

praettical Wiriliss

brtallis leaning juurnal for the Ralio e elegrounc conistrictor

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.

Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10 \cdot 60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 p each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 2.85$ to UK addresses or $£ 3.45$ overseas, including post and packing) each accommodating one volume of PW. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, Lordon SE1 OPE,
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
Ali reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

\square NEWS \& VIEWS

20 Editorial
Our Role
PW Personality
Alan Martin
21 News . . . News ... News ...
32 Special Product Report
Sinclair DM235 Digital Multimeter
40 Hotlines
Ginsberg
Recent developments in electronics
47, 58 Production Lines
Alan Martin
Information on the latest products
61 New Books
Comments on recent books in the electronics field
71 RAE Reprint Announcement

\square FOR OUR CONSTRUCTORS.

22 12V Fluorescent Light
An economical emergency light source
30 Follow-up to the Wide-range Capacitance Meter . Ian Hickman Extending the range of measurement to $30000 \mu \mathrm{~F}$
PW "Hythe" Marine Band Receiver-1 . M. Tooley \& D. Whitfield A simple multi-mode receiver
PW "Dorchester" All-band Tuner-3 W. S. Poel
Mechanical details and alternative applications

GENERAL INTEREST

O EXTRA

Index to Volume 54
Contents of our issues dated May-December 1978
Our March issue will be published on 2 February
(for details see page 33)

FABULOUS PROFESSIONAL DISCO SYSTEM

F.A.L. De Luxe PROFESSIONAL Garr. CONSOLE (Powered)
etc. 81
Controls. Autofade with Music Overide on both mic. and jingle inpuis. Headphone pre-fade monitor with 5 Push-button selector. Iluminated V.U. meters. Illuminated rocker switches. LED cue indicators. Tape or Jingle inputs, unity gain. Mic. channel with Bass \& Treble. Slave outlet.
Treble Control (Music Channel) Output into line (Slave) Treble Control (Mic. Channel) Autofade Recovery Bass Control (Music Channel) Microphone Input. Bass Control (Mic. Channel)

DEPOSIT £28.88 and 38 weekly payments of £9.74 (Total £399)

TURNTABLES: Garrard 125SB Belt-drive with Low Mass 'S' arm and Magnetic Cartridge.
POWER: 120 watts continuous RMS into 4 ohms DECK LIGHTS: Fully adjustable flexi-beams over each turntable with independent switching. CABINET: Solidly made to withstand the rigours of transporting. Covered in heavy duty leather cloth type material in attractive colour combinations Corner cap protectors Recessed carrying handles
List £320.76

ALL THREE UNITS PRODUCED BY BRITAINS LARGEST MAKERS OF DISCO EQUIPMENT

PAIR MATCHING FULL RANGE De Luxe 80w LOUDSPEAKERS
Each inc. Pair of Powerful $12^{\prime \prime}$ Bass units (with aluminium
centre domes), and High Frequency Horn unit to extend frequency range to above 17 kHz . Normally $£ 89.95$ ea.

FANTASTIC SPEAKER OFFER
twin 12 " Speaker cabinet PLUS PAIR 12 " SPEAKERS
of Robust vibration-proof construction. Fitted protective corner pieces, Removable Vynair covered front with
silver effect trim. Sunken jack socket siver effect trim. Sunken jack socket
with escutcheon at the rear. with escutcheon at the rear.
Pair $12^{\prime \prime} 20 \mathrm{w}$ speakers for series and front While stocks in series and front While stocks last
mounting in above supplied to com- Three items plete a 40 watt
unit for lead guitar
or P.A.

or P.A. Carr. £2.50 DISCO MODULES

CONTROL UNIT

(mains powered)
Vol. (Left) Vol. (Right) Tape input $\$ 25.00$ and volume control. Bass, Treble, ON/OFF switch for each Table.
MONITOR UNIT With H/Phone Socket and Vol. Control Cart Free
FADER UNIT Carr Free
100w OUTPUT UNIT
Mains powered Carr. £1-50

Carr. $£ 1$

f7.95
£7.95
£29.95

Make your own Console with these

\star DISCOMAJOR POWER | Disco Console mith |
| :--- |
| integral Power Amplifer. | integral Power Amplifier.

TWIN FULL SIZE BSR
turntables with cueing deyice.
\star CARTRIDGES with Diamond Styli.
$\times 3$ SEPARATE VOLUME \star 3 SEPARATE VOLUME
CONTROLS for each turntable and Mic turntable and Mic.
CONSOLE COMPLETE
WITH LID. FULL WITH LID. FULI
HEADPHONE MONIHEADPHONE MONI-
TORING FACILITIES (1) TWIN T/TABLE PRE-AMP, and POWER OUTPUT STAGES (2) \& (3) PAIR 50 WATT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS

Carr. 44.75 U
carr. e4.00. WATT SYSTEM
£ 199.95

TITAN GROUP/DISCO SPKRS Value RSC Price			
T12/60R 12" 60 w	£22.50	f14.95	
T12/100 12" 100w	± 36.00	£25.95	
T15/60 15" 60 w -	£26.00	£17.95	
T15/70 15* 70 w	£28.00	£19.95	
T15/100 15"100w	$\xrightarrow{£ 41.00}$	${ }_{\text {¢ }} 829.95$	
T18/100 $18^{* 1} 100 w$ Carr. £1.20, un	£51.00 der $£ 18$,	£39.95 er this ad	ohms dd 6p per $£ 1$
CABINETS FOR black Vynide with pieces, various size	BOVE H Vynair	eavy dut fronts.	y, finished in rotective corner

New Branches at

OPEN ALL DAY SATS (5 Day Week) Prices correct at 11.12 .78 E. \& O.E. All items subject to avalability GRADFORD 10 North Parade (Closed Wed.). Tel. 25349 GLASGOW 326 Argyle St. (Closed Tues.). Tel. 041-248 4158 BIRMINGHAM 30/31 Great Western Arcade.
CARLISLE 8 English Street (Closed Thurs.) 021-236 1279 COVENTRY 17 Shelton Sq. The Precinct (Closed Thurs.) Tel. 25983 DERBY 97 St. Peter's Street (Closed Wed.) Tel. 41361 DEWSEURY $9 / 11$ Kingsway (Closed Tues.) Tel. 468058 DONCASTER 3 Queensgate, Waterdale Centre. $\begin{gathered}\text { (Closed Thurs). Tel. } 63069\end{gathered}$ EDINBURGH 101 Lothian Rd. (Clased Wed.) Tel. 2299501

50 WATT AMPLIFIER SACRIFICE Limited stocks of
TITAN TA/50A
to be cleared to make way
model.

MAIL ORDERS \& EXPORT ENQURIES TO:-
AUDIO HOUGE, HENCONNER LANE, LEEDS, 18.
TOL: Tol: 0532577631.
MAIL ORDERS MUST NOT BE SENT TO SHOPS TERME C.W.O. or C.O.D. No. C.O.D. under 43 , POSTAGE 60p FER ORDER OR AS QUOTED. Phone or Write for FREE CATALOGUE

MIDDLESEROUGH 103 Linthorpe Rd. (CI. Wed.) TeI. 247098 $\begin{aligned} & \star \text { NEWCASTLE UPON TYNE } 59 \text { Grainger St. } \\ & \text { (Closed Wed.). Tel. } 21469\end{aligned}$ NOTTINGHAM 19/19A Market (Closed Wed.). Tel. 21469 SHEFFIELD 13 Exchange Street (Closed Mhurs.). Tel. 48088 (Closed Thurs.). Tel. 20716 \star WOLVERHAMPTON $\begin{aligned} & 6 \text { Wulfrun Way } \\ & \text { (Closed Thurs.). Tel. } 26012\end{aligned}$ +MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches

 HEAD DEMAGNETISER $84 \cdot 75$

A.C. ELECTRIC MOTORS

 2 Pole, $240 \mathrm{~V}, 2$ Amp. Spindle- $1.43 \times 0.212 \mathrm{in}$. II. 75.2 Pole,$240 \mathrm{~V}, 15 \mathrm{Amp}$. Double Spindle- $1.75 \times 0.16 \mathrm{in}$. Each $\mathrm{E1} 50$.
2 Pole, $120 \mathrm{~V}, 5$ Amp. Spindle- $0.75 \times 0.2 \mathrm{in}$. Two in series 2 Pole, $120 \mathrm{~V}, 5$ Amp. Spindle- $0.75 \times 0.2 \mathrm{in}$. Two in sseries
$240 \mathrm{~V}, 75 \mathrm{p}$ each. Brush Motor. From a Food Mixer 240 V , ${ }^{2} 240 \mathrm{~V}$, 75 p each. Brush Motor. From a Food Mixer 240 V , .3 Amp . High Speed and Powerful Spindle- $0.5 \times 0.25 \mathrm{in}$.
$\mathbf{2} 2.95$ each.

BLANK ALUMINIUM CEASSIS, 18 a.w.g. 21 in . 日ldes, 6 « 4 in . 95 p :
 $12 \times 3 \mathrm{in} .21 \cdot 20 ; 16 \times 10 \mathrm{in} .2220 ; 12 \times 8 \mathrm{in} .21-70$.
 ALUMINIUM ANGLE BRACKET $6 \frac{1}{2} \times$ in. 15p.
ALUMINIUM BOXES, MANY SIZEE IN STOCK.

DE LUXE BSR HI-FI AUTOCHANGER
 Playa 18in. 10 in , or Fin. records Auto or Manual. A high quellity unit backed by B8R rellability with 12 month guarantee. A.C R00/250V. Sizo $18 \mathrm{t} \times 11 \frac{\mathrm{in}}{}$ Above motor board 3 in. Belows motor board 2lin.

 Below motor board 2 in . With MAGNETIO ETEREO CARTRIDGE
 621.50
 Cueing Device, Blas Compensator, Balanced Arm, All Pont 75p BRR Budget Autochanger with ceramic cartridge. \&14.95
 - Garrard 5300. Autochanger with ceramic cartridge. 814-95 Garrard Miniohanger. Plays all size records. Ceramic cartridge. Siereo.
 BSR. P182. Snake arm, flared urntable, ceramic cartridge. Latest model. Stereo
 £9.95
 $£ 18.95$

BAKER 150 ẄATT

QUALITY
TRANSISTOR

MIXER/AMPLIFIER

Proferalomal amplifer uaing advanced circuit design. Ideal 10 r dico, groapi, P.A. or muical inbtruments. 4 inputs 4 way mixing Manter treble, base and volume controls. 3 speaker output nooketi to sult varions combiuations of apeakers.
 BAKER 50 Watt AMPLIFIER 2 inputs $£ 59$.
DRILL BPEED COITTROLLER/LIGRT DIMMER KIT. EAIY to build kit. Will control up to 480 watts AC mains. pant aby $\leq 3 \cdot 25$ GTEREO PRE-AMP KIT. All perta to build this pro-emp. 81 nput or high medium or low gain per ohannel, with volume oontro

R.C.S. SOUND TO LIGHT DISPLAY MK 2 Complete kit of parts with R.O.B. printed clroult. Thres
ohanniels, 800 to 1000 watt to 100 watte signal source. Sultable for home une. Cl

200 Watt Rear Reflecting White Light Bulbs. Ideal tor Disco Lights. Edison Screw 75p each or 6 for $£ 4$.
MAINS TRANSFORMERS ${ }_{760}$
 12 VOLT 300 MA. $81 \cdot 00750 \mathrm{MA}$. $21 \cdot 3020$ VOLT 2 AMP. 82.50 30 VOLT
20 VOLT 1
AMP.
20
 $0-20-40-60$ VOLT 1 AMP. 83.602×18 VOLT 8 AMP. $\$ 9$. GENERAL PURPOSE LOW VOLTAGE, Yoltages available at
2A. $3,4,6,8, \theta, 10,12,15,18,24,8 n d$
$1 A, 80 V$
86.80

BAKER SPEAKERS "BIG SOUND"

Robuntly constructed to atand ud to long pariods of olectronic Dower. Watul response 30-18,000.
GROUP "35" 18 in .40 watt
GROUP "50/12"
model. 4.8 or 16 ohml.
Response $=30-16.000 \mathrm{cps}$.

151 n .75 mett
8 or 16 ohma.
Send for leafleta on Disco, P.A. and Group Cear.

R.C.S. MINI MODULE HI-FI KIT 15×8 fin 3-way Loudspeaker System, EMI 5in, Bass 5in, Middle 5in, Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied. Response = 60 to 20000 cps 12 watt RMS. $\mathbf{8}$ ohm. $£ 10.95$ per kit. Two kits $£ 20$. Postage 75p.
E.M.I. $13 \frac{1}{2} \times-8 \mathrm{in}$

SPEAKER SALE!

15W model $£ 10.50$
Ohms. Pot 65 D ${ }^{8}$ G00mb ${ }^{\text {ohm }}$.
Size $12 \times 10 i n 4$ obms
Rubber cone surround:
$£ 9.95$
Hi-Fi Bass unit.
Post 65p

337 WHITEHORSE ROAD, CROYDON Open 9-6 Sat. 9-5 (Closed all day Wednesday) Minimum post 30p. Components List 20p. H.P. available. Access \& Barclay VISA welcome. Phone your order. Tel. 01 -684 1665.

You know it's easy with Heathkit.
 Heathkit self-instruction electronics courses are

Electronics Courses

New series of courses on car electrical systems.
New series of courses on electronic equipment.
DC electronics.
AC electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

NewKits

Line printer.
Dual floppy disc.
Dual trace 5 MHz and 35 MHz oscilloscopes.
Memory expansion for digital trainer. 2M hand-held transceiver.
complete, low-cost learning systems. All you need is the will to learn and the Heath kit courses will teach you at your own pace.

It's easy because the courses are based on step-bystep programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to learn the easy "hands-on" way with the optional Heathkit experimenter trainers.

Thousands of people just like you have already learnt electronics the easy Heathkit way - at home, in educational establishments and BARCLAYCARD in industry throughout the world.

You'll find it easy too. Full details are in the Heath kit catalogue, together with hundreds of kits you can build yourself; for the home, car and workshop.

ROOM THERMOSTAT Fanous Satchwell elegant design. Intended for
wall mounting. Will swith
wolta p to 20 ampat mains
 WINDSCREEN WIPER CONTROL
Vary speed of your wiper to sull
conditions. All parts and instructions to make $\mathbf{E 3}$.75.
MICRO SWITCH BARGAINS
Rated at 5 amps $250 V$. Ideal to make a
switch panel for a calculator and for dozens swltch panel tor a calculator and for make a
of other applications. Parcel of 10 (two
types) fo sy. 25.

RADIO STETHOSCOPE Easlest way to fault find, traces. signat
Irom aerlal to speaker when silonal stons you've found he faulf. Use it on Radp, TV, amplifier, anyihing. Kit comprises transistors and parts inclu
ding prebe tube and twin stetho.set
E3.95.

MULTISPEED MOTORS
Slx speeds are available $500, .800$ and 1,000
r.p.m. and $7,000,9,000$ and 91,000 r.p.m. Shaft 18 in. diameter and approximately 1 in. long.
$230 / 240 \mathrm{~V}$. Its speed may be further controlled 230.
with the use of our Thyristor controlier. Very
powerful and useful motor size approx. with the use of our Thyri
powerful and useful moto
dla. $\times 5$ in. long. Price

I2V MINIATURE RELAY
sets of change over contacts. The unique feature of this relay is its heavy lead out wires; these provide
adequate support and therefore the relay needs no adequate support and herefore ine relay needs no
fixing; on the other hand there is a fixing bolt protruding through one slde so if you wish you can fix the relay
and use its very strong lead outs to secure circuit com-ponants-an expensive relay; but we are offering it fo

EXTRACTOR FAN

Ex computers-ma
of Colchester. Id
of cough panel-rea
tunning very
rom, Cholce of po
rim dia. £5, 66 .
6 .

MAINS RELAYS

With triple 10 amp changeover contacts-
operating coil wound for 230 V a.c. Chassis nounting one sc.ew fixing. $\begin{gathered}\text { Price } \\ \text { E1:25 }\end{gathered}$
BURGLAR ALARM ITEMS
(eircuit fre on applicati
Trigger mats $24{ }^{4 \prime \prime} \times \times 18^{\prime \prime}$
$13^{\prime \prime}$
$\times 10^{\prime \prime}$
Relay 24 volt
Alarm Bell 24 volt ${ }^{9-12}$ vol
Reset, Switch, ordina
Secret type wlth
Wire- 100 metres

MERCURY BATTERIES \# Mremoran

Bank of 7 Mercury cells type 625
which are approx. Zin. diameter
IIn. thick in. plastic tube
giving a total of 10.7 V
Being in a plastlc tube it is very easy to and use these for radio control and ${ }_{\varepsilon}^{51 \cdot 60 \text {. }}$.

PP3/PP9 REPLACEMENT
Japanese made in plastic container witl
oower a calculator or radio. it has a f fll wave
rectlfler and smoothed output of gV suitable
or loading of up to 100 mA . $£ 2.53$.
SWITCH TRIGGER MATS So thin is undetectable under carpet but will alarms, shop doors, etc. 24 in . $\times 18 \mathrm{in}$. $£ 2.50$.

MAINS TRANSISTOR PACK

sels and ampliflers. Adjust-
 ormer, rectif, PP9 and others. Kit comprises: mains transand instructlons. Real snip at only $£ 1$. 95 ,

DRILL CONTROLLER Electronically changes speed rom approximately 10 revs to
maximum. Full pow maximum. Full power at all
speeds by finger-tip control speeds by flnger-tip control
Kit includes all parts, case Made up model £1.00 extra

8 POWERFUL

BATTERY MOTORS

For models, Meccanos,
planes, boats, etc. $£ 2$.

ROTARY PUMP

 ric motor, pumps up to 200 gallons pe our depending upon revs. Virtuall petrol, fertiliser, chemucals, water, onyil
iquid. Hose connectors each end. $\mathbf{\Sigma 2}$.

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives ceive amaz amazing results. You will re-
coitment of
stations stations over the 10. a5, 29, 31 metre bands. Klt contains chassis front
panel and all the parts $k 1$ - $90-$ crystal earphone 55p including VAT and MULLARD UNILEX A mains operane $\begin{aligned} & \text { of the stereo } \\ & \text { system. Rated one } \\ & \text { pert }\end{aligned}$ system. Rated one of the finest
performers in the stereo field
this would make a wonderful gift tor almost anyone in easy-to-
assemble modular form and assemble modular form and
complete with a palr of speakers this should sell at about $£ 30-$
but due to a special bulk-buy and as an incentive for you
buy this month we offer the including VAT and postage.

HUMIDITY SWITCH

American made by Ranco, thelr type No.
J11. The action of this device depends upon the damponess causing a membrane to stretch and trig
switth adjustable
sensitive switch adjustable by a screw, quite
sensitive-breathing on it for instance will
switch it swith it on. Micro 3 amp. at 250 V
Overall
size of the

DELAY SWITCH

Mains operated-delay can be ac
ourately set with pointers knob io curately set with pointers k knob
periods of up to $2 \frac{1}{3}$ hrs. 2 contat
suitable 10 switch 10 amps-second
 contact opens
contact 95 p .

25A ELECTRIC PROGRAMMER

as you in your sleep. Have radio playing and kettie boilling
 lights to ward off intruder s-have
warm house to come home to All these and many other things
you cran do if you invest in an
electrical electrical programmer Clock by
tamous maker with 15 amp on/of switch. Switch-on time can be
sel anywhere to stay on set anywhere to stay on up to
hours independent 60 minute mem
hen

MULLARD AUDIO AMPLIFIERS

All in module form, each ready bult complete with hea
 Model 11721 W . opwer output $£ 2 \cdot 25$ Model EP9000 4 watt power output $£ 2.9$
EP 9001 twin channel or stereo ore-ami
${ }_{\text {E2 }}^{20}$ gol twin channel or stereo
TANGENTIAL HEATER UNIT

A most efficient and quiet running blower-heater by Solatron-same
type as is fitted to many famous name heaters-Comprises mains
-nduction motor-miong turbo fan - nduction motor-iong turbo fan

- split 2 kw heating element and Thermostatic safety trio-simply connect to the mains for im-
mediate heat-mount in a simple wooden or metai case or moun
direct onto base of say kitchen control swit cold blow or off available 60 p 3KW MODEL

extra.
case with control switch
$£ 12.00$
2 k.w. model made in me
THERMOSTATS

 Refrigeration Limpet Stat must be mounted in close Appliance Stat fix like a volume control15 amp contact $30^{\circ}-80^{\circ} \mathrm{F} 85$. 8ito dito but for high temps $\mathbf{E 1} \cdot 25$. ditto but for high temps $\mathbf{£ 1 \cdot 2 5}$. Over Stat-with Serson and capiltary 85 p Wall Mounting by Satchwelt Boiler Stat. with control $20^{\circ}-80^{\circ} \mathrm{C}$

SOUND TO LIGHT UNIT Add colour or white light to your
amplifier. Will operate $t, 2$ or 3 lamps maximum
10 work. $\mathbf{E} 9.95$.

MINI-MULTI TESTER Amazing. deluxe pocket size precislon moving coil instru:
ment lewelled bearings- 1000 pov-mirrored scale. DC volts $10.50,250,1000$ AC volts 10, 50, 250, 10000
DC amps 0.1 mA
and 0.1 Continuity and resistance 0 -150K Complete with insulated probes. eads, battery, circuit diagram and instructions.
Unbelievable value only $\mathbf{£ 6} \mathbf{5 0}+50 \mathrm{p}$ post and insurance. FREE Amps ranges kit enable you to read DC current from uickly but if you already own a mini testor and would lik \equiv one

TERMS : Cash with order-but orders under $\mathbf{E 6}$ must add 50 p o offset.packing, e
BULK ENQUIRIES INVITED. PHONE: 01-688 1833.
J. BULL (EEECTRCAL) LTD
(Dept. P.W.), 103 TAMWORTH RD. CROYDON CR9 1SG

IT'S FREE
Our monthly Advance Adverlising Bargains Lis1 give
details of bargains arriving or just arrived-otten bargain which sell out betore our advertisement can bargains an interesting list and it's free-iust send S.A.E. Below are a few of the Bargains still available from previous
lines.
Telephone Ringing Mains Unit Rather novel unit as it not only
reduces mains to 50 volts but also reduces the mains frecuency reduces mains to su volts but also reduces the mains frequenc
to 25 Hz , this frequency gives correct ringing note for GPO bell These units were made for the GPO so obviously are first class Completely enclosed and safe to mount on the wall or stand on shelf. Price $£ 3.20$.
you missing calls when Bella in bakelite wall box. these will sav Price $\mathbf{\$ 3 . 1 6}$.
Variable Mains Suppty A bench mounting unit which contains an isolation transformer for satety and a 2 amp variac for adap tability. With this you will be able to get continuously variable mains supply from zero to full
saving device, price only $£ 20.75$
Anawering Machines still available as last month's newsletter but supplies are going down rapidly and this may well be your las A very large purchase this month enables us to offer a range of radio items. You will find the prices wess or Hverage: Chese have all the normal facilities record, playback, fast rewind etc., also sockets for stop/start, microphone, earphone and lead for mains as these operate from mains of He batteries. $£ 12.50$ Six Transistor Pocket Radios Medium wave only but with
Radio 2 and Radio 4 changing places, Medium wave is all th average listener will want in the future. These little radios would make a lovely gitt for a chile. Modern design and in popular
colours please state preferred colour and give an alternative colours, please s
price only y1.50.
AM/FM Radios There's no doubt that FM does give bette
reproduction in good areas so a more adult member of the family will be pleased with one of these. The ones leatherette cases and are battery/mains radios having the mains medium wave and VHF withere with mFC. Price fG. 75 . cove

larity, cassettes on the other hand numbers and cover practically every field of sound entertainment Cassettes can be played in 8 track if you have an adaptor. We ofC8.50. Soft Toy Radios Not necessarily only for the younger members of the family as these are soft and cute and have universal appeal Dolls, poodles, elephants and rabbits each with zip comparmen at the bottom where the radio fits. Medium wave only, working
from PP3 batteries. When ordering please state preference and it ossible give an alternative. $\mathbf{4} 40$.
5 Band Portable. A very impressive radio in black imitation crocodile case, size approx. 12 in . wide, 7in. high and 4in. deep This has metal embellished carrying handle and a pullout chrome
dlated FM aerial, covers the following bands AM 535 to 1605 plated FM aerial, covers the following bands AM 535 to 1605
kHz . FM 88 to 108 MHz weather band 162.5 MHz and it has a logging scale. This batterv/mains radio has the built in mains unit also serves as a charger if you use rechargeable batteries. The mains lead with plug tucks away in its own compartment, another eature is a dial indicator which shows state of batteries. A real
snip at $£ 10$-50. Car Battery Power Unit made for Rank Radio. This unit has been designed to operate 6 V battery powered equipment from a 12 V car bater, it proveses a retileble sowerce of stabinisen voltage
and gives protection to your equipment in case of accidental and gives protection to your equipment in case of accidenta reversal of connections also against excessive car battery voltage
should this occur. The unit is very robust and virually everlasting should this occur. The unit is very robust and virtually everlasting
if used sensibly. It uses a negative earth circuit but it will ooerate in a positive earth car providing the instument being played is not connected to the car chassis. A real bargain at $£ 2.20$
Exterision Speaker Cabinets A new delivery of these enables us to bring down the price quite a lot. We can now supply the mailer ones 1 la x in. x 4tin. approx., at $£ 1$. and we have a
$12 \frac{1}{2}$ in. $x 9$ in. $\times 5$ in.
in can call and collect these cabinets you can save yourself the quite considerable postage and you only have to buy a few to get a discount as well. The quantity discount for these is a speacial rate of
25% if you buy four or more Note these cabinats are very 25% if you buy four or more. Note these cabinets are very good
quality (made for Rank Audio Systems) the grill material is Dacron.
Slide Switch Bargain Double pole changeover standard size with good length of connecting wire soldered to each tag- 10 for f1-38.
Six Digit Counter Mains operated 1
1
pulse moves counter
hrough one digit, not resettable but ali you have to do is to make hrough one digit, not resettable but all you have to do is to make
note of the numbers before the start of each count. Real bargain $t 80 \mathrm{p}$
Be Prepared for possible blackours and interryptions in electricity supply this winter! Have some emergency lighting nearby
We still have the fluorescent outfits for operating lin in tubes from 12 V car battery and the price is still the same $\mathbf{£ 3 . 9 5}$ plus 50 p post complete with a 21 in tube.
Stereo Car Speskers usual type in neat compact enclosures for the rear shelf of the car. 8 ohms 5 Watt $£ 5.50$ per pair.
Bleapers $6 / 12 \mathrm{~V}$ battery or transformer operated, ideal for using in many alarm circuits but particularly for car and motor cycle alarms. These give a loud shril note. American made by Delto
Alarms. Price $\mathbf{~} 1.08+8 \mathrm{P}$. Large quantities available. Moss Usoful Timor Up to 1,2 on//ffs per 24 hours is what you
can get from the Venner time switch if you fit our adaptor. The shortest on/or off time is one hour but you can use any combinations of on/off to make up the 24 hours. An-obvious use for this is
to control immersion heaters. These are real. current consumers and even though the thermostats are working properly economies can be quite considerable if a time switch is used. Our Venners are all capable of 20 amp switch ing. There are of course many other applications for the time switch. which you wh remember in its basic form follows the sun switching on at dusk
and off at dawn Price tor, extra for plastic case $£ 1.08$ or metal case $£ 2-16+16 \mathrm{p}$. Safe Soilstat For growers who use soil heating on benches,
economies can be made by using a thermostat but if mains economies can be made by using a thermostat but if mains
voltage equipment is used then the thermostat must be enclosed vortage equipment is used then the thermostat must be enclosed in a waterproof and earthable container. We can now supply this
price $£ 3.78+28 \mathrm{p}$. This container will accept the normal immersion heater type thermostat but for soil heating you want one which over
at $£ 3.20$.
Motorised Light Flasher We can offer two motorised units both capable of 2000 W of light. Our $\frac{1}{2}$ second flasher changes every $\frac{1}{2}$
second and the 2 second flasher changes every 2 seconds Fither second
type $\mathbf{~} 6.40$
Frightening Fuel Bills could lose some of their sting if you fit double glazing but even if the fuel bill does not come down much
you will have a more comfortable home less draughts, etc. you will have a more comfortable home less draughts, etc
Double glazing frames, movabe in the Spring, can be quite easily Double glazing frames, movabie in the Sping, can be quite easily
made using ing PVC sheetings. We have this, it is as clear as glass and birtually as everlasting. It is easy to fit as you can cut it, bend it, nail it, etc. A recent purchase enables us to offer this at
well below current price. It is 600 mm (23 in wide) and available

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
"at "O" \&
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

To: International Correspondence

 SchoolsPW D276
SINCE 1890

Engineering
Farming Heating Industrial

Management
Mechanical

Purchasing Sales
Storekeeping
Work Study

DIODE SCOOP!!!

lars have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testin a sample batch revealed about 70% useable devices-signal diodes. high voltage rects and zeners may all be the incredibly low brice of $\notin 1.25$ 11000 -or a bas of 2500 for $22 \cdot 25$ Bag of 10,000 €8. Box of 25,000 \&17-50. Box of $100,000 ~ £ 62$.
50 Diode Circuits Book 75p.
PC ETCHING KIT Mk III
Now contains 200 sq. ins, copper clad board, llb. Ferric Chloride, DALO etch resist pen, abrasive cleaner, two miniature drill bits
instructions. 64.25 .

RELAYS
W847 Low profile PC mntg 10×33 $\times 20 \mathrm{~mm} 6 \mathrm{~V}$ coil, SPCO 3 A contacts 3p.
W832 Sub. min type, $10 \times 19 \times$ 10 mm 12 V coil DPCO 2 A contacts EI. 15
$\times 25 \mathrm{~mm}$. Only 56 p ac, but pin plug in relay, rated 24 V cacrs works well on 6 V DC. Con W8:9 12 V c/250R DPCO. 95 p . W8:9 12 V I25OR DPCO IA contacts.

1979 CATALOGUE

64 big pages with 50 p discount vouchers + aty prices for bulk buyers + reply paid envelope-All this for just 45p ine. post.

EDGE CONNECTORS

Special purchase of these $0 \cdot 1^{\prime \prime}$ pitch double-sided gold-plated connectors enables us to offer them at less than one-third their original list price! 18 way 41p; 21 way 47p; 32 way 72p; 40 way 90p.

RESISTOR PACK

Carbon Film 5\% mostly $\div \mathrm{W}$, few $\frac{1}{2} W$ resistors. Brand new, but have pre formed leads, ideal for PC mntg Wide range of mixed popular values at the unrepeatable price of $\mathbf{\epsilon 2} \cdot 50$ per per 5000.

DIN SOCKET OFFER

2 pin switched speaker socket. PC mounting: 5 pin 180° PC mntg or chassis mntg (clip fix). All the same price, any mix: 10 for $70 \mathrm{p}, 25$ for
$\mathrm{EI} \mathbf{6 0}, 100$ for $\mathbf{E 5 \cdot 5 0}$.

BC182B OFFER

pecial Offer for quantity users Ik $.035+$ VAT; $5 k \cdot 032$ +VAT. Price negotiable on 10k Approx. 100k avai able.

POLYTHENE SHEET
Size $36 \times 18^{\prime \prime} 200 \mathrm{~g}$. Hundreds of sheer or $\epsilon 1 \cdot 50$, Box of 1500 for $€ 19$

AIR FRESHENER KIT

 As featured in Nov. EE. Complete kit inc. case and instructions. Only $47.95+55$ p p \& p.74 SERIES PACK
Selection of boards containing many different 74 series IC's. 20 for El: 50 for $\mathbf{E 2 \cdot 2 0} ; 100$ for $\mathbf{E 4}$.

TRANSFORMERS

All mains primary: 12.0 .12 V 50 mA 35p; 100 mA 95 p ; 1 A £2.50. 6-0.6V 100 mA 85p; $1 \frac{1}{2} A \quad$ E2.40. $9-0-9 . \mathrm{V}$ 75 mA 85p; 1A $\mathrm{Ez} \cdot \mathbf{1 0}$.
Multitapped type 0-12-15-20-24-30V (A $£ 3.95 ; 2 \mathrm{~A}$ E5:35; 3A $\mathbf{6 6} \cdot 920 \mathrm{~V}$ $2 \frac{3}{4} \mathrm{~A} \quad 63.90 ; 25 \mathrm{~V} 1 \frac{3}{4} \mathrm{~A} \quad 62.25 ; 12 \mathrm{~V} 8 \mathrm{~A}$ E4; $24 \mathrm{~V} 5 \mathrm{~A} \quad 67 \cdot 50 ; \quad 0-22$-34-4IV $4 A$ $£ 7 \cdot 50 ; 20 \mathrm{~V}+300 \mathrm{~mA}$ twice $\mathrm{E2} \cdot 50$;
$12 \mathrm{~V} @ 250 \mathrm{~mA}$ twice $\mathrm{E2} \cdot 00$.

HEAT SINK OFFER

Copper TO5 sink 17 mm dia. $\times 20 \mathrm{~mm}$
10 for $40 \mathrm{p}: 100$ for $\mathbf{6 3 ; 1 0 0 0 \text { for } \mathrm { E25 } \text { . }}$

FANE NEW "POP" RANGE SPEAKERS
 Improved appearance - higher sensitivity

RADIO HFCHANCH MMHMHD

NEW ELECTRONIC MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pietorial and Circuit Diagrams
Projects:
V.H.F Tuner Module \star A.M. Tuner Module \star M.W.L.W. Diode Radio \star Six Transistor V.H.F. Earpiece Radio \& Two Transistor M.W. L.W. with variable beat control \star Three Wransistor and Diode Radio M.W. L.W. t Four Transistor Push Pull Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier A Sensitive Hearing Aid Amplifier \star Three Transistor and

Diode Short Wave Radio Diode Short Wave Radio $\begin{gathered}\text { Signal } \\ \text { Tracer } \\ \text { K Three Transistor Push Pull }\end{gathered}$ Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker t Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio太 Four Transistor M.W. L.W. and Diode Tuner | \star |
| :--- |
| M.W. Five Transistor | M.W. L.W. Trawler Band Regenera-

tive Radio tive Radio \star Five Transistor V.H.F.
Tuner \star Three Transistor Code PracTuner \star Three Transistor Code Prac-
tice Oscillator \downarrow Five Transistor tice Oscillator \star Five Transistor
Regenerative Short
Wave Radio Regenerative Short Wave Radio
\star Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio \star Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output \star One Transistor Home Broadcaster.
$814 \cdot 99$ + P\& P \& $1 \cdot 10$

V.H.F. AIR
 CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions suppiied free with all parts. Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{2}$. All parts including case and plans. 24.95 + P \& P (P and

Self Contained Multi-Band V.H.F. Receiver Kit. 8 transistors and 3 diodes. Push pull output. 3 in . loudspeaker, gain contral, 7 section chromeplated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will capacitors, transistors, etc. Wil
receive T.V. sound, public receive T.V. sound, public
service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts

NEW MODEL R.K.1.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diades. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

EDU KIT JUNIOR

Completely Solderless Electronic Construction Kic. Build these pro ects without
\star Crystal Radio Medium Wave
Coverage-No Battery necessary
\star One Transistor Radio
$\star 2$ Transistor Regenerative Radio

* 3 Transistor Earpiece Radio

Medium Wave Coverage

* 4 Transistor Medium Wave Loudspeaker Radio
\star Electronic Noise Generator \star Electronic Metronome $\star 4$ Transistor Push/Pull Amplifier All parts including Loudspeaker, Earpiece, M.W. Ferrite Road Aerial, Capacitors, Resistors, Transistors, etc Complete kit of parts including construction plans:
86.95 + P\& P (ns. 90 p and

NEW ROAMER TEN

MQDEL R.K.3.

Multiband V.H.F, and

A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime}$ $\times 3^{\prime \prime}$ Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V Sound, Public Service Band Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., ChromeTrawler Band, etc., Chrome-
plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. Wave Change and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery.
Complete kit of parts including carrying strap. Building Instructions and operating Manuals.
£14.79 + PREP
E.V. 6 PLUS ONE

Build this exciting new design Now with 7 Transistors and 4 diodes. MW/LW. Powered by 9V battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in. loudspeaker. Attractive case with red speaker grille. Size $9 \mathrm{in} . \times 5 \frac{\mathrm{t}}{4} \mathrm{in} . \times 2 \frac{3}{4} \mathrm{in}$. approx. All parts including Case and Plans.
Total Building Costs:
$86.95+P \& P$ and

EDU-KIT MAJOR

Completely solderiess Electronic Construction Kit. Build fifteen projects including:-
Signal Injector Transistor Tester NPN-PNP 7 Transistor Loudspeaker Radio MW/LW 5 Transistor Short Wave Radio.
Components include:

- 24 Resistors 21 Capacitors
- 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker Earpiece Mica Baseboard 3 12-way Connectors - 2 Volume Controls 2 Slider Switehes 1 Tuning Condenser - 3 Knobs Ready Wound MWI LW/SW Coils Ferrite Rod $6 \frac{1}{2}$ yards of wire- 1 yard of sleeving, etc. Complete kit of parts including construction plans.
Total building costs:
P9.9! + PEP and
RADIO CONSTRUCTION KIT Q^{7}

A compact small
radio kit covering
Medium Wave and
Long Wave bands.
Rugged Micanite con-
struction and simple
square design allows
for easy carrying and positioning. ideal for the Garage, Workroom Kitchen, etc., has seven Transistors and four Diodes, quality Loudspeaker ready wound Ferrite Rod Aerial and Carrying Strap. Size $4 \frac{1}{\prime \prime}^{\prime \prime} \times 4 \frac{7}{1 "}^{\prime \prime} \times 4 \frac{2}{7}$ All parts and plans excluding iv PP7 Battery.

\&6.25 + P \& $\mathrm{P}_{\mathrm{in} .75 \mathrm{and}}$

POCKET
FIVE

NOW WITH $2 \frac{3}{4}{ }^{\prime \prime}$ LOUDSPEAKER
3 Tuneable wavebands. M.W. L.W., and Trawler Band, 7 stages, 5 transistors and 2 diodes supersensitive ferrite rod aerial attractive black and gold case. Size $5 \frac{1^{\prime \prime}}{2} \times 1 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ approx All Parts including $C a s e$ and Plans.
Total Building Costs
£4.95 + P ins. 80p and
To: RADIO EXCHANGE LTD
6IA High Street, Bedford MK40 ISA
Tel.: 023452367

- Callers side entrance "Lavells" Shop.

Open 10-1, 2.30-4.30 Mon.-Fri. $9-12$ Sar.
Reg. No. 788372

I enclose £........................for...
Name
Address ..

PW279

ambit -
 internatianal

Production of the new catalogue has been held up for a few weeks - since we have just been appointed as distributors for two of the most exciting ranges of radio components products yet : The Micrometals range of iron dust torroids cores and formers, and the OKI range of VLSI for digital frequency displays for receivers. We apologize for any inconvenience, but these two ranges are really worth the wait and include some products you will find hard to believe, like the MSM5523 IC, an IC with less than ten external components that gives AM frequency readout to $\mathbf{1 k H}$ from $L W$ to $39.999 \mathrm{MHz}^{2}$, FM frequency readout in 100 kHz steps - (all usual IF offsets programmable by diodes), a 24 hour format clock with 12 hour display. independent on and off timers, time signals on the hours, stopwatch facility and a sleep timer. This costs $£ 14$ with its timebase crystal, and makes all that has gone before an expensive and time wasting excercise. Rather like the way the Intersil ICM7216 has revolutionized the instrument counter market. (See the OSTS ad. And those of you familiar with Amidon and IG dust torroids, favoured in many new RF designs, will be pleased to know Ambit will be stocking a broad range of the Micrometals types for applications from EMI filters to RF PA stages
OKI frequency counter ICs: details in cat2
MSM5523, for CA LEDS with RHDP such
MSM5525 for $3 / 2$ digit LCD AM/FM with direct segment drive. no clock or timers f11 inc xtal Other types for fluorescent displays etc $O A$ Other new semiconductor additions KB4437 pilot cancel mpx decode KB4438 muting stereo preamp HA1370 supercedes TOA2020 TDA 1090 HiFi AM/FM

A brief summary of some of our range of ICs:
TDA1062/1.95; TDA 1083/1.95; HA1197/f1.40 CA3123E/E1.40; TBA651/E1.81; CA3089/1.94
HA1137/E2.20; MC1310/f2.20; HA1196/53.95 KA1 137/£2.20; MC1310/£2.20; HA1 196/£3.95
KB4424/£2.75; KB4423/£2.53;SD6000/£3.75 KB4412/£2.55; KB4413/£2.75; KB4417/£255 MC1495L/f6.B6*; MC1496P/E1. 25 LM3B1 N/£1.81; ĹM1 303/£0.99; ULN2283B/ £1.00; LM380N/E1; TBA810AS/E1.09 TCA940E/E1.80; TD A2002/£1.95; 1CL8038CC/E4.50*; NE566/E2.50"; NE567/ £2.50*; NE5608/£3.50; NE5618/£3.50: E562B/E3.50*; NE565A/E2.5 SEE THE OSTS ADVERT FOR CMOS/TTL ReGULATORS, OPTO DISPLAYS, and other .
Some transistors for RF specifically: BF256LB/0.34; 40822/0.43*; 40823/0.51 BF224/0.22; : BF274/0.18; BF195/0.18: BF224/0.22; BF274/0.18; BF195/0.18;
BF240/0.22; BF241/0.22; BF362/0.70; BF479/0.86; BF679S/0.70; BFY90/0.90*
PIN and other Varicap diodes:
BA102/0.30; BA1 21/0.30; 1TT $210 / 0.30$ BB104B/0.40: MVAM2/E1-48: MVAM115/ BA479/0.35; TDA1061/0.95; BA182/0.21 METER MADE low cost panel meters 3×930 series with blanks and dry transfer sheet of scales and ledgends for E12.5

DA1220 low cost AM/FM PRICES DOWN ON VMOS: as expected, this new technology in power transistors is getting
cheaper. 120 v comp pairs $/ 100 \mathrm{~W}$ for f 10.00 Price reduction on CA3189Enow E2.20 New varicaps: to add to the biggest range. KV1211 2:9v bias to tune MW, like the New pitot tone filters from TOKO....
208BLR series, individual per channel with a $26 / 38 \mathrm{kHz}$ version for pilot cancel decoder applications. Flat to 15 kHz
TOYO 10M4B1 with over 90dB adjacent ToYo $10 \mathrm{M4B1}$ with over 900 B adjacent ch .
rejection for 2 m NBFM. $10.7 \mathrm{MHz} \quad £ 14$ New ceramic IF filters for 455 kHz CFM $455 \mathrm{H} 6 \mathrm{kHz} / 6 \mathrm{~dB}, 15 \mathrm{kHz}$ max. $/ 60 \mathrm{~dB}$ ideal for MC3357 etc.

At lust, IIY Hifi which lonks as if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb. A small pic here would be an insult, so send an SAE for details on the kit that looks as if isn't. It's something else....

```
* Exceptionally high performance - exceptionally straightforward assembly Baseboard and plug-in construction. Future circuit developments will readily plug in, to keep the MkIII at the forefront of technical achievement to the system
```

and now previewing the matching 60W/channel VMOS amplifier:
> * Matching both the styls and design concepts of the MkIII HiFi FM tuner - Hitachi VMOS power fots - characterized especially for HiFi application Vower output readily multiplied by the addition of furtier MOSFETs Backed with the usual Ambit expertise and technical capacity in audio

The PUU Darchester•LU,IMU,5U, \& FII stereo tuner

In much the same way as we have swept away the 'old technology' in frequency/timer counters - with the OKI and Intersil single IC counters, we now offer a single IC "All Band" radio tuner. Don't confuse this one chip radio with things like the ZN414 - for this is a genuine superhet receiver with a mechanical AM IF filter, and ceramic IF filters for FM. The AM section employs a balanced input mixer section, covering all broadcast bands - plus a BFO and MOSFET product decetor for SSB/CW - though at this price, the tuner is not intended as a "communications receiver" . although we know of many lesser designs that make that claim. The AM sensitivity is nevertheless better than 5uV, and FM sensitivity is 1.2 uV for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. As a multiband broadcast superhet receiver, it is a unique constructor project that fulfills the requests we very frequently get for a general coverage circuit that isn't over complicated. The set has CA3089E FM performance, with mute etc., and a PLL stereo decoder with full pilot tone filtering.
The tuner board - with "on board" PCB mounted switching, all components etc : $£ 33.00$ The case/cabinet with PSU, meter and mechanics etc
An SAE for full details please. See the feature article in Practical Wireless (Dec/Jan)

2 Gresham Raad, Brentwand, Essek.

SINCLAIR PRODUCTS microvision 990. PDM35 £27.25. mains adaptor $£ 3 \cdot 24$. case £3-25. DM235 £48-30. rechargeable battery units $£ 8$. adaptor/charger $£ 3.70$: case E8.50. cambridge prog calculator E13.13. prog library E3.45. mains adaptor £3.20. enterprise prog calculator £21.95. DM350. DM450 p.o.a.
COMPONENTS send sae for full list. 1 lb FeCl f1.O5. dalo pen 73 p .60 sq ins pcb 55 p . laminate cutter 75 p . small drill 20p. zn 414 case f1. 1N41481.4p. 1N4002 2.9p. 723 29 p .74115 p . NE555 23p. bc 182 b , bc183b, bc $184 \mathrm{~b}, \mathrm{bc} 212 \mathrm{~b}, \mathrm{bc} 213 \mathrm{~b}, \mathrm{bc} 214 \mathrm{c}$ 4.5p. plastic equivs bc107. bc 109 4.8p. JW 5% E12 resistors 10 R to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value. 16 v electrolytics
$5 / 1 / 2 / 5 / 10 / 22 \mathrm{mf} 5 \mathrm{p}, 100 \mathrm{mf} 6 \mathrm{p}, 1000 \mathrm{mf}$ 10 p . polyesters $250 \mathrm{v} \cdot 015,-068,1 \mathrm{mf} 1 \mathrm{p}$. polystyrenes 63 VE 12 10pf to 10 n 3 p . zeners 400 mW E24 $2 v 7$ to $33 v 7 \mathrm{p}$.
TV GAMES send sae for data. AY-3-8500 + kit $£ 8.95$. AY-3-8600 + kit $£ 12 \cdot 50$. tank battles chip f6.90, kit 57.05 , stunt cycle chip $£ 6.90$, kit $£ 5.60$. rifle kit $£ 4.95$.
11 a f $2.35,6.3 v 1 \frac{1}{2} a \mathrm{f} 1.89 \mathrm{v} .9-00 \mathrm{ma} 74 \mathrm{p}$.

74p, 1a £2, 2a £2.60. 12-0-12v 100m $90 \mathrm{p}, 1 \mathrm{a} \mathrm{f} 2.49$.
IC AUDIO AMPS with pcb JC12 6W £1.60. JC20 10W £2.95. JC40 20W £2.95 BATTERY ELIMINATORS 3-way typ $6 / 7 \frac{1}{2} / 9 \mathrm{v} 300 \mathrm{ma} £ 2 \cdot 95$. 100 ma radio typ with press-studs $9 v . £ 3.35,9+9 \mathrm{v} £ 4.50$ stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 400 \mathrm{ma} \mathbf{£ 6} \cdot 40$. 12 v car convertors $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 800 \mathrm{ma} £ 2.50$ BATTERY ELIMINATOR KITS send sae $4 \frac{1}{2} v £ 1.40,6 \mathrm{v} £ 1 \cdot 40,9 \mathrm{v} £ 1 \cdot 40,4 \frac{1}{2}+4 \frac{1}{2} \mathrm{v}$
 8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{~m}$ $\mathrm{f} 2 \cdot 80$. $1 \mathrm{Amp} \mathrm{f} 6 \cdot 40$. stablized power kit $2-18 \mathrm{v} 100 \mathrm{ma} £ 3 \cdot 60,2-30 \mathrm{v}$ 1A $£ 6.95$ $2-30 \mathrm{v} 2 \mathrm{a} \mathrm{f} 10.95$. 12 v car converto $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ a 1 £ 1.35 .
T-DEC AND Csc
T-DEC AND CSC BREADBOARDS 5 -dec
 exp350 £3.40. $\exp 650$ £3.89. exp4b f2-48. BI-PAK AUDIO MODULES s $450 £ 23.51$ AL60 £4.86. pa 100 £ 16 .7.1. spm 80 £ 4.4 bmt80 f5.95. stereo 30 £20. 12.
SWANLEY ELECTRONICS (Dept PW) 32 Goldsel Rd., Swanley, Kent Post 30p extra. prices include VAT

STEPHENS-JAMES LIMITED
 COMMUNICATION ENGINEERS

47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND
Telephone (0942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers. Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp.

$\xrightarrow[\text { FRG7-FRG7000 }]{ }$
 FRG7-FRG7000-FR101

SSR-1 * Drake * RAC *

Secondhand Equipment

 Our secondhand equlpment changes dally. Send S.A.E. for latest price ilst, Part exchanges welcome.Access-Barclaycard and Access-Barclaycard and H.P. facilities.

R-300-RTR99 - R820S
Antenna multituners Designed and manufactured by ourselves. cQuntries.i Antenna Switchos Mk2 covers $550 \mathrm{Khz} 30 \mathrm{Mhz} \quad £ 25.00$ pricesinclude VAT and postage.
Send SAE for Test report. Send SAE for Test report.

PRACTICAL WIRELESS T.V. SOUHD TUYER
(Nov. 75 articla by A.C. Alnalle) Copy of original article supplfed on request
IF Sub-Assembly (G8) £6.80. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner£5.50. P \& P35p.
3-way Station Control Unit £1-20. P \& P 25p.
6 -way Station Control Unit (Special Offer) $£ 1 \cdot 00$.
Power Supply Prtd Circuit Board $£ 1 \cdot 00$. P \& P 30p.
Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$.
Mains Transformer for above $\mathbf{2 2 \cdot 5 0}$. P \& P 30p.
Add $12 \frac{1}{2} \%$ VAT to price of goods. $\mathrm{P} \& \mathrm{P}$ all items 85 p .
Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

Start the New Year well by treating yourself to this famous Components Catalogue

- The finest components catalogue yet published.
- 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Profusely illustrated.
- Bargain List sent free.
- At $£ 1.25$, incl. p. \& p., the catalogue is a bargain.
Send the coupon below now. HOME RADIO (Components) LTD. Mitcham, Sturrey CR4
 with cheque or P.O. for $£ 1.25$ \qquad

B．BAMBER ELECTRONCS

OSMOR 10V REED RELAY COILS ik ohm COII）CHOKES wound on ${\frac{10}{\prime \prime} \times 1^{\prime \prime} \text { long ferrites．}}_{\text {HF }}$ 4 for 50p．
VHF CHOKES
lerrites． 5 for 40 p
DUAL TOIE HEATSINKS 1
with screw－In clamps． 3 for 50 p ．
MAINS TESTER SCREWDRIVERS 100 to 500 V ．Standard slze 50 p ．Large 70 p ．

 MINIATURE FILE SETS．Set of $6 \mathbf{~ E 2 \cdot 2 0}$ TAP AND DIE SETS（18 plece）contain Taps，Taper Taps＋American type ta wrench，Ttype tap wr＇ch，Die Holder． $\mathbf{E 1 2} 50$. LARGE ELECTROLYTIC PACKS．Con tain range of large electrolytic capacitors low and high voltage types，over 40 pleces

SIlder Switches． 2 pole make and break（o can bo used as 1 pole change－over by linking the two centre pins）， 4 for 50p．

DUE TO A CHANGE OF SUPPLIER
OUR STOCK ALUMINIUM BOXES AND STNYL COVERED EQUIPMENT CASES WILL BE AS FOLLOWS

Vinyl Equipment Cases
Blue Vinyl covered steel tops with plain aluminium lower sections

HANS TRANSFORMERS．Type 15／300 240 V Input． 15 V at 300 mA output．c1 50 each． MAINS TRANSFORMERS．Type $45 / 100$
$240,220,110,0 \mathrm{~V}$ input． 45 V at 100 mA output $240,220,110,0 \mathrm{~V}$ input． 45 V at 100 mA output
69.50 each．

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED
CELESTION $8^{\prime \prime}$
SPEAKERS， 20 ohm， 3 watts rated，ELIPTICAL 50 each＋12⿺辶⿳亠二口丿⿳八人口又寸，VAT．
IC AUDIO AMP PCB．Output 2 watts Into 3 ohm speaker， 12 CDC supply，size approx． $5 \frac{1}{2} \times 1 \frac{1}{2} \times{ }^{2}$ high，with intergal heatsink，
complete with circuits，$£ 2 \cdot 00$ each． NICAD CONVERTER PCB，（Low nower inverter）．Size approx． 4×1 发r $\times \mathbf{1}^{\text {n }}$ high
$12 V D C$ supply， 60 V DC outout，through Do $12 \mathrm{~V} D C$ supply， 60 V DC output，through pot charging portable batteries from moblle supply）．Orlu ：Ieeds one BFY50／51／52 or similar transistor，which can be mounted direct on the pcb pins on board，fited with
star－type heatsink（Not Supplied）．$£ 2 \cdot 00$ each． tar－type heatsink（Not Supplied）．$£ 2 \cdot 00$ each THE NEW EAGLE INTERNATIONAL CATALOGUE IS AVAILABLE ON RE test equipment，etc．
DECIMAL KEYBOARDS，pressure serisi DECIMAL KEYBOARDS，pressure senisi－
tive tyoe，when pressed contacts go from O／C to approx． 25 ohms．Switches only，no ancoders．Size approx． $3^{\prime \prime} \times 3^{\prime \prime}$ ，with large square touch plates． $0-9+$ Clear，A_{1}, B_{1} Dual Watch，and spare．Few only，$£ 2 \cdot 00$
while stocks last． TYPE 8079 FULL RANGE SPEAKER， $10^{\prime \prime}$ TYPE 8079 FULL RANGE SPEAKER， $10^{\prime \prime}$
dIa， 15 ohm，£5－00 each（or 2．for $£ 9 \cdot 00$ ）+ 12\％\％VAT． SEMICONDUCTORS 5×20（VHF Osc／Mult）． 3 for 50 p BC108（meral can）， 4 for 50 p ． FY54（plastic BC108）． 5 for 50D． 8 CY72 Transistors． 4 for 60 p ． NP audlo type TOS Translstors， 12 for 25p N 3819 （UHF amp／mixer）． 3 for 50 p ． C148 Fen．， 3 for 80p．
C158 PNP SILICON， 4 for 50p． AY 31 Signal DIodes 10 for 35 ． AY 31 Slgnal Dlodes， 10 for 35p C107（Metal can） 4 for 50
TIP2955 Sillicon PNP power transistor $\mathbf{4 0} \mathbf{V}$ at 15A， 90 Watts，Flat pack type， 2 for $£ 1.50$ GERMANIUM DIODES，approx 30 for 30 p ． 741CG op amps by RCA， 4 for $£ 1$ ． RED LED：（Min．type） 5 for 70p．

SPECIAL DFFER FOR COMPUTER BUILDERS，ETC．

 19 way ribbon cable．decimal coded， 4 metres for $£ 1.25$ 13 way hasy－duty ribbon cable，decimal coded，fideal for PSU（uns）＇ 3 metres lor $£ 1 \cdot 50$CLAREED REED RELAYS，complete with reeds，TYPE 1 ，Size approx． $2 \frac{1}{4} x$
$\frac{3}{2} \times 2$ pole make， $9 V 400$ ohm coil 35 p each．TYPE 2 ，Size approx． $2 \frac{1}{\frac{1}{3}} \times 1 \frac{1}{3} \times$ $\frac{1 " \prime}{2}, 2$ pole make +2 pole break， $2 \times 9 \mathrm{~V} 200$ ohm coils，60p．each．
VIDICON SCAN COILS（Translstor type， but no data）complete with vidicon bas
IC TEST CLIPS，clip over IC while stlli soldered to peb or in socket，Gold－plated pins，ideal for experimenters or service
engineers． 28 pin DIL $£ 1 \cdot 75$ ， 40 pin DIL $\mathrm{E} 2^{-00}$ ：Or save by buylng one of each for 3．50． GLASS BEAD FEEDTHROUGH INSU－ LATORS．Solder－In type，overall dla． approx． 5 mm ，Pack of approx． 50 for 50 p ． PLASTIC PROJECT BOXES with acrew

DIE－CAST ALUMINIUM BOXES
Send for Latest Price Llst．
PLUGS AND SOCKETS
BNC Plugs，new 50p each．
N－Type Plugs 50 ohm，60p each， 3 for E ． 50. PL259 Plug：（PTFE）brand new，packed with reducers， 75 peach ．
SO239 Socket（PTFE），brand new（4－hole xing type）．60p each．
SOLDER SUCKERS（Plunger type）．Stan－ SOLDER SUCKERS（Plunger type）．Stan－ Nozzles 00p each．Sirted Model eki Spare NEW MARK8MA NEWMARKE N140D 40 W 240 V E4． 50.
S125DK 25 W 240 V ＋bits etc．，KiT £5． 30. BENCH STAND with spring and sponge for Markeman Irons E2．
Spare blts MT9（for 15 W ）60p．MT5（for 25 W 50 P, MT10（for 40 W ） 55 P ．
ALL PRICES $+8 \%$ VAT

TCP2 TEMPERATURE CONTROLLED
Temperature controlled Iron and PSU．$£ 30+$ VAT（£2．40）．
SPARE TIPS
Type CC single flat．Type K double flat fine tip，Type P，verv fine tip $£ 1.50$ each＋VAT 8p）．MOST SPARES AVAILABLE

WELLER SOLDERING IRONS

EXPERT Bullt－in－spotlight Illuminates work．Plstol grlp with fingertip trigger．High Efficlency copper soldering tip
EXPERT SOLDER GUN BIOOD E12．00
EXPERT SOLDER GUN KIT（spare blts，
case，ete．）£15－00．Spare blts 40 p pair．
MIXED COMPONENT PACKS，contain－ Ing resistors，capacitors，pots，efc．All new． Hundreds of ltems． E 2 per pack，while stocks
last．
BSR AUTOCHANGE RECORD PLAYER DECKS with cue device，33－45－78RPM， for $7 "{ }^{\prime \prime}{ }^{\prime \prime},{ }^{12 \prime \prime}$ records．Fitted wlth SC12M
Stereo Ceramic cartridge and styll．Brand new $£ 14.00+12 \% \%$ VAT．
GARRARD AUTOCHANGE RECORD PLAYER DECKS，Model 6．300，with cue
device， $33-45-78$ r．p．m．，for $7^{\prime \prime}$ ， $10^{\prime \prime}$ ， $12^{\prime \prime}$ device， $3345-78$ r．p．m．for $7^{\prime \prime}, 10^{\prime \prime}$ ， $12^{\prime \prime}$ records．Fitted with KS41B Stereo Ceramle
cartrdge and styll Brand new E16．00 $+12 \frac{1}{2} \%$ VAT．Pleas note，record decks sent by Roadilne，allow 14 ＇days for dellvery．
FULL RANGE OF BERNARDS／BABANI S．A．E．FOR LIST．
VARICAP TUNERS Mullard tyde ELC1043／ 05．Brand New，$£ 5 \cdot 00+12 \frac{1}{2} \%$ VAT
BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS．Up to 50 V working．Seatronlc Manufacture．Approx
$100 . £ \leqslant 50$ per pack $+12 \frac{1}{2} \%$ VAT．
Dubliler Electrolytics， $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p ． Dubller Electrolytlcs， $100 \mu \mathrm{~F}, 275 \mathrm{~V}$ ， 2 for 50 p Pleasey Electrolytics， $470 \mu \mathrm{LF}, 63 \mathrm{~V}$ ， 3 for 50 p ． TCC Electrolytics， $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 60 p ． Dubller Electrolytics， $5000 \mu \mathrm{~F}, 50 \mathrm{~V}$ ， 80 p each ITT Electrolytics， $6800 \mu \mathrm{~F}$ ， 25 V ，high grade screw terminals，with mounting clips，50p each．
PLEASE ADD $12 \frac{1}{2} \%$ VAT TO ALL

Terms of Business：CASH WITH ORDER．MINIMUM ORDER £2．ALL PRICES INCLUDE POST \＆PACKING，UK ONLYI SAE with ALL ENQUIRIES

Please please add vat as shown．all goods in stock despatched by return callers welcome by appointment only

Telephone 04＊440／5841 MAIL ORDER ONLY．MINIMUM ORDER s0p Some leading makes available．VAT invoices $/ 5$ sued on request．
All New and Boxed．＂Quality＂Branded Valves．Guaranteed 3 months．BVA etc． 6% Allowed in lieu of Guarantee I Already deducted from our Prices！

PROGRESSIVE RADIO

MICROPHONES：EM506 Electret Dual Imp（50K $+600 \Omega$ ）Imp Stick Mic，with Battery EM104 Tie Clip，Electret supplied with battery 1 K imp $£ 4 \cdot 95$ ．UDi30 Duel imp（ $50 \mathrm{~K}+600 \Omega$ ） moving－coil dynamic mic，cardied respanse £8－25p．
Solid state buzzers，miniature， $6-9-12-24$ volt 15 ma 75 p each ． Solid state buzzers，miniature，6－9－12－24 volt 15 ma 75p each．
MAINS TRANSFORMERS，all 240 V AC primary，postan
transformer．6－0－6 100 ma，9－0－9 75ma，12－0－12 50ma 75p each（15p）．0－4－6－9 in brackets pe ing bracket， 65 p （ 20 p ）．12－0－12 100 ma 95 p （ 15 p ）． 12 V 500 ma 95 p （ 22 p ）． $12 \mathrm{~V} 2 \mathrm{amp} £ 2 \cdot 25$（ 45 p ）
 30 V tapped at $2 \mathrm{amp} £ 4 \cdot 50$（ 54 p ）． $20-0-20 \mathrm{~V} 2 \mathrm{amp} £ 3 \cdot 50$（ 54 p ）． $25 \mathrm{~V} 1.5 \mathrm{amp} £ 1 \cdot 45$（45p）．
$18 \mathrm{~V} 1 \cdot 5 \mathrm{amp}$ rectified $£ 2.00$（ 45 p ） $35 \mathrm{~V} 2 \mathrm{amp} 2 \cdot 5 \mathrm{~V} 2 \mathrm{amp}$ Torold $£ 2.95$（ 54 p ）． $20 \mathrm{~V} 2 \cdot 5 \mathrm{amp}$ ， £2． 20 （54p），Murata MA401L 40 KHZ rec／send transducers $£ 3-25$ Dair．
SMITHS TRANSISTORISED AUDIBLE WARNING DEVICE， $6-12 \mathrm{~V}, 30 \mathrm{p}$ BOARDS SURPLUS．Reed Board with 14 12v Reed SP c／o RLA＇S £i：75．LM 309 K 5 Requlator Panel 65p
NEW LOW COST MULTIMETERS，\quad KRT100， 1000Ω ．PV． 1 kV AC／OC．， 150 mA DC current， 0 －100K』 res．mirror scale，switched range selector，E4．65．
KRT101，same as KRT 100 but range selection is by prod insertion，£3．50．
TAPE HEADS Mono Cassette $£ 1 \cdot 30$ ．Stereo version $£ 3 \cdot 00$ ．
SOLDER SUCKER，high suction eye protection shieid $£ 4$
SOLDER SUCKER，high suction eye protection shieid $£ 4.95$ ．
PROJECT BOXES，black plastic ABS with lid $75 \times 56 \times 3544$ ； $95 \times 71 \times \mathbf{3 5}$ 52p $115 \times 95 \times 3660 \mathrm{p}$ ．
TERMS：cash wlth order，（or official orders from colleges etc）．Postage $30 p$ unless other－ wise shown，overseas pos
now ready．S．A．E．please．

Progressive Radio， 31 Cheapṣide，Liverpool L2 2DY．Tel： 0512360982.

Post now, without obligation, to:-
WB279

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P.O. Box 156, Jersey, Channel Islands.
NAME
ADDRESS

\qquad

TWIC I.C.E. mutrimetras

TWICE the informat on
in HALF the Size
$=\leq=\leq:=$

Supertester 680R (illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \% \mathrm{fsd}$ on a.c.
* 80 Ranges -10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$

$\mathbf{E 3 2 . 0 0}+\mathbf{V A T}$
 (For Mall Order add 80p P\&sp)

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 48 Ranges -10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{£ 2 4 . 5 0 ~ + ~ V A T ~}$
(For Mail Order adí 80p P\&P)

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \% \mathrm{fsd}$ on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
$\mathbf{£ 1 6 . 6 0 ~ + ~ V A T ~}$
(For Mail Order add 80 p P\&P)

All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc. and a 50 -plus page, fully detailed and illustrated Operating and Maintenance Manual.
Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

Electronic Brokers Ltd.
49-53 Pancras Road, London NW1 2QB Tel: 01-837 7781

－Q VALVE MAIL ORDER co． CLIMAX HOUSE，FALLSBROOK ROAD， LONDON SW16 6ED

 SPECIAL EXPRESS MAIL ORDER SERVICE
SEMICONDUCTORS

VALVES

CBL31	$\mathbf{1 . 5 0}$	ECC84	0.60^{*}
CL33	2.00^{*}	ECC85	0.55^{*}

\section*{| CL33 | 2.00^{*} | ECC85 | 0.55^{*} |
| :--- | :--- | :--- | :--- |
| CY | 1.00^{*} | ECC88 | 0.75^{*} |}

DAF91† 0.40^{*} ．

\section*{}
 \section*{ロ
 \section*{ロ
 | DKS1 | 1.00^{*} | E |
| :--- | :--- | :--- |
| DK92 | 1.25° | E |
| DK96 | $\mathbf{1 . 1 0 ^ { \circ }}$ | E |
| DK | | |}

No웅

 E8BCCt 100

$\begin{array}{ll}\text { EABCBO } & 0.55^{\circ} \\ \text { EAC91 } & 0.50\end{array}$
EAC9

葠

EB41
EB91
EBC

mmm
$\begin{array}{ll}\text { EBL31 } & 2 \\ \text { ECC40 } \\ \text { ECC81t } & 0 \\ \text { ECC82 } & 0\end{array}$
$\underline{\underline{\left(E F 184 T ~ 0.70^{\prime \prime}\right.} \text { KTW63 1．75＂}}$

2N929	0.37	2N3417	0.25	2N4062	0.20	2N5245	0.37	AF106	0.60	BC182L	0.	AY-3-8500	6.50	CA3051	1.83	LM	0.83	LM	0.70	M7805KC	75	SN	50
2 N 930	0.37	2N3439	0.35	2N4121	0.27	2 N 5248	0.44	AF109	0.32	BC183A	0.12	CA3000	3.30	CA3052	1.78	LM340T12	0.13	LM741C-8	0.30	LM7812KC	1.75	SN76012NO	1.30
2N1131	$0 \cdot 32$	2N3441	0.92	2N4122	0.27	2N5293	0.44	AF114	0.70	BC183LA	0.15	CA3001	4.25	CA3053	0.77	LM340T15	0.83	LM741C74	0.30	LM7815KC	1.75	SN76018KE	1 1.60
2N1303	0.30	2N3442	1.45	2N4123	0.19	2N5294	0.44	AF115	0.70	AC184	0.12	CA3002	3.30	CA3054	1.10	LM340124	0.83	LM747CN	0.99	LM7824KC	1.75	SN76023N	1.50
2N1305	0.30	2N3565	0.25	2N4124	0.19	2N5401	0.44	AF118	0.70	BC184L	0.15		50		2.10		0.80						
2N1501	0.35	2N3566	0.25			2N5415,	1.65	AF124	0.70	BC205	0.17		2.60	Ca3059	2.75	LM341P5		LM748-8	0.50	LM78L12CZ	0.30	SN76023NO	1.30
2N1613	0.30	2N3567	0.25	2N4125	0.19	$2 N 5447$	0.16	Af139	0.75	8C212A	0.15	CA3006	4.60	CA3062	3.75 1.10	LM341P12	$0 \cdot 80$	LM748-14	0.50	LM78L15GZ	0.30	SN76033N	2.35
2N1637	0.72	2N3638	0.17	${ }_{2}{ }_{2} \mathrm{~N} 4235$	1.35	2N5443	0.16	AF200	1.30	BC212LA	0.13	CA3007	4.15	CA3084	1.10	LM341P15	$0-80$	LM716	1.00			SN76110N	1.30
2N1890	0.30	2N3639	0.38	${ }_{2}{ }^{\text {N4235 }}$	1.65	-2N5449	0-20	AF201	1.30	BC2138	0.15	CA3008	2.55	CA3065	1.10	LM341P24	0.89	LM900	0.50	LM		SN76115N	1.65
2N1893	0.30	2N3644	0.40	${ }_{2} \mathrm{~N} 4236$	1.65	2N5457	0.35	AF239	0.70	BC213LA	0.17	CA3012	1.65	CA3068	3.80	LM348N	0.95	LM911	0.50	MC1035P	1.90	SN76116N	1.80
2N1991	1.10	2N3662	0.25	${ }^{2 N}{ }^{\text {N423 }}$		${ }^{2}$ 25458	0.35	AF240	1.25	BC214	0.17			ca3070	1.90		0.60	LM921	0.50	MC1327P	1.70	SN76131N	1.30
2N2193	0.50	2N3663	0.29	2N4250	0.26	${ }^{\text {2 }}$ N5555	0.65	AF279	0.88	BC214L	0.18	CA3014	2.20	CA3071	1.90	LM360N	3.00	LM923	0.50	MC1330P	110	SN76226N	1.68
2N2194	0.42	2N3702	0.14			2N6109	0.55	AF280	0.95	8C2378	0.15	CA3018	0.75	Ca3072	1.90	LM370N	3.30	LM1303N	1.15	MC1352P	1.20	SN76227N	1.30
2N2217	0.55	2N3703	0.14	2N4266	0.32	2N6122	0.44	ASY28	1.30	BC238B	0.13	CA3018A	1.10	CA3075	1.70	LM371H	2.35	LM1304N	1.52	MC1435G	3.65	SN76238N	1.55
2N2218	0.35	2N3704	0.14	2 N 4284	0.38			ASY55	0.70	BC239C	0.17	CA3020	2.20			LM350K	6.45	LM1305N	1.52				
2N2219	0.38	2N3705	0.14	${ }^{2} \mathrm{~N} 4286$	0.32	2N6124	0.45	BC107	0.16	BC256A	0.29	CA3020A	2.50	ca30		LM373N	3.35	LM1307N	1.22	MC14396	1.75	SN70532N	. 55
2N2221	0.25	2N3706	0.14	2 N 4287	0.22	2N6125	0.47	BC108	0.16	8C257A	0.18				2.10	LM374N	3.35	LM1310N	2.10	MC1440G	1.85	SN76533N	1.30
2N2222	0.25	${ }_{2}{ }^{\text {N3707 }}$	0.14	2N4288	0.22	2N6288	0.50	${ }^{\text {BC109 }}$	0.16	BC2588	0.24	CA3022	2.20	CA3086	0.50	LM377N	1.80	LM1351N	1.30	MC1456G	2.15	SN76544N	1.60
2N2270	0.49	2N3708	0.12	2N4292	0.27	2 S 702	3.30	BC113 BC114	0.22	${ }^{\text {BC, } 2598 ~}{ }^{\text {BC2 }}$	0.19 0.25	-CA3023	2.20	CA3088		LM378N	2.40	LM1458N	0.45	MC1463R	3.90	.SN76545N	1-80
2N2388	0.27	2N3710	0.12	${ }_{2}{ }^{\text {N4303 }}$	0.33	25703	3.95	BC114	0.22	${ }_{\text {BC2 }}{ }^{\text {BC2 }}$ (${ }^{\text {a }}$	0.25 0.26	- 3025	0.30	CA3088F.	$\begin{aligned} & 1.87 \\ & 2.90 \end{aligned}$	LM3795	4.25	LM1496N	1.97	MC1468L	3.35	SN76546N	1.58
2N2369	0.27	2N3710	0.12	2N4342	0.60	40232	0.60	BC116	0.22	BC2628						LM380N8	0.96	LM1800N	1.94	MC1469R	3.10	SN76550-2	0.38
2N2483	0.30	2N3712	1.39	2 N 4401	0.20	40311	0.55	${ }^{\text {BC1 }}$ B 118	0.22	${ }^{\text {BC2 } 2638 ~}$	0.25	CA3028B	1.25	CA3130	1.06	LM380N14	1.08	LM1812N	8.20	MC1488L	4.25	SN76552-2	0.57
2N2613	0.90	2N3714	1.55	2N4402		40316	0.95	BC135	0.22	BC2648	0.65	CA3029	0.75	CA3140	1.04	LM3B1AN	2.70	LM1820N	1.16	MC1529G	7.10	SN76570N	1.80
2N2646	0.80	2N374	1.55		0.20	40363	1.45	${ }_{\text {BC }}$	0.22	日C3078	0.16		0.90			LM381N	1.69	LM1828N	1.90	MC1529 ${ }^{\text {a }}$	7.10	SN76620AN	0.99
2N2848	1.10	2N3716	1.70		0.2	40389	0.70	${ }_{8 C 137}$	0.22	BC3088	0.16	CA3030	1.50	LOBST1	2.25	LM382N	1.32	LM1830N	1.90	MC45314	2.60	SN76650N	1.20
2H2904	0.31	2N3794	0.21	2N4822	0.83	40408	0.82			BC309C	0.16			LM114H	2.75	LM384N	1.55	LM184IN				SN76660N	0.66 0.99
2N2905	0.31	2N3819	0.36	2N4870L	0.58	40440	0.70	BC138	0.44	BC327	0.22	CA3030A	2.20	LM301AH	0.50	LM 386 N	0.85	LM1845N	1.50	MM5316	4.60	SN76668N	0.99
2N2906	0.25	2N3820	0.39	2N48711	0.51	40512	1.70	BC140	0.30	BC328	0.20	CA3033	3.70	LM301.8	0.30	LM387N	1.10	LMIB48N		MM5320	4.20	SL610C	2.75
2N2907	0.25	2N3821	0.95	2 N 4898	1.55	40594	0.87	BC141	0.32	8C337	0.20	CA3034	2.75 1.95	LM304	2.60	LM38	1.00	LMI 848 N LM 1850 N	1.98 1.90	NE555	0.33	SL611C	2.75
2N2923	0.17	2N3827	0.27	2N4901	1.65	40595	0.93	'BC142	0.32	8C414	0.17	CA3035	1.95	LM307N	0.50	LM388N	1.00	LM1889N	4.90	NE556	0.85	SL612C	2.75
2N2924	0.17	2N3854A	0.30	2N4902	2.20	40673	0.80	BC147	0.13	BC415.	0.16	CA3036	1.21	LM308H	1.20	LM389N	1.00	LM1889N	4.90	NE560	4.50	SL620C	3.85
2N2925	0.19	2 N 3855	$0.30!$	2 N 4903	2.75	AC126	0.43	BC148	0.15	8C416	0.17	CA3038	2.90	LM308N	0.45	LM555cN	0.33	LM2907N-8	1.80	NE561	4.50	SL621C	3.75
2N3011	0.37	2N3856A	$0 \cdot 19$:	2N4904	7.85	AC127	0.48	BC149	0.15	8C547A	0.13	8A	0	LM309kC	1.95	LM565CN	1.39	LM2987N-8	1.80	NE562	4.50	SL623C	6.25
2N3020	0.75	2N3858A	0.20,	2N4905	2.40	AC128	0.43	BC153	0.30	BC547B	0.13	CA3039	0.77	LM317K	3.35	LM701B	2.99	LM3301N	0.60	NF565	1.39	SL640C	4.40
2N3053	0.25	2N3859A	0.22	2N4920	0.83	AC151	0.43	BC154	0.30	${ }^{81} 8548$	0.13	CA3040	3.75	LM318N	2.15	LM701C	2.99	LM3302N	0.55	NE566	1.75	SL641C	4.40
2N3054	0.72	2N3860	0.18	2 N 5086	0.30	${ }_{\text {AC1 }}{ }^{\text {A } 153}$	0.54 0.59	BC157A	0.15		0.14 0.13	CA3041	1.65	LM320T5		LM702C	0.81 1.15	LM3401N	0.55	NE567	1.90 1.93	SL701C	$2 \cdot 50$
$2 N 3055$ 2 H 1108	0.75 0.75	2N3866 2N3901	1.98. 0.30	${ }_{2} 2 \mathrm{~N} 5087$	0.30 0.30	${ }_{\text {AC153 }}{ }^{\text {AC153 }}$	0.59 0.59	BC1588 $\mathrm{BC159B}$	0.15	8C558 BC559	0.13 0.15	CA3042	1.65	LM320T12	2.15	LN	5	LM3900N	0.68	NE558N	1.93 4.95	TAA233	1.35
2N3133	0.50	2N3904	0.18	2N5089	0.30	AC176	0.54	${ }^{\text {BC1 }}$ 60	0.38	BCY54	2.40	CA3043	2.20 1.58	LM320T15	$2-15$	LM709	0.70	LM3905N	1.15			taA300	3.70
2 N 3242	0.68	2N3905	0.18			. AC176K	0.90	BC1678	0.13	BCY58	0.27	CA3045	1.58	LM320124	2.15	LM709-8	0.50	LM3909N	0.78	SAS560	2.70	TA3320A	1-15
2N3250	0.35	2N3906	0.18	2N5	0.22	AC187	0.59	BC1688	0.13	BCY70	0.21	CA3047	2.20	M320MP1	1.15	LM709-1	0.49	LM3911N	1.10	SAS570	2.70	TAA350A	3.00
2 N	0.45	2N3962	0.95	2N5131	0.22	AC187K	0.65	BC1698	0.13	BCY71	0.25.	CA3047A	3.70	LM320MP1	1.15	LM710-14	0.64	LM78L05CH	1.30	SAS590	2.40	TAA521	1.10
2N3302	0.39	2N4031	0.55	2N5137	0.22	AC188	0.54	8C1708	0.19	BCY72	0.13	CA3048	2.45	LM320MP2	1-15	LM711CN	0.72	LM78L12CH	0.85	SN76001N	1.30	TAA550	2.10 0.48
2N3392	0.17	2N4032	0.65	2N5143	0.22	AC1BBK	0.65	BC1718	0.17	BCY78	0.43	CA3049	1.93	LM323K	6.95	LM723C	0.75	LM78L15CH	0.85	SN76003N	2 238	ta4560	2.10
2 N 3394	0.17	2 N 4033	0.65	2N5180	0.58	ACY17	1.00	8C1720	0.15	80121	2.20	CA3050	2.66	LM339N	0.60	LM723C-	0.45	4,	0.85	SN76008KE	1.60	taA570	2.20
2N3397	0.19	2N4036	0.72	2N519	0.65	ACY22	0.65	BC173C	0.17	B0131	0.55												

1979 CATALOGUEIS AVAILABLE NOW!

PRICE 50p POST PAID OR 40p TO CALLERS.
Prices correct at 7 Dec. 1978. All prices include VAT. P \& P 40p.

+ BATTERY FLUORESCENT LIGHTING

Type "A"

Type "B"

Type " C " \longrightarrow

White Enamel cases as shown above, including lampholders. Type "A" or "B" $\mathbf{£ 1 . 5 0}$. Case only, $\mathbf{£ 1 . 0 0}$. Plastic Lampholders to suit $\mathbf{5 0 p}$ pair. Ceramic (adaptable) 40p pair. Tubes to fit (21 in .) £1-00. (These can only be supplied when cases areordered due to risk of postal damage.) Case type "C" (18 in.) or Case type " D " (12 in.) including lampholders $\mathbf{£ 1 . 2 5}$.
INVERTER TRANSFORMERS, special design for maximum efficiency 00 each
Transistor, Heat Sink, Circuit board cut to size, Resistor, Capacitors etc .
21 in . Fittings built and tested
£4.95
12 in. ditto (Batten type)
THIS IS ABOUT HALF THE PRICE THAT A SIMILAR FITTING WOULD COST YOU ELSEWHERE!!!
WHY NOT DO AS MANY OTHERS ARE DOING, BUILD THEM AND SELL THEM TO YOUR CAMPING FRIENDS?

PRINTED CIRCUITS. WHY NOT MAKE YOUR OWN WITH FOTOLAK POSITIVE LIGHT SENSITIVE LACQUER

Now you can produce perfect printed circuits in minutes! Method: Spray cleaned board lightly with lacquer. When dry, place positive master of required circuit on now sensitised surface. Expose to daylight. develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work.
of resistors polyester and polystyrene, Nransistors, diodes, volume and pre-set controls and hosts ture of parts. Ideal for the odds and ends box!!! Per bag £3.00

SPECIAL OFFER! Few only 3-channel (each 750 watts) Sound-to-light units. Fantastic value for money! Plug into any loudspeaker socket and create your own disco-type light show! Any mains lamps may be used . . . £17-95

Brand new printed circuit boards containing I.C's., transistors, diodes, resistors, capacitors etc. etc. It is quite impossible to list these so we are selling by weight at $\mathbf{£ 1 . 0 0}$ per lb. This could include upwards of 100 integrated circuits! Send as many $£ 1$'s as you wish, we will weigh as varied a parcel as possible and refund your change!
PLEASE NOTE: All lighting and printed-circuit materials plus 8\% VAT. Other goods $12 \frac{1}{2} \%$. No VAT on overseas orders. Postage INLAND 65p per order. Overseas include extra to cover. We will refund any excess paid. Any enquiries for further details MUST include stamped addressed envelope!

LP-1 Unit Price £31.00 Post \& Package £1.50•VAT £2.60•Total £35.10. Clip the leads to the power supply of the circuit under test, touch the probe tip to any pin, pad or component and you're in business. The 'HIGH' and 'LOW LEDs show logic states 1 or 0 ; if neither come on you've got open circuit, tri-state, signal out of tolerance (or no power!). The 'PULSE' LED flashes once for any pulse 50 nsec or longer, and flashes regularly at 3 Hz for high frequency trains. Then, while 'PULSE' is flashing, 'HIGH' will come on alone to show duty-cycles over 85%, 'LOW alone to show less than 15%, and with both on together duty-cycles can be estimated between 15% and 85% by relative brightness.
In the MEMORY mode, the leading edge (positive- or negative-going) of any puise will latch a fiip-flop on and keep the PULSE LED lit as long as power is applied to the probe. You can catch events that are hard to see even with a high quality scope!
ich-seleclable for DIL/ L and HIL LVOS circuits.
LP-2
Unit Price $£ 18.00 \cdot$ Post \& Package $£ 1.25 \cdot$ VAT $£ 1.54$ - Total $£ 20.79$. Economy version of LP-I, with the same HTL/CMOS and DTL/TTL capability. 'HIGH' or 'LOW LEDs function as in LP-1, 'PULSE' catches pulses as short as 300 nsec and shows pulse trains as 10 Hz blink. When pulsing, 'HIGH' comes on to show duty-cycles above 70%,' LOW' shows below 30%, both on together show between 30% and $70 \% .300,000$ Ohm input impeder se protects your circuit under test, and the low price brings the advantages of our quick, easy LOGIC PROBE technique to anyone interested in logic circuitry.

LP-3 Unit Price $£ 49.00 \cdot$ Post \& Package $£ 1.50$ - VAT £4.04, Total $£ 54.54$. Super-high speed version, captures pulses as short as 10 nsec , and monitors pulse trains as rapid as 50 MHz . That's better performance than many oscilloscopes! And no bulky instruments, no set-uptime. At frequencies up to 1.5 MHz you can estimate duty-cycles by the High/Low relative intensity, as with LP-1. DTLITTL and HTL/CMOS are switch-selectable, of course, plus 'MEM' memory mode to latch on to any pulse, puise train or passing transient. LP-3 is the ideal trouble-shooter for your fastest.logic circuits, and like all CSC probes is well designed, handy and easy to use, robust, reliable and individually tested before it leaves the factory.
And the new pulser DP-1 Unit Price £51.00- Post \& Package£1.50•VAT £4.20•Total £56.70 The Digital Pulser: another new idea from CSC. The DP-I registers the polarity of any pin, pador component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hold the button down for more than a second, the DP-1 shoots out pulse atter pulse at 100 Hz . The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And a very reasonable price.
How to order. Telephone 0799-21682 and give us your Access, Barclaycard or American Express number, and your order will be in the post that night. Or, write your order, enclosing cheque or postal order, or stating credit card number and expiry date. (Don't post the card!). Alternatively, ask for our latest cataiogue, showing all CSC products for the engineer and the home hobbyist
(Prices are for UK only. For Europe add 10%, outside Europe add $121 / 2 \%$ to total prices).

Specification	LP-1	LP-2	LP-3	DP-1
Input Impedance	100,000л	300,000	500,000ת	Output Tri State
Minimum Detectable Pulse	50ns	300 ns	10 ns	Autopolarity Pulse Sensing
Max. Input Signal (Freq.)	10 MHz	1.5 MHz	50 MHz	Sink and Source 100 ma
Pulse Detector (LED)	High Speed Train or Single Event	High Speed Train or Single Event	High Speed Trainnor Single Event	Pulse Train: 100pps
Pulse Memory	Pulse or Level Transition Detected and Stored	None	Pulse or Level Transition Detected and Stored	LED indicator flashes in Singie Pulse Stays lit on Pulse Train

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum interconnection lengths.

Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE

At $£ 5.80$ each The EuroBreadBoard is unique value for money At $£ 11$ for 2 The EuroBreadBoard is an indispensable design aid.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent. DAI 4EF

David George Sales
r/o 74 Crayford High Street,
Crayford, Kent, DA1 4EF.
Please send me 1 EuroBreadBoard @ $£ 5.80 \square$ Please or 2 EuroBreadBoards @ $£ 11.00 \square$ Tick
(All prices include VAT and P.P., but add 15% for overseas orders).

Name
Company.
Address.

Tel. No.
PW179
Please make cheque/P.O.'s payable to David George Sales

NO DISCO STSTEM IS COMPLEIE WIIHOUT...

CITRONIC MM 313 MIXER
Ideal for the DIY enthusiast building up a complete disso Ideal for the DIY enthusiast building up a complete disse via phono sockets at rear. Bargain price, including PSU £80.46 inc. VAT (P.P. £1.50)

PIEZO HORNS FANTASTIC SPECIAL OFFE TO READERS OF. PRACTICAL WIRELESS

Tweeters for your disco. PA
system or Hi. Fi. Frequency range 5 K -20K No X over required. They can be used in
any PA system up to 100 W Why pay more? any PA system up to 100W. Why pay more? OUR PRICE ONLY $£ 4.99$ each (P\&P 359 each)

PROJECTORS

SQUIRE MULTIFECT 150
-including rotator and effects whel. A truly versatile projec
which uses a powerfu! 150W which uses a powerifle
Tungsten butb, all effects trachments simply slot in ready for us A BARGAIN AT £40.50 (P\&P £ $£ .00$

PLUS MANY DISCO ACCESSORIES

BULGIN OCTAL PLUGS

AND SOCKETS

-There's always hundreds of Bulgin Octal multiway plugs and sackets in stock at Roger Squire's. Each pin rated 6A. Perfect
EO. 65 (P\&P 35p) P551 PLUG £1. 84 (P\&P 35 EO. 65 (P\&P 35p) P551 PLUG £ 1.84 (P\&P 35p) Carriage on 10 or more nominal $£ 1.00$ Also avaitable 6 -way muticore cable 65 amps mer core ex stock
per metre. Please phone for carriage quore.

STARLITE 250
An exclusive new line to Roger Squire's Disco Centres. Superb high powere 250 W quartz halorb high power cooled accepts wide range of multife attachments Unique connection slot fo orbit prism revolvers. Onl
$\mathbf{f 6 5 . 0 0}+$ VAT
attachments extra

- All Regice squire's shops have a stocks of DISCO SPARES \& ACCE SSORIES. For example: Fane and H/H Disco Speak $12^{\prime \prime}$ and $15^{\prime \prime}$ BSR and Garrard decks at discount prices.

Plus sockets, Fuses, Plugs, etc etc.

Roger Squirer disco gear

Personal callers: ROGER SQUIRES DISCO CENTRES

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem.
The SRX-30 provides AM, CW, USB and LSB reception on all frequencies from 500 kHz to 30 MHz . All right, so does your Sooper Blooper Mk. 3 but you can't set the Sooper Blooper dial to the frequency you want and be sure that it's correct! The SRX-30 tuning system is so simple to operate. You have a dial read know that Radio Slobovia is broadcasting on 10.295 MHz , you set the MHz dial to 10 , the kHz dial to 295 and there you are. The MHz dial setting is not critical, as stability is guaranteed by a triple mixing drift cancelling system, thereby overcoming another problem in your Sooper Blooper Mk. 3: drift.
A further drawback to cheap receivers is massive image interference on the higher requencies due to the use of a law IF, typically 455 kHz . The cure for this problem is the use of a high IF and the SRX-30 employs a first IF of around 40 MHz -so goodbye to first IF images. You could of course find the same system as this in the Racal RA17 series receivers; after all, the SRX-30 has copied the basic idea from this very receiver. The big drawback to the RA17 apart from the price !! is that unless you have the muscles on a prize feter, fting the RA17 may send you for a holiday House?).
To summarize, the SRX- 30 covers 500 kHz to 30 MHz with excellent dial readout and reset accuracy; it has all mode (AM, CW, SSB) rcception and is equally at munications receiver, RF gain, fine tuning, selectable sidebands, built in loudspeaker, operation from ac mains or 12 v . Dc, rugged construction and super styling and all at an attractive price- $£ 175$ inc. VAT. Carr $£ 3$.
See it soon at your nearest stockist, you will be agreeably impressed.
For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire.
Tel: 06292430 or 2817.
For full catalogue, simply send 45 p in stamps and request catalogue CPW.

PROFESSIONAL KITS THAT SAVE YOU MONEY!!

MC020

AN ADVANCED MUSIC CENTRE for the experienced constructor.
This unlt is available as a fully wired chassis, in modular form or as a kit. It can be built in easy stages or as a complete unit. A variety of cassette decks are suitable.

SPECIFICATIONS

AMPLIFIER
Power Output:
Digtortion:
Frequency Range:
Tone Control Range: VC-20dB
Basic Electrical centre (B) $100 \mathrm{~Hz}-14 \mathrm{~dB}$
Loudness Control: C30dB

Intermediate Frequency:
AM

AM	475 KHz
FM	10.7 KHz
Aerlal input:	
AM (Internal)	Ferrite Rod
AM (external)	2 pln DIN
FM (external)	Co-axial 75

AGC:
For 6dB audlo change
if Bandwidth
$Q_{\text {PF }}$ max sensitivity
RF Senaitivity:
200dB SIN
$\begin{array}{ll}\text { RF Senaitlilty: } & \pm 1.5 \mathrm{KHz} \text { @ } 6 \mathrm{~dB} \\ @ 20 d B S / N \text { Ratio } & \\ 200 \mathrm{KHz} & 1500 \mu \mathrm{~V} / \mathrm{m} \\ 600 \mathrm{KHz} & 500 \mu \mathrm{~V} / \mathrm{m} \\ 1400 \mathrm{KHz} & 200 \mu \mathrm{~V} / \mathrm{m}\end{array}$
Controls: $\quad \begin{aligned} & 5 \text { rotary: volume, } \\ & \\ & \text { balance, bass, treble }\end{aligned}$
Swltches:
FM:
RF Sensitivity.
@ 26 dB S/N (mono)
100 MHz
46 dB
Q 46 dB S $/ \mathrm{N}$ (mono)
@ 4 didB S/N (stereo)
Distotion:
Grequency Response
@ $\pm 1.5 \mathrm{~dB}$
Audio Filter
Wired
SUITABLE SURPLUS MODULES.
Stereo power amp 25 w rms P/channel
Lown nolse pre amp. Full freq correction
RFBald MW/LM/MPX Fet. $3 \times$ IC
P.S.U. $£ 3.50$
Selector Board 8 way
Complete chassis massive 22 Inches
$2 \cdot 5 \mu \mathrm{~V}$
$16 \mu \mathrm{~V}$
$125 \mu \mathrm{~V}$
0.9%
$30 \mathrm{~Hz}-15 \mathrm{KHz}$
Flat to 55 KHz 50 dB ©
130 KHz
Flat to 55 KHz 50 dB @
130 KHz

Co-axlal 75 ohm 46 dB
$\pm 1.5 \mathrm{KHz}$ @ 6 dB
$5 \mu \mathrm{~V}$
\%

TU020

A Hi Fi tuner amplifier
This unit can be built from our modules or as a complete kit. Input for mag cartridge, tape record/playback, MW/LW/VHF stereo, tuner. Uses the same R F Board as does the Wimborne with birdie filters, multiplex filter, varicap tuning on MW and LW.
Items from the Wimborne numbers 2 and 3 can be used for different performance specifications.

SPECIFICATIONS
Power output 25 Watts RMS per channal
(both channels driven)
Total harmonic distortion 0.05%
Bass $100 \mathrm{~Hz} \pm 12 \mathrm{~dB}$
Treble $10 \mathrm{KHz} \pm 12 \mathrm{~dB}$
Frequency response $\pm 1.5 \mathrm{~dB} 30 \mathrm{~Hz}-20 \mathrm{KHz}$
Fully wired modules, Preamplifier,
Power amplifier
RF Board
Power supply unit
Transfomer
$\mathbf{8} 6.99$
$\times 9.50$
FM sensitlvity $1 \cdot 0 \mu \mathrm{~V}$ for $26 \mathrm{dBS} / \mathrm{N}$ ratlo
F rejection 60 dB image rejection 60 dB
AM sensitivity $200 \mu \mathrm{~V}$ at $1600 \mathrm{KHz} 20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio.

Magnetic PU amp

Hardware kit
 Hardware kit

PLEASE Kit $£ 2$.
anEASE ADD E 1 for postage E33.95 and packaging for each item £3.99 except the mag PU amp which £4.50 is 30 p.

Amplifier
Output
Distortion:
Controls:

AU10

A Radio Record Player Kit which has everything you need to make a first class three band STEREO unit. Can be assembled in modular form or from scratch. A professional finish is guaranteed.

Ot'S M.M.WONTER

74 SERIES TTL IC'S

Type	Price								
7400	¢0.07	7427	¢0. 21	7472	c0. 19	74107	£0. 22	74165^{-}	¢0.65
7401	¢0.09	7428	f0. 25	7473	f0.22	74110	f0.35	74166	f0. 75
7402	¢0.09	7430	c0.08	7474	E0. 22	74111	E0.55	74167	E2.00
7403	£0.09	7432	c0. 20	7475	c0.27	74118	E0.75	74174	£0.60
7404	¢0.09	7433	c0. 28	7475	c0.22	74119	£1.10	74175	¢0.60
7405	£0.09	7437	c0. 20	7480	c0.40	74121	¢0. 22	74176	£0.55
7406	£0.22	7438	¢0.20	7481	$\underline{6} \mathbf{0} 80$	$=74122$	¢0.35	74177	¢0.55
7407	£0.22	7440	c0. 10	7482.	¢0.65	74123	f0. 38	74180	¢0.80
7408	£0.12	7441	¢0.45	7483	c0.55	74136	£0.50	74181	£1-25
7409	f0.12	7442	c0. 38	7484	f0.82	74141	f0. 50	74182	£0.55
7410	¢0.09	7443	c0.68	7485	£0.65	74145	E0.54	74184	£1.00
7411	¢0.15	7444	c0.68	7486	£0.22	74150	c0.65	74190	¢0.68
7412	£0.14	7445	c0.64	7489	£1.60	74151	c0.45	74191	¢0.68
7413	£0.22	7446	¢0.60	7490	¢0. 30	74153	¢0.45	74192	£0.65
7414	£0.45	7447	¢0.45	7491	¢0.60	74154	E0. 80	74193	£0.60
7416	£0.22	7448	c0.52	7492	£0.32	74155	£0.48	74194	£0-55
7417	£0.22	7450	¢0.09	7493	¢0.28	74156	¢0.48	74195	£0.55
7420	¢0-09	7451	¢0.09	7494	f0.70	74157	c0.48	74196	£0.60
7421	£0.19	7452	¢0.09	7495	¢0.45	74160	¢0.55	74197	f0.58 $\mathbf{f 1 . 0 0}$
7422	£0.15	7453	¢0.09	7496	¢0.48	74161	c0.60 $\mathbf{E 0 . 6 0}$	74198 74199	¢1.00 $\mathbf{8 1 . 0 0}$
7423 7425	¢0.20	7454	£0.09 $\mathbf{8 0 . 0 9}$	74100 74104	¢0.80 ¢0.35 ¢	74162	¢0.60 ¢0.60 co.	74199 74279	£1.00 $£ 1.00$
7426	¢0. 21	7470	¢0.24	74105	£0.35	74164	£0.65		

THYRISTORS

BOOKS BY BABANI

The following books are offered at 10% off their riormal retail price

Type	ice	туpe	Price	Trb	Prico		Price
CDP000	${ }_{\text {co }}^{50.13}$		${ }_{\text {¢0. }}^{50} 5$		¢1.60	CD4055	15
${ }^{\text {CDO4002 }}$		${ }^{\text {CD }} 4019$	${ }_{\text {E }}^{50.75}$	CO4037	${ }_{\text {f0 }}^{51} 78$	69	
C04006	co	${ }^{\text {COP4020 }}$		${ }^{\text {CO4C44 }}$	88		
${ }^{\text {CDP4008 }}$	${ }_{\text {co }}^{\text {c0. }} 8$	CO4022	15	43		${ }^{\text {co }}$ C06012	
CD	${ }_{\text {co }}^{\text {co. }}$	${ }^{\text {COP4024 }}$	0.55	4044		${ }^{\mathrm{CD} 0} 40858$	${ }_{\text {c0 }}^{50.186}$
	fo.	CD	${ }_{\text {c10 }}$	CD4046	E0	${ }^{\text {CDP4511 }}$.85
CO40	${ }_{\text {E0. }}$	C	fo	CD4049	${ }_{\text {co. }}$		¢0.85
CD4015	${ }_{\substack{40 \\ \mathbf{8 0} .75 \\ \hline}}$	CO4029 CD 4030	¢0.7	${ }_{\text {COP40 }}$	${ }_{\text {¢0, }}^{\text {¢0, }}$		5

SPECIAL OFFER!

UNTESTED

SEMICONDUCTOR PAKS

Code No's shown below are given as a guide to the type of device. The devices themselves are normally unmarked.
No. $16130 \quad 100$ Germ. Gold bonded diodes
No. 16131 150 Germ. Point contact diodes
No. $16132 \quad 100200 \mathrm{~mA}$ Sil. diodes like
$\begin{array}{cc}\text { OA } & \\ \text { No. } 16133 & 15075 \mathrm{~mA} \text { Sil. Fast switching } \\ & \end{array}$
No. 1613450750 mA Sil. top hat Rects
No. 16135203 amp Sil. stud Rect
No. $16136 \quad 50400 \mathrm{mw}$ Zeners D. 0.7
No. 1613730 NPN Plastic trans. like
$\begin{array}{lll}\text { No. } 16138 & \text { BC107/8 } \\ 30 & \text { PNP Plastic trans. like }\end{array}$
No. 1613925 NPN trans. like 2 N697/
No. $16140 \quad 25$ PNP trans. like 2 N2905 TO39 No. 1614130 NPN trans. like 2 N706 TO18 No. 1614330 NPN Plastic trans. like 2N3906 40p No. 1614430 PNP Plastic trans. like 2N3905 40p No. 1614530 PNP Germ. trans. like OC71 No. 1614710 NPN TO3 Power trans. like 2N3055
I.C.SOCKET PAKS

No. S66 11×8 pin DIL Sackets
$\begin{array}{ll}\text { No. S66 } & 11 \times 8 \text { pin DIL Sockets } \\ \text { No. S67 } & 10 \times 14 \text { pin DIL Sockets }\end{array}$
$\begin{array}{lr}\text { No. S67 } & 10 \times 14 \text { pin DIL Sockets } \\ \text { No. S68 } & 9 \times 16 \text { pin DIL Sockets }\end{array}$
$\begin{array}{ll}\text { No. S68 } & 9 \times 16 \text { pin DIL Sockets } \\ \text { No. } 569 & 4 \times 20 \text { pin DIL Sockets }\end{array}$
$\begin{array}{ll}\text { No. } 569 & 4 \times 20 \text { pin DI Sockets } \\ \text { No. S70 } & 3 \times 28 \text { pin DIL Sockets }\end{array}$
MAMMOTH I.C. PAK
Approx. 200 Pieces. Assorted fll-out integrated circuits. including. Logic, 74 series, Liear, Audio and to identify. to identify. \qquad £1.00

CAVE Trainme gaimp

SPECIAL OFFER! COMPONENT PAKS

ORDERING

V.A.T.

Minimum postage and packing tor Sale Orders $\mathbf{E O} \mathbf{5 0}$
MiUS any further postage as stated as per this Sale Advertisement.
Overseas Orders-ADD extra for Air-mail.

Please ADD V.A.T. as follows
$12 \frac{1}{2} \%$ to items marked 8\% to unmarked items NO V.A.T. on Books

S126	$\begin{array}{c}\text { CRYSTAL EAR PIECES } \\ \text { Less plug }\end{array}$	E0. 20

${ }_{40}^{40 p}$

Plugs for abovo
No. 161062.5 astic

Plugs for above No. $16106 \quad 2.5$ plastic	¢0.09
No. 1697 3.5plastic	1
Mono Cryatal Carridge $5127 \quad \begin{gathered}\text { GP91/1SC } \\ \text { Special Offer }\end{gathered}$	$\underline{1000}$
 \$130 Complete kil of parts to build nickel codmium charger	${ }_{\text {f0.90 }}^{\text {f2. }}$
Super Save Pak S124 $6 \times 741 \mathrm{P}$ $124 \quad 6 \times 741 \mathrm{P}$	On
$\begin{array}{ll}5125 & 5 \times 555 \\ \mathrm{~S} 138 & \text { Surpusiend of manutacturess linetipre }\end{array}$ amp. with base. Treble. volume control	
S137 ONLY Offect	${ }^{1} 125$
	100
	${ }_{60} 60$
S:34	00.75
	${ }^{10.10}$
181989	ci.10

Type AC107
AC126
AC127
AC128
AC128K
AC 176
AC176K
AC187
AC187K
AC 188
AC188K
AD161/
162 MP
AF139
AF239
BC107
BC108
8C109
BC118
BC147
BC148
BC149
BC154
BC157
BC 158
BC 1,59
BC164
BC170
BC 1
BC 172
BC173

BRAND NEW-FULLY GUARANTEED

Type	Price
AA119	$\mathbf{5 p}$
AAZ13	$\mathbf{4 p}$
BA100	$\mathbf{6 p}$
BA115	$\mathbf{5 p}$
BA144	$\mathbf{5 p}$
BA148	$\mathbf{1 0 p}$
BA173	$\mathbf{1 0 p}$
BAX13/	
OA200	$\mathbf{5 p}$

TBAB00
TBA810
TBA820
LM3B0
LM3B1
72709
MA709

LINEARI:C's

$\mu A 711$	$\mathbf{£ 0 . 2 5}$	$\mu A 748$
$\mu A 703$	$\mathbf{£ 0 . 2 0}$	72558
$741 P$	$\mathbf{£ 0 . 1 8}$	MC131OP
72741	$\mathbf{£ 0 . 2 0}$	76115
$\mu A 741 \mathrm{C}$	$\mathbf{£ 0 . 2 0}$	NE555
72747	$\mathbf{£ 0 . 5 5}$	SL414A
748 P	$\mathbf{£ 0 . 2 8}$	

£0. 28
£0.45
$£ 1.25$ $£ 0.45$
$£ 1.25$
$£ 1.25$ $\mathrm{£0.22}$
$\mathbf{8 1 . 8 0}$
ZN 414 RADIO CHIP 75p

	OPTOELECTRONICS						
			LED CLIPS				
No. 1510 No. 1511	747 LED Display	10.70 $\mathbf{E 1 . 5 0}$	$\begin{aligned} & \text { No. } 1508 / 125 \cdot 125 \\ & \text { No. } 1508 / .2 \cdot 2.2 \\ & \text { No. Si39 Infra Red Detector } \\ & \text { Fairchild FP100 } \end{aligned}$		$\begin{aligned} & 5 \text { for } \mathbf{£ 0 . 1 2} \\ & 5 \text { for } \mathbf{£ 0 . 1 5} \end{aligned}$		
No. 1512	727 Dual LED Display	£1.55					
LED's Fairchild FP100. E0.							
No. S 120 No. S121 No. 1502 No. 1505 No. 1503 No. 1506 No. S82	125 Bright Red 2 Bright Red	¢0.09					
		c0. 09					
	- 125 Green	c0. 12					
	2 Green	E0.12		PECIAL Reduct			
	. 125 Yellow		$\begin{aligned} & \text { No. } 1514 \\ & \text { No. } 576 \\ & \text { No. } 5835 \end{aligned}$	NORP 12	45p each		
	Clear 2 illuminating Red	c0.12			5 for $£ 1.00$		
2nd QUALITY LED PAKS				lincluding Dat			
			No. 577	Neon Indicator La	230 V A.C.		
No. 1507	10 Assorred Colours \& Size	£0.75		State Colour (R			
No. S122	10×125 Red	£0.60		Green.l	25p each		
No. S 123	10×2 Red	f0. 60					

MAMMOTH I.C. PAK

 Approx. 200 Pleces. Assorted fall-out integrated circuits, including: Logic. 74 series Linear. Audio and D.T.L. Many coded devices but some unmarked-you to identify.POWER SUPPLY
STABILIZER BOARD
Unused ex-equipment stabilizer board Input 30 V . D.

Order No. $\mathbf{S 8 1} \mathbf{£ 1 . 2 5}$ diagram

I.C.

INSERTION EXTRACTION TOOL
O/D 2015
30p each

DEPT. PW2, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

EDITOR
Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE
ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin

TECHNICAL SUB-EDITOR

Peter Preston
TECHNICAL ARTIST
Rob Mackie
ASSISTANT ART EDITOR
Keith Woodruff
SECRETARIAL
Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER Telephone: 01-261 6671 Roy Smith
REPRESENTATIVE
Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone: 01-261 6570 Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

OurRole

OBVIOUSLY, with a title like Practical Wireless, our main aim in life must be to impart practical information-working designs, with instructions on building and using them. We don't see that as the whole story; though. We think we're here to educate you too, and this side of things takes many forms.
First there is the item which is straight theory, though often incorporating practical hints such as the Introduction to Logic series which concludes in this issue. This sort of article is intended to help you to understand text-books or manufacturer's data sheets, which often assume a fairly advanced level of knowledge and tend to be somewhat obscure in their treatment, or simply to keep you up to date with developments.

A second type of article is typified by the "FM Receivers-Devices and Circuits series, and by its predecessor on a.m. receivers. These present outline circuits and explain how they work, but do not give constructional information. Their intention is to provide a basis for further experimentation by interested readers.

Of course, the constructional articles also have quite a big teaching role, tog, either in "learning by doing" or "learning by reading". This last category is particularly important, as some part of a circuit will often trigger off an idea for another project in someone's mind, or will provide a solution to a design problem that has been bugging them. And it is the reason that we sometimes publish articles which will, we think, only have direct appeal to a limited number of readers, but where the principles involved are of wider interest. The Videowriter project published in PW in 1976 was rather in this category, though as it turned out, it was built in quite large numbers and used in applications which we never foresaw.

As already hinted at above, we want to help you to understand text-books etc., and part of that understanding is the ability to take in the various abbreviations and symbols used. This is part of the reason for our decision to change, over the next few issues, to a new but now widely-adopted convention for quoting component values on circuit diagrams. This involves using the unit multiplier instead of the decimal point, so that for example $4.7 \mathrm{k} \Omega$ becomes 4 k 7 , and $2 \cdot 2 \mu \mathrm{~F}$ becomes $2 \mu 2$. The decimal point, being just a small dot on the paper, is so easily missed, and this new method is intended to overcome the problem. Note also that the unit, which is obvious anyway, has been dropped, thus saving space on congested circuit diagrams. More details will be given in our next issue, for the benefit of those unfamiliar with the scheme.

Alan Martin-News \& Production Editor

Following technical college, Alan began his working life as a draughtsman. His first contact with $P W$ was as a technical artist in the latter days of F. J. Camm-the founder. After a spell in the technical publications dept. of a large electronics firm, Alan started his own company, specialising in the preparation of technical literature. He joined the staff of $P W$ in 1973.

Having lived in West London for most of his life the move to Poole proved quite an upheaval for himself, wife and two daughters. However, the move has been a great success and the family have settled very happily in Christchurch.

Alan's interests include darts, swimming, the countryside and lately gardening, mainly the labouring aspect!

New Battery

Chioride Silent Power Ltd. has received a $£ 1.9$ million grant from the Government to support the continued development of a revolutionary new battery in which Britain has a world lead.

This is the sodium sulphur battery, which has been under development by Chloride Silent Power, at its Runcorn research establishment, since the formation of the company-jointly owned by the Electricity Council and the Chloride Group-in 1974.

With at least three times the energy of the lead acid batteries now used in battery-operated vehicles, the new battery would give road vehicles a range of well over 100 miles compared with the $60-$ mile range of the present advanced Silent Karrier vehicles.

Among the many advantages of this new battery is that it uses two materials which are relatively cheap and plentiful throughout the worldsodium and sulphur. Demand for this battery will accordingly not affect supply or cost of these raw materials.

The $£ 1.9$ million grant is from the Department of Industry, under the Science and Technology Act 1965 , from funds being made available under the Government's new Product and Process Development Scheme.

To date, $£ 2.6$ million has been spent by Chloride Silent Power Ltd. on sodium sulphur development, and the DOI grant is a contribution towards further development expenditure over the next four years, including the building of a pilot manufacturing plant. Chloride Group Ltd., 52 Grosvenor Gardens, London SWI W OAU. TeI: 017300866.

New Catalogues

Greenweld Electronics, the wholesale/retail suppliers of electronic components and equipment, have recently published their new 64 page catalogue. Also provided is an order form and reply paid envelope, five 10 p discount vouchers and a bargain list. The catalogue costs 30p plus 15p P\&P and is obtainable from: Greenweld Electronics, 443 Millbrook Road, Southampton SO1 OHX. Tel: (0703) 772501.

Crellon Electronics announce the publication of their largest stock list
ever. This 30 page edition covers over 8000 different items and is available free of charge from: Crellon Electronics, 380 Bath Road, Slough, Berkshire. Tel: (06286) 4300.

Electronic Brokers' latest catalogue is the largest the company has ever produced, with 86 pages devoted to second user electronic test equipment, computers and peripherals, plus new electronic products. Copies of the catalogue are available, free, to bona fide companies writing in on their letter heads. For private individuals, the charge is $£ 1$, and overseas enquiries £2-to cover P\&P. From: Electronic Brokers Ltd., 49/53 Pancras Road, London NW1 2QB. Tel: 01-837 7781.

Heathkit have their latest 40 page catalogue ready, containing scores of electronic kits dealing with radios, digital clocks, test instruments, metal locators, car tune-up systems-and a new range of personal computers. Also available is their 16 page computer brochure. Both the catalogue and brochure are obtainable for 20 p each, from: Heath (Gloucester) Ltd., Dept. PW, Bristol Road, Gloucester GL2 6EE. Tel: (0452) 29451.

Club news

Ormskirk Amateur Radio Club will be holding their A.G.M. on Wednesday 17 January 1979. The club meets on Wednesday evenings at members' homes; often there is a talk-in on 145.000 MHz at about 2000 GMT . New members are very welcome. For further details contact: Peter J. Kay G4GCB, Hon. Sec. OARC, 24 Laurel Avenue, Burscough, Ormskirk, Lancs. Tel: Burscough 892416.

Verulam Amateur Radio Club will be holding the 1979 G3PAO Memorial Lecture in the Ex Civil Defence Hall, Chequers Street Car Park, St Albans, Herts on Thursday 25 January at 7.30 for 8.00 pm . This event is held in memory of their former Chairman and Founder Member, George Slaughter, who passed away in 1977. The lecture entitled "EME Transmissions" will be delivered by Peter Blair G3LTF, and will be illustrated with slides and tape recordings. Interested parties are welcome to attend. Further details from: Hon. Sec. G4DUS QTHR. Tel: Rickmansworth 77616.

Microprocessor Courses

Bleasdale Computer Systems in conjunction with Texas Instruments Ltd. is expanding its existing range of Microprocessor courses to cover the T19900 family of microprocessors and T1990 microcomputers.

The courses are run by consultants who are actively involved in designing and building m.p.u. based systems. They are designed to give the participants in-depth practical experience in designing and building such systems. To achieve this, Bleasdale has designed and developed a range of Input/Output devices which can readily interface with microprocessors.

Currently available there is a oneweek course for people with little or no previous microprocessor experience entitled "The Fundamentals of the 9900". Also a 2 -week workshop entitled "Designing Systems with 9900', which is an advanced workshop for people with knowledge of microprocessors and their operation. For further information contact: Bleasdale Computer Systems Ltd., 7 Church Path, Merton Park, London SW19. Tel: 01-540 8611.

Sound and Video 79

Arrangements for Sound and Video 79, the North West's Audio, Hi-Fi and Video exhibition are now well under way and more exhibitors than last year have agreed to participate.

The exhibition will be held for the 3rd year at the Excelsior Hotel, Manchester Airport from Thursday, 18 January until Sunday, 21 January and entrance will be free. For further information: R. J. Taylor, Advertising \& Promotions Manager, Hardman Radio Ltd., Head Office \& Accounts, 26 Exchange Street East, Liverpool L2 3PH. Tel: 051-236 2828.

RAE Reprint

A reprint of the complete series-So You Want to Pass the RAE?-including details of the new examination format being introduced this year, is now available.

Order your copy by completing and returning the coupon on page 71 .

12V FLUORESCENT L/GHT

Low-voltage fluorescent lamp fittings have many applications. For boats and caravans, where often the only power supply is an accumulator, they form a permanent light source. For emergency or other intermittent use, the scope is even wider: in the home, when power failures or cuts occur; in the car, for breakdowns and punctures; when camping.

A 13 watt, 21 inch tube will provide a very useful level of lighting for a consumption of about 1 ampere from a 12 volt battery, when driven via a suitable invertor circuit such as that shown in Fig. 1. Transistor $\operatorname{Tr} 1$ operates as a blocking oscillator, with feedback from the primary winding (1-2) to the secondary winding (3-4) of transformer T1 applied to its base. Resistor R1 sets the base current for $\operatorname{Tr} 1$, with C2 providing decoupling to ensure maximum feedback efficiency.

The pulses at Tr 1 collector are also coupled to T 1 tertiary winding (5-6-7-8) which is connected to the fluorescent tube LP1. At switch-on, all power will be directed to the tube heaters. When operating temperature is reached the high voltage present across the secondary of the transformer will cause rapid striking of the tube and the heaters will be extinguished. Operation in this manner prevents the tube "blackening" at the ends. When the tube has struck, this voltage drops to a much lower value due to the load then imposed on T1.

Interior view of the complete unit

Fig. 4: Board layout and transformer terminations

Assembly of board, transformer and heatsink

Fig. 5: Some suggested case forms: (a) standard open type (b) side-reflector type (c) large reflector type

Components

The type of transistor used in this circuit is not too critical and any h.f. npn power transistor can be used. Some types (for instance the 2 N 3055) will tend to selfdestruct if run off-load. In this case, a cure is to connect an 82 V Zener diode between the emitter and collector of Tr 1 (cathode to collector). With transistor types other than that specified, it may be necessary to alter the values of R1 and C 2 for optimum working.

The transformer is of a special design for use with this invertor circuit, and it is not practicable for the home constructor to wind a component to meet the required tolerances.

Dry Battery Operation

For operation from dry batteries, say two 6 V handlamp batteries in series, the load of 1 A is rather heavy, and in this application, the consumption can be reduced somewhat by increasing the value of R1. The light output will, of course, be reduced also, but a more serious drawback is a possible reluctance of the tube to strike. The easiest way to overcome this is to fit a "Start/Run" switch, which will provide increased bias current to $\operatorname{Tr} 1$ to get the circuit going. A suggested arrangement is shown in Fig. 2, where R_{A} is of the value required to give the desired running current, and R_{B} is switched in parallel with it for starting, by closing switch S. The value of R_{B} should be chosen so that in parallel with R_{A} it provides a resistance of about 270Ω.

From the point of view of the mechanical design of a portable lantern powered from dry batteries, it is probably more convenient to use a shorter fluorescent tube. This may be done without loss of light output by using two 8 watt tubes. These should be connected as shown in Fig. 3, with the centre pair of heaters powered from an additional winding of about 40 turns of 34 s.w.g. enamelled wire wound on the outside of T1.

Construction

The circuit is so simple that a printed circuit board is hardly justified. Instead, the components are mounted on a small piece of Verostrip or Veroboard. A suitable layout is shown in Fig. 4. The transformer and board may be held together by means of a double-sided sticky pad. Take care not to break the transformer leads, as these are fragile, particularly on the tertiary winding. The transistor heatsink can be secured and insulated from the case with another double-sided sticky pad.

The exact form of the case metalwork will depend to a large extent on what metalworking facilities are available to the constructor. The only critical dimension is the spacing of the two lampholders. Some suggested designs are shown in Fig. 5.

\star components

To ensure reliable starting, one end of the tube must be connected to one side of the 12 V supply and/or the lamp case. This is achieved in the layout of Fig. 4 by the circuit board mounting screw. If the lamp is to be used in a vehicle on which the positive supply line is connected to vehicle chassis, then care must be taken that no connection exists between the 12 V negative supply line and the lamp case. In the two-tube version, this "earthing" connection should be made to one side of the centre pair of heaters, as shown in Fig. 3.

Porsonal Shoppars EDGWARE ROAD LONDON W2 Tal: 01 -723 8432. 9.30am-5.30pm. Half day Thursday. ACTOM: Mail Ordor ondy. Mo caliers GOODS NOT DESPATCHED OUTSIDE UK

Almost all audio and hi-fi amplifiers employ a push-pull output stage biased either to class A or quasi-class B (which is rather like class AB), so that the analogue input signal swings over a fairly linear part of the transfer characteristic. To combat residual non-linearity and hence to reduce the distortion a liberal amount of negative feedback is commonly used, and with quasi-class B designs, which are currently the most common, the output transistors are biased for a small quiescent current to avoid transfer characteristic discontinuity at the centre, low-level point where the characteristics of the two output transistors join. Power amplifiers of this kind are well known and it is not here intended to dwell on their design.

A less well-known technique converts the analogue input signal to a digital format which is used merely to switch the push-pull output transistors on and off. The digital format is a pulse train derived from a stable squarewave generator, and the width of the pulses is caused to vary in direct sympathy with the audio information carried by the analogue signal, which is the usual output from a gramophone pickup, tape deck, radio tuner, etc.

The analogue signal is reconstituted for driving the loudspeaker by passing the encoded pulse chain through a low-pass filter which, while greatly attenuating the relatively high-frequency pulses, yields an output which is proportional to the average value of the pulse chain at any instant. Because the squarewave pulse chain is effectively modulated by the analogue signal, the system is generally referred to as pulse width modulation, or p.w.m. for short.

It is not new from the technical point of view, for amplifiers adopting the principle were referred to way back in 1947^{1}, well before the days of fast-switching transistors, and more recently in 1960 in terms of a practical design ${ }^{2}$. Since then one or two commercial amplifiers have appeared for a short time, later to be taken off the market as the result of various shortcomings, not the least of which being a high level of radiation of the harmonics of the squarewave switching signals. Audio amplifiers are designated class A, class B and class AB, and since class C refers to r.f. amplification, the next class in line was class D, so in the early days the first p.w.m. amplifiers were designated class D.

It is of interest to note that the Dynaharmony range of amplifiers by Japanese Hitachi have been designated class E in the US. This is because they employ an auxiliary output amplifier which automatically switches to a higher voltage supply on high amplitude signals as a means of combating bad distortion on the peaks, which other am-
plifiers of similar main-amplifier power may well clip; also, of course, because the letter " E " was the next in line! This range of amplifiers is also referred to as class " G " (mainly in the UK), but there is no connection with class D.

Principle of PWM

With the advent of fast-switching power transistors and more sophisticated circuit techniques there has been a revival of interest in p.w.m. amplifiers, and one or two excellent designs, including the recent Sony TA-N88 ${ }^{3}$, are on the market. The time is now ripe to explore the basic principle of class D operation, to see whether there are advantages (or, indeed, disadvantages) with respect to ordinary analogue power amplification, and to investigate some of the performance parameters of a commercial design.

An impression of the make-up of a p.w.m. amplifier is given by the elementary block diagram in Fig. 1. Here the switching devices are p - and n-channel V-type junction f.e.t.s (a complementary pair) which are switched on and off by the driver stage feeding the gates.

There are various ways in which the pulse chain can be modulated by the analogue signal, such as by a Miller integrator (an arrangement similar to this being found in the Sony TA-N88) or by a "comparator" stage, shown in the diagram by the block labelled Modulator.
The pulse chain starts life as a high-frequency sinewave, and is then changed to a square or triangle wave, depending on the nature of the modulation, after which it is buffered before being applied to the modulating system. A transformer feedback type of oscillator may be used, though, from the point of view of subsequent filtering, there can be merit in using a crystal-controlled oscillator. One design ${ }^{4}$, in fact, employs a television subcarrier reference crystal which runs at 4.433618 MHz , which is followed by a divide-by-ten TTL stage to yield a frequency of 443 kHz . The Sony TA-N88 amplifier employs a transformer-coupled oscillator running at 500 kHz .

Clearly, the switching rate must be much higher than the highest audio frequency. The higher the frequency the better, since this makes it easier to achieve high attenuation of residual ripple signal at the loudspeaker terminals. However, there are constraints related to the switching speed of the output devices and the losses involved if the switching rate is too high. With contemporary power transistors a fundamental switching rate of about 500 kHz , corresponding to $2 \mu \mathrm{~s}$, seems appropriate. This also satisfies the requirement for an upper-frequency response extending to around 50 kHz before the analogue output is unduly affected by the low-pass filter action. Moreover, if negative feedback is taken after the low-pass filter, as shown in the diagram, the phase shift of the filter at the frequency of unity gain must not be so large as to incite instability. The use of a high switching rate also helps in this respect. When the pulse chain is derived from a very stable oscillator, such as a crystal-controlled oscillator, very high- Q filtering can be employed for ripple rejection which, of course, is not possible if the oscillator is likely to drift slightly in frequency.

With the Miller integrator type of modulator, the tops of the pulses widen and the spaces between them shorten as the amplitude of the analogue signal increases and, conversely, as the amplitude of the signal falls so the tops of the pulses shorten and the spaces between them widen. Analogue signal is continuously changing in amplitude as the information carried by the signal changes, so this is encoded in terms of the pulse chain continuously changing in effective mark/space ratio. Information on the frequency components (rise-time, etc.) of the analogue signal is encoded in terms of rate-of-change of the mark/space ratio

of the pulse chain. When there is no analogue input the pulse chain assumes a steady-state $50: 50$ mark/space ratio, which means that the tops of the pulses and the spaces between them are equal.

The Sony p.w.m. amplifier uses a dual-f.e.t. in differential configuration which, with current regulators and a bipolar stage, forms an integrator to which are applied the analogue and squarewave signals. It works by subtracting the inputs from the output, and has a bandwidth from d.c. to several megahertz. This is followed by a comparator composed of an i.c. containing three differential amplifiers, and its job is to produce the modulated pulse chain for switching the output devices via a driver amplifier. The configuration ensures that the rise-time of the pulse formation is less than 20 ns .

Another method of modulation ${ }^{4}$, which is that shown in Fig. 1, works in the manner shown in Fig. 2. As already noted, the analogue and pulse information, the latter first converted to a triangular wave format, are fed to the two input ports of the comparator or modulator. A simple sinewave analogue signal is shown in the diagram for the sake of rendering the description more apparent. In a practical situation, of course, the analogue signal would be continuously changing in amplitude and rate in accordance with the audio information. To ensure a faithful conversion to digital, and hence to minimise the amount of false information on the reconstituted analogue signal, a primary requirement is for the triangle wave to be very linear.

The diagram reveals that the output pulse chain encoding is a function of the amplitude of the analogue input

Fig. 2: Showing one method of encoding a pulse chain with information carried by an analogue signal
at any instant resulting from the corresponding changes in "slicing" level with respect to the constant-rate triangle wave input. The implication here is that the triangle wave rate is about four and a half times greater than the frequency of the analogue signal. Thus, if the triangle wave repetition rate were, say, 500 kHz , then the analogue signal being encoded would have a frequency of around 111 kHz . At lower analogue frequencies, of course, there would be many more triangle wave cycles per analogue cycle.

To avoid the former happening, the frequency of the analogue signal fed to the modulator for encoding is deliberately restricted by low-pass filtering. The audio spectrum is generally regarded as extending from 20 Hz to 20 kHz , and an amplifier with a small-signal response, at least, of less than this would certainly not be regarded as "hi-fi" by the devotees. However, having said that, it is of interest to note that even a high-quality stereo f.m. transmission carries little or no information below about 30 Hz , while at the upper end of the spectrum the output is swiftly attenuated above about 15 kHz or, perhaps, a trifle higher owing to the demands of pilot tone filtering.

Well-recorded gramophone records played with a topflight pickup system fail to extend noticeably above the f.m. audio spectrum. Output below 50 Hz is tamed by the specified low-frequency 3180μ s time-constant of the RIAA equalisation, while the more recent IEC requirement calls for further filtering at 20 Hz , corresponding to a time-constant of $7957 \mu \mathrm{~s}$. It is thus unlikely whether the equivalent rise-time of most of the best programme material fed into a hi-fi amplifier is quicker than about $15 \mu \mathrm{~s}$.

Nevertheless, to avoid this rise-time being further slowed down by rise-time limitations of the amplifier to which the programme material is fed, it is generally considered that the amplifier's small-signal frequency response at the -3 dB points should extend to about 40 kHz , corresponding to a rise-time of just under $9 \mu \mathrm{~s}$. Some amplifiers boast a small-signal rise-time of less than $2 \mu \mathrm{~s}$, corresponding to an upper-frequency response around 200 kHz . It is my judgement that this is totally unnecessary and can detract from, rather than enhance, the reproduction.

It is not unreasonable, therefore, to filter the analogue signal before it is applied to the modulator so that the small-signal response is down to -3 dB at 40 kHz or, perhaps, a little higher (say, 50 kHz). The p.w.m. amplifier design in Ref. 4 specifies a Bessel input filter for control-

(a)

Fig. 3: The analogue of the pulse chain is represented by the average value of the pulse chain, which is shown at (a) with respect to $50: 50$ mark/space ratio (zero analogue) and at (b) when the pulse chain is encoded with sinewave signal, as produced by the process shown in Fig. 2
ling the input signal rise-time. As with any hi-fi amplifier, the design should aim for the widest open-loop bandwidth of the power amplifier section to prevent the effects of socalled transient intermodulation distortion (t.i.d.) which, to some extent, establishes the small-signal upper-frequency response of the analogue signal at the modulator input. To avoid phase distortion at infra-bass frequencies it is now common practice to employ direct coupling throughout the power amplifier system; this presents no problem.

Digital-to-Analogue Conversion

Referring to Fig. 1, the encoded pulse chain is fed to the output f.e.t.s merely to switch them on and off. In Fig. 3 a pulse chain of 50:50 mark/space ratio is shown at (a). Since this chain is perfectly symmetrical its average value is equal to half the peak-to-peak value which is zero. This is the condition when there is no analogue signal input.

Since this chain is fed to the loudspeaker through the low-pass output filter the current flowing through the loudspeaker is zero (the symmetrical switching of the complementary output f.e.t.s also ensures that this is the case). The filter, of course, greatly attenuates the switching component, and when the pulse chain is encoded the average value corresponds to the analogue input signal, as shown at (b) in Fig. 3, which is the pulse chain resulting from the sinewave modulation in Fig. 2. The result is that current corresponding to the analogue signal flows through the loudspeaker, along with a little switching residual, as shown in Fig. 4.

With a suitably high switching rate and well-designed filtering the switching residual is generally much lower than that implied by Fig. 4. The design aim is for a rejection ratio of 100 dB which, referred to 100 W output into 8 ohms, corresponds to a residual as small as $283 \mu \mathrm{~V}$; but not all commercial designs appear yet to be meeting this aim. The design in Ref. 4, aided by the crystal-controlled switching rate source, is one which has, at least, achieved the aim.

Although a higher level of ripple appears not to affect the reproduction (since it is well outside the response capability of the loudspeaker and up in the r.f. realm), it can cause medium-frequency radio interference owing to radiation from the amplifier direct and from the loudspeaker cables. This was one of the major problems with early p.w.m. amplifier designs. Some produced more than $1 V$ of ripple signal, which is well above the requirements of international standards.

Advantages and Disadvantages of PWM

What are the advantages of p.w.m.? Probably the main advantage is high efficiency, which means that powerful amplifiers can be made in small size without undue overheating. With "linear" amplification the power transistors are not working very efficiently because a relatively high average power is dissipated by them. The maximum efficiency of push-pull class A working is only 50%. The efficiency is improved by class B, it working out to 78.5% excluding the driving and pre-amplifiers, of course ${ }^{5}$.

Because the output transistors of p.w.m. remain either bottomed or cut-off for most of the time the efficiency is very high. Maximum theoretical efficiency is 100% (output power the same as the input power). In a practical design an efficiency of up to 90% is realisable. The loss stems mainly from the saturation voltage and the peak current in the "on" state. If it is assumed that these are respectively 1 V and 6 A , then the power dissipated by the transistors would be a mere 6 W , while the peak power into an 8Ω load would be 288 W . Other small losses result from transient switching dissipation.

The Sony TA-N88 p.w.m. power amplifier will deliver $2 \times 160 \mathrm{~W}$ average power into 8Ω loads yet its size is only about half that of a $2 \times 100 \mathrm{~W}$ quasi-class B amplifier. In comparison with a class A amplifier of similar power yield, the Sony has a power-to-weight ratio advantage of four or five times!

A quasi-class B amplifier is inherently a very non-linear animal in open-loop mode, which means that a high degree of negative feedback needs to be applied to bring its performance up to an acceptable hi-fi standard. Sadly, negative feedback is not a cure for all amplifier troubles and, contrary to some opinion, there are times when an increase in feedback can actually impair the performance.

On the other hand, a class A amplifier behaves much more linearly in open-loop mode, which means that it requires less feedback for a given fidelity. This is undoubtedly one of the reasons why class A power amplification has been favoured by devotees over the years. When a lot of power is required for driving very inefficient loudspeakers in large rooms, for example, then the major disadvantage of this type of amplifier is the abysmal power-to-weight ratio-very large and massive heat sinks being required by the output transistors along with large transformers to yield the high standing power.

A well-designed p.w.m. amplifier is endowed with virtually the same open-loop linearity as a class A amplifier yet it possesses a far more acceptable power-to-weight ratio. Hence, a p.w.m. amplifier calls for a relatively small amount of negative feedback merely to improve upon an already good intrinsic linearity rather than to correct for the shortcomings of some quasi-class B designs, which is the hallmark of favourable auditioning.

The greatest disadvantage is really related to the switching signal and the probability of this being radiated

Fig. 4:• Reconstituted analogue signal at the output carrying residual switching signal. In practice, the level of the residual is well below that implied by the waveform

Fig. 5: CCIF intermodulation distortion produced by the Sony TA-N88 p.w.m. amplifier when delivering 38V peak composite signal across a load corresponding to a '"difficult"' loudspeaker of about 5 ohms modulus of impedance and 60 degrees phase-angle
if it is not suppressed properly. Most of the earlier problems have been resolved by the advent of new solidstate devices, including fast-switching i.c.s and power transistors.

Non-linearity arises when the pulse chain varies in amplitude or width from causes which are not directly related to the analogue modulation process. When this happens harmonic and intermodulation components and products appear across the output load, but by the use of suitably fast switching devices allied with competent design these aberrations are minimised. Normal feedback is possible from the analogue output to the analogue input, as shown in Fig. 1.

In some designs the feedback voltage is obtained prior to the output low-pass filter, as in the Sony, and with others the voltage is picked up after the filter, as in Fig. 1. The latter would appear to have merit, provided the filter does not cause phase shift likely to evoke instability, because it keeps the source impedance low and hence the damping factor high.

Limiting and Protection

Input overload can result in the loss of switching pulses at the extremes of modulation, accompanied by a severe rise in distortion and an increase in r.f. emission. To avoid this, most p.w.m. amplifiers are equipped with a "soft limiting" circuit in series with the analogue input signal. In the Sony, for example, this consists of a high-speed f.e.t. attenuator whose gate is connected to current sensors in the output stage. When the current threshold is exceeded the attenuator is activated so that the level of analogue signal reaching the modulator is reduced.

Thermal and short-circuit protection circuit are also included. These operate a relay whose contacts are in series with the loudspeaker, so that in the event of an output short-circuit under heavy drive or an abnormal rise in temperature the contacts open and disconnect the load. The relay is also connected to an energising delay circuit so that the contacts close after the power supply has fully
stabilised. This avoids the switch-on "thump" from the loudspeaker when the power switch is turned on.

Auditioning

How do p.w.m. amplifiers compare in reproduction with more conventional class A and quasi-class B designs? Of the p.w.m. amplifiers that we have auditioned we have found the sound quality to be very close to that expected from a well-designed class A transistor or valve amplifier.

Lab Performance

As already noted, the Sony TA-N88 produced a full $160+160 \mathrm{~W}$ into 8Ω loads to the threshold of heavy distortion rise (just prior to the peak clipping point) at any frequency, at least, within 20 Hz to 20 kHz . Second harmonic distortion at 1 kHz and with both channels delivering 160 W was -70 dB , corresponding to about 0.03%. Oddorder and higher-order distortion was negligible, being equal to or below the residual of the switching signal at the output.
At 10 kHz and the same two-channel power the distortion was, as would be expected, higher, corresponding to about 0.25% second harmonic, which predominated. The third harmonic was about 64 dB down, corresponding to about 0.063%.
At lesser output power all distortion components shrank towards the level of the switching signal residual, which measured about 100 mV r.m.s. across the output of one channel (less across the other). Although rather on the high side, the reproduction was not affected, but radio interference could just be detected on medium frequencies when a receiver with a ferrite rod aerial was placed a short distance away from the amplifier (a really tough test!).
The spectrogram in Fig. 5 shows the measured CCIF intermodulation distortion with 38 V peak of composite two-tone signal across an impedance load corresponding to a "difficult" loudspeaker. There was a rise in amplitude of the IM products with increasing output voltage.

The amplifier required just under 1.5 V r.m.s. for full drive; stereo separation was as high as 88 dB , and residual mains ripple below 90 dB . The damping factor was not too good, being 28 at 40 Hz and 2.3 at 20 kHz . This could possibly be improved by taking the feedback from the output side of the low-pass filter. Small-signal bandwidth was from d.c. to almost $90 \mathrm{kHz}(-3 \mathrm{~dB})$, after which the roll-off rate was $12 \mathrm{~dB} /$ octave, corresponding to about $4 \mu \mathrm{~S}$, which we regarded as unnecessarily fast.

The amplifier is equipped with two pairs of complementary junction V-f.e.t.s in parallel. These devices or MOSFET power devices are ideally suitable for p.w.m. amplifiers, as also are fast-switching power bipolar transistors. However, with the inevitable price reduction of the V-f.e.t. species of power transistors, such as the Hitachi V MOSFET, we are almost certain to experience a revival of the p.w.m. amplifier, especially when the pundits fully realise just how fine such an amplifier can audition.

References

1. Fitch, group of papers Journ.IEE, Vol. 94, Part IIIA, No. 13, 1974.
2. Ettinger and Cooper, Proc.IEEE, Paper No. 3092E, April 1960 , Vol. 106B. 18, p. 1285.
3. Gordon J. King, Hi-Fi News \& RR, Sept. 1978, pp. 173-177.
4. Brian E. Attwood, PWM Systems, Horsham, England, Very High Fidelity Quartz Controlled PWM (class D) Stereo Amplifiers for Consumer and Professional Use, paper presented at the 59 th Convention of the Audio Engineering Society, February 28 to March 3 1978 at Hamburg.
5. Gordon J. King, The Audio Handbook, pp. 84-87, NewnesButterworths, 2nd printing 1978.

Follow-upto ${ }^{\circ} \mathrm{w}$ Wide range CAPACITANCE METER Ian HICKMAN

Requests from readers for an even wider capacitance measurement range set the author thinking and here is the result-an add-on unit which enables the Wide Range Capacitance Meter (PW Sept ' 76 issue) to measure capacitors up to 30 millifarads, i.e. $30000 \mu \mathrm{~F}$. Modifications to build the extra ranges into the original capacitance meter were hardly practical and this add-on unit involves only minimal changes, namely the addition of two 2 mm sockets to the front panel.

To avoid possible confusion, component references for the extender follow on from those of the original capacitance meter.

Circuit Description

Fig. 2 shows the circuit diagram of the extender. It works on the same principle as described in the original article. The capacitance under test shunts a voltage waveform generator of known source impedance. The lowest impedance available in the original circuit was about 220Ω, limiting the measurement range to $10 \mu \mathrm{~F}$ or $30 \mu \mathrm{~F}$ with the function switch at x 3 . The extender unit takes the test waveform (at 220Ω source impedance) via an extra socket on the front panel of the meter and feeds it to a 220Ω attenuator chain; the extra loading of this chain attenuates the test waveform by 6 dB . The chain is tapped at points where, looking in, one 'sees' a 22Ω source resistance (x 10 socket) and a $2 \cdot 2 \Omega$ source resistance ($\times 100$ socket). The latter point represents a further 40 dB of attenuation of the test waveform and IC1 provides 46 dB of gain, so producing the same voltage at its output as would have appeared at the red C_{x} terminal originally. The op. amp. output has a d.c. blocking capacitor whose reactance at the frequency of the test waveform is very low, and by setting the range switch to $10-100 \mathrm{pF}$, the f.e.t. Tr 5 is biassed via R22 but 'sees' a.c. signals only from the op. amp. Clearly, a $100 \mu \mathrm{~F}$ capacitor connected to the x 10 terminal, or $1000 \mu \mathrm{~F}$ at the x 100 terminal, will produce the same attenuation (in dB) of the test waveform as $10 \mu \mathrm{~F}$ connected to the original meter (on the $1-10 \mu \mathrm{~F}$ range).

Push button S 3 reduces the source resistance at the x 100 socket from $2 \cdot 2 \Omega$ to $0 \cdot 22 \Omega$ and raises the gain from the op. amp. to $66 \mathrm{~dB}(x 2000)$ to compensate. This provides a $\times 1000$ range, at reduced accuracy. This is because of the reduced bandwidth of the op. amp. when supplying the extra 20 dB of gain. In particular, the $\times 1000$ range should only be used in conjunction with the $x 3$ range of the function switch, as on $\times 3$ the test waveform frequency is reduced by a factor of 3 . Even so, R 46 has been set at $430 \mathrm{k} \Omega$ instead of the theoretical $390 \mathrm{k} \Omega$. The latter value should be used if you use a high-speed op. amp. such as the LM318 instead of a 741. If using a 741,
it should be a full spec. device from a reputable sourcenot a 'reject' or 'fall out'!

Note that no polarising voltage is applied to the capacitor under test, thus avoiding the inconvenience of a 6 seconds time constant for charging when measuring $30000 \mu \mathrm{~F}$! The amplitude of the test wave form applied to the capacitor under test is so small that the absence of a polarising voltage is of no consequence.

Construction

The author used a diecast box and though only just deep enough internally, this fits neatly in front of the capacitance meter leaving the controls unobstructed. Any similar sized box would do, but metal is preferable to plastic. The box is connected to the black C_{x} terminal, i.e. the case of the capacitance meter. Two additional connectors are required on the capacitance meter, one to make the 12 V supply available to the extender and one to

> This unit is an add-on extender for the Wide Range Capacitance Meter described in Practical Wireless September 1976. It is presented for the benefit of those readers who have already built the main instrument. We regret that the issue in which the meter originally appeared is no longer available.

supply the test waveform. These were added one either side of the existing C_{x} terminals.

The circuitry of the extender was made up on a piece of 0.1 inch pitch Veroboard as shown in the component layout drawing Fig. 1 and mounted on the three 4 mm sockets and S3 along one edge of the board, the other edge being supported by a long 6BA bolt fastened to the back of the front panel with Araldite.

Resistors R41 and R42 may be wound using Eureka wire: 126 mm of $36 \mathrm{~s} . w . g$. gives 1.98Ω and 124 mm of 24 s.w.g. gives 0.22Ω. This allows 2.5 mm each end for soldering. Alternatives are to use $3.9 \Omega, 4.7 \Omega$ and 27Ω in parallel for R 41 and a $0 \cdot 22 \Omega \frac{1}{2} \mathrm{~W}$ metal film resistor for R42.

On completion of the extender, check that it will not short the stabilised supply of the Capacitance Meter, connect up and switch the Meter to x1 and $10-100 \mu \mathrm{~F}$. Check that the voltage at the junction of R45 and C13 is about 6 V . The meter should read off-scale to the right. Connect a $20 \mu \mathrm{~F}$ capacitor between the x 10 terminal and common and check that the meter reads in the region of $20 \mu \mathrm{~F}$ (i.e., 2 on the upper scale). Note that the tolerance on electrolytics is typically $-20+50 \%$, so precision cannot be expected!

Fig. 1: The component layout of the add-on millifarad extender unit. 0.1 inch pitch Veroboard is used. The 741 op. amp. i.c. is shown as an 8 pin d.i.l. package but the alternative 14 pin d.i.l. package can also be used on the same board layout

Fig. 2: The circuit diagram of the extender unit

components

Use

Following the above checks, the unit is ready for use, as there is no calibration to carry out. Capacitors in the range $10-100 \mu \mathrm{~F}$ can be measured by connecting between 'common' and ' $x 10$ ', whilst capacitors between $100 \mu \mathrm{~F}$ and $1000 \mu \mathrm{~F}(3000 \mu \mathrm{~F}$ with the function switch at x 3) are connected between 'common' and ' x 100 '. These terminals are also used for measuring capacitors between $3000 \mu \mathrm{~F}$ and $30000 \mu \mathrm{~F}$, with press button S3 depressed and the function switch at $x 3$. As the reactance of $30000 \mu \mathrm{~F}$ at the test frequency is only tens of milliohms, good quality plugs and crocodile clips with short stout leads should be used for connecting the capacitance under test to the extender.

REPORT

Every person who claims to be actively interested in wireless or electronics needs some form of multi-test meter. If you are richer than most then this will probably be the ubiquitous Avo Model 8, for long regarded as the Rolls Royce of conventional multimeters. For the not quite so well off a lower priced oriental meter will suffice, some of them having a bewildering array of ranges-my own one even tests transistors.

The digital multimeter, or d.m.m. for short, is relatively new to the amateur scene mainly because of its very high initial cost for an instrument with a limited number of ranges.

Recently, however, several such instruments have been launched by manufacturers obviously aimed at the amateur segment of the market. The Sinclair DM235 is such an instrument and forms the subject of this test report.

A $3 \frac{1}{2}$ digit, six function multimeter, the DM235 is both a bench-top and a fully portable unit. The carrying handle is arranged to act as a leg to tilt the case for easier reading of the display. With a set of dry batteries in the rear mounted
compartment the instrument can be carried very easily with the front uppermost. The test leads fit neatly into a space behind the battery compartment panel when not in use. If you intend to carry the meter around a lot then an ever-ready carrying case is available as an extra. In use the DM235 proved to be simple to operate and the display was easily read with the unit on the bench top. Range selection is by two rotary switches, one of which acts as a function selector and other determines the full scale reading. A slide switch selects d.c./ $/ \Omega$ or a.c. readings and a second slide switch controls the power to the unit.

The test leads provided are the usual type with a banana plug at one end and a spring-loaded hook-grip at the other end. I found these to be more of a nuisance than useful. They never seemed to grip properly when I tried to hook them over a test point but when finally in position they seemed reluctant to let go. Also they proved difficult to use as a probe as the wire hook tends to get hidden inside the plastic end. The wander plugs fitted tightly into the two sockets provided on the front panel.
specifications

Voltage:

Current:

Resistance:
Diode test:
Input impedance:
Basic accuracy:

1 mV to 1 kV d.c. 1 mV to 750 V a.c.
$1 \mu \mathrm{~A}$ to 1 A d.c. $1 \mu \mathrm{~A}$ to 1 A a.c.
1Ω to $20 \mathrm{M} \Omega$
$0.1 \mu \mathrm{~A}$ to 1 mA
$10 \mathrm{M} \Omega$
0.5% on 2 V range; 1% on all other d.c. ranges and resistance; $1.5 \% 30 \mathrm{~Hz}$ to 4 10 kHz a.c. ranges
Size:
Weight:
682 gm

Sinclair Radionics Ltd., St. Ives, Huntingdon, Cambs. PE17 4HJ.

ALSO:

PART 2

In the first part of this feature we saw that the front-end unit of a receiver provides a 10.7 MHz intermediate frequency output signal. The i.f. stages must amplify, filter and limit this signal before it is demodulated. Current trends are strongly towards the use of one or two integrated circuits in the i.f. stages rather than the use of discrete components, whilst ceramic filters are generally employed rather than inductance-capacitance tuned circuits, since they provide the required selectivity without the necessity for alignment.

In most designs a single quadrature-tuned circuit is employed in the demodulator circuit and this must be aligned so that it resonates at $10 \cdot 7 \mathrm{MHz}$. A few years ago Signetics produced an integrated circuit phase-locked loop, the NE563, which required no tuned circuits in the i.f. or demodulator stages, but this device is no longer available. Nevertheless, when using a commercially manufactured front-end unit, the alignment of the receiver is very simple-only the demodulator circuit need be adjusted. The position is very different to the alignment of the many tuned circuits in the older valve type of receiver where any slight mis-alignment of the band-pass tuned circuits or of the ratio detector circuit could result in considerably greater distortion.

Available Devices

There are quite a number of integrated circuits available which include all the devices required for the i.f. amplifier/limiter and demodulator stages of an f.m. receiver. The decoder required for stereo reception is always a separate circuit, normally a phase-locked loop i.c., but some amplifier/limiter/demodulator devices incorporate an audio amplifier. Many of the devices designed for use as amplifier/limiter/demodulators in the sound section of television receivers are suitable for use in f.m. radio receivers. A selection of typical amplifier/limiter/demodulator devices is shown in Table 1. These devices are suitable for the f.m. section only of receivers which cover both the f.m. and a.m. bands. However, some details will be given later of devices which can be used in both parts of an a.m./f.m. receiver.

Sensitivity

It is quite reasonable to feed the output from a high gain front-end unit through a single ceramic filter into a high gain i.f. device (such as the 3089) for local station reception, but in a situation using a relatively insensitive device, such as the $\mu \mathrm{A} 2136$ or the LM2111, it is almost essential to employ an interfacing amplifier in order to obtain adequate gain, reasonable a.m: rejection, etc. The amplifier used may employ one or two discrete transistors, but an integrated circuit amplifier is often much more convenient.

The sensitivity of the devices shown in Table 1 is expressed as a value which is known as "the input limiting voltage at the -3 dB point" or sometimes as the "limiting sensitivity" or the "input limiting threshold", any of these terms being used in various data sheets. Let us consider what this definition means. If the input signal level to a device is relatively high, the amplitude of the output signal will be unaffected by any reasonable variations of the input signal, since the output amplitude is controlled only by the limiter circuit. As the input voltage falls, a point is eventually reached at which the input to the limiter is inadequate for it to operate correctly and the output amplitude must then fall. When this fall is equal to -3 dB , the input signal level to the device is known as the "input limiting voltage at the -3 dB point" or one of the other terms mentioned. The lower the value of the input limiting voltage, the more sensitive the device.

It can be seen from Table 1 that the input limiting voltage ranges from about $12 \mu \mathrm{~V}$ up to about $450 \mu \mathrm{~V}$.

The main difference in the internal circuits of such devices is the use of a more sensitive amplifier-limiter with more amplifying stages in the more sensitive devices. Although it must be remembered that the more sensitive devices are likely to become unstable if the circuit layout is unsuitable, all of the devices should be stable if used in a reasonable circuit layout with the input well away from the output. The input to a sensitive device should not consist of a length of copper strip on a board, but rather a miniature coaxial lead or at least a short wire.

Facilities

Another important factor to be considered when choosing an amplifier/limiter/demodulator device is the range of facilities provided by each of the integrated circuits concerned. The 3089 device, the TDA 1200 and the CA3189E offer a very wide range of facilities, including a.g.c. output, a.f.c. output, muting of noise when tuning between stations and generally a very high performance for high quality equipment. A few devices, such as the LM1808, are available with an incorporated audio amplifier and this can be useful when space is at a premium.

Gain Block

Before we consider typical amplifier/limiter/ demodulator circuits, we will look at an integrated circuit gain block which will provide ample gain between the front-end unit of the receiver and any of the devices shown in Table 1.

The circuit of this 10.7 MHz amplifier is shown in Fig. 7. A Fairchild $\mu \mathrm{A} 753$ integrated circuit (in a plastic 8 pin dual-in-line package) is very convenient for use in this type of circuit for a number of reasons. There is a choice of a

Fig. 7: A simple $\mu \mathrm{A} 753 \mathrm{~B} \mathbf{1 0} \mathbf{7 \mathrm { MHz }}$ amplifier with ceramic filters
gain of about 34 dB if the output is taken from pin 7 or a higher gain of about 50 dB if the output is taken from pin 5. Another feature of the $\mu \mathrm{A} 753$ is that its input and output impedance have been chosen to match those of the ceramic filters normally used in the input and output circuits.

It is important that the filters (marked F1 and F2 in Fig. 7) should be reasonably closely matched with the circuit impedances. The 10.7 MHz filters now available from Toko, Vernitron and Murata have been designed to operate with their inputs and outputs connected to circuits of 330Ω impedance; if the "in" and "out" impedance is far from this value, the band-pass characteristics of the filters will be impaired.

The input impedance of F1 can be matched by making the value of R1 equal to 330Ω minus the output impedance of the front-end. Similarly the value of R2 is selected so that this resistor, in parallel with any load which the circuit feeds, forms the required 330Ω value across the output of F2. The values of these resistors are not at all critical and R1 can often be 270Ω whilst R2 may be about 390Ω.

Ceramic filters are marked with a colour code to indicate the approximate resonant frequency. It is vitally important that the two filters used in the Fig. 7 circuit should both have the same colour coding or they will not match one another accurately enough in frequency; they must also come from the same manufacturer. Two such filters provide almost the ideal band-pass characteristic with a rejection of around 100 dB at frequencies 0.2 MHz or more from the resonant frequency. However, it is possible to omit F2 and to couple pin 5 or pin 7 through a small capacitor (perhaps 1 nF) directly to the input of an amplifier/limiter/demodulator device. The rejection of unwanted frequencies will then be of the order of 55 dB which is adequate for many locations.

The $\mu \mathrm{A} 753$ provides a stabilised output of +7.8 V from pin 6. This is ideal for use as a power supply to certain front-end units (such as the Mullard LP1186), but some of the Toko front-end units require a higher voltage supply which can be conveniently obtained using a Zener diode. The maximum current which can be taken from pin 6 of the $\mu \mathrm{A} 753$ is about 10 mA .

The $\mu \mathrm{A} 753$ has been designed to operate over a wide temperature range, namely $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, at almost constant gain. Naturally care must be taken to ensure that the leads to the decoupling capacitors $\mathrm{C} 1, \mathrm{C} 2$ and C 3 in Fig. 7 are kept as short as possible.

There are few other similar gain blocks available. The Fairchild $\mu \mathrm{A} 3076$ (available from Arrow Electronics Ltd.)
provides a relatively high gain (around 80 dB) for use with a demodulator of moderate sensitivity.

Amplifier/Limiter/Demodulators

The output from the circuit of Fig. 7 may be fed into one of the amplifier/limiter/demodulator devices listed in Table 1. We will now consider some typical applications circuits using some of these devices. Although the principles of operation of each type of device are the same, the individual features of the devices (and therefore practical circuits) differ considerably. A common feature is that they all require a phase shifting "quadrature" tuned circuit.

The $\mu \mathrm{A} 2136$

The Fairchild $\mu \mathrm{A} 2136$ is a relatively simple device with moderate gain, three stage input amplifier/limiter, a quadrature demodulator circuit, an audio output amplifier, an internal voltage regulator and other circuitry. The connections of this device are shown in Fig. 8; it is available in a standard 14 pin dual-in-line case from Arrow Electronics Ltd., Coptfold Road, Brentwood, CM14 4BN at a price of about $£ 2$.

The basic circuit for a limiter/demodulator using a device such as the $\mu \mathrm{A} 2136$ is shown in block form in Fig. 9 , whilst a full typical circuit is shown in Fig. 10. The input from the amplifier which follows the front-end may be coupled through C1 to L2 and hence into the limiter of the $\mu \mathrm{A} 2136$ device. Although inductor coupling is used in this circuit, other types of input coupling can be employed, such as in the examples used with other circuits in this article. It is important to note, however, that the maximum resistance between pins 4 and 6 is about 300Ω; in Fig. 10, this resistance is that of the winding L2 which is very low.

The output of the limiter is fed to the quadrature detector and appears at pin 10; after attenuation by a factor of about seven times, it also appears at pin 9 . The quadrature tuned circuit is connected between pins 2 and 12, R1 damping the resonance of the circuit. The value chosen for R1 is a compromise between obtaining a relatively high audio output voltage and obtaining the lowest possible distortion at the output.

Fig. 8: The μ A2136 connections

Fig. 9: Basic circuit in block form for a limiter and f.m. demodulator

Fig. 10: A limiter-demodulator

The output from the quadrature circuit is amplified and fed to pin 1. A de-emphasis capacitor should be connected from pin 14 to ground, the internal resistance of the device at pin 14 providing the required resistive component of the de-emphasis network.

The regulated voltage appears at pin 13, but this voltage is also used to power the input limiter and the quadrature detector; the internal connections are not shown in Fig. 10 in order to keep the circuit as simple as possible. No external connection need be made to pin 13 .

It may be noted that the $\mu \mathrm{A} 2136$ device is an improved version of the earlier ULN2111 14 pin dual-in-line device. The Sprague ULN2111 has no internal voltage regulator and the positive supply of about 12 V must be connected directly to pin 13 instead of to pin 3. Otherwise, the connections are the same. Further similar devices are the ULN2111A (Sprague), the CA2111AE and its quad-inline version the CA2111AQ (RCA) and the MC1357 (Motorola). The $\mu \mathrm{A} 2136$ is a direct equivalent of the Sprague ULN2136.

The 3075

The Fairchild $\mu \mathrm{A} 3075$ (available from Arrow Electronics Ltd.), the National Semiconductor LM3075 and the RCA CA3075 are somewhat similar devices to the $\mu \mathrm{A} 2136$, but an audio pre-amplifier is incorporated on the same chip as the i.f. circuitry. These are 14 pin dual-inline plastic devices.

A typical 3075 circuit is shown in Fig 11. The i.f. input circuit may be similar to that of Fig. 10 or one of the other circuits, but the effective resistance between pins 1 and 2 must be fairly small so that pin 2 is correctly biased from pin 1. The 3 -stage limiter has a gain of about 60 dB and feeds a quadrature detector, the output from which feeds an emitter-follower before being coupled to the input of an audio pre-amplifier at pin 14. The output from the preamplifier stage is fed to pin 12. The capacitor C7 of Fig. 11 is for de-emphasis and should be omitted from a stereo circuit. The audio pre-amplifier provides a gain of about 21 dB , but there is a loss in the coupling network between the emitter follower and the pre-amplifier.

Fig. 11: A limiter-demodulator

TBA 120 series

The TBA 120 device was developed for television sound circuits and contains a six stage limiter, but the more sensitive TBA120S with an eight stage limiter is normally preferred for f.m. receiver applications (available from Chromasonic Electronics, 56 Fortis Green Road, N10 3 HN). The TBA120T is similar to the TBA120S, but has an 820Ω input resistor to match it to the 5.5 MHz ceramic filters used in television receivers; the TBA120U is another device in this series designed to be used with L/C tuned circuits. These devices are manufactured by Siemens, AEG-Telefunken, etc.

Fig. 12: A limiter-demodulator using the TBA120S device with an electronic volume control

A typical TBA120S amplifier/limiter/demodulator circuit is shown in Fig. 12. A particular feature of all the TBA 120 series of devices is an electronic attenuator in the circuit shown. VR 1 will provide a variation of about 70 dB in volume and since only d.c. levels are involved the volume control leads need not be screened-this is another feature of the TBA120 and the LM1808 devices.

The filter F in Fig. 12 may well be the output filter F2 of the circuit of Fig. 7. L1 and C4 form the normal quadrature circuit of the demodulator.

The 3089

The 3089 type of device (equivalent to the TDA1200) is probably the best known of all limiter/demodulator integrated circuits for 10.7 MHz f.m. i.f. use; it is an "industry standard" type available from many manufacturers and provides a wide range of facilities for use in high quality equipment. It has been included in many circuit designs which have appeared in this magazine. It is a sensitive device with a $12 \mu \mathrm{~V}$ limiting sensitivity.

A 3089 circuit is shown in Fig. 13. The input to pin 1 is obtained from the 10.7 MHz ceramic filter F (which may be the output filter F2 of Fig. 7). Inside the device the signal passes through three cascaded amplifier/limiter circuits and hence to the quadrature detector circuit. This part of the circuit requires a $22 \mu \mathrm{H}$ choke (L 1 in Fig. 13), but a miniature Toko component is available for this application. The Toko Company also produces a KACS-$\mathrm{K}-586 \mathrm{HM} 10.7 \mathrm{MHz}$ tuned circuit in a miniature can which has been especially designed for use as the quadrature detector tuned circuit with 3089 devices.

The output impedance of the 3089 device at pin 6 is about $5 \mathrm{k} \Omega$, so when the value of the series resistor R6 is added to this, the total of nearly $10 \mathrm{k} \Omega$ produces the required $50 \mu \mathrm{~s}$ de-emphasis time-constant with C8. The capacitor C 8 should be omitted in stereo circuits.

Fig. 13: A 3089 circuit which provides very comprehensive facilities

Fig. 14: Variation of the 3089 pin 7 potential with tuning

The meter M1 provides an indication of the signal strength of the i.f. signal at pin 1 of the device. The potential at pin 13 of the device increases approximately as the logarithm of the signal strength and the meter reading increases in proportion to this voltage. The logarithm scale has been chosen so that a very wide range of signal strengths can be accommodated and shown on the meter. In practice, the circuit can indicate any input signal level between about $5 \mu \mathrm{~V}$ and 100 mV by means of M1.

Each of the three cascaded amplifier/limiter circuits in the input of the device has a signal level detector
associated with it. The combined outputs of these signal level detectors control the deflection of the signal strength meter. The first level detection circuit also provides the a.g.c. control signal from pin 15 which may be fed to the front-end unit.

The centre-reading meter M2 can be used as a tuning meter. When tuning towards the centre frequency of the signal, the meter needle is deflected to one side, but as tuning becomes closer to that of the signal, the meter needle returns through the centre position (when tuning should be exact) and is displaced to the other side. This variation of the potential at pin 7 with the tuning is shown in Fig. 14.

All the phase quadrature circuits discussed in this article must be aligned before use by adjusting the position of the core of the phase quadrature coil, whilst the extra input coil used in Fig. 10 must also be aligned. The alignment is greatly facilitated by the use of the meters shown in Fig. 13. When L2-C5 is correctly tuned, the meter M2 will show almost a symmetrical response when tuning through the signal (see Fig. 14) with optimum results when the receiver is tuned to the centre point of the curve.

The use of the meters in the Fig. 13 circuit is optional and some readers may wish to construct the circuit so that a meter is used only during the alignment of the receiver, since the incorporation of a meter permanently into a circuit does increase the cost of the receiver. The full scale reading of M1 and of M2 is not at all critical, as the values of the series resistors R2 and R5 can be adjusted to obtain suitable deflections with the meters available. However, the full scale deflection should not exceed a few mA or the device operation may be affected.

When tuning an f.m. receiver, a considerable amount of unpleasant random noise ("hiss") is formed when tuned to

Device	Package	Sensitivity (Input voltage at $-3 d B$ point)	Supply Voltage	Supply Current (in mA at 12V)	AM Rejection (dB)	Total Harmonic Distortion	AFC Output	AGC Ouqut	Muting	On-chip Audio Pre-amp	Electronic Volume Control range (dB)	Remarks
$\mu \mathbf{A 2 1 3 6}$	$\begin{aligned} & 14 \text { pin } \\ & \text { d.i.I. } \end{aligned}$	$450 \mu \mathrm{~V}$ (max. $800 \mu \mathrm{~V}$)	$\begin{aligned} & 12 \mathrm{~V} \\ & (20 \mathrm{~V} \text { max. }) \end{aligned}$	$\begin{aligned} & 17 \\ & \text { (max. 22) } \end{aligned}$	40	$\begin{aligned} & \text { 1\% } \\ & (\text { max. 3\%) } \end{aligned}$	-	-	Nопв	-	-	-
3075	$\begin{aligned} & 14 \text { pin } \\ & \text { di.I. } \end{aligned}$	$250 \mu \mathrm{~V}$ (max. $600 \mu \mathrm{~V}$)	$\begin{aligned} & 12 \mathrm{~V} \\ & (\max .18 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 17 \\ & (\text { max. 28) } \end{aligned}$	$\begin{aligned} & 50 \\ & (\min .40) \end{aligned}$	$\begin{aligned} & 1 \% \\ & (\max .2 \%) \end{aligned}$	-	-	None	Yes	-	-
$\begin{aligned} & 3089 \text { or } \\ & \text { TDA1200 } \end{aligned}$	$\begin{aligned} & 16 \text { pin } \\ & \text { d.i.!. } \end{aligned}$	$\begin{aligned} & 12 \mu \mathrm{~V} \\ & (\max .25 \mu \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V} \\ & \text { (max. 16V) } \end{aligned}$	$\begin{aligned} & 23 \\ & (\max .30) \end{aligned}$	$\begin{aligned} & 55 \\ & (\min .45) \end{aligned}$	$\begin{aligned} & 0.5 \% \\ & \text { (max. 1\%) } \end{aligned}$	yes	yes	Noise only	-	-	Industry standard type
CA3198E	$\begin{aligned} & 16 \mathrm{pin} \\ & \text { di.i.l. } \end{aligned}$	$\begin{aligned} & 12 \mu \mathrm{~V} \\ & (\max .25 \mu \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V} \\ & (\text { max. } 16 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 14 \\ & (\max .18) \end{aligned}$	$\begin{aligned} & 55 \\ & (\text { min. 45) } \end{aligned}$	$\begin{aligned} & 0.5 \% \\ & (\text { max. } 1 \%) \end{aligned}$	ves	yes	Noise and deviation	-	\cdots	used in high quality receivers
TBA120	$\begin{aligned} & 14 \text { pin } \\ & \text { di.I. } \end{aligned}$	$80 \mu \mathrm{~V}$	$\begin{aligned} & 12 \mathrm{~V} \\ & (\text { max. 14V) } \end{aligned}$	$\begin{aligned} & 14 \\ & (\text { max. 20) } \end{aligned}$	$\begin{aligned} & 60 \\ & (\min .50) \end{aligned}$	-	-	-	none	-	60	designed for television sound
TBA120S	$\begin{aligned} & 14 \text { pin } \\ & \text { d.i.t. } \end{aligned}$	$50 \mu \mathrm{~V}$ (max. $100 \mu \mathrm{~V})$	$\begin{aligned} & 12 \mathrm{~V} \\ & (\text { max. } 18 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 14 \\ & (\max .20) \end{aligned}$	68	0.2\%	-	-	nome	single transistor available	$\begin{aligned} & 85 \\ & \{\min .70 \mid \end{aligned}$	Internal transistor and Zener diode
LM1808	$\begin{aligned} & 18 \text { pin } \\ & \text { d.i.l. } \end{aligned}$	$200 \mu \mathrm{~V}$ (max. $400 \mu \mathrm{~V})$	$\left\lvert\, \begin{aligned} & 18 \mathrm{~V} \\ & (\text { max. 26V) } \end{aligned}\right.$	$\begin{aligned} & 11 \\ & \text { (i.f. only) } \end{aligned}$	min. 40	$\begin{aligned} & 1.2 \% \\ & (\max .2 \%) \end{aligned}$	-	-	none	2W power amplifier	75	On-chip power amplifier with protection
2111A	$\begin{aligned} & 14 \text { pin } \\ & \text { di.!. } \end{aligned}$	$300 \mu \mathrm{~V}$	$\left.\right\|_{12 \mathrm{~V}} ^{12 \mathrm{Vax} .15 \mathrm{~V})}$	$\begin{aligned} & 17 \\ & (\text { max. 22) } \end{aligned}$	40	0.3\%	-	-	none	-	-	-
Parameters may vary from one manufacturer to another-consult data sheets							Devices suitable for use as 10.7 MHz Limiter/Demodulators					

frequencies between the incoming required signals. The 3089 device incorporates a circuit which is able to mute or silence the receiver when no signal is being received. A muting signal is obtained from a level detector connected to the quadrature circuit which feeds a steady output voltage to pin 12, this voltage varying according to whether an input signal or only noise is being received.

A fraction of the voltage from pin 12 is tapped off by VR1 and fed to pin 5 , the muting input. The voltage fed into pin 5 can mute the audio pre-amplifier inside the 3089 so that no audio output is obtained whilst tuning between input signals.

The total harmonic distortion at the output of the 3089 device is about 0.3%, this being lower than that of most other similar devices. This distortion level is mainly a function of the phase linearity characteristic of the quadrature tuned circuit. A considerable reduction in the distortion level can be obtained by employing two tuned circuits instead of one between pins 9 and 10, but the alignment is then far more difficult and suitable test equipment is required to set up the double tuned circuit correctly. However, it is possible to reduce the total harmonic distortion at the output to a level of less than 0.1%.

The CA3189E

The RCA device type CA3189E is a recent development of the 3089 type of device. Like the 3089 , it is encapsulated in a 16 pin dual-in-line package and the connections to the two devices are almost identical (except for pin 16), but the external circuits which must be used with the two devices are somewhat different. The CA3189E is the latest device for use in equipment of the highest quality.

The bandwidth of the CA3189E circuit has been restricted to about 15 MHz (as opposed to the 25 MHz of
the 3089 type devices); this not only improves the noise level by reducing the amount of "in-band" noise generated by two signals outside the pass band, but also renders the circuit layout less critical and improves stability.

Unlike the 3089, the CA3189E includes an adjustable delay for the a.g.c. system; this means that the signal level at which the a.g.c. voltage commences to reduce the gain of the device is adjustable. Improvements in the design of the CA3189E internal circuit have resulted in the signal-to-noise ratio being increased to over 70 dB . Another feature unique to the CA3189E is the inclusion of a "deviation" muting circuit in addition to the normal noise muting circuit used in the 3089 devices. This deviation muting circuit results in the muting of the "thump" noise when turning rapidly through a fairly powerful signal.

A typical CA3189E circuit is shown in Fig. 15. The limiting sensitivity of the CA3189E is about the same as that of the 3089 device and a similar input circuit can be employed. However, Fig. 15 shows a different type of input circuit using two BF594 npn transistors and a total of four Toko CSFE ceramic 10.7 MHz filters which provide a band-pass characteristic which enables a signal-to-noise ratio of about 40 dB to be obtained at an input signal level of onlu $3 \mu \mathrm{~V}$.

It is possible to omit one of the BF594 amplifier stages and two of the ceramic filters; the input signal is then fed directly (through a capacitor) to the base of the second BF594 transistor. In this simpler circuit the signal-to-noise ratio is appreciably lower, being rather over 20 dB at the same input signal level of $3 \mu \mathrm{~V}$.

The similarity between the CA3189E and 3089 circuits can be seen from Figs. 15 and 13. An important difference between the two is the use of an external audio load resistor $12 \mathrm{k} \Omega$ between pins 6 and 10 in the CA3189E circuit, whereas the load resistor is fabricated on the
continued on page 71

MPU bank cards

A popular cheque scheme on the Continent is one in which the owner's photograph is printed on each cheque. This gives a useful security "cheque"! The Continental bankers have again been looking at services to customers and on French electronics company has warmed to this theme by proposing to stick a microprocessor into everyone's bank credit card.

Cards in current use can store only a limited amount of information in magnetic stripes. The proposal is that, by using a microprocessor, every transaction could be recorded and the holders bank balance could be updated at each transaction.

While all this "with-it, latest, state-of-the-art" approach might be applauded by electronics pundits, I keep hearing about electronic accounting systems charging people idiotic amounts, like the $£ 8$ million gas bill etc. The Ginsberg abbacus rulesOK?

What is an 1154?

Say 1154 to most Lisle Street electronics buffs and they will draw you a picture of an enormous ex-RAF transmitter, complete with coloured knobs and a couple of PT15 directly heated valves in the p.a. stage.

Contrast this nostalgic collossus with the new i.c. that incorporates its own 4 MHz oscillator. The chip uses silicon gate techniques (not to mention a touch of c.m.o.s.) and sips only a dainty $6 \mu \mathrm{~A}$ at 1.55 V . It is aimed at the watch market and deliveries are now rumoured to be rife.

Meter magic

So now l've heard it all, Magic Meters-well, they appear to be magic to me. A new range of analogue panel meters just out on the British market look all very smart in their black edged cases and large white dials with black lettering. The scale reads $0-150 \mathrm{~A}$ (on the one I'm looking at). But if I want it to read $0-15 \mathrm{kV}$, I can simply unplug one scale, and insert another. And the readings are guaranteed to be accurate to Class 1.5 accuracy. There's virtually dozens of scales; another reads $0-1000 \mathrm{~kW}$.

The nice thing about these meters is that they are dustproof, the scales have a positive "click" insert mechanism, and you can change scales without
taking the meter to pieces or, indeed meddling with anything else on the instrument.

The range of scales available is truly enormous, ranging from milliamps to Megavolts. These meters are intended for the professional who should look for the IMO J Series instruments.

Confucius-/I dit

Someone in History is always having his magic phrase "Damned clever these Chinese" repeated. Alas, to bring it up to date we must substitute French. An electronics company in Toulouse has been watching the growing market in home computing and business computing. Now, it is to launch its X 1 system which is based on the Motorola 6800. The X 1 offers 8 K of 'memory, two minifloppy discs, keyboard, and 12 in display monitor all for around $£ 2000$ The display can handle 24 rows of 80 characters. Strong rumours persist that a basic version wil be made available for around $£ 500$.

The murky depths revealed

Television cameras on the seabed are all very well-until there's turbulence, or the water gets murky, then they're blind and virtually useless.

A British company has come up with a solution-use an ultrasonic TV camera. While the possibility has been argued about since the late 1930's, it is offly now that a practical solution has been achieved. In use, an array of ultrasonic transducers fire forward to "illuminate" the screen at ultrasonic frequencies.

The reflections are focused onto a special converter tube. A halfwavelength piece of quartz is embedded in the faceplate of the converter tube and it is this that accepts the ultrasonic echoes and translates them into a voltage pattern. The new unit is said to operate at depths down to 30 metres, but can be used down to 300 metres with an added pressure window.

The TV scan details are $12 \frac{1}{2}$ frames/second 201 lines/frame. Using a frequency of 2 MHz it is claimed to see clearly through several metres of very murky water.

While underwater enthusiasts celebrate, doubtless Hams will wonder about further QRM at the high end of Topband!

Hothouse transducers

If you're interested in checking relative humidity, then you might be pleased to hear about a special relative humidity transducer that has recently appeared on the American market. It measures only $41 \times 22 \times 1.6 \mathrm{~mm}$ and the humidity is sensed by an electrically conductive surface. It can monitor from 0% to 100% relative humidity over the temperature range $-60^{\circ} \mathrm{F}$ to $+200^{\circ} \mathrm{F}$. Useful, perhaps, for electronics gardeners or budding sauna enthusiasts.

Optical disc store

In previous Ginsberg writings I mentioned that video discs were a reality and that many manufacturers were producing these. It now seems that these discs will have another application-for storage in computers. A European company has produced an optical disc memory system that looks very promising. One, single 12 inch double sided disc can store the equivalent of half a million pages of typewritten matter. This is considerably more than magnetic discs. The mean access time to any address anywhere on the disc is 250 ms .

Self checking

When using computers and computer systems it is not unusual to find a thing called "self-diagnostic". This is where the computer (or system) fires signals around its own circuitry to check that all its circuits are functioning correctly. This usually happens in those fractions of a second that the system isn't being used.

The latest digital multimeter to arrive on the market does the same thing. It will self-check itself and, if it does find something it shouldn't, it will isolate the fault to one of the five basic boards. It will also function as a d.m.m. to an accuracy of better than ± 2 p.p.m. of reading, and 1 p.p.m. of full scale ($6 \frac{1}{2}$ digits). Input impedance of this truly magnificent beast is $1000 \mathrm{M} \Omega$ and the input is also fully protected against overitoads to 1 kV . And the price!
the necessary facilities for a complete multi-mode i.f. amplifier and detector. The LM373N is a 14 -pin dual-in-line integrated circuit which comprises a gain-controlled i.f. preamplifier, main i.f. amplifier, f.m./c.w./s.s.b. product detector, a.m. peak detector and an a.g.c. system.

The product detector operates in an unbalanced mode for a.m. reception and functions as an amplifier followed by an envelope detector. For f.m. reception, the product detector is supplied with a signal which is in phase quadrature with the original i.f. signal (i.e. 90° out of phase). The product detector inputs for s.s.b. operation are the i.f. signal and the b.f.o. output. The audio output is then derived before the envelope detector. The envelope detector then acts as an audio frequency peak detector and the output of this stage is used for a.g.c. purposes.

Circuit Description

An overall block diagram of the receiver is shown in Fig. 1. It is a conventional single-conversion superhet which makes use of five transistor stages and two in-
tegrated circuits. The circuit diagram is shown in Fig. 2.

This modern receiver design offers very good performance at low cost, is easy to build and uses.readily available components. The receiver provides for the reception of a.m., c.w. and s.s.b. signals. The construction of the receiver unit makes use of a single printed circuit board and the alignment procedure is simplified by the use of a pre-tuned ceramic i.f. filter. The resulting performance is more than adequate to satisfy the needs of the discerning short wave listener or medium wave DXer.

Although the basic receiver design is for a frequency coverage of 1.5 to 3.5 MHz , coil winding details are also given for alternative frequency bands in the range 1 to 12 MHz . Only two coils need to be wound by constructors and, to further simplify this task, they each make use of only a single tuned winding.

The multi-mode capability and the 2 MHz tuning range of the receiver also makes it ideally suited for use as a 'tuneable i.f.' in conjunction with a front-end convertor for the v.h.f. aircraft or amateur bands.

The receiver utilises the National Semiconductor LM373N i.f. amplifier. This versatile device, designed specifically for communications subsystems, provides all

Amplification at r.f. is provided by a junction gate field effect transistor, Tr 1 , operating in common gate configuration. This stage exhibits a low input impedance, ideal for matching long wire aerials, and a high output im-

specification

Frequency Coverage: 1.5 to 3.5 MHz
Modes of Operation: AM, FM, CW antssB
Intermediate Frequency: 455 kHz nomphell
 ratio measuret at 2.6 种 130%
modulation at 750
Selectivity: 5.6 kHz at -30 B pogss
11.9 kHz at -20 da points

AF Power Output: 500 mW maximum thto 8Ω loudspanalarati 1 kHz

Image Channel Rejection Gryater than 20 dB at 2 mate sitigine is cópriderahy yimproved with the ais ; ot-anagial tuning unit or preselec-

AGC Range: AM; less than Koldokdye in audio

 (000 (hal)
Input Impodince: 690ρ for

Table of component changes for alternative frequency coverage

pedance, which is necessary to reduce the loading on the r.f. tuned circuit, L1 and VC1.

A dual gate field effect device, Tr 2 , is used in the mixer stage. The signal from Tr 1 is applied to gate 1 and the

local oscillator signal to gate 2 . This type of mixer offers very good performance, providing considerable conversion gain and minimising the loading on the r.f. amplifier and local oscillator tuned circuits. The drain load of $\operatorname{Tr} 2$ is a double-tuned i.f. transformer, used to select the desired intermediate frequency signal.

The local oscillator stage is somewhat unconventional in design. A bipolar transistor, Tr 3 , is connected in common base configuration in a modified form of Colpitts oscillator. This arrangement provides an almost constant output level over a very wide tuning range, with the added advantage of requiring only a simple untapped inductor. The power supply to the oscillator is stabilised by a Zener diode, Dl.

The i.f. amplifier and detector functions are provided by IC1. A ceramic filter is used to define the overall selectivity of the receiver. The LM373N is ideally suited for filters of this type having medium level input and output impedances.

External switching is used to select the different modes of operation. This switching is important, not only to
select the appropriate signal paths, but also to ensure that the correct a.g.c. characteristics are provided.

As the LM373N uses only a relatively small a.g.c. voltage swing compared with a conventional i.f. amplifier, it is necessary to provide additional d.c. amplification in order to drive the signal strength meter. The current amplifier, $\operatorname{Tr} 4$, operates as an emitter follower which has a high input impedance in order to minimise the loading effect on the a.g.c. line. Pre-set potentiometers, VR4 and VR5, are respectively used to allow calibration and balancing of the ' S ' meter.

The beat frequency oscillator (b.f.o.) stage uses a transistor, $\operatorname{Tr} 5$, operating as a conventional common emitter, tuned-collector oscillator. The emitter load, however, is left un-bypassed in order to improve the purity of the output waveform. The operating frequency of the b.f.o. is preadjusted by the core setting of IFT4. Fine frequency adjustment is achieved by means of a conventional silicon diode D3, connected as a "varicap"-i.e., to a variable reverse bias potential derived from a potentiometer across the supply. The b.f.o., a.g.c. amplifier and local oscillator

Fig. 2: Complete circuit diagram of the receiver. Details of the optional mains power supply will be given next month

Fig. 3: Printed circuit board track pattern, shown full size

Internal view of the PW "Hythe'. Access to the internal battery pack is by removing the right-hand end of the case. The case specified is also suitable for mounting in a standard 19 inch rack cabinet

Fig. 4: Component location and external connections for the receiver printed circuit board
stages are all powered from a nominal 9 V stabilised supply provided by D2.

Audio amplification of the detected signal is provided by IC2. This is a conventional arrangement using an LM380N. Little comment is needed, save to mention that this arrangement provides an adequate power output, with a fixed voltage gain of around 50, and uses an absolute minimum of external components.

Construction

The majority of components are located on the p.c.b. with
controls and switches mounted on the front panel. After completing the assembly of the p.c.b. a careful visual check should be carried out in order to ensure that all components have been soldered correctly into place and that no dry joints or inadvertent short circuits exist. It is essential that the p.c.b. should be thoroughly checked at this stage since it is difficult to remove it for inspection once it has been wired to the front panel components. Push-fit terminal pins may be inserted into the p.c.b. to readily facilitate connections to the rest of the circuit. The p.c.b. is secured above the base of the chassis close to the front panel by means of four short stand-off pillars. The wiring from the main p.c.b. to the front panel, and par-

components

Resistors
all $\frac{1}{4} W$ 10\% carbon
100Ω
270Ω
330Ω
470Ω
680Ω
820Ω
$1 \mathrm{k} \Omega$
$3 \cdot 3 \mathrm{k} \Omega$
$3.9 \mathrm{k} \Omega$
$4.7 \mathrm{k} \Omega$

Miscellaneous

S1 miniature Maka-switch, two 4p 3w wafers and spacers, S2 s.p.d.t. miniature toggle switch, S3 d.p.d.t miniature toggle switch, IFT 1 Denco IFT18, IFT2, IFT3 Denco IFT13, VC1 dual gang 500pF (365 pF if reduced frequency coverage acceptable). VC2 50pF variable. Ceramic filter CFT455C 16 kHz bandwidth) Ambit International. Coll formers 4.8 mm dia $\times 27 \mathrm{~mm}$ in length 2 off, base plates, cans and dust cores to suit. 8Ω speaker ($2 \frac{1}{2}$ in dia), moving coil meter (see text), 50 mm vernier drive, terminal pins, stand-off pillars, round BNC socket, countersunk 4BA screws, 15 mm long (min.) 3 off, 4BA clearance spacers $12 \frac{1}{2} \mathrm{~mm}$ long (min.) 3 off, standard jack, battery holders (optionall. West Hyde "Brightcase" BC2121, front panel (D. J. Pattle).

Potentiometers all carbon track $1 \mathrm{k} \Omega$ lin	2	
$5 \mathrm{k} \Omega \log$	1	VR4, 5
$10 \mathrm{k} \Omega$ lin	2	VR1

Capacitors
Silvered mica

2pF	1	CB 1
Polystyrene		
47 pF	2	$\mathrm{C4}, 27$
100 pF	1	$\mathrm{C3}$
220 pF	1	$\mathrm{C3}$
470 pF	3	$\mathrm{C} 11,12,17$

Polyester min dipped

4.7 nF	1	C28
10 nF	10	$\begin{aligned} & \mathrm{C} 1,5,7,9,14,18,19,29 \\ & 32,34 \end{aligned}$
22 nF	1	C22
$0.1 \mu \mathrm{~F}$	6	C2, 6, 8, 23, 25, 30
$0.22 \mu \mathrm{~F}$	1	C20
$0.47 \mu \mathrm{~F}$	1	C16
Electrolytics		
63 V tubular		
$1 \mu \mathrm{~F}$	2	C10, 21
$22 \mu \mathrm{~F}$	2	C13, 15
$100 \mu \mathrm{~F}$	2	C24, 26

Semiconductors		
LM373N	1	IC1
LM380N	1	IC2
2N3819	1	Tr 1
3N140	1	Tr 2
BC548	3	$\mathrm{Tr} 3,4,5$
BZY88 C6V2	1	D1
BZY88 C9V1	1	D2
1N4001	1	D3
TIL 209	1	D4

ticularly that associated with the tuning capacitor VC1, should be as short and direct as possible, and wiring from the board to the volume control, and from the aerial socket to the board, should employ short lengths of screened cable. Some care is needed here in order to ensure that the control spindle of VCl is correctly aligned to the shaft of the drive. If this alignment is not correct, undue wear may be placed on the vernier drive mechanism and also the tuning may be found to be somewhat erratic.

Inductors L1 and L2 consist respectively of 120 turns and 80 turns of 32 s.w.g. enamelled copper wire wound in two layers on a 4.8 mm diameter former fitted with a base, screening can, and dust core. In each case, care should be taken to ensure that the terminal pins of the base align correctly with the p.c.b. connections. After completing the winding of the coils, they should be liberally coated with a polystyrene impregnant in order to hold the windings in place. The screening can is then fitted and the entire assembly is located and soldered to the p.c.b. If an alter-
native frequency coverage is required, coil winding details are provided in the table shown. The moving coil meter used in the prototype was a miniature edgewise tuning indicator of approximately $200 \mu \mathrm{~A}$ full-scale deflection. The receiver will, however, operate satisfactorily with moving coil meters having anything between $100 \mu \mathrm{~A}$ and 1 mA fullscale deflection and, if desired, constructors may choose to use a properly calibrated ' S ' meter. In the authors' experience, however, the calibration of such meters in all but the most expensive of receivers has been found to be somewhat arbitrary and, for most purposes, a conventional linear meter scale will be found to be quite satisfactory.

The second part of this article will deal with the two optional items involved-the power supply, and an aerial matching unit, the latter providing an improvement both in image rejection and impedance matching. Details will also be given for setting up and operation of the receiver generally.

 PRODDUCTION LINES alan martin

Cases Galore

West Hyde Developments, the Aylesbury based electronic hardware suppliers, inform me, that they can supply from stock a case to house virtually all projects likely to appear in journals such as Practical Wireless. The photograph shows a selection of the various families of cases available, however, the combination of sizes multiply this selection enormously.
West Hyde can also offer a full range
of accessories such as knobs, handles, switches, indicators and tools.

With the aid of a computer, designed to complement West Hyde's accounting system, they are able to provide a speedy turnround of orders.

To obtain their latest, free catalogue and price list, applications should be sent to: West Hyde Developments Ltd., Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP2O 1ET. Tel: (0296) $20341 / 4$.

If you please

Would readers kindly mention "Production Lines", when applying to manufacturers or suppliers featured on this page.

Neat job

With the home constructor demanding a highly professional standard of finish to his projects, a useful tool has been introduced by Litesold.

The Opsec component lead bending tool is designed for simple and accurate preforming of component leads prior to insertion into the p.c.b.

The jaws may be adjusted, up to a maximum of 45 mm , to accommodate most lengths of components likely to be used on circuit boards. An adjustable stop and numbered slots on the jaws ensure accurate positioning of the component prior to bending. The base is engraved in steps of 2.5 mm to aid initial setting-up.

Manufactured in Deroton, a tough, high impact plastic and with the base fitted with non-slip feet, which may be drilled through and the unit screwed securely to the bench, the Opsec tool costs $£ 4.99$ plus 8% VAT and 15 p P\&P. Light Soldering Developments Ltd., 97/99 Gloucester Road, Croydon, Surrey CRO 2DN. Tel: 01-689 0574.

Drill stand

Recently introduced by Mega Electronics Ltd., a new low-cost p.c.b. drill stand designed for use with conventional hand-held p.c.b. drill units.

Designated the Photolab PLST-12A, the drill stand is constructed with a strong base of machined cast iron supporting precision steel guides by means of which the standard 12 V drill is raised and lowered.

Important features are its combined simplicity and accuracy; and the fact that it will accept both the Mega and
other proprietary drills of 34 mm body diameter. Additionally, the same basic drill stand is available to special order from Mega, capable of accepting drills between 20 mm and 41 mm diameter, at marginal extra cost.

Printed circuit boards of up to 254 $\times 228 \mathrm{~mm}(10 \times 9 \mathrm{in}$.) overall will be accepted by the drill stand.

The Photolab drill stand is priced at $£ 16.50$ which includes VAT, and is available from: Mega Electronics Ltd., 9 Radwinter Road, Saffron Walden, Essex CB 10 1EP. Tel: 079921918.

The design of high quality audio power amplifiers is quite complex, and poorly constructed circuits may develop distortion or even burn out if used in a warm room. To avoid the problems associated with the construction of a complete amplifier using discrete semiconductor devices, a complete audio hybrid module or integrated circuit power amplifier can be used.

However, another approach involves the use of an audio power driver i.c. which contains most of the circuitry required for the early stages of the amplifier, but which is not itself designed to supply high power levels. This device will provide signals which can be used to drive external power transistors feeding the load.

Unfortunately very few audio power driver devices have been manufactured, but recently the new LM391N-60 has become available to the home constructor. This is a 16 pin dual-in-line device with the connections shown in Fig. 1 which can be used to construct audio power amplifiers producing only about 0.01% total harmonic distortion. It has the advantage that it is internally protected against output faults causing excessive current flow. In addition, it is protected against thermal overloading, and also protects the external power transistors.

A typical LM391N-60 amplifier which will deliver up to 20 W into an 8Ω loudspeaker or up to 30 W into a 4Ω loudspeaker when operated from suitable power supplies is shown in Fig. 2. Pin 8 of the LM391N-60 can deliver an output current of up to 5 mA to the base of the BD345 driver transistor $\operatorname{Tr} 1$; this latter device amplifies the current before it is again amplified by the BD 346 power transistor, $\operatorname{Tr} 2$. Pin 8 is a current source, but pin 5 accepts current and is therefore known as a current sink. The current is withdrawn from the base of the BD344 transistor $\operatorname{Tr} 3$ into pin 5; $\operatorname{Tr} 3$ drives the BD347 power transistor Tr 4.

The positive half cycles of the waveform are handled by the BD346 power device, the current passing through R9, L1 and the loudspeaker to ground, but during negative half cycles current flows from ground through the speaker, L 1 , and R10, to the BD347 and hence to the negative supply line. This is a normal type of Class B operation in which each output transistor conducts alternately.

Circuit Details

The audio input signal is coupled by C 1 to pin 1 of the device, R1 being the ground return resistor. The values of these components must not be too low or the bass response will be reduced. The amplifier input impedance is approximately equal to R1, but if this resistor has a very high value, board layout problems may occur when designing for stability. In addition, the use of a very high value for R1 may result in a high offset voltage at the output.

Negative feedback is taken from the output through R4 to pin 2. The gain at audio frequencies is equal to ($1+$

R4/R2) or about 20 (26 dB) with the component values shown. However, the value of R2 can be altered (within reasonable limits) to obtain various values of gain. The input voltage required for full output power is about 630 mV with the values shown. The value of R4 should be approximately equal to R 1 for minimum offset voltage.

Capacitor C2 prevents the flow of a steady direct current in the feedback circuit so that there is 100% negative feedback at zero frequency; this reduces the gain of the circuit to unity at zero frequency with the result that any small input offset voltage is not amplified to produce a large output offset. Such an output offset would not only reduce the output voltage swing in one direction (and hence limit the maximum output power), but would also drive a steady current through the loudspeaker so that the loudspeaker coil would be displaced in its magnet gap or perhaps even burnt out. The value of C 2 should be adequate to prevent the attenuation of bass frequencies.

Fig. 1

	Top view	WAD279
+1n-1	$\checkmark 16$	$6-\mathrm{V}-\mathrm{-}$
-In - 2	15	5 -V+
Comp C-3		4-Shutdown
Ripple C-4	13	3--I Limit
Sink-5	12	2 --SOA diode
Bias-6		1 - +S0A diode
Bias-7	10	- 0 I Limit
Source- ${ }^{8}$		9 -Output sense

The 5 pF capacitor C 4 is for frequency compensation (as in an operational amplifier) and sets the high frequency gain-bandwidth product. This component is required for high frequency stability. Capacitor C3 connected to pin 4 improves the rejection of mid-band and high frequencies (see Fig. 3) and if used should have a value equal to that of C4.

The potentiometer VR1 between pins 6 and 7 sets the bias for the external transistor output stages. Too little bias will result in excessive crossover distortion, whilst too much will result in an excessive power consumption and possible overheating. In the circuit of Fig. 2, VR 1 should be adjusted for a quiescent current in the output devices of about 15 mA , since this is just a little more than is required for minimum crossover distortion (as shown in Fig. 4). Crossover distortion is best detected at high frequencies and at low signal amplitude. The component C5 is a bias by-pass capacitor which reduces high frequency distortion and improves the transient response.

The components L1 and R 14 connected in parallel may be made as a single item by wrapping about 25 turns of 19 s.w.g. wire around a $10 \Omega 2$ watt resistor and soldering the ends of the wire to the resistor leads. It is possible to omit these two components completely with some loads, but the inductance L1 greatly improves the stability of the circuit with a capacitive load. Almost all the load current flows through the wire of the inductance (except at very high frequencies) rather than through the resistor R14. The value of this inductance is not at all critical, 2 to $12 \mu \mathrm{H}$ being suitable, but the wire used for L1 must be able to carry the

peak current required by the loudspeaker.
The components R15 and C8 form the normal Zobel network which improves the stability at very high frequencies with certain types of load. Although the circuit may possibly operate satisfactorily without these two components, it is wise to include them rather than risk having trouble with the finished amplifier.

The resistors R9 and R10 are the emitter stabilising resistors for the power output transistors $\operatorname{Tr} 2$ and $\operatorname{Tr} 4$ respectively. They can easily be wound from a short length of resistance wire (possibly around a resistor of higher value), but the resistance wire used must be able to carry the peak current passed by the transistors. R9 and R10 stabilise the ouput stage quiescent current against variations of temperature.

The resistors R7 and R13 are bleed resistors which remove the charge stored in the base of the output transistors and thereby speed up the operation of these components.

Protection Circuit

If an excessive current passes through R9, the voltage drop across this resistor will be passed to pin 10 of the LM391N-60. The internal circuit of the device will then cause the current drive to pin 8 to be reduced so that the current passing through R9 is limited to a safe value. Similarly, a high current through R 10 results in an increased voltage being applied to pin 13; this results in a reduction of the pin 5 current so that the current in $\operatorname{Tr} 4$ is limited to a safe value.

The limiting action of this protective circuit commences when the voltage between pins 10 and 9 or between pins 9 and 13 exceeds about 0.65 V . When the component values shown are used, this means the output current in each transistor is limited to a few amps.

The safe operating area (s.o.a.) protective diodes connected in the pin 11 and pin 12 circuits are not used in the relatively simple circuit of Fig. 2 and neither is the device shutdown facility of pin 14. However, a thermal switch may be fitted to one of the ouput device heat sinks so that this switch closes when the temperature rises above a certain level and connects pin 14 directly to ground. A current of less than 0.5 mA in the pin 14 circuit is adequate to shut the device down.

Fig. 3

Power Supply

The maximum power supply voltage which can be safely applied to the LM391N-60 is $\pm 30 \mathrm{~V}$. However, it is wise to keep the applied voltage appreciably below this value so as to provide a margin of safety to allow for any normal increases in the mains supply voltage producing a higher supply line voltage. An upper limit of 27 V is suggested unless stabilised supplies are employed. If the power supply voltage is low, the maximum output power may be reduced. The LM391N-60 draws a quiescent current of about 3 mA (maximum 10 mA for any device of this type).

The output voltage of a typical LM391N-60 can swing to within 5 V of the potential of either of the supply lines. When using a supply of $\pm 21 \mathrm{~V}$, the maximum output voltage swing will therefore be about $\pm 16 \mathrm{~V}$. The current in a 4Ω load will be $16 \div 4=4 \mathrm{~A}$ peak, whilst the peak power

Fig. 4: Above
Fig. 5: Below

will be $16 \times 4=64 \mathrm{~W}$. In Europe amplifiers are rated according to the maximum mean power they can deliver; the mean power is one half of the peak power in the case of a sine wave, so the peak power could be about 32 W provided the current limiting circuit does not limit at a current under 4A.

When employing an 8Ω loudspeaker with $\pm 21 \mathrm{~V}$ power supplies, the peak current is $16 \div 8=2 \mathrm{~A}$ and the peak power $16 \times 2=32 \mathrm{~W}$. Thus the maximum mean power is about 16 W . A little more power can be obtained with an 8Ω load if the power supply voltage is increased to about $\pm 23 \mathrm{~V}$.

The LM391N-60 provides excellent rejection of noise and hum present on the power supply lines. The amplitude of any such noise and hum signals at the output of the device is typically 31600 times (or 90 dB) less than their amplitude on the power supply lines; the typical variation of the rejection with frequency is shown in Fig. 3. The minimum rejection figure for any LM391N-60 is 70 dB or 3160 times.

The noise generated by the LM391N-60 is only $3 \mu \mathrm{~V}$ referred to the input.

Performance

The total harmonic distortion in a LM391N-60 circuit is about 0.01% at 1 kHz when the circuit gain is 20 , but it increases with frequency as shown in Fig. 4. The distortion is also higher in circuits employing higher gain, since the amount of negative feedback is smaller. Typical values of the total harmonic distortion at two values of gain are shown in Fig. 5. The intermodulation distortion has been measured as 0.01% for signals of 60 Hz and 7 kHz simultaneously present.

External transistors

Various types of complementary output transistor ($\operatorname{Tr} 2$ and $\operatorname{Tr} 4$ in Fig. 2) may be used with various types of driver device ($\operatorname{Tr} 1$ and $\operatorname{Tr} 3$). The transistors used must have a Vceo breakdown voltage rating which is not less than the total voltage applied across the circuit (namely the sum of the positive and negative supply voltages). The maximum current at the LM $391 \mathrm{~N}-60$ outputs is 5 mA . The gain of the driver transistor multiplied by the gain of the output stage must be adequate to bring up this 5 mA current to a value which is great enough to drive the loudspeaker at the required power level.

The complementary driver transistors in the circuit shown have a gain of 40 at 200 mA collector current. Thus they can bring the 5 mA output up to the 200 mA level. The output transistors have a minimum gain of 30 at a current of 4 A , so this is adequate for the purpose. The driver transistors should have a much higher transition frequency (f_{T}) than the output transistors to prevent instability.

It is recommended by the device manufacturers that the output transistors of the Fig. 2 circuit should each be mounted on a heatsink of thermal resistance not more than $4.8^{\circ} \mathrm{C} / \mathrm{W}$ or alternatively both could be mounted on the same heat sink which should not have a higher thermal resistance than $2 \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$. No heat sinks are required for the driver transistors. These heat sinks are not designed to cope with long duration short circuiting of the output to ground.

The LM391N-60 can be used together with external transistors in high fidelity amplifiers which are reasonably simple to construct. The device is available from Arrow Electronics Ltd., Coptfold Road, Brentwood, Essex, CM14 4BN.

Coaronics for VALUE \& VARIETY in FREQUENCY COUNTERS

In addition to our popular 250 MHz and 500 MHz counters we

 have produced a NEW 200MHz COUNTER KIT specially for home constructors. Our new K200 counter, although small, is a no-compromise design. It offers:* A full 8 digit LED display.
\star A frequency range of 10 Hz to 200 MHz .
* An accuracy of 10 Hz at $30 \mathrm{MHz}, 50 \mathrm{~Hz}$ at 150 MHz in normal home environments.
$\star \quad 5 / 6$ volt operation from batteries or mains PSU.
\star Power consumption of only 1 W maximum at maximum frequency.
* A crystal oscillator at $\mathbf{5 M H z}$ which doesn't need any special setting up equipment.
$\star \quad$ Small size $4^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$. $\quad \star$ Uses only 4 i.c.s.
* Assembly time of about 2 hours.

Full illustrated assembly instructions.
The K200 consists of 2 PCB assemblies, one being the complete input and counter unit, the other, the displey unit. Both units are available in kit or assembled/tested module form. Prices (INCLUDING VAT):

```
Input/Counter
Kit
```


Input/Counter

Module

$£ 59.00$
Display Kit
$\mathbf{f 1 2 . 9 6}$

This new Catronics modal K200 complemants our DFM5, a 250 MHz 7 DIGIT MAINS/12V HIGH QUALITY Frequancy Counter, and the DFM 500-a REAL 500 MHz -try some of the others actually at this frequency.
Both are absolute value for money and are available now with better than 1 in 10^{\prime} reference scillators as / S models

Cones DISCOUNT PRICES for VERO CABINETS

All Plastic Range

Code No	Size (mm)	Price
$65-2514 \mathrm{~F}$	$100 \times 50 \times 25$	£ 1.70
$65-2516 \mathrm{G}$	$100 \times 50 \times 40$	£ 1.91
$65-2518 \mathrm{H}$	$120 \times 65 \times 40$	£ 2.15
$65-2520 \mathrm{~J}$	$150 \times 80 \times 50$	$£ 2.45$
$65-2522 \mathrm{~K}$	$188 \times 110 \times 60$	$£ 3.25$

Aluminium top panel-65-3851A($120 \times 65 \times 40)$
Metal Fronted Range Sloping front panel-75-1798K $(171 \times 121 \times 75 / 37.5)$

19" CARD FRAME/CASE SYSTEM

Card Frame/case	71-3841-L	$\mathbf{f 2 0 . 9 1}$
		+f1.25p8
Pair end plates	71-3842-F	84p
$8{ }^{\prime \prime}$ Module	71-3843-A	E4.04
4" Module	71-3844-G	£3.08
Veroboard	09-3979-K	£1.40
2" Front panel	71-3845-B	f1.03
1" Front panel	71-3846-H	98p
Veroboards (less connector)	09-1034-F	£1.33
Plain board (less connector)	09-1040-J	90p
DIP board (less connector)	10-1041-J	f3.60
Connector, plug, 31 way	17-0267-H	98p
Connector, socket, 31 way	17-0268-C	£1.07
VQ DIP board	01-0044-C	£1.12

A/I prices incfude VAT at current rates

Please note our minimum U.K. post and packing charge, except where indicated, is $20 p$. EXPORT ORDERS welcomed.

NEW PLESSEY IC

SL6640 FMIF now in stock at $\mathbf{£ 4 . 8 5}$

Mniroducilon io S.A.MONEY LDEIL~ 7

Having examined the various types of logic element and some typical applications it may now be interesting to look at some of the more recent developments in digital integrated circuits and see how they might affect amateur projects in the future.

Probably one of the more significant advances in the technology of integrated circuits in recent years has been the development of Large Scale Integrated (LSI) circuits in which there might be a thousand or more gates, or flipflops, on a single silicon chip. This has been made possible by using larger chips, maybe 4 mm square, and better photographic and etching techniques allowing more components to be packed into the chip. These complex chips make it possible to build a complete logic system into a single i.c. package. Even more complex devices, having tens of thousands of gates on a chip, known as Very Large Scale Integrated (VLSI) circuits are now being developed which promise to reduce complete computer systems to little more than a handful of i.c. chips.

MOS Logic

Most of the LSI logic devices currently being built use MOSFETs to form the logic elements. Unlike CMOS logic, which uses both p - and n-channel devices, the ${ }^{-}$MOS logic in LSI chips uses either all p-channel or all n-channel type transistors.

The earliest LSI chips used p-channel transistors and this type of logic is generally referred to as PMOS logic. Power supplies for PMOS devices are negative and often there are two or three different voltages required to produce the correct bias conditions. Typical devices might use supply lines of -5 V and -12 V although some circuits may need as much as -20 V for the supply rail. Because the logic signals are of different amplitude and opposite polarity there can be problems in interfacing PMOS logic with normal TTL and CMOS circuits. Discrete transistor circuits are normally used to match the PMOS outputs to TTL inputs and vice-versa.

Production of LSI circuits using n-channel transistors was initially more difficult than that of PMOS devices, but, once the fabrication problems has been overcome, these new NMOS devices, as they came to be called, were found to be better than their PMOS counterparts.

Initially NMOS devices, like the PMOS types, used two or three positive power supply rails but in many of the new NMOS circuits the bias supplies are derived inside the chip so that only a single supply voltage is required. One big advantage of NMOS circuits is that they can easily match up with TTL or CMOS logic and in many cases direct connection between the two types of logic is possible. Most NMOS logic circuits are faster in operation than PMOS equivalents.

A typical NAND gate in NMOS logic would have a circuit arranged as shown in Fig. 77(a) whilst a NOR gate
would be as shown in Fig. 77(b). As with CMOS the input impedance of PMOS or NMOS circuits is very high so static electricity can be a problem, Most modern LSI chips will have protection diodes built in to minimise the possibility of damage due to static. Nevertheless it is wise to handle all MOS LSI type devices with the same care as CMOS, and they should be stored with all device pins shorted together by aluminium foil or conductive plastic foam.

Semiconductor Memories

Among the earliest applications of LSI techniques was the production of semiconductor memory systems for use

WHDOBS (a) NAND gate
Fig. 77 (a): Typical MOS LSI NAND gate

Fig. 77 (b): Typical MOS LSI NOR gate

Fig. 78: Organistion of a typical 1024-bit (1K) memory
with small computers. Prior to the mid-1970s virtually all of the digital computer systems used ferrite cores as memory cells. These small ferrite ring cores were magnetised one way to represent a logic l state and the magnetisation polarity was reversed to represent a 0 state. A vast array of these tiny magnetic cores would be used to store the states of perhaps thousands of bits of data. Complex addressing logic had to be used to select a particular core in the array, to read its state or to write in new data. Because the windings often consisted of only one turn quite large current pulses were needed to magnetise the cores, so power supplies tended to be rather large.

A semiconductor memory can readily be produced by using a flip-flop for each memory cell. Using LSI techniques it is possible to build 1000 or more such cells on a single chip and with MOS logic the power requirements will be relatively small.

To simplify the addressing logic the array of flip-flop cells in an MOS memory would be arranged as, say, 32 rows and 32 columns, and the general arrangement of the chip would be as shown in Fig. 78. To select a particular memory cell a 32 -way decoder is used to select one row of flip-flops. Next a second decoder is used to select one of the 32 columns and hence will select one flip-flop in the chosen row. The input and output circuits of this selected flip-flop will now be routed to the input and output pins of the chip. When a clock pulse (called the Write input) is applied, the selected flip-flop will take up the state of the data input line thus allowing data to be written into the memory. Each time a flip-flop is selected, its output will be routed to the data output line of the memory chip allowing the data to be read out.

In a typical memory device, such as the 2102 , there might be 1024 cells arranged as a 32×32 array. Such a chip would be called a 1 K memory. Note the convention by which the "binary thousand" (1024) is denoted by a capital K. Thus a 4 K memory would hold 4×1024 $=4096$ bits, a 16 K memory would hold 16384 bits and so on. The address decoders would each be 32 -way devices and would be controlled by a pair of 5 -bit binary codes, giving a total of 10 pins allocated to address signals for the memory. Apart from the address and power supply there will also be data input and output and a Read/Write control signal to be accommodated. Some chips also have a Chip Enable (CE) line and provide a tri-state output signal. The connections for a 2102 memory are shown in Fig. 79.

Larger memory devices use capacitors as the storage device and the 0 or 1 state is determined by whether the capacitor is discharged or charged. A typical memory cell of this type is shown in Fig. 80.

One problem with capacitor-type memories is that, due to leakage paths on the chip, the charge on the capacitor is slowly leaked away and memory would be lost unless the cell could be topped up. In fact this process of "refreshing" the state of the memory cell is achieved by regularly reading the state of the cell and rewriting this state back into it. This refresh process needs to be carried out at about 2 ms intervals and for this reason such memories are called dynamic memories, whereas the normal flip-flop types are referred to as static memories.

In a dynamic memory the capacitors used for storage of data are very small and in a typical chip there may be as many as 16384 cells together with the addressing logic. Newer types with 65536 cells are already starting to appear. Static memories, with their more complex cell structure, tend to be less dense and may have perhaps 4096 cells, although here too larger devices are being developed.

Digital Calculators

Until a few years ago most engineers used slide rules or mathematical tables to carry out their calculations. Today they almost invariably use an electronic calculator and even the housewife shopping at the local supermarket may be found using a pocket electronic calculator to check prices.

Prior to 1971 calculators were desk-top machines which were either mechanical or used a vast array of SSI devices. The complex logic of these machines was however an ideal application for the new LSI techniques. In 1971 MOSTEK were to produce the first calculator chip which could add, subtract, multiply and divide numbers. The LSI revolution had begun.

Early calculator chips used PMOS logic and needed a number of extra circuits around them to drive the displays and communicate with the keyboard but despite this it was possible to build a complete four-function calculator unit into a case that would fit into a coat pocket and run from a set of batteries.

The basic logic scheme inside a typical calculator is shown in Fig. 81. At the heart of the device is the ALU (arithmetic and logic unit). This is a complex logic array which can add or subtract two numbers and perform one or two simple tests on the result. For convenience the numbers are represented in the BCD format and the ALU deals with them four bits (one BCD digit) at a time. For multiplication and division a sequence of successive additions or subtractions is carried out in much the same way as if the sum were being worked out on paper.

Apart from the ALU there are flip-flop registers which will hold the two numbers to be operated upon and the result of the operation. An 8 - or 10 -digit 1.e.d. or 1.c.d. seven-segment display is provided to present the numbers in visible form. To minimise the number of pins needed on the calculator, chip display is multiplexed with the digits flashing up in sequence at a sufficiently high rate to produce a flicker-free display. A further complex section of logic controls the activities of the ALU, registers, keyboard and display to produce the desired results.

Suppose we are going to add two numbers. At the start the control logic connects the keyboard and display to the " A " register, and as numbers are keyed in their 4-bit data patterns are shifted into this register one digit at a time. The display will show the contents as the number is fed in. When the "+" function key is pressed, a flip-flop is set to select the addition process whilst the keyboard and display are switched to the " B " register where the second number will be stored. When the second number has been entered and the " $=$ " key is pressed, the numbers from the " A " and " B " registers are routed to the inputs of the ALU which adds them together, and the result from the ALU is fed to the display. Digits are switched in sequence by the control logic and any carry bits from one decade are added in as the next decade is dealt with.

In the case of multiplication and division, a sequence of add or subtract operations is carried out in the ALU as the control logic works its way through a preset sequence of commands. These commands switch the operation of the ALU and control the transfer of numbers between it and the other registers. A similar complex sequence of operations is used in some modern calculators to work out trigonometric and other mathematic functions. Sometimes additional registers will be included to allow intermediate results of a complex calculation to be stored temporarily.

LSI in Television

Another application of LSI devices which has come into prominence in the past year or two has been the TV game. In the early 1970 s TV based games, such as Pong (or TV tennis), began to make their appearance in the amusement arcades. In these early games conventional logic devices were used, but soon GI introduced an LSI chip which could provide a choice of several different games such as tennis, hockey and squash. Recently much more sophisticated games such as tank battle, which would have needed hundreds of TTL devices, have been introduced.

Fig. 81 : Block diagram of a digital calculator

The games chip itself has to generate a complete video signal for the game display including sync pulses and in some cases colour signals. Sound effects, such as the ball striking the bat, are generated as bursts of pulses by the games chip. Apart from producing the display the chip must control the motion of bats, balls, etc., and also detect scoring moves and keep the score for both players. Further logic is needed to display the score on the screen and to control the selection of the various games.

External controls for bats, tanks, etc., are normally potentiometers which alter the timing of delay circuits in the chip and hence alter the position of objects on the TV screen. Sometimes the speed of movement may be controlled in a similar way as in the stunt rider and racing car games.

Another recent application of LSI devices in television has been in building decoder systems for the Ceefax and Oracle teletext transmissions now being broadcast by the BBC and ITV.

In teletext decoders the logic must select out the data signals from the television picture signal and decode them. A particular page of text, selected by the viewer, must then be detected and removed from the incoming data stream. The selected page of text is stored as a set of binary data words in a memory and data from this memory is regularly read out and converted into video signals to produce a text display on the screen in place of the programme picture. Using conventional logic such a decoder system might require about a hundred TTL devices whereas by using LSI it is possible to reduce this to perhaps six to ten chips which will fit conveniently on to a small card mounted in the back of the television receiver.

Universal Logic Chips

One of the problems facing the manufacturer of LSI chips is to decide what to put into them. As the logic gets more complex the number of options also increases as each user will want his own favourite features. Unfortunately it costs a lot of money to design an LSI chip and unless it can be made in thousands or even millions it will not be economic to produce it.

One solution to this problem adopted by the chip makers was to build a standard chip which contained a large array of identical gates and to tailor the devices to the user's requirements by interconnecting the gates as required during the final stages of making the device. Thus only the final interconnection pattern needed to be designed for each new application and the overall cost of a new device could be kept down.

Another approach was to make the circuit on the chip more versatile so that it might satisfy a number of varied applications. The limit here is in the number of pins that can be used on the chip package and typically a 40-pin
d.i.l. is about the biggest practical container for normal use.

Intel faced this basic problem when they were making calculator chips for various designs of calculator unit. It occurred to their engineers, however, that basically all of the systems were the same but the control sequence used in each calculator was different. Since most logic systems can be broken down into a sequence of separate logic operations, a universal logic chip might now be produced where the set of commands to the ALU and control logic was fed in from an external memory. Now the basic calculator or logic operation chip could be standard and mass produced, whilst its action could be tailored to suit the user's needs by supplying the appropriate sequence of instructions from some external memory device. The basic idea of the microprocessor has been born and Intel's 4004 device became the world's first microprocessor chip which could handle 4 -bit data words and process them in any way the user desired.

Microprocessors

Recently, microprocessors have been very much in the news and in some circles have taken on the aura of being a kind of magical device which can solve all of our problems. In practice, as we shall see, the microprocessor is nothing more than a very versatile logic element that will respond to a set of external commands to perform a wide variety of logic functions. In essence the device works in virtually the same way as the central processing unit of any digital computer system.

Internally a microprocessor will be arranged more or less as shown in Fig. 82. It consists basically of some control logic, an ALU and a set of registers which connect to two external data bus systems. At any time the signal interconnections between the internal circuits are set up by the control logic in response to the external commands, and the internal circuits can communicate with one another via an internal data bus system. Outside the chip an 8 -bit-wide data bus is used to carry data to and from the processor chip. A second bus, usually 16 bits wide, carries address signals from the processor which define the particular external circuit that is to talk to the 8 -bit data bus. Usually most of the external circuits are memory arrays and the address bus will select the particular memory location where the desired data is to be found or sent to.

The ALU is perhaps the heart of the processor since it can add or subtract numbers, carry out AND, OR, INVERT and EXCLUSIVE OR logic operations or act as a counter or shift register. This is the versatile logic element. The control logic decodes the command instructions fed in from the external memory and sets up the appropriate operation in the ALU and the interconnections between the registers.

The Accumulator register is used to take data from the external data bus and process it via the ALU, after which the result is held in the Accumulator. A second register, called the Program Counter, keeps track of the memory address where the next instruction is to be found. The Program Counter also controls the transfer of instructions from the data bus into the instruction register, from whence they pass to the control logic for decoding and execution.

An Address register is used to hold the current memory address for any data or instructions that are to be passed from the data bus into or out of the processor. Two other registers may also affect this address signal. One is the Index register which allows the processor to modify the memory address during program execution whilst the

Stack Pointer register is used to hold the address of a special area of memory used as a scratchpad by the processor as it executes the program. Finally there is usually à Status register which provides information on the state of play within the processor device. This register can for instance indicate if the result of the last arithmetic operation was zero or negative.

Microcomputers

A microprocessor chip by itself is totally useless, apart from its value as an objet d'art or collectors item. To produce a working system it needs the addition of some memory to hold program and data information and also there must be input-output circuits to allow the device to talk to the outside world. A typical microcomputer system might be as shown in Fig. 83.

To make the system work, a set of program instructions must be written into the memory system and the program counter register is then loaded with the address of the first instruction of the sequence. Each instruction may consist of from one to three 8 -bit data words. The first word is always an Operation code which will tell the processor what to do. The second and third words convey the address in the memory where any data needed is to be found or stored. As each of the instructions is executed the Program counter register is updated automatically so that

Fig. 82: Block diagram of a simple microprocessor chip

Fig. 83: Block diagram of a typical microcomputer system
it now contains the address in memory where the next instruction to be executed is to be found.

Programming

Perhaps the most important part in designing a system using microprocessors is the process or writing the program of instructions, or software as it is called in computing circles.

Actual instruction codes stored in the memory are just 8 -bit binary numbers which represent instruction codes and addresses. Programming in this machine code is difficult and definitely not recommended, To overcome this problem a new language called Assembler code is normally used for writing the programs for a microprocessor. Here each operation code is given a mnemonic name such as ADD, SUB or LDA (Load the Accumulator) and the memory addresses can be given names, such as TEMP, SPEED or SUM.

Suppose we want to add two numbers together. The set of instructions might be;

$$
\begin{array}{ll}
\text { LDA N01 } & \text { (Load N01 into accumulator) } \\
\text { ADD N02 } & \text { (ADD N02 to accumulator) } \\
\text { STA SUM } & \text { (Store the result in SUM) }
\end{array}
$$

When the complete program has been written in this mnemonic language it must next be translated into the 8 bit binary words of the machine code before it can be loaded into the microcomputer's memory system for execution. The translation is carried out by a complex program called an Assembler. This translation process may be carried out on a similar microcomputer system or on a full-size digital computer system. Once the machine code data has been generated it may be put on to a cassette tâpe of written into a Read Only Memory. In the small microcomputer system the program is either loaded from cassette tape into a normal read/write memory or read directly from the programmed ROM in order to make the microprocessor carry out its required operations.

Where the microbrocessor is being used as a calculător or computer it is convenient to use a higher level language than the Assembly code. Typical of these are the FORTRAN and BASIC languages used on larger digital computers. In this case our simple addition program is reduced to the statement:

$$
C=A+B
$$

where A and B alfe the two numbers and C is the answer. These high level languages also need to be translated. In the case of BASIC this is done by using an interpreter-type program to translate each instruction as it is executed, but FORTRAN is translated to machine code in much the same way as the Assembly code.

Where do we go from Here?

In this series the basic principles of logic have been discussed and some of the applications of these devices to amateur electronic projects have been touched upon. It is to be hoped that the reader will now be in a position to understand how a logic system works and perhaps to follow the descriptions of logic operation in books and articles, though it must be admitted that some books on logic tend to be a bit obscure.

How will microprocessors and LSI affect our projects? It is certain that microprocessors are here to stay and that they will feature in the more advanced amateur projects such as RTTY systems, Morse decoders, control systems and various types of electronic games.

LSI devices are already making themselves felt in the field of amateur electronics. It is now possible to buy a single LSI chip which, with a suitable display, makes a very nice digital voltmeter. The counter and control logic for a digital frequency meter can now be reduced to a handful of LSI chips whilst text displays can readily be produced on the domestic TV screen using a few LSI devices.

Small logic circuits and discrete transistors will not disappear however, and still have their uses in the simpler applications. It's foolish to use a microprocessor when a few simple gates will do the job, unless of course the microprocessor is already in the system somewhere. It's always a good idea to look at the simple approach first before a microprocessor or LSI chip is considered. The problems are all out there waiting to be solved so why not see if you can put those logic chips in the junk box to some good usë?

SPECIAL PRODUCT REPORT-DM235

continued from page 32
The readout is a full $3 \frac{1}{2}$ digit I.e.d. display with 8 mm high red digits reading up to ± 1999. The digits are bright and well formed giving a good angle of view.

The instrument is well built with most of the components on one maxin printed circuit board. The two halves of the plastics case are held together by several screws. The display board is mounted onto the main board.

For use in the lab it would make sense to use the a.c. mains adaptor which is built into a 13A plug. This small unit was a shade tight fitting into a standard mains socket but otherwise was satisfactory, and should repay its cost by saving on dry battêties. Rechargeable batteries are also available and can be recharged from the mains adaptor while the instrument is being used.

The advantages of a d.m.m. over the conventional analogue type is the unambiguous readings given by the digitial display. Even with a mirrơr scale such as provided by the Avo 8 type of instrument it is difficult to obtain an accurate reading and almost impossible if you cannot stand right over the scale. The d.m.m. eliminates any parallax error as well as any misreading of ranges or scales. Against this, however, is the comparatively slow scanning rate of the DM235. It can be a little disconcerting for the newcomer to digital meters to have to wait for three or four changes of the display before the true reading is shown. With an analogue meter the reading is instantaneous. Also, if you are used to using your conventional meter to indicate maximum or minimum voltages, such as when tuning a circuit, then the digital readout will be no real substitute, as it is difficult to interpret trends:

However, taken all round the DM235 represents good value for the enthusiast and should prove to be a useful addition to his workshop test equipment.

Dick Ganderton

CRESCENT RADIO LTD

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

\longrightarrow

"FLIP"

PUSH BUTTON HEADS OR TAILS Cumplete kit and fu!! instructions supplied. A pocket game, easy to build and great to play. KIT PRICE $=\mathbf{f 5 . 2 5 + 8 \%}$ VAT. Post free.

75 0HM

$2 \frac{17}{4}$ ($\mathbf{5 7 \mathrm { mm } \text {) LOUDSPEAKER BARGAIN }}$ This ever popular many project loudspeaker. Only while stocks last. $\mathbf{6 5 p}+12 \frac{1}{2} \%$ VAT.

> REAR SHELF CAR SPEAKERS

5 W 8 ohm good quality car stereo loudspeakers
Stil onfy $£ 3.75+12 \frac{1}{2} \%$ per pair.
HEAVY DUTY XOVER 2. WAY 8 OHM

A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt. fitted with screw terminals for input and a three position 'HF LEVEL'switch which selects either Flat. -3 dB or -6 dB .

ONLY $£ 3.00+8 \%$ VAT
A CRESCENT 'SUPERBUY' Goodmans 5" 8 ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 t^{\prime \prime}$ (diagonally). ONLY $65 \cdot 00+12 \frac{1}{2} \%$ VAT

LOUDSPEAKERS + $12 \frac{1}{2} \%$ VAT
$2 \frac{1}{4}{ }^{\prime \prime}(57 \mathrm{~mm}) 8$ ohm $90 p$
$5^{\prime \prime} 8$ ohm Ceramic $\quad £ 1.50$
8" "ELAC" 8 ohm I5W dual
cone $"$ "GOODMANS"* 'Audiom
8PA 8 ohm 15 W Audiom $£ 4.95$
$7^{\prime \prime} \times \mathbf{4}^{\prime \prime} 8$ ohm 4W $\quad \mathbf{6 2 . 0 0}$
EFFECTS PROJECTOR "150""
deal for disco work, this versatile low price machine, is of a sturdy metal construction. Comes complete with bulb (150 watt) and $6^{\prime \prime}$ Liquid Wheel.
A must for parties, the ideal machine to set the mood for your music.
ONLY $\mathbf{6 3 7} \cdot \mathbf{5 0}+\mathbf{8 \%}$ VAT
LOUDSPEAKERS $+8 \%$ VAT
12" "MCKENZIE" 8 ohm 75W
Bass 623.62
12 " "McKENZIE" 8 ohm 75W dual cone 623.62 12" "McKENZIE" 8 ohm 75W general purpose $£ 18.75$ 12 " "GOODMANS" 'Audiom 12p" 8 ohm 50W Aus Audiom $£ 23.73$ 12" "FANE" POP 33T 16 ohm 33 W 12" "FANE" POP 50/2 16 ohm 50W <15.70

P\&P. Orders up to 55 , add 30 p . Orders £5-£10, add 50 p . All orders over $£ 10$ post free! Please add V.A.T. as shown. S.A.E. with all enquiries please.

al Green lanes, Palmers Green Also 13 South Mall, Edmonton Green, Edmonton.

the MIGHTY MIDGETS $A \rightarrow A$

MINIATHERE

 iRONS m ACCESSORIES | 18 WATT IRON inc. No. 20 BIT | $\begin{array}{c}\text { RETAIL PRICE } \\ \text { each inc.v.a.t. } \\ £ 3.78\end{array}$ | $\begin{array}{c}\text { POSTAGE } \\ \text { extra. } \\ 22 p\end{array}$ |
| :--- | :---: | :---: |
| SPARE BITS | $44 p$ | - |
| STANDS | $£ 3 \cdot 25$ | $65 p$ |
| SOLDER: SAVBIT 20^{\prime} | $52 p$ | $9 p$ |
| 10^{\prime} | | $26 p$ |
| LOWMELT 10 | $4 p$ | |
| I.C. DESOLDERING BIT | $65 p$ | $9 p$ | BIT SIZES: No. $19(1.5 \mathrm{~mm}) \quad$ No. $20(3 \mathrm{~mm})$ No. $21(4.5 \mathrm{~mm}) \quad$ No. $22(6 \mathrm{~mm})$

A great Antenna and no mistake!

And even if there are mistakes-inadvertently and without any intent to confuse-our JOYSTICK VFA remains good value for money-giving continuous coverage $0.5-30 \mathrm{MHz}$ in a space saving package fonly $7^{\prime} 6^{\prime \prime}$ long) installed anywhere, instantly ready for use.

We do, however, have to apologise for errors in published prices in PW for December-the correct prices appear in this issue.
In use by Amateur Transmitting and SWL Stations worldwide and in government communication.

JOYSTICK ANTENNAS SYSTEM "A"

200 w. p.e.p. OR for the SWL
SYSTEM "J" £47.95
500 w. p.e.p. (improved ' Q ' on receive)

"PACKAGE DEALS"

COMPLETE RADIO STATIONS FOR ANY LOCATION
All packages include the JOYSTICK VFA (System "A") 8 ft feeder, all necessary cables, matching communication headphones. Delivery Securicor our risk. ASSEMBLED IN SECONDS. You SAVE £14.15 on each PACKAGE DEAL!
PACKAGE No. 1
Features R. 300 RX.
£222.00
PACKAGE No. 2
Features FRG7 Rx.
£237.45
PACKAGE No. 3
Features SRX30 Rx.
£212.45
PACKAGE No. 4
Our "Rolls"-Rx. FRG7000
£402.00

RECEIVERS ONLY

R.300	$\mathbf{£ 1 8 4 . 5 0}$	FRG7	$\mathbf{£ 1 9 9 . 9 5}$
SRX30	$\mathbf{£ 1 7 4 . 9 5}$	FRG7000	$\mathbf{£ 3 6 4 . 5 0}$

Ail prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

High power batteries

A new heavy-duty battery has been added to the range of transistor and highpower types from the Vidor division of Crompton Parkinson Ltd., a Hawker Siddeley company.

The new Vidor battery, which is known as the VT3C, is identical in size to the "small" transistor type currently available. It has been designed for use in portable electronic and electrical equipment and is particularly suitable for heavy-duty applications where sustained high power is required.

Typical applications for the VT3C include calculators, TV games, toys, remote TV programme selectors and small battery-powered domestic appliances.

The new VT3C complements the recently introduced HP7C calculator battery. Crompton Parkinson Ltd., 50/52 Marefair, Northampton NN1 1NY. Tel: (0604) 30201.

Alarm watch

If you feel like treating yourself to a really nice present, the Casio Alarm watch (25CS-14B) should fit the bill.

Presented with a superb stainless steel case and strap, the watch displays in the normal time mode-hours, minutes, seconds, a.m./p.m. and day, with a claimed accuracy of ± 10 seconds per month.

The calender mode displays day, date, month, year and is preprogrammed until the year 2009.

Also the watch features an alarm facility with a rather piercing voice.

Powered by one silver oxide battery (type UCC393) with an operating life of approx. 15 months, calculated on the basis of 5 pushes of the light button per day for 1 second duration each, and the alarm running for 60 seconds.

The recommended retail price is £74.95, but Tempus offer the watch at a discounted price of $£ 59.95$ which includes VAT. Tempus, Dept. PW, 19/21 Fitzroy Street, Cambridge CB1 1EH. Tel: 0223312866.

Everymonthis the right frequency

When you're building a major project from.a PW design, you want to be sure of getting every issue in sequence ! Use this order form for a year's supply to be posted to you.
ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. $£ 10.60$. Overseas $£ 10.60$.

Please send me Practical Wireless each month for one year. I enclose a Sterling cheque/international money order for. \qquad (amount)
pLEASE USE BLOCK LETTERS
NAME Mi/Mis/Miss
ADDRESS

POSTCODE

Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to: Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

This part deals with the extensions and accessories that you may wish to consider in connection with the "Dorchester" tunerboard, some of which are likely to be methods of housing, powering and tuning the receiver, in a manner which will not disgrace your sitting room.

The case housing the Author's unit was modified from parts used for a commercial design which is no longer produced. In this way, a professional standard of presentation, with a neatly sculptured front panel and proven mechanics were available instead of the usual combination of folded aluminium and Dymo tape.

The basic mechanical layout of the prototype is given in Fig. 11: subsequent versions had the chassis deepened slightly to accommodate the tuner with a little more ease. An extension shaft is required which is fitted to the tuning capacitor spindle and held rigid by means of a bush mounted on a bracket.

The tested tuner board-remember not to expect a completely un-tried unit to work first time, no matter how carefully you may have constructed it--is fitted to the base plate by means of pillars mounted in the bottom of the chassis. The Author prefers spacers which are

Fig. 11: Mechanical layout of the tuner
designed for use with self-tapping screws so that the pillars are fixed down independently of the tuner board. The approach whereby the bolt is simultaneously passed through a pillar and fixed through the p.c.b. is usually frustrating and tedious to perform.

Tuner Power Supply

This unit (Fig. 12) is simply a mains transformer, followed by a rectifier and three-terminal voltage regulator from the 7812 series, or the SGS TDA1412. Radio frequency interference from this type of regulator needs to be suppressed with additional filtering circuitry, so note the extra decoupling.

The current-handling capacity of the power supply needs to be about 150 mA -but in the prototype, a degree of headroom has been left, so that the illumination of the meter and tuning scale may be included. Before you consider attaching any sort of audio power amplification to the tuner supply, make absolutely certain that there is sufficient reserve to prevent the voltage from falling below the minimum at which regulation takes place.

Where a steel chassis is used, it is desirable to mount the ferrite rod antenna on the back panel (outside) or the efficiency will be greatly impaired. There are various methods employed in commercial designs, the most elegant of which is to mount the rod in a non-ferrous tube on some form of infinitely-adjustable pivot so that the arigle may be adjusted to the user's requirements. A long wire antenna coupled to the rod tends to reduce directional effects and can be the conveyor of problems arising from one of the many thousands of sources of r.f.i. This design makes a simple approach, using proprietary parts and tubing--since it seems the more intricate mechanical arrangements are exclusively customised to individual manufacturers' specifications.

Fig. 12: Power supply arrangements

In stretching the wiring feeding the ferrite rod, the possibility of extraneous pickup on the coupling leads has been greatly increased, so this wiring must be tightly wound and kept to an absolute minimum. It is not feasible to use fully screened connections of this length, since their additional capacitance would restrict the necessary bandwidth.

Remember to secure the coils on the rod when you have adjusted them. This should be carried out whilst the rod is in place at the rear of the chassis, since the presence of adjacent metal will tend to modify the aerial tuning characteristics somewhat.

A view of the completed unit prior to the outer case being fitted

Coverage and Sensitivity

In the Author's prototype, SW3 was restricted to a maximum of approximately 22 MHz . In this way, the main broadcast bands are given a bit more spread on the dial. No modification of the circuit is necessary, since the adjustment is simply carried out using the trimming adjustments of capacitors and tuning slugs.

A preselector is frequently suggested for use in conjunction with receivers that are to be fed with nondescript antenna arrangements and have broad coverage-and before considering a suitable design here, it is very important to bear in mind that gain and h.f. receivers are not necessarily the best of companions. Certainly everyone likes to think their set can resolve s.s.b. below $1 \mu \mathrm{~V}$, but then, there isn't much point if the set overloads when another station a few kilohertz away flattens the whole thing with a ImV input!

The basic tuner has excellent sensitivity for a unit of this type-a broadcast transmission receiver, first and foremost. An antenna of some twenty feet in length proved to be more than adequate, so before getting carried away with antennae it must be borne in mind that some selectivity in the tuner is called for, to limit cross-modulation of the mixer by strong adjacent channels.

The average casual listener usually has a length of wire for an antenna, and as far as receiving is concerned, this can be turned into a beautifully affective and versatile arrangement with a simple pi-network tuner. Various designs have been featured over the years (Fig. 13 shows two examples) and so we will not go into too much detail here. By switching coil taps at various positions along an inductor, almost any piece of wire can be tuned to resonance at h.f. Wires that are much shorter than a wavelength tend to exhibit a high impedance-and the pinetwork is one of the best ways of matching.

Fig. 13: Typical pi-network aerial tuning arrangements with (left) ganged variable capacitor and (right) varicap diodes

If you still want more gain with your tuner, then the circuit of Fig. 14 is suitable, but remember that the gain control is not merely an adornment, but a necessity-since the preselector may be used as a tuned attenuator when things get out of hand simply by backing-off the gain control.

If you are a keen s.w.l. then a digital frequency-readout is a virtual must these days. The recently-published PW design will readily suit this receiver. Take the oscillator from pin 20 of the i.c.-or by f.e.t. buffering from the oscillator section of the tuning capacitor.

Fig. 14: R.F. pre-amplifier

Audio

Some readers may wish to include audio amplification within the tuner-and the many i.c.s that exist to fulfil this requirement scarcely need additional comment here. However, there is one point to watch, and that is the almost universal tendency of such amplifiers to exhibit h.f. oscillation at their output. Remember to decouple the power supply carefully-and feed the loudspeaker/ headphones using screened audio cable, taking care to follow manufacturers' recommendations concerning Zobel networks, ferrite bead suppressors, etc. The high gain of the tuner makes it susceptible even to quite low levels of spurious radiation that most applications could quite easily ignore.

The question of using the tuner in a portable configuration was briefly discussed in the first part of this article. The main i.c. consumes a fair amount of current for this application-especially in the a.m., mode; but in f.m. the consumption reaches around 23 mA , with another 12 mA for the tunerhead. This is not necessarily unreasonable by modern standards, and indeed, many of the larger portables have a much higher consumption.

Thus the unit makes the basis of a very fine portable. The really superfluous part of the circuit would then be the stereo decoder, for however desirable the idea of a stereo portable may seem, it is usually a wasteful extravagance. In units incorporating mains/external 12 V options, the decoder arrangement should be locked out when the internal batteries are used. All scale lighting functions should be wired so that they only illuminate on the operation of biased switch or pushbutton.

Signal null indicating transmission from either Aor B

40 turns clockwise
40 turns anticlockwise
on 7"ferrite rod (F11orF14 material-preferably fluted)
Fig. 15: Typical arrangements when direction-finding facilities are to be incorporated

A rear view of the Dorchester showing the ferrite rod aerial and other connections

The question of direction-finding has recently been raised, and since the nautical and aero transmissions are located in the only section omitted from the standard broadcast range of 175 kHz to $30 \mathrm{MHz}(250-400 \mathrm{kHz}$ approx.) one of the s.w. bands has to be sacrificed if the facility is to be accommodated. This will probably be SW3 and oscillator coil is changed for a $632 \mu \mathrm{H}$ DF band type. The antenna coil is also changed, and a second ferrite rod antenna for the DF band fitted-or, as an alternative, the "loopstick" arrangement used to permit sensing of the rod position relative to the transmission (Fig. 15).

The tuned circuit for DF is then the 1.w. r.f. coil, with the DF rod coupled to the tap.

Work on DF applications is far from finalised as yet, but if sufficient reader-interest is apparent, then further developments will be published at a later date.

ELECTRONICS—an elementary introduction for
beginners
by L. W. Owers
Published by Talbot House Press

Freeland, Oxford OX7 2AP

$\mathbf{1 1 9}$ pages. $209 \times 149 \mathrm{~mm}$. Price $\mathbf{£ 2 . 9 5}$

This book sets out to give a broad introduction to the subject of electronics, providing a background for more advanced study. This is achieved well, starting with the discovery of electric charge and ending with semiconductors.
Moving away from electrostatics into the realm of moving charges and conduction we meet resistors, capacitors and inductors, progressing through valves and the cathode ray tube into semiconductors and the doping of semiconductor materials to form transistors-and integrated circuits.
The whole book is well illustrated with some excellent diagrams which are available as 35 mm slides for teaching purposes.

by Eric Dowdeswell G4AR

The business of listening on the amateur bands ought to be more than just a matter of entering long lists of stations in the log. After some months it will become apparent that there is a definite pattern to the times at which stations in different parts of the world appear on the various bands.

I have mentioned this before as a means of understanding the mechanics of the propagation of radio signals in connection with the 11-year sunspot cycle. However there is another aspect which should not be overlooked. Since none of us have unlimited time to spare listening or working on the air, it is essential that the time we do have available is well-spent.

The newly-licensed amateur whether a G4 or a G8 is going to waste an awful lot of time if the optimum band or mode is not chosen as a result of experience gained as a listener. The tyro may call CQ for hours without a reply on a dead band or use the wrong mode for a particular part of a band.

On the h.f. bands a note should be kept of prefixes and when they are heard, at what time and which band, to build up a picture over a year or so. If a band is found to be dead then note it and check all bands if possible, whenever sitting down to listen.

For the listener who is able to copy c.w., check the c.w. end of each band as it is strange how often there is activity there when the s.s.b. part is comparatively dead. In contest work the listener and the transmitting amateur can perform much more efficiently by choosing the right band to work on at any given time. In days gone by I would always watch the bands for a couple of weeks before a big international contest just to get the feel of them, noting when the more elusive countries and prefixes were coming in well, band by band.

Then an operating schedule was compiled of bands against time for 24 hours thus giving two "windows" for working a particular DX station in a 48 hour contest, all aimed at reducing unnecessary operating to a minimum. This resulted on one occasion in being able to work 99 countries on c.w. in a weekend contest using all bands from 3.5 to 28 MHz .

It will be noted that occasionally signals from the west coast of the US and from VK are audible in the early morning and late afternoon due to short and long path propagation, thus doubling the possible openings for working or copying stations in these areas.

On the Bands

In spite of our most welcome Indian summer the change to winter conditions has gone on apace on the h.f. bands, exemplified by reports from readers such as Ian Marquis A9140 of Leigh-on-Sea, Essex, who copied CT2, EA6, EA8, JA, VP2 and 9K2 on 80 m s.s.b. Ian's FRG-7 and long wire also found the extremely rare Willis Island in the form of VK9ZM on 20 m , in the DX Net on 14265 kHz . 15 m revealed another new country in KV4KV/D on Deception Island, plus W0DX/D on c.w. on 10 m , part of the same set-up there.

Richard Smith in Porthcawl, S. Wales, has forsaken his old and trusty t.r.f. set for a KW77 and is particularly glad to find it incorporates a crystal calibrator. He plans to put a 2 m converter in front to get the feel of the v.h.f. world before he takes his RAE in the not too distant future. Richard found a 5 Y 3 and 7 X 2 on 80 m so let's hope this is a sign of more good stuff to come from that direction. African activity has always been low on the l.f. bands due to the high level of static experienced there. It's something that has to be experienced to be believed!

SSTV has captured the imagination of Simon Robinson in Stocksfield, Northumberland, and now G8POO. Using an MK Electronics monitor he has seen DL, OZ, I, EA and OK stations, using a 10 in diagonal c.r.t. The only call of interest on 10 m s.s.b. was JW7FD on Bear Island.

Rod Hunt (Darlington) sticks with his t.r.f. rig and to date has logged over 80 countries on it, mainly on 21 and 28 MHz . The latter band has come up with DX such as JW7, ZP5, with 21 producing EA0, HP0, ZB2DV (G4EMR on holiday!), ZL1, 3D6 and 9J2. Rod has started his own RAE course and is not neglecting to get some practice in on the key, while a G3 "on the other side of the hill" is giving advice and assistance.

Loft aerials for Bob Bell in Blyth, Northumberland, means sloping tubular ones with coils to load to a particular band but due to the awkwardness of the set-up it's all likely to finish up in the garden very soon! Bob found PYOEG on 20 m s.s.b. and an early morning session provided VK 7, not heard too often, ZL4 and VK5.

Not a very exciting month for Bill Rendell of Truro but KG 4 KG in Guantanamo Bay is a rare bird on 20 m s.s.b., with KC6GF a good find. Bill also intends dumping his attic aerials and getting something up outside. Allan Stevens is still plugging on with his $P W$ direct conversion set plus PR40 preselector and has notched up 81 countries so far including excellent find VR6TC on Pitcairn, a real rarity.

In Oswestry, Salop, 14-year-old David Wyatt has moved to the amateur bands with his home-brew 4 transistor superhet plus audio amp and b.f.o. Prefixes like HH and HP and another KG4 aren't bad on 20m but an AR88 is in the pipeline. John and Steven Goodier have been struggling over the rig trying to decide on BC or amateur bands and I'm glad to report that the latter has won the day! Reports to follow regularly now, I gather. They've been looking for LU3ZY on South Sandwich but no-one seems to have heard them yet. J and S have an FRG-7 and 30ft wire so it can't be the rig.

With the Clubs

Barking Radio \& Electronics Society is on a recruitment drive and meets, wait for it, FOUR nights a week, Monday to Thursday. Morse classes Tuesdays and main club night Thursdays, all at 1930. Stations G3XBF and G8GPK are active on h.f. and v.h.f. but club activity tends to favour v.h.f. at the moment, hopefully to be redressed very soon! So pop along to the Westbury Recreation Centre, Westbury School, Ripple Road, Barking, Essex some time or contact Sec Nick Dowsett G8PUY, 44 St Ann's, Barking, Essex.

Every Tuesday sees the Bury RS hard at work at Mosses Centre, Cecil Street at 1930 onwards with RAE classes at nearby College of FE. 9 Jan has G2BTO on TVI and the Amateur, with G4CLF holding forth on the SL600 series of i.c.s on 13 Feb . The subject on 13 March is v.h.f. linear amps with G8NOF covering Orbiting Satellites on 10 April so there's plenty to look forward to at Bury RS. Write to Eric Thirkell G4FQE, 59 Oulder Hill Drive, Rochdale.

It's all go, down with the Wessex AR Group with a proposal to revert to the old title of the Bournemouth ARS, similar to the society that was first formed there in 1922. As an outsider I heartily approve! Don't like changes that cause a group to lose its identity! Meetings are held at the Dolphin Hotel, Holdenhurst Road, Bournemouth at 1930 hours. Friday 19 Jan sees G2YH talking and demonstrating miniature v.h.f. transmitting devices while 2 February is devoted to "Planning and Preparation for HF and VHF Contests". Note new QTH of Sec/Editor Geoff Cole G4EMN 3A Cavendish Road, Bournemouth or ring 20027.

Log Extracts

R. Bell:-20m PY0EG 20m VK7AZ 15m JR3IIR
S. \& J. Goodier:-20m CE0AE HK0QA (San Andres) KG6SW KJ6BZ VK2AGT (L. Howe Is) VK9ZM (Willis Is) VK9ZR (Mellish Reef) VP2EEK VP2GVI VP5BD VR6TC ZKICV
D. Wyatt:-80m VO1FG 20m CT2CB HH2SD HP1XDN KG4EP
A. Stevens:-20m JW7FD (Svalbard) VE8RCS VK7AZ VR6TC WA4YUG/VQ9 (Diego Garcia)
W. Rendell:-20m CT2BQ HR1JAG KC6GF KG4KG VK7AE VP2AW 15m C5ABK HV3SJ KZ5BA ZB2DV 10m CT2SH HK4DF
I. Marquis:-80m CT2QN EA8CR JA6BSM VP2SD 9K2IX 20m PJ8CO VK9ZM VP2VER 15 m EA9EO JW7FD KV4KV/D (Deception Is) TA1DF 10m EP2SL FG0EID/FS VS6FE W0DX/D (Deception Is) YJ8KM
R. Smith:-80m 5Y3GT 7X2DG 40m EA8CR 20m CT3AC S79MC VP8PF 15m AP2KS 10m EL2AG
S. Robinson:-SSTV 20m DL6HP OZ2ARD I2II EA2JO OL7VI 10m JW7FD
R. Hunt:-15m EA0NS HP0ED ZB2DV 3D6BP 10m JW7FD ZP5AO 9K2DR

All s.s.b. unless indicated otherwise.

MEDIUM WAVE DX

by Charles Molloy G8BUS

This is the time of year to listen to North America on the medium waves. Although reception is possible at any time of year it is in the winter when the nights are long that one can pick up a few local broadcasts from across the Atlantic before going to bed. Listen between 2300 and midnight, as European interference begins to subside for CKVO in Clarenville, Newfoundland on 710 kHz , CJYQ in St John's, Newfoundland on 930, WINS in New York City on 1010 and WNEW also in New York on 1130. These are but a few of the many North Americans that can be picked up in the UK when conditions are favourable but be careful. All transatlantic signals are subject to slow fading and it is very easy to pass over quite a strong signal that is temporarily in the minimum of a fading cycle. So tune carefully and slowly. The path is not always open and fadeouts do occur at times so if you are unsuccessful at first then try again a few nights later.

North American Medium Wave Stations

There should be no problem identifying North American DX, for nearly all broadcasts are in English and all, without exception, are issued with callsigns which the stations are obliged to use when they identify themselves. In the United States the callsigns are either of four or three letters which begin with a W or a K. For example, WINS is the call of the station on 1010 kHz located in New York while KDKA on 1020 is in Pittsburg. Similarly in Canada where the prefix is C , or V in the case of a few outlets in Newfoundland.

The station separation in North America is 10 kHz instead of the 9 kHz we have in Europe and each channel is also a multiple of 10 kHz which means that the band is divided up into 107 "chánnels" starting at 540 kHz and ending at 1600 kHz . It is a lot easier to use kHz instead of metres when dealing with North Americans and receivers in that part of the world are often marked from 54 to 160 , i.e., with channels 54 to 160 .

North Americans are usually good verifiers, that is of course if you send them an accurate reception report. The time to gather material for the report is just before the hour and the half hour when commercials (jingles),

[^0]weather reports, news items and station identification takes place. The reports themselves should be sent to the chief engineer of the station and the address should include the call letters of the station and the town or city mentioned in the announcement. For example, The Chief Engineer, WNEW Radio, New York City, NY, USA will certainly find the station on 1130 kHz .

Loops and Aerials

Although the standard 40in box loop has a single turn for the coupling winding it is worth experimenting a bit to find out what suits your particular receiver best. This point is highlighted by Harold Emblem (Mirfield) who tried the effect of using two turns instead of one with a Layfayette HA63 receiver a few years ago. The two turns gave much better results with this receiver. Harold thinks it is worthwhile trying a second turn to see if there is any significant improvement and also the adjustment of the position of the two turns is worthwhile.

Shortwave DXer J. F. Porter of Belfast would like to listen to some medium wave DX and he wonders if a ferrite rod aerial could be used as a substitute for a loop. The pick-up of a ferrite rod aerial is really too small for serious DXing. I have played about with ferrite rods (see July $1978 P W$) and they can be useful for semi-DX but this is really the field for someone who likes experimenting rather than hearing DX. There is nothing wrong with an FRG-7 plus Joystick or 100 ft long wire for m.w. DXing and if you want a substitute for a full size loop then try Bob Bell's half size loop (Nov. 1978 PW).

Beacons

Although the medium waves are supposed to be used exclusively for broadcasting there are a small number of navigation beacons that operate inside the band at the low frequency end. In answer to E. C. Adams, this is probably what you are hearing around 460 metres. Navigation beacons have callsigns which are repeated in Morse and the majority of them operate on the long waves on frequencies between the long and medium wave broadcasting bands. The third harmonics of some of these beacons occasionally appear on the medium waves to cause QRM with broadcasting stations and to mystify the DXer. Sometimes these harmonics can travel a considerable distance, much farther than the fundamental. For a number of years, using several different receivers, I have picked up the call SW (...--) on approx 930 kHz while listening to CJON (now CJYQ). There is an SW on 310 kHz situated at the Cabo de Santa Marta Grande lighthouse on the north-west coast of Brazil which transmits with a power of 0.5 kW (fundamental) and it is interesting to speculate whether it really is the tiny third harmonic of this beacon that we hear as QRM on CJYQ.

Readers' Letters

A number of interesting loggings of stations in the USSR come from Bob Bell in Blyth who uses an FRG-7 receiver and a mini (half-sized) loop. These are Kharkov on 836 (837), Stavropol 881, Arkhangelsk 908, Tallin 1034 (1035), Yoshkar Ola 1061 (1062), Baku on 1295 and an unidentified station on 1525 . The frequencies are pre-Geneva Plan and those in brackets are the new ones where known. The station on 1525 kHz may in fact be in China even though the language was Russian and there is often jamming to be heard on this unauthorised channel. Bob is willing to supply information and to advise anyone who is genuinelv interested in his half-size loop. Letters
should go direct to Bob at 5 Byron Avenue, Blyth, Northumberland NE24 5RN with, I would hope, a stamped addressed envelope for a reply.

News of Manx Radio comes from Douglas Gibb (Selkirk) who heard their test transmission on 1368 kHz last September. This local station is now full-time on the new frequency and the 219 Times gives details of their broadcasts. It is available from Manx Radio, Broadcasting House, Douglas, IOM which is also the address for reception reports. Manx Radio will QSL by return.

Some countries are easier to hear on the medium or long waves than on the short waves and this has been noted by David Wyatt of Oswestry who logged Radio Andorra on 710 kHz . He received a QSL in three weeks in answer to a report made out in French. On the long waves he picked up Radio Algeria in English on 251 kHz at 2025, another country he had not been able to hear. The receiver in use is a 1947 Kolster Brande BR20 and a 90 ft long wire. These older domestic sets often perform very well on the medium waves especially when used with a loop. Why not try this before looking for another receiver; it is possible to use low impedance phones in place of the loudspeaker. Be careful though to keep away from the chassis which may be live.

Sweden Calling DXers is now on a second frequency on the medium waves as the transmitter at Gothenburg on 991 kHz has been allocated to the foreign service during the evening according to a station announcement. A final item from Ian Rennison (Horsham) who has logged Radio Paradise, St Kitts on 1265 kHz at 0014 , details of receiver, etc., not given.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

The majority of short-wave receivers tune from 6 MHz to 18 MHz , a range which includes six international broadcast bands. These are the 49 metre band $(6 \mathrm{MHz}), 41 \mathrm{~m}$ $(7 \mathrm{MHz}), 31 \mathrm{~m}(9 \mathrm{MHz}), 25 \mathrm{~m}(11 \mathrm{MHz}), 19 \mathrm{~m}(15 \mathrm{MHz})$ and $16 \mathrm{~m}(18 \mathrm{MHz})$. There are also the 13 metre band $(21 \mathrm{MHz})$, the 11 m band $(26 \mathrm{MHz})$ and the 75 m band $(4 \mathrm{MHz})$ which are within the range of some receivers. It is traditional to quote a band by its wavelength in metres and the individual station within the band by its frequency in kilohertz (kHz) but there is a trend these days to refer to a band by the frequency in megahertz (MHz) and this is the figure shown in brackets. The 49 m band for example can also be referred to as the 6 MHz band. The relationship between MHz and kHz is quite simple. 1 MHz is the same as 1000 kHz . Radio Nederland is on 6020 kHz in the 49 m band but it may appear on 6.02 MHz on some receivers.

Short-wave reception is entirely by means of the sky wave, which is reflected by the ionosphere many miles above the surface of the earth. The sky wave is influenced by the amount of daylight between transmitter and
receiver. The more daylight the higher the frequency that may be used. DX is possible on the highest frequencies during the day and on lower frequencies after dark. Short range reception is on lower frequencies by day and either 75 m or the medium waves by night. In general, the frequency in use over any particular path will be higher during the day than after dark. In order to help beginners to find their way about the different bands it might be useful to have a look at each one in turn to see what sort of DX can be found there, starting this month with 25 m .

25 Metre band

The 25 m band has official limits of 11700 kHz to 11975 kHz , though in practice stations are to be found between 11600 kHz and 12100 kHz . There is something to be heard on 25 m at any time of the day or night or during any season of the year and for that reason it is a good place for the newcomer. Last autumn the Radio Japan relay in Sines Portugal could be heard on 11825 kHz from 2200 to 2230, but after sign-off the much weaker Voice of Free China in Taiwan could be heard in English in its place, so always investigate weak signals.

During the day, look for distant broadcasts from Radio Pakistan on 11640 kHz , Radio Australia 11760 and 11900, Madagascar 11730, Bonaire 11790 , Kuwait 12085. Medium range stations that can be heard are Vatican Radio 11740 , Finland 11755 , Spain 11815, Austria 11855 , Norway 11865 , Budapest 11910 , Greece 11925 and Bucharest on 11940 . Latin America appears on 25 m during the evening. Look for Radio Guaiba on 1: 785, Radio Globo 11 805, Pernambuco on 11865 , all of them being in Brazil, and Radio Habana Cuba on 11760 . Other DX that may be heard at this time are WFYR Family Radio USA on 11 805, ELWA Liberia 11835 , Canary Islands 11 880, Radio Bamako in Mali on 11960 and Radio Abidjan Ivory Coast on 11920 . Broadcasters on the short waves often move around and some of the frequencies mentioned may change but the list is typical of what a DXer may hope to hear without too much difficulty on the 25 m band.

Readers' Letters

Sean Stray of Market Harborough (details of receiver and aerial not mentioned) reports some useful DX heard during his recent half term holiday. Radio Japan is a regular on 21535 kHz in the 13 m band between 0800 and 0830. The signal is weak but clear of interference but a curious echo effect was observed, probably the result of propagation along different paths through the ionosphere. Radio Nacional Argentina was logged on 11715 in the 25 m band at 2320 and the address for reception reports is RAE Ayacucho 1556, 1000 Buenos Aires, Argentina. Riyadh in Saudi Arabia was picked up at fair strength at 1930 the address to write to being Ministry of P and T, Riyadh, Saudi Arabia. An unidentified with the call Radio Tinian (not Tirana) was heard on the 25 m band at 2145 . Has anyone any ideas on this?

A signal like a short burst of machine-gun fire is reported by T. M. Headley of Seaford in Sussex who has started listening on the short waves again after an absence of many years. This is over-the-horizon radar which can be heard all over the short waves and was the subject of international complaints to the USSR a year or two ago. A Sanyo RP8700 portable communications receiver which was a present from USA is in use by 13 -year-old Paul Cox
of Twickenham. When used with a 70 ft long wire this rig pulled in Delhi on 11740 at 2125 SIO 544, Radio Kuwait 12085 at 1940 SIO 544 and Radio Japan on 17820 at 0715 SIO 344. From Walsall comes another report of reception of R. Japan on 17820 from Craig Kelly who used a t.r.f. receiver and 75 ft long wire. Craig asks for identification of a station playing guitar music but he forgot to mention the frequency or band concerned. Requests for identification should contain as much detail as possible including the frequency, date, time and station announcement and the language used.

Tropical Bands

From Blyth in Northumberland comes an interesting log compiled by Bob Bell using his FRG-7 and homemade vertical antenna. On the 60 m band he heard USSR (unid) on 4775 kHz at 0255 , Radio Lara Venezuela on 4800 at 0300, Radio Luz y Vida in Ecuador on 4800 at 0405 , plus Radio Nacional Canaries on 11880 in the 25 m band at 1400 . A Vega 206 plus 20 ft outdoor aerial are in use by Bill Stevenson who heard Radio Yaounde Cameroon in French on 4850 at 0430 SIO 333, Radio N'Djamena Chad also in French on 4905 at 0430 sign-on SIO 333 and Radio Nigeria in English on 4990 at 0430 SIO 333 , all on 60 m . Bill has built an r.f. pre-amp for use with his receiver but it does not give good results. The symptoms are of overloading. Bill would be interested to hear from other Vega 206 users. Replies direct to him at 10 Crompton St, Swinton, Lancs.

Reception Reports

A DX Press Release from Radio Finland makes disturbing reading for the DXer. This station has stopped using QSL cards. In their place there will be audience cards with a different card for each month of the year. The new cards will not confirm the date, time or frequency and will therefore only be an acknowledgment of the listener's letter.

The reasons for the change are interesting. Radio Finland gets about 300 reception reports a week and to quote the press release "you could say we were keener to receive programme comments". Of course, if they stop issuing QSLs then they may not get any reports at all and a better policy surely would be to restrict QSLs to reports that are of real value to the station. None-the-less the point of view expressed by Radio Finland is a valid one. A short-wave station transmits a programme for its audience to listen to rather than a signal for DXers to pick up and DXers should bear this in mind when writing to a station. Perhaps if DXers were to include comment on the programme heard and how it compares with other stations, which apparently is what Radio Finland wants, in addition of course to the reception reports, then everyone would be satisfied. The "powers that be" at Radio Sweden, according to a recent broadcast from that station, feel they have few listeners but many DXers for an audience and this might be a prelude to another attempt to cut back the popular Sweden Calling DXers. Radio RSA has reduced its English transmission and cancelled its DX Corner, so abruptly that the editor Gerry Wood did not even have the chance to say goodbye. The future for DXers does not look too good at the moment. On a lighter note. A DXer who recently sent a report to a Middle East country received the reply "Don't you have radio in your country, why you listen to ours?".

MK14-the only low-cost keyboard-addressable microcomputer!

 The new Science of CambridgeMK14 Microcomputer kit
The MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit-for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid: It's beendesignedforpractical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8-digit, 7 -segment LED display * 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4MHz crystal
* 5 V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and I/O ports

Free Manual

Every MK14 Microcomputer kit includesa
free Training Manual. It contains

operational instructions and examples for training applications, and numerous programs includingmath routines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly

 Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years . . there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, eyen purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard Microcomputer Kit allows you toleammore about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

Regd No. 213817088.
To: Science of Cambridge Ltd,
6 Kings Parade, Cambridge,
Cambs., CB2 1SN.
Address (please print) ___
Please send me an MK14 Standard Microcomputer Kit I enclose cheque/ Money order/PO for $£ 43.55$ ($£ 39.95$
$+8 \%$ VAT and 40p p\&p).
Allow 21 days for delivery.

by Ron Ham BRS15744

What more could we v.h.f. addicts ask for than a new amateur satellite to play with, the 10 m band alive with signals from all parts of the world, a tropospheric opening which sent the amateur and broadcast bands haywire, and all between mid-October and 18 November?

The 10 Metre Band

How often the new recruits to amateur radio must have heard the old hands reminiscing about the great 10 m openings of the past. Well, hopefully, those good times are here again, but now, thanks to the RSGB, we have the International Beacon Project going well and it is almost a daily occurrence to hear strong signals from the beacons in Bahrain A9XC, Bermuda VP9BA, Cyprus 5B4CY, Florida N4RD and Germany DLOIGI indicating the best DX path to use.

Like many other clubs and individuals throughout the world, the Mid-Sussex Amateur Radio Society entered the CQ World Wide contest on 28/29 October from their club shack in Burgess Hill. During the event the operators, G3JMB, WPO, WYN, ZYE, G4GNX and HHB, worked almost 500 stations and more than half of these were on 10 m . Afterwards, G4GNX said that conditions were so good that around 1800 on the 28 th they worked 60 Ws in 45 minutes, and at 0730 on the 29th they had 16 contacts with JAs in about 20 minutes. Throughout the contest good signal reports were exchanged with stations all around the world, and N. Clarke BRS 34306, Knottingley, Yorks, logged all W call areas within one hour.

While John Branegan GM8OXQ, Saline, Fife, N. Clarke and myself kept a daily watch on the IBP signals and found that A9XC was the most consistent, closely followed by 5B4CY, DL0IGI, N4RD and VP9BA. Graham Lay, West Chiltington, Alan Baker G4GNX, Newhaven and Ian Rennison, Horsham, all in Sussex, listened to the world-wide DX on 28 MHz . Ian also mentioned the very strong American CB signals he heard in the 27 MHz band, especially on 21 October.

Solar Activity

Although the sun has been "quiet" at 136 MHz compared with the same period in 1977, a few small bursts of solar radio noise were recorded on $6,7,8,11$ and 13 November by John Branegan, Cmdr Henry Hatfield, Sevenoaks, John Smith, Rudgwick, Sussex and myself and, on 6 and 13 Nov., Henry saw several filaments on the sun's disc with his spectrohelioscope.

Satellites

John Branegan has completed a 6-month survey of 70 cm propagation from space, based on the signals from OSCAR-8J and says "Not only is OSCAR-8J affected by propagation disturbances both in, and way above, the normal E and F regions, all 70 cm satellites are affected. Attenuations of up to 20 dB (not due to polarisation rotation) seem to occur regularly in two regions of the world. The most noticeable are the Denmark Strait between Iceland
and Greenland (i.e. between us and the magnetic pole) and over the equator in the South Atlantic". So far he cannot correlate these effects with solar disturbances but there is, writes John, "A positive correlation with time of day, the equatorial disturbance being most marked in the evenings".

For about 20 minutes at 1258 , on 27 October, John heard the Russian amateur radio satellite, RS-1, come up over North America, heading east, and pass between his QTH and the pole. The satellite appeared again at 1502 and John accessed it on $145 \cdot 890 \mathrm{MHz}$ (Down link 29.370 MHz), called CQ and immediately a c.w. station answered, so excited that he sent John's call sign six times and forgot his own! The next pass was at 1708 when John had a good five-minute QSO with G3IOR. On the 28th he had his first transatlantic QSO via the new bird with W2BXA in New Jersey, followed by contacts with DC9II and DC9ZP. During the same orbit 5 GMs were in QSO with European stations and, that afternoon, a delighted GM8PSM made his first contact outside the UK via RS-1.

Microwaves

The two Erns, G8BDJ and G8GKV assisted Mitch Tribe G8PMT, Worthing, a newcomer to 10 GHz activity, to contact four QRA locator squares on Sunday morning, 12 November. While Mitch set up his equipment, with a 60 cm dish aerial, on Chanctonbury Ring, a high spot on the South Downs, G8GKV, accompanied by Matthew Walton a keen SWL and student of microwave activity, took his gear to other high spots in squares AK, AL and ZL. G8BDJ made the QSO with Mitch in ZK. Conditions were good and all contacts were 59 . During the morning both G8BDJ and G8PMT heard the Isle of Wight beacon, GB3IOW on 3 cm , and were later joined by G3JHM to make arrangements for future tests on the band.

Tropospheric

On 18 October, the atmospheric pressure rose rapidly from 30.0 in to 30.4 in , and with a few fluctuations it remained high until 12 November when it dropped back to $30 \cdot 1 \mathrm{in}$. This high pressure, coupled with mild and fine weather, frequently upset the v.h.f.s between 27 October and 12 November and as usual, our readers were both active and observant. At 2237 on 27 October, Alan Baker worked G8FRB/P near Derby on 2 m s.s.b. and during the evening of the 28th, Belgian stations were working through the Dover repeater GB3KR, R4. While continental broadcast stations were audible in Band II on 28, 29 and 30 October, I frequently received strong pictures from the IBA transmitter at Lichfield, 189 MHz , with a dipole aerial. Between 1900 and 2000 on 5 November, Dermot Cronin G4GRO, Royal Sovereign Light, heard 2 m s.s.b. signals from DM, HG, OE and OK and at 2057 Ken Smith, Horsham reported patterns on u.h.f. TV. On the 9 th both Ken and Ian Rennison heard continental stations in Band II and Alan Baker heard DL3HB and worked F6EVL on 2 m c.w. At 0044 on the 10 th, Alan, behind 400 ft of chalk had a QSO with G8FUE in Somerset on 2 m s.s.b.

Although conditions were generally very good for v.h.f. and u.h.f. DX throughout the 10th, 11th and part of the 12 th, some strange things also happened. For instance, during the morning of the 10th, Brian Houghton G4BCO, Hastings, worked a station in Luton on f.m. running 1 watt from a hand-held set and Brian Fenwick G8BTC, Brighton, was listening to G8BDJ in nearby Southwick on 2 m f.m., when suddenly his strong signals were obliterated by a station in Birmingham.

At 0843 on the 10 th, I received strong pictures plus cochannel interference from Lichfield, and with patterning
on some u.h.f. TV channels I was not surprised when I heard signals from the 70 cm beacons at Emley Moor GB3EM and Sutton Coldfield GB3SUT, using only a dipole aerial. Around 1800 John Keegan, Steyning, Sussex saw German TV signals, complete with adverts in Band V. Later the same evening, Peter Beer, near Saffron Walden, Essex, using a loft aerial, received pictures from French u.h.f. television.

Mitch Tribe was delighted with his achievements on the 10th because, using his Multi-800D rig from his stationary car, he worked several PD0 (Dutch Novices' call sign) on 2 m f.m. and at 1300 G4GNX/M, situated on Beachy Head, worked PA0 and DJ via the Brugge repeater ONOVW, R2. Between 2145 and 2230 Ian Rennison received Belgian, Dutch and French stations in Band II, using a dipole aerial into his AIWA 5080 stereo system. At 0054 on the 11 th, John Cooper G8NGO, Cowfold, heard an OZ on 2 m s.s.b., and periodically between 0900 and 1400 both Ian Rennison and myself received pictures from a Dutch station on Channel E4.

Amateur Co-operation

While in contact with PA0OOM at 0036 on the 11th, G4GNX learnt that the Dutch station had been trying for two years to work a station in QRA square ZK, so he called G8NGO who lives in ZK who was very soon in touch. Later, PA00OM told G4GNX that he was going QRT, a very happy man.

During the opening, several amateurs and u.h.f. televiewers complained about total loss of signals and a good example was a local QSO in Hastings between G3JSF and G8PUW on 2 m , only about three miles apart, who suddenly completely lost contact with each other. More fading was reported by Guy Stanbury, Chelmsford, who became aware of the disturbance when he saw patterning on Band V pictures on the 10th, and from about 1900 received f.m. signals, some in full stereo, from stations in West Germany and the Low Countries. Throughout the evening he noticed that signals would appear for a while and then fade away, and very soon the space would be taken by another. Guy also remarked about the extensive fluctuations in signal strengths and writes "I am sure you will agree that this type of opening is as fascinating when it deteriorates as when it starts".

New VHF Repeater

The first QSO through the Brighton repeater GB3SR, which commenced operation on R3 at 1900 on 15 October, was between G8ETL/M, Brighton, and G3WPO, Worthing, who was using a home-brew, hand-held transceiver. The Sussex Repeater Group, who are responsible for the station, are delighted with its initial performance despite the fact that they are using temporary filters.

From our Overseas readers

Congratulations to Anthony Mann, Applecross, Western Australia, who sent us the exciting report that he had received Ch.B1 BBC TV sound, 41.5 MHz , downunder, on 13, 14, 16 and 19 October, the vision, 45 MHz , on the 13 th and Ch.F2 French sound, $41 \cdot 25 \mathrm{MHz}$, on the 16 th. Anthony also received strong f.m. signals from the Korean Broadcasting Service, 44.3 and 44.9 MHz , on each of these days and Russian signals on 41, 42 and 43 MHz on the 19th. Also on the 19th he heard signals from Japanese amateurs on 52 MHz , and Chinese and Malaysian TV signals on Channels R1 and E3 respectively.
"You might realise that any v.h.f. from the north is DX long before it arrives" writes Ian Roberts, Pretoria, South Africa, who also says that 19 October was remarkable because he was receiving Ch. R1 vision at 0900 and the Cyprus beacon, 50.5 MHz , just above the noise. Also on the 19th, Ian heard the second harmonic of the French (Issoudum, 500 kW) programme at $43 \cdot 16 \mathrm{MHz} \mathrm{S} 5$, while the fundamental at 21.58 MHz was S 9 .

Oddleiv Tungland, Trondheim, Norway, is now licensed as LA3GW and is operating from LA1K, the club station of the students in Trondheim. Oddleiv is also interested in DX TV, and in recent years has received signals from about 10 European countries using a dipole aerial in Band I.

15-240 Watts!

HY5
Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartidge, tuner, etc) are catered forinternally. The desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume is compatible with all lis. power amplifiers and power supplies. To ease construction and is compatible with all I.L.P. power amplifiers and power suppli
mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: Complete pre-amplifier in single pack-Multi-function equalization-Low noise -Low distortion-Hiah overload-Two simply combined tor stereo.
APPLICATIONS: $\mathrm{Hi}-\mathrm{Fi}$-Mixers-Disco-Guitar and Organ-Public address
SPECIFICATIONS
SPECIFICATIONS: Auxiliary $3-100 \mathrm{mV}$; input impedance $4.7 \mathrm{k} \Omega$ at 1 kHz .

DISTORTION.
Price $66 \cdot 27+78 p$ VAT P\&P free.

15 Watts into 8Ω

The HY30 is an exciting New kit trom 1.L.P. It features a virtually indestructible I.C. whth short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board. 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operan the most up-to-date technology available. Kit-Low Distortion-Short, Open and Thermal Protection-Easy to FEATURES: Compl
Build.
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifieraudio oscillator.
SPECIFICATIONS
OUTPUT POWER 15W R.M.S into 8Ω : DISTORTION 0.1% at 1.5 W .
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}$-3dB.
Price $\mathbf{5} 6.27$ LTAGE +18 V
Price $\boldsymbol{£ 6} \mathbf{2 7}+\mathbf{7 8 p}$ VAT P\&P free.
The HY50 leads 1.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no externat components. During the past three years the amplifier has been refined to the ex
reliable and robust High Fidelity modules in the World.
FEATURES: Low Distortion-integral Heatsink-Only five connections-7 amp output tran-sistors-No external components
APPLICATIONS: Medium Power Hi-Fi systems-Low power disco-Guitar amplifier SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25 W RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 25 W at 1 kHz SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $\mathbf{£ 8} \mathbf{1 8}+\mathbf{5 1} \mathbf{0 2}$ VAT P\&P free
The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in requirementar design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-tion-Five connections-No external components
APPLICATIONS: Hi-Fi-High quality disco-Public address-Monitor amplifler-Guitar and organ
SPECIFICATIONS
INPUT OUTPUT POWER 6OW RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 60 W at 1 kHz / SNAL NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $\mathbf{\Sigma 1 9 . 0 1}+\boldsymbol{£ 1} 52$ VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group white still retaining true Hi-Fi performance.
FEATURES: Thermal shutdown-Very low distortion-Load line protection--Integral heatsink -No external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave—Industrial—Public Address
SPECIFICATIONS
INPUT SENSITIV ${ }^{2}$ OUTPUT POWER 120 W RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.05% at 100 W at 1 kHz .

Price £27. 99 + $£ 224$ VAT P\&P free.
The HY400 is I.L.P.'s 'Big Daddy" of the range producing 240 W into 4Ω ! it has been designed for high power disco address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components.
APPLICATIONS: Public address-Disco-Power slave-Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS Into 4Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.1% at 240 W at 1 kHz N OISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm
Price £38•61 + £3.09 VAT P\&P free.
PSU36 suitable for two HY30's $\mathbf{5 6} \mathbf{6 4}$ plus 81 p YAT. P/P free. PSU50 suitable for two HY50's £8-18 plus $\mathbf{~ P S U 7 0}$ suitable for two HY120's $£ 14 \cdot 58$ plus $£ 1 \cdot 17$ VAT. P/P free
 PSU180 $25 \cdot 42+£ 2.03$ VAT
 B1 $£ 0.48+\mathbf{2 0 . 0 6}$ VAT.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON CANTERBURY, KENT, GT4 7AD.

I.L.P. ELECTRONICS LTD.,
 CROSSLAND HOUSE, NAGKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature
TeI: (0227) 64723.
Regd No. 1032630.

SUPERSOUND 13 HI-FI MONO AMPLIFIER

Brand state audio ampl

 throughout. 5 componentssilicon trantransistors in per outpu Full wave rectification Fulp wave rectication
Output
watts r.m.s. into 8 sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$
3 db . Fully integrated separate tolume. Bass boost and Treble cut conplifier stage with Suitable for 15 ohm speakers. Input for ceramic crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and tested, with knobs size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7 \frac{1}{2}$ deep. AC 200250 V HARVERSONIC MODEL P.A. TWO ZERO
An advanced solid state general for Public address syble

Disco, Guitar. Gram., etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-
amp). Input $1,15 \mathrm{mv}$ into 47 k . Input 2 , 15 my into 47 k (suitable for use with mic. or guitar etc.). Input 200 mv into 1 meg . suitable for gram, tuner, or tape etc.
Full mixing facilities with full range bass \& treble Full mixing facilities with full range bass \& treble
controls. All inputs plug into standard jack sockets on controls. All inputs plug into standard jack sockets on
front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet modised aluminium front escutcheon. For ac mains
 "POLY PLANAR"" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11 z^{\prime \prime} \times 14 \frac{1}{16} "$. $1 \frac{7}{16}$ deep. Weight 19 oz . Power
handling 20 W r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details.
Only $\mathbf{~} 8 \cdot 40$ each p. \& p. (one 90 p, two $£ 1$ - 10).
 STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from
20 Hz to 20 KHz . Input impedance 47 K . Size 1 s " $2^{\prime \prime}$ PLASTIC CONE HFTWEE TER 4 ohm, £3.50 per

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240V Mains oper-
ated Solid State FM AM Stereo Tuner. Covering $\begin{array}{lrr}\text { M.W. A.M. } & \text { 540-1605 } \\ \text { KHz } & \text { YHF/FM } & 88-108\end{array}$ MHz. Built-in Ferrite rod aerial
for M.W. Full AFC and $A G C$ on AM and FM.
Stereo Beacon Lamp Indicator. Built in Pre-amps with variable output
voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet. Will match almost any amplifier. Size $8 \frac{1}{4 \prime \prime} \mathrm{w} \times 4^{\prime \prime} \mathrm{h}$ LIMITED NUMBER ONLY at $£ 28.00$ 10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and
announcements to follow each other. Fully shrouded announcements to follow each other. Fully shrouded section wound output transformer to match 3-15 Ω
speaker and 2 independent volume controls, and speaker and 2 independent volume controls, and
separate bass and treble controls are provided giving
good lift and cut. Valve line-up 2 EL84s, ECC83. EF86 and EZ80 rectifier. Simple instruction booklet 25p SAE (Free with parts). All parts sold separately.
ONLY $£ 15.50$, P. \& P. £1.40. Also available ready built and tested $£ 20 \cdot 00$. P
STEREO DECODER
SIZE $2^{\prime \prime} \times 3^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ ready built. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions (in-
clusive of hints and tips) supplied. $\mathbf{8 6} \cdot \mathbf{0 0}$ plus 20 p.

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands.
Dynamic M/coil speakers. telescopic aerial and internal ferrite aerial. Earpiece socket for personal listening. Finished in attractive simulated leatherette. Size Bargain price of only ${ }^{4 \prime} \mathrm{D}$ approx. Fully guaranteed MODEL FL4
Few only similar to above, but battery operation only and fitted with twin speakers. Four wave bands, MW FM and two VHF bands for reception of aircraft and
some public services. ONLY $£ 9 \cdot 50$ £I 30 p. \& . some public services.
MODEL MULTI 5 Specification as Model FL4 but with additional SW band. Fitted wih twin speakers. ONLY $£ 11 \cdot 00$
$£ 1.30$ p. \&

HARVERSONIC SUPERSOUND
 HO - IO STEREO AMPLIFIER KIT

Aransistors including Silicon Transistors in the first five stages on each channel resulting in even hower noise evel with improved sensitivity. Integral pre-amp with Bass. Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions inluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including rilled metalwork, high quality ready drilled printed marked smart brushed anodised aluminium front panel with matching knobs, wire solder nuts bolts no extras to buy simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts .s. per channe into 5 ohms. Frequency response $\mathrm{M} \Omega$. $12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into ass Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. 16 dB . Negative feedback 18 dB over main amp. Over requirements 35 v . at 1.0 amp .
ully detailed 7 page construction manual and parts list free with kitor send 25p plus large S.A.E.
AMPLIFIER KIT
\&14.50 P. \& P. 80p POWER PACK KIT
d6.00 P \& P 95 p POWER PACK KIT
$\mathbf{£ 6 . 0 0}$ P. \& P. 95 p SPECIAL OFFER-only $£ 25.00$ if all 3 items
ardered at one time plus $£ 1 \cdot 25$ p. \& p.
Also avail. ready built and tested £31-25, P. \& P. £1-50.

$$
\text { HARVERSONIC STEREO } 44
$$

A solid state stereo amplifier chassis. with an output of 3-4 watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with
built in short term thermal overload protection, All built in short term thermal overload protection, All
components including rectifier smoothing capacitor, fuse, tone control, volume controls. 2 pin din speaker sockets \& 5 pin din tape rec. play socket are mounted on max. depth. Supplied brand new \& tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $£ 10.00$ plus $50 \mathrm{p} P$. \& P. Mains transformer with an output of 17 v a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 2 \cdot \mathbf{0 0}$
40 p P P if required. Full connection details supplie All prices and specifications correct at time of press and Alf prjces and specifcations correct at time of press and
subject to alteration without notice. PLEASE NOTE: P. \& P. CHARGES QUOTED
APPLY TO U.K. ONLY. SEND SAE WITH ALL

silicon chip of the 3089 device. The use of an external load resistor in the CA3189E enables any noise at pin 10 to be decoupled by a $10 \mu \mathrm{~F}$ capacitor to ground; in addition, the value of the load resistor can be selected as desired so as to vary the audio output level, which increases with the value of the load resistor. The value of the de-emphasis capacitor from the output to ground must be chosen according to the value of the load resistor used so that the produce of the values of these two components is about $50 \mu \mathrm{~s}$.

There is no connection to pin 16 of the 3089 devices, but in the CA3189E this pin is used to feed the controlling voltage for the a.g.c. threshold into the device. This controlling voltage may be obtained using the voltage at pin 13 as shown in Fig. 15, in which case the onset of a.g.c. action will vary from about $200 \mu \mathrm{~V}$ up to 200 mV at pin 1 according to the setting of VR1. When the a.g.c. voltage is plotted against the input voltage a curve with an extremely sharp "knee" is obtained, so the onset of a.g.c. action is very rapid. When the a.g.c. voltage from the CA3189E is fed to one of the gate electrodes of a MOSFET in a front-end unit, a range of 40 dB in the gain is easily obtained.

FM/AM Devices

The f.m. i.f. devices we have discussed process only an f.m. signal, but many new devices are now coming onto the market which will not only handle the f.m. i.f. signal, but which will also process an a.m. signal. When an f.m. front-end unit is coupled to such a device together with an audio amplifier, all the devices (except possibly one or two diodes or transistors) which are required in a receiver to cover both a.m. and f.m. bands are then available. Devices in this class include the Fairchild $\mu \mathrm{A} 721$, the A.E.G.Telefunken TDA1083, the Mullard TBA570 and their new TDA5700 and the SGS-Ates TDA1220 device.

One of the problems of using these devices in a home constructed receiver is the complexity of the circuitry around a single integrated circuit. Many constructors therefore prefer to keep the a.m. and f.m. sections of their receivers quite separate. However, in car radio receivers and in small portable receivers where space can be at a premium, these new combined a.m./f.m. devices are very attractive, especially to the receiver manufacturers.

The $\mu \mathrm{A} 721$

The Fairchild $\mu \mathrm{A} 721$ device is encapsulated in a standard 16 pin dual-in-line plastic package (available from Arrow Electronics Ltd.). It contains the semiconductor devices required for the a.m. r.f. stage, oscillator, mixer and i.f. stage together with an f.m. limiter and quadrature demodulator circuit. Although all of this circuitry has been compressed onto a single chip, the total quiescent current required is only some 20 mA . The device operates from a supply of about 9 V .

The f.m. section input has a limiting sensitivity of about $500 \mu \mathrm{~V}$ and provides an audio output signal of about 520 mV r.m.s. at a typical total harmonic distortion of some 0.9% (maximum for any $\mu \mathrm{A} 721$ device is 2%). The signal-to-noise ratio is typically 75 dB with a minimum value of 60 dB . The rejection of a.m. signals is some 46 dB (as opposed to about 60 dB in the case of the CA3189E).

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint will cost 85 p, including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 0PF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS-Radio Amateur Examination Reprint

Please send your order and remittance to:-

IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me . . copies at 85 p each to include postage and packing

I enclose P.O./Cheque No Value \qquad
Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME

(BLOCK LETTERS)
ADDRESS
(BLOCK LETTERS)

Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required.

Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

Cut round dotted line

READERS PCB SERVICES

BOX 11，FLEET HOUSE－WELBECK STREET WHITWELL－Nr．WORKSOP－NOTTS Tel：（0909） 720695 TELEX： 547616 FLEET G			
PW PRINTED CIRCUIT BOARDS			
Dec 75	Sound－to－light display	DN0798	1．35＋15
Dec 75	Disco Systam Amp（ 2 req＇d）each	AM0421	4．90＋25
Mar 76	CMOS Crystal Callibrator	AM0438	1．25＋15
Oct 76	Interwipe	DNBJM	0．80 +12
Dac 76	Chromachase	A021	$6.50+25$
May 77	Seekit Metal Locator	A031	$3.50+15$ 口
July 77	Radio 2 Tuner	A035	1．68－12
July 77	Digital Clock Timer	A036	$3 \cdot 28+12$
Aug 71	Atomic Time Reciver	D036	$2 \cdot 65+15$
Aug 77	Morse Code Tutor Cards（SRBP）	A037	$4.75+15$ 口
Oct 77	Audio Level Indicator	0039	$0.98+12$
Nov 71	Laboratory Power Supply	A039	$3.50+12$
Jan 78	Direct Conversion Receiver	0043	1．85＋15
Mar 78	Audio／Visual Logic Probe	R001	$1.40+15$
May 78	DX＇ers Audio Filter	D001	$2 \cdot 35+15$
June 78	Audio Distortion Meter（set）	R007／8／9／10	$6.75+25$
June 78	Darkroom Timer	R011	$1.55+15$
July 78	Avon Transmitter	H015／16／19／20	$5 \cdot 10+40$
July 78	Digital Lock	D002	1．25＋15
Juty 78	Morse Tutor	R014	$2 \cdot 35+15$ 口
Aug 78	Point Motor C．D．Supply	D005	$1.25+15 \square$
Oct 78	Gillingham SW Reseiver	R025／6	$4.80+20$
Nov 78	Sarum	R030	$3 \cdot 30+20$
Nov 78	STD Charge Timer	AD212	$3.00+15$ 口
Nov 78	Auto Outside Light	AD225	$0.60+12 \square$
Nov 78	Porch Light	AD232	$0.60+12$
Dec 78	Digital Door Chimes	R017	$4 \cdot 20+12$

SPECIAL OFFERS

7 Wilmslow Audio

THE firm for speakers！

SEND 15P STAMP FOR THE WORLD＇S BEST CATALOGUE OF SPEAKERS，DRIVE UNITS， KITS，CROSSOVERS ETC．AND DISCOUNT PRICE LIST．

AUDAX－AUDIOMASTER BAKER－BOWERS \＆ WILKINS－CASTLE CELESTION－CHARTWELL COLES－DALESFORD－DECCA E EMI EAGLE－ ELAC FANE GAUSS GOODMANS I．M．F． ISOPHON－JR－JORDAN WATTS KEF－LEAK －LOWTHER MCKENZIE－MONITOR AUDIO－ PEERLESS－RADFORD－RAM－RICHARD ALLAN－SEAS－SHACKMAN－STAG－ TANGENT－TANNOY－VIDEOTONE－ WHARFEDALE YAMAHA

WILMSLOW AUDIO（oep．P．．．．）

SWAN WORKS，BANK SQUARE，WILMSLOW， CHESHIRE SK9 1HF
Discount HiFi Etc．at 5 Swan Street and 10 Swan Street Speakers，Mail Order \＆Export 0625529599 Hi－Fi 0625526213

BUY BIG AND SAVE POUNDS

LM301A
MC1310P
 .25
1.22
.25
.46
2.00
1.33
1.33
2.00
.35
.25
.61
.35
1.94
.82
1.85
1.62
2.73
2.13
1.62
1.62
2.19
2.19
2.08
1.85
1.62
2.55 .21
1.03
. .31
1.68
1.12
1.12
1.68
.29
.21
.52
.29
1.64
1.69
1.36
1.46
1.75
1.80
1.36
1.36
1.84
1.84
1.75
1.56
1.36
2.15

Disc Ceramics
301
09 $.047 \mu F$
$.14 F$ Ressistars ${ }_{2}$ W W
Carbon Filim 5 .06
.08
.085 $25+100+$
$.05 \quad .045$ And many more Send S A.E. for full
list Vat 8% Add 30p for P \& We operate a mixed pricing system
or semiconductors of the samie group $\times 700 \times 10 \times$ $7411.30 \times 7412,50 \times 74156$ $=100$ items. You will be charged
the $100+$ price Callers Weicom Callers Weicomg Ail components
new and to full spec Teiephone: 0822 5439: Telex 45263. All pices are in fs French FI. X8. 6 Belgium $\mathrm{Fr} \times 58.5$
Butch Guilder $\times 41$
Oit

The professional scopes you've always needed.
 When it comes to oscilloscopes, you'll have to go a long way to

Super 6
f162.00 plus VAT

CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components,
Kingsgate House,
Kingsgate Place,
London, N.W.6.
Audio Electronics, Maplin Electronics Supplies Ltd.
301 Edgware Road, London W.2. P.O. Box 3
Tel: 01-724 3564
Rayleigh, Essex.
Access and Barclay card facilities Tel: 0702715155
(Personal Shoppers) equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations

The price $£ 219$ plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price E 162 plus VAT.

Eiecravãue Buying

 IMPORTANT ANNOUNCEMENT

 IMPORTANT ANNOUNCEMENT
 With completion of our series of itemised advertisements we announce release of our newest catalogue, CATALOGUE No. 9-completely revised, enlarged and best yet.
 SEND FOR YOUR FREE COPY NOW TO DEPT. PW29

 Section 5

 Section 5}

HARDWARE/SOLDER TOOLS
Catalogue No. 9 NOW READY

WE ARE NATIONAL DISTRIBUTORS FOR NASCOM 1 MICROCOMPUTER KITS FOR DELIVERY FROM STOCK NET PRICES FROM £197.50 + V.A.T. QUANTITY DISCOUNTS - TRADE ENQUIRIES INVITED MOTOROLA Microprocessor Evaluation Kit, net $£ 175.87$ + V.A.T.		
TRANSFORMERS All mains transformer primaries suitable for 240 V input except for 50TS2A. GP302 30V 2A tapped at $12,15,20,24 \mathrm{~V} \quad \mathbf{£ 4} \mathbf{6 0}$ GP50150V 1A tapped $19,25,33,40 \mathrm{~V}$. $\mathbf{£ 4} \mathbf{4 0}$ GP502 $50 V$ 2A tapped 19.25, 33, 40V .. $£ 6.30$ GP601 60 V 1A tapped 24, 30, 40, 48V . . £4-60 GP602 50 V 2A tapped $24,30,40,48 \mathrm{~V}$.. $\mathbf{£ 6 . 7 0}$ 50TS2 50V 2A tapped $25,45 \mathrm{~V}$	Pri/sec shieid $\mathbf{~} 6$-55 50TS2A 50V 2A (110/120V pri) tapped $25,45 \mathrm{~V}$ Pri/sec shield $\mathbf{£ 6 5 5}$ $28 T 05$ $12 \mathrm{~V}, 12 \mathrm{~V}, 2-\mathrm{O}-2 \mathrm{~V} 0.5 \mathrm{~A} \ldots 4.40$ 28T1 12V. 12 V . 2-0-2V 1A£4.90 28T2 12V, 12V, 2-0-2V 2AE5.30 $12 \mathrm{~T} .05 \mathrm{VV}, 6 \mathrm{~V}, 0.5 \mathrm{~A}$ (Split primary 120, 120V) $\quad \mathbf{£ 3 . 3 0}$ CT1 17V1A charger duty tapped at $9 \mathrm{~V} \quad \mathbf{E 2 . 9 5}$ GT2 $17 \vee 2 \mathrm{~A}$ charger duty tapped at $9 \mathrm{~V} \quad \mathbf{£ 3 - 2 5}$ CT4 17 V 4A charger duty $\quad \mathbf{E 3 . 8 5}$	606/1 6-0-6V 100 mA . . $£ 1.00$ MT280 6V, 6V, 250 mA . . $\mathbf{£ 1 . 5 0}$ 909/19-0-9V 75 mA £1.00 GP909 9-0-9V O.5A £2.10 12012/1 $12-0-12 \vee 50 \mathrm{~mA} £ 1.00$ 1200 12-0-12V 100 mA MT150 12V. 12V, 150 mA £1.20 151A 15-0-15V 1A … £3-20 $\begin{array}{ll}\text { GP202 20-0-20V } 0.75 A & \text { £2.30 } \\ 301 A 30-0-30 V 1 A & \text { £3.80 }\end{array}$ Miniature L.S. transformer LT700 Pri. 1 K2 C.T. Sec 3.2Ω
PRINTED CIRCUIT MATERIALS COPPER CLAD BOARD $300 \times 150 \mathrm{~mm}$ Single Sided SRBP 85p; Fibreglass $\mathbf{£ 1 . 6 5}$ Double sided SRBP $\mathbf{£ 1}$-00 UNCLAD SRBP $300 \times 150 \mathrm{~mm}$. . . 56p FERRIC CHLORIDE Lab grade 100 gm pack 47p	RELAYS MINIATURE CONTINENTAL TYPE Type R42 12V $185 \Omega 2 \mathrm{C} / \mathrm{O} \mathbf{£ 2 . 0 0}$ Type R44 12V 185』 4 C/O $\mathbf{£ 2 . 2 0}$ PC socket type P40 97p Ordinary wiring skt. W40 . . . 88p Mounting strip 6 posn. R40.. 26p PIGMY MAINS RELAY 3 CIO $10 \mathrm{amp} 6 \mathrm{~V} 29 \Omega .12 \mathrm{~V} 110 \Omega .24 \mathrm{~V}$ 475Ω. all d.c.each $£ 2$-30 240 V a.c. 3200 s coil . . $\mathbf{£ 2 - 5 5}$	REED RELAYS open construction $5 \vee 106 \Omega$ CSA5 single n/o 90p $12 \mathrm{~V} 645 \Omega$ CSA 12 single n/o $5 V 57 \Omega$ CDA5 double n/o $\mathbf{£ 1 . 2 8}$ 12V 320Ω CDA 12 double $\mathrm{n} / 0$. . $\mathbf{£ 1 - 1 9}$ REED RELAYS enclosed type n/o LPS 12 single 590Ω......... 98p LPD12 double 355Ω LATCHING RELAYS enclosed $n / 0$
500 gm jar $\mathbf{£ 2 . 3 0}$ POSITIV-20 Aerosol 75cc with instructions £1. 30 ETCH RESIST PEN Decon with spare tip 85p 73.0063 .00 SILVER CONDUCTIVE PAINT 3 gm via! Elecolit 340 $\mathbf{E 2 . 2 0}$	CONNECTORS (V.A.T.-12 $\frac{1}{2} \%$) Full range available from 2 way.	EDGE CONNECTORS Gold flash contacts $0.1^{\prime \prime} 24$ way $\mathbf{£ 1 . 0 6 ;} 32$ way £1.29; $\mathbf{3 6}$ way $\mathbf{£ 1 . 5 5 .}$ PHONO Single socket 5p, plug 6p Twin socket 9 p Quad socket 13p Plug colours: blk, red, yellow, grey. SEE CURRENT PRICE LIST FOR FULL RANGES

SWITCHES
ERG Dual in Line One pole change over $S D C 142 p$ Two-SDC2, 78p 3-SDC3 $\mathbf{E 1 . 0 8}$ OnOff 2 poie SDC2 42p 4 pole
SDS4 75p. 6 p SDS6 $\mathbf{f 1 . 0 8} 8 \mathrm{p}$
 99p. $2 \mathrm{P} / 4 \mathrm{~V} \mathrm{DS} 16 \mathrm{~A} 24 \mathrm{E1.08}$. ROTARY MAINS
Lorlin MS 4 amp
WAVECHANGE
Lorlin CK series MBB contacts
1 pole 12 W 37 p ; 2 pole 6 W 37 p ; 3 pole $4 W$ 37p; 4 pole $3 W$ 37p; ROTARY SWITCH KIT Type RA 6 wafers 60 RA Wafars MBB
1 P 1 W or $2 P 5 W ~ 66 p ~$ RA Wafers BBM 1P $12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}$. 3P 4W. 4P 3W,
6P 2W Shorting wafer, MBs 66p Rotating open-circuit66p PUSH BUTTONS
Standard Size
SSP10. 250 V
push on, push off
panel hole $0 \cdot 5^{\prime \prime}$
pSP $14 ~ 67 p ~$ SSP 11 , as SSP10
push to make
Sub-Miniature 250 V o. 5 FA a.
Sub-Miniature 250V 0.5A a.c.
8531 push to make 62 8531 push to make 62
 of black or red.

CASTELCO RANGE 250V 1 A

a.c. $0.375^{\prime \prime}$ hole with long white fixing ring unless otherwise ordered No. 2644 SP make 18p
No. 3244 DP make No. 3244 DP make .
No. 2648 SP break . No. 3248 DP break No. 2634 SP on/off
No. 3234 DP on/off No. 4434 as 3234 but ... 30p sections reversed..........30p
No. 4444 as 3244 p No. 4444 as 3244 but switch Spare rings in black. red, yellow,
green, blue, white or pink each $\mathbf{2 p}$ TOGGLE 250V 1.5A a.c.

Chrome finish	
1011 C SPST	56p
1016C SPDT	$61 p$
1019C SPDT	
centre-off	64p
409 DPDT	77p
Sub-Miniature 250 V 2 A a.c.	
Panel hole $0.25^{\prime \prime}$	
S7101 SPDT	63p
S7201 DPDT	84p
S7203 DPDT centre-off 84p	
S7205 DPDT biased	
S7207 DPDT biased	
one side	£1-20
S7211 SP 3-way	£1-20
S7301 3PDT	£1-42
S7401 4PDT	£1-80

MICROSWITCHES SPDT 85p

TIME SWITCHES (Smith's) For electrical use. 13A rating

IMERSET for wired-in
situations. 2 on $\& 2$ off actions pe
day $\ldots . .$.

[^1]* V.A.T.-Add 8% to value of order

For items marked*, add $12 \frac{1}{2} \%$

* FOR ACCESS OR BARCLAY
CARD orders, just phone or Write your number. No discounts
marked Net or N

OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDERS NO MATTER HOW LARGE OR SMALL.

ELECTROVALUE LTD

28, ST. JUDES ROADIENGLEFIELD CREEN. EGHAM, SURREY TW20 OHE
Tellephone Egham 3603 Telex 264475
Northern Branch . 6Bo. BURNAGE LANE,

NO

 BATTERIES NO WIRES £ 32.99 PER PAIR+ VAT 44.12
The modern u yy of instant 2 -way communications. Supplied with 3-core wire. Just plug into power socket. Ready for use, Crystal clear communications from room to room.
Range $\frac{1}{8}$-mile on the same mains phase. On/off switch. Range $\frac{1}{\frac{1}{2}}$-mile on the same mains phase. On/off switch.
Yolume control. Useful as inter-office intercom, between Volume control. Useful as inter-office intercom. between
oftice and warehouse in surgery and in homes. P. \& P. 39 p .
ESTLIONINTERGOM

$£ 22.95$ Solve your communica
 in robust plastic cabinets for desk or wall mounting call in robust plastic cabinets for desk or wall mounting. Call/
talk/listen from Master to Subs and Subs to Master. Ideally kuitable for Business, Surgery, Schools, Hospitals and Offce. Operates on one 9 V battery. On/off switch. Volume control. Complete with 3 connecting wires each 66 ft . A Battery and other accessories. P. \& P. 90p.
NFIW. AMFRiciAN TYf
TELEPHONE AMPLIFIER

$£ 16.95$

Latest tramsistorised Telephone Amplifer with detached activates a switch for immediate to on to the cradle Fithout holding the handset. Many people can listen at a time. Tncrease efficiency in office, shop, workshop. Perfect fol "conference" calls: leaves the user's hands free to make
notes, consult files. No long waiting, saves time with long. notes, consult files. No long waiting, saves time with long
distance calls. On/off switch, volume control, conversation recording model at $£ 19.95$ + VAT $£ 1 \cdot 60$. P. \& 9.89 p .

10-day price refund guarantee on all items.
169 KENSINGTON HIGH STREET, LOKDON, W8

H.A.C. Short.wave KITS

WORLD-WIDE RECEPTION

-H.A.C.' well known by amateur constructors for its Short Wave receivers, now offers a the novice and the expert. £10.50 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components,
drilled chassis, valve, accessories and full drilled chassis, valve, accessories and full instructions. ${ }^{\text {NEW }}$ TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at f $12 \cdot 50$ this receiver is outstanding value, and will give you hours of interest and enter-
tainment. tainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORAY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT.WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead. West Sustex RH19 3SZ

OSMABET LTD | We make transformers |
| :---: |
| amongst other things | OS MABET LTD amonatit other things LOW VOLTAGE TRANSFORMERS: Prim 240 V ac.

 25V $2 \mathrm{~A}+25 \mathrm{~F} 2 \mathrm{~A}+8.50$.
MIDGET RECTIFIIER TRANSFORMERS: 240y ac. $6-0-6 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$ or $9-0-9 \mathrm{~V} 1 \mathrm{~A} £ 2 \cdot 50$ each; $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ or
$20-0-20 \mathrm{~V} 0.75 \mathrm{~A} \quad £ 3.00$ each: $9-0-9 \mathrm{~V}$ 0.3A or $12.0-12 \mathrm{~V}$ 0.25A or $20-0-20 \mathrm{~V}$ 0.15A E2-50 each.
LTTRANSFORMERS TAPPED SEC: Prim 240V ac. $0-10-12-14-16-18 \mathrm{~V}$ 2A $£ 5 \cdot 00 ; 4 \mathrm{~A} £ 7 \cdot 00$; $0-12-15-20-24-30 \mathrm{~V}$ 2A £5.75; 4A £9.00; $0-5-20-30-60 \mathrm{~V} 1 \mathrm{~A} £ 7 \cdot 00 ; 2 \mathrm{~A} £ \mathrm{E} \cdot 50$; M-40-50-60-80-1
Prim 240 V ac.
$250-0-250 \mathrm{~V}$ 60Ma 6.3 V 1A £1-75; 250 V 100Ma 6.3 V 2 A
£2.50; 9 V 3 A £2.50; 20 W Auto. $110 / 240 \mathrm{~V}$ £1.75. $25 \mathrm{~V} \cdot 3 \mathrm{~A}$ £2.50; 9 V 3 A £2.50; 20W AUTo. $110 / 240 \mathrm{~V}$ £1-75. $25 \mathrm{~V} \cdot 3 \mathrm{BA}$
LOUDSPEAKERS $2 \frac{1}{4}$ in $8 \Omega, 2 \frac{2}{2} i n 8$ or $25 \Omega, 2 \frac{3}{2} i n \sin$, 3in 35Ω, $3_{\frac{1}{2} i n}^{21} \Omega_{3}$ $\mathbf{£ 1} 50 ; 7 \times 4$ in $3,8,46,25$ or $80 \Omega, \mathbf{s 1} \cdot 75 ; 8 \times 5$ in 4,8 or
 Instant erasure of cassettes and tape spools, any diaPOWUER SUPPLY TWIN OUTPUT. Prim 240Y New, British manufacture, smoothed d.c. output 20 V 5A, plus stabimed output of 15 V 10 ma plus 12 V ac O.5A output complete with diagram, $\mathbf{£ 3 . 2 5 .}$.
EDGEWISE LEVEL. METER FSD $200 \mu \mathrm{~A}$

Size $19 \times 18 \times 20 \mathrm{~mm} 8000$, £1-10.
2A Or $3 A$ £1-25 each; 5A or 10A £1. 50 each,
SYNCHRONOUS GEARE MOTORS, 240 V Bran TRANSFORHERS 1 R 20 RPH , at 11 - 20 O/P. TRANSPRMERS FOR VALVE AMP LIFIERS $50 \mathrm{~W}, £ 17 \cdot 00 ; 100 \mathrm{~W}$ (EL.31, KT88, etc), £22.00.
G.E.C. MANUAL OF POWER AMPLIFIERS MULTIWAY SCPEENED CABLE, PW
MULTIWAY SCREENED CABLE, PVC COVERED 36 way $£ 1 \cdot 00 ; 25$ way $75 p ; 14$ way $50 p ; 6$ way $25 p ; 4$ way
$20 p$; 2 way $10 p ; 1$ way $8 p ; 4$ way individually screened 25 p per metre, fig 8 twin stereo do screened 15p. MAINS CABLE
4 way $30 \mathrm{p} 3 \mathrm{~A} ; 3$ core mini cabie ideal for speakers; inter-
coms; telephones etci $£ 4.50100 \mathrm{M}$ coms; telephones etc: $£ 4 \cdot 50100 \mathrm{M}$.
CONDENSERS
Electrolytic; $400 / 400 \mathrm{~V}$ 75p ; 2000/30V 30p; 1200/75V; 50p;
$2200 / 40 \mathrm{~V} 40 \mathrm{p} ; 3900 / 100 \mathrm{~V}$ £1-25; Paper tubular, W/E, $4 / 160 \mathrm{~V}, 6 / 160 \mathrm{~V}, 2 / 150 \mathrm{~V}$. each $25 \mathrm{p}, \mathrm{O} \cdot 1 / 2000 \mathrm{~V} 30 \mathrm{p}$.

CARRIAGE EXTRA ONALL ORDERS
ALL PRICES INCLUDE V.A.T.
Callers by appointment only. S.A.E. enquiries, lists 46 Kenilworth Road, Edgware, Middx. HA8 8YG. Tel: 01-958 9314

FANE HPXIR or HPX2R Carr. 35p $£ 3.65 \quad € 2 \cdot 25$
ADD-ON HIGH FREQUENCY UNITS

EXTRA SPECIAL MAIL ORDER OFFER TITAN TA 50A 50w AMPLIFIER

AMPS, T'TABLES, JINGLE MACHINES, DISCO CONSOLES, LIGHTING, CABINETS, CREDIT TERMS AVAILABLE $\begin{gathered}\text { order* } \\ \text { over }\end{gathered}$ e20 Phone orders accepted from Access \& Barclay

403 SAUCHIEHALL STREET
GLASGOW Tel: 0413320700 Mail Orders/Export enquiries only. . to 24 Newgate
Shopping Centre, NEWCASTLE. Add £f carr. on Hi-Fi spkrs. or kits. Oetherwise add $£ 1.25\left(12^{\prime \prime}\right.$ Spkr).
$£ 1.50\left(15^{\prime \prime}\right) \in 2 \cdot 50\left(18^{\prime \prime}\right)$

SAVBIT

handy solder dispenser Contains 2.3 metres approx．of 1.22 mm Ersin Multicore Savbit Solder．Savbit increases life of copper bits by 10 times． Size5 58p inc．VAT For soldering fine joints
Two mone dispensers to simplify those smaller jobs． PC115 provides 6.4 metres approx．of 0.71 mm solder for fine wires，small components and printed circuits．

69pinc．VAT
Or size 19A for kit wiring or radio and TV repairs． 2.1 metres approx．of 1.22 mm solder

Size 19A 63 p inc．VAT

Handy size reels and dispensers

 of the world＇s finest cored solder to do a professional job at homeErsin Multicore Solder contains 5 cores of
non－corrosive flux that instantly cleans heavily oxidised surfaces and makes fast，reliable handy size reels of
SAVBIT，40／60，60／40 and $A L U-S O L$ solderalloys
These latest Multicore solder reels are ideal for the toolbox Popular specifications cover all general and electrical applications plus a major advance in soldering aluminium．Ask for a free copy of ＇Hintson Soldering＇containing clearinstructionsto makeeveryjobeasy．

Ref．	Alloy	Diam． （mm）	Length metres approx．	Use	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \\ \hline \end{gathered}$
$\begin{gathered} \hline \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints．	¢2．16
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU－SOL	1.6	8.5	For aluminium repairs． Also solders aluminium to copper，brass etc．	¢2．46
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires，small components and printed circuits	£2．38
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio，TV and similar work．Increases copper－bit life tenfold．	£2．29

 Ketsey Fousu．Wiord Liaie Crirl

Itsimel He tups：\％eri Herts．IIP2．4F0？
＇ERSIN＇A non－corrosive，rosin based flux for general and electrical solder ing n conjunction with＇Ersin＇Multicore solders Ref AF14 48pinc．VAT

EMERGENCY SOLDER

Self－fluxing，tin／lead solder tape that melts with a match
For electrical and non－electrical applications． Size ES36 39p inc．VAT MULTICORE DESOLDERING WICK

Absorbs solder instantly from tags， printed circuits，etc．Only needs 40－50 watt soldering iron．Quick and easy to use．

ECONOPAK

A reel of 1.2 mm ＇Ersin＇Multicore solder for general electrical use． Size $13 \mathrm{~A} \quad £ 2.59$ inc．VAT

A reel of 3mm＇Arax＇
Multicore solder for general non electrical use
Size 16A
$\mathbf{£ 2 . 5 9}$ inc．VAT

$\left\lvert\, \begin{aligned} & \text { Cy } \\ & \text { CY } \\ & \text { D1 } \\ & \text { D6 } \\ & \text { D }\end{aligned}\right.$

${ }^{2} .00$
葛寝

BENTLEY ACOUSTIC CORPORATION LTD．
7a GLOUCESTER ROAD．LITTLEHAMPTON，SUSSEX All prices inclusive of V．A．T．at $12 \frac{1}{2} \%$

$\mathrm{OA}^{2} 21$	1.20	6AM8A－70	${ }_{6}^{6 F 25}$
0 C 3	40	6AN8 6 605 78 75	
$\mathrm{OC3}$ $\mathrm{OZ4}$	50		
143	80	6aR5 1.05	6 G
1 A 5 GT	55	6AS7G 1.50	
$1 \mathrm{~A}^{\text {7at }}$	00	6AT6－60	
183G7	65	6aU6 62	
$1{ }^{122} 1$	． 00	6av6 ${ }^{\text {b5 }}$	
1	1.00	6AWSA1	
16G7	${ }_{00}^{00}$	$\begin{array}{lll}64 \times 4 & -75 \\ 688 G & -75\end{array}$	${ }_{6,56}^{655}$
1 L 4	25	$\mathrm{fbab}^{\text {b }}$	
${ }^{\text {D }} 5$	70	6 BC 8	
N5	70	6BE6 .70 6866 F	
1N5GT 1	00	6BG6G $68 \mathrm{BH6}$ 1.00 1.10	${ }_{6}^{6 K 76}$
$1 \mathrm{1R5}$	40	6BH6 $6 \mathrm{BJJ6}$ 1.75	${ }_{6}^{6 K}$
184	35	${ }^{68 \mathrm{BK} 7 \mathrm{~A}}$－ 85	6 LL
${ }^{114}$	30		${ }_{6}^{6 L 7}$
${ }^{104}$	8		${ }_{6 L 18}$
${ }_{2} \mathbf{6} \mathrm{~K} 5$	75	6BR7 7 1.00 68 P 8 1.25	
${ }_{2}^{2 \times 2}$	70	6BR8 1.25 6 BW 6 3.75 6 l	6
	5	${ }_{68 \mathrm{BW}}^{6} \mathrm{l}$	${ }^{\text {6in7GT }}$
${ }^{3 D 6}$	40	$\begin{array}{ll}\text { 6BX } 6 & -40 \\ 6 \mathrm{BY} 7 & .45\end{array}$	${ }_{6}^{6 P 15}$
3Q4 ${ }_{\text {3Q }}$	80	6BZ6 4.50	
$3{ }^{3} 4$	65	${ }_{606}$	6 Q 7
$3 \mathrm{3V} 4$	1.00	00^{0}	6 R 7
${ }_{4}^{4 \mathrm{CBK}} \mathbf{4}$.75	${ }_{6 C 10} 12.00$	
5CG8	75	${ }_{6012}^{6 C B 64}$	6SG7
${ }_{5}^{5 \mathrm{R} 4 \mathrm{G}} \mathrm{Cl}_{8} 1$	1.00	6CD6G 4.00	${ }_{6} 6$
5 5 4 G	1.00		
${ }_{5 \times 3}{ }^{514}$	1.00 .85	$\mathrm{6CLPA}^{65}$	6sk7ct
${ }_{523}$	1.40	$\begin{array}{ll}\text { 6CM7 } & 1.00 \\ 6 \mathrm{CS6} & \cdot 75\end{array}$	
${ }_{5}^{5 Z 4 G}$	1.75	6CU5 $\quad 90$	
6／30L2	90	6D37	6 U
${ }^{6 \mathrm{ABGG}}$	－ 40	6DT6A－85	d
${ }_{64 \mathrm{AC7}}$	70	6EW6	${ }^{6} \mathrm{~V}$
${ }_{6}^{6 A G G 5}$	${ }_{70}$	6E5 1.00 6 Fl 80	${ }_{6 \times 5 \mathrm{GT}}$
${ }_{6}^{64 H 6}$	70	${ }^{6 F 6 G} \quad-70$	${ }^{6 \times 6}$
64.55 6 AJ8	55		${ }^{\text {6Y7 }}$
6 AK 5	45	6F15	
${ }^{6 A K 6}$	1.50	${ }_{6}^{6 F 16} 1$	7 B
${ }^{64 \mathrm{AK}} 8$	${ }_{28}{ }^{48}$		${ }^{7}$
6AM6	70	$6 \mathrm{~F} 24-80$	$7 \mathrm{H7}$

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remitance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

BRAND NEW COMPONENTS BY RETURN

 35p.
Subminiature bead rantalum electrolytics. $0.1,0.22$
 100 at $3 V-14 p$.
Mullard Miniature Ceramic $\mathbf{E 1 2}$ Series 63 V 2\%. 10 pf.
to 4 pf. -3 p. 56 p. to 330 pf.
Vertical Mounting Coramic Plate Caps. 50V. E12
22 pf. 1000 pf. E6
1500 pf.
47000 pf . Potystyrene E12 Series 63 V . Hor. Mounting. 10 pf. to Polystyrene E12 Series 63 V . Hor. Mou
1000 pf. $\mathbf{3 p .} 1200$ pf. to 10000 pf. 4 .

 Miniature Film Resistors Highstab. E12 5\%.
0.125 watt 10Ω to $2 \mathrm{M} 2 \Omega$.
0.125 watt 10Ω to $2 \mathrm{M} 2 \Omega$. (10
0.250 watt 1Ω to $10 \mathrm{M} \Omega$ (10% over 1 M$)$. 0.500 watt 10Ω to $2 \mathrm{M} 7 \Omega$.
1.000 watt 10Ω to 10 M .

1p
1 p
$1 \frac{1}{3} \mathrm{p}$

IN4 148-3p, iN4002-5p, IN4006-7p, IN4007-8p.

 Past 10 p (Free over f4). Prices VAT

THE C. R. SUPPLY CO.
 127, Chesterfield Road, Sheffield S8 ORN

CRYSTALS brand-new 002% precision HC18/U wire leads. $£ 2.95$ each, U.K. post paid, No V.A.T.: 4.0. 5-0, $6 \cdot 0,7 \cdot 0,8 \cdot 0,10 \cdot 0,10.7 .18 \cdot 0,20 \cdot 0,48 \cdot 0,100.0 \mathrm{MHz}$ Also $100 \mathrm{kHz} / \mathrm{HC} 13$ and $1.0 \mathrm{MHz} .005 \%$, wires or pins, $£ 3.25 .455 \mathrm{kHz} / \mathrm{HC} 6 £ 3-95$. Any freq. $2 \cdot 5-180 \mathrm{MHz}$ made six weeks, £3•65. Also AM/CW/SSB COM MUNICATION RECEIVER low-cost modules and kits. New range being prepared. Send S.A.E. for details when ready. P. R. GOLLEDGE ELECTRONICS, Merriott, Somerset. TA16 5NS. Tel: 046073718.

VALVES

Radio - T.V. - Industrial - Transmitting We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in tock, 930 to 1976. Obsolete types a speciality. to Saturday 9.30 to 5.00 Open to callers Monday We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering,
West Wittering 2023 (STD Code 024366)

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 7 \cdot 50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

1. Advertisements are accopted subiect to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advortisement does not contravene any Act of Parliament nor is it an Infringement of the Eritish Code of Advertising Practice.
2. The publisherz reserve the right to refuse of withdraw any advertisement.
3. Although every care is taken, the Publishers thall not be liable for clerical or printers' errors or their conser. quences.

ATTENTION SWL'S \& DXers. HIGH QUALITY, LOW COST equipment. ATU's. Preselectors etc., covering medium \& short wave. S.A.E. details. AMTEST, 55 Vauxhall Street, Worcester WR3 8PA.

CODESPEED

Electronic Mail Order
TO3 HEAT SINKS I' 1 Two types of heat sink. Ex-equipment, but condition as new. Most still con-
tain x power, transistor (condition unknown) Christmas tree typee, $92 \times 66 \times 35 \mathrm{~mm}$ 20p each Rectangular type $130 \times 63 \times 32 \mathrm{~mm} 3 \mathbf{3 0 p}$ each Please add 25 p per heat sink post and packing
PACK M1
2 keys and two switches. Only $\mathbf{E 1 . 0 0}$.
PACK M2 $1 \times 2102, ~$ most popular of ali RAM's in professional or amateur efectronics. With data sheet $\mathbf{E 1 . 2 5}$ calculator chic ind your own calculator! MM5725 Pack M1) $£ 1.00$. data book. (Not compatible with CALCULATOR PACK M4 Contains a production fine reject calculator Either fix them (not much wrong with some we checked) or strip them for good value for money-case/keyboard/display/chip PCBI. We include all the info. we can find on reparing calculators. What a bargain at $\mathbf{E 2 . 5 0}$. PACK C1 10×12 pin Hybrid circuits each contain ing 16 resistors/capacitors 4 seful values. Ideal fo
semiconductor circuits and PCB With data 10 hybrid circuits for 50p. PACK P1 An MM5330 Digital Voltmeter I.C. Now build your own digital multimeter or panel meter
using this versatile chip. With data and circuit using this vers
 or 24 hour Will drive LED, LCD or fluorescent displays. W, th full instructions $£ 2.75$.
PACK $T 41 \times 0.8^{\prime \prime}$ giant multiplexed red LED Clock Display Common cathode $3 \frac{1}{2}$ digit with am/pm in dicator. An excelient display for your digital clock PACK E2 An 8 digit calculator styie Liquid Crysta display. $0.33^{\prime \prime}$ high digits with right hand decimal points and overflow indicator. With data. $£ 2.95$. PACK E3 Same as Pack E2 but with $0.5^{\prime \prime}$ high
digits. $\mathrm{EAF.25}^{2}$. digits. EA .25 .25
PACK E6 struments LED display. Multiplexed wigh Texas In bubbe magnifiers. 0.1 " high digits. Common cathode. $\mathbf{E 1} 100$
PACK
E8
PACK E8 A miniature 5 digit. 7 segment 0.09
common cathode LED display. Mounted on 16 pin dual-in-line I.C. package. Terrific value at only $\mathbf{7 5 p}$. Satisfaction guaranteed or return complete pack for replacement or refund.

Postage and Packing please add $25 p$
Overseas orders add 60 p)
For free catalogue send
Ftamped fee addatessegue send
CODESPEED, P.O. Box 23,34 Seafield Road,
Copnor, Portsmouth, Hants. PO3 5BJ

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

Record Accessories

STYLI for Hi-Fi. Music Centres. III. List free for S.A.E also cartridges, leads, accessories. Details-FELSTEAD ELECTRONICS (PW), Longley Lane, Gatley, Cheadle, Ches. SK 8 4EE

Tapes

[^2]
SERVICE SHEETS-COLOUR TV SERVICE MAR MANUALS
 Service Sheets for Mono TV Radios. Record Players and Tape Recorders £1. Please send large Stamped Addressed Envelope. We can supply manuals for most makes of Colour Television Receivers by return of post
 B.R.C. PYE ECKO PHILIPS ITT/KB SONY G.E.C. HITACHI BAIRD ULTRA INVICTA FERGUSON
 G. T. TECHNICAL INFORMATION SERVICE
 10 Dryden Chambers, 119 Oxford St., London W1R 1PA

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV, etc., $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate. N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc., with free fault-finding guide, from 50 p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

Educational

GO TO SEA as a Radio Officer. Write: Principal. Nautical College. Broadwater, Fleetwood FY7 8JZ.

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford RM7 OXU (Tel. Romford 66841).

TELEVISION TRANNING

18 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining one or more subjects, for applicants with suitable education and electronics background such as C \& G, HND BSc etc.

13 WEEKS TECHNICAL

MATHEMATICS \& ENGLISH
13 WEEKS ELECTRONICS \& RADIO
13 WEEKS MONOCHROME TELEVISION
13 WEEKS COLOUR TELEVISION
13 WEEKS VIDEO SYSTEMS
(CCTV, VCR, Teletext, etc.)
The training incorporates a high percentage of practical work.
Next session starts on April 23rd
(A/so avallable $2 \frac{1}{3}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer)

Prospectus from

LONDON ELECTRONICS COLLEGE

Dept. PWB2, 20 Penywern Road, London SW5 9SU. Tel. 01-373872

Courses

COURSES-RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, professional examinations etc) write or phone-THE RAPID RESULTS COLLEGE, Dept JX1, Tuition House. London SW 19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24 hr Recordacall).

LARGE SUPPLIER OF

 SERVICE SHEETSand Colour Manuals, TV Mono Radios, Tuners, Tape Recorders. Record Players. Transistors. Stereograms, al at 75 p each + S.A.E except colour TV and Car Radios. State if Circuit will do, if sheets are not in stock. AII TV Sheets. are full lengths 24×12, not in
Bits \& Pieces. Free Fault Finding Chart or TV Catalogue with order.
C. CARANNA

71, Beaufort Park, London, NW11 6BX 01-458 4882

SERVICE SHEETS. Radio, TV etc., 10,000 models. Catalogue 24p. plus S.A.E. with orders, enquiries. TELRAY. 154 Brook Street, Preston PR 1 7HP.

Books and Publications

COMPREHENSIVE TV REPAIR INSTRUCTIONS for your set $£ 5.00$ with circuit (if requested). Free catalogue unique TV/other publications. AUSE (PW), 76 Church Street. Larkhall. Lanarkshire ML9 1HE.

Build your own P.A., GROUP \& DISCO SPEAKERS by R.F.C. Stephens

Save money with this practical guide. Plans for 17 different
designs, Line source, I.B., Horn and Reflex types, for $8^{\prime \prime}-18^{\prime \prime}$ drive units. $\mathbf{£ 3 . 9 5}$ post free ($\$ 8$ overseas).
THE DALESFORD SPEAKER BOOK by R.F.C. Stephens. This book is a must for the keen home con-
structor. Latest technology DIY designs. Plans for iB. and structor Latest technology DIY designs. Plans for i.B., and
Refiex designs for $10-100$ watts. Also unusual centre-bass system. $\mathbf{£ 2 - 2 0}$ post free (\$5 overseas).

VAN KAREN PUBLISHING,
5 SWAN STREET, WILMSLOW, CHESHIRE.

For Sale

RAINBOW RIBBON CABLE at silly prices. S.A.E. for details. TRADING POST, 4 Castle Street, Hastings, Sussex.

42 COPIES of PRACTICAL WIRELESS between June 1972 and Sept. 1977 Includes every issue from November 1973 to June 1976. First reasonable offer. Buyer collects. Tel. Preston 43335.

DISCOUNT BOXES, INSTRUMENT

BOXES, INSTRU
S, COMPONENTS
Boxes from 48p. LM-
741 c 8 pin dil l.C.S. only 22p. Discounts up to 20%
Send stamped self addressed envelope for pamphlet to
HARRISON BROS. P.O. Box 55, Milton Road, Westcliff-on-Sea, Essex SSO 7LQ.

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each. post free. Open P.O./Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

PRACTICAL WIRELESS January 1954 to December 1978. Offers. White, 14 Oxford Road, Farmoor, Oxford.

SEEN WHISTONS CAT? 5,000 odds and ends. Mechanical/Electrical Cat Free. WHISTON (Dept, PW). New Mills. Stock port.

Ladders

LADDERS varnished 22^{\prime} extd. £30. Carriage $£ 2 \cdot 80$.
Leaflet. Also Alloy ext. up to $62 \frac{1}{2} \mathrm{ft}$. LADDER CENTRE Leaflet. Also Alloy ext. up to $62 \frac{1}{\text { fft. LADDER CENTRE }}$

Tempting prices paid for

Oscilloscopes-Signal Generators
DVM's Small Computers
Receivers Teletypes.VDU's etc.
IIE Flectronic Brokers Lhd 49/53 Pancras Road London NWI 2aB Telephone 01-837 774

Miscellaneous

DART STATIONERY

Presents For the Amateur
OSL CARDS. Personalised to your own choice, also LOG B00KS. Loose leaf binder plus 100 printed \log sheets $\mathbf{£ 2 . 5 0}$, extra packets of 100 sheets $\mathbf{£ 1 . 5 0}$. Catalogues available containing complete range of radio stationery
price 45p.

For the D'Xer

RECEPTION REPORT LETTERS. Professionally styled leters printed in two colours and supplied in pads of 100 letters.

1 pad $\mathbf{£ 1 - 8 0}$
$2+$ pads $\mathbf{f 1} .60$ eac
EVERY ORDER CARRIES A MONEY BACK
Please send cheques or P.O. payable to:

DART STATIONERY

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p. Chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 25, St. Wilfrids, Foundry Lane, Halton, Lancaster LA 6LT.

ALFAC etch resist transfer and other p.c. board drawing materials available from stock. S.A.E. details. RAMAR CONSTRUCTOR SERVICES, Masons Road, Stratford upon Avon CV379NF.

PW October issue 2 m MOSFET CONVERTER units from the author G4CFY. Kit of parts for complete PCB $£ 7.80$. Ready built and aligned units boxed $\mathrm{f17-00}$. Parts available separately 38.6667 Mhz Xtal $£ 2.75$. PCB $£ 1.85$.

1750 Tone Burst Board, Fested and Aligned 1-4in sq. £3.50.

© SPECTRUM COMMUNICATIONS

12 Weatherbury Way, Dorchester, Dorset DT1 2EF.
Prices inclusive of P \& P

AERIAL BOOSTERS Improve weak VHF Radio and Television reception, price $£ 5.00$ S.A.E. for Leaflets. ELECTRONIC MAILORDER LTD., Ramsbottom, Bury, Lancashire BLO9AG.

GUITAR/PA/MUSIC AMPLIFIERS

100 watt with superb treble bass overdrive, 12 months
 Twin channel sep treble/bass per channel $£ 52$; 60 watt $£ 46$ 200 watt $£ 68 ; 100$ watt four channel sep treble/bass per
channel $£ 85 ; 200$ watt $£ 79$; Slaves 100 watt $£ 32 ; 200$ watt $\mathbf{4} \mathbf{4 8}$; Fuzz boxes great sound $\mathbf{£ 7 . 9 0}$; Bass fuzz $£ \mathbf{8} .50 ; 100$ watt combo superb sound overdrive, sturdy construction castors, unbestable f85; Twin channel 595 ; Bass Combo E. ${ }^{5}$; Speakers 12 in .100 watt $\mathbf{£ 2 2 . 5 0 ;} 60$ watt $£ 14.50$ Shure mic unidyne B $\mathbf{E 2 6}$.
Send Cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave, Dukinfield, Cheshire Tel. 061-3445007

BUILD your own 771B type metal detector, details S.A.E. 117 Horton Road, Brighton BNI 7EG.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for 'fast charge' HP7 (AA)
E1.13, SUB C £1 47, HP 11 (C) $£ 2 \cdot 15, H \mathrm{P} 2$ (D) $23 \cdot 27$, £1.13, SUB C £1 47, HP 11 (C) £2•15, HP 2 (D) £3.27,
PP3 £4-09 (PP3 not suitable for fast charge), PP3 charger $£ 5$ 31. All above Nickel Cadmium batteries are
guaranteed 'EVER READY' full spec, and are supplied complete with solder tags (except PP 3). Just in stockNew rechargeable sealed lead acid maintenance free batteries suitable for burglar alarms etc., $1-2$ amp hr.
$6 \mathrm{v} . £ 4.406 \mathrm{mp} \mathrm{hr}$. 6 v £5. 65 .
Quantity prices availabie on request. Date and charging circuits free on request with orders over $£ 10$ otherwise 30 p post and handing (specify battery type), all prices
include VAT. Please add 10% \& P on orders under £10. 5\% over $£ 10$.
Cheques, postal orders, mail order to: SOLID STATE SECURITY DEPT PW., 10, Bradshaw Lane, Papbold, SECURITY DEPT PW.,
Wigan, Lancs. 0257-4726.

MORSE CODE TUITION AIDS

Cassette A: $1-12$ w.p.m. for amateur radio examinatlon
Cassette B: $12-24 \mathrm{~W} . \mathrm{p} . \mathrm{m}$. for professlonal examination preparation.
Morse by lig
Morse by light systems available. Morse Key and Buzzer Unit for sending practice.
prices each Cassette (including booklets) £4.50. Morse
Key and Buzzer $£ 4 \cdot 50$.
Prices include postage etc., Overseas Alrmall £1-50
extra.
MHEL ELECTRONICS (Dept P.W.), 12 Longshore Way, Milton, Portsmouth PO4 8 L.S.

LOSING DX?

TOO MUCH ORM? DIg RARE DX from tiring whistles and cw with a Tunable Audio Notch Filter, $350-$ AR88? STILL NO RADIO 4 ? 200 KHz to Medium Wave Converter $f 9.70$
V.L.F.? $10-150 \mathrm{KHz}$ Receiver only $£ 10.70$.

Missing RARE DX? Get on their frequency with a Crystal Calibrator, switched $1 \mathrm{MHz}, 100,25 \mathrm{KHz}$ equal TIME? MSF 60 sequential YEAR, MONTH, DATE, DAY, HOURS, MNUTES, SECONDS display parts (no case or pcb)
$€ 24.40$. HOW LOW CAN YOU GO? $100-600 \mathrm{KHz}$ to 4.1 H.6 MHz Converter only $£ 9.90$.

Europe add 40p. Each easy assembly kit includes all parts, printed circuit, case, postage etc, (UK) money back

CAMBRIDGE KITS

45 (PP) Old School Lane, Milton, Cambridge

SINGLES HOLIDAYS/Houseparties. Friendship introductions. Free details-Christian Friendship Fellowship, Dept B89, Edenthorpe, Doncaster (S.A.E.).

Aerials

G2DYM ANTI-TVI TRAP DIPOLES

NEW MODELS with Improved Design, Components and Materials
 Tx-ing OR "Hi-Q" for S.W.L.ing £47-95; $10-160$ metres Aerial Matching Unit 500 \& S.W.L.ing $£ \mathbf{1 8} \mathbf{2 5}$. inc. VAT and P \& P. Send $10^{\prime \prime} \times 7^{\prime \prime} 16$ p S.A.E. and $3 \times 9 p$ stamps for full details, aerial article, test reports and testimonials.
G2DYM Designed and Custom built by:
H. F. TELECOMMUNICATIONS (UK) LTD.

Uplowman, Tiverton, Devon
PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Wireless for \qquad insertions

I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME
Send to: Classiffed Advertisement Manager PRACTICAL WIRELESS,
ADDRESS
GMG, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street, London SE1 gLS Telephone 01-251 5845 Rate
22p per word, minimum 12 words. Box No. 60p extra.

[^3]

slectronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E:R. Exam; the RADIO AMATEUR'S LICENCE P.M.G. Certificates; the R.T.E.B. Servicing Certificates, etc. Also courses in Television; Transistors: Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel I slands.

NAME
ADDRESS

INDEX TO ADVERTISERS

[^4]| Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2 5SF
 Tel: 727 5641/2/3 | | | | | AERO SERVICES LTD.
 Reg No. 242125503
 Please send all correspondence and Mail-Orders to Head Office | | | | | | | | | | Retail Shop 85 TOTTENHAM COURT ROAD LONDON W1
 Tel: 5808403 Open all day Saturday | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES | | | | | | | | | | | | | | | | | |
| IB3GT | 0.65 | 6AX4GTB | 1.00 | 6CY5 | 1.00 | 12AT6 | 0.60 | ECF200 | 0.90 | | | | | | | | |
| 1R5 | 0.50 | 6AX5GT | $1-30$ | 6CY7 | 1.00 | 12AT7 | 0.50 | ECF201 | 0.90 | EM87 | 1.00 | PCL81 | 0.65 | PY82 | 0.55 | UCC84 | 0.75 |
| ${ }_{1 \times 28}$ | 1.20 | 6BA6 | 0.45 | 6DOSB | 1.45 | $12 \mathrm{AU6}$ | 0.65 | ECF801 | 0.95 | EY81 | 0.50 | PCL82 | 0.80 | PY83 | 0.70 | UCC85 | 0.55 |
| 5AT8 | 0.80 | 6BE6 | 0.48 | 60T6 | 0.80 | 12AU7 | 0.47 | ECF802 | 0.95 | EY87 | 0.50 | PCL84 | 0.75 | PY88 | 0.75 | UCF80 | 0.75 |
| 5 T 4 | 0.75 | 6BF5 | 0.85 | 6DT8 | 0.80 | 12AV6 | 0.85 | ECH42 | 1.10 | EY88 | 0.55 | PCL86 | 0.85 | PY500A | 1.30 | UCH42 | 0.90 |
| 5 V 4 G | 0.60 | 68F6 | 0.75 | 6DW4 | 0.90 | 12AV7 | 1.00 | есН81 | 0.55 | EY500A | 1.50 | ${ }^{\text {PCLI }} 105050$ | ${ }_{3}^{0.75}$ | | 7.80 780 | UCH81 | 0.65 |
| 5 SB | 0.75 | 6BG6G | 0.36 | 6ES5 | 1.00 | 12AX7 | 0.55 | ECH200 | 0.80 0.85 | ${ }_{\text {E280 }}$ | 0.50 | ${ }_{\text {PD } 510}$ | ${ }^{3} 1.10$ | 122 | 7.80 | UCL81 | 0.70 |
| ${ }^{5 V 4} 4$ | 0.60 | 6BH6 | 0.85 | 6EV5 | 1.50 | 12AY7 | 0.85 | ECL80 | 0.60 | E281 | 0.50 | ${ }_{\text {PL81 }}$ | 1.10 0.80 | U25 | 1.00 | UCL82 | 0.75 |
| 5×46 | 0.80 | 68J6 | 1.20 | 6EW6 | 0.80 | 128A6 | 0.65 | ECL81 | 0.75 | GY501 | 0.90 | ${ }_{\text {PL81 }}$ | 0.80 | U26 | 1.05 | UCL83 | 0.80 |
| 5×8 | 0.96 | 6B17 | 0.65 | 6GH8A | 0.80 | $12 \mathrm{BF6}$ | 0.67 | ECL 82 | 0.65 0.60 | 6230 | 0.65 | ${ }_{\text {PL82 }}$ | 0.55 | UABC80 | 0.58 | UF41 | 1.00 |
| 5 Y3GT | 0.65 | 6BK4B | 1.40 | 6GK5 | 0.70 | 128H7A | 0.75 | ECL83 | 1.15 | G232 | 0.65 | ${ }^{\text {Pl83 }}$ | 0.75 | UaF41 | 0.80 | UF80 | 0.50 |
| 524 GT | 0.65 | 6BN4A | 0.90 | 6GK6 | 0.90 | 12BL6 | 0.70 | ECL84 | 0.70 | 6233 | 3.80 | ${ }_{\text {PLP }}$ | 0.75 | UBC41 | 0.70 | UF85 | 0.50 |
| 6AB7 | 0.60 | 6BN6 | 0.80 | 6 J 4 | 1.20 | 12 Ba | 0.90 | ECL85 | 0.65 | 0A2 | $0 \cdot 55$ | P1504 | 1.05 | UBC81 | 0.60 | UL84 | 0.85 |
| 6AC7 | 0.80 | 6B07A | 0.65 | 6.J5GT | 0.80 | 128Y7A | 0.80 | ECL86 | 0.85 | OA3 | 0.75 | PL508 | 1.30 | UBF80 | 0.60 | UM80 | 0.60 |
| 6 6ADB | 0.60 | 6BR8A | 1.20 | 6 6 6 | 0.55 | 12 Cu 6 | 0.90 | EF80 | 0.40 | OB2 | 0.60 | ${ }_{\text {PY81 }}$ | 2.80 0.70 | UBF89 | 0.60 | UM81 | 0.75 |
| 6AF4A | 0.80 | 6BS7 | 2.30 | 6 J 7 | 0.80 | 19 A 05 | 0.75 | EF85 | 0.48 | OB3 | 0.75 | | 0.70 | | | | 0.45 |
| 6AG5 | 0.65 | 6 6U88 | 0.85 | 6K5GT | 0.75 | 198G6G | 0.50 | EF86 | 0.60 | OC2 | 1.40 | | | | | | |
| 6AG7 | 0.85 | 6BW7 | 1.00 | 6K6GT | 0.85 | 35A3 | 0.70 | Ef92 | 0.75 | 0С3 | 0.75 | | OSC | LLOS | PE | UBE | |
| 6 6AH6 | 0.95 | ${ }_{6 B 27}^{6826}$ | 0.65 | 6L6GT | 0.85 | 3585 | 0.65 | EF97 | 0.70 | 00^{2} | 0.75 | | OS | LLOS | | | |
| 6AK5 | 0.65 0.55 | ${ }_{6 C 4}^{6827}$ | 0.70 0.55 | ${ }_{607}^{607}$ | 0.85 | ${ }^{35 C 5}$ | 0.70 | EF98 | 0.90. | PABC80 | 0.45 | | | roduct | Mad | in | |
| 6AK6 | 0.75 | 6C5GT | 0.60 | 6SA7 | 0.80 | 50EH5 | 1.60 | EF183 | 0.70 | PC86 | 0.85 | One | Tub | Type | 011 | This | is a |
| 6AK7 | 0.85 | 6C6 | 0.50 | 6SG7 | 0.80 | DAF96 | 0.65 0.60 | EFL200 | 0.70 | ${ }^{\text {PC888 }}$ | 0.85 | good | lace | ment for | CP3 | , Tub | arac- |
| ${ }^{6 A L 5}$ | 0.40 | ${ }^{6 C 8 G}$ | 0.65 | 6SK7 | 0.80 | DF96 | 0.60 | EH90 | 0.60 | PC97 | 0.95 | teris | are i | entical | th th | ose | |
| 6AM6 | 0.70 | 6С86 | 0.55 | 6SL7GT | 0.70 | DK92 | 1.00 | El33 | $2 \cdot 50$ | PC900 | 1.00 | Asis | are | | , | ose | |
| 6 6m8 | 0.70 | 6CG7 | 0.70 | 6SN7GT | 0.70 | DL96 | 0.60 | E 36 | 0.95 | РСС84 | 0.50 | As th | onne | tions | diffe | ent th | be is |
| 6AN5 | 2.50 | 6C68A | 0.75 | 6SD7 | 0.80 | ECC84 | 0.60 | EL81 | 0.65 | PCC85 | 0.60 | supp | com | plete | ba | , CO | |
| 6AN6 | 0.85 | 6CM7 | 0.80 | 6SR7 | ${ }^{0.80}$ | ECC85 | ¢.48 | EL82 | 0.60 | PCC88 | 0.65 | diagr | and | | ba | | |
| 6 A05 | 0.85 | ${ }^{6 C N 7}$ | 1.20 0.75 | 6VGGT | 0.65 | ECC86 | 1.25 | EL83 | 0.60 | PCC89 | 0.75 | diagr | | tech | al d | ta | 00*. |
| ${ }_{\text {6ASA }}^{6} \mathrm{G}$ | 1.00 1.20 | ${ }_{6}^{6 C 08}$ | 0.75 0.85 | ${ }_{6 \times 4}^{6 \times 5}$ | 0.60 | ECC88 | 0.75 | EL84 | 0.45 | PCC189 | 100 | Three | ch t | be Ty | 3B | 1. | |
| 6ATE | 0.75 | 6CU5 | 1.00 | 6×8 | 0.80 | ECC189 | 0.80 | EL865 | 0.75 0.70 | PCF80 PCF82 | 0.65 0.45 | know | tube | used | 'P | RBEC | |
| 6AU6 | 0.50 | 6CU6 | 1.00 | 12A6 | 0.60 | ECF80 | 0.60 | | | | ${ }_{0}^{0.65}$ | | | | | | |
| 6AVG | 0.75 | 6CW4 | 3.75 | 12 AL 5 | 0.65 | ECF82 | 0.55 | EM80 | 0.65 | PCF86 | 0.65 0.75 | cillos | e can | be sup | fo | £7.5 | |
| 6AW8A | 0.75 | 6CX8 | 1.00 | 12 A 45 | 0.60 | ECF86 | 0.80 | EM81 | ${ }_{0} 6.60$ | PCF806 | 0.75 1.00 | 14-p | ase f | r the a | ¢ \mathbf{f} | 80. | |

OUR NEW 1978/1979 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR fO-30

NEW!BUILD-IT-YOURSELF TEST GEAR KIT
BASIC SERVICING INSTRUMENTS WITH EASY STAGE BY STAGE BUILDING INSTRUCTIONS-IDEAL FOR THE AMATEUR

MULTI RANGE TEST METER

A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic $3^{\prime \prime}$ general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts $/ \mathrm{cm}$

SEMICONDUCTORS	BC351	0.10	BT106	1.10	1 $14.001 / 2$	0.05	*TBA120A	0.60
AA117/9 0.67	${ }^{ 3 C 547 / 8 / 9}$	0.10	${ }^{*} 8 \mathrm{EL} 205$	1.50	IN4004/5	0.06	*tbalzos	0.80
AC128 $\quad 0.19$	*BC557	0.12	*BU208	1.60	IN4006/7	0.07	*tBA750	1.60
AC176 $\quad 0.19$	BCY70/1/2	0.15	*BU208A	1.75	${ }_{*}^{*} 1544$	0.04	* \ddagger BABDO	0.80
${ }^{\text {AC187 }}$ (1) 0.19	80115	0.43	* BY 127	0.10	${ }^{*} 15920$	0.06	*tBA810S	1.05
${ }^{*} \mathrm{ACY}^{20} \quad 0.34$	80131/2/5	0.34	C1060	0.44	*18941	0.04	W/W RESISTORS	
$\begin{array}{ll}\text { AD161/2 } & 0.35\end{array}$	B0136/7	0.35	M. ${ }^{\text {E }} 340$	0.43	$2 \mathrm{NP30}$	0.16	2.5W. 15 W	0.10
ASY66 $\quad 0.86$	80138/9	0.36	MJE520	6.43	2N3053	0.20	5W, 10 W	0.09
*BB105A 0.27	80140	0.36	MJE2955	1.05	2N3055	0.50	ANTEX SOLDERING	
*B81058 0.30	8D695A	0.65	MJE3055	0.80	*2N3702/3	0.08	IRON	
BAX13 0.05	B6996A	0.65	*DA47	0.10	${ }^{*} 2 \mathrm{~N} 3704 / 5$	0.08	C-240V 15 W	f3.60
BC107/8/9 0.68	BF115	0.18	${ }^{*} \mathrm{OA} 200$	0.68	*2N3819	[. 21	bargain paks	
* $\mathrm{BC} 117 \quad 0.14$	*BF167	0.23	0 C 28	0.88	2N4443	0.80	*PAK 1	
* ${ }^{\text {BC132 }}$ - 6.14	8 F 173	0.20	$0 ¢ 35$	0.78	LINEAR I.C.'s		100 gen. purpose transistors ircleding.	
${ }^{*} \mathrm{BC} 147 / 8 \quad 0.05$	BF180/1/4	0.28	0 0С201	0.72	7418 P	0.19		
* BC149 0.08	BF185	0.26	${ }_{*}^{*} \mathrm{H} 2008 \mathrm{~B}$	1.76	5558P	0.27	BC149. 2N3703. etc. £5.00	
	${ }^{*} \mathrm{BF} 194 / 5$	0.09	${ }^{*} \mathrm{R} 2010 \mathrm{~B}$	1.76	${ }^{*} \mathrm{LM} 301$	0.35		
BC159 0.09	${ }^{} \mathrm{BF} 197$	0.10	*TiP29	0.40	*LM380N	0.95	PaK 3	
*BC182/L 0.09	*BF198	0.16	TIP31A	0.39	LM1303N	1.50	100 mixed W / W	
*BC183/L $\quad 0.09$	BF200	0.28	TIP32A	0.46	LM3900	0.60		
*BC184/L 0.09	BF257/8/9	0.26	TIP328	0.65	*MC1310p	1.20	25 W .5 W .10 W. .tec. $\begin{gathered}\mathrm{E} .50 \\ \mathbf{5} .50\end{gathered}$	
*EC207B 0.11	BF324	0.26	TIP338	0.88	* 76003N	1.70		
BC212/L 0.09	${ }^{+B F 336}$	0.32	TIP34B	0.98	${ }^{} 76013 \mathrm{~N}$	1.30	PAK 4	
BC213/L 0.09	${ }^{}$ BF337	0.28	TIP41A	0.61	* 76023 N	1.36	100 off 74 series	
*BC214/ 0.09	* ${ }^{\text {BFR }}$ 858	0.23	TIP42A	0.62	${ }^{*} 76023 \mathrm{NB}$	$1-20$		
BC301/3 0.27	BFY50/2	0.18	* $2 T X 212 / \mathrm{B}$	0.16	*76033 1	1.70	including. 7410.	
BC348	BS×19/20	0.	*2TX302	6.11	*TAA621ax	1.95	7430, etc. $\quad \mathbf{5 4 . 0 0}$	
Discounts: $25+10 \%$ (of any one type). Min. Drder $£ 2.00$ P\&P 30p. VAT please adid 8% except those marked * which are $12.5 \% \mathrm{SAE}$ for lists Export, wholesale and industrial enquiries welcome. K \& A OISTRIBUTORS, 52 Barkhy Road, Syston, Leicester, LE7 8AF. Tel. 0533609391								

STERNWAY ELECTRICAL LIMITED

ANNOUNCE THEIR NEW ELECTRONIC COMPONENTS SHOP AT 3 BRIDE COURT, LONDON EC4 2AB . OFF FLEET STREET)

SPECIAL OPENING OFFERS INCLUDE:

DENSHI BEGINNER'S CONSTRUCTION KITS

SR1A 16 Projects including Radio Receivers, Morse Code Trainer, Warning devices, etc.
£5. 95 (Post \& Pkg. 85p)
Resistance substitute boxes provide close tolerances substitution for 36 preferred values from 5Ω to 1 meg Ω with leads and clips $£ \mathbf{~} \mathbf{3} \mathbf{- 9 5}$ post paid.

All Component enquirles welcome on 01-353 8530 or by post. Most popular TTL CMOS Linear Transistors in stock at keen prices.

Model TCSU1 Soldering Station

The TCSU1 soldering station with either the XTC 50 watt - $24 / 26$ volt soldering iron or the CTC 35 watt - soldering iron for pin point precision and exceptionally fast recovery time We have put al least twice as much power into irons which are already well known for good recovery lime The temperature cantrol stops them from over heating; the "fail sale" electroni TCSU1 soldering station £ 3810 XTC and CTC Irons $£ 1485$ melusive of VAT and $\mathrm{P} \& \mathrm{P}$

Model CX-17watts
a miniaiure fion with the element enclosed first in a ceramio shaft, then in a stainless steel Vitually ieak tree, Oniy 72 Range of 5 other bits available from $/ 4$ "down to $3 / 64$

Model X25-25watts

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near perfect insulation Fitted with $1 / 8 *$ bit and priced at $£ 4 * 37$ inclusive of VAT and P. \&P. Range of 4 other bitts availabie.

Model SK3 Kit

Model SK1 Kit
This kit contains a 15 watt miniature soldering iron complete with 2 spare bits a coil of solder a heat sink and a booklet How to spher Price at $£ 6.48$ inciusive of VAT and P \& P

Model MLX Kit

The soldering iron in this kit can be operated from any ond inay car batten and hatery lios Packed in a sron plastic envelope it can be lett in car a boat or a caravan ready fo soldering in the fieid. Price $£ 4.83$ inclusive of VAT and P.\&P

Contains both the model CX230 soddening iton and the stand SI3 Priced at $\mathrm{c} 6 \geqslant 21$ inclusive of V It makes an excellent present for the racio amateur hobpyist.

Model SK4 Kit

With the model $\mathrm{X} 25 / 240$ general purpose iron purpene ron stand, this kit stand, this kit is a must for every tookit in he home inclusive of VAT and P\&P

Now heat to any level

 between $145^{\circ}-400^{\circ} \mathrm{c}$(withaccuracy of 2%)

maec Jlde on bis are SIT o mi vo hen saslly interchaviseable
Thesturex muli purpose range of soloterma
equpment is tast becoming a must for cvery
heme seditewth precision tor long hie, eseh mon L funterted and guaranteed.
A, ITEX solerering irons are made in England to strict loca and international
Standards of satety
Sroen a vianay whotesters and
Deal wre of tirect hou us if
you fre tesprate

practical WIREIISS

INDEX TO

Note: This volume consists of eight issues only to permit Volume 55 to begin with the January 1979 issue.

Beginning with this volume the page numbering starts at 1 with each issue. Contents are indicated by page number and month of issue.

> IPC Magazines Ltd Westover House West Quay Road POOLE Dorset BH15 1JG

HDEX

Volume 54 May to December 1978

A Professional Finish	20	Sept
Caveat Emptor.....	20	Oct
Chaos Reigns.	20	Nov
Chicken and Egg	18	Aug
Crystal Gazing...	18	June
Happenings..	20	Dec
Standards	20	July
The British Connection...........................	18	May
CONSTRUCTIONAL-Receiving		
Aerial Tuner by F. G. Rayer..	61	Oct
Car Radio Long Wave Converter by M. J. Hutchinson	37	Dec
'Dorchester' All-Band Tuner by W. S. Poel Part 1	26	Dec
DXer's Audio Filter by R. A. Penfold...	52	May
'Gillingham' Frequency Readout by D. S. Coutts \qquad	44	Oct
Kindly Note	50	Dec
Image Rejection Filter by R. A. Penfold..... 'Wimborne' Music-Centre by N. B. Mattey	58	Aug
Part 1	44	Sept
Part 2	30	Oct
Part 3	25	Nov
2 m MOSFET Converter by A. J. Nailer......	22	Oct

\footnotetext{
CONSTRUCTIONAL-General

attery Power Supply for PW Economy Timing Strobe by G. Gould.	55	Aug
'Bovington' Tank Battle Game		
by D. Coutts	38	June
Kindly Note	60	July
	51	Sept
Burley' Stabilised Power Supply		
by W. S. Poel..	38	Nov
Darkroom Timer by A. P. Donleavy	49	June
Digital Door Chimes by J. B. Harve	54	Dec

gital	56	July
Electronic Fish Feeder by G. F. Smith..	36	Sept
'Experimenter' 3-Way Power Supply		
Gadgets Around the House.	47	Nov
Slot Car Brake Lights, Porch Light		
Timer, STD Charge Timer, Door Bell		
Changeover Unit, Automatic Outside		
Light, Battery Indicator		
Kindly Note	50	Dec
μ-DeCnology by D. Gibson		
3. Simple 741 Receiver...	37	May
4. Fuzz Box	61	July
5. Mains Cable Detector.	26	Aug
6. Audio Oscillator	36	Oct
Micro-power Pilot Light by R. A. Penfold..	45	Dec
Model Railway Point Motor Supply		
by R. A. Ganderton	42	Aug
Kindly Note	59	Nov
ZL Special 2m Beam by F. C. Judd..	22	Nov
Kindly Note	50	Dec

CONSTRUCTIONAL -Transmitting
'Avon' 2m Transmitter by B. L. Phillips
Part 144 July
Part 249 Aug
Digital Display by R. Ganderton Part 328 Sept Power Supply by N. Foot Part 428 Sept Kindly Note 59 Nov

IC of the MONTH by B. Dance

No. 69 Thompson CSF ESM532 Power
Amplifier... No. 70 RCA TBA120 IF/Limiter/De-
mod IC.. $\bmod I C$

41 July

No. 71 CA3189E FM/IF IC
24
No. 72 LM3909N LF Oscillator. \qquad 55 Nov
64 Dec

KINDLY NOTE

| Points arising from articles in previous volumes | | |
| :--- | :--- | :--- | :--- |
| Active Tone Control March $1978 ~$ | 51 | Sept |
| Experimenter's Corner-LED Light Dis- | | |
| play Apr 1978 | 19 | June |
| IC of the Month March $1978 ~$ | 19 | June |
| 'Jubilee' Organ-Follow up.......59 July, | 51 | Sept |
| Morse Tutor August 1977 - Follow up..... | 52 | July |
| Multi-range Test Meters March 1978. | 19 | June |
| Portable PA Amplifier December 1977..... | 57 | Aug |
| Radio 2 Tuner July 1977 | 19 | June |
| 'Shoot' August 1977 19 | June | |

M/SCELLANY-Technical		
Amateur SSTV by P. Barke	29	Oct
AM Receivers-Devices and Circuits		
by M. J. DarbyPart 1	33	Aug
Part 2	54	Oct
Kindly Note	51	Sept
Calculator Jargon by J. A. C. Beattie	60	Dec
Economical VMOS Power Devices		
Experimental Broadcast Satellite for		
Hotlines by Ginsberg (recent developments in elec-		
tronics) 23 May, 26 June, 53 July, 48 Aug, 65		
Ideas Department		
Stereo Headphone Blender		
by R. N. Soar.	55	July
Electronic Switch by A. P. Cooper	55	July
Short Pulse Gate by T. Austin............	44	Dec

Introduction to Logic by S. A. Money

Part 1	9	July
Part 2	28	Au
Part 3	32	Sept
Part 4	41	Nov
Part 5	31	dec
Landsat System Scans the Earth	60	Oct
LW/MW Frequency Changes ..	52	De
Making it Work by 1. Hickma		
Modernising a Valved Receiver by R. Brett-Knowles.	0	
Phase-locked Loops by C. Budd	30	Ma
Receiver Add-on Accessories by E. Dowdeswell \qquad	22	
So You Want to Pass The RAE		
by J. Thornton-Lawrence and K. McCoy No. 9 Receivers-Propagation	44	May
No. 10 Aerials-Interference-The		
Examination.	52	Jun
New Scheme-new format RAE 1979	40	Sep
Correction to No. 6 February 1978.	51	Ma
Reprint of series..	64	
	35	Nov
Special Product Report		
Home Radio-Electronic Workshop .	42	Sep
Mega Electronics-Photolab Kit........	34	Nov
SES-Electronic Ignition Kit	24	July
Stray Signals' by 'Point Contact'	28	July
The Norton Amplifier by S. H. Davies	39	Oct
Using Transistor Pads.	26	Oc
Why Programmable? (Calculators)	37	

ON THE AIR

Amateur Bands by E. Dowdeswell, 66 May, 61 June, 65 July, 61 Aug, 66 Sept, 65 Oct, 69 Nov, 66 Dec Choosing a Receiver by E. Dowdeswell.... 66 May SW Broadcast Bands by C. Molloy, 58 May, 64 June, 69 July, 63 Aug, 70 Sept, 69 Oct, 74 Nov, 69 Dec MW Broadcast Bands by C. Molloy, 61 May, 66 June, 66 July, 62 Aug, 69 Sept, 66 Oct, 70 Nov, 67 Dec VHF Bands by R. Ham, 62 May, 62 June, 70 July, 64 Aug, 71 Sept, 70 Oct, 76 Nov, 70 Dec
VHF Personalities by R. Ham
John Branegan GM80XQ....................... 72 July
Anthony Mann.. 74 Sept
Frank Luman... 72 Oct
What do the VHFs Have To Offer by R. Ham

Part 163 June Part 279 Nov

PRODUCTION LINES by Alan Martin

Abrasive Tools-Hacksaw Files 50 Oct Ambit International-Ambitune LW Converter

47 Dec

Digital	43	May
Boss-Desoldering Tools	50	Sept
Clement-Clark-Airlite 62	43	Dec
Erg-Keyboard Switches	54	July
Kelgray Products-Rechargeab	48	June
Loctite-Adhesives.	43	Dec
Lowe Electronics-TR922 Linear		
Amplifier	50	Oct
Mega Electronics-Photolab Kit	56	Aug
Monitel-Telephone Charge Cloc	56	Aug
National Panasonic-Receivers RF2200 \& RF4800 \qquad	54	July
OK Machine Tool-Wire Cutte	50	Oct
Pelltech—Alfac Electro Transfer	56	Aug
PIL-Pantech Minor Multimet	50	Sept
Rastra Electronics-Timer XR224	43	May
R \& TVC-Package Modules	50	Sept
Spectrum Marketing-Chess Challenger	50	Sept
Tempus-LCD Alarm Clock	48	June
Tempus-Casio Calculators	43	Dec
Texas-Teleview Module VDP1 1	56	Aug
Vero-AB Boxes	48	June
Vero-Catalogue.	43	May
WKF Electronics-Watches	48	June
WKF Electronics-Digital Car Clock	50	Oct
3M-Cassette Editing \& Repair Kit.	43	May

PW Personality
Geoffrey C. Arnold 20
Sept
Ted Parratt Oct
Rob Mackie 20 Nov
Sylvia Barrett 20 Dec
PW Subscription Service 62 July
PW Subscription Form 41 Dec
QSL by C. Molloy 40 Aug
Readers' Letters 56 May, 57 Aug, 39 Sept, 42 Dec
Readers' PCB Service 57 May, 68 June, 27 July,47 Aug
Enlargement of PCB Service 18 Aug, 59 Sept
Special Subscription Offer 58 Nov
Stateside Calling by J. Kasser. 32The Start of Empire Broadcastingby R. Ham25 July
SUPPLEMENT etc
'Breadboards' Survey of Systems Dec
Gifts-General Purpose Tweezers May
Transistor Pads Oct
Index-Volume 53 May 1977-April 1978 June
Special Feature-Gadgets Around the House. Nov
Special Offer-Commodore PR100 Programmable Calculator 68
SHOW REPORTS
Hi-Fi SERT Seminar by G. C. Arnold. 64
Sept IEAElectrex-Wireless Show-Energy Show by E. Parratt.. 38 July
Paris Show by D. Gibson Aug
NEW BOOKS

| A Practical Introduction to Electronic | | |
| :--- | :--- | :--- | :--- |
| Circuits by M.H. Jones........................ | 50 | Dec |
| The Secret War by Brian Johnson............ | 52 | July |

MISCELLANEOUS
\qquad
\qquad
\qquad
\qquad
\qquad

LIST OF AUTHORS

Arnold G. C. T.Eng (CEI) FSERT
Attenborough C.
Austin T.
Barker P.
Brett-Knowles R.
Budd C.
Beattie J. A. C. MSc MInstP
Coutts D. S.
Cooper A. P.
Dance B. MSc
Darby M.J.
Davies S. H.
Donleavy A. P.
Dowdeswell A. E. G4AR
Foot N. G8MCQ
Ganderton R. A. C.Eng, MIERE
Gibson D. G3JDG
Gould G.
Ham R. BRS 15744
Harvey J. B.

Hickman I.
Hutchinson M. J.
Judd F. C. G2BCX
Kasser J. G3ZCZ/W3
Martin A.
Mattey N. B.
McCoy K. GW8CMY
Molloy C. G8BUS
Nailer A. J. G4CFY
Parratt E. BA
Penfold R. A.
Phillips B. L. G8FWM
Poel W. S.
Rayer F. G. G3OGR
Rule E. A.
Smith G. F. BSc MSc
Soar R. N.
Thornton-Lawrence J.
T.Eng(CEI) FSERT

MIERE GW3JGA
Tooley M. H. BA G8CKT
Wheeler P. J.
Whitfield D. BA G8FTB

[^0]: Repoits on the warious hamos are vejcome and shaut be cient direct by the 15 th of the inorih, tov
 ANATEUR BANDS Eric Dowdesivél $64 A R$, Silvor Firs LeEthernead Road, Ashtead, Burfey, KT21 2TW. Logs by bands, each in alphabetigalorder.
 NEDIOM and SW BANDS thonés Noloy GBZUS:
 tothtand must ber kept sapalation
 YHF BANDS Ron Ham BASi 5744 . Faradoy Greytriars. Stomington, Sussex $71200414 E$

[^1]: * GOODS SENT POST FREE U.K. on C.W.O. orders over f 5 is value. If under, add 27 p handling charge.
 * ATTRACTIVE dISCOUNTS on C.W.O. orders- 5% where list value is over $\mathrm{E} 10.10 \%$ where list value is of $£ 25$
 * TOP QUALITY MERCHANDISE-ALL GUARANTEEDTO SPEC

[^2]: Tapes. Low noise cassettes. Free library cases. Delighted or money back. C60 six or more 29 p each. Sample 32 p. No more to pay. A. W. \& J. M. West, 56 Frankwell Drive Coventry CV2 2 FB.

[^3]: Cempany registered in England. Registered No. 53626. Registered affice: King's Reach Tower, Stamford Street, London SE1 9LS

[^4]: Published on approximately the 7th of each month by IPC Magazines Limited. Westover House. West Quay Road. POOLE, Dorset BH15 IJG. Printed in England by Chapel River Press, Andover. Hants. Sole Agents
 Road. Haywards Heath. Sussex. PRACTcA1 Wrirecss is sold sublect to the following colditions. namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold. hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, exeluding Eire where the selling price is subject to V. A.T. and that it shall not bo
 otherwise disposed of in a mutiated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising. literary or pictorial mater whatsover.

