

wf wLIRECK

A YHF WAYEMEIER

T.T.L. 74 I.C's By TEXAS, NATIONAL, I.T.T., FAIRCHILD Etc

7400	14p	7413	30p	7432	25p	7454	15p	7490	$35 p$ $75 p$	74121	30p	74139	100p	74156	70 p	74174	100p	74189	350p
7401	14p	7414	60p	7437	25p	7460	15p	7491	75p	74122	40p	74141	60p	74157	70 p	74175	75p	74190	140p
7402	14p	7416	30p	7438	25p	7470	30p	7492	45p	74123	60 p	74142	270p	74160	90p	74176	100p	74191	140p
7403	14p	7417	30p	7440	15p	7472	25p	7493	${ }_{60 p}$	74125	50 p	74143	270p	74161	90p	74177	100 p	74191 74192	140p 120p
7404	14p	7420	15p	7441	$65 p$	7473	30p	7495	${ }_{70 \mathrm{p}}$	74126	50p	74144	270 p	74162	90 p	74178	140p	74192	120p
7405	14 p	7422	20p	7442	${ }_{80}^{65 p}$	7474	30 p	7496	70p	74130	130 p	74145	75p	74163	90 p	74179	140 p	74193	120p
7406 7407	40 p	7423	25p	7445	80p	7475	30 p	74100 74104	95p 40 p	74131	100 p	74147 74148	230p	74164	125p	74180	100p	74194	100p
7408	20p	7425	25p	7447	75	7475	30p	74105	40p	74132	65p	74150	120p	74165	125p	74181	200p	74195	100p
7409	20p	7426	25p	7448	70p	7483	$85 p$	74107	30 p	74135	100p	74151	65 p	74166	125 p	74182	75 p	74196	100 p
7410	15p	7427	25p	7450	15p	7485	100p	74109	50p	74136	80p	74153	$65 p$	74167	325 p	74184	150p	74197	100p
7411	20p	7428	40p	7451	15p	7486	30p	74118	90p	74137	100p	74154	120p	74170	200p	74185	150p	74198	185p
7412	20p	7430	15p	7453	.15p	7489	250p	74120	90p	74138	125p	74155	70p	74173	150p	74188	350 p	74199	185p

SEMICONDUCTORS

by MULLARD, TEXAS, MOTOROLA, SIEMENS, I.T.T., R.C.A.

BRITAINY LEADING IOURNAL FOR THE RADIO \& ELEGTRONIC CONSTRUCTOR

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

```
    News and Views
890 EDITORIAL-Band-Switch
891 NEWS...NEWS...NEWS
904 PW READER'S PCB SERVICE-Prices and details of the PCBs available
909 PRODUCTION LINES-Information on the latest products
                                Alan Martin
```



```
911 PRACTICAL WIRELESS-Pre-view of our next issue
928 ON THE AIR-Amateur Bands .......................................................................... . . Dowdeswell G4AR
    SW Broadcast Bands . .................................................... Charles Molloy G8BUS
```



```
    VHF Personality—Henry Hatfield .......................................... Ron Ham BRS15744
938 KINDLY NOTE-Jubilee Organ. Mystery Train Tour, March 1978.
    For our Constructors
```



```
    A 5 MHz single-beam measuring oscilloscope
896 DESIGN YOUR OWN PROJECTS-6 ............................................ . Toby Bailey and Bob Whitaker
    A TTL interface circuit
```



```
    A novel omni-directional design
910 EXPERIMENTER'S CORNER
    LED Light Display. Transistor Gain Indicator
912- "EUROPA"STEREO AMPLIFIER-2 ............................................................... C. Toms B.Sc.
    Construction and setting up
917 \muDECNOLOGY Project No. 2 ........................................................................ David Gibson
    The Grip 'n Grow
919 ECONOMY TIMING STROBE-EXTRA DATA
    Some design improvements
```



```
    An absorption wavemeter for the transmitting amateur
```

 General Interest
 902 THE 5-METRE STORY-3 ... R Ron Ham
Memories of the days when amateurs were licensed to operate on the 60 MHz band
905 IC OF THE MONTH
Brian Dance M.Sc
The 2N5777 Photo-Darlington sensor
922 SO YOU WANT TO PASS THE RAE ?-8 .. John Thornton Lawrence GW3IGA and Ken McKay GW8CMY
Modulation and measurements
936 LAMBDA CIRCUITS.. . Brian Dance MSc
An unusual circuit based on complementary f.e.t.s.

COPYRIGHT

(1) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' is fully protected and reproduction or imitation In whole or in part is expressly forbidden. All reasonable precautions are taken by 'Practical Wireless'. to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

GREENWELO
 443 Millbnook Road Southampton SO1 OHX Tel:(0703) 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
\star SAVE ON MONEY-Bulk buying means lowest prices-just compare with others!
\star Have the right part-No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC, GENT BY RETURN OF POST, VAT INCLUSIVE PRICES.
K001 50 V ceramic plate capacitors. Total 210, $£ 3,35$
$\mathbf{K 0 0 2}$ Extended rana,
330 values $£ 4.90$
$K 003$ Polyester capacitors, 10 each these values: $0.01,0.015,0.022,0.033$, $0.047,0.068,0.1,0.15$, $0.22,0.33$, $0.47 \mu \mathrm{~F}$. 110 altogether for $£ 4.75$
K 004 Mylar capacitors. min 100 K004 Mylar capacitors, min 100 l tyne.
10 each all values from 10 each all values from 1000 pF to K005 Polystyrene capacitors, 10 each value from 10 DF to $10,000 \mathrm{OF}$. E12 series
$5 \% 160 \mathrm{~V}$. Total 370 for $£ 12 \cdot 30$ $5 \% 160 \mathrm{~V}$. Totell 370 for $\mathbf{~ E 1 2 . 3 0}$
K 006 Tantalum bead capacitors. 10 K006 Tantalum bead capacitors. 10
each of the following: $0.1,0.15,0.22$ each of the following: $0.1,0.75,0.22$
$0.33,0 \cdot 47,0.68,1,2 \cdot 2,3 \cdot 3,4.7 .6 \cdot 8, ~ a l$ $35 V ; 10 / 25 \quad 15 / 16 \quad 22 / 16 \quad 33 / 1047 / 6 \quad 100 / 3$ Total 170 tants for $\varepsilon 14 \cdot 20$
K007 Electrolytic capacitors 25 V working, small physical size. 10 each
 K008 Extended range, as above, also
including 220,470 and $1000 \mu \mathrm{~F}$. Total neluading 220
100 for $£ 5 \cdot 90$
K021 Miniature carbon film 5% resistors, CR25 or similar. to of each value from
10R to $1 M$, E12 series. Total 610 resistors, ${ }_{K 022}^{〔 6.00}$ Extended range, total 850 resistors from 1 R to $10 \mathrm{M} £ 8 \cdot 30$
K041 Zener diodes, $400 \mathrm{~mW} 5 \%$ BZY8B, etc. 10 of each value from 27 V to 36 V ,
$E 24$ series. Total 280 for $E 15-30$ K042 As above but 5 of each value ${ }_{5} 8.70$

71b BARGAIN PARCEL
Hundreds of new components-pots,
 Swoards with semiconductors, loads of
Bodds and ends. Amazing value at only
oder edds and ends. Amazing value at only

PC ETCHING KIT MK III

Now contains 200 sq. ins. coper clad
board, 1tb. Ferric Chioride, DALO etch
resist pen abrasive cleaner, two miniresist pen, abrasive cleaner, two mini-
ature drill bits, etching dish and instructlons. $£ 4.95$

FERRIC CHLORIDE
Anhydrous technical quality in 11 b

CALCULATOR CHIP
Type C500 by GI. 4 function + constant. 8 digit. Multiplexed output for simple
keyboard interfacing. 24 pin DiL. With keyboard interfacing. 24 pin DIL. With
comprehensive data + socket I .50 .
DARLINGTON COMP PAIR
BD695A and 8D696A-45V 8A 70W NPN pair $E 1 \cdot 50$.

VERO OFFCUTS

Pack A, All $0.1^{\prime \prime}$ PackB, All $0.15^{\prime \prime}$
Pack C', Mixed PackD. All $0.1^{\prime \prime}$ P Pack C, Mixed PackD, Allo.1" Plain Each pack contains 7 or 8 pieces with
a total area of 100 sq . in. Each pack a total area of 100 sa . in. Each pack
is fi .50 . Also avallable by welght. is $£ 1 \cdot 50$. Also avalla
115 $£ 4.20,101 \mathrm{~b} £ 32$ - 50 .
 0.1" Plain $£ 1$ 1.83

Our retail it hops at 24 Deptford BroadWay, London, SE8 (01-692 2009) and (01-688 2950) stock some of the advertised goods for personal callers only. Ring them for details.
All prices quoted include VAT and patched on day of Moceitrt. SAE with patched on day or receipt SAE with
enquiries please. MINIMUM ORDER VALUE \&1. Official orders accepted from schools, etc. (Minimum invoice charge $£ 5$). Export/Wholesale enquitires welcome. Wholesale list now available
for bona-fide traders. Surplus components always wanted.
purplus com-

SIRENS

Work off $4 \times$ HP7 batteries, emlt very loud noise. Overall size $110 \times 75 \times$ house, workshop, etc. ONLY E19.95:

VEROCASES

Plastic top and bottom, ally panels front and back.
Type
$1410205 \times 140 \times 40 \mathrm{~mm}$ $1411205 \times 140 \times 75 \mathrm{~mm}$ $1412205 \times 140 \times 110 \mathrm{~mm}$
£3. 70 $1237154 \times 85 \times 40 \mathrm{~mm}$ $1238154 \times 85 \times 60 \mathrm{~mm}$ $\begin{array}{r}\text { \& } \\ \mathbf{4} \cdot \mathbf{2 0} \\ \hline\end{array}$

VERO PLASTIC BOXES

Professlonal quallty. two tone grey polystyrene with threaded inserts for Type
$2518120 \times 65 \times 40 \mathrm{~mm}$
$2518120 \times 65 \times 40 \mathrm{~mm}$
$52 \cdot 24$
$2520150 \times 80 \times 50 \mathrm{~mm}$
£2. 68
Sloping front version.
c3. 72
Type
$2523220 \times 174 \times 100 / 52 \mathrm{~mm} \quad £ 6.90$ $1798171 \times 121 \times 75 / 37.5 \mathrm{~mm} \quad \mathbf{£ 4 . 6 5}$ Gen. purpose plastic potting box
$71 \times 49 \times 24$. In black or white 40 p Hand Controller box, shaped for ease of use in the hand, $94 \times 69 \times 23 \mathrm{~mm} 64 \mathrm{p}$.
RELAYS and SOLENOIDS open construction relay with 2 10A c/o contacts, coil rated 24 V ac, but works well on 6V DC 60 p
240 V ac enclosed, 11 pin plug in base 10 A c/o contacts, $\mathbf{E 1} \cdot 20$.
240 ac open, 2 15A c/o contacts $£ 1 \cdot 50$ Solenold, rated 48 V DC, but work on 24 V . 10 mm push or pull action. Single hoie fixing. Size $27 \times 18 \times 15 \mathrm{~mm}$

SCR \& TRIAC SCOOP!!
C1067-100V 6A Plastic SCR. 3 for $£ 1$. 10 for $£ 2$
6 A 600 V
TRIAC-Plastic, only 75p. 10 for $£ 6-50,100$ for $£ 51$.

EDGE CONNECTORS

Special purchase of these 0.1" pltch double-sided gold-plated connectors enables us to offer them at less than one-third thelr original list pricel
18 way $41 \mathrm{p}: 21$ way 47p; 32 way 72 p 18 way $41 \mathrm{p} ; 21$ way 47p;
40 way $90 \mathrm{p} ; 49$ way 11p.

SOLAR CELLS

As used on space labs, etc., these tiny ceils give 50uA @ 0.5 V in sunlight Ideal for powerlng small C-MOS projects, etc. Can be banked together for 3 for $£ 1 ; 10$ for $£ 3 ; 25$ for $£ 7$; 100 for $£ 25$.

POWER PACK

 Wood grained metal case $90 \times 80 \times$75 mm containlng mains transformer giving 6 V @ $200 \mathrm{~mA}, 2$ co-ax. sockets, PC board with 11"' fuseholder R's C's

S-DECS \& T-DECS
S-DEC Breadboard
£2-25
T-DEC Breadboard $£ 3.95$
1977/78 CATALOGUE NOW AVAILABLE - MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS ONLY 30p, Plus 15p POST.

COMPONENT PACKS

400 asstd. carbon resistors $\quad £ 1 \cdot 50$ 100 Wirewounds $2-15 \mathrm{~W} \quad £ 1.50$ 200 Miniature resistors, $1, \frac{1}{4}$, and $\frac{1}{2} \mathbf{W}$ 200 poly, mica, ceramic caps $\quad \mathbf{£ 1 \cdot 2 0}$ 100 polyester, -01-2-2uF E1.00 200 PC resistors 75p

TEXAS 741

8 Pin DIL-Full Spec.
100 off £19-50
25 off £5•50

IMPITIDLS

BARGAIN MONTH! POST FREE $\mathbf{2 5}+$

 FREE 197 CATALOGUE SALE LIST. MANY SURPLUS \&CLEARANCELINES. SENDS. CLEARANCELINES. SENDS.A.E.DOYO TRAMPUS ELECTRONICS LAd. 58-60 GROVE RD. WINDSOR GERKS. SL4 1HS. TELEPHONE WINDSOR (07535) 54525.
Fast service on ex stock product. Normally 24 hour turn around charge except Barctanufacturers specifications. No minlmum orde mum. Send C.W.O. post free Access by post or telephone 25 mhin orders iotherwise add 200 post \& packing Add 8% VAT to Item

LEDs ${ }^{2 \prime \prime}$
Red no ${ }^{\prime \prime}$
eli $0 \cdot 2^{\prime \prime}$ or 209 \& Colour LEDS all

DISPLAY
 TGS Gas Detectors ${ }^{\text {ET }} \mathbf{5 5 ^ { * }}$

CAPACITORS

Ceramic $22 p$ to $0.5 \quad 5 p$
Electrolytic 1μ fo $200 \mu \mathrm{~F}$
p

$1000 \mu \mathrm{z} / 25 \mathrm{v}$ a $\xrightarrow{9 p_{0},}$

Tantalums only 16p ea
RESISTORS i/fw 2p ea
Presets $10 p \quad$ Pots 25 p
VERO 0.1 MATRIX

Nylon Board Copper 6×4,
60 p

RS Bleeper 12 v RS Bleeper 12 V
Knobbs: Cheap
Relay. Multi Pole 12v ${ }^{100^{\circ}}{ }^{*}$ Silicon Grease-Satchet

REDUCED LINES

FREE: '197t CATALOGUE SALE LIST. SEND S.A.E. BARGAIN OFFERSI THIS MONTH'S SNIPS. LIMITED STOCKS.
TUNER MODULE. BRAND NEW EXPENSIVE. EX MUSIC
CENTRE MW, LW, FM MPX PUSH BUTTON E 22.50
TUNING GANG. 7 watt STEREO AMPLIFIER MODULE E31-69

AIR SPACED 0-360/395
PC. HALF PRICE \&I ea

SO YOU WANT TO PASS THE RAE?

THE RADIO AMATEURS' EXAMINATION MANUAL (7th edition)
by G. L. Benbow, G3HB
A pass in the Radio Amateurs' Examination is required before the authorities will grant an amateur radio transmitting licence, and the aim of this book is simple: to provide sufficient information to enable its readers to pass that examination. This new edition has been revised to take account of the changes in licence conditions which took place at the beginning of 1977, and is valid for both the May and December 1978 examinations.
Chapter titles are: Becoming a radio amateur; Elementary electrical principles and calculations; Thermionic valves and their applications; introduction to semiconductors; Power supplies; Receivers; Transmitters; Measurements; Propagation and aerials; Interference; Licence conditions; Tackling the Radio Amateurs' Examination.
87 + viii pages
£1-60 post paid

RADIO AMATEURS' EXAMINATION QUESTIONS AND ANSWERS

This new book is a collection of model answers to typical Radio Amateurs' Examination questions, and should prove invaluable to candidates as a revision aid. The answers given are complete with diagrams and worked calculations where necessary, and demonstrate the sort of answer required to achieve a good pass mark. 118 pages
£2. 00 post paid
These are just two of a complete range of technical publications, log books and maps for the radio amateur. Send a large stamped self-addressed envelope for the complete list.
The RSGB is the national society representing all UK radio amateurs. Membership is open to all interested in the hobby: write to the membership section and ask for full details.

Radio Society of Great Britain

 35 DOUGHTY ST., LONDON WC1N 2AE
\star DISCOMAJOR POWER DISCO CONSOLE with integral Power Amplifier TWIN FULL SIZE BSR turntables with cueing device.
CARTRIDGES with Diamond Styli.
3 SEPARATE VOLUME CONTROLS for each turntable and Mic FACILITIES
Terms: Deposit $£ 30 \cdot 00$ and 18 fortnightly pyts. $£ 9 \cdot 80$
(1) TWIN T/TABLE CONSOL PRE-AMP, and POWER OUTPUT STAGES (2) \& (3) PAIR 50 WATT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS

Also MONTTORING FACICOS Cartridges with diamond styli. Separate Vol. controls for each turntable. control. Black Vynide covered Cabinet with lid.
Or Dep $£ 16.49 \& 18$ f'tndy Dymits. $£ 6.75$ (Total $£ 137.99$)

Carr. £з. $50 £ 119.95$
TD2s STEREO VERSION OF ABOVE $\$ 125.00$ Carr. $\mathbf{e 3} \cdot 00$

DISCOMAJOR/IOO TWIN TURNTABLE POWER CONSOLE EI39.95 Twin Full size BSR turntables. Sonotone or Acos Cartridges with Twin Full size BSR turntables. Sonotone or Acos Cartridges with Carr. £3.50
Diamond Styli. Facilities as TDI Console but with built-in 100 watt Power Amplifier 18 fortnightly payments $£ 7 \cdot 70$ (Total $£ 158 \cdot 55$)
DISCOMAJOR/200 $£ 159.95$ Carr. $£ 4.00$
200 watt version of above. Terms: Dep. $£ 29.95$ and 18
fortnightiy payments $£ 8 \cdot 60$ fortnightiy paym
(Total $£ 184 \cdot 75$)
RSC PHANTOM 50 COMBO AMP. $£ 69.95$ Rating 50 watts. 3 inputs, 2 vol controls, individual Carr. £1-50. Bass \& Treble controls, Suitable for Lead or Rhythm Guitar, mic.,
Radio, Tape, etc. Inc. High Flux $12^{\prime \prime} 50 w$ Speaker. Dep. $£ 10.95 \& 8$ Radio, Tape, etc. Inc. High Flux $12^{\prime \prime} 50 \mathrm{w}$
monthly payments $£ 8 \cdot 71$ (Total $£ 80 \cdot 63$).

IOOW POWER (SLAVE) AMPLIFIER

.60. 3	9

Suitable for use with DISCO-Consoles. Also for

 increasing output of lower-powered Amplifier. Dep. 89.00 and 8 mthly pyts of66.05 (Total $£ 57.40$) Cart. $£ 1.50$
1049.95 100+100W MODEL $£ 69.95$ Carr. $£ 1 \cdot 50$.

TITAN TA/50A 50W AMPLIFIER

Solid state, 3 sep. controlled inputs plus Master Vontrol. Bass, Treble \& Presence Controls. Yalue $£ 60$ Terms: Dep. 89. 28 monthly payments \& 6.05 . (Total 557 - 40) Carr. $£ 1$.
Matching Cabinets $1 \times 12^{\prime \prime} £ 29.95$

TITAN TA/IO0A IOOW AMPLIFIER TWIN CHANNEL-4 INPUTS 69.95 A DORMAL OR BRIGHT) A De-luxe proressional unit with Carr. 11.50 $2 \times 12^{\prime \prime} 120 \mathrm{~W}$ Cabinet speaker $£ 49 \cdot 95$ with above only. Carr. E 1.50

INTEREST REFUNDED on Credit Purchases, settled in 3 mths

JINGLE MACHINES from $£ 37.95$ COLUMN SPEAKERS from $£ 29.95$

 ECHO CHAMBERS from $£ 53.95$ GROUP DISCO SPKRS in cabs ,, $£ 11.95$ TITAN 'ADD-ON' HIGH FREQUENCY HORN UNITSMODEL TS2H
 MODEL T1H creased and soun clarity and proection Rating 100 fier power Maximum ampliwatts.
Either model $\mathbb{£ 2 7 . 9 5}$ Carr. 75p Comparable with units at twice the cost Terms: Dep $\mathbf{5 6 . 9 5} \& 8$ mthly pyts $\mathbf{£ 3} \mathbf{1 2}$ (Total $£ 31.91$)
RSC MAINS TRANSFORMERS TYPES FOR VALVE RADIOB OUTPUT TRANSFORMERS). As previously adivertised still avallable.
FILAMENT OR TRAISSISTOR POWER PACE

- Branch

TITAN 100W BASS BINS 199.95 value
High quality $15^{\prime \prime}$ high flux Bass Unit and J104 Horn Tweeter in folded horn enclosure providing amazing level of sound output. Terms Dep. $£ 14.95$ and 18 fortnightly payments. $\mathbf{5 5} \cdot 58$ (Total £115.39) Carr. £3.50.
FANE 'NEW POP RANGE’ SPEAKERS

Power ratings R.M.S. Cont. 2 YRS GUARANTEE
Gauss 14000 Imp - 15 ohms. CARR FREE.

ALL MODELS AVAILABLE - CASH
$12^{\prime \prime}$ POP $40 \quad 45 \mathrm{w}$ £14.95 $15^{\prime \prime}$ POP 80 80w $£ 29.95$
12 " POP 50H 50w $16.99 \quad 18^{\prime \prime}$ POP 100 100w E49.95 12" POP 75 75w $122.95 \quad$ 18" POP I50 150w 455.00 15" POP 70 70w $\mathbf{2 2 5 . 9 5}$
Stockist of TITAN GROUP/DISCO SPEAKERS GUARANTEED

Stockist of	Carr. $£ 1-20$, under $£ 18$, over this add $6 p$ per $£ 1.5$ YEARS
LIGHTING	V

by PULSAR
and \star
$\begin{array}{r}\mathrm{T} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \\ \hline\end{array}$
GROUP
Equipment by
CARLSBRO

TITAN TA/IOOC COMBO
100w R.M.S. Amp. incorporating a fabulous
Fane Crescendo 12 " 100 watt spkr for really superlative results with Lead spkr for reall Guitar Or Dep 817.95 \& 18 f'tntly payts $£ 6.69$
(Total £138.37)

LIGHTING BY PULSAR AND OPTIKINETICS

SUPER-STROBE with $5 \cdot 5^{\prime \prime}$ parabolic reflector MAXI-STROBE with 7" parabolic reflector JUMBO-STROBE with 9" parabolic reflector

PROJECTORS Carr. Free

	Value	RSC Price	
T12/45 12" 45 w	£15.00	£11.95	
T12/60 R12" 60 w	£21.00	£13.95	
T12/100 12 ${ }^{\text {/ } 100 w}$	£36.00	£25.95	
T15/60 15" 60 w	£26.00	£16.99	
5/70 15" 70 w	£28.00	819.95	
5/100 15" 100w	£41.00	£29.95	Rating RMS
T18/100 18" 100 w	£47.00	£36.95	Imp 8-15 ohms
CABINETS FOR	ABOVE He	duty,	hed in black
Vynide with Vynai sizes and cut-outs.	ir fronts, pro $\mathrm{TE} 1 \times 12$	tive corne 11.95	pieces. Various
TE $22 \times 12^{\prime \prime} 116.9$	Low Deposi	rms on	ers over $£ 20$
\underline{y}	TITAN	DOC	
	Fane Cresc superlative Guitar	$\begin{aligned} & 12100 \text { wat } \\ & \text { s with Lead } \\ & \text { Carr. £5 } \end{aligned}$	ing a fabulous spkr for really <119.95
	Or Dep $£ 17$ (Total $£ 138$	\& 18 f tn	ly payts ± 6.69

New Branches at

LEEDS, HANLEY and WOLVERHAMPTON

OPEN ALL DAY SATURDAYS (5 Day Weak) BRADFORD 10 North Parade (Closed Wed.). Tel. 25349
BIRMINGHAM $30 / 31$ Great Western Arcede. BIRMINGHAM $30 / 31$ Great Western Arcade.

CARLISLE 8 English Street (Closed Wed.) Tel. 021-236 1279 COVENTRY 17 Shelton Sq., The PrecInct. ${ }^{\text {Col. }} 25983$ DERBY 77 St. Peter's Streat (Closed Wed.) Tel. 25983 | DARLINGTON 19 Northgate (Cl. Wed.). |
| :--- |
| DEWSBURY $9 / 11$ Kingsway (Closed Tues.) Tel. 468043 | DEWSEURY $9 / 11$ KIngsway (Closed Tues.) T DONCASTER 3 Queensgate, Waterdale Centre. (Closed Thurs). Tel. 63069 EDINBURGH 101 Lothlan Rd. (Cl. Wed.) Tel. 2299501

GLASGOW 326 Argyle St. (Cl. Tues.).

All items subject to availability
HANLEY Stoke-on-Trent, 44 Piccadilly Tel. 287764 $\begin{array}{ll}\text { HULL } 7 \text { Whitefriargate (Closed Thurs.). } & \text { Tel. } 20505 \\ \text { LEICESTER } 32 \text { High Streat (Closed Thurs.). } & \text { Tel. } 56420\end{array}$ LEEDS $16-18$ County (Mecca) Arcade, Briggate $\begin{gathered}\text { (Closed Wed.). Tel. } 449609\end{gathered}$ LIVERPOOL TEMPORARILY INOPERATIVE due to LONDON 238 Ed serious fire
LONDON 238 Edgware Rosd, W.2. (Closed Thurs.). 7231629
-MANCHESTER 60A Oldham Streat (Closed Wed.). 2362778
Barclaycard a Access
£39.95 PULSAR SL SUPER (Sound to lite) £39.95 PULSAR ZERO 3000 (Sound to lite) 669.95 PULSAR SPOTBANKS (less bulbs) 627.95 PULSAR REMOTE CONTROL $£ 56 \cdot 95$ 684.95 2.1 .95
$\mathbf{4} 29 \cdot 70$ $\mathbf{2} 29.70$
$\mathbf{4} 15 \cdot 95$

MODEL

 M104 $\begin{array}{ll}\text { Imp } & 8 \Omega \\ \text { Size }\end{array}$ $\operatorname{limp}_{\text {Size }}$ approx $10 \frac{1}{2}$
$\begin{aligned} & \times 13^{\prime \prime} \times 7!^{\prime \prime} \\ & \text { Rating } 50-70\end{aligned}$ watts Range $2-15$ Carr. Free $\{14.95$ Impedance or total impedance of $12^{\prime \prime}, 15^{\prime \prime}$ or $18^{\prime \prime}$ Drive units must not exceed impedance of single horn or pair in series. Pair J44, Single $\mathbf{J 7 3}$
or J104 suitable for amplifier power up to 100 watts subject to above and
with HPX2R 'Cross-over'
 MODEL $\sqrt{3} \operatorname{Imp} 8 \Omega$ $6 \pm^{\prime \prime}$ Rating $50 \times{ }^{\prime \prime} \times$ $\begin{array}{ll}31^{\prime \prime} \times 3 \frac{1}{\prime \prime} \times 3^{\prime \prime} & 6 t^{\prime \prime} \text { Rating } 50 \\ \text { Rating } 30-50 & \text { Range } 2-20 \mathrm{kHz}\end{array}$ watts Range
 PHONE ORDERA quoting Car. Free wil HPX2R Cros. TAIL ORDERS \& ETPORT ENOURTES TO:TUDI: 0582 E77881.
MAIL ORDERS MUST NOT AE SENT TO SHOPS TERERS C.W.O. or O.O.D. Ko. C.O.D. under 48. POSTAGE 60p PRE

MIDDLESBROUGH 103 Linthorpe Rd. (CI. Wed.) Tel. 247096 NEWCASTLE UPON TYNE 59 Grainger St.
NOTTINGHAM 19/19A Market Street Wed.). Tel. 21469 A Market Street
PRESTON (Closed Thurs.). Tel. 48068
41 Frlargate Walk, St. Georges Shopping Prec. 51979 SHEFFIELD 13 Exchange Street (Castle Mkt. Blds.)
STOCKPORT (Closed Thurs.). Tel. 20716
8 Little Underbank (Closed Thurs.).
WOLYERHAMPTON 6(Wultrun Way
Tel. 26612

- C VALVE MAIL ORDER CO CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED

 SPECIAL EXPRESS MAIL ORDER SERVICE
SEMICONDUCTORS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { BCY72 } \\
& \text { BCZ11 } \\
& \text { BD115 }
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.17 \\
& 1.50 \\
& 0.60
\end{aligned}
$$

\hline AA119 \& 0.20 \& ASY26 \& 0.45 \& BC159 \& 0.13* \& BD121 \& 1.50

\hline AAY30 \& 0.13 \& ASY27 \& 0.50 \& BC167 \& $0 \cdot 13^{*}$ \& BD123 \& 1.50

\hline AAY32 \& $0 \cdot 15$ \& ASZ15 \& 1.25 \& BC170 \& 0.16* \& BD131 \& 0.51

\hline AAZ13 \& 0.25 \& ASZ16 \& $1 \cdot 25$ \& BC171 \& 0.14* \& BD132 \& 0.54

\hline AAZ15 \& 0.31 \& ASZ17 \& $1 \cdot 25$ \& 8C172 \& 0.13* \& BD135 \& 0.35*

\hline AAZ17 \& 0.25 \& ASZ20 \& 0.75 \& BC173 \& $0 \cdot 15 *$ \& BDt36 \& 0-36**

\hline AC107 \& 0.75 \& ASZ21 \& 1.50 \& BC177 \& 0.19 \& BD137 \& ${ }_{0}^{0.37 *}$

\hline AC125 \& 0.30 \& AU110 \& $1 \cdot 70^{*}$ \& BC178 \& 0.18 \& 8D138 \& 0.40^{*}

\hline AC126 \& 0.25 \& AU113 \& ${ }^{1.70 *}$ \& BC179 \& 0.20 \& 8D139 \& 0.43*

\hline AC127 \& 0.25 \& AUY10 \& 1.70** \& BC182 \& $0.11^{\prime \prime}$ \& BD140 \& 0.47^{*}

\hline ${ }^{\text {A C }} 128$ \& 0.25
0.20 \& BA145 \& 0-15** \& BC183 \& 0.11° \& BD144 \& 0.4 .00

\hline AC149 \& 0.20 \& BA148 \& 0-15* \& BC184 \& 0.12* \& BD144 \& 2.00

\hline AC141K \& 0.35 \& BA154 \& $0 \cdot 10$ \& BC212 \& 0.14* \& BD181
BD182 \& 1.38
1.48

1-48

\hline AC142 \& 0.20 \& BA155 \& 0.12 \& BC213 \& $0 \cdot 14^{*}$ \& BD182 \& 1.48
0.80

\hline ${ }^{\text {A Cl }}$ A 172 K \& 0.30
0.25 \& BA156 \& 0.13 \& BC214 \& $0 \cdot 17{ }^{\circ}$ \& BD238 \& 0.80
0.85

\hline AC176 \& 0.25 \& BAW62 \& 0.05 \& BC237 \& 0.17° \& BD238 \&

\hline AC187 \& 0.25 \& BAX13 \& 0.07 \& BC238 \& 0.12* \& $8 \mathrm{BD10}$ \& 0.75

\hline AC188 \& 0.25 \& BAX16 \& 0.07 \& BC301 \& 0.45 \& BDX32 \& $2 \cdot 25$

\hline ACY17 \& 0.65 \& BC107 \& 0.12 \& BC303 \& 0.60 \& BDY20 \& 1.42

\hline ACY18 \& 0.65 \& BC108 \& 0.12 \& ${ }^{8} \mathrm{C} 307$ \& $0 \cdot 20{ }^{\circ}$ \& BDY60 \& 75

\hline ACY19 \& 0.65 \& BC109 \& 0.13 \& BC308 \& 0.18* \& BF115 \& 0.39

\hline ACY20 \& 0.65 \& BC113 \& 0.15* \& BC327 \& 0-22* \& BF152 \& 0.25

\hline ACY21 \& 0.65 \& BC114 \& $0.18{ }^{*}$ \& BC328 \& 0.18* \& BF153 \& 0.25

\hline ACY39 \& 1.25 \& BC115 \& 0.19* \& BC337 \& 0.19* \& BF154 \& 0.25

\hline AD149 \& 0.70 \& BC116 \& 0.19* \& BC338 \& 0.18* \& BF159 \& D. 35

\hline AD161 \& 0.75 \& BC117 \& 0.22* \& BCY30 \& $1-00$ \& BF160 \& 0.30

\hline AD162 \& 0.75 \& BC118 \& 0.16* \& $\mathrm{BCY}^{\text {Cl }}$ \& 1.00 \& BF167 \& 0.39

\hline AF106 \& 0.45 \& BC125 \& $0 \cdot 18{ }^{\circ}$ \& BCY32 \& 1.00 \& BF173 \& 0.39

\hline AF114 \& 0.25 \& BC126 \& 0.25* \& BCY33 \& 0.90 \& BF177 \& 0.38

\hline AF115 \& 0.25 \& BC135 \& 0.15* \& BCY34 \& 0.90 \& BF178 \& 0.45

\hline AF116 \& 0.25 \& BC136 \& 0.19* \& BCY39 \& 3.00 \& BF179 \& 0.48

\hline AF117 \& 0.25 \& BC137 \& 0.16* \& BCY40 \& 1.25 \& BF180 \& 0.45

\hline AF139 \& 0.40 \& BC147 \& $0.10{ }^{*}$ \& BCY42 \& 0.30 \& BF18t \& 0.45

\hline AF186 \& 1.50 \& BC148 \& 0.10* \& BCY43 \& $0 \cdot 32$ \& BF182 \& 0.45

\hline AF239 \& 0.45 \& 8C149 \& 0.13* \& BCY58 \& 0.23 \& BF183 \& 0.45

\hline AFZ11 \& 2.75 \& BC157 \& 0.12* \& BCY70 \& 0.18 \& BF184 \& 0.39

\hline AFZ12 \& 2.75 \& BC158 \& 0.11^{*} \& BCY71 \& 0.22 \& BF185 \& $0 \cdot 37$

\hline
\end{tabular}

0.17	BF194	0.12*
$1 \cdot 50$	BF195	$0.11 *$
0.60	BF196	$0 \cdot 13^{*}$
1.50	BF197	0.14*
1.50	BF200	0.32
0.51	BF224	0.20*
0.54	BF244	0.35*
-35*	BF257	0.37
36*	BF258	0.42
37*	BF259	0.45
40*	BF336	0.50°
43*	BF337	0.53*
47*	BF338	0.55*
$2 \cdot 00$	BFS21	2.27
1 -38	BFS28	$1 \cdot 38$
48	BFS61	$0.25{ }^{\circ}$
80	BFS98	${ }^{0.25 *}$
5	BFW10	0.90
0.75	BFW11	0.90
$2 \cdot 25$	BFX84	$0 \cdot 38$
42	BFX85	0.41
	BFX87	0.35
0.39	BFX88	$0 \cdot 32$
	BFY50	0.28
	BFY51	0.26
25	BFY52	0.26
25	BFY64	0.30
35	BFY90	1.32
30	BSX19	0.34
39	BSX20	$0 \cdot 34$
39	BSX21	$0 \cdot 32$
38	BT106	1-25
45	BTY79/	00R
48		$3 \cdot 19$
45	BU205	2-25*
, 5	BU206	2.25*
- 5	BU208	$2.50{ }^{*}$
5	BY100	0.45
39	BY126	$0 \cdot 14$
37	BY127	0.15

BZX69	0.20	OA70	0.30
Series		OA79	0.30
BZY88	$0 \cdot 13$	OAB1	0.30
Serles		OA85	0.30
CRS 105	0.45	OAg0	0.08
CRS/140	0.60	OA91	0.08
CRS 1305	0.45	O A95	0.08
CRS/340	0.75	OA200	0.10
CRS/360	0.90	OA202	0.11
GEX66	1.50	OA210	0.75
GEX541	1.75	OA211	0.75
GJ3M	0.75	OAZ200	0.65
GJ5M	0.75	OAZ201	0.65
GM0378A	A. 50	OAZ206	0.65
KS100A	0.40*	OAZ207	0.65
MJE340	0.58	OC16	$1 \cdot 25$
MJE370	0.65	OC20	2.00
MJE371	0.81	OC22	$2 \cdot 50$
MJE520	0.65	0 OC 23	$2 \cdot 75$
MJE521	0.75	$0{ }^{\circ} 24$	3. 50
MJE2955	$1 \cdot 25$	OC25	0.90
MJE3055	0.75	${ }^{\text {OC26 }}$	0.90
MPF102	0.30°	OC28	2.00
MPF103	0.30*	$0 \mathrm{OC29}$	2.00
MPF104	$0 \cdot 30^{*}$	$0 \mathrm{OC35}$	$1 \cdot 50$
MPF105	$0.30 *$	OC36	1.50
MPSA060	0.25*	OC41	0.50
MPSA560	0.25*	$0 \mathrm{OC4}$	0.50
MPSU010	0-32*	${ }^{\circ} \mathrm{OC43}$	1.50 0.50
MPSU060	0.40**	${ }^{0} \mathrm{OC44}$	0.50 0.50
MPSU56	45*	$\bigcirc \mathrm{OC} 71$	0.45
NKT401	2.00	OC72	0.45
NKT403	1.73	0 C 73	1.00
NKT404	1.73	$0 \mathrm{C75}$	0.50
NE555	0.45	0 C 74	0.75
OA5	0.75	0 C 76	0.50
OAT	0.55	${ }^{\circ} \mathrm{C} 77$	1.20
OA10	0.55	OC81	0.75
OA47	0.14	OC812	1.00

[^0] | UCC | |
| :--- | :--- | :--- | :--- | :--- |
| | UCC |

VALVES

INTEGRATED CIRCUITS

DIL
 Sockets

THE WORLD'S FINEST FM TUNER MODULES OK?

We've said it before, and we'll say it again;
We offer the Largest and the Best range of FM Tuner modules in the UK, Europe and we belleve in the World. (Please advise us if you know differently.) We gasp when we read the unsupportable claims of other 'suppliers', describing things like deviation muting, which we have been offering in our 7030 FM IF system for ages. Long before most others gave it a thought
To read some adverts, you might imagine somebody had just discovered the wheel. Furthermore, we believe good signal processing is more important than rows of pretty lights and numbers, don't you?

ALL NEW CATALOGUE

To celebrate our new range of ICs, components, coils, filters, FM and AM modules etc., we are presenting an entirely new catalogue, which is free if you send an A4 SAE ($15 p$ stamp on it pse), and the front page from one of our old catalogues. This offer ceases on May 31st 1978, when the normal price of $45 p$ will apply. The new catalogue contains radio and wireless features centred on our new developments with Sprague, Telefunken and RCA, with the TDA1083 MW/LW/FM/Audio all-in-one IC system, the TDA1062 4 stage IC tunerhead, the CA 3189 E IF system, the Hitachi HA11219 FM noise blanking system and other radical new technology announced in the past few months. We are certain this will be of great value and interest to anyone concerned with radio and RF design.

The rest of our new range includes rasistons, capaciton and many Itams that now complete our range for the electronics enthusiast and designer. We naturally carry the very latest in radio semiconductors, and are pleased to report many new developments in the past six months, that are now readily available, with technical backup, from Ambit. But quite apart from our technical capability, we think you will find our prices attractive, and our product always first quality.

Examples from the range of components, modules etc.:
Resistors $1 / 4$ watt types in E12 saries, 1 ohm to 10 M ohms (Mullard/Iskra/piher) 15p/10 Minimum order 10 per vilue olease. Minimum rssisror-only order $£ 1,50$.
Ceramic plate and disc capacitors: oniy miniature and compact types eg. 10 nF : $\mathbf{3 5 p} / 10$
CA3189E: RCA's new IF system, $£ 2.75$ inc. datector coil and 22uH choke.
TDA1083: Sprague/Telefunken AM/FM/Audio IC, 800 mW output max $£ 2.55$
TDA1062: Telefunken FM tunerhead IC, good for $200 \mathrm{MHz}, £ 2.75$
Modules as previously advertized, plus these new ones: EF5803, 93189,EF5400, MPX decoder: 91196B: The superior HA1196 now with a 2 W monitor amplifier, and optional adjacent or alternate channel notching facllity, as well as a $\mathbf{5 5 k H z}$ low pass filter, pilot tone filters atc. $\mathbf{£ 1 6 . 4 5}$ New from TOKO: CFM2 series 4 section ladier fllters for $455 \mathrm{kHz} 6 \& 12 \mathrm{kHz}$ versions $£ 1.35$ each, CFM2 2 section mechanical filters for 455 kHz , same size as CFS series filters1 Plus others.............

ambil INTERNATIONAL 2GRESHAM ROAD BRENTWOOD ESSEX

Over 200 kits in the free Heathkit Catalogue

 with repeater alarm

NEW 4 Function Solid State Multimeter - One of a whole range of test equilpitent
 - Gives a distinctive 'yelping' sound-signal the moment your car is tampered with

Freezer Alarm - Gives audible signal if freezer temperature rises to -6 C for any reason

The Heathkit catalogue is packed with top quality kits -hundreds of practical and fascinating items which you can build yourself.

Send for your copy now!

To Heath (Gloucester) Ltd. Department PW48 Bristol Road, Gloucester, GL 2 6EE. Please send a copy of the Heathkit Catalogue. I enclose 11 p in stamps to cover postage only. Name Address

When you receive your catalogue you'll get details of this free offer worth approximately $£ 4,75$.

Soldering Iron offer FREE

NEW Electronic Chess Game

TWME Re:. wut Twer tras

TMCE Ehe informat on
in Halt the siza
$=\square=:$

Supertester 680R

 (illustrated)* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fsd on d.c.
$4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 80 Ranges -10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
£25.25 + VAT
|For Mal| Oriler add 80p PsP)

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 48 Ranges -10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{£ 1 9 . 9 5}$ + VAT
(For Mail Order add 80p P\&P)

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges - 8 Functions
* Complete with case -
only $93 \times 95 \times 23 \mathrm{~mm}$
£14.95 + VAT
(for Mail Order add 80p P\&P) 50 -plus page, fully detailed and illustrated Operating and Maintenance Manual. Now available from selected stockists. Write or phone for list, or for details of direct mail-order service.

STUNT TV WAN

4 EXCITING MOTORBIKE TV GAMES Normal and Super Rider Modes at the flick of a switch. Realistic Throttle and Crash sound effects from the TV Loudspeaker.
A GAME-YOU'LL NEVER BE TIRED OF PLAYING

Super Stunt Cycle Drag Race

Motocross
Stunt Cycle HOW MANY BUSES CAN YOU JUMP?
This simple to assemble (1 hour) TV Game Kit comes complete
(No extras needed') - just simple soldering. Expected retail
price (when available in shops) - over
£55.00. SAVE 50\% by building it yourself. Be one of the first in
Europe with this new stunt cycle craze
at $£ 28.50$ (inc. VAT) +25 p P \& P.

Make all cheques or postal orders payable to Teleplay
Mail Orders: 53 Warwick Road, New Barnet, Herts. EN5 5 EQ. Retail Shop and Demonstrations 14 Station Road, New Barnet, Herts
For further Details and Technical Help - phone 01-441 2922.
For extra speed phone your order on Barclay-or-Access Cards.

MAIL ORDER DEPT:-

CRESCENT RADIO LTD

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ TELEPHONE: 888-4474

3 EILOWATT PS
OONTROL UNIT
1000 WATT PER CRANNEL.
Three channel: Bass, Middle, Treble.
The input of this unit is connected to th
loudspeaker terminals of an amplifter and the required lighting is connected to the
output terminals of the uoit thus euabling outpat terminals of the unit thus euabling yon to produce a fascinating sound to
Full instructi
details. instructions supplied or S.A.E. for
Fantastic Value at $£ 20.00+8 \%$ VAT.

LOUDSPEAKER SELECTION

 $+124 \%$ VAT$2 f^{\prime \prime} 8,40$ and 75 ohm at $91-10$
(Please atate which impedance is required)
$5^{\prime \prime} 8 \mathrm{ohm}$ CERAMLC at $81 \cdot 70$
$8^{\prime \prime}$ GOODMANS 'Audiom 8PA' 8 ohm
$10^{\prime \prime}$ 'ELAC' Dual Cone 8 ohm 10 watt
at $84-75$
POWER SUPPLY UHITS $+8 \%$ VAT PPI - $\mathrm{S}=\mathrm{itched} 3,4 \mathrm{t}, 6,7 \mathrm{~F}, 9,12 \mathrm{v}$ at $500 \mathrm{~m} / \mathrm{a}$ with on/off switch and pilot light.
Approx size: $130 \times 55 \times 75 \mathrm{~mm}$. ONLY Approz
ee. 00.
fe. 00.
PPS-Heary duty 12 volt power supply .5A at 12 volt DC. Approx. size: 155×90 $16 A^{2}$ at 12 vont DC. Appr
$\times 95 \mathrm{~mm}$. ONLY 88.00 .

BARGAII TRANSFORMERS
240 v primary, $12 \cdot 0-12 \mathrm{~F} 500 \mathrm{~mA}$ a condaryApprox size: $60 \times 40 \times 50 \mathrm{~mm}$. Fixing Also available Mains transformer with 18 v 500 mA sec. Price and size same as above.

ACCESE AND BARCLAYCARD ACCEPTED ALL PRICES INCLUDE POSTAGE UNLESS OTHERWISE STATED-PLEASE ADD V.A.T. AS SHOWN-S.A.E. WITE ALL ENQUIRIES PLEASE.

Personal callera welcome at: 21 GREEN LANES, PALMERS GREEN, N.13. Phone: 888-3206 and 18 SOUTH MALL, EDMONTON N9

RADO EXBHNGE LTD

NEW ELECTRONIC MASTER KIT
WITH SPECIAL MULTI-BAND V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws etc Iso in the kit. Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, 5" $\times 3$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with compreensive lnstruction Manual Pictorial and Circuit Dagrams.
PROJECTS: V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \& Six Transistor MultiBand V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio \star Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L.W. * Four Transistor Push Pull Amplifier \star Eight Transistor MultiBand V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star liffy MultiTester \& Four Transistor and Diode M.W. L.W. Radio. \& A.F. R.F. Signal Injector $\$$ Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \nrightarrow Signal Tracer $*$ Three Transistor Push Pull Amplifter $*$ One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. MultiBand Tuner \star Three Transistor Code Practice Oscillator \star Five Transistor Regenerative Short Wave Radio \star Four Transistor and two Diodes M.W L.W. Loudspeaker Radio t Seven Transistor M.W.L.W.Radio with Loud- $\mathbf{L} / 4.99+\mathrm{P}$ \& P £I. 10 speaker Push Pull output \star One Transistor Home Broadcaster.

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND V.H.F. AND A.M. RECEIVER
13 TRANSISTORS AND FIVE DIODES. QUALITY $5^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKER.
WITH Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output ssing 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches. Negative Feedback circuit and SPECIAL POWER BOOSTER SOCKET AND RESISTOR, to virtually double gain if required. Powered by P.P. 9 - 9 volt Battery

MODEL
R.K.I

MultiBand A.M. Receiver. M. W. L. W Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker, interna Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery

ELECTRONIC

 CONSTRUCTION KITE.C.K. 2 Self Contained Multi-Band 8 transistors and 3 diodes. Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, re sistors, capacitors, transistors etc. Will receive T. V. sound
 public service band, aircraft V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)
$\mathbf{8 7 . 9 5}+\mathrm{Pa}$ Pad

NEW
 MODEL

R.K. 2

MW, LW and Air Band Receiver. Eight Transistors and Four Diodes. 3" Loudspeaker Telescopic Aerial, Internal Ferrite Rod Aerial Complete Aerial Complet
with Carrying Strap.
and ready-drilled Panels and all
components necessary for construction. A sensitive
Receiver with the additional luxury of an Air Band section to pick up Aircraft from many miles away. Full Instruction Manual enables stage by stage construction. Uses P.P. 9 Nine Volt Battery
$69.99+\begin{gathered}+P \& P \\ 4 \cdot 10\end{gathered}$
2 Slider Switches 1 Tuning Condenser 3 Knobs \quad Ready Wound
MW/LW/SW Coils Ferrite Rod 61 yards of wire 1 yard of sleeving, etc.

E.V.6.

Build this exciting new design. 6 and 2 diodes. and 2 diodes. MW/LW Powered by 9 V battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in loudspeaker Attractive case with red peaker rille Size 9 in $\times 5$ in $\times 23$ in approx All parts including Case and Plans.
Total Building Costs $£ 5.95$ +P\&P and ins. 90p

ALL PRICES INCLUDE VAT

CONVERTER KIT
Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts.
Uses a retractable chrome plated relescopic aerial, gain control V.HF tuning capacitor, transistor, etc.
All parts including case and plans
$14.95+P$ \& P and

To: RADIO EXCHANGE LTD 6IA High Street, Bedford MK40 ISA Tel.: 023452367 REG NO. 788372

- Callers side entrance "Lavells" Shop.

Open IO-I, 2.30-4.30 Mon.-Fri. 9-12 Sat.
for

Name

Address

FANE NEW "POP" RANGE SPEAKERS Improved eppearance m higher sunsitivity

 12" 'POP' 50H 50w \&16.99 12"'POP' 75 75w $\mathbf{E 2 2 . 9 5}$ 15" 'POP' 65 70w $£ 25.95$ 15" 'POP' 80 80w 629.95 18".'POP' 100 100w $\mathbf{E 4 9 . 9 5}$ $18^{\prime \prime}$ 'POP' 150 150w 15500 SPECALIST RANGE

 Windowt on 15^{4} modalit.
HORNS
HORN
$144_{\text {Ranze: }}$
 HPX2R Imp: B orms fl .95 size approx $\quad \mathbf{7 . 9 5}$
J73
2.5kHze20 KK Hz
 Powert: 50 w
with
wip Imple ohme sive epproxi

FANE SPEAKERS-SUPPLIED TO MOST LEADING UK MANUPACTURERS OF GROUP \& DISCO EQUIPMENT Dyark wirantee on ppakers \& Horns

Ree. prices. shown correst at 20/1/78 LINEAR PRODUCT'S LTD, ELECTRON WORKS, ARMLEY, LBRDS MNE AGOUSTICS LTD, 286 BRADIORD ROAD, BATLEY, YORKB
 3051

MEADPHONES HIIMP (2KLCI OH 8 OHM STEREOPHONES PADDED EAA

 TION SHIELO HIGH SUGTION S4.5L. NOLAGEABL NOZZLE, EYE PROTEC.

 RELAY, 12 VOLTS 200. MOTOHE 15 TO 6 VOC MODEL MOTORS 20p, 12 VDC S POLE 2BP, SUB. MIN, $10 \times \mathrm{EE}, \mathrm{BLACK} A S$ PLASTICPRODECT BOXES, BRASS INSERTS AND LID: $75 \times$

 G2.50. HEADS: MONO CASSETTE 99P STEREO CASSETTE C3.00. MNI330 DUAL.
 DARACK R/P WITH BUILT IN ERASE, MOUNTED ONSERACKET E1-20p.

 SCALED 0-100, WINDOW SCALED $20 \cdot 30,32 \mathrm{~mm}$ DIAMETER, ${ }^{2}$ SPINDLE NEW GRANSDUCERS, ULTRASONIC MADE BY MURATA 40 KHZ i3. 95 pair. 15 mm
 MAKE ORPUSH TO BREAK $16 \times 6 \mathrm{~mm} 1$ PREACHTYPE, 10 AMP ROCEERR SWITCHES
SST 12P, SLIDER SWITCHESDPD MIN, I2p, DPDT CIOPF 20p, 4P2W 20p MICRO SWITCHEESSTANDARD SIZEROLER ACTION $13 \mathrm{~F}, \mathrm{MIN}$. $13 \times 10 \times$ 4 mm 20p. PLESSEY WINKLER 5 WITCMES, 1 POLE 30 WAY 2 BANK ADJUSTA BLE
TERMS: CASH WITH ORDER (OR OFFICIAL ORDER FROM COLLEGES ETC.
POSTAGE 30 U OVERSEAS POST AT COST. V.A.T. INCLUDED IN ALL PRICES.
S.A.E, FOR LISTS.
PROGRESSIVE RADIO, 31, CHEAPSIDE, LIVERPOOL. 2 Tel: 0512360962

Refrigeration as illustrated with $36^{\prime \prime}$ capillary $£ 1.62$. Limpot Stat must be mounted in close
contact calibrated $90^{\circ}-190^{\circ} \mathrm{F}$ 15 amp contacts $£ 1.62$.
Appliance Stat fix like a volum
15 amp contact $30^{\circ}-80^{\circ} \mathrm{F} 85 \mathrm{8}$.
ditto but for high temps $£ 1.25$
Over Stat-with Serson and capillary 85p
MAINS OPERATED SOLENOIDS

 Model $4001 /-\frac{7}{1} i n, ~ p u l l . ~ S i z e ~$
$2 \frac{3}{2} \times 2 \times 14 \mathrm{in} £ 2.50$
Model TT10- $1 \frac{1}{4} i n, ~ p u l l . ~ S i z e ~$ $3 \times 2 \frac{1}{2} \times 2$ in. £4. 50

DELAY SWITCH Mains operated-delay can
be accurately set with ointers knob for periods of suitable to switch 10 amps-second contact opens
few minutes after 1 st contact 95p

MOTORISED DISCO SWITCH

 adjustable switches are adjustable switches are
rated at 10 amp each so a total of 200 w 's can be controlled and this would provide a magnificent
display. For mains
 model $£ 5.25 .10$ switch
model $£ 5.75$. 12 switch

SMITHS CENTRAL HEATING CONTROLLER
 Push button gives 10 variations as foliows: central heating (2) continuous hot water
but central heating off at night (3) conbut central heating off at night (3) cononly for 2 periods during the day (4) hot
water and central heating both on but day time only (5) hot water all day but central heating onlv for 2 periods during the day (6) hot water and central heating on for 2 periods during the day time only-then for
summer time use with central heating off (7) hot water consummer time use with central heating of (s)
tinuous (8) hot water day time only (9) hot water twice daily (10) everything off. A handsome looking unit with 24 hour movement and the switches and other parts necessary to select the desired programme of heating. Supplied complete with wiring diagram Originally sold wo believe at over £15. We offer the
stocks last at $\mathbf{£ 6 . 9 5}$ each INCLUDING VAT and Postage.

LOW R.P.M. MOTORS

EXTRACTOR FAN Cleans the air at the rate of 10.000 kitchens, bathrooms factories changing rooms, etc. It's so quiet it can hardly be heard. Compact, $5 \frac{1}{2}$ in. sheet-steel casing, pull switch, mains connector and fixing brackets. $\mathbf{~} 5.25$ including post and VAT. Monthly list available free send long
stamped envelope.

FLUORESCENT TUBE INVERTOR

For camping - car repairing - emergency lighting from a 12 v well distributed light and is economical. We offer invertor fo well distributed light and is economical. We orfer invertor for
21^{\prime} and 13 watt miniature tube for only $£ \mathbf{~} \mathbf{7 5}$ with tube and ube holders as well

MINI-MULTI TESTER

Amazing, deluxe pocket size
precision moving coil instrumentpewelled bearings-1000opv11 Instant ranges measure:DC volts 10,50, 250,1000 $A C$ volts 10.50. 150,1000 DC amps $0-1 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$
Contunuity and resistance $0-150 \mathrm{~K}$ ohms. Complete with insulated, probes, Unbetievable value only $£$

FREE

Amps ranges kit enable you to read DC current from $0-10 \mathrm{amps}$. directly on the $0-10$ scale. Its free if you purchase quickly but if
you already owri a mini tester and would like one send $£ 1.50$.

MULLARD UNILEX
 of the finest performers
in the stereo field this in the stereo field this
would make a wonderful tor almost any one in easy-toassemble modular form and
complete with a pair of Plessey
speakers this should soll at about $£ 30$ but due to a special buik buy and as an incentive for you to buy this month we
offer the system complete at only $\mathbf{£ 1 5}$ including VAT and
postage.

UNISELECTORS

These are pulse operated
switches as used in automatic telephone switch boards etc. The pulse moves
the switch arm through one he switch arm through one cated the selectors are 25 position types and 50 v Coil is standard, 24 v or 12 v oper
ation extra at $£ 2$ per switch.

$\mathbf{3}$ pole	$\mathbf{£ 4 . 8 0}$	4 pole	$\mathbf{£ 5 . 9 4}$
5 pole	$\mathbf{£ 7 . 0 2}$	8 pole	$\mathbf{£ 9 . 7 2}$
10 pole	$\mathbf{£ 1 0 . 8 0}$	-12 pole	$\mathbf{£ 1 2 . 9 6}$
3 pole 50 way	$\mathbf{£ 1 0 . 5 8}$	4 pole 50 way	$\mathbf{£ 1 2 . 7 4}$

24 HOUR TIMERS

The one illustrated is ' E ' controls this uses 2 On/off's per 24 hours, 13 amp contacts. 2 On/offs s per 24 hours, Smams 100 amp
override switeh f6.50. Smiths
model one on/off per 24 hours $\mathbf{f 1 0 . 5 0}$, model one on/off per 24 hours $£ 10.50$
extra contacts $£ 100$ per set. AEG 60 amp model with clockwork standby, one on/of
per 24 hours $£ 9.50$, extra contacts $\mathbf{£ 1 . 0 0}$ per set.

INDUCTION MOTORS

MAINS

TRANSFORMERS

 Tam f1.50. 100w auto 230-115v

WAFER SWITCHES

6 pole 2 way
5 poie 3 way
4 pole 4 way
3 pole 5 way
2 pole 6 way
2 pole 8 way
1 pole 10 way
1 pole 12 way
all $£ 1.32$ each
12 pole 2 way
10 pole
8 poie
4 way
6 pole
4 wole
4 way
4 pole
4 way
4 wole
2 way
90 way
all $\mathbf{£ 2 . 4 1}$ each

Multi bank switches up to 72 pole 2 way-to 12 pole 12 way

THIS MONTH'S SNIP

Japanese made FM tuner and matching
decoder. Two items for less than average

RELAYS

 three 10 amp changeover plug in $\mathbf{£ 1 . 2 8}$. 12 v two 12 single screw fixing two 10 amp changeovers 85 p . 12 volt open three 10 amp changeovers $£ 1.25$. Latching relay mains operated $2 \mathrm{cc} / \mathrm{c}$ contacts
$\mathbf{£ 2 . 1 1}$. Mains operated three 10 amp changeovers £2.11. Mains operated three 10 amp changeovers
open open type one screw fixing $£ 1.25$. Many other
types with different coil voltages and contact arrangements are in stock, enquiries invited.

TANGENTIAL HEATER UNIT

A most efficient and quiet running blower-heater by Solatronsame type as is fitted to many prises mains induction motorlong turbo fan-split 2 kw
heating element and thermostatic safety trip-simply
connect to the mains for imconnect to the mains for im-
mediate heat-mount in a simple wooden or metal case or mount disect onto base of say kitchen unit-price $£ 4.95$ post
$£ 1.50$ control switch to give 2 kw . 1 kw , cold blow or off availáble 60 extra.

Terms. Prices include Post \& VAT. But orders under $\mathbf{5 6 . 0 0}$ please add 50p to offset packing. Bulk enquiries - Please Phone for Generous Discounts 6881833.

J. BULL (electricah) LTD
 (Dept. PW), 103 TAMWORTH RD. CROYDON CR9 1SG

IT'S FREE!

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived - often bargains which sell out before our advertisement can appear. - It's an interesting list and it's free - just send S.A.E. Below are a few of the Bargains still available from previous lists.

FM Tuner and decoder, 2 very well made (Japan) units. nice 12 Volt Heavy Duty Relay plug in tipe pas 12 Volt Heavy Duty Relay, plug in type has three pairs of 10 amp changeover contacts. A transparent dust cover, price $\mathbf{I} 1.0$ a 4 Changeover Relay, upright mounting 4 sets of 10 amps 12 Vole Pump. Designed we believe as a bilge pump. this is 12 olt AC/DC motor coupled by a long enclosed shaft to a sub nersible pump. Suitable for water or Just arrived. Fruit machines, working order. very 1 mp
choice of severa! but very heavy so you must colject. $\mathbf{E 5 0}$. High Load 24 Hour Clock Switch, made by the famous AEG Company for normal mains but with clockwork reserve has load with large loads of say shop lighting, water heating storag heaters etc. etc. Has triggers for on and off once per 24 hours but extra triggers will be available, Price $\mathbf{£ 1 . 5 0}$ per pair. Size of clock approximately $8 \times 5 \times 5$, totally encased but has lift up fap for ease of a 24 SWC
Enclosed 24 Hour Clock, with contacts for breaking 10-12
amps at 240 volts. This one has two sets of on/off per 24 hours price f700. excellent light dimmer. Contains a 4 amp 400 V SCA so it should be suitable for loads approaching 1 KW . Price of module and ins Push Pull Solen
as well as or inoids, mains operated solenoids which will push as well as or instead of puil. Very, hevy duty, estimate this at
2015 push or puli. $1 \frac{3}{4} \times 3 \frac{1 .}{1 .} \times 4$ made Magnetic Devices Co. £7.50
Flashing Lights, chasing lights, random flashés, strobe effects etc. etc. can easily be achieved using our disco switches. These
switches are ex-equipment but guaranteed perfect and supplied switches are ex-equipment but guaranteed perfect and supplied number, each switch is 10 amp . For the light pipe or Catherine Wheel effect order the 12 switch model with light pipe data model, interconnecting the switches to give fastest speed. 6 Switch model £5. 9 Switch Model $\mathbf{E 9 . 2 0}$.
Reed Switches, standard 60 watt glass type. Normal
 Flat Reed Switches, for stacking. greater quantity in confined space. Price 50p.
Single Ended Types for jobs where it is not easy to bring a lead to each end. 75 p each. All these switches are no fitting a magnet adjacent. The reed switch would then be opened by a magnet of opposite polarity being bought up to it. Ceramic Magnets su
Music Centre Transformer 12-0-12 at 1 amp and 9 volt at amp. Normal primary. uprighting, impregnated and varnished for quiet Shaped Fluorescent Tubes for porch ilight, box signs or where you want light evenly spaced over a confined area of approx. $10^{\prime \prime} \times 10^{\prime \prime}, 30$ watts, made by Philips price $£ 2.24$. Extension Speakers 8 ohm $4-5$ watts handling power. We have
5 or 6 different models in stock, cheapest being the Partytime 5 or 6 different models in stock, cheapest being the Partytime
at $£ 3.95$ each, again only really a bargain for callers as postage is $\mathbf{£ 1 . 5 0}$ per speaker. Mollers, believed to be in good working order, switchable thro' 405-525 \& 625. $21^{\prime \prime}$ tube line systems. normal controls, volume, brightness, contrast,
width etc. Price $£ 1620,12^{\prime \prime}$ models $£ 18$, suitable for conwidth otc. Price $\mathbf{£ 1 6 2 0 ,}$
version into special purpose scope, etc.
Auto Transformers for working American tools and equipment, completely enclosed in sheet metal case with American type flat output socket made for computer so obviously first class 500
watts. With cang handle, offered at about half price only $\mathbf{~} 15$. watts. With cang handle, offered at about half price only $\mathbf{£ 1 5}$. These may be a bit soiled but are fully guaranteed. Similar but
1000 watt $£ 29.50$. Car Starter Charger Kit. New version. We supply two 10 with instructions, price $\mathbf{£ 9 . 7 5}$. This is probably one of the most useful pieces of equipment you can have in your garage. Sooner or later you or someone will leave something on and you will
have a flat battery, this starter will get you away usually in less than 5 minutes. Resetter Counter by Veederoot Company. 230/240V mains
operated. Intended for sufface mounting has a fixing fiange at
$\mathbf{1 2 V}$ Drip proof Relay. Specially designed for going under the bonnet of a car, made by one of our big manufacturers, this
really has a removable semi-hard rubber cover. Contacts look suitable for up to 10 amps so this could be the right one if you are thinking about making an anti-thief device. Price $£ 1+8 p$. High Speed Uniselector. As many customers know, we have a very comprehensive stock of uniselectors as used in automatic
telephone exchanges, light flashing device etc., etc. Just arrived. telephone exchanges, light flashing device etc., etc. Slessey, this is 2 pole 32 way with make before break wipers. overall size

Pneumatic Ram for lifting, thrusting. pulling etc., etc. has $2 \frac{3}{2}$ " travel, looks large enough to open doors, lift, staircase. ventilators etc. Price E700.
very well made tool with lamp to illuminate work, has double insulated mains transformer and is built into the shockproo thermoplastic case. Comes complete with spare tips. Main operated of course. Price $£ 4.50$.
Interested in Tape Control.
Interested in Tape Control. American made tape punches realy beautiful units full of sophisticated parts, designed we course be used to operate other punch tape controlled machines Reference number is NCR Class 461-2 reference 205 HB R56. We believe these are 8 bit paper tape punches, powered from 115 V 50 HZ in very good condition with tape
is $£ 3.20$. is $£ 3.20$.
Memories
Momories. The memory units which work with these tape
punches, again by NCR. are in very good condition and we punches, again by in working order. Price and details on request. Tangential Blowars. $12^{\prime \prime}$ long with powerful induction motor ideal for blowing heaters or general-air extraction or
circulation, offered at low price of $\mathbf{£ 2 . 7 0}$. The motors are 110 V so vou will have to work them in pairs or through a dropper or mains transformer. Post $£ 1.08$ for one or two. Digital Panel made for the G.P.O. for incorporation. we under stand, in push button dialling units, this has the usual 10 digits, each of which when depressed operated a two pole changeover square. price $£ \mathbf{3} \mathbf{7 8}$.

Marshalls

A. MARSHALL (LONDON) LTD. DEPT. P.W. LONDON-40-42 Cricklewood Broadway, NW2 3ET Tel, 01-452 0161. Telex 21482
LONDON 325 Edgware Road, W2. Tel. 7234242
GLASGOW-85 West Regent Street, G2 2QD Tel. 041-332 4133
BRISTOL-1 Straits Parade, Fishponds Road, BS16 2LX Tel. 0272654201

CALL IN AND SEE US 9-5.30 Mon-Fri. 9-5.00 Saturday EXPRESS MAIL ORDER Tel Orders on Credit Cards £10 minimum.

TRIACS Plastic Pack 400 V

Full range of Brldge Rectifiers and Diodes listed in new catalogue
THYRISTORS Plastic C106 116 $\begin{array}{llll}4 \mathrm{amp} 100 \mathrm{~V} & 0.35 & 8 \mathrm{amp} 100 \mathrm{~V} & 0.43 \\ 4 \mathrm{amp} 200 \mathrm{~V} & 0.40 & 8 \mathrm{amp} 200 \mathrm{~V} & 0.49\end{array}$ $\begin{array}{llll}4 \mathrm{amp} 200 \mathrm{~V} & 0.40 & 8 \mathrm{amp} 200 \mathrm{~V} & 0.49 \\ 4 \mathrm{amp} 400 \mathrm{~V} & 0.49 & 8 \mathrm{amp} 400 \mathrm{~V} & 0.62\end{array}$
WHY NOT PAY US A VISIT AT OUR NEW CENTRAL LONDON BRANCH AT 325 EDCWARE ROAD, W2, ABOUT 100 YARDS NORTH OF THE WESTWAY FLYOVER. EXTENSIVE STOCK RANGE. MANY SPECIAL OFFERS TO PERSONAL SHOPPERS ONLY.

NEW 1978 CATALOGUE

AVAILABLE IN MARCH
stocking Distributors offlclaily Appointed

- nATIONAL VERO
- texas antex
- mulLard electrolube
- SIEMENS SIFAM
- SESCOSEM - ARROW HART

MAKES COMPONENTS BUYING EASY
 "What is a microprocessor?"
A complete teach yourself course with cassettes + brochure-£9.95 inclusive of VAT and p\&p.

HOME MICROCOMPUTER

NORTHERN SEMINAR MANCHESTER

APRIL 1

After the enormous success of the Wembley Seminar, Lynx have been persuaded that there are sufficient Northerners waiting to attend their own show. All Day. Microprocessor Lectures and presentation of the Nascom I. Only 350 seats.

Z 80 QWERTY KEYBOARD MONITOR PROGRAM VDV INTERFACE (TV) 2K R.A.M. CASSETTE INTERFACE P.C.B. TELETYPE INTERFACE EXPANDABLE SYSTEM NASCOM I £197:50 + VAT

HIGH QUALITY AUDIO AND RF MODULES FOR MUSIC CENTRES AND HI-FI EQUIPMENT

FM 020 Stereo FM Tuner with MW \& LW section

* High Performance front end * Low noise FET RF stage
*Three stage tuning * S. Meter Output on FM \& AM * Centre zero meter output * Ceramic filters on FM * Filter on 455 KHz AM
Specifications * FM Sensitivity @ 26 DB S/N $2.5 \mu \mathrm{~V}$ * Stereo separating 30dB * 3 ICs +5 Transistors
Our Introductory Price-£21.95
A full specification tuner assembly which is aligned and tested by us. Features built in stabilisation for low drift, powerful AFC. Twin filters on FM, meter drive circuit for S. Meter, LED Beacon, P.L.L. Decoder, Ferrite Rod Aerial. Only requires a 18 V DC supply.

STEREO POWER AMPLIFIER

25 Watts RMS per channel

£9•50

\star Class B Operation

* 16 Transistor Circuit
\star Unstabilised supply required \star Tip 34A + Tip 33A Output
* Supply Voltage 50V DC nominal
$\star 30 \mathrm{~Hz}-18 \mathrm{KHz}$ @ -1 dB
\star Output 8 ohm

* Input 50 Kohm

This power amplliner which features an advanced destgned design with complemen-
tary pair of transformers in class \mathbf{B} push pull. Will comfortably de liver 25 watts per tary pair of transformers in class \mathbf{B} push pull.
channel. And comes complete with heat sink.

PR 020 Hi -Fi Preamplifier
The PR 020 is a low noise preamplifier with full bass and treble cut and boost. It has four rotary controls and four specially selected transistors. It is designed to match most high quality power amplifiers.
£8. 95

SW 0208 Way Selector Panel £3. 95

When used in conjunction with PR 020 provides switching for different inputs. Features Mono/ Stereo switch. Loudness/Filter/ Tape replay playback, Phono, Auxiliary + two other inputs. Has PC Board mounting 5 Way Din socket for tape deck.

POWER SUPPLY PSU゙ 020

This sturdy power supply uses a Bridge rectifier into a 63 volt 4700 UF Capacitor it has three fused outputs and incorporates an 18 volt stabilised supply.

TRANSFORMER TX 020

This transformer is designed for the PSU 020 and will give 52 V DC at $2 \cdot 5 \mathrm{amp}+18 \mathrm{~V}$ DC when used with PSU 020.
It also has a 12 V 2.5 amp winding for a cassette deck.
It will easily power the PA 020 for 25 Watts per channel.

£8.75

The above Items are only a small range of the modules we have in stock. We also carry knobs, chassis front and rear extrusions, dials to match the FM o20 meters, front ends, cabinets. In fact everything you need to make a piece of equipment that not only meets professional standards but 00 ms +15 p postal order. Prices include VAT and postage.

REED HAMPTON LTD.,
19 CHURCH LANE, WALLINGTON, SURREY Tel: (01) 661 1825/6

5tirlin! Saund

Audio Modules • Power Supply Units-Disco P/A

POWER AMPS

FROM 3 to 100 WATTS R.M.S.
Ready assembled on P.C.Bs., tested and
guaranteed. Easy to connect. With instructions. guaranteed. Easy to
Output ratings $\pm 1 \mathrm{db}$
SS.103 I.C. amp. 3 watts R.M.S. using
$20 \mathrm{~V} / 8 \Omega$ or $14 \mathrm{~V} / 4 \mathrm{~S}$. Input 100 mV \&2.85 SS.103-3 Stereo version of above, $21 . \mathrm{C} . \mathrm{s}$
SS. 1055 watts R.M.S. into 3Ω using 13.5 V ,
Sensitivity -30 mV . THD $-0.3 \% 3^{\prime \prime}{ }^{\prime \prime} \times 2^{\prime \prime}$ Sensitivity -30 mV . THD $-0.3 \%, 33^{\prime \prime} \times 2^{\prime \prime}$
$\times 1^{\prime \prime}$. Designed for use from 12 volt car

SS. 11010 watts R.M.S. Into 4Ω using 24 V .
 SS. 12020 watts R.M.S. Into 40 using 34 V . Sensitivity -80 mV . THD $-0.3 \% .3 \frac{31}{2 \prime \prime} \times 5 \cdot 15$
$2^{\prime \prime} \times 1^{\prime \prime}$. SS. 14040 watts R.M.S into 40 using 45 V SS. 14040 watts R.M.S.into 4Ω using
Sensitivity -300 mV . Distortion typically
$0.1 \% .5^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{4}$.

SS. 16064 watts R.M.S. into 4Ω using 50 V . Sensitivity -350 mV , Distortion typically
 $50 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity -500 mV . Distortion at half-power, typically $0.1 \% \%$
$5^{\prime \prime} \times 3 \frac{3}{2} \times 1 \frac{m^{\prime \prime}}{} \times 10.50$

CONTROL/PRE-AMPS.

CUNIT ONE
Combined stereo pre-amp and active tone control unit. Input sensitivity 50 mV for
200 mV out, 1016 V operation. Bass +15 db 200 mV out, 1016 V operation. Bass $\pm 15 \mathrm{db}$
at 30 Hz ; Treble $\pm 15 \mathrm{db}$ at 10 KHz ; Balance at 30 Hz ; Treble $\pm 15 d b$ at 10 KHz ; Baiance
control; Volume control. For ceramic P. U., radio or tape inputs. WITH FREE CONTROL PANEL FASCIA

\square UNIT TWO

With control facilities slmilar to UNIT
ONE but for magnetlc cartridge input. ONE but for magnetlc cartridge input. R.I. A.A. corrected. Input sensitivlty - 5 mV
for 200 mV out (can be varied). WITH for 200 mV out (can be varied). W1TH
FREECONTROL PANEL FASCIA 12.43

CONTROL PANELFASCIA available separately 50 p
Basic active stereo tone control module to
provide $\pm 15 \mathrm{db}$ on bass at 30 Hz and on provlde
treble at
\pm

\qquad Stereo pre-amp suitable for ceramics, tape, radio, etc.
Stereo pre-amp for mag. pick ups. R.I.A.A.
corrected. F.M. STEREO DECODER, phase lock loop type, with LED Indlcator showing when a stereo transmlssion is belng received.

POWER SUPPLIES

Every StirlIng Sound Power Unit Is tested and guaranteed under working conditions before- despatch. All units except SS .312 include a stabinsed cow ($13-15 \mathrm{~V}$) for pre-amp, tone control, radio tuner. etc. Outputs quoted minimal unloaded ratings.
Recommended for

SS. 312 12V/1A PowerAmp
$\begin{array}{lll} & \text { SS. } & \text { 12V/1A } \\ \text { SS. } & \text { S.105 } \\ \text { S. } & 18 \mathrm{~V} / 11 \mathrm{~A} & \mathbf{S S . 1 0 3 / 3}\end{array}$
£6. 60
. .68
£7. 65
$\begin{array}{lll}\mathbf{S S . 3 2 4} & 24 \mathrm{~V} / 1 \mathrm{~A} & \mathbf{S S . 1 1 0} \\ \mathbf{S S} .334 & 34 \mathrm{~V} / 2 \mathrm{~A} & \mathbf{S S . 1 2 0}\end{array}$
$\begin{array}{lll}\mathbf{S S . 3 4 5} & 44 \mathrm{~V} / 2 \mathrm{LA} & \mathbf{S S . 1 2 0} \\ \mathrm{SS} .350 & 50 \mathrm{~V} / 2 \mathrm{~A} & \mathbf{S S . 1 2 5}\end{array}$
$\begin{array}{lll}\mathbf{S S . 3 5 0} & 50 \mathrm{~V} / 2 A & \mathbf{S S} .140 \\ \mathbf{S S . 3 6 0} & 60 \mathrm{~V} / 2 \mathrm{~A} & \mathbf{S S . 1 6 0}\end{array}$
70V/2A SS.1100
SS. $310 / 50$ Stabllised power supply with
variable output 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Short

Ready now-an excliting new range covering from basic Ready now-an excontrol modules, sound-llght, mixer control unlts, ready built consoles and complete dlscos etc. AT MONEY
SAVING PRICES. Leaflets on request.

To order by ACCESS or BARCLAYCARD just tell us your No.

STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS, ESSEX
Please send
R Ready now P/A

Goods sent post free and inc. V.A.T. In U.K. Prices subject to alteration without notice. S.A.E. with enquiries please. E. \& O. Orders etc to Dept. P.W. 4 37 YANGUARD WAY, SHOEBURYNESS ESSEX.
 Phone (03708-5543
 CATALOGUE SHEETS FOR. ABOVE ITEMS FREE ON REQUEST.

\qquad
NAME...
ADDRESS

B. BAMBER ELECTRONICS Dept. P.W. 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 $10 E$ Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED ARANGEOFDRAPERTOOLSFORTHE ELECTRONICS ENTHUSIAST MAINS TESTER SCREWDRIVERS 100 to 500 V . Standard slze 50p. Large 70p.

RADIO PLIERS $5 \frac{1}{3}^{\prime \prime}$ \&1. $60.6 \frac{1}{2}^{\prime \prime} £ 1: 80$. DIAGONAL SIDE CUTTERS $6 \frac{1}{4}$ £1-90. SMAL SIDE CUTTERS L.32. Standard £3-70. LJ7 (with wire holding device) $£ 4 \cdot 10$ MIDGET OPEN ENDED SPANNER SETS | $+12+2$ | $3+54+66+8$ BA sizes $£ 2 \cdot 85$ set o |
| :--- | :--- |
| $4+4 \cdot 5$ | $5+5 \cdot 5$ |
| $4+6$ | $6+7$ |
| $8+9$ | $10+11$ | Slzes £3. 50 set of 6.

MINIATURE FILE SETS. Set of 6 £t.90 Set of $10 £ 3.25$ (Round, fiat, etc.)
TAP AND DIE SETS (18 plece) contain 1 each of $0,2,4,6,8$, BA SIZES in Dies, Plug Taps, Taper Taps + American type tap wrench,
E 11.80 .
LARGE ELECTROLYTIC PACKS. CON tain range of large electrolytic capacitors 63.00 per pack $\left(+12 \frac{1}{2} \% \vee A T\right)$.

Slider Swltches. 2 pole make and break (or lider Swliches. 2 pole make and break (o the two centre plns), 4 for 50p.
A NEW RANGE OF OUALITY BOXES \& Aluminlum Boxes with IIds.
Aluminlum Boxes with lids.

inyl Coated Instrument Cases
Inght Coated instrument Cases

WB1	$5 \times 2+\times 2+$	60
WB2	$6 \times 4 \frac{1}{2} \times 1 \frac{1}{4}$	E1-40
WB3	$8 \times 5 \times 2$	Ef. 60
WB4	$9 \times 54 \times 2 \frac{1}{2}$	£\% 80
WB5	$11 \times 6 \pm \times 3$	\$2.00
WB6	$11 \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	E2. 25
WB7	$12 \times 6 \frac{1}{4} \times 51$	¢2.60
WB853	$8 \times 5 \frac{1}{2} \times 3 \frac{1}{2}$	E2.00

HAINS TRANSFORMERS. Type $15 / 300$ doV Input. 15 V at 300 mA output. $51 \cdot 50$ each MAINS TRANSFORMERS. Type 45/100, $40,220,110,0 \mathrm{~V}$ input. 45 V at 100 mA output

PUSH BUTTON TELEPHONES
A Ten Digit push button intercom telephone with handset, flnished in smart grey plastic,
Ex-equipment, but good condition e2.50 each. FULL RANGE OF BERNARDS/BABANI S.A.E.FORLIST. BOOKS IN STOCK NEW FOR THE VHF CONSTRUCTOR A range of tuned circuits on formers wlth slugs and screening cans. Frequeticies quoted are approximate and range can be greatly extended by using varying capacitors in parallel.
Type S ($\frac{1}{2}$ in. square, dumpy type)
Type SA 20 to 30 MHz (when 33 pF fitted in
Type SD 135 to 175 MHz (with link winding) Type M (Min. in square types)
Type MA 19 to 28 MHz (when 33 pF fitted parallel).
Type MB 22 to 32 MHz (when 33 pF fitted in Type MC Type Mc parall) 38 to 50 MHz (when 33 pF fitted I Type ME 45 to 60 MHz (when 33 pF fitted in Type MF 100 to 200 MHz (without slug) when 0 to 30 pF varlable fitted in parallel. All the above colis available in packs of five only (same type) at 50 p per pack o SEMICONDUCTORS
BSX20 (VHF Osc/Mult). 3 for 50p. 8 C 108 (metal can), 4 for 50 p . PBC108 (plastic BC108). 5 for 50p BCY72 Translstors. 4 for 50 p .
PNP audio type TOS Translstors, 12 for 25p BF152 (UHF amp/mlxer). 3 for 50p. 2N3819 Fet., 3 for 60p. BC148 NPN SILICON, 4 for 50p. BAY 31 Signal Dlodes, 10 for 35 p. IN4148 (IN914) 10 for 25 p.
BC107 (Metal can) 4 for 50 p .
CRs 400 V at 3 A , stud type, 2 for $£ 1 \cdot 00$. 152955 SIIIcon PNP power transistor, 60 V a GERMANIUM DIODES, approx 30 for 30 . 50 41CG OP 741CG op amps by RCA, 4 for $£ 1$.
RED LEDs (Min. type) 5 for $70 p$.

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

VIDICON SCAN COILS (Transistor type, \&6.50 ${ }^{6} 6.50$ each. Brand New
OUTDOOR TELEPHONES
An external intercom telephone unit (waterproofed for outdoor use). Has external handset and Internal mike and speaker. 10 push buttons for dlal code +4 push buttons for select handset, speaker, etc. + pliot lights. PLASTIC PROJECT BOXES with screw PLASTIC PROJECT BOXES with screw on lids (in black ABS) with brass inserts.
Type NB1 ap prox $\operatorname{3in} \times 2$ in $\times 1+1 n 40 \mathrm{p}$ each Type NB1 approx 3 in $\times 24 \mathrm{in} \times 1$ In 40 peach

Type NB2 approx $3 \operatorname{tin} \times 2$ itin $\times 11$ in 50 neach Type NB3 approx $4 \frac{1}{2} \ln \times 3$ 位in $\times 1 \frac{1}{2} \ln 60 \mathrm{p}$ each MULLARD 85A2 85V STABILISER | VALVES (Brand New) 70 p each or 2 for $£ 1 \cdot 20$ |
| :--- | TO3 transistor insulator sets, 10 for 50 p PLUGS AND SOCKETS

N-Type Plugs 50 ohm, 60 e each, 3 for $\mathbf{£ 1} \cdot 50$ PL259 Plugs (PTFE) brand new, packed with reducers, 75p each.
SO239 Sockets (PT
fixing type). 60p each. SOLDER SUCKERS (Plunger the SOLDER SUCKERS (Plunger type), Stan dard Model, £5-50. Skirted Model £6. Spar NEW MARKSMAN RANGE OF SOLDER
ING IRONS.
S1250 $25 \mathrm{~W} 240 \mathrm{~V} £ 4 \cdot 00$
S140D 40 W 240 V £4.50.
S125DK $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT $£ 5 \cdot 30$. BENCH STAND with spring and sponge Marksman 1rons $\mathbf{E 2} 2 \cdot 70$. Spare bits MT9 (for 15 W) 60p, MT5 (for 25 W) ALI PRICES + 85. ALL PRICES + 8% VAT.
TCP2 TEMPERATURE CONTROLLED RON.
Temperature controlled Iron and PSU. £30 SPARE TIPS
Type CC single flat. Type K double flat fine ip, Type P, very fine tip. \&i each $+V A T(8 p)$. MOST SPARES AVAILABLE.
MULTICORE SOLDER
Size C1SAV18 Savblt 18 s.w.g., $56 \mathrm{p}+$ VAT
(4p). T Kg. (1.1|b) $60 \times 40,20$ s.w.g. on plastic 4p). $\frac{1}{2} \mathrm{Kg} \cdot(1 \cdot 1 \mid \mathrm{b}) 60 \times$
reel $\mathrm{E} 3+\mathrm{VAT}(24 \mathrm{p})$.

WELLER SOLDERING IRONS
EXPERT. Built-In-spotight illuminates work. Pistol grip with fingertip trigger. High EXPERT SOLDER GUN 8100 D E12.00. EXPERT SOLDER GUN KIT (spare blts, Spare blts 40p pair
A LARGE RANGE OF CAPACITORS AVAILABLE AT BARGAIH PRICES, MIXED COMPONENT PACKS, containing resistors, capacitors, pots, etc. All new. Hundreds of items. £2 per pack, whlle stocks
last.
ALU-SOL ALUMINIUM SOLDER (made by Multcore). Solders aluminium to itself or s.w.g. with multicore flux, with instructions Approx. 1 metre coil 40p pack. Large reel
VARICAP TUNERS Mullard type ELCi043 05. Brand New, $\mathbf{5} 4 \cdot 40+12 \frac{1}{2} \%$ VAT

BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronlc Manufacture. Approx 100. £1.50 per pack $+12 \frac{1}{2} \%$ VAT

OSMOR REED RELAY COILS (for reed relays up to din dia. not supplied) $12 \mathrm{~V}, 500$ ohm coll, 2 for 50 p .
We now stock Spiralux Tools for the elec tronic enthusiast. Screwdrivers, Nut span ners, BA and Metric sizes, pop rivet guns etc. S.A.E. for list.
Dubilier Electrolytlcs, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p Dubilier Electrolytics, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ for 50 p TCC Electrolyties, $100 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 60 p . Dubllier Electrolyilcs, 5000 LFF , 35 V , 50 p each Dubllier Elecirolytics, $5000 \mu \mathrm{~F}, 50 \mathrm{~V}, 60 \mathrm{p}$ each. TT Electrolytics, $6800 \mu \mathrm{~F}, 25 \mathrm{~V}$, hlgh grade screw terminals, with mounting cllps, 50p each.
PLEASE ADD $12 \frac{1}{2} \%$ VAT TO ALL TV PLUGS AND SOCKETS
TV Plugs (metal type), 4 for 50 p
V Line Connectors (back-to-back sockets) Please add 12 $\frac{1}{3} \%$ VAT.

Termis of Business: CASH WITH ORDER. MINIMUM ORDER \&2. ALL PRICES INCLUDE. POST \& PACKING (UK ONLY). SAE with ALL ENOUIRIES Please. PLEASE Add VAT AS Shown. all goods in stock despatched by return. callers welcome by appointment only

LOOK! Heres how you master electronics. ...the practical way.
 This new style course will enable anyone to

have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Buildan
oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,drawand understand circuitdiagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v etc.

All students enrolling in our courses receive a free circuit board originating froma computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Mini-priced breadboards for maxi-sized

 projects.Experimentor*: low-cost solderless breadboards are the first in the world specially designed for $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIP's.
They clip together by an exclusive interlocking system in any configuration, (just like dominoes), so you arrange the breadboards to suit your circuit, not vice-versa.
They are precision moulded from durable, flame-retardant plastic, and feature alphanumeric coding for easy circuit building, and
inon-corrosive, pre-stressed nickel-silver alloy contactsreliable for well over 10,000 insertions.

Contact resistance is a mere $0.4 \mathrm{~m} \Omega$ and interterminal capacitance is typically less than 5 pF . The Experimentor is usable to over 100 MHz .
Experimentor 600 and 650 models are deal for RAM's ROM's and PROM's ($0.6^{\prime \prime}$ centre IC's) while the 300 and 350 models are for smaller DIP's ($0.3^{\prime \prime}$ centres). All four models, of course, also take all standard components, the $0.1^{\prime \prime}$ grid being compatible with transistors, diodes, LED's, capacitors, resistors, pots - in fact any component with lead sizes between $0.015^{\prime \prime}$ and 0.032."
-

A useful quad bus strip (EXP4B) further

| Model | Length" | Width" Centre | Channel" |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| tie paints | | | |

expands the versatility of the system for the MPU user.
Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the front with 4-40 flathead screws or from the rear with $6-32$ self tapping screws.
But however you use them, Experimentor breadboards are the quickest and easiest way to build and test circuits.
If you're working on IC's, MPU's, memories,
displays or any other circuits, buy the breadboards that are designed for you.
Ring us (01-890 0782) with your Access, Barclaycard or American Express number and your order will be in the post that night.
Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.

FROM CASIO

All watches display hours, minutes, seconds $\bar{A} M / P M$, with day, date and month at a touch of the calendar button.
CHRONOGRAPH: Times from $1 / 100$ second to 59 minutes, 59.99 seconds then restarts from zero. Measures normai cime, net time, lap time and first and second place times. I 15 seconds per month accuracy.
31QS-12B, Stopwatch, Duai Time Zone. 3lQR-17B, Stopwatch. All stainless steel. Mineral glass. Shosk resistant. Water resistant (100 feet). Night Light. Automatic calendar. One battery lasts 12 months or more.

CASIO Mini Card. $4 \times 55 \times 91 \mathrm{~mm} .3$ key memory. \%. LCD. 1000 hrs . $\mathbf{6} 16.95$ New powerful scientifies with () and permutations/combinations. Numerous Sci. functions, fractions, $\%$, SD etc. FX $120 £ 19 \cdot 95$. FX 3000 (LCD) $£ 25-95$
OPTIM Battery LCD travel alarm/clock. Stopwatch feature. I $\times 1 \frac{1}{4} \times 5^{\prime \prime} £ 19.50$ Send 25p (refundable on purchase) for our illustrated catalogue.
Prices include VAT, P\&P. Send cheque, P.O. or phone your credit card no. to

TEMIPUS

 Dept. P.W.,19/21 Fitzroy Street, Cambridge CBIIEH. Tel. 0223312866

Complete digital Clock Kits
TEAK OR PERSPEX CASE
NON ALARM $£ 12.50$

ALARM $£ 15.50$

FEATURES

4 LED digits $\frac{1}{2}{ }^{\prime \prime}$ high. Red.

- 12 hour display with AM/PM indication
Mains frequency accuracy Easy to build: all components included
"DELTA"
$6^{\prime \prime} \times 2 \frac{1}{2} \times 3^{\prime \prime}$
Beautiful real wood case or Perspex White, Black, Red, Blue, Green

NON-ALARM

Complete kit including case Ready Built Module kit excludling case Ready Built

TIMER FACILITY: Stopwatch use up to 9 mln 59 secs ALARM
E12.50 control.
$\begin{aligned} & \mathbf{\Sigma 1 4 - 5 0} \quad 9 \text { minute Snooze. Simple Selting. } \\ & \text { Complete kit Including case }\end{aligned}$
£9-50 Complete klt Inciuding case
Module kit excluding cas
excluding case
Ready Built extra 50 p .
EXCELLENT VALUE NOVUS GUARANTEEO
LCD gents watch. 5-function, Backlight. Chrome case. Black strap £i5.9
4 Function Calcuiator

DISPLAYS: FND $500 \frac{1}{2}$ "LED $£ 1 \cdot 19$ each: 6 for $£ 6.48$
NSB5430 $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ red LED stlck of $4 £ 4 \cdot 32 \quad 5$ LTO2 $\frac{1}{2}$ " green phosphor stick of $4 \mathbf{£ 5} \mathbf{4 0}$
CLOCK CHIPS: 50253N Alarm 12/24hr. 4/6 digit £5•67
50362 N Calender clock 57.75 MM 5385N 12hr, 4 digit Alarm $£ 4.32$
6 Decade Up/Down Counters: 50395/6/7 \quad £9•45
MICROPROCESSOR: Z80 C.P.U. £22-68
$\begin{array}{lllll}\text { Z80CTC } & £ 15.70 & 1702 A & \text { UV Erazable PROM } & £ 11.35 \\ \text { Z80 PIO } & £ 15.70 & \text { 2102NA } & \text { IK Static RAM } & £ 2.70\end{array}$

RECHARGEABLE BATTERY SET Super Value $\mathbf{E 8} \cdot \mathbf{1 0}$
Includes: 4 AA (1-2v) Nickel Cadmium batteries (separately £f-08 each) 3/6/9v swltched Universal Mains Adaptor with 4 plug connector for most calculators (separately £3-73) plus battery holder.

Ornenticom

Electronics. Make a job of it...

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home stuidy training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians‘ Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

NEW SEASON＇S COMPONENTS

BRIDGE RECTIFIERS

Purchase books to the value of $£ 5.00$ from
and choose any 60 p pak from this page FREE
BP2 Handbook of Radio．TV \＆Industrial \＆ Transmitting Tube \＆Valve Equivalents BP6 Engineers and Machinists Reference Table BP7 Radio \＆Electronic Colour Codes and Data Cha Módern Crystal and Transistor Set Circuits for Beginners
BP 14 Second Book of Transistor Equivalents Constructors Manual of Electronic Circuits for the Home
16 Handbook of Electronic Circuits for the Amateur Photographer
BP 18 Boys and 8eginners Book of Practical Radio BP22 79 Electronic N
PP23 First Boctronic Novelty Circuits
BP24 52 Projects Using IC741（or equif Project
BP26 Radio Antenna Handbook for Long Distanc
Reception and Transmission
BP27 Giant Chart of Radio Electronic Semiconductor and Logic Symbols
BP29 Major Salid State Audio Hi－Fi Construction How to Bu
BP32 How to Build Your Own Metal \＆Treasure ocators
BP34 Practical Repair \＆Renovation of Colour TVs P35 Handbook of IC Audio Preamplifier \＆Power
8P36 50 Circuits Using Germanin
BP37 50 Proiects Using Relars，SCR．
BP39 50 （FET）Field Effect Transistor Projects
129 Universal Gram－motor Speed Indicator
Coil Design and Construction Manuai
Radio．TV and Electronics Data Book
AF－RF Reactance－Frequency Chart for Constructors
and Subtituregrated Circuits（ICs）Equivalents First Book of Hi－Fi Loudspeaker Enclosures Electronic Circuits for Model Railways Audio Enthusiasis Handbook
Electronic Gadgets and Games
Solid State Power Supply Handbook Solid State Novelty Projects Auld Your Own Soldd State Hi－Fi and Audio Accessories
50 Proiece Short Wave Receivers tor Beginners 5o projects Using iC CA3130
A Practical intojects
How to Bidd Aduction to Digital IC＇s
Resistor Colour Code Disc Catculator

BOOKS BY NEWNES

No． 229 Beginners Guide to Electronics．

Price $£ 2.25 \dagger$

No． 230 Beginners Guide to Television
Price £2．25 \dagger
No． 231 Beginners Guide to Transistors．
Price £2．25 \dagger
No． 233 Beginners Guide to Radio．
Price $\mathbf{f 2 . 7 5 \dagger}$
No． 234 Beginners Guide to Colour Television．
Price $\mathbf{£ 2 . 2 5} \dagger$
No． 235 Electronic Diagrams
Price £1．80 ${ }^{+}$
No． 236 Electronic Components．
Price £1．08 \dagger
No． 237 Printed Circuit Assembly
Price $\mathbf{£ 1 . 0 8} \dagger$
No． 238 Transistor Pocket Book
Price $\boldsymbol{\varepsilon}^{\mathbf{3}-90 \dagger}$
No． 225110 Thyristor Projects Using SCRs \＆Triacs．
Price $\mathbf{£ 2 . 5 0 \dagger}$
No． 227110 COS／MOS Digital IC Projects For the Hom Constructor．

No． 226110 Operatianal Amplifier Projects for the Home Constructor．
Price $\mathbf{£ 2} 50 \dagger$
No． 242 Electronics Pocket Book．
Price $\mathbf{£ 3 . 7 5 \dagger}$
No． 23930 Photoelectric Circuits \＆Systems
Price $\mathbf{f 1 . 8 0} \dagger$

CASES
ALUMINIUM BOXES．Made from bright ali．，folded construction each box complete with half inch deep lid

No．	Length	Width		
159	$5 \frac{1}{4}$ in	$2 \frac{1}{4}$ in	$\begin{aligned} & 1,19 \\ & 1 \frac{1}{7} i n \end{aligned}$	$62 \mathrm{P}^{\circ}$
160	4 in	4 in	$1 \frac{1}{2}$ in	62p＊
161	4 in	217\％	$1 \frac{1}{2}$ in	62p＊
162	51 ${ }_{4}^{4}$ in	$4 i n$	1娄in	$74 p^{*}$
163	4 in	2 $\frac{1}{2}$ in	2 in	$64{ }^{\text {c }}$
164	3 in	2 n	1 in	44 p
165	7 in	5 S	$2 \frac{1}{2}$ in	£1．04＊
166	8 Bin	6 in	3in	£1．32＊
167	6 in	4 in	2 in	$86{ }^{\text {8 }}$
INSTRUMENT CASES．In two sections vinyl covered top and sides，aluminium bottom，front and back．				
No．	Length	Width	Height	Price
155	$8 \mathrm{in}^{\text {in }}$	$5 \frac{1}{4}$ in	2 in	£1．40＊
156	11 in	6 in	3 in	£1．80＊
157	6 in	$4 \frac{3}{4} \mathrm{in}$	13in	£1．25＊
158	6 in	$5 \frac{1}{4}$ in	$2 \frac{1}{2}$ in	¢1．60＊

SPECIAL OFFER AGFA CASSETTES

 STEREOCROM

 STEREOCROM}| 30 | C60 | RRP $\mathrm{E}_{2} \mathbf{0} 5$ | Our price $\mathbf{£ 1 . 6 0}$ |
| :---: | :---: | :---: | :---: |
| 308 | c90 | RRP f $2-54$ | Our price $\mathbf{1} 1.80$ |
| 309 | C120 | RRP E3－49 | Our price ¢2．60 |
| SFD－Super Ferro Dynamic | | | |
| 310 | C60 | RRP $£ 1.40$ | Our price $\mathbf{1 1 . 0 0}$ |
| 311 | C90 | RRP $£$ L． 89 | Our price £1．50 |
| 312 | C120 | RRP 126 | Our price £2．00 |
| DIODES SIL G．P． 300 mW 40 PIV $\{$ min）SUB－MIN FULLY－TESTED | | | |
| | | | |
| | | | |
| deal for Organ builders
 30 for $\mathbf{5 0}$ p， 100 for $£ 1 \cdot 50,500$ for $\mathbf{£ 5}, 1,000$ for $£ 8$ | | | |
| | | | |
| INTEGRATED CIRCUITS CMOS | | | |

Type	Prim	Type	Price	Type	Price
${ }^{\text {codeco }}$	¢0				
CD4002	${ }_{\text {fo }} 18$		E0．80		
CD	${ }_{\text {¢0．18 }}$		¢ 17.70		${ }^{55}$
4008	${ }_{\text {c0．}}^{\text {co }}$	CD8	f0		40
${ }_{\text {coldel }}$	fo． 58	CD	E1．15		${ }^{40}$
CD4012	${ }_{\text {fo }}$		${ }_{\text {c2 } 20}$		
（ ${ }^{\text {CDP4013 }}$		${ }^{\text {COO4 }}$			co．${ }_{\text {coin }}$
${ }^{\text {c }} 040016$	${ }_{\text {co } 0.50}$	CD40			${ }_{\text {f0．}}$
4017		CD40			c1．30
	co．${ }^{\text {cos }}$	CDP4043			ع1．40
CD4021	10	C0．		O4520	25
		LINE	EAR		
			Price		
$\begin{aligned} & 3019 \\ & 3014 \\ & \hline 3018 \end{aligned}$	（1，			${ }^{\text {709P }}$	
	${ }_{\text {cil }}$	MC131		7271	
${ }_{\text {Ca }}^{\text {CA3028 }}$	¢1．72	MC1330P		2271	
込	${ }^{\text {c1 }}$ ， 55		${ }_{\text {c1 }} 1.20$	12723	
退3043	${ }^{\text {c1 }}$ 85	MC13		727	
	E1． 6	MC1456G			co．
CA3075	${ }_{\text {c1．}}^{6}$	MC146	1.40°	仿 27474	f0．750：
${ }_{\text {caser }}$	f1．50	，	50＊	． 72748	
		MC1469R			
CA3123	¢1．90．	MC1496G			
cas	${ }_{\text {co }}^{50.90^{\circ}}$		80．	SN76023	
301		NE515A			
304	${ }^{1} 1.6$		E150＊		
		N	${ }^{\text {co }}$ ¢ 95		
Lм320	． 50	N 5556	¢0．82	TAA	
				TAA	
320－15	5v	N 55654	E1．75＊	TAD	
Lм $320-24$		NE566			
	E1．50	UA702			
		${ }_{4}^{72702}$		TBA	
		UA709C			
M3900		72709	¢0．4	TCA270	£2．20＊

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS
PRINTED．NOT FORGETING TO INCLUDE OUF
PART NUMBER AND YOUR NAME AND

VAT $12 \frac{1}{2} \%$ TO PRICES MARKED ：ADD 8% TO

 AREZERO RATED．
POSTAGEAND

 PACKINGPlease add postage as follows：
Smallorders Medium order
25p

PANEL METERS

TRANSFORMERS

MINIATURE MAINS Primary 240 V
with two independent secondary windings
No．

$\begin{aligned} & \mathrm{No} . \\ & 2024 \\ & 2025 \end{aligned}$	MT280 MT1500－1	0－6V RMS $0-12 V$ RMS	$\begin{array}{r} \text { Price } \\ \text { £1.50 } \\ \mathbf{£ 1 . 5 0 ^ { \circ }} \end{array}$
MINIATURE MAINS Primary 240V			
No．		dary	
2021	6V－0－6	100 mA	$90{ }^{\text {P }}$
2022	$9 \mathrm{~V}-0-9$	100 mA	$90{ }^{\circ}$
2023	12V－0－	100 mA	95p
1 AMP MAINS Primary 240 V			
	Secondary	Price	
2026	$6 \mathrm{~V}-0-6 \mathrm{~V} 1 \mathrm{amp}$	£2．80＊	P．\＆P． 45
2027	$9 \mathrm{~V}-\mathrm{O}-9 \mathrm{~V} 1 \mathrm{amp}$	£2．00＊	P．\＆P． 45 p
2028	12V－0－12V 1 amp	£2．60＊	P．\＆P． 55 p
2029	$15 \mathrm{~V}-0-15 \mathrm{~V} 1$ атip	£2．75＊	P．\＆P． 66 p
2030	$30 \mathrm{~V}-0-30 \mathrm{~V} 1$ amp	£3．45＊	P．\＆P． 868

STANDARD MAINS Primary 240V
Multi－tapped secondary mains transformers available in $\frac{1}{2}$
amp． 1 amp and 2 amp current rating．Secondary taps are amp． 1 amp and 2 amp current rating．Secondary taps are ${ }^{\frac{1}{2}}$
$0-19-25-33-40-50 \mathrm{~V}$ ． Voltages available by use of taps：
4，7．8．10．14，15，17，19．25．31

No．	Rating	Price	
2031	$\frac{1}{3}$ amp	£5．50＊	P．\＆P．86p
2032	amp	£6．60＊	P．\＆P． 86 p
2033	2 amp	£8．40＊	P．\＆P．£1． 10

G．P．SWITCHING TRANS．

TO18 SIM．TO $2 \mathrm{~N} 706 / 8$
BSY27／28／95A．All usable devices．No open and shorts．
ALSO AVAILABLE IN PNP similar to 2N2906．BCY 70. 20 for $50 \mathrm{p}, 50$ for $£ 1$ ． 100 for $£ 1.80$ ． 500 for $\mathbf{£ 8}, 1,000$ for $£ 14$ ． When ordering please state NPN or PNP

JUST OUT－NEW EDITION

 BI－PAK CATALOGUECOVER PO YOUR COPY NOW ENCLOSING 65pt TO
WORLD SCOOP！JUMBO SEMICONDUCTOR PAK
Transistors，Germ；and Silicon Rectifiers，Diodes Triacs， nd Zeners．
Approx． 100 pieces．Dffering AND CODED
PAK and an enormous saving the amateur a fantastic bargain ORDER No． 16222

High quality audio modules for Stereo and mono		
		thansformers
	\%maxammax	Ejutupame
		TEAK 60 Audio
-		
		TEAK 60 CABINET
		25:

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO INCLUDE our part number.

VAT

ADD VAT AT $12 \frac{1}{2} \%$ EXCEPT TO THOSE MARKED * WHICH ARE 8\%.

A top quality stereo pre-amplifier and tone control unit, the PA100 provides a comprehensive solution for the front end require-
ments of stereo amplifiers or audio units. The six push button selector switch gives a choice of inputs together with two filters for ments of siereo amplifiers
high and low frequencies.

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR Dick Ganderton, C. Eng., MIERE ART EDITOR

Peter Metalli

TECHNICAL EDITOR

Ted Parratt, BA

NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston

TECHNICAL ARTIST

Rob Mackie
SECRETARIAL
Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISING MANAGER 01-2615000
 Roy Smith
 CLASSIFIED ADVERTISING 01-261 5762
 Colin R. Brown

ADVERTISING OFFICES

King's Reach Tower, Stamford Street, London SE1 9LS

BINDERS

Binders, for either the old or the new format, are $£ 2.85$ and Indexes are 45p (Inc VAT) and can be obtained from the Post Sales Department, IPC Magazines Lid., iavington House, Lavington Street, London SE1 OPF. Remittances with overseas orders for binders should include 60p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-establishment of a PW Back Numbers Service for our readers. In future back numbers dated from June 1977 only will be available from our Post Sales Department for 65 p, which includes postage and packing. Cheques and Postal Orders should be made payable to IPC Magazines Ltd.
Send your orders to:- Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

Band SWitch

THERE have been brief mentions recently in the national press of forthcoming changes in the wavelengths allocated to the various BBC programmes in the medium and long wavebands. These changes are due to take place on 23 November 1978, and will have a profound effect on the many listeners who have receivers which do not cover the long and medium wavebands and v.h.f.

Increases in the number and power of broadcasting stations in Europe over the years have been dramatic. Under the 1950 Copenhagen Plan, 620 transmitters with a total power of 20 megawatts were provided for in the medium and long wavebands. When the Geneva Plan comes into effect in November, these figures will be increased to 2700 transmitters and 214 megawatts. With channel spacings remaining at 9 kHz , no new channels are available, so the result is a far greater degree of channel sharing. This is bound to worsen interference levels when reception ranges increase during the hours of darkness, especially in the medium waveband. Whilst this problem is not apparent on v.h.f., BBC research shows that fewer than 20 per cent of listeners make regular use of this band.
In bygone years, peak radio audiences were found in the evenings. Television has changed all that, and radio now has its largest audiences during the day, especially at breakfast time and around midday, although tea-time and the evening rush-hour is another popular listening period. The frequency planning engineers have therefore, understandably, concentrated mainly on the daytime situation in the new plan. Unfortunately, in the Northern latitudes, night-time conditions apply to the important early evening period during the winter months.
The United Kingdom was fortunate in being able to retain all its existing frequency assignments, and even gained a second channel in the long waveband, on 227 kHz . Virtually all medium waveband assignments are being increased in frequency by 1 kHz , to bring them up to multiples of 9 kHz . This is expected to facilitate the design of future receivers incorporating synthesiser tuning.

The changes as they affect BBC programmes are that Radio 1 will be on two medium wave channels, 1053 and 1089 kHz , while Radio 2 will be on 693 and 909 kHz and Radio 3 moves to 1215 kHz . Radio 4 is being transferred to the long waveband, where a new transmitter on 227 kHz will provide coverage for Central Scotland. For the remainder of the UK, the established 200 kHz channel will be used, with an additional transmitter in the North of Scotland.

The important question is how much all these changes are going to benefit the listener. Apart from increasing the service area of Radio 4, the answer is probably, regrettably, very little. Anyone without a v.h.f. or long waveband on his or her radio will be denied access to Radio 4the principal information, news and weather forecast channel. It is certainly unlikely that there will be anv increased choice in programmes available, which is not good news for anyone with minority interests in music, hobbies or sport.

Geoffrey C. Arnold

PLEASE NOTE

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We do not supply service sheets or Information on commercial radios, TV's or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.

Marks of the Gods?

Electronics has revolutionised the surveying profession with the introduction of high accuracy electronic distance measuring systems. Tellurometer was one of the earliest entrants into this field and their name has become almost synonymous with Electronic Distance Measurement (EDM)-the Hoover of EDM in fact.

EDM has been used successfully in the construction and positioning of North Sea oil rigs and production platforms as well as civil engineering surveying work.

In recent months, however, Tellurometer infra red EDM instruments have been helping to probe the secrets of the mysterious Nascan Linesthose strange straight lines which criss-cross the South American deserts high up in the Andes. Among the theories put forward for these strange patterns have been Erik von Daniken's prehistoric spacecraft landing site.

The BBC last year sent an expedition out to the Andes led by Tony Morrison with the aim of trying to unravel the mysteries of the lines. Tellurometer lent the expedition one of therr CD-6 IR systems to enable the expedition to survey the lines with an accuracy never before applied to Nasça.

Armed with the results of the surveys, which showed that the lines were remarkably straight over in-

credibly long distances, Morrison enlisted the help of the man who decoded Stonehenge using a computer. Dr. Gerald Hawkins fed the results into a large computer to try to establish whether or not the lines had any astronomical significance. They did not, and Morrison had to look for other possible motives.

The expedition took plenty of film in the deserts and this was made into a film, "Pathways to the Gods" shown at the end of last year on BBC TV. Morrisons initial conclusions put forward at the end of the film were that the lines were nothing more than pathways showing the shortest distance between many hundreds of religious sites. This will not convince many "Chariots of the Gods" followers

Tony Morrison seen using the specially assigned Tellurometer CD 6 portable infrared distance measuring system while surveying one of a series of newly-discovered lines in the Central Andes during the making of the film, "Pathways to the Gods" which was recently shown on BBC TV.
and doubtless the arguments will continue to rage for many years to come. Morrison is however keeping some of his secrets and theories for his book, due to be published this coming May.
The expedition also proved that electronic distance measurement is feasible under the intense heat and arid conditions of the high Andean deserts, where the portability and ease of operation of the Tellurometer CD-6 equipment really showed up.

Good News

We are pleased to announce the reintroduction of the publishers subscription service for Practical Wireless. The annual cost to either UK or overseas addresses is $£ 10 \cdot 60$.

Application may be made to:
Practical Wireless,
Subscriptions Department,
Oakfield House,
Perrymount Road,
Haywards Heath,
Sussex RH16 3DH.
Remittances should be made payable to IPC Services.

Remember
 "Foing Back"?

All those readers who are interested in the vintage days of radio may now contact Colin Riches at his home address: 28, Chestwood Close, Billericay, Essex.

Books

We are informed by Babani Press that their latest catalogue of radio and electronic books is available to readers of Practical Wireless, if they write enclosing an SAE to:
Babani Press \& Bernards (Publishers) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF.

Hello Sailor

The Royal Naval Amateur Radio Society are organising an activity period from 1800 hours GMT on 24-31978 to 1800 hours GMT on 2-4-1978. Location, HMS Belfast, Pool of London.

Three stations will be active using the call-sign GB3RN. Operation will be on ssb and cw in the $80,40,20,15$ and 10 metre bands, in addition to 1875 kHz ssb and $1827 / 1837 \mathrm{kHz}$ cw.

All contacts will be acknowledged by a commemorative QSL.

HMS Belfast, the only surviving heavy cruiser of the Royal Navy is open from 1100 hours until 1600 hours in the winter and 1800 hours in the summer.

Sounds Good

The American Federal Communications Commission is to reconsider the feasibility of stereophonic sound channels for US television. First examined in 1964, the idea was abandoned some three years later on the grounds of lack of interest. The Public Broadcasting System however, have revived the question and the FCC is to hold an inquiry investigating the present feelings of manufacturers, broadcasters and the American public. At the same time, as in the UK, soundings are being tảken to determine the interest in a.m. stereo and f.m. Quadraphonic transmissions.

ie furrheck'

in

IAN HICKMAN

For those taking a serious interest in electronics, an oscilloscope is the most important single instrument in the home workshop.
For the last ten years an all-transistor model has been in use by the author. However, lately this has been showing its age by deteriorating performance, poor reliablity etc. When it was designed, there was no all-transistor oscilloscope on the market; now, of course, there are no valve types, apart from a few imports from the Communist Bloc.

It was an all discrete design, so when the time came that something just had to be done, it was clearly a better plan to start again from scratch using integrated circuits. A fresh start also provided the
opportunity to incorporate a number of features which could prove valuable and which were not catered for in the previous version.
Feeling that others might be interested in a design which is well engineered and suitable for the home constructor yet providing a high standard of performance, it was decided to use only components readily obtainable and in particular, in the interests of economy, the popular and reasonably priced surplus cathode ray tube type 3BP1, Fig. 1.

Where, in the interests of performance, special components are unavoidable, arrangements have been made with well-known firms advertising regularly in PW to stock them.

Fig. i: In the interests of economy the 'Purbeck' uses the reasonably priced and readily obtainable 3BP1 cathode ray tube, seen here with the specially produced low cost mu-metal shield

Performance

The main performance features of the final design are as follows:

Y amplifier: 10 mV per division to 100 V per division (in 5 steps) with $\times 0.5, \times 1$ and $\times 2$ multiplier, calibrated. $1 \mathrm{M} \Omega$ and approximately 30 pF constant input impedance. An uncalibrated "variable" gain control provides typically 2.5 mV per division maximum sensitivity. Bandwidth d.c. (or 2 Hz when a.c. coupled) to 5 MHz full screen (21 MHz for 1 division).

Timebase: $1 \mathrm{~ms}, 100 \mu \mathrm{~S}, 10 \mu \mathrm{~s}, 1 \mu \mathrm{~S}$ and 100 ns per division with a multiplier switch giving $\times 0.5, \times 1, \times 2$, $\times 5$ and $\times 10$ providing speeds from 50 ns per division to 10 ms per division. An uncalibrated "variable" control range, extending sweep range to about 25 ms per division.

X amplifier: A "variable" gain control provides X1 (calibrated) to $\times 2.5$ (approximate) gain range, extending sweep speed to about 20 ns per division. a.c. coupled external X input, requiring approximately 4 V peak to peak for 10 divisions for X deflection.

Trigger facilities: Internal or external triggering, a.c. coupled. On external, 200 mV peak to peak required for triggering (20 V if using the $\times 100$ input). On internal, reliable triggering is obtained for an X deflection of less than 1_{4} of a division up to 10 MHz . "Trig. level" control selects the point on the wave-
form at which triggering occurs. Brightline circuit causes the trace to free run in absence of an input or when "trig. level" needs adjusting. Trigger polarity selector gives a choice of triggering on positive or negative-going edges.

Power supplies: All voltage rails are fully stabilised, providing typically 3% measurement accuracy in both X and Y axes, independent of mains variations.
Other facilities: Brilliance and focus controls. X and Y shift controls. Timebase output socket. Sweep gate output socket. Alternate sweep gate output socket. Calibrator output socket. Probe/accessory power socket. 10×8 screen graticule of 0.225 in squares.

It can be seen that a comprehensive range of facilities is provided. The instrument can be simplified somewhat by omitting some of these, but this is definitely not advised.

It is hoped in due course to publish details of various items for use in conjunction with the oscillo-scope-probes, dual beam units, transistor curve tracers, panoramic receivers (even a $P W$ Spectrum Analyser?)-and these between them will require all the 'scope's facilities. A dimensional panel layout is provided for the benefit of those with the necessary enthusiasm and metal-work facilities to make their own case.
However, a superb case, has been designed especi-

Fig. 2 : Block diagram of the complete oscilloscope
ally for the "Purbeck" Oscilloscope and is very reasonably priced. The panel size is dictated by the facilities provided and the components used.
For example, in a commercially produced 'scope, the two Timebase speed controls would be combined in one switch with the "variable" control concentric with it and similarly for the Y sensitivity controls. Obviously a multiwafer 18 position switch is difficult to obtain and with a concentric pot. virtually unobtainable in small quantities. The present design uses single wafer switches with the exception of the frequency compensated input attenuator, S3.

Likewise, the depth of the case is determined by the need to mount the mains transformer to the rear of the cathode ray tube, to ensure no trace deffection from its stray magnetic field. The c.r.t. uses a simple low cost mu-metal shield designed and produced, like the mains transformer, specially for this project.

Is it only for advanced constructors?

The "Purbeck" Oscilloscope is a high performance fully stabilised instrument and therefore necessarily fairly complicated. Readers unfamiliar with valve circuitry should also realise that the high voltages used-particularly the 800 V supply-are dangerous and should always be treated with caution and respect. It is not really a project to be undertaken by the beginner.

However, that said, anyone capable of reading and understanding a circuit diagram and using a soldering iron and a $20 \mathrm{k} \Omega / \mathrm{V}$ meter can confidently undertake this project, as special consideration has been given to ease of construction.

The Y amplifier (Board 3) and Timebase Board (Board 4) use a "ground-plane" technique to ensure
stability in view of the high gain and wide bandwidth of the circuitry. (The gain-bandwidth product of the Y amplifier is 80 GHz !!)
For economy, single sided boards are used, with discrete wiring for the component interconnections. This also minimises stray capacitance, contributing to a bandwidth in excess of 20 MHz for a deflection of one vertical division. Detailed drawings of all boards are given. All of the stabilised supplies are current limited, thus the odd incidental short circuit should cause no damage, but the heat sinks and components are not rated for an extended period in short circuit.
Fig. 2 shows a block diagram of the complete oscilloscope. This shows it to be a fairly conventional design of single channel measuring oscilloscope, i.e. calibrated gain and sweep speed with fully stabilised supplies. Fig. 3 gives a general view of the internal construction, showing the use of plug-in boards for the Y amplifier and Timebase (Boards 3 and 4.
In each case, two controls are mounted actually on the board, with shaft extenders to the front panel. This not only substantially reduces the number of leads through the edge connectors (and simplifies the front panel wiring) but avoids problems which could arise if the high frequency signal leads associated with these controls were lengthy. Boards 1 and 2 (Raw Supplies and Stabilisers) are simpler and are therefore hand-wired rather than pluggable. A few components only are mounted in the main frame or behind the front panel.

Components

A single component list for the whole oscilloscope is not provided; instead a component list for each

Fig. 3: General view showing the internal construction

Collated parts list

Resistors		Capacitors
${ }^{\frac{1}{2} \text { W Carbon Film } 5050}$	5\% tol	Ceramic
(10% above 1MS)		10pF
Value N	No. Rad.	33 pF
$2 \cdot 2 \Omega$	1	47pF
$4 \cdot 7 \Omega$	1	68 pF
6.8Ω	1	82pF
102	2	150 pF
478	10	330pF
68Ω	1	470pF
100Ω	11	820 pF
1208	,	1 TF 500 V
15082	6	$0.1 \mu \mathrm{~F} \mathrm{30V} \quad 21$
1809	2	Variable 2 to 22pF 5.5 to 65 pF
2202	6	
3300	2	
3908	1	Metallised Film
470Ω	3	
680Ω	1	
1 k ,	8.	4.7nF 63 V
1.8k	2	6. 8 nF 250 V
2. $2 \mathrm{k} \Omega$	8	$10 \mathrm{nF} 63 \mathrm{~V}^{*}$
3.3k9	3	47nF 63V
3.9kS	2	0.1 1 F F 63 V *
4.7kS	1	0. $1 \mu \mathrm{~F} 350 \mathrm{~V}$
$5 \cdot 6 \mathrm{k} \Omega$	3	$0 \cdot 1 \mu \mathrm{~F} 1000 \mathrm{~V}$
8-2kR	1	$1 \mu \mathrm{~F} 63 \mathrm{~V}^{*}$
$10 \mathrm{k} \Omega$	2	* 1% or selected, see Pt. 5.
12 k 2	2	Electrolytic
15 k ת	1	4.74F 25 V
$39 \mathrm{k} \Omega$	1	4.7 $\mu \mathrm{F}$ F 100 V
$47 \mathrm{k} \Omega$	2	8 4 F 15V
82h/2	1	$8 \mu \mathrm{~F} 500 \mathrm{~V}$
330 kS	1	$47 \mu \mathrm{~F} 500 \mathrm{~V}$
$470 \mathrm{k} \Omega$	1	$100 \mu \mathrm{~F} 10 \mathrm{~V}$
10M	2	$2500 \mu \mathrm{~F} 25 \mathrm{~V}$
Various:-		Integrated Circuits LM304
Metal Film $\frac{1}{2}$ W 1\%		
100Ω	1	LM309
1 k 2	1	LM723
10k	1	LM733
$100 \mathrm{k} \Omega$	1	SN7270
910kR	1	SN7474
$1 \mathrm{M} \Omega$	4	SN7486SN74132
Metal Oxide $\frac{1}{2} \mathrm{~W}$		
4.7ks	1	Switches Min. Push Bution (Make)
2W		Min, s.p.c.a. Toggle
180kS	1	1 p 4 w Rotary $\frac{1}{4}$ in shaft
		1 p 5 w Rotary $\frac{1}{4}$ in shaft
Wirewound 5W 10\%		2p5w Rotary $\frac{1}{4}$ in shaft e.g. $2 p 6 w$ "wave change"
$390 \Omega 2$	-. 1	
1k:	,	with adjustable stop
$3.3 \mathrm{k} \Omega$	2	2p5w 2 Wafer
$6.8 \mathrm{k} \Omega$	2	e.g. "Makaswitch" type

board is given in the instalment dealing with that board. A collated parts list for the complete project is given for those wishing to order parts in good time, so that each section can be constructed as the details are published.

The next instalment will deal with the main frame wiring, Raw supplies and Stabiliser boards. Further instalments will deal with the Y amplifier board and the Timebase board (with full description of the operation of these circuits), and a final instalment will deal with finishing off the construction, setting up and calibration and use, together with useful tips for any who may hit snags in getting it all going.

To minimise the possibility of this use only full spec. components from a reputable supplier. Don't use cheap or "outside the manufacturers very rigid spec. but all usable" components. These and gems from the junk box can cause disappointment and they can also damage other components when they fail.
Constructors are also advised not to substitute other component types for those listed, nor to depart from the contructional practice adopted in the article. In particular, if you don't use ground plane construction on the Y amplirier and Timebase boards-well, don't blame anyone but yourself for the results!

TO BE CONTINUED

DESIGN YOUR OWN PROJECTS Mo.6

 TTL InterfaceRegular readers will have noticed that oircuits covered by this series have varied in their degree of immediate applicability. This month's project is one that few people will have an immediate use for, but it makes up for this by providing a detailed illustnation of how to choose component values in an oftenused circuit-as well as highlighting some problems of interfacing digital logic circuitry with the outside world. You may have a suspicion that we choose circuits for these articles solely on the basis that they haven't appeared in magazines recently. Actually this isn't true.

For example, the cassette power supply described in the October issue of $P W$ was designed because one of us wanted such a device for a car which was being used as transport to do a job 25 miles away. The continuity tester described recently was born out of the desire to produce a simpler solution to a particular set of specifications accompanying a design published elsewhere.

As a contrast, this month's cincuit was originally designed some while ago; part of a "suite" of test equipment that Toby needed at the time. Apant from power supplies, meters and things (all neatly housed in a surplus tank chassis) this magnificent device also contains a reasonably accurate frequency marker, which consists of a crystal oscillator, a waveform squarer, a series of TTL (Transistor-Transistor Logic, a particular way of fabricating digital integrated circuits) divide-by-ten counters and a pulse generator. The output from this can be switched to be $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$ or 1 kHz and the waveform shapes available are square wave, 20 ns positive-going pulse or 20 ns negative-going pulse. Now there is a very good reason for not connecting these outputs directly to sockets on the front panel, namely that an inadvertent short circuit will probably ruin the TTL circuits of the generator.

Fig. 1: Circuit of a typical TTL inverter stage.

TOBY BAILEY \& BOB WHITAKER

As a digression, never underestimate the chances of doing something like this! Disaster struck recently when it was discovered that a strange combination of the metering switches caused the overload protection on the power supply to blow up. It's a good idea, when working out the design, to assume that some such mishap will occur.

Anyway, this month the circuit that we are going to design is an interface from TTL to the outside world.

Specification

Since we wanted to use this circuit in a particular piece of equipment it was fairly easy to produce a set of specifications. The circuit should run from the standard TTL power supply (5V). It should take as input the TTL waveforms produced by the frequency genenator and give an output of 0 V for a TTL low (or " 0 ") input and an output of 1 V for a high (or " 1 ") input. The output impedance should be fairly low and we decided that 40 to 50 ohms would be adequate. Switching times should be as fast as possible to produce good, clean waveforms and finally the whole unit should be fairly "abuse-proof", paying particular attention to short circuits etc.

TTL Outputs

If you ever want to use TTL circuitry, and in particular if you want to connect other things apart from TTL to it. then it is essential to know what the actual TTL input and output circuits consist of, and what they are capable of driving. This is a bit of a diversion from our project, but we think that many people will find the information useful.

Figure 1 shows the circuit of a typical TTL inverter stage. A low input will form a current source for the emitter of the first transistor and so must supply a reasonable amount of current to it. On the other hand, if the input is high the input stage will draw appreciably less current. The output stages match the input conditions well: an output which is low will sink a considerable quantity of current (enough to supply ten TTL inputs connected to it simultaneously) whereas a high output can supply considerably less current (about 40 times less) which nevertheless, is still enough to drive at least ten other gates-this is what is meant when the manuals say that the gate has a "fan-out" of ten. It's useful to have the exact figures handy:

Maximum voltage recognised as being a low input; $0 \cdot 8 \mathrm{~V}$. Minimum voltage recognised as being a high input; $2 \cdot 0 \mathrm{~V}$.

Fig. 2: A basic Schmitt trigger circuit using.npn transistors.
Maximum current flow out of an input in the low state; $1 \cdot 6 \mathrm{~mA}$.
Maximum current flow into an input in the high state; 40 mA .
Maximum current into a low-state output without pulling it up to more than $0.4 \mathrm{~V} ; 16 \mathrm{~mA}$.
Maximum current out of a high-state output without pulling it below $2 \cdot 4 \mathrm{~V} ; 400 \mu \mathrm{~A}$.
These figures show, for example, that if you want to drive a light-emitting diode from TTL then you should connect it (with a resistor in series!) between the TTL output and the +5 V line, where 16 mA is available, rather than conneoting it to the OV line where only $400 \mu \mathrm{~A}$ is available.

The Circuit

Now, down to business! The best simple method of achieving fast switching is to use some form of Schmitt trigger-a circuit is shown in Fig. 2. How does it work? Well, suppose the input is low (near 0 V), Tr1 will then be switched off and R1, R2 and R4 will form a bias network for $\operatorname{Tr} 2$-we choose the resistor values so that $\operatorname{Tr} 2$ will be turned on when the circuit is in this state.

Suppose now that we slowly increase the input voltage: when it reaches a value about 0.5 V above the emitter voltage of $\operatorname{Tr} 2, \mathrm{Tr}$ starts to turn on and the voltage at its colleotor starts to drop. This has the effect of reducing the bias voltage to $\operatorname{Tr} 2$ which consequently starts to turn off, thus causing Trl to turn on even more quickly and soon the circuit will have flipped over into a state where Trl is on and Tr 2 is off. If you go through the same process in reverse you will find that a similar sort of thing occurs and the circuit ends up where it started. Those of you who remember Part One of this series should necognise the process of regenerative switching here. What follows is a demonstration of how to ohoose component values for this particularly useful circuit.

Modifying the Basic Circuit

As it stands the circuit shown in Fig. 2 isn't quite what we want. The output varies between the positive line (when $\operatorname{Tr} 2$ is off) and something in between the positive line and ground when Tr2 is on. Furthermore, the input requires current driving "down to ground" which, as we mentioned earlier, is something that TTL doesn't panticularly like to do. What happens if we turn everything upside down as in Fig. 3? We've now solved both of these problems. Note that we have labelled the negative power line 0 V and the "ground" line " +5 V " just so that we can keep track of what's going on: it will make the connection to the TTL circuitry clearer. (The Americans would

Fig. 3 : The circult of Fig, 2 modifled to provide a greater "high" output drive capabillty.
probably just draw the transistors "emitter upwards" and draw the power lines all over the place but we have always found this habit very confusing).

Anyway, all we need to do now is choose component values so that with a low input (within 0.4 V of the negative supply rail) Trl is turned on, and with a high input (i.e. at least $2 \cdot 4 \mathrm{~V}$ "below" the negative rail) the transistor is turned off.

Component Values

So where do we start choosing component values? We have a good base point here, since we require the output impedance to be about 40 or 50 ohms. As the output impedance is going to be roughly the value of R5 we can choose R5 $=47$ ohms straight away. If you don't have a constraint like this, then start by deciding how much current you require and calculate R5 from that.

Fig. 4 : The first steps in choosing. component values.
When $\operatorname{Tr} 2$ is on we want an output voltage of about 1 volt "below" the supply line (bear in mind that this is 1 V above ground from the point of view of the TTL). Hence the current flowing in R5 will be $\frac{1}{47} \mathrm{~A}=$ 21 mA . The next thing to decide upon is the emitter voltage of the transistors when they are in this state, enabling us to oalculate the value of R3. We don't want Tr to turn on with an input of 2.5 V so we require the emitters to be at a voltage which is no more than 2.5 V below the 0 V line: the 0.6 V drop across the base-emitter junction will then give us a safety margin. Since R3 will be passing 21 mA and must drop $2 \cdot 5 \mathrm{~V}$, its value must be at least:
$\frac{2 \cdot 5}{0.021}=119 \mathrm{ohms} ;($ say 120 ohms$)$.
Fig. 4 shows the bias circuit as it is when Trl is off (Tr 1 has been omitted for clarity). Don't worry that the bias circuit here is part of a trigger circuit and not a simple transistor stage-we can just carry on our calculations as normal.

First, we have the standand problem of which transistor to use. Regular readers can probably predict that we will choose something like a 2 N 3702 : these are good, cheap, general-purpose $p n p$ devices and we usually have a number of them available. Now the 2N3702 has a stated d.c. gain of better than 60 for a collector current of 5 mA so it should be safe to assume that the gain will be better than 40 under the conditions of our circuit. This gives us a maximum base current of about 0.5 mA . We can use a rule-of-thumb, which states that "the current in the" divider chain should be at least five times the base current", to decide that we want a divider current of 2.5 mA . This means that the total resistance of R1, R 2 and R 4 should be $\frac{5 \mathrm{~V}}{2 \cdot 5 \mathrm{~mA}}=2,000 \mathrm{ohms}$. If we want the emitter of Tr 2 to be $2 \cdot 5 \mathrm{~V}$ from the +5 V line then the base will have to be around 3 V from the line after we have allowed for the base-emitter junction. So: $\mathbf{R} 4=\left(\frac{3}{5}\right) \times 2 \mathbf{k}=1 \cdot 2 \mathbf{k}$ and hence $\mathbf{R} 1+\mathbf{R} 2=2 \mathbf{k}-1 \cdot 2 \mathbf{k}=$ 800 ohms. We'll decide on the individual values of R1 and R2 in a moment.

Fig. 5: The circuit of Fig. 4 with the input stage restored.
Let's see what happens to the circuit we've designed so far when the input voltage moves towards the 0 V line. The circuit in Fig. 5 shows the component values we already know. As the input voltage goes towards zero volts, $\operatorname{Tr} 1$ will turn on and we want to arrive at a point where Tr2 takes no current, i.e. is turned off. Much is going to depend on the magnitude of the emitter voltage when Trl is saturated. Assuming this occurs again with a voltage of 2.5 V , then we want $\mathrm{R} 1=\frac{2 \cdot 5}{0 \cdot 021}=120$ ohms. This ignores the current in R2 and R4, which will be much smaller than that flowing through R1, and the voltage drop between the collector and emitter of $\operatorname{Tr} 1$ (which is very small in a saturated transistor, say 0.3 V or less). This means that $\mathrm{R} 2=680$ ohms: with these values Tr 2 should be turned off since its base will be more positive than its emitter.

Fig. 6: The final circuit with all component values shown.

So we've arrived at the circuit shown in Fig. 6. We now have to make what we hope will be a final check to see if it works in practice. Since soldering up an untested circuit invariably causes huge amounts of trouble, we always make up the initial version of S-Decs or T-Decs (depending on the complexity). This circuit is no exception and it worked first time after all, the components having been plugged into an S-Dec. The final version shown in the photograph was constructed by transferring the components directly from the Dec to an S-Dec patterned Blob-Board. A stock of these can save a lot of time when making up "hard copies" of circuits constructed on Decs since it is not necessary to draw a layout diagram.

'Sll|M Ul|IX' 2-METRE AERIALL

F.C. JUDD FISTC, MIOA, Assoc.IPRE, A.Inst. E (G2BCX)

This is a vertically polarised omnidirectional free space aerial for two metres but which will operate in the same way for higher or lower frequency bands by scaling the dimensions accordingly. It has a radiation efficiency 50% better than a conventional ground plane due to its low angle radiation, is unobtrusive, has no ground plane radials, and therefore has low wind resistance. The name "Slim Jim" stems from its slender construction (it is only 60 inches long for 2 metre operation) and the use of a J type Integrated Matching stub (JIM) that facilitates feeding the aerial at the base, thus overcoming any problem of interaction between feeder and aerial. The feed impedance is 50 ohms.
MRO14
Arrows indicate current direction
 (no connection)

Fig. 1: The basic aerial, showing direction of current flow and phase reversal in matching stub.

Fig. 2: Main constructional details.
For extra strength a bridge of plastic, thickperspex, or tufnol etc. may be fixed half way between insulator \& top.

[^1]and neither is the overall length, providing this is within \pm_{4}^{1} inch.

Details for a strongly made version for fixed station use outdoors are given in Fig. 2, in which the diagrams are self-explanatory and dimensions are included. The only comment called for is on the insulation between the return half of the folded radiator and the top of one side of the matching stub. This may be a piece of thick perspex, tufnol or p.t.f.e. drilled to take the rods (they must not touch), which can be set in with Araldite.

Fig. 3, above, where the $5 / 8$ wavelength ground plane radiation angle is 30° or more (dotted line), and the "Slim Jim's" at virtually 0°. Fig. 4, top right, providing omnidirectional patterns of a $5 / 8 \mathrm{gr} . \mathrm{p}$. at 0° vertical angle. Both patterns from models at 650 MHz .

Response

The polar diagrams shown in Figs. 3 and 4 explain the "Slim Jim's" improved efficiency over the $5 \% 8$ wavelength ground plane, in spite of its claimed 3 dB gain over a dipole or similar ground plane. Fig- 3 shows that the "Slim Jim" vertical angle of radiation is almost parallel to ground, so maximum radiation is therefore straight out (and all round) which is what we want. With all ground plane aerials, including those with radials of more than 1_{2} inch length, radiation is tilted to an average angle of 30° or more. The dotted line in Fig. 3 is that from a $5 / 8$ wavelength Gr.P aerial with 6 quarter-wave radials.

Now examine Fig. 4. The outer line is the (omnidirectional) radiation from the "Slim Jim" at a vertical angle of 0° e.g., on a plane parallel to ground. The inner line shows the loss of radiation, by comparison, from a $5 / 8$ wavelength ground plane at the same angle and that loss can be around 6dB! This has been verified with full size 2 metre aerials as well as with UHF scale models on the writer's aerial test range. Many 2 metre operators already using the "Slim Jim" in place of a ground plane will confirm its efficiency.

Setting Up

The feed point may be protected from rain as shown in Fig. 2, by a circular plastic junction box, with a screw-on lid, but the correct feed point must be found first. The best way of doing this is to complete the construction of the aerial and stand it upright in the room near the transmitter but clear of other conductors. Use the full length of feeder required to reach the aerial when tinally in situ. Clip on at about 4 inches up from the bottom as in Fig. 2. Adjust slightly up or down for minimum S.W.R. and maximum power into the aerial. Note points of contact and then fit solder tags as shown ready for the feeder soldered connections. The plastic box may now be fitted and the completed aerial and feed pro tector box can be given a coat or two of polyurethane varnish before final installation. Fig. 2 shows methods of mounting on a mast with a TV aerial claw clamp such as those made by Antiference.

Positioning of the "Slim Jim"

Ideally the aerial should be as high as possible and clear of other aerials or conductors. It will, however, operate quite well indoors in the loft, or even in a living room, but obviously with a lower range.

If the "Slim Jim" is constructed from coathanger wire, galvanised iron wire or 300 ohm ribbon feeder, while other considerations remain the same, the space between the elements may be reduced to about 1 inch. The whole of the aerial, made like this, could be housed in plastic water pipe. Being compact, the "Slim Jim" can be carried around quite easily for portable operation on holidays, etc. Please note the name "2BCX Slim Jim" is copyright and the design is exclusively that of the writer.

Ron HAM BRS 15744
G6DH
Denis Heightman G6DH began listening on $56 \mathrm{Mc} / \mathrm{s}$ in 1936 but as he was located at Clacton-on-Sea he did not often hear any of the London stations. His first QSO was cross-band between $28 \mathrm{Mc} / \mathrm{s}$ and $56 \mathrm{Mc} / \mathrm{s}$ with YL2CD (Latvia)! At 0810 on June 3rd 1937 Denis asked the Latvian station (on $28 \mathrm{Mc} / \mathrm{s}$) to listen out for him on $56 \cdot 1 \mathrm{Mc} / \mathrm{s}$. This he did and he gave Denis R5 to 7 for his 5 metre signal.
The first G contact that G6DH made on 5 m was in 1937 with G8MU in Ipswich and then with G5LC. In May 1938 Denis received the auto transmissions on $56 \mathrm{Mc} / \mathrm{s}$ from SM5SN of the Luma Lampworks in Stockholm. It was a pity that they were not listening on the band, because G6DH is sure that a QSO would have resulted. On July 24th 1939 another strong signal, this time from Lisbon, was received by G6DH; he heard the auto transmission at 1745 of CS3VA calling G6YL but again the Lisbon station was not receiving so Denis was unable to attempt a DX QSO.

Across the Border

For several years prior to 1935 a number of Scottish amateurs were carrying out experiments on $56 \mathrm{Mc} / \mathrm{s}$ under the leadership of G6WL, who, before giving up owing to ill health, inspired Archie Brown, G6ZX with the 5 m bug. Archie was very active on "five" from about 1933 and had carried out many tests with G5YG, between a fixed station and a moving vehicle, and vice versa. The birth of the Glasgow and District Radio Club, and its members' interest in $56 \mathrm{Mc} / \mathrm{s}$ operation, gave G6ZX new incentives and Sunday morning schedules with the local radio club began.

On May 5 1935, members of the club set off with $56 \mathrm{Mc} / \mathrm{s}$ receivers, batteries, and all necessary equipment for the top of Ben Lomond ($2,500 \mathrm{ft}$) which was about 33 miles NW of Archie Brown's location in Clarkston. For his part, G6ZX used a beam aerial and also a straightforward vertical half-wave system. When the expedition reached the top, one of the receivers was hooked up while a short aerial was being erected, and, to everyone's amazement, Archie's signal came pounding in before the aerial was connected.

Snowdon to England

The banner of amateur radio had been planted on Snowdon by another $56 \mathrm{Mc} / \mathrm{s}$ enthusiast in 1933, but this did not deter Douglas Walters G5CV and his companion David Richards (director of radio communications in the previous Mount Everest expedition) from taking their 5 m gear up this $3,500 \mathrm{ft}$ mountain in June 1935 for more experiments. Before leaving London, arrangements were made for a full description of the tests and schedule to be mailed to $56 \mathrm{Mc} / \mathrm{s}$ enthusiasts throughout the country. Marchese Marconi very kindly promised to co-operate and the Marconi Company at Chelmsford set up two special $56 \mathrm{Mc} / \mathrm{s}$ stations with directional aerials for Snowdon. The War Office and Post Office also co-operated and a watch was kept on these tests by the Royal Engineers at Woolwich and the P.O. Engineers at Dollis Hill.

The first contact from G5CV on Snowdon was with G5MQ (55 miles) in Liverpool, and the next with G2IN whose gear was installed in a car near Ormskirk (75 miles). After the tests were completed it was learnt that G5JU had received their signals in Bristol (140 miles) and a report from G6CJ at Stoke Poges increased the distance to 180 miles, and, finally, on arrival back in London, Douglas learnt that his $56 \mathrm{Mc} / \mathrm{s}$ signal from Snowdon had been heard by G2NU near Romford, a distance of 207 miles.

An interesting fact emerged from these tests; the signal strength from all stations fell to a minimum between 1100 and 1400 hours, a phenomenon which had been observed on several occasions during the previous three or four years, and also by Mr. Dent of the Wireless World.

The low power transmitter used on Snowdon was the same one that Douglas Walters had used for his aircraft and glider experiments. Their larger transmitter employed two special PX25 valves in push-pull and a PT25B as modulator. For the occasion, Messrs Webbs Radio loaned them an Eddystone $56 \mathrm{Mc} / \mathrm{s}$

THE T. © R. BULLETIN, Soptember 1939.
161

Call	Location	$\left\|\begin{array}{c} \text { Crystal } \\ \text { Fre- } \\ \text { quency } \end{array}\right\|$	Transmitter Line-up	Receiver	Aerial Systems	$\left\|\begin{array}{c} \mathrm{Na} \\ \text { of } \\ \mathbf{Q S O}^{+} \end{array}\right\|$	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Stmas. } \\ \text { Hrd. } \end{gathered}$	
G2ZVP	Bary Hill, Sussex	7	6L6/6L6	Acors Superhet	\ddagger wave beam two long wires	8	29	52
G8LYP	Near Basingstoke	14	6L6/RK39	0-v-2	1 wave beam	4	18	46
GWbAAP	Snowdon	28	6J5/807/35T	Acoun t-v-1	1 wave zepp fed	25	31	124
G2NHP	Near Dorking ...	9.3	6L6/6N7	Superhet	t wave dipole	20	39	-
G8JVP	Noar Leok ...	28	RK34/RK34	Acorn 1-v-1	\dagger wave dipole	14	18	70
G5MAP	Near Storrington. Sussex.	14	6L6/6N7	Superhet	t wave dipole	18	35	32
G2QYP	Near Elstree ...	7	6L6/6L8/T20	1-v-1	twave beam	10	32	-
G2RDP	Woldingham, Surrey.	ECO	6L6/6L6	0-v-1	t wave	5	-	-
G2WSP	Woldingham, Surrey.	ECO	89/6L6	1-v-1	W8JK 4×1 wave dipole	9	-	-
G5CDP	Amersham, Bucks.	7	(See July Bulletin)	Acorn Superhet	I wave	3	18	-
G5CMP	Billingshurst. Sussex.	Eco	89/6ve	0-v-2	\pm wave beam	.	-	-
G3CLP	Epsom	7	6L6/6N7	0-v-1	t wave dipole	15	-	-
G3APP	Grays, Essex ...	7.	3 stage	0-v-t	14×1 waves	4	7	61
G3BYP	Hartshead. Pike...	28	6J5.6V6	Acors 1-v-1	2×1 wave in phase	7	11	-
G2JBP	Warlingham, Surrey	-	Long-line	0-v-1	1 wave retiector	7	12	35
G8AAP	Near Birkenhead	-	S excited	Transceiver	I wave	2	6	-

A typical contest table of 1939, showing the type of gear which was in use at the time. All stations were operating portable, hence the final " P " on the cal/signs.

Table courtesy of the RSGB
receiver, the GEC supplied the Osram valves, and the Chloride Electrical Storage Company supplied the Exide accumulators which provided their LT supply and powered the generators which in turn supplied the HT current for both transmitters. Which all goes to show how confident other people were in Douglas Walters and his amateur radio experiments.

On August 23rd 1936 another group comprising G6KY, 2AKD, G6YQ and G5YP set up station on the summit of Snowdon. Promptly at 0900, G6YQ/P was in operation and shortly afterwards contacted G5BY, from Croydon, who had journeyed by road to Fishguard with his gear and erected it at Strumble Head (85 miles). Early contact was made with G6AA/P at Holyhead and then with G6IA, assisted by G5SD who had hauled their rig to the summit of Snaefell, I.O.M. (87 miles). The best DX was made at 1530 when contact was made between Snowdon and EI8G/EI5F at Mount Merrion Estate, Dublin, a distance of 96 miles, and was the first QSO between EI and G on $56 \mathrm{Mc} / \mathrm{s}$.

One definite conclusion emerged as a result of the Snowdon tests and from subsequent portable operations elsewhere:-A horizontally polarised wave seemed more satisfactory for DX work and produced a better signal at the receiving end than did a vertically polarised wave.

After the GW 56Mc/s contest in September 1937 competitors realised that it is not always transmitter power that gets the most contacts. From 11 stations who sent in logs, one had a transmitter power of 25 watts, two of 5 watts, one of 4 watts, six of 10 watts, and the winner's power was a mere 1.8 watts! The success of the leading station operated by H. Jones G5ZT/P was due to his location on Parlike Pike, near Preston. In second place came GW60K/P with $5 \cdot 4$ watts; he had 9 contacts compared with the winner's 15 but again his low power earned him points because he was located on top of Snowdon. To the third and fourth operators G6MX/P Snaefell, and G2DC/P near Buxton, went the joint honour of the then longest $56 \mathrm{Mc} / \mathrm{s}$ QSO in the UK, 124 miles when both were using 10 watts.
During this event Barbara Dunn G6YL succeeded in contacting G5VQ using CW and, although the distance was only 27 miles, the intervening country was very hilly. Barbara was using a long lines transmitter with an LS5B valve.

Solar First

It was G6YL who made the very important observation on July 31st 1939, when she reported hearing the "hissing" noise from a solar burst in the 5 m band, and her claim was supported by 2BIL. The "hissing" noise from solar activity (In the author's opinion, this was the birth of solar radio astronomy) was first discovered by Denis Heightman G6DH in 1935 when he was operating on the 10 m band. Many other radio amateurs also heard it at $28 \mathrm{Mc} / \mathrm{s}$ but Miss Dunn was the first on $56 \mathrm{Mc} / \mathrm{s}$.

Denis Heightman was again to the fore in the 1939 "GW Trophy" $56 \mathrm{Mc} / \mathrm{s}$ contest, not as the winner, although he did take third place, but as the station which gave the longest distance contacts to both the leading contestants, G8JV/P in Staffs who won the trophy, and G2VZ/P assisted by 2DDD, who were runners up.

The apparatus used in this event was not only of a truly portable nature but also of the latest design. For instance, the winner, George Henderson, was
pleased with the performance of the Mullard TV03/ 10 double-triode valves employed in his transmitter when four out of his 17 contacts were greater than 140 miles. The team in second place proved the superiority of the three-element beam over the long wire aerial. Of the 11 stations that submitted logs, five were using 954 Acorn valves in their receivers, three had superhets and the others had 0-V-1.

Aerials

Throughout his researches the author found that the enthusiasts had tried and tested a wide variety of aerials on the 5 m band. Some used the Windom while others, like Ted Williams G2XC, back in. 1935, used their already established $7 \mathrm{Mc} / \mathrm{s}$ "Zepp", a 66 ft horizontal wire fed by open wire tuned line, which of course accommodated eight half-waves.

Getting parts for aerials was not too easy. Eddystone marketed transposition blocks for dipoles but most amateurs used wooden dowel boiled in wax. George G2CIL can't remember seeing a coaxial cable in those early days, but both G2AKM and G6NK remembered 50 ohm coax with a black substance for insulation, and a 500 hm flat twin feeder.

Rotating Beam

G8LY loved experimenting with aerials, and was grateful to her 60 -year-old tree-climbing father who fixed her $56 \mathrm{Mc} / \mathrm{s}$ vertical aerial some 70 ft up in a fir tree! Unfortunately, the lossy feeders available then did not do justice to the height of her aerial. One day, A. E. Mitchell G8DF appeared, with G5LT, and on the roof of his car was a 5 m beam for Constance to use. This beam was eventually mounted on a pole which had a unique (G8LY Special) rotating system. A metal pipe was placed in the centre of a ten-gallon oil drum which was filled with concrete, three bagatelle balls were dropped into the pipe to act as a bearing for the aerial mast, which slid down into this pipe. Constance carried out many directional aerial tests with other 5 m operators using this beam.

During the late 1930s, Constance was the first YL to contribute an article to the $T \& R$ Bulletin, and her subject was "UHF Measurement by means of Lecher wires" and for some time she compiled the monthly $56 \mathrm{Mc} / \mathrm{s}$ report for the journal.

Constance, a radio enthusiast since the 1920 s, lived near Basingstoke in her 5 m days, in a house which had no main electricity supply, so all her soldering was done in the kitchen with a large iron heated on the kitchen range. Her shack was in the attic and so accumulators were used for the filaments of her valves.

Unique Propagation Study

R. H. Hammans G2IG and J. L. Nixon G6X0 had both experimented on $56 \mathrm{Mc} / \mathrm{s}$ since 1931, and in May 1934 the $T \& R$ Bulletin published a lengthy article about their design, construction and testing of a 5 m "manpack" outfit (" 56 Megacycling on Foot"). The author was fascinated by the following extract and felt that this was just another example of the enthusiasm of the 5 m brigade. "The initial step was to erect a transmitter at one of our stations, which were 300 yards apart in a crowded residential district. A "detector and one LF"' receiver was built at the same time.

The first tests were carried out between two rooms at the same station, using an unmodulated carrier. Our ambition next was to receive the signal at the other station. As we could not do so, we set out to find where the signal was lost. The transmitter (consisting of two D.E. 5 valves in a push-pull circuit with 120 volts HT) was mounted on a dinner wagon and hauled through the streets! The signal on this momentous occasion lasted 150 yards and then disappeared. Aerials were then fitted to the transmitter and receiver for the first time, and signals were at last received between the stations. The transmitter was then keyed and a signal received over 100 yards, acknowledgment being made by flash-lamp. During this test an unaccountable variation in signal strength was noted, which had considerable bearing on subsequent work. It was observed that reception on one side of a lamp standard was 60 per cent greater than on the opposite side." Screening by buildings was obviously a handicap, so tests were made in open country, signals being obtained at R7 over threequarters of a mile and acknowledged by Klaxon horn.

The Curtain Came Down

The author has tried to show the great enthusiasm and co-operation that existed among the 5 m brigade; it was as if there was a great sense of urgency about the whole affair. They never looked back, they shared their findings with others and were always willing to try something new. There was a feeling of sadness among the majority of $56 \mathrm{Mc} / \mathrm{s}$ enthusiasts when the news came through on September 1st 1939 that their licences had been withdrawn. In November 1939 Constance Hall began her $56 \mathrm{Mc} / \mathrm{s}$ Column ($T \& R$ Bulletin) with the following verse:-

> Hang up your headphones on the old shack wall, And cuss, cuss, cuss,
> Hang up your headphones on the old shack wall, But do not make a fuss.
> What's the use of listening,
> It hardly is worthwhile, so-
> Hang up your headphones on the old shack wall, But smile, smile, smile.

Well, they hung up their own headphones alright, and the majority of them took up His Majesty's headphones and gave all of their 5 m experience and knowhow, to the service of their country.

To prove that their efforts were not overlooked, the author turned to the book about the Battle of Britain, called The Narrow Margin by Derek Wood, and on Page 16 he found the following extract which for the author sums it all up.
"Throughout the operational, installation and development period of German Radar all branches of the service connected with it suffered from an acute shortage of skilled manpower. This was almost entirely due to Goebbels who had seen fit to ban all amateur radio operations shortly after Hitler's rise to power. The excuse given was that of countering subversive elements during the anti-communist purge. The order was never rescinded.
"Until the end of the war Germany was short of good quality radio and radar operators and engineers, in complete contrast to Great Britain where literally thousands of radio hams with first class knowledge joined the services and the research establishments."

The author apologises to the many 5 m enthusiasts whose names he has not used in this article, there are many parts of this story still to be told.
 PO BOX 11, WORKSOP, NOTTS
Please supply PCB/s as indicated by tick/s in box/es.

Issue	Project	Ref	Price P/P	
Dec 75	Sound-To-Light Display	DN0798	$1 \cdot 15+12$	\square
Dec 75	Disco System, Amp. (2 rea'd)	AM0421	$4 \cdot 40+22$	\square
Dec 75	Disco System, Light Modulator	AM0423	$3 \cdot 50+22$	-
Mar 76	CMOS Crystal Calibrator	AM0438	$1 \cdot 19+12$	\square
June 76	Dig. Freq. Meter (set of 5) A015 and	A A004	$3 \cdot 17+15$	\square
July 76	Disco Preamplifler	A003	$0 \cdot 65+12$	\square
Aug 76	Cassette Player Power Supply	A001	$0 \cdot 65+12$	\square
Oct 76	Digital Car Clock (set) A01	12/013	2. $58+12$	\square
Oct 76	Interwipe	DN8JM	0.80+12	\square
Oct 76	Video-Writer (set) D002/3/4/	4/6 A007	$21 \cdot 44+50$	\square
Nov 76	Low Level Battery Indicator	A016	$0 \cdot 40+12$	\square
Nov 76	Electronic Thermostat	A017	$1 \cdot 30+12$	\square
Nov 76	Cirtest Probe	A018	$0.48+12$	\square
Nov 76	Burglar Alarm	A019	$0 \cdot 50+12$	\square
Dec 76	Chromachase	A021	$5 \cdot 70+22$	\square
Jan 77	Oscilloscope Calibrator	A023	$1 \cdot 25+12$	\square
Jan 77	Icelert	A020	$1 \cdot 45+12$	\square
Apr 77	Gas/Smoke Sensor Alarm	A028	$0 \cdot 65+12$	\square
May 77	2-Way Intercom	D019	$1 \cdot 28+12$	\square
May 77	Protected Battery Charger	A027	$2 \cdot 38+12$	\square
May 77	Seekli Metal Locator	A031	$3 \cdot 38+12$	\square
June 77	Reverberation Amplifier	A032	$2 \cdot 38+12$	\square
June 77	Versatile AF Generator	A033	$2 \cdot 38+12$	\square
June 77	Tele-Games	D029	$3 \cdot 22+18$	\square
July 77	20W IC Ampllfier	A034	$1 \cdot 38+12$	\square
July 77	Radio 2 Tuner	A035	$1 \cdot 68+12$	\square
July 77	Digital Clock Timer	A036	$3 \cdot 28+12$	\square
Aug 77	Shoot (Telegames)	D035 ${ }^{\text {. }}$	$1 \cdot 55+15$	\square
Aug 77	Atomic Time Receiver	D036	$2 \cdot 65+15$	\square
Aug 77	Morse Code Tutor Cards (SRBP)	A037	$4 \cdot 75+15$	\square
Sept 77	Jubilee Electronic Organ	A038	$19 \cdot 00+75$	\square
Sept 77	Electronic Car Voltage Regulator	D037	$1 \cdot 25+12$	\square
Oct 77	Audio Level Indicator	D039	$0.98+12$	\square
Oct 77	Sine-Square Wave Generator	D040	$2 \cdot 35+15$	\square
Nov 77	Laboratory Power Supply	A039	$3 \cdot 50+12$	\square
Jan 78	Proportional Power Controller D	DN93M	$0 \cdot 78+12$	\square
Mar 78	Audio/Visual Logic Probe	R001	$1 \cdot 40+15$	\square
Apr 78	Europa Stereo Amplifier	R002	$9 \cdot 55+45$	\square

Post and packing is for one board or set of boards. Prices include VAT. Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required

I enclose Postal Order/Cheque
ACCESS welcome. Send card number only.
\qquad
for $£$. ... made payable to READERS PCB SERVICES LTD

NAME

ADDRESS
I
\qquad
\qquad
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.

Silicon photodiodes are now in fairly extensive use, but in many applications difficulties occur because a comparatively high light level is required before such diodes pass a useful current. Silicon phototransistors are considerably more sensitive because the "photocurrent" is multiplied by the current gain of the transistor of which the photodiode forms a part.

The 2N5777

In the monolithic 2N5777 device the photosensitive junction is incorporated into a transistor which is internally connected to another transistor in the Darlington configuration. This enables the "photocurrent" to be amplified by an overall factor of at least 2,500 times. Thus this device is considerably more sensitive to light than any conventional phototransistor, but nevertheless very cheap.

The 2N5777 is encapsulated in a package of the standard TO-92 shape shown in Fig. 1, but instead of being manufactured from the normal black plastic material, the body of the 2 N 5777 is made of a clear epoxy compound which allows the incident light to reach the sensitive junction.

The internal circuit of the 2 N 5777 device is shown in Fig. 2. The incident light strikes the base-collector junction of the internal NPN transistor Trl and forms charge carriers (holes and electrons). These opposite charges are separated by the reverse bias applied across the junction and the resulting current is amplified in the phototransistor Trl. The emitter current from $\operatorname{Tr} 1$ flows into the base of $\operatorname{Tr} 2$ where it is further amplified by this second transistor. Both transistors are silicon planar types.

Connections

There are only three connections to the 2 N 5777 , but in many circuits the base is left unconnected. A resistor may be connected between the base and the emitter to reduce the sensitivity somewhat or to reduce the effect of temperature on the "photocurrent".

The maximum permissible collector-emitter voltage is 25 V . The maximum permissible values of the collector current and of the power dissipation are 250 mA and 200 mW respectively; the device may be damaged if these values are exceeded.

Response

The incident light should be directed towards the curved surface of the device as indicated in Fig. 1. As the angle of the incident light (θ in Fig. 1)

Fig. 1 : (left) : Encapsulation of the 2 N5777. The device is most sensitive to light arriving along the direction of the arrow.

Fig. 2 (right) : Internal circuit of the 2N5777.
increases, the response falls rapidly as shown in Fig. 3 until it is almost zero as θ approaches 90°. In practice, however, some light is usually reflected onto the junction whatever the angle.

The sensitive area itself is a very small square with length of sides 0.375 mm . Greatly increased sensitivity can be obtained if the light is focused onto this small area.

The response of the 2 N 5777 to light of various wavelengths is shown in Fig. 4. As with all silicon devices, the peak response is in the near infra-red at a wavelength of about 0.85 microns. Nevertheless, the device is fairly sensitive throughout the visible region, although the sensitivity does fall off in the blue region of the spectrum.

When the device is in darkness, the collector current is less than $0 \cdot 1 \mu \mathrm{~A}$ when the base is not connected and the collector is at +12 V relative to the emitter at $25^{\circ} \mathrm{C}$. This dark current is roughly doubled for each $10^{\circ} \mathrm{C}$ rise in temperature and reaches about $10 \mu \mathrm{~A}$ at $100^{\circ} \mathrm{C}$ (with a maximum about 10 times this figure).

TABLE 1

	Silicon Photodiode	Silicon Photo: transistor (BPX25)	$2 N 5777$ PhotoDarlington
Daulght (Dull winter day)	2ha'	20044	10 mA
100W tungsten flamen lampat 1 metre	$3 \mu \mathrm{~A}$	$5 \mathrm{~mA}$	16 mA
Cbtehtafflluorercent 	$0.25 \mu \mathrm{~A}$	$50 \mathrm{pA}$	$150 \mu \mathrm{~A}$

Sensitivity

One can use complex equipment to measure the "photocurrent" at various light intensities at specified wavelengths, but such data is not likely to be very useful to the home constructor. The 2N5777 collector current was therefore measured under the conditions stated in Table 1 and compared with that in a simple photodiode and in a phototransistor. It can be seen that the 2 N 5777 "photocurrent" is always greater than that of either of the other devices, but the table does not account for all factors.

The photodiode had a flat glass surface, whereas the BPX25 phototransistor has a small lens. This lens will focus the rays of light onto the junction, but this renders the sensitivity of the BPX25 critically dependent on the angle at which the light enters the lens. If one has a fairly small light source, such as a 100 W bulb, the "photocurrent" of the BPX25 can be quite high. However, the 2N5777 not only passes a greater current, but this current output is far less dependent upon the position of the device.

Even a red light-emitting diode placed about 10 mm from a 2 N 5777 device was found to produce a photocurrent of about $25 \mu \mathrm{~A}$ in the latter.

Fig. 3: Response relative to angle of incidence of light upon the device.

Fig. 4: Response relative to wavelength of incident light.

It should be noted that the tungsten filament lamp produces higher currents in all of these silicon devices than the fluorescent lamp, since it emits mainly in the red and infra-red where the sensitivity of silicon devices is greatest.

Circuits

The basic circuit for the use of the 2N5777 is shown in Fig. 5. When light falls onto the device, the output voltage falls from the $\mathrm{V}+$ value to a low value. The value of R1 should be chosen according to the light level to be detected. If, for example, one expects from Table 1 that the light intensity will produce a current of about 2 mA , R1 may have a value of about $3 \cdot 3$ kilohm so as to produce a voltage drop of about $6 \cdot 6 \mathrm{~V}$.

The output from Fig. 5 can be fed into a suitable transistor circuit which may, for example, be used to operate a relay. If the power supply line has a potential of 5 V , the output may be fed into a TTL circuit.

Triac control

An interesting circuit designed by the International General Electric Company is shown in Fig. 6. When the 2 N 5777 device is in darkness, current can flow from the mains through the load and the triac, but when a sufficient amount of light falls on to the 2N5777, the triac becomes non-conducting and little current flows through the load.
A small alternating current flows through R1 and this is rectified by the diode bridge, D1 and D4, so that the collector of the 2 N5777 is always positive in relation to its emitter. If light falls onto the device, its resistance falls and the potential across C1 becomes small, since R1 and the 2N5777 act as a potential divider. When the potential across Cl is small, the diac does not break down and therefore the triac cannot be triggered in each half cycle. The triac used in this circuit should be selected for the requirements of the load employed.

Availability

The 2N5777 device is available from Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex CM14 4BN, at 70p (including VAT) plus a small order surcharge of 25 p for packing and postage on orders under $£ 5$. This company also stocks various triacs and diacs suitable for the circuit of Fig. 6.

Fig. 5 (above) : Basic operating circuit for the 2N5777.

Fig. 6 (right) : A practical circuit for a lightdependent mains-voltage controller.

									 Send s.a.e. for free detalled lists of additional stock items, plugs and sockets, fuses, discs, polyhigh voltage el ectrolytics. Wholefide companies. ADD 8% VAT MARKED WITH * WHICH ARE 121\%. PLEASE ADD 25p Post add cost of aly/sea mail. MARCO TRADING (Dept. W4) The Old achool, distaston Tel: Whixalf 464 (STD: 094-872) (props. Minicost Trading Ltd.)

$4 \frac{1}{2}$ in $\times 3 \frac{1}{4}$ in METER. $30 \mu \mathrm{~A}$, $50 \mu A$ or $100 \mu A$, \&5-43. P. \& P. 19p.

MICROPHONES FOR

 TAPE RECORDERSDM228R 200 ohm with 3.5 \& 2.5 mm Jack Plugs $\mathrm{El} \cdot \mathbf{4 2}$

DM229R 50K with $3.5 \& 2.5 \mathrm{~mm}$ Jack Plugs $\quad \mathrm{f} 1.60$
DMIED 200 ohm with 5 \& 3 pin DIN plug 61.75
Postage on above microphones Ilp.
 Model UD-130. Frequency response 50$15,000 \mathrm{c} / \mathrm{s}$. impedance Dual 50 K and 600 ohms, £8.02. P. \& P. 35p.

All above prices include V.A.T Special prices for quantity quoted on request.

MULTI. METER Model ITI-2 20,000 ohm/ volt, $£ 10 \cdot 38$. P.\&P. 33p.

TRANSFORMERS

Primary 240 V

rimary 2		
6-0-6V	100 mA	60.75
$9.0-9 \mathrm{~V}$	75 mA	60.75
12-0-12V	50 mA	¢0. 85
12-0-12V	100 mA	¢1.05
Post on above transformers 30 p .		
$9-0-9 \mathrm{~V}$	IA	61.80
12-0-12V	IA	C2. 15
15-0-15V	IA	E2. 36
30-0-30V	iA	63.10
6.3 V	$1 \frac{1}{1}$ A	E1.80
6-0-6V	$1 \frac{1}{2} A$	62. 20
Post on above transformers 45 p .		

Send 40p for Fully
Illustrated Catalogue.

B-PAK AUDIO MODULES
14.95. MK60 audio kit $£ 36$ - 45 . Stereo 30 €17.95. SPM80 £3.75. BMT 80 £5.95. Send sae for free data
JC12, JC20 AND JC4O AMPLIFIERS A range of
ntegrated circult
audio amplifler
free data and
printed circults.
JC12 6 Watts £1.95. JC20 10 Watts E2.95. JC40 20 Watts ex-20. Send sae or free data on all 3 models
FERRANTI ZN414
Cradio chip £1.44. Extra parts and pcb or radio £3-85. Case £1. Send sae fo ree data
BATGERY ELIMINATOR
TY games power unit stabilized witched output and $3 / 4 \frac{1}{2 / 6 V} 100 \mathrm{ma}$ $\pm 2 \cdot 92$. $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ 150ma 3.33. 100ma radio models with pres tud connectors. $9 V .52 \cdot 85.6 \mathrm{~V} £ 2 \cdot 85$
 mains unlt 71 V 100 ma with 5 pin din plug e2.85. Fully stabilized model witched output of $3 / 6 / 7 \frac{1}{1} / 9 \mathrm{~V} 400 \mathrm{ma}$ stabilized $\mathbf{5 6}$.40. Car converters 12 V put $7 \frac{1}{2} V 300 \mathrm{ma}$ £1-80.
BATTERY ELIMINATOR KITS Send sae for free leaflet on range battery terminals. $4 \frac{1}{2} \mathrm{~V}$ © $1 \cdot 80,6 \mathrm{~V}$ f $1 \cdot 8 \mathrm{O}$ $\mathrm{V} £ 1 \cdot 80.4 \frac{1}{2}+4 . \mathrm{V}$ £2.50. $6 \mathrm{~V}+6 \mathrm{~V}$
 IV 100ma with din plug EA-80. Tran sistor stabilixed 8 -way type for 10
hum. $3 / 4 \frac{1}{2} / 3 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$. $100 \mathrm{ma} \times 3 \cdot 20$ Amp e6.40. Heavy duty 13 -way types $\frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. Amp \& 4 :85, 2 Amp $87 \cdot 95$. Car conver Cor mit input 12 V DC. Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC 1 A transistor stabilized $£ 1-95$ E3. $60.3-30 \mathrm{~V} 1 \mathrm{~A} £ 9 \cdot 95$. $3-60 \mathrm{~V}$ 1A $£ 10 \cdot 95$ $3-60 \mathrm{~V} 2 \mathrm{~A}$ £13.95.
BULK BUY OFFERS Minimum purchase of one item £10
SN76023N
79 p. ZN4
84p. 4.43 MH crystals 65 p . 7418 dit 22p. NE555 8 di 35p. Dalo pens $58 \mathrm{p},{ }^{2 N 3055 B} 31 \mathrm{p}$
BD131 30 p . BC107 7p. BC109 7p. ECTRONICS

SWANLEY ELECTRONICS

DEPT. PW, PO Box 68, 32 Goldsel Rd., Swanley, Kent BR8 BTQ Mail order only. Please add 30p to total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on items marked * and 11% on others. Official credit orders welcome.

15-240 Watts!

HY5

Preamplifier

The HY5 is a mono hybrid amplifier idealiy suited for all applications. All common input functions (mag Cartridge, tuner, etc) are catered for internally. The desired function is achieved and tone circuits merely require connecting to external potentlometers (not included). The HY5 s compatible with all I.L.P. power amplifters and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifler.
FEATURES: Complete pre-amplifier in single pack-Multi-function equallzation-Low nolse -Low distortion-High overload-Two simply combined for stereo.
APPLICATIONS: Hi-Fi-MIxers-Disco-Guitar and Organ-Public address SPECIFICATIONS:
SPECIFICATIONS: INPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV ; Auxillary $3-100 \mathrm{mV}$; input impedance $4.7 \mathrm{k} \Omega$ at 1 kHz .
OUTPUTS. Tape 100 mV ; Main output 500 mV .
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz .
DISTORTION. $0 \cdot 1 \%$ at 1 kHz . Signal/ Noise Ratio 68 dB .
Price $\mathbf{5 5} \cdot \mathbf{2 2 + 6 5 p}$ YAT P\&P free.

The HY30 is an exciting New kit from l.L.P. It features a virtually indestruct|ble l.C. with short circuit and thermal protection. The kit consists of l.C., heatsink, P.C. board, 4 resistors, 6
capacitors, mounting kit, together with easy to fallow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology avaliable.
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build.
APPLICATIONS: Uodating audio equipment-Guitar practice amplifier-Test amplifieraudio oscillator.
SPECIFICATIONS
OUTPUT POWER $15 W$ R.M.S. into 8Ω : DISTORTION 0.1% at 1.5 W
NPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.
Price $\mathbf{5} 5 \cdot 22+65 p$ VAT P\&P free.
The HY50 leads 1.L.P.'s total integration approach to power amplifier design. The amplifler past three years the amplifier has been refined to the extent that it must be one of the most rellable and robust High fidelity modules in the World.
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-sistors-No external components
APPLICATIONS: Medium Power Hi-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500mV
OUTPUT POWER 25W RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 25 W
at 1 kHz _NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm

Price $\mathbf{5 6} 62+85$ p VAT P\&P free

The HY120 is the baby of l.L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular de
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protecFive connections-No external components
APPLICATIONS: Hi-Fi-Wigh quality disco-Publlc address-Monitor amplifier-Gultar and gan
SPECIFICATIONS
INPUT SENSITIVITY 500 mV .
OUTPUT POWER 6OW RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W at 1 kHz SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\stackrel{ \pm}{\text { S }} 25 \mathrm{~V}$ V 1145085 mm
Price £55•84 + £1-27 VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true Hi-Fi performance.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink -No external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial-Public Address
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.05\% at 100W SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $\mathbf{£ 2 3} \cdot \mathbf{3 2}+£ 1.87$ VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy' of the range producing 240 W into 4Ω ! it has been designed for high power disco address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The ampllfier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external omponents.
APPLICATIONS: Public address—Disco-Power slave-Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.1% at 240 W SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm
Price £32-17 + £2-57 VAT P\&P free.
PSU36 suitable for two HY30's $\mathbf{~ 5 5 - 2 2}$ plus 65p VAT. P/P free.
SU50 suitable for two HY50's $\mathbf{\Sigma 6} .82$ plus 85 p VAT, P/P free
PSU70 suitable for two HY120's $£ 13.75$ plus $£ 1.10$ VAT. P/P free.
PSU90 suitable for one HY200 $\mathbf{E 1 2} 65$ plus 81 - 01 VAT. P/P free. SO. $48+50 \cdot 06$ VAT.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. ELECTRONICS LTD., GROSSLAND HOUSE, NACKINGTON, GANTERBURY, KENT, CT4 7AD.

I.L.P. ELECTRONICS LTD.,
 CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders $\square]$ Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

Miniature Crystals

Walmore Electronics Ltd．，the exclu－ sive UK agents for Toyo，have intro－ duced a new range for ultra miniature crystals which are designed to meet the demand for high stability units with a low ageing characteristic．
Featuring a frequency range of 10 － 200 MHz ，the units are contained in the HC80／U resistance welded metal pack－ age which has a can height of just 8 mm ．

Also available is a range of high stability crystal units in the $\mathrm{HC} 42 / \mathrm{U}$ and $\mathrm{HC} 43 / \mathrm{U}$ cold weld miniature metal packages．Frequency range is 4－ 200 MHz and，for both ultra miniature and miniature types，frequency stability
is typically $\pm 8 \mathrm{ppm}$ in the temperature range $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，and ageing rate is as low as $1 \mathrm{ppm} /$ year．

Toyo＇s 12 page illustrated catalogue on their full range of crystal units contains both data and extensive descriptions of the characteristics of the devices．Copies are now available from：Walmore Electronics Ltd．，11－15， Betterton Street，Drury Lane，London． WC2H 9BS ．

Patchboards

Vector Klip－Blok d．i．p．patchboards are ideal for fast convenient breadboard－ ing for d．i．p．s，transistors and discrete devices．

Wire and component leads simply push into beryllium copper spring clips，each with four tie points，allow－ ing experimental circuits to be built very quickly．

The beryllium copper clips accept leads of 0.015 to 0.032 inch diameter， making them compatible with most commercially available components． For larger leads（up to 0.050 inch diameter）adapter pins are supplied．

The patchboards are produced in three standard sizes from $67 \times 114 \mathrm{~mm}$ suitable for up to 3 d．i．p．s to $114 \times$ 203 mm （prices range from $£ 4 \cdot 50$ to £21－00）which will accommodate up to 12 d．i．ps；all are mounted on a one inch aluminium frame．

There are also two inch high alumin－ ium chassis into which patchboard panels（less frames）can be fitted to provide either two or four times the area of the largest board．

The system is sufficiently flexible to accommodate the very simplest cir－ cuits to complex l．s．i．packages and microprocessors．

Full details are available from： Rhopoint Ltd．，Eastman House，98／102， Station Road East，Oxted，Surrey． RH8 0AY．Tel： 088337988.

New from Casio

We have recently been fortunate in being able to examine some new Casio products kindly loaned to us by Tem－ pus of Cambridge．

The versatile MQ－2 combines the best of digital clock and calculator abilities in a slim metallic case．A digital clock，alarm，alarm timer，time memory，calendar and 8－digit calcu－ lator，with a well－spaced easy to operate keyboard．

A truly pocket sized calculator is the LC－78 Mini card．Measuring only 4 mm

thick and weighing only $39 \mathrm{~g}(1 \cdot 4 \mathrm{oz})$ it features all the normal functions inclu－ ding direct access to the memory．The read－out is an FE－type liquid crystal display．With power consumption at 0.0006 W ，the two silver oxide batteries， type G10 should give approx． 1000 hours continuous operation．

The $\mathrm{fx}-120$ ，with digitron read－out， provides a really good balance be－ tween＇scientific＇and＇everyday＇func－ tions．Fractions may be calculated without the need for figure conver－ sions and the answers are also diss－ played as fractions．

Last，but not least，the fx－3000，a pocket sized scientific calculator， which boasts a remarkable number of

3 पष区ธ凹区 サーロヒயே

functions for a unit of its size and price．The liquid crystal display is un－ ambiguous and the total weight is only $80 \mathrm{~g}(2 \cdot 8 \mathrm{zz})$ including batteries．

The units are available from Tempus at a discount price，which includes VAT and p \＆p（the RRP is shown in parentheses）．MQ－2 £34－95（£39•95）， LC－78 £16．95（£19．95）， $\mathrm{fx}-120$ £19．95 （£24•95），fx－3000 £25•95（£30•95）． Tempus，Dept．P．W．，19／21 Fitzroy Street，Cambridge CB1 1EH．Tel： 0223 312866.

Some original circuit ideas provided by our readers. These designs have not been proved by us, and we cannot therefore guarantee their effectiveness. They should at least provide a basis for experimentation.

Why not send us your idea? If it is published, you will receive payment according to its merits. Articles submitted should follow the usual style of PW in circuit diagrams and the use of abbreviations. Diagrams should be clearly drawn on separate sheets, not included in the text.

Each idea shouid be accompanied by a declaration that it is the original work of the person submitting it, and that it has not been accepted for publication elsewhere.

L.E.D. Light Display

A circuit without a frantically serious purpose, this is basically an astable multivibrator with an additional stage added. Each l.e.d. is switched on and off in sequence, with two being illuminated and one "off" at any one time. S2 acts as a start/reset in the event that all l.e.d.s stick in the "on" state. Each l.e.d. should of course be a different colour to increase the optical variety of the display The active area of the multivibrator uses the cheap and readily available AC176 germanium transistor, but any general purpose pnp type will suit.
A. Cooper, Wimborne, Dorset.

Transistor Gain Indicator

A transistor is plugged into socket 1 , and "pnp" or "npn" selected; SI is pressed, and 1.e.d. 1 lights. VR1 is then rotated, anti-clockwise from the high gain end, until l.e.d. 1 is extinguished. The gain is then read off VR1 scale, indicating the minimum gain figure, in the range $10-500$, which is related to a fixed collector current of approximately 8 mA in the transistor under test.
The collector current is determined by R2, and base current is supplied via R1 and VR1. When the test transistor's collector/emitter voltage falls to $0 \cdot 6 \mathrm{~V}, \mathrm{Tr}$ (for npn) and $\operatorname{Tr} 2$ (for pnp) will turn off since base current (via R2) is then taken by the transistor under test.

A bridge rectifier (D3-D6) supplies l.e.d. 1 with correct polarity regardless of supply changes. It is necessary to calibrate VR1 in terms of an approximate gain scale, and since R2 equals 1 kilohm , then the scale is VR1 + R1 expressed in units of 1 k . Precise calibration can be effected via a Wheatstone bridge, using a multivibrator running at 1 kHz , or other source, in concert with an earpiece to indicate the null point. When R1 is 10 k this represents a reading of 10 on the scale.
S. Lamb, Leeds, Yorks.

AUDO DISTORTION METR

The dramatic improvements in hi-fi specifications have highlighted the need for equipment capable of testing audio systems. Our Audio Distortion Meter will enable you to carry out objective tests.

also:

Constructional details of an efficient 1-100 watt s.w.r. bridge, allowing constant 'on air' measurements to be made in order to obtain the maximum possible radiated power from a v.h.f. transmitter.

The bridge may be placed permanently in-line with the aerial feeder and indicates forward and reflected power levels.

PHASE LOCKED LOOPS

The principle of the phase-locked loop (p.l.I.) and its versatility in situations where immunity from noise is important, is covered in this "extended application note". This treatment provides data and applications for the NE561B "chip" as f.m. discriminator and a.m. demodulator.

EEUROPA
 stereo amplifie

Fig. 4(a): Location of components on the printed circuit board. Connections to the push-button switch assembly are detailed in Fig. 7. Note that the OV irack on the p.c.b. is connected to earth and to the chassis only at the fixing point labelled "Mains earth", In the prototypes, the Balance control VR4 was a single potentiometer fitted with stiffening supports as shown in the photograph last month. Alternatively, a twin-gang potentiometer can be fitted, one half being unused. The p.c.b. will accommodate either arrangement.

C. Toms B.Sc

Construction

Assembly of components onto the printed circuit board (see Fig. 4) should present no problems but it is suggested that they be fitted in the following sequence:

1. All resistors
2. All capacitors excluding the main smoothing capacitor.
3. The switch assembly.
4. All semiconductors and socket for ICI (see below).
5. The power supply bridge rectifier and smoothing capacitor.
6. The mains transformer.
7. Controls.
8. Connect the mains transformer secondary to the a.c. input of the diode bridge.

Before fitting the row of output transistors ($\operatorname{Tr} 7$, $\operatorname{Tr} 10, \operatorname{Tr} 11$) it will be necessary to make the heat-sink plate to fit under them. This should be cut from aluminium sheet and bent as shown in Fig. 6. Note that when assembling this it is sandwiched between the back plates of the individual transistors and the p.c.b. Make sure that isolation is provided with mica washers and plastic bushes for the fixing screws. Heatsink compound should be used where shown in Fig. 6. Clip-on TO39 heat sinks are used on the driver transistors $\operatorname{Tr} 3, \operatorname{Tr} 8$ and $\operatorname{Tr} 9$. Before leaving the p.c.b. fit flexible speaker output leads of sufficient length to reach the output sockets but leave connection to the sockets until later.

The main chassis is formed from a single piece of aluminium sheet with dimensions as shown in Fig. 5. Drill all fixing holes for the heat sink and p.c.b., using the board as a pattern, and then drill holes for and mount the power input and output sockets and fuse holders. Bolt the p.c.b. into place using stand-off spacers. Ensure that the transformer bolts are long enough to protrude right through the chassis so that spacers can be inserted under them also. This gives the p.c.b. more support under the heavy transformer.

The p.c.b. OV track should be connected to the chassis only at the main earthing point (the centre fixing screw at the back of the board). Insulating washers should be used between spacers and p.c.b. where necessary.

Carefully bolt the heat-sink down making sure there is good thermal contact and then connect the speaker output leads to their respective sockets after cutting to length. Connect both speaker leads in like manner, to preserve correct phasing.

The input sockets are wired to the front four terminals of their respective switches as shown in Fig. 7. It is advisable to use the DIN standard socket configurations so that standard interconnecting leads can be used. Screened wire must be used for the connections between sockets and switches and the positions of their earthing points followed exactly. Holes are provided in the p.c.b. for these leads to be routed through and under the board to the sockets at the rear.

Finally, wires should be connected between the p.c.b. and the fuses and the mains connectors as shown in Fig. 8.

Assembly should now be complete but before applying power re-check all connections and ensure that there is no chance of the p.c.b. wiring shorting to chassis through the fixing screws. It is just as well to check that the mica insulators under the output transistors have not been forgotten!

Fig. 4(b): Track pattern of the printed circuit board, shown half-scale. Full-size copies of this drawing will be available from the editorial address given at the front of the magazine, price 30p. Send a chequel postal order for 30 p together with a large stamped self-addressed envelope. Ready-made boards will be available from the Readers PCB Service as usual. See their advertisement.

Fig. 5: Chassis dimensions and drilling details.

Fig. 6: Assembly details for output transistors and heat sink.

Fig. 7: Wiring details for the input sockets and push-button switch assembly. To avoid hum-producing earth loops, the cable screens must be connected only at the point shown. The photograph above shows
the switch area in a prototype amplifier.

Testing

Before applying power set VR5 on both channels to a mid position and VR6 fully anticlockwise. Set the volume control to minimum and select the tuner input. The amplifier is now ready for test. At first do not connect loudspeakers but switch on the power and check that there is a nominal 56 V supply at the fuses.

Now check the voltage at the positive end of the output capacitor (i.e. the junction of Tr10 emitter and Trl1 collector). This must be adjusted until it is exactly half the supply rail voltage, by carefully
setting VR5. This procedure should be gone through for each channel. Leave the amplifier switched on for about 10 minutes and repeat the adjustment if necessary. If there is no voltage, or it is impossible to adjust it switch off immediately and check through the wiring for errors.

Having set VR5, switch off the amplifier, and for safety, disconnect the mains supply. The next step is to check the quiescent current of the power amplifier, and to set the standing current in the output stage so that crossover distortion is reduced to a minimum. This, again, must be done for each channel in turn.

Fig. 8 : Mains wiring and connections to the fuse-holders.

Remove the power amplifier fuse FS3 for one of the channels and connect a meter set to its 100 mA d.c. range across the fuse-holder. Reconnect the mains supply and switch on the amplifier. Make a note of the quiescent current reading, which should be of the order of 8 mA . Switch off and repeat this measurement for the other channel, which should be approximately the same.

The output stage standing current in each channel is set by turning up the appropriate VR6 until the current flowing increases by 25 mA . The measurement should be checked again after about 15 minutes operation, and VR6 adjusted if necessary to regain the reading of quiescent current plus 25 mA .

Mains Switching

The mains on/off switch S7 is mounted on the back panel of the prototype amplifiers. This has the advantage of keeping the hum field surrounding the mains wiring well clear of the amplifier input.

Headphone Output

Constructors wishing to add a socket for the connection of stereo headphones may do so by inserting the circuit shown in Fig. 9 in the leads between C19 and SK6 of each channel. Resistor R44 attenuates the output signal to a level suitable for headphone listening. The switch S 8 allows the loudspeakers to be muted when headphones are in use.

'The Grip'n Grow'

Specification sheets on integrated circuits can be very frightening to the newcomer. Conversely, the prime aim of this series is to show how simple it is to use integrated circuits.

So let's take a peep at two of the terrible technicalities of our 741 operational amplifier (op amp) and see just how easy it is to understand them.

Two basic ways of using our op amp are the "open loop inverting d.c. amplifier", and the "closed loop inverting d.c. amplifier". It sounds very technical and off-putting, but you can see for yourself how simple it is by looking at Fig. 1.

Fig. 1: The open-loop inverting amplifier circuit.

Fig. 2: The closed-loop inverting amplifier

The positive input terminal (pin 3) is connected to ground, and the input is applied between the negative input terminal (pin 2) and ground. In this mode the i.c. can have very high gain indeed, up to some 100,000 , while the input impedance is around $1 \mathrm{M} \Omega$.

A problem with using the Fig. 1 circuit is that the practical performance is dictated by the parameters of the individual op amp used, and these parameters can vary quite a lot from one 741 to the next.

An alternative is to use the 741 in the closed loop mode and this is shown in Fig. 2. We've still grounded pin 3 and the input is still applied to pin 2, but we've added two resistors R1 and R2. Resistor R2 connects the output to the input and forms a feedback path. This is what is meant by "closed loop" i.e. "with feedback". In Fig. 1 there is no feedback resistor and thus the Fig. 1 circuit is called "open loop". See how simple it is-it's only the technical words which are hard!

Another useful feature of Fig. 2 is that the gain can be controlled by the ohmic ratio of R 1 and R 2 .
The mathematics are extremely simple: gain $=\frac{R 2}{R 1}$
Simplifying technical language is all very well, but let us now turn to the practicalities of putting the knowledge to work.

Figure 3 shows a 741 in a closed loop mode. You can make up this circuit very simply and quickly on

* components

Fig. 3: A practical inverting amplifier for you to make up.

Fig. 4: A development of the circuil of Fig. 3.
your $\mu \mathrm{DeC}$ holes shown in Fig. 3. The op amp should be mounted into the $\mu \mathrm{DeC}$ d.i.l. carrier.

Resistor R2 has been made $100 \mathrm{k} \Omega$ while R1 is 100

so the gain should be around $1,000\left(\frac{-}{R_{1}}=\frac{100}{100}=\right.$
$1,000)$. The output circuit consists of R 3 and the l.e.d.
1,000). The output circuit consists of R3 and the l.e.d.
If you now short together input points A and B you
will effectively connect the negative input to ground or 0 V and the l.e.d. will light. If you recall the last μ DeCnology article you will know why this happens. If you don't know, then perhaps you might have a quick read of last month's Practical Wireless just to brush up?

We now know that shorting the negative input to earth will give us an output that will light the l.e.d. What happens if we connect (say) a $100 \mathrm{k} \Omega$ resistor between pin 2 and ground? If you try this, you should find that the l.e.d. still lights, but less brightly. So we can now deduce that the resistance value between the input points A and B is proportional to the brightness of the l.e.d. and vice versa. Further, the brighter the l.e.d. is, the more current it must take, and we can therefore say that the current drawn by the circuit is also directly proportional to the value of resistance between points A and B .

In practical terms we can now not only understand our "closed loop inverting d.c. amplifier using an op amp", but we can transform this indigestible jargon into a circuit with some immediate uses.

Some applications, and the reasoning which led to them, are as follows-but before reading them try to think how you might use the effects you have already discovered from Figs. 1, 2 and 3, then read on and see if you came up with the same as I did.

Look at Fig. 4. This circuit is even simpler than the last one! It has an op amp, two resistors, a meter (optional) and a lone l.e.d. Resistor Rl is the feedback resistor, R2 and the l.e.d. form an output indicating device. The meter is simply inserted in the positive power lead and should read $0-10 \mathrm{~mA}$ full scale deflection (f.s.d.).

Fig. 5: The circuit of Fig. 4 laid out on the $\mu D e C$.

It was reasoned that small changes in resistance could give large changes in output current. Hence connecting a current meter in the power lead would confirm this. It was found that with 9 V applied, the quiescent or standing current was 0.85 mA . Shorting pin 2 to earth or ground caused the current to jump to 4.75 mA quiescent and 7.25 mA with pin 2 shorted to earth. The device would now give a considerable indication of the value of resistance between its input terminals. So it could be used (without the meter) as a plant watering indicator. Since soil has resistance, and since this resistance drops as the soil gets wetter it would be simple to make the device with two metal rod probes. These could be inserted into (say) the flower pot to see how brightly the l.e.d. lit. If it was clearly visible then no water would be needed. If the l.e.d. did not light, then the plant would require watering until the l.e.d. lit brightly. To test that the circuit is working, simply short the input terminal together momentarily and watch for the l.e.d. to flash.
The feedback resistor was increased to obtain greater gain. The series resistor was omitted since it was reasoned to be superfluous in this application.
Another use for the circuit might be in finding the values of unknown resistors. By using the meter as shown, a known resistor could be inserted and a definite value of current noted. Another, different
value is then connected between the input points and again the current value noted. In this way, one could calibrate the meter. The unknown resistor might then be read off approximately. Alternatively, a potentiometer could be connected to the input terminals and its dial calibrated. The pot is then disconnected and the unknown resistor inserted. The current value is noted. The pot is then reconnected in place of the unknown resistor and adjusted to obtain the same current reading on the meter. The value of the unknown resistor is then read from the previously calibrated pot.

One last idea for using Fig. 4. It might be used as a party game of "test your strength". Since it measures resistance, then it should measure body resistance. On test this was found to be so, thus by using two rods, the contestant is asked to grip them as tightly as possible. The tighter these are gripped, the better the contact between the body and the rods and thus the lower the contact resistance and the higher the meter reading. The meter could be scaled from, say, 3.5 mA as "nine-stone weakling" through 4.5 mA ("ten stone weakling") up to the maximum reading of "get your cotton-picking bionic fingers off". For permanence, once the circuit has been proved on the $\mu \mathrm{DeC}$, the components can be transferred directly to a single piece of "ZB1 IC Blob Board".

Exuradatia FOR THE GCONOMY TIIIIIG STROBE FEBRUARY ISSUE 1978

Readers constructing the Timing Strobe described in the February issue should take careful note of the following important information on the flash tube and the method of mounting it into the Paxolin panel. The wire leads from the glass tube must not be bent closer than 12 mm from the glass and care must be taken to ensure that the correct polarity of the 300 V supply is applied to the tube as shown in the drawing below. The drawing also shows how the tube is mounted and insulated using plastic sleeving and plenty of Evostik adhesive.
The left hand drawing shows an alternative spark plug adaptor using a standard plastic suppressor cap. The 4BA length of studding is screwed into the body of the cap until it makes contact with the metal connector moulded into the cap.

Introduction

The Home Office Amateur Licence requires that the holder provides equipment within the station that is capable of verifying that emissions are made only within the authorised frequency bands. The vast majority of modern VHF transceivers use crystal control (or crystal-controlled frequency synthesis) and hence only a relatively simple form of absorption wavemeter is required in order to comply with the licence regulations. The absorption wavemeter is used to confirm that the desired harmonic has been selected and that the output of the transmitter consists solely of the wanted signal with no unwanted radiation present.

It is essential that the wavemeter covers a sufficiently wide range, both above and below the desired band, and that the frequency coverage extends to at least the second harmonic of the desired frequency. Attention should also be placed on the scale length and accuracy of the instrument. The wavemeter described in this article was designed to meet the licence requirements for a station operating in the 2 -metre band. The actual coverage is approximately 95 to 350 MHz and the sensitivity is adequate for RF power levels of between 100 mW and 100 W . The wavemeter is designed so that it may be connected in the co-axial line between the transceiver and aerial and thus it can provide a continuous check on the output signal.

\star components

```
Resistors
    R1 22ka ww 5%
    72 220k%HW5%
Capacitors
    O1. InF disc ceramic VC1 b0pF, tackson c80A
    Dlode, D1OA90
    Meter 100micro-amp panel mounting (Maplin type "2m
    PANT
    Ferrite Beads,2 off
```


Miscellaneous

```
51. Miniature sop toggle swith with centre "of". SKl and SK2, standard surface mounting co-axial sockets. Drecast box \(120 \mathrm{~mm} \times 60 \mathrm{~mm} \times 44 \mathrm{~mm}\) (Maplln typeD(2) 140 mm co-axial cable (Maplintype "lowhoss"). 185. wig. tinned copper wire for \(4,200 \mathrm{~mm}\) 26s, w.g. enamelled copper wire Tag strip contral knob with pointer.
```


Fig. 1: Complete circuit diagram of the wavemeter.

Circuit description

The wavemeter consists of a high-Q resonant circuit which is tunable by means of the variable capacitor, VCl . The resonant circuit is mounted on the underside of the lid of a diecast box and is inductively coupled, by means of a small pick-up loop, to the aerial feeder which is located in the base of the diecast box. The loop is, in turn, coupled to a sampling line inserted in the co-axial cable aerial feeder.

A detector diode, D1, is tapped well down the main inductor, L1, and a meter, M1 is used to measure the diode current. The current flowing in the diode is due to rectification of the signal voltage produced by the resonant circuit and this voltage is a maximum

Fig. 2: (Lefi) The resonant circuit components mounted on the underside of the lid. (Right) The aerial feeder located in the base of the die-cast box. Note the lid must be orientated correctly to the box.

The callibrated scale shown full size.

AD038

Soyou want topass the R.A.E.[Radio Amateurs' Examination] John ThorntonLawrence GW3JGA \& Ken Mc Coy GW8CMY

Transmitters Contd.

The previous section contained an example of an s.s.b. transmitter, shown in Fig. $5^{7 \%}$. In this arrangement, the upper sideband was selected by the relative placing of the 9 MHz oscillator and the filter passband. Selection of the lower sideband could be obtained by moving the 9 MHz oscillator to the high frequency side of the filter passband frequency so that the lower sideband would fit within the filter passband.

By convention, amateur transmissions use the lower sideband on the $1.8,3.5$ and 7 MHz bands and upper sideband on 14 MHz and above.

In practice, two quartz crystals would be employed in the 9 MHz oscillator, having frequencies differing by about 3 kHz , correctly placed each side of the filter passband and switched to give upper or lower sideband operation.

With regard to Class B and Class C r.f. amplifiers, remember that there are no essential physical circuit differences between the two types: the difference is in the operating conditions, namely, the bias supply voltage and the amplitude of the r.f. input signal. However, Class B (and Class A) amplifiers are more critical to any stray feedback which may be present in the device or wiring and therefore may need neutralisation, as described, before correct tuning and operation can be obtained.

Frequency Modulation

Frequency modulation is shown graphically in Fig. 59, where (a) represents an unmodulated r.f. carrier wave, (b) an a.f. modulating signal and (c) a frequency modulated carrier wave.
In this diagram it can be seen that the frequency of the carrier wave is increased and decreased in direct relationship with the modulating signal. The amount of frequency change (deviation) depends on

> a. Carrier wove

b. Modulating signal

c. Frequency - modulated corrier wave
[RAE $]$
Fig. 59 : Frequency modulation of a carrier wave.
the amplitude of the modulating signal, and the num * ber of times per second the frequency changes is equal to the modulating frequency. For example, suppose that an r.f. carrier wave of frequency $1,000 \mathrm{kHz}$ is frequency modulated by a 1 kHz signal, the deviation being 2.5 kHz for full modulation. This means that the r.f. carrier is being deviated by 2.5 kHz above and below the centre frequency, 1,000 times per second (1 kHz rate). If the amplitude of the 1 kHz modulation signal is reduced to half, then the deviation will be reduced to half, i.e. $1 \cdot 25 \mathrm{kHz}$ above and below the centre frequency, but still 1,000 times per second (1 kHz rate), as before.

Fig. 60 : A typical n.b.f.m. oscillator circuit.

Direct frequency modulation is performed in the oscillator circuit itself, usually by using a variable capacitance diode to modulate the oscillator frequency as shown in Fig. 60.

Phase Modulation

Indirect frequency modulation, or phase modulation as it is more popularly known, is performed by modulating the r.f. carrier such that the phase of the carrier is changed corresponding to variations in the amplitude of the modulating signal.

In this method the frequency remains fixed and modulation is applied using a phase shifting circuit, which can either be in the oscillator stage or following it. The effect is to either add to or subtract frequency variations from the fixed carrier.

For amateur radio purposes, particularly on the 2 metre band, narrow band frequency (or phase) modulation (n.b.f.m.) is frequently used. In this mode the deviation is usually restricted to about $2 \cdot 5 \mathrm{kHz}$. A block diagram of a typical 2 metre n.b.f.m. transmitter is shown in Fig. 61.

In this transmitter the crystal oscillator frequency is nominally 8 MHz and the frequency is multiplied $\times 18$ in three frequency multiplier stages, $(\times 3, \times 3$, $\times 2$) giving a final frequency in the $144-146 \mathrm{MHz}$ band. It follows from this that any frequency devia-

Fig. 61 : Block diagram of an n.b.f.m. transmitter.
tion at the oscillator will also be multiplied $\times 18$ and for a final deviation of $2 \cdot 5 \mathrm{kHz}$ the oscillator deviation will only need to be $\frac{2500}{18} \mathrm{~Hz}=139 \mathrm{~Hz}$.

Basically, a crystal oscillator has good frequency stability but, by including in the crystal circuit a reactance which oan be varied by the modulating signal, the crystal can be "pulled" off frequency and adequate deviation obtained for n.b.f.m. transmission. An example of this type of circuit is shown in Fig. 60. For further information see $R S G B V H F-U H F$ Manual. Chapter $5.30(\mathrm{i})$.
The use of n.b.f.m. has several advantages,
(a) Modulation can be applied at low power; no high power modulator is required.
(b) The transmitter output stage operates at a constant power level which allows the use of lower rated components, e.g. transistors and oapacitors.
(c) Any class of amplification can be used and chosen for best efficiency or low spurious emissions, etc.
(d) Interference with television broadcast and audio equipment is significantly reduced, as f.m. is not demodulated by the usual rectification methods.

Crystal Oscillators

Quartz crystal oscillators are employed in transmitters, receivers and frequency measuring equipment wherever a stable, accurate oscillator is required.

A plate, cut from quartz crystal has the property of generating an alternating voltage between its opposite faces when made to vibnate by mechanical means and conversely it will vibrate when an alternating voltage is applied across it. The natural mechanical resonant frequency of the quartz plate is determined to a large extent by its dimensions and when elec-

Fig. 62 : An absorption wavemeter circuit.
trically connected in an oscillator it behaves as a series-tuned circuit having a very high L/C ratio and a very high $Q(>10,000)$. See Fig. 63.

The crystal exhibits a series resonant frequency and a parallel resonant frequency; these are extremely close together: only a few hundred Hz apart at 10 MHz . Crystals are calibrated in frequency for one or the other mode of resonance depending on the circuit requirements. An oscillator circuit for a crystal operating in parallel resonance is shown in Fig. 64.
Under normal room temperature conditions, the frequency of this oscillator would remain constant within a few parts per million (few Hz per MHz).
Crystals can be manufactured for very high frequencies (100 MHz and beyond) using multiple vibration of the crystal; these are known as overtone crystals and are used in series resonance. A typioal circuit is shown in Fig. 65.

TRANSMITTER MEASUREMENTS
 Frequency Measurement

The licence requires that:-

1. A satisfactory method of frequency stabilisation shall be employed in the sending apparatus comprised in the station.

Variation of Current Through
Quartz Crystal v. Frequency

Fig. 64: A basic crystal oscillator circuit.

Fig. 65 : An overtone crystal oscillator circuit.
2. Equipment shall be provided capable of verifying that the sending apparatus is operating with emissions within the authorised bands.
If the transmitter is crystal controlled, (the basic frequency-determining oscillator employs a quartz crystal) excluding bad design or a fault, the frequency stability will be satisfactory; also, if the crystal is of reputable manufacture and calibrated, then the oscillator frequency will also be known.
If the transmitter contains a variable oscillator (v.f.o.) then it must be of good mechanical and electrical design, employ stable components and be operated from stable supplies for the output frequency to have satisfactory stability.

WAVEMETERS

There are two main types of wavemeter: the absorption wavemeter and the heterodyne wavemeter.

Absorption Wavemeter

The absorption wavemeter consists of a coil and variable tuning capacitor with a calibrated dial. It absorbs power when the coil is held close to the transmitter circuit in question and the wavemeter is tuned to the same frequency. This is indicated by a dip in the grid or anode/collector current associated with the circuit under test. Sometimes a rectifier diode is coupled to the wavemeter circuit and a microammeter used to indicate power absorbed from the transmitter circuit. It is not very accurate, about $2-5 \%$, but gives an unambiguous indication and is
useful when checking transmitter outputs and frequency multiplier circuits. See Fig. 62.

When used with a crystal controlled transmitter, it satisfies the licensing requirement for determining that emissions are within the band and, if the wavemeter frequency range extends to the second and third harmonic of the highest frequency to be transmitted, the absorption wavemeter can also be used to check the output of the transmitter for harmonics and other unwanted frequencies.

Heterodyne Wavemeter

The heterodyne wavemeter uses a high stability variable frequency oscillator having a finely calibrated or vernier tuning scale. A mixer stage and headphone amplifier are included for comparing the incoming frequency with the variable oscillator and for checking the variable oscillator against a built-in crystal oscillator. The v.f.o. output can also be used to calibrate a receiver. A block diagram is shown in Fig. 66.

Initially the 1 MHz crystal oscillator is set on frequency by zero-beating either its 5 th harmonic with a standard frequency transmission (e.g., MSF on 5 MHz) using a sepanate receiver, or alternatively, the second harmonic of the 100 kHz signal with Droitwich (Radio 2) on 200 kHz .

The v.f.o. is calibrated by tuning over the frequency range and recording the dial readings where each zero beat note with the crystal oscillator is obtained; 1 MHz points first, then 100 kHz points. Intermediate frequencies can be determined by interpolation or dnawing a graph.

A transmitter frequency within the v.f.o. range, can be measured by loosely coupling the wavemeter

Fig. 66 : Block diagram of a heterodyne frequency meter.

Fig. 67 : Interpolating between crystal calibration points.
to the transmitter (a short length of wire laid near the transmitter is adequate) and tuning the v.f.o. for zero beat. The dial reading is recorded and the frequency determined from the graph or from the nearest crystal calibration points above and below the frequency, as shown on the example in Fig. 67.

If the wavemeter is used to measure a frequency higher than its v.f.o. coverage then a zero beat between a harmonic of the v.f.o. and the input signal is used. For example, if the input signal was $14 \cdot 20 \mathrm{MHz}$ then a beat would be obtained at $2 \cdot 85 \mathrm{MHz}$ (where the fifth harmonic is $14 \cdot 20 \mathrm{MHz}$) and at $3 \cdot 55 \mathrm{MHz}$ (where the fourth harmonic is $14 \cdot 20 \mathrm{MHz}$).

To identify the actual harmonic, an absorption wavemeter should first be used to find the approximate transmitter frequency and the ratio of this to the v.f.o. frequency gives the harmonic number and so the exact frequency can be oalculated.

$$
\frac{\text { Approximate input frequency }}{\text { v.f.o. frequency }}=\frac{14 \mathrm{MHz}}{3 \cdot 55 \mathrm{MHz}}
$$

$$
\text { Approx. Ratio }=\frac{4}{1}=4 \text { th Harmonic }
$$

Input frequency $=3 \cdot 55 \mathrm{MHz} \times 4=14 \cdot 20 \mathrm{MHz}$
In addition to the strong, primary, beat frequency signals there will be several other beat signals but these will generally be very much weaker.

A receiver can be calibrated by tuning it to the v.f.o. fundamental or harmonic frequency output.

Crystal Calibuator

The crystal calibrator employs a crystal oscillator and frequency divider(s) to generate a number of harmonically related "marker" frequencies, e.g. $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$ as shown in Fig. 68.

Fig. 68 : Block diagram of a crystal calibrator unit.

Flg. 69 : Transmitter power measurement.

These output frequencies can be used to calibrate a receiver and this in turn can then be employed to check the frequency of a transmitter by noting the receiver tuning dial reading and interpolating between the nearest crystal marker points.

The 100 kHz and 10 kHz markers may conveniently be used up to a few MHz but at higher frequencies the spacing between the marker points is inconveniently small and the 1 MHz marker should be used.

A crystal calibrator, used with a receiver having a suitable bandspread dial and an absorption wavemeter as described previously, would enable the frequency checking requirement of the licence to be met.

Power Input Measurement

For c.w., a.m. and f.m. emissions (A1, A2, A3, A3H, F1, F2 and F3), the Amateur Licence requires that the maximum d.c. power input to the valve(s), or any other device energising the aerial, shall not exceed the stated figure for the particular frequency band as given in the schedule (Appendix B) of "How to become a Radio Amateur" (ii).

The d.c. power input is the product of the supply voltage and the anode (or collector) current as shown in Fig. 69. The current meter is usually fitted in the transmitter but an external voltmeter may be required to measure the supply voltage.

Output Power Measurements

Transmitter output power can be calculated by measuring either the r.f. current into, or the r.f. voltage across, a non-inductive dummy load resistor connected to the transmitter output.

Suppose that a transmitter is operating with an input power to the final stage of 150 watts and that this stage is $66 \cdot 6 \%$ efficient, then the output power would be $150 \times \frac{66 \cdot 6}{100}=100$ watts.

A dummy load resistor of 100Ω connected to the output would have a current of 1 amp flowing through it and 100 volts r.m.s. across it.

$$
\begin{aligned}
\text { Power } & =\mathrm{I}^{2} \times \mathrm{R}=1^{2} \times 100=100 \mathrm{~W} \\
& =\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{100^{2}}{100}=100 \mathrm{~W}
\end{aligned}
$$

The current could most conveniently be measured by an r.f. ammeter of the thermocouple type and the voltage by an r.f. valve voltmeter.

Modulation Measurements

It is most important that a transmitter is not overmodulated as this will cause spurious signals to be radiated. Amplitude modulation, A3, can be checked using an oscilloscope with the vertical deflection plates connected across the dummy load as shown in Fig. 69.

In the unmodulated condition, assuming 100 watts output, the 100 volts r.m.s. will give a certain amplitude of deflection, as shown in Fig. 70a.

With sine wave modulation applied, the modulation envelope shows that the voltage across the load varies from zero to twice the 100 volts amplitude (200 volts r.m.s.).

The depth of modulation (per cent) is given by $\frac{a}{b} \times 100$, which in this case (as $a=b$) is 100%. Over-

Fig. 70: Modulation patterns for an A3 signal. Note that in the overmodulated condition, flattening of the peaks will usually occur.
modulation will cause breaks in the carrier and "flat topping", as shown in Fig. 70b.

It will be seen that as the maximum r.f. amplitude is 200 volts r.m.s. and, as this is across 100Ω, then the peak envelope power is $\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{200^{2}}{100}=400$ watts.

Peak Envelope Power (p.e.p.)

A fully modulated A3 transmitter running 150 watts input (with an efficiency of $66 \cdot 6 \%$) produces an output of 400 watts p.e.p.
The licence requires that the output power of an s.s.b. transmitter (A3A, A3J), under linear operation, shall be limited to 2.667 times the d.c. input power, appropriate to the frequency band concerned.

To continue with our previous figures,
150 watts d.c. input $\times 2 \cdot 667=400$ watts p.e.p. So the maximum p.e.p. output allowed by the Licence is the same for a.m. (A3) or s.s.b. (A3A, A3J).

You will notice that the Schedule in Appendix B gives the d.c. power input and the equivalent p.e.p. output for A3A and A3J operation on the various bands. The most convenient way of measuring the p.e.p. output of an s.s.b. transmitter, is to use a twotone test. This involves modulating the s.s.b. transmitter with two sinusoidal tones, of equal amplitude, simultaneously. The resultant modulation envelope, when displayed on an oscilloscope is shown in Fig. 71.

Fig. 71: Oscilloscope display of an s.s.b. signal modulated by two sinusoidal tones of equal amplitude.

The mean power output of an s.s.b. transmitter using a two-tone test is half the peak envelope power.
Returning to our transmitter, this means that when the output is 400 watts p.e.p. the mean power into the dummy load is $\frac{400}{2}=200$ watts and the current indicated by the r.f. ammeter would be 1.41 amps .

$$
\text { Power }=I^{2} R=1.41^{2} \times 100=200 \mathrm{~W}
$$

Note. The value of 100Ω for a dummy load resistor was chosen to simplify some of the numerical examples; in practice 75Ω or 50Ω would be used.
To summarise the s.s.b. p.e.p. measurement (based on an extract from the UK Licence):

1. Apply two non-harmonically related sinusoidal tones of equal amplitude to the s.s.b. transmitter, with the carrier fully suppressed, and adjust the input power to give a mean radio frequency output power, under linear operation, of half the allowed peak envelope power, when measured into a resistive load by means of an r.f. meter. Under this condition, note the peak-to-peak deflection on the cathode ray oscilloscope.
2. Replace the tone by speech: the maximum vertical deflection on the cathode-ray oscilloscope shall not be greater than the previously recorded deffection obtained with the two-tone input.

Amateur Licence Conditions

Now is a good time to start reading, learning and inwardly digesting the Amateur Licence Conditions, ready for the R.A.E. on 18th May.

These are contained in Appendix A and B of the Home Office publication "How to become a Radio Amateur". Questions on the licence are a vital part of the R.A.E. (just as the Highway Code is for a driving test), so even though you may not learn the Licence conditions by heart, you should be able to write down without much hesitation, the various conditions in Appendix A, the frequency bands and emission types in Appendix B and frequency checking in Appendix F .

The RSGB publication "Radio Amateurs' Examination Questions and Answers", Part 1, Section 1, (iii) gives a good guide on how questions regarding the Licence should be answered.

Bibliography

(i) "VHF-UHF Manual." RSGB. Price $£ 6 \cdot 82$ inc. p\&p.
(ii) "How to become a Radio Amateur," free, from Home Office, Radio Regulatory Dept., Licensing Branch (Amateur), Waterloo Bridge House, Waterloo Road, London SE1 8UA.
(iii) "Radio Amateurs' Examination Questions and Answers." Price £2 inc. p\&p. RSGB Publications (Sales), 35 Doughty Street, London WCIN 2AE.

NEXT MONTH RECEIVERS AND PROPAGATION

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more information on products than appears in the article,

H.T. Supplies return

Great news for disco buffs. The Japanese have brought out a new stereo amplifier which gives 350 W per channel. The interesting point is that the distortion at this level is only a miserly 0.003%.

The circuitry works in a new mode called "A plus". With Class A output stages the fidelity is extremely good but unfortunately the efficiency is low. Moving to Class B gives a well worthwhile increase in efficiency but the quality is not so good. The idea of the A-plus mode is to gain the best of both classes of amplification and from the figures out it seems that the Japanese have succeeded. The trick has been accomplished by using separate power supplies to drive the load (the loudspeaker) and the output transistors. The power supplies are floating and are at $\pm 5 \mathrm{~V}$ so there are no exotic voltages involved in the actual output stages, but 1 do note from the circuitry that the driving amplifiers both need a $\pm 105 \mathrm{~V}$ supply (funny, I thought, funny).

The amplifier will drive an 8Ω speaker load to full output and will also drive a 4Ω load to full rated power. The distortion figure of 0.003% is measured at full output power, over the frequency range from 20 Hz to 20 kHz . At half power, the distortion measured at 100 kHz is still only 0.01% (that's at 175 W) while at 1 kHz at half power the distortion is so minute that it is unmeasurable. Not available in the UK as yet, but these amplifiers sound 'deafinately' good!

EIP7 X-Rays

it all began with soidiers shooting at people in Vietnam. They used a "Starlight scope" which let them see in the dark. The Starlight scope was fitted to the rifles.

From this wartime application has come a development for peaceful uses called the Lixiscope. The device is a hand-held and completely portable X-ray machine. It is powered from a single pentorch-type battery.

The prototype consists of a small cylinder with a viewing screen in the centre. At the "back" of the cylinder (furthest from the holder) is a smaller cylinder which is mounted on an
extendable rod. This smaller container holds a minute amount of radioactive source material which is completely shielded.

In use, the object under examination is put between the source and the main cylinder, and the device is triggered. When this happens, the radio-active material is exposed and the X-rays emitted pass through the object. The rays are then absorbed by a special phosphor screen and they are converted to visible light. These (very tiny) light values which, by their variation hold the X-ray image, are then picked up by fibre optics and amplified some 40,000 times and fed to the viewing screen for direct display,

This report is not very detailedjust the bare bones.

Frictionless Memory

Look out; there's a BEAMOS about. Basically a solid state memory in a vacuum tube, the device has certain advantages over other memories. The memory works by storing information in an oxide layer grown on a silicon substrate. The memory locations are small charges which are contained in this oxide layer. One advantage is that unlike magnetic tape or disc, the BEAMOS (Beam-Addressed Metal Oxide Silicon Memory) is contained within a vacuum tube (remember the old valves?) and so is protected from dust or other undesirable environmental baddies and it doesn't have any moving parts. The memory is scanned and read out by an electron beam from a "gun" something like a television tube. The same beam is used to "write in" or enter data. So it is frictionless and very fast. The latest BEAMOS device on the stocks will store something like 200 million bits of information and has a readout time of only 20 microseconds. If you haven't read a copy of the papers in the Proceedings of the 1977 International Microelectronics Symposium then you won't know how important it is to be kind to capacitors.

It seems that someone buried in the corner of some laboratory found that if you hit certain ceramic capacitors they would give out a voltage which could be as high as 40 mV .

This phenomenon probably has no practical value for the home constructor, but the Ginsberg mind is already thinking of a miniature fairground-type test-your-strength and ring the bell device. A ceramic capacitor connected via a diode to a milli-voltmeter-and a small hammer.

Microprocessor soup

Ever since I saw a man cleaning out one of those hot drink machines, 1 vowed never to sup from one again. Such a mass of cams and rods and other mechanical paraphernalia.
Well, the microprocessor has struck yet again. The newest machines are claimed by the manufacturers to be 20 per cent cheaper to run than their old mechanical counterparts. The microprocessor basically scans around to check if you've put enough money into its slot. If you have, then it has a quick scan of the selection buttons to see which one you want. Then it initiates the timing cycle and subsequent actions within the machine to give you that magnificent cup of Spring vegetable soup-with just a dash of hot chocolate!
The electronics (in the new machine) has replaced relays, solenoids and electric motors, hence the reduction in price,

I wonder when electronics will get round to replacing that little man in fridges who switches the light on and off every time we open and close the doors?

Free Energy

Talking about energy, a Japanese company is to market some solar cells which will provide just over 15 V at nearly $0 \cdot 5 \mathrm{~A}$. The panel of cells measures about 13 in . square but the price is put at some £200. I also note that the reported efficiency of these cells is less than 7%. We still have a long way to go before we get all that "free" energy from the sun.

Cimbers

by Eric Dowdeswell G4AR

Some readers have expressed interest in the Realistic DX150 receiver being used by some reporters to this column. This is a 16 -transistor set covering the medium waves plus three s.w. ranges from 1.5 to 30 MHz thus covering all the h.f. amateur bands. It has all the facilities one would expect on a communication receiver including an " S " meter and switchable a.g.c. for different modes, together with a separate r.f. gain control which can be most useful. Two transistors are used in the cascade r.f. stage which is a very sensible way of reducing cross-modulation. The set can be used on mains or 12 V d.c. According to my information the receiver is available through the Tandy organisation.

In Worcester, Brian Hughes has been keeping an eye on the 10 and 15 m bands. He tries to check 10 m every day and at various times depending upon his work. His 15m catches include KC4AAC, KG6SW, TG9QK and VU2LQA, while 10 m produced PJ2FR, S79DF, VP2MAA and 7P8BE. From Deeside, Clwyd comes a letter from newcomer Vic Marland. His HRO seems fair on 20 m but on 80 m he complains that the band "is always shut down to me". If he can't hear the racket there then there is something radically wrong! However, hopefully it is only a matter of tweaking the trimmers on that particular coil pack. Vic has a 66 ft aerial and a.t.u. so he ought to do reasonably well with that HRO.

Brian Smith of Barry, Glam., got away from his domestic receiver and separate oscillator and built the Everyday Electronics f.e.t. receiver (March '75), including the coils. He found 80 m and 160 m easily enough but 20 m was a bit trickier, but he managed it and with 40 ft of wire on it he is starting to copy the DX.
An unusual bit of news concerns J. Brooker G3JMB of Hassocks in West Sussex. He was awarded the MBE in the New Year's Honours List. He is active on the h.f. and v.h.f. bands, a founder member of the Crawley Radio Club and currently a member of the Thanet ARS and of the Mid-Sussex ARS but strangely enough the award was given for his efforts in a completely different field, that of the National Savings movement, mainly in the Sussex and Kent areas. Congratulations OM!

Good news also from John Hague who has been writing to yours truly for some time. After taking the Morse test John became G4GOY and he intends to be active with 10 W on 160 m as a start. He'd welcome reports so if you hear him drop a line to 1 Chaloners Road, Dringhouses, York YO2 2TW. Congratulations to you, too, John. I know you will get a lot of fun as you will almost certainly have to make your own transmitter, at least, and with such low power you can go on the air at any time without having to worry about the neighbours' TV and possible QRM! Mr. A. Cook has been confined to bed for a while in Buckie, Banffshire, but he managed to borrow an Eddystone EC10 from GM3KHN and to take a listen around 20 m . First catch was ZD8KG and wife ZD8MM talking to KC4USB in Antarctica so Mr. Cook now has the DX -bug! He is thinking of getting a BC348 receiver of his own and wonders if any reader can help him with a circuit or manual? Drop a line to "Shielburn", Drybridge, Buckie, Banffshire, if you think that you can assist. Normally the BC348 is a very good set up to around the 20 m band but it starts to fall off in performance after that. It is very well built and has an excellent dial mechanism and would make a very good tunable i.f. for the 10 and 15 m bands, with a converter in front.

Geoff Cole G4EMN, Hon. Sec. of the Wessex AR Group would like to see a listing of club secretaries in this feature as he believes that such publicity can give a good boost to club membership. Unfortunately we do have space problems and I fear that if we did start to list them it would soon get out of hand. There is a list of course in the RSGB's Call Book but that is likely to be a bit out of date, naturally. Geoff knows of what he speaks! He now has 104 members to look after! The Wessex AR Group meets at the Dolphin Hotel, Holdenhurst Road, Bournemouth, so contact Geoff at 6 St Anthony's Road for details.

The Bury Radio Society has many activities for both the old-timer and the newcomer which means that their station G3BRS is put to good use. Meetings every Tuesday at Mosses Centre, Cecil Street, Bury at 1945hrs. March 14th sees a visit from RSGB Rep G3SMM so go and air your complaints! The 30th March is reserved for a visit to the Granada studios. More info from Hon. Sec. E. Thirkell G4FQE 59 Oulder Hill Drive, Rochdale or ring 32730.

CARA News, the news letter of the Cheltenham AR Association, is sent to me each month by Edgar Janes G2FWA and it generally contains several items of a constructional nature or similar hints and tips that one does not find in other club magazines. For instance, the January issue has a tester for op. amps, a multivib using a cheap i.c., values of resistors needed in a T-section attenuator for losses up to 50 dB ,
simplified formulae for resonant circuits and a twovoltage PSU! Almost a handbook on its own!

I trust that you all heard or worked the Marconi commemorative station GB3MSA at Poldhu, Cornwall. The QSL card ought to be a very interesting souvenir. For a change, the event of the 75th anniversary of the first spanning of the Atlantic by two-way radio got a lot of coverage on the radio, TV and the press.

A note from the Derby and District ARS for your nice new diary! Their 21st annual rally will be held on Sunday 13th August. For the moment this is a provisional date.

Reports are few and far between at the moment. If you want to report some choice DX I can supply log sheets if you will send a request to me at my home address, see panel. Remember "choice" means half-adozen entries in the course of a month. Routine log entries are not required!

Log extracts

A. Cook:-20m A9XCC WA4UAZ/HC1 HK3AMV JY5US KC4USB KL7ITH VP2KC 9Y4FS
B. Hughes:-15m KC4AAC KG6SW TG9QK UM8FM VU2LQA XE2PL 10m J3AAG PJ2FR S79DF VP2MAA W6BWZ WD9AKN 7P8BE
B. Smith:- 80 m EP3MK LX1PS 20m FC2CD IT9WPO

All reports are for s.s.b.

SHORT WAVE BROADCASTS

by Charles Molloy G8BUS
From his QTH in Wrexham, Jack Shone, who uses a Realistic DX160 receiver and a Joystick antenna wonders if Radio Australia can really be classed as DX. He can listen to it virtually all day, starting on 21570 kHz at 0755 , changing to 15405 at 1000 , to 9670 at 1200 , then back to 15405 at 1300 until 1500 and then to either 11705 or 11900 to 1600 and on 11900 until 1645. Reception is sometimes possible on 5995 at 1700 though QRM is rather heavy at this time. It is also possible to hear Radio Australia on 11900 kHz from 2100 until this frequency closes at 2230. All of the above are in English. Thanks very much Jack for such a comprehensive and useful report.

Clearly, reception of Radio Australia cannot be classified as DX when heard on a communications receiver and a good aerial. The same criteria would apply to major international broadcasters such as the VOA, Moscow, Radio RSA, the Voice of the Andes and others who pump high power into directional aerials in the hope that their transmissions will be received at programme value on domestic receivers. Reception of transmissions not beamed to the DXers, such as Radio Australia on 5995 would be classed as DX though. Incidentially, Radio Australia can also be logged on 7240 kHz between 1500 and 1730 .

From Waltham Cross, Herts comes a letter from E. C. Adams who has built the HAC one valve receiver
which is advertised in kit form in $P W$. When connected to a 100 ft long wire attached to a 3-element TV aerial it pulled in Monte Carlo, Berne and Turkey. HAC stands for Heard All Continents and covers a range of simple receivers that have been available for 35 years. N. F. Morgan is another one valve enthusiast. At the age of 71 he built a small 1-valve set which he uses with a 30 ft long wire. Stations heard were Radio Canada, VOA, Kiev, Vatican Radio and Israel but no success has been had so far with stations south of the equator. Try Radio RSA on the 19 m band (15155) and the 31 m band (9589) between 2100 and 2150.

Has anyone tried s.w. DXing with a crystal set? One is on offer by an advertiser in PW for a modest sum. With an outdoor aerial a crystal set ought to pull in quite a few stations on the intermational bands and anyone hearing Australia would certainy be justined in calling it DX !

Any information about modifications to the MRC1 receiver would be welcomed by Trevor Goodenough who lives at Kilwinning in Ayrshire. This receiver, which is a valve portable, was supplied to the resistance movements in Europe during the last war so that they could listen to the BBC and to messages from the UK. A number of these receivers came onto the surplus market after the war and many of them should still be in private hands. Trevor goes on to ask for information about the SINPO code.

The SINPO code (and its variant SINFO) is an attempt to quantify the data in the reports that listeners send to broadcasting stations on the short waves. The terms Good, Fair or Poor are too vague to be of value. Other codes such as the Z, RST and QSA have been tried in the past but SINFO is now almost universally used in reports to broadcasting stations, many of whom will supply DXers with report forms or cards marked-out for SINFO ratings. The individual letters SINFO stand for Signal Strength, Interference (from other stations) Noise (static), Fading, Overall merit. The letter \mathbf{P} in SINPO is for Propagation disturbance.

A five point rating using the digits 1 to 5 is used to assess each factor as follows:-

S	1	N
5. Excellent	Nil	Nil
4. Good	Slight	Slight
3. Fair	Moderate	Moderate
2. Poor	Severe	Severe
1. Just Audible	Extreme	Extreme
F		0
5. Nil		Excellent
4. Slow ($1-5$ fades/min)		Good
3. Moderate ($5-20$ fades/min)		Fair
2. Fast ($20-60$ fades/min)		Poor
1. Very fast (greater than 60)		Unreadable

Care should be taken not to over-rate the figure for overall merit. In my opinion the final digit should not be higher than the lowest of the others, though this might be debatable. Certainly it should not be the highest of the five and few would disagree that 22225 is impossible. An abbreviated version of SINFO is the SIO code which omits the N and the F, has been tried and is the one 7 prefer as it gives all the information that is required while remaining simple to use.

While on the subject of codes, reference should be made to some of the abbreviations which have become jargon among Radio Amateurs and are also used by
broadcast band DXers. From the International Q code comes $\mathbf{Q S B}=$ fading, $\mathbf{Q S L}=$ a verification, $\mathbf{Q R M}=$ man made interference, $Q R N=$ static, $Q T H=$ home address of the DXer. Other abbreviations in use are $R x=$ receiver, $\mathrm{Tx}=$ transmitter, shack $=\mathrm{DXers}$ radio room, cond $x=$ conditions. $Y L=$ young lady, $X Y L=$ wife (ex YL). DX originally meant distance, 73's means All the Best and is used by some DXers at the end of letters instead of the more usual Yours etc. There is also 88s which is one way of sending Love and Kisses.

Fourteen year old Christopher Wather would like to know if there is a DX club in his area or if there is anyone who lives near him who is interested in DXing. Replies to St Jude's Vicarage, Savile Park, Halifax, HX1 2HX, West Yorkshire. The Merseyside DX Club is now under new management. Regular meetings are planned, starting on the 28th January in Birkenhead with a talk on Propagation by Gus Taylor (G8PG), who for many years conducted the RAE course in Liverpool. Enquiries to go to the Secretary, Norman Monti, 66 Chesnut Grove, Birkenhead, Merseyside, L42 0MZ.

A nice \log of Latin American DX, mainly on the 60 m band, comes from J. Edwards of Bryn near Wigan, and should be of interest to DXers who have difficulty in logging this area. Using a Realistic DX160, a 50 ft long wire and ATU he heard Radio Colosa, Colombia on 4945 kHz at 0030 ; Radio Sante Fe , Colombia on 4965 at 0700; Radio Sutatenza, Colombia on 5095 at 0350; Radio Havana, Cuba on 17885 at 2155. Harold Emblem (Mirfield, with his Eddystone 730 pulled-in La Voz de Chile on 15150 kHz with a good signal after 2335, also the African outlet at N'Jamana in Chad on 4905 at 0530.

A large mailbag this month has meant holding over some letters until next time. Apologies to all concerned.

MEDIUM WAVE DX

by Charles Molloy G8BUS
Jamming, which has been called the scourge of broadcasting by one DXer, is seldom mentioned in this column, although it is still widely practised. Michael Irving writes from Carlisle about a warbling noise on 719 kHz heard at strength 4 with a Heathkit GR78 receiver and a loft aerial. Jamming is the name given to interference deliberately generated by one country to drown the broadcasts from another. There are various ways of doing this. A tape recording of a diesel engine was popular at one time though it is probable that more sophisticated methods are now in use. Jamming is not too much of a problem on the medium waves as the DXer can always null it out either with a loop or with a transistor portable by rotating the receiver to make use of the directional properties of the internal aerial. The snag of course is that the DX may be nulled-out as well. The noise on 989 kHz together with the 300 kW station in Berlin are
easily nulled-out at this QTH to give untroubled reception of Madrid on the same channel.

Medium wave DXing in pre-war days is recalled by George Rose of Waltham Cross, Herts, who has dozens of veries of North American stations from Oregon to the Atlantic seaboard. George thinks that today this should be done with a crystal set! Philip Rambaut (Macclesfield) does not agree. He says that 40 years ago the air was uncluttered and DXing was easier and more pleasant. Such DX as KDKA Pittsburg and CBF Montreal were easily obtainable after midnight. The Lucerne Plan which came into operation in 1934 listed fewer than 200 stations, many of which were low power locals operating on common channels. Today there are about 1,500 stations in the European area which emit some 80 megawatts onto the m.w. band and a large increase is permitted under the new Geneva plan which comes into operation in November 1978.

Many DXers consider the medium waves to be the most difficult as well as the oldest DX band. A highly selective and sensitive receiver such as a communications type, together with a directional aerial such as a loop or Beverage, is essential in order to hear some stations but there are spaces in the band at night where much simpler gear will produce results. The best logging of the winter must go to Tudor Rees Vintage Services of Bristol who reported in their November bulletin, reception of WINS New York on 1010 kHz at 2330 using a 1930 TRF receiver. It is the skill and patience of the DXer that really counts on the medium waves.

North American m.w. stations have certainly been conspicuous this winter. Highlights from a number of logs sent in are: WBT Charlotte in North Carolina on 1110 kHz , WTIC Hartford on 1080, WOAI San Antonio Texas on 1200, from John Faulkner, Mansfield (Trio 9R59D plus longwire), CFRB Toronto 1010, KDKA Pittsburg 1020, KMOX St Louis 1120 (John Morton, Edinburgh, Homebrew receiver plus loop), WEAN Providence Rhode Island 790, WWL New Orleans 870 , WWWE Cleveland 1100 (David Sidebottom, Fleetwood. Realistic DX160 plus longwire), WOR New York 710, WOWO Fort Wayne, Indiana 1190, WNCR Worcester, Mass 1440, WAXC Rochester NY 1460, WOKO Albany NY (Derek Taylor, Preston FRG7 plus loop).

Requests for help with unidentified stations come from a number of readers. Steve Whitt asks about a CBC outlet on 740 kHz which would be CBNM Marystown in Newfoundland. David Sidebottom heard a North American behind the BBC World Service on 1088 with a call like WGIC. WTIC Hartford Connecticut is on 1080 and is heard sometimes in the UK. Derek Taylor is puzzled by a CBC station heard several times on 750 . This would be the new CBGY Bonavista Bay in Newfoundland which has been heard by a number of DXers in the UK. Malcolm Lougharne refers to a Canadian station on 870 with a high power German on the low frequency side of it. Canada does not use 870 kHz . It could have been CBH Halifax in Nova Scotia on 860, the German being Berlin on 854. Martin Scholes has picked up two stations on 1010, WINS and another with a call starting with the letter C. This is CFRB Toronto which is usually heard when conditions are good. John Faulkner heard Radio Populares on 700 in Spanish at 0205 which would be YVMH in Maracaibo Venezuela. He is also puzzled by a call like WFGT on 1330. There are two possibilities; WFTP Fort Pierce in Florida or WFBC Greenville in South Carolina.

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive, instrumentation:..

Each of the 6 volumes of this self-instruction course measures $11 \frac{3}{4}$ in \times $8 \frac{1}{4}$ in and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

plus 90p packing and surface post anywhere in the world.

Overseas customers should send for proforma invoice
Quantity discounts available on request.

VAT zero rated.

Also available-a more elementary course assuming no prior knowledge except simple arithmetic. Digital Computer Logic and Electronics

In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4.60

plus 90p P. \& P.
Offer Order both courses for the bargain price £11•10, plus 90 p P. \& P.—a saving of $£ 1 \cdot 50$.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

FLOW CHARTS \& ALGORITHMS-The AIgorithm Writer's Guide--Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, train62.95 ing, wall charts etc. Size A5, 130 pages.
plus 45 p p\&
Guarantee-lif you are not entlrely satisfied your money will be refunded. CAMBRIDGE LEARNING ENTERPRISES, Unit 7, Freepest, RIVERMILL LODGE, ST, IVES, HUNTINGDON, CAMBS, PE17 4BR, ENGLAND. TELEPHONE ST. IVES (0480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: Ri
IVES. Giro Ac. No. 2789159 . REGD. IN ENGLAND NO. 1328762 .

Cambridge Learning Enterorises, Unit 7, Freepost Rivermill Lodge, St. lves, Huntingdon, Cambs, PE17 4RR, England.
Please send me the following books:
......sets Digital Computer Logic \& Electronics @ $£ 5 \cdot 50$, p \& p included
......sets Design of Digltal Systems @ $£ 8.00, p \& p$ included
......Combined sets @ $£ 12 \cdot \mathbf{0 0}, \mathrm{p} \& \mathrm{p}$ included
......The Algorithm Writer's guide @ $£ 3 \cdot 40, p \& p$ included
Name ...
Address
..
I enclose a *cheque/PO payable to Cambridge Learning Enterprises
for £................
Please charge my *Access/Barclaycard/VIsa/Eurocard/Mastercharge/Interbank
account number
Signature.. *delete as appropriate
Telephone orders from credit card holders accepted on 0480-67446 (ansafone). Over* seas customers should send a bank draft in sterling drawn on a London Bank. PW4

A Trio 9R59D receiver, Codar Preselector and 100ft longwire is the set-up at \mathbf{R}. Calver's QTH in Norwich and he would like to know what linkage is required between the three. The lead from the longwire goes to the terminal marked A at the back of the preselector. Terminal B goes to earth, if one is used. The co-ax socket is the preselector output, the inner goes to the receiver aerial input and the outer (screen) to receiver earth. A co-ax plug and length of co-ax cable is required here. Personally, I would not use a 100 ft long wire plus a preselector with a communications receiver on the medium waves. The preselector may well cause overloading and cross-modulation. A m.w. loop used in place of the long wire and preselector would probably give better results.

A call for help comes from M. J. Weich of 35 Mercers Road, London N19 4PW who has built the $P W$ loop aerial and differential amplifier but cannot get any joy out of it. He would like to contact any $P W$ reader who lives near him and who might be able to help. Why not use the loop without the preamplifier? It should work very well this way with the CR100. The CR100 incidentally is an excellent receiver for m.w. DXing and does not need any modification to perform well on this band. Mods to the CR100 are usually done to improve its performance on the short waves.
Some DX from areas other than North America comes from several readers. Derek Taylor heard the 10 kW outlet at Kingston, St Vincent in the Windward Islands on 750 kHz at 0100 , Radio Demerara, Guyana 760 at 0100, Radio America in Lima, Peru on 1010 at 0040. Derek also asks about the tentative logging of 4QD Emerald, Australia, on 1550. This was reported in the February 1977 edition of PW but no identification was possible as the signal was barely audible. Roy Patrick (Derby, Trio 9R59D plus loop) logged Freetown, Sierra Leone on 1205 and Radio Globo, Rio de Janeiro on 1220 at 0100. Harold Emblem (Mirfield, Eddystone 730 plus loop) heard Riyadh, Saudi Arabia on 587 signing off at 2300 , Dakar, Senegal on 764 at 2330, YVRS Radio Margarita Venezuela on 1020 at 0100, EAJ25 Radio Terasa, Spain on 1412 which is usually dominant on this frequency. John Faulkner reports reception of Capital Radio Caracas, Venezuela on 710 at 0515; Radio Caracas 750 at 0115 , Radio Sutatenza, Colombia 960 at 0306; ZDK Antigua in the Leeward Islands on 1100 at 0100, Radio Anzoategui, Barcelona Venezuela on 1210.
Finally, a couple of news items. Harold Emblem mentions that Bremen is on its new frequency of 935 and Roy Patrick has noticed Radio Moscow behind AFN on 1142. There is also the new station at Bonavista Bay in Newfoundland with the call CBGY on 750 kHz .

by Ron Ham BRS15744

Harold Brodribl, St Leonard-On-Sea, Sussex, using a CR100 and a long wire aerial noted the good 10 m conditions from January 5 to 8, and, like myself, he heard, mainly in the afternoons, the very strong signals from a host of north-American stations working into many parts of Europe. Between us, on days 2, 5, 6, 7, and 8, we received strong signals from both North-American and Italian CB operators, around 27 MHz , in QSO with their European counterparts. George Hook, G2CIL, Bognor Regis, also reported strong signals from the USA on the amateur and Citizen bands during the afternoon of the 2nd, and on the 9 th, after completing a modification to the mixer stage of his HRO he heard a ZSI on 10 m .
Nigel Golds, BRS 36910, West Chiltington, Sx, heard the UA stations working into Germany and Spain around 0900 on the 14th and Roy Bannister, G4GPX, Lancing, now active on 10 m , heard the Cyprus beacon, 5 B 4 CY , among all the DX on the 5th. Beacon seeking is one of my daily jobs and I received reasonable signals from 5B4CY on 15 of the 24 days from December 26th to January 18th. I also kept watch around 28.300 MHz for the project TESSA beacon, ZE2JV, and heard its signals on nine of those days. Around 1400 on the 5th and 6th I listened to both sides of the QSOs between W4s and 4X4 stations, in addition to 539 signals from the Bahrain beacon A9XC, $28 \cdot 245 \mathrm{MHz}$. Reports would be welcome from our overseas readers about the UK 10 m beacon, GB3SX, I understand that it now has solid-state logic, keys its call-sign every minute and at 5 -minute intervals, the station's bearings, QRA locator, and a 3 -second tone follow the call-sign; all of which is then repeated in RTTY.
Perhaps the sun was responsible for the variable 10 m conditions, because on January 3rd, Cmdr Henry Hatfield, Sevenoaks, John Smith, Rudgwick, Sx, and myself recorded a severe solar noise storm which continued into the following day. Fortunately, the Sevenoaks skies were clear on the 3rd and Henry, using his spectrohelioscope, saw 13 sunspots, including 2 groups (1×6 and 1×4 spots), 5 plages 21 filaments and several bright patches on the sun's disc. Henry was then in no doubt as to what caused the radio noise at 136 MHz , and said that it was the most "active" sun he had ever seen. This information was quickly passed to Charlie Newton, G2FKZ, RSGB auroral co-ordinator who phoned back at 2215 to say that an aurora affecting v.h.f. radio signals had been reported over Scotland.
Another auroral manifestation, reported by John Branegan, Saline, Fife, occurred between 1230 and 1915 and briefly at 1940 and 2112 on the 4th, during which time he logged, by tone-A c.w., on $2 \mathrm{~m}, 2 \mathrm{EIs}, 7 \mathrm{GMs}, 5 \mathrm{LAs}, 1 \mathrm{OZ}$, 1 PA0 and 4 SMs. During the event, John heard signals from the RSGB 2 m beacons in Angus, GB3ANG, Cornwall, GB3CTC, Lerwick, GB3LER, and Northern Ireland, GB3GI. Henry, John Smith, and myself recorded further solar radio noise on days $8,9,10$, which I feel sure was responsible for the ionospheric disturbances reported by the BBC World Service on the 13th and 14th.
Another solar noise storm began on the 15th and was still, to a lesser degree, going on the 18th. John Smith's radio telesoope is a home-brew, phase switched interferometer with a 90 metre base line which he also uses to observe the radio waves coming from Cassiopeia, Cygnus, and the Crab nebular. From Brighton comes news that the h.f. call-sign of the Brighton and District Radio Society is G4GQR and their v.h.f. call is G8OMR. Since January 1st, the 70 cm repeater, GB3BR, has been fitted with new solid state equipment, a new style logic system, and it keys its
call sign every five minutes. So far, good reports have come from G8LY in Hampshire, G4GPX in Lancing, and a mobile at Beachy Head.
Back in Fife, John Branegan has been testing his 70 cm receiver by monitoring the telemetry beacon aboard OSCAR-7, $435 \cdot 1 \mathrm{MHz}$; John has passed it OK because he can hear the signal when the satellite is over Greenland. In his letter John says "the Doppler up to $+8 \cdot 2 \mathrm{kHz}$ approaching and $-8 \cdot 2 \mathrm{kHz}$ receding, must be allowed for by any would-be listener". Thanks for the tip John, I would also recommend that our satellite enthusiasts read Chapter 20, "Amateur Satellite Communication", in volume 2 of the RSGB's Radio Communications Handbook.
John gives thanks to GM8ARV and all who were responsible for the Edinburgh 70 cm repeater, GB3ED, RB14, $433 \cdot 35 \mathrm{MHz}$, he says "the attractive feature is that it comes up every three minutes whether called or not and gives its call sign. So, it is as good as a 70 cm beacon for me". Tropospheric disturbances affecting 70 cm occurred on December 19,20 , and January 6, 7, 13 and 14, when, sometime each day, I received signals from the Sutton Coldfield beacon, GB3SUT, with only a dipole feeding the Modular Electronics converter in my FR101. The strongest signals came at 0910 on the 6th, (559) and 0103 on the 7th (599).

During the tropospheric opening of December 19th to 22nd, Gordon Goodyer, BRS 37345, Petworth, Sx, heard PA0s on 2 m s.s.b., Roy Bannister heard the 2 m beacon FX0THF and several French stations, Pete Simmons, G3XUS, Newhaven, worked DL, Graham Kent, G8HVD, St Leonards-On-Sea, Sx, worked a host of continentals on 2 m s.s b. and Constance Hall, G8LY, Lee-on-the-Solent, using a 48-element array worked through GB3AW, RB10, the 70 cm repeater at Ashmanworth, Berkshire. On the 21st, Robert Dixon, G8LZH, Heatherfield, Sx , after calling CQ Dx worked GM4DGC, GD, GU, GW, and northern G on 2 m s.s.b. and heard GB3ANG and GB3LER.

The text-book opening in early January can be traced back to the 3rd when the atmospheric pressure climbed from $30 \cdot 0$ in at noon to $30 \cdot 55$ in by midday on the 5 th, and, by midnight a gradual fall began and gave our readers something to shout about. The first sign of a v.h.f. opening came at 0005 on the 6th when Alan Baker, G4GNX, Newhaven, heard FX0THF and soon after he worked F1DGZ and F1EDM on 2 m s.s.b. Later in the day, Peter Penfold was driving through Horsham and heard a station in Paris working through the Kent repeater, GB3KR, and from his home in West Chiltington, Sx, using an NR56 fed by a ground plane, he heard signals through the Bristol Channel, GB3BC, and Cambridge, GB3PI, repeaters.
Around 1300, G4GNX/M on Brighton sea front heard GJ3PRA/M working through the Hampshire repeater, GB3SN, and also on a direct path from Jersey. An hour later, situated on Devils Dyke, Nr Brighton, Alan had a multiway QSO with stations in Chigwell (who had heard an OE), Farnham, Whitstable and Worthing. Between 1700 and 1830, Alan was operating from Race Hill, Brighton, where he worked 20 French stations, (12 around Paris), through the repeater FZ3THF on R4. One station was only using 1 watt, and another, F1EVI, Caen, was running 4 watts to a 3 -element beam.
In the middle of all this action, at 1800, Alan could not resist having a QSO with G8KLN, in nearby Worthing, when his signal came through this French repeater. Alan said there was chaos at that time because of the mix-up of signals between GB3KR and FZ3THF, both on R4. From 1957, Alan was at his home QTH, and on 2 m s.s.b. he had a 59 contact with DKOVL, on the Swiss border and F1CFY in Douai. Some 30 minutes later, Ern Hoare, G8BDJ, Southwick, Sx, worked DK0VL on 70 cm .
At 2230, John Cooper, G8NGO, joined G4GNX at his home and between them they worked DF5GX/P near the Swiss border, F1BBD/P and F1ECB. Earlier in the day, John, from his QTH in Scaynes Hill, Sx, using an FT221R and a 4 -element home-brew beam in his bedroom, heard two DKs near Switzerland, several DLs, PA0s, ONs, some French stations in QSO with each other, and he worked four ONs and two French stations, on 2 m s.s.b. At 2100

John heard a PEO and an ON in QSO through the Ghent repeater ONOOV also on R4. At the same time I was receiving a strong picture from Lichfield on channel 8, 189 MHz , using a dipole, and signals through the repeaters $\mathrm{BC}, \mathrm{BM}, \mathrm{KR}$, and PO were all opening the squelch on my TM-56B.
During the early hours of the 7th, the 2 m band was wide open, at 0046 I heard a mix up between a station in Rochester, one in Birmingham, and a Frenchman because they were not sure whether they were working through GB3BM or GB3SN, both on R5 and at 0200 I heard F6BSV, Paris, contact a G in Hull, through GB3KR.

On January 1st, the atmospheric pressure was falling and we started 1978 with a short-lived tropospheric opening. At 1315 I heard G3MCB, Cornwall, work a GW through GB3BC and signals from GB3KR was opening my squelch. During the evening Angus McKenzie, G3oSS, London, contacted F6CTW, F6DUD, and briefly received a signal from an OH. G4GNX worked five French stations and heard DB5UK/P, Bavaria, and F1BBD told Alan that he worked DL, G, HB, LX, and PA0 among the 200 QSOs he had during the opening.

Many thanks for your reports and interest.

HENRY HATFIELD

by Ron Ham

Commander Henry Hatfield, RN (retd.) having spent most of his professional life as a Navigator and Hydrographic Surveyor has now built a unique observatory at his home in Sevenoaks, Kent, which combines his long-standing interests in astronomy, engineering, photography and radio.

In 1963, Henry built a 6 in Newtonian refiecting telescope which he used for his first regular observations of Jupiter, and a couple of years later, he made a 12in mirror for a new telescope which he used to make a detailed photographic survey of the moon, the results of which can be seen in his book, Amateur Astronomers Photographic Lunar Atlas, published by Lutterworth Press in 1968. Another of his photographic achievements was given centre page treatment by The Daily Mirror newspaper,

Henry Hatfield adjusting one of the mirrors of his spectrohelioscope, another mirror is housed in the building (bottom right) and an electrically adjusted lens is mounted under the shingle cover (bottom left).

EASY BUILD SPEAKER DIY KITS Specially designed by RT-VC for cost conscious hi-fi enthusiasts, the se kits incorporate two teak-simulate enclosures. two EMI $13^{\prime \prime} \times 8^{\prime \prime \prime}$ (approx.) wooters, two tweeters and a pair of matching crossovers Supplied complete with an easy-to-follow circuit diagram, and cros sover components. STEREO PAIR Input 15 watts rms. 30 watts peak, each uni

SPEAKERS ANALLABL WITHDUT CABINETS. It's the units which we supply with the enclosures illustrated Size $13^{n} \times 8^{\prime \prime}$ lapprax.) woofer. (EMII. $2 \frac{1}{2}$ " app. $\quad £ 1 \mathbf{7 0 0}^{\mathbf{0}}$ per tweeter, and matching crossover components. stereo pair Power handling 15 watts rms, 30 watts peak. $+\rho \& p £ 3.40$

COMPACT FOR TOP VALUE These infinite baffle enclosures come to you ready mitred and professionatly finished. Each cabinet measures approx. per stereo pair $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ deep. and is in wood simulate. $\mathrm{f} \mathbf{8}^{50}$ Complete with two 8 " (approx.) speakers tor
maximuma power handling of 7 watrs. 8Ω. $p \& p £ 2.20$

 Duc III. 20 watts ims. 40 watts peak. $27^{\prime \prime} \times 13^{\prime \prime} \times 11^{1 \prime}$ appx
 decca 20 Watts stere 0 SPEAKER stereo pair This matching loudspeaker system is hand made. kit comprises of two 8" diameter approx. base drive unit, with heavy die cast chassis laminated cones with rolled P. V.C. surrounds, two $3 \frac{1}{2}$ " diameter approx. domed twesters compiete with crossover networks 8Ω.
£4.00 p \& $\mathrm{F} . \mathbf{2 0}^{00}$
STEREO CASSETTE RECOd/replay tully built P. C. boaid\&1.95 AM. FM. TUNER P.C. B. with Mullard L.P. 1186.
1185.1181 modules.

100K Multiturn Varicap tuning pots, 6 for
Pair Stere 8 Watt Speakers
$8^{\prime \prime}$ bass units with $3 \frac{1}{2}$ " approx. tweeters Size $16 \frac{1_{2}^{\prime \prime}}{2} \times 11^{\prime \prime} \times 8 \frac{1_{2}^{\prime \prime}}{2}$.
Plinth \& cover BSR or Garrard teak finish Eg50 ${ }^{\mathrm{f}} \mathbf{1 0 0}$ ${ }^{ \pm} 9 \cdot 95$ DECCA DC1000 Stereo Cassette P.C.B. complete with switch oscillator coils and tape-heads AM. FM. Stereo Multiplex Car Fadio/cassette f player in dash fixing Negative earth 5 watts outpu I.C. Stereo 8 Track to Cassette adaptor converts. $\mathbf{f 1}^{95}$ any 8 track player to cassette player.

Personal Shoppers EDGWARE ROAO LONDON W2 Tel: 01.7238432

20×20 WATt STEREO AMPLIFIER £2990 Superb Viscount IV unit in teak-finished cabinet Silver fascia with aluminium rotary controls and pushbuttons. red mains indicator and stereo jack $\quad \mathrm{f} 2.50$ socket. Function switch for mic. magnetic and crystal pick-ups, tape, tuner, and auxiliary Rear panel features two mains outlets. DIN speaker and input sockets, plus fuse. $20+20$ watts rms. $40+40$ watts peak. 30×30 WATT AMPLIFIER KIT
Specially designed by RT-VC for the experienced constructor, complete in every detail. Same facilities as
Viscount IV amplifier. $60+60$ peak. $\mathrm{P} \& \mathrm{p}$ ¢ $2.50 \quad \mathbf{£ 2 9 0 0}$ NOW AVAILABLE fully built and tested.
f3500 Ourput $30+30$ watts rms, $60+60$ peak_ p \quad \& $p £ 2.50$ SPECIAL OFFER - to Personal Shoppers BSR TYPE 131 Professional Series,with C/bsianced
aIm and Iemovable head sholl/ceramic catridge auto nasual deck complete with plinth and covet
ready wried.
ready wised.
Our prite $£ 18{ }^{95}$

ADD-ON STEREO CASSETTE TAPE DECK KIT :name

 Designed for the experienced D.I.Y, man. This Then kit compises of a tape transport mechanism. ready built and tested record/replay electronics with twin V.U. meters and level control for mating with mechanis Spacifications: Sensitivity - Mic. 0.85 mV 'a 20 K OHMS; Din. 40 mV a 400 K OHMS : Output - 300 mV RMS per channel'z 1 KHz from 2K OHMS source: Cross Talk --30db - Tape Counter 3 Digit- Resettable : Frequency Response - $40 \mathrm{~Hz}-8 \mathrm{KHz}_{\mathrm{z}} \pm 6 \mathrm{db}$ Deck Motor - 9 Volt DC with electronic speed regulations: Key Functions - Record. Rewind; Mains Transformer $£ 19^{95}$ Fast Forward. Play. Stop \& Eject $£ 2.50+f 1 \mathrm{p} \& \mathrm{P} . \mathrm{p} \& \mathrm{D} \mathbf{f 2 . 5}$ ODt, extras: Mains Transformer to suite $£ 2.50+£ 1 \quad \& \quad \$ 0$.
$\square \rightarrow \mathrm{B}$

323 EDGWARE ROAD. LONDUN W2 21c HIGH STREET, ACTON W3 GNG all PRICES INCLIJE VAT AT $12 \frac{1}{\frac{1}{2}}$
Al ingms subject to availability. Price correct Ail entuiries send stamped addresseo
anvelope. 1.1 .78 and subject to change wilhaut notice

Telephone: 01 440/ers4

MAIL ORDER ONLY ALL NEW \& BOXED "QUALITY" BRANDED VALVES GUARANTEED 3 MONTHS
BVA ETC. (TUNGSRAM ETC.). 6% ALLOWED IN DEDUCTED FROM OUR PRICES PLEASE VERIFY CURRENT PRICES. MIN. BOp!
Some leading makes avallable. VAT invoices issued on request.

 One valve post 13p, each extra valve 6p. MAX 75p. LISTS \& ENQUIRIES, SAE PLEASEI Large valves 14p each. ALL PRICES INCLUDE VAT © 1212\%
We offer return of post service. CWO ONLY, No C.O.D. Post free over £20. $£ 5$ to $£ 20$ without matice. ENQUIRIES WEL CO of going to press but subject to market fluctuations

PRACTICAL WIRELESS T.V. SOUND TUNER

(Nov. 75 article by A. C. Alnslie) Copy of original article supplfed on request
IF Sub-Assembly (G8) $\mathbf{\text { f6.80. } P \& P 7 5 p .}$ Mullard ELC1043 V'cap UHF Tuner£4.50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25 p. 6 -way Station Control Unit (Special Offer) $£ 1.00$. Power Supply Prtd Circuit Board £1.00. P \& P 30p.
Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$.
Mains Transformer for above £2-50. P \& P 30p.
Add $12 \frac{1}{2} \% V A T$ to price of goods. $\mathbf{P} \& \mathrm{P}$ all items 85 p .
Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

$13 \frac{3^{\prime \prime}}{4} \times 5 \frac{1}{4}{ }^{\prime \prime} \times 6 \frac{3_{2}^{\prime \prime}}{2}$
45 watts ims, 90 watts peak output. Big leatures
45. watts rms, 90 watts peak output. Big Ceatures
include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.
$70 \& 100$ WATT MONO DISCO AMP Size applox.
$14^{\prime \prime} \times 4^{\prime \prime} \times 10$
Brushed aluminium fascia and rotary controls. Five verticalslide controls-master volume. tape level, mic level. deck level. PLUS INTER-OECK FADER for perfect graduated change from recard deck No. 1 to No. 2. or vice versa. Pre-fade level contral. 70 watt $£ 57$ (PFL) lets YOU hear next disc before fading 140 watt peak Output 100 watts RMS 200 watts peak. 100 watt $\mathbf{E} \mathbf{6 5}$
$\begin{array}{ll}\text { CHASSIS RECORD } & \text { BSR BDS } 95 \text { TYPE IItLS. } \mathrm{f} \mathbf{2 4 9 5} \\ \text { PLAVER DECKS } & \text { Belt dive turntable unit }\end{array}$ PLAVER DEEKS
 Belt dive turntable unit, 2 speed, semi automatic p\&pf2.55
BSR MPGO TYPE Single BSR MPGO TYPE Single play record deck
115^{95} less cartridge. $\quad p \& p \neq 2.55$ Cartridges to suit above Acos. magnetic stereo $£ 4.95$ Type ILST Ceramicstereo Ei.95 cueing device and stereo ceramic head. p \& $\mathrm{p} \mathbf{\mathrm { E } 2 . 5 5 \mathrm { f } 9 5 5}$ BSR MP 60 type. complete with magnetic cartridge, $£ 29$ diamond stylus, and ois luxe plinth and cover. p\& β £ 4.50 Home 8 Track cartridge player This unit will match with the viscount IV $9^{\prime \prime} \times 9^{\prime \prime} \times \frac{3 \frac{1}{2}^{\prime \prime} . p \& p[2.50}{\mathbf{p}} \mathbf{f 1 6 5 0}$ EASY TO BUILD RECORD PLAYER KIT for the D-t-Y man who requires a stereo unit at a budget price, comprising ready assembled stereo amp. module, Garrard auto / manual deck with cueing device. Pre-cut and finished cabinet work Output 4 watts per channel, phones socket
and record/replay socket. $\mathbf{f 1 7 9 5}$ and record/replay socket.

K

\cdots

- The finest components catalogue yet published.
- Over 200 A-4-size pages.
- About 5,000 items cleariy listed and indexed.
- Nearly 2,000 illustrations.
- Bargain List sent free.
- At $£ 1.40$, incl. p. \& p., the catalogue is a bargain.
Send the coupon below now. HOME RADIO (Components) LTD.
DEPT. PW.,
234-240 London Road. Dept. PW. 234-240 London Road,
Mitcham, surrey
CR $\$ 3 \mathrm{HDD}$

POST THIS COUPON with cheque or P0. for f 1. 40 Please write your Name and Address in biock capila/s邧 adoness

BRIAN DANCE

Although modern electronic circuits have an extremely impressive performance, many of them are so complex that it is not easy to understand how they operate. The home constructor often finds it especially satisfying when he meets a new type of circuit which appeals to him, not only because of its performance, but also because of its simplicity.

Lambda Circuit

One such circuit is the so-called lambda circuit in Fig. 1. This requires a pair of complementary junction field effect transistors; in other words, one of the two transistors must be an n-channel and the other a pchannel type. The writer has found that almost any pair of complementary f.e.t.s will give satisfactory results but, for economy, readers may decide to use a pair of plastic-encapsulated devices, such as the readily-available 2 N 3819 n -channel type and the equivalent 2 N 3820 p-channel type.

Both the n-channel and p-channel types have gate, source and drain electrodes, but the arrow of the circuit symbol of the n-channel type points into the gate electrode, as shown in Fig. 1, whereas the arrow of the p-channel type points away from it.

In order to make a lambda circuit, it is only necessary to connect the two source electrodes together and the gate of each device to the drain electrode of the other, as shown in Fig. 1. It is essential that the applied voltage should have the polarity shown or the circuit will not operate in the lambda mode.

Operation is dependent on the shape of the characteristic curve, illustrated in Fig. 2. This shows how the current passing through the circuit varies with applied voltage. It can be seen from Fig. 2 that as the voltage applied across the circuit in Fig. 1 starts to increase from zero, the current passing through it increases. This passes from the positive line, through the channel of the n-type device and then to the source of the p-type device, progressing through its channel to the negative line.

When the applied voltage exceeds a certain value, the current passing through the circuit actually decreases with increasing voltage. This region of the
curve, shown in Fig. 1, is known as the negative resistance region, since the circuit behaves as if it had a negative resistance to small changes in applied voltage. It is only the a.c. or incremental resistance which is negative; indeed, it is not possible for the d.c. resistance to be negative or the circuit would produce more power than it consumes!

A further increase in applied voltage above the negative resistance region brings the circuit into the

Fig. 1 : The basic lambda circuit configuration.

Fig. 2 : Characteristic curve of the lambda circuit.
valley region, where the current passing is very low indeed-typically in the order of 1 nanoamp (1 nano$a m p=1$ millimicroamp). The valley region extends over a relatively wide voltage range, but as the applied voltage is increased, the circuit will eventually break down as the gate to the channel junction of one of the f.e.t. devices reaches its critical point: the current then rises very rapidly indeed with any further increase of applied voltage.

The type of characteristic shown in Fig. 2 resembles the Greek capital letter "lambda" (λ) and hence this type of circuit is usually known as a "lambda circuit". The Matsushita Electric Company of Japan have manufactured miniature two-terminal devices which have the internal circuit shown in Fig. 1 under the name "lambda diodes", but as far as is known these are not generally available in Europe. However, readers can easily make the circuit shown with almost any pair of complementary f.e.t.s.

The peak voltage is typically just under 2 V and the peak current in the order of 1 mA ; the peak occurring when the applied voltage becomes equal to the lesser of the pinch-off voltages of the f.e.t.s: that required to bring the circuit into the valley region is usually in the order of 7 V . Although the characteristic curve bears some resemblance to that of a tunnel diode, the lambda circuit has the advantage that its valley current is far smaller. However, the tunnel diode can oscillate at extremely high frequencies, whereas the gate-to-channel capacitances of the Fig. 1 circuit limit its maximum frequency of operation to some tens of MHz .

Applications

The negative resistance part of the lambda characteristic enables this circuit to be used in fast switching modes, as a simple oscillator, etc. The range of application is limited only by the ingenuity of the circuit designer, but we shall be able to consider only a few possibilities here.

Protection Circuit

The circuit of Fig. 3 can act like an "electronic fuse"; when the current in the load exceeds a certain value, preset by VR1, it is suddenly reduced to a very low level. The switching action is rapid and takes place within about a microsecond, this being swift enough to prevent damage in most cases.

When the voltage across VR1 is relatively small, that across the lambda circuit will also be small. The lambda circuit will therefore be fully conducting and a bias current will pass through it to the base of Trl. This transistor is connected in the Darlington configuration with Tr 2 , so as to provide high gain. The current from the emitter of Trl is fed to the base of $\operatorname{Tr} 2$; the latter therefore conducts and passes current to the load.

If the load current rises, the voltage across VR1 rises and eventually the lambda circuit will be biased into the valley region. The current passing to the base of Trl is now of the order of $\ln A$ and this is too small (even after amplification by the Darlington pair) to allow much to pass to the load.

Tr1 may be a $\mathrm{BC108}$, whilst $\operatorname{Tr} 2$ must be selected so that it can handle the load current. If Trl is omitted and the output from the lambda circuit is connected directly to the base of $\operatorname{Tr} 2$, the current at which the load normally operates can be reduced.

Fig. 3: A protection circuit using a lambda circuit as its over-current sensor.

Fig. 4 : A sinusoidal oscillator based on the lambda circuit.

Signal Generators

The circuit of Fig. 4 shows the use of the lambda circuit in a very simple sinusoidal oscillator. The frequency is equal to $1 /(2 \pi \sqrt{\mathrm{LC}})$, that is, the resonant frequency of the parallel-connected tuned circuit. If L is a radio frequency coil and C is a suitable capacitor, the output will be an unmodulated radiofrequency signal. Similarly, L may be an iron cored choke of, perhaps 0.5 H and C a capacitor of about 50 nF if one requires an output at an audio frequency. Thus one can choose any desired operating parameter from the lowest possible frequency (limited only by the size of the inductance and capacitance values which it is convenient to employ) up to a maximum of some tens of MHz .

This type of circuit can therefore be used either as a simple radio frequency signal generator or as an audio generator. For aligning radio receivers one often requires modulated radio frequency waves. The circuit of Fig. 5 shows how a lambda circuit can be used to provide an audio frequency output or an unmodulated radio frequency output or a radio frequency output modulated by the audio frequency.

When S3 is closed, the radio frequency circuits are shorted out and the output is provided by the audio frequency determined by Cl and Ll , provided that Sl is open. If Sl is closed and S3 is opened, the audio frequency circuits will be shorted out, whilst the radio frequency circuits will be brought into operation. The frequency range switch $S 2$ is used to select one of the coils L2, L3 and L4 which resonate with C2.

Although three radio frequency coils are shown in Fig. 5, the constructor may use any reasonable number to obtain the ranges required. Any standard type of radio coils are suitable or they can be selfwound.

When both S1 and S3 are open, the audio and the radio frequency circuits are brought into operation and the output consists of a modulated radio frequency wave. Thus the circuit of Fig. 5 forms a very basic signal generator ideally suited for the: alignment of simple receivers.

Fig. 5: An r.f.la.f. signal generator using the lambda circuit.

In the diagrams of Figs. 4 and 5, the signal voltage across the tuned circuit off load is equal to twice the steady power supply voltage applied. Thus such a circuit can be very useful when an output whose amplitude is accurately related to the power supply voltage is required. The circuit shown in Fig. 4 has occasionally been used for radio control.

Conclusion

We have seen that lambda circuits can be used as simple oscillators and we have examined one type of switching circuit. Many varieties are possible, for example the Matsushita Company have published a circuit which uses one of their lambda diodes in a battery voltage indicator. When the battery voltage is satisfactory, a green light-emitting diode is illuminated, but when the battery voltage falls the lambda diode switches so that a red light-emitting diode is illuminated and the green one is extinguished. If the battery voltage is very low indeed, neither device is lit. Another example would be circuits which are controlled by a phototransistor and cause rapid switching as the intensity of illumination passes through predetermined levels.

Lambda diodes can be integrated onto the same monolithic chip as other components and it has been forecast that lambda circuits may be attractive in certain memory applications.
who published his picture of the fluorescent glow as the Apollo-8 spacecraft jettisoned its surplus fuel when it parted company with the launch vehicle some 25,000 miles above.
Readers of my v.h.f. column will know about Henry's spectrohelioscope, a complex instrument for observing the sun, which he built, and subsequently modified. As one of the General Secretaries of the British Astronomical Association he is often called upon to give lectures to both astronomical and radio societies and, when talking about his solar equipment he refers to his working frequency at 457 million megahertz. In fact, the tuning range of his spectrohelioscope is measured in angströms and it can tune across the spectrum of sunlight. Apart from overcast skies, a busy man like Henry cannot observe all day, and knowing that solar events emit radio waves he added a simple radio-telescope to his observatory which rings a bell when the sur becomes "active", calling him to the optical equipment.
Throughout the day, two electrically driven wave collectors, one a mirror and the other a 5 -element Yagi, follow the path of the sun; the light waves pass through a series of mirrors and lenses to the solar observatory in a garden room below his house, and the radio waves are fed to a Microwave Modules 136 MHz converter followed by an AR88 communications receiver situated near the spectrohelioscope. The detector voltage of the AR88 feeds a d.c. amplifier which, in turn, drives the alarm bell relay and a pen recorder. This is possibly the first amateur observatory in the world that can receive radio noise from the sun and then photograph the event which caused it.

In recent years Henry's observatory has been the subject of a BBC Sky at Night programme and an extensive write up in the Amateur Photographer magazine.

HIIDLU IDITE:

Jubilee Organ, Part 2, October 1977 PW Please ignore the amendment published on page 837 of our March 1978 issue. The connections to ICs 3, 4, 5 and 6 are correct as originally shown.

"Mystery Train Tour" March 1978 PW

A wire link connecting the top end of R10 to ICl pin 10 was omitted from the Veroboard layout (Fig. 4) on page 824. Readers should also note that the track to which R10 is connected is broken beneath R14.

PLEASE MENTION

PRACTICAL WIRELESS
WHEN REPLYING TO
ADVERTISEMENTS

TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8\%

Electrosil \& semiconductor stockists. Panel, Multi Meters, Audio accessorles, send 15p stamps for lists.

SWL'S-YOU OWE YOUR RX A GOOD ANTENNA!

The World-famous JOYSTICK VFA (Variable Frequency Antenna) SYSTEMS continue to prove their worth in many amateur stations world-wide and in Government communication. Tunes continuously $0.5 / 30.00 \mathrm{MHz}$. and can be installed in any location. Comes in easily assembled form, carriage paid, $12 \frac{1}{2} \%$ VAT included. Glowing testimonials from many users on our files.
SYSTEM 'A'
SYSTEM 'J' (improved ' \mathbf{Q} ')
£ 36.00

PARTRIDGE SUPER PACKAGES

Complete Radio Stations for any Location
All Packages feature the World Record Joystick Aerial (System ' A ') with 8 ' feeder, all necessary cables, matching communication headphones. Delivered Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS!
PACKAGE No. I As above with R.300RX $\begin{gathered}\text { SAVE } 17.28!\end{gathered} \quad £ 210.55$ PACKAGE No. $2 \begin{aligned} & \text { is offered with the FRG7RX } \\ & \text { SAVE } £ 12 \cdot 21!\end{aligned}$ ¢195.00
PACKAGE No. 3 Here is a lower-price high-quality package,

RECEIVERS ONLY, inclusive delivery, etc.

R. 300 £ $184.50 \quad$ FRG7 $£ 162.00 \quad$ SRX $30 £ 146.25$

For further details, send 9 p stamp. You can phone your Access or Barclaycard number, ring 084362535 (or 62839 after office hours).

Box 5, Partridge Electronics Ltd.
Partridge House, Prospect Road, Broadstairs CTIO ILD G3CED
(Callers by appointment)
G3VFA

the quickest fitting
CLIP ON
capacitive discharg
electronic ignition
in KIT FORM
Introductory SPECLIAL OFFER £2 OFF Kit

Smoother running
 Instant all-weather starting
 Continual peak performance
 Longer coil/battery/plug life
 Improved acceleration/top speeds Optimum fuel consumption

Sparkrite $X 4$ is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It w perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated.output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 yeir guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.

NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price £3.35 inc. VAT. post $\&$ packing.

Electronics Design Associates, Dept. PW 4
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

Name

Address

Phone your order with Access or Barclaycard
Inc. V.A.T, and P.P.
I enclose chequelpO's for
E
Cheque No
Send SAE if brachere anly required.

GPW ELEGTRONIGS

SEMI CONDUCTORS

IN4004

IN4001
2SD234 (TIP 31A)
TRIACS 8amp 400V 2N38 19
RELAYS:
Reed coils +65 watt SPST switch
50.08 ea
$\mathbf{8 0 . 0 7}$ ea
co. 25 ea E0. 50 ea col15 ea

10 for $£ 0.75$ 10 for $£ 0 \cdot 65$ 5 for $£ 1 \cdot 00$ 5 for $£ 2 \cdot 25$ 10 for $£ 1 \cdot 25$
£0. 65
12 V SPDT 5amp PCB mounted
240V DPDT Octal base
EDGE CONNECTORS
Twin 85 way 0.1 pltch $\quad \mathbf{£ 2 . 5 0}$
Single 85 way 0.1 pitch $£ 2 \cdot 25$
TRANSFORMERS:
Ex New Equipment (Tested)
Type 1 Multi Ratio Isolating 500 watts
Twin 40 way 0.1 pitch $\quad \mathbf{£ 1 . 0 0}$ Single 40 way 0.1 pitch $\mathbf{5 0 . 8 5}$
e5.00 (£1-50)
Type 2 RS Type Universal LT 0-40V 1V Steps
£6.50 (£1-50)

CAPACITORS:

0.0150 V Disc Ceramics
£0. 05 ea
10 for $50 \cdot 40$ $0 \cdot 0047$ 160V Poly
£0.07 ea 10 for $\mathbf{£ 0} \mathbf{6 5}$

INTEGRATED CIRCUITS:
B1702 EPROM $\mathbf{£ 9 \cdot 0 0}$
P2111A RAM $£ 2 \cdot 30$
MCA230 OPTP/ISO £0.95

MISCELLANEOUS:

Prom Simulator PS60 10
A must for micro processor programme development.
1 K words of CMOS Store 8 bits wide will simulate 1702,2708 , etc. £175-00 each. Send SAE for details.
Price in brackets is for carriage.
All prices include VAT and carriage if not otherwise shown. Terms: Cash with order.

GPW ELECTRONICS LTD.

146A LONDON ROAD, NORTH END, PORTSMOUTH, HANTS. PO2 9DS

Tel: (0705) 69334

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000's of capacitors reslstors, transistors. Ex equipment panels etc. covered in valuable com$58 \mathrm{lbs}-£ 20 \cdot 00 ; 142 \mathrm{lbs}-630 \cdot 00$

Handy Packs

4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ idea fersignal injectors, etc. $£ 1 \cdot 00$.
Miniafure Edgewise Panel Meters $200 \mu \mathrm{AFSD}$.
100 miniature $E 1 \cdot 20$ burglar alarms reed switches ideal for 15×2-pole reed relays on board operate at 12 volts $£ 2.45$.
6×6 pole 12 volt reed relays on board新. 45 .
High quality computer panels smothered in to grade components 5 its smothered in
s8-95
Rotar
Miniature Vernitron FM4 10.7 MHz Ceramic Filters 50p each 3 for 51 . New U.H.F. tran

Aluminium TV coax plugs 10 for $\mathbf{£ 1} \cdot 60$ Miniature 5K log pots with s/p ewitch 4 for Et.
Hardware Packs each containing 100's of items including BA nuts and bolts, Nylon clamps, Fuse holders.' Spire nuts etc. £1 per pound. 100 assorted " ${ }^{1}$ ' clips $£ 1$
CIRCUIT ETCHING KITS DE LUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KITS Includes 150 sq , ins. copper clad f/g board, 1 lb ferric chlorlde, 1 Dalo etch resist pen abrasive cleaner, 2 mlnl drill bits, etch tray and instructions/only $\mathbb{E 5 \cdot 3 0 .}$
$150 \mathrm{sq} . \mathrm{In}$. fibre glass board $\quad \mathbf{E 2} \cdot \mathbf{0 0}$ 1 Ib ferric chioride to mll spec . £1-25 MInlature mains transformers, fully shrouded. 240 V . in $6-0-6 \mathrm{~V}$ at 100 ma out lead and plug on Input and short leads on output. £1-20.
Ultrasonictranscelver units. Each contains transmit and recelve transducers (${ }^{\prime \prime}$ " dlam. Transistor circult board, range control Mounted In smart aluminium cases with grille. Brand new and boxed. E5. 25.
Semiconductor B arozalns
100 new $\&$ marked sllicon and germanium transistors includIng BC148, BF194, BC183, etc. $£ 3 \cdot 95$
200 new a marked transistors Including BFY50, BD131, etc $£ 6.95$ 100 mlxed diodes IN4148, etc, $51 \cdot 50$. and bridge types $£ 3 \cdot 30$
Bridge rectifler 100 v 2.5 amp 4 for
Brand new ITT 25 kv triplers for Dece Bradford chassis Ez .50 . 5 for Ef0. sets, etc. E4.

Ibs ferric chlorlde to mil spec
instruction sheet
200 unmarked mixed tranisistors, lots of interesting types Including power. Senc New Minlature FM Frontends $88-108 \mathrm{NHz}^{2}$ 10.7 MHz , I.F. or with Integral Tuning-gang E2. 50.
BR 101 full spec. 5 for $£ 1 \cdot \boldsymbol{*}$
TBA 120A 50p each
20 mm anti-3urge fuses your selection
800 MA to $3 \cdot 15 \mathrm{~A}$, 12 for $\mathrm{f1} \cdot \mathrm{et}$

Component Bargain

300 mixed resistors t a ; watt $£ 1$ - 5
300 modern mixed caps most types $\mathbf{E 3} \cdot \mathbf{3 0}$ 125 mixed reslstors mostiy i \& 2 watt, E. 4. 100 mixed polyester caps $\mathbf{2 2} \cdot 2 \mathbf{2}$. 100 mixed modern minlature ceranic plafe caps $£ 1$ - 80.
100 mixed electrolytics $£ \mathbf{2} \cdot \mathbf{2 4}$.
100 mixed wlrewounds $£ 2 \cdot 24$. 300 printed circult resistors $£ 1$ - 4 . 25 mixed pots \& presets $£ 1$ - $\boldsymbol{\omega}$

40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PW 149A BROOKMILL ROAD, DEPTFORD, SE8
CALLERS BY APPOINTMENT ONLY

©
 1 n
 ELECTRONICS

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS: Output terminal for digital frequency meter; Antenna impedance-75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity- 0.9 u V 26 dB signal to nolse ratio $\pm 75 \mathrm{kHz}$ deviation; Intermodulation 80 dB Image rejection-60dB; Tuning voltage -1 V to 11 V ; Total gain- 33 dB ; intermediate frequency- $10 \cdot 7 \mathrm{MHz}$; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors; Silvered coils.

FI 2846
IF AMP AND DECODER

TECHNICAL CHARACTERISTICS:
Intermediate frequency - $10 \cdot 7 \mathrm{MHz}$; IF Bandwidth- 280 kHz ; Signal to noise ratio -70dB with 1 mV input; Distortion-mono 0.1%, stereo 0.3%; Sensitivity - 30 u V up to the 3dB limit; Channel separation - 40 dB at 1kHz; Pass band-20 to $15,000 \mathrm{~Hz}$; Rejection at 38 kHz greater than 55 dB ; Am re-jection-45dB; De-emphasis- 50 to $75 \mu \mathrm{~s}$. Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than 0.3 dB ; Output impedance - 100 Ohms; Output voltage 500 mV : Phase locked loop stereo decoder; Output for LED VU-meter; Null indicator Outputs for AGC, AFC and inter-station muting; Consumption-55mA LEDs extinguished. 100 mA LEDs illuminated; Power supply-15V; Dimensions $195 \times 76 \mathrm{~mm}$.
CIRCUIT TECHNOLOGY:
Epoxy printed circuit board. Monolithic integrated circuits, ceramic filter.

ALS 1500
STABILISED POWER SUPPLY

£2.53
Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS: Output voltage-15V; Max. output current -500 mA ; Thermal coefficient less than $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions- $65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

LED VU-METER
Station strength indicator

Inc. VAT, P\&P
ILLUMINATED POINTER
Station finder

FREQUENCY METER
Digital display of received station frequency

NUMERICAL DISPLAY
Pre-selected channel number
 DISCOUNT SPEAKERS
Imp 8 or 15Ω as app.
Guarantees: FANE 2 years OTHERS I year ALL PRICES
INC. VAT
Prices correct at 8.1.78

HI-FI TYPES

5" FANE 501 Mid or Full range ${ }^{\circ}$. ${ }^{\circ}$. GN A.F. Model 83 Dual Cone PANE 805
FANE 801 Dual Cone
FANE 8" $808 \mathrm{~T}^{\prime}$ Dual Cone WH'FEDALE L'ON $3 \times \mathrm{K}$ kit Pr
WH ${ }^{6 \prime \prime}$ DENTON $2 \times P$ KIT Pai FANE MODE ONE KIT Sp. 10" ELAC Model IORM
$12^{\prime \prime}$ FANE I21/15LR 20w

GROUP/DISCO TYPE $2^{\prime \prime}$ TITAN TI2/45 45 w 2", TITAN TI 2160 A 60w $12^{\prime \prime}$ CELESTION GI2M $12^{\prime \prime}$ CELESTION GI 2 H 30w
$12^{\prime \prime}$ CELESTION G12/50.50w $12^{\prime \prime}$ GOODMANS 12 PD $12^{\prime \prime}$ GOODMANS 12 PG
$2^{\prime \prime}$ FANE 'SPECIALIST'P.A. 80 [2" ${ }^{\prime \prime}$ ", \quad DISCO 80 DISCO 100 GUITAR 80L
GUITAR $80 B$ 12" FAN'NE CR'ESCENDO $12 A 8 \Omega$ $12^{\prime \prime}$ FANE
$12^{\prime \prime}$ FANE 2" FANE
1" FANE
1" FANE

$$
\begin{array}{r}
12 L 8 \Omega \\
15 \Omega \\
12 \text { BASS } 8 \Omega \\
15 \Omega
\end{array}
$$ $5^{\prime \prime}$ TITAN TI5 560 60w 5" TITAN T 57070 w 5" FANE 'SPECIALIST'BASS 85 5" GOODMANS $15 P$ 5" FANE CRESCENDO 115

5" FANE CRESCENDO List/Value Sp. Price
Sp. Price Sp. Price
Sp. Price
Sp. Price Sp. Price Sp. Price
Sp. Price
Sp. Price $660.70 \quad 64.75$
64.95

 | Price Pair $659.95 *$ |
| :--- | :--- | Sp. Frice

S.
S. Price
fig Sonic
Price
$£ 4.95$
63.35
45.95
66.95
65.95
64.95
67.95
63.95
64.75
44.95^{*}
627.95
659.95
49.99
53.85

47.95 \begin{tabular}{c}
Sp

S_{p}

S_{p}

\hline

 $80 \quad 110.95$

0.95

2.95

2.95

\hline
\end{tabular}

 - Price 417

$£ 28.95$
$£ 17.95$
$£ 30.95$
18.95

$£ 28.95$ $£ 27.95$
$£ 19.95$
$£ 57.35$
$£ 18.95$ $\begin{array}{ll}£ 57.35 & 635 \cdot 95 \\ £ 59.95 & 441.95 \\ £ 59.95 & 439.95 \\ \epsilon 55.70 & \end{array}$ 85 $£ 28.00$
$£ 41.00$
$£ 39.95$ 5" FANE CRESCENDO BASS Sp. Price
± 36.00
$£ 72.95$ $5^{\prime \prime} \quad "$ CRESCENDO BASS
$5^{\prime \prime}$

$$
\begin{aligned}
& 15 / 100 \mathrm{LT} \\
& 15 / 160 / 60 \mathrm{w}
\end{aligned}
$$

$$
\begin{aligned}
& 15 / 160160 w \\
& \because \text { coLOSSUS } 200 \mathrm{w}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 18" GOODMANS I8P } \\
& 8^{\prime \prime} \text { CESESTION GI8C }
\end{aligned}
$$

$$
\begin{aligned}
& 18^{\prime \prime} \text { FANE CRESCENDO IBA } \\
& 18^{\prime \prime} \text { FANE CRESCENDO BASS }
\end{aligned}
$$ $18^{\prime \prime}$ FANE CRESCENDO BASS

HORN UNITS

 FANE 910 MK II 50w 25 w920100 w
14430.50 w
17350 w
$10450 \cdot 70 \mathrm{w}$

NO
BATTERIES
NO WIRES
only
22000
PER PAIR

The modern way ul histant :-way connumications. Supplied with 9 -core wire. Juat plug into power socket. Ready for Res. Crystal clear communications from room to room. Range $\frac{1}{2} \cdot$ mile on the same mains phase. On/off switch.

819.95

Solve your communica-4-station Transistor Intercom system (1 master and 3 Subs), in robust plastic cabinets for desk or wall mounting. Call suitablen from Master to Subs and Subs to Master. Ideally Operates in Business, Surgery, Schools, Hospitals and Office. Complete with 3 connecting wires each b6ft. A Battery 4 TELEPHONE AMPLIIIER

814.95
+VAT 昍•20
Latest trausistorised Telephone Amplifier with detached plug in speaker. Placing the receiver on to the cradie without holding the handset. Many people can listen at a time. Increase efficiency in office, shop, Workshop. Perfect foy "conterence' calls: leaves the user's hands free to make notes, consult files. No long waiting, saves time with longdistance calls. On/off switch, volume control, conversation
recording model at $417.95+$ VAT \&1.44. P. \& P. 89 p .

10 -day price refund guarantee on all tems.
WEST 169 KENSINGTON HIGH STREET, LONDON, W8 01-987 5548

VALVE BARGAINS

Any 5-64p, 10-£1-20, 50-E5-00. Your choice from the list below.
ECC82, EF80, EF183, EF184, EH90, PCF80, PCF802, PCL82, PCL84, PCL85, PCL86, PCL8C5, PL504, PY81/800, PY88, 30PLI4, 6F28, PFL200.

Colour Valves-PL508, PL509, PL519, PY500/A. All tested. 35p each.

Aerial Splitters-2 way, 75 OHMS, Inside Type, El. 50.

AERIAL BOOSTERS

Aerial boosters can produce remarkable. improvements on the picture and sound, in fringe or difficult areas.
BIl-For TH stereo and standard VHF/FM radio. BI2-For the older VHF television-Please state channel numbers.
B45-For Mono or colour this covers the complete UHF Television band.
All boosters are complete with battery with Co-ax plugs and sockets. Next to the set fitting,

MULLARD CAPACITORS
Type C280/1 Values from .01uF to $1 \cdot 5 \mathrm{uF}$, $250 \mathrm{v} / \mathrm{w}$ \& $400 \mathrm{v} / \mathrm{w}$.
Price per mixed Bargain Pack 100/£1-50, 500/E7.00

All prices include VAT. P\&P 30p per order Exports welcome at cost.

ELECTRONIC MAILORDER LTD.
62 BRIDGE STREET, RAMSBOTTOM, BURY, LANCS.
TEL: RAMS (070 682) 3036

Hi-Fi Stereo at prices

everyone can afford

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superb solid state audio amplifier. Brand new components throughout. 5 silicon transistors plus 2 power output transistors in push-pull. Full wave rectification. Output approx. 13 watts r.m.s. into ohms. Erequency re sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3db. Fully integrated eparate Youme Bass boost and Treble cut controls Suitable for $8-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and tested, with knobs, escutcbeon panel, input and output plugs. Overall size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 71^{\prime \prime}$ deep. AC $200 / 250 \mathrm{~V}$. PRICE $£ 15 \cdot 00$. P. \& P. £1 $\cdot 20$.

HARVERSONIC MODEL P.A.

TWO ZERO

An advanced solid state genera purpose mono amplifier suitable

 for Public Address system, Disco, Guitar, Gram, etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre(suitable for use with mic. or guitar etc.). Indut 3 200 mv into 1 meg . suitable for gram tuner.). Input 3 Full mixing facilities with full range bass $\&$ treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Qutput in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains operation $200 / 240 \mathrm{v}$. Size approx. $124^{\prime \prime} \mathrm{w} . \times 5^{\prime \prime} \mathrm{h} . \times 7 \frac{1}{4}^{\prime \prime} \mathrm{d}$. Special introductory Price $£ 28 \cdot 00+£ 2 \cdot 50$ carr. \& pkg. Mullard LPI 159 RF-IF Module 470 kFz $£ 2 \cdot 25+$P. \&P. 20p. Full spec. and connection details supplied. P.\&P. 20p. Full spec. and connection details supplied. Pye VHF/FM Tuner Head covering $88-108 \mathrm{M} / \mathrm{Hz} .10 \cdot 7$
M / Hz I.F. output. $7 \cdot 8$ Volt + earth. Supplied preMigz I.F. output. $7 \cdot 8$ Volt + earth. Supplied pre-
aligned, with full circuit diagram with precision-geared aligned, with full circuit diagram with precision-geared
FM gang and $323 \mathrm{Pf}+323 \mathrm{Pf}$ A. M. Tuning gang only FM gang and 323Pf
$\mathbf{2 3 \cdot 1 5}+\mathrm{P}, \& \mathrm{P}, 35 \mathrm{p}$.
STEREO DECODER
 for $9-16$ V neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions (inP. \& P. Stereo beacon light if required 40 p extra.

AM/EM STED SOLID STATE
O TUNER 200/240V Mains oper-
ated Solid State FM AM ated Solid State FM AM Stereo Tuner. Covering
M.W. A.M. $540-1605$ $\begin{array}{lrr}\text { M.W. } & \text { A.M. } & 540-1605 \\ \mathrm{KHz} & \text { VHF/FM } & 88-108\end{array}$ MHz.
Built-in Ferrite rod aerial for M.W. Full AFC and Atereo on Beacon and Famp Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak fiaish cabinet. Will match almost any amplifier. Size $84^{\prime \prime} W \times 4^{\prime \prime} h \times$
LTMTTED NUMBER ONLX at $£ 28.00+£ 1.50$ P. \& P. VYNATR \& REXINE SPEAKERS \&
CABINET FABRICS

CABINET FABRICS

 50 p per yd. (min. 1 yd.). S.A.E. for samples.
10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match 3-15 Ω speaker and 2 independent volume controls, and good lift bass and treble controls are provided giving EF86 and E780 . ER8 + and EZ80 rectiner. Simple instruction booklet ONLY £ $13 \cdot 50$ P. \& P. £1.40. Also available ready built and tested $£ 18 \cdot 00 \mathrm{P}$. \& P. $£ 1.40$.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMICSREAKER
Size $11 \frac{1}{4}^{\prime \prime} \times 14 \frac{16^{\prime \prime}}{} \times 17^{\prime \prime}$ deep. Weight 19 oz . Power
handling 20 W r. handling 20 W r.m.s. (40 W peak). Impedance 8 ohm ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E for full details. used with Only $£ 8.40$ each +p . $\& \mathrm{p}$. Cone 90 p , two $£ 1$
Now available in either $8^{\prime \prime}$ p. Cound version or $41^{\prime \prime} \times 81^{\prime \prime}$ rectangular. 10 watts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ} 4 \mathrm{E}^{4} \times 25^{8 \frac{1}{2}}+$ P. \&P. (one 65 p , two 75 p).

SPECIAL OFFER. $6 \frac{1}{2}^{\circ}$ Iong throw, roll surround, ceramic magnet 8 ohm 10 watt speaker chassis. $2^{\prime \prime}$ PLASTIC CONE HF TWEETER 4 ohm, £3•50 per

HARVERSONIC SUPERSOUND

$10+10$ STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including silicon Transistors in the first five stages on each channel resuiting in even lower noise level with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controis. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response: $\pm 3 \mathrm{aB} 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16dB. Negative feedback 18 dB over main amp. Power requirements $35 v$. at 1.0 amp.
Overall Size $12^{\prime \prime} \mathrm{w} . \times 8^{\prime \prime} \mathrm{d} . \times 23^{\prime \prime} \mathrm{h}$.
Fully detailed 7 page construction manual and parts list free with kit or send 25 p plus large S.A.E. and parts AMPLIFIER KIT … … £13.50 P. \& P. 80p (Magnetic input components 33p extra)
 SPECLAL OFFER-only $523 \cdot 75$ if all 3 items ordered at one time plus $£ 1 \cdot 25$ p. \& D.
Also avail. ready built and tested $£ 31 \cdot 25$, P. \& P. $£ 1 \cdot 50$. HARVERSONIC STEREO 44 A solid state stereo amplifier chassis, with an output of latest high technology integrated circuit amplifiers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker sockets \& 5 din din tape rec./play socket are mounted on the printed circuit panel, size approx. $9 \frac{1}{3} \times 24 \times 1$ max. depth. Supplied brand new \& tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow the amp. 00 plus 50 p P \mathbb{P}. Mains transfortically) at only $\mathbf{2 9} \cdot 00$ plus 50 . \& P. Mains iransiormer with an $40 p P \& P$ if required. Full conneotion details supplied. HA34 3 Valve Audio Amp. $4 \frac{1}{2}$ w. output ready built and tested $£ 8 \cdot 50+£ 1 \cdot 40 \mathrm{P} . \& \mathrm{P}$. Also HSL 'FOUR' amp-
lifier kit. $£ \mathbf{8} \cdot \mathbf{0 0}+\mathfrak{\mathrm { E }} \cdot \mathbf{4 0} \mathrm{P}$. \& P.

All prices and specifications correct at time of press and subject to alteration without notice.

HARVERSON SURPLUS CO. LTD.
(Dept. P.W.) 170 HIGH ST., MERTON, LONDON, S.W.19. Tel.: 01-540 3985
Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday. Clozed Wednarday.

PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENQUIRIES.
S.DeCnology T.DeCnology Blob Board
 10 JUMPER LEADS WORTH人 $\equiv^{\prime \prime}$

U-Can Build I.C.Circuits with New U-DeCnology

U-Simply push components into DeC No Soldering U-Simply transfer to Blob Board for permanent circult board U-Build any project using Ics. U-Have no curting or breaking of contact rails. U-get DeC + Blob Boards + Free Jumper leads U-buy at HALF the price
of any competitive board. U-have roller tinned boards for super soldering

U-DeC "B" ${ }^{+} 321 \mathrm{C}$ Blob Boards + FREE 10 Jumper teads Normally $\mathbf{E 9 . 0 0}$ only $\mathbf{E 8 . 0 0}$ +94 p (VAT\& POST)
$\mathrm{U}-\mathrm{DeC}$ "A" ${ }^{2}+321 \mathrm{C}$ Blob Boards + FREE 10 Jumper leads Normally $f 6.00$. only E 5.00 +70 p (VAT\& POST)
T- DeC + 31 LLC Blob Boards + Free 10 Jumper leads - Normally $£ 6.00$. only $\mathrm{f5} .00$ +70 p (VATE POST)
 +52 p (VAT \& POST)
Pack of 321 C Blob Boards The $\mathrm{U}-\mathrm{DeC}$ Blob Board $\mathbf{£ 1 . 0 1}+23 \mathrm{p}$ (VAT \& POST) Pack of 311 C Blob Boards The T-DeC Blob Board $\mathbf{E} .095+21 \mathrm{p}$ (VAT \& POST) Pack of 35D Blob Boards The S-DeC Blob Board $\mathrm{E0} 0.56+15 \mathrm{p}$ (VAT \& POST) ${ }^{\mathrm{PB}} 06116$ Dil Adaptor for T-DeC and U-DeC "a" $\mathbf{5 0 . 9 9 \text { . } + 1 5 \mathrm { p } \text { (VAT \& POST) }}$
 (VATE POST)
PB 07210 TO5 Adaptor with socket for T-DeC and U-DeC "A" $£ 1.92$. $+\mathbf{2 6 p}$
(VAT \& POST)
Available from all good component stockists.
DeC-IT and Blob-IT.
P.B. Electronics (Scotland) Ltd.

9 Radwinter Road, Saffron Walden, Essex CB11 3HU

ELEGTROMITE

COMPONENTS FOR ALL WHO

 MUST HAVE ACCURACY, QUALITY, SERVICE AND KEENEST PRICES* All the many types of components we sell are BRAND NEW, conform completely to manufacturers' specifications. NO SURPLUS OR SECONDS.
* AMONGST THE MANY RANGES WE CARRY WE ARE PLEASED TO RECOMMEND

SIEMENS Capacitors for quality and dependability.
SIEMENS silicon pnp \& npn transistors from 8p.
POTS-wide range always available inc. W and W/O switch; mono \& stereo slide etc. RESISTORS LEDS
CMOs BE types + \& - Regulators 7805 ,
7905 etc.
MAGNETO RESISTORS and H.E. devices. TEMP. CONTROLLED SOLDER IRONS. solder suckers.
\star PRICE LIST-for latest up-to-date and complete price list, please send 9p S.A.E. (large). Good discounts on orders $f 10$ and upwards. Goods over $E 5$ sent post paid in U.K.

* MONTHLY BARGAIN LIST

Thanks to computor controlled stocks, we are able to offer a monthly cergamic \& ist. This month it's germanium \& small power transistors; your copy

ELEOTRONALIE LTD

Dept. P.W.4, 28 St. Judes Rd., Englefield Green, Egham, Surrey TW20 0HB.
Phone Egham 3603 . Telex 264475 . Phone Egham 3603. Telex 264475.
Northern Bronch (Personol shoppers Northern Branch (Personol shoppers only) 680 Burnage Lane, Burnage, Manchester
M19 INA. Phone (061) 4324945 .

\rightarrow 务 Audio

THE firm for speakers!

SEND 10P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

ATC - AUDAX - BAKER - BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES - DALESFORD - DECCA - EMI EAGLE - ELAC - FANE - GAUSS - GOODMANS - HELME • I.M.F. - ISOPHON - JR • JORDAN WATTS - KEF - LEAK - LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD - RAM - RICHARD ALLAN SEAS - TANNOY - VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO
 (Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

SAVBIT
handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 58p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.
PC115 69p
Or size 19A for kit wiring or radlo and TVrepairs.
2.1 metres approx. of 1.22 mm solder.

Size 19A 63p

Handy size Reels \& Dispensers огти womberemercoone sobiefrooo A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily

 oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.| These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ref. | Alloy | Diam. mm | Length metres approx | Use | Price |
| $\underset{3}{\text { Size }}$ | $\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$ | 1.6 | 10.0 | For economical general purpose repairs and | £2. |
| Size_{4} | ALU-SOL | 1.6 | 8.5 | electrical joints.
 For aluminium repairs. Also solders aluminium | £2.46 |
| ${ }_{\text {Size }}$ | 60/40 Tin/Lead | 0.7 | 39.6 | to copper, brass etc. For fine wires, small components and printed | £2.38 |
| ${ }_{\text {Size }}$ | SAVBIT | 1.2 | 13.7 | circuits.
 For radio, TV and similar work. Increases copper-bit life tenfold. | £2.29 |

Pat. No. 1443913

BIB WIRE STRIPPER \& CUTTER

Fitted with unique 8-gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds.

Model 8B 97p

SOLDER-

 WICKAbsorbs solde
instantlyfrom
tags, printed
clrcults etc. Onlyneeds
40-50 Watt soldering iron. Qulck andeasytouse. Non-corrosive.

Size AB10 97p

 Bib Hi-Fi Accessories Limited,

'COMPUTER CHESS CHALLENGER'

-IT'S YOU AGAINST THE COMPUTER (IN YOUR OWN HOME!)

A Mispocomputer -brogrammed to challense you al one o ThRE levete to matoh and lmprove your game, With this uncue game, thafe la no nesd to flid an obponentl You Bnaly
 pleft with Chesement comprehenalve instiputions, end meins adaptory ind fully gutranteed. You cen now play chers when your are ready, dey or night, without berner of a ness partrie
The 'COMPUTER GHESS CHALLENGEE' haz many
 wholher voug or old, ingluthgs casting and en pastant, can even set up chess proibleme on the boardil
Aval able by mail order patitree, Pilce: 6155-00 (SiNCLE

Write of telephone now for full colour Ifterature and data ,
COMPUTER BACRCAMMON GAME NOW AVALL etnolatr Morovilon wo fur dail
 Write or phone for full detalls.
Wo offer sEIKO watehes at discount prises, 18 functions
CO Chro CD Chronographe avallable. SAE for detalla.
We aegept compary purchase orters by telephone. sount prleos.enculatoremall brands=8uppled at disu comm prices-sat:
Official Cornpany ordere aceepted by telephont/telex.
 Hoidere Mill Ropd, London NW4 ind

Callers welcome by appointment only

H.A.C.
 8HORT.WAVE KITS

WORLD.WIDE RECEPTION

Famous for over 35 Veaf for short-Wave Equiment of quality, "H,AC'" were the Original supplierg of Short-Wavo Recelver Kits for the amateur constructor, special offer ARB valveg-70p each.

1978 "DX" RECEIVER MIrk III
 V.A.T.).

Customer who sent us five OSL cards, one from each continent writes: "Other countries of interest which I have heard art Korea, fapan Sri Lanka, Liberia and many others. I wat very surprised at the simpheity of the set, comparea Tolts emiciency.
genume shorty to assemble and contalns a chasits, valve, accestornes and full ing drilled Fuil range of onher 5 , W, kits, includitions. fanous model "K B.W, kits, ineluding the All orders despatched within' 7 days. Send now for free descriptive catalogue of kits and components.

SORFY, NO EATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAYE PRODUCTS
PO. B ox Ne, 16,10 WIndmill Lane Lewes Road, tate Erinstemi, West Sutsex RHI9 3sZ

"AASTLE ELEATRONIGS"

 Tel: (0434) 437875 Signal Swithes 6 Poi C/O 40p, $4 \mathrm{Pel} \mathrm{C/O} \mathrm{3Bp}$. 2 Pol ©/O 30p inci, knob.
sterso silder Controis 10K Log, 250K Lim, 100 K Log, $3{ }^{2}$ " long 40p aeth.
Resettable Hengotler Counters fig. $1 \mathbf{2}^{\prime \prime} 24 \psi_{6}$ 4. 40.

Relay 12v. DC 1 部 OHM 4 Pole C/O 75 p .
Micfo switches 5 Amp 240 V Contates C/O Butcon Opp 10 for \& 1.00 .
Tranimitor $2 \mathrm{~N} 3055^{5} 5 \mathrm{~F}$.
Ilb Bags of New Electronic Components il.95,
Ex WD Voltmeter $2^{\prime \prime}$ O-40v, M/C LI. 95.
Tharmomerery $\mathbf{2}^{2 \prime}$ Dia. $70 \mathrm{f}-160 \mathrm{Ch}$ Come Front Bexal. Now $11 . \% 5$.
Crouzet push button mieroswith c / o contacts. Single 55p, Dual 90p.
Photo Diodes 5 for $\$ 1.00$,
Min High Power Electrlc Moters with Rey Sw 1" Leng $14^{\prime \prime}$ Dia. 6-12 VDC German manum facture $\mathbf{t 1} \cdot 25$.
Nitad $5 \times 1 \cdot 2 \mathrm{v}, 50 \mathrm{M} / \mathrm{AH} \leqslant 1.00$
Vented 2•4v, 20 AH $8^{\prime \prime} \times 3$ 3'D. $47 \cdot 30$.
ALL PAICES INCLUDE VAT, POST AND PACKING.
SAE for detall: of items below. Naw Ex, WD panel moters-all 22.25. Amtron Electronle Kitsmany I prite. Wide range of surplus components. Most items feb./March issues avaliable.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

24HR. CLOCK/APPLANCE TINER KIT

LED's. Mixed bags of 4 different sizes and 4 different colours. 50 at $£ 5 \cdot 25,100$ at $£ 9 \cdot 25$ including VAT and post and packing. CWO. Michael Williams Electronics, 47 Vicarage Avenue, Cheadle Hulme, Cheshire, SK8 7JP.

COMPONENTS FOR P.W. PROJECTS. COMponents lists with prices available for P.W. projects from October 1977 onwards. Send SAE stating project and month of publication (maximum four projects per SAE). Lists sent by return together with ACE order form/catalogue. ACE MAILTRONIX, Tootal Street, Wakefield, W. Yorks WFi 5JR.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $\mathbf{5 6 . 8 0}$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subjeet to the conditions appearing on ous current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravene any Act of Parliament nof is it an infringement of the British Code of Advertisine Practice.
2. The publishers reserve the rlaht to refuse or withdraw any advertisement. 3. Although every care is taken. the Publishers shall not be liabie for cterieal or printers' errors or their consequences.

> VALLVES
> Radio-T.V. - Industrial - Transmitring We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 2700 Typess in stock, 1930 to 1976 . Obsolete types a speciality. List 20 . Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves and Projector Lamps.
> COX RADIO (SUSSEX) LTD.
> Dept. P.W. The Parade, East Wittering, Susex PO20 8BN
> West Wittering 2023 (STD Code 024366)

TIRRO ELECTRONICS the mail order division of Ritro Electronics UK offers a division of Ritro Electronics UK offers a
wide range of components for the wide range of components for the
amateur enthusiast. Large SAE or 20 p amateur enthusiast. $\underset{\text { brings list. Grenfell }}{\text { Large }}$ Place, Maidenhead, Berks. SL6 1HL.

BRAND NEW COMPONENTS BY RETURN.
Electrolytic capacitors $36 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V},-0 \cdot 47,1 \cdot 0,2 \cdot 2$,
 $8 p$) $220-8 p .(50 \mathrm{~V}-10 \mathrm{p}) 470-11 \mathrm{p}$.
$15 \mathrm{p} .1000 / 25 \mathrm{~V}-18 \mathrm{p} .1000 / 50 \mathrm{~V}-22 \mathrm{p}$.
Subminiature bead tantalum electrolytics- $0.1,0.22$, $0.47,1 \cdot 0,2 \cdot 2 @ 35 \mathrm{~V}, 4 \cdot 7 / 25 \mathrm{~V}-11 \mathrm{p} .10 / 25 \mathrm{~V}-13 \mathrm{p} .22 / 16 \mathrm{~V}$, $47 / 6 \mathrm{~V}, \& 100 / 3 \mathrm{~V}-15 \mathrm{p}$.
Mullard miniature ceramic E12 series $2 \% 63 V$. 10pf. to 470f-3p. 56 pt . to 330 pt . -4 p .
Vertical mounting ceramic plate 50 V .
E12 series 22 pt -1000pf. E6 series 1500 pt - 47000 pf .-2p.
Polystyrene E12 series 63 V horizontal mounting. 10pf to $1000 \mathrm{pf}-3 \mathrm{p}$. 1200 pf . to 10000 pt . -4 p .
Mullard polyester 250 V vertical mounting Es series. 0.01 to 0.1 -4p. $0.15 .0 .22-5 \mathrm{p} \cdot 0 \cdot 33,0.47-8 \mathrm{p} .0 .68-11 \mathrm{p}$

Mylar (Polyester) Film 100 V vertical mounting. 0.001 $0.002,0.005-3$ p. $0.01,0.02-4$ p. $0.04,0.05-4$ ip. 2.
Miniature resistors Highstab E12 series 5% Carbon
 o. $125 \mathrm{~W}, 0.25 \mathrm{~W} \& 0.5 \mathrm{~W} 10$
$\mathrm{iW} .27 \Omega$ to 10 Ms . 2 p ea.
 $\mathrm{BC} 107 / 3 / 9$, $\mathrm{BC} 147 / 8 / 9, \mathrm{BC} 157 / 8 / 9$ \& ${ }^{\circ} \mathrm{BF} 194$ \& $197-9 \mathrm{p}$. Fuses 20 mm . glass. ${ }^{12 \prime \prime}$ glass \& $1^{\prime \prime}$ ceramic. 2t. Pos. Por
10p. (Free over $84 \cdot 00$) Prices inclusive of VAT.

THE C. R. SUPPLY CO.

127, Chesterfield Rd., Sheffield 58.

BARGAIN SUPPLIES

Barrel kits for £1.99p. Guaranteed 50% or hi
$\mathbf{1 0 0 \%}$ money back if not absolutely delighted 50 pieces SN7400 series may include gates registers, flip flops, who knows? or
50 pieces linear, op-amps etc. 74i, 709555 you to sort, or 50 plastic transistors BC182/4/212 lots of 2 N no's, or 6 LED readouts, factory returns-we've no time to test. 100% good devices, our ' A ' type barrels all fully tested

35 TO3 power transistors, or
4 240/12-0-12 100 mA transformer plus power supply P.C B brand new, or - This line P\&P 60 p . 200500 mA .400 V . PIV silicon diodes. or 200 capacitors all types all values, or
12 push to make switches red/yellow/green or 1 calculator keyboard 0-9 2 blanks.
Please add 30 p per line postage and packing all prices
include $V A T$ IONES SUPPLIES. 588 , ASHTON RD. include VAT. JONES O6T-652-9879.

GAMMA ENTERPRISES for transistors, resistors, capacitors, ICs, hardware etc. Large SAE for catalogue. 18 Landale Road, Peterhead, Aberdeenshire AB4 6QP.
tRANSISTORS, Resistors, Caps, Pots, plugs 7 sockets, zeners, TTL, cable, boxes, all at very good prices. 65 Railway Road, Leigh, Lancs. Telephone Leigh 679575.

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.

HOW TO START A BUSINESS. By popular demand a fully illustrated manual has now been produced, showing, in easy, step by step, stages, how to rewind ARMATURES \& FIELD COILS as used in Vacuum $\begin{array}{lll}\& & \text { FIELD } \\ \text { Cleaners, } & \text { Drills as as a } \\ \text { Portable Tools. }\end{array}$ Chapters on taking data, materials required, test instruments required, rewind instructions, charts, etc. How to cost instruction manual $£ 4.00$ plus $30 p P \& P$. CWO. COPPER SUPPLIES, 102 Parrswood Road, Withington, Manchester 20. Dept. PWA.

THE DALESFORD SPEAKER BOOK

This book is a must for the keen home constructor Latest technology DIY speaker designs. Contains full plans for infinite baffie and reflex designs for
watts, also unusual centrebass system for those who want H1-ft to be "Heard and not seen", $£ 1.95$ ($£ 2.20$ post pald. $\$ 5$ Overseas).

> VAN KAREN PUBLISHING S SWAN STREET WILNSLOW CHESHIRE
basic electronics Timesaver Program. 30-stage speedilearn, easilearn program. Unique Timesaver breadboards, terminals, plans and circuit know-how. Ideal for beginners, students, schools, colleges. Limited period intro-offer £4.75. Money back if not delighted. TECHNOCENTRE, (PW) PO Box 33, 54 Adcott Road, Middlesbrough.

Electrical

LIST NO. 28 now ready-Styli illustrated equivalents also cartridges, leads, etc., free for long SAE. Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

Radio Receivers

MULTIBAND RADIOS. 12 band . . . Marine, Aircraft, LPSB, HPSB, CHF ` (430/470), SWl/4, MW, LW, FM, RF gain. BFO. £150. GRUNDIG SATERLITT $£ 199$. BFO Units, $£ 16 \cdot 50$. SHARP MW/Aircraft, $£ 13$. Langtons, High Street, Rocester, Staffordshire. SAE lists.

NEW ISSUES of "Practical Wireless" available from April 1974 edition up to date. Price 65p each post free. Bell's Television Services, 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

550 ft of Triple Play tape (ex-recording studio) on 3 in unbreakable reel. Ideal for messages. Bargain at 25p each p\&p 30p. 101_{2} in metal spool (NAB) in sturdy box, gop, p\&p 30p. R. Southern, 551 Chorley Old Road, Bolton, Lancs BLI GAE.

OSCILLOSCOPE TELEQUIPMENT S51B. D.C. 3 MHz . Hardly used. $£ 90$ o.n.o. Tel: 061 6435.532 .

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stockport.

14 VOLS. PRACTICAL WIRELESS, March 1956-April 1970, also other Radio periodicals. £3•00 per vol. Buyer collects. Tel: 067552342 .

HEATHKIT 32ft Aerial Tower Mast YAGI. Buyer dismantles, collects. $£ 70$. Staines 56691.

AUTOMATIC ELECTRONIC Time Delays, 1 kW output kit $£ 6 \cdot 10, \mathrm{PCB} /$ Details $£ 1 \cdot 20$. Information-SAE. L. O. Green, 4 Gurney Road, Costessey, Norwich NR5 OHA.

[^2]
Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS

 manuili by di M. Gourt. SiA.E, for dutalis. MALL ORDER ONLY
G. T. TECHNICAL INFORMATION EERVICE 10 DRYDEN CHAMEERS, 119 OXHORD ET., LONDON WIR IPA

BELL'S TELEVISION SERVICES for Ser. vice Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate, N Yorkshire. Tel: (0423) 55885.

LARGE SUPPLIER OF SERVICE SHEETS

All models at 75 p PO/Cheques plus Ena, Except Colour and Car Radios. Free TV fault finding chart or TV list. Strictly by return.

C. CARANNA

71 Beaufort Park, London NW11 6BX 01-458 4882

SERVICE SHEETS, Radio TV, etc., 10,000 models. Catalogue, 24 p , plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PRI 7HP.

Educational

GO TO SEA as a Radio Officer. Write: Prinn clpal, Nautical College, Broadwater, Fleetwood $\overline{F Y} 78 \mathrm{JZ}$.

TELEVISION TRAINING

12 MONTHE' full-time courme in Radlo \& TV for beginnerg. (CCE-or equivalent-in Mathe, and English),
28 WLEKS' fullotime course in Mono a Colour TV. (sasie electronics knowledge
 In Colour TV. (Mono TV knowladge essent|ai).

These rourses incorporate high percentage of prectical tralining.

NEXT SESSION commences on Apfil 17th.

Proapectus from: London Elec. tronles College, Department 34, 20 Ponywern Road, London sws 08U. Tel, 01 473 8721,

Wanted

WANTED, New Valves, Trensistors, Top prices, poptilar types. Kensington supplies (C), 367 Kensington Street; Bradford 8 ; Yorkshire.
"RADIO AND TELUYIGION SERVICING" books wanted from 1964-65 cdition up to date. \mathbf{x}. 00 plus postage paid per copy by return of post. Bell's Television Gervices, 190 Kings 位, Harrogate, N, Yorks, Tel: 190 Kings Ho
(0423) 65885.

WANTED Creuit of wartime transmitter receiver BC-625AM BC-624A. Hall, 68 Queens Road, Blackhil, Consett, Co. Dur. ham DH8 0BW.

SERVICE sHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50p and SAE. Catalogue $25 p$ and SAE. HAMULTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

Aerials

ANTI-TVI TRAP-DIPOLES

CUT OUT TVI, SWLing and TXX-Ing. MODEES:-SWL,
 teeder, VAT and Carriage. Send $10^{\prime \prime} \times 7^{\prime \prime}$ 124p SAE
\& 3 . 9 p stamps for detaila, aerial artlece, test reports,

LAMBDA, WHITEBALL, WELLINGTON, SOMERSET

Ladders

LaDDERS. Varnished 20ft 9in extd., $£ 29.72$, carr. $£ 2 \cdot 40$. Leaflets. Also alloy ext. up to 62 ft 6in. Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644. Callers welcome.

Miscellaneous

PLODDING ALONG?

 CWHATEDKI Now SANBH tiring whithan and CW Intwforince tre with \& Tunbla Audio Notoh

Ean canyuanambly kifincludes all parts, printed

CAMBRIDGE KITS

4* (Pb) Git Stheal hane; Milean, tembridge.

 for Push button/Manad tunims. Supplied

 surrey.

GUPERE MNGIRUMENR CARER by Hazeili, manufactured from P.V.C, paced wiegl. Hundrecis of people and induetrial hemers are choosing the cases they require from our vast range. Competitive prices start at a low gop, chassis punching qualities at very competitive prices. 400 models to choose from, free líterature (stamp would be spprectated). BAZ却LL, Dept No 25, St. Whfid's, Foundry Lane, Halton, Lancaster LA2 6LT.

 N8 TTP Databh

All Items CWO (Booke-No VAT) sep pap.
Full tange In our wrat e intul o.g. mox 75F

312 DHGZ DVM MODUL. KMM, Attomero, autopolarity only E37.60. SAE cletalls. MLC 116 College Road, Southwater; Horsham, Sussex.

We would like you to know that we makern * 88c cablmats $*$ 8pectal cabinete * Protetype printed elrcuits * instrument panele We aide have a quantity punching service, and undertake artwork. GB3/ATCablnet H. M. ELECTRONICS 275w Fullwaod Ra: Bhetheld sto 3in Telt (674) H0878 Sond 18p (Refundable) for leafieta

100 Watr GtITAZ/PA/MCSIC Amplifor, superb treble bass overdrive slimline solid. state 12 months guarantee, unbeatable offer at 839 . Money returned if not absow lutely dellghted within seven days. Send cheque or P.O. to: WILLIAMSON AMPLI: FICATION, 62 Thorncliffe Avenue, Dukinfleld, Cheshire.

PRINTED CIRCUITS and HARDWARE
Readily avallable supplies of Constructors' Hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send 25p for catalogue from:

RAMAR CONSTRUCTOR SERVICES Masons Road, Stratford-on-Avon, Warwicks

SCOPE CALIBRATOR, portable, battery operated. SAE details. Ramar Constructor Services, Masons Road, Stratford-on-Avon, Warwicks.

GOVERNMENT SURPLUS SUPER PACK 23 PLUS 5 DP Toggle switches. 8 varlous microswitches. 1 bank $5 s P$ switches ON/OFF $5 \frac{1}{2} \times 1 \frac{4}{4} 5 / 16$ flange for fitting. 4 mini electromagnets. $172^{\prime \prime}$ multicore cable. 142 v heavy duty motor with pulley. $2^{\prime \prime} \times 1 \frac{1}{n}$. 2 magnets. $160^{\prime \prime}$ spring coil lead.
PLUS Send $£ 3-50 \div 50$ p PP to B.B. Supplies (Dept PW) 125, High Street, Deal, $1: 0304562573$.
4 T inserts $1 \frac{7}{5} \times 20$ ohm D.C. Ideal for microphone or
speaker use. 50 p each incl P. \& P. Quantity discounts available.

PLACE YOUR ORDER SANDYGATE
BY PHONING
$\left.\begin{array}{c}\text { Sheffield } \\ 665950\end{array}\right)$ SERVICES
PRINTED CIRCUIT BOARD Cut to your $1^{\prime \prime}$ Thk $\times 6^{\prime \prime}-12^{\prime \prime}$ wids-Single/Double side- 80 p ! Sq Ft辛" Thk $\times 5^{\prime \prime}$ Max width-Single/Double Side 55p/Sq Ft要" Thk $\times 5^{\prime \prime}$ Max width-Single/Double Side 55p/Sq
Mixed P.C. Board- $3^{\prime \prime}+4^{\prime \prime}$ wide (Approx 4 Sa Ft)- 1 - 09 Terms-as above $+\mathbf{P} \& P-C . O . D$. Money Back Undertaking

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of

 closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.|
 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|

 | | | | | | | | | |
|

 | | | | | | | | | |
| | | | | | | | | | |
| N | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

WATFORD ELEGTRONIES
 33/35, CARDIFF ROAD, WATFORD HERTS, ENGLAND

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED.
ORDERS DESPATCHED BY RETURN OF POST, TERMS OF BUSINESS: CASH/CHEQUE/P.O.S OR BANKERS DRAFT WITH ORDER. GOVERNM AND ED ANDEXPORT INQUIGY WELCOMES P P ADD 30p* TO AL
TRADE
ORDERS UNDER E10.00. OVERSEAS ORDERS POSTAGE AT COST,
VAT
Export orders no VAT. Applicable to U.K. Customers only. Uniess stated otherwise, all prices are exclusive
to devices marked ${ }^{\text {. To the rest add } 12 \frac{1}{2} \%}$
We stock many more itami. It pzys to visit us. We are situatad behind Wafford Football Ground. Nearest Underground/Br. Rail Station: Watyord Hloh Street.
Open Monday to Saturday 9 a.m. 6 p.m. Ample Free Car Parking apaceavailable. POLYESTER CAPACITORS: Axlal lead type. (Values are In μ f).
$400 \mathrm{Y}: 0.001,0.0015,0.0022,0.00338 \mathrm{Bp} 0.0047,0.0088,0.01,0.015,0.0189 \mathrm{p} ; 0.022$, $0.033,70 \mathrm{p} ; 0.047,0.068,14 \mathrm{p} ; 0.1,-75 \mathrm{p} ; 0.150 .22,22 \mathrm{p} ; \mathbf{0} 0.33,0.47$ 39p; 0.68 45p.

POLYESTER RADIAL LEAD (Values In $\mu f)$. $250 \mathrm{~V}: 1$	FEED THROUGH
$0.01,0.01560: 0.022,0.02770 ; 0.033,0.047,0.068,0.18 p: 0.15$	CAPACITORS

 ELECTROLYTIC CAPACITORS: Axial lead type (Values are in $\mu \mathrm{F}$). $250 \mathrm{v}: 10065 \mathrm{p} ; 63 \mathrm{v}: 0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7.6 \cdot 8,8,10,15,22,9 \mathrm{p} ; 47,32,50,12 \mathrm{p} ;$
$63,100,27 \mathrm{p} ; 50 \mathrm{~V} ; 1 \cdot 0,7 \mathrm{p} ; 50,100,220,25 \mathrm{p} ; 470,50 \mathrm{p} ; 1000,62 \mathrm{p} ; 2000,68 \mathrm{p} ; 40 \mathrm{~V} ; 22,33 \mu \mathrm{~F}$,
 47. $6 \mathrm{p} ; 80,100,160,8 \mathrm{p} ; 220,250,13 \mathrm{p} ; 470,640,25 \mathrm{p} ; 1000,27 \mathrm{p} ; 1500,30 \mathrm{p} ; 2200,41 \mathrm{p} ; 3300$,
$52 \mathrm{p} ; 4700,54 \mathrm{p} ; 48 \mathrm{~V}: 1040,47,68,7 \mathrm{p} ; 100,125,8 \mathrm{p} ; 470,16 \mathrm{p} ; 1000,1500,20 \mathrm{p} ; 2200,34 \mathrm{p} ;$
 TANTALUM BEAD CAPACITORS $35 \mathrm{~V}: 0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1 \cdot 0$,
$2.2 \mu \mathrm{~F}, 3 \cdot 3,4 \cdot 7.6 \cdot 8.25 \mathrm{~V}: 1 \cdot 5,10.20 \mathrm{~V}$,
$1.5 \mu \mathrm{~F}$ $6 \mathrm{~V}: 22 \mu \mathrm{~F}, 47,68,3 \mathrm{~V}: 100 \mu \mathrm{~F} 20 \mathrm{p}$ each
$10 \mathrm{~V}: 100 \mu \mathrm{~F} 35 \mathrm{p}, 16 \mathrm{~V}: 47,100 \mu \mathrm{~F} 45 \mathrm{p}$ MYLAR FILM CAPACITORS
MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001,0.002,0.005,0.01 \mu \mathrm{~F}$
$0.015,0.02,0.03,0.04,0.05,0.056 \mu \mathrm{~F}$
0.0 p $\frac{0.1 \mu \mathrm{~F}, 0.15,0.27 \mathrm{p}_{1}, 50 \mathrm{~V}: 0.47 \mu \mathrm{~F}}{\text { CERAMICCAPACITORS } 50 \mathrm{~V} .}$
CERAMIC CAPACITORS 50V.
Range: 0.5 pF to 10 nF
$15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF}$,- 4 p . 100 nF 6p POLYSTYRENE CAPACITORS:
10pF to $1 \mathrm{nF}, 8 \mathrm{p}$. 1.5 nF to 47 nF , 10p.

JACKSONS VARIABLE CAPS.

Dielectric $\quad 102365 \mathrm{pF}$ with slow \begin{tabular}{ll|ll}
500 pF \& 105p \& motion Drive \& 305 p

\& 125p \& O0 208/17B \& $\mathbf{2 8 5 p}$

6:1 Ball Drive

451/DAF

107p*
\end{tabular}

 $0-1-385 \mathrm{pF}$
 $\begin{cases}\text { CRYSTALS } & \\ 100 \mathrm{KHz} & 365 \mathrm{p} \\ 1 \mathrm{MHz} & 323 \mathrm{p} \\ 1-\mathrm{GMHz} & 395 \mathrm{p} \\ 3-2768 \mathrm{MHz} & 380 \mathrm{p} \\ 4 \cdot 433619 \mathrm{MHz} & \text { 125p }\end{cases}$
 RESISTORS-Erle make 5% carbon
Minlature HIgh Stablity, Low Nolse

3 0 0 0 0

MON

EXAS) 74150
74151
7415

RF
CHOKES
$1 / \mu \mathrm{H}, 4,7$,
$\stackrel{+}{\circ}{ }^{\circ}$
$20,33,47$
100,200,
470,750,
$1 \mathrm{mH}, 2 \cdot 5$, $1 \mathrm{mH}_{1} 2 \cdot 5,5$
1035 panch
$43 \mathrm{mH}_{1} 100$ PANEL
METERS*
FSD
 35 mm
$0-50 \mu \mathrm{~A}$
$0-100 \mu \mathrm{~A}$
$0-500 \mu \mathrm{~A}$ $0-1 \mathrm{~mA}$
$0-5 \mathrm{~mA}$
$0,-10 \mathrm{~mA}$ $0-10 \mathrm{~mA}$
0.50 mA
$0-100 \mathrm{~mA}$ $0-100 \mathrm{~mA}$
0.500 mA
0.1 A
\qquad $0-50 \mathrm{~V}$ AC
$0-50 \mathrm{AC}$
0.300 VAC 410p each

INDEX TO ADVERTISERS

Alben Engineering
Ambit International

Bamber B.
Baron Electronics
Barrie Electronics
B. B. Supplies

Bentley Acoustic Corpn.
Bi-Pak Ltd.
Bib Hi-Fi Accessories
Birkett J.
S. \ddot{R}.

Brewster S. R.
British National Radio \& Ëlectrönics
School
J. Bull (Electrical) L̈td.

Radio Component Specialists ... cover iii Radio Exchange Ltd. 879
Ramar Constructor Services 949
Reed Hampton 883
R.S.C. (Hi-Fi) 875
R.S.G.B. 874
R.S.T. Valve Mail Order Co. 876

Radio \& T.V. Components Ltd.... ... 935

Saga Ltd.
Sandygate Services 949
Seientific Wire Co., The 948
Selray Book 952
Sentinal Supplies 940
Sintel
Sintel \quad -
Sonic (Hi-Fi) ...
Southern Valve Co.
Stirling Sound 883
Swanley Electronics 907

Technomatic Ltd. 949
Tempus 887
T.K. Electronics 946

Van Karen Publishing 946

Watford Electronics 950, 951
West London Direct Supplies 942
Wilmslow Audio
.. 944

Xeroza Radio cover ii

Z \& ! Aero Services 952

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2 5SF Tel: 727 5641/2/3

Please send all correspondence and Mail-Orders to Head Office

		A SEL GU			OM Fil				$\begin{aligned} & \text { FULI } \\ & \text { /ES } \end{aligned}$			PCL805	0.75	AC/DC TAUT SUSPENSION MULTIMETERS
183GT	0.65	6AK6	0.75	6CW4	$3 \cdot 75$	128A6	0.85	ECL80	0.601	EZ80	$0 \cdot 50$	PD510	3.35	TYPE U4315
184	0.50	6AK7	0.85	6 6Y5	1.00	12BE6	0.80	ECL81	0.75	GY501	0.90	PL36	$1 \cdot 10$	
IR5	0.50	6AL5	0.40	6 CY 7	1.00	12 BH 7 A	0.75	ECL82	0.60	GZ30	0.65	PL81	$0 \cdot 80$	
154	0.40	6AM6	0.70	6DQ6B	1.45	12BY7A	0.80	ECL83	1.15	GZ32	0.65	PL82	0. 55	
IS5	0.40	6AM8	$0 \cdot 70$	6DT6	0.80	35 W 4	$0 \cdot 70$	ECL84	$0 \cdot 70$	KT66	4.50	PL83	0.50	
174	0.40	6AN5	2.50	6GH8A	0.80	50C5	1.09	ECL85	0.65	K.788	$5 \cdot 80$	PL84	0.75	
$1 \cup 4$	0.70	6AN6	0.85	6GK5	$0 \cdot 70$	*75Cl	0.80	ECL86	0.85	OA2	0.55	PL95	0.70	
105	0.80	6AQS	0.85	614	$1 \cdot 20$	*85A2	0.85	EF80	0.40	OA3	0.75	PL504	1.05	
${ }_{1} \times 28$	1. 20	6AR5	0.70	6/5GT	0.80	*90CI	1.20	EF85	0.48	O82	0.60	PL508	1.30	
2CW4	$4 \cdot 50$	6AS6	1.00	616	0.55	*807	1.00	EF86	0.60	O83	0.75	PL802	2.80	xex
*2D21	$0 \cdot 80$	6AS7G	1.20	617	0.80	*811A	3.80	EF92	0.75	OC2	1.40	PY81	$0 \cdot 70$	\%0\% $0^{2} \%$
*3-500Z	40.00	6AT6	0.75	6K6GT	0.85	*829B	$8 \cdot 80$	EF97	0.70	OC3	0.75	PY82	0.55	38
*3E29	8.50	6AU6	0.50	6L6GT	0.85	*832A	$8 \cdot 20$	EF98	0.90	OD3	0.75	PY83	0.70	
3Q4	0.75	6AV6	0.75	6N7GT	0.85	*866A	3.00	EF183	0.70	PABC80	0.45	PY88	0.75	
354	0.50	6AW8A	0.75	6Q7	0.90	*872A	6.00	EFI84	0.70	PC86	0.85	PY500A	1.30	Sensitivity D.C. 20,000 O.P.V.
5AQ5	0.75	6AX4GTB	1.00	6SA7	0.80	*5763	2.85	EFL200	1.20	PC88	0.85	TT21	7.80	Sensitivity D.C. 20,000 o.p.V.
5AT8	0.901	6AX5GT	1.30	6SG7	0.80	DAF96	0.60	EH90	$0 \cdot 69$	PCg^{2}	0.35	TT22	7.80	Sensitivity A.C. $\quad 2,000$ O.P.Y.
5 T 4	0.75	6BA6	0.45	$65 K 7$	0.80	DF96	0.60	EL34	0.95	PC95	0.70	$\cup 25$	1.00	D.C. Current $\quad 50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~A}$
5U4G	0.60 0.95	6BE6	0.48	6SL7GT	0.70 0.70	DK92	1.00 0.60	EL36	0.95	PC96 PC97	0.50 0.95	U26	1.00 0.58	A.C. Current $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$
$5 \cup 4 G B$	0.95	6BF5	0.85	6SN7GT	0.70	DL96	0.60	EL81	0.65	${ }^{\text {PC97 }}$	0.95	UABC80	0.58	A.C. Current $\quad 75 \mathrm{mV}$ - 1090 V
$5 \cup 8$	0.75	68F6	0.75	6SQ7	0.80	ECC84	0.60	EL82	0.60	PC900	1.09	UBC81	0.60	D.C. Volts . $75 \mathrm{mV}-1000 \mathrm{~V}$
5 V 4 G	0.60	6BH6	0.85	6V6GT	0.65	ECC85	0.48	EL83	0.60	PCC84	0.50	UBF89	0.60	A.C. Volts IV-1000V
$5 \times 4 \mathrm{G}$	0.80	6816	1.20	6×4	0.60	ECC86	1.25	EL84	0.45	PCC85	0.60	UBL2I	0.85	Resistance $\quad 300 \Omega-500 \mathrm{k} \Omega$
5×8	0.90	6BN6	0.80	6X5GT	0.60	ECC88	0.75	EL86	0.75	PCC88	0.85	UCC84	0.75	
5Y3GT	0.65	6BQ7A	0.65	$12 A C 6$	0.80	ECC89	0.80	EL95	0.70	PCC89	0.75	UCC85	$0 \cdot 55$	Capacity $0.5 \mu \mathrm{~F}$
5Z4GT	0.65	6BR8A	1. 20	12AD6	0.80	ECCl89	0.80	EL.504	$0 \cdot 80$	PCCi89	1.00	UCF80	0.75	Accuracy $2.5 \% \text { D.C. }$
6 6AB4	0.55	$6 \mathrm{BU8}$	0.85	12AE6	0.85 0.60	ECF80	0.60 0.80	EM80	0.65 0.60	PCF80 PCFB2	0.65 0.45	UCH8I U 181	0.65 0.70	$4 \% \text { A.C. }$
$6 \mathrm{AB7}$	0.60	6BW7	1.00	I2AT6	0.60	ECF86	0.80	EM8!	0.60	PCF82	0.45	UCL81	0.70	4\% A.C.
$6 A C 7$ $6 A F 4 A$	0.80 0.80	$6 B Z 6$ $6 B Z 7$	0.65 0.70	$12 A T 7$ $12 A U 6$	0.50 0.65	ECF200	0.90 0.90	EM84 EM87	0.60 1.00	PCF84 PCF201	0.65 1.10	UCL 82	0.75 0.80 0.	Price complete with pressed
6AF4A	0.80 0.65	$6 \mathrm{BZ7}$ 6 C 4	0.70 0.55	$12 A U 6$ $12 A U 7$	0.65	ECF201	0.90 0.95	EM87	1.00 0.60	PCF201 PCF806	1.10 1.00	UCL 83 UF85	0.80 0.50	steel carrying case and test
6AG5	0.65 0.85	6C46	0.55 0.55	$12 A U 7$ $12 A V 6$	0.47 0.85	ECF801 ECF802	0.95 0.95	EYSI	0.60 0.50	PCF806 PCL81	1.00 0.65	UF85 UL84	0.50 0.85	leads. fi4.95
6AH6	0.95	6C57	0.85	$12 \mathrm{AV7}$	1.00	ECH8I	0.55	EY87	0.50	PCL 82	0.80	UM80	0.60	Packing \& postage + VAT 8%
6AJ5	0.65	6CU5	1.00	$12 A \times 7$	$0 \cdot 55$	ECH83	0.60	EY88	0.55	PCL84	0.75	UM8!	0.75	Packing a postage t VAT 8 \% $\begin{array}{r}\text { fl. } 35\end{array}$
6AK5	0.55	$6 \mathrm{CU6}$	1.00	12AY7	0.85	ECH200	0.80	EY500A	1.50	PCL86	0.85	UM84	0.45	

VAT is not included. Please add $12 \frac{1}{\%} \%$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are $\mathbf{£ 0} \cdot \mathbf{1 0}$ per $£$ subject to a minimum of $£ 0 \cdot \mathbf{3 0}$.

OUR NEW 1977/1978 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR $\mathbf{6 0 \cdot 3 0}$

U.K. RETURN OF POST MAIL-ORDER SERVIGE ALSO WORLD WIDE EXPORT SERVICE
 R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE

Four inputs. Four way mixing, master volume, treble and basi controls. Suitg all speakers. This professional quality amplifler
chassis is suitable for all groups, disco, P.A., where high quality chasgis is suitable tor all groups, disco, P.A., where high quality
power is required. 5 speaker outjuts. A/C mains operated. Slape power is required. 5 gpeaker outpats. A/C mains operated. Slape
ontput. Prodaced by demand lor a quality valve amplifier. Send for details. Chessis only $\mathbf{4 9 4}$ carr. es

CASSETTE TAPE TRANSPORT MECHANISM Complete with mono record/playback and erase heads. Five push buttons, record, play, forward, rewind and pause. Less motor, brand new $£ 3 \cdot 50$

10" ELAC HI-FI SPEAKER
Large ceramic magnet.
Response : $50-18,000$ cps Bass resonance 55 cps .
16 ohm 18 ohm impedsance
$10 \mathrm{watts} . \quad$ Post 40 p
teak veneer hi-fi speaker cabinets MODEL "A" $20 \times 13 \times 12$ in. For 12in.
 MODEL
MODEL "B"'BOOKSHELE $\begin{aligned} & \text { For } 18 \times 8 i n . ~ o r ~ 8 i n . ~ \\ & \text { speaker }\end{aligned} \leq 8 \cdot 50 \begin{array}{r}\text { Post } \\ \text { s1 }\end{array}$ MODEL "C" BOOKSHELF For $8 \frac{1}{2}$ in and tweeter. $\mathbf{6 5 . 9 5}$ post 75 y LOUDSPEAKER CABINET WADDING
18in. Wide, 20 p ft.

Wafer heating elements

Size $10 \frac{1}{2} \times 8 \frac{1}{2} \times 1$ in. Operating voltage 200/250V e.c. 250 W approx. Suitable for Hesting Pads, Food Warmers, Convector Heaters etc. Must be clamped between two sheets of metal or asbestos. ONLY 40p EACH (FOUR FOR $21 \cdot 50$) ALL POST PAID. Discounts for quantity.
 8×6 in. $21.40 ; 10 \times 7 \mathrm{in}$. $81.55 ; 14 \times 9$ in. $£ 1.90 ; 18 \times 6 \mathrm{in} . ~ £ 1.85$;

ALUMINIUM ANGLE BRACKET $6 \times 3 \times{ }^{\circ} \mathrm{Gin}$. 15 p
ALUMINIUM BOXES, MANY SIZES IN STOCE.

DE LUXE BSR HI-FI AUTOCHANGER Playe 12in. 10in. or 7in. records
Auto or Msnual. A high quality Auto or Msnual. A high quality with 12 months guarantee 200/250V. Size $13 \mathrm{f} \times 11 \mathrm{t}$ in. Above motor board 3
Bolow motor boerd 9fin
With MAGNETIC STEREO CARTRIDGE
Cueing Device, Bias Compensator, Balanced
NEW DECKS
BSR MP60/P128 with Goldring G850 magnetic
BSR Budget Autochenger with ceramic cartridge. Garrard AP78. Single player less cartridge. BSR. P183. Belt drive. Turntable lesa cartridge. Garrard 5300. Antochanger with ceramic cartridgo Garrard Minichanger. Playa all size records Ceramic cartridge.
524.50 $\$ 12.95$ £28.60 287.50 214.85
everything for the modern D.I electronics enthusiast and more.
 to accompany youl Nine highly realistic Instruments play fifteen different rhythms. Flfteen rhythm-select touch switches and a touch plate for stop/start wlthout thythm change gives absolute ease of operation. Bulld It yourself for under 565 Including amart teak-effect cablnet. See it and hear it in our and hear it in our shopl Send for full now: MES49 price 25p.
(All prices include V.A.T. and p \& p).

9-CHANNEL RADIO CONTROL SYSTEM
A comprehensive model control system, featuring nine independent fully proportional channels achieved by a design using very few components thus keeping the cost to

AUDIO MIXER

A superb stereo audio mixer. It can be equipped with up to 16 input modules of your choice and Its performance matches that of the very best tape-recorders and hi-fl equipment. It meets the requirements of professional recording studios FM radio stations concert halls and theatres Full construction details in our catalogue. A Full construction details in our catalogest.

MICROPROCESSOR
Build a mini-computer with our microprocessor kit. Features: 46 different Instructlon types: 256 bytes of read/write memory (more are easily
added) mlcroprocessot can address up to 65,536 8 bit-bytes. Complete kit for use with teletype etc. (XB91Y) $£ 74 \cdot 10$.
etc. (Xey keyboard for use with above (in place of teletype) (XB92A) £71-11. Both kits with detalled instruction books. See our newsletters for details of addltlonal and standard cassette tape-recorder interface to store your programmes. (All prices include V.A.T. and p\&p).

HiNG FANTASTIC BESTSELLER!
27b big (11" $\times 8^{\prime \prime}$) pagest Dver a thousand illusterations! Over 30 -agages of complet: projekiss to build! "houtands anat thieusands es usefu components deserithed and illustrated!
No wht de vit's a bestiseller! DON' MISE DUT! SEND EO巴 NOMAS MAPMW ELECTRONIC SUPPLIES P $3+80 \times 3$ R Y LEIGH ESSEXSS6 8 LR Telechiờne: Sovithend (0702) 715155 mapling onic EUECTRON
SUPPLES

ELECTRONIC ORGAN

The only organ you can build in stages and tailor to your requirements as you go along-and at each stage you'll have a fully working instrument We haven't got the gimmicks yet-(they're coming soon) but we have got the most beautiful sounds-you won't find them on any organ less than twice our price. So get our MES50 series leaflets now! 65p buys the three available so far.

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE GOp

Please rush me a copy of your 216 page catalogue I enclose $6 \square p$, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

MASSIVE RANGE OF

 COMPONENTSFor instance the capacitor section in our catalogue includes nonpolarised electrolytics and our resistor section includes even 1% tolerance types. Get our fascinating catalogue now-you won't regret it.

Our biemonthly nowsletter keeps you up to date with latest
guarantsed prices = our latest special offers
details of new projects and new lines. Send 30p
for the next six issues 15p discount voucher with each copyl.

[^0]:

 | 12AU6 | 0.50* |
 | :---: | :---: |
 | 12AU7 \dagger | $0.45 *$ |
 | 12AV6 | 0.60* |
 | 12AV7 | 2.84* |
 | 12AX7 \dagger | $0.45{ }^{*}$ |
 | 12AY7 \dagger | 0.82* |
 | 12B4A \dagger | 1.00* |
 | 12BA6 | 0.50* |
 | 12BE6 | 1-60* |
 | 12BH7 \dagger | 0.60* |
 | 12BY7 ${ }^{\text {d }}$ | $0.80{ }^{\circ}$ |
 | 12 E 1 | 4.00 |
 | 30 C 15 | 1.20* |
 | 30C17 | $1.20{ }^{\circ}$ |
 | 30C18 | 1.44* |
 | 30 F 5 | 1.60* |
 | 30FL1/2 | 1.12* |
 | 30FL12 | 1-72* |
 | 30FL14 | 1.44* |
 | 30 L | 0.84* |
 | $30 \mathrm{L15}$ | 1.72* |
 | 30 L17 | 1.72* |
 | 30P4 | 0.92* |
 | 30 P 19 | 1-12* |
 | 30 PL 1 | 1-32* |
 | 30PL13 | 1.72* |
 | 30PL14 | 1-68* |
 | 30PL15 | 1.724. |
 | 35W4 | 0.60 * |
 | $50 \mathrm{C5}$ | 0.70* |
 | 85A2 | 1.50 |
 | 90AG | $7 \cdot 26$ |
 | 90AV | $7 \cdot 16$ |
 | 90C1 | $1 \cdot 50$ |
 | 90CG | $5 \cdot 74$ |
 | 90 CV | $5 \cdot 99$ |
 | 92AG | $7 \cdot 26$ |

[^1]: All dims in mm.

[^2]: PW Sept. 72 to Apr 77. Offers. Curson, 18 Heslop Road, Balham, London.

