ambient temperature $£ 13.45+£ 1.68$ vat 7252 Complete Larsholt FM tuner less stereo decoder. $\mathbf{E 2 6 . 5 0 + £ 3 . 3 1 \text { vat }}$ 7253 Stereo FM tune rset from Larsholt with, FET head. (as .7252) 911223 Pilot cancel stereo decoder very best. $£ 19.95+£ 2.49 v a t$ obsolete as $i t$ now deserves to be. $\mathrm{E} 12.50+£ 1.56$ vat
1-A fully DC tuned and switched LW/MW/FM ster

TTL is presently in great demand, so please check by phone before ordering .

Current news: Work continues apace on our HMOS PA kit, and by the time this is published - we expect to be about to launch the product in a style that matches the Mark Ill system. advert - and a separate leaflet is available on request with an SAE. All new pricelist revision also avalable with an SAE. The Mulard DC con-rolec tone volume and switch ICs with a 'more han HiFi specification are in stock at last - together with reams of data lover 50 pages nowl. Also, RC enthusiasts will be interestec to teara that we are supplying parts for various kits now. Terms: CWO please. Account facilities for commerial customers OA. Postage 25p per order. Minimum credit invoice for accaurt customers f10.00. Please follow instructions on VAT, which is usually shown as a separate amount. Overseas customers welcome - piease allow for postage etc according to desired shiporeg metion. Access facilities for credit purchases Catalogues: Ambit. Part 145 p. Part 250 p 90 p pair. TOKO Euro shortform 20 p . Micrometals toroid cores 40 p . All inc pp esc. Full data service described in pricelist supplements.
Hours/phone: We are open from 9 am $\cdot 7 \mathrm{pm}$ for phone calls. Callers from 10 am to 7 pm . Administrative enquires 9 am to 4.30 pm please inot Saturdays). Saturday service 10 am to 6 pm. ambit internatianal

COMPONENTS for Radio and Audio ICs, HMOS etc. The list is too long to attempt here, but AMBIT specializes in all types of semiconductor for radio reception, including devices operating from DC to
$\mathbf{5 G H z}$. New low cost SBL 1 diode ring mixers (equiv case MD108 elcl first 5 GHz . New low cost SBL1 diode ring mixers (equiv case MD108 etc) -firs
with HMOS fets, now with a PCB for DC amplifier, and offset sense and protection relay for speakers. See catalogue and updates for most info. pse send an SAE for information on anything you cannot find in catalogues. Radio ICs cost + vat Stereo ICs cost + vat AF power ICs cost + vat $\begin{array}{lllllllll}\text { CA3089E } & 1.94 & 24 & \text { MC1310P } & 1.50 & 19 & \text { LM380N } & 1.00 & 12 \\ \text { CA3189E } & 2.45 & 30 & \text { LA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14\end{array}$ $\begin{array}{lllllllll}\text { CA3189E } & 2.45 & 30 & \text { UA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14 \\ \text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24\end{array}$ $\begin{array}{lrrllllll}\text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24 \\ \text { SN76660 } & 0.75 & 9 & \text { HA1196 } & 3.95 & 49 & \text { TBAB20M } & 0.75 & 9\end{array}$ $\begin{array}{lllllll}\text { TDA1090 } & 3.35 & 42 & \text { HA11223 } & 4.35 & 54 & \text { from the general list: }\end{array}$ $\begin{array}{lllllll}\text { TDA1083 } & 1.95 & 24 & \text { KB4437 } & 4.35 & 54 & \text { LEDs:all colours and }\end{array}$ $\begin{array}{lllllll}\text { TDA1220 } & 1.40 & 17 & \text { KB2224 } & 2.75 & 34 & \text { LeDs:all co } \\ \text { low prices }\end{array}$ $\begin{array}{lllll}\text { SL6640 } & 2.75 & 34 & \text { Preamp ICs/switches } & \text { 2SJ48/2SK } 134 \text { HMOS }\end{array}$ $\begin{array}{lllllll}\text { MC3357 } & 3.12 & 39 & \text { TDA1028 } & 3.50 & 44 & 9.90+\text { f0.80 vat (Pair) } \\ \text { HA1197W } & 140 & 17 & \text { TDA1029 } & 3.50 & 44 & \end{array}$ HA1197W $1.4017 \quad$ TDA1029 $3.5044 \quad \begin{array}{lllll}\text { H. } & \text { Signal fets/transistors and }\end{array}$ $\begin{array}{lllllll}\text { MC1496 } & 1.25 & 16 & \text { TDA1074 } & 4.14 & 52 & \text { TOKO COILS \& FIL.TERS: } \\ \text { LM373/4 } & 3.75 & 49 & \text { KB4438 } & 2.22 & 28\end{array} \quad$ Ther

[D4000 1 mO

Mirramarket

6800 series $\left|\begin{array}{ll}8216 & 1.95 \\ 8224 & 3.50 \\ 8228\end{array}\right|$

6800 series		8216	1.95	2114	0			
6806ip	650	8224 4228	3.50	2108	t			
6820ar		8228	6.85	Development				
6880p	2.75	8255	5.40	MEK				
$\begin{aligned} & 6810 \mathrm{P} \\ & 6852 \end{aligned}$	E4.65	MEMORIES		$\left\lvert\, \begin{aligned} & \text { TK80 E306 } \\ & \text { AN1I, Signetics } \end{aligned}\right.$				
8080 series		2102	£1.70					
$\begin{aligned} & 8080 \\ & 8212 \end{aligned}$	6.30	2112	£34	Ti. Intersul.				
	6.302.30 ${ }_{4027}$		6754 $¢ 578$					
MISC. LSI/Scalars/DVMs								
$\begin{array}{ll} \hline \text { NE555 } & 30 \cap \\ \text { LM3909 } & 724 \end{array}$		NE556	78 p	NE558	180			
		95190	1320 M	H: 7				
$11 \mathrm{C9ODC} / 650 \mathrm{mite}$ ¢1400								
ICM72168IPI 8 decade 10 MHz DFM/timer with direct LED drive and all countar feafures f 19.82								
ICM7207 ciock puise generstar $/ C$					[4.95			
ICM7208 7 de		de toul	Pdisplay	diver	£14 35			
LCM7106CP		C DVM	13: di	(1)	$\underline{59.55}$			
ICM710	CPK	Co DVA			E24.80			
ICM7107CP LE		DVm			E955			
ICM7107CPK LED DVM KIT					£20 65			
Sp8629 divide by 100.200 M 1/2 sealar MSL2318 Givide by 100 to 175 MHz man					E4 20			
TO ITEMS LISTED UNDER OSTS								

OPTO

$0.43^{\prime \prime}$ High Efficiency HP
508\%. 7650 facica
5082.7653
enl CC
\qquad 5082766
508276 5032.7673 utten CC
$0.3^{\prime \prime}$ Standard HP 5082.7730 нu CA $0.5^{\prime \prime}$ Fairchild
$0.5^{\prime \prime}$ Fairchild
FNDS00 red CC

IINERR5

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "'Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 p each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 3.75$ to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practica/ Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

\square NEWS \& VIEWS

20 Editorial
Don't shoot the pianist
21, 57 News . . . News . . . News . . .
24 Production Lines Alan Martin Information on the latest products
30 RAE Reprint Announcement
31 Special Product Report
Mini Max Counter, Continental Specialties Corporation
32 Letters
Comments from PW Readers
33 PW OSL Cards
Announcing a new service
46 Radio Special Product Report
100MX SSB Transceiver, Swan Electronics-1

FOR OUR CONSTRUCTORS

26 Burglar Alarms-1 P.J. Wales Introduction to devices and systems
Automatic Intercom-2
Keith Cummins Logic circuitry, construction and installation
FM Noise Blanker
R. A. Penfold

Reducing impulse noise on f.m. receivers

\square GENERALINTEREST

22 CB-An Unbiased Review J. D. Pearson
A look at this controversial topic
52 Building Disco Cabinets T. P. Hopkins Producing a rugged, attractive housing for your disco gear
58 On the Air
Amateur Bands Broadcast Bands Eric Dowdeswell
MW Broadcast BandsCharles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands
Ron Ham
67
Teaching Radio to the Blind
B. Watson

An unusual facet of a popular hobby

~ SPECIAL PULL-OUT FEATURE

Holiday Radio \& TV Guide
Our October issue will be published in early September (for details see page 41)

We are grateful to Westover Motors Ltd., part of the Patrick Motors Group, for the loan of the car featured on our front cover this month

BUILD YOUR OWN METAL DETECTOR

most sophisticated detector available as a kit.
Shadow TR/IB kit $£ \mathbf{£ 3 3 . 5 0}$ ($£ 29.95$ assembled)
Shadow TRNCO kit $£ \mathbf{2 8 . 9 5}$ ($£ \mathbf{3 8 . 9 5}$ assembled)
Padded stereo headphones suitable for 'Shadow'
$\begin{aligned} & \text { Padded } \\ & \text { detectors }\end{aligned}$
Designing your own detactor? Then we can supply the (hard to obtain) hardware "shell" in cluding fully adjustable shaft with handle, search head moulding with hinge assembly, special clips to mount your own control housing (any box is suitable) completely non-metallic: suitable for any type of detector (TR-PI-VLF-BFO etc) Supplied undrilled as a kit with full instructions (a used on our Shadow range). Detector Shell kit $£ 8.95$ Low cost BFO detector $200 \mathrm{~mm}\left(8^{\prime \prime}\right)$ annular search head gives wide scan with easy pinpointing. Simple high efficiency circuit draws $<3 \mathrm{~mA}$. Extra lightweight $300 \mathrm{gms}(10.50 z s)$ with battery. Very detailed construction manual: ideal as a first project. Absolutely everything supplied including pre-assembied search head, tuning coil and earpiece.

ALT3 detector (kit) - $£ 13.95$.
Padded high Z headphones for ALT3: £5.45
Order by post or phone (24 hours) - for quickest delivery quote credit card number Callers by appointment only please!

A T 튼 Dept. (PA) 1 Green Lane,
 Walton-on-Thames, Surrey.
 Phone (093 22) 44110

RTDIO WKCHANCH LMMIMD

NEW ELECTRONIC

 MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pietorial and Circuit Diagrams.
Projects:
V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor V.H.F. Earpiece $\not{\text { Radio }} \star$ One Transistor M.W. L.W. Radio \star Two Transistor Metronome with variable beac control \star Three
Transistor and Diode Radio MW Transistor and Diode Radio M.W. L.W. \star Four Transistor Push Puli Amplifier \star Eight Transistor V.H.F.
Loudspeaker Receiver
Varizble Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MuitiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid
Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and M.W Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. tice Oscillator Transistor Code Prac-
 \star Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio * Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull ourpur * One Transistor Home Broadcaster.
f15-35 + P\& P \&1. 10

V.H.F.
 AIR
 CONVERTER

KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions suppiied free with all parts.
Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{1}{2}^{\prime \prime \prime} \times 1 \frac{1}{2}^{\prime \prime \prime} \times 3 \frac{1}{2}^{\prime 2}$. All parts including case and plans.
$\mathbf{f 5} \cdot \mathbf{0 5}+\underset{\mathrm{Ims.60p}}{\mathrm{P}} \mathbf{8}$ and

Self Contained Multi-Band V.H.F. Receiver Kit

8 transistors and 3 diodes. Push pull output. $2 \frac{3}{4}$ in. loudspeaker, gain control, 7 section chromeplated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts

NEW MODEL R.K.i.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$
Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.
$\mathrm{f} 9.20+{ }_{9 \rho_{\mathrm{p}}}^{\mathrm{P}} \mathrm{P}_{\mathrm{P}}$
EDU-KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these proects without Soldering Iron or Solder

* Crystal Radio Medium Wave Coverage-No Battery necessary \star One Transistor Radio
* 2 Transistor Regenerative Radio t 3 Transistor Earpiece Radio Medium Wave Coverage
* 4 Transiscor Medium Wave Loudspeaker Radio
* Electronic Noise Generator
* Electronic Metronome
\star Transistor Push/Pull Amplifier All parts including Loudspeaker, Earpiece. M.W. Ferrite Rod Aerial, Capacitors, Resistors, Transistors, etc. Complete kit of parts including construction plans.
E7.10 + P\& Pand

NEW ROAMER TEN MGOEL R.K.3.

Multiband V.H.F. and

A.M. Receiver. 13 Transistors and Six Diodes. Quality

Loudspeaker

With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with separate Tuning Capacitor for easier and accurate tuning, covering M.W.1, M.W.2, L.W. Three Short Wave Bands S.W.1, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc. Chrome-plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. Wave-Change and Tone Controls. Plus two Slider Switches Powered by P.P. $9-9$ volt Battery.

Complete kit of parts including carrying strap. Building Instructions and operating Manuals.

$\mathrm{f} 15.15+\mathrm{P} 2$.

E.V. 6 PLUS ONE

Build this exciting new design Now with 7 Transistors and 4 Now with 7 Transistors and 4 diodes. MW/LW. Powered by 9 V battery. Ferrite rod aerial, tuning condenser, volume control, and $2 \frac{3}{4} \mathrm{in}$ loudspeaker. Attractive casa with speaker grille. Size 9 in. $\times 5 \frac{1}{4}$ in. $\times 2 \frac{3}{4}$ in approx. All parts including Case and Total Building Costs:
£7.10 + P\& P and

EDU-KIT MAJOR

Completely solderless Electronic Construction Kit. Build fifteen projects including:-

Signal Injector Transistor Tester NPN-PNP 7 Transistor Loudspeaker Radio MW/LW Transistor Shorit Wave Radio.

Components include:

- 24 Resistors 21 Capacitors - 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loud speaker Earpiece Mica Baseboard - 3 12-way Connectors - 2 Volume Controls 2 Sider Switches 1 Tuning Condenser - 3 Knobs Ready Wound MW/ LW/SW Coils Ferrite Rod $6 \frac{1}{2}$ yards of wire 1 yard of sleeving, etc Complete kit of parts including construction plans.
Total building costs:

RADIO CONSTRUCTION KIT Q7

A compact smal radio kit covering Medium Waye and Long Wave bands Rugged Micanite con struetion and simple square design allow for easy carrying and positioning Ideal for the Garage, Workroom Kitchen, etc., has seven Transistors and four Diodes, quality Loudspeaker ready wound Ferrite Rod Aerial and Carrying Strap. Size $4 \frac{3}{8}^{\prime \prime} \times 4 \frac{3}{8}^{\prime \prime} \times 4 \frac{1}{8}$ All parts and plans excluding 9v PP7 Battery.
f6.4n + P \& P and
POCKET
FIVE

NOW WITH 23^{3} "LOUDSPEAKER 3 Tuneable wavebands. M.W. L.W., and Trawler Band, 7 stages, 5 transistors and 2 diodes. supersensitive ferrice rod aerial, attractive black and gold case. Size $5 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ approx. All Parts including Case and Plans.
Total Building Costs

To: RADIO EXCHANGE LTD 61A High Street, Bedford MK40 ISA

Tel.: 023452367
Callers side entrance "Lavells" Shop.
Open 10-1, 2.30-4.30 Mon.-Fri. $9-12$ Sat.
Reg. No. 788372

Name
\qquad

P.W. JUMBO CLOCK

Kits of parts by the designers of the clock.
Kit A.
Comprising of printed circuit board. Price $\mathbf{£ 9 . 5 2}$. V.A.T. and postage included.

Kit B.

Comprising of printed circuit board, case, perspex panel, pillars, transformer and l.e.d.s. Price $\mathbf{£ 2 4 . 3 0}$. V.A.T. and postage included.

Kit C.
Comprising of full kit, excluding mains cable and wire. Price £31.00. V.A.T. and postage included.

Two colours of cases are available:- Gloss White \& Simulated Black Leather Grain.
Please state colour with order e.g. Kit C/Black.

Full range of R.S. components available (48 hours service)

If you are experiencing difficulty in obtaining certain components for projects please do not hesitate to telephone us.

I.C.'s LM3900 \& MC3302
f1. 20 per pair Postage and package 20 pence.
V mos transistors. VN66AF
f1.38 each Postage and package 20 pence.

P.C.B'S FOR PRACTICAL WIRELESS PROJECTS

Nov. 78. Sarum Q Meter
Nov. 78. S.T.D. Charge Timer
Nov. 78. Porch Light Timer
Nov. 78. Battery Indicator
Dec. 78. Car Radio L.W.Converter
Dec. 78. Digital Door Chimes
Dec. 78. Car Radio L.W. Converter
Jan. 79. Acoustic Delay Line
Jan. 79. Dorchester
Jan. 79. Sandbank Met. Det.
Feb. 79. Hythe Receiver
March 79. Hythe Receiver
March 79. Soudlite Converter
March 79. Tone Burst Generator
March 79. Wide Band Noise Source
April 79. FM Multitester
May 79. Car Test Probe
May 79. Follow up to PW Gillingham
May 79. PWImp
May 79. Inline Crystal Calibrator
June 79. Jumbo Clock
June 79. Logical 0's +X 's
June 79. Trent
July 79. AAM/FM Frequency Readout V.MOS Top Band Transmitter Transmitter WR056 Price $£ 4.08$ \& 20 pence p \& p. Sound Operated Switch WK005/6 Price $£ 3.74$ \& 20 pence p \& p. Inexpensive A/F Voltmeter WR055 Price $£ 1.15$ \& 15 pence p \& p.
Send
orders to: All prices include V.A.T.
C. BOWES \& CO. LTD.

4, Wood Street, Cheadle, Cheshire SK8 1 AQ. Tel. 061-428-4497.
Please state type number and enclose cheque or postal order.

Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

Of all the purpose-built power amplifier modules by I.L.P., the HY5O is understandably the most popular with those wanting to build or up-grade a hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practise or small range usel or use it for lab work. Its useful 30 watts RMS output into 8 ohms, is rugged colity power amp - and it is unconditionally guaranteed for five deal all-purpse quan pow in use throughout the world years. Tens of thousands are in use throughout the world.
... and a epec that means just what it says I
Encapsulated power amp with integral full-rated heatsink.
Input -500 mV
Output 30 watts RMS/8 Ω
Load Impedance - 4 to 16Ω
Distortion - 0.04% from 100 mW to 25 watts at $1 \mathrm{KHz} / 8 \Omega$
Supply Voltage $- \pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
Inc. V.A.T. and postage in U.K.

Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks. encapsulated circuitry, nocompromise production standards and true professional finish ensure world leadership for l.L.P. Now we have up-graded output wh down-gra the best

New production techniques enable us to reduce prices apart from VAT by an average of 20%, making I.L.P. a better buy than ever.

Guaranteed 7 days despatch on all products
USE OUR FREE POST SERY/CE for sending your orders, requests for information sheets etc. Simply address envelope.
NO STAMPS REQUIRED.

ELECTRONICS LTD.

FREEPOST 1

Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP
Phone(0227)54778
Telex 965780

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE;P.M.G. Certificates; the R.T.E.B Servicing"Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

CHORDGATE LTD. SWINDON

ALL NEW AND FULL SPEC. DEVICES

Fairchild FND10 7 seg. displays $0 \cdot 15^{\prime \prime}$ red common cathode 60p. Pye dynamics thick film 1 MHz . clocking oscillator 5 volt supply drives 1 TTL load 60p.
Min glass reed switch 20 mm length. 10 for 60 p .
Beehive trimmers 3-30pf. 10 for 50 p .
Denco 1FTs. 470 KHz . interstage 1FT13 60p. Det out 1FT 14 60p.
10 MFD 6.3 V tant bead 10 for 60 p . 368.640 XTALS PCB mounting HCU 75p. 10 for $\mathbf{5 5 . 0 0}$.
Honeywell plastic snap panel mtg. Push button DP/CO 15p. 10 for £1.25.
$28 \mathrm{pin} \mathrm{I/C}$ holder 28p.
500 OHM multi-turn trim pot PCB lmounting 20p. 10 for $£ 1.50$.
Stettner 3-15PF CER min trimmers vert. mtg. 15p. 10 for $\mathbf{£ 1 . 2 0 .}$

Silicon Semiconductors

TIP31B 25p. comp TIP32B 25p. 5
pairs $£ 2.00$ or 10 either type $£ 2.00$.
IN914 25p. 25 for 60 p .
2N5293 NPN 75 v 4 A TAB collec-
tor 25 p . 10 for $£ 2.00$ tor 25p. 10 for $£ 2.00$.
BFY51 15 p . 10 for $£ 1.20$.
2N 3707 NPN plastic gen. pur. 10 for 50 p .

TIP34A PNP 60V 10A 40p. 10 for | T1P3. |
| :--- |
| 8. |

BD525 30p. comp BD526 30p.
60 V 2 A . Useful up to 50 MHz .5 pairs $£ 2.50$. 10 either type $£ \mathbf{2 . 5 0}$.
For all above components add 29p post and packing. Orders over £3.00 post and packing inclusive.
Printed circuil boards add 29p post and packing for 1 to 3 boards. Larger quantities post and packing inclusive.
Voltage Tripler PCB contains 40-1 MFD $1000 \mathrm{~V}, 2$ pre-sets, 1 bridge rect., 4 IN4007, 9 resistors. 70p.
PCB with 4, BD253A or 2N5838 (500 V VCB 6 A HFE 15). 5 wire wounds zeners, diodes and two wound pot cores. $\mathbf{£ 1 . 0 0}$.
PCB contains $2 \times 741,2 N 4921$ and over 40 other components and multiturn 20k pot. 70p.
PCB contains 2 IP 10W Wafer Switches, $2 \times 7490 \mathrm{I} / \mathrm{C}, 2 \times 74141$ I/C, various Logic I/Cs, IN4148 and over 50 components. 70 p .
PCB with GEC, G424 Triac con-
trol IC, 2 SGS transistors, three 9 watt WW resistors and 12 other components. 75p.
PCB with $8 \times$ BC107, $8 \times$ BCY70, 4 pre-set pot., and over 70 other components. 80p.
Parcel of 1 each of above, 6 PCB's. f4.20.
Post and packing inclusive.
Audio Amplifier Boards containing $2 \times$ BFY50, IBFX29 and output pair of 2N5293 output transistors rated at 36 watts when heatsink mounted $£ 1.75$ or 2 for $\mathbf{£ 3 . 0 0}$. Post and packing inclusive.
(Dept B.) 194 A DROVE ROAD, SWINDON, WILTS. ALL OUR PRICES INCLUDE VAT

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel:01-452 0161/2 ALSO 325 Edgware Road, W2. Tel:01-723 4242.
Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-3324133 AND Bristol: 108A Stoke's Croft, Bristol. Tel:0272426801/2. ${ }_{2}{ }_{2 \times 21219}^{\text {Thans }}$

${ }_{2}$ 2T22		2 S 122																triacs						
	0.39	${ }^{2 \mathrm{NNE} 123}$	0.48	${ }^{8 C 148}$ 8C149	0.13	${ }_{\text {80242C }}^{8024}$	${ }^{0.55}$	SN7401N	${ }^{0.17}$	${ }_{\text {SNTM }}$	-.88			${ }_{0}^{0.60}$	SN7494N	${ }_{0}^{0.90}$	SNH74 SN74 Si48N	\%			$1+$			
222	0.25	${ }_{3 \times 140}$	1.10	${ }_{\substack{\text { 8cicibi }}}$	0.15 0.38	${ }_{8024}^{8024}$	- ${ }_{0}^{0.62}$		0.7	SM147N:	0.25	${ }_{\text {ST1446A }}$	SN7460\%		SN74986	0.54	SN741500 0.90	${ }^{142085}$	${ }_{4}{ }_{4}$	${ }_{400}$	0.40			$308+$
${ }_{2}^{2 N 23}$	- 0.27	${ }^{3 N 2000}$	2.35	${ }^{\text {BCC }}$	0.13 0.13		$\stackrel{1.90}{0.34}$	SN7404N	-15	${ }_{\text {SN }} 7423 \mathrm{~N}$		SN7448N	SN7482N	${ }_{0} 880$	SN74100N	40	SN74153N 0.65	${ }^{2250}$	${ }_{8}^{6}$	${ }_{400}^{400}$	0.70		40	
${ }_{2 N}$	1.70	40362	0.55	${ }_{80}^{816168}$	0		- 0.30	${ }_{\text {SN7405N }}^{\text {SN40 }}$	- ${ }_{0}^{8.22}$		${ }^{8}$	${ }_{\text {SNN450N }}$	- ${ }_{\text {SN }}$	1.05	SN407N			${ }^{2360}$	12	400	${ }_{1}^{1.21}$		60	Pricn
${ }_{2}^{2 \mathrm{~N} 2390}$	$\xrightarrow{1.50}$	${ }^{40409}$	${ }_{0}^{0.73}$	${ }_{\text {BC178 }}{ }_{\text {B4] }}$	0.	${ }_{\text {arfs }}^{\text {Bry }}$	0235 0.35	-					SNT4844 SN	- 1.80			S\$74159N	${ }^{24500}$	+16	$\begin{gathered} 400 \\ 4000 \\ \hline \end{gathered}$	1.8		15	$\xrightarrow{\text { an }}$ mumb
	${ }_{0}^{0.31}$	44088	${ }^{3.82}$	${ }^{\text {BCI }} 178$		8pr90	1.35	SN7409N	-	${ }_{\text {SNT }}$		SN7464N	-		SN14222N		Aksa mocked 74 C .	${ }_{40578}^{2639}$	5	${ }_{400}^{400}$	2.20		. 6.	
${ }_{2 \mathrm{~N} 2}$	0.25	405	${ }^{8.88}$		0.12	${ }^{\text {RRY }}$ 829	2.75	SN7410N	- 0.20	STN7437N		SN7470N 0.39	SN1490an	0.36			744.745. 1415	40669	8	400	.30			
${ }_{2}^{2 N}$	${ }^{8.25}$	${ }_{406}^{40}$	${ }_{1} 9.97$		0.	1398	0.37 0.64	SN741		SN744		${ }_{\text {SNT7473N }}$	SN4992N	¢ $\begin{aligned} & 0.64 \\ & 0.36\end{aligned}$	cinctile				5	${ }_{800}^{450}$				
2 N	0.25		0.80	${ }_{\text {Bli } 184}$	0.12	${ }^{4} 14430$	1.49	SN2433		SN74								Sen	ull mame					
		${ }^{\text {a }}$	0.48	${ }_{\substack{\text { ectie4 } \\ \text { BC204 }}}$	- 0.12	${ }_{\text {m } 22500}$	${ }_{2}^{2} .10$	${ }_{\text {cmas }}^{\text {cmos }}$																
${ }_{2} 21343$	0		${ }_{0} 0.48$	${ }^{\text {BC205 }}$		${ }^{\text {M25 }} \mathbf{4} 5051$	2.75		0.29	${ }^{\text {c }} 044041989$		52 004040	1.12	${ }^{2} 040472$	28.23		(eater							
$2{ }_{2} 23441$	0	AC	${ }_{0} 5$	${ }_{8} 8207$	0	M35000	2.75		- ${ }^{0.18} 1.25$	c040208	${ }^{1.15}$	15 15	${ }^{0.85}$		$\begin{array}{ll}38 & 0.20 \\ 58 \\ 0\end{array}$			106		amps		${ }_{\text {with }}$		
2N34	${ }^{1.45}$	${ }_{\text {AC }}$	9.59	${ }_{\text {ecta }}^{\text {BC2 }}$		${ }_{\text {M M }}^{4} \mathbf{3} 5002$	2.35		${ }^{0.188}$	${ }_{\text {Coine }}^{\text {C042238 }}$	1.00	${ }^{0}$	1.05	${ }^{\text {c044076 }}$	${ }^{68} \quad 8.98$		(04507 0.69	106		4		200		
$2 \mathrm{N370}$	0	ac	0.70	${ }^{\text {B22 } 2121}$	12	Mut3	0.82	C040099	${ }^{-95}$		${ }_{0}^{0} .20$	${ }_{75}{ }^{\text {che }}$	1.65		${ }^{\text {P }}$			1060		$\frac{4}{4}$		300 400	${ }^{4}$	
2 N	0.	${ }_{\text {aC1 }}$	${ }^{0} .59$	${ }_{\text {BC2 }}$	-	${ }_{\text {mex }}$	0.85	${ }_{\text {coiden }}^{\text {coid }}$	${ }^{0.58}$	${ }_{\text {C0042288 }}$	${ }^{0} 0.20$	${ }_{\text {20 }}^{\text {20 }}$	${ }^{8.80}$		$\begin{array}{ll}18 & \begin{array}{ll}18 \\ 0.27\end{array}\end{array}$					${ }_{8}^{8}$		${ }_{200}^{100}$		
2 N	${ }_{0} .14$	${ }_{\text {a }}$	0.65		0	${ }_{\text {R2008 }}^{\text {Re3 }}$	1.45		${ }^{0} 92$		0.60	${ }^{60}{ }^{\text {c20663 }}$	1.35	C50485	${ }_{0}^{0.198}$		${ }^{045515}$			$\stackrel{8}{8}$		00	1	
2			0.65	${ }_{\text {ac301 }}^{\text {ec30 }}$	0	${ }_{\text {R20 }}^{1208108}$	2.15	${ }^{6} 504014$	1.20	${ }_{\text {c }} \times 24336$	0.8	84 C04069	4.55		${ }^{98} 8.95$					${ }_{8}$		800		
$2{ }_{2}$	0.12	AD	1.00	${ }_{8} 8333$	0	${ }_{\text {T1P29a }}$	0.65		${ }^{\text {a }}$ - 5		${ }^{2} 2.25$	${ }^{25}{ }^{\text {20 }}$	0.27	${ }^{\text {coadga }}$	18880.65		S5419 ${ }^{\text {a }}$							
	2	${ }_{\text {AFF }}$	${ }^{1.30}$		0	T1P30A	${ }^{9} .98$	C040178	1.05	CP4035		$3 \square^{\text {c }}$ co4070]	0.55				tuli ring			12		00		
$2{ }^{2}$		${ }^{\text {AFF239 }}$	070	${ }^{\text {®c5ch }}$	0.	Tp331A	0.54	Llimean												12				
$c21381923620$	${ }^{\circ}$	${ }_{\text {AUC }}{ }^{\text {AU }} 107$	1.70		- 0.21	${ }_{\text {dip3 }}$	${ }_{0}^{0.72}$		${ }_{2}^{2.70}$	Lim394T	${ }_{0}^{0.68}$	M740.	IM715	${ }_{0}^{0.855}$	NE568N				fall tapy					
2 N		${ }_{\text {8C109 }}$	${ }_{0}^{0} 18$	${ }_{80}^{8 C 1}$		${ }_{11 \times 3324}^{11}$	${ }_{0}^{0.82}$	${ }_{\text {ck }}$	${ }_{1}^{1.06}$	L3340T.12	- ${ }^{0} 88$		${ }^{1 M 7805}$	1.85	${ }^{5671 N}$	1.90	${ }_{\text {Trata4 }}$							
$2{ }^{2} 3$		H1543	0.47	80132	0.75	${ }_{\text {t1P33 }}$	1.9	L'M3014.	0.40	LM3407-24	0.8 EB	Im1458 0.04		${ }^{1.56}$	SN76003		TBAB 10 S 1.30	Iemen						
	${ }_{3}^{2.20}$		0.45		O. 0.40		- 0.31	LM3088	${ }^{0} .56$	[14387\%	1.80	[mm800	LM7824C	${ }^{1} 56$	SN78013 ${ }^{\text {SND }}$		${ }^{\text {TiAata }}$	led						
	0.76	Tx	0.17	$8{ }^{80137}$	0.41			${ }^{\text {m33agk }}$	${ }^{1} 3$	${ }^{14378 \%}$	2.40	${ }^{\text {ch1 } 18811 \mathrm{~N}} \mathbf{2 . 2 5}$	M1780		SN76023N		Toaz 2 20ad 4.50		RED 7 seg dis					
	${ }_{0} .86$	2×500	0.16	${ }_{80139} 8$	${ }_{0}^{0.43}$			LW318N	2.45	LM3800 -14	1.09	[m33005 1.15	LM781	0.38	SN776333									
${ }_{\text {TiP }}$	1.08	Tx ${ }^{5}$	0.17	${ }^{2} 140$		Son			${ }_{1}^{186}$			LM3999N			${ }^{\text {SN }}$ S76650N		H10825P		¢mm cica			${ }_{30}$	30	$\stackrel{4}{40}$
T1P3055	2.52	${ }_{\text {BC }}$	${ }_{0}^{0.180}$		- 0.59	tor tull m		[M320r-12	1.81	Mr ${ }^{\text {chich }}$	0.50	$\mathrm{Im}^{1 / 393}$	Ne556n	0.65	S47		${ }^{\text {T10884 }}$		${ }_{\text {IPmm }}$					
$2 \mathrm{2N54}$	${ }^{0.32}$		${ }^{0.32}$	\& Pratai	- 8.48				1.85	(M)416.8	${ }_{0}^{0.30}{ }_{0}^{0.30}$	(19425005 1.30		4.50					${ }_{\text {che }}$	1.95				
${ }_{2}^{2 \times 64607}$	${ }_{0}$	42	(0.32	${ }_{\text {bo24iA }}^{\text {Bi2aC }}$	- ${ }_{\text {\% }}^{0.59}$			${ }_{\text {See cosemalogu }}$	-	limpe							2N414		${ }_{\text {l }}^{\text {\% }}$	1.95		${ }_{13} 13$	12211	$\begin{array}{r}28 \\ 22 \\ \hline\end{array}$

COMPONEMTS STOCKED

 See cilaloguas or furl fanga.

STOCKISTS FOR:
VERTO
ANIEX
ELECR flyctrolebe
SIFAMM
ARROW HART
 MULLARD
SIEMENS MULLARD
SIEMEN
SESCOSEM

Pleass add 40 p ior p. \& p. to all arders. Teiephone orders $£ 10.00$ minimum.

BUILD YOUR OWN

40MHz Counter
 Rx Digital Readout 300MHz Prescaler Signal Clarifier

DIGITALFREQUENCY COUNTER ModeI RQ-3 KIT £44.95
RX DIGITAL READOUT. Model RQ-30M. Modifies the RQ-3 counter to correct forany RX. IF. KIT £9.95
VHF PRESCALER Model RO-10. -10 up to 300 MHz . KIT £18.95
SIGNAL CLARIFIER. Model RQ-9. Multifunction filter. KIT $£ 22.50$
BEGINNERS SHORT WAVE RADIO MOdel RQ-5 KIT £10.50
CRYSTALCALIBRATOR MOdeI RQ-1. KIT £12.72
MORSE PRACTICE KIT Model RQ-7 KIT £9.95
Full details of all kits on request-send 90 stamp. Prices are less VAT

ROCQUAINE ELECTRONICS

MORE SCOPEFOR YOUR MONEY
ELMAC $48104^{\prime \prime}$ Scops as recommended

SPECIFICATIONS ELECTRICAL DATA VERTICAL AXIS (Y). Deflection Sensiiween 3 m V/dlvision. Bandwidth obe-Attenuator-(calibrated)-9 step $0.1,0.2$, $0.5,1,2,5,10,20.50$ div. Input Impedance-
$1 \mathrm{Meg} / 40$ of in shunt, Input Voltage-Max600 P . P.
HORIZONTAL AXIS (X). Deflectien Sensitivity- $0.400 \mathrm{mV} /$ division. Bandwidth (between 3 dB points- $1 \mathrm{~Hz}-350 \mathrm{KHz}$. Gain Contro-Continuous when time bases in Input Voltage-Max-600V P.P
TIME BASE. Sweep Range (calibrated) $100 \mathrm{msec} / \mathrm{div}$ to $1 \mu \mathrm{sec} / \mathrm{div}$ in 5 steps. FINE

Control-Variable between steps-in-
ctudes time-base calibration cludes time-base calibration position. SYNCHRONISATION Selectional, external Synchronisation Level-Con tinues from positive to negative. $\mathrm{AC} 10 \%$ at $50 / 60 \mathrm{~Hz}$ Pow voltage- $115 / 220 \mathrm{~V}$ $\mathrm{AC} .10 \%$ at $50 / 60 \mathrm{~Hz}$ Power Dissipation-
CRT DATA-4in-flat face, single beam -Maximum high voltage- 1.5 kV -Fitted With 8×10 division biue filter graticule. (h) $\times 20.5 \mathrm{~cm}$ (w) $\times 28 \mathrm{~cm}$ (d). Weight$4 \cdot 3 \mathrm{Kg}$ (approx.). Stand-2 position flat and inclined. Case-Steel, epox; enamelled. Front panel-Aluminium enamelled epoxy orinting. Test leads available $52 \cdot 00$ CASH WITH ORDER £ $109+£ 16.35$ VAT
RADAT 3106C. 10 ML 2 Scope as recommended by P.W. (Aug.). Available at $E 148+$, VAT.
Send S.A.E for brochure. Mail orders oniy.
Callers by appointment
KRAMER \& CO.
October Place, Holders Hill Road
London NW4 1EJ. Telex: 888941
attn. Kramer k7, Tel: 01-203 2473

OUR 1979 CATALOGUE

 including the first edition of
STOP PRESS

(send S.A.E. for copy)

* Latest low prices
\star Fascinating new items
\star Special offers a bargain on their own
\star Lowest prices ever for TTL
\star Free 45 p worth of vouchers

DEPT. 16, 56 FORTRIS GREEN ROAD
MUSWELL. HILL, LONDON N10 3HN
TELEPHONE: 01-883 3705/2289

USE OUR "ORDER RING" LINES
VAT INCLUSIVE PRICES P\&P 25p

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate
Diploma Courses
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E. Engineering

60 subjects at "O" \&
"A" levels
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

Automatic Intercom

* AS FEATURED IN AUGUST ISSUE OF P.W.

- INCREASE SECURITY!!
- ADD CONVENIENCE!!
- DETER UNWANTED CALLERS!!

We can supply a complete set of parts for this useful project everything down to the last nut and bolt|| All parts as specified by the author, including PCB's and cases for $\mathbf{£ 3 1 . 9 5}$
4 core screened cable for interćonnecting 27p/metre.

THE NEW 1979 GREENWELD
 CATALOGUE
 LINEARIC BARGAIN

 FEATURES INCLUDE:- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices

PRICE 30p + 15p POST

3W Amp Module

Ready built and tested, this handy amplifier will prove very useful around the workshop. Just requires 17 V ac source (and 8 R spkr) as bridge rect and smoothing cap are mounted on the PCB. The 4 transistor circuit proivides enough sensitivity for most applications. Supplied complete with circuit diagram and wiring details.
Only £1.75. Suitable transformer £2.20.

We have just received a large consignment of popular linear IC's that have failed the manufacturers stringent tests. However, on checking through a few hundred we have found that quite a large proportion tested in a simple oscillator circuit are functional, so are offering them in packs as follows:-

\%

Type Pack Good Qty. Price 702 14DIL 65\% 25 £1.20 709 8DIL 75\% $20 \quad \mathbf{£ 1 . 2 0}$ 709 14DIL 50\% $30 \quad \mathbf{£ 1 . 2 0}$ 710 T099 30\% $40 \quad \mathbf{£ 1 . 2 0}$ 710 14DIL 30\% 40 £1.20 720 14DIL 80\% 20 £1.20 741 T099 40\% $25 \quad \mathbf{£ 1 . 2 0}$ 748 T099 70\% $15 \quad \mathbf{£ 1 . 2 0}$

Connection data is supplied One of each pack, £8.50.

```
4 CHANNEL SOUND TO LIGHT
SEQUENCE CHASER -4LSMI
- Full wave contro
- RCA 8A Triacs
- Fully supressed and fuse
- Switched master control for sound
operation from \(\frac{1}{2} \mathrm{~W}\) :0 125 W
- Speed control for fixed rate sequence from 8 per minute to 50 per second
- Full logic integrated circuitry with optical isolation for amplifier protection
```

£22.95
Model 501500 W per channel as above without sound triggering

TUAC
TRANSISTOR UNIVERSAL AMPLIFICATION CO. LTD. PHONE $01-6723137 / 6729080$ MANUFACTURERS OF OUALITY AMPLIFICATION ANO LIGHTING CONTROL SYSTEMS

PRICES INCLUDE VAT. P \& P FREE
correct at 18.6.79
TO ORDER BY POST
Make cheques/P.O.s payable to TUAC LTD or quote
Access/Barclaycard No. and post to TUAC LTD. 121 Charlmont Road, London SW17 9AB. We accept phone numbers from Access; Barclaycard Holders. Phone 01-672 9080.

NEW FROM TUAC

ULTRA QUALITY HIGH POWER
New D.C. Coupled Design AMPLIFIERS
Featuring
Electronic Short Open \& Thermal Overload Protection. Brief Spec.
mput Sensitivity $0.775 . v$. R.M.S. (O.O.B.) at 25 K Ohms Frequency Resuonse $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Frequency Response 20 Hz -20 KHz
Hum \& Noise - 100 dB Relative full output
T.H.D. al full power 0.1% T.D. 500300 W into 20 hms 140 W into 80 hms T.D. 150150 W in 40 hms 100 W in 4 hms poly P.S. 160 T.D. 150.60 Version 60 W into 8 Ohms 40 W into 15 Ohms. 2 T.O. 150 amplifiers

All output ratings are R.M.S. continuous sine wave output.

AMPLIFIER MODULES

With touch sensitive switching and auto fade
NPUTS: Four denical stereo inputs avalabie will any equalisalion Two magnetic and two flat supplied as standard High quality slider control on each channel Volume treble and bass controls for each pair of siders
 OUTPUT batance controls Band width $15 \mathrm{~Hz} \quad 25 \mathrm{kHz}$ - dB Pance controls Rand widht 15 Hz 25 kHz - dB P.F.L.: Output 250 mV into 8 ohms Rotary vorume control. Monitoring
touch senstive illuminated switches. Switched visual cue indicator
Miscellaneous Facitities: Two lluminated deck on off swatches. Mains illuminated on off switches Auto fade
Huminated on off switch. Mains powered with integral screen and back cover Complete with full instructions Size 25 in long : 6 in high $\cdot 3 \mathrm{in}$ deep Mono Disco Mixer with autotade $\mathbf{£ 5 5 . 5 0}$
£189.00

3 CHANNEL LIGHT MODULATOR SILMB

- RCA 8A Triacs
- 1000W per channel
- Each channel fully suppressed and fused
- Master control to operate from 1 W to 125W
- Full wave control

FRONT PANEL FOR LIGHTING EFFECT MODULES
fcomplete with switches, neons and knobs as illustrated

For Slimb $£ 9.75$
Size $8^{\prime \prime} \times 4 / z^{\prime}$

FUZZ LIGHTS Red, Green, Blue. Amber $£ 25.95$

4LSMI £7.75
Size $6 \frac{1}{2}$ " $\times 4 \frac{1}{2} 2^{\prime \prime}$

S1LMB $\mathbf{£ 1 0 . 0 0}$
Combined with 3SDM1 Size $9^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{}$

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTUAED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILIUSTRATED CATALOGUE. SEND STAMP PLEASE

TTLs BY TEXAS			180p	$\begin{aligned} & 74221 \\ & 74251 \\ & 74259 \end{aligned}$	$\begin{aligned} & 160 \mathrm{p} \\ & 140 \mathrm{p} \end{aligned}$	$\begin{aligned} & 74 \mathrm{LS} 192 \\ & 74 \mathrm{LS} 193 \end{aligned}$	$\begin{aligned} & 140 \mathrm{p} \\ & 140 \mathrm{p} \end{aligned}$	$\begin{aligned} & 74 C_{157} \\ & 74 C_{160} \end{aligned}$	$\begin{array}{ll} 77 & 250 p \\ 0 & 155 p \end{array}$	LINEAR I.C.s AY4-0212 600p		MC1496	$100 \mathrm{p}$	TRANSISTORS				TIP41C TIP42A	$\begin{aligned} & 78 p \\ & 70 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { 2N3866 } \\ & 2 \mathrm{~N} 3903 / 4 \end{aligned}$	$\begin{array}{r} \text { 90p } \\ 4 \text { 18p } \end{array}$	$\begin{aligned} & \text { DIODES } \\ & \text { gY127 } \end{aligned}$		
7400	13p	7497										AC127/8			BFY51/2	22p								
7401	14p	74100	130p			74LS195	140 p	74 C 161	$1{ }^{155 p}$	AY1-1313	668p			AD149	70p	BFY56	330	T1P42C	82 p	2N3905/6	6 20p	OA47	p	
7402	14 p	7404	65p	74265	p	74LS196	120p	74C162	2 155p	AY1-5050	212p		MC	120 p	AD161/2	45p	BFY90	90p	TPP2955	78	2 N 4036	65 p	OA81	5p
7403	14p	74105	65 p	74278	290p		100 p	74 C 163	3 155p	AY5-1224A	225p		120p	BC107/8	11角	BLY83	700p		p		22p	OA85	p	
7404	17p	74107	34p	74279	140 p	74LS240	175p	74 C 164	120p	AY5-1315	600p	MK50398	750 p	BC109	11p	BRY39	45p	TIS43	34 p	2 N 4060	${ }^{12 \mathrm{p}}$	OA90	p	
7405	18p	74109	55p	74283	190p	74LS24	175p	74 C 173	120p	A Y5-1317	636 p		130 p	BC147/8	9p	BSX19/2	20p					OA91	p	
7406	32 p	74110	55p				p	74	160p	AY5-1320	320p	NE5	p	BC149	10p	BU105	90p	21×108		2N4123/4	22p	OA95	p	
7407	32p	74111	70p	74285	400 p	74LS243	175p	74 C 175	$2{ }^{210 p}$	CA5019	80p	NE543K	225 p	BC157/8	10p	BU108	250 p	ZTX300	$11 p$	${ }_{2} \mathrm{~N}^{2} 12896$	22p	OA200	9 p	
7408	19p	74116	200p	74290	150p	74LS245	1750	74C192	$3{ }^{150 p}$	CA5046	70p	NE555	25 p	BC159	11p	BU205	220 p	ZTX502	18 p	2N4401/3	27p	1N914	4p	
7409	19 p	74118	130p	74293	200p	74 LS 257	120p	74C193	220p	${ }^{\text {CA }}$ A 3048	$225 p$ 720	NE556	70 p 425	BC169C	12p	BU208	240 p 145 p	ZTX504	${ }_{30 \mathrm{p}}$	2N4427	90p	1N916	7 p	
7410	15p	74119	210p	74298	200 p	74LS259	175 p	${ }_{74}{ }^{\text {C195 }}$	5110 p	CA3089E	225p	NE562B	${ }_{425}{ }^{\text {25 }}$	BC172	${ }^{17 p}$	M ${ }^{\text {d }} 8$	175p	2N457A	250p	2N4871	60 p	1N4148	4p	
7411	24 p	74120	${ }^{110 p}$	74365	150p	$74 L$ S298	249p	74 C 221	1 175p		375p	NE565	130p	${ }^{\text {BC17718 }}$	17p	MJ491	200p	2N696	35p	2N5087	27p	1N4001/2	5p	
7412	20 p	74121 74122	${ }^{28 p}$	74366		74LS373	200p			CA3130S	100p	NE566	155p	BC179	${ }_{08}$	M J2501	225p	2N697	25p	2N5089	27p	1 N4003/4	6p	
7413	30 p	74122	48 p	74366 74367	150p	74LS374	195p	4000	SERIES	CA3140E	109p	NE567	175p	82/3		MJ2955	100p	2N697	45p	2N5172	27p	1N4005	6p	
7414	60 p	74123	55p	74367 74368	150p	81LS95	120p	4000	15p	CA3140E	70 p	RC4151	400 p	BC187	30p	M J3001	225p	2N706A	20 p	2N5479	27p	1N4006/7	7 p	
7416	27p	74125	$55 p$	74368 74390	150 p $\mathbf{2 0 0 p}$	81LS96	160 p	4001	17p	CA3160E	750p	RC4151	.00p	BC187	30p	MJE340	${ }_{65} \mathbf{5}$	2N708A	20p	2N5191	83p	1N5401/3		
7417	$27 p$	74126	0p	74393	200p	81LS97	120 p	4002	17 p	${ }_{1}^{\text {FX209 }}$	790p		140p	BC212/3	11p	MJE2955	100p	2N918	45 p	2N5194	90 p	1N5404/7		
7420	17 p	74128		74493	$225 p$	81LS98	160 p	4006	95p	1CL8038	340 p	N6013N	140p	BC214		MJE3055	70p	2N930	18p	2N5245	40p	ZENERS		
7421	40 p	74132	75p			8 T28	230p	4008	80 p	LM301A	360 36		120p	BC46		MPF102	45p	2N1131/2	20 p	$2 N 5296$	55p	$2.7 \mathrm{~V}-33 \mathrm{~V}$		
7422	22 p	74146 7414	70p	SERIES		9301	160 p	4009	40 p	LM311	190p	SN76023N	140 p	BC4718	30p	MPF103	40p	2N1613	25p	2N5401	50p	400 mW	9p	
7425	30 p	74142	200p	74LS00	18p			4010	50p	LM318	200 p	SN76023ND		BC5478	16p	MPF10	40p	2 N 1711	25p	$2 \mathrm{~N} 5457 / 8$	40p			
7426	40p	74145	90p	74LS02	18p	088	376	4011	17p	LM 324	70p		120p	BC549C	18p	MPSA06	30p	2N2102	60 p	2N5459	40 p	SPECIAL		
7427	34p	74147	190p	74LS04	20p	${ }_{9311}$	275p	4012	18p	LM339	90p			BC557B	16p	MPSA	30p	2N2160	120 p	2 N		OFFERS		
7428	36 p	74148	150p	74LS08	${ }^{22 p}$	${ }_{9312}$	16	4013	50 p	LM348	95p	SP8515	750p	BC559C	18p			2N2222AA	20 p	2N6027	48 c	£16		
7430	17p	74150	100p	74LS10	20 p	9314	165 p	4014	84 p	LM377	175p	TBA641811		BCY70	18p	MPSU		2N2369A	16p	2N6247	190 p	$100+555$		
7432	30p	74151 A	70p	74LS13	P	${ }_{9} 916$	2255	4015	84 p	LM380	75p			BCY71/2	22 p			2N2484	30 p	2N6254	130p	£20		
7433	40p	74153	70p	14	p	9322	150 p	17	${ }^{45 p}$	LM381AN	150p	TBA800		BD $131 / 2$	50p	OC35	130p	2N2646	50 p	2N6290	65 p	$100+$		
7437	35 p	74154	100p	74LS20	${ }^{22 p}$	9368	200 p	4017	88 p	-	1405	TBA820	p	BDY56	200p	R2008B	200p	2N2904/5	23 p	2N6292	65p	RCA 2		
7438	35 p	74155	90 p	74LS22	P	9370	200p	4018	$89 p$ $45 p$		36 p	TBA820	p	BF200	32p	R2010B	200p	2N2906A	24p	2N128	120p	$£ 36$		
7442 A	60 p	74159	190 p	74LS47	90 p	9601	170 p	4021	110 p	LM733	100 p	XR2206		8 F 25	70p	TIP29C	55p	2N2926	9 p	3N201	110p	RECTIFI	RS	
7443	112p	74160	100p	74LS55	30 p	9602	175p	4022	100p		29 p	XR2207	400 p	BF2	32 p	TIP30A	48p	2N3053	20 p	3N2	100p	A 50		
7444	112p	74161	100p	74LS73	50p	INTER	60p	4023	22p	LM ${ }^{\text {L747 }}$	35p	XR2216	675p	BF2		C	60	2 N 3054		4029	250 p	A	p	
7445	100p	7462	100p	74LS74	40p	INTERF	CE	4024	50 p	LM38800	70p	XR*240	400p	FR40		T	58 p	2N3055		40361	45 p	A 400 V	p	
7446A	93p	74163	100p	74LS75	50p			4025	20p	LM3911	130p	ZN414	90p	BFR40	30 p 30 p	TIP31C	68 p	2N3442	240p	403	120 p	2A 100 V		
7447A	70p	74164	120 p	74LS83	110 p	MC1488	100 p	4026	50p	LM4136	120 p	ZN424E	135p		30	TIP32C	82 p	2N3565		40408	70 p	2 A 400 V	${ }_{45}$	
7448	80 p	74165	130p	$74 \mathrm{LS85}$	100 p	75107		4027	50 p	MCC1310P	150 p	ZN425E	400p		30p	TIP33A	90 p	2N3643/4	48p	40409	65p	3 A 200 V	$60 p$	
7450	17 l	74166 74167	200p	74LS890	40p	75182	230 p	4028	100 p	MC1458	55 p	ZN1034E	200p	BFR81	30p	TIP33C	114p	2N3702/3	12p	40410	65p	3 A 600 V		
7453	17 p	74170	240p	74LS93	60 p	75450	120 p	4030	55 p	MC1495	400p		800	BFX29	30p	TIP34A	115 p	$2 \mathrm{~N} 3704 / 5$	12p	40411	300p	4A 100V		
7454	17p	74172	720p	74LS107	45p	75451/2	72p	4031	200p					$\times 30$	34 p	TIP34C	160p	2N3706/7	7 12p	40594	$97 p$	4 A 400 V	100p	
7460	17p	74173	120p	74 LS 112	100p	1/2	96 p	4033	180p	VOLTAC	RE	ATORS		BFX84/5	30 p	TIP35A	225p	2N3708/9	12p	40595	105 p	6A 50V	90p	
7470	36p	74174	93p	74LS123	75p	C-MOS	I.C. 5	4034	200 p	Fixed Pl	c	220.		BFXB6/7	30 p	T	290p	2						
7472	30p	74175	85p	74LS132	900p	74 COO	$25 p$	4035	110 p	1 A + ve		$1 \mathrm{~A}-\mathrm{ve}$		BFX38	30 p	36	270p	2 N 3819	25p	40673	90 p	6A		
7473	34 p	74176	90p	74LS133	60p	$74 \mathrm{CO2}$	$25 p$	4040	109p	$5 \vee 7800$	75p	$5 \vee 7905$	100p	BFW10	90 p	T1P46C	340 p 65	2N3823	50p	40871/2		10A 400V		
7474	30p	74177	90p	74LS138	${ }^{60 p}$	74 CO 4	27p	4041	80 p	12V 7812	75p	12V 7912	100p	8FY50	22p	TIP4		2N3823		40871/2		25A 40		
7475	36 p	74178	160p	74LS139	60 p	$74 \mathrm{CO8}$	27 p	4042	80 p	15 V 7815	75p	15 V 7915	100p											
7476	35p	74180	93 p	744S15t	100p	74 C 10	27 p	4043	${ }_{90 \mathrm{p}}^{90 \mathrm{p}}$	$18 V$ $24 \vee$ 7818	90 p	$\begin{array}{ll}18 V & 7918 \\ 24 V & 7924\end{array}$	100p											
7480 7481	50p 100p	7418 7418	200p	74LS153	60p	74 C 14 74 C 20	90p	4044	990p	$24 V 7824$ 100 mA	ro-92	$100 \mathrm{ma}{ }^{7924}$	100p		$\begin{aligned} & 12 p \\ & 12 p \end{aligned}$					ite	at	\%\%.		
7482	100p	74184 A	150p	74LS158	120p	$74{ }^{\text {c }} 30$	27p	4047	100 p	${ }_{5} \mathbf{5 V}$ 78L05	35p	5V 79L0:												
7483A	90p	74185	150p	74LS160	100p	$74 \mathrm{C32}$	36p	4048	55 p	12V 78L12	35p	12V 79 L 12	$80 p$											
7486	149p	74191	100 p	74LS163	100p	74 C 73	75	4051	80 p	OTHER R	EGUL	TORS		p	V	T								
7489	210 p	84192	100p	74LS164	120p	74 C 74	70 p	4052	80 p	LM309K	135p	TBA625B	${ }^{120 p}$	approp	riat	rates.								
7490A	33 p	74193	100p	74LS165	80p	74485	200 p	4053	80 p	LM317T	200p	TL430	65p											
7491	80p 480	74194 74195	100p	74LS173	110p	74 C 8	$65 p$ 950	4055	125p	LM323K	625p		135p					7 BU	N	Y ROA	AD			
7493A	33 p	74196	95 p	74LS175	110p	74 C 95	130 p	4059	600 p															
7494	84p	74197	80p	74LS181	320p	74 C 107	125p	4060	115p	OPTO-EL	CTR	HCS		allers	W	ome								
7495A	70p	74198	150p	74LS190	100p	74 C 150	250p	4063	120p	2N5777	ORP	2 90p ORP61	1 90p	MON-FR	\%	-5.30								
7496	65p	74199	150p	74LS191	100p	74 C 151	260p	406	55p	OCP71 13	ORP	90p TIL78	70p	SATU	DA	10.30-4.3								

Our new catalogue lists circuit boards for all your projects, from good old Veroboard through to specialised boards for ICs. And we've got accessories, module systems, cases and boxes everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

BURGLAR ALARMS

WE HAVE STOCKS OF EVERYTHING YOU NEED. CALLERS WELCOME. OPEN GREAYS
EXPRESS POSTAL SERVICE FREEATALOGUE SEND S.A.E.

MAXIGUARD MK 4
ULTRASONIC DETECTOR
12 V D.C. c/o relay output
Covers approx. 24 ft . Adjustable sensitivity
SPECIAL OFFER ONLY
$£ 38.00$
including VAT \& Postage

SPECIAL OFFERS
 Prices held until Sept. 1st

Friedland Bells 12V D/C $£ 8.90$
Carter's Mini-Mite siren 12V D/C $£ 5.80$
Magnetic switches from 75p each inc. magnet
Pressure mats from $\mathbf{£ 1 . 1 2 \text { each }}$
Bell boxes, plastic coated steel with sticker (red, yellow or white) $\mathbf{£ 6 . 0 0}$ each.

A. D. E. (SECURITY) CO.,

217 WARBRECK MOOR
AINTREE, LIVERPOOL
TEL: 05I-525-3440
STOP PRESS ! Trade Price List Available
Applications on Official Stationery only

YOUR COMRLETE RANGE OFELEGTRONIC HARDWARE.

BIMENCLOSURES

all metal bimcases
Red, Grey or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets. BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £15.52

ALL METAL BIMCONSOLES

All aluminium, 2 piece desk consoles with Colour Code either 15° or 30° sloping fronts, sit on

4 self-adhesive non-slip rubber feet. Ventilation slots in base and rear panel for excellent cooling. See latest catalogue for new styles and sizes 15° Sloping Panel 30° Sloping Pane! BIM 7151 ($102 \times 140 \times 51[28] \mathrm{mm})$ B 1 M 7301 ($102 \times 140 \times 76[28] \mathrm{mm})$ $£ 11.36$ BIM $7152(165 \times 140 \times 51[28] \mathrm{mm})$ BiM $7302(165 \times 140 \times 76[28] \mathrm{mm}) \quad £ 12.28$ BIM $7153(165 \times 216 \times 51[28] \mathrm{mm})$ BIM $7303(165 \times 183 \times 102[28] \mathrm{mm}) \underset{13.43}{ }$ BIM $7154(165 \times 211 \times 76[33] \mathrm{mm})$ BIM $7304(254 \times 140 \times 76[28] \mathrm{mm}) ~ £ 14.83$ BIM $7155(254 \times 211 \times 76[33] \mathrm{mm})$ BIM $7305(254 \times 183 \times 102(28] \mathrm{mm}) £ 16.36$ BIM $7156(254 \times 287 \times 76[33] \mathrm{mm})$ BIM $7306(254 \times 259 \times 102[28] \mathrm{mm}) £ 17.71$ BIM $7157(356 \times 211 \times 76[33] \mathrm{mm})$ BIM $7307(356 \times 183 \times 102[28] \mathrm{mm}) € 18.83$ BIM 7158 ($356 \times 287 \times 76[33$) mm) BIM7308 ($356 \times 259 \times 102[28] \mathrm{mm}$) £19.92

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast)

ABS		Diecast	Hammertone	Natural
N/A		BIM5001/11	$£ 1.54$	$£ 1.23$
BIM2002/12	$£ 1.09$	BIM5002/12	$£ 1.66$	$£ 1.32$
BIM2003/13	$£ 1.27$	BIM5003/13	$£ 2.24$	$£ 1.70$
BIM2004/14	$£ 1.51$	BIM5004/14	$£ 2.81$	$£ 2.11$
BIM2005/15	$£ 1.72$	BIM5005/15	$£ 3.19$	$£ 2.72$
BIM2006/16	$£ 2.69$	BIM5006/16	$£ 4.94$	$£ 3.96$

$(50 \times 50 \times 25 \mathrm{~mm})$
$(100 \times 50 \times 25 \mathrm{~mm})$
$(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(190 \times 110 \times 60 \mathrm{~mm})$

MINI DESK BIMCONSOLES
Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushes
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.48$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) € 3.48$

ur Code
A
B
C Top Panel Off White Sand Satin Grack Gree

BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) \quad £ 2.76$ BIM $6006(143 \times 170 \times 55.5(31.5] \mathrm{mm}) \div 3.58$ BIM $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) \quad £ 4.83$

A EUROCARD BIMCONSOLES

 Orange, Blue, Black or Grey ABS b) body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated and 4 BIMFEET supplied. 1 mmGrey aluminium lid sits flush with body
top and held by 4 screws into integral brass bushes
BIM 8005 ($169 \times 127 \times 70[45] \mathrm{mm}) \quad £ 4.71$ BiM 8007 ($243 \times 187 \times 103[66] \mathrm{mm}) £ 6.70$

BIMTODLS + BIMACCESSORIES

MAINS BIMDRILLS

Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or . $125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rDm . Oranae ABS. high impact, fully insulated body with integral on/oft switch $£ 11.21$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}$, $125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.64$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Comflete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ £23.57

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. $£ 1.15$ per pack of 25 .

BIMFEET

11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet
$£ 0.81$ per pack of 24 .

12 VOLT BIMDRILLS

2 small, powerful drills easily hand heid or used with lathe/stand adaptor Integral on/off switch and 1 metre cable

$$
\text { Mini BIMDRILL with } 3 \text { collets up to } 2.4 \mathrm{~mm} \text { dia. } £ 8.62
$$ Major BIMDRILL with 4 collets up to 3 mm dia. $£ 14.49$

Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit $1-£ 16.10$, Major Kit $1-£ 20.70$. Accessory Kits 2 have appro priate drills, collets plus 40 tools and mains-12V dc adaptor. Mini Kit $2-£ 36.22$,
Major Kit $2-£ 41.97$. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit $3-£ 48.30$, Major Kit $3-£ 54.05$

BIMPUMPS

2 all metal desolder. ing tools provide high suction power and have easily replaceable screw in Teflon tips. Primed and released by thumb operation with in-built safety guard and anti-recoil system BIMPUMP Major (180 mm long) $£ 8.51$ BIMPUMP Minor (150 mm long) $£ 7.24$

BIMIRONS

Type 30 General Purpose 27 watt iron with long life rapid charige element screw on tip, stainless stee! shaft and clip on hook. Styled handle with neon. $£ 4.37$ Type M3 Precision 17 watt iron quick change tip. Iona life

BIMBOARDS

DIL COMPATIBLE BIMBOARDS

Accept all sizes 14-50 pinl of DIL IC packages as well as resistors, diodes, capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiple
units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.
BIMBOARD 1 has 550 sockets, multiple units utilising 2, 3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm ($0.1^{\prime \prime}$) matrix

BIMBOARD $1 £ 9.40$

 BIMBOARD $2 £ 22.37$ BIMBOARD $3 £ 31.83$ BIMBOARD $4 £ 41.53$DESIGNER PROTOTYPING SYSTEM
1, 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral. Power Supply 1 ± 5 to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$ All O/P's fully isolated. Short circuit and fast fol back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 2 £64.97
DESIGNER 3 £71.30

AUDIO TEST SET services pattern bench test comprises in one case Audio Osc 17c/s to 170 Kc in 4 ranges direct calibration, O / P var up to 10 v into 25 to 600 ohm, Valve Voltmeter $100 \mathrm{Mill} / \mathrm{N}$ to 100 v in 5 ranges freq response to 170 Kc this can be used to read O / P from osc or ext I/P. Distortion Meter with amp \& tuned filter cont var $20 \mathrm{c} / \mathrm{s}$ to 20 Kc with direct cal as 3 ranges of dist $10,30 \& 100 \%$ FSD read on VTVM meter. Contained in metal case size $14 \times 17 \times 21^{\prime \prime}$ for use on $200 / 250 v$ mains with connecting leads in new condition $£ 65$.
WIDE BAND AMPLIFIER general purpose unit can be used with scopes, counters or any unit needing extra gain at HF can also be used as high $1 / P$ imp RF voltmeter using ext 50Ua meter, provides 3 gain settings of $10,50 \& 100$ at 50,40 \& $15 \mathrm{Mc} / \mathrm{s}$ bandwidths $A C$ coupled max $\mathrm{O} / \mathrm{P} 2 \mathrm{v}$ RMS, supplied with cathode follower probe unit \& ext meter rectifier in case size $12 \times 8 \times 7^{\prime \prime} 200 / 250 \mathrm{v} / / \mathrm{P}$ with mains lead $£ 22$.
SELECTIVE CALLING UNITS contain telephone dial small 500Ua meter, low volt stab power unit, 9 circ brds, lamps, relays, swts etc thought to generate dialling tones that can be selected on front panel, 200/250v I/P transis units new cond £18.
MAINS TRANS pria $200 / 250 \mathrm{v}$ sec $340-250-0-250-340 \mathrm{v}$ at 210 Ma plus 6.5 at 5 amps twice \& 5 v ct at 5 amps size $5 \times 5 \times 6^{\prime \prime}$ we have tested these a 700 v DC at 250 Ma using full sec with no L.T. load, will also give $17 \cdot 6 \mathrm{v}$ at 5 amps new boxed £8.50.
RECEIVER UNIT R4187 \& C/Bx Aircraft HF Rx 24 channel crystal controlled remote control 2.8 to $18 \mathrm{Mc} / \mathrm{s}$ in 3 bands dual conversion 15 min valves, with BFO, N.L, etc size Rx $15 \times 8 \times 8^{\prime \prime}$ reqs $24 \mathrm{v} \& 19 \mathrm{v}$ DC supplied with control box copy of circs \& handbook also suggested mods $£ 25$.
INDICATOR UNIT with $3^{\prime \prime}$ CRT type 3WP1 (more modern than 3BP1) plus 13 miniature valves in case size $10 \times 8 \times 21^{\prime \prime}$ contains 400 c P.U. with circ $£ 25$.
PANEL METERS mixed mostly $2 \& 3^{\prime \prime}$ dia types 4 different for £4.
MONITOR UNIT older type unit with CRT VCR138 $3^{\prime \prime}$ green trace \& 4 octal valves these have int mains HT \& EHT P.U. complete in case size $10 \times 12 \times 21^{\prime \prime}$ well suited as basis of scope with circ. $£ 20$.
TEST SET with 4 x meters 0 to $500 \mathrm{Ma} \times 2,0$ to 1 amp DC \& 0 to 40 v DC also fuse holders, lamps swt etc all in case size $17 \times 12 \times 7^{\prime \prime}$ with front cover new cond $£ 13$.
MAINS TRANS Pria 200/250v sec 225-135-0-135-225 at $70 \mathrm{Ma} 6.32 \mathrm{a} \& 6.3700 \mathrm{Ma}$. $£ 4$ matching choke $£ 1.50$ also C core trans sec $250 \mathrm{v} 60 \mathrm{Ma} \& 6.3 \mathrm{v} 3 \mathrm{amps} £ 3$.
MOTOR for use on 115 v AC rated $1 / 18$ th HP int at 5000 RPM brush type size $5^{\prime \prime}$ by $2 \frac{1}{4}^{\prime \prime}$ dia with pinion $3 / 8$ th by $\frac{1}{4}^{\prime \prime}$ fitted govenor reqs ext 220 ohm 25 watt res \& . luf cond, new American spares okay for PCB Drills. $£ 6.50$.
VARIABLE STABILISED P.U. Solartron bench type 200/250v I/P O/P var from 0 to 500 v DC at up to 150 Ma floating O / P also 6.3 v 5 a fitted Volt/Ma meter overload protection on $19^{\prime \prime}$ panel size $9^{\prime \prime}$ high $13 \frac{1}{2}{ }^{\prime \prime}$ deep no ext case $£ 35$. We have a few table cases intended to take two of these units at $£ 12$.
GRID DIP OSC. American Services pattern PRM-10 covers 2 to $400 \mathrm{Mc} / \mathrm{s}$ cont uses set of 7 plug in coils with direct calibration as 4 functions Grid Dip, Osc Det, Absorbtion W.M. \& Sig Gen for use om $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 25$ watts, the head unit with indicating meter can be removed from carrying case which contains P.U. and function selector swts, the head unit measures $7 \times 4 \times 3$ exc coil, meter $100 \mathrm{Ua}-5$ valves inc rect. All contained in carrying case size $11 \times 9 \times 5^{\prime \prime}$ with circ. $£ 55$ new cond or $£ 45$ good S/Hand cond.
HELIPOTS \& DIALS standard 10 tr dial to fit $3 / 8$ th bush $£ 1.50$ or with 100 K helipot $£ 2$.
ROTARY SWTS larger inst type 2 p $23 w \& 8 p 12 w$ both $£ 1.60$ U.H.F.TV tuner transis manual tuned type new with circ $£ 2.50$. HEADPHONE LEAD ext cord type with stereo jack $\frac{1^{\prime \prime}}{4}$ approx $30^{\prime \prime}$ ext new $£ 1$.
DIODES Sil pwr diodes stud type rated 10 amps ea 100 PIV 4 for $£ 1.601000$ PIV 4 for $£ 2.50$ new unused.
CRYSTALS $10 \times$ \& 10XJ types two pin in range 5 to $7.5 \mathrm{Mc} / \mathrm{s}$ 20 mixed for $£ 2.20$.

Above prices include Carr \& Vat goods ex equipment unless stated new, SAE for list 22/1 or enquiry.

A. H. SUPPLIES.
122, Handsworth Rd. SHEFFIELD. S9 4AE. Telephone 444278 (0742).

EEEGTROTALIE
All the many types of components we supply are BRAND NEW and guaranteed and come to us only from manufacturers direct or approved suppliers. No surp/us, no seconds

ICS - TTL 7400 series				$\begin{array}{ll} 253 & 14 p \\ i=53 & 144 \\ i=0, & 140 \end{array}$		748,3 $58 p$ $i<6 \mathrm{p}$ 74 p 7.6 f 27 p		$\begin{aligned} & 7410727 p \\ & 7412127 p \end{aligned}$	
7400	13p	7413	22p						
7401	19	7414	$60 p$	-6\%	145	749\%	40p	74141	54p
7402	19p	7420	14p	727	248	749.	71\%	74151	60p
7403	139	7430	149	7472	24	7492	46 p	74154	1.60
7404	18p	74:0	1490	2473	23 p	7493	40p	74190	94p
7405	14p	7422	54	7 ± 74	23 p	7494	689	74191	94p
7407	22p	7443	BOP°	7476	46	7495	570	74192	94p
7408	18p	7444	500	747 E	32 p	+ +496	63p	74193	94p
7409	18p	7447	$70 p$	7689	$41 p$	74100	73p		-
7410	140	7450	14p	7662	81 p	74104	40p		

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS SIEMENS CAPACITORS* RESISTORS

World famous for quality and dependability PCB TYPES -7.5 mm PCM 0.001 to 0.015 6p each; 0.015 to $0.0477 p$ each. 5 mm PCM 0.068 8p, 0.1 9p, $0.2212 p$. CERAMIC 2.5 mm PCM 0.01 5p, 0.02
$0.033,0.0475 \mathbf{~}, 0.068 \mathbf{6 p}, 0.1 \mathbf{6 p}$. $0.033,0.0475 p, 0.0686 p, 0.16 p$.
ELECTROLYTICS $-1 / 100,10 / 25,10 / 63$, $100 / 25$, etc. For full range see our current list
$100 / 25$, etc. For full range see our current lists. ${ }^{\frac{1}{3}}{ }^{2} 2^{2}{ }^{2}$ watts ${ }^{4}-2 p$ each*: metal film, metal tity discounts. Magnetic field dependent from £1.50. Hall Effect from £1.23.
SIEMENS TRANSISTORS Silicon npn and pnp from $8 p$ ea: LEDs, red 19p: vellow or green from 23 p (3 or 5 mm):
Photo KEEN PRICES GOO

DISCOUNTS

5% if list value of order is
overf10
10\% if list value of order is over f25. Discounts available where cash (P.O. or cheque) is sent with order.

V.A.T. - Add 15% to total value of
order.
Goods sent post free on C.w.O.
orders in U.K. over $£ 5$ list value. If
under. add 27 per order.
$\mathbf{1 2 0}$ page Catalogue No. 9
With current price list FREE
on request.

Cash with Frder (P.O or cheque payable to Electrovalue Ltd) or your Access or Barclaycard number
For all round satisfaction - be safe - buy it from ELECTROVALUE

Dept.PW9 28 St Judes Rd, Englefield Green, Egham. Surrey TW20 OHB. Phone Egham (0784-3) 3603: Telex 264475.
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 1NA. Phone (061) 4324945.

TELERADIO ELECTRONICS

325 Fore Street, Edmonton N.9. 01-807 3719
Closed all day Thursday

TOTAL AMPLIFICAION FROM CRIMSON ELEKTRIK

_- WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

MC 1

CPR

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload inargin is a superb 40dB, thls together with the
high slewing rate ensures clean top, even with high outiout cartridges tracking heavily modulated records. Common, even with high outout cartridges tracking heavily modulated recorts. Common-mode distortion is eliminated by an unusual
design. R.I.A.A. Is accurate to 1 dB ; signal to noise ratio is 70 dB relative to design; R.I.A.A. Is accurate 10 de; signal to no
3.5 mV distortion $<.005 \%$ at 30 dB overload 20 kHz .
Following this stage is the flat gain'balance stage to bring tape, tuner, etc. up to power amp. signal levels. Signal to noise ration 85db; slew-rate $3 \mathrm{y} / \mathrm{uS}$: T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<\cdot 008 \%$ at any level. F.E.T. muting. No controls are fited
There is no provision for tone controls. CPR 1 size is $138 \times 80=20 \mathrm{~mm}$. Supply to There is no prote
be ± 15 volts.

MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil cartridges. Send for detailis.
X02 : X03-ACTIVE CROSSOVERS
X02 - two way, X03 - three way. Slope 24dB/octave. Crossover points set to order
within 10%.
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 1 The bower am with any of our power amp supplies or our small transformer TR 6

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios
educational and government establishments, etc. Who have been usingCRIMSON amps satisfactorily for quife some time. We have a reputation for the highes quality at the lowest prices. The power amp is avallable in five types, they al
 response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stabillty unconditional; protection-drives any load safely: sensitivity 775 mV (250 mV or 100 mV on request); size 120×80 25 mm .

POWER SUPPLIES
We produce suitable dower supplies which use our superb TOROIDAL transiormers only 50 mm high with a 120-240 primary and single bolt fixing (includes capacitors/bridge rectifier)

PRE-AMPLIFIER KIT
This includes all metalwork, pots, knobs etc. to make a complete pre-amp with the CPR 1 (S) module and the

ACTIVE CROSSOVERS X03..........123.58 CE 608 AMPLIFIER MODULES

 1708170W/8 ohms $60-0-60 \mathrm{~V}$ TOROIDAL POWER SUPPLIE

CPS 1 tor $2 \times$ CE 608 or $1 \times$ CE 1004 E16.56
CPS 2 for $2 \times$ CE 1004 or $2 / 4 \times$ CPS 608.
CPS3 CPS 1704
CE 1704 CE 1008 or 1 CPS4 for $1 \times$ CE 1008...........
CPS5 for $1 \times$ CE $1708 \ldots . .$.
CPS6 for $2 \times$ CE 1704 or $2 ;$ CE CE 1708 2 $2 \times$ CE 1704 or 2 : \times Ce. Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W} \ldots \ldots$

 Fan. 80 min , state 120 or $240 \mathrm{~V} \ldots 19.70$ ann momin, state 120 or 2400 ... fan mounted on two drilled $65^{\circ} \mathrm{C}$ max. with two 170 W
THERMAL CUT-OUT, $70^{\circ} \mathrm{C}$.. $£ \mathbf{£ 1 . 5 4}$

Pre-amp Kit POWER $\begin{array}{r}\text { E38.07 } \\ \text { AMP }\end{array}$ KIT ….... $£ 35.03$ PRE-AMPS: These are available in two ver-sions-one uses standard compo-
nents, and the nents, and the
other (the S) uses
MO MO resistors where necessary citors.

 POWER SUPPLY REGI 86.90 BRIDGE DRIVER, BD:
Obtain up to 340 W using $2 \times 170 \mathrm{~W}$ amps and this
module BDI $£ 5.75$

CRIMSON ELEKTRIK 1A STAMFORD STREET, LEICESTER. LE1 6NL Tel: (0533) 553508
U.K-please allow up to 21 days for delivery
All prices shown are UK only and include VAT and post. COD 90p extra, 100 limit. Export is no problem, please write for specific quote. Send large SAE or 3 International Reply Coudons for etailed information.

BADGER SOUND SERVICES LTD.
"MINIC TELEPRODUKTER BOX 12035: S-750 12
UPPSALA 12, SWEDEN

30 VOLT RANG
Pri 220/240 sec O-12-15 Pri $220 / 240$ sec $0-12-15-20-24-30 \mathrm{~V}$
Voltages available $3,4-5,6,8,9$ $\mathrm{V}, 15,18,20,24,30 \mathrm{~V}, 6,8,9,10$ or $12 \mathrm{~V}-0-12 \mathrm{~V}$
and $15 \mathrm{~V}-0-15 \mathrm{~V}$ and
 50 V Voltages avaitable $5,7,8,10,13$, $25 \mathrm{~V}-0-25 \mathrm{~V}$

Continuous Ratings
 SAME DAY DESPATCH + VAT 15\%
 END OF LINE OFFERS

30-Isolator $240 \mathrm{~V}: 240 \mathrm{~V} 200 \mathrm{VA}$

62-Isolator $240 \mathrm{~V}: 240 \mathrm{~V} 250 \mathrm{VA}$ 63-Isolator $240 \mathrm{~V}: 240 \mathrm{~V} 500 \mathrm{VA}$ 6-250-0-250 © 100ma 1) Sec $0-5 \mathrm{~V}, 6.3 \mathrm{~V}$ @ $2 / 1 \mathrm{amp}$ f3.2078p $6.3 \mathrm{~V} 2 / 1 \mathrm{amp}$ 218-250-0-250V a 150 ma 1) Sec 6.3 V e 4A 2) $0-5 \mathrm{~V}$, | $6.3 \mathrm{~V} 2 / 1 \mathrm{amp}$ | $\mathbf{E 3} .5078 \mathrm{p}$ |
| :--- | :--- |
| $27-250-0.250$ | | 27-250-0-250@60ma 1) Sec 6.3V@2.5A 2) Sec 6.3 V

@ 1 amp 220-410-0-410V e 180ma 1) Sec 6.3V 4 amp CT 2 Sec 6.3 V © 2A 5V $2 \mathrm{amp} \quad \mathbf{f 5 . 3 0} 96 \mathrm{p}$ 82-4 amp lead acid Battery Charger (transformer only) 86-6 amp lead acid Battery Charger (transformer only) $\mathbf{f 5} \mathbf{8 0} \mathrm{f} 1.04$ f1.62 32p f2.1060p
4A
$\mathbf{f 5 . 5 0} £ 1.04$
M708-6K to $3 \mathrm{~K} \Omega$ matching transformer 5 watt
M679-0-120V $\times 2 ; 36 \mathrm{~V} 1$-6A
M865 - 100 V Line to $4 \Omega 10$ watts
M973-100V Line to $8 \Omega 40$ watts
M1015-Choke 8A © 5W 150 A Surge M1020-0-240V 12-0-12V a 50 ma M1126-0-120 $\times 2$; 9-0-9 1A M1130-0-240 4500V 10 ma M1165-0-115-240V; 14V 50ma M624-0-380V; 110 V 13.6A P.W. Purbeck

90p 40p f3.0078p $\mathbf{£ 1 . 9 0 6 0 p}$
$\mathbf{£ 2 . 9 0 6 0 p}$ f1.50 45p
f1. 97p $41 p$ 97p $41 p$ $\mathbf{5 4 . 8 6 \mathrm { f } 7 . 0 8}$ 75p 30p
$\mathbf{f 1 2 . 7 0} £ 1.40$ $7.5190 p$

COMPONENT PACK
$65 \frac{1}{4} W$ Metal Oxide Resistors. $65 \frac{\mathrm{~F}}{\mathrm{~W}} \mathrm{~W}$ Meral Oxide Resistors. 150^{2} Mixed Value Capacitors. 10 Reed Switches. 50 Wire Wound Resistors. 102000 mf 25 V Capacitors. 25 Assqrited presets. 503 tag terminal strips. Hardware BA nuts, bolts. 200 Mixed Resistors. 10 mixed value electrolitic caps 32 mf to 2000 mf . 70p each 40p P\&P $+15 \%$ VAT

AMPLIFIER MODULES		
25W	(AL60]	£4.95
35W	(AL80)	£7.79
125w	(AL250)	E18.74
Power S	upply PS 12	¢2.05
Power S	upgly SPM80	¢4.25
\&P 35p	PA12	c6.70
VAT 15\%	PA100	¢13.88

TEST METERS	15V RANGE (7.5-0-7.5V)	
AVO 8 MK5 $\mathbf{£ 8 8 . 1 0}$ AVO 78 $\mathbf{£ 3 6 . 0 0}$	$\text { O-CT } 15 \mathrm{~V} \text {. }$ Ber	
AVO 73 ($£ 48.70$	$171500 \mathrm{~mA} \quad 2.09 \quad 0.45$	
AVO MM5 minor $£ \mathbf{£ 3 2 . 9 5}$	172 1A $\mathbf{2 . 9 6}$	
Wee Megger $\quad \mathbf{E 7 4 . 2 5}$	$\begin{array}{llll}173 & 2 A & 3.59 & 0.78\end{array}$	
T169 in ciṛcuit transistor teśter $\mathbf{£ 3 9 . 5 3}$	$\begin{array}{llll}174 & 3 \mathrm{~A} & 3.75 & 0.86\end{array}$	
EM272 $\quad \mathbf{£ 5 7 . 8 0}$	$175 \quad 4 \mathrm{~A} \quad 5.73 \quad 0.96$	
DA116 E108.90	VAT 15\%	
All accessories available. P\&Pf1-15 15\% VAT	S-DECS Solderiess bread boarding	
MINI-MULTIMETER DC- 1000 V AC- 1000 V DC-100mA Res- $150 \mathrm{k} \Omega$ $1000 \Omega N$ Bargain $\mathbf{£ 7 . 2 0}$ P\&P $62 p$ VAT 8%	S Dec 70 contacts T Dec 208 nontacts	
	U Dec A forll setc $\mathbf{£ 4 . 5 0}$	
	UDec 'B frilcssetc $\mathbf{E 6 . 9 9}$	
$\mathbf{2 0 , 0 0 0}$ ohmiV Multimeter, mirror scale Ranges $\mathrm{AC} / \mathrm{DC}$ ta 1000 V DC current to 250 mA Resistance to 3 Mohms.$5^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{4} "^{\prime \prime} \mathbf{£ 1 4 . 3 6} \text { P\&P £ } 1.05 \text { VAT } 15 \%$		
	Electronic Construction Kit Home electronic starter. Start simpiy and progress to a TRF rad:o or electronic organ. No soidering. All parts included in presentation box. Full instructions. E8.29. P \& P 96D. VAT 15%	
NEW RANGE TRANSFORMER Pri 120 V or $220 / 240 \mathrm{~V}$ Sec $0-36-48$ twice to give $36-0-36 \mathrm{~V} 48-0-48 \mathrm{~V} 72 \mathrm{~V}$ or 92 V . P \& P		
$\begin{array}{lll}3 A & 14.70 & 1.48 \\ 4 \mathrm{~A} & 18.77 & 1.84\end{array}$	ABS PLASTIC BOXES inset	
$4 A$ 18.77 1.84 $5 A$ 26.64 2.15	Erass nuts, internal slots to take PC.	
VAT 15\%	cards, flush fitting lid.	
PANEL METERS	P83 $120 \mathrm{~mm}, 100 \times 45887 \mathrm{p}$	
- $43 \mathrm{~mm} \times 43 \mathrm{~mm}$	PS4 $215 \mathrm{~mm} \times 130 \times 85 £ 2.54{ }^{\text {P }}$	
	P \& P 29p. VAT 15\% (*P\&P 40p	
$\begin{array}{llll}0.500 \mu & 5.95 & 0.500 \mu A & 6.70\end{array}$	ANTEX SOLDERING IRONS	
$\begin{array}{llll}0.30 \mathrm{~V} & 5.95 & 0.30 \mathrm{~V} & 6.70\end{array}$	15W 3.95	
	$25 W 181.52^{3.9}$	
VU ind. Panel $48 \mathrm{~mm} \times 45 \mathrm{~mm} \quad 3.36$	Stand £1.52 P\&P46p VAT 15\%	
$250 \mu \mathrm{AFSD} \quad \mathbf{2 . 6 0}$		
Send 15p for Catalogue ${ }^{\text {NEAREST TUBE }}$	NE: 01-488 3316/7/8	
	ATIONS: ALDGATE \& LIVERP	

HORN UNITS
TS (Car. 85p)
CELESTION MH 100025 w
FANE 910 MK 1150 w
920 100w

HIGH POWER 'CROSS-OVERS
$\begin{array}{llll}\text { FANE HP } \times 1 R \text { or HP } \times 2 R \text { Carr. 35p } & £ 3.65 & \mathbf{£ 2 . 2 5}\end{array}$
ADD-ON HIGH FRERUENCY UNITS
F.A.L. Add-on Carr. $£ 1$,
TiANT TH Ow Carr. $£ 1$

TITAN TS2H 100 w Carr. $£ 1$	$\mathbf{4 3 3 . 0 0}$	
f33.00		
$\mathbf{f 3 9}$	$\mathbf{£ 2 3 . 9 5}$	
$\mathbf{f 2 3 . 9 5}$		
$\mathbf{f 2 6}$		

TITAN T2H Carr. E !

SPECIAL OFFER! COLLARO RECORD DECKS

- 'S' Shaped Arm * Auto or Manual f17.95 Carr. $£ 1.50$ ea.

Also for personal shoppers only
AMPS, T'TABLES, JINGLE MACHINES, DISCD CONSOLES, LIGHTING, CABINETS,
CREDIT TERMS AVAILABLE
$\underset{\substack{\text { orders } \\ \text { over }}}{\mathbf{f} \mathbf{2 0}}$

```
Phone orders accepted from Access & Barclay
card holders.
4 0 3 ~ S A U C H I E H A L L ~ S T R E E T ~
    Tel: 0413320700
GLASGOW
Mail Orders/Export enquiries to above. Add \(£ 1\) carr. on
```


OSMABET LTD $\begin{gathered}\text { We make transformers } \\ \text { amongst other trings }\end{gathered}$

 LOW VOLTAGE TRANSFORMERS; Prim 240V ac. 1.5A CT f6.85; $24 V 1.5 \mathrm{~A}$ 6.85; 3 A CT EB .50 . 5 EACT f15.50;
f12.25.
TWINSEC TRANSFORMERS: Prim 240V ac.

2A, $25 V$ 2A F10.50. TRANSFORMERS: Prim 240 Vac .
 O. 25 A Or $20 V-0-20 V 0.15 A$ E2. 85 each
ITTRANSFORMERS TAPPED SEC.

 MAINSTRANSFORMERS SPECIALOFFER: prim 240 Vac .
$250-0.250 \mathrm{~V} 60 \mathrm{Ma}$. $6 \mathbf{V} 1 \mathrm{~V} £ 2.00$; 250 V 100 Ma 6-3V LOUDSPEAKERS

"INSTANT"'BULK CASSETTE/TAPE ERASER Instant erasure of cassettes, and any diameter of tape spoois, COWER SUPPLY, TWIN OUTPUT. Prim POWER SUPPLY, TWIN OUTPUT: Prim 240V ac. New. British manuracture, smoothed d.c. output 20 V 15 A
plus stabil sed output of 15 V 100 Ma , plus 12 Vac 0.5 A out put, complese with diagram, E3.50. $200 / \mu \mathrm{A}$ Size $19 \times 18 \times 20 \mathrm{~mm} 8000 \times 11.10$. 2 A or 3 A 51.25 each; 5 A or 10 A fl. 50 SYNCHRONOUS GEARED MOTORS, 240 V ac. Brand new, built in gear box, 1 or 20 RPH. f1. 25 each.
O/P TRANSFORMERS FOR VALVEAMPLIFIERS P.P. sec tapped $3-8-15$, A-A $6 \mathrm{~K}, 30 \mathrm{~F}$ £15.25; A-A 3 K
 Covers valve a mplifiers $30 W$ to $400 W$ E1. 100 .
MULTIWAY SCREENED CABLE, PVCCOVERED 36 way $£ 1.00 ; 25$ way $75 \mathrm{p} ; 14$ way 50 ; 6 way $25 p ; 4$ way $20 \mathrm{p} ; 2$ way $10 \mathrm{p} ; 1$ way 8 p; 4 way individually screen-
ed 25 p ar metre. fig B twin stereo dp screened 15 p , metre. MAINS CABE:
MA way 3 A 30p metre: fig 8 for loudspeakers etc. $\mathbf{f 5 . 0 0} 100$ 4 way, 3 A 30p met
CONDENSERS Electralytic. 400/400V 75p; 2000/30V 30p; 1200/75 50p; $2200 / 40 \mathrm{~V} 40 \mathrm{p} ; 8+8 / 450 \mathrm{~V} 40 \mathrm{p} ;$ Paper tubülar, W/E $4 / 160 \mathrm{~V}$,
$6 / 160 \mathrm{~V}, 2 / 15 \mathrm{~V}, 0 / 1 / 2000 \mathrm{~V} 25 \mathrm{p}$ each. 6/160V. 2/150V. O-1/2000V 25p each.

CARRIAGEEXTRA ONALL ORDERS
ALLPRICES INCLUDE VA.T
ALL PRICES INCLUDE V.A.T.
Callers by appointment only. S.A.E. Enquiries, Lists. 46, Kenilworth Road, Edgware, Middx. HA8 8YG. Tel: 01-958 9314

THE NEW CASIO CHRONOGRAPHS

Put most solar watches in the shade! CASIO 95QS-31B

4 YEAR BATTERY $1 / 1000 \mathrm{sec}$. chrono to six hours. Dual time. 12 or 24 hour. Stainless steel encased. Water resistant to 66 feet (2 at.).
RRP $£ 29.95$
£25.95

CASIO 95CS-31B
5 YEAR BATTERY. 1/1000 chrono to six hours. Dual time. 12 or 24 hour. Solid stainless steel case. Water resis tant to 100 ft (3 at.). RRP $£ 44.95$
£34.95

Both have new Lithium batteries which outlast most SOLAR watches. Constant LCD display of hours, minutes, seconds, am/pm and day, (12 or 24 hour). Dual time (12 or 24 hr). Automatic day, date, month and year calendar. Mineral glass face. Backlight. High quality s / s bracelets with easily removable links.

SEIKO

New digitals - 20\% off!

LATEST SCIENTIFICS

CASIO FX-68

LC Display. 37 scientific functions. Trigs. logs, Exponentiations etc Standard deviations. Polar to rectangular R-P \& sexagesimal to decimal conversions. P_{i} cube root. six levels of brackets. Full memory 500 hrs battery
RRP $£ 22.95$
£19.95

A very convenient $3 / 16 \times 21 / 8 \times 35 / 8^{\prime \prime}$. Wallet. COLLEGE FX-80 POWERSHAVER!
Specification as above plus ENG key. 4000 hour battery life from two AA size batteries.
$3 / 4 \times 57 / 8^{\prime \prime}$. RRP $£ 17.95$
$£ 15.95$
PROGRAMMABLES. FX-501P (£64.95) £54.95 FX-502P.(£84.95) £74.95. FA-1 (£24.95) £19.95 MELODY 80 Now only $£ 23.95$ ($£ 25.95$)
UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN - WHY SETTLE FOR LESS? Fully guaranteed for 12 months.

Theprofessionalscopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with main's fluctuations.

The price $£ 219$ plus VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT. Prices correct at time of gong to press

CALSCOPE DISTRIBUTED BY

Watford Electronics
33-35 Cardiff Road. Watford, Herts.
Tel: 092340588

Audio Electronics. 301 Edgware Road, London W. 2. Tel: 01-724 3564
Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order

COMPUKIT UKIOI LOW COST SUPERBOARD IN KIT FORM

SPECIAL I.C. OFFER INTERSIL 7216A

D.C. to 10 MHz counter/timer. Measures frequency, period, time intervals, etc. Drives 8 digit LE.D. display direct. Low component count.

Normal price over $£ 21+$ V.A.T.
OUR SPECIAL PRICE
INCLUDING FULL DATA, ONLY
£19.95
Including P\&P and V.A.T. at 15\%. Displays available.

ELENCO - $3 \frac{1}{2}$ digit D.V.M. as nationally advertised.
ONLY $\mathbf{f 5 5}+$ V.A.T. + DEL.
ORDER FROM:-
Contour International
(COMTECH)
23B HIGH STREET,
STANSTEAD ABBOTTS,
WARE, HERTFORDSHIRE

SEND ONLY £10.00 DEPOSIT
 TO RESERVE ONE

A tape of 10 programs on cassette educational games, etc. will be supplied free of charge with each kit.

Simple Soldering due to clear and consise instructions compiled by Dr. T. Berk, BSc.PhD

NO EXTRAS NEEDED JUST HIT

'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

ONLY $\mathbf{E 2 1 9}$ + VAT + DEL.
including RF Modulator \& Power supply. Absolutely no extras.

INTRODUCTORY OFFER
ORDER BEFORE JULY 31st AND CLAIM
£10 DISCOUNT

FOR FURTHER DETAILS
Telephone: Harlow (0279) 415717.

The Compukit UK101 has everything a one board 'superboard' should have. \star Uses ultra-powerful 6502 microprocessor. $\star 50 \mathrm{~Hz}$ Frame refresh for steady clear picture (U.S.A. products with 60 Hz frame refresh always results in ttery displays).
$\star 48$ chars by 16 lines -1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs.

* Extensive 256 character set which includes full upper and lower case alphanumerics, Greek symbols for mathematical constants and numerous graphic characters enabling you to form almost any shape you desire anywhere on the screen.
* 8 K full Microsoft Basic in ROM compatible with PET, APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers.
\star Professional 52 Key keyboard in 3 colours software polled meaning that all debouncing and key decoding done in software.
* Video output and UHF Highgrade modulator 18 Mz Bandwidth) which connects direct to the aerial socket of your T.V. Channel $36 \cup H F$.
\star Fully stabilised 5 V power supply including t transformer on board.
\star Standard KANSAS city tape interface providing high reliability program storage - use on any standard domestic tape or cassette recorder.
* 40 user RAM expandable to 8 K on board f 49 extra. tachment of extender card containing 24 K RAM and tachment of extender card containing 24 K RAM and disk controller. (Ohio Scientific compatible).
$\star \quad 6502$ machine code accessible through powerful ${ }_{\star} \mathrm{K}$ machine code monitor on board. \star mounted quality thru plated P.C.B. with all I.C.'s
-

FULL CONSTRUCTION DETAILS IN P.E. AUG 1979 EDITION

VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED
 SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.12	ASY26	0.46	BC159	0.12
AAY30	0.31	ASY27	0.46	BC167	0.14
AAY32	0.48	ASZ15	1.44	BC170	0.13
AAZ13	0.21	ASZ16	1.44	BC171	0.12
AAZ15	0.39	ASZ17	1.44	BC172	0.12
AAZ17	0.31	AS220	1.72	BC173	0.14
AC107	0.69	ASZ2 1	2.30	BC177	0.17
AC125	0.23	AU110	1.96	BC178	0.16
ACi26	0.23	AU113	1.96	BC179	0.18
AC127	0.23	AUY10	1.96	BC182	0.13
AC 128	0.23	BA145	0.15	BC1B3	0.12
AC141	0.29	BA148	0.15	BC184	0.13
${ }^{\text {AC }} 141 \mathrm{~K}$	0.40	BA154	0.10	BC212	0.15
AC142	0.23	BA155	$0 \cdot 12$	BC213	$0 \cdot 14$
AC142K	0.35	BA156	0.10	BC214	$0 \cdot 17$
AC176	0.23	BAW62	0.06	BC237	0.10
AC187	0.23	BAX13	0.07	BC238	0.14
AC188	0.23	BAX16	0.10	BC301	0.29
ACY17	0.98 0.92	BC107	0.14	BC303	0.28
ACY18	0.92	BC108	0.14	8 C 307	0.12
ACY19	086	BCio9	0.15	BC308	0.12
$\mathrm{ACY}^{\text {Co }}$	0.80	BA113	0.14	${ }^{\text {BC3 }} 327$	$0 \cdot 23$
ACY21	0.86	BC114	0.15	BC328	0.21
ACY39	1.72	BC115	0.16	BC337	$0 \cdot 21$
AD149	0.80	BC116	0.17	BC338	$0 \cdot 20$
AD161	0.52	BC117	0.20	BCY30	$1 \cdot 15$
AD162	0.52	BC118	0.12	BCY31	$1: 15$
AF106	0.52	BC125	0.18	BCY32	1.15
AF114	0.40	BC126	0.23	BCY33	1.04
AF115	0.40	BC135	0.16	BCY34	1.04
AF116	0.40	BC136	0.17	8CY39	3.45
AF117	0.40	BC137	0.17	BCY40	1.15
AF139	0.46	BC147	0.10	BCY42	0.29
AF186	1.38	BC148	0.09	BCY43	0.29
AF239	0.52	BC149	0.10	BCY58	0.18
AFZ11	3.16	BC157	0.10	BCY70	0.17
AFZ12	$3 \cdot 16$	BC158	0.09	BCY71	$0 \cdot 20$

BF194
BF195
$8 F 196$
$8 F 197$
BF200
BF224
BF244
BF257
BF258
BF259
BF336
BF337
BF338
BFS21
BFS28
BFS61
BFS98
BFW10
$8 F W 11$
BFX84
BFXB5
BFXB7
BFX88
BFY50
BFY51
$8 F Y 52$
BFY64
BFY90
BSX19
BSX20
BSX21
BT106
BTY79/40
BU205
0.10
0.10
0.10
0.12
0.14
0.31
0.23
0.32
0.28
0.30
0.37
0.35
0.35
0.36
4.55
2.56
0.23
0.23
0.74
0.74
0.25
0.26
0.24
0.24
0.30
0.30
0.30
0.30
1.44
0.24
0.23
0.23
1.44
$400 R$
3.67
2.02
2.59
2.30
0.52
0.16
0.17
 \qquad

0.26	2
0.65	2
0.13	2
0.12	2
0.14	2
0.14	2
0.15	2
0.17	2
0.20	2
0.22	2
0.14	2
0.23	2
0.15	2
0.16	2
0.18	2
0.20	2
0.23	2
0.23	2
0.18	2
0.06	2
0.08	2
0.07	2
0.07	2
0.08	2
0.08	2
0.09	2
0.09	2
0.10	2
0.07	2
0.07	2
0.15	2
0.15	2
0.05	2
0.08	2
0.08	2
1.15	2
1.15	2
1.27	2
1.15	2
0.29	2

$\begin{array}{ll}2 N 697 & 0 \\ 2 N 698 & 0 \\ 2 N 705 & 1 \\ 2 N 106 & 0 \\ 2 N 708 & 0 \\ 2 N 930 & 0 \\ 2 N 1131 & 0 \\ 2 N 1132 & 0 \\ 2 N 1302 & 0 \\ 2 N 1303 & 0 \\ 2 N 1304 & 0 \\ 2 N 1305 & 0 \\ 2 N 1306 & 0 \\ 2 N 1307 & 0 \\ 2 N 1308 & 0 \\ 2 N 1309 & 0 \\ 2 N 1613 & 0 \\ 2 N 1671 & 1 \\ 2 N 1893 & 0 \\ 2 N 2147 & 2 \\ 2 N 2148 & 1 \\ 2 N 2218 & 0 \\ 2 N 2219 & 0 \\ 2 N 2220 & 0 \\ 2 N 2221 & 0 \\ 2 N 2222 & 0 \\ 2 N 2223 & 3 \\ 2 N 2368 & 0 \\ 2 N 2369 A & 0 \\ 2 N 2484 & 0 \\ 2 N 2646 & 0 \\ 2 N 2904 & 0 \\ 2 N 2905 & 0 \\ 2 N 2906 & 0 \\ 2 N 2907 & 0 \\ 2 N 2924 & 0 \\ 2 N 2925 & 0 \\ 2 N 2926 & 0 \\ 2 N 3053 & 0 \\ 2 N 3054 & 0\end{array}$
0.29
0.35
1.38
0.17
0.23
0.30
0.30
0.30
0.40
0.40
0.52
0.52
0.58
0.58
0.63
0.63
0.29
1.73
0.29
2.02
1.89
0.29
0.28
0.21
0.21
0.21
3.16
0.20
A

VALVES

74118
74119
74120
74121
74122
74123
74125
74126
74128
74132
74136
74141
774142
74143

1.26
1.38
1.26 6-3012

Tested
\times equipme

INTEGRATED GIRCUITS

				7460		
7400	0.18	7412	0.30	7432	0.35	74772
7401	0.18	7413	0.37	7433	0.41	7473
7402	0.18	7416	0.37	7437	0.37	7474
7403	0.18	7417	0.37	7438	0.37	7475
7404	0.26	7420	0.20	7440	0.21	7476
7405	0.18	7422	00.23	$7441 A N$	0.97	7480
7406	0.46	7423	0.37	7442	0.83	7482
7407	0.46	7425	0.35	7447 AN	1.04	7483
7408	0.23	7427	0.35	7450	0.21	7484
7409	0.23	7428	0.49	7451	0.21	7486
7410	0.18	7430	0.20	7453	0.21	7490

0.21	7491	0.92
0.21	7492	0.69
0.40	7493	0.69
0.38	7494	0.92
0.41	7495	0.83
0.46	7496	0.92
0.62	7497	3.45
0.46	74100	1.73
0.63	74107	0.52
0.86	74109	0.81
1.64	74.85	
1.15	74110	0.58
0.40	74111	0.81
0.60	74116	2.02

PheEs	VCR139A 8.64 Valve screening cans	$\begin{aligned} & 3 \mathrm{KPI}{ }^{*} \\ & 3 \mathrm{FPI} \end{aligned}$	$\begin{array}{r} 17.25 \\ 40.25 \end{array}$	VCR517 ${ }^{*}$ VCR517C**	6.90 6.90
B7Gunskirted 0.17	$\begin{array}{ll}\text { all sizes } & 0.30\end{array}$	5ADP1	40.25		
B7G skirted 0.35	PTr	${ }^{5 \mathrm{EPP}}{ }^{\text {c/ }}$	11.50 5.75	Tube Bases	0.86
69A unskirted 0.17	B1	5CP1A	48.00	${ }^{-}$-Surplus	
B9A skirted 0.35	$1 \mathrm{CP}_{31} 35.65$	5FP15A	17.25		
$\begin{array}{ll}\text { NUYISTOR } & 0.86 \\ \text { IntOctal } & 0.29\end{array}$	2AP1* 9.78	5UP7	16.10	Screens	$3 \cdot 45$
$\begin{array}{ll}\text { Loctal } & \mathbf{0 . 6 3}\end{array}$	28P1* 10.35	DG7-5	28.75		
8 pin DIL $\quad 0.17$	3DP1* $\quad 5.75$	DG7-32	41.40 35.65		
14 pin DIL $\quad 0.17$	3EG1* 8.05	DH7-11	78.20		
16 pin DIL $\quad 0.20$	$3 \mathrm{FP7}$-6.90	VCR97*	$\begin{array}{r}5.75 \\ \hline 1\end{array}$:	
Tube Bass (Surplus)	$3 \mathrm{GP1}$ - 6.90	VCR138********	11.50		
0.81	3.JP1* $\quad 9.20$	VCR138A*	14.38		
Valve screening cans	$\begin{array}{lr}\text { 3JP2** } & 9.20 \\ \text { 3.JP7* } & 11.50\end{array}$	VCR139A******* VCR517A	9.20 11.50		

REFERENCE BOOKS

```
BP1 First Book of Transistor Equivalents & Substitutes,
Handbook of Radio.TV and Industrial & Transmitti
Second Book of Transistor Equivalent & Substitutes
Digital I.C. Equivalents & Pin Connections
Linear I.C. Equivalents & Pi
Practical Transistorised Novelties for. HI-FI Enthusiasts
Handbook of Integrated Circuits (I.C.'s) Equivalents & Substitutes
First Book of Diode Characteristics Equivalents & Substitutes
Beginners Guide to building Electronic Projects
                                    Manvmore svailable - send S A.E for list
                                    Postage & Packing = 1 book 0.18+0.05 each additional
```


MICROCHIMES FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES

New price for the original

CHROMACHIME KIT

24 tune mode!!
Due to the fantastic success of this product right

Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER - BOWERS \& WILKINS - CASTLE - CELESTION - CHARTWELL COLES - DALESFORD - DECCA - EMI - EAGLE ELAC - FANE - GAUSS - GOODMANS - I.M.F. ISOPHON - JR - JORDAN WATTS - KEF - LEAK LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD - RAM - RICHARD ALLAN - SEAS SHACKMAN - STAG - TANGENT - TANNOY VIDEOTONE QHARFEDALE YAMAHA

WILMSLOW AUDIO (Ioper. p.w.)

SWAN WORKS, BANK SQUARE, WILMSLOW,

 CHESHIRE SK9 1HFDiscount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street
Speakers, Mail Order \& Export 0625529599 Hi-Fi 0625526213 guaranteed.

New low price only $\mathbf{8 4 . 9 5}$ inc. p\&p (Only present 24 tune repertoire currently available.)

A COMPLETE KIT FOR THE

NEW MICRO CHIME

This easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only $£ 8.95+55 p$ p\&p

FIRST
and STILL BEST!
We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogue - and for the service that backs it up. Experience both for yourself. Just send £ 1.25 with the coupon and a catalogue will come by return of post.

Please sendme:

TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK. NAME
ADDRESS

I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.

ALL CHROMATRONICS PRODUCTS
 SUPPLIED WITH MONEY BACK REFUND PLEASE ALLOW 7-21 DAYS FOR DELIVERY
 Chromatronics,
 Riverway, Harlow
 Essex, U.K.

\qquad

Br-PAK

SEMICONDUCTORS SEND YOUR ORDERS TO DEPT. PW9, PO BOX 6, WARE, HERTS.
VISIT OUR SHOP AT 3 BALDOCK ST., WARE, HERTS.

ALL PRICES INCLUDE VAT. ADD 35p POST PER ORDER JUST QUOTE YOUR ACCESS OR BARCLAYCARD NO.

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR

Dick Ganderton C. Eng., MIERE ART EDITOR

Peter Metalli
TECHNICAL EDITOR

NEWS \& PRODUCTION EDITOR Alan Martin

TECHNICAL SUB-EDITOR
Joe Bishop
TECHNICAL ARTIST

Rob Mackie

ASSISTANT ART EDITOR
SECRETARIAL
Keith Woodruff Sylvia Barrett

Debbie Calverley

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH 15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

Telephone: 01-261 6636
Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-2615762

Colin R. Brown

MAKE UP \& COPY DEPARTMENT
Telephone: 01-261 6570
Dave Kerindi

ADVERTISEMENT OFFICES

King's Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

The next PW Personality, Ron Ham, VHF Bands contributor, will appear in our October issue

Don't Shoot the Pianist...

COMPONENT availability in the electronics industry seems to go in cycles (no pun intended), and we are now entering what looks like being the worst period of shortage for many years.
The picture is not entirely consistent among all suppliers and stockists, but in general the worst affected component is Low Power Schottky TTL, for which manufacturers are currently quoting delivery times in excess of 52 weeks! Ordinary TTL is no problem, but CMOS is starting to go up in price, and some devices are almost unobtainable. Voltage regulator i.c.s, the 78 and 79 series, are becoming scarce, especially the negative versions, which always suffer from being offered by fewer manufacturers anyway. Some of the more popular linear i.c.s- $555 \mathrm{~s}, 741 \mathrm{~s}$ and CA3140Es, for instance-are getting more expensive and difficult to obtain.

The problem is also extending to passive components, with resistors and capacitors getting scarce. There are reports of some "junk" capacitors, originating in Asia, which are wrongly colour-coded and also have a tendency to fall apart when the leads are formed for insertion into a printed circuit board.

Opinions vary somewhat as to the reason for the periodical "boom and bust" in the semiconductor industry, but the favourite explanation lays the blame fairly and squarely on the big equipment manufacturers. The theory goes that, at times like this, when supplies are short and delivery times long, the equipment manufacturers duplicate their orders with semiconductor manufacturers and distributors, so grossly over-ordering. When all these orders are added up, the semiconductor manufacturer-seeing a large increase in demand-promptly decides to expand to meet the demand. However, it takes about two years to produce fully skilled production staff, and by the time that's happened, the bubble has burst and demand has reverted to normal. The semiconductor manufacturer then lays off staff, who find other jobs, and the whole cycle is ready to start again.

In times of shortage, like now, broken delivery promises are rife. This is making life a misery for some of our advertisers in the mail order business. They get an order which includes items out of stock and give a delivery promise to the customer, based on the promise they have from their suppliers. When the supplier doesn't come across with the goods, he has just one irate customer-the mail order stockist. The mail order firm though, has lots of irate customers, many of whom, naturally enough, start slating him for breaking his promises, and probably write to the magazine complaining as well.

Well, we're not saying that there aren't occasions when mail order firms fall down on their obligations towards their customers, but a little understanding of the problems involved could go a long way towards improving relations. Contrary to opinions expressed in some of the letters we receive, our advertisers are not all money-grabbing sharks! But just think of the costs involved if they sent out an amended delivery promise to every customer with an order outstanding, each time one of their suppliers was late. The postal charges alone would be phenomenal.

So if you've got what seems to be a legitimate complaint, and can't get satisfaction from one of our advertisers, then by all means write to us, preferably to the Advertisement Manager. But do try to maintain a sense of proportion, and remember that advertisement copy has to be finalised nearly two months before the magazine appears on sale. Even the most efficient supplier can't offer a "by return" service on an out-of-stock item.

Teletext into the US

A major effort has been made by Mullard Ltd; collaborating with the BBC, IBA and other manufacturers involved, to illustrate the advantages of the British system of broadcast TV data transmission in the United States. Teletext has a proven three-year record of public trials, and this latest demonstration of the system came hard on the heels of similar efforts made in a number of European countries.

The demonstrations, which were mounted in Chicago on $4 / 5$ June at the Spring consumer electronics conference sponsored by the Broadcast Cable Consumer Electronics Society and the Chicago section of the IEEE, comprised a number of Philips 26 in Teletext receivers fed with signals from a professional VTR provided by Pye TVT L.td. The IBA and BBC both despatched up-to-date information to Chicago especially for the occasion, and a phone link to a Prestel data base in London was used to demonstrate the compatibility of Viewdata (the telephone-based Post Office data transmission system) and Teletext.

The reason for all this effort? North American Philips Corporation and its subsidiaries are currently making recommendations for a data transmission configuration suitable for the NTSC colour TV broadcast system used in the States; they are using the UK's experience as a background. The British team consider that Teletext provides the answer and the initiative to "sell" the idea in the US comes at a time when interest in an information service using the spare TV lines during the vertical retrace interval has been growing there.

Teletext could provide the whole of the United States with a regularly updated information service, with hundreds of pages "selectable" on request and using the existing TV broadcast network. The commercial potential and implications are, of course, enormous.

Club Call

An invitation is extended to visitors from the Fulford (York) Amateur Radio Society, who meet at 7.30 pm , every Tuesday at 31 George Street, York. Full details from: Hon Sec G. W. Kelley G5KC, 10 Deepdale, York YO 02 2SA.

Microprocessor Courses

Courses at the Texas Instruments Supply Division training centre, which are supported by the Department of Industry's Microprocessor Application Project (MAP), are now in full swing and running at the average rate of 5 per month. The range of students attending the courses is widespread and so far in 1979 over 100 students have been trained at the centre, including a chemist, metallurgist and a managing director. Texas instruments hope to see more people from the management, production and mechanical engineering disciplines attending their "Introduction to Microprocessing" training module as this course has been designed with people who are not "into electronics" very much in mind.

A UK first for the centre will be the provision of training on MICROTIP, a Pascal Language super set for the 9900 family of microprocessors, commencing in September. There are many who are of the opinion that the introduction of the Pascal Language to microprocessing software development is as significant as the introduction of the microprocessor itself. MICROTIP is a
complete development system which runs on the FS9900/4 single user and DS990/10 multi-user software development systems. It includes interactive editing and de-bugging facilities with a compiler specifically designed for the 9900 family of microprocessors. The compiler retains all the powerful data and program control structuring of Pascal and provides many additional features to aid complex real time programming.

For full information write to: Microprocessor Training Centre, Texas Instruments Ltd., Supply Division, Manton Lane, Bedford MK 7PA. Tel: (0234) 674666.

For the Amateur

Neosid, well known in Professional electronics has recently established a new outlet to cater for the amateur market. A selection of the parent company's range of ferrites, coil assemblies and trimming tools are listed in a catalogue available from: Neosid Small Orders, PO Box 86, Welwyn Garden City, Herts. Please send a foolscap s.a.e.

MI at Testmex

Marconi Instruments presented a major tour de force at the June Testmex Exhibition in the Wembley Conference Centre with a comprehensive display of counters, signal generators, a spectrum analyser and all manner of other radio and communications test equipment.

The highlight of the stand was
undoubtedly the new range of universal counter timers and frequency meters. Our picture shows the new-look $10 \mathrm{~Hz}-2 \mathrm{GHz}$ digital frequency meter, Model 2435. Controls are colour-coded for ease of operation.

Further information available from: Marconi Instruments Ltd., Longacres, St Albans, Herts AL4 OJN. Tel: (0727) 59292.

Few people would dispute a government's right-duty even-to organise the allocation of space in the radio frequency spectrum, in a manner which permits maximum utilisation and minimum interference to all classes of users. Nor with its making international agreements with other governments to the same purpose.

Many however would dispute the right of a democratic government to refuse an allocation to a legitimate class of user. As far as the writer is aware, no democratic government has ever done so.

How then will would-be users acquire legitimacy-in other words, be enabled by law to stake a claim in the spectrum? Should they be required to make out a case in support of their claim-as other users periodically need to do if they wish to retain their existing allocations-or should the informal granting of radio communication facilities be an inherent right of the taxpayer?

It would certainly be unfair to expect other users to continue providing evidence of their need for retention or expansion of their existing exclusive allocations, if CB radio were absolved from this obligation. The CBers would no doubt soon regret not having provided evidence sufficient to obtain an exclusive allocation, when their channels were usurped by high-powered commercials who claimed a similar "freedom of the air".

The Demand for CB

If one accepts that CB radio needs to make its case, the question arises: Has it done so? Is there in fact an army of citizens clamouring for two-way radio? And if there is, what sort of arguments are they advancing?

Despite the ill-disguised "secondary" advertising in TV commercials, questions in the Commons, and a pretty good airing in the popular (and not so popular) radio and electronics periodicals, and even occasionally in the national and provincial daily press, the majority of the British public have never heard of CB radio. All attempts to arouse some enthusiasm for the subject appear to have had little effect.

Anyone can try the writer's experiment for himself. Select a hundred people at random, the only qualification being that they must not be engaged in radio or electronics
in a professional or amateur capacity, and mention CB n radio. In the writer's case, ninety-one had never heard of it, and the remaining nine said something like-"Oh! radio hams you mean? Tony Hancock and all that stuff. Yes, my neighbour plays with it. Friends all over the world-none in this country-but friends all over . . ." etc. Or, "Ah, yes! Saw Brian Rix on the telly the other night. Interesting hobby, what!"

For various reasons most radio amateurs would prefer not to be confused with existing or would-be CB operators, although a very small minority of radio amateurs are actively pushing CB, for reasons best known to themselves. And in fact the pressure for CB would appear to be emanating almost entirely from within the radio-electronics industry itself, and only to a much lesser degree from would-be users.

There is no doubt that a potential market of say twenty million sets-"every home should have one!" the American TV commercials advise-is a legitimate aspiration of the people who will make, market (and hopefully maintain) these equipments. And the trade and hobby press are not oblivious of the potential advertising of course. It is debatable however whether this in isolation is sufficient grounds for creating a CB licence:

Controlling CB

A claim worthy of more serious consideration perhaps is that commercial and business users do not need to pass any form of test. The equipment used however, is subject to stringent government specifications regarding design and maintenance embodied in Type Approval certification. Could this not be applied to CB equipment? And if so, would there be any practicably enforceable limitation on the use of non-approved or even home-made equipment?

Radio amateurs of course are allowed to use this type of gear. But they have demonstrated competency to do so by City \& Guilds examination-a requirement which the CBers absolutely refuse to consider-and since there are only some 24000 amateurs in the UK, their activities are-marginally-within the existing government monitoring and supervisory capability. It would be irresponsible perhaps of any government to grant facilities to twenty
million potential users without the commensurate regulatory machinery, a problem which the American government has abandoned as economically insoluble. Even the collection of a CB licence fee, which until recently was four dollars, has been discontinued.

Despite the lessons obvious in the American experi-ence-the range limitation of 150 miles, for instance, in the 27 MHz band where, for six years or so out of every eleven, inter-continental distances are easily possible during the winter months-many European governments have eventually succumbed to commercial pressures and granted CB facilities-on 27 MHz !

An allocation in the u.h.f. part of the spectrum would have ensured compliance with any range limitation whilst at the same time satisfying the CBers demand for shortrange communications. There is however no provision in internationally agreed allocations for u.h.f. CB radio. Presumably the pressures applied to those governments who have relented were so great as to render postponement until WARC79, this year's international frequency allocation conference, inconceivable. And additionally of course, due to over-production in the Far East, there is a world glut of 27 MHz CB gear.

In both Europe and America, in the absence of a massive supervisory machinery, the CBers themselves have not demonstrated any inclination to adhere even approximately to the terms of their licences. The American Federal Communications Commission, for instance, has recently had to ban the manufacture or importation of 28 MHz amateur power amplifiers because CBers were modifying kilowatt linears in order to flout their 5 watt power limitation on 27 MHz !

Opponents of CB like to quote lurid accounts of instances where CB has been used in the futherance of crime, and even worse. These would seem to be far outweighed however by cases where it has been of assistance at road accidents, natural disasters and other emergency situations.

A number of radio amateurs have objected purely on the grounds that if CBers want a licence they should have to earn it, as they themselves have to do by taking the Radio Amateurs' Examination. The CBers' reply is that since they are not asking for the wide-ranging facilities granted to the amateur there should be no examination requirement. Both viewpoints merit careful analysis.

Interference

Whilst a small percentage of the amateur objection is certainly purely a question of sour grapes, many amateurs are genuinely afraid that they would be blamed, by both neighbours and the authorities, for a massive interference problem which may arise, and be ordered to close down until such time as a grossly understaffed Post Office interference department might get around to eliminating their equipment as the source.

The CBers, if they consider the question at all, appear to have a naive conviction that, providing their gear is factory-built and crystal controlled, it is fool-proof. Harmonic radiation and out-of-band spurii are peculiar technical problems which happen only to those people who take out an amateur licence. Confrontation with these terms has decided many a would-be amateur to join the CB campaign!

Some thirty per cent of the marks awarded in the RAE are on the subject of interference, and a failure in this part of the examination entails failure in the whole. This is indicative of the cruciality of this aspect alone, so far as the licensing authority is concerned, when considering the wider implications of a CB licence. Certainly, one needs
little technical knowledge of radio theory in order to push a button and speak into a microphone-as the CBers are fond of asking: "How many taxi-drivers are radio tech-nicians?"-but an appreciation of the effectiveness of even a few milliwatts of power into an efficient aerial in wiping out TV screens over a wide area, is perhaps not an unreasonable requirement. Unfortunately, so far as the CBers are concerned, this requires some theoretical capability.

The professional communications companies take care of this problem for the commercial users. Who will do it for the CBers, if they refuse to prove by examination that they can do it for themselves?

If, by government decree-or lack of it, as in many other countries-a CB equipment were to be sold by anyone who cared to do so, it is doubtful for instance if the kitchen-table mail order dealers would have either the inclination or ability to offer the pre-sales type approval and in-service maintenance applicable to the licensing of commercial gear. The onus would therefore be on the users to assume this responsibility, and it would not be unreasonable for a government, with fifty million TV viewers to consider, to expect some proof of capability.

Never-the-less, many would-be CBers can see no reason why (if other governments have opted for the chaotic American situation, together with unrestricted importation of Far Eastern 27 MHz gear) the UK cannot do likewise. One cannot deny a government the right, however, if it chooses not to become embroiled on these terms.

Financial Implications

In the preface to an American publication called All About CB Two-way Radio, published by the Tandy Corporation in 1976, there is a sentence which is worth quoting here: 'Surprisingly, it took most retailers and the financial press about 15 years to recognise CB for what it really is-a telephone system for whose use you don't have to pay Ma Bell a nickel a call to use." With a freeenterprise telephone system of course, the American government never had to consider the loss of telephone revenue when it instituted the CB licence in 1947. In the UK the loss would eventually become substantial. Are the CBers prepared to pay a licence fee equivalent to their phone bills?

It is also perhaps worth noting here that the American CB licence permits usage for business purposes. Even if any future UK CB licence were to expressly exclude such usage, would this exclusion be practicably enforceable without the massive expansion of regulatory machinery already mentioned as a prerequisite? It may well turn out to have been short-sighted policy on the part of the odd one or two of the larger British manufacturers who have lent their name, even if indirectly, to the CB movement. Those who are backing it directly would seem to be making an unwarranted assumption regarding just who will secure the lion's share of the market.

Before attempting to draw some conclusions from the foregoing, perhaps the writer should state his credentials. Engaged in radio professionally as an area field engineer with the largest telecommunications organisation in the UK, the introduction of a CB licence would ensure, one way or the other, that his grandson, let alone himself, need never fear the prospect of redundancy. As a professional therefore, he is biased slightly in favour of CB. And having held an amateur radio licence since 1955, would admit, as an amateur radio operator, to being slightly

PROMUCTION
LiN:S damerni

IF filters

TOKO has recently introduced a series of miniature mechanical i.f. filters for frequencies in the range 450 to 480 kHz .

The basic mechanical element is available either individually---the CFM2 series-or with integral input, and input/output matching i.f. trans-formers-known as CFMA and CFMO types respectively.

The main advantages of these filters over conventional ceramic and crystal filters is the low cost and size required to achieve equivalent shape factor responses. The CFMA and CFMO series also maintain an excellent skirt response by taking advantage of the i.f.t. matching to keep the stopband below -70 dB .

Priced at less than $£ 1$ for all types,

TOKO CFM filters are available with a wide range of matching transformers, in bandwidths ranging from 4 kHz to 10 kHz , with stock centre frequencies of 455 kHz .

Further information from: Ambit International, 2 Gresham Road, Brentwood, Essex. Tel: (O277) 227050.

Mini-meter

A very neat and inexpensive multimeter is being offered by Armon Products Ltd. The NH-55 has 11 ranges: $10,50,250$ and 1000 V d.c.; 10, 50, 250 and 500 V a.c., all at $2 \mathrm{k} \Omega / \mathrm{V} ; 100 \mathrm{~mA}$ d.c.; $10 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$, using a 1.5 V cell. Measuring $90 \times 60 \times 30 \mathrm{~mm}$, it is ideal for the beginner, or to carry around for emergencies in the car. Complete with test leads, prods and instruction manual, the NH-55 costs $£ 5.30$ including post, packing and VAT, from: Armon Products Ltd,, Cottrel/ House, 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH.

Capacitance meter

An attractive and simple-to-use instrument is the latest component test equipment now available in the UK from Alcon Instruments. Known as the Varicaptester, it is a pocket-sized multirange capacitance meter with abilities extending from $p F$ to thousands of $\mu \mathrm{F}$.

Constructed in tough ABS plastic with simple range selection and a fullview cover, the instrument can cope with all types of capacitors, including plain and polarised devices, Varicap and Varactor diodes.

A high quality movement complete with bright red pointer, antiparallax scale mirror and clear markings, help to guarantee the ease of reading, accuracy and repeatability. Component values up to $3 \mu \mathrm{~F}$ are read in conjunction with a green illuminated indicator (overflow) which clearly shows when the value of the component under test is too high and it requires a higher range.

For values above $3 \mu \mathrm{~F}$ a system of timing the interval between flashes of an l.e.d. provide direct indication of capacitance value. On two selected ranges, capacitance can be indicated as $1 \mu \mathrm{~F}$ per second or $100 \mu \mathrm{~F}$ per second, thus extending the range to several thousand $\mu \mathrm{F}$.

Maximum sensitivity is $1 \mathrm{pF} \times$ division, accuracy is 2.5%.

Power for all normal uses, including the application of 1.5 V or 22.5 V to the Varactor or Varicap diodes, is supplied using internal batteries. The user may, should he wish, apply a selected external voltage via terminals provided for this latter purpose.

The Varicaptester comes complete with instructions, leads, case and batteries. Optional extras include component test-rigs for production testing.

Price is $£ 87.50$, which includes both VAT and P\&P.

Further information from: Alcon Instruments Ltd., 19 Mulberry Walk, London SW3 6DZ. Tel: 01-352 1897.

Economy cutter

OK's CAS-130 "Clip and Strip" tool for 0.25 mm wire, including wire wrapping wire, cuts and strips without nicking-often a problem with fine. wires.

Priced at $£ 1.52$ (excluding carriage and VAT) it has been produced for the hobby market but could prove equally useful for the field service engineer and prototype wiremen. Its one-piece cutting mechanism and precision blade produces a consistent 25 mm strip-off length and will handle Kynar and all PVC type insulations.

For further details contact: O.K. Machine \& Tool (UK) Ltd., 48a The Avenue, Southampton, Hants SO1 2SY. Tel: (0703)38966/7.

PRODDUCTION LINES alan martin

Clips Galore

The complete range of Mueller test clips and insulators, for use in all applications where temporary electrical connections have to be made, has recently been introduced into the UK market by Speedograph Ltd.
The clips are available in a variety of sizes and specifications, from the microgator clips just 28 mm long, with pin head tip for connecting test equipment to printed circuit boards, tiny components etc., to the "Big Brute" clip capable of handling 300 amps , and used for grounding welding sets, and other heavy industrial applications.

All clips are available in cadmium plated steel, or solid copper, and insulating sleeves are available in a range of distinguishing colours to suit all clips.

Further information from: Speedograph Limited, Darlton Drive, Arnold, Nottingham. Tel: (0602) 264235.

Versatile DMM

A portable, high precision $3 \frac{1}{2}$ digit multimeter has been introduced by Beckman Instruments. The 3020 has features not usually found on most multimeters, such as the Insta-Ohms TM instant continuity test indicator and the 2000 hour battery life.

Measurements can be made across five d.c. voltage ranges from 200 mV to

150V; five a.c. voltage ranges from 200 mV to 1000 V ; five a.c. and d.c. current ranges $200 \mu \mathrm{~A}$ to 2 A (a separate input extends the range to 10A); and six resistance ranges from 200Ω to $2 \mathrm{M} \Omega$.

The low power resistance ranges permit in-circuit measurements to be made without turning on semiconductors, which would affect the measurements. For applications that require testing of diodes and semiconductors, a separate semiconductor test function provides 5 mA of test current-enough to verify the operation of most semiconductor junctions-even circuits with as low as 200Ω of equivalent parallel resistance.

The Insta-Ohms TM continuity test indicator allows continuity to be checked simply and speedily. When an in-range resistance is measured an ohms symbol appears on the display in less than one millisecond. Input impedance is $22 \mathrm{M} \Omega$ and signals with frequencies of up to 10 kHz can be measured. Accuracy is within $0 \cdot 1 \%+1$
digit on all d.c. voltage ranges. Both a.c. voltage and current are average r.m.s. measurements.

All ranges are protected against overload conditions that may arise from measuring unknown signals or from operator error. A single 9 V transistor battery provides up to 2000 hours of continuous operation. Battery run-down, during the last 200 hours is indicated by a decimal point flashing and re-calibration, requires the simple adjustment of an internal trimmer.

Accessories include two carrying cases, a r.f. probe for voltage measurements up to frequencies of 200 MHz , a current clamp for measurements up to 200A, and a de-luxe test-lead kit with test leads and ten screw-in probe tips.

The instrument is guaranteed for a year, against any fault, other than abuse, and is available direct from Beckman or through distributors, the price is $£ 115$ plus VAT and $P \& P$.

Beckman Instruments Ltd, Queensway, Glenrothes, Fife KY7 5PU. Tel: (0592) 753811.

The whole question of how to adequately safeguard premises against illegal entry is a vastly complicated one-a labyrinth of devices, alarms, beams, dogs, combination locks and interlocks. If you have ever seen one of those films where the baddies don't quite get away with it after a sweaty weekend in the Louvres, you will have some small appreciation of the immensity of the subject in hand.

This article is not, of course, even going to begin to attempt an explanation of how the home constructor might go about protecting a world-famous art gallery! But we do aim to show much more comprehensively than is normal in a magazine article, how you might instal a system capable of deterring the average small-time thief. This means the majority of those intent on infringing your personal right to property and privacy.

However, it must be pointed out straight away that if you instal a system based on the advice contained in this article, your house will not, repeat, not be burglar-proof (you might just achieve that state of bliss if you spent out as many dollars as the US Government does on Fort Knox). And, you will be saddened to learn, it will not lead to a reduction in your insurance premiums either-even though the system design and construction that we are to describe, can be made to meet the relevant British Standard. A typical reaction from an insurance company: "If we specify that an intruder alarm is to be fitted, it must be fitted by an approved installer. Then, if we have specified an alarm we will offer insurance. If no alarm is fitted, then the scope of the insurance may be reduced accordingly." Therefore, in very general terms, there is no such thing as a reduced premium-there is only insurance to a greater or lesser extent where there is a larger than average domestic risk.

But despite this, you will obviously have increased the protection of your property beyond that offered by the structure alone and that, of course, must be the main motive for carrying out the design and installation.

We shall also be describing simpler systems than those which meet BS3545; the installation of the "loop" (the principal sensing circuit which connects the various devices
together) and its peripherals will equally apply to other, less comprehensive designs. We shall also be describing how you can include a measure of basic fire protection as well.

Sensing Devices

Before you can design a loop, obviously you must have a good idea of the types of available sensing devices which can be incorporated into it and, importantly, their limitations. They all have limitations, naturally, which is why in a full-blown system a variety of devices are employed in an attempt to provide a reasonably fool-proof security umbrella.

The simplest sensor is the reed-switch. These are manufactured in many forms, the most basic of which consists of a cast magnet actuator with the reed-switch encapsulated in a plastic case. This enables the sensor to be inconspicuously fitted into a door or window frame, for example. The door is opened, the magnetic field moves with it and the reed-switch contacts open, sounding the alarm.

Pressure mats are another popular form of device consisting, basically, of two contacts separated by a perforated insulator. They are placed under carpets, generally adjacent to windows or doors, and when the intruder treads on the mat the circuit is completed. Once again, the alarm sounds. Pressure mats have the particular advantage that they are easy to instal, and the disadvantage that they can be actuated by your dog, cat or overweight budgerigar. Pets, therefore, need to be restricted in their movements in order to prevent this.

Windows are, of course, the thief's traditional way in. Window-foil, glued around the edge of each pane of glass six inches from the window frame, will guard against simple breakage: if the window is broken, the foil ruptures, breaking the alarm circuit. It is, however, very difficult to apply neatly, requiring the glass to be scrupulously clean and a coat of varnish before and after application. A second and more tricky device for preventing entry through windows is the vibration sensor comprising basically a

[^0]

Fig. 2. A 4-wire circuit incorporating personal attack buttons, fire sensors and tamperproofing into a "24 hour' loop, and including an area isolation facility. Devices used in the lockactivated loop are pressure mats (p.m.) and reed-switches (r.s.). The value of $R x$ will be discussed in conjunction with the controlunit circuit, in Part 2

ball-bearing resting on three spikes; the ball completes a circuit between two of the spikes and breaks the circuit when it is bounced off them by a disturbance. The disadvantage here is that traffic vibration, sonic booms, etc., can cause just such a disturbance and careful siting is necessary if they are to be of more than purely nuisance value!

All of the devices mentioned so far are "trap protection" sensors-they set a trap which, you hope, "Fingers" will fail to avoid as he slinks quietly around the house, assessing the value of your property. They provide a degree of security that is fairly low, but then the cost is fairly low also; as with most things you get that for which you have paid!

More sophisticated, more expensive, but also more effective are "space protection" sensors. These differ from the "trap protection" variety in that they do not require the intruder to physically trip a pre-set alarm device, but merely to violate any space which is subject to their surveillance, hence their title. They are usually, therefore, active electronic devices requiring a power supply arrangement of some sort and very careful setting up. Examples include infra-red ray beams and motion detectors which use ultrasonics or microwaves as a medium. They are normally connected into the same type of loop circuit to which we referred earlier-it is worth remembering that they are quite capable of working through walls and that their area of surveillance is not therefore limited by the size of rooms.

The security loop described must, of course, be made "live" by closing a switch of some sort. At times when the house is occupied and people are coming and going, it is switched off and therefore provides no protection and, in addition, is itself vulnerable. If a villain enters your premises during the day posing as a meter-reader or conducting one of those "surveys", and snips through the loop, you will have no idea of what has happened until it is too late.

A way of avoiding this problem is to include a second

Fig. 3. A very basic 2 -wire security circuit. Devices are shown in the "non-alarm' condition
loop-the 24 hour loop-which stays permanently "live" and which must remain continuous if the alarm is not to sound. Now if a baddie cuts the wires, the siren will make you well aware of the fact. The 24 hour loop can also be used to "tamper-proof" termination boxes, locks, etc., by interlocking their covers-remove the lid or attempt to drill through the lock and all hell breaks loose!

This is called " 24 hour monitoring"-if you decide to use it then you will need to instal four-wire devices, as opposed to two-wire, the extra pair simply forming an inward extension of the 24 hour loop in order to provide security for the device itself.

Personal Attack

An entirely different category of protection can be provided by the use of "personal attack" buttons-pushswitches which latch mechanically when operated and which can be reset only by means of the appropriate key. These, remember, are to protect your person as much as your property so please do not regard them merely as an embellishment!

When in an emergency situation a button is pressed, the alarm sounds; the neighbours, hopefully, are roused, the intruders caught unawares and the local constabulary very shortly on the scene.

This is just the type of protection that should be available around the clock, irrespective of whether the main anti-intrusion devices are "live"; thus it makes sense to incorporate the "personal attack" buttons into the 24 hour loop. Imagine the situation: it is a hot summer's day, the alarm system is switched-off except for the 24 hour loop (after all, you are at home) and, all of a sudden, you come upon an intruder who, having entered via the french window, is inspecting your silver cutlery . . .

Personal attack buttons are best placed adjacent to the main entrance and exit doors and by the beds; we have all seen films where the heroine awakes in a cold sweat to find a cat-burglar quietly sifting through her jewellerycase. Well, the p.a.b. could provide her with a noisy and effective solution to the problem!

Fire!

If one has a loop running around the premises, basic fire protection can be added by including either a heat detector, pure and simple, or a "rate-of-rise" detector. The former is essentially a pellet of conductive material which melts at a known temperature thus opening the circuit; when things have cooled off the pellet reforms, closing the circuit again.

The "rate-of-rise" detector is more complicated, having two bi-metallic strips inside it, one of thicker cross-section than the other. If the rate-of-rise is below the maximum

C.T.ELECTRONICS (ACTON)

CMOS

400048	0.17.	48278	0.44	40758	0.20
400 \#1:	0.17	40288	4.77	40768	1.17
4902518	0.17	40298	1.03	20778	-. 38
40068	1.04	4032 B	0.69	40788	0.20
400748	D. 12	40348	1.71	40918	0.20
18088	0 , 旷	40408	0.87	40925	0.20
401108:	g. 12	40438	0.68	60939	0.85
401248:	0. 20	40448	0.84	401508	1,19
40138	0.43	4049 UB	Q. 50	401618	1.19
40148	0.63	40508	¢,43	401828	1.19
40158	0.83	4051B	0.82	401638	1.19
40168	0.48	4052B	0.82	401748	0.85
40178	0.79	40538	0.82	401758	0.86
40188	0.83	40668	0.55	401948	1.19
40208	1.11	40688	0.20	45108	1.01
40218	0.90	40694B	0.20	45118	1.25
4022B	0.82	40708	0.46	45128	0.91
402348 / B	0.18	40718	0.20	45168	1.01
40248	0.70	4072B	0.20	45188	0.97
4025UB/B	0.20	40738	0.20	45288	0.80

TTL.					
7400	0.12	7451	0.20	74141	0.75
7401	0.12	7453	0.20	74150	1.00
7402	0.12	7454	0.20	74151	0.70
7403	0.12	7460	0.20	${ }_{7} 7145$	0.70
7404	0.12	7470	0.35	74154	1.00
7405	0.18	7472	0.30	74155	0.70
7406	0.32	7473	0.30	74156	0.85
7407	0.32	7474	0.30	14157	0.70
7408	0.20	7475	0.45	${ }^{74160}$	0.95
7409	0.20	7476	0.35	74161	0.50
7412	0.20	7480	0.50	74162	1.00
7413	0.30	7481	1.00	74163	1.00
7414	0.70	7482	0.90	74164	1.00
7415	0.30	7483	0.80	74165	1.00
7417	0.30	7484	1.10	${ }_{7} 74166$	1.00
7419	0.50	7485	0.90	74167	2.50
7420	0.18	7488	0.30	74170	2.00
7421	0.20	7489	1.65	74174	0.95
7422	0.35	7490	0.35	74175	0.80
7423	0.32	7491	0.50	74176	0.80
7425	0.30	7492	0.45	74177	0.88
742\%	0.30	7483	0.40	74180	0.80
7427	0.30	7494	0.90	74181	1.85
7488	0.40	7495	0.65	74182	0.95
7430	0.18	7498	0.65	74184	1.50
7432	0.26	7497	1.90	74185	1.50
7433	0.50	74100	1.40	74188	2.50
7437	0.30	${ }^{74104}$	0.70	74190	1.00
7438	0.30	${ }^{74105}$	1.70	74191	1.00
7440	0.18	14107	0.30	74198	1.00
7441	0.70	74109	0.55	74193	1.00
7442	0.50	74110	0.55	74194	1.00
7443	1.30	74118	0.95	74195	0.95
7445	1.00	74119	1.30	74196	0.95
7446	1.00	74121	0.28	74197	${ }^{0.60}$
7447	0.75	74122	0.55	74198	1.60
7448	0.75	${ }^{14123}$	0.55	74100	1.60
7449	1.80	14125	0.50		
7450	0.20	74132	0.70		

6" ${ }^{\prime}$ MHOFF 19 " Racks. Brand new. $£ 25.00$ each $+15 \%$ VAT.

Vero $19^{\prime \prime}$ sub rack unit 1) Large DL27696, will accept card size $203(\mathrm{~L}) \times(190-$ 230)mm £ 10 ; ${ }^{15 \%}$ VAT AlB will accept card size $203 \times(95-115) \mathrm{mm} \mathbf{£ 6 . 0 0}$ -15\% VAT

TRANSFORMERS, all 240 V primary
$6-0-6500 \mathrm{~mA}(63 \times 35 \times 48)$
-110-115-120-230-240-250V 150 VA

MAINS FILTERS

Potter 30A, $125 \mathrm{~V}(184 \times 51 \times 70)$. Sealed $£ 3.00$ Erie 8A, $250 \mathrm{~V}(61 \times 120 \times 47)$. Diecast box $\mathbf{£ 5 . 0 0}$ Brimar CRT M17/15GV, with scan coils and Wallis power supply. Rectangular screen $(96 \times 130) £ 20.00$

CINCH BARRIER STRIPS

5A 8-way (57×6)
$£ 0.16$
10A 6 -way (66×8)
10A 10 -way (105×8)
10A 12-way (124×8)
£0.24
$£ 0.40$
£0.48

CAM TIMERS by General Time

$0-4.5 \mathrm{~min}$, with $22 \mathrm{~A} 150 \mathrm{VAC} \mathrm{ms}(70 \times 70 \times 60)$
£4.00
0.60 sec . with $10 \mathrm{~A} 250 \mathrm{VAC} \mathrm{ms}(84 \times 84$ fascia)
$£ 4.00$
$1-17 \mathrm{sec}$. with $10 \mathrm{~A} 250 \mathrm{VAC} \mathrm{ms}(80 \times 80 \times 50) £ 4.00$
LARGE PANEL METERS (Clear view)
Si fam 140-0-140microAmp (107×145). Calibrated $0-14$ and $7-0-7$. Boxed $\mathbf{£ 5 . 0 0}$ Anders 1 mA f.s.d. (145×115). Calibrated 0.15 KV boxed $\mathbf{£ 5 . 0 0}$
Voltmeters 0.20 V £2.50
V.V. meters from
f6.46
We have at time of press over 2 million Electrosil \& Welwyn Metal Oxide Resistors well below manufacturer's price. Phone for details.

This advertisement is a fraction of stock held by us Phone for details

No mail order accepted unless over $£ 5.00$
Hours of business 9.30 am- 6 pm . Mon-Sat con tinuous. Carriage \& packing charge extra. Govern ment, colleges and export welcome

We have considerable stock of PT 10 \& PT 15 Presets Special price for PT 15 of the following value: 100Ω. $1 k 5,2 k 2,4 k 7,10 k, 22 k, 47 k, 100 k$. All the above values@ @ $25 / 1,000$. @12 $1 / 2$ VAT. Retail prices all values 10p either PT 10 size or PT15. Open or enclosed.
$2200 \mu \mathrm{~F}$ 100V computer grade electrolytic Mullard £1.00 +VAT. 15\%
PL259 Plugs with Reducers 50p each retail. SO239 to suit Plug (259) Bulkhead Socket 45p each $+15 \%$ VAT.
PET 100 submin. R.F. connectors our price 50p each. N Connectors available at a fraction of list price. Phone for details

Sealectro Plugs (miniature) Conhex for VHF \& UHF applications
75p straight entry type 51-130-3187-91. 90p right-angled gold plated type 055-014-3196
All the above RF Connectors are held in depth and are brand new.

Cassette Monotape Heads $\mathbf{£ 1 . 0 0}$ each. Brand new.
Cassette Erase Tape Heads $\mathbf{E 1 . 0 0}$ each. Brand new
Potentiometers W. Wound $1 \Omega-100 \mathrm{k}$ by A. B. or Colvern Ltd, $11 / 2$ watt 40p, 3 watt 60p, 5 watt $80 p$.

5 Watts per channel stereo amp. Boards supply: 123OV DC or AC only £3.00p.

* SPECIAL OFFER * LOOK Log Mono Slider Potentiometer by Noble (metal body) 63 mm length. Price 30p each +15\% VAT. All boxed as original Discount on quantity.
EDGE CONNECTORS
$\begin{array}{ll}24 \text {-way (fixing holes } 73 \mathrm{~mm} \text {)-UCL } & \mathbf{E 0 . 7 0} \\ 40 \text {-way (fixing holes } 118 \mathrm{~mm} \text {)-RS } & \mathbf{£ 1 . 2 0}\end{array}$
$\begin{array}{ll}\text { 24-way (fixing holes } 73 \mathrm{~mm} \text {)-UCL } \\ 40 \text {-way (fixing holes } 118 \mathrm{~mm} \text {)-RS } & \mathbf{£ 0 . 7 0} \\ 78 & \mathbf{£ 1 . 2 0}\end{array}$ 40 -way (fixing holes 118 mm)-RS
- 50
available solder, wirewrap or
PC mounting,
£1.50
Single sided 0.15 pitch
15-way (fixing holes 73 mm). Gold plated. EB $\mathbf{E 0 . 6 0}$ 18-way (fixing holes 85 mm) inc. locating pin $£ 0.75$ 32-way (fixing holes 136 mm). Gold plated. EB £1.50 27 -way (fixing holes 122 mm)
E1.30 Double sided 0.1 pitch
2×40-way (fixing holes 117 mm). Gold plated $£ 2.00$ Double sided 0.15 pitch:
2×40-way (fixing holes 165 mm). Gold plated $\mathbf{£ 2 . 0 0}$
PUSHBUTTON SWITCHES by A.B. Electronics
4 -way $2 \mathrm{PCO}, \mathbf{£ 0 . 5 0}, 7$-way. $5 \times 2 \mathrm{PCO}, 2 \times 4 \mathrm{PCO}$ $\mathbf{E} 0.80$

ILLUMINATED SWITCHES by Licon		
Min. flange bulb holders		
2PCO Latching E1.50		
2PCO Momentary £1.50 Indicator only £0.50		
Price includes lenses but not bulbs. Red, yellow, blue, green and white lenses available.		
KEYSWITCHES - HEAVY DUTY by Kraus \&		
Naimer		
2P(1PM-1 PB) 12A 600VACE1.50 49 mm square		
10 P (4PM-6PB) 12A 600VAC £3.00		
By Baco: 8 (4PM-4PB) 10A 380VAC £3.00		
LEVER SWITCHES GPO BP1000 Type		
4PCO. 8PCO with knob		£0.60

$£ 0.60$
*SPECIAL OFFER * $2 k$ LIN single gang Poten tiometer by Egen. $1 / 4$ " shaft, $3 / 9{ }^{\prime \prime}$ bush plastic spindle Price 10p each $+15 \%$ VAT. Discount on quantity.
Miniature Moulded Track Presets by Plessey Screwdriver operation. 0.25 W dissipation. PCB fixing. 15 p each $+15 \%$.
Open Cermet Presets. Most values in stock. 15p each $+15 \%$ VAT.
Trimpots $10 \Omega-500 k \Omega 10$ turn and 20 turn 50p each $+15 \%$ VAT. By MEC, Paignton, Bournes Mini Square $3 / /^{\circ}$ rectangular or $11 / 2^{\prime \prime}$ rectangular Cermet or W Wound.
Convergence Pots. Most television values. 20p each $+15 \%$ VAT.

*SPECIAL OFFERS *

2 N382 1 N-jfet
VT46 ift (eq. T1543)
VT46 iit (eq. T1543)
RCA 2 N 3056 best prices for quantity

A COMPLETE RANGE OF TRANSISTORS STOCKED
 MOTORS
 (+8\% VAT)

Smiths Motor $240 \mathrm{~V} 50 \mathrm{C} / \mathrm{S}$ 3-hole fixing. Spaced 4.75 cm 3 rpm . Shaft 1.5 cm 3 mm diam, $\mathrm{E1.50}$ each. Cassette-deck Motor by Fuiiya. 6V DC. $<3.25 \mathrm{~cm}$ Diam. 3.5 cm . Shaft diam $2 \mathrm{~mm}<.9 \mathrm{~mm}$. 3 -hole fixing 4 cm to centres. $£ 1.25$ each.
General Time Motors with clutch. $240 \mathrm{~V} 1 / 5 \mathrm{rpm}$ 2 hole fixing $4.75 \mathrm{~cm}, 3 \mathrm{~cm}$ depth. Body diam 4.85 cm . Shaft length 1 cm , diam. $3 \mathrm{~mm} . £ 1.50$ each. Crouzet Motors. Speeds 6 rpm and 10 rpm . 2-hole fixing. $4.75 \mathrm{~cm}, 3.9 \mathrm{~cm}$ depth. Body diam. 4.5 cm

Plus large stocks General Time Motors in the following peeds: $1 / 180,1 / 2 \mathrm{rph} 12 \mathrm{~V}$ DC. $1 / 5 \mathrm{rpm} 240 \mathrm{~V}: 1 \mathrm{rpm}$ 240 V .
Miniature Motor Clutches by General Time (USA) 24 V operation. Body diam. 22 cm .6 mm shaft centre £ 1.30 each.

Minimum $\mathbf{f 5 . 0 0}$ per order + Postage \& VAT at 15\%. Phone or write for Postage details. VAT at rate set on 12/7/79.

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint costs 85 p, including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS—Radio Amateur Examination Reprint

Please send your order and remittance to:

IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me ... copies at 85 p each to include postage and packing
I enclose P.O./Cheque No.......... Value
Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME
(BLOCK LETTERS)
ADDRESS
(BLOCK LETTERS)

Post Code
Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited
 \title{
SPECIAL
 \title{
SPECIAL PRODUCT PRODUCT REPORT
} REPORT
}
 \title{
minlin
 \title{
minlin 50MHI Frequency Counter
}

For the radio amateur some means of accurately measuring frequency is a must. The price of a reliable and simple to use counter has been beyond the reach of many amateurs, but the Mini Max counter from Continental Specialties Corporation should help to put this right.

Obviously designed to be used as a hand held portable instrument the Mini Max measures frequency from 100 Hz to 50 MHz with a 100 Hz resolution over the whole range.

When used to check the frequency of a transmitter a small aerial is screwed into a socket fitted in one end of the case. Provided that there is enough field strength the meter will display the frequency of the transmitted signal. The radio control enthusiast will find this instrument of use in checking the frequency of his, and fellow modellers' transmitters.

Used in this form the Mini Max has to be held quite close to the transmitter aerial, so that it would be no use expecting to be able to use it as a monitor for checking interference on your channel.

The test model proved to be easy to use, reliable and very useful, both in the workshop as a bench instrument and in the field. Although it is powered normally by one 9 V battery the Mini Max can be used with an external mains adaptor to extend battery life when used in the workshop. Battery life is given as 2 hours continuous or 8 hours intermittent.

A 500 MHz prescaler is also available for use with this instrument and this extends the coverage of the Mini Max to 500 MHz . The prescaler can be powered from the same mains adaptor as the main instrument.

The display can be a little confusing at first with its two decimal points and fairly small red l.e.d. display, but this was soon overcome and the instrument was easy to use and read. No controls are fitted other than the power on-off switch and the unit is fully operational in use. A screened input lead with two croc. clips is provided for use with conventional equipment.
The input circuits are protected against overvoltage and input impedance is greater than $1 \mathrm{M} \Omega$. Input sensitivity is quoted as less than 30 millivolts over the frequency range 100 Hz to 30 MHz , but to obtain a meaningful reading the signal to noise ratio should be better than 40 dB .
\star specification

3k

The instruction booklet is comprehensive, telling the user how the instrument works and how to use it to the best advantage. The prescaler also has its own instruction booklet with details showing how to check it out and how to use it with the frequency counters in the CSC range. Power can be supplied from any d.c. source of 7 to 10 volts which need not be regulated since the unit has an internal regulator. The power source must be capable of supplying 100 mA and should be filtered.

The counter represents good value for money and should fill the need for a simple and reliable instrument for amateur use.

Dick Ganderton

In Emergency . . .

Sir: Like amateur radio types all over the world, American devotees, too, are justly proud of their achievements in providing desperately-needed and, strictly speaking, illegal, communications in times of great disaster.

As a tribute, I thought that your readers might be interested to read of the particular activities and achievement of one US amateur who recently provided the only possible link between the Washington State Department and the beleaguered US Embassy in Teheran. It is a measure of the importance of his role that the information which he was able to obtain was immediately relayed to the Secretary of State, and to President Carter himself.

For four hours Mr Charles Watters, 54, president of the Sinco Engineering Co. of Orlando, Florida was successful in maintaining a multi-hop path to two amateurs operating from the battle-torn Iranian capital. The Embassy had been attacked, its radio destroyed, all international communications had been severed and Mr Watters, who two weeks previously had established links with the two amateurs in an attempt to obtain news of members of his family, was contacted by a very anxious Pentagon. They were fortunately aware of his earlier success.

Mr Watters naturally declines to identify his contacts for fear of reprisals against them, but says that the Pentagon was concerned for the safety of the Ambassador, Mr Walter Sullivan, and his staff after around 100 armed men had broken into the Embassy.

He modestly stated later: "I just happened to be in the right place, at the right time and on the right frequency. While I was talking to the operators in Teheran, an amateur station in Moscow broke in with a 'Good Morning'. They were listening to all this too! Nothing really classified was said. The people in Washington were more concerned over the welfare of their people. But it was a frightening affair, seeing history being made in that way."

Charles admits, tongue in cheek, that his transmissions were a certain violation of the FCC rules. Rules, it is often said, are made to be broken but Charles Watters, like many of his counterparts world-wide, would break those rules again simply to be of help at times when the price of their strict observance may very well be paid in human life.
A. Faulkner

London W8

Pen-Pal

Sir: I am 14 years and would like to correspond (by letter or cassette) with other amateur radio enthusiasts of roughly my own age. I promise to reply to any letters I receive.

Graham Monro 7 Anderson's Way Woodbridge SuffolkIP124EB

CW licence for novice amateurs

Sir: The recently formed European CW Association is examining the possibility of Western European nations introducing a CW-only Novice Amateur Radio Licence. This licence would be a stepping-stone for beginners who wish to eventually qualify for a full amateur licence. Suggested licence conditions would be:

1. A simple examination covering regulations and radio theory.
2. A 5 w.p.m. Morse test (administered by any amateur who has held a full licence for at least 3 years).
3. Crystal control only, in defined segments of the amateur bands (h.f. and v.h.f.).
4. Maximum power input of 10 watts.
5. Holders of a RAE pass certificate need only pass the Morse test.
6. A Novice Licence could only be held for 2 years in any 5 year period.
As an attempt to establish the volume of support for such a proposal, I would be obliged if those in favour of the idea -whether licensed amateurs or not-would send their nathe and address to me on a postcard. In the case of local radio clubs, correspondence could be saved by the secretary informing me of the number of his members who are in favour of the idea. Considerable support is essential if the proposal is to succeed, and even then negotiations may take many months.

The European CW Association currently consists of the Scandinavian CW Activity Group (Denmark, Finland, Norway and Sweden), The West German CW Activity Group, The TOPS CW Club (UK), and the G QRP Club (UK). It represents over 1500 licensed radio amateurs and a number of s.w. listeners.

A. D. Taylor G8PG
Executive Committee Member
European CW Association
37 Pickerill Road
Greasby
Merseyside L49 2ND

Any offers

Sir: I have a complete set of "Practical Wireless", from 1955 to 1960. I wonder if any current reader would be interested in owning this set.

The magazines are in very good condition as they have been kept in five separate binders.

I would be prepared to split the set into five separate years. Offers please to:

R. G. Bayly
95a Ingelow Road.
Battersea
London SW8 3PE

Information Please

Sir: I have recently acquired a quality reel-to-reel tape recorder from the early sixties. It is a Reflectograph " A " semiprofessional machine with three heads, two amplifiers and three motors, made by Multimusic Ltd, Hemel Hempstead, later marketed by Pamphonic Reproducers.

Unfortunately, this machine is in need of a thorough overhaul, and I would appreciate if any reader having a service manual available could contact me.

F. W. Pentland
14 Hillview Road
Balmullo
St Andrews
KY16ODE

T"

For the radio amateur or short wave listener, an attractive card incorporating a world map and the initials of your favourite radio magazine, printed in blue and green.

Your callsign, name and address will be overprinted in black, at the top of the card. The reverse of the card will have the usual form for reception report, etc., and address space.

The cards measure $102 \times 152 \mathrm{~mm}(4 \times 6 \mathrm{in})$ and are available in the following quantities:

$$
\begin{array}{r}
250 \text { off- } £ 6.25 \\
500 \text { off- } £ 10.00 \\
1000 \text { off- } £ 16.00
\end{array}
$$

These prices include VAT and packing and postage to any United Kingdom address. Please send your order with a cheque or postal order for the appropriate amount to: Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving full details on the coupon provided, or on plain paper if you do not want to cut your copy of Practical Wireless. Please make your remittance payable to IPC Magazines Ltd.

5a. Now that both inputs of 5 a are ' $h i$ ', its output goes ' 10 ' and pin 13 of 3 d and pin 1 of 3 b also. The bistable latch $3 \mathrm{a} / 3 \mathrm{~b}$ now changes state, pin 3 going ' $h i$ ' and pin 4 going ' $l o$ ' (the reverse of the previous quiescent condition). The ' $h i$ ' at pin 3 is taken two ways-to gate 4 a pin 1 and 2a pin 11. Considering that latter first, 2 a is a NOR gate if either input goes ' $h i$ ', its output will go ' $l o$ '. The ' $l o$ ' thus produced is converted into a ' $h i^{\prime}$ by inverter 2 c and emerges as the "audio enable" command (circuit reference G). drastically reducing the attenuation introduced by IC 9 and. in effect, turning on the audio amplifier. The same ' $h i$ ' is routed to gate la pin 1 via R 5 and 1 c pin 5 to enable both gates to respond to changes on their other inputs (1a pin 2 and 1c pin 6); we will consider the reasons for this later.

The 'hi' output from 3 b pin 3 to 4 a pin 1 enables gates 4 a and 4 b to function as a RC oscillator with an approximate frequency of 10 Hz . The quiescent conditions, before latch $3 \mathrm{a} / 3 \mathrm{~b}$ is "set" by the output of 5 a going ' $l o$ ' are as follows: the pin 1 input to 4 a is ' $l 0$ ', therefore the output of 4 a is ' $h i$ '. This ' $h i$ ' is fed to the pin input of 4 a via resistors R12 and R11, to 4 b pin 6 and to C8. The pin 5 input of 4 b is held permanently ' $h i$ ' from the +12 V , rail, via R17 and R18. The output of 4 b is therefore ' 10 '; this 'lo' if fed to the base of $\operatorname{Tr} 7$ keeping both it and LED1 switched off.

Now let us consider what occurs when the caller presses S 2 and 3 b pin 3 and 4 a pin 1 go ' $h i$ '. Now there are two ' $h i$ ' inputs to 4 a , its output goes ' $l o$ ' causing 4 b 's output to go ' $h i$ '. Transistor $\operatorname{Tr} 7$ switches on which, in turn,

causes LED1 to illuminate. The potential across C8 is now reversed and it charges to the point where 4 b pin 6 goes ' $h i$ ' again. The output of 4 b reverts to ' 70 ' and $\operatorname{Tr} 7$ and LED 1 switch off again. Capacitor C8 discharges until 4 b pin 6 is ' $l o$ ' again, taking the output of 4 b ' $h i$ ' and switching $\operatorname{Tr} 7$ and LED1 on again. The cycle will repeat for as long as the visitor continues to press S2-LED1 flashes and alternate ' $h i$ ' and ' $/ 0$ ' inputs are applied to pin 8 of gate 4c.

The ' $\%$ ' from the output of gate 5 a , you may remember, is also taken to the pin 13 input of gate 3 d ; this causes the output of 3 d to be ' ' i '. This 'hi' is fed to R55 and constitutes the "a.g.c. disable" command- this prevents C19 from becoming over-charged and the householder's speech from being over-attenuated, should he answer immediately. The output from 3d also holds the cathode of D7 ' $h i$ '-it is because D7 is thus reverse-biased that the oscillating output from 4 b reaches pin 8 of 4 c . When pin 8 of 4 c is ' $h i$ ', gates 4 c and 4 d function as an oscillator in much the same way as 4 a and 4 b , except that the frequency is approximately 400 Hz . Thus this 400 Hz tone is switched on and off by the output of 4 b , producing "pips" at the output of 4 d which, after attenuation by R35 and R36, are taken via C11 (high-pass filter) to the "pip volume" control, VR2. Naturally, as soon as the visitor releases S 2 , the output of 3 d goes ' $l o$ ' and D 7 conducts. This forces a ' 10 ' onto 4 c pin 8 which stops the pips. Thus it is only when S 2 is operated that the pips are produced.

After so much concentrated description of the detailed operation of the logic, it might now be of benefit to recap on the events so far! The visitor has pressed S2 and released it again-as a result, latch $3 \mathrm{a} / 3 \mathrm{~b}$ has been "set" and stays that way. The yellow "call" l.e.d. (LED1) remains flashing, the "audio enable" line is ' $h i$ ' and the system is therefore open. When the caller pressed $\mathbf{S} 2$, he pulled the control line down to earth which caused the "listen" l.e.d. to light; now he has released the button, however, no indications are visible at the door but the householder can hear what is going on there.

Fig. 3: Drilling information for the front door unit

The next natural event, of course, will be the householder's reply; he speaks into the microphone asking the name of the caller. His speech ("H" speech), amplified by a total of 63 dB by IC7 and IC8, is applied via C1 to the pin 2 input of gate 1a. IC1 is a quadruple 2-input NAND Schmitt trigger; it is the Schmitt trigger action which causes the output to rapidly change state once the threshold is passed. The speech threshold level at which 1a responds is set by VR1-once this has been exceeded, the audio signal drives the gate input so that it quickly changes state. Obviously this can occur only when la pin 1 is 'hi'-this is the "audio enable" command to which we referred earlier. With two ' $h i$ ' inputs, the output of la now goes ' $l o$ ', turning on Tr 2 and causing its collector to fall to near earth potential. The following sequence then follows: diodes D3 and D4 become forward-biased; C3 rapidly charges via R8 and both inputs to gate 1 lb go ' lo '; the output of 1 b therefore goes ' ' i ', turning on $\operatorname{Tr} 3$ which turns on $\operatorname{Tr} 4$. Transistor $\operatorname{Tr} 4$ energises RLA which connects the output of IC7 (the microphone pre-amp) to the rest of the audio system and which switches the output of IC10 from the main-unit speaker through to the doorunit. Naturally, this circuit is arranged to have a very fast response time so that no perceptible loss of the householder's speech occurs while the switching sequence is taking place. Transistor Tr 2 is used as a buffer to protect gate 1a from being overloaded by the high charging current drawn by C3.
The ' $l o$ ' at the collector of Tr 3 which turns on $\overline{\mathrm{T} r} 4$ is also applied to the cathodes of D8 and D9, forwardbiasing them. D8 feeds a 'lo' onto pin 13 gate 5 d and pin 2 of 5a; D9 pulls down the control line causing LED5 ("Listen") to illuminate. Transistor Tr6 turns off and its collector and the pin 1 input to 5 a go ' $h i$ '-however, because the input from the householder's microphone has caused the pin 2 input to have been pulled ' $l o$ ' via D8, its output remains 'hi'. It is by this means that the logic is able to distinguish between a "call" pull-down and a speech-initiated pull-down on the control line.

The 'hi' at the output of 1 b is also routed to the pin 5 and pin 13 inputs of 2 a and 2 b , which are NOR gates. These ' $h i^{\prime}$ ' inputs to both gates will result in a ' $l o$ ' appearing at the outputs of both-that emerging at pin 10 of 2 a is inverted by 2 c and appears as a ' $h i^{\prime}$ ' on pin 9 . This 'hi'

components

Fig. 4: (above) Drilling information for the front of the master unit. Fig. 5: (below) the details of the end of the master unit

serves the purpose of simultaneously maintaining the "audio enable" command to R53 when the latch $3 \mathrm{a} / 3 \mathrm{~b}$ is "reset" by the other ' $l o$ 'output from gate 2 b .

When the latch "resets", the previous conditions established when it was "set" as a result of the visitor pressing, S 2 , are naturally reversed. Gate 3 b pin 3 reverts to ' $l 0$ ' and switches off RC oscillator $4 a / 4 b$, stopping the pips, and 3a pin 4 goes 'hi' again, reverse biasing D1. With the latch in the "set" condition (i.e. when the call-pips are being produced), the effect of forward biasing D1 is to impose a standing ' $l 0$ ' on pin 6 of 1 c ; this prevents it from responding to varying voltage levels appearing on $\operatorname{Tr} 1$ collector during the call-pip period. This prevents the logic from providing spurious visual indications and from unnecessarily opening the audio system.

First, however, let us consider the "H $+V$ " speech input circuitry to the logic-Tr1 and its associated components. The varying voltage levels applied to Tr 1 base will, of course, cause the transistor to turn on and off-its collector will apply an alternating 'hi-lo' signal to pin 6 of gate 1 c . Because the other input to 1 c , pin 5 , is held ' $h i$ ' by the "audio enable" command being maintained at the output of 2 c , this will result in a ' 70 ' at 1 c 's output. This 'lo' provides a low-resistance charging path for C 4 -being of relatively high capacitance with a high resistance discharge path via R10, pin 9 to gate 1 d will go 'lo'. As the other input on pin 8 is held ' $h i$ ' via R14, this causes the output of 1 d to go ' $h i$ '.

To recap slightly, this complete chain of events (from the input to la through to the "resetting" of the latch and the ' $h i$ ' output from 1d) was initiated by the householder speaking in response to the call-pips. Now he stops speaking and the output from 1 b goes ' 10 '-this would remove the "audio enable" command from the output of gate 2 c were it not for the ' $h i$ ' output from 1 d fed to the pin 12 input of 2 a , which serves to keep the audio system open in readiness for the caller's answer. But, before he can reply, RLA must de-energise and with the cessation of the " H " speech input to C 1 it does so, after a delay of between 250 and 500 mS as C3 discharges via R9. The rapid collapse of output from 1 b is fed via C5 as a "one shot" signal in three directions: via D2 to gate 1a pin 1 ; to the pin 5 input of 4 b ; to 3 d pin 12. The purposes of the three outputs are, respectively: to disable the " H " speech detector so that it cannot re-trigger on feedback; to produce a 'hi' on 3d's output which acts as a "reset" disable command to the a.g.c. to produce a ' $h i$ ' at the output of $4 b$ which, when fed to oscillator $4 \mathrm{c} / 4 \mathrm{~d}$, produces a single pip serving as an "end of sentence" indication.

Now let us consider the other two functions served by the ' $h i$ ' appearing at the output of 1 d . The first of these is to turn on 5 b and 5 c , another oscillator, and the second is to forward-bias D6 which forces a ' $h i$ ' onto 3 b pin 1 , holding the latch in the "reset" (pips off) condition. The latter measure is necessary in order to prevent a malfunction if a caller should happen to operate $S 2$ in the middle of the conversation. Incidentally, R30 is included in the divider chain to prevent damage to $\operatorname{Tr} 5$ and D10 if this should occur.
. The oscillation from 5 c output (approximate frequency 2 Hz) is fed to 5 d pin 12 and emerges from 5 d pin 11 reversed in phase. This occurs, of course, only if the pin 13 input to 5 d is ' $h i$ ' (RLA de-energised, householder not speaking), for 5 d's output turns $\operatorname{Tr} 5$ on and off, pulsing the control line via D10 between half and full rail voltage. Thus LED4 ("speak") is made to flash telling the visitor that it is his turn to speak. The main unit "listen" indicator, LED33, mimics LED4; it is fed directly from $\operatorname{Tr} 5$ via R37.

When the caller has finished speaking and the householder replies, the pin 13 input to 5 d is taken ' $l o$ ' by $\operatorname{Tr} 3$
switching on and stops the oscillating output; gate 5 d pin 11 reverts to ' $h i$ ', switching $\operatorname{Tr} 5$ off. The "listen" and "speak" indications to householder and caller are reversed-the control line is pulled down re-establishing the "listen", indication at the door unit and LED2 gives the "speak" indication at the main unit, fed by the current through the coil of RLA.

Having studied what the logic is actually doing during a normal question-and-answer conversation, we can now consider what occurs when the chat is finally over. Capacitor C 4 is now no longer having its charge replenished by the ' 10 ' output from gate 1 c and it slowly discharges through R 10 until the input to 1d pin 9 goes ' $h i$ ', and the output of 1 d goes ' $l o$ '. This takes approximately 15 , seconds and, on completion, all the inputs to 2 a are ' $l o$ ' resulting in a ' $l o$ ' on the "audio enable" line. The system therefore closes down and the indicator l.e.d.'s are all turned off.

The only point which we have not covered is the operation of S1 ("override") and gate 3c. When the householder presses S 1 , a ' 10 ' is applied to the pin 9 input of 3 c , pin 8 of 1 d , and pin 9 of 5 c . The ' 70 ' applied to 3 c results in a ' $h i$ ' at the output of the gate which is inverted by 2 b ; the resulting ' $l o$ ' "resets" the latch $3 \mathrm{a} / 3 \mathrm{~b}$ and thus removes any flashing "call" indication left by a visitor when no-one was at home.

The ' $l o$ ' applied by $S 1$ to 1 d pin 8 causes the output of 1 ld to go ' $h i$ '-this results in an "audible enable" command from 2c and opens the system. The householder can now hear what is happening at the door and is able to use the microphone if necessary. The other 'lo' imposed by S1 to pin 9 of 5c inhibits the flashing indications given by LED3 and LED4 fed by the pulsing output from $\operatorname{Tr} 5$, and makes them constant "on" indications instead. This is to differentiate between the "override" and "automatic" modes of operation.

This, then is how the logic works. Before we leave it, though, a few miscellaneous points. When the unit is first switched on, it is useful if the latch $3 \mathrm{a} / 3 \mathrm{~b}$ sets up correctly in the "reset" condition (pin 3 ' $l o$ ', pin 4 'hi'). This is achieved by the time constant of R13 and C6 which ensures that a ' 10 ' is applied to gate 3 c pin 8 until C 6 is charged-the ' $h i$ ' output from 3 c is inverted by 2 b and is fed as a ' $l o$ ' "reset" command to pin 6 of 3 a.

Fig. 6: Component placement and (top) the copper track pattern of the p.c.b. for the door unit shown full size

The relay, you will notice, is fed directly from the +17 V supply; obviously, there is no particular need for a relay supply to be regulated and this approach reduces the load on the regulator. Diode D11 quenches any back e.m.f. emanating from the relay coil when it de-energises.

Regarding individual components-R20, R21 and C7 form an "anti-glitch" integrator which prevents transients from triggering the latch. Resistors R11, R26 and R33 prevent excessive input drive to their respective gates when in use as oscillators, and R17 performs a similar function for 4 b and 3 d after the end-of-sentence "one-shot" signal from C5, referred to earlier.

Construction

Both units are housed in the readily obtainable plastic cases specified in the main components list (see Part 1 in our August issue); Figs. 3, 4 and 5 show the drilling details for both. When drilling the main unit base, take care that you drill the correct end-the p.c.b. mounting holes are differing distances apart and the board will therefore fit in only one way! The transformer is mounted directly above IC1 and IC2, which is why we have specified lowprofile mounting sockets for these items, and the cover fits so that the l.e.d.s are above the relay. Fuse FS1 can be glued quite conveniently on to the flat surface of the transformer frame.

Obviously, if the door unit is to be mounted in a particularly storm-swept position you might have to give some thought to using a more weatherproof type of container. A diecast aluminium box with integral sealing grommet (RS Components 509-305 for example) comes to mind, but this will cost a good deal more and, under normal conditions, the specified plastic case should prove quite adequate. Do take care, though, to insert a polythene membrane between the speaker and the front panel-the unit will not give of its best if the speaker cone is soggy! Applying patent black sealer around the joint between base and cover and around the cable-entry grommet will provide extra protection; seal over the screw-heads with the same material to make quite sure of a reasonably waterproof job.

With regard to securing the speakers in the cases, impact adhesive or double-sided fixing pads were found to be simplest and best for the main unit. The corner of the speaker flange must be sawn off in order for it to be correctly located in the main unit cover (see photo-resist the temptation to use tin-snips as this method may well distort the flange and damage the bond between it and the cone). Also, to avoid the possibility of the l.e.d. lead wires short-circuiting we found it best to discard the wire securing-clip supplied with the relay p.c.b. mounting socket. Use, instead, a piece of foam stuck to the inside of the cover (see photo)-this should brace the relay into the socket quite adequately.

Fig. 7: Front door unit wiring diagram

In the case of the door unit, the polythene membrane (ungluable!) means that a different method of mounting the speaker must be employed. In constructing the prototype. we manufactured supports from a polystyrene sheet and then glued them to the front panel (see photo) using polystyrene solvent; rapid-setting epoxy adhesive was used to finally fix the speaker securely in position. You might, alternatively, consider using a wire strap across the speaker's diameter, fixed to the back of the front panel at each end with epoxy adhesive and a cable-clip and braced against the speaker magnet with a piece of foam. Also, a good idea before finally sealing and screwing down the cover (i.e. after final testing and setting-up is complete), is to fill the interior with a foam to prevent resonances-the unit will then sound much less "boxy" in tone.

The photograph of our prototype door unit shows the components mounted on Veroboard and adhering to the front panel-obviously the purpose-made p.c.b. (Fig. 6) is smaller and neater but, whichever you choose, it would be more tidily placed at the back of the unit. Double-sided tape or similar would provide an adequate fixing but be sure to leave the wires to the l.e.d.s, S 2 and the lamps long enough to permit easy opening of the unit should repair work be necessary!

With regard to the inter-unit cable, this should be "hardwired" into the door unit (i.e. no plug and socket). At the main unit end also, the cable can be directly soldered to the p.c.b. Alternatively, you might like to terminate it with a $185^{\circ} 5$-pin DIN plug; you will then need to modify the drilling details shown for the base of the main unit so as to accommodate the appropriate socket. As the intercom is intended for permanent installation, however, the use of these items is barely justified-it is for you to decide!

You will note that a miniature "on" l.e.d. is provided (LED6). This is a push-fit into its hole in the main unit cover and is secured with a blob of epoxy glue: it is fed from the +17 V line via R 68 . A mains on-off switch (S 3) is fitted so that the system may easily be switched off at night, during holiday periods or in the faces of particularly objectionable callers.

Next, a word on sleeving. Obviously, all points where bare wire meets bare wire (1.e.d.s are the prime example) should be properly sleeved-it makes for a neater job and will prevent all manner of short-circuit troubles! Take particular care to sleeve the mains input connections to the on-off switch and transformer, of course. Naturally, only one l.e.d. requires an earth connection to the p.c.b.- the others can then share that earth via a common wire. Once again, remember to leave all wires long enough to permit the unit to be conveniently opened for faultfinding etc.

Finally, do take the standard precautions when handling the cmos chips: keep them in conductive foam until required; avoid touching the pins with your fingers, particularly if you are wearing synthetic clothing; have the sockets ready-soldered into the p.c.b. and then insert the chips directly into them.

Setting Up

Do not switch on, or connect the mains supply until you have given your completed unit a careful visual inspection. When you are satisfied that all is well, set the "audio gain" (VR3) and "set a.g.c." (VR4) to a minimum and switch on; check that the +17 V and +12 V supplies are present. Press S1 ("override"), check that LED3 and LED4 illuminate (door unit "speak" and main unit "listen"), speak into the microphone and adjust " H speech threshold" (VR1) until RLA operates as soon as you start

Above: Internal view of the prototype main unit
Below: Main unit cover showing speaker mounting position

CB—AN UNBIASED REVIEW

\rightarrow continued from page 23
biased against CB. Incidentally, the writer is also, in a very small way, a "kitchen-table mail order dealer"!

To Sum Up

Hopefully therefore, the issues raised and conclusions attempted are presented impartially. They are as follows:

1. The majority of UK citizens are not demanding twoway radio facilities-most of them have never heard of CB.
2. The increasingly vociferous minority, most of whom have a vested interest, have not made out a case for the granting of facilities additional to those already available to people whose sole requirement is simply to communicate. There may well be many people, as suggested in the June '79 editorial page of $P W$, who, like one of their correspondents, seem unable to pass the RAE. Many people regularly fail their driving test also.

Schoolboys, housewives and sixty-year-old grandfathers continue to pass the RAE with flying colours. The new, recently introduced RAE format barely requires the ability to write. But the CBers continue to support their case for an examination-free licence almost entirely on the fact that an examination is required, rather than producing evidence as to why it should not be so.
3. It would not be too difficult to provide an allocation in the u.h.f. part of the spectrum for CB operation. Lowpower equipment would ensure range limitation, providing frequencies adequately removed from existing amateur bands were designated, in order to prevent illegal modification of high-power amateur gear.
4. Unless there were a complete ban on the importation, sale and licensing of foreign equipment, the UK market would be saturated almost overnight with sets produced in the Far East, whatever frequencies were designated. In the domestic market for instance most British manufacturers have already opted out-or been forced out-and now have their equipment made overseas. Without a firm political commitment there would be no market for British firms.
5. There would need to be a massive increase in those government departments dealing with licensing and interference investigation, etc., since there would be no point in formulating legislation which was not practicably enforceable.

Perhaps the final words should be: Do we need CB? And if the answer is Yes! Then a more difficult question is Why?

please mention

practical wireless

Final Hints

Take care to install the microphones at least 12 in . away from either main or extension units to avoid the unpleasant effects of feedback.

Finally, make sure that the whole family understands the system and how to use it; try it out with different members on the doorstep. When inside, remember that you will hear a pip when you stop speaking and if you don't hear the pip, it means that the message has not been received-try again, but speak a little louder the second time!
to speak. Next, increase the audio gain (VR3) until the required sensitivity is achieved.

Having released the "override" button, check the call from the door unit and adjust "pip level" (VR2) as required. Now adjust 'set a.g.c." (VR4) until the speech is "compressed" to the required level, remembering that excessive audio gain may cause extraneous noises to keep the system open, even though conversation has ceased.

If all is not as it should be, check the logic levels at the gate outputs using a fairly high impedance meter ($10 \mathrm{k} \Omega /$ volt or greater). Fault-finding is not difficult if you adopt a logical approach-making pencilled notes on your circuit diagram is a good way of getting to the bottom of the more ticklish problems.

Extension Unit

What if I am in bed, I hear you cry! Well, it's quite simple-you need to build in the extension unit, and you will be pleased to learn that it is quite straightforward and inexpensive to do so.

The extension unit does not include the indicator l.e.d.s but the householder should still hear the "end-of-sentence" pips, of course. Use the same four-core screened cable to provide the connection with the main unit as you used to connect the door unit; the circuit diagram is shown in Fig. 7.
The second microphone is connected via R69 to the input of IC7; either maybe used when replying to a caller, and there is no interaction between them. The op. amp ensures that neither "sees" the other, in fact.

The plastic box and speaker are of the same type as those used in the door unit. The drilling of the box lid is also identical-simply omit the holes for the l.e.d.s and lamps. The speaker impedance of 64Ω allows it to be connected directly in parallel; with the main unit's 8Ω speaker this gives a 9 dB difference in power output, but in practice this does not seem to be very obvious. Both speakers emit the "call pips" when a visitor presses the button, so this could prove to be an advantage in a large house.

The "override" switch (S4) on the extension unit is also directly in parallel with its main unit counterpart, therefore the system can be opened by pressing either.

If you used a DIN plug and socket to provide the connection between main and door units, you may like to connect the extension unit in the same fashion. If you do, you will probably find it nigh-on essential to bring the extension unit cable into the top of the main unit rather than into the bottom. Also, it would be a good idea to use a 270° DIN plug for the extension cable entry. Any possibility of confusion between that and the door unit cable is then removed.

Once again, fill the interior of the unit with foam to avoid resonance.

Many readers will be familiar with the clipper type of noise limiter which clips the signal at about the peak level it will normally achieve, leaving the main signal largely unaffected. However, any high amplitude noise spikes which would otherwise be well in excess of the normal peak audio amplitude will be severely clipped and reduced in level, and their nuisance value will be significantly diminished.
While this type of noise limiting device is extremely simple, often consisting of little more than a couple of diodes, it obviously only provides a marginal improvement in the signal. It also tends to introduce significant levels of distortion and is therefore only really suitable for use in communications receivers, and similar applications where intelligibility rather than fidelity is of prime importance.

A less well-known form of noise reduction device is the noise blanker, which provides a much greater improvement than a limiter, although it is admittedly considerably more complex. A good noise blanker will produce little loss of fidelity, and is perfectly suited to high quality applications as well as to communications systems.

In essence the action of a blanker is extremely simple. For the period of the noise pulse it simply switches off the signal so that the pulse is replaced by a period of no signal whatever. The length of the blanking period may, in some circumstances, be made so short that it is almost totally inaudible. Sometimes it is necessary to use a comparatively long blanking period and a more evident audible effect will be produced, but the gap in the signal will still be too short to be heard as such. In either case the gap in the signal is far less troublesome than the noise spike, and a very considerable improvement in the signal is obtained.

The blanker described in this article is for use in f.m. radios and is intended to combat car ignition interference.

Operation

The f.m. noise blanker is based on the KB4423 i.c., designed specifically for this task. The circuit is connected between the output from the detector and either the audio amplifier or stereo decoder input, as appropriate. In the case of a mono radio it is essential that the de-emphasis

Fig. 1 : General arrangement of the f.m. noise blanker based on the KB4423 i.c.

Fig. 2: The output of the high pass filter (b) and low pass filter (c) for a rectangular pulse input (a)
capacitor is removed from the detector circuit and that the de-emphasis is applied at some point in the system after the noise blanker. In a stereo radio this will be achieved without the need for any modifications. It is recommended that inexperienced constructors should not undertake this project unless they are quite sure they have the necessary knowledge to enable them to successfully incorporate the finished unit into a receiver.

Fig. 1 shows in block diagram form the general arrangement of the circuit. The area within the broken line represents the KB4423 device, and the blocks outside this line represent discrete circuitry.

The input signal is taken to a buffer amplifier and the output from this is split into two sections. One part is taken to a low pass filter and the other part is fed to a high pass filter. The low pass filter output contains the audio signal, and in the case of a stereo signal (which will still be multiplexed) it also contains the necessary high frequency components, as the filter cut off frequency is approximately 75 kHz . The output from the high pass filter will consist only of noise as this has a cut off frequency of about 100 kHz . Most of the filter components are external to the i.c., the latter merely providing the amplifiers for the filters which are both of the active type and have fast roll off rates.

An analogue gate is fed with the output from the low pass filter, and this gate normally enables the signal to flow straight through to the output via a buffer amplifier. The output from the other filter is connected to a detector circuit which produces a suitable trigger pulse for the subsequent stage, a monostable multivibrator, in the presence of a noise spike at the input.

The output pulse from the monostable is used to control the gate and the gate blocks the signal in the presence of a control pulse. The monostable pulse length is chosen so that it is just long enough to blank car ignition impulses, which are extremely brief (only a fraction of a millisecond). Many other types of impulse noise are considerably longer in duration incidentally, and so will not be fully blanked by this device.

An output voltage sustain circuit is connected at the output of the gate circuit, and this maintains the output voltage at whatever value it happened to be when the signal was initially blanked, until the blanking is complete. If this was not done it is quite possible that the circuit would suppress the input pulse, but would generate an output pulse as the output assumed its natural quiescent level for the blanking period. This would only produce a modest improvement in the signal.

A noise a.g.c. circuit is incorporated in the detector and monostable circuitry, and this prevents spurious operation of the device in the presence of a high continuous background noise level. A buffer amplifier is connected between pins 7 and 8 of the KB4423, and this can be used to obtain an ungated 19 kHz pilot tone signal when the
unit is used in a stereo system. However, this facility is not normally required. A supply regulator circuit is contained within the KB4423 circuitry.

The KB4423 requires a nominal supply potential of 12 volts, but will operate at voltages as low as 8 volts, with the absolute maximum permissible supply voltage being 18 volts. The gain of the circuit is unity (plus or minus 1 dB) and the maximum distortion with an output level of 500 mV . r.m.s. is only 0.1%. At least 1.5 V r.m.s. is needed at the output before the distortion level reaches 1%. The current consumption of the circuit is no more than 25 mA . The device has the wide operating temperature range needed for car radio applications, the actual range being -20 to $+70^{\circ} \mathrm{C}$.

Filtering

The purpose of the high and low pass filtering is to ensure that the main signal is blanked before the input pulse has reached a significant amplitude on this signal. This works in the following manner.

If the input is a rectangular pulse as in Fig. 2(a), it will contain a multitude of frequencies ranging from audio to radio frequencies. It is the high frequency content that gives the waveform its very fast rise and fall times. The output from the high pass filter therefore has a rapid rise time, as shown in Fig. 2(b), and this gives virtually instantaneous operation of the monostable and gate circuits. On the other hand, the lack of high frequencies at the output of the low pass filter will give the signal here a relatively slow rise time, as shown in Fig. 2(c). This means that the signal here will have only just started to rise by the time the gate circuit has been operated, and so the blanking action almost totally eliminates the pulse.

Of course, actual noise pulses will not be straightforward rectangular signals of the type shown in Fig. 2(a), but for more complicated pulse signals the basic method of operation is precisely the same.

The author's prototype installed in a car cassette/ radio. The final version is much smaller (see Fig. 4)

Fig. 3: Complete circuit diagram

Fig. 4: Component layout and copper pattern of the p.c.b. (shown full size).

The Circuit

The complete circuit diagram of the f.m. Noise Blanker appears in Fig. 3. R5 and R6 bias the input buffer amplifier and C 7 provides d.c. blocking at the input.

R7 to R10 are the resistive elements in the low pass filter R-C network, and they also bias the low pass filter amplifier from the output of the input buffer amplifier. C8 to C11 are the capacitive filter elements. The operation of this filter is quite straightforward, and is a two section filter of the type used in scratch filters and similar applications. R7 plus R8 in series form a simple passive top cut filter in conjunction with C9. A second filter of
the same type is formed by R9, R10 and C11. The filter amplifier has unity gain, and so at frequencies within the passband of the filter C8 and C10 have no effect on the circuit. This must be so, as any change in the input voltage is matched by an identical change in the output voltage. Any voltage change at the left-hand terminal of C 8 or C10 is thus matched by an identical change at the righthand terminal. This technique is known as bootstrapping and gives these two components an apparent infinite impedance at filter pass frequencies.

At frequencies where the passive top cut filters provide a degree of roll off, the circuit will provide less than unity gain overall, and both C8 and C10 will have a finite impedance. C 8 then forms a low pass filter in conjunction with R7, as does C10 in conjunction with R9. The two bootstrapping capacitors thus greatly increase the roll off rate of the filter.

R12 and R13 bias the high pass filter amplifier, and the capacitive elements of this filter are formed by C3 to C6. The resistive elements are formed by R2 to R4 and the input impedance of the filter amplifier. This filter works in the same basic manner as the low pass one, but the resistive and capacitive elements are transposed so that a high pass action is, produced.

R11 and C12 are the voltage sustain components with the charge on C 12 being used to sustain the output voltage for the period of the blanking. R11 prevents C12 from providing an significant high frequency roll off. R14 controls the sensitivity of the pulse detector circuit and C14 merely provides d.c. blocking. R15, R16 and C15 are the discrete part of the noise a.g.c. circuit. R17, R18 and C16 are used to control the monostable pulse width. C2 and C17 are supply decoupling capacitors and the output is obtained via d.c. blocking capacitor C13.

Construction

The circuit can be accommodated on a small printed circuit board using the component layout and copper pattern reproduced actual size in Fig. 4.
components

View of the author's prototype board
The most obvious use for the circuit is in car radios, but car ignition interference can also cause problems in fixed f.m. equipment, and one prototype was incorporated in a home constructed tuner amplifier. This has a quadrature detector using a SN76660N i.c. and a stereo decoder using a MC1310P i.c., and the blanker seems to be perfectly compatible with this unit. It should also work well with any other system provided the audio signal level is not too low (more than about 100 mV) and the high frequencies needed to trigger the unit are present.

BINDERS FOR PW

Keep your copies together. Keep them clean with the PW Easi-Binder

The Easi-Binder is attractively bound with the title blocked in gold on the spine with the current (or last) volume 1 number and year. For any previous volume numbers please advise year and volume and a separate set of gold transfer figures will be supplied.
£3.75 inclusive of VAT and post and packaging, from: Post Sales Departiment, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

TECHNICAL EDITOR

Practical Wireless has a vacancy for a Technical Editor. Among our readers there must be someone who is knowledgeable in radio and electronics, has an eye for detail, and can write decent English, who'd like to join the editorial team in Poole. An interest in Amateur Radio (preferably with a current licence) would be a great asset

Why not drop a line to: Geoff Arnold, Editor, Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, or telephone: POOLE (02013) 71191

Extn. 247

100 MX SSB TRANSCEIVER Part 1

Modern Amateur equipment is gradually turning away from valves, even in p.a. stages, while at the same time, receivers are appearing that are, at last, as good as valved receivers. However, the equipments are fairly costly-not, it is true, as relatively costly as, say, KW2000 was ten years ago-but still sufficiently so as to make a full examination of the specifications and the closeness or otherwise of the approach to them worthwhile. In addition, the technically minded may well wish to know more about the performance than they can measure with equipment available to them, and a better comparison with other makes is more easily performed-especially since many of the more vital parameters are ignored in the specifications!

The Swan 100 MX is the latest in a long line of Swan transceivers going back some years. It is all solid state, and was designed very much with mobile installation in mind, although a matching a.c. power unit and an a.t.u. are available. These make the system very attractive-for example, the rig could be used mobile, or with a piece of wire thrown out of the window, in say a hotel or caravan. The transceiver is quite small, and handles easily-so much so that the author was able to put it on the air without the handbook! Perhaps the main criticisms of the handling are that the main tuning knob is rather on the small side for fixed station use, while the i.r.t. range is greater than required, and thus rather critical to set. The mic. gain control sets the drive on c.w. and is also extremely critical to set. However, these are really minor points, while some very clever points were found. Especially appealing to the author were the use of the mic. socket for the Morse key on c.w. and the provision for switching the dial lights off-very useful for avoiding awkward reflections at night. The power cable has provision for feeding 12 volts to the a.t.u. to illuminate the meters, but this cable is fairly short, and the facility cannot be used in all installations.

The a.t.u. is of a novel design for the Amateur market. For many years now, the only a.t.u.'s available have been of the
" Z Match" variety, which use a minimum of variable controls and allow the operating of the matching circuit to vary wildly. This variation is the cause of some impedances making the a.t:u. catch fire, even at low power levels. The ST3, however, uses three variables in a T configuration, with a tapped inductor and two variable capacitors. A balun is fitted for feeding balanced feeders.

\star specification

General Description

The Swan 100 MX is a single conversion transceiver, using an i.f. of 9.0165 MHz , with injection to the mixer derived from a pre-mixer system, in which a crystal oscillator output is mixed with a $5.0-5.5 \mathrm{MHz}$ signal derived from the v.f.o. This pre-mixed signal is suitably filtered to reduce the chances of spurious responses.

A noise blanker is fitted, as is a c.w. sidetone oscillator, VOX, and a $100 / 25 \mathrm{~Hz}$ crystal calibrator. A separate mains p.s.u. is available in a matching cabinet, which also incorporates a larger loudspeaker than that fitted in the transceiver. The ST3 aerial matching unit is also in a matching

FRG7000 $£ 375$
ex-stock (inc. VAT)
Remember from the main importers you get a two year guarantee and Free Securicor Delivery
(YH55 deluxe padded headphones $\mathbf{£ 1 0 . 0 0}$ inc.)

FRG7(D)

See review in July issue
FRG7 $£ 215$
ex-stock (inc. VAT)
Remember from the main importers you get a two year guarantee and Free Securicor Delivery
(FRG7D fitted SMC digital readout $£ 275$ inc.)

SMC HF12 VHF RECEIVER £57.50
 (inc. 15\% VAT)

VHF FM monitor receiver. High Band $130-170 \mathrm{MHz}$.
Sensitivity \& 12 KHz selectivity. 12 channels, plug in xtals. Fufl 4 MHz of bandwidth. Dual conversion superhet
Tiny $2 \frac{1}{2}{ }^{\prime \prime}, 1 \frac{1}{2}^{\prime \prime}, 4 \frac{1}{2}^{\prime \prime} \&$ only 8 ozs.

Socket for 50 ohm antenna Internal 2 inch speaker. External earphone socket. Silent standby operation. Internal Ni Cd batteries. Full range of accessories. Outstanding value.

Prices exclude VAT but include postage world wide.
HF12 No xtals c/w accessories
HF12A12 145 MHz fitted: $\mathrm{S}(20,21,22,23) \mathrm{R}(0,1,2,3,4,5,6,7) \quad \mathbf{£ 7 0 . 0 0}$
HF12M9 Marine Band. 156 MHz fitted; $16,6,8,10,67,100, \mathrm{M}, 12,14 \mathbf{~} \mathbf{£ 6 6 . 9 5}$

With over 2500 major stock items, and 80 manufacturers to represent it is difficult to give any idea of the scope or depth of our range.

Why not call on us for further details. Mail Order orders and enquiries (30p stamps brings 24 page stock/price list catalogues etc.) direct to Totton.
S.M.C. (Jack Tweedy) LTD

Roger Baines, G3Ybo 79 Chatsworth Road, Chesterfield, Derbyshire Chesterfield (0246) 34982 9-6: Tuesday-Saturday
G3ZUL Brian Stourbridge (03843) 5917 GM3ZBE Alex Aberdeen (065183) 328

NORTHERN (Leeds) BRANCH
Colin Thomas G3PSM 257 Otloy Road,
Leads 16, Yorkshire. Leeds 16, Yorkshire.
Leeds $\mathbf{~ (0 5 3 2)} 782326$ 9-5: Mon-Wed \& Fri-Sat.
S.M.C. (Jack Tweedy) LTD

Jack Tweedy, G3zY
Jack Tweedy, G3ZY
150 Hornecastle Road,
WO Hornecastie Road,
Woodhal Spa, Lincolnshire
Woodhall Spa (O626) 52793
9-5: Tuesday-Sat $\{+$ appointments)

SOUTH MIDLANDS COMMUNICATIONS LIMITED

S.M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND.

Tel: Totton (0703 86) 7333 Telex: 477351 SMCOMM G Telegram: "Aerial" Southampton.
cabinet, and provides a very flexible matching system to allow use with a multiplicity of aerials. The incorporation of a balun in the a.t.u. makes it suitable for aerials with balanced feeders, and forward and reverse power indication is provided to allow easy tune up.

Figure 1, reproduced from the handbook, shows the block diagram for the equipment when in the receive mode, while Fig. 2 (next month) shows the transmit mode. In the receive mode, signals are amplified in the preselector section by a MOSFET amplifier with diode switched tuned input and output circuits, and a.g.c. control. The signal is routed via a diode switch to the main circuit board in the transceiver, where it is applied to the input of the first mixer. Injection for the first mixer is now amplified in a single transistor amplifier, passed via an f.e.t. gate for the noise blanker to another single transistor amplifier which drives the crystal filter. The output of the crystal filter feeds a 757 integrated circuit amplifier, which in turn feeds the MC1496 balanced demodulator. Another f.e.t. gate follows this stage, and is used to mute the audio feed to the rest of the receiver when in transmit. A single transistor provides audio pre-amplification, after which a TBA810S acts as the a.f. output stage. A transistor detector and part of an LM358 dual op. amp. provides e.g.c. to a gain control line which is common to both transmit and receive, and which is applied to the 7575 amplifier and to a pi.n. diode attenuator immediately preceding it.

On transmit, the a.f. from the microphone is amplified in part of the LM358, and applied to the first mixer, which now acts as a balanced modulator. The resulting double sideband signal follows the same path as described for the receiver, until the product detector i.c. is reached, where the signal is heterodyned to the operating frequency. Thus the injection frequencies to the two mixers are reversed between receive and transmit, and the switching is done using an MC1496 double balanced mixer i.c. as an analogue switch to route the signals as required. A 555 timer i.c. acts as a c.w. sidetone oscillator, while the c.w. function is performed by unbalancing the balanced modulator and allowing the
carrier to provide drive. To prevent a jump between transmit and receive frequencies, the v.f.o. is shifted by 800 Hz when on c.w. transmit.

The output from the MC1496, which is at final frequency, is routed to the pre-selector board, and via an extra amplifier stage, which is only in use on transmit to the p.a. stages. The power amplifier board consists of five stages-an emitter follower driving a 2 N3866 Class A amplifier, a 2N3553 Class A stage, a pair of MRF433's and a pair of MRF458's as the p.a. stage. The p.a. and driver transistors are Motorola devices, and rather surprisingly, the MRF458 does not appear in the latest Motorola catalogue-suggesting either a misprint in the handbook, or that the device has been changed by Motorola. No attempt was made to disassemble the transceiver to find out what was fitted, but the r.f. power transistor market is very competitive.

The p.a. circuit uses a large amount of negative feedback to stabilise gain and flatten the frequency response, and the bias is stabilised against temperature variations in a manner very similar to that used on the PWTrent amplifier.

The output of the wideband p.a. stage is routed via a set of low pass filters, switched selected for band and a builtin reflectometer. This is arranged to provide a.g.c: from the forward power component of the signal, while, in the event of a mismatched feeder, the reverse power is also detected and used to reduce the drive, thus protecting the p.a. transistors.

The crystal calibrator uses a 10 MHz crystal, and 74 C series TTL compatible cmos Logic to divide down to 25 Hz . VOX is obtained from a 1458 dual op. amp., and a 555 timer i.c. arranged to give the required VOX delay. Anti-vox is provided, and the whole circuit board has been well designed-it is a much less "bitty" circuit than some of the others used in the equipment.

The equipment is contained in a black crackle painted cabinet $95 \times 248 \times 295 \mathrm{~mm}$, and weighs 6 kg . As mentioned earlier, the a.c. p.s.u. and a.t.u. are contained in matching cabinets. The a.c. and p.s.u. operates from either 115 or

Fig. 1: Block diagram of the 100 MX in the receive mode.

STOP!...THIS IS WHERE SHORT WAVE LISTENING BEGINS

THE SHOP THAT SPECIALISES IN HAM RADIO
RECEIVERS - TRANSMITTERS
TRANSCEIVERS - HF - VHF - UHF

FREE SECURICOR DELIVERY

f178 inc. VAT

This month we present to you two excellent short wave receivers that give you top value for money. In July we mentioned how the FRG7 was the perfect receiver for both the beginner and experienced listener or radio amateur alike. And, of course, our many hundreds of satisfied customers know that we have a special test schedule that every receiver has to pass before it is despatched to its proud new owner.
We can now tell you that we are stocking the latest version of the Lowe SRX30 receiver. Now this receiver is very similar in many respects to the FRG7. In fact, electrically, there's not a great deal of difference between the two receivers. In other words, the ability of the SRX30 to pull the stations in is every bit as good as the FRG7. But there is a difference. It's not quite so pretty as the FRG7 but electrically it's every bit as good - both models are in stock for immediate free Securicor despatch.

AND NOW Yes, the TM56B receiver is ideal for home and car, having both 12 v DC and 240V AC mains supplies built-in. We've already sold hundreds. It covers all the popular amateur VHF channels and repeaters. It also features automatic scanning of up to 4 channels of your choice. The amateur band version is $£ 106$. We can also supply a marine version with 10 channels fitted at $£ 115$ - as used by coast guards and river pilots, etc.
STOP PRESS Super $27 / 28 \mathrm{mHz}$ mobile aerials in stock - $£ 18.50$ plus $£ 1$ carriage. Opening hours MON-SAT 9.00 a.m. 5.30 p.m. E.C. Wed 1.00 p.m. WATERS \& STANTON ELECTRONICS 31, SPA ROAD, HOCKLEY, ESSEX. TEL: HOCKLEY (03704) 6835

```
PRACTICAL WIRELESS T.V. SOUND TUHER
```



```
IF Sub-Assembly (G8) £7.82. P&P 85p.
Mullard ELC1043 V'cap UHF Tuner £6.33. P&P 40p.
3-way Station Control Unit £1.38. P&P 30p.
6-way Station Control Unit (Special Offer) £1.15. P&P
35p.
Power Supply Prtd Circuit Board £1-15. P&P 35p.
Res, Caps,Semiconds, etc. for above £6.67. P&P 45p.
Mains Transformer for above £2.88. P&P 35p.
P&P all items 95p.
(Price of goods and P&P includes 15% VAT)
            Callers welcome at shop premises.
            MANOR SUPPLIES
    172 WEST END LANE, LONDON NW6
        (Near W. Hampstead Tube Stn.) Tel. 01-794 }875
```


STEPHENS-JAMES LIMITED
 COMMUNICATION ENGINEERS

47 WARRINGTON ROAD, LEIGHWN7 3EA
ENGLAND
Telephone (0942) 676790
Everything for the Short Wave Listener
We stock receivers and listening aids by most of the world's leading manufacturers Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp . Antenna switches-converters. Aluminium masts-clamps. Antenna rotators.

> Yaesu FRG7-FRG7000 Drake SSR-1 "SPR4* R4C**

Secondhand Equipment Our secondhand equipment stock change daily. Send S.A.E. for latest price list. Pa Access-Barclaycard and H.P. facilities.

TR1O
R-300-R8205
Lowe SRX30 Receiver Antenna Multituners Designed and manufactured by ourselves. Over 1000 sold in over 50 countries.

Mk2 covers 550 Khz 30 Mhz Prices include VAT and postage.

General Coverage Communications Receiver FRG-7

- $0.5-29.9 \mathrm{MHz}$ Coverage with 10 kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion super-heterodyne circuit, the FRG7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception the FRG-7 is the receiver for you. Free Securicor Delivery $£ \mathbf{2 1 0}$

WIDE RANGE OF NEW and USED RECEIVERS and TRANSCEIVERS
AMCOMM SERVICES
194A Northolt Road, South Harrow, Middx. 01-864 1166

01-4229585

230 volt a.c. supplies, and although not rated for continuous operation, is quite satisfactory for normal s.s.b. and c.w. use. The front panels are well laid out, but the small size of the equipment is rather reflected in the size of the control knobs, which are rather on the small side. The microphone plugs into the front panel, and the same socket is used for the key. An external speaker may be plugged into the rear of the equipment, where there are also facilities provided for controlling a linear amplifier.

Controls are: tuning, RIT (pull for on), r.f. and a.f. gain controls (concentric), bandswitch, pre-selector, mode switch, VOX/PTT, noise blanker and calibrator/dial lamp switch.

Measurement Techniques

The measurements were made with a view to producing the maximum amount of information with the least number of actual measurements.

Receiver measurements were made on the following parameters: sensitivity, including signal-to-noise improvement, a.g.c., S meter, a.f. output power, intermodulation, cross-modulation, blocking, internal spurious (whistles), external spurious responses, reciprocal mixing, dial calibration and drift.

The receiver sensitivity was measured in terms of the SINAD ratio (signal plus noise, plus distortion to noise, plus distortion ratio), and the SINAD ratio was measured at various levels of input. This gives a very good test of the gain control distribution of the receiver, as quite obviously, a larger signal should give a better signal-to-noise ratio. Hopefully, an increase of 20 dB in input signal will give an increase in signal-to-noise ratio of 20 dB , but this can happen to a greater or lesser extent. By measuring the distortion as well, a very good check is obtained on the total capability of the receiver. The change in audio output for a large change in input signal was also measured, and also the S meter calibration.

The claimed sensitivity by the manufacturer is that a $0.25 \mu \mathrm{~V}$ signal will give a 10 dB signal-plus-noise to noise ratio. This should give a 22 dB signal-to-noise ratio at $1 \mu \mathrm{~V}$, and it is noticeable that in two equipments tested, the best SINAD ratio, which is very close to the same thing, only measured 19 dB at best. However, the sensitivity is certainly adequate for most amateur operation, and although it has been claimed that the smaller signals available in mobile operation necessitate a higher sensitivity, the greater noise levels tend to negate this.

Traditionally, a.g.c. has been considered to be better if the output shows no change with a large change in input signal. This, however, is not really what is required. The less the change in output level, the greater the noise output when not tuned to a signal, and in practice, a variation of 6 to 10 dB is quite acceptable. The Swan shows a smaller variation than this, but the a.g.c. has very good characteristics in terms of distortion of strong signals, and the noise ouput is not excessive. The a.g.c. is used to feed the S meter circuitry, and it was found that the S meter readings changed little from band to band. The usual calibration of 6 dB per S unit is not followed, varying from 1 dB at the low end to 10 dB from S 5 to S 6 , and then gradually reducing to around 6 dB per S point before increasing again. However, most S meters are fairly similar in their characteristics, and in any case, the meter reading is rarely any more use than a report based on listening.

The a.f. output is greater than is usual in transceivers, but is necessary for mobile use where the ambient noise level can be very high.

Intermodulation is a very important feature of a receiver, and is unfortunately rarely quoted except by professional manufacturers. A top class receiver can be expected to
produce a signal equivalent to $1 \mu \mathrm{~V}$ input from two signals each at 15 mV , or 84 dB above $1 \mu \mathrm{~V}$. The 100 MX is some 13 dB or so worse than this on third order intermodulation, and although there are better amateur receivers, this represents an input intercept point of around OdBm , which is a very satisfactory result in a mobile receiver, and better than many fixed station receivers. The second order intermodulation distortion is somewhat better, and again represents a very adequate result.

Cross-modulation is a term commonly misused in amateur radio, and it is interesting to find that no cross-modulation could be satisfactorily measured in this rig. Similarly, blocking was not occuring at levels of interfering signal of 50 mV , but performance was limited by reciprocal mixing. Reciprocal mixing is an effect whereby a strong interfering signal causes the noise sidebands of the local oscillator to be heterodyned into the i.f. passband.

So if the local oscillator is very noisy, as in many synthesised systems, and all those using Wadley Loops, then a strong signal a few hertzs away, causes the signal-to-noise ratio of a weak signal to be degraded. Pre-mixed injection as used in the Swan and in the Drake transceivers suffers from this also, but not to such an extent. Older receivers, such as the HRO and AR88, with fairly high power oscillators are very good in this respect, while very good professional synthesised receivers are about as good as the 100 MX at their best, and about 20 dB worse as a typical figure.

Dial calibration is an obvious fault when it is far out, but provided the dial is zeroed at the nearest 100 Hz point, the accuracy is more than adequate. Even without zeroing the dial, the error does not reach 3 Hz .

Spurious responses are not only annoying, but can lead to unjustified complaints of interference. Testing involves tuning a signal through the range and measuring the level of each whistle for external spurious, and tuning the receiver throughout its range and measuring the whistles for internal spurious. The makers claim that internal spurious whistles do not exceed $1 \mu \mathrm{~V}$ input, but it was found that this was not the case. The usual problem with a $5 \cdot 0-5.5 \mathrm{MHz}$ v.f.o. occurs on 21.2 MHz , where the 4th harmonic of the v.f.o. falls on the receive frequency, and the suppression should be rather better than the $10 \mu \mathrm{~V}$ measured. External spurious responses include image and i.f. rejection, and it can be seen that in general, a spurious response is produced by signals greater than 1 mV . This is not a particularly good figure, but in mobile use, the extra selectivity of the resonant whip will help enormously. In fixed station use the a.t.u. will give some rejection, but because of the larger signals and relatively low Q of the a.f.u., these may cause a problem.

The RIT range was considered to be excessive, making the RIT control very "touchy" to get right.

Drift is a very difficult thing to measure-should it be measured from cold, over a given temperature range, on a receive/transmit cycle, or what? In the end, it. was decided to measure drift from cold on receive only, and the results obtained were quite reasonable.

Prices

Costing £459 plus VAT, the Swan Electronics, 100 MX SSB Transceiver reviewed was kindly loaned by Amateur Electronics UK, 508-514 Alum Rock Road, Birmingham 8. Tel: 021-327 1497, and we would like to thank them for their invaluable assistance in this respect.

Next month the transmitter section of the 100 MX is examined.

IF YOU WANT PERFORMANCE IT'S GOT TO BE LUNAR

Lunar Electronics, based in San Diego, California, are undoubtedly, the leading manufactures of 144 MHz and 432 Mhz Linear Amplifiers and Preamplifiers. But don't take our word for it, ask a LUNAR user. TAKE A LOOK AT THE RANGE.

U.K. Distributors for

DAVIS ELECTRONICS FREQUENCY COUNTERS NEW! 600 MHz Mini Counter $£ 145$ + VAT

General purpose low cost Counter without the sacrifice of basic performance
'Check the features we have that some other low cost counters don't have' - All metal Cabinet Sensitivity 10 MV at 150 MHz - Completely Auto Decimal Point - 8 Digit 4" LED Display

- 240 V or 12 V Operation Selectable Gate Times (1 Sec \& 1 Sec - Push Button Con-
trols 12 V Input Jack ${ }^{-1}$ Gate Light Crystal Time Base (1 ppm).
S.A.E. for full set of Data Sheets, or see our stand at most of the coming Rallies \& Exhibitions. Trade \& Export enquiries welcome

SOTA COMMUNICATIONS SYSTEMS LTD.
26, CHILDWALL, BOWRING PARK, LIVERPOOL, L14 6TX ENGLAND Tel: 051-480 5770 Hours: $9.00 \mathrm{a} . \mathrm{m}$. to 6.00 p.m., Monday to Saturday.
 nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem.
The SRX- 30 is based on an advanced drift cancelling loop system which gives spot on dial accuracy at any frequency between 500 KHz and 30 MHz together with easy to understand frequency readout. Suitable for all users from raw beginners, thanks to it's simplicity of operation; to experienced listeners and amateur operators thanks to it's advanced technology, the SRX-30 is the best communications receiver available in it's price range today.
Completely self containe, Alling operation from mains or 12 volts dc, the SRX-30 is at home on broadcast or amateur bands. All mode reception of AM. CW. USB. and LSB is provided and receiver all to give optimum performance on any mode
Carriage by Securicor $£ 3.50$ give us a ring and we'll tell you all about the SRX- $\mathbf{3 0}$. Price $£ 178 \mathrm{inc}$. vat.

NEW. CL22 CL22. Honest Counter: tuner which will aerial almost any aerial at any frequency between any 1.5 and 30 MHz . Six switched ranges with fully A worthwhile addition to mateching capacitors. an instant improvement in aerial matching problems. Price $\mathbf{\Sigma 1 6 . 7 6}$ inc. V.A.T., post and packing.
CHASSIS PUNCHES
 A set of first class fitted plastic case which fitted plastac case which
alsoludes a most also metudes a most
, seful tapered reamerand believe me, if you've never used a reamer, you are in for a pleasant surprise when you noles of almost any size. There are five punches having diameters of $16,18,20,28$ and 30 mm . Price 59.29 including V.A.T., post nd packing.
For all that's good in Amateur Radio, contact
ad, Matlock, Derbyshire. Tel: 06292430 or 2817 For full catalogue, simply send 45 p in stamps and request catalogue CPW.

BREDHURST ELECTRONICS

The SOUTH COAST CENTRE for communications receivers and all your Amateur Radio requirements. Examples:

HF receivers

Yaesu FRG7 0.5-30Mhz Wadley loop £215.00
Yaesu FRG7000 As FRG7 but digital readout de-luxe $\quad \mathbf{£ 3 7 6 . 0 0}$ Lowe SRX30 0.5-30Mhz Wadiey loop
£178.00

2 Metre receivers

Daiwa SR9 2M FM VFO + 11 xtal positions	$\mathbf{£ 5 9 . 0 0}$
FDK TM56B 2M FM 12 channel +4 auto scan	$\mathbf{£ 1 0 7 . 0 0}$
Belcom AMR217B 2MFM 10 channel +9 auto scan	$\mathbf{£ 1 2 0 . 7 5}$
Marine receivers	
Daiwa SR11 Tuneable $156-162 \mathrm{Mhz}+\mathbf{6}$ channel scan	$\mathbf{£ 8 7 . 0 0}$
FDK TM56B FM 12 channel $+\mathbf{4}$ auto scan	$\mathbf{£ 1 1 5 . 0 0}$

FDK TM56B FM 12 channel +4 auto scan

$\mathbf{£ 1 1 5 . 0 0}$

Aerials

Jaybeam VHF + Antenna Specialists VHF mobile full ranges PLUS transceivers, convertors, plugs, microphones etc. All on-the-air in our showroom. Part exchange welcome. Ring for details of second hand equipment

Carriage free. All prices include VAT.
Just phone your credit card number for same day shipment.
PLEASE NOTE NEW ADDRESS FROM AUG. 13th

HIGH STREET,	Handcross (0444)400786
HANDCROSS,	Open 9-5 Mon-Sat
E.SUSSEX	Access
RH176BW	Barclaycard

HIGH STREET, HANDCROSS,
E.SUSSEX RH17 6BW

Handcross (0444) 400786 5 Mon-Sa

Barclaycard
Instant HP

BUILDING

Abstract

When we saw the arototype of the PW 'Soundlite's soundito-light converter, pub lished in out Miach 1879 issue, we were so impre sesed with the quality of the case that we Whate wet tertred that the authoo had built it himself: we asked him to put pen to paper to describe his meethods for the benefit of our readers, and here he reveats all.

In recent years, much interest has been shown in mobile equipment for music reproduction, either "live" or for Discos. Many designs for mixers, amplifiers and lighting control units have been published, but little attention has been paid to the rugged enclosures demanded in these applications. Cabinets may be bought commercially, but they are generally expensive and, in the writer's experience, often leave something to be desired in construction or finish. After some nasty experiences with poor-quality commercial cabinets some years ago, the writer has constructed all his own with some success. The techniques used are straightforward, require few specialist tools and can be applied by anyone with a little spare time and space.

Cabinet Design

An essential part of cabinet design is to plan carefully the final form of the equipment. Although some projects have been radically altered during construction, this cannot be recommended as a general technique! Useful decisions to make at this stage are proposed use, shape, size and overall layout, materials and final finish.

A good, general-purpose material is chipboard (either 12 mm or 19 mm thick). This has good acoustical properties and is strong enough for most applications. A tougher material is 12 mm plywood which, although more expensive and too flexible for sealed loudspeaker enclosures, has good strength/weight properties making it ideal for mixers and consoles. Many cabinets require internal battens to provide rigidity and/or to allow the fixing of removable panels. Softwood of $25 \times 25 \mathrm{~mm}$ or $38 \times 38 \mathrm{~mm}$ crosssection will be adequate for all but the largest cabinets.

For amplifiers etc., the electronics should be mounted on a rigid chassis which may be slid in and out of the
cabinet for ease of servicing. The method of fixing the chassis into the cabinet and the provision of ventilation grilles (if required) should be considered. For loudspeaker cabinets and light-boxes, the fitting of translucent panels, baffle-boards and decorative trim should be worked out, as well as the placement of handles, feet and castors.

An example chosen to illustrate the method is the construction of a "combo" amplifier/loudspeaker (see Fig. 1). This consists of a 50 W amplifier measuring $432 \times 89 \times 240 \mathrm{~mm}$ in a cabinet with two 305 mm (12in) speaker units fitted from the rear. The material is 19 mm chipboard covered with black Vynide cloth, and the cabinet will have a sealed back for general instrumental use. If preferred this could be left with the back open.

Woodwork

Having completed the design, the sizes of the various pieces of timber should be determined (see Table 1). Those with limited facilities or unsteady hands (like the writer!) are advised to get the boards cut-to-size; most retail timber merchants offer this service. Remember that if the panels are initially accurately cut, this will save much unnecessary work. For the combo-amplifier, it is better if both baffleboard and back are removable; the former so that the fretcloth is easily fitted, and the rear panel to allow access to the speakers. These panels should be at least 3 mm smaller than the corresponding hole to allow room for covering materials. Battens will be required around both front and rear edges of the cabinet. Other speaker mounting arrangements may not require removable panels, especially if the drive units are front-mounted.

The construction of the combo-amp should proceed as follows: first assemble the outer panels and partition using plenty of glue (there are several excellent types available) and 3 or 4 pins or screws per joint. Excess glue is easily removed while wet with a damp rag or convenient finger. Remember that it is the glue that gives the strength to the joint; the pins are merely to hold the joint in place while the glue is setting. Each joint must dry thoroughly before any strain is put on it. Note that some woodglues will not set correctly in a cold, damp environment. All nails and screws should be sunk well into the wood, so that the remaining holes can be filled to a smooth finish. It is essential to ensure during construction that all joints are accurately made. A corner-clamp, if available, is extremely useful in producing a perfectly "square" cabinet. Wood battens are added after the panels using glue and nails, making sure that they are correctly cut and placed. When completely assembled, check that the front and rear panels fit reasonably well.

Fig. 1 : Dimensions and assembly details of a combination amplifier/loudspeaker cabinet

Table 1: Materials For The Combo-Amplifier Cabinet

While the main cabinet is drying, the holes for the loudspeaker units may be cut in the baffle board. Mark the positions of the centres of the drive units, and of the fixing holes, and draw circles with a pair of compasses.

Internal view of the PW "Soundlite" cabinet, showing internal battens and plastics feet on base

The ideal tool for cutting the holes is a hand or power jigsaw, although a coping-saw or even a hacksaw blade could be used. Drill several starter holes around the edge and saw carefully along the marked line. The holes may
be finished with a wood rasp or Surform tool and coarse sandpaper. Large holes in the main cabinet can be cut in a similar manner. Smaller holes for fixing screws, speaker studs, sockets, etc., should be carefully marked and drilled with a hand drill or brace-and-bit.

Having allowed the glue to dry thoroughly, the next stage is to round off the edges of the cabinets. Unless the edges are to be protected in some other way, this renders them much less susceptible to accidental damage. A 12 mm radius will suit most common types of corner protector: The best tool for this job is a small plane, but other suitable tools are Surform or similar, spokeshave, wood rasp, or even coarse sandpaper. With a little practice, this job is easily done by eye, but for the inexperienced the following method is recommended (see Fig. 2). For each edge to be rounded, mark two parallel lines (on both sides) at 6 mm and 12 mm . Next, plane away the section between the two inner lines and finally round off up to the remaining two lines. If necessary, a cardboard template (Fig. 2 (c)) can be made to check the accuracy of the ${ }^{\prime}$ curve.

Having rounded the edges, any visible holes and cracks should be filled, using one of the many proprietary fillers available. When this is dry, the exterior of the cabinet should be sanded smooth.

Covering The Cabinet

Cabinet covering requires time and patience for good results, but is otherwise not unduly difficult. For large cabinets, it is best carried out on a newspaper-covered floor. The use of a good quality adhesive is highly advisable; either that specifically recommended for the purpose or a general-purpose impact adhesive. A wide variety of types and colours of material are available and here again good quality is essential-remember that it is the covering material that receives most of the knocks. The fabrics are usually supplied by the yard or metre and have a standard width, approximately $1 \cdot 27-1 \cdot 3 \mathrm{~m}$. Essential tools for this job are a large pair of scissors and a very sharp knife, while a steel rule is also useful.

Cut the material slightly oversize, remembering to leave enough to fold around the edges. For rectangular cabinets, it is generally best to cut enough to go all the way around

Fig. 2: (a) (left) marking for rounding edges; (b) (right) Initial planing of edge completed

Fig. 2 (c): Full-size pattern for template

The "Soundlite" cabinet, showing ventilation grille and plastics corner protectors

in one piece and position the join at the centre of the cabinet base, not at an edge where it will easily fray (Fig. 3). Fasten one long side first, following the instructions for the adhesive used. Make sure that the grain of the material runs parallel to the edges of the cabinet. Smooth out the material with a rag held in the hand, taking care to remove all bubbles and creases but avoiding overtautening. Wait for the glue to dry sufficiently to prevent the material from moving when working on the next section. Repeat the procedure for the other sides leaving the joined side until last. This remaining side should be butt-jointed (i.e. without overlap). Glue down one side as above and, using a knife and ruler, cut the edge straight. Trim the other piece slightly oversize and apply glue, but before sticking down permanently, cut straight using the previously cut edge as a guide. Any small discrepancy can be made good by using the elastic nature of the material.

The edges of the cabinet should now be covered. The material should be butt-jointed at 45° at the corners as described above and, if corner pieces are to be fitted, the fabric should be cut away from the vertex. The fabric should be just sufficient to cover all visible areas, with a small overlap; excess material is not desirable and should be removed. Rear panels, etc. may be covered in a similar manner, or may simply be painted. Any holes for handles, etc. should be covered over initially and the material cut away after the glue has dried.

Having ensured that the baffle-board is sanded smooth and the speaker bolts or studs are in position, the fretcloth may be fitted. The simplest method is to paint the baffleboard a similar colour to the fretcloth chosen, and then glue the fret directly to the board, tightening the material as required. An alternative method is first to glue plastics foam to the baffle-board, cut out the holes over the speaker apertures and darken the foam with an appropriate aerosol paint. Then stretch the fretcloth over the foam, securing at the edges only with glue and temporarily with drawing pins. This method gives a pleasant, "spongy" finish. Yet another technique is to glue the fretcloth to a wood frame or hardboard sheet, so that the fret is removable. This may be held in place with Velcro or Hedgehog clips. Whichever method is used, the fret may be tautened after fitting by warming it in front of an electric bar fire until a small movement is seen. Then, remove from the fire and allow to cool. This technique is also useful for tensioning frets that have slackened with age.

Finishing

Finishing is the final stage of construction and one which is so often badly done commercially. The key to a good finish is care and patience; rushing the job will only lead to an inferior product. Any glue on the covering material should be removed with white spirit, and joints may have black shoe polish rubbed into them to disguise them (assuming black material of course!). Next, the surface is cleaned with aerosol furniture polish; this reduces the chance of damage from dust, water and other fluids and can be used regularly to keep cabinets in good condition.

Corner pieces (if used) should now be fitted. Metal corner protectors are easier to fit, while the plastics types are cheaper but still withstand considerable ill-use. The metal types are simply fitted with two or three screws, but the plastics ones require two pins and two screws. Fitting the latter types is somewhat tricky, but the best procedure appears to be as follows: mark and pre-drill holes for the . screws, partially insert the pins then put in the screws and finally drive home the pins.

Fig. 3: Applying covering material to the cabinet

Table 2: Tools Required

The next step is to attach the remaining fittings. Strap and "briefcase" style handles are simply fixed with screws or bolts, remembering to pre-drill holes as necessary. Moulded plastics "insert" handles and ventilation grilles require rectangular cutouts and are fixed with woodscrews and glue. Plastics and rubber feet are screwed on in the desired position. Castors are best fixed with the bolts

Chassis construction used in the PW "Soundlite"
Table 3: Materials Suppliers
Maplin Electronic Supplies Lta,
BROBOX3
Ravlégh.
Essex SS6 8LR
AdamMal(Supplies)
Uni 3 Carton Court
Grainger Road,
Southend-on-Sea
Essex S52 5DA
Hamittons of Teesside La.
26 Newport Road.
Midalesbrough.
Teesside

Fig. 4: Two methods of fixing the amplifier chassis into the cabinet: (a) (left) through front-panel '"ears';
(b) (right) through cabinet sides into chassis rails
supplied with them. Hinges and catches are again screwed on, but care should be taken to align the various parts before fixing.

The remaining stage is to assemble the various parts to form the complete system. This stage is highly dependent on the nature or the equipment but, for the comboamplifier example, this will mean the assembly of the cabinet, baffle-board, rear panel, speaker units and the amplifier chassis. The baffle-board is best secured with 38 mm ($1 \frac{1}{2} \mathrm{in}$) woodscrews through holes in the front battens. If desired, "Tadpole" piping may be glued or stapled around the edge before the baffle is mounted. The speaker units should be attached with nuts and washers on to the captive bolts already fitted. Tighten the nuts evenly, but do not overtighten, and seal the nuts with a dab of glue to prevent them from vibrating loose. The amplifier chassis may be fixed either by screws through the front panel into battens or brackets in the cabinet, or by bolts through the side of the cabinet into tapped holes or captive nuts on the chassis (see Fig. 4). The amplifier and loudspeakers should be wired up, and the speaker enclosure lagged, if desired. Finally, the back is fitted with woodscrews and cup washers. The cabinet is now finished and ready for testing.

Parts And Materials

Little trouble should be experienced in obtaining the necessary materials. Chipboard, plywood, glue. fillers. etc. should be easily obtainable from a local timber merchant, while paint, polish, screws, nails, etc. should also be readily available locally. Covering materials. fretcloth and fittings can be bought from a number of mail-order outlets; Maplin Electronic Supplies Ltd. stock a small range. while two specialist suppliers with larger ranges are Adam Hall (Supplies) and Hamiltons of Teesside Ltd. Speaker bolts and other esoteric hardware is available from the latter two firms. Also, many suppliers of commercial cabinets stock some materials and fittings, although their prices are sometimes higher.

Exhibition

Following the success of the 1978 Harrogate Festival of Sound, the organisers are happy to report that the 1979 Festival will be bigger and better than ever.
To be held at the Harrogate Exhibition Centre which consists of three interlinked purpose built halls, of equal size and stature and equipped with all modern facilities. Once again the ground floor space of the Cairn, Crown, Majestic and Old Swan Hotels will be used for demonstration purposes.

The exhibition will be open to the public on Saturday, 18 and Sunday, 19 August 1979, between 11.00am and 8.00 pm , admission free. Trade days will be Monday, 20 August and Tuesday, 21 August 1979, between 10.00am and 6.00 pm , admission by ticket only, available from the organisers: Exhibition and Conference Services Ltd., Claremont House, Victoria Avenue, Harrogate, North Yorkshire. Tel: (0423) 62677.

RAE Courses

The following colleges will be offering the City \& Guilds RAE Course No. 765 this autumn:-

College of Technology, Belfast, GI2BX. On Tuesdays between 5.30 and 8.30 pm , and Thursdays between 6.00 and 8.00 pm (Morse code). Commencing Tuesday, 18 September 1979, enrolment early September. Lecturer, J. E. Wilson. Further details from: College of Technology, College Square East, Belfast BT1 6DJ. Tel: (O232) 27244.

Mid-Warwickshire College of Further Education. On Thursday evenings, commencing Thursday, 20 September 1979, enrolment 6 and 7 September. Further details from: Mid-Warwickshire College of Further Education, Department of Engineering, Warwick New Road, Leamington Spa CV32 5JE. Tel: (O926) 311711.

North Wirral College of Technology. On Thursday evenings, commencing Thursday, 13 September 1979, enrolment 3 to 5 September. Further details from the course tutor: D. E. Owen G4GGB, or North Wirral College of Technology, Electrical Engineering Department, Borough Road, Birkenhead.

North and West Farnborough Further Education Centre. On Thursday evenings at 7.30 pm , commencing Thursday, 20 September 1979. There will also be a Morse Proficiency Course starting on Monday, 17 September, at 7.30 pm . Further details from: The Principal, J. Brett, North and West Farnborough Further Education Centre, Cove School, St John's Road, Farnborough, Hants. Tel: (O252) 42397.

Mobile Rallies

The Telford Amateur Radio Rally Group hold their mobile rally at the Telford Town Centre Malls, Telford, Salop, on Sunday, 9 September 1979. Attractions include trade stands, exhibitions, "fiea market" for private sales, club stands plus excellent catering and onsite pub. There will also be a free coach service running to the Ironbridge Gorge Open Air Museum, which is celebrating the bi-centenary of the original Ironbridge.

Further details from: Ken Walker, G8DIR on Shrewsbury 64273 or Martyn Vincent G3̇UKV on Telford 55416.

Peterborough Radio and Electronic Society hold their mobile rally at Walton School, Mountsteven Avenue, Peterborough, on Sunday, 16 September 1979. There will be trade stands, bring and buy stall, raffles, buffet and talk-in on 2 m , callsign G3DOW, possibly also Peterborough repeater GB3PB on RB10, operational callsigns to be arranged.
Further details from: G3EEL QTHR, Tel: Peterborough 65423/62881.

Can I Help You!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of $P W$. If so, let me know and I will endeavour to publicise your rally, get-together whatever, through this column. Remember though, we compile the magazine some time ahead of publication day le.g. this note was written in mid-June), so, the earlier I can have details, the better.

Alan Martin

IEE Call for Papers

The Institution of Electrical Engineers is seeking papers for a Conference on "Radio Transmitters and Modulation Techniques", to be held at Savoy Place on 24-25 March 1980. Those wishing to have papers considered should submit a 50-word synopsis to the IEE Conference Department by 3 September 1979.

Subjects to be covered at the Conference include the following: transmitters for communication (fixed and mobile), broadcasting, television, and navigational aid; improvements in transmitting valves; impact of power semiconductors on transmitter designs; new methods of modulation; exploitation of Doherty and pulse width modulation and other methods for the purpose of higher efficiency; transmitter control/tuning, protection and safety; common antenna working (filters and other means); linearity contro!; frequency and signal generation; automatic monitoring and correction; and spurious frequencies and noise radiation.

The Conference is being organised in association with the Institution of Electronic and Radio Engineers and the Radio Society of Great Britain.

For further information please contact: Annemarie Cunningham-Swendell, Assistant Secretary, Public Affairs, IEE, Savoy Place, London WC2R OBL. Tel:O1-240 1871 Ext. 280.

HF Convention

The RSGB HF Convention, organised by the RSGB HF Committee, is to be held at the Pavilion Suite Complex, Warwickshire County Cricket Ground, Edgbaston, Birmingham on Saturday, 15 September 1979.

The Convention to be held in comfortable surroundings, with ample free car parking on site, will include an interesting programme of films and lectures.

Entrance is by ticket only, as the number of places is limited, and will cost: Convention only, $£ 1.50$; Convention and dinner, $£ 5.50$ (single); $£ 10$ (double). Cheques should be made payable to "RSGB HF Convention" and sent with an s.a.e. to: S. H. Jesson G4CNY, 181 Kings Acre Road, Hereford HR4 OSP.

by Eric Dowdeswell G4AR

Over the years I have stressed in this column, and to correspondents, that regardless of one's apparently poor location, from the radio reception point of view, it is always possible to sling up some kind of wire, which, with an a.t.u. will give reasonable results.

It was with some delight therefore, that I received recently a copy of Indoor And Invisible Aerials for SWL's by Dick Holman G2DYM, consisting of 34 pages of A4 format very amply illustrated with line diagrams. Dick is now a telecommunications consultant and "has been in aerials all his life" including the BBC where he was running 300 kV transmitters and associated aerial systems.

His new publication is full of good advice for the flatdweller and others similarly afflicted. He has included many diagrams of the dozens of alternatives possible with wires in roof spaces, attics, and the like, not to mention the outsides of buildings where very thin wire is virtually invisible, but very effective. Indoor And Invisible Aerials for $S W L$'s costs $£ 3.24$ by first class post, including VAT*. The price also includes a seven-page write-up of the G2DYM multi-band dipole designed to combat the menace of QRM from TV sets, probably the bane of more listeners than anything else.

I have taken a special interest in listeners' logs this month as I have been able to get on the air on 20 m s.s.b. recently, having acquired a Heathkit HW32A transceiver. My 160 m dipole with tuned feeders, built to my own spec. by G2DYM, was pressed into service on 20 m by folding each of the 132 ft arms into a right angle, thus making a square rhombic with one-wavelength sides. Unfortunately this "lazy rhombic" is 55 ft at one end sloping down to 20 ft at the other but it obviously works very well judging by the several 59 reports from VK land. An early catch, beating the massive pile-up, was VP2MX on Montserrat with a 59 report also.

Other users of the HW32A may like to know that mine has been modified to cover all the 20 m band, instead of only the telephony segment, so I shall be using it on c.w. also. The lower sideband crystal has been taken out and a second crystal fitted in the conversion oscillator to give two switchable ranges.

Exams and the Like

It may be high summer, at long last, but it is not too early to think of evening classes later in the year with a view to sitting the RAE. In the Birkenhead area an RAE course starts at the North Wirral College of Technology, Borough Road, Birkenhead on Thursday Sept 13 and you can enrol between Sept 3 and 5. Write to: Dave Owen G4GGB, course tutor, at the College.

How about the Slough area of Berkshire? Classes in code and theory at the Langley College of Further Education, Station Road, Langley, on Mondays and Thursdays respectively, with full laboratory facilities. You lucky people! Enrolment on Sept 11/12 between 1230 and 2000 each day or details from: E. C. Palmer G3FVC who is a senior lecturer at the College. It could hardly be made any easier!

Visitors are very welcome at the Edgware \& District RS on the second and fourth Thursday of the month at the Watling Community Centre, 145 Orange Hill Road, Burnt Oak, at 8pm sharp. This issue should be out in time for me to tell you that the Society will not be having a meeting on Aug 9! But the 23rd sees a briefing for the assault on the SSB Field Day event on Sept 1/2. Club station G3ASR puts out slow Morse every Monday between 2030 and 2145 on 1.875 MHz and $144 \cdot 175 \mathrm{MHz}$ and on the first and third Thursdays between 1930 and 2045 on the same frequencies.

Brian Bennett G3EAM writes on behalf of the Lincoln SW Club appealing for members: "Youngsters are welcome, we can do much for them," he says, so write to Brian at 142 West Parade, Lincoln, if you want to take advantage of this fine offer. That excellent body, the RAIBC, has changed its name to the Radio Amateur Invalid \& Blind Club thus keeping the initials the same, a change I personally welcome as, in my mind, I always read "Bedfast" as "breakfast" in the old name! Interested in joining or supporting the club? Then write to: Francis Woolley G3LWY, 9 Rannoch Court, Adelaide Road, Surbiton, Surrey. Incidentally, the club now sports the call G4IBC.

Garth G3IER has had to "retire" from the job of editing CARA, the news letter of the Cheltenham ARS, after performing a thankless job for the last 13 years. The club meets regularly at the Old Bakery, Chester Walk, Cheltenham, so write to the Hon Sec G8MZV for details (QTHR). The Cray Valley RS meets on the first and third Thursdays at the Christchurch Centre. High Street, Eltham, London SE9 with talks and lectures. Sept 6 sees a Surplus Sale Extravaganza with all welcome provided they bring their wallet! Write to: D. Haines G8OXT. 259 Rangefield Road, Bromley, Kent.
*G2DYM Aerials, "Cobhamden Castle", Uplowman, Near Tiverton, Devon EX16 7PH.

THE COMMUNICATIONS SPECIALISTS EVERYTHING FOR THE RADIO AMATEUR

YAESU FRG-7000

The New Performance Sxandard in Communications receivers !
A high quality general coverage receiver for the discerning SWL and a worthwhile additon as a second receiver for the transmitting amateur.
How often have you wanted a true general coverage receiver of this calibre but been put off by the price.
The FRG-7000 is a cost-effective answer to your prayers
\star Full and continuous coverage 250 kHz to $29.999 \mathrm{MHz} \star$ Operation on SSB/AM/CW \star Switched selectivity and fine tune control for maximum efficiency on SSB \star Accurate digital frequency readout to 1 khz , using advanced CPU techniques \star Built-in digital clock CFU controlled timing clock switches receiver on or off at preselected times: also enables control of external unit such as tape recorder \ddagger Wadley loop circuitry for minimum drift and maximum stability \star Simple and accurate frequency selection: easy-to-use colour coded bandswitch and preselector.

Send large SAE for further details of this and other equipment - or use our Answerphone after hours.

artern Electronics (
HEAD OFFICE (All Mail/Enquiries)	ACCESS
FAIRFI	
LOUTH, LINCS, LN11 0JH	${ }_{\text {H.P. }}$
6/7	

Tel: Louth (0507) 604955/6/7

CDICOM

IF YOU ARE INTERESTED IN
AMATEUR RADIO

AND LIVE IN OR NEAR KENT

WHY NOT COME AND VISIT US
(or Phone us for a copy of our Catalogue)
WE STOCK
TRANSCEIVERS POCKET RECEIVERS BOOKS RECEIVERS POWER SUPPLIES ROTATORS AERIALS

FOR
AMATEUR, MARINE \& PRIVATE MOBILE RADIO
THANET ELECTRONICS
143 RECULVER ROAD, HERNE BAY, KENT
Tel: (02273) 63859
Telex: 965179

Beat VAT with VAO (from G3CED

Although we have had to increase our VAT (15\%) and carriage paid (and insured) inclusive prices, we've come up with Valued Added deals on both existing tines AND on the larger range of equipment we can supply.

TRANSCEIVERS RECEIVERS

(with or without World Record beating Partridge VFA antenna)

TRANSCIEVERS

Here's our 10-1 VAO - send us just $49 p$ stamps (36p) for the latest YAESU fully illustrated Catalogue and this comes to you with our VAO CREDIT VOUCHER worth $£ 3.60$ for your eventual TRANSCEIVER purchase. Or a couple of stamps brings you the FT1012, Atlas or Swan leaflets.
Here's a short list of transceiver equipment now available - prices on request.
ATLAS RX III., ATLAS RX 110., ATLAS TX 110L., FT 901DM., FT901ID., FT901DE., FT101Z., FT101ZD., FT7D., FT 202R., FT7B., LINEAR FL 2100B, OTR 24, SWAN ASTRO 150 FT225R., FT 225RD., FT227RB.

VALUE ADDED OFFER/2

Include a Joystick $\cdot 5-30 \mathrm{~m} / \mathrm{cs} 500 \mathrm{w} . \mathrm{p} . \mathrm{e} . \mathrm{p}$. Antenna System "J", as part of your transceiver order - system will only cost $£ 40.50$ inclusive SAVING $£ 13.50!!$

RECEIVERS - PACKAGE DEALS VALUE ADDED OFFER/3

VAT is up but we've increased savings on packages from £14.15 to £21.45! Complete Radio Stations, all cables, headphones, Joystick System A antenna - ON THE AIR IN SECONDS!
SUPER PACKAGE R.1.
Features FRG7 RX
£240.80
SUPER PACKAGE R.2.
Features the "ROLLS" FRG 7000.
£409.00

RECEIVERS ONLY

FRG7 $£ 204.40 \quad$ FRG $7000 \quad £ 372.60$

JOYSTICK ANTENNA SYSTEMS

SYSTEM " A "
$200 w$ pe.p.o of tor
£48.55
SYSTEM "J"
500w p.e.p. Improved " Q " on receive
£54.00

BARCLAYCARD

VASA

G3CED
G3VFA

Just telephone your card number - 0843 62535 (ext 5) or 62839 (after office hours) or write for details as described in the Value Added Offers or $9 p$ for general literature. Prices correct as at the press.

5 Partridge House, Prospect Road, Broadstairs, CT10 1LD (callers by appointment).

The revolutionary Swan 100 MX: 100% new, 100% solid state, 100% portable from home station to mobile!

Swan's new "get up and go" transceiver, superbly designed for 100% mobility and control, as only new Swan space-age technology could do it!
$\mathbf{1 0 0 \%}$ solid state $\mathbf{1 0 0}$ MX: the compact HF unit you can take seriously - anywhere you choose to operate.

At home, set into Swan's unique new style-coordinated station, with matching antenna tuner and power supply.

Or on the road - its easy to relocate 100 MX. Instantly. Just two simple connections on the back panel: snap out, snap in... and run!
100% improved audio quality: home or mobile, transmit or receive. 100 MX electronics cut through SSB sound barriers producing a natural clarity reported comparable to AM!
Your most-wanted extras, 100\% built-in: like noise blanker and VOX. Like a preselector to optimize signals. Like a real RF GAIN control, and CW sidetone.

Swan includes the RIT control ($\pm 1.5 \mathrm{kHz}$) you'd like too. Plus, for stability, a permability tuned oscillator with 1 Kc readout.

A powerful package, with a full 235 watts PEP and CW on all bands, 10-80 meters.

- 235 Watts PEP!

Setting a 100% new state of art: 100 MX and our matched-station units. Ready for check out today at your Swan dealer, the first major breakthrough in Swan's new programme dedicated to changing the face - and performance of ham equipment 100%... inside and out!

Write today for full details of the 100 MX and other exciting new products from Swan or see them at your local authorised dealer.

Finally, the Bury RS will run a Brains Trust on radio and electronics on Aug 14 while Sept 11 sees the club's annual nosh-up which happens to be the club's 40th anniversary as well. Current projects for the practicallyminded include an h.f. bands linear amplifier, a 6800 MPU and the possible purchase of a v.h.f. transceiver. More from Mike Bainbridge G4GSY, 7 Rothbury Close, Bury, Lancs.

DX-wise

Usual very interesting letters during the month from Bill Rendell in Truro, Cornwall, who shares my birdwatching interests. He thought he could pull a fast one on me by logging STORK in Wau in the S. Sudan. "A rare immigrant," he said! Happens to be genuine so QSL via DL7FT, says Bill. If you hear VP2MDG on Montserrat, send your card to W6FDG, while 5 W 1 AB , heard by Bill on 15 m s.s.b., can be contacted via DJ9ZB. Bill uses a Heathkit AR3 with pre-selector, a.t.u., 115 ft wire plus dipoles for 15 and 20 m .

Dennis Sheppard of Sheerness, Kent, types his letters out on his teleprinter, being an RTTY fan, followed by yards of print-out of the QSOs he's copied! He is now using his KW202 receiver in preference to the Trio JR310 and had copy from FR7BE, HI8JSM, VR3AH (Christmas Is) and the like on 20 m , with lots of JA's and VQ9MR on 15 m .

From Marple, near Stockport, John and Steve Goodier have been busy on their FRG-7 with 30 ft wire and a.t.u. finding J3AG on Grenada, VK2AGT/LH on Lord Howe Is and old friend VR6TC on Pitcairn on 20 m , not to mention OK3TAB/D2A in Angola and 5N2NAS, a rare prefix these days, on 15 m . I'm glad to say that C. P. Palfreyman of Loscoe, Derbys, stuck to his guns, or rather his key, by copying some good stuff on c.w. on all bands from 10 to 80 m using only his home brew $0-\mathrm{V}-1$ with indoor dipoles on 10 and 15 m feeders, strapped together for the other bands.

Help!

Anyone got a manual for the CR100? John Allan of 40 Park Road, Stanford-le-Hope, Essex, has been dabbling in amateur radio for years but only now has decided to tackle it seriously so we ought to help him on his way if we can. Dick Robbins, 2 Ross Cottages, The Rise, Brockenhurst, Hants, has a trusty old BC348 but like so many other users is wishing it would cover the 15 and 10 m bands now that activity is concentrated up there with the increasing sunspot activity. Has anyone a particular practical design to recommend to Dick? Details or even a 'stat copy would be most welcome and expenses refunded of course.

Now the proud owner of a new DX160 receiver Cyril Pratt of Steventon, Oxon, sent in a couple of extra copies of the circuit diagram in case anyone else needs one. What a nice thought! He has a 100 ft wire and a.t.u. and is busy making up a 144 MHz converter. Wonder if he is going to defect to Ron Ham? The DX160 looks a good buy for Arthur Bottrill (Stoke Golding, Nuneaton) who is now a regular subscriber to $P W$, being a paraplegic who was looking for a suitable hobby after discarding several others as being unsuitable. I am quite sure OM that you have chosen wisely and trust that you will get that set soon and then start swotting for your RAE, when you will be able to talk to the world.

John Sparks, MBE, living in Darlington, Co Durham, has long cherished the idea of having his own ticket and
as he approaches retiring age is determined to fulfill his ambition. For the moment, he is using a Lafayette HE30 for which he'd like a manual if anyone can oblige. John lives at 10 St Gregory Close, Staindrop, Darlington D12 3LG. If you don't mind me saying so, John, you can't fail with a name like Sparks!

A late letter from Dave Coggins seems to have gone all round the country since it left Knutsford in Cheshire. He has just returned to radio after a "null" of around 10 years and he too uses a DX160 with a single loop "quad" on 10 m which works well too on 15 m , plus 100 ft long wire. Suggest you look at one of the aerial books and make up a loop with suitable loading that will be resonant on 10,15 and 20 m . I used one once on the air and it worked very well indeed fed with co-ax.

I know this is a busy time for us all with so many chores, and exams to think about, but do write and get it to me by the 15th of the month. Happy Holidays!

Log Extracts

D. Coggins:-80m FM7WS WA4VCV 40m CX4DI VK3XI 20 m FO8DT VP8SB 15 m HR3JJR JR6REP(Okinawa) VK9KK(Chagos) XT2AV 5W1AB 6W8MW 10m FG7AR/FS7 FR7BU YB0ADW VQ8KK.
C. Palfreyman:-All c.w. 80m EA8NU LU5AMT UH8EBB 40m EA9FC HK3YH 15 m JF1EZH VP9JQ 10 m HZ1HZ 6W8EX
J. \& S. Goodier:- $\mathbf{2 0 m}$ J3AG VK2AGT/LH VK0PK(Macquarie Is) VQ9TC VR1AF VR6TC 5 W 1 BU 15 m OK3TAB/D2A VP2MDG
D. Sheppard:-All RTTY 20 m AC3U FR7BE HI8JSM LU3ABI OD5AO OX3CO PJ3EC PZ1AP VK2ADZ VR3AH XE1OE YV2BE ZS1CL 5W1BV 9J2KD 15m JA1QWF VQ9MR 5Z4RT 9H1FF
W. Rendell:-20m C5AAP CT3AB D4CBC M1C VP2KC VP8SB VR6TC YB1CS 15m D4CBS HK7ELG HS1WR ST0RK VP2MDG VP2SV XT2AV ZB2BL 5W1AB

All are s.s.b. unless stated otherwise.

MEDIUM WAVE DX

by Charles Molloy G8BUS

The medium waves extend from 531 kHz to 1602 kHz with 9 kHz spacing between stations in those parts of the world covered by the Geneva Plan, while in other areas (particularly North America) the band is from 540 to 1600 with 10 kHz spacing. Communications receivers and domestic sets in countries outside the UK are marked in kHz or kHz divided by 10 (i.e. 54 to 160) but many receivers produced for use in the UK still have their scales marked in metres, a practice which creates problems for the DXer. Table 1 should help those who have to convert from one system to the other.

Table 1

kHz	Metres	kHz	Metres
531	565	1100	273
550	545	1150	261
600	500	1200	250
650	462	1250	240
700	429	1300	23.1
750	400	1350	222
800	375	1400	214
850	353	1450	207
900	333	1500	200
950	316	1550	193.5
1000	300	1600	187.5
1050	286	1602	187.3

Intermediate values can be worked out with a pocket calculator using:
Frequency in $\mathrm{kHz}=\frac{300000}{\text { Wavelength in metres }}$
or

$$
\text { Metres }=\frac{300000}{\mathrm{kHz}}
$$

Wavelength or Frequency

At first sight it would seem that one system is as good as the other. In the early days of wireless there was a preference for waves and wavelengths, but the disadvantage of using metres soon became apparent when station separation had to be taken into account. Selectivity is the ability of a receiver to separate adjacent signals, and selectivity is a function of frequency not wavelength. For example, look at the two lowest and the two highest channels in the Geneva Plan. These are: $531 \mathrm{kHz}(565 \mathrm{~m})$; $540 \mathrm{kHz}(556 \mathrm{~m}) ; 1593 \mathrm{kHz}(188.3 \mathrm{~m}) ; 1602 \mathrm{kHz}$ (187.3 m). The frequency difference between the stations of each pair is the same, 9 kHz , but at the l.f. end of the band the difference is 9 metres while at the h.f. end it is only 1 metre.

If you use a receiver with scale marking in metres you will really have little idea how far "apart" stations are from each other. When listening to North American DX, the separation from European QRM can be anything from 1 kHz to 8 kHz ! From the near impossible to the reasonable. So when choosing a receiver for m.w. DXing be sure to get one with the scale marked in kHz . It will make life a lot easier.

Varicap Loop Tuning

"Have you tried varicap loop tuning?" asks P. W. Simmonds (Isle of Wight), who goes on to describe a tuning device he constructed using a MVAM115 varicap (available from Ambit International), two 10 nF capacitors, one $100 \mathrm{k} \Omega$ resistor and a $100 \mathrm{k} \Omega$ potentiometer which, he claims, cost less than a variable capacitor. The diagram (Fig. 1) shows the set-up. The negative side of the power supply used was earthed, but this is not essential.
It never occurred to me to try varicap tuning, as a stabilised power supply is required. However, Mr Simmonds says that he was able to mount the $100 \mathrm{k} \Omega$ pot, which is the tuning control, close to the receiver, which also supplied the 12 volts. This arrangement was a lot more convenient to use than operating a tuning capacitor fixed to the loop.

Personally I prefer to keep things simple and there isn't much that can go wrong with a variable capacitor, but varicap tuning is essential if you want to try a remotely controlled loop; say in the loft, which could be large and either fixed or attached to a rotator. If you attempt to tune a loop remotely using a variable capacitor at the receiver end, then the capacitance of the lead, which may be considerable, will be in parallel with the tuning capacitor and will interfere with the tuning range of the loop. This of course will not occur with a varicap.

Readers' Letters

My remarks in the June issue about heterodynes and DXing prompted Harold Emblem to write from Mirfield to say that he tracked down the "het" on 585 kHz to Riyadh in Saudi Arabia, and one on 900 to Guriat which is a new one in the same country. The latter was picked up after Milan had signed off. Also heard was Cukurova in Turkey which is a lot easier now it is on 630 kHz . The receiver is an Eddystone 740 used with a m.w. loop.

Harold refers to Conakry in Guinea on 1404 kHz which together with Dakar on 765 are good pointers to reception conditions on the West African path. Two others to look for, which will verify a report in French, are Ougadougou in Upper Volta on 747 and Libreville in Gabon on 1557. N. W. Hucker (Taunton) used his BRT400 to pull in EAJ50 in Las Palmas in the Canary Islands on its new frequency of 1008 kHz . This channel is reasonably clear of QRM once Lopik in Holland has signed off for the night.

A National Panasonic DR28 and 60ft loft aerial are in use at Carshalton by Vic Dye who would like to hear the 50 kW Radio Paradise in St Kitts. Try on 1265 kHz between 0200 and 0300 GMT, but you do have to be persistent to pick up DX on the medium waves as conditions vary a lot. If you don't hear it first time then try again a few days later and stay on the frequency for a few minutes as slow deep fading is normal on this band.

Foreign Language Recognition Course

After writing about language identification last month I sent off for the cassette version of this course, which originated with Radio Canada, but is now distributed by the Handicapped Aid Programme.

The course must really be unique. It is designed to give the DXer a basic grounding in the ability to recognise the many different foreign languages that are to be heard over the air. Languages are grouped into ten families starting with the Romance Languages and ending with the SinoTibetan group, with a final section on Odds and Ends, the latter covering Eskimo and Cree Indian from R. Canada's Northern Service.

Fig. 1: A medium-wave loop tuning circuit using a varicap diode

Playing time is 83 minutes, covering 55 languages, but one should remember that it is a course of several lessons. I tried to play it through at one sitting but had to give up half-way through.

The tape costs $£ 1.98$ post paid, either as reel-to-reel or cassette, and delivery is about six weeks as it comes from Canada. I ordered mine through the North England Radio Club (66 Chesnut Grove, Birkenhead, Merseyside L42 OM2), but non-members can get it from the HAP, 56 Rose Grove, Wombwell, Barnsley, S. Yorkshire.

SHORT-WAVE BROADCASTS
by Charles Molloy G8BUS

While browsing through the pages of the 1979 edition of the World Radio and TV Handbook recently, a smallish advert caught the eye which offered a C 90 cassette "crammed full of current s.w. interval signals and announcements". It suddenly occurred to me that interval signals have not been touched upon so far in this column, so here goes.

Interval Signals

Interval signals are very much taken for granted by the DXer. If you tune around the main short-wave bands just a few minutes before the hour or the half hour, which is the time programmes change, you are certain to come across several interval signals. They are really signature "tunes" consisting of a short piece of music, bells, chimes, bird calls, drums, etc., which only last a moment or two and are repeated over and over again. They enable the regular listener (SWL) to home-in on the station of his choice in time for the start of the programme, often on a receiver marked out in metre bands only. Examples of interval signals are Radio RSA's bird call plus guitar, Yankee Doodle from the Voice of America, the few bars of piano music from Radio Warsaw, Waltzing Matilda and Jacko the Kookaburra Bird from Radio Australia.

Interval signals are often attractive, my favourites being the flute and cowbells from the Voice of Greece, the short piece of music from Radio Denmark and the orchestral music from Radio Bucharest. These signals are of value to the DXer as well as to the SWL. They assist him in identifying less common stations as well as helping him to avoid some of the more powerful occupants of the bands. The WRTVH gives details of interval signals from many countries and where appropriate, a few bars of music appear in the text.

Recordings

Recordings of interval signals are not new of course. Side two of Mitch Murray's album Long Live Short-Wave presents original recordings of 31 of them. The C90 cassette seemed more specialised though, so a cheque for $£ 3.50$ was sent off which brought the cassette and a four-
page list of the 131 recordings. The interval signals are grouped according to type such as bells, chimes, electronic organs, strings, xylophone, drums, etc., which should help the DXer to track down the unidentified.

These recordings were obviously made from live broadcasts and the quality of a few are not too good. There were a few rarities and also some surprising omissions. Those that interested me most were of the Asiatic Republics of the USSR which I have always found difficult to identify. The cassette is offered by Intervals Signals, 31 Lyons Crescent, Tonbridge, Kent TN9 1EY, and the advert can be found on page 20 of the WRTVH.

Harmonics

Reference to broadcasting around 29 MHz in the 10 m amateur band is made by G2BSU, who is Hon. Sec. of the Bristol Amateur Radio Club. He picked up the Radio Moscow World Service at 1400 on 29162 kHz and an unidentified transmission (probably a commercial station) on 29086 kHz at 1410.

Any broadcasting on or around 10 metres is almost certain to be a harmonic. Divide 29162 by 3 and you get 9720 which is in the 31 m band. The use of high-power transmitters and directional aerials must mean that megawatts are being radiated on the fundamental in the chosen direction. A few watts of harmonics is almost inevitable, and these may travel a long way now that the higher frequencies have opened up. Harmonics of broadcasting stations should be fairly common above 21 MHz at the moment.

I read in a DX club magazine recently of a report from the BBC Monitoring Service that IBA Jerusalem were broadcasting in the 10 m band. To whom? Few s.w. receivers tune above 21 MHz and broadcasting authorities are reluctant even to use the 11 m broadcast band (25 600-26 100) because of the shortage of listeners. A harmonic is a more likely explanation of IBA's appearance amongst the amateurs.

Short-Wave Receivers

"The short-wave bug has bitten me again rather late in life, and you have acquired another regular reader," writes A. D. Browning of Ramsgate. His previous experience of the hobby was with a one-valve set just after the last war. Welcome back OM. You will find quite a change with your Pye 6000 which is a much more powerful receiver. The function of the S meter, a.g.c. and a.f.c. are puzzling our "old recruit" and others may be in the same boat.

S Meter

An S meter or Signal Strength meter, shows the strength of the incoming signal. A strong station will give a large

reading and a weak signal a small reading. Watch the needle as you tune in and when it reaches a peak you will be spot-on the station. Fading and fluctuations caused by interference will show up as swings on the needle.

The scale markings are meant to indicate relative values only. S 8 on one receiver may not be the same as S 8 on another or even S 8 on another band on the same receiver. The meter on my BRT400 is marked from 0 to 100 and this is quite adequate.

Automatic Gain Control (A.G.C.)

This used to be called Automatic Volume Control (a.v.c.) and it is fitted to nearly all receivers these days. It helps to maintain a constant volume at the loudspeaker by automatically adjusting the receiver gain to compensate for fading. It is usual when using a.g.c. to set the r.f. gain control to maximum and to control the receiver with the a.f. gain (volume) control.

Automatic Frequency Control

This facility is used on v.h.f. to keep the receiver in tune. If frequency drift (detuning) occurs, due perhaps to changes in supply voltage or to the effect of heat, the a.f.c. will, within limits, bring the receiver back on tune.

Readers' Letters

"After reading your article I decided to builu a s.w. receiver," writes Richard Benbough, 16 Raven Crescent, Billericay CM12 OJF, who now has a two-transistor set. When used with a 30 ft long wire it pulled in Baghdad at 2130 and All India Radio at 1825 both on 31 m , HCJB The Voice of the Andes at 0715, Peking at 2003 and Vietnam at 2100 . Richard would like to know if there are any other t.r.f. DXers around who would like to compare notes with him and also if there is a DX club in his locality. Richard has bought a copy of the 1979 WRTVH (which must have cost as much as the receiver) and this has helped him a lot with QSL addresses, etc.
"Can you give me details of the stations and the addresses for QSLs of the four stations operating above the 49 m bands?" asks Richard Goodwin of Crawley. 'Fraid not, pirates are illegal and cannot be covered here. Ted Allison purchased an R1155 receiver in 1954 and now that he has retired he is returning to DX after a lapse of several years. He would like to contact other R1155 users, replies to 138 George St., Mablethorpe, Lincolnshire.

Tropical Bands

"I am now in contact with five other Vega 206 users, thanks to the piece you wrote a couple of months ago," writes Bill Stevenson (Swinton). When connected to both ends of the TV co-ax cable, the receiver pulled in R. Super in Colombia on 4825 kHz at 0703 SIO 333 ; R. Reloj Costa Rica 0700 on 4832 SIO433; R. Mozambique 0515 on 4865 SIO233; China at 2150 on 4865 SIO232; Benin 2200 on 4870 SIO 343 ; Yakutsk 2230 on 4920 SIO232; R. Colosal 0515 on 4945 SIO333; R. Rumbos Venezuela at 0700 on 4970 . Bill praises the Tropical Bands Survey, published by the Danish SW Clubs International, which he thought was a bargain at five IRCs. He says it is of immense value in identifying Tropical Band stations. This survey is up-dated every summer and further details can be obtained from the DSWCI, Greve Strandvej 14, DK2670 Greve Strand, Denmark.
"I am still digging around the Tropical Bands," says Bob Bell (Blyth) who goes on to say: "it is surprising
what you find under all the telegraph QRM-I am surprised there are not more logs for you of the Tropical Bands." Bob uses an FRG-7 and he heard the Cape Verde Islands on 3930 kHz at 2355 , Gansu in China on 4865 at 2200 , Benin on 4870 at 2020 and China on 5030 at 2100 , plus an unidentified station in Arabic and French on 5455 kHz .

by Ron Ham BRS15744

With strange happenings on the 10 m band, plenty of sporadic-E, two tropospheric openings and an intensive solar storm, there was a great deal to interest my readers between May 23 and June 20.

Solar activity

Isolated bursts of solar noise during a quiet period are not unusual because they often herald the start of a noise storm, as happened on May 26 and 29, when a few individual bursts preceded the storm which both Cmdr Henry Hatfield, Sevenoaks, and myself, recorded at 136 and 146 MHz between June 1 and 3. On the 2 nd , Alan Baker G4GNX, Newhaven, heard the solar noise with his 2 m gear and Henry saw two large sunspots through his spectrohelioscope. Apart from a strong, 2 minute duration burst at 1310 on the 7th, the sun was quiet until the 9th when another and more intense noise storm began and lasted through to the 14 th. Frequently during this event readers heard bursts of solar noise at 28,50 and 70 MHz , but none were as massive as those which occurred on the 17 th, sending the recording pens of my radio telescope banging against the stops.

The 10 Metre Band

Apart from the Sussex beacon, GB3SX, 28.215 MHz , which is almost on my doorstep and despite frequent checks, the 10 m band was very quiet from May 23 through to the 30th, however, at 0705 on the 31 st a 589 signal from the Cyprus beacon, $5 \mathrm{~B} 4 \mathrm{CY}, 28.220 \mathrm{MHz}$, broke the silence and during the following 13 days, signals averaging 539 were received from the beacons in Bahrain, A9XC, 28.245 MHz and Germany, DL0IGI, $28 \cdot 205 \mathrm{MHz}$.

On the days when sporadic-E was present the signal from the German beacon was a good 599. Harold Brodribb, St Leonards-on-Sea, also noted the quiet 10 m band but, at 1018 on June 8, he heard a QSO between a G station in Farnborough and a very strong VK8NPS, and later, he received signals from A9XC. DLOIGI and 5B4CY. Alistair Duprés, Rhiwbina, Cardiff, recently purchased a Yaesu FRG-7 and with a long wire aerial he heard a QSO between and OZ and PY on June 10 and amateur stations in France, Germany and Spain. Alistair has applied for membership of the RSGB and is keen on 10 m listening like Nigel Golds BRS36910, who is now serving with the RAF at Locking, and, as a member of the RAF ARS, he often uses one of the receivers at the station on G3RAF. During the sporadic-E disturbance on June 1 and 2, both Gordon Goodyer, Petworth, Sussex
and David Rennison, Horsham, told me that short skip European stations were very strong. The band was quiet again on the 14th, 16 th and 18 th.

Satellites

"I have never previously heard such a severe disturbance on OSCAR 8J as we got on May 27," writes John Branegan, Saline, Fife. "The satellite could not be accessed at all from the south in the evening and I received reports confirming this from Germany and Sweden." Early in June, GM8PSM worked UA6LLD and W7AVD via OSCAR, and one cannot get much farther east than near Volvograd and west than Geyner, Montana. On June 4, John had c.w. contacts, via OSCAR 8J, with EA8CS and on the 5th, via OSCAR 8A, with VE2LI. Another satellite enthusiast is Mr P. Moore, Cardiff, who heard a QSO between stations in Holland and Germany, via OSCAR 7 , at 1724 on June 3.

Microwaves

During April and May, Ern Downer G8GKV/P, Worthing and Ern Hoare G3RZD/P, Southwick, were out on Chanctonbury Ring, a high spot on the Sussex Downs, for 10 GHz contacts with Don Hayter G3JHM/P, near Biggin Hill, Kent, and G2DSP/P and G4ETU/P, at Bognor Regis, Ford and the Trundle near Chichester. "The first leg of the 1979 Cumulative contest was literally a washout," writes Ern Downer whose gear gave trouble when swamped with rain. However, things were different on May 27 when the two Erns carried one lot of 3 cm gear up Ide Hill, Kent, and despite an obstructed propagation path, had a 58 QSO, both ways with G3JHM/P situated on Butser Hill, in Hampshire and later they drove to Cross-in-Hand, near Heathfield, Sussex and worked him again.

The two Erns were back on Chanctonbury Ring for the second leg of the 10 GHz cumulative contest and worked F3LP/P, 137 km , F6DLA/P, 155 km , G3JVL, Hayling Island, Hants, and G2DSP/P and G4ETU/P on the Trundle.

Tropospheric

On May 25, John Cleaton G4GHA, Wareham, Dorset, worked F1CVE/A, F6DGT/M and GU3KFT on 2 m and between 1407 and 2200 on May 31, Alan Baker contacted two Belgian, one French and three German stations on 2 m s.s.b., received strong signals through the Continental repeaters on R3, 4, 5, 7 and 9 and heard ON5UI say that he was watching u.h.f. TV from London. On June 2, I listened to a station in Leicester and another in Derby have a QSO via the Bristol Channel repeater, GB3BC, R6, and, during the evening while u.h.f. TV was disturbed some south coast stations worked into Germany on 2 m . Incidentally, G4GNX had a 2 m c.w. QSO with OS7EJ which is a special event station in Belgium, like our GB. At 2013 on June 5, F6FLB had a chat with RSGB Council Member Robin Bellerby, G3ZYE/M in Rottingdean, via the Brighton repeater, GB3SR, R3. During the good conditions on June 2, George Grzebieniak RS45173, London, heard G4FZL, Leicester, on 70 cm and for the 144 MHz portable contest on May $26 / 27$ George and a school friend camped on a hill and had Frenchmen in the log among the stations heard. George has purchased an aerial rotator and is currently building Yagis for both 70 and 23 cm . Members of the Brighton and District Radio Society made 44 contacts on 2 m fm from the v.h.f. section
of their demonstration station at Peacehaven Carnival on May 28 using the callsign, GB2PHC. Band V television was periodically disturbed on June 3 and 4 and while signals through the UK v.h.f. repeater network were very strong, I was receiving pictures from Lichfield on Ch. 8 , 189 MHz , with a dipole feeding my 405 -line receiver. With the high atmospheric pressure, v.h.f. conditions were generally good between June 9 and 19; for example, on the 9 th G4GNX worked 13 ONs and 2 PAs on 2 m s.s.b. On the 11th, 18th and 19th I heard signals through GB3BC. At 2310 on the 18th, Graham Knight GM8FFX, RSGB v.h.f. Columnist, had a QSO with Alan Baker in Sussex on 2 m s.s.b. and while all repeater channels were active, EI9Q worked a station in southern England. Around 0900 on the 19th, I received ATV's "Good Morning" caption from Lichfield on Ch. 8 and during the evening, G4GNX had a 30 minute QSO with ON4CJ, using 0.5 watt, a contact with G3SCH, Torquay, via the French repeater, FZ3VHB, R7, and joined the many - stations waiting their turn to work EA1CR who was putting a strong signal into southern England.

Mobile Rally

About 100 people attended the mobile rally, organised by Barry Ainsworth G4GPW, for the Worthing and District Radio Club at Whiteways, Nr Arundel on May 19. The club station, G3WOR, operated by Alan Floyd G4GVB, had 19 contacts on 2 m f.m. with GU4EON as their best DX. Among those present were members of the Brighton, Chichester, Horsham and Mid-Sussex radio clubs, and the prize, a bottle of sherry for the visitors who travelled the longest distance for the event went to Don Butterworth G3IKO and Ted Creasy G4FBI, from Redhill, Surrey.

Sporadic-E

Major sporadic-E disturbances occurred during the early evening of May 29 , for most of the day on the 31, and June 1, 2, 3, around 1600 on the 4th, the afternoon of the 6th, the early evening of the 8th and during the mornings of the 11th, 17th and 19th. Between 1528 and 1615 on the 29th, Des Sayer G8RCF, Chard, Somerset, had 59 plus contacts with eight Italian stations as the first big event of the 1979 season spread into the 2 m band. Des uses a FT225R, running 25 watts into a Tonna 9element beam at 40 ft a.g.l. and is currently working for his G4 call. John Cleaton, using a TS700, with 14 watts to a 6 -element quad, worked 10 Italian stations and Roy Bannister G4GPX, Lancing, Sussex, worked six. While Mr P. Moore, Cardiff, using an AR 88 receiver, Microwave Modules Converter and a 4 -element quad aerial, heard GW4CQT work IC8IGJ and GW3CAD work I6WJB. Peter Turner G8RCJ, Brighton, contacted one Italian station and an IT9 and during the event, Guy Stanbury and Bob Dewick, had a good haul of Italian broadcast stations in Band II. Igor Hajék, University of Lancaster, heard many east-European f.m. stations between 65 and 73 MHz during the sporadic- E events and writes: "before anyone starts wondering about doppler shifts, etc., there is up to one minute time difference between Polish transmitters when they broadcast the same stereo programmes."

Filters

Igor also has an idea for improving sporadic-E reception and says: "few people realise that under OIRT standard,

Fig. 2: (left) and Fig. 3 (right): Test cards from Grünten, Germany, and Austria, received by John Branegan in Fife on June 6
maximum deviation used by the east European f.m. transmitters is only 50 kHz , rather than the 75 kHz used by the west European CCIR systems. This of course means that the bandwidth of most current i.f. sections is unnecessarily large when receiving OIRT standard f.m. broadcasts. I would therefore advise anyone who uses for this purpose an i.f. section with ceramic filters such as CFSE10.7, or similar, to replace it with mono ceramic filters CFSB10.7 (available from Ambit International). Slight realignment of the i.f. section coils may be required if the new filters are of a different centre value". On several days between May 31 and June 20, I counted more than 30 strong f.m. broadcast signals from eastern Europe between 65 and 73 MHz along with a variety of continental radiotelephone traffic in Band I.

DXTV

During the afternoon of May 29, Guy Stanbury and myself received strong television signals on Channel R1, 49.75 MHz , from a variety of countries and, as in previous years, we noticed that programmes and test cards from different countries would replace each other on the channel according to the sporadic behaviour of the ' E ' region, as it scattered the signals in many directions. Although it was difficult to identify stations under these circumstances, pictures from Czechoslovakia and Poland were predominant with me. At 0830 on the 31 st there was a film about animals on R1, and at midday a Russian test card. One of the longest sporadic-E disturbances for many years occurred from June 1 through to the 3rd and, as usual my readers were right to the fore. Graham Lay, West Chiltington, Sussex, using a JVC 3040 and a dipole saw Mr Ian Smith in a newsreel from Yugoslavia, and then adverts for sweets from another station, while I received the MTV clock from Hungary and test cards from Austria, Poland and Russia, changing places on the screen, and both Peter Penfold, West Chiltington, and myself, noted the strong test card marked PRAHA.

From early morning on June 2 pictures from Scandinavia were pounding in and as the day went on a wide variety of television signals were seen between 48 and 68 MHz , and Sid Talbot G8FCX, using a JVC 3050 and a dipole, saw ballet dancing from RTVE, Spain, as late as 2300. Ian Rennison, Horsham, saw test cards from Norge, Bremanger, Gamlemsveten, Gulen, Kongsberg, Hemnes and Melhus in addition to pictures from East

Germany, Italy, Spain, Sweden and Russia. Ian, Peter and myself saw parts of the Pope's visit to Poland live from their TV service, but up in Fife, John Branegan said "By noon on June 3 the DXTV was rolling in with Poland, Norway and West Germany prominent. Unfortunately it was rolling from one station to another with five seconds of the Pope's visit to Poland, five seconds of football, five seconds of the Pope, hour after hour. By 1800, Norway Hadsel and Steigen were dominant and both giving quality signals till I went to bed at 2200." While Adrian Boyd, Horsham, and myself saw the test card from Iceland, Guy Stanbury watched pictures from Portugal.
"At around 0630, on June 3, Ch. R1 began to lock and I was able to watch news programmes and a WWII documentary for about an hour or so," writes Sam Faulkner of Burton-on-Trent, Staffs. "As R1 began to fade, tuning to E2 produced the PM5544 test card. Sverige, which was soon replaced by Norway on both E2. $48 \cdot 25 \mathrm{MHz}$, and E3, $55 \cdot 25 \mathrm{MHz}$, with transmitters Bagn. Gamlen, Hemnes, Melhus and Steigen." Both John Branegan and myself saw these early pictures and later. John saw a test card from Sweden, and at 1500, added Hadsel and Trondheim to the Norwegian list.

Around 1130 on the 6th, Sam Faulkner saw RTVE. Spain, on E2, and during the early afternoon John Branegan and myself received a strong test card from the German station, Grünten, Fig. 2, and Denmark, and later John had pictures from Austria, Fig. 3, and Poland. while Sam, using a Skantic 1746 receiver and a 4 -element beam said: "some of the strongest signals so far came from Sweden with many transmitters fighting for predominance." Pictures from Norway were again seen at 1219 on the 11th, Spain at 1700 on the 18th, Poland at 0810 on the 19th and Switzerland at 1214 on the 20th.

70 Centimetres

I had a 539 signal from the Emley Moor beacon. GB3EM, on 432.91 MHz , during an extensive tropospheric opening around 0800 on the 20th. with only a dipole feeding the 70 cm converter in my Yaesu FR101.

Dave Cox G8OPR, Andover. Hants, is now active on 432 MHz and made his first contact with GU3KFT and his first into France with F5NS/P. 30km n.w. Caen. Dave's equipment can run f.m.. s.s.b. or amateur telecision into an 18-element parabeam.

B.WATSON

Radio is a very popular hobby with many people suffering from various forms of physical disability. The reprint of our series: So You Want to Pass the Radio Amateurs' Examination? is currently being transcribed into Braille for the use of blind students.

This article, written by a blind pupil at Worcester College for the Blind, gives an insight into some of the problems to be overcome in pursuing the practical side of the hobby.

You may think that the only work which a blind person is capable of doing is weaving baskets. Well, in the case of Worcester College for the Blind, this is not true. Here, some of the pupils have the opportunity to take a course in radio construction, organised each year by the science teacher.

You may wonder: "How does a blind person know what to look for on a resistor to denote its value? He can't see the colours." Well, a blind person doesn't need to see colours to know the value of a resistor, he just needs to be able to read Braille. Every blind person at Worcester can do this anyway, as it is the main form of communication outside speech. Braille symbols consist of a series of raised dots, shaped like a six on a die, each with some dots missing from it, depending on the letter or series of letters it denotes.

Each resistor is capped with a label bearing a series of three of these symbols, one for each coloured band. The resistors are, in fact, ordinary components taken from a radio or electronics kit, with the addition of the Braille label. None of the other components-capacitors, transistors, coils or transformers-is specially labelled, except that the connecting wires on coils are identified by a number of raised bands round the wire, according to the colour. Most of the circuits are joined together by means of metal strips, fitted over a transparent Perspex circuit board.

Circuits

The course begins by building a simple one-diode set, and progresses through one transistor plus one diode, two
transistors, and so on right up to the end of the course when students can, if they wish, build a six-transistor superhet, with a push-pull amplifier. This is a very slow build-up, as it is difficult for a blind person to work quickly.

The classes are limited to a maximum of five or six, partly because of the lack of equipment, but mainly because it takes so long to teach blind people due to the impossibility of using a blackboard or printed diagram. If a diagram is needed, it has to be drawn in raised lines on a substance called Melinex. Alternatively, it can be drawn in Braille and then printed onto plastics pages; this is called Thermaforming. Both these processes, however, take time. In practice, those pupils with a small amount of sight, sufficient to make out the detail on an ordinary diagram, will use that, and the rest generally don't use a diagram at all.

Progress

Some of the radio sets constructed get quite complicated, and it takes two or more classes to complete one set. Each student works at his own pace, which must make the teacher's job far from easy, as everyone is at a different stage of construction. However, people learn far more that way.

After each set is completed, it is tested using headphones, or an external amplifier and loudspeaker. The more advanced circuits include their own audio amplifier, and can be tested directly on a loudspeaker.

After the radio course, some of the boys go on to construct simple electronic apparatus, under the guidance of the same science teacher. Such things as oscillators, very low power transmitters and some other equipment can be made, taken from the same course as the radio building, but more advanced.

Theory

Another activity at Worcester, also involving radio, needs outside assistance, and each week a man comes down from Birmingham to teach some pupils more of the theory of radio and electronics. This involves some maths and a little knowledge of physics. At the end of the course, it is intended that pupils will be able to take the Radio Amateurs' Examination.

Everymonthis the right frequency

When you're building a major project from.a PW design, you want to be sure of getting every issue in sequence ! Use this order form for a year's supply to be posted to you. ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. $£ 10.60$. Overseas $£ 10.60$.

practical

Please send me Practical Wireless each month for one year. I enclose a Sterling cheque/international money order for.
(amount)
PLEASE USE 8LOCK LETTERS
NAME Mr/Mrs/Miss
ADDRESS

Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to: Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

Now, the complete WK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75

($£ 26.85$ without character generator) inc. $p \& p$.
Display up to $1 / 2 \mathrm{~K}$ memory (16 lines $\times 32$ chars. with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10$ inc. p \& p.
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

MK 14 MICROCOMPUTER KIT
\& 46.55 inc. $p \& p$.
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional 16-lines I/O plus further 128 bytes of RAM.

Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology.

Designed for fast, easy assembly; supplied with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 1SN. Te1: 0223311488.

To order, complete coupon and post to Science of Cambridge for DELIVERY WITHIN 14 DAYS. Return as received within 14 days for full money refund if not completely satisfied.

$$
\text { To: Science of Cambridge Ltd, } 6 \text { Kings Parade, Cambridge, Cambs., CB2 1SN. }
$$

Please send me:
-MK 14 standard kit @ £46.55.
\square Extra RAM @ $£ 4.14$ per pair.
\square RAM I/O device @ $£ 8.97$.
\square VDU module including character generator @ $£ 33.75$.
\square VDU module without character generator (a) $£ 26.85$.
\qquad (total).

Name
Address (please print)
\square Cassette interface module (0) $£ 7.25$.
\square PROM programmer @
\square Power supply @ £6.10.
\square Full technical details of the MK 14
System, with order form.
All prices include p and p.

\&7.25, inc. p \& p.

CASSETTEINTERFACE MODULE
Store and retrieve programs on any cassette recorder. Use for serial transmission down single line at up to 110 baud (teletype speed), e.g. over telep hone line, and to communicate between two or more MK 14s.

PROM PROGRAMMER.

\&11.85 inc. p \& p.

Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (74S571) to replace SC10S monitor for special applications, e.g. model railway control. Software allows editing and verifying.

'WINTON'
 $50+50$ watts, of quite extraordinary amplifier.

Why Extraordinary? Well, the P.W. WINTON is the first Amplifier for the home constructor to offer the enormous benefits of POWER MOS-FETS, and to do so at such low cost.
Power MOS-FET technology is available commercially, and the couple of Amplifiers we have seen are superb examples of the HI-FI designers art. but, and here's the bad news you will have to shell out about SIX HUNDRED POUNDS to enjoy them.
The alternative? - do it yourself, build the WINTON and when it is complated we defy anybody without ten thousand quid's worth of sophisticated lab equipment to tell the difference, but your Wallet will certainly assure you that you've made the correct choice.

What about looks? We think the slimline Burmese Teak veneered cabinet and the Brushed Aluminium fascia look superb, but we are horribly biased, besides we lie a lot too.

Sol to discover the truth for yourself send a 9 p stamp to \mathbf{T}. \& T. - nice people to deal with - and we'll send you a totaliy biased, utterly patronising, and irritatingly smug 'gen sheet (sent in plain brown wrapper, nudge nudgel. or alternatively take our unashamedly immodest word for it and send us your cheque for the best Amplifier buy of your life, or perhaps you'd rather settle for an ordinary Amp.?

The Superlative WINTON is available for your convenience packed as follows: Pack (A) All Capacitors and Fixed Value Resistors, (inc. 7 Amp ripple Res. Caps.) Pack (B) Switch Bank, Switches, Potentiometers, Pre-Sets \& all Knobs Pack (D) Printed Circuit Board (Dinned, Drilled, \& Overlay Printed) \& Pins
Pack Hardware Pack, consisting of precision formed \& punched Chassis,
Black Epoxy finish Heat Sinks, Toak Veneered Cabinet, all screws, wire Black Epoxy finish Heat Sinks, Taak Veneered Cabinet, all screws, wire
fuseholders. etc., and a super Brushed Silver Aluminium Fascia Panet. Pack (E) All Semiconductors, (including HITACHI POWER MOS-FETS)
Pack (F) Special LOW HUM FIELD Toroidal Transformer
COMPLETE KIT, of all parts necessary to build the P.W. WINTON
Order with complete confidence (C.W.O. only please) from:

T. \& T. ELECTRONICS

Green Hayes, Surlingham Lane,

Rockland St. Mary, Norwich, NR14 7HH.
Please Allow 28 Days For Delivery.
all prices inclusive of v.a.t. \& CARriage

BURNS ELECTRONICS

FM DETECTOR MODULE FMD-7

Designed for use with the Yaesu FRG-7*/FRG-7000. Lowe SRX-30, Drake SSR-1 or any general purpose receiver with a 455 KHz IF, the FMD-7 provides channel selectivity, high gain and limiting, quadrature detection, squelch and audio filtering. A buffer is included to isolate the receiver filters from those in the FMD-7.
The module uses a low power, multi-function, linear integrated circuit for reliability and ease of assembly and is available in kit or made and tested form. Full assembly and test instructions are provided.

Price: KIT £18.63 + VAT
Made and tested $£ \mathbf{2 3 . 2 0}+$ VAT
*FRG-7 receiver reviewed in July 1979 Practical Wireless.
Absorption Wavemeter TC-101 with signal probe $\quad \mathbf{£ 3 6 . 9 5}+$ VAT
Crystal Calibrator CC-10
Frequency Standard SD-11
$\mathbf{£ 4 1 . 9 0}+$ VAT
$\mathbf{£ 1 3 8 . 6 0}$ + VAT
Further details of our range of frequency measuring instruments and communications modules on application - send large SAE.

APPLICATIONS MANUAL No. 1 - RESONANT CIRCUITS

Theory and applications of resonant circuits covering filters, amplifiers, oscillators, mixers and multipliers. Circuits are given covering frequencies from $85 \mathrm{KHz}-200 \mathrm{MHz}$ together with block diagrams of larger functions - receivers, transmitters etc.

Price $\mathbf{£ 0 . 6 0}$ post free in UK and zero VAT.
A full range of electronic components, C-MOS, TTL, Hardware, Wires, Connectors etc. are listed in our new issue 10 Component Catalogue together with many attractive discounts, Price $£ 0.25$ post free in UK and zero VAT
All kit and equipment prices exclude VAT which must be added for UK sales at the rate of 15%. Carriage within the UK is included.

43a Chipstead Valley Road, Coulsdon, Surrey, CR3 2RB.
Tel. 01-6687766 (Ansafone)

TRANSISTORISED DC TO AC INVERTERS

$12 v-24 v-48 v D C$ input models 110 v or 240 v AC off load output models Square-wave output or optional filtered models
Frequency 50 Hz or 60 Hz models ($\pm 5 \%$ typical)

24 v DC inputs/ 110 v or 240 v outputs
50 Hz or 60 Hz
N24/A-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts $£ 19.20$ N24/B- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts..29.80 N24/C- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts... $\mathbf{£ 3 6 . 0 0}$ N24/D- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts............................. $\mathbf{E 4 4 . 0 0}$ N24/E- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts552.50 $\mathrm{N} 24 / \mathrm{F}-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts .. $\mathrm{N} 24 / \mathrm{G}-10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts.. $\mathbf{5 6 0 . 0 0}$
.571 .40 ...$£ 83.00$
$\mathbf{f 1 0 1 . 0 0}$
$\mathbf{4} 15.00$

Filtered waveform models available at 15% extra.

All silicon power transistors Separate driver and output transformers
Designed for cool continuous operation Aluminium ventilated cased units DC input fused D

12 v dc inputs/ 110 v or 240 v outputs 50 Hz or 60 Hz
N12/A- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts. . $\mathbf{1 8 . 0 0}$ N12/B $-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 60$ watts $£ 23.20$ N12/C- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts... £28.10
 N12/E- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts 42.00 N $12 / \mathrm{F}-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts .. f50.60 N $12 / \mathrm{G}-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts. $£ 58.00$
$\mathbf{~} 69.80$
Filtered waveform models available at 15% extra.
$48 v$ DC inputs $/ 110 v$ or $240 v$ outputs
50 Hz or 60 Hz
N48/A- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 50$ watts $£ 20.00$
N48/B- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts $£ 31.60$
N48/C-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts £37.00
N48/D- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts........................... $\mathbf{£ 4 5 . 0 0}$
N48/E-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts $£ 54.00$
N48/F-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts $£ 62.00$
N48/G- $10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts $£ 73.00$
N48/H— $10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 500$ watts
$\mathrm{N} 48 / \mathrm{H}-10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 500$ watts $\mathbf{£ 8 6 . 0 0}$
N48/l-12" $\times 10^{\prime \prime} \times 8^{\prime \prime} 700$ watts£112.00
N48/J-12" $\times 10^{\prime \prime} \times 8^{\prime \prime} 1000$ watts£160.00 N48/K— $12^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime} 1500$ watts............... $\mathbf{£ 2 1 0 . 0 0}$

Filtered waveform models available at 5\% extra.

Please add $£ 5.00$ carriage per unit U.K. overseas at cost
Delivery 10 to 21 days subject to availability - Cased sizes subject to variations Callers strictly by appointment -- Telephone enquiries 01-736 0685

ELECTROVANCE

125 HAZELBURY ROAD, FULHAM, LONDON SW6 2LS

Garanics CONTINENTAL SPECIALITIES CORPORATION
 OUICK TEST SOCKETS 8 BUS STRIPS - COMPLETEEY MJDIIAR FDR INSTANT PROTOTYPING
 all standard components
 all standard components
 * Five solderiess tie-points per terminal
 * SNAP/LOCK design permits expansion as
 wide as your needs
 * Convenient, moulded-in mounting holes
 $\mathbf{£ 1 . 1 5}$ to $£ 7.20$
 EXPERIMENTOR ${ }^{\text {TM }}$ SOCKETS \& BUS STRIP: BREADBOARONG FOR EVERY APPLICATION
 \star Exclusive all-in-one design - five point ter-
 minals plus two bus strips
 ninals plus two bus strips
 Choice of $.3^{\prime \prime}$ (8 mm) and..$^{\prime \prime}(15 \mathrm{~mm})$ centres
 accommodate small and large ICs. including
 - Add-on quad bus strip for.
 - Add-on quad bus strip for data buses, power
 $\mathbf{£ 1 . 6 0}$ to $\mathbf{£ 6 . 3 0}$
 MAX-100: 100 MHz 8 -DIGIT FREQUENCY COUNTER
 Laboratory accuracy for the shop or field.) \star Measures 20 Hz - 100 MHz guaranteed better than 500 MHz with Pre-scaler
 \star Easy-reading, bright eight-digit $0.6^{\prime \prime}$ LED display
 * Direct readout with 1 Hz resolution
 \star Fully automatic - no switches to se
 * Crystal timebase accurate to 3 ppm
 \# Rugged, low-drain design operates on alkatine/NiCad batteries or AC tine, with adap- tors $\mathbf{£ 7 7 . 5 5}+\mathbf{V . A . T}$.
 This is only part of the
 now stock the products from PROTO-BOARD ${ }^{\text {B }}$ SOLOERLESS BRFS 3 BDAROS: FDR THE ULTIMATE IN PROTOTYPING EFFICIENCY \& CREATIVITY \star All the time- and money-saving advantages \star All the time- and money-saving advantage of QT sockets and bus strips \star Binding posts for extra connecting convenience
 \star Mounted on sturdy baseplates for extra durability and convenience PB6, £9.20; PB100, $\mathbf{£ 1 1 . 8 0}$
 LM-1CIRCUIT-PDWERED LDGIC MONITOA This self-contained, compact, pocket-sized unit simultaneously reads the logic state of every node of any DTL, TTL, HTL or CMOS DIP IC up set up, calibration or adjustment ... even set up, calibration or adjustment even under test, with its own power-seeking gate network. Fast, accurate and reliable, LM-1 can network. Fast, accurate and reliable, LM-1 can cut testing and troubleshooting time to a fraction of ordinary test methods. $\mathbf{£ 2 8 . 7 0 + V . A . T . ~}$
 LP-1 MEMORY PROBE
 With a guaranteed minimum detectable pulse width of 50 nanoseconds and a maximum input frequency of 10 MHz , this probe is an inexpensive workhorse for any shop, lab or travelling tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transitions indefinitely, replacing separate level detectors, pulse stretchers, pulse detectors and pulse-memory devicss. And, it's reverse-voltage protected to 3 GV . over-voltage protected to $\pm 50 \mathrm{~V}$ continuous. E send large SAE ($9 \frac{1}{2} p$ stamp) for full CSC iflustrated catalogue.
 Add VAT (15%) and postage (min. 50 p) to above prices

CATRONICS LTD., COMMUNICATIONS HOUSE, (Dept. 989) 20 WALLINGTON SQUARE, WALLINGTON, SURREY SM6 8RG. Tel. $01-6696700$ i9 a.m. to 5.30 p.m. Sat. 1 p.m.)

J. BIRKETT

(Partners: J. H. Birkett. J. L. Birkett) Radio Component Suppliers 25 The Strait, Lincoln. LN2 1JF
MINIATURE VARIABLE CAPACITORS $25 \times 25 \times 25 \mathrm{pf}$ \& 75 p .

UNMARKED GOOD 400 mW ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, ~ 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v} .33 \mathrm{v}, 36 \mathrm{volt}$,
All al 10 tor 40 p .
50 OC 71 TRANSTORS untested for 75 p .
1 AMP TRIACS 400 PIV 1 AMP © 35 P each.
3/16"COIL FORMERE with coro at 6 for 25p.

2 GHz STRIPLINE NPN TRANSISTORS at $£ 1$ Bach.
DUAL GATE MOS FETS LIKE $40873 \ominus 33 \mathrm{P}, 4$ for $£ 1.10$.
X BAND GUNN DIODES CYX 114 . 83.
X BAND GUNN DIODES CYX 11 A E E3.
TOKO CERAMIC FILTERS CFS 10.7 MHz B.W. $\pm 30 \mathrm{KHz}$. 30 p
GURATA EEADS FX $1115 \quad 15 \mathrm{p} .7 \mathrm{MHz}=27 \mathrm{p}, 5.5 \mathrm{MHz}$ - 27 p .
VHF TUBULAR TRIMMERS Bp f 10 p , 18 pf e 15 p .
TWO METRE 10X CRYSTALS 8010 KHz - 40D each.
30 ASSORTED 10XAJ CRYSTALS e E1.10, 20. FT 241A CRYSTALS \& E1.10, 20
A8sORTED FT 243 CRYSTALS © £1.50. 25. ASSORTED 10X e E1.10.
BUTTERFLY VARIABLE CAPACITORS PRE-SET Spindles easily extended. $25 \times 25 \mathrm{pf}$ © 60 p ,
$38 \times 38 \mathrm{pt} \pm 60 \mathrm{p}, 38 \times 38 \mathrm{pt}$ Wide Spaced - 65p.
VEANITRON FM4 10.7MHZ FILTERS © $50 \mathrm{p}, 3$ for $£ 1$

ERIE REDCAP MINIATURE O1UF $100 \mathrm{~F}, \mathrm{~W}$
iuf 25v.W., ELECTROLYTIC CAPACITORS \& 8 for 25p.
50. BC 107-8-9 TRANSISTORS assorted Untested * 67

HFC 600 FREQUEN CY COUNTER $600 \mathrm{MHz}=$ R11B. S. A. E, for lenfiet,
THYRISTORS 10 amp TYPE 100 PIV \& 25 p, 400 PIV © EOp, 800 PIV e 80 p .
100 ASSORTED MULLARD C280 CAPACITORS for 67 p .
STUD MOUNTING DIODES 100 PIV 10 amp e 15 p , $100 \mathrm{PIV} 20 \mathrm{ampe25p}$
MIDGET AIRSPACED TRIMMERS 20pf 15p each.
MINIATURE NON-POLARISED CAPACITORS $1 \mathrm{uf} 63 \mathrm{v} . \mathrm{w.}$. - 5 p , 4 . 7 uf 63v.w., 10 p ,
WIRE WOUND POTENTIOMETERS $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ Lin. All 30 peach .
NULLARDTRANSISTORS BC 54B, BC 549: Both 10p, 8 for EOp.
SOLDER-IN FEED CAPACITORS 8.8pt, 300pf, 1000 pt . All 20p doz.

MULLARD STRIPLINE NPN TRANSISTORS BF 382 e 26 F .
MULLARD ELECTROLYTICS 2800 uf $100 \mathrm{v.w.}$. - E1 ench.
TOYOCOM 10.7 MHz FILTER TYPE 10M-2A with 110 10, 1 10AO2 e ez set.
VHF POWER TRANSISTORS R5174 10 watt 175 MHz 13 volt \& ER .50 .
MINATURE CERAMIC TRINMERS 2 2 Op
To 140 pf All at 15 poach
MAINS TRANSFORMERS 240 volt input $30-0-30$ volt. 500 mA - $\mathbf{E 1 . 3 0}$ (P\&P 25p) or 24 volt Tapped at 14 volt 1 amp e E1.30 (P\& P 25p).
MOTOROLAI.C. I,F. AMPLIFIER 400 KHz TO 50 MHz MCi350P \& E0p. (MC1350p)
PLASTIC.SIICON BRIDES 100 PIV AMp \& 20p, 20 PV 4 amp *60p.
Please add 20p for post and packing on U.K. orders under £2
Unless otherwise stated.
Overseas orders postage at cost.

STEREO DYNAMIC RANGE CONTROLLER CP-DR1

The CP-DR1 has two main applications: It may be used to compensate for any compression or peak limiting which may have been applied to radio broadcasts or commercial gramophone recordings and thus restore losț realism. It may also be used to make "noise free" tape recordings, as an additional $30-40 \mathrm{db}$ of dynamic range can be encoded and recorded on to most cassette recorders and then decoded and recovered on replay. The unit may also be used as a compressor for listening in high noise environments (the motor car or workshop?) and for the preparation of "constant volume" background music.
CP-DR1 - $£ 42 \cdot \mathbf{3 0}$ incl. (U.K.). $\mathbf{£ 4 4 - 3 0}$ incl. (Export).
Also available: Pre-Amplifiers, Power Amplifiers, Filters, Peak Programme Monitors, Active Crossovers, Stereo Function Modules, Power Supplies, plus all pots, switches, etc.

TREGUTI RUDID Ltd.

DEPT. PW9, 13 HAZEL.BURY CRESCENT, LUTON, BEDS. LU1 1DF
TELEPHONE: 058228887 SEND LARGE S.A.E. FOR DETAILS

SPECIAL OFFER SEMICONDUCTORS
TBA800 50p. LM3900 40p. 7418 pin 6 for f1.00. NE555 22p. ZN414 75p. IN40005 10 for 35p. 723 REGS 35p. OC140 TRANS, 40p. BX504 opto isolators 25p. 2N5062 (100V 800 MA SCR) 18 Bp .
MINIATURE TOGGLE SWITCHES. SPST $8 \times 5 \times 7 \mathrm{~mm} 49$ p. DPDT $8 \times 7 \times 7 \mathrm{~mm} 53 \mathrm{p}$. DPDT centre off $12 \times 11 \times 9 \mathrm{~mm} 78 \mathrm{p}$. HEAVY DUTY TOGGLE DPDT 240 V AC 10 amps 35p.
MINIATURE SOLID STATE BUZZERS. $33 \times 17 \times 15 \mathrm{~mm}$ white plastic rectangular case, output at 3 feet 70 dB , Low consumption only $15 \mathrm{MA}, 4$ voltage types available, $6-9-12$ or
24 V DC 75 p each. LOUD BUZZER. 50 mm diameter 6 or 12 volts 60 p . GPO $24 V$ DC 75 p each. LOUD BUZZER. 50 mm diameter 6 or 12 volts 60 p . GPO ADJUSTABLE BUZZER, 6-12V DC 25p.
DE-SOLDERING TOOL. Good suction, Teflon nozzle, $\mathbf{£ 4 . 7 5 p}$
MOTORS. Miniature model motors $1.5-6 \mathrm{~V}$ DC 20p. 12 V DC 5 pole motors 35 p . 8 track replacement motors 12 V DC 55 p . 'Big inch' tiny precision motor 115 V AC 3 rpm 30 p . Smiths Clock Motor Synch., $240 V$ AC 1 rev. per hour $£ 1.75$ p. SURPLUS BOARDS
No. 1 has 1150 V 2 , 5 amp scrs., one relay and various transistors including UJT £1.95p.
No. 2 car radio RF/IF boards 2 transistors, LM 382 IC trimmers IF's etc 65 . No. 2 car radio RF/if boards 2 transistors, LM382 IC trimmers IFs etc. 66 c . TELEPHONE PICK UP COIL. Suction type with lead and plug 55p.
Terms - Cash with order (or official orders from shcoois etc.) Postage 30p. (Overseas at cost) VAT inclusive. Due to VAT increase please add 4% to prices. SAE for illustrated lists.

PROGRESSIVE RADIO
31, Cheapside,
Liverpool, L2 20́y

YOURSELF FOR A

 BETTER JOB "wDo you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

MORE PAY!

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

HOME OF BRITISH wSTITUTE OF ENGINEERING TECHNOLOGY

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

Receivers and Components

ElECTRONIC COMPONENTS. Send S.A.E. for list. Special offers monthly. Radnor Supplies, 23 Arbury Road, Nuneaton, Wark's.

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

100 MIXED COMPONENTS $£ 2.75$, 10 LEDS 90p. Lists 15p. Sole 37, Stanley Street, Ormskirk, Lancs. L39 2DH.

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS DF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS 1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice
2. The publishers reserve the right to refuse or withdraw any advertisement. 3. Although every care is taken, the Publishers shall not be hable for cterical or printers' errors or their consequences.

VALVES

Radio-T.V.-Industrial - Transmitting Projector Lamps and Semiconductors

We Dispatch Valves to all parts of the world by return of
post. Air or Sea mail, 4000 Types in stock, 1930 to 1976 . post, Air or Sea mail, Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase all types of new and oxed Valves. Proje wish to purchase aiconductors.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parede, East Wittering,
West Wittering 2023 (STD Code 024366

BRAND NEW COMPONENTS BY RETURN Electrolytic Capacitors $\quad 16 \mathrm{~V}, \quad 25 \mathrm{~V}, \quad 50 \mathrm{~V}$
 $220-8 p . \quad(50 \mathrm{~V}-10 \mathrm{pl}$.
$1000 / 15 \mathrm{~V}-15 \mathrm{p}$.
$1000 / 25 \mathrm{~V}-18 \mathrm{p}$. Subminiature bead tantalum elactrolytics.

$2 / 35 \mathrm{~V}$	$4 \cdot 7 / 25 \mathrm{~V}-11 \mathrm{p} .10 / 25 \mathrm{~V}$,	$15 / 16 \mathrm{~V}-14 \mathrm{p}$.
$22 / 16 \mathrm{~V}$,	$33 / 10 \mathrm{~V}, 47 / 6 \mathrm{~V} / 10 \mathrm{~V} / 3 \mathrm{Z}$	$100 / 3 \mathrm{~V}-18 \mathrm{p}$.
$15 / 25 \mathrm{~V}$,	$22 / 25 \mathrm{~V}$,	$47 / 10 \mathrm{~V}-24 \mathrm{p}$.

 Polystyrene E 12 Series 63 V . Hor. Mounting Miniature Polyester 250 V . Vert. Mtg. E6 Series.
 24 p. Mylar (Polyester) Film 100 V . Vertical Mtg.
$.001,002, .005-3 \frac{1}{2} p . \quad 01, .02-4 \frac{1}{2} p .04,05-6 \frac{1}{2} p$. Miniature Film Resistors Highstab. E12 E\%,
 0.500 watt 10Ω to 2 M 7 Q ... $2 p$ 1 N4148-2p, 1 N4002-4p, 1N4006-6p, 1 N4007-7p BC107/8/9. BC147/8/9, 8C157/8/9, BF194 \& 7-10p 8 Pin Dil i.c's 741's-18p. 555's-24p 20 mm . fuses $.15,-25,5.1$.0. $2.0,3.0$ \& $5 \mathrm{~A}-3 \mathrm{p}$. 20 mm . fuseholders P.C. of Chassis Mig.-5p Post $10 p$ (Free over £4!. Prices VAT
THE C. R. SUPPLY CO.

127, Chesterfield Road, Sheffield S8 ORN

AM/CW/SSB COMMUNICATION RECEIVER and preselector modules with diodeswing.
KHz BW whits Brand new high precision HC33/U: $1 \cdot 0.2 \cdot 0$,
CRYSTAL

 Large stocks of standard freas for MPU etc. Any frea made
to order 6 weeks from $£ 3.75$.
 manufactured to fit TRIO and
TS-520, TS-820, $225 \cdot 90$ each.
All prices inc. VAT and UK post. SAE Lists.
P. R. GOLLEDGE ELECTRONICS of : 046073718

SURPLUS TO INDUSTRIAL REQUIREMENTS

50 Mixed Values Potentiometers Preset and Spindle $£ 1.20$ 50 Mixed Miniature Electrolytics
5 Single-Pole Relays, Mixed Voitage
25 Large Can Electrolytics Mixed CV $\mathbf{E 1 . 2 0}$ 50 Solenoids 230V. ac E1. 20 ع3.30 c2.50 50 Solenoids 12 V . dc £2.50

All prices inct. VAT \& P. \& P

BLORE-BARTON LIMITED Reedham House Burnham Bucks.

1920 to 1950

Recelvers, valves, components, service data.. historical research books, magazines, repairs and restorations. A compadio.
S.a.e. with enquiries and for monthly newshee

THE VINTAGE WIRELESS COMPANY, 64, Broad Street,
565472.

Books and Publications

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine oppor tunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instruc tions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work manual co materials required, all instructions, rewind chart you need, make and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $£ 4.00$ plus 30 p P\&P. UK. CWO, to
INDUSTRIAL SUPPLIES, 102 , Parrswood Rd., INDUSTRIAL SUPPLIES, 102 ,
Withington, Manchester 20, Dept. PW.

Wanted

WANTED Marconi Kestrel 1963. Instruction manual TAGG, 22 Hambledon Road, Waterlooville, Hants.

Ladders

LADDERS varnished 21' Extd. £34.40. Cart. £3, Leaflets. Callers Welcome. Alloy Ext. to $62 \frac{t^{\prime}}{2}$. Ladder Centre (WLS3), Haldane, Halesfield (1) Telford. 586644

What's an electronics enthusiast like you doing in an advertisement like this?

We reckon that if you're a regular reader of this magazine, you might very well be the sort of man or woman who'd be interested in joining Marconi Avionics as an Electrical Inspector.
We say this with some confidence because if you're used to building up your own equipment, you're probably well used to finding your way round electronic circuits and wiring and that's just the sort of background we're looking for.
As an Electrical Inspector with us you'll be involved in the inspection of printed circuit boards and assemblies against drawings on a wide range of equipment. Mind you, this equipment will be considerably more complex than any you're likely to have worked on previously, for at Borehamwood we're engaged on a variety of
exciting and challenging projects relating to advanced electronic systems and hardware for such technically sophisticated aircraft as Nimrod and Tornado. But, provided you have a good basic background knowledge of electronic circuitry, we can soon train you to take your place in one of our inspection teams.
We offer a good salary, an attractive range of benefits and the opportunity to make your hobby pay off both financially and in terms of job satisfaction.
Write with details of your experience to Chris Hill at Marconi Avionics Limited, FREEPOST, Elstree Way, Borehamwood, Herts WD61BR. Telephone 01-953 2030 ext 3449 during office hours or 01-207 3455 anytime.

ASSISTANT FILM RECORDISTS \&TRAINEES

WOULD YOU LIKE TO SPECIALISE IN SOUND WITH THE BBC TV'S FILM DEPARTMENT? THERE ARE VACANCIES IN WEST LONDON.

ASSISTANT FILM RECORDISTS work initially in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes. There are prospects of progressing to mobile Film Recording work in due course. If you have professional experience in this field, the starting salary would be $£ 4185$ p.a. perhaps higher if exceptionally qualified, rising to $£ 5605$ p.a. An additional allowance is paid for shift work (not nights). Normal hearing is essential.
EXCELLENT TRAINING is given if you have ambitions to do this type of work but lack experience. You will need 'O' level standard of education or equivalent, preferably including Physics and/or Maths and a basic knowledge of electronics. You should be able to demonstrate a practical interest in sound and recording. Trainees will start at a salary of $£ 3800$ p.a. early in 1980 and should qualify for promotion to Assistant Film Recordists about a year later. Conditions of Service are good. Telephone or write immediately for an application form and further particulars, enclosing addressed envelope and quoting reference $2383 / \mathrm{PE}$, to Appointments Department, BBC, London W1A 1AA Telephone 01-580 4468. Ext. 4619.
BGB tv

Inner London Education Authority

TECHNICIAN

Grade 4

required at South Thames College, Wandswsorth High Street, SW 18 2PP. Tel: 870 2241. For Radio, Television and Electronics Servicing in the Engineering Processes Dept.
Applicants should have at least ONC, OND, 2 ' A ' levels and some ' O ' levels, ordinary City and Guilds or equivalent qualifications and a minimum of 7 years experience (including training period).

Salary scale $£ 3222-£ 3708$ plus $£ 525$ London Weighting

[^1]
Service Sheets

SERVICE SHEETS, Radio, TV etc.. 10.000 models. Catalogue 24 p , plus S.A.E. with orders. enquiries. TELRAY, 154 Brook Street, Preston PR1 7HP.

LARGE SUPPLIER OF SERVICE SHEETS

and Colour Manuals, TV Mono Radios, Teners, Tape Recorders and Colour Manuals, TV Mono Radios, Teners, Tape Recorders, Record Players. Transistors, Stereograms. all at 75 p each + S.A.E except colour TV and Car Radios. State if Circuit will do, if sheets are not in stock. All IV Sheets are full lengths 24×12, not in Bits \& Pleces. Free Fault Finding Chart or IV Cataiogue with
C. CARANNA (Mail Order)

71, Beaufort Park, London, NW11 6BX 01-4584882

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc., with free fault-finding guide, from 50 p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

HUGE G.T. TV/RADIO/ETC. CATALOGUE

 (with $\mathbf{£ 4}$ worth of useful vouchers)Lists thousands of service sheets, manuals, etc. Many unobtainable elsewhere. Plus up dated Chassis Guide, newsletter, etc. Essential for every firm/engineer - Save ffs - only $£ 1$ plus large S.A.E.
S.A.E. for details of our Giant Service Sheet Collections - not available elsewhere

G.T. TECHNICAL INFORMATION SERVICES

76 Church St, Larkhall, Lanarkshire ML9 1HE

Largest stocks of manuals, etc. anywhere. $£ 1$ + large S.A.E. brings any requested full size single service sheet. Service sheets from 50p: S.A.E. for full detalls of this plus unique T.V. Publications. The new 1979 British Colour T.V. Repair Manual and the new First Foreign Colour T.V. Repair Manual for $£ 4.90$ each - both for $£ 9.50$.
S.A.E. brings full details of these and other unique publications.

Miscellaneous

SIGNAL INJECTORS $£ 3 \cdot 25$. Transistor Testers, uses your meter, $£ 6 \cdot 25$. SAE Details. Trade enquiries welcome Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

GUITAR/PA

MUSIC AMPLIFIER
100 watt with superb treble/bass overdrive. 12 months
guarantee. Unbeatable at $\mathbf{£ 4 2 ; 6 0}$ watt $\mathbf{£ 3 7 ;} 200$ watt $£ 58$; guarantee. Unbeatable at £42; 60 watt $£ 37 ; 200$ watt $£ 58$;
100 Watt twin channel sep. treble/bass per channel $£ 55 ; 60$ watt £48; 200 watt $£ 72 ; 100$ watt four channel sep. treble/bass per channel $£ 75$ boxes, great sourd $£ 8.50$; wast $\mathbf{8 9 . 5 0 ;}$ overdriver: fuzz with treble and bass boosters £14; 100 watt combo superb sound overdrive, sturdy construction, castors, unbeatable, $£ 89$; twin channel $\mathbf{£ 9 9}$; bass combo $\mathbf{£ 9 9 ;}$
speakers 15 in. 100 watt $£ 35 ; 12 \mathrm{in}$.100 watt $£ 22.50 ; 60$ watt £14.50. 10 watt 10 in . £3.50, 8 in . £3.00. Send Cheque or P.O. to

WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave., Dukinfield, Cheshire. Tel 061-344 5007 or 061-308 2064
ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Rama Constructor Services, Masons Road, Stratford-upon-Avon. CV37 9NF.

HOW'S THE QRM?

DIG RARE DX from tiring whistles and cw interference with a Tunable Audio Notch Filter, between your receiver
£ 8.90.
LOSING TIME? MSF 60 KHz Receiver, data and audio outMuts, built-in antenna 1000 Km range, $\mathbf{£ 1 3 . 7 0}$
S.L.F. 7 EXP $10 \mathrm{~Hz}-200 \mathrm{KHz}$. logic and variable sine or square

SIG. We outputs, linear frequency scale, $\mathbf{£ 1 0 . 8 0}$.
LONG Wuilt-i
LONG WAVE DX ? $100-600 \mathrm{KHz}$ Converter, built-in
antenna tuner, $4.1-4.6 \mathrm{MHz}$ output for FRG7 etc, $\mathbf{E 1 0 . 9 0}$.
Each easy-build kit includes all parts, pinted circuit, cas postage etc, money back assurance so SEND off NOW
Giro 1 - $923-4000$.

CAMBRIDGE KITS
45 (PW) Old School Lane, Milton, Cambridge.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Coningsby Gdns ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	402	202
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30
SILVER PLATED COPPER WIRE				
14, 16, 18	4.50	2.25	1.44	. 90
20 \& 22	5.00	2.85	1.74	1.06
24 \& 26	5.70	3.31	2.00	1.22
28 \& 30	6.67	3.86	2.35	1.44
Prices include P \& P and VAT SAE brings list of copper \& resistance Wires Dealer Enquiries Invited				

50 METRES connecting wire five 10 metre lengths assorted colours and sizes 85 p inc. P. \& P. D. Hooker, Pennywood, Clarke Road, Greatstone, New Romney, Kent. TN28 8PB.

SUBERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI, (Dept No.25) St. Wilfrids, Foundry Lane, Halton, Lancaster. LA 6LT.

SOLAR CELLS, Batteries, Panels, Thermoelectric Generators, Heat pipes, Books etc. Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE. SAE FOR LISTS. £1.25 fo Booklet "Nickel Cadmium Power" plus Catalogue. Write or cali, Sandwell Plant Ltd, 2 Union Drive, BOLDMERE O or see them
London WC2

PRACTICAL WIRELESS PROJECTS P.C.B.'s. January 1979. Delay line 250p. Sandbanks 250p. February. Hythe Receiver 400 p. March. Hythe Receiver 210 p . Soundlite Convertor 400 p . Toneburst Generator 110 p . Wideband Noise Source 70 p. April. F.M. Multitester 150 p. May. Xtal Calibrator 110 p. Car Probe with Free Fascia Panel 70 p. Imp 110p. Gillingham Follow Up 90p. June. Logical Noughts and Crosses. WR046 400p. WR047 475p. WR048 300p. WR049 100p. H.T.E. Touch Lightdimmer P.C.B. + Circuit Diagram 90p. H.T.E. 4 Watt Electronic Siren P.C.B. + Circuit 90p. Complete Kit 349p. See August issue for other boards. Prices include dispatch by First Class post. H.T.E. (Dept. P.W.), 50 Milnefield Avenue, Elgin, Morayshire IV30 3EL.

KIT OF PARTS for Wireless World Stereo Tuner, or Ready Built and aligned, Semiconductors, Knobs, Meters, Resistors, Capacitors, Switches, Transformers. Catalogue 35p. R. B. Electronics, 24 Springfield Park, Holyport, Maidenhead 39798.

AUDIO OSCILLATOR Sine- Square - R.I.A.A. outputs. 15 Hz to 200 KHz in four ranges. Thermistor stabilised Assembled P.C.B. ready to use. 9V supply required. S.A.E data. $£ 16.30$ inclusive. Quantec, 40 Aln Court, Ellington, Morpeth, Northumberland. Morpeth 860101.

KEEP ONE HANDY IN THE WORKSHOP

The unique aerosol treatment for minor burns and scalds. From Boots and other Chemists.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for insertions

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

			.

\qquad
ADDRESS

INDEX TO ADVERTISERS

A. H. Supplies	\therefore	2
Advance Design		… 10
A.G.E.C. - Marconi	Electronics	Co. 75
Altek Instruments 2
Amateur Electronics	...	60
Ambit International	Cover II
Amcomm Services	49
Astra-Pak	\cdots	70
Barrie Electronics	\cdots *	14
B.B.C.	\cdots *	76
Bearman P.H.	-.. ${ }^{\text {a }}$	73
B.I.E.T.	… -	73
Bi-Pak Ltd.	"*,	19
Birkett J.	,	72
Blore-Barton Ltd.	\ldots	74
Boss Industrial Mouldir	gs Ltd.	11
Bowes C.		. 4
British National Radio \&	\& Electronics	
School	… \quad.	6, 13
Bredhurst	.,...	51
Burneze	77
Burns Electronics	',	70
Calscope	**	16
Cambridge Kits	\ldots	77
Caranna C.	76
Catronics	\cdots	72
Chordgate	6
Crimson Elektrik	14
Chromasonics 3	7
Chromatronics	... - ...	18
Colomor		4
Contour Electronics (Co	mptech)	16
Cox Radio (Sussex) Ltd	,	74
Crescent Radio Ltd.	\cdots	80
C. R. Supply Co.	\cdots - \quad.	74
C. T. Electronics	.	29
C.W.A.S. Alarm	\cdots	77

[^2] otherwise disposed. of in a mutiated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pietorial matter whatsoever

Radio Exchange Ltd.
Rocquaine Electronics
R.S.T. Valve Mail Order Co.
7
17

Sandwell Plant Ltd. 77
Scientific Wire Co. The 77
Sonic $\mathrm{Hi}-\mathrm{Fi} \quad .$. 77
15
51
$\begin{array}{lll}\text { Sota Communcations } \\ \text { South Midlands Communications Lid. } & 47\end{array}$
Southern Valve Co.
Stephen-James Ltd.
S. W. Aerials 49

Swanley Electronics 6

Tandy Corporation Ltd.
Teleradio
Thanet Electronics
Timetron
T. K. Electronics
T.T. Electronics

Van Karen Publishing
Vintage Wireless Co., The $\ldots .$.

Waters \& Stanton Electronics	\ldots
Watford Electronics	49

Western Electronics
79
59
77
Wilmslow Audio

80

IB3GT	0.86	6AX4GTB	1.15	${ }_{6} 6 \mathrm{CY5}$	1.15	12AT6	0.69	ECF200	1.03	EM84	0.69	PCL81	0.75	PY82	0.63	UCC84	0.86
IR5	0.57	6AK5GT	1.49	6CY7	1.15	12AT7	0.57	ECF201	1.03	EM87	1.15	PCL82	0.92	PY83	0.81	UCC85	0.69
1X2B	1.38	6BAG	0.52	60068	1.67	12AU6	0.75	ECF801	1.09	EY81	0.63	PCL84	0.86	PY88	0.86	UCF80	0.86
5 5AT8	0.92	6BE6	0.55	6DT6	0.92	12AU7	$0 \cdot 54$	ECF802	1.09	EY87	0.57	PCL86	0.98	PY500A	1.73	UCH42	1.15
$5 T 4$	0.86	6BF5	0.98	6DT8	0.92	12AVG	0.98	ECH42	1.27	EY88	0.63	PCL805	0.92	$\Pi 21$	10.93	UCH81	0.75
5046	0.69	6BF6	0.85	6DW4	1.03	12AV7	1.16	ECH81	0.63	EY500A	1.73	PD510	3.86	$\Pi 22$	10.93	UCL81	0.81
548	0.86	6BG6G	1.49	6ES5	1.15	12AX7	0.63	ECH200	0.92	EZ80	0.57	PL36	1.27	U25	1.15	UCL82	0.86
5 V 4 G	0.69	6BH6	0.98	GEV5	1.73	12AY7	0.98	ECL80	0.69	EZ81	0.57	PL81	0.92	U26	1.15	UCL83	0.92
$5 \times 4 \mathrm{G}$	0.92	68J6	1.38	6EW6	0.92	12BA6	0.75	ECL81	0.86	GY501	1.03	PL82	0.63	UABC80	0.66	UF41	1.15
5×8	1.03	68.57	0.75	6GH8A	0.92	12BF6	0.77	ECL82	0.69	GZ30	0.75	PL83	0.57	UAF41	0.92	UF80	0.57
5 Y3GT	0.75	6BK4B	1.61	6GK5	0.81	12BH7A	0.86	ECL83	1.33	GZ32	0.75	PL84	0.86	UBC41	0.81	UF85	0.57
5746 T	0.75	6BN4A	1.03	6GK6	1.03	12BL6	0.81	ECL84	0.81	GZ33	4.38	PL504	1.38	UBC81	0.68	UL84	0.98
6 6A 7	$0 \cdot 69$	6BN6	0.92	6.54	1.38	12806	1-13	ECL85	0.75	OA2	0.75	PL508	1.62	UBF80	0.69	UM80	0.69
6AC7	0.92	6807A	0.81	6J5GT	0.92	12BY7A	0.92	ECL86	0.38	0A3	0.86	PL802	3.22	UBF89	0.69	UM81	0.86
6 6D8	$0 \cdot 69$	EBR8A	1.38	6. 56	0.63	12CU6	1.03	EF80	0.46	OB2	0.81	PY81	0.81	UBL21	1.03	UM84	0.52
6AF4A	0.92	6BS7	$2 \cdot 65$	$6{ }^{6} 7$	B. 92	19405	0.86	EF85	0.55	OB3	0.86						
6AG5	0.75	6818	0.98	6K5GT	0.85	19BG6G	0.57	EF86	0.69	0C2	1.61						
6 6AG7	0.98	68W?	1.15	6K8GT	0.98	35A3	0.81	EF92	1.16	0C3	0.98	OSCHLLOSCOPE TUBES					
6AH6	1.09	6876	0.75	6LEGT	1.27	35B3	0.75	EF97	0.81	OD3	0.86						
6AJ5	0.75	6827	0.81	6N7GT	0.98	35c5	0.98	EF98	1.03	PABC80	0.52	current production. Made in USSR					
6AK5	0.63	6 C 4	0.63	607	1.03	$50 \mathrm{C5}$	1.16	EF183	0.81	PC86	1.03	One inch Tube Type 3L011. This tube is a					
GAKB	0.86	6C5GT	0.69	6SA7	0.92	50EH5	0.98	EF184	0.81	PC88	1.03 0.57	good replacement for 1CP31. Tube					
6 AK7	0.98 0.46	6C6	0.57 0.69	6SG7	0.92	DAF96	0.69 0.69	EFL200	1.84	PC96 PC97	0.57 1.09						
6AL5	0.46 1.38	6C8G	0.69	6SK7	0.92	DF96	0.69 1.16	EH90	0.69 2.87	PC97 PC900	1.09 1.15	characteristics are identical with those of					
6AM6	1.38	6CB6	0.63	6SL7GT	0.81	DKg2	1.16 0.69	EL33	2.87	PC900	1.15 0.57	1 CP31. As the connections are different the					
6AM8	0.81	6CG7	0.81	6SN7GT	0.81	DL 96	0.69	EL36	1.73	PCC84	0.57						
6an5	2.87	6CG8A	0.86	6807	0.92	ECC84	9.69	EL81	0.92	PCC85	0.69	tube is supplied complete with base,					
6ANG	0.98	6CM7	0.92	6SR7	0.92	ECC85	0.55	EL 82	0.69	PCC88	0.75	connection diagram and technical data $\mathbf{£ 1 2 . 0 0}$ plus $£ 1.80$ VAT. Three-inch tube					
6405	0.98	6CN7	1.38	6VGGT	0.92	ECC86	1.44	EL83	0.69	PCC89	0.86						
6AS6	1.15	6C08	0.86	6×4	$0 \cdot 81$	ECC88	0.86	EL84	0.75	PCC189	1.15	Type 3BP1. This well known tube used in					
6AS7G	1.38	6CS 7	0.98	6X5GT	0.69	ECC89	[0.92	EL86	0.86	PCF80	0.98						
6476	0.86	6CU5	1.15	6X8	0.92	ECC189	0.92	EL95	0.81	PCF82	0.52	"PURBECK" Oscilloscope can be supplied					
6AU6	0.57	6cub	1.15	${ }^{12 A 6}$	0.69	ECF80	0.69	EL504	1.09	PCF84	0.75	for $\mathbf{£ 7 . 5 0}$ plus $£ 1.12$ VAT. 14 -pin base for the above $\mathbf{f 0} \mathbf{8 0} \mathbf{8 0}$ plus f0. $\mathbf{1 2}$ VAT.					
6AV6	$0 \cdot 86$	6CW4	4.05	$12 \mathrm{AL5}$	0.75	ECF82	0.63	EM80	0.75	PCF86	0.86 1.15						
6AW8A	0.86	6CX8	1.15	12Aas	0.69	ECF86	0.92	EM81	0.69	PCF806	1.15		e \mathbf{E}	. 80 pl	-12		

Prices are inclusive of VAT (at current rates) except where shown separately. Postage and packing charges are $\mathbf{f 0 . 1 5} \mathbf{~ p e r} £$ subject to a minimum of $\mathbf{f 0} \mathbf{0 . 4 0}$. Minimum order charge for Approved Credit customers £20.00. Minimum Transaction Charge for mail orders $£ \mathbf{£} \mathbf{~ 0 0 0}$.

H.A.B. SHORT-WAVE WORLD-WIDE RECEPTION

'H.A.C. well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories to suit the novice and the expert.
£10.50 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; drilled chassis, valve, accessories and full drilled chassis, valve, accessories
instructions. Instructions TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception,
yet needing only a single PP3 battery, at $\mathrm{£} 12 \cdot 50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for eyer better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ

Tecknowledgey for sale. The Mark III FM Tuner DIY Hi-Fi will never seem the same again. Ambit's Mark 111 tuner system is electrically $\&$ tuner system is electrically \& Some superior to all others. Some options available, bu reference series modules: £149.00 +£18.62 VAT

 Precision construction Timen of all part.
 State of the art performance with \mid acilities for updates. using modiular plug in systems.
 for recording
 All usual tuner features
 $.00+£ 23.12$

Digital Dorchester All Band Broadcast Tuner: LW/MW/SW/SW/SW/FM stereo all features you would expect of designs of far greater complexity. The FM section uses a three section (air gang, tuned FET tunerhead, with ceramic IF filters and interstation mute: AM employs a doubte balanced mixer input stage, with mechanical IF tilters - plus a BFO and MOSFET product detector for CW/SSB reception. Styjed in a matching unit to the Mark III FM only tuner, employing the same degree of care in mechanical design to enable easy construction. WW/LW reception via a ferrite rod antenna
Electronics only (PCB and all components thereon)
Complete with digital frequency readout/clock-timer hardware $£ 99.00+£ 12.37 \mathrm{VAT}$ Complete with MA1023 clock/timer module with dial scale $£ 66.00+£ 8.25$ VAT

 Various other DFM systems described in our catalogue part 2 - including a one chip solution to providing digital display of $F R G 7 \mathrm{kHz}$ dial, combined with clock/timers etc. etc.

PW SANDBANKS PI METAL LOCATOR \quad Radio and Audio Modules : The biggest range/ best specs: Maintaining our professional approach to \quad EF5801/3/4 6 stage varicap tunerheads with LO feed and various home constructor kits, we offer the pulse induction 'Sandbanks'. Now with injection molded casing for greatly improved enviromental sealing. $\mathbf{2} 37.00+{ }^{*}$ E2.96vat. VHF MONITOR RX WITH PLESSEY IC 4/9 channel version of the PW design
but using standard 3rd OT crystals TOYO 8 pole crystal filter with matching transformers. Coil sets from our standard range to cover bands from 40 to 200 MH
Complete module kit $£ 3125+f 390 \mathrm{var}$ ETI - REMCON RADIO CONTROL A tried and testec RC system with a full set of supporting hardware from a
well known manufacturer. Please send for details - and watch our ads for further
levels of sophistication. New 5804 include pin AGC loop 'on board'. 5801:£17.45+£2.18vat - 5803:£19.75+£2.47vat $5804: £ 24.95+£ 3.18 v a t$. Frequencies in $40-180 \mathrm{MHz}$ on appcn.
EF5402 4 stage varicap with TDA1062, compound FET/Bipolar input stage, low noise, balanced mixer, pin agc, osc output. A worthy successor to the $5400, £ 10.75+£ 1.34 \mathrm{vat}$
The 5402 is available centrad on a wide range of frequencies from 3319 to 180 MHz . Non standard units $£ 14.75+£ 1.84-3$ weeks. RF and mixer stages, New temperature compensated oscillator for wide ranges of ambient temperature $£ 13.45+£ 1.68$ vat 7252 Complete Larsholt FM tuner less stereo decoder. $\mathbf{E} 26.50+£ 3.31$ vat 7253 Stereo FM tunerset from Larsholt with, FET head. (as 7252) 911223 Pilot cancel stereo decoder, very best. $£ 19.95+£ 2.19$ vat obsolete as it now deserves to be.f $12.50+£ 1.56$ vat

TL:Standard AnD LP Schattk

[04000 1 mO

COMPONENTS for Radio and Audio ICs, HMOS etc The list is too long to attempt here, but AMBIT specializes in all types of semiconductor for radio reception, including devices operating from DC to 5 GHz . New low cost SBL1 diode ring mixers (equiv case MD108 etc) -first with HMOS fets, now with a PCB for DC amplifier, and offset sense and protection relay for speakers. See catalogue and updates for most info. pse send an SAE for information on anything you cannot find in catalogues. Radio ICs cost + vat Stereo ICs cost + vat AF power ICs cost + va $\begin{array}{lllllllll}\text { CA3089E } & 1.94 & 24 & \text { MC1310P } & 1.50 & 19 & \text { LM380N } & 1.00 & 12 \\ \text { CA3189E } & 2.45 & 30 & \text { LA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14\end{array}$ $\begin{array}{lllllllll}\text { CA3189E } & 2.45 & 30 & \text { UA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14 \\ \text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24\end{array}$ $\begin{array}{lccllllll}\text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24 \\ \text { SN76660 } & 0.75 & 9 & \text { HA1196 } & 3.95 & 49 & \text { TBAB20M } & 0.75 & 9\end{array}$ TDA1090 3.3542 HA11223 4.3554 from the general list: $\begin{array}{lllllll}\text { TDA1083 } & 1.95 & 24 & \text { KB4437 } & 4.35 & 54 & \text { LEDs:all colours and }\end{array}$ $\begin{array}{lllllll}\text { TDA1220 } & 1.40 & 17 & \text { KB2224 } & 2.75 & 34 & \text { LeDs:all co } \\ \text { low prices }\end{array}$ $\begin{array}{lllll}\text { SL6640 } & 2.75 & 34 & \text { Preamp ICs/switches } & \text { 2SJ48/2SK } 134 \text { HMOS } \\ \text { MC3357 } & 3.12 & 39 & \end{array}$ $\begin{array}{lllllll}\text { MC3357 } & 3.12 & 39 & \text { TDA1028 } & 3.50 & 44 & 9.90+£ 0.80 \text { vat (Pair) }\end{array}$ $\begin{array}{lllllll}\text { HA1197W } & 1.40 & 17 & \text { TDA1029 } & 3.50 & 44 & \text { Signal fets/transistors and }\end{array}$ $\begin{array}{llll}\text { TDA1029 } & 3.50 & 44 & \text { Signal fets/transistors and } \\ \text { TDA1074 } & 4.14 & 52 & \text { TOKO COILS \& FILTERS: }\end{array}$

mirramarket

OPTO

$0.43^{\prime \prime}$ High Efficiency HP

\qquad 5082.7651
5082766
50827610 508276
5032767
$0.3^{\prime \prime}$ Standard HP $5082 . \quad 7730 \mathrm{waCA}$
$5082 \quad 7740 \mathrm{nul} \mathrm{CC}$
$0.5^{\prime \prime}$ Fairchild
FNDS00 red CC
FNO507

6800 series $\left\lvert\, \begin{array}{ll}8216 & 1.95 \\ 8224 & 3.50 \\ 8220\end{array}\right.$

This superb organ - build the first working section for just over $£ 100$. Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

Amassive new catalogue from cataogue from
Maplin that's even bigger and better than before if you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - sorme in full colour-it's a comprehensive guide to electronic components with hundreds of photographs anid illistrations and page after page of invaluable data.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

ELECTRONIC SUPPLIES LTD

Television Transmitters

	ITV	BBC1	BBC2
101 (T)	23	26	33
102 (A)	43	46	40
103 (Ga)	59	55	62
104 (Y)	47	44	51
105 (Sc)	43	40	46
105.10 (Sc)	25	22	28
106 (H)	41	44	51
107 (U)	24	31	27
108 (S)	27	31	24
109 (TT)	61	58	64
110 (H)	61	58	64
111 (A)	61	58	64
112 (Gn)	25	22	28
113 (S)	66	50	56
114 (Aa)	59	62	55
115 (Aa)	41	51	44
116 (TT)	29	33	26
117 (A)	60	57	63
118 (H)	60	57	63
119 (H)	60	57	63
120 (Y)	25	22	28
121 (A)	23	26	33
123 (Gn)	60	57	63
124 (Aa)	24	31	27
125 (S)	58	61	55
126 (S)	42	39	45
129 (H)	43	46	40
130 (U)	59	55	62
131 (W)	25	22	28

	ITV	BBC1	BBC2
$132(\mathrm{~W})$	23	33	26
$134(\mathrm{Gn})$	43	40	46
$135(\mathrm{H})$	24	31	27
$136(\mathrm{~W})$	60	57	63
$137(\mathrm{~B})$	28	30	34
$138(\mathrm{~W})$	59	55	62
$139(\mathrm{~S})$	64	49	52
$141(\mathrm{~W})$	41	51	44
$145(\mathrm{H})$	49	52	45
$147(\mathrm{Sc})$	24	31	27
$148(\mathrm{Gn})$	24	31	27
$149(\mathrm{~A})$	25	22	28
$151(\mathrm{U})$	25	22	28
$152(\mathrm{Sc})$	23	33	26
$153(\mathrm{Gn})$	23	33	26
$154(\mathrm{Gn})$	23	33	26
$155(\mathrm{TT})$	49	39	45
$156(\mathrm{Gn})$	49	39	45
$158(\mathrm{~T})$	43	40	46
$161(\mathrm{~B})$	59	55	62

Programme Areas:

 Border (B) Scottish (Sc) Scottish (Sc) Granada (Ga) Granada (Ga) ATV (A)Tyne Tees (TT)

National v.h.f. stations

	Radio 2/1 MHz	Radio 3 MHz	Radio 4 MHz
Oxford	89.5	91.7	93.9
Swingate	$90 \cdot 0$	92.4	94.4
Wrotham	89.1	91.3	93.5
Sutton			
Coldfield	88.3	$90 \cdot 5$	92.7
Peterborough	$90 \cdot 1$	$92 \cdot 3$	94.5
Tacolneston	89.7	91.9	94.1
Rowridge	88.5	90.7	92.9
N. Hessary Tor	88.1	$90 \cdot 3$	$92 \cdot 5$
Redruth	89.7	91.9	94.1
Belmont	88.8	90.9	93.1
Holme Moss	89.3	91.5	93.7
Douglas (I.of M.)	88.4	90.6	92.8
Morecambe			
Bay	$90 \cdot 0$	92.2	94.4
Pontop Pike	88.5	$90 \cdot 7$	92.9
Sandale	88.1	90:3	94.7
Kirk O'Shotts	89.9	92.1	94.3
Ashkirk	89.1	91.3	93.5

	Radio $2 / 1$ MHz	Radio 3 MHz	Radio 4 MHz
Forfar	88.3	90.5	92.7
Orkney	89.3	91.5	93.7
Rosemarkie	89.6	91.8	94.0
Fort William	89.3	91.5	93.7
Melvaig	89.1	91.3	93.5
Meldrum	88.7	90.9	93.1
Oban	88.9	91.1	93.3
Skriaig	88.5	90.7	92.9
Blaenplwyf	88.7	90.9	93.1
Haverford W.	89.3	91.5	93.7
Llanddona	89.6	91.8	94.0
Llangollen Wenvoe	88.85	91.05	93.25
Llandrindod Wells	89.95	96.8	94.3
Divis	89.1	91.3	93.5
Brougher Mountain Londonderry	90.1	92.3	94.5

Supplement to PRACTICAL WIRELESS September 1979

South and West
Map
Local Radio
South and East
Map
Local Radio

Notes on using the Guide

North and Ulster

\qquad
Local Radio

Scotland and Borders

\qquad

RADIO CARLISLE

Programme Information: Carlisle 31661
Frequencies:
$397 \mathrm{~m} / 757 \mathrm{kHz}, 206 \mathrm{~m} / 1459 \mathrm{kHz}$;
95.6 MHz v.h.f.

News: 0700, 0730, 0800, 0830, 0900, 1000, 1100, 1200, 1245, 1500, 1600,1700,1757
Traffic: With News and 0655, 0725 0755, 0825, 1745
Weather: With News and 1900

RADIO CLYDE (Glasgow)

Programme Information: 041-204 2555
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$;
$95 \cdot 1 \mathrm{MHz}$ Stereo v.h.f.
National News: On-the-hour 0400 to 0200 (23hrs)

RADIO FORTH

(Edinhurgh)
Programme Information: 031-556 9255
Frequencies: $194 \mathrm{~m} / 1546 \mathrm{kHz}$;

$$
96.8 \mathrm{MHz} \text { Stereo v.h.f. }
$$

National News: On-the-hour and 0630, 0730,0830,1230,1730
Local News: 1730

DOWNTOWN RADIO

 (Belfast)Programme Information: Newtownards 815555
Frequencies: $293 \mathrm{~m} / 1025 \mathrm{kHz}$; 96 MHz Stereo v.h.f.
National News: On-the-hour
Local News: 0600-0900
Traffic: 1705
Weather: After Morning News, Lunch and Teatime

RADIO NEWCASTLE

Programme Information: Newcastle 814243
Frequencies: $206 \mathrm{~m} / 1457 \mathrm{kHz}$ 97.4 MHz v.h.f.

News: 0600-0900, 1245, 1745
Traffic: 0600-0900 and as received Weather: 0600-0900
METRO RADIO
(Newcastle)
Programme Information: Newcastle 884121
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$; 97MHz Stereo v.h.f.
News: On-the-hour (24hrs)
Traffic: As necessary
Weather: With News

BEACON RADIO
 (Wolverhampton)

Programme Information: Wolverhampton 757211
Frequencies: $303 \mathrm{~m} / 989 \mathrm{kHz}$
97.2 MHz Stereo v.h.f

News: On-the-hour (24hrs)
Traffic: 20 minutes past the hour
Weather: After News

BRMB RADIO

(Birmingham)
Programme Information: 021-359 4481
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$;
94.8 MHz Stereo v.h.f

News: On-the-hour (24hrs)
Traffic: 0720, 0750, 0820, 0850, 1650, 1720, 1750
Weather: 0600-0930

RADIO BIRMINGHAM

Programme Information: 021-472 5141
Frequencies: $206 \mathrm{~m} / 1458 \mathrm{kHz}$
95.6 MHz v.h.f.

News: On-the-hour
Traffic: 0700, 0800 and as received
Weather: 0700, 0800

RADIO BRISTOL

Programme Information: Bristol 311111
Frequencies: $194 \mathrm{~m} / 1549 \mathrm{kHz}$
95.5 MHz v.h.f.

National News: As Radio 2
Local News: 0600-2030
Traffic: 0745-0900, 1630-1800

RADIO OXFORD

Programme Information: Oxford 53411
Frequencies: $202 \mathrm{~m} / 1484 \mathrm{kHz}$
95.5 MHz v.h.f.

News: 0900, 1100, 1230, 1400, 1500, 1600,1730
Traffic: With News and 0600-0900 1600-1900
Weather: 0600-0900, 1240, 1650

SWANSEA SOUND

Programme Information: Gorseinon 893751
Frequencies: $257 \mathrm{~m} / 1170 \mathrm{kHz}$; 95.1 MHz Stereo v.h.f.

National News: On-the-hour
Local News: 1200
Traffic: 0645 and 1600
Weather: 0820, 0920

RADIO SOLENT

(Southampton)
Programme Information: Southampton 31311
Frequencies:
$300 \mathrm{~m} / 1002 \mathrm{kHz}, 221 \mathrm{~m} / 1360 \mathrm{kHz}$; 96 MHz v.h.f.
News: 0600-0900, 1000, 1100, 1200, 1255, 1400, 1500, 1600, 1700, 1750,1900 then as Radio 2
Traffic: 0635, 0735, 0835, 1600, 1700
Weather: 0600-0900, 1000, 1100, 1200, 1259, 1400, 1500, 1600, 1700,1730,19Q0

PLYMOUTH SOUND

Programme Information: Plymouth 27272
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$; 96 MHz v.h.f.
News: 0600-2400 (On-the-hour) Traffic: 0745, 1245, 1645, 1745

RADIO VICTORY
 (Portsmouth)

Programme Information: Portsmouth 27799
Frequencies: $257 \mathrm{~m} / 1169 \mathrm{kHz}$; 95 MHz v.h.f.
News: On-the-hour
Traffic: 0600-0900
Weather: 0600-0900 and with the News

RADIO BRIGHTON

Programme Information: Brighton 680231
Frequencies: $202 \mathrm{~m} / 1484 \mathrm{kHz}$ 95.3 MHz v.h.f.

National News: 0630, 0655, 0730, 0755, 0830, 0900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1745, 1855, 2300
Local News: 0630-0900,1300,1745
Traffic: 0730, 0830, 1630, 1730
Weather: After News

RADIO SOLENT

(Southampton) see above

RADIO 210 THAMES VALLEY (Reading)

Programme Information: Reading 413131 Frequencies: $210 \mathrm{~m} / 1430 \mathrm{kHz}$; 97 MHz v.h.f.
National News: 0600-0100 (Hourly) Local News: 0630, 0730, 0830, 0930, 1630, 1730
Traffic: 0630-0930, 1630-1900

PICCADILLY RADIO

(Manchester)
Programme Information: 061-236 9913
Frequencies: $261 \mathrm{~m} / 1152 \mathrm{kHz}$;
97 MHz Stereo v.h.f.
News: On-the-hour (24hrs)
Traffic: With News
Weather: With News

PENNINE RADIO

(Bradford)

Programme Information: Bradford 31521
Frequencies: $235 \mathrm{~m} / 1277 \mathrm{kHz}$ 96 MHz Stereo v.h.f.
News: 0600-0900, 1000, 1100, 1200,
1300, 1400, 1500, 1600, 1630, 1700,1730, 1800
Traffic: With News
Weather: With News

RADIO STOKE

Programme Information: Stoke 24827
Frequencies: $200 \mathrm{~m} / 1503 \mathrm{kHz}$;
96.1 MHz v.h.f.

News: On-the-hour (24hrs)
Traffic: 0730, 0830, 1650
Weather: With News and 0730, 0830, 0930, 1630

RADIO TRENT

Programme Information: Nottingham 581731
Frequencies: $301 \mathrm{~m} / 998 \mathrm{kHz}$;
96.2 MHz Stereo v.h.f.

News: 0530-0900 (On-the-hour)
Traffic: 0530-0900, 1900
Weather: 0530-0900

RADIO SHEFFIELD

Programme Information: Sheffield 686185
Frequencies: $290 \mathrm{~m} / 1037 \mathrm{kHz}$ $88.6 \mathrm{MHz}, 97.4 \mathrm{MHz}$ v.h.f.
National News: 0600-0900, 1100 ,
1700 as Radio 2 from 2000
Local News: 0600-0900, 1250

RADIO TEES

Programme Information: Stockton 615111
Frequencies: $257 \mathrm{~m} / 1170 \mathrm{kHz}$; 95 MHz Stereo v.h.f.
News: On-the-hour (24hrs)
Traffic: As necessary
Weather: As necessary

METRO RADIO (Newcastle)

Programme Information: Newcastle 884121
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$; 97MHz Stereo v.h.f.
News: On-the-hour (24hrs)
Traffic: As necessary
Weather: With News

BEACON RADIO
 (Wolverhampton)

Programme Information: Wolverhampton 757211
Frequencies: $303 \mathrm{~m} / 989 \mathrm{kHz}$;
97.2MHz Stereo v.h.f.

News: On-the-hour (24hrs)
Traffic: 20 minutes past the hour Weather: After News

RADIO LEEDS

Programme Information: Leeds 42131
Frequencies: $388 \mathrm{~m} / 774 \mathrm{kHz}$;

92.4 MHz v.h.f.

News: 0635, 0700, 0800, 0900, 1300,
1730 after 2000 as Radio 2
Weather: 0655, 0755, 0855, 1255

RADIO MERSEYSIDE (Liverpool)

Programme Information: 051-236 3355
Frequencies: $203 \mathrm{~m} / 1484 \mathrm{kHz}$;
$95 \cdot 2 \mathrm{MHz}$ v.h.f.
News: On-the-hour
Traffic: 0600-0833 and with News
Weather: 0600-0833 and with News

RADIO MANCHESTER

Programme Information: 061-228 3434
Frequencies: $206 \mathrm{~m} / 1459 \mathrm{kHz}$;
95.1 MHz v.h.f.

News: 0630-0900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2200, 2300, 2345
Traffic: 0640, 0720, 0740, 0750, 0820, 0845, 1645

RADIO NEWCASTLE

Programme Information: Newcastle 814243
Frequencies: $206 \mathrm{~m} / 1457 \mathrm{kHz}$; 97.4 MHz v.h.f.

News: 0600-0900, 1245, 1745
Traffic: 0600-0900 and as received Weather: 0600-0900

RADIO DERBY

Programme Information: Derby 361111 Frequencies:
$269 \mathrm{~m} / 1117 \mathrm{kHz}$;
94.2 MHz and 96.5 MHz v.h.f.

News: On-the-hour
Traffic: 0630-0900, 1640-1720
Weather: With News and Early Morning Programmes

RADIO BLACKBURN

Programme Information: Blackburn 62411
Frequencies: $351 \mathrm{~m} / 855 \mathrm{kHz}$; 96.4 MHz v.h.f.

National News: 0630-0900, 1100, $1500,1600,1700,1843,1845$ then as Radio 2
Local News: 0630-0900, 1240
Traffic: 0630-0900, 1605
Weather: 0630-0900, 1605

RADIO CARLISLE

Programme Information: Carlisle 31661 Frequencies:
$397 \mathrm{~m} / 757 \mathrm{kHz}, 206 \mathrm{~m} / 1459 \mathrm{kHz}$
95.6 MHz v.h.f.

News: 0700, 0730, 0800, 0830, 0900 1000, 1100, 1200, 1245, 1500, 1600, 1700, 1757
Traffic: With News and 0655, 0725, 0755,0825, 1745
Weather: With News and 1900

RADIO HALLAM

(Sheffield)
Programme Information: Sheffield 71188 Frequencies: $194 \mathrm{~m} / 1546 \mathrm{kHz}$; 95.9 MHz v.h.f.

BRMB RADIO

(Birmingham)
Programme Information: 021-359 4481
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$; 94.8MHz Stereo v.h.f.

News: On-the-hour (24hrs)
Traffic: 0720, 0750, 0820, 0850, 1650,
1720, 1750
Weather: 0600-0930

RADIO BIRMINGHAM

Programme Information: 021-472 5141
Frequencies: $206 \mathrm{~m} / 1458 \mathrm{kHz}$;
95.6 MHz v.h.f.

News: On-the-hour
Traffic: 0700, 0800 and as received Weather: 0700, 0800

BEACON RADIO

(Wolverhampton)

Programme Information: Wolverhampton 757211
Frequencies: $303 \mathrm{~m} / 989 \mathrm{kHz}$;
97.2 MHz Stereo v.h.f.

News: On-the-hour (24hrs)
Traffic: 20 minutes past the hour
Weather: After News

CAPITAL RADIO
(London)
Programme Information: 01-388 1288
Frequencies: $194 \mathrm{~m} / 1548 \mathrm{kHz}$; 95.8 MHz Stereo v.h.f.

News: On-the-hour (24hrs)
Traffic: 0600-0900, 1500-1900
Weather: After News

RADIO BRISTOL

Programme Information: Bristol 311111
Frequencies: $194 \mathrm{~m} / 1549 \mathrm{kHz}$;
95.5 MHz v.h.f

National News: As Radio 2
Local News: 0600-2030
Traffic: 0745-0900,1630-1800

RADIO DERBY

Programme Information: Derby 361111 Frequencies:
$269 \mathrm{~m} / 1117 \mathrm{kHz}$;
94.2 MHz and 96.5 MHz v.h.f.

News: On-the-hour
Traffic: 0630-0900, 1640-1720
Weather: With News and Early Morning Programmes

RADIO MEDWAY
 (Chatham)

Programme Information: Medway 46284
Frequencies: $290 \mathrm{~m} / 1034 \mathrm{kHz}$; 96.7 MHz v.h.f.

National News: 0500, 0700, 0800, 1000, 1100, 1200, 1800, 2400
Local News: 0700, 0800, 1000, 1500, 1600,1730,1915
Traffic: 0630-0930, 0930-1100,
1630, 1700
Weather: 0500

RADIO TRENT

Programme Information: Nottingham 581731
Frequencies: $301 \mathrm{~m} / 998 \mathrm{kHz}$;
96.2 MHz Stereo v.h.f.

News: 0530-0900 (On-the-hour)
Traffic: 0530-0900, 1900
Weather: 0530-0900

LBC (London)

Programme Information: 01-353 1010
Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$:
97.3MHz Stereo v.h.f.

News: Every 30 minutes
Traffic: Every hour
Weather: With News

RADIO LONDON

Programme Information: 01-486 7611
Frequencies: $206 \mathrm{~m} / 1457 \mathrm{kHz}$;
94.9 MHz v.h.f.

News: Every 30 minutes 0630-1800, 2200, 2300, 2400
Traffic: 0745, 0845, 0900-1130 then after the News
Weather: 0700, 0800 then after the News.

RADIO LEICESTER

Programme Information: Leicester 27113 Frequencies: $189 \mathrm{~m} / 1590 \mathrm{kHz}$;
95.1 MHz v.h.f.

News: 0630, 0645, 0745, 0900, 1000, 1100, 1230, 1500, 1600, 1700, 1730, 1830
Traffic: As received
Weather: Follows News

RADIO OXFORD

Programme Information: Oxford 53411 Frequencies: $202 \mathrm{~m} / 1484 \mathrm{kHz}$;
95.5 MHz v.h.f.

News: $0900,1100,1230,1400,1500$, 1600, 1730
Traffic: With News and 0600-0900, 1600-1900
Weather: 0600-0900, 1240, 1650

RADIO ORWELL
 (Ipswich)

Programme Information: Ipswich 216971
Frequencies: $257 \mathrm{~m} / 1169 \mathrm{kHz}$;
97.1 MHz Stereo v.h.f.

National News: 0600 to 2400 (On-thehour)
Local News: 0700 to 1800 weekdays; 0900, 1200, 1500, 1800 weekends
Traffic: 0720, 0750, 0820, 0850, 0930, $1615,1645,1715$
Weather: 2400

RADIO VICTORY
 (Portsmouth)

Programme Information: Portsmouth 27799
Frequencies: $257 \mathrm{~m} / 1169 \mathrm{kHz}$; 95 MHz v.h.f.
News: On-the-hour
Traffic: 0600-0900
Weather: 0600-0900 and with the News

Using this Guide

The aim of this guide is to help you to enjoy radio and TV programmes while you are on holiday. To find details of local radio in your holiday area locate where you are staying on the map of the UK and then turn to the appropriate area map to find details of local radio, v.h.f. and TV transmitters. Remember that programmes will be different from your home area and you should obtain the appropriate regional edition of Radio Times and TV Times from the nearest newsagent in your holiday area. Some holiday resorts have local v.h.f. and TV repeater stations to give better reception. The local TV dealer should be able to give you details of channels and aerial directions.

BRMB RADIO

(Birmingham)
Programme Information: 021-359 4481 Frequencies: $261 \mathrm{~m} / 1151 \mathrm{kHz}$; 94.8MHz Stereo v.h.f.

News: On-the-hour (24hrs)
Traffic: 0720, 0750, 0820, 0850, 1650, 1720, 1750
Weather: 0600-0930

RADIO BIRMINGHAM

Programme Information: 021-472 5141 Frequencies: $206 \mathrm{~m} / 1458 \mathrm{kHz}$; 95.6 MHz v.h.f.

News: On-the-hour
Traffic: 0700, 0800 and as received Weather: 0700, 0800

DOWNTOWN RADIO (Belfast)

Programme Information: Newtownards 815555
Frequencies: $293 \mathrm{~m} / 1025 \mathrm{kHz}$;
96 MHz Stereo v.h.f.
National News: On-the-hour
Local News: 0600-0900
Traffic: 1705
Weather: After Morning News, Lunch and Teatime

RADIO CLEVELAND

Programme Information: Middlesbrough 248491
Frequencies: $194 \mathrm{~m} / 1546 \mathrm{kHz}$; 96.6 MHz v.h.f.

News: 0600-1800 (On-the-hour)
Traffic: With News and at 0830 and 1615, 1715
Weather: With News

RADIO HUMBERSIDE

Programme Information: Kingston upon Hull 23232
Frequencies: $203 \mathrm{~m} / 1484 \mathrm{kHz}$;
96.9 MHz v.h.f.

News: $0750,0850,1250,1650,1750$
Traffic: 0632, 0732, 0832, 1530, 1630,
1730 .
Weather: With News and 0635, 0710 ,
0735, 0810

RADIO LEICESTER

Programme Information: Leicester 27113 Frequencies: $189 \mathrm{~m} / 1590 \mathrm{kHz}$;
95.1 MHz v.h.f.

News: 0630, 0645, 0745, 0900, 1000,
1100, 1230, 1500, 1600, 1700,
1730. 1830

Traffic: As received
Weather: Follows News

[^0]:
 Shath

 8

[^1]: Application form and further details available from and returnable to the Vice-Principal at the above address within 14 days of the appearance of this advertisement.

[^2]:

