

T.T.L. 74 I.Cs by TEXAS, NATIONAL, I.T.T., FAIRCHILD Etc

7400	14 p	7413	30 p	7437	25p	7460	15p	7491	75p	74121	30 p	74139 74141	$100 p$ 600	74155 74156 7457	${ }^{70 \mathrm{p}}$	$\begin{aligned} & 74173 \\ & 74174 \end{aligned}$	150p $100 \mathrm{p}$	74188 74189	$\begin{aligned} & \text { 350p } \\ & \text { 350p } \end{aligned}$
7401	14 p	7414	80 p	7438	25p	7470	30p	7492	45p	74122	40p	74141	60p	74156	70 p	74174	$100 \mathrm{p}$	74189	$350 \mathrm{p}$
7402	140	7416	30 p	7440	15p	7472	25p	7493	40p	7423	60p	74142	270p	74157	70 p	74175	75 p	74190	140 p
7403	14 p	7417	30 p	7441	${ }^{65 p}$	7473	30 p	7495	80p	74925	50 p	74143	270p	74160	90p	74176	100 p	74191	140p
7404	$14 p$	7420	15 p	7442	$65 p$	7474	30 p	7496	70p	74125	50p	74144	270p	74161	90 p	74177	100p	74192	120p
7405	14 p	7422	20 p	7445	80 p	7475	30 p	74100	95p	74130	130 p	74145	$75 p$	74162	90p	74178	140p	74193	120p
7406	40p	7423	25p	7446	85 p	7476	30 p	74104	40p	74131	100p	74147	230 p	74163	90p	74179	140 p	74194	100 p
7407 7408	40p	7425 7426	25p	7447 7448	$75 p$ $70 p$	7483	85p	74105	40p	74132	85p	74148	160p	74164	$125 p$	74180	100 p	74195	100p
7408 7409	${ }_{20}^{20 p}$	7426 7427	25p	7448 7450	70p	7485	100p	74107	30 p	74135	100 p	74150	120p	74165	125p	74181	200 p	74196	100p
7410	15p	7428	40 p	7451	15p	7486	30p	74109.	50p	74336	80 p	74151	65p	74166	125p	4182	$75 p$	74197	100p
7411	20p	7430	$15 p$	7453	15p	7489	250p	74118	90p	74137	100p	74153	65p	74167	325p	74184	150p	74198	185p
7412	20p	7432	25p	7454	15p	7490	35p	74120	90p	74138	125p	74154	120 p	74170	200 p	74185	150 p	74199	185

SEMICONDUCTORS
by MULLARD, TEXAS, MOTOROLA, SIEMENS, I.T.T., R.C.A.

JULY 1978 • VOLUME 54 • NUMBER 3

BRITAIN'S LEADING JOURNAL FOR THE RADIO \& ELEGTRONIC GONSTRUGTOR

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

COPYRIGHT

\leftrightarrow IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by 'Practical Wireless' to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

RECEIVER UNIT small personnel type made for use by Army covers 500 Ke to $18 \mathrm{Me} / \mathrm{s}$ by means of a 4 way plug in coil unit. uses 5 min valves inc BFO in superhet eire reqs $67 \cdot 5 \mathrm{VHT}$ \& 1.5 L . T. as o/p for 4 K phones supplied tested with circ 613 . HT batteries if req $61 \cdot 30$ ea or 2 or more KI ea.

AERIAL DRIVE UNIT suitable 2 mt beam \& up, 24v DC motors max speed 6 RPM supplied with remote 360^{\prime} Ind again 24 V DC \& connections. speed ex aircraft radio compass two items El3.

HANDSETS rubber covered m.c. type nom 100 ohm with press to talke swt suit 19 or 62 sets store soiled elec okay $£ 2.50$.

VALVE TESTER ADAPTOR type MX849 for use with American l-177 valve tester extends range, in ease with data $65 \cdot 40$.
V.H.F. TEST SET type 210 contains sig gen covering 20 to $88 \mathrm{Mc} / \mathrm{s}$ in 4 bands good second harmonic o/p. int $2 \mathrm{Mc} / \mathrm{s} \times$ tal check, int pulse mod or CW o/p, noise generator with 50 Ma meter, all in case with cal charts \& circ, note these rea $200 \mathrm{~V} D \mathrm{C}$ \& 6-3v El 3 .

DYNAMOTOR UNIT $27.5 v$ DC I/P o/p 200 or $400 v$ DC 280 Mz int rating, these can be used as motor only by removing ext fan ass, will run on 6 to $24 v D C$ very powerful as $1 \times t^{n}$ shaft approx motor size $6 \ddagger \times 3 \ddagger$ dia new American surplus $66 \cdot 50$.

CRYSTAL OVEN small type takes $2 \times \mathrm{Hel} 18$ size $2 \times 1 \% \times z^{\prime \prime} 12 / 24 \mathrm{~V}$ new C1. 20.
CABLE $\min 25$ core non ser colour coded new 10 mts for $\mathbf{6 3}$.
METERS panel mt type I Ma fed special scale $2^{\prime \prime}$ fl 30 also 100 Ua F5D scale 0 to $1002^{\prime \prime} 63$ both new.

CRYSTAL UNIT dual l00Kc \& I Mc/s in 10X case with suggested circ 62.80.

TRANSISTOR VHF pwr type 2 N 3375 stud mt $7 \cdot 5 \mathrm{w}$ at $100 \mathrm{Mc} / \mathrm{s} 3 \mathrm{w}$ at $400 \mathrm{Mc} / \mathrm{s}$ new fl .80 ea .

BATTERIES sealed lead acid type $6 v$ rechargeable $1 \cdot 8 \mathrm{~A} / \mathrm{Hr}$ size $2 \underset{2}{ } \times 2 \times$ $2^{\prime \prime}$ new $65 \cdot 40$.
RECEIVER UNIT single channel crystal controlied for use in range 225 to $400 \mathrm{Mc} / \mathrm{s}$ double superhet 21 min valves $230 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 1 / \mathrm{P} 19^{\prime \prime}$ rack mt with eire 630 .

FREQ METERS type BC22! 125 Ke to $20 \mathrm{Me} / \mathrm{s}$ req 135 v HT \& 6.3 v with handbook \& charts few only $\mathbf{E 2 7}$.
DIODES power cypes 100 PIV 10 amps 4 for 61.60 .1000 PIV 10 amps 4 for $\mathbf{6 2} \mathbf{5 0}$ both new full spec. C.R.T.s
CVI746 64" P. 1 trace CRDF tube 66, 5CP1 5" P.I trace 67. 5ADPI 5" P. 1 trace $68 \cdot 50$ all electrostatic types new.
C.R.T. VISOR complete with magnifier \& padded eye piece approx size $5 \times 4 \times 7^{\text {" }}$ okay for colour slide viewer new $\mathbf{E 3}$.
TRANSFORMERS HT type Pria 230 v sec $1125-0.1125 \mathrm{v}$ at 565 Mz new $612 \cdot 50$, Isolating type pria 240 sec 120 v at 60 watts enclosed new $\mathbf{6 3}$. Auto type $230 / 115 v$ at I Kra 613.
RECTIFIER UNIT general purpose unit made for operation of Army telephone \& teleprinter units $1 / \mathrm{P} 200 / 250 \mathrm{v}$ o/p dual 12 v DC at 3 amps ea circ. connected for 24 vct complete in case very conservative rating will do 8 mps okay for battery charger with circ $\mathbf{6 8} \mathbf{5 0}$.
TEST SET special purpose complete in case size $14 \times 16 \times 10^{\prime \prime}$ contains large number of good quality parts as foliows, HD rotary 3 wis, plugs $\&$ sks, trips. power filters, relays, Ind lamps, pots, small $400 \mathrm{c} / \mathrm{s}$ variac ete E 16 .
TEST SET special purpose contains 4 panel meters as follows, 0 to 500 Ma $\times 2$, 0 to 1 amp DC mirror scale, 0 to 40 vDC , plus lamps, tog swis, fuse hoiders ete in case size $17 \times 12 \times 7^{\prime \prime}$. 69 .
TEST SET M.7C used for testing telephone circs contains mains p.u. meter $200 \mathrm{Ua} 3 \mathrm{t}^{\prime \prime}, 3 \times \mathrm{AF}$ atten swt $10,40 \& 60 \mathrm{Db}$, valve amp. filters etc in neat case with front cover \& cire size $19 \times 9 \times \mathbf{9}^{\boldsymbol{\prime \prime}} \mathbf{E 1 0} \mathbf{8 0}$.
TEST SET I.F. used to check $30 \mathrm{Me} / \mathrm{s}$ head amps, contains mains p.u. with trans $225.0-225 \mathrm{v}$ at 70 Mz 6.3 vetc et also high grade 100 Ua meter seale 0 to $1004^{\prime \prime}$ dia, $30 \mathrm{Mc} / \mathrm{s}$ amp. misc coax fittings etc in case size $19 \times 7 \times 10^{\prime \prime}$ E10.80.
CRYSTALS mixed type $10 \times \& 10 \times 1$ in range 5 to $8 \mathrm{Mc} / \mathrm{s} 20$ for $\mathbf{E 2} \cdot \mathbf{2 0}$.
BLOWER MOTORS single ended 50 efm outlet 2×1 in $^{\prime 2} 240 \mathrm{~V}$ new $\mathbf{6} 6.60$.

Above prices include post \& V.A.T. good ex equipment unless stoted new. SAE for list 19 or enquire. Shop open Tues to Sot.

A. H. SUPPLIES
 122 Handsworth Road Sheffield S9 4AE

Phone 444278 (0742)
GOLDRING G103
Belt Drive Turntable

ominsomplivily

BADID EXCHANGELTID

NEW ELECTRONIC MASTER KIT

WITH SPECIAL V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit. with ready drilled Bakelite Panels. Nuts, Bolts. Wood Serews etc. Also in the kit: Transistors, Capacitors. Resistors, Pots. Switches. Wire, Sleeving, Knobs, Dials, $\mathbf{S}^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, rogether, with comprehensive Instruction Manual Pictorial and Circuit Diasrams.
PROJECTS: V.H F. Tuner Module $\&$ A.M. Tuner Module $\&$ M.W. L.W. Diode Radio $\&$ Six Transistor V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio Two Transistor Metronome with variable
 Transistor V.H.F. Loudspeaker Receiver $*$ Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier 太 Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer $太$ Three Transisto: Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \rightarrow Five Transistor M.W. L.W. Trawler Band Regenerative Radio \backslash Five Transistor V.H.F. Tuner \star Three Transistor Code Practice Oscillator \star Five Transistor Regenerative Short Wave Radio \star Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio

* Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output \quad \& 4.99 + P \& P \& $1 \cdot 10$ * One Transistor Home Broadcaster.

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND V.H.F. AND A.M. RECEIVER.
13 TRANSISTORS AND SIX DIODES. QUALITY 4" ROUND LOUDSPEAKER.
WITH Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate
tuning, covering M.W.I. M.W.2, L.W. Three Short Wave Bands S.W.I, S.W. 5 S.W. 3 and Trawler Band. tuning, covering M.W.I. M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches.
Powered by P.P. 9 ... 9 volt Battery.

ELECTRONIC

E.C.K. 2 Self Contained Multi-Band V.H.F. Receiver Kit.

8 transistors and 3 diodes. Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, resistors, capacitors, transistors etc. Will receive T.V. sound public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)

NEW

MODEL
R.K. 2

MW, LW and Air Band Receiver. Eight Transistors and Four Diodes. 3" Loudspeaker, Telescopic Aerial, Internal Ferrite Rod

Acrial. Complete
with Carrying Strap.
with Carrying Strap.
and ready-drilled Panels and all
components necessary for construction. A sensitive
Receiver with the additional luxury of an Air Band section to pick up Aircraft from many mites away. Fuli Instruct Manual enables stage by stage construction. Uses P.P. 9 and P.P. 3 Nine Volt Batteries.

ALL PRICES INCLUDE VAT

Complete kit of parts $£ 7.95+P \& P_{\text {and }} \mathrm{Ins}$. 90 p

DU-KIT MAJOR
COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

A superb solid state audio amplifier. Brand new components throughs plus 2 power output iransistors in push-pull. Full wave rectification. Output approx. 13
watts r.m.s. into 8 Output approx.
watts r.m.s. into 8
ohms. Frequency reohms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$
3 db . Fully integrated separate volume. Bass boost and Treble cut controls. Suttable for 8-15 ohm speakers. Input for ceramic or output. Supplied ready built and tested. with knobs, escutcheon panel. input and output pluys. Overali size 3° high $\times 6^{\circ}$ wide $\times 77^{\circ}$ deep. AC $200 / 250 \mathrm{~V}$.
PRICE $£ 55 \cdot 00$. P. \& P. £ $1 \cdot 20$.
PRICE £ $15 \cdot 00$. P. \& P. £ $1 \cdot 20$.

TWO ZERO

An advanced solid state general
purpose mono amplifier suitable

for Public Address system.
Disco. Guitar. Gram., etc. Features 3 individualls controlled inputs. (each input has a separate 2 stage preamp). Input $1,15 \mathrm{mv}$ into 47 k . Input 2, 15 mv into 47 k .
(suitable for use with mic. or guitar etc.). Input 3 (suitable for use with mic. or guitar etc.). Input 3
200 mv into 1 meg. suitable for gram. (uner, or tape etc. Full mixing facilities with full range bass \& treble controls. All ind.its plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 hm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel. With a brushed anodised aluminium front escutcheon. For ac mains operation $200 / 240 \mathrm{v}$. Size approx. $121^{\circ} \mathrm{w} . \times 5^{\circ} \mathrm{h}$. $<71^{\prime \prime} \mathrm{d}$. Mullard LP1159 RF-IF Module $470 \mathrm{kHz} £ 2 \cdot 25$. P.\&P. 20p. Full spec, and connection details supplied. Pye VHF/FM Tuner Head covering $88-108 \mathrm{M} / \mathrm{Hz}$. $10-7$
M / Hz I.F. output. $7-8$ Volt carth. Supplied preM / Hz l.F. output. $7-8$ Volt + earth. Supplied pre-
aligned, with full circuit diagram with precision-geared FMgang and 323Pf +323 Pf A.M. Tuning gang only FM gang and 323Pf
\&3.15 P. \& P. 35p.
STEREO DECODER SIZE $2 \times 3 \times$ ready built. Pre-aligned and tested any FM VHF radio or tuner. Stereo beacon light can be flted if required. Full details and instructions (inclusive of hints and tips) supplied. \&6.00 plus 20p.
P. \& P. Stereo beacon lizht if required 40 p extra.

MAINS OPERATED SOLID STATE

AM/FM STEREO TUNER

200/240V Mains operStereo Tuner. Covering Stereo Tuner. Covering
M.W. A.M. ${ }^{\text {S40-1605 }}$ $\begin{array}{lrr}\text { M.W. } & \text { A.M. } & \text { S40-1605 } \\ \text { KHz } \\ \text { VHF/FM } \\ 88-108\end{array}$ $\begin{array}{lll}\mathrm{KHz} \\ \mathrm{MHz} \text {. } & \text { VHF/FM 88-108 }\end{array}$
Built-in Ferrite rod acrial for M.W. Full AFC and AGC on AM and FM. Indicater. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max ofp Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet. Will match almost any amplifier. Size $81^{\circ} \mathrm{w} \times 4^{\circ} \mathrm{h} \times$ 94 "d approx.
LiMITED NUMBER ONLY at $£ 28 \cdot 00+£ 1 \cdot 50$ P. \& P. VYNAIR \& REXINE SPEAKERS \&

CABINETFABRICS

app. 54 in. wide. Our price $£ 2 \cdot 00$ yd. length. P. \& P. 50p per yd. (min. 1 yd.).
10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and
announcements to follow each other. Fully shrouded announcements to follow each other. Fully shrouded speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83,
EF86 and EZ80 rectifier. Simple instruction booklit EF86 and EZ80 rectifier. Simple instruction booklet $25 p$ - SAE (Free with parts). All parts sold separately.
ONLY $£ 13.50$ P. \& P. $£ 1$. Also available ready ONLY $£ 13 \cdot 50$ P. \& P. £1 40 . Also
built and tested $£ 18.00 \mathrm{P}$. \& P. $£ 1 \cdot 40$.
-POLY PLANAR* WAFER-TYPE. WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $111^{\circ} \times 144^{\circ} 17{ }^{\circ}$ deep. Weight 19 oz . Power handling 20W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings. walls, doors, under tables. etc., and used with Only $£ 8.40$ each +p \& p . (one 90 p details. Only £8.40 each + p. \& p. (one 90p. two \&1.10). Now available in either $8^{\prime \prime}$ round version or $4 \frac{5}{}^{\circ}$ ² $^{\circ} 85^{\circ}$ P. \& P. (one 65p. two 75 p)

SPECIAL OFFER. $6 \frac{t^{*}}{}{ }^{\circ}$ long throw, roll surround. ceramic magnet 8 ohm 10 watt speaker chassis. 2. PLASTIC CONE HF TWEETER 4 ohm. $\mathbf{6 . 3} 50$ per 2^{*} PLASTIC CONE HF TY
matched pair + 50p P. \& P.

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first flve stages on each channel resulting in even lower noise Bass Treble and wass. Treble and two Volume Controls. Suitable for use modiry to suit magnetic cartridge-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be prom.s. per channel into 5 ohms. Frequency response: $+3 \mathrm{~dB} \quad 12-30.000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into IM Ω : Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12=15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -i6dB. Negative feedback i8dB over main amp. Power requirements 35 v . at 1.0 amp .
Overall Size $12^{\circ} \mathrm{w} . \times 8^{\circ} \mathrm{d}$. < $24^{\circ} \mathrm{h}$.
Fulls detailed 7 page construction manual and parts list free with kit or send 250 plus large S.A.E.
AMPLIFIER KIT .
\&13. 50 P. \& P. 80p (Magnetic input components 33p extra) POWER PACK KIT .. £5.50 P. \& P. 95p SPECINET OFFER—only £23. 75 ir all 35 .
SPECIAL OFFER-only $£ 23 \cdot 75$ if all
ordered at one time plus $£ 1 \cdot 25$ p. \& p.
Also avail. ready built and tested £31-25. P. \& P. £1-50.
HARVERSONIC STEREO 44
A solid state stcreo amplifier chassis. with an output of $3-4$ watts per channel into 8 ohm speakers. Using the
latest high technology integrated circuit amplifiers with buitt in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse. tone control. volume controls. 2 pin din speaker sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit panel, size approx. $91^{\circ} 2^{\circ}{ }^{\circ}$. max. depth. Supplied brand new \& tested. with knobs. brushed anodised aluminium 2 way escutcheon (to allow
the a mplifier to be mounted horizontally or vertically) at he amplifier to
only $£ 9.00$ plus 50 p P. \& P. Mains transformer with an output of $17 \mathrm{va} / \mathrm{c}$ at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 1.50+$ 40 p \& P if required. Full connection details supplied. HA34 3 Valve Audio Amp. $4 \% \mathrm{w}$. output ready built and

All prices and specifications correct
at time of press and subiect to
alteration without notice.

HARVERSON SURPLUS CO. LTD.
(Dept. P.W.) 170 HIGH ST., MERTON, LONDON, S.W.I9. Tel.: 01-540 3985
Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday. Closed Wednesday.

PLEASE NOTE: P. \& P. CHARGES QUOTED APPLYTO U.K. ONL.Y. SEND SAE WITH ALL ENOUIRIES.

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF TEL: 20767

L20 PHOTO TRANSISTORS AND DARLINGTONS AASSORTEd untested
for fli.
ERIERED CAP . Oluf IOOVW. CAPACITORS Tor Sp Eac
OWATT WiAE WOUND VARABLERESTSTORS 1.2K © 22p.
100 C 280 CAPACITORA Assorted for

SUB-MNNEO URESTALS 28 KHz, 28. 5 KHz. Both 28 30p each.

VERNITRON FMA IOPMHRENLTEROSOP.

5 WATT NPN DARLINGTONTRANSISTORS 20p, 3 for 50p.

AUOIO L.C. LM MaO with circuits $2 t$ Bop.

CERAMICFILTERS SMMH 2A 27p Cach

 MULLARD 455 KHzPLUS $10.7 \mathrm{MHz} \mathrm{I.F.MODULE}$ with data C E4. MOU $100 \mathrm{v} . \mathrm{w}$. ELEECTROLYTICS at 3 for 25 Mp .
100u
2200uf $100 \mathrm{v} . \mathrm{w}$. ELECTROLYTICS as 60 p each.
Please add 20 p for post and packing on UK orders under $£ 2$ unless otherwise
stazed. Overseas orders as cost.

SINCLAIR PRODUCTS•
PDM35 digital multimeter £25-95. Mains adaptor $£ 3 \cdot 24$. Deluxe padded carry case
$£ 3.25 .30 \mathrm{kV}$ probe $£ 18.36$. New DM235 digltai meter P.O.A. Cambridge sclentific programmable calculator $£ 13 \cdot 15$. Prog.
ilbrary $£ 4.65$. Microvision ty $£ 200$.

CUT PRICE TELETEXT
Texas instruments XM11 tifax module E120. Labgoear 7028 ready to use, attrac-
tively cased, complete unlt. Plugs into tively cased, complete unit. Plugs into
tv aerial socket. Full colour. Remote control page select

TV GAMES KITS
Send sae for free data. Tank Battle chip AY-3-8710 plus economy kit $£ 17.95$. Stunt
Motor Cycle chip AY-3-8760-1 plus economy kit $£ 17.95$. 10 game paddle economy
2 chip AY- $3-8600$ plus economy kit $£ 14.70$. AY-3-8500 chip plus economy kit $\mathrm{\varepsilon z} \cdot 95$.
Modfied Shoot kit £4.95. Rifle kit £4.95. Modfied Shoot kit £4.95. Rlife kit £4.95.
Colour generator kit $£ 7 \cdot 50$. Joystick
controls $\mathrm{El} \cdot \mathrm{CO}$. 4. 43 khz pal crystals 90 p

ASSEMBLED TV GAMES

white model cased. game black and elota) E11.95. 6 game colour squash and istol attachment $£ 21$-95. Tank Battle pame \&39-95. Stunt Motor Cycle game £39.95. Stablized mains adaptor for all games
 $£ 1 \cdot \$ 9.9 \cdot 0-9 \mathrm{~V} 75 \mathrm{ma} 79 \mathrm{p}, 1 \mathrm{a} £ 1 \cdot 89,2 \mathrm{a} £ 2.50$.
$12-0-12 \mathrm{~V} 50 \mathrm{ma} 73 \mathrm{p}, 100 \mathrm{ma} 90 \mathrm{p}, 1 \mathrm{a} £ 2.49$.

JC12, JC20 AND JC40 AMPLIFIERS A range of integrated circult audlo amplilers supphed with free data and printed
circuits. JC12 6 watts fi-60. JC20 10 watts £2.95. JC40 20 watts $£ 4 \cdot 20$. Send sae tor ree data on our range of matching power and preamo kits

C radio thip $£ 1.05$. Extra parts and peb IC radio chip £1.05. Extra parts and peb
or radio $\& 3 \cdot 85$. Case £1. Send sae for ree data.
PRINTED CIRCUIT MATERIALS
PC Etching kits: Economy £1-70, Standard
£3.32. 50 sq Ins peb 40 p. 1 Ib FeC1 £1.05. Etch resist pens: Economy 45 Dalo 73 p . Etch resist pens: Economy 45p, Dalo 73p.
Small drill bit 20p. Etching dish 63p.
Laminate cutter 75 p .

SWANLEY ELECTRONICS

DEPT. PW, PO Box. 68, 32 Goldsel Rd., Swanley, Kent BRE $\mathbf{3 T C}$
Mail order only. Please add 30 p to the total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on items marked and 11% on others. Official credit

LOOK! Here's how you master electronics.

.... the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

Buildan oscilloscope.

As the first stage of your training, you actually buld your own Cathode ray oscillioscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,drawand understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, under. stand the very fundamentals of television. radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio. t.v etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting
coupon for a free colour brochure and full details of enrolment.

British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS
WB7 Block caps please

EHBOMASOUNTE electronics

56A Fortis Green Road Muswell Hill London N10 3HN Telephone 01-883 3705

\begin{tabular}{|c|}
\hline \multicolumn{12}{|c|}{ALL ITEMS BELOW 8 \(\%\) VAT TTL} \& \multicolumn{4}{|c|}{SUPER SAVERS} \& \multicolumn{5}{|l|}{LINEAR I.C.'s REGULATORS} \\
\hline \& 13 \& 13 \& . 115 \& \& \& \(25+\) \& \(100+\) \& \& \& \& rsio \& \& \[
\begin{gathered}
555 \mathrm{TIN} \\
4 \mathrm{for}
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { MER } \\
\& 94
\end{aligned}
\] \& \& UA709 (8 UA710 18 \& n) \({ }^{37}\) \& 723 varlabl 78L05AWC \& \& \\
\hline 7400
7401 \& 13
13 \& -13 \& 115
.115 \& 7493 \& 32 \& - 30 \& . 250 \& \& 1 \& \& 100+ \& \(\star\) \& 26 p \& \& \& UA74914 \& \& 78L12AW \& \& \\
\hline \& 15 \& 14 \& 12 \& \& \({ }_{62}\) \& \({ }_{5}^{68}\) \& 4 \& CD4000 \& 15 \& \& 135 \& \(\star\) \& 26 p \& ach \& \(\star\) \& UA741 (TO \& 99) 40 \& 78L15AW \& C 15 V \& \\
\hline 7403 \& 15 \& 14 \& 12 \& 77107 \& \({ }_{2}^{62}\) \& \({ }_{23}\) \& 195 \& CD4002 \& 15 \& .15 \& 135 \& * \& 74108 \& AMP \& * \& UA748(88 \& n) 373 \& \({ }^{7805 \mathrm{KC}}\) \& \& \({ }^{2.010}\) \\
\hline 7404 \& 16 \& 15 \& 13 \& 74109 \& 4 \& 85 \& 33 \& CD4008 \& 85 \& \({ }_{79}\) \& 875 \& \& 5 for \& \& \& \& 2.045 \& 78122C \& 12 V \& \({ }^{2.010}\) \\
\hline 7405 \& 18 \& 15 \& 13 \& 74121 \& 25 \& 23 \& 195 \& CD4007 \& 17 \& 16 \& 14 \& \(\star\) \& 20p \& ach \& * \& CA3123] \& \& \(7805 \cup\) \& 5 \& \\
\hline 7406 \& 26 \& 24 \& 21 \& 74122 \& 00 \& 0 \& 000 \& CD4008 \& 85 \& 79 \& 875 \& \& \& \& \& CM1820 \& 1.335 \& 7812 UC \& 12 V \& \\
\hline \({ }_{7} 7407\) \& \({ }_{17} 28\) \& - 24 \& 21 \& 74123 \& 56 \& 53 \& 45 \& CD4009 \& 50 \& 48 \& 40 \& LIGHT \& EMITTI \& NG \& IODES \& CA3130S \& 88 \& 7815 UC \& 15 V \& 1.16* \\
\hline 7409 \& 17 \& 18 \& 135 \& 74126 \& 47 \& \({ }_{4}\) \& 375 \& CD4011 \& 170
17 \& 16 \& 14 \& 125 (ine \& clip) \& \& \(100+\) \& CA3140S \& 88 \& 78184 C \& 18 V \& 1.18** \\
\hline 7410 \& 15 \& 14 \& 12 \& 74132 \& 67 \& 63 \& 54 \& CD4012 \& 17 \& 16 \& 14 \& Tll209 Red \& \& \& 120. \(10^{\circ}\) \& CA3080 \& 71 \& \({ }^{\text {cosen }}\) \& \& \\
\hline 7411 \& 23 \& 21 \& 18 \& 74141 \& 71 \& 67 \& 57 \& CD4013 \& 45 \& 42 \& 36 \& T1L212 Yell \& Ow (H.8) \& \& 255 \({ }^{25}{ }^{\text {a }}\) 16\% \& LM380 \& \({ }_{88}\) \& L036Ti \& SV \& \({ }^{1.399^{\circ}}\) \\
\hline 7413
7414 \& -68 \& \({ }^{23}\) \& 195 \& 74145 \& 70 \& 65 \& 555 \& CDi014 \& 15 \& 7 \& 675 \& TIL216 Red \& (H.8) \({ }^{(1.8)}\) \& \& 255** \({ }^{255}\) \& Lм 381 \& 1.56 \& \({ }_{\text {L037 }} \mathbf{0} 1\) \& 15 V \& \({ }^{1} 139^{\circ}\) \\
\hline 7416 \& \({ }_{23}\) \& \({ }_{21}\) \& - 18 \& 74147
74148 \& 1.47 \& 1.18 \& \(\begin{array}{r}1.185 \\ .975 \\ \hline\end{array}\) \& \& 85 \& 73 \& 575 \& \(2^{\prime \prime}\) (inc. \({ }^{\text {a }}\) \& (D) \({ }^{(1+8)}\) \& 25 \& 255* \(16^{\circ}\) \& LM382 \& 1.20 \& L129 \& 5 V \& .79* \\
\hline 7417 \& 32 \& 30 \& 255 \& 74150 \& 94 \& -38 \& 75 \& C04017 \& 75 \& 70 \& 60 \& TIL220Red \& \& \(14^{\circ}\) \& 12** \(10^{\circ}\) \& LM3900 \& 58 \& L130 \& 12V \& \\
\hline 74 \& 15 \& 14 \& 12 \& 74151 \& 82 \& 5 \& 495 \& C04018 \& 85 \& 79 \& 675 \& T1L224 Yell \& Ow (H.8) \& \(23^{\circ}\) \& 24* \(185^{\circ}\) \& LM301AN \& \& TBA625A \& \& \({ }_{1}{ }^{79}{ }^{\circ}{ }^{\circ}\) \\
\hline 7423 \& 23 \& 21 \& 18 \& 74153 \& 62 \& 58 \& 495 \& C04019 \& 52 \& 49 \& 4 \& T11228 Red \& (M, B) \& \& 24. \(185^{\circ}\) \& \({ }_{(8 \mathrm{P} \text { (1) }}\) \& 36 \& TBA6258 \& \& \({ }^{\text {1.1. }} 1.6{ }^{\circ}\) \\
\hline 7425
7426 \& 23 \& 21 \& 18 \& 74154 \& 1.12 \& 1.05 \& 9 \& CD 4020 \& 85 \& 79 \& 675 \& (H.B)-Hiph \& n (1.8) \& \& 24* \(185^{\circ}\) \& LM308N \& \& TBA625C \& 15 V \& \(1.15^{\circ}\) \\
\hline 7427 \& 38 \& 34 \& \({ }_{30}^{18}\) \& 74155
74156 \& \({ }_{62}\) \& \& 495 \& CD4021 \& 85 \& 79 \& 675 \& (H.B)-Hiph \& Brighte \& \& \& \& \& LM309k \& \& \\
\hline 7430 \& 15 \& 14 \& 12 \& 74157 \& 62 \& . 58 \& 495 \& \({ }^{\text {COP4023 }}\) \& 17 \& 19 \& 14 \& CD4534 \& 6.60 \& 3.15
3.24 \& 5.25
2.78 \& LM339N \& \({ }_{49}\) \& NEGATIV \& E \& \\
\hline 7432 \& 23 \& 21 \& 18 \& 74160 \& \(1 \cdot 12\) \& 1.05 \& 90 \& CD4024 \& 60 \& 56 \& 4 \& \& \& 3.24 \& 2.
1.78
1.20 \& MC1330P \& - 1.02 \& 790504 \& 5 V \& \(16^{\circ}\) \\
\hline 7437 \& 23 \& 21 \& 18 \& \({ }_{7} 716161\) \& 1.12 \& 1.05 \& 90 \& CD4025 \& 17 \& 16 \& 14 \& CD4553 \& 4.20 \& 3.95 \& 3.38 \& MC1351P \& \({ }^{89}\) \& \({ }^{7912 U C}\) \& -12V \& 1.14** \\
\hline 74438
744 \& 16 \& . 21 \& 18
13 \& \({ }_{74163} 7462\) \& (1.12 \& \begin{tabular}{l}
1.05 \\
1.05 \\
\hline
\end{tabular} \& 90 \& \({ }^{\text {CDP4026 }}\) \& 1.70 \& 1.63 \& 1.45 \& \& \& \& \& MC1495L \& 4.38 \& \(79180 C\) \& \& \\
\hline 7441 \& 65 \& \({ }^{61}\) \& 525 \& 74164 \& \(\cdot .94\) \& . \({ }^{\text {H }}\) \& 75 \& CD40 \& \({ }_{65} 8\) \& 4 \& \(\begin{array}{r}375 \\ \hline 25 \\ \hline\end{array}\) \& \& C.MO \& \& \& NE540L \& \& 7924 C \& -24V \& \\
\hline 744 \& 47 \& 4 \& 375 \& 74166 \& 94 \& \({ }^{5}\) \& . 75 \& CD4029 \& 1.09 \& 1.03 \& 93 \& \& + \& \(25+\) \& \& NE556 \& \& \& R NE \& \\
\hline 7445 \& 56 \& 52 \& 45 \& 74170 \& 1.70 \& 1. 5 \& 1.35 \& CD4030 \& . 52 \& -49 \& 4 \& CD4071 \& 20 \& \({ }_{18} 18\) \& -155 \& NE565 \& \(1.35{ }^{\circ}\) \& A 1.0 \& ROO \& LET \\
\hline 7746 \& \begin{tabular}{l}
56 \\
56 \\
\hline
\end{tabular} \& . 52 \& 45 \& 74173 \& 1.31 \& 1.23 \& 1.05 \& CD4032 \& 1.00 \& 95 \& 825 \& CO4077 \& 20 \& 18 \& -155 \& NE567 \& \(1.41^{\circ}\) \& Supplied \& FREE \& \\
\hline 7448 \& 56 \& 52 \& 45 \& 71175 \& 75 \& 70 \& 50 \& CD4035 \& 1.75
.95 \& \(\begin{array}{r}1.63 \\ \hline .93\end{array}\) \& \(\begin{array}{r}1.395 \\ \hline \\ \hline\end{array}\) \& CO4082 \& 20 \& 18 \& . 155 \& SN76003N \& - \(\begin{aligned} \& 2.18 \\ \& 1.42 \\ \& 1.48\end{aligned}\) \& orders \({ }^{\text {a }}\) \& \({ }^{\text {a any }}\) \& 促 \\
\hline 7450 \& 15 \& 14 \& 12 \& 71176 \& 94 \& 88 \& 75 \& \(\mathrm{CDO}_{4} \mathrm{CO}\) \& 85 \& 79 \& 675 \& CD4085 \& \({ }_{55}\) \& 79 \& . 675 \& SN76023N \& 1.42 \& worthes \& \({ }^{-0}\) or \& cils. \\
\hline 7453 \& . 15 \& 14 \& 12 \& 71180 \& 94 \& \({ }_{8}^{88}\) \& .75 \& \& 85
75 \& \({ }_{70}\) \& 525 \& \({ }^{\text {COL }}\) \& 85 \& 79 \& \({ }^{675}\) \& SN78033N \& 2.18 \& 01 n con \& nection \& \\
\hline 7454 \& 15 \& 14 \& 12 \& 7181 \& 2.05 \& 1.93 \& 1.65 \& CD4046 \& 99 \& 93 \& 795 \& CD4099 \& 1.68 \& 1.38 \& 1.35 \& SN76532N \& 58 \& Dif sold al \& oine. \& \\
\hline 7460
7470 \& 15 \& 14 \& 12 \& 74182 \& . 75 \& . 70 \& 60 \& CD0049 \& 40 \& 37 \& 315 \& CD4502 \& . 85 \& . 79 \& . 75 \& SN76665 \({ }^{\text {N }}\) \& 89 \& \& \& \\
\hline 7472 \& \(2{ }^{25}\) \& 19 \& 165 \& \({ }_{74185}\) \& 1.68 \& 1.58 \& 1.35
1.20 \& CDi450 \& 40 \& 37 \& 315 \& CD4508 \& \(2 \cdot 2\) \& \(2 \cdot 14\) \& 1.82 \& TBAI20S \& 89 \& \& \& \\
\hline 7473 \& 26 \& 245 \& 21 \& 24190 \& 1.12 \& 1.05 \& \({ }^{2} 9\) \& COLest \& . 75 \& 70 \& \({ }_{80}\) \& CD4510 \& \({ }_{88}\) \& \({ }_{83}{ }^{3}\) \& . 705 \& T8AB00 \& 89 \& 1.c. 5 \& CK \& T \\
\hline 7474 \& 28 \& 245 \& 21 \& 74191 \& \(1 \cdot 12\) \& 1.05 \& 90 \& CD4053 \& 75 \& 70 \& \& \& \& \& \& T8AB20 \& \& \& \& \\
\hline 745 \& 11 \& 355 \& 33 \& 74192 \& 1.12 \& 1.05 \& 90 \& CD4054 \& \(1 \cdot 20\) \& 1.15 \& 96 \& CD4515 \& 2.50 \& 2.38 \& 2.02 \& TCA940 \& 1.56 \& 8 pin \& \(10^{\circ}\) \& - \\
\hline 7476 \& 28 \& 28 \& 225 \& 74193 \& \(1 \cdot 12\) \& 1.05 \& 90 \& CO4056 \& 1.35 \& 1.28 \& \(1 \cdot 18\) \& CD4516 \& 99 \& 93 \& . 785 \& TDA2020 \& \(3 \cdot 11\) \& 14 pln \& \(12^{*}\) \& 11* \\
\hline 7485 \& 1.09

2 \& 1.02 \& 87 \& 74194 \& 1.12 \& 1.05 \& ${ }_{75} 9$ \& COP4059 \& 4.80 \& 4.60 \& 4.25 \& COA517 \& 3. 80 \& 3.65 \& 3.48 \& ZN414 \& 98 \& 16 pln \& 13° \& 12°

\hline 7489 \& 2.41 \& 2.28 \& 1.94 \& 74196 \& 1.98 \& 1.03 \& 135 \& CO4060 \& - 45 \& +. 42 \& \& C04518 \& 2.35 \& - ${ }^{182}$ \& - 1.705 \& ZNA17E \& 1.60. \& ${ }^{24} 8 \mathrm{pin}$ \& ${ }_{35}{ }^{\text {3 }}$ \&

\hline 7490 \& 32 \& 30 \& 255 \& 74197 \& 1.10 \& 1.03 \& 885 \& CD40 \& 20 \& 18 \& 155 \& CD4522 \& 1.75 \& 1.63 \& 1.395 \& ZN424E \& 1.20 \& 40 pin \& 50^{*} \& 45°

\hline 7492 \& ${ }_{43}$ \& ${ }_{40}$ \& 345 \& ${ }_{74199}$ \& ${ }_{168}^{1.68}$ \& 1.58 \& 1.35
1.35 \& CD4069
CD4070 \& 20 \& 18 \& . 155 \& (${ }^{\text {CO4 }} \mathbf{}$ \& 1.75 \& ${ }_{1}^{163}$ \& 1.393 \& ZN425E \& 3.388 \& SOLDERCO \& \&

\hline
\end{tabular}

PIRASE ADD VAT

3

Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES - DALESFORD © DECCA © EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON © JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE M MONITOR AUDIO • PEERLESS Q RADFORD - RAM © RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO

(Dept. P.W.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

ALARM WATCHES
Slx digit display of hours, minutes a seconds. or hours, minutes a date, day of week and Perpetual calendar, 24 hour alarm with on/off Indleator. 15 months battery lite. S/S cases face (£64-95) £49.95. 25 CS .18 B Square (£74-95) £59-95

Chronograph with up to 25 functions. 6 diglt display of hours, minutes, seconds, (am/pm Lap times and ist \& 2nd Place times to $1 / 100$ second. Water resistant (1001). F-900. Plastic case ($£ 24 \cdot 95$) $£ 18 \cdot 95$. $529 \mathrm{~S}-14 \mathrm{~B}$. Metal encased
veralon of $\mathrm{F}-100$ S/S bracelet ($£ 44 \cdot 95$) $£ 34.95$.

AQ-1000. CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH
Hours, minutes, seconds, am/pm. 24 hour Alarm ith sign. Stopwateh: Net times, Lap thmes, ist A 2nd Place $1 / m e s$ from $1 / 10 \mathrm{sec}$. to 10 hrs with \% V ' year batteries. ± 20 seconds/month
$1 \times 21 \times 41^{\prime \prime}$. $(£ 24.95) ~ £ 19.95$
sEIKO Calculator watch(165) 5135 . CITIZEN Mult Alarm ($£ 135$) 5108.
Send 25p for our Illustrated catalogue. Accurist, Caslo, Citizen etc.
Prices include VAT P\&P. Send cheque, P.O. or phone your credit card no. to

TMOIPUS

15-240 Watts!

HY5
Preamplifier
The HY5 is a mono hybrid amplifler ideally sulted for all applications. All common inpu functions (mas Cartidge. tuner, etc) are catered for Internally. The deslred function Is achleved either by a multi-way switch or direct connectlon to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatlble with all I.L.P. power ampliflers and power supplies. To ease construction and mounting a P.C. connector is supplled with each pre-ampliffer.
FEATURES: Complete pre-amplifier in single pack-Muiti-function equalization-Low nolse -Low distortion-High overload-Two slmply combined for stereo.
APPLICATIONS: HI-Fi-MIxers-Disco-Guitar and Organ-Publlc address
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV : Microphone 10 mV Auxllary 3 -100mV: input impedance $4.7 \mathrm{k} \Omega$ at 1 kHz .
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10kHz: Bass \pm at 100 Hz .
dB
OVERLOAD. 38dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$
Price $55 \cdot \mathbf{2 2}+65$ p VAT PAP tree.

The HY30 Is an exciting New kit trom I.L.P. It features a virtually indestructible I.C. with short clrcult and thermal protection. The kit consists of I.C., heatsink. P.C. board. 4 resistors, capacitors, mounting kit, together with easy to follow construction and operating instructions technology avail FEATURES : Complete Kit-Low Dlstortion-Short, Oden and Thermal Protection-Easy to Bulld.
APPLICATIONS: Updating audio equipment-Guitar practice ampliffer-Test amplifferaudio oscliliator.
SPECIFICATIONS
OUTPUT POWER 15W R.M.S. Into 8Ω : DISTORTION 0.1% at 1.5 W
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price $55-22+65$ p VAT PAP tree.
The HY50 leads I.L.P.'s total integratlon approach to power amplifier design. The amplifier past three years the ampllfier has been reflned to the extent that it must be one of the mos rellable and robust High Fldelity modules In the Worid.
FEATURES: Low Oistortion-Integral Heatsink-Only flve connections -7 amp output tran-
sistors-NO external components sistors-NO external components
APPLICATIONS: Medlum Power Hi-FI systems-Low power disco-Gullar amplifler SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS Into 8 R LOAD IMPEDANCE 4-16R DISTORTION 0.04% at 25 W SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{H}_{z}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price £6 $62+85$ p VAT P\&P free
The HY120 Is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements including load tine and thermal protection this ampllfier sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink—Load line protection-Thermal protec. tion-Flve connectlons-No external components
APPLICATIONS: HI-Fi-HIgh qually disco-Public address-Monitor amplifier-Guitarand organ
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTHT POWER 6OW RMS Into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W SIGNAL/NOISE RATIO 900 B FREQUENCY RESPONSE $10 \mathrm{H}_{2}-45 \mathrm{k} \mathrm{Hz}_{\mathbf{z}}-3 \mathrm{~dB}$ SUPPLY VOLTAGE ${ }^{ \pm}$SIZE 1145085 mm
Price £15.84 + £1 27 VAT P\&P tree.
The HY200 now improved to give an output of 120 Watts has been destgned to stand the mos rugged conditions such as disco or group whlie stlll retalning true HI -Fi performance.
FEA TURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink
-No external components
APPLICATIONS: Hi-Fi-Disco-Monltor-Power slave-Industrial-Public Address
SPECIFICATIONS
OUTPUTPOWER 12OW RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0 05\% at toow
at 1 kHz .
SIGNAL/NOISE RATIO $96 d$ B FREQUENCY RESPONSE $10 \mathrm{~Hz}_{2}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE士 ${ }^{\text {S }}$ IZE 1145085 mm
SIZE 1145085 mm
Price $£ 23.32+$
Price $£ \mathbf{2 3 \cdot 3 2 + £ 1 . 8 7} \mathbf{V A T}$ P\&P tree.
The HY400 Is I.L.P.'s "Big Daddy" of the range producing 240 W inlo 431 It has been designed for hlgh power disco address applications. If the ampllfier is to be used at continuous high power levels a cooling tan is recommended. The ampllfier includes all the qualities of the rest module.
FEATURES: Thermat shutdown-Very low dlstortion-Load Ife protection-No externa components.
APPLICATIONS: Public address-Disco-Power slave-Industrial
SPECIFICATIONS \quad OUTPUT POWER 240W RMS Into 4Ω LOAD IMPEDANCE 4-16』 DISTORTION 01% at 240 W at 1kHz NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY soomV SIZE 11410085 mm Price £ 3217 + $\mathbf{f 2} \mathbf{2} 57$ VAT PAP free.
PSU36 suitable for two HY30's $£ 5-22$ plus 65 p VAT. PIP tree.
PSU50 sulable for two HY50's $£ 682$ plus 850 VAT. P/P free.
PSU90 suitable for one HY200 £ 12.65 plus $£ 1$-01 VAT, P/P free.
PSU180 £23.10 $+£ 1.85$ VAT.
B1 $£ 045+£ 0.06 \mathrm{VAT}$.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON, CANTERBURY, KENT, CT4 7AD.
> I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders :] Money Order []
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

GREENWVELD

443 Millbrook Road Southampton SD1 DHX Tel:[0703] 772501

All prices quoted include VAT. Add 25p
UK/BFPO postage. Most orders des patched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE \&1. Officlal orders accepted

BUY A COMPLETE RANGE OF
 COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No deloys in waizing for parts to come or shops to open!
* SAVE ON MONEY-Bulk buying means lowest prices-just com pore with others!
* HAVE THE RIGHT PART-No guesswork or substitution necessory!
ALL PACKS CONTAIN FULL SPEC, SENT BY RETURN OF POST. VAT INCLUSIVE PRICES.
K001 50 V ceramic plate capacitors,
$5 \% .10$ of each value 22 pF to 1000 pF . 5%. 10 of each value 22 pF to 1000 pF . $K 002$ Extended range, 22pF to $0.1 \mu \mathrm{~F}$. 330 values $£ 4.90$
3003 Polyester capacitors, 10 each of these values: $0.01,0.015,0.022,0.033$, $\begin{array}{llll}0.047, & 0.068, & 0.1, & 0.15, \\ 0.42, & 0.33,\end{array}$ $0.47 \mu \mathrm{~F} .110$ attogether for $\mathrm{E4} .75$
$\mathrm{KOO4}$ Mylar K004 Mylar capacitors, min 100 V type.
10 each all values from 1000 pF 10 $10,000 \mathrm{pF}$. Total 130 for $\sum 3.75$ K005 Polystyrene capacitors, 10 each value from 10pF to $10,000 \mathrm{DF}$. E12 series
$5 \% 160 \mathrm{~V}$. Total 370 for $£ 12-30$ $5 \% 160 \mathrm{~V}$. Total 370 for $\mathrm{E} 12-30$ koes of the following: capacitors. $0.1,0 \cdot 15 \quad 0.20$ $0.33,0.47,0.68,1,2 \cdot 2,3 \cdot 3,4 \cdot 7,6 \cdot 8$, all $\begin{array}{llllll}35 \mathrm{~V}: & 10 / 25 & 15 / 18 & 22 / 16 & 33 / 10 & 47 / 6 \\ \text { Total } & 100 / 3 .\end{array}$ Total 170 tants for $£ 14 \cdot 20$
K007 Electrolytte capacitors 25 V working, small physical size. 10 each
of these popular values: $1,2.2,4.7$ $10,22,47,100 \mu \mathrm{~F}$. Total 70 for $£ 3 \cdot 50$ Koos Extended range, as above, also Including 220,470 and $1000 \mu \mathrm{~F}$. Total
100 for $£ 5.90$ 100 for 25.90
K021 MIniature carbon fim 5% reslstors, 10R to 1M, E12 series. Total 610 resistors, ES.00
K022 Extended range, total 850 resistors from 1R to 10M £8 $300 \mathrm{~mW} 5 \%$ BZYEs. K04i Zener diodes, $400 \mathrm{~mW} 5 \% \mathrm{BZY88}$,
etc. 10 of each value from 27 V to 36 V . etc.
E24 erles. Total 280 for $£ 15 \cdot 30$ ${ }_{\text {K042 }}$ As above but 5 of each value C. 70

EDGE CONNECTORS

 Speclal purchase of these o. $1^{\prime \prime}$ pitchdouble-sided gold-plated connectors ensbles us to offer them at less than one-third their original list price! 18 way 410 . 21 way 470 : 32 way 720 . 40 way 90 p .

SOLAR CELLS
As used on space labs. oft., these tiny cells glve 50uA (a) 0.5V in sunlight. jects, etc. Can be banked together for greater power output. Size $19 \times 6.5 \mathrm{~mm}$. 3 for £1: 10 for £3: 25 for £7: 100 for £z5. POWER PACK Wood grained metal case $90 \times 80 \times$
75 mm containlng mains transtormer
giving ov 200 mA 2 co-ax. sockets, gifing oV wi $200 \mathrm{~mA}, 2$ co-ax. sockets, PC board with 1
etc. Only 750 .

S-DECS \& T-DECS

S-DEC Breadboard
T-DEC Breadboard

SIRENS

Work of 4 x HPT batterles, emit very loud noise. Overall size $110 \times 75 \times$ 60 mm . Use as Burglar Alarm in car,
house, workshop, etc. ONLY E1 95 ,

PC ETCHING KIT MK III Now contalns 200 sa. Ins. copper clad board, 116 . Ferric Chioride. DALO etchature drill bits, etching dish and instructions. ©3.9)
SEND 45 P FOR OUR $1977 / 8$ CATALOGUE. CONTAINS 50 D DISCOUNT
VOUCHERS. AMENDMENT SHEET VOUCHERS. AMENDMENT SHEET
NO. 2 GIVES DETAILS OF OVER 100 No. 2 GIVES DETAILS OF OVER 100
ITEMS SLASHED $53 \%!11$ (Send SAE If you've alread
(Send SAE If you've already got cat.) Our latest Bargain Sheet is FREE, send
SAE for your copy. SAE for yo
DARLINGTON COMP PAIR BD695A and BD696A-45V BA 70W plastic powerll gain 750 © 4A. PNP.
ifPN palr 81.50 .
from schools, etc. (Mintmum Invoice charge £5). Export/Wholesale enquiries for bona-fide traders. Surplus components always wanted.

Plasic VEROCASES
Plastic top and bottom ally panels front and back
1237

1237	$154 \times 85 \times 40$	22.53
1238	$154 \times 85 \times 60$	E2.79
1239	$154 \times 85 \times 80$	2.3.32
3007	$180 \times 120 \times 40$	£3.30
3008	$180 \times 120 \times 65$	£3.50
3009	$180 \times 120 \times 90$	c.3-74
1410	$205 \times 140 \times 40$	E3.51
1411	$205 \times 140 \times 75$	E.4.05
1412	$205 \times 140 \times 110$	¢5.12

VERO PLASTIC BOXES
Professional quality two tone grey polystyrene with threaded inserts for mount$\begin{array}{lll}\operatorname{lng}_{2518} & 120 \times 65 \times 40 & \mathbf{E 2} \cdot 17 \\ 2520 & 150 \times 10 \times 50\end{array}$ $\begin{array}{lll}2520 & 150 \times 80 \times 50 & £ 2.45 \\ 2522 & 188 \times 110 \times 60 & \varepsilon 3.23\end{array}$ SLOPING FRONT BOXES $\begin{array}{lll}1798 & 171 \times 121 \times 75 / 37.5 & \text { £4.19 } \\ 2528 & 220 \times 174 \times 100 / 53 & \text { £ } 8.60\end{array}$ Polting box. $71 \times 49 \times 24 \mathrm{~mm}$ black or Hand controller box $94 \times 61 \times 23 \mathrm{~mm}$ White bis
We keep a very large range of VERO products, including their recently II boxes. SAE for their catalogue. VEROBOARD
Our packs of vero offcuts are one of our biggest sellers-and no wonder, they are 8 pleces to make up a total area of 100 sa. ins. All packs are the same price, $£ 1 \cdot 30$ each and are avallable as ollows:
Pack A all $0.1^{\prime \prime}$ pitch
Pack B all $0.15^{\prime \prime}$ pitch
Pack C mixed 0.1\&0.15
Pack D all $0 \cdot 1^{\prime \prime}$ plain
Also avaliable by weight ilb £3. 95 10lbs E32. 50
Regular size vero
$17 \times 31 \times 0.1^{\prime \prime} £ 2 \cdot 00,10$ strips $£ 15$
$17 \times 33^{\prime} \times 0.15^{\prime \prime} £ 1 \cdot 76: 0.1^{\prime \prime} \mathrm{plain} \mathrm{E}$, 7×3 : $\times 0.15^{\prime \prime} \mathrm{E1} \cdot 76 ; 0.1^{\prime \prime}$ plain £1-63 DIP Breadboard stze 6, $15 \times 4.5^{\prime \prime}$, can accommodate 20×14 pin'IC $£ 2.35^{\prime}$ VO Board, size $148 \times 75 \mathrm{~mm} 0.1^{\prime \prime}$ piteh. Copper strips in rows of 4 to factitate construction with IC's. Layout shee
VERO PINS ANO TOOL Spot face cutter for 0.1 or 0.15 plteh 75p 0.1" pins single sided $300 / 100$ $0.1^{\prime \prime}$ pins double sided 35 o/100 $0 \cdot 15^{\prime \prime}$ pins double sheets $35 \rho / 100$

LOW COST

PLASTIC BOXES
Made of high impact ABS. The lids are rtained by \& scrows into brass inserts. Irterior of box has PCB guide slots
(except v̌19) (excepi
$V 210$
$V 213$
$80 \times 62 \times 40 \mathrm{~mm}$ black 58 p
72 p $\begin{array}{ll}V 213 & 100 \times 75 \times 40 \mathrm{~mm} \text { black } \\ \text { V216 } & 120 \times 100 \times 45 \mathrm{~mm} \text { black }\end{array}$ 720
80 $\begin{array}{ll}\mathrm{V} 216 & 120 \times 100 \times 45 \mathrm{~mm} \text { black } \\ \mathrm{V} 219 & 120 \times 100 \times 45 \mathrm{~mm} \text { white }\end{array}$ 56

CALCULATOR CHIP

Type Csoo by GI. 4 function + constant 8 dight. Multiplexed output for simple keyboard Interfacing 24 pin DIL. With comprehensive data + socket \&s 50 . RESISTOR OFFER. Miniature iW \% carbon film. but the leads, although full length have been preformed for vertical mountina. Now in the following
values only: 68 R, 150 R , $330 \mathrm{R}, 390 \mathrm{R}$, $470 \mathrm{R} .1 \mathrm{k}, 1 \mathrm{k} 2,2 \mathrm{k} 7,3 \mathrm{~kg}, 5 \mathrm{k} 6,15 \mathrm{k}, 22 \mathrm{k}, 27 \mathrm{k}$, $33 \mathrm{k}, 68 \mathrm{k} 100 \mathrm{k}, 470 \mathrm{k}$. 820 k , $1 \mathrm{M}-19$ values altogether. 100 off each value, total 1300 resistors for £. Or. Or 1000 of each value. out at 0.2368 p per resistor!!)

SPECIAL
 TRANSISTOR
 OFFERS

Plastic versions of these popular types. BC108-9. BCY70-71-72 at very low prices. PN108 (BC108) 18 for E 1 PN70 (BCY70) 14 for $\varepsilon 1$
15 for $\varepsilon 1$ PN12 (BCY72) 15 for $£ 1$
16 for $£ 1$ PN71 (BCY71) 16 for E 1
14 for E 1 Complementary Power Pair. BD525 \& BD526. Motorola plastic power, 60 V 2 A devices, normally 940 pair. Special cffer price 50p pair
Small signal PNP transistors, like N3702 (Marked MSPS1218) 20 for $£ 1$. TANT BEAD CAPS-4 $7 \mu \mathrm{~F} 50 \mathrm{~V}$, normally 14 p each. Our special offer price
12 for E 1 .

The Antenna that Hertz missed out on!

We suppose it was quite an achievement to predict radio-wave transmission and then devise a shockexcited VHF dipole in those far off days, but what a time the Grand Old Man could have had on the range -5-30 MHz. if only he'd had a Joystick VFA (Variable Frequency Antenna) to play with. And what's more, whilst his original experiment was transmission across a room, with the Joystick many delighted users have found an indoor installation (it's only 7' 6" long) has got them better $D \times$ (receiving and transmitting) than experienced on previous antennae.

In use by Amateur Transmitting and SWL Stations world-wide and in government communication.

SYSTEM "A"

£36•00
250 w. p.e.p. OR for the SWL.

SYSTEM "J"

£42.60
$500 \mathrm{w} . \mathrm{p} . \mathrm{e} . \mathrm{p}$. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
All Packages feature the World Record Joystick Aerial (System 'A'), with 8ft, feeder, all necessary cables, matching communication headphones Deliv, Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS
PACKAGE No. I
As above with R. 300 RX. SAVE 617.28:
£210.55
PACKAGE No. 2
Is offered with the FRG7 RX. SAVE E12.21!
PACKAGE No. 3
Here is a lower-price, high-quality with all the Partridge extras SAYE $\mathrm{C} \mid 2 \cdot 21$!

RECEIVERS ONLY, inclusive deliverr, etc.
$R .300 £ 184.50 \quad$ FRG7 $£ 162.00 \quad$ SR $\times 30 £ 146.25$
All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

Just telephone your card number Phone 0843 62535(ext.5)
(or 62839 after
office hours)

or write for details, send 9p stamp

G3BED

5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

MAINS TRANSFORMERS

Cassett. Mechanism. Jap. made to rigid speciflcation. These will fit many music centres and cassette players. tape position counter at the rear. The slx levers for "play"' "Tast forward", "rewind"' "slop", record and elect are all
at the tront, as is the auto mechanism to stop the motor when at the tront, as is the auto mechanism to stop the motor when tape end is reached. These are new and unused and have
record playback and erase heads. Limited quantly. Price record
$\mathrm{E} 15-50$.
Shortened 3kw Tangentlal Heater. This is in fact Motor runs a bit faster to compensate for the increased heating and the fan impellers are metal to save any possibility of extra heat distorting them. The heater element is tapped $s 0$ that 1 , 2 or $3 \mathrm{kw's}$ of heating can be used or of
course this will blow cold. Price £s.95, post $£ 1 \cdot 50 \mathrm{p}+12 \mathrm{p}$. Omron 410 Relay. Built like a contactor, this has a clear all brought out of the front so that connection may be made without removing the cover also the relay may be fitted into position and the wires brought to It afterwards, generously rated at 10 amps the contacts are really more like 15 amps,
they are changeover and there are 4 sets of them. A really robust relay which looks as though it will give a litetime of robust relay which looks as though it will give
service. Size $31^{\prime \prime} \times 3^{\circ} \times 31^{\prime \prime}$ high. Price $£ 4.50$.
: Track Cartridge Players. In car units with amplifiers but this amplifler may need attention, mechanism guaranteed
$0 . K$. $\$ \cdot 00+19 \mathrm{p}$. Low rpm Crouxet Meters. Two more types have just come in; these are 2 rpm and 15 rpm , both 115 v motors but as these consume only two to three watts it is a simple matter to
divide the malns voltage using a mains working condenser divide the mains voltage using a mains working condenser Price $£ 2 \cdot 25, £ 2 \cdot 00+16 \mathrm{p}$ each.
12 volt Minlature Relay. Gold plated contacts with plastic

MULLARD UNILEX A maing operated $4+4$ stereo
system. Rated one of the finest performers in the stereo fiela for almost anyone in easy-toassemble modular form and
 complete with a pair of Plessey speakers this should sell at about $£ 30$-but due to a special bulk buy and as an incentive for you to buy this month we
offer the system complete at only $\varepsilon 15$ including VAT offer the
postage.
SPIT MOTOR WITH CARTER G/BOX

Probably one of the best spit made. Originally Intended to be used Tor this can be put to olenty of other uses, for stone polishing in fact there are no ends

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives
really amazing results. You will receive an amazing
stations over the 19, 25, 29, 31 metre
bands. Kit contains bands. Kit contains earphone
postage.

RADIO STETHOSCOPE

Easiest way to fault find, traces signal ou've found the fault. Use It on Radio TV, amplifier, anything. Kit comprises transistors and parts including probe
tube, twin statho-set. $\mathbf{e} .95$.

BREAKDOWN PARCEL

Four unused, made for computer units and these components unlike those from most computer panels. have wire ends of usable length. The transisors for instance have leads over $1^{\prime \prime}$
the diodes have approx.
List of the major components is as follows:-17 assorted transistors- 38 assorted diodes- 60 assorited resistors
and condensers-4 gold plated plugs in units which can serve as multipin plugs or as hook up boards for experimental or quickly changed clrcuits (note we can supply the socket boards which were made to recelve these units). The price
of this four unit parcel is $£ 1$ including VAT and post (considerably less than value of the transistors or diodes alone). siderably ess than value of the transisto
DON'T MISS THIS SPLENDID OFFER.

INFRA RED BINOCULARS

Made for military purposes during and immediately ater the last war to see In the dark, The binoculars have to be fed from a high voltage source (5 KV approx.) and providing the objects are
In the rays of an infra red beam then the binoculars will enable these objects to be seen. Each binocular eye tube contains a complete optical lens system as well as the Infra red cell,
technical data on which is available. che binoculars are unused belleved to be in good order. Sold without guarantee.

SOUND TO LIGHT UNIT

 Add colour or white light to your amplifierWill operate 1, 2 or 3 lamps (maximum 450 W). Unit in box all ready to work. £9.95

MINI-MULTI TESTER
 Amazing, deluxe pocket size prejewelled bearings-1000 opv-mirrored scale DC volts 10, 50, 250, 1000
 DC amps
Continulty and resistance $0-100 \mathrm{~mA}$
$0-150 \mathrm{~K}$ Continulty and resistance
ohms.
Compiete with insulated probes. Complete with insulated probers,

FREE Amps ranges kit enable you to read AC current from -10 amps, directly on the $0-10$ scale. It's tree it you purchase vickly, but if you already ow

Terms: Prices inciude Post \& VAT. But orders under $£ 6 \cdot 00$ please add 50p to offset packing. Bulk enquiries-Please Phone for Generous Discounts 6881833.

J. BULL (EEECTRICAL) LTD
 (Dept. P. W.), 103 TAMWORTH RD. CROYDON CR8 1SG

IT'S FREE!

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived-often bargains sell out before our advertisement can appear-It's an interesting list and it's free-just send S.A.E. Below are a few of the Bargains still available from previous lists.
Main: Transformer, Small 2 secondaries, 115 volts at 10 mA 2.70. ${ }^{2}$, a useful transiormer for many instruments 25 Watt Audio Systems in Cabinets. Comprising $8^{\prime \prime}$ woole and 3^{\sim} tweeter with crossover and terminal connectlon panel mounted in simulated teak finlsh cabinet with labric front. selling at twice the price. Cabinet size approx. $20^{\prime \prime}$ hlgh $101^{\prime \prime}$ wide and $81^{\prime \prime}$ deep, heavy cabinet made of thick blockboard. Price £25-00 the pair, well worth your coming in to
collect them but it you cannot collect them, then still worth collect them but it you cannot colle
adding $£ 5.00$ the pair for carriage.

adding $£ 5.00$ the pair for carriage. Another $\mathbf{S p e c i a l}$ Item, for caller

Another Special ltem, for callera this month is a pen re probably cost originally several hundreds of pounds. We are having a reverse auction on this. The staring price is
a 50 but the price will come down $£ 5: 00$ per week untll it is $\mathbf{\Sigma 5 0}$ but the price will come down $\mathbf{5 5} \cdot \mathbf{0 0}$ per week untll it is Opto Electronics. Two special bargains in this field, the Tilt Swltch 15 amp . Meant to switch off heater should be knocked over; this pendulum operated switch is on only when it is in the upright posifion. It could be incorporated in burglar alarm, car alarms etc. Contacts look qulte able to
cope with 15 amp loads at malns voltage, Price $50 \mathrm{p}+4 \mathrm{p}$. cope with 15 amp loads at malns voltage, Price 50 p + 4 p.
Neon Indicator Lamp. Two teatures about this particula one are-it has screw down terminal connectors for wiring and is fixed by a single threaded screw. The lens is clea so you could colour to suit your needs. Prlce 35p,
Indicator Lamp Holders. For low voltage lamps (Lliput)
ype, we have these in five different colours-red, yellow, type, we have these in five diff.
blue, green and white. Price 35 p .
Twin Padded Flex, 5 amp ideal for some electric frons and appliances which require very flexible lead, 10 metre lengths. Price 11 . 50 .
Heating Pads. These measure $11^{\prime \prime}$ Iong $\times 8 \frac{1}{2}^{\prime \prime}$ wlde and are fial. Look rather like pieces of thick blotting oaper. Wire ended 250 watt or jolned in series they would be approxi-
mately 60 watt each. Dozens of uses. Price sop or two for mately
R1.50.
Rod
Rod Thermostat. For high temperatures up to $550^{\circ} \mathrm{F}$. This is
Radjustable either at the head or remotely by a length of flexible Interval Timer. As used in schools and similar establish ments to trigger off the bell which sounds the end of lessons, lunch breaks etc. Thls is another one off item we teel for callers only. It is in polish hardwood case, glass fronted comprises a 24 hour switch, a large brass disc and othe
smaller discs on which the time is set out in relatively small intervals and a pair of contacts to switch a bell or something similar at precise times during the week. Price £55.00. Two More Mullard Modules. Pre amp module ref. 1181/1183 stereo or mono. It is on a printed circult board with wir connectio
Mullard IF Module Type 1181. In a metal case $21^{\prime \prime}$ long \times $1 \frac{1}{\prime \prime}^{\prime \prime}$ wide x l" $^{\prime \prime}$ thick. Can be mounted on a printed circuit board connection to wire lead outs. Price $£ 1 \cdot 25$.
Sllicon Diodes. Two special bargains this month. 400 volt $1 \mathrm{amp}, 10$ for $£ 1 \cdot 25.50$ volt $1 \mathrm{amp}, 20$ for $£ 1 \cdot \mathbf{2 5}$. Large quan
Flex Cable Bargains. Core size 5 mm 2 white pve outer, pve
covered cores. Coloured coded with the usual blue, brown and oreen/yellow, Price 100 metre coill for $£ 10 \cdot 25$.
Electrical Instaliation Work. We have good slocks of al the mains items requlred for ring mains and light installations for example we have 2.5 mm twin and earth pve covered ai $\mathrm{\Sigma} 2 \cdot 50+\mathrm{\Sigma 1.00}$. Carriage $\mathrm{E2.00}+16 \mathrm{p}$. We hope to make a
complete list of the installation items we have In time for our next newsletter but if there is anything you are wanting by all means give us a ring
Plastic Case Sections. Small very tough plastic cases at
 288's or an A and a 8 to get different depths. A.e. 11", $11^{\prime \prime}$ or $2^{\prime \prime}$-note these are external dimensions, the wall
Computor Capacitors. Made by famous American com panies for working under very exacting conditiona. These are large condensers In Alicans for upright mounting. Id eal it you, 15 volts surge, 10 for Et .
Alarm Bells. Holiday time can often be a heyday for house breakers; why not int a really loud alarm as good a method as any is to use trigger mats under carpets, at windows and doorways. Join them all in serjes through a latching circuit
sound off a really loud bell or hooter, prices of these various parts are as follows: industrial type with $6^{\prime \prime}$ gong, 24v, DC
Loud Ringing Bell, operated, price £7.50.
Switch Trigger Mat, size $24^{\prime \prime} \times 18^{\prime \prime}$ for going under carpet etc. Price £2. 50 .
Secret Swith latching contacts. Price 95 p .
Secret Switch with key, Price 85p.
24vi amp DC Power Supply Price $£ 5 \cdot 50$
Circuit Diagram
Circult Olagram. No charge. Just request.
Mouth Operated Switch. Probably not made with this use in mind, more likely made for washing machines to control water eveterc. 1 pole changeover switches at different levels of pressure but all within a normal persons blowing capaclityblow gently into it and No. 1 switch operates, blow a Ittle
stronger and No. 2 operates, blow harder still and No. 3 stronger and No. 2 operates,
operates. The
switch is fluid substance could operate it. Undoubtedly a switch with very many applications. Disc type construction, this is approximately 3 " $^{\prime \prime}$ dia. $\times 11^{\prime \prime}$ thick-the atr entry is a pipe approximately $3 / 16^{\prime \prime}$ diameter-electrical contacts we estimate a 10 amp c/o a 230 volt connection by push on
PS.4. Price $\mathrm{E} \mid-95$. Large quantity available.
Powerful Induction Motor. $1 \$^{\prime \prime}$ stack, double ended, would drive a small lathe, drill or grinder or would power a blowing or extracting tan. Fit suitable pulleys and it would drive a pebble polisher or similiar, being double ended it will drive In either direction. Can also be fixed from either end, fixing extend $11^{\prime \prime}$ beyond each end plate. A motor like this would cost at least f3 from makes but we have a large quantity to offer at $£ 2 \cdot 50$. Order Ref. MM.to.
Can any reader helpl We urgently need some reasonably priced decoders to go with the F.M. tuner we have. It you can help us to find a supply we will be very much ob
try to do you a good turn some day-thank you.

Jones Supplies

Prices. Please add 8\% VAT. P. \& P. 10p, except where shown Retail \& Mail order.

Open 7.30p.m. M. Th. Fri. Sat.

588, Ashton Rd., Hathershaw, Oldham, Lancs. 061.652-9879

Mainline
 a tremendous range from Mainline, a division of one of the largest industrial electronic component distribution groups in the business.
 The enormous resources, buying power and organisation guarantees fast reliable service and top quality components at the right price.

Diodes
Transistors
Integrated circuits
Resistors
Capacitors
Switches
Relays
Diecast Boxes
Potentiometers

Fill in coupon below for the Mainline Components Catalogue.

Mainline

380 Bath Road, Slough, Berks. Tel: 06286 (Burnham) 63616

Manufacturers and trade enquiries invited for larger quantities.

Learn all about MICROPROCESSORS with the MOTOROLA Microprocessor Evaluation Design Kit M6800.
featuring:-

- 24 Key Keyboard
- 7 Segment Display
- Cassette Interface
- EROM Expandable
- RAM Expandable
- Wire Wrap Capability
- Parallel and Serial Interface Capability
- Single 5 Volt Supply Required
- Layout on Boards
- Documentation

Please send for detailed descriptive leaflet \& prices.

Motorola

Semiconductors.
We are pleased to announce that in conjunction with our parent company we can offer the complete range of Motorola semiconductors including zener diodes, diodes, transistors, SCR's, Triacs, digital and linear integrated circuits etc. As the available range is far too large to be listed please ask for your specific requirements.

The following are the more popular types of 2 N TRANSISTORS by well known manufacturers such as Motorola, SGS, RCA,
Fairchild. They are brand new and should not be confused with surplus offers often being advertised!
Also we stock, or can obtain, other 2 N transistor types not listed below. So please write and let us know what you are looking for.
Please add 8\% VAT to your
2 N transistor orders, plus 25 p
per order for postage and packing.

Type	price	Type	price
2N697	£0.36	2N3442	£1.63
2N706	0.37	2N3766	0.86
2N706A	0.24	2N3866	1.05
2N708	0.30	2N4033	0.60
2N718	0.41	2N4123	1.94
2N914	0.32	2N4125	0.20
2N916	0.96	2N4400	0.15
2N918	0.38	2N4401	0.18
2N929	0.24	2N4402	0.21
2N930	0.24	2N4403	0.23
2N930A	0.25	2N4441	1.06
2N1132	0.85	2N4442	1.30
2N1613	1.27	2N4443	1.43
2N1711	0.32	2N4444	1.88
2N1890	0.77	2N4870	0.78
2N1893	0.30	2N4871	0.74
2N2102	0.93	2N4918	0.67
2N2218	0.29	2N4919	0.70
2N2218A	0.32	2N4920	0.74
2N2219	0.30	2N4921	0.63
2N2219A	0.31	2N4922	0.67
2N2221	0.23	2N4923	0.70
2N2221A	0.26	2N5060	0.42
2N2222	0.18	2N5061	0.43
2N2222A	0.21	2N5062	0.49
2N2369	0.21	2N5063	0.52
2N2369A	0.23	2N5064	0.55
2N2646	0.56	2N5088	0.21
2N2904	0.30	2N5108	4.03
2N2904A	0.31	2N5190	0.69
2N2905	0.38	2N5191	0.74
2N2905A	0.32	2N5192	0.80
2N2906	0.23	2N5193	0.75
2N2906A	0.23	2N5194	0.80
2N2907	0.23	2N5195	0.85
2N2907A	0.23	2N5400	0.27
2N3053	0.35	2N5401	0.28
2N3054A	0.84	2N5415	0.81
2N3055	0.89	2N5416	1.11
2N3055H	1.08	2N6027	0.62
2N3439	1.09	2N6028	0.79
2N3440	0.83		

Special quotations for quantities of 25 or more of one type.

B. BAMBER ELECTRONICS

Dept. p.w. 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 10E Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

OSMOR YO REED RELAY COILS (Iwid
ik ohm coils) to fit ${ }^{\prime \prime}$ reeds (not supplied) 2 for 50 p . ${ }^{2}$ HFCS wound on $3^{\prime \prime} \times 1^{\prime \prime}$ Iong ferrites YHF
YOp.
CHOKES

with screw-in clamps. 3 for 50p. MAINS TESTER SCREWDRIVERS 100 to 500 V . Standard siae 50p. Large 70 p .
RADIO PLIERS $5 z^{\prime \prime}$ £1-80. $6 z^{\prime \prime} £ 2 \cdot 00$. RADIO PLIERS $5 z^{\prime \prime} £ 1 \cdot 30.6 \frac{3}{" c}^{\prime \prime} £ 2 \cdot 00$.
DIAGONAL SIDE CUTTERS $8 t^{\prime \prime}$ E2-20. DIAGONAL SIDE CUTTERS S_{2} E2. 20. SMALL SIDE CUTTERS LJ2. Siandard E4.00. LJ7 (with wire holding device) $54 \cdot 50$ MINIATURE FILE SETS. Set
Set of 10 \& $3-50$ (Round, nat, etc.)
TAP AND DIE SETS (18 plece) contain each of $0.2,4,6,8$, BA SIZES in Dles, Plug Taps, Taper Taps + American type tap
wronch, Ttypetap wr'ch, Dle Holder. E12 50. LARGE ELECTROLYTIC PACKS, CON tain range of large electrolytic capacitors. low and high voltage types,
£ 3.00 per pack $(+12 \dagger \%$ VAT).
£ $3 \cdot 00$ per pack ($+12 \dagger \% \vee A T$). Sllder Switches. 2 pole make and break (or can be used as 1 pole change-0.
the two centre pins). 4 for 50 p .
A NEW RANGE OF QUALITY BOXES \& Aluminum Boxes withlids.

Vinyl Coated Instrument Cases
Very smart finish

MAINS TRANSFORMERS. Type $15 / 300$
240 V input. 15 V a 300 mA 240 V input. 15 V at 300 mA output. Ei 50 each.
MAINS TRANSFORMERS. Ty. $45 / 100$, $240,220,110$, OV input. 45 V at $100 \mathrm{~m} A$ output. 24150 each

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED

A NEW RANGE OF SPEAKERS 2 CABINETS. BRAMD NEW \& BOXED. AT BARGAIN PRICES.
TYPE L2 TRIANGULAR CORNER CABINETS. Smart woodgrain Formica tye finish
 range speakers in parallol +100 V line transformer (easily disconnected for 5 ohm
oderation). $£ 7.50$ each (or 2 for $£ 14 \cdot 00$) + operation). $£ 7 \cdot 50$ each (or 2 for $£ 14 \cdot 00$) +
TYPE MTOA CEILING SPEAKERS. White piastic fascia $10^{\prime \prime}$ square, for recess mounting
inio celling, with $8^{\prime \prime}$ dia. 15 ohm full range nio celling, with 8 dia. 15 Ohm full range TYPE L4 PORTABLE SPEAKER CABINET. Smart woodgrain Formica type finish with nylon grille, $15^{-\prime}$ high $\times 14^{\prime \prime}$ wide $\times 7^{\prime \prime}$ deep (tapering). Contalning $10^{\prime \prime}$ round, 15 ormer, $£ 7 \cdot 00$ each $+12 \dagger$ VAT. line tran TYPE, 27 , Wood veneered $12 \prime^{\prime \prime}$ wide x CABINET $33^{\prime \prime}$ deep, with aluminium grille + volume control and 4 way + off switch panels on ront. Very smart. Contains 3 ohm $5^{\prime \prime} \times 3^{n}$ cliptical speaker $+{ }^{+}{ }^{100 \mathrm{~V}}$.
TYPE 8079 FULL RANGE SPEAKER, 10^{*} dia, 15 ohm, $\mathbf{6 5 \cdot 0 0}$ each (or 2 for $£ 9 \cdot 00$) + $12 \dagger \%$ VAT.
SEMICONDUCTORS
S $\times 20$ (VHF Osc/Mult). 3 for 50 p .
BC108 (metal can), 4 for 50 p .
PBC108 (plastle BC108). 5 for 50p
BFY51 Transistors. 4 for cop.
8CY72 Translators. 4 for 50p.
PNP a udio type TOS Transistors, 12 for 25p
BF152 (UHF amp/mixer). 3 for 50p. F152 (UHF amp/mixer). 3 for 50p. 2N3818 Fet. 3 Ior 50 p .
8C148 NPN SILICON.
$8 C 148$ NPN SILICON, 4 for 50 p .
BCIS8 PNP SILICON, 4 for 50 p . BAY 31 Signal Dlodes, 10 for 35 p. N4148 (INP14) 10 for 255°.
SCRs (Motal can) 4 tor 50 p .
SCR at 3 A . stud type, 2 for $£ 100$. TIP2955 SIItitan PNP power transistor, 60 V at
15A. 90 Watts, Flat pack type, 2 for $\mathbf{£ 1} 50$. $15 A, 90$ Watts, Flat pack type, 2 for $£ 150$.
GERMANIUM DIOOES, approx 30 for 30 p .
741CG op amps by RCA, 4 lor $£ 1$.

SPEAKER CABINET TYPE M321, White matt finish wood cabinet with white sprayed
cloth grille, $g^{\prime \prime} \times g^{\prime \prime} \times 41^{\prime \prime}$ deep, containing $6\}^{\prime \prime}$ dia, 15 ohm full range speaker, with 100 V line transformer. $\mathbf{4} \cdot 50$ each or 2 for $\mathrm{EA} \cdot \mathbf{0}$ + 121% VAT. with Internal mains psu and 25 watt mono with ilinter (100 V line). To play standard 8 -track cartridges. All contained in a smart veneered wood cabinet, size "approx. 14" wide $\times 5 \mathrm{w}^{\text {" }}$ hlgh $\times 11^{\prime \prime}$ deep. Supplled with clrcults. Brand new and boxed. SPECIAL
OFFER $£ 35.00$.ach. $+12 \%$ VAT.
VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base EU-so each. Brand Now.
12V CONTINENTAL TYPE PLUG-IN RELAYS, 2 pole change-over, 60p ach, Bases for
GLASS BEAD FEEDTHROUGH INSU LATORS. Solder-In type, overall dia approx. 5 mm, Pack of approx. 50 for 50 p. DIE-CAST ALUMINIUM BOXES
send for Latest Price List.
PLASTIC PROJECT BOXES with screw on Ilds (In black ABS) with brass Inserts. Tyoe NB1 approx $3 \ln \times 2+\ln \times 1 \neq \ln 45 p$ each Type NB2 approx $3\left\{\ln \times 2 \ln \times 1 \frac{1}{}\right.$ in $55 p$ each Type NB3 approx $4 \mathrm{fIn} \times 3 \operatorname{lin} \times 1 \mathrm{fin} 65 \mathrm{p}$ each TO3 transistor insulator sets, 10 for 50p PLUGS AND SOCKETS
N-Type Plugs 50 ohm, 50 p each, 3 for $£ 1-50$ PL259 Plugs (PTFE) brand new, packed with reducers,
SO25p each.
Sockets (PTFE), brand new (4-hole fixing type). cop each
SOLDER SUCKERS (Plunger type). Stan dard Model. ©5-50. Sklited Model E6. Spare Nozzles 60p each.
NEW MARKSMAN RANGE OF SOLDER. ING IRONS.
S1250 25 W 240 V £4-00.
S 140040 W 240 V . 4.50
S1250K 25 W $240 \mathrm{~V}+$ bits etc., KIT £5. 30, BENCH STAND with spring and sponge fo Marksman Irons ©2 70.
Spare bits MT9 (for 15 W) 50 p . MT10 (for 40 W) 55 p . 6 p, MT5 (for 25 W) 50 p . MT10 (for 40 W) 55 p.
ACL PRICES +VAT

MULLARD $55 A 2$ BSV STABILISER VALVES (Brand New) 70p each or 2 for 11 1-20 TCP2 TEMPERATURE CONTROLLED TCP2
RON.
Temperature controlled íron and PSU. £30 + VAT (E2-40).
SPARE TIPS
SyPe CC single fat. Type K double flat nine
 tlp, Type P, very fine tip. \&1 sach
MOST SPARES AVAILABLE.

MULTICORE SOLDER

WELLER SOLDERING IRONS

EXPERT. Bullt-in-spollight Illuminates work. Pistol grip with fingertlp trigger. High EXPERT SOLDER GUM 1100 EXPERT SOLDER GUN KIT $£ 12 \cdot 00$.
case, etc.) $£ 15 \cdot 00$.
Spare blts 40 p pair
MIXED COMPONENT PACKS entain ing resistors, capacitors, pots, etc. All new Ing resistors, capacitort, pots, etc. All new,
Hundreds of items. f2 per pack, while stocks last.
PUSH BUTTON TELEPHONES
A Ten Dlgit push button intercom telephone with handset, finished in smart grey plastic. Ex-equipment. but good condition only C2. 50 each. FULL RANGE OF BERNARDS/BABANI
ELECTRONICS BOOKS IN STOCK. S.A.E.FOR LIST.

VARICAP TUNERS Mullard fyoe ELC1043/ BARGAIN PACK OF LOW VOLTACE BARGAIN PACK OF LOW VOLTAGE
ELECTROLYTIC CAPACITORS. UP TO 50 V workIng. Seatrontc Manufacture. Approx 50V working. Seatronic Man
100. $£ 1$ - 50 per pack $+12 \% \%$ VAT.
Dubller Electrolytlcs, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . Dubiller Electrolytles, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ for 50 p
Plessey Electrolytlcs, $470 \mu \mathrm{FF}, 63 \mathrm{~V}, 3$ for 50 p . TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 60 p . Dubilier Electrolytics. 5000 uF , 35 V , 50 p each Dubllier Electrolytics, $5000 \mu \mathrm{FF}, 50 \mathrm{~V}$, 80 p each ITT Electrolytlcs, $6800 \mu \mathrm{~F}, 25 \mathrm{~V}$, high grade
screw ferminals, with mounting cllps, 50 p screw term PLEASE ADD $12 \% \%$ VAT TO ALL
CAPAC1TORS

Terms of Business: CASH WITH ORDER. MINIMUM ORDER \&2. ALL PRICES INCLUDE POST \& PACKING (UK ONLY) SAE with ALL ENQUIRIES Please PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN CALLERS WELCOME BY APPOINTMENT ONLY

MAIL ORDER DEPT:-

CRESCENT RADIO LTD

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ
TELEPHONE: 888-4474

3 KILOWATY PSYCHEDELIC LIGHT

3 KILOWATY CONTROL UAIT

1000 WATT PER CHANNEL
Three channel: Bass, Middle, Treble, The imput of this unit is connected to the the required lighting is connected to the output terminalto of the unit thun eunbling yolt to produce a fascinating mound to Full fostruct
Full ins.
Fantantic Value at $220.00+8 \%$ VAT.
LOUDSPEAKER SELEGTION
2t" 8, and 75 ohm at $21-10$
(Plexae state which impedinnc $8^{\prime \prime} 8 \mathrm{ohm}$ CERAMIC at 21.70
$8^{\prime \prime}$ GOODMANS 'Audiom RPA' 8 ohm 10" 'Elac' Dual Cone 8 obm 10 watt

POWER SUPPLY UITTS

 $500 \mathrm{~m} / a$ with on $/ \mathrm{off}$ switch and pliot Ilkht. Approx slze: $130 \times 55 \times 75 \mathrm{~mm}$ ONLY
efo. 00 . 26.00.
PP5-

PPS-Heavy dity 12 volt power aupply.

1.5 at 12 wolt DC. Approx, size: 158×90 | $\times 98 \mathrm{~mm}$. ONLY 88.00 . |
| :--- |

BARGAIN TRANSFORMERS 240v primary, $12-0.12 \mathrm{v} 800 \mathrm{~mA}$ secondary Approx size: $60 \times 40 \times 50 \mathrm{~mm}$. Firing
centres 75 mm . PRICE: $\mathrm{EI} \cdot 50+8 \%$ VAT Also available Malna tranaformer with 18 r 500 mA sec. Price and size same an

EAGLE MIMIATURE TRAKSFORMERS LT44 Mindature driver transformer PRIM. $20 \mathrm{KK} \Omega$. 8EC. IK Ω.
LT700. Mindature output transtormer 200 mW.
PRIM. $1.4 K \Omega$. gEC. $3-2 \Omega$. PRIM, $1.2 \mathrm{~K} \Omega$. SEC. 3 -2 Ω,
PRICE: EITHER OFF THE ABOVE
QE10 FODR CHANMEL ADAPTOR This unlt conserts two channel atere sound to enhanced four channel cound.
Just add the four channel adaptor and tw additlonal loudspeakers to your present atereo systent to convert tit to a sensailonal four channel sound aystems. Not suitable for 4 ohm apenker syntemn.
Dlmenaions: $170 \times 145 \times 65 \mathrm{~mm}$.
Our price: $215.00+12 \% \%$ V.A.T.

FOOT8WITCH 338
A compact and robunt footswitch finished The attached lead is with a non-sllp base. and is terminated with a 2.5 mm inck plug Ihmenalona: $90 \times 70 \times 30 \mathrm{~mm}$.

ACCESS AND BARCLAYCARD ACCEPTED-PHONE ORDERA WELCOMED ALL PRICES INCLUDE POBTAGE-PLEABE ADD V.A.T. A8 8HOWN
Permonal callers relcore. WITH ALL ENQUIRIES PLEA8E

TIME PEACE $\mathbf{f 9 - 4 5 *}$

 1五: 711Display ares $76 \times 20 \mathrm{~mm}$. Total size $31 / 2 \times 8 \times 2 \mathrm{~cm}$.
Not a spelling mistake, but another descriptive term for the National MA1012 complete clock \& display module.
Featuring sleep and snooze timers, 24 hour alarm format, fast and slow setting, alarm output switch.
The MA1012 is non-strobed, with direct drive to the display LEDs, thus causing none of wideband RFI noise associated with earlier clock IC designs. It is suitable for any tuner or radio timing applications, plus all the usual clock applications. Help reduce noise pollution with our MA1012 clock module! The module requires only switches and mains transformer. A suitable 240v AC input transformer is available for $\mathbf{~} 1.50+8 \%$ vat Two modules, with two transformers, for $£ 20.00+8 \%$ VAT.

REFERENCE SERIES TUNER MODULES

EF5803 2 MOSFET AGC RF stages, with low noise solected MOSFETs, MOS mixer Buffered local oscillator output for counter and synthesizer purposes, 6 tracked tuned circuits, IF and image <100dB down. $£ 19.75$ Ref. FMIF Selectable 2 or 3.6 pole linear phase IF filters, two MOS IF preamps, twin detector coil for 0.07% THD $\Delta f 22.5 \mathrm{kHz}$. Noise mute, deviation mute, adjustable range AFC, meter output.
Ref. MPX With the incomparable HA1196 PLL low noise, wide range decoder IC preamp and LC low pass filter on input, twin LC pilot and base-bandpass filters on the output. With $2 \times$ LM380N ICs for monitor amp purposes available on the board.
£16.45

Our other ranges of FM and AM tuner modules available as before.							
EF5801	17.45	EF56600	12.95	7252	26.50	7122	13.22
7030	10.95	ECC3302U	7.50	7253	26.50	Most a/so available in kits:	
91196	12.99	8319	11.45	91197	11.35	deraiss in carslogue \& price lisp	

COILS FOR LW, MW, SW 1,2, and 3 now listed in catalogue 30 \& 33p ea TOKO 10k series coils now for 1.5 to 30 MHz , giving a total coverage in osc and if coils Low cost meters: Internally illuminated edgewise meters 200uA, and back lit flat face meters 200UA. A wide choice of scales - or material to DIY. Equipment boxes: These must be the best value in ABS (black) equipment boxes with close fitting (fianged) lids. $8 \times 6 \times 4$ (cms) 54 p es* $10 \times 7.5 \times 4$ (cms) 66 p ea*, and $12 \times 10 \times 4.5$ (cms) 76 p ea*. Also new stackable component storage boxes and trays. DETECKNOWLEDGEY; theory and practise of metal locator principles including BFO IB, phase angle, pulse induction. A unique reference for users and constructors. $\mathbf{£ 1 . 0 0}$ Our usual unique range of coils, filters etc for radio: from TOKO; 350,000 in stock. The best in linear ICs for RF, HA1137:£2.20; HA1196:£4.20; HA1197: $£ 1,40$, plus all common radio and multiplex devices, audio JCs (TBA810AS £1.09), MOSFETs, a unique line in varicap diodes for AM tuning :: see the latest catalogue for details. 45p
Postage 25p per order, VAT 12.5\% except where otherwise indicated (8%). Send to 2 Gresham Road, Brentwood, Essex. tel (0277) 216029. Only 200 m from station!

©
 E ELECTRONICS

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS Output terminal for digital frequency meter; Antenna impedance- 75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity- 0.9 u V 26 dB signal to noise ratio $\pm 75 \mathrm{kHz}$ deviation; IntermoduIation 80 dB Image rejection- 60 dB ; Tuning voltage- 1 V to 11 V ; Total gain-33dB; Intermediate frequency- $10 \cdot 7 \mathrm{MHz}$; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors: Silvered coils.

FI 2846
IF AMP AND DECODER

TECHNICAL CHARACTERISTICS:
Intermediate frequency - 10.7 MHz ; IF Bandwidth- 280 kHz ; Signal to noise ratio -70 dB with 1 mV input; Distortion-mono 0.1%, stereo 0.3%; Sensitivity- 30 u V up to the 3dB limit; Channel separation - 40dB at 1 kHz ; Pass band-20 to $15,000 \mathrm{~Hz}$; Rejec tion at 38 kHz greater than 55 dB ; Am re-jection- 45 dB ; De.emphasis -50 to $75 \mu \mathrm{~s}$ Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than $0 \cdot 3 \mathrm{~dB}$; Output impedance - 100 Ohms; Output voltage500 mV ; Phase locked loop stereo decoder Output for LED VU-meter; Null indicator Outputs for AGC, AFC and inter-station muting; Consumption- 55 m A LEDs extin guished. 100 mA LEDs illuminated; Power supply-15V: Dimensions $195 \times 76 \mathrm{~mm}$.
CIRCUIT TECHNOLOGY:
Epoxy printed circuit board. Monolithic integrated circuits, ceramic filter.

ALS 1500
STABILISED POWER SUPPLY

£2•53
Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS :
Output voltage-15V; Max. output current -500 mA ; Thermal coefficient less than $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$: 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions $-65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:
Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

$£ 13 \cdot 50$
Inc. VAT, P\&P
ILLUMINATED POINTER
Station finder

FREQUENCY METER
Digital display of received station frequency

Station strength indicator
$£ 8.77$
Inc. VAT, P\&P
TOUCH CONTROL PRE-SELECTION UNIT
LED channel indication

NUMERICAL DISPLAY
Pre-selected channel number

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronle components must be cleared as apace required. 1000 's of capacitors, resistors, transistors. Ex equlpment panels otc. covered In valuable components. No time to sort. Mu
Handy PaekE
4 aluminlum boxes $128 \times 44 \times 38 \mathrm{~mm}$ Ideal Miniature Edeewise Pand
Miniature Edgewise Panel Meters $\mathbf{~ E 1 . 2 0 ~}$
100 minlature reed switches ideal for burglar alarms, model rallways, ete. $£ 3 \cdot 20$.
86 pole 12 volt reed relays on board 6×6 pole 12 volt reed relays on board
$\mathrm{C} 2 \cdot 45$. C2.45.
High quallty computer panels smothered in rop grade components 5 lbs e4.75. 10 lbe OE LUXE FIBRE GLA8S PRINTEO CIRCUIT ETCHING KITS
includes 150 sq , ins, copper clad $1 / 0$ board breme chloride, 1 dalo clich resiot pen abrasive cieaner, 2 mini dritblis, eich tray 150 sq . in. flbre glass boar
Datopen. shp.
ib ferrle chloride to mil spec. 81 - 25 lbs ferrle chloride to mil spec. $£ 5-\mathrm{Co}$ Instruction hest 20p
hrouded. 240 V . In $8-0-8 \mathrm{~V}$ ormers, fully Ex new equipment. Complete with maine oad and plug on input and thort leads on output $90 p$.
Semiconducfor Bargalns
TH3 Thermistors 10 for $£ 1$.
00 new \& marked sillcon
ransistors including BC148, EF194, BC183, etc. E 3.55
200 new a marked translators including $2 N 3055$, A C128, BFY50, BO131, etc.
100 mlxed diodes IN 4148 , ate. E 1.50 .
100 mixed dlodes Including zener, power and bridge typas $£ 3 \cdot 30$.
Bridge rectifier 100 N 2.5 amp 4 for El . Brand new $1 T T ~$
Bradford chassiz kV .50. 5 for for Decea
E10. 50 Germanlum dlodes, ideal for crystal
sots, etc. $£$ f.
Miniature Vernitron FM4 10.7 MHz Cera-
MIndature Vernitron 3 for El_{1}. MHz Ceramle Filters 50 p each 3 lor $£ 1$. New U.H.F. Trana
button type £3•5
Hardware Packs each containing 100's of Self-tapping, Posidrlve, "P" cllps, Cablo clamps, Fuse holders. Spire nuts etc., $\varepsilon 1$ per pound

Aluminium TV coax pluas 10 for $£ 1.00$ Standard wire ended neons 12 for $£ 1$ - 60 Miniature 5 K log pote with $8 / \mathrm{p}$ awlich 4 for
.
ON•T LET YOUR ENVIRONMENT EHYORATE YOU OR YOUR POSEssions. Buy a Honeywell Humidity Controller. Compact ($3 t^{-} \times 18^{\prime \prime} \times 1^{\prime \prime}$), wide range of control, adjustable by ${ }^{2}$ spindle .5A@ 120VAC. Ideal for Greenhouses, Centrally Heated Homes, Offices, elc. Build your own Humldiners or Dehydration Alarms. E1-50 ©a. 4 tor $\mathbf{E} 5$.
New Miniature FM Frontends $88-108 \mathrm{MHz}$, $0-7 \mathrm{MHz}$. I.F. or with integral Tuning-gang
BA 120A 50p each
SN 76115N \&1 each
20 mm anti-surga fuses your selection Component Bargaina
300 mixed resistori $t \& ;$ watt $\& 1$ - 50
300 modern mixed caps most types ca. 3 4 . 200 mixed resistors mostly 142 watt. $51 \cdot 50$. 00 mixed polyester caps $£ 2 \cdot 20$.
00 mixed modern miniature and ceramic late caps $£ 1 \cdot 00$.
00 mixed wirewounds $\mathbf{£ 2} \cdot 20$.
25 mixed film resistors, mostly minjature 1-60, 500 for $£ 3 \cdot 50$.
25 mlxed pots \& presets $\mathrm{E} 1 \cdot 50$.
00 HIgh wattage resistors, wirewound
Modern Vertical Presets with lotted Packs £3.50. Small 50 wirewound Horiz. Convergence Preset with Knob. 10 for £1.
Mctorola 1 watt Audio I.C. MFC 8010 $9-16 v, 8-16 \Omega, 10-400 \mathrm{MV}$. Sensifivity S.C. prool, complete with circults and data $\mathrm{Et} \cdot 10$ each, 5 for $\varepsilon 4$.
OOK Stereo SIlder Pots. Modern, sllm ouble Gach, 3 for 81.
with integral 900 K pot Forg Condensors n VHF as usad in moder varicap tuntng , centres. 84.

40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY. DEPT PW 149A BROOKMILL ROAD, DEPTFORD, SE8
CALLERS BY APPOINTMENT ONLY

ANNDUNUCING A NENW SIETI DIN MBASIMC EEMESCITIRD NNUCS

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2 \mathrm{in} \times 5 \mathrm{in}$. Price $£ 7.50$ per set (we pay the postage).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes

The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm.

Order now:
Selray Book Company
60 Hayes Hill
Bromley
BR2 7HP

OUP 100\% GUARANTEE

Should you decide to return the set after 10 days exam.
ination, your money will be refunded by return of post.

Amount enclosed: \mathbf{f}
Name:
Address:

After the enormous success of the Wembley Seminar, Lynx have been persuaded that there are sufficient Northerners waiting to attend their own show. All day. Microprocessor Lectures and presentation of the Nascom 1. Only 350 seats.

280

QWERTY KEYBOARD MONITOR PROGRAM VDU INTERFAGE (TV) 2K R.A.M. P.C.B. CASSETTE INTERFACE teletype interface EXPANDABLE SYSTEM NASCOMI £197.50 + VAT
lynX electronics (LONDON) LTD., 92 broad Street, Chesham, bucks. 0240575151

TECHNICAL TRAINING IN ELECTRONICS TELEVISION AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success. knowledge that will enable you to take advantage of the many opportunities open to the trained person. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Coloux TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
会容
TH To: International Correspondence
Dear So 276 W aols
Dept. No. 276W, intertext House, LONDON
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address

ELEGTRONALUE All the many types of components we supply are BRAND NEW

 and guaranteed and only from manufacturers direct or approved suppliers. (No surplus, no seconds)CMOS-buffered and protected (BE)

4000	23p	4013	51 p	4023	$23 p$	4043	1.00	4081	3 p
4001	230	4014	1.07	4024	1.04	4044	94 p	4082	26p
4002	$23 p$	4015	1.14	4025	23p	4046	1.40	4510	1.42
4006	1.14	4016	51 p	4026	1.75	4049	54 p	4511	1.50
4007	23 p	4017	$1 \cdot 14$	4027	60 p	4050	53 p	4514	$3 \cdot 30$
4008	99p	4018	1.32	4028	$95 p$	4060	1.40	4516	1.44
4009	62p	4019	62p	4029	1.23	4069	30p	4518	1.26
4010	620	4020	1.32	4030	51 p	4070	50p	4520	1.26
4011	230	4021	1.14	4041	$84 p$	4071	26p	4543	1.30 1.45
4012	23p	4022	$1 \cdot 13$	4042	96p	4072	26p	4583	1.45

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS
SIEMENS CAPACITORS*
World-famous for quality and depend-ability-exceptionally large stocks held. PCB TYPES- 7.5 mm PCM 0.001 to
0.015 p each 0.15 to 0.04760 each: $0.015 p$ each: 0.15
$0.068,0.17 p$ each.
CERAM1C- 2.5 mm PCM $0.01,0.022$ 4p: $0.033,0.047 \quad 5 p$ each: $0.0686 p$ 5 mm PCM 0.17p: 0.22 10p ELECTROLYTICS- $1 / 100,10 / 25$, $10 / 63,100 / 25$, etc, etc.
For full range see our

RESISTORS

t. $\frac{1}{2}$, $\frac{7}{2}$ watts- $2 p$ each*: metal film, metal oxide and I watt carbon 5p each*: Good quantity discounts. Mag-
netic field dependent from El .50 . netic field dependent
Hall effeet from $\leqslant 1 \cdot 23$.

SIEMENS TRANSISTORS
Silicon non and pnp from 8p each LEDs, red 19p: yellow or green 23p (3 or 5 mm): Photo transiscors from 76p. VICE WIDE RANGES

DISCOUNTS

$\mathbf{5 \%}$ if list value of order over $£ 10$
10% if list value of order over $£ 25$ Discounts available where cash, P.O. or V.A.T.-Add 8% co value of order or $12 \frac{1}{\%} \%$ with items marked ${ }^{\text {(N). }}$ (No V.A.T. on overseas orders).
Goods sent post free on C.W.O. Goods sent post free on C.W.O.
orders in U.K. over 85 list value. orders in U.K. over 85 list value.
If under, add 27 p per order. MONTHLY BARGAIN LISTS S.A.E. brings monthly list of bargains. Also current quick reference price list of all ranges.
Cash with order (P.O. or cheque payable to Electrovalue Ltd) or your TRADE AND INDUSTRIAL ENQUIRIES INVITED
For all round satisfaction-be safe-buy it from ELECTROVALUE

ELECTROALIUE ITD

Dept PWB, 2: St Judes Rd, Englefield Green, Egham, Surrey TW20 0HB Phone Egham 3603: Telex 264475
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage, Manchester M19 INA. Phone (061) 4324945.

Your career in Electronics?

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any -bligation.

```
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
```

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS
WD 7
(Block caps please)

TRANSISTOR/IC PRICE LIST. RETAIL

COMPONENTS AND TEST EQUIPMENT
Ragistered in England 1179820
Registered Office: 267 ACTON LANE, LONDON, W4 5DG. Telephone. $01-9946275$

Warehouse Trade counter: 270 ACTON LANE, LONDON W4 5DG

[^0] ARE SUBJECT TO VAT +.

S BY BABANI
Purchase books to the value of $£ 5.00$ from
and choose any 60 p pak fiom this page FREE. BP2 Handbook of Radio. TV \& Industrial \& Transmitting Tube \& Valve Equivalents
Handbook of Testad Transistor Circuits 8P6 Engineers and Machinists Reference Tables BP7 Radio \& Electronic Colour Codes and Data BP10 Modem Crystal and Transistor Set Circuits for beginners
Constructors Manual of Electronic Circuits for The Home
Handbook
8P16 Handbook of Electronic Circuits for the Amateur Boys and Begin
and Electronics
8P22 79 Electronic Novelty Circuits
8P24 52 Projects Using IC74 1 (or equivalents)
BP26 Radio Antenna Handbook for Long Oistance
Reception and Transmission
Giant Chart of Radio Electronic Semiconductor and Logic Symbols

- Projecis State Audio Hi-Fi Construction How to 84
8P34 Practical Repair \& Renovation of Colour TVs
8P35 Handbook of IC Audio Preamplifier \& Power Amplifier Construction
50 Circuits Using Germanium. Silicon \& Zener Diodes
8 P37 50 Projects Using Relays. SCR's ano TRIACS 129 Universal Gram-motor Speed Indicator
160 Coil Design and Construction Manual
161 Radio. TV and Electronics Oata Book
6 AF-RF Reactance-Frequency Chant for
Constructors
Handbook of Integrated Circuits (ICs) Equivalents
First Substitutes
First 8 ook of Hi -Fi Loudspeaker Enclosures Electron Enthusiasts Hand Electronic Gadgets and Garnes
Solid State Power Supply Handbook Solid State Novelty Projects
Build Your Own Solid State Hi-Fi and Audio Accessoties
Solid State Short Wave Receivers for Beginners 50 Projects Using IC CA3 130
50 CMOS IC Projects
A Practical Introduction to Oigital IC's Resistor Colour Code Disc Calculator

BOOKS BY NEWNES

No. 229 8eginners Guide to Electronics No. 230 Beginners Guide to Television No. 231 8eginners Guide to Transistors
No. 233 8eginners Guide to Radio No. 234 Beginners Guide to Colour Television No. 235 Electronic Diagrams No. 236 Electronic Components No. 237 Printed Circuit Assembly No. 238 Transistor Pocket 8 ook No. 225110 Thyristor Projects
Using SCR ${ }_{8}$ Triacs No. $227110 \mathrm{COS} / \mathrm{MOS}$ Digital IC
Projects For the Home Projects for
Constructor
No. 226110 Operational Amplifier Projects for the Home
Constructor No. 242 Electronics Pocket Book No. 23930 Photoelectric Circuits Systems

Price $£ 2.25 \uparrow$ Price £2.25 \dagger Price $\mathbf{£ 2 . 2 5}$ 个 Price $\mathbf{£ 2 . 7 5 \%}$ Price $\mathbf{£ 2 . 2 5 1}$ Price $£ 1.801$ Price $£ 1.081$ Price $£ 108$ । Price $£ 3.90$ t Price $\mathbf{£ 2} 50$ \%

Price $\mathbf{£ 2 . 2 5 \dagger}$
Price $£ \mathbf{2} \mathbf{5 0 1}$ Price £3.90 Price $£ 180{ }^{\circ}$

NUTS AND BOLTS

BA BOLTS - packs of BA threaded cadmium plated screws slotted cheese head.					
Supplied in multiples of 50.					
Type	No.	Price	Type	No.	Price
In 08A	839	£1.20	$\tan 48 \mathrm{~A}$	846	¢0.32
t in OBA	840	£0.75	f in 4BA	847	E0. 25
in 2BA	842	£0.65	in 6BA	848	¢0.40
$\underline{t i n 2 B A}$	843	¢0.45	fin 68A	849	¢0.21
tin 2BA	844	¢0.52	fin 6BA	850	co. 25
in 48A	845	¢0.44			
BA NUTS - packs of cadmium plated full nuts in multiples of 50.					
Type	No.	Price	Type	No.	Price
OBA	855	¢0.72	4 BA	857	E0.30
28A	856	¢048	6BA	858	¢0.24
BA WASHERS - flat cadmium plated plain stamped washers supplied in multiples of 50 .					
Type	No.	Price	Type	No.	Price
08A	859	¢0. 14	48A	861	£0.12
2BA	860	¢0. 12	68A	862	¢0.12
SOLDER TAGS - hot tinned supplied in multiples of 50.					
Type	No.	Price	Type	No.	Price
OBA	851	¢040	48 A	853	£0.22
28A	852	c0. 28	68A	854	£0.22

SWITCHES

Description
OPOT miniature slide
OPDT standard slide
Toggle 5wich SPST
11 amp 250 V a.c
Toggle switch OPD
Rotary on oll mains switch
Push switch - Push to make
Push switch - Push to break
ROCKER SWITCH
A range of rocker
switches SPST -
in high insulation.
Material available in a choice of colours ideal
for small aponatalus

Description
Minioture SPST toggle. 2 amp
250 V a.c.
$250 \mathrm{Va.c}$.
Miniature SPST loggle. 2 amp
Miniature OPOT toggle, 2 amp
Miniature OPOT roggle, centre
off. 2 amp 250 Va a.c
Push button SPST, 2 amp
250 V o.c.
Pushbution SPST 2 amp
$250 \mathrm{Va.c}$.
Push bution OPOT, 2 amp
ush butan
250 V a.c.

MIDGET WAFER SWITCHES

Single-bank wafer type - suitable for switching at 250 V a.c
100 mA or 150 V d.c. in non-teactiver toads make-before-break
contacts. These switches have a spindle 0.25 in dia and 30°

indexing

Description
$\begin{array}{ll}12 \text { pole } & 12 \text { way } \\ 2 \text { pole } & 6 \text { way } \\ 3 \text { pole } & 4 \\ \text { way } \\ 4 & \text { pole } \\ & 3 \text { way }\end{array}$
MICRO SWITCHES
Plastic button gives simple
1973
1974
1975
1976
1977
1978
1979

On-off action
Rating 10 amp 250 V a.c. c.

Bution gives
over action
Rating 10 amp 250 V a.c.

FUSE HOLDERS

 AND FUSESDescription
$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ chassis mounting
$1, \frac{1}{1} \times \mathrm{t}$ in chassis mounting if in car inline ivpe Panel mounting 20 mm

QUICK BLDW 20 mm

Type 150 mA 250 mA 550 mA 800 mA 800 mA	No.	Type	No.	Type	No.
	611	14	615	3A	619
	612	$1.5 A$	616	4 A	620
	613	2 A	617	5A	621
	614	2.5A	618		
		All 5p	ach ex	16 whic	is 7p.
ANTI-SURGE 20 mm					
Type 100 mA 250 mA 500 mA	No.	Type	No.	Type	No.
	622	1 A	625	$2 \cdot 54$	628
	623	2A	626	3.15A	629
	624	1.64	627	5 A	630
		All 7p	ach		
QUICK BLOW 1 ¢ ${ }^{\text {in }}$					
$\begin{aligned} & \text { Type } \\ & 250 \mathrm{~mA} \end{aligned}$	No.	Type		Type	No.
	531	500 mA	632	800 ma	634
		All $7 p$	ach		
$\begin{aligned} & \text { Type } \\ & 1 A \\ & 1.6 A \\ & 2 A \end{aligned}$	No.	Type	No.	Type	
	635	$2.5 A$	638	4 A	641
	636	3 A	639	5 A	642
	637				
		All 6p	ach		

CASES AND BOXES

MIDGET WAFER SWITCHES
$1965-1$ pole 12 way
$1966-2$ pole 6 way
$\begin{array}{ll}1966-2 \text { pole } & 6 \text { way } \\ 1967-3 \text { pole } & 4 \\ \text { way } \\ 1968-4 \text { pole } & 3 \text { way }\end{array}$

TRANSFORMERS

MINIATURE MAINS Primary 240 V

STANDARD MAINS Pimary 240V

Multu-tanped secondary mains transformers available in ; amp. 1 arnp and 2 amp current ratung. Secondary taps are Voltages avalable by use of taps
4.7.8.10.14.15.17.19.25.3

No.	Rating	Price	
2031	$\frac{1}{\text { amp }}$	¢5.50*	P. \& P. 86p
2032	1 amp	¢6.60*	P. \& P. 86p
2033	2 amp	¢840*	P. \& P. \{1. 10

AUDIO LEADS
$\begin{array}{ll}107 & \text { FM Indoor Ribbon Aerial } \\ 113 & 3.5 \mathrm{~mm} \text { Jack plug to } 3.5 \mathrm{~mm} \text { jack plug }\end{array}$
Length 1.5 m plug to 3.5 mm jack plug
5 pin DiN plug to 3.5 mm . Jack connected
10 pins 38.5 Length 1.5 m
5 pin DiN plug to 3.5 mm . Jack connected
5 pin DIN plug to 3.5 mm . Jack connected
to pins 1844 .ength 1.5 m
Car aerial extension. Screened insulated
lead. Fitted plug ${ }^{\circ}$ sk
AC mains conneting lead for cassette
recorders $\&$ radios. 2 metres
recorders 8 radios. 2 metres
5 pin OIN phono plug to stereo
$\begin{array}{ll}118 & 5 \text { pin OIN phono plug to stereo } \\ 119 & \begin{array}{l}\text { headphone iack socket } \\ 2 * 2 \text { pin DIN plugs to stereo jack }\end{array}\end{array}$
$119 \quad \begin{aligned} & 2+2 \text { pin DiN glugs to stereo jack sock } \\ & \text { with attenuation network tor stereo }\end{aligned}$
20 headphones. Length 0.2 m Car stereo connector. Variable geometry
plug to tit most car cassette. 8 track
cartridge \& combination units. Supplied
cartridge \& combination units. Supplied
with inlime fused power lead and instructions. $\quad \mathbf{E 0 . 6 0 *}$
12366 m Coited Guitar Lead Mono Jack Plug
to Mono Jack Plug BLACK
$124 \quad$ to Mono Jack Plug BLACK
5 Length 1.5 m .
Length 1.5 m
5 pin oin plug to Tinned open end.
Length i 5 m
5 pin Din plug to 4 Phono Plugs.
All colour codra. Length 1.5 m
5 DINOUN plug o 5 pin DIN sock
Length 1.5 m
5 pin OIN plug to 5 pin OIN plug mir image. Length 1.5 m

13

1335 pin OIN plug to 2 phono plugs
133 pin DIN plug to 2 ohono plugs.
Connected pins 385 . Length
5 Sin DIN plug to 2 phono sockers. $\mathbf{£ 0 . 7 5}$
$\left.\begin{array}{lll}134 & \begin{array}{c}\text { Connected pins } 385 . \text {. Length } 23 \mathrm{~cm} \\ 135\end{array} & 5 \text { pin DiN socket to } 2 \text { phono plugs. }\end{array}\right)$

178 AC mains lead for calculators etc. | | |
| :--- | :--- |

The wonder adhesive which works in seconds. Bonds plas
rubber, Iransistors. components, permanently-immediately'
O. DI43. ONLY $70 p^{\prime}$ fof a 2 gm phiai

BI-PAK CATALOGUE nEW EDITION NOW AVAILABLE
 BI-PAK CATALOGUE NEW EDITION NOW AVAILABLE

Send for your copy of our revised catalogue and price list NOW
It contains 127 pages packed with literally hundreds of It contarns 127 pages packed with literally hundreds of
semiconductors. components and our famous range of BI-KITS audio modules. DNLY65p PDST FREE

DRDERING D, not forget to state oider number and your name and ardress.
V.A.T. Add $12 \frac{1}{1 \%}$ to prices marked*. 8% to those unmarked re zero rated.
£0.60*
£0.75*
£0.85*
£0.85*
£1.10*
ع0.68*
1.05*
0.90°

£1.50*

£0.75* ع0.75

E0.75*

£1.30*
080°
.75*
1.75°
068°

BI-PAK

DEPT. PW7, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 1 B BALDOCK

EDITOR

Geoffiey C. Arnold
ASSISTANT EDITOR
Dick Ganderton, C. Eng., MIERE ART EDITOR

Peter Metalli

TECHNICAL EDITOR

Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin

TECHNICAL SUB-EDITOR

Peter Preston

TECHNICAL ARTIST

Rob Mackie

SECRETARIAL
 Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES
Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER 01-261 6671

Roy Smith

CLASSIFIED ADVERTISEMENTS

 01-261 5762Colin R. Brown
ADVERTISEMENT OFFICES
King's Reach Tower, Stamford Street, London SE1 9LS

BINDERS

Binders, for elther the old or the new format, are $£ 2.85$ and Indexes are 45p (Inc VAT) and can be obtained from the Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF. Remittances with overseas orders for blnders should include 60p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-establishment of a PW Back Numbers Service for our readers. In future back numbers dated from June 1977 only will be available from our Post Sales Department for 65p, which includes postage and packing. Cheques and Postal Orders should be made payable to IPC Magazines Lid.
Send your orders to:- Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

Standards

FROM time to time, Practical Wireless receives letters decrying the fact that we continue to publish circuit diagrams in which symbols other than those laid down in BS:3939 are used. We are by no means the only "offender", and in fact a letter published in the latest issue of Electronic Technology, the journal of the Society of Radio and Electronic Technicians, slates the whole of the UK technical press, with the exception of the text-book publishers.
The writer of that letter, a lecturer in Radio and TV studies at a south coast technical college, complains that his students have to learn not only the BS:3939 symbols for their examinations, but also a variety of other symbols in order to understand circuits published in technical journals. He sees this as a waste of time, and exhorts those responsible to get into line.

While I am, in general, in favour of standardisation, it is as well to realise that we live in a real world. Even if all UK technical journals and magazines used BS:3939 symbols exclusively from now on, there is a wealth of material, both existing and still coming in from abroad, which uses other symbols. If we are not to dismiss that material completely, we must accept that there is this variety and learn to interpret the various forms encountered.

It is, in any case, arguable whether some of the BS:3939 symbols are the best. Taking the humble resistor as an example, while the rectangular box may be simple for a computer or other mechanical draughting machine to draw, the zigzag is much easier to draw freehand with a little practice. Since many draughtsmen now use rubdown transfers to produce finished drawings, it makes little difference to them anyway, so why not make life a little easier for the student and development engineer trying to produce a neat sketch, by sticking with the zigzag? Again, with logic symbols, it has always struck me that the familiar shapes of MIL-STD-806B make a diagram much easier to understand than do the featureless outlines of their BS:3939 counterparts.

It has been said that the prime reason for the adoption of some of the BS:3939 symbols was that they were easier for machines to draw. Since the vast majority of circuit diagrams must surely still be produced by human means, the justification for those symbols is therefore highly questionable. It makes one wonder whether, at some time in the future, the standard which will replace BS: 3939 will consist merely of rectangular boxes containing numbers from 1 to n, each indicating a different type of circuit element!

Geoffrey C. Arnold

PLEASE NOTE—CORRESPONDENCE

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We do not supply service sheets or information on commercial radios, TV's or electronic equipment.
All querles must be accompanied by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.

Aid for R \& D

The Dept. of Industry has set up an Electrical Technology Requirements Board (ETRB) to fund research and development in the electrical engineering industry. The Board will be composed of eminen't British engineers and chaired by Mr. T. W. B. Sallitt, Director, Hawker Sidderly Group Ltd.
The Board will cover such products as motors and generators, transformers, switchgear, cables and accessories, domestic appliances, and miscellaneous electrical equipment including lamps and batteries.
Major objectives of The Board will be to identify those areas which will most benefit from additional research and development, so as to promote technological innovation and to increase the application of known technology.
The Board welcomes applications from private companies as well as research organisations, for financial support on research and development projects, usually on a co-operative basis, in any of the fields mentioned above.
Enquiries should be addressed to: Dr. L. Goldstone, Executive Officer/ Secretary ETRB, Abell House, John Islip Street, London SW1. Tel: 012113450.

Look in

Five new promotional films, to be shown by Independent Television programme companies, have been made by the IBA to promote 'better viewing'.
The five films are:
(1) The importance of the receiving aerial (30 seconds).
(2) The importance of correct receiver adjustment (60 seconds).
(3) The expanding coverage of the IBA transmitter networks (60 seconds).
(4) New technical developments in television broadcasting (60 seconds).
(5) Controlling the day-to-day quality of ITV broadcasts (30 seconds).
Film (2) on receiver adjustment is to be backed by a special leaflet which dealers and rental companies will be encouraged to distribute to viewers.
The films include shots of many
IBA engineering installations and
developments, including the unique Emley Moor concrete aerial tower, low-power solid-state transmitters for local relay stations, the special SABRE adaptive receiving aerial that brings ITV colour to the Channel Islands, DICE-the IBA's pioneering digital standards converter used for intercontinental relays, optional subtitling for the deaf which may become possible by using ORACLE teletext techniques, etc.

New source

Amtest Radio and Electronic Equipment, is a new company set up to specialise in equipment and aerials for s.w. listeners.

They hope in the near future to provide a similar service for long, medium and v.h.f. listeners with the emphasis on DXing.

The company will answer any enquiry, provided it is accompanied by a SAE.
Amtest Radio and Electronic Equipment, 55 Vauxhall Hill, Worcester WR3 8PA. Tel: 090522704.

The Wireless?

A foreign spy, an astronaut in deep space, a man in the street ... what have they in common? A radio receiver!

The cost and sophistication varies enormously over the range of available equipment, from a few pounds for the portable 'transistor' to thousands for radar and satellite communications. No matter what the application the advances since the days of the cat's whisker crystal detector have been considerable and it is proposed to survey the subject at a conference on 'Radio Receivers and Associated Systems' organised by the I.E.R.E. to be held at the University of Southampton from 11-14 July, 1978.

Thirty-seven papers will be delivered formally and a further twenty will be presented in poster-booth sessions. An exhibition of relevant equipment is to be organised by the Electrical Research Association. Further details from:
Conference Secretariat, I.E.R.E., 99 Gower Street, London WC1E 6AZ. Tel: 01-388 3071.

Mobile Rally

The Nunsfield House Community Association Amateur Radio Group are holding a mobile radio rally on Sunday 11 June 1978 at Elvaston Castle Country Park, which is located 5 miles south-east of Derby on the B5010.

Talk-in stations will be available from 10.00am; G3EEO/P on 160 m , G3ZBI/P on $2 \mathrm{~m} . \mathrm{m}$. ch. S22, and on 70 cm G8KGC/P on f.m. chs. SU8 and SU20. All the usual rally attractions will be present; over 40 trade stands housed in two marquees, bring and buy sale, RSGB bookstall, childrens rides and entertainments, sideshows and a full catering service at competitive prices. The I.B.A. will also be present demonstrating their ORACLE teletext service. The rally will be open from 11.00am and should provide an ideal day out for all the family. Further details are available from: lan Cage G4CTZ, 25 Petersham Drive, Alvaston, Derby DE2 OJU.

Summer School

The Dept. of Electrical Engineering Science at the University of Essex will be holding its annual electronics summer school for teachers during the week 10-14th July, 1978. This year, as well as running two established courses in linear and digital circuit design, a third course in Electronics Systems is being introduced. The object of the course being to cover some of the more difficult material of the AEB Electronics Systems syllabus as well as discussing the teaching aspects of the ' A ' level.

The linear design course is concerned with the use of transistors and operational amplifiers in analogue applications; particular emphasis being placed upon design related to basic circuits in a hi-fi amplifier. The digital design course concentrates on the use of the transistor as a switch and develops design using integrated logic circuits. A programme of laboratory work is included on each course. Teachers who require further information contact: R. J. Mack, Dept. of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester. Tel: 020644144 Ext. 2408/ 2299.

The purpose of this project is to provide an accurate calibration source for digital frequency meters. The 200 kHz Long Wave BBC signal is the standard frequency employed, and by regeneration is formed into a 4 volt peak to peak square wave output. It is emphasised that the calibrator requires moderate signal strength for reliable operation, but should function in most areas of the British Isles.

Circuit Description

The aerial coil is tuned by a trimmer in addition to a fixed capacitor. The signal is fed direct to the gate of Trl, an f.e.t., which is used purely as a high impedance buffer and works in the source follower mode. This feeds its output through C2 to the base of Tr2 which forms a direct coupled amplifier with $\operatorname{Tr} 3$. Tr4 is another buffer used to feed the digital frequency meter without influencing circuit performance.
Regeneration is effected principally by capacitive coupling between the can of $\operatorname{Tr} 3$ and the aerial circuit. The overall gain of $\operatorname{Tr} 2-\operatorname{Tr} 3$ is sufficient to clip what would otherwise be a sine wave into a sloping square wave at the collector of Tr3. Transistors 2-4 are not run at the full 9 volt supply but are fed via a decoupled resistor, R7, at about 4.5 volts. This, in conjunction with aerial damping resistor R1, serves to restrict the degree of feedback. This technique was adopted when trying to lock on to a French transmission at 180 kHz , a rather weaker signal than the 200 kHz transmission.

Phase Locking

The circuit as a whole constitutes a free-running multivibrator which happens to use a tuned aerial as part of its feedback loop. Now, as with any multivibrator, it can be triggered by a suitably strong impulse, and the closer the triggering frequency is to that of the multivibrator, the more readily will phase locking occur. By adjusting the aerial close to 200 kHz we allow the received signal to trigger the circuit.

However, we have a problem with triggering in that the received signal strength will vary by vast amounts, depending mainly on the distance from the transmitter. One way to overcome this problem is to devise a multivibrator with minimal feedback level, thereby reducing the trigger level required: hence the technique described here.

Construction

The m.w. winding supplied with the ferrite rod is discarded. Only leads 3 and 5 on the l.w. winding are used; lead 4 may be cut short, the ends carefully cleaned, and the two wires resoldered. If "P" clips are not available for mounting the rod it can be glued with Araldite direct to the top of the board.
The board is drilled to take four 4 BA mounting bolts, two of which secure the " P " clips, and also, as appropriate, for the type of trimmer used. These bolts may also be used to mount the unit in a suitable case if desired.
The components are back-wired on 0.15 in matrix plain Veroboard and the layout shown should be adhered to, as spurious feedback plays such an important role.
The leads of R8 are formed into loops close to the resistor body before they pass through the board; these loops form the earth and output terminals. A PP3 type connector is fitted enabling either a PP3 or PP6 to be used.

\star components

Resistors	
All WW 5\% carbon	
R3 47k $\Omega \quad \mathrm{R} 447 \mathrm{k} \Omega$	
R5 $3.3 \mathrm{k} \Omega \quad \mathrm{RG} 1 \mathrm{k} \Omega$	
R7 $1.8 \mathrm{k} \Omega \quad \mathrm{R} 81 \mathrm{k} \Omega$	
Capacitors	
C1 200pF silvered mic	
C 21 nF ceramic	
C3 22 nF ceramic	
C4 $10 \mu \mathrm{~F}$ electrolytic 6 V	
TC1 40 pF compression trimmer	
Semiconductors	
Tr1 2 N3819	

Miscellaneous

L1 Denco 5FR m.w./l.w. with ferrite rod, or similar, "P" clips, 4BA bolts- 4 off, plain Veroboard $64 \mathrm{~mm} \times 95 \mathrm{~mm}$ 0.15 in. matrix, suitable case (optional), PP3 connector

AD129

Fig. 1: (above) The complete circuit diagram of the Phase-Locked Calibrator

Fig. 2: (below) Component layout and wiring of the perforated board

AD130

Alignment

The equipment required for setting up is no more than a Long Wave receiver and an insulated trimming tool (a plastic knitting needle filed to shape will serve). Proceed as follows.

1. Screw down TCl, then unscrew ${ }^{1} 2$ to ${ }^{3}$ of a turn.
2. Connect the frequency meter earth to the 0 V side of R8 and the probe to the output loop. Ensure that the unshielded section of the probe runs directly away from the aerial.
3. Connect a battery to the calibrator and then tune in 200 kHz on the receiver which is placed nearby with both aligned for best reception.
4. Adjust the coil former on the ferrite rod until a heterodyne whistle is heard from the receiver; continue until the note is fairly low.
5. Using the trimming tool adjust TC1 until the beat disappears altogether. At this point the calibrator is phase locked to 200 kHz .
6. Switch on the frequency meter, and after a suitable warming-up period make any adjustment necessary.

The coil former may be fixed in place with a few drops of candle wax melted with a soldering iron.

Final Notes

Remember that any digital frequency meter will have a last digit error of plus or minus one, so don't expect the readout to be rock steady. Static or manmade interference, including radiations from the meter itself, if too close, can cause a momentary spurious reading. The circuit, which consumes about 4 mA , is quite tolerant of falling battery voltage.

The prototype was used some 90 miles from the transmitter at which range locking occurs without difficulty, but at appreciably greater ranges it could be more of a problem.

SPECIAL PRODUCT REPORT

Shind Him [ill $\left.]^{[1]}\right]$

The S.E.S. Capacitive Discharge Electronic Ignition System has been available for some time in readybuilt form. It is now offered in kit form for the electronics constructor at $£ 15 \cdot 75$ including post, packing and VAT, which represents a considerable saving in cost. Switched selection of electronic or conventional ignition is provided, plus an "isolated" position as an anti-theft device. All the electronics are mounted on a plug-in printed circuit board. This board can be returned to Surefire should service be required, leaving the case fitted to the vehicle, which can continue to run on conventional ignition. The board and edge-connector contacts are all gold plated for reliability.

Assembly

Putting the kit together is quite straightforward, following the clear instructions provided. Total assembly time for the review model was three hours. All the parts required are included-even down to the solder and heatsink compound. The components list allows each item to be easily identified, and also serves as a price list should any replacements be needed, though all components are guaranteed for twelve months.

Besides the assembly drawings, a system block diagram, a circuit diagram with typical oscilloscope waveforms, and a full circuit description are provided. There is also a "family tree" fault analysis and testing diagram.

For constructors running into problems with their kits, Surefire offer a repair and fault diagnosis service. To diagnose and repair the printed circuit plug-in module, there is a standard charge of $£ 3$, while for the complete kit the charge is $£ 5$. In both cases this covers the cost of any parts used in the repair, and includes carriage, insurance and VAT.

Installation

Comprehensive fitting instructions are provided, which are claimed to cover most types of ignition systems likely to be encountered, including those with tachometers. In the case of the review kit, it was found necessary to transpose the male and female "Lucar" connectors on two of the leads connecting into the vehicle ignition system, compared with the assembly instructions given. It is probably best to check against your car before the leads are assembled.
The kits are available direct from Surefire Electronic Systems, Piccadilly Place, London Road, Bath BA1 6PW.

On September lst; 1927, a British radio amateur, Gerald Marcuse, G2NM, began Empire Broadcasting by transmitting a variety of home-made and recorded programmes on $32 \cdot 5$ metres, using a Zeppelin aerial, from a 100 ft mast at his home, 700 ft a.s.l., in Caterham, Surrey.

Wireless World, a weekly journal in those days, campaigned vigorously from about 1923 for the BBC to start a regular broadcasting service to the British Empire similar to that given by two Dutch stations (PCGG and PCJJ) to their colonies. Although at first, the BBC were cautious both technically and financially, they did commence tests from Chelmsford, (5SW), in November 1927 and inaugurated a regular Empire service, from Daventry, in December 1932. This has grown into the BBC World Service which dominates international broadcasting today.

Gerald Marcuse, who was born in 1886 and died in 1961, devoted the major part of his life to amateur radio establishing many "firsts" in global communications. He was President of the RSGB during the years 1929 and 1930 and made an Honorary Member of the Society in 1946, the highest award the RSGB can bestow, joining a list of famous names which includes Sir Oliver Lodge, Rene Klein, and Senatore Guglielmo Marconi. In 1922, Gerry held the first amateur licence for wavelengths below 200 metres and in 1923/24 he contacted Canada and the USA on 40 occasions as well as QSOs with the Canadian

Steamer Arctic off Canadian Islands and the American Fleet voyaging from Honolulu to Australia. He broadcast concerts from the Savoy Hotel, London, to American amateurs in 1925 and in the same year he made the first phone contact with the US Carrier Seattle, 600 miles east of Australia.

South American Contact

G2NM's achievements were widely reported in the technical press and in January 1925, Wireless Weekly published a half page picture of his station and under the heading, British Amateur Works Brazil, are the words . . . "Perhaps the most fascinating of all wireless romances occurred recently when Mr Gerald Marcuse established communication with the Rice Expedition in Brazil, a distance of approximately 7000 miles" . . . This was a first between the UK and South America.

An interesting item appeared in the Current Topics section of Wireless World (7.9.27) entitled, Reciprocal Empire Broadcasting, which read . . "Amateur broadcasting to the Empire was inaugurated on Thursday last by Gerald Marcuse (2 NM), of Caterham, who transmitted a programme of musical items on a wavelength of $32 \cdot 5$ metres. Mr Marcuse informed Wireless World that the delay in the hour of starting was due to the excellence of reception from Australia,

A photograph of Gerald Marcuse standing alongside his transmitter at 2NM. Reproduced from the November 30th, 1927 Wireless World
the broadcasting station 2FC at Sydney sending out an excellent programme on 29.8 metres. Rather than upset reception 2NM delayed transmissions."
This was typical of Gerry's whole attitude to radio, the true amateur spirit prevailed at all times, he was one of the first Bifish amateurs to use telephony and his voice was heard in many parts of the world by radio amateurs and short wave listeners using com-mercially-built receivers.
The RSGB's history book, World at Their Finger Tips, says that Gerry first got the idea of providing a broadcast service to the British Empire when an amateur, (BER) in Bermuda rebroadcast his transmissions to other amateurs in neighbouring islands.

After much correspondence and a great deal of pressure from G2NM the Postmaster General decided, on August 9th, 1927, to authorise him to transmit speech and music, for two hours daily, except Sundays, for a limited period commencing September lst, 1927, with a power not exceeding 1 kW and wavelengths of 23 and 33 metres. In fact transmissions from 2 NM continued almost daily until the end of August 1928.
Among his programmes were the sounds of Big Ben, the songs of the blackbird and thrush from his garden, piano playing of a local friend, voices from his nearby church choir, gramophone records, rebroadcasts of 2LO transmissions and several concerts. Naturally, Wireless World followed Gerry's work and in the caption below a picture of his transmitter ($W W$ 30.11. 27) they proudly announced, "Mr Marcuse scored a new success on November llth when his relay of the Albert Hall Armistice Concert was heard in Bombay".
The Wireless World Editorial (27.4.27) pointed out that British amateurs were accustomed to listening to the Dutch broadcast station at The Hague, PCGG, which sent out regular Sunday afternoon concerts for the benefit of UK listeners. Furthermore, Holland had again set an example by leading the way in shortwave broadcasting, because, on March 15th the station, PCJJ, established at the Philips Lamp Laboratories at Eindhoven communicated by wireless telephony with the Dutch station at Bandoeng, in the Dutch East Indies, on a wavelength of 30 metres. The Editorial continued "Since that initial success fairly regular broadcasting has been conducted. Now, as we go to press, comes the announcement that the Sydney station, 2BL, has successfully rebroadcast one of the programmes".

A reader, Arnold J. I. Bradley, writing to the Editor of Wireless World (12.10.27) said "My congratulations upon the splendid stand you have made in the interests of Empire broadcasting and to Gerald Marcuse for the excellent transmissions, restricted though they may be. I sincerely hope that as a result of this the British public will give credit, which is admittedly due to the splendid band of amateurs who, in spite of bureaucratic red tape, are doing their bit to keep alive that fine British pioneering spirit". Arnold Bradley's remarks were typical of many letters on this subject in the late twenties, and he continued "Let the BBC highbrows and "nobrows" listen to PCJJ's radio acknowledgements of regular reception by Britishers in the Antipodes-that should convince them that Empire broadcasting is possible". In another letter, reader J. D. Cumming, Cape Town, (W W 14.9.27) aimed at Captain P. P. Eckersley, then Chief Engineer of the BBC, said, "It is a pity that Mr Marcuse and Captain Eckersley cannot exchange enthusiasm for a few months".

BBC Experiments

The first experimental transmissions by the BBC to the British Empire took place on November 5th, 1927 from their experimental short-wave station at Chelmsford, 5SW, and as World at Their Finger Tips points out; "Marcuse had shown the advantages to be gained by using wavelengths around 32 metres for Empire broadcasting. The BBC began their overseas service on 20 metres with the result that for a long time signals from 2NM were received more consistently and more strongly in Australasia and other distant places than were those from the BBC shortwave station at Chelmsford".

Reader, J. W. Riddiough, Menston, Yorks, writes (WW 21.9.27), "Bravo, 2NM. If the BBC cannot or will not do it, there are amateurs who can and will".

To find the most suitable times for broadcasting to Australia the BBC engineers at Chelmsford conducted a 36 -hour continuous transmission test which was monitored by Amalgamated Wireless (Australasia) Ltd from 12 noon GMT on November 5th, 1927, to midnight on the 6th. Questions were asked; What proportion of listener's money is being spent on Empire transmissions? and the answer, given to Wireless World by an official at Savoy Hill, "Not a penny, the BBC is collaborating with the Marconi Company in these tests, but we are not spending more money than the ordinary programmes demand. Our part in the experiments is to provide the Marconi Company with broadcast material. As on Armistice day, transmission of this material is also suitable for the British public; the Dominions merely have the opportunity to share it". Gramophone records were broadcast throughout the 36 -hour tests.

Wireless World, (21.12.27) suggested that shortwave enthusiasts should make a point of listening for the transmissions from 5SW, Chelmsford, on a wavelength of 24 metres at 12.30 to 1.30 pm and 7 pm to midnight GMT. The programmes were relayed by line from London and consisted of the ordinary transmissions from 5XX. One valuable and possibly unique report came from H. A. Hankey, representative of the Wireless League, who, in the spring of 1928, made a voyage to the Antipodes, via South Africa, on the steamer Demosthenes of the Aberdeen Line. Hankey was permitted to install an Eddystone 3 -valve (Det. and 2 l.f.) short-wave receiver, fed by a 50 ft wire aerial, in the ship's navigation room just below the bridge. During the voyage he checked the Chelmsford signal at 35 different points en route and the results were published, along with a map indicating the check points, and a log of the respective signal strengths, in Wireless World (27.6.28). While off Loanda he heard a strength 9 signal of a special broadcast from the Albert Hall at which the Prince of Wales was present.
Along with international broadcasting came a demand for new short wave receivers and Wireless World (29.6.27) devoted $6^{1}{ }_{2}$ pages to the detailed construction of a 2 -valve receiver, by H. F. Smith, covering 20 to 70 metres, for Empire Broadcasting. Some 18 months later, the same author took another 6 pages to promote The New Empire Receiver, which had 3 valves, (Det. and 2 l.f.) and 3 plug-in coils for ranges $23-45$ metres, $38-90$ metres and an "ultra short-wave" band $16-28$ metres. The approximate cost of the components, including cabinet, but without valves and accessories was $£ 7.2 \mathrm{~s} .6 \mathrm{~d}$. Early in 1929, Burndept produced their Empire Screened Four, "A Short-Wave

Receiver with Screened-grid H.F. Amplification" covering $20-48$ metres. The circuit consisted of a screened grid h.f. stage followed by a leaky grid detector with reaction and two l.f. stages; the price, $£ 25$, exclusive of royalty, valves and batteries.

Receiver Designs

Somewhat different to the Short-Wave 2 described by H. B. Dent, Wireless World (4.11.32) covering from 15 to 80 metres with 5 plug-in coils. The blueprint was obtainable from $W W$ for 1 s.6d, post free, the receiver was available for inspection at their Editorial Offices in Fleet Street and the approximate cost of the parts, excluding valves, was $£ 4.12 \mathrm{~s} .0 \mathrm{~d}$.

For some years, up until the end of 1924, Wireless World was the official organ of the Radio Society of Great Britain, and in July 1925 the first issue of the T and R Bulletin, forerunner of today's Radio Communication, was published at the instigation of Henry Bevan Swift, G2TI, and Gerald Marcuse.

In later years the Marcuse family moved to the picturesque seaside village of Bosham, Sussex, where today, outside the church stands a teak seat on which is a bronze plaque inscribed:-"In Memory of Gerald Marcuse, G2NM, Pioneer of Empire Broadcasting, President RSGB 1929-30", accompanied by the badges of both the RSGB and RAOTA. This memorial seat was handed over to the Chairman of Bosham Parish Council (Mr Frank Parham) by representatives of the Radio Amateur Old Timers' Association at a short ceremony outside the church on July 21st, 1962. In the same year RAOTA also arranged for a commemoration plaque to be installed at Gerry's former home in Caterham which reads:-"From this house Gerald Marcuse, G2NM, inaugurated Empire Broadcasting in September 1927".

The QSL card of special event station G2NM, operating from Bosham, West Sussex, on 24/25th June, 1978

To commemorate the 50 years of Empire Broadcasting, the Chichester and District Amateur Radio Club are operating a station from Bosham on June 24th and 25th, and have a special QSL card to mark the occasion. Although they will be active on 2 m , G8NMF, they intend to concentrate their efforts on the DX bands, as Gerry did. Owing to the limited space available, people wishing to visit the station must first contact Terry Allen, G4ETU, QTHR, to make arrangements.

To:- READERS PCB SERVICES LTD, PO BOX 11, WORKSOP, NOTTS

Please supply PCB/s as indicated by tick/s in box/es......

1ssue	Prolect Ref	Price P/P
Dec 75	Sound-To-Light Display DN0798	1-15+12 \square
Dec 75	Disco System, Amp. (2 req'd) each AM0421	4-40+22 \square
Dec 75	Dleco System, Light Modulator AM0423	3.50+22 \square
Mar 76	CMOS Crystal Calibrator AM0438	1-19+12 \square
July 78	Disco Preamplifler A003	0.65+12 \square
Oct 76	Digltal Car Clock (set) A011/012/013	2.58+12 \square
Oct 76	Interwlpe DN8JM	0.80+12 \square
Oct 76	Video-Writer (set) D002/3/4/6 A007	$21 \cdot 44+50 \square$
Nov 76	Cirtest Probe A018	0.48+12 \square
Nov 76	Burglar Alarm A019	0.50+12 \square
Dec 78	Chromachase A021	$5 \cdot 70+22 \square$
Jan 77	Oscilloscope Calibrator A023	1.25+12 \square
Apr 77	Gas/Smoke Sensor Alarm A028	0.65+12 \square
May 77	2-Way Intercom D019	1-28+12 \square
May 77	Protected Battery Charger A027	$2 \cdot 38+12 \square$
May 77	Seekit Metal Locator A031	3-38+12 \square
June 77	Versatlle AF Generator A033	2.38+12 \square
June 77	Tele-Games D029	3.22+18 \square
July 77	20W IC Amplifler A034	$1 \cdot 38+12 \square$
July 77	Radlo 2 Tuner A035	1-68+12 \square
July 77	Digital Clock Timer A038	3-28+12 \square
Aug 77	Shoot (Telegames) D035	1.55+15 \square
Aug 77	Atomic Time Receiver D038	2.65+15 \square
Aug 77	Morse Code Tutor Cards (SRBP) A037	4.75+18 \square
Sept 77	Jubilee Electronic Organ A038	19-00+75 \square
Sept 77	Electronic Car Voltage Regulator D037	1-25+12 \square
Oct 77	Audio Level Indicator D039	0.88+12 \square
Oct 77	Sine-Square Wave Generator D040	2.35+15 \square
Nov 77	Laboratory Power Supply A039	3-50+12 \square
Jan 78	Direct Conversion Receiver D043	1-85+15 \square
Jan 78	Proportional Power Controller DN9JM	0.78+12 \square
Mar 78	Audio/Visual Logic Probe R001	1-40+15 \square
Apr 78	Europa Stereo Amplifler R002	9.55+45 \square
May 78	DX'ers Audio Filter D001	2-35+15 \square
June 78	Bovington Tank Game R006	$3.80+20 \square$
June 78	Audio Distortion Meter (set) R007/8/9/10	6.75+25 \square
June 78	Darkroom Timer R011	1.55+15 \square
July 78	Avon Transmitter \quad R015/18/19/20	$5 \cdot 10+40 \square$
July 78	Digital Lock D002	1-25+15 \square
July 78	Morse Tutor R014	2.35+15 \square
Post and packing ls for one board or set of boards. Prices Include VAT. Remittances with overseas orders must be sufficlent to cover despatch by sea or air mall as required.		
I enclos	Postal Order/Cheque ACCESS weico	ome. ber only.
No.....................		
for f........... made payable to READERS PCB SERVICES LTD		
NAME		
ADDRESS .		
...		
.. Post Code.............		
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.		

Constructors of electronic kits come in all varieties, as well as all shapes and sizes. What I mean is, for some the actual job of constructing a project and getting it going is what provides interest and gives them satisfaction. For others, this is only a means to an end, what they want is a finished disco or a 2 metre transceiver at less cost than the readymade commercial equivalent. For these, things are very much easier than they used to be, with printed circuit boards and all components available by return of post. Gone is most of the sweat of "chassis bashing", often undertaken with woefully inadequate tools. (Have you ever made holes for five octal valve holders in a $16 \mathrm{~s} . \mathrm{w} . g$. aluminium chassis with no more than a 4BA clear twist drill and a penknife?).

Of course, the two categories of constructor mentioned are opposite extremes of a spectrum. For example, hams and SWLs who make their own gear are usually equally absorbed in its design, construction, and mode of functioning on the one hand and in its operation and the contacts made with it on the other.

Whichever category you fall into, we all have to get interested in "how it works" when it doesn't, if you see what I mean. It can be very disappointing to make something up-a radio for example-only to be greeted by a sullen obstinate silence when it is switched on! Sometimes, visually checking everything over carefully again will reveal the fault, but regrettably this is rare. In this predicament, test equipment is the answer and of course the most basic item is a good multimeter, with a sensitivity of at least 10,000 ohms per volt. This enables all the d.c. conditions in a circuit to be checked out and it is surprising how often when they are put right it all works perfectly.

Even more powerful as a troubleshooting tool than a multimeter is an oscilloscope, especially if it has
calibrated Y-sensitivity and time-base ranges. A stabilised power supply, a signal generator etc., each is a godsend if at hand when needed. With designs for such things being published from time to time in PW, the enthusiastic electronics constructor nowadays has the opportunity to build up a first-class set of test equipment for the home laboratory.
Talking of test equipment, when walking through the lab the other day, Point Contact noticed a knot of curious engineers crowded round a bench. They were trying to guess the purpose of an object rescued from the scrap heap by one of the younger engineers. The cover had been removed exposing a few components and a mains transformer. This had the primary and secondary mounted side by side, separated by an extra limb of core laminations. On the front panel was a knob labelled ADJUST SPARK GAP and lower down there were two leads coming out. One was a threecore mains lead, the other terminated in the handle of what might have been a short stubby poker or a science

[^1]fiction death-ray gun. The only other item on the front panel was a toggle switch, prosaically labelled MAINS ON-OFF.

No one could think what the object was until the word TESVAC on the front panel prodded my memory. Many years ago, Point Contact used to use something similar for TESting VACuum systems. The fat insulated body of the poker contained an aircored transformer or Tesla coil, the well-insulated high potential output lead of which projected three inches beyond the end of the SRBP body and terminated in a metal tip. We stuffed the end of the mains lead (the plug had disappeared) into the nearest 3-pin 5 -amp socket-and nothing happened. Turning the knob, however, produced a fine fierce spark sizzling away continuously and a high-voltage mica capacitor picked of the h.f. components of this and fed them through the screened lead to the Tesla coil. Here the voltage was stepped up further to, I suppose, hundreds of kilovolts resulting in a continuous mauve corona discharge from the metal tip, while the lab rapidly filled with the pungent smell of ozone.
Oh yes-how does it test a vacuum? Well, lab vacuum systems are usually made of glassware and the inevitable leak is at a greased flange joint or through a sub-microscopic pin-hole. When your vacuum system won't pump down to as hard a vacuum as you'd like, you wave the metal end of the vacuum tester all over the glass surfaces. The air in the vicinity of the leak is ionised and as its pressure falls on passing through the leak into the near vacuum, it ionises much more readily. Great mauve streamers appear inside the glass, sprouting from the otherwise invisible leak.

Owing to the high source impedance the tester is quite safe; one can draw a three inch long spark to one's fingertip with no worse result than a sensation like a pin prick!

During the past few years something of a revolution has taken place in the field of amateur electronics. The valves and transistors of the past have been overtaken by a wide range of integrated circuits (i.c.s) or "chips" as they are often called. These new devices make possible amateur electronic projects which, only a few years ago, would have been just science fiction dreams. The integrated circuits available range from simple two- or three-stage audio amplifiers up to microprocessors with some 20,000 or more transistors packed on to a tiny chip of silicon.

Some integrated circuits, such as those for audio, radio or television applications, are linear types and they work in much the same way as their discrete component counterparts. It will be noticed however, that the great majority of i.c.s advertised have type numbers in the 74 and 4000 series. These are logic devices originally developed for use in digital computers and industrial control systems.

What can Logic do for us?

So all of these digital logic chips are available but how can they be used in amateur projects? Let us consider radio communication. Amateur radio operators and keen short wave listeners often need to measure frequencies accurately. The old methods of using heterodyne wavemeters, calibration charts or even crystal markers work quite well but they are rather inconvenient. Modern communications receivers often indicate the frequency, to perhaps the nearest 100 hertz, as a number on a digital display. This facility is achieved by using logic circuits.

Basically all we need do to measure frequency is to count the number of cycles of the signal that occur in an accurate time period. If the time period is a millisecond then the answer will be the frequency in kilohertz. Logic devices are very good at counting things and measuring time periods.

To measure time we simply count down from an accurate crystal-controlled oscillator. The count can be arranged to provide the answer in hours, minutes and seconds. In fact this is precisely how a digital watch or clock works.

Many amateur radio stations use the radioteletype (RTTY) mode of communication where signals from a typewriter-style keyboard are converted into coded patterns of pulses and then transmitted. At the receiving end, the pulse patterns are decoded and the message is printed out as text on a sheet of paper. Because printers are rather expensive some stations display the messages as text on a modified television receiver. Extensive use is made of digital logic for coding, decoding and displaying the RTTY messages. Morse code, still used by many radio amateurs, can be dealt with in the same way. Messages, typed on a
keyboard, are converted by logic to perfect Morse code and at the receiver the signals are decoded and displayed as text on a TV screen.

Logic is very good at sequential control tasks such as running a model railway, controlling a machine, or even switching the lights on a Christmas tree. There are many ways we can use this capability for amateur projects.

Recently logic has crept into television in the form of TV games and Ceefax/Oracle decoders. There are some TV sets which can display the time or channel number on the screen by using logic. In other cases, digital techniques may be used for tuning and for remote control. Even those touch switches on the front of some sets use digital logic.

Some large scale integrated (l.s.i.) digital circuits have been specially developed for use in electronic organs, digital multimeters, digital clocks and calculators. By far the most complex of the logic devices are microprocessors which, unlike the more specialised circuits, can easily be programmed to perform an almost infinite variety of tasks perhaps only limited by the imagination of the user

People sometimes regard digital circuits as rather mysterious. It is true that when we enter the digital world we shall meet some new concepts, new devices, new circuit symbols and a whole new vocabulary of technical terms. In fact, however, digital systems are not too difficult to understand, and in this series we shall explore the way in which they work and some of the ways in which they can be used.

Digital Signals

First, let us take a look at the signals involved in a digital logic system. Readers will already have met analogue signals, such as those in an audio amplifier, where the level of the voltage or current in the circuit varies in proportion to the signal level. Thus the amplitude can vary continuously over the whole range of signal levels, to give a virtually infinite number of discrete voltage or current levels.

In contrast to the analogue case the signals in a digital logic system can have only two possible levels. One of these is called the "zero" or 0 level, and this corresponds to the signal being turned off. The second level is called the "one" or 1 level and is equivalent to the signal being turned on.

Sometimes in the literature and in data sheets for logic circuits, other names may be used to describe these two signal levels. As an example the 0 level may be referred to as the "low" or "false" level, but it will still have the same value as the 0 level. Alternative names for the 1 level are "high" and "true" respectively. In this series we shall use the 0 and 1 terminology since it seems to be the most popular.

Since logic devices first appeared a whole series of different families of logic, each with their own special characteristics, has been developed. As a result actual voltage or current levels representing the 0 and 1 signals can have a wide variety of values according to the particular family of logic being considered. Over the years some families of devices have become obsolete and others have never become available to the amateur user.
The two commonly met ranges of logic as far as the amateur is concerned are the 74 -series TTL (transistor transistor logic) and the 4000 -series CMOS (complementary metal oxide semiconductor) types. Sometimes 900 -series DTL (diode transistor logic) may be met, but its signal levels are virtually the same as those for TTL.

In the case of TTL, where the devices run from a +5 V supply, the 0 level is usually around 0 to 0.3 V whilst the 1 level is normally about +4 V to +5 V . In the case of CMOS logic, the circuits will operate quite reliably over a range of supply voltages from +5 V up to +15 V . Here the 0 level is effectively 0 V and the 1 level is virtually the supply voltage level. Later in the series we shall examine the logic levels rather more closely to see the effects of noise and loading on the performance but for the moment, assuming that we use either TTL or CMOS devices with a +5 V supply, we can say that the 0 level will be 0 V and that the 1 level will be +5 V for all logic signals.
In a typical logic system there may be many input signals, each of which may be at either 0 or 1 , and these are combined together and operated upon in various ways to produce a series of digital output signals which will also be at either 0 or 1 .

Let us relate this to a simple real-life situation. Suppose we have a hot drinks vending machine and we want to produce a cup of coffee. First of all we shall need a "coffee" input which we shall call signal C. When C is at l it will oause a valve to open and pour a measured amount of coffee into the cup. Now some people like their coffee white whilst others prefer it black, so we need a second signal M to control the "milk" input to the cup. For black coffee M will be 0 (no milk) and for white coffee M will go to l to allow a shot of milk to be added to the coffee in the cup.

The third constituent of our cup of coffee may be sugar so we might have a third input labelled S which adds sugar to the coffee when S is set at 1 . Here we may run into a problem because some people prefer to have more sugar than others and at present we can only cater for no sugar at all or some sugar. We need some arrangement that will allow us to produce, say, one, two or three spoonsful of sugar as desired.

Suppose we have two inputs for sugar which we shall call S1 and S2. We can arrange that when S1 is at l it will cause one spoonful of sugar to be added. The valve controlled by S2 however is arranged to add two spoonsful when it is opened. Now if we set both S1 and S2 to 1 there will be three spoonsful of sugar added to the cup. Other combinations of the states of S1 and S2 will allow us to have two, one or no spoonsful of sugar in the coffee. This principle of

Fig. 1: An electrical AND gate

Fig. 2: A diode AND gate

having several "weighted" logic inputs to represent one input signal could be extended to give a finer control of the quantity of sugar selected. We shall see later that in this way analogue signals can be represented as a combination of several "weighted" digital signals.
Now by choosing various combinations of these four input signals C, M, S1 and S2 our drinks machine can be made to produce a wide variety of different combinations. Suppose we want to have a moderately sweet black coffee. The states of the four input signals might be set as follows:

$$
\begin{aligned}
\mathrm{C} & =1 \\
\mathrm{M} & =0 \\
\mathrm{~S} 1 & =0 \\
\mathrm{~S} 2 & =1
\end{aligned}
$$

Readers can work out the other possible combinations for themselves and will find that some are not very palatable. Will it work? Some of the latest drinks vending machines in the USA do in fact use logic, and microprocessors, to control their operation.

The "AND" Gate

Having seen how the digital signals themselves can be arranged, let us now examine some of the actual logic elements and see how they work. A large part of any logic system is likely to be made up from elements called "gates" so let's start with them. A gate is basically a logic unit whose output state is directly related in some way to the combination of logic signals applied to its inputs.

Suppose we have an electrical circuit consisting of a switched table lamp which is plugged into a switched wall socket. The circuit will be as shown in Fig. 1. It is obvious that the lamp can light only when both of the switches are closed to complete the circuit.

This electrical circuit is in fact performing the same function as a logic gate. Here the output signal is the light from the lamp so that the output is at 1 when the lamp is lit. The inputs to the gate are represented by the two switches. When a switch is closed that input is at 1 whilst an open switch gives a 0 input. With this arrangement we can get a 1 output (lamp lit) only when switches A AND B are both at 1 (closed). A gate performing this particular function is called an AND gate for obvious reasons.

We can produce an all-electronic AND gate by using diodes arranged as shown in Fig. 2. This is a 2 -input AND gate of the type used in digital computers before the advent of digital integrated circuits.

Suppose both inputs A AND B in Fig. 2 are set at 0 (0V). Both diodes D1 and D2 will conduct and draw current through the load resistor R. Assuming that the resistor R has a much higher resistance than the forward resistance of the diodes, the voltage at the output point will fall to virtually zero giving a 0 output state. If we now set input A at $1(+5 \mathrm{~V})$, diode Dl will cut off but provided input B is still at 0 diode D2 will now take up the current originally drawn by D1 and the output level will remain at 0 .

When both A AND B inputs are set at 1 both of the diodes will cut off and no current will flow in R. Now the output level will rise to +5 V to give a 1 output state. Thus the diode circuit produces the same logical results as the electrical lamp and switch circuit.

If we needed to have more input signals these could be provided by merely adding more diodes. With more inputs the 1 at the output should only occur when all of the input lines are at the 1 level.

Truth Table

A convenient way of setting down the various logic conditions in a gate circuit is by means of a Truth Table. In this table all of the possible combinations of input states are listed, together with their corresponding output states.

For a two-input AND gate such as that shown in Fig. 2 the truth table would be as shown in Table 1. In the case of an AND gate which has three inputs the truth table will have eight possible states as shown in Table 2.

TABLE 1

Input		Output
A	B	\mathbf{Y}
0	0	0
1	0	0
0	1	0
1	1	1

TABLE 2

Input A			B
0	0	C	\mathbf{Y}
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

Try working out the truth table for a four-input AND gate and you should end up with 16 combinations but the output will be at 1 only when all of the inputs are at 1 .

Integrated Gate Circuits

In an actual TTL 2-input AND gate the circuit is roughly as shown in Fig. 3 and is much more complex than our simple diode gate.

The gate action proper occurs in transistor Tr 1 which has two emitters. This stage acts in much the same way as the diode gate so that the transistor

Fig. 3: A typical TTL AND gate
stops conducting if both emitter inputs are at 1. Transistors Tr5 and Tr6 form a "totem pole" output stage which gives a low output impedance and fast switching. For a 1 output $\operatorname{Tr} 5$ is "on" and $\operatorname{Tr} 6$ is "off" and vice versa for the 0 state. Thus the output is clamped to either 0 V or +5 V through one or other of the output transistors. The other transistors in the circuit provide the required drive signals for the output stage.

In the 4000 -series CMOS circuit a 2 -input AND gate would be made up roughly as shown in Fig. 4. In this circuit the series n-channel transistors provide the AND gate action operating in much the same way as the series switches in our electrical circuit. The p channel f.e.t.s $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ are used to pull the point X up to the supply rail if either of the inputs is at 0 . When both inputs are at 1 Tr 3 and $\operatorname{Tr} 4$ will both conduct to bring point X down to 0 V . The output stage in this case is a push-pull complementary pair. If X is at $0, \operatorname{Tr} 6$ will be "off" and $\operatorname{Tr} 5$ will be "on" so the output terminal will be clamped to the positive supply rail to give a 1 output. If X is at 1 the output level will be clamped to 0 via $\operatorname{Tr} 6$. In some cases there may be several other stages to provide full drive for the output stage but the operation is much the same.

For more inputs a TTL gate would have more emitters on Trl, whilst a CMOS gate will have more transistors in series.

Symbol for an AND Gate

Obviously we cannot draw out the complete circuit for every gate so a special symbol is used to indicate an AND gate. This is shown in Fig. 5(a) for a 3-input gate. Where there are a lot of inputs the gate symbol may be modified as in Fig. 5(b) for drawing convenience.

Fig. 4: A typical CMOS AND gate
continued on page 60

© 'purbeck'

Part 4

IAN HICKMAN

This month's instalment deals with the construction of Board 3, the Y amplifier. This board uses a ground plane, in view of the high gain and wide bandwidth. With a ground plane, a low impedance earth return is available everywhere, ensuring that decoupling capacitors are fully effective.

As double sided boards were ruled out on the grounds of excessive cost, the component interconnections use conventional wiring. It may well be possible to produce a successful single sided printed wiring layout, but the author lost a considerable amount of time trying to do just this and therefore returned to the ground plane construction used in a previous oscilloscope design. Figs. 3 and 5 show the component layout and wiring, which should be followed closely to avoid instability. Note that i.c. sockets must not be used.

Up to this point, the components mentioned have all been fairly conventional, apart from the special mains transformer and the tube itself, of course. On this board we encounter some more out of the way components, but their use is more than justified by the performance which is obtained.

Take the dual junction gate f.e.t. type E421 (Siliconix) used in the input stage for example. The low temperature coefficient of input offset results in no drift of the trace level from switch on, even on the most sensitive setting of about 2.5 mV per division.
This dual f.e.t. acts as a source follower, providing the necessary high input impedance for use with the
frequency compensated input attenuator S3 and a low output impedance to drive the 733 video amplifier IC301. Network R301, R302 and C301 protects Tr30la from excessive input voltages without causing deterioration of high frequency response. R303, R304 and R306, R307 provide d.c. level shifting of Tr301's outputs to bring them within the input range of IC301. They result in a small degree of attenuation of the input signal at d.c. and are therefore not bypassed, to keep the a.c. and d.c. gains equal.

The purpose and adjustment of VR301 is covered in the last article, and at this stage it should simply be set to mid-travel.

The 733 video amplifier IC301 forms the main gain block, and its gain is switched by S 301 to provide an overall sensitivity for the complete instrument of 5 , 10 and $20 \mathrm{mV} /$ division. A fourth position of S301 brings VR302 into circuit, providing a continuously variable gain facility and incidentally providing a maximum sensitivity of approximately 2.5 mV per division.

The bandwidth of the 733 varies with gain, but even at maximum gain it is 40 MHz , so that in practice the bandwidth of the complete instrument is determined entirely by the Y deflection amplifier Tr303 to 308.
Note that owing to its common mode rejection (typically 60 dB even at 5 MHz) the output of IC301 is balanced, even though an unbalanced input is applied at pin 1.

Fig. 1: The circuit diagram of the Y amplifier, clearly showing how the essential bandwidth is achieved; gain block IC301 couples to the Y deflection amplifier, and the R326 by-passing C/R network maintains upper frequency response. Note that $\mathbf{R} 329$ and R332 are connected to the -6 V supply and that the unmarked resistors in the collector circuits of Tr307 and Tr308 are both 47Ω (R327, 328)
$\operatorname{Tr} 302$ is the trigger pick off amplifier. This is by no means a trivial function, as the action of an oscilloscope's trigger slicer circuit can easily reflect back a small disturbance into the Y amplifier. This results in slight notches in each cycle of the displayed waveform, which move up and down as the Trigger Level control is varied. Here, R311, R312 attenuate the signal by a factor of 2 and emitter follower $\operatorname{Tr} 302$ acts as a buffer.

An emitter follower provides only limited reverse isolation at high frequencies, but disturbances emanating from the trigger circuit, before they can reach the Y deflection amplifier input, are also attenuated by the ratio of R311 to the output impedance of IC301. This ratio is very much greater than 2:1, as IC301's output stages are emitter followers.

Further buffering is provided by another emitter follower and $2: 1$ attenuator on Board 4, described next month. R314, like the 47s resistors in the Y
deflection amplifier, is an anti-parasitic stopper resistance.

The bandwidth of an oscilloscope is usually limited by the Y deflection amplifier. Certain steps can be taken to maximise the bandwidth and a fairly obvious one is to use symmetrical deflection, i.e. to drive the deflection plates in antiphase. For if only one of the two plates were driven, twice the voltage swing would be required, so needing twice as high a collector supply voltage.

For a given deflection transistor dissipation, we would then have to halve the standing current through the output transistor. Twice the voltage at half the current means four times the collector load resistance and this would result in a quarter of the bandwidth!

The Y output transistors $\operatorname{Tr} 303$ and $\operatorname{Tr} 304$ are used in the grounded base mode. The low input impedance at their emitters results in virtually no signal voltage
swing at the collectors of $\operatorname{Tr} 305$ and $\operatorname{Tr} 306$. There is therefore no Miller multiplication of their internal collector/base capacitance, minimising capacitive loading on IC301's outputs.

The collector/base capacitance of a BF336 is approximately 3.5 pF and this, together with the Y plate capacitance of the 3BPI c.r.t. and wiring strays, results in a total capacitive loading at the output of $\operatorname{Tr} 303$ (and $\operatorname{Tr} 304$) of around 10 pF . A peak to peak voltage swing of around 90 V is required to provide a reasonable degree of overscan and choosing a conservative value of dissipation for $\operatorname{Tr} 303$ and 304 leads us to a standing current for each of just over 15 mA , with $3 \cdot 3 \mathrm{k} \Omega$ collector loads. Allowing a minimum Vce of 10 V to maintain a good high frequency response leaves us with an h.t. requirement of 120 V -the excess 30 V is dropped by R 316 .

\star components

Now $3 \cdot 3 \mathrm{k} \Omega$ and 10 pF gives a time constant of $3 \cdot 3 \times$ 10^{-8} sec corresponding to a -3 dB point of 5 MHz and this is in fact the measured -3 dB frequency of the oscilloscope for full screen Y deflection. With suitable inductive peaking in the collector circuits, this could be extended by about 20 per cent to 6 MHz or a shade more if overshoot were accepted on fast edges. This bandwidth would be independent of the amplitude of the Y deflection. However, in this design a different approach has been adopted. The voltage gain of the Y deflection amplifier from the bases of $\operatorname{Tr} 305,306$ to the collectors of $\operatorname{Tr} 303,304$ is the ratio of the collector to collector load resistance $(3 \cdot 3 \mathrm{k} \Omega+$ $3 \cdot 3 \mathrm{k} \Omega$) to the emitter to emitter resistance (R326, 220 Ω).

A gain of 30 for a cascade stage is quite modest, considerably more gain could be obtained by using a lower value for R326.

Advantage has been taken of this extra available gain by partially bypassing R326 at high frequencies with capacitors C309, 310, 311 and 314. This provides increased output current swing at $\operatorname{Tr} 303, \operatorname{Tr} 304$ collectors at high frequencies to charge the capacitance of the Y plates, so maintaining the frequency response level.
This substantially reduces the rise time when displaying pulses or square waves, but there is a limit.

After all, the available current through $\operatorname{Tr} 303$ and Tr304 together is set by the tail resistor R333. All the input signal can do is alter its distribution between them.
If due to the large size and fast risetime of an input square-wave, the current needed to charge the deflection plate capacitance quickly enough exceeds the tailcurrent, then we cannot faithfully display the waveform.

The "in" phrase for this is to say that the output voltage of the Y deflection amplifier is "slew-ratelimited". If either the amplitude of the input were

(c)

$$
\sqrt{4}
$$

Fig. 2: An ideal square wave is shown in (a) with typical degradations which occur in practice shown in (b). At (c) are the output waveforms from a slew-rate-limited amplifier for three increasing values of input

Fig. 3: The component layout of the Y amplifier board. Note that the components are mounted on the copper ground plain side of the board
reduced or its risetime were longer, the output voltage would be able to follow fast enough and the c.r.t. would display the waveform accurately. This is demonstrated in Fig. 2(c) and in fact for four divisions of vertical deflection (1_{2} screen) the -3 dB point is 11 MHz , for two divisions 17 MHz and for one division a remarkable 21 MHz . In other words, the smaller the amplitude of the signal, the higher the frequency which can be displayed. Now many readers will know that a square wave consists of sine waves, i.e. a fundamental and its third, fifth, seventh, etc., harmonics, the amplitude of the harmonics being

Several readers have enquired about the possibilities of using alternative tubes for Purbeck. We cannot advise anyone as to the suitability of components other than those specified. Not only will the mechanical construction need alteration, but revised amplifiers and e.h.t. supplies will also be required.

Fig. 4: The copper ground plain pattern of the Y amplifier board
smaller, the higher their frequency.
In other words, the amplitude/frequency characteristic of the amplifier matches the requirements for displaying square waves and pulses. For a vertical deflection of 1 division, the rise time of the oscilloscope is 20 ns , so the display of a 5 MHz square wave looks commendably square, whilst even a 10 MHz square wave looks as if it is obviously meant to be

WARNING

Extra care must be taken when working on any part of this instrument while power is switched on. 1100 volts can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket
square! L301, 302 provide a modest degree of peaking, as do L1 and L2, but are not in any way critical. L301, 302 are 35 turns of 38 s.w.g. wire on $100 \mathrm{k} \Omega$ carbon composition resistors. Ll, 2 (see Part 3) are similarly constructed with 15 turns of 38 s.w.g. wire. R308 and R325 shape the peaking provided by C311, 314 to give a flat frequency response and minimise overshoot and ringing on fast edges.

The emitter current of $\operatorname{Tr} 305,306$ is provided by a long tailed pair TR307, 308. These provide a convenient means of injecting the Y shift voltage via: R315. If the Y shift were injected ahead of IC301, the position of the trace would change when the Y gain selected by S301 was changed.

The author has not seen six transistors used in this configuration before: readers might like to think up a name for it-a long-tailed cas-cascode perhaps.

Fig. 5: Back wiring of the board, in relation to the components. This layout of the wiring should be followed to avoid any possibility of instability occurring

When Board 3 has been assembled, check each power supply pin to 0 V with an ohmmeter to make sure none is short circuit and centre all pre-set pots and C309. Then plug it into the main frame, disconnect the Y plates from the temporary $47 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistor chain across the +150 V STAB supply (see last month) and connect them via R21, L1 and R20, L2 sockets to pins Y1 and Y2 of the board.

Don't forget the ground link at the rear of the board either. You can also put up a crude timebase of sorts by disconnecting one of the X plates from the $47 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistors and reconnecting it via a $47 \mathrm{k} \Omega$ resistor. $\mathrm{A} 0 \cdot 1 \mu \mathrm{~F}$ capacitor from the Y plate to pin 2 of Board 1 will give a small 50 Hz sinusoidal X deflection. So, plug in briefly and check that all
stabilised supply voltages are normal, indicating no short circuits anywhere.
It should be possible to centre the trace vertically with the Y shift control. If not, adjust VR301 as necessary. With a suitable range selected at S 3 , feed in a sine wave from an audio oscillator. When its frequency is carefully adjusted to exactly 50 Hz , $100 \mathrm{~Hz}, 150 \mathrm{~Hz}$, etc, a stationary pattern known as a Lissajous figure should be obtained. At 50 Hz , this will vary from a line to an ellipse and more complicated figures will be obtained at higher frequencies.
This simple test will enable you to check that the Y amplifier is basically operational and to test that the Y shift works, also that the gain can be varied in steps by S301 and in position 1, by VR302.

Next month we will look at the construction of Board 4, which carries the timebase circuits.

The Twelfth Instruments, Electronics and Automation Exhibition (IEA/ Electrex) was held at the National Exhibition Centre, Birmingham, from 13-17 March, and about 300 companies demonstrated devices and components dedicated to improved efficiency in a variety of electronic applications.

This was an international event, but dominated by British manufacturers, and if the exhibition can be said to have suggested one particular theme, if would probably have been process control in its widest sense. Consequently, although there was little of direct relevance to the home constructor, individual elements and new component applications showed some of the latest developments of interest to anyone involved in electronics.

Graham and White's micropro-cessor-controlled tachometer.

Connectors are of course a perennial necessity, and Souriou displayed their latest range of high quality connectors for printed circuit and rack mounted applications, these being manufactured to BS, DIN, and VG
specifications. Less basic in interest, except perhaps for the housewife eventually, was the display of advanced digital weighing systems with microprocessor control by W. and T. Avery, who have been in the field for many years. Amongst the units available were recording systems fo: load-cell weighers with options such as gross, net, and tare ticket printing, remote cut-off, data outputs, and axle-weighing facilities.

Elsewhere in technical processes, Graham and White showed their new tachometer with memory hold. This is an optical (hand) instrument with microprocessor control, which can be held up to 600 mm from the shaft being checked. Reflected light pulses are converted to a meter reading, and the measured level can be "held" for 30 seconds.

Solid State Controls were justly proud of their 5 kW direct temperature controller, which features proportional control in the $-100^{\circ} \mathrm{C}-+1600^{\circ} \mathrm{C}$ range, and is expected to replace more complex controllers in industrial situations.
Of more direct interest to us, Semiconductor Specialists featured a range of V-MOS power transistors by Siliconix which utilise the MOS process in power transistors for the first time. These devices can be fully driven by the output of a logic gate or microprocessor to deliver up to 2 amps from a 90 V rail, making them suitable for audio and r.f. power amplifier applications. Broadly in the same field, Eagle International presented current extensions to their already large range, including the new K1400 high accuracy multimeter (20,000 ohms per volt) along with a new selection of public address amplifiers and associated items.

Although the exhibition was undoubtedly effective in bringing many new developments to the public eye, and was well organised in terms of balance, the same could not be said

The Eagle K1400 multimeter.
of the more human facilities provided by the Exhibition Centre itself. Food and drink was expensive and uninteresting for the captive thousands (eight miles from the city centre!), while the stereotyped snack and drinks bar-identical in each hall-provided little that could be considered conducive to productive conversation or inter-stand relaxation.

At least Pye-Ether provided some relief, however. By means of the lucky ticket system, it was possible to win a bottle of champagne once an hour. The method of selection was not revealed, and although the random pin is the approved traditional method, experience of the show might indicate a suitable ERNIE type microprocessor at the centre of this important operation. Technology rules-OK?

Ted Parratt

If this magazine has maintained one central aim in the forty-odd years of its existence, it has been that of covering the needs and interests of those involved in constructing their own "wireless" equipment. Its identity and direction as a constructor's journal is not now so unswerving as it was in the heyday of sound broadcasting, and a diversity of technical innovations and developments have occasionally deflected it into other channels of activity.

Its current direction may be seen as a result of expansion to cover the interests of constructors in the domestic aids, home entertainment, test gear, and musical instrument fields, but at the root of its long-term personality there is still a deep involvement in the world of the radio amateur and the enthusiastic broadcast band listener. The "Wireless Show", held at the Victoria and Albert Museum from October to December 1977 and organised by Carol Hogben, Assistant Keeper of Regional Services, in association with the Vintage Wireless Society, must surely have been worthy of its attention.

Neither Oersted in 1820, Maxwell in 1864, nor even Hertz, sometimes regarded as the real "father" of radio experimentation, as late as 1888, could conceivably have imagined the dynamic reaction of manufacturers and designers to the stimulus they had created, nor could they have foreseen the almost architectural excellence represented by cabinet designs of the thirties.

The programme covering the range
of exhibits described the show as "130 Classic Radio Receivers-1920s to 1950 s," and gave an initial photographic glimpse of some of the stylish, yet functional designs which dominated the British radio receiver field.

It would take a great deal of space to give details of all the models shown, but some of the more unusual items were noted. The first one in the show was a Butler Crystal receiver (1922) which featured Vernier capacitor tuning, and was priced at $£ 2 / 10 / 0$ (£2.50). In the same year, Burndept produced their Mark IV Tuner and Ultra IV receiver, which was a valve model, battery operated, driving a Primax pleated cone loudspeaker. One of the first kits, the Cossor Melody Maker receiver, was produced in 1928. This was a 3 valve battery set with horn loudspeaker and cost £7/8/6d. (£7-42 $\frac{1}{2}$).

Moving up into the "quality" class, the Philips 2511 (5 valve) a.c. mains receiver in "Philite" (Philips bakelite) case with cone speaker in heptagonal enclosure, was reputed to offer good value for money at £37/10/0 ($£ 37 \cdot 50$), a considerable amount in 1930.
More mature readers may remember the Ekco Consolette SH25 of 1932, costing 24 guineas ($£ 25 \cdot 20$). This was a 5 valve a.c./d.c. mains superhet designed by J.K. White, and was the first to feature a tuning scale with station names.

Another interesting model was the Ekco "Radiotime" receiver of 1947, which retailed at $£ 24 / 3 / 0$ ($£ 24 \cdot 15$), an a.c. mains superhet featuring
built-in clock and alarm, and this had a strikingly modern appearance. Further unusual receivers included the famous Murphy "Baffle Board" sets of 1946-50, designed originally by A.F. Thwaites. These were console receivers of much improved audio performance, featuring a six valve circuit for a.c. mains in a veneered wooden case.

In a world which has largely been taken over by an enormous quantity of trivia, dominated by scenes (some good, some bad) from the "box", it is refreshing to consider a period when the restriction to sound alone stimulated a powerful reaction of the imagination. While radio still possesses this potential force, it seems unlikely that its exploitation will reach such an exciting pitch as that displayed by the variety of designs evident at the show. Modern receivers are light, efficient, and economical in operation, providing in most cases excellent value for money and a high degree of fidelity. and it is not necessarily a disadvantage that a certain uniformity of shape and function has taken over. Nevertheless, anyone who visited the "Wireless Show" can hardly have failed to experience a sensation of mixed admiration and affection for the designs which represented the parents of high fidelity, a firm base built upon by future generations of engineer and designer in the quest for technical perfection and aesthetic appeal.

It has become almost commonplace in the last two or three years to allow the term "alternative energy" to slip into conversation about the broad base of human technology. As time passes, the vitality of the term will expand, for energy is the life-blood of an industrial society, and the need for a continuously expanding source of this commodity will surely become more deeply felt as production of consumer items expands, and the demand for warm and comfortable dwellings continues.
The coherent reactions of scientists and engineers to these needs found their fruition in the "Energy Show" held at Olympia last autumn, where many companies demonstrated a variety of answers to both the domestic and the industrial thirst for energy.

Although there were one or two somewhat bizarre contributions, such as the converter to produce natural gas from chicken excrement, which is then fed to a compressor and used to fuel a Land Rover, in the main the responses were related to the production of electricity, and the conservation of heat and power generally.
Lanchester Polytechnic demonstrated its wave power system, based upon the "duck" generators pioneered by Stephen Salter of Edinburgh University. Testing of strings of "ducks" is continuing under a twoyear contract with Sea Energy Associates, and plans to test a 10 kilowatt system were well under way in October. The system appears highly viable, and measurements based upon annual averages indicate that the potential energy available from the British coastline should be within the
range of 40 to 70 kilowatts per metre of wave front. Extrapolation of the essential figures (making a conservative assumption of a conversion level of 50% efficiency in the generator devices) shows that it is reasonable to expect that 1 kilometre of Scottish coastline will yield about 35 megawatts of power, sufficient to satisfy the electrical needs of a town of about 80,000 people.

Predictably, a large slice of the proceedings was taken up by stands dealing with solar power. While Lucas provided examples of secon-dary-cell charging systems utilising solar power, (and wind driven alternators), much the most dynamic illustrations were provided by the non-commercial contributors. The silicon solar cell found more public exploitation via the Royal Aircraft Establishment, Farnborough. One of their experimental solar cell batteries, used in an artificial satellite, was arranged so as to provide power directly to a model railway, access to the Sun's rays being at the mercy of the visitor to the stand. In this way, a direct relationship between Sun, cell and train, showing the link with the environment, was imaginatively established.

Another project, of similar value but only shown in model form, was the solar double-glazed panel installed at Wallasey School, Cheshire, used to augment the school heating system.
Perhaps the most controversial aspect of the entire show, however, and this is a personal opinion, was that dealing with the production of electrical power by nuclear means. The efficiency of the system can hardly be doubted since the cost, as
quoted by the UKAEA, is 40% less than from comparable oil-fired stations, and 30% less than coal-fired. However, developments in fast-breeder reactors, and the vital problem of risks from their radioactive waste for future generations, were barely touched upon.
One rather novel exhibit was the National Coal Board's nitrogen operated go-kart. Heat is taken from the air by liquid nitrogen, which then boils, providing pressure for a pneumatic motor. It is hoped that the system can be adapted to power hand tools in mines and on building sites.
In addition to those companies interested in the production of energy, there were also those concerned with saving it. The techniques involved ranged from extensive air curtains for the conservation of heat in offices and factories, and for the maintenance of refrigerated conditions. These included improved insulation methods for domestic applications such as lofts and ceilings, and this section led eventually into a gastronomically interesting stand dealing with economical cooking methods.
Overall the show demonstrated a developing interest in the central problem of energy supply in an expanding community, and also the commercial dynamic which will clearly rise to meet it; most of all though, it displayed the increasingly sophisticated reaction of the inventive minds of engineers to the stimulus of shortage, and if current answers are anything to go by, this challenge will be effectively met.

The ESM 532 20W Power Amplifier

During the past few years integrated circuits which can provide fairly high audio output power levels have become available and one can now obtain up to 20W from suitable monolithic devices. This article describes the new ESM 532 integrated circuit produced by Thompson-CSF Ltd. which can deliver up to 20 W at 1% total harmonic distortion into a 4 ohm loudspeaker.

Characteristics

The ESM 532 is basically an operational amplifier which can deliver output currents of up to $\pm 3 \cdot 5 \mathrm{~A}$. The power supply voltage to the device can be a single supply of not more than 36 V or balanced supplies of not more than $\pm 18 \mathrm{~V}$; higher voltages are likely to damage the device even if the higher voltage is only applied as a 'spike' of very short duration. The minimum operating voltage is 9 V (or $\pm 4.5 \mathrm{~V}$ with balanced supplies), but obviously the output power available is quite low at such voltages.

The ESM 532 is a quad-in-line device with the connections shown in Fig. 1. Alternate pins are bent so that their tips are at different distances from the body of the device. It can be seen that the normal inverting input (marked -) and non-inverting input (marked +) of an operational amplifier are provided. External frequency compensating components must be connected to pin 3 to ensure stability, whilst the bootstrap connection to pin l enables maximum power to be obtained.
A metal insert is fixed along the back of the device and must be clamped to a suitable heat sink. A layer of silicone grease should be placed between the metal insert and the heat sink to ensure good thermal contact; even better is one of the special heat conducting greases available. The thermal resistance between the silicon chip and the metal insert is about $5^{\circ} \mathrm{C}$ per watt; the heat sink should have a thermal resistance not much greater than $5^{\circ} \mathrm{C} / \mathrm{W}$.
The ESM 532 is not likely to be damaged by overheating if the heat sink is too small, since the device incorporates protective circuitry which will greatly reduce the output current if the temperature of the silicon chip exceeds the danger point of about $150^{\circ} \mathrm{C}$. Nevertheless, it is bad practice to allow any integrated circuit to work at its maximum temperature for a long time.
An additional circuit in the ESM 532 prevents it from being damaged by high currents flowing when the output is accidentally shorted either to ground or to the positive supply line. When such shorting occurs, the internal circuit limits the maximum output current to $\pm 3 \cdot 5 \mathrm{~A}$ at chip temperatures of up to $100^{\circ} \mathrm{C}$ or about 1 A at a temperature of $150^{\circ} \mathrm{C}$.

Fig. 1. The connections to the ESM 532

Circuits

Two circuits using the ESM 532 as an audio amplifier will be discussed. One of these employs balanced power supplies and the other a single power supply. The ESM 532 can also be used in television vertical sweep circuits, but these will not be covered here.

Balanced supplies

An ESM 532 20W amplifier circuit using balanced power supplies is shown in Fig. 2. The gain of the circuit is equal to ($1+\mathrm{R} 5 / \mathrm{R} 2$) or about 32 (30 db) with the values shown, but reasonable variations in the values of R5 and R2 can be made to achieve a fairly wide range of gain values.

The capacitor Cl prevents R5 and R2 from acting as a potential divider at zero frequency. Thus one obtains full negative feedback at this frequency with a circuit gain of unity. Any input offset voltage is

Fig. 2. A 20W amplifier circuit using balanced power supplies
therefore not multiplied by the audio frequency gain of the circuit and the quiescent output voltage is very close to the ground potential; the steady quiescent current passing through the loudspeaker can therefore be kept very small.
The bandwidth (or rather the high frequency response) of the circuit is controlled by the value of C3, the compensation capacitor. The bandwidth is approximately equal to $2 \cdot 7 \times 10^{-6}$ R2/R5C3; thus with the values shown, the response extends to about 160 kHz , but can be reduced by increasing C3.
The capacitors C6 and C7 are required for good high frequency decoupling to ensure stability; they should be soldered close to the ESM 532. Although these capacitors are connected in parallel with very much larger capacitors in the power supply, the latter capacitors are electrolytics with a fairly large effective series inductance and may be some distance from the device. C6 and C7 have a far smaller series inductance than electrolytics.

Power Supply

A simple power supply for feeding the circuit of Fig. 2 is shown in Fig. 3. D1 to D4 may be four separate diodes (e.g. 1 N 4002) or a single bridge rectifier containing four diodes (e.g. type REC 63 from Doram). Full wave rectification occurs in this circuit, the output voltage being nearly 1_{2} times the transformer secondary voltage.
The use of the light emitting diode and its series resistor Rl to indicate when the power supply is switched on is, of course, optional.

Fig. 3. A power supply circuit suitable for driving the Fig. 2 circuit

Single Supply

The circuit of Fig. 4 has a similar performance to that of Fig. 2, but a single power supply is used. A positive bias must be applied to the non-inverting input in this circuit otherwise the output would be at a low voltage and would not be able to swing lower in voltage to amplify negative going peaks. The positive bias brings the output potential to a positive quiescent value and therefore a large electrolytic capacitor C 4 must be included in series with the loudspeaker to prevent a constant quiescent current from flowing through the loudspeaker.
The gain of the circuit is approximately equal to R7/R5 +1 or about 28 (29 db) with the circuit values shown. The bandwidth is about 12 Hz to 140 kHz with the value of C5 shown. At high values of gain a capacitor in series with a resistor should be connected from the junction of R7 and R5 to ground, the

Fig. 4. A 20W amplifier using a single power supply product of the values of this capacitor and resistor being appreciably less than the product of the value of C4 and the loudspeaker impedance.

Comparison

In general readers will find the circuit of Fig. 2 more convenient than that of Fig. 4, since no large output capacitor is needed in series with the loudspeaker. Thus the high switch-on transient currents are eliminated together with the switch-on 'plop' noise and one obtains optimum response at low frequencies. On the other hand, the power supply used with the Fig. 2 circuit does require a tapped secondary winding on the mains transformer.

Heat sinks suitable for use with the ESM 532 are available from Staver Thermal Products Ltd., Heron Trading Estate, Bruce Grove, Wickford, Essex SSll 8BS under the type numbers V3-3-2020 and V3-5-2020, the latter having the lower thermal resistance of $4.5^{\circ} \mathrm{C} / \mathrm{W}$. When the ESM 532 has been connected on its circuit board, silicone grease should be placed on it and the heat sink bolted to the board so that it is held in good contact with the ESM 532. Readers can make their own heat sinks using a sheet of metal of area not less than about 70 sq. cm. and bending it as required, leaving the part in contact with the device quite flat.

Other devices

One may well ask how the ESM 532 compares with other 20 W devices? It has the same maximum current rating as the SGS-ATES TDA2020, but has a somewhat lower voltage rating than the latter. At present the ESM 532 appears to be somewhat cheaper than the TDA2020 and has the advantage that its typical quiescent current is only 25 mA at 28 V . The TDA2020 has the lower thermal resistance of $3^{\circ} \mathrm{C} / \mathrm{W}$ (junction to case). The other characteristics of the two devices are quite similar, but the connections are different.

A lower voltage version of the ESM 532 is produced with a maximum rating of 30 V under the type number ESM 432. The ESM 532N is similar to the ESM 532 , but has a bracket for the connection of a heat sink.

Availability

The ESM 532 is available from Phoenix Electronics Ltd., 46 Osborne Road, Southsea, Hants at $£ 2.95$ including VAT and packing and postage.

With the increased activity on 2 metres, some who may have contemplated working this band, have possibly been deterred by the cost of a "black box" and the uncertainty of modifying commercial equipment. With this situation in mind, the Author has designed a simple, easily-built 2 m f.m. transmitter, that can be assembled by anyone who can use a soldering iron and small tools whilst possessing a reasonable amount of patience. The completed unit will perform well, being as versatile as the constructor ultimately wishes to make it. An r.f. output of around 10 watts can be expected if the unit is constructed as described but power far in excess of this may be achieved if the design is regarded as a working basis and the p.a. stage is developed.

Construction

A simple printed circuit technique is employed, with most components fixed directly to the print side of the board. There are very few holes to be drilled and the units may be secured in a suitable housing by straightforward fixing screws. For continued ease of assembly, the transmitter is made on three separate boards; one contains the audio modulator and crystal oscillator, the others the frequency multipliers and the final the power output stage. For low power working (QRP) only the first two boards need to be made, as the output of the second is on 2 m , although at only a few tens of milliwatts.
Constructors who have not yet etched a printed board will now find how easy it really is and full instructions are given with details of the board layouts. As with all projects of this nature, it is strongly
recommended that the components used are of the kinds specified. Resistor wattages are not critical, but as their ultimate size is governed by their powerhandling capacity, space may determine type.

The Crystal Oscillator and Audio Stages: Board 1

The theoretical circuit is given in Fig. 1 and consists of a Colpitt's oscillator using 8 MHz crystals. Six channels are shown in the schematics-three, in fact, were used for the prototype-but there is no reason why many crystals cannot be included by using a suitable multiway switch and increasing the number of islands on the board; using the smaller HC25 series crystals would permit more channels to be fitted in the space allotted. The trimmers in series with each crystal allow easy netting to the assigned frequency.

The f.m. is applied to the oscillator by a reactance stage, fed by two audio pre-amps. Deviation is controlled by a $10 \mathrm{k} \Omega$ potentiometer and the maximum attained on the prototype was 8 kHz . Notice the inclusion of decoupling in the audio stages to prevent r.f. pickup-so often a cause of poor audio quality in home-constructed equipment. The printed board layout is shown in Fig. 2.

Preparing Board 1 (Fig. 2)

Cut a piece of single-sided copper board to the size shown and with some fine abrasive paper, clean the copper surface to remove any oxide or tarnish.

netre

> Readers who intend to operate the Avon Transmitter should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.
fully and when the board is dry, each island and connection examined to make sure no copper bridges exist between them. One should also ensure adequate clearances.

Place the board in a suitable plastic or earthenware container and pour on just sufficient ferric chloride solution as is necessary to cover it. The solution can be purchased ready-mixed from most radio component stores, or can be made up by a chemist. It is however a corrosive, albeit a mild one, so handle carefully and wash off any of the solution that comes into contact with the skin immediately.

Initially, leave the board submerged for about twenty minutes, agitating occasionally. You will see the chemical action taking place quite clearly and when all the unwanted copper has been eroded, take out the p.c.b., wash in clean water and then dry.

Using a wet abrasive pad-such as a Brillo padthe paint is now removed and a final wash and dry will leave the copper gleaming. After a final check of the work, drill the mounting holes for fixing to the metal chassis.

Each board in the transmitter is etched in this way and provided the simple instructions are followed you should easily be able to provide good examples.

Using a soft, lead pencil, draw out the islands on the board, and then draw around these and the interconnections of the earth plane edge. The small islands and fine connections are then filled in by means of an etch-resist pen or fine paint brush, using quick drying paint, such as car touch-up paint, thinned down if necessary. The larger areas are then put in care-

Fig. 1: Citeuit diagram for the Crystal Oncilsator and Audio Stages-Board 1

Fig. 2: Copper side layout of Board 1. Available from Reader's PCB Service (see page 27)

Microphone

Fig. 3: Component layout of Board 1. Note components soldered direct to copper side of the p.c.b.

Mounting Components (Fig. 3)

There is no hard-and-fast rule about fixing the components to the board, but the Author favours soldering the resistors first, followed by the capacitors, the coils and finally the transistors. Keep lead lengths
short-typically $6-12 \mathrm{~mm}$ for transistors-and solder neatly, holding the iron in place just long enough for the solder to flow to the joint. An iron of 15W rating with a bit size of 3 mm or so is to be preferred for work of this nature.

components

Testing Board 1

Connect a 15 volt supply to the board-having first established that the polarity is correct-and check the voltages shown: a 15 per cent error is quite acceptable, due to component tolerances. With a 600Ω microphone and a pair of earphones across Cll to the earth line, check for clean audio and the operation of the deviation control.

The oscillator can be tested by connecting a suitable 8 MHz crystal in position (i.e. $8 \cdot 08333 \mathrm{MHz}$ for $\mathrm{S} 20-145 \cdot 5 \mathrm{MHz}$) and listening for the 8 MHz signal on a tunable h.f. receiver, coupled loosely to the vicinity of the oscillator stage.

For the moment no audio will be apparent on the signal, because the amount of deviation available at the oscillator is small; it requires the multiplication of subsequent stages to raise this to the required level of $5-6 \mathrm{kHz}$.

Fig. 4: Circuit diagram for the Multiplier Stages - Board 2

Fig. 5: Copper side layout of Board 2. Available from Reader's PCB Service (see page 27)

Fig. 6: Component layout of Board 2. Note components soldered direct to copper side of p.c.b.

components

The Multiplier Stages: Board 2

The circuit of the Multiplier is given in Fig. 4 and consists of a stage of tripling to 24 MHz followed by a further tripler to 72 MHz and an amplifier into a doubler for 144 MHz .

Transistor Trl accepts the crystal oscillator input in its base circuit, and the collector is tuned to 24 MHz . This output is link-coupled to $\operatorname{Tr} 2$ and its collector is tuned to 72 MHz by L 2 which in turn is link-coupled to $\operatorname{Tr} 3$, also tuned to 72 MHz . This brings the signal to a suitable level, sufficient to drive $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ in parallel to double to 144 MHz in the collector circuit, via L4. Separate current-limiting resistors are used in each emitter circuit to ensure both transistors contribute equally to the output signal. Tests using a common-emitter resistor proved that invariably one transistor tends to be "lazy" and its partner does all the work. This is, of course, due to differences between transistor characteristics.

Drive to Tr6 is fed via a low impedance network through TC4 (tune), TC5 (load) and L5. This stage is tuned at its collector to 144 MHz and again a capacitance/resistance arrangement is used to feed either the aerial (low power), or the following stage on Board 3. The r.f. output available at this point is about $80-100 \mathrm{~mW}$. The board etching layout is given in Fig. 5.

Board 2-Component Layout (Fig. 6)

A plan view of the board for etching purposes is given in Fig. 5 and Fig. 6 shows the component locations. There are two screens 25 mm high on this p.c.b. to prevent feedback and instability. These are made from brass, tinplate or Radiometal, cut to size and soldered vertically across the board to the earth plane. Care is necessary when crossing "live" tracks: undercut the screen with a small file before fixing, to ensure adequate clearance.

Next month will deal with the Power Amplifier Board and the Aerial Filter

Nothing is more frustrating than getting all the bits to build a $P W$ project, spending time putting it all together and then switching on only to find it doesn't work! Unfortunately, however much care one takes in the constructional stage, this is always a possibility and when it happens, many readers are at a loss to know how to proceed.

From time to time articles have appeared purporting to give the answer to this problem, but people still get stuck, as my postbag shows. Yet really, with a methodical approach one can steadily and reliably progress through a circuit and finish up with it all working. So how? Instead of abstract generalisations, readers may get a much better insight into how to go about it if I give a specific example-a "case study" if you like. And since it has proved such a popular constructional project, I've chosen my "Handy-Mini Power Supply" published in the August 1977 issue, page 260 , as the example.

Systematic Approach

With so many readers building this design, one or two were bound to hit some snag or other, e.g. ". . have completed the Mini Power Supply... cannot adjust it at all with VR3... please can you help?", from J. D. of Huddersfield. This is where a systematic approach comes into its own, resulting in ". . . After following your instructions . . . Another Tr4 and everything is working correctly... Thanking you once again for your help" from-you've guessed it-our old friend J. D. again.

So how do we go about it? Well, let's assume you've made up a Handy-Mini Power Supply, tried it and found that it doesn't work. First of all, you may have noticed a slip-up in the editing (mea culpa!). Fig. 3 incorrectly labels the capacitor between base and emitter of $\operatorname{Tr} 3$ as C 5 , actually it's $\mathrm{C} 4,5 \mu \mathrm{~F}$, as shown in the circuit of Fig. 1 reproduced here, and the

component list. (A correction has, in fact, since been published, but never mind, either value in either place would actually work.)

Multimeter

The technique is to get the circuit working bit by bit. First of all, check that all the circuitry is completely insulated from the metal box, heatsink, etc. Use the highest ohm range on your multimeter for this purpose. If you haven't got a multimeter yet, you really should. It's not necessary to pay an enormous

price, but it is worth getting one with a sensitivity of at least 10,000 ohms per volt. Very good value for money is the U4324, advertised in this magazine at $£ 14.50$ upwards, but adequate multimeters can be found at a few pounds less than this. They usually use $3 V$ internal batteries for the ohms range and are not likely to damage any common diodes or transistors on any of the ohms ranges.

Stage by Stage

Next, set all preset pots to mid travel, put a short circuit across R4 and disconnect: Trl collector, Tr2 base and collector, $\operatorname{Tr} 3$ collector, $\operatorname{Tr} 4$ base and emitter and the point P. Switch S2 to OFF. These moves have isolated the current limit circuit (Trl, etc.) and divided the rest of the circuit up into sections so we can bring it into operation in stages. With experience you will get into the habit of building a circuit in stages and testing it again and again as each stage is added. Now switch on and check that there is approximately 18 V across Cl and 36 V across C 2 . (All voltages measured with the negative lead of the voltmeter on the negative lead of C5).
If only one of the voltages is correct, most likely the wiring or Bl is faulty. Before replacing the latter, remember it may have been damaged by a shortcircuited Cl or C 2 , so check these as well. If neither voltage is there, the trouble may be the wiring, the fuse or Tl. From now on, I won't keep saying "the wiring" every time when pointing out possible faults, but remember that if you are using good quality components from a reliable supplier, the wiring is always the most likely cause of trouble. If you are using salvaged components or gems from the junk box-well, good luck! Apart from costing you a lot of time, dud components can cost you money by burning out other good components.

Safety

So now you've checked your "naw supplies" are present and correct, reconnect point P and check that there is approximately 26 V across C 3 and 16 V across Dl. ALWAYS PULL OUT THE MAINS PLUG AND DISCHARGE C1 AND C2 THROUGH A 470Ω RESISTOR BEFORE WORKING ON THE UNIT. Faults should be fairly obvious, e.g. 30V or so across Dl-it's open circuit; just under lV-it's in back to front! Having checked that the voltages are now right, measure the voltage across the track of VR3 and set it to $12 \cdot 7 \mathrm{~V}$ by adjusting VR2. Check that the voltage at the slider of VR3 can be adjusted from 0 to $12 \cdot 7 \mathrm{~V}$. Reconnect the base of $\operatorname{Tr} 2$ and temporarily link its collector to point "c"-i.e. top end of R5. We have thus connected $\operatorname{Tr} 2$ as a straightforward emitter follower and adjusting VR3 should swing the voltage at $\operatorname{Tr} 2$ emitter from 0 to 12 V . If it doesn't, it can only be wiring or components and our bit-by-bit approach has only added R9, Tr2 and R7 since the last stage.

Progressing

So assuming you've surmounted that hurdle, remove the temporary connection from Tr 2 collector and connect the collector to R6 as in Fig. 1. Also reconnect Tr 3 collector to Rl . You should now be able to vary Tr 2 emitter voltage from 0 to 12 V with

VR3 as before. Tr2 and Tr3 are now acting as a "complementary compound emitter follower". Sounds technical doesn't it? All it means is that $\operatorname{Tr} 3$ does most of the work, with Tr2 turning on just enough to provide sufficient base current to $\operatorname{Tr} 3$ to cause it to turn on and pull Tr 2 emitter up to about 0.6 V below the voltage at the slider of VR3. So $\operatorname{Tr} 3$ is supplying most of the current drawn by the load, which in this case consists just of R7 and your voltmeter.

If for any reason you aren't getting this negative feedback from $\operatorname{Tr} 3$ via R10-C4 short circuit or $\operatorname{Tr} 3$ open circuit for example-Tr2 emitter voltage might not quite make 12 V because now all the load current will have to pass through R6. To make quite sure, temporarily put $2.7 \mathrm{k} \Omega$ in parallel with R 7 -you should still be able to make 12 V at Tr 2 emitter.

Assuming all is well, reconneot $\operatorname{Tr} 4$ base and emitter. Now we have two d.c.-coupled complementary stages of amplification ($\operatorname{Tr} 2$ and $\operatorname{Tr} 3$) driving an emitter follower which provides 100 per cent negative feedback to the emitter of $\operatorname{Tr} 2$, and again we should be able to adjust the output from 0 to 12 V with VR3. At this stage, we have only added a single component, $\operatorname{Tr} 4$, so if something is wrong now the answer is pretty obvious.

Load Testing

Set the voltage at $\operatorname{Tr} 2$ emitter to 12 V and connect a 100Ω resistor (at least $1{ }_{2} \mathrm{~W}$ rating) in parallel with the voltmeter. The output voltage as measured by the voltmeter should not change by more than the thickness of the pointer. With Sl open, remove the short from across R4 and reconnect Trl collector. Check that VR3 can set Tr2 emitter volts to 12 V as before. Now on connecting 100Ω in parallel with the meter the output voltage should fall (set VRl so that it falls to around 5 V) but should return to 12 V on closing Sl. If this is not the case, one of the components in the current limit circuit, R3, S1, R4, VR1 or Trl, is faulty. For example, output stuck at OVTr 1 collector-emitter short circuit. Now close S2 and check that 0 to 12 V is available at the output terminals. We have now checked that everything is functional and it only remains to calibrate the unit as in the original article.

The principles of systematically getting a circuit going stage by stage are well illustrated by the above. If you are new to electronics or sometimes have problems getting a circuit to work, it would be well worth while studying the circuit of the original article in conjunction with the systematic approach described above, even if you have no intention of making up a Handy-Mini Power Supply. You will then grasp the principles and be able to apply them to repairing a transistor radio or getting a hi-fi amplifier to work, etc. Although the example given is a simple one, the principles are quite general and the more complex the circuit, the more important it is to divide it up and get it going stage by stage.

Purbeck Oscilloscope

This approach is followed in the $P W$ Purbeck now being published, and should allow any $P W$ reader with an elementary knowledge of how transsistors work and a little constructional experience to build a high-performance oscilloscope for a fraction of the cost of a comparable commercial instrunent.

Follow-up to

Although we try to take every reasonable precaution to ensure accuracy of presentation and technical efficiency in our constructional projects, it sometimes happens that circuit references turn out to be incorrect or the occasional instance of a reversed diode or capacitor causes universal consternation. When this happens, the editorial department attempts to publish a correction as soon as possible.

In the case of the Morse Tutor, of our August 1977 issue, the details have only just emerged of a divergence between the theoretical and practical instructions. The details are as follows:

The circuit diagram on p. 264 is correct except for the omission of the input B connection to IC2. This should be shown as pin 1. In the "Pin Connections" table on $p .266$, " R " and " S " are reversed, i.e. " S " is the 0 V terminal.

Copper track layout of the p.c.b.

Component layout of the Morse Tutor
The facts concerning the layout on Veroboard are not so simple. It appears that the component overlay relating to a p.c.b. layout was somehow confused with a Veroboard layout, resulting in the essential interconnections being lost. This refers to board A only, and the two remaining boards are correct. How the error arose is not clear, but was probably due to the major changes occurring at the time in the editorial team, with a retiring member handing over the halfformed details to his replacement, the fault probably appearing at the original artwork stage.

Whatever the facts, we have now prepared an accurate p.c.b. layout, complete with component overlay, to assist those who attempted this project. The new p.c.b. and the original code cards are available from Reader's PCB Service.

NEW BOOKS

THE SECRET WAR

by Brian Johnson
Published by the British Broadcasting Corporation, 35 Marylebone High Street, London W1 M 4AA 352 pages, $243 \times 170 \mathrm{~mm}$. Price $\mathbf{5 6} \mathbf{5 0}$
Those who have been fascinated by the recent BBC Television Series The Secret War will be enthralled by this book, which is based upon it, with some additional material. The earliest developments in radar and other radionavigational systems by both the combatants are described in some detail, with a wealth of photographs and drawings. In all, there are over 350 illustrations in the book, many of them previously unpublished. nformatay

Apple Scabs beware

An apple a day is said to keep doctors away, and even the old teacher has come in for one of these little green spheres. But have you ever thought how difficult it might be to get you a ripe apple? And did you know that electronics is helping, too?

Apparently, one of the evils of the apple (apart from Adam) is a thing with the endearing title of Apple Scab, a nasty fungus thing which does even nastier things to apples. By making careful measurements of the environment and equating this with the severity of the attack, growers were able to apply fungicide sprays. But what was the optimum and how could one get away with the minimum amount of spraying thereby saving costs and helping to combat environmental damager?

The answer is electronics. One with-it farmer has installed a complete Apple Scab Bashing system. Electronic sensors in the field (literally!) measure the air temperature, the degree of leaf wetness (hold up your twig I wanna take your temperature!) and relative humidity. All the information is collected and monitored by a predictive computer system complete with microprocessor. The systems gives instant information on how and when to do nas.ies to the fungus. The entire system electronics employs CMOS and draws only 60 mW of power-ideal for battery operation.

Before electronics came on the scene, these figures and measurements took a great deal of time to accumulate, process and then interrogate. The current set up allows all this to be done instantaneously and an operator can be fully trained to handle the sys:em and use it in less than one hour. The result will be, presumably, more happy teachers and fewer overworked doctors.

Smokers beware

Pollution is a current topic which receives much attention in the national press. Eventually, legislation will be brought in to limit the amount of pollution from things like car exhausts, factory chimneys etc. But how do you check if a very tall chimney is polluting or not-except by a long, hard climb?

Some university researchers in the U.S. have come up with a very useful solution based on a laser. It is accom-
panied by the staggering claim that it can detect and measure-accurately, pollution at a distance of eight miles! The system should be ideal for checking the pollution from those very high smoke stacks. It's even been rumoured that some tall chimney owners keep pollution down during "office" hours and burn all that nasty polluting stuff at night when no one can check.

The system can detect numerous nasties, such as sulphur dioxide and even water vapour. The laser beam is "shone" at the polluting air. Each pollutant absorbs the coherent (i.e. laser) light at different frequencies. So the system receives the reflected laser light and 'tunes' across the band to find out which absorbants/ pollutants are there and how many of them there are. If distance appears to be no object, accuracy certainly isn't. The new laser set up can detect and measure concentrations of, for example, methane of one part per billion over a path of 100 metres.

Doubtless joyous headmasters will use such a device to detect the odd puff of Woodbine pollution generated from the rear of their cricket pavilions!

Solid State Cameras

Some time ago the charge-coupled device appeared on the professional electronics market. It appeared to have a number of applications one of which was to form a photosensitive array for use in solid state TV cameras. The very latest development in this field comes from Japan where a leading manufacturer has revealed some details of its new entirely solid state colour TV camera. This could be a significant breakthrough, and many feel that the vidicon colour cameras for home video just appearing on the market could establish good sales, but only to be ousted by the new solid state versions late in 1979. The camera from Japan uses three c.c. devices, one for each of the primary colours. Each c.c.d. array has some 111,192 separate picture sensitive elements on it-and the surface measures only $10.3 \mathrm{~mm} \times$ 9.1 mm the Japanese have ended up with an effective sensor area of $8.8 \mathrm{~mm} \times 6.6 \mathrm{~mm}$ which just happens be the size of 0.6 inch vidicons. This clever move allows the same cheap lenses to be used with the new solid state devices.

CB Linears Out

Have you noticed that the tempestuous uproar about the UK Citizens Band has now practically disappeared? There seems little doubt that it will come and, hopefully, we will have learnt something from the problems in the U.S. and will avoid these (are you listening Westminster?) The latest news from across the pond is that the FCC (they are the American Gods of what you can and cannot do with radio waves over there) has just announced a ruling making it illegal for anyone to produce, import or market linear amplifiers operating in the relevant band. The days when an innocent U.S. youth could purchase a 50 mW Citizens Band transceiverand then hook it up to a linear which took up half the garage are over. Apparently nearly 50 per cent of all interference complaints on TVs and radios were traced to linears, hence the ruling.

Fast Pot

Talking components, how about a potentiometer which has manufacturers data for 2,000 revolutions per minute! The design is a contactless one and uses optical means. Construction is quite clever. It consists basically of a resistive film plus an electrode, and sandwiched between them is a photoconductive film. For the technical buffs, the photoconductive material is officially named as cadmium-selenium which has been doped with tellurium-so there! This photoconductive film makes permanent contact between the contact electrode and the resistive film. A disc with a slit in it is attached to the rotary shaft of the potentiometer and a light source provides illumination. As the shaft is rotated, so the slit of light moves along the photoconducting film causing it to "connect" the contact on the side of it, with the part of the resistive element directly opposite on the other side.

PRODUCHION LINES

New recelvers

National Panasonic have recently introduced two new radio receivers designed to appeal particularly to s.w. listeners. They are the RF-2200, an eight-band portable priced at $£ 134.95$ and the RF-4800, a ten-band communications receiver costing £319-95.
The RF-2200 is a comprehensive portable radio, built for the enthusiastic DX'er or the traveller who wants to keep in touch with world news, wherever they may be. Frequencies from m.w. to f.m. are covered in eight bands, tuned by a two-speed tuning knob coupled to a band dial that has 10 kHz divisions, and a crystal marker calibrated at 500 kHz and 125 kHz intervals.
High selectivity is achieved by the double superheterodyne designrarely found in portables-and the wide/narrow bandwidth switch, for s.s.b. and c.w. A b.f.o. is provided.

Other features include a meter that combines battery check, crystal marker check and optimum tuning indicator. Power output via a 10 cm loudspeaker is $3 W$, with separate bass and treble controls.

Measuring $318 \times 188 \times 100 \mathrm{~mm}$, the RF- 2200 weighs 3.0 kg .

The RF-4800 communications receiver is designed for the amateur's shack or for mobile use.

Its ten bands range from I.w. (145$410 \mathrm{kHz})$, m.w. $(520-1610 \mathrm{kHz})$ to s.w. split into seven bands including marine band and covering a range from $1 \cdot 6-27 \cdot 3 \mathrm{MHz}$.

Tuned frequency is indicated by tuning scale for I.w./m.w. and s.w. up to 3.0 MHz , and by a combination of
tuning scale and a large five-digit l.e.d. display for the s.w.2-s.w. 7 bands. Independent calibration of these s.w. bands is by separate control, and tuning to optimum signal strength on all bands is indicated by a tuning meter.

A 3W internal amplifier with separate bass and treble controls drive either an internal or external loudspeaker, or can be connected to an external amplifier via the 'rec out' sockets.

Powered by dry batteries, 12V car battery or a.c. mains, the RF-4800 measures $482 \times 200 \times 354 \mathrm{~mm}$ and weighs 8.0 kg .
Further information from: National Panasonic (UK) Ltd., Whitby Road, Slough, Berks. Tel: 075334522.

Keyboard switches

Erg is launching a unique push-button keyboard switch, the Erg-KEY RS5020.

The switches have two main features, first a contact bounce time of only 25μ s. Rarely before has this speed been achieved in a mechanical switch.

Secondly, it has a very low profile; only $5 \cdot 08 \mathrm{~mm}$ above its mounting plane.

Extremely high reliability is achieved by using a unique, patented torsion bar technique. An operating life of 10 $\times 10^{6}$ operations is expected over an operating temperature range of $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.

Further information on price and availability from: Erg Industrial Corp. Ltd., Luton Road, Dunstable, Bedfordshire LU5 4LJ. Tel: 058262241.

Some original circuit ideas provided by our readers. These designs have not been proved by us, and we cannot therefore guarantee their effectiveness. They should at least provide a basis for experimentation.

Why not send us your idea? If it is published, you will receive payment according to its merits. Articles submitted should follow the usual style of PW in circuit diagrams and the use of abbreviations. Diagrams should be clearly drawn on separate sheets, not included in the text.

Each idea should be accompanied by a declaration that it is the original work of the person submitting it, and that it has not been accepted for publication e/sewhere.

This circuit was developed to improve the stereo effect experienced when listening with stereo headphones. When listening with loudspeakers the stereo effect is produced by the interaction between the two speakers. With headphones, however, there is no such interaction and to obtain a realistic stereo image some form of blend circuit is needed.

The network of capacitors and inductors alters the amount of blend with frequency, the amount increasing at those frequencies which provide the main directional information.
The phones used for the prototype were of an inexpensive type which could be taken apart easily and the components were mounted inside the headphone bodies. The 10 mH chokes used were Repanco type CH4 and the capacitors were of the tantalum variety. An extra wire was threaded through the headband to connect the right- and left-hand parts of the circuit. The original signal wires to the headsets need to be disconnected and the blend circuit inserted. R1, C1, C2 and L1 are mounted inside the left headphone and R2, C3 and L2 inside the righthand one. The circuit can be used with all stereo headphones of 4 to 8Ω nominal impedance.
R. N. Soar,

Mexborough, S. Yorks.

When testing JK flip-flops it is unsatisfactory to use an ordinary switch connected to the clock input. This electronic switch uses a 7400 i.c. in an 'anti-bounce' circuit, with an l.e.d. to indicate a high or low output.
Connect a +5 V supply to pin 14 and 0 V (Ground) to pin 7. A 6 V battery could be used. The unit is a bistable which does not change state when the switch is momentarily open circuit. The circuit can be constructed simply using Veroboard.

기 8 8ㅢ 의혀

P. J.WHEELER

Introduction

This is a design for an electronic lock which can replace the standard mechanical lock in many applications. It is impossible to "pick" as with a mechanical lock, and can have over 250,000 million different combinations, which will take all but the luckiest thief many hours to work through!
The lock can be used to disable a burglar alarm, taking the place of a mechanical key switch. Operation of the lock consists of depressing five keys on a keyboard in the correct sequence, the first key resetting the lock, and the other four keys providing the code.

The circuit can easily be extended with the addition of another i.c. and a few diodes to accept a nine digit code, which provides for extra security, although for most applications it is very tedious keying nine digits once the novelty has worn off, let alone trying to remember them! The operating code is programmed into the lock by the wiring between the keyboard and the p.c.b. and can easily be changed in the future.

The lock uses CMOS logic integrated circuits which have the advantage of negligible power consumption, thus continuous battery operation is quite feasible.

On the prototype, the quiescent current was about $1 \mu \mathrm{~A}$, giving a battery life of well over 6 months. The output can be used to switch almost any solenoid, via a separate relay, if necessary, or can be used to disable a burglar alarm direct.

Operation

The operation of the lock is dependent on a decoded decimal counter type CD4017. From the truth table for this device given in Fig. l, it can be seen that for each clock pulse, the counter switches to another output in sequence. The circuit for the lock is shown in Fig. 2.

Each time a key is depressed, one of the diodes D1-D5 conducts and Cl charges through R2. When the voltage on Cl reaches the threshold voltage of ICld, the output will go low, charging C2 through R3 thus producing a pulse of about 50 ms duration at the output of IClc. Cl and R 2 delay the production of the pulse to eliminate any effects due to contact bounce in the keyboard switches.

The first key to be depressed can be any one of the keys connected to the "reset keys" input. Irrespective of the position of the counter, none of the keys will be gated to R4, therefore it will be at logic 0 . The pulse
produced by depressing the key is therefore gated through IClb to the reset input of IC3, which resets the counter. After a short delay due to R5 and C3, this pulse clocks the counter to output 1 , enabling IC2c, which is an analogue switch. This sounds rather complex, but can be considered as an electronic relay.

When the control terminal is low, there is a very high resistance between the input and output (about $10^{10} \Omega$), and is effectively an open switch. However, when the control terminal is high, the resistance between the input and output is about 300Ω, which is virtually a closed switch. Thus any voltage on pin 8 of IC2 will appear across R4 when the counter is at position l. This effectively connects the first key of the code to R4, and if this key is depressed, pin 6 of ICl will be at logic 1 , and the pulse will be inhibited from the reset input of the counter by the action of the NOR gate IClb. The clock pulse will still reach the counter and advance it to output 2 . This enables the second key, and the process is repeated.

If the wrong key is depressed at any time, R4 will be at logic 0 and the counter will reset to its initial condition as described above. As the correct keys are

Fig. 2: Circuit diagram for the complete digital lock
depressed, the counter will increment to output 5, which will switch on the complementary output pair, Tr 1 and $\operatorname{Tr} 2$. This energises the load, D6 providing protection against back e.m.f. from inductive loads. C 4 also charges through R 6 , and after about $2^{1}{ }_{2}$ seconds, the counter is reset to its initial condition via gate ICla. C5 provides suppression of spikes that can appear on the supply line and interfere with the logic activity.

Component Selection

Probably the most difficult item to obtain will be the calculator keyboard. This consists of 19 switches mounted on a p.c.b., which should be waterproof types, for use outdoors. These are dome type switches, operated by a thin piece of domed metal collapsing and making contact when pressure is applied.

This type of keyboard really needs a mounting frame and buttons, which are not readily available, however, the following method makes a presentable unit from this keyboard.

A small piece of white Fablon may be stuck over the entire front face of the unit, and Letraset numbers (or letters if you are hopeless at remembering numbers-the code can easily consist of an easily memorised word) put over the top of each dome.

The entire keyboard is then covered with a sheet of transparent self-adhesive plastic to protect the Letraset from rubbing off while in use. The keys can still be operated through the layers of plastic, and this makes the keyboard reasonably immune to cups of coffee being spilt over it!
Many types of calculator keyboard have the keys wired in a matrix arrangement, as opposed to one common rail and a lead to each switch. If this is the case, it will be necessary to remove the interconnecting tracks from the board, and rewire the unit.

If a keyboard is available, with more than 12 keys, the remainder can be wired to the "reset keys" input on the p.c.b., thus effectively increasing the number of combinations available. Indeed as few as five keys could be used, with only one key connected to the "reset keys" input, the number of different combinations going down to a mere 3,125 .

Solenoid selection can also be a problem. The lock will operate on any supply voltage between 4 and 15 volts, and the solenoid should be chosen to suit this.

The other components are non-critical: almost any silicon diodes can be used, and most silicon transistors will suffice for the output stage, although the current rating of Tr 2 should be well in excess of the load current of the solenoid.

Construction

Most of the components are mounted on a p.c.b., the track and component layout being shown in Figs. 3 and 4 respectively. There are four links needed on the board, and these should be inserted first, followed

Connections to the integrated circuits and transistors

Fig. 3 (above): PCB viewed from the copper side. This board is available from the PW Reader's PCB

Service

Fig. 4 (above right): Component layout of the digital lock
by the other components, leaving the integrated circuits until last, as they are easily damaged by static. The use of sockets is advised unless you have a properly earthed soldering iron. $\operatorname{Tr} 2$ is mounted with its metal face in contact with the board, with a short 6BA nut and bolt securing the transistor to the board. It is a good idea to connect fairly long wires from the keyboard to the p.c.b. as the code, and consequently the wiring, may need to be changed in the future. The load should not be connected yet, but if a spare l.e.d. is available, this can be connected across the load pins on the board with a $1 \mathrm{k} \Omega$ series resistor for testing purposes.

components

```
Resistors
R1 \(100 \mathrm{k} \Omega\)
R2 \(220 \mathrm{k} \Omega\)
R3 \(1 \mathrm{M} \Omega\)
R4 \(1 \mathrm{M} \Omega\)
R5 10k \(\Omega\)
R6 \(1 \mathrm{M} \Omega\)
R7 \(1 \mathrm{k} \Omega\)
All tW 5\%
```

Capacitors
C1 47nF Ceramic
C2 47nF Ceramic
C3 10 nF Ceramic
C4 $2 \cdot 5 \mu \mathrm{~F}$ Electrolytic (16V)
C5 100nF Ceramic
Semiconductors
D1-D6 1N914, 1 N4148
Tr1 2N3704
Tr2 BD132
IC1 CD4001AE or MC14001CP
IC2 CD4016AE or MC14016CP
IC3 CD4017AE or MC14017CP
Other Components
2 off 14 pln DIL sockets
1 off 16 pin DIL socket
Keyboard (see text)
Solenoid (see text)
PP9 Battery and Connector Printed Circuit Board

Testing

If the lock does not work, connect a voltmeter between pin 10 and ICl and earth. Each time a key is pressed, the voltmeter should give a short positive "kick" and then return to zero. This should be checked for all the keys, and they must work every time if the lock is to be reliable.

If that does not identify the problem, connect a voltmeter across R4. The meter should read almost supply volts while the correct keys are pressed. When the lock is working, connect the supply direct to the board, and the load across the output. After further checking, the digital lock can be installed.

Possible Modifications

If a nine digit code is required, an extra CD4016 can be wired to switch 4 more keys to R4, controlled from outputs 5-8 of IC3. The output stage is taken from output 9 of IC3. Remember to include a diode from each extra key to R1, so that these keys produce a clocking pulse to operate the circuit.

If the lock is to be used with a burglar alarm, a relay can be used to disable the alarm, and the output stage can be made to stay on until another key is pressed by removing R 6 and replacing C 4 with a link,

However, the current drawn when the relay is on for long periods will probably be too high for economical battery operation, therefore the lock could draw its supply from a mains operated power supply, or from the burglar alarm itself.

If the load is to be switched on for other periods the values of R 6 and C 4 can be altered, the time the load is on being approximately given by $\mathrm{T}=\mathrm{R} 6 \times \mathrm{C} 4$. R6 can be increased up to about $10 \mathrm{M} \Omega$, but if an electrolytic capacitor is used for C4, R6 should not be increased above $4 \cdot 7 \mathrm{M} \Omega$, due to leakage current in the capacitor causing large timing errors. Care should be taken to prevent voltage spikes greater than 15 V reaching the CMOS, since they can cause irreparable damage.

> PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

THE
 PuTVblec

 ELECTRONIC ORGAN
Notes on the Jubilee Organ project

Although the Jubilee Organ has undoubtedly emerged as very popular, in the time which has elapsed since its final part was published in our January 1978 issue, certain points have arisen which could cause some confusion. In order to dispose of these details, the following notes are provided as a complete list of published corrections, along with suggested modifications.

General Constructional Corrections:

(1) September 1977, p 353. Transistor BFY71 should read BCY71.
(2) November 1977, p 509. The circuit diagram of the accompaniment section shows the base of Tr5 connected to the 12 V positive rail. This connection should be broken, leaving the base of Tr5 connected to the free end of R44 (1M $)$) only. The p.c.b. provided via Reader's PCB Services is correct.
The end of R45, shown connected to the 12 V positive rail, should be connected to the junction of R40 and C17. Again, the recommended p.c.b. is correct.
(3) The collated components list, September 1977 p 353, contains the information " 3 -off 33 nF ". This should read " 3 -off $3 \cdot 3 \mathrm{nF}$ Polystyrene".

Operational and Setting-Up Instructions:

November 1977, p 506-in describing the interim keying tests, a mistake was made in the text. When the flying lead is connected to the +12 V point (positive end of C8) the note is inhibited. It is when the lead is removed from this point that the note will sound, and it is under this condition that VR5 should be adjusted. Re-applying the 12 V will terminate the tone according to the sustain setting of VR6. When S2 is open the tone burst will occur when the flying lead is removed from the 12 V point. The same reversed logic would apply to testing the repeat percussion effect.

Our "Postscript" in the final part of the article (January 1978) gave details of a modification to enable major chords to be memorised, thereby intro-
ducing a continuous "vamp" facility. The fact that no drawings accompanied the text seems to have caused considerable confusion, so in order to illuminate the situation, the relevant diagram, showing the necessary switching, is now provided for reference.

Circuit diagram of the Major Chords Memory
As published originally, the text could be misleading, and should have said that to enable the memory, pin 35 of IC13 should be connected to +15 V , while pin 5 should normally be at 0 V , but momentarily connected to +15 V via the push-button changeover when the memory is to be reset. This will cancel any previously selected chord.

Suggested Modifications

Manfred Pfeifer of Bristol suggests in a letter to the author the following swell pedal modification:
"The volume is controlled by a foot operated pedal, linked via a l.d.r. To maintain a suitable range, the l.d.r. (ORP12) is connected in series with a $16 \mu \mathrm{~F}$ capacitor, and then wired in parallel with R92. A small bell transformer supplies 5 V a.c. to provide a light source for the l.d.r."
Another constructor, Lorin Knight, of Letchworth, suggests some further improvements. He has included three extra stops (one for future use), with one used for continuous rhythm as already described, and one used as an additional percussion stop for the melody. C 12 is shunted with a $47 \mathrm{k} \Omega$ preset and an extra $4 \cdot 7 \mu \mathrm{~F}$. The preset is adjusted so that the amplitude only drops $6-10 \mathrm{~dB}$ after the percussive attack, giving rise to a gradually "flattening" envelope shape, similar to that of a piano.

INTRODUCTION TO LOGIC-continued from page 31

Fig. 5: AND gate symbols

Practical Gate Devices

Let's now take a look at some of the actual AND gates available in integrated circuits.

In 74 -series TTL the most commonly met AND gate is likely to be the 7408, which contains four separate 2 -input AND gates in one package. Other types are the 7411 which has three 3 -input AND gates, and the 7421 which is a dual 4 -input AND gate. The function and pin connections for these types are shown in Fig. 6.

Fig. 6: Some actual TTL AND gates

Fig. 7: Some actual CMOS AND gates

Fig. 8 : Cascading AND gates to provide more inputs
The 4081 in the CMOS series provides the same logic functions as a 7408 but the pin layout is different. Other gates in the CMOS series are the 4073 triple 3 -input AND gates and the 4082 which contains two 4 -input AND gates. Fig. 7 shows the pin connections and functions of these CMOS devices.

If we wanted a 6 -input AND gate this could be made up by using two 3 -input gates feeding into a 2 -input gate to form a cascaded tree of gates as shown in Fig. 8. This principle could be extended to give any number of inputs if desired.

Next month we shall look at some of the other types of gate circuit used in logic systems.

He also suggests modification of the DIN output socket, to introduce stereo effect. This gives drums to the left, melody centre, and accompaniment to the right.

Circuit diagram for Stereo Effect modification

Several readers have requested detailed cutting and drilling instructions for alternative keyboard versions. It was felt that in cases where the calculator keyboard was not opted for, general details for other types would necessitate a proliferation of differing instructions. Aside from this confusion, the conventional keyboard, for which we had approximate constructional details, appeared to be in limited supply (very limited supply as it eventually proved), and so we decided to confine our constructional notes to the details for the calculator version in general, and the initial measurements for the front and back panels. This was considered enough to cover the bare essentials, and the majority of constructors seem to have come to terms with this problem.

HIDIU IOIE:

Bovington Tank Battle Game, June, page 38
The coil winding details for this project were inadvertently omitted from the components list. L1 80 turns 40 s.w.g. enam. copper wire on 6 mm dia. former with dust core. L2 3 turns 22 s.w.g. tinned copper wire 6 mm dia. $\times 8 \mathrm{~mm}$ long air-spaced, tapped ${ }^{3} 4$ turn from top.
Trl should be a BC108.
C24 should be connected to the tap on L2, not as shown in the circuit diagram (the printed circuit board is correct).
A small section of track is missing from the p.c.b. copper track pattern shown in the article. To overcome this a thin wire link should be used to connect together the pads for the +ve ends of C12 and C1z. Solder this link onto the copper track side.
D3 to D12 are type 1 N 4148.
R32 is selected according to type of indicator used. (Shown in Fig. 7.)

J-Decnology

In recent years "fuzz boxes" have been rife on the pop scene particularly with regard to guitars. The idea seems to be that one uses a fuzz box to make a guitar not sound like a guitar!

This month's μ DeCnology circuit shows a very simple circuit for obtaining a fuzz effect. It is very sensitive and can be used to fuzz sound direct from a microphone or even a record player.

The commonest approach to fuzzing involves taking a luckless sine wave, chopping the tops or peaks off (known by the purists as "squaring"), and then amplifying the resultant noise with an ordinary audio amplifier.
We are cheating a little with our circuit by simply using the very high gain of the 741 op . amp. with no

H0044

Fig. 1: Main circuit diagram including preamplifier
negative feedback. To increase the sensitivity still further, an extra stage of preamplification has been added by using a BCl07 transistor. This preamp stage is also very simple, being reduced to a bare minimum of components.

Fig. 2: Connections and hole numbers for the inclusion of a suitable volume control

When you have "plugged" the components into your $\mu \mathrm{DeC}$ by their own leads (see Fig. 1) you should connect 6V to holes $\mathrm{Q} 1(+) \mathrm{Q} 23(-)$. The input is connected to holes F22 and E23. On test it was found that almost any microphone would work well and give a horrendously fuzzed voice output. Those tried included a cheap crystal insert, a commercial crystal microphone, a magnetic type (some 300Ω impedance), and a small loudspeaker. Even small earpieces were tried and found to work.

Six volts proved ample for good sensitivity. Increasing this to 12 V made the circuit super sensitive and if this is done there is a good chance of positive feedback which will make the circuit oscillate. In a permanent form, one could transfer the components from $\mu \mathrm{DeC}$ to Blob Board and then put the Blob Board in a metal case thus screening the circuitry from both the output loudspeaker and the microphone. This should prevent instability and make a useful fuzz. box which could be used in many applications. For example, as a party game or at a disco, records could be announced with fuzz in followed by the record. Alternatively, the participants might be

Fig. 3: The μ DeC Layout of the "SuperSensitive Fuzz"
required to guess what was being said (not easy when this unit is set for full fuzz).

The unit could be made completely portable with its own 12 V battery. With 12 V applied, the total current drawn by the circuit was barely 1 mA quiescent. With speech going through this rose to average 2 mA max so battery life would be very long.

If 12 V is used it would be prudent to use a variable potentiometer, the input would then be connected between the slider of the pot and $\mu \mathrm{DeC}$ hole E 23 . (see Fig. 2).
The input and output blocking capacitors gave a degree of control of the sharpness of the sound-one hesitates to use the word "tone". The value of Cl specified gave reasonable results. Increasing it (more microfarads) gave more bass and less treble. Reducing it (down to $0 \cdot 1 \mu \mathrm{~F}$) increased the top or treble con-

components

Resistors

R1 2.2MI2
R2 $5 \cdot 6 \mathrm{k} \Omega$
R3 100ks2
R4 $100 \mathrm{k} \Omega$
R5 100ks

Capacitors

C1 $8 \mu \mathrm{~F} / 12 \mathrm{~V}$ electrolytic
C2 $0.1 \mu \mathrm{~F}$
C3 $0.1 / 1 \mathrm{~F}$

Semiconductors

IC1 781 Op amp
Tr1 BC107

Miscellaneous

LS1 8S loudspeaker
One μ DeC A
One $\mu \mathrm{DeC}$ DIL holder
μ DeC jumper leads
6 V or 12 V battery
siderably. Similarly one can try different values for C3. One could even switch in two or three values at C3 to give a built in control over the "bassiness" of the fuzz.

Just one word of warning before any fuzz fanatics start connecting the circuit up to external equipment. It would be dangerous to connect this circuit to cheap record players which might be live to the mains.

If you do connect it to a tape recorder, or amplifier (or whatever) it would be sensible to include $0 \cdot 1 \mu \mathrm{~F}$ (400 V working) capacitors in all leads to and from the equipment.

The circuit has been tried with a battery tape recorder and worked well and with a hi-fi system. A radio signal from a simple diode tuner also gave acceptable results. An amusing exercise is to tune in to Radio 4 and listen to the news with the fuzz circuit connected: and then try to guess what the news was!

The component values are standard and easily available from advertisers in Practical Wireless. While most are uncritical it is suggested that they be adhered to until the circuit is made to work. Almost any transistor will work and those tried include the BC108 and BC109, 2N2926-but be careful that the lead connections are correctly identified. The BC107/8/9 are all the same and so no problems should be encountered.

[^2]| TRAN- | ORE: | BC117 | | BCis | $\begin{aligned} & 13 p^{\circ} \\ & 14 p^{\circ} \end{aligned}$ | $\left\lvert\, \begin{aligned} & 80138 \\ & 80137 \end{aligned}\right.$ | 34p | ${ }^{\text {BF273 }}$ | 14 | | | 7447 A | Mpl14 Pin DiL: | | | I ZENER DIODES:
 $400 \mathrm{~mW}+-5 \% 3 V-33 \mathrm{~V}$ | PRECISION POLY.
 CARBONATE CAPACITORS | | | |
| :---: |
| AC107 | 34p | BC119 | | BC184L | 8 15p* | 80138 | | | | | | | | | | | | | | |
| ${ }_{\text {AC117 }}$ | 32 p | BC125 | | BC185 | 23p | BD139 | 44p | 8F458 | 350 | ${ }^{\circ} \mathrm{OCs} 10$ | | | | | | 1w 10p each: 10/83p | All Migh | ¢tabl | ty-ex | omely |
| AC128 | 32 p | BC126 | 19 D | BC187 | 29 | BD140 | 15 | BF459 | 32 p | ORP12 | E1.10 | 7470 | | | | 1w | | | | |
| ${ }^{\text {AC12 }}$ | 32 p | $8 \mathrm{BC132}$ | 20p | BC204 | $18{ }^{\circ}$ | 8D145 | $75 p$ | 8F59\% | $22{ }^{\circ}{ }^{6}$ | R2008B | $\mathrm{E}_{1} \cdot \underline{5}$ | 7473 | | | | | 440 V | A.C. | NGE | |
| AC128 | $2{ }^{2} \mathrm{P}$ | $8 \mathrm{BC134}$ | 19 p | BC208 | $1{ }^{\circ}{ }^{\circ}$ | B0163 | ${ }^{35}$ | BF597 | 220° | R20108 | E1.45 | 7474 | 31 p | | | - 1 | Valu | | | ce |
| AC128K | 220 | ${ }^{8 C 135}$ | 18 p | BC212 | $13{ }^{\circ}{ }^{\circ}$ | BD182 | | BFR39 | $27{ }^{\circ}{ }^{\text {e }}$ | TIP29 | 54 p | 7475 | 52 P | | | SKELETON PR | | lon | mm) | h |
| AClid | 220 | ${ }^{8 C 136}$ | 19 p | $\mathrm{BC}^{\mathrm{BC} 212 \mathrm{~L}}$ | $14{ }^{\circ}$ | 80183 | 51.03 | BFR41 | $27{ }^{\circ}$ | TIP31a | 55p | 7476 | 43 p | $1+$ | 240 | (Vertical or Horizontal) | | 1 | | |
| | $4{ }^{4}$ | ${ }^{\text {BC137 }}$ | ${ }_{29}^{19} \mathrm{p}^{\circ}$ | ${ }^{8 C 212 L A}$ | A15p ${ }^{\circ}$ | BD184 | $\mathrm{El} \cdot 2$ | 8 BF | $4 \mathrm{4p}$ | TIP32A | 579 | 7482 | 2tp | $10+$ | 24p | 100 ohm to $1 \mathrm{M}-7 p^{*}$ each: 50 for | 0.1 | 27 | $12 \cdot 7$ | 81-34 |
| AC142 | ${ }^{24}$ | $8 C 138$
 $8 C 138$ | ${ }^{23 \mathrm{p}^{\circ}}$ | BC213 | ${ }^{13}{ }^{\circ}{ }^{\circ}{ }^{\circ}$ | | 59p | | 55 | TIP33 | 0 | 7490 | 4 P | 50+ | 19 p | | 0.15 | 27 | 12.7 | E1. 52 |
| Ac153K | $3{ }^{1}$ | BC140 | 32 p | BC214 | $13{ }^{\text {1 }}$ | 80234 | ${ }^{5}$ | BFW ${ }^{\text {BFI }}$ | 65p | TiP34 | | 7492 | | $100+$ | 17p | | 0.22 | 33 | 16 | 51.6 |
| AC154 | ${ }^{24} \mathrm{P}$ | BC142 | 34 p | BC214B | 149 ${ }^{\circ}$ | 80253 | [2.35 | BFX84 | $20 p$ | TIP42A | 79 | ${ }^{7493}$ | | | | | 0.25 | 33 | 16 | 8 |
| AC176 | 35p | BC143 | 34 p | BC214L | 15p ${ }^{\circ}$ | BDx18 | c2. 35 | BF×85 | 20 | TIP3055 | E1.15 | | | | | \% | 0.33 | 33 | 16 | c1. 22 |
| ${ }^{\text {AC178 }}$ | 44 p | $8{ }^{8147}$ | 109 ${ }^{\circ}$ | BC2378 | 16p ${ }^{\circ}$ | BD×32 | [2. 35 | 8F×8 | 310 | TiS 43 | 34 p | 74121 | | D10D | | $0^{\circ} \mathrm{C}, 3 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E12 | 0.47 | 33 | 19 | |
| AC179 AC187 | $4{ }^{4} \mathrm{p}$ | BC147A | 110 ${ }^{\circ}$ | BC238 | 17p ${ }^{\circ}$ | BDY11 | 8p | BFX87 | 310 | TIS90 | $23{ }^{\circ}{ }^{\circ}$ | 74141 | | BA145 | $1{ }^{18}$ | only-from 2.29 to 2.2Ma. All | 0.5 | 33 | 19 | |
| $\begin{aligned} & \text { AC187 } \\ & \text { AC187 } \end{aligned}$ | 22p | BC14s | ${ }^{12} 0^{\circ}$ | BC239 | 180. | BDYz | E1.05 | BFX88 | 23 p | TIS91 | 280° | 74154 | 11 | BA148 | 18 | at 20. each, 150° for 10 of any | | | | |
| $\mathrm{ACl}^{\text {C }}$ | 37p | BCl^{148} | 11p ${ }^{\circ}$ | ${ }^{\text {C }}$-253C | | BF915 | 420 | | 2 p | 2 N 705 | 4 A | 74175 | 81.16 | | | | 1.0 | | | |
| AC18AK | 42p | 8C149 | 10p* | BC25AA | $22{ }^{2}$ | | ${ }_{75} 5$ | BFY51 | p | 2N28 | 75p | 74190 | 51.70 | BAX13 | P | 1ue 2.20 \& $2 \cdot 2 \mathrm{M}$ | 1.5 | | | |
| ACL193K | 41 p | $8{ }^{8} 1498$ | 11p ${ }^{\circ}$ | BC281A | 230 | BF121 | | BFY53 | 34 p | | 41.2 | 74102 | 51.7 | BAX16 | 8 | (730 resistors) ह8.50. | | 0.8 | | |
| C194K | 410 | 8C149C | 12p ${ }^{*}$ | C2818 | 250 | BF123 | 310 | BFY72 | 51 p | ${ }_{2}{ }^{\text {N2905A }}$ | 3 ${ }^{\text {Hp }}$ | 7410 | $E 1.24$ | B81108 | | (130 resietors) es | $2 \cdot 0$ | $50 \cdot 8$ | 25.4 | c. 3.74 |
| ACY17 | 54 P | BC152 | 22p. | $\mathrm{BC262a}^{\text {8 }}$ | 29 | BF125 | 38 p | EFY77 | 220 | 2N2906 | 22p | SN76001N | $81.57{ }^{\circ}$ | BR1co | 24 P | | $63 V$ D.C. | RAN | | |
| AD142 | $61 p$ | BCis | | C2 | 23 p | BF127 | 38. | 8FY90 | E1.10 | 2N2907A | 59p | SN76003N | C2. 4.7 | 8Y126 | $15 p$ | | Value $\boldsymbol{\mu} \mathrm{F}$ | +1\% | $\pm 2 \%$ | |
| AD143 | 330 | BC157 | 12p. | | 210 | 8F152 | 23 p | BR101 | 418 | 2 N 2928 G | 17p ${ }^{\circ}$ | SN76013ND | c1.78 | OA10 | ${ }_{35}{ }^{\text {P }}$ | $2.5 W$ (0.22R-22R)=1 | 0.01-0.2 | E1. | 51.22 | |
| A 0149 | * 4 | BC157A | 1320 | | 12 p | BF158 | 170 | ${ }_{\text {BRC4 }}$ | 4 H | 2 N 29260 | 170° | SN76013ND | E1. ${ }^{\text {E5 }}$ | OA47 | 110 | (10R-12K)-18P: 10 W (0.47R-10K) | 0.22-0.47 | 7 E1.t | E1.24 | |
| A 161 | 58 p | BC158 | 12p ${ }^{\circ}$ | BC268C | 14 p | BF159 | 23p | BRY56 | $31 \mathrm{P}^{\circ}$ | 2N2928 ${ }^{\text {2N3053 }}$ | 17p ${ }^{\circ}$ | SN77023ND | ${ }_{51} 15$ | OA81 | 15p | -1tp. | 0.88 | c2. | 4 | |
| AD162 | $5{ }^{5}$ | BC1588 | 130^{*} | BC294 | 350 | 8F160 | 25 p | ES×19 | $3{ }^{3} \mathrm{P}$ | 2N3053 | $7{ }^{20}$ | SN70033N | C2. 41 | OA90 | 7p | | 1.0 | c2. | | |
| AF114 | | BC159 $\mathrm{BC1598}$ | ${ }^{120}{ }^{\text {c }}$ | 001 | 30 p | BF161 | 25 p | ES×20 | 25 p | 2N3055 | 65p | SN76238D | 61.53 | | 7 p | | 1.5 | E2.9 | | |
| AF116 | 320 | BC159C | $14{ }^{*}{ }^{*}$ | a3 | 330 | BF164 | $25 p$ | BSx76 | 33 p | 2N3702 | 17p ${ }^{\circ}$ | SN76227N | 51.23 | | p | | $2 \cdot 2$ | $2 \cdot$ | | |
| AF117 | 329 | BC161 | 90. | | 4 P | BF168 | 350 | BSY38 | 18 | 2N3703 | 17p* | SN76850 | $E 1 \cdot 15{ }^{*}$ | - A202 | 10 p | 1.04F at $25 / 35 \mathrm{~V}-10 \mathrm{p}$ | | | | |
| AF118 | 4 A | BC167B | 140* | BC3078 | $15{ }^{\circ}$ | | 370 | BSY39 | 18 | 2N3704 | 17p ${ }^{\text {c }}$ | SN78685 | E1.31* | T1209 | 230 | -11 $\mathrm{p}^{*} \cdot 2 \cdot 2 \mu \mathrm{~F} / 35 \mathrm{~V}-12 \mathrm{p}^{*}$; $3 \cdot 3 \mu$ | 4.7 | | | |
| AF121 | 53 p | BC168A | 142* | BC303A | $15{ }^{1}$ | 8F173 | $27 p$ | BSY52 | 35p | 2N3705 | 17p* | TAA283 | $51.10{ }^{+}$ | (0.125" | | $35 \mathrm{~V}-13 \mathrm{p}^{\circ}: \quad 4 \cdot 7 \mu \mathrm{~F} / 35 \mathrm{~V}$ | $4 \cdot 7$ | E. | c2.72 | $2 \cdot 24$ |
| AF124 | 340 | 8C168B | 140. | BC309 | | 8F177 | 31 p | ${ }^{81106}$ | E1. | 2N3706 | 170* | TAA550G | 55 p | | Red) | 6.84F/35V-170 ${ }^{\circ}$; ${ }^{\text {c }} 10 \mu \mathrm{~F} / 25 \mathrm{~V}$ - | $8 \cdot 8$ | E | cs.3t | 2.4 |
| AF125 | 40 | | ${ }^{2}{ }^{\text {P }}$ 。 ${ }^{\text {a }}$ | BC313 | 420 ${ }^{\circ}$ | BF179 | ${ }_{33}{ }^{2} \mathrm{p}$ | 8U105 | E2. | 2N3707 | $17{ }^{10}$ | TAA570 | C2.02 | TIL21! | 4 p | 17p*; 10 $\mu \mathrm{F} / 35 \mathrm{~V}-21 \mathrm{p}^{*}$; 1 | 10 | ct | c4.68 | c3.58 |
| AF128 | 3 p | BC169C | ${ }^{23}{ }^{\circ}{ }^{\circ}$ | $\mathrm{BC3}^{3}$ | 82 P | BF180 | 33 p | Bu126 | E1. ${ }^{\text {ct }}$ | 2N3709 | $17{ }^{\circ}$ | TAA6118 | c.2.75 ${ }^{\circ}$ | (0.125" | ed/ | $22 \mu \mathrm{~F} / 15 \mathrm{~V}$: $33 \mu \mathrm{~F} / 10 \mathrm{~V}$; 47 | 15 | ct | cb | 1 |
| AF139 | 450 | BC1708 | $15^{\circ}{ }^{\circ}$ | BC328 | 170° | BF181 | 330 | 8U204 | E2. 31 | 2S321 | 75 | TBA5 | $\begin{gathered} 2.290^{\circ} \\ 53 \cdot 35^{\circ} \end{gathered}$ | | | | 22 | E13- | C) | C. $\cdot 0$ |
| AF178 | 4 P | 8C170C | $15{ }^{\circ}$ | | 150° | 8F182 | 34 p | BU205 | E210 | RCA40530 | 30 95p | TBAS60CO | | | | | | | | |
| AF179 | 740 | BC171 | 140° | | | 8F 183 $8 F 184$ | 20 p | BU208 | | RC | 73p | | | 1 N40 | | ELECTROLYTICS: | | 1 | | |
| AF180 | 750 | BC171A | $15{ }^{15}{ }^{\circ}$ | BC377 | 21 p | BF185 | 28 p | C1129 | E2.5 | | | | | 141 | | Axlal or Radia | add | 1 | ter | g |
| AF186 | 310 | 8 C 172 | $12{ }^{\circ}$ | BC384 | 189 | BF186 | 42 p | GET872 | 15p | INT | | | 22.60* | N4003 | | slues $\ln \mu$ F) | and sock | | | |
| AF239 | 45p | 8C172 | $140{ }^{\circ}$ | BC^{84} | 2 2 | BF194 | 12p ${ }^{\circ}$ | GET881 | 15p | GRAT | | T8A720 | E2.15* | | | V-1,2:2,3 | ster capac | | | |
| AF270 | 30 p | BC172C | 140^{*} | | 33 p | BF194A | 13p ${ }^{\circ}$ | GET882 | 15p | CIRCUIT | T8: | TBA800 | | $1 \mathrm{~A}$ | | | hat voltag | ge elect | lytles. W | - |
| ASY07 ¢ | E1.30 | 8C173 | $10^{\circ}{ }^{\circ}$ | B | 12 P | 8F195 | 12p ${ }^{\circ}$ | MEs001 | $2{ }^{20}{ }^{\circ}$ | 7400 | 17p | TBA81 | | IN4005 | | | derice | sts | ble to | |
| AU113 | c1.75 | ${ }^{8} \mathrm{C} 1738$ | $13{ }^{1}$ | BCsssa | 13p ${ }^{\text {a }}$ | BF196 | $1{ }^{15}{ }^{\circ}$ | ME8001 | 25° | 740 | 170 | TCA2700 | | (Acos | | 35p* : 2200-43p** | | | | |
| BC107 | 12p | BC177 | $1{ }^{1}$ | BCY31 | 65p | $8 F 197$ | 15p ${ }^{\text {c }}$ | M J2955 | E1.40 | 7403 | 170 | NE553 | ${ }^{10} 0^{\circ}$ | N4000 | | 25V-1. 2.2, 3.3 | | | | |
| BC107A | 14 p | BC177A | 19p | 8 CY 38 | ${ }^{3} 5$ | 8F198 | 15p ${ }^{\text {* }}$ | MJE340 | ${ }^{6} \mathrm{p}$ | 7404 | 220 | NE556 | ci. 8 | 40 | | - ${ }^{\frac{1}{2} p^{*}: 33,47,68,100}$ | MARKEO | VIT | | |
| BC1078 | 14p | BC178 | | BCY42 | 23 p | 6F199 | 290. | MJE370 | 2p | 7405 | 24 p | 741 (8 pin DI | IL) 34 p° | IA 100 | | 150-15p*: 220-26p*:330,470- | 2\%\%. PL | EASE | DD 2 | Oat |
| ${ }_{8 C 108}$ | 12p | BC178A | 21. | BCY70 | $1{ }^{1}$ | 8F200 | 31p ${ }^{\circ}$ | MJE520 | 54 p | 7409 | 25 p | 758 | [50 | IN4009 | 7p | $27 p^{\circ}$: $680,1000-35 p^{\circ}$; 1500. | and Packln | to | der | ort |
| BC108A | 14 p | BC1788 | 210 | $8 \mathrm{BY71}$ | 23 p | 8F224J | 25p ${ }^{\circ}$ | MJE521 | 50p | 7410 | 2 P | 2N444 | E1.65 | 1N4148 | 8 | 2200-430*. | add cost o | of alr/e | | |
| BC1088 | 14p | BC179 | | BCY72 | $1{ }^{1}$ | 8F224 | 35p ${ }^{\circ}$ | MJE2955 | $5 \mathrm{EL} \cdot 4$ | 7412 | 21. | | | 1N5401 | 18p | | | | | |
| ${ }^{8 C 108 C}$ | $14 p$ | BC179A | | BCZ11 | ¢1.11 | 8F240 | 20° | MJE3000 | c2. 10 | 7413 | 40p | | | 1N5402 | 17p | | 1员 | | | |
| $8 \mathrm{BC109}$ | 12 p | BC1798 | ${ }^{24} 9$ | BD115 | 81 P | 8F241 | $13{ }^{\circ}{ }^{\circ}$ | MJE3055 | 97p | 7414 | 750 | | | 1 N5404 | 11 p | | | | | |
| $8 C 109 A$ BC109 | $14 p$ | 8C18 | ${ }^{12} 0^{\circ}$ | BD116 | 67p | 8F254 | $3{ }^{31} p^{\circ}$ | MPU131 | $35{ }^{\circ}{ }^{\circ}$ | 7420 | 20 p | SOCKET8 | | 1 N5408 | 20. | 330, 470, 680-35p $: 1000,1500-$ | | -p | | |
| BC109C | 15p | BC182 | 140° | BD124P | 870 | 8F255 | ${ }^{2}{ }^{4} 0^{\circ}$ | OC41 | 75 p | 7438 | 20 | Pin | | 1 N5408 | 22 P | 43p*: 2200-45p | | | d | |
| BC113 | 15p | 8C183 | $12 p^{\circ}$ | BD131 | 41 p | 8F258 | $34 p$ | OC4 | 4 p | 7440 | 218 | | $24 p$ | 1N01 | p | | \%m, | , | - | |
| BC14 | 15p | BC1838 | 130° | B0132 | 41p | EF259 | 44 p | OC45 | 40 | 7441 | Tp | | 19 p | 1544 | 7 p | ,12 | | | | |
| BC115 | 18 p | BC183L | 130^{*} | 8 B 133 | 540 | 8F262 | 40 p * | OC70 | 40 | 7442 | | $50+$ | 17p | 15920 | $7 p$ | 38, 100-27p ${ }^{\circ}$: $150,220-35 p^{+}$: | | | | |
| BC118 | 191 | BC183L | 14 p | BD135 | | 8F263 | 40 p | -C71 | 45p | 7445 E | Ef 20 | $100+$ | 15p | 15821 | 19 p | $330,470,1000-43 \mathrm{p}^{*}$ - ${ }^{\text {a }}$ | (prople. M | Minico | rading | d.) |

You'll learn a lot from the free Heathkit catalogue.
 NEW De-luxe

 The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating items which you can build yourself.
 Send for the catalogue now.
 To Heath (Gloucester) Limited,
 Department PW78, Bristol Road,
 Gloucester, GL2 6EE. Reg No. 60817
 Name.
 Address
 Please tick the literature you want and enclose the appropriate
 amount in postage stamps.
 Heathkit catalogue only \square (enclose 11 p to cover postage) 16 page computer brochure only (enclose 20p to cover postage and part costs). N.B. If you are already on the Heathkit mailing list you will automatically receive a copy of the latest catalogue without having to use this coupon.
 When you recelve your catalogue you'll get details of this free offer worth approximately $£ 4.75$
 There are Heathkit Electronics Centres at 233 Tottenham Court Road,
 London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

EASY BUILD SPEAKER DIY KITS Specially designed by RT.VC lor costconscious hi- fie enthusiasts. these kits incorporate two teak. ssmulate enclosures. two EMI $13^{-1} \times 8^{-}$(approx.) wooters. two tweeters and a par ol matching crossovers. Supplied complete with an easy 10 follow TEREOPAIR Input 15 watts ims. 30 watls peakponenis PD\&PCS50 Cabinetstre $20^{-} \times 11^{-} \times 9 \frac{9}{3}$ - (approx.) speakers available without cabinets it s the units which we supply with the enctosures illustrated Sve 13×8 lagerac wodier $|E M|$ tweeter, and matching crossover components. stereo part Power handling 15 watts ims. 30 watts peak. +0 \& $p[3.40$

COMPACT FOR TOP VALUE These infinite bame

 anclosures come to you ready mutted and protessionally finished. Each cabinet measures appror per stereopar
 SPEAKERS Two models Ouo Ib. teak veneet 12 walls rms. 24 watts peak. $18 \frac{1^{-}}{} \times 13 \frac{1}{4}^{10} \times 1 \frac{1}{4}^{-1}$ (apprior.) Ouo 111.20 watts sms. 40 watts peak. $27^{-} \times 13^{-} \times 111^{-}$appx Ouo litb £17 P\& Pils OECCA 20 WATIS STERED SPEAKER Steteo Dal This matching loudspeaker syisem is hand made, kit comprises of two g^{-}diameter appror base dive unit. with heavy die cast chassis laminated cones with rolled P.V. C surrounds. iwo 3 :- diameter appror. domed tweeters

PORTABLE Here's the big-value potiable disco console from OISCO AT.VC! If features a pair of BSR MP 60 type auto. CONSOLE return. single play professional series record deck with built-in Plus all the controls and features you need 10 give pre-amp Simply conoects intances. Simply connects into yout
existing slave or externa' amplifiet
${ }^{6} 644^{00}$

Tourist IV

CAR RAOIO KIT For the experienced constructor only Outpul 4 watts into 4 orms. Complete mith
speaker, baffle and lixing strip. for the experienced constuctor only. The Tourist IV has live push buttons. lour medium band and one for long wave band. The tuning scaze is iluminated and atractio sum 12 is cos rolume control. 12 voits pos or neg
A MOTDR TOP 10 ACCESSORY 12.50
 FREE TO PERSONAL SHOPRERS BUYING CAR RAOOLO KIT
ELECTROMATE Rear mindow he ater, modern line element.
$£ 3.00$

PERSONAL SHOPPERS
UMIX siectronit digital alarm clock mains operated, large bright LEO display tilted display for easy viewing. silent operation. Alerm and 9 minute repeater. PM and secs display size $\quad \mathbf{£ 7 . 9 5}$
16016 VOLT MAINS TRANSFORMER $2 f$ amp
$\mathbf{f 2 . 5 0}$
BSR Record auto deck on plinth with
stereo cantridge ready wred
f11.95
LED 5 function men's digital watch
stainless steet finish
$\mathbf{£ 5 . 9 5}$
LCO 5 function men's digital watch
stainloss steel linish
£7.95
LCO B function CHRONOGRAPH men's digital
watch stainless steel finitsh
113.95

STEREO CASSETIE record/replay fuily built P.C
bowd. Used, without guarantee. (Ex Equipment.)
AM. FM. TUMER P.C. 8 . mith Mullard L. P. 1186.
1185. 1181 modules.
£1.95
$£ 9.50$
$£ 1.00$
MUSIC CENTRE CABIMET mith hinged smoke acrylic top.
finishod in natural teak venoers, size 304" x
14K" \& 7\%" approx
$£ 5.95$
mullaro builh power suphy
DECCA OC 1000 Stereo Cassette P.C.B
complate with switch oscillator coits and
tape he ads
FERGUSDW. 3.speed, 7" HIFl tape transpon
mechanism, complete with top covers.

Mullard AUDIOMODULESIN BARGAIN PACKS CURRENT Catalogue
 PER PACK SEEOUR PRICES

PACK $1.2 \times$ LP 117310 w , RMS output power audio amp modeles. + 1 LP $1182 / 2$ Stereo pre amp for ceramic and manliary inpurt.
$\underset{\substack{\text { DURPRICE } \\ \text { p+p } \& 1.00}}{2} \boldsymbol{4} 5$

PACK $2.2 \times$ LP1173 10w. RMS Output Dower audio mp modules +1 LP $1184 / 2$. Steceo pre amp for angelic ceramic and uaxilary in $\underset{0+0 ¢ 1.00}{\text { OURPRCE }} \subset 595$

ACCESSORIES
rolary stereo controis comprising BASS. TRE BLE and oupur capacitors. f105
11.00 р +p
$£ 1.95$
VOLJME and BALANCE
p+p $50 p 950$

TRADE ENQUIRIES INVITED

45 watlsims 90 watrs peak output Big leatures
$\begin{array}{ll}20 \times 20 & \text { WATT STEREO AMPLIFIER } \\ \text { Suporb Viscount IV unif In teak.fnished } & 29^{* 0}\end{array}$ cabinet. Sitver fascia with aluminlum rotary
 cabinet. Silyer fascia with aluminam rotary and stereo Jack socket. Functions switch for mic magnetic and crystal pick-ups, tape, tuner, and
auxiliary, Rear panal features iwo mains oullets. DIN speaker and input sockets, plus fuse. $20+20$ watts rms. $40+40$ watts peak.
30×30 WATI AMPLIFIER KIT
For the experienced constructor complete in every detaib.
$29^{00} \mathrm{p}$. \& p .
AVAILABLE NOW built and fully tested with output
 SPECIAL OFFER: PACKAGE PRICE WITH 30×30 KIT Mkll verslon. operates into 4 to 15 OHMS spoakers. Designed by \& amplifier $60+60$ peak. Suppliod with 2 Goodmans Compact $12^{\prime \prime}$ bass woofer with cropped 14,000 Gauss Magnot. overs.

ADO.DN STERED CASSETTE TAPE DECK KIT \sim Oesigned for the experienced 0 I Y man This , It kit compises of a tape transport mec
ready built and lested record replay electronics with iwin V tj meters and level contiol lor mating with mechanis Specifications-Sensitivily Mic 085 mV OK OHMS O 40 mV 400 K OHMS Oulput 300 mV RMS per channel. 1 KHz Irom 2 KOHBS source Cross Talk 30dh Tape Counter 3 Digit Resetrable frequency qesponse $40 \mathrm{H}_{2} 8 \mathrm{KH}_{2}=6 \mathrm{dt}$ Deck Motor 9 Voll OC with electronic speed regulations Key Eunctions Record. Rewind. If 995

include two dist inputs both lor ceramic cartidges. tape input and mictophone input Level miring conitiols fitted withintegial push pull switches Independent bass and Heble controls and master volume
 tape level, mic level, dect level. PLUS INTER OECK FAOER for periect graduated change from record deck No \mid to
No 2. or vice versa Pie lade level control $70 \mathrm{watt}[57$ $(P f L)$ leis Y OU hear nexi disc belore fading 140 wath peat 0

CHASSIS RECORO PLAYER OECKS	GARRARD OECX CCIOA 9795 Record changer with cue. stereo ceramic canridge p\& of2.00
	BSR MP60TYPE SINgle play record deck less cartudge. $p \& p<7.5$
	Caitidges to sut above
	Acos. magneticstereo ¢4.95
$12^{\prime \prime} \times 8^{\prime \prime}$	Ceramicstereo f1.95

cueing device and stereo ceramic head. p \& p \mathbf{Z} z.55 $\mathbf{f} 95$
8SR MP 60 type. complete with magnetic cartiridge, $\mathbf{f} \mathbf{2}$
diamond stylus. and de luze plinth and cover. p\&p[4.50

323 EOGWARE ROAO LOMOON W2
210 HEGH STREET. ACTON W3 6NG ALL PRICES INCLJDE VAT AT 12!*

EASY TO BUILD RECORO PLAYER KIT for the O.I.Y man who requires a stereo unit at budget price. comprising ready assembled stereo amp, module. Garrard auto / manual deck with cueing device. precut and finished cabinet work Dut put 4 watis per chamnel, phones socket and recordideplay socket, including f $\mathbf{9} 95$ 2 SPHERICAL HIFI speakers

by Eric Dowdeswell G4AR

Some readers of this column may have become a little irritated at the frequent mention in the last few months, without explanation, of sunspot activity coupled with the increased action on the $10 \mathrm{~m}(28 \mathrm{MHz})$ band. So, let's try to account for this interesting phenomenon.
Sunspots and flares involve the release of vast quantities of energy from the surface of the sun which, radiating outwards, reach and ionise the outer layers of our atmosphere. Given sufficient ionisation these layers can then act as reflectors for radio signals that reach them from Earth. The principal layer that concerns us is the outer E layer.
With little or no ionisation, signals on the 10 and 15 m bands tend to penetrate the E layer and be lost in space. As Solar Event on page 65 of the May issue of $P W$ showed clearly, sunspots are increasing rapidly in number and in activity so that signals at the higher frequencies are now being returned to earth. In many cases the signal is then reflected up to the E layer, bounced down again, to give multi-hop worldwide paths.
Band I TV signals around 45 MHz are already being received in southern Africa mainly due to a form of transequatorial propagation (TE). A similar northsouth path can often be noticed on the 10 and 15 m bands when ZS and ZE stations can be heard and worked from Europe to the exclusion of signals from other directions.
The effects of the daily, monthly and annual changes in propagation conditions may be fairly well known to the SWL but there is an eleven-year cycle of change that will not have been experienced by those taking up the hobby in fairly recent times. When the number of sunspots occurring is plotted against time, in years, it is found that the peaks repeat at roughly eleven year intervals, although the amplitude of the peaks can vary considerably.
We are now getting out of the sunspot doldrums of the early 1970s, when minimum sunspot activity favoured the lower frequencies, and into a period when working worldwide DX with a bit of wet string
for an aerial will be no more difficult than making a local telephone call! With heavy ionisation the F layer can remain an effective reflector long after local sunset.

Remember that a half-wave aerial is only about 16 ft or so on 10 m , so a simple beam is not impossible in the tightest situation. With electrical loading the "wingspan" can be reduced even further. More importantly, a beam gives discrimination against signals off the back of the beam, which can be very worthwhile in the heavy QRM that is bound to accompany the increased use of the 10 m band.

Newcomers

Tom Hillier of Paignton was staggered at the help and information he received from readers following his appeal in this column for info on the B40 receiver. "Real service here and a grand lot of chaps. I replied to each one by return post." So, Tom, I hope that you soon get settled down on the bands and start to send logs in on the rare DX.

From Wilmslow, Cheshire, Steve Turner BRS37620 sends his first letter although he has been reading $P W$ for some time. He has a surplus R208 and inverted " L " aerial but confesses to occasionally listening on his dad's Trio 9R59DS. Bill Land of Cheltenham is a newcomer to this column but not entirely to radio. He is BRS3476l and at 73 can't get around too well nowadays. He has an Eddystone 750 and Trio 9R59DS that he'd like to swap for an S27, with adjustments, so if you can help, write to Bill at 7 Wellbrook Road, Bishop's Cleeve, Cheltenham.

Readers' News

A determined character is our Brian Smith of Barry, Glam. as he intends to enrol for an RAE course in September and take the exam in December! With the best will in the world OM I think that this is unwise. As I have said before, the RAE and expenses mean a lot of money and one must be reasonably sure of passing before taking the exams. Next May would be much more realistic. Brian's present project is the DXer's audio filter in the May PW.
Nice to hear from Brian Hughes in Worcester, again. His FRG7 has been patrolling the bands fed from dipoles and a 66 ft wire. He found 10 and 15 m very good listening all through March. G4GOF conceals the identity of Jess Luxton (Bergheim, Battery Hill, Fairlight Cove, Hastings) who writes to express his gratitude to all those who helped him to pass his Morse test. He'd be glad to QSL any reports on his 80 m c.w., enclosing an s.a.e., to his QTH given here.

Another FRG7 enthusiast, John Whiting of Fareham, Hants, has a 135 ft wire and is now BRS40086. Having told him that ZA is just about the rarest thing going he reports hearing ZA6KB on 14285 kHz s.s.b! I hope you're right OM! Bob Bell in Blyth, Northumberland has actually been digging around inside his FRG7 putting one or two things right! Bang goes the guarantee!

David Greenhalgh BRS39965 (Poynton, Cheshire) and John Hodgson (Morpeth, Northumberland) both ask for guidance on the "rare" calls that I am always asking for in logs. Well, I do have a list and I'll publish it next month. In the meantime John seems to be doing pretty well already on all bands from 160 to 10 m . He was not caught by AP1RIL however! Chaos! reports Peter Cockerell (Leigh-on-Sea, Essex) and other readers on the Clipperton Island DXpedition. Very rare indeed, so hardly surprising. Once the frequency is known it is a good idea to listen an hour or so before conditions peak for our area and thus avoid some of the QRM.

Club News

Blackwood \& District ARS GW6GW is pleased to see the extra pages being allocated to "On the Air". Dates to note:- June 9th Gwent TV Group talk and demo, June 16th TVI by GW3NWS and June 23rd visit to BBC TV Cardiff. RAE class every week with meetings at Oakland Community College, near Blackwood, Gwent, 1930 on Fridays.

Don't forget the Stevenage \& District ARS first and third Thursday 2000 at Hawker Siddeley Dynamics staff canteen. Code classes start half an hour earlier, with RAE course at local college. June 15th sees G4DDX talking on DF receivers.

Log Extracts (s.s.b.)

P. Cockerell:- 20 m C5ABC (Gambia) CEOAE CO2GS FP0BC HC1BU HP1A HL9KL KG6SW PY0FN TR8GM ZL4LR/A (Campbell Is).
J. Hodgson:-80m EA8ER EP2TY 40m VK7AZ 20m TR8AF VP2LLL VP8PU ZD8RP.
J. Whiting:- 20 m HC2HM J3OH (Grenada) M1D TR8ACQ ZK2AT 10m VP8PM ZF1JJ.
B. Hughes:- 20 m J3AH VP2KT WD9FCC/VQ9 5U7AG 15 m EP2SI JA8GLP ZBC2J 10 m A2CBW KZ5JW 5T5KJ.
S. Turner:- 20 m JT1BK JY9VK.
B. Smith:- 80 m HCIWAS HK3BQQ HV3SJ 20 m TR8GM.

[^3]

MEDIUM WAVE DX
by Charles Molloy G8BUS

Every now and again a well established Radio Amateur on reading Practical Wireless comes across Medium Wave DXing and he decides to "have a go" on this band as a diversion from his normal activities. The results if reported to this column are invariably interesting and the report from Ken Hurrell G3NBC of Sturminster in Dorset is no exception. Using a Marconi Gannet marine receiver along with an 80 ft horizontal wire aerial about 15 ft above the ground he pulled in 9 Canadian and 22 US stations between 2300 and 0300 GMT during the past winter months. Highlights of the log are WSM Nashville Tennessee on 650 kHz , CBF Montreal 690, WLW Cincinnati 700 , CBL Toronto 740, WBBM Chicago 780, Schenectady NY 810, KMOX St Louis 1120, WOAI San Antonio Texas on 1200 . Ken remarks that in some cases the time of reception depended on the closing down of European stations. There were also a number of stations which could not be identified due to fading, QRM, etc-the real DX! With both WSM and WOAI reception was such that it was possible to listen to a complete programme and both stations verified with a QSL card. During DX conditions CJYQ, WINS, and WABC were listened to as regular programmes.

The interesting feature of this \log is the fact that several rather difficult stations were heard using a long-wire aerial, due no doubt to picking the right time and skill in handling the receiver. Medium wave DXers invariably use a loop aerial to take advantage of its directional effect which reduces QRM and static. During DX conditions, i.e. when the path is open, some strong signals can be heard from North America, strong enough occasionally to be heard on a transistor portable using its internal aerial. The following night there may not be a North American to be heard with any type of receiver or aerial. The experienced DXer is aware of this, but the newcomer is often discouraged if he cannot hear DX on a first or second attempt. Patience and persistence are the qualities required in a medium wave DXer. Even at this time of year you can hear North America during DX conditions. Try it during the hour before sunrise; you may be surprised.

Loops and Wavetraps

A letter from E. G. Oxtoby refers to the PW Medium Wave Loop Aerial Wavetrap, which confuses two quite different pieces of equipment. A medium wave loop is a directional aerial and is used to pick up DX instead of an ordinary aerial. A wavetrap is not an aerial. It is a device, comprising a parallel tuned circuit, which is inserted between aerial and receiver to suppress or reduce the strength of a local station. Wavetraps are seldom used these days as receivers are now more selective than they used to be, but one could be of

Now circuit designing is as easy as pushing a lead into a hole.

With a Proto-Board you can hook your circuit together as quickly as you can think.

And you can have second thoughts, and third thoughts, equally quick and easy, tiil you ve got the whole thing right.

Then you can solder up if you want to, but most engineers dont because the Proto-Board push-fit connectors are highly reliable.

And everything is visible; come back next week and you 'read' the circuit immediately.

How to order. Telephone 01-890 0782 and give us your Access, Barclaycard or American Express number, and your order will be in the post that night. Or, write your order, enclosing cheque, postal order, or stating credit card number and expiry date. (Don't post the card!). Alternatively, ask for our latest catalogue, showing all CSC products for the engineer and the home hobbyist. (Prices are for UK only. For Europe add 10%, outside Europe add $121 / 2 \%$ to total prices.)

CONTMENTAL SPECIALIES CORPORATION

MK14-the only low-cost keyboard-addressable microcomputer!

 The new Science of CambMK14 Microcomputer kit

The MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit - for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid. It's beendesignedforpractical performance. so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4 MHz crystal
* 5V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and $/ / O$ ports
Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

operational instructions and examples for training applications, and numerous programsincluding mathroutines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components. to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years . . there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, eyen purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard MicrocomputerKit aliows youtolearnmore about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB21SN.
Telephone: Cambridge (0223) 311488

Regd No. 213817088.

> To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for $£ 43.55$ ($£ 39.95$ $+8 \%$ VAT and $40 \mathrm{p} p \& \mathrm{p}$). Aliow 21 days for delivery.

use if the DXer lives near a broadcasting station. The Aerial Tuning Unit is another device that is sometimes confused with a loop. The a.t.u. matches an aerial to a receiver and a good match means maximum-transfer of signal. An a.t.u. is unsuitable for use with à loop.

Ferrite Rod Aerials

"Would it be possible to make up a type of ferrite rod aerial in a box, on a swivel or something for use with the FRG7?" asks Bob Bell of Blyth who continues to say that he does not have a medium wave loop and a ferrite rod would be much handier size-wise. Yes, it is possible, I tried it several years ago using a ${ }^{3}$ in diameter ferrite rod, 8in long, with 60 turns closewound as the main winding and six turns for the coupling winding. The tuning capacitor was about 300 pF . The results were disappointing as the pick-up was a lot less than from a standard 40 in loop, though I did manage to hear WWL New Orleans 770 kHz using this aerial and an R1155 receiver. Pick-up depends on the number of turns and the effective cross-sectional area enclosed by the windings, and a marginal improvement will be obtained by spacing the turns on the windings. The reduction in self-capacitance of the windings enables additional turns to be wound on.

At that time a DXer in the United States got hold of a mammoth ferrite rod one inch in diameter and 12in long, and he achieved quite good results with it. The largest rod I could find was 5_{8} in diameter and 8 in long. Two of these rods were used with a 10 in length of Paxolin tubing of 5_{8} in internal diameter. A rod was inserted into each end of the tubing so that they met in the centre. The rods were fixed to the ends of the tubing by adhesive so that the two ends inside the tubing were pressed hard against each other. Fortunately they were a tight fit. The main winding comprised 150 turns of plastic covered wire wound on top of the tubing, spaced at approximately one wire diameter and was tuned with a 330 pF variable capacitor and slow motion drive. A coupling winding of 10 turns was led off to the receiver. The results were quite encouraging. The main advantage of this aerial was the high Q and consequent good selectivity, but the pick-up was still less than from a loop. The aerial was mounted on a small stand and was very convenient to use but it was rather top heavy and easy to topple over. A small loop would give as good results and would be a lot easier to make though the experimenter may find ferrite rods an interesting diversion.

Receivers

Experimenting of a different kind being done by Derek Taylor who has obtained a second-hand Barlow Wadley XCR30 and is making comparative tests with his FRG7, on the medium waves. He says "The receiver is very good on medium waves, especially when used with a loop, and in fact seems to be far more selective than the FRG7". It is interesting to note that these two receivers are reviewed in the 1978 edition of the World Radio and TV Handbook and the XCR30 is given "Good" for selectivity but "Poor" for overall performance on the medium waves. The corresponding rating for the FRG7 was "Fairly Good" and "Fair". These tests are of course subjective and one man's meat etc seems to apply to receivers in the DX world. Both the XCR30 and the FRG7 yield good
logs for reporters to this column but it is interesting to compare results when the opportunity arises. To be of any value though, the two receivers should be checked for proper alignment, as they should be in any event when used for serious DXing.

Logs and News

Derek Taylor's log with FRG7 and loop includes Radio St Lucia 600 kHz at 0110 , WLW Cincinnati 700 at 0215, Ougadougou 746 at 2355, WJR Detroit 760 at 0216, WGY Schenectady 810, WCFL Chicago 1000 at 0345, Radio Lighthouse Antigua on 1165 at 0119. James Edwards who lives near Wigan, used the PW m.w. loop with his Realistic DX160, and between 0100 and 0300 he pulled in CFRB Toronto on 1010 kHz , KDKA Pittsburg 1020 and WCAU Philadelphia 1210. G. Cox of Dudley reports that MEBO 2 is no longer on 773 but has moved to 908 kHz . The current situation about this ship-borne radio in Libya is confusing. Sweden Calling DXers reports that this station and the Voice of Peace are both off the air but that MEBO 2 is expected to resume broadcasting before long.

SHORT WAVE BROADCASTS by Charles Molloy G8BUS

Peter Gatehouse of Buckingham mentions that the tree to which his long wire was attached blew down and he is now looking for a more suitable replacement. Bill Stevenson of Swinton had a similar experience though in his case it was the aerial that broke. An outdoor aerial should be anchored to a building or mast if this is possible, and in an exposed situation the mast should have guy wires or ropes to prevent it moving in strong winds. My experience indicates that it is not the effective part of the aerial, i.e. between the insulators, that breaks but the terminating wire between insulator and support. Thin nylon rope, which has a bit of "give" will help here.

It might be possible to put guy ropes onto the branch of a tree but the usual method recommended is to fit a pulley to the tree trunk, pass the terminal wire or rope over the pulley and fix a weight on the end of it. The idea is that as the tree moves in the wind the weight moves up and down taking the strain off the wire/rope. I have not tried it but it would be interesting to hear from any reader who has practical experience of this or any other method of using a tree instead of a mast.
"Does a 75 ohm screened feeder spoil the efficiency of a 300 ohm ribbon feeder dipole?" asks D. R. A. Lowe of Lichfield. Yes, there will be a mismatch loss at the resonant frequency of the dipole, though if the aerial is used at other frequencies it will not matter. Ribbon feeder with a characteristic impedance of 300 ohms is a convenient material with which to construct a folded dipole. A dipole incidentally, is a one-band
aerial. Divide 468 by the frequency in MHz to get the length of the aerial in feet. A dipole for the 25 m band for example would be 42 ft long.
Cut a length of 300 ohm feeder to the correct length, bare the two wires at one end and solder them together and then do the same at the other end. Fit an insulator to each end and you now have the aerial. Find the exact centre of the aerial and cut one of the two wires at this point. The impedance here is 300 ohms. This is the place to join another length of 300 ohm feeder which will be the downlead and there will be a perfect match between downlead and aerial. The feeder is joined to the balanced (A and A1 or dipole) input to the receiver. If you want to use the dipole at other frequencies join together the two wires at the receiver end of the feeder and connect to the normal aerial socket and you will now have a " T " aerial.

11 Metre Band

Activity on the 11 metre band ($25605-26095 \mathrm{kHz}$) is stirring as broadcasting authorities realise that solar activity is on the increase. A recent report in Sweden Calling DXers referred to a programme in Afrikaans on 25790 kHz at 2000 which was probably a test transmission from Radio RSA. It is worth watching this band during the daytime and reports, even if the exact frequency is uncertain, will be welcome, but watch out for harmonics. Bob Bell (Blyth) mentions hearing Italy on 25285 kHz at 1540 and if the frequency is correct then very likely it is a harmonic. Other interesting loggings from the h.f. end of the spectrum in Bob's \log are USSR on $23920 \mathrm{kHz}, 24040,24120$ and 24720 which may be harmonics and Israel on 25605 and the VOA on 26040, all heard during the afternoon. Bob would like to contact anyone in the Blyth area interested in forming a DX club. Write to Bob Bell, 5 Byron Avenue, Blyth, Northumberland NE24 5RN. Bob feels that there may be many people like himself "tucked away in their shacks all over the Blyth area".

DX

World International Broadcasters is the full name of WINB Red Lion in the USA. R. Guest has had difficulty in contacting this station which transmits in English, welcomes reception reports and "verifies" with a QSL card. Write to WINB, PO Box 88, Red Lion, Penna 17356, USA, which is the address given in the Word Radio and TV Handbook. From Selly Oak, Birmingham comes news of R. J. Irvine's DXing activities using an ex-WD R209 receiver and a 30 ft long wire. He mentions that this receiver does not have an r.f. gain control. Why not fit an aerial attenuator as described last month? Stations heard included United Nations Radio (relayed by the VOA), Moscow Radio Ping Pong Station on 12160 kHz at 1540 (does anyone have any information on this station?) Sri Lanka in English on 17850 at 1900 wedged between Family Radio and the VOA.
"What is a DXer" is the title of an interesting article in RSA Calling, Nov 1977/April 1978 issue. The article traces the progress of the newcomer from being a Novice Radio Listener through being a Radio Country Chaser, Programme Listener, Short Wave Listener, Reception Monitor and finally to being a DXer. Radio RSA is anxious to hear reactions to the article and ask for letters on this subject to go to DX Corner, Radio RSA, PO Box 4559, Johannesburg, RSA.

Nick Stewart (Dundee) writes to say that he is now a reception monitor for Radio Budapest and he reports regularly to this station on their nightly transmission on 6110 kHz . This type of reporting can be of immense value to a radio station and many international broadcasters have a network of "monitors" across the world, who give a regular picture of the ever-changing reception conditions.

Radio Grenada on 15105 with a good signal at 2000 is reported by Harold Emblem from Mirfield in Yorkshire who uses an Eddystone 730 and long wire. This station was also heard by R. Guest who reports that it has a request programme from 2045 to 2200 on a Thursday. Radio Grenada is listed as being on 15105 with a power of 5 kW with broadcasts to Europe between 1945 and 2200GMT. Two unusual items from the ISWC are Radio Tahition 15170 kHz in English at 1900 and Bangkok on 9655 kHz in English at 1100 .

by Ron Ham BRS15744

The auroral co-ordinator for the British Astronomical Association, Ron Livesey writes "Both my own solar observations and information from professional circles indicate that this coming solar cycle is going to be a strong one". I agree Ron, it looks that way. Although the BAA have a good visual auroral detection network, stretching from ships in the north Atlantic, through Britain, across Norway and Finland to the Russian border, their observations are limited to the hours of darkness, and then to clear skies.

We radio enthusiasts can therefore use our equipment, unrestricted by overcast skies, to help gather that wealth of natural information which will undoubtedly come over the next few years. To this end, both Graham Knight, GM8FFX, my opposite number in Radio Communication, and myself are co-operating with Charlie Newton, G2FKZ, RSGB Auroral co-ordinator, and Ron Livesey to ensure that the utmost value is gained from our readers' reports.

The "Active" Sun

Solar radio noise was recorded at 136 MHz by Cmdr Henry Hatfield, Sevenoaks, and myself, and at 142 MHz by John Smith, Rudgwick, Sussex, on about 15 days between March 23 rd and April 18th compared with only one day for the same period in 1977. Large bursts of noise, some lasting several minutes, were received on March 26th and 27 th and April 1st, $7 \mathrm{th}, 8 \mathrm{th}, 9 \mathrm{th}, 10 \mathrm{th}, 11 \mathrm{th}, 13 \mathrm{th}$, and 18 th , of which two were spectacular; at 1200 on the 9th I watched my radio telescope record a six-minute burst at 95 and 136 MHz and heard the noise on other equipment working simultaneously on 28 and 50 MHz . Alan Baker, G4GNX, Newhaven, heard this burst overpower terrestrial signals on 144 and $1 \cdot 8 \mathrm{MHz}$. During the early afternoon of the 11th, Henry Hatfield recorded two massive bursts which he associated with a bright ribbon flare, several baby flares and an ugly black filament which he saw on the sun with his spectro-
helioscope. On this sunny April day there was 6 inches of snow in Henry's garden.

At 0730 on the 13th I heard strong bursts of solar noise on 10 m with a long wire aerial feeding my FR101 and at 6 m with a dipole into my R216. For several days Henry watched the progress of two sunspot groups and was not surprised when a radio noise storm raged from the 14th to the 18th, during which time G4GNX and myself heard this noise on several radio frequencies.

The 10 Metre Band

With solar particles battering the earth's atmosphere it was not surprising that radio blackouts and ionospheric disturbances, affecting the h.f. bands, were reported on April 5th, 11th and 14th by Barry Ainsworth, G4GPW, Sompting, Sussex, Alan Baker, Roy Bannister, G4GPX, Lancing, Sussex, the BBC world Service, the Daily Telegraph newspaper and Dr Harold Brodribb, St. Leonards-on-Sea. Neil Clarke, BRS 34306, Knottingley, Yorks, listens on 10 m with a Yaesu FRDX400, fed by a TA32 beam at 25 ft a.g.l., and like many of us he monitors the Cyprus, 5 B 4 CY , and project TESSA, ZE2JV, beacons both of which he received almost daily throughout March.

On the 18th, G4GNX heard AA4AA, the first of the new American call-signs, strong signals from PY, RA, VU, and also worked two Russian stations on s.s.b. Between 1234 and 1858 on the 25th, Alan reported 589 signals from 5B4CY and had s.s.b. contacts with a K2, 2 UA6s, and 3 Ws. Both Gordon Goodyer, BRS 37345, Petworth, Sussex, and myself observed the excellent conditions on the 26th; around 1600 , Gordon, using his Eddystone 750, heard strong signals from Africa, Europe, the Middle East and South America. Meanwhile at 1436 stations from North America were pounding in at my QTH and the beacon signals from Bahrain, A9XC, Florida, N4RD, ZE2JV, and 5B4CY were averaging 579 . This same group of beacons were heard again at midday on April 9th and in the space of six minutes, from 1005, I heard a VK work OE, $\mathrm{OH}, \mathrm{PA} 0$ and YU giving them reports of 57 and 59 . JAs and VKs were again heard at 1000 on the 31 st, and at 0850 on April 7th I received a 59 signal from JA8RUZ calling European stations from northern Japan.

Conditions were good on April 8th, 9th and 10th when strong signals were frequently received from the regular beacon stations, and on the 10th, Nigel Golds, BRS 36910, West Chiltington, Sussex, heard a 488 signal from the German beacon DLOIGI. Around 1830 on the 8 th, Gordon Goodyer heard Ws 1, 2, 3 , $5,8,9$, and signals from Tanganyika to South America and Canada. On the 9 th, he heard the Mauritius beacon, 3B8MS and signals from British Honduras, Brazil, Cyprus, Portugal and the USSR, while G4GNX, at 1445 , worked WD4LBI on c.w.

Auroral Propagation

Between 1719 and 2015 on March 26th, John Branegan, GM80XQ, Saline, Fife, had auroral contacts on 2 m with GM8NCW, Fife, G8LVM, Stoke, G8BHH, Wolverhampton, and heard EI6AS on s.s.b., and DL, LA, and SM on C.w. At 1945, the radio aurora eased off and John said "we were treated to one of the finest visual aurora I have ever seen which started as a bright yellow-green band along the northern horizon and by 2000 had added a great stream of
bands right up the northern sky and over my head to the south".

During a less intense event between 1656 and 1900 on the 27th he heard signals from DL, EI, GI, GW, and PA. This report fits nicely with the solar activity on the 26th and 27th and the 24 -hour ionospheric disturbance reported by the BBC World Service on the 27th. At 1818 on April 4th Dermot Cronim, G4GRO/ EI9DC stationed at the Royal Sovereign in the English Channel, heard GM8FFX, at 42A on s.s.b. Around midnight on April 11th/12th, Mr McDonald, seven miles east of Oban, saw an aurora which was mainly a white glow, with some movement, and indistinct beams.

OSCAR-8

Vic Hartopp, G8COB, Northampton, listened to the first few days of OSCAR-8's life and John Branegan worked out his own orbital parameters after the first three orbits, and has followed the satellite on all modes since. On March 19th, John's first OSCAR-8 QSO with PAOKT was spoilt by rapid fading which he thinks was due mainly to his horizontally polarised aerial. Since changing to a circularly polarised 2 m helical he has worked several stations.

John has now built an OSCAR-8 plotter and contributes information to the Scottish AMSAT net, organised by GM8BKE, on Sundays at noon, $144 \cdot 28 \mathrm{MHz}$. "As yet", says John, "not many stations are using OSCAR-8. Reasons are-continuous high Doppler shift-the receiver must be tuned continuously to hold s.s.b.-the need for circular polarisation on the up-link, and on Mode J, the difficulty of reading the very weak down-link signal".

Readers' Equipment

Neil Clarke uses a 6-element beam at 30ft a.g.l. for 2 m DX listening, and for the repeaters, he has a Lowe VHF Monitor receiver, AJV1515, with a ground-plane aerial at 35 ft and a 5_{8}-wave Mag Mount on his car. Harold Brodribb is building a tuner for the 6 m band ready for the sporadic-E season and Gordon Goodyer is considering using a m.o.s.f.e.t. pre-amp in front of his CR100. Frank Luman, Glasgow, has added a $5^{1}{ }_{2}$ in JVC TV set which tunes through Bands I and III and u.h.f., to his DXTV gear, and for the same reason I have installed a JVC 3060, $2^{1}{ }_{2}$ in TV receiver tuneable through the European Channels 2-4, 5-12, and 21-69. Denis Sullivan, Chiswick, now has a new National Panasonic RF-2000 in addition to his Trio QR666.

Overseas DXers Visit BBC

One of our Swedish readers, Moritz Saarmann, on holiday with two friends, Hákan Holmlund and JanOlof Karlsson, visited the headquarters of BBC World Service at Bush House, London, on March 21st.

All three are SWL members of Radio Club Tellus, near Mölndal, just south of Gothenburg, which has its own amateur station, SK6IQ, comprising a Swedish receiver, similar to the Hammarlund Super Pro, a much modified R208, and a Heathkit SB102 transmitter. The club, where some twenty members meet weekly, uses all bands and runs courses on DXing for beginners, c.w. and a variety of technical subjects.

At home Moritz uses a Drake SW4 on the h.f. bands, a Hallicrafters $S X 42(500 \mathrm{kHz}$ to 108 MHz$)$, for part
of the v.h.f. bands and a Dynaco FM5 stereo for Band II. His aerials are dipoles for both h.f. and v.h.f. and a long wire. Hakan and Jan-Olof use long wire aerials feeding an Eddystone 960 and a Küngs domestic receiver respectively. Hakan, who also has a Hallicrafters SX18 and a Pioneer stereo which he uses on Band II, is Deputy Secretary General of the Swedish DX Federation, whose annual meeting, the traditional DX Parliament, will be held from June 9th to 11th this year.

While at Bush House the three visitors were studio guests for a recording of a World Radio Club letters programme, with Peter Baresby, Mark Deutch, Henry Hatch and the Author.

Tropospheric Openings

At 2110 on April 7th, Frank Luman received a picture from NRK, Oslo, Ch.E-6, and during the following evening he watched RTE, Dublin. Conditions
on v.h.f. fluctuated frequently during early April; on the 3rd, Garry Hibbert, G8HXB, Portslade, Sussex, heard repeaters GB3BC, BM, and PI while static on Devils Dyke, Brighton; at 0142 on the 5th G4GNX heard a GW8/M working through GB3LO and at 1555 on the 9th he had a s.s.b. contact with G8KHD/P who was running 10 watts from a Liner-11 in Buxton. Brian Fenwick, G8BTC, Brighton, heard both GB3BC and FZ1THF on R6 during the evening of the 8th and FZ3THF, R4, on the 9th. On the 17th, Keith Smith, G3TLB, Crowborough, heard ONOOV on R4 and Dermot Cronin heard a GU direct at Royal Sovereign.

Nigel Hewitt, G8JFT, used his Uniden 2 m rig and a ${ }^{1}$-wave ground plane to work locals and the West Country from his bedside in the Royal Sussex County Hospital, Brighton, while recovering from appendicitis. We all hope that Nigel will be fully fit and that conditions are good for the RSGB VHF National Field Day and SWL contest on July 1st and 2nd.
Thanks again for all your interesting reports; there is a lot happening so let me hear from you soon.

JOHN BRANEGAN
by Ron Ham

One of John Branegan's earliest memories of home is listening to Chidrens Hour, on a 3-valve straight set, built by his Father around 1933 from what he thinks was a design by F. J. Camm in Practical Wireless.

John, born in 1927, moved to Woolston, Southampton, in 1935, where his Father was involved with the building of Spitfires, and in 1938, at the age of 11, he became an SWL when he first heard American short-wave stations on his Father's new Murphy superhet. In 1943, John left the King Edward VI Grammar School, Southampton, and joined the Royal Navy as Electrical Apprentice transferring to Radio Artificer before completing his training.

On his first ship, the aircraft carrier Illustrious, John had charge of two v.h.f. radars and rooms full of v.h.f. communications equipment. Later, while serving in the Mediterranean and in particular at a shore wireless station in Malta, he became interested in propagation. Meanwhile he passed the City and Guilds final in telecomms, and in 1953, while serving with submarines, he took the examination for a Commission. In 1954, John became a Sub-Lieutenant and joined a frigate for service in the Far East which was interrupted by a spell at Heriot Watt, Edinburgh, where he obtained graduate qualifications for IERE.

In 1963, he began training for nuclear submarines where he served until he retired in 1977 having been promoted to Commander in 1973. At his present QTH, a bungalow, 360 ft a.s.l. in Saline, Fife, he now spends all of his spare time on v.h.f. with a special interest in satellite work and propagation studies. For the h.f. bands he uses an FRG-7 receiver preceded by Microwave Modules converters for 2 m and 70 cm , in addition, a GEC receiver covers Band II f.m. and a much modified Pye TV is used for video DX. In his aerial farm are crossed dipoles for 10 m , OSCAR down-link and CB , an 8 -element rotatable Yagi for 2 m DX , a 7 element fixed Yagi for 2 m auroral studies, a homebrew 14-element parabeam for 70 cm DX and OSCAR-7 and 2 fixed aerials for the 70 cm repeaters GB3ML, Central Scotland, RB10, and GB3ED, Edinburgh, RB14.

Commander John Branegan, now GM80XQ, is a regular contributor to the auroral sections of the British Astronomical Association and the RSGB, and to my v.h.f. column, and is always pleased to meet any local radio enthusiasts who want help or just to have a natter.

TRANSFORMERS ALL. EX-STOCK—SAME DAY DESPATCH. VAT 8\%

12 AND ${ }^{24}$ VOLT OR ORY $220-240$ VOLTS				
		34 V		
111	${ }^{12} 1$	${ }_{0}^{2125}$	2.29	${ }_{0}{ }_{0} 45$
213	1.0	0.5	2.4	0.78
18	4	2	4.03	$0 \cdot \%$
70	6	3	5.35	0.96
108	${ }_{8}$	4	6.98	1.14
72	10	5	7.67	1.14
116	12	6	8.99	$1 \cdot 32$
17	16	8	10.39	$1 \cdot 32$
115	20	10	13.18	2.08
187	30	15	17.05	2.0
8	60	30	24.82	OA

$$
\begin{aligned}
& 12 \mathrm{~V}-0-12 \mathrm{~V} \text { or } 15 \mathrm{~V}-0-15 \mathrm{~V} \text { availab } \\
& \text { nection to appropriate taps. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nection to appropriate taps. } \mathrm{E} \text { Amps } \mathrm{Pa} \text {. }
\end{aligned}
$$

Prim $220 / 240 \mathrm{~V}$ See $0-20-25-33-40-50 \mathrm{~V}$ $20 V-0-20 \mathrm{~V}$ or $25 \mathrm{~V}-0-25 \mathrm{~V}$ availabie by con nectlon to appropriate
Ref

nection to appropriate taps.			
Ref	Amps	\&	P.
102	0.5	3.41	0.78
103	1.0	4.57	0.98
104	2.0	5.08	1.14
105	3.0	8.45	1.32
106	4.0	10.70	1.50
107	6.0	14.62	1.64
118	8.0	17.05	2.08
119	10.0	21.70	OA

MAINS ISOLATING (SCREENED)

Ref	PRIM $120 / 240$ S	$=12$	P \& P		AUT	TO TRAN	FORM	ERS	
${ }^{\circ} 07$	20	4-40	0.70	Ref		Walts)	s		P\&P
149	60	6-20	0.96	113		0-115-210		2.4	0.71
150	100	$7 \cdot 13$	1.14	6	75	0-115-210		3.65	0.96
151	200	11.16	1.50	4	150	0-115-200	0-240	$5 \cdot 35$	0.96
152	250	12.79	1-84	67		0-115-200	20-240	10.t	1.64
153	350	16.25	1.84	84	1000	0-115-200	2-240	18.7\%	2.08
154	500	19.15	$2 \cdot 15$	93	1500	0-115-200	20-240	23.35	OA
155	750	29.06	OA	95	2000	0-115-200	2-240	34.t2	OA
158	1000	37.20	OA	73	3000	0-115-200	20-240	4*00	OA
157	1500	45.60	OA						
158	2000	54.80	OA						
159	3000	79.05	OA	CASED AUTO TRANSFORMERS 240 V cable in 115 V USA flat pin outiet					
-State Volts required 115 V or 240 V .									
HIGH VOLTAGE MAINS ISOLATING				15		4.96	${ }_{0}{ }_{0} 96$		
				150		8.48	1.14		113W
ISOLATING Prim 200/220V or $400 / 440 \mathrm{~V}$				200		9.92	1.45		65w
Sec 100/120V or $200 / 240 \mathrm{~V}$				250		10.45	1.45		69 W
Va	Ref	$\underline{1}$	P\& ${ }^{\text {P }}$	500		15.73	1.64		67W
60	243	539	132	750		18.55	$1 \cdot 76$		$83 W$
350	247	14.11	$1 \cdot 84$	1000			OA		84 W
1000	250	41.78	OA	1500		23.02	OA		93W
2000	252	5425	OA	2000		37.85	OA		95 W

Prim 2201240 V Soe $0-24-30-40-48-60 \mathrm{~V}$ oction or $30 \mathrm{~V}-\mathrm{a}-30 \mathrm{~V}$ available by con
nection to appropriate taps.
Prim 220/240V Sec $0-12-15-20-24-30 \mathrm{~V}$ $12 \mathrm{~V}-0-12 \mathrm{~V}$ or $15 \mathrm{~V}-0-15 \mathrm{~V}$ available by con

$$
\begin{aligned}
& 12 V \\
& \text { nee } \\
& R e
\end{aligned}
$$

Ref	Amps	5	P\&P
124	0.5	3.84	0.96
126	1.0	5.58	0.08
127	2.0	7.60	1.14
125	3.0	10.54	1.32
123	4.0	12.23	1.84
40	5.0	13.95	1.64
120	6.0	15.66	1.84
121	8.0	20.15	$0 A$
122	10.0	24.03	$0 A$
189	12.0	27.13	OA

Electrosil \& semiconductor stockisfs. Panel, Mult Meters, Audio accessorles, send 15p stamps for ll
Electrosll \& semiconductor stockisis. Panel, Mult Meters, Audio seceseorles, send 15p stamps for lists

IT CAN SAVE YOU POUNDS!

Modules - power amps 3 to 100 watts R.M.S, power supplies, control units, etc. -electronic ignition for your car - D.I.Y. disco/ P.A. - bargain disco assemblies - plenty to choose from with technical gen, diagrams and good instructions. Send only 20 p for postage and handling for your copy by return.

Dept, P.W.7. 37 VANGUARD WAY SHOEBURYNESS, ESSEX
Phone (03708) 5543
Shop \& Showroom (personal callers oniy) 222-224 West Road, Westcliffe on Sea, Phone-Southend (0702) 35-1048

THIS is the Catalogue you need to solve your component buying problems!

The finest components catalogue yet published.

- Over 200 A-4-size pages.
- About 5,000 ttems clearly listed and indexed.
- Nearly 2,000 illustrations.
- Bargain List sent free.
- At $£ 1 \cdot 40$, incl. p. \& p., the catalogue is a bargain.
Send the coupon below now
HOME RADIO (Components) LTD., Dept. PW., 234-240 London

ETCH RESIST TRANSFERKIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 4 \frac{1}{y}$ in $\mathbb{E 2} \cdot 50$ with al symbols for direct application to P.C. Board Individual sheets 25p each. (1) Mixed symbols (2) Lines 0.05 (3) Pads (4) Fish plates and connec tors (5) 4 lead and 3 lead and pads (6) DiLs (7) Bends 90° and 130° (8) 8-10-12 T.O.5. can (9) Edge connectors 0.15 (10) Edge connectors 0 . (11) Lines 0.02 (12) Bends 0.02 (13) Quad in line

CIRCUIT LAYOUT TRANS-

 FERS SIZE 2: 1One sheet 12 in $\times 9$ in giving all eransfers as in etch resist from No. 3 to No. 10 inclusive makes circuit layout easy. Black only. Price $\& 1$.

Also lines and bends. Price $£ 1$.

FRONT AND REAR PANEL TRANSFER SIGNS

All standard symbols and wording. Over 250 symbols, signs and words. Also available in revers for perspex etc. Choice of colours red, blue, blac or white. Size of sheet 12 in $\times 9$ in. Price $\mathbf{f l}$.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse lettering. Colours red blue, black or white. Each sheet 12 in $\times 9$ in con cains capitals, lower case and numerals. tin kit or tin f l complete. State size required.

ALL ORDERS DISPATCHED PROMPTLY. ALL POST AND VAT PAID.
Ex. U.K. add 50p for air mail. Shop and trade enquiries welcome.

E. R. NICHOLLS

P.C.B, Transfers Dept., PW 46 Lowfield Road, Stockport, Ches. 061-480 2179

Brañ New Suprus modiles

AND OTHER ITEMS
2 STAGE STEREO PRE-AMP on $6^{\prime \prime} \times 7 \mathbf{1}^{\prime \prime}$ P.C.B. 4 push butzons, gram, tape in/out, aux on/of, 4 slider 100 mv for 300 mv our with knobs Now only $f 6.00$
STEREO POWER AMP to match on $6 \frac{1}{1 "}^{\prime \prime}$ $5 t^{\prime \prime}$ P.C.B. $10 \mathrm{~W}+10 \mathrm{~W}$ out for 60 mV in. Includes rect., smoothing and supply for pre-amp.

Bargain at only 44.90
Build your own music centre SPECIALOFFER PRE-AMP \& POWER AMP Pair only $£ 10.00$ TRANSFORMER to suit $240 \mathrm{v} / 22 \mathrm{v}$
I 1 A
62.70

ELAC SPEAKERS $8^{\prime \prime}, 8 \Omega$ with tweeter cone
STEREO GRAM AMP on $12^{\prime \prime} \times 1 \frac{1}{}^{\prime \prime}$ P.C.B $3 W+3 W$ for 100 mV in controls, vol., bal., treble bass, requ.

DC for
65.90 Suitable itv eransformer and rect. ordered with gram 2 mp
$62 \cdot 00$
$E 2 \cdot 50$
MW \& LW RECEIVER on $64^{\prime \prime} \times 3^{\prime \prime}$ PC B complete with drive and cursor, ferrite aerial \& knobs. Good sensitiviry and volume. Needs only POWER TRANSFORMER 240y in 36y out $2 \not 2 \mathrm{~A}$ continuous plus 24 v tA with 18 v tap will power suitable $35 \mathrm{~W}+35 \mathrm{~W}$ amp. drop through type. Impregnated
Quantity available. Exceptional value at $\mathbf{4} 4.90$ weighs nearly 41 b -hence $\mathbf{~} 3.90$ to callers.
PUSH SWITCHES with modern square buttons. 8 switches on bar. 4 independent plus 4 inter-dependent latching. As used on music
$500 \mathrm{pF}+500 \mathrm{pF}$ twin gang, air spaced capacitor diecast frame. Ball bearing shaft. Anci backlash Geared S.M. drive. $2 \mathbf{t}^{\prime \prime} \times 2^{\prime \prime}$, It", plus shaft $1 \mathbf{k}^{\prime \prime}$ Rear ext. shaft.
only 85p

Cash with order. Prices inc. P \& P and V.A.T

eiectroncal supples crovoon
40, Lower Addiscombe Rd., Croydon, CRO 6AA

Tel: 01-688-2950.

SINGLE UNITS (ID) (5ins $\times 2$ tins $\times 2$ fins).
E2.90 DOZEN
DOUBLE UNITS (2D) (5ins $\times 4$ tins $\times 2$ ifns) 64.90 DOZEN.

TREBLE (3D) 64.90 for 8.
DOUBLE TREBLE 2 drawers, in one outer case (6D2), $£ 7 \cdot 25$ for 8
EXTRA LARGE SIZE (6DI) $£ 6 \cdot 25$ for 8
PLUS QUANTITY DISCOUNTS:
Orders over E 20 , less 5%
Orders over $£ 60$, less $7 \$ \%$.
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $\mathrm{E} \mid 0$. Orders E 10 and over, please add 10% carriage.
QUOTATIONS FOR LARGER QUANTITIES
Please add 8% V.A.T. to total remittance All prices correct at time of going to press
FLAIRLINE SUPPLIES (Depe PW7)
124 Cricklewood Broadway, London NW2 Tel. 01-450 4844

WIRE WRAPPING CENTRE

FROM 75p TERMINAL AND
DISTRIBUTION STRIPS Bread boarding bullding blocks with universa! matrices of solderiess Facillate auick. solderless crrcuit dulld-ud
and check-out on \qquad

- Areoffered in ten - Accept all compongnts with leads up to 0.032^{+1}
diametor. - Require - Regulr
cords. - Includes integral non shorting i
backing.

WIRE.WRAPPING XIT WRE.WRAPPING XIT Contains: HobDy WIaD TOOI WSUU 30 M. WITE

 INS. 1416 sind Diphic

Exiractor Toot EX-1. \begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Extractor Toot Ex-1. }

$\begin{array}{l}\text { Wire-WrapDing } \\ \text { Kif }\end{array}$	$\begin{array}{c}\text { WK.4B } \\ \text { (Blue) }\end{array}$

\end{tabular} £ 17.82

MOBEY WRAP TOOL
Wire-wrapping, strlpoing.
Unwrapoing tool for AWG 30 on $.025(0.63 \mathrm{~mm})$
Squ

A£4.39 B£4.69

OK Machine\&ToolU.K.
Limited
4Ba The Avenue-Southampton SO12SY

DISTRIBUTORS WANTED***

DISTRIBUTORS
WANTED***

PRACTICAL WIRELESS T.V. SOUND TUHER
(Nov, 78 article by A. C. Ainslie) Copy of original article supplied on requast IF Sub-Assembly (G8) £6.80. P \& P 75p. Mullard ELC1043 V'cap UHF Tuner £4.50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25p. 6 -way Station Control Unit (Special Offer) $£ 1 \cdot 00$. Power Supply Prtd Circuit Board $£ 1 \cdot 00$. P \& P 30p. Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$. Mains Transformer for above £2.50. P \& P 30p. Add $12 \frac{1}{2} \%$ VAT to price of goods. P \& P all items 85p. Callers welcome at shop premises. MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 (Near W. Hampstead Tube Stn.) Tel. 01-794 8751

SECURITY SUPERMARKET

WE HAVE STOCKS OF EVERYTHING YOU NEED.
CALLERS WELCOME. OPEN 6 DAYS
EXPRESS POSTAL SERVICE FREE CATALOGUE SEND S.A.E
Maxi guard MK4 Ultra Sonic Detector 12 volts D.C. special price $637.00+$ VAT
Control Unit 1006 B £ 19.50 plus $\& 1$ p\&p
(mains/Battery complete unit)
$\begin{array}{lll}\text { MAGNETIC CONTACTS from 50p } & \text { TAMPER JUNCTION BOXES } & \mathbf{2 4 p} \\ \text { MATS LARGE } 28^{\prime \prime} \times 15^{\prime \prime} & 1.50 & \text { VIBRATION DETECTORS } \\ \mathbf{2 . 5 0}\end{array}$ $\begin{array}{llll}\text { MATS LARGE } 28^{\prime \prime} \times 15^{\prime \prime} & 1.50 & \text { VIBRATION DETECTORS } & 2.50 \\ \text { STAIR SIZE } 6^{\prime \prime} \times 24^{\prime \prime} & 1.20 & \text { DOOR LOOPS COMPLETE } & 59 p\end{array}$ WINDOW FOIL $33 \mathrm{M} \& 5 \quad 2.45 \quad$ BELLS \& SIRENS FROM $\quad 6.00$ KEY SWITCHES $\mathbf{2 \cdot 1 0}$ BELL COVERS FROM from $\mathbf{4 . 0 0}$ ELECTRONIC CAR ALARM ONLY $£ 5 \cdot 00$.
plastic coated Please add VAT $12 \frac{1}{\%} \%$. Post 70 p min.
A. D. E. (SECURITY) CO.,

217 WARBRECK MOOR
AINTREE, LIVERPOOL
TEL: OSI-525-3440
STOP PRESS ! Trade Price List Available Applications on Official Stationery only

DRYAM

Quality Range of Products from The Doram Catalogue include:

Single Semiconductors
Wide range of single diodes, zener diodes. rectifiers and general purpose transistors. Integrated Circuits Quality linear and digitol IC's, regulators etc.
Mains Transformers Comprehensive top quality selection of low voltoge transformers.

Switches

A switch for most applications.

To avoid disappointment send now for the current Doram catalogue (edition 4) enclose 20p to cover post and packing Name.
Address
D@rAm
Dorom Electronics Ltd PO Box TR8 Wellington Rood Estate Wellington Bridge Leeds LS 122 UF

FANTASTIC SPEAKER OFFER
TWIN $12^{\prime \prime}$ SPEAKER CABINET PLUS PAIR 12 " SPEAKERS of Robust vibration-proof construction Fitted protective corner pieces. Re movable Vynair covered front "iin silver effect trim. Sunken jach socker with escutcheon at the tear. Pair $12^{\circ} 20 \mathrm{w}$ speahers for wiring in serics and front white stocks last
mounting in above mounteng in above
sunplied in comsupplied
blect
the
in
com-

£19.95 wable CONSOLE w STABES (and POW STAGES (2) \& (3) PAIR 100 WATT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS

New Branches at

LEEDS, HANLEY and WOLVERHAMPTON

50 WATT AMPLIFIER SACRIFICE

Limited
stocks of
TITAN
TA/50A
to be cicared
 to makc was
for a re-styled
model.
Solid state, 3 sep. controlicd inputs plus Waster control. Bass. Treble \& Presence Controls. Vynide covered cab. with corner protectives. Value $£ 60$. Terms: Den £7-95 \&

Consisting of

ALL RSC

* DISCOMAJOK
POWER DISCO CONSOLE with integral Power Amplifier. * TWIN FUULL SIZE GARRARD turntables with cucing device.
* CARTRIDGES with Diamond Styli.
$\star 3$ SEPARATE VOLUME CONTROLS for each turntable and Mic.
FULL HEADPHONE FULL HEADPHONE
MONITORING FACILITIES CONSOLE COMPLETE WITH LID Rec. Mic
UD 150 Cardioid Deposit $£ 40.00$ and
12 monthly payments $£ 15.60$ of £ 9.95 extra (Total £227.20) Carr. £4.75. TO2S STEREO with system only Also available 100 WATT SYSTEM E169.95 VERSION

TITAN GROUP/DISCO SPEAKERS
Carr. £1-20. under £18. over this add 6 p per $£ 1$.
 $\begin{array}{lllll}\text { T12/45R } 12^{\prime \prime} 45 u & £ 15.80 & £ 11.95 & \text { Rasin } \\ \text { T12/60R } 12^{\prime \prime} 60 w & £ 22.50 & £ 13.95 & \text { RMS } \\ \text { T12/100 12" } 100 \mathrm{w} & £ 36.00 & £ 25.95 & \text { Imp }\end{array}$ T15/60 15" 100 W $£ 36.00$ I15/60 15" 60 w £26.00 T15/70 15" $70 \mathrm{w} \quad$ E28.00 T15/100 15"100w £41.00 CABINETS FOR ABOVE Heavy duty, finished in black Vynide with Vynair fronts, protective corner picces. Various sizes cut-outs. TEI |" $12^{\prime \prime} £ 11-95$ TE22 12"£16 95. Deposit Term.

TDI DISCO CONSOLE

Incorporating eswin BSR type turntables and Sonotone or Acos Cartridges with diamond styli. Separate Vol. controls for each turntable. Also MONITORING FACILITIES, plus Treble and Bass Controls. Separate Input Black Vynide covered $\mathbf{6 | |} 9.95$ Cabinet with lid \& 18 fintly pymis. £6.75 (Total $£ 137.99$) Carr. £3.50. to2s Stereo $£ 125.00$

MAIL ORDERS \& EXPORT ERQUIRIES TO:AODIO EOOSEE,
MAIL ORDERS MUST NOT BE SENTT TO SHOPS MAIL ORDERS MUST NOT BE SENY
TERMS C.W.O. or C.O.D. Ho. C.O.D. Undor \&3. PRSTAOE BOP PER
ORDER OR AS QUOTED. Phono or Writo tor PREE CATALOOUR order or as quoted. Phone or writo for pree cataloous. MIDDLESBROUGH 103 Linthorpe Rd. (CI. Wed.) Tel. 247096 NEWCASTLE UPON TYNE 59 Grainger Si. $\begin{aligned} & \text { (Closed Wed.). Tel. } 21469\end{aligned}$ NOTTINGHAM 19/19A Market Street SHEFFIELD 13 Exchange Street (Castle Mkt. Bids.) WOLYERHAMPTON $\begin{aligned} & 6 \text { Wulfrun Way } \\ & \text { (Closed Thuss.). Tel. } 28512\end{aligned}$ *MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches
\qquad

OPEN ALL DAY SATS (5 Day Wcek) trices surrect at 24.4.7. 上. © O.E. All ttems subject to availability BRADFORD 10 North Parade (Closed Wed.) Tel. 25349 HANLEY Stoke-on-Trent, 44 Piccadilly Tel. 267764 BIRMINGHAM 30/31 Greai Western Arcade. (Closed Wed.) Tel. $029-2361279$ HULL 7 Whitefriargate (Closed Thurs.). Tel. 20505 CARLISLE \& Engish Street (Closed Thurs.). Tel. 38744
COVENTRY 17 Shelton Sq.. The Precinct. COVENTRY 17 Shelton Sa., The Precinct.
(Closed Thurs.) Tel. 25983 DERBY 97 St. Peter's Street (Closed Wed.) Tel. 41361 DEWSBURY $0 / 11$ Kingsway (Closed Tues.) Tel. 468058
DONCASTER 3 Queensgate, Waterdale Centre. EDINBURGH 101 Lothian Rd. (Closed Wed (Tlosed Thur). Tel. E3069 EDINBURGH 101 Lothian Rd. (Closed Wed.) Tel. 2299501
GLASGOW 326 Argyle St. (Closed Tues.). Tel. 041-248 4158

LEICESTER 32 High Street (Closed Thurs.).

* LEEDS $16-18$ County (Mecca) Arcade, Briggate
. TEMPORARIG (Closed Wed.). Tel. 449609 LIVERPOOL TEMPORARILY INOPERATIVE due 10 LONDON 238 EdgwareRoad, W. 2 (Closed Thurs.). 2 el. 7231629 *MANCHESTER

60A Oldham Street (Closed Wed.). Tel. 2362778

PRICES INCLUDE VAT

Why use half a system?

When for the same price you can have a complete system
PB Breadboards and Blob-Boards are the only Bread board system in the world which enable you to
Design, Test Develop, Prove the Circuit working and produce a professional printed circuit board.

$$
\begin{array}{llll}
\text { S-DeC } & \text { matching Blob-Board + Project Booklet } & £ 3.50 \\
\text { T-DeC } & \text { matching IC Blob-Board + Project Book } & £ 4.50 \\
\text { U-DeC A matching IC Blob-Board + Project Book } & £ 4.65
\end{array}
$$ U-DeC B matching IC Blob-Board + Project Book

DeC-IT and Blob-IT P.B. Electronics (Scotland) Ltd. 9 Radwinter Road.
Saffron Walden, Essex CB11 3HU

HAVE YOU DONE IT LATELY!

Fita
 new tape head
 and transform the performance of your tape recorder

Regd No. 1016768 QUALITY

Full Catalog ue 25p

824-RP stereo cassette glass/ferrite record/playback $£ 9.84$
B12-01 mono eass. playbk. £1.60 B24-Q1 stereo cass. playbk. £2.80 A28-05 stereo 8tk cartridge £1.80 E12-09 stereolmono cass. erase £1.80 5/7 Church St, Crewkerne, Som Tel (0460) 74321
SOUTHERN VALVE CO. SEWONDRELETR.
Teiephone 01-440/3GA1 MAIL ORDER ONLY. MINIMUM ORDER 20p Some leading makes avaitable. VAT involees issued on request
All Now and Boxed. "Quality" Branded Valves. Guaranteed 3 months. BVA etc. (Tungsram, etc.). $\%$ A Allowedin fieu of Guarantee! Already deducted from our Prices NOTE: PLEASE VERIFY CURRENT PRICES. Correct only at time of ooino to press.

A. Marshall (London) Ltd, Dept: PW London: 40-42 Cricklewood Broadway, NW2 3ET Tel: 01-452 0161 Telex: 21492 \& 325 Edgware Road, W2 Tel: 01-723 4242. Glasgow: 85 West Regent Str, G2 2QD Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, BS16 2LX Tel: 0272654201

"CASTLE ELEETRONIIS"

7, CASTLE STREET, HASTINGS, SUSSEX Tel: (0424) 437875

2" METERS:-
All new ex WD. Panel 0-40v, 0-25MA, HF Ammeters 0-2A. Thermometer 70-160F Chrome Front Bezel-all $\mathbf{6 2} \cdot \mathbf{2 5}$.
POWER SUPPLIES
New ex GPO 250v, 24vo/p $\pm 2 v 500 \mathrm{M} / \mathrm{A} 66.00$. VALVES:-
New Mullard \& Brimar 6 CH6, 4 for 61 . EF83 3 for C1. PC97 + EF 80.2 for Cl .
NICADS:-
All new
$6 \times 1 \cdot 2 v(-7 \cdot 2 v) 250 \mathrm{M} / \mathrm{AH}$
61.75
$5 \times 1 \cdot 2 v(6 v) 50 \mathrm{M} / \mathrm{AH}$ 61.00
66.50
2.4v 20AH Vented $8^{\prime \prime} \mathrm{H}^{3 \prime \prime}$ Dia.

Buzzers $12 v \times I^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime} 2$ for \mathbb{G}. Min. High Power Motors, 6-12v DC German $1^{\prime \prime} \times 1 t^{\prime \prime} E 1 \cdot 25$. lib new assorted components 61.95 .
Vero eype boxes $2 \times 4 \times 1^{\prime \prime} 50 \mathrm{p} 6 \times 3 \times 2^{\prime \prime} \mathrm{El}$. Micro Switches 5A 240 y c/o Button 10 for EI . Headphones-New ex tank 62.50. New ex Army 62.25. Stereo Slider Controls, $3 f^{\prime \prime}$ long 10K. $50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K} .3$ for $61-20$. Bridge Rectifiers 2 A 40 v 3 for 61 Jackson Slow Motion Drives 6:1 2 for fl . 50
Wavechange Switches-New $3 \times$ IPTW $+2 \times$ IP4W $+2 \times$ IP2W, $4 \times$ IPIOW, Lever Switch 4P2W-all 75p.
SAE for list new Ex. WD panel meters-all $\mathbf{6 2 \cdot 2 5}$. Ameron Electronic Kits-Components.
all prices include vat post and packing.
"GASTLE ELEGTRONIIS"

Speed up your precision work with MINIATURE POWER EOUIPMENT

NEW! The P2 Mk2 DRILL

With detachable head
£18.00 pp 86p In storage case, room for transformer $£ 19.50 \mathrm{pp} 86 \mathrm{p}$ In case with variable transformer $£ 29.00 \mathrm{pp} \mathrm{86p}$ S2 Drill stand (holds both drills) $\quad £ 18 \cdot 50 \mathrm{pp} 106 \mathrm{p}$ S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. £18.50 pp 106p.
SUPER 30 KIT 30 tools incl. Drill P1-
without stand. £19-39 pp £1.
P1 DRILL
£9.67 pp 38p
S1 DRILL STAND £5•13 pp 38p FLEXIBLE DRIVE SHAFT
£5.94 pp 34p

TRANSFORMERS

Continuous a/c 12v. D/C

$$
£ 7 \cdot 56 \text { pp } 81 p
$$

Variable speed a/c 12v. D/C

£9.50 pp 81 p

Drills, Stones, Burrs etc. 40 p each. Circular Saw Blades-set of 4 with Arbor $£ 3.50$. P\&P any quantity 25 p. Please send $9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. for leaflet and order form. All prices include VAT
and other soff materials? No elogging - cooler cleaner holes - there's a range of sizes, 0,1 to 2.5 mm

HIGH QUALITY AUDIO AND RF MODULES FOR MUSIC CENTRES AND OTHER HI-FI EQUIPMENT

Fully aligned-S meter-tuning meter output-Ceramic filters at 10. 7 Mhz and 470 kHz -MPX Decoder.

This is a complete and fully tested 3 band receiver module with AFC and mute.
£21.95

FM 050 STEREO FET AM/FM TUNER

Similar circuitry to 020 but has a 6 -way selector panel with MW LW Mono/FM Stereo plus two spare stereo inputs for tape and phono.

IF 005 HIFI 10.7 MHZ IF STRIP

Complete FM IF strip with MPX Decoder can be used with any mechanically tuned or varicap front end. Has a complete MW/LW Superhed receiver only requiring a tuning capacitor. Fully aligned, same switch configuration as FM 050.
£16.95

PA 020 STEREO POWER AMPLIFIER

25 Watts RMS per channel £9.50

* Class AB Operation
* 16 Transistor Circuit
* Unstabilised supply required
* Tip 34A + Tip 33A Output
* Supply Voltage 50V DC
nominal

$\star 30 \mathrm{~Hz}-18 \mathrm{KHz}$ (a) -1 dB
* Output 8 ohm
* Input 50 Kohm

Thia power amplifier which features an advanced designed deslon with complemenlary pair of transistors in class AB oush pull. Will comfortably deliver 25 watts per channel. And comes complete with heat sink.

PR 020 Hi -Fi Preamplifier
The PR 020 is a low noise preamplifier with full bass and treble cut and boost. It has four rotary controls and four specially selected transistors. It is designed to match most high quality power amplifiers.
£8.95

SW 0208 Way Selector Panel

£3. 95

When used in conjunction with PR 020 provides switching for different inputs. Features Monol Stereo switch. Loudness/Filter Tape replay playback, Phono, Auxiliary + two other inputs. Has PC Board mounting 5 Way Din socket for tape deck.

UT02. Low noise varicap front end 10.7 MHz IF out $88-108 \mathrm{MHz}$ in. Image rejection 60 dB . Dual gate MOS FETS. $£ 10 \cdot 90$ UT01 115-150 MHz covers amateur bands, aircraft etc. $\quad \mathbf{£ 1 0 \cdot 9 0}$ IF 15 Narrow band IF amp. Dual conversion $10 \cdot 7 \mathrm{MHz} 455 \mathrm{KHz}$. AM-FM Detector.
£13.95
MAG 020 Super low noise magnetic pick up amplifier
TX 020 Power Transformer 41 volts RMS at 2.8 amps. $\quad £ 6.99$
PSV 020 Power supply board. 18 bolts stabilised +50 volts D.C. output
. $3 \cdot 90$

The above Items are only a small range of the modules we have in stock. We also carry knobs, chassis front and rear extruslons, dials to match the FM 020 meters, front ends, cabinets. In fact everything you need to make a piece of equipment that not only motis profosional standiards but looks +15 p postal order. Prices include VAT and postage.

REED HAMPTON LTD., 19 CHURCH LANE, WALLINGTON, SURREY

Tel: (01) 661 1825/6

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL . . .

The finest general-coverage synthesised communications receiver on the market

$£ 173.00$ me.ant

Also available from us with special 2 m converter, all for just an extra $£ 15 \cdot 00$

\star

AMATEUR RADIO EXCHANGE 2 Northfield Road, Ealing, London, W.I3. Tel: 01-579 531I

| Easy terms up to |
| :---: | :---: | :---: |
| 3 years | | Credit Card Sales |
| :---: |
| by Telephone |\quad| Closed all day |
| :---: |
| Wednesday |

- QY VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED

 SPECIAL EXPRESS MAIL ORDER SERVIGE

 SPECIAL EXPRESS MAIL ORDER SERVIGE}

SEMICONDUCTORS

AA119	0.20	ASY26	0.45	BC159	0.13°
AAY30	0.13	ASY27	0.50	BC167	$0.13{ }^{\circ}$
AAY32	0.15	ASZ15	1.25	BC170	0.16°
AAZ13	0.25	ASZ16	1.25	BC171	0.14°
AAZ15	0.31	ASZ17	1.25	BC172	0.13^{*}
AAZ17	0.25	ASZ20	0.75	BC173	$0.15{ }^{\circ}$
AC107	0.75	ASZ21	1.50	BC177	0.19
AC125	0.30	AU110	$1{ }^{170}$	BC178	0.16
AC126	0.25	AU113	1.70*	BC179	0.20
AC127	0.25	AUY10	1.70^{*}	BC182	$0.11{ }^{\circ}$
AC128	0.25	BA145	0.15*	BC183	$0.11{ }^{\circ}$
AC141	0.20	BA148	0.15^{*}	BC184	0.12*
AC141K	0.35	BA154	0.10	BC212	0.14*
AC142	020	BA155	0.12	BC213	$0.14{ }^{\circ}$
AC142K	0.30	BA156	0.13	BC214	0.17*
AC176	0.25	BAW62	0.05	BC237	0.17°
AC187	0.25	BAX13	0.07	BC238	0.12*
AC188	0.25	BAX16	0.07	BC301	0.45
ACY17	0.65	BC507	0.12	BC303	0.60
ACY18	0.65	BC108	0.12	BC307	$0 \cdot 20^{\circ}$
ACY19	0.65	BC109	0.13	BC308	$0.18{ }^{\circ}$
ACY20	0.65	BC113	0.15^{*}	BC327	$0 \cdot 22^{\circ}$
ACY21	0.65	BC114	0.18*	BC328	0.18*
ACY39	1-25	BC115	$0 \cdot 19 *$	BC337	0.19*
AD149	0.70	BC116	0.19^{*}	BC338	$0.18{ }^{\circ}$
AD161	0.75	BC117	$0 \cdot 22^{*}$	BCY30	1.00
AD162	0.75	BC118	0.16*	BCY31	1.00
AF106	0.45	BC125	0.18*	BCY32	1.00
AF114	0.25	BC126	$0.25 *$	BCY33	0.90
AF115	0.25	BC135	$0.15{ }^{\circ}$	BCY34	0.90
AF116	0.25	BC136	$0.19{ }^{\circ}$	BCY39	3.00
AF117	0.25	BC137	0.16*	BCY40	$1 \cdot 25$
AF139	0.40	BC147	$0 \cdot 10^{\circ}$	BCY42	0.30
AF186	$1 \cdot 50$	BC148	$0 \cdot 10^{*}$	BCY43	0.32
AF239	0.45	BC149	0.13°	BCY58	0.23
AFZ11	2.75	BC157	0.12*	BCY70	0.18
AFZ12	$2 \cdot 75$	BC158	0.11^{*}	BCY7	0.22

BCY72	0.17	BF194	0.12*
BCZ11	$1 \cdot 50$	BF195	0.11°
BD115	0.60	BF196	0.13*
BD121	$1 \cdot 50$	BF197	0.14*
BD123	1.50	BF200	0.32
BD124	$1 \cdot 30$	BF224	$0 \cdot 20^{\circ}$
BD131	0.51	BF244	$0.35 *$
BD132	0.54	BF257	0.37
BD135	0.35 *	BF258	0.42
BD136	0.36*	BF259	0.45
BD137	0.37*	BF336	0.50°
BD138	0.40*	BF337	$0.53{ }^{\circ}$
80139	0.43*	BF338	0.55*
BD140	0.47°	BFS21	2.27
8014	2.00	BFS28	1.38
BD181	1.38	BFS61	0.25*
BD:82	1.48	BFS98	0.25*
BD237	0.80	BFW10	0.90
80238	0.85	BFW 11	0.90
BD× 10	0.75	BFX84	0.38
BDX32	2.25	BFX85	0.41
BDY20	1.42	BFX87	0.35
BDY60	0.75	BFX88	0.32
BF115	0.39	BFY50	0.28
BF152	0.25	BFY51	0.28
BF153	0.25	BFY52	0.26
BF154	0.25	BFY64	0.30
BF159	0.35	BFY90	1.32
BF160	0.30	BS $\times 19$	0.34
BF167	0.39	BS×20	0.34
BF173	0.39	BS×21	0.32
BF177	0.38	BT106	1.25
BF178	0.45	BTY79/	OR
BF179	0.48		$3 \cdot 19$
BF180	0.45	BU205	2.25*
BF181	0.45	BU206	$2 \cdot 25^{\circ}$
BF182	0.45	BU208	$2.50{ }^{\circ}$
BF183	0.45	BY100	0.45
BF184	0.39	BY126	0.14
BF185	0.37	BY127	0.15

BZX61	0.20	OA70	0.30
Series		OA79	0.30
BZY88	0.13	OA81	0.30
Series		OA85	0.30
CRS 105	0.45	OA90	0.08
CRS 1140	0.80	0 OA91	0.08
CRS 1305	0.45	0 O95	0.08
CRS 1340	- 75	OA200	0.10
CRS 1360	0.90	OA202	0.19
GEX66	$1 \cdot 50$	OA210	0.75
GEX541	1.75	OA211	0.75
GJ3M	0.75	OAZ200	0.65
GJ5M	0.75	OAZ201	0.65 0.55
GM0378A	1-50	OAZ206	65
KS100A	0.40°	OAZ207	0.65
MJE340	0.58	$0 \mathrm{OC16}$	1.25
MJE370	0.65	OC20	2.00
MJE371	0.81	$0 \mathrm{OC22}$	$2 \cdot 50$
MJE520	0.65	${ }^{0} \mathrm{C} 23$	2.75
MJE521	0.75	$\mathrm{OC}^{\text {C24 }}$	3.50
MJE2955	1.25	OC25	0.90
MJE3055	0.75	$0 \mathrm{OC25}$	0.90
MPF102 0	0.30°	$\mathrm{OC}^{\text {C28 }}$	2.00
MPFF103	0.30*	${ }^{\circ} \mathrm{C} 28$	2.00
MPF104	0.30*	OC35	1.50 1.50
MPFF105	0.30*	$0 \mathrm{OC41}$	0.50
MPSA080	- 25°	0 C 42	0.50
MPSA560	- 25°	${ }_{0} \mathrm{OC4} 4$	1.50
MPSU010	- 32°	$0 \mathrm{OC4}$	0.50
MPSU060	0.40*	0 C 45	0.50
MPSU560	0.45*	0 C 71	0.45
NKT401	2.00	0 OC 72	0.45
NKT 403	1.73	0 C 73	1.00
NKT404	1.73	$0 \mathrm{OC75}$	0.50
NE555	0.45	0 C 74	0.75
OA5	0.75	0 O 76	0.50
OA7	0.55	0 C 77	1.20
OA10	0.55	0 C 81	0.75
OA47	0.14	OC812	1 100

0 C 82	0.75	25271	0.
0 C 83	0.55	Z 5278	0.56°
$0 \mathrm{C84}$	0.60	ZTX107	$0.11 *$
0 C 122	$1 \cdot 50$	ZTX108	0.16°
${ }^{\circ} \mathrm{C} 123$	1.55	ZTX109	0.12*
-C139	$2 \cdot 25$	ZTX300	0.12*
0 Cl 140	1.95	Z TX301	0.13*
OC141	2.25	ZTX302	0.17°
OC170	0.75	ZTX303	0.17*
OC171	0.75	ZTX304	0.19*
OC200	1.00	ZTX311	0.12^{*}
OC201	$1 \cdot 50$	ZTX314	0.20^{*}
OC202	$1 \cdot 25$	ZTX500	0.13*
OC203	1.75	ZTX501	$0.14{ }^{\text {* }}$
0 C 204	1-25	ZTX502	0.16*
$\bigcirc{ }^{\circ} \mathrm{C} 205$	1.75	ZTX503	0.17*
${ }^{\circ} \mathrm{C} 206$	1.75	ZTX504	0.20*
OC207	$1 \cdot 25$	ZTX531	$020{ }^{\circ}$
0 OP71	1.25	ZTX550	0.16°
ORP12	0.83	1 N914	0.07
R200S ${ }^{\text {c }}$	2.25 "	1 N916	0.07
R2009	$2.25{ }^{\text {c }}$	1N4001	0.06
R2010B	$2.25{ }^{\circ}$	1 N4002	0.07
T1C4	0.36	1 N 4003	0.08
T1C226D	1.30	1 N4004	0.09
T1L209	0.25	1 N4005	0.13
T1P29A	0.50'	1 N4006	0.15
T1P30A	0.60'	1 N4007	0.15
T1P31A	0.62	1 N4009	0.15
T1P32A	0.75	1N4148	0.07
T1P33A	$1 \cdot 00$	1 N5400	0.14
T1P34A	$1 \cdot 20$	1N5401	0.16
T1P41A	0.70	1544	0.06
T1P42A	0.90	1S920	0.08
T1P2955	1.00	15921	0.08
T1P3055	0.50	2G301	1.00
T1S 43	0.35^{*}	2G302	1.00
ZS140	0.25*	2G306	1.10
ZS170	0.12*	2 N 404	0.60
ZS178	$0.54{ }^{\circ}$	2N696	025

\qquad

VALVES

				EL33	$3.50{ }^{\circ}$
AZ31	1-10*	ECC83 \dagger	0.55*	EL41	1-25**
CBL31	1.50	ECC84 \dagger	0.50*	EL42	1-75*
CL33	2.00*	ECC85 \dagger	0.55°	EL81	$1 \cdot 10^{\circ}$
CY31	1 -00*	ECC88 \dagger	$0.75{ }^{\text {* }}$	EL84 \dagger	0.45*
DAF919 0	0.40*	ECC91+	0.55°	EL86 \dagger	0.50°
DAF96	1-00*	ECC189	1.00*	EL9t	3.85*
DF91 \dagger	$0.40{ }^{\circ}$	ECF80 \dagger	$0.60{ }^{\circ}$	EL95 \dagger	0.80°
DF96	1.00°	ECF82 \dagger	0.60*	EL360	2.75*
DK91才	0.55*	ECH35	$2.00{ }^{\circ}$	EM80	1.10^{*}
DK92	1.25*	ECH42	1-15*	EM81	$1.00 *$
DK96	1.10°	ECH81†	0.50*	EM84	1 -00*
DL92	$0.75{ }^{\circ}$	ECH83	$0.85{ }^{\circ}$	EM85	1-25*
DL94	1.20*	ECH84 \dagger	$0.85{ }^{\circ}$	EM87	1.50°
DL96	1.10*	ECL80†	0.60*	EN91†	0.55
DY86174 0	0.45*	ECLO2†	0.55°	EY51t	$0.75{ }^{\circ}$
DY802	$0.80{ }^{\circ}$	ECL83	1.50*	EY86t	0.50 *
E88CC \dagger	$1 \cdot 00$	ECL86 \dagger	0.65*	EZ40	1.25*
EABC80 0	$0 \cdot 40^{\circ}$	ECLL800	7-00*	EZ41	1-25*
EAC91	$0 \cdot 50$	EF37A \dagger	$1.60{ }^{\circ}$	EZ80†	$0.30{ }^{\circ}$
EAF42	1.25*	EF39 \dagger	1-60*	EZ81 \dagger	$0.35{ }^{\circ}$
EAF801	1-75*	EF40	1.15*	EZ90:	$0.45{ }^{\circ}$
EB41	1.75*	EF41	$1 \cdot 20^{\circ}$	GZ32	$0.75 *$
Eb99 \dagger	$0 \cdot 30^{\circ}$	EF 42	$2 \cdot 00^{\circ}$	GZ33	4.00°
EBC33	1.75*	EF50 \dagger	$0.60{ }^{\circ}$	GZ34 \dagger	1.52*
EBC41	1-25*	EF80,	$0.45{ }^{\circ}$	KT61	3. 50°
EBC81	1-10*	EF83	1.75*	KT66	4.50°
EBC90	0.65	EF85 \dagger	$0.50{ }^{\circ}$	KT88	6-25*
EBF80	0.45°	EF86 \dagger	0.45 *	KTW61	1.75*
EBF83	1.25*	EF89	$0 \cdot 60^{\circ}$	KTW62	1.75*
EBF89 \dagger	$0.40{ }^{\circ}$	EF91+	$0.65{ }^{\circ}$	KTW63	1 -75*
EBL31	$2.50{ }^{\circ}$	EF92 \dagger	$0.75{ }^{\circ}$	MU14	$1 \cdot 00^{\circ}$
ECC40	1-25*	EF98	1.25*	N78	$7.50{ }^{\circ}$
ECCB1 \dagger	$0.50{ }^{\circ}$	EF183 \dagger	0.50°	OA2t	0.45
ECC82 \dagger	0.47°	EF184	$0.50{ }^{\circ}$	OB2	0.45

| 7419

2.00	74145	1.00	74175			
1.10	74147			7491 AN 0.	0.20	$7491 A N$
:---	:---					
0.20	7492					
0.35	7493					
0.36	7494					
0.36	7495					
0.60	7496					
0.59	7497					
0.42	74100					
0.60	74107					
0.85	74109					
1.00	74110					
1.00	74111					
0.40	74118					
.52	74118					

 $\begin{array}{lr}\text { VCR138A: } & 12.50 \\ \text { VCR139A: } & 8.00 \\ \text { VCR517A: } & 10.00 \\ \text { VCRS17B } & 6.00 \\ \text { VCR517C: } & 6.00 \\ \text { Tube Bases } & 0.75 \\ \text { VSURPLus } & \\ \text { VAT } 8 \% & \\ & \end{array}$

80n9898888

INTEGRATED CIRCUITS

7400	0.20	7412	0.26	7432	0.36
7401	0.20	7413	0.45	7433	0.37
7402	0.20	7416	0.40	747	0.42
7403	0.20	7417	0.40	7438	0.37
7404	0.28	7420	0.20	740	0.22
7405	0.23	7422	0.25	7441 AN	0.92
7408	0.55	7423	0.35	7442	0.74
7407	0.55	7425	0.35	$7447 A N$	1.20
7408	0.28	7427	0.35	7440	0.20
7409	0.88	7428	0.50	7451	0.20
7410	0.20	7430	0.20	7453	0.20

OC3
OD3
OZ4
PC86
PC88
PC97
PC900
PCC84
PCC88
PCC89
PCC189
PCF80
PCF82
PCF86
PCF87
PCF200
PCF201
PCF801
PCF802
PCF805
PCF806
PCF808
PCL82
PCL83
PCL84
PCL85
PCL86
PCL805
PO500
PFL200
PL38
${ }_{\substack{7454 \\ 760 \\ \hline \\ \hline \\ \hline \\ \hline}}$

	7460
	7470
7472	
7	7473
3	7474
78	7475
.92	7476
74	7480
20	7482
.20	7484
.20	7486
0.20	7490

DIL Sockets

8 PIN
14 PPN
16 PIN 0.15
0.17

BASES BG7 unsklited 0.15
B7G skIrted 0.30
B9A B9A unskirted 0.15
B9A skirted 0.30 $\begin{array}{lr}\text { B9A skirted } & 0.30 \\ \text { Int Octal } & 0.20 \\ \text { Nuvistor base } 0.55\end{array}$ $\begin{array}{lr}\text { Nuvistor base } 0.55 \\ \text { Loctal } & 0.55 \\ \text { 8 plo } & 0.511\end{array}$ $\begin{array}{ll}8 \text { pIn DIL } & 0.35 \\ 14 \text { pin DIL } & 0.15 \\ 16 \text { pin DIL } & 0.17\end{array}$ Valve screening
Van

GRT'S 1 CP31
$2 A P_{1}$.
$2 B P_{1}$. $28 P_{1}$
$38 P_{1}$
$3 \mathrm{BP}_{1}$ 3DP1: 3FP7*
3GP1
3JP1 3JP1"
3JP1
3JP7.
$3 \mathrm{JP} 7^{\circ}$
 8 648
888.4
 AEP1
AEP7
4EP11
SADP1
SBP: 5ADP1
5BP1:
5CP1: 5CP1A
5FP15A 5FP15A
5UP7* OG7-5 OG7-32
DH3.91
OH7-1 OH3-91
OHCR
VCR

 \begin{tabular}{|ll|}
\hline 76013 N \& 1.75°

LM309K \& 1.50

\hline

 TAA570 2. 30 TBA4800 ${ }^{3}$

TBA5209

TBA530

1.3

\hline
\end{tabular}

TBA9900

3 BP1 TUBE AVAILABLE FROM STOCK SUITABLE FOR P.W. PROJECT £8.00 each. Base 75p. Postage 75p VAT 8\%

ERSIN

SAVBIT

handy solder dispenser

Contains 23 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 58p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mmsolder for fine wires, small components and printed circuits.
PC115 69p
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder.

Size 19A 63p

Handy size Reels \& Dispensers

 OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOMEErsin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

Pat. No. 1443913

BIB WIRE STRIPPER \& CUTTER

Fitted with unique 8 -gauge selector and handle locking device Sprung for automatic opening. Strips flex and cable in seconds. Model 8B 97p

SOLDERWICK
 Absorbssolder instantlyfrom tags, printed circuits etc. Only needs 40-50 Watt soldering iron. Quick and easy to use. Non-corrosive. Size AB10 97p

PROGRESSIVE RADIO

33 DALE STREET, LIVERPOOL L2 2JD Tel. 051-239-0982

SEMICONDUCTORS ALL FULL SPEC. BC212, BC182, BC237, BF197 BC159 all p each LM380 50p, LM381 55p, NE555 33p, 7418 PIN 23p, 741 S (wide bandwidth) 8 pin 35p. TIL305 Alpha numerical display (with data) $£ 2.50 \mathrm{p}$. BX504 opto isolators infra red led to photo
 SL301 dual matched pair $81 /$ npn transistors ft . 300 mhz 30 p . intel Cilos 1024 bit mos rams 95p, TBA800 10p, CD405145p, 72314 pin I.C.'s. 35 p .
DIODES, BY127 p, IN4002 4p, IN4005 7p, 600v 3 amp 17p. Lucas bridge recs, 400v 1.5 amp 30p.
MANBA 3 mm led displays $\mathbf{5 0 p}$. Min. Nixie 587 OST 75p
Pot core unit, has six pot cores Including one FX2243 (45 mm) and two FX2242 (35 mm) 3 TO3 sil. power transistors on heat sink, 32 hm panel fuseholders and panel with varlous ransistors, diodes and a 5 amp plastlc SCR, E1.75p plus 75p postage.
MOTORS, Model type $1.5-6$ volts 20 p . 'BIG INCH' sub min motor 115 vac. 3 r.p.m. 25 p E1-20p, Crouzet 115 VAC 4 e.p.m. 95p.
HI-SPEED MORSE KEY, ALL METAL E2.25p.
HIIIMP MONO HEADPHONES 2K IMP £1-95p
Crystal microphone Inserts $37 \mathrm{~mm} 45 \mathrm{p}_{\mathrm{g}}$ Grundig electret condenser inserts with buitt in FET preamp E1-50p, ELECTRET PENCIL HAND MICROPHONES IK IMP WITH STANOARD JACK PLUG $£ 2 \cdot 85 \mathrm{p}$. TIE CLIP CONDENSER MIKES OMNI, 1 K IMP, (uses deaf id battery. supplled) £4.95p.
SOLDER SUCKER, high suction, eye protection shield $\mathbb{C 4} \cdot 95 \mathrm{p}$.
PROJECT BOXES, BLACK ABS PLASTIC WITH BRASS INSERTS AND LID, $75 \times$ $6 \times 3544 \mathrm{p}, 95 \times 71 \times 3552 \mathrm{p}, 115 \times 95 \times 3660 \mathrm{p}$.
UZZES. Sold Slate buzzers, miniature, 6-9.12-24 voit 15 ma 75 p each.
TAPE HEADS, Mono Cassette 81 -30p. Stereo cassette E3-00, BSR MNI330 half track dual Imped. heads $£ 1.75 p_{0}$ TD10 Dual head assembles 2 heads both $\frac{1}{2}$ track R/P with built in erase, mounted on bracket, $£ 1-20 p$.
Relays. Min. sealed $12 y$ dc type 4 pole changover 55 p , Min 24 v dc 2 pole c/o 3 amp contacts 35. Min sealed 220 V AC 2 pole clo 40p, Open type 12 V dc 4 pole c/o $50 \mathrm{p}, 4$ pole reed relays N/O 20p.
RRYSTALS, 300 khz 40p, $4 \cdot 43 \mathrm{mhz}$ CTV 45p. Aerosol 'Touch up' paint one colour yellow with capacitor for 240 V AC use E 1.95 p plus 35 p postage.
Belling Lee l4305 masthead ampliffers and mains power unit, new but only for group a UHF 87.50 p .
TRANSFORMERS, $6-0-6 \mathrm{v} 100 \mathrm{ma}, 9-0975 \mathrm{ma}, 12-01250 \mathrm{ma} 75 \mathrm{p}$ each, ${ }^{12-012} 100 \mathrm{ma}$ 85p, $12 \mathrm{~V} 500 \mathrm{ma} 95 \mathrm{p}, 1: 1 \mathrm{triac} /$ xenon pulse transformers 30 p . CHOKES 6 MC 3 Amp 20 p . U.H.F. TV Tuners, push button (not varicap) new and boxed $£ 2.50 \mathrm{p}$. Miniature toggle switches, or push to beeak $16 \times 16 \mathrm{~mm}$ 15p each type. SIlder switches, DPDT standard 15 p , Min 12p. Std. c/o 20p. Roller action micro switches $\mathbf{1 5 p}$.
TOOLS Small side cutters $5^{\prime \prime}$ insulated handies £1-35p. Snub nosed pliers $5^{\prime \prime}$ insulated handes $£ 1-35 \mathrm{p}$. Watchmakers screwdriver sets, 5 drlvers In wallet $£ 1 \cdot 00$. Large mains tester screwdrivers, fully Insulated $8^{\prime \prime} 44 \mathrm{p}$. Tes lead jumper sets, 10 leads with insulated croc clips each end, different colours 20p. Telephone pick up coil, suction iype withssmm
 way 15p. Amplifier modules, OTL410 10 watt mono into 8 ohms 28v de max ع4. 5 5p. 555S Stereo module, 3 watts output Into 8 ohms, 12 v de $£ \cdot 3 \cdot 35 \mathrm{p}$. Tape head demagnetisers $\mathbf{2 4 0}$ ac with onjoff 8 witch, stralght probe $\mathbf{\$ 2} \cdot 00$, curved probe (cassette) $\mathbf{5 2} \mathbf{2 5 p}$.
TERMS: cash with order, (or offlcial orders from colleges etc). Postage 30p unless otherwise shown, overseas post at cost. VAT inclusive prices. S.A.E. for lists.

Progressive Radio, 31 Choapside, Llverpool L2 2DY. Tel: 05123509 F .

THE SINCLAIR PDM35 DIGITAL MULTIMETER

Now a dlalial mulli-meler al
on ondalogue pelce. and look the spect
D.C. VOLTS $1 \mathrm{mv}-1000 \mathrm{~V} 1 \%-$ 1 count) $10 \mathrm{M} \Omega$ Input. A.C. VOLTS $1 \mathrm{v}-500 \mathrm{~V} 40 \mathrm{~Hz}-1$
5kHz $(1 \%+2$ counts DC CURRENT 1nA ($1 \%+1$ count). RESISTANCE $(15 \%+1$ count)
Company, Govt.. elc orders
accepted by phode of teler
subiect to avallabillty.
£2s 95 ine VAT (E| P\&P)
deluxe padded carrying case

30 Kv probe avallable SAE.
KRAMER \& CO.
October Place, Holdors Hill Road, London NW4 IEJ Tel: 01-203 2473 or Telex: $\mathbf{s a s e 4 1}$

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6 \cdot 80$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject

 to the condlitions appearing on our current advertisement rate card and on the express understanding that the Advortiser warrants that the advertisement does not contravene any Aet of Parllament nor is it an Infringement of Parlimitith Code of Advertising Practice.2. The publishers reserve the right to refuse or withdraw any advertisament. 3. Although every care fe taken, the Publehers shall not be liable for clerlea or printers' errors or their consequances.

Receivers and Components

ELECTRONIC COMPONENTS since 1966. Price list and 50 mixed resistors FREE on request. J. R. Hartley, 78B High Street, Bridgnorth, Salop WV16 4DY.

TRANSISTORS, RESISTORS, CAPS, POTS, Plugs \& Sockets, Zeners, TTL, Cable, Boxes. All at very good prices. 65 Railway Road, Leigh, Lancs. Telephone Leigh 679575.

bRAND NEW COMPONENTS BY RETURN.

 $220-15 \mathrm{p}-15 \mathrm{p} .1000 / 25 \mathrm{~V}-18 \mathrm{p} .1000 / 50 \mathrm{~V}-22 \mathrm{p}$.
$1000 / 15 \mathrm{v}-16$

 Mullard Miniature Caramic El2 Seriea $63 \mathrm{~V} 2 \%$
10 pi.
2
2 Vertical Mounting Caramic plate Caps. 50 V .
E12 22 pf. 1000 pr. E6 1500 pl. 47000 pr.-2p Polyetrane El2 Series 63 V . Hor. Mounting.

 Myiar (Polyester) Film 100 V . Vertical Mtg.
001, 002 . $005-3 \mathrm{p}$. 01 . 02 (p. 04, $05-5 \mathrm{p}$. Miniature. Film Reaistore Highetab. El2 5\%

0.250 watt 1Ω to 10 MO .
0.500 wast 10Ω to $2 \mathrm{M7} \Omega$.
0.500 wast 10Ω to $2 \mathrm{M} 7 \Omega$.
1.000 watt 10Ω so 10 MO.

IN4148-3p. IN4002-5p, IN4006-7p. IN4007...2p BC107/8/9, BC147/8/9 BC157/8/9. BF194 \& 7-9 $\mathrm{BCl} 107 / 8 / 9, \quad \mathrm{BCl47} / 8 / 9$. BC157/8/9. BF194 \& 7-9p 20 mm . Iuses $\cdot 15,25,5,1 \cdot 0,2 \cdot 0,3 \cdot 0$ \& $5 \mathrm{~A}-3 \mathrm{p}$.
Printed Circuit Hoiders for 20 mm . fuses-5p. Printed Circuit Hoiders 10 p (Free over (4). Prices VAT inclusive. THE C. R. SUPPLY CO.

127, Chesterfield Road, Sheffileld S8 ORN

ASSORTED small Japanese L.F. Transformers 20 for $£ 1 \cdot 25$. Assorted Nuts, Bolts, Washers, Eyelets, Self Tapping, Self Cutting Screws. A real bargain llb weight £1.75. Assorted Ceramic Capacitors 100 for £1.75. Assorted Ceramic Capacitors for $£ 1 \cdot 50$. Assorted Polyester Capacitors 100 for $£ 2 \cdot 00$. Assorted Carbon and Carbon Film Resistors 100 for $£ 1 \cdot 00$. Assorted Wirewound Resistors 100 for $£ 2 \cdot 00$. Assorted Transistors/Zeners, Diodes, all marked, 100 for $£ 2.00$. All above prices include VAT for $\mathrm{and}^{2 \cdot 00 .}$ All above prices P . Powell, 306 St Paul's Road, London N.l. Telephone 01-226 1489.

BC 107 ID BC 132100	BY 2081080	$0 \cdot 1 / 600 \mathrm{SP}$ $25 / 25 \mathrm{y} 5 \mathrm{p}$
${ }^{8 C} 20489 \mathrm{p}$	1N 64511 p	W RESIST's
BC 3511 p 1S 9404 p 2.5W Axal 12 p		SW Radal ${ }^{\text {d }}$
BD 13837 D LM 7418 BP		
BT $105 \mathrm{E1} \cdot 10$ M2		
Export and Wholesa/e enquilies welcome		
K 4 A DIST SYSTON, LEIC	IBUTORS. ESTER. TEL.	barkey road. cos391

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20 p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SL6 1HL.

VALVES

Radio - T.V. - Induserial - Transmittine Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of pose. Air or Sea mail, 2700 Typas in stock, 1930 to 1976 . Obsolete types a spociality. List 20p. Quotation S.A.E. Open co callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase all cypes of new and boxed Valves, Projector Lamps and Semiconductors. COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Sussex PO20 BBN
West Wittering 2023 (STD Code 024366)

SELTRONICS LOW PRICE SEMICONDUCTORS BRAND NEW CODED AND GUARANTEED
BC107/8/9 8p. ACl28 14p. 2N2926G 10p. ZTX300 $11 p$. 2 N 5458 31p. UT46 19p. T1S43 20p. BC212L 10p OA47 5p. BR 100 22p. D32 22p. OA 200 5p. OA202 5p. NE555 35p. 741P 20p. Postage 10p. S.A.E. for lists cheques and P.O.'s made payable to:-

SELTRONICS
9, Rodney Gardens, Braintree, Essex.

COMPONENTS FOR P.W. PROJECTS. Components lists with prices available for P.W. projects from October 1977 onwards. Send SAE stating project and month of publication (maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE MAILTRONIX, Tootal Street, Wakefield, W. Yorks WF1 5JR.

TRANSFORMERS

```
TWIN PRIMARIES \(115 / 230 \mathrm{~V}\) TWIN ISOLATED SECONDARIES
\(\left.\begin{array}{l}0.45 \cdot 0.4 .5 \\ 0.60 .6 \\ 0.150 .15\end{array}\right\} 6 \mathrm{VA}-7\)
British Made-Great Value
in.
Try us for all your component requirements
```


T. D. COMPONENTS

```
Unit Four, Staincliffe Mills, Dewsbury, W. Yorks. 0924-409040
```


Ladders

LADDERS. Varnished 20ft 9in extd., £29.72, carr. $£ 2 \cdot 40$. Leaflets. Also alloy ext. up to $62 f t$ 6in. Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644. Callers welcome.

Educational

GO TO SEA as a Radio Officer. Write: Principal. Nautical College, Broadwater, Fleetwood FY7 8JZ.

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street. Larkhall, Lanarkshire.

YOU CAN'T HELP BUT MAKE MONEY. If you follow the planned and detailed information on how to start your own business rewinding Armatures, set out in the new manual which is profusely illustrated and leads you through easily understood stages of fault diagnosis. taking data. test procedures. laying down new windings. where to obtain work, how to cost jobs etc. NO PREVIOUS ELECTRICAL KNOW LEDGE REQUIRED. Complete instruction manual, f4. plus 30p P\&P. CWO. Copper Supplies. 102 Parrswood Road, Withington,
Manchester 20. Dept. PWB.

Service Sheets

SERVICE SHEETS, Radio, TV etc, 10,000 models. Catalogue 24p, plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PR1 7HP.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate, N Yorkshire. 190 King's Road,
Tel: (0423) 55885.

Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS

 E.R.C. PYE ECKO PHILIPS ITTKK SONY G.E.C. HITACHI BAIRD ULTRA INVICTA FERGUSON

Let us quote you. Please send a Stamped Addressed Envelope for a prompt raply. Also comprehensive T.V. repair MAIL OROER ONLY G. T. TECHNICAL INFORMATION SERVICE

10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON WIR IPA

SERVICE SHEETS for Radio, Television Tape Recorders, Stereo, etc With free fault-finding guide, from 50p and SAE. Catalogue 25 p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

Wanted

"RADIO AND TELEVISION SERVICING" books wanted from 1964-65 edition up to date. $£ 3 \cdot 00$ plus postage paid per copy by return of post. Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

WANTED. Goodman's Loudspeaker unit type Axiom 80. Whayman, 95 Elizabeth Avenue, Little Chalfont, Amersham, Bucks.

Aerials

ANTI-TVI TRAP DIPOLES

CUT OUT TV1 TX-ing and SWL-Ing. MODELS:- SWL, £29.81; 500 Watt or SWL. £41.06. Aerial Matching Unit 500 Watt \& SWL $10-160$ metres ine. Shipping Band, Eit.25.
stamps for deladts, serial artlicle, lest reports, iestion $3 \times 9 p$ G2OYM.
G20YM.
LAMBDA, WHITEBALL, WELLINGTON, SOMERSET

Electrical

STYLI-Mlustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices: Fully guaranteed, free for SAE from FELSTEAD ELECTRONICS (PW), Longley Lane, Gatlet, Cheadle, Cheshire SK8 4EE.

LARGE SUPPLIER OF SERVICE SHEETS All models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radios. Free TV fault finding chart or TV list. Strictly by return.
 C. CARANNA
 71 Beaufort Park, London NW11 6BX 01-458 4882

For Sale

NEW BACK ISSUES of "PRACTICAL WIRE. LESS" available 65p each post free. Open P.O./Cheque returned if not in stockBell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stock. port.

PW VIDEOWRITER. Cased, perfect, $£ 110$ ono. Heathkit 1M-102 DVM, $£ 190$ ono. Asthall Leigh 241. Evenings.
BACK ISSUES. From 1957 PW, PT, RC, 25p. Plus postage. Amersham 22434.

ELECTRONIC KITS-SAE for new catalogue, and clearance list of obsolete kits AMTRON UK, 7 Hughenden Road, Hastings, Sussex.

LOGIC PROBE, suitable TTL/CMOS 5-15V indicates Logic states and Trigger Pulses £12 inc. C. Marshall, 22 Oakfield Road Croydon, Surrey CRO 2UA.

Miscellaneous

KNOBS blue nylon $5^{\prime \prime \prime}$ long, $7^{\prime \prime \prime}$ dia, fit $1_{4}{ }^{\prime \prime}$ D flat shaft. $£ 4 \cdot 80 \quad 1004 \%$ discount per 100 to 40% max. 20p per $100 \mathrm{p} \& \mathrm{p}, 1,000+$ post free. Searle, 23 Hardwicke Road, Reigate, free. Searle, 23 Hard.
Surrey. Reigate 45004.

ATTENTION SWLs \& DXers superior aerial wire 20swg, copper plated, steel core, tough pve insulation. 40 per metre +2 p per metre carr. AMTEST, 55 Vauxhall Street, Worcester WR3 8PA.

EX MINISTRY EQUIPMENT

Aerial Rotation Motor units, complete with Remote Position Indicator connectors and Data.
Transistor Curve Tracers. DC Morors $5 V$
DC Stabilised Power Supplies. Thumb Wheel Switches. Ten Turn Potentiometers. DC Milliampmeters. Lever Switches. Seven Segment Gas Displays. Terminal Blocks. 12 Way Cable. 100 Way Cable. 240 V Solenoids. Push Buttons. Odd Items of Test Equipment. Aircraft Instruments and Equipment. Lots of ltems in Stock. $9^{\mu} \times 3^{\prime \prime}$ S.A.E. For List. Mail Order Only. Eldun Electronics, 31 Alexander Drive, Timperley. Cheshire, WA156NF

OUTSTANDING 2200 HI-FI FM TUNER. Latest silicon superhet design, Varicap Tuning, Full Coverage $88-102 \mathrm{MHZ}$. Ideal for Push button/Manual tuning. Supplied Built \& Tested with full instructions only \&9.95 (P\&P 50p). GREGG ELECTRONICS, $\begin{array}{ll}\text { 89.95 (P\&P 50p). GREGG ELECTR } \\ \mathbf{8 6 - 8 8} & \text { Parchmore Rd, Thornton Heath, }\end{array}$ Surrey.
SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25. St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

100 WATT GUITAR/PA/MUSIC

 AMPLIFIERWith superb treble, bass. Overdrive, sllmline, 12 months ouarantee. Unbeatable offer at $£ 35$. Also twin channel with separate treble/bass per ehannel £.4s. Money re-
turned if not obsolutely delighted within 7 days. Also fuzz boxes great sound, robust construction efs.so. Also 100 watt 12 ln . speakers $£ 22 \cdot 50$.
All inclusive of P.P. Send cheque or P.O. to:
52 THORNCLIFFE AVENUE OUKINFIELD CHESHIRE. TEL: 061-344 5007

> We would like you to know that we make-
\star BEC Cabinets
\star Special cablnets
\star Prototype printed circult: * Instrument panels

> We also have a quantity
> G83/AT Cablnet
> Wunching have a quantity
> H. M. ELECTRONICS

> 275a Fullwood Rd: Shemeld S11 380 Send 15p (Refundable) for leaflets

LOSING DX?

RARE DX under QRM: DIG it OUT from whistles and cw with 2 Tunable Audio Notch Filter, speaker amplifier, bypassed when off, E 6
NO LONG WAVE $100-600 \mathrm{KHz}$ Converter, WHERE', the RARE $D \times$ receiver, only $68 \cdot 80$. WHERE's the RARE DX? I MHz, 100,25 MSF 60 KHz TIME RECEIVER 80 .
MSF 60 KHz TIME RECEIVER gives you SECONDS, MINUTES and output for MONTH. EXPLORE VLF. $10-150 \mathrm{KHz}$ receiver only 69.70 .

MUSICAL DOORBELL? 119 tunes or PROGRAM YOUR OWN, iust needs bell transformer and speaker. surprise guests for only 617.90.
sIG. GEN. 10-200 KHx, sine/square, only 69.80. Eoch eosy-assembly kit includes all parts printed circuit, case. postoge etc., instructions money bock assurance so SEND off NOW.
45(PG) Old School Lane, Milton, Cambridge
MARDENBROOK (ELECTRONICS) LTD will construct electronic projects, e.g., wiring of units-p.c.bs assembly, etc. Please write to us at Concept House, 3 Dene Street, Dorking, Surrey.

100 Resistors 75p $1 \mathrm{~W} 5 \%$ e/FILM $2 \cdot 2 \Omega-2 \cdot 2 \mathrm{M} \Omega$ (E12) 10 each of any value	
Sond atamped envelope for FREE SAMPLE	
C60 CASSETTES 30p	All Cassettes In Plastic
CPO CASSETTES 45p	Case with Index and
All prices include VAT.	Screwed Assembly.
Quantity Discounts	
10 Units 5\%	23 WYLE CDP.
50 Unite 7%	SHREWSBURY
100 Units 10%	Tel. 53204

PRINTED CIRCUITS and

 HARDWAREReadily avallable suppliez of Constructors' Hardware. Printed circuit boards, top quallity for Individual destgns. Prompt tervice. Send 25 p for catalogue from:

RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon, Warwicke

CRYSTALS brand new 0.002% precision HC18/U wire leads, £2.95 each, UK post paid, no VAT: $4 \cdot 0,5 \cdot 0,6 \cdot 0,7 \cdot 0,8 \cdot 0,10 \cdot 0$, $10 \cdot 7, \quad 18 \cdot 0, \quad 20 \cdot 0, \quad 48 \cdot 0, \quad 100 \cdot 0 \mathrm{MHz}$, Also $100 \mathrm{kHz} / \mathrm{HCl} 3$ and $1 \cdot 0 \mathrm{MHz} 0.005 \%$, wires or pins, £3.25. $455 \mathrm{kHz} / \mathrm{HC6}$ £3-£5. Any freq or pins, $£ 3 \cdot 25$. $455 \mathrm{kHz} / \mathrm{HC6} £ 3 \cdot £ 5$. Any freq
$2 \cdot 5 \cdot 180 \mathrm{MHz}$, made 6 weeks, £3.50. Also AM/CW/SSB Communication Receiver lowcost modules and kits. New range being prepared. Send SAE for details when ready. P. R. GOLLEDGE ELECTRONICS, Merriott, Somerset TAl6 5NS. Tel: 0460 73718.

RECHAREEABLE BATTERIES
"AA" pencell (HP7) $£ 1$ 32; Sub ${ }^{\circ} \mathrm{C}$. 1164 . C^{\prime} (HP11) £2.43; 'D' (HP2) £3 56: PP3 £4.98. Matching chargers $£ 6.98$ each except PP3 charger $£ 582$. Charging holders
 package and insurance orders under £20 5% over $£ 20$. SAE for full details plus 75 p for 'Nickel Cadmium Power' booklet. $250 / 12$ volt inverters now avallable. Mail Orders to Dept. PW, SANDWELL PLANT LTO. 201 Monmouth Drive. Sutton Coldfieid, West Midlands. Tel: 02t-354 764. Calters to T.L.C.. 32 Craven Street. Charing Cross.

GOVERNMENT SURPLUS SUPER SWITCH PACK

10 Reed Switches (Open) 8 Microswitches 5 D.P. Toggle witches 5 instrument knobs with fixing screws Plus gwitches 5 instrument knobs with

B.B. SUPPLIES DEPT P.W
 125 High Street, Deal. Kent.

4T inserts if $\times 20 \mathrm{ohm}$ DC. Ideal for microphone or peaker use. 50 p each incl. PP. Quantity discounts available.

Radio Receivers

SHORTWAVE $3 \cdot 2-12$ MHz+M.W. Small Portables (Superhet+INT.Speaker) £10.95, headphones for use with this set $£ 4.95$. VHF/Airband 88-135 MHz+M.W. Pocket Sets (Superhet+Int Spur.) £9.95 available without Air (108 -135 MHz) Band at E8.45. Mains-Battery MW+VHF + Air (108-174 MHz) Portables $£ 13 \cdot 55$. Prices include $\mathbf{P} \&$ P. Accs \& VAT, Noble Electronics, 26 Lloyd Street. Altrincham, Cheshire WAl4 2DE. Tel: 061.341 1510 .

Situations Vacant

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with appropriate experience of using and maintaining radio and electronic test gear. DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.
SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer, (Ref. PW/7)
GCHQ. Oakley,
Priors Road, Cheltenham, GL52 5AJ.
Cheltenham (0242)21491 Ext2270

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Wireless for \qquad

I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME \qquad Send fo: Classifled Advertisement Manager PRACTICAL WIRELESS,
OMG. Classified Advertisement Dept., Rm. 2537, King's Reach Tower, Stamford Street. London SEI 9 LS Telephone M-281 5848 Rate
20 p per word, minimum 12 words. Box No. S0p extra.
 PER PAIR

+ VAT 4.12 The modern way of thatant 2 . Way communications. Supplled
with 3-core wire. Juat plug Into power sockel. Ready for
use Cryt cluar use. Crystal clear compmuntcato power socket. Ready for
Hange f.mile on the sime roon to room.
 Volumie control. Liseful as Inter-othice intercon. between.
office and warehouse in ourgery and in bonnes. f . \& P . 99 p .

$£ 19.95$
Solve your communica.
tlon problems with this. 4.Station Transistor Intercom system (1 master and 3 Bu (hes) tus robust plastic cabinets for desk or wall tnounting. Cali) autable for Buatnese, Surgery, Schools, Hompltastamat Othee opermes on one $9 v$ battery On/orf awltch. Volume control. Complete with is connecting wires each 66ft. A Battery
NEWI AMERICAN TYPE CAADLE
TELEPHONE AMPLIFIER

£15.95
+VAT $11 \cdot 28$
plug in apeaker. Plactiephone Amplifier with detached activates a with for immerliate two way to converkation
without holling the hat without holding the bandect. Many people can liaten at a
tine. Increase eticlency in outice for "confernace" calls: Ieaves the, whop, workshop. Periect untes, cotsult gles. No long waiting, savea time with touge dintance calls. Onjort awlich, volurne control, conversation. recording wode! nt $218.95+$ VAT $£ 1.52$. P. $^{2} \mathrm{~F}$. R9p. 10-day price refund guarantee on all ternin.
WEST LONDON DIRECT SOPPLIES (PW? 169 KENSINGTOH HIGH STREET, LORDOR,' 8

H.A.C. short.wave KITS

WORLD-WIDE RECEPTION

H.A.C. well known by amateur constructors for its the novice and the expert £9-00 INCLUSIVE-the easy to construct DX receiver Mark and containing all genuine short wave components drilled chassis, valve, accessorics and ful instructions. THIN TRANSISTOR RECEIVER Selective, sensitive and with fantastic reception introductory olfer at $£ 9$ PP3 battery. Special ONLY BE HELD AT THIS PRICE WHILE STOCKS LAST
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even 7 days Send stamped and addresseded within now for free descriptive calaloguc of hits and accessories. descriptice calalogue of hits and SORRY, NO CATALOGUES WITHOUT S.A.E,
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ

WHAT'S NEW?

besedsing kit

The most MODERN, RAPID ECONOMIC way to master space age electronics. Starting even from ZERO
 by performing over

100 EXPERIMENTS

creating more than 20
practical applications

You learn all about the most up to date electronic circuits; how to calculate, repair, and design them, while pursuing your favourite hobby. Start from and carn mprove your present knowledge, train pastime inconey in your spare time, turn your Compare our uable job opportunities. course. "mini laboratory" and components for LESS than the price of the components alone,

COMPLETE KIT: nothing else to buy*
You get:
-Instruction manual: over 200 pages of detailed sted-by-sted instructions. Start from scratech explains basic laws and physics of Electricity circuits: form diodes (including diac. zener) transistors. triacs to integrated circuits (C.MOS operational amplifiers) etc.
Over 200 Electronic comoonents: aerospace tech nology. Printed circuit experiment board, phototransistor, triac, thyristor I.C.S. transistors
(including FET, MOSFET) LEDS Dlus resistors. capacitors. milliameter. Dotentiometers. variable capacitor. etc.... etc...etc
among components furnished in kie yourself from among components furnished in kit).
ELECTRONIC VOLTMETERS. LOW FREQUENCY
MEASURING AMPLIFIER MEASURING AMPLIFIER, LOGIC INDICATORS
REGULATED POWER SUPPLY. MULTIAMTER.

You perform:
Over 100 different experiments: from the most basic voltage measurements to radio transmitter circuits and including HI FI, Flid Flods, Is adolica
ions. Triac use, etc
You construct

More than 20 comolete funcional systems: light modulator, hish fidelity amplifier, radio control set. radio recelver and transmitter. electronic
gadgets and eames and many. many more.
-Hand tools not furnished.

SAVE f 10 - mail coupon today - SAVE E IO
Sag? Kings Lane, Chipperfield, Nr , Kings Lane, Chipperfield, Nr
Kings Langley. Herts WD4 9PB

Please send me _ (QTY) IK2 KIT(S)
I enclose cheque (money order) for
E
Name
Address
\square

WATFORD ELEGTRONIES
 $33 / 35$, CARDIFF ROAD, WATFORD, HERTS, ENGLAND MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

ALL DEVICES BRAND NEW FULL SPEC AND FUUY GUARANTED

VAT $\begin{gathered}\text { Export orders no VAT. Applicable to U.K. Customary only. Unlat } \\ \text { sith }\end{gathered}$

We stock many more items it poys to vist us. We are sltuated behind Waford
Football Ground. Nearest Underground/Br. Rall Station: Watiord High Street.

POLYESTER CAPACITORS: Axlal lead type. (Values are in uf).

ELLECTROLYTIC CAPACiTORS: Axlal lead type (Values are in $\mu \mathrm{F}$)

TANTALUM BEAD CAPACITORS
 VV: 22μ F. $47,68,3 \mathrm{~V}: 100 \mu \mathrm{FF} 20 \mathrm{P}$
$10 \mathrm{~V}: 100 \mu \mathrm{~F}$ 30p. $16 \mathrm{~V}: 47.100 \mu \mathrm{~F} 40$
MYLAR FILM CAPACITORS
 POLYSTYRENE CAPACITORS:
10DF to inF, Bp. $1.5 n F$ to 47 nF . 10 p .

Buzzers 6V or 12 V 65D*
TRANS FORMERS ${ }^{\circ}$ (Malns Prim. 220-240V)

$0-12$	$0-12 V$	150 mA	140 p
$0.0-9 V$	$2 A$	$315 p+$	
$0-15$	$0-15 V$	$2 A$	$260 p+$
$2 \times 4.5 V$	$0.6 A$	$260 p+$	$30-0.12 V$
$20.20 .0-20$	$320 p+$		

$\begin{array}{llll}2 \times 4.5 V & 0.6 A & 260 \mathrm{p}+ & 30-25-20 \cdot 0-20 \\ 12-0.12 V & 05 A & 260 \mathrm{p}+ & 25-30 \\ 2 A & 497 p+ \\ 0.120-12 & 0.5 A & 280 \mathrm{p}+ & 0.50-6 V 6 \vee A\end{array}$
$\begin{array}{ll}15-0-15 V & 0.5 A \\ 24-0.24 V & 0.5 A \\ 260 p+ \\ 260 p+\end{array}$
$\begin{array}{lll}24-0-2 \mathrm{~V} & 0.5 A & 260 p+ \\ 9-0-9 \mathrm{~V} & 1 \mathrm{~A} & 275 \mathrm{p}+ \\ 12-0-12 \mathrm{~V} & 27 \mathrm{~A} & 275 \mathrm{p}+\end{array}$
$\begin{array}{ll}0-120-12 \mathrm{~V} 1 \mathrm{~A} & 295 p+ \\ 30-24-20-15-12-0 & \text { Transformer } 7559\end{array}$

30-24-20-15-12-0

$\begin{array}{ll}18-0-18 V i A & 295 p+1.2 K, S e c .32 \Omega 42 p \\ 30-0-30 V 1 A & 315 p+\end{array}$
$\begin{array}{ll}20-0-202 A & 340 \mathrm{p}+ \\ 1.2 \mathrm{~K} \text {. Sec. } 8 \Omega 3 \mathrm{sip}\end{array}$
(Please add 48 p p\&p charge to all prices
marked + , above our normal postal charge.)
DENCO COILS BgA Valve Base 25p
Dual Purpose
VALVE TYPE
$\begin{array}{ll}\text { 6-7 B,Y, R, } 7_{5 p}^{86 p} & \text { RFC 7(19mH) } \\ \text { iFT } 13 / 84 / 15 / 86\end{array}$

'T' Type (Trns. tun- TOC1
ing)
Rng. i-5 B, Y, R, W, MW 5 ,
$\begin{array}{ll}\text { W2p } & \text { MW SFR } \\ \text { MW/LW SFR }\end{array}$

mpsass

2ink
~~ロ:

WATRORD ELECTRONICS
(Continued from opposite side)

DIODES

 DIODE AA119 AAY30 AAZ15 BA100 BY 100BY 26 BY 126
$\mathrm{BY127}$
0 BYA
0 OA 97
0
OA
OA70
OA79
OA79
OA85
OA90
OA91
0 O 91
0 A95

OAP5
0 A 200

OA202
ONOL
INO14
ing
ind
in $10001 / 2^{\circ}$
IN 10003°
IN $4000 / 5^{\circ}$
IN4006/7
iN4148
i 544
$3 \mathrm{~A} / 100 \mathrm{~V}$.
$3 \mathrm{~A} / 400 \mathrm{~V}$
$3 \mathrm{~A} / 800 \mathrm{~V}$
A/1000V* 30

SCR's"
A50V
1A100V
1 A 400V
1 an00V
3 350V
$3 A 600 \mathrm{~V}$
54400 V
7 A 400 V
BT106 $\quad 150$
BT106
C1080
TIC44
TIC45
TIC45
2N4444

$15 \begin{aligned} & \text { Q BRIDGE } \\ & \text { RECTIFIERS }\end{aligned}$ | 15 | R |
| :--- | :--- |
| 25 | (pl |
| 25 | $1 A$ |

OPTO ELECTRONICS

> 0 G. $2^{\prime \prime}$ Red
$0.2^{\prime \prime}$ Ye Grn, Amber ORP61
ORP12 ORP12
2N5797
OPTO
ISOLATORS
THL11/2 SWITCMES TOGGLE 2A 460 TOGGLE 2A 250 V

TANK BATTLE
Build this fantastic TV GAME with realistic battle sounds-Steerable TanksControllable Shell Trajectory and Minefields to avoid. Complete kit incl. Cases, Controls and Mains Detachable Power Supply. No extras required, Only £24.30" (P\&P add 30p).
IC AY-3-8710 £9•78"
Basic Kit (just add controls) Only £17-98- (p\&p 30p) Complete Kit incl, cases \& controls
Price: Only £24•30" (p\&p 30p)

Send S.A.E. for leaflet.

JACK PLUGS		SOCKETS	
Screened	Plactic	Open	Moulded
$2.5 \mathrm{~mm}{ }_{\text {chrome }}^{\text {chem }}$	body	metal	
3.5 mm 15p	100	\square_{0}	contacts
MONO 23p	$15 p$	13p	${ }_{\text {20p }}$
STEREO 31p	18 p	15p	24p
Din 2 IIN Loudspeaker 3.4 \& 5 pin Audio	Plugs	Sockets	In line
	13p	8 D	20D
CO-AXIAL (TV)	14p	14p	14D
PHONO assorted colours metal screened		6p 1-way	
	10 D	$3_{0} 0^{2}$ 2-way	y 15p
	12p	15p 3-way	20D
BANANA	10p	10p	-
	10 D	10p	-
	8 \%	${ }^{\text {c }}$ p	-
WANDER 3mm	${ }^{81}$	8p	-

31 ${ }^{\frac{1}{2}}$ DIGIT LCD PANEL METER KIT

Comolete Kit for low current (1mA at 9V) 200 mV or $2 V$ F.S.D. Dlgital Panel Meter Board. Auto zero and reference are built in. Only one and a few comVery hiah input half hour(1 million MeaR) so works with potential divider for OMM etc Size 5t" " $31^{\prime \prime}$ inct large LCD Sisplay Complat splay.

Price: £21-56* ONLY (p\&p 30p)

INDEX TO ADVERTISERS

A.D.E. Security
A. H. Supplies

Alben Engineering
Amateur Radio
Ambit International
Bamber B.
Barrie Electronics
B. B. Supplies

Bentley Acoustic Corpn.
Bib Hi-Fi Limited
Bi-Pak Ltd.
18, 19
Birkett,
British National Radio \& Electronies School
J. Bull (Electrical) L̈td.

Cambridge Kits
Caranna C.
Chromasonies
Chromatronics
Colomor
Continental Specialists
Copper Supplies
Cox Radio (Sussex) Ltd.
Crescent Radio
C. R. Supply Co.
C. T. Electronies
C.W.A.S.

5,16
$-\quad 9$

Doram Electronics
... 75
Eldun Electronics
Electronic Design Associares
Electronic Supplies
Electrovalue
Fidelicy Fastenings
Flairline Supplies.
G.C.H.O.
G.T. Information Service

Greenweld Electronics
H.A.C. Short-Wave Supplies

Harversons.
H.M. Electronics

Heathkit
Home Radio
I.L.P. Electronics Led.

Intertext ICS
Jones Supplies
K. \& A. Distributors

Kramer \& Co.
Lambda
Lynx Electronics
Mail Sales
Mainline
Manor Supplies
Maplin Electronic Supplies
Marso Trading
Marshall A. (London) Ltd.
Minikits Electronics
Monolith
Moulded Electronics
Nicholls E. R
O.K. Machine \& Tool (U.K.) Ltd.

75
Partridge Electronics Ltd.
P.B. Electronics

Powell T. ...
Precision Perice
Progressive Radio

Radio Book Services
… 82
Radio
Radio Exchange Led
$\begin{array}{llll}\text { Ramar Constructor Services } & . . & . . & 83 \\ \text { Reed Hampon }\end{array}$
Reed Hampton 78
R.S.C. (Hi-fi)
R.S.G.B.
R.S.T. Valve Mail Order Co.

Saga Ltd. 85
Salop Electronics 83
Sandwell Plant Led
Science of Cambridge
Scientific Wire Co., The
Selray Book Co.
Seltronics
Sentinel Supplies
Sonic (Hi-Fi)
Sonic Sound Audio
Sourhern Valve Co.
S.T.E. Led.

Stirling Sound
Swanley Electronics
T.D. Components 82

Technomatic Ltd. 16

Tempus
The Trading Post
... 77
$\begin{array}{lllllll}\text { Trampus } & \ldots & \ldots & \ldots & \ldots & \ldots & 80 \\ & \ldots & . . . & & \end{array}$
Van Karen Publishing 82
Watford Electronics 86, 87
West London Direct Supplies 85
Williams, Michael 10
Williamson Amplification 83
Wilmslow Audio
Z \& I Aero Services

44A WESTBOURNE GROVE LONDON W2 55F Tel: 727 5641/2/3

Res No. 242125503
Please send all correspondence and Mail-Ordere to Head Office

		A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES										PCL 805	0.75	AC/DC TAUT S MULTIMETERS	USPENSION
IB3GT	0.65	6AK6	0.75	6CW4	3.75	12BA6	0.65	ECL80	0.60 0.75	EZ80	0.50 0.90	PD510	3.35 1.10	TYPE U43I5	
IR4	0.50	6AK7	0.85	$6 \mathrm{CY5}$	1.00	12BE6	0.80	ECL81	0.75	GY501	0.90	PL36	1.10		
1 R5	0.50	6AL5	0.40	6CY7	1.00	12 BH 7 A	0.75	ECL82	0.60	GZ30	0.65	PL81	0.80		
154	0.40	6AM6	$0 \cdot 70$	6DQ6B	1.45	12BY7A	0.80	ECL83	1.15	GZ32	0.65	PL82	0.55		
155	0.40	6AM8	0.70	6DT6	0.80	35W4	0.70	ECL84	0.70	KT66	4.50	PL83	0.50		
174	0.40	6AN5	2.50	6GH8A	0.80	50C5	1.00	ECL85	0.65	KT88	5.80	PL84	0.75		
104	0.70	6AN6	0.85	6GK5	0.70	${ }^{-75 \mathrm{Cl}}$	0.80	ECL86	0.85	OA2	0.55	PL95	0.70		
145	0.80	6AQ5	0.85	614	1.20	-85A2	0.85	EF80	0.40	OA3	0.75	PL504	1.05		
1×28	1.20	6AR5	0.70	615GT	0.80	-90C1	1.20	EF85	$0 \cdot 48$	OB2	0.60	PL508	1.30		
2CW4	4.50	6A56	1.00	616	0.55	* 807	1.00	EF86	0.60	OB3	0.75	PL802	$2 \cdot 80$		
-2021	0.80	6A57G	1.20	617	0.80	-811A	$3 \cdot 80$	EF92	0.75	${ }^{\circ} \mathrm{C} 2$	1.40	PY81	0.70		
-3-500Z	40.00	6AT6	0.75	6K6GT	0.85	-829B	$8 \cdot 80$	EF97	0.70	OC3	0.75	PY82	0.55		
*3E29	$8 \cdot 50$	6AU6	0.50	6L6GT	0.85	-832A	$8 \cdot 20$	EF98	0.90	OD3	0.75	PY83	0.70		
3Q4	0.75	6AV6	0.75	6N7GT	0.85	-866A	3.00	EF1B3	0.70	PABC80	0.45	PY88	0.75		
354	0.50	6AWBA	0.75	6Q7	0.90	-872A	6.00	EFI84	0.70	PC86	0.85	PY500A	1.30		
$5 A Q 5$	0.75	6AX4GTB	1.00	65A7	0.80	- 5763	2.85	EFL200	$1 \cdot 20$	PC88	0.85	TT21	$7 \cdot 80$		
5AT8	0.80	$6 A \times 5 \mathrm{GT}$	$1 \cdot 30$	65G7	0.80	DAF96	0.60	EH90	0.60	PC92	0.85	TT22	7.80	S	20,000 o.p.V.
5 T 4	0.75	68A6	0.45	65K7	0.80	DF96	0.60	EL34	0.95	PC95	0.70	U25	1.00	Sensitivity A.C	2,000 o.p.v.
$5 \cup 4 \mathrm{G}$	0.60	68E6	0.48	65L7GT	0.70	DK92	1.00	EL36	0.95	PC96	0.50 0.95	U26	1.00 0.58	D.C. Current	$50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~A}$
5U4GB	0.95	68F5	0.85	65N7GT	0.70	DL. 96	0.60	EL81	0.65 0.60	PC97 PC900	0.95 1.00	UABC80	0.58 0.60	A.C. Current	$0.5 \mathrm{~mA}-2.5 \mathrm{~A}$
$5 \cup 8$	0.75	68F6	0.75	65Q7	0.80	ECC84	0.60	EL82	0.60 0.60	PC900 PCC84	1.00 0.50	UBC89	0.60 0.60	A.C. Curre	75 mV -1000V
$5 \vee 4 \mathrm{G}$	0.60	68H6	0.85	6V6GT	0.65	ECC85	0.48	EL83	0.60 0.45	PCC84	0.50 0.60	UBF89	0.60 0.85	D.C. Volts	75 mV -100
${ }_{5 \times 46}$	0.80	${ }^{6816} 6$	1.20 0.80	6×4 $6 \times 5 G T$	0.60 0.60	ECC86	1.25 0.75	EL84	0.45 0.75	PCC85 PCC88	0.60 0.65	UCC84	0.85 0.75	A.C. Volts	$1 \mathrm{~V}-1000 \mathrm{~V}$
5×8 $5 Y 3 \mathrm{GT}$	0.90 0.65	6BN6	0.80 0.65	$6 \times 5 \mathrm{GT}$ 12 AC 6	0.60 0.80	ECC88	0.75 0.80	EL86	0.75 0.70	PCC88 PCC89	0.65 0.75	UCC84	0.75 0.55	Resistance	300s2-500ks2
5Y3GT	0.65 0.65	6BQ7A	0.65 1.20	I2AC6 12AD6	0.80 0.80	ECC89 ECCI89	0.80 0.80	EL504	0.70 0.80	PCC189	1.75 1.00	UCF80	0.55	Capacity	$0 \cdot 5 \mu \mathrm{~F}$
6 6B4	0.55	6BU8	0.85	12AE6	0.85	ECF80	0.60	EM80	0.65	PCF80	0.65 0.45	UCH81	0.65 0.70	Accuracy	2.5\% D.
$6 \mathrm{AB7}$	0.60	6BW7	1.00	12AT6	0.60	ECF86	0.80	EM81	0.60 0.60	PCF82	0.45 0.65	UCL81	0.70 0.75	Accuracy	4\% A.C.
6 AC7	0.80	68Z6	0.65	12AT7	0.50	ECF200	0.90	EM84	0.60 1.00	PCF84	0.65 1.10	UCL82	0.75 0.80		4\% A.C.
6AF4A	0.80	6827	0.70	$12 A \cup 6$	0.65	ECF201	0.90	EM87	1.00 0.60	PCF201 PCF806	1.10 1.00	UF85	0.80 0.50	Price complete	with pressed
6AG5	0.65	${ }^{6} \mathrm{C} 4$	0.55	I2AU7	0.47 0.85	ECF801	0.95 0.95	EYSI	0.60 0.50	PCF806 PCL81	1.00 0.65	UF85	0.50 0.85	steel carrying	case and test
6AG7	0.85	6CB6	0.55	12AV6	0.85	ECF802	0.95 0.55	EY81	0.50 0.50	$\text { PCL. } 81$ $\text { PCL } 82$	0.65 0.80	UL84 UM80	0.85 0.60	steel carrying	
6AH6	0.95	6C57	0.85	$12 A V 7$	1.00	ECH81	0.55	EY87	0.50 0.55	$\text { PCL } 82$	0.80 0.75	UM80 UM8!	0.60 0.75	leads.	¢ $15.85{ }^{\text {* }}$
6A/5	0.65	$6 \mathrm{CU5}$	1.00	$12 A X 7$	0.55	ECH83 ECH200	0.60 0.80	EY88 EY500A	0.55 1.50	PCL84 PCL 86	0.75 0.85	UM81 UM84	0.60 0.45	Packing \& postage	(1.50 *

VAT is not included. Please add $12 \frac{1}{\%}$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are \&0. 10 per $£$ subject to a minimum of $\mathbb{C 0} \cdot 30$.

YOUR OWN RADIO STATION!

Have you ever wished you could set up your own radio station at home and chat to people in far-off lands? It's really fun, and not half as difficult as it may sound. Over one million people all over the world are now radio amateurs and the number is growing rapidly, for amateur radio is a unique hobby. It offers the newcomer an exciting and fascinating combination of a scientific hobby, a competitive sport, and an entry into a world-wide fellowship which knows no boundaries. It has its own customs and traditions, its own international language, and its "ham spirit".

Sounds great, but how does one get started? Well, you're in luck! We have just published a brand-new edition of A Guide to Amateur Radio by Pat Hawker, G3VA, which provides a complete introduction to the subject. Written in a highly readable way by an acknowledged expert, this book explains just what amateur radio is, and how it came to be. The basic principles of antennas, receivers and transmitters are covered, and the reader is guided in the correct choice of equipment and other points involved in setting up a station, including obtaining a transmitting licence. There is also much useful reference material, including lists of international call sign prefixes. If you are a keen short-wave listener who might like to move up to amateur radio, this is the book for you!
120 pages
lllustrated
Only Es 71 post paid

This is just one of a complete range of technical publications, log books and maps for the radio amateur. Send a large stamped self-addressed envelope for the complete list.
The RSGB is the national society representing all UK radio amateurs. Membership is open to all interested in the hobby: write to the membership section and ask for full details.

> Radio Society of Great Britain 35 DOUGHTY ST., LONDON WC1N 2AE

HIGH QUALITY Very Low Distortion Audio Signal Generator AN IDEAL INSTRUMENT
FOR HI-I TESTMG Based on a Linsley Hood design.
PRICES, assembled instrument, plastic case $\mathbf{6 2 6} \cdot \mathbf{5 0}$, metal case $\mathbf{£ 3 0}$. (Kits, E22). Tax extra 8%. P.P. and ins. $f 1$.
5 pecification. Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in 4 steps. Ourput: $10 \mathrm{mV}-$ I volt in 3 steps. Sine- and 5 quare-wave forms: Dist. below 02%. Artenuator: Powered by $9 \vee$ battery.
Other instruments: Millivoltmeter, Frequency Meter. Reg. P.5. Units. THD Analyser. Also Hi-Fi Amp kirs 10-100 F.M. Tuners, Kef 5 peaker Units.
S.A.E. for further information to

TELERADIO ELECTRONICS (PW)
325, Fore Street, Edmonton, London, N.9. Telephoné: 01-807-3719.

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE

Four inputa. Four way miring, master volume, treble and basa chasia is suitable for all grouph, disco, P.A., where bigh ouslity power la required. 5 speaker putputa. A/C mains operated. Slare ontput. Produced by demand for a quality valve ampifier. send for details.

$$
\text { Chasias only }\{94 \text { carr. } 25
$$

CASSETTE TAPE TRANSPORT MECHANISM Complete with mono record/playbsck and erase headi. Five puab button, re Leat motor, brand new $\{3 \cdot 50$ Poat sop.

10" ELAC HI-FI SPEAKER

Response: $50-18.000 \mathrm{cp}$. 18 obm impedance
10 watta. Poat 40 p
TEAK VENEER HI-FI SPEAKER CABINETS MODEL " A ". $20 \times 13 \times 12 \mathrm{in}$. For 12 in .
 Muntrace KODEL "B" BOOKSHELF
 MODEL "C" BOOKSHELF
For 8 tin and tweeter. $\{5.95$ post 75p
LOUDSPEAKER cabinet wadding
18in. wide, 20p ft.

GOODMANS CONE TWEETER	
3110. diam. 18.0000 C.P.8. 25 WATTS $8 \Omega \quad \mathbf{\Omega}$	
bargain 4 Chasmel trassistor	
MONO MIXER. Add musical highlights	
tuner with separate controti into aingle	
two ciannel stereo version of above	
THE "Instart" bulk tape eraser \&	
HEAD DEMAGNETISER Euitable for casatita, and all aizes of tape reels. A.c. mans 200/240v.	
Leatet 8.A.E. $\quad \mathbf{4}$	

ELECTRIC motors

 Two in 2eriet 2440 V . 75 p each. Brush Motor, Froma
 Splinde $-0.5 \times 0.25 i \mathrm{in} .22 .85$ each.

DE LUXE BSR HI-FI AUTOCHANGER

 Playi 18in. 10tn. or 7 in. recordsAuto or Manusi. A bigh quality Auta or hanusi. A high quality
unit backed by BRR reliability with 12 montha ruarantes. A.c. 200/2507. Size $13 \mathrm{j} \times 11 \mathrm{jin}$. Above motor board 34 in . Below motor board $\varepsilon+$ in
 With MAGNETIC STEREO CARTRIDGE $\mathbf{~} 21 \cdot 50$ Cueing Derice, Bias Compenator, Balarced Arm, All Poat 75 new deces
ESR MP80/P128 with Goldring G850 magnetic cartridge
BSR Budget Autochanger with ceramic cartridge. Garrard AP76. Single plager lene cartridge. BSR. P183. Belt drive Turntable, less cartridge. Garrard 5300. Autochanger with ceramic cartridge. Garrard Minichanger. Plays all size records.
Ceramic cartridze. Ceramic cartridge.
B8R. P182. Snake arm, fised turatable, ceramic
cartridge. Latest model.
£24.50
£12-95 \{28.50 ع27.50 114.95 59.95
$\varepsilon 10.95$

BAKER MAJOR $12^{\prime \prime} \mathbf{1 5} 5.00$ Poat 21 90-14,500 c/h, 12 in . donble cone, Foofer andimeeter cone torether with siakER \cdots denaity of $14,000 \mathrm{gturg}$ and a total tux
of $145,000 \mathrm{Marmella}$. . Basi resonance 40 of 145,000 Marwells. Baba resonance 40
c/a ratod 25 watt. NOTE: 4 or 8 or c/a ratod 25 matta.
16 ohmi must be atated.

MAJOR MODULE KIT $30-17,000$ c/s with iweeter, crosiover, bafle 19×12 tin. Plesce
state 4 or 8 or 16 ohms. 9.00

BAKER SPEAKERS "BIG SOUND"
Robuatly conatracted to atand up to lonk periods of elect
letding gronpa.
Orefui response $30-13,000 \mathrm{cps}$
GROUP "25"
GROUP " 25 "
12 in .30 zatt
4,8 or 18 ohms.
GROUP "35"
12 in .40 watt
GROUP " $50 / 12$ "

$\underset{\text { Ent } 14.00}{ }$
chor sol2" $£ 21.00$ $\begin{array}{ll}\text { model. } 4,8 \text { or } 18 \text { ohms. } & \text { Post } 21.80\end{array}$ Wesponte $=30-16.000 \mathrm{cps}$.
WRaluminium presence dome. GROUP "50/15" $15 i n .76 \mathrm{matt}$
8 or 18 ohma.

BAKER 150 WATT
QUALITY
TRANSISTOR
MIXER/AMPLIFIER
Prolessional amplicer using adranced circuit design. Ideal for diaco, gropa, P.A. or muical inatruments. $\$$ inputs $\$$ way mixinz. haster treble, basiand volume controls. 3 apesker output socket
to anit various combinations of spenkers. to nuit tarious combinations of epenkers.
4-8-16 ohm. Sleps outpus. A/C meins.
£75 : :

100 WATT DISCO AMPLIFIER

MADE BY JENHINGB MDIICAL INSTROMENTS $\quad \mathbb{E 5 9}$
4 Speaker ouspats rolume. treble, bass, controla
CAN BE USED AS 100 WATT SLAVE Carr. 81

B.S.R. SINGLE PLAYER DECK

3 uped. Playt all izizo recorda, Siereo Catridge. Cueliag dorice. sdeal Ditco Deck.
fl7.50 port 81.00

DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. EAEY to bulld kit. Will control np to 500 watta AC maina. $\underset{\text { Poat } 35 \mathrm{p}}{ } \mathbf{\{ 3 \cdot 2 5}$ STEREO PRE-AMP KIT. All parta to build this pre-smp. 31 npats Tor high medium or low gain per channel, with volnme control
and P.C. Board. Can be ganzed to make malti-wey $\& 2.95$

BAKER DISCO SPEAKERS

 HIGH QUALITY-BRITISH MADE $2 \times 12^{\prime \prime}$ CABINETSfor Disco or PA all atted with carrging handles and corners. Black 60 WATT R.M.S. $£ 52$
With one horn ± 60
With two horns f68

80 WATT R.M.S. \&56
With one horn 464
With two horns E 72

100 WATT
R.M.S. 669

With one horn $£ 78$
With two horns £86
 SINGLE I2inch CABS COMPLETE 30 WATT R.M.S. £32. WITH HORN $£ 40$. 40 WATT R.M.S. £34. WITH HORN $£ 42$. 60 WATT R.M.S. E4I. WITH HORN E49. CARR $\mathbf{C 3}$ EA.
"SUPERB MM-FI"
12 in 25 watts
A birh quality loudapeaker, its remarkable low cone resonance oniures cleser reproduction of the doepest basi. Fitted with a apecial
copper drive and concentric coppet drive and concentric range reproduction with remarkable efficiency in the apper erister.
Gluz Renonance 16,500 gauis

22.00
£22.00 단

"AUDITORIUM"

I2in. 35 watts
A full ranke reprodncer for high
power, Ides for
HiDiscotheques. Electric Golters, public address, multi-1peaker
pyatoma, olectric organs.
 $\begin{array}{ll}\text { Flux Denaity } & 15,000 \text { gausi } \\ \text { Oselul reaponse } & 25-16,000 \text { eps }\end{array}$

£21.00

Pont
21.60

"AUDITORIUM"

ISin. 45 watts
A high wattage loadapeaker of
axceptional quality with a level
response to above $8,000 \mathrm{cps}$. Ideal for Public Addrens, Discotheques. Electronic lastruments and the bome Ri-Fi.

 8 or 18 ohmi models.

± 26.00

Post
\& 1.80

Loudspeaker Cabinet Wadilng 18 in widc, 20 p per ft. H1-Fl Enclosure Hamual contaluing piana. designe, crossover
data and cuble tables, B5p.
E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!
Fith tweter. And crossover.
10w. Stato 3 or 8 obm.
I5W model $\quad £ 10.50$ 8 ohms. Post 85p GOODMANS 20W Woofer Size $12 \times 10 \mathrm{in} 4$ obma. $\quad \mathbb{E 9 . 9 5}$ Rubber cone surround. Post 65p
Hi-Fi base unit.

337 WHITEHORSE ROAD, CROYDON Oden 9-6 Wed. 9-1 Sat. 9-5 (Closed for lunch 1.15-2.30)
Minimum post 30p. Components List 20p. Cash price incl. VAT. Access \& Barclay cards welcome. H.P. available. Phone your order Tel. $01-6841665$

everything for the modern D.I.Y. electronics enthusiast and more.

IT'S A FANTASTIC BESTSELLER!
216 big $\left\{11 "\right.$ x $\left.8^{\prime \prime}\right]$ pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and ilustrated! No wonder it's a bestseller!

DON'T MISS OUT! SEND EOp NOW!

 MAPLIN ELECTRONIC SUPPLIESP.O. BOX 3 RAYLEIGH ESSEX SS6 8LR Telephone: Southend (0702) 715155

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE GOp

Please rush me a copy of your 216 page catalogue I enclose 6 Dp . but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my GOp refunded immediately.

[^0]: CALLERS ONLY, NO MAIL ORDER, OTHER THAN TRADE. OPEN 9.30 A.M.-6.00 P.M. MONDAY TO SATURDAY. ALL THE ABOVE GOODS

[^1]: IT:LL NEEO SHARPENIAG, BCTIT CUT THE ALUMINIUM ALRKGTI"

[^2]: We are pleased to announce the reintroduction of the publishers subscription service for Practical Wireless. The annual cost to either UK or overseas addresses is $£ 10 \cdot 60$.
 Application may be made to:
 Practical Wireless, Subscriptions Department, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH.
 Remittances should be made payable to IPC Services.

[^3]: Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:-
 AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs by bands, each in alphabetical order.
 MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport, PR8 3JG. Reports for both bands must be kept separate.
 VHF BANDS Ron Ham BRS15744, Faraday, Greyfriars, Storrington, Sussex RH20 4HE.

