

BRITAINS LEADNG JOURNAL FOR THE RADIO \& ELECTRONIC CONSTRUCTOR
Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio. TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.

Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 p each, including post and packing to addresses at home and overseas
Binders are available (Price $£ 2.85$ to UK addresses or $£ 3.45$ overseas, including post and packing) each accommodating one volume of $P W$. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate Please make cheques, postal orders, etc. payable to IPC Magazines Limited.

COPYRIGHT

(c) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.

All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

Editorial
Problems!
PW Personality Peter Preston
News . . . News . . . News . . .
RAE Reprint Announcement
Kindly Note
PW 'Soundlite", March 1979
"Ideas Department"-Step Tone Generator, March 1979
VHF Monitor Receiver, April 1979
Special Product Report VSWR Bridge RW100L, Telecommunications Accessories Ltd.
Hotlines
Ginsberg
Recent developments in electronics

FOR OUR CONSTRUCTORS

Car Test Probe
C. J. Bearman A useful gadget for your tool-box
Follow-up to the PW 'Gillingham''
D. S. Coutts 1 kHz readout on medium wave and use with a 1.62 MHz i.f.
PW 'IImp' 3-Waveband Receiver l. Hickman A simple receiver for the beginner
In-Line Crystal Calibrator M. Tooley A convenient source of receiver scale checks
PW ''Winton'' Stereo Amplifier-3 E. A. Rule Completing the construction and setting up

GENERAL INTEREST

The Cassette Tape Medium-2
. Gordon J. King
The development of the Compact Cassette System
IC of the Month
. Brian Dance The SF.F96364 TV display driver
VSWR Problems at VHF
Fred Judd
Explaining the ins and outs of v.s.w.r.
OK! So What is a Nut Runner?
Using our free give-away
Stereo Decoders-Devices \& Circuits-2
. M.J.Darby
Current i.c.s and future developments

On the Air

Amateur Bands
Eric Dowdeswell
MW Broadcast Bands Charles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands Ron Ham

Our June issue will be published on 4 May
(for details see page 39)
We regret that part 2 of "Logical Noughts and Crosses'" has been held over due to pressure on editorial space

20×20 WATT STEREO AMPLIFIER Viscount IV unit in teak simulate cabinet. Silver finish rotary controls on pushbuttons with matching fascia, red mains indic ator and stereo jack socket. Functions switch for mic. magnatic and orystal pickups. tape tuna and auxiliary. Reer panel features two mains outiets D.N spe aker For use with 8 to 15 ohm speakers.
f22. 90
SPECLAL OFFER
FOR PERSONAL SHOPPERS ONLY 20×20 Viscount amplifier.
30×30 WATT AMPLIFIER IN KIT FORM for the experienced constructor com plete in every detail, same facilities as Viscount IV. but with 30×30 output 60×60 watts peak. For use with 4.15 ahms speakers.
$\mathbf{f 2 9 . 0 0}{ }^{\text {f } 25050}$

30x30 WATT AMPLIFIER IN KIT WITH SPEAKERS

2 G000MAN compact $12^{\prime \prime}$ base woofers with crooped sides 14,000

 Gauss magnet, 30 watt RMS handling. plus $421 / 2^{\prime \prime}$ approx. AUDAX tweeters and cross-overs to suit.BUILT AND READY TO PLAY f49.00

BUILT AND READY TO PLAY

EMI SPEAKER BARGAIN sty

$13^{\prime \prime} \times 8^{\prime \prime}$ approx. wooter with rolled surround; $21 / 2^{\prime \prime}$ approx. Audax tweeter, crossover components and circuit diagram. Frequency response 20 Hz
to 20 KHZ Power handling 15 waits RMS. 20 watts max 8 ahm impedanc £14.95 Per stereopair

+ E3.40 p\&p.

BSR P200

Belt drive chassis tumable unit semi $\mathbf{£ 2 4 . 9 5}$ automatic, cueing device. p\&p 22.55 A.D.C. QLM 30 Mk III Magnetic Cartridge A.O.C.
to suit. £7.75
 GARRARD DECK MODEL CC 10A Record changer with cueeing devics fitted with stereac ceramic c cartridge
ready to fit into your own plinth. $\mathbf{£ 7 . 9 5} \quad$ p\&p $£ 2.00$ SAMY日 Nic/cad, battery, with mains charger equivalent in
size and replaces 4 SP11 size and replaces 4 SP11
type batts. Size $33^{\prime \prime} x^{\prime} 1 / 4^{\prime \prime}$ type batts. siz.
$\times 2^{\prime \prime}$ approx.
± 7.50 $\stackrel{p+D}{ }$ E1.50p

 return and cueinecord deck with auto return and cueing lever, fitted with steieo ceramic cartridge 2 speeds with 45 r.pm. spindle adaptor ide ally suired trom home | disco use. |
| :---: |
| OUR PRICE |
| 10.95 |

BARGAINS FOR PERSONAL SHOPPERS

IED 5 function men's digital watch stainless steel finish

(1)
stainless steel tinish digital watch
LCO 8 Function CHROMOGRAPH meris digita
watch. stainless steel finish.
POCKET CALCULATOR. With LED display, memory and percentage key.
AM/FM DIGITAL CLOCK RAOIO Accurate 4 Digit
Electranic Clock with display. Buzer and snooze timer.
f11.95
125 Watt Power Amp Module

Mains power supply for above unin
£13.95
mulLana But power sppply
DECCA 20 w Stere sseaker kit compising $28^{\prime \prime}$ approx bass unis $s+23$ 3/"approx. weeter inc. clossovers
viEEDMASTER Siper Scove TV Game
Portable radio/cassette recorder, am/FM with clot
LW. MW. SW. VHF mains/ /atlery operation.
V. MW. SW. VHF Mains/batiery operation.
VIDEOMASTER COLOUR SHOT TV GAME Choice of turre games-Foootball, Tennis and Squash. Ready to play-One or two players: MAIINS OPERAIED. OPDORTUNTTY AT $£ 9.95$ onLY
AMPLIFIER CHASSIS COMPLETE WITH DECODER
Ready built. Designed in a slim form for compact, modern installation. Rotery Controts Vol On/Off, Bass, Treble, Balance.
Push Buttions for Gram, Tape, VHF, MW, LW
Powar Dutput 5 watts per channel Sine at 2% THD into 150 hm 7 watts speech and music.
Tape Sensitiviry Playback $400 \mathrm{mV} / 30 \mathrm{~K}$ OHM for max output Record $200 \mathrm{mV} / 5 \mathrm{BK}$ output available from 25 KHz ($150 \mathrm{mV} / 100 \mathrm{~K}$) deviation FM signal Frequency Range (Audio) 50Hz to 17 KHz within \pm IdB Radio FM sensitivity for 3 dB below limiting better than 10 uV AM sensitivity for $2048 \mathrm{~S} / \mathrm{N}$ MW $350 \mathrm{uV} /$ Matre $\mathrm{LW} 1 \mathrm{mV} /$ Matre Size approx length $16^{\prime \prime} x$ height $233^{\prime \prime} x$ depth 41/4
240 Volts AC Complete wilh turing dial
Citcuit diagram.

Parsonal Shoppors EDGWARE ROAD LONDON W2 Tal: 01 -723 8432, 8.30mm-6.30pm. Hafl doy Thuradey.
ACTON: Mail Ordar only. No cmilirs GOODS MOT DESPATCHED OUTSIDE UK

ambit

 international

 international}

PARTS FOR CURRENT PW PROJECTS ... FROM AMBIT INTERNATIONAL

 VHF FM monitor RX: A complete kit of parts for this project, which we firmly believe will be an established "standard" for years to come. The kit includes a 5 channel switched crystal oscillator added to the board end, using diode switch. ing. Uses cheaper 3rd OT crystals, employing original oscillator as $\times 3$ stage. Price depends on filter selected (we have various types) and whether or not chip capacitors are required. More notes on the kit from our own lab. £25-£ 35 kit VMOS POWER TRANSISTORS FOR PW WINTON $£ 9.95$ pair * 2 SK 133/J48 FULL KITS FOR THE PW SANDBANKS METAL LOCATOR (stould be ex stock FULL KITS FOR THE PW DORCHESTER| Radio ICs | | | Discrete d | vices | re tha | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TDA1062 | HF/VHF tunerhead | 1.95 | BF960 | 800m | /2.8dB nf | | 1.60* |
| TDA1083 | One chip AM/FM rx | 1.95 | BF961 | 200M | /2.0dB nf | | 0.80 * |
| TDA1090 | Dne chip HiFi $\mathbf{a m / f m}$ | 3.35 | 40822 | FM R | amp | | 0.43^{*} |
| TDA1220 | One chip am/fm rx | 1.75 | 40823 | FM m | | | 0.51* |
| HA1197W | HiFi AM tuner IC | 1.40 | 40673 | Fam | MOSFET | | 0,55* |
| CA3123E | AM tuner IC | 1.40 | 2S.149/2sK13 | 33120 | $100 \mathrm{WMOS}$ | | |
| TBA651 | AM tuner IC | 1.81 | | outpu | evices | | 10.50* |
| $\begin{aligned} & \text { CA3089E } \\ & \text { CA3189E } \end{aligned}$ | Famous FM IF system As 3089+ deviation mute | 1.94 | LEDS: | the be 3 mm | value tod | 5×5 | |
| | AF preamp, adj, agc | 2.75 | Red | 0.14 | 0.14 | 0.17 | |
| HA1137W | Improved S/N 3089 | 2.20 | Green | 0.18 | 0.16 | 0.20 | |
| TBA120 | limiting amp+detector | 0.75 | Yellow | 0.18 | 0.15 | 0.20 | |
| TBA120S | high gain agc'd IF preamp | 1.00 | Orange | 0.22 | 0.29 | 0.24 | |
| MC1350P MC1330P | agc'd If preamp | 1.20 1.35 | 100 off mix. | 25\% | ount. A | re A | first |
| MB4406 | Synch AM/video det | | grade types | absol | n no junk. | | clips |
| UA753 | limiting FM preamp | 1.95 | pane | ntin | each | | |
| Communic | cations circuits | | Misc. ICs fo | r rad | audio ap | lica | ns |
| SD6000 | DMOS RF/Mixer pair | 3.75 | $\mathrm{U237B}^{\text {S }}$ S6610 | 5 LE | argraph dri | | 0.80** |
| KB4412 | Bal mixers, IFtage | 2.55 | SAS6610 | 4 station | touch tun | | 1.48* |
| KB4413 | AM/SSB det. squelch, age | 2.75 | MSM5523/4 | | tions to | | 1.48 |
| KB4417 | mic processor | 2.55 | MSME523/4 | | W and | | |
| MC3357 | best thing in NBFM yet | 3.12 | | | | | |
| MC1496P | popular double bal mixer | 1.25 | M | clock, | ners, stopw | | £14 |
| Multiplex | decoders + noise blanker | | MSME | direc | ve for L | | £11* |
| MC1310P | popular PLL decoder | 2.20 | TCA730 | DC | e contro | | 3.50 |
| uA758 | buffered 1310 | 2.20 | TCA740 | DC | control | | 3.50 |
| CA3090AQ | RCA PLL decoder | 3.25 | TDA1028 | DC inp | switch | | 3.50 |
| HA1196 | improved PLL decoder | | TDA1029 | DC mod | switch | | 3.50 |
| 223 | with stereo preamps 19 k Hz pilot cancel, | | Badio and T | Tuner | odules | | |
| | distortion, high S/N | 4.3 | We cannot r | ally | 1 the d | | |
| KB4437 | as HA11223 with remote | | like to here - | but w | advent | | |
| | VCO kill facility | 4.55 | er syst | , the | chester | | ing A |
| KB4438 | stereo MUTING preamp | | units, Ambit | offers | the wid | st | ever, |
| | for post decoder mute | 2.22 | plus hardware | and | ling that | | he ver |
| KB4423 | impulse noise blanker | 2.53 | high standards | we ha | set in this | new | range. | Catalogue part 1:45p, part 250 p all inclusive. Postage 25 p per order, carriage on tuner kit

$£ 3$. Phone Brentwood (0277) $216029 / 2270509$ 9m-7pm. Callers welcome inc. Saturdays.

MAIL ORDER DEPT.

CRESCENT RADIO LTD

1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

"FLIP"
pUSh button heads dr tails Complete kit and full instructions supplied. A pocket game. easy
KIT PRICE $=55.25+8 \%$ VAT great to play

75 OHM

24" (57 mm) LOUDSPEAKER BARGAIN This ever popular many proiect loudspaake Only while stocks last $90 \mathrm{p}+12 \frac{1}{2} \%$ per pair. REAR SHELF CAA SPEAKERS $5 W$ ohm good quality car stereo Still only £3. $\mathbf{7 5}+12 \frac{1}{2} \%$ per pair

HEAVY DUTY XOVER 2 WAY 8 OHM

A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt. Fitted with screw terminals for input and a three position 'HF LEVEL' switch which selects eithe Flat, -3 dB or -6 dB .

ONLY $£ 3.00+8 \%$ VAT
ACRESCENT 'SUPERBUY' Goodmans $5^{\prime \prime} 8$ ohm long throw H/D loudspeaker
Mounting plate is integral with L/S chassis and has fixing holes with tres spaced at $5 \frac{1}{4}$ " (diagonally).
ONLY $£ 5.00+12 \frac{1}{2} \%$ VAT

CR. 3000. SCREWDRIVER SET $\begin{aligned} & \mathbf{f 1 . 7 5 p} . \\ &+8 \% \mathrm{VAT}\end{aligned}$ In neat plastic case. Consists of:- aw jewellers screwdriver, watchmaker's screwdriver, radio screwdriver, phillips screwdriver. All fit into master swivelling handle.
CR. 4110 . DESOLDERING PUNP ONLY E6 High suction pump with automatic ejection. Knurled, anti corrosive casing. Teflon nozzle.
CR. LV1. 12vDRILL f12.00p.
$+8 \%$ VAT
BRITISH MADE "Versadrill", 12 volts DC Compact battery operated power tool, suf ficiently powerful to perform all the operations associated with 240 v drills. Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.)
C. 180 -KEYNECTOR' MAINS Essential equipment for the showroom, workshop, factory, laboratory, home and hobby bench, the 'Keynec-
tor' provides quick, efficient and safe temporary mains connection.
$\mathbf{f 6 . 2 5}+8 \%$
VAT

FOOTSWITCH C. 338 $250 v,{ }^{5}$ amp. Non-slip
base. Lead with 2.5 mm plug. Body dims:- 88×66 $\times 25 \mathrm{~mm}$.
$\mathrm{f} 3.75+8 \%$ VAT post freel Please add V.A.T. as shown. post freel Please add V.A.T.
S.A.E. with all enquiries please.

Personal callers welcome at: 21 Green Lanes, Palmers Green N13. Also 13 South Mall, Edmonton Green, Edmonton

At last, DIY Hi Fi whith lauks us if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb. A small pic here would be an insult, so send an SAE for details on the kit that looks as if isn't. It's something else

```
* Exceptionally high performance - exceptionatly straightforward assembly Baseboard and plug-in construction. Future circuit developments will readily plug in, to keep the MkIII at the forefront of technical achievement Various options and module line-ups possible to enable an installment approach
to the system
```

and now previewing the matching 60W/channel VNOS amplifier:
$\pi \begin{aligned} & \text { * Matching both the style and design concepts of the MkIII HiFi FM tuner } \\ & \text { * Hitachi VMOS power fets - characterized especially }\end{aligned}$
Hitachi VMOS power fets - characterized especially for Hi Fi applications - Power output readily multiplied by the addition of further MOSFETS VU meters on the preamp-not simply dancing according to vol level
Backed with the usual Ambit expertise and technical capacity in audio

the digital dorchester all band tuner

With styling and dimensions to fit in with the rest of AMBIT's new range of tuner $\&$ audio equipment.

When the new range of OKI digital frequency display ICs was announced, the original prototype of the Dorchester had been made - but since so many of you wanted to use the OKI frequency counterdisplay system with the Dorchester, we quickly designed a unit to incorporate the necessary facilities. The Digital Dorchester is designed in 19 inch form, and forms a perfect match for the other units in the range. If you don't want to go to the expense of the fuil Ambit DFM1 module, with AM/FM/Time/Timers, then the MA1023 clock module can be used instead.
The Dorchester has been described in PW Dec., Jan. and Feb. issues - but for those of you who may have missed it - it is an All Band broadcast tuner, covering LW/MW/SW and FM stereo in 6 switched ranges. Construction is very straightforward, with all the switching being PCB mounted - and the revolutionary TDA 1090 IC used for AM/FM The electronics for the radio section of the Dorchester remain unchanged at $£ 33.00$, with 12.5% VAT. The hardware package, of case, meter, PSU now costs $£ 33.00+8 \%$ with the MA1023 available for an extra $£ 5$ only
For the fully digitai version, with Ambit DFM1, the price is $£ 56.50+8 \%$ VAT.

2 Gresham Raad, Brentwoad, Es5ek.

PROGRESSIVE RADIO

MICROPHONES: EM506 Electret Dual Imp (50 K + $\mathbf{+}$ 600贝) Imp Stick Mic, with Battery EM104 Tie Clip, Electret supplied with battery 1 K imp $£ 4.95$. UD130 Dual moving coil dynamic mic, cardiod response £8.25p.
Solid state, MANS TRANSFORMERS $6-9-12-24$ voit 15 ma 75 p each.
$6-0-6$ 100ma, $9-0-975 \mathrm{ma}, 75 \mathrm{p}$ each (15 p). $0-4.6-9 \quad 150 \mathrm{ma}$ no mountis per trantormer.

 18 V 1.5 amp rectified $£ 2.00$ (45 p). $35 \mathrm{~V} 2 \mathrm{amp}, 2.5 \mathrm{~V} 2 \mathrm{amp}$ Toroid $£ 2.95$ (45 p). 20 V 2.5 amp , £2.20 (54 p). Murata MA401L 40 KHZ rec/send transducers $£ 3.25$ pair
SNITHS TRANSISTORISED AUDIBLE WARNING DEVICE, 6
SNITHS TRANSISTORISED AUDIBLE WARNING DEVICE, 6-12V. $\mathbf{3 0}$ p.
BOARDS SURPLUS. Reed Board with 1412 V Reed S.P. make RLAS $\mathbf{E 1 - 7 5}$. LM309K 5 V fegulator Panel ${ }^{65}$ p.
NEW LOW COSTIMETERS,
KRT100, 1000Ω. PV. $1 \mathrm{kV} \mathrm{AC/DC.}$.150 mA DC current, $0-100 \mathrm{~K} \Omega$ res. mirror scale, switched KRT101, same as KR
KRT101, same as KRT 100 but range selection is by prod insertion, $£ 3.50$.
TAPE HEADS Mono Cassette $£ 1 \cdot 30$. Stereo version $£ 3.00$.
SOLDER SUCKER, high suction eye protection shield f4.95
PROJECT BOXES, black plastic ABS with lid $75 \times 56 \times 3544$; $95 \times 71 \times 35.52 \mathrm{p} 115 \times$
$95 \times 3660 \mathrm{p}$. $95 \times 3660 \mathrm{p}$.
TERMS: cash with order, (or official orders from colleges etc). Postage 30p unless otherwise shown. overseas post at cost. VAT inclusive prices. New lllustrated Catalogue now ready. S.A.E. please

Progressive Radio, 31 Cheapside, Liverpool L2 2DY.

Printed Circuit Coils

For the P.W. Sandbanks, only available from the designer of the detector. By reducing the coil capacitance, vast improvements in sensitivity to gold and silver can be achieved and only four resistors need to be changed for maximum sensitivity. A complete kit including the PC coil to fit the Ambit International moulding, the four resistors required, and instructions for only $£ 2.50$ are available from:

PLESSIS ELECTRONICS,
Castle House, Old Road, Leighton Buzzard, Beds. Callers by appointment only

$05 T 5$Since AMBIT introduced the "One Stop Technology Shop" to our service, we have been pleased to see just how many users of electronic components appreciate our guarantee to supply goods only from BS9000 approved sources. More than ever, professional and amateur electronics engineers cannot afford to waste time on anything less than perfect pedigree products.

2 Greshum Roud, Brentwood, Esser.

PRAGICAL WIRELESS T.V. SOUND TUNER
(Nov. 75 article by A, C. Alnslie) Copy of origina/ article suppi/ed on request IF Sub-Assembly (G8) £6.80. P \& P 75p. Mullard ELC1043 V'cap UHF Tuner£5.50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25p. 6 -way Station Control Unit (Special Offer) £1.00. Power Supply Prtd Circuit Board £1.00. P \& P 30p. Res, Caps, Semiconds, etc. for above $£ 5 \cdot \mathbf{8 0}$. Mains Transformer for above £2-50. P \& P 30p.

Add $12 \frac{1}{2} \%$ VAT to price of goods. $\mathrm{P} \& \mathrm{P}$ all items 85 p . Callers welcome at shop premises. MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 (Near W. Hampstead Tube Stn.) Tel. 01-794 8751

Model 146
VERY LOW
DISTORTION (.0015\%) AUDIO SIG. GENERATOR

Based on
J. Linsley Hood design (W.W.)

E36.00 (Kit. $\mathbf{6 3 1} \cdot \mathbf{0 0}$) + tax 8%

Low cost version, AOII3 ($\mathbf{0 2 \%}$ dist.) $\mathbf{£ 2 7 . 5 0 (K i t . ~} \mathbf{6 2 3}$). Other instruments include Millivoltmeter, Tachometer, Noise level meter, Distortion Analyser F.M. Sig. Gen. Crystal Frequency Standard. KEF Speaker Units. Send S.A.E

TELERADIO ELECTRONICS
325 Fore Street, Edmonton N.9. 01-407 3719
Closed all day Thursday

NO DISCO SYSTEM IS

 COMPLEIE WHHOUT...

CITRONIC MM 313 MIXER
Ideal for the DIY enthusiast building up a complete disco system. $4 / 6 \mathrm{ch}$. mono. inc. LEO indicators. connections a phono sockets at rear. Bargain price, minluding PSU
 FANTASTIC SPECIAL OFFER TO REAOERS
WIRELESS
Tweeters for your disco, PA

system or Hi -fi, Frequency range 5 K -20K any PA system up to 100 W . Why pay more? OUR PRICE ONLY $£ 6.18$ each

PROJECTORS

SQUIRE MULTIFECT 150
wheel A truly versatile projector Tungsten buib, all effects Tungsten bulb, all effects
A BARGAIN AT $\mathbf{f 4 2 . 1 2}$
PLUS MANY DISCO ACCESSORIES
BULGIN OCTAL PLUGS

AND SOCKETS

There s always hundreds of Bulgin Octal multiway plugs and sockets in stock at Roger Squire's Each pin rated 6A. Perfect for
your Sound to Light System. P552 SOCKET C0.65 (P\&P 35p) P551 PLUG f1.94 carrage on 10 or more nominal $£ 1.00$ Also avalable 6-way multicore cable 6 Amps per core) ex stock .65 per metre. Please phone for carriage quote.
 Starlite 250 An exclusive new line to Roger Squire's Disco O W quartz halogen bulb, fan

All Roger Squire's shops have a

 attachments. Unuque connection slot for $\mathbf{f 7 4 . 5 2}+$ VAT service department which caries large
stocks of DISCO SPARES \& ACCESSORIES. or exampla: Fane and H/H Disco Speak
12^{n} and $15^{\prime \prime}$ BSR and Garrard decks at discount prices.

noger Squircí pISco gear

[^0] roughout. 5 silicon trantransistors in push-pull. Full wave rectification.
Output approx.
13
ohms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$
3 db . Fully integrated separate volume. Bass boost and Treble cut controls. crystal cartridge. Sensitivity approx. 40 mV for full crystal cartridge. Sensitivity approx. 40mV for full
output. Supplied ready built and tested, with knobs,
escutcheon panel AC $200 / 250 \mathrm{~V}$ HARVERSONIC MODEL P.A. TWO ZERO An advanced solid state general purpose mono amplifier suitable
for Public Address system, Disco, Guitar, Gram..etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-
amp). Input $1,15 \mathrm{mv}$ into 47 k . Input $2,15 \mathrm{my}$ into 47 k . (suitable for use with mic. or guitar etc.). Input
200 miv into 1 meg. suitable for gram. tuner or 200miv into 1 meg. suitable for gram. tuner, or tape etc.
Full mixing facilities with full range bass $\&$ treble Full mixing facilities with full range bass \& treble
controls. All inputs plug into standard jack sockets on front panei. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts
R.M.S. Very attractively finished purpose built cabinet R.M.S. Very attractively finished purpose built cabinet anodised aluminium front escutcheon. For ac mains
operation $200 / 240 \mathrm{v}$. Size approx. $12 \ddagger^{\prime \prime} \mathrm{w} . \times 5^{\prime \prime} \mathrm{h} .<\mathrm{T}^{\prime \prime} \mathrm{d}$. operation $200 / 240 \mathrm{v}$. Size approx. 12
Special introductorv Price $\mathbf{2 8} \cdot \mathbf{0 0}$
"POLY PLANAR", WAFER-TYPE, WIDE RANGE
ELECTRO-DYNAMIC SPEAKER ELECTRO-DYNAMIC SPEAKER Size $11 \frac{1}{4}^{\prime \prime} \times 14 \frac{1 t^{\prime \prime}}{}=1 \frac{7^{\prime \prime}}{10}$ deep. Weight 19 oz . Power
handling 20 W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on or without baffle. Send S.A.E. for full derails Only $£ 8 \cdot 40$ each + p. $\&$ p. (one 90 , two $£ 1 \cdot 10$).
Now available in either $8^{\prime \prime}$ round version or $4 t^{\prime \prime}$ Now available in either $8^{\prime \prime}$ round version or $41^{\prime \prime}$
rectangular. 10 watts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ}$ 年
P. \& P. (one 65 p . two 75 p).

STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from
20 Hz to 20 KHz Input impedance 47 K . Size $1 \frac{5}{8 \prime \prime}$

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240V Mains oper-
ated Solid State FM A M Stereo Tuner. Covering
 MHz .
Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/g Voltage
$600 \mathrm{~m} / \mathrm{y}$ RMS into 20 K . Simulated Teak finish cabinet. $600 \mathrm{~m} / \mathrm{y}$ RMS into 20 K . Simulated Teak finish cabinet.
Will match almost any amplifier. Size $8 t^{\prime \prime} w \times 4^{\prime \prime} h \times$ Will match almost any amplifier. Size $8 i^{\prime \prime}$ LIMITED NUMBER ONLY at $£ 28.00$ 10/14 WATT HI-FI AMPLIFIER KIT A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super repro-
duction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 ELR4s, ECC83, 25p - SAE (Free with parts). All parts sold separately. ONLY $£ 15.50, \mathrm{P}$. \& P. £1.40. Also available ready built and tested $£ 20.00$, P, \& P. £ 1,40 ,

STEREO DECODER

SIZ 9 m 16 V neg. earth operation. Can ${ }^{\circ} \times{ }^{\frac{1}{2} "}$ realigned and tested any FM VHF radio or tuner. Can be fitted to almost be fitted if required. Full details and instructions (inPlusive of hints and tips) supplied. $86 \cdot 00$ plus 20 p .

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands.
Dynamic $M /$ coil speakers, telescopic aerial and internai ferrite aerial. Earpiece socket for personal listening. Finished in attractive simulated leatherette. Size Bargain price of only $£ 10 \cdot 00+£ 1 \cdot 30 \mathrm{p} . \& \mathrm{p}$.

SPECIAL DFFER LIMITED NUMBER ONLY

GOODMANS speakers, $6 \frac{1}{2}^{\prime \prime}-8$ ohm, long throw, ceramic magnet, full range rated 10 watts R.M.S., (when fitted in enclosure). $\mathbf{\Sigma 4 . 0 0}$ each +80 p p\& ($\mathbf{p} \& \mathrm{p}$ on two $£ 1.20$).
VYNATR \& REXINE SPEAKERS \& CABINET FABRICS app.
54 in. wide. Our price $\& 2.00$ yd. length. P. \& P. 50 p per yd. (min. 1

HARVERSONIC SUPERSOUND
 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass, Treble and iwo Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to
modify to suit magnetic cartridge-instructions inmodify to suit magnetic cartridge-instructions in-
cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boits-no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be r.m.s. per channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB}$ 12-30,000 Hz Sensitivity: better than 80 mV into
IM Ω : Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to Power requirements 35 v at $1 \cdot 0$ amp.
Fully detailed 7 page construction manual and parts AMPLIFIER KIT $\quad . \quad$ \& $14 \cdot 50$ P. \& P. 80 p (Magnetic input com POWER PACK KIT CABINET $\mathbf{8 6 . 0 0}$ P. \& P. $95 p$
$\mathbf{£ 6 . 0 0}$ P. \& P. $95 p$
SPECIAL OFFER-only $\boldsymbol{\mathcal { L 2 5 } \cdot 0 0}$ if all $\mathbf{3}$ items
ordered at one time plus $£ 1-25 \mathrm{p}$. \& p .
Also avail. ready built and tested $£ 31 \cdot 25$. P. \& P. $£ 1 \cdot 50$.

$$
\text { HARVERSONIC STEREO } 44
$$

A solid state stereo amplifier chassis. with an output of 3-4 watts per channel into 8 ohm speakers. Using the
latest high technology integrated circuit amplifiers with built in short term thermal overload protection, Al components including rectifier smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker
sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit panel, size approx. $9 \AA^{\prime \prime} .23^{\prime \prime}$. $1^{\prime \prime}$ brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at output of 17 va a c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 2.00+$ $40 \mathrm{p} P \& P$ if required. Full connection details supplied. All prices and specifications correct at time of press and ubject to al PLEASE NOTE: P. \& P. CHARGES OUOTED
APPLY TO U.K. ONLY. SEND SAE WITH ALL

HARVERSON SURPLUS CO. LTD. (Dept. P.W.) IT0 MERTON HIGH ST.,

LONDON, S.W.I9.

Tel.: 01-540 3985
Opan 9.30-5.30 Mon. to Fri. 9.30-5 Sat. Closed Wad.

15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc) are catered for internally. The desired function is achieved either by a multi-way switch or direct connection to the appropriale pins. The internal volume and tone circuits merefy require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power ampliffers and power supplies. To ease construction and with each pre-amplifer FEATURES: Complete pre-amplifter in single pack-Muli-function
APPLICATIONS: Hị-Fi-Mixers-Disco-Guitar and Organ-Public address
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3 mV ; Ceramic. Pick-up 30 mV : Tuner 100 mV ; Microphone 10 mV : Auxiliary ${ }^{3-100 \mathrm{mV} \text { i input impedance } 47 \mathrm{kO} \text { at } 1 \mathrm{kHz} \text {. }}$ OUTPUS.
AISTORTION 0.1% at 1 kHz . Tigne $\pm 20 \mathrm{NB}$ at 10 kHz ; Bass \pm at 100 Hz .
OVERLOAD. 38dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$. Price $\mathbf{5 6}-27+78 \mathrm{p}$ VAT P\&P free.
TH The HY30 is an exciting New kit from I.L.P. It features a virtualiy indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board. 4 resistors, 6
capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology availabie.
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifieraudio oscillator.
OUTPUT POWER 15W R.M.S. Into 8Ω; OISTORTION 0.1% at 1.5 W
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.
Price £6-27 + 78p VAT P\&P free.
The HY50 leads J.L.P.'s total integration approach to power amplifier design. The amplifier
features an integral heatsink together with the simplicity of no external components. Ouring the past three years the amplifier has been refined to the extent that it must be one of the mos past three years the amplifier has been refined to the ex
reliable and robust High Fidelity modules in the World.
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran sistors-No external components
SPECIFICATIONS INPUT SENSITFI syStems-Low power disco-Guitar amplifier
SPEPUT POWER 25W RMS into 8Ω LOAD IMPEOANCE 4-16 Ω DISTORTION 0.04% at 25 W
at 1 kHz SNOLSE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $5818+\mathbf{f y} \mathbf{0 2}$ VAT P\&P free

60 Watts into 8Ω

The HY120 is the baby of I.L.P.'s new hligh power range. Designed to meet the most exacting requirements including load line and thermal protection this ampliffer sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-tion-Five connections-No external components
APPLICATIONS: $\mathrm{Hi}-\mathrm{Fi}$-High quality disco-Public address-Monitor amplifier-Guitar and
organ
SPECIFICATIONS 500 mV .
OUTPUT POWER 6OW RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W at 1 kHz /NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE士 35 V
SIZE 1145085 mm
Price $519 \cdot 01+51 \cdot 52$ VAT P\&P free.

120 Watts into 8Ω

HY400
240 Watts into 4Ω

POWER SUPPLIES

The HY200 now improved to give an output of 120 Watts has been designed to stand the most
The HY200 now improved to give an output of 120 Watts has been designed to stand the most FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral -No external components
SPECIFICATIONS
OUTPUT POWER 120W RMS into 8Ω LOAD IMPEOANCE 4-16 Ω DISTORTION 0.05% at 100 W at 1 kHz . SIGNASE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\stackrel{ \pm}{\text { SIZE }} 1145085 \mathrm{~mm}$
Price $\mathbf{5 2 7} \mathbf{9 9}+\mathbf{5 2} \mathbf{2 4}$ VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy"' of the range producing 240 W into 4Ω ! It has been designed for high power disco address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The ampliffer includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components.
APPLICATIONS: Public address-Disco-Power slave-industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 4Ω LOAO IMPEDANCE 4-16 Ω DISTORTION 0.1% at 240 W SIGNAL. NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price $\mathbf{5 3 8} \mathbf{6 1}$ + $\mathbf{5 3} \mathbf{- 0 9}$ VAT P\&P free.
PSU36 suitable for two HY30's $£ 6 \cdot 44$ plus $81 p$ VAT. P/P free. PSU50 suitable for two HY50's $£ 8$ - 18 plus $£ 1$-02 VAT. P/P free. PSU90 suitable for one HY200 £ $15 \cdot 19$ plus $£ 1-21$ VAT. P/P free. PSU180 $£ 25 \cdot 42+£ 2.03$ VAT.
B1 $£ 0.48+£ 0.05 \mathrm{VAT}$
B1 $£ 0.48+£ 0.06$ VAT.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELEGTRONICS LTD., CROSSLAND HOUSE, NACKINGTON GANTERBURY, KENT, GT4 7AD.

I.L.P. ELECTRONICS LTD.,

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 7EP.
Tel: (0227) 54778.
Regd No. 1032630.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

TOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK

___WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIERS

MC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifer in the U.K. The superiority of the CPR 1 is probably high slewing rate ensures clean top, even with high outout cartridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual desion. R.t.A. A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to .5 mV ; distortion $<-005 \%$ at 30 dB overload 20 kHz .
Following this stage is the flat gain/balance stage to bring fape, tuner, etc. up to power amp. signal levels. Signal to noise ration 8idb; slew-rate $3 V / \mathrm{uS}$,
T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<\cdot 008 \%$ at any level. F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supplv to be ± 15 volts.
MC 1—PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil cartridges. Send for details.
X02 : X03-ACTIVE CROSSOVERS
X02 - two way, X03 - three way. Slope $24 \mathrm{~dB} / o c t a v e$. Crossover points set to order
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 1. than be used with any of our power amp supplies or our small transiormer TR 6.

POWER AMPLIFIERS
It would be pointless to list in so small a space the number of recording studios, amps satisfactorily for quite some time. We have a reputation for the highes quality at the lowest prices. The power amp is available in five types, they all have the same specification: T.H.D. typically 01% any power 1 kHz 8 ohms T.I.D. insignificant; siew rate limit2sility inignal to noise ratio fiodB; frequency
response $10 \mathrm{~Hz}-35 \mathrm{~Hz},-3 \mathrm{~dB}$; stability unconditional; protection-drives any load safely: sensitivity $775 \mathrm{mV}(\mathbf{2 5 0 m V}$ or 100 mV on request); size 120×80 $10 a d$ s.
25 mm.

ROWER SUPPLIES

俗 with a 120-240 primary and single bolt fixing (inciudes capacitors/bridge rectifter).

POWER AMPLIFIER KIT

The kit includes all metaiwork, heatsinks and hardware to house any two of our power amp modules products. Comprehensive instructions and full back-up service enables a novice to build it with con fidence in a few hours.

ACTIVE CROBSOVERS
XO2........ $14.83 \quad$ X 03.06

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listener with excellent performance at a reasonable cost and is the answer to this cternal problem.
The SRX- 30 is based on an advanced drift cancelling loop system which gives spot on dial accuracy at any frequency between 500 KHz and 30 MHz together with easy to understand frequency readout. Suitable for all users from raw beginners, thanks to it's simplicity of operation; to experienced listeners and amateur operators thanks to it's advanced technology, the SRX-30 is the best communications receiver available in it's price range today.
Completely self contained, including operation from mains or 12 volts dc, the SRX-30 is at home on broadcast or amateur bands. All mode reception of AM. CW. USB. and LSB is provided and receiver Send for full details today or sitched to give optimum performance on any mode.

NEW, Bellsoni power supply givin fully regulated 12 V dc output at 3 amps continuous rating and 5 amps pea rating from 220 -240
Automatic over current trip for safety. Multitude of uses for the amateur experimenter or professional user. Incredibly low price $£ 17.28$ inc. vat. P \& P 86p.

而 you all about the SRX-30. Price 2175 inc. vat. NEW. CL22 aerial tuner which will match almost any receiver to almost any aerial at any frequency between 1.5 and 30 MHz . Six switched ranges with fulfy tunable receiver and acrial matching capacitors. A worthwhile addition to aerial matching problems. Price $\mathbf{5 1 5 . 7 5}$ inc. vat aerial matching problems. Price 215.75 inc. vat
$P \& P 66 p$. NEW. Transform your TRIO 9R 59D, DE or DS with our digital readout unit giving direct readout of operating frequency.
Complete with fitting instructions. $\mathbf{£ 3 8 . 8 8}$ inc. vat. $\mathbf{P} \& \mathbf{P} \mathbf{2 8 p}$.

We also stock the RAK Listener 3 aeriai system for the man who demands the best and has the room for it. Double dipole system complete with H/D alloy wire, insulators, coaxial feeder, centre connector etc. in an overail length of 75 feet covering the frequency range up to 30 MHz . Price $£ 18$. inc. vat.
P \& P 86p. P \& P86p.
We carry a wide range of VHF monitor receivers for amateur, marine and airband users. Contact us
for details. for details.
If you need professional oscilloscopes at reasonable prices, please contact us for detalls of terrific No range. Full range of other test equipment stocked.
For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS LTD, 119 Cavendish Road, Matock, Derbyshire. Tel: 06292430 or 2817. For full catalogue, simply send 45 p in stamps and request catalogue CPW.

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - AUDIOMASTER - BAKER - BOWERS &
WILKINS CASTLE CELESTION - CHARTWELL
COLES DALESFORD DECCA EMI EAGLE -
ELAC FANE GAUSS - GOODMANS I.M.F. -
ISOPHON - JR - JORDAN WATTS - KEF - LEAK -
LOWTHER MCKENZIE - MONITOR AUDIO PEERLESS
- RADFORD - RAM - RICHARD ALLAN - SEAS -
SHACKMAN STAG TANGENT - TANNOY -
VIDEOTONE WHARFEDALE YAMAHA
```

WILMSLOW AUDIO
(Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mail Order \& Export 0625529599 Hi-Fi 0625526213

- C-C VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.10	ASY26	0.40	- BC 159	0.10°
AAY30	0.27	ASY27	0.40	BC167	0.12*
AAY32	0.42	AS215	1.25	BC170	0.11*
AAZ13	0.18	AS216	1.25	BCil1	0.10°
AAZ15	0.34	ASZ17	1.25	BC172	0.10 ${ }^{\text {² }}$
AAZ 17	0.27	ASZ20	1.50	BC173	0.12*
AC107	0.60	ASZ21	200	BC177	0.15
AC125	0.20	AU110	1.70°	BC178	0.14
AC126	0.20	AU13	1.70^{*}	BC179	0.16
AC127	0.20	AUY10	1.70°	8C182	0.11°
AC128	0.20	BA145	0.13*	BC183	0.110
AC141	0.25	BA148	0.13°	BC184	0.11°
AC141K	0.35	BA154	0.09	BC2 12	0.13*
AC142	0.20	BA155	0.10	BC2 13	0.12*
AC142K	0.30	BA156	0.09	BC2 14	0.15*
AC176	0.20	BAW62	0.05	BC237	0.09^{\prime}
AC1B7	0.20	BAX13	0.06	BC238	0.12*
AC188	0.20	BAX16	0.09	BC301	0.25
ACY 17	0.85	BC107	0.12	8C303	0.24
ACY18	0.80	BC108	0.12	BC307	0.10°
ACY19	0.75	BC109	0.13	${ }^{\text {BC308 }}$	0.10°
ACY20	0.70	BA113	$0.12{ }^{*}$	BC327	0.20°
ACY21	0.75	BC114	0.13*	BC328	0.18*
ACY39	1.50	BC115	$0.14{ }^{*}$	BC337	0.18 ${ }^{\text {e }}$
AD149	0.70	BC\{16	0.15^{*}	BC338	$0.17{ }^{\circ}$
AD161	0.45	BC117	0.17^{*}	8CY30	1.00
AD162	0.45	BC118	0.10*	BCY31	1.00
AF106	0.45	BC125	0.16^{*}	$88^{8 C Y} 32$	1.00
AF1 14	0.75	BC126	0.20°	BCY33	0.90
AF115	0.75	BC135	$0 \cdot 14^{\circ}$	BCY34	0.90
AF116	0.75	BC136	0.15^{*}	BCY39	3.00
AF117	0.75	BC137	0.15^{*}	BCY40	1.00
AF139	0.40	BC147	0.09*	BCY42	0.25
AF186	$1 \cdot 20$	BC148	$0.08{ }^{\circ}$	BCY43	0.25
AF239	$0 \cdot 45$	BC149	0.09°	ВСY58	0.16
AF211	2.75	BC157	$0.09{ }^{\circ}$	BCY70	0.15
AFZ12	2.75	BC158	0.08°	BCY71	0.17

\qquad

BZX61	0.18
Series	
BZY88	0.13
Series CRS/	
CRS	
CRS	
CRS	
CRS/360	0.90
GEX66	1.50
GEX541	1.75
GJ3M	0.75
GJ5M	0.
GM037	
KS100A	.45*
MJE 340	0.80
MJE370	1.17
MJE371	1
MJE520	0.52
MJE521	0.55
MJE2955	1.25
MJE3055	0.75
MPF1020	0.30*
MP	
MPF104	0.30
MPF105	0.30*
MPSA06	0.24*
MPSA56	-
MPSUO	0.
MPSUO	
MPSU56	49*
NE555	0.45
NKT401	2.00
NKT403	1.73
NKT404	1.73
OA5	0.95
OA7	0.55
OA10	0.60
-447	$0 \cdot 14$

OA70	0.30
OA79	0.30
OAB1	$0 \cdot 30$
OA85	0.30
0 O990	0.08
OA91	0.08
0495	0.08
OA200	0.09
0 -202	0.09
OA211	1.00
OAZ200	1.00
OAZ201	1.00
OAZ206	1.00
OAZ207	1.00
OC16	2.90
OC20	2.50
OC22	2.50
0 O 23	2.75
OC24	3.00
OC25	0.90
OC26	0.90
OC28	2.00
OC29	2.00
OC35	1.50
OC36	1.50
OC41	0.80
0 O 42	0.75
0 O 43	2.25
0 O 44	$0 \cdot 60$
OC45	0.55
$0 \mathrm{C71}$	0.55
OC72	0.55
0 C 73	0.70
OC74	0.65
0 C 75	0.65
OC76	0.55
$0 \mathrm{OC77}$	1.20
$0 \mathrm{OC81}$	$0 \cdot 65$
OC812	1.20

\qquad

TBA920 2.90
 TBA9900 2.99°
TCA2700
TCA760A
1.39"

DIL

 Sockets $\begin{array}{rr}8 \mathrm{PIN} & 0.15 \\ 14 \mathrm{PIN} & 0.15\end{array}$ $\begin{array}{ll}14 \mathrm{PIN} & 0.15 \\ 16 \mathrm{PIN} & 0.17\end{array}$| 7454 | 0.18 | |
| :--- | :--- | :--- |
| 7460 | 0.18 | |
| 7470 | 0.35 | |
| 7472 | 0033 | |
| 7473 | 0.36 | |
| 7474 | 0.40 | |
| 7475 | 0.54 | |
| 7476 | 0.40 | |
| 7480 | 0.55 | |
| 7482 | 0.75 | |
| 7483 | 0.90 | |
| | 7484 | 1.00 |
| 7486 | 0.35 | |
| | 7490 | 0.52 |

MU14	1.600° 9.00
OA2 \dagger	0.55
$0 \mathrm{~B} 2 \uparrow$	0.60
OC3 \dagger	0.75
$0 \mathrm{O} 3+$	0.75
024	1.60
PC86 ${ }^{1}$	$0.85{ }^{\circ}$
PC88t	$0.85{ }^{\circ}$
PC97	$1 \cdot 20$
PC900t	1.00*
PCC84t	0.50*
PCC8B	0.65*
PCC89 ${ }^{\text {c }}$	1.05*
PCC189 PCF80	11.80*
PCF82 \dagger	0.50^{*}
PCF86t	$0.75{ }^{\circ}$
PCF87t	1.10°
PCF200t	1-15**
PCF201 \dagger	+1.10*
PCF801t	+0.60*
PCF802 +	0.88*
PCF805	1 -60
PCF806	$1 \cdot 60$
PCF808	1.60
PCL82	0.80"
PCL83t	0.92*
PCLE84	$0.75{ }^{\circ}$
${ }^{\mathrm{PCLL}} \mathrm{PCL865}$	0.85*
	1.08
PD500	3.60 ${ }^{\circ}$
PFL200	1.80
PL36t	1.20
PL81	1.20

$\begin{array}{lllllllll}74144 & 2.50 & 74173 & 1.40 & 7 \\ 74145 & 0.90 & 7174 & 1.50 & 7 \\ 74147 & 2.00 & 74175 & 0.90 & 7\end{array}$

74118

1.00

VALVES

## $\begin{array}{ll}\text { DAF96 } & \mathbf{1 . 0 0} \\ \text { DF91t } & \mathbf{0 . 4 0} \\ \text { DF }\end{array}$ $\begin{array}{ll}\mathrm{K} 92 & 1.2 \\ 1.10\end{array}$ $\begin{array}{ll}\text { DL92 } & \mathbf{0 . 7 5} \\ \text { DL94 } & 1.20^{\circ} \\ \text { DY8 } & 1.10 .55\end{array}$	EABC80 1.20
EAC91 0.50	
$A F 42$	EAF42

ATERRAEED BRRETE

7400	0.16	7412	0.26	7432	0.36
7401	0.16	7413	0.32	7433	0.36
7402	0.16	7416	0.32	7437	0.32
7403	0.16	7417	0.32	7438	32
7404	0.17	7420	0.17	7440	0.18
7405	0.16	7422	$0 \cdot 20$	7441 AN	0.85
7406	0.40	7423	0.32	7442	0.72
7407	0.40	7425	0.30	7447 AN	1.90
7408	$0 \cdot 20$	7427	0.30	7450	
7409	0.20	7428	0.43	7451	0.18
7410	0.16	7430	0.17	7453	0.1

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. LOUDSPEAKER BARGAINS

3 ohm. $6 \times 4 \mathrm{in} . £ 1.50 .7 \times 4 \mathrm{in} . £ 1.50 .8 \times 5 \mathrm{in} . £ 2.50 .5 \mathrm{in} . £ 1.50$ $6 \frac{1}{2} \mathrm{in} . £ 1.80 .8 \mathrm{in} . £ 2-60$. $10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$. 8 ohm. $2 \frac{3}{4} \mathrm{in} . £ 1 \cdot 50.3 \mathrm{in} . £ 1-50.5 \mathrm{in} . £ 1-50$. $10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$. 10 in. $£ 3.12$ in. $£ 4$.

THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reels. A.C. mains 200/249V. Leafiet S.A.E.
$\mathbf{f 5 . 5 0}{ }_{5}^{\text {Post }}$

HEAD DEMAGNETISER PROBE 4.75

BLANK ALUMINIUM CHASSIS, 18 s.w.g. $2 \frac{1}{2} \mathrm{in}$. sides, $6 \times 4 \mathrm{in}$ $95 \mathrm{p} ; 8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7 \mathrm{in} . £ 1.55 ; 14 \times 9 \mathrm{in} . £ 1.90 ; 16 \times 6 \mathrm{in}$. $£ 1 \cdot 85$; 12×3 in. $. ~ 11.20,16 \times 10$ in. $£ 2$-20; 12×8 in. $£ 1.70$ ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in} .24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p} ; 10 \times$ $7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in}, 70 \mathrm{p} ; 14 \times 9 \mathrm{in} .94 \mathrm{p}:$ ALUMINIUM ANGLE BRACKET $6 \times \frac{3}{4} \times \frac{3}{4}$ in. 20p.
ALUMINIUM BOXES, MANY SIZES IN STOCK.
$4 \times 2 \times 2 \mathrm{in} .86 \mathrm{p} ; 3 \times 2 \times \operatorname{lin} .60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in} . £ 1 ; 8 \times 6 \times 3 \mathrm{in}$
$£ 1.90 ; 12 \times 5 \times 3 \mathrm{in} . £ 2 ; 6 \times 4 \times 4$ in $\mathrm{f1} .30$.

DE LUXE BSR HI-FI ADTOCHANGER	
Plays 12 in .10 in . or 7 in . records ${ }^{\text {a }}$ \%	
Auto or Manual. A high quality	
unit backed by BSR reliability	
200/250V. Size $13 \frac{1}{2} \times 11 \frac{4}{4} \mathrm{in}$.	
Above motor board 3 3in.	
With CERAMIC STEREO CARTRIDGE Garrard 5300. Autochanger with ceramic cartridge. f14.95	
Garrard Minichanger. Plays all size records.	
Ceramic cartridge. Stereo.	£8.95
BSR. P182. Snake arm, flared Aluminium Turntable	
Stereo ceramic cartridge. Latest model.	£22.50
BSR. Disco Single Player	
Cueing Device 1lin. Turntable. Budget price	f19-50
sco Deck 3 speed Stereo $\mathbf{f 8}$ or	f8 or $\mathbf{1} 15$

BAKER 150 WATT

QUALITY

transistor

MIXER/AMPLIFIER

Professional amplifier using advanced circuit design. Ideal fo disco, groups, P.A. or musical instruments. 4 inputs 4 way mixing Master treble, bases and volume controls. 3 speaker output socket 4-8-16 ohm. Slave output. Guaranteed. Details S.A.E. A/C mains 120 v . and 24 B78 f1-50 BAKER 50 Watt AMPLIFIER 2 inputs $\mathbf{5} 59$. DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains.

Pos $33_{\mathrm{p}} \mathbf{£ 3 . 2 5}$
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channel, with volume contro multi-way stereo mixers. \quad Post 35 p $\mathbf{1 2 . 9 5}$

R.C.S. SOUND TO LIGHT DISPLAY MK 2 Complete kit of parts with R.C.S. printed circuit. Three channels. Upto 1,000 watts each, Will operate from 200MV to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi}$ and all DíscoAmplifiers. Cabinet extra£4. 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights. EdisonScrew 75 p each or 6 for $£ 4$. or 12 for $£ 7.50$.

MAINS TRANSFORMERS ${ }^{\text {Post }}$

$\begin{array}{llll}6 \text { VOLT } & \frac{1}{2} \text { AMP. } £ 1.00 & 3 \text { AMP. } £ 1.95 & 9 \text { VOLT } 3 \text { AMP. } £ 2.75 \\ 12 \text { VOLT } \\ 300 \mathrm{MA} . £ 1.00 & 750 \mathrm{MA} . \mathrm{E} 1.30 \\ 20 & \text { VOLT } 2 \text { AMP. } £ 2.50\end{array}$ 30 VOLT 5 AMP. AND 34 VOLT 2 AMP. C.T. $£ 3.45$
30 VOLT 11 . 22.00 20-0-20 VOLT 1 AMP. $\mathbf{~ 2 2 . 9 5}$
$0-20-40-60$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 6 AMP. 29 AMP. $£ 3$ Low Voitage $0.8-12 \mathrm{AMP}$. $\mathbf{£ 3} \mathrm{AMP} 53 \times 18$ VOLT 6 AMP. $£ 9$
Low Voltage 12-0-12V.2 AMP 53
GENERAL PURPOSE LOW VOLTAGE. Voltages available at $2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and 30 V
$1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$
$\mathbf{5 5 . 8 0}$
$\mathbf{5 5 . 8 0}$
$2 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 \quad 1 \quad$ £5.80
$3 A, 6,8,10,12,16,18,20,24,30,36,40,48,60$
R.C.S. TEAK

COMPACT
SPEAKERS
$13 \times 10 \times 6 \mathrm{in}$.
50 to $14,000 \mathrm{cps}$.
10 watts. 4 or 8 ohms.
£16 pair
$\mathbf{8 1 1 . 0 0}$
$\$ 14.50$

Tel. 01-684 1665

YOUR COMPLETE RANGE OF ELEGTRONIC HAROWARE.

BIMENCLOSURES
ALL METAL BIMCASES
Red, Grey or Orange 14swg Aluminium removable top and bottom covers. 18 swg black mild steet chassis with fixing support brackets. BIM 3000
($250 \times 167.5 \times 68.5 \mathrm{~mm}$) £14.58

MINI DESK BIMCONSOLES

 Orange, Blue, Black or Grey A'BS body in. corporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushesBIM $1005(161 \times 96 \times 58 \mathrm{~mm}) € 2,18$
BiM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.05$

ALL METAL BIMCONSOLES

All aluminium, 2 piece desk consoles with Colour Code Top Panel Base either 15° or 30° sloping fronts, sit on A Off White Blue 4 self-adhesive non-slip rubber feet. B Sand Green Ventilation slots in base and rear \quad C \quad Satin Black Gold panel for excellent cooling. See latest catalogue for new styles and sizes 15° Sloping Panel 30° Sloping Pane BIM7151 ($102 \times 140 \times 51[28] \mathrm{mm}$) BIM7301 ($102 \times 140 \times 76\{28$) mm) BIM 7152 ($165 \times 140 \times 51[28] \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28] \mathrm{mm})$ BIM 7153 ($165 \times 216 \times 51[28] \mathrm{mm}$) BIM $7303(165 \times 183 \times 102[28] \mathrm{mm})$ BIM $7154(165 \times 211 \times 76[33) \mathrm{mm})$ BIM $7304(254 \times 140 \times 76[28] \mathrm{mm})$ BIM 7155 ($254 \times 211 \times 76[33] \mathrm{mm})$ BIM $7305(254 \times 183 \times 102[28] \mathrm{mm})$ BIM $7156(254 \times 287 \times 76[33) \mathrm{mm})$ BIM $7306(254 \times 259 \times 102[28] \mathrm{mm})$ BIM $7157(356 \times 211 \times 76[33] \mathrm{mm})$ BIM $7307(356 \times 183 \times 102[28] \mathrm{mm}) £ 17.58$ BIM $7158(356 \times 287 \times 76[33) \mathrm{mm})$ BiM $7308(356 \times 259 \times 102[28] \mathrm{mm}) £ 18.55$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids helo by screws into integral brass bushes (ABS) or tapped holes (Diecast).
$(50 \times 50 \times 31 \mathrm{~mm})$ $(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ ($190 \times 110 \times 60 \mathrm{~mm}$)

ABS		Diecast	Hammertone
N/A	BIM5001/11	TBA	

Natural £ 1.02 £ 1.19 f 1.46 E 1.82 £2.28 € 3.33
Also available in Grey Polystyrene with no slots and self-tapping screws BIM 2007/17 (112×61×31mm) $£ 1.00$

MULTI PURPOSE BIMBOXES

Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integral brass bushes. 1.8 mm pcb guides incorpora, ted and 4 BIMFEET supplied

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad £ 1.18$
BIM 4004 . $(111 \times 71 \times 41.5 \mathrm{~mm})$
£ 1.62
BIM 4005 ($161 \times 96 \times 52.5 \mathrm{~mm}$)
£2. 19
LOW PROFILE BIMCONSOLES
Orange, Blue, Black or Grey ABS body has ventilation slots as well as 1.8 mm pat guides and stand-off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied.
BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) \quad £ 2.37$ BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 3.08$ BIM $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) £ 4.12$

EUROCARD BIMCONSOLES
Orange, Blue, Black or Grey ABS body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated
and 4 BIMFEET supplied. 1 mm
Grey aluminium lid sits flush with body top and held by 4 screws into integral brass bushes.

BIM $8005(169 \times 127 \times 70[45] \mathrm{mm}) \quad £ 4.12$
BIM 8007 ($243 \times 187 \times 103[66] \mathrm{mm}) \mathrm{£} 6.10$

BIMTODLS + BIMACCESSORIES

MAINS BIMDRILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rDm . Orange ABS. high impact, fully insulated body with integral on/off switch $£ 10.53$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet f 2.48
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Complete in trans parent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ £22.14

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. $\quad £ 1.08$ per pack of 25 .

BIMFEET

11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet £0. 77 per pack of 24

12 VOLT BIMDRILLS

2 small, powerful drilis easily hand held or used with lathe/stand adaptor Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia. . £ 8.10 Major BIMDRILL with 4 collets up to 3 mm dia. $£ 13.60$
Accessory Kits 1 have appropriate dritls and collets as above plus 20 assorted tools. Mini Kit $1-£ 15.12$, Major Kit $1-£ 19.44$. Accessory Kits 2 have appro priate drills, coilets plus 40 tools and mains-12V de adaptor. MiniKit $2-£ 34.02$
ajor Kit $2-£ 39.42$. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit $3-£ 45.36$, Major Kit $3-£ 50.76$.

BIMPUMPS

2 2 all metal desoldersuction power and have easily replaceable screw in Teflon tips. Primed and released by thumb operation with in-built safety guard and anti-recoil system. BIMPUMP Major (180 mm long) 57.99 BIMPUMP Minor (150 mm long) E 6.80

Type 30 General Purpose 27 watt iron with long life, rapid change element. screw on tip, stainless steel shaft and clip on hook. Styled handle with neon. $£ 4.05$ Type M3 Precision 17 watt iron, quick change tip. Iona life element, styled handle with clip on hook. $£ 4.4$

BIMBOARDS

DIL
COMPATIBLE BIMBOARDS

Accept all sizes (4-50 pin) of DIL IC packages as well as resistors, diodes, capacitors and LED Integral Bus Strips up each side for power lines and Component Suppor Bracket for holding lamps, switches and fuses etc. Available as single or muitiple units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.

BIMBOARD 1 has 550 sockets, multiple units utilising 2, 3 and 4 BIMBOARDS incorporate 1100, 1650 and 2200 sockets, all on 2.5 mm (0.1') matrix.

BIMBOARD $1 £ 8.83$

BIMBOARD 2 £ 21.01
BIMBOARD $3 £ 29.84$
BIMBOARD $4 £ 38.79$
DESIGNER PROTOTYPING SYSTEM 1, 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$ All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 £55.62
DESIGNER 2 £61.02
DESIGNER 3 £66.42

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
"A" levels
Accountancy Air

Conditioning
Building

Engineering Farming Heating Industrial
Management
Mechanical

POST OR PHONE TODAY FOR FREE BOOKLET.

Purchasing Sales
Storekeeping
Work Study
\qquad

To: International Correspondence Schools
 SINCE 1890
 Dept G276 Intertext House, London
 SW8 4UJ or telephone 6229911
 Subject of Interest.
 Address

\qquad

Teiephone Number

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.
For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

All the many types of components we supply are BRAND NEW and guaranteed and only from manufacturers difect or approved suppliers. No surpius. no seconds							
ICS - TTL 7400 series				7451 $14 p^{2}$ 7453 14 p 7454 14 p 7460 14 p 7470 24 p 7472 24 p 7473 23 p 7474 23 p 7475 45 p 7476 32 p 7480 $\mathbf{4 1 p}$ 7482 61 p		7483 58 p 7485 74 p 7486 27 p 7496 40 p 7491 71 p 7492 46 p 7493 40 p 7494 66 p 7495 57 p 7496 63 p 74100 74104 70 p 74104	7410727 p$7412127 p$$7412351 p$7414154 p7415160 p741541607419099 p74191949 p7419294 p7493749 p
740074017401740274037404740574077408740974097410							
		7450					
OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS							
SIEMENS CAPACITORS* World famous for quallisy and dependability PCB TYPES -7.5 mm PCM 0.001 to 0.015 $6 p$ each: 0.015 to $0.0477 p$ each. 5 mm РСМ 0.068 8p, $0.19 p, 02212 p$. CERAMIC 2.5 mm PCM $0.015 p, 0.022$. $0.033,0.0475 p, 0.0686 p, 0.16 p$. ELECTROLYTICS - $1 / 100,10 / 25,10 / 63$, $100 / 25$, etc. For full range see our current lists.					RESISTORS $\frac{1}{3}, \frac{1}{2} . \frac{3}{6}$ watts* -2 p each*; metal film. metal oxide and 1 watt carbon $5 p$ ea*: good quantity discounts. Magnetic field dependent from £1.50. Hall Effect from £1.23.		
					SIEMENS TRANSISTORS Silicon ripn and pno from 8p ea: LEDs, red 19p: yellow or green from 23p (3 or 5 mm): Photo transistors from 46p.		
KEEN PRICES * GOOD SERVICE * WIDE RANGES							
DISCOUNTS 5% if list value of order over $£ 10$ 10% if list value of order over £25. Discounts available where cash (P.O. or cheque) is sent with order.					V.A.T. Add 8% to value of order or ! $2 \frac{1}{2} \%$ with ilems marked* (No V.A.T. on oveisees orders) Goods sent post free on CW. O. orders in U.K. over E5 fist value if under, add 27 p per order.		
					Latest 120 page catalogue on request.		

Cash with arder (P.O. of cheque payable to Electrovalue Lid) or your Access or Barclaycard fumber.
TRADE AND INDUSTAIAL ENOUIRIES INVITED
For all round satisfaction - be safe - buy it from ELECTROVALUE

Dept. PE5. 28 St Judes Rd, Englefield Green, Egham, Surrey TW20 OHB. Phone Egham 3603: Telex 264475.
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 1NA. Phone (061) 4324945.

The Sinclair PFM200 digital frequency meter.

 $20 \mathrm{~Hz}-205 \mathrm{MHz} . . .8$ digits ...Under 250.The Sinclair PFM200 brings digital frequency measurement within the reach of every engineer. It has a performance comparable with the very best bench-top instruments, but it's packaged in a compact case which is rugged but light, ready for use anywhere.

The PFM200 out-performs many much more expensive instruments. Its 8 -digit display and variable gate time give high resolution coverage of frequencies from 20 Hz to over 200 MHz . It gives you exceptional sensitivity and simplicity, at a fraction of the price of meters with similar specifications!

The PFM200 is ideal for use with audio, video and radio systems, and all electronic and digital circuitry. Now every development engineer, service technician, student and hobbyist can afford to have a personal digital frequency meter.

The PFM200 embodies Sinclair Radionics' seven-year experience in digital test equipment design and production.

PFM200: features

$20 \mathrm{~Hz}-200 \mathrm{MHz}$ guaranteed range (typically better)
Frequency resolution down to 0.1 Hz High sensitivity (10 mV typical) High-accuracy crystal timebase Full 8-digit capacity
Sharp, bright, easily-read LED display Built-in attenuator
Variable sampling rate
Low-battery indication
Truly portable

Where to use the new PFM200

The PFM200 is useful in every field of electronics, providing the ultra-precise frequency information that an oscilloscope can't give.
Transmitter checks: mobiles, ham, radio control - check frequency and stability on Low and High band VHF, etc, up to 200 MHz AM and FM. In most applications, the PFM200's optional telescopic aerial avoids the need for direct connections.
Audio testing and design: check oscillator frequencies, bandwidth limits, crossover frequencies, resonances, etc, with resolution down to 0.1 Hz .
Digital testing: check computer clock frequencies, divider ratios and other digital circuitry.
RF circuit checks: test local oscillators, BFO s, test IF and detector performance. Video equipment: check syncronised circuits, scanning frequencies, video bandwidths, etc.

Technical specifications

Frequency range: 20 Hz to 200 MHz Display resolution: up to 8 digits Lowest frequency resolution: 0.1 Hz Gate time: decade adjustable from 0.01 secs to 10 secs
Sampling rate: varies with gate time up to 5 per second
Display format: 8 LEDs, direct reading in kHz .
Attenuator: -20 db
Input impedance: 1 M in parallel with 50 pF Timebase accuracy: $0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, $10 \mathrm{ppm} /$ year
Dimensions: 6.2 in $\times 3$ in $\times 1.25$ in
Weight: 6 oz
Power requirement: 9V DC or AC adaptor
Sockets: standard 4 mm for resilient plugs
Standard accessories: test leads and prods, carrying wallet, owner's instruction manual
Optional equipment: $A C$ adaptor for 240 V 50 Hz power; deluxe padded carrying case; connector kit comprising BNC, co-ax, DIN and phono adaptors, plus telescopic aerial for off-air transmitter measurements

Built, tested, ready togo

The Sinclair PFM200 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the ordet form below, enclose a cheque/PO for the right amount (usual 14-day moneyback undertaking, of course), and send it to us.
Sinclair Radionics Ltd, London Rd, St Ives, Huntingdon, Cambs., PE17 4HJ, England. Regd. No. 699483.

THEVALVE AND TUAE SPECIALISTS

A2293	4.35	CV8667	4.98		10.02	*EZ88	$0.98=$	$\begin{aligned} & \text { PPCC169 } \\ & \hline \text { PCCE69 } \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.36 \end{aligned}$		$\begin{array}{r} 22.25 \\ 2.37 \end{array}$	$\begin{array}{r} * 2719 \\ \cdot 2729 \end{array}$	$\begin{aligned} & 0.80 \\ & 1.44 \end{aligned}$		$\begin{aligned} & 2: 32 \\ & 2 \cdot 4 \end{aligned}$	${ }_{\text {* }}^{6} \mathrm{LL12}$	$\begin{aligned} & 1.18 \\ & 0.68 \end{aligned}$	$\begin{array}{r} 1303 \\ 1308 \end{array}$	$\begin{aligned} & 5 \cdot 60 \\ & 3.75 \end{aligned}$	$\begin{aligned} & 13 \\ & 8298 \end{aligned}$	$\begin{aligned} & 51 \cdot 80 \\ & 12.80 \end{aligned}$
A2426	14.88	CV9155	4.98	*ECC81	0.80	-E281	$0.72{ }^{0}$	- PCE60	$\begin{aligned} & 1.36 \\ & 1.32 \end{aligned}$	- 12 R61.240A	21.37	$\begin{array}{r} 2729 \\ 2759 \end{array}$	$\begin{aligned} & 1.44 \\ & 9.05 \end{aligned}$	$\begin{aligned} 6 \text { BAK5 } \end{aligned}$	$\begin{aligned} & 2 \cdot 44 \\ & 2 \cdot 33 \end{aligned}$	$\begin{aligned} & 6613 \\ & 6.118 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 1308 \\ & \bullet 146 \mathrm{Wg} \end{aligned}$	$\begin{aligned} & 3.75 \\ & 1.58 \end{aligned}$	$\begin{aligned} & 8298 \\ & 832 A \end{aligned}$	$\begin{aligned} & 1280 \\ & 12.80 \end{aligned}$
A34-510w	21.18	D10-180GH	58.17	${ }^{}$ ECCC82	1.15	EL5751	1.010	- PEF86	1.58	AG3-250¢	28.10	-2017	1.00	* 6 AK8	1.15	- BLBGA	1.44	-1546	1.10	833 A	86.57
*A44-510w	31.48			-ECC84	1.15	GR31	8.95	- PCF200	2.46	RG3-1250	24.45	ZM1000	4.60	-8AL5	0.88	* 6 N7G	3.00	${ }^{-1} 15088$	1.44	668A	28.10
AH205	247.30		151.00	- ECC885	1.15	GU50	12.00	- PCF801	1.58	RG4-1250	25.80	ZM1020	8.55	*6AM5	5.00	*gplit	0.88	-16a6	1.30	927	10.95
AH22	25.80	014172GH	90.58	${ }^{\text {ECCB8 }}$	1.90	6x8180	34.00	*PCF802	1.58	RR3-250	7.15	2 M 1040	11.57	* вamb	1.60	${ }_{*}^{6 P 15}$	1.15	-1723	1.00	1474B	98.00
AH23B	24.45	014		-ECC91	6.58	GX $\mathrm{H}^{2} \mathrm{O}$	43.85	- PCF606	1.44	RR3-12508		2M1042	11.88	*84a5	1.12	${ }^{*} 6$ R3	3.38	-18GV8	1.58	1913	6.75
A $\mathrm{H}^{2} 511$	62.50	172 cm		- ECCOOO4	1.12	6×0250	237.80	- CH 200	2.32		11.00	2M1162	9.75	*6A05A	2.82	${ }^{6} \mathbf{6 S 2}$	0.84	*1908	1.50	2050A	4.84
AT1038-40	9.15	- DAFs1	1.00	-ECC2000	9.32	6xU4	16.63	-PCL82	1.36	S11E12	20.50	ZM1550	3.38	*6A08	1.68	-8SL7T	2.44	-19Y3	1.10	5551A	73.25
${ }^{\text {a } 2331}$	1.65	DCG4-		*ECF80	1.36	6XU4	33.00	- PCL83	1.58	S130P	3.76	2M1551	3.76	${ }^{-6408}$	1.16	*6SN7GT	1.60	-29C1	13.30	${ }_{5557}$	98.00
-A241	1.70	1000ED	26.72	${ }^{\text {e }}$ ECFE 2	1.04	GXU51	15.45	${ }^{\text {PCLI }} 84$	1.4	${ }^{\text {SPP4 }}$ (${ }^{\text {P }}$	5.25	2 P 1200	25.25	6ASE	6.40	*6507	1.22	-30A	1.36	5557	+19.15
-865	1.80	-0F61	1.50	-ECH81	2.32	-Gy501	2.57	-PCIB5	1.58	SU61	2.37	2 P 1210	28.35	6AS7G	1.85	-6U8	1.04	30c1	1.36	5559	36.45
-6309	0.8	${ }^{\text {²F91 }}$	0.75	*CL80	1.32	*6230	$1 \cdot 12$	Pcte5	. 5.	T83-750	59.30	zP1230	32.13	- ${ }^{\text {AAT6 }}$	1.25	9V4	0.98	-30FL14	1.4	5651	1.75
${ }^{*} 8319$	0.84	* $\mathrm{OF9} 2$	0.65	-ECL82	0.88	* 6331	2.25	${ }^{\text {P PCL }}$ - 86	1.59	TB4.1250	78.82	2P1240	26.80	* ${ }^{\text {* ALIV }}$	0.96	${ }^{-8 v 86 T}$	1.24	-30FL2/1	1.12	5654 568	2.50 8.34
- 8329	0.68	DG7-31	47.25	-ECL85	1.12	-6732	1.65	${ }^{\text {- PCE }}$ P8	1.88	T33-250	59.30	ZP1300	15.00	*8AV6	1.98	*6X4	1.98	-3018	1.58	${ }_{5696}$	8.34 2.88
81153	109.98	067-32	47.25	${ }^{\text {-ECL66 }}$	1.56	-6z34	1.90	- PCL805	1.58	TY4-350	${ }^{86} 5$	ZP1310	12.53	${ }^{\text {F }}$ 6aV8	2.20	*6X5GT	1.15	-3019	1.00	5867	59.30
8 k 68	59.15	D013-2	21.00	EF37A	3.35	${ }^{\text {cta }}$	3.50	PET-100	70	Tr4-400	59.30	${ }_{2 P 1420}$	15.17	-6846	0.80	-7058	1.90	-30PL12	0.96	5866	76.82
88×448	73.25	Dil3-91	40.29	* EF39	3.75	Exu50	14.00	*PEL200	10.08	TY4-400 ${ }_{\text {TVA }}$	84.78 76.82	${ }_{\text {ZP14 }}{ }^{\text {P140 }}$	47.25	-8886	0.80 0.88	-7EC7	1.38	-30PL 14	1.68	5894	31.00
BT5	38.100	-OH17	1.20	- E660	0.80 0.91	${ }_{\text {j-g20 }}^{\text {jeca }}$	74.5	${ }^{\text {PPL33 }}$	1.00	TY6.800	150.98	${ }_{2 P}{ }^{2 \times 30}$	43.26	**8H6	1.44	-8HG8	1.58	*31A3		5728	9.75
BT56	25.70	- DH 142	2.00	* F 86	1.44	${ }_{\text {K766 }}$	6.75	*PL36	2.05	U50	1.28	211011	22.50	*68.36	1.00	-9A08	1.32	54 KU	1.85	5751	4.00
B717	85.05	- Dh719	1.10	*EF89	1.71	-kT88	8.72	-pl81	1.12	* 152	1.90	2×1051	87.00	- BELE_{68}	1.36	-9.516	$1.50{ }^{\text {d }}$	587 TP -03	466.70	5763	3.12
8119	22.20	* Dkg 1	0.95	*EF91	3.99	-L63	4.80	- PL83	$0 \cdot 80$	* 478	0.95	ZX1052	158.71	${ }^{6817}{ }^{\text {a }}$	1.55	- 9 U8	1.32	${ }_{8541}$	7.80	6057 8058	2.10
${ }^{8195}$	78.15	DLS 45	4.67	*EF92	5.00	- $\llcorner 77$	2.20	- PL84	1.58	- 1142	1.10	OAA ${ }^{\text {CAL }}$	2.55	${ }_{\text {68S }} 8$	3.84	${ }^{101012}$	1.20	8542	1.75	6060	1.00
8 BH 27	88.10	DLSI8	10.50	EF93	0.10	-N119	1.6	-PL500	1.20	- 1515	1.75	CA3	1.80	*68W6	6.35	-10P18	1.44	90ag	8.10	6064	1.85
8W1162 3	213.49	DR20,0	4.45	EF94	0.80	LN52	1.32	-PL504	2 -16	- 151	2.37	OB2	2.36	*68w7	1.40	${ }^{*} 10 \mathrm{pl} 12$	1.65	90AV	8.10	6080	7.80
B3108L-01	165.00	OR2100y1	4.75	${ }_{*}^{*+59}$	1.38	- i 329	1.68	PPL508	2.35	*U152	1.00	$0 \mathrm{C}_{2}$	2.85	*6BX6	0.50	-12AL5	$2 \cdot 15$	90 Cl	1.62	6084	6.32
B4198L-01	225.80	-dY86	0.60	-EF184	1.44	M24-3026	H26.50	PL509	3.33	*153	1.00	00°	1.92	${ }^{\text {*BEY }} 7$	1.40	*12AT7	0.80	${ }^{90 \mathrm{CG}}$	13.68	${ }^{6085}$	5.76
C1186	45.00	- 9 Y87	0.60	*EH90	1.25	M24-302W	- 26 .50	PL602	3.48	-U193	1.00	003	1.25	- ${ }^{\text {cct }}$	2.20	-12A77	1.20	${ }_{9246}$	7.98	6158	2.78
cV131	5.48	- ${ }^{\text {b }}$ -	1.04	- EK90	0.98	M31-3126H	33.00	${ }_{\text {Pl6517 }}$	1.10	- 1309	1.00	-183GT	1.75	${ }^{6} 6 \mathrm{Cl2}$	1.10	-12au6	1.28	${ }_{92 \mathrm{AV}}$	7.96	6169	7.01
-Cv378	4.62	E55L	21.00	${ }_{*}^{+E 134}$	2.24	M31-312W	+ 33.00	PY33	1.00	- UAF42	1.25	${ }_{-172}$	1.00	${ }^{-8 \mathrm{CC} 18}$	1.36	-12AV6	1.50	108 Cl	2.36	8199	69.00
CV391	18.80	E80CC	5.00	EL36		M31-334W	33.00 33	-PY81	1.00	-ubf80	1.10	-124	1.10	- ${ }^{-1} \mathrm{CA}_{4}$	0.72	${ }_{-12 A X 7}$	$0 \cdot 68$	15083	4.10	6201	1.05
CV1835	10.30	${ }_{\text {EBOF }}$	8.32	- E-38	- 6.75	M 38.312 CH	H 37.50	${ }^{\text {- Pr }}$ - ${ }^{2}$	0.75	*UBF89	1.10	$1{ }^{188}$	21.75	-8CA7	2.24	${ }^{*} 1284 \mathrm{~A}$	2.56	150 C 2	1.45	6227	5.96
CV2127	11.32	EBICC	2.40	${ }^{*}$ EL141	2.25	M38-312W	37.50	83	0.75	*U8L21	1.40	$1{ }^{1838}$	8.90	*8çba	0.75	-128A6	0.90	150c3	1.75	${ }_{6257}^{625}$	26.75
CV2235	7.38	E61L	8.51	* $\sim_{\text {E }} 1$	1.60	M8079	9.60	PY500	1.24	-ucc85	1.10	-185	1.00	-8CH6	1.70	-12868	1.45	367	11.75	${ }_{6360} 62$	4.50
CV2382	7.05	E82CC	7.48	${ }^{\text {E }}$ [83	1.20	M6081	7.79	PY500A	2.24 2.24	-UCH81	1.58	- S2 ${ }^{\text {S }}$	0.80	-6CK6	1.70		1.45	715	30.82	6574	15.68
CV2492	5.48	E83CC	4.50	84	1.15	MB062	3.00	- PY800	1.26	*uctas	1.86	${ }_{*} 154$	0.60	${ }^{*}$ BCL6	6.44	-12BY7A	1.54	807	$3 \cdot 12$	6689	5.64
CV2493	6.04 7.23	E83F	5.64	*EL85	4.20	M8091	8.99 4.80	PY00	1.00	*UCL82	1.86 0.75	-is5	0.60	-6CM5	1.94	${ }_{12 \mathrm{El}}{ }^{\text {a }}$	10.17	811 A	4.50	6922	4.98
CV2522	7.23	EB6C E8BC	10.35	EL66	2.16 1.12	M8098	4.80 8.81	07-1006U	80.78	- UF 5	0.65	-174	0.60	${ }^{*} \mathrm{cc} 58$	1.28	12 E 14	32.78	812A	11.05	6939	9.9
CV2975	2.30	${ }^{888}$	4.88	- E91	5.58	M8136	7.01	00V02. ${ }^{\text {d }}$	9.90	-UF89	0.75	2021	$2 \cdot 24$	*6CW4	4.72						
CV3508		E88CC-01	5.48	*E95	1.32	M8137	7.23	quve3-10	4.50 18.00	-UL84	1.44	2K25	14.00 7.50	*60\% ${ }^{60}$	1.19 0.76	EC	IIN	S	Cla		ITY,
CV3998	7.10	E90C	5.48	*EL360	4.12	M8161	6.52	00v03-20A	18.00 18.00	-UY41	0.95	3828 $3 C 45$	8.50	${ }_{*}^{602}$	1.77	TRA					
CV4003	7.01	E90F	4.92	*EL509	3.40	M8162	6.27	00vob-40A	31.00	VR105-30	1.92	$3{ }^{3} 29$	8	-6Das	${ }_{8} .83$	RA	N	TT	,		
CV4014	6.27	E180CC	20.33 5.87	EN10	6.48 15.00	${ }_{\text {M } 6248}$	2.72	0S83-3	1.75	W17	0.75	4-400A	62.67	-8015	1.32			AS FI	ED		
CV4015	8.52	Ef ${ }^{\text {d }}$ OF	E 4.4	EN32	15.68	ME1400	4.85	as95-10	4.85	W77	2.25	5AR4	2.25	${ }^{\text {GEFH7 }}$	1.36						
CV4016	4.50	E182CC	6.34	EN91	5.80	MT57	58.35	QS150-15	4.10	W727	0.80	${ }^{5 A 163 \mathrm{~K}}$	6.48	6E17	1.42						
CV4024	8.27	E186CC	8.04	EN92	5.85	*N77	6.09	OS1200	2.25 1.75	- $\times 172$	0.10	${ }_{58 / 254 \mathrm{M}}$	12.37	${ }_{*}{ }^{86} 12$	3.83	All valve	guara	nteed new	\& tes	be	despatch.
CV4025	9.80	E188CC	5.28	E51	2.37	- N 309	2.22	OS1205	1.75 1.75	$\times \mathrm{XG1-2500}$	58.35	${ }_{5}^{5122}$	39.50	${ }^{-6 \mathrm{FF} 28}$	0.91	Cash wi	orde	r. Postag	8 Pa	king:	up to
cl4044 CV5214	8.99 6.87	${ }_{\text {E283CC }}$	21.43	${ }_{\text {EY8 }}$	3.31	- PC8E	1.79	$\square{ }^{\text {asi }} 12$	3.55	X 92 2-500	45.87	5 CP 1	26.00	${ }^{*} 8 \mathrm{~F} 29$	1.36	£2:-30p	¢5:-5	Op Over	5:-85p.	Add	.: 12\%
CV5311	3.00	E288CC	15.00	* EYab	0.84	*PC88	2.05	OS1215	1.80	XG5-500	30.62	5R4GY	3.90	-6F3	1.75	where m	rked	, others 8			
CV537]		-EAA91	0.88	EY87	0.84	*PC97	1.15	av05-25	3.12	X ${ }^{\text {¢ }} 3.045$	24.68	${ }^{514} 4{ }^{\text {dig }}$	2.63	-6F6G8	1.75						
CV5786	6.62	*EABC60	1.15	EY88	1.05	- pcsao	1.26	avob-20	7.92	\times X $\times 1.1600 \mathrm{~A}$	22.50	5746	1.12	-6GW8	1.58		facilitie				
CV5809	10.58	- EB91	$0 \cdot 88$	- Ev91	2.25	${ }^{\text {P PCC84 }}$	0.84	ard 100	51.60	XRI-3200		5246T	1.12	* $\mathrm{B}^{6} 4$	1.50			as avala	or certain		s.
CV5989	5.76	- ebcgo	1.25	${ }^{\text {Er802 }}$	0.91	- $\mathrm{PCCB5}$	$\begin{aligned} & 1.32 \\ & 1.12 \end{aligned}$	aY3-125	46.60 55.14	- ${ }^{\text {XR1-320 }}$	80	6/3012	1.55	*836	6.58	valves.	te rep	acements	or certain	types	obsolete
CV6007 CV8431	6.70	*EC91	2.20 6.09	* E 40	1.25	- ${ }^{\text {PCC889 }}$	1.38	OY4-400	62.67	${ }^{*} 271$	3.99	-6AB4	1.25	${ }^{*} 6.45 \mathrm{GT}$	4.80	vaives.					

INTEL ELECTRONIC COMPONENTS LTD.

\section*{
 Complete kit less
 for only
 $9-\quad \begin{gathered}\text { less } \\ \text { crystal }\end{gathered}$
 We also have available a multi-channel version of the PCB, allowing
 up to 7 crystals to be fitted. Kit less crystals-- $\mathbf{5 3} \mathbf{6 0}$
 Components also available separately:
 PCB (single channel) $£ 4.50$: (multi-channel) $£ 5.35$;
 SL6640, £3.85: Crystal filter, $£ 24.85$

 A simple-to-build, easily-aligned Class CPA Puitable for CW and FM amplification at 2 metres from a nominal $13-5 \mathrm{~V}$ (-ve earth) supply (7amps at full power). T/R 'switching' is

performed by diodes and t wave lines. A power input of 10 watts is required for the performed by diodes and $\frac{1}{2}$ wave ines. A power in

nominal 40 watts output power. $£ 19.50+65 \mathrm{p} P$. P.
 NEW PLASTIC IC's from PLESSEY
 New low cost version of the famous SL600 series communication ic's are now available. The
 $\frac{\text { Recoive Mixer }}{\text { Alf prices INCLUDE VAT at current rates. }}$
 Please note our minimum U.K. post and packing charge, except where indicated, is 3Op. EXPORT ORDERS welcomed.
 CATRONICS LTD., COMMUNICATIONS HOUSE, (Dept. 985) 20 WALLINGTON SOUARE, WALLINGTON, SURREY SM6 8RG Tet. 01-669 6700 (9 a.m. to 5.30 p.m. Sat. 1 p.m.)
 | | METAL | | PLASTIC | |
| :---: | :---: | :---: | :---: | :---: |
| R.F. Amplifiar | SL610C | $\underline{2.65}$ | SL1610 | £1.82 |
| R.F. Amplifier | SL611C | £2.65 | SL1611 | ¢1.82 |
| R.F. Amplifier | SL612C | ¢2.65 | SL1612 | 81.82 |
| Limiting Amp | SL613C | $\mathbf{8 4 . 5 5}$ | SL1613 | £2-13 |
| VOGAD | SL620C | 14.00 | | - |
| AGC Generator | SL621C | ¢4.00 | SL1621 | £2.45 |
| AF/VOGAD/Sidetone | SL622C | ¢9.85 | - 1 - | -275 |
| AM/AGC/SSB | SL623C | f7.30 | SL1623 | £2.75 |
| Multimode Det. | SL624C | 63.70 | 16 | 2.75 |
| AF/VOGAD | -- | - | SL1626 | £2.75 |
| A.F. Amplifier | SL630C | ¢2.65 | SL1630 | £1.82 |
| Oouble Bal. Mod. | SL640C | 44.45 | SL1640 | 82.13 |

J. BIRKETT RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln. Tel: 20767

50 PIV 24 AMP WIRE ENDED DIODES \& $7 p, 6$ for $25 p$. High Frequency counters type hcF boo 8 Digit Led Readout 600 MHz at HCBU CRYSTALS. 2002, 2044, 2100. $2111 \mathrm{KHz}, 19.06,20.006,27.1765,27.178$. 27.181, 27.184, 27.187, 27.1885, 27.193, 32.2222, 33.33333. 36.2222, 36-6666. 38.3333. 39.7407, 40.075, 40.2222, 40-3333, 44.3, 45.9. 46.3, 48.3, 50.1 MHz . All at 50 p each. 3 for E 1.30 .

HC18U CRYSTALS 10.230 MHz © $1 \cdot 25,26.853 .53 .675,66.986 \mathrm{MHz}$. 50 p each. 10x Type 8010KHz 40p.
LASTIC TRAN8ISTOR 8 BC- 182 or 2 N 3704 at 6 for 50 p .
100 PNP TRANSISTORS LIKE AC 128 Marked MT 57/A for 65p.
LASTIC TRANSISTORS. BC 108 Type at 10 for 50 p .
UARIABLE CAPACITORS Direct Drive. 5pf e 75p, 10pf 75p, 125+125pf 55p $00+200 \mathrm{pt}$ 56p, $25+25+25 \mathrm{pf}$ - 75p. With s.m. Drve 200+300pt e UHF SOLDER-IN 6 pf TURULAR TRIMMERS 10 p Each 10.7 MHz CRYSTAL FILTER Bendwidth $\pm 7.5 \mathrm{KHz}$ e £5.
$2 G H z N P N$ STRIPLINE TRANSIETORS $\oplus 1$ each.
2GHz NPN SRAIPLISTORS. AF 239 -50p. BFY 50 50p, 2 N 5180 ~ 50 p
VERNITRON 10.7 MHz FILTERS \& $50 \mathrm{p}, 3$ for $£ 1$
30 ASSORTED CRYSTAL8 10XA」 Type fil 10, 20. FT 241 Type CRYSTALS f1.10, 20. FT 243 CRYSTALS a f $1 \cdot 10$.
MULIARD VHF STRIPLINE NPN TRANSISTORS BF 362 - $25 p$.
1000pt SOLDER-IN FEED THRO'E 20 p doz.
50 VARI-CAP DIODES LIKE BA 102 untested 87p.
50 AC 128 TRANSISTORS Branded buR INGTONs
20 PHOTO TRAN8I8TORS AND DARLINGTONS assorted untested £1.
50 BC 107-8-9 TRANSISTORS assorted untested © 57 p.
COIL FORMERS $3 / 16^{\prime \prime}$ Dla. with core. 6 for 25 p.
10 AMP THYRISTORS 100 PIV $25 p, 400$ PIV $50 \mathrm{p}, 800$ PIV © 60 p . BYXB 12 SILICON DIODES 20 for 30p.
10×2 Metre CRYSTALS 8010 KHz ~ 40 p .
DIE CAST BOXES $4^{n} \times 2^{\prime \prime} \times 1^{\prime \prime}$ - 55 p, $6^{\prime \prime} \times 3 / 16^{\prime \prime} \times 2^{\prime \prime}$ € $£ 1 \cdot 15$
5 AMP TKYRISTORS untested. 20 for 57 p .
TANTALUM BEAD CAPACITORS $4.7 \mathrm{uf} 16 \mathrm{v.w.} 10 \mathrm{uf} 10 \mathrm{v} . ,\mathrm{w} ., 33 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$, All at 9 p each. 100 uf $3 \mathrm{v.w}$., 15p. 100uf 10v.w., 25 p.
DISC CERAMICS 01 ut $50 \mathrm{v} . \mathrm{w}$., 1000pt 500v.w., Both 20 p doz.
3 PIN PLUG AND SOCKET LIKE R.S. EUROPEAN 2 M. of Cable 75p pair.
ELECTRET MICROPHONE INSERTS with FET Pre-AMP ef1.85.
EO ASSORTED 2 WATT ZENERS untested © 57 p .
10 ASSORTED PUSH BUTTON BANKS less knobs for f1-30.
50 PLASTIC NPN-PNP TRAN8ISTORS Mixed Untested 57 p .
Please add $20 p$ for post and packing on U.K. orders under f 2 . Overseas postage at cost

H.A.C. shortwave KITS

WORLD-WIDE RECEPTION

-H.A.C. well known by amateur constructors for its short wave receivers, now offers a the novice and the expert.
£10-50 INCLUSIVE -the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components, drilled chassis, valve, accessories and full instructions. THIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception, selective, sensitive and with fantastic reception,
yet needing only a single PP3 battery, at yet needing only a single PP3 battery, at
$£ 12.50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for cen better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAYE PRODUCTS
P.O. Bax Na. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ

OSMABET LTD $\begin{gathered}\text { am e make transformers } \\ \text { amongst toter }\end{gathered}$

 LOW VOLTAGE TRANSFORMERS: Prim 240 V ac $63 V 1.5 A$ £2.95, ET2.25
TVINSEC TRANSFORMERS: Prim 240V ac.
$6 V 0.6 A+6 V 0.6 A, 9 V 0.4 A+9 V 0.4 A: 12 V 0.3 A+12 V$ $6 \mathrm{~V} 0.6 \mathrm{~A}+6 \mathrm{~V} 0.6 \mathrm{~A}: 9 \mathrm{~V} 0.4 \mathrm{~A}+9 \mathrm{~V} 0.4 \mathrm{~A}: 12 \mathrm{~V} 0.3 \mathrm{~A}+12 \mathrm{~V}$
$0.3 \mathrm{~A}: 20 \mathrm{~V} 0.15 \mathrm{~A}+20 \mathrm{~V} 0.15 \mathrm{~A}:$ all at $£ 3.65$ each: 15 V $0.75 \mathrm{~A}+15 \mathrm{~V} 0.75 \mathrm{~A} 55.65 ; 15 \mathrm{~V} 1.5 \mathrm{~A}+15 \mathrm{~V} 1.5 \mathrm{~A} 57.75$ $18 V 1 A+18 V 1 A 6.85 ; 18 V 1.5 A+18 V 15 A £ 8.50 ; 20 V$
$1.5 A+20 V 1.5 A E 8.50 ; 12 V 4 A+12 V 4 A £ 10.50 ; 25 V$ $2 A+25 V 2 A f 10.50$.
MIDGET RECTIFIER TRANSFORMERS: Prim $240 V$ ac. 6-0-6V 1.5A or $9-0-9 V 1 \mathrm{~A} £ 3.00$ vashti $12 \mathrm{~V}-0-12 \mathrm{~V} 1 \mathrm{~A}$ o $20 \mathrm{~V}-0-20 \mathrm{~V} 0.75 \mathrm{~A}$ £ $3-75$ bach; $9-0-9 \mathrm{~V}$ O 3 A or $12 \mathrm{~V}-0-12 \mathrm{~V}$ O.25A or 20V-0-20V O-15A \& 2.85 each.
 $24-30 \mathrm{~V} 2 \mathrm{~A} £ 7-35 ; 4 \mathrm{~A} £ 10.50 ; 0-20-30-60 \mathrm{~V} 1 \mathrm{~A} £ 8.25$; PA E10.50; 0-40-50-60-80-100-110V 1 A $£ 10.50$
MAINS TRANSFORMERS SPECIAL OFFER:
prim 240 Vac .
$250-0-250 \mathrm{~V} 60 \mathrm{Ma} .6 .3 \mathrm{~V} 1 \mathrm{~A} £ 2.00 ; 250 \mathrm{~V} 100 \mathrm{Ma} .6 .3 \mathrm{~V}$ $250-0-250 \mathrm{~V} 60 \mathrm{Ma} .6 .3 \mathrm{~V} 1 \mathrm{~A} £ 2.00 ; 250 \mathrm{~V}$
$2 \mathrm{~A} £ 3.00 ; 9 \mathrm{~V} 3 \mathrm{E} \mathbf{£ 2 . 5 0 , 2 5 \mathrm { V } 0 . 3 \mathrm { A } £ 1 . 0 0 .}$. LA E3-00; MV SA
LOUDSPEAKERS

'INSTANT"' BULK CASSETTE/TAPE ERASER
Instant erasure of cassettes, and any diameter of tape spools, Instant erasure of cassettes, and any darneter of
demagnetises tape heads, 200/240V ac f6-00, POWER SUPPLY, TWIN OUTPUT: Prim 240 V ac New, British manufacture, smoothed d.c. output 20 Va 1.5 A plus stabilised output of 15 V 100 Ma , plus 12 Vac 0.5 A out put, complete with diagram. £3.5S. 200/ $/ \mathrm{A}$
Size $19 \times 18 \times 20 \mathrm{~mm} 8000$ fl. 10.
CHARGING METERS 1 I
CHARGING METERS $1 \frac{1}{2}$ ins diameter
$2 A$ or $3 A$ ET. 25 each; $5 A$ or
SYNCHRONOUS GEARED MOTORS, 240 V
Brand new, built in gear box, 1 or 20 RPH. E1-25 each,
O/P TRANSFORMERS FOR VALVE AMPLIFIES P.P sec tapped $3-8-15 \Omega$. A-A 6K. 30W £15.25; A-A $3 K$
$50 W £ 22.75 ; 100 W$ (E L3 KT 88; G.E.C. MANUAL OF POWER AMPLIFIERS Covers valve amplifiers 30W to 400W £1.00.
MULTIWAY SCREENED CABLE, PVC COVERED 36 way $\mathrm{f} 1.00 ; 25$ way $75 \mathrm{p} ; 14$ way 50 p; 6 way 25 p; 4 way 20p; 2 way rp; way 8 p; 4 way inanidualy scree
ed 25 p per metre, fig 8 twin stereo do screened $15 p$, metre. ed $25 p$ per metre.
MAINS CABLE
4 way, $3 A 30 \mathrm{p}$ metre; fig 8 for loudspeakers atc. $\mathbf{E 5} .00100$ CONDENSERS
Electrolytic, 400/400V 75p; 2000/30V 30p; 1200/75 50p; $2200 / 40 \mathrm{~V} 40 \mathrm{p} ; 8+8 / 450 \mathrm{~V} 40 \mathrm{p} ;$ Paper tubular, W/E 4/160V, $6 / 160 \mathrm{~V}, 2 / 150 \mathrm{~V}, 0.1 / 2000 \mathrm{~V} 25 \mathrm{p}$ each.

CARRIAGE EXTRA ON ALI ORDERS
ALL PRICES INCLUDE VAT.
Callers by appointment only. S.A.E. Enquiries, Lists. 46, Kenilworth Road, Edgware, Middx.

HA8 8YG. Tel: 01-9589314

NEW FROM CASIO

From TIMETRON recommended by TEMPUS

NEW/ THE INCREDIBLE MELODY 80 Musical Calculating Diary Watch

ADVANCE SPECIFICATIONS: Two separate Alarm Tunes Calculator with keys $1-8$ playing individual notes - a mini synthesizer! Complete Calendar, Watch, Stopwatch measuring net and lap times to $1 / 10$ second, Alarm Timer and Calculator with $\%, \sqrt{\text { full memory, Date calculations. }}$
RR $£ 30.95$
$£ 25.95$

NEW

THE AMAZING AQ. 2000 Universal Calendar Watch.

Watch, complete Calendar, Two Alarms, Stopwatch, Time Memory, Count

LC Display of hours, minutes, seconds, am/pm, full calendar display of day, date and every Sunday. Also digital date, month, year;
with day, Sundays.

Will display any monthly calendar from 1901 to 2099. Memorises and displays three optional important dates Calculator with full memory, \%, K, Square Roots. One year battery life. $\frac{1}{4} \times 2 \frac{1}{2} \times 4 \frac{1}{16}$ ins. Leatherette wallet.
RR $£ 29$-95. An incredible
$£ 24.95$
NEW 5 THE VERSATILE MQ-10 Slim Pendant or Pocket Quartz

As $A Q-2000$ but without $\sqrt{2}$, Memory. $\frac{1}{4} \times 4 \times 1+$ ins. With "kiss" touch keys. Complete with pouch \& neck chain. RR P $£ 39.95$
£35.95
NWW EX -58 SCIENTIFIC MINI CARD

$£ 24.95$

lcd scientific calculator COLLEGE FX-80 Approx. 4,000 hours continuous
use from 2 AA size batteries. use from 2 AA size batteries.
Trigs, Logs, Exponentiations Prigs, Logs, Exponentiations Deviations, Polar to Rectangular and R-P. Sexagesimal tangular and R-P. Sexagesimal ENGineering key, P_{i}, cube root. 6 levels of parenthesis. Full memory. $\frac{3}{4} \times 3 \times 5 \frac{7}{8}$ inches. RRP £21.95.

$£ 16.95$
MP-100. MATH PET. Sophisticated maths teaching aid at 4 levels, plus Clock, two Alarms, Stopwatch. RRP £24.95

$£ 19.95$

CASIO 50QS-17B. Real value for money. STOPWATCH. I sec. to 13 hrs. DUAL TIME FACILITY, STAINLESS STEEL ENCASED, MINERAL GLASS, WATER RESISTANT (66 feet), LC Display of hours, minutes, ten seconds, seconds (by flash), am/pm; And day, date, month Calendar, Backlight. 8 mm thick. RRP $£ 24.95$
$£ 19.95$

LOWER PRICE for the superb CASIO Almost certainly the slimmest and most sophisticated Alarm Chronograph available today. Was $£ 74.95$
$£ 39.95$
Most CASIO products in stock. Send 25 p for brochures.
Prices include VAT, P \& P. Send cheque, P.O. or phone your Access or B^{\prime} card number to:-

TIMETRON

Dept. P.W. Beaumont .
Sufic. I6t:167 Fast Road
Cambridge C81 1 QB

IPREER-LEO-C-K-RNE Cst ind品上,

Newest, neatest system
ever devised for storing \qquad
resistors, capacitors, diodes, tran-
sistors. etc. Rigid plastic units inter-
lock together in vertical and
horizontal combinations. Trans-
horizontal combinations. Trans-
parent plastic drawers have label slots. ID and 20
have space dividers. Build up any size cabinet for wall, bench or cable top.
As supplied to Post Office, Industry and
SINGLE UNITS (ID) (Sin $\times 2$ it in $\times 2 \mathrm{i} i n)$
G3 50 DOZEN.
E5.50 DOZEN.
TREBLE (BD) 50 for 8.
drawers, in one outer case
(6D2) ET 90 for 8 .
EXTRALANGE SIZE (6DI) E6.90 for
PLUS QUANTITY DISCOUNTS
 orders under flo. Orders \& 10 and over, please add Please marriage. 8% Quotations for larger quantities.
V.A.T. to total remittance
All prices correct at time of going to press.

BENTLEY ACOUSTIC CORPORATION LTD.

7a GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX All prices inclusive of V.A.T. at 1212\% Telephone 6743

Abstract

Practical Wireless, May 1979

SEMICONDUCTORS POTS \& IRONS

BOOKS AND COMPONENTS

BOOKS BY BABANI

Engineers \& Machinists Ref. Tables 2nd Book Transistor Equivs \& Subs 79 Electronic Novelty Circuits BP24 52 Projects Using IC74 1 (or Equiv) BP26 Radio Antenna Book Long Distance Reception and Transmission
Giant Chart of Radio Electronic Semicondictor and Logic Symbols
BP32 Build Metal and Treasure Locators
BP34 Practical Repair/Renovation C/TV
BP35 Handbook of IC Audio Preamplifier and Power Amplifier Construction BP36 50 Cicts use Germ/Si/Zener Diodes BP37 50 Projs Using Relays/SCR/Triacs BP39 50 Field Effect Trans Projects
BP4O DigitallC Equivs and Pin Connection BP4 1 Linear I Ć Equivs and Pin Connection BP42 50 Simple LED Circuits
BP43 How to make Walkie-Talkies
BP44 IC555 Timer Projects
BP45 Projects on Opto-electronics BP46 Radio Circuits Using IC's BP47 Mobile Discotheque Handbook BP48 Electronics Projects for Beginners BP49 Popular Electronic Projects BP50 ICLM3900 Projects
BP55 Radio Stations Guide
EP160 Coil Design and Construction Manual
BP2O2 Handbook of Integrated Circuits Equivaients and Substitutes
BP205 1st Book Hi-Fi Speaker Enclosures
BP2 13 Circuits for Model Railways
BP215 Shortwave Circuits and Gear for Experimenters and Radio Hams
BP216 Electronic Gadgets and Games
BP217 Solid State Power Supply Handbook
BP221 28 Tested Transistor Projects
BP222 Short-wave Receivers for Beginners
BP223 50 Projects using ICCA3130
8 P224 50CMOS IC Projects
BP225 APractical Intro to Digital IC's
BP226 BuildAdvanced Short wave Receivers Beginners Guide to Building Electronic Projects

SWITCHES

No. 1973 1974		$\begin{gathered} \text { Price } \\ \text { £0.14* } \\ \text { f0.15 } \end{gathered}$
1975		¢0.33 ${ }^{\circ}$
1976		c0.42*
1977		c0.50*
1978		f0.14*
1979		c0.18*
Colour RED	No. 1980	Price E0.30*
BLACK	1981	¢0.30*
WHITE	1982	E0.30*
BLUE	1983	£0.30*
YELLOW	1984	£0.30*
Luminous	1985	£0.30*
No.		Price
1958		£0.70*
1959		£0.75*
1960		¢0.80*
1961		£0.95*
1962		£0.90*
1963		¢0.95*
1964		£0.20*

MIDGET WAFER SWITCHES

Single-bank wafer type - suitable for switching at 250 V a.c. 100 mA or 150 V d.c. In non-reactiver loads make before-break contacts

Description

FUSE HOLDERS AND FUSES

Description
 $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ chassis mounting $1 \frac{1}{4} \mathrm{ir} \times \frac{1}{4}$ inchassis mounting $\frac{1}{4}$ in carinline type
 $1 \frac{1}{4}$ in car inline type
 Panel mounting 20 mm Panel mounting $1 \ddagger \mathrm{in}$
 QUICK BLOW 20 mm

BA BOLTS - packs of BA threaded cadmium plated screws slotted cheese head.
Supplied in muitiples of 50 .

Type	No.	Price	Type	No	Price
1 in OBA	839	£1-20	$\frac{1}{2}$ in 4BA	846	E0.32
$\frac{1}{2}$ in OBA	840	£0.75	$\frac{1}{5}$ in 4BA	847	¢0. 25
1 in 2BA	842	¢0.65	1 in 68A	848	C0.40
$\frac{1}{2}$ in 2BA	843	c0.45	$\frac{1}{2}$ in 6BA	849	¢0.21
$\frac{1}{4}$ in 2BA	844	¢0.52	$\frac{1}{4}$ in 68A	850	co-25
1 in 4BA	845	¢0.44			
BA NUTS - packs of cadmium plated fuil nuts in multiples of 50.					
Type	No.	Price	Type	No,	Price
OBA	855	¢0.72	4BA	857	£0.30
2BA	856	£0.48	6BA	858	£0.24
BA WASHERS - flat cadmium plated plain stamped washers supplied in multiples of 50 .					
Type	No.	Price	Type	No.	Price
OBA	859	E0. 14	4BA	861	£0.12
2BA	860	f0. 12	6BA	862	¢0.12
SOLDER TAGS - hot tinned supplied in multiples of 50.					
Type	No.	Price	Type	No.	Price
OBA	851	f0.40	4BA	853	f0.22
2BA	852	¢0.28	6BA	854	£0.22

TRANSFORMERS

AUDIDLEADS		
107	FM Indoor Ribbon Aerial	c0-60*
113	3.5 mm Jack plug to 3.5 mm jack plug	
114	5 pin OIN plug to 3.5 mm . Jack connected	£0.75
	to pins 385. Length 1.5 m	£0.85
115	5 pin DIN plug to 3.5 mm . Jack connected to pins 184. . lengith 1.5 m	£0.85*
116	Caraerial extension. Screened insulated	
	lead. Fitted plug \& skt. AC mains connecting iead for cassette	£1-25*
117	AC mains connecting lead for cassette recorders \& radios. 2 metres	¢0.68*
118	5 pin DIN phono plug to stereo	
	headphone jack socket	¢1.05*
119	$2+2$ pin DIN plugs to stereo jack socket withattenuation network for stereo headphones. Length 0.2 m	c0.90*
120	Car stereo connector. Variable geometry plug to fit most car cassette. 8 track cartridge \& combination units. Supplied with inline fused power lead end instructions	E0.60*
123	6.6 m Coiled Guitar Lead Mono Jack Plug	
	to Mono Jack Plug BLACK	¢1.50*
124	3 pin DIN plug to 3 pin DIN plug. Length 1.5 m	E0.75*
125	5 pin DIN plug to 5 pin DIN plug. Length 1.5 m	co. $75{ }^{\circ}$
126	5 pin DIN plug to Tinned open end. Length 1.5 m	f0.75*
127	5 pin DIN plug to 4 Phono Plugs All colour coded. Length $1-5 \mathrm{~m}$	£1.30*
128	5 pin OIN plug to 5 pin OIN socker. Length 1.5 m	E0.80*
729	5 pin DIN plug to 5 pin DIN plug mirror image. Length 1.5 m	£1.05*
130	2 pin DIN plug to 2'pin DiN inline socket	
	Length 5 m	¢0.68*
131	5 pin DIN plug to 3 pin DIN plug. 1\&4 and 3\&5. Length 1.5 m	
132	2 pin DiN plug to 2 pin DIN socket. Length 10 m	£0.98*
133	5 pin DIN plug to 2 phono plugs. Connected pins 38.5 . Length 1.5 m	£0.75*
134	5 pin DIN plug to 2 phono sockets.	
	Connected pins 38.5 . Length 23 cm	£0.68'
135	5 pin DIN socket to 2 phono plugs.	
	Connected pins 385. Length 23 cm	£0.68*
136	Coiled stereo headphone extension lead.	
178	Black. Length 6m AC mains lead for catculators etc.	£1.75

CASES AND BOXES

INSTRUMENT CASES. In two rectiona vinyl covered top

DEPT. PW5, P.O. Box 6, Ware, Herts, COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR Dick Ganderton C. Eng., MIERE
 ART EDITOR
 NEWS \& PRODUCTION EDITOR Alan Martin

TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie
ASSISTANT ART EDITOR
Keith Woodruff
SECRETARIAL
Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-261 6671 Roy Smith
REPRESENTATIVE
Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-2616570 Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Problems!

COMPONENTS are usually available from advertisers. A source will be suggested for difficult items-So runs the announcement on page 1 of each issue of $P W$. But readers still have problems, and write to us about them, sometimes in the most outspoken terms. And it seems to us we just can't win.

If we know that an item is available from a number of our advertisers, though it may appear only in their catalogues and not in their adverts, we do not quote a source. We have not the room to list all the stockists, and if we quote only one, the others understandably get upset and complain that we are discriminating against them.

Sometimes, an unusual item is used in a project, simply because it will give better results than the more generally available alternatives. Special arrangements are then made for that item to be advertised in the magazine, often by one of our regular advertisers. Occasionally, the supply of complete kits is organised, but even this has recently prompted a particularly vitriolic letter from one reader, accusing us and an advertiser of trying to create a monopoly situation (when in fact none exists) and being intent on profiteering. That reader prefers to shop around, buying each component from the cheapest source. Yet, if a kit is not arranged, other readers write to complain that we are costing them pounds in catalogues, phone calls, postage and packing by forcing them to shop around!

Very often these same readers make life unnecessarily difficult for themselves by not using the information which is available to them. In every issue of Practical Wireless there is an Index to Advertisers, usually two pages from the back, listing every advertiser except the smallest Classifieds. Yet we often get letters asking for addresses of advertisers quoted in articles; we even had one peak-rate telephone call from London, from a reader who had looked "everywhere" for an address for a well-known chain of component shops. Everywhere, apparently, except the London telephone directory, which listed no less than 12 branches of the chain.

Knowing where to find relevant information and supplies is basic to the successful pursuit of any hobby, no less than it is for a business. Obviously, there are problems for the beginner, and we try to take account of this, particularly in projects aimed at the less experienced. One of the biggest difficulties for the beginner is knowing where he can make substitutions in components. Will a capacitor with a different dielectric, or even of a different shape, work in a particular circuit position? Is that component value critical, or could it safely be changed by 10 per cent, or even more? We hope to have some articles giving guidance on this sort of problem in the not too distant future.

Peter Preston-Technical Sub-Editor

During the course of his career, Peter has been involved in the engineering of specialised broadcast equipment, now in operation in various parts of the World, and the preparation of associated technical data and manuals. He joined PW just prior to their move to Poole and enjoys this new departure into the world of journalism and the diverse nature of the work.
A keen radio enthusiast and former VK9 licence holder, Peter has great interest in state-of-the-art equipment for
the amateur. He has already been responsible for encouraging several new authors, some of whom are very well known in professional circles, to write for the magazine. For relaxation, he enjoys music (wide tastes here) and also holds a private pilots' licence which he claims he can rarely afford to put to use! Peter is also an active member of the Bournemouth Lions, where he serves on the Welfare Committee.

Additions to the Family

Those who said just a few years ago that TTL was dead or dying, were proved yet more wrong by the announcement of two new series by Texas Instruments. Both these third generation designs make use of the Schottky-barrier diode clamp technique.

Advanced Schottky TTL series SN74AS is twice as fast as the SN74S series while maintaining virtually the same power dissipation per gate. Load driving capability is also improved. First types to be introduced will include high-performance gate functions in 20pin d.i.p., and MSI devices in a new $300-\mathrm{mil} 24$-pin dual-in-line package offering increased functional density. TI see Advanced Schottky as an alternative to the current ECL family.

Advanced Low-Power Schottky TTL series SN74ALS is more than twice as fast as SN74LS and consumes half the power per gate. ALS-series devices will be available in 14, 16, 20 and 24 -pin d.i.p., and will offer direct plug-in compatibility with present LS functions. The improved power performance will make the ALS series a viable alternative to standard CMOS, particularly at higher clock frequencies.

Both lines are expected to become available in the UK during the course of 1979.

New Speak

A new automatic broadcast system has been bought by the Civil Aviation Authority to help airline pilots receive in-flight reports of weather conditions at UK and European airports (Volmet). Designed and developed by Marconi Space and Defence Systems, this new technique automatically converts airport weather reports, which are received every half-hour by telex at the Civil Aviation Communications Centre at Heathrow, into a human voice, and transmits them continuously on a maximum of four frequencies simultaneously.

When this system comes into operation, the voice which will be heard by hundreds of pilots each day, will be that of retired Royal Corps of Signals Officer Colonel John West.

John West's voice, reading standard weather report phrases, words and figures, has been recorded in the Portsmouth studios of Telecomms Ltd.,
digitised at MSDS and stored in a computer memory.

Incoming Volmet messages are decoded, and this information used to control the speech output from the computer memory.
Many other services can be improved using automatic voice response systems, such as weather and road condition reports, railway time tables and telephone directory enquiries. Announcement-type information services for airports and main-line railway stations can also be provided with standard messages in several languages.

Marconi Space and Defence Systems Ltd., Press Office, Marconi House, Chelmsford CM1 1PL.

Hi-Fi 79

High Fidelity ' 79 to be held at the Cunard Hotel, Hammersmith, between 24 and 29 April 1979, is proving to be even more popular with the $\mathrm{Hi}-\mathrm{Fi}$ industry than earlier exhibitions.

Of particular interest is the high number of British companies showing at the exhibition. In recent years the annual Spring $\mathrm{Hi}-\mathrm{Fi}$ Exhibition has gained a reputation as a most important annual showcase for the British $\mathrm{Hi}-\mathrm{Fi}$ industry and this year is no exception.

The large number of British companies exhibiting will be supplemented by many of the most famous international names in audio.

As usual, the exhibition will feature a free catalogue and free admittance. The exhibition will be open to the trade and press only on 24,25 and 26 April, and to the public on 27,28 and 29 April, between 10am and 8pm excepting the last day, when the exhibition will close at 4 pm .

MPUs for hire

Emprise has started a new hire service for microprocessor evaluation and training systems. Intended for "hands on" training and experimentation, the systems come complete with detailed instruction manuals and are ready for immediate use. Types available include: National SCMP; Intel 8080; Motorola 6800; MOS Technology 6500; and Zilog Z8O, with others available shortly. Rental is from $£ 4.70$ per week.

This inexpensive service enables users to gain "hands on" experience with several systems for much less than the cost of a tuition course or evaluation kit.

As a further aid towards reducing costs, Emprise will help owners of unwanted or "outgrown" evaluation kits and equipment, to sell their units to waiting buyers.

Lists of secondhand equipment are available, which help put buyers in touch with sellers.

For further details contact: Emprise 76, 25 Carlis/e Close, Colchester, Essex CO1 2YT. Tel: (0206) 41773.

Buzby's New Baby

This latest addition to the Post Office's range of payphones is a version with integral handset. The outer casing of the new model is yellow, the handset and its mounting black and the coin slots and associated mechanism faced with brushed chrome. It is also much smaller than its familiar counterpart, being 300 mm wide, 180 mm deep and 360 mm high and weighs only 12 kg , compared with the standard wallmounted payphone of 25 kg .

The additional connection charge for the new instrument is $£ 10$ at the time of writing, with a $£ 7$ surcharge on the normal quarterly rental for the more usual type.

A portable version is planned for trolley-mounted applications later in the year. This is envisaged as being suitable for hospital beside use and perhaps such locations as service station forecourts.

DISCOUNT SPEAKERS

mp 8 or 15 as app TITAN 5 years FANE LIFETIME ALL PRICES

 INC. VATPrices correct at 23.1 .79

BIG DISCOUNTS ON
 WHARFEDALE SPEAKER KITS
 UINTON 3XP
 Power handling 30 watts DIN
 DENTON 2XF
 Power handling 25 watts DIN
 £39.15 £21.95
 Also for personal shoppers only
 AMpS, TTABLES, JINGLE MACHINES, OISCO CONSOLES, LIGHTING, CABINETS, CREDIT TERMS AVAILABLE $\begin{gathered}\text { ordora } \\ \text { over } \\ \text { E20 }\end{gathered}$

Phone orders accepted from Access \& Barclay card holders.
403 SAUCHEHALL STREET Tsi: 0413320700

GLASGOW
Mail Orders/Export enquiries only. Ade to $24 \begin{aligned} & \text { Newgate } \\ & \text { Shopping Centre. NEWCASTLE. Ad }\end{aligned}$ Shopping Centre, NEWCASTLE. Add $\mathrm{E}^{(1)}$ carr. on
Hi-Fi spkrs. or kits. Otherwise add $£ 1.25\left(12^{\prime \prime}\right.$ Spkr).

- 4 -

Rally dates

The Spalding and District Amateur Radio Society's annual "Tuliptime" rally will be held at Spalding, Grammar School on 6 May 1979.

As well as a variety of trade stands and a "bring and buy" stall, there will also be attractions for all the family. Talk-in will be available on 2 m and 70 cm .

Further details from: G. C. L. Parker G4EMK, Kesteven Forest Lodge, Beech Avenue, Bourne, Lincs PE1O 9RD.

The Hull and District Amateur Radio Society will be holding their annual Mobile Rally on Spring Bank Holiday Sunday, 27 May 1979.

Once again the venue will be Hull University and all the usual attractions are expected.

Further details from: G8EAH (QTHR).

Britain's First Amateur Spacecraft

Britain's first amateur space satellite is to be built at the University of Surrey. The project is being co-ordinated by the Telecommunications Research Group within, and supported by, the Department of Electronic and Electrical Engineering. It is being carried out in close collaboration with the University's Electronics and Amateup Radio Society (EARS), the international Amateur Satellite Corporation (AMSAT), the Amateur Satellite Organisation of the UK (AMSAT-UK) and the Radio Society of Great Britain. Active support is being given by Britain's electronics, telecommunications and space industries.

AMSAT has been responsible for eight previous amateur satellites in the OSCAR series (Orbiting Satellites Carrying Amateur Radio). These have been built internationally by radio amateurs in the USA, Germany, . Canada, Japan and Australia, and their function has been to relay v.h.f. and u.h.f. radio signals; extending the range of transmissions by amateur radio enthusiasts. Each has been given a "piggy-back" launch by NASA when space was available in launch vehicles, because of their educational value.

The new satellite will be Britain's first contribution in flight hardware to the Amateur Space Programme. Its
purpose and proposed feature are a departure from the OSCAR series. First, it provides an opportunity for gaining practical experience in developing an inexpensive UK spacecraft programme. Second, its main feature is to be a series of highfrequency beacons, enabling radio amateurs all over the world to study the changing effects of the ionosphere on radio-wave propagation. Third, it is intended to stimulate a greater practical interest in the space sciences in schools, colleges and universities.

The project will be co-ordinated at the University and much of the spacecraft will be built there. It will be constructed in modular form, priority being given to the power, telecommand and other fundamental service systems, followed by the highfrequency beacons. Several other, more complex, experiments are planned, and these will be undertaken later at the University or by other amateur groups in this country until resources, including time, run out.

The design, construction and testing of the satellite will take about two years. It is intended for a polar orbit at a height of 900 km , and a possible launch opportunity exists early in 1981.

The cost of the satellite is expected to be around $£ 150000$, and support for the project is being provided in cash and kind by a number of organisations, including: Amateur Satellite Corporation (AMSAT), Amateur Satellite Organisation of the United Kingdom (AMSAT-UK), Appleton Laboratories, British Aerospace, Ferranti, Marconi Space and Defence Systems, M.E.L., Philips Research Laboratories, The Post Office, Racal, The Radio Society of Great Britain and The Royal Aircraft Establishment.

Surrey University's involvement in satellite work has developed as a result of the interest and ability of its student Electronics and Amateur Radio Society (EARS). Since 1974 EARS has played an increasing role in commanding satellites of the OSCAR series, developed by AMSAT, the international amateur satellite organisation. These satellites contaín v.h.f. and u.h.f. receivers and transmitters and are intended for use by radio amateurs to extend the range over which their transmissions are received, in the same way as television programmes are relayed around the world.

ONCE YOUVEGOT TIDESIGNED YOU'VE Gotit MADE.

ELECTRONICS BY NUMBERS.

 TWO-TRANSISTOR RADIO.Now using Experimentor Breadboards and following the instructions in "Electronics by Numbers" ANYBODY can build electronic projects.
Simply look at the diagram - this has exactly the same type of layout of all Exacty the same type of layout of all component list and select the component Q1, this is an NPN transistor type 2 N3904, this plugs into holes C10, D11, and B12. Easy isn't it?
Now take C2, which is a 1 uf capacitor, this plugs into holes H 7 and H 10 .
Do the same with all the components, connect a 9 volt battery and you have a perfect working TWO-TRANSISTOR RADIO.

EXPERIMENTOR BREADBOARDS.

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits. Accepts $8,14,16$ and up to 22 pin IC's. ONLY £1.60.

270 contact points with two 20 -point bus-bars.
300.
£5.75.

EXP 4B.
More bus-

bars.

(
£2.30.

ALL EXP. 300 Breadboards mix and match with 600 series.

PROTO-BOARDS.

THE ULTIMATE IN BREADBOARDS FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

PB. 6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT.
£9.20.

PB. 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD $100 \mathrm{KIT} £ 11.80$.

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us your Access, American Express or Barclaycard number and your order will be in the post that night.			
EXPERIMENTOR. BREADBOARDS.	CONTACT HOLES.	IC CAPACITY 14 PIN.DIP.	UNIT PRICE INCLUDING POSTAGE AND V.A.T.
EXP. 325	130	1	£ 2.53
EXP. 350	270	3	£ 4.21
EXP. 300	550	6	£ 7.29
EXP. 650	270	use with 0.6"	
		Pitch Dip's	f 4.69
EXP.4B.	Four 40 Point Bus-Bars	Bus-Bar Strip	£ 3.29
TEST CLIPS			
PC.16-18.			£ 7.56
PC. 16-18 Dual Clip.			£12.15
PROTO-BOARDS.			
PB. 6.	630	6	f11.01
Рв. 100.	760	10	£13.82

NAME
ADDRESS

This useful project was designed as a piece of simple test gear to be carried around in the car for fault finding purposes. It can be constructed in various forms to suit the requirements of the user.

The first part of the probe consists of two l.e.d.s which are used to indicate the condition on any electrical connection in the car. With the probe unattached, both l.e.d.s come on to indicate a voltage level which is neither positive or negative. When the probe is applied to a connection with a definite voltage condition on it, the appropriate l.e.d. will light and the other will be extinguished.

Voltage Sensing

The second part of the probe consists of a voltage sensing circuit, using a 741 op . amp. to detect when the voltage across the car battery rises above 12.5 volts, giving a check that the battery is being charged.

It is quite easy to see how the two l.e.d.s D3 and D4 detect the voltage levels. They are connected in series with R4 and R5 as current limiting resistors. When the probe is connected either to a positive or negative voltage one or the other l.e.d. is effectively shorted out, to leave just the other one on.

The completed Car Test Probe ready for use. The label can be cut out from the next page and pasted on to the case

Comparator

In the second part of the circuit, a 741 operational amplifier i.c. is used as a comparator, changing it's output state when the voltage on one input rises above the other input. A reference voltage is seen across zener diode D1, by the input on pin 3, and the preset is used to set the required voltage on pin 2 . When the battery voltage drops, the voltage on pin 2 will drop below that on pin 3, causing the output to go high and lighting the l.e.d. marked "charging" (D2).

components

Resistors		
$\frac{1}{4}$ W 5% Carbon		
560Ω	2	R4, 5
$2.7 \mathrm{k} \Omega$	1	R3
$4.7 \mathrm{k} \Omega$	1	R1
$1.8 \mathrm{M} \Omega$	1	R2
Potentiometers		
Cermet multiturn preset		
Capacitors		
Ceramic disc		
$0.1 \mu \mathrm{~F}$	1	C2
Tantalum bead		
$1 \mu \mathrm{~F} 35 \mathrm{~V}$	1	C1
Semiconductors		
Diodes		
BZY88C6V2	1	D1
Min. l.e.d. red.	3	D2, 3, 4
Integrated circuits		
741 op. amp.	1	IC1

Miscellaneous

Printed circuit board (1), Probe case (West Hyde or Continental Specialities Corp.). Crocodile clips (3). Twin flex cable (1 metre). Extra flexible cable (1 metre). 8 pin d.i.l. socket (1).

Construction

The probe is constructed on a small p.c.b. which is fitted into a plastic probe case made by Continental Specialities Corporation.

The p.c.b. carries all the components including the three l.e.d.s which are also located into holes in the case. Care must be taken to ensure that the l.e.d.s and the 741 op . amp. are fitted the correct way round. The small front panel can be cut out of the magazine and carefully stuck onto the recessed portion of the case to give easy identification of the state being sensed by the probe.

The printed circuit board copper track pattern is reproduced full size at the top of this page with the component placement drawing below it. The picture above shows the components mounted on to the p.c.b. and also shows the mounting of the three miniature l.e.d.s using the plastic 'bridge' provided with the case. Care must be taken to ensure that the l.e.d.s are correctly orientated. The 'bridge' can be glued to the p.c.b. using one of the rapid bonding adhesives taking care to get it in the correct position to allow the l.e.d.s to fit their holes in the case top. The circuit diagram is shown on the left with a view of the component parts of the probe below

Testing

When the circuit has been built it is tested by firstly setting VR1 to mid travel, and connecting a variable supply and a voltmeter across C2. After switching on it should be found that at a voltage somewhere between 6 and 12 volts the l.e.d. comes on (or goes off). The pre-set is now adjusted so that the l.e.d. just goes out when the supply exceeds 12.5 volts.

Ignition Timing

The test probe can be kept in the car ready for use in case of electrical problems. It can also be used to detect the instant at which the contact breakers open, enabling accurate static ignition timing to be carried out.

Gordon J.KING

Spectral Distortion Curves

The collection of curves in Fig. 5 compare the spectral distortion of the $C r$ Super with various other tapes when used in a number of good-quality domestic cassette decks, the curves being the average of the results obtained from a number of such decks.

The lines at the bottom of each graph refer to the noise floors of the tapes, about which more anon. All curves and noise floors in full-line refer to the Cr Super.

Graph (a) compares the Super with the Maxell UDXL II, showing that on average the latter yields about 3 dB more sheer flux at the low and middle frequencies than the former, but the former having a slight advantage at upperhighs.

The Super at (b) shows almost as much flux at the low and middle frequencies as the recent formulation TDK SA, but less at middle-highs, though gaining, as at (a), at the upper-highs.

At (c) the distribution of BASF regular $C r$ is similar to the Super, but almost 2 dB of extra flux is shown by the Super (note: with some machines a greater low- and middle-frequency flux can be achieved when the h.f. biasing can be advanced sufficiently high).

Graph (d) again compares the Super with the SA, but this time based on the average of a different batch of machines. Here there is very little difference between the fluxes over the spectrum, though the tendency of the Super just to take the lead at the upper-highs can be seen; but the differences are small, and on balance the SA would appear to rank the highest.

The Agfa Carat (an FeCr formulation) at (e) shows about the same flux at low and middle frequencies as the Super, less at middle-highs, but reaching the level of the Super again at upper-highs. The upper-middle "dip" of the Carat could possibly be attributable to the "partition" effect between the Fe and Cr layers. Nevertheless, the Carat is a happy tape and well liked by the author. Its noise floor is low-see later.

It must be appreciated that the machines on which the tapes were measured were switched only by the front controls to suit the equalisation and bias requirements. No internal adjustments were attempted in an endeavour to improve the performance of any formulation. In other words, the machines were operated as they would be by the average user.

As supplied, some machines favour certain tapes better than others. Details are given in the handbooks; but these are rarely up-to-date, and tapes not listed have sometimes been proved to perform better than some of those
recommended! It might be possible to get better results with a particular formulation by rebiasing; but this generally necessitates internal adjustment, though there are decks equipped with external bias control and internal oscillators, allowing the bias to be set for the best overall frequency response as indicated by the VU meters (the Aiwa AD-6900, for example).

Effect of Bias

As the h.f. bias level is increased, so the distortion falls, and the low- and middle-frequency output rises. If the bias is further increased, the high-frequency output starts to fall, and the distortion may then start to rise a trifle. Further increase pulls back the middle- and then the lowfrequency output. The noise is affected less, but there is a bias level where the noise tends to fall to its lowest level. One way of setting the bias is to adjust it first for the maximum 333 Hz output, and then to increase it just a shade until the output drops by about 1 dB .

Different tapes require different bias levels for the best results. Most ordinary Fe tapes require a fairly low level. Cr and pseudo- Cr formulations require about 50 per cent more, though there are some $C r$ tapes which, for the very best results, require more bias than the average deck is capable of providing. The Cr Super, for example, gives a significantly higher low-frequency output (to the 3 per cent distortion threshold) if the bias is increased about the basic Cr requirements. FeCr formulations require less bias than Cr (usually) but more than basic $F e$. Many decks are equipped with three-position bias switching for basic $F e$, FeCr and Cr tapes.

Equalisation

To achieve a "flat" frequency response on replay, the equalisation also has to be switched to suit the type of tape being used. As with f.m. pre- and de-emphasis and gramophone pick-up equalisation, the turnover and roll-off frequencies are indicated by time-constants (a sort of convenient shorthand). The l.f. time-constant is now $3180 \mu \mathrm{~s}$ (corresponding to 50 Hz turnover), while the upper-frequency time-constant is 120μ s for basic $F e$ tapes and $70 \mu \mathrm{~s}$ for Cr , pseudo- Cr and most FeCr formulations, corresponding respectively to turnovers of 1.32 kHz and $2 \cdot 27 \mathrm{kHz}$. (Turnover in $\mathrm{Hz}=1 / 2 \pi \mathrm{~T}$, where T is the timeconstant in seconds, and time-constant $=1 / 2 \pi f$, where f is the turnover frequency in Hz .) The equalisation is either separately switchable or ganged to the bias-change switching.

(a)

(c)

(b)

(d)

(e)

Fig. 5: Graphs comparing the output ref. 3 per cent distortion of the Cr Super with various other brands, the results being the average obtained from a number of machines. (a) Super versus Maxell UDXL II. (b) Super versus TDK SA. (c) Regular Cr in comparison with Cr Super. (d) Super versus TDK SA (using a different batch of machines than the comparison at (b). (e) Super versus Afga Carat. All curves in full line refer to the Cr Super. See text for more details

Head Problems

While a fine (short-length) gap is requred by the head for adequately defining (or reading) the short-wavelength, high-frequency signals recorded on the tape, a longerlength gap is better for recording. Where the head is shared between recording and replay a compromise has to be struck, which can give problems related to head saturation at high recording currents, often needed for some of the Cr and high-energy formulations. With the higher magnetic force required by such tapes the distortion resulting from head saturation can show up before the flux imparted to the tape has reached the level for 3 per cent distortion. An associated problem is overload of the recording amplifier; but this produces mostly 2 nd-order distortion as distinct from the 3rd-order distortion produced by the head and tape. This is where Tandberg's "Actilinear" system gains.

Head saturation problems are less acute where the deck employs separate heads for recording and replay (called three-head machines, the third head, of course, being that for erasure which is often energised by the bias oscillator). Our lab has found that the Cr Super, for example, is limited in performance in some machines by head saturation problems (in addition to shortage of bias), the distortion at h.f. then being a function of the machine rather than the tape.

The physical gap of latter-day replay heads is approaching the low $1 \mu \mathrm{~m}$, which is astonishingly small, giving an effective gap length around $1.5 \mu \mathrm{~m}$ as the result of flux spread. Such a gap can define frequencies well up to 20 kHz . To avoid the compression showing up, the frequency response is measured at a recording level of, at least, 20 dB below Dolby (approximately $20 \mathrm{nWb} / \mathrm{m}$). A plot shown by the broken line curve in Fig. 4 is then obtained when the biasing and equalisation suit the tape. A deliberate roll-off into a 19 kHz notch is common to prevent the Dolby noise-reduction from being affected by 19 kHz f.m. stereo pilot-tone signal when radio recordings are made. Too little bias will give upper-frequency lift, and too much bias the converse effect.

Noise Floor and Dynamic Range

The noise floors in the collection of graphs in Fig. 5 are referred to 0 dB or $200 \mathrm{nWb} / \mathrm{m}$ flux level. Excepting circuit noise, most tape noise stems from the technical make-up and parameters of the formulation. For low noise, small particle size and consistent needle shape anisotropy are the basic requirements. The change from 120 to $70 \mu \mathrm{~s}$ equalisation yields a noise advantage of about 3.5 dB , which is why the background "hiss" from Cr, pseudo-Cr and FeCr is less (when the equalisation is set to $70 \mu \mathrm{~s}$) than from basic $F e$ tapes running with 120μ s equalisation. This point should be remembered when comparing noise floors.

The graphs reveal consistently that the Cr Super is a particularly low noise tape, several dB better than the comparative brands with the exception of the Carat. An expression of dynamic range is the dB distance between the 3 per cent distortion flux output and the noise floor. At (a) there is not much difference between the pair at low and middle frequencies, but the Super gains at h.f. At (b) the Super is undoubtedly the winner at most frequencies, with the mild exception of the middle-highs. At (c) there is little difference again. At (d) the Super is the outright winner once more. At (e) the Super is a fair challenger, with the Carat not quite making the same grade at middlehighs.

The noise was measured with an average-responding meter via CCIR weighting (e.g., CCIR/ARM), which is a
network which emphasises certain frequencies of the noise while attenuating others as a means of obtaining a fair degree of subjective correlation (e.g., so that the annoyance effect of the noise is measured). The effective dynamic ranges are increased by almost another 10 dB by the use of Dolby noise-reduction, which means that at the low and middle frequencies, at least, a dynamic range of around 65 dB can be achieved with a contemporary tape deck using top-flight tape-a feat which a gramophone record playing system would have difficulty in exceeding!

If the outputs in the graphs were normalised at 0 dB to the lowest output tape at low and middle frequencies, then different results would be obtained. It is our opinion that each tape should be exposed in terms of the sheer flux, that it can assimilate up to the 3 per cent distortion threshold, at the different frequencies when used with an "average" cassette deck. The actual level of signal recorded will be shown by the recording level meters; but it is noteworthy that on fast transients the peak of the actual signal arriving at the tape could be 10 dB higher than indicated by the meters, owing to the inertia of the pointers. This is where peak-responding light-emitting diodes (l.e.d.s) can be highly advantageous. The dynamic range potential of any tape will only be realised, of course, when the flux is to the upper datum level corresponding to 3 per cent distortion in our graphs.

VU Meter References

Most meters (on Japanese machines, anyway) correspond to $200 \mathrm{nWb} / \mathrm{m}$ at +3 VU , putting 0 VU at about $142 \mathrm{nWb} / \mathrm{m}$. Some European decks, geared to the DIN standards, have 0 VU (or 0 dB) corresponding to $250 \mathrm{nWb} / \mathrm{m}$, which places the Dolby $200 \mathrm{nWb} / \mathrm{m}$ point at about -2 VU (sometimes even below this). This means that by peaking to 0 VU on music there is a greater probability of over-driving the tape on these machines than on the Japanese species.

Requirements

The main requirements of a cassette tape, therefore, are high remanence (and retentivity) for good sensitivity and l.f. output; high saturation for high recording levels reference a given level of distortion; high coercivity for the least self-demagnetisation and for a good h.f. output; and small and consistent particle size for low noise.

Great improvements have been made to cassette tapes over recent years. The current breakthrough is the pure iron particle tape (e.g., Scotch "Metafine"), which has a retentivity of 3400 gauss compared to 1400 for typical $C r$; a remanence of 0.8 compared to 0.43 for typical Cr ; and a coercivity of 1000 oersteds compared to 550 for typical Cr. These tapes will greatly elevate the performance of the cassette deck, putting it on par with reel-to-reel machines running at much higher tape speeds and using wider tracks. However, in general, the tapes will fail to yield their best on ordinary decks, owing to the need for a higher bias and recording current than most existing machines can provide. A great advantage of the tape is that the 12.5 kHz saturation level is 7 dB higher than good Cr at optimum bias levels. At 5 kHz the output is still +4 dB and only down to 0 dB at 10 kHz (based on our $200 \mathrm{nWb} / \mathrm{m} / 0 \mathrm{~dB}$ scaling).

There is no doubt that good things are in store for the cassette enthusiast, and it is hoped that this article has helped to crystallise the scene a trifle.

The new SF.F 96364 device from Thomson-CSF of France can be used in a circuit which will convert any television receiver into a visual display unit for use with a computing system or microprocessor. The display can consist of 16 lines of 64 characters per line and is very flexible. Special facilities such as line erasing make the device compatible with any computer or microprocessor system.

When using the SF.F 96364 device, one can link "pages" of the displays, vary the display size or cause the

Fig. 1: The internal circuit of the SF.F 96364 with external connections

circuit. The writer would strongly advise beginners not to start working with such a complex product as the SF.F 96364, but nevertheless the more experienced worker will find that this unique device is extremely powerful in its applications.

The SF.F 96364 itself performs the operations of text refreshment, character writing and cursor management. It must be employed with a 1024 six-bit word size (or greater) static or dynamic memory and a character generator which produces the individual characters (digits, letters of the alphabet, etc.) as a small array of 7×5 dots on the cathode ray tube screen.

Cost

The SF.F 96364 is supplied in a 28 -pin dual-in-line package, but unfortunately is more expensive than other devices we have covered in these columns. The plastic encapsulated SF.F 96364 E is currently priced at about $£ 16.20$, whilst the ceramic packaged SF.F 96364 K is about $£ 30.24$ in small quantities. Both types contain the circuit shown in the block diagram of Fig. 1.

A special board using this device is manufactured under the type number SF.KEX 68364.1.0, which contains a complete display interface, but this board is priced at about $£ 141$. All of these prices are exclusive of VAT and packing and postage.

Readers are warned that the SF.F 96364 employs N-MOS silicon gate technology and the device can therefore be damaged by any stray electrostatic charges owing to its high impedance circuits. A well-earthed

Fig. 2: A simple basic circuit in block form using the SF.F 96364

Table 1
ROM 71301 PROGRAMMING (Positive logic)

Address	O_{3}	O_{2}	O_{1}	O_{0}
0 at 127	1	0	0	0
128 at 135	0	0	1	1
136	0	1	0	0
137	0	1	1	1
138	1	0	1	0
139	0	1	1	0
140	1	0	0	0
141	1	0	0	1
142 at 153	0	0	1	1
154	1	1	0	1
155	0	0	1	0
156	0	0	0	0
157	0	0	0	1
158,159	0	0	1	1
160 at 254	1	1	1	1
255	0	0	1	1

Table 2

PROGRAMMED FUNCTIONS FIG. 2

Cursor movement	Key	Codes (Hexadecimall
Cursor left	CNTRL H	08
Cursor right	CNTRL I	09
Cursor down	CNTRL J	0 A
Cursor up	CNTRL K	0 B
Page clear and home cursor	CNTRL L	0 C
Carriage return and end line erasure	CNTRL M	00
Erasure of current line	CNTRL Z	1 D
Line feed	SHIFT CNTRL K	1 B
Home cursor	SHIFT CNTRL L	1 C
Carriage return	SHIFT CNTRL M	1 D

Other codes are either displayable characters or disable symbols
soldering iron is essential. The connecting pins of the device should be kept in conducting foam until one is ready to use it. Even whilst one is soldering it into a circuit, it is wise to join all pin connections together to prevent the possibility of damage.

Voltages

The power supply required by the SF.F 96364 is a nominal 5 V between pin $28\left(\mathrm{~V}^{+}\right)$and pin 14 (ground). This voltage should be stabilised at between the recommended limits of 4.75 V and 5.25 V . Damage may occur inside the device if the voltage at pin 28 or at any other pin exceeds the absolute maximum of +7 V or falls below -0.3 V relative to that at pin 14 . The typical power supply current is only $50 \mathrm{~mA}\left(60 \mathrm{~mA}\right.$ at $\left.0^{\circ} \mathrm{C}\right)$.

The input voltages must have a minimum value of 2.2 V except for the clock voltage at pin 9 where a minimum of 3.5 V is required. The SF.F 96364 is readily compatible with TTL circuitry.

Fig. 3: A circuit for displaying pages which automatically move upwards

A 1.008 MHz crystal in parallel with a resistor of a few megohms should be connected between pins 1 and 2 to provide a stable basic frequency for the internal television raster frequency generator. The normal 50 frames per second frequency can be employed to prevent beat frequencies being generated by interaction with the mains frequency. A chip control clock input frequency quite close to 1.6 MHz must also be fed to pin 9 of the device.

Access times to the memories are of the order of 200 ns .

Simple Circuit

The block diagram of Fig. 2 shows one of the simplest possible circuits for an alpha-numerical terminal providing 64 characters per line on a 16 line page format. (Alphanumerical displays can show both letters of the alphabet and digits and are much more useful in computing than a purely digital display.)

The control clock frequency used in the SF.F 96364 circuit sets the width of each character and hence the width of each page. A Thomson-CSF ROM (read-onlymemory) Type SF.C 71301 may be programmed as shown in Table 1 to provide the special functions to Table

2 using the "ASCII" code. (ASC is asynchronous serial transmission.)

Linking 4 Pages

The circuit shown in Fig. 3 may be used for linking up to 4 pages of displays. A full keyboard using the ASCII coding can be employed to provide a full set of characters. The displayed text and/or digits can be made to continuously move upwards when using this circuit.

Module

The SF.KEX 68364 I-O module can be employed in a system such as that depicted in Fig. 4 to provide a relatively economical computer terminal with a full keyboard system when using an ordinary 625 -line television receiver. It can be used with a microprocessor or a computer and may be connected to a telephone line using a suitable modem. The dimensions of the SF.KEX 68364 I-O display module board itself are about $132 \times$ 210 mm (or about $144 \times 210 \mathrm{~mm}$ including the connecting strip).

Fig. 4: A system using the SF.KEX 68364 I-O display module

The output of the display module may be connected directly to the video input of any television receiver having such an input. Alternatively the output from the module may be fed to a u.h.f. modulator (as indicated in Fig. 4) and the resulting u.h.f. signal from the modulator can be fed to the aerial input socket of the television receiver.

The SF.KEX 68364 board requires supplies of +5 V , $1 \mathrm{~A} ;+12 \mathrm{~V}, 100 \mathrm{~mA}$ and $-12 \mathrm{~V}, 100 \mathrm{~mA}$. This board provides a very wide range of facilities, including 64 different characters (capitals, digits and special characters, but not small letters). The display can be white on black or black on white, with winking cursor, etc. It can be arranged that the display moves upwards when the 16 th line is written.

It can be seen from the circuit of Fig. 5 that the module employs the SF.F 96364 device with various other integrated circuits. Although the circuitry is necessarily complex when compared with many of the circuits with which we are familiar, it is relatively simple for such a complex application. One can even use a light pen with suitable SF.F 96364 circuits for marking positions on a display.

The device is available from Phoenix Electronics Ltd., 139 Havant Road, Drayton, Portsmouth PO6 2AA, at $£ 17.50$ including VAT.

Fig. 5: The internal circuit of the module problems at
Fred JUDD G2BCX

Voltage Standing Wave Ratio (v.s.w.r.) is a subject frequently discussed by radio amateurs but somehow it rarely seems to be fully understood. Is a low v.s.w.r. really important and if so what is the maximum ratio tolerable? Often that $1: 1$ reading, technically a perfect match, may be quite misleading, for reasons which we will consider later in the text.

Many factors determine the loss of radiated power between transmitter and aerial, including poor insulation, non-resonance, aerial too close to others or even the choice of metal from which the aerial is made. Two areas often overlooked are the feeder cable (where inferior construction will cause problems) and the possibility of a mismatch between transmitter and feeder, feeder and aerial, or a combination of all these parameters. All r.f. feeders, such as open lines, exhibit a degree of loss, coaxial cables usually producing the worst effects. This, together with varying degrees of v.s.w.r. often gives rise to ambiguity when determining the effect of the v.s.w.r. itself.

Matching

Virtually any cable that carries power from "A" to "B" could be regarded as a transmission line: a pair of wires for instance, from a battery to a lamp. Considering this example further, it will be appreciated that as the length of the "transmission line" increases so does its resistance, and in consequence the lamp grows progressively dimmer.

A similar principle can be applied to the cable connetting a transmitter to an aerial but in this case the source of energy would be high frequency, and not d.c. Therefore the inductive and capacitive properties of the feeder combine to produce an impedance to the transfer of power. This is referred to as the characteristic impedance of the cable, and it remains almost constant, virtually irrespective of frequency.

Purely resistive losses cannot be completely disregarded of course but steps can be taken to prevent radiation loss. If the characteristic impedance of the line equals both the source and load impedance then two conductors can be employed, close enough together for their respective electro-magnetic fields to cancel out.

Transmission lines favoured by amateurs are open line, which consists of two parallel conductors spaced a small fraction of a wavelength apart, and coaxial cable, in which one conductor is effectively shielded by the other whilst electrically behaving as an open two-wire line. The concept is shown in Fig. 1 in which the currents I_{1} and I_{2} are flowing. If the current I_{1} at any point $\left(P_{1}\right)$ along the line has the same amplitude as current I_{2} at the opposite point $\left(\mathrm{P}_{2}\right)$ the fields thus produced will be equal in amplitude but, as they are moving in different directions, out of phase. This will not necessarily be 180°, so in some instances there may be a small amount of radiation, although for practical parposes it can be disregarded. Certain conditions can exist which will cause an appreciable difference in the phasing

Fig. 1: Configuration of commonly used transmission lines. (A) open wire (B) coaxial. See text for explanation with regard to currents $I_{1} I_{2}$

WAD 346
Fig. 2: (A) Line matched to load, $\mathbf{R}=\mathbf{Z}_{0}$. (B) Line partially matched, R greater or smaller than Z_{D} (C) and
(D) Line with short or open-circuit. See text
of the two line currents however, and in such circumstances far more radiation can take place.

Consider Fig. 2(a). Here we have connected one end of a transmission line to a generator of equal impedance, the
other being terminated in the purely resistive load R, which has the same ohmic value as the line impedance Z_{0}. Under these conditions any current travelling down the line will flow into the resistance, which presents itself as an extension of the line. Since a pure resistance has no inductive or capacitive reactance, the line will be perfectly matched and none of the power $\left(\mathrm{I}^{2} \mathrm{Z}_{0}\right)$ will be returned to the generator. An infinitely long transmission line would exhibit the same characteristics provided its impedance remained constant, although the power would ultimately be absorbed in overcoming the resistance of the line itself, of course.

Now turn to Fig. 2(b). The resistance of load R does not equal the line impedance in value, and so the power not dissipated is reflected back. The power absorbed by R decreases as the difference between R and Z_{0} increases and so under these conditions a greater mis match exists

To make the position clearer, the term incident power is given to the power transferred to R, whilst that which is returned to the source is referred to as the reflected power. Therefore we can produce a mathematical ratio of reflected to incident power which gives an indication of the degree of mis-match in the circuit.

When R becomes zero, as in Fig. 2(c), all the power will be reflected. This will also be the case if R is regarded as an open circuit (Fig. 2(d)). Power will flow in both directions however when a mis-match does occur, and the reflected portion will be dependent on phase differences between the incident and reflected voltages and currents. These interact to produce a standing wave.

Standing Waves

The diagrams of Fig. 3 serve to illustrate how standing waves are formed when varying degrees of mis-match are encountered.

In Fig. 3(a) there is an open circuit at the end of the line which prevents the flow of current. The current waveform at this point has zero amplitude and in effect cancels itself, due to the reversal of polarity. Current travels along the line, but the voltage is across it of course, and so is not reversed by this reflection. The electric fields of the forward and reflected waves add up to twice the amplitude and if line losses are ignored the total power can be thought of as being returned to the generator.

When R is a short circuit, Fig. 3(b) illustrates the prevailing conditions. The amplitude of the standing wave pattern can be seen to be the same as for open circuit conditions, except that it has moved along to meet the zero voltage state at the end of the line.

In Figs. 3(c) and 3(d) we can see the conditions produced when R is greater or smaller than Z_{0} by a given amount, creating a standing wave of lesser amplitude due to the fact that only part of the forward power is reflected. Finally, Fig. 3(e) shows the situation where $\mathrm{R}=\mathrm{Z}_{0}$. Here no power is reflected and the line carries a uniform travelling wave.
The ratio of the maximum $\left(\mathrm{V}_{\mathrm{ma}}\right)$ to minimum $\left(\mathrm{V}_{\text {min }}\right)$ voltage of the standing wave is referred to as the voltaige standing wave ratio (v.s.w.r.) and is calculated from the expression $\mathrm{R}: \mathrm{Z}_{0}$ when R is greater than Z_{0} or $\mathrm{Z}_{0}: \mathrm{R}$ when R is the lesser quantity.
The perfect match, rarely achieved in practice, would have a v.s.w.r. of $1: 1$. When a mis-match exists, this ratio becomes much larger until, with an obsolute open or short circuit it becomes infinite. Such a situation should be avoided, especially in the case of transistorised apparatus, where high levels of reflected power will almost certainly result in damage unless some form of protection is provided.

Fig. 3: (A, B, C, D) Voltage and current distribution of standing wave due to mismatch. (E) Line matched: V and I become a travelling wave

Fig. 4: Reflected power plotted against v.s.w.r. (see text)

The Effects of VSWR

Possibly the loss of power to an aerial due to standing waves on the transmission line may not be as serious as many are led to believe. Provided the line is of low-loss construction the attenuation due to a v.s.w.r. of, say, 2:1 may only be around 0.5 dB .

The graph in Fig. 4 shows the percentage of returned power (lost to the aerial) for varying values of v.s.w.r. Some slight discrepancy may occur which must be attributed to the natural losses of the transmission line, and this will affect both forward and reflected power readings. For example, the dotted line in Fig. 5 shows that for a measured v.s.w.r. of $2: 1$ and a line loss of 3 dB along the total length, the true v.s.w.r. is about 5:1, representing a considerable additional loss due to reflected power. This clearly demonstrates the need to use low-loss transmission line.

One should really aim for a v.s.w.r. of less than $1 \cdot 5: 1$, especially if the total cable loss is likely to be greater than about 2 dB . With around 30 m of cable having an attenuation of 2.5 dB the additional losses due to a measured v.s.w.r. of $1 \cdot 5: 1$ will be less than $1 \cdot 0 \mathrm{~dB}$.

Fig. 5: True v.s.w.r. is dependent on transmission line loss (see text)

Fig. 6: Typical v.s.w.r. (A) From a well matched line and aerial. (B) Curve flattened due to line loss

When line losses are high, the additional loss caused by standing waves tends to be constant: the amount of power reflected from the aerial is reduced in proportion to the overall attenuation in the feeder. As an example, if the line loss is 6 dB only 25 per cent of the applied power will actually reach the aerial. Should the v.s.w.r. at the aerial be $4: 1$, due to a mis-match, then 36 per cent of the power applied to it would in fact be reflected. However, we have already established that only 25 per cent of the original power has reached the aerial, so the true reflected power is:

$$
0.25 \times 0.36=0.09(9 \%)
$$

The transmission line characteristics further reduce this by 6 dB , so we have

$$
0.09 \times 0.25=0.02(2 \%)
$$

This represents the actual power arriving back at the transmitter, and would result in a low v.s.w.r. reading at the transmitter end of the feeder-in this case, something like 1-3:1.

On the other hand, with a very low-loss line, a high v.s.w.r. may cause a higher power loss, although the total may be relatively small by comparison with that actually reaching the aerial. A v.s.w.r. of 10:1 (True) on a line having a loss of only 0.3 dB would result in an additional loss of about 2 dB .

Low v.s.w.r. readings do not necessarily indicate a "Go" situation, and should be closely examined if transmission line losses have not been taken into account. For example, with a 15 m length of UR43 coaxial cable having a true v.s.w.r. of $2: 1$, the reading obtained could be as low as $1 \cdot 1: 1$. With old or otherwise inferior coaxial cable exhibiting high loss, virtually no reading at all could occur. On the surface of it, this would suggest a v.s.w.r. of $1: 1$.

A typical v.s.w.r. readout for a well-matched aerial covering the 145 MHz band is given in Fig. 6. With aboveaverage line losses, the response could easily be represented by the dotted curve.

The relationship between transmission line loss and v.s.w.r. can be demonstrated in an alternative way, based on a method of assessing losses in coaxial cable by measuring the v.s.w.r. when the cable is terminated in a short-circuit. This technique should never be employed when transistorised r.f. power amplifiers are used, incidentally.

From Example A in Fig. 7 it can be seen that a v.s.w.r. of $1 \cdot 5: 1$ would indicate a cable loss of $6-7 \mathrm{~dB}$ for the total length. This is because the forward power is attenuated in the first instance, and consequently there is a reduction in the quantity of power reflected, which itself is attenuated and results in a low v.s.w.r. reading.

Example B on the same drawing shows that the cable loss is much lower, and the high v.s.w.r. of $4: 1$ indicates that most of the power travelling along the cable is also reflected. The attenuation of the cable is only a little over 2 dB , so this serves to qualify our preceding conclusions.

Ideally, power and v.s.w.r. measurements should be made both at the transmitter and at the aerial, otherwise erroneous readings could be obtained due to other considerations, such as the length of the line in relation to the frequency being used. If the reflected voltage happens to be at or near a minimum at the transmitter end, then low v.s.w.r. figures could be obtained. By the same rule, it is often possible to reduce an otherwise high v.s.w.r. by pruning a short length off the transmission line-or, indeed, by adding to it. This will not effect a cure as such however: it does not remove a standing wave that results from a mismatch.

Fig. 7: Attenuation loss in dB for a given length of cable by reading v.s.w.r. into short-circuit termination. See text regarding application of this test

Use of VSWR and Power Meters

Reaily accurate v.s.w.r. and power meters suitable for v.h.f. applications tend to be on the expensive side, although the model marketed by Telecommunications Associates may be considered reasonable. The type of power meter fitted to amateur transmitters and transceivers can rarely be relied on for accuracy. In fact, occasionally some instruments can actually introduce a problem due to poor matching with the feed cable. So also can external r.f. power amplifiers, which incidentally should never be in circuit when first testing an aerial for a match.

Obviously low grade meters should be checked against a known standard and with a dummy load known to provide an accurate match with the transmitter output. In this way a v.s.w.r. approaching $1: 1$ should be obtained and full output power indicated if the meter is provided with this facility.

Testing a New Aerial

Initially a new aerial should be tested with only a short feeder, to establish that a good v.s.w.r. is possible. A preliminary check with a receiver is also worthwhile, if only to ensure that the aerial is giving some sort of results before applying r.f. power.
Start the tests with fairly low power levels, if possible. This will prevent damage to the transmitter p.a. stage if a serious problem should arise.
When the aerial is proved, the full length of feeder should be fitted and maximum power applied.

One of the most simple and effective methods of checking for the presence of r.f. alongside an aerial is a small fluorescent tube, of the type often used in caravans. These are usually rated at about 6 watts, and when touched against a voltage point on an aerial to which a 10 watt transmitter is attached, should light almost to full brilliance.

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint costs 85 p , including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF. Please ensure that your name and address are clearly legible.

CLE8 somemer is

 CLI ECLCEEEEWell, it rather comes into the category of "How ever did I manage before I had one of those?"

Traditional methods of getting nuts safely onto screws and studs in inaccessible places include: snipe-nosed pliers; forceps; box-spanners; Sellotape or Plasticine on the end of a pencil or
other stick. These can be more or less successful, depending upon the situation. A short length of thick-wall polythene tubing is another method, but since such tubing comes in coils, it naturally isn't straight, and trying to get the nut square-on to the threads can be pretty frustrating!

The Nut Runner in use on our cover subject this month, the PW "Imp"'

A nut runner is a purpose-made plastics tube, which has the advantage of being straight, with ends recessed to fit nuts of a given size.

The PW Nut Runner, free with every issue this month, is coloured bright orange to help you find it in your toolbox or on the work-bench, and has an eight-sided centre section to stop it rolling away into dark corners. The ends are designed to fit 4BA and 6BA nuts, or any with different threads but similar overall dimensions. Sorry it's only two sizes, but a tube only has two ends!

Using the nut runner is simple, and fairly obvious. There is only one point to make about it really, and that is that the plastics material is fairly soft, so that it can grip the nut, and it won't stand up to too much ill-treatment. Use a box- or socket-spanner to tighten up the nut in the usual way, once you have "started" it on the thread.

The nut runner is also useful for removing nuts safely from threads, in those situations where it is all too easy to drop them into the innards of a piece of equipment. In this case, remember to slacken the nut first with a spanner.

We hope you'll find lots of uses for your PW Nut Runner, not only on electronic equipment, but also on the car and on appliances around the house.

1kHz Readout on Medium Wave

It is possible to modify the unit to operate on frequencies up to 2999 kHz with 1 kHz Readout as follows:

1. Remove IC3 and discard.
2. Link IC3 pin 1 to C on p.c.b.
3. Link B to D on p.c.b.
4. Cut track linking IC4 pin 1 to 0 volts and link IC4 pin 1 to +5 volts.
5. Cut track linking IC4 pin 25 to +5 volts and link IC4 pin 25 to 0 volts.
6. For 460 kHz i.f. retain AY-5-8100 for IC4.
7. For 455 kHz i.f. use AY-5-8102 for IC4.
8. Remove R23 (decimal point drive).
9. The bottom digit does not read.

The AY-5-8102 is a plug-in replacement for the AY-5-8100 but is specifically designed for a 455 kHz i.f. To use the 8102 in the original unit on the s.w. bands:

1. Remove link between pins 2,3 and 6,7 of IC 3 and link IC 3 pins 6 and 7 to 0 volts.
2. Link A to C and B to D on p.c. board.

Use With 1.62 MHz i.f.

The original unit can be modified for a 1.62 MHz i.f. by the addition of three c.m.o.s. i.c.s. This assumes the receiver has a tunable first local oscillator on the high side of the incoming frequency.

The circuit diagram for the add-on circuitry is shown in Fig. 1. It can be seen that there are five connections between the main p.c.b. and the add-on unit, two power connections (+5 V and 0 V) and three signal leads.
To modify the unit:

1. Ensure that there are no links on points A, B, C and D on the main p.c.b.
2. Remove link on main p.c.b. between IC3 pins 2,3 and 6,7 and link IC 3 pins 6,7 to 0 volts.
3. Build up the add-on unit (see Figs. 2 and 3). As the i.c.s used for the modification are all c.m.o.s. it is advisable to use sockets for them. Double check the wiring and mount the unit on the main p.c.b. using plastic stand-off pillars and self-tapping screws.
4. Connect the two boards together with five wires as shown in Fig. 1.

Circuit Description

Operation of the add-on unit is relatively straightforward. It is required to gate out extra counts to adjust the offset to 1.62 MHz . The reset from IC 1 pin 12 resets ICs A and B, their outputs go low and ICC pin 2 is

Fig. 1: Circuit of add-on unit for 1.62 MHz i.f.

Fig. 2: Full-size track pattern of add-on p.c.b.

Fig. 3: Component layout and off-board connections

ALSO

With our Jumbo Wall clock in your kitchen you will know exactly when you should have had your dinner. This unique project uses one i.c. and a host of l.e.d.s for the display to give you the time in 65 mm high digits

PASSIVE 10:1 DIVIDER PROBE

This simple, but effective, probe unit has been designed especially for use with the PW Purbeck oscilloscope. It is easily built and will enhance the use of your scope when measuring those interesting waveforms

This construction project is designed for the beginner who wants to build and use his own three waveband receiver, but who doesn't feel experienced enough to tackle a superhet, with i.f.s to align and tuned circuits with padders and trimmers to adjust. This simple transistor set will receive plenty of stations on all three wavebands, once you've picked up the knack of using the reaction control. For this reason it was felt not only worthwhile but essential to incorporate a good slow motion drive, with a pointer and logging scale. Without it, you won't be able to tune your receiver to listen out again for that rare DX (long distance) short-wave station you heard last night.

The article includes a few reminiscences which may interest the old timer and a little theoretical background for the student or the curious. But if all this is beyond you, never mind, just have fun making up the set and then even more fun using it!

For simplicity and long battery life, the set uses headphones. For any serious DX use, you must use 'phones in any case, and don't forget that DX is not confined to the short waves. There are stations from other continents to be heard on medium wave also, especially after most of the European stations have closed down at night.

How the Set Developed

When I was a lad, I was always one for building bigger and better radios. From a very nice early '20s crystal set (alas I no longer have it) given to me by my grandmother, I progressed to a one valver. This used an HL2 battery triode with 2 V filament and with the aid of reaction provided both better sensitivity and selectivity than the crystal set. It was succeeded by two and three valve "straight" sets-0V1 and 0V2 we called them in those days-and many others. Eventually came the great leap forward, a mains superhet! 3 wavebands with a Wearite coil pack and a line up of 6 K 8 mixer, 6 K 7 i.f., 6 Q 7 double doide triode, 6 V 6 output and 5 Z 4 rectifier. Results were fair to middling and the later addition of á second i.f. stage increased the set's sensitivity whilst leaving it with an intermittent tendency to instability.

More Valves

Other sets followed, including a valve portable with a IR5, IT4, IS5, 3S4 line-up (later revalved with 25 mA heater valves of the DK 96 series) leading on to transistor portables, etc. But one of the most successful sets of all in terms of results versus complexity was on 0 V 1 using 0.3 A heater valves with UX6 pin bases, salvaged from various pensioned-off prewar imported American radio sets I was given. It had a " 77 " pentode as leaky grid detector with reaction, a " 43 " output pentode (if memory serves me well) and the type number of the rectifier escapes me completely.

The whole set was contained in a box made of hardboard, about $5 \frac{1}{2}$ inches square by 7 inches high, which with a 5 inch round speaker didn't leave much room. So the heaters were fed from a "line cord" and the reaction control mounted in the middle of the speaker grille! The set covered medium wave only and used a short whip aerial as there were no ferrite rods in those days.

The surprising feature was the great sensitivity and selectivity given by this simple line-up, as long as careful use was made of the reaction control. This was because the reaction could be advanced to the point where the detector was right on the verge of oscillating, but not quite. On tuning off to either side, the circuit would slide gently into oscillation, as evidenced by the appearance of a beat

THE

components

Resistors

$\frac{1}{4} W 5 \%$
10Ω
100Ω
330Ω
680Ω
$1 \mathrm{k} \Omega$
$8 \cdot 2 \mathrm{k} \Omega$
$100 \mathrm{k} \Omega$

Inductors
Denco Transistor :uning Coil, Range 3, Blue. L1
Denco Ferrite Rod Aerial MW/LW 5FR. L2A, B
Output transformer $1.2 \mathrm{k} \Omega$ c.t. to 3.2Ω (LT 700)

Miscellaneous
4p.3w. "Wavechange" rotary switch (1). Stereo jack socket 0.25 in (1). Verocase Type 1 (205 x $110 \times 140 \mathrm{~mm}$) ($75-1412 \mathrm{~K}$). Slow motion drive unit dual ratio $36: 1$ and $6: 1$ with dial Type 4103 (124 $\times 96 \mathrm{~mm}$) (1). 4 mm sockets Yellow (1) Green (1). Telescopic aerial. Printed circuit board, " P " clips 10 mm dia. (2). Pillars 6BA internal thread 12.7 mm long (4). Knobs (2). Nuts, bolts and washers as required. Aluminium sheet 20 s.w.g. $80 \times 120 \mathrm{~mm}$.

Semico

Transist BC10 BC2 1

Potenti
$4.7 \mathrm{k} \Omega$
Capacit
Polystyr
220p
470p
1200
Ceramic
100R
1 nF
22 nF
$0.1 \mu \mathrm{~F}$
Electroly
$50 \mu \mathrm{~F}$
$100 \mu \mathrm{~F}$
Variable
365 pF

components

Resistors

$\frac{1}{4} W 5 \%$		
10Ω	1	R8
100Ω	1	R4
330Ω	1	$R 1$
680Ω	1	R7
$1 \mathrm{k} \Omega$	1	R6
$8.2 \mathrm{k} \Omega$	4	R2, $3,9,10$
$100 \mathrm{k} \Omega$	1	R5

Inductors

Denco Transisto! Tuning Coil, Range 3, Blue. L1
Denco Ferrite Rod ${ }^{-}$Aerial MW/LW 5FR. L2A, B
Output transformer $1.2 \mathrm{k} \Omega$ c.t. to 3.2Ω (LT 700)

Miscellaneous

4p.3w. "Wavechange" rotary switch (1). Stereo jack socket 0.25 in (1). Verocase Type 1 (205 x $110 \times 140 \mathrm{~mm}$) (75-1412K). Slow motion drive unit dual ratio $36: 1$ and $6: 1$ with dial Type 4103 $(124 \times 96 \mathrm{~mm})(1) .4 \mathrm{~mm}$ sockets Yellow (1) Green (1). Telescopic aerial. Printed circuit board, " P " clips 10 mm dia. (2). Pillars 6BA internal thread 12.7 mm long (4). Knobs (2). Nuts, bolts and washers as required. Aluminium sheet 20 s.w.g. $80 \times 120 \mathrm{~mm}$.

note with the received carrier, but on tune the damping due to the received signal prevented oscillation. If the reaction was advanced further, the circuit would oscillate, but phase locked to the incoming carrier-homodyne reception. Application of even more reaction would then actually reduce sensitivity as the received signal was capable of exerting less and less influence on the oscillating circuit.

Reaction Backlash

Many times since, I have tried to obtain comparable sensitivity from a transistor set with a single tuned circuit. Always the same snag-reaction backlash-whas appeared to a greater or lesser extent. On winding up the reaction to increase gain, the circuit plops into oscillation and won't stop until the control has been wound so far back that there is then no benefit at all.

We have radios enough at home and don't néed another, especially one with a reaction control, but the problem posed an intellectual challenge which just had to be accepted. So over the Christmas holiday, while the rest of the family was recovering from a surfeit of seasonal fare, I crept away to my laboratory.

It soon became evident that with reaction applied to a single transistor stage with any of the conventional bias stabilisation schemes, once the circuit commenced to oscillate the net gain would rise, as the collector current rises more on one half cycle than it falls on the other.

This is a consequence of basic transistor theory, which states that the transconductance "gm" is directly proportional to collector current. Therefore, the amplitude rapidly builds up and the transistor biases itself back towards Class C . When the reaction is reduced to the point where oscillation ceases, the transistor is left in a lower gain condition until the base coupling or emitter bypass capacitor discharges to its normal potential.

iductors

F
1
1
1
3
ic (p.c.b. type)
OV 2
$10 \mathrm{~V} \quad 1$

Tr1, 2, 3
Tr4

VR1 (with switch)

Internal details of the prototype receiver. The p.c.b. is smaller in the finalised design

Long-tailed Pair

The obvious step was to change to a circuit configuration in which the gain does not rise with increasing input. Such a circuit is the long-tailed pair shown in Fig. 1. Note that the input must provide a d.c. connection, otherwise Tri will not conduct. When acting as a small-signal amplifier, the "tail" cument provided by R 2 will (ideally) divide equally between Tr 1 and $\mathrm{Tr}^{\prime} 2$.

Fig. 1: Basic long-tailed pair circuit
When driven by a large signal, the current (and hence the transconductance) of one transistor rises, and that of the other falls. Consequently the gain is at a maximum for small signals. This circuit was arranged as a m.w. receiver as in Fig. 2. Reaction was applied through a small fixed capacitor, the amount depending on the setting of potentiometer, which was used in place of R1 in Fig. 1. (The arrow across the wiper indicates clockwise direction of rotation.) A couple of r.f. decoupling capacitors were fitted across the supplies as good standard practice. An output was taken from Tr 2 collector (via a $15 \mathrm{k} \Omega$ resistor to avoid r.f. loading) to a laboratory amplifier or "squawk box", an apt name when the reaction is turned up too far!

Results were surprisingly good, with a large number of stations received during daylight and a host more after dark.

There was still, however, a slight tendency to backlash on the reaction control and this made it difficult to receive the weakest stations. $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ had not been selected for equal base emitter voltage and it was therefore likely that there was an offset between them resulting in the tail current not dividing equally. Once oscillation commenced, would the voltage swing at $\operatorname{Tr} 1$ base, being large compared to the offset, result in a rise in gain and hence backlash? This was indeed proved to be the case by providing separate tail resistors for each transistor and coupling
them together via a capacitor. The d.c. conditions for each transistor were now completely defined individually and backlash virtually absent. Weak stations could be brought up to the required volume by advancing the reaction, which at the same time, increased selectivity. Only if the weak station were very close to a local station was there any interference from the latter.

No Detector!

At this stage, I realised that the circuit contained no detector! This explained why it had been necessary to set the gain of the Lab. amplifier so high. A diode detector circuit and amplifier was incorporated, resulting in the circuit of Fig. 3. Disappointment! Considerable reaction backlash reappeared. Evidently the diode detector circuit imposed less damping when the receiver was oscillating than when it wasn't. This would not be heiped by the fact that the $\mathrm{BC} 214^{\prime} \mathrm{s}$ base current was supplied via the diode, even though this was only a fraction of a microamp, but it set me thinking about high impedance detectors for minimal circuit loading.

Old timers may remember the "infinite impedance detector", which despite the slight exaggeration, certainly produced much less damping than a thermionic diode detector. The detection was performed by the grid/cathode circuit of a triode, the cathode being bypassed at r.f. The output therefore followed the positive crests of the grid voltage, but as negligible grid current flowed, circuit damping was minimal.

Fig. 2: Simple medium-wave receiver circuit
Exactly the same detector circuit works a treat with a transistor and by direct coupling to Tr 2 collector we can save a component or two. In the final circuit of Fig. 4, Tr3 is the infinite impedance detector, rectification occurring in the base/emitter circuit, but with nearly all the rectified current being drawn from the positive rail rather than Tr 2 .

Fig. 3: The addition of a detector stage gave disappointment

A little negative feed back has been introduced into the emitter circuit of the output stage Tr4 to reduce the background hiss and minimise distortion at maximum volume. The circuit is designed for low impedance headphones such as the Author's very comfortable stereo headphones bought at a Boot's store, so a matching transformer is included. If high impedance 'phones (usually about $2 \mathrm{k} \Omega$ impedance, though the resistance is lower than this) are used, T 1 should be omitted, the phones being connected between Tr 4 collector and the negative rail.

Construction

The set was built in a plastic Verocase with metal front and back panels. The slow motion dial frame needs about 1 mm filed off of the top and bottom edges to allow it to fit between the top and bottom edges. Use the aluminium plate supplied with the dial to mark out the front panel for the drive mechanism.

It is recommended that the circuit be constructed on the printed circuit board shown and that metalwork dimensions and wiring layout be as in the diagrams and photographs.

The p.c.b. is mounted on pillars screwed to the bottom of the case, while the telescopic aerial uses a 4BA screw in the case bottom locked into place with a nut, under which is the solder tag for the aerial connection. A hole in the top of the case, exactly over the 4BA bolt, holds the aerial in a vertical position.

Winding his own coils is the easiest way for the beginner to go wrong, so the well-known Denco range have been used. These are however not designed with receivers using reaction in mind, so additional windings have to be added, as in Fig. 6. On long- and mediumwave bands, a ferrite rod aerial is used and is connected differently from the circuit supplied by Denco. On short wave a Denco transistor coil, Range 3, Blue, is used, with a telescopic aerial and provision for an external aerial and earth. Fig. 4 shows the circuit diagram, Fig. 7 shows the
printed circuit board layout, copper side, and Fig. 8 shows the component layout.

When complete, double check all the wiring, set S1 to 1.w., VR1 fully anticlockwise and plug-in low impedance headphones and a PP3 battery. With the tuning capacitor about half in mesh Radio 2 should be heard and turning up the reaction control VR1, which also does duty as a volume control, should increase the volume. If turned up too far, the circuit will oscillate, resulting in a whistle or beat note if the set is not exactly on tune. Check the m.w. and s.w. ranges also, noting that the position of the reaction control for best results will be quite different on the three wavebands. Indeed, the position will vary somewhat over any given band.

The prototype p.c.b. The final version is only half this size

The Author set the core of the short-wave coil for minimum inductance, i.e., with all the adjusting screw showing, giving a tuning range on s.w. from about 1.8 to 6 MHz . This includes two amateur bands "top band" (160 metres and 80 metres), as well as most of the m.f. and the lower end of the h.f. marine bands and almost reaches up to the 49 metre broadcast band.

Before trying to calibrate the scale, set the tuning capacitor fully in mesh and the pointer to 180 on the logging scale. At the other end of the scale, the pointer will actually move past 0 , but this does not correspond to the useful tuning range-in fact the capacitance actually starts to rise again slightly, so you may hear the same station at two points.

Calibration of the scale is most easily carried out by tuning in a station on a commerical receiver at or near a dial calibration ${ }^{\text {s }}$ point and then tuning in the same station on the newly completed receiver. In this way, each waveband can be calibrated in turn. In fact for greater accuracy, the commercial receiver can be set exactly to scale calibration points and the reaction control advanced until oscillation occurs. The Imp can then be tuned in to the commerical set which will respond with a whistle if it is already receiving a station or by going quiet if it is not.

Using the Imp

Long and medium wave will bring in quite a few stations, even in daylight, the author having heard many of the local radio stations in the south of England on medium wave as well as the more powerful BBC regional services. After dark, conditions really open up and one can hear stations from all over Europe and occasionally beyond.

On short wave, don't expect many stations in daylight, especially on the telescopic aerial. Much more signal will be provided by a "sling-out" aerial consisting of 3 or 4 metres of wire, in conjunction with an earth. The latter can be picked up with a three pin plug at the nearest ring-main socket. If you really get interested in short wave then an aerial tuner unit as described in the free supplement to the March 1978 Practical Wireless would be worth building.

After dark is the best time for s.w. listening. Turning up the reaction until oscillation just occurs will reveal many more stations using c.w., i.e., just transmitting dots and dashes of carrier without any modulation. The carrier beats with the receiver oscillation to produce an audible tone, whereas otherwise the morse is virtually unreadable.

Likewise, turning up the reaction until oscillation just occurs enables s.s.b. (single sideband suppressed carrier) transmissions to be received. Very accurate tuning is needed here, as unless you tune to within 20 Hz or so of the right frequency, the result will sound like Donald Duck. This is why a good slow motion drive is required. Even when the tuning is accurate enough for the speech to be readily understood, it still tends to sound like someone talking down a drain pipe unless you happen to hit on exactly the right frequency to within 1 or 2 Hz !

Fig. 7 (Top): The full size p.c.b. copper track pattern
Fig. 8 (Above): The component placement for the p.c.b The picture on the left shows the mounting of the slow-motion drive unit to the mounting bracket at the bottom

Details of the front and rear panels (Above) and the mounting bracket and battery holder (Below). The brackett is made from 20 s.w.g. aluminium, the battery holder from thin tinplate

Fig. 9: The complete point-to-point wiring diagram for the PW Imp. It is suggested that this layout be followed closely to ensure good results. Note that the four polystyrene capacitors mounted on the rotary switch are not mechanically anchored at the opposite end to the switch tags so that care is needed to ensure that the free ends do not short to any metal parts

Jammers and things

Here are a few points to watch out for when listening on s.w. which might otherwise puzzle the beginner.

Firstly, you may find stations which seem to extend across much of the band. This is usually a very strong station just outside your s.w. range. An a.t.u. (aerial tuning unit) will help here, but if you don't have one, try using the telescopic aerial instead of the external aerial. Next, you may find a "station" just emitting a buzzing noise. This may be a real station transmitting "facsimile" or an Iron Curtain jammer. But if you find it in several places, check that there isn't a TV set working in the next room-it could be stray radiation from that! Fluorescent lighting fixtures can also emit radio interference.

Although the final circuit of Fig. 4 uses four transistors and drives headphones only, it has several advantages. Firstly, following the layout of Fig. 9 and using new, reliable components, excellent results are assured and at 10 or 15 p each, four transistors are no undue expense. Secondly, more than ample volume is provided for headphone use, yet the circuit draws a mere 5 mA -very economical on batteries. Thirdly, the design achieves what was originally aimed at, a smooth control of reaction with minimal backlash, resulting in sensitivity not much less than that of a super-het with the necessary selectivity to go with it. But unlike a super-het there are no i.f.s to line up, nor padders and trimmers to adjust.

HIDIL IOTE:

Ideas Department-

Step Tone Generator, March 1979
In the circuit diagram, pins 2 and 6 of Timer 1 should be linked to the Gate of the 2N3819. The last line of the text should read ". .. sophisticated voltage to frequency voice scrambler.'

Keep your copies together Keep them clean with the PW Easi-Binder

The Easi-Binder is attractively bound with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers please advise year and volume and a separate set of gold transfer figures will be supplied.
£2.85 inclusive of VAT and post and packaging from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London, SEI OPF.
(Overseas orders please add 60p).

So You Want to Pass the RAE?

For details and coupon see page 36

PLEASE MENTION P.RACTICAL WIRELESS

SPECIAL

Telecommunications Accessories Limited

VSWR BRIICE [TYPE RW100

The problems of coupling transmitters to aerials are well known and are discussed in detail by F. C. Judd elsewhere in this issue. Briefly, the object is to achieve an optimum transfer of the r.f. energy from the transmitter power output stage(s), along the feeder to the radiating device, which calls for quite precise matching.

One of the most convenient methods of measuring the parameters involved is to use a bridge, which is placed inline with the aerial and gives a visual indication of the forward and reflected power levels present.
A variety of types are available costing from a few pounds to several hundreds. If meaningful measurements are to be

specification

Frequency range: $\quad 50-430 \mathrm{MHz}$ in 3 ranges
Power ranges: $\quad 0-20$ and $0-100 \mathrm{~W}$ forward $0-5$ and $0-20 \mathrm{~W}$ reflected

Input and output impedance:

Connectors: $\quad 50 \Omega$ "N" type
Size: $\quad 190 \times 108 \times 114 \mathrm{~mm}$ ($7 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{ins}$)

Weight:
1.75 kg (3.8 lbs)

Price:
around $£ 130$
Telecommunications Accessories Ltd, Thame Industrial Estate, Bandet Way, Thame, Oxon OX9 3SS. Tel. (084421) 3621.
made, however, the very cheap instruments are unlikely to afford the accuracy required. Indeed they can, in certain circumstances, introduce problems if their own input and output characteristics do not match those of the circuit under test.

Assuming the average amateur's budget does not extend to a Bird Thruline with several plug-in elements, one is faced with the decision of what to buy for a reasonable outlay which measures, rather than indicates.

Telecommunications Accessories Ltd. (until recently known as Antenna Specialists UK Ltd.) import a v.s.w.r. bridge and power meter combination, type RW100L which is intended for the commercial mobile market but is equally suited to amateur applications.

Two meters, each with a 76 mm (3 in) display area, are employed, so that forward and reflected power can be directly compared without the arduous business of having to switch between the two functions and memorise the values from one to the other. Full-scale deflection is selected by two push-buttons in each mode, the readouts being $0-20$, $0-100$ watts forward and $0-5,0-20$ watts reflected.

Input and output is by " N " type connectors into 50Ω ports. A very close match to the 50Ω circuit under test is maintained by the bridge.

Three switched frequency ranges are provided covering $50-430 \mathrm{MHz}$ in the one unit, without the use of separate directional couplers. The meter under test proved very easy to operate and read, its accuracy being quite remarkable when compared to a much costlier professional model.

Although the instrument is intended for laboratory or "shack" use, its rugged construction also makes it suitable for applications in the field where a less expensive, high integrity meter is called for.

There are other less-sophisticated devices within the range available, and the distributors have indicated their willingness to supply detailed information on the product line when requested to do.so.

Radio amateurs often need a reliable means of scale calibration for home-constructed projects. The unit to be described is an in-line crystal controlled calibrator which produces markers at $1.0 \mathrm{MHz}, 100 \mathrm{kHz}$ and 25 kHz with harmonics well into the v.h.f. band. Its fundamental signals will be found useful for calibrating the timebase of an oscilloscope, for example, whilst the harmonics offer a simple solution to the problem of scaling a receiver tuning dial.

This calibrator has been designed to be left permanently in circuit with an aerial feeder. When not in use, it presents a through path for the signals, the markers being readily available if called for. A useful life of around twelve months can be expected from the internal battery with normal operation.

The calibrator consists of a 1.0 MHz crystal oscillator with logic dividers to give additional outputs at 100 kHz and 25 kHz . Square waves, rich in harmonics, are produced, generating markers which extend to v.h.f.

Three CMOs inverters IC1f, ICle and IC1d are arranged in a feedback configuration which ensures good loop gain and reduces the possibility of overtone oscillation (Fig. 1). The crystal determines the oscillator frequency and resistor R1 provides a d.c. path around the loop. Fine tuning is by the trimmer TC1 and ICla shapes the output pulses to produce a good square-wave pattern.
A Johnson counter, IC2, divides the oscillator output to give a signal at 100 kHz . The two halves of IC3 are each arranged to divide by two and are cascaded after IC2 to obtain an output at 25 kHz . Switch S1c selects the marker required, which is again shaped by Trl to sharpen up the waveform and thus ensure good v.h.f. harmonic content. Finally, the signal is capacitively-coupled to the aerial via the output loop L1. When $1 \cdot 0 \mathrm{MHz}$ is selected, IC2 is inhibited to avoid the problem of unwanted and ambiguous 1.f. signals. Similarly, IC3 is inhibited in the 100 kHz position. The control is via S 1 b and uses IClb and IC1c repectively.

Construction

This instrument is built into a small die-cast box, which also acts as an effective screen. Be sure that it is deep enough to provide adequate clearance for the crystal, if you choose to use a type different from that in the components list. The general layout is given in Fig. 2.

All components are mounted on a p.c.b. which is spaced from the box with two 6BA nuts, or short pillars. The copper track pattern is shown in Fig. 3 and Fig. 4 is the component overlay.

The crystal is an HC33U type, soldered (with care!) directly to the board, whilst the integrated circuits can be plugged into sockets, if this method is favoured. With regard to the cmos, the usual precautions should be taken to avoid destruction. Leave the devices in their static protection until you are ready to use them. With a properly earthed iron and sensible approach they can be handled quite safely.

The selector switch is mounted centrally on the lid of the box. Depending on the type used, it may be necessary to slightly shorten the tags to prevent contact with other components 'on the p.c.b. A suitable piece of Paxolin or plain Veroboard forms the battery compartment.

The coaxial line is made from 160 mm of low-loss coaxial cable, with the outer sheath removed to allow the loop L1 to be fed under the braiding, entering and leaving 20 mm from each end.

As with all projects, a thorough visual check should be made before applying power, with special attention to supply polarity, the positioning of the i.c.s and the possibility of solder bridges on the tracks of the p.c.b. On all ranges, the supply current should be approximately 5 mA , so if a

Fig. 1: Complete circuit diagram of the In-Line Crystal Calibrator. Note lead orientation of Tr1 on p.c.b. (Fig. 4)

Fig. 2: Wiring diagram of the unit

Fig. 3: Full-size track pattern and Fig. 4, p.c.b. component layout

THE
 ' ${ }^{\text {In }}$ ' W INTON' Stereo Ammlifier

Front Panel

Although the front panel is intended to be held in place with an adhesive it is also secured by the nuts holding the mains and speaker switches as well as the jack socket. Take great care not to scratch the panel when tightening these components. It is a good idea not to fit the front panel until all testing, etc., is completed, and you are satisfied that further work on the chassis will not be needed.

Wiring

Final wiring is straight forward and providing care is taken no difficulties should be encountered.

It is very important to follow exactly the wiring sequence shown in Fig. 17. In particular, the earth wiring must be followed exactly if distortion or hum loops are to be avoided. Note that some of the screened leads have their braiding connected to one end only, also that the earth wiring of the disc input is different from the other inputs. Wire exactly as shown in the diagram, do not take short cuts. Fig. 18 shows good and bad examples of earth wiring of the disc input. The same general idea holds true for the whole amplifier.

Note that a signal-to-noise of -68 dB relative to 3 millivolts on an input is an equivalent noise voltage of approximately 1 microvolt flowing in the input wiring and it won't take much induced hum or noise to degrade this figure. In fact when you consider that the disc input with RIAA equalising includes nearly 20 dB of boost at 20 Hz
the actual noise present to achieve -68 dB is nearer 0.1 microvolts!, need I say more.

The input leads from the disc DIN socket to the p.c.b. should also be twisted together with the earth lead as shown in the photograph. The physical position of other wiring is not critical (within reason) provided that the actual sequence of connections are followed.

Testing and Setting Up

The minimum equipment required for setting up consists of a $20 \mathrm{k} \Omega / \mathrm{V}$ multimeter (AVO 8 or equivalent), and two 30Ω wire wound 5 W resistors.

Those of you who possess a range of audio test equipment, such as generators, scopes, distortion meters and the like, will already know how to test equipment to specification and it is not intended to give details of this here. However, the basic test procedure should be carried out first as the simple method described will avoid expensive mistakes.

Before proceeding set the controls as follows:
Mains switch off.
Speaker switch to loudspeaker position.
Volume at minimum.
Balance and tone controls to centre of movement.
Push buttons all out except tape.
Do not connect any form of load to the loudspeaker terminals at this stage.

Fig. 16: Back panel of the complete amplifier showing the input sockets, power output transistors, fuses and output terminals. The terminal post under F2, and marked "Earth', is the means of connecting the earths from other equipment to the Winton

Fig. 18: The correct earthing arrangements for the input sockets is shown in drawing (a). The other two methods (b) and (c) are both wrong and will give rise to hum and noise problems

Fuses

Check that the correct fuses have been fitted. One 1A slow-blow in the mains fuse holder and two 2.5 A quickblow, one in each loudspeaker fuse holder.

Disconnect the wires to pins 3 and 11 on each channel, these are the power supply leads to each power amplifier. Taking each channel in turn and leaving the other disconnected, connect a 30Ω WW resistor in series with each pin (3 and 11) on channel A and its respective supply lead. The object of the series resistors is to limit the current and avoid damage to the transistors in the event of a fault condition occurring when switching on for the first time.

Next turn VR6 on each channel fully anti-clockwise (minimum) and VR5 on each channel to its middle position.

Quiescent Currents

Connect the mains supply and switch on. The l.e.d. on the front panel should glow indicating that the d.c. supply is on. Watch for any sign of a fault condition, such as overheating. Should everything seem to be in order, proceed; if not switch off and investigate the problem. Connect the multimeter set to read at least 50 V between chassis (negative) and C40 positive tag, the reading should be about 48 V . Transfer the meter to pin 11 channel A . The voltage here should be 1 or 2 volts lower.

The actual voltage drop will depend on the quiescent current through the output devices but at this stage should not be more than a few volts drop. Should it be more than, say, 5 V then switch off and check the wiring again.

If in order, transfer the meter leads to C41 negative tag and chassis and then to pin 3 channel A, the voltages should be the same as before but of reverse polarity. Now, while watching the voltage reading, adjust VR6. As its resistance value is increased the voltage on pin 3 (and 11) should fall as the quiescent current is increased. Reset VR6 fully anti-clock wise. Switch off.

Disconnect the meter and remove the two 30Ω wire wound resistors. Connect pin 3 back to the wire from C41 negative tag. Connect the multimeter (on its highest current range) in series with the wire from C40 (positive) and pin 11 channel A. (Check that leads are not shorting to anything.) Switch on. With the meter set to a lower current range, adjust VR6 for a reading of 50 to 60 milliamps. Switch off. Remove meter and reconnect lead from C40 to pin 11 on channel A. Repeat all of the above instructions for channel B.

Table 1

All voltages are with respect to chassis

	Collector	Base	Emitter
Tr1	10.3 V	0 V	-0.5 V
Tr 2	10.5	0	-0.5
Tr 3	0	10.3	11.1
Tr 4	-42.7	0.2	0.5
$\operatorname{Tr5}$	-42.9	0	0.8
$\operatorname{Tr} 6$	9	-42.9	-43.6
$\operatorname{Tr} 7$	0.8	-42.7	-43.6
$\operatorname{Tr} 8$	0.5	43.5	44.2
$\operatorname{Tr9}$	47	45	44.5
$\operatorname{Tr} 10$	-47	-45	-44.5
	Drain	Gate	Source
$\operatorname{Tr} 11$	47 V	0.5 V	0 V
$\operatorname{Tr} 12$	-47	-0.8	0

PIN	1	2	3	4	5	6	7	8
IC1	$=$	$=$	$=$	$-12 \cdot 7 \mathrm{~V}$	$=$	$=$	$=+13 \cdot 3 \mathrm{~V}$	
IC2	$=$	$=$	$=-14 \cdot 2$	$=$	$=$	$=+14.7$		
IC3	$=$	$=$	$=14.2$	$=$	$=$	$=$	+14.7	

	Cathode	Anode
D1	14.7 V	0 V
D2	0	14.2
D3	44.1	43.7
D4	0.5	0.4
D5	0.4	0
D6	0	-0.7
D7	-0.7	-0.8
D8	1.6	0
D9	+47	34 a.c.
D10	+47	34 a.c.
D11	34 a.c.	-47
D12	34 a.c.	-47

Offsets

Having now set up the quiescent currents for each channel, the d.c. offset can be adjusted. Connect the multimeter, switched to a high d.c. voltage range, across the loudspeaker output for channel A (red and blue terminals). Switch on and the meter should not read. Switch to the lowest meter range and adjust VR5 for zero voltage on the

These oscilloscope traces show the response of the PW Winton to various square wave inputs. In each case the upper trace is for the output of the amplifier with 8Ω resistive loading, while the lower traces are for a load of 8Ω and $2 \mu \mathrm{~F}$. The top row shows the response (leff) at 100 Hz , (centre) at 1 kHz and (right) at 10 kHz . The lower row shows the response (left) at 20 kHz , (centre) at 100 kHz . The last picture shows the power amplifier output at 100 Hz into an 8Ω dummy load with a square wave fed to the disc input through an inverse RIAA network. The subsonic filter is switched in accounting for the slope to the top and bottom of the trace. Note, however, that the trace is smooth and straight
speaker output terminals. It should be possible to swing the voltage either positive or negative by adjusting VR5. The correct setting is Zero Volts. Switch off. Repeat the procedure for the other channel.

A full voltage check list is given in Table 1. These are actual voltages measured on the prototype amplifier and may vary by about 10 per cent in normal practice, depending on the meter and the mains voltage at the time.

Table 2

Mains switch
Speaker switch
Volume control
Balance control
Bass control
Treble control
Push buttons:
LF
HF
Tape
Mono
AUX 1
AUX 2
Tuner
Disc
Jack socket
Mains indicator

Switches amplifier on/off.
Selects either headphone jack socket or speaker outputs.
Adjusts volume of signal and maintains 2 dB matching between channels.
Adjusts output of either channel from maximum to zero, for correcting unbalanced left/right signals; also operates on tape output.
Boosts or cuts lower audio frequencies.
Boosts or cuts higher audio frequencies.
Low frequency filter. Reduces output below 50 Hz .
High frequency filter. Reduces output above 5 kHz (for removing scratch or hiss).
Selects tape input; also used for monitoring tape during recording.
Parallels both channels.
Selects AUX 1 input, which also has a tape output on it. This input is suitable for most cassette recorders.
Selects AUX 2 input.
Selects Tuner input.
Selects Disc input.
Suitable for most types of stereo headphones.
Indicates that mains supply is on. Note: the supply for the l.e.d. is from the filtered d.c. and will continue to glow for some time after switching off.

It is advisable to carry out a full voltage check before connecting loudspeakers to the amplifier. When you are sure that everything checks out correctly, connect up the loudspeakers, tape and pick-up.

Set the controls as follows, volume at minimum, balance and tone controls to mid-position, all control buttons except "disc" out, speaker/phones switch to "speaker" position and switch on the amplifier.

At this stage nothing should be heard, not even a "switch-on" click. Place a test record on the turn-table and, having placed the pick-up on the record, slowly advance the volume control.

You should now hear the record and can proceed to check the various controls for their proper function. A full list of the controls and their functions is given in Table 2.

Response

Although not vital it may be possible to improve the frequency response/phase relationship through the control unit. The amplifier should be set up, using suitable test equipment, to reproduce a flat frequency response across 8Ω dummy loads. Adjust the two tone controls for optimum "flat" response between 20 Hz and 20 kHz using the AUX 2 input. The volume control should be set at maximum and the level of input signal (a sine wave) should be adjusted to give approximately 4 V output across the 8Ω resistor dummy loads.

Switch the input signal to reproduce a square wave form at 1 kHz . Do not touch the tone controls. The square wave should have a "flat" top and bottom; if so, no adjustment is required. However, it may have a slight "slope" depending on the matching of capacitors C21, C22. Any "slope" can be corrected by connecting extra capacitors across either C21 or C22 (which one will depend on the direction of the slope of the square wave form).

COMPONENT SUBSTITUTION

In order to realise the true potential of the Winton specification it is emphasised that the constructor should only use those components specified in the articles. This applies in particular to the mains transformer which has been especially designed for this project. Substituting other apparently suitable types, such as RS Components 120VA 207-497, can only lead to dissatisfaction with the performance of the completed amplifier

Depending on the degree of mismatch between C21, C 22 , extra capacity up to $0.01 \mu \mathrm{~F}$ may be required. If for example, the $0.047 \mu \mathrm{~F}$ used for $\mathrm{C} 21, \mathrm{C} 22$ had a tolerance of $\pm 10 \%$, one could be $0.0517 \mu \mathrm{~F}$ and the other $0.0423 \mu \mathrm{~F}, \mathrm{a} 0.0094 \mu \mathrm{~F}$ difference between the two. This is why the capacitors used should be matched to better than 2.5%. $(0.0481 \mu \mathrm{~F}$ to $0.0458 \mu \mathrm{~F}$, or a difference of only $0.0023 \mu \mathrm{~F}$.)

It is doubtful if such a correction of phase response would be audible under normal domestic conditions and is really just a case of "gilding the lily."

The PW Winton must be connected to other equipment so that earth loops are avoided. Only the amplifier is earthed at the mains. No direct connections must be made between pick-up and chassis or tape deck. Earths, if provided, on tape deck and record deck are connected to EARTH on the rear of the Winton. Care in the installation as a whole will ensure that the full performance potential of the PW Winton is achieved. Poor results will almost certainly be entirely due to either the ancillary equipment used and/or a poor installation.
components

significant departure from these readings is noticed the unit should be disconnected and re-checked.

When the calibrator is included in the aerial feeder the markers should be easily detectable and a small adjustment (TC1) to set the oscillator precisely to 1.0 MHz will be all that is required. This may be carried out with reference to a frequency counter or by zero-beating the oscillator to an off-air standard frequency transmission. If the latter technique is employed, the accuracy will be greater for higher-frequency transmissions, due to the audio passbands involved in reducing the heterodyne frequency. Suitable transmissions are on $2500 \mathrm{kHz}, 5.0 \mathrm{MHz}$ and 10.0 MHz . An alternative would be to use the BBC Radio 4 signal on 200 kHz . In all cases, the accuracy of the standard is better than one part in 10^{9}.

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more information on products than appears in the article.

Light Powered Buzby

Fibre optics and their uses in communications is a subject that is to have far-reaching effects. The latest application l've come across is the use of light fibres as a means of connecting your telephone up to the exchange. That in itself has some interesting consequences - like if we use fibres and not metal cables it could mean a vast loss of market for the cable makers.

But now there's a difference in this particular application. Telephones need power to make them operate and this was previously provided by power supplies and via cables. The difference now is that engineers have come up with the idea of having your telephone receiver powered by light which is fed to it up the same fibre that's carrying the speech! One of the biggest problems was the bell - the bit that makes all the noise when someone phones. It requires considerable power compared to that needed for the rest of the system. In America, where these experiments are taking place, an 80 V ramp was required to power the electromechanical ringing device. The end of the fibre was found to supply 5 mW at best.

The answer was to design a new ringing device that needed only 2 V . The tiny 5 mW available from the laser diode is used on a very thin piezoelectric element and the result is a staggering overall efficiency (optical input to acoustic output) of 33%.

Billions of Bits

Every time I look at a news item on disc storage, someone has come out with something even more staggering. The newest piece of disc magic is one that measures 12 inches in diameter and is used in an optical recorder (those optics again). The problem with the development at this stage is that of access time-the time it takes to find a piece of information on the disc. These new discs can store 10 billion (American style) bits of information but it takes some 250 ms to access infor-
mation from the 5 billion bits stored on each side. This contrasts with current magnetic discs with their lower 2.5 billion bits per side but offering a 30 ms access time to make up. The new optical discs are interesting because they are presently in their infancy and doubtless as time goes by their access times will shrink.

Better Batteries

Batteries have a nasty habit of going "flat" at the wrong moment. Rechargeable might be the magic word if this keeps happening to you. An even better phrase might be lithium battery - and a better phrase still rechargeable lithium battery. These power cells have long been known for their very high energy densities but they couldn't be recharged. Now they can. An American company has come up with a button cell giving 2.4 V and with a theoretical energy density of something like 100 watt hours per pound weight. The cell can be discharged fully, and then recharged. Not yet available over here, but when they are they certainly should cell!

Helping People

Electronics has found many pleasing applications in helping people. Two of the latest really appeal to me. The first is able to compose messages for people who cannot speak. The other enables blind people to use a cassette recorder to take notes in braille.

The first device is aimed at helping people who cannot speak nor who have any co-ordination such that they might use a keyboard device. The new beastie is called an Autocom and it looks rather like an electronic Ouija board. The user has a flat tray-like affair on his/her lap. The tray is divided up into squares and each has words, phrases or symbols. All that has to be done by the user is to push a magnetic pointer over the desired square. Beneath the board are magnetic sensors that can sense exactly where the
pointer is. A microcomputer is employed and is complete with its own memory. A readout shows the user what is being done/selected. While all this is going on an accessory, rather like an electric typewriter, is busy printing it all out as hard copy.
The other piece of equipment is called Versabraille. It uses a cassette recorder to store information that is keyed into it using a six-cell braille code. The nice thing about all this is that the designers haven't just left it at that; they have laid on facilities for record and playback. plus the ability to erase, and to edit and indexing as well. Something like 200 pages can be stored on a single C60 tape - and that's only using one side of it.

Transistorised Vampires

Now l've heard it all - an electronic vampire. It doesn't actually nip you and nick your red cells, but it can tell all about your blood. The obvious application is bloodless, painless blood tests: no pricking, no nicking. To operate the apparatus, the user simply presses his lips against a flat plate, and the job is done. The magic technique that makes all this possible is infra-red spectroscopy. The i.r beam is "shone" through the lips, and various "ingredients" in the blood cause a different effect on the beam. By looking up a little dictionary of what things in the blood cause what effects in the i.r. beam, an accurate readout can be made. The apparatus can measure things like cholesterin, glucose, ethanol, etc. One very worthwhile application is to allow diabetics to keep a check on the glucose content of their blood. Yet another would be to test accurately for alcohol levels in the blood. According to first figures published, the apparatus is able to measure alcohol content level in the blood right down to 0.001%.

Cimbers

The P.W. WINTON has simply got to be the new standard against which all D.I.Y. amplifiers will be judged, (quite a few commercial jobs too we suspect).
The superb specification is totally fulfilled in the quality of reproduced audio, and to judge from the number of flattering comments we have received we are not in isolation when we reaffirm our original statement that "WE SINCERELY BELIEVE IT TO BETTER SIGNIFICANTLY ANYTHING AVAILABLE TO THE HOME CONSTRUCTOR IN THIS POWER RANGE".
So! all you sceptics out there, stop hiding behind your BI-POLARS, you can't lick us so why not join us in the MOSFET REVOLUTION? and hear Hi Fi as it should be heard with the accent heavily on the Fidelity bit, (FIDELITY; Latin Root FIDELITAS; EXACT correspondence to the original), marvellous thing this state education innit?
Compare our spec's, if you don't fully understand the subtleties of some of them, ask someone who does, tot up how much you will save over the commercial equivalent, and write out a cheque as fast as your trembling hand will allow.
Whilst very gratified at the enormous amount of interest this design has generated, we fear that some may not have read Part 1 of the WINTON article (March ' 79 P.W.) as thoroughly as we had hoped, the reason for this assumption is that we have received a lot of letters and 'phone calls asking if we can supply the MOSFET Power Amplifier in isolation, i.e. without the control unit.
We cannot do this without a drastic re-design, but to those who have posed this question to us we would respectfully point out that the WINTON was designed from first principles as an INTEGRATED UNIT, and the performance figures we obtain are a direct result of the very careful thought and development that went into the unit as a WHOLE, for example the quoted figure of 140 mV overload on the disc input (that's +33 dB !) before distortion reaches even $0 \cdot 1 \%$ would almost certainly not be obtainable if the MOSFET Power Amp were fed from a Control Unit of indifferent performance, the whole point of course being that the PRE-AMP, and the POWER AMP were designed to complement each other, and if you try to hack a bit off and attempt to graft it on to your own or someone elses pet design we don't think you will be too happy with the results, of course you pays yer money and you please yourself, but if a soprano ends up sounding like a baritone don't blame us, we told you so!
The WINTON is available in the following form:
Price Inc.
V.A.T. \&

Pack (A) Capacitors \& Fixed Value Resistors
Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs
Pack (C) Printed Circuit Board, and Terminal Pins
Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuseholders etc., and a Brushed Aluminium Fascia Front Panel.
Pack (E) Semiconductors (including HITACHI MOS Power Fets)
Pack (F) Toroidal Mains Transformer
Complete Kit of all parts necessary to build the WINTON $£ 120.00$
ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-
T. \& T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7HH. PLEASE ALLOW 28 DAYS FOR DELIVERY.

INDICATOR UNIT special purpose aircraft ind $115 \mathrm{v} 400 \mathrm{c} 1 / \mathrm{P}$ as int EHT supply $\&$ heaters reqs ext $250 \mathrm{v} \&-150$ contains CRT type 3WP1 $3^{\prime \prime}$ flat face with P. 1 trace plus 13 minature valves was part of direction finding equip gives trace similar to CRDF display reqs ext sine cosine resolver to generate scan in clean cond in case size $10 \times 8 \times 21^{\prime \prime}$ with circ. $£ 25$.

TRANS/RX MK. 123 very compact mains or 12 v operated unit 2.5 to $20 \mathrm{Mc} / \mathrm{s}$ manual tuned Rx crystal controlled Tx see March P.W. for full spec or write $£ 54$.

MOTOR DRIVE CONTROLLER removed from Radar simulators as 24 v DC motor driving into gearbox the o/p shaft turns a 360^{\prime} Ind \& sine cosine pot approc speed at 24 V 1 RPM controller enables speed to be controlled from 0 to max in both directions supplied with P.U. transis control circ etc. $£ 10 \cdot 50$.
TAPE RECORDERS made for use in language lab equipment $240 \vee 50 \mathrm{c} / \mathrm{s} 1 / \mathrm{P}$ uses BSR type TD. 10 deck 3 speed will take $7^{\prime \prime}$ spools two chan transis amps with separate O/Ps can be used for stereo provision for record \& playback power unit \& amp circs mounted below deck overall size $12 \times 11 \times 7^{\prime \prime}$. O/P intended to work phones, supplied in clean cond may have control knobs \& Ind lamps missing, some circ details supplied, no ext case $£ 13$ also valve unit with TD. 2 deck $£ 8.50$.
U.H.F. CAVITIES new spares to take 2C39 type valves will tune over range $990 / 1040 \mathrm{Mc} / \mathrm{s}$ with int fittings circ sup-plied $£ 6.50$, also Rx section tunable preselector $1080 / 1130 \mathrm{Mc} / \mathrm{s} 4$ section with 1N21 mixer diode for $60 \mathrm{Mc} / \mathrm{s}$ IF with circ new $£ 4.50$.

MISC CIRC BOARDS (A) H.V. rect board contains 4 10kv PIV 100 Ma Silican rect, 4150 v 1 watt Zen $30 \times 220 \mathrm{~K} 2$ watt res etc size $9 \times 7^{\prime \prime} £ 2 \cdot 20$. (B) Display board with $12 \cdot 2^{\prime \prime}$ Red L.E.Ds 9 l.Cs size $10 \times 4^{\prime \prime}$ £2-20. (C) With 741 op amp 2N3583 HV sil NPN pwr, misc comp 60p. (D) With 12 v reed relay with $2 \times$ N.O. contacts 1000 ohm coil 14 v Zen 60p.
PHOTO TRANSISTOR type FPT120 end viewing high sensitivity new with data 60p. ea. 2 for $£ 1$.
DIGITAL DISPLAY 7 segment 9 digit $\frac{1}{4}{ }^{\prime \prime}$ high digits with connector \& red bezel new f2.30.
U.H.F. T.V. TUNERS manual tuned type transis with $\frac{1}{4}{ }^{\prime \prime}$ shaft new with circ possible use as aerial pre amps $£ 2.50$.
COUNTERS 4 digit with reset panel mounting coil 115 v AC 6 watt £3.50.

AUDIBLE WARNING DEVIZE $1 \frac{1}{2}^{\prime \prime}$ dia will work on 6 to 12 V DC solid state gives tone about $800 \mathrm{c} / \mathrm{s}$ takes 100 Ma at 12 v new f 1 ea . or 2 for $£ 1.70$.

HELIPOT DIALS standar 10Tr type approx $1 \frac{3}{4}{ }^{\prime \prime}$ dia to fit $\frac{3}{8}$ th bush \& $\frac{1}{4}{ }^{\prime \prime}$ shaft $£ 1.50$ or with 100 K helipot f 2 .
CRYSTAL UNIT dual $100 \mathrm{Kc} \& 1 \mathrm{Mc} / \mathrm{s}$ in 10 X case with suggested circ $£ 2.80$.
TIME DELAY UNIT panel mounting range 3 to 60 Secs contacts $1 \mathrm{p} \mathrm{c/o} \mathrm{supply} 115 \mathrm{v} 60 \mathrm{c} / \mathrm{s}$ (times are for $60 \mathrm{c} / \mathrm{s}$) size front $3 \frac{3}{4}{ }^{\prime \prime} \mathrm{sq} .3^{\prime \prime}$ deep new $£ 6 \cdot 50$.
OSC UNITS telematry osc freq. nom $450 \mathrm{Mc} /$ with some ajustment with DET22 disc seal triode in die cast case $3 \times 2 \frac{1}{4} \times 2 \frac{1}{4}{ }^{\prime \prime}$ these are normally freq mod $£ 5.40$.
ATTEN in line piston atten var40 to 100 Db 50 ohm good to $500 \mathrm{Mc} / \mathrm{s}$ fitted SO239 UHF sks with short connector $£ 3$.

SIGNAL GEN type 6 special purpose 17 crystal controlled chan in range 60 to $70 \mathrm{Mc} / \mathrm{s}$ as single \& double freq $A M$ \& $F M$ on some channels reqs ext P.U. with circs fuller spec on request $£ 25$. We have the following for callers subject to being unsold CD711 Dual trace bench scopes $£ 40$. Marconi TF801A Sig Gens $10 / 300 \mathrm{Mc} / \mathrm{s}$ $£ 30-£ 45$. Murphy B41 L.F. Rx $£ 25$. Marconi Spec Anylizers $3 / 30 \mathrm{Mc} / \mathrm{s} £ 55$.

Above prices include Carriage \& VAT.
Goods ex equipment unless stated new.
S.A.E. for enquiry or List 21.

A. H. SUPPLIES

122, HANDSWORTH RD. SHEFFIELD S9 4AE
Phone: 444278 (0742)
A. Marshall (London) Ltd., Dept: PW Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel: 01-624 0805 Retail Sales London: 40 Cricklewood Broadway. NW2 3ET. Tei: 01-452 0161/2. Telex: 21492. London: 325 Edgware Road, W2. Tel: 01-723 4242 Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, B516 2 LX. Tel: 0272654201. transistons

P.C.B'S FOR PRACTICAL WIRELESS PROJECTS

Nov. 78. Sarum Q Meter
Nov. 78. Standard Charge Timer
Nov. 78. Porch Light Timer
Nov. 78. Battery Indicator
Dec. 78. Car Radio L.W. Converter
Dec. 78. Digital Door Chimes
Dec. 78. Car Radio L.W. Converter R032
Jan. 79. Acoustic Delay Line R018
Jan. 79. Dorchester
Feb. 79. Hythe Receiver
March 79. Hythe Receiver
March 79. Soundlite Converter
March 79. Tone Burst Generatof
March 79. Wide Band Noise Souce
April 79. PW 'Winton'
April 79. FM Multitester
All prices include V.A.T.
Send orders to:

C. BOWES \& CO. LTD., 4, WOOD STREET, CHEADLE, CHESHIRE SK8 1 AQ.

Tel. 061-428-4497.
Please state type number and enclose cheque or pastal order.

SOUTHERN VALVE CO. Telephone 01-440/8641 MLV MO. MAIL ORDER ONLY. MINIMUM ORDER 80p

All New and Boxad. "Quality" Brancled Velves. Guaranteed 3 months. BVA etc. 6\% Alowed in lieu of Guaramteel Already deducted from our Prices! NOTE: PLEASE VERIFY CURRENT PRICES. Correct only at time of going to press.

The TDA1005 (continued)

Note that Figs. 7 and 8 appeared in Part 1

The frequency multiplex circuit of Fig. 7 using an inductor provides slightly better channel separation and rejection of unwanted frequencies from the output. The hum suppression is about 40 dB in both circuits.

An automatic monaural/stereo switch controlled by the pilot tone and by the field strength of the received signal is included. A lamp is shown in the circuits of Figs. 7 and 8 for indicating the mode of operation (stereo or monaural), but this could be replaced by a light-emitting diode in series with a suitable resistor. The capture range of the voltage controlled oscillator is guaranteed to exceed $\pm 3.5 \%$ (or 2.7 kHz).

The supply voltage must be within the range 8 to 18 V , the total current to pin 8 being typically 21 mA . The maximum stereo indicator lamp driving voltage, V_{L}, is 22 V . The circuits can be switched to the monaural mode by connecting pin 12 directly to ground or by raising the voltage at pin 14 to more than $+1 \cdot 2 \mathrm{~V}$. The typical distortion at the output at various frequencies is shown in Fig. 9 for the Fig. 7 circuit, but there is appreciable variation with the exact circuit conditions.

The MC1309

Motorola announced their MC1309 phase-locked loop stereo decoder device about the middle of 1978 and it is not yet generally available. This device (Fig. 10) is pin-forpin compatible with the established MC1310 device, but incorporates the latest $\mathrm{I}^{2} \mathrm{~L}$, ion implant and bandgap technologies to produce an improved performance. The particular advantages claimed for this device are low distortion, low power consumption, high supply-line noise and ripple rejection and automatic transient-free switching between the monaural and the stereo modes of operation.

In place of a conventional Zener internal bias regulator, the MC1309 employs a bandgap reference circuit. This type of voltage reference not only provides outputs with lower noise, but also permits operation from power supply lines as low as 4.5 V ; the maximum supply voltage is 16 V .

The use of $\mathrm{I}^{2} \mathrm{~L}$ technology permits efficient operation of the logic circuits at very low power. In addition, ion implantation allows high value internal resistors to be fabricated on the chip with well controlled values. As in the case of the MC1310, the MC1309 requires a variable resistor for the setting of its free-running frequency. The use of external load resistors with this device enables the gain to be adjusted somewhat.

The MC1309 will accept a composite input signal in the range 0.25 V to 1.7 V . peak to peak, the distortion being as low as 0.1% at an input of 0.85 V in a typical device.

The MC1309 will sink up to 50 mA through a small lamp or light emitting diode stereo indicator. It

Fig. 9: Typical total harmonic distortion in the output of a TDA1 005 integrated circuit

Fig. 10: External circuitry for the Motorola MC1309
incorporates internal current limiting in the indicator light circuit. Channel separation is typically 46 dB at 1 kHz and 44 dB at 10 kHz . The capture range of the phase-locked loop is about $\pm 8.9 \%$.

Stereo Output Filters

We have already seen that stereo decoder circuits generate frequencies of $19 \mathrm{kHz}, 38 \mathrm{kHz}$ and 76 kHz and
that the output contains some low amplitude signals of these frequencies. Although most modern monolithic circuits contain circuitry which provides some 25 dB to 50 dB of rejection of the unwanted frequencies, these ultrasonic frequencies can nevertheless cause whistles and other troubles, especially if the output signals are fed into the input of a tape recorder. Harmonics of these low level signals can beat with the bias signal of the tape recorder and produce frequencies in the audio band.

This problem can be eliminated by placing a suitable filter between the output of the stereo decoder and the next amplifier stage. The Toko Company offer a number of suitable filters which are available from Ambit International; they are designed to provide a considerable amount of attenuation of the 19 kHz and 38 kHz signals. These filters must have a suitable resistance connected across their output or their frequency characteristics may be affected.

It can be seen from the table that most of these filters hardly changed the response at 15 kHz , but provided considerable attenuation of the spurious output frequencies at 19 kHz and 38 kHz . The cross-talk between channels does not exceed about -45 dB relative to the signal between 50 Hz and 10 kHz . Minor undulations of the response characteristic in the passband do not exceed about 0.5 dB .

The BLR-2011N is an excellent filter for the ouput of a stereo multiplex decoder, providing not less than 30 dB attenuation of unwanted frequencies, yet introducing no more than 1 dB attenuation of the highest wanted frequency at 15 kHz (which older people cannot hear anyway). The price is $£ 1.95$ plus VAT at the time of writing and the price of the other filters is similar.

Future Developments

At the present time, stereo transmissions are available only in the v:h.f. bands with f.m. signals. However, there is a very strong interest in the USA in the development of a system for transmitting stereo programmes using amplitude modulation in the long, medium and short wavebands. It is not clear how much demand there would be for stereo signals in the lower frequency bands, but such transmissions can cover much larger areas than v.h.f. transmissions with small receivers using ferrite rod aerials. In addition, they may provide better reception in car radio receivers than stereo v.h.f. signals in locations where reception is difficult, for example, when the vehicle is passing under a large bridge, etc.

It is not possible to transmit high quality f.m signals on the lower frequency bands, since the bandwidths available are too narrow. Stereo v.h.f. radio involves the use of a 38 kHz suppressed sub-carrier, but the narrow bandwidth on the lower frequencies does not permit this. However, a number of techniques have been proposed which in essence involve the transmission of a left-plus-right signal, amplitude modulated on to the carrier in the normal way, but with the left-minus-right signal also modulated on to the same carrier. Such systems must be compatible in the sense that any conventional receiver must be able to be used to listen to the left-plus-right signal, as there are not enough channels available to allow special channels to be used for the stereo transmissions alone.

Unfortunately, the use of a double modulation technique to convey both the left-plus-right and left-minus-right signals on the same carrier without the use of a sub-carrier necessarily involves some increase in distortion of the received signal. The amount of distortion and the signal-to-noise ratio obtainable vary from one proposed system to another.

Frequency response of Toko stereo decoder output filters

	Attenuation relative to 400Hz (dB)				
Type Number	15kHz (Max)	19kHz (Min)	38kHz (Min)	Impedance Ω	Output Impedance Ω
BLR-2011N	1	30	30	1000	4700
BLR-2007N	3	20	55	3000	3000
190-BLR-3107N	1.2	26	50	4700	4700
Two cascaded					
190-BLR-3107N	1.2	45	75	4700	4700

In the Belar system, the left-minus-right signal is frequency modulated on to the amplitude modulated carrier, whereas in the Magnavox system the left-minus-right signal is phase modulated on to the carrier. The KahnHazeltine and Motorola systems involve a left-minus-right signal transmitted in phase quadrature with the left-plusright signal, whereas a system proposed by Harris Broadcast Products involves a phase difference of only 30°.

Magnavox System

The basis of a typical proposed system may be considered using the block diagrams of Figs. 11 and 12, which show a transmitter and receiver respectively, employing the Magnavox system.

In the transmitter, the left and right signals are fed into a matrix which provides outputs of the left-plus-right and left-minus-right signals. The left-plus-right signal is fed directly to the amplitude modulator to produce an amplitude modulated carrier. The left-minus-right is fed to a phase modulator circuit which modulates the phase of the carrier. A 5 Hz stereo identification tone has been proposed for this system. This would act merely as a control for the stereo/monaural mode switch, and would not take any part in the actual demodulation process.

In the Magnavox receiver system of Fig. 12, the first part of the a.m. receiver is quite conventional. The i.f. signal at 455 kHz is fed to an a.m. detector to provide the left-plus-right signal. A separate part of the i.f. signal is fed into a limiter which removes the amplitude modulation and then into a phase detector which produces a left-minus-right output. A matrix circuit is used to develop separate left and right signals which pass through the stereo/monaural mode switch to the appropriate loudspeakers.

The output from the phase detector in Fig. 12 is also fed to a 5 Hz detector. The latter produces an output which causes a stereo indicator lamp to be lit when the 5 Hz signal is present, and which also switches the mode to stereo. When no 5 Hz signal is present, as in monaural transmissions, the stereo indicator lamp is extinguished and the mode switch causes the left-plus-right signal to be fed to both loudspeakers.

The other systems proposed have various differences from the Magnavox system, but none of them can produce signals of a quality comparable to that of our present f.m. stereo broadcasts. Nevertheless, the advantages mentioned previously make it desirable to consider the possibility of stereo transmissions in the lower frequency bands. Also, the use of a.m stereo transmissions would avoid the problems of multi-path distortion which can occur in f.m. stereo reception. If any of the proposed systems are developed, it seems likely that new integrated circuits will be produced by many of the major manufacturers for use in a.m. stereo receivers - indeed, a number of them have

Fig. 11: A Magnavox a.m. stereo transmitter in block form

of the proposed systems.

Quadraphony

A quadraphonic system involves the use of four loudspeakers placed in the four corners of a room. A few experimental quadraphonic transmissions have been made in the UK, but it seems doubtful whether there will be widespread use of this type of transmission outside the USA in the near future.

However, a series of Motorola devices is available for use in quadraphonic systems. The MC1312P can be used for converting the two multiplexed quadraphonic input signals, either from a radio receiver or from a record, into the four quadraphonic channels. The MC1313P is somewhat similar, but can operate from a supply voltage as low as 8 V , and is intended for use in car equipment. The MC1314P is used with a single potentiometer balance control and enables other adjustments to be made conveniently to a quadraphonic system.

The MC1315P device can be used to enhance the front-to-back signal ratio by first detecting whether the front or back signal is dominant, and then providing an increased gain of between 6 dB and 20 dB in the dominant channels, whilst keeping the overall volume unaltered.

Conclusion

It can be seen that the devices we have discussed make it relatively easy to construct a stereo f.m. receiver, whilst manufacturers are certainly looking into possible future markets for a.m. stereo equipment and quadraphony.

PW GILLINGHAM FOLLOW-UP
continued from page 38

\star components

Resistors ($\frac{1}{4} \mathrm{~W} 10 \%$) $10 \mathrm{k} \Omega$	
Integrated circuits	
14161 14011. 2	ICA, B ICC
Diodes	
IN914 4	D1-4

held low via the diodes. When the reset goes off ICs A and B count up until ICA pin 12 and ICB pins 12, 13 and 14 go high. When this happens ICC pin 2 goes high, allowing pulses through to IC4 pin 27. At the same time ICC pin 4 goes low, preventing the counters from incrementing.

by Eric Dowdes wel/ G4AR

Letters have been arriving from readers who took the RAE in December last. I would have dearly loved to have reproduced the whole of the letter from Norman Wilson of Darlington, Co Durham. He studied at home for the RAE with the help of the $P W$ RAE series, and although he didn't fancy his chances he took the exam and has just learned that he passed with credit in both sections. He is now going for the code test, intending to get his $G 4+3$ by his birthday, March 3. On that day Norman will be 75!

How's that for perseverance? Let me not hear any more whimperings from younger folk on the imagined difficulties of the RAE, especially when they have clubs and colleges providing courses that Norman was unable to attend. Good luck Norman, and hope to hear of your new call very soon.

Candidates for the next RAE, in May, will be guinea pigs in a fashion, as the format becomes multiple choice. After this exam it will be necessary to rewrite a lot of the material published on the RAE in the light of the questions to be set. Hopefully, $P W$ may be able to take the lead with an article or two of practical hints and tips when dealing with multiple choice questions. I know of a number of people who would have been scared to sit the previous type of exam, but who will be at ease in the new format, because they are essentially practical people who can do better with their hands than with their brains. They, in my view, are of more benefit to amateur radio than the theorists.

On to David Parker BRS40420 (or was), of Elstead, Surrey, who passed the RAE and also intends going straight to G4. Congrats David and hope to QSO you some day. Now on to yet another hard worker, Alan MacWood in Arnold, Notts, who knew nothing of amateur radio a year ago, or of electronics, but who studied two hours every night from books that resulted in a distinction in Part 1 and a credit in Part 2 of the RAE. Alan hopes this anecdote will help others to success. Fantastic OM, and good luck on 2 m , and 70 cm with your new ticket.

A very kind note from reader W. H. Simcock, who has donated a Hallicrafters SX28-receiver to one of the younger readers on my long list of those anxious to get a
start in amateur radio. Any reader having a set that is suitable for the amateur bands, but which is no longer wanted, should contact me and I will arrange for it to be picked up without any further problems.

Vic Tuff BRS4 1507 of 38 Fourth Avenue, Blyth, Northumberland, has kindly volunteered to help any reader wanting info on ex-WD sets, but do send a sensible size stamped envelope for a reply. Incidentally, Vic wants info on the HF156 transmitter/receiver!

Ted Cawkwell writes from RAF Akrotiri, Cyprus, thinking he is a little old at 52 to be considered as a newcomer to amateur radio, but some of my previous comments ought to dispel that idea! Ted has a Tokyo Skylark receiver that covers 145 kHz to 30 MHz in 12 bands, and as it has a b.f.o. he has been able to start copying some s.s.b. On the bands. He intends to fix up a 60 ft long wire and a.t.u. but I have a horrible feeling that severe cross-modulation will be the result with such a receiver, so don't expect too much, OM.

Backtracking to the receiver appeal I have a letter from an ex-amateur, now aged 76, in the Crediton area of Devon, who was licensed pre-war and who would like to get hold of a s.w. receiver "from somebody's cupboard". Drop me a line first if you can help. Ian Calvert of Shipley, Yorks, who appeared to be a bit of a newcomer, now tells me he has passed out as a marine Radio Officer but is still busy with courses on radar maintenance. So no problems with the code after he passes the RAE next May!

From Aberystwyth, Dyfed, comes news from Pete Lewis and his ex-WD R209 set which, unfortunately covers only 1 to 20 MHz , but on 20 m he has copied 8 P 6 , FR8, ZL and VK using a 33 ft aerial. Pete started five years ago with a one-valve regen job on 80 m but, being a student on a grant, finds ex-WD equipment the best way to a decent receiver.

Band Activity

Sympathetic to my request for c.w. logs C. P. Palfreyman of Loscoe, in Derbys, sent in a short one for 80 and 160 m where he uses an Eddystone EC 10 and indoor aerial. On 160 m W-land was no problem but he missed the calls of a PY and an EP. A UA9 on 80 m was a good catch. Bob Bell in Blyth, Northumberland. found an interesting AG5H but I suspect this is yet another strange US call. On 40 m 9 Y 4 NP was a new one for Bob. Bernard Hughes BRS25901 agrees it is about time he had a go for the RAE but. finds spare time hard to come by. However he seems to have done well on the bands with VP9JC, UM8MAW, 7X5AB and 8P6AH on 80 m , FH8CL, FO8DF, LU3ZY (S. Sandwich Is) on 20 m , and H44DX (QTH???), D4CBS, FP8GG and KA1NC on 10 m .

Ean Retief ZS1PR of Paarl, S. Africa, kindly wrote to say that the ZD9GI reported by Dave Greenhalgh (Dec

QUARTZ LCD

7 Function

QUARTZ LCD Alarm Time Zone Facility

SOLAR QUARTZ LCD Chronograph
6 digit, 11 function. Hours, mins., secs. $1 / 100,1 / 10$ secs., mins.
Split and lap modules. Auto calendar and back light. Powered from solar panel with battery back-up.
£15.95
M9
SEIKO Alarm Chrono
LCD, hours, mins., secs., day of week, month, day and date, 24 hour Alarm, 12 hour chronograph, 1/10th secs., and lap time. Back light, stainless steel, HARDLEX glass. List Price $£ 130.00$ METAC PRICE
£105.00

QUARTZ LCD
 Ladies Slim Bracelet

5 function.
Hours, mins., secs.,
day, date and back
light and auto
calendar.
Elegant metal
bracelet in silver or
gold.
State preference.
£15.95
Guaranteed same day
Features and Specification:
Hour/minute display. Large LED display with p.m. and alarm on indicator. 24 Hours alarm with
on/off control. Display flashing for power loss indication. Repeatable 9 minute snooze. Display bright/dim modes control. Size: $5.1^{\prime \prime} \times 3.93^{\prime \prime} \times$ $2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: $1.43 \mathrm{lbs}\{0.65 \mathrm{~kg}$)
£8.65
Guaranteed same
day despatch.

HOW TO ORDER Battery fitting service is available at our shops. All prices include VAT.

QUARTZ LCD
11 Function slim chrono
6 digit, 11 functions.
Hours, mins., secs., day
date, day of week.
$1 / 100$ th, $1 / 10$ th
10 X secs., mins. secs.,
OX secs., mins.
Split and lap modes.
Back-light, auto
calendar. Only 8 mm
thick.
Stainless steel bracelet

and back.
Adustable bracelet.
Metac Price
E12.65 Thousands sold!
Guaranteed same day despatch. M3
QUARTZ LCD
ALARM 6 Function
Hours, mins., secs. month, date, back light, 24 hour ALARM.
Adjustable stainless
steel bracelet.
Only 9mm thick.
£16.65

QUARTZ LCD Alarm Chrono with front alarm

Dual time.

Ten function, 6 digit.
Hours, mins., secs., date, day of week, stopwatch, split time, alarm, second watch (dual time), backlight.
$£ 29.65$

SEIKO Chronograph

LCD, hours, mins.,

M11

QUARTZ LCD
 Ladies 5 Function

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
5 function. Hours, mins., secs., day, date and back light and auto calendar.
Elegant metal
bracelet in silver or
gold.
State preference.
£9.95
Guaranteed same day despatch.

M15

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30 p for post and packing or the amount stated. We do not wait to clear your cheque before sending the goods so this will not delay delivery. All products carry 1 year guaranteee and full money back 10 day reassurance,

Trade enquiries: Send for a complete list of trade prices + minimum order value $£ 100$. Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd., 24 hour phone service at both shops: 01-723 4753 03272-76545.

CALLERS WELCOME
Shops open 9.30-6.00.

78) is intended to be a beacon station but is not operational yet, and is located on Gough Island. Ean says only other ZD9 is ZD9GH on Tristan da Cunha, op Arthur, around 14230 kHz from 1900 onwards.

In Stevenston, Ayrshire, Peter Ramsay has added a TS500 receiver to his AR88 and FRDX400 so he's all set up on the receiving side after he gets his RAE next May. However, a manual on the TS500 would not come amiss as he feels it needs aligning, so contact Peter at 79 Campbell Avenue, if you can help. Peter's catches included VP8PM, 9N1MM, XT2AV and HS1WR on 20 m , with KL7HJD and ZL4BO on the 15 m band. John and Steven Goodier sharing an FRG-7 and 30ft wire in Marple, near Stockport, Cheshire, were delighted to get A35RB on Tonga after much chasing around the band for the last couple of months, locating him on the P29 net on $14222 \mathrm{kHz} . \mathrm{J} \& \mathrm{~S}$ reckon the AG5H mentioned previously is on Guäm so let's hope I'm wrong in thinking he is in the States. They also reveal that H44DX, queried above, is in the Solomon Islands, another good catch indeed. J \& S seem to have been doing a round of the islands, a la Bill Rendell of Truro, with JW1BA (Svalbard), KC6GF (E. Caroline), VK2AGT (Lord Howe). VK2BVJ/VK9 (Norfolk), VK9XW (Christmas), VR1AB (Gilbert) not to mention 3D2UP (Fiji) and D68AD (?) (Comoros) all on 20 m s.s.b.

Bill Rendell, just mentioned, found a goodly collection on his ancient valved AR3 plus preselector which he seems to coax to perform like a full-blown communications receiver! EP2TY. KG4W and VP2LFZ on 80 m s.s.b. were coupled with D4CBS, DU9RG, EA9VO, KC6GF and XT2AV on 20 m while 15 m provided FG7BA, VP2FCW and VP2SZ, with VE8MA on Ellesmere Island reporting a temperature of minus $40^{\circ} \mathrm{C}$, so we should complain!

A late note from Bruce White of Perth, W. Australia, says the FRG-7 is very popular there and affectionately known as the "Frog". He'd like to see reviews of amateur equipment included in $P W$ from time-to-time so, Editor, please note. This is already in hand-watch future issues! Ed.

Old timers will be sorry to hear of the death of Bert Mathews G6QM of Cheltenham at the early age of 62 after a lifetime of amateur radio, having been active since the 30s. He had been an RSGB QSL Manager for many years, handling millions of cards on behalf of members. During WWII he was employed in a civilian capacity in a signals unit, and later worked for GCHQ in Cheltenham. He was a member of RAOTA and helped form the Cheltenham ARA.

Club Activity

Roger Wilson G8OOW of 112 Upgate, Louth, Lincs and friends are endeavouring to start a club in the area. Anyone caring to join in should contact Roger or ring Louth 2200 . Let us pray for better weather than that which we have been having for the North Midlands Mobile Rally on Sunday, April 29 at Drayton Manor Park, Tamworth, Staffs organised by the Midland ARS and Stoke-on-Trent ARS. Location is on A4091 and easy reach of M1, M5 and M6. Talk-in stations on 2 m and 70 cm . Details, free car stickers, etc., from Norman Gutteridge G8BHE, 68 Max Road, Quinton, Birmingham B32 1 LB or ring 021-422 9787.

Don't forget the Stevenage ARS meeting first and third Thursdays. 8pm at British Aerospace, Gunnels Wood Road, Stevenage. Herts. Sunday, April 22, sees the group visiting the NRSA radio and electronics show at Belle Vue, Manchester, while May 3 finds G4BWU talking on SSTV. Tuesday, April 10 means G8NOF talking to the Bury RS on Orbitting Test Satellites, with G8EUM dis-
coursing on how to modify Pye equipment on Tuesday, May 8. Alternate Tuesdays are informal meetings with club station G3BRS activity, etc. Contact: M. Bainbridge G4GSY, 7 Rothbury Close, Ainsworth Road, Bury, Lancs or ring 061-761 5083.

West Kent ARS meets Fridays with alternating formal and informal meetings but all are welcome at any time. April 27 is fixed for the AGM with May 11 deciding on who has won the club's construction contest this year. Member G8CDD keeps putting up challenges to members, backed by a small prize, the latest being the loudest noise produced by a circuit powered by a U2 cell! Contact: Sec Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent on 073256708.

New Sec of the Cheltenham ARA is Grant Cratchley who will be pleased to give you details of club meetings. Write to 47 Golden Miller Road, Prestbury, Cheltenham, Glos. or ring 43891. The Wirral and District AR Club has just celebrated its first birthday and elected Alan G3NPJ as publicity officer. Meetings second and fourth Wednesdays at 8 pm at the Sports Concourse, West Kirby. Contact: Sec Malcolm Mackintosh G8NMG on 051-334 1027 for details of meetings, visits, etc.

Tars Talk is the small but pleasant magazine of the Torbay ARS edited by F. Bolton G3VTQ. One recent article described means of adjusting the very popular $88 \mu \mathrm{H}$ toroids for use in audio filters. Potential members might like to meet the whole committee of TARS at one fell swoop at its AGM on April 28, at Bath Lane, rear of 94 Belgrave Road, Torquay. Sounds a bit cloak and daggerish!

I'm glad to report that the Wessex AR Group did decide to call itself the Bournemouth Radio Society at an EGM recently, Chairman, Roy Scott G2CZH, was so confident of success in changing the name that he was immediately able to present a suitably engraved gavel to President, Frank Hicks-Arnold G6MB! If this issue of $P W$ gets out on time you will not miss the auction sale of gear and equipment on April 6, if you don't know about it already. April 20 sees Jerry Todd G2KV holding forth with slides on the basic principles of radar. Meetings on Fridays in the Club Room of the Dolphin Hotel, Holdenhurst Road, Bournemouth or contact The Chairman, Roy Scott G2CZH, 17 Dreswick Close. Christchurch, Dorset or ring (02015) 77103.

Bournemouth Radio Society will sadly miss their $\mathrm{Sec} / \mathrm{Ed}$ Geoff Cole G4EMN, who died suddenly on Sunday 11 March.

Very important, don't forget, all logs, letters, copy. club news to reach me by 15 th of the month.

Log Extracts

P. Lucas:-80m JA3EMU 20m HM5MK SU1DT TU2HS VP2SAB 8P6JA
W. Rendell:-80m EP2TY KG4W TF5TP VP2LFZ 20m D4CBS DU9RG EA9VO KA1MI KC6GF KP6AZ M1D P29JS XT2AV 8R1X 9X5PM 15m EP2LI FG7BA VE8MA VP2FCW VP2SZ
J. \& S. Goodier:-20m A35RB AG5H C21AA H44DX JW1BA KA1MI KC6GF VK2AGT VK2BVJ/ VK9 VK9XW VR1AB 3D2UP $15 m$ D68AD HM6ZX 10m ZP9AC 5Z4PD
P. Ramsay:-20m VP8PM 9N1MM XT2AV VE8RCS HSIWR 15 m ZL4BO KL7HJD
B. Hughes:-80m VP9JC UM8MAW 7X5AB 8P6AH 20m A35BD FH8CL FO8DF LU3ZY 15m FB8XV JR6LQP 5W1XV 10m D68AD FP8GG H44DX
C. Palfreyman:-160m c.w. VO1HP W1BB K1PBW W4NVN 80m c.w. KP4A UA9CNF VE2EZU

All s.s.b. except where stated otherwise.

MEDIUM WAVE DX

by Charles Molloy G8BUS

"Why should the medium waves be inferior to all other bands?" asks K. Lewis of Pensilva in Cornwall, who is referring to the sensitivity values quoted in the manual of his Realistic DX160. An examination of the specification of many receivers will reveal a similar situation and the answer in some, though not every case, is that the receiver performance has been deliberately degraded on the medium waves. It seems that the m.w. band is added to some excellent short-wave receivers so that the user can tune to his local station when he is not actually DXing. After all, who wants full communications facilities on the medium waves?

Performance on the Medium Waves

Why is it necessary to downgrade performance and how is it done? One object is to decrease selectivity and hence improve audio quality. Since only one band is involved, the easiest place to do it is in the r.f. stages where different tuning inductors are switched in for each band. My BRT400 uses staggered tuning on the m.w. "The two r.f. stages are aligned 10 kHz on either side of the aerial tuning circuit" to quote the operating handbook. Unfortunately this has the effect of reducing receiver gain and sensitivity as well. Another method is to fit a damping resistor across one of the tuned circuits which reduces the Q and broadens the response. Receiver sensitivity is also reduced which may be an advantage if the receiver is liable to overloading on strong local signals.

Sensitivity

The ability to pick up weak signals is called sensitivity. A sensitive receiver will pick up more stations than a less sensitive one. How is it measured? By the smallest input, in microvolts, that will give a standard output, often 50 millivolts of audio. Signal-to-noise ratio has also to be taken into account as there is not much use hearing a weak station if it is drowned in noise. The signal-to-noise ratio (S to N) is actually measured as the ratio of $\mathrm{S}+\mathrm{N}$ to N but none-the-less it is known as the signal-to-noise ratio,

Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:
AMATEUR BANDS Eric Dowdeswall G4AR, Silver Firs, Leatherhead Road, Ashtead. Surrey KT21 2TW. Logs by bands, each in alphabetical order.
MEDIUM and SWBANDS Charles Molloy G8BUS, 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.
VHF BANDS Ron Ham BRS 15744 , Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.
a figure of 10 dB being normal. A sensitivity of $2 \mu \mathrm{~V}$ for a S to N ratio of 10 dB is good; $0.5 \mu \mathrm{~V}$ is exceptional; $100 \mu \mathrm{~V}$ is poor.

Look through the specification for "Sensitivity". It should be in the handbook or advertising literature. If the figure for the short waves is substantially better (lower) than for the medium waves then the receiver has probably had its performance degraded on the m.w. It is possible in some cases to counteract this and I have re-aligned my BRT400 without adverse results. It is not a good idea though to use a receiver in a way different to that intended by the designer, and there is also the guarantee to consider if the set is a new one. Some old receivers such as the CR100 outperform their modern counterparts on the medium waves because they have not been desensitised on this band.

Spain and the Geneva Plan

A list of the new frequency assignments in Spain and the Canary Islands is now available to DXers in return for unused Spanish postage stamps to the value of 25 pesetas or for two International Reply Coupons (available in main post offices). Write to Keith F. Hatcher, Duquesa de la Victoria 50bis, Logroño, Spain. His list is extracted from the "Bolitin Oficial del Estado" of 13 November last year, and it contains authorised frequencies and stations under the Geneva Plan though not all of them are actually operating at the moment. Medium wave DXers interested in Spanish DX should find this list of value.

Frequencies where chains of local outlets are to be found are $1134,1224,1314,1395,1413,1476,1485$, 1503,1584 and the new international common frequency 1602 kHz . There has been considerable change in the Canary Islands but the 200 kW Santa Cruz de Tenerife has only moved 1 kHz to 621 where it should not be too difficult to hear. An interesting move is EAJ50 Las Palmas which is now on 1008 kHz instead of 953 and it may be easier to hear on the new channel. EAJ46 in Ceuta is now on 1602 kHz and this could be quite a catch as Ceuta is a Spanish enclave on the North African coast and is regarded as a separate DX country! Ceuta incidentally is pronounced Thayootah.

The proposals for the long waves are worth comment. Madrid is allotted 191 kHz with a power of 1000 kW , while 227 kHz is shared between Barcelona 800 kW , Bilbao 400 kW , Linares 400 kW and Lugo 200 kW though none of these has appeared up to the time of writing. A long-wave loop will be of value on 227, to null out Poland.

UK Station List

The Twickenham DX Club have updated their "Broadcasting Stations of Great Britain" to take account of the reorganisation that took place on 23 November last year. The list includes m.w. and l.w. transmitters, including all those in synchronised networks, times of operation and postal addresses. Outlets for local BBC and Independent stations on v.h.f. are also covered. The list costs three 7p stamps in the UK or two IRCs from abroad and can be obtained from the TDXC, 13 Tennyson Avenue, Twickenham TW 1 4QX, England.

There has been a scarcity of information about the changes that occurred last November. The 1979 issue of the World Radio and TV Handbook should fill the gap but it is expected to cost $£ 8$ a copy which may put it beyond the reach of many DXers. DX clubs and some individuals have been compiling lists of their own. Any information about such lists, for inclusion in this column would be welcomed.

Readers' Letters

From Thurso in the north of Scotland comes a letter from David Stevenson who has been chasing local radio stations in the UK with his National Panasonic RF2200 and internal aerial. Stations heard included Radio Trent in Nottingham on 999 kHz at 0150 , Downtown Radio in Belfast on 1026 at 0130, Radio Manchester on 1458 at 2340 and Capital Radio in London on 1548 kHz . Mark Hattam prefers to do his local radio DXing during the hours of twilight in the morning or evening when European DX is lighter than at night, which is a point well worth noting. A portable receiver is ideal for hunting out local radio stations as many of them share the same frequency and the directional properties of the receiver's internal aerial can be utilised to null out QRM simply by rotating the whole receiver.

Radio Paradise in St Kitts on 1265 kHz is in the news again with a report from T. H. Lawrence of Leicester who used an ex-WD R107T receiver along with the G2DYM anti-TVI trap dipole to pull in this station at 0014, with news and soul music. The Morse signal on 930 kHz has been identified by Geoff Halligay who reports that "SW" is an aeronautical beacon located at Vykhma in Estonia. It is not a harmonic but does actually operate on 930 kHz which is very surprising as the medium wave band is supposed to be allocated exclusively for broadcasting. More QRM!

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

Last month congestion on the short-wave bands was referred to and suggestions were made that might ease the problem from the DXers' point of view. The total amount of "space" available on the seven main bands (49 to 13 m) is 1.85 MHz . Although this may seem a lot, only a fraction of it is available at any one time, perhaps only a quarter, because of the peculiarities of propagation. This amount of space is wholly inadequate for the amount of international broadcasting that takes place at the present time. As a result, a number of stations operate just outside the band edges.

For example, the 25 m band officially extends from 11700 to 11975 kHz giving a band 275 kHz wide but in practice broadcasting takes place between 11620 and 12100 kHz giving a range of 480 kHz . This is not illegal, as a number of readers have suggested, as the ITU regulations allow out-of-band broadcasting provided no interference is caused. A better solution would be to allocate a larger part of the spectrum to broadcasting and an international conference will have a look at this later in 1979.

World Administrative Radio Conference 1979

The WARC is to be held in Geneva next September. One of its tasks will be to have a look at the allocation of frequencies in the light of changes that have occurred since
the last conference some 20 years ago. There have been significant changes. A lot of commercial traffic has moved from radio to submarine cables or to satellite links, so additional space in the spectrum is available and some of it may be allocated to broadcasting. Developing countries who would like to enter international broadcasting have a hard task to find frequencies. A number of administrations, including the BBC, have prepared proposals for the WARC and it might be useful to have a look at some of the possibilities.
An obvious solution is to enlarge the existing bands well beyond even the unofficial limits. For example, double the size of each band. This would cause few problems with existing receivers. Another is to have additional bands between 25 m and 19 m or between 19 m and 16 m though these might be outside the range of some sets. Although these suggestions would reduce overcrowding they would do nothing to ease the problems of short distance reception. At my QTH Radio Sweden and Radio Netherland come in well on 49 metres during the day, but after dark reception deteriorates and a move to a lower frequency is then required. At the moment only the 75 m band is available which provides a mere 50 kHz between 3950 and 4000 kHz . This band is outside the range of most receivers.

Save 60 Metres

The main tropical band is 60 metres which extends from 4750 kHz to 5060 kHz , with a gap between 4995 and 5005 to leave space for frequency standard and time signal stations. One proposal to the WARC is that 60 metres should be allocated to broadcasting on a worldwide basis, a proposal which has generated some heat in the DXing world. A Belgian DXer has started "Operation SOS" to save 60 m while an enthusiast in the Faroe Islands hopes to contact tropical broadcasters and offer them "support".

Tropical band DXing has a large following and some of the most skilful people in the hobby operate in this area. One can understand the dismay that such a proposal arouses, but one has to be realistic about it. We live in a changing world and the changes confronting the DXer are ones he is unlikely to influence. There is already considerable QRM on 60 m from commercial stations and presumably this would reduce or be eliminated if the band becomes a worldwide one. We might even end up with a band something like the medium waves! I don't know whether this is something to look forward to or not. It is idle to speculate. Some of the proposals may not be adopted and current fears may therefore be groundless. The problems with overcrowding are so bad that some change is inevitable, change which might inject new life into the hobby of short-wave listening.

Reporting Codes

"Could you explain the meaning of the numbers designated in the SINPO code?" asks Robert Darwent of Sheffield, who is a newcomer to the hobby. This subject was fully covered in the April 1978 issue of $P W$ but for the benefit of those who have just taken up DXing, a short recap might be useful.

The simplest code is SIO where S stands for signal strength, I for interference (from other stations) and O for overall merit. The figures 1 to 5 denote the degree. For both S and $\mathrm{O}, 5$ means excellent, 4 good, 3 fair, 2 poor, 1 barely audible or unusable. The corresponding values for I are 5 nil, 4 slight, 3 moderate, 2 severe, 1 extreme. This is the code used in my logbook and it is adequate for most purposes.

SINPO and SINFO are just SIO plus additional letters which denote noise (N), propagation disturbance (P), and

Heathkit electronic test equipment course.

Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments
Heathkit car electrical
systems course.
Section 1. Electrical principles of the car Section 2. Starting system fundamentals. Section 3. Car charging systems.
Section 4. Accessories and body electrical. Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc. ... Send for your copy now.

There are Heathkit Electronics Centres 233 Tottenham Court Road, London (01-636 7349) Iron offer and at Bristol Road, Gloucester (0452 29451) FFEE
 Heathkit CI 1265 Digital Tach/Speedometer. VISA

Push-button digital readout. Displays engine speed/rpm. Accurate to 1 mph or rpm variations of 100 .

Northern Radio Societies Association

RADIO \& ELECTRONICS EXHIBITION BELLE VUE - MANCHESTER

SUNDAY 22nd APRIL 1979 doors open at 11 a.m.

* RADIO SOCIETIES STANDS
* AMATEUR COMPUTER CLUB STAND
* RSGB BOOKSTALL
* HOME OFFICE \& RAYNET EXHIBITS
- CONSTRUCTION CONTEST
* GRAND RAFFLE
* OVER 50 TRADE STANDS featuring Radio Equipment, Micro-Processors, Personal Computers and Components
\star AMPLE CAR PARKS \& FUNFAIR FOR THE FAMILY!

Talk-in for FM mobiles via GB3NRS and G8NRS/A on 145 MHz chs. S22 R2 \& R6 and on 433 MHz chs. SU8 RB4 \& RB14

Admission 20p inc. Raffle Ticket.

 Enter at rear of Belle Vue, opposite Main Car Park - off Hyde Road, A57

DIGITAL FREQUENCY COUNTER Model RQ-3 and its accessories offe you one of the most versatile combinations available. On its own the RQ-3 incorporates the following features: Mains operation - 40 MHz Counting 6 digit accuracy - 35 mV RMS sensitivity - Displays not only FREQUENCY (MHz), but PERIOD ($\mu \mathrm{S}$) and WAVELENGTH (Metres) as well.

Complete Kit £44.95 + 8\% VAT
RX DIGITAL READOUT Model RQ-30M. Small additional PCB enables you to modify the RQ-3 Counter to correct for any IF and give you a display of Rx tuning frequency. Makes your inaccurate tuning dial obsolete!

Complete Kit $\mathbf{f 9} \cdot 95+8 \%$ VAT
VHF PRESCALER Model RQ-10 Self-contained in its own case with its .own power supply. Extends the range of any Frequency Counter to beyond 300 MHz .

Complete Kit $£ 18.95+8 \%$ VAT
CRYSTAL CALIBRATOR Model RQ-1. Outputs on $1 \mathrm{MHz}, 100 \mathrm{kHz}$ and OkHz either CW or internally modulated with audible tone. Gives harmonics well into VHF.

Complete Kit only $\mathbf{£ 1 2 . 7 2 + 8 \%}$ VAT
BEGINNERS SHORT WAVE RADIO Model RQ-5. Sensitive little radio ideal for the budding Dx-er of any age. Reception from all over the world guaranteed. Kit includes a helpful guide to Dx-ing.

Complete Kit $\mathbf{£ 1 0} \mathbf{5 0}+\mathbf{1 2} \frac{1}{2} \%$ VAT
MORSE PRACTICE KIT Model RQ-7. £9.50 + 12 $\frac{1}{2} \%$ VAT
DX CLARIFIER Model RQ-9. Fantastically improves signal readability and quality. Rejects all types of interference. Complete Kit $\mathbf{£ 2 2 . 5 0 ~ + ~} \mathbf{1 2} \frac{1}{2} \%$ VAT

CWO please. All prices include postage to UK and EIRE. All our Kits are of highest quality and we offer a "Helping Hand" service to customers in difficulty. Send for details - postage appreciated, $9 p$ stamp
Rocquaine
electronics

Aldebaran, Le Coudre Rocquaine GUERNSEY C. 1

B:DOO WKCHANGY HINTHYD

NEW ELECTRONIC MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in. the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece. etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.

Projects:

V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star
Radio Transistor V.H.F. Earpiece Radio $\begin{aligned} & \text { One Transistor M.W. L.W. } \\ & \text { Radio }\end{aligned}$ Radio ぇ Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L.W. \star Four Transistor Push Puli Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star jiffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp Three Transistor Regenerative Radio \star Four Transistor M W L Wadio \star Dour Transistor M.W. L.W. and M.W. L.W. Trawler Barid RegeneraM.W. L.W. Trawler Band Regenerative Radio th Five Transiscor V.H.F. tice Oscillator \star Five Transistor $\stackrel{\text { tice }}{\text { Regenerative }}$ Short ${ }^{\star}$ Five Transistor \star Four Transistor and two Diodes
M.W. L.W. Loudspeaker Radio M.W. L.W. Loudspeaker
\star Seven Transistor M.W.L.W. Radio \star Seven Transistor M.W. L.W. Radio
with Loudspeaker Push Pull output \star One Transistor Home Broadcaster. $\mathbf{2 1 4 . 9 9}+\mathrm{P}$ \& $\mathrm{P} \boldsymbol{\mathrm { E }} \mathrm{I} \cdot 10$

V.H.F.

AIR
CONVERTER
KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts.
Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. All parts including case and plans.
24.95

PR P and
Ins. 60 p

ELECTRONIC CONSTRUCTION: KIT E.C.K. 2

Self Contained Multi-Band V.H.F. Receiver Kit. 8 transistors and 3 diodes. Push pull output. 3 in. loudspeaker, gain control, 7 section chromeplated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. service band, aircraft, D.H.F.
local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts

NEW MODEL R.K.1.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

£8.99 ${ }^{+}$90.

EDU-KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these projects without Soldering Iron or Solder * Crystal Radio Medium Wave Coverage-No Battery necessary * One Transistor Radio

* 2 Transistor Regenerative Radio * 3 Transistor Earpiece Radio Medium Wave Coverage
* 4 Transistor Medium Wave Loudspeaker Radio
\star Electronic Noise Generator
\star Electronic Metronome
* 4 Transistor Push/Pull Amplifier All parts including Loudspeaker. Earpiece, M.W. Ferrite Rod Aerial, Capacitors, Resistors, Transistors, etc. Complete kit of parts including
construction plans. construction plans.
$\mathbf{2 6 . 9 5}+\mathrm{P} \boldsymbol{8} \mathrm{P} \mathrm{P}$ an

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime}$ $\times 3^{\prime \prime}$ Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, easer and W.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band, Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chromeplated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. WaveChange and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery. Complete kit of parts including carrying strap. Building Instructions and operating Manuals. $614 \cdot 79+\underset{c \mid c}{P}$ \& 10
E.V. 6 PLUS ONE

Build this exciting new design. Now with 7 Transistors and 4 diodes. MW/LW. Powered by $9 V$ battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in. loudspeaker. Attractive case with red speaker grille. Size 9in. $\times 5 \frac{1}{4} \mathrm{in} . \times 2 \frac{3}{4} \mathrm{in}$. approx. All parts including Case and Plans
Total Building Costs:
$56.95+P$ \& P and
Ins. $90 p$
To: RADIO EXCHANGE LTD
6IA High Street, Bedford MK40 ISA
Tel.: 023452367
Callers side entrance "Lavells" Shop.
Open $10-1,2.30-4.30$ Mon.-Fri. 9.12 Sat
Reg. No. 788372

I enclose f............................for
Name
Address

PW579
fading (F), all being on a similar scale to I. Fading can also be measured as the number of fades per minute, though what use this information would be to anyone is not clear. The trouble with SINPO and SINFO is that they are too complicated and give rise to doubts in the mind of the DXer, judging by the number of readers who write to me about them. My advice is to forget all about SINPO/SINFO. Stick to SIO. It is simple, unambiguous and quite adequate for normal DXing.

31 Metre Band

When I first started DXing, 31 metres was my favourite band, mainly because good DX was to be found there during the evening which is a convenient time to tune around the short waves. There is some middle distance DX to be heard during the day though, so look for Greece on 9530 kHz , Switzerland on 9535 , Finland on 9559 , Italy on 9575, Vatican City 9645, Portugal on 9740 and Austria on 9770. DX to be found after dark includes Cairo on 9475 kHz , Turkey 9515, Qatar 9570, Japan 9585, Taiwan 9600, Chile 9630 and 9750, Baghdad 9758. Australia can be logged on 31 m at breakfast time. Listen on 9570 kHz between 0600 and 0900, reception being best at the start of this transmission.

Readers' Letters

The scale markings on the Lafayette HE30 receiver have been puzzling J Markham of Darlington. They are actually in MHz , even on the medium waves but only figures are indicated on the scale. Gerald Yates (Paignton) points out that it is easy to convert from MHz to metres. Divide 300 by the frequency in MHz to get the wavelength in metres and vice versa. To convert MHz to kHz multiply by 1000 .

Peter Smith (Fareham) and Bernard Hughes (Worcester) would like to hear Radio New Zealand. Try 6105 kHz at 0600 and 9620 a little later. RNZ has also been heard on 11800 at 2000 and on 15130 at 0630 but these frequencies may have changed recently. Has anyone up-to-date information on RNZ? Chris Howles asks if a loop aerial would work on 60 m . Only on ground wave signals, see $P W$ December 1978 issue. Brian Hall writes from Aberdeen to say that he has a liking for the older type of valve set (so have I) and he operates a Pye PE60 with an a.t.u. which he built recently from a kit of parts supplied by Codar. Bill Stevenson (Swinton) likes to listen to DX Juke Box from Radio Netherland but he finds reception from Holland rather difficult after dark. He has found the R Netherland relay in Madagascar on 11730 at 1830 with SIO 544 which provides the answer.

Radio Finland

Radio Finland is starting a series of programmes for the short-wave enthusiast entitled "World of Radio" and these will be aired fortnightly as part of the Sunday Best programme. Frequencies in use to Europe are 11755 and 15265 from 1300 to 1430 . The 11755 transmission is also on the air from 0800 to 0930 . Of particular interest is Short-wave Broadcasting on 22 April. Other subjects to be covered are Amateurs, Propagation, Reception. Full details of the programmes and any frequency changes can by had by writing to Radio Finland, Box 95, Helsinki 25, Finland.

by Ron Ham BRS15744

Despite the appalling weather, the winter of 1978/79 produced some goodies for us v.h.f. addicts: BBC television received in South Dakota, a trophy for a chairman, a 23 cm radio telescope from Henry Hatfield, pictures from the Chinese border, a super contact on 2 m and good prospects for the rest of the year.

Congratulations to Eric Letts G3RXJ, Chairman of the Mid-Sussex Amateur Radio Society, who was awarded the G5RV Trophy by the Society for his work in the field of microwaves. Eric's home-built gear for 23 cm has achieved contacts of more than 100 miles and, while experimenting with equipment for 3 cm and encouraging other members to do the same, he is formulating ideas for using s.s.b. for microwave communication. The Trophy was presented at the Society's AGM in January by their President, Louis Varney G5RV, who donated the award. Louis also gave a cup and a trophy to the RSGB who, periodically, present them to members for outstanding work in the field of v.h.f., u.h.f. and satellite communications.

Solar Activity

For some months, Cmdr Henry Hatfield, Sevenoaks, has been building a 1296 MHz solar radio telescope, to complement the existing 136 MHz instrument in his observatory. Henry's efforts were rewarded during the afternoon of February 12 when he recorded solar noise on his new machine, and proved it by alternating his $25-$ element, home-brew aerial between the "cold" sky and the "hot" sun. As this is new ground for amateur radio astronomers, none of us know how the sun behaves at 23 cm so we are keenly awaiting Henry's reports each time the sun is "active".

At 0915 on the 12 th , I heard a massive burst of solar noise cover several megahertz around the 6 m band on my R216, fed by a dipole. I was not surprised when later in the day the 2 m telescopes of John Smith, Rudgwick, Sussex, Henry Hatfield and myself were recording a mild noise storm, while at 60 MHz , the telescope run by the radio section of the South East Essex Astronomical Society recorded some of the bursts. Between 1245 and 1400 on the 6th we all recorded three large individual bursts of solar noise, Fig. 1, and two more were recorded by Henry and John, at 136 MHz , at 1004 and 1020 on the 10th.

We all recorded the 3.5 minute duration burst at 1256 on the 16 th which heralded the 4 -day period of solar activity which reached a peak on the 18 th. John Smith said it was the strongest he had recorded for three years and John Cooper G8NGO, Cowfold, Sussex reported $\mathrm{S} 9+$ background noise on 2 m when he pointed his beam toward the setting sun that afternoon.

The prolonged overcast skies of January and February prevented Henry from using his spectrohelioscope to any extent and no doubt the same applied to Neil Clarke, BRS 34306, Knottingley, West Yorks, who uses a table-top telescope to project the sun's image on to a card in a dark box, so that he can draw the visible sunspots. Small bursts

Fig. 1: Two of the solar bursts recorded by the author at 146 MHz on February 6
of solar radio noise were also recorded on most days from January 16 to 30 .

The 10 Metre Band

"Conditions have improved a lot since mid-January," writes Neil Clarke on February 13, "I am still hearing 3 B 8 MS on $28 \cdot 187 \mathrm{MHz}$ and good signals from A9XC, ZE2JV and 5B4CY on most days." Like Neil, I regularly listen on the International Beacon Project frequencies and between January 20 and February 20, I heard, almost daily, signals averaging 549 from the beacons in Bahrain, A9XC, Cyprus, 5B4CY, Germany, DL0IGI and occasionally Bermuda, VP9BA. Neil heard a new beacon, W6IRT, on 28.888 MHz , so your reports about this, or any of the IBP signals are always welcome: "Now the days are getting longer," says Neil, "it's nice to see 10 m opening earlier, around 0700, and staying open to "W" land till 1900 and closing about 2000 with PY and LU stations".

Alan Baker G4GNX, Newhaven, says: "It is often rewarding to look around 10 m at midnight," and John Branegan GM8OXQ, Saline, Fife, reports: "very consistent and surprising short skip" on several days in January and early February. Frank Luman, Glasgow, comments about the high level of 10 m s.s.b. activity on February 3, and adds: "I am now back from the US and found three letters awaiting me thanks to your mention of the club". Glad to be of service Frank, let's hope the Scottish VHF and SW DXers club continues to gain in strength.

While in New York on business, John Keegan is taking the opportunity to get some first hand information about 27 MHz Citizens' Band operation. Graham Lay, West Chiltington, Sussex, is surprised by the strength of the signals received on his AR88, from these tiny CB transmitters from both Europe and the American continent.

The Sweepers

Both Alan Baker and Neil Clarke have asked: "Have you heard the sweepers?"; these are signals which sound like a rough, a.c. modulated carrier, sweeping down in frequency, and are usually heard between 21 and 28 MHz . Neil has suggested that if my readers keep an ear out for these, note the date, time and prevailing band conditions and send the reports to him at 64, Mill View, Ferrybridge, Knottingley, W. Yorks, he will pass the information on to ZS6BT who requires it.

At 1458 on February 15, Alf Lee G4DQS, Brighton, learnt in a 10 m s.s.b. QSO with WA0QLP, South Dakota, that between 1500 and 1700 GMT on the 14 th he had received BBC TV sound on 41.5 MHz and vision on 45 MHz . Alan Baker was not a bit surprised when told about this event because, apart from 10 m being wide open on the 13 th and 14 th, 20 m was open to the USA until about 0300 .

Ian Rennison, Horsham, and myself received a mixture of pictures from eastern Europe and Russia on Channel R1, 49.75 MHz , during the early mornings of February 4 , 7,11 to 17 inc., and 20 , which all shows that the ionosphere was varying considerably. On most of these days many continental radio-telephone signals were heard between 40 and 50 MHz , and periodically Channel R1 sound signals were received on 56.25 MHz . At 0853 on the 7th, Frank Luman saw a weak test card on R1; on the 9th he positively identified a Russian test card and on the 10th, John Cowan, Glasgow, saw an announcer on R1 around 0820. Although John Branegan could not lock the R1 signals on the 4th, he counted eight separate pictures, overlapping via multipath reflections, between 0850 and 1015 on the 6th. At 0900 GMT on the 7th, both John and Roger Bunney, Southampton, caught a brief glimpse of a Russian test card with a clock which was indicating 1600 local time, suggesting that these pictures were coming from the Chinese border.

Two Metre Record Broken Twice

On hearing about some super DX, a delighted Constance Hall G8LY, Lee-on-Solent, prompted me to contact Norman Joly G3FNJ, ex SVIRX, Harrow, who said that during the disturbed conditions on the 13th a c.w. contact was made around 1800 on $144 \cdot 219 \mathrm{MHz}$, between SV1DH in Athens and ZS6DN in Pretoria, a distance of 7117 km and believed to be a world record. At 1823 on the 16th, SV1AB, just north of Athens, also established twoway contact with ZS6DN and increased the record to 7127 km . My congratulations to all three stations.

Satellites

John Branegan had seven QSOs through OSCAR 7B when it returned to life in early February, and has worked several new Italian stations via OSCAR 8J. Some visitors to John's shack have asked: "Why can we no longer hear OSCAR 8A and RS 1 ?" So he has been explaining how the ionosphere, which reflects long distance signals on 10 m down from its lower side, sends satellite down-link signals back into space from its upper side. In his first year as a GM8, John has received 115 QSL cards confirming satellite contacts in 20 countries, and has a further 15 countries still unconfirmed. His best confirmed DX so far is with WOSL in Missouri, a distance of 4000 miles.

Tropospheric

For most of the time between January 22 and February 16 the atmospheric pressure was below $30 \cdot 0$ in and offered little chance of any v.h.f. DX. However, this did not deter my readers from having a go and during the afternoon of January 31, Chris Gaston G8FBR, Hassocks, Sussex, heard an EI on 2 m . On February 4, Barry Ainsworth G4GPW, in nearby Sompting, heard a DB9 on 2 m and Alan Baker heard two French stations working through the Brighton repeater GB3SR, R3. Around 1900 on the Sth, Alan worked F6AID, Normandy, through GB3SR
and could also hear the French signal on the repeater input, 145.075 MHz . John Cooper has now installed a 14-element parabeam and is consistently monitoring the signals from the Cornish 2 m beacon, GB3CTC, and during the evening of February 15 he received signals from both 'CTC and the French beacon at Chartres, FX0THF, 144.89 MHz . Also on the 15 th , Roy Bannister G4GPX, Lancing, had a 2 m c.w. QSO with G4GXE in Stoke-onTrent and did the same with a DF2 during the morning of the 18 th.

New Callsigns

"I am no longer BRS39756", writes David Wakefield, Worthing: "I now have the callsign G8RVK, and after being on the air for only 13 days I have already had 115 QSOs with a total of 45 different stations including Dermot Cronin G4GRO, on the Royal Sovereign Light". Well done David, it is with your sort of enthusiasm that radio amateurs have pioneered their way through the radio frequency spectrum. I also know that David has been promoted to Sergeant in the Worthing, 45F Squadron, ATC, and although his new duties prevent him from operating the Squadron's transmitter as often as he used to, he makes up for it at home, on 2 m , with a Pye Bantam into a Slim Jim or an 8 -element beam. Ern Hoare G8BDJ is now G3RZD, his old /T call, and Alec Painter, formerly G8EAQ is now G4HUJ.

From Lowdham, Notts, 11-year-old Stuart Hardy says that his present receiver finishes at 18 MHz and hopes one day to build the $P W 2 \mathrm{~m}$ converter. Iain Muir and his brother in Blantyre, near Glasgow, use an FRG-7 and are interested in v.h.f. TV DX.

New Repeater Group

The Mendip Repeater Group was formed on 4 October 1978, and their initial meeting was attended by 28 local amateurs who felt there is a need to fill in the 2 m repeater coverage area between GB3BC, SN and NC. At present they have 70 paid-up members, the equipment is under construction and they hope to be operational by late 1979 with the callsign GB3WR on R0. Readers interested should contact the group's secretary, Barrie Stevens G8KKA, QTHR

PLEASE MENTION

PRACTICAL WIRELESS

WHEN REPLYING

TO ADVERTISEMENTS

The best things come in little packages?

Are you shopping for Antennas \& Receivers?

The JOYSTICK VFA gives you a six amateur band or continuous tuning ($0.5-30 \mathrm{MHz}$) effective ground plane, efficient, substantially harmonic free, space saving antenna. Proven performance, testimonials world-wide bulge in our files!

IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLDWIDE AND IN GOVERNMENT COMMUNICATION

JOYSTICK ANTENNAS

SYSTEM "A" $\quad \mathbf{4 1 . 0 0}$
200 w. p.e.p. OR for the SWL
SYSTEM "J"
£47.95
500 w. p.e.p. (Improved ' \mathbf{Q} ' on receive)

"'PACKAGE DEALS"
 COMPLETE RADIO STATIONS FOR ANY LOCATION

All packages include the JOYSTICK VFA (System " A "') 8ft feeder, all necessary cables, matching communication headphones. Delivery Sacuricor our risk. ASSEMBLED IN SECONDS. You SAVE f14.15 on each PACKAGE DEAL!

PACKAGE No. 1. Features R. 300 Rx.	£222.00
PACKAGE No. 2. Features FRG	£237.45
PACKAGE No. 3. Features SRX30 Rx.	£212.45
PACKAGE No. 4. Our "Rolls"-Rx. FRG7000,	f402.00

RECEIVERS ONLY			
R.300	£184.50	FRG7	£199.95
SRX 30	£174.95	FRG 7000 $£ 364.50$	

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

or write for details, send 9p stamp
G3CED
 G3VFA 5, Patridge House, Prospect Road, Broadstairs, CT10-1 LD. (Callers by appointment).

EDROWAEOMNE Electronics yout sount dest commeetion it he werll of componerents

Dept PW1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN

TELEPHONE: 01-883 3705

Low Power Schottky and TLL

CMOS

VAT. Inclusive prieses * 8% others 12.5% Export Customers deduct VAT $2 / 27$ from *1.9 from oihers
Postage and Packıng 25 p. Trade and Export Inquiries most Welcome. Hours 9.00am--5.00pm Now available our ORDER-RING line, just phone your order through with your Access or barclaycard
the order is received by 300 pm the components will be despatched the same day (min tel order $\mathrm{f5} 5 \mathrm{00}$)

BITS and PIECES
DIL (Texas) Static RAM's

| Regulators | Linear I.C's |
| :--- | :--- | :--- |

vies 500 mA
8 v .12 v .15 v. LM380
LM381 iM3900
LM3909
SN7600 N7600in
N76003N
N76013N SN7E02N TCAS4
ZN4 14
ZN4 24 2N45
2N
2N (A116E 675*

CD4011 7 for f1.00*

3 for f 2.50
FIL220 for $\mathrm{F1.00}$ *

\star BARGAIN BUYS from

Tel: (0703) 772501/783740

SN76110 Stereo decoder 75p; 25/£15

 $100 / £ 45$.BC184 Preformed for TO5 spacing 100/£4.50 1000/£30.
BC213L straight feads $100 / £ 51000 / £ 33$. 2N5060 0.8A SCR 30V. Ig 200uA 10/E2 100/£15 1000/£120.
1 N4 148 . bandoliered $1000 / £ 15$ $2500 / \mathbf{£ 3 2} 10,000 / \mathbf{£ 9 0}$. Loose, boxes of 10k/£75.
741 8DIL $10 / £ 1.80100 / £ 14.50$.
555 8DIL 10/£2.40 100/£19.50.
1N4003 100/f2.90 1000/£24.
1N4007 100/£4.90 1000/£44.
Electrolytics: 10 u 40 V PC mntg $25 / \mathbf{E t} \mathbf{2 5}$ 100/£3: $4.7 \mathrm{u} / 63 \mathrm{~V}$ V.PC mntg. $1 \mathrm{u} / 63 \mathrm{~V}$ H.PC mntg same price.
$1250 \mathrm{u} / 25 \mathrm{~V}$ can $10 / \mathbf{1} 1.60100 / \mathrm{f10}$. 1500u/40V can 10/£2.20 100/£15. $800 \mathrm{u} / 250 \mathrm{~V}$ can $10 / \mathbf{f 5} \mathbf{5 0} 100 / \mathbf{4} 4$ $400 \mathrm{u} / 400 \mathrm{~V}$ can $10 / \mathbf{\not 又 8} 100 / \mathbf{£ 5 6}$
$200 \mathrm{u} / 350 \mathrm{~V} \cdot 100+100+50 / 3$ $200 \mathrm{u} / 350 \mathrm{~V} .100+100+50 / 300 \mathrm{~V}$ lall in one can) 10/£5 100/£36. Pots $-10 x / \mathbf{l n}$ std bush $\&$ spi
$10 / £ 1100 / \mathbf{7 5 0} 1000 / £ 50$.
10/£1 100/£7.50 1000/£50. Slider 1.8 k lin 60 mm long prices as above. $18 \times 13 \times 17 \mathrm{~mm} 0.125^{n}$ spindla \min type plied with smart knob 40p 10/£3.50 100/ E30.
Compression trimmer, $10-100 \mathrm{pF}$ to for £1-20 100/£8-50.
Resistors - $\frac{1}{4} \mathrm{~W} 5 \%$ carbon film, these values only: 220 R 1 k 3 kg 4 k 733 k 47 k
220 k 18k 330 k 39 k All $1000 / \mathrm{fa}$ (min qty of one value) or $£ 35$ per 10,000 any mix.

NIXIE TUBES

TT type GNP7AH Supplied with data 60p each
7 -seg display, wire ended tube NEC type $08012 \frac{1}{2}^{n}$ high, with data 65 p. -seg display. (as above) Futaba type DG$10010 \cdot 3^{\prime \prime}$ char. 70p with data.

Audible Warning device - solid state circuit drives high efficiency transducer to give high output. Voltage req'd 6-18V. Can also be driven direct from TTL or CMOS.
 VU meters - 2 meters $40 \times 40 \mathrm{~mm}$ driver board supplied with full data and circuit $£ \mathbf{£ 3} \mathbf{5 0}$.

OSCILLOSCOPES

We have available from stock the following SCOPEX models: 4D10A - DC-10MHz: 1OmV sensitivity, Stab Power supplies; ual beam, 3 accura. Excellent value at $£ 214$ inc VAT and Carr.
4S6-DC-6MHz: 10 mV sensitivity. Ideal portable scope. Solid state circuitry. All for

RESISTOR PACK

Carbon Film 5\% mostly $\frac{1}{2} \mathrm{~W}$, few $\frac{1}{2} \mathrm{~W}$ resistors. Brand new, but have preformed leads. ideal for PC mntg. Wide range of mixed popular values at the unrepeatable price of $\mathbf{£ 2 . 5 0}$ per 1000; $\mathbf{£ 1 1}$ per 5000 .

1979 CATALOGUE

64 big pages with 50p discount vouchers + qty prices for bulk buyers + reply paid envelope-All this for just 45 p inc. post.

Relays, push button banks and variable caps: Switches. component packs etc, etc, a! In our latest Bargain List - send SAE for your free copy.

Prices in this ad include VAT and are valid until 31.5.79. Add 25p UK/BFPO postage. We buy surplus electronic components for cash.

STERNWAY ELECTRICAL LIMITED

3 BRIDE COURT, LONDON EC4Y 8DU (OFF FLEET STREET) 013538530

SPECIAL OFFERS:-
555 28peach or 10 for $\mathbf{£ 2} 10$. N3
LM01 35 p each or 10 for $£ 2.50$ LM301AN 35 p each or 10 for $£ 2.50$. 74125 peach or 10 for $£ 2.00$.
Above prices include V:A.T., please add 40p post and packing for orders under f 10
$2 \frac{1}{2}{ }^{\prime \prime} 8$ ohm, $2 \frac{1_{2}^{\prime \prime}}{2} 25$ ohm, $3^{\prime \prime} 8$ ohm, $3^{\prime \prime} 35 \mathrm{ohm}, 3 \frac{1}{2}^{\prime \prime} 16$ ohm, $3 \frac{1^{\prime \prime}}{2} 80$ ohm, $5^{\prime \prime} 5$ ohm, all at RESISTANCE SUBSTITUTION BOXES:5 ohms to 1 megisc provides close rolerance substitution of 36 preferred value resistors from $\mathbf{5} .95$ sen Similar to resistance box, covering 0001 to $\cdot 22$ mfd $\mathbf{f 3 . 9 5}$ BOXES:PLEASE SEND S.A.E. FOR SPECIAL OFFER LISTS

EVERYBODY'S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue. it's the most comprehensive components catalogue you can get. 128 pages, about 2,500 items listed, and profusely illustrated. Now only $£ 1.25$ with a free bargain list. Send your cheque or postal order now.

HOME RADIO
COMPONENTS LTD. Dept. PW, 234 London Road Mitcham, Surrey CR4 3HD

1 RF040

MW/LW/FM/MPX varicap tuned RF board as per 78 Nov/Dec PW Dual gate MOSFET front end. $2 \times 1 F$ gain stages 3189 Deviation mute, interstation mute, MPX filters. STab PSU $1 \mu \mathrm{~V}$ sensitivity and 75 dB S/N ratio. AM Section also varicap tuned HA1197 excellent performance. Special price $\mathbf{£ 2 8 . 9 5}$

2 Surplus RF Board 020

Complete MW/LW/FM/MPX Tuner uses 3 stage FET front end 2 ceramic filters 3089 E 1310 Decoder. AM section built around $3132 \mathrm{E}, 2$ stage tuning comes complete with 4 way switch - ferrite rod aerial - $£ 9.99$

3 IF15

Matching IF Strip double conversion $10.7 \mathrm{MHz} / 470 \mathrm{kHz}$ AM/NB FM excellent performance $\mathbf{£ 1 2 . 9 5}$

4 IF20 Multimode IF Strip

Switched AM/NB FM/SSB/CW. $10 \cdot 7 \mathrm{MHz}$ input gain 90dB. Typical sensitivity 10 uV . Dual Conversion, will form the basis of a good communications receiver. Selectivity provided by filters at 10.7 and 455kHz. £22.95

5 TV05 - Medium Wave DX Front End Convertor
Uses Up Conversion Principle to eliminate images. Comprising of an ultra low drift oscillator and Mosfet Front End for wide dynamic range. Freq. range $520 \mathrm{kHz}-1600 \mathrm{kHz}$. Triple Tuning A.G.C. Range 50dB, gain 30 dB . Output $10 \cdot 7 \mathrm{MHz}$ when used with an IF15 or IF20, high gain IF strip a sensitivity of $1 . \mathrm{OuV}$ for $15 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ will be achieved. $\mathbf{£ 1 3 . 2 5}$

6 VT06 25-30M Hz Front End Convertor

Tuneable over whole range uses Dual gate Mosfets. Covers European/American CB frequencies and Amateur 10 metre band can be used as a tuneable IF for many 2 metre convertors. Low noise high performance. Especially designed to go with the IF15 and IF20 but compatible with any communications receivers covering 10.7 MHz . $\mathbf{£ 1 3 . 2 5}$

7 VT07

Tuneable 2 metre front end convertor. Covers $142-150 \mathrm{MHz}$. Three stage tuning uses bipolar devices for low current consumption can be battery powered for 2 metre direction finding or portable use. Ideal basis for 2 metre monitor. Receiver can be used with IF15, IF20 or comms. rx. Output $10.7 \mathrm{MHz} \mathbf{£ 9 . 9 5}$
Housed in aluminium sliding case,

8 VTO1

$108-150 \mathrm{MHz}$ MOSFET front end 26 dB gain $10 \cdot 7 \mathrm{MHz} 1 \mathrm{~F}$ output. Covers 2 metres. Amateurs. Aircraft etc. $\mathbf{£ 7 . 9 9}$
Varicap Tuner.

9 AMP 020

Stereo power amp 30W RMS per channel. Class ABI TIP 34AxTIP 33A. 16 Transistor circuit Fre resp $15 \mathrm{~Hz}-18 \mathrm{kHz}-\mathbf{1 d B}$. $\mathbf{£ 7 . 9 9}$

10 Matching HiFi Preamplifier

Four rotary controls - Vol, Bal, Treb, Bass.
Treble $\pm 14 \mathrm{~dB}$. Bass $\pm 14 \mathrm{~dB}$ facility
for loudness control. $\mathbf{£ 6 . 9 9}$

Electronics. Make a job of it

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television: Transistors: Radar: Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

NOTICE TO READERS

When replying to Classified Advertisements please ensure
(A) That you have clearly stated your require ments.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay

Receivers and Components

BRAND NEW COMPONENTS BY RETURN

 $\begin{array}{ccccc}\text { Subminitature } & \text { bead } \\ 0.1, & 0.22, & 0.47,1.0 & \text { tantalum } \\ 35 \mathrm{~V}, 4.7 & \text { electrolytics. } & 6.3 \mathrm{~V}-8 \mathrm{sp} .\end{array}$

 .68 to 11 . $10-14 \mathrm{p} .15$. 15 20p. 2.2 p. 24 p . Mylar (Polyester) Fim 100 V , Vertical Mtg.
$.001,002,005-3 \frac{1}{2} \mathrm{p}$. $01,02-4 \frac{1}{2} \mathrm{p}$. $04,05-5 \frac{1}{2} \mathrm{p}$. Miniature Film Resistors Highstab. E12 5\%
 1.000 watt 10Ω to $10 \mathrm{M} \Omega$

1N4148-2p, 1 N4002-4p, 1N4006-6p, 1 N4007-7p ${ }_{8}^{\mathrm{BC} 107 / 8 / 9,} \mathrm{BC} 147 / 8 / 9,8 \mathrm{C} 157 / 8 / 9$, BF194 \& 7 - 9 pp . Pin Di i.cs 741 s-18p. $555 \mathrm{~s}-24 \mathrm{p}$ 20 mm . fuses $15,25,5,1.0,20,3.0$ \& $\begin{aligned} & 5 \mathrm{~A}-3 \mathrm{p} \\ & 20 \mathrm{~mm} \text {. } \\ & \text { fuseholders }\end{aligned}$ P.C. or Chassis Mtg. 5 . Post 10p (Free over £4). Prices VAT inclusive

THE C. R. SUPPLY CO.
127. Chesterfiedd Road, Sheffield S8 DRN

1920 to 1950
 Receivers, valves, components, service data, historica research books, magazines, repairs and restorations. A com plete service for the collector and enthusiast of vintag $\stackrel{\text { radio. }}{\text { S.a.e. }}$
 S.a.e. with enquiries and for monthly newshee THE VINTAGE WIRELESS COMPANY, 64, Broad Street, Staple Hill, Bristol BS16 5NL. Tel, Bristo 565472

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

RIBBON MICROPHONES with 4/8 Poleswitch $95 p$; Microswitches, Capacitors, Receiver and Microphone Capsules 10p each; Bakelite Telephones £2.95; Handsets 50p; Magneto Generators $£ 1.75$. P.\&P. £1.50. CONVERSATION PIECES, 55 Swindon Road, Cheltenham. (35707).

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976 . Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.
COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering,
West Wittering 2023 (STD Code 024366)

conditions of acceptance OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

, Sleep, snopze and alarm output. With data only $\mathbf{£ 6 . 5 0}$.
Catalogue number 205 .
HEAT SINKS Two types available. Ex-equipment but in excellent condition. Most still contain a power
transistor (condition unknown). Xmas tree type transistor (condition unknown). Xmas, tree type
$(92 \times 66 \times 35 \mathrm{~mm})$ Catalogue number $705,20 \mathrm{peach}$. $9 \times 66 \times 3 \mathrm{~mm}$, Catalogue number $705,20 \mathrm{p}$ each.
Rectangular type $1130 \times 63 \times 32 \mathrm{~mm})$, Catalogue number
$706,30 \mathrm{p}$ each. Due to the weight of these 706, 30 p each. Due to the weight of thesi items,
please ADD EXTRA 25 P PER HEAT SINK for post and packing.
5 DIGIT MICRO L.E.D. DISPLAY Built on top of a 16 pin dual in line package this 7 segment display has 5
bright $0.09^{\prime \prime}$ high digits. Tersific value for only 75 . bright $0.09^{\prime \prime}$ high digits. Terrific value for only 75p.
Catalogue number 308 .
DIGITAL MULTIMER CHIP This MM5330 d.v.m. chip can be used to build a high accuracy d.v.m. or panel meter. Has auto polarity and over-range indication. Supplied with data and circuit. Requires
some additional circuitry. Only $£ 3.95$. Catalogue some additio
6 DIGIT L.E.D. DISPLAY A common cathode 6 digit 7 segment L.E.D. display from Texas Instruments. Multiplexed with built in bubble magnifiers. Digit height
$0.1^{\prime \prime}$. $\mathbf{1 1 . 0 0}$. Catalogue number $\mathbf{3 0}$. $0 \cdot 1^{\prime \prime}$. £1-00. Catalogue number 306 .
DEFECTIVE CALCULATORS A production line reject calculator with lots of accessible goodies inside.
Detachable keyboard, display, case and PCB with approx. 25 transistors and 2 calculator chips. No wuth much
wrong with some we tested. A bargain at oniy $£ 2.50$. wrong with some we tested. A bargain at oniy $£ 2.50$.
Catalogue number 104 .
CALCULATOR TOPS The upper half of two hand held calculator casas with integral keyboard. Ex-equipment but believed to be o.k. Only 50 p the pair. Catalogue number 105 .

refund.
Postage and Packing please add 25p

CODESPEED, P.O. Box 23, 34 Seafield Road, Copnor, Portsmouth, Hants., PO3 5BJ 00000000000

Radio Receivers

MULTIBAND RADIOS. 12 Band, - UHF (430/470). Aircraft. Marine. SW1/4. LPSB. HPSB. MW. LW. FM. RF. BFO. $£ 175$. GRUNDIG ' 3000 - $-£ 350$. WORLDSTAR Aircraft. Marine. Public. FM. MW. SW. LW. £36. LANGTONS, High Street, Rocester. Staffordshire. SAE Lists. Tel:0889 590388.

Aerials

SHORT WAVE LISTENERS Guide to Aerials 50p, Indoor Aerials $£ 1$, Both $£ 1 \cdot 25$. H.F. Telecommunications (UK) Ltd., Uplowman, Tiverton, Devon.

Tapes

SUPER SOUND OFFER. 9 p stamp brings you our new list of stereo cassettes \& C60 cassettes. A. W. \& J. M.
West, 56 Frankwell Drive, Coventry, CV22FB. (PW).

Service Sheets

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc., with free fault-finding guide, from 50 p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO 47 Bohemia Road, St. Leonards, Sussex

LARGE SUPPLIER OF SERVICE SHEETS

 and Colour Manuals, TV Mono Radios, Tuners, Tape Recorders, Record Players, Transistors, Stereograms, all at 75 p each + S.A.E except colour N and Car Radios. State if Circevit will do, if sheets are not in stock. All TV Sheets are full lengths 24×12, not in Bits \& Pieces. Free Fault Finding Chart or TV Catalogue with order.> C. CARANNA (Mail Order)
> 71, Beaufort Park, London, NW11 6BX $01-4584882$

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Servic Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS, Radio, TV etc., 10,000 models. Catalogue 24 p, plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street, Preston PRI 7HP.

For Sale

OFFERS invited for AVO MK7 and AVO MK8 or ex change both for oscilloscope Tel: Rossendale 3995 .

HEATH 5MHz IO-4540 Scope $£ 95$. Eddystone 730/4 £90. TE20D 120 KHz to 130 MHz Signal Generator $£ 25$. Evenings 021-3084764.G3BHT.

SEEN WHISTONS CAT? 5000 odds and ends Mechanical/Electrical Cat Free. WHISTON, (Dept. PW), New Mills, Stockport.

EARLY RADIO'S, valves components for sale valves from 1910. Camberley (0276) 29460 Anytime.

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

OSCILLOSCOPE Solartron AD557 immac. Condition all leads, manual bargain £50. Tel: Aylesbury 85178.

INTRUDER ALARM SUPPLIES.- Magnetic contacts Flush 70p, Surface 90 p , pressure mats $£ 1.70$. C.W.O. postage 50 p extra. E.A.S.S., 'Sandhamn' High Easter, Essex.

DIGITAL MULTIMETER cost about $£ 80$ for $£ 60.4$ Riversley Road, Gloucester.

Record Accessories

STYLI for Hi-Fi. Music Centres. III. List free for S.A.E. also cartridges, leads, accessories. Details-FELSTEAD ELECTRONICS (PW), Longley Lane, Gatley, Cheadle, Ches. SK 8 4EE

Ladders

LADDERS varnished $22^{\prime \prime}$ extd. $£ 30$. Carriage $£ 2.80$. Leafiet. Also Alloy ext. up to $62 \frac{1}{2} \mathrm{ft}$. LADDER CENTRE (WLS3), Halesfield (1), Telford. Tel: 586644.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - Offer by return -, WALTONS, 55A Worcester Street, Wolverhampton.

WANTED: RACAL RA 137 L.F. Converter in first class condition. Ziedainis, 20 Hall Royd, Shipley, West Yorkshire.

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8JZ.

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. G277 Intertext Houte, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. G277 Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours) State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. G277 Intertext House, London SW8 4UJ Tel. 01-622 911 (all hours)

State if under 18

Books and Publications

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $£ 4.00$ plus 30 p P\&P. UK. CWO, to INDUSTRIAL SUPPLIES, 102, Parrswood Rd., Withington, Manchester 20, Dept. PW.
RADIDBCIKGEMVIC: WORLD RADIO TV HANDBOOK 1979 Edition. $\because \therefore . \quad$ £9-25
Radio Stations Guide
long distance Television Radia Stations Guide.
Long distance Television Reception Jor the Enchusiast.
Pop
Poppolar Electronic Projects
Eleetronie Proiects for Bes
Electronic Proiects for Beginners.
Mobile Discotheque Handbook.
Radio Circuits using IC.
Projets in Opto-Electron
Proiects in Opto-Electronics
How to make Walkie-Talkies
Radio Antenna H'book for Lonz Distance Recention
How to build your own Metza Mreasure Locators
How to build your own Metal \& Treasure Locate
How to build Advanced Short Wave Receivers.
Solid Scate Shors Wave Receivers for Beginners

COMPREHENSIVE TV REPAIR INSTRUCTIONS for your set $£ 5.00$ with circuit (if requested). Free catalogue unique TV/other publications. AUSE (PW), 76 Church Street, Larkhall, Lanarkshire ML9 1HE.

Build your own
 P.A., GROUP \& DISCO SPEAKERS
 Save money with this practical guide. Plans for 17 different designs, line source, $1 . B . "$ Horn and Reflex types, for drive units. $\mathbf{£} \mathbf{3 . 9 5}$ post free ($\$ 8$ overseas).
 THE INFRA-BASS LDUDSPEAKER
 ffuli constructional details for versions using $15^{*}, 12^{n}$ and $10^{\prime \prime}$ drive units.) $\mathbf{~} \mathbf{2 . 9 6}$ post free ($\$ 6$ overseas) THE DALESFOAD SPEAKER BOOK by R. F. C. Stephens
 This book is a must for the keen home constructor. Latest technology DiY designs. Plans for 1,8.. and Reflex designs for 0-100 watts. Also unusual centre-bass system. $\mathbf{e 2 - 2 0}$ post free (\$5 overseas).

VAN KAREN PUBLISHING
 5 SWAN STREET, WILM8LOW, CHESHIRE

Miscellaneous

THE SCIENTIFIC WIRE COMPANY

PO Box 30, London E. 4
Reg. Office 22 Coningshy Gdn
ENAMELLED COPPER WIRE

SWG	1 lb	8 oz	4 oz	2 oz
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30

SILVER PLATED COPPER WIRE

14 \& 16	4.50	2.25	1.44	. 90
20 \& 22	5.00	2.85	1.74	1.06
24 \& 26	5.70	3.31	2.00	1.22
28 \& 30	6.67	3.86	2.35	1.44
Prices include P \& P and VAT SAE brings list of copper \& resistance Wires Dealer Enquiries Invited				

BUILD you own 771B type Metal Detector, details SAE 117 Horton Road, Brighton, BN1 7EG.

RECHARGEABLE
 BATTERIES

TRADE ENQUIRIES WELCOME

full range available. Sae for lists. $\mathbf{f 1 . 2 5}$ fo Booklet "Nickel Cadmium Power" plus Catalogue. Write or call, Sandwell Plant Ltd, 2 Union Drive, BOLDMERE
SUTOON COLDFIEID WEST SUTTON COLDFIELD, WEST MIDLANDS. 0213549764 or see them at TLC, 32 Craven Street, Charing Cross,
London WC2:

AERIAL BOOSTERS Improve weak VHF Radio and Television reception, price $£ 5.00$ S.A.E. for Leafiets ELECTRONIC MAILORDER LTD., Ramsbottom, Bury, Lancashire BL0 9AG.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for 'fast charge' HP7 (AA) £1.13,
SUB C $£ 1.47, \mathrm{HP}^{2} 11$ (C) $£ 2.15, \mathrm{HP} 2$ (D) $£ 3.27, \mathrm{PP} 3$ $\mathbf{£ 4 . 0 9}$ (PP3 not suitable for fast charge), PP3 charger £5.31. Alt above Nickel Cadmium batteries are guaranteed
'EVER READY' full spec, and are supplied complete with EVER READY ful spec, and are supplied complete with
solder tags (except PP3). Just in stock-New rechargeable sealed lead acid maintenance free batteries suitable for burglar alarms etc., 1.2 amp hr . 6 v . $\mathbf{£ 4 - 4 0} 6 \mathrm{amp} \mathrm{hr}$. 6 v .
b. 25.65

Quantity prices available on request. Date and charging circuits free on request with orders over f 10 othervise 30 p post and handling (specify battery type), all prices include
VAT. Please add $10 \% \mathrm{P}$ \& on orders under $£ 10.5 \%$ over 10.

Cheques, postal orders, mail order to: SOLID STATE
SECURITY DEPT. PW., 10, Bradshaw Lane, Parbold, Wigan, Lancs. 0257-4726.

PW October issue 2m MOSFET CONVERTER units from the author G4CFY. Kit of parts for complete PCB £8.50. Ready built and aligned units boxed $\mathbf{£ 1 7 . 0 0}$. Parts available separately, 38.6667 Mhz Xtal $£ 2.75$. PCB $£ 1.85$

1750 Tone Burst Board. Tested and Aligned 1.4 in sq. $£ 3.50$
© SPECTRUM COMMUNICATIONS
12 Weatherbury Way, Dorchester, Dorset DT1 2 EF.
Prices inclusive of P. \& P.
C.B. RADIO: British Campaign for public Two-Way Radio. Citizens' Band Association. Membership £1.50. 16 Church Road, St. Marks, Cheltenham, Glos.

GUITAR/PA

MUSIC AMPLIFIER

100 Watt with superb treble bass overdrive 12 months guarantee, unbeatable at $£ 42 ; 80$ watt $£ \mathbf{~} \mathbf{3 7} ; 200$ watt $£ 58$; 100 watt twin channel sep treble/bass per channei $£ 55 ; 60$ watt £48; 200 watt $\mathbf{£ 7 2 ; 1 0 0}$ watt four channel sep watt £32; 200 channel $£ 75 ; 200$ watt $\mathbf{4 9 2}$; slaves 100
 boosters $£ 14 ; 100$ watt combo' superb sound overdrive, boosters $£ 14 ; 100$ watt combo superb sound overdrive.
sturdy construction castors, unbeatable $£ 89 ;$ twin channel sturdy construction castors, unbeatable $£ 89$; twin channel
£99; Bass combo f99; speakers 15 in. 100 watt $£ 35$; 12 in 100 watt £22.50; 60 watt $£ 14.50$. Send Cheque or P.O. to:

WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave., Dukinfield, Cheshire.
Tel 061-344 5007 or 061-308 2064

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 25, St. Wilfreds, Foundry Lane, Halton, Lancaster LA 6LT.

RARE DX UNDER QRM?

DIG IT OUT from tiring whistles and cw with a Tunable Audio Notch Filter, speaker amplifier, £8.90.
4 GONE? 200 KHz to Med. Wave Converter
inductive (place near x) and coax outputs, E9.70.
MISSING RARE DX? Get SPOT-ON with a Crystal
Calibrator, $\{\mathrm{MHz}, 100,25 \mathrm{KHz}$ markers, $£ 13.80$.
$.10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and variable sine or square
wave outputs, for yourlab, £10.80.
CLOBBERED? Fight through with a Speech Compressor 1000:1 agc, dynamic compression, only $£ 8 \cdot 60$.
Europe add 40p. Each easy-assembly kit includes all parts, printed circuit cese, instructions, postage etc, money back assurance so SEND offinow.

45 (PS) Old School Lane, Milton Cambridge.
TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks.

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Ramar Constructor Services, Masons Road, Stratford-upon-Avon. CV37 9NF.

KIT OF PARTS for Wireless World Stereo Tuner, or Ready Built and aligned, Semiconductors, Knobs, Meters, Resistors, Capacitors, Switches, Transformers. Catalogue 35p. R.B. Electronics, 24 Springfield Park, Holyport, Maidenhead. 39798.

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-24 w.p.m. for professional examination Morse Key and Buzzer Unit for sending practice. Price each Casserte (including booklets) £4.50. Morse Ke Price each Cassette (Including booklets) $£ 4.50$. Morse K
and Buzzer $\mathbf{~} 44.50$.
Prices include postage etc., Overseas Airmail $£ 1.50$ extra. MHEL ELECTRONICS (Dept. P.W.), 12 Longshore MHEL ELECTRONICS (Dept. P.W
Way, Milton, Portsmouth PO48LS.

CATALOGUE OF WIDE Range of components FREE on request. J. R. Hartley, Electronics Components, 78B High Street, Bridgenorth, Salop WV16 4DY. Tel: 074623865.

LET LYNWOOD ELECTRONICS quote for parts for your project at competitive prices. Send list of your requirements. Interested and helpful service. 20 Stourcliffe Avenue, Bournemouth BH6 3PT.

NOTICE
 TO
 READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for
insertions
I enclose Cheque/P.O. for f
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME.
Send to: Classified Advertisement Manager PRACTICAL WIRELESS,
ADDRESS
GMG, Classified Advertisement Dept., Rm, 2337, King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-2615846 Rate
22p per word, minimum 12 words. Box No. 60p extra
Company registered in England. Registered No. 53626. Registered office: King's Reach Tower, Stamford Street, London SEf 9LS

The action-packed show for the electronics enthusiast now includes the Midlands among its venues. If hobby electronics is your interest or your business, then Midlands Breadboard is tailor-made for you.

Crammed with the gear that constructors need. Circuit boards, components, audio kits, d.i.y. computer systems, electronic musical instruments you'll find it all here. And you can buy it on the spot - or browse at your leisure. Demonstrations and competitions (exciting prizes!) keep the show humming with activity.
P.S. There's a London Breadboard too, December 4-8th, Royal Horticultural Halls - come to both!
\square I want to visit the show. Send me more details nearer the date.
\square Please send me details now of exhibition space.
Name

Position
Company
Address

Bingley Hall, Birmingham, 23-26 May, 10 am-6pm Admission: $£ 1$ Adults 75p Students

WATFORD EEEGTRONICS

33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

$\begin{array}{ll} \text { TRINAERSmini } & \\ \text { 2.5pF;3-10pF; } & \\ 3-30 \mathrm{pF} ; 10-4 \mathrm{pF} & \text { 22p } \\ \text { 5-25pF:65pF88pF } & \text { 30p } \\ \hline \end{array}$	STALS		LINEARIC'S								
	100kHz 455 kHz 1 MHz 1.BOMHz		702^{*} $709 \mathrm{C} 8 \mathrm{pin} *$ 75 75								
				LD130* 452 LF365** 98		E566**************)	180 170				
				$\begin{aligned} & \text { LM308T* } \\ & \text { LM311H* } \end{aligned}$	110	NE570 ${ }^{\text {NE571* }}$	395 420				
ES		323p	$\begin{array}{ll}723 * \\ 741^{*} 8 \mathrm{pin} & 45 \\ 78\end{array}$								
	$1 \cdot \mathrm{BOMHz}$										
					95						
	276 BMHz	323									
AUDIBLE Warning Buzzers 6V or 12V 65p*	4.0 MHz	323	$810^{*} 169$	LM339 LM34B*		SN76003N	170				
	4.032MHz		AY	LM349**	375						
	4 433619M		AY-1-1313A*660 AY $1-1320 \quad 315$ AY-1-5050 180			SN76023N 140					
	5.0 MHz	355		LM380	80						
$1, \mathrm{~F}, 4 \cdot 7,10,22,47,100$,$220.470,750,1 \mathrm{HH}, 2.5$			$\begin{array}{ll}A Y-1-5050 & 180 \\ \text { AY-1-5051 } \\ 145\end{array}$		145						
			1	248		215					
$5,10 \mathrm{mH}$ 35p				AY-3-1015* 560	LM382 LM1458* LM3900*	125	$\begin{aligned} & \text { N76131 } 110 \\ & N 76227 N 115 \end{aligned}$				
			60								
				N76477**							
100 mA 95 p .				LM391	10						
8VA type: $6 \mathrm{~V}-5 \mathrm{~A} 6 \mathrm{~V}-5 \mathrm{~A}: 9 \mathrm{~V}-4 \mathrm{~A} 9 \mathrm{~V}-4 \mathrm{~A}: 12 \mathrm{~V}$ -3A 12V-3A: $15 \mathrm{~V}-25 \mathrm{~A}$ 15V-25A 195p.				M252AA* M253AA* MC1303	750						
			795		TAD100 159 TBA120S 10						
			$\begin{aligned} & \text { MC1304P } \\ & \text { MC1310P } \end{aligned}$	260							
20V-3A220p (20pp\&p)				CA3012* ${ }^{\text {a }}$			Cl310P				
$24 V A: 6 V-1.5 A ~ 6 V-1-5 A ; ~ 9 V-1.2 A ~ 9 V-1.2 A i ~$			$\begin{array}{ll}\text { CA3014* } & 137 \\ \text { CA3018* } \\ \\ \text { CA }\end{array}$			250					
20V-6A 290p (45pp\&p)				CA3020 170		92	A800				
50VA: 6V-4A 6V-4A: 9V-2.5A 9V-2.5A: 12V2A 12V-2A: $15 \mathrm{~V}-1.5 \mathrm{~A}$ 1.5V-1.5A; 20V-1.2A 20V-1-2A: 25V-1A 25V-1A: 30V-8A 30V-8A			CA3023 170 CA $3028{ }^{*}$ 80								
				120							
			240		120						
350											
20V-2.5A 20VV2.5A; 30V-1.5A 30V-1.5A;$40 \mathrm{~V}-1.25 \mathrm{~A} 40 \mathrm{~V}-1.25 \mathrm{~A} ; 50 \mathrm{~V}-1 \mathrm{~A} 50 \mathrm{~V}-1 \mathrm{~A}$ 650p					205	- 310					
			$\begin{aligned} & \text { CA3045* } \\ & \text { CA3046* } \end{aligned}$	M180							
			$\begin{aligned} & \text { FC6040 } \\ & \\ & \hline \end{aligned}$	650	575						
			$\begin{array}{ll} \text { CA3048 } & \mathbf{2 1 0} \\ \text { CA3075 } \end{array}$								
(N.B. P\&P charge to be added above our normal postalcharge.)				CA308OE 70 CA3081 190 CA3089E 210 CA3090AO 398	MK5039B* MM5303* MM5307*	635635	$\begin{array}{ll}\text { TLO62CP* } & 125 \\ \text { TLO64CN* } & 199 \\ \text { TLO7CP* } & 76\end{array}$				
DENCO COILS Dual Purpose 'DP' VALVE TYPE 'Ranges: 1-5 Bi. YI.	B9A Valve Base RDT2 RFC 5 chokes RFC $7(19 \mathrm{mH})$ 1FT 13/14/15/16		1275								
			MM57160*		$\begin{aligned} & \text { TLO71CP* } \\ & \text { TLO72CP* } \end{aligned}$	125					
			$\begin{array}{ll} \text { CA3090AO } & 398 \\ C A 3123^{\circ} & 200 \end{array}$	210	TL074CN						
				NE544 NE555* NE556DB*	22	TLO82CP*	98				
			3140**								
Rd. Wht. 86p $6-7$ B.Y, R	17	85p			CL7106* $795{ }^{\circ}$	60325	TLO84CP* UAA 170	309890			
1-5 Gree				NE560*NE561*							
'T-type (Transistor	1 FT 18/465					ZN414					
$\begin{aligned} & \text { Tuningl. } \\ & \text { Ranges: } \begin{array}{ll} \text { Rd. Wht. } & \text { BI. YI. } \\ \text { R3p } \end{array} \end{aligned}$	TOC 1 $86 p$ MW 5FR $82 p$ MW/LW 5FR $103 p$		$\begin{array}{ll} 1 C M 7215 * & 1050 \\ \text { ICM7217** } & 790 \\ \text { ICM7 } \end{array}$	$\begin{aligned} & \text { NE562 }{ }^{\text {N }} \\ & \text { NE564 } \\ & \text { NE565A } \end{aligned}$	$\begin{aligned} & 410 \\ & 425 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { ZN425E. } \\ & \text { ZN1034* } \end{aligned}$	$\begin{aligned} & 130 \\ & 415 \\ & 200 \end{aligned}$				

INDEX TO ADVERTISERS

A. E. Supplies	...	-..		6
A. H. Supplies		57
Ambit International	...	\ldots		5
Antex (Electronics) Ltd.	...	\ldots	Cov	
Barrie Electronics		\cdots		77
Bentley Acoustics	...	\ldots		7
Bi-Pak Ltd.				9
Birkett J.	*,	\ldots		4
Boss Industrial				1
Bowes C.				8
British National Radio 8	Elec	nics		
School	...			
Cambridge Kits ...	*.	- $\cdot \times$	-	76
Caranna C.	\%.	.-	-mm	75
Catronics	\ldots	14
Chromasonics	...	\ldots	72
Codespeed	...	\cdots	...	74
Colomor	\ldots	\ldots	\cdots	10
Continental Specialists		.		23
Cox Radio (Sussex) Ltd.				74
Crescent Radio			\cdots	4
Crimson Elektrik	\ldots	\ldots	\cdots	8
C. R. Supply Co.	\cdots	人,	74
C.W.A.S. Alarm	\cdots	\ldots	76
Dart Stationery ...	\cdots	\cdots	\ldots	75
Electronic Design Associ	iates	\cdots	\ldots	2
Electrovalue		\cdots		12
Electrovance		cos	.	80
E.S.E.	\cdots	...	\ldots	73
Flairline Supplies	\cdots	.		1.6

A. E. Supplies

Ambit international

Barrie Electronics
Bentley Acoustics
Bi-Pak Ltd
Boss Industrial
British National Radio \& Electronics School

$\begin{array}{lllr}\text { R.S.C. (Hi-Fi) } & \ldots & & \\ \text { R.S.T. Valve Mail Order Co. } & \ldots & \ldots & 17 \\ \text { Radio \& T.V. Components Ltd. } & \ldots & \ldots & 9\end{array}$
Sandwell Plant Ltd. 75

Scientific Wire Co. The ... $\quad . . . \quad$... 75
Sinclair 13
Solid State Security 75
Sonic $\mathrm{Hi}-\mathrm{Fi}$... 22
Southern Valve Co. 58
$\begin{array}{lllll}\text { Southern Valve Co. } & \ldots & \ldots & \ldots & 58 \\ \text { Spectrum Communications } & \ldots & \ldots & 75\end{array}$
$\begin{array}{llllr}\text { Spectrum Communications } & \cdots & \cdots & 75 \\ \text { Squires, Roger } \ldots & \cdots & \cdots & \cdots & 5 \\ \text { Sternway Electronics } & \cdots & & \cdots & 72\end{array}$
$\begin{array}{lllll}\text { Sternway Electronics } & \ldots & \ldots & \ldots & 72 \\ \text { Swanley Electronics } & \ldots & \ldots & \ldots & 80\end{array}$80

Technomatic Ltd.	. ${ }^{\text {, }}$	\cdots	...	6
Teleradio		\ldots	\cdots	5
Timetron	\ldots	\cdots	\ldots	16
T. K. Electronics	\ldots	...	74
Trident Exhibitions	\ldots	\ldots	\cdots	77
T. T. Electronics ...	\cdots	57
Van Karen Publishing			.*	75
Vero				10

Vero			
Vintage Wireless Company	\ldots	\ldots	10

Watford Electronics 78,79
West Hyde Developments 80
$\begin{array}{lcccr}\text { Williamson Amplification } & \ldots & \ldots & 76 \\ \text { Wilmslow Audio } & \ldots & \ldots & \ldots & 8\end{array}$

80

Head Office and Warehouse 44A WESTBDURNE GROVE LONDON W2 5SF Tel: 727 5641/2/3					Please send all correspondence and Mail-Orders to Head OfficeReg 242 Retail ShopOpen all day Saturday												
A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES																	
IB3GT	0.75	6ax4GTB	1.00	6CY5	1.00	12AT6	0.60	ECF200	0.90	EM84	0.60	PCL81	0.65	PY82	0.55	UCC84	0.75
185	0.50	6AX5GT	1.30	6CY7	1.00	12AT7	0.50	ECF201	0.90	EM87	1.00	PCL82	0.80	PY83	0.70	UCC85	0.60
IX2B	1.20	6BA6	0.45	6D06B	1.45	12AU6	0.65	ECF801	0.95	EY81	0.55	PCL84	0.75	PY88	0.75	UCF80	0.75
5AT8	0.80	6BE6	0.48	60T6	0.80	12AU7	0.47	ECF802	0.95	EY87	0.50	PCL86	0.85	PY500A	1.50	UCH42	1.00
514	0.75	6BF5	0.85	6078	0.80	12AV6	0.85	ECH42	1.10	EY88	0.55	PCL805	0.80	T12	9.50	UCH81	0.65
5446	0.60	6BF6	0.75	60W4	0.90	$12 \mathrm{AV7}$	1.00	ECH81	0.55	EY500A	1.50	PD510	3.35	T 12	9.50	UCL81	0.70
518	0.75	${ }^{68666}$	0.30	6ES5	1.00	12AX7	0.55	ECH200	0.80	Ez80	0.50	PL36	1.10	U25	1.00	UCL82	0.75
5 V 4 G	0.60	6BH6	0.85	6EV5	1.50	12AY7	0.85	ECL80	0.60	E281	0.50	PL81	0.80	U26	1.00	UCL83	0.80
5×46	0.80	${ }^{6 B J 6}$	1.20	6EW6	0.80	${ }^{12 \mathrm{BAB}}$	0.65	ECL81	0.75	GY501	0.90	PL82	0.55	UABC80	0.58	UF41	1.00
5×8	0.90	6BJ7	0.65	6GH8A	0.80	$12 \mathrm{BF6}$	0.67	ECL82	0.60	6730	0.65	PL83	0.50	UAF41	0.80	UF8D	0.50
5Y3GT	0.65	6BK4B	1.40	6GK5	0.70	12BH7A	0.75	ECL83	1.15	Gz32	0.65	PL84	0.75	UBC41	0.70	UF85	0.50
$5746 T$	0.65	6BN4A	0.90	6GK6	0.90	$12 \mathrm{BL6}$	0.70	ECL84	0.70	$6 z 33$	3.80	PL504	1.20	UBC81	0.65	UL84	0.85
6 6B7	0.60	6BN6	0.80	6.54	1.20	$12 \mathrm{Ba6}$	0.90	ECL85	0.65	DA2	0.65	PL508	1.40	UBF80	0.60	UM80	0.60
6AC7	0.80	6807A	0.70	6J5GT	0.85	$12 \mathrm{BY7A}$	0.80	ECL86	0.85	${ }^{\text {OA3 }}$	0.75	PL802	2.80	UBF99	0.60	UM81	0.75 0.45
6AD8	0.60	68R8A	1.20	6J6	0.55	$12 \mathrm{CU6}$	0.90	EF80	0.40	${ }^{\text {OP2 }}$	0.70	PY81		UBL21	0.90	UM84	0.45
6AF4A	0.80	6BS7	2.30	${ }_{6}^{6 J 7} 7$	0.80	19 CaO	0.75		0.48	${ }^{\text {OP3 }}$	0.75						
6AG5	0.65	6BU8	0.85	${ }^{6 K 56 T}$	0.75	198G66	0.50	EF86	0.50	OC2	1.40 0.85						
6AG7 6AH6	0.85 0.95	68W7 6826	1.60 0.65	${ }_{6 L 6 G T}^{6 K 6 G T}$	0.85 1.10	${ }^{35 A 3}$	0.70 0.65	EF92	1.00 0.70	${ }_{0}^{0 C 3}$	0.85 0.75	OSCILLOSCOPE TUBES current production. Made in USSR One inch Tube Type 3LO 11. This tube is					
6A.J5	0.65	6827	0.70	${ }_{6 N 7}$ 6T	0.85	35C5	0.85	EF98	0.90	PABC80	0.45						
6ak5	0.55	66^{4}	0.55	607	0.90	50 C 5	1.00	EF183	0.70	PC86	0.90						
6ak6	0.75	${ }^{6 C 5 G T}$	0.60	6SA7	0.80	50태5	0.85	EF184	0.70	PC88	0.90						
6 6K7	0.85	${ }^{6 C 6}$	0.50	6SG7	0.80	DAF96	0.60	EFL200	1.60	PC96	0.50	a good replacement for 1CP31. Tube					
6AL5	0.40	${ }^{6 C 8 G}$	0.60	${ }_{6 S K 7}$	0.80	DF96	0.60	EH90	0.60	PC97	0.95	characteristics are identical with those of					
6AM6	0.70 0.70	${ }_{6 C 67}^{6 C 86}$	0.55 0.70	6SN7GT	0.70	${ }_{\text {DL9 }}$	1.00 0.60	EL36	2.50 1.50	PCC84	1.00 0.50	1CP31. As the connections are different					
6AN5	2.50	6CG8A	0.75	6s07	0.80	ECC84	0.60	EL81	0.80	PCC85	0.60	the tube is supplied complete with base,					
6AN6	0.85	6CM7	0.80	${ }^{\text {6SS7 } 7}$	0.80	ECC85	0.48	EL82	0.60	PCC88	0.65						
6A05 6AS6	0.85 1.00	6CN7 6C08	1.20 0.75	${ }_{6 \times 4}^{6 V 6 G T}$	0.80 0.70	ECC86	1.25 0.75	${ }_{\text {ELP33 }}$	0.60 0.65	PCC89 ${ }^{\text {PCC189 }}$	0.75 1.00	conn		diagram	and	techn	data
6AS7G	1.20	6 CS 7	0.85	6X5GT	0.60	ECC89	0.80	EL86	0.75	PCF80	0.85	£12.00*. Three-inch tube Type 3BP1.					
6AT6	0.75	6CU5	1.00	6x8	0.80	ECC189	0.80	EL95	0.70	PCF82	0.45	This well known tube used in "PURBECK"					
6AU6	0.50	6CU6	1.00	12ab	0.60	ECF8D	0.60	EL504	0.95	PCF84	0.65	Oscilloscope can be supplied for $£ 7.50$.*					
6AV6 6AWBA	0.75 0.75	6CW4	3.75 1.00	$12 A L 5$ $12 A 05$	0.65 0.60	ECF82	0.55 0.80	EM80	0.65 0.60	PCF86 PCF806	0.75 1.00						

VAT is not included. Please add $12 \frac{1}{2} \%$ on all items except those marked with asterisk, on which VAT is $\mathbf{8 \%}$. Postage and packing charges are $\mathbf{£ 0} \mathbf{0} \mathbf{1 0}$ per $£$ subject to a minimum of $\mathbf{£ 0 \cdot 3 0}$. Minimum order charge for Approved Credit customers $£ \mathbf{£ 0 . 0 0}$. Minimum Transaction Charge for mail orders $£ 1 \cdot 00$.

OUR NEW 1978/1979 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR f0. 30

AUTOMATIC STANDBY INVERTERS

These units are designed to permanently provide power to essential electrical equipment. Incorporating a 12 V DC trickle battery 500 mA charger operating while the public power supply is maintained and internal inverter with control relays that automatically restore mains power in the event of a domestic power failure. All assembled in ventilated cases.

Features: Neon panel indicators to show mains or inverter operating mode, DC inline fused, AC output fused, separate DC and a.c. relays.

Inverter power output provides 240 V AC at 50 Hz with square wave form smoothed and filtered.

Installation is simple, just connect the mains lead to a 13 amp socket, clip the battery leads onto a 12 V DC car battery, insert the lead of the electrical item you want to permanently operate. Guaranteed 2 years. Delivery $16 / 20$ days.

ACE/1—Cased $6 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime}$ at 150^{\prime} watts
ACE/2-Cased $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ at 200 watts
AC/4-Cased $12^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime}$ at 300 watts
AC/5-Cased $12^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime}$ at 400 watts
$£ 38.50$
£46.73
$£ 70.87$
£ 91.00
f158.90

Please add $\mathbf{£ 5} \mathbf{5 0 0}$ per unit carriage-Overseas at cost.

Callers by appointment - Telephone: 01-736 0685

ELECTROVANCE, P.O. BOX 191, LONDON SW6 2LS

BUILD YOUR IN LINE CRYSTAL CALIBRATOR

(PW this issue) in our "Eddy Stove" die cast aluminfum box order code EDD40 price $\mathbf{£ 2} \mathbf{2} 57$ including P \& P and V.A.T.

OTHER CASES SPECIFIED FOR PW PROJECTS PW HYTHE RECEIVER Brightcase BC2 $121 \times \mathbf{£ 2 9 . 4 3}$

PW Burley Power supply Swift case SWF 222 £18.31
All the above prices include P \& P and V.A.T.
Send for your free catalogue describing literally hundreds of cases - see Feb, '79
"Production Lines".
WEST HYDE DEVELOPMENTS LTD.,
Unit 9, Park St. Industrial Estate., Aylesbury HP2 1 1ET Aylesbury 20441 . Telex 83570

TRANSFORMERS $6-0-6 v \quad 100 \mathrm{ma} 74 \mathrm{p}$,
 $90 \mathrm{p}, 1 \mathrm{a}$ £2.49. IC AUDIO AMPS with pcb. JC12 6W C1. GO.JC20 10W E2.95. Send sae for data.
BATIERY ELIMINATORS 3 -way type BATJERY ELIMINATORS 3 -way type
$6 / 7 \frac{1}{2} / 9 v 300 \mathrm{ma}$ £2.95. 100 ma radio type
 with press-studs $9 v$
Stabilized rype $3 / 6 / 71 / 9 \mathrm{v} 400 \mathrm{ma} £ 5 \cdot 30.12 \mathrm{v}$ car convertors $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{y} 800 \mathrm{ma}$ E2.50.
BATPERY ELIMTATOR KITS Send sae EATHERY ELIM Nata. 100 ma radio types with press-studs
 8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma}$
$\mathrm{f} 2.80,1 \mathrm{Amp}$ f6.40 $\frac{\mathrm{f} 2.80,1 \text { Amp } \mathrm{f} 6.40 \text {. Stabilized power kits }}{2-18 v 100 \mathrm{ma} \mathrm{f} .60 \text {, } 2-30 \mathrm{v} 1 \mathrm{~A} £ 6.95}$ $30 \mathrm{v} 2 \mathrm{a} \mathrm{f} 10 \cdot 95.12 \mathrm{v}$ car converter $6 / 7 \frac{1}{2} / 9 \mathrm{v}$ 1af1.35.
T-DEC AND CSC BREADBOARDS s-dec $\mathrm{f} 3.17, \mathrm{t}$-dec $\mathrm{£4} 02$, u-deca $£ 4.40$, u-decb
f 6.73 . $\exp 300 \mathrm{f6} .21$, $\exp 350 \mathrm{f3} .40$ ex-
 p650 £3.89, exp4b £2.48.
BI-PAK AUDIO MODULES S450 $£ 23.51$.
AL60 £4.86. pa $100 £ 16.95$. spm80 $£ 4.47$.
bmt $80 £ 5.95$. Stereo $30 £ 20.12$.
SWANLEY ELECTRONICS (Dept. PW
32 Goldsel Rd., Swanley, Kent.
Post $30 p$ extra. Prices include VAT.

The TCSUI soldering station with either the XIC 50 watt - $24 / 25$ volt soldering foro or the CTC 35 watt -soldering ifen for
pin point precision and exceptionally fast recovery time. We have put at least twice as much power into irons which are already well known for good recovery time. The temperatuse control stops them from over-heating; the "tail-sate" electronic circuit provides protection even if the thermocouple fails. TCSUI soldering station with XTC or CTC iron $£ 38.88$ incluang VAT postage extra.

a minature iron with the element enclosed first in a ceramic shaft, then in a staintess steet Vitually leak-free oniy $7,2 \mathrm{~F}$ Range of 5 other bits available from ${ }^{1 / 4}$ "down to $3 / 64^{\prime \prime}$

A genera! purpose ron also with a ceramic and steel shaft to give you toughness combined with near-pertect insulation. Fitted with $1 / 8$ " bit and priced at $£ 4$-37inclusive of VAT and P. $\&$ P. Range of 4 other tits available

Model SK3 Kit

Contains both the model CX230 sodering iron and
the stand ST3. the stand \mathbf{P}. Priced at $\mathbf{f 6} \cdot 21$
inclusive of vat inclusive of
and P.\&P. It makes an exceilent present for the radio amateur, modeimaker or hobbyist

Model SK4 Kit

Model SK1 Kit

This kit contains a 15 watt miniature sotdering iron, complete win 2 spare bits, a coil of solder, a heat sink and a booklet,'How to solder' Priced at $£ 6.48$ nclusive of VAT and P. \& P.

Model MLX Kit

The soldering iron in this kit can be operated irom any yorinary car battery. it is fited with steet lexibe cave a lastic envelope it can be left in a car, a boat or a caravan ready tor soldering in the field. Price $£ 4.83$ inclusive of VAT and P.\&P.

[^0]: Personal callers: ROGER SQUIRE'S DISCO CENTRES
 LONDON: 175 Junction Road, Tufnell Park N19 500 $01-2727474 \quad$ Open from 10-5 Tues-Sat
 BRISTOL: 125 Church Road, Redfield, Bristol BS5 9JR 0272-550550 10-8 Weds.
 MANCHESTER: 251 Deansgate M3 4EN 061-831 7A76 \quad Closed Mondays
 GLASGOW: 1 Queen Margaret Rd., (off Queen Margaret Drive) Kelvinsid, Tel, 0419463303

