

AUDD
 DSSORTOU

 MEIER

Phase-locked Loops
2-Metre WyWi : ipice

T.T.L. 74 I.C's By TEXAS, NATIONAL, I.T.T., FAIRCHILD Etc

7600 7801	${ }_{140}^{148}$	${ }_{7}^{7414}$	${ }_{608}^{308}$	2	p	7654 7650	15	7798	${ }^{355}$	${ }_{7} 7121$	300	7413	140 p	74156		7474		74189	
${ }^{7401}$	148	7418	${ }_{30 \mathrm{p}}^{50}$	7437 435	${ }_{\text {25p }}^{258}$	7779	${ }_{\substack{15 p}}^{360}$	7492	${ }_{450}$	74122 74123	${ }_{60} 80$	${ }_{74141}^{741}$	${ }_{\text {cosp }}$	${ }^{71457}$	70^{70}	${ }^{34175}$	${ }^{750}$	74190	${ }_{\text {140p }}^{3509}$
74		${ }_{7}^{7417}$	300	7746	${ }^{158}$	7472	${ }^{350}$	${ }^{7493}$	${ }_{60}$			77143	${ }_{2700}^{2700}$	${ }_{7}^{74165 \%}$	${ }_{60}$	${ }_{71717}^{717}$	¢080	74997	140 P
7605	84	7420 7422		${ }_{746}$	${ }_{\text {ctisp }}$	${ }^{7473}$	$3{ }^{30 \mathrm{p}}$	${ }_{7}^{7496}$	${ }_{792}$	${ }^{74126}$	59p	${ }_{7}^{74144}$	${ }^{2750}$	7468	90 p	741778	1490p	74192 74198	${ }^{120} \mathrm{P}^{208}$
${ }^{7606}$	$4{ }^{\text {a }}$			7745	top			7400	${ }^{65}$	${ }^{74130}$	139	7414	${ }^{2350}$		D	74179	1430	74193	1205
${ }_{7400}$	${ }_{208}$	${ }_{7} 725$	${ }^{239}$	${ }_{7448}$	$\underset{\substack{\text { 3pp }}}{\substack{\text { Sp }}}$	${ }_{7476}$	30,	7 711104	408	74132		${ }^{74148}$	1808	${ }^{741164}$	${ }_{1250}^{1258}$	${ }_{7418180}^{77180}$	${ }^{1000}$	74195	, 1000
7419 748	${ }_{\text {csi }}^{20 \mathrm{P}}$	${ }_{7427} 7$	$\underset{259}{259}$	${ }_{7}^{74458}$	\% 780	${ }_{7}^{7488}$, ${ }^{508}$	${ }^{74107}$	300	74135	300 p	3615	${ }_{650}$	${ }^{34188}$	\{25	${ }^{7} \mathbf{4 1 9 2}$	${ }^{59}$	3498	${ }^{1009}$
3411	20 p		6PD	7455	150			1418		${ }^{741365}$	${ }^{898}$	${ }^{74153}$					1500	74	
7412	20 p	7430	t3p	7453	15p	2489	2300	34120		${ }_{7138}$	1235	74.55	${ }_{70}^{29}$	${ }_{76173}$	${ }_{\text {2 }}^{2009}$	74185 748	${ }_{\substack{150 \% \\ 356}}$	${ }^{74198}$	${ }_{\substack{\text { 245 } \\ 1850}}$

by MULLARD, TEXAS, MOTOROLA, SIEMENS, I.T.T., R.C.A.

TELEPHONE 01-226 9489

PLEASE NOTE ALL Prices include postage
AND V.A.T. AT 8 OR $12 \frac{1}{2} \%$ AS APPROPRIATE

MAY 1978 • VOLUME $54 \cdot$ NUMBER 1

BRITAIRS LEADING JOURNAL FOR THE RADID \& EIECTRONIC CONSTRUGTOR

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 IJG
News and Views
18
EDITORIAL-The British Connection
NEWS . . . NEWS . . . NEWS
HOTLINES-Recent developments in electronics Ginsberg
TELEVISION-Details of the May Issue
PRACTICAL WIRELESS-Pre-view of our next issue
PRODUCTION LINES-Information on the latest products Alan Martin
READER'S LETTER-Comment on a recent news item
PW READER'S PCB SERVICE-Prices and details of the PCBs availableON THE AIR-SW Broadcast BandsCharles Molloy G8BUS
MW Broadcast Bands Charles Molloy GBBUS
VHF Bands, including A Solar Event Ron Ham BRS15744Amateur Bands, including Choosing a Receiver Eric Dowdeswell G4AR
For our Constructors
20 2-METRE VSWR BRIDGE .M. H. Tooley BA G8CKT and D. Whiffield BA G8FTBAn instrument for measuring transmitter aerial efficiency
24 PW PURBECK OSCILLOSCOPE-2 Ian HickmanStarting the construction of this useful instrument
37μ DECNOLOGY Project No. 3. David GibsonA simple radio receiver using a 741 op. amp.
40 AUDIO DISTORTION METER-1 E. A. RuleAn easy to build and use piece of test equipment for the hi-fi enthusiast
52 DXer's AUDIO FILTER R. A. PenfoldImprove your reception of s.s.b. and c.w. signals
General Interest
30 PHASE-LOCKED LOOPS C. BuddPrinciples of operation, plus some applications based on the Signetics NE561B i.c.44 SO YOU WANT TO PASS THE RAE?-9 .. John Thornton-Lawrence GW3JGA and Ken McCoy GW8CMYReceivers and propagation
Free this month-on our coverTWEEZERS, in tough ABS plastics

COPYRIGHT

9 IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' ls fulfy protected and reproductlon or Imitation in whote or in part is expressly forbldiden. All reasonable precautions are taken by 'Practical Wireless' to enmure that the advice and data glven to reeders are caliable. We cannot, however, gutantee it and we cannot accept legal responalbility for lt. Prices are those current as we ga to preas.

the quickest fitting $\backslash 1 \mid 1 / 1 /$ CLIP ON capacitive discharge electronic ignition in KIT FORM

Introductory SPECIAL OFFER f2 OFF Kit

Smoother running

Instant all-weather starting
Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X_{4} Is a high performance, high quality capacitive diacharge, efectronlc Spartion syatem in kit form. Tried, testid, proven, Follahio wid complefe. Ii can be ansembise In twa or three hours und fitted in $4 / 3$ mins.
secalas of the auperb design or the Spararite circult it completely etiminates probisme of the contact breaker. Thert ib no misfire due to contact breakar
 burn is eltminated by reducing the current to whout $1 / 50$ th of the norm, it will periort equalty wall wilh new, old, or even badly pltted pointa and is not depandent upon the dwall tims af the cantaci brathers for fecharging the systens. problema of SCR fock on and, thereforp, eliminatea the popeltility of biowing the tran*iatore of the SCR. (Most' capaeltive diacharise Ignitions are not completaly iooipraof in thile respect). Tha clrcuit tincorparstes a valtage repulated output for

THE KIT COMPRISEB EVERYTHING NEEDED
Dle pressad epoxy conted cana. Raady driliod, aluminium oxtrurded bsia and heat sink, coit mouming ellat, and accospories. Top qually $\$$ year oubranteod
 inataliation Inatructiona.
NOTE-Vehlefen with current Impulse thehometere (Smithe code on dial RVi)

Electronics Dasign Assoclates (Dept. PW5).
E2 Bath Street, Walcall WSI 3DE.

Eléctronics Design Associates, Dept. Pws 82 Bath Streat, Walsall, WS1 3DE. Phone: (0922) 614791
Name
Address
Fhone your order with Access or Bareloycard
Inc. VB.T. end Pf.
GUSNTITY PEOD.

TAEHS PLESE SLAVE URAT E*S	
Aecesa br Berclaycard no.	

1 enclose chaequaritis for
E
Cheque No.
Sand SAE il brockers ony mopural

LEADER Electronickits

Laboratory Power Supply LPU103
Excallent pown supply dasign fasturing exceptronal requlation, Zero te 30 volt and Zero ta it Amp varnabie oulput with warlabla diriling in pwo ranges $0-100 \mathrm{~mA}$ \& $0-1 A$ Output meler reads both carrent \& veltaga. System can stand up to 2 hours in full Short tifcutt condition.
Fully punches, plated \& painted cesa/chessis, 1ront paned decal Buildity manual/tircuits arc, Rec. Betarl 288.99 inc , VAT/PG:F [Ex. VAT EZ7,77]

Test Bench Oscillator LTOTO4
Sine wawa test oscliator fealuring Outant variable $0-1$ vott between 15 Hz to 30 kHz in tour ranges 600 Chm output impendenca, Max, 1\% distortion at 1 kHz . Fully portende, (uges $2 \times$ PPS batteries - exifa)

"LEADER" Electronic kits enable even the inexperienced constructor to produce equipment of excelient appestence throughour poticy of providing: Comprehsraive memual of buitding instruttions.
Comen prited puncring. plating, painking. And most of all ALL PARFS to the list nut A bolt,
"LEADER" Electronke klix nre dittrlbutod by Arrow Electronica LImited, Leader Kouse, Coptfold Roud, Eranmuod, Emex Tel: 0277219435 Telex 99443

TECHNTCAL TRAINRNG IN ELECTRONICS TELEVISION GND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained person. You study in your own home. in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommmaications Technicians
Radio, TV, Electronics Technicians
Technical Commenications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Hudio Engineering and Servicing
Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.

D To: International Correspondence

Fi Schools
Dept Ho. 276r, intertext Houre, LONDOH
SW8 4UJ or telephone 6228911
Subject of Interest...
Name
Address
END OF SEASON SALE vpro 50% oirftere

LAST DAY	SEND FOR LIST
30th April	OF SALE PRICES

Advartioned Prices Inective

ALL RSC PRICES INCLUDE VAT

- DISCOMAJOR

POWER DISCO CONSOLE wieh integral Power Ampitfer
\star TWIN FULL SIZE GARRARD lurtables with cueing device.
\star CARTRLDGES with Diamend Styli.

* 3 SEPARATE VOLUME CONTROLS for each turmiable and Mic.
FYLL HEADPHONE MONIIORING FACILITIES ONSOLE COMPLETE WITH LJD
(1) TWIN T/TABLE CONSOLE whth PFE.AMP and POWER OUTPUT STAGES (2) \& (3) PAIR 100 WATT L'SPEAKERS
up 150 cardio f9.95 extra with systom oniy

Cerms: Deposit $\mathbf{4 4 0} \cdot \mathbf{0 0}$ and 12 monthly payments $£ 15 \cdot 6$

TDI DISCO CONSOLE

Incorporating tain asr type turntables and Sonotone or Acos Cartridges with diamond styll. Separase Vol, controls for each turncebte Asso MONITORING Bass Controls. Separate Input for mike with vol controt Black Vynide covered $\mathbf{4} \mid \$ 9.95$ Or Dep £: 649 \& 18 f'intly pymps. £6.75 (Tots] $£ 137.99$) Carr. $£ 3 \cdot 30$. TD2S STEREO VERSION
£ 125.00 DISCOMAJOR/I00 TWIN TURNTABLE POWER COHSOLE $£ 139.95$

Twin Full jize BSR turntables. Sonotone or Acos Cartridges with Carr. 13.50 Diamond Siyli. Facilities as TDI Console but with buildion 100 watt Power Amplifier complete with lis. Terms: Depposit $\$ 19.95$ and 18 fortaightly payments $£ 7 \cdot 70$ (Total $\mathcal{E 1 5 8} \cdot 55$)
DISCOMAJOR/200 £ 159.95 Carr. £4.(x) 200 Watt veraion of above, fortnizhtiy payments $\mathrm{E}^{5} .60$ (Total $1184 \cdot 75$)
RSC PHANTOM 50 COMBO AMP. $£ 69 \cdot 95$
Rating 50 watts. 3 inputs, 2 vol conirols, individual Carr. $£ 1+30$, Radio, Irpe, etc. Irce, High Flux $12^{\mathrm{w}} 50 \mathrm{ww}$ Spenker. Dep. Illo.g 28 monthly payments $48+71$ (Total $580 \cdot 63$),

IOOW POWER (SLAVE) AMPLIFIER

\%

Suitable for use with DISCO-Consoles, Also for increasing output of lower-powered Amplifier
 100+100W MODEL $\mathbf{6 6 9 . 9 5}$ Carr. $\mathrm{E1} \cdot 50$.
TITAN TA/50A 5OW AMPLIFIER
Solid stato. 3 sep. controlled inputs plus Master control. Bess, Treble \& Presence Controls Yynide covared cab with cotner protectives Value f60. Terms: Dep. E9 (Total 557 ,40) Carr, $£ 1$. 449.95

Matching Speakers in Cabinets $1 \times 12^{\prime \prime}$ E29.95, $2 \times 12^{n+449.95}$
TITAN TA/100A 100W AMPLIFIER TWIN CHANNEL 4 INPUTS $\mathbf{5 6 9 4 5}$
(NORMAL OR BRIGHO) A Devuxe professional unit w many facilities. R.M.S. Rating Matchin $2 \times 12^{\pi} 120 \mathrm{w}$ Cabinet speaker 549.95 with above onfy Carr. $£ 1-50$

TITAN IOOW BASS BINS $\mathbf{X} 99.95$ vilus High quality $15^{\prime \prime}$ high fux Bass Unit and J104 Horn Tweeter in folded horn enclosure providing amazing level of sound ousput, Terms Dep. \$14.95 and 18 fortuighty payments. $25-58$ (Total $£ 115 \cdot 39$) Carr. 53.50 .

FANE ‘POP RANGE’ SPEAKERS
 Power ratins3 R.M.S. Conc. 2 YRS GUARANTEE
 Gaus 14000 fmp o-l5 dhmp. CARA FREE.

LIGHTING TITAN GROUP/DISCO SPEAKERS GUARANTEED
by PULSAR and OPTIKINETICS GROUP Equipment by F.A.L and CARLSBORO

FULL RANGE OF SPEAKERS by

FANE

LIGHTING BY PULSAR AND OPTIKINETICS

SUPER-STROEE with $5 \cdot 5^{\prime \prime}$ parabolic reflector MAXI-STRDRE with 7^{*} garabolic reflector
JUMB0-STROBE with 9 parabolic reflector
PROJECTORS Carr. Free

Carr. $£ 1 \cdot 20$, under $£ 1$

Value

639.95 PULSAR SL SUPEA (Sound to lite) 46.55

TITAN 'ADD-ON' HIGH FREQUENCY HORN UNITS MODEL TS2H

 creased sound clarity and prolection Ratote 100 - fier poger outpuximum ampli watio.
Either modef $\mathbf{6 7 . 9 5}$ Carr. 75p Comparable with units at twico the cost, Terms; Dep 56.95 \& 8 methiy pyts 83.12 (Total $\mathbf{E 3 1 . 9 1 \text {) }}$

RSC MAINS TRANSFORMERS TYPES FOH VALVE RADROK OUTPUT TRANBFORMERG). An Dreviounly advertiged rill ivintibe. CHOKEB GLAMEMT OR TRANEESTOB POWER PACE

AUTO (GXEP ITPIETEP DOWB) TRAKSFOEMERS 0.110/1200, 200
 $250 \pi, ~ 87.45: 500 \pi, ~ 211 \cdot 80$.

MODEL TIH Whitent single super
Horn.
 Renge lmon Usewith \max 日R $2 \times 12^{\prime \prime}$ or single 15^{*} or $18^{\prime \prime}$
8Ω
Drive ${ }^{80}$ Drive Unitg.
New Branches at LEEDS, HANLEY and WOLVERHAMPTON

OPEN ALE DAY gATURDAY8 (5 Day Weok)

 BRApFORD to North Parade (Cloutd Wect.). Tot. 25349 DRMIN\&HAm solk Great Waatern Arcade. CARLigLE Enpltah Strat (Closed Thurw.). Tel, 3874 COVENTRY 17 Shelton Sa, Tho Preelnet, OERGY OT \$1. Pater'a Street (Clamed Wod.)DARLINGTON if Northoate (Cloteo Wad). OARLINGTON is Northoate (Clowod Wad.). Tet. Esa DONCRATER 3 Guesnepate, Waserdaio Conire.

Barcliycard \& Acciont PHONE ORDERA quotiop
CARD NUMBEB accepled
 Tel: 0532 F77EAL.
MAHLOROERS MUST NOT AE SENT TO SHOPS

MIDPLEBERDUGH 103 LIththerpe Rd. (cl, Wed.) Tel. 247095 NEWEABTLE UPON TYNE SF Gralnaer $\$$ 10TT1N \{Cloked Wed.\}. Tel. $214{ }^{2} 9$ Strent (Closed Thurn.). Tal, 48058
SHEFFIELD 13 Exchange Sired (Castlo Mkt. Bida.)
8TOEKPORT
(Closed Thurn.). Tal. 2075
MOLYERHAMPTON E, Wutfrun Way,

You'll learn a lot from the free Heathkit catalogue.
 The Heathkit catalogue is packed with

 scores of top quality electronic kits. Educational, practical and fascinatıng items which you can build yourself.
Send for the catalogue now.
To Heath (Gloucester) Limited,
Department PW58, Bristol Road,
Giloucester, GL2 6EE.
Name.

Address

Please tick the literature you want and enclose the appropriate amount in postage stamps.
Heathkit catalogue only (enclose 11 p to cover postage) 16 page computer brochure only (enclose 20p to cover postage and part cosis). N. B. If you are already on the Heathkit mailing list you will automatically receive a copy of the latest catalogue without having to use this coupon.

When you receive your catalogute you'll get details of thes free offer worth approximately C 475.

The wortd's biggest producers of electronic kits

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London ($01-6367349$) and at Bristol Road, Gloucester (Glouccester 29451).

Here is a portable, high precision frequency counter up to 100 MHz guaranteed ${ }^{\text {k }}$ typically 110 MHz . it has 8 big, bright ($0.6^{\prime \prime}$) LED displays, so there's no range changing. The crystal time base has 3ppm accuracy and updates the display every second. Sensitivity is astounding. It will trigger at 30 mV , yet is protected to 200 V peaks. It comes complete with clip lead input cable. An antenna for coupling to RF equipment indirectly, and a low-loss in-line RF tap are optionally available. Take it with you anywhere. Run it on interna! rechargeable NiCad's, 110 or 220 V AC, 12 V from your car cigarette lighter socket or from any external 7.2 to 12 V DC supply.

Input frequencies over 100 MHz cause the most significant digit to flash. Input voltages below 6.6V DC flash all 8 digits at 1 Hz , alerting the user,
and prolonging remaining battery life. The MAX-100, gives you the maximum for your money.
Telephone 01-8900782 and give us your Access, Barclaycard or American Express number, and your order will be in the post that night.
Or, write your order, enclosing cheque, postal order, or stating credit card number and expiry date. (Don't post the card!) Alterratively, ask for our latest catalogue, showing all CSC products for the engineer and the horne hobbyist.

Specifications
Frequency range: 20 Hz to 100 MHz guaranteed ${ }^{*}$ input impédance:
I M Ω shunted by 56 pF capacitor.
Temperature stability:
better than $0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ between 0 and $50^{\circ} \mathrm{C}$. Decimal point:
Automaticaliy appears between sixth and seventh digit when frequency exceeds 1 MHz .
Size: $1.75^{\prime \prime} \times 7.38^{\prime \prime} \times 5.63$."

MAX-100+input cable(batteries not included)	£85.37
$100-\mathrm{CLA}$ for 12 V DC use via cigarette lighter	£ 2.48
100-CAl for charging NiCad's.	f 6.21
$100-\mathrm{CA} 2$ for 110 or 220 V AC mains supply	£ 6.21
100-MWA antenna	£ 2.48
100-LLC low loss RF tap	£ 9.29
$100-\mathrm{CC}$ soft carry case	£ 6.21
AT (8\%) and postage included.	

CONTIENTA SPRCLAUTES CORPORARON

CONTINENTAL SPECIALTIES CORPORATION (UK) LTD., SPUR ROAD, NORTH FELTHAM TRACING ESTATE, FELTHAM, MIDDLESEX TWI4 OTJP, TELEPHONE OI-890 O782 REG INLONDON: 1303780 VAT NO: 224807471 'TRADE MARK APPLIEO FOR ©CSC IUK) LTO 1977. DEALER ENOUIRIES WELCOME. TELEX: 8813669 CSCLTO.

MINI CONSOLES Ideal for small tesk control panels and consoles. Moulded in orarige, blue, black and grey ABS . incorporates siots for halding 1.5 m m thick peb's Aluminium panel stis recessed inta front of consola and hedd by screws running into integral brass bushes MC. $161 \times 96 \times 58 \mathrm{~mm} \quad £ 212$ \{1.9; tincludes VATI MC $215 \times 130 \times 75 \mathrm{~mm}$ f2 94 (1-9; timctudes VAT\} (Prices include VAT \& P.P.)	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LEED's, Dıodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC BJXES Easily drilled or punched, orange. blue, black and grey ABS. Incorporate slots for holding 1.5 mm thlek peb's. Aluminium panel sits recessed Into front of the box and held by screws running into integral brass bushes.
ECON OMY GUALITY LED's 50 for only E - -10 d for only ES Mixed bags, all sizes, various colours Full specification LED's also availabse Red (specify sizel 75p per pack Green, Yellow, Orange (specify size) 51.20 per pack Packs cantain 5 LED's, mounting clips and data	Includes slat-in Component Support Bracket and has 470 Individual sock日ts, plus Vec and Ground Eus Strips Price $£ 9.72$ (includes VAT \& P.F.) TYPE MP NEON INDICATOR Supptied with resistor for 240 Volts operationt 150 лm leads, heid in 6.4 mm hole by nut	240 VOLTS MINI HANE DRILLS tejeal for drilling peb's, chastis etc as well as model making Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / \mathrm{g}^{\prime \prime}$ bla shanks. 童 9.72 (incerudes VAT \& P.P.) Accessory tools., 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}$, $1 / 8 \mathrm{th}$ Drills, $3 / 32^{* 2}$ Colfet Price 51.75 (includes VAT \& P.P.I
TYPE A NEON INDICATORS Supplied with resistor for 240 Volis operation Held in 8 mm hole hy glastic bezel 150 nm wife leads	SEVEN SEGMENT DISPLAYS Economy qualley Red, yellow and green Only 45p each Common Anode - 0. $3=$ Left Dacima Full specification displays also avaitable as abovs Hed © 98p each Green and Yellow 21.35 each, Date supplled with tull spec displays only	RC BUXES ABS and DIECAST 1.5 mm peb slots and tlose fitming flarged lids. ABS in orange blue, black or grey colours. Diacast in natural or grey hammertone colour. Lid hetd by screws funning into integral brass bushes.
12 VOLTS MANI HANO DAHL Ideal for drilling perb. chassis etc as well as model making. Supplied with 2 collets that aecept tools and drills with. $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dita shanks. E7. 56 \{Inciudes VAT \& P.P.\}	Quantity quatations on request P.P. Note Uniess included in price add 25p Post \& Packing for orders totallang under $£ 10$ All prices include VAT and are valid in UK only for 2 months from journal issue dale Ilichael Uilliams Elertronirs 47 Vicarags Av. Chasde Hulme, Cheshior SK8 7JP	$R C ~$ $60 \times 52 \times 25 \mathrm{~mm}$ 68ρ 70ρ RC $112 \times 62 \times 31 \mathrm{~mm}$ 79ρ 94 p 1.2 p RC $120 \times 65 \times 40 \mathrm{~mm}$ 88ρ 122 1.59 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11 RC $190 \times 110 \times 60 \mathrm{~mm}$ 177 2.53 3.08 Polystyrene version in grey only, no slots. no integral brass bushes RCIP: $112 \times 61 \times 3 \mathrm{~mm}$ 61p All prices are 1.9 oft , include VAT, but please add $25 p$ per ET order value for Post \& Packing

LOOK! Heres how you master electronics.

....the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.

As the first stage of your training, you actually bufld your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circuitdiagrams.

in a short sime you witl be able to read and draw circuit diagrams, understand the very fundementals of television. radio, computers and countless other electronic tlevices and their servicing procedures.

3 Carryout over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circults and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radia, t.v etc.

All students enrolling in our courses receive a free circult board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

GREENWVLD

443 Millbrook Road Southampton SO1 ロHX Tel：（ロ703） 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

＊SAVE ON TIME－No delays in waiting for partz to come ar shaps to open！
＊SAVE ON MONEY－Bulk buying moant rowert pricor－ingt com pare with atherst
＊HAVE THE RIGHT PART－NO guesswork or subriftution metessary！
ALL PACKS CONTAIN FULL SPEC． BAAND NEWİMARKED DEVICEST HECLUSIVE PRICES．
K601 50 V ceramic plate capaelfors，
$5 \% .10$ of each value 22 pF to 1000 FF ． Toial 210， $83-35$
 330 yelugs $\mathbf{c} 4$ ， 6
these valuos： $0.09,0.015,0.022,0.039$

 K00t Mylar capaciters min teov type．

 $5 \% / 180 \mathrm{~N}$ ．Total 370 for $\mathrm{Etit} \cdot 30$ Ksed Tantajum bead eapaciliore．yo
 35 V ； $10 / 26$ 35／16 22／16＇33／10 47／3 100／3． Total 170 tante for $814 \cdot \mathrm{zo}$
Kocy Elactrolytic eapacitors 25 V
working．Emall physlcal eixe， working，smaill physleal eire， 10 each
 Kiof Extended ratide，av nbove，nito fnciuding 220， 470 and $1000 \mu \mathrm{~F}$ ．Total os for 55.0
Kg21 Minatitre carbon finn 5% resistors， CR25 or similse．to of asth value fram
 teom 1 R to 10 MEA jo
K041 Zaner dlodias． $400 \mathrm{monW} 5 \%$ BZYss Ex．to of each value irom 27% to 38 V KDU2 As above bui 5 of each value © 1 －7
7IB BARGAIN PARCEL
Mundroda of new components－onts swiches，resistors．capactiors， PC odds and ends．Amazing value at only

PC ETCHING KIT MK III
 resist pan，abrasive cleaner，two minl－
ature drill bits，etchlng dish and Inciruc－ tions．ef． 45

FERRIC CHEORIDE
Anhydrour technices qualley In 估

CALCULATOR CHIP
Tyot Csco by GI． 4 function + congtant． keyboard intestacing． 24 pln oil．With comprehenslve data + socker ti．5s． OARLINGTON COMP PAIR
 Plastic powerl！

VERO OFFCUTS

Pach A．All 0．1＂Pack B，All $0.15^{\prime \prime}$ Each pack containe 7 os 8 pleetes with atotal aren of tion so．in．Each pack

 0．1＂Pitain E9－B3
Qur retall nhops n\｛ 24 Daptiord Broad． way，indidn．SEA（01－692 2009）And （ 11 －651 2850）stoch Bome of the advertised goode far personal callers anly．Ring frim ter details．
Ah prices quated Include VAT and UKPBFPO postage．Most orders des－ patched on day of rectlgt 5AE with Malute pleage．OHINIMUM ORDER from schaola，eic．（Minimum lovolce chatge s5）．Export／Wholesala encuiries wolcome．Whalegals IIt now ayallable or bona－filde traderi．Surplus com－

SIRENS

 oud noiss Overall pize $120 \times 35 \times$ hoyse，workshop，etc．ONLY Ef th．

VEROCASES

Pfastic top and bottom，ally penela ront and beck．

Type

$1460205 \times 40 \times 40 \mathrm{~mm} \quad 3.3$
$141205 \times 140 \times 75 \mathrm{~m}$
$1652205 \times 140 \times 150 \mathrm{~mm}$
$1237554 \times 85 \times 40 \mathrm{~mm}$
$1238154 \times 85 \times 60 \mathrm{~mm}$
$1239154 \times 85 \times 80 \mathrm{~mm}$
E4．17

E1．75

VERO PLASTIC EOXES

Profognantal guallity，zwo tone orey Typı
$2598120 \times 65 \times 40 \mathrm{~mm}$ $\$ 20150 \times 89 \times 80 \mathrm{~mm}$ $520188 \times 110 \times 00 \mathrm{~mm}$
$52188 \times 110 \times$ E0mmm E3．72 Sloping frant verslon．

Typa
$2523220 \times 574 \times 500 / 52 \mathrm{~mm} \quad$ E6．0．
 Gen．purpone ptagite potting bax fand Conlrollar box，shaped for atas fuse In the handi， $94 \times 81 \times 23 \mathrm{~mm} 84 \mathrm{p}$ ．

RELAYS And SOLENOIDS Open gonatructlon relay with 210 A cio contacle，coll ratad 24 V Ec ，but worl ved on 6 V DC 00 p ．
10A c／o contacts， $\mathbf{E I}$－20 piop in base 40 Vac open， 2 jBA c／o contecta Es－ 50 Solenoid，rated 48 V DC，but work on 24V，TOmm puth or pull action．Sfngle hola nixing．Size $27 \times 18 \times 16 \mathrm{~mm}$ ．
Made by variey．Only 40 p ．

SCR \＆TRIAC SCOOPII

 for $86-50,100$ for 1551 ．

EDGE CONNECTORS

Specisl purchise of these 0．1＂plich doublo－sided cotco－plated conmector nables uF to afir them at lean than
 18 way 40 ； 21 way 47p：
40 way 49 way 14p．

SOLAR CELLS

At uved on space labs，etc．，thenatiny calle glve 50uA 0.5 y in aunlight． tdeal for powming smail C－MOS pra－ lectz，atc，Can be banked towbether to

POWER PACK

Wood gralned enatal case $90 \times 80 \times$ 7rmm contalning maina trinnformer
 etc．Only $£ 1$ ．

S－DECS \＆T－DECS

S－DEC Graafboard
62.25

T－DEC Breadtooard 43.95
§977／TB CATALOGUE NOW AVAILABLE－MUCH BIG－ GER AND BETTER，WITH 50p DISCOUNT VOUCHERS ONEY 30p，Plus 15p POST．

COMPONENT PACKS

400 astid．enrbon resiators Ef－50 100 Wtrewounde 2 －t5W E1．50
$i t \cdot 56$ 200 Minlature resintors，i，th．and tw
200 poly，mtca，garamic ceaps C1． 30 100 polyester， $01-2-2 \mathrm{uF}$ ma0 PC resiatore 21.60

TEXAS 741

8 Pin DIL－Full Spec． 100 off $£ 19 \cdot 50$ 25 off $\mathbf{£ 5} \cdot 50$

MAIL ORDER DEPT：－

CRESCENT RADIO LTD

 I ST．MICHAELS TERRACE，WOOD GREEN， LONDON，N22 4SJ
TELEPHONE；888－4474

EDOWAT PGYCREDENC KGH：
OTMIOL UIIT
1000 WATT PER CRANSKTL
Three ohenrel：Bave，MIdle，Treble．
cor trapat of thin untt to connected to the tive regulred Hshting to oopmeetedi to the oritpat terminala of tha noft thris enabiling ori to prodinge a zasciant
Tin thatrater
enppled or B．A．E．loz
Fankentla Valut at． $480-00+8 \%$ VAT．
 ＋12j\％vAt

8 ohm CER 4 MO at at 76
8＂GOODMANB＇Azdtom APA＇ 8 obm
10^{*} rachat Dun！Cowe 8 ohm 10 whth

 Asb．
 OA et 18 voit DC App
\times ©tim．ONLY 49.00
 240 v primary， $12-0.12 \mathrm{p}$ 600mA mocoedery． antrea 75 mm ．FIICR： $11 \cdot 80+8 \%$ VAT Almo RTallablo Malins trantormer What 187 500mA tec．Prfoe mod alzs mamb a above．

ACCESG AND BARCTAYCARD ACORFD
 V．A．T．AS BHOPN－8A．E．WFTH AXL ENQDIFIES PLEAgE，

 Fhane ；㖺－1影

ELEGTROVALIE

All the many types of components we supply are aRAND MEW and tuaranteed and only from manulactarerit direct of approved supplifers．（No surplus，no geconds） CMOS－bufiered and protected（BE）

4000	21p	4013	\＄1p	4021	23p	4043	90	408：	23 p
4001	23p	4014	1.07	4024	1.04	4844	94p	4082	26 p
4002	23 p	4015	1.14	4025	23p	40.45	1.40	4510	$1 \cdot 42$
4906	$1+14$	4016	519	4026	1.75	4049	5\％	4511	1－50
4007	21p	4017	1．14	4027	60 p	4050	$5]$	4515	1.44
4008	9\％p	4018	1－32	4028	95	4050	1－40	4519	1－26
4009	62p	4019	62 p	4029	1.23	4069	50p	4520	［－26
4010	62p	4020	1．32	4030	$51 p$	4070	${ }^{50 p}$		
40.1	$23 p$	4021	1.14	4042	64p	4074	$26 p$		
4012	23p	4022	1－13	4042	96 p	4072	26p		
OUR	COP	UTEP	TAK	60	C	＊	YO	R	RS
WSEMENS CAPACITORS					RESISTORS				
World－famous for duality and depend－ abifity－exceptionally large stocks held．					$\frac{1}{3}, \frac{1}{2}, \frac{3}{2}$ watts－2p each＊：matal film，				
					meta！oxede and I watt carbon Sp each：：Magnetic fieid dapendant				
PCB TYPES－ 7.5 mm PCM 0.001 to 0．01 5p each：0．012 to－006盆 6p each：									
					0．01 5p each： 0.012 to－006a 6p each：irom $51 \cdot 50$ ．Hall effect from \＆ $1 \cdot 23$				

0.170 each
GERAMIC－2 5 mm PCM D－01 4 p $0.022,0.0935 p$ each： $0.047,0.0686 p$ Smm PCM 0．1 7p：0．22 10p
ELECTROLYTICS－1／100．IO／25， ELEETROLYTICS－

SIEMENS TRANSISTORS
Silican non and pmp from Bp each Silican non and pap from Bp each；
LEDs，red f9p：yellow or green 23p LEDs，red 79 p ；yellow or green 23p
（3 or 5 mm$)$ ：Photo transistors from For full rance ses our currenc lists． 76 p ．
KEEN PRICES GOOD SERVICE WIDE RANGES

DISCOUNTS

5% if list value of order over $£ 10$
10% if lise value of order over 525 Discounts avalable where tash．P．O．or V．A．T．－Add $\% \%$ to value of order or $12 \frac{1}{2}$ with irems marked＊． cheque is sent with order． \qquad ars in U．over 25 list vafue MONTHLY BARGAIN LISTS S．A．E．brings monthly list of bargains． Also current guick reference price list of all ranges．
Cash with order（P，O．Or cheque payable to Electravalue Ltd）or your
TRADE AND INDUSTRIAL ENAUFRIES INVITED
For all round sazisfartion－be safe－uby ir from ELECTROVALUE

ELEGTROLALIE LTD

Dept PW5， 28 St Judes Rid，Englofield Grean，Egham，Surrey TW20 0HB，
Jept PW5， 28 St Judes Rd，Engietield Grecn，Ezham，Surrey TW20 0HB．
Northers granch（Fersonzi shoppers only）Gg0 Burnage Lase，Surnage， Wanchesser MIF INA．Phone（061） 4324945 ．

15-240 Watts!

The HY5 is a mono hybrid smplifier ldeally aulted lor all applications, Alf common Input

 and tons circuits meraly reguliz cannecting to extarnal potentiamstere (nct inclurfed). The HY
 gouning a P.C. connector is supplied wilh each pre-amplifiar.
EATURES: Complets pre-mmptifier In singte pack-Mutt-functlon equalzation-Low nelse Low ditorion-h!ah overload-TwD simply comblned for atereb.
APPLiCATION8: Hi-FI-Mixere-Dleco-Guiter and Orasin-Pubitc addreus
INPUTS. Megnetle FIck-up 3 mV ; Ceramic Plek-up 30 mV ; Tuner 200 mV ; Alcrophono 10 mV ; Auliliary 3 -100mV: Input Impadance 4 - 7 ka at KHz .
OUTPUTS, Tape 100mV; Motn output E00mV R.M.S.
ACTIVE TONE CONTROLS. Treblo 1 12dB at fok \%z; basa \pm at tooHz.
OVERLOAD. 38dB on Magnotlc Pick-up. SUPFIY VOLTAGE $\pm 18-80 \mathrm{~V}$.

HY30
15 Watts into 8Ω

HY50
25 Watts
into 8Ω
The fY30 it an exciting New kit from I,L,P. It leature a virtually Indentructtble t.C. with atort
 canclarg, mounting kit, together with easy to follow construction snd operating instructiona. lochnology avaliabte.
FEATURES: Complale Kit-Low Diatorton-Shert, Open and Thermal Proteckion-Enty to Buld,
APPLicATIONS: Updating audla equloment-Guitar afactice amphnef-Tent ampliferudio oscllator.
SPECIFICATIONE
GUTPUT POWER f5W R.M.S. Into g 82 : DISTORTION0.1\% हl 1 5W.
INPUT SENSIFIVITY 500 mV . FAEQUENCY RESPONSE $10 \mathrm{~Hz}-18 \mathrm{k}+1 \mathrm{z}-3 \mathrm{~dB}$.
Ple es
VRT PEF iras.
 past thrge years the amplifiot has been rehned to the extent that it must be ons of the moiet ralisbis and robust High Fidellty modules In the Worid.
FEATURE 3: Low Diblertion-Integrat Featalnk-Only flye connections-7 smp output irsm-ststars-No exisinal component
APPL\&CATIONS: Medjum Powes Hi-Fi ayatemit-Low pawar diato-Gulter ampliffer 8PECIFICATIGNS: INPUS SENSITIVITY BOOnV
OUTFUT POWER 25W RMS Into \&i L.OAD MAPEDANCE 4-18D DISTORTION 0.04% at $25 W$ IGNALINOISE RATIO 75dB FREQUENCV RESPONSE TOHz-4SHMz-36B.
SIPPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm

The HY120 la the bsby of I.L.P.'s new high pawer range. Denalaned to meet the most exacino coquirgmante inctuding load tira and thermal protection this amplifier eate enew tandird in modufor deslign.
FEaTURES: Very fow dietortion-Integral hatatnk-Load Ine protectlon-Thermal protec-tidn-Flye connacitons-No external componen1s.
APPLICATIONS : Hi-Fi-High qually dinco-Publicaddess-Monitor amplifier-Guilar and orpan
spECAFICATIONS
NPUT SENSTTIVITY 500 mV ,
OUTPUT POWER GOW RMS' lato BS LOAD 1MPEDANCE A-16n DISTORTION 0.04\% ES BOW
 STZE 11450 85mm

The HY200 now immroyed to give an output of 92 Watta has been desloned to stand the most cupged conditions auth as diace or group whife still retalning true Hi-Fiperformance.
FEATUREE: Thermal ahutdown-Very low distorton-Lasd line profection-integrat heatalak
-No ayternal componenta
APPLICATIONE: Bfffi-Disco-Monilidi-Power slavem-induntrial-Public Addres: PPECIFICATIONS
NPUT SENSITIVIEY 500 m Y
OUTPUT POWER 12OW RMS Into BQ LOAD IMPEDANCE 4-26S OISTORTIONO D5\% \& 100 W
 SIKE 114 50 85 mm

The HY400 is I.L.P."A "gig Daddy" of the range producing 240W Into 4 If It han been denlgned ot high gower dieco address applications. If the zmalifier is to be uned at continuguy hag
 of the lamily to lead the market as a true high power mi-fidellty power module.
FEMTURES: Thermal Ehutdown-Vofy low distorlion-Load line protection-No external componente.
APPLICATIONs: Public address-Ofseo-Power slove-Industrial
SPECIFICATIONS
OUTPUT POWER 240W RNS Into 4R LOAD IMPEDANCE 4-16I DISTORTION 0 ; \% at 240W SIGNAL NO:SE RATIO $94 d 8$ FREQUENCY RESPONSE $10 H x-45 k H z-3 d B$ SUPPLY YOLTAGE INPUT SENSITIVITY 500 mV SIZE 114190 ®5mm Price E52•87 + E2.57 VAT PEP Iren.
PSU38 sultabla for two HYsin 65 22 pluc 85p VAT, PiP free.

 PSUsse £2J-1 $+\boldsymbol{E} 1 . \mathrm{S}_{5}$ VAT. BIEQ40 $+E 0.04$ YAT.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONIGS LTD., GROSSLAND HOUSE, NAGKINGTON, GANTERBURY, KENT, GT4 7AD.
I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply
Total Purchabe Price
I Enclose Cheque \square Postal Orders \square Money Order \square]
Please debit my Access account Barclaycard account \square
Account number
Name and Address
Signature

EASY BUILD SPEAKER DTY KITS Spectally designed by RT. VC Int cosi conscious to thenthusiasts these kils incorparate two leak. simulate enclasures. 1wn EMI $13^{\mu} \times 8^{-}$(appran.) walers, twa tweeters and a parrol malkhang crosisowers Supplizd camplete with an tasy-to-follow 52800 circuir diagram, and ciossover components. STEREOPAIR dapul 15 walls rms 30 watts peak, each uni SPEAKEAS AVAłLABLE WGTHOUT CABNEESS. It's the units which we supply with the enclasures illusirated
 iwaster, and malching crossover components. stereo pait Power handling 15 watts roms, 30 walls pakc $+F$ a $p[] .40$
COMPACT FOR YOF VALUE Thess infinite baftle enclosuses come 10 you seady mílred and professionally limshad, Each cabinet messures apgrox. pet stereo par $12^{-} \times 9^{2} \times 5^{n}$ derp, and is in wad simblate,
Complete with two $\mathbf{B}^{\prime \prime}$ (approx.) speakers for
 SPEAKERS Two models Duo lla, teak venter, 12 watls

 DECCA 20 WATIS SEEAEO SPEAXER Slereo pais This malching loudspazker syslem is hand made. k.1 comptases of two 日" diameter approx. base drive unit wilh heavy die cast chassis laminated canes with rolled ρ V C surponan's two $3 \frac{1}{3}$ diameler apgor domed tweeters complete whth crossover networks $8 \Omega \quad\left[4.00 \mathrm{p}\right.$ \& $\rho^{\mathrm{I}} \mathbf{2} 700$
STEAEO CASSEITERSDNAL SHJPPEAS

 100K Mulliruan Vatıop luning pots 6 for FA解 STEAED B WATF SPEAKERS a^{-}bass unts with $3 \frac{1}{3}^{\circ}$ apgrox, tweaters Sirt $\left.16 \frac{1}{2} \times 11^{\prime \prime} \times 8\right\}$
Plinth a cover BSA or Gairatd teak linish CEECA OC1000 Sterea Cassetre P.C.B $\mathrm{f} \boldsymbol{1} 00$ cumpleis with swith oscillater ctils and tage heads FERSLIgOF. 3-zpes. 7^{*} lape kenaport mechanism. complote with top covers.

20×20 WATT STEREO AMPIIFIER Sugara Viscounl lV unit in teak finished cabinet \&290ㅜㅇ Silver fascia woth alumitnum rotary contrals and p\& pushhuttons, red manss indicaler and sterito pack 52.50 sackel. Function swith Ior muc, magoetit and trysial plck-ugs, taps, tuner. and aurilialy Rear panel fealures two mains outigis, Oin speaker and input sockets plus fuse. $20+20$ walis rims. $40+40$ walls deak.
30 п 30 HATT AMPLEFJER KiT
Specially desraned by RT-VC for the experiented tanstructor. compis le in avery detal. Same facililies as Viscourt iv amplitier. $60+69$ peak, p \& p $E 250$ E2900 NOW AVAILABLE Tully built and rested. 5900 Cutput $30+30$ wats rms, $60 \div$ - 50 peak
 SPECLAL DFFER - to Pormoral \$hoppecs OSh TYFI 131 Profossional Seitos with Coralencot am and
 ADD-DK SIEREO CASSETTE TAPE DECK WIT/ Designed far the experiented D.I,Y, man. This : kit comptises ol a tepe ifansport machanism roday built and tested recordiceplay electionics wath swin $V \mathbf{U}$. meters and level tenisol for mating with mechanis Specilicelions Sensitivity - Misc 0.55 mV н 20 KOH OAS; Din, 40 my

400X OHENS Outpul 300 mV ANS pet chane from 2K OHMS source Cross Talk j0.db Tapet Ct 1 KHz 3 Digif. Resettable Frequency Response $-40 \mathrm{~Hz}-8 \mathrm{KHz} \ddagger 5 \mathrm{db}$ Deck Motor - 8 Volr DC with electronic speed requlations Key funtions fecors Ifawind Fas! Fotward. Ptay. Stop \& Eject.

4955 Opt Exitas Mouts teansfarmes to suite $\mathbf{E 2 . 5 0}+\mathrm{f} 1$

$\square \square \square \mathrm{S}$

 210 WEAH STREET, ACTON WJ GNE ALL PRICES INCLUDE VAT AT 1218

45 watis rins, go watts peak outpul Big features
iaclude Iwodiscinputs both lor ceramic cartridges tape inpul and microphone input. Level miaing conisols hited with inlegral push pull switches. Indeprendent bass and frebie conirols and master yolume

70 \& 100 WATY

 Size appron.Brushed aluminuum
rascia and ralary controls
Five veitical slode coatrols master volume
tape Ievel, mic level, deck Ievel. PLUS INTER DECK FADR for perfecl gradazted change from retord deck No. I Is No 2. or vire versa. Pre fade level control 70 wall fy 7
 Oulput 100 walls FMS 200 watts peak. 100 wall EF5 $\begin{array}{ll}\text { CHASSIS RECOAD } & \text { GARRARD DECK CCIOA } \\ \text { PIAYER DECKS } & \text { RECOFA chanmer with rir. }\end{array}$
 ther ceramic gartridoge ESR MPFi0 TYPE Single E7555 iess cartrulge. phofiz.5s
ial Cartridges to suil aboye Accos. niagnelicslereo 84.95 Ceremicsteres It 55 aptox 8 Sk antomalic retaid player deck cuedig device and stereo ceramichead, p\&p[z.55 Eg95 ESA MP 50 type. complete with magnetic cartridge. $\mathbf{2} \mathbf{2}$ diamond stylus, and de luxe plinth and cover. p\& f 4 50

AETUH: Mat Order only, Nocallers GODDS NOT IESPATCHED DUTSiOE Lh

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you demand. Send $25 p$ to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

Wilmslow

 Audio
THE firm for speakers!

SEND 45P'STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES - DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME IM.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS SRADFORD RAM RICHARD ALLAN DEAS TANNOY VIDEOTONE WHARFE-

WILMSLOW AUDIO
 (Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HIFI Etc. at 5 Swan Streat and 90 Swan Streat TEL: WILMSLOW 29599 FOR SPEAKERS WILNSLOW 26213 FOR HIFI

VALVE MAIL ORDER CO． CLIMAX HOUSE，FALLSBROOKROAD， LONDON SW16 6ED

SPEC／AL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AY30	0 I3	ASY27	0.80	BC7s7	0 ： 3^{+}
AAY32	0.15	AS215	1． 25	BC170	－14＊
AAZIa	45	AsZ16	5－25	BCs 7	－14＊
AAZ15	－${ }^{\text {－}}$	ASZ17	4． 25	EC572	${ }^{-13}$
AAZ17	－ 3	ASE20	075	BCMT3	$015{ }^{*}$
ACioy	0.75	Aszel	\＄．50	EC57	0.18
AC125	$0 \cdot 34$	AU310	$1-70^{\circ}$	BC179	14
ACt26	9． 25	Autis	4．70＊	BCi79	29
ACig	b． 25	AuY10	4.70°	EC182	0．14＊
AC128	0.5	BA145	－ $15{ }^{\circ}$	8cis3	0.55^{+}
AC141	－ 20	BA14B	－15＊	BCiol	（1）．12
Actitik	$0 \cdot 35$	BA15	$0 \cdot 10$	EC2	0.14°
AC142	0.20	BA155	012	8 C 243	$0 \cdot 14^{\circ}$
AC142	$0 \cdot 30$	8 A15	0．13	BC214	0.17°
AC170	0.25	BAW6t	（1）${ }^{\text {a }}$	BC237	＊－17
AC187	023	BAX13	d． 97	$8 \mathrm{CLz3g}$	6． $92{ }^{*}$
ACing	9 －4	BAXtB	087	BC301	3.45
AcY17	$0 \cdot 65$	BC107	0.12	8С303	8
ACY\％	$0 \cdot 5$	BCtor	$0 \cdot 12$	BC307	$0 \cdot 25^{\circ}$
ACYE	0.85	BC109	$0 \cdot 13$	BC309	$0 \cdot 10^{4}$
ACY20	0 \％${ }^{\text {\％}}$	BClis	$0 \cdot 15$	$\mathrm{BC}^{2} 27$	$0 \cdot 2{ }^{\text {² }}$
ACY21	4.85	BC114	B．18＊	BC328	\％ 810°
ACY38	125	BC115	－ $15^{\prime \prime}$	BC337	$0 \cdot 5 \mathrm{~B}^{*}$
AD：49	－70	BCII6	－19＊	日C338	$018{ }^{\circ}$
AD＊${ }^{\text {a }}$	9．75	BC117	－ 23.	BCY30	1.94
ADt62	4.75	ВC11号	－18	BCYM	1 的
AF109	0.45	BC125	$0 \cdot 18$	BCYsz	1－60
AF174	4.25	BCis	0．25＊	$8 \mathrm{CY33}$	00
A $51{ }^{\text {c }}$	125	BC135	－15＊	ECY34	－900000
AF13	－ 6	BCisu	－ 40°	BCY39	3.00
AF1\％7	$0 \cdot 2$	BC137	$0.15{ }^{\circ}$	8 CY 40	1－25
AF138	4.45	BC14	－10＊	BCY42	－ 30
AF188	1．50	BC149	－19＊	ECY43	－ 3
AF239	4.45	BC148	0．134	8CYb8	$0 \cdot 25$
AFZ11	2.75	EC515	－12＊	BCYTO	－ 16
AFZ12	2.75	BC15a	0.18	8 CY 71	$0 \cdot 22$

 79
78
$\times 107$
$\times 100$
$\times 109$
$\times 300$
$\times 305$
$\times 302$
$\times 303$
$\times 334$
$\times 315$
$\times 500$
$\times 601$
$\times 502$
$\times 603$
$\times 504$
$\times 681$
914
919
4001
4002
4003
4004
4005
4008
4007
4009
4148
5400
5401
64

$2 N 3055$ oo ote oroo

 －

\section*{| 02AV |
| :--- |
| 150B2 |}

VALVES

A 731	1．f10		
CBL31	1.50	ECC33	0.55°

 DF91才 DFO
DKO OK82
0
0 DK96
DL92
0 0．54 OLO要ふ － －盿會
苗

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state audio amptithrosghout new congonemts throughout. 5 silicon transistors plus 2 power outpu cransistors in push-pull. Full waye rectiftcation
 walts rimas. into ohms. Frequency response $12 \mathrm{~Hz} 3 \mathrm{KKFz} \pm$
3 db . Fully integrated eparaie Volume. Eass boosi and Treble cut controls. Suits ble for $8-15$ ohm \$peakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for ful ontput. Supplied ready built and tested, with knobs escutcheon panel, inport and output plugs. Overal PRICE \&
HARTVERSONIC MODEL P.A.
two Zero
An advanced solid state general gurpase raono ampliffer suitable
 Disoo, Guitar, Grame, etc. Features 3 indtyidually con rolled innuts (each indut has a separate 2 stage premp). Inpul $1,15 \mathrm{my}$ into 47 k . Inpux 2,15 any inte 47 K (suitabie for use with mic. or gutitar eic.). Input 3
 Full mixing facilities with full range bass on treble Contrais. All indits plug into standarid fack sockets on orit paris. Oatgut sacket an rear of chassis for an Rum or ve ohrs speaker. Output in execss of 20 watts made from biack vinyl covered stect, with a bresked anodised alumititum front escutcheon. For ac mans
 Special introductory Prlce $228 \cdot 00+E 2 \cdot 50$ carr. K pkg.
 .\&P, 20p. Full spec, and connection details supplied. ye VHF/FM Tuner Head coverigg $88-108 \mathrm{M} / \mathrm{Hz}, 10-7$ M/Hz I.F. outpu1, 7-8 Volt + earik. Supplied pre afigned, wish full circurit diagram with precision-geared FM gang and 323Pf + 323PS A.M. Tuning gang only $\frac{23 \cdot 15+\mathrm{P}+\& \mathrm{P} .35 \mathrm{p}}{\text { STEHED DECODER }}$
SIZE $2^{*} \times 3^{\prime \prime} \times \frac{1^{\prime}}{2}$ ready built. Pro-aligned and tested for 9-16V nek. earth operation. Can be fitted to slanost any FM VHF radio or tuner. Suereo beacon light can be flted if required. Full details and instractions (inclusive of bints and tips) supplied. $\mathbf{8 6} 00$ plus 20p.
p. \& P. Sterco beacen linht if required 40 p extra.

MAINS OPERATED SOLID STATE

 AM/FM STEREO TUNER $200 / 240 \mathrm{~V}$ Mains operated Solid State FM AM Strieo Tuncr. Covering M.W.
KHz
A.M.
YH/FM
S40-1605
$88-108$ MHz.
Builz-in Ferrite xod gertal for M.W. Fuli AFC and AGC on AM and FM. Indicatot Buit in Pre amiereo Beacon Lamp Incicatot, Buit in Pre-amps with variable output $600 \mathrm{~m} / \mathrm{y}$ RMS into 20 K . Sinutared Teak finish cabinet. Will match almost any amplifer Size $\mathrm{B}^{2} \mathrm{w} \times 4^{\circ} \mathrm{b} \times$ 91 ${ }^{2}$ dapprox
LLMITED NUMBER ONLY af $£ 28 \cdot 00+£ 1.50$ P, \& P. FYNATA \& REXINE SPEAKERS \&
CABINET FABRICS
${ }_{\mathrm{gyp}, 5} 54 \mathrm{in}$. witde. Our price $£ 2 \cdot 00 \mathrm{yd}$. tength. $P \& P$. 500 per yd. (mie. I yd.). S.A.E. for samples.
10/14 WATT HI-FI AMPLIFIER KIT A stylishly \&nished monaural ampliffer with an output
of 14 watto from 2 ELB4s in push-pull. Super reproduction of bort music and speech with neglizibic hurn Separate inputs for mike and gram allow records and announcementr to follow each other. Fully shtouded aection wound outpat transformer to match 3-15 Ω speaker and 2 independent volume controfs, and separate bass and trebie controts are provided giving Eood lif and cut. Valve line-up 2 ELES4s, ECC83. EF86 and EZ8O rectifer. Simple instruction booklet $250+\mathrm{SAE}$ (Free with parts). All parts nold separately.

"POEY PLANAR" WAFER-TXPE, WIDE RANGE EIECTRO-DYNAMICSPEAKER
 handiling 20W r.m.s. (40W peak). Mmpedance \& ohm only. Response ceitings, walls doors under tables, be mounted on ceinngs, walls, doors, under tables, etc., and used with Only $\mathrm{E} \$ 40 \mathrm{each}+\mathrm{D}$. \& D . (One 90 D , two f Now a vaitable in eityer \mathbb{B}^{*} round version or $4 \dagger^{*} \times 8$
 P. \& P. (one 65p, 2wo 75D).

SPECIAL OFFER. 6t' long throw, roll surround, ceraralc maknet 8 ohm 10 whtl speaker chassls 2" PLASTFC CONE HF TWEETER 4 ohm, E3.50 per 2" PLASTRC CONE HF TWEETER 4 ohm, $23 \cdot 50$ per

HARYERSONIC SUPERSOUND

$10+10$ STEREO AMPLIFIER KIT
A reaty ftrst-ciass Hi-Fi Stereo Amplifler Kit. Usts 14 transigtors including Silicon Transistors in the first flve stajes on each ehanarel resuring in even lower noise Bass, Treble with Ceramic or Crystal cartridges. Very simple to modify to suit magatic cartridge-instructions included. Outpat stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied inctuding dritis matasworik. ing quaticy ready dritled printed circuit board whe componeat identacation clearly marked smart brushed ancodised aluminium front pancl with matching knobs, wire, solder, muts, bollsensble any constructor ta build an amplefer 10 be proud of. Bricf speciffation: Power output: 14 ratt cmes. wer channtl frito 5 chms. Frequency response $\pm 30 \mathrm{~B} 12-30,000 \mathrm{~Hz}$ Sensilivity: better than gennv into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$ bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to T6dB. Negative fcediback i8dB over main amp. Power requirements $35 y$, at 1.0 amb.
Overall Sizt $12{ }^{2}$ w. 8 d. $\times 2 \frac{4}{4} \mathrm{~h}$.
Fully detaifed 7 page construction manual and parts list free with kit or send 25p plus large S.A.E.
A.MPLFFIER KIT .
玉13•50 P. \& P. 80p AMagnetic input compponents 33p extra\} FOWER PACK KIS
CABINET GPECHE OFFER——ody £23.75 if all 3 dtems
ordered at one time plus $51 \cdot 25 \mathrm{p}$. \& p .
Also avail, ready built and cested $£ 31 \cdot 25$, P. \& P. $£ 1 \cdot 50$. HARVERSONIC STEREO 44
A solld state atereo amplificr chassis. with an output of 4. Wats per channel integrated circuit amplitiers with built In shozt ferm thermal overioad grotection At components including rectifler smoothing capacitor use, tone control, volume controis, 2 pin din sseake sockets \& 5 pin din sape rec.iplay socker are mounied on the prizied cincot panel, size approx. 9t $\times 24 \times 1$ max. depin. Suppled brand new a lested, with knobs, brushed anodised ajuminium 2 way escutcheon (io allow the amptifier to be mounted horizontally or vertically) at
 40 p P \& P if required. Fun connection detatis suppled. HA34 3 Vslve Audio Arpp. 4 \% w. output ready buitt and egted 8 . $50+£ 1 \cdot 40$ P. \&P. Also HSL 'FOUR' amp lifer kit is.00 - \&1-40 P \& P

HARVERSON SURPLUS CO. LTD.
All prices and apecifleations correct at time of press and sublect so alteration whthout notice.
(Dept. P.W.) I70 HIGH ST., MERTOH, LONDON, S.W.I9. Tel.: $01-5403985$
Open $1.30-5.30$ A Monday qu Fridey. $9.30-5$ Saturday. Clored Wednasdoy.

PLEASE NOTE: P. ${ }^{\text {a }}$. CHARGES OUOTED APPEYTO U.K. ONLY. SEND SAE WITH AKL ENQUFRIES.

Your career in Electronics?

Ensol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio. felevision, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest detaits will be gladly sent without any obligatlon.

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
P.O: Box 156, Jersey, Channel Islands.

NAME
ADDRESS
wD 14
(Block caps please)

FANTASTIC HALF PRIGE OFFER

 TANK BATTLE T.V. GAME aVAilable NOW tank battle ar.z.g7 10.C TANK EATTLE PRINTED CIRCUBT BOARD Application and assembly noteés4.90 OUR PRICE $2 \cdot 70$

TANK BATTLE BASIC'KIT
£27-90 OUR PRICE $\boldsymbol{\text { c19 }} 9 \mathrm{\%}$ just add II pushbuctons and cases) TANK EATHLE CASES with printed facia plate and hand controls SOUND ANB VISION MODULATORS Built, Tested, Guaranteed \quad E5 50 OUR PRICE 4.90 * Hide behind barricades and avoid beine hit t todge che ancmy's mines

 All Components Gunranceed
PRICES INCLUDE VAT and Pore Packing Make all cheques or postal orders payable to Teleplay
ACCESS • phone your order - BARCLAY
Retail Shop and Demonstrations-*
14 Station Road, New Barnet, Herts.
For further Decails and Technical Help $\stackrel{+}{=}$ phone 01-441 2922 For extrg speed phone your order on Barclay or Acess Cards Shop hours 10 a.m. 7 p.in

RADIO EXCHANGE LTD．

NEW ELECTRONIC MASTER KIT

WITH SPECIAL V．H．F．TUNER MODULE TO CONSTRUCT．A campletely Solderless Elecreonic Construction Kit，with ready drilled Bakelite Panels．Nuts，Balts，Wood Screws etc．Also in the kit： Yransistors，Capacitors，Resistors．Pots，Switches，Wire，Sleeving，Knobs，Dials， $5^{n} \times 3^{\prime \prime}$ Louds peaker and Speaker Case，Crystal Earpiece，atc．Also ready wound Coils and Ferrite Rod Aerial．These are the Projectat you car buid with the components supplited with the kit，cogether with comprehensive instruction Manul PROIECTS Circuit Diagrams
 beat control $\&$ Three Transistor and Diode Radio M．W．L．W．\＆Four Transiator Push Pull Amplifier $\&$ Eight bransistor V．H．F．Loudspeaker Receiver \star Variable A．F．Oscillator + liffy MultiTester \star Four Transistor and Diote M．W．L．W．Radio $\&$ A．F．R．F．Signal Injecter \star Five Transistor Posh Pull Amplifier $\&$ Sensieive Hearing Aid Amplifier＊Three Transistor and Diode Short Wave Radio t Signal Tracer threa Tran－ sistol Push Pull Amplifier \star One Transistor Class A Ourput Stage to drive Loudspeaker $\begin{gathered}\text { S Sensitive Tran－}\end{gathered}$ sistor Pre－Amp \ddagger Transistor Tester \star Sensitive Three Transistor Regeberative Radio＊Four Transistor M．W．L．W．and Diode Tuner \ddagger Five Transistor M．W．L．W．Trawler Band Regenerative Radio \star Five Transistor V．H．F．Tuner＊Three Transistor Code Practice Osciliator \notin Five Transistor Regenerative Short Wave Radio t Four Transistor and two Diodes M．W．Loudspeaker Radio ＊Seven Transistor M，W．L，W．Radio with M W．Speaker Push Pull outpu
太 One Transistor Home Broadcaszer．
£14－99＋pzP f1．10

NEW ROAMER TEN MODEL R．K． 3

MULTIBAND V．H．F．AND A．M，RECEIVER，
13 TRANSISTORS AND FIVE DIODES，GUALITY $5^{\prime \prime} \times \mathbf{J}^{\prime \prime}$ LOUDSPEAKER．
WITH Multäband V．H，F．section covering Mobiles，Aircraft，T．V．Sound，Public Service Band，Local V．H．F， Stations，etc．and Multiband A．M．section with Airspaced Tuning Capacitor for easier and accurate runing，covering M W．1，M．W．2，L．W．Three Short Waye Bands S．W．f，S．W．2，S．W． 3 and Trawler Band． Buitt－in Fertite Rod Aerial for Medium Wave，Long Wave and Trawler Band，ete．，Chrome Plated 7 section Telescopic Aerial，angied and rotatable for peak Short Wave and V．H．F．reception．Push－Pull autput usiog 600 mW Transistors．Gain，Wave－Change and Tone Controls．Pus two Slider Switches．
Powered by P P．9－9 volt Battery．
Complete kit of parts inciuding carrying strap． $\mathbf{6 1 4 - 7 9 + P \& P \text { el．io }}$ Building Instructions and operating Manuals．

NEW

MODEL
R．K．I
Mulkigand AM．Re－
ceiver．M．W．L W．
Three Short Wave Shree Short Wave sistors and Four Diodex．Push Pulf Output stage． $5^{\prime \prime} \times 3^{\prime}$ Loudspeaker．internal Ferrite Rad Aerial．Kit includes nill oarts to build it up ingluding Carrying Strap，Rubber Feet and roady－drilled Panels．Comprehensive Instruction Monusl for staga by atage construction．U6os P．P．9 Nine Vole Battery．

$68 \cdot 99+9_{p o p}{ }^{p}$

ELECTRONIC CONSTRUCTION KIT

E．C．K． 2 Self Contained Multi－Band V．H．F．Receiver Kit．
8 rransistors and 3 diodes． Push pull ourput．3in．loud－ speaker，gain control， 7 secsion chrome plated telescopic aerial V．H．F．tuning capacitor，re－ sistors，capacitors，transistors， etc．Will receive T．V．sound， public service band，aircraft， V．M．F．local stations，etc．Operates from a 9 volt P．P． 7 battery（not supplied with kit）

NEW

MODEL

R．K． 2

MW．LW and Air

 Band Receiver． Eight Jransistors and Four Diodes． $3^{\prime \prime} \quad$ Loudapeaker， Tolewcopic Aerial， Internal Farrita Aad Abrial．Complate with Carrying Strap． and raady－drilfed Panels and all somponants nacosxary for construction．A sensitiva Receivar with the additional fuxury of an Air Eand asertion to pick up Airseraf from many miles awity．Full Inberuction Usas P．P 9 and P．P． 3 Nine Volt Eatteries．

Com－
pleta
kit of partainh
cluding cluding tion plant Total buitdins costs 69.99 $+P a P$ and

V．H．F．AIR CONVERTER KIT

E．V．6．

Buitd this excit－ ing new dasign． 6 Transiskors and 2 diodes．MWILW．
 Powered by 9V battery．Ferrite rad aerial，tuning condenser，volume control，and now with 3in．loudspeaker．Attractive case with red speaker zrilje．Sizo 9in．$\times 5 \nmid i n . \times 24 i n . ~ a p p r o x . ~$ All parts including Gase and Pians．

Total Bulding Costs $\mathbf{\underline { 5 }} \mathbf{9 5}$ ＋Pan Pandinn．90p

ALL PRICES INCLUDE VAT

Bulld thia converter kit and reteive che sircraft band by plucing it by the side of a radio tuned to medjum wave or the VHF bund and oparating an shown in the instructions supaliad fres with all parts Uset 1 retraceable chrome atuced telescopic nerial，sain control，V，H．F． tuning eapacitor，tran－ sistor，ite．
All parts includine cass and plans

－ 4 Transistor Earpince Radia
－Signal Tracer
－Tignsil Injactor
Transistor
NPN－PNP
－ 4 Transiztor Puah Pu Amplifier

Complete kit of parts客7．95＋P \＆F and Inc． 90_{D} － 24 Resiatart 21 Capacitort 10 Transintors－ $5^{\prime \prime} \times 3^{\prime \prime}$ Laudapaaker －Earpiace Mica Bataboard 3 （2way Connectors 2 Votume Controls

－ 5 Transiacor Push Putl Amplifier
Transiator Loud－
speuker．Radio MWi LWk．Rado MW
－ 5 Transistor Shore Wave Radio
Electronic
EDU－KIT MAJOR
COMPLETELY SOLDERLESS
ELEETRONTC CONSTRUCTEOR KIT BUILD THESE PROJECTS WITHOUT SOEDERING IRON OR SOLDER

To：RADIO EXCHANGE LTD

 6IA High Street，Bedford MK40 ISA Tol．： 023452367REG NO． 789372
－Callert sido entrance＂Lavells＂Shop．
©Oper 10－1，2，30－4．30 Mon．－Fri，9－12 Sat．
「ーーーーーーーーーーニー
\qquad
\qquad
\qquad

PW578

B．BAMBER ELECTRONICS

PLEASE ADD 8\％VAT UNLESS OTHERWISE STATED ARAMGEOFDRAPERTOOLSFOR THE EECTRONIGBENTHESIRST

DIACONAL SIDE CUTTERE Et＂C1．OD． SHALL BIDE CUTTERS LJ．Standird MIDGET OPEN ENDED SPANHER SETS
 gizatis． 50 EBE of 8 ．

TAF AMD DIE 寝ETS（18 pieca）contaln
 Tapa，Taper Taps＋Amerlcan typa iap ©11－4\％．
LARGE ELECTROLYTIC PACKB．CON－ fain ranes of large slecirolytic capaclitors
 Slider Switchen， 2 pote make and beach（or
 ANEW GANGE OFQUALITY EOXES 4 Aluminlum Boxes with lide．

VInyl Costed tinstrument Caabs
light Biue tops and White lower Eectiont． Very smart finl wh

\qquad
A tan Digit puah bution intereom folephone with handist，finiahed In amart noryy plaitic． Ex－aquipmant，but good condition only Fute Ran
FULERAMAE OF EFRAMRDS／日ARAM1 ELETRONLCR
SA．FORLST．
NIW FOR THE VFF CONETRUCTOR． A ranes of tuned circulte on tormora with quptrd and acreaning cank．Frequencles． creaily oxfended by ualag varying capacltora in patalliai．
Type S（Hn，scuare，dumpy typef
Troisl） 135 to 175 MHz （with IInh wind Ing）．
Type H（M1n，In aquaro types）， partilet
rypo
me
ypo MB 22 to 32 MHz （whon 33 pF fitted in
pype MC 85 to 3 㷌Hz（when 33pF fitted in
Typallef） 38 to semHz（when 33 prf fittod in
 Typal Mil）： 500 to 200 MHz （without slug）when to 30 of variable ntted in parafilol． All tha above coilt avillablin in peck of five
 8EMICONDUCTOR

 BFY\＆1 Tranyistorn． 4 far iop．
PNP sudio type TOS Trinitiatorn， 12 for 28p

 iNt148（INO14\} 10 for 23 P．
 Tipeoss sillcan PNP power tranalintor，tovat
 T41CG op smpa Ey RCA， 4 forf

PLEAEE ADD 8\％VAT UNLESS OTHERWISE STATED

VIDICON EAN COILS Tranatator iype but no detal comolete
TVY COSTINIRTAL TYPE FLUĒनIN RELAYB， 2 pole chancevover，＊op＝eth BEEet for LATORS SEADEETHROUGA INSU． ipprox． 5 mm ，Pack of apopox．Bo for SO_{p} ． OE－CAET ALUMTNTUM EOXE8
Send for Latest price Llat．
LASTIC PROJECT BOXES With Bcrew
 Typo Nad approx $\sin \times 2 t \ln \times 1 / \ln 4 \mathrm{p}$ rath
 MuLLARD ASA2 uV stamilist VALVEB（Brand Naw） 70 p oach or2 for kitz
 PIUFE KND SOCKET
 So2s9 Socheta（PT
SO239 Socheta（PTFE），brand now（4－hole
SOLDE SUCKERS \｛Plungot type）．Stan－
 NEWMAMASMAN RANGEOF 8OLDER． SKMRONS．

Sizs SENCH ETAND ，lth epring and uponge for

para bit MTs（ior 15W） $10 \mathrm{p}, \mathrm{MT3}$（tor 25W）
APQ FiCEP＋OKYAT
CTM2 TMMPERTURE CONTROLZED ThOH．
Tampanature controlled fron and PSU．E50＋ SPAT（28＇40）P
Typa CC ufinglo flat．Typas double fat fine
 TULTICORE SOLTER
Slze Cis Mys saybit 18 a．w．g．， $56 \mathrm{p}+\mathrm{VAT}$

WELER SOLORRING IRONS EXPERTi Bultitin－3potilohs tliuminatet XPPERT
EXPERT FOLDIR GUN FAODD ETR．M．
 case，otes Sis or
A LAROE RANGE OF CAPACITORB S．A．E．FORLIST，AAROAIN PRICES，
MIXED COMPONENT PACKB，contuln Trg rasistore，copacilors，potas，atce All new． Hundreds or
ALU－SOL ALUMINIUNG GOLDER（minde by Multicores）．Soldibra aluminlum to Itself op ．in．o．with multicore flusx，with ingtructione Approx． 1 makse coll 49 ；preck Large seat VARICAP TUNERS Muilard fyo ELCCTOT3／ OE．Grand Now， 214 ＋12t； RARGAIN PACK OF LOW VOLTAGE SOV warking．Seatronit Mantufreturo．Approx 100．R1 se per pack $+12 \pm$ \％VAT．
OBMOR REED RELAY COILS（far，read rajays 4 to tin dla．
Wo now tock Splralux Tools for the ale tronic omh ihplat，Scrawdrivara，Nut span－

 Plessey Electrolytice， 4 mut F，e3V， 3 for 5ip．
 Dubiller Electrolytica sooukf，BDV，sop azch ncrew iemminals，whth mounting cilipa， 50 p
PEEASE ADD $12+\%$ VAT TO ALL
TV PLU\＆S AMD BOCKETS
TV Pluga（matal type）© for 50p． for 8 sp ．

A．Marshall（London）Ltd，Dept：PW London： $40-42$ Cricklewood Broadway，NW2 3ET Tel： 01.452 0161 Telex： 21492 \＆ 325 Edgware Road，W2 Tel： $01-723$ 4242．Glaggow： 85 West Regent Str，G2 2OD Tel；041－332 4133．Briztol： 1 Stralts Parade，Fishponds Road，BS16 2LX Tel： 0272654201

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL

The finest general-coverage synthesised communications receiver on the market, now available in two versions

ANALOGUE
 DIGITAL

Also available from us with special 2 m converter and accessories, all for just an extra $£ 17 \cdot 00$
\star
Phone for details of current stocks-news
and secondhand-and opening hours \star
AMATEUR RADIO EXCHANGE
2 Northfield Road, Ealing, London, W. 13.
Tel: 01-579 53II

| Easy terms up to |
| :---: | :---: | :---: |
| 3 years |$|$| CreditSales by
 Telaphone |
| :---: |

- The flnest components catalogue yet published.
- Over 200 A-4-size pages.
- About 5,000 items clearly Ilsted and Indexed.
- Nearly 2,000 Illustrations.
- Bargaln List sent free.
- At $£ 1 \cdot 40$, incl. p. \& p.. the catalogue is a bargain.

Send the coupon below now. HOWE RADIO (Comporants) LTD., Dept. PW. $234-249$ Londion Roed, Whcham, \$urray CRi JHD

WHAT'S NEW?
 ME, semiconductor feaching kit
 The most MODERN, RAPID. ECONOMIC way to master space age electronics.
 Starting even from ZERO by performing over

100 EXPERIMENTS

and creating more than $\mathbf{2 0}$ practical applications
tuu learn all aberut the most up to date electronic circuits: how to calculate, repair, and design then, while pursuing your favorite hobby. Start, from scratch, or improve your present knowledege. Train and ear money in your spare time turn your pastiae into valusble job opportunities.
Compare our price. you receive the entire courge; "mini laboratory" and components for LESS than the price of the components alone.
COMPLLETE KIT: nathing oles to buy"
yロu 0 品:

- instruction manual : over 200 pages of detailed step-by step instructions -starting frop scratch, explains banic laws and physics of Electricity, semiconouctor principlen and operation electronic tircuits : from diodes (including liac, zener) transigtorg, triacs to integrated circuits [C.MOS, operational amplifiers fetc...
- Over 200 Electranic components ; merospace technologie printed circuit experiment board, phototransistor, triac. thyristor I-C.S Transistors (including FET, MOSFET) LEDS + résistors, capacitors, speaker, millímeter, potentiometers, Variable capacitor, etc... etc... etc...
- messuring instruments (you assemble youracif from among componenis furnished in kit.)
ELECTRONIC VOLTYEER, LOW FREQUENCY MEASURING AMPLIFIER, LOGIC INDICATORS, REGULATED POWER SURPLY, MILEIAMOETER,

- over 100 DIFFERENT EXPERIMENTS : from the mont basic volw tege measurements to radio transwitter circuste and including HI EI, Flip Flops, Ic applications, triac use, ete...
etc...e etc...

you eonntrurt

-more than 20 complete fonctional syetems : light modulator. high fidelity amplifier, radio control set, radio receiver and transmitter, electronic gadgeta and games and many, may more.
*Hand tools nor provided.

THE＇NUTS \＆BOLTS＇OF THOSE PROJECTS

TRANSFORMERS

AUDIO LEADS

 1298 ghan Din plag to 5 pln DIN plug mimer Imade length． 1302 pin DIN giug to 2 pin DIN eocket length Em ETE＊ ES1 Epln DiN plus to 3 ain DIN plup 184 and 34.5 length $\$ 322$ gin DIN plug to z pla DIN aockat langth fom Tip＊
 134 s pln DIN ilug to 2 phono wocketa connected to plnas 183 6 gib DiN sockel to 2 phone plugs cannected to pln 3 a 138 Colled atereo headphonen extenalon cord extand 10 Tm

1243 gin DIN piug to a pin DIN plug length $1 \cdot 6 \mathrm{fm} \quad$ T3p＊ 125 E pln DIN piup to 5 pin OiN plug isngth 1.8 m 153 A．bmm saci to $3 \cdot 5 \mathrm{~mm}$ Jeck lenglh $1.5 \mathrm{~m} \quad 75 \mathrm{~m}^{*}$
 158 E pla DIN plug to 3.5 Jack connected to plne 184 Iongth

G．P．SWITCHING TRANS．

TO18 Sim．TO 2N70\％／8

BSYg7／2gjesta．All uabbig devices．No opan end whorta

When ordering please state NPN or PNP

SFL E．P．DIODES
300 mW 40 PIV（min）SUE－MIN
FULIY TESTED

L．E．D．s				
Trpe		Orier No．	Colaur	Prie＊
T1	0．1231n	${ }_{4}$	RED	$1{ }^{\text {d }}$
Tillif	－0．125in	${ }^{7502}$	GREEN	$1{ }^{10}$
FLVI13	$0 \cdot 2 \mathrm{~m}$	1804	PED	to
FLV310	－ 0.21 n	（1505	GREEN	
		1508	ELLOW	p
2nd Grade L．E．D．s				
A pack of to standerd stzen and coloura which fall to perform to their very iged tpacificetion，bui which ara Ideal ior experlments． Orfer No． 4507				
L．E．D．CLIPS				
Pack Pack 016	812		Order Ne． 1509；0．125 $1508 / 0 \cdot 2$	$\begin{gathered} \text { Price } \\ \substack{\text { Tpp } \\ \text { Po }} \end{gathered}$

NUTS AND BOLTS

BA BOLTS－packs of BA ihreaded Cndmlum plated acraws lotted cheens hatad．

CASES

INETRUMENT CABEs，In two neetione Ulnyl coverad top and tiden，aluminlum bottom，front and back．Price
Mo．Longth Fidth

ALUMINIUM EOXES．Hads from bright all．r foldod conitruttion eatch box complete with hivif Inch avep tid No．

No．	Longth	WIdth	Helpht	Price
150	gin	2in	1 ln	420＊
180	4 in	1 ln	1110	420＊
161	4 ln	2317	1 l	620＊
102	8 ± 10	din	1 In	14p＊
183	41 n	217n	$2 i n$	4p＊
164	31 n	gin	1 in	dip＊
185	71 n	517	$21 / n$	ci－94
168	bin	oln	31 n	E1 32＊
167	8 in	41 n	210	0＊p＊

BRIDGE RECTIFIERS		
SILICON 1 mmp		
Type	Order No．	Prica
50 V RMS	BR1／50	
100V RMS	BRIf100	퇑． 22
200V FMS	BR1／200	
400Y RHS	BRIT400	
stLICON 2 mmp		
SOV RMS	日R2／50	88.45
100 V RMS	BR2／100	20．4t
200V RHS	ER2／200	69．52
400V RMS	ER2／400	80．st
1000V RNS	ER2／1000	E0．cticter

FUSE HOLDERS AND FUSES

1ilir car inline typo
Ponel mounilng 20 mm
Panel mounting 20mm

Order Ho．

－

MIDGET WAFER EWITCHES
Single－bank waitar type－sultable for switching at 250 V a．c．
 Indexing．

Dencflption	Ordor No．	Pric＊
1 pole 12 way	1965	24．494
9 pofe ofay	$10 \% 6$	＊ 4 －4＊
9 gole 4 way	1967	20.45
4 pole 3 way	1008	20－4＊
MICRO EWITCHES	Order No．	Pple＊
Plestle button given simple an－ofi actlon		
Finting it amp 251 V E．c．	1969	ce． 26
Butten gival 1 pol change over attion		
Rating 10 amp 2spl a．e．	1970	20 25

DISPLAYS

Type	Nor No．	－
BDL707 $0 \cdot 31 \mathrm{ln}$ stnglo	1810	de
BOL7470．Ein singte	1511	Ef
EOL727 0．5in daubla	1512	＋14
COLD CATHODE ITT sat 安T FIde viawing indleator tubas．Displaya a－9 and dacimat polntn． anode taaletort charactor helphe 10.5 mm ptn connectiona aupplied． Ordar no． $15 t 3$ Pflce $\mathbf{E A} \cdot \boldsymbol{f 0}$		

VOLTAGE REGULATORS

Poelitive Reguintors TOEz ensa MVR 3805 SV 効． 0
Heantlie Reoulalore TOze cane MVR TP12 EV

MVR 781315 V Et．40

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED，NOT FORGETTING TO IN－ CLUDE OUR PART NUMEER．

VAT

ADD 124% TO PRICES MARKED＊．ADD 8% TO OTHERS EXCEPTING THOSE MARKED\＆． THESE ARE ZERO RATED

POSTAGE E PACKING
Add 25p for postage and packing unlese other－ wise shown．Add extra for alrmall．Mla，ordor £t．

PANEL METERS

4* RANGE

Sire $4 \frac{1}{*}^{\prime \prime} \times 34^{\prime \prime} \times 1 \frac{1}{*}^{\prime \prime}$		
Value	ト\%o.	Prico
0-s0uA	1302	86.70
0-100LA	1303	18-70
0.500UA	1304	66.70
6-1HA	\$305	4840
$0-507$	1308	≤ 4.40
2" RANGE		
Sixa 74* $\times 17^{\prime \prime} \times 1{ }^{\text {² }}$		
Value	No.	Price
0-30t3A	1307	$\underline{25} 50$
a 100 UA	\$308	4580
a,s00UA	1309	45.50
O-1HA	1310	63.30
0.50\%	1311	450

MR2P TYPE

Size $42 \times 42 \times 70 \mathrm{~mm}$	
Value No.	Price
0.504A 1313	E5.40
D-IMA 1315	t540
EDGEWISE	
Size 31** $\mathbf{1 F}^{* *} \times 2 t^{*}$	
Value No.	Prict
O-1MA 1316	A. 05
0-500UA :317	64.05

MINIATURE

 BALANCE/TUNING METER
Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity 100101800 MA
No.
Elice

BALANCE/TUNING
Size $45 \times 22 \times 34 \mathrm{~mm}$ $\begin{array}{lr}\text { Sensitivity } 100 / 01100 \mathrm{U} & \\ \text { Na. } & \text { Prive } \\ 1319 & 92.00\end{array}$

MIN. LEVEL METER
Sirs $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity 200UA
N.
1320

Price
Cl. 95

Vu METER
Size $40 \times 40 \times 29 \mathrm{~mm}$

Senateivity 130 UA	
No.	Pries
1321	E2. 20

MINI

MELTHAMETER
Size $60 \times 24 \times 90 \mathrm{~mm}$
Sensitivity 1000 ahmz $/ V$
AC VOLTS 0-10, 50, 250, 1000
OC VOLTS $0.10,50,250,1000$
DC CURRENT O-F-500mA
$\begin{array}{lr}\text { Resistance 0-150K ohms } & \\ \text { No. } & \text { Pries } \\ 1322 & E 7 \cdot 50\end{array}$
P\&P

Potzage and Packing add 25p tulatr
otherwise shown. Add extra for
xirmail. Minimum orfor Cl.

TRANSISTORS

BRAND NEW - FULLY GUARANTEED

74 SERIES TTL IC'S

FULZ SPECIFICATIOAK STHLL LOWEST IN PRICE

FULL SPECIFICATIOM GUARANIEED ALL FAMOUS MANUFALTURERS											
Type 7400	Prict 0.14	Type	$\begin{gathered} \text { Prize } \\ 0.15 \end{gathered}$	Type 7*41	$\begin{gathered} \text { Price } \\ 0.64 \end{gathered}$	Type 7482	$\begin{gathered} \text { Price } \\ 0.85 \end{gathered}$	$\begin{aligned} & \text { Tros } \\ & 7493 \end{aligned}$	Prica 040	Type 74122	$\begin{aligned} & \text { Prize } \\ & 0.50 \end{aligned}$
7601	0.14	7410	0.14	7442	0.64	7483	0.95	7494	$0 \cdot \mathrm{CH}$	74123	$0 \cdot 70$
7402	0. 15	7411	$0 \cdot 23$	7445	$0 \cdot 90$	7484	0.98	7495	0.75	74\$41	0.0.0
7403	0.15	7412	0.23	7446	0.90	7483	1.20	7496	- 80	74 ± 54	1.36
7404	0.15	7413	$0 \cdot 27$	7447	0.78	7486	0.30	74100	1.00	74t00	$1 \cdot 10$
7405	0.15	7414	$0 \cdot 58$	7448	0.80	7499	2.90	74110	0.80	74181	2.00
7406	0.10	7416	0 20	7475	$0 \cdot 46$	7490	0.42	74118	090	74190	1.50
7407	0.30	7417	$0 \cdot 28$	7480	0.50	7491	0.75	74119	$1 \cdot 15$	74198	2.00
7408	015	7440	0.15	7481	0.95	7492	$0 \cdot 45$	74126	O-30	74199	1.00

CMOS IC'S

				$C D$	$\begin{gathered} \text { Price } \\ 60.90 \end{gathered}$	Typo CD4031	Price $27 \cdot 20$	CO4046			60.27
				CD4023	6020.	CD4035	11.30	CD4047	$69+10$	CD4072	c0. 31
	40	CD	60.98	CD4024	20.80	CD4037	40.95	CD404	co 55	C0408	10.20
4006	10-99	CD4016	c0.50	CD4025.	$10 \cdot 20$	C0404	4095	CO405	co. 55	CO408	40.21
4007	20.16	CD4017	<0.98	CD4026	ct.70	CD404	40.82	CD405	El- 10	CO4510	4130
4008	10.98	CD4013	4.40	CD4027	20.60	CO4042	4082	CD4055	ct 40	045	41.60
4009	40.58	C04019	<0.53	CD4028	20.98	CD4043	40 984	CD4056	Ef.35	CD4516	21.40
	* 0 58	CD4*20	c) 10	C	ti-ts	CD4044	1004	CD4069	co. 40	CD4518	41.35
								CD	10.	CD45	4.25

LINEAR IC'S

Typa Price Type Price Ty
 CA3018 CA3020 41 , 70

CA3035 © $21 \cdot 70$

| CA3024 4.1 | 50 | |
| :--- | :--- | :--- | :--- |
| CA 3043 | elt | 85 |

 CA3052 © $\mathrm{EB} \cdot 60$
CA 3054 - 1.75

 CA3123 - 41.90 MCl31才P CA3130 * 40 93 M | CA3140 | |
| :--- | :--- |
| LM301 | 80 |
| 60.39 | | $\begin{array}{ll}\text { LM301 } & \text { LO. } 39 \\ \text { LM304 } & \text { MC1330P. }\end{array}$ $\begin{array}{ll}\text { LM304 } & \text { LI } 60 \\ \text { LM309 } & \text { © } 11.40\end{array}$

$$
\left.\right|^{\text {Type }} \begin{aligned}
& \text { TMCI } \\
& \mathrm{MCI}
\end{aligned}
$$

NEWNES TECHNICAL BOOKS

No. 229 Beginnert
Guide to
Elecrronics Price 62.23!

Na, 230 Beginners Guide to
Television

No. 231 Beginners
Guide to Transistory Price 22.251

No. 233 Eaginnera Guide to Aadio Frice EX.25;

No. 234 Eeginntrt
Guide :0
Colour Televizion Price $\mathbf{C 2} \mathbf{2 5} \dagger$

No. 235 Electronis Diatrams Price El- BO

No. 236 Electronic Comparants Price 11 -00 \dagger

No. 237 Printed Circuit Assembly Price 41 0ft

No. 238 Transisior Pocket geok Price $4390+$

No. 225110 Thyristar Projects Uting Price 42-501

Na 227110 cosimos Digieal IC Projecti For the Home Consrructor Frice $2 \cdot 25$

No. 226 1:0 Operational Amphifier Projects
for tho Home Conatructor Price C2.50\%

No. 242 Electranics Pocket Book Frice 41.75

No. 23930 Phoscelectric Círcuilu \& Systems Price tiflot

Just a selection from our huge stocks!
SEE OUR

NEW CATALOGUE

126 pages packed with valuable information

ORDER NOW
ONLY 50p plus 15p p \& p

Dept. P.W.5, P.O., Box 6, Ware, Herts SHOP 18 BALDOCK STREET, WARE, HERTS

EDITOR
Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Ganderton, C. Eng., MIERE
ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
SECRETARIAL
Rob Macklo
Sylvia Barrett
Debble Chapman

EDITORIAL OFFICES

Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
01-261 6671
Roy Smith
CLASSIFIED ADVERTISEMENTS 01-261 5762

Colin R. Brown

ADVERTISEMENT OFFICES

King's Reach Tower, Stamford Street, London SEi 9LS

BINDERS

Blinders, for elther the ofd or the new format, are $\mathbf{5 2}$. 85 and Indexes are 45 p (Inc VAT) and can be obtalned from the Post Sales Department, IPC Magazines Lid., Lavington House, Lavington Street, London SE1 OPF, Remittances with overseas orders for binders ahould Include 60p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-eatablithment of a PW Back Numbera Service for our readers. In future back numbers dated from June 1977 only will be avallable from our Post Sales Department for 65p, which includes postage and packing. Cheques and Postat Orders should be made payable to IPC Magazines Lta.
Send your orders to:- Post Saies Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

The British Connection

ELSEWHERE in this issue there appears a letter from a reader, prompted by a news item on electrical safety which was published In our March 1978 issue. Whilst I do not feel that PW is really the place to conduct a campaign for a "simple, safe plug", as he suggests, perhaps a few comments would not be out of place.

There are already on the market at least two makes of 13A plugs designed in such a way as to allow the live, neutral and earth cores of the lead being attached to be cut and stripped to the same length. These plugs are made by Crabtree and MK Electric. The latter's also Incorporates a "press-in" cord grip, whose oniy disadvantage seems to be that fairly strong fingers are required if a heavy-gauge lead is to be fitted.
When the 13A plug was originally introduced, there were four standard fuse ratings-2,5, 10 and 13 amps. A few years ago, the range was reduced to just two, of 3 and 13 amps , partly with the Intention of trying to overcome the problem of over-fusing of small appliances. It was hoped that, by cutting the stock-holding required, electrical retailers might be persuaded to offer their customers the choice of plugs fitted with the appropriately rated fuse.

There has been litnited success in achieving this aim. Some small electrical shops will ask a customer at the time of purchase, what sort of applance the plug is intended for, and ensure that the correct fuse is fitted. At least one large chain of self-service stores offers a choice of 13 A plugs fitted with 3 amp or 13 amp fuses, identified by an attached label.

Unfortunately, not everyone is sufficiently aware of the purpose of fuses to be able to make the correct selection, In a recent discussion on thls very subject, the opinion was expressed by a very intelligent young lady: "When in doubt, fit the larger fuse. It would be safer because there would be less risk of it blowing". Clearly, more effort is needed to educate the publle in this important aspect of electrical safety. In at least some of our schools, young people are, thankfully, now being taught about such things. Reaching the aduit population is more of a problem.

Incidentally, before I am accused of being a male chauvinist, let me say that, in my experience, ignorance of the rudimentary principles of electrical safety (or any other sort of safety, for that matter) is very definitely not confined to the female of our species!

While on the subject of electrical safety in general, and 13A plugs in particular, another comment seems appropriate. Why is it that, when all such plags are designed and type-tested to comply with British Standard Specification 1363, so many of them are incapable of carrying a full 13 amp load without overheating of the live connection? The heating causes corrosion of the end-caps of the fuse-link, and of its retalning clips, and the effects are usually cumulative. In one such case of my experience, sufficient heat was conducted to the mating socket to cause the polythene insulation to melt and peel away from the live conductor of the incoming supply cable over the first centimetre or so from the socket terminal. There are very few makes of 13A plug which I would use to feed a 3 kilowatt heater.

Geoffrey C. Arnold

PLEASE NOTE

We do not operate a Technica! Query Service except on matters concerning constructlonal articles pubilshed in PW. We do not supply zervice sheets or informaflon on commercial radios, TV's or electronic equipment.
All quarles must be accompanied by a stamped self-addressed envelope otherwibe a reply cannot be guaranteed.

New catalogue

The Winter 1978 Heathkit catalogue lists several new products of interest to the electronics enthusiast, including a range of low-cost, high-performance test equipment. The catalogue is available, free of charge, from Heath (Gloucester) Lid., Gloucester GL2 6EE.

Dear old pals

Television and radio as "Good Companions" provide the theme of the introduction to the sixteenth edition of the Independent Broadcasting Authority's annual handbook "Television \& Radio 1978', published on 20th January, 1978.

The handbook is a comprehensive and detailed guide to the workings of Independent Television and Independent Local Radio, describing the work of the Authority and the programme companies. Available from newsagents and booksellers.
"Television \& Radio 1978", 224 pages, $228 \mathrm{~mm} \times 194 \mathrm{~mm}$, over 300 illustralions (many in colour), Price £1-85.

Mobile Rally

We are informed that the "Welsh Amateur Mobile Rally" will be held on Sunday, 21st May, 1978, at the Barry Rugby Football Club, Myneth Duffan, Barry, South Glamorgan.

Entrance is free and the organisers are hoping for a much larger rally this year. Further details from:

Simon Lloyd Hughes GW8NUN, 1 Min y Mor, Barry, South Glamorgan, CF6 8QC.

Keep it going

The Society of Electronic and Radio Technicians have organised a symposium to study "Electronic Maintenance Management".

Specialist studies of the many factors have been made and S.E.R.T. have arranged the symposium to coordinate current knowledge and opinion in the field. It will be of especial interest and value to those occupying supervisory and managerial positions in service departments, also those in maintenance sections of user industries.

Contributions have been arranged from many major industries and organisations including an opening address by the chairman of EM1 Electronics, Dr. P. Allaway.

The symposium will be held at the University of Surrey from 10-12 April, 1978 and is residential. Accommodation, all meals, social activities and full
documentation are included in the cost, which is £98 plus VAT. ($£ 82$ plus VAT S.E.R.T. members.)

For details apply to:
I. R. G. Channing, S.E.R.T., Faraday House, 8-10, Charing Cross Road, London WC2H OHP. Tel: 01-240 1152.

RHYNET

A RAYNET symposium to be held on Saturday, 15th April, 1978, at the Post House Hotel, Leicester. Commencing at 10am the cost is $£ 4.00$ which includes buffet lunch.

Subjects will include: RAYNET yesterday, today and tomorrow; RAYNET and repeaters; Liaison with user services; Exercises; Live incident case histories; Equipment etc. and discussion periods.

Further details from:
G8CAC QTHR-M. G. Barker, 3 Burley Close, Desford, Leics. LE9 9HX.

Game of Kings

A new addition to the electronic game market, is the Gammonmaster II. This sophisticated, totally computerised backgammon game is designed for excitement and ease of play. It will defeat the average player more often than not, and compete evenly with experts.

When you play against the machine, the computer displays each of its moves electronically, while recording your moves. You chart the game with regular pieces, and can always verify the location of every piece on the board at the touch of a button. The
dice are rolled electronically at random.
Although the machine likes to play an aggressive offensive game, it will change its strategy depending on how you choose to play-Running game, Block and Hit, Back game--it can also play a semi-back game, blot hitting contest and bear-off strategies.
If you know and enjoy backgamanon, Gammonmaster II can become a true measurement of your shall.

The price which includes VAT and $p \& p$ is $£ 175$. Avalable from: Kramer \& Co., 9 October Place, Holders Hill Road, London NW4 1EJ.
Tef: 01-203 2473.

A 2 metre VSWR Bridge

M. H. Tooley BA G8CKT \& D. Whitfield BA G8FTB

Introduction

Matching the aerial to the transmitter, in order to obtain maximum radiated power, is an important consideration for any radio amateur hoping to obtain the best results from his equipment: this can be achieved by using some form of standing wave meter in the tuning-up procedure. The standing wave ratio (s.w.r.) is a measure of the efficiency of an aerial system: the closer the s.w.r. is to unity, the greater the proportion of transmitter power actually radiated. Although the s.w.r. only approaches unity under ideal conditions, in practical situations its measurement will provide a very useful evaluation of the system's performance.

The instrument described is an s.w.r. bridge which will provide a constant, on-the-air reading whilst allowing meaningful measurements to be made on the relative merits of different aerials and aerial sites. It is suitable for use in the feeders of v.h.f. transmitters having outputs of between 1 W and 100 W .

Circuit Description

An s.w.r. bridge works by sampling the amount of power flowing in each direction along the aerial feeder. This is achieved by the use of a Maxwell bridge transmission line coupler, as shown in Fig. 1. The reactive arms of the bridge are formed by the distributed capacitance and mutual inductance of the coupled lines. The two sampling lines L1 and L2, shown in the circuit diagram of Fig. 2, are coupled to the main aerial feeder and respectively terminated at opposite ends by R1 and R2, thus providing two outputs which are proportional to the forward and reflected signals present. Diodes D1, D2 and capacitors $\mathrm{Cl}, \mathrm{C} 2$ convert the sampled signals to d.c. for measurement on a conventional meter M1. Potentiometer VR1 adjusts the sensitivity of the circuit and ferrite beads prevent stray r.f. pick-up in the wiring.

In practice, the bridge can be used either way round due to the symmetry of the circuit, but for convenience, SK1 is assigned to the transmitter and SK2 to the load; this allows S1 to be designated "forward" and "reflected."

Fig. 1: Theoretical diagram of the Maxwell Bridge transmission line coupler

$\triangle \overline{A D C O B D}$

Fig. 2: Complete circuit diagram of the $2 m$ VSWR bridge

Fig. 3: Wiring layout inside the diecast box

Construction

The instrument is built into a small diecast box, which also acts as a screen. In obtaining a suitable box it is important to ensure that the depth is suffcient to provide adequate clearance for the meter movement.

The oomponent layout is shown in Fig. 3. A tag strip is mounted so that the end connections are earthed via fixing screws, whilst the remaining ones are isolated: this is best done by using additional 8BA nuts to space the tag strip from the case.

It is important that the physical placement of the diodes, resistors and pickup lines is symmetrical: the better the symmetry, the better will be the electrical balance of the bridge. If matched resistors, diodes and capacitors are used, electrical balance will be even better than is possible with randomselected components. Since the bridge is essentially relative-reading, this condition, while highly desirable, is not vital for satisfactory results.

The germanium detector diodes should be matched for similar characteristics using the circuit of Fig. 4. A pair of diodes should be chosen such that on test there is no appreciable meter deflection as the applied voltage is varied from 0 to 9 V . The meter used for evaluating the diodes should be as sensitive as possible, e.g. an Avo Model 8 on its $50 \mu \mathrm{~A}$ range.

A0079
Fig. 4: Circuit used for comparing diode characteristics

The coaxial line is made from a 140 mm length of low-loss coaxial cable (see component list). Its outer p.v.c. sheath should first be carefully removed and the copper braid "bunched" to allow the two sampling lines to be introduced under it. The lines should be of equal length and should be run inside the braid, with care being taken to keep them close together with no kinking. They should come out about 20 mm from each end of the cable.
The accuracy of the instrument is dependent on the matching of the terminating resistors to the impedance of the sampling lines, thus the constructional details for the coaxial line should be closely followed.

Fig. 5: Mefer calibration scale for use with Maplin type ' 2 in PAN' meter. The original $100 \mu \mathrm{~A}$ meter scale (left). Replacemenf scale for s.w.r. measurement (right). Both shown actual size

Calibration

Using the recommended meter movement the instrument may be calibrated simply by copying the scale shown full size in Fig. 5. For alternative types of movement a table of calibration points is given The new meter scale is best marked with the scale plate detached from the movement, using a fine pen and drawing ink, pencil or dry transfers.

S.W.R.	Reverse Reading $(\mu \mathrm{A})$	S.W.R.	Reverse Reading $(\mu \mathbf{A})$
$1: 1$	0	$2 \cdot 5: 1$	43
$1 \cdot 1: 1$	5	$3: 1$	50
$12: 1$	9	$3 \cdot 5: 4$	56
$1 \cdot 3: 1$	13	$4: 1$	60
$1 \cdot 4: 1$	17	$4 \cdot 5: 1$	64
$1 \cdot 5: 1$	20	$5: 1$	67
$1 \cdot 6: 1$	23	$6: 1$	74
$1 \cdot 7: 1$	26	$7: 1$	75
$1 \cdot 8: 1$	29	$8: 1$	78
$1 \cdot 9: 1$	31	$9: 1$	80
$2: 1$	33	$10: 1$	82

Using the S.W.R. Bridge

Attach the output of the v.h.f. transmitter to SKl and the aerial system or some other form of load to SK2, using matched feeder. Set Sl to read forward SK2, using matched feeder. Set Sl to read forward
power and turn VRI fully anticlockwise for minimum meter sensitivity. Apply r.f. power from the transmitter and adjust VR1 for a full-scale meter reading.
Leaving the setting of VR1 unchanged, set S1 to read mitter and adjust VR1 for a full-scale meter reading. reverse power: the meter will now indicate s.w.r. directly.

It should be noted that continuous high-power
It should be noted that continuous high-power
operation of the s.w.r. bridge without a load may cause the 100 ohm resistors and the diodes to be destroyed. The bridge may be left permanently inline
with the feeder between transmitter and aerial, as it destroyed. The bridge may be left permanently inline
with the feeder between transmitter and aerial, as it introduces no significant signal degradation in either direction. Constructors should be wary of placing too much importance on absolute s.w.r. readings; the real value of the bridge lies in its ability to indicate
relative forward and reverse power levels. It will be real value of the bridge lies in its ability to indicate
relative forward and reverse power levels. It will be found invaluable as a general aid in the adjustment of transmitters and aerials.

components

```
Capacitors
    C1 1nF disc cerame
    C2.1nF disc ceiamic
    C3 1nF dise ceramic
Resistors
    R1 100 ohms ! W 2%
    R2 }100\mathrm{ obms 交W 2%
    VR1 47MS! linear carbon
Oiodes
    D1 OA90
    D2 OA90(See text)
```


Sockets

```
SK1 50N2 BNC
SKO 50Д BNC
```


Lines

```
L. \(1250 \mathrm{~mm} 26 \mathrm{~s}, \mathrm{w} . \mathrm{g}\). enamelled copper wire.
L2 \(250 \mathrm{~mm} 26 \mathrm{~s} . \mathrm{w.g}\). enamelled copper wire.
140 mm low-loss \(50 \Omega\) coaxial cable of capacitance
\(56 \mathrm{pF} / \mathrm{m}\) (UR203).
```


Misceflaneous

```
Diecast box approximately \(120 \mathrm{~mm} \times 60 \mathrm{~mm} \times 44 \mathrm{~mm}\). \(100 \mu \mathrm{~A}\) 2in panel meter. Miniature single pole c/o toggle switch. Cantrol knob with position Indicator, Miniafure \&-way horizontal tag strip. Earth tags, 5 requilred. Ferrite beads, 6 required (from TMP Electroaic Supples, Britannia Stores. Leeswood, Mold, Clwyod CH745D N. Wales).
```

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more imformation on products than appears in the arificle.

Pulse probe

Nurses filting around the wards, seizing wrists and checking pulses might be said to be getting to grips with the problem. However, a British company looks like putting an end to this age-old hospital custom. It is launching a unique little gadget which looks about the size of a fat pocket watch. All your ministering angel has to do is to hold the little device firmly on your wrist, and after only ten seconds your pulse is displayed accurately and digitally on a midget l.e.d. readout

A tiny plezoelectric transducer beneath a thin plastic membrane senses the pulse and in the absence of any pressure here the unit will automatically switch itself off. Putses from 40 to $200 /$ minute can be detected and read off to an accuracy of $\pm 3 \% \pm 4$ digit and the device will operate for several months (about 3,000 separate "pulses takings") on a single $5 \cdot 6 \mathrm{~V}$ battery. When the battery does run down, a decimal dot appears in the display.
Ideal for busy hospitals, and for the "average" high powered business man intent on watching his blood pressure-take a pulse Miss Jones.

Mini glimmers

Aren't l.e.d.s small compared to, say; the average torch bulb? News has just arrived that they're even smaller, thanks to German manufacturer who is to bring out very small solid state lights!
These l.e.d.s are only one millimeter wide-which amounts to barely one twentyfifth of the good old fashioned British inch. They are to be avallable in the "usual"' l.e.d. colours: green, red and yellow. Brightness is impressive- 1 mod at 10 mA . Commercial applications are seen as solid state dial indicators where a number of l.e.d.s are put in a line (or semicircle like the electronic speados in cars). Another possibility is to use just a lonely one to light up l.c.d. watch faces at the touch of a button. They would also be ideal for use in photographic applications where, in some cameras, l.e.d.s light to show exposure detalls etc in the viewfinder
of an s.l.f. camera. Piease note, these are not yet available, but when they are, the numbers to watch for are LD171, LD161 and LD121 the number differences denoting a different colour. Just the thing for making a bionic glow-worm!

CQ Helk tock

Talking small, times are changingespecially in the digital watch field. Up untll now the favourite frequency for quartz crystals in timepieces was 32 kHz . Now, a German manufacturer has employed a 4 MHz crystal. Not only that, but it's been incorporated onto an i.c. There are many arguments for the higher frequency. The 4 MHz crystals are cheaper to manufacture, and they have greater mechanical and thermal stability. It is interesting to note that the new i.c. oscillator draws only $6 \mu \mathrm{~A}$ at 1.5 V . There might be an outlet here for Hems who have an Interest in miniature transmitters and receivers. Perhaps we will get Ham pirate stations coupllng their wist watches to a ten element yagi, or working half the world using 300 ft of wire and a Timex

For those with an interest in oscillators which are admittedly a little larger (but at least in production) (note that an American company regularly advertises some crystal oscillators which are housed in a d.i.l. (dual in-line) package. It's the same size as a 14-pin lic. but is 0.5 in . high. Frequency range avallable is from 6 MHz to 60 MHz , and at a temperature between $-10^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$ they have an accuracy of $+0.0005 \%$. Cost (guessing 1.9 dollars $=£ 1$) is around £27.

Tamily programming

The age of the home computer is here and I predict that it will be a major industry in Britaln within the next decade. Certainly people will end up using a home computer (for various things) like they currently play with home TV games.

Having sald that. I was very interested to hear about the new COSMAC VIP. The VIP stands for Video Interface Processor. This truly magnificent beastie lets Its master (or
mistress) both create and play video games-and generate graphics, and develop microprocessor functions. The manufacturers describe it as a computer on a card. It's easy to program and, what's more, you can easily create your own programs. It's currently only available in the US (as far as I know) where it is sold in kit form. A "Cook book" is provided and part of this is devoted to telling you about programs for 20 different games. Some of these are purely fun games; others are educational. These are loaded and recorded on an ordinary cassette recorder. After this, all you need do is to connect your COSMAC VIP to a video monitor, or you can connect it to an ordinary black-and-white TV via a simple r.f. modulator. Price of the kit in the US is approximately $£ 150$.

Chip chat

If you are a tape recorder buff, then watch out for the magic number LM1818. You won't see it until very late thls year (hopefully) but when you do you'll find it's an l.c. which contalns all of the active electronics (except the bias/erase oscillator) needed to build a complete tape recorder. Buried in its little package are some very good design ideas. Like the incorporation of electronic switching from record to playback and vice versa. Using this chip, it's good bye to those six-pole changeover switches often found in tape recorders. The i.c. also incorporates two monitor amplifiers (for playback and record) plus another two preamplifiers for microphone and playback res pectively. And the manufacturer has even thought to include some automatic levelling electronics for the equalisation of voice and any background sound. Other control circuitry employed enables the chip to comfortably handle anything from d.c. up to top audio without those plops when the record/play back switch is actuated. Finally, there is a meter driving circuit.

Cinsbers

Part 2

This part deals with the first stages of construction and covers the Raw Supplies (Board 1) and the Stabilised Supplies (Board 2).
First build up the Raw Supplies, Board 1, as in Figs. 1 and 3.

Fig. 2 gives the circuit diagram of this board and a new series of component numbers has been started, as can be seen. Thus any component's number locates the board on which it is used (or mainframe/front panel for numbers under 100).
The Raw Supplies board produces a +300 V output at pin 10. Without R101 the output would be in excess of +350 V , but with it the conduction angle of the rectifiers D101 and D102 is substantially increased. The increased conduction angle greatly reduces the volt drop in section B of the $250-0-250 \mathrm{~V}$ winding of Tl on positive peaks.

This in turn increases the negative output from the tripler circuit D105-D107 and associated capacjtors. In fact -1150 V approx. is produced at the junction of D107 and C106 at nominal mains voltage. This permits the use of a simple shunt stabiliser R104, D108-D112, providing a -800V stabilised e.h.t. output at pin 7 .
In conjunction with the centre tap of the 12.9-012.9 V winding, bridge rectifier Dll3 provides plus and minus 17 V raw outputs at pins 4 and 5 respec-tively-the reservoir capacitors C19 and C20 are mounted on the mainframe. R102 and D103, D104 produce a clipped sine wave-approximately square -at pin 1. This is made available at the front panel (SK3) and provides a useful check on the accuracy and linearity of the lower timebase ranges.

Having made up the Raw Supplies board, check
that all the polarised components are in the right way round (this board is unusual in that there are only four components which aren't polarised!) and mount it in the mainframe. Make off the connections to T1, insulating the ends of leads not yet needed, C19 and C20 and you are almost ready to switch on!

First, just fit a temporary link from Board 1 pin 6 to chassis-this will later be removed to leave a single common earth point at Board 3 edge connector when fitted. On test you should find around -800 V at Board 1 pin 7 (all voltages are measured with respect to chassis), but the voltage at pin 10 will be around +360 V as no carrent is being drawn.
Likewise, the plus and minus 17 V raw supplies at pins 4 and 5 will be nearer 20 V for the same reason.
In the absence of the load provided by the resistor string R16, VR6, R17, VR5 across the -800 V Stabilised output, diodes D108-D112 will be passing more current than usual, so do not run the circuit for longer than necessary to check the output voltages.

After disconnecting the mains supply, always discharge the high voltage capacitors. Two feet of wire with a crocodile clip at one end (to pick up anywhere convenient on the chassis) and a 470Ω resistor in an insulated hand-grip at the other, touched on the positive end of C101 for a second or two and then likewise on the negative end of C106, can save you from a very unpleasant shock.

Having progressed so far, it's time to turn our attention to the Stabilisers, Board 2. Figs. 5 and 7 show the component layout and track side of the board respectively, whilst Fig. 6 gives the circuit diagram.

The stabiliser circuits are all fairly conventional.

Flg. 1 : (above): Component placement for the Raw Supples Board 1. Care must be taken with component placing to avold adjacent cans touching and also to ensure correct polarity

FIg. 2: (below): Circult diagram of the Raw Supples Board 1

Fig. 3: Copper side of Board 1. A ready drilled board is available from Watiford Electronics

components

BOARD 1, RAW SUPPLIES

```
Resistors
    $W 5%% carbon fim unless otherwise speciffed
    R401 390\Omega 5W
    K102 5.6k\Omega
    R103 4.7k\Omega 岁W
    R104 180̈k\Omega2W
Diôles
    D101 BYX94
    0103, {04 +N4148
    D105-107 BYX94
    D108-112 BZX61C160
    Di13 50V 1A Bridge rect, wiré lead's
Capacitors
    C101: 47 FF500V
    C102-106 8 % F500V
Miscellaneous
    Pinted circuit board
    Dou$le Sided Wiring Pins-10
```


Fig. 4: Part of the inside of the case showing the positioning of the two power supply boards

Fig. 5: Component placement for the Stabilised Supplies Board 2

The +12 V supply uses a 723 (IC 202) augmented by a 2N3055 which, like the other supplies, is fitted with a heat sink. R204 sets the short circuit current for this supply at a little over 100 mA . The load drawn from this supply in the completed instrument is around 40 mA , which makes the heat sink hardly necessary. However, as explained earlier, beatsinks enable the stabilised supplies to withstand a short circuit of limited duration. Further, the cool running under normal conditions should ensure high reliability, with servicing required seldom if ever.

The +5 V supply is also produced from the +17 V raw, by IC201. The LM309 contains both overcurrent and overtemperature shut-down and needs only bypass capacitors at input and output.

The - 12V supply is produced by an LM304 (IC203), augmented by Tr206 and $\operatorname{Tr} 207$. This supply is more heavily loaded, as it also accepts all the return current drawn by the X and Y deflection amplifiers from the +150 V supply. R212 therefore sets the short circuit current at around 300 mA .
Like the other i.c. stabilisers, 1C203 is provided with bypass capacitors at input and output, to prevent any possibility of high frequency instability. The -6 V supply, which is comparatively lightly loaded, is produced by Tr204, Tr205 and associated components, using the stabilised -12 V as its raw supply. This makes it current limited by virtue of the current limit circuit of IC203.

The +150 V Stabiliser $\operatorname{Tr} 201, \operatorname{Tr} 202$ and associated

components

BOARD 2, STABILISED SUPPLIES

Fig. 6: Circuit diagram of the Stabilised Supplies Board 2

Flg. 7: Copper side of Board 2. A ready drilled board is available from Watford Elecfronics
components is also a discrete design. $A+150 \mathrm{~V}$ reference is provided by 75 V Zener diodes D201, D202 and this controls emitter follower Tr201. Current limiting at about 80 mA is provided by R204 and Tr202. R201 and R202 reduce the +300 V raw supply to about +200 V at the collector of Tr201, reducing the dissipation in this device. It is fitted with the same size heatsink ($7 \cdot 2^{\circ} \mathrm{C}$ per watt) as the other stabilisers, which necessitates drilling a 6BA clearance hole, as the heat-sink is ready drilled for a TO3 rather than a TO126. VR201 is mounted on this board for convenience. It is a preset potentiometer for Astigmatism adjustment of the c.r.t. display and its use will be covered later.

Next month's instalment will cover the front panel wiring as well as the interwiring of the power supplies. For this stage the case will be required and this can be obtained from Watford Electronics together with the pinnted circuit boards and all the other components needed.
As this project is proving very popular you are advised to place a regular order for Practical Wireless with your newsagent now.

Much has been said and written in recent years about the virtues of a circuit known as the phase-locked loop (p.1.1), particularly in connection with communication systems. This article aims to explain its principles of operation in a way that will be useful to the constructor.

Introduction

To illustrate what a phase-locked loop can do suppose that we have a signal of varying frequency and amplitude mixed with noise of comparable amplitude, and we wish to produce a signal of the same frequency but of constant amplitude and free from noise. One way of achieving this would be to pass the signal through a tuned, limiting amplifier such as that used to amplify the intermediate frequency in a v.h.f./f.m. receiver. A drawback of this method is that the tuned stages of the amplifier would have to have sufficient bandwidth to pass the full range of frequencies expected, and the wider the bandwidth required the greater will be the amount of noise passed through to the output.
The phase-locked loop, as we shall see, provides. a far more attractive and noise-resistant alternative. In fact, the p.l.1. can be thought of as a convenient way of generating a copy of a signal in such a way as to preserve frequency variations but eliminate amplitude variations and noise.

Principles

The basic schematic diagram of a phase-locked loop is shown in Figure 1. The functions of some of the sections shown may call for explanation.
The phase-sensitive detector is simply a circuit with two inputs and one output such that if two signals of the same frequency are applied to the inputs, the output voltage will be dependent on the phase angle between them. In fact, any "mixer" stage in which two signals of different frequencies are combined to produce a third on another frequency is a form of phase-sensitive detector. The phase-locked loop as a whole may operate with continuously varying sinewave signals or, in a digital system, with rectangular pulses.

Fig. 1: Basic phase-locked loop

In the digital case, the simplest form of phasesensitive detector is a simple two-input AND gate, as illustrated in Flgure 2. Here, two streams of pulses of the same frequency but differing in phase are applied to the inputs of the gate. The output of an AND gate is "high" whenever all inputs are high and "low" otherwise. Thus, the fraction of the time for which the output is high and, hence, the mean voltage at the output, will depend only on the phase angle between the two square waves.
$\triangle 0055$

Truth Tablo		
Input 1	Input 2	Output
Low	Low	Low
High	Low	Low
Low	High	Low
High	High	High

Fig. 2: A simple AND gate may be used as a form of phase-sensitive detector

The purpose of the low-pass filter is to remove any unwanted high frequency components from the output of the phase-sensitive detector, since it is the d.c. component that principally concerns us. The filter may be exceedingly simple, often consisting of one capacitor and one resistor, and will be designed to attenuate signals at frequencies above a certain maximum. This maximum frequency passed will have a profound effect on the performance of the circuit.

The voltage-controlled oscillator, as the name suggests, is an oscillator with frequency controlled by an applied voltage. Generally, the relationship between frequency and controlling voltage will be linear. The frequency of oscillation when the control voltage is zero is known as the "free-running" or "centre" frequency.
Now, suppose a signal with frequency equal to the free-running frequency of the v.c.o. is applied to the input of the loop. The applied signal and the signal from the v.c.o. will not, generally, be in phase and so the p.s.d. will produce a d.c. output which will change the frequency of the v.c.o. The resulting speeding-up or slowing-down of the v.c.o. will alter the phase angle between the two signals applied to the p.s.d. By arranging for the frequency of the v.c.o. always to vary in the appropriate direction, it can be ensured that the phase angle will always decrease. As it does so, the output from the p.s.d. will approach zero and the frequency of the v.c.o. will return to its free-running value.

Thus, by a process of negative feedback between the p.s.d. and the v.c.o. the output signal (from the v.c.o.) is matched in phase and in frequency to the input signal.
But suppose that the input frequency is not equal to the v.c.o.s free-running frequency? Provided that

New from Texas Instruments. The world's most powerful pocket calculators. For the easiest problem solving ever.

The new Texas Instruments Programmable Ti-S8 and TI-59 make your problem solving simplar and easier by making the electronics do more work. Now, commondy encountered. programmes in maths, science, finance and stalistics are set up and accessible at the touch of a key. You need add only the variables.

Solid State Softwaret is the name of this technological achievement from Texas Instruments. Even the 3rogramming is now included in the solis-state electronics. You get complete, pre-written problem solving libraries un convenient plug-in modules. Yet, no prior programming knowledge is necessary.

The programmable T1-58 at f8日.95*
Includes a Master Library Solid State Software module packed with 25 use\{ul programmes, al' at your commend. Or you can key-in your own programmes and store the data - using up to 480 programme steps or up to 60 mbmorjes and employ the Master Library programmes as subroutines.

Optional plug-in library modules are avallable to convert your calculator into a specialiged problem solver in the fields of applied atatistics, surveying, aviation, navigation - with many mors 5,000-step libraries to come.

The programmable T1-59 at $\mathbf{2} 249.95^{*}$
Includes all the fagtures of the Ti-58 - pius more programane steps. more memories, and a magnetic-card capability. Record your own programmes on convenient magnetic cards and store them permenently in your personal problem-solving library.

The Texas Insiruments
Programmable TI-58 and TI-59 and the compatible PC-100A alphenumeric printer/plotter include a 1-year warranty. See the world's most powerful pockel calculators now.
Or use the coupon to obtain full product information:
Allorders by post to 186 High St Slough.

Sumulated Genlculetor Displey.

Texas Instruments. Innovators in personal electronics.

TEXAS InSTRUMENTS LIMITED
 + Trademark of Takis instrumbita
 "Suggested retall prico, including VAT.

Texes Instruments Ltd. Supply Division, Manton Lane, Bedford. Tel: Bedford (0234) 67466.

The Antenna that Hertz missed out on！

We guppose lt was quite an achlevement to predict radlo－wave transmission and then devise shock－ excited YHF dipole In those far off days，but what a time the Grand Old Man could have had on the range －5－30 MHz．If only he＇d had a Joystick VFA（Variable Frequency Antenna）to play with．And what＇s more， whilst his original experiment was transmission meross a room，with the Joystick many delighted users have found an indoor Installation（it＇s only 7 ＇ 6 ＂long） has got them better DX（receiving and transmitting） than experlenced on previous antennae．
In wse by Amateur Transmitting and SWL．Stations world－wlde and in government communication．

SYSTEM＂A＂

£36．00
250 w．p．e．p．OR for the SWL．
SYSTEM＂J＂
£42．60
500 w．p．e．p．（improved＇ \mathbf{Q}＇on receive）．

PARTRIDGE SUPER PACKAGES

COMPLITE RADIO STATIONS POR ANY LOCATION
All Puckages feature the World Record joystick Aerial（Syctem＇A＇），with aft，fuedur，all nacesary cablea，mitrehing communictilon headphonet． Dallv．Sacuricor our rifk，AssimbLED IN SECONDS！BIG CASH SAVINES！

PACKAGE No．I

At above with R． 300 nX．EAVE C17．28：
£210．55

PACKAGE No． 2

is offorad with the PROT RX，SAVI 4．12．21t

PACKAGE No， 3

Hara js a lowerrppice hlohogutity
 with ell the Partrlife sutres．影
£177．00
RECEIVERS ONLY，inelurlve dalivary，etc．
R． 300 £ $184.50 \quad$ FRG7 $£ 162.00 \quad$ SR $\times 30 £ 146.25$
All pricet are corract at time of going to prass and incfude 121% VAT and cerringe．

or write for detalif，sand 9p stamp

Box 5，Partridge House，Prospect Road，Broadstairs， CTIO－JLD．（Callera by mppolntment）．

 GATE PRR FET HOP SL301 DOUALMANALMATCHED PAR MOSFETS SINGLE 300MHZ 30，INTEL CIIOS 1024 BIT MOS RAMS OTP，B9IIF TRIPLE VARICA

MICROPHONES：GRUNDUG ELECTRET MICROPHONE INSERTS WITH EET MIKES，IK IMP WITH STANDARD IACK PLUG EZ， 4 EM ELECTRE CONDENSER UNIDIRECTIONAL，FETAMPDUALIMPEDANCE $50 \mathrm{~K}, 600$ OHMS ONIOFFSWITCS 30－IBKHZ III OO，EMIO4 MIN．TIE CLIP CONDENSER MIKES，OMNI，IK IHP． USES DEAF AD BATTERT（SUPPLIED）44．09

METAL HIFSPEEO TYPE 2－2：
TIL 305 ALPHANNUMERICAL DISPLAYS， $10 \cdot 38^{\circ}$ FIG，SI2E，WITH DATASHEET， $42 \cdot 75$
 MPED．E9．50 FX2000 CRYSTAL MARKER EENERATOR TOOKHZ TO 50 MHZ LESSXTAL LYOP．
OOLDRE SUCKNG PLUNGER TYPE，REPLACEAELE MOZZLE，EYE PROTEC CRYSTALS，$\$ 00 \mathrm{KHZ} 40 \mathrm{p}$ ，4．43MHZ CTV XTAL 45p．

WLAYSMIN SEALEDTYPE 4 POLE CHANGEOVER 36 OHM WWM EASE $4 P$ MIN．SEALED 240V AC 2 POLE CDO RELAYS 40p． 4 POLE REED REEAYS． 1 VOLT5 20p．MIN，REED RELAY，N，OPEN， $30 \mathrm{~m} / \mathrm{m} \times 10 \mathrm{~m} / \mathrm{m}$ 3 $\mathrm{mVDC}, 22 \mathrm{p}$ ．
MOTORS， 15 TO 6 VDC MODEL MOTORS 20 0 ， 12 VOC 5 POLE $13 p, 5 U g$ ．MIN GINCH 15 YAC 3 RPM MOTORS 30p
 $\times 35 \mathrm{~mm} 4 \mathrm{p}$ ． $55 \times 76 \times 35 \mathrm{~mm} 32 \mathrm{p}, 15 \times 95 \times 36 \mathrm{~mm} 60 \mathrm{p}$
 FORMERS $30 \mathrm{p}, 6 \mathrm{MH}$ 3． 12 MP CHOKES 30 ． Uxzins．GPO TYPE
UZZERS（ 50 mm ）LOND NOTE 50 ．MIND $工 二$ VOLT LARGE PLASTIC DOMED
 U．H．F．TUNERS，PUSH BUTTON T．V．TYPE（NOT VARICAP）NEW AND BOXED 2．30．
 TRACK HEAOS 5OR SRPGO t TRACK RJP HEADS \＆I．93R．STANDARO G TRACK WITH BUILTIN ERASE，MOUNTED ON BRACKET E1－20p．
SPECIAL OFFER，ZN4I4 RADIO EHIPS 7PP．LMIBO 㸷P METERS，200MEAO AMPMIN，LEVEL HETERS 75 GRUMDIG IMABATT，LEVEL METERS $40 \times 40 \mathrm{~mm}$
 10 TUMN DAAL MHCHANISMS WITH LOCXING ARH ALUMINUM DIAL
SCALED O－100，WINDOW SGALED $10.50, ~ 32 \mathrm{~mm}$ DIAMETEA， SI．7月p． DIAM）
 MPD CENTAE OFF $12 \times 11 \times 9 \mathrm{~mm} 75$ MAN．PUSH TO MAKE OR PJ5H TO MAKEORPUSH TO BAEAKIGX6mmIPE EACH TYPE JO AMP ROCKER SWITCHES MICRO EWITCHES，STANDARD SIZE ROLLERACTION ISD MIN， $13 \times 10 \times$ Amm 20p．FLESSEY WINKLER SWITCHES，I POLE 30 WAY 2 EANK ADHUSTABLE STOP 75
TERMS：CASH WITH ORDER（OR OFFICIAL OROER FROM COLLEGES ETC．） POSTAGE SOP OVERSEAS POST AT GOST．V．A．T．INELUDED IN ALE FRICES．
SAE．FOR LISSS．

OND信 ADDRESE

S•DeCnology T•DeCnology Blob Board

U．Can Build I．C．Circuits with New U－DeCnology

U－Simply puih componants Into DeC No faldaring Li－SImply tratwify to Alob Bans
 of contact ralle．U－oth Dect＋Blob Boarde＋Fres Jumper hada U－buy at Mak F the pritit of any compettiva board．U－git frate prolwas bookion with mep by titp inntruotions． U－hive rolier tinned boanda for avipor actuiring
 + Mp［VAT POBTI
U－OpC＂A＂+321 C Blob Boanda＋FqEE 10 Jumper hads Nommithy 58.00 ．only Ex．00
T－DOC＋31LC

 PB DE2 16 DI Adaptor with nocket for T－DrC and U－DeC＂A＂t1．t． IVAT \＆POAT，
 IVAT E POITI

Avallable from all geod somponent steokhtu

Dec－IT and Dleh－1T
P，B．Electronlas（5ootiand）Ltd．

the input frequency and the free-running frequency are sufficiently close, the same locking by negative feedback will occur and the loop will settle down with the v.c.o. frequency equal to the input frequency and the phase angle between v.c.o. and input just right to produce the d.c. output from the p.s.d. required to bias the v.c.o. to the input frequency. The reason why the phase-locked loop is so called is now clear; it operates by a process of negative phase feedback.
Because the low-pass filter passes such a narrow band of low frequencies the circuit is extremely insensitive to random noise and interference, and can lock on to, and produce, a noise-free replica of a frequency-varying signal buried deep in noise.

Limitations

There are, of course, limitations. The p.l.1. will lock on to only those frequencies within a limited band around the centre frequency. The width of this band is determined by, among other things, the sensitivity of the v.c.o. to changes in the control voltage. The range of frequencies over which lock can be maintained is not affected by the characteristics of the low-pass filter. If a signal of constant frequency is suddenly applied to the input of the phase-locked loop, whether or not locking occurs depends on whether or not the frequency of the signal is within the "capture range" of the loop. Once phase-Iock has been achieved, it can be maintained at frequencies outside the capture range provided that the frequency remains inside a wider range known as the "tracking range". If, for some reason, lock is lost while the frequency is inside the tracking range but outside the capture range, locking will not occur again until the frequency returns inside the capture range.
Another limitation is that a phase-locked loop can only follow a locked frequency-varying signal at a finite rate, known as the "maximum tracking rate". If the input frequency varies at a rate greater than the maximum tracking rate, phase-lock will be lost and the signal will have to be re-captured. The rate of tracking is limited by the characteristics of the low-pass filter, since it is this which limits the rate at which the control voltage applied to the v.c.o. can vary. Since the bandwidth of the low-pass filter also limits sensitivity to noise, it is clear that we have a trade-off between immunity to noise and tracking rate. A greater tracking rate can be achieved, but at the cost of greater sensitivity to noise.

Applications

A complete phase-locked loop can now be constructed from a single i.c. and few discrete components. The Signetics NE560B, NE561B and NE562B are particularly versatile.

The most obvious application of the phase-locked loop is as an f.m. discriminator offering easy alignment and excellent immunity from noise. In this application, the f.m. i.f. signal is applied to the input of the loop and the audio output is taken from the control input of the v.c.o. Since the frequency-voltage relationship for the v.c.o. will be linear, the control voltage will vary linearly with the i.f. frequency while the loop is locked.

The p.l.1. can also be used advantageously to demodulate an a.m. signal. This can be done by applying the a.m. signal (perhaps at i.f.) to the input of the phase-locked loop to lock the loop to the carrier

Fig. 3: The use of a phase-locked loop in a crystal controlled frequency synthesiser
signal, and using the output from the loop (after phase-shifting to bring it into phase with the original carrier) to control an electronic switch to invert every alternate half-cycle of the a.m. signal. The "chopped up" signal is then passed through a low-pass filter to remove the r.f. component and leave only the a.f. which is an exact copy of the original modulating signal. One advantage of this system over the conventional germanium diode a.m. detector is that it has a linear response (which the germanium diode does not) and therefore introduces less distortion. Also, in the f.m. case, the use of a phase-locked loop provides better immunity to noise and interference.

Still in the field of communications, a digital phaselocked loop can be used to "synthesise" signals on many fixed frequencies, each with crystal controlled stability and precision but employing only one crystal. Such a digital "frequency synthesiser" is illustrated in Figure 3. Here, a programmable digital divider is included in the feedback loop of the phase-locked loop so that the frequency of the pulses applied to the p.s.d. is not the frequency of the v.c.o., but the v.c.o. frequency divided by an adjustable whole number determined by the output frequency required. Thus, the v.c.o. is locked not to the crystal frequency, but to an adjustable whole number multiple of the crystal frequency and the loop can generate a wide range of fixed frequencies, all with crystal control but without employing a large number of expensive crystals.

Practical Circuits

The Signetics NE561B i.c. is a particularly versatile p.1.1. "chip" and priced at between $£ 3$ and $£ 5$ at present. The device contains a basic phase-locked loop together with a multiplier for a.m. demodulation, a limiting circuit in the feedback loop and two audio preamplifiers for the a.m. and f.m. outputs. The v.c.o. is of the relaxation type. That is to say, its frequency is determined by the values of resistors and capacitors. The simple practical circuits given in Flgures 4 and 5 and described below are intended simply as rough guides to what can be done in practice and are, of course, capable of refinements.
Figure 4 shows an NE561B used as an FM demodulator intended to operate on the usual i.f. centre frequency of $10.7 \mathrm{MHz} . \mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3$ and C 4 are intended as r.f. bypass capacitors and coupling capacitors and are in no way critical. R1, R2, C5 and C6 determine the characteristics of the low-pass filter. C7 and VCl together control the centre frequency of the v.c.o. VCl can be adjusted to give a centre frequency of 10.7 MHz and then left set.

Fig. 4 : An NE561B used as an f.m. discrimlnator

Fig. 5: An NE561B used as an a.m. demodulator
With some simple additional circuitry the NE56,1B can also be used to demodulate a.m. as shown in the circuit of Figure 5. Here, the variable capacitor between pins 2 and 3 determines the band covered. If necessary, fine tuning can be applied via pin 6. R1, R2, C1 and C2 form the 90° phase-shift network necessary to ensure that the output of the v.c.o. and the incoming a.m. signal are in phase when applied to the inputs of the multiplier. The values of VCl , C4, C5, R3 and R4 quoted are suitable for the medium waveband. Thus, a single i.c. and a few passive conponents can replace the i.f. and detection stages of a superhet receiver with considerable advantages in terms of distortion and noise.

In spite of its wide range of uses, the phase-locked Ioop has only recently become an economically attractive device with the advent of whole p.l.l.s in a single integrated circuit.

next month in

Simple TEST-CARD generator

Our latest project is a self-contained, simple test-card generator, which produces a crosshatch pattern with a fourstep grey-scale and two frequency gratings superimposed on it. The complete pattern is surrounded with a castellated border. The unit contains its own power supply and features a one-chip crystalcontrolled s.p.g., and its own u.h.f. modulator. It is a very useful tool for the workshop and indispensable when servicing in the field.

- Plus start of new series

TRANSISTORS IN TELEVISION CIRCUITRY

S. W. Amos, C.Eng., B.Sc., MIEE will be going through the complete TV receiver analysing the ways in which the properties of the various types of transistor are used to obtain the performance required. To start with, a survey of transistor types and characteristics, and basic transistor circuits.

- Also

SERVICING THE B \& O 4000/5000/6000 CHASSIS

The chassis and its novel features are outined, guidance given on setting-up, and common faults summarised.

PLUS ALL THE REGULAR FEATURES

ORDER YOUZ COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please resorve/deliver the MAY issue of TELEVISION (50p), on sale April 17th, and continue every month until further notice.
\qquad
ADDRESS
\qquad
\qquad

4 CHANNEL MIXER／CONTROL UNIT \＆POWER SUPPLY
 （READY BUILT OR IN D．I．Y．MODULAR FORM FOR EASY BUILDING

By deslening and manufacturing in our own Essex factory and selling direct to YOU the customer，we belleve we have produced just about the hest values ever in mixer／control equlpment．You can buy the Disce 2 Unit assembled，tested and ready to connect up and use at once，or buitd your own unit using Stirling Sound Basic Modules．Either way you stand to save－and look at the adventages you get－senstbly arranged controls（on the buflt unif），proper DUPA facllities and RELIABILITY．
－inPuTS－Lelt deck，Might deck，mice．and auk．
－INPUT IMPEDANCE－ 47 K ohme
－POWER SOURCE－ $220-20 \mathrm{~V}$ ．A．C．Malnt
－CONTROLS－Mains onloff，mauter volume，bast $\pm 15 \mathrm{db}$ ，treble $\pm 15 d b, L$ and R mixing，L and R motor awitches，salector switch for LED indicatore on malins and dacka onfoft switiches．
－HEADPHONE AMPLIFIER－Powertul 2 watte Into 8 ohmm；asparate vol．control．
TERMINATIONS－five $\boldsymbol{d}^{\prime \prime}$ Jack Eocketo－2 input， 2 output，head－ phonen．
 untit）panal In matt black with controle senalbly grouped for easy
hatidiling．
 hatraink and pawar supply unit－s．e．iuar

Bullt，tested and guarantead．
 £39．95

POST FREE in UK and INC．V，A，T Krof basic modules tess dower pach five t jack sacxets，and 3 maina $£ 21 \cdot 00$
POST FREE In JK and INC，V．A．T．

READY BUILT

（Pilces inc．V．A．T．but NOT cost of carriage） EOUND－LIGHT UNIT\＆
S5TL 3 j250日－ 3 channels， 250 w．sach
E23－15
SSTL 3／1000E－3 ch．， 1000 W ，asch INTEGRATED POWER AMPE
In otrongly mible metal cases，complete

POWER AMP $80-60$ w．r．m．s／4 ohme， 2 ch．mlxat fis w POWER AMP 100－100w．r．m．old ohme， 4 ch. mixer ह月5 100 watt SLAVE AMP． x 59 0 0 LQUDBPEAKERS
Dieco 28－25 w．r．m．s．In cablinet；20＊lead 223－全s Dieca $50-50$ w．r．m．s．in cabinet； 20° lead \quad e．39．45 Diaco 100－100 w．r．m．s．In cabinet；20＇lead EA－B5 Arnpower 80－50w．slave amp．\＆apeaher ln cabinet Ete eo

COMPLETE DIECO
with Dlece 2 console and Ampower 80 With Disco 2 consale and 2 Ampowery 504 with Disco 2 cansole \＆；Ampower tot with Dieca 2 cansole \＆two Ampower toes

6f53．00
at1 1.40
＋173．0
E254．00

Cartiaya in U．K．please add for 5ound Light Ualts efi－cg．
 £5－04．Gomplefediscas Eit． TESTEO AND GUARANTEED

BASIC MODULES

For conslfuctore whahing to bulld oyetome to their awn requirements．AE thels deseription Implies，these modulas
will require control knobs，etc．Each module is supplied tasemblad and tested on tts awn PCB．
 SS104i4 Four channel，mixer stage

SS．DTM Output contral Ethat Mantet vol．， 30 d b
arlation on iroble and on bases ImV^{30} In
for 24 out，18V working voliage es． 7 SSTL $3 / 250$ Soundilight， 3 channefe，250w，ea．EP－ SSTL 3／1000 Saund／tight， 3 ch．1000w，each EII

CONTROL／PRE－AMPS

－UNIT ONE
Comblned etereo pra－amp \＆active tone cantral untr． 50 mV in for 200 mV out，10－18V aperatlon．Bass \pm qBdB； Treble $\pm 15 \mathrm{dg}$ ，Balance control，Volume controf．Ceramle FASCIA（Bought separately 50p）
－UNIT TWO
Controle an UNIT ONE but for magnetle cartrides Ingat． R．A．A．corfected．BmV in for 200 mV out．WITH FRE CONTROL PANEL FASCIA
－UNIT THREE
6 pubh－button sterto input atlecior and tow and hioh pasa filters，and 30 in mounted at raar，Board Iangth adjuatable

SS． 100

Baflc actlye ofereo fone control moduto to provide $\pm 18 \mathrm{dD}$
on base at $30-\mathrm{Hz}$ and on treble at 10 KHz
－ 5 S． 101
 － 85.102

STIRUNG EOUHD PRODUCTS ARE MADE IN OUR DWN ESSEX FACTORY AND SOLD DIRECT TO YOU THE CUSTOMER

HS．7100 Ditto for $\mathbf{S S . 4 1 0 0 ~ E S - 5 0 ~}$

POWER SUPPLIES

Evary 5tirling Sound Pawar Unit It tanted and gunrantepd under working conditione before despatch．All unite except SS．312 Include a siablilied low voliage tako－off point （13－15V）far pre－amp，tonie contral，radlo tuner，atc，Out－ pute quoted are minitmal unloaded ratinge．

Racommended for
\＄8．52
88．51 $58 \mathrm{~V} / 1 \mathrm{~A}$ S3．903／103－3
\＄8．354 3VV／2A 35.110

\＄8．370 TOV／2A SS $1100 \quad$ E14．73 88．310／Es Stablitied power supply unit with varlable output from 70V to E0V／2A，Shorl clicult protected $\mathbf{E 1 7} 75$ s8．300 Power tablileing unlt variable from 10 to 50V／9A fir addling to unatabllieed nupply unlty

SEND NOW FOR FREE CATALOGUE SHEETS，TRADE ENQUIRIES INVITED．

Γ

 ACCESS OR BARCLAYCARD＝Just tell us your No． To sTIRLINE BOUND， 37 VANGUARD WAY，gHOEBURYNESg，ESEEX． Platie send ．．． （or as list altached）for which iencloge f．．．．．．．．．．．．NAME
ADDRESS

j-Decnology

In both of the previous μ DeCnology circuits we've employed a fairly common practice of using a single power supply or battery. However, the basic "textbook" op. amp. circuits commonly show a balanced power supply. So this month, we are going to go by the book!

Fig. 1 shows the balanced power supply configuration. Both inputs (inverting and non-inverting; remember?) and the output share a common connectionpoint B. The two 9 V batteries are connected in series

Fig. 1: Batanced supply details.
and, of course, the total voltage applied to the op. amp. (between pins 7 and 4) is 18 V , the maximum for the 741.

When talking about voltage it is necessary to specify two points. Here, we've done this by stating that it is pin 4 and pin 7 that have 18 V across them.

If we use point B as one reference point, then there is plus nine volts (+9 V) between it and pin 7; and minus nine volts (-9 V) between point B and pin 4. Our earlier discussions (Practical Wireless, March issue 1978) about inverting and non-inverting circuit configurations are still valid.
In previous μ DeCnology articles, we looked at a simple open loop inverting d.c. amplifier. This is extremely simple but has certain disadvantages. To avoid these, we are going to use our 741 op . amp. in a closed loop inverting d.c. amplifier configuration (although we will be using it to amplify a.c. signals).

These two basic circuits are shown together in Fig. 2 so that the differences can be clearly seen.

To see how the basic and purely theoretical textbook circuit of Fig. 2 b is used in practice, look at the simple radio receiver in Flg. 3.

Here we have a balanced power supply (two 9V

components

Fig. 2: Open and closed loop configurations (above and below respectively).
batteries). Note also the two resistors R 2 and R1 whose ratio determines the overall gain.
Tuning capacitor VC1 and coil Ll "tune" in the radio frequency (r.f.) signals. Diode Dl rectifies the r.f. signals and feeds the resultant audio frequency (a.f.) signal to the op. amp. via C1. The latter is used to block the otherwise d.c. connection between the pin 2 input and the 0 volts line via DI and the coil.
For medium wave coverage, $\mathrm{L1}$ is 65 turns of wire

Increasing the value of C 2 to $4.7 \mu \mathrm{~F}$ was found to give better reproduction of the lower frequencies. If you use an electrolytic capacitor here, connect the positive lead to pin 6, negative side to the earpiece. Cl is not critical and any value from $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ will work well, The diode may be connected in either polarity and will still work.

Constructing your circuit on the $\mu \mathrm{DeC} \mathrm{B}$ is extremely simple. Just plug the components, by their own leads, into the $\mu \mathrm{DeC}$ hole letter numbers shown in Fig. 3. The 741 op . amp. will still be in its holder from the last project. If the receiver is to be permanent, simply transfer the components to a piece of Blob Board.

Since all variable capacitors have some means of mounting them, the tuning capacitor can be mounted onto a suitably small case, the Blob Board simply stuck to the frame of the capacitor with a suitable adhesive, thus the whole receiver is in one piece. (Hold coil to Blob Board with elastic band!)

Using 2.5 metres of wire as an aerial but no earth, the prototype gave excellent results with two 9 V batteries as a source of power. The current drawn was around 0.9 mA and so the circuit is extremely economical. It will also function on lower voltages. Using a single battery and connecting the 0 volts line to negative gave inferior results. As with most simple receivers, a good aerial and earth is an asset, especially in difficult areas of reception. Using less turns on the coil and/or a smaller value for VCl (say 100 pF) should enable higher frequencies to be covered. With a good aerial, foreign stations might possibly be received.

If the r.f. circuitry ($\mathrm{VCl} / \mathrm{L} 1 / \mathrm{Dl}$) is removed, and a crystal microphone plugged in to μ DeC holes Fl0 and A23, the unit will function as a microphone preamplifier and the results heard quite clearly in the earpiece. To this end, one could use the circuit with a probe instead of the mike to check a.f. circuitry. Alternatively, using the diode as a probe, r.f. circuits

Fig. 3. The comblate circuit dian beam of the simple. 741 recoiver.
(24 swg enamelled used in the prototype) close wound on a 9.5 mm dia $\times 95 \mathrm{~mm}$ length of ferrite rod. The tapping point is nine turns up from the earth or zero volts end.
The 741 gives good amplification as shown and provides ample signal to power a small earpiece.
in receivers etc could be checked out.
The total cost of components is very low for this circuit and it could make a very useful bedside receiver. The batteries should last a very long time since the entire receiver draws less than ImA. On no account should higher voltages be used.

A project for the photographic amateur, this simple timer will switch off your enlarger after a preset time interval. The front panel control gives nine easily selected exposure times.

The first of an occasional series of newsletters from Joe Kasser G3ZCZ (/W3), resident in the USA. This one takes a broad look a Amateur radio, broadcast viewing and listen ing, and Citizen's Band activities.

Audio Distortion Meter

The original Audio Distortion Meter designed by F. C. Judd appeared in Practical Wireless in April, 1972, and since that time, both professional and home constructed audio amplifiers have improved considerably in their specifications.
Until 1972 distortion measurements down to 0.1% were good enough for most amplifiers currently available, but since that time the distortion content of amplifiers has dropped lower and lower. Today a typical figure would be around 0.01% with the top designs as low as 0.001%. The need for an improved distortion meter was becoming of increasing importance.
The design now described is based on the original F. C. Judd version. A number of improvements have been made, resulting in a distortion meter capable of measurements down to below 0.01%. A low pass filter is also included.

Principle of Operation

The principle of operation of a distortion meter is to remove the fundamental frequency and leave all the harmonics and spurious signals unattenuated. These remaining signals are presented to an a.c. millivoltmeter and their combined levels compared with the unattenuated original signal. Because all the harmonics are measured together, this is called Total Harmonic Distortion, (or t.h.d.).
From the above it will be realised that the fundamental frequency must be removed completely because any part remaining will add to the harmonics present and cause a higher reading on the meter, resulting in a measurement of distortion higher than the true distortion present.

Nulling out the Fundamental

Various methods can be used for this and the original t.h.d. meter used a Wien bridge. This method has been retained but the circuit used now makes use of more negative feed back resulting in a lower inherent noise level and a higher rejection ratio of the fundamental frequency. With the new design the fundamental can be rejected by over 80 dB while the second harmonic is only reduced by less than ldB.

Flg. 1 : (a) Basic circuit of the Bridge. (b) Phase angle dlagram

The basic circuit of the bridge is shown in Fig. 1. Trl is used as a phase splitter and provides a signal to each half of the bridge 180° out of phase, if the two outputs were simply joined together all the outputs wauld cancel. By putting an RC network in each half, it is possible to unbalance the output at all frequencies other than the wanted rejection frequency.
This rejection frequency occurs when the phase angle for a resistor and reactance (Xc) in series equals the phase angle from the resistor and reactance in parallel, bearing in mind that the signal through each combination starts off 180° out of phase.
For example at $1 \mathrm{kHz}, \mathrm{Xc}$ is approx $3 \cdot 4 \mathrm{k} \Omega$, if we set the R value also to $3 \cdot 4 \mathrm{k} \Omega$ the phase shift through the series network will be $\operatorname{Tan} \theta=\frac{\mathrm{Xc}}{\mathrm{R}}$ where Tan θ is the tangent of the angle of lead and $X c$ is the reactance. In our example, $\mathrm{Xc}=3 \cdot 4 \mathrm{k} \Omega$ and $\mathrm{R}=$ $3.4 \mathrm{k} \Omega$, therefore $\operatorname{Tan} \theta=1$ and $\theta=45^{\circ}$, in the parallel case the phase is equal to $\operatorname{Tan} \theta=\frac{\mathrm{R}}{\mathrm{Xc}}$ therefore in our example, $\operatorname{Tan} \theta$ also equals 1 and $\theta=45^{\circ}$. At the collector of Trl (making this our reference point) the phase is 0°. After the series C and R we have 45°. From the emitter we start at 180° and after the parallel C and R we have $180+$ $45=225^{\circ}$, looking at the diagram in Fig. 1b we can see that 1 kHz signal now arrives at point Q exactly 180° out of phase and therefore cancels out. For

other frequencies the bridge is not balanced and little cancellation takes place. In practice, tolerances in capacitors and resistors make it necessary to have a means of adjusting the amplitude of the two signals (balance) and the phase angle (fine frequency).

By adjusting the values in the bridge it is possible to obtain an exact 180° phase relationship at any one frequency, resulting in its cancellation and leaving the remaining harmonics to be passed on to the next stage.

Practical Circuit

The practical circuit is shown in Fig. 2. It has five frequency ranges, covering 15 Hz to $30,000 \mathrm{~Hz}$ and coarse and fine control adjustments are provided for
both amplitude and frequency so that exact phase cancellation of the signals can be obtained. This is most important as the amount of cancellation obtained sets the limit to how low the distortion can be measured.

The controls and components used should be of the best quality available. Junk box parts are not recommended for this part of the circuit. Another factor which sets a limit on the measurement range is noise, and for this reason metal oxide resistors should be used in the bridge circuit.
The use of BC384 or BC413 transistors is recommended. Other types can be used but may result in a higher residual noise level. This would limit the usefulness of the instrument for the lower measurements. If other types are used it may be advisable to

Fig. 2: The Bridge circuit
try a few in the bridge circuit to see if noise is a problem and select the best.

Tr2 provides a high impedance load for the bridge and a low impedance output for the next stage. $\operatorname{Tr} 3$, 4 and 5 provide some voltage gain and impedance match so that the output from the bridge is at a suitable level to feed the millivoltmeter and oscilloscope.

The Millivoltmeter

The circuit of the millivoltmeter is shown in Fig. 3. The input attenuator has 20 dB steps. 10 dB steps could be used but would require a meter which has a 0-1 and 0-3 range suitable for a 10 dB attenuator. Not all meters have the correct relationships as a 10 dB range would require the meter to have actual scales of $0-1$ and $0-3 \cdot 16$. In practice, 20 dB ranges are simple to use and make for a simpler circuit.

Tr6 and Tr7 provide a high impedance load for the attenuator and a means of adjusting the gain, as well as a low impedance match to the next stage, Tr8, 9 are the millivoltmeter amplifier stages with overall negative feedback to ensure a linear scale on the meter.

The meter is a 0.1 mA with a scale marking of $0-10$. (The author was able to obtain a 0-I milliamp meter with a calibrated scale marked in $d B$ and per cent distortion at one of the radio amateur rallies, often a good source of cheap surplus new components).

specification

RANGES

Voltage (minimum) for f.s.d:
$10 \mathrm{~V}, 1 \mathrm{~V}, 100 \mathrm{mV}, 10 \mathrm{mV}, 1 \mathrm{mV}$
Frequency (millivolt meter)
$-1 / 18$ at 8 Hz and 120 kHz
Distortion measureneint
Wih inputs above 10 V . Fon 100% to less than 0.01%
Residual holsa less thanio. AmV (0.004%)
Bridge frequeñcy
$15 \mathrm{~Hz}-30 \mathrm{k} \mathrm{Hz}$

SELECTIVITY OF BRIDGE

Wifh fundamental nulled out to -80dB second harmonic is less than -1dB

LOW PASS FILTER

-30 dB at 450 Hz
-22 dB at 50 Hz

MAXIMUM INPUT VOLTAGE

\$00 vôlts. A de blocking capacitor must be used if d.c. is presient on iniput signal. Use at least $10 \mu \mathrm{~F}$ and observe polarity if an etectrolytic type is used.
INPUT IMPEDANCE
$30-100 \mathrm{~K}$ (depending on attenuator sattings)

Fig. 4: The Power Supply circuit

Power Supply

The power supply must be stabilised and a suitable circuit is shown in Fig. 4. The transformer should be mounted as far from the bridge and meter circuits as possible. As the current drain of the distortion meter is low, dry batteries could be used.

Low Pass Filter

This is connected between the bridge output and the millivolt meter attenuator. The filter has a -3 dB turnover at 450 Hz and is used when measuring signals above 1 kHz when hum is present and would otherwise effect the reading.

PRODUCTION LINES alan martin

New AVO d.m.m.

Avo Ltd. are launching a completely new instrument, the 'Avometer DA116' digital multimeter, designed for both servicing and the laboratory.

The 13 mm high characters in the Ifquid crystal display provide a wide field of view and is easily read in all ambient light conditions. There are clear indications of an over-range condition and low battery voltage.

Internally, the instrument employs the latest technology, with large-scale integrated circuits. A single integrated circuit is used for the analogue to digital conversion, which uses a dual slope technique with automatic zero correction.

Range selection is by a rotary swltch in conjunction with a function switch. All measurements except the 10A range are by means of a single pair of sockets in the front panel.

Voltage measurements for both a.c. and d.c. are from 200 mV to 1000 V full scale. Current measurements may be made from the 200uA full scale to 10A full scale. In all cases the actual maximum indication is 1999 . The 10A range is via a separate unprotected socket. The other current ranges are
protected by a 2 A fuse located in the positive socket.

Two special ranges have been designed for this instrument. The first is the High Speed Ohms range, to speed up continuity testing. On this range the response time of the instrument and display is reduced by a factor of ten. There are six normal resistance ranges measuring up to $20 \mathrm{M} \Omega$. The second new range is the Junction Test range, which can be used to test diode and transistor junctions under forward or reverse bias. The display indicates the voltage drop across the junction for a nominal current of 0.5 mA .

The insfrument has been designed as a portable unit, housed in a twotone grey ABS case. Powered by four easily obtainable, SP11 type batteries, which should give an operating life of well over 500 hours.

The new leads have been designed with user safety in mind and have no exposed metal parts.

Costing $£ 99+8 \%$ VAT, the Avometer DA116 is available through appointed distributors both in the UK and overseas.

Avo Ltd., Archcliffe Road, Dover, Kent CT17 9EN. Tel: 0304202620.

Speed cal

Verospeed, the Vero Group's distributor to the electronics industry, has now published its Spring 1978 catalogue. The fully-priced handbook now stands at 52 pages, and contains over 1,000 product lines.

Amang new items now available from stock are capacitors, digital panel meters, metal and plastic boxes, l.e.d.'s, a wide range of swltches and a selection of hand tools for assembly and production.

For Verospeed to operate their speedy despatch system it ls essential that cash is sent with order, and must include 8 per cent VAT.

Please quote "Spring Catalogue ABCOS" when applying to: Verospeed, Barton Park/ndustrial Estate, Eastleigh, Hampshire SO5 5RR.
Tel: 0703618525.

Get spliced

Have you ever had the misfortune to suffer from a jammed or broken cassette tape?
If so, 3 M have just introduced the very thing to get you out of trouble; the Scotch Cassette Editing and Repair Kit.

The kit consists of a pencil-like splicing block that contains adhesivetipped polyester strips. These strips are inserted Into the cassette, and pick up the tape ends. Splicing is simplified by means of splicing tabs and cutting guides at 45° for normal splicing and 90° for close edlting, giving a professional finlsh.

The Scotch Editing and Repalr Kit is available from record shops, major department stores and hi-fi equipment retailers. The suggested retail price is $£ 1-52+V A T$.
3M United Kingdom Ltd., 380-384, Harrow Road, London W9 2HU. Tel: 01-286 6044.

Long-range nimer

The Exar XR-2242 is a monolithic timer/ counter capable of producing ultralong time delays from micro-seconds to days. Two timing circuits can be cascaded easily, to generate time delays or timing intervals up to one year.
The main features are; wide supply range: 4.5 V to $15 \mathrm{~V}, \mathrm{TTL}$ and DTL compatible outputs, timing from microseconds to days, high accuracy: 0.5 per cent typically, excellent supply rejection; 0.2 per cent per volt typically, monostable and astable operation.
Price 白 $\mathbf{2 1} 1.05$ plus 60p P\&P plus 8\% VAT. Further information avallable from:
Rastra Electronics Lid., 275-281 Kings Street, Hammersmith, London W6 SNF. Tel: 01-748 3143.

Soyoumant to pass the RoA.Eo[Radio Amateurs'Examination) 8 , 0° John Thornton Lawrence GW3JGA \& Ken McCoy GW8CMY

RECEIVERS

The purpose of a radio receiver is to acquire an r.f. signal containing information in the form of modulation and to process it into audible or visual intelligence.

A receiver must have adequate amplification or "gain" in order to provide sufficient sensitivity to resolve the weakest signal satisfactorily without introducing significant noise or distortion within its own stages. It must also possess adequate selectivity to separate the required signal from unwanted or interfering ones and have appropriate demodulation facilities for extracting the information from the carrier. Receivers employ various techniques to achieve these functions and the ultimate performance usually depends on the degree of sophistication utilised-often reflected in the price.
The various types of modulation have already been examined in the section on transmitters and are listed in Appendix "B" of "How to become a Radio Amateur".
A communications receiver of the type used by amateurs will normally cover one or more of the allocated frequency bands and be capable of satis. factorily interpreting several modes of modulation.

The TRF (tuned radio frequency) Receiver

The circuit diagram of a t.r.f. receiver using junction field effect transistors is shown in Fig. 72.

Although we have not dealt with this type of device previously, for practical purposes it can be considered to be a low-voltage solid state equivalent of the valve.
In the diagram the aerial is inductively coupled to the r.f. tuned circuit L2, VCl. The signal is applied to the gate of Tri, amplified and coupled via L3 to the r.f. tuned circuit L5, VC2. The output from L5 is rectified by D1 and the demodulated a.f. appears across C3 and R3. The r.f. from L5, together with the a.f. signal, is amplified by $\operatorname{Tr} 2$ and then filtered out by $L 6$ and $C 5$, a.f. being routed via C6 and VR1 to the a.f. amplifier and on to the headphones.

To improve selectivity and sensitivity, controlled regeneration, in the form of positive r.f. feedback, is taken from the drain of Tr 2 through L4, which is inductively coupled to L5 and the regeneration control VC3.
In operation, VC3 is advanced until the circuit begins to oscillate, indicated by a hiss at the a.f. output. The control is then backed off until the oscillation just ceases and the tuning capacitor VC1/VC2 is adjusted to "tune-in" the required signal.
The threshold of oscillation is the most sensitive condition for the receiver and, due to the positive feedback increasing the effective " Q " of the tuned circuit $\mathrm{L} 5, \mathrm{VC} 2$, it is also the most selective.
If the receiver is to be used for the reception of c.w. (A1) signals, then the regeneration is advanced until the circuit just breaks into oscillation: the pitch of the beat frequency tone will depend on the setting of the tuning control.

Fig. 72 : Circult of a basic t.r.f. recaiver.

Fig. 73 : Block diagram of a basic superhet receiver.
Simplicity is the main advantage of this type of receiver and its disadvantages are: limited selectivity, easily swamped by strong signals on adjacent frequencies, and the radiation of an r.f. signal when oscillating. Radiation is minimised however, by the use of an r.f. amplifier stage between the aerial and the dectector. The addition of further r.f. amplifier stages brings some improvement in performance but the ganging of the tuning capacitors and multiple coil switching for various frequency ranges makes this approach somewhat impractical.
Receivers of the t.r.f. type have a long history going back to the early days of broadcasting, and there are many old-timers who will tell you how they first received America on a home built 0-V-1 (dectector and one a.f. stage). Regrettably, they are no longer adequate for serious communication purposes in present-day conditions.

The Superheterodyne Receiver

The fundamental difference between the t.r.f. and the superhet receiver is that the selectivity of the former is obtained in its tuned circuits at the incoming radio frequency whereas in the superhet, incoming signals are converted in the frequency-changer section, to a fixed intermediate frequency (i.f.). Here the required selectivity and amplification can readily be obtained, prior to feeding the appropriate demodulator stage. A block diagram of a basic superhet receiver is shown in Fig. 73.
To convert the incoming signal frequency to the i.f. a local oscillator and mixer stage are employed as the frequency changer. The local oscillator has a frequency which is different from the incoming signal by an amount exactly equal to the i.f. For example: Local oscillator frequency $=2 \cdot 350 \mathrm{MHz}$
Intermediate. frequency $=0.450 \mathrm{MHz}$
Input signal $\mathrm{f}_{\text {oso }}-\mathrm{f}_{\mathrm{L}, \mathrm{t}_{*}}=1 \cdot 900 \mathrm{MHz}$
Note that it is the local oscillator and intermediate frequencies which determine the signal frequency being received; in the example the incoming signal is 450 kHz below the local oscillator.
However, using the same i.f. and local oscillator frequencies, we find that our superhet will also receive signals on a different frequency, known as the
image frequency or second channel.

cal oscillator frequenc	$2 \cdot 350 \mathrm{MHz}$
Intermediate frequency	0.450 MHz
Image $\mathrm{f}_{\text {Oso }}+\mathrm{f}_{\text {L }}$.	$2 \cdot 800 \mathrm{MHz}$

This is demonstrated in Fig. 74.

Second Channel Image Response

To reduce the unwanted image or second channel response, it is essential that the tuned circuits in the r.f. stage and prior to the mixer, only accept the desired signal and reject the image. This means that as the receiver is tuned over the frequency band the local oscillator and r.f. tuned circuits (although on different frequencies) must "track" one another. This is done by mechanically "ganging" the tuning capacitors and choosing appropriate values in the tuned circuits.

The amount by which the image response is reduced or suppressed depends on the selectivity of the r.f. stages and the relative frequency of the i.f. In general, a higher-frequency receiver will require a higher frequency i.f. Typical examples are given in the Table.

Flg. 74: Suppression of the second channel or image response.

Fig. 75: Clrcuit of a typlcal r.f. amplifier and frequency changer.

TABLE

Receiver Type'	Input fif.	Typical
Domestle Radio	$600 \mathrm{kHz}-1 \times 8 \mathrm{MHz}$	470 kHz
Communications Receniver	2.0M! $2 \mathrm{z}+30 \mathrm{MmF}$	-1.6MHz'
- VHF Receiver	$144 \mathrm{MHz}-146 \mathrm{MH} \dot{\mathrm{z}}$	10.7 MHz

In the higher-frequency receivers, employing a high frequency i.f. it is sometimes necessary to convert again to a lower i.f. in order that the desired selectivity is achieved: this is known as double conversion.

RF Amplifier and Frequency Changer

Let us now look at the receiver circuit in more detail, starting with the r.f. amplifier shown in FIg. 75.
Incoming r.f. signals are coupled by Ll to the tuned circuit $\mathrm{L} 2-\mathrm{VCl}$ and to the base coupling winding L3. They are amplified by $\operatorname{Tr} 1$ and the output is coupled by L4 to the tuned circuit L5-VC2 and to the base coupling winding L6. Amplified r.f. signals are thus applied to the base of the mixer stage transistor $\operatorname{Tr} 2$.
The local oscillator stage consists of the tuned circuit L8-VC3 and associated transistor Tr3. Coupling L7 is arranged to give positive feedback and so main-
tain oscillation. The inclusion of C 5 in series with VC3 modifies the tuning range of the oscillator so that it "tracks" the signal tuned circuits, maintaining the correct frequency difference (equal to the i.f.) over the tuning range.
The local oscillator output is coupled to the emitter of Tr2 by C9. Mixing of the r.f. and local oscillator signals is achieved by $\operatorname{Tr} 2$ and at the collector the difference frequency is coupled out by the i.f. transformer IFT1. Capacitor C10 provides a return path for the remaining frequencies present in the mixer stage.

You will notice TC1, TC2 and TC3 in parallel with each tuning capacitor; these are adjusted during alignment to bring all the circuits into resonance at the h.f. end of the tuning range, lif. resonance being achieved by the adjustment of L2, L5 and L8. Aligned in this way, the tuned circuits will "track" with reasonable accuracy over the whole of the range. This receiver has only one band and additional coils and trimmers would be required for each extra range. These would normally be switched into circuit by means of a rotary wafer switch.

IF Amplifier

The dual purpose of the i.f. amplifier is to amplify the incoming i.f. signal to the required level for application to the demodulator, and to provide the required band-pass characteristic or selectivity.

One method is to employ sufficient transistors or valves to provide the required amplification and couple these through double-tuned i.f. transformers

Fig. 76: A basic l.f. amollfier.

A0068
Fig. 77: Using a crystal phter to oblain I.f. sefectivity,
in order to obtain the required selectivity, as shown in Fig. 76. Careful alignment of the i.f. transformers is necessary to obtain the optimum band-pass characteristics.

In recent years more use has been made of factory adjusted crystal filters to provide excellent and guaranteed parameters. The crystal filter is nor-
mally fitted immediately after the mixer and is followed by a conventional or integrated circuit i.f. amplifier, as shown in Fig. 7%.

Demodulation

Amplitude modulation is demodulated by using a conventional diode envelope detector as shown in Flg. 78.

The output from the final i.f, transformer is rectified by Dl. An i.f. filter is formed by C15, R17 and C16, which removes the i.f. "ripple", leaving a direct voltage, the value of which is dependent upon the strength of the incoming signal. The amplitude modulation appears as an a.f. signal, superimposed on this voltage, across the a.f. "gain" control VR2. The a.f. signal is passed by C17 to an a.f. amplifier stage. The demodulator waveforms are similar to those shown in Fig. 47.

Automatic Gain Control

The direct voltage appearing across VR2 can, be fed back via the a.g.c. line to control the gain of the r.f. and i.f. stages. A strong-input signal will thus reduce the gain of the receiver and vice versa, resulting in a relatively constant level of output even when propagation conditions cause fading of the tuned signal.

Fig. 78: Circuit of a basic a.m. (envelope) demodulator.

Fig, 79: The balanced demodulator.

The low-pass filter formed by R19 and C18 allows a slowly-changing voltage to be fed back to compensate for fading but prevents a.f. signals from reaching the a.g.c. line.

Beat Frequency Oscillator

When receiving c.w. it is necessary to mix the i.f. signal appearing at the demodulator with another oscillator to produce an a.f. beat note. Suppose we decide that a comfortable listening pitch would be 1 kHz and the intermediate frequency is 450 kHz , then the beat frequency oscillator would be adjusted to 451 kHz (or 449 kHz) to produce a difference frequency of 1 kHz .

SSB Demodulation

The same b.f.o. can be used when receiving s.s.b. signals to re-insert the carrier, so enabling the signal to be demodulated. In this mode, as with c.w. it is more satisfactory to switch out the a.g.c. and to use the manual r.f. gain control in order to adjust the signal level at the demodulator stage for optimum results.

The b.f.o. must insert the carrier in the correct position relative to the s.s.b. modulation or the a.f. modulation will be shifted in frequency (and sound like Donald Duck, or worse).
Receivers designed specifically for s.s.b. reception employ a balanced demodulator as shown in Fig. 79. Compare this with Fig. 56 in the Transmitter section.
The circuit of the b.f.o. is almost identical to that of the receiver local oscillator except that the tuning range will be restricted to about 5 kHz above and below the i.f.

AF Amplifier

The receiver a.f. stage is usually quite conventional and would normally be provided with sufficient power output to drive a small loudspeaker or headphones.

Narrow Band FM Demodulation

Where the receiver is used for n.b.f.m. signals a separate demodulator is required. This will consist of an amplltude limiter stage to remove any a.m. which may be present, and a frequency discriminator as shown in Fig. 80. The discriminator compares the relative phase of the voltage appearing across the tuned secondary winding of an i.f. transformer with the voltage applied to the primary winding. With zero deviation, the two diodes will conduct equally, resulting in zero output. When the frequency is varied the relative phase varies and one diode conducts more than the other, resulting in an unbalanced signal of a particular polarity appearing in the output. The frequency/voltage characteristic of the discriminator is shown in Fig. 80.

Other types of discriminators can be used and details of these are given in Chapter 4 of the RSGB VHF-UHF Handbook.

Converters

A converter is basically a self-contained frequency changer stage which can be used ahead of the receiver to allow it to tune a different frequency range. For example, a two metre converter would convert the $144-146 \mathrm{MHz}$ input to, say $28-30 \mathrm{MHz}$ output for

Fig. 80: Circult of one form of f.m. discriminator.

Fig. 81: Block dlagram of a 2-meire converter, and how the input frequency and recelver dial reading are related.
reception on a receiver capable of tuning these frequencies. A block diagram of a 2 -metre converter is shown in Fig. 81. Note that here the oscillator frequency is fixed and the receiver is used as a "tuneable i.f.",

CONSTRUCTION

If you are a budding transmitter or receiver constructor, please remember that the circuits appear* ing in this series are typical examples with typical component values; they are not presented as tried and tested, ready-to-build designs. Layout, component lead length, etc., greatly infuence r.f. circuits, so if you are just itching to build something, stick to a fully detailed design, at least for your first attempt.

RADIO WAVES

The radio wave is a form of electromagnetic radiatlon which, in free space, travels at the speed of light, i.e., $300,000,000$ metres per second ($300 \times 10^{\circ} \mathrm{m} / \mathrm{sec}$).

The relationship between frequency (f) and wavelength (λ, Greek letter Lambda) is given by the expression:

$$
\lambda(\text { metres })=\frac{\text { Velocity of propagation }(\mathrm{m} / \mathrm{sec})}{f(\text { hertz })}
$$

By inserting the velacity constant of 300×10^{6} metres per second we then have

$$
\lambda(\text { metres })=\frac{300 \times 10^{\circ}}{f(\text { hertz })}=\frac{300}{f(\text { megahertz })}
$$

For example, what is the wavelength of a radio wave whose frequency is 2 MHz ?

$$
\lambda=\frac{300}{2}=150 \text { metres }
$$

Conversely, given the wavelength, we can determine the frequency. If a radio signal has a wavelength of 3 metres, what is its frequency?

$$
f(\mathrm{MHz})=\frac{300}{3}=100 \mathrm{MHz}
$$

Propagation of Radio Waves

The radiation from an aerial moves outwards at a constant velocity, in concentric circles of increasing radii.

A radio wave may be visualised as having an electric field with an associated and inseparable magnetic field at right-angles to it. Diagrammatic representation of such a wave is shown in Fig. 82; the magnetic and electric fields are always in phase.

Radio waves may be reflected, refracted (bent) and absorbed, just as in the case of light. Reflection, refraction and absorption of radio waves, in the range 1.70 MHz takes place in a region above the surface of the earth known as the lonosphere, which extends from an altitude of about 100 km to around 400 km .

In the ionosphere, air molecules are ionised due to the infuence of ultra-violet radiation from the sun; that is, they break up into free electrons and positive ions. The ionised regions so formed have the property of reflecting radio waves and they play an essential part in long-distance shortwave propagation. The ionisation forms into layers which vary in height and density from day to night (as shown in Fig. 83) and with the seasons.

F-Layer

During daytime the F-layer separates into the F_{5} and F_{z} layers. At night and in mid-winter the two merge into the single F-layer again, but at a somewhat lower altitude. In the absence of sunlight, recombination of ions and electrons slowly takes place and in the F-layer, ionisation is at a minimum just before dawn.

Efectrical e Magnatic Fielfa, Wave Approaching Observer

Flg. 82 : Propagation of an electromagnetic wave.

fig. 83: The lonospheric layers.

E-Layer

The E-layer region remains at about the same altitude during both day and night, but the intensity of ionisation (and hence its reflective properties) increases with the presence of sunlight and is maximum at noon. In the absence of sunlight, recombination commences fairly rapidly but a certain level of ionisation persists.

D-Layer

Ionisation level in the D-layer is dependent upon the "height" of the sun. The layer disappears at night time and the mechanism of formation and dispersal is not fully understood.

Reflection capabilities of the various layers depend not only on the intensity of the ionisation but also on the angle at which the wave arrives and its frequency. A higher frequency wave requires a greater degree of ionisation to cause reflection.

Types of Propagated Waves (Fig. 84) (a) Ground wave

The ground wave, as its name suggests, follows the earth's contour and is eventually attenuated to nothing.

(b) Sky Wave (Ionospheric Wave)

The sky wave is the part of radiation leaving the transmitter which returns to earth again due to reflection (and some refraction) by an ionised layer.

(c) Escape Wave

For a given frequency, there is an associated maximum angle of transmission, above which the transmitted wave will no longer be reflected by the ionised layer in question, but will penetrate and continue beyond it: this is referred to as the escape wave. This angle is associated with the maximum usable frequency (m.u.f.), which will be looked at later on.

Skip Zone and Skip Distance

Between the end of the ground wave and the point at which the sky wave returns to earth is a region known as the skip zone. Within this region the transmitter at T in Fig. 84 cannot be received. The distance between T and the nearest point at which the sky wave is received is known as the skip distance.

Critical Frequency

At the lower frequencies, a signal directed vertically into the ionosphere will be reflected back to the transmission point.

However, if the frequency of this signal is progressively increased, a point is reached where reflection just fails to take place. The frequency at this point is known as the critical frequency (for the particular ionised layer under consideration).

Maximum Usable Frequency (MUF)

It is often a requirement to transmit signals over a particularly defined distance. Let us consider the path of wave (b) in Fig. 84 and imagine that we wish to transmit signals to a receiver at RI.
If the transmitter frequency is increased, wave (b) would penetrate the ionised layer, as wave (c) (escape wave) and not be reflected. For reflection to occur at the higher frequency, it would be necessary to lower the transmission angle, in which case the reflected wave would not return to earth at the desired receiving point, R1, but beyond it at R2.
Thus, for a given required transmission distance and a given ionised layer, there is a maximum frequency above which the transmitted wave will not be received.

The maximum point at which such reflection takes place, with the wave still returning to earth at a required distance, is known as the maximum usable frequency (m.u.f.).

The longest signal path for a particular layer is obtained when the wave leaves the earth and approaches the layer at the most oblique angle possible. This gives a range, using the F2-layer of about $4,000 \mathrm{~km}$ and for the Elayer, about $2,500 \mathrm{~km}$. If we consider a simple omni-directional aerial, the wavefront will move out from it like an expanding bubble. When we speak of a particular transmission angle we are referring to the behaviour of a part of the

Fig. 84; lonospherle propagation.
wave-front which is leaving the aerial in this way. At a given frequency, waves (a), (b) and (c) in Fig. 84 all exist simultaneously.

Fading

Propagation conditions are rarely, if ever, static and fluctuations of the received signal, commonly called fading, can be attributed to a variety of reasons. If the signal from the transmitter arrives at the receiver by more than one path, the relative phase variations can either reinforce or cancel one another, causing rapid and severe fading.

Polarisation of the radio wave may be changed by propagation conditions, resulting in an apparent reduction of strength. The signal may also be attenuated by varying degrees when reflected by an ionised layer, particularly when the frequency is close to the maximum usable frequency. At v.h.f. and u.h.f., fading may be attributed to varying atmospheric conditions, temperature, bumidity etc.

Sunspots

Sunspots are regions of magnetic disturbance on the surface of the sun. Greatly increased ultra-violet and X-radiation are associated with sunspots, which have a profound effect on the intensity of ionisation in the ionosphere.

Activity tends to reach a maximum at approximately 11 year intervals, and as the level of ionisation follows this pattern, we experience exceptionally long-distance signal paths on the higher frequencies at these times.

Severe sumspot disturbance causes rapid fluctuations on the ionised layers, the general effect of which is to increase the m.u.f., at the same time often producing a radio fade-out, lasting from a few minutes to an hour,
Patches of intense ionisation sometimes occur in the E-layer, particularly in the summer, and these will reflect frequencies much higher than usual70 MHz and beyond. This is called Sporadic E propagation and is responsible for Band I television interference.

Tropospheric Propagation

The troposphere is the region which extends from the surface of the earth to a height of 10 km . It is the atmospheric conditions (temperature and humidity) in the troposphere which affect the long distance propagation of v.h.f. and u.h.f. radio waves.

The refraction of v.h.f. and u.f.f. waves is caused by the varying dielectric constant, with altitude, of the air above the surface of the earth. This causes the waves to bend and follow the approximate curvature of the earth's surface.

Conditions of humidity at low altitudes together with increased temperature at higher altitudes (temperature inversion) provide conditions which cause the wave to be "ducted" for considerable distances with very little attenuation.

Propagation on the Amateur Bands

$1.8 \mathrm{MHz}(160 \mathrm{~m})$ Generally speaking this is a local working band, up to about 70 miles in daytime, with an increase in range to several hundred miles at night.
3.5MHz (80 m) Daytime contacts can be made over several hundred miles. Night time distances very considerably but can be several thousands of miles in the winter.
7 MHz (40 m) Much the same as 80 m but varies considerably depending on the condition of the sunspot cycle. Good long distance (DX) band on winter nights and early mornings.
14 MHz (20m) Most consistent DX band, open during daytime at most times of the year, dawn and dusk being the most favourable times for long distance (over 5000 miles) contacts.
21 MHz (15 m) Similar to 20 m but more affected by the sunspot cycle. Best in Spring and late Autumn, up to the hours of darkness.
28 MHz (10 m) Very much affected by ionospheric condition. Excellent DX band in sunspot maximum years.
70 MHz (4 m) Mainly a local working band, up to 100 miles but occasionally affected by "Sporadic E" when the range can exceed many hundreds of miles.
$144 \mathrm{MHz} / 432 \mathrm{MHz}(2 \mathrm{~m} / 70 \mathrm{~cm})$ Ranges up to 100 miles can be achieved on these bands. Range is affected by local obstructions, hills, etc. Greater distances up to several hundred miles can be achieved under unusual tropospheric conditions.
$1296 \mathrm{MHz}(23 \mathrm{~cm})$ Similar to 70 cm but more affected by local terrain. The other s.h.f. and microwave bands each have their own special characteristics and are affected by tropospheric conditions, rain, etc.

Correction to RAE Part 6 (February 1978, p 769)

Fig. 47 (amended),
We regret that an error has come to light in the circuit diagram of the diode detector shown in Fig. 47 (page 769) of R.A.E. Part 6. As illustrated, there is no d.c. path for the detector diode current and point " b " referred to in the text has been inadvertently omitted. The corrected version is given in "Fig. 47 amended" shown here.

NEXT MONTH

The final part of this seriẹs will cover Aerials, Interference Suppression ard general advice for the examinee.

Introduction

Of the many thousands of short wave receivers which are in amateur hanis at presext, there can be relatively few which have really good i.f. filtering. Most sets, from the old R1155 to moderi Japanese designs, have a bandwidth which is just wide enough to accommodate a.m. signals, and is therefore a little more than double that required for s.s.b. reception, With the severe crowding on amateur bands, particularly at weekends, this is a serious drawback for the s.s.b. DX-er.

It is possible to improve the selectivity of a set by the addition of a mechanical filter, Q multiplier, or some similar device, but this is not always feasible: some degree of modification to the set is entailed, which not everyone is prepared to do.

Audio Filtering

Another possibility is to process the audio output of the set. It is not then necessary to modify it in any way, since the filtering can be done by a self-contained unit connected between the output socket of the set and the speaker or headphones.

Such a unit is described in this article and it provides the three types of filtering listed below.

1. Low Pass Filtering (with signals at frequencies above a couple of kHz or so being rapidly rolled off).
2. High Pass Filtering (with signals at frequencies below a few hundred Hz being rapidly rolled off).
3. Tuneable Notch Filtering (a narrow slot of very high attenuation which can be tuned over a range of about 100 Hz to beyond the upper frequency limit of human hearing).
Type l is effective at reducing adjacent channel interference where the offending signal is well away from the carrier insertion oscillator (c.i.o.) frequency, and the audio signals produced are therefore at fairly high frequencies. Type 2 is helpful in reducing interference from signals roughly centred around the c.i.o. frequency, and therefore produce rather low audio output frequencies. The latter type of filtering is used to null the heterodyne produced by a carrier wave in the passband of the receiver.

How effective or otherwise the unit proves to be is largely dependent upon the quality of the signal to be processed: obviously it can be of no benefit to a signal which is completely free from any form of interference. On the other hand, when Top Band DX-ing, the unit has produced near-perfect signals where they were previously completely drowned by the heterodyne from a commercial station.

The Circuit

The circuit, which is shown in Fig. 1, is based on an LM3900N i.c. This device contains four current differencing amplifiers, one of which is used in the low pass filter, another is employed in the high pass filter, and the remaining two are used in the notch filter.

Fig. 1: Comptete circult of the audlo fiter unit.

Probably the low and high pass filter circuits will look rather familiar to many readers as they are of a well known type often used for scratch and rumble filters in hi-fi equipment. The amplifier which is used in the low pass filter is biased as a unity gain noninverting amplifier by R3, R 4 and $\mathrm{R} 5 . \mathrm{Cl}$ provides d.c. blocking at the input whilst R1, R2 and C3 form a simple R-C top cut filter.
The "bootstrapping" capacitor C2 has no signifcant effect at middle and low frequencies; this is because the amplifier has unity gain and any change in the voltage at the input end of C2 is matched by a virtually identical change at its output end. Thus it has an apparent infinite impedance and so produces no effect on the circuit.
At high frequencies the circuit does not achieve unity gain due to the presence of the top cut filter. Changes in potential at the input end of $C 2$ are then not fully matched by similar changes at the output end. This gives C2 some effective impedance and in conjunction with RI it provides a second R-C top cut filter.
Normally this type of circuit achieves a roll-off rate of about 12 dB per octave, but a much faster fall in high frequency response is provided by this particular version, seen by referring to the low pass filter response graph, shown in Fig. 2(a). The increased
roll-off speed is due to $C 4$, which provides greater negative feedback over the amplifier at high frequencies. In itself this feedback reduces the gain of the amplifier and so provides a faster roll-off, but it also increases the effectiveness of the bootstrapping circuitry.

When S1 is closed, the low pass filter action is largely removed, although C4 still provides the circuit with a small amount of roll-off.

Operation of the bigh pass filter is similar to that of the low pass type. The amplifier is biased as a unity gain non-inverting type; a simple high pass filter circuit is formed at the input of $\mathrm{C}, \mathrm{C} 6$, and the input impedance of the amplifier circuit (approximately equal to the value of R6). The bootstrapping resistor R7 would appear to have an infinite impedance at middle and high frequencies, and has a significant impedance at low frequencies where the gain of the circuit falls below unity. A second high pass filter circuit is then formed in conjunction with C , and the response of this filter circuit is shown in Fig. 2(b).

C7 couples the output of the high pass filter to the notch filter stage. One of the amplifiers used is biased in the non-inverting mode by R10, R11 and R12, while the other amplifier is biased as an inverting type by R14, R13, R15 and VR2. Anti-phase signals are therefore produced at the outputs.

A phase-shift network is used in the output circuit of each amplifier, with one network using VRla and CB , and the other comprising VR1b and C9. At one frequency there will be an identical phase-shift through the two networks and so the anti-phase signals will largely cancel one another out at this point. In fact, VR2 sets the gain of the inverting amplifier and this control is adjusted so that the two anti-phase signals at VR1 sliders precisely cancel each other out. By critical adjustment of VR2 it is possible to obtain an extremely high level of attenuation, and one is usually able to render any heterodyne inaudible.
At frequencies other than the notch, some difference exists in the two levels of phase shift, and so complete cancelling does not occur. There is an attenuation of a few dB close to the notch frequency, but this is not important in practice.
The output stage uses the well known LM380N i.c., and this enables the unit to drive virtually any type of headphones, but it can also be used with most loudspeakers. The prototype was fed from the phones socket of a Trio QR-666 receiver and was used in conjunction with either $16-\mathrm{ohm}$ headphones or an 8 -ohm loudspeaker. The unit is very versatile though, and it should be possible to fit it into most receiving situations.

Construction

Apart from the battery and controls, all the components are mounted on a p.c.b. This is illustrated actual size in Fig. 3 and it is prepared and wired in the conventional manner.
components

Resisters

All minature : 5%

R1 $4 \cdot 7 \mathrm{k}$	R10 220 k
R2 $4 \cdot 7 \mathrm{k}$	R11 120 k
R3 100 k	R12 100 k
R4 220 k	R13 100 k
R5	100 k
R6	15 k
R7	1.5 k
R8	27 k
R9	15k

VR1 100 k plus 100 k linest dual gang potentiomater
VR2 47 k lin. carbon

Capacitors

C1 470nF type C280
C2 47nF type C280
C3 4.7 nF pelysiyrene ete
C4 150 pF ceramic
C5 100nE type C280
C6. 100 nF type C280
C7 220nF type C280
Cs 40 nF type C280
C9 fonF type C280
C10 100nf type C280
C11 100 AF 10 o
C 12100 FF 10 v
C13 $220,4 \mathrm{~F} 6.3 \mathrm{v}$
Semicondüctors
iC1 LM3980
IC2 Lna380N
Miscellaneous
Verocase or similar housing
Two rotary on/off switches (Si and \$2)
3.5 mm jack and $6 \cdot 3 \mathrm{~mm}$ jack

Materials fer p.c.b.
PP6 or similar 9 v battery and effis to suit
Four coñtrol knobs
Wire, solder, etc

A view of the p.c.b. and internal wiring of the prototype fiter unif.

An internal view of the audio filter. The input socket is mounted on the rear panel.

The prototype was housed in a Verocase which had outside dimensions of about $205 \times 140 \times 40 \mathrm{~mm}$, but any case of a similar size should be suitable. The general layout is not particularly critical and can be seen by referring to the photographs.

In use

The receiver and filter are connected together by a short lead which is terminated in suitable plugs. There is no need to use screened lead if the receiver has a low output impedance.

Low frequencies do not significantly aid the intelligibility of speech and many people find that clarity is actually improved by their removal. The high pass filter does not therefore have an in/out switch.

A somewhat different situation exists in the case of high frequencies, since these do provide a significant contribution to intelligibility. There is no point in switching in the low pass filter when a signal has little or no high frequency interference but does have middle or low frequency interference. This would simply reduce the level of the wanted signal in comparison to the interfering one.

Adjustment of the notch filter is very simple. When initially testing the unit VR2 should be set at about half maximum resistance. VR1 is then adjusted to null any whistle which is produced by the heterodyne from a carrier wave, after which VR2 is re-set for maximum attenuation of this signal: by carefully altering these controls it is possible to obtain an extremely high level of rejection. Once the correct setting for VR2 has been found, only a small variation will be necessary for other settings of VR1. Some slight readjustment will be needed for optimum attenuation though.

When the notch filter is not required, simply rotate VR1 to the maximum operating frequency (minimum resistance). The rejection notch then lies outside the range of human hearing, and so the filter is, in effect, out of circuit.

It is worth noting that although the filter will virtually eliminate the fundamental signal produced
by a heterodyne, it will not cut out any harmonics (double or treble the fundamental frequency etc.) which are produced by distortion in the receiver. In most cases such harmonics will be of negligible proportions.

The audio output is controlled by the volume control of the receiver in the normal way.

LETTERS

13A Mains Plugs

The reason why there are so many badly connected mains plugs in British homes is that the great majority of plugs sold are far too difficult to connect. It is astonishing that the manufacturers have not long since devised a plug which can be wired up easily in a few seconds by a clumsy housewife using a nail-file as a screwdriver.

The cord should be gripped automatically when the lid is screwed home. The length of wire needed for each lead should be the same-at present, the earth lead has to be longer than the neutral, and the live lead shorter than either, which makes those wellmeaning appliance manufacturers who solder and bind the ends of their leads look silly.

Finally, it seems incredible folly to sell all those plugs with 13 amp fuses. It is horrifying to think of the thousands of table lamps, hair curlers, electric clocks, etc., fitted with massive fuses just because nobody is going to go back to the shop for a 3 amp fuse. All plugs should be sold empty, with an attached packet providing three different fuses.

Practical Wireless would do a useful service by conducting a campaign for a "simple, safe plug".
B. M. Crowther,

Dorking.
For a comment on the above felter, set The Britith Connectlon, on page 18 of this Issus. Ed.

HIGH QUALITY AUDIO AND RF MODULES FOR MUSIC CENTRES AND HI-FI EQUIPMENT

FM 020 Stereo FM Tuner with MW \& LW section

* High Performance front end Low noige FET RF stage *Three stage tuming * S. Meter Output on FM \& AM * Centre zero meter output * Ceramic filters on FM * Filter on 455 KHz AM
Speciflestians * FM Senisitivity @ 26 DB S/N $2 \cdot 5 \mu \mathrm{~V}$ * Stereo separating 30ctB * 3 ICs +5 Trenslstors

Our Introductory Price- $\mathbf{2} \mathbf{2 1} \mathbf{9 5}$

A full speciftcation tuner assembly which is aligned and tested by us. Features built in stabilisation for low drlft, powerful AFC. Twin filters on FM, meter drlve circult for S. Meter, LED Beacon, P.L.L. Decoder, Ferrite Rod Aerlal. Orly requires a 18V DC supply.

STEREO POWER AMPLIFIER

25 Watts RMS per channel

£9.50

* Class AB Operatlon
* 18 Transistor Circuit
* Unstabilised supply required
* TIp 34A + Tip 33A Output
* Supply Voltage 50V DC nominal
* $30 \mathrm{~Hz}-18 \mathrm{KHz}$ @ -1 dB

\star Output 8 ohm
* Input 50 Kohm
 tary palr of translatora in ciass AR oueh pull. Whil comiortably dollver 26 watt per chunnel. And comet complete with hat sink.

PR 020 Hi -Fi Preamplifier

The PR 020 is a low noise preamplifier with full bass and treble cat and boost. It has four rotery controls and four specially selected toanslstors. It is designed to match most high pualify power amplifiers.
$\mathbf{8 8 . 9 5}$

SW 0208 Way Selector Panel E3. 95

When used in conjunction with PR O20 provides switching for different Inputs. Features Mond/ Stereo awitch. Loudness/Fitter/ Tape replay playback, Phono, Auxiliary + two other inputs. Has PC Board mounting 5 Way Dín socket for tape deck.

POWER SUPPLY PSU 020

This sturdy power supply uses a Bridge rectifler Into a 63 volf 4700 UF Capacitor It has three fused olitputs and ficorporates an 18 volt stablised supply.

TRANSFORMER TX 020
This transformer ls deslgned for the PSU 020 and will give 52Y DC at $2.5 \mathrm{smp}+18 \mathrm{~V}$ DC when used with PSU 020 . It also has a 12 V 2.5 amp winding for a cassette dech. It will easily power the PA 020 for 25 Watte per channel.

E8.75

The above items one only amill mange of the modulan whe have In moak Wh alio emmy knobs, ehosale front and reer oxtrigions, diafo to mateh the FM wis meter, fronk ands, cabineti. In fact overything you meed to mike a plece of squipmant that not only matets profational totandarda put looki
 Tel: (01) 681 1825/6

To:- READERS PCB SERVICES LTD, PO BOX 11, WORKSOP, NOTTS
Please supply $\mathrm{PCB} / \mathrm{s}$ as indicated by tick/a in boxjes......

Post and packing is for one board or set of boards. Prices Include VAT. Remittances with overseas orders mast be sufficient to cover despatch by sea or alr mall as requlred.

I enclose Postal Order/Cheque
ACCESS walcome. Sand card number only.
No..........................
for £..............mada payabla to READERS PCE SERVICES LTD
NARE
ADDRESS
\qquad
Post Code
Any correspondence concerning thls sarvice muat be addressed to READERS PCB SERVICES and not to the Editorlal offices.

SHORT WAVE BROADCASTS by Charles Molloy G8BUS

An unusual log comes from G8PG (Gus Taylor, Greasby, Wirral) who has a vintage 1923 crystal receiver complete with cat's whisker detector. Tuning is by means of a slider on the tuning coil. Although intended for use on the medium waves this receiver goes down to the 49 m band and when connected to a 60 ft long wire it gave headphone reception of Vatican Radio at 2000 and Radio Moscow DX Club in English, Prague radio and an unidentified station in Spanish, all between 2250 and 2300 . Unable to resist the challenge, your scribe knocked up a crystal set using a Denco Maxi-Q blue range 4 inductor, an OA71 germanium diode (silicon diodes will not do) a variable capacitor of unknown value and a pair of high impedance phones, all joined together with leads and 'croc' clips. When connected to a 90 ft long wire, stations were heard on the $31 \mathrm{~m}, 41 \mathrm{~m}$ and 49 m bands. The depth of fading was a surprise-even the strongest signal faded right down, an effect that is obscured when using a receiver with lots of gain and a.g.c. The L / C ratio, i.e. the ratio of inductance to capacitance of the tuned circuit should be as high as possible. The 1923 crystal set uses a large inductor tuned by its self capacitance. Improved results were obtained with my lash-up when I used a home-made inductor of 15 turns on a 1_{2} inch former tuned with a 100 pF variable.
Chris Howles (Lichfield) was surprised to hear a broadcast from Reykjavik on approximately 12090 kHz , as he did not think that Iceland had a short-wave service. According to the World Radio and TV Handbook, Iceland is on medium and long waves only. There is however an unlisted service for fishermen, with programmes of music, news and weather reports on 12175 kHz ($25 \cdot 64 \mathrm{~m}$) which can be heard at 1200 . This station will QSL. DXers who want to add Iceland to their list of countries verified should send a report, together with an International Reply Coupon to Gufenes Radio, PO Box 442, Reykjavik, Iceland.

Old-timers will remember station TFJ Reykjavik which used to be on $12235 \mathrm{kHz}(24.52 \mathrm{~m})$ with a regular s.w. service. This was the first station I ever
heard on the short waves, using a one-valver made to a design by F. J. Camm which appeared in $P W$ in the mid-1930s. The tuning coil was wound on postal tubing, the h.f. choke was made of fine wire wound in sections on a glass test tube and the tuning and reaction controls were each fitted with a slow-motion drive. A fair degree of skill is required to operate a straight set with reaction, a skill which once acquired is never forgotten and helps the DXer to squeeze the last drop out of more complicated gear.

Chris asks whether it is better to send all his log for the month, or just a selection. Only those items likely to be of interest to other DXers should be included, together with the date, time, frequency (if known), signal strength in SIO and some details of the receiver and aerial used. Unusual loggings, stations on new chammels or heard at unusual times of the day, will interest others.

Another convert to the new Yaesu Musen FRG7 is Robert Whitrow of 29 Ena Avenue, Neath, West Glamorgan SA11 3AD, who would like to hear from FRG7 owners who have ideas on a suitable aerial for use with this receiver. Robert uses a Joystick plus 38 Joymatch on the medium waves and a half-wave dipole (no size mentioned) fed via co-ax cable, for s.w. reception, all being situated in the roof space. A dipole is a balanced aerial and balanced 75 ohm feeder should be used to connect it to the dipole (A, A1) input to the receiver. Co-ax is unbalanced electrically, and the screen will act as an aerial, picking up local noise, if it is used with a dipole. Robert wonders if it would be worth investing in a "proper" short-wave aerial.

Multi-band trap dipoles are available commercially. A trap dipole has one or more parallel tuned circuits called traps, in series with each half of the dipole. At high frequencies, the trap behaves like an insulator, only the centre portion of the aerial being used. At low frequencies, the traps act as loading coils and consequently the two arms of the dipole can be made shorter than usual. A half-wave dipole cut for the 49 m band would have an overall length of 78 ft . The Mosley SWL 7 trap dipole, for example, has an overall length of 40 ft and it resonates on the $49 \mathrm{~m}, 31 \mathrm{~m}, 25 \mathrm{~m}$, $19 \mathrm{~m}, 16 \mathrm{~m}, 13 \mathrm{~m}$ and 11 m bands. A trap dipole will not pick up any more signal than a dipole cut for the band in use. In fact it will probably pick up slightly less signal, but it occupies a lot less space than a dipole for each band and it is a lot simpler to erect as well. Details of commercially made shortwave aerials can be had from Mosley Electronics, 196 Norwich Road, New Costessey, Norwich NR5 0EX, or from Lambda Antenna Stud Farm, Whiteball, Wellington, Somerset.

©

 !

 ! ELECTRONICS LTD

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

£13-12
Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter: Antenna impedance- 75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz : Sensitivity- -0.3 GV 26 dB signal to noise ratio $\pm 75 \mathrm{kHz}$ deviation; intermodu lation 80 dB Image rejection-60dB; Tuning voltage-1V to 11 V : Total gain-33dB; Intermediate frequency- $10 \cdot 7 \mathrm{MHz}$; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$.

TECHNOLOGY:
Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors: Silvered coils.

FI 2846
IF AMP AND DECODER

nc. VAT, P\&P
TECHNICAL CHARACTERISTICS: Intermediate frequency $-10 \cdot 7 \mathrm{MHz}$; IF Bandwidth-280 $-2 H z_{\text {; }}$ Signal to noise ratio -70dB with $1 \mathrm{~m} V$ input; Distortion-mono 0.1% stereo 0.3% : Sensitivity- $30 \mathrm{u} V$ up to the 3 dB limit; Channel separation-40dB at kHz ; Pass band-20 to $15,000 \mathrm{~Hz}$; Rejection at 38 kHz greater than 55 dB ; Am re-jection- 45 dB ; De-emphasis- 50 to $75 \mu \mathrm{~s}$. Pifot capture at $19 \mathrm{kHz}+4 \%$: Channel matching within less than 0-3dB; Output impedance - 100 Ohms; Output voltage500 mV : Phase locked loop stereo decoder: Output for LED VU-meter; Null indicator: Outputs for AGC, AFC and inter -station muting; Consumption- 55 m A LEDs extinguished. 100 mA LEDs illuminated; Power supply-15V; Dimensions $195 \times 76 \mathrm{~mm}$.
CIRCUT TECHNOLOGY:
Epoxy printed circuit board. Monolithic integrated circuits, ceramic filter.

ALS 1500
STABILISED POWER SUPPLY

52.53

Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS:
Output voltage- 15 V ; Max. output current -500 mA : Thermal coefficient less than $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; 15 V power supply for modules HF 7948 and Fl 2846; Supply protected against short circuit (power and current protection): Dimensions $-65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

LED VU-METER
Station strength indicator

£8.77

Inc. VAT, P\&P
TOUCH CONTROL PRE-SELECTION UNIT LED channel indication

£13.50
Inc. VAT, P\&P
ILLURINATED POINTER
Station finder

FREQUENCY METER

Digital display of received station frequency

24.35

Inc. VAT, P\&?

NUMERICAL DISPLAY
Pre-selected channel number

TRANSFORMERS

TEST

MUSIC CENTRE CHASSI

WUsIC CENTRE CHASsi8 Audio kit 25W it 23 W FM（STEREOHMWRW 18＋15W，Complote with Inatruc－

Plup In Save Batterieal

3300 fita Inte 13 A ancket $0-7 \mathrm{~s}-9 \mathrm{y}$

 VAT 124\％P\＆${ }^{\circ} \mathrm{F5} \mathrm{p}$

ORCE SOLDERLESS

S Dec 70 contacta
T Dec 208 contacts
 AT 8% P \＆ P_{400}

ANTEX SOLDERING IRONS $15 \mathrm{~W} \quad 83.78 \quad 58 \mathrm{~W} \quad 53.75$ VAT 8% P a P 45 p

mini－multimeter

$\mathrm{DC}-1000 \mathrm{~V}$ AC－ 1000 V DC－100mA
VAT B\％P\＆${ }^{2}$

Barrie Electronics Lt

NEAREST TUEE STATIONS：ALDEATE \＆LIVERPOOL ST

TV GAMES
TV gamea malna adaptor 7．7V 909 ma stabliazed CS．2s．Fully arsembled，atrac tively cesed TV games（temnls，football，
 kit eff＇© Stunt motor cycla geme chlp +
 or AY＋3－8500：－Black and whitt standard model EA．50．Economy verslon EA•PS． Colaur model lendard e4t．Economy kIt adda calour fo molt gemes el． 50 ． Sond ase tot frat alant data．
COMPONENTS
Pastic veraliont of BCtpalg 5p．2N3OS5B

 vert 100 to 4 M 7 时p．
PatentlomalsmiviN 4×7 to 2 Hz iag or IIn． Single 2sp Duat 75s．Polyeter capaci－
 15mi Sp．capmitiors Ej2 E3V 22 pt to
 27 p to 4700 p 13 p ．Mylar cepacitors 100 V $-001,-002,1005 \mathrm{ml}$ da， $01, \quad 02 \mathrm{mi} 4 \mathrm{Ap}$. 2 ml 3 p .25 F 5 mf 5 p ． 10 mf 4 p ， 18 V 22 mi 5 p $3 \mathrm{~m}, 4 \mathrm{p} .100 \mathrm{mf} \mathrm{mp} .220,330 \mathrm{mf} 5 \mathrm{p}$ ． 470 mi 11 p ． T000mi Jist．Zonert 400 mW E24 2 V 7 to WATNT TRANBFORMERS

PC etehing kits：－econemy \＆1－7B．Sts

 Laminnte cuther 7an．
 sdeptors：－with socket si－st，Plain $99 p$ ． New S－de－kit a4－95．

 srog，libraty fit t5．Marns adaptor E3．20． Cembidab sclentifle sis－45．Oxiard tolentiflc e8－g5． 1 CzO stereo fowt 10 W Integrated clrcult amp kit etrot．PZ20

JC12，JCzz AND JC40 AMPLIFIERS A fandat of Integrated circuit audio ampll－
 \％\％95．JC40 20 watta E4：20．Send exae for frea data on pur rande of metchling power and presinp kitt．
FERRANTI ZN414
IC radlo chip Et－GI．Exira parta and pec

GATHRAY ELEMINATOR PARGAING TV Gamma power unlt otabilized $7.7 V$ oulput and 4－way multi－fack：－ $3 / 4 t / 1 / \mathrm{BV}$
 redio madele samie alze as a PPg hattery whit press ajud connectorn．ov 82.15
 pindin plug $\mathrm{Kz}^{2}-25$ ．Fully htabifized model switched sutput 3 Fibl 7 tov 4003 ma EA 40 ． Cer convertors 12 V of Input．Output oV BATTERY ELIMINATOR KITS
Sond tae yor iree leaflel on range．topma adio sive $41 V E 1.10 .8 V E 1 \cdot 10.0 V E 1 \cdot 40.41+412$

 E3 261 Amp in 46 Hequy duty 13 way typan $4+1 / 8 / 7 / 921 / 1 / 135 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$
 Ijred．Stabllixed pow or kite 3－tay 500 ms

BULK BUY OFFERS
minimum purchase exte any mix from this SN760ZAN winh mproved heat equlk Tip．

 resistora 5% ET2 1 to 10 MM 0.3 PD ．Zener

－par aupio
 BIPAKK AUDIO MODULES

NEW 10w PA100 c土．0．PA100 E13 65．MKEO audlo klt

SWANLEY ELECTRONICS

DEPT．PW，PO Gox 6n， 32 Goldeel Rd．，8wanloy，Kent ERa aTO
 Overssas cuatomera deduct 7% on items marhed＊and 11% on othera．Offelal eredit
orders wilcomit．

SOUTHERN VALVE CO．

 Some loading makot avallable．YAT thvoices isuuad on request
All New end Boxed．＂Quallty＂Branded Valyes．Gugrantedd 3 monthn，EVA etc．
 NOTE；PLEASE VEAIFY CUARENT PRICES．Corfact oniy at thme of poing to mrots．

DY80］${ }^{\text {D }}$	59pprs8	50，	Pres	¢ 1.20	PCFios		P181A	－	UP50	1
DY402	529 EFsg	559	Pcs8	$75 p$	PCFEB0s	¢1－5	PL81A	$5_{5}{ }^{\text {a }}$	URFBD	
Eccar	53 p 5183	50 p	PC8日	75 p	PCFsad	75p	PLB3	50 p	UCC85	
ECC82	53 y EF194	$50 p$	PCoy	72 p	PCF808	E1－70，	PLB4	50 p	UCHat	
ECCs3	53 p EH90	$60 p$	PCOOO	45	PCLE8	$5^{6} \mathrm{p}$	PL500		UCL82	
ECCRS	50 p EL41	00 p ．	PCCS	33 p	PCL8	73 p	PL504		UCLEs	
ECH81	SSp EL84	50 p	PCCBS	50 p	PCLA4	40	PL508	¢1．30	UFS\％	
ECHE4	72p EL509	＊2．70	PCC89	52p	PCL65		PL500	C．3 00	UL41	
ECL80	52 P EM84	90p	PCC189	59 p	PCL805	55	PLST0	83.60	UCS4	
ECL的	52 D EY80／7	48 p	PCF80	75	PCL樶	79p	PL802	52 E	UY41	
ECLB	58 D EY500A	150	PCFD	P0p	PCL200	51.40	PY89	6 p	UY8S	
EF90	11 P EZB0	42 p	PCF200	$21-33$	PD500	C3－6	PY850	\％p	U25	
EF85	45p EZ81	4 p	PCFB01	52p	PFLROO	Opp	PY801	90	120	

We ofter rohurn of pert servise．CWO ONLY，No C．O．D Post frat over fing，\＆to $820-75 \mathrm{p}$（max．）

MANY OTHERS
itemo In atock at fime ai going to nrept but bublect to posaible market flucturtlana

MAX 75p．LISTS AND ENQLIRIES，S．A．E．PLEASEI
ALL PRICES INCLLDE VAT 囱 12子\％
ENQUIRIES WELCOMED FROM TRADE and RFTAIL（Eame pricen）

IMATIIPUS \＆

BARGAIN ANO SIRPLUS MILITARY AND CONEUMER COM－ ROAD，WINDEOR，BERES．SLA1HS，TELEPHONE WINOOVE （ 075355 ） 54525
 Except Govt，depts．C．W．O．Post \＆Packlag add 20 D ．U．K．V．A．T． FREE；send gelf addressed envelope ior fult prod as prices may changa）．All to manufacturer＇s product tist．（quote AD inelection fram our stoc ${ }_{k s}$ ．
LEDS 1＂\＆ 02^{N} DIA
Red no cllp
PAK of 100 lede
TIL209 red \＆chip $0 \cdot 2^{n}$ led red a clit
Color leda all

DISPLAYE O． $6^{\prime \prime}$ DL747／2 0．30L7CA $702 / 2$ TGS gat detector： Xenon hash tubes $0-395$ p1 tuner
Dale PCB pan Dalo PCB pans
Pen，bosard ferric $k ~$ VERO stocked all 10% discount

TURER MODLUE：FM MPX．HW LLW L．
Pash buttons 82250 Stereo 7W ump

PAK A： $12 \times$ red leda
PAK B： $5 \times 741 \mathrm{~g} \mathrm{PIN} \mathrm{DIL}$
PAK C： $4 \times 2 \mathrm{~N} 3035$ \％OW TO 3
PAK D： $12 \times$ BC109
PAK G： $7 \times$ BFYE1
PAK H： $7 \times 2 N B 819 E$ FET
PAK M： $4 \times$ prir NPNTPNP 2A
PAK N： $50 \times$ OAB1／91 diode
PAK P： $20 \times$ plasilc BCtog
PAKR：14 \times BC107
PAK S： $14 \times$ BC108
PAK T： $10 \times$ plastic power $2 A 00 V$ BC131

Personally, I prefer a long wire. My 90 -footer goes from a chimney on top of the house to a 20 ft mast at the bottom of the garden. End-fed by a a.t.u., this aerial has picked up a lot of weak signals including Reunion, when it was on the 120 m band. Not everyone has the space for a long wire and the trap dipole could then be attractive.
Fred Pilkington (G3IAG) writes from Newmarket to say that from the information in this column he was able to listen to Radio Australia again after 20 years. "It was quite exciting for me to listen to them again and 21570 kHz seems a good frequency". Fred uses an FRG7 and he is hoping to build a digital readout unit for use with it. DX heard on 60 m includes Ghana on 4980 kHz at 2300, Lagos on 4990 from 2245-2305 with a programme in English about a book published by Radio Nigeria which covers the story of broadcasting there during the period 1951-77. This book may be of interest to DXers like Fred who was a Radio Officer in the MN in 1952/53 and used to visit Radio Nigeria when it was starting up and had its transmitters in a caravan.
"Could you please tell me whereabouts and when I could listen to Rhodesia and New Zealand?" asks J. Thackray of Leeds who has an Eddystone 840 and a 30 ft long wire. Rhodesia does not have a s.w. service but it does have a domestic service on the tropical bands. Gwelo is on 3306 kHz (African Service) from $0325-0615$ and 1515-2200 and on 3396 (General Service) from 0350-0615 and 1515-2100. Listen for these 90 m outlets when there is a path of darkness. The answer about New Zealand comes from Jack Shone (Wrexham) who found RNZ on 15130 after WYFR went off at 1853. RNZ identified a couple of minutes later and was heard until 2000. Another station of interest heard by Jack on Sundays is the internal service of Radio Australia on 9669 from 1200 to 1300 . Reception was with a Realistic DX160 used with a Joystick, ATU and crystal calibrator.

Jack raises an interesting point regarding the higher frequencies closing after dark. There is DX to be heard on the 19 m band and this may occur on paths that are mixed day and night. Tokio was logged on 15270 in English to North America at 2350, also Radio Peking in English to North America on 15060 at 0045. This is the occasion to use a good aerial and preselector, when the band is quiet and there is no danger of overloading the receiver with strong signals. A. L. Herrick of Leicester has also been trying 19 metres after dark. He reports hearing the Voice of Chile on 15120 kHz at 2200 using an ex-Admiralty B 40 receiver and a 60 ft long wire.

BROADCAST
BANDSS

MEDIUM WAVE DX

by Charles Molloy G8BUS
Regular readers of Practical Wireless will have noticed an illustration (Fig. 10) of the PW Medium Wave Loop Aerial in the "Guide to Aerials" supplement within the March 1978 edition. Back issues are available from Post Sales Department (see page 18). The PW loop is a well-tried design. It appeared in my article MW DXing (PW April 1970) and in the Aerial

Wallchart (Oct 1972). It has also been reproduced in Electronics Australia and in Radio Communication (RSGB).

Anyone taking up medium wave DXing should make this loop. If I had to choose, I would use a poor receiver plus loop rather than a good one with any other type of aerial, except of course the Beverage. During the past few years DXers making loops have written to me asking for help and this seems an opportune moment to mention some of the problems that were encountered.

It should be realised that the loop has two separate windings which are not connected to one another. The main winding, which should be wound on first, consists of seven turns and the two ends of the wire are connected to the tuning capacitor; one end to the fixed vanes and the other end to the moving vanes. The second winding is a single turn, wound beside the central (fourth) turn of the main winding. The ends of this single turn are connected to the coaxial cable which goes to the receiver. The single turn picks up signal by induction from the main winding and there is no metallic connection between the two. The same kind of wire is used for both windings.
"What kind of wire should be used?" is a question frequently asked. The answer is that almost any kind of wire will do. Plastic-covered "hook-up" wire of about 26 s.w.g. is readily available and is convenient to use. If very thick wire is chosen then it may be difficult to wind and bend. If fine wire is used it will not be rigid enough and may break easily. Stranded wire is not rigid enough. I once wound a loop with Litz wire but could detect no improvement in performance. Single copper wire with plastic insulation in the range 22-26 s.w.g. is ideal.

What sort of cable should be used between loop and receiver? Co-ax cable is shown in Fig. 10 and this is adequate when joined to a receiver which only has Aerial and Earth terminals. If the receiver has a balanced input (marked A and A1, or Dipole), then electrically balanced feeder will give better results. Ordinary twin plastic-covered lighting flex will do or, alternatively, use 75 ohm or 300 ohm ribbon feeder. The feeder also acts as an aerial! If it is balanced, then both wires pick up an equal amount of signal but as the signal from each wire passes through the receiver's aerial coil in opposite directions (from A to A1 for one wire and from Al to A for the other), they will cancel out. The nett pick-up from the feeder will then be zero which means a deeper null.

Some readers have had difficulty in covering the whole of the medium wave band, which stretches from 1605 kHz to 520 kHz . If the loop will not tune to a high enough frequency then the residual capacitance when the tuning capacitor is at minimum, is too high. There are a number of possible reasons. The self capacitance of the main winding may be too high, caused by using thick wire or placing the turns too close together. The minimum capacitance of the tuning capacitor may be too high. Capacitance may be reflected from the single turn into the main winding, either from the receiver or feeder. The cure for all is to reduce the number of turns from seven to six.

If the loop will not tune to a low enough frequency then more capacitance is required. Fit a 220 pF or 330 pF fixed capacitor in parallel with the variable capacitor. This should solve the problem. In parallel, means connecting one side of the fixed capacitor to the moving vanes and the other side to the fixed vanes. Use a switch to do this and then the fixed
capacitor can be switched IN for the 1.f. end of the band and switched OUT when tuming to the h.f. end. If it is left IN all the time then the h.f. end will be affected.

The value of 500 pF specified for the tuning capacitor is a nominal value only, 470pf will probably do just as well. A twin-gang 365 pF with the two sections in parallel, giving 730 pF in all, will certainly cover the whole band. Use one section for the h.f. end and switch in the second section when tuning the l.f. end of the band. A single-gang 365 pF variable with a 220 pF fixed and a switch is the set-up used by many DXers as it is a compromise between coverage, ease of tuning and availability of components.
Finally, in answer to a query received from William Stevenson of Swinton in Lancashire, a loop is unsuitable for use with a Vega 206 or any other receiver which has its own internal aerial. The reason is that the internal aerial will mask the loop's null. Even if the loop is rotated to null out QRM, this QRM will still be picked up by the aerial inside the receiver. The receiver could be rotated as well of course as its internal aerial is also directional. One way to do this is to mount the receiver, perhaps on a shelf, at the centre of the loop, so that the two nulls coincide. This means that the ferrite rod should point at right angles to the plane of the windings on the loop. The loop and receiver can then be rotated together. No need to join the feeder to the receiver as there will be direct pick-up from the loop by the internal aerial. Although this is rather clumsy it does work, but at best it is a makeshift. Portables usually work best with their own aerial which, incidentally, acts like a mini-loop. Tune in a station on the medium waves, rotate the receiver and two positions will be found where the station disappears.
In a letter to Harold Emblem, the Newfoundland Regional Engineer of the CBC lists stations that have received the most numerous reception reports from Europe. These are CBT Grand Falls 540 kHz , CBNA St Anthony 600 kHz (which relays CBY 990) CBN St John's on 640, CBNM Marystown on 740, CBGY Bonavista Bay on 750 . All transmit with 10 kW . Reports to CBC outlets in Newfoundland should go to PO Box 12010, Postal Station A, Kenmount Road, St John's, Newfoundiand, A1B 3T8 and the CBC will issue a QSL card for each correct report.
Noel Cosgrave writes from Dublin to report reception of the BBC relay in Cyprus on 638 kHz , WINS on 1010 and WNEW 1130 in New York City. Details of receiver and aerial were not given. Noel mentions an unauthorised station in his area but readers are reminded that it is illegal, in the UK at any rate, to

PLEASE MENTION

PRACTICAL WIRELESS WHEN REPLYING TO

ADVERTISEMENTS

listen to "pirates" and reports of such broadcasts cannot be included in this column. "Would a Codar CR7OA plus PR40 preselector and aerial tuning unit (a.t.u.) be suitable for m.w. DXing, and could a loop be used with this receiver?" asks R. P. Crulse of Telford. Yes, the CR7O performs very well on the medium waves when used with a loop. Connect the loop direct to the receiver leaving out the preselector and a.t.u. The preselector might boost some signals but it is more likely to cause crossmodulation. An a.t.u. is not used with a loop, as it too (like the feeder) will act as an aerial and pick up signal.

by Ron Ham BRS15744
Congratulations to John Branegan, Saline, Fife, who has passed his RAE and by now will be sporting a GM8 call sign and using a Yaesu FT221R on 2 metres. Between 2000 and 2109 on January 31st, John heard tone-A c.w. signals, on 2 m , from 5 GMs, 3 LAs and the Angus, GB3ANG, and Lerwick, GB3LER, beacons, all of which he thinks was due to a 27 day repeat of the auroral event he observed on the 4th.

Both the 27 MHz Citizens and the 28 MHz amateur bands were wide open, almost daily, from January 29th to February 19th when rock-crushing signals were received from Canada, north and south America and several European countries. Cyril Fairchild, G3YY, Brighton, reported that the 10 m band opened up on January 29th between 1200 and 2100 when he heard very strong signals from LU, PY, PZ, VE, Ws, $1,2,3,4$, 5,8,9,0 and American CBers all working into Europe on both a.m. and s.s.b. At the same time, Gordon Goodyer, BRS 37345, Petworth, Sx, using an Eddystone 750 and a loft wire dipole, received 10 m signals from Canada, Europe, the Middle-East and South Africa and at 1530, he says "it was armchair copy all the way" as the American stations pounded in. "The band had gone mad," said Gordon, a view supported by Alan Baker, G4GNX, Newhaven, who, like us all heard the Cyprus, 5B4CY, and TESSA, ZE2JV, beacons and at 1210 he had a c.w. contact with UY5VL using his FT101E with a Webster Bandspanner aerial stuck in his Black and Decker workbench outside the back door. The following day, using the MidSussex ARS club station at Burgess Hill, he heard those powerful signals from a host of Russian stations on 10 m .
On 17 of the 22 days from January 29th to February 19th I frequently received signals, averaging 549 , from 5 B 4 CY . On 13 of those days, signals averaging 539 were heard from ZE2JV, while on 3 days signals were 549 from A9XC, the Bahrain beacon. Almost daily, very strong signals came from the Russian stations before noon and from the American Continent in the afternoon, but what amazed us all was the fantastic strength of the American CB signals as they contacted their European counterparts. John Branegan now uses the Citizens band as a 10 m propagation guide, because, as John says "A new pattern of DX, Europe to and from North and South

THERMOSTATS

Pafriparetion as illustratad with 36^{*} Cimpet Stink must pe mounted in close contact coliorated $90^{\circ}-190^{\circ} \mathrm{F} \quad 15$ amp contacts $\mathbf{E 1} 62$ ．
 dimpo but for high temps el 15 Ovar Stal－with Serson and capllary 85 p

MAINS OPERATED SOLENOIDS

 in，putl－apmonall bize $1 \frac{1}{5} y 1 \frac{1}{4}$

 $3 \times 23 \times 201$ ． 8.50
Prices includa VAT 4 posiage．

DELAY SWITCH Marns cperated－dsiay can
bs accurately sal with ponnters knob for pertods of $\begin{array}{ll}\text { up to } 2 t & \text { hres } 2 \text { contacts } \\ \text { suitable }\end{array}$ adps－second contact opens contact 95p．

SMITHS CENTRAL HEATING CONTROLLER
 （1）comilnueus hot water and castinuous central healing hit water tand cantunous
contimuous hot wbtar but central hesting of at night（3）con－ only for 2 periods during tha day 141 hol Water and ceniral hating both on but day
time only（E）hot water at time only（5）hot yeter all day but cantral healing only for 2 poriods during the day（6）hot wster and ceniral
hasting on for 2 preriods during the day time orly－then for fummer time use with central hesating off＇71）hot waier con－ Hnubus［81 hol water day time only（9）hot waler twics dally（10） everything off a handsome looking unit with 24 hour movement and the switches and olter parts necessoty ta select the desired programmo of heating Supplued tomplete with wirimg diagram slocks last at E6．95 each INCLUDING VAT and Postege．

LOW R．P．M．MOTORS

EXTRACTOR FAN Ex computres－made by Woods shrouph oamel－ramonably quitis
 ppin．Cholece of tw

For camping car reparting－emergency lighting from a I2v ballery you can t boal flubrescent lignting，it will offer plenty of weil distributed light and is ectonomlcel，We offer invertor for
21 and 13 wett minlature tuta for only $£ 3.76$ with rube and 21 and 13 wett min
tube holdars as weh．

MINI－MULTI TESTEF

Amazing deluke packet sizs
precision maving coil instrument－ pracision maving cail instrument－
jowelled besrings－ 10000 py － 11 Instrnt fanges messurg：－
OCvolts 10 50.250 .1000 AC volts $10,50,250,100$ AC emps or mA snd $0-100 \mathrm{~mA}$
Continuity and resistance $0-150 \mathrm{~K}$ Continuily and resistance $0-150 \mathrm{~K}$ Coms． Complets with insulased prabes，
leads．bestiery，chevit diagram Bnd instructions．

FREE

Amps ranges ktt ansble vou to read OC curfent from 0－10 amps alretily on the 010 scala，dts tree if you purchese quickty but airectly on tha 1 scala，is free if you purchese quickly but

MULLAAD UNILEX
 stereg sysiam Reted one
of the finest performers of the stereo field this would make a wonderful gill
tos almosi any one in，essy to－ yssemble modular form and complere with e pals of plossey \＄peakers fhis should sell 35 sbout f30－but duse to a coecial bulk buy bnd as an ancentiva for you to buy this month wa pestage．

UNISELECTORS
These are pults operazed
switches ane used in auto
switches alis used in suto boards etc．The pulse moves
the switch arm through ont the switch arm through onst
posttions．Except where indi－
 position types and 50 v Cois is position types and 12 v oper
stantrard 24 v or 12 v
ation extre at $\mathbf{f 2}$ por swhicf．

5 pols	¢7．02
10 pole	E30－60
3 polt 50 way	Cf0 5B

4 poris	55．94
8 pold	29.72
2 pole	C1298
4 pole	C127

24 HOUR TIMERS

the Smiths meternist iss in thatr toutose

 2 Onfoft＇s per 24 hours， 13 amp consacts modet ons onjoft per 24 hours $\$ 10.50$ ． exira canlacts $\$ 1.00$ por sel．AEG 60 amo model with clackwork slandby，one onjotfper 24 houls E 50 ，extra contacts $\mathrm{E8.00}$
 per 24
per tet．

INDUCTION MOTORS

MAINS

TRANSFORMERS

 many more，agnd iof lize．

WAFER SWITCHES

5 pole 2 wa 12 pole $\frac{2}{3}$ way 18 pole 2 way

6 pole 2 way	12 pole 2 way	18 pole 2 way
5 polat 3 way	10 pole 3 way	15 pole 3 way
4 pola 4 woy	8 pola 4 W日y	12 pola 4 wey
3 pols 5 wiy	6 pole 5 way	9 pole 5 WBy
2 pole 6 way	4 pole 5 way	6 pole 6 wey
2 pole 8 way	4 pole gway	Bpola Bwsy
1 pole 10 way	4 poie 9 way	6 pole 9 woy
t pala 12 way	2 pole 10 way	3 pola 10 wey
all ET32 each	31182.44 ach	all 53.12 esch

avickly mado to specib order．

THIS MONTH＇S SNIP

Japanese made fMA unar and mbtchung
 decoder．two tenn for less than avarsge bon＇t miss this stocks will nol last long．

fELAYS

12 voltas 2 zvo 10 amp chargaver plug in 95 p .12 V

 Latching patay mains operarad 2 ofo contacts E2 11．Mains operated three 10 amp changeovers
open lype ons screw fixing E12E．Many athar open lype ons screw fixing $\mathbf{E 1} 25$ ．Many ather
lypes with different coil volisges and contect grranghmemts are in stock，enquities invitad．

TANGENTIAL HEATER UNIT

A most ensient and nuiep runruing blower－heater by Solatron－ same typa as is fitted 10 many
famous riame hesters -Com prises mains induction motom－ tong turbo fan－split 2 kw
healing elemenz and thatmo－ halling element and tharmo－
stalic safely stalic safely irip－simpiy
connet to the mains for im－ mediato heal－mount in a simple woodBn or．metah case or

mount direci anto base of say kitchen unit－price 84.98 pose kitchen unit－price 50 canirol swich to give pown， 3KW MODEL $+$| C5．95 |
| :---: |
| +1.50 F | lkw．Cold blow or of invaileble

60 extro．

Terma．Prices Inciude Pest \＆VAT，But orders under $\mathbf{E} 6.00$ please add 50 p to offset packing．Bulk enquirias－Please Phone for Genaraus Dlscounts 6881833.

J．BULL（electracal）LTD
 （Dept．PW）， 103 TAMWORTH RO．
 CROYDON CR9 1SG

IT＇S FREE！

Our monthly Advance Advertising：Bargains List givas detalls of bargaine arriving or just arrived－often bargains which vell out before our advertlament can appear．－It＇s an Interesting Ilst and it＇s free－just eend S．A．E，Bolow are a faw of the Bargains ntill aveilable from previous tiats．

FM Turter mind decodar， 2 very wall tn inde IJ

 12 Voli Heovy Duty felay，plug in typa has three paiss of 10 amp changsover coniscig，asuitable 1 pln best 45
4

 volt ACJDC metor couplad by o long ancloged shat to a subs－ M12．
Jurt arrlved．Fruit machinas，warking ordar，very improssive choice of spyerel bul vary heavy so you must collieci，\＆EO． Hfah lowd 24 Hour Ctrick \＄witch，mada by the famous AEG company for hormal mains but with clackwork faserve has load
capecity of 80 ampu et 240 V 50 HZ ．Therefora sulitabla for deating with large loeds of say ghap lighting．water hating slorage heaters etc．stc Has tragers for on and off once per 24 hours bul extes triggers with be guadigble，Price E1－60 per pair．Size of clock agprominately $8^{\prime \prime} \times \mathrm{E}^{\prime \prime}$ a $5^{\prime \prime}$ ，cotally encased but tras easa of bilaring gwitchurg times Price E7．69．
emps al 240 voits．This one has iwa sets ol orforg pet 24 hours． proce E7－00．
Ught Dlmimer，our timer module with small modz maxes an
 be suicable far losds approaching ikw．Price of mowne sid ins－
trucrians E2． 25
Push Pull Sofenoids，mains oparaled solenoids which will push

E7．50

Flashing Lhahta，chasing lights rendorn fleghes，strobe offects ett，ette．can easily be achinevid using out disco switches．These switches are an－equipment but quesrantesd perdeci end supplied
suitable for malns working To get some ides of the loading number．osech swifch is 10 amp For that hight pipe or Catherine Wheel $\begin{aligned} & \text { 日flect order the } 12 \text { switch model wo th light pipes data } \\ & \text { model，interconnecting the swirches to givo fasless speed．Bi }\end{aligned}$
 $\$ 8.20$.

 Flat riad Switc
space．Prica 50
 to each end． 75% each．All thess switches are normatly open bul can be biased to a nermally closad position dy fittitg a magnea adjacent．The reed switch would then be opened by a magnet of apposile podenty being tought up to in

Fixing hole 10 For E1．

Witheic Camine Tranformar 120.12 at 1 amp and 9 woll के amp Normal primary ypaghling，mpregnated and vernished for quial grarstion，Price C3 EO
Wh \＄haped Fluor etcent Twbes tor porch Inght，box signs or where vou want light evenly soaced ovis a conkined a
approx． $10^{\prime \prime} \times 10^{\prime} 30$ watts，meede by Phlips price $\mathbf{E 2 . 2 4}$ ．
Extenalon Spankers Bohm 45 watta hending power，We bave 5 or 6 Giffarent modars in spock，cheapast being the Psrytime at E．

 width fic．Pice $£ 18-20,12^{\prime \prime}$ moda
version into spacial puipose scope，日fic．
Auta Tranuformers for working American＇topls and equipmant complately anclowed In shaer mezal case with Americen typo filel yotis．With cang handle offored at about half pirce only E15． These may ba phil seilgd but ars fully gueranterd Similar bui r000 watt E29．to．
Car Sturter Charger Kir．Naw version We supply twa 10
 useful pieces of squipment you cen have in your garage Sachar or later you or sompona will leave something on and you will
have a flat battery thag etarter will gel you away uasally in lass have a flat batter
than 5 minutos．
Than 5 minutos． oparated．Intended for surlace mounting his a finiong flange at the bottom Price Ez． 1 a．
\＄2V Drip perof Relay．
\＄2V Drip peteof Relay．Specially dosigned far going under the bonnet of a car，mada by ons ol our big manutaciurers，this
really hes a ramouabla semi－hard rubber cousp．Coniacts loak
 thinking aboul making an anti－1hial device．Prlce E ！+Bp
High Spmed Urlotiector．As miny cutiomers know，we have a very comprahanssve stock of uniselectors ass usad in wutomatic telaphone exchanges light flashing cirvice elte．，Alte．Just atrivad
howavet is a high spead modet made by famous Plassey，this is 2 howavet is a high spatd modet made by famous Plessey，this is 2
pole 32 way with make before brack wipers，ovoratl size ррргох． $4^{n} \times 3 \times 2 \frac{1}{2}^{\prime \prime}$ price $t^{3} 50+2 \mathrm{Bp}$ ．
Praturintic Ram lor lifting，thrusting．pulling etc，esc．hes $22^{\prime \prime}$ travel looks large ønough to open doars，bifl sleircesse，ventilatars otc，Price $£ 700$ ．
\＄aldar Gun Dargatn，The ETP．this Ls 100 wall saldar gun．a vary well made zool with lamp to Muminate work．has dowise
insulatad mains rensformer and Is bult into the shockpfoot tharmoplastic cast Comss complete with spare tipt．Mains operated of course．Prica E4．50．
Interanted in Taps Controf．
Intorapted in Tape Control．Americin made tepo punchess reaty beaulilul units full ol sophistichted ptris desfgned we
believe to autometcally ogerato typewriters，and they can ol coursa ba ysed to oparate oiher punch tape conirciled mechines Retersnce number is NCR Class 481 2 reference 205 HB R5G， Wa belisve these ste 8 bit paper tape punchas．powered from
115 V 50 HZ tn very pood condition with lapa $\mathrm{Et} \mathrm{b} \cdot \mathbf{0 0}$ ，carlage 15 V 50 HZ th very pood condition with 1ap： $\mathbf{Z} \mathbf{6 . 0 0}$ ，carrlage
is $£ 3.20$ ． is 53.20 ．
Memorles． Henmorles．Tha memory units which wark with these tape
punches sgan by NCR，are in very grod condition and wa believe m worlyhg order Prifa aryd detalts on reques！
Thatinntial Blowera． 12^{4} long when powerful induction motor idesl for blowing hatars or general atr extrattion of
circulation，atlared at low prics of E2．70．The motors bra thov so you will hBve to work them in pairs on through a drapper or mains traneformer Post f 4 －OS for ons or fwo
 stand in push buthon dialling unils，this has tho ubusil 10 dights，
each of which when deoressed aperatad a two pole changeover

America has been discovered by the CBers". On the 7th, Constance Hall, G8LY, Lee-on-the-Solent, Hants, worked XYL operator, K2AGJ, New Jersey, whose husband was outside clearing some of that heavy American snow, and during the blizzards, John Branegan heard the local community-aid services using their CB sets.

Harold Brodribb, St. Leonards-on-Sea, Sussex, has greatly improved his 10 m reception by removing the original KTW61 r.f. amplifying valves from his CR100, as suggested by our colurnnist, Charles Molloy, G8BUS, and fitted 6BA6 valves which has increased the gain and reduced the background noise. Harold also reports hearing the strong amateur and CB signals from America and on the 9th, he heard the harmonics of lower frequency broadcast stations around 29 MHz . At 1410 on the 13 th , Nigel Golds, BRS 36910, West Chiltington, Sx, tuned away from the Russian signals who were working into G and found the German beacon, DLOIGI. Both Gordon Goodyer and Harold Brodribb reported the extraordinary good conditions during the weekend of 4th and 5 th when, like myself, they listened to the strong American contest stations.

On February 3rd, Cmdr Henry Hatfield, Sevenoaks, John Smith, Rudgwick, Sx, and myself, recorded a solar noise storm at $136-142 \mathrm{MHz}$ and although the Sun was "quieter" on the 4 th, 5 th and 6 th, we all recorded a number of individual bursts of noise. During the afternoon of the 5th, I directed my pair of 8 -element Yagis toward the Sun and heard the radio noise on 2 m by using the converter in my FR101. Readers who may like to try this should tune their sets to a clear spot just below the 2 m amateur band.
At 1000 on the 3rd, despite poor weather conditions, Henry got a brief glimpse of the Sum with his spectrohelioscope and counted about 10 sunspots and something coming up on the east limb. On the 7th, an even bigger solar storm began and did not start to abate until the 18th. Although overcast skies continued to hamper visual observation Henry got another look at 1400 on the 9 th and found the two largest sunspots he had ever seen.

The 11th was a cold clear day and Henry was able to make a detailed study of the Sun and take many photographs, in all he counted some 27 sunspots which accounted for the terrific radio noise we were receiving. At 1425 we all recorded a massive burst of radio noise which lasted for six minutes and stood out above the prevailing storm. My own recordings of the noise at 95 and 136 MHz are shown in Fig. 1.

Ever since Henry Hatfield built his spectrohelioscope at his home in Sevenoaks he has longed for the day when he could see an actual solar event which caused a burst of radio noise on his 136 MHz radio telescope. It was February 11th that brought his reward.

There is little doubt that the two large sunspots seen in his photographs (FIg. 2) were responsible for the bulk of the radio noise that both Henry and T had been recording for several days.

At 1426, in Fig. 2(a), this special event is just visible at the bottorn left of the upper sunspot. The full glory of the explosion manifested itself over the following few minutes, Fig. 2(b) and (c), and by 1437 it had almost gone as shown in FIg. 2(d).

Henry's chart recording of the period covering the event is shown in FIg. 3. The chart speed is loin per hour, compared with 30 in per hour in Fig. 1; hence the difference in scale.

Congratulations Henry, I feel sure that this is the first time that an amateur astronomer has pulled off such a feat.

Maybe it was this intense solar activity which caused the great 50 MHz transequatorial opening on the 11th reported from Applecross, Western Australia, by Anthony Mann. The event started at 1220, local time, and finished at 1942 and the m.u.f. never fell below 45 MHz the whole time. Russian Ch R1 video from Vladivostock was observed for 3 hours, several Korean Broadcast Service f.m. links were heard between 44 and 49 MHz , dozens of signals from Japanese and South Korean amateurs were received between $50 \cdot 04$ and 50.22 MHz and at the peak of the opening R1 sync pulses were received on a v.h.f. portable with just a 5 ft whip aerial. "Without doubt" says Anthony, "this was the most prolonged transequatorial opening since February/March 1972, indicating the high level of solar activity". I've checked my records Anthony, and the Sun was very "active", from February 10th to March 15th, 1972.

Congratulations to Arthur Bagnall, Peacehaven, Sx, who having passed his RAE now has the call-sign G80YC, and made his first contact on February 18th on 2m f.m. with local stations G8BTC, G8JFT, and G4GPX using a Hudson FM118 to a coaxial dipole. Congratulations are also due to Eric Arnold, Hove, Sx, who now has the call G80UK, is using an IC240 on 2 m and will be going for his G4 licence in due course; Charles Brain, Ferring, Sx, who has changed from G8LXT to G4GU0 and Alan Floyd, G8KLN, who passed his Morse test at North Foreland on February 17th.
"Woody", D. C. Woodhouse, G3TWX, is now manager of the WAB v.h.f. contest. This event takes place on July 23rd from 0900-2100 GMT, on all bands, 30 MHz upwards and any modes. All details from G3TWX, 13 Gannet Close, Haverhill, Suffolk, CB9 0JL accompanied by s.a.e. or one IRC. Don't forget the 2 m c.w. and the $432 / 1296 / 2304 \mathrm{MHz}$ contests on April $22 / 23$ rd and May $6 / 7$ th respectively.

There was a brief tropospheric opening on February 15th/16th when, at 1620 on the 15 th, Alan Baker heard ONION work G stations in Chelmsford and Colchester via the Kent repeater, GB3KR, and he could hear the Cambridge repeater, GB3PI, while driving in the Hastings area. Early on the 16th strong signals from GB3BM were interfering with GB3SN, both on R5. Although v.h.f. conditions were generally poor throughout the first half of February, G4GNX heard G4CJG, Durham, 2 m s.s.b., at 2153 on the 5 th, and around 1500 on the 19th he received a c.w. call from ON5EX but conditions deteriorated and they could not complete a QSO.

Thank you all for your interesting letters and reports and I look forward to hearing from you in the future.

Reports on the zarious bands are welcome and should be sent direct; by the 15 th of the marith, to:-
AMATEUR BANDS Eric Dowdeswell G4AR, Sliver Firs, Leatherhead Road, Ashtead; Surrey KT21 2 TW. Logstby bands, each in alphaberical order.
MEDIUM and SW BANDS Charles Molloy GBBUS, 132 Segars Lane, Southport, PRB 3JG. Reports for both bands musi be kept separate.
VHF BANDS Ron Ham BRS15744, Faraday, Grey. friars, Storrington, Sussex RH20 4HE.

Fig. 1: Noise burst recorded at $30 \mathrm{in} / \mathrm{hour}$

Fig. 2: Spectrohelioscope photographs of sunspots occurring at the time of the recorded noise burst

Fig. 3: Noise burst recorded at a chart speed of 10 in/hour

by Eric Dowdeswell G4AR Choosing a SW Receiver
Anyone buying anything of value will have some idea of the amount of money it is intended to spend. Whether they have the knowledge to spend the money wisely is another matter! On matters electronic, such as a communications receiver, the chances are that they will be sadly lacking in the necessary information to guide them to a good buy. So what is the first step?
The only worthwhile publication on the subject is the Guide to Amateur Radio, $£ 1-38$ inc. from the Radio Society of Great Britain, 35 Doughty Street, London WCl, which has one chapter devoted to reviewing the details of receivers which have become popular over the years, plus some more recent models. A lot of the sets are no longer in production and a number are valved, but don't let this deter you! Such sets can often outperform solid-state receivers.
You may be tempted to try your band on the short wave bands with a cheap portable type receiver that probably includes the medium and long wave bands for which it is primarily intended. The dial will be found to be hopelessly small and inadequate for accurate tuning on the short wave bands. Even if you do find an interesting station there will be difficulty in holding it and it is doubtful whether you will ever find it again! So, in general, don't waste time and money on a set that is very inferior for this particular purpose. It will only give a mistaken impression of the amateur and broadcast bands.
The number of new communications receivers on the market that are likely to come within the budget of the average short wave listener (SWL) is very small nowadays, so recourse must be made to second-hand ones, but these are not to be despised. There are many ads in Short Wave Magazine, on the bookstalls at the end of every month, and in Radio Communication, the monthly journal for the members of the RSGB. When you send for your copy of their Guide why not ask for a specimen copy of Radcom, as it is familiarly known. You could do worse than become a member of the RSGB in due course. So here are a few points to watch, remembering that it is highly desirable for you to try to arrange an "air test" before buying any receiver, new or second-hand, although this may be difficult if the seller is at the other end of the country!

Don't forget that most amateurs use the single sideband (s.s.b.) technique for telephony which is best received on a stable receiver designed for the job. Cheap sets have a poor performance at the intermediate frequency (i.f.) in their ability to reject unwanted stations close in frequency to the wanted signal (adjacent channel selectivity) or to discriminate against stations that are operating at twice the i.f. away from the wanted station (image rejection). The latter effect relates to the r.f. tuned circuits, or lack of them, and results in many stations being found at two positions on the dial, particularly the more powerful ones. This may create an impression of great sensitivity but is, in fact, the opposite of what is required!

Some people believe in solving the image rejection problem by using double or even triple conversion techniques, but I have always used single conversion with a high i.f. ($5 \cdot 5$ or 9 MHz) using a crystal or mechanical i.f. filter to obtain the necessary adjacent channel selectivity. This system obviates the need for additional oscillators which can only add to the problem of spurious responses. For a very rough check on selectivity see if you can properly separate two fairly powerful stations located about 5 kHz apart. Short wave broadcast stations are probably the best for this test.
Sensitivity is a feature which is almost impossible to check without a lot of test equipment although an experienced operator can express a fairly accurate opinion based on the "feel" of the set. However, if the set is a recognised communications receiver then its sensitivity ought to be adequate but if it is not then, hopefully, it may be a matter of re-alignment or possibly a new valve or transistor.

In addition to the main tuning dial there may be a bandspread dial of some kind, which greatly facilitates the tuning in of signals on a congested band. This dial may be marked in frequency for the principal amateur and broadcast bands. Watch out for excessive "backlash" on the dials, where a station comes in at slightly differing points on the dial depending upon whether the station is approached in an anti-clockwise or clockwise direction.

Next, tune into a station on any range and then operate the range switch from one end to the other then back to the original range. The station selected should still be there, in tune. Check with a station on each range. Any slight problems here can usually be solved with a switch contact aerosol spray. Don't worry too much if no noise limiter is fitted. Personally, I have never used one, on the theory that if the external noise is that bad then it's not worth listening! An " S " meter, too, is a much over-rated part of a communications receiver. It shows the relative levels of signals on your receiver, at your location and with your aerial and seldom bears any relationship to the same signals received elsewhere. The meter is desirable but not essential.

The average communications receiver covers about 3 to 30 MHz (100 to 10 m) and it will have several switched ranges which overlap to provide continuous coverage. The dedicated amateur bands enthusiast may prefer an "amateur bands only" set, although these are not so common, but the newcomer to short wave listening would be well advised to buy a general coverage receiver. Radio amateurs, by their very nature, will sometimes "modify" a receiver to improve its performance but a lot depends on how well the mod has been carried out as to whether one buys or rejects such a set. A disfigured front panel with several extra controls, generally unmarked, may mean that a lot of mods have been carried out and any resemblance between the old and new circuits will be quite accidental! Incidentally, always try and get a manual for the receiver from the seller, although manuals for the more popular sets are available from firms and individuals. Generally, the more mods in a set, the cheaper it should be! If cash is a bit short then such a set can still be a good bargain but it is not recommended if one is a complete newcomer to the hobby.

Don't rely absolutely upon the frequency calibration of the set's dial especially if the set is secondhand. It is surprising how many SWLs recken that because a station comes in at, say, 5065 kHz on the

J．BIRKETT

Radio Component Suppliers

25 The Strait，Lincoln LN2 1JF
 Tol：28787

 Op． $200+200+25+25 p_{1} 5 p_{1} 500+50 p_{1} 60 p_{1}$
CERAMIC TRIMHERS 2.5 To Gpf， 0 To 日fr， 3 To 10pi， 47 To 20pr， 0 To 30pf． COMPRESSION－MRIITORERS IOpI

MINIATURE BUTTERFLY PRE－SET YARIABLES Spindles easily ex－
 SO AC I2 TRANSISTORS Branded Rut Untostod © 57ρ ， MINIATURE MYLAR CAPACFTOAS＋ $14150 \mathrm{v} . \mathrm{w}^{2} 220 \mathrm{p}$ doz SUBMINIATURETANTALUM CAPACITORS 4．7UF 100 ．W．5 for 25 p ．

TBA 1205 FM I．F．P．C．Untested with data at 6 for top．
50 ASSORTED TANTALUM BEAD CAPACITORS for $£ 1$－ 50.
200 RESISTOAS ${ }^{2} \frac{1}{3}$ wate Assorted for 75 p．
X BAND GUNN DIODES with data ar Ci－65 atach．
X BANO DETECYOA DIODES Jike SIM 2 OB 25p each．
 RCA VEASION OF GFYON（2N 2857）as $55{ }^{5} \mathrm{P}$ each．
PHONO SOCKETS Single 5 p ，Dual 會 10 p ，Tripla fil 15 p ，Quad 20 p
 2PIN DIN LS，SOCKETS Single O 10p，Duat © IBp．
AUDIBLE ALARM SYSTEM m
No．informacion available © $75 p$ ， UNMARKED GOOD 400 mW ZENERS $3 \cdot 6 \mathrm{v}, 68 \mathrm{v}, 10 \mathrm{v}$ ， $11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}$ ， $24 v, 27 v, 30 v, 33 v, 36 v$ ，All at 10 for 40 p ，
12 ASSORTED BRANDED YHF FETS for \mathcal{C}
ELECTRET
MIIGROPHONE INSERT with FE
和 85

COH FORMERS $31 G^{\prime}$ Dia．Wish core at 5p each 6 for 25p．
10 ASSORTED MULTITURN TRIM POTS for 60p．
50 BC $107 \mathrm{E}-9$ ASSORTED TRANSISTORS Untented $67 p$.
MAFNS TRANSFORMER 240 VAC Input，Outpur 24 volt Tapped it 14 vole
 30 ASSORTED IOXAJ CRYSTALS Betwoen $5 t 00 \mathrm{KHz}$ to 7900 KHz for $11 \cdot 10$ ．
10 ASSORTED FT 241A 96th HARMONIC CRYSTALS 71 MHz to 96 MHz for 4110 ．
2 MMy i，TRANSFORMERS 7^{*} Square at 15p each
$S \times 20$ NPN TRANSISTORS 39 each． 4 for 50 p ．
O ASSORTED YART－AR OIODESSISTONS TO 10 Watt Iar 57． YHF POWWER TRANSISTORS

Pleate gdd 20p for pose and pack arated．Overieas orders at copt．

AMATEUR

 RADIO EXHIBITION
ALEXANDRA PALACE， LONDON N22

5th and 6th MAY 1978

10 a．m．-6 p．m．

ATTRACTIONS WILL INCLUDE ：

FOR THE NEWCOMER

＇What＇s it all about＇？
A continuous Lecture－Film Show Question time
Demonstration Stations
Talk－in on 2 metre F．M．，and 3710 Mhz S．S．B．
Home bullt 80 metre S．S．B．，station

FOR THE ENTHUSIAST

Demonstration stands manned by Radlo Amateurs who lead in thelr fields

Mlcrowave
Radlo Teletype
Home Built equipment

FOR THE CONSTRUCTOR

New and surplus components，Solid stata devices， printed clrcuit boards，cables，R．T．T．Y．，machines and sundrles，V．D．U．，kits，etc．

TRADE SHOW

A wide varlety of commercial recelvers，transcelvers， test equipment，aerials，masts and ancilllary Items by leading manufacturers

CATERING

Bars and buffets open during exhlbltion hours ＇Real Ale＇on sale

ADMISSION 50p

accompanied children under 12 years free Club secretarles．Advance booking． 10 tlekets $\mathbf{£ 4} \cdot \mathbf{(0)}$

Dinner．Friday 5th， 7.30 p．m．Tickets $55 \cdot 50$
Tickets and further Information avaliable from Exhibitlon Organlser，Les Hawkyard
G5HD，at R．S．G．B．，headquarters
dial then that is the frequency of the station. Not so! It could quite easily be 50 or 100 kHz out; even more on the higher frequency ranges, especially if the set has been subjected to knocks or vibrations such as those encountered in a car journey. Some of the better class sets have a crystal calibrator incorporated which provides very accurate signals every 1 MHz , sometimes divided down to 100 kHz or even 10 kHz steps. Then any dial errors can be corrected by realignment or simply by allowing for errors when reading the receiver dial.
The cost of a separate crystal calibrator is not excessive, alternatively one can be built up from scratch. It must, however, be considered as an essential piece of equipment that ought to be obtained at the same time as the receiver.
Having acquired a short-wave receiver it is worthwhile to look at its circuit diagram to see what you've got, how it works and what controls are fitted. The results achieved will largely depend upon how well the controls are handled. Some listeners seem to think that everything should be turned up and that the greater the output "noise", the better!
The very opposite applies, in fact, if one wants to be able to copy the real DX. Whatever we do to the original signal it is certain that we are going to spoil the signal-to-noise ratio by using amplification. Excluding the mixer stages over which we normally have no control, the three stages that introduce noise are the r.f., i.f. and audio stages. Since each stage has a different function it is imperative that each have its own gain control. Unfortunately, most controls marked "RF Gain" control r.f, and i.f. gain simultaneously! If you don't mind modifying your set fit a separate gain control, even if one is on the end of a bit of screened wire.
My old hobby-horse now rears its head again. Use headphones! Preferably high impedance ones connected to the output of the first or second audio stage via a capacitor of about $0 \cdot 1 \mu \mathrm{~F}$. Avoid the low impedance hi-fi stereo jobs as they are far too good, reproducing all the hum and rubbish on the supply lines. Now to the controls. Short the aerial to earth and turn all gain controls to zero. Turn up the audio gain until the background hiss can just be heard, then back it off slightly. Do the same in turn to the i.f. and then the r.f. gain controls. Remove the short on the aerial and enjoy the 'hush' as signals rather that noise appear. Use the r.f. gain to control volume unless very strong signals are present when it should be backed off to reduce the risk of cross-modulation.

The Month's Reports

An appeal this month from Jim Walker of 12 Ansley Way, St. Ives, Hunts, Cambs PE17 5DA, who would like to hear from any readers in his area. Jim is with the USAF at Alconbury and very keen to get on the air. Pete Cockerell writes from Leigh-on-Sea, Essex, with a short log after noticing the paucity of logs in the March column. Good to hear from you Pete and trust that you will contribute regularly now. Pete began on the amateur bands in 1975 with a two-transistor regen on the Top band, by accident. The project was supposed to be for the medium wave band but somehow it got peaked up on the 160 m band! Latest project is the 20 m direct conversion set from the January PW with a 60 ft wire, plus an a.t.u. and an F.G. Rayer 40673 r.f. amplifier.

I thought that our regular writer Bernard Hughes was a rather reticent character until he wrote to me with details of all his achievements as a listener. Bernard should really have been on the air a long time ago but being an essentially practical fellow doesn't seem to be able to put it all down on paper when it comes to the RAE. Let's hope that Bernard will succeed when the multiple-choice exam paper is introduced. He has 115 awards with 300 countries confirmed on 20 m alone, with an all-time total of 325 . At least you won't have any trouble hearing the DX when you do get your ticket OM:
The $P W 20 \mathrm{~m}$ set was also chosen by Brian Smith of Barry in Glamorgan to pull in the DX and, weather permitting, a dipole aerial is on its way up. For 80m Brian has stuck to his straight receiver. He finds the theory side of the hobby a bit difficult but intends to persevere and get the RAE in due course.
"NEWS" from the Wessex AR Group is really something now. Six pages of packed information for the 112 members of this go-ahead club. Peter Preston, an ex-VK9, of the PW staff at Poole is now a member and has been co-opted on to the committee. Usual venue, Dolphin Hotel, Holdenhurst Road, Bournemouth, at 1930 for 2000 start, Fridays.
Tom Hillier, of 23 Palace Avenue, Paignton, S. Devon, would probably take up amateur radio quite seriously if he could get hold of a manual for a rather ancient naval B40 receiver that he has acquired. If anyone can help please drop a line direct to Tom. More info on the activities of the Blackwood \& District ARS (GW6GW) that meets every Friday at the Oakdale Community College, near Blackwood, Gwent, at 1930. On 14 April a film show on 'Communications in Air Traffic Control', followed by a 'Natter night' on the 21st and another film on April 28th on the construction and operation of the space/earth tracking station on Ascension Island, entitled 'Apollo in Ascension'. Details from Steve Cole GW4BLE (not GLE as in March PW!) at 10 Llanthewy Road, Newport, Gwent.

A brief note on the WAB l.f. bands contest on Sunday, 7 May (phone), and Sunday, June 18th (c.w.), on $1 \cdot 8,3 \cdot 5$ and 7 MHz from 0900 to 2100 GMT. Full rules etc. from Contest Manager G3FWX, 13 Gannet Close, Haverhill, Suffolk CB9 0TL, for an s.a.e. or one IRC. An interesting first report from Peter Ramsey (Stevenston, Ayrshire) who sports an FRDX400 plus an AR88 fed from four aerials ranging from dipoles to inverted Vee's. Pete does most of his listening at night to avoid the TV QRM! Glad to have a \log from RTTY king Dave Peck BRS37821 of Cambridge. Thought you must have got your RAE or something OM! Dave enclosed a couple of feet of copy from his printer which almost induced me to take up the mode!

Log extracts

B. Smith:- 80 m 3A2GX KP4CBH TF3TF VO1KG 20 m CT4YG VK6PM VK6DV (all s.s.b.)
P. Cockerell:- 20m EL2T OY6J TU2EZ VP2SZ VP8JE YB0ADI 3V8BZ 6W8MW (all s.s.b.)
P. Ramsey:-160m K2AF W9CF 80m EP2TY ZF1MA ZS4PB 5 H 3 KJ 40 m HI8TMR LU5OI 20 m KC4AAD KH60R YB2SV 9N1NM 10 m W5QAW WA0BOE (all s.s.b.)
D. Peck:- 80 m DM4JM OZIBPU PA0GAY/SM6 20m EA8IY HA5KKC HV3SJ JAlDI OH6IK OD5AQ SM0ETZ VE2NL VK2SC YV5GU YB0ACB 4X4QG 9M2CR (all RTTY)

ETCH RESIST TRANSFERKIT SIZE $1: 1$

 symbols for direct appitation to P.C. Board. tidividtual sheecs 25p each. (1) Mixed symbols (2) Lines 0.05. (3) Pads (4) Fish plates and connecrom (5) 4 lead and 3 lead and gads (6) Dils (7) Bends 90° and 130° (8) 日-10-12 T.O.5. cens (9) Enge connectors 0 . 15 (10) Edge connecsors 0 , (11) Lines 0.02 (12) Bends 0.02 (13) Quad in line.

CIRCUIT LAYOUT TRANSFERS SIZE 2:1

One shear 12 th $\times 9$ in giving all zransfers as in teh resist from No. 3 to No. 10 inclusive make. circuit leyout easy. Black only. Price \&il

Also lines and bends. Price \&I
front and rear panel TRANSFER SIGNS
All standard symbals and wording. Over 250 symbois, signs and words. Also available in revent of purspex etc. Choice of colours red, blue, blagk or whits. Size of sheer 12 in $\times 9$ in. Price $\mathbf{E} 1$.

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Avaifable alsa in reverse lettering. Coldurs red, blue, black of white. Each shest 12 in $\times 9$ in contains caprais, lawer case and numerals.

ALL DRDERS DISPATCHED PROMPTEY. ALL POST AND VAT PAID
Ex, U.K. add 50p for air mail. Shop and trade enqưties welcome.
E. R. NICHOLLS
P.C.B. Trannfart Dapt., PW 46 Lowfiold Road, Stockpart, Ches. 063-480 2179

H.A.C. Short-wave KITS

WORLD-WIDE REGEPTION

"H.A.C." well known by amateur conatructors for its Short Wave receivers, now offers a complete range of kits and sccessorits to suit the novice and the expert.
E9.00 tnclosifo-the ever popular and easy to construet DX teceiver Mark III: containins chassis, stine shart wave components, drised NEW T Twin trangister receiver, seiective, sensitive and wid tantastic ecception, yek needing only a single PP3 batiery. Special introductory offer at $£ 9-79$ incluslve-can only be hetd at this price while stocks last.
Lsstiy the K and K plus (illustrated above) for the more zdvanced constructor. This recelyer has tecently been reaiesigned for ever betkes reception, Alt orders despanched within 7 days. Send catalogne now for free descriptive catalogue of kits and ancessorics.
sorry, ho catalogues without sais.
"H.A.C" SHORT-WAVE PRODUCTS
P, O. Box No. 16, 10 Windmill Lane
Lewea Road, East Grinetead, West Sussex RYIT 35工

WATCH BATTERIES 65p.

Rub-O-Yac loug lite mosil tynes
D.I.Y. KIT 35p, iWith lunteiy prder)

THE
MIND
READER
Your
Your
olectro
sifcretary

"t echedulas your dey, suary day. Flime and digplays bieaper, Oued Tlmb Zone digitel of cock and perpetual celendtar, Pre-grogremmed computer. Touch tone hayboard. $10 \times 7 \frac{1}{2} \times 4^{\prime \prime}$ - 91 b . AC ind hattery tlandby G299 plue 8% VAT.
CASIO CHRONOGRAPH

Sfin dight $1 / 100$ tocend timing. 7.0 mm thlek. LCD. Auko
 Water rt
month.
month.

NEW LOWER PRICE. CASIO ARBIO

Pocket watch Calcutator, Two
 령․85 Inciuding watlet

CASIO MO-2

(Pitetired lant month)
Clack +2 Alarma, Alarm Fimes, Time Memery Calendar
\& Calculator, RRP ${ }_{\text {chi }}$ ©S E34.85

IE1CO 075

LCD entcufator oluF ctock, entonder, alatm and STOP WATEH ribezuring lap times iram $1 / 10$ aecond io 10
houra. Wilf diaplay houre, minuieg, diy and dale. notra. Wild diaplay houre, Minuter, disy and dale. Memary, \% \% 5000 hit bettory. Wallet.

E20 50

CASIO Calculators

OPTIM TRAVEL/ALARM CLOCK
Portable. Battery powered, LCD dlegolay

Conntantly diaplayn hours, minutes, AM, and PM.
 Ex1×14"
©19-50 Incfuding eare. Rel. 1C-1
Sond 25p fariour llluatrated cistalogur, Prices include YAT and PAP. Send cheque, P.O. or phone youz cradit

18/2 Fitzrey Btront, Cambridge, CBI 1EH Talephone (6za3) 3f2eth

"GASTLE ELEGTRONICS"

7. CASTLE STREET, HASTINGS, SUSSEX Tal: (0424) 437875

METERS:-
$8^{\prime \prime}$ mirror scale 160v precision meter housed in polished wood case. Now $£ \neq 0 \cdot 50$, Used E7.50. Avo power fattor and watt meter unic (AVO 7) Now 87.50 .
500 micro amp ganel meter round 2^{n} Ex. WD E2.25.
Thermometer $\mathbf{2}^{\prime \prime} 70-160$ degrees (f) Now $\mathrm{f} 1 \cdot 95$.
AMTRON KITS:-

UX 7104 channel audio mixer $\mathbf{E A}$-25.
COMPONENTS:-
आTT 840 silicon britge rectifiers $40 \times 2 \mathrm{mmp} 3$ for fl .

SIGNALSWITCHES:-

With gald plated contacts, 6 POL/CO 10p. 4 POL/CO 35p. 2 POL/CO 30p.
Bags of new electronit componencs $\mathbf{1 1 - 9 5 .}$

VERO TYPE BOXES:-

$2^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 50 \mathrm{p} .6^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$ E1. Miniature high power efectronic motors with RAV SW $1 \frac{1}{2}$ long. 14" diameter 6-120 DC E1-25.
Vonted $2 \cdot 4 v 20 A H 8^{m}$ height $3^{\prime \prime}$ diameter ty. 50.
all prices jnclude vat, post and packing.
SAE for details of items befow. New Ex. WD panel meteft-all 62-25. Amtron Electronic Kit3-1 many $\frac{1}{2}$ price. Mesars/Sanwz, alps, Ross, Most items March/April issues avaifable.

"GASTLE ELEETRONIGS"

The modern wus wh mataluts-kuy cobolunnicatloos. Buppllad with 8 -core whet, yust plat into yower wocket. Ready tor ust. Cryatal clear oommumioatfons fram roon to room.

4SIATOH Witercon

819-95
Solva your commaroion tom problecos ¥fth that A-ztuzlua Tranalitior Intercous syatem (1 manter and 8 Satho)
 gultabls lot Bualperss, Burgery, Bohoota, Fospltalis and Gfict. Operates on one $9 V$ bastery. OnjoE awitch. Yolpme coptrat. Completa with 3 comnectiog tres each beft. A Battery
NEWI AMAFICAN TVPE CAADEE
TELEPHONE AMPLIFIER

\&14.95
$+6 \Delta T H 1 \cdot 20$
Latube eraumbturbeal Telephone Aroplater with detrohed plug-la apeaiker. Plachisg the recetver on to the cradle withont hoidiag the handect. Many peonts cas jaten at a tima. Tnerease eftictancy in office, shop. wortshog. Perteor
 fotes, courrilt fiss. No Joyg wajtigg, saved tim6 wlih iong-

 $01-9876846$
 DISCOUNT SPEAKERS
Imp 8 or $13 n$ ae app
Guarantaes:
TITAN 5 yanra
FANE 2 yeara
OTHERS Y y yay
ALL PRICES
INC. VAT

EXTRA SPECIAL MAIL ORDER OFFER

$$
\text { IITA TA } 50 A-50 \mathrm{w} \text { AMPLIFIER }
$$

Mall Orders \& Export onquirias to NEWCASTLE

	tis by	74		$\begin{aligned} & \text { 74L'e } \\ & 74 \mathrm{LS} 00 \end{aligned}$	30 p	$\begin{aligned} & 4001 \\ & 4006 \end{aligned}$	$\begin{aligned} & 20 \mathrm{p} \\ & \\ & \hline 10 \end{aligned}$	CP．AMPE．	NE531V	14p	$\begin{aligned} & \text { HEMA } \\ & \text { 1702AA } \end{aligned}$	EF		0，${ }^{\text {p }}$	12				$\begin{aligned} & \text { DIODES } \\ & \text { BY127 } \end{aligned}$			
7400	tup	74	2309	741503	30 p	4007	24 p	CA3140 103p			2102－2			10\％p	MPSU05	72p	2N20250		OA47	12p	（Np18	7
7401	14p	74100	1400	76LSO4	30p	4008	115p	CA3160 920		15pp	2107				MPSU05	72	2N3053	S10	OAS	15 p		7 p
7402	16	74904	75 p	74L308	30p	4009	50 p	LM301A	741	25p	2112－2	RA			MPSU5	4p		32 c	OAB5	5	100 ${ }^{1 / 4}$	
7403	16 p	74105	75ρ	74LS10	32 p	4610	60 p	LM31aN gTsp	747	75	8000 A			¢10	MPSUSE	So	2N3055			${ }^{5}$	N4905／7	p
7404	$20 p$	74107	H2p	71L\＄13	55p	4011	20.	LM324N 1Jtp	748	40 p	AY\％－9013			\％opp	0 Czg	140p	2N3045	1519	OASt	9	IN4149	p
7405	25 p	74109	\％	74LS20	32 p	4012	20p	LMS348N T40p	776	2150．	RO3－2513			7500	0С93518	1400	2N3843	548	OA95	\％	IN5401／3	
7408	4 p	74190	cop	741529	34 p	4013	S5P	MC145EP 75p	3800	70 p					$0 \mathrm{Cl1}$	32	2N3644		－A200	p	（\％tor	p
7407	40 p	74111	759	742527	45 p	4044									F20088	2250	2Na702／3	140				
7408	229	7416	218	74.530	$30 p$	4015		LINEARI．C．g							R20108	2350	2N2704／5		BRtbo	RE	TFIER	
7409	22p	74118	150	74LS ${ }^{\text {d }}$	150p	4016		AY－1－0212 65p	NES43K	2250				3sp	TIP29A	Sop	2N3706i7	AD				
7490	18p	74119	225	74LS55	45p	4017	100p	AY－1－1313 75p	N N E55	25p	14 pin	12 p	${ }^{24} \mathrm{p}$ pin	45p	TIP29A	S2p	2N3706／7	14 p	TA 100 V	27p	${ }_{6 A}{ }^{4} 50 \mathrm{~V}$	${ }_{4 p}$
7413	$2{ }^{5}$	74120	9＊p	74LS73	＊＊p	4018	110p	AY－T－5050 2 F \％	MEE56	18p	16 pjn	14p	$28 \mathrm{~g}{ }^{2}$			\％p		3200	1A 500 V	3tp	BA 100V	
7412	25	74121	32 p	74L574		4019	32p	AY－3－8500 73p	NE561日	49p	18 pin	${ }_{34}{ }^{\text {a }}$	40 pin	40 p	TIP30A	\％p	2N1773	3200	2 A 50 V	40p	BA 400 V	124p
7413	40 p	74122	32 D	74LS75	15p	$40 \% 0$	1220	AY－5－1315 750p	NE56PB	459p					TiP31	72 t	$2 N 3819$ $2 N 3820$	270	2A 100V	4 p	16a 4	1279
7434	15 p	74128	75 p	74L583	120p	4027	$115 p$	AY－5－1317A	NE585	140p	TRANSI	18T0			T1P31	tip	2 N 382	708	3A 900 V			
7415	49	74125	70.	74LS85	14ap	4022	1 p	850p	NESEd	209p	AC125／6	20 p	BF194	13p	TiP32A	${ }^{3}$	2N3889	979	3A 800 V	19p		
7417	40	74	659	74LSBE	5	4023	23	CA3028A 1120	NE567	18	AC12516	$200^{20 p}$	BF195	110	TiP32C	Hp	2 N 3 P03／4	12 p	4A 100V	${ }^{1}$	1A100	4p
7420	${ }_{43}{ }^{\text {p }}$	7	29	74290	30 p	4024	4ip	CA304\％150	RC4151N	$4{ }^{4}$	AC176	${ }^{29}$	EF196	$17 p$	TiP33A	78	2N3005／8	$22 \sim$				
7421	23p	74332	1 p	74LS93		4025	3	CA3048 250	\＄G＊402N	275	AC187／9	$2{ }^{2}$	日F197	10	TIP33C	129p	2N4059	19	TRIAC	Pi		
7422	$2{ }^{2}$	74936	1p	74LS107	ssp	4028	170	CA3053 75p	SNTRTION	5 p	AD149	20	日F200	40	TIP34A	1240	2 N 4060	150	3 A 400 V		15A 400	00p
7423		74147	E5p	74LS172	120p	4027	659	CA3065 290p	SN76003	2750	${ }_{\text {AD }}{ }^{\text {A }} 161$	45 p	日F244	$3{ }^{3}$	TIP34C	1808	2N4123／4	22p	AA 400V		15A 50	200p
7423 7478	430	74142	${ }^{309 p}$	74LS12	190p	4028	90	CA3080E $7 p$	SN26008	270	AD1g2	45 p		${ }^{+}$	TIP35A	243p	2N412S／6	22 p	A0s		30	
7427	40 p	74147	205 p	T		4030	55p	30988 AO 2590	SN776013N	1750	${ }^{\text {AF1 }} 11 / 5$	$22 p$	BF257	34p	TIP35C	210．	2N4461／3	24p				130p
3428	40	71148	18p	74LS	1top	4033	250 p	ICLSO38CC 408 D	SN			28	BF258	33 p	TIP36A	3970	2N4427	［7a			0669	
7490	18	－	430p	7745153	200p	4034	240p	LM33s\％175p	SN	17	AF127	40 D	BF259	41 p	TP36C	${ }^{36}$	2N6471	80	10A 50			30 p
7432	37 p	74151	If	74LS157	130p	4035	130p	＋	SN76023	190	${ }_{\text {AF }}^{\text {AF }}$（39	40 p	BF3a6	32 p	T	7 p	2 N 5178	73				
7433	43p	74183	45	7 T LSisa	150p			LT3380	SPb515		AF239	4 P	BFR3：	b		1 p	2 N 5245	40.	SCR－T	\％Is	rof	
7431	37 p	7454	te0p	74L\＄160	¢	4042	\％p	N 12 p	TCA940		BC107／	10 p	40／1	D	TiP42	7 p	2N5200	53 p	BTJOB		lud	59p
7438	37	7465		74.5181	tiop	4043	10＊	LMSR1AN 135p	TAA601A	184p		10p	EFR79			76	2 N 5401	52p	C100D		land	70p
7440	19	74EE9	$17 p$	74LS182	fillop	4044	10， p		TBA120	17		18	BFRs0，	240	TIP308		$2 \mathrm{NSH57} / 8$	40 c	M CREO1		dad	30p
7464	15p	74157	\％	74LSisa	100p	4046	140p	LM3911N	TEA841	3 SOp	（1）	p	BFR89	87	Tis ${ }^{\text {di }}$	\％op	2N5459	40 p	2 N 464		Tasilc	200p
7442	15p	74459	$2{ }^{2}$	74L5164	120 p	4047	60\％p	LM3M11	TBA651	2259		p	BFW10	pp	TI	40 p	2N5480	85p	2N5060／2		092	40 p
7443	f20p	74160	100 p	TaLSves	225p	4049	55p	KC1310P tot	TBAg00	112p	EC148	5	最碞29	30p	2N606／7	25 p	2 NS 485	45p	2N		002	45p
	120p	74161	100p	74LSi73	2300	4050	57 p	$1 P$ 19p	TEAa10	1259		$11 p$	樶通	540	2N688	$43 p$	2N6107	$7{ }^{\text {d }}$				
7445	Ip	74182	100p	74LS174	160p	4051	119	9p	TBA820	120\％	EC1589	13p		38	2N708／8	22 p	$2 \mathrm{Nag27}$	4 p	OP	E	O	
7446	10¢p	74983	$1{ }^{10} \mathrm{p}$	74LS173	160p	4054	120p	MC1488L 142	TAA621A	10p	${ }^{\text {BC169 }}$	15p	环K8／7	30p	2 N 918	43p	2N6247	500p				
7447	75p	7164	120p	74LS181	375p	4055	140p	MC3340P 180p	TDA2020	\＄90p	8C172	t1p		22 p	$1131 / 9$	$18 p$	2N0254	$140 p$	ORP 12	\％1p	$2 N 5777$	4 p
7448	\％${ }^{\text {P }}$	74185	150p	74LS 10	250p	4050	1350	NC3360P 1mp	Z．N474	1400	BC 17 $\mathrm{BC178}$	270	息FY54	22 p	2N：131／2	2\＄p	2N6292		$\text { ORP } 80$	90	TKC118	
7450 745	SFP_{18}	74168	${ }_{320 \mathrm{p}}$	7445181	2009	4080	230p	MC3401 7ep	ZN424E	140 p	BC178	20p	BFY59	$4{ }^{20}$	2N130H／5	${ }^{75 p}$	3N148	${ }^{15 p}$	LE			
7453	10 p	74170	200p					4060日 120p	N425E	${ }^{2} 20$	BC122／3	12p	BFY90	top	2N1013	22p	$3 N 14 T$	\＄00				
7454	Hp	74172	750］	$74 \mathrm{C02}$	259	4088	24.	VOLTAGE REGU	TORS		BC184	$14 p$	ERY39	4 p	2N1711	22p	3N187	200	209		$0{ }^{\text {2 }}$	26p
7460	fp	34173	\＄100		279	4069	$27 p$	1ates THza	1A－ve	Tazas	BC187	329	$83 \times 10 / 20$	20p	2 N 1893	92p	$4{ }^{4680}$	$4{ }^{4} \mathrm{p}$				
7470	38	7417	120\％	74C08	270	4070	55	5V 7a0s 11Sp	5 V 7905	${ }^{1800}$	BC212	$14 p$	MJEzaO	70p	2 N 102	6p	4030112	43p	71L32			
7472	32p	74175	${ }^{970}$	74 Cl 10	27 p	4075	270	6 V 7300 115p	12V 7912	100	$\mathrm{BC213}^{\text {che }}$	12 p	MJ489	175	2N2180	120p	4046910	75p	－18pay			
7473		8176	430	74 C14	90p	4072	27 p	8V 7808 415p	TEV 7915	160p	BC214	$10 p$	MJdid	24 p	2N2\％18A	25 p	40411	325	D18PLA		TIL312	
7474	370	74177	120 p	74 C 42	110p	4073		12V 7412 115p	24 V 7024	189\％	BC461	$49 p$	MJ2501	250	2N2219	22p	40504	tof	3015	200p	TIL313	120 P
7475	$43 p$	74880	\％20p	14C48	2300	4078	d7ap	12V 7192 ll 115p	Heat Bink		BC478	32 p	MJ2as5	130 p	2N2292	27	40595	110p	FND357	130p	TIL321	1300
7476	370	71191	324.		750	4081	${ }^{4} \mathrm{p}$	15V 7815 115p	$17^{*} / \mathrm{W}$	25p	BCY70	3p	MJE2955	1300	2N2369	$15 p$	40635	40p	FNOS00	120p	TILS22	1300
7484	54 p	74882	130 p	$710{ }^{\text {c }} 4$	70	4082	24 p	18V 7a18 115p	sultable fo		8CY71	24 p	M 33001	259p	2N2484	32p	40836	fup	FNDS07	120p	DRIYEF	
7481	cosp	74184	250 p	74 c65	200 p	4083	Np	24V 7824 415p		Ta220	ED124	14dp	MJES055	10p	2N2446	52g	40673	3 s	DL704	1tpp	75461	4 4
7482					05 p	4048	1230				昰131／2	Sp	MPF102\％ 3	40p	2N2904／A	229	40841	5 5p	DL707	160p	75472	
7483	19p	74188	ONJ		\％p	14502	1 180p	－TM＋Ve Tout	14.80		ED135／6	5 tap	MPFF104／5	40.	2N200sja	22p	40872	85p	D¢147	230p	（938	200p
7484	他p	74100	12 p		00 p	${ }_{14503}$		5 V 72L0s 74p	5V 79L0s	10p	BD139	50 p	MPSA06	37a	2N2908＇A	22^{2}	40872	90.	THL3：1	700p	9374	2009
7485	129	74101	129p	74 Cl 107	125p	14507	S5p	${ }^{6-25 V} 78.482780$			BD140	炜										
7488	18p	7192	10p	$74 C 151$	2\％0p	14508	3000	12 V $\mathbf{1 5 V}$ 78L12 78L15 70p	12V 70L\＄2		BOY56	22.5			AT							
743	340p	74163	\％0p	74 c137	$2{ }^{29}$	\＄4510	130p	15V 78L15	$78 L 15$	tap	BF118	24 p			at inccusive Prices．Add asp pap－no other en							
7491				74C160	155p	14513	\％09p	LM309K 150p	LM390－12	140p	BFF170	25	MAlL ORDER O＊LY									
7402	50	74509	100p	74 Cl 161	1550	${ }^{14518} 4$	${ }_{180}{ }^{28}$	LM323K 760	7805K	$120 \mathrm{p}$	EF173	$27 p$										
7493	320	74197	1350	${ }^{74} 163$	St5p	14518	110p	LM3AJT－5 118			日F178	30p										
7494	75p	$\begin{aligned} & 7498 \\ & 74199 \end{aligned}$	$\begin{aligned} & 250 p \\ & 250 \mathrm{p} \end{aligned}$	64		14520	110 p	VARIABLE 723 OIL 45 p	LNW17 702	220 325 n	BF979 日F180／1	$35 p$ $35 p$		54 Sandhursi Rosd，Lendon NW9					Tek，01－264 4333			
0	30	142	150		20 p	\＄ 345880	$\begin{aligned} & 130 \mathrm{pop} \\ & 2700 \end{aligned}$	78MGT2C 945	LW304H	1590	BF184／5	24 p										

DIGITAL CLOCK KITS

thousands sofa
TEAK or PERSPEX cases 1 ＂Red LEDS． 4 digit 12 hr display PM indicator．Mains frequency accuracy． Complete instructions．Power cut flasher．Real wood or Parspex．White
Black，Red．Green，Blue． $\left.6^{n} \times 2\right)^{n} \times 3^{n}$

Black，Red．Green，Blue． $6^{n} \times 2 \frac{1^{n}}{2^{n}} \times 3^{n}$
AlARM：Auto 8 rightness．Pulsed Tore 9 min snoaze．
Electronics only kil：
Non Alarm E10．00
Alarm f13．00 Complete with case：
Ready Built Tested Workng Non Alarm $£ 13.00$

Alarm $₹ 16.00$
Timer Facilly：Display Seconds．Stopwatch use，Sleep Defay：50p extra OISPLAYS：$\frac{\overline{1}}{2}$ fed LED FNDSOO E1．20 each． 6 for E6．48．NSB5430 $\frac{1 \pi}{2 \pi}$ red LED．Stick of $4 £ 4.32$ ．51TO2 stick of 4 Green $£ 5,40$
 MK50362N calendar 57.58 ． 6 digit counter $50395 / 6 / 7$ \＆9．18．
 300 NS 4 KXI DUN GAM £6．75．1702A UV PROM $450 \mathrm{nS} £ 10.80$ BATTERY MECHARGER：Mains Adaptor with 4 －way Plug． $4 \overline{\mathrm{X} A A}(1 \overline{2} \mathrm{~V})$ Nा Cads plus holder E8．64．AA Ni Cads separately $\mathbf{£ 1 . 2 0}$

BARON（PE）， 6 Gower Road，Royston，Herts．［0763） 43695.
Use Berctayzard or Accosss

GAIALOGUF／ORDER FOAIM send stamped ad．

 dressed envelops for cata－ priced tists of components for P．W．pro fects Iram OCT．＇77．Examples from Ace range．

Getenfelup uour sisese！

ACE MAILTRRTIX LTTD
Aepr．DW Tootal Stroct Wakerid ，WWinctive WFI5：R

BARGAIN PARCELS SAVE POUNDS

Huge quantides of olectranlc companents muat be clearad ar apece cequirad $1000^{\circ} 40$

Handy Packe

4 siuminlum bexet $428 \times 44 \times 58 \mathrm{~mm}$ Jdeal for 1 ignsl InJactort，atc．Ei－+5 ．
MInature Edgewlse Punal Meters 100 malaitu burgar minater feed swilches Idand for onrgiar alarms，model raliways，elc．EI 30 ．
6 pole 12 volt reed ralaya on board新解．
High qually computar panela amothered In top grade companente क lba Eilis． 10 lbe
en．

DE LUXE FIPRE QLAS8 PRINTRD

 GIRCUIT ETCHING KITBCeludes 150 aq ．Ina．copper clad tho board． ubralve efeanim， 2 minl drill bita，etch tray and linatructionsionly $55-30$ ．
15in eq．In，fibro glame board CZ 2 ow Dalo penn．90p．
5 ib farric chloride to mll spec． $\mathrm{ci} \cdot \mathrm{zs}$ ． instruction aheet ${ }^{2} \mathrm{p}$ p
Minlaturs mains trantionmers．fully Expoused．240V．In 6－0－ev af tooma out． load and alug on Input and ehort leade on output． $\mathbf{6 1} 29$.
SH3miconductor Barrains
100 new \＆marked ellicon and dermanlum

 100 mlxid diodes including zener，power and bridge tyan As stis．
Bridge rectdfar 10 Nv 2.5 amp 4 for Eff，
Brand new ITT 25 ky triplera for Oeten Brand naw $17 T 25 \mathrm{ky}$ triplora for Oqtec Bradford chasala \＆\％50－ 5 for cis， cela，stc．©1．
Minfature Vernitron FM4 10.7 MHz Cers－ Now U．H．F tronalelor TV iune
New U．H．F．trangisior TV iuner 4 pugho 40p P \＆P ON ALL ABOVE ITEMS．SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY，DERT PW 149A BROOKMILL ROAD，DEPTFORD，SEg
CALLERS BY APPOINTMENT ONLY

Alumintum TV coax plugs 10 for $\mathbf{6 t}$－ω Minlature EX log pots with w／p ewlict 4 for E．
Hardware Packs atch contalning $100^{\prime \prime}$ a Seme incluofng BA nuta and bolis，Nylon， clampa，Fute holders．Splra nuti．off． ef per pound．

DONT LET YOUR ENYIRONHENT DEHYDRATE YOU OR YOUR PO： Cssions，Buy a Moneywell Humidty Cantrol er．Campact $\times 1 \times 3$ ，wd ange of controf，ad ustable by $1^{\prime \prime}$ apindte ．5A 120VAC．Ideal for Gremnhouses． cantrally Healod Homes Oftess．Etc Buld your own Humddiferg or Dehydration Alarris．Ef 50 en． 4 for Es．
noo unmarked mixed trannlaiori，fotn of hep for samples EA．In
Naw Mintature FM Fronlend 88－168MHz 10．TMALz．l．F．or with Insagral Tuning－gang ．

E1•09
TBA 120 A0p
20 min antl－surga futas your selactlon

Component Bargalns

00 mixad raeiatoret $4 \frac{1}{2}$ walt et 50 25 mixgd resiotor＇t mostly 1 at wat ES． 100 mixed polyater caps $\mathrm{Ez} \cdot 2$ 100 mixed modern minlature and ceramic prate caps E1 00 ．
00 mixed wirewounds $£ 220$.
5 printed circuit resietors Es－ 0 C
100 High wattage resletora，wirewound ett．E2Z20．Vertical Presets whth olothed Madern Vertical Prasisk with elotted ${ }_{4}{ }^{2}$ Packs 2203 ， 470
4 Packs $k 3$ ．
Knob， 10 for $£ 1$ ound Horiz．Papet with Y

THE WORLD'S FINEST FM TUNER MODULES OK?

Tha EF5400, a 4 stage vazicap tunerhead, tening $88-108 \mathrm{MHz}$ with a bias swing of just 2-8 roits DC. A singfe IC provides all functions, including PIN diode AGC drive, balanced mixer, RF amplifier. All this and edge connection too 1 E 9.75 built.

We've said it before, and we"tl say it again;
We offer the Largest and the Best range of FM Tuner modules in the UK, Europe and we believe in the World. \{Please advise us if you know differently.) We gasp when we read the unsupportable claims of other "suppliers', describing things like deviation muting, which we have bean offering if our 7030 FM IF system for ages. Long before most others gave it a thought To read some advertss you might imagine somebody had just discovered the wheel, Furthermore, we beljeve good signal processing is more important than rows of pretty lights and numbers, dan't you?

ALL NEW CATALOGUE

To celebrate our new range of ICs, components, coils, filters, FM and AM modules etc., we are presenting an entirely new catalogue, which is free if you send an A4 SAE 115p stamp on it psel, and the front page from one of our oid catalogues. This offer ceases on May 31st 1978, when the normal price of 45 p will apply, The new catalogue contains radio and wireless features centred on our new developments with Sprague, Telefunken and RCA, with the TDA1083 MW/LW/FM/Audio all-in-one C system, the TDA1062 4 stage IC tunerhead, the CA31B9E IF system, the Hitachi HA11219 FM noise Sanking system and other radical new technology announced in the past few months. We are certain this will be of great value and interest to anyone concerned with radio and RF design.

The rast of our new sarige includes resitors, capaciton and many items that now comphote our runpe far the afectronics anthusiast snd designer. We naturaliy carry the very latest in radio samiconducton, and are pleased to report many new developments in the past six months, that are now redily aviliable, with tachnical backup, from Ambit. But quite apart from our technical eepiditity, wa think you will find our prices ettractive, and our product always first quality.
Expmples from the zange of components, modulas exc.,
Resistors $/ 4$ watt types in E12 seriss, 1 ohm to 10 M ohms (Mullard/Iskra/piher) 15p/10 minimum order 10 per vatus pleasy. Minimum resistar-only arder f 5.50 .
Caramic pleta and disc capecitors: anly miniatura end compact types eg. 10nF: 35p/10
CA3BgE: RCA's new IF zystam, $\ddagger 2.75$ inc, datactor coil and 22uH choko.
TDA10a3: Sprepua/Telefunken AM/FM/Audio 1C. 800 mW output max $\mathbf{E 2 , 5 5}$
TDA062: Telefuniken FM tunerhead IC, good for 200MHz, 5.75
Modules as proviously advertized, plus these naw onas: EF5803, 93189, EF5400, MPX decoder 93196B: The supertor HA1796 now with a 2 W monitor amplifier, and optional edjacent or altometh chantal notching facility, as well sa a 55 kHz low pass filter, pilot tone filters etc. £16.45 Now from TOKO: CFhZ sariai 4 section ladder filters for $455 \mathrm{kHz} 68,12 \mathrm{kHz}$ versions $£ 1.35$ each,

CFM2 2 section mechanical fittars for 455 kHz , same size 44 CFS series fittersi Plus others...
 ambil INTERNATIONAL 2GRESHAM ROAD BRENTWOOD ESSEX

The EF5903 here is shown less the tmplata shielding can normally suppliad The EF5803: the ultimate? 2x low noise MOSFET RF stages with AGC, MOSFET mixar, very lass stage coupling for stper wigh 0 . Amplified local osc ousput. Used in conjunction witb the 73189 system, provides $35 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ with 0.63 bV PD input. And all these modules are British Made. EF5803: $£ 19.75$.
Prices exclude VAT. Postage 25pper order, Catalogut (see text) 45 p . Prices exclude VAT. Postage 25p par order, Catalogte (see text) 45p
Telephons (0277)2t6029, Parking outside the front of our building.

Always in the leading group, here is Ambit's 73189 IF system. optional 2 or 3 6pole limpar phase IF fitters, $2 x$ MOSFET IF AGC stagy, with the CA3189E, $£ 16.25$ buitt and aligned.

VALVE BARGAINS

Any 5-44p, 10-61-20, 50-5S-00. Your choice from the list below.
ECCg2, EFAO, EF183, EFI日4, EH9O, PCFBO, PCFB02, PCLE2, PCLB4, PCLE5, PCL86, PCLEOS, PL504, PYBI/800, PYBS, $30 \mathrm{PLI} 4,6 \mathrm{~F} 28$, PFL200.

Colour Valvan-PL509, PL509, PL519, PY500/A. A! tasted. 35 p each.

Aarin Splittarn-2 way, 75 OHMS, Inside Type. 4. 150 .

AERIAL BOOSTERS

Aarial booztara enn produce ramarknble. improvernonth on the pleture and eleund, in frlnge or difficult aresh,
SII-For TH stareo and standard VHF/FM radio. siz-For the older YHF television-Fleas. itate channal numbars.
B45-For Mono ar colour this cavers the complate UHF Tuluvision bend.
All boostery are complete with battary with Co-ax plugs and sockets. Next to the set fitting $64 \cdot 20$

MULLARD CAPACITORS

Trpe C2BO/b Vafuaz from oluF to I-5uF. $250 \mathrm{~V} / \mathrm{w}$ \& $400 \mathrm{v} / \mathrm{w}$.
Prlce per mixed Bargain Pack 100/CI-50, 500/E7 00

All prices include VAT. PEP 30p per order Exportz wolcome nt coat.

ELECTRONIC MAILORDER LTD.
 42 BRIDGE STREET, RAMSBOTTOM, BURY, LANCS.

TEL: RAMS (070 602) 3036

resistors, capacitors, diodes, eransistors, ezc Rigid plastic Units incerlock tagether in vertical and horizontal combinations. Transparent plastic drawers have fabel slocs. 10 and $2 D$ have space dividers. Build up any size cabinet for wall bench of table top.

AS SUPPLIED TO POST OFFICE, INDUSTRY \& GOVERMMENT DEPTS.

SINGLE UNITS (ID) (\$ins $\times 2$ tins \times 2tins). E2.90 DOZEN.
DOUBLE UNITS (2D) (Sins $\times 4 \frac{1}{2}$ ins $\times 2$ ins). 14.90 DOZEN,

TREBㄴE (30) 64.90 for 8
DOUBLE TRE日LE 2 drawers, in ona outer case (6D2), E7.2 2 for 8 .
EXTRA LARGE SIZE (6DI) $66 \cdot 25$ for 8.
FLUS QUANTITY DISCOUNTS!
Orders over E20, less 5%
Orders over $\mathbf{6 6 0}$, less $7 \% \%$.
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under f 10 . Orders f 10 and ovar, please add 10% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add 1% V.A.T. to total ramittante
All prices correct at time of going to press
FLAIREINE SUPPLIES (Dept, PW5) 124 Cricklewoad Brondway, Lohdon NW2 T. L. $01=450484$

The Chroma-Chime is the world's first electronic musical door chime to use a pre-programmed microcomputer chip to generate tunes.

Now you can replace your ofd boring buzz, zing or ding with the Sound of this remarkable feat of British engineering ${ }^{*}$ capable of playing 24 well known melodies.

Really enjoyable to build, this kit will give you the satisfaction of assembling a first class professional product for yourself and give you and your caflers entertainment for years to come as well as enhancing your home.

Buy your Chroma-Chime Kit now and get a free large poster (size approx. $231 / 2^{\prime \prime} \times 161 / 2^{\prime \prime}$) of the original circuit diagram as above, which incidentally measures 36-24-36 .
${ }^{*}$ This one was not done by our bird-brained designer on the back of a ciğarelte packef, as you can see!

The CHROMA.CHIME is exchusively designed by
CHROMATRONICS

NOTICE TO READERS

When reptying to Cłassified Advertisements plense ensura:
(A) That you have slgarly stated your requiremants.
(B) That you have anclosed the right remitunce.
(C) That your name and address is written in btock capitals, and
(D) Thic your leteer is correctly addeessed to the advertiner.
This will susise ujuertisers In processing and deapatching ordart with the mindmutn of delay.

Receivers and Components

HI-FI BARGAINS
Epectal tow prites for sepaly yournat (RY) Unlte

20W atereo HI -iddolsly Amp.
HI-f oterea capeatro Deck
25 W etereo amp, plut turniable In cere
soW tuner amp. plus auto change
\qquad

Rangs of repalred Videcione spathers at keen grice tully guarepteed, Send for lint.

ALL PRICES INCLUDE V.A.T.
The repalr yourssil (RY*) lkeme are brend niew and complate with ondy minor fatits. Finli aparae ara evalinble at low pfices and there is a better than 73% chence of the tinlt belng pertect.
thmited funde.

ELBAR INDUSTRIES
 TCharitan Avenub, Bramley, Kant, Tolaphone: H1 851818

BARGAINS GAEORE: LM55SCN 35p, 4148 $3 \mathrm{p} . \mathrm{Log}$ Pots 5K 10p. Chassis Sockets Ilp. 914 3p. Cahbon Film Resistors I_{2} W 100 for 80 p . Veroboard 33^{3} in x 5in. 40p. Send now for complete list. Only extra 15p postage. CLEVELAND SUPPLIES, R.O. Box 20 , Howard Drive, Redcar, Clevełand.

SMALL ADS

The prepaid rate for classlfied advertlsements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.80$ per single column centlmetre (minimum 2.5 cms). All cheques, posta! orders etc. to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent reglstered post. Advertlsements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

4. Advertaments aro aeceptes aublect to the conditlont spparing on our current adverstemment finte cerd and on the exprene underatanding fhat the Advartier warrank that the edvertse ment doaf not cantravene any Aet of Parfimemen not to titan tatyingement of the British Catio al Ativatialng Practlen.
5. The pablighter resarva the rigkk to rofuct or wilindraw mey adviertisement.
y. Althaugh evaty eafe fo kakan, the Publishert whall not hailable for clerical or printapt frrope er thelr conbe quancer.

VALVES
 Radio - T.Y. - tndustrial - Transmistint and Projector Lamps

Wa Diapateh Valves to all parts of the warla by return of post, Afr or Sez mail, 2700 Types in stock, 1930 to 1976. Obsolate types a spezisfity. Lisc 20 p. Quotation S.A.E. Open to callera Monda to Saturday 9.30 ta 5.00 clored Wednesday 1.00 . We wish to purchase all types of new and toxed Vaives and Projector Lamps.

COX RADIO (SUSSEX) LTD.
Dapt. P.W. The Farade, Eagt Witterlng, Sussex POIO BBN
West Wittering 2023 (STD Code 024366)
LOUD SIRENS 6v D.C. for Burglar Alarms s1.46 inclustve. Grimsby Electronics. Lambert Road, Grimsby, Humberside. Large selection components etc. List 10 p .

24 HR. GLOCK/APPLIATCE TINE: KIT

Switchess any applimece of up to 1 kW on and ofl at preset times once a day KKT contalns; AY-5-1230 Clockt Appliance Threr I.C. 0.5" LED draplay, malna Bupply, display
divera, switehes LEDs, triac, PCA

 DL727 Dual 0.5" 7 \&eg. LED Of inplay AY-5- 1230 Clock Appliance Timer I.c.
 555 Timey i.C, 8 pind
741 Op AmpI.C. 8 pind

ELECTROLYTIC CAPACITORS, Of assorted valves and voltages 50 for $99 p$ inc VAT. P\&P 10p. ELECTRONIC SUPPLIES, 58 Ashton Road, Hathershaw, Oldham, Lancs. TeI: 061-652 9879.
ELECTROLYTIC CAPACITORE (V/UR A 3V/470 Sp;

 QWITCHES Jopple SPST 250 Make SPST 250 VaC 1A 30 P :
MICROSWITCH
MICRO SWITCH (with Isver) 250 vac 1 A 50 p :
WAFER 8 WITCH Single Pole (eetancle) \& way $\times 3$

 PRE-SET POTENTIOMETERS Carbon Elnast tw

 TAHTELUKHCAPACITOR EV 204F, $330 \mu \mathrm{~F}$ 10V/12204F

 CIPAMIC CAPACITORS (01) $100 \mathrm{~V} 20,24,33,43,503 \mathrm{p}:$ $200,500,750,27006$ Pi P. 25 p. Add 8% VAT.C.W.O. STE Ltd. system Tachniques (Electionles') Ltd., Dafteld, stlek Hmy, Edentridiee, Kent, TNA 5NL.

ERAND NEW COMPONENTS GY RETURN

 $1000 / 25 \mathrm{~V}-18 \mathrm{P} .1000150 \mathrm{~V}-22 \mathrm{p}$.

 Yerelani Maunting Coramic Phate Caplo, 30 Y . E12 22 DIN-100 D. E6 612

 Minineure Film Renintor: Hishitab, 612 5\%.
 0.500 wate 10Ω to $2 M 70$
(N4) IN4i48-3p, 1N4002- Fp_{p} IN4006-7p, 1N4007-8p

 Post 10p (Frta over CA). Pricen VAT intusivo.

THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffleld 58 ORN

TRANSISTORS, RESISTORS, CAPS, POTS, Plugs \& Sockets, Zeners, TTL, Cable, Boxes. Al at very good prices, 65 Rallway Road, Leigh, Lancs. Telephone Leigh 679575.

Radio Receivers

V.HF_/AIRBAND 88-k35 MHz and M.W., Focket Sets (Superhet plas Int. Speaker) £9 95, Mains-Aattery Portables $£ 13 \cdot 55$, prices include P\&P \& Accs. Noble Electronies, 26 Lloyd Street, Altrincham, Cheskire WAl4 2DE. Tel: $061-9414510$.

Ladders

LADDERS. Varnished 205 ft 9in extd., £29-72 carr, E2-40. Leafets. Also alioy ext. up to 62ft 6in, Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644, Callers welcome.

Situations Vacant

Radio Technicians

Government Communications Headquarters has vacancies for Radio Tectnicians. Applicants should be 19 or over.
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with 2 years' experience of using and maintaining radio and electronic test gear.
DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermedlate) Certificate or equivalent HM Forces qualifications.
SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still hlgher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer (Ref PW/5), GCHQ, Oakley,
Priors Roąd, Cheltenham, GL52 5AJ.
Cheltenham (0242) 21491 Ext 2270.

Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS

Serves Shente for Mono TV, Radloh, Record Players and Tape Recordara 75p. Plasie Eand large Stampand Addrasted Envalopa. We can Eupply manuale for mest makes of Colaup Talevinlon Raceivere by retum of post.

 manutio by $\sqrt{\text {, M. Court. SAE, for datalis MALL ORDER ONLY }}$
G. T. TECHNICAL INFORMATION SERVICE
te DRYOEN CHAMEERS, 119 OXFORD ST., LONDON WIR IPA

BELL'S TELEVIGION SERVICES for Service Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Hartogate, N Yorkshire. Tel: (0423) 55885.

LARGE SUPPLIER OF SERVICE SHEETS All models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radlos. Fres TV fault finding chart or TV list. Strictly by return.
 C. CARANNA
 71 Beaufort Park, London NWI1 6BX 01-4584882

genvice sheets for Ratho, Television, Tape Recorders, Stereo, efc. With free fault-finding guide, from 50 p and SAE. Catalogue 25p and SAE. HAMILTON FADIO, 47 Bohemia Road, St. Leonards, Suspex.
GERVICE EHEETS, Radio TV, etc., 10,000 models, Catalogue, 24p, plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PRI 7HP.

For Sale

COMPUTERISED CHESS Challenger Three Levels of skill normally E2M0, our price only $£ 124$-95. Mail Order only. JAGBERRY LTD., 955 Ardwell Avenue, Barkingside, Iford, Essex.

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 65p each post free. Open P.O./Cheque returned if not in stockBell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel; (0425) 55885.
SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stockport.

Business Opportunities

RADIO COMPONENT \& KIT Business for sale. Nominal payment for goodwill. Buyer purchases stock approx. $£ 5,000$. North London. Box No. 141.

Educational

GO TO SEA as a Radio Officer. Write: Principal, Natical College, Broadwater, Fleetwood FYT 8IZ.

WHY NOT BE A Professional? New TEC Higher certificats in Marine Electronica Apply Maritime Studies Department, Lowestoft College of Further Education, Lowestoft, Suffolk.

Books and Publications

SIMPLIFIED TV REPAIRS. Full repalr instructions individual British sets $\mathbf{E 4} \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarksłire.

YOU CAN'T HELP BUT MAKE MONEY, If you follow the planned and detailed infor. mation on how to start your own business rewinding Armatures, set out in the new manual which is profusely ilfustrated and leads you through easily understaod stages of fault diagnosis, taking data, test procedures, laying down new windings, where to obtain work, how to cost jobs etc. No PREVIOUS ELECTRICAL KNOWLEDGE REQUIRED, Complete instruction manual, E4, plus 30p P\&P. CWO. Copper Supplies, 102 Parrswood Road, Withington, Mancheg ter 20. Dept. PWB.

Aerials

ANTI-TVI
 TRAP-DIPOLES

CUT OUT TVI, SWL-Ing and TX-tra. MODELS:-SWL

 8. 3, 9p stampag for det
tesilimonlals. G20YM,

LAMBDA, WHITEGALL, WELLINGTON, SOMERSET

Wanted

WANTED. New Valves, Transistors. Top prices, popular types. Kensington Supplieg (C), 367 Kensington Street, Bradford 8, Yorkshire.
"RADIO AND TELEVISION BERVICING" books wanted from 1964-65 edition up to date. $£ 3 \cdot 00$ plus postage paid per copy by return of post. Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Ted: (0423) 65885.

STEREO DECODER for Grundig KS540 Console. Stott, 16 Durley Chine Court, West Cliff Road, Bournernouth. Tel: 24258.

Miscellaneous

100 Resistors 75p to ench of Eny velue	
COO CASSETTES 30D	Ala Cantetten In Plantle
COO CASSETJES 45p	Case wilth indox and
Alf prices Include VAT,	Add postage iop in
, yantly Dineounte	BALOP ELECTRONICS
	23 WYLE

31_{2} DIGIT DVM MODULE KIF. Autozero autopolarity only $\mathrm{E}_{3}^{77} \cdot 50$. SAE detalls. MLC, ili College Road, Southwater, Horsham, Sussex.

EX MINISTRY EGUIPMENT

 Aoriat Rotation Motor units, complete with Remore Position sidicator coninectors and Dat. Ramore Position Indicator. Caninectors and 5 V DC Iransistor Curve Tracers. DC Wotars. SVSrabilised Power Supplies. Thumb Wheel Switches.
Ten Turn Potentiometers. DC Milliampmetera. Len urn Potentiometers. Lever Switehes. Seven Segment Gas Displays.
Terminai Blocks. 12 Way Cable . 100 Way Cabla. Terminal Blocks. 12 Way Cable. 100 Way Cabia.
$240 Y$ Salenoids. Push Buttons. Odd Icems of 240Y Solenoids. Push Buttons. Odd icems of Jast Equipmenc. Aircraft instrumencs and Equip-
mant. Lots of lams in Srock, $9^{7} \times 3^{7}$ S.A.E. For Mant. Lots of tiams in stock, Ma x 3^{n} S.A.E. For Atexander Drive, Timperiley, Cheshire, WA156NF.

PRINTED CIRCUITS and HARDWARE

Readfly avellable tupplien of Constructore' Mardware.
 Prompl eervice. Sond 25p for cataionve frem:
mamar constructor servicee
Heson" Romd, Btruttord-on-Avon, Warwleke

OUTSTANDING 2200 HI-FI FM TUNER Latest silicon superbet design, Varicap Tuning, Full Coverage $88-102$ MHZ. Ideal for Fush buttor1/Manual tuning. Supplied Built \& Tested with full instructions only £9.95 (P\&P 50p). GREGG ELECTHONICS, 86-88 Parchmore Rd, Thornton Heath, Surrey.

GOVERNMENT SURPLUS SUPER PACK 23 PLUS 5 DP Tapple ewitches. a various mleroswitchas. 1 bank
 Thl eiectramagnels. 172^{n} multicore cable. $122 y$ hoory duty motor with pulley $2^{2} \times 14.2$ masibts. $160^{\text {n }}$ epring
coll lead. coll eac
to E.B. Supplion (Dept PW) 125, Hlgh Streat, Deal Kent, Tel: 05015 62172.
4T Inaprts $9 \mathrm{I} \times \$ 20$ ohm D.C. Ideal for mlerophona or rpakker Use. 50p atch Inc! P. \& P. Quantily distounta nevalitable.

LOSING DX?

FREE DX from tiring WHISTLES and CW interm ference FAST with a Tunable Avdio Nouch Filzer, Sharg notch tunes $350-5000 \mathrm{~Hz}$, inctudes speaker amplifier. DIG OUT the RARE DX for onty $\overline{\text { E }} \boldsymbol{9 0}$. Get SPOT-ON the DX with a Crystal Cali-brator-between your antenna and recaiver. Switchad equal-levas I $\mathrm{MHz}, 100,25 \mathrm{KHz}$ markers to VHF, bypassed when off. DIAL UP the RARE DX for only ©i3-80.
SEND off NOW. Each easy-assembly kit includes all parts, printed sircuit, case, connectors etc, instructions, postage and money back assurance.

CAMBRIDGE KITS

45 (PE) OId School Lane, Milton, Cambridge.

```
We would tlke you to know that wa moket
t EEC CabInets
* Sporial cablnety
* Prototype printed elfeulta
* Instrument panals
W% Else heve a quinilty GE\/AT Cablve:
punching Etrytes, and undertmke sutwork.
    H. H. ELECTRONICS
    27A Pultwoad Nd ; homold SJ0 9nD
    Send 15p (Relundabie) for leaflata
```

SUPERB INSTRUMENT CASES by Bazelly, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p, chassis punching facilties at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELI,I, Dept No 25, St. Wilfrid's, Foundry Lane, Haiton, Lancaster LA2 6L'T.

100 WATT GUITAR/PA/MUSIC AMPLIFIER

With suparb treble, bass. Overdrive, sllmine, 12 monthe guarantoe. Unbeatable offer at ≈ 35. Atso twin channel with separate treblejbabe per chahnet cus. Maney raturned if not obsalutely dellohted within 7 deyse Alsof fuzz botes great sound, robust conitruction $\mathbb{E 6} \cdot 60$. Also 150

All Inclusive of P.P. Send chequat or P.O. to:
WILLIANASOM AMPLIFICATION
W2 THORNCUFFE AVENPLIFIGATION DUKINFELD.
CHESHIRE. TEL: DOi-34 EOOT

ORDER FORM please write in block capitals

Please insert the advertisement below in the next avallable lssue of Practical Wireless for insertions

1 enclose Cheque/P. O . for E .
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd, and made payable to Practical Wireless).

NAME
Sond Lo: Classffed Advartisement Manager PRACTICAL WI\&ELESS.
amb, tintilited Advertrement Dopt, Rm, zat? KIng'a Rezch Tower, Etamford 8traet.
 Rate

[^0]```
 GRMATURE& COIL WINPINO
 OM% (
 Only too qully matariale suppliod.
#W.g.
Ail prisen are Instuslve of P, &P. In U.K.
```



SCOPE CALIBRATOR, portable, battery operated. SAE detalls. Ramar Constructor Services, Masons Road, Stratford-on-Avon, Warwicks.

## REEHARGEABLE BATTEAIES



 cafle only BOp. Frices Include VAT. Add $10 \%$ post pachude and ingurance ordern under 280 . B\% over R20. SAE for tull detaila olus 75p for 'Nickal Cadmium Power' booklet. 250 it 2 volt invertare naw eyalleble. Mall Ordere to Oppt. PW, SANOWELL PLANT LTO., 201 Monmouth 878. Callere to T.L.C., 32 Craven Streel, Charlng Croes. L.ondonWC2.


```
canto A.
Cassatt B: 12-84 w.p.m. for profesclonal examination
praparatlon
Moras by ilipht ayatem ayalisble, Morae Key and Buzzat
```



```
Key mind Burzer E4,
Prices Include peatage etc., Overtere Alr mail ef axtre.
 AHIL ELECTRONICE (Dept PW)
 12 Longshort Why, Mllon
```


## Electrical

MIST No. 28 now ready-Styll illustrated equivalents also cartridges, leads, etc. free for long SAE. Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SKB 4EE.

Speed up your precision work with MINIATURE POWER EQUIPMENT

## NEW! The P2 Mk2 DRILL

With detachable head
£18.00 pp 88p In storage case, room for transformer $£ 19 \cdot 50 \mathrm{pp} 86 \mathrm{p}$ In case with variable transformer $\quad \mathbf{£ 2 9 . 0 0 ~ p p ~} 86 \mathrm{p}$

S2 DRILL STAND A robust, all metai stand with ample throat dlmenslons. WIIl take both P1 and P2 Drllls. £18-50 pp 108p.
SUPER 30 KIT 30 tools Incl. Drill P1Without atand, ©19-39 ppeit.
P1 DRILL
£9.67 pp 39p
S1 DRILL STAND $8 \mathbf{5}$-13 pp 38p
FLEXIBLE DRIVE SHAFT
\&5.94 pp 34p
TRANSFORMERS
Continuous a/c 12v. D/C
А7 56pp81p
Variable speed a/c 12v. D/C
29.50 pp ${ }^{84}$ p Saw Blanes, Burre etc. 40 p esch. Clrcular P\&P any S.A.E. for teaflet and order form.


## HAVE YOU DONE IT LATELY!



B24-8P sisibo cassette gless/ferrite record/playbsek $\mathbf{E 9 . 8 4}$
B12-01 mono cess, playbk. £1.60 B24- 11 stereo cass, playbk. £2.80
A28-05 stereo 8ek cartridge £ 1.80 E12-0才 stareofmono cess. erase $£ 1.80$
$5 / 7$ Church St, Crewkerne, Som. Tel. (0460) 74321

## PRAGTIGAL WIRELESS T.V. SOUHD TUHER

(Nov. 75 amitato by A, c. Alralla)
Copy of orighari mifole auppoficed po fequent
IF Sub-Assembly (G8) £6.80. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner£4-50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25 p. 6-way Station Control Unit (Special Offer) £ 1.00. Power Supply Prtd Circuit Board $\mathbf{£ 1} \mathbf{0 0}$. P \& P 30p. Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$. Mains Transformer for above £2-50. P \& P 30p.

Add 121\% VAT to price of goods. P \& P all items 85p.
Callers welcome at ahop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Sin.) Tel. 01-794 8751

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## WATEOR ELEGTRONICS <br> 33／35，CARDFFF ROAD，WATFORD，HERTS，ENGLAND MAll ORDER，CALLERS WELCOME，Tel．Watford 405es／9

ALL DEVICES GRAND NEW，FULL SPEC．AND FULLY GUARANTEED． OLLDERADESPATCHEDEYRETURN OFPOST．TERAB OF BUSINESG：




We stack meny trovelitemp．It paya to visit uc．Wo mo eityated behind Whiford

 0.033 ，10p；o 047，0．068，14p；0．1，15p；0．15 0．22，22p；0．93，0－47 31p；0 18 13p，
$\qquad$ $\begin{array}{ll}\text { POLYRSTER RADIALLEAD（Valums In } \mu 4) \text { ，2HOV：} & \text { FREDTHROUQH }\end{array}$
 LLECTROLYTIC CAPACTORS：Axial lad type（Values are in $\mu$ F）．








 $\frac{\text { U－DEC＇B＇}{ }^{\text {BP9 }}}{\text { EUROPA }}$

## 100－500pF 5250 pF 55p MINIMUM


TRANAFORMERE＊（Mainn Pisim．220－240V）


 $\begin{array}{lll}2 \times 4.5 V & 0 . B A & 249 p+ \\ 20-0 V & 2 A & 270 p+ \\ 22-12-12 V & 2 A & 320 p+\end{array}$ $\begin{array}{lll}12-0-12 V & 0.5 A & 240 p+30-25-20-0-20 \\ 0.120 .12 & 0.5 A & 248 p+ \\ 15-308 A & 487\end{array}$






（Prainat add 45p p\＆p chard fo all prical
Denco colls BeA Valvo Base 25p
Qual Purgoop ${ }^{\text {DPP＇}}$
VALVE TYPE
Rendei－5 S，Y，R，W
6－7 B，Y，R，750

Rng．s－5 B，Y，R，W，MW 3FR


## TRANEISTORS


AC127
AC14

## 

## $\mathrm{AC} 177^{\circ}$ ACC $\mathrm{A}^{\circ}$

${ }_{A}^{A C 1818}{ }^{*}$ ACY17
ACY18 ACY19
ACY20
ACY21 ACY29
ACY21
ACY22 ACY22
ACY20 $^{\text {ACY }}$
A ${ }_{A}^{A C Y 49}$ ACY41
ACY44
AD149 AD149＊
AD161＊
AD102 AF100
 AF11＂
AF18＂ AF124＊
AF125

 2
7 AFZ11
AFZ12
ASY26
ASY20
ASY27
ASY ASY7
BC107＊ BC107
BC108 BC108日＊ BC108C
BCi09
BC 960 B

RESIBTOR总－Erie make $5 \%$ carbon
MInIature HIoh Stablilty，Low Nolat


| RF CHOKER | 702 | 75 | 1CLsexscea | $350$ | NE $560^{*}$ <br> NEE51＊ | $323$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mu \mathrm{H}, 47.10$ | 700 | 33 |  | 8 |  |  |
| 22，33，47， | 700C 14.818 | 45 | ICM7205＊ | 115 | NE565A＊ |  |
| 100，200， | 700 C TOS | 35 | Lik 300H | 17 | NETOS |  |
| 470， 750. | $723^{4} 14$ pln | 4 | LW3014T | 教 | NE567V | 170 |
| $1 \mathrm{mH}, \mathrm{s} \cdot 5,5$ | $741^{48} 8 \mathrm{pln}$ | \％ | LM304 | 24 | NES71 | 4 |
| 10 \＄5p each | 74＊${ }^{\text {c }}$ 14 ${ }^{\text {Dln }}$ | 32 | LMS00 5 | 14 | AAMR102－2＊ | $1{ }^{1}$ |
| $48 \mathrm{mH}, 100$ | 747 C 94 ptn | 7 | LM31aH | 205 | RC41360 | 18． |
| 90p each | 748C a pln | 3 | LHA185 | 193 | ROM25i3＂ | $7{ }^{\text {7 }}$ |
|  | 7538 pln | 13 | LMs24a | 78 |  |  |
|  | 810 | 15 | LM339 | 10 | S634020 | 25 |
|  | AY－1－0212 | 5 | LM348 | 120 | SL437A |  |
| ANEL | AY－1－1313A | ${ }^{48}$ | LM379 |  |  |  |
| SETERS | AY－1－5050 | 24 | M380 | 明 | SNT2733 | 125 |
| FSD | AY－3－6051 | 148 | LM381N | 17 | SN77733 | 125 |
| 60x46x | AY－1－6721／6 | 195 | LN314N | 24 | SNJ7CO3N | 1 |
| 35 mm | AY－3－8EDO＊ | 480 | LM332 | 128 | SN7B01sN | 40 |
| 0－50，4A | AY－3－8880 | 59 | LM3900 | 0 | SN76023N | 14 |
| $0-10014 \mathrm{~A}$ | AY－3－8E60＊ | 0 | LM3909N | 70 | SN76033N | 218 |
| O－5004． | AY－9－8710＊ | 215 | LM3011 | 12 | SN76115N | 218 |
| $0-1 \mathrm{~mA}$ | AY－5－129 | z） | LMT32 | 15 | SN7697N | 17 |
| $0-5 \mathrm{~mA}$ | AY－6－1\％${ }^{\text {c }}$ | 49 | M232AA＊ | $7{ }^{4} 0$ | TAAESO | 56 |
| $0-10 \mathrm{~mA}$ | AY－5－1315 | 560 | M2SJAA＊ | $7{ }^{1}$ | TAA621A | 225 |
| $0-50 \mathrm{~mA}$ | AY－S－1317A | ${ }^{6}$ | MC60s | 275 | TAAEf1A | 158 |
| 0－100mA | AY－5－3508＊ | I10 | MC74＊ | 151 | TAAT00 | 1 |
| 0－500ma | AY－5－3507＊ | 415 | MC1s03 | 145 | TAApo | ${ }^{\text {to }}$ |
| $0-1 \mathrm{~A}$ | AY－5－4007 | 46 | MC5304P | 240 | TAD10\％ | 450 |
| O－2A | CA3011＊ | 12 | MCisiop | T1 | TAD110 | 17 |
| 0.25 V | CASO14＊ | 157 | NCt312PQ | 111 | TBA120S | 40 |
| O－50V AC | CA3018＊ | 12 | MC144sh． | F24＊ | TBA540 | 215 |
| －3－300VAC | CA3020 | 178 | MCTAS8P＊ | 75 | TBAS400 | 显 |
| ＂VU＂ | $\mathrm{CASO2S}^{\text {che }}$ | 17 | ${ }_{\text {MC1459 }}$ |  | TBA5500 | 355 |
| di0p each | $\begin{aligned} & \text { CA3028 }{ }^{*} \\ & \text { CA3035 } \end{aligned}$ | 195 | MC1498L | 135 | T＇BAB41－A | ， |
| $\times 31 \times 1$ | CA303， | 180 | MC171DCG | 7 | BX1 or EX |  |
| 504 4 | CA3043 | 190 | MC3 30 F | 150 | TBAE51 | 16 |
| 0－1009a | CA3045 | 146 | HC3360P | 48 | T9A880 | $0 \cdot$ |
| $0-500 \% 14$ | CA3046 | 10 | MC3401 | 7 | TPAB10S | 105 |
| 53sp fach | CA3048 |  | MEM790 | 205 | T8A820 | 16 |
|  | CA3075 | 175 | MFCe040＊ | 7 | TEAD200 | 350 |
|  | CA3080E＊ | 10 | MFC40008 | 25 | TCA2 700 | 220 |
| MET | CA3081 | 10 | MK50382＊ | 8 CO | TCA270S9 | 20 |
|  | CA3080E | 210 | M ${ }^{\text {N2112 }}$ 2N | 4 | TDA1022 | 503 |
| 580 p | CAsobeal | S既 | NE365 | 140 | TDAg\％\％ | 帅 |
|  | CA3123 | 200 | NESIEA | 210 | UAA170 | 113 |
| EDSWISE | CAS130＊ | 4 | NE555＊ | 1 | ZN414 | 110 |
| $160 \mu A$ 1傀 | CA3140 |  | NES55D8＊ |  | ZN424E | 150 |

E


## INDEX TO ADVERTISERS

Ace Mailtronix
Alben Engineeri
Amateur Radio
Ambir International
Arrow Electronics

Bamber B.
Baron Electronics 74

Barrie Electronics
B. B. Supplies

Bentley Acoustic Corpn.
Bi-Fak Ltd
Birkect J.
British National Rađio \& Electronies School
J. Bull (Electrical) Lëd

Cambridge Kits ITs..... Castle Electronics (T̈̈rading Post).... Chranna Conáa
Chromatronics
Colomor
Continental Specialists
Copper Supplies
Cox Radio (Sussex) Ltd
Crescent Radio Ltd.
C. R. Supply

Elbar Industries
Eldun Electronics
. 76
Efectronics Design Associates
Electronic Mail Order
Electrovalue

Flairline Supplies
 ...


| $\cdots$ | $\ldots$ | $\ldots$ |
| :---: | :---: | :---: |
| $\cdots$ | $\cdots$ |  |
| $\cdots$ | $\cdots$ | $\cdots 7$ |
| $\cdots$ | $\cdots$ | $\cdots 5$ |

Government Communication Greenweld Electronics
$\qquad$ 75


44 WESTBOURNE GROVE LONDON WZ 5SF
Tal： 727 5641／2／3

Z \＆I AERO SERVIGES LTD．
Plagre sind all correspondence end Mail－Ordere to Haad Offite

## A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES

| IP3GT | 0.65 | 6AK6 | 0.75 | 6CW4 | 3．75 | 12BA6 | $0 \cdot 65$ | ECL80 | 0.60 | EZ80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 R 4 | 0.50 | $6 A 167$ | 0.85 | 6 Cr 5 | 1.00 | 12BE6 | 0.89 | ECLBI | $0 \cdot 75$ | GY501 |
| IR5 | 0． 39 | 6ALS | 0.40 | 6CY7 | 1.00 | $12 \mathrm{BH} /{ }^{\text {a }}$ | 0.75 | ECLB2 | 0－60 | GZ30 |
| 154 | 0.40. | 6AM6 | $0 \cdot 70$ | 60Q68 | 1.45 | 12977A | $0 \cdot 80$ | ECLB3 | 115 | G232 |
| 155 | $0+40$ | 6AMB | 0.70 | 60T6 | 0.80 | 35 W 4 | 0．70 | ECL84 | 0.70 | KT66 |
| 174 | 0.40 | 6AN5 | 2.50 | 6GHEA | 0.80 | 50C5 | 1.00 | ECL85 | 0.65 | KT88 |
| 104 | 0.70 | 6AN6 | 0.65 | 6GK5 | － 70 | ${ }^{*} 75 \mathrm{Cl}$ | 0． 00 | ECL86 | $0 \cdot 65$ ！ | OA2 |
| lus | 0.80 | 6AQ5 | 0.95 | 614 | 1.20 | ＊85A2 | 6． 85 | EF80 | $0 \cdot 40$ | OA3 |
| $1 \times 28$ | 1.20 | 6AR5 | $0 \cdot 70$ | 615GT | 0.80 | 险 | 1－20 | EF85 | 0.48 | 082 |
| 2 CW 4 | 4.50 | 6A56 | 1.00 | 616 | 0.55 | ＊ 807 | 1－00 | EFB6 | 0.60 | OB3 |
| －2D21 | $0 \cdot 80$ | 6A57G | 1．20 | $6] 7$ | 0.80 | ＊⿴囗⿱一一口儿年A | 3．80 | EF92 | 0.75 | OC2 |
| ＊3－500Z | 40.00 | 6AT6 | 0.75 | 6×6GT | $0 \cdot 65$ | 明298 | E． 80 | EF97 | 0．70 | OC3 |
| ${ }^{*} 3$ E29 | 8．50 | 6AUS | $0 \cdot 50$ | 6L6GT | 0.85 | 中自32A | $8 \cdot 20$ | EF98 | 0.90 | OD3 |
| 304 | 0.75 | 6AV6 | 0.75 | 6N7GT | $0 \cdot 65$ | ＊666A | 3.00 | EFIB3 | 0.70 | PABCB0 |
| 354 | 0.50 | 6AWMA | 0.75 | 607 | 0.90 | －972A | $6 \cdot 00$ | EFI84 | 0．70 | PC86 |
| 5 AQ5 | 0.75 | 6AX4GTB | 1.00 | 6SA7 | － 3.30 | －5763 | 2.85 | EFL200 | 1.20 | PC98 |
| $5 A T 8$ | 0.80 | 6AX56T | $1 \cdot 30$ | 6SG7 | 0.80 | DAF96 | $0 \cdot 60$ | EH90 | $0 \cdot 60$ | PC92 |
| 5 T 4 | 0.75 | 68A6 | 0.45 | 6SK7 | 0．60 | DF96 | $0 \cdot 60$ | EL34 | 0.95 | PC95 |
| 504 G | 0.60 | 68 E 6 | 0.48 | 6SL7GT | 0.70 | DK92 | 1.00 | EL36 | 0.95 | PC96 |
| 50468 | 0.95 | GAF5 | 0.85 | 6SN7GT | 0.70 | DL96 | 0.40 | ELB1 | D． 65 | PC97 |
| 548 | $0 \cdot 75$ | 68F6 | 0.75 | 6SQ7 | 0.80 | ECCS4 | 0.60 | EL82 | $0 \cdot 60$ | PCSOO |
| 5 V 4 G | 0.60 | 68H6 | 0.85 | 6V6GT | 0.65 | ECCB5 | 0.48 | ELB3 | 0.60 | PCC84 |
| $5 \times 46$ | 0.80 | 6込6 | 1.20 | $6 \times 4$ | 0.60 | ECC86 | 1.75 | ELB4 | 0.45 | PCCE5 |
| $5 \times 8$ | 0.90 | 68N6 | 0．80 | 6 $\times 565$ | 0.60 | ECCSS | 0.75 | EL86 | 0.75 | PCC88 |
| 5Y3GT | 0.65 | 68Q7A | 0.65 | 12AC6 | 0．80 | ECCA | 0.80 | EL95 | 0.70 | PCC89 |
| 574GT | 0.65 | 6RRAA | $1 \cdot 20$ | 12AD6 | $0 \cdot 50$ | ECC189 | 0．80 | ELS04 | $0 \cdot 80$ | PCCIB9 |
| 6AE4 | 0.35 | 6BUB | 085 | I2AE6 | 0.85 | ECF60 | 0.60 | EM80 | 0.65 | PCF80 |
| 6 AB7 | 0.60 | 6BW7 | 100 | 12at6 | 0.60 | ECFE6 | $0 \cdot 10$ | EM8！ | 0.60 | PCFFB2 |
| 6 AC7 | 0.80 | 6BZ5 | 0.65 | $12 \mathrm{AT7}$ | 0.50 | ECF200 | 0.90 | EM84 | 0.60 | PCFE 4 |
| 6AF4A | 0.80 | 68Z7 | 0.70 | 12AU6 | 0.65 | ECF201 | 0.90 | EM87 | 1．00 | PCF201 |
| 6AG5 | 0.65 | 6 C 4 | 0.55 | 12AU7 | 0.47 | ECFBOI | $0 \cdot 93$ | EY＇51 | 0.60 | PCF806 |
| 6AG7 | 0.65 | 6CB6 | 0.55 | I2AV6 | 0.85 | ECF802 | 0.95 | EY81 | 0.50 | PCLPI |
| 6AH6 | 0.95 | 6 CS 7 | 0.85 | t2AV7 | 1.00 | ECH8I | 0.55 | EY87 | 0.50 | PCL82 |
| 6A］5 | 0.65 | $6 \mathrm{CU5}$ | 1.00 | $12 A \times 7$ | 0.55 | ECH83 | 0.40 | EY88 | 0． 55 | PCL84 |
| 6AK5 | 055 | 6CU6 | 1.09 | 12AY7 | 0.85 | ECH200 | $0 \cdot 69$ | EY500A | 1.50 | PCL86 |

PCLB05
． 50 PCL
$0.50 \mid$ PD5
0
$0 \cdot 75$
AC／DC TAUT SUSPENSION MULTIMETERS
TYPE U43I5


Sensitivity D．C
20,000 o．p．v． Sensitivity A．C

2,000 o．p．v． D．C．Current $50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~A}$
A．C．Current $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ $75 \mathrm{mV}-1000 \mathrm{~V}$ IV－1000V $300 \Omega-500 \mathrm{k} \Omega$ $0.5 \mu \mathrm{~F}$ $2.5 \%$ D．C． 4\％A．C． Price complete with pressed steel carrying case and test leads．
Packing \＆postage
（15．85＊
E1－50＊
VAT is not included．Please add $12 \frac{2}{\%} \%$ on all items extept those marked with asterisk，on which VAT is $8 \%$ ．Postage and packing charges are $\mathbf{6 0} \mathbf{1 0}$ per $\{$ subject to 2 minimum of $£ 0 \cdot \mathbf{3 0}$ ．

## OUR NEW $1977 / 976$ CATALOGUE IS NOW READY AND WILL EE SENT ON RECEIPT OF REMITTANCE FOR $\mathbf{f 0} \cdot \mathbf{3 0}$



IT＇S EASY WHEN YOU KNOW！
To avold minaing your copy of PRACTICAL WIRELESS－almply complete this order form and hend it to your newetapent． ORDER FORM
$\qquad$ Addretel （name of newaspent）
－

Plonge reastre／delliver evaty menth one copy of PRACTICAL WIAELESS unth turther notice．
＊Ny Name


| LOW PROFILE DIL SOCKETS．TIM |  |
| :---: | :---: |
| Priceis Per |  |
| ${ }^{819} \mathrm{Pin}$ 18p | 450 |
| 14 Pln |  |
| ${ }^{16}$ |  |
| ${ }_{40} 810$ |  |
| STANDARD PRROFILE DOUEL |  |
|  |  |
| 14 Pin 14p | ［5p at． 25 ¢a．en |
| 18 Pln 15p | 70 |
| Mounting Pad＊ | 10／Pack 50／Prack |
| TOS 4 Hale |  |
| TOS84 Hole | ap ab |
| CONVERTERS |  |
| T09s 70 DH | 53 p 52－54 |
| T0100TO ${ }^{\text {dil }}$ | 53 p |
| T092／98 TOTO5 | 9 p 40 p |
| 18 | p |
| T089 70505 | p |
| DIODECRADLES 10p 43p |  |
| Larger pange of tranalstor pads and －Insuilating bushes in catalogus．All prices |  |
|  |  |



Post and Packuglng 15p kiss／psdeyoocket3／ccolera．45p for anodisad hest sinks． MOULDEO ELECTRONIC COMPONENTS INT．LTD， $34 D$ QU
YONEROGE，KENT．PHONE：OTS2 $3 E B F B$

Full Illustrated Catalogue－Send 30 p For Posi\＆Packfing．
From．．．．．．．．．．．．．．．．．．．．．．．．．．．．MOULDEDELECTRONIC
COMPONENTSINT．LTD．
IAd QuARRY HILE RORD．
TONERIDEE
KENT
PHONE 4732 SU3M

[^1]

Four inpulp. Four way mizing. master volume, treble abd han contrain. Anfis all mpezkern. Thia proforaional guality amplifis cowez is required for all Rrouph, disco, P, A., wheze high quality powez io required, $\%$ rpazker outpuls. A/G, maink operated,
Send lor doltije.
Chasiof only 194 cars. 5
CASSETTE TAPE TRANSPORT MECHANISM
 Less motor, brand new $\mathbf{E 3} \cdot \mathbf{5 0}$ zost sop.

## $10^{\prime \prime}$ ELAC HI-FI SPEAKER

Litqu cersmic mathet.
Responae: $60-18.000 \mathrm{cp}$. inti renonence as evi. 10 watts, Pots 400

TEAK VENEER HI-FI SPEAKER CABINETS MoDel " $A$ ". $20 \times 13 \times 12 \mathrm{im}$. For 12 in . dinaor inin reazker. |4.50 Post
YODEL "B" BOOKSHELE
 KODEL, "C" BOOKSHELF
For 81 lix ond iwecter. $\mathbf{£ 5} .95$ post 75p
LOUDSPEAEER CABINET WADDIKG
1831. wide. 20 ph .

```
 GOODMANS CONE TWEETER
```



```
10in.
ELACTTW&ETER DÖARS wooter q ohm &10.05
```

BARGAIN C CHANHEL TRANSTSTOR
MOFO EHXER, Add mulicmi divirifits mix Micraphone. zecordi, tape and buner tith a deparate controil into aingle autput, 9 volt bettery $\mathbf{~} 6.75$ TWO CHANNEL STERED YERSIOX OF ABOVE E月 50
 controls, 28 Foll batery aperated or Maina Supply 2095

THE 'INETANT" BOLK TAPE ERASER \& HEAD DEMAGNETISER uiteble for rassettes, and Catiot s A E
44.95

## WAFER HEATING ELEMENTS THF

Size $101 \times 8 \frac{1}{4} \quad$ sin. Operating vollage 2001250\% s.c. $\mathbf{~} 500 \mathrm{~F}$ aborios. Sultable for Heallog Pads. Foud Wermets, Consector asbeblas. OKLY 40p EACE (FOOR FOR 21.5D)







DE LUXE BSR HI-FI AUTOCHANGER
Plays 121a, 10in, or 7in. zecords
Auto or Menuil. A high quasily unts bseked by ESR coltablity
whin 22 montha kuaranten. A. 6
Abore motor hoard $\times 11$ a
abore pootor hoard stik.
Wetow motor hoard 2ljn.


With MAGHETIC STEREO CARTRIDGE \&2|.50
Cueing Device, Elas Comperanalor, Eslaraced Arm, All Pout 75 MEY DECES
BSR MPGOFP12日 with Goldring GB5O magnelio cstirdike.
BSR Buafat Avtochanger with ceramic ourtridge. Grirard AP2s. Single diarer ters cattridme. BSR. P163. Bell frive Turntoble, less certridke. Gerrard 5300. Autochanger with ceramic cartridge. Garratd Minfchengaz, Playl all alze recordf. Ceramic cortrldge.
gSR. PIBR. Snake arm, faredi turniable, ceramia cartridge.

## 224-50

212.85
$228 \cdot 50$
527-50
814-85
29-85
$210 \cdot 85$

BAKER MAJOR I2" $\mathbf{E |} 5.00$


BAKER SPEAKERS "BIG SOUND"
Robailty conritructed to itand up to lang periodi ol slectrodic pawer. As gred by Eafiul reaponite $30-13,000 \mathrm{cps}$
Hatiz zosonantes bib tgi.
GROUP " 25 " iR1n. 30 witt
4,8 or 10 ohma

GROUP ${ }^{54} 35^{\prime \prime}$
12in. 40 whtt
f. 8 or 26 ohtur.
GROUP $450 / 12$ " 12in. 60 walt profersiona
model. 4, or 18 ohma.
£ 12.00 E14.00 ${ }_{c}^{\text {ronn }} 1.00$ modeI. A, B or 1 B ohma.
 With alyminium prerence deine.
GROUP " $50 / 15$ "
ISin. 75 watt
8 or 18 ohme.
E26.00
Post 21 go
Sead for Iemitels on Disce, PA. and Group Gear.
BAKER 150 WATT
QUALITY
TRANSISTOR
MIXER/AMPLIFIER


Profosilatal smpifiler bilnk adrateed ciecult dentan, Idesl for ditaco-kroupa, P.A. or marical initramenta, 1 inputs 4 way mixioz. Manter treble, basi and Folome controls. 3 ipeaker autpat accket" to pult taytions combinations of apeakera. Gusrantegd. Doiaila B.A.E. Al maint

675
100 WATT DISCO AMPLIFIER
MADE EY JENMINGS MUSICAL INSTRUMENTS A Speaknr outputs volqme, treble, bsis, controls
CAN BE पBED AA 100 WATT BLAVE

## B.S.R. SINGLE PLAYER DECK

3 Epeed. Piays all aizo records, \$leteo Certridge. Cuging device, Idesi Disco Deck.

$$
£ \mid 5 \cdot 50 \text { Post } 78 \mathrm{~s}
$$



DRILL SPEED CONTROLLERKIGHT DIMMER KIT. EAEF to
 STEREO PRE-AMF EIT, All garta to baild this pre-imp. Binpria tor hith mpdium or low rsin per chanabl, with poluma control

R.C.S. SOUND TO LIGHT DISPLAY


Cabinet artie 4 .
Prtao E 17
200 Wall Resr Reflecting While Light Bulbu. Ideal for Dicco Lighta, Edigon Scrom Fiting 75p. Each.

MAINS TRANSFORMERS ${ }_{60 \mathrm{~F}}^{\mathrm{Pom}}$






R.C.S.

BOOKSHELF

## SPEAKERS


18 watit rme. B obms
§ 19 pair font 81 :50

## BAKER DISCO SPEAKERS

HIGH QUALITY-BRITISH MADE

## $2 \times 12^{\prime \prime}$ CABINETS

 60 WATTR.M.S.


SINGLE I2inch CABS COMPLETE 30 WATT R.M.S. G32. WITH HORN 640. 40 WATT R.M.S. £34. WITH HORN $£ 42$. 60 WATT R.M.S. E4I. WITH HORN $£ 49$. CARR E3EA.

## "SUPERB HI-FI"

I2in 25 watts
 remarkable low cone resomanica
 despext baze. FHited with a apacial
copper drive and concentrle copper drive and concentrle
Iweeter cond renulting in Iull ramge reprodoctioh with remarlaable teticiency in the upper rukizter.

 Useful responso
or If ohma radele.
$£ 22 \cdot 00$


## "AUDITORIUM"

I2in. 35 watts
A full range reproducer tor hikh potwer, Idesl tor Hi-Et und puble addrass, malti-xpeaher syatemb, electric orgmer.
 Fluz Denaly 15,000 gs uli Trefil reaponse $25-16,000 \mathrm{cpa}$
£21.00 Past
51.60
"AUDITORIUM"
I5in. 45 wates
A high wattege loudipenker ot exctitionsl cuality with a Ioval for Public Addrers, Dincotheques Electronla initroments ent the home Hi-Fi.
Sall Resonance
Fatir Denjity
36 cp
Tatril retponte
15,000 ghuss
$20-15,000 \mathrm{cps}$
or 10 ahms madela.
£26.00 $\underset{\substack{\text { Par } \\ 2160}}{ }$



E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!

15W model E10.50
8 ohme Pout $85^{5}$
G00DMANS 20W Woofer



#  

everything for the modern D.I.Y. electronics enthusiast and more.



[^0]:    

[^1]:    
    
    
    
    

