

bRITANS LeADING JOURNAL FOR THE RADIO \& ELECTRONC CONSTRUCTOR

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in Practical Wireless is fulity protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press. CORRESPONDENCE
All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wireless", King's Reach Tower, Stamford Street, London SE1 9LS. All other correspondence should be addressed to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG.

BINDERS AND INDEXES

Binders (£2.85) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Both prices include postage and VAT. Overseas orders for binders should include 60p to cover despatch and postage. All remittances should be made payable to IPC Magazines Limited. Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from our Post Sales Department (address above) at 65p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10 \cdot 60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Remittances should be made payable to IPC Services Limited.

QUERIES

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We cannot offer advice on modifications to our published designs, nor comment on alternative ways of using them. We do not supply service sheets nor information on commercial radios, TVs or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope, otherwise a reply cannot be guaranteed. We cannot answer technical queries over the telephone.

NEWS \& VIEWS

Editorial

A Professional Finish
PW Personality
Geoffrey C. Arnold
News . . . News . . . News . . .
Letters Comments from PW readers
Special Product Report
Home Radio Electronic Workshop
Production Lines
Alan Martin
Information on the latest products
Kindly Note
"Jubilee" Electronic Organ. Active Tone Control, March 1978
"Bovington" Tank Game, June 1978. A.M. Receivers-1 August 1978
Hotlines
Ginsberg
Recent developments in electronics
On the Air
Amateur Bands Eric Dowdeswel/ G4AR
MW Broadcast Bands Charles Molloy G8BUS
SW Broadcast Bands Charles Molloy G8BUS
VHF Bands
Ron Ham BRS 15744
VHF Personality—Anthony Mann Ron Ham BRS 15744

FOR OUR CONSTRUCTORS

Wideband Calibrated Attenuator
M. Tooley

Provides accurate attenuatión from 0-20dB
PW "Avon" 2m Transmitter-3 Digital Display
R. A. Ganderton

Power Supply
N. Foot G8MCQ

Electronic Fish Feeder G. F. Smith B.Sc, M.Sc. Keep your fish happy while you're on holiday
PW "Wimborne" Music Centre-1
N. B. Mattey

Introduction and cabinet details
Simple High-Resistance Voltmeter
C. Attenborough

An economical design based on the CA3130 op. amp
PW "Purbeck" Oscilloscope-6
lan Hickman
Case details, calibration and setting up.

GENERAL INTEREST

IC of the Month
Brian Dance M.Sc.
The TBA120 series of i.f. devices
Introduction to Logic-3
S. A. Money

Flip-flops and registers
So You Want to Pass the RAE?-New Scheme
John Thornton-Lawrence GW3JGA and Ken McCoy GW8CMY The new examination format for 1979
Modernising a Valved Receiver
R. Brett-Knowles

New wine for old bottles!
Our October issue will be published on September 1st
(for details see page 43)

> OUR COVER
> Relaxing to music from the "Wimborne" Music Centre is our PW secretary Sylvia Barrett

Electronïcs Design Associates, Dept. PW9 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Name

Address
Phone your order with Access or Barclaycard

TWIN BANK ${ }_{6 L I G H T}$ IENGTH
14Einches UNIT

Sound to Ligh

100 WATT SPOT LAMPS Maming
RED YELLOW GREEN 3 lanis RED, YELLOW.GREEN
BLUE. 3 lamps

E4.50 | BLUE C 1.50 each E 4.50 |
| :--- |
| CLEAR |

 AB=IN ENGINEBRING CO.LTD. DEPT. PW THE CRESCENT, WORSTHORNE, BURNLEY. LANCS. Tel-Burnley 20940

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL ...

The finest general-coverage synthesised communications receiver on the market

$£ 200.00$ me. . ar

Also available from us with special 2 m converter, all for just an extra $£ 15 \cdot 00$

\star

\star

AMATEUR RADIO EXCHANGE

2 Northfield Road, Ealing, London, W.I3.
Tel: 01-579531I

Easy terms up to		
3 years	Credit Card Sales by Telephone	Closed all day Wednesday

AND NOW WE ARE PLEASED TO ANNOUNCE OUR SPECIAL OFFERS SERVICE
below are our specially selected-branded products OFFFRED AT MUCH REDUCED PRICES TO P.W. READERS. ITEMS OFFERED WILL VARY MONTHLY

Watch batteries always available-any type 49p each
(A) GLCDB4. L.C.D. WATCH

7 Function Gents L.C.D. quartz watch combining American electronlcs with a
Stainless Stee case \& fully adi. strap. FUNCTIONS: Hrs, mins, secs, date, month, alternating time/date, back light. Water
resistant. PRICE: $111.88+50 \mathrm{p}$ P $\& \mathrm{P}$.
B LCCRO1. L.C.D. CRONOGRAPH Up to 25 Function: 6 digit display of Hrs.,
mins, seconds, day, dafe, month. Measures mins, seconds, day, date, month. Measures
nett times, Lap times, place times to $1 / 100$ th nett times. Lap times. place times to 11100 th second. Swiss Stainiess Stee case \& fully adj strap: Back light. American electronics.
Will record time elapsed whilst displaying watch functions or date. Water resistant.

C SOLAR SHARGLAR POWERED/ RGED WATCH
A superbly engineered 10 function SOLAR watch. Will operate without batteries even in subdued or artificial light. Batteries fitted provide power at night for watch \& back light. these being charged by the solar panei
during the day. Functions: Hrs mins secs. day, date, month AM/PM Indc. Date Ind. Alternating Time/Date. Super stylish Polished' stainless steel case \& fully adj. strap. PRICE: $£ 25 \cdot 98+50 \mathrm{P}$ P $\&$ P.

D] LLCD8. LADIES L.C.D. WATCH American/Swiss very practical everydays. date, month, back light, alt, Time Date. In a water resistant, stainless steel case \& Adj. strap. Size: approx, 18 mm

E LLCD/3S. LADIES COCKTAILL.C.D.
WATCH
Very, very elegant indeed. A beautifully finished slender cocktail bracelet housing a function L.C.D. watch. This watch goes to afl the best dinners and parties. Fully fash oned stainless steel fully adj. Functions PRICE: $£ 26$ 50 50 50p P \& P
F] LLED/43. SHUGAR L.E.D.
For the night bird: A 6 function L.E.D. watch housed in a pretty cocktail bracelet. Func Gold or silver, PRICE: $£ 13.99_{p},+50$ mont

G LLED/45. LADIES L.E.D. WATCH As LLED/43 but housed in an everyday
stainless steel case \& strap. PRICE; E9.50 +50 p Ps.

H TRA/GA12. R.E.D. ALARM/CLOCK
(FM/MW) Radio combined with
Alarm clock. PRICE $£ 24 \cdot 65+ \pm 1 \cdot 25 P$ L.E.D.
WATCH THIS PAGE FOR OUR FUTURE OFFERS AT TRADE PRICES
[1] RA1. \& Waveband AM/FM/SW The UNIQUE VEGA SELENA FEATURES:5 short Wave Eands: 80 to $180+42$ to 50
 A/M-L/W \& M/W. F.M. with A.F.C. Panei lighting: Full tone control: Extending rod aerial. Opprts. S/W \& F/M: Bati/Tuning Aerlal + A/M Aerial: Tape Recorder Rec playback: Earth. The Vaga Selena WEIGHS 91 bs. Finished in black with silver trims and a

J MR/218C L.E.D. Clock Radio Alarm FEATURES: 24 hr time and alarm clock + A/M, F/M Radio. Full lalarm features sinck lude
s nooze timer, radio set and off. Radio sleep snooze timer, radio set and off. Radio sleep
timer. Bright green 12 hr LED display with A / M, timer. Bright green 12 hr LED display with A / M,
P / M indicator. PRICE : $£ 21 \cdot 75+\mathrm{E}_{1} \cdot 25 \mathrm{P}$. P .

KAM/FMIL DIGITAL CLOCK/RADIO/
ALARM
As MR/218C but available AM/FM only and Mech.. digital display. Usual full, sleep.
snooze, radio/buzzer alarm facilities. PRICE: snooge, radio/buyzeralarm facilities. PRICE:
£16.95+ 50 p P. \& P.
L. CRARB L.C.D. TRAVELLING

Features: 12 hour time and aiarm clock Nitelife, 4 minute snooze timer. Large 12.5 mm display. Super elegant design. The alarm effective not silly. Brush flish. Size: $3^{\prime \prime} \times 4 \frac{4}{\prime \prime \prime} \times 20 \mathrm{~mm}$ thick. 2 cheap dry batieries provide over 1 year's normal use.

ALL ITEMS FULLY GUARANTEED 12 MONTHS. ALSO MONEY BACK WITHIN 7 DAYS IF NOT ENTIRELY SATISFIED.

PLEASE NOTE OUR NEW MAILING ADDRESS:-

BOX 11, FLEET HOUSE - WELBECK STREET WHITWELL - Nr. WORKSOP - NOTTS Tel: (0909) 720695 TELEX: 547616 fleet g

PW PCBs

PLEASE SUPPLY SPECIAL OFFERS/P.C.Bs AS INDICATED BY TICK/S IN BOX/ES.

Issue Project Ref Price P/P
Dec 75 Sound-To-Light Display DN0798 1.15+12
Dec 75 Disco System, Amp (2 req'd) each AM0421 $4 \cdot 40+22$
Dec 75 Disco System, Light Modulator AM0429 3.50+22 $\quad \square$
Mar 76 CMOS Crystal Calibrator AM0438 $\quad 1 \cdot 19+12$

Cire-Writer (
Nov 76 Burgiar Alarm
011/012/013 $\quad 2 \cdot 58+12$
DN8JM $0 \cdot 80+12$

Dec 76 Chromachas
Jan 77 Oscilloscope Calibrator
Apr 77 Gas/Smoke Sensor Alarm
May 77 2-Way Intercom
May 77 Protected Battery Charger
May 77 Seekit Metal Locator
June 77 Versatile AF Generator
June 77 Tele-Games
July 77 20W IC Amplifier
July 77 Radio 2 Tuner
July 77 Digital Clock Timer
Aug 77 Shoot (Telegames)
Aug 77 Atomic Time Receiver
Aug 77 Morse Code Tutor Cards (SRBP)
Sept 77 Jubilee Electronic Organ
Sept 77 Electronic Car Voltage Regulator
Oct 77 Audio Level Indicator
Oct 77 Sine-Square Wave Generator
Nov 77 Laboratory Power Supply
Jan 78 Direct Conversion Receiver
Jan 78 Proportional Power Controller
Mar 78 Audio/Visual Logic Probe
Apr 78 Europa Stereo Amplifier
May 78 DX'ers Audio Filter
June 78 Bovington Tank Game
June 78 Audio Distortion Meter (set)
June 78 Darkroom Timer
July 78 Avon Transmitter
July 78 Digital Lock
July 78 Morse Tutor
Aug 78 Point Motor C.D. Supply
Post and packing is for one board or set of boards or one item. Prices include VAT. Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required.
I enclose Postal Order/Cheque
ACCESS welcome.
Send card number only.
for f......... made payable to READERS PCB SERVICES LTD Box 11, Fleet House, Welbeck St., Whitwell, Nr. Worksop, Notts.

NAME

\qquad
\qquad Post Code
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.

B. BAMBER ELECTRONICS

Dept. P.W. 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 $10 E$ Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

OSMOR $10 V$ REED RELAY COILS 1 k ohm coil) to fit $\frac{1}{\prime \prime}^{\prime \prime}$ reeds (not supplied) 2 for $50 p$.
HF CHOKES wound on $\frac{1}{2}^{\prime \prime} \times 1^{\prime \prime}$ long ferrites. 4 H CHO 4 for 50 pHOKES
VHF CHOK
on 6 -hole tubular DUAL TO18 HEATSINKS $1^{\prime \prime}$
with screw-in clamps. 3 for 50p. MAINS TESTER SCREWDRIVERS 100 to 500 V . Standard size 50 p . Large 70 p .
RADIO PLERS $5 z^{\prime \prime}$ £1-80. $6 z^{\prime \prime} £ 2^{-00}$.
DIAGONAL SIDE CUTTERS 61" $\mathbf{~ E 2} 20$. SMALL SIDE CUTTERS LJ2. Standard
E4.00. LJ7 (w|th wIre holding device) $£ 4.50$. e4.00. LJ7 (with wire holding device) $£ 4 \cdot 50$. MINIATURE FILE SETS. Set of 6 £2. $\mathbf{2 0}$. Set of 1
TAP AND DIE SETS (18 plece) contaln 1
each of $0,2,4,6,8$, BA SIZES In Dles, Plug each of 0, $2,4,6,8$, BA SIZES in Dles, Plug Taps,
wrench. Ttype tap wrich, Dle Holder. £12- 50 . LARGE ELECTROLYTIC PACKS. CONow and high voltage types, over 40 pieces, E3.00 per pack ($+12 \frac{1}{2} \% \vee \mathrm{VAT}$).
Stider Switches. 2 pole make and break (or can be used as 4 pole change-over by linking the two centre pins), 4 for 50p.
A NEW RANGE OF QUALITY BOXES \&
INSTRUMENT CASES ANSTRUMENT CASES.

$$
\begin{aligned}
& \text { VInyl Coated Instrument Cases } \\
& \text { Light Blue tops and plain lower sections. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Very sm } \\
& \text { WBi }
\end{aligned}
$$

Very sm	nish	
WB1	$5 \times 2 \frac{1}{4} \times 24$	75p
WB2	$6 \times 4 \frac{1}{2} \times 1 \frac{18}{4}$	£1-35
W83	$8 \times 5 \times 2$	¢1.80
WB4	$9 \times 5 \pm \times 2 \frac{1}{2}$	± 200
WB5	$11 \times 6+\times 3$	£2 25
WB6	$11 \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	E2.50
WB7	$12 \times 6 \pm \times 5 \frac{1}{4}$	£2.85
WB853	$8 \times 5 \frac{1}{2} \times 34$	E2.25

MAINS TRANSFORMERS. Type $15 / 300$ 240V Input. 15 V at 300 mA output. 11 . 50 each.
MAINS 240. $220,110,0 \mathrm{~V}$ input. 45 V at 100 mA output. e1. 50 each.

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED

A NEW RANGE OF SPEAKERS \& CABINETS. BRAND N CELESTION $8^{\prime \prime} \times 5^{\prime \prime}$ ELIPTICAL SPEAKERS; 20 ohm, 3 watts rated, $\mathbf{5 1 \cdot 5 0}$ TYPEL2TRIAMGULAR CORNER CABINETS. Smart woodgrain Formica type finish with nylon grille. Overall height $23^{\prime \prime} \times 12^{\prime \prime}$
wide. Contain three $15 \mathrm{ohm} 6^{\prime \prime} 4^{\prime \prime}$ Full
 range speakers in parallel +100 V line
transformer (easily disconnected for 5 ohm transformer (easily disconnected for 5 ohm
operation). $£ 7.50$ each (or 2 for $£ 14-00$) + operation). £7.50 each (or 2 for $1214-00$) +
12% VAT.
TYPE M704 CEILING SPEAKERS. White piastic fascia $10^{\prime \prime}$ square, for recess mounting into ceiling, with g" dia. 15 ohm full range speaker $£ 400$ each $+121 \%$ VAT. TYPE L4 PORTABLE SPEAKER CABIwith nylon grlife, $15^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide $\times 7^{\prime \prime}$ deep (tapering), Containing $10^{\prime \prime}$ wound, $7^{\prime \prime}$ ohm full range speaker +100 V line transTYPEHT4HOTEL SPEAKER CABINET, Wood venered, $122_{a}^{2 \prime \prime}$ wide $x 5 \frac{1}{4}$ " high x control and 4 way t off swlite + valume
front V panels on front, Very smart. Contains 3 ohm $5^{\prime \prime} \times 3^{\prime \prime}$ eliptlcal speaker, +100 V line transformer. TYPE BO79 FULL RANGE SPEAKER, 10 dia, ${ }^{15}$ ohm, $\mathbf{E 5} \cdot \mathbf{0 0}$ each (or 2 for $£ 9 \cdot 00$) + 12% VAT.
SEMICONDUCTORS
BSX20 (VHF OSC/Mult). 3 for 50p.
BC108 (metal
BC108 (metal can), 4 for 50 p.
PBC108 (plastic BC108). 5 for 50 p . PBC108 (plastlc BC 108). 5 for
BFY51 Transls tors. 4 for 60 p .
BCY72 PNP audlo type TO5 Translstors, 12 for 25 p BF152 (UHF amp/mixer). 3 for 50 p . 2N3819 Fet. 3 for 60p. BC148 NPN SILICON, 4 for 50p.
BC158 PNP SILICON, 4 for 50 p. BAY 31 SIgnal Dlodes, 10 for 35 p IN4148 (IN914) 10 for 25p. BC 107 (Metal can) 4 for 50 p.
SCRs 400 V at 3 A . stud type. SCRE $400 V$ at $3 A$. stud type, 2 for $\mathbf{E 1} 00$.
TIP2955 Silicon PNP power transistor 60 TIP2955 Silicon PNP power transistor, 60 V at
$15 A, 90 \mathrm{Watts}$. Ffat pack type, 2 for $£ 1 \cdot 50$. GERMANIUM DIODES, approx 30 for 30 p . 741CG op amps by RCA 4 for $£ 1$.

SPEAKER CABINET TYPE M322, Whit matt finish wood cabinet with white sprayed
cloth grille, $9^{\prime \prime} \times 9^{\prime \prime} \times 42^{\prime \prime}$ deep, contalning cloth grille, $9^{\prime \prime} \times 9^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ deep, containing
$6 \frac{1}{2}{ }^{\prime \prime}$ dia, 150 hm full range speaker, with 100 V in
transformer. $£ 4 \cdot 50$ each or 2 for $£ 8 \cdot 09$ 8-TRACK CARTRIDGE PLAYER UNITS with internal mains psu and 25 watt mon amplifler (100 V line), To play standard 8 -track cartridges. All contained in a smar veneered wood cabinet, size approx. 14
wide $\times 51^{\prime \prime}$ high $\times 11^{\prime \prime}$ dies wide $\times 5{ }^{51 / 2}$ high $\times 11^{\prime \prime}$ deep. Supplled with
circuits. Brand new and boxed. SpECIAL circuits. Brand new and boxed.
OFFER $£ 35 \cdot 00$ each. $+12 \frac{1}{2} \%$ VAT.
VIDICON SCAN COILS (Transistor type but no data) complete with vidicon base 12V CONTINENTAL
12V CONTINENTAL TYPE PLUG-IN RELAYS, 2 pole change-over. 60 p each GLASS EACh. BEAD FEEDTHROUGH INSU LATORS. Soldertin type, overall dia. approx. 5 mm, Pack of approx. 50 for 50p. DIE-CAST ALUMINIUM BOXES
Send for Latest Price List.
PLASTIC PROJECT BOXES with screw on lids (in black ABS) with brass Inserts Type NB1 approx $3 \ln \times 2+\ln \times 1+\ln 45 p$ each
Type NB2 approx $3 \ln \times 27 \ln \times 1+\ln 55 p$ each Type NB2 approx $3 \sqrt{2} \ln \times 27 \ln \times 1 \frac{1}{1} \ln 55 p$ each
Type NB3 approx $4 \frac{1}{f} \mathrm{n} \times 3 \ln \times 1 \frac{1}{2} \ln 65 p$ each TO3 transla tor insulator sets, 10 for 50 p PLUGS AND SOCKETS
BNC Plugs, new 50p each
N-Type Plugs 50 ohm, 60 p each, 3 for $£ 1 \cdot 50$ PL259 Plugs (PTFE) brand new, packed with reducers. 75 p each. fixing type). 60p each.
SOLDER SUCKERS (Plunger type). Standard Model. £5.50. Skirted Model $£ 6$. Spare Nozzles 60p each.

NEW MARKS

NEWMARK
S 140040 W 240 V £4.50.
S 125 DK
S125DK 25W 240V + bits etc., KIT E5. 30 .
BENCH STAND with BENCH STAND with spring and sponge fo Marksman lrons $£ 2 \cdot 70$.
Spare blts MT9 (for $\mathbf{1 5 W}$) 60 p, MT5 (for 25 W) 50p, MT10 (for 40W) 55.
ALL PRTCES $+8 \%$ VAT.

TCPA TEMPERATURE CONTROLLED IRON. Temperature con
VAT $(£ 2.40)$.
Sype CC single flat Type K double flat fin Tipe CC single flat. Type K double flat fine (8p). MOST SPARES AVAILABLE.
WELLER SOLDERING IRONS
EXPERT, Bulit-ln-spotight Iliuminates work. Pistol grip with fingertip trigger. High efficiency copper soldering tip.
EXPERT SOLDER GUN S100D £12.00.
EXPERT SOLDER GUN KIT (spare bits case, etc.) £15.00. Spare blts 40p palr. MIXED COMPONENT PACKS, contalning resistors, capacitors, pots, etc, Afl new.
Hundreds of items. £2 per pack, while stocks Hundreds of

BSR AUTOCHANGE RECORD PLAYER DECKS with cue device, 33-45-78RPM for $7^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ records. Fitted with SC12M Stereo Ceramic cartridge and styll. Brand new f14.00 + 125\% VAT
GARRARD AUTOCHANGE RECORD PLAYER DECKS, Model 6 300, with cue
device, $33-45-78$ r.p.m. for $7^{\prime \prime}, 10^{\prime \prime}$
$12^{\prime \prime}$ records. Fitted with KS41B Stereo Ceramic cartridge and styll Brand new $£ 1 \cdot 00+12 \frac{1}{2} \%$ VAT. Pleae note, record decks sent by
Roadine, allow 14 days for delivery.
FULL RANGE OF BERNARDS/BABAN: ELECTRONICS BOOKS IN STOCK. S.A.E.FOR LIST

VARICAP TUNERS Mulard type ELC1043/ 05. Brand New, $£ 5 \cdot 00+12 \frac{1}{2} \%$ VAT.

BARGAIN PACK OF LOW VOLTAGE LECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. Approx

Dubllier Electrolytics, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . | Dublier Electrolytics, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p. |
| :--- |
| $00 \mathrm{FF}, 275 \mathrm{~V}, 2$ for 50 p | Plessey Electrolytics, $470 \mu \mathrm{~F}, \mathrm{~F}^{2} 63 \mathrm{~V}, 3$ for 50 p . TCC Electrolytlcs, $1000 \mu \mathrm{~F}, 30 \mathrm{VV}$, 3 for 60 p . Dubiller Electrolytics, $5000 \mu \mathrm{~F}$, 35 V , 50 p each. Dubiller Electrolytics, $5000 \mu \mathrm{~F}, 50 \mathrm{~V}, 60 \mathrm{peach}$ screw terminals, with mounting cilps, 50 p each.

each
PLEASE ADD
CAPACETORS.

EleGTROVLIUE
All the many types of components we supply are BRAND NEW suppliers. (No surplus, no seconds)

I.C.s-TTL 7400 Series

7400	14p	7410	14	7447	70	747		7491		121	
7401	14 p	7413	22p	7450	14p	7475	45p	7492	46p	74123	51p
7402	14 p	7414	60p	7451	$14 p$	7476	32 p	7493	40p	74123	51p
7403	14p	7420	14p	7453	14 p	7480	41 p	7494	66p	74141	54p
7404	18 p	7430	14p	7454	14p	7482	61p	7495	57p	74151	60p
7405	14p	7440	14p	7460	14p	7483	58 p	7496	63 p	74154	I 60
7407	22p	7442	54p	7470	24p	7485	74p	74100	73p	74190	94p
7408	18 p	7443	60 p	7472	24p	7486	27p	74104	$40 p$	74191	94p
7409	18p	7444	${ }^{60}{ }_{p}$	7473	23p	7490	40p	74107	27p	74192	94 p

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS SIEMENS CAPACITORS* RESISTORS
World-famous for quality and depend-ability-exceptionally large stocks held. PCB TYPES -7.5 mm PCM 0.001 to 0.15 6p each: 0.15 to 0.047 7p each: 0.068 8p, $0.19 p, 0.22$ 12p.

CERAMIC-2.5mm PCM $0.01 \quad 4 \mathrm{p}$,
$0.022,0.033,0.0475 p, 0.686 \mathrm{p}, 0.01$ $0.022,0.033,0.047$
7 p 5p, $0.686 \mathrm{p}, 0.01$ 7p.
ELECTROLYTICS-1/100, 10/25, $10 / 63,100 / 25$, etc, etc.
For full range see our current lists. $\frac{1}{3}, \frac{1}{2}, \frac{3}{4}$ watts-2p each*: metal film, metal oxide and I watt carbon 5p each*: Good quantity discounts. Magnetic field dependent from $\mathbb{E} / 50$. Hall effect from $£ 1 \cdot 23$.

SIEMENS TRANSISTORS

Silicon npn and pnp from 8p each: Silicon npn and pno from 8p each:
LEDs, red $19 p$: yellow or green from 23p (3 or 5 mm). Photo tran KEEN PRICES GOOD SERVICE WIDE RANGES DISCOUNTS
5% if list value of order over $£ 10$ 10% if list value of order over $£ 25$ Discounts avalable where cash, P.O. O cheque is sent with order. V.A.T.-Add 8% to value of order or $12 \frac{1}{2} \%$ with items marked $*$ (No V.A.T. on overseas orders). Goods sent post free on C.W.O Goods sent post free on C.W.O.
orders in U.K. over $£ 5$ list value. orders in U.K. over $£ 5$ list
If under, add 27 p per order. If under, add 27 p per order. MONTHLY BARGAIN LISTS S.A.E. brings monthly list of bargains. Also current quick reference price list of all ranges.
Cash with order (P.O. or cheque payable to Electrovalue Ltd) or your
TRADE AND INDUSTRIAL ENQUIRIES INVITED
For all round satisfaction-be safe-buy it from ELECTROVALUE

ELECTROVALIE LTD

Dept PW8, 28 St Judes Rd, Englefield Green, Egham, Surrey TW20 0HB. Phone Egham 3603: Telex 264475
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 INA. Phone (061) 4324945.

BADIO ExCHANGE LTD
 NEW ELECTRONIC MASTER KIT

WITH SPECIAL V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws erc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, 5" $\times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
PROJECTS: V.H F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transisror V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio \star Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L.W. 太 Four Transistor Push Pull Amplifler \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier t Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive TranM.W. L.W. and Diode Tuner \rightarrow Five Transistor Mree Transistor Regenerative Radio \star Four Transistor Transistor V.H.F. Tuner $\boldsymbol{*}$ Three Transistor Code Practice Oscillaror \rightarrow Five Transisror Regenerative Short Wave Radio t Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio t Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output * One Transistor Home Broadcaster.
$\mathbf{4 ! 4 \cdot 9 9}+\mathrm{P}$ \& PEI•10

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND V.H.F. AND A.M. RECEIVER.
13 TRANSISTORS AND SIX DIODES. QUALITY 4" ROUND LOUDSPEAKER.
WITH Multiband V.H.F. section covering Mobiles, Aircrafr, T.V. Sound, Publie Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite, Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches.
Powered by P.P. $9-9$ volt Battery.

NEW

MODEL
R.K.I

MultiBand A.M. Re ceiver. M. W. L. W Trawler Band and Three Short Wave Bands. Seven Tran sistors and Four Diodes. Push
Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

$68.99{ }^{+p_{0,0}^{2} p}$

ELECTRONIC CONSTRUCTION KIT

E.C.K. 2 Self Contained Multi-Band

8 transistors and 3 diodes Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)

Complete kit of parts £7.95 +P\& Pand Ins. 90p

RADIO CONSTRUCTION KIT Q7

A compact small radio kit covering Medium Wave and Long Wave bands. Rugged Micanite construction and simple square design allows for easy carrying
 and positioning. Ideal for the Garage, Workroom, Kitchen, etc., has seven Transistors and Four Diodes quality Loudspeaker, ready wound Ferrite Rod Aerial and Carrying Strap Size $4 \frac{3}{2}{ }^{\circ} \times 47^{\prime \prime} \times 4 \frac{7 g^{\prime \prime}}{}$.

All parts and plans excluding 9v PP7 Battery
 aerial, tuning condenser, volume control, and now with 3 in . loudspeaker. Attractive case with red speaker grille. Size 9 in. $\times 5 \frac{1}{4}$ in. $\times 2 \frac{3}{4}$ in. approx. All parts including Case and Plans.
Total Building Costs $\mathbf{E 6} \cdot \mathbf{9 5}+\mathrm{P} \& \mathrm{P}$ and ins. 90 p
ALL PRICES INCLUDE VAT

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts. Uses a retractable chrome plated telescopic aerial, gain control V.H.F aerial, ganing copitor, V.H.F. cuning eapacitor, tran-
sistor, etc. All parts and plans
€4.95
P \& P and
Ins. 60p

To: RADIO EXCHANGE LTD 6IA High Street, Bedford MK40 ISA Tel.: 023452367

REG NO. 788372
Callers side entrance "Lavells" Shop.

- Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat

1

I enclose \mathcal{E}
Namen....,.........
\qquad

Marconi could have used a Joystick Antenna

-to very good effect, if only G3CED had been around to invent it! The Master himseif was a dab hand at tuning up antennae of various sizes and configurations but he might have got his ' S ' another '-point' (sorry) in Newfoundland with the Joystick VFA (Variable Frequency Antenna, $\cdot 5-30 \mathrm{Mhz}$).
But his loss is the gain of today's radio receiving and transmitting enthusiasts who can use one of our systems in even the most confined of spaces with enviable results (enthusiastic world-wide testimonials on our files).
IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLD-WIDE AND IN GOVERN. MENT COMMUNICATION

SYSTEM "A"

£36.00
250 w. p.e.p. OR for the SWL.

SYSTEM "J"
 £42.60

500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
All Packages feature the Worid Record Joystick Aerial (System 'A'), with Bft, feeder, all necessary cables, matching communication headphones. Deliv. Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS!
PACKAGE No. I
As above with R. $\mathbf{3 0 0}$ RX. SAVE $\mathbf{f 1 7 \cdot 2 8 \text { ! }}$
£210.55
PACKAGE No. 2
1s offered with the FRG7 RX. SAVE £12-21!
£222.00

PACKAGE No. 3

Here is a lower-price, high-quality package featuring the LOWE SRX30., with all the Partridge extras. SAVE (12-21!
£191.00

RECEIVERS ONLY, inclusive delivery, etc.

R. $300 € 184.50 \quad$ FRG7 $£ 189.00 \quad$ SRX $\mathbf{3 0} £ 158.00$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

or write for details, send 9p stamp

[^0]

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX- 30 will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem.
The SRX- 30 provides AM, CW. USB and LSB reception on all frequencies from 500 kHz to 30 MHz . All right. so does your Sooper Blooper Mk 3 but you can't set the Sooper Blooper dial to the frequency you want and be sure that it's correct! The SRX-30 tuning system is so simple to operate. You have a dial reading in MHz from $0-29$ and a main tuning dial reading $0-1000 \mathrm{kHz}$. So-if you know that Radio slobovia is broadcasting on 10.295 MHz , you set the MHz dial to 10 , the kHz dial to 295 and there you are. The MHz dial setting is not critical, as stability is guaranteed by a triple mixing drift cancelling system, thereby overcoming another problem in your Sooper Blooper Mk. 3; drift.
A further drawback to cheap receivers is massive image interference on the higher
frequencies due to the use of a low IF , frequencies due to the use of a low IF, typically 455 kHz . The cure for this $40 \mathrm{MHz}-$ so goodbye to firs IF images. You could of course find the same system as this in the Racal RA17 series receivers; after all. the SRX-30 has copied the basic idea from this very receiver. The big drawback to the RA17 (apart from the price !!) is that unless you have the muscles of a prize fighter, ifting the RA17 may send you for a holiday at Hernia Bay (staying at the Truss House?).
To summarize, the SRX- 30 covers 500 kHz to 30 MHz with excellent dial readout and reset accuracy, it has all mode (AM, CW, SSB) reception and is equally a home in broadcast or amateur bands; it has all the facilities of a top class communications receiver, RF gain, fine tuning, selectable sidebands, built in loudspeaker. operation from ac mains or 12 v . Dc, rugged construction and super
styling and all at an attractive price- 158 inc. VAT, Carr $f 3$. styling and all at an attractive price- $£ 158$ inc. VAT. Carr $£ 3$.
See it soon at your nearest stockist, you will be agreeably impressed.
For all that's good in Amaterr Radio, contact:
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock. Derbyshire. Tel: 06292430 or 2817.
For full catalogue, simply send 45 p in stamps and request catalogue CPW.

FANTASTIC SPEAKER OFFER
TWIN 12" SPEAKER CABINET PLUS PAIR 12" $^{\prime \prime}$ SPEAKERS of Robust vibration-proof construction. Fitted protective corner pieces, Re-
movable Vynair covered front with milver effect trim. Sunken jack socket with escutcheon at the rear Pair $12^{\prime \prime} 20 \mathrm{w}$ speakers for wiring in series and front While stocks last
mounting in above supplied to complete a 40 watt
unit for lead guitar plete
unit fo
£19.95 POUWEITDECOSYSTEM

(1) TWIN T/TABLE PRE-AMP, and POWER OUTPUT STAGES (2) \& (3) PAIR 100 WATT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS

50 WATT AMPLIFIER SACRIFICE

Limited

TITAN

TA/50A
to be cleared
to make way
for a re-

Solid state, 3 sep. controlled inputs plus Master control. Bass, Treble \& Presence Controls. Vynide covered cab.
with corner protectives. Value $£ 60$. Terms. Dep. $£ 7.95$ with corner protectives. Value £60. Terms: Dep. $£ 7.95$ $\& 8$ monthly payments $£ 4 \cdot 72$ (Total
$£ 45 \cdot 71$. Matching Cabinets $1 \times 12^{\prime \prime}$

TITAN GROUP/DISCO SPKRS

T12/45R 12"45w T12/60R 12" 60 w T12/100 12" 100 w T $15 / 6015^{\prime \prime} 60 \mathrm{w} \quad \pm 26.00$ T15/70 15"70w $£ 28.00$ T15 100 15" 100 w Value RSC Price	T15/100 15"100w £41.00	£29.95
		CABINETS FOR ABOVE Heavy duty, finished black Vynide with Vynair fronts, protective corner pieces, various sizes cut-outs. TE1 1 . $12^{\prime \prime} £ 11.95$.

TE2 $2412^{\prime \prime} £ 16 \cdot 95$. Deposit Terms orders over $£ 20$.

ALL RSC PRICES INCLUDE VAT

* DISCOMAJOR with integral Power Amplifier
\star TWIN FULL SIZE GARRARD turntables with cueing device.
\star CARTRIDGES with Diamond Styli
* 3 SEPARATE VOLUME CONTROLS or each turntable and Mic
FULL HEADPHONE
GONITORING FACILITIES
 with system only Also available 100 WATT SYSTEM $£ 169.95$

TDI DISCO CONSOLE

Incorporating twin BSR type urntables and Sonotone or Acos Cartidges with diamond styhi. turntable. Also MONITORING FACILITIES, plus Treble and Bass Controis. Separate Input or 'mike' with vol. control Black Vynide covered C||9.95 Cabinet with lid 18 f'tntly pymts Or Dep $£ 16.49 \& 18$ f'tntly pymts.
$£ 6.75$ (Total $£ 137.99$) Carr. $£ 3.50$. TD2S STEREO
$£ 125.00$ vesion

OPEN ALL DAY SATS (5 Day Week) Prices correct at 26.7.78 E. \& O.E. All items subject to availability BRADFORD 10 North Parade (Closed Wed.). Tel. 25349
BIRMINGHAM $30 / 31$ Great Western Arcade. CARLISLE $\begin{gathered}\text { English } \text { Street (Closed Thurs.). Tel. } 38744 \\ \text { COVENTRY }\end{gathered}$ DERBY 97 St. Peter's Street (Closed Wed) (Closed Thurs.) Tel. 25983 DEWSBURY 9/11 Kingsway (Ciosed Tues.) Tel. 468058 DONCASTER 3 Queensgate. Waterdale Centre. Tel. 63069
(Closed Thurs). Tel EDINBURGH 101 Lothian Rd. (Closed Wed.) Tel. 229950
GLASGOW 326 Argyle St. (Closed Tues.). Tel. $041-2484158$

HANLEY Stoke-on-Trent, 44 Piccadilly Tel. 267764 HULL 7 Whitefriargate (Closed Thurs.). Tel. 20505 LEICESTER 32 High Street (Closed Thurs.).

* LFEDS $16-18$ County (Mecca) Arcade, Briggate
* LEEDS ${ }^{16-18}$ County (Mecca) Arcade, Briggate $\begin{gathered}\text { (Closed Wed.). Tel. } 449509\end{gathered}$ LIVERPOOL TEMPORARILY INOPERATIVE due to

60A Oldham Street (Closed Wed.). Tel. 2362778

MIDDLESEROUGH 103 Linthorpe Rd. (Cl. Wed.) Tel. 247096 NEWCASTLE UPON TYNE 59 Grainger St.
(Closed Wed.). Tel. 21469 NOTTINGHAM 19/19A Market Street
SHEFFIELD 13 Exchange Street (Castle Mkt. Blds.) WOLVERHAMPTON $\begin{aligned} & 6 \text { Wulfrun way } \\ & \text { (Closed Thurs.). Tel. } 26612\end{aligned}$ *MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches

Practical Wireless, September 1978

CRESCENT RADIO LTD

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ. 01-888 4474

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
$200 / 240 \mathrm{~V}$ Mains operated Solid State FM AM Stereo Tuner. Covering M.W. A.M. ${ }^{540-1605}$
KHz VHF/FM ${ }^{58-108}$ $\begin{array}{lll}\mathrm{KHz} & \text { VHF/FM } & 88-108\end{array}$ Built-in Ferrite rod aerial for M.W. Full AFC and AUC on AM and FM. Stereo Beacon Lamp Indicator, Built in Pre-amps with variable output voltage adjustable by pre-ser control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet. Will march almost any amplifier. Size $84^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{h} \times$ LIMITED N.
LMIMED NUMBER ONLY at $£ 28.00+£ 1 \cdot 50$ P. \& P MAINS TRANSFORMER
Pri. $0 \cdot 110$ and 240 . Sec 284
Pri. $0 \cdot 110$ and 240 . Sec. 28 v at $1 \cdot 8$ amps. Also tapped at $12 \mathrm{y} \cdot 3$ amp. Overall size $2 \frac{3}{4}{ }^{3 \prime} \mathrm{~h} \times 3 \frac{1}{4}{ }^{\wedge} \mathrm{W} \because 2 \frac{3}{4}{ }^{\circ} \mathrm{d}$. $\pm 2 \cdot 50+61.00 \mathrm{P} . \& \mathrm{P}$

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and
announcements to follow each other. Fully shrouded announcements to follow each other. Fully shrouded
section wound output transformer to match $3-15 \Omega$ section wound output transformer to match $3-15 \Omega$ separate bass and ireble controis are provided giving good lift and cut. Valve line-up 2 ELS4s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet $\mathbf{2 5 p}+$ SAE (Free with parts). All parts sold separately.
 built and tested $118 \cdot 00$ P. \& P. $£ 1.40$.
"SPOLY PLANAR"" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMICSPEAKER
Size 113" $\times 141^{\prime \prime} 1^{\prime \prime} \times 17^{\prime \prime \prime}$ deep. Weight 19oz. Power handling 20 W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with Or without baffle. Send S.A, E. for full details.
Only $£ 8 \cdot 40$ each $+\mathrm{p} . \& \mathrm{p}$. (one 90 p , two $£ 1 \cdot 10$).
 P. \&P. (one 65 p , two 75 p).

SPECLAL OFFER. 6 $\frac{1}{2}^{\prime \prime}$ long throw, roll surround. ceramic magnet 8 ohm 10 watt speaker chassis.
Specially suitable for Hi Fi $£ 3.95+75 \mathrm{p}$. 2* PLASTIC CONE HF TWEE TER 4 ohm, \&3.50 pe 2^{*} PLASTIC CONE HF TWEE TER 4 ohm, $83 \cdot 50$ per
matzhed pair +50 p P \&P

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on edch channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use
with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridges.-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wite, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any consiructor to buld an amplifier to be proud of. Brief specification: Power output: 14 watts \pm. m.s. per 120000 Hz Sensitivity: better than 80 mv into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} 12-15000 \mathrm{~Hz}$ Bass boost approx. to +12 dB . Treble cut approx to -16 dB . Negative feedback 18 dB over main amp. Power requirements 35 y . at 1.0 amp .
Overall Size $12^{\prime \prime} w . \times 8^{\prime \prime} \mathrm{d}$. $\times 2 \frac{3}{4} \mathrm{~h}$.
Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large S.A.E.
AMPLIFIER KIT ..
\&13-50 P. \& P. 80p (Magnetic input components 33 p extra) POWER PACK KIT $\mathbf{~ 5 5 . 5 0 ~ P . ~ \& ~ P . ~ 9 5 p ~}$ SPECLAL OFFER-only i23. 75 if all 3 items ordered at one time plus $£ 1 \cdot 25 \mathrm{p} . \& \mathrm{p}$.
Also avail. ready built and tested £31-25, P. \& P. £1-50. HARVERSONIC STEREO 44 A solid state stereo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers. Using the built in short term thermal overioad protection. AII components including rectifier smoothing capacitor, fuse. tone control, volume controis, 2 pin din speaker sockets \& 5 pin din tape rec.play socket are mounted on the printed circuit panel, size approx. 9登" $\times 2 \frac{3}{4}^{\prime \prime} \times 1^{\prime \prime}$ max. depth. Suppied brand new \& tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $49 \cdot 00$ plus $50 \mathrm{p} P$. \& P. Mains transformer with an $40 p \mathrm{P}$ \& P if required. Full connection details supplied. HA34 3 Valve Audio Amp, $4 \frac{1}{2}$ w. output ready built and

All prices and specifications correct at time of press and subiect to

HARVERSON SURPLUS CO.LTD.
(Dept. P.W.) 170 MERTON HIGH ST., LONDON, S.W.19. Tel.: 01.540 3985

PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENOUIRIES.

Youlll learn a lot from the Heathkit catalogue.

The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating items which you can build yourself.

Send for the catalogue now.

To Heath (Gloucester) Limited,
Department PW98. Bristol Road,
Gloucester, GL2 6EE. (Registered number 606177.)
Name

Address

Piease tick the literature you want and enclose the appropriate
amount in postage stamps.
Heathkit catalogue only \square (enclose 20p). 16 page computer brochure only \square (enclose 20p). N.B. If you are already on the Heathkit mailing list you will automatically receive a copy of the latest catalogue without having to use this coupon.

When you receive your catalogue you'll get details of this free offer worth approximately $£ 4.75$.

The world's biggest producers of electronic kits.

NEW De-luxe

12"CRT Ignition Analyser

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

LOOK! Here's how you master electronics.

 the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2

Read,draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very funda mentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

FILM RECORDER UNIT used in aircraft to record onto 16 mm film 24 v drive $\&$ control 2 or 16 frames sec with cassette approx. size $9 \times 9 \times 5^{\prime \prime}$ in fitted transit case $£ 16$. HEAD \& MIKE SET for use with 19 or 62 Set with hand mike moving coil lead \& plug, new cond. $\& 4$.
HANDSETS Army type No. 3 rubber covered with press to talk swt, moving coil nom 50 ohm , elect okay storesoiled £2. 50.
CRYSTAL OVEN small type $12 / 24 \mathrm{vext}$. size $2 \times 1 \frac{1}{4} \times 33^{\prime \prime}$ takes two type HC. 18 crystal new £1.20.
BLOWER UNIT for $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ rated 50 CFM at $2,600 \mathrm{RPM}$ outlet $2 \times 1 \frac{13 / 2}{}$ new unused $\mathbf{5 6} \mathbf{5 0}$.
METER UNIT cross pointer type made for use with R1155 Rx as two 110 Ua movements tested $£ 3$.
V.H.F. T.S. 210 contains sig gen covering 20 to $88 \mathrm{Mc} / \mathrm{s}$ in 4 bands good harmonic o/p int $2 \mathrm{Mc} / \mathrm{s}$ xtal check, int pulse mod or CW, noise generator with 50Ma meter, in case with charts, circs \& notes good cond $£ 13$.
DYNAMOTOR UNIT I/P 27v DC O/Ps 200/400v DC 280 Ma int, these can be used as motor only by removing ext fan ass. will run on 6 to 24 v DC very powerfull as $1^{\prime \prime} \times \frac{1}{4}^{\prime \prime}$ shaft motor, size $6 \frac{1}{2 \prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime}$ American surplus $\mathbf{~} 6 \cdot 50$.
PANEL IND LAMPS in red, blue or green with 6 or 12 v bulbs 11 mm new 2 for 80 p .
SPEAKER size $4 \frac{3}{3}{ }^{\prime \prime} \times 3^{\prime \prime} 8$ ohm new $\mathbf{f 1} 50$.
PANEL METERS 1 Ma FSD with special scale $2^{\prime \prime}$ £1-30. 100Ua scale 0 to $1002^{\prime \prime}$ £3. 1 Ma FSD scale 0 to $1 \& 0$ to $200 \mathrm{v} 2 \frac{1}{4}$ " $£ 1 \cdot 50,150-0-150$ Ua plain scale with centre mark $2 \frac{3}{4}$ " $£ 2.200 \mathrm{v}$ FSD marked refl. volts $2^{\prime \prime} £ 2$. 500 Ua FSD scale 0 to $5 \mathrm{Kv} 2^{\prime \prime}$ £2. All meters new.
IND CT306 general purpose unit for use on 240v contains high gain AF amp, the o/p of this is used to operate a magic eye, will accept AC or DC I/P signals, made to work with plug in absorbtion wavemeters, fitted int. stab. P.U. etc. £8.50.
CRYSTAL UNIT dual $100 \mathrm{Kc} \& 1 \mathrm{Mc} / \mathrm{s}$ in 10 X case with suggested circ $\mathbf{£ 2} \mathbf{8 0}$.
MIXED CRYSTALS 10X \& 10XJ types in range 5 to $8 \mathrm{Mc} / \mathrm{s}$ 20 for $£ 2 \cdot 20$, also FT 243 style in range 9 to $13 \mathrm{Mc} / 10$ for $£ 1$. THERMISTORS bead type $\mathbf{G} 24.33 \cdot 8 \mathrm{~mm}$ range 20 to 200 C new 70p ea.
TUNING CONDS dual gang 243pf per section suitable Lp Tx $7 / 16$ ths shaft new $\mathbf{~} \mathbf{2} \cdot \mathbf{5 0}$, also split stator type with $\frac{1}{4}^{\prime \prime}$ shaft in 12 or 25 pf per section $\mathbf{£ 1} 60$ ea. all new.
FILTER UNIT TVI aerial filters $40 \mathrm{Mc} / \mathrm{s}$ cut off in scr. case size $4 \frac{1}{2} \times 1 \frac{1}{2} \times 1 \frac{1^{\prime \prime}}{2}$ fitted coax plug \& sk. new cond. 4 for f1-40.
CONTROL BOXES sold for parts 3 different contain, swt, pots, lamps, knobs etc. $£ 2 \cdot 50$.
CRYSTAL FILTERS 100 Kc units precision made by Marconi removed from space diversity Rx units available in 1 \& 2 Kc bandwidths, 75 ohm term. size $8 \times 4 \times 5^{\prime \prime}$ note these are sealed not potted. $£ 5 \cdot 40$ either type.
COAXIAL LEAD \& FITTINGS jumper lead all 1.5 mt . BNC to BNC, BNC to UHF, UHF to UHF all 50 or 75 ohm £2.60 ea. Test leads BNC or UHF to insul, crocs. 1.5 mt in 50 ohm only $£ 1.80$ ea. all new.
BATTERIES sealed lead acid type Dryfit $6 \mathrm{v} 1.8 \mathrm{~A} / \mathrm{Hr}$ size $2 \frac{3}{4} \times 2 \times 2^{\prime \prime}$ new $\mathbf{5 5} \cdot \mathbf{4 0}$.
KEYBOARD dial phone type 0 to 9 new $£ 2$.
V.H.F. LOOP AE. for use in the $100 / 150 \mathrm{Mc} / \mathrm{s}$ band, size $13^{\prime \prime}$ high, $17^{\prime \prime}$ wide new cond. $£ 10 \cdot 80$.
RECTIFIER UNIT ex Army $200 / 250 \mathrm{v}$ I/P gives dual 12v DC at 3 amps on each circ. can be connected for 12 v 6 amp or 24 v 3 amp , okay for battery charger with circ. $£ 8 \cdot 50$.
L.S. PRESSURE UNITS by Tannoy nom 50 watts 7.5 ohm with threaded coupling $2^{\prime \prime}$ dia. about 10 Kg ex large speakers £8. 50.
INTERGRATED CIRCS. 3 types as follows CA3014 wide band amp \& disc to $20 \mathrm{Mc} / \mathrm{s}$. ULN2111A wide band amp with product det. to $50 \mathrm{Mc} / \mathrm{s}$, TAA 3001 watt audio into 8 ohms 9 to 12 v all new with data 1 of ea. $£ 1.80$.
DIODES stud type 100 piv at 10 amps new 4 for $\mathbf{£ 1 . 6 0}$. HELIPOT 5K 10 tr new unused $£ 2$.
TEST SET M7.C contains mains p.u. two stage amp, osc. unit, 3 atten 0 to 10,0 to $40 \& 30$ to 60 Db meter 200 Ua FSD $4^{\prime \prime}$ in neat case size $19 \times 9 \frac{1}{2} \times 9^{\prime \prime}$ with front cover \& circ, used for telephone circs $\mathbf{5 1 0 . 8 0}$.
Above prices include Carr. \& VAT. Goods ex equipment unless stated new. SAE for List 19 or enquiry. Shop open Tues. to Sat.

A. H. SUPPLIES
122 Handsworth Road, SHEFFIELD S9 4AE Phone 444278 (0742)

EHROWASOMRE electronics
56 FORTIS GREEN ROAD, MUSWELL HILL, N10 3HN. TELEPHONE : 01-883 3705
OUR LATEST CATALOGUE CONTAINS FREE 45 pence WORTH OF VOUCHERS

CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

SUPERSAVERS

ALL FULL SPEC DEVICES BY TEXAS		
TEXAS	TIMER	RED LED
$\mathbf{7 4 1}$	555	TIL209
		(INC CLIP)
$\mathbf{5}$ for	for	10 for
$\mathbf{£ 1 \cdot 0 0}$	$\mathbf{£ 1 \cdot 0 0}$	$\mathbf{£ 1} \cdot \mathbf{0 0}$
	VAT INCLUSIVEPRICE	25p P.\&P.

IC A4 BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICS WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

PRAGTICAL WIRELESS T.V. SOUND TUNER

(Nov. 75 article by A. C. Ainslle) Copy of original arlicie supplied on requess
IF Sub-Assembly (G8) £6.80. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner £5•50. P \& P35p.
3-way Station Control Unit £1-20. P \& P 25p.
6-way Station Control Unit (Special Offer) $£ 1.00$.
Power Supply Prtd Circuit Board £1 00. P \& P 30p.
Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$.
Mains Transformer for above £2-50. P \& P 30p. Add $12 \frac{1}{2} \%$ VAT to price of goods. $P \& P$ all items 85p.

Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751
SOUTHERN VALVE CO. SECOMD FIORR, ROTTERS ROAD.
Telephone $04-440 / 8641$ MAIL ORDER ONLY. WINIMUM ORDER top
Some leading makes available. VAT invoices issued an request
All New and Boxed. "Oualify" Branded Valves. Guaranteed 3 months. BVA etc.
(Tungsram, etc.). 6% Allowedinifeu of Cuarantee! Already deducted from our Prices
NOTE : PLEASE VERIFY CURRENT FRICES. COrrect onty at time of going to press.

DY802			55 p					Pl81A	${ }^{85} \mathbf{p}$	PY500	
		83	55 p	PC88	$75 p$ 750	PCF805	8160	$\begin{array}{\|l} \text { PL81A } \\ \text { PLL83 } \end{array}$	65 p 50	UBF89	
ECC82		EF184	55 p	PC97	72p	PCF608	£1.70	PL84	50 p	UCH81	
ECC83		EH90	60 p	PC900	$65 p$	PCL82	62p	PL500		UCL82	
ECC85	50 p	EL41	90 p	PCC84	$35 p$	PCL83	80p	PL504 $\}$	¢1. 10	UCL83	
ECH81		EL84	50 p	PCC85	50 p	PCL84	62 p	PL508	51.50	UF89	
ECH84		L509	£2.90	PCC89	52p	PCL85 $\}$		PL509	23.00	UL41	
ECL80	52 p	EM84	90 p	PCC189	55 p	PCL805 ${ }^{\text {S }}$	\}	PL519	¢ $2 \cdot 10$	UL84	
ECL82	60 p	EY86/7	46 p	PCF80	80p	PCL86	70p	PL802	¢2.85	UY41	
ECL86	70 p	EY500A	E1.50	PCF86	60 p	PCL200	E1.40	PY88	75 p	UY85	55p
EF80	41 p	EZ80	42p	PCF200	£1.50	PD500	63.60	PY800	60 p	U25	60 p
EF85	45p	EZ81	44p	PCF801	52 p	PFL200	A1.35	PY801	60 p	U26	60 p

We offer return of post service. CWO ONLY, No C.O.D

tems in stock at time of going to press but subject to possible market fluctuations
if unavoidable.
One valve post 13 p , each extra valve 6 p . Large valves 2 p each extra.
MAX 75p. LISTS AND ENQUIRIES, S.A.E. PLEASE:
ALL PRICES INCLUDE VAT ω 12 $\%$
ENQUIRIES WELCOMED FROM TRADE and RETAIL (same prices)

Mainline

a tremendous range from Mainline, a division of one of the largest industrial electronic component distribution groups in the business.
The enormous resources, buying power and organisation guarantees fast reliable service and top quality components at the right price.

Diodes
Transistors
Integrated circuits
Resistors
Capacitors
Switches
Relays
Diecast Boxes
Potentiometers

Fill in coupon below for the Mainline Components Catalogue.

Learn all about MICROPROCESSORS with the MOTOROLA Microprocessor Evaluation Design Kit M6800.
featuring:-

- 24 Key Keyboard
- 7 Segment Display
- Cassette Interface
- EROM Expandable
- RAM Expandable
- Wire Wrap Capability
- Parallel and Serial Interface Capability
- Single 5 Volt Supply Required - Layout on Boards
- Documentation

Please send for detailed descriptive leaflet \& prices.

vaintine

380 Bath Road, Slough, Berks. Tel: 06286 (Burnham) 63616

Manufacturers and trade enquiries invited for larger quantities.

Motorola Semiconductors.

We are pleased to announce that in conjunction with our parent company we can offer the complete range of Motorola semiconductors including zener diodes, diodes, transistors, SCR's, Triacs, digital and linear integrated circuits etc. As the available range is far too large to be listed please ask for your specific requirements.

The following are the more popular types of 2 N TRANSISTORS by well known manufacturers such as Motorola, SGS, RCA, Fairchild. They are brand new and should not be confused with surplus offers often being advertised! Also we stock, or can obtain, other 2 N transistor types not listed below. So please write and let us know what you are looking for.
Please add 8\% VAT to your
2 N transistor orders, plus 25 p per order for postage and packing.

Type	price	Type	price
2N697	£0.36	2N3442	£1.63
2N706	0.37	2N3766	0.86
2N706A	0.24	2N3866	1.05
2N708	0.30	2N4033	0.60
2N718	0.41	2N4123	1.94
2N914	0.32	2N4125	0.20
2N916	0.96	2N4400	0.15
2N918	0.38	2N4401	0.18
2N929	0.24	2N4402	0.21
2N930	0.24	2N4403	0.23
2N930A	0.25	2N4441	1.06
2N1132	0.85	2N4442	1.30
2N1613	1.27	2N4443	1.43
2N1711	0.32	2N4444	1.88
2N1890	0.77	2N4870	0.78
2N1893	0.30	2N4871	0.74
2N2102	0.93	2N4918	0.67
2N2218	0.29	2N4919	0.70
2N2218A	0.32	2N4920	0.74
2N2219	0.30	2N4921	0.63
2N2219A	0.31	2N4922	0.67
2N2221	0.23	2N4923	0.70
2N2221A	0.26	2N5060	0.42
2N2222	0.18	2N5061	0.43
2N2222A	0.21	2N5062	0.49
2N2369	0.21	2N5063	0.52
2N2369A	0.23	2N5064	0.55
2N2646	0.56	2N5088	0.21
2N2904	0.30	2N5108	4.03
2N2904A	0.31	2N5190	0.69
2N2905	0.38	2N5191	0.74
2N2905A	0.32	2N5192	0.80
2N2906	0.23	2N5193	0.75
2N2906A	0.23	2N5194	0.80
2N2907	0.23	2N5195	0.85
2N2907A	0.23	2N5400	0.27
2N3053	0.35	2N5401	0.28
2N3054A	0.84	2N5415	0.81
2N3055	0.89	2N5416	1.11
2 N 3055 H	1.08	2N6027	0.62
2N3439	1.09	2N6028	0.79
2N3440	0.83		

Special quotations for quantities of 25 or more of one type.

GREENVNELD

443 Millbrook Road Southampton SO1 OHX Tel:(0703) 772501

All prices quoted incluce VAT. Add $25 p$
UKIBFPO postage. Most orders despatcher on day of recelpt. $S A E$ with enquirles please. MINIMUM ORDER
VALUE E1. official orders accepted

DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch revealed about 70% voltage rects and zeners may all be voltage rects and zeners may all be included. These are being offered at
the incredibly low rice of $\not \subset 1.25$ the ineredibly low price of $E 1.25$ Bag of 10,000
EB
. Box of
25,000

DISC CERAMIC PACK
Amazing variety of yalues and voltages
from a few pF to $2 \cdot 2 \mu \mathrm{~F}$ 3V to 3 kV ! $200 £ 1$, $500 \in 2 \cdot 25$, $1000 \in 4-00$.
52 logic $1 C$'s including
bit binary couluding $32 \times 74161<4$ caps, R's, C's TTL alone!! ONLY $£ 3 \cdot 00$.

PC ETCHING KIT MK III
Now contains 200 sq. ins. copper clad board, Itb. Ferric Chloride. DALO etch resist pen, abrasive cleaner, two miniature drill bits, etching dish and instructions. $\mathrm{ES}^{2.90}$.
Our packs of vero offcuts are on of our biggese sellers-and no wonder, they are amazing value!! Each pack coral area or 8 pieces to make up a are the same price fins. All packs are the same price. Pack A allo. $1^{\prime \prime}$ pitch
Pack A all $0.1^{\prime \prime}$ pitch
Pack B all $0.15^{\prime \prime}$
Pack C mixed 0. $1^{\prime \prime}$ \& $0 \cdot 15^{\prime \prime}$
Pack D all $0.1^{\prime \prime}$ plain
Also available by weight llb $£ 3.95$ $101 \mathrm{bs} \mathrm{E} 32-50$.
Regular size yero
$17 \times 3 \frac{3}{4} \times 0.1^{\prime \prime} 62.00,10$ strips $£ 15$ $17 \times{ }^{3 \frac{4}{4}} \times 0.15^{\prime \prime} \notin 1 \cdot 76 ; 0.1^{\prime \prime}$ plain 61.63

DIP Breadboard size $6,15 \times 4.5^{\prime \prime}$, can accommodate $20 \times .14$ pin ICs $\mathbf{E 2}-35$. VQ Board, size $148 \times 75 \mathrm{~mm} \mathrm{o} 1^{\prime \prime}$ pitch. Copper strips in rows of 4 to facilitate construction with IC's. Layout sheet provided 85 p.

EDGE CONNECTORS
special purchase of these $0 \cdot 1^{\prime \prime}$ pitch double-sided gold-plated connectors enables us to offer them at less than one-third their original list price! 18 way 41p; 21 way 47p; 32 way 72p; 40 way 90 p .

EXPERIMENTERS CALCULATOR

 Based on the C500 chip, this pack of parts enables the more experienced constructor to make an 8 digit 4 function calculator. The comprehensive dara supplied includes full size layout of PCB required, types of suitable display and keyboard that can be used etc. Components calculator in the pack are C500 nents for inverver/clock components for inverter/slock circuits, R's Cis erc. All for only $63 \cdot 50$.798 OPING $171 \times 75 / 37$ BES
$\begin{array}{llll}1798 & 171 \times 121 \times 75 / 37.5 & 64 \cdot 19 \\ 2523 & 220 \times 174 \times 100 / 53 & 66.90\end{array}$ $\begin{array}{lll}2523 & 220 \times 174 \times 100 / 53 & \notin 6.90 \\ \text { Potting box. } 71 \times 49 \times 24 \mathrm{~mm} \text { black }\end{array}$ or whice 40p
Hand cotroller box $94 \times 61 \times$
23 mm White 64 p
We keep a very large range of VERO products, including their recently introduced G range of cases and Series 11 boxes. SAE for cheir catalogue
W847 Low profile PC mntg 10×33 $\times 20 \mathrm{~mm}$ 6V coil, SPCO $3 A$ contacts. 93 p.
W832 Sub. min cype, $10 \times 19 \times$ 10 mm 12 V coil DPCO 2 A contacts f1.15
W701 6V SPCO IA contacts 20×30 $\times 25 \mathrm{~mm}$. Only 56 p .

W 817 II pin plug in relay, rated 24 V ac, but works well on $6 V$ DC. Contacts 3 pole clo rated 10A. 95p. W819 12 V I25OR DPCO IA contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$. Min plug-in | type 72 p. |
| :--- |
| W |
| 395 |
| 50 V |

W839 50 V ac (24 V DC) coil. 11 pin plug in type. 3 pole c / O 10A contacts. Only 85 p .
rom schoois, etc. (Minimuhi ,thoice charge £5). Exporti Wholesale enquitios
welcome, Wholesale list now avaitable wercome, Wholesale for bona-fide traders. Surplus components always wanted.

W846 Open construction mains relay. 3 sets 10A c/o contacts. $£ 1 \cdot 20$. Send SAE for our relay list- 84 types listed and illustrated.

TEREO AMPLIFIER
Complete and ready-buitt. Controls
Complete and ready-buit. Controls,
Bass, treble, volumejon-off, balance Bass, treble, volumejon-off, balance.
8 transistor circuit gives 2 watts per 8 transistor circuit gives 2 watts per
channel ourput. Just needs transchannel output. Just needs trans-
former and speakers for low cost former and speakers for low cost stereo amp. Suitable metal cabinet
(W 374) $£ 2 \cdot 00$-or buy the amp, case and transformer for $£ 10-00$ and get DIN speaker sockets and knobs freel SPECIAL TRANSISTOR OFFERS
P

PN108(BC108) FFERS	18 for
PN109 (BC109)	16 for
PN70 (BCY70)	14 for
PN71 (BCY71)	14 for

HEAT SINK OFFER Copper TO5 sink 17 mm dia $\times 20 \mathrm{~mm}$.
10 for $40 \mathrm{p} ; 100$ for $€ 3$; 1000 far 10 for 40 p ; 100 for $£ 3$; 1000 for $£ 2.5$ SEND 45p FOR OUR $1977 / 8$ CATALOGUE. CONTAINS 50p DISCOUNT VOUCHERS. AMENDMENT SHEET No. 2 GIVES DETAILS OF OVER 100 ITEMS SLASHED 50% !!
(Send SAE if you've already got cat.) Our latest Bargain Sheet is FREE send SAE for your COpy.
200 miniarure resistors, $\frac{1}{8}, \frac{1}{4}, \frac{1}{2} W \in!\cdot 00$ 200 miniarure resistors, $\frac{1}{8}, \frac{1}{4}, \frac{1}{2} W \in 1 \cdot 00$
400 assorted resistors, $\frac{1}{4}, \frac{1}{2}, ~ \mid W \in 1 \cdot 30$ 200 poly, mica, ceramic capacitors $61 \cdot 20$
200 electrolytics, but many unmarked
1000
100 M
100 Mullard C280 polyesters, 0.01 uF E1. 00.
150 wirewound resistors $2-10 \mathrm{~W} \notin 1 \cdot 60$ 200 PC resistors, $\frac{1}{4}$ and $\frac{1}{2} \mathrm{~W} 60 \mathrm{p}$
20 asstd. pots, inc. sliders $\$ 1 \cdot 70$ power devices. About 75% usable power devices. About 75% usable LOW COST PLASTIC BOXES Made of high impact ABS. The lids are retained by 4 serews into brass inserts. Interior of box has PCB guide slots (except V219)
$\mathrm{V} 21080 \times 6240 \mathrm{~mm}$ black
V213 $100 \times 75 \times 40 \mathrm{~mm}$ black 72 p V216 $120 \times 100 \times 45 \mathrm{~mm}$ white 86 p V219 $120 \times 100 \times 45 \mathrm{~mm}$ white 86p SPECIAL SUMMER OFFERS AUDIOIC's
 76023 N 玉I-00
LM380 80 l LM38080p
LINEAR IC's etc.
$741(8 D 1 L) 18 p$ BDI31 24p $\begin{array}{lll}741 \text { (8DIL) } & 18 p & \text { BDI31 } \\ 555 & \text { 25p } & \text { BD132 }\end{array}$ $\begin{array}{lrrrr}555 & \text { 25p } & \text { BD132 } & \text { 25p } \\ \text { IN4148 } & \text { 2p } & \text { 2N3819 } \\ & \text { 18p }\end{array}$ 250V $76 \times 38 \mathrm{~mm} 82 \mathrm{p}$ $800 \mathrm{mfd} 250 \mathrm{~V} 76 \times 38 \mathrm{~mm} 82 \mathrm{p}$ $400 \mathrm{mfd} 400 \mathrm{~V} 75 \times 38 \mathrm{~mm} 78: 1500 \mathrm{mfd}$ 40 V PC mount $40 \times 25 \mathrm{~mm} 7$ for $\in 1$ 1000 p discs 100 for EI .05 mid 30 V 1000 pf dises 100 for
discs 100 for $\in 1.68$
discs
-1 mid 20 V discs 100 for $\mathrm{E2} \cdot \mathbf{3 6}$
.1 mid
$2 \cdot 2 \mathrm{mfd} 3 \mathrm{~V}$ discs 100 for $\epsilon 3 \cdot 94$
4.7 mfd
2.2 mfd 3 V discs 100 for 63.94
4.7 mfd 100 V polyester 6 for $£$
4.7 mid
POT BARGAINS

Standard size pors-spindle is 12 mm long. in the following values only; 10 k lin; 4 k 7 semi-log; 680 R lin; 2 k 7 lin. 10 for $£ 1$ any mix

VEROCASES
Plastic top and bottom alloy panels
front and back
$1237 \quad 154 \times 85 \times 40$
$\mathbf{1 2} \cdot 53$
$\begin{array}{lll}1237 & 154 \times 85 \times 40 & \mathbf{E 2 . 5 3} \\ 1238 & 154 \times 85 \times 60 & \mathbf{£ 2} .79 \\ 1239 & 154 \times 85 \times 80 & \mathbf{£ 3 . 3 2}\end{array}$
$\begin{array}{lll}1239 & 154 \times 85 \times 80 & \text { Ł3. } \\ 3007 & 180 \times 120 \times 40 & \notin 3 .\end{array}$
$\begin{array}{lll}180 \times 120 \times 40 & \mathbf{~} 3.30 \\ 3008 & 180 \times 120 \times 90 & \mathbf{~ 3 . 7 4} \\ 3009 & 180 \times 120 \times 90 & \end{array}$
$\begin{array}{lll}3009 & 180 \times 120 \times 90 & \mathbf{E 3 . 7 4} \\ 1410 & 205 \times 140 \times 40 & \mathbf{6 3 . 5 1} \\ 1411 & 205 \times 140 \times 75 & 64.65\end{array}$
$\begin{array}{lll}1411 & 205 \times 140 \times 75 & £ 4.05 \\ 1412 & 205 \times 140 \times 110 & £ 5.12\end{array}$ 1412 205 $\times 140 \times 110$ ELSASTIC BOXES
VERO PLAST

VERO PLASTIC BOXES
ofessional quality two tone grey Professional quality two tone grey
polystyrene with threaded inserts for polystyrene with threaded inserts for
mounting PC boards mounting PC boards $\begin{array}{ll}2518 & 120 \times 65 \times 40 \\ 2520 & 20 \times 80 \times 50\end{array}$ $2520150 \times 80 \times 50$ 62.17
62.45
63.22

TWO NEW SUPERMODULES: I70W INTO 4 OR 8 OHMS

By popular demand we have designed higher powered versions of our well known modules
The CE 1704 which gives 170 W into 4 ohms and the CE 1708 which gives 170 W into 8 ohm The CE 1704 which gives 170 W into 4 ohms and the CE 1708 which gives 170 W into 80 hms
are physically similar to the original types and have the same combination of compatible performance features which makes CRIMSON amplification audibly superior to the com petition and the only choice if you have an ear for music. We have also produced suitable
power supplies which again use our superb TOROIOAL TRANSFORMERS, only 50 mm high, with a $120-240$ primary and single boll fixing.
Write or phone for more information and blased opinions.

POWER AMPLIFIER

HODULES
CE 608 60W/8 ohms 35-0.35V
CE $1008100 \mathrm{~W} / 8$ ohms $35-0-35 \mathrm{~V}$
CE $1704170 \mathrm{~W} / 8$ ohms $45-0.45 \mathrm{~V}$
CE $1708170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{~V}$
Ohms $60-0-60 \mathrm{~V}$
TOROIDAL POWER SUPPLIES
CPS 1 for $2 \times$ CE 608 or $1 \times$ CE 1004
CPS 2 for $2 \times$ CE
CE 608 for $2 \times$ CE 1004 or $2 / 4 \times$
CPS 3 for2 4 CE1008 or 1 \& CE 1704
CPS 4 for $1 \times$ CE 1008
CPS 5 for $1 \times$ CE 1708
CPS 6 for?
CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE 170 Ö
HEATSINKS
Medium Power $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W}$.
Disco/Group $150 \mathrm{~mm} 1 \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$ W.
THERMAL CUT-OUTS
RECOMMENDED FOR IM
PROVED RELIABILITY
$70^{\circ} \mathrm{C}$
Home prices include V.A.T. and postage. C.O.D. 90 extra, f100 limit, Export no problem European prices include carriage, insurance and handling, payment in Stering by bank
draft, P.O., International Giro or Money Order. Outside Europe, please write for specifie quote by return. Send SAE or two International Reply Coupons for full iturature. Favourable trade quantity price list on request. High quatity pre-amp circuit 20p.

This Month's Snip. 35w speaker kit, all good British made speakers, the kit consists of $8^{\prime \prime}$ woofer, $41^{\prime \prime}$ mid range, $3{ }^{3 / 2}$ "
tweeter all for $8 \cdot \mathrm{chm}$ and finally the ferminal panel which also houses crossover unlt. 100 sets only to first comers, price cis.50 including post and VAT.
Prolact Boxes. Nicely made In black plastic with threaded
brass inserts to hoid the lid which is fixed by four corner brass inserts to hold the lid which is fixed by four corner screws. There are three sizes available $75 \times 56 \times 35 \mathrm{~mm}$, pricie
$60 \mathrm{p}, 95 \times 71 \times 38 \mathrm{~mm}$ price 70 p and $115 \times 95 \times 36 \mathrm{~mm}$ price 80 p . Inatrument Buzzers, made for the GPO ex unused equipment price 34 p .
Klaxton Type Alarm. Battery operated gives a good lourd note with only a $1 \cdot 5 v$ battery, gets unbearable as voltage
increases, ideal for personal or car alarm, price 80 p .
Stereo Headphone Lead. Black curly 10ft approx. temina-
tlons, stereo fackplug one end - miniature two in plugs the other. Price 56p
Stereo Decoder Kit uses latest techniques, size approxi-
 Stereo Beacon Light if required 45p extra.
Cassette Microphone. Dynamic 600 ohm with on/of switch Mains Operated Pump. Most readers will know that we stock the dabsco pump which was made to work with portable
drilis, the price is $玉 2 \cdot 00$, now In response to demand for a drills, the price is $82 \cdot 00$, now In response to demand for a
mains operated pump we have coupled this to a 110 rom motor, mains operated pump we have coupled this to a 110 rpm motora
mounted them on a metal chassis and offer this as a general purpose pump. It is sultable for most liquids and certainly for water. The pump is self priming and will lift the liquid up to
quite a head but naturally the delivery will fall off depending quite a head but naturally th
upon the lift. Price $£ 11 \cdot 26$.
Flexible Conduits made from a thin but very tough plastic ribbed to give extra strength but very lightweight and very addition to carrying most fluids, these conduits can also be used for cable tidylig and protection and even make do flexible drive for a afow speed turning operation. Two slzes available ${ }^{\frac{p}{x}}$ " and $\frac{z^{\prime \prime}}{}{ }^{\prime \prime}$ internal diameters approximately. It is on the inlet/outlets of the above mentioned Jabsco pump. Price.27p per metre, post 11 p per metre.
Double Ended Motor, malns operated, cepacitor run approx, ery sultable for converting into a double ended polisher or grinder, holes convenlently placed in the housing make it not high is adequate. Limited quantlity only, we are offering not high is adequate. imited
t H.P. Motors. Normal base mounting, ex computors but
tested, $230-240 \mathrm{~V} 50 \mathrm{hz}$ good length spindle mostly American make, $\mathrm{EB} \cdot 50$.
13 Amp Rocker Switch made by Carr Fastener Co. (Dot) agaln ave, ce 27p.
Luminous Rocker Switch, suitable for 13 amps at mains voltage, these are illuminated with neon through amber panel Three position Rocker Switch. 10 amp changeover with a centre of standard size cllp fixing pushes into hole area size Speclal bargaln this month, 10 for $£ 1 \cdot 62$.
60 Minute Clockwork Tlme Switch made by Smiths and as
fitted to many tumble dryers, washing machines etc. Very fitted to many tumble dryers, washing machines. etc. Very
useful for other timed applications, when rotated 15 double useful for other timed applications, when rotated 15 double
pole main switch makes clrcuit and stays on for up to 1 hour pole main switch makes clrcuit and stays on for up to 1 hour
depending on the amount you turn the spindie. Speciai snip depending
price Ef
23.
Clockwork Alr or Gas Switch made by the famous Smiths Company, winding the clockwork opens the valve and lets the air or gas come through for maximum of two hours
depending upon the amount the clockwork is rotated. Infet depending upon the amount the clockwork is rotated.
and outlet are threaded normal gas size, price £3.78. Connecting Wire Bargain 100 yards PVC Insulated con-
necting wire $14 / 36$ on a drum, conductors made by BICC, price necting
£ 1.38 .
Caiculator Key Board Ex broken up calculators, these are
approx. 21" square snd have the normal $0-9$ buttons plus on/on apprith, divide, multiply, plus, minus button as well. Limited
quantity only 8 ip. quantity only $8 f$ p.
Versatile Performer our 12 v 1 amp ref. No. TM10 is a very useful transformer, there is plenty of space between the wind-
ing and the laminations to add (or subtract turns) if for ing and the aminations to add (or subtract turns) if for
instance you want an additional 2 or 3 volt winding this can be very easily added without de-lamming the transformer. We have adequate stocks of these and can give a dianscount of
up to 30% depending on how many you buy. One of price is Just Arrived Fow only so hurry if you want one. Garrard
Mini Auto Record Changers Model CCiO, very neat deck size only 1 14"" $\times 8 \frac{1}{2^{\prime \prime}}$ requiring only $2^{\prime \prime}$ clearance below deck. This

l.C.'s on Computor Board Total of 16 I.C.'s as foll ows:
3 of 7403,20 of 7406,1 of 7407,1 off 7408,2 off 7409,2 off 7413 , 3 of 7403,2 of 7406, 1 of 7407, 1 off 7408, 2 off 7409,2 off 7413 .
1 of 7414 . of 7352 . One metal encased type numbers look
like 14406. Panel like 14406 . Panel with other components one of which we
believe to be a crystal. Price 95 p per board. List price of only 14 of the I.C.'s came to over $£ 4$ and we understand that these
are unused boards. are unused boards
Charge Rate Meters As our old friends wIll know we have in stock 2 amp and 3 amp charging meters, we have now acquired some 5 amp and 9 amp. These are ail the
diameter and all the same price, $81 p$ each. 3 Plug and Socket Bargains 3 way plug 3 Plug and Socket Bargains 3 way plug and socket 32p.
6 way plug and socket $49 p, 12$ way 64 p per palr. Multiple Slide Switch. This is a 6 pole changeover with Heavy Duty 3 Core Appliance Lead 15 amp wirs, $6 f t$ long, conventional yellow-green, brown and blue. Grey, pvc outer,
prepared ends, this flex normally sells at $30 p$ per metre. 10 leads for $£ 3.70$.
Heavy Duty and 4 Core Appliance Lead Black rubber out,
copper cores adequate for 13 amps, coloured as foll copper cores adequate for 13 amps, coloured as follows;
yellow/green, brown, grey and green. Bft long. 10 leads for C4'24.
2 Core Appliance Lead with continental 2 pin plug, black
and blue insulated 5 amp cores with very flexlble grey rubber and blue insu
outer, $玉 s .00$.
Chrome Piated Metal Legs, heavy duty, really good quality,
made originally for an expensive Decca outfit. height $12^{\prime \prime}$.
f2, 19 per set of four.
Experimenters Relay Parcel. A special offer is 10 type 600
relays all different coll values covering most experimenters needs. Total retall value $£ 8 \cdot \mathbf{4 0}$--yours for $£ 3 \cdot 75$,
Motor with fan blade-if you want something to cool a motor with fan blade-if you want something to cool a
cabinet or if you are making a cooker hood or a blower heater, thls may be the answer. $1^{\prime \prime}$ stack induction motor wlth a set of
Smith's fan blades, approx. $5^{\prime \prime}$ diameter. Price $£ 3 \cdot 20$.

MULLARD AUDIO AMPLIFIERS

All in module form, each ready built complete with heat sinks
and connection tags, data supplied. Model 1153500 mW power output $81 \cdot 50$ including post and $\begin{array}{ll}\text { VAT. } \\ \text { Model } \\ 1172 & 1 W \\ \text { Moder }\end{array}$ power output 81-85. EP. 9001 win channel or stereo preEP 9001 (Win
amp. 82.90.

SHORTWAVE CRYSTAL SET

Although this yes no battery it
gives really amazing results. You will reeeive an amazing assortment
of stations over the 19, $25,29,31$ metre bands. Kit conlains chassis front panel and all the parts $£ \mathrm{f} \cdot 90-$ crystal earphone 55 p .

BREAKDOWN PARCEL

Four unused, made for computer units containing most useful components from most components unhke those wire ends of usable length. The tran sistors for instance have leads over
long-the diodes have approx. ${ }^{\prime \prime \prime}$ leads.

List of tivi transistors- 38 assorted diodes- 60 assorted resistors and condensers-4 gold plated plugs in units which can serve as muitipin plags or as hook up boards for experlmental or
quickly changed circuits (note we can suiply the socke boards which we made to receive these units). The price o this four unit parcel is z1 including VAT and post (consider ably less than value of the transistors or diodes alone).
DON'T MISS THIS SPLENDID OFFER.

FLUORESCENT TUEE INVERTOR
For camping
car repairing car repairing
emergency llaht-
ing from ing from a 12 v
battery you can't battery you can't
bat fuorescent
 offer plenty of well distributed tight and is economical. We
offer invertor for 21 " 13 watt miniature tube for only $£ 3 \cdot 75$ with tuhn and tol holders as well.

EXTRACTOR FAN

Ex computers-made by Woods of Colchester. Ideal for fixing through Dane|-reasonably quiet running-
very powerful 2500 rpm. Cholce of

24 HOUR TIMERS VENRER
As iliustrated with sun correction made 20 amp switching contacts.

SPIT MOTOR WITH CARTER G/BOX

Probably one of the best spit motors
made. Originally intended to be used
madie. Originally intended to be used
in very high priced cookers, however
this can be put to plenty of other uses, drive a tumbler for stone polishing; in fact there are no ends
to its uses. Normal mains operation. $£ 4.32$

HONEYWELL P.B

MICRO SWITCH
1-2 or 310 amp 250 V changeover micro-
switch thr panel mounting by cock nuts
53p, 3 swltch 70 p .
LATCHING
RELAY

by Guardian Electric, mains operated it is in tact two relays mounted on a metal base plate. The relays being mounted in such a way to ensure that when one closes the other opens nd vice versa thus when closed relay A would remain locked untio manually released or electrically released by energising Should be ideal for burglar alarms and similar appilcations
$\mathbf{2} \cdot 11$.

switch trigeer

E 츤
MATS
Wiring dig, supplied for complete house obbers Away':
$13^{\prime \prime} \times 10^{\prime \prime}-52 \cdot 10$
$24^{\prime \prime} \times 18^{\prime \prime}-52 \cdot 60$
Terms: Prices include Post \& VAT. But orders under $\mathbf{£ 6 . 0 0}$ please add 50 p to offset packing. Bulk enquirles-Please Phone for Generous Discounts 6881833.

J. BULL (EEEGTRCAL) LTD

(Dept. P. W.), 103 TAMWORTH RD. CROYDON CR8 $15 G$

Fiuorescent Choke for 5ft. Tube. This is another exceptional bargain. It is a polyester filled almost silent running
65 watt choke made by GEC at only E1-G7. Just what sort of
bargain this is will be realised when you look at the new prices for chokes, the recommended list price of 65 watt is now over for cho
$\mathbf{2 3} \cdot 50$.
Car Plugs. These go in the cigar lighter socket. They have been out of stock for a long while, but we are pleased to say
they are once again in stock, new price of course $44 \mathrm{p}+4 \mathrm{p}$ sach. Self-adhesive paper discs ${ }^{2 r}$ ideal for marking leads as you
take them off, or for providing quick insulation of soldered or take them off, or for providing qulck
twisted joints. $\mathrm{fi} \cdot \mathbf{3 8}$ for box of 5,000 .
Pick-tup Cartridges. We have two extra special bargalns this month-'Sure"' magnetic type number 77DB for $\$ 3 \cdot 36+36 \mathrm{p}$ for DC4000 series price $\mathbf{\Sigma 1} \cdot 70$.
Multi-core Cable. 7 cores each pvc insulated and colour coded, screened overall then with pve outer covering. A miniature cable diameter approx.
avallable in lengths up to 15 metres.
Tape Deck, solenoid operated. This comprises malns motor
mounted on a frame with heavy fiywheel and capstan. Record mounted on a frame with heavy fiywheel and capstan. Record, play. rewind, etc., intended to be operated by solenoids but
the solenoids have never been fitted nor are these available, the solenoids have never been fitted nor are these available. operated or even to adapt other solenolds to control it. Price, complete with record/playback head and erase head, £4.75.
Break before make wafer switeh. We are sometimes asked
for these but we do not normally keep a range. However, we for these but we do not normaliy keep a range, However, we
have some 2 pole 5 way with $1{ }^{\text {n }}$ " wafer, a well made switch have tome 2 pole 5 way with $11^{\prime \prime}$
which we can offer $45 p+5 p$ each.
Latching Relay, i.e. a relay that once closed stays closed until deliberately opened, is often needed In a circuit. Some relay D8500 having multiple contacts and a double wound coil lends Itself to eleetrical latehing, simply use one of the surplus pairs of contacts to maintain the closing current or to bring in an auxiliary closing current, a very useful relaywill close on 6 volts, 12 volts, 124 volts or from the malns through 5 watt 1 amp (or 5 K resistor) and smell rectifer.
Speclal snip price on $54 \mathrm{p}+4 \mathrm{p}$. Good quantitles in stock, usual discounts.
AM/FM Tuning Condenzer as fitted to many Japaense and
Hong Kong portablest thls has two tuning sections and four
trimmers, approxlmate size $1^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$ Price ${ }^{2} 7 p$ rimmers, approxlmate size $\times 1 \times 1$. Price 67p.
Battery Charger Kit comprising 2 amp transformer, 2 amp
full wave rectifler and 2 amp meter sultable for charging 6 v or full wave rectifler and 2 amp meter sultab
12v battery. Special bargain price $E 3 \cdot 10$.
Battery condition testers. This is another item which has been out of stock temporarily but we are pleased to say in
RF Attenuator fitted into a die-cast 10 sectioned case with ockets. Switches give db attenuation of $1,2,3,5,10,10,10,10$. Not new but in perfect condition. Price $E 3 \cdot 74$.
Pendant phones ex G.P.O. very useful as extensions, these
do not take up any room on the desk, just screw the hook witch to the wall. Limited quantity $£ 2 \cdot 20$.
Solenoid $4-6 \mathrm{v}$, size approx, $1^{\prime \prime} \times 1^{\prime \prime} \times \cdot 4^{\prime \prime}$ thick twin coils glye
excellent pull. Fitted with lever giving approx. $4^{\prime \prime}$ push or pull. excellent p
Cold cathode tube Swiss made "Elasta" type no. ER $12 A$. eader has this we will be obliged for any Information. Price of the tubes 43p.
AC mains operated relay with single changeover 10 amp contacts, open type single screw fixing through the base, price 81 p.
Frequency changing auto transformer for the operation of American equlpment off our mains. These have an output of
115 v at 60 c . p.s. loading 100 w . The frequency of the output is shown by a vibrating reed type indlcator. Limited quantlty shown by
£39 each.
Push Switch, metal body and metal push, normally on Made by Arrow, contact rating 250v 5 amps. Price 54p.
Push Switch. double poie changeover contacts rated at 0amps 250 volts made by the American Honeywell Co, A very reliable and robust switch with plenty of applications. Oblong
plastic body, snap fitting into a hole size $1 \frac{1}{2}{ }^{\prime \prime} \times \frac{1}{\mathbf{\varepsilon}^{\prime \prime}} 27 \mathrm{p}+$ p each
Ditto but latches down and has to be pulled up, price 45p.
Power Supply for 12v cassette players the "Smooth Flow".
Give $12 v$ up to 75 amps , as in neat plastic case with lead for mains, terminals for connecting to cassette, alise the mains
transformer is double insulated and has overload protection. Price only $\& 4 \cdot 20$.
Simmer Stats, very useful device where you want to control the heat from an eiement, used on most electric cookers, these are really pulsed thermostatic switches, the length of
the "on" time depending upon the setting of the unob and heat at sensor head. The simmer stat will control up to 15 amps. Price $\mathbf{E 2} \cdot \mathbf{1 6}$. Knob is not suppiled but is available at $\mathbf{3 3 p}$. Multi-voitage transformer 13 watts, an extremeiy versatile transformer and it is quite surprising the number of different voltages which may be obtained by using its two windings or parts of these windings in assisting or opposing modes. $130-0-130$ may be obtained voltages as $20-0-20$ or $25-0-25$ or (1) $50 v$ tapped at $30 v$ and (2). 260v tapped at $240,220,200$ and 130 .
Special snip price only Ei -38.

Quick Cuppa. Mini immersion heater, ideal for taking on holfday, for making a "quick cuppa" tea, or for having by the
bedside for baby's feed etc. 250 w heater $Q 230$ volt or approximately 90 watts Q 110 volts. Price $£ 2.95$.
Neon Screwdrivers. Two useful models:- $7 \frac{1}{2} "$ price 70p and
$5 \frac{1}{2 \prime \prime}$ price 55p. $5{ }^{2}{ }^{\prime \prime}$ price 55 p .
$240^{\circ} 1 \mathrm{~mA}$ Moving Coil Panel Meter. A large Instrument,
size approximately size approximately $4 \frac{1}{2}$ " squarg at the front and $4 \frac{1}{\prime \prime}$ deep.
intended for panel mounting, Its scale is calibrated $0-7$ and it was intended to be used as rev. counter, $£ 14$ each.
Pressure Switch. Adjustable through a range of pressure from where it can be operated by sucking or pressures approx. 50 psi-10 amp echangeov
with threaded inlet. Price $£ 2.90$. Push-Push Switch. Fixed through panel this is a ratchet
action, double pole changeover switch, the contacts we understand are hard gold plated. Spindle is t", contacts we that a standard radio knob can be fitted. Price $30 \mathrm{p}+3 \mathrm{p}$. Good quantlty available at usual discounts.
C.R.T. Display Unit. We feel this would be easy to convert
to an oscilioscope, it has all the necessary ingredents to an oscilloscope, it has all the necessary Ingredients. It is in a case size $15^{\prime \prime} \times 10^{\prime \prime} \times 11^{\prime \prime}$ approx. with a carrying
handle and a front protection flap. Plenty of controls and is mains operated through step down transformer. Size of the
tube $153^{\prime \prime}$. Price $\mathbf{\Sigma 1 8} \cdot \mathbf{7 5}$.

NEW FROM GASIO

DIBLE FX8000
43 Scientific funct.
1100 sec. Stopwatch. Five Alarm-Timers. sequential (selfclearing) or repeat 2 level parenthesis. Memory. Deg, Rad, Gra
Standard deviations. Fractions. Sexagesimal. Rect $/$ Polar convert. LCD. 1300hy batteries
 £29.95

BNEW CQ-81 CALCULATING ALARM CLOCK PLUS 2 ALARM/TIMERS AS Two AA batteries last
for 10.000 hrs (1 year) COC 6 digit clock. large angled display. 24 hr Alarm, also two
24 hr
Alarm Timers 24. hr Alarm/Timers with
counddown (one selfclearing, one repeats)

 £17.95

NEW FX-48 SCIENTIFIC MINI
 CARD
Full scientific with
2 level parenthesis 2 evel parenthesis.
Full Memory Deg. Rad,
Grad. Sexagesimal Grad. Sexagesimal.
Standard deviations. siandrard devilions.
Gou hrs battery life. RRP $£ 24.95$ £19.95
NNEW CALCULATING ALARM

CLOCK

MINI CARD. Available Aug./Sept. Similar size to

INEW MORE POWERFUL LCD SCIENTIFIC CALCULATORS
Available Aug/Sept. FX-2500 £19.95 FX-3100 £25.95

CASIO QUALITY AND VALUE 31QR-17B
£29.95
3195-12B
Right. $7 \cdot 7 \mathrm{~mm}$
$\mathrm{E} 39 \cdot 95$
Stopwatch.
Dual Time.
Water
Resistant.
Resistant
All s/s

319R-18E (Round face-not illustrated). Luxury version of 31 QR- 77 B . Only 7.45 mm thick $\mathrm{E} 34-95$ SPORTS WATCHES.
${ }^{\mathrm{F}-100}$ (ieft) £24-95 ${ }_{8}^{520 \mathrm{OS}-44 \mathrm{~m}}$ £34.95

Net, Lap and ist α and place
times to $1 / 100$. times to $1 / 100$. 38Cs-14B Chronograph $£ 49$-95 ALARM WATCHES. 25 CR-16B (round) $£ 49.95$ WORLD TIME WATCH. 28 CS-118 $£ 59.95$ SEIKO ALARM/CHRONO ($£ 130$) $£ 104$ CITIZEN MULTI-ALARM (E135) $£ 108$ MAINS DIGITAL ALARM CLOCKS Falichild Timeband C500. Black or white 89.95 CASIO CALCULATORS
ST-1. Stopwaten(lour way) $£ 24.95$
LCD. LC B22 E10-95. LC 78 £16.95
AQ-1000. Clock, alarm, stopwatch $£ 21$. 95
CASIO SCIENTIFICS

Send 25 p for our illustrated catalogue
Prices include VAT and PGP. Send cheque, P.O. or

NO
BATTERIES NO WIRES
£29•99
PER PALR

+ VAT 43.75
The modern way ut instant 2 -wiy eommunications. suppiled
The modern way uf instant 2-wsy communications, Suppiled wine, Crystal clear communications from room to room. Range t-mile on the same mains phase. On/off switch. Volume control. Useful as inter-ofice intercon. between
4SEATION IITEICOM

£22.95
Solve your communication problems with this 4-Station Tranzistor Intercom system (1 master and 3 Suba), in robust plastic cabinets for desk or wall mounting. Callj suitable for Business, Surgery, Schools, Hospitals and Offce. Operates on one 9 V battery. On/otr switch. Yolume control. Complete with 3 connecting wires each 661t. A Battery
NEW' AMEAICAN TYFE CRADIE
IELEPHONE AMPLIFIER

$£ 16.95$

Latest tanisisturised Telephone Amplifier with detached plug-in speaker. Placing the receiver on to the cradile activates a switch for immediate two-way conversation Without holding the handset. Many people can listen at a
time. Increase efficiency in office, shop. workshop. Perfect for "conference" calls: leaves the user"s hands Iree to make notes, consuit fles. No long waitlng, saves time with longdistance calle. On/off awitch, volume control, conversation

10 -day price refund + VAT $21 \cdot 60$. P. \& P. 89
WEST LONDO DIREAT BUPP all Items.
169 KENSLAGTON EIGH STREET, LONDON, W 01-937 5548

FRGBESORT-WAVE KITS WORLD-WIDE RECEPTION

H.A.C. well known by amateur constructors for its short Wave receivers, now offers a the novice range of kits and
E10.50 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III containing all genuine short wave components, drilled chassis, valve, accessories and full instructions. TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at y 12.50 this receiver is outstanding value, and will give you hours of interest and enterwill give
tainment.
Lainment. K and K plus (illustrated above) for the more advanced constructor. This receiver has recenily been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16; 10 Windmill Lane Lewer Road, East Grinstead, Wert Sussox RH19 3SZ

EXTRA SPECIAL MAIL ORDER OFFER

 TITAN TA/50A 50 w AMPLIFIER

High sensitivity Multi purpose three ind.
controlled input controlled input
Conntrols Bass. Controls Bass.
Treble presence Robust, well styled compact cabinet. Black Vynide
covered. Attractive Back/Silver Fascia. $\mathbf{1 2}$ months Guarante. Carr EI
PAIR FANE POP 15 12" SPEAKERS
Suitable for use with above when wired $\mathbf{1 9} 95$ in series and housed in sealed cabiner
SUITABLE TWIN SPEAKER CABINET SUITABLE Also for personal shoppers only

T'TABLES, JHGLE MACHINES DISCO CONSOLES, LIGHTING, CABINETS, CREDIT TERMS AVAILABLE orders $\mathbf{~} 20$ Phone orders accepted from Access \& Barciay eard holders. Branches at 403 SAUCHIEHALL STREET GLASGOW

Tel: 0413320700

NEWCASTLE SHOPPING CENTRE Tal: 063225168 Mail Orders \& Export enquiries to NEWCASTLE
Branch.

(13) WIRE WRAPPING CENTRE

A£24.77 B£29.58 C£2-61 D£6.89

3 IN 1 WIRE DISPENSER
New wire dispenser cuts and strips three different colours of wire. Quick and easy to use, pocket size. Wire sizes 30 AWG. $50 f t$ Red, Blue \& White. Kynar insulated.
£3. 77

FROM 75p

TERMINAL AND DISTRIBUTION STRIPS
Bread boarding building blocks with universal matrices of solderles
plug-in tiepoints.

- Facilitate quick, solderless circuit build-up universal 1 , x on,
- Are offered in ten configurations.
- Accept all components with leads up to .032' diameter.
- Require no special patch cords.
- Includes integral nonshorting instant mounting shorting
backing.

DIP/IC INSERTION TOOL WITH PIN STRAIGHTENER

STRAIGHTEN

RELEASE

PICK UP

INSERT PINS
14-16 Pin Dip IC inserter INS-1416 £2-58

DIP/IC EXTRACTOR

TOOL

The EX-1 Extractor is ideally suited for hobby enthusiast or lab engineer. Featuring one piece spring stee construction. It wil extract all LSI, MSI and 24 pins.
Extractor Tool EX-1.£1-10

DISTRIBUTED**

WIRE-WRAPPING KIT

Contains: Hobby Wrap Tool WSU-30 M, Wire 14 DiP's, (2) 16 Dip's) Hobby Board H-PCB-1, DIP隹 insertion TOol' NS-1416 and DIP/C Extractor Tool EX-1. | Wlre-Wrapping | WK-4B |
| :--- | :--- | Blue)

OK PLIERS AND CUTTERS
UNIVERSAL CUTTER
Cuts everything. Leather, wire, plastic, tin-plate, cardboard. Stainless steel blades.
Just one of the range of high quality pliers, cutters, tweezers and screwdrivers.'
$3136 £ 3-20$

HOBBY WRAP TOOL Wire-wrapping, stripping, unwrapping tool for AWG 30 on $.025(0,63 \mathrm{~mm})$
Square Post.

Regular Wrap	WSU-30
Modifled Wrap	WSU-30M

IC TEST CLIPS

FOR DUAL-IN-LINE PACKAGES

- Provlde full access to integrated circuit DIP leads.
- Remove DIP's damage free.
- Avaliable in sizes to accommodate all DIP's; TC-14 fits 14-pin DIP's £2.75 etc.

DIP SOCKET

Dual-in-line package, 3
level wire-wrapping,
phosphor bronze contact,
goid plated pins. 025
$(0,63 \mathrm{~mm}) \mathrm{sq} .1 .100$
($2,54 \mathrm{~mm}$) centre spacing.

14 Pin Dip Socket	14 Dip
16 Pin Dip Socket	16 Dip

FROM 14p

RIBBON CABLE ASSEMBLY FROM £2.70 \begin{tabular}{|l|l|}
\hline With 14 Pin Dip Plug $-2^{\prime \prime}$ Long \& DE 14-2

\hline With 14 Pin

\hline

\hline With 14 Pin Dip Plug -4" Long \& DE 14-4

\hline Wit 14 Pin

\hline

\hline With 14 Pin Dip Plug - $8^{\prime \prime}$ Long \& DE $14-8$

\hline With 16 Pin Dip Plug $\mathbf{2}^{\prime \prime}$ Long

\hline

\hline With 16 Pin Dip Plug -2" Long

\hline WE 1th 16 Pin Dip Plug $-4^{\prime \prime}$ Long

\hline DE 16-2

\hline

\hline With 16 Pin Dip Plug -4" Long DE $16-4$

\hline With 16 Pin Dip Plug $-8^{\prime \prime}$ Long

\hline
\end{tabular}

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College special ising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000's of
 ponents. No time to sort. M.
$561 \mathrm{bs}-£ 20 \cdot 00 ; 112$ lbs- $\mathbf{5 3 0} .00$.

Handy Packs

4 aluminlum boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal 4 aiuminum boxes $128 \times 84 \times 38$
for signal Injectors, etc. $£ 1 \cdot 00$.
Miniature Edgewise Panel Meters 200μ A FSD.
100 mintature reed switches ideat 90p 100 mintature reed switches ideal 1 or
burglar alarms, model railways, etc. $£ 3.30$. burglar alarms, model railways, etc. es. 30 .
6×8 pole 12 volf reed relays on board E2.45.
${ }^{\mathrm{EP2}} \mathrm{High}$ quality computer panels smothered in top grade components $5 \mathrm{lbs} \mathrm{E} 4 \cdot 75.10 \mathrm{lbs}$ Ea. 85.
DELUXE FIBRE GLASS PRINTED
includes 150 sq . Ins. copper clad f / g board. inctes ehsq.ins. coppor clad f / g board, abraslve cleaner, 2 mini dillil bits, etch tray and Instructionsionly $£ 5 \cdot 30$.
150 sa . in. fibre glass board $\mathrm{E2} .00$
Dalo pen. 90p.
lbs terric chloride to mil spec. £1-25. 5 los terric chlortde to mil spec. $85 \cdot 00$.
Instruction sheet 20 p
Miniature mains transformers, fuliy
shrouded 240 V in $6-0-6 \mathrm{~V}$ at 100 ma out. shrouded. 240 V . in $6-0-6 \mathrm{~V}$ at 100 ma out. Ex new equipment. Complete with mains lead and plug on input and short leads on outout 90p.
Semiconductor Eargains
100 new $\&$ marked silicon and germanium translstors Including BC148, BFi94, BC 183, etc. ± 3.95
100 mixed diodes including zener, power and bridge types $£ 3-30$.
Bridge rectifler 100v 2.5 amo 4 for $£ 1$ Brand new ITT 25 kv triplers for Decca Bradford chassis $£ 2.50$. 5 for $£ 10$. 50 Germanium diodes, ideal for crystal sets, etc. Ef.
Miniature Vernitron $F M 410.7 \mathrm{MHz}$ Ceramic Fliters 50p each 3 for $£ 1$.
New U.H.F. transistor TV tuners 4 pushbutton type $\mathrm{E} 3 \cdot 50$
Rotary type with slow drive $\mathbf{£ 2} \mathbf{5 0}$.
Hardware Pzeks each containing 100's of items including BA nuts and bolts, Nylon, Self-tapping, Posidrive. "P" clips, Cable clamps, Fuse holders. Spire nuts etc.,
40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PW 149A BROOKMILL ROAD, DEPTFORD, SE8 CALLERS BY APPOINTMENT ONLY
on VHF as used in modern Thorn music
Aluminium TV coax plugs 8 for $\$ 1$-00 Standard wire ended neons 12 for $£ 4$ o0 Miniature SK \log pots with s / p switch 4 for DON'T LET YOUR ENVIRONMENT DON'T LET YOUR ENVIRONMENT
DEHYDRATE YOU OR YOUR POS. DEHYDRATE YOU OR YOUR POS.
SESSIONS. Buy a Honeywell Humidity Controller. Compact $\left(33^{\prime \prime} \times 1 z^{\prime \prime} \times 1^{\prime \prime}\right)$. wide range of control, adiustable by " spindle with flat. Contact Rating 3.75A @ 240VAC, 7.5A@ 120 VAC . Ideal for Greenhouses,
Centrally Heated Homes, Offces etc Build your own Humidifiers or Dehydration Alarms. $\mathrm{E1}-50 \mathrm{ea} .4$ for E 5 .
New Minlature FM Frontends 88-108MHz $\mathbf{1 0 . 7 M H z}$. I.F. or with integral Tuning-gan E2. 50.
TBA 120A 50p each
SN 76115N 81 each.
20 mm Enti-surge fuses your selection Component Bargains
300 mixed resistors $\& \frac{1}{2}$ watt $£ 1 \cdot 50$ 300 modern mixed caps most types $£ 3.30$ 200 mixed resistors mostly $1 \& 2$ watt. 11.50 100 mixed polyester caps is2 20.
100 mixed modern miniature and plate caps Et 100 .
100 mlxed wirewounds $\mathbf{£ 2} \mathbf{2 0}$. 100 mlxed wirewounds $\mathbf{\text { £2 }} \mathbf{2 0 .}$
300 printed circuit resistors $\boldsymbol{\varepsilon}_{1}$ 300 printed circuit resistors \&1 00 .
125 mixed film reslstors, mostly miniature 125 mixed film reslstors, most
E1.00, 500 for $£ 3 \cdot 50$. 25 mixed pots \& presets £1-50.
100 High wattage resistors, wirewound 100. High
stc. 20.

Modern Vertical Presets with sloted knobs, $220 \Omega, 470 \mathrm{~K}, 500 \mathrm{~K}, 1$ MEG, 25 for $£ 1$, 4 Packs $\mathrm{E} 3 \cdot 50$.
Small 5Ω wirewound Horiz, Convergence Preset with K nob. 10 for $£ 1$.
Metorola I watt Audio I.C. MFC 8010 $9-16 \mathrm{v}, 8$-160, $10-400 \mathrm{MV}$. Sensitivity S.C. proot, complete with circuits and dataعi-10 each, 5 for $E 4$.
100K Stereo Slider Pots. Modern, slim 100 Stereo
type. 50 p each, 3 for Et .
Double Gang A.M. Tuning Condensors with integral 100 K pot. For varicap tuning

－ST VALVE MAIL ORDER co CLIMAX HOUSE，FALLSBROOK ROAD， LoNDON SW16 6ED

SPEGIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.20	ASY26	0.45
AAY30	0.13	ASY27	0.50
AAY32	0.15	ASZ15	$1 \cdot 25$
AAZ13	0.25	ASZ16	1.25
AAZ15	0.31	ASZ17	1.25
AAZ17	0.25	ASZ20	0.75
AC107	0.75	ASZ21	1.50
AC125	0.30	AU110	$1 \cdot 70^{\circ}$
AC126	0.25	AU113	170^{*}
AC127	0.25	AUY10	1 －70＊
AC128	0.25	BA145	$0 \cdot 15 *$
AC141	0.20	BA148	0.15^{*}
AC141K	0.35	BA154	$0 \cdot 10$
AC142	0.20	BA155	$0 \cdot 12$
AC142K	0.30	BA156	0.13
ACi76	0.25	BAW62	0.05
AC187	0.25	BAX13	0.07
AC188	0.25	BAX16	0.07
ACY17	0.65	BC107	0.12
ACY18	0.65	8C108	0.12
ACY19	0.65	BC109	0.13
ACY20	0.65	BC113	$0.15{ }^{\circ}$
ACY21	0.85	BC114	0．18＊
ACY39	$1 \cdot 25$	BC115	0 19＊
AD149	0.70	8C116	0．19＊
AD169	0.75	BC117	$0.22{ }^{\circ}$
AD162	0.75	BC118	－0－16＊
AF106	0.45	BC125	$0 \cdot 18{ }^{\circ}$
AF114	0.25	BC126	0．25＊＊
AF115	0.35	BC135	－ $15{ }^{*}$
AF116	0.25	BC136	0－19＊
AF117	0.35	8 C 137	0．16＊
AF139	0.40	BC147	0．10＊
AF186	1.50	BC148	0．10＊
AF239	0.45	BC149	$0.13{ }^{*}$
AFZ11	2.75	BC157	0．12＊
AFZ12	$2 \cdot 75$	BC＋58	$0 \cdot 11^{*}$

BC159
BC167
$B C 170$
$B C 171$
$B C 172$
$B C 173$
$B C 177$
$B C 178$
$B C 179$
$B C 182$
$B C 183$
$B C 184$
$B C 212$
$B C 213$
$B C 214$
$B C 237$
$B C 238$
$B C 301$
$B C 303$
$B C 307$
$B C 308$
$B C 327$
$B C 328$
$B C 337$
$B C 338$
$B C Y 30$
$B C Y 31$
$B C Y 32$
$B C Y 33$
$B C Y 3$
$B C Y 39$
$B C Y 40$
$B C Y 4$
$B C Y 43$
$8 C Y 5$

VALVES

AZ31 CBL3 CBL31 CL33 CY31 DAF9

 DAF96 DF91t DF96DK91† DK92
DK96
DK DL92 DL94
DL96 DY8617 0.
DY802
E8BCC E88CC + EABC80 0.50 EAF42 1．2 EAF801 EB41 EBC
崽思 EBF8 $\begin{array}{cc}\text { EBL } 34 & 2.50^{*} \\ \text { ECC440 } & 1.25^{*} \\ \text { ECC81 } & 0.50^{*}\end{array}$

INTEGRATED CIRCUITS

BASES
BG7 unsklited 0．15 B7G skirted 0.30
B9A unskirted 0.15 $\begin{array}{lr}\text { B9A } \\ \text { BkIrted } & 0.30\end{array}$ 89A sklrted
Int Octal Nuvisto
Loctal
8 pIn DIL
14 pln DIL
$\begin{array}{ll}16 \text { pln DIL } & 0.15 \\ & 0.15\end{array}$
Valve screening
cans all sizes 0.30

CRT＇S	
	31．00
${ }_{28}{ }^{\text {Pr9＊}}$	9.00
${ }^{\text {30PP1＊}}$	－00
	3.00
${ }_{3}^{36 P_{1} *}$	8：00
${ }_{\text {3 }}$	${ }^{2}$
${ }_{\text {3KP1＊}}{ }^{\text {3／＊}}$	15．00
${ }_{\text {3RP1＊}}$	35．00

4EP1
$\substack{\text { 4EPT } \\ \text { 4EP1 }}$

${ }^{\text {sidpp }}$
SCP1A
SFP15A
S．
5FP15A
5UP7＊

Ontisi
$\stackrel{\text { DH7－11．}}{ }$

0

$\begin{aligned} & \text { PL84 } \quad 060^{*} \\ & \text { PL504/500 } \end{aligned}$
PL508 $\dagger 1.60^{\circ}$
PL509＋2－72＊
PL519＋3．60＊
PL801 10＊
PL802 \dagger 3．00
PY33 0．68＊
PY81† 0．72＊
PY82 0．55＊
PY83 0．70＊
PY88＇1．16＊
$\begin{aligned} & \text { PY500A才4-60" } \\ & \text { PY800/B1† } \end{aligned}$
QQV02－6 9．90
QOV03－10t
200
QQV03－20At
10．50＊
QQV06－40A \dagger
13．00＊
R17 $\quad 7.65$
R19
R20 $\quad 1.44$
UT8－20 2．50＊
U25 1．96＊
$\mathrm{U}_{26} 1.44^{*}$
UABC80 \dagger
0．58＊
UAF42 9．75＊
UB41 1－25＊
UBC4t $\dagger 0.75 *$
UBF89 0.60
UCC84 0．75＊

\qquad

융ㅇ日是

$\begin{array}{lll}\text { 12AT6 } & 0.45 \\ \text { 12AT7 } \dagger & 0.50\end{array}$

WNNONNNNNNNNNNNNNNNNNNONNNNNNNNNNNNN NNNNNN

Terms of business：CWO．pestage and packing valvet and semiconductors 25p per order．CRTs 75p．Items merked＊add 12t\％ VAT．Others 8% ．Indicates cheap quality version or surplus，but also avallable by leading UK and USA manufacturers．Price ruling at thme of despatch．Account facillities avallable to approved companies with minimum order charge eit．Carriage and
P\＆P 8% VAT
QUOTATIONS FOR ANY TYPE NOT LISTED SAE．
－
E \＆O．E．

MIRI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. lnecorporates slots for holding 1.5 mm thick $\mathrm{pcb}^{\prime} \mathrm{s}$ Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12$ (1.9) (Includes VAT) MC $215 \times 130 \times 75 \mathrm{~mm}$ £2.94 (1-9) (Includes VAT) (Prices Include VAT \& P.P.)	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LED's,Diodes, Resistors, Capacitors and aft DIL packages with 6 to 40 pins	SC BOXES Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. $\begin{array}{lrl}\text { SC } 85 \times 56 \times 35 \mathrm{~mm} \\ \text { SC } 111 \times 71 \times 48 \mathrm{~mm} & 97 \mathrm{p}(1.9) & \text { (Includes VAT) } \\ \text { SC } 1.29(1-9) & (\text { Includes VAT) }\end{array}$ SC $161 \times 96 \times 59 \mathrm{~mm} \quad £ 1.81(1-9)$ (Includes VAT) Add 25p per $£ 1$ order value for Post \& Packing
ECONOMY OUALITY LEO's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours $125^{\prime \prime}>{ }^{16}=0 \text { lens }{ }^{2 \prime \prime}$ Full specification LED's also available Red (specify size) 75p per pack Green, Yellow, Orange (specify sizel $£ 1.20$ per pack Packs contain 5 LED's, mounting clips and data	Includes slot-in Component Support Bracket and has 470 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.) TYPE MP NE ON INDICATOR Supplied with resistor for 240 Volts operation 150 mm feads, held in 6.4 mm hole by nut Red, Amber, Clear, Opal 20p each	240 VOLTS MINI HANO DRILLS Ideal for drilling peb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. f9.72 (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}$, 1/8th Drills, 3/32" Collet Price £1.75 (Includes VAT \& P.P.)
TYPE A NEON INDICATORS Supplied with resistor for 240 Volts operation Held in 8 mm hole by plastic bezel 150 mm wire leads	SEVEN SEGMENT DISPLAYS Economy quality Red, yellow and green Only 45p each Common Anode - $0.3^{\prime \prime}-$ Left Decimal Full specification displays also available as above Red @ 98p each Green and Yellow@ $£ 1.35$ each. Data supplied with full spec. displays only.	
12 VOLTS MINI HAND DRIL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with 3/32" and 0.50" dia shanks. £7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless included in price add 25 p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Michael Hilliams Elertronics 47 Vicarage Av. Chearlfe Hulme, Cheshire SK8 7JP	RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p $94 p$ 1.23 RC $120 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08 Polystyrene version in grey only, no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} \quad 61 \mathrm{p}$ All prices are 1.9 off, include VAT, but please add $\mathbf{2 5 p}$ per $£ 1$ order valse for Post \& Packing

TECHNICAL TRAINING IN ELECTRONICS TELEVISION AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained person. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Certificates:

Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET To: Inter
Schools
Dese ha. 2764, interteret Houre, Loniow
SW8 4UJ or telephone 6229911
Subject of Interest.
Name
Address .

It's SUMMER SALE time again!

THYRISTORS

Order No. Quantity
16168 pleces Assorted
16168 5 pleces Assorted Ferrite rods
16169 pieces Tuning gangs MW/LW 1617050 metres Single strand wire 1617110 Reed switches
161723 Micro switches
1617620 Assrd electrolytics Trans types 40p 161771 pack Assorted hardware nuts,
1617920 Assorted
1618015 Assorted control knobs panels
$\begin{array}{ll}16184 & 15 \\ \text { Assorted Fuses } 100 \mathrm{~mA}-5 \text { am } \\ 16188 & 60 \\ 1\end{array}$
16188 60 6 resistors mixed values
1618730 metres stranded wire assorted
S100 colours 120 twatt resistors. Pre-formed. 1978 $\begin{array}{cc}\text { Prod. } \\ \text { S10t } \\ \text { 120 } & \frac{1}{2} w a t t ~ r e s i s t o r s . ~ P r e-f o r m e d . ~ \\ \text { Our mix }\end{array}$
 S103 220 iwatt resistors. Range 100 ohms £2. $\begin{array}{ll}\text { S104 } & 60 \text { Low ohms } \frac{1}{2} \text { watt res. } 10-1000 h m s 60 p^{*} \\ \text { S105 } & 40 \text { Low ohm } \frac{1}{2} \text { watt resistors } 10-1000 h m s\end{array}$ $\begin{array}{ll}\text { S106 } & 25 \text { Mixed wirewound reststors } \\ \text { S107 } & 20 \text { Tantalum bead caps }\end{array}$ S108 High quality electrolitics $10 \mathrm{mF-500mF}$ 16204 C280 Pak. Contains 50 metal foil cans 3136 Ribbon cable flat standard 15-wa multi-coioured P.V.C. insulated, tranded tin copper $1 \mathrm{~m} \quad 25$

SILICON POWER TRANS. NPN

 S97 BD371 $2 \mathrm{amp} 1.2 \mathrm{w} .60 \mathrm{Vceo} \mathrm{Hfe} \mathbf{4 0 - 4 0 0}^{4}$ S98 2N5993 R.C.A. $36 \mathrm{w} \quad 4 \mathrm{amps} \begin{gathered}75 \mathrm{Vceo} \mathrm{Hfe} \\ 50-120 \text {. } \\ 5 \text { for } £ 1.00 *\end{gathered}$SILICON BRIDGE RECTS.
S99 Mixed pak 2-5amp. $50-600 \mathrm{v}$, all coded. 4 for $\mathrm{E} \cdot 00^{*}$
P.C. BOARD

S110 Mixed Bundit. P.C.B., Fibreglass'paper,
ingle \& double-sided $\begin{gathered}\text { Fantastic value } 75 p\end{gathered}$
I.C. SOCKET PAKS

MAMMOTH I.C. PAK
Approx. 200 Pieces. Assorted falloout inte-
grated circuits. including Logic. 74 series, grated circuits, including Logic. 74 series, but some unmarked - you to identify.
Order No. 16223

CMOS ICs

TRANSISTORS

Type	Price								
AC107	$25 p$	BC177	12p	BF185	25p	TIP32A	34p	2N1613	15 p
AC126	14 p	BC178	12 p	BF194	*9p	TIP32B	35p	2N1711	$15 p$
AC127	16p	8C179	12p	BF195	*9p	TIP32C	36p	2N1893	28p
AC128	16p	BC182	${ }^{*}{ }^{\text {p }}$	BF196	*2p	TIP41A	34p	2N2218	15p
AC128K	24 p	BC182L	*9p	BF197	*12p	TIP41B	35p	2N2218A	- 18p
AC176	18p	BC183	${ }^{* 9 p}$	BF200	25p	TIP41C	36p	2N2219	15p
AC176K	24p	BC183L	*9p	BFX29	22p	TIP42A	36p	2N2219A	18p
AC187	16p	BC184	*9p	BFX84	18p	TiP428	37p	2N2221	15p
AC187K	26p	BC184L	*9p	BFY50	12p	TIP42C	38p	2N2221A	A 16p
AC188	16p	BC212	*10p	BFY51	12p	TIP2955	65p	2N2222	15p
AC188K	26p	BC212L	*10p	BFY52	12p	TIP3955	42p	2 N 2222 A	A 16p
AD161/		BC213	*10p			ZTX107	*6p	2N2369	10p
162MP	80p	BC213L	*10p	MPSA0	*22p	ZTX108	*6p	2N2904	14p
AF139	30p	BC214	*10p	MPSA05	*22p	ZTX109	*7p	2N2904A	- 15p
AF239	30p	BC214L	*10p	MPSA5	*22p	ZTX300	*7p	2N2905	14p
BC107	6 p	BC251	*10p	MPSA56	*22p	ZTX301	*7p	2 N2905A	- 15p
BC108	6 p	BCY70	12p	OC44	12p	2TX302	*9p	2N2906	12p
BC109	6p	BCY71	12 p	0 O 45	12p	ZTX500	*8p	2N2906A	A 14p
BC118	*10p	BCY72	12p	$0 \mathrm{C74}$	9 p	ZTX501	*10p	2N2907	12p
BC147	*8p	BD115	40p	OC72	12p	ZTX502	*12p	2N2907A	A 13p
BC148	*3p	BD131	*35p	OC75	*10p	2N696	10p	2N2926G	*8p
BC149	*8p	8D132	*37p	OC81	14p	2N697	10p	2N2926Y	*7p
BC154	*16p	BF115	17p	TIP29A	35p	2N706	7 p	2N3053	12p
8C157	*9p	BF167	19p	TIP29B	36p	2N706A	8 p	2N3055	35p
BC158	*9p	BF173	20p	TIP29C	38p	2N708	8p	2 N 3702	${ }^{7} 7 \mathrm{p}$
8C159	*9p	BF180	25p	TIP30A	36 p	2N1302	12p	2 N 3703	*7p
BC169C	*10p	BF181	25p	TIP308	37p	2N1303	15p	2N3704	*6p
8C170	6 p	BF182	25 p	TIP30C	38 p	2N1304	15p	2 N 3903	*1p
BC171	**p	BF183	25 p	TIP31A	32p	2N1307	18p	2 N 3904	*11p
BC172	*6p	BF184	25p	TIP31B	33 p	IN1308	22 p	2N3905	*11p
BC173	7 p			TIP31C	34p	IN1 309	22p	2N3906	*11p
				D10	5				
Type AA119	$\begin{array}{r} \text { Price } \\ 5 \mathrm{p} \end{array}$	Type BAX16/	Price	$\begin{aligned} & \text { Type } \\ & \text { BYZ16 } \end{aligned}$	Price 30p	$\begin{aligned} & \text { Type } \\ & \text { OA85 } \end{aligned}$	$\begin{array}{r} \text { Price } \\ 7 \mathrm{p} \end{array}$	Type IS44	$\begin{array}{r} \text { Price } \\ 3 \mathrm{p} \end{array}$
AAZ13	4 p	OA202	5p	BYZ17	28p	OA90	6		
BA100	6 p			BYZ18	28p	OA91	7 p	IN5400	10p
BA115	5p	BY100	15p	BYZ 49	28p	OA95	7 p	IN5401	11 p
BA144	5 p	BY127	*10p					IN5402	12 p
BA148	10p	BYZ10	32p	OA47	5p	IN34	5p	IN5404	13p
BA173	10p	BYZ11	32 p	OA70	$5 p$	IN60	6 p	IN5406	16p
EAX13/		BYZ12	32p	OA79	7 p	IN914	4 p	IN5407	17p
OA200	5 p	BYZ13	30p	OA81	7p	iN4148	4 p	iN5408	19p

LINEAR I.C.'s

$\begin{array}{lll}\text { UA711C TO99 } & \text { 25p } \\ \text { UA703 } & \text { TO99(Plastic) } 20 \mathrm{p} \\ \text { 741P } & \text { 8pin DIL } & \text { 18p } \\ 72741 & 14 \text { pin DIL } & \text { 20p } \\ \text { UA741C } & \text { OO99 } & \text { 20p } \\ 72747 & \text { 14 pin DIL } & \text { 55p }\end{array}$

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

OPTOELECTRONICS

POTENTIOMETERS

Slider 40 mm TRAVEL
Order No

1618625 Pre-sets Assorted Values 40

MULTI-TURN PRE-SETS

S40 $3 \times 100 \mathrm{~K}$ LIN ONLY 50p*
VOLTAGE REGULATORS

		TO220	
No. MVR7805	$\mu \mathrm{A} 7805$		
No. MVR7812	μ A7812	TO220	$85 p$
No. MVR7815	$\mu \mathrm{A} 7815$	T0220	85p
No. MVR7818	μ A7818	TO220	85p
No. MVR7824	μ A 7824	TO220	85p
Negative			
No. MVR7905	$\mu \mathrm{A} 7905$	T0220	£1-10
No. MVR7915	μ A7912	TO220	E1-10
	4A7915	TO220	E1-10
No. MVR7918	μ A7918	TO220	$81 \cdot 10$
No. MVR7924 HA723C TO99	$\mu \mathrm{A} 7924$	TO220	7272314 pin DII 380
${ }^{\mu} \mathrm{A} 723 \mathrm{C}$ TO99	$\begin{aligned} & 38 \mathrm{p} \\ & 309 \mathrm{~K} \end{aligned}$	$\begin{array}{r} 7272314 \mathrm{pi} \\ \& 1 \cdot 20 \end{array}$	38p

UNIJUNCTION TRANSISTORS
2N3819 15p ${ }^{\text {FET'5 }}{ }^{2 N}$ 2N558 \quad 18p

AUDIO PLUGS \& SOCKET PAKS

Order No.
S 1
$5 \times 3.5 \mathrm{~mm}$ Plastic Jack Plugs $\quad 40 \mathrm{p}$ *
$5 \times 2.5 \mathrm{~mm}$ Plastic Jack Plugs
\times Std. Plastic Jack
$2 \times$ Stereo Jack Plugs
5×5 Pin 180° DiN plug
8×2 Pin Loudspeaker Plugs
$6 \times$ Phono Plugs Plastic
$5 \times 3.5 \mathrm{~mm}$ Chassis Sockets (Switched)
$5 \times 2.5 \mathrm{~mm}$ Chassis Sockets (Switched)
$4 \times$ Metal Std. Chassis Switched
Jack Sockets
$2 \times$ Stereo dack Sockets with instruction ${ }^{50}$
leaflet for H/Phone connection S12 5×5 Pin 180° DIN Chassis Sockets S13 8×2 Pin DIN Chassis Sock
S14 $6 \times$ Single Phono Sockets
FIELD EFFECT TRANSISTORS

AUDIO MODULE SALE

Type AL20A	Description	Normal Price	Sale Price
AL30A	10W RMS Power Amp	,	E2. ${ }^{\text {5 }}$ 5**
AL60	$25 W$ RMS Power Amp	¢	83.55*
AL80	35W RMS Power Amp	6-95	15.95
AL250	125W RMS Power Amp	$\underline{515}$	¢14.45
SPM80	35 V Power Supply	发-75*	£3.10**
PS12	20-30V Power Supply for AL30A/AL20A	¢1 -80	E1.15*
PA12	Stereo Pre-Amp for AL30A/AL20A		c5-95*
PA100	Stereo Pre-Amp for AL60/AL80	513-75	£12.45*
S450	Stereo F.M. Tuner	520-45"	£18.65*
MPA30	Magnetic Ceramic Pre-Amp	E2-85	£2.55*
Stereo 30	Complete Audio Chassis 7W-7W RMS	£18-25	E14.95*

ORDERING. Please word orders exactiy as printed in
cluding the part number and order number.
P \& P. Please add 35p towards postage \& packing
unless otherwise stated. V.A.T. Add $12 \% \%$ to prices marked*. Add 8% to others excepting those
These are zero.

DEPT. PW10 P.O. BOX 6, WARE, HERTS SHOP 18 BALDOCK ST., WARE, HERTS AT OPEN 9 to 5.30 MON-SAT

EDITOR
Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE ART EDITOR

A Professional Finish

FROM comments made by readers we know that one of the features which they seek in any constructional project is the means of achieving a presentable appearance to the finished item of equipment. Whether it be TECHNICAL EDITOR Ted Parratt, BA

NEWS \& PRODUCTION EDITOR Alan Martin

TECHNICAL SUB-EDITOR Peter Preston

TECHNICAL ARTIST
Rob Mackie
LAYOUT ARTIST
Keith Woodruff
SECRETARIAL
Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES

Westover House, West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-261 6671 Roy Smith
REPRESENTATIVE
Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone: 01-261 6570 Dave Kerindi
ADVERTISEMENT OFFICES
Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Geoffrey C. Arnold T. Eng. (CEI) FSERT (ex G3GSR)-Editor

Like many others in electronics, Geoff began his career as a seagoing Radio Officer, first with Marconi Marine, then with the P \& O shipping company. Transferring to P \& O shore staff, he was engaged in installation and repair of all types of ship-borne radio, electronic and sound equipment. A spell with Redifon Marine, working on the design of special systems, brought a deep involvement with handbook
writing, which inspired his transfer to technical journalism.

Spare-time interests include music (more or less anything except modern classical), d.i.y., and studying for a degree with the Open University. Geoff is married, with a son reading Electrical and Electronic Engineering at University of Surrey, and two daughters still at school.

RAE courses

Three courses for radio amateur's are being offered by North Trafford College of Further Education. Course ERA1 will cover RAE theory and ERA2 the morse code, both these courses will be on one evening each week between 18.30 and 21.00 hours. Enrolment will be on 11th, 12th and 13th September. Another advanced course is available for amateurs who have passed the RAE and would like to broaden their expertise. The lecturer will be J. T. Beaumont G3NGD. North Trafford College of Further Education, Talbot Road, Stretford. Tel: 061-872 3731.

A similar course is also offered at Hucknall Adult Education, Centre. The course starts on Monday 18th September 1978, and enrolment is on Monday 11th, Tuesday 12th September 1978, from 2pm until 8pm. Hucknall Adult Education Centre, Portland Road, Hucknall, Nottingham. Tel: (06075) 2798.

All being well Blackburn Technical College will again be running an RAE course, commencing on Wednesday evenings at the end of September. Enrolment will be at the College on 6th, 7th and 8th September 1978. For further details telephone G3LLL on Blackburn 40762 in the evening and Blackburn 59595/6 during the day. College of Technology and Design, Feilden Street, Blackburn.
Moving south to the London area, we are notified of two courses, the first at Amberly Road Adult Education Centre, on Mondays and Thursdays with Morse, starting 18th September 1978. Enrolment will be on 7th, 8th, 11th and 13th September. We understand this is the nearest RAE course to the centre of London. The second will be held at Hatch End High School, Hatch End, Middlesex, on Wednesdays, with Morse starting 27th September 1978. Enrolment will be on 16th and 17th September at Nower Hill School. Both courses will be conducted by D. T. Busby, G8ELB, 46 St. Kilda's Road, Harrow, Middlesex.

And last but not least, an RAE course will start on Thursday 21st September 1978, beginning at 7.30 pm . There will also be a Morse Proficiency Course beginning on Monday 18th September 1978 at 7.30 pm . For further information contact J. Brett, Principal, North and West Farnborough Further Education Centre, Cove School, St. John's Road, Farnborough, Hants.

The British Vintage Wireless Sociely

The second annual meeting of the society, was held on Sunday 21st May 1978, at St. Albans, with a grand turnout of over 60 members, their friends and guests. It was decided that in the future, meetings would be held every six months.

After the official business was concluded, a grand bartering session was held.

The aim of the BVWS, formed in 1976, is to promote the study of wireless history, to record existing sources of information on all aspects of early wireless, and to encourage the preservation of early wireless equipment.

The society currently has a membership of over 80 , including several overseas. It publishes a quarterly bulietin, containing articles on collecting, restoring, members exchanges and wants, vintage circuit diagrams, etc., and will extend a warm welcome to any new members. Further details can be obtained from the Hon. Membership Secretary BVWS, Mr. Jon Hill, 14 Victoria Court, Kingsbridge Avenue, London W3.

Science and Security

An international conference on the application of science to security techniques and equipment will be held in conjunction with the 1st International Science and Security Exhibition at the Metropole Hotel, Brighton. The conference is organised by the Institute of Physics, in collaboration with the Electrical Research Association.

It is anticipated that the three day conference will be in six sessions, each with one or two keynote speakers and several contributed papers. Topics to be covered will include: Protection of data and communication; Intruder detection and alarm systems; Access control systems; Identification of persons and documents; Sensing techniques; Security strategy; Industrial and commercial applications.
The conference will be held in a hall immediately adjacent to the associated exhibition. Residential accommodation will be available in the Metropole Hotel and the University of Sussex. Further details from: The Institute of Physics, 47 Belgrave Square, London SW1X 8QX. Tel: 01-2356111.

Mobile Rally

Preston Amateur Radio Society Mobile Rally, is to be held on Sunday 20th August 1978 at Walton Ie Dale County High School, Bamber Bridge, Preston, Lancs., which is situated one mile from the M6, junction 29.

There is to be a talk in on S22 and the usual attractions including a bring and buy stand. Plenty of free parking and the rally starts at 11.00am. Details from: G8KTM, QTHR.

Summer sale

We are informed by Chromasonic Electronics that they are currently holding a summer sale of, integrated circuits, seven segment displays etc. A list of the offers can be obtained by applying, enclosing a s.a.e.

Also available is their popular IC Booklet, priced 35p. Chromasonic Electronics, 56 Fortis Green Road, Muswell Hill, London N10 3HN. Tel: 01-833 3705.

On the move

A. Marshall (London) Ltd. inform us that from 20th June, they are moving their Offices, Industrial Sales Department, Mail Order Department and Central Stores to new premises at Kingsgate House, Kingsgate Place, London NW6. Tel: 01-624 0805/6/7/8.

The new premises are considerably larger than their existing ones, and it is hoped in quite a short time to - achieve a very high service level, and eliminate the difficulties they have been experiencing recently due to lack of space.

Their existing premises at 40 Cricklewood Broadway are being refitted as a new branch, and will be trading as and from 28th June.

Can I help you!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of PW. If so, let me know and I will endeavour to publicise your rally, get-together, whatever, through this column. Remember though, we compile the magazine some time ahead of publication day (e.g. this note was written in mid-June), so, the earlier I can have details, the better.

Alan Martin

Often it is required that a known degree of attenuation be introduced between a source and a matched load, for example, between a signal generator output and the input of a receiver when carrying out sensitivity measurements. The unit described provides accurate 1 dB steps of attenuation from 0 dB to 20 dB . The attenuator is designed for a 50Ω system but details are also given on how to calculate suitable component values for alternative impedances. The frequency response of the attenuator is sufficient to allow for operation up to and beyond 150 MHz . The attenuator can be built for an extremely modest outlay and is a valuable addition to the test gear owned by any serious radio experimenter.

Attenuators

Attenuation is usually expressed on the decibel scale. Both power and voltage ratios are normally expressed in decibels (dB) where:

$$
\mathrm{N}(\mathrm{~dB})=10 \log _{10}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
$$

P_{1} and P_{2} are the powers being compared. If both the source output and load input impedances are the same, then the corresponding voltage ratios may be used, in which case:

$$
\mathrm{N}(\mathrm{~dB})=20 \log _{10}\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)
$$

In the case of attenuators, V_{2} would be the output of the signal generator when it is feeding a matched load and V_{1} would be the voltage developed across the load. In this case N (in decibels) would be the attenuation of the signal between the source and the load which is imposed by the attenuator network. In order for the relation to be true, however, the attenuator must present a matched load to the source and it must of course attenuate the voltage applied by the desired amount.

General Points

For the purpose of analysis and design it is possible to reduce any active circuit, however complicated, to a single voltage generator together with a series impedance. This is known as the Thevenin equivalent circuit. It can be shown that, for maximum power transfer to an external load, the impedance of the load should be equal to the series impedance in the equivalent circuit (the so called "output impedance") Fig. 1. It is common practice to adopt a convenient value for this impedance and to design accordingly. In audio work a value of 600Ω is often chosen, whereas in radio work $300 \Omega, 75 \Omega$, and 50Ω are. common values. Having adopted a value for the

Fig. 1: Equivalent circuit showing a source coupled to a load

Fig. 2: Attenuator connected between the source and load

Fig. 3: Simple potential divider type attenuator

Fig. 4: Essentials of " π " and "T" type unbalanced attenuators

Fig. 5 : (above) and Fig. 6 (below): Circuit and physical layout of the complete attenuator.

impedance, it is possible to design individual units with common input and output impedances in the knowledge that, when connected together, there will be a maximum transfer of signal power between the units.

Fig. 2 shows how an attenuator is inserted between a source and load. Due to the fact that the source and load impedances are equal, the attenuator networks in common use are usually symmetrical in design unlike the simple potential divider arrangement which is shown in Fig. 3. Hence attenuators may be used either way round, and, if the networks are all matched to the same impedance, they may also be connected in series to provide an attenuation in decibels which is the sum of the individual attenuation, also in decibels.

Basic Forms

The two commonest forms for attenuator networks to take are the " π " and " T " types shown in Fig. 4. They perform exactly the same function and use the same number of components, but the component values may be more convenient using one form rather than the other for a given amount of attenuation. It is, of course, quite permissible to mix the two types of attenuator when several attenuators are to be connected in tandem. The use of a binary sequence of $1,2,4,8 \ldots \mathrm{~dB}$ in switching will give the maximum attenuation range for a given number of switches, but the authors chose to use a more convenient sequence of $1,2,2,5$, and 10 dB . This arrangement permits the selection of any degree of attenuation from 1 dB to 20 dB in 1 dB steps. If a greater degree of attenuation is required, then it is simply a matter of constructing another attenuator and placing it in series with the first. Two identical 20 dB switched attenuators will provide a maximum of 40 dB when they are connected in series.

The use of low capacitance switches enables a wide bandwidth to be achieved. The maximum power input

components

will be determined by the rating of the component resistors used. These should be carbon film types using short connecting leads.

Circuit Description

The circuit diagram of the attenuator is shown in Fig. 5. It is desirable to use the standard range of carbon film resistors available in the construction of the attenuator and thus the attenuator type, " π " or " T ", has been chosen with this in mind. After performing the calculations it appears that, for a 50Ω system, 1 dB and 5 dB are more accurately achieved using the " π " circuit and that 2 dB and 10 dB are more accurately achieved by the " T " circuit. Miniature toggle switches are used to select, or bypass, each individual attenuator circuit.

Construction

Construction is straightforward and should closely follow the layout shown in Fig. 6. Note that all resistor leads should be kept as short as possible in order to ensure good high frequency performance, and resistor values quoted are for a 50Ω system; for alternative impedances, multiply each resistor value by a factor of $\mathrm{Z} / 50$, where Z is the impedance for the system. BNC or 239 (u.h.f.) type connectors may of course be used in place of the coaxial type used on the prototype. The use of a diecast box is strongly recommended since adequate screening is vital if the maximum value of attenuation is to be achieved. To facilitate a very low resistance common earth connection, a small piece of copper laminate is used to line the underside of the front panel of the instrument. This, of course, also helps minimise the length of the resistor leads. The calibration of the instrument should only be checked against another known attenuator. Reliance should not be placed on the calibration scales of signal strength meters normally fitted to receivers!

The TBA 120 Series of I.F.Devices

The TBA 120 sєries consists of devices designed for use as 10.7 MHz i.f. amplifier-limiter and demodulator circuits in f.m. receivers. They are also suitable for performing the same functions in the $5 \cdot 5 \mathrm{MHz}$ intercarrier sound channels of television receivers. The devices incorporate an electronic volume control circuit which enables long leads to be used to the volume control potentiometer without the danger of hum pick up, since only a direct current passes through these leads.

Types

The TBA 120 device is encapsulated in a 14 pin dual-in-line package with the connections shown in Fig. 1. The TBA 120A is an electrically identical device which is encapsulated in a 14 pin quad-in-line package with the same connections (alternate pins on each side of a quad-in-line device are bent so that they are at different distances from the body of the device).

The TBA 120S is a more sensitive device with similar connections; it employs an 8 stage amplifier/ limiter instead of the 6 stage internal circuit used in the TBA 120. Each of the three deyices contains

Fig. 1: Connections of the TBA 120 series of devices
a separate internal transistor which is suitable for use as an audio frequency preamplifier or as a switching transistor for treble cut using a resistancecapacitance network. The TBA 120AS (Siemens) and the TBA 120SQ (National Semiconductor) are quad-in-line versions of the TBA 120S. Constructors intending to use a socket are advised to purchase the dual-in-line devices, since quad-in-line sockets are not very readily available.

The other two devices in the series are the TBA 120T and the TBA 120U; these have a sensitivity similar to the TBA 120S, but have an internal audio amplifier rather than the separate internal transistor. The TBA 120T has an internal 820 ohm resistor connected across its i.f. input (between pins 13 and 14) so that no matching resistor is required when the device is fed from a $5 \cdot 5 \mathrm{MHz}$ ceramic i.f. filter of this impedance. This extra resistor is not present in the TBA 120 U ; this latter device is mainly intended for use with tuned circuits rather than ceramic filters and has a much higher input impedance (about 40 kilohms in parallel with 5pF).

The TBA 120T and TBA 120U are more conveniently used with a video tape recorder than the other types, since they have two audio outputs, the output from pin 12 being unaffected by the setting of the volume control.
This series of devices is produced by various manufacturers including AEG-Telefunken, ITT Semiconductors, National Semiconductor, Plessey, ThomsonCSF, etc., but not all of these manufacturers offer every type. Most of the types are readily available from various advertisers in this magazine. It is wise to study the data sheet issued by the particular manufacturer concerned before using any device, since minor differences can occur between the products of different manufacturers.

Circuits

A typical f.m. i.f. circuit for use with the TBA 120 and the TBA 120A is shown in Fig. 2. A similar circuit can be used with the TBA 120S, but the connections to pins 6 and 10 and the capacitors $C 7$ and C8 can then be omitted, since the signals are conveyed by suitable internal connections in the TBA 120S.

Component values for the circuit of Fig. 2 are shown in Table 1 for monaural and stereo $10 \cdot 7 \mathrm{MHz}$ f.m. radio operation and also for $5 \cdot 5 \mathrm{MHz}$ television use.

The internal transistor and Zener diode are not used in the circuit of Fig. 2. The pins associated with these components are therefore connected to ground. A +12 V power supply line is usually convenient, but the device will operate satisfactorily with a supply of only +6 V ; the maximum permissible supply is about +18 V .

Fig. 2: A TBA 120 i.f. amplifier circuit with volume control and de-emphasis

(L1 and C2 may be similar to L2 and C9.)
Table 1. Component values recommended for the Siemens TBA 120 device in the circuit of Fig. 2.

The typical current consumption of the Fig. 2 circuit is 14 mA . The internal Zener diode is connected from pin 12 to ground, so if one wishes to use this component to provide a stabilised supply for the operation of the device itself or for the operation of any other circuit, one merely connects pin 12 via a suitable resistor to a positive supply line of not less than about 15 V . The resistor must limit the Zener current to not more than 15 mA . The emitter of the separate internal transistor is connected to ground, but the base and collector are each brought out to separate pins.

The tuned circuit L1/C2 is shown in the input of Fig. 2, but a ceramic filter may be used instead of this tuned circuit. A ceramic filter has the advantage that no alignment is necessary, but the use of such a filter makes it necessary to connect a resistor between pins 13 and 14 to provide a path for the bias voltage to reach pin 14. This resistor should have a value which is approximately equal to the characteristic impedance of the filter used. In the circuit shown, Ll provides the required bias path.

A quadrature demodulator coil tuned to the i.f. frequency is connected between pins 7 and 9. As shown in Table 1, the component values used in this tuned circuit may be slightly different in an f.m. stereo radio receiver (where bandwidth is important) than in an f.m. monaural receiver (where one requires optimum results in a narrower bandwidth circuit).

However, these suggested values are not at all critical. The resistor R3 provides some damping on the tuned circuit and therefore an increased bandwidth, but is required only in stereo systems.

The capacitor $C 5$ may have a value of 22 nF in monaural systems where it provides the required de-emphasis. In a stereo circuit, however, the much smaller value of 470 pF is recommended to attenuate the i.f. signal in the audio output; there will be two separate de-emphasis capacitors following the stereo decoder circuit.

Gain

The i.f. gain of the TBA 120 is about 60 dB and that of the TBA 120 S about 68 dB . The amplifier-limiter provides i.f. outputs at pins 6 and 10 which have an almost constant amplitude irrespective of the i.f. input voltage provided that the latter exceeds about $70 \mu \mathrm{~V}$ in the case of the TBA 120 and about $30 \mu \mathrm{~V}$ in the case of the TBA 120S. The input impedance is about 40 kilohm in parallel with 5 pF .

The volume is controlled by the setting of VR1, a range of about 70 dB being typical. As the value of VR1 is reduced, the output falls, the control characteristic being approximately logarithmic.

The performance of the circuit is somewhat dependent on the quality factor (Q value) of the inductances used, and a.m. rejection is of the order of 40 dB at an input of 1 mV , but increases with the input voltage. The audio output voltage is of the order of 1V, but increases with the Q of L2 and with the supply voltage.

Fig. 3: A circuit using the TBA 120T or TBA 120U for $5 \cdot 5 \mathrm{MHz}$ television inter-carrier sound

TBA 120T and TBA 120U

A circuit using a TBA 120 T or TBA 120 U device is shown in Fig. 3 for intercarrier 5.5 MHz television sound use. A similar circuit can be used with a 10.7 MHz f.m. radio input, but the appropriate filters must be used. The resistor shown dotted in the input circuit is required only in the case of the TBA 120 U , since it is included in the internal circuit of the TBA 120T.

In the TBA 120 T and TBA 120 U devices a voltage stabilising circuit is connected from pin 11 to ground (unlike the TBA 120). A resistor must therefore always be included between pin 11 and the positive supply line. If the decoupling capacitor C3 is omitted, the volume control range is altered.

The circuit of Fig. 4 may be used for coupling a TBA 120 T or TBA 120 U to a video tape recorder. A switching voltage of +12 V should be applied to pin 1 at playback, but this pin should be left open-circuited during recording. When the switching voltage is applied, the BC238 emitter follower is switched off, whilst the BC308 buffer is switched on. In addition, the switching voltage is applied via the BA127 diode and the 47 kilohm resistor to pin 13 of the device so as to put the i.f. amplifier out of action.

Ultrasonic circuit

The TBA 120S, like many other f.m. i.f. devices, can be employed to amplify the signals from an ultrasonic transducer. The circuit shown in Fig. 5 has been used by the writer to detect 40 kHz ultrasonic waves falling on a SEO5B 40R transducer (available from Hall Electronics, 48 Avondale Road, London E17 8JG). The 40 kHz signal from this transducer is
applied to the amplifier-limiter at pin 14 , the resistor Rl being used to convey the bias from pin 13 to pin 14. The amplified 40 kHz signal is taken from either pin 6 or pin 10 and is fed to the base of the internal transistor at pin 4 together with an appropriate bias current obtained using R3. The further amplified signal appears across the collector load resistor R4, C5 being used to assist stability.

The output signal is connected via C6 to the diode pump circuit which causes the meter to be deflected whenever the waves fall on the transducer.

Teleplay

Every 3 months a NEW game will become available to you production include already under space War, Wipe Out and many more. The price $£ 19$ depending will vary from $£ 12$ to $£ 19$ complexity of game.
inc. VAT and P\&P.
Fully

Electrical knowledge is not a necessity to assemble this project - just simple soldering.
Cheques and Postal Orders to be made payable to TELEPLAY: send your order (No Stamp Needed) to
Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number.
Queries and Technical Advice offered either by phone or by calling at our shop.

barclakcard
 为合

SHOP OPEN - 10am to 7pm - Monday to Saturday

CLOSE TO NEW BARNET BR STATION - MOORGATE LINE

DIGITAL DISPLAY DICK GANDERTON

One of the attractive features of the Avon is the digital display giving the frequency on which the transmitter is working. This display is not an essential part of the design and can be left out if the constructor so wishes, although in this case he will have to annotate the frequency select switch accordingly on the front panel.

The display is very simple, being merely a static display which is switched, via a diode matrix, to show the frequency selected.

* components

Resistors 1W 5\% 189 7 R2, R3, R4, R5, R6, R7, R8 27Ω. 1 R1 Semiconductors Diodes 1 N914 The number needed will dopend on the total number of segments to be lit (approx 110) 7 Segment displays (0.3 in) Green led com anode 5 (RS Components 586-532) Digits 2 to 6 Green led com anode 1 (RS Components 386-901) Digit 1 Integrated circuils 7805 1 1 Cl Misos Hadiedus V Vides数d A, 15 trachs $\times 27$ holes (1) Doculoxixided adhesive tape Switch water $1 p, 1 t w$, to fit frequency select switch mech.

Construction is straightforward and is based on the display bezel recently introduced by RS Components. This assembly accepts six of their 0.3 inch seven segment displays and only requires a simple rectangular cut-out in the front panel which is covered by the bezel itself. This enables the amateur to achieve a professional finish without the need for exotic tools.

The sockets fitted to the bezel are intended for use with a wire wrapping technique although wires may be soldered to the pins if so desired. In this case the pins should be carefully shortened and rubber sleeves must be used to cover the soldered joints.

The prototype display used a construction for the diode matrix which proved to be fiddly to assemble. The diodes were sandwiched between two pieces of Veroboard with the copper tracks running at right angles to each other.

Remove 3 tracks from Veroboard B

Fig. 2: The method of mounting the diodes and other components on the matrix board. Care must be taken to ensure that the tracks of the two Veroboards are correctly prepared and lined up when fastening the two boards back-to-back

Note: connections to Veroboard A are shown as black blobs, and to Veroboard B as open rings.
A much neater and simpler design has been evolved and is shown in Fig. 2. The two pieces of Veroboard are assembled back to back, again with the tracks at right angles, using double sided adhesive tape and ensuring that the holes are in alignment.

Alternate copper tracks are carefully removed from the board with them running lengthwise. To make this easier a hot soldering iron is laid on the track until the copper starts to bubble. This loosens the adhesive and allows the copper to be peeled off easily.

Fig. 3: Section through the matrix board showing how the diodes are beint and soldered to the tracks

The diodes, all 1N914, are then prepared as shown in Fig. 3. The length of the bent lead is important as, with the diode pushed into the board as far as its body, the bent lead must not penetrate further than the first board.

Fig. 4: Pin connectlons for the two types of display diglt used

$x \ldots$ Indicates no pin on display
4MOIQ
Fig. 5 : The wiring of the back panel of the display bezel
Before the diodes can be positioned the six frequencies, for which crystals have been fitted, must be noted and the segments to be lit up worked out. This is somewhat simplified by the fact that the first three digits will always read 145. And it follows that these can therefore be permanently wired leaving the only last three digits to be switched. (If you happen to pick one of the few frequencies starting with 144. You will need to add an extra section to the matrix to accommodate the third digit as well.)

I used a wire wrapping tool to hardwire the display sockets on the prototype so suitable pins were soldered into the Veroboard holes used to take connections to and from the matrix.

The wire wrapping system used was a recently introduced system known as "Slit'n'Wrap" distributed by Rhopoint Ltd. This is a novel tool which enables you to wrap perfect joints, by hand, using the special wire held on a reel fitted to the tool.

I found this a very easy and convenient method of wiring the display bezel. Wire wrapping is not generally considered by the amateur as it is limited in applications to his projects and the basic equipment tends to be expensive.

However with the advent of hand wrapping tools such as the Slit'n'Wrap, it should be within the reach of the home constructor, and used in the appropriate place will prove very useful.

The display is driven from a 5 V regulator i.c. which is bolted to the chassis to act as a heat sink. An extra wafer is added to the frequency select switch and used to switch the display as required.

The diode matrix board can be fitted either to the back of the display bezel, utilising the bezel fixing screws, or placed anywhere in the chassis.

A final check should be made to ensure that all the diodes are the correct way round, before switching on and running through each switch position to see that the correct frequency is displayed.

-..... Indicates diode to be inserted in this position on matrix board
Fig. 6: Table showing diode placement for different numbers

Fig. 7: The back of the prototype display showing the hardwiring and the original diode matrix

PDWER SUPPLY N.FOOT G8MCQ

The circuit shown in Fig. 1 provides a regulated output of 24 volts d.c., with overload and short-circuit protection, and will easily power the Avon transmitter.

Low current demands flow through resistor R1 and the 7824 regulator until 200 mA is reached and the
voltage drop across the resistor becomes 0.6 V . At this point Tr2 turns on to carry a proportion of the current being drawn, until the pre-determined maximum of 2.5 A is attained. Here the majority of output current is being passed through the transistor and the resistor R 2 ; the voltage drop across the resistor causes $\operatorname{Tr} 2$ to turn on, and the unit shuts down.

Note the capacitors C4 and C5, which prevent the possibility of problems arising from r.f. entering the output.

The power supply described was housed in a Foxall instrument case type T. 7058 which matches the Avon in appearance. In addition to an output socket at the rear, two terminals were fitted on the front panel to facilitate the use of the unit as a separate piece of test equipment.

A $4^{\circ} \mathrm{C} / \mathrm{W}$ heatsink fits conveniently on the back panel, and the regulator and transistors can be fitted to the underside if a little care is taken with the construction.

The d.c. output on the prototype was via a Cannon type XLR 3-31 socket, and XLR 3-12C mating line plug, but barrier strip would be somewhat less expensive and still quite serviceable.

components

```
Resistors
    1% waft 5% wirewound
    3.30 . 1 R!
    Precision 2% watt wirewound-M1L-R-18546C (5%)
    0.470 & * R2
Capacitors
    Singte*ended high ripple (17A)
    15000\mu\textrm{F 63V % C1 (RS 102-623)}
    Solid Tantafum
    14F 35V 2 C2,3
    Disc Ceramic
    0.01\muF 25V 2 C4,5
Semiconductors
\begin{tabular}{lll} 
T1P32A & 1 & Tr 1 \\
TIP2955 & 1 & Tr 2 \\
7824 & 1 & 24 volt regulator
\end{tabular}
Rectifiers
    6A Bridge 1 Dt-4(RS 262-078)-Minimum 50V
        \forall.E.r.m.
```



```
Switches
    DPDT 1. S1 Miniature toggle
Indicators
    250V Red, sub-minature - LP1 (RS 575-891)
    28V Green, swb-miniature 1 LP? (RS 575-857)
Fuseholders
    20mm Bulgin panel mountmge 2
Fuses
\begin{tabular}{lll}
20 mm & \(2 A \cdot 1\) & \(F_{1}\) \\
20 mm & \(5 A\) & \(F_{2}\)
\end{tabular}
```


Connectors

```
3-pole 6A rectangular I.E.C. panel-mounting 1 (mains input)
3-pole 6A. rectangular L.E.C. Hine socket. I (mains input)
Non-reversible panel-mounting \(5 A\) socket \(\quad 1\) (D.C. output)
Non-reversible 5 A line plug 1 (D.C. output)
```


Hardware

```
Capacitor Fixing Clip 63.5 mm (2.5in) (RS 543-507)
Heat Sink 4 C/W \(100 \div 64.5 * 15 \mathrm{~mm}\) (RS 401-403) 1
Mica instlating washers as spacers for Tr2 and 7824 regulator
```


Case

```
*Foxall type T. 7058
Miscellaneous
Insulated terminals for front panel-2; ff required, of 10A capacify
* Available from Watford Electronics:
```

NOTE: The following amendments should be noted. Components list: L2, 4, 6, 8, 10. Delete 'on $1 \mathrm{M} \Omega$ carbon resistor' and insert ' 6.3 mm diameter'.

In Fig. 9, please alter the component references as follows: C8 to $\mathrm{C} 6, \mathrm{C} 9$ to $\mathrm{C} 7, \mathrm{C} 12$ to $\mathrm{C} 8, \mathrm{C} 11$ to C 9 , R4 to R3.

Mntroduciion to LDGIG~3

So far in this series we have explored the various types of logic gate. We can now go on to look at a second major group of logic elements, called flip-flops. Although they are, in fact, built up from groups of gates the flip-flops exhibit their own special characteristics and are generally treated as logic elements in their own right.

Set-Reset Flip-Flop

Suppose we take a pair of 2 -input NAND gates and cross connect them as shown in Fig. 27. Let us assume that input 1 is set at 0 and that input 2 is at 1 . Gate Gl will be closed by the 0 at its input and hence its output will go to the 1 level. Gate G2 now has both of its inputs at 1 and is therefore open so that its output will be at 0 . Since the 0 output from gate G2 is fed back to the second input of Gl it will hold Gl closed even if the 0 state is removed from input 1. We now have a stable condition where output 1 is at 1 and output 2 is at 0 .

If we now apply a 0 signal to input 2 whilst input 1 is at 1 then gate G2 will be forced to close and in its turn will cause GI to open so that the circuit will switch states. If this input is removed we have a second stable state with output 1 at 0 and output 2 at 1 .

When a 0 level pulse is applied to input 1 of the circuit it will "flip" into the state with output 1 at 1 and output 2 at 0 . Applying a 0 pulse to input 2 will cause the circuit to "flop" back into its original state. This "flip-flop" action gives the circuit its name.

If output 1 is at the 1 level the flip-flop is said to be in the "set" state, whilst the condition where output 1 is at 0 is called the "reset" state. The two inputs, 1 and 2, of the circuit are called the Set and Reset inputs respectively. Sometimes these two signals may be called Preset and Clear but their functions are the same.

Generally the output of flip-flop devices will be labelled Q and $\overline{\mathrm{Q}}$. The Q output will be at 1 when the flip-flop is in the Set condition.

Fig. 27: Set-reset flip-flop using NAND gates

Fig. 28 (left) and Fig. 29 (right): Two alternative flip-flop circuit symbols

Fig. 30: S-R flip-flop using NOR gates

Fig. 31 : Symbol for inverted inputs

Logic Symbol

In most cases no special symbol is used to denote a flip-flop. The device is shown simply as a square box as in Fig. 28. Occasionally the symbol shown in Fig. 29 may be used instead.

A flip-flop can be built up using NOR gates as shown in Fig. 30. Here a 1 level pulse is needed to trigger either the Set or Reset inputs and make the flip-flop switch states.

If the input pulse needed to trigger the flip-flop goes to 0 when it switches the circuit, as in the case of a NAND flip-flop, this may be shown by drawing a small circle on the input point as shown in Fig. 31. The two inputs would then be labelled $\overline{\mathrm{R}}$ and $\overline{\mathrm{S}}$ to indicate that the logic action is inverted.

D-Type Flip-Flop

Although S-R flip-flops are sometimes used in logic systems they have the disadvantage that they need a pair of separate input trigger signals to switch them from state to state.

By employing a more complex arrangement of gates to form the flip-flop circuit, we can arrange that a single "clock" pulse will trigger the circuit.

Moreover we can have a second input called the D (data) input which will determine the state that the flip-flop will take up after the clock pulse has been applied.

With this type of flip-flop, when the D input is set at 1 a clock pulse applied to the flip-flop will cause the Q output to go to 1 . If the Q output is already at 1 when the clock pulse occurs, there will be no change in the state of the circuit. When D is at 0 whilst a clock pulse is applied, the Q output will be changed to 0 unless it is already in that state.

This type of circuit is called a D-type flip-flop but may sometimes be referred to as a D-type latch. Practical D-type flip-flops usually have direct Set and Reset inputs as well as the Clock and D inputs. These Set and Reset inputs work independently of the clock and will have the same functions as in an S-R flipflop.

Truth Table

We can draw up a truth table to summarise the action of a D-type flip-flop and this will be as shown in Table 7.

Table 7

Input at t_{n}	Outputs at t_{n+1}	
D	Q	$\overline{\mathrm{Q}}$
0	0	1
1	1	0

Here we see the state of the D input before the clock pulse occurs (time t_{n}) and the resultant states of the outputs after the clock pulse (time t_{n+1}).

Typical D Flip-Flops

In the 74 series logic, the most familiar D-type flipflop is the 7474 which actually contains two D flipflops. Its pin layout and logic functions are shown in Fig. 32. The 7474 is an edge-triggered device where the circuit responds to its clock only when the clock line (CK) makes a transition from the 0 to 1 level. In the 7474 the Preset and Clear inputs need to be driven to the 0 level to switch the state of the flipflop.

Another common TTL D-type flip-flop is the 7475. It contains four separate D flip-flops. Unlike the 7474 this device does not use an edge-triggered clock action. If the Clock of a 7475 flip-flop is set at 1 the Q output simply follows the state of the D input. When the clock line drops to the 0 level the Q output freezes at the state it is in at the moment. The clock inputs to the flip-flops are paired together since there aren't enough pins to bring out all four clock lines separately. The pin layout and logic of the 7475 are shown in Fig. 33.

In CMOS the equivalent to the 7474 is the 4013 dual D flip-flop which is shown in Fig. 34. The Set and Reset inputs of a 4013 , unlike the 7474 , respond to pulses at the 1 level.

J-K Flip-Flop

By using a logic arrangement which is slightly more complex than that of a D flip-flop we can produce another rather more versatile type of flip-flop. Here the D input is replaced by two separate inputs

labelled J and K. Now when a clock pulse is applied to the flip-flop the action which is produced will depend upon the combination of states present at the J and K inputs. For this type of flip-flop the truth table is as shown in Table 8.

Table 8

Inputs at t_{n}		Outputs at $\mathrm{t}_{\mathrm{n}+1}$	
J	K	Q	Q
0	0	Q	\mathbf{Q}
1	0	1	0
0	1	0	1
1	1	$\overline{\mathrm{Q}}$	Q

Here we see that if both J and K are at 0 the clock pulse has no effect upon the state of the outputs. With J at 1 and K at 0 the clock pulse causes the flipflop to "set" with Q at 1 . Having J at 0 and K at 1 produces a clocked "reset" action where Q goes to the 0 level. When both J and K are at 1 however a rather interesting action occurs. Now the application of a clock pulse simply causes the flip-flop to change state. We shall see later that this can be a very useful action.
If we connect an inverter between the J and K inputs as shown in Fig. 35 we should effectively produce a D-type flip-flop. Some J-K flip-flop circuits do have an inverted K input line so that they can readily be used as D flip-flops if desired.

Fig. 35: A J-K flip-flop used as a D-type

J-K flip-flops are generally used where the action required of the circuit is dependent upon the states of two or more logic signals. Although D flip-flops might equally be used in such systems they would generally need more external logic gates to achieve the required action, so that a J-K type will simplify the logic system.

Typical of the J-K flip-flops is the 7470 in TTL which has three J inputs and three K inputs for extra flexibility. In CMOS the 4027 contains two separate J-K flip-flops with direct Set and Reset capability.

Using Simple Flip-Flops

How is a flip-flop used in practical logic systems? One typical application is to use the flip-flop as a "flag" indicating that an event has taken place. As an example suppose that you are leaving bome for a shopping trip and wish to know if any visitors called whilst you were away. A Set-Reset flip-flop could be wired to the doorbell so that operating the bell will set the flip-flop. The flip-flop is reset before you leave on your trip and if there have been any visitors whilst you were away the flip-flop will be "set" when you return and may be used to light an indicator lamp to show that visitors have called. This is a particularly useful technique in electronic systems if you. need to know whether a pulse has appeared on a logic signal line during a particular period of time.

Another application of the single flip-flop is to use it as a latch circuit. In our coffee making machine we could set a flip-flop as soon as one of the ordering buttons has been activated. Now the flip-flop can be used to latch out the button circuits until the coffee has been delivered. A pulse from the delivery mechanism will reset the flip-flop when the operation is complete and the button circuits will then be released ready for the next customer. This type of circuit is often used to stop false triggering caused by "contact bounce" in a push-button switch.

Parallel Registers

A frequent requirement in logic systems which deal with digital data signals is that of "freezing" the states of a number of varying logic signals at a particular point in time. To do this we might use the circuit of Fig. 36. Here the four flip-flops are clocked simultaneously and they will take up and hold the current states of the input signals at the instant the clock pulse was applied. This logic arrangement is called a parallel data register.

Fig. 37: A serial shift register

The Shift Register

Let us now consider another method of connecting a group of flip-flops together. Here the Q output from one flip-flop is fed to the D input of the next flipflop so that they form a chain as shown in Fig. 37. Once again all of the flip-flops are clocked simultaneously. When a clock pulse is applied each stage takes up the previous state of the preceding stage in the chain.

Suppose there is a 1 in the first stage of the chain and 0 in all of the others. We'll also assume that the D input of the first stage in the chain is held at 0 . After the first clock pulse has been appiied the 1 state will move to the second stage in the chain and the first stage will change to 0 . Each succeeding clock pulse will move the 1 along the chain by one stage until eventually it is moved out of the last stage in the chain to leave all of the flip-flops at the 0 state.

This technique of moving a single 1 state through a shift register chain can be used to control a sequence of events. As a very simple example we might connect the lamps on a Christmas tree to a shift register so that each lamp is controlled by one stage of the shift register. Now as clock pulses are fed to the register and the 1 state moves through it each lamp will light in turn. If we connect the output of the last stage to the D input of the first the action will go on continuously since as the 1 state leaves the end of the chain it will be fed back again at the beginning.

Instead of a single 1 we can have a pattern of 1 s and 0 s in the register and this time when clock pulses are applied the whole pattern will shift along the register by one stage for each clock pulse.

Parallel-Serial Conversion

Now let's see another way in which we might use a shift register. Suppose we wanted to generate Morse code signals using a logic system. Morse symbols are made up from groups of dots and dashes. The dashes are usually three times as long as the dots and each dot or dash is spaced from the other by a period equal to the length of a dot. We can let the dots and dashes be 1 states and the spaces between them be 0 states.

To send the letter A we need a dot followed by a dash. If we can generate a clock pulse at the rate of one pulse for each dot period then we can use a shift register to generate the Morse symbol. In Fig. 38 we have a shift register loaded with a pattern of 1 s and 0 s to produce the \mathbf{A} symbol. The 1 corresponding to the "dot" is set up in the last stage of the register so that it will be the first to appear at the output. If clock pulses are now applied to the shift register the pattern will move to the right and produce the required voltage outputs to produce the dot-dash of the A symbol. To accommodate all of the Morse code symbols we would need a longer shift register since the numeric codes may require up to five dashes and four spaces to make up the symbol pattern.

So far we have assumed that by some magic or other the required pattern has appeared in the shift
register ready to be clocked out. Practical shift registers often have additional logic to allow the individual stages to be loaded in parallel via a series of D input lines. In some cases there may be two clock signals, one being used to parallel load the register with the desired pattern and the other being used to shift the pattern along the register. An alternative scheme used on some devices is to have a common clock drive and use a control line to determine whether the register is being loaded or shifted.

This technique of converting signals from a parallel pattern of 1 s and 0 s into a serial stream of pulses is regularly used in data communication since only one line is now needed to carry the patterns of signals. Of course here we have simplified the technique to show the principle involved and in practical systems the logic used may well be more complex.

Serial-Parallel Conversion

To convert our received Morse symbol back into a parallel logic signal we can simply clock the received signal pattern through a shift register using the same clock speed as at the transmission end. As the pattern moves through the shift register the parallel pattern corresponding to the transmitted symbol will appear at the outputs of the individual stages of the shift register.

Here we run into a problem of synchronisation. In order to recover the received symbol pattern we need to know when it is properly positioned in the shift register. In radioteletype (RTTY) codes every symbol consists of the same number of 1 s and 0 s so that the pattern will be of a known length. In addition an extra bit called the start bit is added at the beginning of each symbol code and this is always a 0 , whilst a stop bit is added at the end of each code and this is always a 1 . Any spaces between symbol codes are always at 1 . Now if we detect when the first start bit of a message gets to the end of the receiving shift register then the rest of the bits for that symbol will be set up in reverse order in the other stages of the register. At this point the pattern can be transferred in parallel into a parallel data register and held there whilst the next symbol pattern is being moved into the shift register. Since each symbol contains the same number of bits of data we can simply count off the clock pulses to find out when the next symbol pattern is set up in the shift register. The logic arrangement for a serial-parallel conversion system is shown in Fig. 39.

Fig. 38 : Shift register loaded with the pattern for Morse code "A"

Fig. 39 : Serial-parallel conversion

Typical Shift Registers

Usually shift registers are not built up from the separate flip-flop devices but come already packaged as shift registers. Typical of these is the 7495 shown in Fig. 40(a). This has four stages which can be loaded in parallel and uses two separate clocks one for shifting and one for parallel loading. The 74165 shown in Fig. 40(b) has eight stages and is designed for parallel-serial conversion. It has eight parallel inputs and a load/shift control line and uses a common clock signal for shifting or loading. The 74164 shown in Fig. 40(c) also has eight stages but is arranged for serial-parallel conversion use. Some shift registers, such as the Signetics 2533 may have 1024 stages in one package.

Timing Problems

So far in this series we have assumed that the logic states change instantaneously when a gate or flip-flop is made to switch. In practice this is not so. There is some delay between the application of the input signal and the change in state at the output. This delay is called the "propagation delay" of the circuit. It also takes some time for a signal to change from the 0 level to the 1 level and this is called the "rise time". Similarly there is a "fall time" when a signal goes from 1 to 0 .

These time delays are quite short but may be very important if the logic system is to work properly. In a typical TTL gate or flip-flop, propagation delays will be of the order of tens of nanoseconds, whilst for CMOS circuits delays of perhaps a hundred or so nanoseconds might well be found. Rise and fall times are often of the same order.

Continued on page 39

Electronic Fish Feeder

This article describes a device which can be fixed to the side of an aquarium to dispense small amounts of fish food at regular intervals of time. The quantity of food supplied can be adjusted to allow for the size and the number of fish to be fed. The fish feeder is battery powered and uses a low power CMOS i.c. and will run for many months on four HP7 batteries.

The fish feeder is easy to build and should be well within the scope of most constructors. No special mechanical tools are required: a small file, a hacksaw and a hand drill will suffice.

Fish Food Dispenser

The dispenser itself is constructed from Perspex, and is driven by a model railway point motor.

It uses a novel method devised after experimenting with various other arrangements. The granulated fish food is held inside a Perspex tube by a laminate (e.g. Formica) disc with a serrated edge. To dispense fish food, the serrated disc is pulled upwards by the solenoid and then allowed to drop again. This small movement is sufficient to shake a small amount of food past the serrated edges of the disc and out of the dispenser.

Solenoid

The solenoid used is a modified Peco SL-70 point motor obtainable from railway model shops.

The motor has two coils, one of which should be removed. This can be done, quite easily, by snipping the connecting wires and untwisting the retaining lugs, The s.r.b.f. supports can then be cut and filed as in Fig. 1, and the metal fixing lugs sawn off. The steel armature is easily modified as shown. A small plastic band was cut from the outer cover of a 5 A cable and positioned on the core to avoid all possibility of the armature sticking in the solenoid. To fix the serrated disc to the armature a plastic nut (to save weight) is secured to the end of the armature with epoxy adhesive. A small screw passes through the serrated disc and into the nut thus securing the disc.

Mechanical Construction

The body of the dispenser is made from a Perspex tube with an outside diameter of 38 mm and an inside diameter of 32 mm . It should be possible to obtain this inexpensively from most Perspex merchants. A few off-cuts of $2 \cdot 5 \mathrm{~mm}$ sheet and a piece of thin laminate are also needed, and obviously, the dimensions of the dispenser could be changed to suit locally available materials.

Fig. 1 : Constructional details

Cut a 38 mm length of tube and drill the holes for the support bracket components which are cut from Perspex sheet (Fig. 1). The fixing screw passes through a Perspex block made by glueing three small rectangular pieces of Perspex to the support bracket. There is no need to tap a thread for the screw; Perspex is a soft material and a steel bolt will tap its own thread through a suitably sized hole. The support bracket lugs should be carefully filed so that they fit snugly into the holes in the Perspex tube.

Cut two 32 mm diameter discs from the Perspex sheet and drill as shown in Fig. 1. Make a disc from the laminate and file the serrated edge as shown in Fig. 1. There should be approximately 30 serrations, each about 1.5 mm deep, and the disc should fit easily into the tube.
The dispenser can now be assembled from its component parts. The application of a little glue will help to hold the parts together, but it should be used sparingly until the dispenser has been thoroughly tested and the constructor is convinced that no adjustments will be needed.
The wire from the solenoid passes through the hole in the Perspex tube and is secured using the holes in the support bracket.

Mechanical Testing

Before proceeding with the electronics it is well worthwhile spending a few minutes testing the dispenser.

Place four HP7 batteries in the battery holder to produce a nominal 6V Supply. The feeder should be left empty and mounted vertically.
Momentarily connect the supply to the solenoid wires. The laminate disc should rise and fall. After repeating the test a few times, unscrew the serrated disc and fill the feeder with fish food (taking care not to overfill). Again, momentarily, connect the supply. This time a small amount of fish food should be dispensed. Five minutes of experimentation should convince the builder that his device will operate reliably. If the dispenser does jam, then it is a simple matter to file the offending part until the operation becomes free and reliable.

Operation

The fish feeder has only two controls. These are mounted in a plastic case together with the associated circuitry. The 'Hours' control is a potentiometer which allows the time between feeds to be varied from two and a half hours up to thirty-two hours. Obviously, the setting required will depend on the number of fish to be fed and their size. The re-set control, is used to initialise the circuitry and to provide manual operation when required.

\star components

Circuit Operation

The complete circuit diagram is shown in Fig. 2. The heart of the device is a CMOS, 4521, 24 stage, frequency divider. A block diagram of this is shown in Fig. 3. Gate A is a straightforward digital buffer, whilst gate B is an inverting buffer. Stages 1 to 24 are simply flipflops connected to form a 24 bit counter.

In operation, gates A and B are connected, as shown in Fig. 4, to form an RC oscillator whose frequency, f, is given by:

$$
\mathrm{f}=\frac{1}{2 \cdot 3 \mathrm{R}_{\mathrm{TC}} \mathrm{C}}
$$

The oscillator drives stages 1 to 24 . The outputs from the last 7 of these stages are available from pins: $1,10,11,13,14$ and 15 of the i.c. as shown in Fig. 6. After $2^{17}(=131072)$ cycles from the RC oscillator, pin 10 goes from digital low to digital high; after $2^{18}(=262144)$ cycles, pin 11 goes from low to high; and so on. For the fish feeder circuit, the output of pin 1 has been used. Pin 1 goes high after 2^{23} ($=8388608$) cycles of the RC oscillator. The output of pin 1 is then used to drive the solenoid and also (after a delay) to cause a re-set.
In Fig. 2, R2, VR1, C2 and R3 form the RC network of the RC oscillator. The frequency can be adjusted between 70 Hz and 1 kHz ; depending on the setting of VR1. After the relevant amount of time (between $2 \cdot 4$ and $32 \cdot 1$ hours. depending on VR1). pin 1 goes high. This has two effects. First, Trl and Tr2, connected as a Darlington pair, can draw base current via R4 and hence current flows through the solenoid coil, L1, to drive the dispenser. Secondly, after a delay of about 100 ms ., determined by R1 and C1, a re-set pulse is applied to pin 2. This causes counting to re-start and drives pin 1 low, switching off the drive to the solenoid coil.

Fig. 3: Block diagram of the CMOS 4521

Fig. 2: Complete circuit diagram

Fig. 4: Gates A and B form an RC oscillator
The dispenser can be manually operated using the re-set button, and this will also re-start the counting.

A collector resistor is not used with the Darlington pair as it was found that the internal resistance of the four HP7 batteries was sufficient to limit the current. However, anyone considering using other power supplies would be well advised to include some form of current limiting. C3 was included to maintain the power for the 4521 when the batteries were effectively short circuited by the solenoid coil was found not to be needed because of its very low inductance.
The measured power consumption of the prototype varied from $8 \mu \mathrm{~A}$ at the lowest frequency of operation to $67 \mu \mathrm{~A}$ at the highest. The batteries should last for many months-even years on the lowest frequency setting.

The layout of the components is not critical and Fig. 5 shows a suggested layout on a piece of Veroboard.

Fig. 5: Suggested component layout

Testing

Before proceeding, the wiring should be carefully checked. The i.c. should then be removed from its protective covering and placed in its socket. The battery holder and Veroboard can now be mounted in the case.

Connect the batteries, making sure that the polarity is correct. If a micro-ammeter is available, the supply current can be monitored and should be between $8 \mu \mathrm{~A}$ and $57 \mu \mathrm{~A}$ depending on the setting of VR1. If an oscilloscope is available, pin 4 of the i.c. can be monitored. There should be a square wave signal whose frequency is variable between 70 Hz and 1 kHz .

Pressing the re-set button should cause the dispenser to operate.

For further testing of the timing, it is possible to increase the frequency of operation by a factor of 64 by disconnecting the anode of D 1 from pin 1 of the i.c. and linking it to pin 10 instead. At the fastest setting of VR1, the feeder should then operate.

Finally, the front panel of the plastic case can be appropriately labelled.

Sir; On looking through some very old QSL cards, I came across a Membership Certificate of The British Long Distance Listeners' Club, and I wondered how many of these members are still around in an active capacity. The date of the certificate is August 31st, 1939, it was "signed" by "Thermion" who was a regular columnist of that era, adding humour to his technical dissertations. Another thing I came across was a set of BA spanners given as a "Free Gift" many years ago. It may be of interest to say that these were carried by me during my Army Service with REME as a Radio Mechanic, and very useful they proved too. Also taken, was a series of cuttings from Practical and Amateur Wireless which were later published as a Radio Engineers Pocket Book. It is now well worn and somewhat dogeared, but still used.

I ought to add that the number of the Certificate mentioned above is 6308. All this was well before the days of transistor and integrated circuits, when "Ham Radio" was really amateur equipment, very often built on the kitchen table, with improvised and home made "bits and pieces". We sure had fun and most of all, we achieved something to be proud of!

> A. C. H. Waters, G2DMT
> Knowle Park
> Bristol

INTRODUCTION TO LOGIC
 continued from page 35

If we have a very long shift register, especially where the clock is distributed to groups of stages via separate lines, we can have the state of affairs where the stage being clocked does not operate until after the stage driving it has already changed state. Now the wrong data will be set up and passed along the register because of the delayed response of one stage. This can be a major problem in systems where the output from the end of a long shift register is "recirculated" back to its input.

Master-Slave Flip-Flops

The problems with timing on a long shift register can be overcome by using a pair of flip-flops for each stage of the register. This is known as a "masterslave" combination and is shown in Fig. 41. Here the master and slave flip-flops are actuated by opposite edges of the clock pulse. As the clock pulse changes from 0 to 1 the master flip-flop takes up the state of the D input but the slave is unaffected. When the clock level falls from 1 to 0 the data from the master is transferred to the slave but the master is unaffected. Now in a long shift register using masterslave flip-flops there can be no problems with timing delays because when the masters are being clocked the slave stages feeding them with data are static and vice versa.

In the 74 series TTL there is a range of J-K master-slave flip-flops, such as the 7472 which is a single flip-flop or the 7473 and 7476 which are dual J-K master-slave flip-flops. Some long shift registers make use of two separate clocks to drive the master and slave stages. This gives what is referred to as a two-phase clock input and the clock signals are often labelled $\varnothing 1$ and $\varnothing 2$.

So you want to pass the RoA.Ed[Radio Amateurs'Examination] 2 N* John Thornton Lawrence GW3JGA \& Ken Mc Coy GW8CMY

After the 1978 examinations, the form of the Radio Amateurs' Examination will be changed from the old traditional script answer type to the new multiple choice "Objective Testing" type known as the "765, Radio Amateurs' Examination (New Scheme)".

Objective Testing

An Objective Test is defined as a series of questions each of which has only one pre-determined correct answer, so that subjective judgement in marking is eliminated. The RAE will be carried out using a fouroption multiple choice type of objective question. In this type, a question is asked or implied, followed by four possible answers or options, only one of which is correct. The candidate is required to select the correct answer.
The questions are normally chosen to test the candidate's "factual recall", "comprehension" and "application". In general, the "factual recall" question tests the candidate's ability to remember the facts which he has been taught, and a "comprehension" question tests his understanding of what he has been taught. An "application" question, while requiring him to both know and understand what he has been taught, asks him to go further and apply his knowledge and understanding to a given problem.
An example of a "factual recall" question is given below.
Class A3J amplitude modulation uses:
a. only the upper sideband with a bandwidth of about 4 kHz
b. either one of the sidebands with the carrier suppressed
c. morse telegraphy using either sideband
d. one telephony sideband with reduced carrier.

In a pre-test conducted to see how candidates would answer the question, the results were as follows:
a. 6%
b. 64% (correct answer)
c. 8%
d. 19%
0.3% (no answer attempted)
The number of candidates choosing a particular answer is shown as a percentage of the total number of candidates.

The next example is of a "comprehension" question.
In a series-resonant circuit, to halve the resonant frequency the LC product must be:
a. halved
b. doubled
c. quadrupled
d. tripled

COMING SOON

A repuin of the complete RAE senes in booklet form. Watch PW for a further announcement.

In a pre-test conducted with this question, the results came out rather differently.
a. 17%
b. 55%
c. 23% (correct answer)
d. 0%
0. 5%

As you can see, the majority chose answer " b ", which was unfortunately incorrect.

Since $\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{~L} \times \mathrm{C}}}$, halving the frequency would mean doubling $\sqrt{\mathrm{L} \times \mathrm{C}}$ and doubling the square root of the LC product would require quadrupling the LC product itself (answer c.).

Finally, an example of an "application" question dealing with Ohms law.

Fig. 1 shows the relationship between V and I in a d.c. circuit. The resistance of the circuit is:
a. 8Ω
b. 2Ω
c. $0 \cdot 5 \Omega$
d. $0 \cdot 2 \Omega$

The results of a pre-test conducted with this fairly easy question are as might be expected.
a. 8%
b. 6%
c. 83% (correct answer)
d. 2%
0. 1%

Advantages and Disadvantages

From the examiners' point of view, there are several advantages in Objective Testing. Because it is possible to have a greater number of questions, the paper can include questions on all areas of the syllabus, whereas traditionally only a limited number of topics can be covered. Also no "choice" questions are included, so all candidates answer the same questions.

The preparation of the question paper can be more systematic in covering the syllabus and "pre-tests" can be held to estimate the degree of difficulty of each question before it is included in an examination paper. Marking is completely objective and eliminates the possible variations due to points awarded by different markers or by the same marker on different occasions.

From the candidate's point of view, there is less emphasis on his ability to express himself in his own words, his performance depends primarily on his technical knowledge and understanding. He is not hampered by time as adequate time is available. All things being equal his paper will be marked more
accurately and impartially, and the results should be available to him sooner.
There are a number of common objections to Objective Testing, the most common being the view that someone with no knowledge can, by guessing the answers, obtain adequate marks. However, experience has shown that a rational elimination of one or more of the incorrect options is also likely and that applying a correction factor for guessing does not have a significant effect on the rank order of candidates. The policy of the City and Guilds of London Institute is, therefore, not to apply a correction for guessing.
Another objection is that candidates should be tested on their ability to express themselves in writing. In the case of the RAE this ability is not one of the essential factors, whereas knowledge and understanding are. Objective Testing is, therefore, considered suitable for this examination.
Some candidates like to see previous question papers in order to know the general standard of the questions that will be asked. At this stage it is the policy of the CGLI not to issue copies of a question paper for security reasons, although sets of sample items are available.
Of course, the setting of questions for Objective Testing requires considerable expertise. Subject experts submit questions to the Institute and these are considered by an editing panel.
If the questions are accepted they are put forward for pre-testing. The results of the pre-test are analysed and reviewed before the question is considered acceptable to be placed in the Question Bank. By the time a question is placed in the Question Bank a considerable amount of information is known about its suitability and effectiveness for a particular examination.

Objective Testing, from the Candidates point of view

The candidate will answer his multiple choice examination paper on special answer sheets using a pencil. He should attempt all questions and should find little difficulty in completing the answers in the time allotted. If he has difficulty in expressing himself but knows and understands the items in the syllabus, then this form of examination will be to his advantage. If he does not know the subject then it is highly unlikely that guessing will help him to gain marks. If he knows all the items in the syllabus reasonably well the overall result is likely to be better than knowing some items very well and some not at all, as all parts of the syllabus will be tested. There are no "choice" questions or "likely subjects".
A personal impression of the new Objective Testing Radio Amateurs' Examination, formed from the information available, is that the questions may be more searching but the marking will be more reliable than the conventional examination method.

New Examination Pattern

In comparing the old and new schemes, the Syllabus remains broadly the same. The old Radio Amateurs' Examination was of three hours' duration and the paper consisted of two sections. The new examination will consist of two separate papers, a 1 -hour paper containing 35 Multiple Choice questions on Licensing Conditions and Transmitter Interference and a $1^{3_{4}}$ -
hour paper containing 60 Multiple Choice questions on Operating Practices, Procedures and Theory. Details are given below.

765-1-01 LICENSING CONDITIONS AND TRANSMITTEER INTERFERENCE (1 HOUR) SYLLABUS

QUESTIONS
1 Licensing conditions 23
2 Transmitter Interference 12
35
There will be a break of 15 minutes between the two papers.

765-1-02 OPERATING PRACTICES, PROCEDURES AND THEORY ($1^{3}{ }_{4}$ HOURS)	
SYLLABUS	QUESTIONS
Operating Practices	5
2 Electrical Theory	11
3 Semiconductors	7
4 Radio Receivers	9
5 Transmitters	8
6 Propagation and Aerials	14
7 Measurement	6
	60

New Syllabus

Full details of the new syllabus are given in the Institute's booklet 765 Radio Amateurs' Examination (Old and New Schemes). In addition, the booklet contains details of "Examination Objectives" which describes the nature of the examination questions. In all, the new scheme is much more specific in stating what the candidate is required to know in the various sections.

A notable new addition is the "Operating Practices and Procedures" which includes methods of accessing repeaters, use of satellites, etc., and sections on safety in the Amateur Station.

Information on operating procedures, etc., is given in the Home Office publication How to become a Radio Amateur, it can also be found in A Guide to Amateur Radio and the Radio Communication Handbook both published by the RSGB.

Acknowledgements

We would like to express our grateful thanks to the City and Guilds of London Institute for permission to publish various extracts from their broadsheet and sample tests relating to the Radio Amateurs' Examination.

Our personal thanks go to Mrs Jackie Richards of the Testing Services Department of the CGLI for her helpful comments during the preparation of this article.

Further Information

Full information on the new examination is available in the booklet 765 Radio Amateurs' Examination (Old and New Schemes), price 40p from the City and Guilds of London Institute, Sales Section, 76 Portland Place, London W1N 4AA. A complete set of "sample items" (questions) is also available, price 40 p .

A broadsheet entitled City and Guilds Objective Testing is available to teachers and other interested parties, free of charge, from the above address. For teachers requiring more detailed information, a booklet Objective Testing is available, price 50 p.

A lot of readers probably use the kitchen table as the basis of their "workshop", despite the comments from the lady of the house. Whilst this may have the advantage of convenience and nearness to the rest of the family it becomes a nuisance when mealtimes approach and one is evicted from the "bench". In fact the thought of all the aggro which is likely to come might well put you off from even starting a project.

Home Radio have produced their answer to this problem in the Electronic Workshop which they are offering in either kit form or ready built.

The basic idea is not new but this one has several novel features.

As can be seen from the photograph the basis of the Workshop is a sturdily built base equipped with four rubber feet, to prevent damage to the wife's best table, and a rubber mat on the top to provide a suitable working surface. A carrying handle, attached to the underside of the base, provides. a positive stop to prevent the Workshop walking all over the table. The sides have various holes drilled in them to hold different tools such as pliers and screwdrivers.

The biggest innovation is the provision of a simple power supply and a small loudspeaker in the back panel together with a lockable storage cupboard to hold tools and components. Each end of the back panel is fitted with a 13A mains socket while the mains lead is detachable from the back.

Also contained inside the rear panel structure are three reels intended to be fitted with flexible wire and solder, with the wire being easily pulled out through holes.

The Workshop has been thoroughly tested by PW staff and found to be useful. There are several points, however, which could detract from the usefulness of the Workshop and which the average reader should be able to do something about.

Although one of the main attractions of this unit would appear to be its ability to allow the constructor to pack up quickly this tends to be nullified by the awkwardness and small capacity of the lockable storage cupboard. It would probably be of greater use if this space was used to house a simple and cheap multimeter, using a separate "toolbox" to hold and transport tools and components.

The 20 V d.c. power supply is not stabilised or calibrated, so that its usefulness is rather limited. However the addition of a simple stabiliser should not prove too difficult for the user to do. In fact one could think of several additions and improvements which could be made to the Workshop such as an audio oscillator and a simple a.f. amplifier but they would all add to the overall cost of the unit, and each of us would have different opinions of what is needed.

At a price of $£ 39$ for the unwired version and $£ 46$ for the ready-to-use Workshop $(+£ 2 \cdot 06$ VAT and $£ 2.50$ carriage) the Electronic Workshop provides a useful basis for a kitchen table worker, and should help to overcome any domestic objections.
Home Radio (Components) Ltd, 240 London Road, Mitcham, Surrey CR4 3HD. Tel: 01-648 8422.

Dick Ganderton

Practical Wireless, September 1978

The $P W$ "Wimborne" is a complete audio system designed to combine a high standard of performance with good mechanical and electrical reliability. This integrated system comprises:

1. Stereo record/playback cassette deck with radio to tape, phono to tape, and auxiliary to tape, record facility.
2. A long wave/medium wave/f.m. stereo radio ready for all the new BBC domestic radio channels.
3. A three-speed turntable with a choice of manual or auto change types and with the option of either magnetic or ceramic cartridges.
4. A stereo amplifier capable of delivering 8 watts r.m.s. per channel into 8 ohms or 11 watts r.m.s. into 4 ohms with full treble and bass boost.
5. A professional-style cabinet featuring a wooden baseboard, pre-drilled aluminium extrusions and silk screened perspex front with matching knobs and push buttons and trim.
6. A choice of speaker enclosures.

Design Philosophy

The major consideration in the design of the $P W$ "Wimborne" was to give the home constructor the opportunity to produce a really professional piece of equipment. The level of performance would have to equal or excel currently available mid-range music centres, while providing circuitry which could be added to at a later date to bring it into the true high fidelity class. Extensive use of readily available and well proven integrated circuits was made! Another object was to use components well below their maximum ratings to ensure reliability and a long troublefree life.
The tuner and amplifier modules were fitted with quick-release connectors to facilitate final testing and fault finding. Flying leads were kept to a minimum to reduce a common source of failure through soldered joints being put under tension. Because the power amplifier, pre-amplifier tone controls and power supply are mounted on a common board, construction is greatly speeded up and good results are guaranteed. The alignment of the r.f. module has been reduced to a bare minimum using basic test equipment. The radio module, amplifier module and

PW WIMBC

Music

PART 1

specification

AMPLIFIER SECTION

POWER OUTPUT: (r.m.s.) $2 \times 8 \mathrm{~W}$ into $8 \mathrm{ohms}, 2 \times 11 \mathrm{~W}$ into 4 ohms
TOTAL HARMONIC DISTORTION: 0.5% at 5 W into 8 ohms
FREQUENCY RESPONSE: $20 \mathrm{~Hz}-20 \mathrm{kHz},-3 \mathrm{~dB}$
SIGNAL TO NOISE RATIO: 55aB
TONE CONTROLS: $\pm 12 \mathrm{~dB}$ at $100 \mathrm{~Hz} ; \pm 12 \mathrm{~dB}$ at 10 kHz
INPUT SENSITIVITY AND IMPEDANCE: $60 \mathrm{mV}, 470 \mathrm{k} \Omega$
TUNER SECTION
FREQUENCY RANGES: F.M. $87 \cdot 5-108 \mathrm{MHz}$; M.W. $530-$ 1605 kHz ; L.W. $150-350 \mathrm{kHz}$
INTERMEDIATEFREQUENCY: F.M. $10 \cdot 7 \mathrm{MHz} ;$ A.M. 470 kHz USEABLE SENSITIVITY: F.M. $2 \cdot 2 \mu$ V(for 26 dB S/N); M.W. $350 \mu \mathrm{~V} / \mathrm{m}$; L.W. $600 \mu \mathrm{~V} / \mathrm{m}$ (for $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$)
STEREO SEPARATION: more than 35 dB at 1 kHz
F.M. SIGNAL TO NOISE RATIO: 70dB
F.M. CAPTURE RATIO: 4dB
F.M. FREQUENCY RESPONSE: $40 \mathrm{~Hz}-15 \mathrm{kHz}$

SELECTIVITY: F.M. $26 \mathrm{~dB}(400 \mathrm{kHz})$ M.W. $24 \mathrm{~dB}(9 \mathrm{kHz})$

N.B.MATTEY

CASSETTE TAPEDECK
TYPE: Otake N99
RECORDING LEVEL CONTROL: Automatic
TAPE SPEED: $1 \frac{7}{1}$ i.p.s. $(4.75 \mathrm{~cm} / \mathrm{s})$
RECORDING SYSTEM: A.C. bias
BIAS FREQUENCY: 60 kHz
ERASE SYSTEM: A.C. erase
FREQUENCY RESPONSE: $100 \mathrm{~Hz}-10 \mathrm{kHz},-6 \mathrm{~dB}$
SIGNAL TO NOISE RATIO: 48dB
CHANNEL SEPARATION: 25dB
CROSS TALK: -50dB
WOW AND FLUTTER: 0.25% r.m.s.

RECORD PLAYER
TYPE: BSR 162 automatic single player, $33 / 45 / 78$ r.p.m. CARTRIDGE: SC 12 M
STYLUS: ST 16
(optional magnetic cartridge and pre-amp)

LOUDSPEAKERS
TYPE: Single $6 \frac{1}{2}$ in twin-cone speaker or 8 in bass unit plus tweeter, with crossover network
mains transformer are mounted on a base board. The p.c.b.-mounting potentiometers are held firmly in position by being fixed into the rear front-panel extrusion. This rigid form of construction greatly reduces mechanical stress. The cassette mechanism is supplied fully working with its electronics.

Construction
Constructional details of the cabinet will be described this month. As can be seen from the exploded drawing, Fig. 1 and the internal photograph, Fig. 2, the cabinet is formed of two parts. The first part consists of the base board, on which are mounted the front panel and the control mounting panel, the amplifier/power supply module and mains transformer, and the tuner module and ferrite rod aerial.

Front Panel Assembly
The front panel is an aluminium extrusion, with jacks for stereo microphone inputs to the tape deck, and for stereo headphones. Control identities are silkscreened onto the panel and the perspex trim strip which is secured by means of double-sided adhesive tape.

A second aluminium extrusion, the control mounting panel, is bolted to the base board immediately behind the front panel. The four potentiometers mounted on the amplifier/power supply module are secured to the control mounting panel by their mounting bushes and nuts, thus anchoring the front end of the p.c.b. Also mounted on this panel are the perspex tuning scale with its associated pointer and drive arrangements, and lamps for scale illumination and indication of power on, plus a stereo beacon. Details of the base board are given in Fig. 3.

Cabinet Top Section
The second part of the cabinet comprises most of the woodwork. The turntable mounting board, with cut-outs suitable for gramophone turntable and cassette mechanism (see Fig. 4), is surrounded on three sides by the two side boards and the back board. These should be of veneered chipboard, suitably

Fig. 1: Exploded view of the cabinet assembly

Fig. 2: Inside view of the PW "Wimborne", with all units identified

Practical Wireless, September 1978

Fig. 3: Baseboard details, with a view of the control mounting panel and tuning drive assembly

Fig. 4: Turntable mounting board details

Fig. 5: Backboard and sideboard details
grooved on the inside faces to house the turntable mounting board and the three battens to which the base board will be screwed.

A black plastic moulding is available to cover the turntable mounting board. This moulding is suitable for a range of BSR single-play and autochange turntable units (deck size $303 \times 286 \mathrm{~mm}$), but so far as the cassette mechanism is concerned only that listed in the specification will fit.

Should a constructor wish to use a different mechanism or turntable then the turntable mounting board should be veneered chipboard, instead of plain, or covered with black rexine. The cassette mechanism would need to be a drop-in, top mounting design, or some special arrangements made for a finishing trim by the constructor. The cut-outs in the board may need to be changed in these circumstances. WarningCheck that the under-board parts of any alternative units which you may wish to use will clear the other modules. There is a fair bit of room, but some designs could present problems. It might also prove necessary to move the mains transformer slightly to reduce hum pick-up.

The turntable mounting board, side and back boards and battens are all glued together. The plastic moulding is secured by using double-sided tape.

External Connections

The back board carries a small panel on which are mounted sockets for loudspeakers, a.m. and f.m. aerials, and auxiliary inputs and outputs. A securing clamp for the mains lead is also fitted. Details of the side and back boards are shown in Fig. 5, while information on the battens is inset into Fig. 3.

Loudspeakers

Constructional details of suitable loudspeaker enclosures will be given in a later article.

Cabinet Parts

The aluminium extrusions for the front panel and control mounting panel, the perspex trim strip, the plastic moulding to cover the turntable mounting board and a smoked acrylic dust cover for the whole unit (as shown in the heading photograph) will be available from Reed Hampton Ltd., 19 Church Lane, Wallington, Surrey. See their advertisement for further details.

NEXT MONTH

FULL CIRCUIT AND

Multimeter
The new light robust Pantec Minor comes complete in tough plastic case with test leads, and offers 33 separate ranges, reliable fuse protection, a.c. current to 12.5 A , a.c./d.c. volts to 1.5 kV and resistance to 20 MS 2 . Sensitivity is $20 \mathrm{k} \Omega / \mathrm{V}$ and the meter has a 92 mm scale length with an antiparallax mirror. Range selection is by one rotary switch with a slide switch selecting a.c., d.c. or resistance. An optional high voltage probe is available, to extend the voltage range to 30 kV d.c. Priced at $£ 28.00$ plus 8% VAT the Pantec Minor is available from, Precision Instrument Laboratories, instrument House, 212 Ilderton Road, London SE15 1NT. Tel: 01-639 0155.

Cheap Cheap

Three economy priced amplifier packages can be obtained from Radio and Television Components Ltd., utilising proven Mullard modules which show savings of up to 75% in comparison with listed prices.

Package 1 consists of two LP1173 audio modules and an LP1182/2 stereo pre-amplifier module. Price £4.95 (normally £25.50).

Package 2 features two LP1173 modules plus an LP1184/2 pre-amp with integral magnetic pre-amp. Price £6. 95 (normally £27.50).

Package 3 includes two LP1173 modules, LP1182/2 stereo pre-amp, LP1179 f.m. tuner and a 1165 a.m./f.m. i.f. strip. Price £ $9 \cdot 95$ (normally £37-00).

The three packages can be used to build stereo amplifiers for ceramic or magnetic cartridges, and a f.m./a.m. receiver. To complete the construction volume controls and power supply can also be obtained from R \& TVC for $95 p$ and $£ 1.95$ respectively.
P \& P for any of the packages is $£ 1 \cdot 00$, and may be obtained from, $R \& T V C, 323$ Edgware Road, London W2.

Check mate

A new and more versatile version of Chess Challenger, has now been introduced by Spectrum Marketing.
Comprising a chessboard and builtin keyboard, with windows to display move codes, the new Master version of Chess Challenger looks like the original version but offers many more features. Advantages for the chess buff include three levels of play; for beginners, average and better players, the board also allows the player to select offence or defence i.e. white or black pieces.

A microprocessor 'mini-computer' is the brain of the three level Master game. At level one, the board will display its best counter move almost immediately. At level two the computer

Sipping solder

Recently introduced by BOSS industrial Moldings Ltd, are two new desoldering tools specifically designed for removal of molten solder from both large and small p.c.b. pad areas.
Measuring only 150 mm and 180 mm , and having all metal bodies, both these Minor and Major BIMPUMPS develop high suction power with an anti-recoil system for efficient solder removal and have screw-in Teflon tips for long life and easy replacement.

Both BIMPUMPS are operated by priming the main plunger, and when the solder to be removed is molten, press the release button, the solder is then sucked into the Teflon tip. The unwanted slug of solder is ejected when the plunger is next primed. The Minor is priced $£ 5.95$ plus 8% VAT and the Major $£ 6.95$ plus 8% VAT. Available from, Boss Industrial Mouldings Ltd., Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU. TeI: 01-737 2383.
examines the player's move in greater depth and responds in 11-16 seconds, while at level three it thinks even more deeply and responds in up to 34 seconds.
Other features include the ability to set up move problems and end games and, the computer never forgets a move. It can verify the position of every piece left on the board at the touch of a key at any stage during the game.
Chess Challenger is available from many different shops and stores throughout the country at $£\{39 \cdot 95$ which includes VAT. However, if no local stockist is available, the company will supply direct by post. Spectrum Marketing, 12 The Shrubberies, George Lane, South Woodford, London E18 Tel: 01-989 2235.

HIDUY IDTE

Active Tone Control, March 1978 page 814 The value of R13, Collector Load for Tr2, should be $10 \mathrm{k} \Omega$.
> A.M. Receivers, August 1978: Some of the pin connections to the LM380 are incorrect. Pin 3 should read pin 6 (inverting input), pin 4 should read pin 7 (ground), pin 6 should read pin 14 (Vcc), and pin 5 should read pin 8 (Vout).

Bovington Tank Battle Game, June 1978

It is possible that problems may be experienced with the 4 MHz clock pulse oscillator. If you have difficulty in obtaining a stable picture or obtain multiple pictures of the battleground on the TV screen then the operation of the 4 MHz oscillator is probably suspect. If an oscilloscope is available then the output of the oscillator can be checked at pin 4 of IC4. Gently touch the top of IC4 and observe the waveform at Pin 4. If the oscillator stops or the output changes then solder a capacitor of between 27 pF and 47 pF across the pins of L1. This should cure the problem enabling a stable picture to be obtained.

PW "Jubilee" Electronic Organ, September 1977

Owing to an error in the General Instruments Microelectronics data book for the year 1976 we have now been officially advised that the power supply connections to pins 8 and 14 of ICs 3 to 6 in the Jubilee organ have been reversed. Fortunately it is unlikely that any damage will have been sustained. In fact very few readers will have experienced any problem because of this transposition, but this is more as a result of luck than for any other reason. It is possible that some readers might have experienced "break up" of one or two notes because of faulty division.

Although your system may appear to be working quite satisfactorily it is not recommended that you permit this fault to go unremedied as no one can be sure what the long term effects might be on the i.c.s involved. Correction is very simple and should be carried out as follows:

1. Break the copper conductor on the underside of the board at the point marked in Fig. 1 and use a piece of tinned copper wire to make a bridge connection to the adjacent copper land.
2. On the upper side of the board remove, or cut through, link wire as shown, and using a short length of insulated wire run a connection from the hole adjacent to pin 8 of IC3 to the board pin nearest C44 of the three that are to the right of IC2.

Fig. 1 : The area of the p.c.b. to be amended

SIMPLE

The CA 3130 op.amp. i.c. provides, for around £l, a performance for which one would have paid ten times as much only a few years ago.

Its high input impedance (typically $1,500,000 \mathrm{M} \Omega$) and low input currents (a few tens of picoamps) make it very attractive as a buffer amplifier to a simple voltmeter, giving it a very high input impedance.

Fig. 1 shows how this can be done with the op.amp. shown connected to give a voltage gain of 1. This preserves the original calibration of the voltmeter.

However, if we want to make a self-contained instrument, rather than an add-on buffer for an existing meter, we have a slight problem. Microammeters are more readily obtainable than voltmeters. Of course we could convert the microammeter into a voltmeter by adding a series resistor. For example, to convert a $100 \mu \mathrm{~A}$ meter into a voltmeter with an f.s.d. of IV we would need a total resistance includi ing the meter of $10 \mathrm{k} \Omega$.

From this we have to deduct the meter resistance, if we know it, or use a variable resistance to set the f.s.d. of the voltmeter.

Fig. 2 shows how we can define the current flowing through the microammeter. The circuit is similar to Fig. 1. The high gain of the op.amp. forces the two inputs to be at the same potential. The input voltage appears across R and the current through R is $\frac{\operatorname{Vin}}{R}$.

If we insert the microammeter at Point X, then the current through the meter will be the same as the current through R (we can neglect the op.amp. input current since it is only a few picoamps.)

If we make $R 10 \mathrm{k} \Omega$ and apply 1 V to the input we get $10 \mu \mathrm{~A}$ flowing through Point X and this will hold for any meter resistance.

Figs. 1 and 2 (left) Showing, respectively, an op.amp. configuration providing an overall gain of 1 , and a method to quantify the microammeter current in a similar circuit; also Fig. 3: (below) The dividing arrangement and the seriesconnected resistors which form the attenuator

This is the basis for a multi-range d.c. voltmeter. For a $1 V$ range R will be $10 \mathrm{k} \Omega$. If R is $1 \mathrm{k} \Omega$ f.s.d. is $0 \cdot 1 \mathrm{~V}$. When we come to the 10 V and 100 V ranges we cannot just increase R to $100 \mathrm{k} \Omega$ and hence apply 10 V to the op.amp. input, as the supply rails are only $\pm 6 \mathrm{~V}$ and the op.amp. cannot cope with inputs greater than the supply rails. So the input must be divided by 10 or 100 as appropriate and Fig. 3a shows how this is done. The resistor values are rather inconvenient and Fig. 3b shows how the input attenuator can be built using available resistors.

components

A
Fig. 4: The main circuit diagram of the voltmeter. Note the polarity of the (dual) battery supply rails

The complete circuit is shown in Fig. 4. C1 is a compensation capacitor to prevent instability. VR1 provides the means to set the meter current to zero with no input while R4 provides protection against excessive input currents which would flow if a high voltage was applied to the input with the op.amp. supplies turned off.

Fig. 5: The practical layout on Veroboard; "break track" points are clearly shown, as are lead-outs to meter and switching points

Construction

The main components are mounted on a piece of Veroboard as shown in Fig. 5. This can be either fitted to the back of the meter or into the case. The meter, VR1, both switches and the input sockets are mounted on the front panel of the case, which can be any suitable sized plastic or metal one. The two sets of HP7 batteries are fitted into the case and the instrument is ready for use.

Finally, it is as well to point out that R1 is constructed from three 3.01 M resistors wired in series and mounted on S1. These are specialised types from Radio Resistor, but any adequate combination of close tolerance resistors would suffice.

fie 'purheck'

Part 6 (conclusion)

A packing piece of soft wood and hardboard is epoxied to the case top member. The mumetal screen is a simple rolled tube which covers the neck of the tube.

Great care must be taken not to bend the mumetal to the point where it takes a permanent set, as this will greatly reduce its permeability and hence its effectiveness. Neatly lap both ends of the tube with a turn or two or self-adhesive tape to hold the edges together but not overlapping. Then insert several strips of self-adhesive draught excluder foam running the length of the bore, spacing them closely opposite the join. With the join at the top, the closely spaced strips of foam will support the tube, the other merely acting as spacers.

With this simple inexpensive screen there is only a very small amount of trace deflection due to the field of the specified mains transformer and it is only noticeable when displaying low frequency waveforms with frequencies which are a multiple of 50 Hz .
The case details are shown in Figs 1 and 2. Enough details and dimensions are given to enable those who want to make their own casework.
Once all the mechanical work is complete, setting up and calibration can begin. Plug in and make sure the trace is horizontal, as described in Part 5. Next, adjust the balance control VR301 on the Y amplifier board.
This control compensates for the offsets in TR301, IC301 and circuit tolerances. It is adjusted so that there is no vertical movement of the trace as the "Variable" gain control VR302 is adjusted (Volts/Div Multiplier S301 in position 4). Now, C7-10 of the

Fig. 1 : Front panel drilling diagram. Hole sizes are: A $9.5 \mathrm{~mm}, \mathrm{~B} 3 \mathrm{~mm}, \mathrm{C} 8.3 \mathrm{~mm}, \mathrm{D} 6 \mathrm{~mm}, E 15 \mathrm{~mm}, \mathrm{~F} 5 \mathrm{~mm}, \mathrm{G} 7.3 \mathrm{~mm}$, H 6.5 mm . A transparent overlay is available from the $P W$ Editorial Offices to fit this layout and includes an accurate photographically produced graticule. The overlay is designed to be used with the Sifam 15 mm collet knobs specified in the collated parts list

Volts/Div switch S3B (input attenuator) should be set up as follows.

Set $S 3$ to position 2 and connect a squarewave generator, set to 10 kHz , to the Y input SKT 1. Adjust C7 for a square leading edge to the waveform, without either a spike or a slow risetime. Adjust C8, 9 and 10 similarly increasing the amplitude of the input squarewave as necessary.

With a $5 \mathrm{~V}-\mathrm{pk}$ to pk . squarewave it should prove possible to set up C10 if "Variable" gain control VR302 is set for maximum gain.

For now, C3 to 6 should be set to mid-travel; their setting up is carried out in conjunction with a 10 to 1
divider passive probe which will be described in a future article.

Next, apply a 10 kHz sinewave to the input and set the controls for about 4 divisions of vertical deflection and about 5 complete cycles across the screen. Adjust VR201 (Astigmatism), and VR6 (Focus), alternately until the trace is finely focused both at the tips of the sinewave and on its flanks. As the oscilloscope supplies are fully stabilised, once VR201 has been set up it should not need adjusting again.

To set up the timebase, proceed as follows. Set S4 (Timebase), to position 4; VR3 (TB Variable), fully clockwise (Cal.) and S401 (TB Multiplier), to position

1. Set RV407 (X Gain), fully anti-clockwise (Cal.), and adjust VR408 so that the trace length is exactly 10 divisions. Set timebase to position 2 and connect the Cal. Output (Socket 3) to Y Input (Socket 1). Set RV406 so that exactly five complete cycles of 50 Hz Cal . squarewave appear on the screen. (The Cal. waveform is not exactly square, the top and bottom being slightly arched.) At position 2 of $S 401$ set RV405 so that exactly $2^{1}{ }_{2}$ cycles are displayed, 1 cycle at position 3 (RV404) and ${ }_{2}$ of a cycle at position 4 (RV403).

Now connect the square wave generator to the Y input instead of the Cal. waveform. Set S401 to position 2 and adjust the frequency of the square wave to show exactly 10 cycles on the screen. Set S401 to position 5 and adjust RV402 to display exactly one cycle. If 1% capacitors have been used for $\mathrm{C} 12-15$, the other ranges will be correct, but 1% capacitors are both bulky and expensive. So alternatively, given enough to sort through, capacitors can be selected out from 5% or even 10% types.
In this case, having set up the $1 \mathrm{~ms} /$ Div. range (position 2 of S4) proceed as follows. With S401, (TB Multiplier), at position $4(\times 1)$ set the square wave generator to give ten complete cycles on the display. Now set S4 to position 3 and check that the display shows exactly one cycle. If the display shows part of a second cycle as well, Cl 3 is too large and another capacitor should be tried. If slightly less than one cycle is displayed, a small capacitor can be fitted in parallel as required.

WARNING

If you intend to use the Purbeck to service television sets it is imperative that you use a 11 mains isolating transformer to power the TV. you should not be tenopted to remove the earth from the case of the Parbeck inder any circumstances, To attempt to use any oscilloscope on a TV chassis, without an earth, could prove fatal as you could end up with the case of the scope being at mains potential.

Having got the $100 \mu \mathrm{~s}$ Div range correct, set the square wave generator to display ten cycles, switch S4 to position 4 and proceed as before.
In this way, all the timebase ranges can be set up, provided your squarewave generator goes up to 1 MHz . If it only goes to 100 kHz , the 100 ns Div range can be set thus: set S4 to position 5 ($1 \mu \mathrm{~s} / \mathrm{Div}$) and S401 to position $4(\times 1)$. Set the square wave frequency to display exactly one cycle. Now set S 4 to position 6 ($100 \mathrm{~ns} /$ Div) and $S 401$ to position $1(\times 10)$, which gives the same timebase speed. Set C16 to display exactly one cycle.
The only remaining setting up is the adjustment of C309, which is set to provide the maximum bandwidth when the vertical deflection amplitude is one division.
The easiest method is to use a squarewave input and adjust for the fastest risetime which does not result in excessive overshoot-2 to 4% is normally regarded as acceptable.
However, the rise and fall times of the squarewave need to be substantially shorter than those of the oscilloscope and this is in itself a fairly tall order.
A suitable squarewave circuit is shown in Fig. 5 and this can be driven from a sine wave oscillator or signal generator at frequencies up to $10 \mathrm{MHz}, 1 \mathrm{~V}$ rms being a suitable drive level.
The output should be connected to the Y input of the oscilloscope by very short leads to avoid ringing. With a 3 MHz squarewave applied, adjust C 309 for fastest rise and fall times consistent with minimal overshoot.
This completes the setting up and calibrating of the instrument, but there are still some facilities to test. The Cal. waveform at SKT 3 has already been mentioned and now we must check sockets 4-9. First, connect a 1 kHz sinewave to 3 V peak to peak to SKT 4 (X Input). Set S4 to position 1 (Ext. Input) and check that a horizontal trace is obtained. (VR4, X Shift may be used to centre it). If SKT 4 is also strapped to the Y input, a sloping trace should appear, but note that VR1 (Trig Level) should be turned to one or other end of its travel to prevent the timebase circuit firing. This will prevent $\operatorname{Tr} 403$ applying blanking pulses to the c.r.t. grid.

Alternatively the Int. Ext. Trig. switch S 6 can be set to Ext. when using an external X input. The external trigger facility is in fact the next item to test. With

Fig. 5: A suitable squarewave generator used to set up the scope

S6 at Ext., connect a 1 kHz sinewave of about 500 mV peak to peak to SKT 5, also to the Y input (SKT 1).

Check that the display triggers normally, but that it free-runs when the sine wave is connected only to the Y input. Check also that when SKT 6 is used instead of SKT 5, triggering is also correct provided 50 V peak to peak is applied. Next connect the Y input to SKT, 7 the sweep output and with S6 at Ext. trigger, a sloping line should be seen on the screen. With the Y input connected to SKT 9, (Alternate Gate output), two horizontal traces appear, the distance be-

Fig. 6: This photograph shows the mounting and layout of the input attenuator

Fig. 7: Veroboard layout of the input attenuator

Fig. 8: This drawing shows how the input attenuator is mounted onto S3
tween them corresponding to about $3 \cdot 7 \mathrm{~V}$ as the output switches from " 0 " to " 1 " on alternate sweeps.

The Gate output at SKT 8 is more difficult to check, as it sits at logic 0 during the scan and at 1 only during flyback. However, by switching to the fastest time base speed, it should be possible to see, at the left hand end of the trace, the output falling to logic 0 , accompanied by some ringing.

Apart from the adjustment of $\mathrm{C} 3-6$ in conjunction with a probe, mentioned earlier, the oscilloscope really is now complete as far as construction, setting up and calibration are concerned.

However, before screwing it all up tight, just place the cover in position without any fixing screws and give the instrument a 2 hour soak-test; it can conveniently be left displaying its own Cal waveform.

At the end of two hours, unplug from the mains, remove the cover and feel all the Stabiliser board heat sinks. They should not be too hot to touch comfortably.

If you are already used to using an oscilloscope, you will have observed that the performance of the one you now possess is very creditable by any standards. If not, you will find the $P W$ Oscilloscope very easy to use, particularly on account of its stable triggering.

The trigger point can be set so precisely, right up to either tip of the waveform on either the positive or the negative going edge that, although line and frame sync. separator circuits are not built in, in should be simple to trigger from the line sync. pulses in a composite video waveform.

A point worth noting is that with any oscilloscope, there will be certain Y input signal frequencies for which the trigger gate opens just at the same time as the next trigger pulse arrives. The timebase may then fire on that pulse or on the next, possibly resulting in slight jitter of the trace.

If this should be experienced, it is easily prevented by slightly adjusting VR3, TB Speed Variable.

Another point worth noting is the purpose of S2, Beam Finder. When looking for very small a.c. signals riding on a much larger d.c. voltage, e.g. ripple

WARNING
 Extra care must be taken when working on any part of this instrument while power is switched on. 1100 voits can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket.

on a power supply output, it is necessary to use a.c. coupling and a sensitive setting of the Input Range switch. This results in the trace being driven off screen by the large d.c. input and owing to the $0 \cdot 1$ second time constant of the a.c. coupling, many seconds can elapse before the trace reappears.

In these circumstances, pushing the press-button S2 will momentarily ground the "downstream" side of C 1 , causing it to charge rapidly and restoring the trace to mid-screen.

These and other aspects of driving an oscilloscope are best appreciated by actually using the instrument. Once you are used to using your own scope you will wonder how anybody ever manages without one.

Trying to track down a malfunction in even the simplest circuit can be disheartening and downright impossible without a 'scope-it is like fumbling in the dark.

In particular, circuits can suffer from parasitic oscillations, after all even the general purpose BC 107/108/109 family of transistors universally used in a.f. circuits have an \mathfrak{f}_{T} of 300 MHz . It only needs an unfortunate wiring run of several inches to turn an a.f. amplifier into an r.f. oscillator! The stage may still work as an a.f. amplifier, but with increased distortion. It is with problems like these, which cannot be diagnosed with an AVO, that an oscilloscope comes into its own.

$$
\begin{aligned}
& \text { Several veaders bave enquired about the }
\end{aligned}
$$

the shlabhty of contipenens.0 Ohte than
thopespecitced Notony vin me mechani-
cat condfictign need aterntion, but re-
vised sidnplifiers ${ }^{2}$ and ehit-s suphlies will
atgo besjechitred

This concludes the series on constructing the $P W$ Purbeck oscilloscope. However it is intended to produce several accessories for use with this instrument and these will appear in future issues.
It is also hoped to publish an article in the next few months which will be based on readers' experiences in building the scope and also articles on using it.
As a final note, please take notice of the various warnings published with the series, they will save you a lot of heartache, money and possibly your life.

Corrections

The X and Y plate connections to the c.r.t. are as follows: X1 pin 10, X2 pin 11, Y1 pin 8, Y2 pin 7.

In Part 5 (August) Fig. 1 IC404 pins 12 and 13 should be interchanged. The wiring diagram Fig. 4 is correct.
The stabilised +150 V supply should not be run offload as R203 will overheat. Changing R203 to a 4 W wire-wound type of the same value ($10 \mathrm{k} \Omega$) will prevent possible failure if the supply is unloaded for any reason.
The transparent front panel overlay is available from the PW Editorial Offices, Westover House, West Quay Road, Poole, Dorset. Price $£ 2 \cdot 25$ including p\&p.

BINDERS FOR PW

Keep your copies together Keep them clean
with the PW Easi-Binder

Abstract

The Easi-Binder is attractively bound with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers please advise year and volume and a separate set of gold transfer figures will be supplied.

± 2.85 inclusive of VAT and post and packaging from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London, SEI OPF.
(Overseas orders please add 60p).

PRINTED CIRCUIT BOARDS SERVICE FOR PW PROJECTS

It has now been decided, commencing with our issue dated September 1978, to enlarge the facilities for the supply of p.c.b.s to readers by authorising additional suppliers. It is hoped that readers may benefit from being able to purchase boards as part of component kits, thereby reducing the number of separate orders for a project.
For some time, most p.c.b.s published in Practical Wirefess have been available exclusively from Reader's PCB Services Ltd., P.O. Box 11, Worksop, Notts, who will continue to be a supplier and to whom we would wish to say thank you for helping us to get the service started.
Applications for permission to reproduce boards for resale must be made to the editor in writing.

It sometimes happens that an existing valved receiver has reached the end of its useful life, but it is desired to update its performance without changing the external appearance. Perhaps it may be a radiogram which is a cherished piece of furniture, or, as considered here, a specialised receiver for which it is difficult to find a replacement.

The London Sailing Project had an old valved receiver which covered the long, medium and trawler (1.6 to 3 MHz) bands, operating from the boat's 24 volt d.c. supply by means of a rotary converter. It was decided that the set should be modernised during the winter refit and I undertook to do it. It is hoped that some of the techniques may benefit others.

The original circuit was quite conventional, KTW61 r.f. stage, X65 mixer, two KTW61 i.f. amplifiers, DH63 detector and a.f., 6V6 output and 12AT7 b.f.o., the latter being a plug-in unit with an octal socket in the set to accommodate it. There did not seem any point in disturbing the coil pack and tuning arrangements, which would be necessary if bipolar transistors were to be used, so f.e.t.s were considered. The dualgate m.o.s.f.e.t. is so very similar to a valve in its peripheral requirements that it looked like the obvious choice, and the first step was to replace the r.f. valve by an RCA 40673, retaining for the moment all the original beyond the r.f. stage. This was not an unqualified success, the stage was unstable on the long wave band; damping the coil concerned cured it, not elegant but a quick solution. Another 40673 was used to replace the hexode part of the mixer, and a 2N3819 replaced the triode oscillator. Fig. 1 shows the circuit, whose only real difference from the original was the change from 250 volts h.t. to 20 , even the a.g.c. was compatible, though it was finally removed, The mixer caused no problems and so the next step was to rebuild the i.f. and a.f. stages completely, on printed circuit boards.

The IF and AF Stages

Starting from scratch, or almost so gives a wide choice of possible configurations. The first i.f. transformer was left (Fig. 2) and naturally was designed for high impedance, calling for the f.e.t. again, but only 2N3819 were available, all the dual-gate ones available being used up. Some Transfilters were also on hand and I wanted to use them since they need no tuning and do not drift. By using top-end capacitive coupling I found I could get text-book type coupled circuit response with two of them, but the 2N3819 has too much feedback capacity to allow driving the Transfilter directly, so the cascode was tried, using a BF195 as the upper element. Some a.g.c. was applied by using a commion emitter BC 107 as
the bias element, normally in saturation. When gain is to be reduced, the BCl 07 is taken out of saturation, which increases the bias on the 2 N 3819 and applies current feedback at the same time. This allows a wide dynamic range, and the feedback reduces the likelihood of intermodulation as the gain is reduced.
The Transfilters are followed by the conventional bipolar stages with single tuned coupling, to remove the spurious responses. Only the first stage has reverse a.g.c. applied, the last i.f. stage is without a.g.c. since it has to feed the detector with a constant level signal regardless of the overall gain of the system. The two tuned circuits have a high unloaded Q, but operate at a Q of the order of 50 , and are stagger-tuned to give a flat overall bandpass of $\pm 3 \mathrm{kHz}$ with steep sides.

Fig. 1: The mixer stage and the final version of the r.f. stage, using a c̣ascode amplifier

Fig. 2: The i.f. and a.f. amplifier stages

A transistor detector was tried, but the overload performance was not satisfactory, and a simple biased germanium diode with series noise limiter proved the best. Reverse a.g.c. is derived from the diode, amplified by a common base $\mathrm{BC107}$ and emitter follower.

The b.f.o. injection takes place at the base of the last i.f. transistor, at a level below the a.g.c. threshold. The b.f.o. uses another Transfilter and BF195, built into an old octal valve base, and plugged into the original socket.

The a.f. output stage uses a complementary pair of germanium transistors in a conventional circuit. Volume control is by a series resistor at the input to the a.f. amplifier; this prevents reduction to zero volume, a feature required by the users of this receiver.

Muting

The set is used to keep watch on either 2182 kHz (calling and distress) or one of the inter-ship channels, for long periods, and it is distracting to have to listen to noise. The co-fitted v.h.f. equipment has muting which cuts off the loudspeaker unless a signal sufficiently far above noise is coming in, and a similar facility was wanted on the m.f. receiver. On v.h.f. f.m., muting presents little problem owing to the reduction in supersonic noise when a signal is being received, but a.m. does not possess this property, and also the noise is due to unwanted external signals rather than thermal noise. The set is designed to receive a.m., not s.s.b., and there is one effect that can be exploited.

The bandwidth of the receiver is 6 kHz overall, and in the absence of a carrier, post-detector noise will occupy all this. When a carrier is tuned in to the
centre of the pass-band, the noise will increase (assuming no a.g.c. action yet) but it will be due to the carrier beating with 3 kHz components and so be only 3 kHz wide. This is the phenomenon which allows an operator to tune his set on a carrier only, by the sound of the noise.
The muting switch (Fig. 3) receives four inputs, a.g.c. voltage, detector voltage, rectified 5 kHz noise and bistable voltage. The first two act to unmute the receiver, both before and after the a.g.c. threshold is reached, the third mutes the receiver when present, and the last provides a degree of backlash so that the receiver does not pop in and out as the muting threshold is reached. The fraction of a.g.c. voltage fed in determines the threshold. On trial the circuit reliably unmutes to a signal which is too noisy to read at the low threshold end of its range, so there is no possibility of missing a weak signal unintentionally, though of course it can be set to unmute at any wanted level above this.

Power Stabiliser

The boat's supply comes from twelve lead-acid cells, which are charged either from an alternator on the main engine, or by an auxiliary petrol electric set. The input voltage can vary between 22 and 30 according to whether the battery is exhausted or on charge. Since the total consumption of the modified receiver is so low, it is a practical possibility to stabilise the entire supply to it, with the exception of the dial lights (whose consumption exceeds the quiescent current of the remainder).
Two stabilised voltages are required, 20 and 12, and operation down to 22 volts is expected, which allows little to be wasted in the higher voltage stabiliser. An unusual configuration is adopted to

Fig. 3: Circuit diagram of the muting switch
permit this, and also to reduce the ripple caused by charging from an alternator.

The series pass transistor is operated in the common emitter mode rather than the more usual emitter follower, and the reference voltage is derived from the stabilised output instead of the raw input. The dilemma of not starting until there is a reference, and not having a reference until the stabiliser has started is solved by feeding the pass transistor base from the negative line through an f.e.t. and a pnp emitter follower.

A junction f.e.t. is, by definition, operating in the depletion mode and needs bias to turn it off; which bias is developed only when the fraction of the output at the base of Tr 4 exceeds the reference voltage. Starting current reaches the base of Trl from the negative line through the 330 ohm resistor and Tr2 which is itself biased on by the current through the
lower $47 \mathrm{k} \Omega$ resistor and $\operatorname{Tr} 3$. Since $\operatorname{Tr} 4$ is not yet on there will be no current through the upper $47 \mathrm{k} \Omega$ resistor and $\operatorname{Tr} 3$ will have its gate and source at the same potential. Under these conditions $\operatorname{Tr} 3$ conducts, although there is not yet any output voltage. However, since Tr 1 is on, output voltage will be rapidly built up, until $\operatorname{Tr} 4$ is biased on, when negative bias will be applied between $\operatorname{Tr} 3$ gate and source, reducing the current through it and ultimately Trl, until equilibrium is reached.

The 330 ohm resistor is there to limit the current through $\operatorname{Tr} 2$ if the output is prevented from reaching the demanded level, say by excessive load current. If it were not there, under these conditions a forward biased diode ($\operatorname{Tr} 1$ base-emitter diode) and a saturated transistor would be in series across the input, and this combination will pass a large indeterminate current. This resistor gives current limiting, at a

Fig. 4: The dual stabilised power supply

P.W. WIMBOURNE

Reed Hampton Ltd. is pleased to offer the complete kit of parts for the P.W. Wimbourne Music Centre. These parts have been broken down into groups so as to build this exciting project in easy stages.

BASIC STARTER KIT

PW 1 Anodised aluminium front extrusion, ready cut and drilled and printed-£2.95.
PW 2 Rear control mounting extrusion for tuning drive, pots, and 7 way switch-£1 25.
PW 3 Template for cabinet construction-send 50p \& SAE.
PW 4 Vacuum formed top moulding cut for BSR deck and cassette mechanism-£1-95.
PW 5 Complete set of sockets consists of $2 \times$ DIN LS, 1 five pin, 1 AM aerial, 1 coaxial $75 \mathrm{ohm}, 2 \times 3.5 \mathrm{~mm}$ jack sockets, 6 pole stereo headphone socket and mounting bracket-£1.25.
PW 6 Tuning drive system consists of 1 pointer, drive drum, drive cord, shaft spindles, pulleys plus callbrated MW LW FM tuning scale-£1 45.
PW 7 Complete set of 5 knobs and 7 push buttons-£1-25.
Prices are inclusive of VAT add 30p postage and packing per item or total postage and packing $\mathbf{£ 1}$ for more than one item. For complete starter kit total price only $£ 10.95$ postage included.

Send S.A.E. \& 15p for complete details.
HEED HAMPTON LTD.
19 CHURCH LANE, WALLINGTON, SURREY

gIVE AWAY PRICES

MANUFACTURERS SURPLUS EQUIPMENT

STEREO POWER AMPLIFIER

25 Watts RMS per channel

£7.50

* Class AB Operation
* 16 Transistor Circuit
* Unstabilised supply required
\star Tip 34A + Tip 33A Output
* Supply Voltage 50V DC
nominal
$\star \quad 30 \mathrm{~Hz}-18 \mathrm{KHz} @-1 \mathrm{~dB}$
$\star \quad$ Output 8 ohm
* Input 50 Kohm

This power amplifier which features an advanced designed design with complemen-
tary palr of transistors in class AB push pull, Will comfortably delfver 25 watts per
channel. And comes complete with heat sink.
H-Fi Preamplifier
The PR 020 is a low noise preamplifier with full bass and treble cut and boost. It has four rotary controls and four specially selected transistors. It is designed to match most high quality power amplifiers.
£5.99

RF BOARD AM/FM/MULTIPLEX

$3 \times$ ICs $3089 E$ MC 13103123
3 ceramic filters,
meter drive
FET FRONT 3 stage FM tuning

2 Stage AM/MW - LW
LOW PASS AUDIO FILTER BUILT IN STABILISER

Complete with 4 way switch \& ferrite rod assembly £9.99

VTO1

$815-150 \mathrm{MHz}$
Varicap Front End $10 \cdot 7 \mathrm{MHz}$ IF output Tuneable $2 \times$ Mosfet
1 bipolar. Excellent strong signal handling.
PF and Image Rejection. Pluggable connections.
£9.99

Whether it was the counter-attraction of Derby Day or the World Cup which caused the poor attendance at the recent seminar "Considerations for High Fidelity Reproduction" organised by the Society of Electronic and Radio Technicians, is debatable. What is certain is that those who did go along enjoyed a very informative and entertaining time. In fact, several said they could happily have spent the whole day listening to any one of the speakers.

James Moir, in his paper "Loudspeakers" considered that the best of today's designs are sufficiently good to make it very difficult to improve on them, though opinions differ on the most desirable sound distribution pattern. He outlined some of the problems experienced in testing loudspeakers, for instance in differentiating between intermodulation and distortion due to Doppler effect.

Some of the relative merits of valves and transistors when used in audio amplifiers were explored by John Linsley-Hood. He commented upon the apparent preference of listeners for reproduced sound including a controlled amount of distortion, and the fact that this was more easily obtained from valved amplifiers, or from those using the "power MOSFET" devices. Considerable work remained to be done on improving feedback stability margins, as a means of enhancing an amplifier's transient performance.

John Borwick reviewed the various problems involved in obtaining faithful reproduction from the gramophone record, still the most popular medium for home enjoyment of recorded music.

In a paper on Tuners by Angus McKenzie, lavishly illustrated by tape recordings of tests on a number of commercial designs, various shortcomings in performance were explored in depth. Little comfort could be drawn from the fact that the only model which seemed capable of what could be termed good all-round performance was one currently retailing at around $£ 600$!

The final paper, on the Technology of Magnetic Tape, by Basil Lane, left us in little doubt that the tape recording field is in a mess, with the proliferation of tape types generally resulting in poorer performance (because of incompatibility between tape and machine) instead of the improvement claimed by manufacturers.

GCA

MODERNISING A VALVED RECEIVER

continued from page 62
value set by the $h_{\text {Fe }}$ of Trl; a better limiter would be an emitter resistor for $\operatorname{Tr} 1$ and a base bypass diode in the conventional circuit. This was not used because it would need a higher differential between input and output voltages than permissible.

The 12 volt stabiliser uses a difference amplifier ($\operatorname{Tr} 5, \operatorname{Tr} 6$) and emitter follower $(\operatorname{Tr} 7)$, with resistive current limiting, to prevent loss of transistors due to accidental short circuits.

Trials

At this point the set was tried in harbour and showed two faults; insufficient a.g.c. range to cope with transmissions from an adjacent ship, and near instability of the r.f. stage. The dual-gate transistor was at the bottom of both these troubles and it was replaced by the same cascode that was used in the

The replacement circuitry was assembled on small p.c.b.s, each fitted in place of one of the removed valve-holders

Transfilter i.f. stage, but with reduced a.g.c. voltage applied to make the r.f. stage the last to lose its gain as the signal increased. This circuit is shown in Fig. 1 in place of the dual gate. The early experiments were done with the components soldered to the pins of the octal valveholders, but p.c.b.s were later fitted as shown in the photograph.

Now the stage became completely stable without the damping resistors, the dynamic range allowed communication with adjacent ships and so modernisation ended with the set being used on the first trip of the following season.

Silent microphone

Tape recorder buffs are doubtless aware of the problems of noise when a microphone is built in to the recorder itself. This popular trend commonly employs electret microphones and the real problem is the noise generated by the recorder itself things like motor noise and vibrations.

A Japanese company believes it has the answer and is to use a new type of noise-cancelling microphone in its new models, probably starting in the Autumn of this year. Once inhouse demands have been met, the microphones will probably be made available to other users.

Many cassette recorders use electret microphones whose diaphragms are some $20-25 \mu \mathrm{~m}$ thick and because of this thickness noise, particularly low frequency noise, can be a great problem. Like most problems, the solution has been a compromise often achieved by keeping the amplifier turned down i.e. less sensitive and therefore not so prone to pick up the noise. However, a certain lower sensitivity limit is reached before the practical performance of the unit is degraded. This also has the effect of making the tape noisy on playback.

Using the new noise-cancelling microphone, the Japanese engineers (usually scrupulously accurate in recording details-especially technical ones!) claim that below 500 Hz their new microphone has a noise reduction of at least 30 dB better than the electret. The secret is the use of a new material which is extremely thin. Two 'pieces' of this are set either side of the microphone. When the low frequency noise enters the microphone housing it hits both very thin diaphragms and induces in them two equal but opposite voltages-and these, of course, cancel. The construction of the complete microphone unit (I dare not start to explain the theory and thinking behind the acoustic design) is such that the low-frequency response is extremely good. A key factor here is the capacitance of the microphone which is some sixty times larger than that of the electret. Sounds a good product.

Magnetic Liquidity

Careful, your loudspeaker's leaking. Not true at the moment but it could be so if the new units from Germany are any indication. The range includes both tweeters and woofers and all stations to Acton etc. The secret is a thing called "Magnetofluid". It is claimed that the magnetic conductivity of the space in which a loudspeaker coil vibrates can be increased by 100 -times if one uses this magic jollop. The fluid itself consists of a liquid which has iron oxide particles suspended in it. Higher notes have a greater brilliance than with "ordinary" conventional speakers, according to reports. Ideal for listening to Handel's water music, no doubt.

Power station

Now that lamp dimmers have become everyday items with circuitry appearing regularly in the pages of constructional journals, it's refreshing to know that the manufacturers of things like triacs are not just standing still. The latest device of this type to hit the market should cater for almost anything. It's a silicon-controlled rectifier (s.c.r.) which can handle 3MW (three million watts); up to $2,400 \mathrm{~V}$ at up to $2,500 \mathrm{amps}$. A right little glow worm dimmer! I was amused to read the line at the very end of the literature describing this device which gave the price per unit "... in lots of ten". Housed in a hermetically-sealed garage, no doubt.

Super 555

For the power misers among us, keep an eye open for a new i.c. from Exar. It's named the XR-L555 and it is pin-compatible with the popular 555 timer i.c. The difference is that the new i.c. draws only one fifteenth of the power of the older chips. Another useful fact is its ability to keep timing accuracy even when the voltage applied is reduced to a mean $2 \cdot 7 \mathrm{~V}$.

Talking chips

Using electronics to synthesise or generate plain language is something being played with in almost every corner of the world. Simple systems have started to appear but the newest one is quite something-it's a simple p.c.b. with a couple of innocentlooking i.c.s and about half-a-dozen discrete components.

The startling thing about it is that it has a 24 -word vocabulary; in four languages-Arabic, English, French and German. The little module requires only two supplies (-5 V and -15 V), audio filter, amplifier and loudspeaker to make it operate. And the price is only around 150 American dollars.
I can visualise the harrowing scene in years to come of all these sophisticated computers, programmed for every language in the world, having a late evening chat-as they idly roast another human for supper

Shrinking trimmers

| was interested to see the launch recently of a thing called a "Multifunction Trimmer". This is a 16 -pin dual in-line i.c.-size package which houses four separate and fully adjustable potentiometers. Adjustment of exact ohmic values is done using a small-bladed screwdriver and the four adjusting slots are easily accessible from the top of the d.i.i. package.
It occurs to me that this would probably be the ideal way for electronic musical instrument enthusiasts (organs come to mind immediately) to adjust the pitch of individual notes. Four of these modules could cover the 13 notes of the scale leaving the remaining three pots for other adjustments. They could also be useful in RC circuits for things like frequency response, ortiming circuits, and would take up very little space indeed. Not available on the Amateur market at the time of writing.
Gimbers

by Eric Dowdeswell G4AR

As the time for the 1979 World Administrative Radio Conference in Geneva approaches there is bound to be an increasing amount of rumour and speculation on the likely outcome of the conference as far as the amateurs are concerned.

Already I have had letters on the matter, mostly quoting second or third-hand information heard on the bands, but which, if repeated often enough, starts to become "authoritative". As with previous conferences of this nature the only sensible approach is to ignore all stories and rumours.

Most national telecommunication authorities will be submitting their own proposals to the conference and some of these may not favour amateur radio. Some will ask for additional bands and facilities on the principle that there is no harm in asking. It is important to remember that the amateur bands are only one comparatively small part of the frequency spectrum to be considered by the conference.

As long ago as October 1976 the International Amateur Radio Union (formed of virtually every national amateur radio society in the world) circulated agreed proposals for the conference to every member society. As these proposals included additional allocations at $10 \cdot 1,18 \cdot 1$ and 24 MHz , plus another from 160 to 200 kHz in Regions 2 and 3, these may well have been the reason for the speculation encountered on the air.

Let us leave it to our own RSGB to keep us in touch with events and subsequent decisions, mainly through GB2RS and Radio Communication.

Newcomers to the Column

Regular reader John Williams of Braintree, Essex has at last made himself known to us. He took the RAE in May and is all atremble waiting for postman with that lovely bit of paper that says "pass"! He intends to go ahead with the code test for his G4 ticket after a period with his G8. For the time being he is the lucky owner of a 75A1 receiver, with a short wire aerial.

Frank Shaw is near Penrith in Cumbria and has been a $P W$ fan for 30 years but has only now got around to joining the RSGB, as BRS38645, and to start listening on the amateur bands. A war-time op, Frank is not too impressed with the code of some of the lads, mainly due, in my humble opinion, to the lack of courtesy of some ops of not adjusting their sending speed to suit the other fellow, always a mark of a good op. Frank has completed a Heathkit SB303 and has a number of half-wave aerials for different bands. He expects to take the RAE next December so here's wishing you well OM.

From Godalming, Surrey, David Parker blames the column for setting him on the slippery slope to amateur radio but at the moment " A " level exams are taking up the time. Receiver is an HQ120X with a homebrew a.t.u. and 40 ft of wire. David is another hoping to get a ticket following the next RAE, with enthusiasm whetted by joining his local club.

Round the Bands

John Whiting (Fareham, Hants) mentions a good find, VR6TC on Pitcairn, on 20 m s.s.b., one country I sought for many years but never worked. J. Hodgson (Morpeth, Northumberland) must have been pleased with JTIAN, also 20 m s.s.b., while KZ5DK on the same band is a country not heard all that often. Likewise KG4FW in Guantanamo Bay on 15 m s.s.b. In Herne Bay, Kent, \mathbf{D}. Waddell is one of the few readers reporting c.w. loggings these days. For his pains he found goodie JTIKAA in Mongolia, KM6BI on Midway Is. and ZK2AV in Nuie Is. in the Pacific, all on 15 m . A knowledge of the code gives any op a decided advantage over the s.s.b.-only types so get down to it and let us have some c.w. logs for a change! Anyone can copy s.s.b.!
Ten metres claimed the attention of Brian Harrison in Hastings, Sussex, where he logged J3AAG in Grenada, KV4KV in the Virgin Is. and 7Q7LW in Malawi, all with his AR88 and long wire. Martin Leizers of Newport is mothballing his DX160 and 250ft wire for a while, concentrating on his exams. In a last fling he copied CX3TU, HI5MAG, and ZP5EF on 40 m s.s.b., J3AH Grenada, KM6FC plus WD9FCC/VQ9 on Chagos Is. on 20 m . Nepal in the shape of 9 N 1 MM was collected on the 10 m band.

A 2 m converter has been added to the FRG-7 of J. Goodier who operates in Marple, near Stockport so hopefully some 2 m logs will follow soon. In the meantime his s.s.b. log shows J3AH and the elusive VR6TC on Pitcairn. Dick Smith found A5JO, ostensibly from Bhutan, from his shack in Porthcawl, MidGlam., which is indeed a rare one for the records.

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE

Four inputs. Four way nixing, master volume, treble and bass controls. suits all speakers. This professional quality amplifte power is requifed. 5 spealeer outputs. A/C mains operated. Slave outpat. Produced by demand tor a quality valve amplifier.
Seni for details. Senia for details.

Chassis only $\$ 94$ carr. 85

R.C.S. MINI MODULE KIT

15"x8"x14"3-way LoudspeakerSystem EMI, Bass, Middle \& Tweeter Units with 3-way Crossover \& Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to 20000 C.P.S. 12 watt RMS. 8 ohm. 110.95 per kit. Two kits $£ 20$. Postage 75p.

TEAK VENEER HI-FI SPEAKER CABINETS MODEL "A". $20 \times 13 \times 12$ in. For 12 in

MODEL "B" BOOKSHEL

MODEL "C" BOOKSHELF
For $\mathbf{6}$ tin and tweeter. $£ 5.95$ post 75p
LOUDSPEAKER CABINET WADDING
18 in . wide, 20 p 1t.

GOODMANS CONE TWEETER

 ELAC TWEETER 4 ohm 20 watt $22 \cdot 50$
 and sonnd effecte to reeoridings. Wind mix Microphone, records. tape and output. 9 volt battery $£ 6.75$

TWO CHANNEL STEREO VERSION OF AbOVE Es -50
LOUDSPEAKER BARGAINS
$3 \mathrm{ohm} .7 \times 4 \mathrm{in} .41 .50 .8 \times 5 \mathrm{in} .81 \cdot 90$. 8 Hin .81 .80 .8 gin .52.
THE "INSTANT" BULK TAPE ERASER \&
GEAD DEMAGGETISER
uitable for cazsetten a and all sizes of tape
eeafet S.A.E.
£4.95 $\underset{\text { 50p }}{\text { Pot }}$

A.c. ELECTRIC MOTOR

 Spinale $-0.5 \times 0.25 \mathrm{in} .22 .95$ each

 ALUMINIUM ANGLE BRACEETB \times Q \times gin. $15 p$.
ALUMINIUM BOXES. MANY SIZES IN STOCE.
$\times 2 \times 2 \mathrm{in} .86 \mathrm{p} ; 3 \times 2 \times 1 \mathrm{in} .60 \mathrm{~B} ; 6 \times 4 \times 2 \mathrm{in} . \operatorname{si}$

DE LUXE BSR HI-FI AUTOCHANGFR	
Plays 12in. 10 in . or 7in. recorda	
Auto or Manual. A high quality	
with 18 months guarantee. A.c.	
$200 / 250 \mathrm{~V}$. Bize 13\% $\times 11 \mathrm{idin}$.	
Above motor board 84ia.	
With magnetti stereo cartridge tele 50	
Cueing Device, Bias Componsator, Eala need Arm, All Poti 75p	
NEW DECKS	
RSR MP60/P128 with Goldring G850 magnetion cartridge.	
BSR Budget Autochanger with ceramic cartridge.	
Garrard AP76. Single player less cartridge.	
BSR. PI63. Belt drive Tarntable, lesa cartridge.	
Garrard 5300. Autochanger with ceramic cartridge.	
Garrard Minichanger. Plays all size records. Ceramic cartridge.	
BSR. P182. Snake arm, flared urntable, ceramic cartridge. Latest model.	£19.95

BAKER MAJOR I2" ${ }^{\prime \prime}$ I6.88

 and weeter cone toge ther with A BAKER coramic magnot aszembly having a fux of 145,000 Maxwellh. Bata retinance 40
 10 ohms mast be stated.

MAJOR MODULE KIT
$30-17,000 \mathrm{c} / \mathrm{s}$ with tweeter, crousover
 state 4 or 8 or 16 ohma. \quad P21. 38
Post 81.60

BAKER SPEAKERS

 "BIG SOUND"Robustly constructed to stand up to long periods of electronic power. As need by leading groups.
Usoint responne 30-13,000 cpa
55 cpz.
ROUP "25"
12 in .30 watt
4,8 or 16 ohms.
GROUP "35"
4,8 or 16 ohms.

f12.96 $f 15.12$

GROUP " $50 / 12$ "
12in. 60 watt profentional £22.68 model. 4, 8 or 18 ohma Response $30-16,000 \mathrm{cps}$. With aluminium presence dome GROUP " $50 / 15$ " 16 in .75 watt
8 or 16 ohmal. Post $£ 1.60$

Send for leaflets on Diteo
BAKER 150 WATT
QUALITY
TRANSISTOR
MIXER/AMPLIFIER

Profensional amplifer using advanced circuit design. Ideal for disco, groups, P.A. or musical instrnments. 4 inputs 4 wisy mixing. Master troble, basi and volume controls. 3 speaker ontput sockets to suit varioul combinationy of speakern. -8-16 ohm. Slape output. A/C mainy.
Guaranteed. Detaill S.A.E.

100 WATT DISCO AMPLIFIER
MADE BY JENNINGS MOSICAL INSTRUMENTS 4 Speaker outputs volame treble. bass, controls ≤ 59
Speaker outputa volume, treble. bass, controla
Carr. 12
B.S.R. SINGLE PLAYER DECK

3 apoed. Playy all size recordy, Stereo Cartridge. Cueing device, Ideal Dinco Deck.
£ 17.50 Pont 81.00

DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. EaHy to build kit. Will control up to 500 watty AC mainu. $\underset{\text { Poati } 35 p}{ } \leq 3.25$ STEREO PRE-AMP KIT. All parts to build this pre-amp. 3inputy or high medium or low gain per channel, with volume control
tnd P.C. Board. Can be ganged to make multh-way
$\mathbf{~} 2.95$ atereo misert.
R.C.S. SOUND TO LIGHT DISPLAY MK 2
complete kit of parti with R.C.S. printod circuit. Three
to 100 watts tignal source. suithite tor horme El
000 Watt Rear Refiecting White Light Bulbr. Ideal tor Diseo
Lighta. Edition Serew Fiting 75p. Each.

MAINS TRANSFORMERS Pon
6 VOLT ${ }^{\frac{1}{2} \text { AMP. } \& 1.00 ~} 3$ AMP. 51.959 VOLT 3 AMP ER.75 32 VOLT 300 MA . 81.00770 MA .41 .3020 VOLT 2 AMP. 82.50
30 VOLT ${ }^{5}$ AMP. AND 34 VOLT $\&$ AMP. O.T. 8
 $0-20-40-60$ VOLT 1 AMP. $33-502 \times 18$ VOLT 8 AMP. 29 .
GENRRAL PURPOSE LOW VOLTAGE. Voltages available at

2A, 3, 4, $5,8,8,9,10,10,15,18,24$ and 30 Y	30
	cis. 25
${ }^{80}$	
5A. 6, 8, 10, 12, 16, 18, 20. 24, 30. 36, 40, 48, 80	E14.50

R.C.S. TEAK

BOOKSHELF
SPEAKERS
$13 \times 10 \times 6 \mathrm{in}$.
50
to
14,000
eps
12 watts rms. 8 ohms
f19 pair poit f1-50

BAKER DISCO SPEAKERS

HIGH QUALITY-BRITISH MADE

$2 \times 12^{\prime \prime}$ CABINETS

for Dinco or PA all itted with earrying handles and corneri. Black 60 WATT R MS €56
With one horn 666
With two horns £74

80 WATT R.M.S. £60
With one horn $£ 68$
With two horns $£ 76$
Carr. 23
100 WATT
R.M.S. $£ 75$

With one horn £83
With two horns E91

SINGLE l2inch CABS COMPLETE 30 WATT R.M.S. £32. WITH HORN $£ 40$. 40 WATT R.M.S. £34. WITH HORN 442. 60 WATT R.M.S. E4I. WITH HORN $£ 49$. CARR $£ 3$ EA.

"SUPERB HI-FI"

I2in 25 watts
A high quality loudspeaker, its remarkable low cone resonance ensures clear reproduction of the deaponit basa. Fitted with a apecial copper drive and concentric range reproduction with remark. abie efficiency in the upper ceginter.
Baur Resonance
Tax menaity $\quad 18,500$ gavisy Usitul reaponse
8 or 16 ohm models

624.75 \%

"AUDITORIUM"

I2in. 35 watts
A full range reproducer for high power, Ideal for Hi-Fi and public addrom, multi-speazer ayitema, electric organa.
Rell Retonance 15000 35cp:
 8 or 16 ohman model.
£23.60 ?
"AUDITORIUM"
I5in. 45 watts
A high wattage loudgpazaer of oxceptionsl quality with a level
responio to above $8,000 \mathrm{cps}$. Tdeal for Public Addrens, Discothequen, Electronic instrumenti and the home Hi-Fi.
Bati Resonance $\quad 35 \mathrm{cps}$ Elux Density $\quad 15,000$ gavis 8 or 16 ohmy modela.

$\pm 29 \cdot 25$

Loudspeaker Cabinet Wadding 18in wide, 20p per ft. Hi-Fi Enclosure Manual contalning plats, designs, crossover
data and cubic tables, 85 p .
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!

15 W model $\quad £ 10.50$
8 ohms. Post 65p G00DMANS 20W Woofer
$\underset{\text { Siqe }}{ } 12 \times$ 1inin 4 ohms. $\quad \mathbf{E 9 . 9 5}$ Hi-Fi Bass unit. Post 65p

Let's hope he turns out to be OK but don't be disappointed Dick if he doesn't! The FRG-7 of Bernard Hughes BRS25901 must have jumped up and down when he caught VR80 on Tavalu in the Ellis Is. plus another rarity PYOOD in Fernando De Noronha off the coast of Brazil, on 20 m s.s.b. After a long wait QSLs from P29FV, 7J1RL and VP8JV have arrived for Bernard.
FG0GD/FS7 and FH8CY (Comoros Is.) were found on c.w. by Ian Marquis A9140 in Leigh-on-Sea, Essex, while pottering around 10 m , while PYOCA on St. Paul Rock on 80 m s.s.b. is no mean catch. Bill Rendell of Truro, Cornwall has been concentrating on island stations on the theory that if the island is pretty small there can't be too many amateurs there! His valved Heathkit AR3 and pre-selector found J3AH on Grenada, KC4AAC Anvers Is. in the Antarctic, VK9YL on Cocos-Keeling Is. and VP2VJ on Tortilla, all on 15 m s.s.b., to name but a few.

General Notes

Bob Bell in Blyth, Northumberland, is one of a number of readers who comment on the fixed i.f. bandwidth of the FRG-7 and wonders if he can do anything about it. Well, I certainly would not dive inside and start fiddling about with it. Other than selling it and getting something else the only answer is to fit a selective audio filter of some kind between the set and the phones, for use on c.w. This leaves a compromise between s.s.b. and a.m. and, if I had to, I'd fit a good crystal or mechanical filter in the first i.f. stage and let a.m. take care of itself.

Long time reader of $P W$ Len Adlard, 24 Clements Avenue, Leigh-on-Sea, Essex appeals for any info or manual on the ex-RAF receiver 1392/D. Any costs will be willingly reimbursed and material returned immediately. A reader in Reading, Berks, has an old R1155 receiver he'd like to give to a young listener who could tidy it up a bit. Drop me a line only if you can collect. S. M. Turner BRS37620 of Wilmslow in Cheshire has wound himself a helix aerial on a 2 in cardboard tube about 24 in long. There is 25 ft of wire in each half, the centres being taken to an a.t.u. It stands by his set and he compares it favourably with his wire aerials. I suggest that is because it is vertical and provides better pick-up of low angle DX signals.

Brian Smith writes from Barry, Glam. with an in teresting experience. He works for British Rail and on boarding one of the engines in the yard noticed that the driver had a copy of Short Wave Magazine in his bag! He turned out to be GW3HDH. Brian has since joined the BR ARS and wonders if there are any other BR types that would like to have info on the society. If so, write to Brian at 15 Courtenay Road, Barry, Glam. A BR net operates on Sundays, 1000hrs on 3730 kHz .

Around the Clubs

Newbury and District ARS meet on second Tuesday of the month at the College of Further Education so be there at 1900 hrs . Further info from Alan Wood G4EEE, 9 Hillcrest, Tadley, Basingstoke or ring him on Newbury 43501.

Don't forget the Derby and District ARS Annual Mobile Rally on Aug 13th from noon onwards at the Lower Bemrose School, Littleover, with talk-in on 2 m and 70 cm . Normal meetings every Wednesday at

1930hrs at 119 Green Lane, Derby. Hon. Sec. is now Jenny Shardlow G4EYM, 19 Portreath Drive, Darley Abbey, Derby and I'm sure you'll be only too happy to drop her a line for further info.
The Wessex AR Group hope to run GB3WHF to demonstrate amateur radio at the Wimborne Hobbies Fair on Saturday August 5th to the Monday inc. Hopefully, RTTY will be on show as well as v.h.f. and h.f. stations. Details from Sec. Geoff Cole G4EMN, 6 St. Anthonys Road, Bournemouth.

Cheltenham AR Assoc. include morse instruction and a TVI clinic among their multifarious activities. The latter must be a Godsend and could well be copied by other societies. Info on the club's activities from Garth Martin, 88 Tennyson Road, Cheltenham.

Log Extracts

B. Smith:-80m PY2XRA ZL4KF 20m HI8GAR TJ1BB 10m LU4MAO ZE6JS
S. Turner:-20m KG6JIU WA4YVG/VQ9 (Chagos Is.)
W. Rendeli:-20m FG7TD FM7AQ VE8RCS VK7AE YA2JV 15m C5ABK CP6HI FY7BC HH2PW HK0WJ HP1SI J3AH KC4AAC TR8ACQ VK9YL VP2MAD VP2VJ YA1AJD
D. Greenhalgh:-20m C5AAR CT3BX FR7BU VP2CDF VR8EH 15 m CT2IA PJ2AAX
I. Marquis:- $\mathbf{8 0 m}$ D4CBS (Cape Verde Is.) HB0XAA PJ2AAX PY0CA (St. Paul Rocks) 40m HH2T PJ2AAX 8P6GO 20m FR7BE KM6FC VK9YS (Cocos Keeling) WA4YVG / VQ9 (Chagos) YIIBGD 15m KG4AG VS5XU ZD7JV ZKlDR 10m C6ANX FG0GD/FS7 FH8CY TR8MC
B. Hughes:-20m HH2A TR8LE VP2LLF VP2SQ VR80 PY00D (Fernando De Noronha) 15m CP8CB HC2HX ZK1DR 10 m HK4CCX J3AH TR8MC VP8PC YB0GP ZK1DR
R. B. Smith:-80m CT3AB LU2VE 20 m A5JO CO2FRC ZF1MA
J. Goodier:-20m HK1WL J3AH YB5BBH 15m FY7YF KH6XX 10m PY6SL VP8HA
M. Liezers:-40m CX3TU HI5MAG ZP5EF 20m A7XAH (Qatar) FG7TD HL9UD J3AH KM6FC TA1MB VP2SQ WD9FCC/VQ9 15m FR7BE 9N1MM
B. Harrison:-20m C31MK VP2KT 15m P29NPS (New Guinea) YB3AE 10m EA8QU J3AAG KV4KV 7Q7LW (G3JSU)
D. Waddell:-15m C5AAR CP7GM J3AH JT1KAA KH6DL KM6BI KS6RJ ZK1DR ZK2AV K7BFI/5W1 6W8FA 8R1J 10m FG0GD/FS7 9L1CA
J. Hodgson:-40m CO2DC 20m JT1AN KZ5DK YS2RVE 15m KG4FW 8R1Q
J. Whiting:-20m VP2KT VR6TC 15m JR6RC 6W8GT VP2KT FP8AEZ
D. Parker:-20m VK9KE VK8AE

All s.s.b. except those in bold which are c.w.

MEDIUM WAVE DX
 by Charles Molloy G8BUS

Why not cover some Long Wave DX asks Peter Sommer (London) who goes on to say that Cambridge Kits do a converter that allows you to use 3.5 to $4 \cdot 0 \mathrm{MHz}$ as a tuneable i.f. and that the results when used with an FRG-7 are pretty good. Well, the long waves are covered in this column and occasionally logs of DX on this band are received from readers. The snag of course is that many receivers, other than domestic types, do not cover the band. Incidentally, the current Cambridge converter, as advertised in PW converts the range 100 to 600 kHz into $4 \cdot 1$ to $4 \cdot 6 \mathrm{MHz}$.

Long Wave DXing

First of all a popular misconception should be cleared up. Propagation in the range 150 to 280 kHz is by sky wave after dark and in principle is no different from that on the medium waves. The ground wave suffers less attenuation than on the medium waves and all things being equal, it will travel much further. If you are looking for DX then a path of darkness is required, just as for m.w. DX. It is not until you get well below 100 kHz that ducting between the D layer and the surface of the earth takes place, allowing long-range propagation during daylight. GBR on 16 kHz and possibly the Time Signal and Frequency Standard MSF on 60 kHz are examples.

Yes Peter, it is possible to construct a loop to cover the long waves. Use approximately four times the number of turns that you would use for a similar size of m.w. loop and the ordinary formula for calculating inductance does apply. There is no such thing in practice as a pure inductance. All inductors have some self capacitance and designers of tuning coils go to great lengths to keep it as low as possible. When building a loop, for either band, space each turn as far as possible from the next one and do not use very thick wire. For medium wave loops use the recommended I_{4} inch spacing though this may have to be reduced when winding a long wave loop.

No need to go to the trouble of building a converter or winding a long wave loop just to try this band. The ordinary domestic portable with internal aerial can produce some DX. Tebessa in Algeria is quite a good signal on 261 kHz . Try resolving the jumble on 209 kHz by rotating the receiver and making use of the directinnal properties of the internal aerial. Reykjavik, Kiev and Azilal in Morocco all share 209 while Monte Carlo, Oslo and Baku are together on 218 kHz .

Loops

Can a loop be any shape, is a question often asked and the answer is yes, provided that it is symmetrical. The original ship-borne loop was, and still is circular which is not easy for the DXer to construct. A diamond shape is convenient when winding a spiral loop where each turn is smaller than the previous one and two pieces of wood, one vertical and the other horizontal can be used as a support. A triangle has been tried to save space but the usual shape is a square or rectangle. An irregular figure such as the trapezoid, often quoted in school textbooks (I knew that information would be of value some day!) will not do, as there will be a residual signal when there should be a null. (In fact the very first ship-borne loops were triangles of wire, with the apex hung from a stayEd.).

Peter Sommer asks for my reaction to f.e.t. loop amplifiers. These are intended to isolate the loop from the receiver rather than to provide additional gain. The coupling between the main and link windings must be tight in order to transfer the maximum amount of signal. This means that the input impedance/reactance of the receiver can be reflected into the loop and consequently affect the tuning range and the directional pattern of the loop. The latter would affect the accuracy of any bearings taken with the loop should the DXer want to use his loop for this purpose. The loading of an f.e.t. pre-amp is negligible and as a result it can be connected directly to the main winding and the coupling winding can then be removed or ignored. I have a balanced f.e.t. pre-amp, though I seldom use it as I find the ordinary loop performs satisfactorily when used with receivers such as the CR100, Marconi Mercury and BRT400.

So far as I know, no experimenting has been done by DXers with differing degrees of coupling on the standard loop and this might be an interesting field for the experimenter. The standard 40in loop has a single turn coupler wound beside the 4th turn of the main winding. To increase coupling, try winding 2 or 3 turns instead of a single turn. To decrease coupling either wind the coupler on a separate frame and vary the spacing between the two or, wind a smaller single turn concentric with the main ones.

Ramadan

This year Ramadan starts on August 5th and finishes on September 4th. Its relevance to DXing is that during this period many Arabic-speaking stations are on extended schedule. some indeed remaining on the air all night. Normally, as a result of differing time zones to the east. Middle East stations sign off between 2000 and 2100 which is too early to benefit from the reduction in European QRM that occurs around 2300. Consequently the DXer has to try to catch this type of DX at signing-on time which occurs in the early hours from 0300 onwards. During Ramadan the position is changed and the easier stations from this part of the world, such as Morocco, Algeria, Tunisia. Libya and Egypt will become prominent. Much of the real DX though will now become a lot easier or even possible such as Afghanistan with Kabul on 1280 kHz ; Iraq with Bagdad on 760 and Babylon on 1035: Jordan with Amman on 800: Lebanon with Beirut on 8.36; Saudi Arabia with Riyadh 587 and Syria with Homs on 566 . This is only a selection and DXers should consult the World Radio and TV Handbook for further possible DX.

Receivers

A cry for help from W. G. Rooks of Tredegar who has recently purchased a CR100 and wants a copy of the service manual, highlights a problem encountered by many DXers who presumably want to do their own repairs should the occasion arise. It is not a good idea, as pointed out recently by Eric Dowdeswell, to tamper with a receiver that is under guarantee, nor is it sensible to poke around in a mains receiver without some knowledge of how it works. Many DXers though are able to do their own repairs or even to carry out "improvements", and with the older type of ex-WD receiver this may be the only feasible way of getting it to work. A stamped addressed envelope to Brooks, 5 Farrant House, Winstanley Road, London SW11 2EJ will bring a list of reprints of the manuals of many receivers including most ex-WD types.

Logs and News

An Astrad receiver and long wire antenna launched John Cook into medium wave DXing when after reading $P W$ he managed to pick up WINS on 1010 kHz . Since then he has changed to a Grundig Satellit 2000 and m.w. loop. His best catches to date are WOR on 710 and WCBS on 880 both in New York, CJCH Halifax on 920, CFRB Toronto on 1010 and CHUM also in Toronto on 1050. A QSL card from CHUM is on the front cover of last month's $P W$. All were heard between midnight and 0200. Although the winter season is still some distance away it is possible to hear all of these stations at this time of year between 0200 and sunrise. Radio Sweden is currently using 1178 kHz between 1530 and midnight daily to relay its international service and this is expected to continue until the end of September. Programmes in English are at 1600, 1830, 2100 and 2300.

SHORT WAVE BROADCASTS by Charles Molloy G8BUS

The recent comments in this column concerning the SINFO and SIO reporting codes prompted Bill Iball, who lives near Wigan, to reply. Bill thinks that the SIO code is useful to give yourself some indication of reception conditions but the full SINFO code ought to be used when reporting to a station and he refers to the old amateur maxim that a report should be as comprehensive as possible.

Reporting to Broadcast Stations

It is really a question of tailoring the report to the particular circumstances, since the type that would be welcomed by a radio amateur could well be inappropriate when writing to some broadcasting stations.

A low power local station on the tropical bands may well be interested in learning that his signal has been picked up far outside the service area but this information is unlikely to be of any value to him. What the DXer has to do here is to convince the station that he really did hear it and to do so he must give a comprehensive report on the programme rather than on reception conditions.

International Broadcasters know that they can be heard in their target area. What they require is a continuous picture of reception so that they can change to different frequencies or bands as required, and many of them ask DXers to become reception monitors and to supply regular reports on reception. To finish off a very interesting letter Bill says that much of the fun in DXing is when reception is poor, a sentiment that I fully endorse.

Bandspreading

Some receivers are fitted with bandspread, the two types in use being electrical and mechanical bandspread. The Realistic DX160 for example has electrical bandspread. There are two tuning scales and pointers. The pointer on the main scale is set to a marker point and the bandspread scale then presents a blown-up or magnified portion of the main scale. Tuning is then done by the bandspread control, when it is as easy to tune round say the 49 m band as it is to tune round the medium waves on the main scale. Accuracy depends on setting the main pointer correctly, which can be done with the aid of a calibrator or alternatively the bandspread pointer can be set on a known station which is then tuned in by the main scale control which will then be set accurately.

Mechanical Bandspread

I prefer mechanical bandspread, as used on my BRT400 and Eddystone EC10. The main dial on the BRT400 has a scale marked 0 to 30 . In addition there is a small window with a scale marked 0 to 100 . The pointer on the main scale moves from 0 to 1 as the other scale completes one revolution from 0 to 100. By this means any band is divided into 3000 scale points. To be accurate the bandspread scale must be linked to the spindle of the tuning capacitor without backlash. I keep a logbook which has a "bandspread reading" column. If I want to listen to Radio Australia on 21570 kHz I set the bandspread to 1289 (from the logbook), switch on the receiver and if reception is favourable, the station is there. With the aid of my crystal calibrator I have made up a table of bandspread readings against frequency at 50 kHz intervals for the main s.w. bands. Using this table I can set the receiver accurately on 50 kHz points up to 26 MHz on the 11 m band. In between these 50 kHz points, frequencies can be estimated using bandspread readings as an aid, or by using the calibrator set to 10 kHz markers.

Mechanical bandspread can be fitted to most receivers provided that backlash is not serious. Paste a strip of paper onto the glass cover of the main dial, clear of other marks behind it. Cut an annular strip of paper and stick it to the receiver around the main tuning knob. Start with the pointer at the low frequency end of the main scale and mark this 0 on the paper strip. Put a spot of paint on the rim of the tuning knob and mark another 0 this time on the annular scale opposite the paint spot. Rotate the knob and put
marks on the annular scale at equal intervals so that it is marked from 0 to 9 . When the knob reaches 0 again, mark a 1 on the paper scale in line with the pointer and carry on across the entire scale. If it takes 7 turns of the knob to cover the scale then you will have 70 calibration points and it should be possible to increase this number by marking additional points on the annular scale. This may seem a very makeshift method but it does work. It is interesting to note that some versions of the famous wartime R1155 receiver had a bandspread system which worked on the same principle.

Some years ago I had the pleasure of meeting Arthur T. Cushen, the well-known blind DXer from New Zealand. I asked Arthur how he managed to find his way around the short wave bands and he explained that he used medium wave stations as reference points where the pointer covered a m.w. station and one of the short wave bands at the same time. It was then a matter of bandswitching and the appropriate band could be found in a matter of seconds. By counting the number of turns and fractions of a turn of the tuning knob and consulting a list of stations in Braille, Arthur could then find his way around that band without difficulty! Those of us who are not so physically handicapped have very little excuse for not doing at least as well. Arthur is a regular broadcaster and he can be heard over Radio Nederland on the first Thursday of each month in the DX Juke Box programme.

11 Metre Band

The current situation on this band, gleaned from a number of sources is:- 25605 kHz IBA Jerusalem; 25630 RFI Paris; 25690 Radio Liberty; 25720 BBC (carrier heard); 25790 Radio RSA (testing); 26040 Voice of America. Harold Brodribb of St Leonards-onSea supplied the information on Radio Liberty, which comes in at my QTH in the early afternoon at good strength with programming in Russian.

Logs and News

Ron Proudfoot (Newcastle-on-Tyne), who is a regular reader of $P W$, purchased an FRG-7 about a year ago which he has been using with a 30ft vertical aerial. Best DX to date is Voice of Kenya on 4804 kHz between 1850 and sign-off at 2006, Kampala Uganda on 5026 at 1900, Radio Reloj Continente in Caracas Venezuela on 5030 kHz at 0300 (sign-off at 0500) and KGEI San Francisco on 9615 at 0630 until it was swamped by UN Radio at 0633. Roy mentions hearing American style news in s.s.b. on 5230 kHz which may be a point-to-point transmission, probably a feed to be retransmitted on a broadcast channel. Chris Howles (Lichfield) used a Vega 206 and 75 ft long wire to pull in ELWA Liberia on 4770 at 2000, Radio Senegal 4890 in French at 0600, Radio N'djamena Chad on $4904 \cdot 5$ at 0430, Radio Colosal Colombia 4945 at 0630, Radio Rumbos Venezuela 4970 at 0600 and the CBC Northern Service 9605 at 2300 . Steve Price (Doncaster) does not regard himself as a DXer as he only possesses a domestic portable but he enjoys listening to overseas stations and to DX programmes. He mentions the Voice of Turkey DX Corner on 9515 kHz in the 31 m band which can be heard every night. You don't need an expensive receiver to be a DXer Steve -keep tuning.

by Ron Ham BRS15744

I never expected to use the famous name of Muhammed Ali in my v.h.f. column, but there he was, full of life, on Ch.R1 on my DXTV monitor, at 1824 on June 13th, during his visit to Moscow. This is just one of the many interesting events which occurred in the early part of the 1978 sporadic-E season.

Sporadic-E

"The sporadic- E season has arrived with a vengeance" says Frank Luman, Glasgow, who, like myself has been watching European and Russian television on several occasions. The frequencies most influenced by sporadic-E are $40-80 \mathrm{MHz}$, which is why very strong signals are received in the UK from a host of east. European broadcast stations between $65-73 \mathrm{MHz}$, often rendering the 4 m amateur band unusable while the event lasts.

Sporadic-E disturbances occurred on 15 days between May 26th and June 19th, mainly during the afternoons and early evenings but sometimes around 0830. The most intense disturbance occurred on June 3 rd and 4th, when signals were affected up to 146 MHz . At 1640 on the 3 rd , I counted dozens of Continental broadcast, radio-telephone and TV stations between 40 and 73 MHz .
"June 3rd was a real sporadic-E event in GM" writes John Branegan, GM80XQ, Saline, Fife, "I heard French and east-European f.m. up to 105 MHz at 1702, and one GM had a QSO with an Italian on 2 m '. The range $40-73 \mathrm{MHz}$ was still disturbed at 2145 , very late for sporadic-E, and at 0600 on the 4th, frequent bursts of sync pulses were heard on Ch.R1, $49 \cdot 75 \mathrm{MHz}$. Later, at 1700 , Roy Bannister, G4GPX, Lancing, Sussex, worked YU2CCY on 15 m and learnt that UK TV pictures were being received in Yugoslavia on v.h.f. At 1800 Roy heard strong signals from Bulgaria and Yugoslavia on 2 m .

Around this time a multitude of f.m. broadcast signals were pounding in between $65-73 \mathrm{MHz}$ and, like Frank Luman, I received pictures on Ch.R1 from Poland. At 1720, Frank, using his S36-A, received the Russian, Ch.R3 sync pulses, $77 \cdot 25 \mathrm{MHz}$, and the sound channel, $83 \cdot 75 \mathrm{MHz}$ and realising that the disturbance was moving higher, he tried his stereo receiver and found Russian Ch.R5 sync, $93 \cdot 25 \mathrm{MHz}$, and the sound on $99 \cdot 75 \mathrm{MHz}$. Barry Knight, also in Glasgow, was already receiving this signal using a Pioneer SX450 with only a ribbon dipole. Frank heard a station from Yugoslavia on $98 \cdot 9 \mathrm{MHz}$ followed by Italians on $97 \cdot 1,98$, and $99 \cdot 5 \mathrm{MHz}$ between 1920 and 1955. Band II went "dead" from 2100 until 2250 then 18 stations from Norway and Sweden were heard". The crowning glory for Frank came at 2300 when he watched a fishing programme on Ch.E4 from Iceland.

A typical example of the deep QSB, a feature of sporadic-E, came at 1320 on June 7 th when strong pictures from Czechoslovakia CST-1, Hungary, MTV-1

Budapest, and Austria ORF-FS1 were changing places with each other on Ch.Rl every few minutes. At 0844 on the 14th I received a strong picture from NRK, Norway and at 1644 on the 16th a good picture from RTVE, Cadena, Spain. All with a vertical dipole feeding my JVC 3060 MK-II receiver.

Introduction to V.H.F.

For some time Ian Rennison, Horsham, Sussex, has been a Medium Wave DXer and a contributor to Charles Molloy's column so, imagine Ian's surprise when at 1120 on June 8th, he was tuning around his newly acquired Aiwa AF5080A stereo v.h.f. receiver when he heard "Stereo 96", an AFRTS station on 96.9 MHz in southern Spain. Between 1030 and noon, with only a temporary ribbon aerial, Ian heard 14 Spanish speaking stations, including "Radio Popular Almeria" on $97 \cdot 2 \mathrm{MHz}$. The American voice on the AFRTS station was also heard by Peter Penfold, West Chiltington, Sussex.

Solar Activity

A period of solar activity began on May 26th with a few small bursts of radio noise at 136 MHz and a mild noise storm which turned severe on the 27th. Both Cmdr Henry Hatfield, Sevenoaks, and myself recorded several small bursts of noise on the 28th, 29 th and 30 th, the largest being a 4 minute duration burst at 1311 on the 28 th. The period ended on the 31st with a very large burst, associated with a flare, which began at 1145 and lasted for several hours. Solar noise storms were also recorded on May 18th and June 2nd and a few individual bursts on June 3rd, 4th, and 9th.

The 10 Metre Band

John Branegan, Harold Goble, G4FDQ, Lancing, Alan Baker, G4GNX, Newhaven, Sussex, and myself noted that 10 m has been "flat" compared with previous months. Harold, using a KW2000A into a 66 ft end-fed aerial with a KW EZEE Match a.t.u. observed short skip conditions on June 4th to 7th and 13th when he worked DK, HB90, an exhibition station, I0 OE, ON, OZ, PA0 and ZS5. On May 21st he was in contact with G4FFE in nearby Worthing when, at 1900, they were called by ZD7PV, and had, like locals, a three-way QSO. On June 3rd, Harold had a "quicky" with G4AGZ in Cornwall who is studying 10 m propagation and would appreciate reports. QTHR.

I heard the beacons 5B4CY and ZE2JV on only 9 days between May 19th and June 19th. The strongest was at 1603 on the 10th when the Cyprus beacon was 599 , the Tessa beacon 559 and the Bermuda beacon, VP9BA, 579 which has been quite rare. An h.f. blackout followed the solar flare on May 31st and John Branegan reported weak aurora on May 21st-23rd.

The big surprise came between 2200 on June 16th and 0100 on the 17 th when fantastically strong signals from $4 Z 4, \mathrm{Kl}, \mathrm{VE}$, and Ws were working into CT, DK, EA, G, and OZ. One Canadian said it was an "exciting opening", so did Alan Baker when he worked VE1BNN, at 2253, his first Canadian on 10 m . At 2307, Alan contacted WA2ZWH, New Jersey who was running five watts, and at 0003 he worked N3GB in Maryland. Almost throughout this rare late night opening the Bermuda, VP9BA and Florida, N4RD, beacons were averaging 539/559 and strong signals
from CB stations on the north American Continent were pounding into Europe. On both the amateur and citizen's bands local QSOs in Canada and the USA were easily heard in the UK. At 0042, Barry Ainsworth, G4GPW, Sompting, Sussex, contacted WB2QYZ and at 0053 K2BU. For a very brief period Alan Baker and myself heard a ZL calling, which was later confirmed by a VE.

Tropospheric Openings

Most of us in Sussex are getting a good signal from the new 70 cm beacon, GB3WHA situated at Crowborough. G4BOO, QTHR, is the beacon keeper and would welcome reports. Alan Baker received a 539 signal from the Emley Moor 70 cm beacon, GB3EM, at 2317 on May 25th and I heard it at 579 at 0734 on the 28th and 589 at 0717 on the 30th. The Sutton Coldfield beacon, GB3SUT, was audible in the south around 0730 on the last five days in May and on June 3rd, 12th and 13th. Andrew "Jim" Lyon, G8LPY, Worthing, Sussex, can now work through the Portsmouth repeater, GB3PH, on 70 cm using his Multi U11 into a 48-element multibeam, and at 1846 on June 15th he worked G4GUX through the Berkshire repeater, GB3AW, RB10.

Strong signals were received in the south from the 2 m repeaters, $\mathrm{GB} 3 \mathrm{BC}, \mathrm{KR}$, and PO during the v.h.f. opening from May 25 th to 31 st. At 0746 on the 26th, PAOJO worked G stations through GB3LO and at 0028 on the 27th, OZs and other PA0s were working through the London repeater, which, at 0727 carried signals between ON6BK, Ostend, and G8OUA in Nottingham who was using a "Slim Jim" aerial. During the same period Band II was affected and Guy Stanbury, Chelmsford heard, several Continental stations, mainly in the mornings, between $88-104 \mathrm{MHz}$. Early on the 28th, I heard signals through the Yorkshire repeater, GB3NA and received pictures from the Lichfield transmitter of the IBA on 189 MHz . During a mild opening from June 10th to 13th, John Cooper, G8NGO, Haywards Heath, Sussex, heard signals on 2 m from GD and GU and at 1915 on the 11th, G4GNX, worked DK0EN/P on both c.w. and s.s.b. Later, at 2110, Dermot Cronin, G4GRO/EI9DC, at the Royal Sovereign in the English Channel worked DK0EN/P and GD8EXI and at 2130 he received a strong signal from GI4GVS, but could not hook up with him. During the early morning of the 13th, Eric Arnold, G80UK, Hove, Sussex, heard the Paris repeater on R6 and "Jim" Lyon worked GW3PNH, Newport through the Bristol Channel repeater.

Microwaves

Ern Downer, G8GKV, Worthing, reports that G8BDJ, G8FMJ and himself were portable on Chanctonbury Ring, 779ft a.s.l., on May 21st for the first of the five one-day cumulative contests on 10 GHz . Despite the bad weather they exchanged 59 signals with G3JVL, South Hayling, Hants, G8BCO/P, Hogs Back, Surrey, G3KSU/P, St Catherines, I.O.W., and G3IFF/P Portsdown Hill, Hants.

OSCAR-8

"I am managing to get across to USA regularly now on OSCAR-8," writes John Branegan and on May 25th he worked his first Spaniard, EA1TA, via the satellite. At 2310 on the 28th, John had a QSO with

OSS naw trambit 2 One 5tapTechnolagy Shapping starts hare:

ONCE UPON A TIME, a manufacturer's stamp on an IC was an indication of almost total product reliabinty. But as complexities have metetive - the delineation between 100\% functional and 95% functional ICs has got a competetive - the delineation between 100% functional and 95% functional iCs has got a
lot less ciear. But now more than ever, you cannot afford to warte time and effort on anything less than the very best - so at the OSTS, we have a strict policy to supply parts only from BS9000 approved sources. No nondescript clearance lines of dubious pedigree, only the wary best. If you are a designer, or simply a keen hobbyist, you may buy from the OSTS with total confidence.
As you may already know, we make a point of backing our products with extensive tab and technical facilities; so next time you want to buy your components, ask what support your present supplier can offer - and if it comes fromBS9000 sources......we look forward to supplying you!!
Please note that OSTS prices exclude VAT at 8% throughout this side of the page. Most ambit items are at $12 \frac{1}{2} \%$ except those marked *. Please keep orders separately totalled, although a single combined payment, and 25 p postage charge, will be sufficient.

4000		4059	563p	22	149p	8800 series	$\begin{aligned} & 8216 \\ & 8224 \end{aligned}$	$£ 2.25$ 2144 $£ 4$ 2708 55		$\begin{aligned} & \mathrm{f} 10 \\ & \mathbf{£ 1 0 . 5 5} \end{aligned}$												
4001	17\%	4060	1159	527	¢	f1																
4002	17p	4063	109p	4528102	102p	820P ¢6			Development													
4006	109p	4066	53p	452914	141p	6850P E6.75																
400	18p	4067	400p	4530	90p	6810P ¢4	MEMORIES															
4008	80p	4068	25p	4531	141	6852 £ 15																
4009	58 p	4069	200	453211	125 p 614 p	8080 series	2102	2 f ¢1.70	TI. Intersil. Harris etc. OA													
4010	17	4070	$20 p$ $20 p$	4534 4536 6	614p 380 p		$\begin{aligned} & £ 3.40 \\ & £ 7.54 \end{aligned}$															
4012	17	4072	20p	453815	150p	8212 f ¢ 25		¢5.78														
4013	p	4073	20p	4539 1	${ }^{110}$																	
4016 4017	$52 p$	4075 4076	20p	$\begin{array}{ll}4541 \\ 4543 & 14\end{array}$	${ }^{141 p}$																	
4018	80	4077	20p	4549 39	$399 p$	G11: 1 -																
4019	60 p	4078	20p	4553 - 4	440p																	
4020	93p	4081	20p	4554 15	153p	NEW LOW PRICES																
4021	82 p	4082	20p	4556 4557	77 p 386 p	7800 series UC TO220 package 1A all 95p																
4022	90p	4085 4086	82 p	4557 38 4558 11	386 p 117 p	7900 series UC TO220 package 1A all E1																
4023 4024	170	4086 4089	82p	4558 11 4559 38	117 p 388 p																	
4025	7	4093	50p	4560	$218 p$	78MUC series TO220 package $1 / 2 \mathrm{~A}$ all 90 p 78LCP series T092 100 mA all 35 p																
4026	180p	4094	190p	456	${ }_{53}^{65}$	L200 up to 3A/adjustable V\&A 195 p																
4027	55p	4096	105p	4562 53	530p																	
4028	72 p	4097	372 p	4566 158	159p	78MGT2C $1 / 2 a m p$ adjustable volts 175p 79MGT2C 1/kamp adjustable volts 175 p																
4029 4030	100p	4098 4099	$110 p$ 122 p	4568 28 4569 30	281 p																	
4030		4099 4160	122p	4569 30 4572	303p 25p	723C precision controller 65p																
4032	${ }_{100 p}$	4161	90 p	4580	600p																	
4033	1450	4162	90p	4581	319p	MAINS FILTERS FOR NOISE/BFI Etc																
4034	200p	4163	90\%	4582	164p																	
5	120p	417	104p	4583	84p	5 amp in 'wire in' case \quad ¢3.87																
4036	250p	4175	95p	4584	63p	73p																
4037	100 p	4194	$95 p$	10	100																	
4038 4039	$105 p$ 2500	4501	23p																			
4040	83	4503	69p																			
484	85	4506	51 p	81MOS		LM324N $71 p$ LM339N 66 p		0.43' High Efficiency HP:														
4042	85 p	4507	55p	CA3130E	- 84p																	
4043	85 p	4508 4510	248p 99	CA3130T	90 p	LM348N	86 p	5082. 7650 red CA 182p														
4045	150 p	4512	149p	CA31407	72p	LM3900N 709HC to 5	$60 \mathrm{p}$	5082. 7660														
4046	${ }^{130} 0^{\circ}$	4512	98p	CA3160E	90 p	709 PC dil710 HC to 56	36 p 5 65 p 5	5082. 7663 yellow CC 182														
4047	99p	4513	2060	CA3160t	T 99p			5082-7670	green	185p												
4048 4049	60 p $\mathrm{55p}$ c	4514	260p 3000			710PC dil	59p	5082. 7673 green CC 185p														
4049 4050	$55 p$ $55 p$	4515 4516	300 p 125 p	LM3014 ${ }^{\text {a }}$	H 67p	723 CN		0.3' Standard HP														
4051	65p	4517	382p	LM301AN	30p	(741 CN Bdil	$\begin{aligned} & 67 p \\ & 27 p \end{aligned}$	5082- 7730 red CA 5082-7740 red CC		$\begin{aligned} & 117 p \\ & 117 p \end{aligned}$												
4052	65p	4518	103p.	LM308H	121 p		70 p36 p															
53	65 p	4519	57p	LM308N		748 CN		0.5" Fairchild														
4054	120p	4520	109p	LM318H	279	NE531T	120 p	FND500 red	CC	150p												
4055	.135p	4521	2360	LM		NE531N	105p	FND507 rec	CA	150p												

Fram the Uarld's leading radio innauation saurce:

On this side of the page, we offer you the leading products from the world of wireless. We are continually reviewing and adding to our range, and this month we feature some of the

Moving Coil Meters

Ambit offers a very wide range of low cost meters, together with the unique 'Meter Made' scale system for professional grade scale customizing:
Series Scale Area illumination cost* $900 \quad 14 \times 31 \mathrm{~mm}$ internal 12v 250p $\begin{array}{lll}920 & 30 \times 50 \mathrm{~mm} & \text { from behind } \\ 930 & 36 \times 63 \mathrm{~mm} & \text { internal } 12 v \\ 975 & 375\end{array}$ $940 \mathrm{twin} 35 \times 45 \mathrm{~mm}$ from behind 350 p Stock movement 200 u ai750 2 . The 930 series is 5% linear, others are 77 UA at 50% FSD. Thes Radio;Audio;Comms ICs:
Only the very best quality - and only types we have used in our own laboratory tes
Radio frequency + mixers + oscillator(s) TDA1062 DC to VHF front end 5ystem TDA $1083 /$ ULN2204 am/mi/audio in one IC
TDA1090/ULN2242 am/fm hifi tuner system CA3123E/UA720 LF/30MHz linear system TBA651 LF/30MHz linear system SD6000 DMOS RF/Mixer pair
CA30plifiers
HA1137W/K8402 famous FM IF system HA1137W/KB4420 as 3089 + deviation mut
CA3189E update with deviation mute TBA120日/SN 76660 N FM if and detector TBA120S hi gain version TBA120
MC1350P
age IF amp
MC1495L synch AM demoduiator
MC1495L \quad precision 4 quad multiplier
MC1496P
communications circuits
Communic
$\begin{array}{ll}\text { KB4412 } & 2 \text { bal.mixers/agc/gain/doub. conv } \\ \text { KB4413 } & \text { am/fm/ssb det. AGC. ANL. }\end{array}$

K84417	$\mathrm{em} / \mathrm{m} / \mathrm{msb}$ det. AGC. ANL, mute 2.75	
K84		
K84423	FM mic processor preamp	2.55

$\frac{\text { Audio preamps }}{\text { LM } 389} \frac{5 \text { sereo high gain/low THD }}{}$
$\begin{array}{ll}\text { LM1303 } & \begin{array}{l}\text { stereo high gain/tow THD } \\ \text { sterea audio optimized OA }\end{array} \\ & \end{array}$ $\begin{array}{ll}\text { LMA303 } & \text { stereo audio optimized OA } \\ \text { TDA1054 } & \text { high quatity with alc option }\end{array}$ KB4417 see above
Audio Power amps
TBAB10AS 7W RMS overioad prozected $\begin{array}{ll}\text { TDA2002 } & 8 W / 2 \Omega \text { in pentawatt package } \\ \text { TDA2020 } & 15 \mathrm{~W} \text { RMS hifi power }\end{array}$ $\begin{array}{ll}\text { TCAA2020 } & \text { 15W RMS hifi power dc } \\ \text { TCA } \\ \text { 10W higher voltage } 810\end{array}$ ULN2283 iW 2.5 to 12 v supply capa $\begin{array}{ll}\text { LM380N8 } & \text { 1W power } \\ \text { LM380N14 } & 2.5 W \text { power }\end{array}$

Stareo Decoder Devices

 CA3090AQ RCA's pll decodetUA758 Buffered version of $13 t 0$ UA758 Buffered version of $13 t 0$
LM1307/uA707 non pll fype
HA1196 advanced adj, sep pillow thd
HA11223 newpilot cancel low thd/imd All ambit decoden are supplied with the LED Discrete semiconductors
Some of the biggst stocks of specialist MOS and
FET transistora for radio in the UK FET transistor: for radio in the UK.
8F900 $80 \mathrm{p}^{*} 40673 \quad 55 p^{\circ}$ $\begin{array}{lllll}80800 & 80 p^{*} & 40673 & 55 p^{*} & 40822 \\ 51 p^{*} & \text { MEM680 } & 75 p^{*} \\ 408 & \text { BF256S } & 34 p^{*}\end{array}$ Most types for most RF circuitry, inc. new
UHF Tpackage types etc See price Hitachi VMOS 100W power devices: power transisto for the biggest breakthrough in nower transistor technology yet. Ambit has the
now Hitachi VMOS data (E1) and by the time
you read this, wa thould have you read this, we should have raceived our firs
stock ordar. But they eran't DISCRETE LEDS - the best value of all:
 $\frac{\text { Switch Systems: Check our combinations ! }}{\text { A very wide salection of BOTH Alps SUB }}$ A vory wide selection of BOTH Alps SU
series units, (Schadow/AB/Oreor compatible) the miniature Dialistat units. Available in DIY systoma for max
Further details of these, and many more of the wonders of the world of wireless in the new Ambit catalogue - with magazine supp Phone (0277) 216029/227050 9am-8pm,

Coils \& Filters by TOKO
After a period of relative price stability please note that some prices are increasedas a direct result of the failure of $£$ vers $7 \& 10 \mathrm{~mm}$ IFTs for AM/FM - 1000 es $\begin{array}{lll}7 \& 10 \mathrm{~mm} & \text { IFTs for AM/FM-10003 es } \\ 455 / 470 \mathrm{kHz} & \text { most types of appens } & 30 \mathrm{p} \\ 107 \mathrm{l}\end{array}$ Short Wave Coils sets
two ranges of impedance/coupling ea 33p TV video and sound IFs/detectors Another now range in 10 mm
6RAHz ceramic IF sound filter
Molded VHF coils full catalogue 15p Chokes - biggest range/biggest stocks 20 p Chokes - biggest range/biggest stock
Most E12 values ex stock any Most E12 values ex stock, any to order
7 BA series 1 uH to 1 mH $\begin{array}{ll}\text { 8RB series } & 100 \mathrm{uH} \text { to } 33 \mathrm{mH} \\ 10 R 8 \text { series } & 33 \mathrm{mH} \text { to } 120 \mathrm{mH}\end{array}$ $16 p$
190
$33 p$
FM IF FILTERS ceramic and linear phase CFSE/SFE10.7 stereo ceramic IF 10.7 MHz $\begin{array}{ccc} & \text { filters in } 5 \text { groups } & 500 \\ \text { CFSB10.7 mono/roofing IF fiter } & 500\end{array}$ $\begin{array}{lll}\text { BBR3125N 4pole linear pahe } 10.7 \mathrm{MHz} & 150 \text { p } \\ \text { BBR3132A Gbole lirear phase } 10.7 \mathrm{MHz} & 250 \mathrm{p}\end{array}$ MPX pilot tone filters for 19 \& $38 \mathbf{k H z}$ BLR3107N Stereo 4 k 7 impedance
BLR2007
Stereo 3 k 3 impedance $\begin{array}{ll}\text { BLR2007 } & \text { Stereo } 3 k 3 \text { impedance } \\ \text { BLR3152 } & \text { Mono } 4 k 7 \text { impedance }\end{array}$ $\begin{array}{ll}\text { BLR3152 } & \text { Mono } 4 \mathrm{k} 7 \text { impedance } \\ \text { BLR3157 } & \text { Mono } 4 \mathrm{k} 7 / 3 \mathrm{kO} \mathrm{tmp}\end{array}$ AM/FM/SSB IF FILTERS
 MFH series $7 / 5 / 7 \mathrm{kHz}$ BW on 455 kHz
MFK series $7 / 9 \mathrm{kHz}$ BW on 455 kHz LFY455D 12 kHz 4 ele ladder on 455 kHz 125 p CFM2455 6k Hz micro machaniçat SFD455/470k Hz murata IF. fitter CFT455B/C $6 / 8 \mathrm{kHz}$ min +21 FTs Ratio Datectors for FM/NBFM $\begin{array}{ll}\text { 1A651/7 } & \mathbf{4 5 5 k} \mathrm{Hz} \text { ratio det } \\ \text { KAN1508/9 } & \text { 10.7MHz ratio dotector }\end{array}$ KAACS15106/7 10.7MHz ratio deter Ouadrature detectors for CA3089E
 Polyvaricon tuning capacitors + trimmers 2A20ST7 2×266 pF AM

CY22217Z $2 \times 335 \mathrm{p}$ CY $23217 \mathrm{PX} \quad$| $2 \times 20 \mathrm{pFFM}$ |
| :--- |
| $2 \times 335 \mathrm{pF}$ |

$3 \times 20 \mathrm{p} F \mathrm{FM}$ (2 trimmers) 245 p

Tuner Modules

From the biggest and bast range................. TUNERHEADS for 88-108MHz bend 2 (waricap)
EF5803 6 cet, 3 MOSFETs, amp. osc. 19.75 $\begin{array}{llll}\text { EF5801 } & 6 \mathrm{cct} \text {. } 2 \text { MOSFETs, } \\ \text { EF5600 } & \text { Mo } & 17.45 \\ \text { Scct, MOSFET RF, by TOKO } & 14.95\end{array}$ $\begin{array}{lll}\text { EF5400 } & \text { 4cct balanced mixer/pin use } & 9.75 \\ \text { EC3302. 3cet FET input ministura } & 8.26\end{array}$ TUNERSETS bv LAASHOLT (head+1F) $\begin{array}{lll}\mathbf{7 2 5 2} & \text { Dual MOS hoad/low dist IF } & \mathbf{2 6 . 5 0} \\ \mathbf{7 2 5 3} & \text { FET heod, mpx decoder ine } & \mathbf{2 6 . 5 0}\end{array}$ If AMPLIFIERS all with decodar ine IF AMPLIFIERS all
 $\begin{array}{llll}7030 & \text { Mos proamp, linear phate filter } & 10.95 \\ 7.130 & 2 \text { mos prommps, } 3 \text { lpfilters } & 16.25\end{array}$ NBFM1 $455 / 470 \mathrm{kHz}$ NBFM module ${ }_{9.96}$ MpX decoders, all with pilot tone fifters
buffer amplifiers for min 300 mV RMS $92310 \quad 1310$ browd syutem $\begin{array}{ll}92310 & 1310 \text { bwod syatem } \\ 93090 & 3090 \text { AO bed }\end{array}$ 8.95

8.85 $\begin{array}{ll}93090 & \text { 3090AO based system } \\ 91196 & \text { HA1 } 196 \text { beatd }+ \text { birdy filter }\end{array}$ 91196 HA1196 bmad + birdy fitor + | | $2 \times$ | LM380 audio monitor ampe |
| :--- | :--- | :--- |
| 16.45 | | |
| $\mathbf{H A 1} 1223$ | | | AM RADIO.

91197 The original MW/LW vericap
1.85
3.22 9122 The uniband tuner module

AM FM AADIO UNITS 13.22 71083 Uning TDA 1083, provides a comple | MW/LW/FM portable ractio chamis |
| :--- |
| for clock redio etc |
| D |
| 12.95 | 71083D Drive/dial system for 710as

SPECIALS: TUNERHEADs in the range SPECIALS: TUNERHEADS
40-200MHz to spacial order
The EF5803 and EF5400 art available to cover bands in the region dereribed. The costr
dappond on quantity and metual most required to cover tha desired band. Max coversage approx.
20\% of centre frequency selected. Also, plasese 20\% of centre frequency selected. Also, pl
aliow $3-5$ weeks delivery for these items.

G3ILD in Darlington, Mode J, when the satellite was south of Greenland, but they did not attract any Ws. Having had 5 QSOs with W2BXA, New Jersey, 2 with W9KDR/Wl in Connecticut, 2 with W1CBZ in Maine and 1 with K4EYG in Virginia, John is getting beyond 90% of OSCAR-8A's designed maximum range.

Club News

The Brighton and District Radio Society held their annual meeting on Brighton Race Course on June 7th. Among the 40 or so people present were representatives from the Haywards Heath, Mid-Sussex, and Worthing radio clubs, the Sussex Coast Repeater Group and the Sussex wing of the Air Training Corps. Both 2 m talk-in stations, G4GQR and G80MR were kept busy.

Despite the heat, lack of sleep, and a herd of cattle the Haywards Heath Amateur Radio Club made 263 contacts during the 144 MHz Portable contest on May $27 / 28$ th and were delighted with their first efforts.
Members of the Sussex Coast Repeater Group displayed pictures of GB3BR at the Mid-Sussex Amateur Radio Society's annual meeting at the Jack and Jill Windmills, Clayton, Sussex, 700 ft a.s.l. Among the 30 or so present were Mick Senior, G4EFO, who accessed several 70 cm repeaters from the site, Louis Varney, G5RV, the Club President, and representatives from the Brighton and Worthing Clubs. Garry Hibbert, G8HXB/P was active on 2 m f.m. during the event.

From Down Under

Anthony Mann, Applecross, Australia heard from K. Ushigome of Tokyo that Australian, Ch. 0 and New Zealand Ch. 1 television has been received by v.h.f.

TV DXers in Japan. Anthony has also been in touch with George Francis, P29HV, Papua, New Guinea, who recently logged Band I TV DX from South Korea, Philippines, Hawaii, Samoa, and New Zealand in addition to Japanese Band II television around 108 MHz , all by transequatorial propagation.

Anthony also enclosed a copy of the Amateur Radio page of the May Electronics Australia, where it is reported that on January 11th a contact took place on 70 cm between VK6KX/P near Albany, West Australia, and VK3ZBJ in Frankston, Victoria, a distance of 2456 km .

On February 17th a two-way contact was established on $13 \mathrm{~cm}(2304 \mathrm{MHz})$ between VK6WG in Albany and VK5QR in Enfield, South Australia, a distance of 1886 km . Both of these achievements may well be world records, let's hope so-they certainly deserve it.
Thanks again for your letters and reports and covering such a wide range of subjects.

ANTHONY MANN by RON HAM

Both Roger Bunney, Long Distance Television columnist for our sister magazine Television and myself get regular reports about v.h.f. DX from Anthony Mann, a 22 -year-old research student from Applecross, Western Australia. His letters contain detailed information about super DX, covering thousands of miles, and a valuable first-hand account of propagation in the southern hemisphere.

Anthony's interest in radio began in 1968 when he listened to the general short wave bands on a simple regenerative receiver. In 1970 he became an active broadcast DXer using a Trio 9R59DS. His interest in v.h.f. radio and television was suddenly fired in November 1971, by the appearance of a 2000 mile signal on the family TV set.

His equipment, pictured here, is neatly laid out in a space 3 m by 2 m , and comprises 3 TV receivers, a Trio 9R59DS, 200 MHz digital frequency meter and a combination of converters which allows him to tune from 10 kHz , to satisfy his interest in v.l.f., to 220 MHz . Anthony's best DX to date is, Band I, 5000 miles (Ch.R1 Vladivostok), Band II, 2200 miles (ABDQ3 86.92 MHz), and Band III, 1200 miles (Adelaide's 3 Band III TV stations). The TV receivers are fed by individual Yagis for Bands I, II and III, vertical wire aerials are used for v.h.f. and long wire antennae for general purpose listening.

With sunspot activity on the increase, Anthony looks forward to more super DX and in particular to receiving UK TV sound, Ch.Bl down under.

STRUTT

ELECTRICAL AND MECHANICAL ENGINEERING LTD.

7400	13p	7441 AN	120p	7496	90p
7401	14p	7443	120p	74107	36p
7401AN	$15 p$	7447	75p	74109	60p
7403	16p	7450	18p	7418	110p
7404	20p	7451	18p	74122	54p
7405	25p	7453	18p	74123	75p
7406	40p	7454	18p	74130	1100
7407	40p	7460	18p	74135	60p
7409	22p	7470	38p	74137	60p
7410	18p	7472	32p	74145	95p
7411	26p	7473	36p	74150	130 p
7412	25p	7474	38p	74151	90 p
7412AN	28p	7476	38p	74153	80p
7413	40p	7480	54p	74156	96p
7416	40p	7481	110p	74157	98p
7417	40p	7482	90p	74161	110p
7420	18p	7483	100p	74163	100p
7421	40p	7484	110 p	74164	110p
7425	33p	7486	36p	74167	320p
7426	43p	7490	36p	74174	110p
7430	18p	7491 AN	84p	74180	110p
7432	38p	7492	58p	74181	320p
7437	38p	7493	36p	74182	150p
7438	38p	7494	90p	74191	120p
7440	18p	7495	75p		
* SUPERSAVERS *					
6V2 Zener 20 for si-00					

500mw
2FP, BZX83C, BZY88C, 8p each
1N914 4p, 1N916 4p, 1N4001 6p, 1N4002 6p, 1N4003/4 7p, 1N4005/6/7 8p, 1N4148/9 4p. Resistors $0.25 \mathrm{w} 2 \cdot 20 \mathrm{hms}-4 \cdot 7 \mathrm{M} 1 \cdot 5 \mathrm{p}$ each $0.5 \mathrm{w} 2 \cdot 20 \mathrm{hms}-4 \cdot 7 \mathrm{M} 2 \mathrm{p}$ each $1 \mathrm{w} 2.2 \mathrm{hms}-$ ADD 23p PaP. VAT 3\%.

STRUTT

ELECTRICAL AND MECHANICAL ENGINEERING LTD., 3C BARLEY MARKET STREET, TAVISTOCK, DEVON. Tel.: Tavistock 5439

Master computers At home The new practical way.
 The computer is entering every aspect

 of modern life and will continue to do so on an ever increasing scale ... Do you understand the basic principles behind its operation? We can show you in a practical and interesting way . . .A new home study course on digital electronics and the basics of modern computer technology. Full experimental programme of PRACTICAL WORK on demonstration panel.

Speed up your precision work with
 MINIATURE POWER EQUIPMENT

NEW! The P2 Mk2 DRILL

With detachable head
£18.00 pp 86p
In storage case, room for transformer $£ 19.50 \mathrm{pp} 86 \mathrm{p}$ In case with variable transformer $£ 29.00 \mathrm{pp} \mathrm{86p}$ S2 Drill stand (holds both drills) $\quad £ 18.50 \mathrm{pp} \mathrm{106p}$ S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. £18.50 pp 106p.
SUPER 30 KIT 30 tools incl. Drill P1without stand. $£ 19 \cdot 39 \mathrm{pp}$ £1. P1 DRILL $\quad £ 9.67 \mathrm{pp}$ 38p S1 DRILL STAND $\mathbf{£ 5 \cdot 1 3} \mathbf{~ p p ~ 3 8 p}$ FLEXIBLE DRIVE SHAFT £5. 94 pp 34p

TRANSFORMERS

Continuous a/c 12v. D/C £ 7.56 pp 81 p
Variable speed a/c 12v. D/C $\mathbf{£ 9} 50 \mathrm{pp} 81 \mathrm{p}$
Drills, Stones, Burrs etc. 40p each. Circular Saw Blades-set of 4 with Arbor £3.50. P\&P any quantity 25p. Please send $9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. for leaflet and order form. All prices include VAT

HAVE YOU TRIED

 SPADE DRILLSfor printed circuit boards and other soft materials? No clogging - cooler range of sizes, 0.1 to 2.5 mm range of sizes, 0.1 to 2.5 mm

BRAND NEW SURPLUS MODULES AND OTHER ITEMS
2 STAGE STEREO PRE-AMP on $6^{\prime \prime} \dot{x} 74^{\prime \prime}$ P.C.B. 4 push buttons, gram, tape in/out, aux input approx. 100 mV for 300 mV out with knobs

Now only 66.00
STEREO POWER AMP to match on $6 \frac{1}{2}{ }^{\prime \prime} x$ $54^{\prime \prime}$ P.C.B. 10W +10W out for 60 mV in. Includes rect., smoothing and supply for pre-amp.

Bargain at only 64.90
Build your own music centre SPECIAL OFFER PRE-AMP \& POWER AMP Pair only $\mathcal{1} 10.00$ TRANSFORMER to suit 240v/22v
I各A ...2.70 ELAC SPEAKERS $8^{\prime \prime}, 8 \Omega$ with tweeter cone pair .. $68 \cdot 50$ STEREO GRAM AMP on $12^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}$ P.C.B. $3 \mathrm{~W}+3 \mathrm{~W}$ for 100 mV in controls, vol., bal., treble, bass, requires $16 \mathrm{v} D C$ for 8Ω L.S. or $25 v \mathrm{DC}$ for
15Ω L.S. Suitable 14v transformer and rect. ordered with gram amp ... $£ 2 \cdot 00$
Singly ... $\mathbf{E 2} \cdot 50$ MW \& LW RECEIVER on $6 \frac{3}{1}^{\prime \prime} \times 3^{\prime \prime}$ P.C.B complete with drive and Gursor, ferrite aerial \& knobs. Good sensitivity and volume. Needs only 9 v or 6 v batt. and 8Ω speaker. $\mathbf{~ 3 . 0 0}$ POWER TRANSFORMER 240 v in, 36 v out $2 \frac{1}{2} \mathrm{~A}$ continuous plus $24 \mathrm{v} \frac{1}{2} \mathrm{~A}$ with 18 v tap will power suitable $35 \mathrm{~W}+35 \mathrm{~W}$ amp. drop through type. Impregnated
Quantity available. Exceptional value at $\$ 4.90$ weighs nearly 4 lb -hence $£ 3 \cdot 90$ to callers
PUSH SWITCHES with modern square buttons. 8 switches on bar, 4 independent plus 4 inter-dependent latching. As used on music
centres etc. Nentres etc. Oxide. Low noise, good response. Suitable high quality. Try one for $95 p$, 10 for $88 \cdot 00$.
Cash with order. Prices inc. P \& P and V.A.T.
EEECTRONICAL SUPPLIES CROYOON
40, Lower Addiscombe Rd., Croydon, CRO 6AA.

Tel: 01-688-2950.

15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (magg Cartridge, tuner, etc) are catered for internally. The desired function is achieved and tone circuits merely require connecting to external potentiometers (not included). The HYs is compatible with atil.L.P. power ampliflers and power supplles. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: Complete pre-amplifier in single pack-Multi-function equalization-Low noise Low distortion-High overload-Two simply combined lor stereo.
APPLICATIONS: Hi-Fi-Mixers-Disco-Gu,tar and Organ-Public address
SPECIFICATIONS
NPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV . Auxiliary $3-100 \mathrm{mV}$ input impedance $4 \cdot 7 \mathrm{k} \Omega$ at 1 kHz .
OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz .
DISTORTION. 0.1% at 1 kHz . Signal/ Noise Ratio 68 dB .
OVERLOAD. 38dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$.
Price $\mathbf{5 6} \cdot \mathbf{2 7}+\mathbf{7 8}$ p VAT P\&P free.
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date
technology available.
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifieraudio oscillator.
SPECIFICATIONS:
OUTPUT POWER 15 W R.M.S. into 8Ω : DISTORTION 0.1% at 9.5 W
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.
Price $\mathbf{6 6} \mathbf{2 7}+\mathbf{7 8 p}$ VAT P\&P free.
The HY50 leads I.A.P.'s total integration approach to power amplifter design. The amplifier features ant integral heatsink together with the simplicity of no external components. During the past three years the ampliffer has been refined to the extent that lt must be one of the mos peltab eand robust High Fidelity modules in the Worid
sistors-No external components
APPLICATIONS: Medium Power Hi-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 25 W at 1kHz SIGNALINOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOL.TAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $5818+\mathbf{x}_{1}-02$ VAT P\&P free
The HY120 is the baby of IL.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: Very low distortion--Integral heatsink-Load line protection-Thermal protec-

organ
SPECIFICATION
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS Into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 60 W at 1 kHz . SIGNAL /NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $£ 19.01+\ldots 1.52$ VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the mos rugged conditions such as disco or group while still retaining true $\mathrm{Hi}-\mathrm{Fi}$ performance. FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink -No external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial-Public Address SPECIFICATIONS
OUTPUT POWER 120W RMS Into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.05% at 100 W at 1 kHz . IGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOITAGE

Price $\mathbf{£ 2 7} \cdot \mathbf{9 9}+\mathbf{8 2} \mathbf{2 4}$ VAT P\&P free.
The HY400 Is I.L.P.'s 'Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco address applications. If the ampllifier is to be used at continuous high of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components.
APPLICATIONS: Public address-Disco-Power slave-Industriat
SPECIFICATIONS at 1 kHz . NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE志45V SENSITIVITY 500 mV SIZE 11410085 mm
Price £.38. 61 + £. $\mathbf{3} .09$ VAT P\&P free.
PSU36 suitable for two HY30's $£ 6.44$ plus $81 p$ VAT. P/P free, PSU36 suitable for two HY30's $£ 6.44$ plus $81 p$ VAT. P/P free,
PSU50 suitabie for two HY50's $£ 8.18$ plus $£ 1-02 V A T$. P/P free.
PSU70 sitable PSU50 sultable for two HY50's $£ 8.18$ plus $£ 1.02$ VAT. P/P free. PSU90 suitable for one HY200 £ $15 \cdot 19$ plus $£ 1 \cdot 21$ VAT. P/P free. PSU180 $£ 25.42+£ 2.03$ VAT.

tWo Years' guarantee on all our products
I.L.P. ELECTRONIGS LTD., CROSSLAND HOUSE, NACKINGTON GANTERBURY, KENT, CT4 7AD.

I.L.P. ELECTRONICS LTD.,

CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.
Tel: (0227) 64723.

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Addres
Signature

Retail Sales London: 40 Cricklewood Bdwy, NW2 3ET. Tel. 01-452 0161/2. Telex. 21492. London; 325 Edgware Rd, W2. Tel. 01-723 4242. Glasgow: 85 West Regent St, G2 2QD. Tel. 041-332 4133. Bristol: 1 Straits Pde, Fishponds Rd, BS16 2LX. Tel. 0272654201.

2N929	0.37	2N3417	0.85	2N4062	0. 27	2N5245	0.37	AF106											
2N93	0.37	2N3	0.85	2 N 4121	0.27	${ }_{2} \mathbf{N} 5248$	0.44	AF109	0.82	BC183A	0.12	6.50	CA3084	3.75 1.10	$\begin{array}{ll}\text { LM341P240.80 } \\ \text { LM348N } & 0.95\end{array}$	LM1303N	0.50 1.15	LM78L05Cz	BKE
2N1131	0.32	2N3441.	0.92	2N4422	0.27	2N5293	0.44	AF114	$0 \cdot 70$	BC183LA	0.15	CA3000 $\quad 3.30$	CA3065	$1 \cdot 10$	LM358N $\quad 0.60$				
2N1303	0.80	2N3442	1-45	2N4123	0.19	2N5294	0.44	AF115	0.70	A C184	0.12	CA3001 $4 \cdot 25$	CA3068	$3 \cdot 80$	LM360N $\mathbf{3 . 0 0}$	LM1305N		30	SN76023N1-50
2N1305	0.80	2N3565	0.25	2N4124	0.19	2N5401	0.44	AF118	0.70	BC184L	0.15	CA3002 $3 \cdot 30$	CA307	1.90	3.30	LM1305N	1.52 1.22	C^{3}	SN76023ND
2N1501	0.35	2N3566	0.25	2N4125	0.19	2N5416	1.65	AF124	0.70	BC	0.17	CA3005 2 2.50	CA3071	1.90	LM370N $\begin{array}{ll}\text { 3.30 } \\ \text { M371H }\end{array}$	LM1307N	1.22	O. 30	SN76033N $\begin{array}{r}1 \cdot 30 \\ 25\end{array}$
2N1613	$0 \cdot 30$	2 N 356	0.25	2N4126	0.19	2N5447	0.16	AF139	0.75	BC212A	0.15	CA3006 4-60	CA3072	190		LM1310N	$2 \cdot 10$ 1.30	Z^{-30}	SN76033N2-35
2N1637	0.72	2N3638	0.17	2N4235	$1 \cdot 35$	2N5448	$0 \cdot 16$	AF200	1.30	BC212LA	0.18	CA3007 4-15	CA3075	1.70	LM350N LM373N 	LM1351N			
2N1890	$0 \cdot 30$	2N3639	$0 \cdot 38$	2N4236	1.65	2N5449	0.20	AF201	$1 \cdot 30$	BC213B	0.15	CA3008 2.55	CA3076	$2 \cdot 12$	LM374N ${ }^{\text {L }}$ (1-35	LM1458N	0.45	MC1035P 1.30	SN76115N1-65
2N1893	0.30	2N3644	0.40	2N4237	1 -65	2N5457	0.35	AF239	0.70	BC213LA	0.17	CA3012 1.65	CA3080	$1 \cdot 85$	LM377N 1.80			MC1327P 1.70	SN76116N1-80 SN76131N1-30
2N1991	1.10	2N3662	0.25	2N4240	1 -70	2N5458	0.35	AF240	$1 \cdot 25$	BC214	0.17	CA3013 1-85	Ca3030A	2.10	LM377N 1.80	LM1800N	1.94	MC1330P 1.10	SN76131N1-30 SN76226N1-68
2N2193	$0 \cdot 50$	2N3663	0.29	2N4250	0.26	2N5555	0.65	AF279	0.88	BC214L	$0 \cdot 18$	CA3014 $2 \cdot 20$	CA3086	0.50		LM1812N		MC1330P 1.10	SN76226N1-68
2N2194	$0 \cdot 42$	2N3702	0.14	2N4266	032	2N6109	0.55	AF280	0.95	BC237B	$0 \cdot 15$	CA3018 0.75	CA3088F	1.87		LM1820N	1-16	MC1352P 1.20	SN76227N1 - 30
2N2217	0. 55	2N3703	0.14	2N4284	0.38	2N6122	44	ASY28	$1 \cdot 30$	BC238B	0.13	CA3018A 1 10	CA3089E	2.90	LM 380 N 80.96	LM1828N	. 90	MC1433G 3.65	
2 N 2218	0. 35	2N3704	$0 \cdot 14$	2N4286	$0 \cdot 32$	2N6123	0.48	ASY55	0.70	BC239C	0.17	CA3020 2.20	CA3090Q	$2 \cdot 90$ 4	LM380N141-08	LM1830N		MC1435G 2.20	SN76531N0.82 SN70532N1.55
2N2219	0.38	2N3705	14	2N4287.	0.22	2N6124	0.45	BC107	0.16	BC256A	$0 \cdot 29$	CA3020A $2 \cdot 50$	CA3130	1.06		LM1841N		MC1439G1.75	
2N2221	$0 \cdot 25$	${ }^{2} \mathrm{~N} 3706$	014	2N4288	0.22	2N6125	0.47	BC108	0.16	BC257A	0.18	CA3021 2.40	CA3140	1.04	LM38iN 1.69	LM1845N		MC1440G1.65	SN76533N1-30
2N2222	$0 \cdot 25$	2N3707	$0 \cdot 1$	2N4292	0.27	2N6288	0.50	BC109	0.16	BC258B	0.24	CA3022 2.20	LOBST1	2.25	LM338N $1 \cdot 32$	LM1848N		MC1456G $2 \cdot 15$	$\begin{aligned} & 60 \\ & 9 \end{aligned}$
2N2270	$0 \cdot 49$	2N3708	0.12	2N4302	0.31	2S702	$3 \cdot 30$	BC113	0.22	BC259B	0.19	CA3023 2.20	LM114H	$2 \cdot 75$	LM $384 \mathrm{~N} \quad 1 \cdot 55$	LM1850N			
2N2368	0.27	2N3709	$0 \cdot 12$		0.33	25703	3.95	BC114	0.22	BC261A	0.25	CA3026 0.80	LM301A	0.50	LM386N $\quad 0.85$	LM1889N		MC1468L 3.85	SN76546N1-58
2N2369	0.27	2N 3710	$0 \cdot 12$	2N4342	0.60	40232	0.60	BC115	$0 \cdot 22$	BC262B	0. 26	CA3028A 09	LM301 - 8	$0 \cdot 30$	LM387N 1.10			MC1469R 3 -10	
2N248	$0 \cdot 30$	2 N371	0.12 1.39	2N4401	$0 \cdot 20$	40311	0.55	BC116	$0 \cdot 21$	BC263B	0.26	CA3028B 125	LM304	$2 \cdot 60$	LM388N 1.00		80	MC1488L 4.25	SN76552-2 ${ }^{\text {0-38 }}$
2 N 2613	0.90	${ }_{2 N}^{2 N 3712}$	1.39	2N4402	0.20	40316	0.95	BC188	0.22	BC264B	0.65	CA3029 0.75	LM307N	0	LM389N 1.00	LM2987N		MC1495L $5 \cdot 50$	SN7
2N2646	0.80	2N	1.55	2N4403	0.20	40363	1.45	BC135	0.22	BC307B	0.16	CA3029A 0.90	LM308H	1.20	LM555CN 0.33		1.80	MC1529G 710	
2N2848	1.10 0.31	2N3746	$1 \cdot 70$	2N4822	0.83	40389	0.70		0.21	BC308B	$0 \cdot 16$	CA3030 1.50	LM308N	0.45	LM565CN 1.39	LM3301N	0.60	MC4024P $2 \cdot 20$	SN76570N1-80 SN76620AN
2N2904	0.31	2N3794	$0 \cdot 21$	2N4870L	0.83 0.58	40408	0.82	BC137	0.22	BC309C	0.16	CA3030A 2.20	LM309		LM701B 2.99	LM3302N	55	MM5314 4.60	
2N2905	$0 \cdot 31$	2N3819	0.36	2N4871L	0.51	40440	0.70	BC138	0.44	BC327	$0 \cdot 22$	CA3033 3.70	LM317K	3.35	LM701C 2.99	LM3401N		MM5316 $4 \cdot 60$	SN76650N1.20
2N2906	0.25	2N3820	39	2N4898	1.55	40512	1.70	BC140	0.30	BC328	0.20	CA3034 $\quad 2.75$	LM318N	2.15	LM702C 0.81	LM3900N		$\begin{array}{ll}\text { MM5320 } & \text { 4-20 }\end{array}$	SN76650N1-20
2N2907	0.25	2N3821	0.95		55	40594	0.87	BC141	0.32	BC337	0.20	CA3035 1.95	LM320T5	$2 \cdot 15$	LM703LN 1 -15	LM3905N		NE555 0.33	SN76660NO 66 SN76666N0.99
2N2923	$0 \cdot 17$	2 N 3827	0.27	$\begin{aligned} & \text { 2N4901 } \\ & \text { 2N4902 } \end{aligned}$	2.20	40595	0.98	BC142	$0 \cdot 32$	BC414	0.17	CA3036 1.21	LM320T12	2.15	LM709 0	LM3909N		NE556 $\quad 0.65$	SN76666N0.99
2N2924 2N2925	0.17 0.19	${ }_{\text {2N }}$	030	2N4903	2.75	40673	80	BC147	0.13	BC415	0.16	CA3038 $\quad 2.90$	LM320T1		LM709-8 0 0. 50	LM3911N		NE560 $\quad 4.50$	SL611C
2N3011	0	2N3856A	O. 19	2N4904	1.85	${ }^{\text {A Cl2 }}$	0.48		0.15	${ }^{\text {BC }}$	0.17	CA3038A 4.10	LM320T24		LM709-14 0.49	LM4250CN			SL612C ${ }^{2-75}$
2N3020	075	2N3858A	0.20	2N4905	2.40	${ }^{\text {AC128 }}$	0.48	${ }^{\text {BC153 }}$	0.30	BC547	0.13 0.13	0.77 3.75			LM710 0.67 107			$\begin{array}{ll}\text { NE562 } & 4.50 \\ \text { NF565 } & 1.39\end{array}$	SL620C ${ }^{3-85}$
2N3053	0.25	2N3859A	0.22	2N4920	0.83	AC151	0.43	BC154	0.30	BC548	0.13	CA3041 1.65			LM710-14 LM719 Of 0	LM78L05CH		NE566 $\quad 1.75$	SL621C ${ }^{3.75}$
2N3054	0.72	2N3860	$0 \cdot 18$	2N5086	0.30	AC152	0.54	BC157A	0.15	BC549B	0.14	CA3042 1-65		1.15	LM723C 0 .			NE567 1.90	$\begin{array}{ll}\text { SL623C } & 6.25 \\ \text { SL640C } & 4.40\end{array}$
2N3055	0.75	2N3866	1.98	2N5087	0.30	${ }^{4} \mathrm{C} 153$	0.59	BC158B	0.15	BC558	0.13	CA3043 2.20	LM320M		LM723C-14			NE558N 1.98	$\begin{array}{ll}\text { SL640C } & 4.40 \\ \text { SL641C } & 4.40\end{array}$
2N3108	0.75	2N3901	$0 \cdot 30$	2N5088	$0 \cdot 30$	AC153K	0.59	BC159B	$0 \cdot 17$	BC559	0.15	CA3045 1.58		$1 \cdot 15$	0.45	LM78L15CH		NE571N 4.95	
2 N 3133	0.50	2N3904	$0 \cdot 18$	2N5089	$0 \cdot 30$	${ }^{\text {A C }} 176$	0.54	BC160	0.38	BCY54	$2 \cdot 40$	CA3046 $\quad 0.77$	LM320MP		LM726 $\quad 5 \cdot 80$			SAS560 2.70	$\begin{array}{ll}\text { SL701C } & 2 \cdot 50 \\ \text { TAA263 } & 1.35\end{array}$
2N3242 2N3250	0.68 0.35	$\begin{aligned} & \text { 2N3905 } \\ & \text { 2N39006 } \end{aligned}$	O-18	2N5129 2N5130	0.62 0.22	AC176K	0.90 0.59	BC167B	0.13 0.13	BCY58	0.27	CA $3047 \quad 2.20$. 15	LM74iC $\quad 0.70$	LM78L24		SAS570 2.70	TAA300 3-70
2N3301	0.45	2N3962	0.95		0.22	A	0. 29		0.13	BCY70	$0 \cdot 21$	CA3047A 3.70	LM323K	5	LM741C-80-30			SAS580 2.40	TAA320A
2N3302	0.39	2N4031	0.55	2N5137	$0 \cdot 22$	A	54	BC1			0.26	CA3049	LM340 T5		LM741C740.	LM78		SAS590 $2 \cdot 40$	$1 \cdot 15$
2N3392	0.17	2N4032	0.65	2N5143	0.22	AC188K	65	BC171B	$0 \cdot 17$	BCY78		CA3050 2 2.66	LM340T12	- 88	LM7			SN76003N2	
2N3394	0.17	2N4033	0.55	2N5180	0.58	ACY17	00	BC172C	0.15	BD121	$2 \cdot 20$	CA3051 183	LM340T15	- 88	LM748-14 0.50				($\begin{array}{r}3.00 \\ 1.10\end{array}$
2 N 3	0.19	2N4036	0.72	2N5190	0.65	ACY22	0.65	BC173C	0.17	B0131	0.55	CA3052 1.78	LM340T24		LM716 1-00	LM7815KC		160	TAA522 $2 \cdot 10$
	1978 CATALOGUE IS AVAILABLE NOW! LOTS OF NEW PRODUCTS AND IDEAS. PRICE 45p POST PAID OR 35p TO CALLERS.											CA3053 0.77 CA3054	M343P		LM900 0.50 M911 0.50			SN76013N1-50	TAA550 $\begin{aligned} & \text { 0.48 }\end{aligned}$
												CA3054 1.10	M341P		$\begin{array}{ll}\text { LM911 } & 0.50\end{array}$	LM782		SN76012ND	TAA560 $2 \cdot 10$
												CA3059 21	M341P		$\begin{array}{ll}\text { LM921 } & 0.50\end{array}$		75	1.30	TAA570 $2 \cdot 20$

OSMABET LTD $\begin{aligned} & \text { We make transformers } \\ & \text { amonst }\end{aligned}$ LOW VOLTAGE TRANSFORMERS: Prim 240 V ac.

TWIN SEC TRANSFORMERS: Prim 240V ac. 6V O.6A $+6 V$ 0.6A; 9V D.4A $+9 V 0.4 A ; 12 V 0 \cdot 25 A+$
$12 V 0-25 A ; 20 V 015 A+20 V 0.15 A ;$ all al £ 3.25 each: $15 V$ $0.75 A+15 V 0 \cdot 75 A £ 4 \cdot 85: 15 V 1 \cdot 5 A+15 V 1 \cdot 5 A £ 6.85 ;$
$18 V 1 A+18 V 1 A £ 5 \cdot 10 \cdot 18 V 1 \cdot 5 A+18 V 1 \cdot 5 A £ 7.30 ;$ $20 V 1.5 A+20 V 1.5 A £ 730 ; 12 V 4 A+12 V 4 A$ £8. 90 ; 25V 2A $+25 \mathrm{CAAE8} 10$.
MIDGET RECTIFIER

 0.25A Or 20-0-20V 0.15A £2.95 each
 O-40-50-60-80-100-110V 1 A $£ 9 \cdot 70$. Prim 240V ac.
$250-00-250 \mathrm{~V}$ 60Ma 6 -3V 1 A $£ 150$; 250 V 100 Ma 6 -3V 2 A f2 MULTIWAY CABLE SCREENED PVC COVERED 36 way £1-00; 25 way 75 P ; 14 way $50 \mathrm{p} ; 6$ way $25 \mathrm{p} ; 4$ way 20p; 2 way $10 p$; 1 way 8 p ; fig 8 stereo 15 p per metre 4 way individually screened 25p per metre
38 or 45 mm or $2 \frac{1}{6}$ in 8Ω, $2 \frac{1}{2}$ in 8 or 25Ω, $2 \frac{3}{x}$ in 8 or $80 \Omega, 31 \mathrm{n}$ $35 \Omega, 3 \frac{1}{2} \mathrm{in}^{2} 3,16$ or 80Ω, all at $£ 1 \cdot 10$ each; 5×3 in 3,8 ,
15 or 25Ω, $£ 1 \cdot 25 ; 7$, 4 in $3,8,16$, 25 or 80Ω, $£ 1-75 ; 8$
 Instant erasure of cassettes and tape spools, any diameter demagnetises tape heads, 200/ 240 V ac, £5. 50 -
POWER SUPPLY, TWIN OUTPUT: Prim 240 V POWER SUPPLY, TWIN OUTPUT: Prim 240V ac. New, Brilish manulacture, smoothed d.c. output 20 V
1.5 A , plus stabilised output of 15 V 100 Ma , plus 12 V ac c 0.5 A output, complete with diagram, $\mathbf{£ 3 \cdot 0 0}$.
EDGEWISE
REVEL METER FSD $200 \mu A$

Brano new, buit in gearbox, 1, 6, 8 or 20 RPH , all at O/P TRANSFORMERS FOR VALVE AMPLIFIERS $50 \mathrm{~W}, \mathrm{£17} \cdot 00$; 100 W (ELS4, KT88, etc), $£ 22 \cdot 00$. G.E.C. MANUAL OF POWER AMPLIFIERS Covers valve amp
 $3900 / 100 \mathrm{~V}$ f1 25 ; Paper tubular W/E 0.47/600V, $2 \cdot 2 / 250 \mathrm{~V}$
$4.7 / 160 \mathrm{~V}$ all at 25 p each; $\mathbf{\Sigma 1 5}$ per 100.4 way unscreened, $4 \cdot 7 / 160 \mathrm{~V}$, all at 25 p each; $£ 15$ per 100.4 -way unscreened,
mains. 30 p M . Ideal for speakers, intercoms, tele mains. 30p M. Ideal for speakers, intercoms. tele-
phones, etc. $\mathrm{f} 4.50,100 \mathrm{~m} 4$ core (3a) $35 \mathrm{p} . \mathrm{M}$ fig. 8 phones, etc.
$£ 4.50100 \mathrm{~m}$.

CARRIAGE EXTRA ON ALE V.A.T.
Callers by appointment only. S,A.E. enquiries, lisis 46 Kenilworth Road, Edgware, Middx. HA8 8YG. Tel: 01-958 9314

SHORT WAVE
 KITS

FREQUENGY COUNTER. Model RQ-3 now availahle in kit form. This novel design will display FREQUENCY PERIOD and WAVELENGTH to 6 digit accuracy over a guaranteed range of up to 40 MHZ . Tnput impedence
$50 \mathrm{~K} \Omega$. 100 mV sensitivity. Mains operated. Can be coupled $50 \mathrm{~K} \Omega .100 \mathrm{mV}$ sensiti ity . Mains operated. Can be coupled
to the local oscillator of your Rx to give a digital display to the local oscillator of your Rx to give a di
Kit absolutely complete at rock hotom priee. Send Now only $£ 44 \cdot 95+8 \%$ VAT

SHORT WAVE RECEIVER. Ideal kit for beginuers, very sensitive FET front end with varactor controlled bundspread and IC audio stages, We guarantee WORLD piece and full instructions including our $D x$-ing guide Model RQ-5 kit $29 \cdot 85+12 \frac{1}{2} \% \mathrm{VAT}$.

CRYSTAL CALIBRATOR. Model RQ-1. This is an original design which givas CW or amplitude modulated harmonics Kilmz, 10 Krz, 10 KHz
Kit al unbeatable priee $£ 12 \cdot 72+8 \%$ VAT.
Serd for detaits
ROCQUAINE ELECTRONICS, Alderbaran, Le Coudre, Rocquaine, GUERNSEY. Tel. 0481-65027.

The automatic Logic Monitor
 LM-1.

Just clip it over your IC.
It instantly and accurately shows both static and dynamic logic states, on a bright, 16 -LED display. It finds its own

power.

It cuts out guesswork, saves time, and eliminates the risk of short-circuits.
LM-1 is suitable for all dual-inline logic ICs; DTL,TTL, HTL, CMOS; up to 16 pins.
LED on = logic state 1 (high), LED off $=$ logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

Brief specification	
Input Threshold	$2 \mathrm{~V} \pm 0.2 \mathrm{~V}$
Input Impedance	100,000 Ohm
Input Voltage Range	4 volts minimum 15 volts maximum across any two or more input leads
Maximum Current Drain	200 mA 210 volts
Maximum Input Frequency*	$10,000 \mathrm{~Hz} \mathrm{50} \mathrm{\%} \mathrm{duty} \mathrm{cycle}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Weight	3 ounces (85 grams)
Maximum Dimensions	$\begin{aligned} & 4.0 \times 2.0 \times 1.8^{\prime \prime} \\ & 102 \times 51 \times 45 \mathrm{~mm} \end{aligned}$
*LM-1 will respond to signals up to 0.1 MHz when the input signal swing exceeds the threshold voltage by more than 0.5 volts.	

Applications

Design, breadboarding, testing and checking new logic systems. Direct real-time monitoring of logic function in operating equipment. Long-term testing of individual ICs. Identification of unused elements, to find room for an extra gate, clock etc. Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously, of course).
Plus dozens of other uses. You'll find them.

Try the LM-1 and
you won't know how
you ever managed
without it!

J. BIRKETT

Radio Component Suppliers

 25 The Strait, Lincoln LN2 1JF TEL: 20767FM FRONT END 88 to 108 MHz with conversion details to 2 metres for $\mathbf{~} \mathbf{3}$.

 SCR's 10 Amp Type 100 PIV @ 25p, 400 PIV a, $50 \mathrm{p}, 800$
50 ASSORTED 2 WATT ZENERS Untested © 57 p .
SOASSORTED 2 WATT ZENERS Untested a 57 p.
and packing) @ $@ 5$, Type 2,24 volt Tapped at 14 volt 1 amp $a \in 1 \cdot 30$, (post and

TAA 435 AUDIO PRE-AMPLIFIER 1.C. With data 35 P.
T.V. S. A.W. FILTERS Untested 3 for 35 P . $\mathbf{2 5}$.
$3 / 016^{6} 125 \%$ W. 1% CAPACITORS 4 for 25 P .

BDI 874 Amp PLASTIC NPNPOWER at $25 p, 5$ for 14,
50 TUNING VARACTOR DIODES like BAIO2, etc. Unte
CLOCK P.C. BOARDS with Buzzer, Mercury Switch, Bridge Rectifier, Tran-
sistors. etc. No Daza for ti.
VERNITRON FM4 10.7 MHE CERAPMC FILTERS ${ }^{\text {a }}$ 50p.

6 To 1 FRICTION SLOW MOTIO N DRIVES (a, 60 .
COMPRESSO

AUDIO I.C. LM 380 with various circuits @ 80p.
QUAD OPPAMPLM 3900 at 60 P each,
MINIATURE ROTARY SWITCHES 2
HeS 2 Pole 4 way a 20 p, 1 Pole 23 way POWER TRANSISTORS MEDIUM POWER MP85IR ia I5p, MP8II2 a 15 . 15 p. CMOS MOTOROLA CD4011. 25 for 62.75.
200 ASSORTED
DUAL GATE MO'S FETS LLKE 40673 B 33p \& for $51 \cdot 10$.
X BAND GUNNDIODES with data \mathscr{C} E1 65 .

2200uf 100 V .w. ELECTROLYTICS at 60 D each.
MOS LEVEL SENSORTAA 320A Wiin data

100 ASSORTED C 280 CAPACITORS for 57 p.
Please add 20 p for post and packing, unless otherwise stated, on UK orders under $£ 2$, overseas orders at cost.

SCOOP

We are sole distributors of the ‘APOLLO LOGIC PROBE’
No serious Hobbyist, Service Engineer, or Technician can afford to be without one.
Clear, Unambiguous Indication of Logic State.
Powered from Circuit Under Test.
Suitable for:-

Price Including V.A.T. and Postage
S.R.B. Miniature 16/18 Watt Soldering Irons $£ 3.75$

R.F. Equipment Spares Limited
 3 Lacy Close, Wimborne, Dorset.

Please note that our stores at Poole Road Works are open to personal shoppers on Fridays $2.15 \mathrm{pm}-8.00 \mathrm{pm}$ and Saturdays 9.30 am to 6.00 pm .

AM/FM STEREO TUNER AMPLIFIER CHASSIS COMPLETE Ready built. Designed in a slim form for compact. Rodern installatio
Rotary Controls
Rotary Controls V ol On/Off, Bass, Treble, Balance
Push Buttons tor Gram, Tape VHF, MW 5 button rotary selectaon, switch.
Power Supply Selenium Bridge-350V DC from $210-250 \mathrm{~V}$ AC. 50 Hz :nput.
Aerial Ferrite $8^{\prime \prime} \frac{3}{2}^{*}$ bult into chassis for LW and Power Output 5 watts per channet Sine at 2\% THD into 15 Snm. 7 watts speech and music OHM. for max
 (Audio) 50 Hz to 17 KHz within $\pm 1 \mathrm{~dB}$.
Radio FM Sensitivity for 3dB below limuting better than 10 uV . AM sensitivity for 20 dB SiN. MW
 height 24^{2}. depth $4{ }^{4}$ P\& \& \&2 50 f19.95

16016 vOLT MERSONAL SHOPPERS

BSR Record auto deck on plinth with
LED 5 function men's digital watch
stannless steel finish
LCD 5 function men's digital watch
LCD 8 function CHRONOGRAPH men's
digital watch stainless steel finish
STEREO CASSETTE record/replay fully buin
Equipment.)
VIDEOMASTER' Super Score TV Game
with Pistol. Mains operated
. 95
'VIDEOMASTER' Door Tunes (24 different $\mathbf{\&} 9.95$
MICRO CASSETTE TAPE £13.95

7" TAPE TRANSPORT MECHANISMS
A selection from
$£ 8.95$
f00K Multiturn Varicap tuning pots, 6 for
£1.00
MUSIC CENTRE CABINET with hinged s acrylic top. finished in natural
size $300^{\prime \prime}$ " $144^{\frac{1}{2}}$ " $74^{\prime \prime}$ approx.
MULLARD Buit power supply
DECCA DC 1000 Stereo Cassette P.C.B compiete
tape-heads
125 Watt Power Amp Module.
Mains power supply parts

OPPORTUNITY! AUDIOMODULESIN

 BARGANN PACKS CURRENT CATALOGUE PER PACK SEEOUR PRICES
PACK $1.2 \times$ LP 117310 w . RMS output power audio
amp modules, $+1 \mathrm{LP} 1182 / 2$ Stereo pre amp for ceramic and auxiliary input.

PACK $2.2 \times$ LP 117310 w . RMS output power audio amp modules + 1 LP1184/2. Stereo pre amp for illus. animitat $\mathfrak{f x . 4 5}$
ACCESSORIES
Suitable power supply parts including and $\begin{aligned} & \text { output } \\ & \text { capacitors. } \\ & \text { L1.00 } \\ & p+p\end{aligned}$
$\mathbf{£ 1 . 9 5}$ rotary siereo centrols comprising BASS, TREBLE VOLUME and BALANCE
95p
3
3 amp modules + 1 LP1182/2 Stereo pre amp for ceramic and auxiliary input.

TRADE ENQUIRIES INVITED

 For the experienced constructor complete in every detail.
Similar facilities as Viscount IV amplifier. $60+60$ peak. ${ }^{£} 29^{00 \mathrm{p}} \mathrm{p}$ \& p .
 SPECIAL OFFER: PACKAGE PRICE WITH 30×30
KIT MKII version, operates into 4 to 150 HMS speakers. Designed by $R \&$ TVC for the experienced constructor. Complete in every detail, tacilities as viscount iv amplifere $60+60$ peak. Supplice with 2 Goodmans Com-
pact 12^{\prime} bass Woofer with cropped 14,000 Gauss Magnet. pact $122^{\prime \prime}$ bass woofer with cropped 14,000 Gauss Magne
30 watt rms handing $+3 \frac{1}{2}$ " approx. tweeters and cross-

ADO-ON STEREO CASSETTE TAPE DECK KIT

 Oesigned for the experienced D.I.Y. man. This kit comprises of a tape ransport mectready built and tested record'repiay ejectronics with twin V.U. meters and level contral for mating with mechanis 0.85 mV u 20 K OHMS Din 4 mV 400K OHMS Oum. Dn, 40 m
400K OHMS . Gutput - 300mV RMS per chancel a 1 KHz from 2 K OHMS source Cross Talk - 30 db Tape Counter 3 Digit-Resettable - Frequency Response - $40 \mathrm{~Hz}-8 \mathrm{KHz} \pm 6 \mathrm{db}$ Deck Motor - 9 Volt DC with electronic speed regulations:
Key Functions - Record. Rewind.
$\mathbf{£ 1 9 9 5}$ Fast Forward. Play, Stop \& Eject. Opt. extras: Mains transformer to suite $\mathbf{f 2 . 5 0}+\mathrm{f} 1 \mathrm{p}$ \& p .

 323 EDGWARE ROAD. LONDON W2

 21C HIGH STREEI, ACTON W3 GNG ALL PRICES INCLUDE VAT AT $12 \frac{1}{2}$ ":All items subject to avalability. Prics correct
at 1.7 .78 and subject to change without notica

50 WATT MONO DISCO AMP

f29 95 p \& p $£ 2.50$

100 watts peak output.
"men
100 watts peak output.
Big features include two
Inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with
integral push-puli switches. Independent bass and treble controls and master volume.
SPECIAL OFFER The above 50 watt amo plus 4 GoodSPECIAL OFFER The above 50 watt amo plus 4 Good-
mans Type 8 P, $8^{\prime \prime}$ speakers. Package price $£ 45 \cdot 00+$ mans Type 8 c
$\mathrm{E} 4.00 \mathrm{p} \& \mathrm{p}$.

tape level, mic level, deck level. PLUS INTER DECK FADE for pertect graduated change from record deck Ne. 1 to No 2 , or vice versa. Pre fade level contal 70 watt 657 (PFL) lets YDU hear inext disc before fading tho wan it in. VU meter montors output level. $\quad 100$ watt $£$ S\%
Output 100 watts RMS 200 watts peak.

CHASSIS RECORD PLAYER DECKS 8 5 $12^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ approx	GARRARD DECK CG10A Record changer with cue, stereo ceramic cartridge. p\&p£2.00 BSR MP60 TYPE Single $\quad \mathbf{1} \mathbf{5}^{\mathbf{9 5}}$ less cartridge. Cartidges to sut above Acos. magnetic stereo $\mathbf{£ 4 . 9 5}$ Ceramic stereo f1.95 BSR automatuc record player deck

BSR MP 60 type. complete with magnetic cartidge, $\mathbf{£} \mathbf{2 9}$
diamond stylus. and de juxe plonth and cover. $p \& p \mathrm{E} 4.50$
Home 8 Track cartridge player Thus unit will match
with the viscount IV $9^{\prime \prime} \times 8^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{} . \rho \& p \mathrm{f} 2.50$

Personal Shoppars EDGWARE RDAD LONDON W2 Tei: $01-723$ 8432. 9.30am-5.30pm. Half day Thursday. ACTON: Mail Order only. No caliers GOODS NOT DESPATCHED OUTSIDE UK

Receivers and Components

SOWTER TYPE 3678
MULTITAP MICROPHONE TRANSFORMER Primary windings for $600 \mathrm{ohm}_{1} 200$ ohm and 60 ohm with response plus/minus -dB 20 Hz to 25 KHz Contained in response plas minus
well finished Mumetal box, 33 mm diameter by 22 mm high, with colour coded end leads, low distortion. Delivery (small quantities) EX STOCK, HIGHLY COMPETITIVE A SOWTER AD ON REX E. A. SOWTER LTD., P.O. Box 36, Ipswich 1P1 2EL.
Tel: 0473 52794 \& 219390 .

BRAND NEW, fully guaranteed Transistors over purchased at very cheap prices. Send S.A.E. D.A.C. Electronics Services, 25 Oxford Avenue, Merton Park, London SW20.

RECHARGEABLE BATTERIES

EXTENDED RANGE
HP2 (size 'D') £3-56. HP11 (size 'C') £2 57. Sub'C' £1-64. Pencell (size AA) £1-32. 9 volt PP3 £4.98. 9 volt PF6
£11. 66.9 volt PP7 £9-14. 9 volt PP9 $14 \cdot 30$. All charger $£ 11$.66. 9 volt PP7 £9.14. 9 volt PP9 £14.30. All chargers
$£ 7.97$ (except for PP3-is $£ 582$ and pencell is $£ 6.98$), 6 volt 8 A h sealed lead acid £11-88. New child's, 2-4 mile range

ELECTRIC CAR

SAE for all details \& lists plus $£ 1.00$ for rec, booklet
"Nickel Cadmium Power'. Add $p \& p$ in $(5 \%$ orders $£ 25 \cdot 00$ \& over). All prices include VAT
Dept. PW, Sandwell Plant Ltd., 201 Monmouth Drive, Sutton Coldfield, West Midlands. Callers to:TLC, 32 Craven Street, Charing Cross, OR to 2 Union Drive, Boidmere, Sutton Coidfield.

SELTRONICS LOW PRICE SEMICONGUARANTEED
BC107/8/9 8p. ACl28 14p. 2N2926G 10p. ZTX300 11 p .2 N 5458 31p. UT46 19p. TIS 43 20p. BC212L 10p OA47 5p. BR 100 22p. D32 22p. OA 200 5p $0 A 202$ 5p. NE555 35p. 741 P 20p. Postage 10p. S.A.E. for lists cheques and P.O.'s made payable
to:- SELTRONICS
9, Rodney Gardens, Braintree, Essex.

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SL6 IHL.

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976 . Obsolete types a speciality. List 3op. Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Sussex PO20 8BN
West Wittering 2023 (STD Code 024366)

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6 \cdot 80$ per single column centimetre (minimum $2 \cdot 5$ cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement dees not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers errors of their conse quences.

Transistors, Resistors, Caps, Pots, Plugs and Sockets, Zeners, TTL Cable, Boxes. All at very good prices. 65 Railway Road, Leigh, Lancs. Telephone Leigh 679575.

24 HR. CLOCK/APPLIANCE TIMER KIT

CRYSTALS brand-new $.002 \%$ precision HCl8/U wire leads, $£ 2.95$ each, U.K. post paid, No V.A.T.: $4 \cdot 0,5 \cdot 0,6 \cdot 0,7 \cdot 0,8 \cdot 0,10 \cdot 0$, $10 \cdot 7,18 \cdot 0, \quad 20 \cdot 0,48 \cdot 0, \quad 100 \cdot 0 \mathrm{MHz}$. Also 100 $\mathrm{kHz} / \mathrm{HCl} 3$ and $1 \cdot 0 \mathrm{MHz} \cdot 005 \%$, wires or pins, $£ 3 \cdot 25$. $455 \mathrm{kHz} / \mathrm{HC6}$ £3-95. Any freq. $2 \cdot 5-180 \mathrm{MHz}$, made six weeks, $£ 3 \cdot 50$.
Also AM/CW/SSB COMMUNICATION RECEIVER low-cost modules and kits. New range being prepared. Send S.A.E. for de tails when ready. P. R. GOLLEDGE ELEC TRONICS, Merriott, Somerset, TA16 5NS Tel: 046073718

COMPONENTS FOR P.W. PROJECTS. Components lists with prices available for P.W. projects from October 1977 onwards. Send SAE stating project and month of publication (maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE MAILTRONIX, Tootal Street, Wakefield, W. Yorks WF1 5JR.

PROJECT SUPERSAVE WITH CODESPEED

Full Spec. Devices

PACK P1 $1 \times$ MM5330 Digital Voltmeter $1 . C$ With full instructions on how to build a versatile
 PACK T2 Back by popular demand. A $0 \cdot 2$. 2 .
digit Liquid Crystal wristwatch dísplay with data. PACK T3 $1 \times$ MM5316 Digital Alarm Clock I.C. 12 or 24 hour. Will drive LED, LCD or fluorescent displays. With full instructions.
PACK $\mathbf{T A}_{4} \times 0.8^{\prime \prime}$ giant red LED Clock Display 3 digit with am/pm indicator. An excellent
 PACK E2 1×8 digit 033° high 7 segment Liquid Crystal calculator style display. With data. PACK E3 1×8 digit $0 . \mathbf{5}^{\prime \prime}$ high 7 segment Liquid PACK E4 1 1 $\frac{1}{2}$ digit $0-3^{\prime \prime}$ high 7 segment gas discharge disolay. Requires $100-180 \mathrm{~V}$ Anode voltage. Makes an excellent replacement for LED's in your mains operated projects. Fantastic 90 p
value at only
PACK E5 Same as Pack E4, but dual digit. 90 p PACK M1 2 Calculator Keyboards PACK M2 1×2102, a 1024 bit static RAM. The most popular of all random access memories in pratassionar and amarel
data
£1.25 PACK M3 ${ }^{1} \times$ MM5725 4 function Calculator
Chins (not designed for use with Pack M1) Chips (not designed for use with Pack M1)
With data book. With data book Untested Packs
PACK E1 $(80 \%$ Guaranteed Good) $5 \times$ MAN3 7 segment $0.127^{\prime \prime}$ LED displays. Excellent value. PACK MU1 (Untested-so no guarantees) Anower bargalin $2 \times$ Upper half of a calculato case with built-in keyboard. A snip at only
Satisfaction guaranteed or return complete pack MAIL ORDER ONIY-NO CALIER ORDER ONLY-NO CALLERS PLEASE CODESPEED P.O. Box 23,
34 Seafield Road, Copnor,
Portsmouth, Hants. PO3 5BJ

Aerials

GOT T.V.I.?

KILL IT DEAD, Tx-ing or SWL-ing Models: S.W.L., 629.81 : 500 watt or S.W.L., E41.06: complete inc. insulators, 75 ft . feeder 500 watt $10-160$ metres inc. shipping and B.C 500 Watt $10-160$ metres inc. shipping and $B . C$. Bands, $16 \cdot 25$: inc. VAT and P \& P. Send 1 . 1 aerial article, test reports and testimonials.

G2DYM, LAMBDA, WHITEBALL
WELLINGTON, SOMERSET

Ladders

LADDERS. Varnished 20ft 9 in extd., $£ 29 \cdot 72$, carr. $£ 2 \cdot 70$. Leaflets. Also alloy ext. up to 62 ft Gin. Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644. Callers welcome.

Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS

Service Sheets for Mono TV, Radios, Record players and Tape Rocorders 75p. Please send large Stampod Addressed
B.R.C. PYE ECKO PHILIPS ITTKB SONY G.E.C. HITACHI BAIRD ULTRA INVICTA FERGUSON

Let us quote you. Please send a Stamped Addrsazed Envelope for a prompt reply. Also comprahensive T,V. repair
G. T. TECHNICAL INFORMATION SERVICE

10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON WIR IPA

LARGE SUPPLIER OF SERVICE SHEETS All models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radios. Free TV fault finding chart or TV list.
 Strictly by return.
 C. CARANNA
 71 Beaufort Park, London NW11 6BX 01-458 4882

SERVICE SHEETS, Radio, TV etc, 10,000 models. Catalogue 24p, plus SAE with orders, enquiries. Telray, 154 Brook Street Preston PR1 7HP.

Books and Publications

THE DALESFORD SPEAKER BOOK

by R. F. C. Stephens. This book is a must for the keen home constructor.
Latest technology DIY speaker designs. Contains full plans for infinite baffle and reflex designs for $10-100$ watts, also unusual centre-bass system for those who want HI-fi to be "Heard and not seen". E1.95 (玍2. 20 pos
pald. $\$ 5$ Overseas).

VAN KAREN PUBLISHING
SWAN STRE
WILMSLOW
CHESHIRE

YOU CAN' HELP BUT MAKE MONEY. If you follow the planned and detailed information on how to start your own busi ness rewinding Armatures, set out in the new manual which is profusely illustrated and leads you through easily understood stages of fault diagnosis, taking data, test procedures, laying down new windings, where to obtain work, how to cost jobs etc. NO PREVIOUS ELECTRICAL KNOW LEDGE REQUIRED. Complete instruction manual, E4, plus 30p P\&P. CWO. Copper Supplies, 102 Parrswood Road, Withington
Manchester 20 . Dept. PWB.

> HOW TD DEAL SUCCESSFULLYIN
> USED COLOUR TELEVISIONS
> Exciting new business guide reveals how anyone with average intelligence can make a high spare-time CASH mainly for the non-technical, but with immediate applications for the engineer, this comprehensive publication describes: how to start - where and what where and when
sets to avoid - reconditioning - how, where to advertise - presentation - how to expand - comprehensive sections on general business formalities, guarantees, manufacturers, spares, and monochrome
> sets. PLUS MUCH MORE! profitable home business which can be started for less than £20!
> Send just $£ 3.95$ today for fast delivery, includes FREE advice a

> CITY PUBLISHING (Dept. P.W.)
> 2 Nottingham Rd., Spondon, Derby DE2 7NH.

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.

THE END OF COMPUTER CONFUSION; what point have we reached-where are we going? Read Computer Lib/Dream Machine by Ted Nelson. From your Local Computer Store $£ 5.95$ or send $£ 6.45$ to Computer Bookshop, Temple House (P), 43-48 New Street, Birmingham.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and SAE. Catalogue 25 p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King s Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

Radio Receivers

AMATEUR BAND RECEIVER

Hear all Amateur and Air Band Transmissions Loud
and Clear. Radio covers $108-146 \mathrm{MHz} \mathrm{VHF}$. and MW. and Clear. Radio covers 108-146 MHz VHF. and MW. Good sensitivity, compact size $5 \times 2 \times 1$ inches. Tele-
scopic Aerial, Earphone. Essentail for all interested in Amateur and Aircraft Band Reception. Send £17.00 to:

MULHALL ELECTRONICS
Ardgiass, Co. Down, U.K.BT307SF. Tel: 039684464

For Sale

PRACTICAL WIRELESS. Volume 1 Numbers 1-26. September 24th 1932 to March 18th 1933. 1,256 pages in all. Offers. G. K. Troake, 34 Humphreys Road, Wellington, Somerset.

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 65p each post free. Open P.O./Cheque returned if not in stockBell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stockport.

Electrical

STYLI-illustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices. Fully guaranteed. Free for SAE from Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

Educational

LEARN MORSE CODE. The easy way. C90 Cassette $£ 3.75$ p.p. 30 p. R. Eastland, 50 Heath Road East, Petersfield, GU3 14 HN .

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY78JZ.

Miscellaneous

FREE RARE DX

FROM QRM, beat tiring whistles and $c w$ with a Tunable Audio Notch Filter, only $£ 8 \cdot 90$.
NEED THE TIME? MSF 60 KHz Receiver, interna ferite roc, 1000 Km range, $\mathrm{fi3} 7 \mathrm{7n}$, or with parts (no case, pcb) for sequential YEAR, MONTH, DATE,
HOURS, MINUTES, SECONDS display, \& $24-40$.
NO LONG WAVE? $100-600 \mathrm{KHzz}$ Converter, feeds you 4.1-4.6 MHz receiver, only $£ 9 \cdot 90$.

WHERE'S THE RARE DX? $7 \mathrm{MHz}, 100,25 \mathrm{KHz}$ Crystal
Calibrator, markers to VHF, $\mathrm{fi3} 8 \mathrm{80}$.
PROGRAM YOUR OWN tunes with this MUSICAL DOORBELL, new jingle every day, just needs bel transformer and speaker, $£ 19 \cdot 50$
SIG. GEN. $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine/square, $\mathbf{E 4 0} \mathbf{8 0}$.
Each easy-assembly kit includes all paris, printed circuit, case, postage etc,
SEND off NOW.

CAMBRIDGE KITS

45 (PJ) Old School Lane, Milton, Cambridge.

ENAMELLED COPPER WIRE				
swg	1 lb	802	407	207
14-19	2.40	$1 \cdot 20$	- 59	$\cdot 50$
20-29	2.45	$1 \cdot 60$	-82	$\cdot 59$
30-34	$2 \cdot 60$	\$.70	-89	-64
35-40	2.85	1-90	1.04	$\cdot 75$
Inclusive of p\&p and VAT. SAE brings Catalogue of copper and resistance wires in all coverings.				
THE SCIENTIFIC WIRE COMPANY PO Eox 30, London E4 9BW Reg. Office: 22 Coningsioy Gariens.				

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' Hardwaro. Printed circuit boards, top qualty for individual designs Prompt service. Send 25 p for catalogue from:

RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon, Warwicks Tel: 4879

ATTENTION SWL's \& DXers our new short wave aerial tuner units and RF preselectors now available Medium Wave DXers, Unique New Unit, especially for You! SAE Details. AMTEST, 55 Vauxhall Street, Worcester WR3 8PA.

100 Resistors 75p	
Send stamped envelope for FREE SAMPLE	
C60 CASSETTES ${ }^{30 \mathrm{p}}$	All Cassettes in Plastle,
C90 CASSETTES 45p	Case with Index and
All prices include VAT.	Sc
tity	LOP ELECTR
Units 10\%	Tel. 5320

IW 5\% c/FILM Send stamped envelope for FREE SAMPLE C60 CASSETTES 30p All Cassettes in Plaatle C9O CASSETTES 450 Quantity Discounts 50 Unlts 7%
100 Unlts 10%

ORDER FORM PLEASE WRITE in BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for insertions

I enclose Cheque/P.O. for $£ . ~$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME. \qquad

Send to: Classifiea Advertisement Manager PRACTICAL WIRELESS,
GMG, Classified Advertisement Dept., Rm, 2337, King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01*251 5845

Rat
20p per word, minimum 12 words. Box No. 60p extra.
20p per word, minimu

OUTSTANDING 2200 HEFI FM TUNER. Latest silicon superhet design, Varicap Tuning, Full Coverage $88-102 \mathrm{MHZ}$. Ideal for Push button/Manual tuning. Supplied Built \& Tested with full instructions only £9.95 (P\&P 50p). GREGG ELECTRONICS, 86-88 Parchmore Rd, Thornton Heath, Surrey.

100 WATT GUITAR/PA/MUSIC AMPLIFIER

With superb treble, bass. Overdrive, slimline, 12 months guarantes. Unbeatable offer at £39. Also twin channel with separate treble/bass per channel sat. Money re-
turned if not obsolutely delighted within 7 days. Alsofuzz boxes great sound, robust construction $\mathbf{\Sigma 6 \cdot 6 0}$. Also 100 watt 12 in . speakers $£ 22 \cdot 50$.
All inclusive of P.P. Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
THORNCLIFE AVENUE, DUKINFIELD,
CHESHRE. TEL: 061-344 5007

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.


```
Cassette AORSE CODE TUITION AIDS Cassetfe A: 1-12 w.p.m. for a mateur radio examination. Cassette B: 12-24 w.p.m. for proiessional examination preparation.
Morse by light systems available. Morse Key and Buzzer Prices each Cassette (including booklets) £4.50. Morse Key and Buzzer \(\mathbf{E 4} 40\).
Prices include postage etc., Overseas Airmail \(£ 1 \cdot 50\) extra. MHEL ELECTRONICS (Dept P.W.), 12 Longshore Way, Milton, Portsmouth PO4 BLS.
```


Situations Vacant

TRANEE COMPUTER ENGINEERS

O/A LEVELS ONC OR CITY AND GUILDS OR TV ENGINEERING?
The UK Training Division of Control Data who manufacture the world's most powerful computer wishes to meet suitable young people between the ages of 21-35 to train as computer engineers with a view to subsequent employment at various locations. This is an opportunity to be trained in computer skills by a leading computer manufacturer for an occupation and industry which offers progressive salaries, really interesting work and excellent career prospects.
Spend an evening with us and investigate our training entry scheme in detail. Find out whether you would qualify for support under TOPS*.

FOR LONDON INTERVIEWS CALL 01-
6372171 AND ASK OUR RECEPTIONIST
TO CONNECT YOU TO PROGRAM 2E.
For outer London interviews please call either:

BIRMINGHAM OFFICE 0216227383
 MANCHESTER OFFICE
 0618323114
 LEEDS OFFICE
 0532450145
 SOUTHAMPTON OFFICE
 070338644

*TOPS-The NATIONAL TRAINING OPPORTUNITIES SCHEME under which training costs and personal subsistence are paid to suitable candidates whilst undergoing training which is desigried to lead to employment.

Based on a Linsley Hood design-
PRICES, assembled instrument, plastic case $\mathbf{6 2 6} \cdot \mathbf{5 0}$, metal case $\mathbf{6 3 0}$. (Kits, E22). Tax extra 8\%. P.P. and Ins. fl.
Specification. Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in 4 steps. Output: $10 \mathrm{mV}-$ I volt in 3 steps. Sine- and Squarewave forms: Disc. below 02%. Attenuator: Powered by 9 V battery.
Other instruments: Millivoltmeter, Frequency Meter. Reg. P.S. Units. THD Analyser. Also Hi-Fi Amp kits 10-100 Watts F.M. Tuners, Kef Speaker Units. S.A.E. for further information to;

TELERADIO ELECTRONICS (PW)
325, Fore Street, Edmonton, London, N.9. Telephone: 01-807-3719.

PROGRESSIVE RADIO

34 CHEAPSIDE, LIYERPOOL L2 2DY. Tel: 051-23E-03E2

SEMICONDUCTORS ALL FULL SPEC. BC212, BC182, BC237, 8F197 BC159 all ip each LM380 80p, LM381 95p, NE555 33p, 7418 PIN 23p. 741 S (wide bandwidth) 8 pin 35 p. 1 IL30 Alpha numerical display (with data) $£ 2 \cdot 50 \mathrm{p}$. 8×504 opto isolators Infra red led to photo Cell, 4 lead 25p, BFY50 plastic 14p, STC 3 volt 1 watt zener diodes 7 p each, BD533 33p
MRD3051 photo transistors 35 p . FETS similar to 2 N 3819 18p, MOSFET similar 40673 35p Intel C1103 1024 bit mos rams 95 p, CD4051 45p, 72314 pin I.C.'s. 35 p. Special Offer SGS 10 C's 10 for $£ 5.00$
DIODES, BY127 9p, IN4002 4p, IN4005 7p, 600v 3 amp 47p, ORP61, Mullard new boxed 30p. MAN3A 3 mm led displays 50 p , Min. Nixie 587 OST 75 p .
Pot core unit, has six pot cores including one FX2243 (45 mm) and two FX2242 (35 mm) 3 TO3 sil. power transistors on heat sink $3-20 \mathrm{~m} / \mathrm{m}$ panel fuseholders and panel with various transisiors, diodes and a 5 amp plastic SCR, E1 ${ }^{-75 p}$ plus 75p postage
MOTORS, Model type 1.5-6 volts 20p, 'BIG INCH' sub min motor 115 vac, 3 r.p.m, $25 p$ 24 OVAC SYNCH. MOTORS WITH GEARBOX, $1 / 5$ r.p.m. $75 \mathrm{p}, 1 / 24$ th r.p.m. $75 \mathrm{p}, 15$ r.p.m £1-20p, Crouzet 115 VAC 4 r.p.m. 95p. 12v D.C. 5 . Pole 35p HI-SPEED MORSE KEY, ALL METAL E2.25p
PLESSEY WINKLER SWITCHES, 1 Pole, 30 way, 2 Bank Adj. Stop, 75 p .
Crystal microphone inserts 37 mm 45p, Grundig electret condenser inserts with buit in
FET preamp \&1.50p. ELECTRET PENCIL HAND MICROPHONES 1 K MP WITH STANDARD JACK PLUG £2.85p, TIE CLIP CONDENSER MIKES OMNI, IK IMP, (uses dea aid battery, supplied) $£ 4.95 \mathrm{p}$.
SOLDER SUCKER, high suction, eye protection shield $\mathbf{4 4} \mathbf{9 5 p}$.
PROJECT BOXES, BLACK ABS PLASTIC WITH BRASS INSERTS AND LID, $75 \times$ $56 \times 3544 \mathrm{p}, 95 \times 71 \times \mathbf{3 5} \mathbf{5 2 p , 1 1 5 \times 9 5 \times 3 6 5 0 \mathrm { p } .}$
SUZZERS, GPO open type 3-6v 30p. Large plastic domed type loud note 6 or 12 volts $\mathbf{3 0 p}$ Solid State buzzers, miniature, 6-9-12-24 volt 15ma 75p each.
TAPE HEADS, Mono Cassette EA- $\mathbf{3 0} \mathrm{p}$. Stereo cassette $£ 3 \cdot 00$, ESR MNI330 half track dual imped. heads £1-75p. TD10 Dual head assemblies 2 heads both $\frac{1}{2}$ track R/P with built in erase, mounted on bracket, \&1-20p.
Relays, Min. sealed 12v dc type 4 pole changover $55 p_{2}$ Min 24v dc 2 pole clo 3 amp contac 55p, Min sealed 220V AC 2 pole c/o 40p, Open type 12 V dc 4 pole c/o $50 \mathrm{p}, 4$ pole reed relay

CRYSTALS, 300khz 40p, 50V AC cam units, motor switching ten e/o micro switches supplied with capacitor for 240 V AC use $\mathbf{E 1} \mathbf{~} 95$ p plus 35 p postage.
MAINS TRANSFORMERS, all 240 V AC primary, postage shown in brackets per trânsformer. 6-0-6 100ma, 9-0-9 75ma, 12-0-12 50ma 75p each (15p). 0-4-6-9 150ma no mount ing bracket, 65p (20p). 12-0-12 100ma 95p (15p). 12V 500 ma 95 p (22p). $42 \mathrm{~V} 2 \mathrm{amp} \mathrm{fz} \cdot \mathbf{2 5}$ (45p)

 £2. 20 (54p).
14XENON/TRRAC pulse transformers 30p.
U.H.F. TV Tuners,
U.H.F. TV Tuners, push button (not varicap) new and boxed £2. 50p. Miniature toggle switches, SPST $8 \times 5 \times 745 \mathrm{p}$, OPDT $8 \times 7 \times 750 \mathrm{p}$, DPDT c/o $12 \times 11 \times 975 \mathrm{p}, \mathrm{Min}$ push to make or push to break
TOOLS Small side cutters $5^{\prime \prime}$ insulated handles $\mathbf{5 1}$. $\mathbf{3 5}$ p. Snub nosed pliers $5^{\prime \prime}$ insulated handles $\mathbf{£ 1} \mathbf{3 5}$ p. Watchmakers screwdriver sets, 5 drivers in wailet $x 4 \cdot 00 \mathrm{p}$. Large main tester screwdrivers, fuily insulated $8^{\prime \prime} 44 \mathrm{p}$. Test lead jumper sets, 10 leads with insulated croc clips each end, different colours 80p. Telephone pick up coil, suction type with 3.5 mp placed PP3, PP6, PP7, PP9 E2 45 p . Edge connectors, 0164 way $65 \mathrm{p}, 34$ way $40 \mathrm{p}, 0.218$ way 95 p .13 amp rubber trailer extension sockets 38 p . LA1230 adj. core 15 mm diam. 14 mH $18 \mathrm{mH}, \mathrm{HI} \mathrm{Q} 6$ for 50 p . Tape head demagnetisers, 240 vac with onjof switch, straight probe £2.00, curved probe (cassette) $\boldsymbol{\varepsilon 2}_{2} \cdot \mathbf{3 5}$.
TERMS: cash with order, (or official orders from colleges etc). Postage 30 p unless other
wise shown, overseas post at cost. VAT inciusive prices. S. A forlists. wise shown, overseas post at cost. VAT inciusive prices. S.A.E. for lists.

Progressive Radio, 31 Cheapside, Liverpooi L2 2DY. Tel: 0512360982

Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE - CELESTION - CHARTWELL COLES - DALESFORD - DECCA - EMI EAGLE ELAC - FANE GAUSS - GOODMANS - HELME - I.M.F. ISOPHON - JR JORDAN WATTS - KEF - LEAK - LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD RAM - RICHARD ALLAN SEAS - TANNOY - VIDEOTONE - WHARFEDALE
```


WILMSLOW AUDIO
 (Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

WATFORD ELEGTRONIES
33／35，CARDIFF ROAD，WATFORD，HERTS，ENGLAND
MAIL ORDER，CALLERS WELCOME．Tel．Watford $40588 / 9$
ALL DEVICES BRAND NEW，FULL SPEC．AND FULLY GUARANTEED．
ORDERS DESPATCHED BY RETURN OF POST．TERMS OF BUSINESS CASH／CHEQUE／P．O．S OR EANKERS DRAFT WITH ORDER．GOVERNMENT

4 AT Export orders no VAT．Applicable to U．K，Customers only．Unless stated otherwise，all prices are excluslve
to devices marked
We stock many more items．Itpsys to visit us．We are altuated behind Waffor
Football Ground．Nearest Underground／Br．Rall Station：Watiord High Sireet Open Monday to Saturday 9 a．m．-6 p．m．Ample Free Car Parklng spaceavallable

 POLYESTER RADIAL LEAD（Values in $\mu \mathrm{f}), 250 \mathrm{~V}$ ：
 ELECTROLYTIC CAPACITORS：Axial lead type（Values are in $\mu \mathrm{F}$ ）． $250 \mathrm{v}: 10065 \mathrm{p} ; 63 \mathrm{v}: 0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7,6 \cdot 8,8,1 \mathrm{~d}, 15,228 \mathrm{p} ; 47,32,50,11 \mathrm{p}$
$63,100,27 \mathrm{p}, 50 \mathrm{~V}: 107 \mathrm{p} ; 50,100,22025 \mathrm{p}, 470,50 \mathrm{p}: 1000,62 \mathrm{p}: 2200,68 \mathrm{p}, 40 \mathrm{~V}: 22$ 33 $\mu \mathrm{F}, \mathrm{9p} ; 100,12 \mathrm{p} ; 3300,62 \mathrm{p} ; 4700,64 \mathrm{p} ; 35 \mathrm{~V}: 10,33,7 \mathrm{p} ; 330,470,32 \mathrm{p} ; 1000,49 \mathrm{p}$
$25 \mathrm{~V}: 10,22,47,6 \mathrm{p} ; 80,100,160,8 \mathrm{p} ; 220250,13 \mathrm{p} ; 470,640,15 \mathrm{p} ; 1000,27 \mathrm{p} ; 1500,30 \mathrm{p}$
200
 $2500,65 \mathrm{p}$ ；15，000，450p；25V：4700，48p；2000，37p； $40 \mathrm{~V}: 2000+2000$ ； 95
 $\begin{array}{ll}5 K \Omega-500 \mathrm{Ka} \text { 8ingle gang } & 70 \mathrm{p} \\ 10 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega \text { Dual gang } & 80 \mathrm{p}\end{array}$ PRESET POTENTIOMETERS

RESISTORS－Erie make 5% carbon
Minlature HIgh Stablity，Low Noise

 \begin{tabular}{lr|l}
HEAT SINKS＊ \& TO5 $85^{\circ} \mathrm{C}$

TO92 \& 9p \& Silicon Grease

TO5 \& 12p \& Silicon G

5ml．Tub

TO18 \& 12p \& 20 ml ．Syrlinge \& 125 p

TO220 \& 22p \& 12p

TO3 \& 22p \& Insulation KIt for TOB，

TOFB \& 22p \& TO66 or TO220 \& 3p Kit

EARPHONES FIGARO GAS and

MAOKE

Magnetic

2.5 mm \& SMOKE

DETECTORS＊
\end{tabular}

	75	LM300H	170	NE587V＊＊	170
709C \％pin	35	LM301A	30	NE574	45
723＊＊ 14	45	LM304	240	RAM210	
741＊8 8 pra	22	LM308T	110	RAM2102	17
747 C 14 pl	70	LM 318 H	205	RC4136D ROM 2513	700
888 8 pln	38	LM318S	195	RG3402＊＊	700
7538 pln	150	LM324A	79	SG3402＊	295
810	159	LM339	80	SL403D	5
A Y－1－9212	580	LM348	120	SL437A	
Y－1－1313A	660	LM379	375	SN72710＊＊	
AY－1－1320	632	LM380	95	SN72733＊	2
Y－1－5050	241	LM381N	145	SN76003N	11
Y－1－5051	145	LM381AN	248	SN76013N	140
A Y－1－6721／6	195	LM382	125	SN76013N	120
AY－3－8500＊	450	LM3900＊	80	SN76023N	140
AY－3－8550＊	595	LM3909N	79	SN76023ND	2
A Y－3－8710＊	850	LM3911＊	125	SN70033N	211
AY－5－1224A	260	LM732	125	SN76115N	215
AY－5－1230＊	450	M252AA＊	750	SN76227N	115
AY－5－1315	580	M253AA＊	795	TAA550	50
Y－5－1317A	830	M C683	275	TA	22
A Y－5－3500＊	510	MC724＊	175	TAA601A	5
AY－5－3507＊	415	MC1303	88	TAA960	
AY－5－4007	850	MC1304P	260	TAD100	150
A3011＊	12	MC1310P	175	TAD110	70
CA3014＊	137	MC1312PO	195	TBA120S	70
A3018＊	68	MC1458P＊	50	TBA540	215
CA3020	170	MC1495	395	TBA5400	220
CA3023	170	MC1486L	92	TBA5500	330
A3028A	80	MC1710C	79	TBA641－A12	
A3035	240	МСС3340f	150	BX1 or B	250
CA3036	110	MC3350P	120	TBA651	180
CA3043	190	MC3401	70	TBA800	90
CA3045	140	MEM780	205	TBA810S	05
CA3046	71	MFC4000	85	TBA820	70
CA3048	200	MFC6040＊	97	TBA920	280
CA3075	175	MK50362＊	650	A270	220
CA30801	80	MK50398＊	635	TCA270SQ	220
A3081	190	NE350	160	TDA1022	595
CA3089	210	NE543K	210	TDA2020	320
CA30s0AQ	390	NE544	185	TLO81CP＊	52
CA3123	200	NE555＊	29	TLO82CP＊	96
CA3130＊	85	NE556DB＊	60	TLO84CP＊	130
3140	92	NE560＊	325	UAA170	98
ICL7106＊＊	975	NE561＊	395	ZN414	105
＇CL7107＊	975	NE562B＊	410	ZN424E	
8038C		85A＊			

S）

 ¿完 ๓ペ̛

WATFORD ELECTRONICS

(Continued from opposite side)

OPTO ELECTRONICS*
LEDS + CIIPTRONICS* TIL209 Red
TIL211 Grn TIL211 Grn TIL212 Ye
$0 \cdot 2^{\prime \prime}$ Red
$0 \cdot 2^{\prime \prime}$ Yo $0 \cdot 2$ Red
$0.2^{\prime \prime}$ Yellow. SPEAKERS $8540.3 W$

VAT is not included. Please add $12 \frac{1}{2} \%$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are $\mathbf{£ 0} \cdot \mathbf{1 0}$ per $£$ subject to a minimum of $£ 0 \cdot \mathbf{3 0}$. Minimum order charge for Approved Credit customers $\mathbf{£ 2 0} \cdot \mathbf{0 0}$. Minimum Transaction Charge for mail orders $E 1 \cdot 00$.

OUR NEW 1977/I978 CATALOGUE|IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR $\mathbf{6 0 \cdot 3 0}$

SNCLAIR PRODUCTS*
nicrovision TV now in stock $£ 200$. PDM35 digital multimeter £25-95. Mains adaptor E3.24. De-luxe padded case £3.25. New bridge programmable calculator $£ 13 \cdot 15$. Prog. library £2 95 . Mains adaptor $£ 3 \cdot 20$. S-DECS AND T-DECS*
S-Dec £3.39. T-DeC £4-44. U-DeCA £4.52. $\mu \mathrm{DeCB}$ £6.73. 16dil or 10 T 05 adaptors with sockets $£ 2 \cdot 14$.
CONTINENTAL SPECIALITIES
 S6 59.94 PB100 512.74 MI E30.99. LP1 £33.48. LP2 £19. 44.

TVGAMES

Send sae for free data. New racing car ty games chip AY-3-8603 plus economy kit £20-60, tank battle ehip AY-3-8710 plus economy kit $\mathbf{£ 1 3 \cdot 9 5 \text { . Stunt motor cycle chip }}$ game paddle 2 chip $A Y-8600$ plus economy kit $£ 14 \cdot 70$. AY-3-8500 chip plus economy kit £8.95. Modifled shoot kit £4.96. Rifle kit £4-95. Colour generator kit $£ 7,50$. 4 game models (tennis, football, squash and pelota) black and white £11.95, colour £.14.50. Deluxe 6 game model with pistol attachment £1795. TV games mains adaptors $£ 3 \cdot 10$.
MAINS TRANSFORMERS

JC12, JC20 AND JC40 AMPLIFIERS A range of int.yrated circuit audio amplicircuits. JC12 66 watts $£ 1-60$. JC20 10 watts £2.95. JC40 20 watts £4.20. Send sae for free data on our range of matching power and preamp kits

FERRANTI ZN414

IC radio chip $£ 1 \cdot 05$. Extra parts and pcb or radio £3.85. Case $\mathbf{\Sigma 1}$. Send sae for free ata
PRINTED CIRCUIT MATERIALS
PC etching kits:-economy $£ 1 \cdot 70$, standard
$£ 3.82 .50$ sa ins pcb $400.11 \mathrm{FeC1} £ 1.05$. etch resist pens:-economy $\mathbf{4 5 p}$, dalo 73 p . Small drill bits $1 / 32$ ins or 1 mm 20 p each. Etching dish 68p. Laminate cutter 75 p .

BATTERY ELIMINATOR BARGAINS TV games power unit stabilized 7.7V $100 \mathrm{ma} £ 3 \cdot 10$. 3 -way moaels with switched output and 4 -way multi-jack:- $3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ radio models same size as 6 With press stud connectors. 9V £2.85. 6 V £2.85. 41 $\mathrm{I}, ~ £ 285.9 \mathrm{~V}+9 \mathrm{~V} £ 450.6 \mathrm{~V}+$ 6 V £4 $50.4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V}$ £4.50. Cassette recorder mains unit $7 \frac{1}{2} V$ 100ma with 5 pin din plug $£ 2 \cdot 85$. Car convertors 12 V dc 300 ma £1-50. SATTERYELMMINATORKITS Send sae for free leaflet on range. 100 ma

 sette type $7 \frac{1}{2} y 100 \mathrm{ma}$ with din plug $\varepsilon 180$. Heavy-duty ${ }^{13}$ way types $4 \frac{4}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 /$ 14/17/21/25/28/34/42V. A Amp 84.65 .2 Amp £7.25. Transistor stabilized 8-way typas
for low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$ 100ma £3.20. 1 Amp $\mathbf{x 6}^{2} \cdot 40$. Variable voltaqe
 convertors 12 V dc input. Output 9 V Thin $/ 6 \mathrm{~V} 1$ Amp stabilzzed E1 95 .
Send sae iot data. \$450 tuner 823.51 , AL60 £4.86. PA 100 £16.71. SPM80 £4.47. SMT80 £5-95: MK60 £38.74. Stereo 30 BULK BUY OFFERS
Minimum purchase $£ 10$ any mix from this

 43p. Dalo pens 59p. AC76023N exact 79p. Plastic equivs of popular transistors: ${ }^{8 C 108} 3.8 \mathrm{p}, \mathrm{BC} 109 \mathrm{4.4p}, \mathrm{BCY71} 4.7 \mathrm{p}$, BCY724.4p. Fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cartridge
 Antisurge tyge 3.4 p. Resistors 5% E12
10 ohm to $10 \mathrm{M} . \frac{1}{4} \mathrm{~W} 0.8 \mathrm{p}$. TW 1.9 g . Poly. ester capacitors 250 V . 01 , 1.92 p , Poly-

0.1 mf	1.5 p,	$0.22 \mathrm{mf} 3 \mathrm{p}, 1$
0.33 mf	2.5 p,	
0.47 mf		
4.8 p.	Polystyrene	capacitors

E12 63 V 15 to 6800 p 2 $2 \frac{1}{2}$ p. Ceramic capaci-
 to $33000 \mathrm{pf} 1 \cdot 7 \mathrm{p} .47000 \mathrm{pf} 2 \mathrm{p}$. Electrolytics $50 \mathrm{~V} 0.47,1,2 \mathrm{mf} 5 \mathrm{p} .25 \mathrm{~V} 5 \mathrm{mf} 5 \mathrm{p} .10 \mathrm{mf} 4 \mathrm{p}$.
 $9 p .470 \mathrm{mf} 11 \mathrm{p}, 1000 \mathrm{mf}$
E24 2 p . Zeners 400 mW
to 33 V
$6.1 p$. Preset pots sub miniature 0.1 W horiz or vert 100 to 4 M 7 6.8p. Potentiometers $3 W 4 \mathrm{~K} 7$ to 2 M 2
log or in single 26p. log or lin. single 26p. Dual 76p.

SWANLEY ELECTRONICS

DEPT. PW, 32 Golasel Rd., Swanley, Kent Br8 aEZ

Mail order only. Please add 30 p to the total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on items marked * and 11% on others. Official
credit orders welcome.

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fai to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appear ance of the advertisement, providing proof of payment Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered', Classified and catalogue mail ordel advertising are excluded.

[^1]

everything for the modern D.I.Y. electronics enthusiast and more.

[^0]: 5 Partridge House, Prospect Road, Broadstairs CTIO-ILD. (Callers by appointment).

[^1]: ublished on approximately the 7th of each month by IPC Magazines Limited, Westover House, West Quay Road, POoLE, Dorset BH15 1 JG. Printed in England by Index Printers, Dunstable, Beds. Sol Perrymount Road, Haywards Heath, Sussex. Practral Wrkwiess is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers frst having been giver, e lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover. excluding Eire where the selling price is subject to V.A.T. and that it hall not be lent, resold, hired out or otheruise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pic

