
T.T.L. 74 I.Cs by TEXAS, NATIONAL, I.T.T., FAIRCHILD Etc

7400	148	7413	38 p	7437	23p	7460	15p	7481	$75 p$	74121	30p	74139	109p	74155	70p	74173	130p	74188	350s
7401	$14 p$	7414	69 p	7438	23p	7470	30p	7492	45	74122	40p	74141	60 p	74156	70p	74174	100p	74189	350p
7402	140	7418	30 p	7440	15p	7472	25 p	7483	400	74123	60p	74142	278,	74157	70	74175	75 p	74190	140p
7403	14p	7417	30 p	7447	65p	7473	30p	7495	50p	74125	54 p	74143	270p	74160	90 p	74176	100p	74191	\$40p
7404	140	7420	45	7442	659	7474	300	7496	70 p	74128	54 p	74144	2708	74151	900	74177	109p	74192	12p
7405	140	7429	${ }_{20}^{20 p}$	7445	30p	7475	305	74100	95p	74130	13010	74145	759	74162	90 p	76178	140 p	74183	120 p
7406 7407	40 p	7423 7425	25p	7446 7447		7476	30\%	74185	40 p	74131	500p	74147	230p	74183	9ep	74179	140p	74194	100 p
7408	${ }_{20}{ }^{\text {P }}$	7425	${ }_{25}{ }^{2}$	7448	70	7483	850	71105	40p	74132	150	74148	150 p	74184	125p	74180	100p	74195	100p
7409	$20 p$	7427	25 p	7450	15p	7485	\$000	76107	${ }^{30} \mathrm{p}$	74135	389	74150	129 ${ }^{\text {p }}$	74165	125p	74181	200p	74198	100 p
7410	150	7428	40 p	7451	150	7486	30p	76109	50p	74138	86 p	74151	$65 p$	74168	125\%	74182	75p	74197	100p
7411	20p	7430	$15 p$	${ }^{7453}$	15p	7489	250p	74118	90p	74137	100p	74153	65p	74157	3250	74184	1stop	74198	185p
7412	20 p	7432	25p	7454	150	7450	35a	74120	90p	74138	145p	74154	129	74170	2007	74185	150p	74199	185

SEMICONDUCTORS

by MULLARD, TEXAS, MOTOROLA, SIEMENS, I.T.T., R.C.A.

JUNE 1978 • VOLUME 54 (NUMBER 2

BRITAIN'S LEADING JOURNAL FOR THE RADIO \& ELEGTRONIC COHSTRUGTOR

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

News and Views

EDITORIAL-Crystal Gazing
NEWS . . . NEWS . . . NEWS
KINDLY NOTE-Radio 2 Tuner, July 1977.
"Shoot", August 1977. IC of the Month, ULN-3006T, March 1978. Multi-Range Test Meters, March 1978.
Experimenter's Corner, LED Light Display, April 1978.
26 HOTLINES-Recent developments in electronlcs
Ginsberg
31 PRACTICAL WIRELESS-Preview of our next issue
48 PRODUCTION LINES-.Information on the latest products
Alan Martin
ON THE AIR-Amateur Bands
Eric Dowdeswell G4AR
VHF Bands, including What do the VHFs have to offer? Ron Ham BRS15744
SW Broadcast Bands
Charles Molloy G8BUS
MW Broadcast Bands
. Charles Molloy G8BUS
68 PW READER'S PCB SERVICE-Prices and details of the PCBs available

- For our Constructors

20 AUDIO DISTORTION METER-2 .. A. RUle
Constructional details
27 PW PURBECK OSCILLOSCOPE-3
Jan Hickman
Front panel and power supply wiring
38 PW BOVINGTON TANK GAME... David Coutts
Full constructional details of this exciting TV game

A simple controller for your enlarger

General Interest

STATESIDE CALLING
Joe Kasser G3ZCZ/ W3
A broad look at the hobbylst radio scene in the USA
SO YOU WANT TO PASS THE RAE ?-10 .. John Thornton-Lawrence GW3JGA and Ken McCoy GW8CMY Aerials, feeders and matching. Overcoming interference. The examination.

Extra

INDEX TO VOLUME 53
Contents of our issues dated May 1977 to April 1978.

the MIGHTY MIDGETS

 $S \cdot R \cdot B$MINIATURE

RETAIL PRICE; POSTAGE

18 WATT IRON inc. No. 20 Bit	each inc.v.a.t. $£ 3 \cdot 78$	$\begin{aligned} & \text { extra. } \\ & \text { 22p } \end{aligned}$
SPARE BITS	440	-
STANDS	23.25	65p
SOLDER: SAVBIT 20^{\prime}	52p	9 p
10^{\prime}	26p	4p
LOWMELT 10'	65p	$9 p$
.C. DESOLDERING BIT	88p	9p

BIT SIZES: No. $19(1.5 \mathrm{~mm}) \quad$ No. $20(3 \mathrm{~mm})$
From your Local Dealer or Direct from Manufacturers
S: B BREMSTERLU
86-88 Union St • Plymouth PL1 3HG Tel:0752.650II TRADE ENQUIRIES WELCOME

TECHNICHE TRAINLNG IN ELECTRONICS TELEVISION GND RADIO SERVICING

1CS can provide the technical knowledge that is so essentidl to your success. knowledge that will enable you to take advant age of the many opportunities open to the trained person. You sludy in your own bome, in your oun time and at your own pace and if you are stadying for an examination iCS guarantee coaching until you are succescful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amatenrs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
Th To: Infermational Correspondence (T) Schools

Dept. No. 276Y, Intertext House, LONDON
5W8 4UJ or telephone 6229911
Subject of Interest
Name
Address

THERMOSTATS

Rapingaration at ithutrated with 38^{2} Limpet Stat must be mounted In clos
 Applancestat fx like a voluma control－ 15 amp contact $30^{-80} F$ Bp．
Oven Stat－with senaor and capillary E5p．

MAINS OPERATED SOLENOIDS

Madet TT\＄－amall but pawarful
 Matad 4001／－7in．pull．Size

Prices Include VAT \＆postage．

DEGAY SWITCH Maint oparated－delay cati bolntarcurately anob for piriodith his to of hre． 2 coniact cultatie to entich 10 mmp － minuter after 1st apantict tow

MOTORISED DISCO SWITCH

EMITHS CENTRAL HEATING
 CONTROLEER

Pugh button glvas to veriations ax coltowa．（1）continuous hot water ard continuous centrat hytating（2）contin－ alght（3）wates but enntral hasting off a night（3）cantinugus tot water but centisl hataing on only for 2 perlode hating both on but day itme enly（5）hot water all day but cen－ ral hatilie only for 2 periada during the day（f）hot water and cantril insailng on for 2 perrode during tha day timo only． hen for aummer twe upe with central reating of（7）hot water continuatis（a）hot water dey time only（9）hot water twice daty
（10）everything off．A hindaome foaking unit with 24 hour movement and the ewitches and other parta nacessary to select the delired programme of heating．Suppllod fomplete

 $V A T$ and Postags．

LOW R．P．M．MOTORS

EXTRACTOR FAN

Ek computert－made by Woads of Cotehester，ldeal for fixing through panci－reseonathly quifat ruming－very powertul 2500 rpm． Chalee of two alzen $5^{\prime \prime}$ or ©t＂dla． E5 and EI．

FLUORESCENT TUBE INVERTOR

For camplag－cer cepalrisd－emergency lighting irom a sty battary yod can＇t beat fiuoriscent tighting．It will offor plenty o weil dintrlbuted ilaht and is econamical．Wo offer Inyertor for

MIN1－MULTI TESTER

Amaring，deluxe packef Elie oreciolon moving coll ingirtiment－ tonttan DC votte $10,50,250,10000$ ． AC volte 10， $60,150,1000$ ． Con amplo 0－1 mA and 0－100 ma Continulty end rbelstaned o－150K olumit．
Complete with Ingufated probas． and Insifuctorion．
Unbsilouable valut only $\mathbf{E 8}$－ FREE
Amper rangee ilf enable you to read DC current irom onto ampe

MULLARG UNILEX
A maine oporated $4+4$ aterto periormern in the oftereo finsld hie would mehe a wonderiul glift lor almost anyent in tasy－to ankamble madular form and com－
plete with or palr of Plasest

saakert thit should selt at about ksp－but due to a epecha bulk buy and man fncentive for you to buy thia month we affar the syatem complete ot only Eis Includimg VAy and

UNISELECTORS
These mre pulas operated witchem as usad in auto natic tolophorse owlich bardis itc．The pulne movet gaition．Exespt whats ond eated the eelectore afe 25 poaltion typole and 50 V Coll atandard．20 or 12 v opsr atkon ertra at 52 per awitch

24 HOUR TIMERS

The one dulutratad Ia＇E＇controle Inle URes the Smiths mechandem as in thair sutoses Onfoft＇s par 24 hours 13 amp contects． oweride swich sich Sh．Smith 100 Am model ans on／off．per 24 houft $E 1 \mathrm{~s} \cdot 5$ nodiol with clockwork ftandiby，on onfor

NDUCTION MOTORS
One Hurlrated is our foterance WH1 mada for ITT＂＂stack 11^{+1} epladle e2．25．intack model si 75 ．

MAINS TRANSFORMERE

MULLARD AUDIO AMPLIFIERS

At in modulf form，\＃ach roady bull compinto with heat
 Phat \＆VAY． Model 11721 W．power output 51 日5
 ED－W Including Pont A Powor outpul Win channet of Poit it $1 / \mathrm{AT}$ ．EP poor ncluding Post \＆Viff．
THIS MONTH＇S SNIP
Japanese made FM tunue and match－
Ing decoder．Two itemi for lent than averge price of the tuner oniy L1i－20 the two．Dor＇t mike this，Giock，will not fast
glang．dial efis．

RELAYS

12 velte two 10 mpp chanopsver pluy in tsp． 12 three 10 nmp chanceover plug in Ct－：3． 12, two
 Latching relay maline operitad \＆e\％o contact： 2．11．Malna oposated threo 10 Atmp changeovers open tyot one zeraw fixing ci－2．Mnsy othar
typeat with diferent coil yotans and sontact arrengemente are In atock，enqutrles livilod．

MICRO SWITCH EAREAINS

Rated at 5 ampe 250 voltt．Idsead to makie a of wich panal for a catculator and for dozana Parcel of 10 for $\mathbb{E} \cdot \mathbf{\omega}$ ．VAT and poat pald．

25A ELECTRIC PROGRAMAER
Learn In your aitep．Hrve radio playing and kettla bolting a yon wak－－iwith on inite to ward of lnterudery－
 hive a warm house to come mome to．All thatil and many ather thingt you ten do if you invelt in an lectrical pro－ grammor．Clock by famou maker，with 15 emp enjon wiltch．Swatch－on time can be adi naymise to stay on up to 8 hourt，ladapendent bo
 with glate front，chrome beze －
Terms．Pricen include Post \＆VT，But
 packing．Bulk enquiritit－Ploase Phone for Generous Dlecounts ent 183n．

J．BULL（EIEGTRICAL）LTD
 （Dept．P，W．）， 103 TAMWORTH RD． CROYDON CRE 18 C

IT＇S FREE！

Outr monthly Advence Advertising Bargalne List gives detall of bargans erplvine or just Lrived－often baroains wheh sall out before our advertisement can tppenr，－It＇a an Interesting Ilist and it＇s fret－Just iend S．A．E Below are a few of the Burcalni sifl avallable from previous lists．

MANNS TRANSFORMERS

All thame bave 20.54 w	Hz Pimary		
VOLTAG厚	CURRENT		PRteg
${ }_{2}^{14} 4$	\％Amp	TM	S1．40
4	7 amp	TN32	2．310
Or	\％amp	TM3	4
d．5v	3 mmp	TH\％ 37	全
8．5Y	200 ma	TM 91	11．
8－5y－0－65y	10 mma	TM 81	81.
－5v－0－6． $5 v$	780 mA	TM 7	4． 1
8－3v－a－8．3y	100 ma	TH 33	cite
$5 \cdot 34$	2 mmp	TM 4	［1． 11
8．5y	1 amp	TH2	Ef． 6
sivy＋8－5v nep winding	\％	TM 12	61．42
	1 mmp	1M ${ }^{\text {¢ }}$	E1．${ }^{4}$
\％	I amp＇c＇cot＊	TM6	4t
Or	stamp	TM11	27
gr	8日mp	TH ${ }^{38}$	Cis 24
10\％	23.10	TM 15	C4．
40v－0－50v	12% amp	TH is	84
12v－0－12y	4 mmp	T127	動． 12
\＄2v	1 amp	TM ${ }^{\text {P }}$	ct．${ }^{\text {c }}$
13%	\％amp	TM	4． 4
184	1 mmp	TM 10	64．6
12v－0－12y	50 ma	TM	Etic
1400－12v	1 amp	TM 41	28.24
15v tappod 9V	2 amp	TM 11	c2．74
	7 mmp	TM堂	隹號
1． $\mathrm{v}-0-15 \mathrm{y}$	stiamg	TM 27	ctiz
15v－0－18v	3 Samp	TM 3	4.8
17 v	tomp	TH 12	
17y	\％mo	TH15	515
90\％	$t \mathrm{cmp}$	TM14	51．82
20v	5 mmp	TM 27	${ }^{4} 8$
20 V	521 mmp	TM 15	如
年v－0－20y	8 amp	TM 16	E4 ${ }^{4}$
13%	100 ma	TM 29	＜1，
244	11 mmp	TH 16	［8． 12
248	9 amp	T117	
$24 y+5 r 7$ mmp	2 smp	TM 38	C2 31
24 v	4 \％rpp	T\＃40	C4，
25	1tamp	TM	24 4
	2 tmp	TM 3	C2，
300 tapped 24، 20． 15412	31 mmp	TM 27	E4．
30%	8 amp	TH15	c4．tat
37%	37 nmp	TM 3	5 Et
40v tapped at 30r，20\％ 410 c	\％amp	TM 15	24t
$5 \mathrm{Sow}-2$ amd with B＇3v ahroud		TM 92	Es－＊
S0y	8 Emp	TM ${ }^{\circ}$	61145
60\％	5 mm	TH 24	ct 0
76v－s amp wilin $8 \cdot 3 \mathrm{~Sv}$ Ehroud	ed	TM ${ }^{\text {明 }}$	钴 16
75 y ，	if amp	TM 24	57.2
	4 smp		77.18
100 y	1 amp	TM 26	c） 7
100N－0－100w	$t \mathrm{mp}$	TH	67.6
130\％tepped 120\％	famp	TM88	¢37
	＋ Fmp	TH ${ }^{25}$	478
950y－0－250\％with e－3y 2A	50 mA	TM 38	578
250\％	100 mA	T0438	d 73
500\％	50 mA	TM 30	2．76

S3pma Yolt Malne Unif．Idgal for power $\$$ voli toulpmont， requiting more then the aversag amount of eument．This it a really well made unit in piatitic cade made for Crown Fidio Intended originaliy to cllp，Jnto posilton，this has external batiery type contacta but it is a il mple matter to soldyr laads etaigh onio these confacto and thie dint amploys full wave Caleulatora．By famout makers like Thxas，Intanded oriot nally to be aald at qulte hloh prices new and unuted．Typet． Bagic functiofo－add，mubiract，multiply，divice sic．Pilce S5－15．Type 2．－gan batle untifoni but with rechargalale
 Typo 4－beticiunctions，memory and ruchargenble batientiog．
 Amifim Redlo．Compiate chasala，han funing ocale with pointer，valume conlios，onfon etc．Conirols have adgewise unoba．Thest fadion can be mounted on or Just Inaide ent－ yonition sppoper，then you have a flyst cladiz＂metce while then syerage and even In arese where FM I noterlously hat good relulte hive bean obteined．The output alsa is above
 Thisy can be powered ay or hatierion or or pown aupply，in

OY Tubes（Philipa Atinte）．Ueeful for bringing out water matke in atarap and eptciai colourn in rockn，mimilar npaci－ mans．We have thene in two nizet in wh price $14 \cdot 30+12 \mathrm{p}$ ． Poit $80 p+4 \rho$ ． $2 t 20$ watt $52 \cdot 60+10 \mathrm{p}$ ．Poit 76p +8 p ． belag twenty epaced through the soo fume the then lan shop．\＄ilvar plited contacto mre rated at 5 ampe，formaily mn expenalve owitch bul effered at tifp fach．
Monte Kay，This is welt desipned fully adjutiable hoy， aultablo for buginners．Our Aer，WK1．Prica Ei－18． truction，thit li hioh etruction，thto in high
Price 25.55 ．OUP Ref．
Tertalnaila．Vety good quality Sritiah made，acrew down ype，top zecepti $x 4 \mathrm{~mm}$ piag．the serew down mation alto has a hole through which tolid wire may be paseed，with

 ample．Hold back the triotar－push in wirt－lit 00 of trigges

 raticy cime．id pla saisidard tor many plup－in rolaye stp $+4 p$ ． Ac Malns Relity．Pug in to ofandgrd bars，ihres 10 amp changeorif centacte，Pite as＇－
Hasuy Duty ity Relay．This has 3 palre of chanpeover and look capable Ditto but Vott Comil．Price int．18 +16 p

BENTLEY ACOUSTIC CORPORATION LTD.
7. GLOUCESTEN ROAD, LITTLUHAMPTON, SUSSEX

T1.0.00

 ULA1

㖛

 .44
-47
.48
 DE
DE
DH $\begin{array}{ll}\text { DE81 } \\ \text { DK } \\ \text { DE } & 1.6\end{array}$
 $\begin{array}{ll}\text { DK96 } & 1.9 \\ \text { DL88 } & -7 \\ \text { DL } & 1\end{array}$

 R200F
स88F
RR800
Z

 RABCRO

RACg1 \begin{tabular}{l}
EAF4 1

EAFb01

\hline

EB34

EB82

\hline 1
\end{tabular} REC41

EBGA1
EBC90 EBC91
RBFBA
RBFBS
8BEB $\begin{array}{ll}\text { SBEBP } & 10 \\ \text { EBL2I } & 8.00 \\ \text { RCSI } & 1.00 \\ \text { RCE3 } & 1.60\end{array}$

EHBOMASOMME electronics

Combin* TTL\& C mos for Ouantity Discounts All tenis helow Boin V.AT SuPER SAVECS

LOOK! Heres how you master electronics.

the practical way.

This new style course will enable anyone to have a real understandiry of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.

As the first stage of your training, you actually buld your own Cathode ray oscifloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you declde to develop your knowledge and enter the profestion. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,drawand understand circuitdiagrams.

In a short time you wilf be able to read and draw circuit diagrams understand the very fundamentals of television, radlo, computors and countless other electronic devices and their servicing procedures.

3 Carryout over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, serviclnt and maintaining all types of electronic equipment, radio, t.v etc

Alt students enfolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current slectronic practice.

GREENWELD

443 Milltrook Road Southampton SO1 DHX Tel：（O703） 772501

Alt prtede queted intude VAT．Add 25 p UKIZFPO pastags．Moet arderg dan－ phtehtd on day of recslph．SAE with valuties pleaze，WNINUM order

Irom schools，otc．（Minimum Invoite charge \＆5）．ExpoctiWholestial endulite wetcome．Wholesale list now nuallablo Tor buna－flde tradera．Surpltas eom－
portenlo alwaya wanted．

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

＊SAVE ON TIME－No delays in waiting for party to come or ahape so apent
＊SAVE ON MONEY－lulk buying
meant fowest pricer－iust coms
pare with etheral
＊HAVE THE RIGHT PART－No Eusirwork or aubrtitution netonary！
ALL PACKS CONTAIN FULL SPEC， BRAND NEW MARKED DEVICES－ SENT BY RETURN OF POST，VAT
INCLUSEVE PRICES： MC41 50V
5 Kit 50 V ceramic plate capacitors， Totel 210 ，elach 15 value 22pF to 1000 pF ． K Lot Extandac renge，22pF to $0.1 \mu \mathrm{~F}$ ． 3300 yaluea $\mathrm{EA} \cdot \mathrm{gt}$ Kop Polyeter eepaction， 10 each ni

 $5 \% 980$ ．Total 370 for $\mathrm{E12}$ ． $\mathbf{3}$ ． Ken Tisiarum sead capacilors． 10 asan ot the following：0 $1.015,0-22$ ，
 Tolal 170 tania lor 444 －x0 Kor Elaclfolyty capaclior！ 25 V

 100 for es ． by
$K 031$ minisiurs carbon film 8% realators， CRSS of amilar． 10 of esch value fromi IVR to 1 M, E12 berlan．Totel 610 renlators， $\underset{H}{242}$

VEROCASES

VERO PLASTIC BOXES

Profesaional quality two tore grey poly slyrane with thrested intefts for mount－ ing PC boand
$\begin{array}{lll}2519 & 120 \times 65 \times 40 & 52.17 \\ 2520 & 150 \times 80 \times 50 & E 2.45 \\ 2522 & 188 \times 110 \times 60 & \mathbf{N J . 2 5}\end{array}$

SLOPING FRONT BOXES

$1798 \quad 171 \times 121 \times 75 / 37 \cdot 5$ CA． 14
 Phits dep
Hand 0 controllef box $04 \times 81 \times 23 \mathrm{~mm}$ Hand controllef box $24 \times 81 \times 23 \mathrm{~mm}$
Whise 4 p Whise isp

VEROROARD

Our packe of verc affeuts are one of our amaz ing ualuall Enct no wondes，they ar pleces to make up a tofa？area of 1po sa．Ins．All pache are the same prlce．\＆4 20 eish and ars avallable to ollows：
pack A alt 0.1^{*} pitch
Pack C mbed of 1 a 0.15
Pack 0 alt $0.1^{\prime \prime}$ plaln
 c 325
Repular nize vero

 DIP Breadbuerd flue 8 ，$\$ 5 \times 4.5^{\prime \prime}$ ，can accommodale 20×14 pln ICs Ez ． Ya Boserd， Copper strtps In enws of 4 to facikitale conskuction with IC＇re．Layout sher
prowlded ESp

VERO PINS AND TOOL
Spet face culter for 0． 3 or 0－15 pltch 75p 1＂pins stnglf alded 3ep／800 －1＂bins double alded 35p／i00 $0.15{ }^{\circ}$ pins single eldad 30 pi190

CALCUEATOR CHIP

Typa C500 by 61,4 tunction + constans a digit．Muittplered autpul tor simple kaybosid interfacing 24 pin Diz．Wi．

DARLINGTON COMP PAIR
BDessA and mDasba－45Y 8A 70W niantic powerll gato 750 4A．PNP． NPN pair E1－so．

REAI音TOR GFFER，MInlshute IW \％cerbon film，bat the lesds，although fuli lenatio have been pretofmed lor veluas offy： 68 R ． 150 A ， 330 A 350f $470 \mathrm{k}, 1 \mathrm{~h}$ ， $1 \times 2,2 \mathrm{kT}, 3 \mathrm{~kg}, 546,13 \mathrm{~h}, 22 \mathrm{~h}, 27 \mathrm{k}$ 33 k ， 68 k ＇ $100 \mathrm{k}, 470 \mathrm{x}$ ， 820 k ，ith 19 velues altogether． 100 of each value，foral 1800 raslatorn for E5．Or 1000 off each value． out at $0 \cdot 2 \mathrm{2s} 3 \mathrm{p}$ per renilatorli）

SPECIAL
 TRANSISTOR OFFERS

Piastle varsione of thana papular lypes． BC109－年 ECY70－72－72 at very low pricet PN 70 （SCY70）……．．．．．．．．．．．．． 14 tor for PN72（BCY72） PN72（BCY72）
PN109（BC109） PNF1（BCY7t）

15 for C
18 for 21
lifor
E1
Complementary Pawer Palz．BD525 a Bo526．Motorole plattic power，sov 24 tevicel，norcally 94 p palr，Specia arier price sop paif．
Small zlgnal PNP tasniluiora，fike TANT BEAD CAPS 4 ） 20 tor RT TANT 日EAD CAPS \rightarrow mif gov，nor－ malty 12 for each．Our opecin！ofter price
faNtastic half paige offer

> TANK BATTLE T．V．GAME
> AVAILABLE NOW

TANK BATTLE AY－3－B7 10 I．C

TANK BATTLE PRINTED CIRCUIT BOARD
Application and assembly nores $\quad \$ 4.90$ OUR PRICE 22.90
TANK BATTLE BASIC KIT
（Jsst add If pushbutions and cises）L27．90 OUA PRICE fi9．90
TANK BATTLE CASES
with printed tacia．plate and hand controls OUR PRICE EA．75
SOUND AND VISION MODULATORS
Builc，Tested，Guaranteed \quad is 50 OUR＇PRICE G4－94
＊Hide behing omrieades and avoid being hit to dodge the enemy＇s mines
 from a synthessiser
kir available NoW mank move and fire in all directions budget－priced coleur adack and white All Component：Guarantesd
PRACES INCLUDE VAT and Post＇Packing
Make all cheques or postal orders payable to Teleplay
ACCESS－phone your order • BARCLAY
Retail Shop and Demonstrations－
14 Station Road，New Barnet，Herts．
For further Details and Technical Helip－phone 01－441 2922.
For extra speed phone your order on Borcloy or Acess Cords
Shop hours
10 a．m． 7 p．m

gLOUCESTER INDUSTRIAL SALES AND AUCTIONS LTD

Eastington Trading Estate，Nr．Stonehouse Gloucester

Tel：STONEHOUSE 4118
（M．5．MOTORWAY－EXIT No．13）
We hold regular monthly Auction Sales of mostly New Electronic and Electrical Goods consisting of Tran－ sistors，Triacs，Integrated Circuits， Diodes，Capacitors and Resistors， together with Fractional Motors， Transformers，Power Packs，etc．etc． Phone or write to be put on our Auction Mailing List．

Why not get in touch with our Mr． Jack Bailey and enquire about our terms for the disposal of your surplus stocks etc．through our Auctions．

－Qu VALVE MAIL ORDER co． CLIMAX HOUSE，FALLSBROOK ROAD， LONDON SWI6 6ED
 SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

A	＋ 29	ASY26	＊ 63	咗	
AAY30	－ 13	ASY2］	\％ 5	8 C 67	0 17
AAY32	－13	ASZis	$1 \cdot 23$	BC． 170	$0 \cdot 4{ }^{\circ}$
AACi3	－ 2	ASZ1a	1.2	$\square{ }^{\text {B }}+5$	$0 \cdot 1{ }^{\prime \prime}$
AZ15	－ 31	AS217	125	BCl^{172}	－19＊
AZ1	－ 25	AS220	－ 75	BCis	615
AC407	075	ASZ21	15	8 Cl 7	48
${ }_{\text {ACl }} 125$	－ 36	Alsic	1－79＊	8 C 978	013
AC528	025	AU113	$170{ }^{\circ}$	$8 \mathrm{Cl79}$	0 碞
AC127	－ 25	AปY10	9．76＊	EC5 ${ }^{\text {c }}$	－ 11°
AC12	0．25	8 8145	－45	8Cf8	－11＊
ACs6	－ 20	GA14：	$0 \cdot 110$	BC $\$ 8$	－ 122°
AC14iK	－ 35	8A154		8 C 2	$0.14{ }^{\prime \prime}$
AC42	0.20	BA15	－ 62	BC21	d $14{ }^{*}$
Ct42	－ 30	BA156	$0 \cdot 13$	8 C 21	＋97＊
A 478	－ 23	BAW62	$0 \cdot 6$	BC837	－ $17{ }^{*}$
ACtar	－ 25	BAX13	$0 \cdot 1$	$8 \mathrm{Cza3}$	$0 \cdot 12^{\prime \prime}$
C\％789	－ 23	EAX16	． 67	8 C 301	048
Acys	－ 0 －	C107	12	3C303	0 （t）
${ }_{\text {A }}{ }^{\text {cris }}$	$0 \cdot 65$	8C109	42	8C30	－20
Y19	－ 5	Bcros	$0 \cdot 13$	BC3	－tc＊
CYa	$6 \cdot 4$	BC：13	－130	8 C 327	$0 \cdot 22^{\circ}$
ACY21	＊ 65	EC314	¢ 1 1＊	日Ca28	0．11＊
ACYO	f． 55	BC115	－ 5 ¢	BC，337	0 11＂
AD849	¢ 76	BCtI5	418	日c3s8	0.410
ADtit	－75	BC117	－220	－CY30	1.0
ADIE2	－ 75	BCi18	6程	－	
AF	$0 \cdot 45$	BC125	－64＊	－CY32	．
AF154	－ 2	EC125	6 25	㫙33	＊ 0
AF1s5	－ 25	日C135	0 13	日CY34	36
AF188	4.25	BCIS	（t）＊	日č30	1.0
AF177	－ 25	$8 \mathrm{BC137}$	0 ta＊	BCY40	123
AF13\％	6.40	BC147	－19	BCY42	－ 30
AF186	1－30	ectis	（10＊	BCr43	－ 32
AF239	4	dic149	0．13＊	\％CYss	$0 \cdot 23$
AFZ11	2.75	8C157	6 E2＊	ECYT0	－ 1
AFZ12	275	${ }_{4} \mathbf{C 1 5 9}$	6．11＊	8 CY7	

VALVES

				$\begin{aligned} & \text { EHNO } \\ & \text { ELS3 } \\ & \text { ELS3 } \end{aligned}$	$\begin{aligned} & 0.780 \\ & 180 \\ & 1.80 \end{aligned}$
A231	1－10＊	ECCB3 \dagger	－55＊	ELG	－24＂
C9L31	156	ECCBa	650	EL42	f $75 *$
cess	\％＊＊	\＆ccast	－55＊	E¢81	
CV31	\％－0．	ECCsi	－75	ELa4 4	${ }^{4} 4{ }^{*}$
DaF81t	＊ $40 *$	ECCO1t	© 55^{*}	Etst \dagger	0 58＂
DAF96	1．6＂	Ecctas	4．00＇	Elst	2－Es＊
DFitt	40＊	ECFB0］	－60＂	ELSSt	－ 0^{6}
DF6	8－40	ECFE2 \dagger	－${ }^{40}$	EL3300	2－75＊
DKEt	－${ }^{\text {E }}$	ECH35	200°	EMEO	1．14＊
OKP2	1．25	ECH42	43＂	EM64	1－98＊
OKP	1．10＊	ECHE1	－ $56{ }^{\circ}$	EMS4	1 時
DL92	－．75＊	\＆CHB3	－${ }^{\text {ct }}$	EMA5	＋25＂
DL94	$480{ }^{18}$	ECHRO	6．65＂	EMa7	1．59＊＊
DL98	$810{ }^{4}$	EClset	－ $68{ }^{\circ}$	ENP94	4． 55
DYgot \dagger	$84{ }^{*}$	ECLİ	－ 35	EY54\％	－ $78{ }^{4}$
DY802	－19＊	ECL63	$158{ }^{\circ}$	EYgBt	00°
EBSCCt	100	ECLBO	0．65＊	E240	1．25＊
EABCa		ECLL80	7．${ }^{\circ}{ }^{\circ}$	E241	124
EACil	8．56	EF37A \dagger	${ }^{3} 60^{\circ}$	EZ801	－
EAF62	（t3＊	EF3\％	5．680	Ezast	－37
EAFP01	\＆ 75°	EFto	1 15＊	E290，	－4．
E841	175	EFG	$1{ }^{18}{ }^{\circ}$	GZ32	－75：
E891	－ 3 －30＊	EF62	2．0\％	G233	4．0＊＊
Ebc33	1．75＊	EF50	－${ }^{\text {ct }}$	G234 \dagger	152
EBC4	125	EF80	6．45＂	KT81	3－40＊
EBCA	$11{ }^{\circ}{ }^{\circ}$	Efs3	\％．74＊	KT\％	180
ERCtG	－65	EFES	$0{ }^{58}$	KT88	4 3
E8F80	－ 45°	EFF\％	［45＊	KTWS1	175
EBF83	125	EFt9	\％${ }^{6}$	KTW：2	
E8Fag	4.40°	EFIT	－ 55	KTW6	175°
EBL39	$250{ }^{\circ}$		－75＂	MU14	$1{ }^{1}$
ECC4	\＆ $25{ }^{\circ}$	EF99	I $25{ }^{\circ}$	N78	7－6＊
ECCSIt	－ 59	EF183 \dagger	－ 50	OA2 \dagger	45
ECCs2	643^{*}	EF184t	－56＂	$\mathrm{OE} 2+$	15

INTEGRATED CIRCUITS

7800	\％－20	7412	$4{ }^{4}$	${ }_{4} 832$	034
7401	$0 \cdot 8$	7413	0.45	7433	037
7402	4	3416	－ 4	7637	－42
7463	1.20	7417	－ 40	J438	$0 \cdot 37$
7404	43	7420	6.20	7440	022
7405	423	3422	$0 \cdot 25$	T414AN	0 －
7400	－ 55	1423－	6.35	74d2	－ 74
7427	－5s	3425	－ 35	7447AN	12
7408	＋ 2	7427	－ 35	745）	62
7409	－ 4	3428	－5	7451	－ 20
7410	－ 20	7430	\％ 20	7453	－ 31

Syerte
3ZY
Serte

	0
	0
	0
0	
	0
	0

$2 \mathrm{~N}_{3} \mathrm{O}$
2 N 34
2 N 34
N3055

62AV
150 A

BASES	CRT			${ }_{25}^{25}$			
MG7 unalited ${ }^{\text {Prgit }}$	${ }_{\text {14P3：}}$	${ }^{31}$	（1EP11	25．00		3 BP1 TUB	ILABLE
B8A unixiled ${ }^{\text {B9A }}$	－	\％	${ }_{\text {sctio }}$	5	Tubs Bates 675	FRO	
	${ }^{\text {3PP，}}$	${ }^{5}$	${ }_{\text {ScPISA }}$			SUITABLE	
Nowitar	cickio	\％		5360		SUITABLE FO	PROJECT
		\％				58．00 each．Bas	ostage 75p
	ces．	40\％80					
		\％5\％${ }^{\text {\％}}$	$\mathrm{VCRI7}$ $\mathrm{VCR} \mathrm{Cl}_{3}$.				
Temp of businges：CWO，postags and paching yniver and aemiconducton 25ρ per order，CRTE T5p．Heme marked＂add 124\％ QUOTATIONS FOR ANY TYPE NOT HFTED BAE． Telephone 01－677 2424 Telex 945708							

A．Marshal！（London）Ltd，Dept：PW London：40－42 Cricklewood Broadway，NW2 3ET Tel：01－452 0161 Tetex： 21492 \＆ 325 Edgware Road，W2 Tel；0i－723 4242．Glaegow： 85 West Regent Str，G2 2QD Tel：041－332 4133．Bristol： 1 Straits Parade，Fishponds Road，BS16 2LX Tel： 027265420

IMRTIPLSS

TRAMPUS CLECTRONICB LTO，SA：GROVE ROAD 4595．
 meking 20p．C．W．O．actid VAT to prices maked gyn othera 12t\％．Frie price inst of our ull range send addressed envelope．Quote ihis Ad．ate prites may charite．Ali devleen to maxary apechicar tur
FULL SPEE PAKS E1
PRK A： 12 red L．FDs
$\mathrm{C}: 4 \times 2 \mathrm{~N} 3055 \mathrm{TO}$
PAK Di $12 \times$ BCiO PAK G； $7 \times$ BEYET
 N： $4 \times$ palr $2 A$ anpwiPNP FAK N： $0 \times$ OAalig PAK P： $20 \times$ P／BCt0 PKK 日： $14 \times$ BC107 PKK 8：14 X BC10 V：50×5mid 10 y $\mathrm{X}: 4 \times 355 \mathrm{~T}$ mer Z： $20 \times$ PNP 7062 Typo
stock product．

$Y: 4 \times L M 301 / 14 P$
$1 A 50 Y S C R$

NEW PACK O： 50×200 mid E1 NEW PACK O： $50 \times 220 \mathrm{mfd}$ E 30 DEVELOPMENT PARCELS A！ 55. 5 ET 1： $250 \times 50 \mathrm{Y}$ caramics $6 \% 10$ esch
 8ET II Elactrolytite zav 10 each $1 / 2 / 7 / 10$ $100 / 220 / 500 / 5000 \mathrm{uf}$
SET A；＋Watt 5\％CF realatora 10 each 10 E 81TT\＄：Zeners SYV to $33 V$（100 ofi
SET \＄：Presets PR VERT 100 mixed

 Eome taxaling makes availabit，VAT fnwices iseued on request
 Tungaram，ote．）．\％\％Alrow

DYEOT	32p	－			$\underline{1}$	PCF602	（	P181	－	U9F06	－
OY\％${ }^{\text {a }}$	52 p	EF09	5 sp	${ }^{P}$	真p	PCFEOS	Ex．	PL81a	${ }^{4} \mathrm{p}$	U日F6s	p
ECCM	53p	EF183	59	PC	73 p	PCFE00	7 F	PLS3	stop	UCCEs	
ECCS	55	E134	5 F		72 p	PCF\％	Y\％	P¢䍃	50 p	UCHES	\＄p
Ecces		H 400	60	PC900	55 p	PCLa	\％	PLS00		UCten	
ECCOS	50 p	E－61	90 p	PCCS	350	PCLs	75	PL504	A． 01	UClas	
ECH｜	400	L84		PCC85	sp	PCLA	p	PL50		UFEO	
ECHO4	top	ELios	E2．70	PCCB	Tip	PĆLs		PLH0	C） 0	U14	
ECt90	590	EM84	70p	PCC189	55p	PCLSO5		PL10	ca．${ }^{\text {ctid }}$	U184	d
ECLa	55 p	EYBe／7	490	PCFso	750	PCLE	70p	Pus02	28．00	UY41	3
ECL\％	70 d	EYS00A	2150	PCF88	40p	PCL200	\＄4．49	PY85	690	UYas	59
EFbo	410	Ez89	420	PCFP00	11.40	P0500	81.0	Proie	409	U25	50 p
EF85	459	E281	4 C	PCFFoi	52 p	PFL200	10p	PY80，	4p｜	U28	0 p

We ofter retum of moti tervite．CWO ONLY，No C．O．D．MANY OTHERS

AVY OTLABLE

 MAX 75p．LISTS AND ENQUIRIES，S．A．E．PLEASE

ALL PRICES INCLUDE YAT（6）173K
ENOUIRIES wELCOMED FRON TRADE and RETAIL（mme pries）

				WE ARE ONLY A PHONE CALL AWAY	
				0	4675
WEST LONDON＇S LARGEST RETALL ELECTRONIC COMPONENT STOCKISTS					
FOR		FOR		FOR	
RESISTORS	POLYESTER	FUSES	HARDWARE	TRANSISTORS	CHOKES
INCLUDING METALFILM	POLY－	TRANSISTOR	KNOBS	DIODES	FORMERS
METAL OXIDE	POLYSTYRENE	PADS	CASES	THYRISTORS	FERRITES
CARBON FILM WIRE WOUND	SILVER MICA	TRANSISTOR	SLEEVING	TTL CMOS	RELAYS
POTENTIO．	TANTALUM	METERS	WIRE AND CABLE	LINEARIC＇s	TRANSFORMERS
METERS PRESETS	ELECTROLYTIC TUNING CAPS	MANY SURPLUS	VERO PRODUCTS	CRYSTALS	BULES \＆HOLDERS
CAPACITORS	TRIMMERS	BARGAINS	P．C．B．	$\begin{aligned} & \text { INDUCTO } \\ & \text { IF CANS } \end{aligned}$	LENSES \＆NEONS

EASY BUILO SDEAKER DIY KITS Specially designeo ty AT VC for cost conscious hi fi enthusicsts. the se kils meorporale two leak sumulate enclasures.
 tweeters and a pair ol matching srosisovers. Suppled complete with an easy to laflow EREDPAIR Inpul 15 walis ms . 30 wsuls pebk bech unt.

speakeas avarabie without cabinets. II 5 the units which we supply with the enclosuras illustrated
 twater. adid matching crossaver camponents. slefeo pair Power handing 15 wattsrms, 30 walls geak. $+\rho 8$ p $\{3.40$

COMPACY FOR TOP YALbe These inlinite balle Cutlosuras come to you ready mitred and protessionally finushed Each cabmet measuetes approx. per steree par $12^{*} \times \mathrm{g}^{-} \times \mathrm{S}^{\prime \prime}$ deep. and 15 in weod smulate. Complete with two 8^{\wedge} ((3ppran).) speakers for $\quad \mathbf{8} \mathbf{8}^{50}$ marimum pewer handling ol 7 waiss. 80 . $+p 8 \mathrm{~A} D[2.20$ SPEAKERS Two models Duollo. tsak veneer. 12 walls

 DEECA 20 WATTS STEREO SPEAKER sterea pair This matching loutspeaker syetem is hand made kıt comprisas at Iwo 8^{*} diamelet approx, base drive unur. with heazy die casil chassis laminated cones wrth rolled P V C sserrounds twa $3 j^{-}$drameter agprox. domed tweeters
 PERSONAL SHBPPERS
 AAK. FA. TUNERPC日 with Mullard L.P 1i85. Egis TOOK Multhara Yaricap tuming pals, 6 tot \quad I $\} 00$

MUSYC CEwTRE CABINET with hingwd smoke aevilc top, linimind in maturnil lagh vencears \$1ze ${ }^{50} 5^{\circ} \times 14^{*} \times 73^{\prime \prime}$ spprox.

AWH2

20×20 WAIT SIEGEO AMPLIFIER
Suparb Viscount IV unt in leak finished cabinet. Supatb Viscouni NV unt in teak finished cabinet,
Siluer tascia with aluminum rotary controls and f. 29^{90} Silver fascia with aluminium rotary controls and
gushbuttens, red mains indicator and stereo jark
C7 50 sochet. Ferction swich for mic. magnetic and ciystal gick ups, tape, tuner, and auxliary Reat panel fealures twa mains pulimis cin speaker and inpul sockels, plus fuse. $20+20$ walls rms. 40 + 40 walts pezk.
O 530 WATI AMPLIFEFR KIT
APECIAL OFFER : pacheoe price with $30 \times 30 \mathrm{k} 3 \mathrm{t}$ Spocialiy daz[gned by RT VC far libe experienced consituctor tomplefe in overy dotali. sumg ischines as 2 GOODMANS COMPACT 12^{\star} Beis woofer wit cropped alder. 14,000 Gauta mepnell, 30 watt $~ \$ 4904$ R.M.S. handling $+31^{\prime \prime}$ approx. iweeters and $4 \mathbf{p}^{\circ} \mathrm{E4.00}$ crossovers
now avaltanle fully buill and lestod a $39^{\circ} \mathrm{p}$ a

ADB ON SIEREO CASSETTE TAPE CECK KIT/ \rightarrow

 Dasigned lor the ekparisiced of I Y man This kil comprises of a tape tanspoit mect lectronics with tos $y 1$ lectronics with winh 0 meters and Spertications Sensilivity Mec, Sperinications Sensinuwiy Mre. bs mi 2ax mas 400K DHMS Outpul 300 mV RM 5 pet shanal. IKHz 3 Digit. Resellable freguency qesponse $40 \mathrm{~Hz} \mathrm{KKH}_{2} \pm 6 \mathrm{6}$ Dach Motar S Wali OC with electronic soeed requiations Key Functions - Record. Rewind.

 tape leyel micleyal deck lavel PLUSINTKR DLEK FADER Por petfect gieduated change liom retord Inch No I to No. Z. or vice vers: Pre lade level control 70 watt 557 \{PFL\}leis YOU hear nerl disc before tading 100 wall peat

CHASSIS RECDYD GKRRAHODECN CCTOA E7踢 FLAYEA DECKS, flocom changer with cus.

patif 2.0 sterte cersmit cenindio. pa; f2.00 8SA MPEOTYPE Single play recoud dect 6459 less carliridge. o\& 1 fl 55 less carlindge. D \& p f 255 Cartinges 10 sult above Acos, magneticspereo C 455 Ceramic slerea 1195 BSR avtomatic record playel dech

$12^{\prime \prime} \times 15^{*}$
 -

SSA MP 60 type, complete with magnelic cartudge. $\mathbf{2 9}$
diamond stylus, and de duxe plitith and cover. o \& p 4.50

easy to build mecand player kit for the D-P.Y man who requines I unit at a budpal prics. compliting rasd assambled stera amp madule Gbrard auto mandal deci with rubing diwica cell 4 watis per channel, phonas sackel

You'll learn a lot from the free Heathkit catalogue.
 The Heathkil catalogue is packed with

NEW De-fuxe Coin-tracking Meta! Locator scores of top quality electronic kits. Educazkional, practical and fascinating items which you can build yourself.

Send for the catalogue now.
To Heath (Gloucester) Limited,
Department PW68,Bristol Road,
Gloucester, GL26EE.

Address

Please tick the literature you want and enclose the appropriate amount in postage stamps. Heathkit catalogue only \square (enclose 11 p to cover postage) 16 page computer brochure only \square (enclose 20p to cover postage and part cosis). N. B. If you are already on the Heathhit mailing list you will automatically receive a copy of the latest catalogue without having to use this cospon.

When you receive your catalogue you'll get details of this tree ofler worth approximately $£ 4.75$.

Soldering iron offer FREE

The world's biggest producers of electronic kits.

NEW De-luxe 12" CRT Ignition Analyser

There are Heathkt Electronics Centres at 233 Tottenham Court Road, London (01-6367349) and at Bristol Road, Gloucester (Gloucester 29451).

B．BAMBER ELECTRONICS Telephone：ELY（0353） 860185 （2 lines）Tuesday to Salurday

PLEASE ADD 8\％VAT UNLESS OTHERWISE STATED ARANGEOFDRAPERTOOLS FOR THE WLECTROMES ENTHUSSEET

OIAMONAL BEDEC日TTENS Bf F2．20
信ALL IDE CUTTLRE LIL Standord C4．in．Wy（with wire haiding davicis）es． 50. HIDQET OPEN ENDED SPANHER SET8

 Sel of 10 et 6
 Tach of $9,2,4,6$, ，BA Sizes in ples，Plug Tupa，Taper Jups 千 Amurlcan type tep wranth，
Eiz 2 sp,
BARGE ELECTROLYTIC PACKS．COR－ faln range of large electralytle capucitors， low and hiph voltage yygit）．
Sildar Switchen． 2 pola make and broak for can be uted as 1 ptte chenceover by IInking the two centra plne）， 4 for S0p．
HNEWRANOE OFQUALITV BOXES 4 ANSRUNANT CAGES：
Aluminlum 日oyez winh ilda．

Viny Coaled inetrument Cinsoz
Lopht elue tops sind plain lower secilone Vary ar
WB1

－	$8 \times 24 \times 2$	73p
W32	$0 \times 4 \times 1$	Lt． 35
WB3	$8 \times 5 \times 2$	C1 ${ }^{6}$
W84	$9 \times 81 \times 24$	c2 ${ }^{\text {c }}$
WB5	$11 \times 8 \times 3$	C2 2
W66	$15 \times 7 \times 3$	E．5
W3）	$12 \times 0 . \times 8$	C2＊
WB8s3	$8 \times 8 \times 37$	E2． 25

 240VInput． 15 Y at 300mA output．Et 50 anch． $240,220,150,0 \mathrm{~V}$ Input． 45 V at 500 mA oulput at－34 pach．

CABEW RAWAE OF APEAKEME A GTBAROMHPRICES． TELEFINKEN HIOHOUALITY GPEAK ERS， 3 ahm，\＆wati RMS． 9 I＇$^{\prime \prime}$ dit．Full rante
 TYPE Lz TRIA MOUEAR CORNE CABL－

 zenge tpaskera In parsilal to 100 V ，hine operation）． 2750 onch（or 2 for 214.003 ）
TYPE Miof celunc splakERE．Whlte platic fascia $10^{\prime \prime}$ equars，for recestempunting into celling；with E^{*} dib． 15 ohm fuli rande

 NET．Smart woodgsain Formica type fintby
with nyion irlife， $15^{\prime \prime}$ hldin $\times 14^{\prime \prime}$ wite $\times 7^{\prime \prime}$
deap ohim fult range epeeker $+100 V$ Ine lrans－

TYPE HTA HOTLL GPEAKER CADNET： Woed vaneered，较品 wide x bt high x tontrol ind 4 way + of awltch panela on lront．Very amarl，Contalnt a ohm $\boldsymbol{夕}^{* \prime} \times 3^{*}$ eliptleal apesker +100 V hine traneformer．

TYPE ENF FULL RAMOE BPIAKER， 10^{*}
 BFMCDNDUCTOHES
$8 \mathrm{Sx20}$（VHF Oet（Wule）．stor 5 pm ．
CClos melal cant tor 5oph pion BYES rambictofe， 4 for top．
PNP qudiotype TOs Transifore， 72 tor 23p AF152（UHF amplmixer）． 3 for EOp． $2 \mathrm{NB}_{3} 19$ Fot 3 for 00 P ．
日C148 स户⿵冂 BCisa PMP SILCON， 4 for Rep． ［N4149（IN914） 10 for 25^{2}

日CiDT（Metal can） 4 for SAp

SCRE 400 V at 3A，stud type， 2 for $2 t|t|$ TIPQoss Sillean PNP power trensiator，GOV at 15A，DO Watt：Fint pock type， 2 for E1－ 59
GERMAN
TATCE Cp mps by RCA RED LEDe（MIn，typs） 5 idy 7\％p．

PLEASE ADD $\%$ VAT UNLESS OTHERWISE STATED

 but no doda）complate
T2V CONTINENTHL TYPE PLUG－1M REAKB， 2 polo changbobver，top oneh． ases for
GLAKA BEAD FEEDTHROUON INEU
LATanz．Sodder－in type owarall dia． approx．Emm，Pack of approk．so lor 50p． DFE－CABT ALUMINIUN Boxits
Sond for Lateat Price Lithe，
PLASTIC PROJECT FOXES with acrew
 Type NAI npprox $3 \ln x 2 \neq 1 n x y+i n 45$ sach Tyo Nezapprox $31 n \times 24 \ln \times 1+\ln 55 p$ each Typencalaproxetinx VILVES（Brand NBw）70p esch or 2 for E1 20
TOStransistor linnulator sett， 10 tor Sop PIJGSAND BOCKETB N－Type Pluge 80 onm，top each， 3 for es－3t．
Pust Pluge（PTFE）brand new，parked wish coducbra，75p omch
\＄0239 Sockets（PTFE），brand new（ N hols ixing type），top each．
SOLDER BUCKERS（PIUngor typht．Stan－
 jozzits fop tach
NEW HARKBMAN RANOE OF BOLDER－ HG TRONG．

 BENCH SARD wih aprlige and aponge for Markaman Irone ezi 10.
Spara bits MTP（for 15 W ）SMp，MT5（for 25 W ）

fepz TEMPERATURE cONTROLLE： RRON．
Tamporsiure controlted Iren and PSU．©34＋ YAT（ 82 40）．
Type Cc aingle flat．Trpe K dauble fat fine
 MOS SPARES AVANLABIE
MULTICORE SOLPER

WELEER BOLDERINO IRONG
EXPCRT，Bulli－in－potilght Illuminateat rork．Prey cogper aoldiaring tlo．
 EXPERT 8OLDER GUN KIT（gpare blte， cans，bte．）EIS－00．

G LAROE RANGE OF CAPACTTOR
GYALLELBANT BRGGAN PRIGEB，色，ne．FOR insT．
MIXED COWPONENT PACKS，contaln－
 tokt．

A Ten Diglt punt button Intercom 1efeghore with handsat，finlahed in smari groy plantle． Extegaloment，but good condifion only
 SLECTRONICG BOOKS IN \＄TOCK． S．A．E．FORLST
VARICAP TUNER8 Mulfard tyat ELC1043！

EARGAN PACK OF LOW YOLTA ELECTROLYTEC EAPACITORO，Up to 50 V working，Seatronle Manufectura．Approx
100 ， $\mathrm{Si} \cdot \mathrm{FO}$ per path $+125 \%$ VAT．
We now atock Splraluy Tools for the elec－ trontic onihulinat．Scrowdrivara，Nut spurb ners，EA and Mstric ET205，pos rivet qunt

 Dubllife Elactrolyiles，50DOHF，5OV ESp each ITT Eioctrolytice， $68004 F, 28 \mathrm{~V}$ ，high gret bach． PLEABE ADD 121\％VAT TO ALL
TV PiUGS AND EOCKET8
TV Pludi（matal type）， 4 for stp． 4iof Fip．

Our new 1978 catalogue lists circuit boards for all your projects，from good old Veroboard through to specialised boards for ICs．And we＇ve got accessories，module systems，cases and boxes－ everything you need to give your equipment the quality you demand．Send $25 p$ to cover post and packing，and the catalogue＇s yours．

VERO ELECTRONICS LTD．RETAIL DEPT． Industrial Estate，Chandlers Ford，Hants．SO5 3ZR Telephone Chandlers Ford（04215\} 2956

BADID ExGHANGELTID．

 NEW ELECTRONIC MASTER KIT

 NEW ELECTRONIC MASTER KIT
 WITH SPECIAL V．H．F．TUNER MODULE TO CONSTRUCT．A completely Solderiess Electronic Construction Kir，with ready drilled Eakelice Panels，Nuts，Bolss，Wood 5 crews ecc．Also in the kiz：

 Transiators，Capacitors，Resistors，Focs，Switches，Wire，Sleeving，Knobs．Dials， $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Spaker Case，Crystal Earpiece，ecc．Also ready waund Coils and Ferrite Rod Aerial．These are the Projects you can build wirh the components supplied with the kis，rogether with comprehensive finstruction Manual Pictorial and Eircuit Diagrams．
PROjECTS：V．H F．Tuner Module $\&$ A，M．Tuner Module \star M．W．L W．Diode Radio \＆Six Transistor V．H．F．Earpince Radio \star One Transistor M．W．L．W．Radio \star ．Two Transistor Metronome with variable beat control t．Three Transiscor and Diode Radio M，W．L．W．大 Four Transistor Push Pull Amplifrer A Eight Transistor V．H．F．Loudspeaker Receiver 大 Variable A．F．Oscillacor Jiffy Mutitestar h Four Transistor and Diode M．W．L．W．Radio t A．F．R．F．Signal Injector 大 Five Transistor Push Pul Amplifier خh Sensitive Hearing Aid Amplifier 大 Three Transistor and Diode Short Wave Radio＊Signal Tracer 大 Threa Tran－ sistor Pusin Pull Amplifier＊One Transistor Class A Output Stase ro drive Loudspeaker $太$ Sensitive Tran－ sistor Pre－Amp 大 Transistor Testar 大 Sensitive Three Transistor Regenerazive Radio 大 Four ransistor M．W．L．W．and Diode Tuner 大 Five Transisror M．W．L．W．Trawler Band Aegenerative Radio k Five Transistor V．H．F．Tuner＊Three Transistar Code Practice Oscillator $*$ Five Transistor Regenerative Shore Wave Radio＊Four Transistor and twa Diades M．W．L．W．Loudspenker Radio

NEW ROAMER TEN MODEL R．K． 3

MULTIBAND V．H．F．AND A．M．RECEIVER．
13 TRANSISTORS AND SIX DIODES．Q UALITY 4＊ROUND LOUDSPEAKER．
WITH Muitiband V．H．F．section covering Mobiles，Aircraft，T．V．Sound，Pubic Service Band，Lotal V．H．F． Stations，etc，and Multiband A．M．section with Airspaced Tuning Capacitor for easier and accurate uning，covering M．W．I，M．W．2，L．W．Three Short Wave Bands S．W．d，S．W．2，S．W． 3 and Trawler Band Gititin ferrice Rod Aerial for Medium Wave，Long Wave and Trawlor Band，ecc．，Chrome Placed ection Teiescopic Aarial，anzled and rotatable for peak Short Wave and V．H．F，reception．Push－Pull output using 600mW Transistors．Gain，Wave－Change and Tone Controls．Plus two Slider Switehes． Powered by P．P．9－9 vole Battery．

ELECTRONIC

 CONSTRUCTION KIT

NEW

MODEL
R．K． 2
MW，LVf and Air Band Receiver． Edghe Transistor and Faur Diode 3^{*} Loudspesker Telancopie Acrial nternal Ferrite Rad Aerial．Complate

with Carrying Strap
and ready－drilied Panak and all
amponanes netessary for conseriction．A senkitiva
Aecenver with the additional fuxury of an Air Band section to
aick up Aircrafe fram many miles away．Full instruction Manual enablas trage by stagn conatruction
 Uses P．P．S and P．P． 3 Ning Volt gatterier．

V．H．F．AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placine it ty the atdo of x edio tunod to medium Wave or the VHF band and operating as hown in the instruction uppliad free with all parts
Usibi a retractable chrome plated teleseopis aerial，sain control，Y．H．F． uning capacitor，tran istor，atc．
All parts ineluding case nd plans
©4．95
Pin Pind

To：RADIO EXCHANGE LTD 6IA High Street，Bedford MK40 ISA Tel．： 023452367

REG NO．76B372
Calfers side entrance＂Lavalls＂Shop．
－Open［0－1，2，30－4．30 Mon．－Fri，9－12 Set．

I encloze C．．．．．．．．．．．．．．．．．．．．．．．．．．
\qquad
Addrexs ．．

Com－

pleste
parts in
cluding
construc－
tion plans
Total buildine
$49 \cdot 9 \%$
$+\mathrm{P} \& \mathrm{Pand}$

EDU－KIT MAJOR
COMPLETELY SOLDERLESS
ELECTRONIC CONSTRUCTION
BUALD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

E．V．6．PLUS

Bulld thia excitint Aaw denlgo．Now wleh 7 Transiatort end 4 dlodes．MW／LW
Powered by 9 V battery．Ferrite rod $=-=$ atrial．tuning condenser，volume control，and now whth Jin．loudspeaker．Atractive case with red
 All parss including Case and Pians．
Tocal 8uilding Costs $\mathbf{£ 6 . 9 5 + p a r a n d ~ l n e . 9 0 p}$
 Radia
－Simal Trucer
－Signal Iniecror
－Tranaistor Texter W Wranzistor Shore
NPN－PNP Electronic
4 Transistor Push Pull－ETactonis Noise Generatar
Amplifiter Senitiva Pre
Ampifier
－ 24 Retittort 21 Capacitors 10 Transistors $5^{* *} \times 3^{\mu}$ Loudapeaker －Earplecs Mica Baspbard 3 it2－way Cannectors 2 Vofume Controis

What did Flemming say to Edison about Antennas in 1912 ?

We're not sure, but we can be sure that they couldn't have been discussing the merits of the Joystick VFA (Variable Frequency Antenna, 5 - 30 Mhz). That had to come later. . . , so that now, you can have a versatile antenna system that acts as a ground plane right through the six lower amateur bands and on all frequencies In between. Short wave listener and transmitting amateur alike will benefit from a VFA-if you can't hear 'em, you can't work 'em.

SYSTEM "A"

£36.00
250 w. p.e.p. OR for the SWL.

SYSTEM "J"

£42.60
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
Atl Packages feature the World Record Joystick Aerial (System ' A '), wich Bft, feoder, ill necessary cables, matehing communication headghonss. Ditive seraricor our rizk. ASSEMBLED IN SECONDS AEG CASH SAViNes!
PACKAGE No. I
An above with R. 300 RX. \$AVE E17-28!
£210.55
PACKAGE No. 2
In offored with the FRG7 RX. SAVE eli-2I!
£195•00
PACKAGE No. 3
Here in a lower-price, hish-yuallty package featuring the LOWE SNX 30 . with bit the Partridice axtras. SAVE cid.2il
£177•00
RECEIVERS ONLY, inclusive delivery, ete
R. $\mathbf{3 0 0}$ £ $184.50 \quad$ FRG7 $£ 162.00 \quad$ SRX $30 £ 146.25$

All prises are correct at time of going to press and include VAT at $12+\%$ and earriage.

5, Partridge House, Prospect Road, Brozdstairs, CTIO-ILD. (Callers by appolntment).

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL . . .

The finest general-coverage synthesised communications receiver on the market

$£ 173.00$ in. var

Also avallable from us with special 2 m converter, all for just an extra $£ 15 \cdot 00$

夫

\star

AMATEUR RADIO EXCHANGE 2 Aorthfield Road, Ealing, London, W.I3. Tel: 01-579 53II

| Easy terms up to |
| :---: | :---: | :---: |
| 3 years | | Credit Card Sales |
| :---: |
| by Telephone |\quad| Closed all day |
| :---: |
| Wednesday |

Mini-priced breadboards for

maxi-sized projects.
Experimentor" low-cost solderless breadboards are the first in the world specially designed for $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIP's.
They clip together by an exclusive interlocking system in any configuration, (just like dominoes), so you arrange the breadboards to suit your circuit. not vice-versa.
They are precision moulded from durable, flame-retardant plastic, and featare alphanumeric coding for easy cırcuit building, and non-corrosive, pre-stressed nickel-silver alloy contactsreliable for well over 10,000 insertions.

 he e

EXCLUSIVE INTERLOCKING SYSTEM.

Contact resistance is a mere $0.4 \mathrm{~m} \Omega$ and interterminal capacitance is typically less than 5 pF . The Experimentor is usable to over 100 MHz .
Experimentor 600 and 650 models are ideal for RAM's ROM's and PROM's ($0.6^{\prime \prime}$ centre IC's) while the 300 and 350 models are for smaller DIP's ($0.3^{\prime \prime}$ centres). All four models, of course, also take all standard components, the $0.1^{\prime \prime}$ grid being compatible with transistors, diodes, LED's, capacitors, resistors, pots-in fact any component with lead sizes between 0.015^{*} and 0.032 ."

A useful quad bus strip (EXP4B) further

Model	Length ${ }^{\prime \prime}$	Whath ${ }^{\text {/ }}$	Centre channel ${ }^{\prime \prime}$	$\begin{aligned} & \text { 5-way } \\ & \text { tie points } \end{aligned}$	Bus	Price	All units are 0.330' deep.
ExP300	6.0	2.1	0.3	94(470)	2(80)	夝-29	Prices include VAT (8\%) and p \& p f
EXP350	3.6	2.1	0.3	$46(230)$	$2(40)$	cist	UK Orders.
EXP600	6.0	2.4	0.6	94(470)	$2(80)$	87-88	Add 5\% to alj orders cutside UK.
EXP650	3.6	2.4	0.6	46(230)	2(40)	¢4, 6	All prices and specifications correc
EXP4B	6.0	1.0	N/A	N/A	4(160)	今3+7t	at the time of going to press.

expands the versatility of the system for the MPU user.
Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the front with 4-40 flathead screws or from the rear with 6 - 32 self tapping screws.
But however you use them, Experimentor breadboards are the quickest and easiest way to build and test circuits.
If you're working on IC's, MPU's, memories,
displays or any other circuits, buy the breadboards that are designed for you.
Ring us (01-8900782) with your Access, Barclaycard or American Express numbi and your order will be in the post that ni Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogı
CONTMENIA SPECIALIES COKPCRATION

FANTASTIC SPEAKER OFFER 50 WAIT AMPLIFIER SACRIFICE
TWIN 12＂SPEAKER CABINET PLUS PAR I2＂SPEAKERS of Robust vibration－proof construction． Fitted profective corner pieces．Re－ movable Yyuair covered front with silycr effect trim．Sunken fack socket with escutcheon at the rear－wirting in
Pair $12^{-} 20 \mathrm{w}$ speakers for wint Pair 12 ${ }^{\text {20 }}$ ，front Wherie stocks last mounting in above supplicd to com－ supplied to com－
plete the 40 waat
untir for lead guitar
nTP A．
 model．

Solid state， 3 sep．controlted inputs plus Master control． Bass．Treble \＆Presence Controls．Vynide covered cab wint corner protectives．Valut 860 ．Terms：Dep． $27 \cdot 95$ \＆

FANE CRESGENDO／12
SUPER 100w SPKR． HALF PRICE WHILE STOCKS LAST MODEL 12L This is basically the 12A with the nddition Stale impedance when State imp
ordering

ALL RSC PRICES INCLUDE VAT

＊TWIN FULL SIZE BSR tumtabies with cueing device．
＊CARTRIDGES with Diamond Styh．
3 SEPARATE VOLUME CONTROLS for each turntable and Mte CONSOLEE
Terms：Deposit $\mathbf{1 3 0 \cdot 0 D}$ and 18 fortnightly gymss． $54 \cdot 80$
£169＇95 Also avallable 200 WATT SYSTEM $\mathbf{E 1 9 9 . 9 5}$ Carr．£4．75
TD1 1SBD CONSOLE Incorporating twin ESR type turntables \＆Sonotone or Acos Cartridges with diamond styli Separate Vol．conirols for each turnable． （i）TWIN TITABLE CONSOLE W PRE－AMMP，and POWER OUTPUT STAGES（2）\＆（3）PAIR 50 WATT LOUDSPEAKERS iñeluding $12^{\prime \prime}$ UNITS control．Black Vyntae covered Cobinct whit id． Or Dep 216.49 \＆ 18 f＇titly pymts． 86.75 （Totel it 137．99）

сагг．£3．50 ≤ 119.95
TD2S \＄TEREO VERSION OF ABOVE $\mathbf{\leq 1 2 5 . 0 0 ~ C a r t . ~} 83-00$

New Branches at
LEEDS，HANLEY and WOLVERHAMPTON

Brodeycard＊AccesA
PHORTE ORDRRS 4
 OARD NUYBER Accopited T01；OBAg ET7681．

MALL OROERS MUST NOT BE SENT TO SHOPS

OPEN ALL DAY SATS（s Day Weak）Prices correct at 17．3．78 E．\＆O．E．All icmas subjech to avallability GRADFDRD to North Farade（Clated Wed．）．Tel．2534\％HANLEY Stoke－on－Trent， 44 Piccadilly Toinena BIRMINGHAM 30j31 Gieat Wosters Abcade．（Clozed Wed．）Tel．021－236 3279 CARLIELE 8 Enolich Street（Closed Thurs．）．Tol． 3874 COVENTRY i7 Stelton Sa；，The Preechet．To．259B3 DEREY 97 SII．Petares Stroat（Closed Wed．） OARLINGTON（SA North pate（Closed Wed．）． DONCASTER 3 Queensgite，Waterdale Centre．
tbinautgen iof Lathian Rd（Cloaed Thurs）．Tel． 63009

HANLEY Stoke－on－Trent， 44 Piccadilly tok．qo7764 HULI 7 Whitelriarpale（Clognd Thurs．），Tef． 20505 ＊LEEDS $88-18$ County（Mece Toi． 54420
 LIVERPOOL TEMPORARIV INOPERAJIVE du＊to
 ＊MANCHESTER
e0A Oldham \＄treat（Closed Wed．）．Tel． 338278

MIPDLESEROUGH 103 Lnthorp Rd．（CI．Wed．）Tel． 247098 NEWCABTLE UPOH TYNE 59 Grelnger St，
NOTTINEHAM 10／1gA Market（Cloesed Wed）．Tel．81dei NOTTINGHAM 1gfisA Market Sireet SHEFFiELD is Exchange Strest（Clastid Mht．Eids．）．（Closed Thure．）．Tol．go7 YOLVERHAMPTOA ${ }_{\text {© Wulfun Way }}^{\text {Wiosee Thura }}$
דMUSICA2 INSTRUMENTS \＆ACCESSORIES in otoct MusicAl branchas．

J．BIRKETT

Radio Component Suppliers

25 The Strait，Lincoln LN2 1JF Tel：20761

ILLUMINATEO EOGEWISE SIGNAL LEVER METERS at $41 \cdot 33$ each 100－0．100uA TUNING METERS IF $\times 11^{\prime \prime} 2890 \mathrm{p}$ Each．
 （ 95 p Pap）．
AUDIRLE ALARM SYSTEM with Transistort and I．C．Mada for Car Seat Belks No Details at 7 Sp．
GENERAL PURPOSE C CHANNEL FETS with circuits 10 for 75 p． ITT CAPACITORS PNT－2R．1 $1 \mathrm{f} 100 \mathrm{v} . \mathrm{w}$ ，at 20p dox．
20 PHOTOTRANSISTORAND DARLINGTONSABorsed unteited for 11.
SMALL R．T．TELESCOPIC AERIALS for 40 p．
DUAL IODK LIN WIRE WOUND POTENTIOMETERS 2t 30 p ．
COMPRESSION TRIMMERS 10 pi ， 30 pf ， 50 pr ， 500 pt ， 1000 pi ．All at
MOS PRE－AMPLIFIER I．C．TYPE TAA 350 with circuic © 35 p ．
500 gC 407 Aog TRAN SISTORS Assorted untested for 57 p ．
100 MUL．LARD C280 CAPACITORS Assorsed for 57p．
6 LIFT TELESCOPIC AERIALS at 60p each
LARGE FLANGE SOLDER－IN FEED THRU＇S at 6 for $1 A_{p}$ ．
AUDIOILC．LM 380 with circhits at 80p．

200 ASSORTED 敦URESISTORS for 75 p ．
ERIE REDCAP G 5 P each．
TV．S．A．W．FILTERS Untested 3 for $3 \mathbf{S P}_{\text {p．}}$ ．
CLOCK P．C．BOARDS with Buzzer，Bribege Rectifier，Mercury Switch Transisters atc．No data Brand New © \＆1－
BAW62 HIGH SPEED DIODES \＆ 12 for 35p．
SURMINIATURE $4.70 f$ loy．w．TANTALUM CAPACITONS 5p e2． 6 for 25 p
is VHF BRANDED FETS Assorted ior fl ．
COIL FORMERS $3 / 16^{\prime \prime}$ dia．with core at 5 p en． 6 for 25p．
COIL FORMERS $3 / 16^{*}$ less core， 100 for 23.
AUPIOPRE－AMPLYFIER E．C．TAA 435 with circuik（3）43p．
2 GHI STRIPLINE NPN TRANSISTORS at El＊ach．
MCMURDO B PIN PLUG $\Leftrightarrow 20 \mathrm{P}, 8$ PIN SOCKET © 20 p ，COVEAS（4） ${ }^{15 \mathrm{~F}}$ ．
RCA VERSION OF BFY 90 TRANSISTORS \＆ $55 p$ each．
VERNITRON FM4 10.7 MHz CERAMIC FILTER＠SOp．
MULLARD ELECTROLYTICS $2240 \mathrm{ut} 40 \mathrm{v} . \mathrm{w}$ ．§ 40p， $4500 \mathrm{uf} 25 \mathrm{v}, \mathrm{w}$ ．，
 Please add 20 p for post and packing．unless otherwise stated．on UK ordern under $\mathbf{1 2}$ ．Overseas orders ar cosh，

BARGAIN PARCELS SAVE POUNDS

Hupe quantitiee of electronle componanta nust be clsared as apace requitere， 1000 a of
 capacitars．No 11 me to sort． ，
ponenta．No

Handy Facke

daluminlikm bpxas 9 保 $\times 44 \times 38 \mathrm{~mm}$ ldeal

100 minlature reed nwitchot ideal for
 x gole 12 volt teed retmy on poavi ct．45．
Wigh quality computar pande arnotkerest tn top prade componeniti \＄lan ci．75．10 lb
DE LUXE FIBRE GLAS8 PKIMTED CRMGIIT TTCHINE KITS
 \＃Jo lerfie chiorlde， 1 Dato atch ranfot penn， brame elcane，
 Detopen．50p．
It forrle chioride to mfl iptec．Eiten． 5 libe ferric chlarlde to mill apece． $\mathbf{i 5} 5$. Inatruction aheet 21p
Miniature malnit transformata，fully ghrouded，equV，In $0-0-8 \mathrm{~V}$ ot 100 mi out． lasd and plus on input and mort latide af oulout iop．
Eamirenducter Bargaln＊
100 naw \＆mafke 10 allicon and garmanium tran inior Including ECi48，EFig4，EC1H3， ttc． 83 35
200 new a merhed tranilator including
 100 mlxe diodes in 4448 eic．EA SN，
100 mixed diades fnciuding xentr，power and britute typtes ES 30.

Naw U．H．F．Ir minichtor TV turiers 4 push－ button hranes 50
Pardwere Packs bach containing 100 ＇a of itame includin＋BA nuty and bolto，Nyion， Selfotaping，Pyaldilye，＂p＂cilps，Cebtio clampe，Fuxe holderis．Splrit nuls otc． $t 1$ per pound．

Aluminium TV cons pluge io for $\mathbf{6 1} \cdot \mathrm{b}$ Minlature 5 K tog pote with sfo awlich 4 for 4.

DON＇T LET YOUR ENYANOMMENT DEHYORATE YOU OR YOUR POS． Cantrollow，Compact Hanernvil Humidity range of eontrol edjutahte ty $1^{\prime \prime}$ eplndic with fat．Cantect Rating 3．75A 920 VAC $7.5 \mathrm{~A} \mathrm{c}^{2} 120 \mathrm{VAC}$ ．Ideal Ior Greenhourem Centrally Haated Homer，Offices．ete． Bulld your own Humbdifars or Dathydration Now Minlalute FM Frontand No． 7 MHz ．F．or with Integral Tunine却组
8R T01 full mpet． 5 tor Cif－ Ct ．
TBA IROA Sippent
SN 75115N Et ach

Compentint Zargeina
 300 modern mixhd capa mott lypere ca 3 125 mixed realatore mostly \＄\＆ 2 wath．$\kappa 4$.
 100 inixed poiyestar cans as plate caps \＆it－ 6 ．
100 mired wirewounds est．78． 300 printed citeulit reblitori it th．
 100 Higl watiage resiators，wirewpund

Modigra Varileal Praseth with Ilotted Knobi，2200 $470 \mathrm{~K}, ~ 500 \mathrm{R}, 1 \mathrm{NEG}, 25$ for ini． 4 Packe $\%$ an 50.
Smatl 59 wirewarind Hofly，Convargence Preset with Xnas． 10 for Cl_{1} Mctarola 1 watt Audlo I．C．MFC 8019 complete with ctrcuili and date of－Ab each 100K Stargo Sllder Pot Modern，alim type \＄0p bach， 3 for 2 el．
Double Gand A．M．Tuntng Condapmare with Inteoral 100K pot．Far varteas luning or VHF as Uued in medetn Thorn muaic fentros．\＆1．

40p P ON ALL ABOVE ITEMS．SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY，DEPT PW 149A BROOKMILL ROAD，DEPTFORD，SE8
CALIERS BY APPOINTMENT ONLY

15－240 Watts！

Preamplifier

The HYB is a mono hybrld amplifier feptly aulted for all applicatione．All common Ingut

 E compatible with alt（LP，yower amplifieri and pawer etuppliss．To ade cangtruction and meunting a P．C．connecior la muppliad with wach pre－amptifier．
FitaTURE\＆：Complete pro－amplifier In ilingte pack－Hulti－lunction equalization－Low noleo Low distortion－High ovariona－Two simply tornbinuó for teterao．
 EPECIFCATIOME：
NPUTS．Magnetic Pickup SmV；Caramiç Fick－up 80 mV ；Tunar 100 mV ：Microphone 10 mV OUTprys．Tape foomvi finsin outpul scomvR．MS

DISTORTION，O 1% at 1hHz，SInal／Folme Ratlo $68 d B$.
Fige E5－2 + \＄5p VAT PAP fresi．

15 Watts into 8Ω
 clrcuit and therimal protecticn．Tha kit conslett of l．C．，heatilink，P．C．board， 4 fitistars， ctpatiofs，mounting hit，together with eaty to follaw constritetion and opernting Insifuetione． Thie amplifier Is ldeally tulted to the beginner in tudlo who withes to une the most upto－dite
FEATURES：Complete KIR－Low Dlatortion－Short，Opan end Thermal Protection－Eany to Bulid．
APplichtiong：Updeting audlo aquipment－Guitar pratica amplifer－Teat amplifer一 ado otellator．
OUTPUY POWER 1BW R，M．S．into BQ：DI5TORTION 0．1\％a1 1．5W
SUPUT \＆ENSITIVITY KOOnV．FREOUENCY RESPONSE 10Hz－10hHz－sdB．
UPPLY VOLTAGE 4 IVV．

The HYEC fonde I．L．P．＇e total Integration approsich to powar amplifior dealgn．The amplifior
 pait threa yoara the mimplifier has betn rofnad to the extent thet it must bi one of the most tolabit and robuat High Fidelify modulas in ins Warid．
 Mintorn－No external eomponente
AFPLICATION：Madum Powhr Hi－Fl byuteme－Low power dieco－Gultar amplifter
 GithHz
SUPPLY YOLTAGE ± 5 SEZE $105 \$ 025 \mathrm{~mm}$

Price AH－42＋asp VAT PAPfret

The HY120 If the baby af I．L．p．＇e new hich power range．Destigned to mate the mont aracting
 madular depign．

－PECIFICATIONA
OUTPUY＇POWER GOW FMS Into ED LOAD IMPEDANEE 4－14Q DISTORTION 0.04% 日1 80W SIGfALINOISE RATIO＠OAR FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$－3AB SUPPLY VOLTAGE S！SEV 14450 05mm
Prici $\mathbf{6 1 5}-4$＋ 81 n VAT PAP free．
The HYroo naw imprevad to glve an output of 120 Watta has been dealgned to atind the moat rugged cenditions sueh as dłaco or graup willa atill ratalning true hlufl pertormanct． FEATURES：Thermul shutdown－Vory low diatertion－Lead \｜ne aroloction－hntegral heateink －No ortornal componanta
 GPECIFICATIOMR
OUTPUT POWER 180W RMS Into BD LOAD SHPEDANCE 4－80 D DISTORTION 0．05\％at 100W SIGNAL／NCISE RATIQ gadB FREQUENCY RESPONSE 10Hz－45HHz－3dB SUPPLY YOLTAGE SKIZE 154 50 BEMm

 for hlah power diaco addreen spolcationa．If the ampliter is io be uted at continuour hiph po the famlly to lend the merket as drue high power hl－ndelty power modul FERTHRE：Therms Bhutdown－Very low distortion－coed in orote

APPL두순

OUTF4T POWER 24OW RAS Into 40 LOAD IMPEDANCE 4－160 DISTORTION 01% bt k40W SISNAL NOTSE RAT\｛O O4 68 FREQUENCY RESPONSE $101 \mathrm{~Hz}-49 \mathrm{kHz}=3 \mathrm{~dB}$ SUPPLY VOLTAGE育㲘

I．L．P．ELECTRONIGS LTD．，CROSSLAND HOUSE，NAGKINGTON，CANTERBURY，KENT，GT4 7AD．

> I．L．P．ELEGTRONIGS LTD．， CROSSLAND HOUSE，NACKingTon， canterbury，KEnt，cta 7ad．

Please Supply
Total Purchase Pri
I Entlose Cheque D Postal Orders I］Money Order［］
Please debit my Access account i］Barclaycard account［］
Account number
Name and Address

High quality audio modules for Stereo and mono

GUTPGT POWER	T Watts RMS
LOAD IMPEDANCE	8 ohms．
TOTAL HARMONTCCISTORTEON	Leatetion 5%（Typically
FAEQUENCY RESPONSE	50 Hz to $20 \mathrm{hHiz} \pm 3 \mathrm{cEs}$
TONECONTROL RANGE	$\pm \pm 2 \mathrm{dBs}$ at 100 Hz and 10 hHz
SENSITIVITY	100 mVior tull output
INPMT EMPEDANCE	
TRANS FORMER REOUIREMENTS	20．V．A．C．rated at 1A
DIMENSIONS	$200 \mathrm{~mm} \times 130 \mathrm{~mm} \times 33 \mathrm{~mm}$

Tha Sterac 30 comprises a complete stereo pre－amplifas，power ampllifer，thid power aupply．This，with only the eddition

 mounting bracheta．

AL60 AUDIO AMPLIFIER MODULE 25 Watt 8 MS $+\mathbf{1 2} \%$ VAT	OUTPUT POWER SUP＂ply LOAD TMPEDANCE TOTAL HARMOONTC DISTCRTION EREOUENCY RESPONSE MAX．HEĀ̄ SUNK TEMPERATÜRE EIMENSTONS	25 Watte RM5 $30-50 \bar{V}$ $\bar{B} \overline{\mathrm{E}} \mathrm{C}$ ohm： $2 B 0 \mathrm{mV}$ for full output $00^{\circ} \mathrm{C}$
This high qually audio anplifler modulatis for use to 25 RHS with diatortion levets below 0．1\％．	a aquipment and atarec amplifit	d provides astput powers un

QUTPUT POWER
SUPPLY
LOADIMPEDANCE
TOTAL HARMONIC DISTORTION
SREQUENCY RESPONSE
SENSITVITY
MAX HEAT SINK TEWPERATURE
OIMENSIONS
35 Watte RMS
SUPPLY $40-60 \mathrm{~V}$
$8-18 \mathrm{hm}$
TOTAL HARMONIC DISTOFTION
SENSITVITY
OIMENSIONS
20 Hz to 30 kta （Typicaidy 260 mV for tull autput $260^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$

The Also ia almilar In design to the AL60 above and ta of the same hioh quatity bul provides outpul pawers up to 35W with distortion leveft helow 0.1%

This unti，dasignated AL250，is a powef amplifier proulding an oulgut of up to 125 W RMS，Into a 4 ofm load．

A3ids 10y	MAXIMUM SUPPLY VOLTAGE POWER OUTデラ゙ラ for 2% THD	30 V 10 Wntte RMS
Auplo R．zh．s．	TOTAL MARMONIC DISTORTION	Leas than 25%
AMPLIFIER	LOAD IMPEDANCE	$\frac{6-18 \text { ohm }}{100 \mathrm{Kohms}}$
MODULES	INPUT IMPEOANCE FRËQUENCY REXPONSE	roo K ahme
	9ENSITIVITY	75 mV lor full gutput
	प्1लENSIONS	$74 \mathrm{~mm} \times$ ¢ 0 mm $\times 8 \mathrm{mmm}$

SPMBO

SAD1：5EP
EA． 55 ＋18\％VAT

PNPUT A，C，VOLTAOt	S5－40V
OUTVU＇DE．VOL\＃A	S5V nominil
OUTP ${ }^{\text {\％CNMNT }}$	
	\％ 7 ambl mpras
万ा心	$108 \mathrm{~mm} \times \mathrm{Bimm}$ 30mm

 protection．

PA100

3TERED
PRE－AMPLIFIER

£15．80

$+12 \mathrm{P} \% \mathrm{FAT}$
$+12 \% \mathrm{~F}$

FREQUENCY AESPO	20 Hz to $90 \mathrm{hHz} \times 1 \mathrm{~dB}$ 	
TOTAL HARMONR DISTO		
SENSITIVITY inputs TAPE g．RADIO TUNER	$\$ 0 \mathrm{mV} 100 \mathrm{~K}$ ohma $100 \mathrm{~m} / \mathrm{il} 10 \mathrm{~K} \mathrm{~K}$ ahme 3．mV／80 K ohme	$\begin{aligned} & \text { Forsm } \\ & \text { output } \end{aligned}$ P50
TQuillisation		
BASS CONTROL RANGE		
TREBLE COMTROL RANGEE	＋ $10-20 \mathrm{~d}_{\text {de }}$ at 15 kHz	
SIGNALINOISE RATIO	Botte：Ihin 65 dBE ［All Ingutio）	
INPUT OVERLOAD	Eettier than 26 dBe（All inputi）	
SUPPLY	201040 V	
DIMENSICNS	$300 \times 80 \times 33 \mathrm{~mm}$（lese	controlos

 ronulroment of atario ampitiors or audio
two fiforn for high and low frequmelen．

MPA30
 magnetic cartridge

 PRE－AMPLIEPEREnloy the quality of a
magneltc enrtridge with your
the MPA 30 which io s mith quality pre－
amplifier enabling magnetlc carifloges io to ueg whera lackitiot ekfat for the uss of caramic cartrideon only．

SENSITIVITY EOUALISATION
物期T MPEOANCE
SUPPLY
DIMENSFONS

PA12

STEREO

PRE－AMPLIFIER

The PAl2 Sterec Pre－

Amplliser chassis in desıgned snct recommended for une with in AL 20 P30 Audlo Amplifer Modulas recommended for une with the T638 Trangormes fatures toclude onfof wosumer lupply and the and Treble controls Complete with lspe outaul
FFEQUENCY RESPONSE $20 \mathrm{~Hz}-20 \mathrm{kHz}$ t -3 d 日） GASS CONTROL TREBLE CONTROL TNPUT HMPEDANCE INPUT SENSITIVITY $\quad-\frac{1 \mathrm{Meg}+\mathrm{ohm}}{300 \mathrm{mV}}$ CROBSTALK SIGNALINOISE RATIO OVERLOAD FACTOR TAPE Ö̈TPUTIMPEDANCE DTMENSIONS
3.5 mV for 100 mV otrput

Within ± 1 die from 20 Fixt to 20 kHz
50 K ohme
18 so $30 \mathrm{~V}-\mathrm{e}$－ rlth

PS12 POWER SUPPLY

Dasigned for ute with
with tranalormer T539． INPUT YOLTAGE OUTPUT VOLTAGE OUTPUT CURRENT SIZE

£1－30

GE 100 NINE CHANNEL

MONO－GRAPHIC EQUALIZER

Tha GEi0e has mina 1 octaye adjuatmonte ustag inteorated circuif actlve filtery，Boost and Cut limity aro $\pm 12 \mathrm{~dB}$ ．Max Voltape handing 2 V RMS，T．HD． 005% inpul impedence 100 K Output

 8034 POWER SUPPLY BOARD for GE100 t5－0－15 VOLT ES＇ 50 ＋ $12 \mathrm{t} \%$ VAT +25 p pitp

SIREN ALARM MODULE

American Policg veroamer pawarad from say 12 voll aupply isto
 and other securly gurgosen．Order No．Sts．No．BP124． Only EF－50＋$\%$ YAT $+25 p$ pAp

MA60 HI－FI AMPLIFIER KIT

Buld you own top quality amplifist，suro yourpaff pound．The
 $1 \times$ PA100 preamp， $1 \times$ SPM Iranat．giving 15 watte RMS pus chinnel gTEREO．Alf motiolit

TC60 KIT

A banultully datgned anuln T\＆AX WOOD vareater cablrot
 pot of parta incl，front a Geck Pande，Knoba，Cheitil Fuben，
 abmm

TRANSFORMERS

 Ofdat No 2034

DEPT，PW6，P．O．Box 6，Ware，Herts

EDITOR

Geofirey C. Arinold

ASSISTANT EDITOR
DIck Ganderton, C. Eng., MIERE ART EDITOR

Peter Metalli

TECHNICAL EDITOR

Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martln
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie
SECRETARIAL $\begin{gathered}\text { Sylvia Barrett } \\ \text { Debbie Chapman }\end{gathered}$
EDITORIAL OFFICES
Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER 01-261 6671 Roy Smlth
 CLASSIFIED ADVERTISEMENTS 01-2615762
 Colin R. Brown

ADVERTISEMENT OFFICES

King's Reach Tower, Stamford Street, London SE1 9LS

BINDERS

Binders, for elther the old or the new format, are $\mathbf{£ 2} 85$ and indexes are 45p (Inc VAT) and can be obtalned from the Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF. Remittances with overseas orders for binders should include 60p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-establlshment of a PW Back Numbers Service for our readers. In future back numbers dated from June 1977 onity will be avaifable from our Post Sales Department for 65 p , which Includes postage and packling. Cheques and Postal Orders should be made payable to IPC Magazines Ltd.
Send your orders to:- Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

IN a recent lecture entitled "Tomorrow's Broadcasting-The Technical Possibilities", Dr. Borls Townsend, head of the Engineering Information Service of the Independent Broadcasting Authority, highlighted some examples of the pitfalls in trying to forecast future developments in engineering. In 1924 for example, Campbell Swinton, talking to the RSGB, dismissed the topic of television (or as he called it then, seeing at a distance) as ". . . probably scarcely worth anybody's whlle to pursue". In more recent times, a well-known television engineer swore an affidavit to the FCC in America, that the shadow-mask colour display tube could not be mass-produced!

In making his forecasts, Dr. Townsend saw the biggest advances in broadcasting coming from the ever-widening use of sophisticated microcircuits. Their use in signal-processing circultry would allow good qually TV pictures to be produced from scenes with low lighting levels, and reproduced from small, cheap videotape recorders. The adoption of microprocessor-based control systems has already allowed the IBA to operate and maintain 400 transmitters with the same number of staff as were needed for only 40 transmitters some dozen years ago. The introduction of similar systems into studlos is also having far-reaching effects.
Sticking my own neck out, I foresee that the domestlc TV recelver itself is likely to undergo a change of use over the coming years. The growing popularity of TV games, such as the Tank Battle which we feature in this issue, is the first step in this process. The broadcast Teletext services, Oracle from the IBA and Ceefax from the BBC, are already established and hopefully we will soon see a reduction in the price of receivers fitfed with the necessary decoders. Also on the data front, the Post Office has recently announced that their Viewdata service is to be made available to the public from January 1979. All this will mean that the TV set will be used less as a source of broadcast entertainment and more as a source of information and participative entertainment. The adoption of microcircuits should also allow the domestic videotape recorder to be reduced in mechanical complexity and hence in cost, so that we may be able to view our favourite TV programmes when it suits us, rather than when the planners deem that we should.

Geoffrey C. Arnold

PLEASE NOTE-CORRESPONDENCE

We do not operate a Technical Query Service except on matters concerning constructional articles published In PW. We do not supply service sheets or Information on commercial radios, TV's or electronic equipment. All querles must be accompanfed by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.

Bally date

'The Northern Mobile Rally 1978', organised by the Otley Radio \& Electronics Society (G8JTD, G3XNO) is to be held at The Victoria Park Hall, Keighley on Sunday 21 May between 11,30 and 17.30 .
Talk in stations on 2 m f.m. S22 and 70 cm f.m. SUB. There will be trade stands, films for the children, bar, refreshments and many other attractions. Further details from:
J. E. Annakin, G8DFZ, Rally Manager, 25 Ashfield Place, Otley, W. Yorks LS21 3dN.

Revival '78

The Martlesham and 1pswich Radio Club and The Ipswich Area Civil Service Sports Association (I.A.C.S.S.A.) are again organising an outdoor event for the Radio Amateur and his family, to be held on Sunday, 14 May 1978, at the I,A.C.S.S.A. Sports Ground, Straight Road, Bucklesham (NGR TM 222 421). Special attractions include; A v.h f./u.h.f./s.h.f. aerial gain competition and demonstration, measurement of transmitter and recelver performance, bring and buy stands, Ad-hoc trading tables at $£ 1$ per hour for visitors and home-brew equipment competition.
The South Anglian Repeater Group, West Suffolk f.m. Group and Raynet
will be well represented and a 2 m (R3 S22, 70 cm) (RB4 SU8) and h.f. bands talk-in station will be in operation, probably using the call sign GB3 SWR. Further attractions include; Big name traders, demonstrations of Viewdata iv and microprocessor games, vintage wireless displays, raffle, pistol and archery ranges, flying display of radio controlled aircraf:, plus many other family entertainments.

The event will start at 11.00 am , admission 40p (accompanied children free). A licensed bar will be open from midday and there will be snacks, teas etc., throughout the day.

Further information can be obtained by sending a SAE to: C.P. Ransom G8LBS, 79 Camden Road, Ipswlch, Suffolk IP3 8JN.

Tirst shew

The Dept. of Electrical Engineering Science at the University of Essex is organising the 1st Essex Electronics Exhibition on 18/19 April 1978.
Admission is by free ticket issued by either the companies exhibiting or by the Department. Further details from:
E. P. Strudwick, Dept. Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester, Essex. Tel: 020644144 Ext. 2248.

Hi-Fi Seminar

Latest developments in turntables and pickups, amplifiers, loudspeakers, tuners and tape recorders will be reviewed in a one day seminar being organlsed by the Society of Electronic and Radia Technicians. Speakers include such famous names from the audio field as James Moir, James Linsley Hood, John Borwick, Angus McKenzie and Basil Lane. The lectures will be followed by demonstrations.

The seminar will be held at the Institute of Marine Engineers, Mark Lane, London EC3 on Wednesday, 7 June 1978, commencing at 10.00 am . Fees are £15 ($£ 10$ to SERT members) and this includes a copy of the papers, coffee, lunch and afternoon tea.

Further details from: SERT, 8-10 Charing Cross Road, London WC2H $0 H P$.

Can I help you!

Are you the secretary, arganiser or general dog's body of your local radio club or any other group whose functions may interest readers of PW. If so, let me know and I will endeavour to publicise your rally, get-fogether, whatever, through this column. Remember though, we compile the magazine some time ahead of publicacation day (e.g. this note was witten in mid-March), so, the earlier I can have details, the better.

Alan Martin

HIDIL IDIE

Radio 2 Tuner, July 1977
On $p 213, \mathrm{C} 7$ is incorrectly shown as $3 \cdot 3 \mathrm{pF}$. This should be $3 \cdot 3$ aF as shown in the components list.

"Shoot", August 1977

Certain errors in the circuit diagram on p. 283 have been noted. The PCB is correct, however. VR4'should be 22 k preset, and not $2 \cdot 2 \mathrm{k}$. Pin 14 of IC3A should be connected to +8 V line as should pin 14 of IC4A and pin 3 of IC2B. Pins $1,2,5,6$ and 7 of IC3C should be connected to OV line, as should pin 7 of IC4B. Under the heading "Connection" on p.282, it is claimed that the sync. output is taken from pin 16 of ICl of "Tele-Games" unit. This should read "pin 15".

IC of the Month, Sprague ULN-3006T Hall Effect

 Switch, March 1978 PW the second paragraphfollowing the heading "The Hall Effect", p. 845, and commencing "The current carricrs..." is somewhat ambiguous, and should read "The current carriers in the silicon (which may be electrons or "holes") are both deflected to one side of the material, depending upon direction of current flow and magnetic field, in accordance with Fleming's Left Hapd Rule."

"Multi-Range Test' Meters," Mareh 1978

Page 839, the paragraph commencing "The minimum measurable. . " should read:

The minimum total circuit resistance necessary, if full-scale deflection is not to be exceeded, is therefore 1500 ohms, This will be made up of the meter movement resistance plus a series current-limiting resistor, both of which are internal to the instrument. External readings are from zero upwards.

Experimenter's Corner, p. 910 April 1978. In the circuit diagram and text for "LED Light Display", the pnp transistors are incorrectly shown as ACl76 (npn). These should of course be AC128 in every case.

Construction

In general the construction is not critical and the prototype built by the author used plain Vero matrix board as shown in the photographs. However a complete set of p.c.bs is available and the various drawings show these and the associated component placements.

Leads from the front panel controls to the boards should be of screened wire, and the millivoltmeter circuit board should have a tinplate screen fitted around it as detailed in Fig. 8. It can be made from tinplate cut from a cocoa tin and is held in position by two paper clips soldered to it as shown. The better the screening of boards and components, the lower the final distortion measurement limit will be.

Initial Setting Up of the Meter

Set all pre-sets to halfway. After carefully checking that no mistakes have been made in the construction, switch on. At first the meter will swing about for a few moments and then settle down.

Allow about one minute before setting up the distortion meter as follows:-
Disconnect the bridge output lead to the millivolt meter attenuator and then connect an audio generator directly to the millivolt meter attenuator. (The point originally connected to the bridge.)

Set the output of the generator at 1 kHz to give full scale deflection of the meter with the millivolt meter range switch on the IV range, Switch to the 10 V range, meter should fall to 10% of full scale. If not, adjust the pre-set 3 for more feedback and repeat test. Only the minimum amount of feedback required to obtain a linear scale should be used. When the reading drops to 10% of full scale, pre-set 2 should be adjusted so that a 5 V input gives full scale on the 10 V range, and 0.5 V input gives full scale on the 1 V range, etc.
Switch millivolt meter attenuator back to 10 V range and transfer generator to the input socket. Reconnect output lead of bridge. Set/Read switch to Set. Adjust generator output for 10 V and distortion meter input attenuator to maximum. Adjust VR7 in bridge circuit for full scale on meter. (If your
generator does not have 10 V output, use 1 V and switch millivolt meter attenuator to IV range.)
Turn input attenuator to minimum. The residual reading on meter should be less than 0.4 mV on the lmV range with all screens etc., in place. The authors instrument has a residual noise 0.24 mV on the lmV range. This represents a 93 dB measuring range for signals above 10 V , i.e., down to $0 \cdot 003 \%$. Set generator to IV output at 1 kHz . Set distortion meter to IV range and adjust input attenuator for a convenient reading about two thirds of full scale. Switch generator to 1 V output at 100 kHz . Adjust trimmer TCl for the same reading on meter as before. This adjusts the frequency response of the meter for a flat response to 100 kHz .
Switch generator back to 1 kHz and set its output to 10 V (or 1 V if the higher output is not available).
After adjusting the input attenuator for full scale deflection, switch Read/Set switch to Read. Adjust bridge frequency and balance controls to obtain lowest possible reading on meter, reducing the voltage range switch as the meter readings reduce. The final lowest reading obtained is the Total Harmonic content of the Test Signal.

Operation

A typical set up is shown in Fig. 13. When measuring very low values of distortion, it is very important to avoid multiple earth connections. Only the amplifier under test should be earthed. The other test equipment must have its normal mains earth removed and connected only via its connecting lead to the earth of the amplifier. Care should be taken that all test equipment is safe and fitted with mains isolation transformers or battery operated. Multiple earths can cause very high distortion readings and could be very misleading.
Before commencing a measurement, connect your generator directly to the distortion meter and measure its distortion. The figure you get from this test will set the minimum distortion you can measure. This minimum should be restricted to at least twice the direct reading obtained if reasonable accuracy is to be maintained.
To make a measurement, adjust the input signal of the amplifier under test to provide the required

Inside view of the completed instrument showing the layout of the p.c.bs and the controls mounted on the front panel. The power supply is fitted to the cabinet base and is the only board not mounted onto the front panel
output into a dummy load. Set the distortion meter millivolt switch to a suitable voltage range. Adjust the input attenuator for full scale reading (100%). Switch to "Read" and null out the fundamental signal. As the optimum bridge balance is obtained, the millivolt meter range will have to be switched to the next lower range. Read off the distortion direct from the meter when no further reduction in level is possible. Note that the frequency and balance controls are interdependent.
With an oscilloscope connected to the socket provided on the distortion meter the harmonic content of the signal can be examined. A scope sensitivity of approximately $10 \mathrm{mV} / \mathrm{cm}$ is required. With inputs
below 10 V the minimum distortion readable will be reduced.
(Note: For inputs of less than 10V set the millivolt meter voltage switch to the range which will allow full scale deffection to be obtained. This range then becomes [for purpose of measurement] the 100% range and all other ranges move down by the same factor. For example, with IV input, switch meter to 1V range, this is then 100% distortion full scale, the $0 \cdot 1 \mathrm{~V}$ range becomes 10% full scale etc.)
For accurate measurements the limits are shown in Table 1. However measurements of distortion to lower levels can be made, but with decreasing accuracy-
Nearly all pre-amplifier and tape recorders have

This view shows the components and boards mounted onto the back of the front panel. This is the prototype unit using matrix boards instead of p.c.bs

Fig. 5 : Component placement drawing for the Bridge Circult p.c.b. (Board 1)

Fig. 7: Copper track layout for Board 3. Fig. 8: (Below) Component placement drawing for Eoard 3

Fig. 6 : Copper track layout for Board 1. Ready drilied boards for this instrument are available from Reader's PCB Services (See page 68)

Fig. B: Details of the tinplate screen for Board 2. The small bracket is soldered to the copper earth tracks at the top of Board 2

Fig. 10: Copper track layout for Board 2
Fig. 9: Component placement drawing for the Meter Circuit p.c.b. (Board 2). Note the small tinplate bracket soldered to the earth track

Component placement drawing for the Power Supply p.c.b. (Board 4)
outputs in excess of 1 V and power amplifiers of the hi-fi type will have more than 10 V output. So the t.h.d. meter should enable the hi-f amplifiers to be checked down to below 0.01% with reasonable
accuracy. Do not be surprised if your amplifier does not reach the lowest figures at the extremes of the audio band and do not maintain the highest frequency for longer than it takes to make a measurement.

Fig. 11 : Copper track Iayout for Board 4. A ready drilled set of boards for this instrument Is available from Reader's PCB Service (see page 88)

Fig. 12: Detalls of the components mounted difectly onto \mathbf{s}_{2} waler tags, The drawing hows the components openedzout fop clarty, they should be arranged along the ax ls of that owftch mectandsimin cylindrical fashion

Fig. 13: A typical set up for testing an audio amplifier using the Audio Distortion Meter

The following procedure is to assist the operator when using the distortion measuring meter for the first time. It is confined to measuring the distortion of a 1 kHz signal, and should help the operator to become familiar with the basic operation.

Minimum Input	Accurate Meaisurement
10 V	0.00%
1 V	0.6%
100 mV	1%
10 mV	10%
1 mV	-

Table 1.

The controls should be set as follows:Meter Range Switch on IV range.
Frequency Range Switch on range 3.
Filter
Set/Read switch on Set
Input Attenuator at Zero
All other controls Midway
Connect a sine wave signal of 1 kHz , IV RMS to the input socket. Advance the input attenuator until meter reads $1 V$, i.e., full scale. Switch the set/read switch to the read position and rotate the frequency dial for minimum reading on meter. Adjust balance control to reduce meter reading further. Switch the volt meter range switch to next lower range as the signal is reduced by adjustment of the frequency and balance controls.

When no further improvement (reductions) can be obtained the distortion can be read directly from the

Resistors

\pm W 5% metal oxide		
33Ω	1	R43
1008	3	R7, 49, 52
560Ω	1	R6
$1 \mathrm{k} \Omega$	1	R50
$1 \cdot 2 \mathrm{k}$ \%	1	R24
2-2kS	3	P5, 8, 23
2.7ks	1	R9
4.7kS	2	R10, 45
10h\%	9	R14, 15, $\ddagger 6,18,20,21,36,46,48$
12k5	3	FR3, 42, 51
22kS	2	R40, 53
$27 \mathrm{k} \Omega$	1	R41
$33 \mathrm{k} \Omega$	5	R26, 27, 28, 29, 30
39 k ת	1	f2
47kS	3	R1, 19, 24
f00ks	5	Rt1, \%2, 13, 25.47
150kS	1	R38
180kS	1	R17
$220 \mathrm{k} \Omega$	1	R22
270k』	1	R39
3304Ω	1	R44
470kS	1	R37

1 W 2\% metal oxide

1Ω	1	R35
10Ω	1	R34
100Ω	1	R33
$1 \mathrm{k} \Omega$	1	R32
10 ks 3	1	R31

Potentiometers

$\frac{1}{4}$ inch diameter spindles

100Ω	1	VR9
$1 k \Omega$ in.	2	VR2, 6
$10 k \Omega \operatorname{lin}$.	1	VR8
$10 k \Omega+10 k \Omega$ iin.	1	VR4,5
$20 k \Omega$ in.	1	VR3
$100 \mathrm{k} \Omega \log$.	1	VR1

Miniature horiz. skeleton preset
$100 \mathrm{k} \Omega$
1 VR7

Semiconductora
Diodes
OA202 $\quad 4 \quad$ D1, 2, 3, 4
IN4001 $4 \quad D 5,6,7,8$
BZYB8C24
D9

Transistors
BC433B 9
TR1, 2, 3, 4, 5, 6, 7, 8, 9

Capacitors

Polyester

2.2 nF	2	$\mathrm{C} 7,12$.
$0.01 \mu \mathrm{~F}$	2	$\mathrm{C} 6,11$
$0.047 \mu \mathrm{~F}$	2	$\mathrm{C} 5,10$
$0.1 \mu \mathrm{~F}$	1	C 25
$0.22 \mu \mathrm{~F}$	8	$\mathrm{C} 4,9,13,20,21,22,23,24$
$0.68 \mu \mathrm{~F}$	1	C 15
$1 \mu \mathrm{~F}$	2	$\mathrm{C} 3,8$

Electrolytic Printed circuit board mounting

$2 \cdot 2 \mu \mathrm{~F}$	63 V	3	$\mathrm{C} 14,18,27$
$10 \mu \mathrm{~F}$	63 V	6	$\mathrm{C} 2,16,17,28,29,31$
$100 \mu \mathrm{~F}$	63 V	1	C 30
$220 \mu \mathrm{~F}$	63 V	1	C
$470 \mu \mathrm{~F}$	63 V	1	C 33

Electrolytic Axial teads

$470 \mu \mathrm{~F}$	63 V	2	C 19.32
$1000 \mu \mathrm{~F}$	63 V	2.	C 26.34
$4700 \mu \mathrm{~F}$	25 V	1	C 35

Ceramic trimmer
$3-35 \mathrm{pF} \quad 1 \quad \mathrm{TCl}$

Switches

Min. foggle s.p.d.t.	1	S3
2p. 6w. midget wafer	2	$\mathrm{~S} 1,4$
2p. 6 w. minlature rotary switch	1	S 2
Mains switch assy to fit S mech.	1	S 5

Miscellaneous

Transformer 24V 20VA Miniature
Case RS 509 - 888
Printed circuit boards (Four in set) Readers PCB Service. 24 V Indicator lamp
Knobs Sifam collet fixing type 15 mm diameter
W151 wing knob (3)
Kt50 plain knob (3)
K151 plain knot with line pointer (2)
N150 nut covers (6)
C150 caps (8)
Figure dial for 15 mm knobs with pointer (3)
numbered 1-10(1)
Meter 1 mA f.s.d. $90 \times 74 \mathrm{~m}$ m approx.
BNC 50Ω sockets (2)
Tinplate sheet for screen (cut from used cocoa tin or similar)
PW Front panel overlay (Obtainable from PW Editorial Office)
meter and voltage switch.
That is, if initial full scale (100%) was IV and final reading was (say) 6 mV , then distortion is 0.6%. The low frequency filter can be switched in for measuring frequencies above 1 kHz if hum is affecting the measurement.

Other uses of the Meter

With the input attenuator at maximum, the meter can be used as a normal $A C$ millivoltmeter with full scale range of 10 and $1 \mathrm{~V}, 100,10$ and 1 mV . This would make it possible for example to measure the
output of a magnetic pick-up directly.
It can also be used for measuring Hum and Noise in an amplifier. By adjusting the input attenuator for full scale on a test signal from an amplifier and then removing the test signal and shorting the test amplifier input to earth. The meter will then indicate the residue Hum and Noise of the test amplifier, for example: if full scale was obtained on 10 V range with the test signal and then after removing it the reading was (say) 6 mV , this represents a ratio of 1666:1, approximately 64 dB .
Many other uses can be found and a few hours spent using the meter will be very rewarding. A REVIEW OF RECENT DEVELOPMENTS in general, the author does not have any more infornialion on prociucts thaty apmeats in the article

I spy Strangers

Some kind soul sent me a whole heap of papers from the recent International Solid State Circuits Conference and there seems to be some real goodies on the way (not available yet). One which took my eye is a single 14-pin dual-in-line package which houses a complete motion detector. It is intended for application in electronic toys. This little beasty can be made to keep an eye on a 2 ft , diameter area at 8 ft . The photodiode itself is actually integrated as part of the chip. An external loudspeaker is required and when connected up, the unit will emit a whooping noise whenever it senses motion within its "sight" area. It carries on making this din for a set period of time, then it goes back to sleep and wails for the next "something" to move within its sighting area. It would seem to offer great possibilities as a burglar alarm, etc.

A further nice feature of this little i.c. is that it has another mode of operation. To change it to this you need only add a single connection.
In its new mode it will "search". It does this by flashing an external bulb at some 3 Hz . At the same time, it croaks out a random series of squeaks and grunts (the paper offers the more sophisticated description, "emits audible notes"). When the "thing" detects its own reflection it immediately sounds an alarm and simultaneously increases the bulb flashing rate to $25-30 \mathrm{~Hz}$. The chip uses two technologies; linear bipolar, and $1^{2} \mathrm{~L}$.

Hi-digi-fi

A recent report from Japan details feverish activity among audio equipment manufacturers-in the digital field. It is now virtually certain that the hi-fi systems of the future will be digital.
To date it seems that the only "standard" to emerge is a wide acceptance of a 30 cm disc as the norm. Interestingly, though, the early professional systems will use tape before moving over to disc, and it is expected that the consumer scene will also follow this pattern.
But don'f get too enthusiastic about digital audio. The world concensus of opinion is that it will be some four years before professional digital audio
systems really catch on, and a further six years after that the consumer market will blossom. It could therefore be some ten years before you see these systems advertised. The main hold up will be price. Initially, systems will be expenslve and the first few years will be needed to gradually bring the prices down.

Why go digital anyway? It seems that analogue hi-fi has now gone about as far as it car, whereas digital is in its infancy. In terms of improvements digital technology has much to offer the audio buffs. To start with, frequency response and dynamic range are both independent of the characteristics of the tapes or discs used. it is also claimed that there is no crosstalk problem between channels. From all the specifications on systems that l've read, the responses are flat (very, very flat) right up to 20 kHz , and dynamic range, even at this early stage is well over 80 dB -some 20 dB better that most analogue systems I read about these days.

Another advantage of the digital approach is wow and flutter-there isn't any! This is because all the signals are retimed so accurately ©uring playback.

Various individual technologies are to be employed initially, including a laser/disc system. But the comforting thing is that despite the very different techniques, the final product, be it tape or disc is compatible in that one can convert material from tape to disc and vice versa.
Perhaps we'll all end up with a home computer to play our gramophone records on. Wonder what that dog, squinting down that trumpet/horn thinks about it all?

Useful Chips

Another chip which could be very useful for the home constructor (when it becomes available) is a new level detector i.c. Onto the chip the manufacturers have managed (somehow) to cram five comparators. a voltage regulator, five output driver fransistors, five scaling resistors and an input buffer stage with a high input impedance. By connecting five l.e.d.s (plus usual limiting resistors), each l.e.d. can be made to light as the input voltage increases in steps of 200 mV , i.e. for each 200 mV input,
the next l.e.d. illuminates. The opencollector outputs on the chip can handle currents up ta 80 mA and voltages up to 18 V . In practical terms this means versatility because the ratings allow not only l.e.d.s to be used as indicators, but also filament lamps. By using suitable circuitry, the device can be made to flash the first lamp or I.e.d. continuously when the input level falls below the 200 mV threshold level.

Charge!

Charge those c.c.d. (charge-coupled devices) are in the news again-well worth keeping an eye on. This time it's a Japanese company that is using c.c.d.s in an experimental colour television camera. Each of the three c.c.d. chips (one for each primary colour has an array of 111,192 separate little sensing elements in an area $10.3 \mathrm{~mm} \times 9.1 \mathrm{~mm}$. If small is beau iful, then these devices must be fantastic.
The colour television camera, when it comes on the market (probably late next year if all goes well) will come complete with zoom lens, built-in camera control circuitry, and electronic viewfinder, Price is set at around the $£ 500-£ 600$ matk. Weight will be less than 2 kg .

Programmer

Microprocessors are here to stay and many are available to home constructors. One of the problems is learning how to programme these clever little electronic beasties. An answer is offered by a German manufacturer. He's marketing a little "black box" which can be used in conjunction with a black and white TV receiver. The black box has a light pen and the TV receiver is used as both input and output terminal. The box comes with a 230 -page manual and costs around £280. For a further $£ 140$ (approximately) the purchaser can add a cassette control Interface for writing (and reading) memory data on standard, commercially avallable tape. The reading/writing rate is some 1 kilobyte in 90 seconds.

© 'purbeck'

Part 3

IAN HICKMAN

Having made up the Stabilisers board, check it over and mount it in the mainframe. Set all preset pots. to mid travel. The Raw Supplies have no current limit protection of course, so unless you feel 100% sure that everything is going to be all right, the following procedure is suggested.

Either run up the voltage between pins 9 and 5 to +17 V using a current limited lab. bench power supply or if one of these is not available, connect up the 0 V line between Boards I and 2, but connect the +17 V Raw supply from C19 to Board 2 pin 9 via a 330Ω resistor. Check that +5 V appears at pin 8 and that the voltage at pin 10 responds to varying VR202.
If so, all is well, though it may not be possible to set the output at pin 10 to +12 V until the 330Ω resistor is removed. The +17 V raw may now be wired in permanently and VR202 set to give +12 V at pin 10 . Similarly, check out the -6 V and -12 V stabilised outputs at pins 3 and 2 with the -17 V raw from C20 supplied to pin 1 via a 330Ω resistor, then wiring up and setting VR203 for -12 V at pin 2. Finally, connect the +300 V raw supply from Board 1 to pin 6 of Board 2 and check that +150 V appears at pin 7. Note that due to the absence of load current drawn from the +150 V stabilised supply the " +300 V Raw" will be nearer +360 V .

This completes the checking out of the instruments supplies and at this stage it is worth completing the mainframe and front panel wiring. Wiring confined to the front panel should be completed before offering it up to the mainframe and likewise, wiring of S1 and S2 should be completed before offering them up
to the front panel. Note that the probe power socket SKT10 is also used as a distribution point for the stabilised supplies to various controls on the front panel.

A ten way colour coded ribbon cable brings the supplies from the rear of the instrument, five of the leads terminating on SKT10 as detailed in Fig. 2 Front Panel Wiring. Further Iengths of ribbon cable, stripped down to the same five coloured leads distribute the stabilised supplies from SKT10 to the edge connector of Board 4 and thence to that of Board 3 . (Note that the pins of both edge connectors are numbered 1 to 36 working from the bottom upwards. As both Boards have the components facing outwards when plugged in, the edge contacts on the component face of the Board read from right to left for Board 3 and left to right for Board 4.) The remaining five wires in the 10 -way ribbon cable are used as follows: Black. 0 V from Board 1 pin 6 to common earth point at Board 3 edge connector.
Brown. Pins 1 and 2 of c.r.t. (cathode) to clockwise end of VR5 track.
Violet. Pin 5 of c.r.t. (anode 1) to wiper of VR6 (focus).
Grey. R18 and D1 (mounted on c.r.t. base) to wiper of VR5 (brilliance).
White. -800 V Stabilised from Board 1 pin 7 to anticlockwise end VR5 track.
The earthed pins on the edge connectors of Boards 3 and 4 are each individually wired direct to a 16 s.w.g. tinned copper wire running the length of the edge connector, at each end of which it is supported on a

KMOO4

Fig. 1: Power supply interwiring diagram and c.r.t. base connections. This drawing should be read in conjunction with Fig. 2 Front Panel wiring diagram. Please note that RV5 and RV6 should be read as VR5 and VR6
solder tag under the edge connector mounting screws.
Thus Board 4 ground plane, when plugged in, is earthed to the base of the mainframe via the edge connector mounting bracket and to the front panel via the 4BA pillar. Board 3 , whilst similarly earthed, picks up the Black wire from the ribbon cable, at a point on the $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. earthwire adjacent to the Input Low contact and from the same point an earthwire runs to the earth point on S3 and thence to a solder tag under SKT 1 mounting screw.
This earthing arrangement is essential to avoid instability, ensure a flat Y amplifier frequency response and avoid ringing on square waves.
When making the connections between the front parel and mainframe, lay the panel down in front of the mainframe as though it were hinged at its lower edge. (This is why Fig. 2 Front Panel Wiring has been drawn the way it has.) Dress the wires from

WARNING
 Extra care must be taken when working on any part of this instrument while power is switched on, 1100 volts can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket

the front panel along towards the "hinge" and thence off to their destinations. This will ensure that when the front panel is offered up and secured in position, there is adequate but not excessive lead length.
Having rechecked the wiring and removed the temporary link from Board 1 pin 6 to chassis, plug in briefly and check straight away that all the stabilised voltages are correct, indicating no shorts anywhere. Check that the slider of VR5 covers the range -750 V to -800 V approximately and that of VR6 -350 V to -600 V approximately. The c.r.t. base wiring can now be completed, except for C18 and the deflection plates.
In fact, the c.r.t. and mu-metal screen can now be fitted and a simple check carried out if desired. To do this, temporarily connect one end of a $47 \mathrm{k} \Omega$ resistor to +150 V stabilised and the other end via a $100 \mathrm{k} \Omega$ resistor to chassis.

Fig. 2: Front panel back wiring. This diagram has been drawn with the top edge of the fronf panel at the bottom so as to correspond with its orientation when placed on the bench for the purpose of wiring. Connecting wires from the front panel to other parts of the instrument should be long enough to allow the panel to be lowered to the bench in front of the mainframe. This makes for easier working conditions. Please note that potentiometers labelled RV1 to $\mathbf{5}$ should be read as VR1 to 5 and also that the $\mathbf{2 2 0 k} \Omega$ Focus potentiometer at the bottom righthand corner of the diagram labelled RV5 should be VR6. This drawing should be used with Fig. 1 the power supplies interwiring diagram
Resistors
（U＇nless otherwise specified $5 \% \%$ carbon film）

	R13 10k
R2 inoker	R14 5－6kS
R3 10M 10%	R15 680
R4 $1 \mathrm{MS} \mathrm{1} \mathrm{\%}$	R16 330kı2
R5 $910 \mathrm{k} \Omega 1 \%$	R17 j00k
Roi 1MA 1%	R18 foms 10%
27 TM＠ 1%	R19 688
R8．1 M 1%	R20 100 S
	f2\％ 1008
Rio $10 \mathrm{k} 51 \%$	R22 1008
R11 ths \％\％	R23 1002
	R24 1－2k ${ }^{\text {d }}$

Capacitors

C1 $0: 1 \mu \mathrm{~F} 350 \mathrm{~V}$
C13： $0-1 \mu$ F $1 \% 63 \mathrm{~V}$
C2 lopF Ceramic
C3 2－22pF
C4 2－22pF
C5 2－22pF
C6 2－22pF
C7 2－22pF
C8 $2-22 \beta F$
C9 $2 \cdot 22 \mathrm{pF}$
CiO．2－22pF
Cil $0 \cdot 14 \mathrm{~F} 350 \mathrm{~V}$
C12 $1 \mu \mathrm{~F} \% 6 \mathrm{~V}$
C14 10nF 9% 63V
C15 $1 \mathrm{nF} 1 \% 63 \mathrm{~V}$
Ci6 5－65pF．
C17．4．7 $\mu \mathrm{F}$ 100V
C18 0．1 2 F 1000 V
0192500 LF 25 V
$\mathrm{C} 20.2500 \mathrm{p} \boldsymbol{\mathrm { F }} 25 \mathrm{~V}$
C21 47pF Cerainic
C22 470pF Ceramic
C23 4：7nF met．film C24 47 mF met．film
Potentiometers
20% Mas $\frac{2}{2} W$ 交inch shafls
$\checkmark \mathrm{F} 125 \mathrm{~K} \boldsymbol{2}$
VR4． $1 \mathrm{k} \Omega$
VR2 $2 \cdot 2 \mathrm{k} \Omega$
VR5 47k
VR3 10kå
VRG $220 \mathrm{k} \Omega$
Hindúturs
${ }^{1} 1$ See Text
1．2 See Text
Diodes
Di． 1 N 4148

D2 Hi brightness lie．d．
Tansiormer
 7554 （Barrie Electronics）
Miscellaneous ：
Fi ldunch x dinchi A fuse and holder
Si Miniature s．picio．toggle switch
S2 Miniature push button n．o．
S3 2p 5w 2 wafer（Maka－switch）
\＄4 2p 6w 1 water．
＂\＄5 Miniature s．pnc．o．toggle switch
S6， 7 Miniaiture s．p．c．o．toggle switch
SKT1 BNC socket，round s0』（U心t094／U）
SKT2 4 mm sócket，black
SKT3 4 mm souket，biue
SKT4 4 m m socket，white
SKT5， 0.4 mm socket，green
SKT7 4 mm socket，yellow
SKTB， 9 4mm sucket，red
SKT10 5 pin DAN 180°（A）
CRT 3EP1 plus base
Case mouriting clips（verl）for C 19,20
Eage cannector 0 it inch pitch 36 way 2 off
Knubs Stiam 15 mm ，colfet fixing with nut covers and caps．
$\begin{array}{ll}\text { K150 p登in } & \text { 20f7 } \\ \text { K151 line pointer } & 4 \text { off } \\ \text { W151 wing and Ifne pointer } & 6 \text { off }\end{array}$

Connect all four deflection plates to the junction of the two resistors，i．e．approximately +100 V ．With VR5，VR6 and VR201 all set to midtravel，switch on and allow a few seconds for the tube heater to warm up．

Adjusting VR5 should produce a spot on the end of the tube and VR6 should enable it to be focused to a small diameter．If at either side of this setting it looks elliptical，wider or taller as VR6 is adjusted， VR201（astigmatism）should enable this to be cor－ rected．Mind where you put your hand when adjusting VR201，it＇s not far from the e．h．t．on Board I！It should be possible to focus the spot down to a pin－ point，provided the brilliance control is not advanced too far，though of course VR201 will need resetting when Boards 3 and 4 are fitted．
In fact Board 3，the Y amplifier is the next step and full details of this will be published in next month＇s instalment．

Several readers have enquired about the possi－ bilities of using alternative tubes for Purbeck． We cannot advise anyone as to the suitability of components other than those specified．Not only will the mechanical construction need alteration，but revised amplifiers and e．h．t． súpplies will also be required．

Introducing DIGITAL LOGIC

Beginning a primer in logic, which will cover gates, flip-flops and counters. characteristics of TTL and CMOS and design techniques.

A simple circuit design which provides an accurate 200 kHz output signal, phaselocked to the BBC's Droitwich transmitter, useful for calibration of receivers and digital frequency meters.

When one thinks of people in another part of the world, one usually imagines that their life style is almost identical to one's own. The fallacy of this concept is only obvious when one travels and is exposed to another way of life. Contrary to popular belief, radio amateurs are no different to other people and although the hobby is international, it takes on different forms in different countries. This article is an introduction to amateur radio in the United States of America.

The Transmitting Licence

It is much easier to become a radio amateur in the USA than in the UK. There are several classes of Licence, each having different examination standards and frequency privileges, as shown in the table. In general, Novices have to pass an examination in elementary theory and a 5 w.p.m. Morse test. The examination is administered by a radio amateur volunteer on behalf of the licensing authority (which in the USA, is the Federal Communications Commission).
The Novice licence is valid for two years and until recently was distinguished by the WN prefix. It allows its owner c.w. only privileges in the $10,15,40$ and 80 metre bands with a maximum power input of up to 250 watts.
The Technician class of licence requires slightly more technical knowledge than a Novice, and allows operating privileges similar to our Class B licence on segments of the 6 metre band and higher frequencies. The General, Advanced and Extra class licences are all allowed all-band, all-mode operation, but each class of licence (except Extra) is limited to segments of the band. The test for the General requires 13 w.p.m. c.w. and the test for the Extra requires 20 w.p.m. Increasing levels of technical knowledge are required for up-grading from one class to the next.

The licences are free and except for the Novice, are valid for five years. Separate mobile or TV licences are not required. The segments of the bands available to the different classes of licence are summarised in Fig. 1.
The band split between phone and c.w. is decided by the FCC for the amateurs, and not by the amateurs themselves as in most other parts of the world. In general the input power limits are 1 kW input d.c. or 2 kW input p.e.p. except on Top Band, which is segmented in both frequency and power depending on geographical location as shown in Fig. 2.

The HF Bands

Operation on the h.f. bands is very different to that in Europe. The vast majority of the stations appear to be using the full legal limit and beam antennas. Thus the bands are crowded with strong signals all originating from the states, and it is difficult to hear non-stateside signals at times. The USA is so large that in general, any foreign station is DX.
The bands are so crowded that if you want to work the states from outside, you should get up into the General parts of the bands when they are open to the USA. You may then be giving the stations you work, their first G contact. If they want your QSL they will probably offer to QSL direct and even send you IRCs. There are many more of them than there are Gs, so if they are not in a rare state such as Utah or Delaware, let them QSL first. If they want your card, they will. If you operate in the Extra or Advanced segments of the bands the chances are greater that you will be working someone for his umpteenth G contact.

The $3 \cdot 5 \mathrm{MHz}$ band is so wide $(3 \cdot 5-4 \cdot 0 \mathrm{MHz})$ that the c.w. part is called 80 metres, but the phone part is called 75 metres. At this point of the solar cycle, it

TABLE: US Amatour Radio Classes

cłasas	Morse Requirements	Techinical Knowledge Required	Dperating, Prififeges
Novice	5 w.p.m.	Hardly any	$\begin{aligned} & 10,45,40 \\ & \text { and } 80 \mathrm{~m} \text {. } \end{aligned}$
Technfician Genere!	$\begin{aligned} & 5 \text { w.p.rm. } \\ & \text { \$3 w,p,m. } \end{aligned}$	About RAE level About RAE leyel	6 m and higher All bands, some frequencles
Advanced	13 w.p.m.	A 班tlé more than RAE fevel	All bands, more frequencles
Extra	20 w.p.m.	As Advanced	All bands, all frequencies

offers cross continent contacts late at night. The 40 metre band has similar characteristics but is little used at night due to the vast amount of broadcast station interference. Sectors of the band allocated to broadcast stations in Europe are allocated to amateurs in the Americas and those broadcast stations come in loud and clear in the USA. The 20,15 and 10 metre bands are pretty much the same as in Europe, in terms of distance worked, but are generally without the language barrier, because the common language in the states is English (more or less). There is thus very very little incentive for the American amateur to learn a foreign language.

Traffic Handling

American radio amateurs have third-party traffic handling privileges. This means that they can pass messages for people other than radio amateurs. For example, a station in New York can contact a station in Los Angeles and ask that station to pass on a message to a non-amateur. He can even have him connect his radio to the telephone line via a phone patch and make a radiotelephone call, thus saving on his long distance telephone bill. There is a number of countries that have reciprocal agreements with the USA about third-party traffic; in other words they allow traffic to be passed between their country and the states. Thus on all bands one can hear a number of nets passing traffic messages. Once a year the American Radio Relay League (ARRL) organises a traffic handling contest (called Sweepstakes), in which the information exchanged simulates message traffic.

The VHF Bands

At v.h.f. there is no 4 metre band, but there are operating privileges at 50 MHz (6 metres) and 220 MHz (1_{4} metres). Six metres opens up to sporadic E much more often than 4 metres, and thus a lot of the activity is on c.w. and s.s.b. It has
properties very similar to 10 metres in terms of ground-wave communications capabilities, but DX is of course much more scarce on 6 than on 10 .

The 2 metre band is 4 MHz wide (144.148 MHz). The top two megahertz are filled with f.m. repeaters and simplex channels spaced 30 kHz apart. Small segments of localised s.s.b./c.w. activity exist close to 144 and 145 MHz , but in the main the lower two megahertz comprise the wide open spaces. At the time of writing, the FCC is proposing to open some of it up for repeaters. There is OSCAR-related activity at about 145.9 MHz . Thus apart from narrow and sparse areas of activity at 144,145 and $145 \cdot 9 \mathrm{MHz}$ the lower two megahertz is an uncharted wilderness at this time. Local s.s.b. or c.w. activity on a nationwide basis is rare.

In most big cities, tuming the low end of the band by day will be very unrewarding with little to be heard. Even in the evenings you would be lucky to hear more than three simultaneous contacts taking place in the low half of the band, but during a contest a tremendous number of stations suddenly crawl out of somewhere and fill up the one or two hundred kilohertz. However, in the major cities the f.m. channels will be crowded. In most big cities all the repeater channels between 146 and 147 MHz are in use as well as some of the 147.148 MHz ones. There is no f.m. calling channel as such, just find a repeater and use it seems to be the rule.

In the states, the pioneers on v.h.f. set up repeaters to extend the range of their converted taxicab f.m. mobile equipment. As newcomers came on the band, they found the repeaters in existence and joined in. If people did not like a particular machine they were free to build and use their own on an adjacent frequency. In some parts of the country there were even repeater "wars" over choice frequencies between two repeater groups, each trying to force the other group to change frequency (this was before the days of synthesisers, when everyone was crystal controlled). Eventually voluntary frequency control was established by area-wide organisations. In the main how-

Fig. 1: HF Frequency Assignments in the USA. Note that higher class licensees have privileges in lower class segments, the table shows the lowest class allowed in each segment

Fig. 2: Top Band frequency allocations in the USA
ever there have been few cases of deliberate interference with repeaters, because the newcomers to v.h.f., especially to 2 m , generally only used f.m. and soon learned the advantages of the extended range and continuous monitoring of the repeaters.
In the UK the situation is different, the bands were in use before the advent of the repeaters. Also the 2 m band is only two megahertz wide and everyone has to fit into it. Hopefully it will take just a short while for everyone to find out the advantages of repeaters and common sense will then prevail.

The 220 MHz band is similar in characteristics to 2 m . There is little in the way of s.s.b./c.w. commercial equipment for the band, and hence most of the activity is $\mathrm{f} . \mathrm{m}$. The same applies to 70 cm . Here, most of the activity is f.m. between 440 and 450 MHz , i.e. right at the top of the band, so that conversion of surplus equipment involves the minimum of changes. The 70 cm band is also used for remote control of lower band repeaters and for inter-repeater links. Activity on higher frequencies is at par with Europe, namely very rare and due to only a few individuals.

Using Repeaters

Many f.m. repeaters are connected to telephone lines. This allows for "auto patch" facilities, whereby amateurs can actually access the telephone network via the repeater and dial calls using the tones. They can report accidents to the police, call home and ask
the wife if they should stop off at the local.supermarket and pick up some groceries, or do as one radio amateur did over one of the local machines here in Washington DC; while sitting in the garden by the side of the pool, he used his walkie talkie equipped with a touch-tone pad to dial his house phone and ask his wife to bring him out another can of beer!
The number of repeaters is constantly growing. The ARRL publishes an annual directory that is free for the asking to members. The frequencies are based on a 600 kHz split with a spacing of 30 kHz between channels. They are known by the kilohertz values, i.e. a repeater on $146 \cdot 25 \mathrm{MHz}$ (in), $146 \cdot 85 \mathrm{MHz}$ (out) is commonly known as the $25 / 85$ machine. In the $146 / 147 \mathrm{MHz}$ region the input frequency is the lower one, whilst in the $147 / 148 \mathrm{MHz}$ region the reverse is true and the higher frequency is the input channel. This was carefully arranged this way so that receivers could be peaked up at 147 MHz and work with the whole range of channels. These frequencies are of course not allocated to the amateur radio service in Europe, and on my last trip to the UK, I found that some of the American repeater output channels that I had in my rig were in use by the police.

Apart from f.m. the majority of activity on 2 m and 70 cm seems to involve OSCAR. Project Oscar started the whole thing in California with the launch of the OSCAR I satellite in 1961, and AMSAT took over in 1969. The ARRL puts out a lot of free

MK14-the only low-cost keyboard-addressable microcomputer!

 MK14 Microcomputer kitThe MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit-for Jess than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training and. It's beendesigned forpracticalperformance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display * 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4 MHzcrystat
* 5 V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port/IO
* Edge connector access to all data lines and I/O ports

Free Manual

Every MK14 Microcomputer kit includes a free Training Manual. It contaıns

The new Science of Cambridge

-1) Wilmslow Audio
 THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST GATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

ATC - AUDAX - BAKER - BOWERS \& WILKINS - CASTLE CELESTION - CHARTWELL COLES - DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS - HELME - I.M.F. ISOPHON - JR JORDAN WATTS - KEF - LEAK - LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD - RAM - RICHARD ALLAN SEAS - TANNOY - VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO

(Dept. P.W.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

MAIL ORDER DEPT:-

CRESCENT RADIO LTD
 I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4S]
 TELEPHONE: 888-4474

5 ETDOWATT PSYCERDELIC LIOET

1000 WATT PER CHANNSL
Thiree chapoel: Bant, widdle, Treble. The lnpat of thle unit to cominected to the loudnpenter terminals of an ampliliter and the teatitred URhung is connecied to (he yout to produoe o insinntlog sound to Ifyt dieplay.
Fals lasiructions auppled or B.A.P. for dotilla.

LOUDEFEATER GELECTION $+121 \%$ VAT
$2)^{2}, 40 \mathrm{and} 75$ ohan at $\$ 1 \cdot 10$ Piease atate which trapedance la required) $\delta^{7 \%} 8$ ohti CRRAMIC at $\$ 170$
8 ' GOODMANB 'Audlom BPA' 8 ohnt 10" 'ELAc' Duad Cone B nhm 30 watt

POWER EDPPLY UNITS + R\% VAT

 PP1-galtched $3,41,6,71,9,12 \mathrm{at}$ Approx dive: $230 \times 53 \times 10 \mathrm{cman}$ ONLY
PP6--Eeary duty 12 volt poser nupply,
1.5 A At 12 volu DC. Approx, ulze: 156×90 1.5A At 12 yolt DC. Approx. ulze: 156×90

GAREAD TRANSTOREERS

240 v Drimary, $12.0-12 \mathrm{~V} 500 \mathrm{~mA}$ becondary. Approx raze; $60 \times 10 \times$ 60mm. Fislrg centres 75 mmm . PRICE: $81 \cdot B 0+8 \%$ VAT. 189500 mA sec. Prlce and bize atme es bbore.

KAGLE TRAWBYOREERA
LT4 Ministure diviver tranaformer
PREM. 20K R. BEC. 1KS.
LTran Minalare outyut
PRRICE: EITHER OF TEE ABOVE $21 \mathrm{p}+12 \mathrm{y}$ Y YAT.

MATES TRANSTORY最E

HTG 200 v PRTM. $6 / 0 / 6 \mathrm{~F} 100 \mathrm{~mA}$ 88C. $\mathrm{HP12} 240 \mathrm{~F} \mathrm{FIM}-22 / 0112 \mathrm{~V} 50 \mathrm{~mA} \mathrm{BEL}$ PRICE: MTE, MT32 21-17 + 8\% VAT.
 Iningerape
WimDIfas.
HT100. PRIM, 240v. BEC. $0 \sim 24 v, 0-24 v$

 PRICB: MT100, MT150, MT380 $68.62+8 \%$ VAT. 19ATS TRAEMEORMERS MT40. PR[M. 240v, BEC. 20/0/20n (a) 14. MT10, MTT5, HT20 100 voll tine
PRICE: MTIC, MTEB AR-E5 + 8% VAT. INPUTB OS THEAE: 8 or 16 OHMs. S.A.E. for detalle on thete or any of the
ghovt.
Fleate add 25D pst to all ordera for Eagle Tranniormers.

PHEZO ELFETRIO HORX UZITS 100 wath New Glekh quatity, High Power Twester, $3-\mathrm{BEHz}$ to 28 KHz . Byec. gheet seat on receipt of B.A.E. OUR PZICE: $\mathbf{8} 8 \cdot 50$ erch $+8 \%$ YAT.

A(CCEES AND BARCLAYCARD AOCEPTRD-PEONE ORDERS WELCOMED ALJ. PRICES IWCLGDE POETAGE UNLEEA OTHEBWISE 8TATED-PLEA8E ADD Y.A.T. AG BHOWN-B.A.E. WITH ALI, ENQUIRIEB PLEABE.
 and 13 80प5
educational stuff about the OSCAR satellite programme, which by-the-way is available to anyone worldwide, for the asking. Worked All States via OSCAR is just possible for Eastern stations and is well within the capabilities of anyone in the continental United States west of the Mississippi river.

Equipment

Salaries in the states are generally at between two and four times the level of the equivalent salary for the same job in the UK. Thus on a basis of hours worked, equipment is much cheaper over here. The large number of amateurs support a few manufacturers so that there is quite a variety of domestic gear available as well as the ubiquitous Japanese black boxes.

Parts for the homebrewer are also readily avail. able by "mail". Many suppliers advertise in the various magazines, and their wares can be ordered by post, or by telephone quoting credit card numbers.

Crystals for 2 m transceivers are available over the counter in most major cities and the prospective visitor can wait until he arrives in the USA to purchase the bulk of his crystals. If he is lucky the store may even have facilities for tuning the rig frequency. If you are interested in operating in the USA when visiting this country you can obtain detailed information from the RSGB, or write to the FCC, Washington DC, 20554 for an application form (Form 610A). Make sure that you send in your application at least three months before your trip, because it will take them that long to reply.

Listening and Viewing

The receiving side of the hobby is also somewhat different. The medium waves, f.m. and v.h.f. TV bands are filled in most major urban areas. Medium wave DX-ing is a little easier than in Europe, because most of the stations broadcast in English. Stations are spaced 10 kHz apart, which enables the intercontinental DX to creep in between the cracks. The majority of stations are east of the Mississippi. The FCC recognise the sky-wave effect at night and regulate the band occupancy such that many local stations are required to close down at local sunset. This allows clear-channel stations to be heard over continental distances at night. It is thus for example possible to drive through downtown Los Angeles in the evening, tune the car radio a little and listen to broadcasts from Denver, Oklahoma and Iowa, or to drive around in Washington DC and listen to stations in Montreal, Chicago and New Orleans.
The v.h.f. TV bands are also full in most cities with some additional channels in the u.h.f. bands in use. All transmissions in the Americas are 525 -line 30 -fields, thus there are no modifications necessary to the TV sets for their use in TV DX-ing. The f.m. band is 20 MHz wide in the range $88-108 \mathrm{MHz}$, with 88.92 MHz being reserved for public broadcasting stations. These stations, usually run by universities or local authorities, broadcast educational programmes, classical music and selected shows from the BBC ' (including the Goon Show) as opposed to the popular music or news churned out by the commercial stations. There are three major networks in the states that broadcast commercial programmes, and each city usually has a local outlet of each as well as one or more independent stations and the public station. This allocation applies to television as well as radio. Recent broadcasts on public televsion have included, I Claudius and Upstairs-Downstairs.

Many of the independent TV stations broadcast old films and TV shows including UFO, The Saint, The Prisoner, The Avengers and Danger Man. The f.m. stations usually broadcast in stereo. Both medium wave and f.m. stations usually churn out popular music, each specialising in a particular type, and there may be one or two stations that continually broadcast news. The u.h.f. TV band is relatively sparsely populated, its growth being curtailed by cable television systems.

Citizen's Band

Closely related to amateur radio is Citizen's Band Radio. The Citizen's Band is a small allocation of spectrum space at about 27 MHz . It seems to have been originally allocated for personal communications between a fixed base station and a mobile (so that for example, a husband could talk to his wife on the way home from work) or between mobiles, so that the drivers of two cars travelling together can communicate.

Licences are now available free for the asking, with no tests involved. Power input is limited to 5 watts d.c. a.m, and equipment is cheap. A fortychannel transceiver can be purchased for about $\$ 50$. There are estimated to be millions of CB stations in service, the majority of them being unlicensed.

Homo sapiens is a creature of invention. The American branch of that species, perhaps more inventive than other branches, has devised new uses for the Citizen's Band. Lorry drivers use it to warn each other of impending police radar speed traps. Prostitutes have been known to solicit customers via CB radio. Hobby operation including QSL'ing abounds and most stations use self-given "handles" rather than their official call signs, always assuming that they have an original call sign.
nllegal power amplifiers are often used and some operators are even equipped with amateur band equipment such as Yaesu FTIO1s. In the cities the channels are overcrowded and communication ranges are limited by the numbers of conversations taking place on the frequency. One channel has been set aside for emergency use (ch 9) and one is used as a calling channel (ch 19). Almost everyone monitors channel 19 when on the road unless they have QSYd for a particular reason to another channel, and contribute traffic and police location information. Hitchhikers also solicit rides over channel 19. One neighbour of mine estimated that in two weeks of use he recouped the cost of the equipment due to the timely warning he received about the locations of police radar speed traps that would otherwise have caught him. Citizen's Band is a boon if used correctly, but if abused is a mess.

Microprocessors

The latest arrival on the electronics hobby scene is the home computer based on the microprocessor. Thousands have been sold and clubs are forming all over the country. Microcomputers can be the subject of many articles in themselves, but suffice it to say for now that their use is invading the home as well as the amateur radio shack. It is estimated that within five years the vast majority of homes in the US will contain at least one microprocessor.
This article has been an introduction to amateur radio and the electronics scene in the United States. Future articles will go into more detail about the various aspects of the hobby.

The General Instrument AY-3-8710 integrated circuit is a' 625 line interlaced "TV Tank Battle Game" for two players. The "battleground" consists of white barriers and "a series of black mines. There is one white and one black tank, each controlled by two single pole double throw paddle switches biased to centre off. A push button for each player controls gun firing and a push button allows the battle to be reset. Pin 22 of the i.c. is switched to control the tank traps. In the open position the tanks can drive through these barriers, in the other position (grounded) the tanks halt when they collide with them. Motor sounds are provided for each tank as well as gun fire and shell explosions, and the score is coded to each tank. The tanks are driven like real tracked vehicles, pushing both switches forward causes the tank to go forward. If the switches are held the tank automatically speeds up after a few seconds. If the switches are released the tank continues at the speed reached at the time of release. Pulling both switches back causes the tank to reverse, while holding one switch back and one forward causes the tank to rotate. To stop the tank when it is going forward momentary selection of reverse is required. The shell has a range of about two thirds of the screen and after firing there is a reload period before you can fire again. The shell can be steered during its flight by rotating the tank. The shell will pass over the mines but will explode on hitting barriers. A hit on your opponent counts one point, while running over a mine counts one against you, When one player reaches 16 hits the scores flash to show that the game has ended.

Circuit Description

The circuit diagram is shown in Fig. 3. Tl provides 12-0-12 volts which is full wave rectified by D1 and D2 and smoothed by Cl. IC1 regulates the supply VP to approximately 6.5 volts, VR1 adjusting the voltage and C2, 3 and 4 providing decoupling. IC4 a and b provide the 4 MHz clock to the AY-3-8710, L1 being adjustable to allow the oscillator to be set to the correct frequency. IC3 a and b, with their
associated Rs and Cs, provide the shaping for the fire and explosion sounds. IC3c does the same for the motor sounds which ane all fed via IC3d to the output transistors TRI and TR2. Switches S4, 5 and 6 control the left tank and S7, 8 and 9 control the right tank. S3 is the game reset and S2 is the tank trap switch. R2 to R4 mix the video signals and the composite video is buffered by the emitter follower TR3 and fed to the modulator.

TR4 and its associated components act as the modulator which runs at a frequency of approximately $160-170 \mathrm{MHz}$, with harmonics extending into the u.h.f. band.

Construction

Construction is relatively straightforward, most of the components being mounted on the p.c.h. It is, however, advisable to use sockets for IC2, 3 and 4. The component layout is shown in Fig. 7. Drill 6BA clearance holes for board fixing, FSI, T1 and IC1, and a 6 mm hole for L1. Drill other holes to suit the component leads. Before mounting any components on the board place the p.c.b. in the box with a modulator at the front right, and the p.c.b. about 10 mm from the right side of the case. Drill 4 fixing holes in the bottom of the case using the p.c.b. as a template. Also drill a 6 mm hole in the bottom to line up . with Ll core. Put the p.c.b. to one side and drill the box and front panel as shown in Fig. 1. Also drill a few 6 mm holes in the base and rear of the case for ventilation. Stick a small piece of speaker cloth over the rear of the speaker hole on the front panel, fix the speaker in place with epoxy adhesive and mount the switches S1, 2 and 3 . The sound output is controlled by VR3 which is mounted on the front panel.

Assemble the p.c.b. using the layout Fig. 7 and parts list as a guide but do not fit IC2, 3 or 4 into their sockets yet. R9 can be either a $20 \mathrm{M} \Omega$ resistor or two 10 MO resistors (R9a and R9b). Fit a T05 heatsink to TR2, cut and bend a piece of aluminium sheet $60 \mathrm{~mm} \times 35 \mathrm{~mm}$ as a heatsink for TR1 as shown in Flg. 4, drilling through the p.c.b., and retaining 1 Cl and the heatsink with a 6BA screw. Cut and bend

[^0]
practical ~~ i z E E

IPC Magazines Ltd, Westover House, West Quay Road, POOLE, Dorset, BH15 1JG.

Volume 53
May 1977 to April 1978
CONSTRUCTIONAL-Audio
Active Tone Control by F. G. Canning 814
Audio Level Indicator by W. Pleass 442
'Europa' Stereo Amplifier by C. Toms Part 1 832
Part 2 912
‘Jubilee’ Electronic Organ by M. J. Hughes
Part 1 352, Part 2 426, Part 3 505, Part 4
581, Part 5 665. Kindly Note 677, 755, 837, 938
Multivib 'Musico' by R H. Longden 732
Portable PA Amplifier by S. H. Davies 566
Reverberation Amplifier by S. C. Parsons 104
2-Way Intercom by S. Davies 22
20W IC Audio Amplifier by F. Q. Rayer 182
CONSTRUCTIONAL-Receiving
Al\}-Band SW Converter by F. G. Rayer Part 1 490
Atomic Time Receiver by N. C. Helsoy 288
Kindly Note 454. 518
CW Filter Unit by A. Langton 134
Direct Conversion Receiver by M. Tooley 652
Kindly Note 837
General Purpose SW Receiver by F G. Rayer
Part 1 337Part 2 ... 425
LED Tuning indicator by J. P. Macaulay 577
Narrow Band FM Demodulator by W. Bond 277
Radio 2 Tuner for your $\mathrm{Hi}-\mathrm{Fi}$ by R. A. Penfold 213
CONSTRUCTIONAL-Test Equipment
Aerial Performance Test Set by F. C. Judd 678
Audio Dummy Load by F. G. Rayer 745
A 741 Signal Tracer by W. Mooney 193
Kindly Note 305
Audıo Visual Logic Probe by P. Pond 842
Extender for PW Transistor Tester (July-Aug 76) by J. Hickman 136
Heatsink Thermometer by l. Hickman 750
Low Distortion Sine-Square Wave Generator by M. Tooley 412
574
Muitirange Testmeters by D. Jones Note Muitirange Testmeters by D. Jones 838
Oscilloscope Viewing Hoods by M. Allenden 760
'Purbeck' Oscilloscope by 1. Hickman Part 1 892
RF Resonance Indicator by D. H. E. King 497
Versatile AF Generator by C. Toms 108
VHF Wavemeter by M. Tooley 920
Wide Range Voltmeter by M Tooley 486
CONSTRUCTIONAL-GeneralBattery State Indicator by W. Mooney849
Compact 2-metre Beam Aerials by F. C. Judd 57
Design Your Own Projects by T. Bailey and R. Whitaker

1. Light Trigger 358
2. Cassette Recorder Power Supply 436
3. Car Courtesy Light 512
4. Impedance Matching Amplifier 602
5. Continuity Tester 685
6. TTL Interface Circuit 896
Economy Timing Strobe by B. Harvey 752919
Electronic Car Voltage Regulator by C. Grayson
Electronic Car Voltage Regulator by C. Grayson
Handi-Mini Power Supply by l. Hickman 6.3 6.3
Laboratory Power Suppiy by J. Thornton- Lawrence 588
Morse Tutor by D. J. Edwards 263
Mystery Train Tour by E. A. Parr 822
Kindly Note 938
Proportional Power Controller by C. Toms 672
Kindly Note 837
Protected Battery Charger by G. O. H. Siogren 50
S-DeCnology by D. Gibson
No. 6. The Ohm Gnome 39
No. 7 Medium Wave Receiver 121
No. 8 Ultra-Simple Audio Amplifier 188
No. 9 Light-to-Frequency Converter 294
No. 10 Record Player Amplifier 345
No. 11 Automatic Courtesy Light 595
No. 12 The Might Light 756
-DeCnology by D. Gibson
7. Simple Light Modulator 826
8. The Grip'n Grow 917
'Seekit' Metal Locator by W. Opel Part 1 42
117
'Stim Jjm' 2-metre Aerial by F. C. Judd' 899
'Solo Supermind' by A. Wilicox... 408
y Note 574
"Tele-Games' by D. S. Coutts 124
305'Tele-Games' Add-on Module 'Shoot'
by D. S. Coutts 280
Traffic Light Controtier by P. Chambers 584
Kindly Note 837
24-Hour Digital Clock by J. Miller-Kitkpatrick 204

EXPERIMENTER'S CORNER

Basic 9V Stabiliser by R. N. Soar 762
LED Light Display by A. Cooper 910
Simple Low-Z Pre-amplifier by D. L. Jones 762
Transistor Gain Indicator by S. Lamb.

IC of the MONTH by B. Dance

No. 62 SGS-ATES TBA820LV Audio Amplifier 34
No. 63 RCA CA3140 Operational Amplifier ... 216
No. 64 Ferranti ZN1034E Timer
Kindly Note
516 574

Regulator No. 66 Thompson-CSF ESM1601 Proximity Detector 738
No. 67 Sprague ULN3006T Hall-Effect Switch
No. 68 2N5777 Photo-Darlington Sensor

KINDLY NOTE

Points arising from articles in the previous volume
Gas/Smoke Sensor Alarm April 1977 ... 106, 755
Tug 'o' War Game Aprif 1977 38, 222

MISCELLANY-Technical

Circuits for Audio Amplifiers by F. G. Rayer
(Part 1 March 1977, Part 2 April 1977)
Part 3 ... 47
Part 4 ... 141
FM Front Ends by B. Dance 269
Hotlines (recent developments in electronics)
by Ginsburg 30, 111, 202, 286, 367, 440, 586, 670, 749, 829, 927
Improved Etching of PCBs by J. A. Kennedy ... 33
Lambda Circuits by B. Dance... 936

Measuring with Operational Amplifiers by A.						
Sharpe	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

$\begin{array}{cccc}\text { Monolithic Voltage Regulators by B. Dance } \\ \text { Part } 1 \text { Fixed Regulators } & \ldots & \ldots & . .\end{array}$
Part 2 Variable Regulators 112
So You Want To Pass The RAE
by J. Thornton-Lawrence and K. McCoy
No. 1 Arithmetic (Kindly Note 454)
334
No. 2 Ohm's Law and all that 416
No. 3 Electro-Magnetism 501
No. 4 AC-Inductance-Transformers ... 570
No. 5 Capacitance-Impedance-Resonance 659
(Kindly Note 837)
No. 6 Diagrams-Valves-Semiconductors 764
No. 7 Transistors-Transmitters 816
No. 8 FM-PM-Transmitter Measurements 922
The Forceful Mr. Fleming-a look at a prob-
lem posed by readers of our RAE series ...

Special Product Report - Chromasonics
'Chroma-Chime' Kit \ldots

'Stray Signais' by 'Point Contact' 676
The 5-metre Story by R. Ham Part $1 . .$. ... 740
Part $2 \ldots . \quad . . .830$

Part $3 . .$.

ON THE AIR
Amateur Bands by E. Dowdeswell 65, 145, 225, 298, $368,446,519,609,693,773,850,928$
SW Broadcast Bands by D. Belf 69, 149, 229, 302, 370
SW Broadcast Bands by C. Molloy 450, 520, 610, 694, 774, 853, 929
MW Broadcast Bands by C. Molloy 66, 146, 226, 301,
369, 449, 522, 610, 694, 774, 854, 930
VHF Bands by R. Ham 70, 150, 230, 302, 373, 453, 522,
$613,697,777,855,933$
VHF Personalities by R. Ham
Alan Baker G8LGQ 856
Henry Hatfield 934

PRODUCTION LINES

Abrasive Tools-Tension Files 435
Raspawl and Abrafile ... 758
ADE (Security) Maxi-Guard Burglar Alarm ... 514
Alcon Instruments-Miselco Multimeter ... 55
Multimeter Master 20 ... 515
Ambit International-AM Tuner Module 7122 ... 434
BASF-Record and Cassette Care Kits ... 601
BF1 Electronics-IC Sockets 212
Bi-Pak Semiconductors-10W Amplifier Module 212
Boss Industrial Mouldings-Instrument Cases 350
ABS Boxes ... 837
Bywood Electronics-‘Scrumpi" Microproces-
sor Kit ...
So. ... 515
Clock Module LTT 601 837
Cannon-Tidy Tray 285
Chekits-Audio Amplifier Module Kits ... 133
Concept Electronics-IC Adhesive Labels ... 514
Continental Specialists-Protoboard PB6 ... 435
Distronic-Crystal Oscillators 54
Doram Electronics—New Kits 211
Eagle International-Catalogue 285
Eraser International-E105 Contact Cleaner... 837
Gen. Instruments Microelectronics-IC AY- 210
Gould Advance-Data Book of Instruments ... 435
Greenwood Electronics-Oryx 9 Soldering Iron 350
Vice-Oryx 1B Iron ... 600
GSPK—Torch 'Search Lite' 601
Home Radio-Enginear's Resistor Pack ... 435
H. R. Holmes-'Versa-Vice' 132
$\begin{array}{ccccc}\text { Industrial Science—Elecolit } 340 \text { Conducting } \\ \text { Paint } \ldots & \ldots & \ldots & \ldots\end{array}$
ITT Instrument Service-Fluke 8020A Multimeter 349
Jermyn-3-Terminal Voltage Regulator ... 132
$\begin{array}{ccccc}\text { Lascar Electronics - Waveform } & \text { Generator } \\ & \text { Module } & \text {... } & \\ & & \end{array}$ $\begin{array}{rrr}\text { Module } & & 284 \\ 3 \frac{1}{2} \text {-Digit }\end{array}$
Transformers 759
$\begin{array}{ccccc}\text { Linstead Electronic Instruments-Signai } \\ \text { Generator } & \ldots & \ldots & \ldots & \ldots \\ \end{array}$
$\begin{array}{ccccc}\text { Generator } \ldots & \ldots & \cdots & . . . & 55 \\ \text { Maplin Electronics-Catalogue } & \cdots & \ldots & 54\end{array}$
Mogul Electronics-Op. Amplifier TLOBO-4 \quad.'. 212
Op. Amplifier CA3160 ... 285
$\begin{aligned} & \text { National Semiconductors-Plug-in Resistor } \\ & \begin{array}{l}\text { Networks } \\ \text { Ne }\end{array} \quad 350\end{aligned}$ Networks \ldots... Optocouplers ... 600
PB Electronics-Blob Board 133
Platignum-Tidy-Tubs 350
Philips Electrical—Clock Radio AS460 211
Language Trainer AAC4000
Language Trainer AAC4000 284 284
Plessey-IC's SL664 SL665 211
Plustronics-Music Centre CTA200 133
Aiko Stereo Cassette Recorder ATP711 349
Precision Inst. Labs-Signal Injector 132
Rastra Electronics-Logic Test Probe 54
Waveform Generator IC$\begin{array}{ll}\text { ICL8038 } & \text {... } \\ \text { Audio Power } \\ \text { Sl1010/20/50 }\end{array}$
Sl1010/20/50 212
Rawiplug-25W Soldering Iron 434
Rhopoint--Klip-Blok Patchboards 909
RTVC-Disco Amplifiers 55
SGS-ATES-Voltage Regulator L200 54
Sinclair Radionics-Digital Clock Microquartz 514
Digital Multimeter PDM35 758
SST Distributors-PBilips Electronic Kits 600
Tangent Electronics-Universal (Mains) Con- trol Module 515
Tempus-Casio Digital Clocks/Calculators 909
Tye Security-Lightsticks 210
Vessco Vision-Nordemende 'Globetrotter' 800 759
Verospeed Service-Etching Kit-Audio Warn- ing Device 284
Waimore Electronics-IC Test Clip 349
Miniature Crystals 909
Watiord Electronics-Stereo Cassette Deck TCD68 758
SHOW REPORTS
High Fidelity '77 by R. Schofield 219
RSGB Convention ' 77 by R. Ham 306
The Paris Show by D. Gibson 198
LEADERS
A Logical Step? 650
A Time Of Change 730
Band-Switch 890
Calling All Constructors 564
Comment Impossible! 102
! Spy! 406
Morse Code-The PW Way 258
Our Face-lift 332
Perseverance 484
Something For Nothing 180You Lucky People!
BOOK REVIEWS/NEW BOOKS
Practical Introduction to Digital ICs-D. W. Easterling 593
Electronics Fault Diagnosis-I. R. Sinclair 593
How to Build Advanced SW Receivers-R. A. Penfold 759
Modern Electronics Made Simple-G. H. Olsen 773
The Radio, TV and Audio Technical Reference Book-S. W. Amos 432
MISCELLANEOUS
A Mere 20 Years (since Sputnik 1) by R. Ham 594
Binders for PW 20, 848
Cover Price Increase-Note 484
CQ-CQ-CQ readers ads. 222
Early Wireless Collection by R. Ham 333
Letters to the Editor 56, 200
Lionel Howes G3AYA-Note 258
News-News-_News 20. 103, 180, 258, 333, 407, 485,$565,651,731,812,891$
Obituary-Frank Hennig G3GSW by R. Ham 433
Potential Bread-writing for PW 690
PW Back Numbers 181
Readers PCB Service 25, 131, 190, 287, 362, 415, 511, $593,658,739,825,904$,
Reporting BBC's 500th World Radio Glubby R. Ham107
RNARS Morse Proficiency Transmissions 222
'Special Offer' a la 1933! 494
SUPPLEMENTS ETC
Component Source Directory November 1977
Guide To Aerials March 1978
Index to Volume 52, May 1976 to April 1977 MayInformation Card-Semiconductor Character-isticsMay 1977
Special Offer
Soldering Iron Kits569
Gift
Pocket Magnifier October 1977
LIST OF AUTHORS

Allenden M.	Lamb S.
Bailey T.	Langton A.
Beli D.	Longden R. H.
Bond P.	Macaulay J. P.
Bond W. G3XGP	McCoy K. GWBCMY
Canning F. G.	Molloy C. G8BUS
Cooper A.	Mooney W. G3VZU
Coutts D. S.	Opel W.
Dance M. MSc	Parr E. A.
Davies S.	Parsons S. C.
Dowdeswell E. G4AR	Penfold R. A. BS AMIEE
Edwards D. J.	Pleass W. BA BSc AMIE
Gibson D. G3JDG	Rayer F. G. G30GR
Grayson C. BSc	Schofield R.
Ham R. FRAS BRS15744	Sharpe A.
Harvey B.	Sjogren G. O. H.
Helsby N. C. MIEE	Soar R. N.
Hickman I.	Thornton-Lawrence J.
Húghes M. J. MA C.Eng.	T.Eng (CEI) FSERT
	MIERE GW3JGA
Jones D.	Toms C. BSc
Jones D. L.	Tooley M. BA GBCKT
Judd F. C. G2BCX	Whitaker R.
King D. H. E. G3TQN	Willcox A.

BATTLE GAME

a piece of timplate (cocoa tin) as shown in Fig. 5 to form a box for the modulator screening, fit the sides and bottom by soldering to four Veropins as shown in the drawing but leave the top plate off until the

A

Fig. 1: Front panel drilling diagram

Fig. 2: Main printed circuit board connections $>$
unit is working and displaying a picture on the television screen.

Carefully check the p.c.b. for correct assembly and freedom from inadvertent shorts such as solder

AFig. 4: Heat sink for IC1

Fig. 5 : Details of modulator sereen
bridges, set VR1 fully clockwise and VR2 to midrange and fit the unit in the case with 6BA screws through the fixing holes. Wire the unit up as shown in Fig. 2. Fix two 6 pin DIN sockets in the front of case connected to points G-Q \& S on the p.c.b. to feed the hand controllers. These sockets may be omitted and the multicore wires fed through suitable holes fitted

with grommets. The hand controllers can be assembled in any convenient small plastic boxes.

Switch the power on, monitor the voltage VP across C4 and adjust VRI to obtain $6 \cdot 5$ volts. If you have a scope or counter fit IC4, power up and adjust L1 for 4 MHz . If not, set the top of the core of Ll approximately 6 mm into the former. Fit the remaining inte-

* components

Resistors All tw 5\%		Potentiometers	
		1kn Horizontal preset 1	VR2
$47 \cap$ i	R19	$4.7 \mathrm{k} \Omega$ Horizontal preset 1	VR1
10023	R17, 29, 30	50Ω Wirewound 1	V\%3
27001	R21	Semiconducters	
$3 \mathrm{k} \Omega \quad 3$	R20, 25, 28		
$1.5 k \Omega 1$	R22	Diodes	
$2 \cdot 2 \mathrm{n} \Omega 2$	R1, 24	1N4601 2 D1,2	
$4 \cdot 7 \mathrm{k} \Omega 2$	R18, 27	Integrated circuits	
$5.6 \mathrm{k} \Omega \mathrm{l}$	R26	4001 A 1. 1C3	
10 kS	R11, 12, 14, 15, 23		
	R313		
$1 \mathrm{M} \Omega \quad 3$	R7, 8, 16.	$\begin{array}{lll}7805 \text { regulator } & \text { IC1 } \\ \text { AY-3-8710 } & \text { 1 } & \text { IC2 }\end{array}$	
2-2MS 1	R10	Transistors	
$4.7 \mathrm{M} \Omega \quad 2$	R4, 5	BC108 1 TR3	
10Mn 4	R2, 6, 9a, 9b	BC208 1 TR1	TR1
		BFY50 $\quad 1$ TR2	
Capacitors		BSX20 1	TR4
Plate Ceramic		Switches	
3.3 pF ?	C 23		
$5 \sim 6 \mathrm{pF} \quad 1$	C24	(Arrow CPM3 Black) 2	S4, 5 (Biased to centre off)
10 pFF	C17	Paddie s.p.d.t.	
22pF 2	C16	$\begin{aligned} & \text { (Arrow CPM3 White) } 2 \\ & \text { Push-button s.p. } \end{aligned}$	S7, 8 (Biased to centre off)
	C21, 22		S3, 6,9
		Push-button s.p. 3 Toggle s.p.d.t.	
Disc Ceramic		Toggle d.p.s.t. (Mains) 1. S1	
1000pF 3	C20, 25, 26	Miscellaneou*	
$0 \cdot 01 / 2 \mathrm{~F} \quad 1$	$\begin{aligned} & \mathrm{C7} \\ & \mathrm{C8}, 9,18 \end{aligned}$		
$0.1 \mu \mathrm{~F} \quad 3$		Transformer 12V, 12V 250 mA MT12 (Marshall's) Loudspeaker 24 nich 8 .	
Polyester$0.22 f 52$	C2, 3	Hand control boxes (2) RS Type 509-298	
		Miniature multicore cable (9-way) 4metres	
Tantalum		Miniature mains cable Indicator tamp 42 V	
$0 \cdot 22 \mu \mathrm{~F} 10 \mathrm{~V}$	$3 \quad C 5,6,13$		
4.7 F F 10 V$10 \mu \mathrm{~F} 10 \mathrm{~V}$	4 C10, 11, 12, 14	Knob for volume control	
	$2 \quad \mathrm{Cl} 9,27$	6-way DIN plug and socket (2) Optional for hand contral leads.	
$\begin{aligned} & 10 \mu \mathrm{~F} 10 \mathrm{~V} \\ & 100 \mu \mathrm{FF} 10 \mathrm{~V} \end{aligned}$	1 C 4		
		Tos heat sink	
Electrolytic		Co-axiaf TV socket surface mounting type.	
$220 \mu \mathrm{~F} 25 \mathrm{~V}$	1 C 15	28-way d.i.I. socket (1)	
2200رFF25V	1 Cl	14-way d.i.l. socket (2)	

View of the internal construction of the main p.c.b. and case

Fig. 6: Printed circult board copper track pattern. Ready drilted boards are available from Readers PCB Services (see page 68)

Fig. 7: Main printed circuit board component placement drawing
grated circuits, connect to the aerial input of the television and switch on. Push the reset button, release it and tune the television until a signal from the games unit is found. Several signals may be found, if so choose the best one. Ll may need to be slightly adjusted. When a good picture has been obtained adjust VR2 for the optimum picture, and fit the top cover to the modulator. Check that all the switches function as required and fit the front panel.

Fault Finding

If the unit fails to function check all your construction carefully, then:-

1. Check that the voltage across C4 is 6.5 volts.
2. Vary VP over the range 6 to 7 volts by means of VR1, if this does not help reset it to 6.5 volts.

IC2 Pin Functions	
1	Ground
$2,3,18,27,28$	Video outputs
$4,5,6,7,8,9,24$	Control inputs
10	Reset
16	VP $(+6.5 \mathrm{~V})$
19.	4 MHz clock input
$20,21,23,25,26$	Sound output
22	Tank trap select
$11,12,13,14,15,17$	Do not connect

3. Check with a scope that pin 19 of IC2 has a 4 MHz clock input and pin 16 is at 6.5 volts.
4. Check that composite sync is appearing at IC2 pin 18 , pushing and releasing the reset.
5. Check for composite video at TR3 base and again at VR2 wiper. If it is appearing at VR2 wiper try again to tune the television to the game signal. If you still cannot get a picture, substitute a new transistor for T'R4.
6. If the tanks only go forward under control of the switches you will probably find that one pair of wires to the switches are crossed.

Four Players

Extra excitement and skill can be introduced into the game by splitting the tank controls between four players, two to each tank. The steering controls are operated by the "drivers" while the tank commanders have control of the firing buttons.
The modifications needed to make this a fourplayer game are very simple, especially if DIN plugs and sockets are used for connecting the control boxes to the main unit. The commander's firing control can be fitted into a simple box wired into the DIN plug. If a duplicate set of controls is not desirable then a permanently fitted "commander's" control can be wired into the game unit with a switch arranged to select either the firing button on the "driver's" box or the button on the "commander's" box.

Pssse wanna waich?

When I.e.d. and I.c.d, watches first came onto the British market, they cost between $£ 50$ and $£ 100$ and any available in the $£ 20$ range were either advertised on 'Police Five' or came of the back of that proverbial loiry.

We are informed by W.K.F. Electronics, that they have a selection of watches available at very reasonable prices.
First, an l.e.d. watch (left in photograph) that features a rather novel touch sensilive operating pad to display hours and minutes, seconds, day and date, also day and month. Price $£ 10.75$ pius VAT.

Second, the standard l.c.d. watch (centre in photograph), which displays hours and minutes continuously,
press the button for day and month, press again for seconds. The watch also has a separate back-light func.ion. Price $£ 10 \cdot 50$ plus VAT.

Finally the chronograph l.c.d. watch (right in photograph) whilst possessing the standard watch functions of hours, minutes, seconds, day, date and month, also features a lap and continuous stop watch facility, with timing to 100 th of a second. Price £ 18.95 plus VAT.

All the watches are supplied with an adjustable stainless steel bracelet and the two l.c.d, watches are powered by batteries costing only 42p (retail) with an estimated life of twelve months.
W.K.F. Electronics, Fleel. House, Welbeck Street, Whitwell, Workshop, Nolts. Tel: 0909 720-695.

Vero imteresting

Vero Electronics Ltd. Introduce a new range of cases with their 'Series II Boxes AB 010'.
These boxes are moulded in light grey high-impact polystyrene in two parts. The anodised aluminium front panel supplied with the box is retained befween the two halves, avoiding the need for fixing screws. Slots and bosses are moulded into the interior of the box, so that a cholce of mounting positions, either horizontal or vertical, is avallable for p.c.b.'s
or component decks.
Many of the boxes have a battery compartment which is accessible without dismantling the box.

The standard range consists of fifteen boxes varying from $110 \mathrm{~mm} \times$ $68 \mathrm{~mm} \times 33 \mathrm{~mm}$ to $190 \mathrm{~mm} \times 138 \mathrm{~mm} \times$ 91 mm , and other sizes are available to special order at a minlmum quantity of 100 .

Further details from: Vero Electronics Ltd., Industrial Estate, Chandier's Ford, East/eigh, Hampshire SO5 3ZR. Tel: 0421569911.

No lick TRC-I

The Polycal TAC-1 is a pocket size, liquid crystal display, travel alarm clock. Measuring $65 \mathrm{~mm} \times 32 \mathrm{~mm} \times$ 11.5 mm , it weighs only 45 g with batteries. The 3 V d.c. power input is provided by two silver oxide or manganese alkaline batteries (type GS-14, A-76 or equivalent). Power consumption is 3 mW max. (with the alarm sounding). Accuracy is claimed to be ± 30 seconds per month at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. With a separate backlight, the multi-digit liquid crystal displays hours, minutes, clock-working sign and am/pm indication.

Priced at $£ 22 \cdot 50$, which includes VAT and p \& p, the TAC- 1 is available from: Tempus, Dept. P.W., 19/21 Fitzroy Street, Cambridge CB1 1EH. Tel: 0223312866.

Rechargeable iron

A new version of the Engel B. 50 Rechargeable Soldering Iron is now available from Kelgray Products Ltd. and is complete with charger unit. The iron now incorporates a built-in spotlight to illuminate the working area and uses long-life rechargeable nickelcadmium batteries. Providing up to 100 intermittent operations (300 continuous use) without recharging, which can be achieved in about 8 hours (overcharging is impossible). A safety switch is fitted to the trigger-switch to prevent accidental operation. The iron heats up to an operating temperature of approx $350^{\circ} \mathrm{C}$ in about 7 seconds; a variety of bits are available.

Designed for recharging from a.c. malns, the B50 comes complete with cleaning pad, protective cover, 2 lighting fittings and screwdriver. A particular advantage of this iron is that no stray eddy currents which might damage a sensitive i.c. are generated when the iron is being used.

Priced at $£ 46 \cdot 50$ which includes p\&p and VAT, the B50 is obtainable from: Kelgray Products Ltd., Kelgray House, Sandy Lane, Crawley Down, West Sussex RH10 4HS. Tel: 0342 715066.

This article describes a simple timer which switches an enlarger on and off for predetermined periods. The instrument can handle exposures up to 32 seconds although this can be easily increased as will be described. The accuracy is better than 10% which is adequate for black and white printing.

The instrument uses a switch which enables the exposure time to be set by feel rather than by having to peer at some dimly lit switch setting.

Circuit

The circuit is shown in Fig. 2. The 555 i.c. is connected as a monostable multivibrator and on application of a negative pulse to pin 2 a positive pulse emerges at pin 3. The duration of this pulse is determined by the R-C values of R1 to R8 and Cl, and also by the voltage on pin 5 . This pulse is applied to the gate of the s.c.r. which causes it to conduct for the duration of the pulse. The s.c.r. is essentially being used as a mains switch. If the mains were applied directly to the s.c.r. it would only conduct on the positive-going part of the cycle and the light would only have about one third of its normal intensity. A bridge rectifier is used to rectify the mains supply and thus overcomes this problem.

SW2 applies the pulse to start the timing. Pin 2 is tied to Vcc via R9 to prevent unwanted triggering. Application of a negative pulse via SW1 will prematurely terminate any timing interval.

The length of the timing pulse is proportional to the value of the resistance at pins 6 and 7 . The values Ri to R 8 are chosen to give sequence times of $2,4,6$, $8,12,16,24$ and 32 seconds, within 10% but the values can be altered to suit the needs of the individual constructor. Every $27 \mathrm{k} \Omega$ added to the resistor chain will give an extra two seconds time. Hence if a 48 second timing period is required, an extra $8 \times 27 \mathrm{k} \Omega$ or $216 \mathrm{k} \Omega$ resistor would be needed to be added in series with R1 to R8. In practice a $220 \mathrm{k} \Omega$ resistor would suffice. The final calibration is made bỳ adjusting VR1.
The unit should consume no more than 8 mA , so the power supply uses a miniature mains transformer, with a full wave rectifying circuit.

The timer is built into a small instrument case with all the controls on the front panel

Components

Any 555 timer i.c. can be used, e.g. LM555, SN72555 NE555, and any s.c.r. and bridge rectifier that can handle at least 400 V at 500 mA can be used for SCR1 and D1.
SW3 is made up from a Doram Mini-Maka switch. The minimum requirement is one pole eight way. The prototype had an open position at one end of the scale, which gives a timing pulse of almost indefinite length. This is used for leaving the enlarger permanently switched on. The mains transformer need only be capable of supplying between 6 V and 15 V at 50 mA at the secondary.

Construction

The unit is built on a printed circuit board 105 mm $\times 57 \mathrm{~mm}$. The layout of the copper tracks is shown in Fig. 4 and the component layout in Fig. 3. The unit is housed in a metal instrument case and to complete the front panel a $P W$ overlay is available.

The p.c.b. is supported by two short 4BA screws with a nut between the board and case bottom. Remember that some of the copper tracks carry live

Front panel layout of the darkroom timer. A transparent overlay is available from the PW Editorial Offices which will enable readers to achieve a professional finish to their equipment. The overlay is cut out and placed over the front panel, being held in place by the switch nuts and washers. A coloured background can be used behind the overlay if desired

Inside view of the complete unit showing the posifioning of the fransformer, p.c.b. and switch

Fig. 1: Pin connections for the 555 timer i.c. and the C106D thyristor
∇

components

Resistors
All $\frac{1}{4}$ W 2%

R1	$27 \mathrm{kS} \Omega$	R6	$56 \mathrm{k} \Omega$
R2	$27 \mathrm{kS} \Omega$	R7	$120 \mathrm{ks} \Omega$
R3	27 kS 2	R8	$100 \mathrm{kS} \Omega$
R4	27 ks 2	R9	$4.7 \mathrm{k} \Omega$
R5	$56 \mathrm{k} \Omega$	R10	$68 \mathrm{k} \Omega$

Potentiometers
VR1 $10 \mathrm{k} \Omega \mathrm{min}$. horizontal skeleton

Capacitors

Cl	47 pF	16 V
C 2	100 pF	16 V

Semiconductors

[^1]
Miscellaneous

Transformer
SW3
SWa
SW1 and 2

Printed circuit board
Case
Knob
PW Front Panéa Ovelláy

Fig. 2: Circuit diagram of the darkroom timer

Fig. 3: Component layout dlagram. Care must be taken to avoid solder bridges or other forms of short circuits between tracks or components as mains voltages appear at sevesal points on the board. A piece of self adhesive plastic sheet should be placed on the metal base of the case underneath the p.c.b. to avoid any possibility of component leads shorting to chassis

Fig. 4: Copper track pattern for the darkroom timer p.c.b. Ready drilled boards are available from Reader's PCB Service. (see page 68)

mains voltages and that these should be kept well clear of the supporting bolts.

A shielded miniature mains plug and socket are used to connect the enlarger lamp to the unit and this is fitted into the back of the case. If desired the fuse can be a panel mounting type and also fitted into the back. A mains switch is fitted to the end of
the wafer switch. Resistors R1 to R8 are soldered directly on SW3.

Switch to the maximum time period of 32 seconds, then depress SW2 and measure the period. Adjust VRl until a 32 second period is obtained and your darkroom is calibrated.

Soyoumant to pass the R.-A.E.[Radio Amateurs'Examination] 2

 John Thornton Lawrence GW3JGA \& Ken Mc Coy GW8CMY

 John Thornton Lawrence GW3JGA \& Ken Mc Coy GW8CMY}

Here is the final section of this series and this month we are to consider aerials, feeders, matching and also interference. At the conclusion, we give some hints on actually sitting the examination.

AERIALS, TRANSMISSION LINES AND MATCHING

The subject of aerials is a complex one and in the space available we will be confining our attention to basic essentials. For further information please refer to the appropriate section in the RSGB Radio Communication Handbook or the Radio Amateurs' Examination Manual.
The fundamental aerial is a length of wire which is half a wavelength long; this is known as the half-wave dipole and is shown in Fig. 85. The aerial is said to be resonant at a specific frequency which is determined by its length, and the distribution of voltage and current along the wire is known as standing waves.
The ratio of voltage to current varies along the conductor, but at the centre of a resonant half-wave dipole it gives a convenient impedance of approximately 70 ohms. If the aerial is broken here, the r.f. power can be fed into the dipole at its resonant point.

Halii-wavelength

Full - wavelength

The full-wave resonant aerial has, as might be expected, a standing-wave pattern similar to two halfwave aerials joined end-to-end. The centre impedance in this instance is very high; inconveniently so in fact and special matching arrangements are called for, as we shall see later.
The radiation pattern of a half-wave dipole is in the form of a "doughnut" shape which in section becomes the characteristic figure " 8 " shape, as shown in Fig. 85.

With a full-wave resonant aerial, the radiation patterns of the two half-wave sections affect one another, producing the four-lobe shape shown.

Dipole Length

The length of a haif-wavelength in free space is given by:

$$
\mathbf{L}=\frac{300 \times 0.5}{\text { Frequency }(\mathrm{MHz})} \text { metres }
$$

However in practical application, due to (a) capacitance effects at the ends, (b) the velocity of the radio wave being slower in the wire than in free space and (c) the effect of the wire diameter, it has been found that the actual aerial dimensions are about 5 per cent shorter than the calculated free-space length. (Freespace length $\times 0.95$.)
For example, the length of a practical, resonant, half-wave dipole for 3.6 MHz would be given by:

$$
\mathrm{L}=\frac{300 \times 0.5 \times 0.95}{3.6 \mathrm{MHz}}=\frac{142.5}{3.6}=39.6 \mathrm{metres}
$$

The Vertical Aerial (Quarter wave $\lambda / 4)$

When looking at the radiation characteristics of a quarter-wave vertical aerial, it is necessary to take into consideration the reflective properties of the ground. If we consider the ground as a mirror to the radiation from an aerial, it will be seen that the vertical aerial AB, in Fig. 86 has an image BC in the ground mirror (just as in optics).
Thus, radiation leaving the aerial from point D will travel by two paths in the direction E : one direct from D and the other from the ground reflection. (The position \mathbf{F} is a mirror-image of the aerial in the ground). The radiation pattern is similar to the halfwave dipole but being in the vertical plane it is omnidirectional in the horizontal or plan view.

Vertical aerials fitted on the roofs of vehicles for v.h.f. and u.h.f. utilise the excellent reflective properties of the metal as ground.

Directional Aerials

The pattern and direction of the maximum radiation of an aerial can be modified by the addition of extra elements, which may be driven by feeding

Fig. 85 : Dipole characteristics

Fig. 86: The $\frac{1}{4}$-wave vertical aerial
power to them or parasitic, where no direct electrical connection is made.
The "Yagi" array shown in Fig. 87 has a half-wave dipole with parasitic director and reflector elements. The Iengths and spacings are chosen to give increased "gain" in the forward direction and reduced gain in the reverse direction (as compared with a plain dipole).

Fig. 87: S1mple directional aerial arrays

One of the consequences of adding parasitic .elements is that the dipole impedance becomes inconveniently low (about 20 ohms) and to overcome this a folded dipole is often used. This has the effect of transforming the impedance up by a factor of four to give a value of around 80 ohms.

Transmission Lines and Feeders

The source of r.f. power is quite often not the place of utilisation. For convenience we need to have the transmitter indoors, but the aerial has to be outside, as high and far away from buildings as possible. In some instances it may be possible to bring the aerial directly to the transmitter but in most cases a transmission line or feeder cable is required.

Impedance Matching

For maximum power transfer from one circuit to another the input impedance of the circuit receiving power must equal the output impedance of the circuit delivering it. The output impedance of a valve-type transmitter final amplifier is in the order of a few thousand ohms and a transistorised version would present about five ohms or less. The aerial impedance required can therefore vary between about twenty ohms and several thousand ohms, depending on the type and the point of connection.

The impedance of the transmission line or coaxial feed cable connecting the transmitter to the aerial is defined by its physical construction. Usual values for coaxial cables are 50 or 75 ohms and for twin transmission lines, 70 to 600 ohms, depending on the method of manufacture.

Some form of matching arrangement is therefore required between the various sections of the system which convey r.f. power from transmitter output stage to derrial. A typical example is shown in Fig. 88.

There are three basic types of lines or feeders. (a) Single wire feeder (which carries a true travelling wave.)
(b) Coaxial feeder.
(c) Parallel wire line.

Fig. 88 : Transmission lines

Single feeders (a) are not commonly used because they tend to act as radiators themselves. In the coaxial type (b) the r.f. field is restricted to the inside of the structure, whilst in parallel wires the field is confined to the immediate vicinity of the conductors.

Characteristic Impedance (\mathbf{Z}_{0})

A transmission line or feeder may be considered as consisting of a distributed inductance with associated distributed capacitance, as shown in Fig. 88. It is the relative value of inductance and capacitance which gives the transmission line a property known as characteristic impedance (Z_{0}). When a transmission line is connected to, or terminated with, a pure resistance which is equal to the characteristic impedance, a current travelling along it does not see any change in conditions when it meets the Ioad. In other words, a short transmission line terminated in a purely resistive load equal to the characteristic impedance of the line, acts as though it were of infinite length. Such a line is said to be matched, and here power travels outwards from the r.f. source until it reaches the load, where it is completely absorbed. Let us look at what happens if the transmission line is terminated by its characteristic impedance and then by an impedance other than Z_{0}. This is shown diagramatically in Fig. 89.
Where the line is terminated in its characteristic impedance (Z_{0}) the voltage or current will have the same value at any point along it. (a) If however it is terminated with (b) an open circuit or (c) a short circuit, then standing waves are produced along the feeder as shown. This is because the power is not being absorbed at the end of the line but is being reflected: the refiected wave adds to the incoming wave and produces a standing-wave pattern along the line. These examples are extreme cases, but any mismatch produces a resultant standing-wave pattern.

Fig. 89: Transmission line terminations

Fig. 90: A simple standing wave ratio meter

The ratio of the maximum value of the standing-wave to the minimum is known as the standing-wave ratio (s.w.r.). Values will vary from unity (matched condition) to infinity (complete mis-termination).

Standing Wave Ratio Meter

A useful device for looking at the s.w.r. in a coaxial feeder cable is shown in Fig. 90. Loops of wire, (a) and (b), sample forward and reverse power passing through the centre conductor (c). The voltages developed in the coupling loops are rectified by Dl and D2 and the resulting d.c. output deflects the meter M1, thereby giving an indication of the forward and reverse (reflected) power.

The s.w.r. meter is particularly useful when making adjustments to aerial matching and tuning. Constructional details for a v.h.f. unit were carried in the May 1978 issue of $P W$.

Matching

Most transmitter and aerial matching circuits are of the resonant type and ane tuned to the operating frequency. We have already described the "Pi" matching network for a valve output stage (PW March 1978, p. 821), shown again in Fig. 91(a): an "L" type network for transistorised output stages is shown in Fig. 91(b). This configuration allows for more convenient component values when working at the low output impedances encountered.

In both circuits the impedance transformation is adjusted by the relative capacitances of C 1 and C 2 , whilst maintaining resonance at the operating frequency. It is usual in this instance to arrange for the transmitter network to provide an output impedance which matches the characteristic impedance of a readily available type of coaxial cable, e.g. 50 ohms or 75 ohms.
When the coaxial cable is operated with a low s.w.r., losses within it are also low, so it is very convenient to fit any filters necessary here.
Some aerials, such as the dipole, have a characteristic impedance at the feed point which will match directly the characteristic impedance of the feeder cable and an aerial matching network is therefore unnecessary. However, if a symmetrical or balanced aerial such as the dipole is fed by coaxial cable, a

Fig. 91 : Transmitter outpuf matching networks
state of imbalance will exist, because one arm of the dipole is connected to the oentre conductor whilst the other is connected to the outer shield. The currents flowing in the shield cannot be cancelled by those in the centre conductor which it surrounds.

Balance to Imbalance Transformer (Balun)

Diagrams of balun transformers are shown in Fig. 92. In (a) a quarter-wavelength coaxial sleeve surrounds the coaxial cable and in (b) a quarter-wavelength of rod, forming a "stub", balances the output to the aerial. For low frequencies, it is more convenient to wind the balun transformer on a ferrite ring. This type is less frequency-conscious and may be used over a wide range.

Fig. 92: Balun transformers

Quarter Wave Transformer

Where it is necessary to transform an aerial impedance to match a particular feeder cable, use can be made of a quarter wave "stub" as shown in Fig. 93. Here, a full-wave aerial is to be fed in the centre (where the impedance is around 5,000 ohms) with twin feeder whose characteristic impedance is 72 ohms. If the quarter-wave stub is made to have the correct characteristic impedance then the aerial impedance is transformed down by the stub to match that of the feeder.

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{m}}(\text { matcting stub }) & =\sqrt{\mathrm{Z}_{\text {arrial }} \times \mathrm{Z}_{\mathrm{ilar}}} \\
& =\sqrt{50 \overline{0} 0 \times 72} \\
& =600 \mathrm{ohms}
\end{aligned}
$$

(An open-wire line of 16 s.w.g. conductors spaced 112 mm ($4^{1}{ }_{2} \mathrm{in}$) apart would have a Z_{0} of 600 ohms).

Fig. 93: A $\frac{1}{4}$-wave transtorme

Interference

Non-interference with other radio users, whether they be military, commercial, amateur or domestic, is a condition of the Licence.

An understanding of the way in which interference is caused and how it can be avoided or cured is needed, not only for the RAE, but later on, when you obtain your licence; you will then be in a position to maintain a good clean transmission and live in peace with your neighbours (and the Home Office Inspector).

No practical transmitter is absolutely perfect and in addition to its correct output, is bound to radiate some spurious signals, however small. If these are not kept to a very low level, interference with receivers (TV or radio) operating nearby may result.

Similarly, no practical receiver is absolutely perfect, so when it is tuned to a particular frequency it may be subjected to interference by strong signals on other frequencies, as may be the case if it is situated in close proximity to a radio transmitter.
Interference can also be caused to audio systems, etc., when subjected to strong r.f. fields. Here, the signal enters the equipment and is then rectified or amplitude demodulated, usually by the emitter-base junction of a transistor in the audio pre-amplifier stages, resulting in breakthrough. An increasing number of hi-fi systems employing transistors are prone to interference of this nature.

Al? Capacitors 750 V wkg

Mains Supply Filters Type (b) Using Ferrite Rod

Fig. 94: Power supply filters

TVI, BCI, AND AFI

Interference can usually be separated into three main categories: television (t.v.i.), radio broadcast (b.c.i.), and audio (a.f.i.).

Television and radio broadcasting are "protected" services and the Post Office may be called upon to investigate cases of interference with these and other authorised transmissions. Audio amplifiers, on the other hand, are not intended to be radio receivers and so will not be afforded the same facilities.

In general, all interference results either from deficiencies in the transmitter or the apparatus being interfered with. Let us look initially at the transmitting end.

DEFICIENCIES AT THE TRANSMITTER

Design and Construction

It is important that the various r.f. signals present. within the transmitter are not allowed to radiate directly. Efficient screening is essential, as is the filtering of h.t. and other power supplies, particularly the mains input. A suitable mains filter is shown in Fig. 94. Decoupling and bypass capacitors should be of mica or ceramic, having low inductance properties. (See section on capacitors.) Wiring should be short and direct to minimise stray inductance and capacitance.

Fig. 95: Block diagram of a well-screened transmitting sfation

Tuning capacitor spindles protruding through front panels are often a source of spurious signals and should therefore be of an insulated material or have an insulated coupling.
The cut-out for a panel meter can often cause problems and a screening can over the rear of the meter is desirable. In general, try to ensure that the case of the transmitter is radiation-proof. Commercially made transmitters, including those for the amateur market, already incorporate most of these features and the maker's data sheet usually quotes the level of spurious emissions one may expect.
The block diagram of a well-screened transmitting station is shown in Fig. 95. The transmitter is well protected and its supply leads filtered, ensuring negligible direct radiation. The output passes via a coaxial cable to a harmonic trap, which usually consists of a series-resonant circuit, housed in a screened box and tuned to the particular harmonic likely to cause interference. For example, it might be tuned to 42 MHz , attenuating the 3 rd harmonic of 14 MHz which could be the source of t.v.i. in a Channel 1 reception area. The output then passes via a coaxial cable to the standing-wave ratio (s.w.r.) bridge, which indicates relative forward and reflected power levels.
From here it is fed through a filter, again housed in a screened box which, in the case of a transmitter operating on bands up to 30 MHz , would be of the low-pass type, attenuating spurious signals above this frequency. For a v.h.f. (2m) transmitter, a band-pass filter attenuating spurious signals either side of the pass-band frequencies, would be used.
In practice, the transmitter tuning would first be adjusted into a dummy load. The output would then be switched to an aerial tuning unit which is used to provide optimum matching to the aerial with the minimum of reflected power (indicated on the s.w.r. bridge).
Note: All interconnecting coaxial cables and terminations should be well soldered.

Aerial and Feeder

The aerial should be sited as high as possible away from neighbouring buildings, TV and radio aerials, etc.
A vertical transmitting aerial is more likely to induce strong fields into nearby equipment than a horizontal one. This is due to the fact that it relies on a ground connection which can cause interfering currents in nearby conductors. In addition, vertically polarised signals are much more likely to be picked up by vertical down-leads, such as those used for television aerials.
It is important that all the transmitter power should be radiated by the aerial proper and that no emission should take place from the feeder cable itself. This means that the currents in each conductor of the feeder should be equal and opposite.

Where a dipole aerial is fed by an unbalanoed coaxial cable, there is significant imbalance in the current distribution and some radiation from the feeder results. The feeder, usually being vertical, readily causes interfering currents to be induced into nearby television down-leads. To overcome this problem, a balance-to-unbalance transformer (balun) is connected at the centre of the dipole, as shown in Fig. 92. In other types of aerials and feeders, correct adjustment of the tuning unit is all-important in reducing feeder radiation to a minimum.

Operation

Excessive drive in any of the transmitter stages will increase the level of harmonics, so power should be kept to the minimum consistent with efficient operation.

Tuning of the final power amplifier and adjustment of the aerial tuning unit will have a considerable effect on the amount of spurious signals radiated. When tuning the transmitter power amplifier into a dummy load, increase the coupling only until the correct power level is obtained. Do not overcouple the transmitter or the Q of the p.a. tank circuit will be reduced, with a consequent increase of spurious emissions. This also applies when adjusting the aerial toning unit.

An abrupt keying characteristic causes excessive side frequencies, so check each side of your transmission for key clicks (see page 819).
Overmodulation produces excessively wide sidebands and causes splatter; always monitor the modulation level and ensure that overmodulation does not occur (see page 925).
The audio bandwidth necessary for good speech communication is about 3 kHz . The modulation circuit of the transmitter should therefore have a rapidly falling response above 3 kHz in order to avoid the radiation of excessive and unnecessary sidebands.

Summary

Let us summarise the requirements for keeping deficiencies at the transmitter to a minimum:

1. Use correct components in the transmitter, well laid out.

Fig. 96: TV Interference rejection filters
2. Prevent direct radiation from the transmitter and associated leads by screening and filtering.
3. Use appropriate filters in the transmitter output.
4. Use a dummy load for tuning up and a suitable acrial tuning unit, Do not overcouple.
5. Keep aerials in the clear and avoid radiation from the feeder cable (balun transformer).
6. Tune up carefully: do not overdrive or overmodulate.
Check your transmission regularly.

DEFICIENCIES AT THE RECEIVER

The latest statistics (for 1976) indicate a dramatic fall in the number of complaints regarding transmitter interference. However, the greater proportion of those made were attributed to deficiencies in receiver design.
In many instances, interference is the result of a receiving installation of poor standard; e.g. indoor aerial, aerial incorrect type for area, downlead incorrectly installed, receiver incorrectly installed, excessively long mains leads or speaker leads, etc, etc.

Considering the problem of t.v.i., strong signals can enter the receiver via the aerial and cause interference by cross-modulation in the r.f. or subsequeat stages. A high-pass or rejection filter for the frequency concemed must be fitted in the aerial lead, as shown in Fig. 96: the series-tuned filter being generally more effective.
Masthead amplifiers are a notorious cause of interference as they have broadband input characteristics, some extending from 10 MHz to $1,000 \mathrm{MHz}$. Crossmodulation and swamp effects are common. A highpass filter should be fitted between the aerial and the input to the amplifier, but in practice difficulties arise here because the aerial has to be taken down and the filter made weatherproof.

However, the most common method by which r.f. will enter the receiver is by the presence of "braid" currents in the aerial downlead. These r.f. carrents fiow through earthy parts of the receiver causing r.f. voltages to be produced in susceptible parts of the circuit.

A "braid breaker", suitable for u.h.f. television, is shown in Fig. 97. The reactance of the series capacitors is high at frequencies up to 30 MHz , effectively "breaking" the downlead, but at u.h.f. it is low, resulting in negligible attenuation of the television signal.

Where "braid currents" in the downlead cause interference at h.f. and v.h.f., an alternative circuit can be used. Here a short length of the coaxial downlead cable is wound on a ferrite ring, increasing the inductive reactance of the outside braid without affecting the signals within. An alternative to the ferrite ring, and almost as effective, is to wind the co-ax around a ferrite aerial rod.

If the interference is entering the receiver by way of the mains lead, a mains filter as shown in Fig. 94 should be installed. In the case of hi-fi systems, it can also be picked up on speaker leads, so decoupling these with a disc ceramic capacitor of $\ln F$ to 10 nF is often effective. A ferrite ring may be required in addition, if the problem is really severe.

It is unwise to incorporate modifications inside the receiver, as you may invalidate its warranty and be held responsible for any subsequent malfunction. In difficult cases it would be wise to consult the dealer or manufacturer.

Ferrite Ring Filter (The i.v. feeder is made into a cooxial choke) AD13] Alsa useful on mains \& loudspeaker leads
Ftg. 97: "Braid-breakers" for u.h.f. and h.f./v.h.f.

Summary

1. Check that the receiving installation is of adequate standard for the reception area.
2. If the interference is entering via the aerial lead, fit a high-pass or rejection filter.
3. If cross-modulation occurs in a mast-head amplifier, fit a high-pass filter in the aerial feed to it.
4. If the interference is entering via the downlead braid, fit a ferrite ring or capacitive braid-breaker.
5. If the interference is entering via the mains lead or other cables, fit a mains filter or ferrite ring.
6. If the problems are caused by direct radiation, try repositioning the aerials, feeders, etc. Wherever possible, avoid making internal modifications to receivers or audio systems. In difficult cases, refer to manufacturer.

Note:

An excellent series of articles on interference appeared in Radio Communication, May 1975. Some back-issues are available from the Radio Society of Great Britain, 35 Doughty Street, London WCIN 2AE. Alternatively your local Radio Club or a nearby radio amateur may be able to help with a copy.

SITTING THE R.A.E.

It is a good plan to set yourself regular revision two or three nights a week prior to the examination. Allocate specific subjects each night so that everything is covered in good time and practice answering specimen questions in writing and time yourself.
It is best to leave the night before the exam relatively free from commitments. This is a good time for collecting together the things you need, including your thoughts!

Take with you, two pencils and a pencil sharpener, two pens (in case one runs out), ruler, symbol stencil (if you have one), eraser and your examination card. Calculators are permitted provided they are of the electronic, battery-operated type. There are no restrictions on the functions the machine will perform.

You should receive your card at least a week before the examination. If not, contact the Examination Centre/Night School immediately and confirm that you are, in fact, registered.

When going to the Examination Centre, allow plenty of time; your bus may be delayed, you may have difficulty in parking your car. Aim to be in the building at least 30 minutes before the start. Locate the examination room, and be seated well before the examination commences.

When appropriate, your invigilator will distribute the papers: do not look at them until he gives the signal. Timing will begin from the point at which you are allowed to turn the paper over-don't panic! Give yourself at least ten minutes to read things through carefully and note any special instructions.

If, through no fault of your own, you arrive late, apologise to the invigilator then settle into your place quietly and attempt as many of the questions as you are able in the period remaining.
Remember, the paper is divided into two parts; Part 1 has two compulsory questions on licensing conditions (15 marks) and interference (15 marks). Part 2 requires six questions from a choice of eight to be answered (10 marks each). Failure in either section will regretfully result in failure of the examination as a whole.
Give yourself about twenty minutes for each of the eight questions and this will allow a little time at the end to look through your answers. The answers should not be overelaborate or padded out: make your point as quickly and as clearly as possible, there is no time to waste. It is probably best to tackle the compulsory questions in Part 1 first and then move on to Part 2 where you have a choice. Here you can sonser the easiest first and so gain a little extra time.

With answers containing calculations, it is a good idea to set out all the steps in detail. Then if a slip is made in the arithmetic, the examiner will see the correct formulae and methods have been used, and will mark accordingly.

Hints and tips on the drawing of diagrams were given earlier in this series (February 1978, page 764), but remember drawings take time, so keep them simple. You are not being examined in grammar or indeed spelling but neatness and cleanliness are relatively important, if only to avoid ambiguity. The examiner will not be impressed by illegible writing, scribbled diagrams, etc. If you make a mistake, cross it out with a single ruled line; it will then be ignored and you will not lose marks.

A few minutes before the end, stop, read through your answers and correct any minor omissions. Make sure all are numbered and lettered correctly and that your examination reference is quoted.

We wish you every success and hope to meet some of you on the air in the near future.

73 de GW3JGA es GW8CMY.

NOTE

The syllabus and examination pattern for the R.A.E. are changing in 9979. We plan to publish a follow-up article to update this series

Porteble colaroting Power. -at the firckof your wrist "Over 22,000 sold to defe"

AVAILABLE ONLYASAKIT.

A wrist calculator-the ultimate in common-sense portable calculating power. Goes where you go, ready for action at a flick of your wrist

By virtue of its size, a wrist calculator is different to a pocket calculator And now this wristmachine has another difference. It has even more power than some much larger pocket calculators!

And what's more, because it's a kit, supplied to you direct from the manufactures, it costs just $£ 9.95$ (plus 8% VAT, P\&P). And for that you get a calculator with extra power, and ail the satisfaction of buiding it yoursel!

Put real calculating power up your sleeve.

The Science of Cambridge wrist calculator gives you the full range of arithmetic functions ($t,-,-, X, \Rightarrow$). It uses ordinary algebraic \log ic, which means you enter calculations as you would write them. It has a $\%$ key, the convenience functions $\sqrt{x}, V / x, x^{2}$ and a full 5 -function memory.

And incredibly, it has a clear-last-entry key, pi, brackets, and $-/ 4$. It even has an automatic linear metric conversion function!

Very few ordinary calculators have the same functions for the same sort of money.

Now 10 keys can do the work of 32.

All those functions, from just 10 keys? In such a small calculator? The secret lies in the special four-level keyboard. Each leve! has a different set of functions. Simple two-way switching system allows you to select any keyboard level quickly and easily. Each set of functions is carefully grouped, to let you whisk through calculations with the minimum of switching

And the answers come up bright and clear, too. The display uses 8 full-size red LED digits. It has wide-angle magnification, and is easily visible under any light conditions.

More battery power, too!

With the Science of Cambridge wrist-calculator, you'll get up to 30 hours use between battery changes (that's a lot of calculating!).

Assembling the Science of Cambridge wrist calculator.

The wrist calculator comes as finished components, ready for assembly. All you need is two or three hours, and a finetip soldering iron.

If anything goes wrong, we'll replace damaged components free. We want you to enjoy building the kit, and to end up with a valuable, useful, powerful calculator.

Contents.

Acrylic/ABS case and display window parts. Two-part stitched strap and spring bar clips. PCB. Special directdrive chip (no interface chip required). Display. Keyboard components.Batteries.

Each of the 34 components is contained in a plastic box; and neatly shrink-wrapped, accompanied by full instructions for assembling and using the calculator. All components are fully guaranteed.

The wrist calculator kit is available only direct from
 Science of Cambridge. If, for any reason, you're not completely satisfied with your wrist calculator, return it to us within 10 days for a full cash refund. Send the coupon today!

Science

6Kings Parade, Cambridge, Cambs. CB2 ISN Reag No. 21381708.a.

by Eric Dowdeswel/ G4AR

Our SSTV expert Paul Barker of Sunderland has now become G80VD and soon will be able to look back at the other chaps! Paul studied at home for the RAE and had only the RSGB's RAE manual and a few library books to see him through. He managed to "copy" three VKs on 20 m SSTV so completing his SAC! Best of luck on the air OM. Likewise John Overton did the trick in Milngavie, Glasgow and so sports GM4GUA now, having already passed the code test. He's using an HW32A on 20 m s.s.b. for the time being but a KW2000B is on the way.

Brian Smith is well away in Barry, Glam, with his new FRG7. Having been disgusted with what he has heard of the CB band just below 28 MHz he says he'll get stuck into the RAE studies and get a proper ticket! After a spell of ten years away from the amateur bands Ken Proctor of 35 Hertford Close, Eastield, Scarborough, Yorks, is active again and would like to hear from old friends including Bernard Hughes BRS25901 who contributes to this column. Ken has a Trio 9R59DS and 90ft of wire and covers all the bands.
The note on David Greenhalgh in the February column resulted in G3SHW of stockport coming up with a Lafayette HA350 for him which illustrates a little of the fine spirit of amateur radio. David, in Poynton, Cheshire is delighted and hopefully he'll be contributing to the column in future.

After using a domestic portable for a while J. Gooditer of Marple, near Stockport, acquired an FRG7 and really found out what the amateur bands are all about. He wants a good prefix list and so, as ever, the answer is Geoff Watts of 62 Belmore Road, Norwich who will deliver the goods for just 40p. From Newport, Gwent comes a first report from Martin Yiezers and a note on his local ARS, reported later. He has 250 ft of wire on his Realistic DXI60 and an 8 ft rod aerial for "the h.f. bands". I've suggested that he try the long wire on those bands too!

Now here is an interesting letter from Bill Land BRS34761, 7 Wellbrook Road, Bishops Clare, Cheltenharn, Glos, who admits to being 72 years young and an addict of RTTY for which he has a Creed 7B printer running from his Eddystone 750 and Trio 9R59DS. Bill wants to hear from others using this mode and can help with a list of parts for the 7B. Another old-timer is John Whiting of Fareham, Hants, who started with crystal sets in 1922 but now sports an FRG7, listening mainly on 10 m for the moment. He can cope with the code test so is contemplating studying for the RAE.

Fame at last! Bob Griffiths writes for the first time to say we have a keen young reader on the Isle of Wight! He, too, has had a lay-off of 14 years but is now back in the swim again but with a lot of pertinent remarks on the plethora of UA stations! Must come as a shock after the relative hush of the bands in days gone by. Bob uses an EA12, AR88D plus converters for 2 m and 70 cm . His aerial farm consists of 132 ft wire, 20 m ground-plane, 20 m V-dipole and a vertical for 80 m .

From Morpeth, Northumberland comes John Hodgson again with DX heard on his Realistic DX160 and long wire. He has received QSL cards from CB'ers in Sweden and Norway! John is keen on RTTY so suggest he writes to Bill Land mentioned above. Bob Bell of 5 Byron Avenue, Blyth, Northumberland can't be too far from John just quoted above and they ought to get together since Bob would like to start a club in the area. Bob is yet another FRG7 owner, having been SWLing for some 25 years and worked his way through a number of sets.
CLUB NEWS Geoff Cole G4EMN, secretary of the Wessex ARG, oft mentioned here, had applications for membership from a couple of readers situated a long way from Wessex. Although flattered, he says that this is not quite the ideal So, anyone who wants to join a club, try to locate your local group or write to the RSGB, 35 Doughty Street, London WCl for the address. Geoff rightly says that every reader of this column ought to belong to a club.
Blackwood and District ARS GW6GW meets every Friday 1930 hrs at Oakdale Community College, near Blackwood, Gwent. On May 12th GW8LJJ talks on Practical Construction and the 19th is film night, Printed Circuit Manufacture. Write to Steve Cole GW4BLE, 10 Llanthewy Road, Newport.
Mid-Warwickshire ARS first and third Mondays 2000 hrs at 61 Emscote Road, Warwick with G3UDN on the air. They'd like to see PW readers, particularly Nick Smith A9050 and C. J. Roe of this column.

Contact Norman Read G8CXL, 86 Telford Avenue, Leamington Spa.

Bury RS G3BRS, every Tuesday at Mosses Centre, Bury at 1930 hrs with RAE courses, code training, local c.w. nets, new local repeater GB3MA on 70 cm . Whew! It's all go! Hon. Sec. is Eric Thirkell G4FQE, Mosses Community Centre, Cecil Street, Bury.

Stevenage and District ARS get together at 2015hrs on first and third Thursdays at Staff Canteen, Hawker Siddeley Dynamics. Morse classes and RAE course at local college by G3SJR. May 18th is the date for a lecture by members of London UKFM Group, while on June 1st G3AGP talks on Electronics in Medicine. Contact Trevor Tugwell G8KMV, 11 The Dell, Stevenage, Herts.

Silverthorn RC produces a ten-page newsletter "Spurious" so they're pretty active, meeting every Friday 1930 hrs at Friday Hill House, Simmons Lane, Chingford, London E4. Contact C. J. Hoare, Hon. Sec., at this QTH.

Newport ARS meets Mondays 1930hrs at Brynglas House Community Centre, Newport with RAE and code classes coming up. Write to Martin Liezers, 32 Barrack Hill, Newport.

Log extracts

B. Smith:-80m C5ABC (Gambia) 4U1ITU 20m C5AAF FC9UC JY5HH ZL2AM $15 m$ CE3BPC C31LU
K. Proctor:-80m EA8QJ ZB2G PJ8CO KL7AVX ZL3BX CO7RS 9Y4NP 40m CO4DC HP1XYA ZL1BAQ ZL2BDP ZL3RD 20m VP8PT HP3XKB HL1JI HK0BBF 55m FP8DX KL7JEJ JA9IWN 10 m FG7BA
J. Hodgson:-80m J3AAG OY5NS PJ8CO 8P6FV 40 m TG4NX YV5APF 20m FM7WV HK1NR VE8RCF VK7AE VP2DAW 15m HK0QA KL7GRP ZS2MI (Marion Is) ZB2G 10m EA9FL HH2MC VU2DK.
J. Whiting:-10m CT2AX EA8BS SV1HX.
B. Land:-RTTY 20m DK6RY EA3ABU IT9BWT JY5KR K6XP OE2KO SM6HUG YU2BOR W2WIX. M. Liezers:-80m KZ5JM ZB2G 5B4DI 20m HK0QA KM6FC YB0HH 15m KL7GRP VP1AB 10m C5ABC EP2RL.
J. Goudier:-20m CT4YN FC9UC.

All s.s.b. except where stated otherwise.

by Ron Ham BRS15744

Richard Staples, G8MME, Lymn, Cheshire, is active on both 2 m and 70 cm s.s.b. On 2 m he runs 400 watts from a pair of 4250 A valves to a couple of 10 -element parabeams, at $40 \mathrm{ft} \mathrm{a} . \mathrm{g} .1$, and on 70 cm , his 2 m exciter, TS700G, drives a Microwave Modules Transverter and a home-brew 4CX250B amplifier producing 250 watts to a 48 -element multibeam, mounted above his 2 m array. Richard is looking for s.s.b. skeds on 70 cm and will be reporting on future activity in the north-west of England. Vic Hartopp, G8COB, Northampton, uses an IC201 transceiver for all modes on 2 m and has

> Reports on the various bands are welcome and should be sent direct, by the $45 t h$ of the month, io:-
> AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT 21 gTW. Logs by bands, each in alphabetical order.
> MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport, PR8 $3 J G$. Reports for both bands must be kept separate.
> VHF EANDS Ron Ham BRS15744, Faraday, Greytrlars, Storrington, Sussex RH20 4HE.
recently been enjoying himself rebuilding a Mohican receiver, and listening to the American CBers on his HRO.

A couple of newcomers to v.h.f., Henry Hatch, G2CBB, South Croydon, using an IC215 is working through the repeaters and Robin Bellerby, G3ZYE, Hove, Sussex, taking part in his first 2 m opening, did not realise there could be such pile-ups of stations on the repeaters. In Littlehampton, Sussex, Norman Langridge, using the v.h.f. section of his Yaesu FR400Super DX receiver with a 3-element home-brew, loft mounted beam can always hear traffic through GB3SN, but, during the opening on March 7th he heard GW mobiles working through GB3BC which has encouraged Norman to modify his aerial systern. Along the coast to Worthing where David Wakefield, BRS39756, uses the receiver of a Pye Vanguard on 2 m , with a roof mounted dipole, and CR100 and R1475 receivers, fed by a long wire aerial, on the h.f. bands. David's interest in radio is further stimulated through his activities as a Cadet Wireless Operator in the Air Training Corps.

Despite the poor conditions and the low atmospheric pressure, 29•3in, Alan Baker, G4GNX, Newhaven, had a 59 contact on 2 m s.s.b. at 1800 on February 26th with F1ENH/P, Boulogne, both running 15 watts, and at 1730 on March 2nd, in thick fog, on Beachy Head, near Brighton, Alan heard signals from repeaters ONOHT and ONOOV and a Buckingham station working through the Kent repeater, GB3KR, $R 4$.

The atmospheric pressure remained around $29 \cdot 5$ in from midnight on February 27th to midnight on March 2nd when it took off and climbed to $30 \cdot 4$ in by noon on the 6th, and, true to form, the v.h.f.s opened up as the high pressure began to fall. During the evening of the 6th, John Kuipers, G4GUX, Brighton, worked GBLY, in Hampshire, on 70 cm , first via GB3AW, Ashmansworth, Berks, RB10, and then through GB3BR, Brighton, RB6, and GB3PH, Portsmouth, RB2. Later he heard signals through GB3BK, Upper Basildon, RB6, GB3SD, Weymouth, RB14, had a c.w. contact with ON4VN and heard 2 m signals through GB3BC, R6, GB3MH, on its new channel, R3, GB3WW, Carmel, Dyfed, R7 and FZ3THF, R4.

Around 1945 on the 6th, Ken Smith, BRS 20001, Horsham, received several French broadcast stations in Band II and patterning on u.h.f. TV channels, and earlier, Graham Laucht, G80QM, Birmingham, worked G8KSN, Ramsgate, Kent first via GB3PI, Cambridge, R6, and then direct. Like Graham, Brian Fenwick, G8BTC, Brighton, heard a variety of repeater signals on 2 m , including Cornwall, GB3NC, R5; Brian noticed that signals were often stronger on the input frequency than from the repeater. Frequently, on the

6th and 7th, I received a good picture from Lichfield, Ch 8, 189 MHz , Continental f.m. stations in Band II and strong signals from GB3BC, BM and KR, with only dipoles feeding the respective receivers. At 0125 on the 7th, I heard two Portsmouth stations, G8NUI and G80QN/M in contact via the London repeater, GB3LO, R7, and at 2152, another pair, G4GUX and Martin Newell, G8KOE, both in Brighton carried out a similar test on 70 cm and had a QSO via the Portsmouth repeater.

At 0900 on the 7th, G4GNX/M using his new IC-240 to a 5_{8} whip aerial, heard strong signals through GB3BC, from a low point in Brighton, F1EBE, Rouen, via GB3LO, and at midday on the 6th, he received signals from the Malvern Hills, GB3MH, R3, and Paris repeaters. At 2206, from Newhaven, Alan had a c.w. contact with ON6FT and at 0011 on the 7th he worked FlEVM/P, Caen, on 2 m s.s.b.

The atmospheric pressure continued falling until 1800 on the 8 th when it began rising rapidly, reaching 30.4 in by midday on the 10 th , and then fell back to $30 \cdot 0$ in by noon on the 12 th which, as expected, caused a tropospheric opening.

At 2230 on the 8 th, newly licensed $6800 \mathrm{M} / \mathrm{M}$, using a FT227R to a ${ }^{1}$ o whip aerial, travelled down to Beachy Head, Sussex, and heard GB3BM, his home repeater and then had QSOs through GB3BC. From Brighton's Race Hill, at 1900 on the 9th, G4GNX/M worked F1BBZ and F3KT via FZ8THF, Vichy, R0, a distance of 320 miles. Roy Bannister, G4GPX, Lancing, Sussex, succeeded in accessing the Vichy repeater but owing to UK traffic on R0 he could not complete a QSO. Both Alan and Roy heard the Ghent, ONOON, R4, and Paris, R6, repeaters and during the evening of the 10th, Clive Penna, G3POI, Orpington, Kent, worked EAlAB on 2 m c.w. and Mike Rowe, G8JVE, East Preston, Sussex, heard an EAl and worked into France and Wales on 2 m s.s.b. Around 2330 on that evening, Alan Belfeld, G4GLN, Streatham, contacted an EA on 70 cm c.w.

John Branegan, now licensed GM80XQ, Saline, Fife, worked his first three countries, G3GZX, GI8JTS, and GW4GTE during the 2 m contest weekend, March 4th and 5th. John said "there was a definite lift on March 4th, and by 2200, GI signals into Scotland were very good and they could hear the Central Scotland repeater in GI".

Throughout the period, 9th to 12th there was frequent co-chanmel interference an Band II and u.h.f.TV and at 0914 on the 11th I received a 599 signal from the Emley Moor beacon, GB3EM, on 70 cm with only a dipole feeding the receiver.

The 10 m band has been open almost daily from February 20th to March 15th with a familiar pattern of strong signals from Russian amateurs in the morning and from north-American amateur and CB stations during the afternoon and early evening. I heard VKs during the early mornings of February 26th and March 7th and JAs on March 5th and 11th working into Europe. On most days signals averaging 539 were heard from the Cyprus beacon, 5 B4CY and the project TESSA beacon, ZE2JV. During the afternoons of March 1st and 2nd, Don Butterworth, G3IKO, Redhill, Surrey, heard the Bermuda beacon VP9BA and I logged the Bahrain beacon, A9XC, during the afternoons of the 5 th and 6th.

February 26th was a good day on 10 m for Gordon Goodyer, BRS 37345, Petworth, Sussex, who heard both A9XC and VP9BA in the morning as well as signals from amateurs in 22 countries. Although
signals were very strong throughout the day Gordon reports a drop off in strength around midday and a quiet band from 1430 to 1515. Roger Bunney, DX TV columnist, using his Hallicrafters $5-10$ receiver logged transatlantic signals up to 37 MHz on the 26 th . Nigel Golds, BRS 36910, West Chiltington, Sussex, noted the powerful American stations around 1730 on March 1lth and the Russians during the afternoon of the 12th.

The exceptional 10 m conditions observed by Gordon and Roger on February 26th were followed by ionospheric disturbances, reported by the BBC World Service, on the 27 th and 28 th which may well have been caused by the solar storm recorded by Cmdr Henry Hatfield, Sevenoaks, Kent, John Smith, Rudgwick, Sussex, and myself from February 21st to 26th. What's more John Branegan, reported auroral activity, with plenty of 2 m c.w. from EI, GW and LA, from 1830 to 1912 on February 27th and from 1657 to 1912 on March Ist. John has built a projection box attachment for his 2 in telescope so that he can record the number of sunspots and since 2048 on March 5th he has been monitoring the telemetry signals from the new amateur radio satellite, OSCAR-8.

Despite frequent overcast skies, Henry Hatfield got a glimpse of the sun through his spectrohelioscope on March 6th when, in addition to sunspots, he saw several filaments and a ribbon flare, on the 10th he counted some 15 spots in four main groups, and on the 15th he noted a bright plage on the east limb. Henry, John Smith and myself recorded solar noise at 136 and 142 MHz on March 2nd, and then daily from the 6 th to the 13 th with noise storm conditions on days 6 th, 8 th, 10 th and 15 th.

According to comments heard both on and off the air by Alan Baker and myself the "Slim Jim" 2m aerial described in our April issue works well and is very popular.

Let's hope that conditions will be good to provide plenty of DX for the RSGB's HF National Field Day on June 3rd and 4th and VHF NFD and SWL contest on July Ist and 2nd. Thanks again for all your reports, and good Iuck if you compete in the contests.

What do the VHFs have to offer?

The accepted part of the radio frequency spectrum known as Very High Frequency ranges from 30 to 300 MHz , ($10-1$ metres), and is generally used for communications by aircraft ($108-136 \mathrm{MHz}$), amateur radio ($4 \mathrm{~m}, 70 \cdot 05-70 \cdot 7$ and $2 \mathrm{~m} 144-146 \mathrm{MHz}$), private and business mobile radio ($7 \mathrm{I}-88$ and $165-174 \mathrm{MHz}$), shipping ($156-165 \mathrm{MHz}$), satellites $(136-137 \mathrm{MHz})$, military, various emergency services and broadcasting by f.m. radio, Band II ($88-108 \mathrm{MHz}$) and television, Band I ($41-67 \mathrm{MHz}$) and Band III ($176-215 \mathrm{MHz}$).

The effective range of a v.h.f. signal is naturally limited by the terrain beneath its path and the prevailing atmospheric conditions. Broadly speaking, the propagation of signals between $30-80 \mathrm{MHz}$ is governed by the E region of the ionosphere, and above 80 MHz , by conditions in the troposphere. These bands are therefore a challenge to both the listener and the transmitting amateur, to be ready for sudden sporadicE disturbances between April and August and at any time, for a tropospheric opening, when the weather
is fine and the atmospheric pressure is high. These v.h.f. openings are exciting, because the signals travel more than ten times their normal range and as the v.h.f. bands are shared throughout Europe, there is a mine of DX, both sound and vision, to be found among the mix-up of continental signals while the event lasts.

During sporadic-E events, very strong signals are heard in the UK from east-European broadcast stations between 65.73 MHz and even stronger signals, from a variety of continental mobiles, interfere with the Band I television channels. There are two beacons in the 4 m band to listen for, GB3SU, $70 \cdot 695 \mathrm{MHz}$ and GB3SX, $70 \cdot 685 \mathrm{MHz}$.

The 2 m band is full of surprises throughout a tropospheric opening; and like most v.h.f. enthusiasts, our readers have heard and worked amateur stations, using all modes, over a wide area from Scandinavia to the Mediterranean Sea, and all parts of the UK.

First indications of an opening can come from any of the chain of 2 m beacons ranging from Cornwall, GB3CTC, $144 \cdot 915 \mathrm{MHz}$, to Angus, GB3ANG, 144.975 MHz , and northern Ireland, GB3GI, $144 \cdot 137 \mathrm{MHz}$, to Wrotham, Kent, $144 \cdot 150 \mathrm{MHz}$. Having decided, from the number of UK beacons heard, the extent and predominant direction of the prevailing lift, it is worth looking for the continental beacons such as; DLOPR, 144.910 MHz , EA3URE, $144 \cdot 042 \mathrm{MHz}$, FX3THF, 144.905 MHz , LAlVHF, $\quad 144 \cdot 860 \mathrm{MHz}$, OH6VHF, $144 \cdot 900 \mathrm{MHz}$, OK0EB, $144 \cdot 970 \mathrm{MHz}$, ON4VHF, $145 \cdot 990$, OZ7IGY, $144 \cdot 930 \mathrm{MHz}$, PA0JTA, $144 \cdot 148 \mathrm{MHz}$, SK4MPI, $144 \cdot 960 \mathrm{MHz}$, SP2VHF, $144 \cdot 980 \mathrm{MHz}$, and YUIVHF, $145 \cdot 990$ to name a few. A beacon's signal is a continuous note, frequently interrupted with its call-sign.

Another good propagation indicator is the 2 m repeater network, using f.m., which now provides considerable coverage of the UK and is rapidly spreading through Europe. Each repeater shares a carefully planned channel numbered from R0 through R9, covering a series of input frequencies from $145 \cdot 000 \mathrm{MHz}$, in 25 kHz steps, to $145 \cdot 225 \mathrm{MHz}$. The range of output frequencies, also in 25 kHz steps, is 600 kHz higher, from $145 \cdot 600$ to $145 \cdot 825 \mathrm{MHz}$. In addition to handling the amateur radio traffic, these unmanned, automatic duplex transceivers periodically identify themselves by transmitting their official callsigns.

At some time during a tropospheric opening, continental f.m. broadcast stations will be heard in Band II, often stronger than the "Iocal" BBC stations, and Band III television will suffer from co-channel interference.

Space enthusiasts can use the AMSAT-OSCAR 7 satellite which has two repeaters (transponders) aboard, 2 m to 10 m and 70 cm to 2 m . Signals received by the satellite between $145 \cdot 85$ and $145 \cdot 95 \mathrm{MHz}$ are re-radiated between 29.4 and 29.5 MHz and signals going in between $432 \cdot 125$ and $432 \cdot 175 \mathrm{MHz}$ come out, inverted, between 145.975 and 145.925 MHz , The satellite's telemetry beacon can be heard on $145 \cdot 980 \mathrm{MHz}$.

Every year, the RSGB, in conjunction with the IARU, arrange a number of contests, on 4 m and 2 m , for licensed amateurs and SWLs. These events are interesting because they are well supported by individual and group entries operating from their home QTH, or from portable or mobile locations. Should a contest coincide with an atmospheric disturbance then there is plenty of DX about.

Sections of the 2 m band are used for Slow Scan TV, RTTY, the Radio Amateurs Emergency Network (Raynet), and scientifically, for moon-bounce experiments, meteor scatter and the study of auroral propagation.

I suggest that readers who are interested in v.h.f. should obtain a copy of the RSGB VHF/UHF Manual and talk to the v.h.f. operators in their local radio club.

SHORT WAVE BROADCASTS

by Charles Molloy G8BUS

Harmonics, though familiar enough to the radio amateur, may well be an unknown phenomenon to the broadcast band DXer. A harmonic in this context is a spurious transmission on twice or three times the frequency of a broadcasting station. The basic frequency is called the fundamental, twice that frequency is the second harmonic, three times the frequency is the third harmonic and so on. Harmonics occur naturally inside a radio transmitter but great efforts are made to suppress them so that they do not reach the aerial and radiate. High power transmitters are now commonplace and when connected to a directional array the effective radiated power (e.r.p.) may easily be in megawatts. Under these circumstances it is easy for a few watts of the second or third harmonic to be radiated along with the fundamental. Normally, this is not a problem as the s.w. broadcaster ought to be transmitting near to the maximum usable frequency (m.u.f.) to obtain optimum results. Harmonics would then be above the critical frequency and will penetrate the ionosphere and not come back to the earth.

Now that the higher frequencies are opening up again after the recent sunspot minimum, reception of harmonics should occur more often. Radio amateurs make world-wide contact on 10 metres using only a few watts, and reception of harmonics in the range 23 to 30 MHz should occur over a similar range. Harmonic DXing is the broadcast band DXer's equivalent of QRP (low power) and as such has a challenge and fascination all its own. One snag though. Be sure you are listening to a genuine harmonic and not to a spurious signal generated within your receiver. A check for the fundamental or a check of conditions on 10 metres is a help.
From Guernsey in the Channel Islands comes a letter from George Le Couteur who heard Radio Moscow when he was tuning through the 10 m band. The exact frequency was 28.350 MHz which is three times 9.450 in the 31 m band and sure enough he "found them putting out their usual huge signal on the frequency". The second harmonic is 18.900 and George found them on this out-of-band frequency as well. Other DX heard, on fundamental this time, is Radio New Zealand regularly around 0830 on 11820 kHz , faint but clear of QRM.

WITH UNIT THREE WE INTRODUCE OUR

 Stirling Sound

MONEY SAVING， VERSATILE

with a new module every constructor

 is going to welcome
Audio Plan lets you build it your way！Using the vast experience gained

 from selling direct to chousands of constructors，we have pur together from our straminined range of constructor modules the three hi－fi assemblies most wanted for power，performance and price（see below）．Each features our unique Unis Three stereo push，butson selectorffilter module for ceramic p．u．，mag．p．un，radio，tape zecordfrepiay and high cut and low cur filcers． Connections are yia three 5 －pin Din sockets mounted ar rear．UNLitKE ANY OTHER MODULES，YOU CAN EXTEND OR SHORTEN UNIT 3 TO MAKE IT FIT ANY CABINET SIZE BY SIMPLY CUTTING ACROSS THE P．C．B．AND POSITIONING TWO SECTIONS AS REQUIRED．These are then connected to each ocher again．Simple！Sensibfe！and so yery useful to anyone wanting his assembly to have that extra professional appearance．Note－Unis 3 may also be used with other than Stirling Sound modules if you arentr changing to Audio Plan justyer．

POWER AMPLIFIERS

Oulpute quoted In watts R．M．S．into 4 ohma $\pm 1 \mathrm{~dB}$ ． cate the appropriste Stinding caie the appropriate Stiriing tuf1 range，see our new calalogue．

s8．t40 $\quad 40$ witts R．M．S．Oiftertion typleally $0 \cdot 1 \%$ ．
素．14 $\quad 5^{\prime \prime}$ watt R．M．S．Dintorion typically 0.1% ，
EE．59
ge．tive 100 watte R．M．S．Dintorion al hatipower，

He．ste Hataink for $\mathbf{\$ S . 1 4 0}$ or $\mathbf{\$ 5 . 7 6 0}$.
H象．110 Ditto for SS．1950．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50

UNIT TWO PRE：Mmpand controu unit

Proyldes treble cutboost $\pm 15 \mathrm{~dB}$ at foKHz；base $\pm 15 \mathrm{~dB}$ at 30 Hz ； volume control；stereo balance control．input sensitivity $1-5 \mathrm{mV}$ ． R．I．A．A．Compengeted．SIN ratio $75 a B$ far 5 mV in．Output 200 mV to $₹$ volf according to tinput voltage．Blach front panel，white itifas． $220 \times 80 \times 50 \mathrm{~mm}$ ．Supoly voltage $10-10$ Y．D．C．

ASSEMBLY	POWER AMPS．	CONTROL	SELECTOR	POWER SUPPLY	PRICE POST FREE zinc．V．A．T．
AUDIO PLANA	$2 \times 60 \mathrm{~W} . \mathrm{r.m.s}$.	Unit 2	Unit 3	60 V	＊ 19.85
AUDIO PLANE	$2 \times 40 \mathrm{~W}$. r．m．s．	Unit 2	Undt 3	45 V	全44•95
AUDIO PLAN C	$2 \times 20 \mathrm{~W} . \mathrm{r} . \mathrm{m}, \mathrm{s}$ ．	Unit 2	Unit 3	34 V	¢38－95

＊THE STIILINGG SOUND DISCO／PA PROGRAMME

Modular D．I．Y．apsemblies tor great economy：Controlfilizer Consoleq：Sound－ltolit Units inctuding the cable－leas Spectra－ annic；Misers：Amps：Spatkers：＇Ampower＇amplified speakers，etc．Mention＇Disco＇when sending for new catalogue
as below．

ALL PRICES ING．V．A．T．\＆POST FREE \star ACCESS OR BARCLAYCARD－JUST GIVE YOUR NUMBER

5tirling
 Sqund

Dept．PW6，
37 VANGUARD WAY，SHOEBURYNESS，ESSEX Tel：（03708） 5543
SHOP AND SHOWROOM
220－224 West Road，Westcliff－on－Sea．Telephone：Southend（0702） 351048.
TO ORDER Cash（Chrowupmonay order）with

New Stirling Sound Catalogue
 READY tecinteal iniormation，ettc．Send NOW $\begin{gathered}\text { zefitrs．} \\ \text { refampz for your copy by }\end{gathered}$

\square

Harold Brodribb, St Leonards-on-Sea has also picked up harmonics of Radio Moscow, on 23.920 MHz (2×11960), $24 \cdot 110(2 \times 12055)$ on $29 \cdot 1$ (?) and $29 \cdot 8$ (?). Harold is now using a home-made converter with his CRIOO which gives very much better results in the range $25-30 \mathrm{MHz}$ and he reports increased activity in the 11 m broadcast band (25605 to 26095 kHz) with reception of Tel Aviv on 25605 at midday and of the Voice of America (location unknown) on 26000 kHz at 1800.

Short-wave crystal sets are in the news again with a report from Rod Hunt of Darlington who pulled in Radio Canada, Finland, Norway, Sweden, Austria and a number of others, using a home-brew crystal set and a 50 ft outdoor aerial. Rod says that one definitely needs patience and persistence and it is only a matter of time until Australia is caught!
Radio Australia has attracted the attention of George Norris of Stowmarket (FRG7 and Windom Antenna) who says that propagation on this path at the moment seems to favour the morning between 0700 and 1000 . "Try 11740 kHz (25 m) first and then 21680 and 21570 (13 m). The former seems to hold up well most of the day with QRM at times". William Stevenson (Manchester) has a Vega 206 which he uses with a folded dipole in the loft for the 19 m band and a 45 ft Zepp with a.t.u. for the rest of the bands. His \log included Radio Australia on 11705 kHz at 1500 SIO 434. Fifteen-year-old Robert Pound of Cambourne in Cornwall is a regular listener to Radio Australia on 11740 but has been trying without success on 4920 for the 10 kW VLM4 which relays the Domestic s.w. Service between 1930 and 1400. Has anyone logged this station? Robert, who uses an exWD receiver (type unknown) and an end-fed aerial situated in the loft, has beeen trying to pick up Radio Kaduna, Nigeria on 3396 kHz in order to hear the talking drum interval signal. The NBC international service is also using this interval signal. Chris Howles of Lichfield (Vega 206 and 50ft long wire) reports hearing Lagos signing on at 1800 on 15120 kHz in the 19m band and according to the World Radio and TV Handbook the interval signal precedes signing-on.

MEDIUM WAVE DX

by Charles Molloy G8BUS

A long interesting letter, just bursting with enthusiasm from Mike Kuske of Folkestone describes how he heard his first North American m.w. station. His National Panasonic GX600M had been purchased for short wave listening but after reading $P W$ he decided to try the medium waves for, although interested in North American domestic radio, he never thought it could be heard in the UK. With 100 ft of wire wound around the loft for an aerial he pulled in WINS in New York City on 1010 kHz at 0045 and he continued
to listen to it until 0400. Subsequent night listening between 0100 and 0330 produced WHN New York on 1050, CHUM Toronto 1050, CFRB Toronto 1010, CHNS Halifax 960, CJYQ St John's 930, WCAU Philadelphia 1210, WOWO Fort Wayne Indiana 1190, CJCH Halifax 920 . Mike now intends to obtain one of the new Yaesu Musen digital receivers and he also plans to construct a loop. A number of points arise out of Mike's letter.
Reception of North American m.w. stations is not limited to the winter. DXing is possible throughout the year. All that is required is a path of darkness between transmitter and receiver and this occurs some five hours after local sunset in the UK. Even on the longest day, sunrise oocurs seven hours after sum set at this QTH though this period may vary according to location in the UK. At my QTH this means about 1_{2} hours DXing of NA before dawn on June 21st and much longer periods during April, May, July and August. Only stations on the eastern seaboard of North America will be heard in June but on the other hand European QRM is light as Central and Eastern Europe will be in daylight. DXing North America in summer can be rewarding. I once logged the 40 watt relay at Glovertown in Newfoundland on 1090 kHz during the month of July.
Mike noticed that fade-outs lasting for periods of several days are common on the North American path and he wonders if there is any set pattern for good reception. Fade-outs do recur sometimes after 28 days, which is the period that a disturbance or spot on the surface of the sun takes to rotate and face the earth again-wthat is if it lasts that long. Reception is often at its best just before a fade-out so it might be possible to predict such a peak. Matters are not so simple, though, as the ionosphere is a complex medium and long range propagation on the medium waves has not been studied to any degree. After all the band is intended for looal broadcasting! In any event the medium waves are never dead, there is always some DX to be heard. If North America cannot be heard at all then South America will be at its best. If you hear an American voice during a fadeout then listen carefully for it may be something special such as Puerto Rico or perhaps the American Virgin Islands. I shall give up medium wave DXing if it ever becomes possible to predict what can be heard as most of the fun will then have disappeared.

Finally, Mike offers a tip to QSL hunters. International Reply Coupons cost 25p in the UK but stamp dealers can supply unused postage stamps for most foreign countries. These are more convenient for the recipient to use and, a lot cheaper to buy (for Canada in Mike's experience). A very good idea if you know what value of stamps to obtain for a return letter.

Central and South America are often heard well during the summer. D. R. Mayhew (Littlehampton), who uses a Philips receiver and the PW 40in loop reports hearing Radio Managua, Nicaragua on 620 kHz , La Voz de Mexico on 730 , Radio Cadena el Salvador on 760 , 'ROK 80 ' in Juarez Mexico on 800 , Radio Sutatenza Colombia 810 and Radio la Versatil El Salvador on 1300 kHz . More Latin American DX is reported by Steve Whitt (Cambridge) who used an Eddystone 940 with a 2 ft square loop and the $P W$ balanced amplifier to pull in Radio Margarita 1020 and Radio Coro 1210, both in Venezuela. "It was very interesting to receive my first South American DX, I don't know how I missed it before," writes Steve. It is very easy to pass over Latin Americans, especially during a North American fade-out, and class

HERE IS THE NEWS

One of the mejor problems confronting today＇s electronics designer／enthusiast is tha incessant stream of new types of ICs and components．So，where radio is concamed，our new cataiogue is a revalation to the circuit user．The rew Ambit catalogue contains all that is ment and worthwhile，plus feature articles describing spplications work，providing ideas and suggestions－and some radio theory basics－like tuned circuits and impedance matching－that cut through the flanned to give you essential practical detaits to halp you with your own design work．We also invite customers／readers to submit their own teatures for our radio magazine supplement on modern RF circuitry and techiniques．

Featured in our catalogue／magazine suppjement：
CA3189E The new FCA FA IF system described in denail，with an＇ultimate hifi＇zapl－ ication in our rafornce saries FM IF unit bacad on livear phase filtert
ULN22G4／The new AM／FM／Audio combination IC that hes revolutionized portable TDA1803 redio design． 2 to $12 v$ voltsge range $10-14 \mathrm{~mA}$ total standby．
TDA1062 LF／HF／VHF oscilator，bakninced mixer，RF stage and pin dioda age drive－a versatite RF propesting derite that faterves it muth wider fudienco．
HA11219 Impulse noite blanker for mobite end fixad radio／audio．It can even＂elaan＇ noisey cipnal otharvica inzudible？Destined for a big futeven．
SGS＇entry into the AM／FM rasio IC battio with a promiting approsch that tifipets AM and FM functions into separate blocks
TDA1220 SGS＇entry into the AM／FM rafio IC battle with a promiteng approseh that
CFM2fLFY The worlds imallett coramit ladder and methanical filvars from TOKO MA1023 Switcled $12 / 24$ hour $0.77^{\prime \prime}$ LED display alarm dock modivie with no RFI The chances are that our catalogue will be the first place many of you will see these new products．Backed with our extensive R\＆D，wo aim to provide a regular stammary of new products in the radio and associated fyelds of elec－ tronics－and we irwite all submissions for consideration．
In the theory section this issue：
Tunod tircult imped oncts and metching－trackıng and bendspraded－a noval appeoach to
 your money befori you buy one，and see how they＇ra meda！
In a world of elpetronics that constantly axpands and dwersties into an increasing mumber of specialities，we offer you a nefuge whare wo stick to one main theme，and keep you informed to a standard not passibte in publications without direct every－day involvement in project research，development and evaluation．

Wisch of the ratinfaction in pur naw approwch to tpacialized foatures，is the foct that yous wilt aluo be able to obtain all tha nemasiry parts for vour circuit from tut at pices the
mit so catipeteritve that we＇ve band number one In conta／fitions since we started trading：

TOKO cotls ond filtera：

Abrgote than oved ringe of IFi for $455-470 \mathrm{MHz}$ ， G D． 11 MMHz in 7 mm sis 10 mm square styles Now including TV vides and taund 1Ft．trom 30－339， Coifs for Shortwew，coils for VHF F
LW／MWH－with 800,000 in stock1
MFL， 455 24kHz SSA titter CFM2 minfonure machanical falle LFY 455 delement Iedder filter CFSE10才 ctramic FM IF fittre B8R3132A Gpole lineor phose FM 68R3125 foole linetr pheme FH
 Ratio disertminerors tor $456-470 \mathrm{kHz}$ OEMf：Wh have the mort infigue stock of if sfigur cowtichalta in the world－and pffer＂ tuti currom part sanvice for＂ropcists＂ TOKO chokea：
Stock yofun from 1 uN 10120 mW tn threp type
78s 1．1006uH： 18 p dnimotf
8RE $100 \mathrm{uH}-33 \mathrm{mH}: 190$ on
10RE $4,7 \quad 120 \mathrm{mH}$ ； 33 p ons off
Alto tunesbly high valun inductors，woth over
50\％adiurtmant ranget from nom valuen
TOKO tunerheyd
EF5EOO Rencoln varicap／Mot EC3302 premium tativaruenp AT／NT3 302 Combened tunarfom tinng 8.25 Reforance paries tunar modulen for FM As welt as att thas praviourty edvartized．．．m EFGB03 3 MOSFET wery high gnin low maine Be 1086 trape viriceto tuner with

 IF pramps，CA3i B9E All tunar furctions aic，muta，maters ete． Spectrum Hablysir alighad 16.25 MPX decodert Z 2 w of montol 16.45

		$\begin{aligned} & \text { Powner rag } \\ & 723 \mathrm{CR} \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Ferfite rofr } \\ & 74 \times 9.5 \mathrm{cmo} \\ & 30 \end{aligned}\right.$
C430898	1.94		
Ca3tage	2.75	NE550\％0．80 ${ }^{\text {² }}$	18x8．5 076
HA1937\％	2.20	TAABE0 0．50．	17．5x9 50.39
TBAl20	075	1200 \＆．85＂	20×1.6054
tBat205	100	PLL \＆minc	mw call 0.27
UA720	2.40	8038CC 4，50＊	LWy coll 0.30
7ea651	1.81	NES5SV \＆．55＊	coupling 0.20
HA1tap	\＄，40	NE556V $2.50{ }^{\circ}$	clipa 005
MC1350p	¢ 20	NEE908 3，60	\＄xil15 100．25
MC1330	135	NE5S18 3，50	0.12
4A753	3.80	NE582日 3．50＊	Trimarer a
MC1496	1.25	NE5S5K 2.50	2．5－6p\％ 0.3 \％
TPA1062	195	11C90 1400	1．5－10 0．18
TOA1083	1.95	SPE629 420	2.22019
ULN2204	1.95	Vanicap diad	338 ${ }^{3} 8$
TDA1220	1.75	P／N dicoles er	2139 mml 0.97
TOA1090	3.35	BAT02 030	55.60024
Docodira for	MPX	日A121 0.32	530 car .0 .18
ACC1310P	220	ITT210 0．30	736 cer ． 0 \＄9
CA3090AR	3.75	88105 040	MOOULES．
HAl196	4.35	B－8）048 0.45	MA1012 claek
＊ 8 4490	2.20	MVAM2 1.49	120w24 hr9 45
Audio		MVEmilis 105	Iranslo． 1.50
tMulion	1，00	MVamizs 1.05	MA1023
LM381N	1，81		730 Aatelay
2283	1.00		wit alatm oat
TEAS10aS	109	$\begin{array}{ll}\text { BA182 } & 031 \\ 0891 & 008 \\ 880\end{array}$	
TCA9AOE	180	OAG1 008	tranilo 165^{4}
TJA2002	1.75	Resistorxkaps	am／im turnar
TOA202\％	2.99	A naw range it	
Opampa		Out cilprica	previously sdv．
Lim301N	$0.39{ }^{\circ}$	litit．	EF5400 975
UA741	$0.34{ }^{\circ}$	Meters	EF5801 17，45
CA3130	$0.85{ }^{\circ}$	Min edge with	7020 696
LM3900N	$0.68{ }^{+}$	varizly of scates	7030
Power ragultion		${ }^{\text {Hinem，}} 2500^{\circ}$	complate kia
78050 C	$155 *$	30 k 50 fat face	tor tuners／af，
TDA1412	$095{ }^{\circ}$	2.35	meted facators
7815 UC	1.65		uee prica tist
28M20	120		
399824	1.20		

AMBTVNTERNATIONAL

Why use half

 a system？

When for the same price you can have a complete system
PB Breadboards and Blob－Boards are the only Bread board system in the world which enable you to
Design，Test Develop，Prove the Circult working and produce a professional printed circuit board．

S－DaC matching Blob－Board＋Projact Booklet $\mathbf{E S . 5 0}^{50}$
T－DeC matching IC Blob－Board＋Project Book $\quad \mathbf{4} .50$
U－DeC A matching IC Blob－Board＋Project Book $\mathbf{4 . 6 5}$
U－DaC B matching IC Blob－Board＋Project Book fB． 89

AT LAST！ SEEMET THE FAMOUS POCKETSIZE METAL DETECTOR

Seemet readily detects concealed ferrous and non－ferrous metals within range of its detector field．Ideal for finding conceaied pipes，wires，nails etc．One－handed operation，uses standard PP3 Battery \｛not supplied）．
 finc．VAT），full instructions supplied．

AVAILABLE IN KIT FORM

UNBEATABLE DIMMER OFFER

from Britain＇s largest Dimmer Makers．
Complete Kit of Parts for our VCL 500M，500W Dimmer Switch． Only £2．00，plus p． 8 p．25p． （inc．VAT）full instructions supplied．
Send coupon betow with your remittance．

GLADSTONE TERRACE，STANNINGLEY，LEEDS，LS28 6NE．
Telephone．Leeds（STD O532）563373 Telex 55711 GKYNWED］

To:- READERS PCB SERVICES LTD, PO BOX 11, WORKSOP, NOTTS

Please supply PC日僮as indicated by tick/s In box/es......

Post and packing is for one board or set of boards. Prices include VAT. Remittances with overseas ordera must be sufficient to cover degpatch by sea or afr mall as requlred.

I enclose Postal OrderfCheque
ACCESS welcome. Sand card number only.
No............................
for £........... made payable to READERS PCB SERVICES LTD

NAME

ADDRESS \qquad

Any correspondence concerning thls service must be addreased to READERS PCB SERVICES and not to the Editorlal offices.

©
 $1 \square$

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EvER DISPLAYED

HF 7948 FRONT END
 Outputterminal for digital frequency meter; Antenna impedance- 75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity- $0.9 \mathrm{u} V 26 \mathrm{~dB}$ signal to noise ratio $\pm 75 \mathrm{kHz}$ deviation; intermodulation 80dB Image rejection-60dB; Tuning voltage-1V to 11 V ; Total gain- 33 dB ; Intermediate frequency- 10.7 MHz ; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$,

TECHNOLOGY:

Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors; Silvered coils.

FI 2845

IF AMP AND DECODER

TECHNICAL CHARACTERISTICS: Intermediate frequency -10.7 MHz ; IF Bandwidth- 280 kHz ; Signal to noise ratio -70 dB with im V input; Distortion-mono 0.1%, stereo 0.3% : Sensitivity-30u V up to the 3 dB limit; Channel separation-40dB at 1 kHz ; Pass band--20 to $15,000 \mathrm{~Hz}$; Rejection at 38 kHz greater than 550 dB ; Am re-jection-45dB; De-emphasis-50 to $75 \mu \mathrm{~s}$. Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than $0 \cdot 3 \mathrm{~dB}$; Output impedance- 100 Ohms; Output voltage500 mV : Phe se locked toop stereo decoder; Output for LED VU-meter; Null indicator; Outputs for AGC, AFC and inter-station muting; Consumption- 55 mA LEDs extinguished. 100 m A LEDs illuminated; Power supply-15V; Dimensions $195 \times 76 \mathrm{~mm}$.
CIRCUIT TECHNOLOGY:
Epoxy printed circuit board. Monolithic integrated circuits, ceramic filter.

ALS 1500
STABFILSED POWER SUPPLY

TECHNICAL CHARACTERISTICS: Output voltage-15V; Max. output current -500 mA i Thermal coefficient less than $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; ${ }^{\text {t }} 15 \mathrm{~V}$ power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions $-65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

LED VU-METER
Station strength indicator

£8.77
1nc. VAT, P\&P
TOUCH CONTROL PRE-SELECTION UNIT LED channel indication

£13.50
Inc. VAT, P\&P
ILLUMINATED POINTER Station finder

Digital display of received station frequency

FREQUENCY METER

NUMERICAL DISPLAY
Pre-selected channel number

LYNX ELECTRONICS (LONDON) LTD

92 EROAD STREET, CHESHAM, BUCKS
Tel. (82405) 75154
P, and P. Son - Ovoraete 00p - Hatching 20p per palr. ACCESS WELCOME
VAT 6% except for fteme " which wre 12i\% - No VAT Ovariess.

HOME MICRO COMPUTER NASCON ONE £197.50 plus VAT

SUPER SAVERS

 SPEAKERS
mp O or 15 G en app TITAN 5 yare FANE 2 verri ALL PRICES INC. VAT

HI-FI TYPES

Listivalue | 5p. Price |
| :--- |
| Sp. Price | ANE. Medtt 93 Dual Con Sp. Price

Sp. Price WHE FEDAS OH OENTON $2 \times P$ KITP
$10^{\prime \prime}$ GELENOALE $3 \times P$ KFT a" FANEMODE DNEK
10"ELAC Model 1ORM GROUP/DISCO TYPES

EXTRA SPECIAL MAFL ORDER OFFER

TITAN TA 50A 50 w AMPLIFIER

The I.C.E. range of multimeters provide an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.

Supertester 680R (illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges -10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
£25.25 + VAT

All I.C.E. multimeters are

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 k \Omega / V, \pm 2 \%$ fsd on a.c.
* 48 Ranges -10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{E 1 9 . 9 5}+$ VAT

Microtest 80

* $20 \mathrm{k} \Omega N_{1} \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ isd on a.c.
* 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
$£ 14.95+$ VAT
 50-plus page, fully detailed and illustrated Operating and Maintenance Manual.
Now available from selected stockists. Write or phone for list. or for details of direct mail-order service.

PRACTICAL WIRELESS T.V. SOUKD TUHER

 IF Sub-Assembly (G8) $\mathbf{5 6 \cdot 8 0}$. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner £4.50. P \& P35p. 3-way Station Control Unit $£ 1 \cdot 20$. P \& P 25 p. 6 -way Station Control Unit (Special Offer) $£ 1.00$. Power Supply Prtd Circuit Board $£ 4 \cdot 00$. P \& P 30p. Res, Caps, Semiconds, etc, for above $£ 5.80$. Mains Transformer for above £2-50. P \& P 30p. add 124% VAT to price of goods. $\mathrm{P} \& \mathrm{P}$ all ltems 85 p . Callers welcome at shop premises.

MANOR SUPPLIES

172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 875 !

Your career in Electronics?

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, In every feld of Electronics today. We offer the finest home study trainling for all subjects in radlo, television, etc., especiaily for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run Brltish home study Coilege specialising In electronics subjects only. Fultest details will be gladly sent without any obligation.

WATCH BATTERIES 65p Ray-o-Vac long Ifie, Most types, DIX KIT 35p.
(with battery order) Case opening tocl, fits most watchos. Tweezers, Equiv, chart, Instructions.
FROM CASIO
F. 100

SPORTS WATCH
Chronegraph whth up to 25 functions ineluding net times, lap ilmes and 1st 82 2nd place HMes to $1 / 100$ second. Water restatant plasilc cese a strap.
$£ 19 \cdot 95$

52QS-14B
Melal encazed yersion of $F-100$ with itaintess steel
Melal ancared yersion
bracelet RRP E44-95.
£34.95

31QR-16B

This now wotch is really well rylled. $7+2$ tuncilions plus slopwatch from one etcond to
13 hourc 7.5 mm thlek. 3 houre $7 \mathbf{5 m m}$ thlck

£ $\mathbf{3 4} 95$

RRP 544 p5
31QR-17B
As sbove bul 8.4 mm
£29.95
RRP $£ 35$-95.
ALARM WATCH (illustrated above) At lost they have arrivedit Sin diglt deaplay Hre, Ming. Seci plua Doy or Hfy, Mina, Dale plarm with onjoff indicatlon.
$25 C R+6 \mathrm{~B}$.

£49-95
25cs-188. Superbly slyled equare faced watch. Sllim Case. RRP E 749 .
£59.95
29CS-11B

WORLD TIME

Times and dates in ten world areat plus optionsl time. One tauch sumniertime abjustiment. Second dispiay, ± 10 raconds month.
g- 6 mm
thick.
£59.95
RRP ETM 55.

Unings otherwise ataled CASIO watchea have a constan! LCD display ol hours, minutas, seconds amjpm with day, dafe and month on damand. With olegs face and all itbinless othel cases, they pre water resistant to too fael. One bsitery lsols approximately 12 monthe Accurate ta leas than ± 15 secondsimonth

IBICO 075

Clockjealendar displaye Hours. Min ules, Dale and Day. STOPWA Clit measureas Net and lep (imest from Fuill access Memory. Parcemiages. 5000 hrs batteries, leatheretto wallet: ($8 \mathrm{~mm} \times \mathrm{B} \times \mathrm{mm} \mathrm{m}^{2} 115 \mathrm{~mm}$)
£23.50

CASIO

CASIO SCIENTIFICS
olgition: FX34 \& 1495 . FX39 E15 85, FX140 E17.95, FX124 819 \%5.
 LC74 E15-95.

Sent 85p for our mustraled chalogue.
Pikes include VAT and PoP Send chaque. P.O. Dr ghone your epedit card nurnber to'-

GOOD NEWS FOR DX-ERS!

Now you really can aftord a 1 requency Counter. We proudly announce our model $\mathbf{R Q}-3$, a to the home reliable no-nonsense design, available RQ-3 is equally at home in the DX-er's shack. school scjence jab, or servicing workshop. It will display FREQUENCY, PERIOD, and WAVE LENGTH. Coupled to the local oscillator of yaur Rx. it will accurately measure the receiver tuning.
ABRDGGED SPECIFICATION

- Operation up 1050 MHz
-Power tequirement: 240 V AC
- Movable decimal point: 6 digit accuracy.
--Switch to sclect frequency, period, or waveSengli $\%$ accuracy,
-High input impedance and sensitlvity.
Send Now. Complete KIT $244 \cdot 95$ - $\mathrm{g} \%$ VAT.

Also availabie: Crystal Calibrator model RQ-1 A novel design which gives CW or amplitude modulated harmonics of $1 \mathrm{MHz}, 100 \mathrm{KHz}$, 10KHz.
Kit al unbeatable price $\mathbf{8 1 2} \mathbf{2} \mathbf{7 2}+8 \%$ VAT. Send for details-our aims is your complete

ROCQUAINE ELECTRONICS, Afdebaran, Le Coudre, St. Peters

 GUERNSEY, CHANNEL ISLES.
ETCH RESIST TRANSFER-
 KIT SIZE 1 : 1

Complete kit 13 sheers 6 in $\times 4 \frac{1}{2}$ in $£ 7+50$ with all symbols for direct application to P.C. Board. Individual sheets $\mathbf{2 5}$ p each. (1) Mixed symbols (2) Lines 0.05 (3) Pads (4) Fish plates and connectors (5) 4 lead and 3 lead and pads (6) Dils (7) Bends 90° and 130° (B) B-I0-12 TO.5. cans (9) Edge connectors 0.15 (10) Edge connectors 0.1 (11) Lines 0.02 (12) Bends $0-02$ (13) Quad in line

CIRCUIT LAYOUT TRANSFERS SIZE 2:1

Ore sheet 12 in $\times 9$ in giving all transfers as in etch resist from No. 3 to No. 10 inclusive makes circuit \{ayout easy. Black only. Price $\ddagger 1$

Also lines and bends. Price EI.

FRONT AND REAR PANEL TRANSFER SIGNS

All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex etc. Choice of colours red, blue, black or white. Size of shest 12 in $\times 9$ in. Price ≤ 1.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse letcering. Colours red, blue, black or whice. Each sheer I2 in $\times 9$ in con tains capitals, lower case and numerals.
tin kit or $\frac{1}{h}$ in $\mathbf{C l}$ complete. State slre required
ALL ORDERS DISPATCHED PROMPTLY. ALL POST AND VAT PAID.
Ex, U.K. add 50p for air mail. Shop and trade enquiries welcome.

E. R. NICHOLLS

P.C.B. Trantfers Dept. PW, 46 Lowfield Road, Stockport, Chet. 661-480 2179

WHAT'S NEW?

y performing over

100 EXPERIMENTS

creating more than 20
practical applications

You learn all about the most up to date eleceronic circuits; how to calculate, repair, and design them, while pursuing your fayourite hobby, Start from scratch, or improye your prasent knowledge, train and earn money in your spafe time, curn your pastime into valuable job opportunities.
Compare our prices: you receive the entire course, "mini laboracory" and companents for LESS than the price of the components alone.

COMPLETE KIT: nothing else to buy*

You get:

- Instruction manual: over 200 pages of detailed step-by-step instructions. Start Prom scratch explains basic laws and Dhysirs of Electricity, semuconductor pranciples and operation electronic transistors, triacs to interrated circuits (CMOS operational amplifiers) etc.
Over 200 Electronic components: aerospace tech nology, Printed circuit experiment board, ohoto transistor. triac, thyristor I.C.S. transistors (including FET, MOSFET) LEDS plus resistors capacitors, milliameter, potentiometers, variable capacitor. etc. . . etc. . etc
measuring instruments (you assemble yourself from among components furnished in kit)
ELECTRONIC VOLTMETERS, LOW FREQUENCY REGULATED POWER SUPPLY. MULTIAMTER,

You perform:

Over 100 different experiments: from the most basic voltake measurements to radio transmitter circuits and including HI FI , Flot Flops. le applıcations, Triat use ett . . . etc . . . etc.

You construct:
More than 20 complete functional systems: light modulator, hish fidelity amplifier, radio control gàdgets and games and many, many more.
*Hand tools not furnished

JONES SUPPLIES

TTL

CMOS

MISCELLANEOUS
U2 size NI CAD Batts. $\mathbf{8} \mathbf{2} \cdot 6$ 8 pln 741 op. amp. 2. 6 Scope Probe $\times 1 \times 10$ e14.80 BNC Tarmination. sop P 4 P BNC 80 ohm Socket. Sigatinjactor: AF/RF, $\mathbf{8 5}-\mathbf{2 0}$ 30 P \& P
Multimetor 1,000 OPV E6.25 it Ranges P \& P 50 g .
Telephone Pick-Up Coll - 15 $240 \mathrm{~V} 12 / 0 / 421 \mathrm{amp} 52 \cdot 05$ throuded trans, 60p P \& P 240V 15/0/15 1 amp ce-70 shrouded trans. 60 p P \& P 40V 30/0/30 1 amp E. 5 shrouded trant. 00p P\&P $240 \mathrm{~V} 30,24,20,15,12,2 \mathrm{amp}$ unshroudad tranc. Es-40 60 P P \& P_{1}

BARREL KJTS GUARANTEED 100% GOOD COMPONENTE 99p Each Llne.
15. TOS NPN Sillean Power
5. TO-220 Plastie Power - Amp
20. Assorted Voltage 400 mW Zeners
5. lim340T Voltage Regulators. Asierted Voltages
25. PNP/NPN TO18. TO8\% Transittors
80. 400 PIV 500 mA . Siticon Dlodes
10. Low Noite 2 N 930
2. 240 V 12/0/12 100 mA .

Trancformer plut PCB

Prices. Please Add B\%VAT.P\&P.10p. except where shown

Jones Supplies

S88 Ahhton Road, Hathershaw, Oldham, Lencs. 01-432-9379.

FANE NEW "POP" RANGE SPEAKERS improved appearanco - higher sensitivity R

12 "POP' 40 Cun 45 w रि14.95
12" 'POP' 50H 50w $£ 16.99$
12" 'POP' 75 75w $\mathbf{\text { f } 2 2 . 9 5}$
15" 'POP' 65 70w $\mathbf{6 2 5} .95$
15" 'POP' 8080 w \&29.95
$18 "$ 'POP' $100100 w £ 49.95$
18" "POP' 150 150w 455.00
SPECIALIST RANGE Rec.prlee
Each designed to produce the Indlvidual
sound requlrement for 12 GUITAR/80L 80w For tand M1.95 Cast Aluminium Chusts.
Ulnen Cone surround 15" BhSS/l00 l00w Gultar E42.60

HIGH FREQUENCY
HORNS
144 n
2. 5K rtantat

Pownr: 50w with HPX2R
30 with HPXIR Imp: atma 17.95 $3 \frac{1}{2}^{*} \times \mathbf{i t}^{+} \times \mathrm{y}^{7}$ $\int 73_{\text {Range: }}$ $2 \cdot 5 \mathrm{k}+\mathrm{Hz}-20 \mathrm{kHz}$ Pawler: 50 w with HPX In Size apprax: $75^{-1} \times 3^{2} \times 8$ 土 $^{\prime \prime}$

J|04 Rangi: $2 \mathrm{KHz}-15 \mathrm{KHz}$ Powars 50 wite
with KFXIR 70 wnet with
HPX2R
 $920 / 2$ Range; $1 / K H z-1 / K H z$ Power: sire 100 w wish HPX1. fmp: on ohms
 NIGY POYER "CROSSOYERS" $\begin{array}{ll}\text { HPXIA } \\ \text { HPXC2R } & (3,5 K H z) \\ \text { (} 5 \mathrm{KHz}) \\ \mathbf{H P}\end{array}$
Impadanes or total Impadencs of Bass Drivart not to exceed eq. Othtrwise FANE SPEAKERE SHPPLIED Tided with HPXIR and HPX2R, TO MOST L䡤ADING U.K.

IP \& DI P \& DISCO ERU|PMEN Rec. pricen nhown sortose at $23 / 3 / 7$ Mank PRODUCTS LTD, ELECTRON WORKS, ARMLEY, HEEDS

That modera wry ut instant 2 - wray communleations. Euppiled With S.corp wire. tut pluy jotr power eacket, Ready for

 malkibie for Buslatess, Burgers, Schools, Hoapitslas and Offec. NEW' AMERICAN TYPE CRAOLE TELEPHONE AMPLIFIER
 notes, connult hien No logg willing, esved lime with lpge
are. Crystal clear communicatlona from roorn to soom.
hage t-mile on the marne malns phase. Opjat
 thon problem. with this 4- Station Trapolitor Intercam aystera i1 manter nad 3 Buby)
 Operates on one 9 V onttecy. Onfof ewitch. Valome control. Crmpleto Whit o connectlog Fires exch 6fft. A Battery

E15.95
$415 \cdot 94$
Lateal trutuputorised Telephowe Amplititer with detached ptag-In spasket. Placlay the recolicz on to the cradle without holdiag the bardet. Hany poople can Hatan at a timb. Increase officleacy In office, bhop, workabop. Perfect tol "ronfernce" salla: leaven the ubet's bande free to mike distance anils. Onfoht switch, valame control, conversation 10-tity pelce rotund gatantee on ail tiemu
 01-957 EE48

H.A.C

SHORT-WAVE
KITS
WORLD-WIDE RECEPTIOH

'H.A.C.' weil known by amateur constructors for ins Short Wave teceiverb, now ofiers a the nowice and the expert.
s9-00 taclusive-the ever poprster and easy to construct DX receiver Mark inf; conthining chassis value geceseories and full instructions. NEW T Twla transistor receiver, splective, sepsifive and with fanzastic receptlon, yet introductory offer at $29-70$ inclusive-anal only be held at thila price white stociks latat. Lasely the K and K plus (illustrated above) for the more adyanced constructor, This better receptos All arders serpotched withio 7 days. Send stamped and addressed envelope now for free descriptive cacalogue of kits and accessorites.

SORRY, NO CATALOGUES WITHOUT SAE.
"RAA.C" SHORT-WAVE PRODLCTS

- O. Box No. 16, FO Windmill Line Lewas Rosd, Eist Grinstasd, Watt Sunsex RHIS 35Z

NOTICE TO READERS

When replying to Classified Advertisemants Dlease ansure:
(A) That yau hava tlearly stated you requirements.
(B) That you have enclosed the right remitrance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the aóvertiser.
Thiz will assist advertisers in processing and daspatehing orders with the minimum of delay.

Receivers and Components

COMPONENTS FOR P.W. PROJECTS. COM: ponents lists with prices avallable for P.W projects from October 1977 onwards, Send SAE stating project and month of publication (maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE MAILTRONDX, Tootal Street, Wakefield, W, Yorks WF1 5JR.

VINTAGE RADIO

I920 to I950

Recalvera, valves, componenta, garvice dota, hlatorlcal spsearch, books. magazines. rapalry and testorations. A complete eorufca for the coliector and enthuslast of vintage radio.
S.a.e. with enquiries and for monthly new catalopur, 70p post pald.
TUDOR REES (VIntape Sarvicmen, M, Brond Street

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONTCS UK offers a wide range of cornponents for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SL6 1HL.

VALVES

Radia - T.V. - Industrial - Transmltring and Projector Lamps
We Dispateh Vatues co ali parts of the world by return of post, Air or Sea mail, 2700 Types in stock, 1930 to 1976. Obselete typey a speciality List 20g. Quptation S.A.E. Qpen to callers Mondry to Sueurday 9.30 to $\mathbf{S . 0 0}$ closed Wrednesday 1.00 We wish to purchase all types of new and boxed Vilves and Projector Lamps.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, Eate Wittoring, Suseax PO20 EBN
Watt Wittering 2021 (STD Code 024366)
BARGAINS GALORE: LMS5SCN 35p. 4148 3p. Log Pots $5 K 16 p$. Chassis Sockets 11p. $914 \mathrm{3p}$. Cabbon Film Resistors $\mathrm{i}_{2} \mathrm{~W} 100$ for 80 p . Veroboard $3{ }^{3} 4$ in $\times 5 \mathrm{in} 40 \mathrm{p}$, Send now for complete list, only extra 15p postage. CLEVELAND SUPPLIES, P.O. Box 20 , Howard Drive, Redcar, Cleveland.

SMALL ADS

The prepald rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting 86.80 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC MagazInes Limited, King's Reach Tower, Stamford St., Londion, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADYERTISEMEKTS

f. Advartisemunte aro mecepted sublect to the conditiona appoaring on oup current advertlament rate card and an the axprast undertanding that the Advertiver warrants that the envertione ment dont not contravane miny act af Parliament moy is It an Infilngement af the British Code of Adyertalng Practles.
2. The pubitshers reserve the ripht to
 9. Althosgh avary emre folmker, the Publishors shall not belliable farcifical or printers erron ar thelr conce-

24 HR. CLOCK/APPLIANCE TIMER KIT

LED's. Mixed bags of 4 different sizes and 4 different colours. 50 at $£ 5 \cdot 25,100$ at $£ 9 \cdot 25$ including VAT and post and packing. CWO. Michael Williams Electronics, 47 Vicarage Avenue, Cheadle Hulme, Cheshire, SKB 7JP.
$\mathrm{BCl07} / \mathrm{B} / \mathrm{g}, \mathrm{BC} 147 / 6 / 9, \mathrm{BCl57} / 9 / 9$. BFI94 \& 7-9p.
20 nm . fuses $\cdot 15,-25,-5,1 \cdot 0,2 \cdot 0,3 \cdot 0$ \& $5 \mathrm{~A}-3 \mathrm{p}$.
Post 10p (Free over E4). Prices VAT inciusive.
THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffield 58 ORN

ELECTRONIC COMPONENTS Since 1966. Price List and 50 Mixed Resistors FREE on request. J. R. Hartiey, 78B High Street. Bridgnorth, Salog WV16 4DX.

> DIGITAL BONANZA
> $\begin{aligned} & \text { Letezt stock allawi oven biger bergeinntit } \\ & \text { PACK Mi (100\% Good) } 2 \text { Calculator keyboards. }\end{aligned}$ Cl-00
ACK M3 (100% Gatod) $1 \times$ MM572S 4 runction
Ealcularor Wi. Nor det. Alsigned for ube with
PACK EI GGO\% Guaranred Good 5 \% MAN 3
CK E2 (100% Good) I x a digit $0 \cdot 33^{3}$ high

> 7 seement calkulator style Liquid Grystal clisplay. With dica. 44.25
> PACK TI $\{100 \%$ Good $1 \times$ disital writswazith

> colld be uned to build a clock. With data.
> CK1.00 $\mathrm{TZ}_{2}(100 \%$ G00d) I $\times 3$ d digit wristwatch Liquid Cryzal display with censre calon. With data, E1-00
> unmarked Elevices op-amps, Marked tind
ACK DI (80% Guarantated Good) IS \times DTL
those castiy TLT fip fops in most projacts.
N/o nand gates. We gyrantee at lease 50 tood
Minimum percencaga evaranteed good is shown
alongside Park number. Whara no zuaranteed
minimum is suated, we'll guarantee thar a ater
$\begin{aligned} & \text { zesting, the yield from these packs will prove to } \\ & \text { be much cheaper than buyipe at averase mail }\end{aligned}$
be much chaper than buying ze avarage mail
order prices. Sacisfaction fiuaranteed or re
MAIL ORDER ONLY-
Portage and Pieking please add 20p
CODESPEED
P.O. Box 2l, J4 Soafiald Road,

TRANSISTORS, RESISTORS, CAPS, PONS, Plugs \& Sockets, Zeners, 'TM, Cable, Boxes. All at very good prices. 65 Railway Road, Leigh, Lancs. Telephone Leigh 679575.

Radio Receivers

SHORTWAVE 3-2-12 MKIZ + M.W. Small Portables (Superhet+INT.Speaker) $£ 10 \cdot 95$, headphones for use with this set $£ 4.95$. VHF/Airband 88-135 MHz+M.W. Pocket Sets (Superhet+int Spur.) $£ 9.95$ available without Air (108-135 MHz) Band at $£ 8-45$. Mains-Battery MW+VFF+Air (109-1.74 MHz Portables $\mathrm{E} 13 \cdot 55$. Prices incude \mathbf{P} \& P, Accs \& VAT. Noble Electronics, 26 Lloyd Street, Altrincham, Cheshire WAI4 2DE. Tel: 061-941 4510.

Electrical

LIST NO. 28 now ready-Styli illustrated equivalents also cartridges, leads, etc., free for Iong SAE. Felstead Electronics (FW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

Educational

GO TO SEA as a Radio Officer．Write：Prin－ clpal，Nautical College，Broadwater，Flect－ whod FY7 BJZ．

TEREVISION TRAINING

15 MONTHS full－time course for beginners．Short course can be arranged if you have previous electronics knowledge．
－ 13 WEEKS ELECTRONIC FUNDAMENTALS
－ 13 WEEKS MONOCHRIME TELEVISION
－ 13 WEEKS COLOUR TELEVISION
－ 13 WEEKS CLOSED CIRCUIT TV \＆VCR

The training incorporates ai high percentage of practical work．

Next sesston starts on September 11th．

Prospectus from：
LONDON ELECTRONICS COLLEGE
Dept．B6， 20 Penywern Road， London SW5 9SU．Tel．01－373 8721

Courses

MICROPROCESSOR PROGRAMMING．Cor－ respondence courses including personal tuition．for various machines．Also basic microprocessor course and BASIC and FORTRAN courses．Contract programming undertaken．Details from：Micro Produc－ tions，＂Greenfields，＂Llantwit Fardre， Pontypridd．

Wanted

COLLECTOR WANTS 30＇s Art Deco／40＇s and early 50 ＇s Bakelite radios and TVs．Cheap please．Non－working OK．01－552 0014.
＂RADIO AND TELEVISION SERVICENG＂ books wanted from 1964 －65， 2 dition up to date．$£ 3-00$ plus postage paid per copy by return of post．Bell＇s Television Services， 190 Kings Road，Harrogate，N．Yorks，Tel： （0423） 55885.

WANTED．＂Practical Wireless＂＂Apollo＂ F．M．－Tuner abandoned kit parts．＂Murree＂ Watling Street，Hinckley，Leicester，Tel： 35087.

Ladders

LADDERS．Varnished 20ft 9in extd．，£29•72， carr，£2－40．Leaffets．Also alloy ext．up to 62ft ©in．Ladder Centre（WLS2），Halesfield （1）Telford．Tel； 586644 ，Callers welcome．

Situations Vacant

Books and Publications

SIMPLIFIED TV REPADRS．Full repair instructions individual British sets $\mathbf{£ 4 \cdot 5 0}$ request free circuit diagram．Stamp brings detals unique．IV Publications（Ause PW）． 76 Church Street，Larkhall，Lanarkshire．

> HOW TO DEAL BUCCESEFULLY IH
> USED COLOUR TELEVISION:
> Exciting naw bualneas gulde reveala how anyone with avorage Intelllgence can make a high apara-tima CASH INCONE selline uasd colour TV's from home. Written catione for the enalnaer, this comprehernive pubilcallon deacribes: how to start - where and what to buy - which iets to avold - reconditioning - how, where and when 10 adrertise - presentation - haw to expand - comprehensiva atctlons on general busingss formalilias
> suth. PLUS WUCH WGREI Thla unfuce oulde penlents a sound, raputasio and yor profltabla horne buslnasas which can bo shatSendi. In 1 EA 野 foday for fasi deliv

How TO START A BUSINESS．By popular demand a fully iflustrated manual has now been produced；showing，in easy，step by step，stages，how to rewind ARMATURES ＊FIELD COILS as used in Vacuum Cleaners，Drills and Portable Tools． Chapters on taking data，materiats required，test instruments required，rewind instructions，charts，etc．How to cost instruction manual $£ 4 \cdot 00$ plus $30 \mathrm{p} P \& P$ ． CWO．COPPER SUPPLIES； 102 Parrswood Road，Withington，Manchester 20．Dept． PWA．

THE DALESFORD SPEAKER BOOK

by R．F．C．Sluphent．
This book Is must for the keyn home consiructof plant for Infolte baple and ratiox dasloni for a0－10 watis also urumuat centre－bare syolem for thone who want hi－f to be＂rieard and not iston．af is（ca－20 pot pald．$\$ 5$ Overneme）．

VANKAREN PU日GISHINE
SWM STREET
CHESTHE

Service Sheets

SERVICE SHEETS for Radio，Television， Tape Aecorders，Stereo，etc．With free fault－inding guide，from 50p and SAE． Catalogue 25 p and SAE．HAMILTON RABIO， 47 Bohemia Road，St．Leonards， Sussex．

LARGE SUPPLIER OF SERYICE SHEETS

 All models af $75 p$ PO／Cheques plus s．a．e．Except Colouf and Car Radlos． Free TV fautt finding chart or TV list． Strictly by return．C．CARANNA

71 Besutort Park，London NW11 5EX
 Of 4584882

[^2]
SERVICE SHEETS - COLOUR TV SERVICE MANUALS

Sarvice Sheste for Mono TV, Redios, Record Playera and Tape Fecordern Tp, Ploase eand large Stampad Addraneec Enyetopa, We can supply manuala for most makes of Colour Tolevialon Recelvera by return of poet,

-
 G. T, TECHNICAL INFORMATION SERVICE

10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON WIR IPA

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75 p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Hoad, Harrogate, N Yorkshire. Tel: (0423) 55985.

Aerials

ANTI-TVI TRAP DIPOLES

CUT OUT TVI TX-Ine and $5 \mathrm{WL}-1 \mathrm{Bg}$, MODELS:- 3WL, R25.M: 600 Watt or 9WL, R4.NE Aerfal Matching Unit 500 Watt \& $3 W \mathrm{~L}$ 10-180 metree inc. Shlpping Eand, E16.25.
lac. VAT and P \&F. Send $10^{\prime \prime} \times 7^{*}$ Fitip s.f.e. and $3 \times g_{p}$ stamps for defalls, abrial articie, fest reports, fesitmontals GZDYM.
LAMEDA, WHITEBALL, WELLINGTON, SOMERSET

For Sale

COMPUTERISED CHESS Challenger Three Levels of skill normally $£ 200$, our price only e124.95. Mall Order only. JAGBERRY LTD., 95b Ardwel] Avenue, Barkings[de, Ilford, Essex.

NEW BACK ISSUES of "PRACTICAL WIRELESS" avallable 65p each post free. Open P,O./Cheque returned if not in stockBell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

GEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New MHls, Stock. port.

LOGIC PRORE, suitable TTL/CMOS 5-15V Indicates Logic states and Trigger Pulses 812 Inc. C. Marshall, 22 Oakfield Road Croydon, Surrey CRO 2UA.
S.W.L.s are you missing dx ? Then try our aerlal system complete with tuner. $£ 26$ inc. CWO. MDH Radiatelephones, Munster House, Priory Road, Milford Haven, Dyfed.

MARCONI SIGNAL GENERATOR, TF601 D/1. 10 MHz to 470 MHz . Xtal Cajib, Excellent condition $£ 120$ ono. Tel: Henlow Camp 695,
'VpU, "Practical Wireless" design, Just needs 5 V and keyboard, suit microproces. sor, Bargain at £40 ono. Tel: Newbury 47071.

Miscellaneous

MORE DX?

RARE DX undar QRMI DIG IT OUT from whistles and CW with a Tunable Audio Notch Filter, apeaker amphifier, bypassed when off, only 67 -90. NO LONG WAVEI $100-600 \mathrm{KHz}$ Converter feeds your 3.5-1 MHI recetver, only 88 -60. SPOTRARE DX with Culibrator, $1 \mathrm{MHz}_{4} 100.25$ KHz markers to VHF, only $\mathrm{El} 13 \cdot \mathrm{Bo}$. EXPLORE VLF. 10,150 ' KHz Receiver anly $\mathbf{6 9} .70$ S!G, GEN, 10.200 Hz , sinm/1quare, only 59.80 SEND of NOW. Each easy 4 ssembly kic inciudes ath parts, printed circuit, case, connectors etc, instructiont, postage and money back assurance.

CAMBRIDGE KITS
45 (PF) Old School Lane, Milton, Cambridge.

OUTSTANDING 2200 HTFI FM TUNER. Latest silicon superhet design, Varicap Tuning, Full Coverage \&B-102 MHZ, Ideal for Push button/Manual tuning. Supplied Buit \& Tested with full instructions only E5-95 (P\&P 50p). GREGG ELECTHONECS, 86.88 Farchmore Rd, Thornton Heath, Surrey.

PRINTED CIRCUITS and HARDWARE

Readily avallabia supgilas al Canatructors' Hardware. Printed circult boardi, top qualliy for Individual dasigna. Prompt bervice. Send 25 p for catalogue from:

RAMAR CONSTRUCTOR gERVICES Mamane Road, Btratiord-on-Avon, Warwisk

SCOPE CAMBRATOR, portable, battery operated, SAE details, Ramar Constructor Services, Masons Road, Stratford-on-Avon, Warwicks.

GOVERNMENT EURPLUS
 EUPER PACK 36 PLUE
 Ewltchen. $27^{\prime \prime}$ multicore. PVC covered cablef. 241 Microphone/Speakers. 6 microawitches. 1 magnet. ${ }^{4}{ }^{4}$. Guzzar. 1 app, os yd bingla or muitistrand wire PiUS.日uzzar, 1 app, 25 yd pin Gand $£ 2 \cdot 50+$ sop PP to
 B,B. Supplice, Dept. P,W, 123 Hight Strewt, Deal, Kont.
 4 Inaerts $1 \frac{3}{3} \times 20$ ohm DC. Ideal for microphons or apenker ue avatiable.

100 WATT EUITAR/PA/MUSIC AMPLIFJER

 gubrantee. Unbeatable offer at asy, Also twin channol
 turned if not abeolutely dallahted within 7 deyl, Alpo fugz

All Inclurlve of P.P. Send cheque or P.O. to:
WILLIAMEON AMPLIFICATION
22 THORNCLIFFE AVENDE, OUKINFIEED
CHESHIRE, TEL: 001-344 8007

CUSTOM METER Scales £2-o0. Send original scale (returnable) with requirements. Mellor, 1 Orchard Road, Fairfeld, Stockton, Cleveland.

alfac system

ALFAC ETCH REsisT Dry Transfar Etectronle symbols can be used to maka P.C.B.'s by trankferring direcely on to coppar clad boards ar tracing paper. Almoss 100 different symbols for easy, acturate and quick resulte.
We invite bonafide retzilers und wholealers to distribute the Alfrac range. Ganerous trade discounts are oflered, together with filly atlustrated support brachurea for distribution. A free catalogux, zample and trade terms ara available from us on receipt of your afficitl company requert. Please write to Pelltech Led., $\|_{\text {Church }}$ Grevn, Witney, Nr, Orford.

SUPERE INSTRUMENT CASES by HazelH manufactured from P.V.C faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25, St. Wflfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

EX MINISTRY EQUIPMENT

Aerial Ratation Motor urits, complate with Remote Position Indicator connectors and Data Transistor Curve Tracers. DC Motors. 5V DC Stabilised Powar Supplies. Thumb Wheel Switches. Ten Turn Potentiometers. DC Milfiampmeters. Lever Switches. Seven Segment Gas Displays. Terminal Blocks. 12 Way Cable. 100 Way Cublo 240 V Sofenoids. Puah Buttons. Odd Tremi of Test Equipmenc. Aircrafe Instrumerss and $\varepsilon_{q u i p-}$ mont. Locs of learns in Stock. $9^{n} \times 3^{n}$ S.A, E, For List. Mail Order Only. Eidun Electronics, 3 I Alex日nder Drive, Timparlay, Cheshire, WAl56 NF

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

TFlaby TExAs											HTEMORY I．Ce				MPSA12 MPSA5S			$8{ }_{8}^{239}$	gloptit		
7400		7497	2140	74LS02				C．A3130 1者	RC413	1390	1702A	号		159p						CNDIS	
7401	140	74100	4490	－302		${ }_{4000}$	113p	CAS140 Telp	700	48p	2102－2			t40	MPSU05	72p	2 N 292005	140	OM47 01	intto	
7402	1\％p	74104	78p	74tS09	p	4009	30	CA^{3160} 14\％	733	14p	2107	RA		404p	MPSU09	780	2N3033	告0．	OM31 18p	1N400ti2	12 do
7403	14 p	741	780	74.310	32 p	4010	＊	LME301A 40	741	${ }^{3}$	2112－2			204p	MPS ${ }^{\text {Nat }}$	40	${ }^{2} \mathrm{~N} 3014$	30	荗 18 p	1N 500974	1
7404	14p	71407	3tp	74LS13	isp	4011	2tp	LN3EN	747	7 p				218	MPSUEA	189	${ }^{2 N 3095}$	$4{ }^{\text {a }}$	OAPD \％	IN4003／7	
${ }_{7} 7408$	23p	74509 7610	40p	741520	數p	4083	Stp	LA324N 130	${ }_{774} 78$	$44 p$	AYB－1013	HAM		\％009	OC2B	140 F	2 Hz 1642	1510		INd＋46	
7400	4 p	76110	${ }^{4} \mathrm{P}$	74LS22	stp	4083	Hp		770	210	RO3－2813			7000	$\mathrm{OCNE}^{\text {ch }}$	1490	$2 \mathrm{NSMA}^{\text {a }}$	34 p	OAPy	［ ${ }^{1} 5401 / 3$	13 1p
7407	40	74118	75p	741527	4 p	4094	9790			74p					0 CTH	3tp	2 N 3 B 4	${ }^{4} 8$	OM200	HStoll	17 10p
7408	280	76118	2190	74LS30	${ }^{1 / p}$	1055	＊								R20088	${ }^{2780}$	2N8702／A	140			
7409	20	74118	1090	74L347	19pp	4090	59		NE543K	疑p					Rrodes	275	2N2704／5	94p	ERIDOI REC	FIER	
7410	180	74140	$225 p$	74LSSS	$4{ }^{4}$	4017	\＄000	AY－9－13¢	NE855	\％	b	1p	22^{22}	18p	TIP29A	50	2N3700t 7	140	1A sor 23 p	1 A 40\％	V
7412	2\％	74121	32 y	74		4018	11 p	AY－1－9050 210p	NEBSS	10	18	14 p	28 gln	11 p	TiPsod	10	2N3773	9200	1A 400\％＊fa	A 100 V	V
7413	44 p	74122	520			4019		AY－3－800 773	NEBAT	490	ta	$31 p$	40 pln	6ta	Tipjoc	14．0	$2 \mathrm{~N}_{3} 189$	27p	EA 50V 40p	5 A	
7434	stp	74123	73p			021		97	\cdots	4					†哖314	S80	2N3826	80p	2A 100V 4fp		
7418	40 p	74125	J0p	203	p	4021	13 p	17	69	140	rn	ato			TiP31	Ap	2N3823	740	3A 200V 70p	23A 40	
7417	40	7489	ap			40		CA302，${ }^{\text {a }} 1120$	NESE8	${ }^{2}$	A	28p	惰10	19	Tipar	4 p	2N3840	770	3／ 800 V T0p	VM48	
7420	10^{1}	74128	52p	74.5	10 p	4024	4\％			15		21］	EF105	$11 p$	T1P32C	Ef	2N3D03／4	22p	4＊100V	4 400	Wp
7424	410	74332	51p	7×1903	Eta	4025	\％p	CAM04\％		d	AC178	29	8F1900	170	＋ipos3A	\％p	2N3903／0	22p			
7427	240	74436	P	74 ± 5107	Sp	4025	178	CA3053 269	12710N		AC167\％	20 p	EF200	49p	TiP33	129	2 N 405 S	$4{ }^{4}$	Aed		
7423	Inp	74\％4		742514	1都p	4027	$5{ }^{5}$	CA308 35p	72710 N 76000 N	278	ADtal	影p	BF244	34	T1P34	1440	2 N 400 O	18	3 A 400 V 5p	5A	p
7425	33 p	74442	309 p	7615123	1tip	d025	Hp	CA3083 2100	8003N	2519	A0	45 p	AF2506	48	TiP3	1490	$2 \mathrm{~N} 4 \mathrm{P} 3 / 4$	$2{ }^{10}$	ga koov telp	34.800	
7429	48	74t43	${ }^{45 \mathrm{p}}$	742S134	149p	4020	$1{ }^{40}$			17	20ie2	4 p	EF23？	34p	T1P35	14p	2N4125／6	22 p	OA E00Y 120p	4，30 T	Tog
342\％	408	7	205	74．5139	130p	4030	Ssp		13	17	AF114／9	22^{25}	年258	$3{ }^{\text {a }}$（	Tipas	${ }^{208 p}$	2N4401／3	340	边 120p		
7428 74.30		74148 74150	Tidp	74 \＄181	198	4033	25Ap		SN7e010	施品	AF1＋8／7	22 p	日	12 p	T		2 N 4427			40888	980
7432	379	74131	H0	74．81		403	24	LM330N 775p	700	178	A	400	BFR39	$3{ }^{1}$	TIP\＆A	10p	2N18179				
7433	13 p	74153	1 p	74L345	930	4046	1240	LM377N 290p	5		Afrso	419	EFR40it	34 p	TlP_{4}	10°	3 N 5245	40¢0	Schr	T0	
7437	17p	74154	408	74LSteta	＋${ }^{\text {a }}$ P	4012	＊9p	11	A\％		Bciovia	10p	EFR70	21p	TIP42A	700	2NSZ96	38p	B740\％		
7438	370	74155 74158		74LS	tip	4013	190\％		TAAmbia	${ }^{2010}$	日ciotis	10p	龺	3 p	$\mathrm{THP}_{\text {TfP2 }}$	810	2N34O4	${ }^{18}$	CHOD	feat！	施p
74641	150	74158 74157	17	74158	Tip	404d	10 ND	1	TBA180	170	日Cios	fep		370	${ }^{T} 1$		${ }^{2 N 543718}$	40p	MCR1OF	092	敝
7442	159	74959	2305	74L5ts3	18	404	14.0	Cm3911N 180p	Thab4i	Hep ${ }^{\text {P }}$	108	110	BFX29	AP	TIS43	40	2N5469		2N4444	tapl	
7443	129p	74160	100］	74．5：6	2	＋90	${ }^{185}$	MC1310P 194p	TBA653		14	4	BFX30	\＄p	2Nape	230		$4{ }^{\text {d }}$	2N3000／2		40
	1290	7476	100	94.		40	－	\％C1351P f10．	68ABro $78 A B 10$	128	8ccsi	1p	erxats	$30 p$	2 N 695	43 p	3N6107				
7445	90			74，		4051	149p	MC1485L 480	TBABto	12			㫙X38／7	34D	2N700／a	220．	2N8027	40			
7448	1039	183	480	74 L	\％top	＋693	120 p	MCIADEL 412a	TBA8\％			130	EFYBO	27p	2 N 18	430	2NE247	209 p	OPTO－EEEC	ONIC	
47	75p	74184	129	74 L	375p	${ }^{4} 055$	$141 p$	WCJ3sop Step	iAA621a		172	140	EFYst	2\％	2N030	9fa	2 ${ }^{\text {Nagat }}$	810 p	39	ORP 61	
7448	850	74165		7LS	230	4050	125 p	解c3stor 168p	Z ${ }^{\text {a }} 14$	\＄		119	日FYS2	22 p	2N1135／2	235	2N8292	$7{ }^{\circ} \mathrm{p}$	12	2N3779	40
7450	18	74156	510	74LS	200\％	4060	130p	acsuer 70p	ZNa14			180	EFYPa	4 p	$2 \times 1304 / 5$	750	3N128	15 p	ORP \＄0 00	IL $\ddagger 16$	
7451	10p	74167	320p	74 C		\＄000	${ }_{45}{ }^{\text {40 }}$	MFCAP00日 120p	2N424E	429	日ci	179	EFYO	18p	2N1300／7	750	3N149	40	LED		
7453	180	74170	2150	74 Co	\％	4087	425	mFCatane 120	2N4235	201		240	Elysz	7510	2＊1613	$22 p$	3N14t	P0p			
7454	18 p	74172 74173	7500	$74 \mathrm{CO2}$	25p	4008	$24 p$	YOLTAGE REGU	TORS－		日cidy	120	BRY39	410	2N171！	22p	3N1197	2095	FiL209 R G G	$\text { KNEd }{ }_{2}^{*}$	
7470	$3{ }^{3} \mathrm{p}$	74174	1200	${ }^{74 \mathrm{CO}}$	279	4080	27p	ty＋ 7805 tis	${ }_{7005}$	Toze	${ }_{8} \mathrm{CL184}$	140	MJE340	710	2 N 2102	40p	＊ $0331 / 2$	43p		A	
7472	32 p	74175	170		279	4070	27p	dv 7000	12v 7012	169	187	32 p	M M ${ }^{\text {mid }}$	179	$2 \mathrm{NS} \mathrm{\%} 80$	$1{ }^{19} 9$	4040910	75 p	T1L．32		p
7473	380	74178	430 p				270	$\checkmark 7808$ t150	15 V 7015		21	120	muss1	2190	2N221a	29.	d0417	323p	D18		10，
7474	170	74177	120p		110p	4073	3tp	T2V 7812 1150	24 V 7124		－${ }^{\text {¢ } 214}$	12	Muzsor	250 p	2N225	278	40504	109p	3015 F 200	TILS13	2b
1475	439	74180	1208		230	4078	1410	tiv 7812	Heat Slal			10	M M 2053	150p	2N222	270	40993	119p	FND357 130	TiL32	159
7476 7480	370	7418	324	${ }^{74} \mathrm{Cl}{ }^{\text {a }}$	75	4081	2tp	\＄5V 7815 715 p	${ }^{\circ} \mathrm{F}$	25p	日	320	MJE2953	1390p	2 N 2389	150	40833	49	FNOEOO 528	T1uz2	170
7480	－			$74 \mathrm{C74}$	78 p	4082	24 p	tBV 71818 If3p	avitabto f		促Y70	23 D	MJ3003	250p	${ }^{2} \mathrm{~N} 2484$	35	${ }^{00038}$	140p	FND507 420	Dhly	R9
7482	909	74165	1000		200	4093	4 P	24V 7824		122	всу7	24p	MJE3063	\％p	2 N 244	32p	40873	，	DL704 1400	7548\％	
7483	175	7480	249p	74 CBS	45	4	121 p	－$\overline{\text { m }}+\mathrm{ve}$ T0n	－6－v	42	日D1312	\％${ }^{\text {a }}$		480	2N2006／A	2\％	8872	${ }^{3} \mathrm{P}$	01707 1000	78498	
7484	1918	74190	1290			1452		5V 78L05 70p	9 7 7005	00	ED135／0	9p	MPSA00	379	2N200\％／A	38	46672		Th341	－	
1485	120p	7419	120		125			6－25V78L62 79p			8D139	St							（1）		40
7485	36p			$74 \mathrm{CH5}$	200	1450a	309p	t2V 7atis 78p	12V 79L㪀	100	88140										
740	H1p	74193	10	$74{ }^{1557}$	250	\＄4510	1 1朝 ${ }^{\text {a }}$	5	$15 V 79 L 15$	19p		225							2sp	rext	xtras
74.1	9p	74198	1top	74 Cseo	${ }^{35}$	545t1 14565	100	LM309K 950\％	LM330－12	14 p	$8 F 167$	250									
7482	5	746	$10^{0} \mathrm{p}$	74 Cisz	159	14598 14515	129		TBA625B	1490	BF\％73	27 p		IR							
748	Wrs	74197 74195	150	74	159	14818	19，	VARIA			BFi7a	36 p									
7498	235	74190	230 p		14	14	118	OHE 3 so		J25											
74	Hp	74221	175	4000	2d	－4500	430p	TONGT2C 149	2M304H	450	8F96近	268		548	hural moa	d，	don NW		el． 01.20445	12 tc	2000

 $40673{ }^{31} \mathrm{P}$ 3N $\$ 40 \mathrm{MOSFETS} 50 \mathrm{D}$ ．MZOS DUAL MATCHED PATR MOSFETS SINGLE GATE PER FET HOp，SL 301 DUAL MATCRED PAR SIL NPN TRANSISTORS Ft．

 NES5S THMER TC＇${ }^{\prime}$ 34p．LM 365^{950}
MICHOFHONES：GAUNDIG ELECTRET MFCROPHONE INSERTS WITH FET MKES，IK IMP．WITH STANDARD IACK PLUG EZ．BJ，EMSOS CONOENSER MIKES UNIDIRECTIONAL FETAMP DUALIMPEDANEESOK 800 OHMS ONJOFE SWITCH 30－18XHZ LIF ${ }^{\circ} \mathrm{O}$ ，EMIOA MIN．TIE CLIP CONDENSER MIKES，OMNI IK IMP USES DEAF A1O BATTERT（SUPPLIED）CA．05．
MOASE KEYS：ALL METAL HI－SPEED TYPE G．2S．
 130MHZ， 52 OHMS IMPEO．CIZ－75，SWR AND F．S．METER I－15 OHMZ， 50 OHMS
HMPDD，G 50 FX 2000 CRYSTAL MARKER GENERAFOR IOOKHZ TO SOMHZ （LESS XTAL） 97.90 D ．

 CELAYS EAN SEALED TYPE 4 POLE CHANGEOVER 36 OHH WHITH BASE $4 P_{1}$

MOTORS，I－S TO 6 VDC MODEL MOTORS 20p，SUB，MNN．＇BGGINCH＇IIS VAC 3 APM MOTORS 30 p ．
BOXES：BUACK AgS PLASTIC PROFECT BOXES，BRASS INSERTS AND LID： $75 x$ TRAWNm
IX－0－F2V 100MA $95 \mathrm{p}, 12$ VOLT 500 MA 95p． $1: 1$ TRIAC／XENON PULSE TAANS FORMERS 100 6MH AMO CHOKES $30{ }^{\circ}$
BUZZERS．GPO TYPE 6， 12 VOLTS $10 D_{1} 12$ VOLT LARGE PLASTIC OOMED BUZZERS（ 50 mm ）LOUD NOTE 50p，MIN．SCLID STATE BUZZERS，6－9－12 OR 2 U．H，F．TUNERS，PUSH BUTTON T．V．TYPE（NOT VARICAP）NEW ANO BOXED 6250.

TAPE HEADS：STEREO CASSETTE GOOO，MINYJO DUAL IMPEO．RJP HALF TRACK HEAOS SND．SRP90 ITRACK R／P HEADS \angle HSP．STANDARD E TRACK STEREO II 75．TDSD DUAL HEAD ASSEMBIIES Z HEADS，BOTH \＆TRACK RIP WiTH BUILT TN ERASE，MOUNTED ON BRACKET 4120 p ．
SPECIAL OFFER，ZNAS4 RADIO CMIPS 75 LMMEO HOF METERS；200 MERO C1 TOP，STEREO TUNHNG METERS 100 MICROAMP PER MOVEMENT \＆2． 5 K CI TOP STEREO TUNANG METERS 100 MICROAMPPER MOVEMENTR2．75． SCALED O－100，WINDOW SCALED GO 30 ，32mm DTAMETER，+ SPINDLE NEW
 SWITCHES，MIN TOGGLE，SFST B $x 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$ ，DRDT $8 \times 7 \times 7 \mathrm{~mm} 50 \mathrm{p}$ DPDT CENTRE OFF 12×1 X $\times 9 \mathrm{~mm}$ TSP．MHN．PUSH TO MAX O OR PUSH TO
 MICFO SWITCHES：STANOARD SIZE ROLLER ACTION $13 p$ ，MIN， $13 \times 10 \times$ 4mm 20p．PLESSEY WINKLER SWITCHES，I POLE 30 WAY2 BANK ADHUSTAQLE TERNS：CASH WITH ORDER（OR OFFICIAL ORDEA FROM COLLEGES ETC．）
POSTAGE 3DP OVERSEAS POST AT COST．V．A．T．INCLUDED IN ALE FRIGES． S．A．E．FOR LIS＇S．

ORDER ADDRESS

PROGRESSIVE RAOIO，31，CHEAPSIDE，LIVEBPOOL， 2 TH： 0512360982

THIS is the Catalogue you need to solve your component buying problems．

－The flnest components catalogue yet publlshed．
－Over 200 A－4－size papes．
－About 5，000 Items clearly listed and indexed．
－Nearly 2，000 IMustrations．
－Bargaln List sent free，
－At 51 40，｜ncl．p．$\&$ p．，the catalogue is a bargain．
Send the coupon below naw． HOME RADIO（Componants）LTO．
Dopt．PW．， 334 －240 Lonton Roid． Dipt．PW，\＄134－240 Lonifin

WATFORD ELEGTRONIES
 33／35，CARDIFFROAD，WATFORD，HERTS，ENGL AND
 MAIL ORDER，CALLERS WEI．COME，Tel．Watford 40Ess／g

ALL DEVICES QRAND FEW，FULL EPEC．AND FUELY GUARANTEED
ORDER

＊

 POLYESTER CAPACITORS；AxIal（ead typo．（Yadvet are In iff）．

 MYLAR FILM GAPAEtTORS | To0V：0．001， $0.002,0.008,0.01 \mu \mathrm{~F}$ |
| :--- |
| $0.015,0.02,0.03,0.04,0.05,0.0504 \mathrm{~F}$ |
| TP |

Dlelactffc $100 / 3900 \mathrm{DF}$

 $611 / 36: 1$
Dfum 56

[^3]

 MINTATURE TYPEz $\left\lvert\, \begin{aligned} & \text { U－DEC＇A }{ }^{\prime} \text { 425 } \\ & \text { U－DEC＇S＇}\end{aligned}\right.$
 COMPRES810N
 Bupincilwnemsng

ULTRASONIC TRANBOUCER踥 KHz

4a0p gat palr

TRAN8FORMERE ${ }^{\circ}$（MAInn Pftm． $280-240 \mathrm{~V}$ ）

 $12-0-12 V 100 \mathrm{~mA}$ 解 $0-15$ c－18V－2A 140p＋ $12.0-12 V^{2 A} \quad 315 p+$

 30－24－20－19－12－0

 marked 4 ，athove our nommat poulal charfo．t DENCO GOILF B BDA Valvi Buse 领D DUA Pargoid＇DF
Rangei－5 B，Y，R，W RFCS chohes of
0．7 日，Y， $\mathrm{H}, 7 \mathrm{p}$
 （tra）
Rng．

4＊（TEXAS）

INDEX TO ADVERTISERS

Alben Engineering
Amateur Radio
Ambir Internationa!
Bamber B.
Baron Electronics
Sarrie Electronics
B. B. Supplies

Bentley Acoustic Corgn.
Bi-Pak Ltd
Birkett!
. \quad.
Brewster S. R.
British Nactonal Radio \& Electronics
School
J. Bull (Electrical) Ltd.

Cambridge Kits76

Caranna C. 75
Chromasonics
City Publishing 75
Codespead ..
Colomor
74
ContInental Specialties
... 10
Copper Supplies
Cox Radio (Sussex) Led
Crescent Radio
C. R. Supply Co.
C. T. Electronics
C.W.A.S.

Eidun Electronies
Electronic Brokers ...
Electronic Design Associates
Electrovalue..

15, 69
Intertext ICS
Jones Supplies
... 73
K. \& A. Distributors
. .74
Lambda
... 76
Logic Leisure (Teleplay) 6
London Electronics College 75
Lynx Electronics
... 70

Manor Supplies 71
Maplin Etectronic Supplies	\ldots	ver IV
Marco Trading		59
Marshall A. (London) Led....	\cdots	8
Minkits Electronics	...	76
Nichoils E. R.		72

Partridge Electronics Letd,
P. B. Electronjos

Pelltech Led. 76
Progressive Radio 77
Powell, T. cover It
Rocquaine 72
Radio Components Specialists ... cover lil
Radio Exchange L.td. 11
Ramar Constructor Services 76
R.S.C. (Hi-Fi) 14
R.S.T. Yalve Mail Order Co. 7

Radio \& T.V. Components Led. 9
Saga Led
.. 72
Sience of Cambridge 35,60
Scientific Wire Co., The 76
Sentinel Supplies 14
Sonic (Hi-Fi)... 70
Southern Valve Co. 8
Stirling Sound 65
Swanley Electronics 80
Technomatic Led. 77
Tempus 72
T.K. Electronics 74

Trampus \ldots... 8
Tudor Rees (Vintage Services) 74
Van Karen Publishing 75
Vero... 10
Watford Electronics 7879
West London Direct Supplies 73
Williamson Amplification 76
Wilmslow Audio 36
Z \& I Aero Services
... 80

Pleame mand all correupondence and Mail－Ordora to Hazd Office
Open all day Satcreder

A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES

				NTE		ST 6		Y	VES		
1B3GT	0.65	6AK6	0.75	6CW4	3.75	I2BA6	0.65	ECL8o	0.60	EZ80	
IR4	0.50	6AK7	0.85	6 CY 5	1.00	12BE6	0.50	ECL81	0.75	GYSO1	
1 R 5	0.50.	6ALS	0.40	6 CY 7	1.00	$128 \mathrm{HH7}$	0.75	ECL82	$0 \cdot 6$	GZ 30	
154	0.40	6AM6	$0 \cdot 70$	609	1.45	128Y7A		ECL83	$1 \cdot 15$	GZ32	0.
iss	0.40	6AM8	0.70	$6 \mathrm{DT6}$	0.80	35W4	0.70	ECL4	0.70	KT66	4.5
174	$0 \cdot 40$	6AN5	2.50	6GH8	0.80	50C5	1.00	ECL85	0.65	K 788	
114	$0 \cdot 70$	6AN6	0.85	$6{ }^{6} \mathrm{~K} 5$	0.70	${ }^{75} \mathrm{C}$	0.80	ECLS	$0.85^{\text {i }}$	OA2	． 5
IUS	0.80	6AO5	$0 \cdot 65$	614	1.20	＊85A2	$0 \cdot \mathrm{ES}$	EFPO	$0 \cdot 40$	$\mathrm{O}^{1} 3$	0.7
1×28	1．20	6AR5	0.70	615	0.80	＊gDCI	1.20	Efes	0.48	O82	
2 CW 4	4.50	6AS6	1.00	616	0.55	＊907	1.00	EF86	$0 \cdot 40$	O83	$0 \cdot 7$
＊2021	0.60	6AS7G	1.20	$6{ }^{6} 7$	0.80	＊${ }^{\text {dita }}$	3.80	EF92	0.75	OC^{2}	1.4
＊3－500Z	40.00	6AT6	0.75	6K6GT	0.85	＊8298	9．80	EF97	$0 \cdot 70$	OC^{2}	． 7
＊3E29	$8 \cdot 50$	6AUS	0.50	6L6GT	$0 \cdot \pm$	＊832A	\％ 20	EF96	$0 \cdot 90$	003	0.
$3 \mathrm{Q4}$	0.75	6AV6	0.75	6N7GT	0.85	＊866A	3.00	EF183	0.70	PABCBC	0.
354	0.50	6AWPA	0.75	607	0.90	＊972A	6.00	EFI84	0.70	PC86	
5AQS	$0 \cdot 15$	6AX4GTB	1.00	65A7	0.80	＊5763	2.85	EfL200	$1-20$	PC88	0.
5ATB	$0 \cdot 80$	SAX5GT	1.30	6SG7	0.80	DAF96	0.60	EH90	$0 \cdot 60$	PC92	
5 T4	0.75	6BA6	0.45	65K7	$0 \cdot 80$	DF96	0.40	EL34	0.95	PC95	
5 S4G	0.60	6BE6	0.41	6SL7GT	0.70	DK92	1.00	EL36	095	PC9s	
5U4G	0.95	68F5	0.45	65N7GT	0.70	DL96	0.60	EL8	0.65	PC97	
548	0.75	6BF6	$0 \cdot 75$	6507	$0 \cdot 80$	ECCat	0.60	EL82	0.60	PC900	
${ }^{5} \mathrm{~V} 4 \mathrm{G}$		68H6	0.85	6V6GT	0.65	ECC85	0.45	EL83	0.60	PCCEA	
5×46	$0 \cdot 80$	6915	1.20	6×4	0.60	ECCA6	$1 \cdot 25$	EL84	0.45	PCCB5	
5×8	0.90	60N6	$0 \cdot 80$	6XSGT	0．60	ECC89	$0 \cdot 75$	EL26	0.75	PCCBB	0.
5 SYGT	0.45	6807A	0.65	［2AC6	0.80	ECC89	0.80	EL95	0.70	PCCs9	
$5 \mathrm{Z4G}$	0.65	6BRAA	$1 \cdot 20$	12AD6	$0 \cdot 80$	ECC189	0.80	El． 504	$0 \cdot 0$	PCClig	1.0
6A84	0.55	6846	0.85	J2AE6	0.85	ECFAO	0.60	EMBD	0.65	PCF80	－
6 6B7	0.60	6BW7	1.00.	12AT6	0.60	ECF86	0.80	EM8I	0.60	PCfg2	
6 AC7	$0 \cdot 10$	6BZ6	0.65	j2AT7	0.50	ECF200	0.90	EMg4	0.60	PCF84	
6AF4A	0.80	$6 \mathrm{BZ7}$	0.70	12Au6	0.65	ECF201	0.90	EM97	1.00	PCF2Ot	
6AG5	0.65	$6{ }^{6} 4$	0.55	12 A 7	$0 \cdot 47$	ECFPOI	0.55	EY51	060	PCFB06	1.0
${ }^{6 A G 7}$	$0 \cdot 65$	${ }^{6 \mathrm{CaF}}$	0.55	l2av6	$0 \cdot 8$	ECFRO2	0.95	EY81	0.90	PCLE1	0.4
6AH6	0.5	6C57	0.85	liav7	1.00	ECHB1	0.55	EYa7	0.50	PCLA2	d
6A15	0.65	$6 \mathrm{CLU5}$	1.00	$12 \mathrm{~A} \times 7$	0.55	ECHB3	060	EYBB	0.55	PCLEA	0.7
6AK5	0.55	6CU6	1.00	12Ar7	0.851	ECH200	$0 \cdot 6$	EY500A	1－50	PCL86	0.5

AC／DC TAUT SUSPENSION MULTIMETERS
TYPE U4315

Sensttivity D．C
20，000 o．p．v．
Sensitivity A．C． 2，000 o．p．v． $50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~A}$ $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ $75 \mathrm{mV}-1000 \mathrm{~V}$ IV－1000V $300 \Omega-500 \mathrm{k} \Omega$ $0.5 \mu \mathrm{~F}$
2．5\％D．C． 4\％A．C．

Price complete with pressed steel carrying case and test leads．
Packing \＆postage
C15．85＊

VAT is not included．Please add $12 \mathrm{f} \%$ on all items except those marked with asterisk，on which VAT is 8% ．Postage and packing charges are $\mathbf{6 0} \cdot 10$ per \mathcal{L} subject to a minimum of $\mathbf{6 0} \mathbf{3 0 .}$

Ah the many typte of compontiti wo mupply 音re ERAND NEW and tuenminted and only from manufucturers diract or tpprovad euppliore．（No aurpiun，mo wacendi） CMOS bufferted and protectad（SE）

4000	13	4013	310	402］		4043		4081	13
4006	2 F	4014	1－07	4024	$1 \cdot 04$	4044		4092	24
4002	21	4015	1.14	4025	23	4046	1.40	4510	1．3
400	$1+14$	4016	51%	4026	1－73	4045	54p	451	1.5
07	4P	4017	3－14	4027	60 p	＋4050	31p	4514	3． 3
00	\％	4019	f－32	4020	98	4000	1.40	4516	1.4
		4019	4	4079	1．79	4069	30	4516	1．26
4019	$4{ }^{20}$	4020	［－32	4030	510	4070	50\％	4570	$1 \cdot 76$
4011	278	4021	i．14	4041	40，	4071	26p	4343	1.30
4012	21\％	4022	1－13	4042	\％p	4072	26P	453	1.45

GER 0.033 － 0.047 mm PCM $0.01,0.022$ 4p：0．033， 0.047 5p wack： $0.068 \mathrm{6p}$ 5mm PCM 0．17p：D． 22 10p． 1018CThQLYTICS－Ij100， $10 / 25$, 10／63， $100 / 25$ ，tic，atc．
For full range see our curfent fists．
RESISTORS
$\frac{1}{1} \frac{1}{4}, \frac{z}{2}$ watts－2p eath＊：metal film， metal oxida and I watt cartron 3 p each＊：Good quentity discountr．Mas－
netic fleld dependenc from fi +30 ． Hall effect frem $\leqslant 1+2$ ．

SIEMENS TRANSISTORS Silicon npn and prp from tpeach： LEDs，red ipp：yaliow or \＆raen 73p （ 3 or 5 mm ）：Photo transistors from 76 p ．

Kitid Pates GOOD SERVICE O WIDE RANGES

DISCOUNT

9\％．I list value of order over $\mathbb{1} 10$
$\mathbf{1 0 \%} \%$ if lise value of order ovor $£ 25$
Dlacouncs pvalinble where cash，P．O．or
chequt is fent with order．
Y．A．T，Add $\mathrm{B} \%$ to value of order or $12 \frac{1}{2} \%$ with items marked． （No V．A．T．on overseas ordern）， Goods sant post frea on C，W．O． ordart in U，K，over 15 liss value． If under，idd 27 p per order．
MONTHLY BARGAN LASTS SA．E．brincs monthly Hit of birgains． Alo currant quick reference prike lixe of all ranies．
Cah wish order（9．O．or chague payable to Eleztrovalue Ltd）or your
THADE AND INDUSTRIAL ENQUITES INYETE
For mil round satisfaction－be saie－buy it from ELECTAOVALUF：

ELEGTROTALIE LTD

Dept FW7， 29 St Judas Ra，Englefield Green，Eghem，Surrey TWze eHm．
Phone Ethem 3603；Telex 264475
Northarn Branch（Personil shoppers only） 680 Burnige Lana，Burnage，

TV eamFe
TY gamet maine adaptor fy 100 ma
atabilized os． Grabllized as th．Fully arsembled attrack tively casad TV gamee（emnile，footbals，
 model with platol uttechment ezi－g sh Modifled shoot kis Et－chist Stunt motor Cycle gami ship＋economy kit cil Tunk batlo anme chip + Bcomany hit soo：－blach and whita gitanopro modit
 medal tandard siJ．Econgmy colour
 kit，adds colour to maat asmel ET ． 30 ．
Sand ant for jrea data． Sond alt for irea da
Platile varsiona of BCt08iO 5p．2N30s80
 carbon E12 10 to 10M．IW b itp．1W $2 / 2$.

Singla 25 p ．Buil 4 K 7 to 2 M 2 log arlin．
 15 mt 5 p ． 22 mf 4 p ． 33147 mi 6p．Pely－
 21p，Ceramic capacitofs 80 V E12 2201 to capacttope 100 V ． 001,002 ． 000 Nmf ip．

 MANS TRANSFORHIRS

PFINTED CIFCUBT MATERALS PC．efching hita！economy \＆i－fo，standard E3．V2． $50 \mathrm{Eq} \operatorname{lng}$ geb 40 p Y It FoC1 $51 \cdot 05$. $\mathbf{S}_{\text {mall }}$ drull bit 20 p ．Etching oifh Laminate cutter 7\＄p．

FoMss alpital multimetor ens－os．Meins adaptor \＆ivi 24．DeluxA paddad earry calio

 Cambridgt sciontitie stit 4 ．

JCI2，JCt AND JC40 AMPLFIERE A rangot of Intagrated circult audlo ampll－ fory suppiled with freo doth and printed
 frop dita on our range of matehing powar fren deta on our rat premp kite．
and
FERRANTI ZN4I4
ic radio chip ift－＊f．Extre parts and pch for tadio 43 ES Cana E ．Send ith for
 TV gamer power unit tablifiged $7 \cdot 7 V$

 radio moder tiente size as a Ppg battery． with preses etud connectorn．ov fins：
 pindiner malna unit 71 y 100ma with 5
 Ger aqpyettars 12 V do input．Output oV 1 Ef－3
苜为TTERY ELIMANATOR KITB
Sond tae for froblianfiot on range．TWma che to
 Eette type tiv 100 ma with din plug ei． Co ． Trassistion atebllized l－way typat for $100 \mathrm{hum} 3 / 4 / 8 / 7 / \mathrm{g}_{1} / 12 / 15 / 18 \mathrm{y}$ ． 100 m Ey－z．Ampris．Hadvy doty it way 14mpatis．a Amp E7 2s，Cor convertor kit inpyt 12 V dic．Ouiput fi7trov 1A stabl－ ilzod．singtile ed pown kite $3-18 \mathrm{~V}$ 100m． FULK 官UY OFFER
Mitolmurs purchans fit any mix from thit ametion only．AC76ar3k exect equity．of SNT6023N with fmproved heat ifink 7pp．

 reatetore MiPAK AUDIO MODULI
Now－PAK AUDIO mod prlceste
Now law pricet，Siso funer kn th．ALoo

SWANLEY ELECTRONICS

DEPT，PW，PO Pox 4,12 Goldeal Rd．，Imanley，Kant ERa TO Mall erder only．Panate add 30 p ta tha total eot of order for postage．Pricen Fncluda credif averefe welcome． credit arders welcarne．

[^4]
U．K．RETURN OF POST MAIL－ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE
 R．C．S． 100 watt MIXER／AMPLIFIER ALL Valve
 BAKER MAJOR $12^{\prime \prime}$ £ 15.00
 BAKER DISCO SPEAKERS HIGH QUALITY－BRITISH MADE

Four inpate．Four way milring，manter yolume，treble and buas

 send for detate．

Chasia only $\mathbb{E 9 4}$ carr． 顽
CASSETTE TAPE TRANSPORT MECHANISM
 Lesa mater，brand new $\mathbf{E 3 \cdot 5 0}$ poat 50p．

$10^{\prime \prime}$ ELAC

HI－FI SPEAKER

Laxige ceramle maknat．
Renponie： $60-18,000 \mathrm{cpa}$
16 ohm
18 ohm limpodance
€4． 50
TEAK VENEER HI－FI SPEAKER CABINETS

MODEL＂g＂800Ks ${ }^{2} E L$
For 13×8 ite oz 8in， E8－50 Post MODEL＂CL＂BOOKSZELF
For 81in mad treelez．©5－95 post 75p
zOODAPEAKER CABNET WADDING
18in．widts，20D ft，

> bin, EMI mid ranaz 8 s .
> £ $3 \cdot 25$
> 01.00 . 501210.95
BARQALN 4 CHANNEL TRANSISTOR MOYO MIX ER．Add matical bleblirhls and sound effects to recordiogs．Wiat rix Microphons，retozdi，tapa and oulpute e volt hultery $86 \cdot 75$ TWO CHANHEK 8 TEREO VERSION OF ABOVE 5850 BARGAIY 3 WATT AMPLIFIER． 4 Trabialor 64.95 coniroli．LB volt betterg operalad or Malat Supaly 8295
TEE＂IMSTANT＂BULK TAPZ EKASER \＆ HEAD DEMARNETISER abla．A．c．melas $200 / 249 \mathrm{y}$
$\$ 4.95$
$\stackrel{\substack{\text { Popi } \\ 608}}{ }$

ELECTRIC MOTORG

2 Pole， $240 \mathrm{D}, 2 \mathrm{Amp}$ ．Spindle $143 \quad 0.212 \mathrm{in} .8175$ ． Each st 50.2 Pole， $120 \mathrm{~V} \cdot 5 \mathrm{Amp}$ ．Spladie $-0.75 \times 0.21 \mathrm{n}$ ${ }^{T}$ Two in sariex－ 260 V ． 75 p 日ach，Brach Mator．From a Food Miror 240V， 3 Amp．High 5poed and Yowerlul
 －．．
ELANE AEUMITIUM CHASSIS， 18 s．W．K． 23 in ．sides， 6 tin θ ODD

 $16 \times 7 \mathrm{in}, 50 \mathrm{pi} 12 \times 5 \mathrm{in}, 50 \mathrm{pi} 12 \times 8 \mathrm{lin} .50 \mathrm{Di} 18 \times 6 \mathrm{in} .75 \mathrm{pi}$

DE LUXE BSR HI－FI AUTOCHANGER

alay：12m．101n，or 7hn．recordr
 anil betrad by enser reffability stib 12 menths kurarantee．A．C． 4001850% ．Sizis 13d 11 in ，
Above migior hoard silin
Bailow motor boszd 2jlu

Wilh MAOFETE STEREO CARTRIDGE C2｜．50 Cuetrik Davice，Bian Campensater，Balenced Arm，AllPoli78D HEW DECK8
ERR MP801F12s w jth Goldring G850 megnetio
ESR Budgei Abtochanker wilh caramic cartridge． Gurrard AP；6．Single player lezt cartridge． BSR．PIC3．Beil delim Tarntable，lese eartridge E12．95 5R8．50 287．50 ©nerard 5300．Autachangee with eeremic cariridga． 214.85 Onzered Minlchsiger Finge ell size records． Cersmio cartritize
g\＄R，P182．Sake arm，Farod turniable，coremis
catridase．

1 E0－14，500 c／n，12th，doobin cone，Willifar Ind tweelot cone logether with A BAKER denuify of 14,000 ganif ned etotal fax
 C＇s rited 25 watty．NOTE： 4 or 8 or it oknit mant ba atated．

MAJOR MODULE KIT $30-17,000 \mathrm{c} / \mathrm{b}$ with twastor，crossover，

BAKER SPEAKERS ＂BIG SOUND＂
Robarily conatracted to tesnd up la lons periodi of Blec
leadiar kroupl．
Usetul raiponse 30－18，000 cpl

GROUP＊25＊ 123． 80 mett
4,8 or 16 obmb

GROUP＂35＂ 121 n .40 wat

GROUP＂ $50 / 12$＂

 12 in .60 matt protersiona madel．4．8 ar 18 chma．Poat 81 －60 Vasth aluminiom prenance dome GRoup＂＂50／／5＂$£ 26.00$ 15 in ． 75 watt
8 or 16 ohma

Poilt $21 \cdot 80$ Gend For leaflety on Disen，P．A．and Brout Gent

BKKER 150 WATT
QUALITY
TRANSISTOR
MIXER／AMPLIFIER

Protonalonal mmplifier galpg adraneed circuit denixn．Iteal tor
 Kaiter treble．beid sind volume controle．a apalior output socket
 Guirantesi．Detaila B．A．E． £75 ${ }_{81}^{81.60}$

100 WATT DISCO AMPLIFIER

HADE BY JENNIFGS MUEICAL INBTROMENTS
4 8pesker outputs rolume，troble，babi，eontrola
CAS BE U\＆ED AS 100 WATT BLAVE

B．S．R．SINGLE PLAYER DECK
 3 Ipead，Play＊all sizo recorda， glarea Ceatridgo，Cueing derict， Iftenl Dieco Deols．
 \＆ 15.50 Past 70

DRLL SPEED CONTROLLERJLIGHT DIMMER KIT．EEAY 10
 STEREO PRE－AMP KTT，All parts to build this pre－smp． 3 inpute

$$
\begin{aligned}
& \text { R.C.S. SOUND TO LIGHT DISPLAY MK } 2
\end{aligned}
$$

> 200 Watt Roar Rofiecting Whito Llght Halbr. Adbal for Díce Lighte. Edilion Scrov Yittlig 75 p . Each.

MAINS TRANSFORMERS ${ }^{\text {Pon }}$

 $0-80-40-60$ YOLT 1 AMP． $83 \cdot 502 \times 18$ YOLT $\$$ AMP， $2 \in$ ，

R．C．S．

BOOKSHELF
SPEAKERS
$13 \times 10 \times \mathrm{inn}_{50} \times 10$ ．
12 whllisme．Bohms
£19 pair fost 81.50
$2 \times 12^{\prime \prime}$ CABINETS
 cyide covered，other cabinets in atock 60 WATT R．M．S． 652
With one horn 660
With two horns 668
gO WATT R．M．S． E56
With one horn 664
With two horns ± 72

100 WATT
R．M．S，$£ 69$
With one horn 678
With two horns 186
SINGLE l2inch CABS COMPIETE 30 WATT R．M．S．E32．WITH HORN 540. 40 WATT R．M．S．£34．WITH HORN $£ 42$. 60 WATT R，M．S．G4I．WITH HORN 449. CARR © EA．

＂SUPERB HI－FI＂

I2in 25 watts

A high quality loudsporker，fis somarkeble low eone tratonance detpoat beas．Fitted will e specis） copper dripg and concemblic triteter cone zetulting in foh range reprodactfon with remarti－ able effecienoy in the upper Bell Remonarion 25 cga Flux Dentily 18.500 gnub Uratid respones

$£ 22 \cdot 00$

 Pastil es
＂AUDITORIUM＂
I2in． 35 watts A lufl rengs reproducer for bigh power．Idesl lor Eili－F］and publle sddrosh，malti－speskor gatemp，blectric otkenil． 35 cg Bass Resonsact $\quad 15,000$ Rsafi
Fluz Density
 8 or 18 obmin models．

£21．00
 Post

＂AUDITORIUM＂
15 in． 45 watts
A Elgh watture toudtpesker ol orceptionst quasity with is laves
 Electronic ingetramenti end the bame $\mathrm{Hl}-\mathrm{Fl}$ ．
Bery Remonance akicps Elux Denilty 15,0019 会 111
$20-14,000 \mathrm{cp1}$ 8 of 10 olbmi modets

£26．00
 Potico

E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$
SPEAKER SALE

67.95

15W model $£ 10.50$
g ohms．Pat 65
GOODMANS 20W Woofer

337 WHITEHORSE ROAD，CROYDON

everything for the modern D．I．Y．electronics enthusiast and more．

Organista，giznlats，guitarlets ．．．an automatic drum est to ascompany youl Ning highly resilatle tnetrumente play fifteen different thythms．Fifieen zhythre－sefect touch owitches sind a touch glate for stopistar！without rhythm change dives atbsolute ense of operalion．Eulld tityourecil for under 解 Including smart teak－wfitct cabinet．See it and hear It In our shopl Sand for fult conatruetlon detalls now：MESA今 price 25p．
（All prices include Y，A．T．And $p \& p$ ）．

AUDIO MIXER

A superb atereo audlo mixer．It can be equlpped WTh up＇te 16 tnput modulas al your cholce and Its periormance matches that of the very beat tape－recordere and hl－fi equlpment．It meets the requirements al professional recording studles． FK radio otatlons．concert halls and theatreas Full eenetruction detalis th our catalogue．A component schedule is available on requart．

MICROPROCESSOR
Build a minincomputer with our mictophocaseor kit．Fentures：
256 hytes of readifiterant Initruction typess； added）microprocessor cap addreas up to $65,5 \mathrm{se}$菅 bithytes．Camplate kil for use with taletyct etc．（XB91Y）ET4．10．
20－kay keyboard for use with above（in place of teletypa） （X892A）E71－11．Both ktis with dietalion Instictitioh books．See our newaletters iot detalls of additional
RAN＇s，ifl－Ente Interfacing chins，numbercruncher and standard cassette fape－recorder fntorface to ator yourprosrammea．（Al pricea includeV，A，T，andpsp）．

T＇S A FANTASTIC BESTSELLER！

216 big（ $11^{\prime \prime} \times 8^{\prime \prime}$ ）pages！Over a thousand llustrations！Over 3D pages of complete rojects to build！Thousands and thousands of iseful companents described and illustrated！

9－CHANNEL RADIO CONTROL SYSTEM

A comprehensive model control system，featur－ ing nine independent fully proportional chan－ nels achleved by a design using very few components thus keeping the cost to a minimum．Fuls construction de－ tails in our bookled （XF03D）
prlee $\mathbf{£ 1} \cdot \mathbf{2 0}$ ． （All prices include V．A．T，and $p \& p$ ）．

REVEREERATION SYSTENS
Hiph quarlty epring Ithe driver module uses 4 inte grated eircults and iwo transistors．日ujilt and tested clrcutit board with wifing Inatructiona for apaling llte． XBB5G，price estop，Power supply to suit drliver modula costs around e2．50 and construction delatts are in catplopde，or azk for leaflet MES天4．Mechanteal apring 1ineo： Short IIne（XL08J）e4－45；Long I＇ne （Xa89F）E10－33．（All prican Include V．A．T．and p \＆ p ）．

BOARDS AND PCB＇s
Pages 59 to 61 of our catalogue show you our range of Veroboards and S－Decs or if you prefer to make your own pcb＇s a range of etchling systems including the novel etch－ innu－bag system，plus printed clrcult tremafers for the professional finlsh to your boards．

T．V．GAME

A fascinaling TV game kit that plays football，tennis，squash and practice for only $\mathbf{E 2 1 - 5 9 .}$ Reprint of construction details 25p．Add on rifle kit only $\mathbf{E 1 0}$－60．（All prices include V．A．T．and pap）．

MASSIVE RANGE OF COMPONENTS

For instance the capacitor section In our catalogue includes nan－ polarised electrolytics and our resistor section includes even 1% tolerance types．Get our fascinating catalogue now－you won＇t ragret it．

ELECTRONIC OREAN

The only organ you can bulld In stages and taitor to your requirements as you go along－and at each stage you＇li have a fully working instrument We haven＇t got the gimmicks yet－（they＇re coming soon） but we have got the most beautiful sounds－you won＇t find them on any organ less than twice our price．So get our MES50 series leaflets nowl 65p buys the three available so far．

[^0]: *An Engineer with General Instrument Microelectronics, Glenrothes

[^1]: IC1 555 timer
 SCRT TIC 1060 or similar 400 V working
 D1, D2 1A bridge rectifier 400 V working

[^2]: SERVICE SHEETS，Radio TV，etc．， 10,000 models．Catalogue，24p，plus SAE with orders，enquiries．Telray， 154 Brook Street， Preston PRI 7HP．

[^3]:

 2N27
 2N20
 2N2004 $2 N 206^{\circ}$
 $2 N 207^{\circ}$
 $2 N 20074$
 $2 \times 1303^{\circ}$
 $2 N 3054^{\circ}$
 2N
 $2 N 3450$
 $2 N 35614$
 $2 N 3614$ $2 N 361$
 $2 \mathrm{~N} 3 \% \mathrm{C}$
 2 N 37 O
 2 N 3 O $2 N 3702$
 $2 N 370$
 $2 N 370$
 $2 N 370$
 $2 N 370$ 2 N 37
 2 N 37 C
 2 N 37 C
 2N370
 2 2N370
 2 N 371

 2 N 37 | 2 N 37 |
 | :--- |
 | 2 N 37 |
 | 2 N 38 | $2 \mathrm{~N}_{3} 3$

 2 N 38
 2 N 3 B
 2 gN382
 2 N 388
 2 N 390
 2 N 390 2 N 390 S
 2 N 340 O 2N N 40 a
 2 N 404 2 N 405 B
 2 N 40 s
 2 N 40 AR
 2 N 428 C
 $\mathbf{2 N 4}$
 2 N 4289 2N489\％
 2 N 5135 2 N 513
 2 Ns 13

 2 N 5 t 2N5！ | 2 NB |
 | :--- |
 | 2 O 51 |
 | 2 N 53 |

[^4]:

