

T.T.L. 74 I.C's By TEXAS, NATIONAL, I.T.T., FAIRCHILD Etc

PLEASE NOTE ALL PRICES INCLUDE POSTAGE
AND V.A.T. AT 8 OR $12 \frac{1}{2} \%$ AS APPROPRIATE

MARCH 1978 • VOLUME 53 • NUMBER 11

britanks leadimg jounnal for the radio \& electronic gonstrugtor

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

```
    News and Views
812 NEWS ...NEWS ... NEWS
825 PW READER'S PCB SERVICE-Prices and details of the PCBs available
828 TELEVISION-Details of the March issue
```



```
837 KINDLY NOTE-Jubilee Organ. Traffic Light Controller, December 1977
    Direct Conversion Receiver, January 1978. Proportional
    Power Controller, January 1978. RAE No. 5, January }1978
841 PRACTICAL WIRELESS-Pre-view of our next issue.
850 ON THE AIR-Amateur Bands
                                    Eric Dowdeswell G4AR
```



```
    MW Broadcast Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charles Molloy G8BUS
    VHF Bands .................................................................. Ron . . . . . . . . . . . SRS15744
```



```
    For our Constructors
814 ACTIVE TONE CONTROL
    A simple yet efficient circuit
```



```
    An unusual fund-raiser for your local charity
```



```
    Simple light modulator
    "EUROPA"STEREO AMPLIFIER-1 ........................................................................ Toms B.Sc.
    A thirty-watt per channel amplifier designed with ease of construction in mind
    AUDIO VISUAL LOGIC PROBE.
        Philip Bond
        Look and listen to your logic circuits
849 BATTERY STATE INDICATOR
        Don't be caughtwout by battery failure
    General Interest
    SO YOU WANT TO PASS THE RAE? -7 . .dohn Thornton-Lawrence GW3JGA and Ken McCoy GW8CMY
        Transistors, transmitters and modulation
THE 5-METRE STORY-2.
                            Ron Ham
    Memories of the days when amateurs were licensed to operate on the 60MHz band
838 MULTI-RANGE TESTMETERS.
                            D. Jones
        An introduction to the design of simple test instruments
845 IC OF THE MONTH
                                    Brian Dance M.Sc.
    The Sprague ULN-3006T Hall-effect switch
    \star Free This Month
    'GUIDE TO AERIALS'-A special supplement
    An Apology
To all who bought our February issue. We are sorry that, due to an oversight, the Active Tone Control which was mentioned on the front cover, did not appear in the magazine. The article appears instead on page 814 of this issue.
```


COPYRIGHT

(s) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by 'Practical Wireless' to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

FANE NEW ""POP") RANGE SPEAKERS

12" 'POP' 40 45w $£ 14.95$ [2" 'POP' 50H 50w $£ 16.99$ [2" 'POP' 75 75w €22.95 15" ‘POP’ 65 70w 625.95 15" ‘POP' 80 80w $£ 29.95$ $18^{\prime \prime}$ ‘POP’ 100 100w $£ 49.95$ 18" 'POP' 150 150w $£ 5500$ SPECIALIST RANGE
 FANE SPEAKERS-SUPPLIED TO MOST LEADING U.K. MANUFACTURERS OF GROUP \& DISCO EQUIPMENT 2 years guarantee on speakers \& Horns

Rec. Prices INCLUDE VAT. Distributors (Wholesale \& Retail)

Rec. prices shown correct at $30 / 11 / 77$ LINEAR PRODUCTS LTD, ELECTRON WORKS, ARMLEY, LEEDS Manufacturers \& Export enquiries to:-
FANE ACOUSTICS LTD, 286 BRADFORD ROAD, BATLEY, YORKS

The finest components catalogue yet published. - Over 200 A-4-size pages. - About 5,000 items clearly listed and indexed. - Nearly 2,000 illustrations. - Bargain List sent free. - At £1-40, incl. p. \& p., the catalogue is a bargain.

Send the coupon below now. HOME RADIO (Components) LTD. Dept. PW. $234-240$ London Road. Mitcham, S̈urrey CR4 3 HD

[^0]
\star DISCOMAJOR
POWER DISCO CONSOLE
with integral Power Amplifier.

* TWIN FULL SIZE GARRARD turtables with cueing device.
\star CARTRIDGES with Diamond Styli.
$\star 3$ SEPARATE VOLUME CONTROLS
for each turntable and Mic.
FULL HEADPHONE
MONITORING FACILITIES
CONSOLE COMPLETE WITH LID
(1) TWIN T/TABLE CONSOL with PRE-AMP, and
POWER OUTPUT STAGES

2) \& (3) PAIR 100 WATT L'SPEAKERS including $12^{\prime \prime}$ UNITS

Rec. Mic.

 10.750 Cardioid F9. 5 Deposit $\mathbf{£ 4 0 . 0 0}$ and $\mathbf{4} 9.95$ extrawith system only (T Total $£ 227 \cdot 20$) Carr. $£ 4.75$.
Also available 100 WATT SYSTEM $£ 169.95$

ALL RSC PRICES INCLUDE VAT

 TDI DISCO CONSOLEIncorporating twin BSR type turntables and Sonotone or Aco Cartridges with diamond styli Separate Vol. controls for each turntable. Also MONITORING FACILITIES, Dlus Treble and for 'mike' with vol, control Black Vynide covered $\mathbf{E | | 9 . 9 5}$ Cabinet with lid 18 f intly pymts Or Dep $£ 16.49$ \& 18 f 'tntly pymts.
£6.75 (Total $£ 137.99$) Carr, $£ 3 \cdot 50$. £6.75 (Total £137.99) Carr. £3.50 TD2S STEREO
€ $\mathbf{1 2 5} \mathbf{2 5}$

DISCOMAJOR/I00 TWIN TURNTABLE POWER CONSOLE $£ 139.95$ Twin Full size BSR turntables. Sonotone or Acos Cartridges with

Carr. £3.50 complete with uidt-in 100 watt Power Ampifier complete with lid. Terms: Deposit $£ 19 \cdot 95$ and
18 fortnightly payments $£ 7 \cdot 70$ (Total $£ 158 \cdot 55$) DISCOMAJOR/200 \& 159.95 Carr. $£ 4.00$ 200 watt version of above. ferms: Dep. £29-95 and 18 fortaightly payments $£ 8 \cdot 60$
$($ Total $£ 184 \cdot 75$)

RSC PHANTOM 50 COMBO AMP.
$269 \cdot 95$
Rating 50 watts. 3 inputs, 2 vol controls, individual Carr. £1-50 Radio, Tape, etc. Inc. High Flux $12^{\prime \prime} 50 \mathrm{w}$ Speaker. Dep. $£ 10.95$ \& 8 monthly payments $£ 8.71$ (Total $£ 80 \cdot 63$).

IOOW POWER (SLAVE) AMPLIFIER

\rightarrow.

Suitable for use with DISCO-Consoles. Also for Dep. £9.00 and 8 mthly pyts of £6.05 (Total $£ 57 \cdot 40$) Carr. $£ 1 \cdot 50 \quad \mathbf{5 9 . 9 5}$ 100+IO0W MODEL $\mathbf{1 6 9 . 9 5}$ Carr. $11 \cdot 50$.
TITAN TA/50A 50W AMPLIFIER
Solid state, 3 sep. controlled inputs plus Maste Control. Bass, Treble \& Presence Controls. Vynide covered cab. with corner protectives Value $£ 60$. Terms: Dep. $£ 9$. (Total $£ 57 \cdot 40$) Carr. $£ 1$
$£ 49.95$
Matching Cahints.

TITAN TA/I00A I00W AMPLIFIER TWIN CHANNEL-4 INPUTS $\quad \mathbf{6 9 . 9 5}$ (NORMAL OR BRIGHT) many facilities. R.M.S. Rating. Matching $2 \times 12^{\prime \prime} 120 \mathrm{w}$ Cabinet speaker $£ 49.95$ with above only. Carr. $£ 1 \cdot 50$

INTEREST REFUNDED

on Credit Purchase, settled in 3 m ths
JINGLE MACHINES from $\mathbf{£ 3 7 . 9 5}$ COLUMN SPEAKERS from $\mathbf{£ 2 9 . 9 5}$ ECHO CHAMBERS from 553.95 GROUP DISCO SPKRS in cabs ", $\mathbb{E} I .95$ TITAN 'ADD-ON' HIGH FREQUENCY HORN UNITS
 Inc. Pair of highiy sensitive Horns. Range 3.15 kHz .
Imp 16Ω. Use with $\operatorname{Imp} 16 \Omega$. Use with
8 or $15 \Omega 2 \times 12^{\prime \prime}$ or $1 \times 15^{\prime \prime}$ or $18^{\prime \prime}$
Drive Unit for increased sound clarity and projection Rating 100 fier power output to be 100 watts.

watts.

Either model $\mathbb{2 7 . 9 5}$ Carr 75p Comparable with units at twice the cost Terms: Dep $\mathbf{£ 6 . 9 5} \& 8$ mthly pyts $\mathbf{£ 3 \cdot 1 2}$ (Total $£ 31 \cdot 91$)

RSC MAINS TRANSFORMERS TYPES FOR VALVE RADIOS \& \& OUTPUT TRANSFORMERS), As previously advertieed atIl available. FLLAMENT OR TRANSISTOR POWER PAOK | ADTO (ETEP UP/STEP DOWN) 12 v . 1 a . $\$ 1 \cdot 10,6 \cdot 3 \mathrm{~V} .1 \cdot 5 \mathrm{a} \$ 1 \cdot 08,6 \cdot 3 \mathrm{v}$. $2 \mathrm{a} ~ \& 1 \cdot 10$

 MODEL T1H

New Branches at LEEDS, HANLEY and WOLVERHAMPTON

OPEN ALL DAY SATURDAYS (5 Day Week) BRADFORD 10 North Parade (Closed Wed.). Tel. 25349 BIRMINGHAM 30/31 Great Western Arcade. (Closed Wed.) Tel. 021-236 1279 CARLISLE 8 English Street (Closed Thurs.). Tel. 38744 CARLENTRY 17 Sheiton Sq. The Precinct. Thel. The 25983 $\begin{array}{ll}\text { DEREY } 97 \text { St. Peter's Street (Closed Wed.) } \\ \text { DARLINGTON } 19 \text { Northgate (Cl. Wed.). } & 41361 \\ \text { Wel, } 68043\end{array}$ DARLINGTON 19 Northgate (Cl. Wed.).
DEWSBURY $9 / 14$ KIngsway (Closed Tues.) Tel. 468058 DEWSBURY $9 / 14$ KIngsway (Closed EDINBURGH 101 Lothian Rd (C) Wlosed Thurs). Tel. 63069 GLASGOW 326 Argyle St. (Cl. Tues.). \quad Tel. 248980158
 High quality $15^{\prime \prime}$ high flux Bass Unit and $J 104$ Horn Tweeter in folded horn enclosure providing amazing level of sound output. Terms Dep. £14.95 and 18 fortnightly payments. $£ 5 \cdot 58$ (Total £115.39) Carr. £3-50.
FANE 'NEW POP RANGE' SPEAKERS

Power rains. R.M... Cont. YRS GUARAN

 ALL MODELS all models available- Cash or terms
 15" POP $70 \quad 70 \mathrm{w}$ £25.95 TITAN GROUP/DISCO SPEAKERS GUARANTEED

Carr. $£ 1.50$

Stockist of LIGHTING by PULSAR and
Optikinetics

GROUP Equipment by CARLSBRO and F.A.L. \star FULL RANGE OF SPEAKERS by FANE Carr. $£ 1 \cdot 20$, under $£ 18$, over this add $6 p$ per $£ 1.5$ YEARS

LIGHTING BY PULSAR AND OPTIKINETICS

SUPER-STROBE with $5 \cdot 5^{\prime \prime}$ parabolic reflector
$£ 39.95$
MAXI-STROBE with $7^{\prime \prime}$ parabolic reflector
£52.92

PROJECTORS Carr. Free

BUBBLELITE inc wheel
PATTERNLITE inc cassette SOLAR 100B inc wheel rot
BUBBLE GJF inc liquid

T12/45 12" 45 w

 T12/60 $11^{\prime \prime} 60 \mathrm{w}$ T12/100 12" 100 w T15/60 15" 60 w T15/70 15" 70w T15/100 15 ${ }^{\prime \prime}$ 100w T18/100 18" 100w $\mathbf{x} 6.95$ Imp 8-15 ohms Yynide with Yynair sizes and cut-outs. TE1 $1 \times 12^{\prime \prime}$ £11. 95TE2 $2 \times 12^{\prime \prime} £ 16 \cdot 95$. Low Deposit Terms on orders over $£ 20$.

Value
$£ 15.00$
$£ 15 \cdot 00$
$£ 21 \cdot 00$
$£ 21 \cdot 00$
$£ 36.00$
$£ 36 \cdot 00$
£26.00
£28.00
£41-00 $47 \cdot 00$
f11.95 $£ 13.95$ £25.95 £16.99

TITAN TA/IOOC COMBO

100w R.M.S. Amp. incorporating a fabulous Fane Crescendo $12^{\prime \prime} 100$ watt spkr for really superlative results with Lead
Guitar \quad \&||9.95 Guitar Carr. £5 \& 119.95 Or Dep $£ 17.95$ \& 18 f'tntly payts $£ 6.69$
(Total $£ 138.37$)

$$
z=-1
$$

PULSAR SL SUPER (Sound to lite) $856-95$ PULSAR ZERO 3000 (Nound to lite) 884.95	PULSAR SPOTBANKS (less bulbs)
PULSAR REMOTE CONTROL	
$\mathbf{E 1 5} 95$	

$$
\text { FANE HIGH FREQUENCY HORNS ' } 1 \text { ' SERIES }
$$

${ }^{2} 88$

 Size approx. Rating $30-50$ watts Range $3-15 \mathrm{kHz}$66.95 Farr

FAL DISCO LIGHTING

 SYSTEMS trom $£ 58.95$ Incl 2 Spotbanks and bulbs

Impedance or total impedance of $12^{\prime \prime}, 15^{\prime \prime}$ or $18^{\prime \prime}$ Drive units must not exceed impedance of single horn or pair in series. Pair J44, Single J73 or J104 suitable for amplifier power or J104 suitable for amplifier power
up to 100 watts subject to above and
with HPX2R 'Cross-over' Carr. Free with HPX2R 'Cross-over'

TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8\%

parts and components:
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic rawers have label slots. ID and 20 have space dividers. Build up any size cabinet for wall, bench or table top.

AS SUPPLIED TO POST OFFICE, INDUSTRY \& GOVERNMENT DEPTS.

SINGLE UNITS (ID) (5ins $\times 2 \frac{1}{4}$ ins $\times 2$ tins). £2.90 DOZEN.
DOUBLE UNITS (2D) (5ins $\left.\times 4 \frac{1}{2} i n s \times 2 \frac{1}{4} i n s\right)$ E4.90 DOZEN.
TREBLE (3D) $£ 4 \cdot 90$ for 8 .
DOUBLE TREBLE 2 drawers, in one outer case (6D2), $67 \cdot 25$ for 8.
EXTRA LARGE SIZE (6DI) $66 \cdot 25$ for 8 .
PLUS QUANTITY DISCOUNTS!
Orders over 120 , less 5%
Orders over $\mathbf{6} 60$, less $7 \frac{1}{2} \%$.
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $£ 10$. Orders $£ 10$ and over, please add 10% carriage.
QUOTATIONS FOR LARGER QUANTITIES
Please add 8% V.A.T. to total remittance All prices correct at time of going to press

FLAIRLINE SUPPLIES (Dept. PW3)
124 Cricklewood Broadway, London NW2 Tel. 01-450 4844

Speed up your precision work with
MINIATURE POWER EQUIPMENT

NEW! The P2 Mk2 DRILL

With detachable head
£18.00 pp 86p
In storage case, room for transformer £19.50 pp 86 p In case with variable transformer $\quad £ 29.00 \mathrm{pp} 86 \mathrm{p}$ S2 Drill stand (holds both drills) $£ 18 \cdot 50 \mathrm{pp} 106 \mathrm{p}$ S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. £18•50 pp 106p.
SUPER 30 KIT 30 tools incl. Drill Piwithout stand. £19•39 pp £1.
P1 DRILL
£9.67 pp 38p
S1 DRILL STAND £5. 13 pp 38p
FLEXIBLE DRIVE SHAFT
£5.94 pp 34p
TRANSFORMERS
Continuous a/c 12v. D/C
£7.56 pp 81 p
Variable speed a/c 12v. D/C £. 9.50 pp 81 p

LOOK! Here's how you master electronics.

....the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

Buildan oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

 2 Read,draw and understand circuitdiagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carryout over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v etc.

Logic Probe LP-1

It's compact.
It's versatile.
It's beautifully designed.
It identifies High, Low, or Intermediate levels, open circuits, and pulsing nodes.

It enables you to trace logic levels, pulses and logic sequences through complex digital circuits. It detects pulses as short as 50 nsec and stretches them to $1 / 3$ sec for easy observation.

Try the LP-1 and you won't know how you ever managed without it!

How it works

You just clip the probe leads to the circuit power supply, setting the 'Løgic Family'switch to DTL, TTL or CMOS. (CMOS position also covers HTL.).

Touch the probe's tip on the node you're investigating and the LP-1 lights up to show you exactly what you've got. The LED marked 'HI' comes on for logic state 1 (High) and LO' comes on for logic state O (Low).

The third LED, marked 'PULSE', shows the dynamic signal activity at the node under test. Set the switch to 'PULSE' and pulses as narrow as 50 nanoseconds are stretched to $1 / 3$ second. Single-shot and low rep. rate pulses are clearly shown-you can't do that even with a fast CRO! High frequency pulses up to 10 MHz will make the'PULSE' LED blink continuously at 3 Hz ; and with assymetric signals the 'LO' LED will come on for duty cycles under 30%, and HI'for those over 70\%

Another useful feature is'Pulse Memory'.
Put the probe tip on to a node, switch to 'MEM' and the next logic change-positive or negative-or the next pulse edge, will cause the 'PULSE' LED to come on and stay on, untill reset. Meanwhile, 'HI' and 'LO' LEDS continue to function as usual. No other probe or logic checking device gives you all that!

ONLY £29.00

Complete with instruction book, leads, and including VAT (8%) and post and packing. It's easy to order

Telephone 01-890 0782 and give us your Access, Barclaycard or American Express number. Your Probe is in the post same day!

Or, write your order, enclosing cheque, postal order, or stating credit card number and expiry date. (Don't post the card!)

Alternatively, ask for our latest catalogue, showing all CSC time-and-cost-saving products for the engineer and the home hobbyist.

Brief Specification:	Max. input signal frequency:
Input lmpedance: 100,000	$\mathrm{ohms}, 10 \mathrm{MHz}$
constant for all functions.	Power requirements:
DTL/TTL Thresholds:	5 Volt Vcc, 30 mA
logic 1, $2.25 \mathrm{~V} \pm 0.15$	15 Volt Vcc, 40 mA
logicO, O.80V ± 0.10	36 Volts max.
HTL/CMOS Thresholds:	Size: $6.1 \times 1.0 \times 0.7$ inches
logic 1, $1,70 \%$ Vcc	$(155 \times 25 \times 18 \mathrm{~mm})$
logic $, 0,30 \%$ Vcc	Weight: $302(85 \mathrm{~g})$
Min. detectable pulse:	Power leads: 24 inches $(610 \mathrm{~mm})$,
50 nanoseconds	colour coded.

CONTINENTAL SPECIALIES CORPORAMON

[^1] REG IN LONDON: 1303780 VAT NO: 224807471 TRADE MARK APPLLEO FOR CSCC (UK) LTD 1977. DEALER ENQUIRIES WELCOME. TELEX: 8813669 CSCLTD.

sersin Marshalls

A. MARSHALL (LONDON) LTD. DEPT. P.W.

LONDON-40-42 CrIcklewood Broadway, NW2 3ET Te. 01-452 0161. Telex 21492
LONDON 325 Edgware Road, W2. Tel. 7234242
GLASGOW-85 West Regent Street, G2 200
BRISTOL-1 Straits Parade, Fishponds Road, BS16 2LX

CALL IN AND SEE US 9-5.30 Mon-Fri. 9-5.00 Saturday

EXPRESS

 MAIL ORDERTel Orders
on Credit Cards
£ 10 minimum.

POPULAR SEMICONDUCTORS

2N708		${ }^{2} \mathrm{~N} 5294$		BC178		PF
${ }^{2} \mathrm{~N}^{1} 788$		$2 \mathrm{NS296}$	40	BC179	23	
${ }^{2} \mathbf{N 1 1 3 1}$		2N5298	40	BC182	11	
$2 \mathrm{~N}^{1132}$	37	2 N 5447	-15		14	BF
2N1711 2N2102	30 60	2N5448 2N549		${ }^{\text {BC183 }}$	12	${ }^{\text {BF179 }}$ F180
2N2218	33	2N5457	${ }_{32}$	${ }^{\text {BC184 }}$	12	
2N2219	35	2N5458	33	BC184L	14	
2N 2220	35	2N5459	29	BC212	14	BF195
${ }^{2} \mathbf{N} 2221$	25	2 N 484	34	BC212L	17	
2 N 2222	25	2 N 121		BC213	14	
${ }^{2}$ N23688		2 26122		BC213L	16	
${ }^{2}{ }^{2} 233659$	25	2 N 123	43	${ }^{\text {BC214 }}$	16	
2N3053	${ }_{60}^{26}$	${ }_{\text {ac126 }}$	45	BC237 $\mathrm{BC238}$	12	- ${ }_{\text {BF2224 }}$
2N3055	70	AC127	45	8239	15	BF245A
2 N 3441	85	${ }^{\text {A }} 128$	45	BC257	17	
${ }_{2}^{2 N 3442}$	1.35	${ }^{\text {ACL51 }}$	40	${ }^{\text {BC258 }}$	18	BF258
-	13		50 50		15	
2N3708	16	AC153K	55	С ${ }^{\text {c }}$ O8	15	BF337
2N3708	13	AC176	50	BC309	15	BF338
2N3771	1.95	AC176K	65	BC327	20	BFR
$2{ }^{\text {N3772 }}$	2.00	AC187\%	60	BC328	19	PrR
2N3773	2.00	AC189K	50	BC547	12	BFR
- $\begin{array}{r}\text { 2N3819 } \\ 2 \mathrm{~N} 3820\end{array}$	${ }_{3}^{36}$	AD161	1.00 1.00	${ }^{\text {BCC }}$	12	鿾R
2N3823	80	AF106	55		13	BF
2N3904	21	AF109	75	BC558	12	BFX29
2 N 4036	67	AF139	69	Cr5	14	8FX30
$2{ }^{\text {N4037 }}$	55	AF239	65	BCY58	25	BFX84
2 N 4058	20	AF240	1.14	BC770	25	BFX85
2N4059	15	AF279	${ }_{85}^{80}$	BCY	28	${ }^{\text {BFX86 }}$
2N4124	17	BC107	15	BD115	80	${ }_{\text {BFXBE }}$
2N4126	17	BC108	15	BD	51	BFY50
2 N 4289	-20	8C109	15	3 132	54	BFY
${ }_{2}{ }^{\text {N43303 }}$	30	${ }^{3 C 140}$	35	81	27	BFY52
2 N 4904	1.70	${ }^{\text {BC141 }}$	40	BD136	38	BSx21
2N4919	65	BC147	12	8D137		BU104
2N4920	. 75	${ }^{\text {BC148 }}$	- 12	8D139	38	BU105
2 N 49	55	BC160	- 35	BD140	10	BU204
${ }^{2} \mathrm{~N}^{2} 923$	70	${ }^{8 C 151}$	-35	8D438	50	BU205
2N5086	27	C1	12	BD439	50	
2N5192	. 75	${ }^{\text {3 } 168}$	$\cdot 12$	BDX18N	. 70	MJE340
2N5194	72	BC169	-12	BDY20	.00	MUE370
2N5245		BC177	-20	BDY5	1.90	MJE371

Prices correct at 10 Jan. 1978, but please add VAT p\&p 40p

TRIACS Plastic Pack 400 V

Full range of Bridge Rectifiers and Diodes ilsted in new catalogue
THYRISTORS Plastic C106 116 $\begin{array}{llll}4 \mathrm{amp} 100 \mathrm{~V} & 0.35 & 8 \mathrm{amp} 100 \mathrm{~V} & 0.43 \\ 4 \mathrm{amp} & 200 \mathrm{~V} & 0.40 & 8 \mathrm{amp} 200 \mathrm{~V} \\ 4 \mathrm{amp} 40 \mathrm{~V} & 0.49 \\ 0.49 & 8 \mathrm{amp} 400 \mathrm{~V} & 0.62\end{array}$
WHY NOT PAY US A VISIT AT OUR NEW CENTRAL LONDON BRANCH AT 325 EDGWARE ROAD, W2, ABOUT 100 YARDS NORTH OF THE WESTWAY FLYOVER. EXTENSIVE STOCK RANGE. MANY SPECIAL OFFERS TO PERSONAL SHOPPERS ONLY.

NEW 1978 CATALOGUE

AVAILABLE IN MARCH
Stocking Distributors Officially Appointed - NATIONAL VERO - TEXAS ANTEX

- MULLARD ELECTROLUEE SIEMENS SIFAM
- SESCOSEM ARROW HART

MAKES COMPONENTS BUYING EASY

"What is a microprocessor?"
A complete teach yourself course with cassettes

+ brochure-£9.95 inclusive of VAT and p\&p.

Telephone: 04 440/864i
MAIL ORDER ONLY
ALL NEW \& BOXED "QUALITY" BRANDED YALVES GUARANTEED 3 MONTHS. BYA ETC. (TUNGSRAM ETC.). 6% ALLOWED IN LIEU OF GUARANTEE, ALREADY DEDUCTED FROM OUR PRICES. Note: Prices are only correct at time of golng to press.颠
Some leading makes available. VAT invoices issued on request.

 One valve post 13p, each extra valve 6p. MAX 75p. LISTS \& E
Large valves 14p each. ALL PRICES INCLUDE VAT @ 124\%.
We offer return of post service. CWO ONLY, No C.O.D. Post free over Eit. $\mathbf{\text { ES to }}$ E18 without nollce. ENQUIRIES WELCOME FROM TRADE \& RETAII, (same prices).

HAVE YOU DONE IT LATELY!

For Semi-Conductors
 including
 Small Signal Transistors
 Power Semi-conductors
 TTL, CMOS, I.Cs
 Linear I.Cs
 Signal and Power Diodes Zener Diodes
 Magneto Resistors Hall-effect devices Magnetic Proximity Switches Opto-electronic devices
 Gata
 ELECTROLILIE
 TO MAKE THE BEST OF

For passive components

including
Plastic Film Capacitors
Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R.M. Cores

Ring Cores, etc.

ELEGTOVALUE
THE PROJECTS YOU BUILD

The Open Door to Quality

It's the Electrovalue Catalogue No. 8 (4th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated. 40p post free with $40 p$ youcher usable on orders for 65 or more. Send for yours now and order in confidence.

GOODS SENT POST FREE IN U.K.
FOR C.W.O. ORDERS. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only best quality goods.

ELEGTROVGILIE LTD

(Dept. PW.I) 28 St. Jude's Rd., Englefield Green; Egham, Surrey TW/20 0HB.
Phone: Egham 3603. Telex: 264475.
Morth-680 Burnage Lane, Burnage, Manchester. Phone: (061) 4325945.

WIRELESS TIME

approx. 漳 full size digits shown here
National's MA1012 LED digital clock module is a complete clock \& alarm unit, operating from 50 or 60 Hz mains, and offering all the features you would expect: Hours-minutes display in bright 0.5" leds with optional seconds, sleep and snooze alarms, fast and slow setting, AM/PM indicator, switched alarm outputs - but best of all no RFI. Thus the MA1012 is suitable for use in any radio/tuner applications, and requires just $1.75 \times 3.75 \times 0.7^{\prime \prime}$ total. (Ex. transformer). f9.45 per module, isolating mains transformer $£ 1.50$ each. (* 8% vat) Two modules, and two transformers for $£ 20.00(+8 \%$ vat) In the latest Ambit catalogue: more TOKO coils, chokes, filters etc., data on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

DETECKNOWLEDGEY

Metal locator principles and practise, including some of the facts and information manufacturers of $\mathbf{£ 1 0 0 +}$ detectors would rather you didn't know. $£ 1.00$ each.
The Bionic Ferrot 4000 - a VCO metal locator based on the PW sèekit, including all parts, plasticwork, ready wound coil etc. Inc. free copy of detecknowledgey. $\mathfrak{£ 3 4 . 2 6}$ in pp and VAT at 8%.
Special announcement. The Bionic Radiometer metal locator is at last to be released. A full VLF discriminator, with simultaneous display of ferrous objects obscured by junk. Outperforms units costing $£ 150+$. Digital control Demo available at Brentwood, on sale soon for less than $£ 7 \overline{5} . S \overline{A E}$ info:

COMPONENTS

Herewith the list of first quality parts and modules for wireless, inc. Europes largest range of signal coils and inductors. $1 / 2 \mathrm{~m}$ in 5 tock!

CA3089E FM IF 1.94 BC413 lo noise 0.18 MFL 2.4 kHz ssb mech. KB4402 FM IF $1.94 \quad 40238$ shid RF 0.25^{*} filter for ssb gen/IF 455 KHz HA1137W FM IF 2.20 BF224 6ghz RF 0.22 with matching trantf's. 9.95 TBA120 FMIF 0.75 BF274, 7 ghz RF 0.18 MFH series $4 / 5 / 7 \mathrm{kHz}$ bandTBA120S FMIF 1.00 ZTX212 50v/.3w 0.17 width @ 455kHz 1.95 sn76660n FM IF 0.75 ZTX213 30v/.3w 0.16 MFK series $7 / 9 \mathrm{KHz}$ bw 1.65 ua720 $\quad A M$ rad 1.40 ZTX214 30v/3w 0.17 Modules/tunerheads etc. $\begin{array}{llllll}\text { CA3123E AM rad } 1.40 & \text { ZTX451 } & \text { 60v/1w } & 0.18 \text { EC3302 3cct v/cap fm } 7.50\end{array}$ $\begin{array}{lllllll} & \text { AM rad } 1.40 & \text { ZTX551 } & 60 \mathrm{v} / 1 \mathrm{w} & 0.18 & \text { EF5600 5cct v/cap fm } & 12.95 \\ \text { TBA651 } & \text { AM rad } 1.81 & \text { BD515 } & 45 \mathrm{v} / 10 \mathrm{w} & 0.27 & \text { EF5800 } & \text { coct } / \mathrm{cap} \\ & 15\end{array}$ $\begin{array}{llllll}\text { MC1350 Bgc gain } 1.00 & \text { BD516 } & \text { 45v/10w } 0.30 & \text { EF5800 6cct v/cap fm } & 15.25\end{array}$ $\begin{array}{lllllll}\text { ua753 } & \mathrm{fm} \text { gain } 1.80 & \text { BD535 } & 60 \mathrm{v} / 50 \mathrm{w} & 0.52 & 83194 \mathrm{v} / \mathrm{c} \text {, mos mixer } & 11.45\end{array}$ | LM1496 | Bal mix 1.25 | BD536 | $60 \mathrm{v} / 50 \mathrm{w}$ | 0.53 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{M C 1 3 1 0 \mathrm { P }}$ | $\mathbf{m p x}$ 252 complete fm mono | | | | KB4400 as above2.20 BD610 80v/90w 1.20 tunerset.afc,agc,mute 26.50 $\begin{array}{lllll}\text { ca3090aq as above } 2.20 & \text { BD6 } & \text { dec4.35 } & 80 \mathrm{v} / 90 \mathrm{w} 1.20 & 7253 \text { complete } \mathrm{fm} \text { stereo }\end{array}$ $\begin{array}{llllll}\text { ca3090aq } & \text { mpx dec4.35 } & \text { BF256 } & 1 \mathrm{ghz} \text { fet } & 0.34 & \text { tunerset. afc, agc, mute } 26.50 \\ \text { HA1 196 } & \text { mpx dec4.20 } & \text { BF }\end{array}$ $\begin{array}{lllllll}\text { HA1 } 196 & \text { mpx dec4.20 } & \text { E176 } & \text { ph swt } 0.38 & 702010.7 \mathrm{MHz} \mathrm{fm} \text { if } & 6.95 \\ \text { LM380 } & \text { 2w AF } 1.00 & \end{array}$ LM380 2w AF 1.00 MEM614 (40822) 0.38* 7030 linear phase fm if 10.95 LM381 preamp 1.81 MEM616 (40673) 0.6 T $^{*} 93090$ ca3090aq dec 8.36 tda2020 15w AF 2.99 MEM680 lo noise $0.75 * 923101310$ decoder 6.95 tca940E 10w AF 1.80 BA102 vhf varic $030 \quad 91196$ hal196 decoder 12.99 $\begin{array}{llllll}\text { tba810as } & 7 \mathrm{w} \text { AF } 1.08 & \text { BA102 } & \text { vhf varic } 0.30 & 91197 \mathrm{mw} / \mathrm{w} \text { v/cap tun } 11.35 \\ \text { LM301an } & \text { op amp } 0.39^{*} & \text { BA121 } & \text { vhf varic } 0.30 & 71223 \mathrm{v} / \mathrm{cmw} \text { (OR lw) tuner }\end{array}$ ua741 op amp 0.34* BB104 dual var. $0.4,5-71223 \mathrm{v} / \mathrm{c}$ mw(Oniw) 9.00 LM3900 op amp 0.68* 'BB105 uhf varic 0.40 810k 7w af kit comp. E 3 $\begin{array}{lllll}7805 u c & 5 v / 1 a m p 1.55 * & \text { mvam } 2 \text { dual AM } 1.48 & \text { 940k 10w af kit } & 3.95\end{array}$ $\begin{array}{lll}\text { tda1412 } & \text { 12v/1/2 A } 0.95^{*} \\ 78 \mathrm{Mvam} 115 & 15 \mathrm{v} / \mathrm{AM} & 1.05 \\ \text { 20v/1/2A } & \text { tda2020k pr. tda2020 ics, }\end{array}$ 78 M 20 . 20v/y/2A 1.20^{*} mvam125 25v/AM 0.90 pcb, heatsinks for pa 9.35 78M24 24v/1/2A 1.20* TOKO Coils \& Filters All mpx decoders featare ua723cn variable 0.80* NE550a as above $0.80^{*} 10 \mathrm{~mm}$ a 7 mith cap 030 Tuners: complete taa550b 32v ref 0.50* AM IFts with cap 0.33 NE555v timer 0.70^{*} eg Best fm tuner kit underf100 $\begin{array}{llllll}\text { NE555v } & \text { timer } & 2.70^{*} & \text { YHCS111098AC2 } & 0.30 & \text { Looks as good as it sounds. } \\ \text { NE566v } & \text { vco } & 2.50^{*} & \text { YHCS12374AC2 } & 0.30 & \text { Full instructions } \\ \text { NE567v } & 86.95\end{array}$ NE560B hf pll 3.50^{*} YHCS11100AC2 0.30 Audiomaster amp. Matching $\begin{array}{lllllll}\text { NE561B hf pll } & 3.50^{*} \text { KALS4520A } & 0.33 & 25+25 w ~ r m s ~ a m p . ~ & 79.00\end{array}$

 $\begin{array}{lllll}\text { ME565K } & \text { guad } & 1.50 & \text { LLC238 } & 7 \mathrm{~mm} \\ \text { MC13 } & 0.33 & \text { Misc. }\end{array}$ $\begin{array}{lllll}11 C 90 & 650 \mathrm{mhz} 1400 * L L C 48277 \mathrm{~mm} & 0.33 \text { FX1115 beads } & \text { 100. } 25\end{array}$ $11090 \quad 650 \mathrm{mhz} 14.00$ LLC4828 $7 \mathrm{~mm} \quad 0.33$ MW/LW ferrite rod ant 0.90 $\begin{array}{lllll}\text { ZTX107 } & 50 \mathrm{v} / .3 \mathrm{w} 0.14 & \text { CFS10.7 ceramic } & 0.50 & \mathrm{~min} \text {. foil trimmers (see pl) } \\ \text { ZTX108 } & 30 \mathrm{v} / 3 \mathrm{w} 0.14 & \text { Bich }\end{array}$ ZTX109 30v/.3w 0.14 BBR3132 6pole fm 2.25 RFchokes: 1 uH to 120 mH VAT is extra at $12 \frac{1}{\%} \%$, except where otherwise shown (*8\%). PP now 25p per order. Catalogue 45p (inc). Pse send A5 or larger SAE with enquiries. Price lists free with an SAE. Full range of components etc available to callers at our new easy-to-get-to premises.

ambit INTERNATIONAL ©

[^2]PLEASE ADO y/O VAT UNLESS OTHERWISE STATED

A RANGE OF DRAPER TOOLS FOR THE LAMS TESTER SCREWDRIV O 500 V S Standard size 50p. Largivers 100
 DIAGONAL SIDE CUTTERS 61: E1.90. SMALL SIDE CUTTERS LJ2. Standard IIDGET OPEN ENDED SPANNER SETS $+12+23+54+66+8$ BA sizes $£ 2 \cdot 85$ set of 5. $4+4 \cdot 5.5+5 \cdot 5 \quad 4+8$
sizes $.3 \cdot 50$ set of 6 .
izes $\pm 3 \cdot 50$ set of
MINIATURE FILE SETS. Set of $6 \mathbf{£ 1} \mathbf{9 0}$.
AP AND DIE SETS
each of $0,2,4,6,8$, BA SIZES In Dies, Plug aps, Taper Taps + Amerlcan type tap wrench, T type tap wrench, Die Holder.
LARGE ELECTROLYTIC PACKS. CONtain range of large electrolytic capacitors ow and high voltage types, over 40 Dleces llar Switches 2 .
Silder Switches. 2 pole make and break (or an be used as 1 pole change-over by linking A NEW RANGE OF QUALITY BOXES \& Aluminlum Boxes with lids.

Vinyl Coated instrument Cases
Light Blue tops and White lower sections, Light Blue tops
Very smart finis

WB1	$5 \times 2 \frac{1}{2} \times 24$	p
WB2	$6 \times 4 \frac{1}{2} \times 1 \frac{1}{4}$	E1. 10
WB3	$8 \times 5 \times 2$	E1. 60
WB4	$9 \times 5 \pm \times 2 \frac{1}{2}$	E1.80
WB5	$11 \times 6 \frac{1}{1} \times 3$	E2.00
WB6	$11 \times 7 \frac{1}{2} \times 3 \frac{1}{2}$	E2. 25
WB7	$12 \times 8 \pm \times 5 \frac{1}{4}$	E2. 60
WB853	$8 \times 5 \frac{1}{2} \times 3 \frac{1}{2}$	¢2.00

MAINS TRANSFORMERS. Type $15 / 300$ 240 V input. 15 V at 300 mA output $£ 1.50$ each MAINS TRANSFORMERS. Type 45/100 £.1.50 each.

VIDICON SCAN COILS (Transistor type but no data) complete with vidicon bas E6.50 each. Brand New

FULL RANGE OF BERNARDSIEABAN ELECTRONICS BOOKS IN STOCK S.A.E.FORLIST

NEW FOR THE VHF CONSTRUCTOR A range of tuned circuits on formers with slugs and screening cans. Frequencies quoted are approximate and range can be in parallel
Type S ($\frac{1}{\text { in }}$, square, dumpy type)
Type SA 20 to 30 MHz (when 33 pF fitted in parallel)
Type $S 835$
Type SB 35 to 50 MHz (wlth link winding). Type SC 70 to 100 MHz (wlth IInk winding) Type SD 135 to 175 MHz (with IInk windlng). Type MA 19 to 28 MHz (when 33pF fitted in parallel).
Type MB
Type MB 22 to 32 MHz (when 33pF fitted in paralle) $\dot{\text { phe }} 25$ to 35 MHz (when 33 pF fitted in parallel). 38 to 50 MHz (when 33 pF titted in parallel) Type ME 45 to 60 MHz (when 33 pF fitted in parallel): 100 to 200 MHz (without slug) when 0 to 30 pF variable filted In parallel.
All the above coils avallable in packs of flve only (same type) at $50 p$ per pack of
SEMICONDUCTORS BSX20 (VHF Osc/Mult). 3 for 50 p . BC108 (metal can), 4 for 50p PBC108 (plastic BCiob). 5 for 50 p . BFYS1 Transistors. 4 for 60 p.
BCY72 Translators. 4 for 500. PNP audio type TOS Transistors, 12 for 25p BF152 (UHF amp/mixer). 3 for 50 p . 2N3819 Fet, 3 for 60 p.
BCI48 NPN SILICON, 4 for 50p.
BCTS8 PNP SILICON, 4 fr 50 . BAY 31 Signal Dlodes, 10 for 35 p . BA 124 Varicap Dlodes, 4 for 50p.

PLEASE ADD 8% VAT 74CG op amps by RCA, 4 for $£ 1$ RED LEDs (MIn. type) 5 for 70p. PLASTICPROJECT BOXES with screw on lids (In black ABS) with brass Inserts. Ype NB2 approx 3 in $\times 2 \times 27$ in $\times 1$ in $\times 1$ in 50 p each ype NB3 approx4tiln x 3tin x it $1 \frac{1}{2}$ n 60 p each MULLARD 85A2 85V STABILISER VALVES (Brand New) 70p each or 2 for f1 20 TO3 translstor insuiator sets, 10 for 50 p PERSPEX TUNER PANELS (tor FM Band tuners) marked $88-108 \mathrm{MHz}$ and Channels modern appearance, size approx. $8 \frac{1}{2}$ in. \times $1 \frac{1}{4}$ in. 2 for 35 p .
PLUGS AND SOCKETS
N-Type Plugs 50 ohm, 60 p each, 3 for $£ 1.50$ PL259 Plugs (PTFE) brand new, packed with educers, 650 each.
xing type) 50p each , brand new (4-hole ling type). 50p each.
SOLDER SUCKERS (Plunger type). Stan Gard Model. ES. Skirted Model E5.50. Spare Nozzles bop each.
NEW MARKSMAN RANGE OF SOLDERS125D 25W 240V E4. 00.

S125DK $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT $\mathbf{8 4} \mathbf{9 0}$. BENCH STA ND with spring and spongefor Marksman Irons $\mathrm{ENO}^{2} 70$.
Spare bits MTg (for 15 W) $60 \mathrm{p}, \mathrm{MTS}$ (for 25W) P, MT10 (for 10 W S.
ALL PRICES + 8\% VAT
CR2 TEMPERATURE CONTROLLED
Temperature controlled iron and PSU. $£ 30+$ VAT ($£ 2 \cdot 40$).
SPARE TIPS
Type CC single flat. Type K double flat tine p , Type P, very fine tip. Ef each + VAT (8 D) MOST SPARES AVAILABLE.
MULTICORE SOLDER
Slize 5 Savbit $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. In alloy dispenser
Size CiSAV18 Savbit 18 s.w.g., 56p + VAT (4p). ${ }^{2} \mathrm{Kg} .(1.11 \mathrm{~S}) 60 \times 40,20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$ on plastic

LLESS OTHERWISE STATED WELLER SOLDERING IRON EXPERT. Built-In-spotlight Illuminates work. Pistol grip wlth fingertip irigger. High
efficiency copper soldering tio. XPERT SOLDER GUN EXPERT SOLDER GUN KIT (spare bits case, etc.) $£ 15 \cdot 00$.

A LARGE RANGE OF CAPACITOR AVAILABLE AT BARGAIN PRICES S.A.E. FOR LIST

MIXED COMPONENT PACKS, contain ing resistors, capacitors, pots, etc. All new Huridreds oltems. 22 per pack, wille stock

last.

ALU-SOL ALUMINIUM SOLDER (made by Mulflcore). Solders aluminium to itself o copper, brass, steei, nickel or tinplate, 1 Approx. 1 metre coll 40 p pack. Large ree £2.75.
VARICAP TUNERS Mullard type ELC1043 05. Brand Now, A4. $40+12 \frac{1}{2} \%$ VAT

BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronlc Manufacture. Approx $100.54 \cdot 50$ oer pack $+12 \frac{5}{5}$ VAT.
OSMOR REED RELAY COILS (for ree relays up to +1 din dia. not supplied) $12 \mathrm{~V}, 50$ ohm coll, 2 for 50 p .
We now stock Splralux Tools for the elec tronic enthusiast. Screwdrivers, Nut span ners, BA and Metrlc sizes, pop rlvet guns
Dubilier Electrolytics, $50 \mu \mathrm{FF}$, 450V, 2 for 50 p Dubilier Electrolytics, 100μ F, 275V, 2 for 50 p Plessey Electrolytics, $470 \mu \mathrm{~F}$. 63 V , 3 for 50 p . TCC Electrolytics, 1 NO $0 \mathrm{FF}, 30 \mathrm{~V}$, 3 for 00 p . Dubilier Electrolytlcs, $5000 \mu \mathrm{~F}, 35 \mathrm{~V}, 50 \mathrm{p}$ each DTT Electrolytics, $68004 \mathrm{~F}, 25 \mathrm{~V}$, high grade screw terminals, with mounting clips, 50p each.
PLEABE ADD $12 \frac{1}{2} \%$ VAT TO ALL CAPACITORS
TV PLUGS AND SOCKETS
TV Plugs (metal type), 4 for 50 p
TV Line Connectors (back-to-back sockets)
Please add $12 \frac{1}{2} \%$ VAT.

Terms of Business: CASH WITH ORDER. MINIMUM ORDER \%2. ALL PAICES INCLUDE POST \& PACKING (UK ONLY) SAE with ALL. ENOUIRIES Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN. CALLERS WELCOME BY APPOINTMENT ONLY

the DYnamIC ovo

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers $\mathbf{S} 15$ produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.
The amplifler is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process. The $\mathbf{S} 15$ has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15

15 Watts per channel into 4Ω Distortion 0.2% at 1 KHz at 15 watts Frequency response $50 \mathrm{~Hz}-30 \mathrm{KHz}$
Input Impedance 8Ω nominal
Input sensitivity 2 volts R.M.S. for 15 watts output
Power line 10-18 volts
Open and Short Circult protection
Thermal protection
Size $4 \times 4 \times 1$ inches

C15/15 Price £17•74 + £2.21 VAT P \& P free

Data on S15
$6^{\prime \prime}$ Diameter
51 " Air Suspension
2" Active Tweeter
$200 z$ Ceramic magnet
15 watts R.M.S. handling
$50 \mathrm{HZ}-15 \mathrm{KHz}$ frequency response 4Ω Impedance

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd., Crossland House, Nackington, Canterbury, Kent CT4 7AD.
Tel. (0227) 63218.

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders Money Order [Please debit my Access account \square Barclaycard account
Account number
Name \& Address

Signature

A. P. ELECTRONICS

Manufacturer and Distributor of Electronic Components
3 MILDMAY ROAD, ROMFORD, ESSEX RM7 7DA

Telephone: ROMFORD 28882

BONANZA

4 MILLION RESISTOR'S Brand new. A fabulous range of $\frac{1}{4}$ Watt, $\frac{1}{2}$ Watt, 1 Watt and 2 Watt. Carbon Film Resistor's. 1,000 mixed values. For the lowest price ever, VAT included $£ 3 \cdot 50$ only.
This is a bargain you cannot miss, only from A. P. ELECTRONICS. Count by weight. Post \& Pack only 45p.

$\frac{1}{2}$ A MILLION MINIATURE CERAMIC PLATE
 CAPS. 200 for only $\mathbf{£ 1} \cdot \mathbf{2 5}$. Mixed values all brand new VAT included. Post \& Pack 25p. Count by weight.

$\frac{1}{4}$ OF A MILLION MULLARD C296 POLYESTER'S Many values, 75 for only £1 VAT included. Post \& Pack 30p. Brand new. Count by weight.

MULLARD C280 75 mixed values for only £1 VAT included. Post \& Pack 20p. Count by weight.

A FABULOUS PACK OF HARDWARE. Self tappers, nuts, bolts, washers, spacers, grommet's, etc. etc. £1 VAT included. Post \& Pack 40p.

200 METRES of connecting PVC covered wire single and stranded mixed colours for only $\mathbf{8 1} \cdot \mathbf{2 5}$ VAT included. Post \& Pack 25p.

50 ELECTROLYTICS CAPACITORS. Mixed values for only \&1 VAT included. Post \& Pack 25p.

50 WIREWOUND RESISTORS. From 2.5 Watt. Mixed values for only £1 VAT included. Post \& Pack 30p. Count by weight.

OVERSEAS POST AT COST.

EX-STOCK. Transistor's, Diodes, I.Cs, C.MOSs, Thyristors, Knobs, Pre-sets, Resistors, Capacitors, Tant's, Bridge-Rectifiers, Transformers.

Open all day from 9am till 5.30pm. Open all day Saturday.

MAIL ORDER DEPT:-

CRESCENT RADIO LTD
 I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4S]
 TELEPHONE: 888-4474

8 KILOWATY PSYOHEDELIC LIGHT NROL
1000 WATT PER CHANNEL
Three channel: Bans, Middle, Treble. The input of this unit is connected to the the required ughting is aonneoted to the output terminals of the unlt thus easbling yon to produce a fascinating sound to light display.
Full instructions supplicd or s.A.F. for
Fetantastio
Fantastic Value at $220 \cdot 00+8 \%$ VAT.
LOUDSPEAKER SELECTION $+12 \frac{1}{2}$ VAT
$21^{\prime \prime} 8,40$ and 75 ohm at $41 \cdot 10$
(Please state which impedence is required)
$5^{\prime \prime} 8$ ohm CERAMMTO at 81.70
8" GOODMANE 'Audiom 8PA' 8 ohm
10" "ELAO' Dusi Cone 8 ohm 10 watt
POWER SUPPLTY UNITS $+8 \%$ VAT PPI- 8 switohed $8,4 \frac{1}{2}, 6,7,9,12 \mathrm{v}$ at Approx ize: $130 \times 55 \times 76 \mathrm{~mm}$ ORTY Approx size: $130 \times 56 \times 75 \mathrm{~mm}$ ONLY
PP5-Heavy duty 12 volt power supply. $\times 08 \mathrm{mma}$ ONLY 8900 . 1

BARGAIN TRANSFORMER
240 V primary, $12-0-12 \mathrm{~V} 500 \mathrm{~mA}$ secondary. Approx size: $60 \times{ }^{40} \times 80 \mathrm{~mm}$. Fixing
centres 75 mm . PRICE: $\mathrm{En} \cdot 80+8 \%$ VAT. Also available Mains tranaformer with $18 \mathrm{y} ~ 500 \mathrm{~mA}$ sec. Price and size same as
sbove. sbove. ALL PRICES INCLUDE POSTAGE GNLESS OTHERWTEE STATED -PLEASE ADD V.A.T. AS SHOWN-S.A.E. WITH ALL ENQUXRIES PLEASE.

Permonal callers welcome at: 21 GREEN LANES, PALMERS GREEN, N.13. Phone: 888-3206 and 13 GOUTE MALL, EDMONTON H9 Phone: 808-1885

(1)
 UHDX

HOME MICROCOMPUTER

NORTHERN SEMINAR MANCHESTER

APRIL 1
£5•50
After the enormous success of the Wembley Seminar, Lynx have been persuaded that there are sufficient Northerners waiting to attend their own show. All Day. Microprocessor Lectures and presentation of the Nascom I. Only 350 seats.

Z 80 MONITOR PROGRAM VDV INTERFACE (TV) 2K R.A.M.
P.C.B. CASSETTE INTERFACE TELETYPE INTERFACE EXPANDABLE SYSTEM

NASCOM I £197.50 + VAT

LYNX ELECTRONIES (LONDON) LTD. 92 broad street, chesham, bucks.

0240575151

```
PRAGTICAL WIRELESS T.V. SOUND TUNER
(Nov. 75 article by A. c. Ainslite)
Copy of original article supplied on reequest IF Sub-Assembly (G8) £6.80. P \& P 75p. Mullard ELC1043 V'cap UHF Tuner£4.50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25p. 6-way Station Control Unit (Special Offer) 11.00. Power Supply Prtd Circuit Board £1-00. P \& P 30p. Res, Caps, Semiconds, etc. for above £5.80. Mains Transformer for above £2-50. P \& P 30p. Add \(12 \frac{1}{2} \%\) VAT to price of goods. \(\mathrm{P} \& \mathrm{P}\) all items 85 p . Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751
```


GAIALOSUE/O $500+$ Top quality TransisSockets, Veroboard/cases, Indicators, Knobs, Switches, Wire and Books at prices you can afford.

All prices include VAT. P\&P FREE over $£ 2$.

Name

Address

FREE: 1978 CATALOGUE SALE LIST. SEND S.A.E. EARGAIN OFFERS! THIS MONTH'S SNIPS. LIMITED STOCKS.
TUNER MODULE BRAND NEW EXPENSIVE. EX MUS
CENTRE MW, LW. FM, MPX PUSHBUTION E22.50 7 Watt STEREO AMPLIFIER MODULE $£ 31.69$

BARGAIN MONTH ! POST FREE £5+ FREE 1978 CATALOGUE SALE LIST. MANY SURPLUS 8 , CLEARANCE LINES. SEND S.A.E, DO YOURSELF A FAVOUR
A SEMIGONDUCTOR POWER HOUSE. TRAMPUS ELECTRONICS LTD. 58-60 GROVE ROAD, WINDSOR TRAMPUS ELECTRONICS LTD. 58-60 GROV ROAD, WIN
BERKS. SL4 1HS. TELEPHONE WINDOR (07E35) 54525.
Fast service on ex stock product. Normally 24 hour turn around. Quality devices to manufacturers spacifications. No minimum order charge except
Barclaycard or Access by post or telephone f 5 minimum. Send $\mathrm{CW} . \mathrm{O}$ post free over f5, except invoiced or credit card orders, otherwise add 20p post

LEDs ${ }^{\text {dig }}$ \& 0.2 " dia. Fed no clip $0.2^{\prime \prime}$ or 209 \& clip Colour LEDS all	BULK BUY BARGAINS FULL SPEC PAKS. All $\mathbf{f 1}$ each	REDUCED LINES IC's \& TRANSISTORS	
		B	
			MJE3055 55p*
	PAK B: 5×7418 PIN ${ }^{\text {¢ }}{ }^{\circ}$	BC109C 15 P	TlP295
DISPEAY 0.3" DL704/2 \& 707/2	PAK C: $4 \times 2 \mathrm{~N} 305590 \mathrm{f} \mathbf{1 *}^{\text {\% }}$		TIP3055 55p*
	PAK D: $12 \times$ BC109 PAK E: $13 \times$ BC182 PAK F: $13 \times 2 \mathrm{~N} 3704$ PAK G: $7 \times \mathrm{BFY} 51$	BC182/3/4 7 7p	
0.6" DL747/2 TGS Gas Detectors			2N3819E 188*
		BCY70/1/2 20 p	2N3820 $2 N 2646$ 50\%
	PAK G: $7 \times$ BFY5 1 PAK H: $7 \times 2 \mathrm{~N} 3819 \mathrm{E}$	BD131/132	Matching +200
Ceramic 22pt to 0.5 $5 p$ Electrolytic 1 uf to $200 \mu \mathrm{p}$ 7 p	PAK K: 40×1 N4148 $\mathbf{E 1 *}^{*}$ PAK M: $4 \times$ Pair NPN/PNPZA		$\begin{gathered} 3 \\ 30 \end{gathered}$
Electrolytic 1 uf to $200 \mu \mathrm{f}$ $1000 \mu \mathrm{p}$ Tantalums only Tap 16 pa	PAK N: $50 \times 0 \mathrm{ABI}^{1 / 91} \mathrm{E1}$	400M	- 9p
	PAK P: $20 \times$ Plastic 109 f1PAK R: $14 \times$ BC107.$\mathbf{f 1}$		
RESISTORS $\frac{1}{4} / \frac{1}{2} w \quad$ 2pea Presets 10p Pots 25p	PAK S: $14 \times$ BC108 £ $\mathbf{f l}^{*}$	LINEARS: IC's 17812 ET*	
	PAK U: 4×1 A 50VSLRPAK V: $40 \times 5 \mathrm{MFD} 10 \mathrm{v}$¢1	3080PA ¢1*	76013 £1.49*
		290	LM309K fl^{+}
	PAK Vi:20 ElectrolyticsPAK Y:PPMP	$21 \mathrm{p}^{\circ}$	LM380 89p
VERO 0.1 MATRIX ${ }^{\text {a }}$		747 89p ${ }^{\circ}$	LM381 ¢1.55
	PAK Y: $4 \times$ LM301/14 E. ${ }^{*}$ PAK Z: $20 \times 2 \mathrm{~N} 3702$ Type PNP	$748 / 14$ 29p ${ }^{\circ}$	LM3900 69p
		748/8 39p ${ }^{\circ}$	MC1310 f1
	NEW PAK X: 4×555	7805 £1*	ZN414RX 75p
	SCR: 4 A 4000 (106)		
Daio PCB Pen $\quad 65 p^{*}$ Nyion Board Copper 6×4. $60 p^{*}$			
	$\begin{array}{ll}\text { DIAC: BR100/STZ } & 25 \\ \text { SCR:TAG } 1 A / 600 \mathrm{w} & 60\end{array}$		74121 270*
Tub FEC Etch $\frac{1}{2} \mathrm{~kg}$ RS Bleeper 12 v f.1.50**	SCR:TAG TAGOOV	7413 27p ${ }^{\prime \prime}$	74123 60p*
Knobbs: Cheap 10p		7420 8p ${ }^{\circ}$	74157 50p*
	DIL Sockets: Lo Profile	7430 8p**	CMOS etc
25p ${ }^{\circ}$	8 pin , 12p*	7445 50p*	4001 18p*
मDigital Clock IC ¢2"		7447 79p	4011 18p*

TUNING GANG. AIR SPACED O-360/395 PC. HALF PRICE f1 ea.

TECHNICAL TRAINING IN ELECTRONICS TELEVISION AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained person. You tudy in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate

Diploma Courses:

Coloux TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET. [IT To: International Correspondence Tr Schools
Dept. No. 276Q, Intertext. House, LONDON
SW8 4UJ or telephone 622991 !
Subject of Interest.....
Name
Address

Complete digital Clock Kits
TEAK OR PERSPEX CASE
NON ALARM $£ 12.50$

ALARM \quad El 5.50

FEATURES

4 LED digits $\frac{1^{\prime \prime}}{2}$ high. Red.
12 hour display with AM/PM indication
Mains frequency accuracy
Easy to build: all components included

DISPLAYS: FND $500 \frac{1}{2}{ }^{\prime \prime}$ LED $£ 1 \cdot 19$ each: 6 for $£ 6 \cdot 48$
NSB5430 $\frac{1}{2}^{\prime \prime}$ red LED stick of $4 \mathrm{E4} \cdot \mathbf{3 2} \quad 5 \mathrm{~L}$ TO2 $\frac{1}{2}{ }^{\prime \prime}$ green phosphor stlck of $\mathbf{4} \mathbf{~ E 5 - 4 0}$ CLOCK CHIPS: 50253N Alarm 12/24hr. $4 / 6$ digit $55 \cdot 67$

MICROPROCESSOR: Z80 C.P.U. £22-68
$\begin{array}{llll}\text { Z80CTC } & £ 15.70 & \text { 1702A } & \text { UV Erazable PROM } \\ \text { Z80 PJO } & £ 11.35 \\ \text { 215.70 } & \text { 2102NA } & \text { IK Static RAM } & £ 2.70\end{array}$

RECHARGEABLE BATTERY SET Super Value E8-10
includes: 4 AA (1-2v) Nickel Cadmium batterles (separately $\mathrm{Ef}_{1} 08$ each)
3/6/9v switched Universal Mains Adaptor wlth 4 plug connector for mon
calculators (separately $\& 3 \cdot 76$) plus battery holder.
payment with order to

BARON (P.W.)

SOUTHVIEW HOUSE, 6 GOWER ROAD, ROYSTON, HERTS Tel. ROYSTON 43695

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF Tel: 20767
VERNITRON 10.7 MHz CERAMIC FILTERS @ 50p each.
MINIATURE COIL FORMERS s"' Dia. with core. 5 p ea. or 6 for 25 p . SAW TELEVISION FILTERS Untested NO data 3
TRANSFORMER 240 Volt Input, out 25 volt Tapped at 14 Volt I Amp @ E1.25 (Post 25 p). 240 Volt input, out 25 volt Tapped at 14 Volt 1 Amp @ F.M. FRONTEND 88 to 108 MHz

DUAL GATE MOS FET's like 40673 at 33 p, 4 for $\mathrm{kl} \cdot 10$.
VHF FET's 2 N 3819 Type 20p or 6 for 75p, 1310 @ 20p, E201@ 12p,

UNMARKED GOOD 400 mW ZENERS $3 \cdot 3 \mathrm{v}, 6.8 \mathrm{v}$, 10 v , 1 lv , 12 v , 13 v $16 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 36 \mathrm{volt}$ All at 10 for 40 p .
30 ASSORTED $10 \times A I$ CRYSTALS Between 5 MHz To 8 MHz for fl . 455 KHz I.F. CRYSTAL FILTER with connections @ 57p each. NUT FIXING 1000pf 500v.w. FEED THRUS @ 15 p each.
VARIABLE CAPACITORS 5pf @ 75p, 10pf @ 75p, 30pf @ 85p, 50pf @ 85p,125+125pf@55p,100+200pf@55p,180+180pf@60p,200+200+ $25+25$ p @ 55p, $500+500$ pf @ 60p.
CERAMIC TRIMMERS 2.5 pf To 6 pf , 0 To 8 pf , 3 To $10 \mathrm{pf}, 4.7$ To 20pf. 0 To 30pf. All at $10 p$ each.
SUB-MINIATURE DIFFERENTIAL $10 \times$ IOPf AIR SPACED TRIMMERS Q 22p.
MINIATURE BUTTERFLY PRE-SET VARIABLE CAPACITORS Spindles easily extend. $25 \times 25 \mathrm{pf} @ 50 \mathrm{p}, 38 \times 38 \mathrm{pf} @ 60 \mathrm{p}, 38 \times 38 \mathrm{pf}$ Wide Spaced @65p.
DAU SEMI-AIRSPACED TRIMMERS 2 To 9pf @ 10p, 5 To 38pf @ 10p, 6 To 45pf@10p,8To 125pf@12p, 8To 140pf@15p. GUNNDIODES X BAND SIMILARTO CXYII@ 41.65 each. 50 BC 107-8-9 METAL TRANSISTORS Untested @ 57p.
50 PLASTIC BC 107-8-9 TRANSISTORS Untested @ 57p.
SILICON DIODES 100 PIV 10 amp @ ${ }^{1} 15 \mathrm{p}$, 100 PIV 15 amp @ 18 p , SILICON DIODES 100 PIV $10 \mathrm{amp} @ 15 \mathrm{p}, 100$
100 PV 20 Amp @ 25 p . TBA I20S FM IC's Untested with data @ 6 for 60 p .
ELECTROLYTIC CAPACITORS $20+20 \mu \mathrm{f}$ 450v.w. @ $20 \mathrm{p}, 32+32 \mu \mathrm{f}$ ELECTROLYTIC CAPACITORS 20+20 $\mathbf{~ 2 7 5 v} 450 \mathrm{v} . \mathrm{w}$. @ 20p, $32+32 \mu \mathrm{f}$

200 ASSORTED RESISTORS 4, , Watt for 75p.
50 AC 128 TRANSISTORS Branded but untested for 57 p .
30 AF II7-OC 170 TRANSISTORS Untested @ 57 p .
Please add 20p for post and packing on UK orders under
E2, unless otherwise stated, Overseas orders at cost.

GREENWELD
443 Milltbrook Road Southampton SO1 OHX Tel:(0703) 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
* SAVE ON MONEY-Bulk buying means lowest prices-ijust compare with others!
* HAVE THE RIGHT PART-No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC, BRAND NEW, MARKED DEVICES-
SENT BY RETURN OF POST, VAT SENT BY RETURN
INCLUSIVE PRICES.
K00f 50 V ceramic plate capacitors, 5%. 10 of each value 22 pF to 1000 pF . Kotal Extended range, 22pF to $0.1 \mu \mathrm{~F}$. 330 values $£ 4 \cdot 90$
$K 003$ Polyester capacitors, 10 each of $\begin{array}{llll}\text { these values: } & 0.01, & 0.015, & 0.022, \\ 0.033, \\ 0.047, & 0.068, & 0.1, & 0.15, \\ 0.22, & 0.33,\end{array}$ 0.47μ F. 110 altogether for $£ 4 \cdot 75,0.33$ K0et Mylar capacitors, min 100 Clype to
10 each all values from 1000 pF to 10 each all values from 1000 pF to
$10,000 \mathrm{pF}$. Total 130 for $£ 3 \cdot 75$ K005 Polystyrene capacltors 10 each Kalue polystrirene capacitors, 10 each
val to $10,000 \mathrm{pF}$, $\mathrm{E12}$ series $5 \% 160 \mathrm{~V}$. Total $\mathbf{3 7 0}$ for $\mathrm{E12} \cdot \mathbf{3 0}$
Koes Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22$ 35 V i $10 / 25 \quad 15 / 16 \quad 22 / 16$ '33/10 $47 / 6$ 100/3. Total 170 tants for $£ 14$ - 20
K0e7.Electrolytic capacitors 25 V working, small physical size. 10 each
of these poputar values: $1,2 \cdot 2,4.7$ of these popular values: $1,2 \cdot 2,4 \cdot 7$ K00s Extended range, as above, also including 220,470 and $1000 \mu \mathrm{~F}$. Total 100 for $\& 5$ - 90
K021 Minlature carbon film 5% resistors,
CR25 or similar. 10 of each value from 10 R to 1 M , E12 series. Total 610 resistors K6.00 Extended range, total 850 resistors
 etc. 10 of each value from 27 V to 36 V , E24 serles. Total 280 for $£ 15 \cdot 30$ K042
$\mathcal{E} 8.70$

7Ib BARGAIN PARCEL

Hundreds of new components-pots, swltches, resistors, capacltors, PC Boards with semiconductors, laads of $\stackrel{0}{ } \times 3.45$.
PC ETCHING KIT MK III
Now contains 200 sq. Ins. copper clad esist pen. Ferris cive cieaner, two miniature drill bits, etching dish and instruclons.

FERRIC CHLORIDE
Anhydrous technical quatity in 11b

CALCULATOR CHIP
Type C500 by GI. 4 function + constant. keyboard interfaclng. 24 pin DIL. With comprehenslve data + socket $£ \mathbf{i} \cdot 50$. DARLINGTON COMP PAIR BD695A and ED696A-45V 8A 70W plastic power!!
NPN palr $£ 1 \cdot 50$.

VERO OFFCUTS
Pack A, All 0.1" Pack B, All $0.15^{\prime \prime}$
Pack C, Mixed Each pack contains 7 or 8 pieces with a total area of 100 sq. in. Each pack is $£ 1 \cdot 50$. Also available by weight 11 b £ $420,101 \mathrm{~b}$ £ $32 \cdot 50$
 $0 \cdot 15^{\prime \prime}$ \&1.96
$0.1^{\prime \prime}$ Plain $£ 1.83$
Our retail shops at 24 Deptford Broad way, London, SE8 (O1-692 2009) and (01-688 2950) stock some of the advertised goods for personal callers only. Ring them for details.
All prices quoted include VAT and patched on day of receipt. $S A E$ desenquiries please. MINIMUM ORDER VALUE E1. Official orders accepted from schools, etc. (Minimum Invoice Charge $\mathbf{~} \mathbf{2 5)}$. Export/Wholesale enquiries welcome. Wholesale list now available ponents always wanted.
sirens
Work of $4 \times$ HP7 batteries, emit very comm. Use as Burglar Alarm $\times 75 \times$ house, workshop, etc. ONLY st-95,

VEROCASES
Plastic top and bottom, aliy panels front and back.
Type
$1410205 \times 140 \times 40 \mathrm{~mm} \quad$ £3.70
$1411205 \times 140 \times 75 \mathrm{~mm} \quad \mathrm{EA} .17$ $\begin{array}{ll}1412205 \times 140 \times 110 \mathrm{~mm} & \mathbf{C 5} \cdot \mathbf{2 0} \\ 1237154 \times 85 \times 40 \mathrm{~mm} & \mathrm{E2} \cdot 8 \mathbf{8 3}\end{array}$ $\begin{array}{ll}1237154 \times 85 \times 40 \mathrm{~mm} & \mathrm{E2.83} \\ 1238154 \times 85 \times 60 \mathrm{~mm} & \mathrm{E3} .05\end{array}$ $1239154 \times 85 \times 80 \mathrm{~mm} \quad \mathbf{~} 3.75$
YERO PLASTIC BOXES
Professional quality, two tone grey
colystyrene with threaded inserts for polystyrene with threaded inserts for
Type
$2518120 \times 65 \times 40 \mathrm{~mm} \quad \mathbf{~} 2.24$
$2520150 \times 80 \times 50 \mathrm{~mm} \quad \mathbf{~ 2 . 6 8}$
$2522188 \times 110 \times 60 \mathrm{~mm} \quad \mathbf{8 3 . 7 2}$
Sloping front version.
Type
$2523220 \times 174 \times 100 / 52 \mathrm{~mm} \quad £ 6.90$ $1798171 \times 121 \times 75 / 37.5 \mathrm{~mm}$. E4.65 Gen. purpose plastic potting box $71 \times 49 \times 24$. In black or white 40p.
Hand Controller box, shaped for eas. of use in the hand, $94 \times 61 \times 23 \mathrm{~mm} 54 \mathrm{p}$.
RELAYS and SOLENOIDS 12 V DC enclosed, 210 A c/o contacts E 1. Open construction relay with 210 A c/o well on 6 V DC 60 p . 11° pIn plug in base. 240 V ac enclosed, 11 pln plug
310 A c/o contacts, $\mathrm{eq} \cdot \mathbf{2 0}$.
310 A c/o contacts, fil 20.
240 V ac open, 215 A c/0 contacts $£ 1 \cdot 50$ 240 V ac open, 215 A c/o contacts $£ 1 \cdot 30$.
Solenoid, rated 48 V DC, but work on 24 V . 10 mm push or pull action. Single hole fixing, Slze $27 \times 18 \times 15 \mathrm{~mm}$.

WIRE AND FLEX

Flex pack-5m of 5 diff. colours, thick or thin. 25 m for 30 p . 25 way ($14 / 10076$) PVC \$heath. $40 \mathrm{p} / \mathrm{m}$.

EDGE CONNECTORS

Speclal purchase of these 0.1" pitch double-sided gold-plated connectors enables us to offer them at less than 18 way $41 \mathrm{p} ; 21$ way $47 \mathrm{p} ; 32$ way 72 p 40 way 90p; 48 way 141p.

SOLAR CELLS

As used on space labs, otc., these tiny cells give 50uA @ 0.5 V in sunlight deal for Powering small C-MOS pro greater power output. Size $19 \times 6.5 \mathrm{~mm}$ greater for $£ 1$; 10 for $£ 3 ; 25$ for $£ 7$; 100 for $£ 25$

POWER PACK

Wood gralned metal case $90 \times 80 \times$ 75 mm containing mains transforme PC board with $1 \frac{1}{2}{ }^{\prime \prime}$ fuseholder R's C's. etc. Only $£ 1$.

S-DECS \& T-DECS
S-DEC Breadboard
T-DEC Breadboard
£2. 25

1977/78 CATALOGUE NOW AVAILABLE - MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS ONLY 30p, Plus 15p POST.

COMPONENT PACKS

400 asstd. carbon resistors
81.50

100 Wirewounds 2-15W £1-50 200 Miniature resistors, $\frac{3}{4}, \frac{1}{4}$, and $\frac{ \pm}{2} \underset{E 1 \cdot 30}{ }$
200 poly, mica, ceramic caps \quad E1-20 100 polyester, 01 a 200 PC resistors

TEXAS 741

8 Pin DIL-Full Spec.
100 off £19-50
25 off $£ 5 \cdot 50$

The Chroma-Chime is the world's first electronic musical door chime to use a pre-programmed microcomputer chip to generate tunes.

Now you can replace your old boring buzz, zing or ding with the sound of this remarkable feat of British engineering* capable of playing 24 well known melodies.

Really enjoyable to build, this kit will give you the satisfaction of assembling a first class professional product for yourself and give you and your callers entertainment for years to come as well as enhancing your home.

Buy your Chroma-Chime Kit now and get a free large poster (size approx. $231 / 2^{\prime \prime} \times 161 / 2^{\prime \prime}$) of the original circuit diagram as above, which incidentally measures 36-24-36
*This one was not done by our bird-brained designer on the back of a cigarette packet, as you can see!

The CHROMA-CHIME is exclusively designed by
GHROMATRTROTES
River Way, Harlow, Essex.

TO CHROMATRONICS, River Way, Harlow, Essex, U.K.
Please send \square Chroma-Chime Kits at $£ 18.00$ each including VAT and post and packing please use block capitals

Name
Address
lenclose cheque/PO value f
or debit my ACCESS/BARCLAYCARD account No.
\square

Signature

N.B. The CHROMA-CHIME is also available, fully assembled, price $£ 24.95$ inc VAT and post and packing

The Blob Story.

Yes, they have got a funny name: Blob Boards.

And if you've never heard of them, you might wonder what on earth they're for.

After all they sound more like sci fi than practical electronics.

But in fact there is a good reason for the name.

It actually describes the way these printed circuit boards work. You just put a tiny blob of solder onto circuit board and component and you've made a perfect contact.

Every time.
There are of course a few other printed circuit boards around.

Butwe think the prices are abitshocking.
Our prices, we think you'll agree, are more down to earth.

These Blob Boards are about half the price of the few comparable alternatives.

And unlike those alternatives, on most Bandridge Blob Boards you won't have to break the contact rails to make your circuit. So you'll be able to use them again and again.

The roller tinned copper on Blob Board makes soldering easy, and it won't corrode, so
they'll work for as long as you want them to. You'll find a Bandridge Blob Board for every circuit you'll ever want to make, from the simplest to the most complex.

And if you're using Bandridge solderless DEC's for your prototypes you'll be pleased to learn that there's a Blob Board that exactly matches every DEC.

So when you're looking for a circuit board it'll be worth your while remembering Blob Boards.

As if you'd ever forget a name like that.

DON'T MISS OUR SPECIAL CASSETTE OFFER.' LOOK AT OUR BOOKS

$\underset{\text { YOU MAKE THE SAVING! }}{\text { SANG }}$

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR
Dick Ganderton, C. Eng., MIERE ART EDITOR

Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie

SECRETARIAL Sylvia Barrett

 Lynda Goddard
EDITORIAL OFFICES

Westover House, West Quay Road, POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISING MANAGER 01-2615000 Roy Smith
 CLASSIFIED ADVERTISING
 01-261 5762
 Colin R. Brown

ADVERTISING OFFICES

King's Reach Tower, Stamford Street, London SE1 9LS

BINDERS

Binders, for either the old or the new format, are $£ 2 \cdot 85$ and Indexes are 45p (Inc VAT) and can be obtained from the Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF. Remittances with overseas orders for binders should include 60 p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-establishment of a PW Back Numbers Service for our readers. In future back numbers dated from June 1977 only will be available from our Post Sales Department for 65 p, which includes postage and packing. Cheques and Postal Orders should be made payable to IPC Magazines Ltd.
Send your orders to:- Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

Are you guilty?

1. Cord grip not in use, earth conductor detached from terminal as a result-the two most common faults pinpointed in the survey.
2. Reversed polarity, cord-grip loose, cable sheath cut back too far necessitating binding together of conductors with insulating tape.

3. Broken plug body, possibly through being dropped onto hard floor, has exposed live and earth terminals. Use of resilientclad plugs in areas where there is a risk of breakage (e.g. Kitchens) could minimise this problem.
4. Reversed polarity, cord grip discarded by householder.

PLEASE NOTE

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We do not supply service sheets or information on commercial radios, TV's or electronic equipment.
All querles must be accompanied by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.

More than 70 million electric plugs used in British homes could be potentially dangerous according to a report published last November by the Electrical Research Association.

Britain's largest manufacturer of plugs and other electrical wiring accessories, MK Electric Ltd, commissloned ERA to carry out the survey and isolate the most common faults present in plugs used in the home.

The four pictures reproduced on the opposite page show some of the most common faults, we at Practical Wireless hope that you are not guilty of using plugs in these sort of conditions! The survey found that just over 18 per cent of the sample had inefficient cord grips. The grip, which prevents strain on the terminal connections was in many cases found to be loose, not in use, missing or to have lost one screw, 7.4 per cent of the terminals had faulty connections, largely as a result of inefficient cord grips.

Many people were still using plugs which had been damaged, probably as a result of belng dropped onto hard floors. Some of these were in a very dangerous condition because damage had left live terminals exposed. The moral here is to throw away any broken plugs and to use a resilient clad plug in areas where the floor is hard such as the kitchen.
1.5 per cent of householders had reversed the live and neutral connections. Frightening isn't it? Get to know the colour code, brown is live, blue is neutral and green/yellow is earth.

The survey states that most of the faults are due to lack of consumer education although manufacturers could be more helpful in the design of cord grips and clearer wiring instructions.

MK reckon that a conservative estimate of the number of plugs in use In this country is 400 million, which means that, if the results of the ERA survey hold good for the country as a whole, over 73 million plugs could be in a dangerous condition through inefficient cord grips alone, another 12 million because of physical damage and 6 million with incorrect connections.

If that doesn't frighten you then we don't know what will!

'Pianocorder'

An intriguing invention, which is in essence an extension of the early work by Edward Welte in 1904, is the 'Pianocorder'. Manufactured and developed by Superscope, the unit "plays" a piano by interpreting pulses recovered from magnetic tape.

Welte produced what could only be described as a 'machine' which used a paper roll as the storage medium. Each note on the keyboard was fitted with a small carbon-tipped prong which made contact with a tray of mercury when depressed, and a similar arrangement was fitted to the pedals. When the circuit was made, the initial transients and durations were recorded on the paper in a manner similar to that of a pen recorder. The resulting traces were then punched out by hand.

The player mechanism itself consisted of a wooden box fitted with eighty felt-tipped fingers and two actuators for the pedals. The entire unit was placed in front of the piano in the normal playing position and operated by vacuum, the punched paper providing the keying sequences, timing and pedalwork.

Superscope have collected thousands of these original paper rolls and transcribed the information on to magnetic tape, employing a digital process. The cassettes are fed into a controller, located at the front of the instrument, and operate solenoids and relays within the piano.
In addition to the playback of prerecorded cassettes, the device will also initiate its own recording. Thus it could be regarded as an extremely useful teaching tool for the pianoforte student, as well as an entertainment medium-if the f.o.b. price of around 1600 dollars can be accommodated, that is!

Stereofor RMbroadcasts

Further details of the Harris Corporation's Compatible Phase Multiplex (CPM) system, providing a stereo AM capability, have been made avallable to us.
The system is uncomplicated and straightforward in its technology; a modified quadrature system, in fact,
with right and left channel sideband pairs being transmitted at $\pm 15^{\circ}$ from the carrier. There is absolutely no increase in occupied bandwidth or spectral density and no loss of mono coverage. Modulation of $+125 \%$ and -100% is maintained.
The public can expect economical and stable receiver implementation with CPM. Tests conducted by the designers have shown that existing integrated circuits can be used for the AM/CPM receiver.

Because the CPM bandwidth is no greater than that of mono AM, there is good envelope detector compatibility, even with narrow-band receivers. As it is a linear additive system, stereo receivers will not generate distortion in any case-even under skywave 'conditions. Unlike non-linear systems, Harris CPM does not require flat receiver response and complex correction functions. Loudness is equal to the mono signal, unlike VHF/FM which has a loudness reduction when changing from mono to stereo. A conventional pilot indicator can be used, similar to that fitted to most VHF/FM tuners, and no stereo breakup with high modulation occurs.

Existing transmitting equipment may be used for CPM with only minor modification and the addition of a stereo exciter. Although listeners would need re-designed receivers for AM stereo in their homes or cars, costs are expected to be fairly economical and a vast consumer market is envisaged when the system is introduced and gains popularity.

Good News

We are pleased to announce the reintroduction of the publishers subscription service for Practical Wireless, The annual cost to either UK or overseas addresses is $£ 10 \cdot 60$.
Application may be made to: IPC Services,
Subscriptions Department, Oakfield House,
Perrymount Road,
Haywards Heath,
Sussex,
Remittances should be made payable to IPC Services.

active tone control

This article describes an active tone control for general use in audio amplifiers, having a good performance which is largely unaffected by the input and output characteristics of the associated preamplifier and power amplifier stages. The permissible output of 0.84 volt r.m.s. ($1 \cdot 17 \mathrm{~V}$ peak) at 1 kHz , with both controls in the "flat" position, will be sufficient to load the input stage of most power amplifiers, while still permitting use of the maximum bass boost of 17 dB at 30 Hz without exceeding the output limit of 6 volts for 1 per cent total distortion at that frequency. The required input from the pre-amplifier under these conditions is $0 \cdot 14$ volt r.m.s. ($0 \cdot 2$ volt peak). With both controls centred, the response is linear within $0-15 \mathrm{~dB}$ from 30 Hz to 20 kHz .

The Circuit

The circuit (Fig. 1) is a feedback tone control based on P. J. Baxandall's circuit, first published in the 1950s, which with various detail modifications has become something of a world standard, largely displacing the loss-type controls previously used. The present design uses linear potentiometers without tappings, and achieves almost ideal control characteristics. A brief look at the design philosophy follows.

The basic control stage comprises $\operatorname{Tr} 2$ and the network connected between its base and the emitter or Trl, with negative feedback from $\operatorname{Tr} 2$ output to the network. This stage provides the whole of the available gain and it is possible, as in the present case, to obtain sufficient open-loop gain (i.e. with feedback disconnected) to provide for the full range of boost

specification

and cut-about 20 dB plus or minus-and still leave a useful positive gain over the mid-range of around 17 dB . Thus, the tone-control is far from being a mere passenger, much less a "losser".

Circuits of this type work best when fed from a low impedance source, which is not normally available from a practical pre-amplifier having gain; furthermore the operation of the tone controls is liable to affect adversely the output characteristics of such a

Fig. 1: Complete circuit diagram of the Active Tone Control.
pre-amplifier. Accordingly the present design employs Tr in an emitter-follower (common collector) circuit as an impedance transformer, to isolate the preamplifier from the effects of the tone controls and to provide them with the desired low-impedance source. Additionally, $\operatorname{Tr} 1$ input circuit is bootstrapped via capacitor C3 and its input resistance is thus raised to over a megohm, which is high enough to leave unaffected any normal pre-amplifier output circuit.

In the same way the feedback to the tone-control network is best derived from a low-impedance source, since operation of the controls causes the effective impedance of the network to vary markediy, which tends to spoil the desired uniform gain of $\operatorname{Tr} 2$ and also to limit its undistorted output. Therefore a second emitter-follower ($\operatorname{Tr} 3$), is used, DC coupled to Tr 2 collector, and the feedback connection is taken from a tapping on its emitter load (this is permissible as there is no phase-reversal in an emitter-follower).
In this way the tone control stage gets its feedback from the desired low impedance and $\operatorname{Tr} 2$ works unhampered into a very high impedance which imposes very little loading on it and has a flat frequency response over the desired range. At the same time a low-impedance output is provided whose operation will be largely independent of the load presented by the input of the following power amplifier, unless this is very low indeed. The complete tone control unit should therefore be usable without modification between a wide variety of pre-amplifiers and power amplifiers, regardless of their input and output impedances. The two emitter-followers together reduce the effective gain to around 16 dB .
The circuit of Fig. 1 of course shows a single channel only; two are needed for a stereo installation, with twin bass and treble potentiometers ganged together.

Overload

The question of possible overload and consequent distortion when using the maximum available boost is a point not always clearly brought out in connection with such tone controls. A published circuit may be accompanied by a claim that the total distortion is less than, say, $0 \cdot 1$ per cent at an input not exceeding a given figure. However, closer study may show that this statement is true only while the bass and treble controls are at or near the "flat" position. In such cases distortion in the bass or treble regions may rise rapidly with an increase of bass or treble boost and can reach an unacceptable figure, or even the limiting point, before maximum boost has been obtained. The input signal must then be reduced substantially if full boost is required without excessive distortion. This assumes, of course, that the signal up to the tone control input is substantially level at all frequencies concerned.
In the present design the maximum available output swing at low distortion (1 per cent) is 6 volts r.m.s. (8.4 volts peak). The maximum bass boost available is +17 dB at 30 Hz relative to $1 \mathrm{kHz}(0 \mathrm{~dB})$. Therefore the maximum permissible output swing at 1 kHz , if the boosted bass is not to be badly distorted, is 17 dB down from 6 volts, namely 0.84 volt r.m.s. or $1 \cdot 17$. volt peak, and this should be the maximum designed mid-band input voltage required by the driver stage of the power amplifier to give an acceptable output volume around 1 kHz , while still having

components

enough power in reserve to accept a 17 dB increase of signal input without overloading in any part of the power amplifier. This is not always easy to achieve economically. Overload due to maximum treble boost is not, perhaps, so serious for the resulting distortion products will mostly be outside the audible range, though some purists would probably dispute this.
Assuming, therefore, a permissible mid-range output from the tone control of 0.84 volt r.m.s. and an effective gain conservatively stated as 6 times (15.5 dB), the required input to the tone control unit from the pre-amplifier will be $0.84 / 6$, or 0.14 volt r.m.s. $=$ 0.2 volt peak. At these levels the total harmonic distortion will be less than $0 \cdot 1$ per cent at any frequency within the range, with both controls in the "flat" position, and should not exceed 1 per cent at any frequency when maximum boost is in use.

Components

None of the component tolerances is very critical and 10 per cent will generally be good enough. One of the advantages of using linear potentiometers is that they are generally better matched than the logarithmic type. Layout is not very important apart from guarding against stray hum fields, and there should be no stability problems.

Other transistors of roughly similar type can be used without much change in performance, e.g., BC107, BC109, or their plastic-cased counterparts, but they must be able to accept the 25 volt supply without risk of failure. A practical point concerns the setting of the control knobs on their shafts; the mid-point of the resistance range may or may not be the midpoint of shaft rotation (speaking now of conventional carbon-type controls) and the actual total resistance is unlikely to be exactly 100,000 ohms. Use an ohmmeter to measure the actual total resistance of the potentiometer concerned, rotate its spindle to give half the measured total from either end, and then secure the knob to the spindle to indicate 0 dB at that setting.

The passing of the Radio Amateurs' Examination, set by the City and Guilds, requires a certain level of theoretical technical knowledge. Whether one considers that this level is too high or too low is beside the point. The course that follows is intended, with the help of certain external aids, to prepare the reader to pass the examination. It will not teach him all about electronics!

Transistors

The diagram in Fig. 47 shows an npn transistor. Note that the base-emitter junction (a) is forward biased whilst the base-collector junction (b) is reverse biased.

The base region in a transistor is made very thin so that cunrent carriers, entering from the emitter, experience the attraction of the collector voltage and are able to pass right through the base region and cross the base-collector junction, to the collector. A small proportion of current carriers from the emitter will recombine in the base region and these form the base current.

Fig. 47 : Construction of an NPN Transistor.

These currents can be expressed simply as,

$$
\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\mathrm{b}}
$$

For example, typical values might be:-

$$
1 \mathrm{~mA}\left(I_{e}\right)=0.98 \mathrm{~mA}\left(I_{c}\right)+0.02 \mathrm{~mA}\left(I_{b}\right)
$$

The actual ratio of the emitter, base and collector currents depends on the type and construction of the transistor.

The ratio of the collector to emitter current is known as the $D C$ alpha.

$$
\text { DC alpha }(\alpha)=\frac{\mathrm{I}_{\mathrm{e}}}{\mathrm{I}_{\mathrm{e}}} \text { e.g. } \frac{0.98 \mathrm{~mA}}{1 \cdot 00 \mathrm{~mA}}=0.98
$$

and the ratio of collector to base current is known as the DC beta or $h_{F E}$

INPUT OUTPUT IMPEDANCE IMPEDANCE	CURRENT GAIN	POWER GAIN	INVERSION OF SIGNAL
	0.99	$\begin{aligned} & 1000 \\ & (30 \mathrm{~dB}) \end{aligned}$	NO
	50	$\begin{aligned} & 10,000 \\ & (40 \mathrm{~dB}) \end{aligned}$	YES
	50	$\begin{gathered} 40 \\ (16 \mathrm{~dB}) \end{gathered}$	NO ADO24

Fig. 48: General characteristics of circuit configurations.

$$
\mathrm{DC} \text { beta or } \mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}} \text { e.g. } \frac{0.98 \mathrm{~mA}}{0.02 \mathrm{~mA}}=49
$$

The DC beta or $h_{\text {FE }}$ is the usual method of quoting the DC current gain of a transistor.

As you can see, there is a fixed relationship between the curnents in a particular transistor, if you vary one then the other two will also vary by the same proportion.

In transistor amplifiers, input signals may be applied to the emitter or the base and the output taken from the collector or emitter. The general chanacteristics of each type of circuit configunation is shown in Fig. 48. The circuits have the biasing and supplies omitted for the sake of clarity.
In the common base arrangement (where the input signal is applied to the emitter), the emitter and collector currents are almost equal but, because the input impedance is low (forward-biased junction) and the output impedance is high (reverse-biased junction), there is a power gain. The signal power, $\left(\mathrm{T}^{2} \mathrm{R}\right)$ in the collector is higher than the power ($I^{2} R$) in the emitter.

In the common emitter arrangement not only is there some power gain due to the output impedance being higher than the input, but there is also current gain (beta) from the base to the collector, giving the highest power gain of all the configurations. It is also the circuit which inverts the signal (positive-going signal in produces a negative-going signal out). The
common collector circuit, or emitter follower as it is popularly known, has less power gain but its useful features are a high input impedance and a low output impedance.

Practical transistor circuits

In general, valve circuits have a high input impedance and are fed with an input signal voltage. Transistor circuits, on the other hand, have a medium to low input impedance (except for the emitter follower) and are usually fed with an input signal current.

The biasing of a tnansistor common emitter amplifier stage has already been discussed in some detail in section No. 3 , page 501 . These conditions apply to most small signal AF, IF and RF amplifiers, although in some instances the input and output signals may be coupled through suitable transformers or tuned circuits.

Transmitters

To state the obvious, the purpose of the transmitter is to genenate a radio frequency signal for transmission to a distant receiving station. In addition, the transmitted signal must conform to the Amateur Sound Licence requirements in terms of power, frequency band, frequency accuracy and stability, absence of spurious emissions, etc., particularly when keyed or modulated by the information to be sent. Full details of these requirements are given in "How to become a Radio Amateur" Appendix B, published by the Home Office.

A block diagram of a simple CW transmitter (Emission Type Al) for 160 metres, $1 \cdot 8-2 \cdot 0 \mathrm{MHz}$, is shown in Fig. 49. It consists of a Variable Frequency Oscillator followed by a Buffer Amplifier and a Power Amplifier.

Fig. 49: Block diagram of a CW transmitter.

It is usual for the Oscillator to be operated in Class A or B, the Buffer Amplifier in Class B and the Power Amplifier in Class C. The various classes of operation refer to the condition under which the valve or transistor operates and these are summarised below and shown graphically in Fig. 50.

Classes of amplifier operation

Class A
In Class A, the transistor or valve is biased to near the centre of its linear operating nange and the signal amplitude is insufficient to cause operation outside this range. A Class A amplifier has a low efficiency typically 50% or less (less than half of the input power is converted into useful output) but it does not distort the signal or generate harmonics.

Fig. 50: C/asses of operation.

Class B

In Class B, the valve or transistor is biased to the cut-off point and the input signal drives the device into full conduction for one half of the cycle of input signal (180°) and beyond cut-off during the other half. The efficiency is higher than Class A, being $60 \%-65 \%$ for CW (continuous radio frequency wave) operation.

A Class B amplifier stage with a single valve or transistor distorts the signal passing through it, producing mainly second harmonic distortion. In a Class B audio frequency amplifier, two valves or transistors are required. These operate in push-pull, one handling one half cycle and its partner the other, so eliminating the distortion.

A single valve or transistor Class B amplifier can be used for RF purposes in a transmitter because of the "flywheel" effect of the output tuned circuit. This type of amplifier has a reasonably linear transfer characteristic (the output signal is proportional to the input signal) and therefore an amplitude modulated RF signal can be amplified with little distortion, an important property which is essential in single sideband transmitters, as we shall see later.

Class C

In a Class C amplifier, the valve or transistor is biased well beyond cut-off and the input signal is nequired to have a larger amplitude in order to drive the device into conduction. Conduction only occurs for about one-third of a cycle of the input signal $\left(120^{\circ}\right)$ and the efficiency can be in the region of 70%.

The output of the device contains a high proportion of harmonics and the output circuit must be correctly tuned to the fundamental frequency to reduce the possibility of harmonics being radiated.

The Class C amplifier has a non-linear transfer charaoteristic and is therefore unsuitable for amplifying an amplitude modulated input signal although, as we will see later, it can be used to amplitude modulate a carrier wave.

A Class C amplifier can be employed intentionally as a harmonic generator or frequency multiplier by increasing the bias still further so that the device is only conducting for a quarter of a cycle (90°) of the input signal.

In this condition, the output is rich in harmonics and by making the output circuit resonant at the desired harmonic, power can be obtained at this frequency. For example, the input could be at 7 MHz and the output tuned to the second harmonic (14 MHz) and then further amplified for transmitting on the 14 MHz band or the third harmonic selected for transmitting on the 21 MHz band.

In Fig. 50 the bias conditions are shown in relation to a valve anode current (Ia)/grid voltage (Vg) characteristic, although they could apply, similarly, to a transistor characteristic.

Simple CW Transmitter 160 metres (18.2 .0 MHz)

The circuit of the transmitter, illustrated in block diagram form in Fig. 49, is given in Fig. 51.
The VFO is a series tuned Colpitts oscillator. The oscillator feedback is obtained from a capacitive tap (the junction of C3 and C4). Memory aid: " C " is for Colpitts and Capacitive tap. (When the feedback tap is an inductive one, on the coil, then the circuit becomes a Hartley oscillator.) The frequency stability of the oscillator depends mainly on the coil and tuning capacitor VCl having good mechanical stability and on Tr 1 being coupled in such a way that any change in its internal capacitance has little effect on the frequency. This is done by arranging that C3 and C4 are effectively across Trl and are large enough to swamp any small changes that might occur.

The output from Trl is fed to the tuned circuit L2, C5 which has a coupling winding L3 feeding $\operatorname{Tr} 2$. The bias for $\operatorname{Tr} 2$ is provided by R5 and R6 with decoupling by C6. The output from $\operatorname{Tr} 2$ is fed to the tuned cir-
cuit L4 C7 with a coupling winding L5 feeding the base of Tr 3 . Note that Tr 3 is normally cut-off and only conducts when driven with an input signal. The emitter biasing resistor R8 provides extra biasing voltage when the stage is operating giving the correct Class C conditions. The output is fed to a suitable impedance matching point on L6 which, with VC2, resonates at the output frequency. Output coupling to the aerial tuning unit is provided by an adjustable coupling coil L7.

Keying and the Keying Filter

The transmitter is keyed on and off by connecting the morse key in the emitter circuit of Tr2. When the key is "up" no current will flow through Tr2 and there is no output. With the key "down" normal output is obtained.

Keying a transmitter by abruptly starting and stopping the carrier wave results in spurious signals being radiated and these are received as "key clicks" over a wide range of frequencies. To overcome this problem the transmitter must turn on and off less quickly and a key click filter L8, C9, R9 is included for this purpose. L8 restricts the rate of rise of current through $\operatorname{Tr} 2$ when the transmitter is keyed on and C9, the fall of current when keyed off, as shown in Fig. 52. The values of L8, C9 and R9 are often chosen experimentally, but the values given are typical.

Modulation

To transmit voice information by radio wave it is necessary for the microphone output signal to vary or modulate the RF carrier wave in a way that will allow the AF signal to be extracted at the receiver. The two basic methods ane amplitude modulation and frequency modulation, each method having its particular advantages and disadvantages.

Fig. 51 : The circuit diagram of the CW transmitter shown in Fig. 49.

Fig. 52: Signal envelopes with and without key click filter.

Amplitude Modulation

Amplitude Modulation is produced by mixing the modulating signal with the carrier wave in a nonlinear device or amplifier. Modulation can be carried out at high power level in the output stage of the transmitter or at low power in an earlier stage providing the subsequent amplifiers are linear (Class A or B).

Amplitude Modulation is shown in two ways in Fig. $53 \mathbf{a}, \mathbf{b}$ and \mathbf{c}. On the left is a representation of the carrier wave, the modulating signal and the resultant modulation envelope as would be seen on a conventional oscilloscope. The graphs on the right show the same conditions but with frequency along the baseline. When two frequencies are fed into a non-linear stage, the output will contain a number of signals in addition to the original input signals. The main ones being the "sum" and "difference" frequencies, as shown below.

Input signals f_{1} and f_{2}.
Output signals $f_{1}, f_{2}, f_{1}+f_{2}, f_{1}-f_{2}$.
If the carrier frequency is $1000 \mathrm{kHz}\left(\mathrm{f}_{1}\right)$ and the modulating frequency is $1 \mathrm{kHz}\left(\mathrm{f}_{2}\right)$ then two side frequencies are generated, the higher one at 1001 kHz $\left(f_{1}+f_{2}\right)$ and the lower one at $999 \mathrm{kHz}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)$. It is the sum of the carrier and the two side frequencies which forms the "modulation envelope" shown in Fig. 53b.

The speech signal from a microphone consists of a band of frequencies between about 300 Hz and $3 \cdot 3 \mathrm{kHz}$ varying in frequency and amplitude with the voice patterns. Modulation by a speech signal results in two sidebands, the upper sideband and the lower sideband. These sidebands, which carry the AF modulation information, are mirror images of each other. The carrier wave remains constant irrespective of whether modulation is present or not and although it carries no information its presence is required at the receiver for the demodulation process.

Since the carrier wave conveys no intelligence it is possible to dispense with it altogether as shown in Fig. 53d (thus saving a great deal of transmitter power), provided it is generated again, locally, at the
receiver for demodulation purposes. Unfortunately this carrier must be in the correct phase relationship with the sidebands or serious distortion will result. A double sideband suppressed carrier transmission is very difficult to tune in and requires a sophisticated receiver for satisfactory reception. However, if the

Fig. 53: Examples of AM envelopes, showing sidebands.
carrier and one of the sidebands are removed and the remaining sideband transmitted then this exact phase relationship is no longer essential and the carrier can readily be inserted at the receiver.

As the two sidebands contain identical modulation, removing one of them does not result in any loss of information and effects a further saving of transmitter power. This type of transmission, shown in Fig. 53e, is known as single sideband suppressed carrier or Emission type A3J and commonly abbreviated to just SSB.

Single Sideband

SSB has several advantages for the Radio Amateur.

1. Saving in transmitter power or the ability to run the equivalent of higher power for the same rating of output amplifier.
2. No carrier radiated so it does not cause the usual heterodyne interference.
3. Requires only half the usual bandwidth.
4. Less affected by transmission path disturbances.

Amplitude Modulation Transmitter

Amplitude Modulation, (A3) can be performed at high signal level in the output stage of the transmitter by applying the modulating audio voltage to the bias or to the HT supply voltage as shown in Fig. 54. In a transistorised transmitter it is usually necessary to modulate the driver or buffer stage as well as the power amplifier. High level amplitude modulation requires appreciable power from the modulator output stage. For example, a transmitter PA drawing 150 watts would require at least 75 watts of modulation power for full modulation.

Fig. 54: An AM transmilter.

SSB Transmitters

The SSB signal is usually generated either by a phasing method, shown in Fig. 55a or by the use of a balanced modulator and filter, shown in Fig. 55b.
In the phasing method, the AF signal is processed in a phase shifting circuit which generates two signals having a 90° phase nelationship over the audio frequency band, 300 Hz to $3 \cdot 3 \mathrm{kHz}$. The RF signal is also phase shifted by 90° and fed with the AF signals, to two balanced modulators with a common output. The result is that the carrier is removed and one sideband is cancelled out. Upper or lower sideband can be selected by reversing the AF or RF inputs to the modulators.

In the filter method, the RF signal is modulated in a balanced modulator to provide a double sideband suppressed carrier signal and then one of the sidebands is selected by a high grade crystal filter to
produce an SSB signal. The filter method is the simpler of the two, but requires an expensive, or very carefully home-made crystal filter.

(b) FILTER SSB GENERATOR

AD030

Fig. 55: Two methods of generation of an SSB signal.

Balanced Modulator or Mixer

The balanced modulator can take many forms but in essence it is a balanced circuit in which the RF input signal is cancelled or "nulled" out.
The simplest form is a diode bridge arrangement shown in Fig. 56. Here the RF input is fed to a bridge circuit where the centre of the diodes is a null point. RV1 and TC1 enable the bridge to be accurately balanced to provide adequate suppression of the carrier. An AF signal input causes D1 and D2 to conduct alternately, on each half cycle, unbalancing the bridge and producing a double sideband suppressed carrier signal at the output.

Fig. 56: Diode bridge moduiator.

Simple SSB Transmitter

The block diagram in Fig. 57 shows a simple SSB transmitter for use on one band $14 \cdot 00 \cdot 14 \cdot 35 \mathrm{MHz}$. In this transmitter the SSB signal originates from a 9 MHz crystal oscillator feeding into a balanced modulator and then to a crystal filter. The 9 MHz SSB signal is mixed with a VFO, tuning 5.00 to 5.35 MHz . The sum of the two frequencies 14.00 to 14.35 MHz is selected at the output. This signal is amplified in a

Fig, 58a: Single band SSB transmitter, above, and Fig, 58b, bridge circuit, top right.
linear buffer amplifier and then a linear power amplifier to give the required SSB power output. Operation on other bands would be possible by changing the VFO frequency.

It is essential that, once the amplitude modulated SSB signal is generated, subsequent amplification must be linear or severe distortion will result. Class C amplifiers are unsuitable for this purpose.

Linear Power Amplifier

A typical linear power amplifier, for use on one HF band is shown in Fig. 58a. The valve is biased to operate in Class B for good linearity combined with high efficiency.

circuit is called a "pi" network (similar in shape to the greek letter pi, π). In operation, VC3 tunes the output circuit to resonance and VC4 effectively provides a variable capacitive tapping point on the tuned circuit and enables the output of the transmitter to be correctly matched to the load.

Neutralisation

There is usually some stray capacitance existing between the anode and grid of the valve both in the valve itself and in the wiring. Signal feedback through this capacitance affects the grid and anode tuning and may cause self oscillation. A neutralising capacitor VC2 feeds a small amount of RF signal from the anode to the opposite end of the grid tuned circuit and neutralises the effect of the anode-grid capacitance. The circuit is rearranged in Fig. 58b to show that the neutralising capacitor forms part of a "bridge" circuit. To set VC2, the HT is temporarily disconnected, an input signal is applied and VC1 adjusted for maximum drive indicated on M1. With VC4 at maximum VC3 is rotated and any variation on M1 noted. VC2 is then adjusted for negligible variation of M1, indicating correct neutralisation.

In the next section we will finish looking at Linear Amplifiers and cover Frequency Modulation and FM Transmitters, Receivers and Converters.

There is an excellent new book available, "Radio Amateurs' Examination Questions and Answers",

Fig. 57 : Block diagram of a single band SSB transmitter.

The SSB signal is applied to the input tuned circuit and the control grid. The output signal, at the anode, is developed across the RF choke, L2 and fed via C5 to the output tuned circuit, L3, VC3, VC4. This output
compiled by the RSGB Education Committee and available from the Radio Society of Great Britain, RSGB Publications (Sales), 35 Doughty Street, London WCIN 2AE. Price $£ 2$ inc. postage.
E.A.PARR

Introduction

Most clubs, churches and societies have fund raising ventures such as bazaars, cheese and wine parties and the like. These usually have side shows and competitions, one of the most popular being the "spin the arrow" game.

This article describes a similar game using a model railway train. A simple model railway layout has four stations (in the prototype named Euston, Crewe, Carlisle and Glasgow). A button is pressed and the train runs for about 30 seconds then stops at one of the stations. Players put money on the stations getting their money back, with a bonus, if the train stops at their station.

Circuit Description and Track Wiring

Before describing the circuit it is necessary to describe the railway layout and how it is split into sections. If the track circuit was continuous and power was simply removed, it is most unlikely that the train would stop exactly at a station. For four stations it is therefore necessary to split the track into eight sections. Four longer running sections all wired together, and four short station sections which can be isolated individually (see Fig. 1).

Originally it was thought that the running sections would be permanently energised, and all the stations sections commoned and driven off a 555 timer. The train would then run for 30 seconds, and stop in the next station section. However the period of the 555 was found to be predictable, and it was possible to guess the station with a fair degree of accuracy.

The final circuit, Fig. 2, was therefore developed. On this the running sections are again permanently energised, but at the end of the 30 seconds one station section is randomly de-energised. The train keeps running until it reaches the de-energised section when it stops.

The run time and the random stops are controlled by a 556 dual timer IC1. The 'a' section is connected
as a monostable (period 30 seconds) and the ' b ' section as an oscillator (frequency about 50 kHz) gated by the ' a ' section so that it only runs during the 30 second period. This gating is carried out by pins 5 and 8.
The pulses from the 50 kHz oscillator which appear on pin 9 of ICI go to a two bit counter made from two D type flip flops (IC2). At the end of the thirty second period this will contain a "random" number from 0 to 3 inclusive. This is decoded by IC3 and used to turn off one of the four transistors TRI to TR4, de-energising one of the station sections. The high frequency of the oscillator and long period for which it runs gives a sufficiently random count.

The positive supply for the track is derived from a very simple series regulator TR7, allowing the train speeds to be controlled by RV2. Players can be allowed to drive the train as it does not affect the station the train ultimately stops at.

Fig. 1: The track circuit layout.

When the monostable times out, TR5 turns off and TR6 emitter rises to about 9V. This brings the loco supply up to 9 V when the 30 second period is over, taking control away from the players.

Whilst IC2 is counting, the transistors TR1-TR4 are being briefly turned off at regular intervals. The effect of pulsing a small motor at 50 kHz was not known, so diodes D5, 6, 7 and 8 are used to hold the negative supply to the track during the 30 seconds that IC2 is counting. TR5 is turned on when the monostable is running and off when it times out.
The period of ICla can be varied by RV1, and the running period can be terminated prematurely by pressing the stop button. If it is wanted to make this a game of 'skill' the stop button could be operated by the player.

Fig. 3: The probability loading circuit diagram.
The power supply is straightforward, the 5 V supply being derived from an IC regulator. Good decoupling is essential on the 12 V supply to prevent noise spikes from the locomotive motor getting into the logic.
With a 7490 and a 7445 connected as shown in Fig. 3 a "loading" can be introduced, and the train will stop on average four times at station A, three times at station B, twice at station C and once at station D in ten runs. The returns to the players should be varied accordingly so as to make an overall profit on the game.
It is recommended that the trains be run in one direction only, as it is not possible to position the stations so that the train will stop at the station from each direction (remember that the loco has to stop past the station for the coaches to be at the platform).
components

Construction

The prototype was constructed on $0 \cdot 1$ inch pitch Veroboard with the layout shown in Fig. 4. No particular difficulty should be encountered in the construction. IC4 (the 5V regulator) and TR7 are mounted on the unit case.

Fig. 4: General Veroboard layout of the unit.

Warning

The laws of this country regarding games of chance are somewhat complex, and are often overlooked by function organisers. Many premises and societies are licensed for gaming, many are not. If it is decided to use this for some fund raising venture and other games of chance (as opposed to games of skill) are being used then the venture is licensed (or the club is already taking a risk).

If there is any doubt, the local police should be consulted.

The layout was built on a $3 \mathrm{ft} \times 4 \mathrm{ft}$ base board to a design as shown on Fig. 1. This gives a lot of track in a small area.
N gauge was used, and 6 inches was found to be a reasonable length for the station sections. The actual stations should be placed just before the station section and positioned so the coaches will be at the platform when the train stops.
The whole layout was landscaped with fields, cut. tings, a waterfall and a tunnel so the simple track layout was not immediately apparent.
There is actually more work in building the layout than in the electronics. The electronics were built in one evening, but laying the track and building the scenery took nearly a fortnight!

(1) READERS
 To:- READERS PCB SERVICES LTD, PO BOX 11, WORKSOP, NOTTS

Please supply PCB's as indicated by tick/s in box/es..............

Issue	Project	Ref	Price P/P	
Dec 75	Sound-To-Light Display	DN0798	$\mathbf{1} \cdot 15+12$	\square
Dec 75	Disco System, Amp. (2 req'd) each AM0421	$4 \cdot 40+22$	\square	
Dec 75	Disco System, Light Modulator	AM0423	$3 \cdot 50+22$	\square
Mar 76	CMOS Crystal Calibrator	AM0438	$1 \cdot 19+12$	\square
Apr 76	Auto. Slide Synchroniser	AM0441	$2 \cdot 33+15$	\square
June 76	Dig. Freq. Meter (set of 5) A015 and 4x A004	$3 \cdot 17+15$	\square	
July 76	Disco Preamplifier	A003	$0 \cdot 65+12$	\square
Aug 76	Cassette Player Power Supply	A001	$0 \cdot 65+12$	\square
Oct 76	Digital Car Clock (set)	A011/012/013	$2 \cdot 58+12$	\square
Oct 76	Interwipe	DN8JM	$0 \cdot 80+12$	\square
Oct 76	Video-Writer (set)	D002/3/4/6 A007	$21 \cdot 44+50$	\square
Oct 76	Hazard Flasher	D005	$0 \cdot 76+12$	\square
Nov 76	Low Level Battery Indicator	A016	$0 \cdot 40+12$	\square
Nov 76	Electronic Thermostat	A017	$1 \cdot 30+12$	\square
Nov 76	Cirtest Probe	A018	$0 \cdot 48+12$	\square
Nov 76	Burglar Alarm	A019	$0 \cdot 50+12$	\square
Dec 76	Chromachase	A021	$5 \cdot 70+22$	\square
Jan 77	Oscilloscope Calibrator	A023	$1 \cdot 25+12$	\square
Jan 77	Icelert	A020	$1 \cdot 45+12$	\square
Feb 77	Transistor Checker	A026	$1 \cdot 18+12$	\square
Apr 77	Tug 'o' War (set)	A029/030	$2 \cdot 88+12$	\square
Apr 77	Gas/Smoke Sensor Alarm	A028	$0 \cdot 65+12$	\square

\boldsymbol{J}-DeGnology

This new series of simple projects continues where the previous S-DeCnology articles left off. The S-DeC projects all used discrete components, but the new series will feature circuits which employ one IC.

All projects will be built on a $\mu \mathrm{DeCB}$. Like the S-DeC it has lettered and numbered holes into which the components are plugged using their lead wires. Beneath the holes in the plastic top, tiny retaining clips/sockets (connected electrically) connect up the individual components. Their connection patterns are shown as raised lines on the plastic top surface of the DeC.

Whereas the S-DeC had but 70 holes, the $\mu \mathrm{DeCB}$ has 208. It will accept discrete components, but also has provision for taking two ICs. Special IC carriers are employed to avoid damaging the IC pins by repeatedly plugging them in and out. Two types of IC carrier are available but we will use the one which accepts standard 16-pin DIL flat packages (the other carrier accepts round ICs in TO-5 packages).

Wherever possible, the circuits to be described will use the same component values. Thus once a circuit is built, the components may be simply unplugged and used again for future projects. Circuits which are required in permanent form can either be

Fig. 1: The 741 op. amp, pin connections,
transferred directly onto Blob Board, or a small PCB may be designed, drawn and etched.

The circuits have been designed with cost in mind, and to this end the first IC chosen was the ubiquitous 741 operational amplifier-advertised in Practical Wireless for as little as 24 p including VAT.

Let us get to know our new friend, the 741 IC. The pin connections are shown in Fig. 1. The transistors we used in the last series each had three leads. The IC isn't really so complex (connectionwise) since we are only going to use 5 leads. And because pins 7 and 4 got to the positive and negative battery terminals respectively, then we have, like the transistor, just three wires or leads. See how easy these ICs really are!

There is just one odd thing to resolve; we have one output (pin 6) but two inputs-pins 2 and 3 . We'll talk about those later, but first let's look at some of the figures or specs for our 741 op amp.

It has low frequency gain, between input and output, of some 100,000 . Each of its inputs has an input impedance of around $1 \mathrm{M} \Omega$ while the output impedance at pin 6 is of the order of a few hundred ohms.

The positive (pin 7) and negative (pin 4) power connections are straightforward, and all amplifiers have an output (pin 6 in our case). So let's look at those two inputs.

The input at pin 2 marked with a negative or minus sign gives an "inverted output" at pin 6. Alternatively, pin 3 (marked with a plus or positive sign) will give a "non-inverted output" at pin 6 .

* components

R1 100k Ω	IC1 741 op amp (8-pin DIL)
R2 100k Ω	LED1 almost any LED
R3 100k 2	One $\mu \mathrm{DeC} \mathrm{B}$
R4 1k Ω	One DIL $\mu \mathrm{DeC}$ B carrier
9V battery	solid cored wire, or DeC jumper leads

This merely means that if we apply a positive voltage to the negative input (pin 2) with pin 3 grounded, then the output will swing negative. In other words; positive input = negative output: inverted.

Conversely, if we applied our positive voltage to pin 3 (with pin 2 connected to ground this time) the output would swing positive. So: positive input $=$ positive output: non-inverted.

Now let us examine two preliminary circuits to get the feel of the 741 op amp, and to actually see what we mean by inverting and non-inverting. You can easily build these on your $\mu \mathrm{DeC}$ if you wish.

Figure 4 has a 741 op amp, 6 resistors and an LED. The circuit is powered from a single 9 V battery. Pin 3 is held at half the battery voltage $(4.5 \mathrm{~V})$ by the potential divider R1/R4. We can vary the voltage applied to the negative input (pin 2) from negative ground (zero volts, or "low") up to positive 9 V or

Fig. $2: \mu \mathrm{DeC}$ carrier with 741 in position.
"high". In other words we can make pin 2 up to +4.5 V above pin 3 or -4.5 V below it since at either end of its track the potentiometer will connect pin 2 to +9 V or zero respectively. Resistors R2 and R3 are included to prevent excessive currents flowing. This is particularly relevant when VR1 is at the top or most positive end of its track.

A clear indication of output voltage is given by the LED. Resistor R5 limits the current drawn by the LED.

The diode will light when the output voltage is

The $\mu \mathrm{DeC}$ layout for this month's project shown actual size. Note the orientation of the 741 op. amp. in the carrier and also the way in which the carrier is plugged into the $\mu D e C$.

RMO20

positive or "high", and extinguish when it is low. If you wanted to be absolutely sure what the input was, then you could ignore the potentiometer and take a wire from point X connecting it in turn first to the positive battery terminal and then to the negative

Fig. 3: L.E.D. symbol and outline,
one. It can then be seen that when the connection is made to the negative or "low" terminal, the output at pin 6 is "high" and the LED lights. Connecting the wire to the positive terminal extinguishes the LED showing the inverting action of the circuit.

To see the effect of the non-inverting circuit, look at Fig. 5. Again we have a potentiometer and series resistor (R1). The LED and its limiting resistor also remain. Connecting the $100 \mathrm{k} \Omega$ resistor R 2 directly between output and the negative input (pins 6 and 2) means that the voltage at pin 2 is the same as the output voltage at pin 6. One can again turn the potentiometer from negative ground (zero volts, or "low") up to +9 V or "high". Here it will be seen that when the input to pin 3 is high (+9 V) the output is also high (LED lights). When pin 3 is "low" the LED does not light. Thus we have a non-inverting situation.

The above simplified theory is important and we will return to it when building other projects in this series.

Our first suggested project makes use of the very high gain and input resistance mentioned earlier. Figure 6 shows the circuit. Because of the high gain and high input impedance, pin 3 is easily affected by surrounding conditions.

Fig. 4: Inverting op. amp. circuit.

The inverting input (pin 2) is fixed at 4.5 V by the potential divider R1/R2. Pin 3 is also taken to the potential divider via R3. Pin 3 is now extremely sensitive to changes. So much so that if the end of the probe wire from $\mu \mathrm{DeC}$ hole B13 is merely touched the LED will immediately light up. In the prototype, just gripping the insulation of the probe wire caused the LED to illuminate.

On test, the circuit was found to function at 5 V . Voltages above 9 V are not recommended.

The project can be used for numerous things. For example, it could be useful to send visual morse by 'tapping' the probe wire. Hams might consider using

Fig. 5 ; Non-inverting circuit.
the circuit as a noiseless morse key. The input or probe wire could be connected to a small (say $15 \mathrm{~mm}^{2}$) aluminium plate. The c.w. could be sent with one finger touching out the morse characters. The 741 might be used to drive a transistor or thyristor to effect actual keying of the rig. With the touch wire connected to a metal door knob the circuit could be used as some form of alarm-how about trying it on the metalwork of your car?

Fig. 6 : Circuit diagram of the Light Modulator.
By connecting a crystal microphone between pin 3 and earth (unplug the probe and connect the mike to $\mu \mathrm{DeC}$ holes B13 and D23) the LED can be modulated by speech and/or music. The circuit can thus be used as a simple light modulator.
When building $\mu \mathrm{DeC}$ projects watch out for jumper or shorting wires-they are easy to forget because they are not actual electronic components. There are two in this month's project; between holes $\mathrm{H} 1 / \mathrm{H} 12$, and $\mathrm{B} 15 / \mathrm{Cl} 3$.
The IC carrier will only fit one way round into the $\mu \mathrm{DeC}$ so there is no danger of error here. Note that our 741 is the 8 -pin DIL type (because it was the cheapest!). This is plugged into the middle eight sockets in the carrier, and it is helpful to label the different pin numbers on the DIL carrier with a felt pen (or whatever). This makes wiring easier and helps enormously when checking out a circuit.
next month in

- TV AERIAL MASTS

As recent high winds have shown, the aerial mast is a vital but vulnerable part of a TV installation where reception from alternative transmitters is required. To buy and have erected a professional lattice mast is an expensive business - too expensive for most enthusiasts. There are alternative ways of going about raising the aerial(s) to a good height however, as Garry Smith and Keith Harmer show. Detailed guidance is given on the hardware required and safety precautions.

RECONDITIONING SETS

Many service engineers make a worthwhile sideline out of reconditioning and selling old TV sets. There are enough of them around, at bargain prices, but care is required in selecting suitable candidates. Steven Knowles advises on what to look for and the repairs it's worth making.

- MONITOR CONVERSION

Sets designed as video monitors tend to be expensive. It's cheaper to adapt an off-air receiver for the purpose. This can be done without too much difficulty, as David Matthewson explains.

- SERVICING FEATURES

John Law on the Pye 67 chassis, a recommended set for renovation, while the second Saba article deals with the line timebase - of particular interest in being of the thyristor variety.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

то
(Name of Newsagent)
Please reserve/deliver the $M A R C H$ issue of TELEVISION (50p), on sale February 20th, and continue every month until further notice.
\qquad
\qquad
\qquad
\qquad

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more information on products than appears in the article.

Charging meters

Having made use of rechargeable batteries I know how long it takes to fully recharge them. There have been some achievements in this area and at least one manufacturer had cells which could be recharged in just four hours.

Now I read with great joy about a sealed lead-acid battery which can be recharged to its full capacity in exactly 60 minutes if one follows the manufacturers special recharging procedure. Perhaps, instead of parking meters of the future we will have charging meters for the electric car-it charges your battery while you shop, and charges you when you return!

Electronic au-pairs

Doubtless everyone is all for labour saving devices-things which make life easier in the home (apart from one au-pair francaise!) are naturally popular. One manufacturer has given thought to a number of things and has sought to combine all the answers in one unit.

The original item of manufacture was an environmental chamber into which various pieces of electronics were put. These were then subjected to anything from freezing cold to tropical heat, salt spray, high humidity, etc., etc.

The makers then had a brilliant idea -why not make an environmental chamber for the home. A combined sauna, cold water bath, tropical sunshine sun-tanner, you-name-it-we-doit chamber.

It seems that they've hit onto a winning idea, too. Orders are flooding in from health hydros, hotels and motels all over the place.

Needless to say the whole thing is electronically controlled and each sequence of whatever you've dialled in is electronically timed. Instead of having a sauna and then having to rush out and hurl yourself into a freezing puddle, you can climb into your environmental chamber, press a button, and immediately after your carefully timed sauna is over-a freezing puddle will rush in and hurl itself all over you!

And just for the record; the same company is manufacturing things called "whirlpool tubs". One's imagination could run riot here, thinking of
things like automatic brushes which pop up to scrub your back-although faulty body positioning could prove fatal!

Radio Sundial

With electronic watches ever keeping up with the times I often wonder if there is any real limit to it all. At a recent electronics show at Basel, a famous watch manufacturer hung up an electronic watch with a conventional face. It was powered by its own solar cells and contained a radio receiver which was tuned to time signals broadcast from Switzerland. The result was that the clock maintained an accuracy of ± 0.1 second per day. When the time signal went off the air, the watch went on ticking away to a frequency set by its own internal quartz crystal. Immediately the Swiss time signal came back on the air, the clock would synchronise and automatically correct any error which had crept in. We've come a long way since sun dials.

Phonemes

Chatting to a computer is a common enough happening in television science fiction, but it isn't quite so far away as one might think. If you haven't already-meet the Phonic Mirror Handivoice. Don't shake hands with it too eagerly; it costs around £ 1111.00 excluding VAT!

So; what do you get for the money. Well, all words are made up of sounds. These basic sounds (which make up everything we say) are called phonemes. The device above has a memory which accepts up to 40 commands from a small keyboard (the whole unit is a little larger than a calculator). Inside is an electronic analogue of the human voice-a thing called a phonetic synthesiser. It produces all these basic sounds or phonemes. When the 'talk' button is depressed, the memory sends the commands to the phonetic synthesiser which then emits all the right squeaks and moans in the right sequence and the result is 'human' recognisable words.

Perhaps the most obvious question is how limited is the vocabulary. In theory, since it produces all the necessary phonemes, the vocabulary
is virtually limitless. Surprisingly there aren't all that many phonemes required -about 45 for 90% of our normal useage. By making different sensor inputs it is envisaged that even severely handicapped people could 'talk'. A sensor might sense breath, or perhaps muscle movement etc. Needless to say, the unit boasts a microprocessor in addition to its read-only memory and synthesiser.

Oh for my PL81

I can remember when a large semiconductor manufacturer claimed to have reduced the colour television receiver to just five integrated circuits. "Wonderful" mumbled an awed Press gathering. An even more "awed Ginsberg" heard recently that a German manufacturer had succeeded in reducing the number of ICs required to process colour TV signals down to three little chips. Apparently this current video miracle has been achieved by putting both luminance and chrominance amplifiers onto a single chip. While I bow my head to such great technical achievements 1 believe that it is sometimes a doubleedged weapon. Think; as more and more is crammed onto a single chiphow much more complex and expensive that chip becomes. How very much more difficult it is to service-to check that chip as it comes off the production line.
Sad, sad, I still hold fond memories of my local TV service man assuring me, "It's yer PL81 mate-they always go about this time of year".

Goodbye pot!

If you have a light dimmer it's certain that you're using a potentiometer, with a knob on the end, as the control. Well, a manufacturer has come up with a touch plate plus complementary IC to change all this to touch control. Just touch the plate and the light will brighten or dim automatically. The punch line is that the cost of the IC and touch plate will be less than the cost of a potentiometer and knob! Look out knob twiddlers-this is your life!
Gimberz

Following the great success of the Crystal Palace tests it was decided to attempt further experiments with aircraft and on June 18th, 1933 two De Havilland Dragon-Moth aeroplanes were fitted with transmitters and receivers for $56 \mathrm{Mc} / \mathrm{s}$. One aircraft was again chartered by the Daily Herald and the other by Popular Wireless. Douglas Walter's gear was installed in the Herald's plane and George Jessop fitted his sets into the Popular Wireless plane. The DragonMoth was chosen because of its large cabin which normally held six passengers. Several seats were removed in order to provide space for the radio equipment and the associated power supply.
Ordinary 2 V valves were used as oscillators (Osram P2's) and modulators (Osram PT2's in parallel). The power supply consisted of 200 V from Hellesen supercapacity batteries, specially supplied for the occasion. The aerials were half-wave and slung inside the cabin and a transmitter power of about 5 W was used. The receivers were conventional 3 -valve super-regens as used before. When both planes were airborne, twoway radio communication was established between them. Owing to thick mist and heavy rain, the two aircraft lost sight of each other but met again over Harrow. At this time, Doug could hear George Jessop working duplex phone with G2JV of Harrow and shortly after, Doug did the same. Later they worked G6YK and G6NF with absolute ease and when both planes landed at Romford Aerodrome they talked about the running commentary given by G5CV as he was landing.

Radio in Gliders

After spending an afternoon on Dunstable Downs watching the London Gliding Club's flying activities, Doug Walters decided that radio could really assist gliding. Pilots attempting long distance flights could obtain the latest information from ground stations and instructors correct faults and give advice to their pupils. Once more here was an opportunity to prove again the efficiency of $56 \mathrm{Mc} / \mathrm{s}$ for reliable "local" communication.

One fine Sunday in 1934, "the old firm" of Walters and Jessop arrived on Dunstable Downs with a car load of $56 \mathrm{Mc} / \mathrm{s}$ apparatus including a midget 5 m receiver specially made by George. It had three valves housed in an aluminium case and measured $6 \times 5 \times$ $2^{1}{ }_{2}$ in. A 60 V HT battery and a small unspillable accumulator were contained in a small suitcase which was placed in a recess behind the seat of the glider. The aerial was a $3 f t$ length of wire inside the suitcase!

While the glider was being towed up the hill, Doug tested out his transmitter which was totally enclosed in an aluminium cabinet and mounted immediately below the feeder of their wire dipole, which was suspended between two 6 ft rods supported at each end by the car. When the glider was airborne, Doug told the pilot that he was the first person to "listen-in" while gliding, and then asked him to "bank" to the left, which he did, as if to salute the expertise of G5CV and G6JP!

$56 \mathrm{Mc} / \mathrm{s}$ Field Days

Field days have always brought out the best in both operators and equipment and records have often been established and broken and new ideas tested out. During a local $56 \mathrm{Mc} / \mathrm{s}$ Field Day in 1934, BRS157 took his receiver to the top of Chanctonbury Ring in Sussex and heard G6CJ (50 miles), G2YL and G6NF

(both 27 miles) and G5NF (30 miles). These listener reports were valuable in those early days because they could evaluate the differences between several stations.

The first $56 \mathrm{Mc} / \mathrm{s}$ National Field Day was held in July 1937 and certificates of merit were awarded by the RSGB to T. P. Allen GI6YW and W. Jones GW60K in recognition of the first $56 \mathrm{Mc} / \mathrm{s}$ contact between Northern Ireland and Wales. Good distances were covered from various locations in the UK. For instance, G2DC/P located in Buxton, Derbyshire worked G60K/P (85 m), G6MX/P (77 m) and G5MQ (40 m), while down in Sussex at Kithurst Hill, near Storrington, G5MA/P worked G2NH/P, G5CM/P, G6RD, G5JW/P, G2MV, G6GR and G8IX/P. Up in Cumberland G6JZ using a QRP rig heard no signals all day, but over in Bristol G5JU/P contacted G6FV (14 m) and heard G5BK/P at 60 miles.

One of the highlights of the second $56 \mathrm{Mc} / \mathrm{s}$ NFD, held in 1938, was the contact between GW6AA/P on Snowdon and EI2J (98 miles) running 0.5 W input to a type 30 valve from his car on a hill behind Dublin. Although the official report shows that the number of transmitting logs was down from 19 (1937) to 15 the prize for enthusiasm must go to G2NM/P operated by the West Sussex SW and TV Club situated on Bury Hill, in Sussex. Their transmitter was a 6L6 Tritet ECO, 6L6 PA, modulated with a 6 N 7 in Class B and was powered from a rotary converter giving 110 V AC. Many receivers were used besides the receiver associated with the field day transmitter. There was quite a gathering on the site with 35 members and visitors being present. They had a good log to show for their day's work: 11 contacts made and six stations heard, compared with G2JK/P on Epsom Downs, Surrey, who worked 14 and heard eight, and G5MA at Holybourne Down, Hants, who made 13 contacts and heard 10, while up on Snowdon, GW6AA/P worked 11 and heard one plus very strong signals from 5 m police stations.

Thirteen listener logs were submitted compared with nine for the 1937 field day, and, apart from 2CIL's record entry, the leading stations were BRS2601 (Ewell, Surrey 21 stations), 2AAH (Chichester Sx 12), and 2DFG accompanied by BRS3322, each with their
own receiver, situated on Ditchling Beacon, Sx. Between them they heard 13 different stations, eight were on phone and 11 on CW.

1939

While researching this story, the author realised that the report of the $56 \mathrm{Mc} / \mathrm{s}$. NFD held in July 1939 was published in the September issue of the $T \& R$ Bulletin, several days after the outbreak of World War 2, and the withdrawal of the amateur radio transmitting licence. The RSGB estimated that about 100 amateurs took part in the portable operations during this event, in addition to the large number of fixed stations who joined in from home. During this event, BRS1173 heard three European stations, F8AA, F8NW and ON4DJ, but unfortunately none of the portable stations was able to work them.
The RSGB was pleased to see that their policy of encouraging the use of crystal-controlled transmitters and modern types of receiver was bearing fruit. Of the 16 portable transmitting stations who entered logs no less than 11 employed crystal control and many of them used Acorn valves as RF amplifiers in their receivers.

The adjudicators decided that C. J. Rockall G2VZ and his partner E. Cosh 2DDD were the joint winners of the RSGB's Mitchell-Milling Trophy, not so much on the actual performance of their station or the number of contacts made, but for the clear, concise, and extremely interesting log which they submitted. After the war Eric Cosh became G2DDD and was one of the pioneers of both the 70 cm and 23 cm bands.

The permit issued to Constance Hall G8LY allowing her to operate with portable equipment. The authorisation "until the end of September 1939" was somewhat prophetic/

The "shack" of Constance Hall G8LY, in the mid-30's, located at North Waltham Rectory, Winchester.

He spent the summer of 1975 going through the author's collection of $T \& R$ Bulletins (1930-1940) marking all the references to the 5 m band. This work was of great value to the author when writing this story. Eric died in 1976 having devoted his life to the experimental side of amateur radio.
Miss Constance Hall G8LY also qualified for a transmitting award of merit, again not so much for the number of contacts made but for the interesting report which accompanied her entry, including a plan showing the direction and distance of each station that she heard or worked. The equipment used by G8LY was housed in one cabinet and operated from the rear seat of her car and she could rotate her beam aerial through the window.

The third transmitting award went to Ernie Dedman G2NH, partly for his interesting report but more particularly for the consistency with which contacts were made during the whole event; 21 QSOs were made in 10 hours.

In the receiving section two awards of merit were made; one to G. F. Keen 2BIL and the other to J. Cymerman BRS3101 because of the general excellence of their results and well written reports. 2BIL proved the value of CW for making DX contacts, hearing three CW stations over 100 miles away, 11 over 50 miles, but none over 50 miles were received on telephony.

The Trail Blazers

A small group of experimenters known as the "Folkstone Radio Amateurs" established the first $56 \mathrm{Mc} / \mathrm{s}$ link between England and the Continent in March 1936. This was arranged through correspondence between the group's chairman G2IC and F8WY. On 29th March the operators at G2FA heard F8NW working F8AA. They gave F8NW a short call and to their great joy he came back, giving them R7 QSA5. Mutual congratulations were exchanged, and it must have been amusing to hear each of the 10 club members present take the microphone in turn and try his hand at French. Later they made contact with F8WY, F8ZF and F8AA.
The apparatus used at G2FA was a long-lines oscillator with a couple of Tungsram 15/400 valves in push-pull and an input of 8 W at 250 V . The aerial was a vertical dipole, Windom fed, with a reflector spaced at a quarter wave. The receiver was a two-valve selfquenching super-regen with a vertical doublet aerial.

This is a general-purpose quality amplifier which has been specially designed with the amateur constructor in mind. Virtually all the components are mounted on a single printed circuit board, greatly simplifying assembly and eradicating the intangible problems of earth loops and hum pick-up from the power supply section. A simple, but very effective, method of heat sinking the output stage is used which, again, avoids a bugbear for the home constructor. Even though construction is simple the circuit is fairly sophisticated and it is imperative that there is no variance from the specified component values. Equally, because of the large number of components, care must be taken to insert them in the right places on the p.c.b.

The design provides push-button input switching and equalisation for a magnetic pick-up cartridge, a tape recorder playback head, a tuner and one auxiliary channel. The output stage provides maximum power into a 4 ohm loudspeaker; however, it is permissible to use 8 or 16 ohm loads provided the reduction in output power is acceptable. Controls are quite conventional utilising ganged potentiometers for Volume, Treble and Bass together with a Balance control. A simple switchable rumble filter can be introduced when required.
A nominal 56 V power rail supplies the power amplifiers without stabilisation and has proved to be more than adequate. Nevertheless to avoid damage to speakers from switch-on surges a slow turn-on circuit

* Author's specification

IPUT	Mag. PU 5 m У RIAA equalised Tape head 5 mV NAB equalised Tuner 350 to 500 mV Low Impedance 'Flat' Auxillary, sensitivity 100 to 180 mV . Low impe- dance, 'flat', suitable for Transistor zadio or tape recorder earplece Or, medium output crystal cartiflge with 470 k , series resistor. Or, ceramic cartridge using took series resistor

POWER OUTPUT Continuous, both ehannets driven $30+30$ watts into 4Ω load

TOTAL HARMONIC DISTORTION 75 dB gain at 4 kHz) Better than 0.05 to 0.1% typical up to cilpping level

CROSSOVER DISTORTION at 1 W into 160 -nil
HUM AND NOISE 115 dB below. 50 W
RUMBLE FILTER - 7 dB at 100 Hz
CHANNEL SEPARATION 45dB at 1 kHz
FREQUENCY.RESPONSE 10 Hz to 18 kHz
TREBLE/BASS CONTROLS -20dB to +20 dB
OUTPUT IMPEDANCE Minimum 1 12 , maximum to infinity Open and short circuit protected

STABILITY Unconditionalfy stable

has been incorporated. This will be described later. The supply to the pre-amplifier is 30 V ; obtained from a conventional series stabiliser circuit.

Pre-amplifier

The circuit of one pre-amplifier channel is shown in Fig. 1. The heart is an LM381AN integrated circuit which contains two ultra-low-noise amplifiers. They are completely independent and draw their power from an internal power supply decoupler-regulator that provides better than 120 dB supply rejection and 60 dB channel separation.

The alternative pin numbers shown on ICl refer to the second channel connections.

Gain, and equalisation, options for the various inputs are selected by switching components into the feedback circuit for IC1. For example, when S4 is depressed the magnetic cartridge input is selected. Resistors R11, 12 and 13 together with C4 and C5 are switched into the feedback loop. R11 and R13 in conjunction with R4 set the d.c. working point of the amplifier and the frequency dependent components -C4, C5 and R12 shunted across R11 determine the compensatory roll-off for the RIAA recording characteristics.

Switch S3 selects the tape-head input. Note that this is designed to accept a signal direct from a tape recorder head and NOT after a tape pre-amplifier stage! NAB playback equalisation is provided by C2 and R7 shunted across R9 in similar manner to that for the magnetic cartridge.
amplifier cramese

Fig. 1: Circuit diagram of one channel of the pre-amplifier section. The alternative pin numbers given against the inputs and output of IC1 are for the other channel. Note that C8 should (of course) be drawn as a capacitorl

Resistors (all $\frac{1}{3} \mathrm{~W}$ unless otherwise stated)		
R1	$47 \mathrm{k} \Omega$	R22 10k $2 \frac{1}{2} \mathrm{~W}$ Metal oxide
R2	$22 \mathrm{k} \Omega$	R23 330k
R3	$47 \mathrm{k} \Omega$	R24 $820 \Omega \frac{1}{2} \mathrm{~W}$ Metal oxide
R4	$120 \mathrm{k} \Omega$	R25 $10 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ Metal oxide
R5	470k	R26 39k ${ }^{\text {R }}$
R6	10k Ω	R27 150k Ω
R7	$56 \mathrm{k} \Omega$	R28 $270 \mathrm{k} \Omega$
R8	$56 \mathrm{k} \Omega$	R29 $27 \mathrm{k} \Omega$
R9	$2 \cdot 2 \mathrm{M} \Omega$	R30 $6.8 \mathrm{k} \Omega$
R10	470Ω	R31 1.5k
R11	$1 \mathrm{M} \Omega$.R32 $1 \mathrm{k} \Omega$
R12	$100 \mathrm{k} \Omega$	R33 220ks
R13	$3.9 \mathrm{k} \Omega$	R34 12ks
R14	270Ω	R35 2.2k Ω
R15	220k Ω	R36 100 $\frac{1}{2} \mathrm{~W}$ Metal oxide
R16	$5 \cdot 6 \mathrm{k} \Omega$	R37 100 $\frac{1}{2}$ W Metal oxide
R17	560Ω	R38 27Ω
R18	$10 \mathrm{k} \Omega$	R39 1kS 2W Wirewound
R19	82k Ω	R40 560Ω
R20	8.2k	R41 120ks
R21 18,		R42 $1 \mathrm{k} \Omega$
		R43 See Specification

Two off each resistor required, except R39 and R40.
Potentiometers
VR1 $100 \mathrm{k} \Omega+100 \mathrm{k} \Omega$ ganged lin.
VR2 $100 \mathrm{k} \Omega+100 \mathrm{k} \Omega$ ganged lin.
VR3 $100 \mathrm{k} \Omega+100 \mathrm{k} \Omega$ ganged lin.
VR4 $100 \mathrm{k} \Omega \mathrm{lin}$.
VR5 $100 \mathrm{k} \Omega$ min. horinzontal preset
VR6 $1 \mathrm{k} \Omega \mathrm{min}$. horizontal preset
Two off each preset VR5 and VR6 required.
Capacitors

C 1	$0 \cdot 1 \mu \mathrm{~F}$ poly.	$\mathrm{C} 121 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C 2	$1 \cdot 5 \mathrm{nF}$ poly.	$\mathrm{C} 130 \cdot 1 \mu \mathrm{~F}$ poly.
C 3	$22 \mu \mathrm{~F} 25 \mathrm{~V}$ elect,	$\mathrm{C} 14100 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C 4	$3 \cdot 3 \mathrm{nF}$ ceramic	$\mathrm{C} 154 \cdot 7 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C 5	1 nF ceramic	$\mathrm{C} 1622 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C 6	$1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.	C 171 FF ceramic
C 7	$0 \cdot 1 \mu \mathrm{~F}$ poly.	$\mathrm{C} 181 \mu \mathrm{~F} \mathrm{35V}$ tant.
C 8	68 nF poly.	$\mathrm{C} 192200 \mu \mathrm{~F} 30 \mathrm{~V}$ elect.
C 9	$0 \cdot 47 \mu \mathrm{~F}$ poly.	$\mathrm{C} 200 \cdot 1 \mu \mathrm{~F}$ poly.
$\mathrm{C} 102 \cdot 2 \mathrm{nF}$ poly.	$\mathrm{C} 213300 \mu \mathrm{~F} 63 \mathrm{~V}$ elect. (high	
C 1122 FF poly.		
Two off each capacitor required, except C 21 and C 22.		

Switches

S1 6 p.c.o. push button
S2 6 p.c.o. push-button
S3 6 p.c.o. push-button
S4 6 p.c.o. push-button
S5 4 p.c.o. latching push-button
S6 2 p.c.o. latching push-button
S7 S.P.S.T. mains on/off

Semiconductors

Tr1 BC147
Tr2 BC147
Tr3 BC461
Tr4 BC109c
Tr5 BC109c
Tr6 BC109C
Tr7 TIP31A
Tr8 BFY56
Tr9 BC461
Tr10 TIP3055
Tr11 TIP3055
Tr12 BFY50
IC1 LM381AN
D1 3A 200 V bridge
D2 BZY88 C30V 400mW 30V Zener.
Two off each transistor Tr1-Tr11 required.
Transformer
T1 Low profile, low flux leakage transformer Pri: 240 V 50 Hz Sec: 45 V off load

38 V at 2A r.m.s.

Fuses

FS1 2A 20 mm
FS2 500 mA 20 mm
FS3 2A 20 mm
Two off fuses FS3 required.
Connectors
PL1 3-pole, chassis-mounting mains plug
SK1 5-pole DIN (180°)
SK2 5-pole DIN (180)
SK3 5-pole DIN (180)
SK4 5-pole DIN (180°)
SK5 5-pole DIN (180°)
SK6 2-pole DIN speaker socket
SK7 3-pole, chassis-mounting mains socket
Two off sockets SK6 required.

Miscellaneous

Insulating mounting kits for Tr7, Tr10, Tr11 (two off each)
Heat-sinks for Tr3, Tr8, Tr9 (two off each)
Horizontal mounting clip for C21
Printed circuit board, (available from Reader's PCB
Service)
Materials for chassis, heat-sink and case.
Knobs for VR1-VR4. Fuse holders for FS1-FS3 (4 off)

NOTE-Many components need to be duplicated (as indicated above) for the two stereo channels

The mains transformer T1 and switch assembly comprising S1-S6 are available from WKF Electronics, 60 Welbeck Street, Whitwell, Worksop, Notts.

The remaining two inputs, selected by $S 2$ and S 1 , are very similar to each other. Neither is provided with equalisation networks so when these are selected it can be assumed that the amplifier exhibits a flat response. They are therefore suitable to match the outputs of tuners, transistor radios, tape recorder preamplifiers and, provided a suitable series input resistor is incorporated, crystal or ceramic cartridges.
An equalised output is provided to feed an external tape recorder via R15 if required and this, of course, is not affected by the pre-amplifier tone, balance or volume controls.

Tone controls

Due to the high gain of ICl and its large output signal it becomes possible to use a passive tone control system. This obviates the need for further feedback loops and reduces the chances of introducing instability or noise from an extra stage. The circuit is very similar to that which is normally incorporated in a feedback loop and provides bass and treble boost or cut from a centrally flat characteristic.

Potentiometer VRI is the Bass control and when its wiper is nearest R16 maximum bass is obtained.

Fig. 2: Circuit diagram of one channel of the power amplifier section.

VR2 provides maximum treble boost when its wiper is nearest C10. A simple rumble filter is incorporated before the tone controls. This is C7 which is in circuit when S 6 is released, providing a low-frequency rolloff, but shorted out when S 6 is depressed.

Power amplifier

The circuit of one channel's power amplifier is shown in Fig. 2. Transistors Tr4, 5 and 6 make up a differential input stage. The base of $\operatorname{Tr} 6$ is the inverting input which is used for main feedback stabilisation. Naturally the centre voltage of the quasicomplementary class B output is going to depend on
this d.c. feedback and the state of balance of the long-tailed pair input stage. The latter can be adjusted by means of VR5 and this control is used during the setting-up procedure to make sure that the quiescent voltage at the positive end of the output capacitor C19 is mid rail.
The two transistors Tr 1 and 2 are not in the main audio route but serve as a slow turn-on circuit which prevents a surge of power from damaging the loudspeakers. Rate of application of power to the input and driver stages is determined by the charging curve of C14 on the base of Tr1.
Biasing of the output stage is controlled by $\operatorname{Tr} 7$ and can be adjusted by VR6 to set the standing output stage current and minimise cross-over distortion.

 channe/s.

Power supply

The circuit of the power supply is shown in Fig. 3. A low-profile, twin-bobbin transformer is used which gives extremely low flux leakage and it is precisely located on the printed circuit layout to minimise any flux linkage with the pre-amplifiers and input switching. The transformer delivers 40 V a.c. to a conventional bridge rectifier and thence to the smoothing capacitor C21 which is specified to have a high ripple rating. No regulation is provided for the power amplifier supply; however the pre-amplifier supply is taken from a small stabiliser based on $\operatorname{Tr} 12, \mathrm{R} 40$ and D2.

Versatile clock module

The LT601 red LED display electronic clock module can function as both a 12 or 24 hr display system and operates at 50 or 60 Hz .
The series provides four basic selectable display modes; time, seconds, alarm and sleep display, and is a 4-digit, $0 \cdot 5$ in LED display complete in itself apart from the mains transformer and function switches.

Featuring power failure indication the module includes brightness control capability, 'sleep' and snooze times, alarm 'on' and PM indicators, direct drive-no r.f. interference, fast/ slow time setting control, pre-settable 59 min sleep timer, 9 min snooze alarm and lead zero blanking.

For the 12 hr display modules the colon flashes at one hertz rate and for 24 hr displays it is fixed.

The module finds application as a clock radio timer, desk clock, alarm clock, television-stereo clock and instrument panel clock.

At £6 ${ }^{\circ} 00$ plus VAT and 30 p P\&P, the module type LT601, manufactured by Litron Electronics is available with full specification and application information from:

Bywood Electronics Ltd., 68, Ebberns Road, Hemel Hempstead, Herts, HP3 9QR.

New ABS boxes

A new range of $A B S$ boxes, manufactured in four colours (orange, biue, black and grey) is now available. Each incorporates slots on all four sides for holding 1.5 mm (0.062 in) thick P.C.B's. The 1.5 mm thick front covers sit recessed into the front of the boxes
and are held by four fixing screws, running into threaded brass inserts. Available in three sizes measuring from $56 \times 85 \times 28.5 \mathrm{~mm}$ to $96 \times 161 \times$ 52.5 mm , BIM4000 BIMBOXES have excellent electrical insulation properties, rated at $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ and are supplied with four self-adhesive rubber feet. Prices range from 80 p to $£ 1 \cdot 49$ plus VAT and P\&P each.

BOSS Industrial Mouldings Litd., Higgs Industrial Estate, 2, Herne Hill Rd., London SE240AU. Tel:01-737 2383

Scrub up

We have recently received a handy little tool for cleaning electrical contacts and surfaces.
The cleaning tool consists of a plastic body in which is mounted a stiff spun glass insert. The tool works on the same principle as a propelling pencil, as the exposed end of the insert wears, its length may be adjusted by a screw at the top of the tool.

The E105 contact cleaner is suitable for a variety of cleaning applications especially the cleaning of contacts, joints and pcb tracks prior to soldering.

The E105 costs 0.98 p inclusive of P\&P and VAT from:
Eraser International Ltd., 2/3, Hampton Court Parade, East Molesey, Surrey KT8 9HB. Te/: 01-979 8141/2.

HIDLY IDTE:

Jubilee Organ, Part 2, October 197\% PW
ICs 3, 4, 5 and 6: connections to pins 8 and 14 are shown reversed. It is unlikely that damage will occur as a result of this error, but these ICs will not function connected as previously shown.

Traffic Light Controller, December 19\%\% PW C1 is shown reversed. The positive end should connect directly to +6 V , i.e. between pins 1 and 7 of IC1. To suit variations in timing, Cl may be varied from $1000 \mu \mathrm{~F}$ to $3000 \mu \mathrm{~F}$. In the components list, IC3 is shown as SN7411A. This should read SN7441A.

Direct Conversion Receiver, January 1978 PW

The resistor, ident R7 in the PCB layout on P655 (Fig. 8) should be shown as R11. The circuit diagram is correct.

Proportional Power Controller, January 1978 PW

C5 voltage rating was omitted; this should be 600 V DC working (300 V AC). If single polystyrene types are not available, one 10 nF and one 22 nF in parallel will suit. The jack socket should be a fully insulated type (for TH1) and care must be taken to ensure correct polarity of connection to the mains. IC1 is basic type L121 (Doram order code 65-600-9).

RAE No. 5, January 1978 PW

We regret that two errors occurred in formulae on page 662.

For the Parallel Impedance case, lefthand column, line 6, please read:

$$
\mathrm{Z}=\frac{\mathrm{R} \cdot \mathbf{X}}{\sqrt{\mathbf{R}^{2}+\mathbf{X}^{2}}}
$$

For the current flowing in a Series Resonant Circuit, right-hand column, line 14, please read:

$$
I=\frac{V}{Z}=\frac{V}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
$$

D.JONES

The small savings made in building a multi-range meter, rather than purchasing a commercially-produced model, do not as a rule justify the decision. The commercially assembled product is more often than not of greater accuracy and reliability. However, were it possible to build such a device at a considerable saving whilst maintaining a high degree of precision, then thi project must surely be considered worth-while.-
This article covers the theory which will enable readers to produce an accurate instrument at favourable cost. It can be applied to movements of any FSD or coil resistance.

Ammeter Formulae

In order for a meter to read higher than its basic movement will allow, it is necessary to divert a proportion of the current away from it. This is achieved with a by-pass resistance-known as a "shunt"which is placed across (or "in parallel with") the movement. Fig. 1 shows this in circuit form. The shunt \mathbf{R}_{P} is of a precisely-calculated value and diverts a finite proportion of the total current away from the movement.

Fig. 1 (left)
Fig. 2 (above)
Thus the meter will pass a percentage of the total current in the circuit, the remainder being carried by R_{P}, whose value may be determined from the formula:
$\mathrm{R}_{\mathrm{P}}(\mathrm{ohms})=\frac{\mathrm{V}_{\text {FSD }} \text { (volts) }}{\text { Required FSD-Meter FSD (ampères) }}$
The FSD Voltage of the meter coil ($\mathrm{V}_{\text {PS1 }}$) can be obtained from:

$$
\mathrm{V}_{\mathrm{FSD}}=\mathrm{FSD}(\mathrm{amps}) \times \text { meter resistance }(\mathrm{ohms}) .
$$

Problems are likely to occur when shunt resistances become very small and attention has to be directed to difficulties arising from manufacturing techniques; even the contact resistance of range switches must be taken into account. Accurate resistors below a few ohms in value are difficult to obtain and will probably have to be made from resistance wire.

Voltmeter Formulae

The principle in the voltmeter is to measure the amount of current produced by applying a voltage across a fixed resistance. If the meter itself does not present a high enough resistance to the circuit,
excessive current will be drawn and the meter will swing hard over or even burn out. In this case a series resistor will have to be inserted "in line" with the meter to reduce the current to a value within the range of the movement. This is illustrated in Fig. 2.

The series resistor R_{S} can bë calculated from:

$$
\mathrm{R}_{\mathrm{S}}(\text { ohms })=\frac{\text { FS reading required (volts) }}{\text { Current for FSD (amps) }}-\mathrm{R}_{\mathrm{M}}
$$

Again, this formula holds good for all values, but in practice, problems are likely to be met. If the combined meter and series resistance is too low it will

Fig. 3
load the circuit under test, producing inaccuracies. Likewise, if high voltages (in the order of hundreds of volts) are to be measured, the resistors will have to be adequate if breakdown is to be avoided.

Ohmmeters

With an ohmmeter the idea is to monitor the current passed through a resistor when a known voltage is applied, and this is demonstrated in Fig. 3. Assuming the movement to have little or no internal resistance compared to the device under test, a simple application of Ohm's Law produces the result:

$$
\text { Resistance to be tested (ohms) }=\frac{V_{\text {supply }}}{I_{\text {meeter }}}
$$

Fig. 3 in fact constitutes the simplest form of ohmmeter. Usually a multi-range meter will be used, with a resistor for current-limiting. Several test voltages are often provided and a potentiometer enables the pointer to be set at zero. Fig. 4 is a more likely basic design, providing switched ranges, but here the series resistors for each range may have such widelydiffering values that the zero adjustment is inadequate. A more satisfactory solution is to select different current-limiting resistors, and Fig. 5(a) illustrates the technique. A three-gang switch is used to obtain four ranges.

Using the lowest value current-limiting resistor and
adding a high and low value potentiometer offers an overall solution and this is the popular method of achieving switched ranges. Fig. $\mathbf{5}(\mathbf{b})$ shows the final progression.

The scale calibration of an ohmmeter is not linear, see Fig. 6, and this can be explained using Ohm's Law. Doubling the resistance halves the current, so as the needle deflection doubles, the resistance halves. Consider a resistance which will permit 1 mA to flow from a 1.5 volt battery (assuming a meter of 1 mA FSD), then from Ohm's Law $\frac{V}{I}=R$

Where $V=$ test voltage, $I=$ current, $R=$ resistance

$$
\frac{1 \cdot 5}{0 \cdot 001}=1500 \mathrm{ohms}
$$

The minimum measurable resistance is therefore 1,500 ohms.

Considering the centre point $(0.5 \mathrm{~mA})$ of the scale:

$$
\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{1 \cdot 5}{0 \cdot 0005}=3000 \mathrm{ohms}
$$

If the scale were linear we would expect its resistance at half-scale to be twice that at full scale and half that at the beginning. However, 3000 is not half of infinity but is twice 1500 . Now the peculiarity will be apparent, and the scale will resemble Fig. 6.

Movements in excess of 1 mA are rare in ohmmeters and $50 \mu \mathrm{~A}$ is sometimes used. Parallel resistances increase the FSD if required.

Ammeter Shunt Switching

The correct approach for selecting current ranges using a double-pole switch is shown in Fig. 7. Note that any resistance introduced by the contacts is applied to the entire circuit, thus the resistor-to-meter ratio is maintained. The two poles of the selector switch are ganged together to reduce contact resistance to a level negligible with meters having a resistance greater than a few ohms.

Voltmeter Switching

Range selection in voltmeters is quite simple and if only voltage is required single pole switching as in Fig. 8 can be employed. Contact resistance in this case can be ignored.

Series resistances will be fairly high and values of at least 1000 ohms should be used in order to provide a reasonable accuracy. Sensitivities are usually quoted in "ohms per volt" and this is the resistance of the voltmeter on the 1 volt range. Switching to a higher voltage range will increase the internal resistance by a similar factor. Thus, switching from the 1 volt range to the 5 volt range multiplies the resistance by a factor of 5 ; e.g. 5000 ohms on a 1000 ohms-per-volt instrument. Note that this is not expressed as 5000 ohms-per-volt, because it is not the resistance of the meter on the 1 volt range. The sensitivity of a meter provides a guide to its accuracy, since the higher the resistance the less loading of the circuit under test. Commonly, meters of 20,000 ohms-per-volt are found and even 100,000 ohms-per-volt is not uncommon. Nowadays most quoted measurements are made using a 20,000 ohms-per-volt standard (i.e. AVO 8 or 9).

Combining a voltmeter with an ammeter requires only the techniques as applied to the ammeter, and Fig. 9 gives a practical circuit for this.

Fig. 4

Fig. 5 (a)

Fig. 5 (b)

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Adding an Ohmmeter

Two methods of including an ohmmeter can be utilised; direct wiring into the switch or by using a separate terminal on the instrument. The first of these options is obviously the simpler but reduces the number of ranges available for current and voltage measurement. A basic wiring diagram is shown in Fig. 10.
The latter of the choices offers many advantages: principally, though, it does not use valuable range-
space on the function switch. A disadvantage, however, is the requirement for a third terminal on the multimeter, which may be considered to be confusing. Careful layout should avoid ambiguity in this instance, and a typical circuit is shown in Fig. 11. The separate terminal enables current ranges to be used for extending the lower end of resistance ranges.
Another idea for altering the ranges is to change the test voltage. If this voltage is increased, the lower and upper measuring ranges will decrease and increase respectively.

Some Notes on General Construction

In most cases, the precise value of resistor will not be obtainable and the solution here is to combine two or more resistors, of one or two per cent tolerance, to achieve the desired value.
Scale calibration is best performed by removing the meter covers and possibly the face as well. This is not always practical, so choose a meter which can be dismantled. The scale as supplied can be copied onto a piece of white card or stiff paper and other ranges calibrated against it.
Resistance ranges can be a little tricky as they are non-linear. The resistance of the current-limiting resistor and that of the meter must be considered, and the following expression is helpful in determining the resistance under test at any given point on the scale.

$$
\mathrm{R}_{\mathrm{D}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{C}}}-\left(\mathrm{R}_{\mathrm{X}}+\mathrm{R}_{\mathrm{L}}\right)
$$

Where $\mathbf{R}_{\mathbf{D}}=$ Resistance indicated meter
$\mathrm{R}_{\mathrm{M}}=$ Meter resistance
$\mathrm{I}_{\mathrm{C}}=$ Current through circuit
$\mathrm{R}_{\mathrm{L}}=$ Limit resistance
$\mathrm{V}_{\mathrm{T}}=$ Test voltage
A more elaborate method is to use close-tolerance resistors of known value, "zero" being obtained by shorting the test terminals. Precision resistors of low value can be cut from "resistance wire" using the formula: Resistance $=$ Length \times ohms $/$ metre. Typical examples of ohms-per-metre against gauge are shown below for "Eureka" wire.

It is important that these resistors should, when made, be less than 75 mm long.
When not in use, it will be noted that sharp movement of the instrument causes a violent swing of the meter needle. This is due to 'eddy currents' being induced into the coil. It is therefore good practice to arrange for the meter terminals to be 'shorted' during transportation.
Finally, it will be found that $1000 \mathrm{ohms} /$ volt and 20,000 ohms/volt meters require movements with FSDs of 1 milliamp and 50 microamps respectively. The 50 microamp movement is a good one to use and will cost only a little more than one of 1 milliamp.

Construct the

The oscilloscope is probably the most useful instrument in the workshop, enabling as it does the constructor to look at the waveforms occurring in his equipment. The 'Purbeck' is a 5 MHz single beam scope especially designed for easy building by the home constructor yet providing him with a professional piece of equipment.

also:

"Slim Jim"-an omni-directional free-space two-metre aerial featuring a radiation efficiency 50% better than a ground plane. It is slender, offering low wind resistance, and will operate with equal facility on lower or higher frequencies, with only minor modification of dimensions.

and

VHF WAVEMETER
This is an attractively simple design for checking that the operating frequency of VHF transceivers is within the authorised band, and is cheap to construct, using only ten basic components.

Introduction

Over the past decade the digital electronics scene has passed through several phases. In this time, the amateur electronics market has seen the popularity of digital ICs rapidly increase. At the moment there are two main logic families used in amateur electronics and radio, these are called TTL and CMOS. TTL (which means Transistor-Transistor Logic) was developed in the late 1960s and uses bj-polar transistors to perform the logical operations. CMOS (sometimes called COSMOS which means Complementary symmetry Metal Oxide Semiconductor) uses FETs to perform the operations. Each family has its various advantages, so they will both be in use for some time yet.

This project leads on to construct a logic probe which will aid fault finding and testing on equipment which has either of these families in its design. The display is given by LEDs and an audible output is also given, a low pitched tone for low logic level and a high pitched tone for the high logic level. This is particularly useful when the user does not wish to keep turning to look at the visual display.

In order to enable the device to be used on either logic family, certain design parameters were necessary. These are:-

1. High input impedance to minimise circuit loading
2. Wide supply voltage ($5-15$ volts)

It must also be

1. Relatively inexpensive
2. Compact

The device is powered from the logic supply rails of the equipment under test and current consumption is only about 15 mA enabling testing to be carried out on battery powered equipment.

Circuit description

Let us assume that we have connected the logic probe to the supply rails of the device under test and switched S1 into the "tone on" position. Under idle conditions the potential divider formed by R2, R3, R4 and R5 puts a bias on the inputs of the inverters. The inputs of IC1 (a) and (b) are biased such that they have a logic HIGH on their inputs. Their inverting action causes their outputs to be a logic LOW level. Hence, LED1 is not lit and D1 is reverse biased which prevents the astable from oscillating. Likewise, the bias on the inputs of IC1 (c) and (d) cause LED2 to be off and the output of IC1 (e) is low which reverse biases D2 and similarly stops the astable from oscillating.

Fig. 1: Complete circuit dlagram of the logic probe.

Fig，2：The PCB viewed on the copper side．This board is obtainable from the PW Readers＇PCB service．Details page 825.

Fig． 3 ：The PCB viewed on the compo－ nent side．

Let us now assume that we connect the probe to a HIGH logic level．The inputs of ICl（a）and（b）are not altered but the inputs of IC1（c）and（d）are now such that they are almost at the logic HIGH rail voltage．Consequently they invert and their outputs swing LOW．Pin 6 is now low so that LED2 illumin－ ates and pin 10 of ICl goes HIGH，D2 is forward biased and R9 is effectively connected to the posi－ tive（HIGH）supply rail．The astable oscillates at a frequency of about 600 Hz ．This is reproduced in the loudspeaker．

Now when the probe is applied to a LOW logic level the inputs of inverters ICI（a）and（b）are pulled LOW and their outputs swing towards the positive （HIGH）rail．LED 1 is now lit and D1 pulls R8 to the positive rail．Once again the astable action takes place but since the value of R 8 is larger than that of R9 the frequency of oscillation is lower．In fact the oscil－ lator（IC2）now operates at about 300 Hz ，an octave below the HIGH tone．

If the probe is applied to a point in a circuit which is half the supply voltage then no LED will light or tone be heard．Normally these results occur if a point is disconnected，and the fault would soon be isolated． If the tone is not required the oscillator can be dis－ abled by switching S1 to the mute position．

RMO12
\star components

Resistors

R1． $100 \mathrm{k} \Omega$
R2 1 Ma
R3 470 ks
R4 470苃』
RE• 1．MS2
R65602

Capacitors

C1 $0.1 \mu \mathrm{~F}$（Mylar）
C2．4：7मF 16 V （Electrolytic）

Semiconductors

D1 and D2 1N914
LED1 TH 209 Green（or TIL 211）with bezel
EED2 TLL 209 Red with bezel
IC1 CD 4069 AE or E （See text）
IC2 NE 555 V 轻mer

Miscellaneous

Small（ $3^{\prime \prime}$ ）loudspeaker 8 or 16Ω impedance．Verocase． （ $153 \mathrm{~mm} \times 84 \mathrm{~mm}, 79 \mathrm{~mm}$ ）Parino． $75-1239 \mathrm{~K}$ SPST Miniature toggle switch． 2 mm Plugs and sockets（Red black and white）＂Bail point pen case，paper clip，wire， 6BA nuts and bolts．

Construction

The neatest way to mount the components is to use a small printed circuit board, and the design for such a board is shown in Fig. 2. The component layout is shown in Fig. 3.
The CMOS IC listed in the table of components for IC1 shows that a CD 4069 AE or E is required. However, there is the possibility that readers may be given a device which does not comply with this number. The different manufacturers use different codes to identify their devices and this takes the form of a prefix group of letters. CD is used by RCA, but you may see ICs with the letters SLC or MCl printed on them. The important parts are the four figure number code and the suffix, i.e. the " 4069 AE or E". The AE is one of many suffix codes used to show the range of characteristics which the device will possëss. AE means the device is in a plastic DIL encapsulation, with a voltage range of 5 to 15 volts. There is also an indication of the temperature range of the device within this code too, but that does not matter in this application. The " E " device will operate over a slightly wider voltage range than the "AE" device, but this wider range is not necessary.

CMOS ICs are prone to damage if subjected to large static charges, so the CMOS IC, (IC1) should be the last component to be put in the circuit. Do not remove it from its special conductive packing until you are ready to use it. Damage may also arise if the pins are heated for too long, when soldering the device into the circuit. So if the constructor does solder the device directly in, then make sure the iron is not held at the individual pins for more than 5 or 6 seconds. Alternatively, the problem can be removed by using holders for the ICs.

The board and its subsidiary components were mounted in a plastic box, which was available commercially. This had the advantage that the top could be easily removed if any repair was necessary. Also, the box seemed to be tough enough to withstand a fair deal of knocking about, so it was an obvious choice for a test instrument case.

The loudspeaker and LEDs were mounted in the lid of the case; holes for the loudspeaker and the LED bezels were drilled plus two small holes for accommodating the 6BA bolts which were used to secure the loudspeaker.

The wiring layout is shown in Fig. 4. The LEDs have an anode and cathode like any other diode and the correct polarity must be observed. The longer lead of the two is the anode (positive) and it is best to wire

Fig. 4: Wiring the case-mounted components.

Fig. 5: Details of the probe assembly.
these leads in one at a time so that errors cannot occur when the lead is trimmed short. Also note that SI must be closed when it is in the lower position. This is the "tone on" state and since down for on is widely used in electronics, this way was chosen here. The panel lettering was done with dry rub-down transfers: Vcc + marks the logic 1 rail, GND (Ground) marks the logic low rail and "probe" indicates the probe terminal.
The probe itself I claim no originality for whatsoever, since the method of making one has bedecked the pages of $P W$ on a number of occasions. A ball point pen case was used as the tube, and the tip was made from a re-shaped paper clip. The clip was partly opened out and tinned (See Fig. 5). A small hole was made in the cap of the pen and the probe lead was passed through the hole and soldered to the paper clip. The clip was then pushed down the tube with a piece of stiff wire until 1 cm protruded through the end. The cap was put on again and the probe lead was terminated on a small plug, which, of course matched the socket on the front panel of the main unit. Two other leads were made but instead of probes they had small crocodile clips on their ends to connect to supply points in the circuit, under test. These leads were also connected to some small plugs which matched the sockets on the front panel. In fact two sets of test leads were made: one set for use where the probe is in close vicinity to the work being done, and a much longer set of leads for when the probe is located some few feet away.

Testing the unit

With all components mounted and the wiring checked the device can be tested. The device detects whether the probe is at a voltage nearer to the positive rail (Logic HIGH) or negative, in other words at the LOW rail. By connecting the leads of the device to the positive and negative terminals of a PP9 battery, the action of the logic probe can be checked. The probe should then be put to the appropriate connection on the box, and S1 can be switched to the "tone on" state. When the probe is not connected to either terminal, the LEDs should be off (or very dim) and the tone should be non-existent. If the probe is touched to the positive terminal the "HIGH" LED should now light up and the tone will be relatively high in pitch. And conversely when the probe tip is touched to the negative terminal the "LOW" LED will come on and the tone should be about one octave (which is "half" for all readers who are not musicians) below the first tone.

If these results are obtained the device is ready for use. There are many instances when a straightforward logic state display is useful; slow speed logic circuits and combinational logic elements can be checked. It also provides a very powerful teaching aid for those who are teaching or indeed learning the rudiments of digital electronics.

This month we will review one of the rather less well known devices, namely a Hall Effect switch. This is a miniature device in a plastic transistor type package which produces a sudden large change in its output voltage when the magnetic field exceeds a certain level.
There are many possible applications of such magnetic switching devices. For example, if a magnet is fixed to a revolving shaft (such as the propeller shaft of a car) and a stationary Hall Effect device is fixed close to it so that the magnet passes near to the device each time the shaft revolves, the pulse rate will be equal to the rate of revolution of the shaft. One can therefore use the pulse rate to measure the rate of rotation of the shaft or, in the case of a vehicle, its speed.

Applications

The Hall Effect device can also be employed to generate the pulses required for electronic ignition systems by employing a rotation magnet fixed to the camshaft. Similarly, it can be used to detect when the wheels of a vehicle lock on braking and an electronic system can be made which will keep releasing the locked brakes for a small fraction of a second whenever the locking occurs; skidding can then be greatly reduced, if not eliminated.
In general, the ULN-3006T can be used whenever one wishes to detect the close proximity of a magnet to the device, actual contact being unnecessary. For example, it can be used to generate the pulses

Fig. 1: The basic principle of the Hall Effect, showing deflection of "holes" in relation to current flow.
required when the magnetic keys of a keyboard are depressed.

The Hall Effect

In order to understand how the ULN-3006T operates, we must first mention the basis of the Hall Effect. Let us consider a thin slice of silicon of rectangular shape, as shown in Fig. 1. A current flows

Fig. 2: The packaging of the Sprague Hall Effect device.
from the upper to the lower edge and the whole slice is placed in a strong magnetic field which is perpendicular to the plane of the silicon.

The current carriers in the silicon (electrons or holes) are deflected to opposite sides of the semiconductor material, just as an electron beam is deflected to one side in a television tube or oscilloscope tube by the magnetic field generated by the scan coils or by any small magnet brought near to the tube. The deflection of holes is indicated in Fig. 1 although in actual practice the movement would be far less than that indicated.

If the electrodes A and B on each side of the silicon slice are connected to a sensitive voltmeter, a small potential difference will be detected across the slice. This is known as the Hall Effect voltage and is due to the deflection of the current carriers.

Hall Effect voltages have been used to measure magnetic fields and to measure currents. Hall Effect devices have also been used as analogue multipliers, since the Hall Effect voltage is proportional to the magnetic field intensity multiplied by the current passing through the device.

The ULN-3006T

In the ULN-3006T, the Hall Effect is used as the basis of a simple digital switch which will detect the presence of a magnetic field exceeding a certain intensity. The Hall Effect voltage is applied to the inputs of a differential amplifier, the output from this amplifier being applied to a trigger circuit. The trigger circuit switches suddenly when the input voltage exceeds a certain value and drives an output stage. The Hall Effect cell, the differential amplifier, the trigger circuit, and the output stage are all integrated on a single silicon chip inside the device; the internal circuit contains 36 components, including 14 transistors.

Package

The miniature ULN-3006T package is shown in Fig. 2, the Hall Effect silicon chip being placed in the centre of the body of the device. There are only three connections and, as shown in Fig. 3, the circuit is extremely simple. In the absence of a magnetic field, the internal output transistor is cut off and passes little current (about $1 \mu \mathrm{~A}$). The full supply voltage therefore appears at the output of the device. When a magnetic field perpendicular to the body of the device is applied to it, the internal output transistor is driven to saturation and the output voltage falls to about +150 mV (the maximum for any device is +400 mV).

Fig. 3: A typical circuit used with the ULN-3006T. The transistor shown is one of the internal components of the device.

Power Supply

The absolute maximum permissible power supply voltage for the ULN-3006T is 20 V . However, the device characteristics are specified over the range 5 V to 16 V and it is wise to operate it within these limits. The writer found that satisfactory operation occurred when the supply voltage was as low as $3 \cdot 4 \mathrm{~V}$.

When a small, but fairly strong, bar magnet was brought up to the device as shown in Fig. 4, switching to the low voltage state occurred at a distance of about $2 \cdot 5 \mathrm{~mm}$. The magnet had to be moved back to a distance of about 8 mm from the device before the circuit switched back to its high voltage state. Thus there is a built-in hysteresis effect in this type of circuit; that is, the switching to the low and high output voltage states occurs at two different magnetic field intensities.

The current passing to pin 1 of the device increases
from about 7 mA to about 12 mA (with a maximum of 16 mA) as the supply voltage is increased from +5 V to +12 V . The current passing through the load resistor R of Fig. 3 when the output voltage is low is additional to the current passing to pin 1. The output transistor is capable of sinking (or accepting) currents of up to 15 mA , so the load resistor R can have any value exceeding $1 \mathrm{k} \Omega$ with a 15 V supply.
Smaller values of load resistor can be used with lower supply voltages provided that the 15 mA limit is not exceeded.

Fig. 4: The use of a magnet in switching the ULN-3006T.

Magnetic Field

If the magnetic field is applied with incorrect polarity, no switching will occur. In other words, only one end of the bar magnet will be effective when brought up to one particular face of the device. The other end of the same magnet will cause switching when brought up to the other face of the device. Weak magnetic fields will not cause switching. The magnet must produce a field of not less than 0.075 Weber/sq. meter (750 Gauss) for certain operation. The device is immune to stray magnetic fields from transformers, relays, etc., since such fields are normally too small in value.

Fig. 5: Arrangement permitting the use of weaker magnets.

If two magnets with unlike poles towards each other are placed on each side of the device (as shown in Fig. 5), the switching will occur with much weaker magnets, since the two fields reinforce one another. Alternatively, a piece of soft iron or other magnetic material placed behind the device on the opposite side from the magnet will concentrate the flux and reduce the strength of the magnet required to produce switching.

Can YOUR Antenna do all this?

You've read our ads with their recent testimonials and user histories-so this month we thought we'd remind readers of the selling points of the

JOYSTICK VFA (World Patents)

*Only 7' 6" long, comes in 3 easily assembled sections. \star Tunes $\cdot 5-30 \mathrm{MHz}-$ no gaps.
\star Matching Antenna Tuner.

* No harmonic resonances-means that the highest efficiency transfer of power and waveform from TX to ether takes place. In turn this ensures that TVI and other spurious emissions are just not substantially present.
太 Low angle radiation as an effective ground plane -that husbanded power goes on to reach destination with the least number of loss-making skips.
\star Gives receiver additional front end selectivity and gain-reduces cross-mod and out of band blocking.
* Your installation can be 'tailored' to space available. Install VFA on mast or chimney or in roof space with a long or short feeder-or SIMPLY STAND IN THE SHACK. One delighted user proved his VFA by operating FROM A BASEMENT! ALREADY IN USE BY AMATEUR TRANSMITTING AND ALREADY STATIONS WORLD-WIDE AND IN GOVERNMENT COMMUNICATION.

SYSTEM "A"
 £36.00

250 w. p.e.p. OR for the SWL.
SYSTEM "J"
£42.60
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES COMPLETE RADIO STATIONS FOR ANY LOCATION

All Packages feature the World Record Joystick Aerial (System ' A '), with 8 ' feeder, all necessary cables, matching communication headphones. Delivered Securicor our risk. Assembled in seconds! BIG CASH SAVINGS!

PACKAGE No. 2
Is offered with the FRG7 RX.
£195.00
RECEIVERS ONLY, inclusive delivery, etc.
R. $300 £ 184.50$ FRG7 $£ 162 \cdot 00$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

Just telephone your card number Phone 084362535 (or 62839 after office hours)

or write for details, send 9p stamp

Box 5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

ENGINEERS

YOURSELF FOR A

M11 1 M

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Fig. 6: Suitable circuits in which the ULN-3006T is used to drive (a) a CMOS gate, (b) an NPN transistor, (c) a thyristor, and (d) a triac.

If the magnet is not on the centre line of the body of the ULN-3006T, the maximum distance at which it will cause the circuit to switch to the low output voltage state becomes smaller. This effect is shown in Fig. 7 for distances of $1 / 10$ to $1 / 100$ of an inch between the magnet and the device.

Fig. 7: Variation of magnetic field required for switching with distance from magnet, and with distance from the centre line.

The output from the ULN-3006T can be used to drive COS/MOS logic gates, transistors, thyristors, triacs and other devices. Some typical basic circuits are shown in Fig. 6.

The ULN-3006T is available from Phoenix Electronics (Solent) Ltd., 46 Osborne Road, Southsea, Portsmouth, Hants PO5 3LT at $£ 2 \cdot 50$; this price includes VAT, but 20p must be added for post and packing to UK addresses.

BINDERS FOR PW

Keep your copies together Keep them clean with the PW Easi-Binder

The Easi-Binder is attractively bound with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers please advise year and volume and a separate set of gold transfer figures will be supplied.
£2.85 inclusive of VAT and post and packaging from: Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London, SEI OPF.
(Overseas orders please add 60p).

BATTERYSTATE
 INDICATOR

W. MOONEY G3VZU

When equipment is supplied from an internal battery its performance, calibration and output level are often unsatisfactory below a certain supply voltage. Some form of battery condition indicator can therefore help. The indicator described here consists of a small Veroboard circuit driving a panel mounted LED whose state reflects the battery condition. The LED has three possible states as follows:-(1) LED on, indicating an adequate supply voltage, (2) LED flashing at 2 Hz , indicating that supply has dropped to a pre-set critical range, and (3) LED off, indicating that the supply voltage is too low for satisfactory operation.

All this information can be gleaned from a single panel mounted LED and this is driven by an operational amplifier.

The circuit takes up little space and can be added to almost any piece of equipment, where the LED will probably replace an existing indicator, or if not a suitable hole can be drilled. Two small board mounted pre-sets are used to make adjustments up to 12 volts, the current requirement being about 5 mA .

The Circuit

Several discrete circuits which would give the required action were considered, however these had unpredictable change-over levels or were too costly using many transistors and lacked "style". The use of a moving coil meter for this application is electrically the easiest solution. Unfortunately, such meters are very expensive and must be designed into the equipment taking up considerable panel space, a valuable commodity on modern equipment. The 741 op-amp circuit shown in Fig. 1 was eventually chosen.

Power for the circuit is supplied from the equipment being monitored, and the indicator will normally be wired between the circuit side of the on/off switch

AD019
Fig. 1: Circuit diagram of the Battery State Indicator.
and the common supply line. Positive or negative earth circuits can be accommodated by wiring up the indicator as appropriate. Both inputs to the op-amp are used. The potential of the non-inverting input is held steady at the stabilising voltage of the Zener diode D1. The resistor R2 has practically no effect on the DC conditions due to the high input impedance; the non-inverting input will therefore be the reference voltage across D1, i.e. $3-5 \mathrm{~V}$. The inverting input is supplied from the pre-set potential divider VR1 and the circuit DC gain is set by VR2 and R3. The indicator LED is driven by the ICI output at pin 6, R4 limiting the current drawn for LED protection and current economy. Since the 741 IC output can fall to about $2 \cdot 5 \mathrm{~V}$ min. but will rise to almost the supply voltage, the LED must be connected to the positive supply line as shown in Fig. 1 rather than to the negative otherwise it will still glow slightly when a low output (LED off) condition is required.
Normally the voltage of the inverting input at pin 2 , will be higher than that on the non-inverting input and thus the output, pin 6 , will be at its lowest possible level with the LED alight. As the supply voltage drops, a voltage range will be reached when the potential of the inverting input will approach, reach parity, and finally become lower than the reference voltage on the non-inverting input. Over this range the IC will sweep through its transfer characteristic and the output will finally limit at its highest value causing the LED to extinguish.
Whilst the IC is between its upper and lower saturation limits, the circuit will act as a high gain amplifier and will oscillate at a frequency primarily governed by the values of C2 and R2. The output is a square wave and the LED will flash on and off. The range of supply voltage over which the circuit is in the oscillating mode is governed by the gain and hence the flashing range is set by VR2. With VR2 at its minimum resistance setting the gain is at a maximum continued on page 856

components

Resistors

R者 $4 \times 7 \mathrm{kS}$ R2 $10 \mathrm{k} \Omega$ R3 470kQ R4 1.5 kS
All $\frac{1}{4}$ or $\frac{1}{3} \mathrm{~W}$ carbon film
VR1 10ks: $\forall R 2$ 47k』 Both linear, presets

Capacitors

C1 1000 pF dise ceramic C2 $2 \mu \mathrm{~F}$ 50V non-polarised
(Electrovalue type EX50)
Semiconductors
D1 Zener diode 3 to 5 V 400 mW D2 LED TLL209 with efip IC1 741

by Eric Dowdeswell G4AR

I must begin with an apology for not having wished all my contributors and readers a VERY HAPPY NEW YEAR which I should have done in the last issue! Only excuse is the lead time required for copy and the fact that the "January" issue comes out at the beginning of December! Anyway, have a successful year, with plenty of DX. There certainly shouldn't be any dearth of it on the 10 m and 15 m bands according to the reports coming in and it can only get better as we climb the somewhat unpredictable curve of the new sunspot cycle.
As I have said before, the newcomers to these two bands just don't know what they are in for! 10 m especially will be a knockover and even the worst of receivers will be copying the DX! Apart from sensitivity the most important characteristic of a 10 m set will be selectivity!
So far this month there is more news from the clubs than from individuals, so let's press on with that. New Secretary of the Edinburgh DARC is Tom Melvin GM8MJV of 17 Dundas Crescent, Eskbank, Dalkeith, Midlothian. Coming events run from Slow-scan to RTTY, not to mention skittles, so write to Tom for more info. Incidentally, Tom, tell the Editor of your Newsletter that info on your meeting place and addresses of Committee members would not be out of place in following issues!

The AGM of the Wessex AR Group revealed a membership of 82 plus 12 postal members, which sounds pretty healthy to me! A suggestion that membership should be limited was not the view of the majority of members present, however. Geoff Cole G4EMN of 6 St. Anthonys Road, Bournemouth remains Secretary and meetings take place in the Club room at the Dolphin Hotel, Holdenhurst Road, at 8 pm . You might read this in time to get to a talk on RTTY by G3VPC on February 3rd and you shouldn't miss H. H. Journeaux on Vintage Radio Equipment on February 17th.
D. Lively G3KII will be glad to meet newcomers to the Cheltenham AR Association at The Old Bakery, Chester Walk, off Clarence Street, at 8 pm on the first Thursday of any month, plus the third Friday, a New Year innovation. On to Wales where the Blackwood DARS has elected Steve Cole GW4GLE "Entertainments Secretary". From 10 Llanthewy Road, Newport, he tells me that club night is on Fridays at Oakdale Community, Near Blackwood, Gwent, with GW8LJJ presenting "Construction Techniques" on 10 February. A "special" will be G3IOR on "Oscar 7" on the 24th with part two of this tape/slide show on March 3rd. The club is well-equipped with gear for the HF and VHF bands and if you feel like having a go at the RAE there is a class running now. GW3KYA on Blackwood 225825 can give up-tothe-minute info on club activities.

From Leamington Spa, Nick Smith A9050 reports buying a Codar CR70A, which, with a 120 ft wire, has been mainly operational on $15 \mathrm{~m}, 20 \mathrm{~m}$ and 80 m so far. Neil Braeman G4FUP took time off from operating to tell me how much he enjoys being on the air. He has a Panda Cub plus a Collins TCS12 receiver on the HF bands on CW, "I'm proud to say", but admits to using "fone on 2 m with someone else's rig!" He comments on the "rubbish and pointless QSO's" on this band but I wonder if it is any different on the HF bands! Next project is an RTTY set-up and already bits and pieces are littered around the shack!

Steve Roberts writes from Mississauga in Ontario, Canada concerning my remarks on "strange calls", in the November issue, inferring that they came from the Citizens Band. He points out that the introduction of 40 channels this year to the band over there has caused the price of the old 23 -channel transceivers to drop to around $\$ 50$! Then he remarks, most strangely that "the serious SSB operator had to go to the illegal use of a linear amplifier'! Not to mention the illegal "sliders", presumably meaning VFO's. Steve cites cases where he has found his CB gear of real use but as I have pointed out before, over here a licence is readily available for those that have a genuine need. Steve says he is not electrically minded so does not feel able to take an amateur licence exam. It would be worth making the effort OM!
D. W. Waddell in Herne Bay, Kent, tried a pre-selector in front of his lovely FRG7! I don't know what Yaesu would say, if they knew! Fortunately the p-s has now been dumped in favour of an ATU which I'm sure is much more worthwhile. D.W.W. wonders when the "experts" get their DX on the 80 m and 160 m bands. Very briefly, between dusk and dawn! But listen an hour or so before and after this period if only to get the feel of the bands.

More club news! The Silverthorn RC has its HQ and club stations G3SRA and G8CSA at Friday Hill House, Simmons Lane, Chingford, London E4 and Hon. Sec. is Chris Hoare G4AJA of 41 Lynton Road, South Chingford, London E4 9EA. Chris together with Colin G4EZQ and Ted G8NPF have been $/ \mathrm{P}$ on 160 m recently, usually on Saturday or Sunday evenings, with a TX using the SL600 series of ICs feeding into a 2 N5591 PA, mainly on SSB. Long wires have been slung up with the help of a crossbow! Oh, yes, club meetings are at 7.30 on Fridays so do go along if you live around that part of London.

Well, that is the sum total of information to hand and I can only presume that there is more knocking around the system somewhere. I'm sure that all you chaps and girls haven't stopped listening! Let's hope that all the radios that Father Christmas will have been distributing will soon increase the flow of reports!

Log extracts

D. W. Waddell:- 80 m EP2TY JY9DI UI8KAG UL'7KBN 20m FP8DG TUZEF 15m C5AAD KG6RT PJ9CG 5T5JD 7P8AR 9LISL/A 10m C5AT CE6EZ CW0A FG7BA FM0FC HH2MC TU2GM
N. Smith:-20m VR2XL 15m SV1DH

Mare power per \& from 5tirlimg

4 CHANNEL MIXER/CONTROL UNIT \& POWER SUPPLY
 (READY BUILT OR IN D.I.Y. MODULAR FORM FOR EASY BUILDING

By designing and manufacturing in our own Essex factory and selling direct to YOU the customer, we believe we have produced just about the best values ever in mixer/control equipment. You can buy the Disco 2 Unit assembled, tested and ready to connect up and use at once, or build your own unit using Stirling. Sound Basic Modules. Either way you stand to save-and look at the advantages you get--sensibly arranged controls (on the built unit), proper DJ/PA facilities and RELIABILITY. Credit facilities can be considered.

- InPUTS-Left deck, right deck, mic. and aux.
- INPUT IMPEDANCE-47K ohms
- POWER SOURCE-220-240V. A.C. Mains
- CONTROLS-Mains on/off, master volume, bass $\pm 15 \mathrm{db}$, trebie $\pm 15 \mathrm{db}, L$ and R mlxing, L and R motor switches, , selector switch for P.F.L. (Pre-Fade Listening), headphone volume, mic. vol., aux. vol., LED indicators on mains and decks on/off switches.
- HEADPHONE AMPLIFIER-Powerful 2 watts into 8 ohms; separate vol. control.
- TERMINATIONS-Five $\mathbf{1}^{\prime \prime}$ jack sockets-2 input, 2 output, headphones.
- SIZE-233" $\times 33^{3 \prime \prime} \times 2 \frac{1^{\prime \prime}}{\prime \prime}$ max. depth to rear (plus separate power unit). Panel in matt black with controls sensibly grouped for easy unit) Pan.

Built, tested and guaranteed
£39.95
POST FREE in UK and INC. V.A.T
Kit of basic modules less power pack five $\frac{t_{d}}{\frac{1}{2}}$ jack sockets, and 3 mains
£21.00
POST FREE in UK and INC. V.A.T

READY BUILT

(Prices inc. V.A.T. but NOT cost of carriage)
SOUND-LIGHT UNITS
SSTL 3/250B-3 channels, 250w. each £23.95 SSTL 3/1000B-3 ch., 1000w. each $£ 25.95$
NTEGRATED POWER AMPS
In strongly made metal cases, complete
POWER AMP 40-40 watts r.m.s/4 ohms, 2 ch . mixer $£ 43.00$

BASIC MODULES

For constructors wishing to build systems to their own requirements. As their description implies, these modules

POWER AMP 60-60w.r.m.s/4 ohms, 2 ch. mixer £48.00 POWER AMP 100m100w.r.m.s/4 ohms, 4 ch. mixer $\mathbf{8 8 5}$ 100 watt SL.AVE AMP.

LOUDSPEAKERS

Disco 25-25 w.r.m.s. in cabinet; 20' lead £23.95 Disco 50-50 w.r.m.s. in cabinet; 20^{\prime} lead $\quad \mathbf{£ 3 9 . 9 5}$ Disco 100-100 w.r.m.s. in cabinet; 20^{\prime} lead $\mathbf{£ 6 4} \cdot \mathbf{9 5}$ Ampower $50-50 \mathrm{w}$. slave amp. \& speaker in cabinet $\mathbf{8 6 0 \cdot 0 0}$ Ampower 100-100w. slave amp \& speaker in cabinet $£ 80 \cdot 00$

COMPLETE DISCO

with Disco 2 console and Ampower 50 with Disco 2 console and 2 Ampower 50s with Disco 2 console \& 1 Ampower 100 with Disco 2 console \& two Ampower 100s
£155.00
$£ 155.00$
$£ 210.00$ $£ 210.00$
$£ 175.00$

Carrage in U.K. please add for Sound Light Units $81 \cdot 00$ Power Amps $40 \& 60$ £1-50, Power Amp. 100 \& 100 W , slave amp Disco 25 \& 50 £2.00. Amp
$\mathrm{E5} \cdot \mathbf{0 0}$. Complete discos $£ 10$. EVERYTHING RIGOROUSLIY TESTED AND GUARANTEED
will require control knobs, etc. Each module is supplied assembied and tested on its own PCB.
SSB4 Phase splitter (for two SS.105s) in bridge SS104/2 formation SS104/4 Fount mixer stage $\quad \mathbf{E 3} \mathbf{7 5}$

SS.DTM Output control stage Master vol., 30db variation on treble and on bass; 3 mV in for 2 V out, 18 V working yoltage
SSTL $3 / 250$ Sound/light, 3 channels, 250 w . ea.
SSTL. $3 / 1000$ Sound/light, 3 ch .1000 w . each

POWER SUPPLIES

Every Stirling Sound Power Unit is tested and guaranteed under working conditions before despatch. All units except SS. 312 include a stabilised low voltage take-off point ($13-15 \mathrm{~V}$) for pre-amp, tone control, radio tuner, etc. Outputs quoted are minimal unloaded ratings.

Recommended for
Power Amp
SS. $312 \quad 12 \mathrm{~V} / 1 \mathrm{~A} \quad$ S.S. 105
SS. 318 S.S.105 £
SS. 18V/fA SS.103/103-3 £6.95
$\begin{array}{llll}\text { SS. } 324 & \text { 24V/iA } & \text { SS. } 110 & \text { £7.65 }\end{array}$
$\begin{array}{llrr}\mathbf{S S . 3 4 5} & \mathbf{4 5 V} / 2 \mathrm{~A} & \mathrm{SS} .120 & \mathbf{~} 8.140 \\ \mathbf{S} 10.75\end{array}$
$\begin{array}{llll}\mathbf{S S . 3 5 0} & \mathbf{5 0 V} / 2 A & \text { SS. } 125 & \mathbf{£ 1 0 . 7 5} \\ \mathbf{S S} 11.75\end{array}$
$\begin{array}{llll}\mathbf{S S . 3 6 0} & 60 \mathrm{~V} / 2 \mathrm{~A} & \mathrm{SS.160} & \mathbf{5 1 2 . 7 5}\end{array}$
$\begin{array}{llll}\text { SS.370 } & \text { 70V/2A } & \text { SS. } 1100 & \text { £14.75 }\end{array}$
SS.310/50 Stabilised power supply unit with variable output from 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Short circuit protected $£ 17.75$ SS.300 Power stabilising unit variable from 10 to $50 \mathrm{~V} / 8 \mathrm{~A}$ for adding to unstabliised supply units
$£ 5 \cdot 50$
SEND NOW FOR FREE CATALOGUE SHEETS. TRADE ENQUIRIES INVITED.

CONTROL/PRE-AMPS

C UNIT ONE
Combined stereo preamp \& active tone control unit. 50 mV in for 200 mV out, $10-16 \mathrm{~V}$ operation. Bass $\pm 45 \mathrm{~dB}$; Treble $\pm 15 \mathrm{~dB}$. Balance control; Volume control. Ceramic P.U., radia or tape inputs. WITH FREE CONTROL PANEL FASCIA

E9.00

- UNIT TWO

Controls as UNIT ONE but for magnetic cartridge input. R.I.A.A. corrected. 5 mV in for 200 mV out. WITH FREE CONTROL. PANEL FASCIA $£ 12.43$
CONTROL. PANEL. FASCIA for above 50p
둘 SS. 100
Basic active stereo tone control module to provide $\pm 15 \mathrm{~dB}$ on bass at 30 Hz and on treble at 10 KHz

15 dB
$£ 3.00$
는 SS. 101
Stereo pre-amp suitable for ceramics, tape, radio, etc $£ 2 \cdot \mathbf{7 5}$気 SS. 102
Stereo pre-amp for mag. pick-ups.

STIRLING SOUND PRODUCTS ARE MADE IN OUR OWN ESSEX FACTORY AND SOLD DIRECT TO YOU THE CUSTOMER

WHEN ORDERING

MAIL OBDERS

 Aleadyoods sent post-free in U.K. (except certain heavy ready-buIf items) and ALL INCLUDE V.A.T. Prices with enquiries, pieaseDept. PW3, 37 VANGUARD WAY, SHOEBURYNESS,
ESSEX. Telephone
SHOP\& SHOWROOMS
220-224 West Road, Westeliff-on-Sea
Tel. Southend
Tel. Southend (0702) 351048

ACCESS OR BARCLAYCARD-Just tell us your No.

ΓTO STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS, ESSEX.
Please send
(or as list attached) tor which ! enclose $£$.
NAME. .
ADDRESS

15－240 Watts！

HY5
Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for ail applications．All common input functions（mag cartidge，tuner，etc）are catered for internaily．The desired function is achieved either by a multi－way switch or direct connectlon to the approprlate pins．The Internal volume is compatible with alf l．L．P．power ampliffers and power supplies．To ease construction and mounting a P．C．connector is suppiled with each pre－amplifier．
FEATURES：Complete pre－ampilifier in single pack－Multi－function equalization－Low nolse －Low distortion－High overload－Two simply combined for stereo．
APPLICATIONS：HI－Fi－Mixers－Disco－Guitar and Organ－Pubile address SPECIFICATIONS：
INPUTS．Magnetic Pick－up 3 mV ；Ceramic Pick－up 30 mV ；Tuner 100 mV ；Microphone 10 mV ： OUTPUTS．Tape 100 mV ：Main output 500 mV RMS
ACTIVE TONE CONTROLS．Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ；Bass \pm at 100 Hz ．

Price $\mathbf{x 5} 52+65 \mathrm{p}$ VAT P\＆P free．

15 Watts into 8Ω

The HY30 is an exciting New kit from I．L．P．It features a virtually indestructible I．C．with short clircuit and thermal protection．The kit conslsts of I．C．，heatsink，P．C．board． 4 resistors， 6 capacitors，mounting klt，together with easy to follow construction and operating instructions． This ampifier is ideally suited to the beginner in audlo who wishes to use the most up－to－date echnology avaliable．
FEATURES：Complete KIt－Low Distortion－Short，Open and Thermal Protection－Easy to
APPLICATIONS：Updeting audio equipment－Guitar practice amplifler－－Test amplifier－ audio oscillator
SPECIFICATIONS：
OUTPUT POWER 15W R．M．S．into 8 2 ：DISTORTION 0.1% at $1.5 W$ ．
INPUT SENSITIVITY 500 mV ．FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ ． SUPPLY VOLTAGE 18 V

$$
\text { Price } \$ 5 \cdot 22+65 p \text { VAT P\&P free. }
$$

25 Watts into 8Ω

Teatures an integral heatsink Integration approach to power amplifier design．The amplifie past thes an integral heatsink together with the simplicity of no external components．During the past three years the ampliffer has been refined to the extent that it must be one of the most rellable and robust high fidelity modules in the Worid．
FEATURES；Low Distortion－Integral Heatsink－Only flve connectlons－7 amp output tran panents
APPLICATIONS：Medlum Power Hi－Fi systems－Low power disco－Guitar amplifier
SPECIFICATIONS：INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS Into 8Ω LOAD IMPEDANCE 4－16a DISTORTION 0.04% at 25 W SIGNAL／NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ ． SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Prleg \&6.82 + 85p VATP\&P free

The HY120 is the baby of I．L．P．＇s new high power range．Designed to meet the most exacting requirements including load ilne and thermal protection this amplifier sets a new standard in modular design．
FEATURES：Very low distortion－integral heatsink－Load line protection－Thermal protec－ Oon－Five connections－No external components
APPLICATIONS：HI－FI－High quallty disco－Public address－Moniter amplifler－Guitar and organ
SPECIFICATIONS 500 mV ．
OUTPUT POWER 6OW RMS＇into 8a LOAD IMPEDANCE 4－18』 DISTORTION 0.04% at 60 W SIGNAL／NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE尝IZE 1145085 mm
Price $\mathbf{8 1 5} \mathbf{8 4}$＋ $\mathbf{8 1} 27$ VAT P\＆P free．
The HY200 now tmproved to glve an output of 120 Watts has been designed to stand the mos rugged conditions such as diaco or group while stlll retalning true Hi－Fi performance．
FEATURES；Tharmal shutdown－Very low dlstortlon－Load Ine protection－Integral heatsink
APD external components
SPECIFICATIONS 500 mV
OUTPUTPOWER 120W RMS Into 8Ω LOAD IMPEDANCE 4－16』 DISTORTION 0.05% at 100 W Si 1 kHz INOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE STZE 1145085 mm
Price $225 \cdot 32+54.87$ VAT P\＆P ires．
The HY400 In I，L，P．＇s＂Blg Daddy＂of the range producing 240W into 4Ω I It has been designed for high power alseo address applications．If the amplifer is to be used at cont nupus high power levels a cooling fan is recommended．The ampliflar includes all the qualitios of the reat of the family to lead the markef as a true high power hi－flcellty power module．
FEATURES：Thermal shutdown－Very law distortion－Loed Ifne protectlon－No externt components
APPLICATIONS ；Public address－Disco－Power alavem－industrial
SPECIFICATIONS SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-4 \mathrm{k} H \mathrm{kz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE年筑V SUT SENSITIVITY 500 mV SIZE 11410085 mm
Price $\mathbf{6} 32 \cdot 17+$ E2． 57 VAT P\＆P free．
POWER SUPPLIES

PSU36 sultable for two HYSO＇s 45 ．22 plus 65p VAT，P／P free
PSUSO sultable for two HYSO＇s 86 ． 82 plus 850 VAT＇，PPP free． PSU70 sultable for two HY 120 ＇s 813 ． 75 plus \＆1． 10 VAT，P／P free
 B1 $£ 0.48+80.06$ VAT．

240 Watts into 4Ω

TWO YEARS＇GUARANTEE ON ALL OUR PRODUCTS
I．L．P．ELECTRONICS LTD．，CROSSLAND HOUSE，NACKINGTON，CANTERBURY，KENT，GT4 7AD．

I．L．P．ELECTRONICS LTD．， CROSSLAND HOUSE，NACKINGTON， CANTERBURY，KENT，CT4 7AD．

Please Supply

Total Purchase Pric
1 Enclose Cheque \square Postal Orders $\square]$ Money Order［］
Please debit my Access account \square Barclaycard account \square
Account number－
Name and Address

120 Watts into 8Ω

SHORT WAVE BROADCASTS by Charles Molloy G8BUS

The Austrian Short Wave "Panorama", which can be heard on $6155 \mathrm{kHz}, 9725,15355$ and 17770 at 1805 on Sundays, is holding a DX Trophy competition during the first three months of 1978. The idea is to log broadcasting stations in half-hour blocks. Every contestant will receive a diploma stating his score and the highest scorer will receive a DX Trophy, suitably engraved. Full details can be obtained by sending a SAE (in the UK) to Jonathan Marks, 12 South Bailey, Durham DH1 3EE or direct to DX Trophy, Austrian SW Panorama, Austrian SW Service, A-1136 Vienna, Austria.
"Now is the time of year when one can start looking for rare birds from the other side of the world. One of the most elusive is Radio New Zealand, which I have managed to hear during the past four winters" writes John Godwin from Rugeley in Staffordshire. John recommends the 25 m band transmission of the Pacific Islands service which is on 11780 kHz from 0530 until 0715 and on 11820 from 0730 until 1030, up to March 5th, 1978. The power is $7^{1}{ }_{2} \mathrm{~kW}$. Radio New Zealand is also on 11960 and $151^{\prime} 30$ from 1800 to 2215, on 17710 from 2230 to 0520 , on 15380 from 2300 to 0345 and on 15130 from 0400 to 0715 . DX reports, which should be accompanied by two International Reply Coupons, should go to Radio New Zealand, PO Box 2092, Wellington, NZ.

A 1957 Ferguson 391 T receiver and 40 ft long wire were used by thirteen-year-old Andrew Brade of Stone (Staffs) to pull in an interesting log of DX. Radio Uganda was heard signing-off in English on 9515 kHz at 2105, Radio Cyprus on 7195 signing-on in Greek to the UK at 2215, Sri Lanka in English on 11795 at 1500 and the Voice of Greece on 11730 starting a programme in Greek at 1230. Andrew has been looking for Radio Veritas, Philippines on 11725 between 1400 and 1500 and he wonders if the station has changed frequency. Radio Veritas (PO Box 939, Manila, Philippines) has been logged on 11955 kHz at 1425 by Philip Grainger of South Shields using a Trio 9R59DS receiver and long wire antenna. Philip would be interested in hearing from anyone who would be prepared to help him start a DX club in his area. Letters should go direct to 26 Beattie St, South Shields, Tyne and Wear.
"Please recommend an International SW Broadcasting frequency book that gives the stations, frequencies, transmission times, etc", asks Van Ommen Kloeke (EI3CM) from Arklow in Ireland. A similar request comes from R. J. Bedall of Cheam in Surrey who has a Sony ICF-5900 which pulls in plenty of stations. He wants to know who they are and where to write for a QSL. The World Radio and TV Handbook, published annually in Denmark, lists all known broadcasting stations on the long, medium, short and FM bands with the exception of some low power locals on the MWs. TV stations are also listed. There is a section for each country which gives the hours of transmission, addresses and QSL information and AM broadcasting stations are listed separately in frequency order. The 1977 edition cost $£ 5$. The 1978 edition is expected out in February and it can be ordered through booksellers or by post from the Modern Book Company, 19-21 Praed St, London W2 1NP, who advertise in $P W$.

Reader Bill Iball, who has been a SWL since the mid 1930s now has a Yaesu Musen FRG7 communications receiver and he would like to compare notes on aerials and the general performance of this receiver with other DXers. Write to Bill at "Garswood", 53 Winstanley Rd, Billinge,

Wigan WN5 7XE. Stations heard with the FRG7 and end-fed 50 ft aerial were Radio Globo, Brazil on 11805 kHz , Radio Club Pernambuco, Brazil on 11865 , Radio Australia on 6005, Radio South Africa on 4810, USSR (Kalinin listed) on 4860, Benin Republic on 4870, Conakry, Guinea on 4910 and Radio Malaysia, Sarawak on 5005 . No times are given but the 60 m logging would be after dark and Brazil on the 25 m band probably around 2100.
"I am not a regular DXer but I do enjoy a bit of knob twiddling between listening to the amateurs" says Christopher Silk who lives at Leigh-on-Sea in Essex. Using an Eddystone 740 and a 20 ft vertical aerial with 60 ft of co-ax feeder he pulled in Radio Australia on 7240 kHz at 1500. Reception continued until 1555 when an intermittent signal damaged reception. The transmission on 7240 is beamed on 325° to the Pacific Islands but the bearing also covers Europe on the short route across Asia.

Twelve-year-old Chris Howles who is a regular reader of PW recently took up SW DXing as a hobby and he bought a Vega 206 receiver. He added a 30 ft long wire to an old VHF TV aerial and with this set-up heard Radio Australia at 0900 on 21570 kHz in the 13 m band, Radio Canada Internation at 1655 on 15325, All-India Radio at 2020 on 9590, Baghdad at 2010 on 9635 and the Voice of Turkey at 2200 on 9515 . Chris is puzzled why the $13 \mathrm{~m}, 16 \mathrm{~m}$ and 19 m bands go blank after about 1930 hours. The reason is that signals on these bands pass through the ionosphere after dark instead of returning to earth. The ionosphere is maintained by ultra violet radiation from the sun and its strength and hence its ability to return the higher frequencies is at a maximum on the sunlit side of the earth. On any particular path the frequencies in use will be higher during the day than at night.

Frequencies will also be higher for long distance (low angle) than short distance (high angle) communication. From the DXer's point of view this means that during the day, the highest frequencies will be in use for long distance and lower frequencies for short distance reception. After dark, the higher frequency bands are dead; long range reception is now found on lower frequencies while short range reception moves to the Tropical Bands (the 75m band in Europe) or to the medium waves.

A Trio 9R59DS receiver and long wire aerial are in use at Braintree in Essex by R. Guest who heard Radio Australia on 11740 kHz at 0640 , on 21570 at 0800 and on 6035 at 2100, KWTR Guam on 9640 at 1330, Havana, Cuba on 17885 at 2055, Nigeria on 15120 at 0800 and Spain on 6100 at 2030 (there is a DX programme in English on this frequency at 2215 on Sundays). From the International Short Wave Club comes news of programmes in English from Radio 4VEH Cap Haition 9770 kHz and 11835 between 2230 and 0030, from Sri Lanka over 11955, 15120 and 17850 between 1845 and 1940, from Taiwan on 9600 from 2130 to 2230 (reports to 53 Jen A Rd, Sec 3, Taipei, Taiwan) and from Benin on $4870(60 \mathrm{~m}$) from 2015 to 2030 (reports to PP 366, Cotonou, Benin).

An old Ever-Ready radio of uncertain age works "incredibly well" for P. Gatehouse of Buckingham. All-India Radio came in on 9525 kHz at 2230 , Radio Canada on 11945 at 2039, Radio Israel on 7412 in English at 2330. On Sundays there is a DX programme from 2000 to 2030 and the station address is PO Box 1082, Jerusalem, Israel.

MEDIUM WAVE DX

by Charles Molloy G8BUS

The mystery surrounding the CJON Radio Network has now been cleared up by Ian Rennison of Horsham in Sussex. CJON on 930 is no more. It has a new callsign (CJYQ), the address of the station is PO Box 6180, St John's Newfoundland and the slogan used over the air is "Q Radio". The callsigns of the rest of the network have also been changed. CJOX on 610 kHz is now CKYQ South Coast, CJNW 670 is now CHYQ Bonavista Estuary, CJCN 680 is now CIYQ Central Newfoundland and CJCR 1350 is now CFYQ Gander. Ian, who uses a MW loop, differential amplifier, Trio 9R59D receiver, audio notch filter and the $P W$ CMOS crystal calibrator, reports hearing a new CBC outlet on 750 kHz relaying CBN (640) and that CFBC Saint John N.B. on 930 has now become prominent on this channel in place of CJYQ. All very confusing!

A Trio 9R59DS and a 36 in loop are in use at Steyning, Sussex by Alf Cosham who reports hearing CKVO Clarenville Newfoundland on 710 kHz at 2330 , WINS New York on 1010 at 0710 and WNEW also in New York on 1130 at 0705. The CJYQ frequency (930) seems dead at Alf's QTH and reports from other DXers suggest that CJYQ (ex CJON) may no longer be the strongest, most consistent and earliest North American to be heard in the UK. Stations seem to come and go on the medium waves. CBA Moncton N.B. at one time was a solid signal every night on 1070 after Paris closed down, while others, such as CBH in Halifax on 860, WMEX Boston on 1510 and WKBW Buffalo 1520 which used to be reported regularly are now inconspicuous. It is interesting to speculate why this should be. Interference is probably one cause but the explanation that appeals most to the writer is the thought of the Chief Engineer, tired of answering reports from DXers, who adjusts his aerial system so that more signal goes into the service area and less goes out to distant lands and to eavesdropping DXers!

At the moment CKVO on 710 kHz and WINS on 1010 are the stations to look for around midnight, if you have never heard North America on the medium waves. WINS has its studios in New York City but the transmitter is in New Jersey and the directional aerials boost the signal to the north east, towards New York and also to the DXer in Europe.

More North American DX from David Sidebottom who lives in Fleetwood and uses a Realistic DX160 receiver with an 80 ft longwire aerial. Some of the stations heard by him between 0030 and 0200 are VOCM St John's on 590 kHz , WHDH Boston on 850 , CJCH Halifax on 920 , CHER in Sydney on 950 , CHNS Halifax on 960 , CBY Corner Brook 990, WHN New York on 1050, CBA Moncton 1070, WCAU Philadelphia 1210 and WVOJ Jacksonville in Florida on 1320. "Q Radio" on 930 was also heard mixed with CFBC. Robin Harvey writes again from Halesworth to say that he now has a Trio 9R59DS communications receiver and he is set to do some serious DXing. He has been unable to hear MEBO2 which has not been transmitting on 773 kHz recently nor has he been able to locate the Voice of Peace on 1540. The latter has changed frequency to 1538 which is occupied also by the 700 kW outlet at Mainflingen in West Germany and it will be very difficult to hear the " V of P ". on this channel in the UK.
"I would like to know if readers ever write to you about hearing DX on the long waves" asks Peter Ramsey of Stevenson in Ayrshire. Occasionally, is the answer, and it
is a pity that more DXers do not try this band. The main obstacle to DXing on the LWs is interference from the line timebase of TV receivers which appears as a buzz at intervals of about 15 kHz . This trouble disappears after midnight, when it is worth tuning around the band for weak signals. Asiatic Russia, Turkey, Iceland, Algeria, Morocco, Romania, Sweden, Norway, Finland and Mongolia are to be found on the long waves. A good outdoor aerial is an advantage but a transistor portable with internal aerial can perform very well as its directional aerial will cut down static and QRM.

A report of Asiatic DX on the medium waves comes from our regular reporter Harold Emblem who DXes in Mirfield with an Eddystone 730 receiver and loop. Radio Pakistan's outlet at Quetta was heard on 750 kHz , Astrakhan USSR on 791, Novosibirsk in Siberia on 1025, Saransk on 1061 with local identification. Also logged were Conakry, Guinea on 1403 which is on the air all night and EAJ28 Radio Tarasa in Spain on 1412.
"What kind of ATU (Aerial Tuning Unit) must I use with a loop"? asks Raphael M. F. de Witte who lives at Whitley Bay. An ATU is used to match a long wire to a receiver and it is not suitable for use with a loop as it would act as an aerial itself, pick up signals and therefore mask the loop's null. Even if it were placed inside a screened box it would still give trouble as the type in general use is electrically unbalanced and would upset the operation of the loop.
"Is it possible to receive local radio stations from other parts of the UK'? enquires C. J. Roe of Warwick who says he is something of a novice regarding radio. The best type of receiver for this sort of DXing is the ordinary transistor portable with its internal directional aerial. Tune in a station on a portable, rotate the receiver without tilting it and two positions will be found where the station disappears or drops to a very weak signal. This ability to null-out stations can be put to good use when searching for local radio stations as most of the channels in use are shared. Try after dark on $755 \mathrm{kHz}, 854,998,1034,1106$, $1115,1457,1484,1502,1520,1546$ and 1594 for BBC locals and on $989 \mathrm{kHz}, 998,1025,1151,1169,1277$ and 1546 for IBA outlets.
"Long time no hear" writes Ralph Newman from Reading who has not been idle, though. He has been doing a "few mods" to his homebrew receiver and he now has a really good 8 -element ceramic IF filter to sort out the QRM. Highlights from his log are Nigeria on 945 kHz with identification at 2357, CBM Montreal on 940, WHN New York on 1050 at 0018, WCAU Philadelphia on 1210 at 0024 , WOKO Albany NY (5kW) on 1460 at 0025 and WQXR in New York City on 1560 at 0030 . WINS was heard at 0745 in the morning until its carrier finally went out as a heterodyne with 1007 kHz at 0810 . The fadeout of the sky wave from WINS would be caused by the reforming of the " D " layer in the ionosphere due to the action of ultra violet radiation from the rising sun. The "D" layer absorbs MW signals, but Lopik in Holland on 1007 kHz would still be heard via the ground wave.

PLEASE MENTION

 PRACTICAL WIRELESS WHEN REPLYING TO
ADVERTISEMENTS

by Ron Ham BRS15744

Gordon Goodyer BRS 37345 of Petworth, has purchased an Eagle SR550 amateur bands receiver and finds it very good on both the 20 m and 10 m bands and the long scale between 28 and 30 MHz makes it an ideal tunable IF amplifier for his 2 m converter. Around midday on December 4th Gordon heard an EI on 2 m SSB during the RSGB Fixed Station contest and, according to the grapevine, a GM was also heard in the south, which is not surprising because conditions were right for a tropospheric opening. The atmospheric pressure rose sharply from $30 \cdot 1$ in at midday on December 1st to $30 \cdot 4 \mathrm{in}$ by midday on the 3rd and was falling rapidly throughout the 4th. The first sign of a lift came at 0248 on the 3rd when signals from GW mobiles, through the Bristol Channel repeater, were opening the squelch on my receiver.
At 1454 I received a 53 signal from GB3SUT on 70 cm , and a picture from the IBA transmitter at Lichfield on Ch. $8,189 \mathrm{MHz}$. A dipole aerial was used to feed each receiver. By 1054 on the 4th, repeater signals were strong and I heard GW8MVA working a French station through GB3BC. The AP continued to fall for the next few days reaching a low of $29 \cdot 2$ in at 0400 on the 8 th which meant very bad weather over much of the UK and very poor VHF conditions. Later in the day the AP began to rise and by midday on the 12 th it was back above 30 . 0 in rising to $30 \cdot 5$ in on the 14th bringing back good VHF conditions.
At 2020 on the 12th Dave Butler G4ASR London, worked F6DJF Paris, on 2 m SSB and was called by an HB9 whose signal suddenly disappeared into the noise; one of those VHF annoyances! Dave has an excellent VHF record; recently, while staying at the Lizard, he worked more than 1300 stations from 16 countries on 2 m and 9 on 70 cm . His best DX on 2 m is Liechtenstein and Switzerland on 70 cm . During the opening last September, Dave noticed that many south coast amateurs were able to work into Holland yet he could not hear the Dutch stations although he could easily work into Spain from his location at the Lizard. From his many aerial experiments Dave has found that his VHF Quad is by far the best of his equipment.
Alan Baker G4GNX Newhaven, noticed a lift during the evening of the 13th when he heard G3ZIG Norfolk, work a GM on 2 m SSB and on the 14th he heard signals from GB3BC right along the south coast to Rottingdean. Also on the 14th Lee Reynolds G8LCK London, worked stations via the 2 m repeaters in Birmingham, Bristol, Buxton, Dover, Four Marks, Martlesham Heath and Belgium, ONOOV, all with $2 \cdot 5 \mathrm{~W}$. Roy Bannister G8LXR Lancing, heard French stations on 2 m CW on both the 14th and 15th several of those repeater signals were operating the squelch on my receiver and during the early evening of the 15th, Alf Lee G4DQS Brighton, worked a French station via the Normandy repeater FZ3THF on R4. Frequently on these two days signals were heard from both GB3SUTT and GB3EM on 70 cm .

Congratulations are due to our readers Roy Bannister G8LXR and Barry Ainsworth G8HYN who went together to North Foreland and passed their morse tests. Roy now has the call sign G4GPX and Barry is G4GPW.
Brian Oddy G3FEX Storrington and J. A. Tipping G8JXE Brighton, have been carrying out tests between Devils Dyke, a high spot Nr Brighton, and Storrington on 23 cm . Both stations are using Microwave Modules con-
verters into their respective receivers and they have been experimenting with a variety of aerials, including a 4 ft home-brew dish, a J-Beams $15 / 15$ slot and Brian's 16 in dish which he used back in 1962 when he held a record for a 104 mile QSO on 1296 MHz . Readers wishing to take part in these tests, which take place on most Saturday mornings, should write to G3FEX, QTHR.

The Haywards Heath ARC held its inaugural meeting on November 17th which was attended by 12 people including two, in an advisory capacity, from the Crawley ARC. The meeting elected Alec Parsons G8MDP chairman, Andy Mepham G4CBZ secretary, and Chris Stagg G8iMZO treasurer. At present the club is very much VHF orientated and future meetings, where new members are welcome, will be held monthly at the Liverpool Hotel, opposite Haywards Heath Station; for further information phone Andy Mepham, H.H. 57609.

A period of solar activity began on December 1st and was dying down on the 16 th, during which time Cmdr Henry Hatfield, Sevenoaks, John Smith, Rudgwick, and myself recorded many individual bursts of solar radio noise, and noise storm conditions prevailed on the 10th, 11th and 12th. On the 4th, Henry, using his spectrohelioscope, located the cause of the noise when he identified two sunspot groups, 16 filaments and 4 plages on the sun's disc. As usual this solar activity disturbed the normal path of many radio signals.
Between 1720 and 1920 on the 2nd, John Branegan, Saline, Fife, observed an aurora borealis both optically and by radio. John sent me a fine drawing of the event, which I will pass on to G2FKZ, and he described it as pale pearlygrey and white and the pattern was fluctuating in a few seconds. While this natural phenomenon continued, John received signals from five Continental FM stations, between 88 and $92 \mathrm{MHz} ; 6 \mathrm{GMs}, 1 \mathrm{GI}$, and a PAO on 2 m and several beacons including DLOPR, LA4VHF, GB3ANG, GI, NEE, VHF and CTC, all being reflected from the changing auroral display. The BBC World Service reported ionospheric disturbances on December 1, 2, 6, 12 and 13 and during the evening of the 12th, Alan Baker reported that the HF bands were unusually noisy.
No doubt this solar activity was responsible for the variable conditions on 10 m . I heard signals from the Bahrain beacon A9XC on the 12th, the Mauritius beacon 3B8MS on the 1st and 11th, the Cyprus beacon 5B4CY on November 22, 24, 29, December 9, 11, 12, 13 and 17 while Nigel Golds BRS 36910 West Chiltington, Sussex, received a 599 signal from the German beacon DLOIGI at 0800 on the 10th and Ralph Cathles G3NDF Great Bookham, heard DLOTGI during the morning of the 13th in addition to signals from the Bermuda beacon VP9BA $28 \cdot 165 \mathrm{MHz}$. Both Nigel and myself heard signals from Europe, Italy, Russia and north and south America during the 10 m contest on the 10th and 11th.

Anthony Mann, Applecross, Australia, says that there was "a most intense opening" during the evening of November 13th when he heard signals on 10 m from A9XC, 5B4CY, 3B8MS and from amateurs in Europe and the UK as far north as Scotland. Anthony noted a lot of sporadic-E activity between November 6th and 20th.
From his DX TV observations he reports Malaysia's Network 1, Ch.E2 and E3 in West Malaysia, came in on three occasions and during one of these he also received East Malaysia's Network 3 on Ch.E2. On November 13th and 18th he received pictures from New Zealand on $45 \cdot 25 \mathrm{MHz}$ and says "November 17 th was a very good day for all of us". At the time Malaysia was being received in Perth, 2000 miles east in Sydney, Band 1 and 2 stations in the far north of Queensland were being received by friend Robert Copeman.

Thank you all for your interesting reports. Don't forget the RSGB $144 / 432 \mathrm{MHz}$ Open and SWL contest on March 4th/5th and the 70 MHz Open contest on March 19th; good luck if you compete and I will look forward to hearing from you after the events.

ALAN BAKER
by Ron Ham

Alan Baker G8LGQ an electronics engineer from Newhaven, Sussex, is a familiar name to the readers of my VHF column in this journal. According to his father, Alan showed signs of becoming an engineer at the age of three when he played with a pair of pliers and eventually put them across the mains! At the age of six his favourite toy was a crystal set, with the headphones in a pudding basin to increase the audio gain. On leaving Redhill Technical College at 16, Alan began work as a telephone engineer with the GPO and later became a TV service engineer with a private firm in the Kingston area. He was married in 1967 and in 1969 his technical ability took him into the field of public address and the specialised recording of folk music.

In 1975 Ralph Cathles G3NDF loaned him a Hallicrafters Super Skyrider receiver and it was hearing the W's on 20 m that convinced him that it was time to take up amateur radio and by February 1976 he was sporting the call sign G8LGQ. Immediately he began exploring the 2 m band with a Pye Cambridge which was later replaced with a Yaesu rig.

As a committee member of the Sussex repeater group Alan was involved with the installation of GB3BR, the Brighton repeater on 70 cm , and as an enthusiastic mobile operator with an IC22A in his car, he has worked much DX through many of the British Isles and Continental repeaters. His constructional projects include a VHF linear, a frequency counter and a 3-manual theatre organ complete with pit and lift! Alan is a member of the Mid-Sussex Amateur Radio Society and the RSGB, and in May 1977 at the age of 30 , he was elected chairman of the newly-formed Brighton and District Radio Society.

In the latter half of 1977 he polished up his morse code and passed the test at North Foreland in November. In just less than two years Alan Baker mastered the art of working DX on the 2 m band and now intends to do the same on the HF bands with his new call sign G4GNX.

BATTERY STATE INDICATOR

continued from page 849
and hence the supply voltage range over which oscillation takes place is very narrow, about $0 \cdot 1 \mathrm{~V}$.

Construction and Component Selection

The Zener diode Dl should ideally give good stabilisation at a low current and can be simply checked by connection to a variable voltage supply with a $4 \cdot 7 \mathrm{kohms}$ series resistor whilst monitoring its voltage with a multimeter. Selection of the Zener in this way is merely a refinement however, as in several indicator circuits lashed up so far all diodes were off the shelf and worked well. The actual Zener voltage is not critical, so a device anywhere between 3 V and 5 V will be suitable. The LED type is also non-critical except that it should have a suitable mounting clip.

The circuit is best fabricated on a small piece of Veroboard which can be located inside equipment where space permits. A suitable layout is shown in Fig. 2. Four Veropins are soldered in place at the board edge for connection to equipment being monitored.

Fig. 2 : A suggested Veroboard layout.

Setting Up

This is a simple matter and is best carried out as follows. Connect the circuit to a variable voltage supply, monitoring the current drain, which should be about 5 mA at 9 V . Set the supply voltage to the value at which you want the LED to start flashing, say 7 V , and adjust VRI until oscillation begins. With VR2 in its minimum resistance position, the LED will flash between 7 V and 6.9 V .
This small range will be adequate for low current equipment when the battery voltage drops slowly e.g. a low distortion oscillator taking about 15 mA from a PP9 battery, where it is convenient to take the onset of flashing as the "change battery" point. The flashing LED will attract attention if the equipment is being used when the battery voltage drops.
If when switched on after a period of little use the LED does not light, the battery voltage is too low, probably due to normal deterioration. Increasing the value of VR2 will increase the flashing range over wide limits. A small degree of interaction between the two presets is inevitable. For monitoring higher supply voltages than 12 V the LED series resistor will need to be increased in order to keep the current at a safe and economic level.

RADIOEXHANGE LTTD.
 NEW ELECTRONIC MASTER KIT

WITH SPECIAL MULTI-BAND V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial, These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
PROJECTS: V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor MultiBand V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio \star Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L.W. \& Four Transistor Push Pull Amplifier
\downarrow Eight Transistor MultiBand V.H.F. Loudspeaker Receiver \downarrow Variable A.F. Oscilator \ddagger lify MultiTester \downarrow Eight Transistor MultiBand V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star liffy. MultiTester \star Four Transistor and Diode M.W. L.W. Radio. \star A.F. R.F. Signal Injector \star Five Transistor Push Puill Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band
Regenerative Radio \star Five Transistor V.H.F. MulriBand Tuner \star Three Transistor Code Practice Regenerative Radio \star Five Transistor V.H.F. MulciBand Tuner \star Three Transistor Code Practice
Oscillator \star Five Transistor Regenerative Short Wave Radio \star Four Transistor and two Diodes M.W Oscillator \star Five Transistor Regenerative Short Wave Radio \star Four Transistor and two Diodes M.W

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND V.H.F. AND A.M. RECEIVER.
13 TRANSISTORS AND FIVE DIODES. QUALITY $5^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKER.
WITH Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawter Band, etc., Chrome Plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain, Wave-Change and Tone Controls. Plus two Slider Switches. Negative Feedback circuit and SPECIAL POWER BOOSTER SOCKET AND RESISTOR, to virtually double gain if required. Powered by P.P. $9-9$ volt Battery.

Complete kit of parts including carrying strap.
Building Instructions and operating Manuals. $\mathbf{E T 4 0 7 9 + P \& P £ 1 \cdot 1 0}$

NEW

MODEL
R.K.I

MultiBand A.M. ReMuitiBand A.M. Re-
ceiver. M. W. L. W. Trawler Band and Trawler Band and Three Short Wave
Bands. Seven TranBands. Seven Transistors and Four Diodes. Push Tim Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Serap, Rubber Feet and ready-drilled Panels. Comprehensive instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

NEW

MODEL

R.K. 2

MW. LW and Air Band Receiver Eighe Transistors and Four Diodes. $3^{\prime \prime}$ Loudspeaker Telescopic Aerial Intemal Ferrite Rod Aerial. Complete with Carrying Strap and ready-drilled Panels and all components necessary for construction. A sensitive Receiver with the additional luxury of an Air Band section to Manual enables stage by stage construction. Uses P.P. 9 Nine Volt Batcery.

ELECTRONIC

 CONSTRUCTION KITE.C.K. 2 Self Contained Multi-Band V.H.F. Receiver Kit. 8 transistors and 3 diodes. Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, resistors, capacirors, transistors, etc. Will receive T.V. sound,

 public service band, aircraft, V.H.F. local stations, etc. Operates from a

Complete kit of parts £8.99 ${ }_{90 \mathrm{Pap}}^{2 \mathrm{p}}$ 9 volt P.P. 7 battery (not supplied with kit)

E.V.6.

Build this exciting new design. 6 Transistors and 2 diodes. MW/LW Powered by 9 V battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in . loudspeaker. Atractive 23 in approx All parts including Case and Plans.
Total Building Costs $\mathbf{4 5} \cdot 95+\mathrm{P}$ \& P and ins. 90p
ALL PRICES INCLUDE VAT
pick up Aircraft from many miles away. Full instruction

$19.99+P \& P$
$11 \cdot 10$

Complete kit of
parts in-
eluding partsin-
eluding
construc construc-
tion plans Total buildin costs
69.99
$+P \& P$ and Ins. $\mathrm{El} \cdot 10^{\circ}$

EDU-KIT MAJOR
COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT
BUILD THESE PROJECTS IRON OR SOLDER

4 Transistor Earpiece

 Radio - Signal Tracer - Signal Injector TransistorNPN-PNP - 4 Tranisistor Push Pull Amplifier

- 5 Transistor Push Pull Batteryless Crystal 5 Transistor Push Pull - Amplifier speaker. Radio MW M j ${ }_{5}{ }^{\text {TW }}$ Transistor - 5 Transistor Short - Electronic - Electronic Metronome
Electronic Noise
Generator
- 24 Resistors 21 Capacitors * 10 Transistors - $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker Earpiece Mica Baseboard 3 i2-way Connectors 2^{x} Volume Controls Earpiece Mica Baseboard 3 i2-way Connectors 2 Volume Controts
2 Slider SWitches I Tuning Condenser 3 Knobs e Ready Wound
MW/LW/SW Coils Ferrite Rod $6 \ddagger$ yards of wire 1 yard of sleeving, etc.

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts.
Uses a retractable chrome plated telescopic erial, gain control V.H.F. tuning capacitor, transistor, etc.
All parts including case and plans $\mathbf{4 4 \cdot 9 5}+\underset{\mathrm{Ins}, 60 \mathrm{p}}{\mathrm{P}} \mathrm{P}$ and

To: RADIO EXCHANGE LTD 6IA High Street, Bedford MK40 ISA Tel.: 023452367

REG NO. 788372

- Callers side entrance "Lavells" Shop.
- Open 10-I, 2.30-4.30 Mon.-Fri. 9-12 Sat.

Γ^{-}

tenclose f.................for.................
Name,...s...............................
\qquad PW378

 248/250 TOTTENHAM COURT ROAD, LONDON W1. TEL: 01-637 1908

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL...

The finest general-coverage synthesised communications receiver on the market, now available in two versions

ANALOGUE
 DIGITAL

Also available from us with special 2 m converter and accessories, all for just an extra £17.00
\star
Phone for details of current stocks-new and secondhand-and opening hours
\star

AMATEUR RADIO EXGHANEE

2 Northfield Road, Ealing, London, W.I3. Tel: 01-579531I

Easy terms up to 3 years	Credit Sales by Telephone	Securicor Delivery

the quickest fitting $|1| \mid / 1 /$
CLIP ON capacitive discharge electronic ignition in KIT FORM

Introductory

SPECIAL OFFER £2 OFF Kit

Smoother running
Instant all-weather starting
Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guasranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos, earth and fully illustrated installation instructions.
NOTE-Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post \& packing

SLIM JIII

2 METRE OMNI AERIAL TYPE SJ2
\star Low angle radiation
\star Designer approved
\star Precision built
\star Solid alloy rod
\star Machined fittings
\star Integral mast clamp
\star Low S.W.R.

* £15.50 + £1 pp inc. VAT

Send stamp for details or order direct from:

T\& T ELECTRONICS
Green Hayes, Surlingham Lane
Rockland St. Mary, Norwich Norfolk NR14 7HH
or from our stockists:
THANET ELECTRONICS
143 Reculver Road, Beltinge
Herne Bay, Kent CT6 6PL
Trade enquiries welcomed

NO

 BATTERIES NO WIRES OHLE£29.99
PER PAR
$+\quad$ VAT
The heriern way of ustint w. way communications. Supplied
with 3 -core pire. Just plug into power socket. Heady for use. Crystal clear communications from room to room. Range f-nile on the same mains phase. On/off ewitch.

4SIGTON TNIERCOM

 £19.95
 Solve your communtes + tion problems with this 4-station Transistur fintercom aystem (1 master and 3 Sube), n robust plastic cabinets for deak or wal mounting. Call talk/listen from Master to Subs and subs to Master. Ideally suitable for Business. Surgery, schoole, Hospitals and Office. Operates on one 9 v battery, On/oII switch. Volume contrel. Complete with 3 connecting wires each B6ft. A Battery 'nEW' AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

£14.95
+VAT $81 \cdot 20$
Latest trunaisturised Telephone Amplifier with detached plug-in apeaker. Plactag the receiver on to the cradle activates a switch for immediate twoumay conversation time. Increase effliency in office, shop, workshop. Perfect ion 'conference'" calla: leaves the user's hands free to make distance calls. On/off awitch, volume, convergation recording model at $216.95+$ VAT $£ 1-86$. P. \& P. 89p.

10-day price refund guarantee on all items.

WORLD-WIDE RECEPTION

Famous for over 35 years for Short-Wave Equipment of quality. "H.A.C.'" were the Original suppliers of Short-Wave Receiver Kits for the amateur constructor. Special offer AR8 valves-70p each.

1978 "DX" RECEIVER Mark III
Complete kit-Price $\mathbf{5 9 \cdot 0 0}$ (incl. p. \& p. and V.A.T.).

Customer who sent us five OSL cards, one from each continent writes: "Other countries of Sri Ianka Liberia heard are Korea, Japan, surprised at the simplicity of the set, compared to its efficiency.
This kit is ready to assemble and contains all genuine short-wave components, drilled chassis, valve, accessories and full instructions. Full range of other S.W. kits, including the famous model "K plus"' (illustrated above). All orgers despative catalogue of kits and components.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane

Lewes Road, East Grinstead, West Sussex RH19 3SZ

VALVE BARGAINS

Any 5-64p, $10-\mathrm{fl} \cdot \mathbf{2 0}, 50-55 \cdot 00$. Your choice from the list below.
ECC82, EF80, EFI83, EFI84, EH90, PCF80, PCF802 PCL82, PCL84, PCL85, PCL86, PCL805, PL504, PY81/800, PY88, 30PLI4, 6F28, PFL200.

Colour Valves-PL508, PL509, PL519, PY500/A. All tested. 35p each.

Aerial Splitters- 2 way, 75 OHMS, Inside Type,
Cl. 50 .

AERIAL BOOSTERS

Aerial boosters can produce remarkable. improvements on the picture and sound, in fringe or difficult areas.
BII-For TH stereo and standard VHF/FM radio. B12-For the older VHF television-Please state channel numbers.
B45-For Mono or colour this covers the complete UHF Television band.
All boosters are complete with battery with Co-ax plugs and sockets. Next to the set fitting.

100-C280/I CAPACITORS
Values from .01uF to $1 \cdot 5 \mathrm{uF}, 250 \mathrm{v} / \mathrm{w}$. Price $£ 1 \cdot 50$ (mixed packs).
100-ELECTROLYTICS
From IuF to above 500 uF . Mixed voltages. Price t2. 00 (mixed packs)

All prices include VAT. P\&P 30p per order Please send uncrossed P.O. or cheques for returning if we are out of stock of capacitor bargain packs. Exports welcome at cost.

ELECTRONIC MAILORDER LTD.
62 BRIDGE STREET, RAMSBOTTOM, TEL: RAMS (070 682) 3036

MULLARD UNILEX
A mains operated $4+4$ stereo system. Rated one of the finest periormers
in the stereo fleld this would make a wonderful gift assemble modular form and
complete with a pair of Plessey
speakers this should self at absout $£ 30$-but due to a special
bulk buy and as an tincentive for bulk by and as an incentive for you to buy this month we

ROOM THERMOSTAT

Famous Satchwell, elegant design, intended for
wall mounting. Will switch up to 20 amps at mains wall mounting. Will switch up to 20 amps at mains
voltage covers the range $0.30^{\circ} \mathrm{C}$. Special smip this voltage, cover.
menth $£ 3$-00.

WINDSCREEN
 WIPER

CONTROL
Vary speed of your wiper to sult conditions. All parts and
tlons to make. $£ 3.75$.

MICRO SWITCH BARGAINS

Rated at 5 amps 250 volts. Ideal to make
a switch panel for a calculator and for
dozens of other applications.
Parcel of 10 (2 types) for $£ 1 \cdot 00$,

RADIO STETHOSCOPE
Easiest way to fault find, traces, slgnal from aeriai to speaker, when
signal stops you've found the fauit. signal stops you've found the fault.
 and parts $\begin{aligned} & \text { including probe } \\ & \text { tube } \\ & \text { t3.95. and }\end{aligned} . \begin{aligned} & \text { iwin stetho-set. }\end{aligned}$

MULTISPEED MOTORS

Six speeds are available 500,850 and 1,100 .
r.p.m. and
7,000
9,000
and
11,000 Shaft is $4_{4 \prime \prime}^{\prime \prime}$ diameter and approximateiy $1^{\prime \prime}$ tong. 230/240v. Its speed may be further controlled with the use of our Thyristor controller. ${ }^{\text {. Very }}$
powerful and useful motor size approx. ${ }^{2 \prime}$ dia. powerfur and
$\times 5$ long. Price $£ 2 \cdot 00$.

RECTANGULAR HOT PLATE Aluminium panel with ridged top and Angled underneath, to stroenghen it.
anthis is approx. $10^{\prime \prime} \times 4 \frac{1 / 2}{} \times \frac{1}{4}$ of flat plate. This is approx. $10^{\prime \prime} \times{ }^{\prime 2} 4^{4 \prime}$ of flat plate.
Beneath plate $1 \mathrm{~s}^{2} 100 \mathrm{w}$ element and sensor swistch which will
maintain the surface of the maintain the surface of the With leads too hot to to touch.
ideal if you ares. This is warmer or for an making up a food
airing cupboard,

HUMIDITY SWITCH

American made by Ranco their type
No. $\sqrt{114 \text {. The action of this device }}$ depends upon the dampness causing sensitive microswitch adjustable by a screw, quite sensitive-breathing on for instance will switch it on. Micro 3 amp at 250 y AC. Overall size of the device
approx. $3_{\frac{1}{2}}$ Iong, $1^{\prime \prime}$ wide and t饾" deep. 75 p .

8 PO WERFUL

BATTERY MOTORS
For models, Meccanos, drills, remote control

PP3/PP9 REPLACEMENT

MAINS UNIT
 is ideal to power a calculator or radio, output of 9 volts suitable for a loading
of $4 P$ to 100 mA . ± 2.53.

SWITCH TRIGGER

MATS
Wiring dig, supplied for complete house

MAINS TRANSISTOR PACK

 able PP4, PPO, PP7, PP9 and others. KII comprises: mains. transformer, rectifler, smoothing and load eesistor, condensers
and instructions. Real snip at only $£ 1.85$.

SOUND TO LIGHT UNIT

 Add colour or white light to your maximum 450W). Unit in box all ready to work. 29.95
GONTBOL Bin

DRILL CONTROLLER
Electronically changes speed from approximately 10 revs to maximum. Fult power at all
speeds by finger-tip control. speeds by finger-tip contron,
Kit includes all parts, case, everything and fuli instructions.

Made up model £1. 00 extra

MULLARD AUDIO AMPLIFIERS

All in module form, each ready built complete with heat power output \& $1: 50$ including Post and VAT, M idel 1172 ; , power output 51.85 Model EP9000 4 : wawt power output E2. 90
EPp. 9001 twin channel or stereo pre-
amp

SHORTWAVE CRYSTAL SET Although this uses no battery it will receive an amazing assortmen of stations over the 19, 25, 29 , 31 metre bands. KIt contains chassis front panel and all the p.
-crystal earphone 55 .

BREAKDOWN PARCEL

Four unused, made for computer units contalining most useful components, and these components unilike those
from most
computer from most
wire
ends of
of
usable wire ends of usabe fength.
transistors ione
for instance he have over $\frac{1^{\prime \prime}}{\frac{1}{2}}$ long-the diodes have approx. $\frac{1}{2}$ " leads.
List of the major components is as follows:-17 assorted transistore-38 assorted diodes-60 assorted resistors
and condensers and condensers-4 gold plated plugs in units which ean
serve as multipin plugs or as hook up boards for experimental or quickly changed circuits (note we can suppiy the socket oo ards which were made to receive these unith). The price of this four unit parcel is ex including VAT and post (con-
siderably less than value of the transistors or diodes atone) siderabty less than value of the transistors
DON'T MISS THIS SPLENDID OFFER.

FLUORESCENT TUBE

INVERTOR

For
car
cempiring emergency fighting from a i2v
battery you can't beat fluorescent

lighting, it will offer olenty of well distrinuted light and is economical. We offer invertor for $21^{\prime \prime}$ ' 13 watt miniature tube for only £3.75 with tube and tube holders as well.

SPIT MOTOR WITH CARTER G/BOX

Probably one of the best spit moto
made, Originally intended to be used in very high priced cookers, however
this can be pult to plenty of other uses, this can be put to plenty of other uses,
or instance your garden barbeque or to drive a tumbler for stone pollishing; in fact there are no ends
to its uses. Normal mains operation. $\pm 4 \cdot 32$.

HONEYWELL P.B.
MICRO SWITCH
$1-2$ or 310 amp 250 V changeover micro-switch thro panel mounting by
cock nuts 1 "dia biack knob 1 switch 40 p 2 switch 55p, 3 switch 70p.

LATCHING

RELAY

by Guardian Electrlc, mains operated it is in fact two relays mounted on a metal base plate. The reiays being mounted in such a way to ensure that when one closes the other opens and vice versa thus when closed relay A would remaln locked
until manually released or eiectricaliy released by energising until manualiy released or electricaliy re eased by energising Should be ideal for burglar alarms and similar applications ER-41.
TERMS :
Cash with order-prices include VAT and carrlage unless stated but orders under £6 must add 50 p to offset packing,
BULK ENOURIES WELCOMED. Phone $01-6881833$.
> J. BULL (EEEGRICA) LTD
> (Dept. PW), 103 TAMWORTH RD. GROYDON CR9 1SG

IT'S FREE

Our monthly Advance Advertising Bargains List gives details of bargains arriving of just arrived-otten bargains Which sell out belore our advortsement can appeaf-lio an interesting list and it's free-Iust send S.A.E. Below fines.

FM Tuner and decoder, two very well made (Japan)
units, nice clear dial, excellent reproduction $£ 9$ 'g5 the units. nice clear
palr $£ 1 \cdot 25$ VAT.

12 Volt Heavy Duty Relay, plug in type has three palrs of 10 amp changeover contacts. A transparent dust
price $£\{+8 p$, sultable 11 pln base $27 p+$ VAT $2 p$.

4 Changeover Mains Relay, upright mounting with perspex type dust cover, the really interesting feature is 4 seta of

12 Volt Pump. Designed we belleve as a bilge pump, this is 12 volt AC/DC motor coupled by a long enclosed shaft to a submersible pump. Sultable for water or most any fluids Price $£ 14 \cdot 70$.

Just arrlved. Frult machines, working order very Impressive
cholce of several but very heavy so you must collect. $\& 50$.
High Load 24 Hour Clock Switch, made by the famous has load capaclty of 80 amps at $240 v 50 \mathrm{hz}$. Therefore sultable or dealing with large loads of say shop lighting, water heating, storage heaters, etc., etc. Has triggers for on and of
 totally encased but has lift up flap for ease of altering swltching times. Price, new and unused $£ 10.65$ or used but guaranteed 0.k. £6.50.
Enclosed 24 Hour Clock, with contacts for breaking 10-42 amps at 240 vo
price $E 7 \cdot 00$.

Smiths $\mathbf{2 4} \mathbf{h y}$. Timers-Heart only, with over-ride simila to those used in the auto set, etc. £4.75 + VAT 33p. Ditto but in grey plastic wall mouning case, with leade
ready for attaching to plug and socket, price $\mathbf{E 6} \cdot \mathbf{8 8}$.

Light Dimmer, our timer module with small mods makes an excelient light dimmer. Contains a 4 amp 400 V SCR so should be sultable for loads approaching $i \mathrm{~kW}$. ${ }^{\text {P }}$.

Push Pull Solenoids, malns operated solenolds which will push as well as or instead of pull. Very heavy duty estimate this at $201 b s$ push or
Magnetic Devices Co. $\mathbf{E 7} \cdot 50$.

MINI-MULTI TESTER
 Amazing, deluxe pocket slze ment jewelled bearings-1000 pv-mirrored scaie.
C volts 10, 50, 250, 1000
AC volts 10, 50, 250,1000
AC volts 10,50,
Continulty and resistance 0.15 m and $0-150 \mathrm{~m}$ Complete with insulated probes leads, battery, clrcuit dlagram and instructions.
FREE
Amps ranges kit enable you to read DC current from -10 amps, directly on the 0 -10 scale. It's free if you purchase uickly but it you already own a mini tester and would like

Flat Reed Switches, for stacking greater quantity in confined space, Price 50p each VAT 4 p.
Single Ended Types for jobs where it is not easy to bring
a load to each end 75 p each. All these switches are normally pen but can be biased to a normally closed positton by itting a magnet adjacent. The reed switch would then be Ceramic Magnets suitable for operating reed switches entral flxing hole 10 tor $£ 4$

Music Centre Transformer 12-0-12 at 1 amp and 9 volt at amp. Normal primary, upright mounting, Impregnated and $\frac{1}{2}$ amp. Normished for quilet operation. Price $£ 2.95$. Post 54 p .
Extension Speakers 8 ohm 4.5 watts handling power. the Partytime at $£ 3 \cdot 956$ each, agaln only really a bargain for callers as postage is $£ 1 \cdot 50$ per speaker.
T.V. Monitor, an item for cailers, belleved to be in good working order, switchable thro $405-525 \&$ \& 25.21 tube lin width, etc. Price $£ 16 \cdot 20$, $12^{\prime \prime}$ model $£ 18$, sultable for conversion Into special purpose scope, etc,
Quto transformers for working American tools and equipment, completely enclosed in sheet metal case with American ype flat output socket made for computer so obviously irst-class. 500 watts. With carrying handie, offered at about haif price only $£ 15+80 \mathrm{p}$, carriage $£ 2+16 \mathrm{p}$. These may bet bit soiled but
$£ 29.50$ or $£ 6.48$.
TANGENTIAM HEATER UNIT
A most efficient and qulet running blower-heater by Solatron-w
same type as is fitted to many famous name heaters-Comprises mains Induction motorlong turbo fan-split 2 kw heating element and thermostatic safety trip-simply connect to the mains
for immediate heat-mount in a simple wooden or metal case or mount direct onto base of say kitchen unit-price $£ 4.95$ post £1.50 control switch to glve 2 kw .
1 kw , cold biow or off avalable

3KW MODEL
$\mathbf{£ 5 . 9 5} . \& P$.
$+£ 1.50 \mathrm{P} . \& \mathrm{P}$.

1 kw , cold
60 p extra.

（2）

20×20 WATT STEREO AAPLIFIER Superb Viscount IV unit in teak－finished cabinet Sitver fa scia with aluminium rotary controls and
${ }^{£} 2^{990}$保 pushbuttons，red mains indicator and stereo jack $£ 2$ ． socket．Function switch for mic．magnetic and crystal pick－ups，tape．tuner．and auxiliary Rear panel features two
mains outlets．DIN speakor and in ut sockets，pus fus． mains outlets．DIN speakor and input sockets，plus fuse． $20+20$ watts rms． $40+40$ watts peak．
30×30 WATT AMPLIFIER KIT
Specially designed by RT－VC for the experienced constructor， complete in every detail．Same facilities as
Viscount IV amplifier． $60+60$ peak．P \＆p $22.50 \quad £ 2900$
NOW AVAILABLE fully built and tested．$\quad \mathbf{5} \mathbf{5}^{00}$
Output $30+30$ watts $\mathrm{ms}, 60+60$ peak．$\quad p \& p \in 2,50$
$F P=5$ ro cash or cheque personal shoppers
vis A 4 channel Stereo Adaptor to all buyers of the

ADD－ON STEREO CASSETTE TAPE DECK KIT， Oesigned for the experienced D．I．Y，man．This 1 kit comprises of a tape transport mechanis． ready built and tested record／replay electronics with twin V．U．meters and level control for mating with mechanis Specifications：Sensitivity－Mic． 0.85 mV a 20 K OHMS；Din． 40 mV a 400 K OHMS：Dutput－ 300 W ． from 2 K OHMS source：Cross Talk－ 30 db ：Tapa Counter 3 Digit－Resettable：Frequency Response $-40 \mathrm{~Hz}-8 \mathrm{KHz} \pm 6 \mathrm{db}$ ： Deck Motor－ 9 Volt DC with electronic speed regulations： Key Functions－Rerord，Rewind；Mains Transtormer $\mathbb{1} 1995$ Fast Forward，Play，Stop \＆Eject，$£ 250+\mathrm{E} 1 \mathrm{p} \& \mathrm{p} \rho \& \mathrm{D}$ £2．50 Opt．extras；Malns Transformer to suite $£ 2.50+\$ 1 \mathrm{p} \& \mathrm{p}$ ．

回回

323 EDGWARE ROAD，LONDON W2 21c HIGH STREET，ACTON W3 bNG all paices include vat at 12t\％
Afl items subject to availabilifys Price cottect

45 watts rms， 90 watts peak output．Bin features include two disc inputs．both for ceramic cartridges．tape input and microphonè input．Level mixing controls fitted with integral push．pull switches．Independent bass and treble controls and master volume

70 g 100 WATT hire approx．
$4^{\prime \prime} \times 4^{\prime \prime} \times 10 \frac{1}{4}$＂．
Brushed aluminium
ascia and rotary controls．
Five vertical slide controls－mastervolume．
ape level．mic level，deck level，PLUS INTER－DECK FAOER or perfect graduated change from record deck No 1 to No．2．orvice versa Pre tade level control 70 wati （PFL）lets YOU hear next disc before fading 140 watt peak 57 if in VU moter monitors ousc before fading pat peak Output 100 watts RMS 200 watts peak． 100 watt f 65
CHASSIS RECORD BSR BDS 95 TYPE lilus． $\mathbf{~} 2495$ PLAYER OECKS
 Belt drive turntable 2 speed．semi automatic p \＆p E2．55 BSR MPGOTYPE Single
play record deck
$\mathbf{1 5}$
$\mathbf{9 5}$ $\begin{array}{ll}\text { play secord deck } \\ \text { less cartridge．} & p \& p \mathrm{E} 2.55\end{array}$ Cartridges to suit above Acos，magnetic stereo $£ 4.95$ Ceramic stereo $\quad \mathbf{1 . 9 5}$ Type lL5t BSR automatic record player deck cueing device and stereo ceramic head，p \＆p f2．55 fg 95 BSR MP 60 type，complete with magnetic cartridge， $\mathbf{f} \mathbf{2 9}$ diamond stylus，and de luxe plinth and cover．p\＆p $\mathbf{5 4 , 5 0}$ Home 8 Track cartridge plaver This unit will match $f 1$ e50 with the viscount IV $9^{\prime \prime} \times 8^{\prime \prime} \times 3 \frac{\frac{1}{2}^{\prime \prime}}{}$ ． $\mathrm{P} \& \mathrm{p} \mathrm{f} 2.50 \quad £ 1650$ Tourist iv CAR RADIO KIT for the experienced constructor only Output 4 watts into 4 ohms．
12 volts pos or neg（altered internally） $\mathbf{E} 1250 \mathrm{p}$ \＆ $\mathrm{p} \mathrm{E}, 50$ FREE TO PERSONAL SHOPPERS BUYING CAR RADIO KIT worth ELECTROMATE Rear window heater，modern line element，f3．00

Over 200 kits in the free Heathkit Catalogue

NEW Digital Clock－ with repeater alarm

NEW 4 Function Solid State Multimeter －One of a whole range of test equipment

Car Intrusion Alarm －Gives a distinctive ＇yelping＇sound signal the moment your car is tampered with

Freezer Alarm－Gives audible signal If freezer temperature rises to -6 C

Right now，there＇s a brand new edition of the Heathkit Catalogue－packed with hundreds of practical and fascinating items which

you can build yourself．
 Sond for
 To Heath（Gloucester）Ltd． Department PW－38 Bristol Road，Gloucester，GL2 6EE． Please send a copy of the Heathkit Catalogue． I enclose 11p in stamps to cover postage only． Name Address
 Soldering iron offer FREB
 When you receive your catalogue you＇ll get details of this free offer worth approximately $£ 4.75$ ．
 The words biggest producers of electronic kits．

MINI CONSOLES ideal for smalt desk control panels and consoles. Moulded in orange, blue. black and grey ABS. Incorporates slots for holding 1.5 mm thick peb's Aluminium panel sits recessed into front of console and heid by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12(1.9)$ (Includes VAT) MC $215 \times 130 \times 75 \mathrm{~mm} \quad £ 2.94$ (1.9) (Includes VAT) (Prices include VAT \& P.P.)	Stop wasting time soldering The NEW MW BREAOBOARD accepts Transistors, LED's,Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC boxes Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. $\begin{array}{cr} \text { SC } 85 \times 56 \times 35 \mathrm{~mm} & 97 \mathrm{p}(1.9) \text { (includes VAT) } \\ \text { SC } 111 \times 71 \times 48 \mathrm{~mm} & £ 1.29(1.9) \text { (includes VAT) } \\ \text { SC } 161 \times 96 \times 59 \mathrm{~mm} & £ 1.81(1.9) \text { (includes VAT) } \\ \text { Add } 25 \mathrm{p} \text { per } £ 1 \text { order value for Post \& Packing } \end{array}$
ECONOMY QUALITY LED's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours Full specification LED's also available Red (specify size) 75p per pack Green. Yellow, Orange (specify size) $£ 1.20$ per pack Packs contain 5 LED's, mounting clips and data	Inciudes slot-in Component Support Bracket and has 470 individual sockets, plus Vec and Ground Bus Strips Price E 9.72 (includes VAT \& P.P.) TYPE MP NEON INOICATOR Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut Red, Amber, Clear, Opal 20p each	240 VOLTS MINI HAND DRILLS Ideal for drilling peb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. $£ 9.72$ (includes VAT \& P.P.) Accessory tools.. 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drills, 3/32" Collet Price £ 1.75 (Includes VAT \& P.P.)
TYPE A NEON INDICATORS Supplied with resistor for 240 Volts operation Held in 8 mm hole by plastic bezel 150 mm wire leads	SEVEN SEGMENT DISPLAYS Economy quality Red, vellow and green Only 450 each Common Anode - 0.3'- Left Decimal Full specification displays also available as above Red@98p each Green and Yellow @ E1.35 each. Data supplied with full spec. displays only.	
12 VOLTS MINI HAND DRILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia'shanks. £7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless inciuded in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electronics 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p 94 p 1.23 p RC $112 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59 RC 120×69 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08 Palystyrene version in grey only, no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} \quad 61 p$ All prices are $1-9 \mathrm{off}$, include VAT, but please add 25p per $£ 1$ order value for Post \& Packing

BARGAIN PARGELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000's of

BARGAIN PACKS

Handy Packs
Handy Packs
4 aluminlum boxes $128 \times 44 \times 38 \mathrm{~mm}$ Ideal for slanal Injectors, otc. 81.00 . Self fuxing enamelied copper wire $18 \& 22$ swg on 2 oz reels, 2 for el 10 . 100 miniature reed switches Ideal for
hurglar alarms, model railways tc $\$ 3.39$ 15×2-pola reed relays on board operate at 12 volts 22 '45.
6×6 pole 12 volt reed relays on board
62.45 . High quality computer panels smothered in top grade components $5 \mathrm{lbs} \mathrm{EA} \cdot \mathbf{7 5} .10 \mathrm{lbs}$
$\mathbf{E 8} .98$.

Now U.H.F, translstor TV tuners 4 pushbutton type $\mathbf{2 2} \cdot 50$
Rotary type with slow motion drive $\mathbf{5 2} \mathbf{5 0}$. Aluminium TV coax plugs $\mathbf{0} 0$ for $\mathbf{£ 1} \cdot \mathbf{0 0}$ Minlature 5K log pots with 8/p switch 4 for Hard
Hardware Packs each containing 100 's of tems Including BA nuts and bolts, Nylon, ciamps. Fuse holders. Soire nuts etc ciamps, Fuse holders. Spire nuts etc.".

DE LUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KITS

 Includes 1505 sq . Ins. copper clad f / g board, 1 ib ferric chlorlde, 1 Dalo etch resiat pen,abrasive cleaner, 2 minl dill bits, etch tray and instructionslonly $\in 5-30$.

150 sq.in. flbre glass board Dalo pen.

Abre glass board
e2.00
90 p
Miniature mains transformers, fully ahrouded, 240 V . In $6-0-6 \mathrm{~V}$ at 100 ma out Ex new equipment. Complete with malns lead and plug on input and short leads
on output. 81.20 . on output. transmit and recelve transducers (í" diam. Translstor circuit board, range control connection chart and tamper proof switch. Mounted in smart aluminlum cases wit
Semiconductor Bargains
100 now \& marked slificon and germanlum translistors including EC148, BFi94, BC183, etc. 43.95
200 new \& marked transistors including
2N305, AC128, 8 FY 50 BD13
 100 mlxed diodes lneluding zener, power and bridge types $£ 3 \cdot 30$.
Bridge rectifer $100 \mathrm{v} 2 \cdot 5$ amp 4 for $£ 1$. Brand new ITT 25 ky triplers for Dece
Bradford chassis $\mathrm{E2} 2.50$. 5 for 40 . 50 Germanlum diodes, ideai for crysta sets, etc. E1.

200 unmarked mixed translstors, lots of interesting types including power. Send 0 p for samples E 4.50 .
25 Now \& marked integrated circults including 555, 741, 7400, 7480, TBA 800,
CD4001, etc, $54-76$. BR 101 full spec. 5 for
BR 101 full spec. 5 for ©A - 00,
TBA 120A 50p each
20 mm anti-surge fuses your selection
800 MA to 3.45 A . 12 for $\AA 1 \cdot 00$

Compenent Bargains

00 mix d resistors a 41 watt 81 - 00
125 mixern mixed caps most types E 3.30 .
100 mixed polyester caps $£ 2 \cdot 20$.
100 mixed polyester caps $12 \cdot 20$. 100 mixed m
caps $\& 2 \cdot 20$.
100 mixed electrolytics $\mathbf{\$ 2} \mathbf{2 0}$.
100 m lxed wirewounds $\mathbf{5 2} \cdot \mathbf{2 0}$
200 printed circult resistors $\mathbf{5 1} \cdot \mathbf{0 0}$
25 mixed pots \& presets $\& 1 \cdot 00$.

40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PW 20A WADDON ROAD, CROYDON, SURREY
149A BROOKMILL, DEPTFORD, LONDON, SE8

ORGHARD ELECTRONICS Service second to none--Try us and see
 SUPPLIERS TO
 FOR A FANTASTIC SERVICE

TTLE by TEXAS				$\begin{aligned} & \text { 74L's } \\ & \text { 74LS00 } \end{aligned}$		$\left[\begin{array}{l} 4001 \\ 4006 \end{array}\right.$	$\begin{aligned} & 20 p \\ & 95 p \end{aligned}$		NE531V		MEMORY I.Cs				MPSA12 MPSA56 MPSU05	$\begin{aligned} & \text { 62p } \\ & \text { 40p } \\ & 72 p \end{aligned}$	$\begin{aligned} & \text { 2N2907/A 25p } \\ & \text { 2N2926RB 9p } \\ & \text { 2N29280G91p } \end{aligned}$$\text { 2N2928OG } 910$		$\begin{array}{\|ll} \text { DIODES } & \\ \text { BY127 } & \text { 12p } \\ 0 A 47 & 9 p \end{array}$		OA202 IN814 in91	$\begin{gathered} \text { 40p } \\ \text { 40 } \end{gathered}$
7400	${ }^{140}$	7497	2900	74LS02	30 p 30 p	4007	$\begin{aligned} & 95 p p \\ & 20 p \end{aligned}$	$\begin{array}{ll} \text { CA3130 } & \text { 108p } \\ \text { CA3140 } \\ \text { 108p } \end{array}$	709	$40 p$	$\begin{aligned} & 1702 \mathrm{~A} \\ & 2102-2 \end{aligned}$	EPR		650p								
7401	14 p	74100	140p	74LS04	30 D	4008	4150	CA3160 120p	33	150 p	2107	RA		84p	MPSU06		2N3053	22p			in 4001/2	6
7402	150	74104	75p	74L508	30 p	4009	500	LM301A 40p	741	25p	2112-2			300 p	MPSU55	${ }_{90}$	2N3054	65p	OA85	45p	(N4003/4	7 p
7403	16 p	74105	$75 p$	74LS10	32 p	4010	60 p	LM318N 175 p	747	75p	8080A			E10	MPSU56	${ }_{98}$	2N3055	${ }_{65 p}$	OA90	9 p	in4005/7	p
7404	24 p	74107	${ }^{385}$	74LS13	55p	4011	20p	LM324N 130p	748	40p	${ }_{\text {A }}{ }^{\text {¢ } 6-1013}$	UAP		600 p	OC28	140p	2N3442	159	OA99	9p	IN4148	p
7405	250	74109	${ }_{60 p}$	74LS20	32p	4012	20 p	LM348N T40p	748	216p	AO3-2513	RO		750 p	${ }_{0} \mathrm{C} 35 / 6$	440p	2N3643	${ }_{54}{ }^{2} \mathrm{p}$		p	N $5404 / 3$	p
7406	40 p	74110	60p	74LS22	34 p	4013	550 9150	MC1458P $75 p$	3900	${ }^{2180}$	RO3-2513				OC71	32 p	2N3644		OA200	9 p	iN5404/7	20 p
7407	40 p	74111	75 p	74LS27	$45 p$	4014	$115 p$	Mctasp 7p							R20088	225 p	2N3702/3	14p				
7408	22 p	74116	216	74.530	30 p	4015	900	L			so		EXAS		R2010B	225p	2N2704/5	14 p	ER	REC	IFIERS	
7409 7410	22 p 18 p	74118 74119	4600	74LS47	150p	4016	50 p	AY-1-0212 650 p	NE543K	225 p	8 pin	12 p	22 pin	$36 p$	Tip29a	50p	2N3706/7	14 p	1A 50V	25p	$\begin{gathered} 4 \mathrm{~A} 400 \mathrm{~V} \\ 5 \mathrm{EnO} \end{gathered}$	p
7411	26p	74120	130p	${ }^{74}{ }^{\text {74 }}$ S 73	450p	4018	110 p	AY-1-1313 775 p	NE555	30p	14 pin	13p	24 pin	40 p	T1P29	62 p	2N3708/9	32	A A 400 V	310	6A 100 V	
7412	25p	74121	32p	74LS74	60 p	4019	520	AY-3-8500 775p				14 p		80	TIP30C	72 p	2N3818	27	2A 50V	40p	6A 400V	20p
7413	40p	74122	52p	74LS75	75p	4020	120p	AY-5-1315 750p	NE561B	$\begin{aligned} & 450 \mathrm{p} \\ & 450 \mathrm{p} \end{aligned}$	18 pin	30p	40 pln	60 p	TIP31A	${ }_{56 p}$	2N3820	50p	2A 100V	45p	10A 400 V	270p
7414	85	74123	75p	74LS83	120p	4021	115p	AY-5-1317A	NE565	140 p	TRANSI	STO			TIP3ic	680	2N3823	70 p	3 3a 200 V	70p	25 A 400	432p
7416	40p	74125	70 p	74LS85	144p	4022	100p	650 p	NE566	200p					TIP32A	63 p	2N3866	$97 p$	3A 600 V	80 p	VM18	
7417	${ }^{40} \mathrm{p}$	74126	65p	74LS86	${ }^{65 p}$	4023	22p	CA3028A 112p	NE567	1800	AC125/6 $A C 127 / 8$	20p	BF994 EF 959	119	T1P32C	85 p	2N3903/4	22 p	4A 100V	90p	1A100V	p
7420	18 p	71128	22p	74LS90	80p	4024	30 p	CA3046 ${ }^{\text {5p }}$		432 p	${ }^{\text {A Cli }}$ (${ }^{\text {a }}$	20 p	${ }_{\text {BF }}$	17 p	TIP33A	97p	2N3905/6	22p				
7421	43p	74132	$81 p$	74L593	80 p	4025	22p	CA3048 250p	SG3402N	275p	AC187/8	20p	8F967	19 p	TIP33C	120p	2N4058	18p	TRIAC	Pl		
7422	28 p	74136	$81 p$	74LS107	55p	4026	170p	CA3053 75p	SN72710N	24\%	${ }^{\text {AD } 149}$	${ }_{60 p}$	BF200	40p	TIP34A	124p	2N4060	19p	3 A 400 V		15A 400	200p
7423	36 p	74141	35p	74LS112	Op	227	65 p	CA3065 200p	SN76003N	275		45	BF244B	$34 p$	TPP34C	180p	2N4123/4	22 p	6A 400V	107p	5 5 500	25p
7425	33 p	74142	950	74LS123	110 p	4028	98 p 1200	CA3080E 97p	SN26008	280p	AD162	4 p	BF256B	60p	TIP35	243p	2N4125/6	22p	6A 500 V	120p	40430	
7427	40 p	74147	205p	74LS138	1400	4029	120p	$\mathrm{CA}^{\text {CA3089E }}$ - 2509 p	SN76013N	175p	AF14/5	22p	BF257	34 p	TiP35	290p	2N4401/3	34 p	10A 400	140p	40669	${ }^{1300}$
7428	40p	74148	160 p	74LS151	1100	4033	250p	1CL8038CC 400p	SN76013	180	AF115/7 AF127	${ }^{22 p}$	BF258	39p	T1P36	3600	2N4427	0p	10A 501	60p		p
7430	$1{ }^{10}$	74150	p	74LSt53	200p	4034	240 D	LM339N 175p	SN76018	2800		40 p		32 p	TIP41A	70p	2N5179	75p				
7432	37 p	74151	10	74LS157	130 D	4035	30p	LM377N 200p	SN76	175p		48 p	BFR39	34 p	TIP41C	84 p	2N5245	40 p	SCR	RI	ORS	
7433	43p	74153	${ }_{160} 8$	74LS158	150 p	4040	${ }^{120 p}$	LM380N 112p			${ }_{\text {AC107/B }}$	10 p	BFR40/4	34 p	TIP42A	76p	2N5296	58 p	BT106			450p
7437 7438	$37 p$ $37 p$	74154	160 97	74LS160	180 p 180 p	4042	900 4000	LM381N 125p	SP8515	710p 200p	BC108/B	10p	BFR79	34 p	T1P42	${ }^{88 p}$	2N5401	62 p	C106D		lastic	70p
7440	18p	74156	97p	74LS162	1800	4044	100 p	LM380AN ${ }^{\text {135p }}$	TAA661a	150p	BC109	10 p	BFR80/1	34 p	TIP303	76 p 80 p	${ }_{\text {2N5457/8 }}$	40 p	MCR101			300p
7441	${ }^{15 p}$	57	97 p	74LS163	180p	4046	140 p	LM389N: ${ }^{\text {LM3911N }}$	TBA120	97 p	${ }^{\text {BC1 }}$ B69 ${ }^{\text {c }}$	110		37 p	TIS43	40 D	2N5459 2N5460	65 p	2N444		092	200p 40p
7442	75p	74159	250 p	74LS164	120 p	4047	100p	IN 120p	T8A641B	300 p		\%	${ }_{\text {BFX }}$	30 p	2N696/7	$25 p$	2N5485	45	2N5064		092	45p
7443	120p	74160	100p	74LS165	225p	4049	55p		TBA651	225p	BC15	110		34 p			2N6107					
74	1200	74161 74162	100 p			4050	10	MC1495L 4i90p	TBA800	122 p	BC1	13 p	BFX64/5	30 p	2N706/8	22p	2N6027	60 p	OPTO	LEC	RONI	
7446	108p	74163	100p	74L	160 p	4054	120p	MC1496L 112p	TBA8820	125	BC169C	15p	BFX86/7	30 p	2N918	43p	2N6247	200 p	OCP 71	130p	ORP 61	
7447	$75 p$	74464	120p	74LS	375p	4055	140p	MC3340P 180p	TAA621a	310p	BC172	11 p		22 p	2N9		2N6254		ORP 12	97 p	N577\%	8 p
744	35	74165	150 p		250p	4056	135p	MC3360P 160p	TDA2020	360 p		20p	BFY52	${ }_{22 \mathrm{p}}$	2N1304/5	${ }_{75 p}$	${ }_{\text {2N128 }}$	85 p	ORF 50	90p	TIL116	90p
50	18 p	74168	320	74LS19	200p	4060	130 p	MC3401 70p	ZN414	$144 p$	${ }^{\text {BC }}$	17p	${ }_{\text {BFY55 }}$	${ }_{48}^{22}$	2N1306/7	75	3N140	97 p	LEOs			
7451	18 p	74167	320 D	74 C		4066	${ }^{85 p}$	MFC4000B 120p	ZN425E	420p	BC192/3	12 p	BFY90	80 p	2N1613	22 p	3N141	90 p				
7453	18 p	74170 74172	260p	74 COO	$25 p$ 250	4067 4068	425	Voltage regul	ATORS - F	Fixed	BC184	14 p	BRY39	48	2N1711	22p	3N187	${ }^{2000} \mathrm{~F}$			$2^{\prime \prime} \mathrm{G}$ r	$\begin{aligned} & \text { 26p } \end{aligned}$
7746	$1{ }^{\text {Pp }}$	74173	190p	74 CO $74 \mathrm{CO4}$	25p	4068 4069	24p	1A +Ve Tozzo	-ve	T0220	BC187	32p	ESX19/20	20p	2N1893	32p	40360	43 p			0.2'A	
7470	38p	74174	120p	74 COB	27 p	4070	85p	5V 7805 115p	5 V 7905	160p	BC212	14 p	MJE340	70 p	2N2102	60p	40361/2	43p	TiL32			p
7472	32p	74173	97p	74 Cl 0	27p	4071	27p	6 V 7806 115p	12V 7912	180p	BC213	12p	M ${ }^{\text {d481 }}$	175p	2N2160							
7473	36p	74176	130.	74 C 14	90 p	4072	270	8 V 7808 145p	15 V 7815	00p	BC214	15 p	M J491	216p	2N2218A	$25 p$	40411	325 P	DISP		TIL312	
7474	37 p	74177	120p	74 C 42	110p	4073	30		24 V 7924	180p	BC461	40 p	M 22501	2590	2 N 2219	${ }^{22 \mathrm{p}}$	${ }^{4} 40594$	100			Tli321	
7475	43 p	74180	120p	74 C 48	230p	4076	170 p	12V 781818150	Heat Sink		8C478	32 p	M 22955	130 p 430 p	2N2222	${ }_{450}^{22 p}$	40635	1800	FND500	${ }_{1200}$	TiL322	
7476	37 p	74181	326p	74C73	75 p	4081	210	15V 7815 185p	47\% W	fo	BCY 70 8 CY 71	20 p	M M 3001	250p	2N2484	35 l	${ }^{4} 0636$	140p	FND507	1200	Driv	
7480	54 p	74182	150p	74 C74	70p	4082	24 p	$\begin{array}{lll}18 \mathrm{~V} & 7818 & \text { 115p } \\ 24 \mathrm{~V} & 7824 & 115 \mathrm{p}\end{array}$	suitable 1		BD124	140 p	MJE3055		2N2646	52 p	40673	90p	DL704	180 p	75497	
7481	${ }_{90}^{108}$	74184 74185	490p	$74 \mathrm{C85}$	200 p	4093	940	24V 7824 145p		T0220	BD131/2	65	MPFF102/3		2N2904/A	- 22 p	40841	85p	DL707	1600	75492	
7483	99 p	74186	9990p	${ }^{74886}$	${ }_{690}^{650}$	${ }_{14502}$	1200	-1A +ve T092	$0.14{ }^{-v e}$	- T092	8D135/6	54 p	MPF104/5	40p	2N2905/A	A 22 p	40872	850	DL747	${ }_{700 \mathrm{p}}^{250}$	${ }_{9374} 936$	${ }_{200 \mathrm{p}}^{200}$
7484	t0tp	74190	120p	93	90 p	14503	90 p	5V 78L05 70p	5 V 79L05	05 80p	B8339	56 p	MPSA06	37p	2N2906/	A 22 p	40872	90 p	TiL311			
7485	1200	7419	120	$74{ }^{\text {C107 }}$	125p	14507	55p				BD140	${ }_{20 \mathrm{p}}$										
748	336	74192 74193	100p	74 C 151	2500	14508	300 p	15 V 78 L 15 74p	15 V 79L1	15 sop	BF115	${ }_{24}^{225}$			VAT IN	NCLUS	IVE P	S.	d 25p	P-	th	
7490	36p	74194	160p	$74 C 160$	250p	14510	$130 p$ 150 p	LM309K 150p			BF167	25 p										
7493	90p	74195	149p	74 C 161	455p	14516	120 p	LM323K 700p	TaA625B	- 120p	8F170	25p										
7492	5	74496	${ }^{100 \mathrm{p}}$ 830p.	$74{ }^{\text {C162 }}$	155	14515	1600	LM340T-5 115p	7805K	450p	BF	27 p										
	35 p	74197	isep.	$74 C 163$	155p	14518	110p					300										
$\begin{aligned} & 7494 \\ & 7495 \end{aligned}$	${ }^{90 p}$	74198 74199	${ }^{2500}$	74C164 CMOS	140p	14520 14528	110 p 130 p	723RIABLE ${ }^{\text {diL }}$ 45p		${ }_{325}$	BF180/1	$35 p$							Tel. 01-2	4433	\%	
7496	90 p	74221	175p	cmos	20 p	14528 14560	270p	78MGT2C 145p	TL430	9270 p	BF184/5	24 p			Nitst	Road,	ndon					

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers: Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:
British National Radio \& Electronic School
P.O. Box 156. Jersey, Channel Islands.

NAME
ADDRESS

Wilmslow Audio

THE firm for speakers!

SEND 10P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

ATC - AUDAX - BAKER - BOWERS \& WILKINS - CASTLE - CELESTION © CHARTWELL COLES - DALESFORD - DECCA - EMI EAGLE © ELAC - FANE - GAUSS - GOODMANS - HELME © I.M.F. © ISOPHON - JR JORDAN WATTS - KEF - LEAK - LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD - RAM - RICHARD ALLAN SEAS - TANNOY - VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO

(Dept. P.W.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

KRAMER \& CO

9 October Place, Holders Hill Road, London NW4 1EJ Telex: 88894t. ATTN. KRAMER, K7. Tel. 01-203 2473 MAIL ORDER ONLY
Up to 28 days delivery

Jointhe Digital Revolution

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive, instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{4}$ in \times $8 \frac{1}{4} \mathrm{in}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

plus 90 p packing and surface post anywhere in the world.

Overseas customers should send for proforma invoice

Quantity discounts available on request.

VAT zero rated.

Also available-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

plus 90p P. \& P.

Offer Order both courses for the bargain price $\mathbf{8 1 1} \cdot \mathbf{1 0}$, plus 90 p P. \& P.-a saving of $£ 1 \cdot 50$.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

MEW from Cambridge Learning Enterprises:
FLOW CHARTS AND ALGORITHMS-use, design and layout; vital for computing, training, wall charts, etc.
£2.95
plus 45p P. \& P.
Guarantee-If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Proprietors: Drayridge Ltd. Registered in England No. 1328762.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

TIRRO ELECTRONICS the mail order division of Ritro Electronics UK offers a wide range of components for the amateur enthusiast, Large SAE or 20p brings list. Grenfell Place, Maidenhead, Berks. SL6 1HL.

> VALVES
> Radio - T.V. - Industrial - Transmitting We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 2700 Types in stock, 1930 to 1976. Obsolete types a speciality. List 20p. Quotation S.A.E. Open to callers Monday We wish to purchase all types Wednesday 1.00 . Valves and Projector Lamps.

> COX RADIO (SUSSEX) LTD.
> Dept. P.W. The Parade, East Wittering, Sussex PO20 8BN
> West Wittering 2023 (STD Code 024366)

LOUD SIRENS 6v D.C. for Burglar Alarms, $£ 1 \cdot 46$ inclusive. GRIMSBY ELECTRONICS, Lambert Road, Humberside. Large selection components etc. List 10p.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6.80$ per single column centimetre (minimum $2 \cdot 5$ cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post, Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement. 3. Although overy care is taken, the Publishers shall not be liable for clerica or printers errors or their conse quences.

GAMMA ENTERPRISES for transistors, resistors, capacitors, ICs, hardware etc. Large SAE for catalogue. 18 Landale Road, Peterhead, Aberdeenshire AB4 6QP.

ORCHARD ELECTRONICS

I.C.s TTL. C/Mos. Linear. Capacltors. Resistors. (E12) SIL/Rectifiers. Diodes. LED. Thyilstors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected range, excellent despatch service Same day turn round. S.A.E. List. Suppllers to A.E.R.E. U.K.A.E.A. Governments Depts. Schools. Universitles. Manufacturers. Accounts opened for trade and amateur. Joln the professionals. Phone by 4 p.m. Goods out ist class by 5 p.m. Try us and prove itt

ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon. Telephone 0491-35529

TRANSISTORS, Resistors, Caps, Pots, plugs 7 sockets, zeners, TTL, cable, boxes, all at very good prices. 65 Railway Road, Leigh, Lancs. Telephone Leigh 679575.

BRAND NEW COMPONENTS BY RETURN.

Electrolytic capacitors $48 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V} .-0.47,1.0,2.2$,
 ${ }_{15} \mathrm{p}$ p. $1000 / 25 \mathrm{~V}-18 \mathrm{p} .1000 / 50 \mathrm{~V}-22 \mathrm{p}$.
 47/6V, \& $100 / 3 \mathrm{~V}-15 \mathrm{p}$.
Mullard miniature ceramic E12 series 2% 63V. 10pf. to 47pf-3p. 56pf. to 330 pf . -4 p .
Vertical mounting ceramlc plate 50 V .
Vertical mounting ceramic plate 50 V .
E12 series 22 pf -1000pf. E6 serles $1500 \mathrm{pf}-4000 \mathrm{pf}$.-2p.
Polystyyene EIz series B3V horizontal mounting. 10pf
.
Muliard polyester 250V vertical mounting E6 zeries. $1 \cdot 0-13 \mathrm{p} .1 \cdot 5-20 \mathrm{p} \cdot 2 \cdot 2-22 \mathrm{p}$.
My lar (Polyester) Film 100 V vertical mounting. C-001, $0.002,0.005-3 \mathrm{p} .0 .01,0.02-4 \mathrm{p} .0 .04,0.05-4 \mathrm{p}$.
Miniature resistors Hiahstab E12 series 5% Carbon
 1W.278 to 10 Ma . -2 p ea.
1N4148-3p. ${ }^{1}$ N4002-5p, $1 \mathrm{~N} 4006-7 \mathrm{p}$. 1 N4007-8p.
 Fuses 10 mm . (Free over $£ 4 \cdot 00$) Prices Inclusive of VAT.

THE C. R. SUPPLY CO.
127, Chesterfield Rd., Sheffield S8.

Receivers, valves, components, service data, historical research, books, magazines, repairs and restorations. A complete service for the collector and enthusiast of vintage radio.
S.a.e. with enquiries and for monthly newsheet. Full 1977 catalogue, 70p post paid.
TUDOR REES (Vintage Services), 64, Broad Street, Staple Hill, Bristol, BSi6 5NL. Tel. Bristol 565472.

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.

YOU CAN"T HELP BUT MAKE MONEY. If you follow the planned and detailed information on how to start your own business rewinding Armatures, set out in the new manual which is profusely illustrated and leads you through easily understood stages of fault diagnosis, taking data, test procedures, laying down new windings, where to obtain work, how to cost jobs etc. NO PREVIOUS ELECTRICAL KNOWLEDGE REQUIRED. Complete instruction manual, £4, plus 30p P\&P. CWO. Copper Supplies, 102 Parrswood Road, Withington, Manchester 20. Dept. PWB.

THE DALESFORD SPEAKER BOOK

by R. F. C. Stephens.
This book is a must for the keen home constructor Latest technology DIY speaker designs. Contalns fuli
plans for infinite baffle and refiex designs for $10-100$ watts, aiso unusual centre-bass system for those who want Hi-fi to be "Heard and not seen". $£ 1$. 95 ($£ 2.20$ post pald. $\$ 5$ Overseas).

VANKAREN PUBLISHING
SWAN STREET
CHESHIRE
basic Electronics Timesaver Program. 30-stage speedilearn, easilearn program. Unique Timesaver breadboards, terminals, plans and circuit know-how. Ideal for beginners, students, schools, colleges. Limited period intro-offer $£ 4 \cdot 75$. Money back if not delighted. TECHNOCENTRE, (PW) PO Box 33, 54 Adcott Road, Middlesbrough.
bOOKS AND MAGAZINES ON RADIO AND TELEVISION: Catalogue of over 1,000 technical and non-technical out-of-print items. Bampton Books, "Franklyn", Deymans Hill, Tiverton, Devon.

Radio Receivers

MULTIBAND RADIOS. 12 band . . . Marine, Aircraft, LPSB, HPSB, UHF (430/470), SW1/4, MW, LW, FM, RF gain. BFO. £150. GRUNDIG SATERLITT £199. BFO Units, £16.50. SHARP MW/Aircraft, £13. Langtons, High Street, Rocester, Staffordshire. SAE lists.

Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS

Service Sheets for Mono TV, Radios, Record Players and Taps Recorders 75p. Please aend Iarge Stamped Addresaed Envelope. We can supply manuals for most makes of Colour Tolevision Receivers by return of post. B.R.C. PYE ECKO PHILIPS ITT/KB BONY G.EC. HITACHI BAIRD ULTRA INVICTA FERGUSON

Let us quote you. Please send a Stemped Addreased Eut
manuals by J. M. Court. S.A.E. for detalis. MAlL ORDER ONLY ${ }^{(1)}$
G. T. TECHNICAL INFORMATION SERVICE

10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON WIR 1PA

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate, N Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, rape Recorders, Stereo, etc. With free fault-finding guide, from 50 i and SAE. Catalogue 25p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

Electrical

LIST NO. 28 now ready-Styli illustrated equivalents also cartridges, leads, etc., free for long SAE. Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

TIMESWITCHES. CHEAP TIMESWITCHES. Sangamo 20 amp reconditioned, guaranteed for one year. Only $£ 3 \cdot 70$. Also electric eyes. Write: J. DONOHOE, 1 Upper Norfolk Street, North Shields, Tyne and Wear.

Aerials

G2DYM ANTI-TVI AERIALS

DO OVERCOME TVI PROBLEMS FOR BOTH THE SWL TRANSMITTING AMATEUR. A 12 $\frac{1}{2} p$ SAE and $3 \times 9 p$ Stamps bring you fult details, article on aerlals and
coplos of genuine testimonials from satisfled customers cosit thelr names and full addresses.
with
Lambda, Whiteball., wellington, somerset
For Sale
NEW ISSUES of "Practical Wireless" available from April 1974 edition up to date. Price 65 p each post free. Bell's Television Services, 190 Kings Road, Harrogate, vision Services, 190 Kings Road,
N. Yorkshire. Tel: (0423) 55885.

Wanted

WANTED. Valves, types PX4 and PX25, new or S /Hand; any quantity. Rees, 64 Broad Street, Staple Hill, Bristol. Tel: 0272565472.
SURPLUS??? Turn it into cash. Phone 0491 35529 (Oxon).
WANTED NEW Valves, transistors, I.Cs, amplifiers, receivers, televisions (Anything Useful) any quantity. Stan Willetts, 37 High Street, West Bromwich. Tel: 021-553 0186.

WANTED: Mains Transformer for Solartron CT436 Oscilloscope. Phone: 0723870684.

WANTED. New Valves, Transistors. Top prices, popular types. Kensington Supplies (C), 367 Kensington Street, Bradford 8, Yorkshire.
"RADIO AND TELEVISION SERVICING" books wanted from 1964-65 edition up to date. $£ 3 \cdot 00$ plus postage paid per copy by return of post. Bell's Television Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

LARGE SUPPLIER OF SERVICE SHEETS All models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radios. Free TV fault finding chart or TV list. C. CARANNA
 71 Beaufort Park, London NW11 6BX $01-4584882$

SERVICE SHEETS, Radio TV, etc., 10,000 models. Catalogue, 24 p , plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PR1 7HP.

Ladders

LADDERS. Varnished 20ft 9in extd., £29-72, carr. £2.40. Leaflets. Also alloy ext. up to
 (1) Telford. Tel: 586644. Callers welcome.

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8 JZ .

Miscellaneous

LOSING DX?

Maybe the RARE DX is buried under QRM. DIG it OUT with a Tunable Audio Notch Filter, speaker ampilifer, bypassed when off, only 87 -90.
NOT COVERING $100-600 \mathrm{KHz}$? EXPLORE This EXCITING DX band with an LF Converter, antenna tuning, feeds $3 \cdot 5-4 \mathrm{MHz}$ receiver, oniy $\mathbf{5 8} \cdot 80$.
your antenna and receiver. 1 crystal Callibrator between Your antenna and receiver. $1 \mathrm{MHz}, 1000$,
VF, bypassed when off, only $£ 13 \cdot 80$.
Each easy-assembly kit includes all parts, printed carch easy-assent case, battery etc. ind intrctions, postage, money
back assurance, s SND off NOW.

CAMBRIDGE KITS

45(PC) Old School Lane, Milton, Cambridge.

100 WATT GUITAR/PA/MUSIC Amplifier, superb treble bass overdrive slimline solidstate 12 months' guarantee, unbeatable offer at $£ 39$. Money returned if not absolutely delighted within seven days. Send cheque or P.O. to: WILLIAMSON AMPLIFICATION, 62 Thorncliffe Avenue, Dukin. field, Cheshire.

H. M. ELECTRONICS

 EEC. CABINETS (Illus'd).

METAL CASES
DRY TRANSFER LETTERING Send 18p for leaflets (Refundable) Trade enquifles invitied

SUPERB INSTRUMENT CASES by Bazelli, SUPERB INSTR UMENT CASES by Bazelli,
manufactured from P.V.C. faced steel. manufactured from P.V.C. faced steel,
Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p , chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

BEGHARREABLE BATTARIES

'AA' pencell (HP7) £1.32; Sub 'C' £1.64; 'C' (HP11)
£2.43; 'D' (HP2) £3.56; PP3 £4.98. Matching chargers £2.43; 'D' (HP2) £3.56; PP3 £4.98. Matching chargers £6.33 each except PP3 charger £4.99. Charging holders cells only 80p. Prices include VAT. Add holders, ${ }^{4}$ package and insurance orders under $£ 20.5 \%$ over $£ 20$. SAE for tull details plus 75p for 'Nickel Cadmium Power' booklet. $250 / 12$ volt inverters now avallable. Mali Orders to Dept. PW, SANDWELL PLANT LTD., 201 Monmouth 9764. Callers to T.L.C., 32 Craven Street, Charing Cross, hondonWC2.

IMMEDIATE BY RETURN DELIVERY Large range of miniature synchronous motors, many speeds 1 rev per hour to 1 rev per 2 days. $£ 1 \cdot 10$ to $£ 2 \cdot 50$ each. 3 and 4 digit mechanical counters, 45 p to 85 p . 10 amp micro switches at 20 p . SAE for list. WALES (ELECTRICAL) LTD., Queen St., Newton Abbot.

STABILISED P.S.U.s, large range of various voltages and currents, available cased or in chassis form. SAE for full particulars and prices. A. BARTON, PW, Highbanks, Newport Road, Sandown, I.W.

OUTSTANDING 2200 Hi-Fi FM Tuner. Full coverage $88-102 \mathrm{MHz}$. Varicap tuning, Latest. silicon superhet design. Ideal for push silicon superhet design. Ideal for pushan button/manual tuning, only $£ 9 \cdot 95$. Unique
3300 stereo class A Amplifier, power 32 watts peak, complete stereo Pre-Amplifier/ 2 Power Amplifiers, all inputs accepted. Only $£ 10.95$. 5500 Tuner Amplifier plus specification as above 2. Only e19.95. All equipment built, tested and guaranteed with full instructions. (P\&P 50p.) GREGG with full instructions. (P\&P 50p.) GREGG
ELECTRONICS, BG-88 Parchmore Road, Thornton Heath, Surrey.

```
            MORSE CODE TUITION AIDS
Cassetie A: 1-12 w.p.m. for amateur radio examlnation
Cassetie A: 1-12 w.p.m. for amateur radio examination.
preparation.
Morse by light system avallable. Morse Key and Buzzer
Unit for seriding practice.
Prices each Cassette (includlng booklets) EA-50; Morse
Prices Include postage etc., Dverseas Alrmall }51\mathrm{ extra.
    MHEL ELECTRONICS (Dept PW)
            12 Longshore Way, Milton
                Portemouth POA&LS
```

312 DIGIT DVM MODULE KIT. Autozero autopolarity only $£ 37 \cdot 50$. SAE details. MLC 116 College Road, Southwater, Horsham, Sussex.

NEED A HAND? Kits, projects built to your requirements by professional engineer. K.E.S., 12 Woodside Court, Selbourne Road, Littlehampton, Sussex. Tel: 21858.

LOW COST AlUMinium boxes with lids and screws. $3 \times 2 \times 1,42 \mathrm{p} ; 4 \times 3 \times 1{ }^{1} 2,49 \mathrm{p}$; $4 \times 3 \times 2,56 \mathrm{p} ; 6 \times 4 \times 2,62 \mathrm{p} ; 6 \times 4 \times 3,72 \mathrm{p}$; $8 \times 6 \times 2,97 \mathrm{p} ; 8 \times 6 \times 3$, $81 \cdot 08$; prices include p\&p. HARRISON BROS, P.O. Box 55,22 Milton Road, Westcliff-on-Sea, Essex SS0 7LQ.

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' Hardware. Printed cifcuit boards, top quality for individual designs. Prompt service. Send 25p for catalogue from:

RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon, Warwicks Tel: 4879

BURGLAR ALARM SYSTEMS! 12v siren $£ 5 \cdot 53,240 \mathrm{v}$ siren $£ 9 \cdot 61$, plastic coated and lettered bell box $£ 5 \cdot 25$. Flush magnetic contact 60p, surface 65p. SAE for price list. C.W.A.S., 11 Denbrook Walk, Bradford BD4 OQS. Bradford 682674. All prices fully inclusive.

Government Surplus

Multicore Cable Pack

Assorted 2 it to $15 f t$ lengths, 3 to 18 core spaded and colcur coded 6-50volt warking, P.V.C. Covered. For sample pack of 6 asstd. pieces PLUS FREE GIFTS send £2.00 plus 50p P \& P to:

B.B. Supplies, (Dept. PW)

125, High Street, Deal, Kent. Tel: 0304562573. $4 T 1 \frac{1}{1} \times \frac{1}{1} 20$ ohm D.C. Ideal for microphone or speaker use. 50p each incl P. \& P. Quantity discounts available.

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Wireless for \qquad insertions.

I enclose Cheque/P.O. for £........................
(Cheques aṇd Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME \qquad
ADDRESS \qquad PRACTICAL WIRELESS,
CMG, Classified Advertisement Dept., Rm, 2337, King's Reach Tower, Stamford Street. London SE1 gLS Telephone 04-261 5846 Rate
20p per word, minimum 12 words. Box No. 60p extra.

Company registered in England. Registered No. 53626. Registered office: King's Reach Tower, Stamford Street, London SE1 gLS

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superb solid state audio amplifier. Brand new components
 throughout. 5 silicon tran-

MAINS OPERATED SOLID STATE

 AM/FM STEREO TUNER 200/240V Mains oper-
ated Solid State FM AM Stereo Tuner. Covering Stereo Tuner. Covering
M.W. A.M. $540-1605$
KHz VFF/FM $88-108$ MHz.
Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Indicator Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet. Wilt match almost any amplifier. Size $8 \frac{1}{4}^{\prime \prime} \mathrm{w} \times 4^{\prime \prime} \mathrm{h} \times$
${ }^{9 \frac{1}{2}{ }^{\prime \prime} \mathrm{d} \text { approx. }}$. LIMMIED NUMBER ONLY at $228 \cdot 0$

CABINET FABRICS

app. 54 in . wide. Our price $£ 2 \cdot 00 \mathrm{yd}$. length. \mathbf{P}. \& P. 50 p per yd. (min. 1 yd.). S.A.E. for samples.
10/14 WATT HI-EI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving EF86 and EZ80 rectifier. Simple instruction booklet $25 p+$ SAE (Free with parts). All parts sold separately. ONLY $£ 13-50$ P. \& P. £1:40. Also available ready built and tested $£ 18 \cdot 00 \mathrm{P}$. \& P. $£ 1 \cdot 40$.
"POLX PLANAR"' WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $113^{\prime \prime} \times 14 \frac{1}{1^{\prime \prime}} \times \frac{1}{3^{\prime \prime}} \times$ deep. Weight 19 oz . Power $^{\prime 2}$ handling 20W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc, and used with
or without baffe. Send S.A.E for fuld details. Only $£ 8 \cdot 40$ each + p. \& p. (one 90 p , two $£ 1$.
Now available in either $8^{\prime \prime}$. (ound version or $4 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{2}{ }^{*}$
 P. \& P. (one 65 p , two 75 p).

SPECIAL OFFER. $6 \frac{1}{2}^{\prime \prime}$ long throw, roll surround, ceramic magnet 8 ohm 10 watt speaker chassis. ceramic magnet on onm suitable for Hi Fi. $\mathbf{i} \cdot 95+75 \mathrm{p}$ P. \& P. $2^{\prime \prime}$ PLASTIC CONE HE TWEETER 4 ohm, $53 \cdot 50$ per

HARVERSONIC SUPERSOUND

10 - 10 STEREO AMPLIFIER KIT
A reaily first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cariridges. Very simple to modify to suit magnetic cartridge-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed marked, smart brushed anodised alumfnium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy, Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response. $\pm 3 \mathrm{~dB}$ 12-30,000 Hz sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. -16 dB Negative feedback 18 dB over main amp. Power requirements 35 v . at 1.0 amp .
Overall Size $12^{\prime \prime}$ w. $\times 8^{\prime \prime}$ d. $\times 23^{\prime \prime} \mathrm{h}$.
Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large S.A.E.
AMPLIFIER KIT (Magnetic input components 33 p extra) POWER PACK KIT
CABINET
${ }_{\mathbf{~} 55.50}^{50}$ P. \& P. $\mathbf{~ P 5 p}$ SPECIAL OFFER-only $£ 23.75$ if all 3 items

Full after sales service
built and tested $£ 31 \cdot 25$, P. \& P, £1-50. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers. Using the built in short tetm thermal overload protection, All components including rectifier smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker sockets \& 5 pin din tape rec./play socket are mounted on he printed circuit panel, size approx. $9 A^{\prime \prime} \times 2 A^{*} \times 1$ max. depth. Supplied brand new \& tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow only $£ 9 \cdot 00$ plus 50 p P. \& P. Mains transformer with an output of 17 v a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 1 \cdot 50+$ 40 PP \& P if required. Full connection details supplied. HA34 3 Valve Audio Amp. $4 \frac{1}{2}$ W. output ready built and ested $\mathbf{1 8} \cdot 50-£ 1 \cdot 40$ P. \&P. Also HSL 'FOUR' amplifier kit. $£ 8 \cdot 00+£ 1 \cdot 40$ P. \& P.

HARVERSON SURPLUS CO. LTD.
(Dept. P.W.) 170 HIGH ST., MERTON, LONDON, S.W.I9. Tel.: 01-540 3985
Open 9.30-5.30 Monday to Fridoy. B, 30un Soturday. Cloued Wednesday.

PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENQUIRIES.

All prices and specifications correct at time of press and subiect to at time of press and
alteration without notice.

Nate: Please remember to specify the type (Clamp or PC Mounting), VA Rating and Secondary Voltage required.
TWO HOLE CLAMP

K1TS

		8\% VAT
	${ }_{1}{ }^{\frac{1}{5}}$	4 P\&P
3VA Kit	1.53	0.38
6VA Kit	1.67	0.41
12VA Kit	1.99	0.49
.25VA Kit	$2 \cdot 48$	0.62
50VA Kit	$3 \cdot 4$	0.87

$0 \cdot 1$ " PCB MOUNTINE

Send 50 p for folder containing full details of all our modules, transformers and components to:
LASCAR ELECTRONICS, PO BOX 12, SECOND AVENUE, BHLLERICAY, ESSEX

TEL: BILLERICAY (02774) 3394

WATFORD ELEGTRONIOS
 33/35, CARDIFF ROAD, WATFORD HERTS, ENGLAND

ALL DEVICES BRAND NEW, FULL SPEC. AND FULIY GUARANTED. ORDERS CASH/CHEQUE/P.O. OR BARETERS DRAFT WITH ORDER, GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRAD AND EXPORT INQUIRY WELCOME, P \& AD TRAD AND EXPORT INQUIRY WELCOME, P \& P ADD 3 3p* TO ALL ORDERS UNDER £10.00. OVERSEAS ORDERS POSTAGE AT COST,

VAT
Export orders no VAT. Applicable fo U.K. Customers only. Unless
stated otherwise, all prices are exclusive of VAT. Please add $\%$ to dovices marked *To the rest add 121%
We stock many more items. It pays to visit us. We are situated behind Wafford Football Ground. Nearest Underground/Br. Rall Station: Watford High Street
Open Monday to Saturday 9 a.m.- p.m. Ample Free Car Parklng apaceavallable

 ELECTROLYTIC CAPACITORS: Axlal lead type (Values are in μ F) $250 \mathrm{v}: 10065 \mathrm{p} ; 63 \mathrm{v}: 0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7,6 \cdot 8,8,10,15,22,9 p ; 47,32,50,12 \mathrm{p} ;$
$63,10027 \mathrm{p}$

 10V: 4, 100, $8 \mathrm{p} ; 640,10 \mathrm{p} ; 1000,44 \mathrm{p}$.

3-30pF: $10-40 \mathrm{pF}$
5-25pF; 65D; 88 pF

COMPRES8ION COMPRES8ION | $25-2000 F$ | $33 p$ |
| :--- | :--- |
| $100-500 \mathrm{pF}$ | 125 pF | $\frac{\text { AUDIBLE Warning }}{\text { Won }}$

EUROPA Stereo amplifier Parts avallable.

 MINIMUM ORDER TRANSFORMERS* (MaIns Prim 220-240V) \begin{tabular}{llll}$6-0-6 \mathrm{~V}$ \& 100 mA \& 90 p \& $20-0-20$

9 AA \& $320 \mathrm{p}+$

\hline 90 \& \&
\end{tabular} $\begin{array}{lllll}6-0-6 \mathrm{~V} & 100 \mathrm{~mA} & 90 p & 20-0-202 \mathrm{~A} & 320 \mathrm{p}+ \\ 9-0.9 \mathrm{~V} & 75 \mathrm{~mA} & 95 \mathrm{p} & 6-0-6 \mathrm{~V} 1.5 \mathrm{~A} & 345 \mathrm{p}+ \\ 12-0-12 \mathrm{~V} & 100 \mathrm{~mA} & 98 \mathrm{p} & 0-180-18 \mathrm{~V} 1.5 \mathrm{~A}\end{array}$ $12-0-12 \mathrm{~V} 100 \mathrm{~mA} \quad 98 \mathrm{p}$

$0-120-12 \mathrm{~V} \quad 150 \mathrm{~mA} 140 \mathrm{p}$

$0.150-15 \mathrm{~V} .2 \mathrm{~A} \quad 240 \mathrm{p}+$ $\begin{array}{lllll}0.4 \cdot 50-4 \cdot 5 \mathrm{~V} & 240 \mathrm{p}+ & 9-0-9 \mathrm{~V} & 2 \mathrm{~A} & 270 \mathrm{p}+ \\ 12-0.12 \mathrm{~V} & 2 \mathrm{~A} & 320 \mathrm{p}+ \\ 12-0-12 \mathrm{~V} & 0 \cdot 5 \mathrm{~A} & 240 \mathrm{p}+ & & 30-25-20.0-20\end{array}$ | $12-0-12 \mathrm{~V}$ | $0.5 A$ | $240 \mathrm{p}+$ | $30-25-20-0-20-$ |
| :--- | :--- | :--- | :--- |
| $0-120-12$ | $0.5 A$ | $240 \mathrm{p}+$ | $25-302 \mathrm{~A}$ |
| $15-0.15 \mathrm{~V}$ | $0.5 A$ | $220 \mathrm{p}+$ | 0.60 .6 V |
| 1 VA | 240 p | | |

 $\begin{array}{lll}104-0-24 \mathrm{~V} & 0.5 \mathrm{~A} & 220 \mathrm{p} \\ 269 & 0\end{array}$ $\begin{array}{ll}2 \times 0-9 V & 1 A \\ 0-120-12 V 1 A & 245 p+ \\ 0.245+\end{array}$ 0-12 0-12-1
30-24-20-15-12-0
Multi tapplng

 (Please add 480 p\&p charge to all prices
marked + , above our normal postal charge.)
DENCO COILS

DENCO COILS

VALVE TYPE
Range $1-5$ B, Y, R, W
$6-7$ B,Y, R, 70 p
$1-5$ Green $85 p$

 LInear values
500Ω (K
 BLIDER POTENTIOMETERS
$\begin{array}{ll}0-25 W & \\ 5 K \Omega-50 \mathrm{~K} \Omega \text { and ingle gang } & 79 \mathrm{p} \\ 10 \mathrm{~K} \Omega-500 \mathrm{Kg} \text { Dual gang } & 80 \mathrm{p}\end{array}$ Self-Stlek graduated Alum. Bezels
PRESET POTENTIOMETERS
$0.1 \mathrm{~W} 50 \Omega-2.2 M$ MIni. Vert, 4 Horlz
 RESISTORS-Erle make 5\% carbon RESISTORS-Erlo make 5% carbon
Miniature High Stabillty, Low Nolse
RANGE
Val,
R

HEAT SINKS* TO92	8p	Silicon Grease 5 ml . Tub	48p
TO5	9 p	20mi. Syringe	125p
TO18	${ }_{28}^{8 p}$	20m. Syringe	
${ }_{\text {TO38 }}$	${ }_{22 \mathrm{p}}^{22 \mathrm{p}}$	Insulation Kit fo	TO3,
${ }_{\text {TOf6 }}$	22p	TO66 or TO220	5p Kit

EARPHONES	FIGARO GAS and	
Magnetlc	SMOKE	
2.5 mm	18p	DETECTORS*
3.5 mm	18p	Types; 109, 308, 812 or
Crystal	33p	Sockets for above 日ach

 2N2219A** 2N2220A*
$2 \mathrm{~N}^{2} 2222 A^{\circ}$ $2 \mathrm{~N} 2303{ }^{\circ}$
2 N 2368 2N2348** 2N264
2N278
2N290 2N2905A* 2N2907A* 2N3053 2N3108 2N3563
2N3614*
$2 N 354 * *$ 2N3614
2N3663
2N3702
2N3703 2N3703
N3704 2N370
2N370
2N370 2N3707
2N3788
2N3709 2N3710
2N371 2N3772*
2N
2
2 2 N 3819
2 N 3820
N 3823 $2 N 3824$
$2 N 3866$
$2 N 3903$ 2N3903
2N390
2N3 N $N 3906$
N $4037 * *$ 2 N 4058
2 N 4061 2N4061
2N4062
2N4064* $2 N 4069$
$2 N_{4236}$
$2 N 4286$ N4859** 2N51 2N517
2N518 2N519
$2 N 530$
$2 N 545$
$2 N 54$
$2 N 54$
2N5777
2NB027
$2 N 6109$
2NB027
2N609
2SD234*
3N128
3N140
Matched
Pair

SPECIAL ADDITIONAL DISCOUNTS ON OUR FULL SPEC LOW PRICED TEXAS TTLs \& MOTOROLA CM

Less $7 \% 10+$ mixed

$$
\begin{aligned}
& \text { Less } 15 \% 75+\text { mixed } \\
& N^{\prime \prime} \quad 20 \% 100+
\end{aligned}
$$

Even more discounts
on larger quantity
on larger quantity

709 C 8 pln		ICM7205*	
709 C 14 pin	45	LM300H	170
709C TO5	35	LM301AT	39
710^{+}	48	LM308T	140
723* 14 pin	45	LM318H	205
$741^{*} 8 \mathrm{pln}$	22	LM318S	195
741* 14 pln	32	LM324	90
741* TO5	32	LM339	55
747C 14 pin	70	LM348	120
748C 8 pln	36	LM379	388
7588 pln	830	LM380	95
AY-1-0212	580	LM381	170
AY-1-1313A	880	LM382	125
AY-1-5050	241	LM3900	60
AY-1-5051	125	LM3909	70
AY-1-6721/6	195	LM3911	125
AY-3-8500*	450	M252AA*	850
AY-3-8550*	595	M253AA*	950
AY-5-1224A*		MC663	275
	295	MC724*	175
AY-5-1230*	490	MC845	125
AY-5-1317 A	660	MC1303	145
AY-5-3500*	510	$\mathrm{MC1304P}$ $\mathrm{MC1310}$	185
AY-5-3507*	415	MC1312PO	195
AY-5-4007	650	MC14433 ${ }^{\text {* }}$	1250
CA3011*	52	MC1458P*	90
CA3014*	137	MC1496L	101
CA3018*	82	MC1710CG	79
CA3020	170	MC3360P	120
CA3023	170	MC3401	65
CA3028A*	95	MEM780	205
CA3035	140	MFC6000	95
CA3036	180	MFC6040*	97
CA3043	190	MK50253*	550
CA3045	140	MK50362*	550
CA3046	80	MM2142 2 N	298
CA3048	200	NE350	160
CA3075	175	NE518A	210
CA3080E*	80	NE555*	36
CA3081	190	NE556DB*	90
CA3089E	210	NE560*	325
CA3090AQ	390	NE561*	410
CA3123	200	NE582B*	410

NE566* NE587V*	180
NE571	450
RAM2102-2*	210
ROM2513*	700
SAS560	225
SAS570	225
SG3402*	255
SL403D	250
SL437A	560
SN72733	125
SN76003N	240
SN76013N	195
SN76023N	140
SN76033N	230
SN76115N	215
SN76227N	175
TAA550	50
TAA621AX1	
TAA661A	155
TAA700	353
TAA960	300
TAD100	150
TAD110	170
TBA120S	00
TBA540	215
TBA540Q	220
TBA5500	355
TBA641-A12	
EX1 or BX11	250
LM324	90
ICL710发*	950
VAA170	198
TBA651	180
TBA800	90
TBA810S	105
TBA320	80
TBA920Q	350
TCA2700	220
TCA270SQ	220
TDA1002	475
TDA2020	320
VAA170	198
	110
ZN424E	130

INDEX TO ADVERTISERS

Fairline Supplies ...	\ldots	... 796
G3DYM Aerials \& Projects	*	.a. 867
G.T. Information Service	\ldots	... 867
Greenweld Electronics	\cdots	- 807
H.A.C. Short-Wave Supplies	-	... 860
H.M. Electronics		.. 867
Harversons Surplus ...	*)	... 869
Heathkit		.. 862
Home Radio	\%	794
I.L.P. Electronics Ltd.		803, 852
Intertex ICS		... 806
Kramar \& Co.		... 865
Lascar		... 869
Linear Products (Fane Accoust		.. 794
Logic Leisure (Teleplay)		804
London Aerials (Aerial Services)		Supp.
Lynx Electronics	805
Monolith Electronics		799
Manor Supplies ...	***	... 805
Maplin Electronic Supplies	\%	cover iv
A. Marshall (London) Ltd.	:	... 799
Mhel Electronics 867
Minikits Electronics		.. 868
Moulded Electronics	\cdots	.. 869
Orchard Electronics	\ldots	863, 866
Partridge Electronics Ltd.		... 847
Precision Petite 796
Progressive Radio		... 872

Radio Book Services Radio Component Specialists	\cdots	$\text { ... } 866$ cover ii
Radio Exchange Ltd.	\ldots	857
Ramar Constructor Services		... 868
R.S.C. (Hi-Fi) ...	\cdots	. 795
R.S.T. Valve Mail Order Co.	\ldots	.. 858
Radio \& T.V. Components Ltd.		... 862
Saga Ltd. 794
Salop Electronics ...		867
Sandwell Plant Ltd.	\ldots	... 867
Scientific Wire Co., The	res	... 867
Selray Book ...	\%	.. 802
Sentinel Supplies ...	\%	... 863
Sintel		867
Sonic (Hi-Fi)	***	... 860
Sonic Sound 859
Southern Valve Co.		799
Swanley Electronics	\ldots	., 801
Technomatic Ltd.		... 864
T.K. Electronics (Vintage Servi	ces)	... 866
Trampus		805
T.T. Electronics	*	.. 860
Van Karen Publishing	\ldots	866
Vero Electronics ...	\cdots	807
Watford Electronics		870,871
West London Direct Supplies		... 860
Wilmslow Audio		. 865
Williams Micheal .	.	. 863
Xeroza Radio	...	cover ii

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2 5SF
Tel: 727 5641/2/3

A SELECTION FROM OUR STOCKS OF FULLY

 GUARANTEED FIRST QUALITY VALVES
$183 G T$

 $1 R 3$$1 R 5$
$1 S 4$
$1 S 5$
$1 T 4$
$1 U$
14
1×2
$2 C$
${ }_{*}^{*}{ }_{*}^{*}$
3
3
30
3
3

5

51 5 5 5

504
$5 \cup 8$
5×4
5×4
$5 V 4 G$
$5 \times 4 G$
新

aua

0.65	6AK6	$0 \cdot 75$	6CW4
$0 \cdot 50$	6AK7	0.85	$6 \mathrm{CY5}$
0.50	6AL5	0.40	6 CY 7
0.40	6AM6	0.70	6DQ6B
0.40	6AM8	$0 \cdot 70$	6DT6
0.40	6AN5	2.50	6GH8A
0.70	6AN6	0.85	6GK5
0.80	6AQ5	0.85	614
1.20	6AR5	0.70	6\|5GT
$4 \cdot 50$	6AS6	1.00	616
0.80	6AS7G	$1 \cdot 20$	617
$40 \cdot 00$	6AT6	0.75	6K6GT
$8 \cdot 50$	6AU6	0.50	6L6GT
0.75	6AV6	0.75	6N7GT
0.50	6AWBA	0.75	607
0.75	6AX4GTB	1.00	6SA7
0.80	6AX5GT	1.30	6SG7
0.75	6BA6	0.45	6SK7
0.60	6BE6	0.48	6SL7GT
0.95	6BF5	0.85	6SN7GT
0.75	6BF6	0.75	6SQ7
0.60	6B+16	0.85	6V6GT
0.80	6Bj6	1.20	6×4
0.90	6BN6	0.80	6×5GT
0.65	68Q7A	0.65	12AC6
0.65	68R8A	1.20	12AD6
0.55	$6 \mathrm{BU8}$	0.85	12AE6
0.60	6BW7	1.00	12AT6
$0 \cdot 80$	6B76	0.65	12AT7
0.80	$68 Z 7$	$0 \cdot 70$	12AU6
0.65	6 C 4	0.55	12AU7
0.85	6CB6	0.55	12 AV 6
0.95	6CS7	0.85	12AV7
0.65	6CU5	1.09	$12 A \times 7$
0.55	6 CU6	1.00	12AY7

VAT is not included. Please add $12 \frac{1}{2} \%$ on $£ 0 \cdot 10$ per $£$ subject to a minimum of $£ 0 \cdot 30$.

SEMICONDUCTOR OFFERS ALL FULL SPEC
BC212, BC182, BC237, BF197, BC159, ALL 8p each. RCA
2015 TO3 POWER TRANSISTOR (SIM TO 2N3055) 35 p

 2N3819 18p. MOSFET SIM. TO 40673 35P. 3 N140 MOSFETS
50p. M203 DUAL MATCHED PAIRS MOSFETS SINGLE 500. M203 DUAL MATCHED PAIRS MOSFETS SINGLE
GATE PER P.ET. 40. SL-301 DUAL MATCHED PAIR

 REC. $15 \mathrm{Kv} 2.5 \mathrm{~mA}, 15 \mathrm{~mm} \times 5 \mathrm{~mm} 85 \mathrm{p} .781212 \mathrm{iAA} \mathrm{PLASTIC}$ V REGS. 95 . MIN. NIIIES ITT 5870 TT $11 \times 6 \mathrm{Kmm}$ FIG

MICROPHONES-GRUNDIG ELECTRET INSERTS WITH BUILT IN F.E.T. PREAMP E1. 50. CRYSTA MIKE INSERTS ${ }^{37 \mathrm{~mm}}$ SOP. ELACTRETUG E2.85. CASSETTE CONDENSER MIKES WITH 2.5 AND 3.5 JACK PLUGS E2.85. STANDARD CASSETTE MIKES 200 OHM IMPED.
WITH $2 \cdot 5$ AND 3.5 HACK PLUGS $£ 1.20$. P.A. MIKES WITH $2 \cdot 5$ AND

MORSE KEYS-PLASTIC TYPE 95p. HI-SPEED TYPE
 OATS MAX USES SOR39 SOCKETS E4-95. LOW PASS
WN WNALNA FITTERS $30 M H 2$ CUT OFF, 50 OHM IMP. EA. 30
IN. W.R. METER, 50 OHMS IMP, WITH POWER SCALE

CRYSTALS 300 KHz HC6U 40 p .4 .43 MHz C.T.V. XTALS
$45 \mathrm{p} .0 \cdot 1$ EDGE CONNECTORS 64 Way 65 p . 32 Way 40 p .
RELAYS-MIN SEALED RELAYS ALL 4 POLE CHANGEOVER, $36 \Omega(6 \mathrm{~V}$ DC) $45 \mathrm{D} .700 \Omega$ (24V DC) 55 p . MIN. 220V AC SEALED RELAY2 POLEC/O 459. 2400 AC SEALEDRELAY
3 POLE C 5 AMP CONTACTS 11 PIN BASE B0p. 12 3 POLE C/O 5 AMP REONTACTY 11
VOLT 4 POLEN. O REE RELAY 20p.

MOTORS-1 5 TO OV DC MODEL 20 p . T15V AC MIN. 3
R.P.M. WITH GEARBOX 30 D . 240 V AC SYNCH. MOTOR R/STH. R.P.M. 65p. 240 V AC SYNCH. MOTOR $1 / 24 T \mathrm{H}$. R.P.M. 65 P .
 $49 \mathrm{p} .115 \times 95 \times 36 \mathrm{~mm} 57 \mathrm{p}$. GREY POTTING BOXES WITH $49 \mathrm{P} .15 \times 23 \times 48 \times 23 \mathrm{~mm} 19 \mathrm{p} .38 \times 52 \times 25 \mathrm{~mm} 13 \mathrm{p} .60 \times 80 \times$ 42 mm 28 p

PROGRESSIVE RADIO 31 CHEAPSIDE, LIVERPOOL 2. 051-236, 0982

TRANSFORMERS $-6-0-6 \mathrm{~V} 100 \mathrm{~mA}, 9-0-9 \mathrm{v} 75 \mathrm{~mA}, 12-0-12 \mathrm{v}$
 RECTIFIED $E 1.95+35 p$ P $\&$ P. $25 v 2$ amp $E 1 \cdot 75 p+35 p \mathrm{P}$

 amp CHOKES 30p.
SWITCHES-MIN, TOGGLE, SPST $12 \times 6 \times \mathrm{mm} 54 \mathrm{p}$
 9 mm 75 p . 4 P 2 W SLIDERS 20p. 6 P 3W SLIDERS 30 p . R.S. SINGLEPOLE C/O PUSH-BUTTONS 45p ROLER $10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. G.P.O. KEYSWITCH ASSY. 3 SWITCHES 23 WAY, 1-2 WAY MULTI-POLE 35p. MIN. PUSH TO MAKE OR PUSH TO BREAK SWITCHES $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$ PLESSEY WNKLER STP 75P. DE-SOLDERING TOOLS PLUNGER TYPE 24.95.
TAPE HEADS-JAP. CASSETTE MONO 90p. CASSETTE STEREO E3.00. BSR MN1330 ${ }^{\frac{1}{2}}$ TRACK DUAL IMPEDANCEREC/PLAYBACK SOP. BSR SRP90. TWO HEADS + TRACK REC/PLAYBACK STAGGERED STEREO WITH'BUILT IN ERASE PER HEAD \&1-20. TAPE HEAD DEMAG 240VAC E4.95.
BUZZERS-GPO TYPE 6-12y 30p. MIN. SOLID STATE
 (NOT VARICAP), NEW AND BOXED E2.50.
POT CORES-ADJ. VINKOR 250-370 MICRO H 20p. 260 OR 500 MLLIT HENRY CORES 10p each.
METERS 75 FD . STEREO TUNING METERS 100μ a PER MOVEMENT EQ 75. GRUNDIG BATT. LEVEL METER 1 mA

 FERRANTI 600 v AC METER $£ 3.95$.
BOARAS-G.P.O. BOARD WITH 64, BC107 TYPE
 WITH 1412 N N.O. REED RELAYS' $£ 2 \cdot 40$. BOARD WITH 6v C/O REED RELAY E1 20.
AEROSOLS-SERVISOL SWITCH CLEANER + LUBRICANT REMOVER 14025 85p.
 MURATA 40 KHz TRANSDUCERS. 15 mm DIAM. $£ 2.95$ A/R.
CONTACT COOLED SEL. RECS. 12Y 75OMA 15P. FREEPLUG-NEW-E1.50 PAIR. POSTAGE BOD UNLESS OTHERWISE SHOWN OVERSEAS POST AT COST. VAT INCLUDED IN all prices.
S.A.E. FOR LISTS

Published on approximately the 7th of each month by IPC Magazines Limited, Westover House, West Quay Road, POOLE, Dorset BHID IJG. Printer in England by Index Printers, Dunstable, Bedst Sole Agents for Australia and New Zeelend-Gordon and Goteh (Asia) Ltd.; South Africa-Central News Agency Ltd. Subscriptions INLAND and OVERSEAS \&10.60 payable to IPG services, Oakdeld House, Perrymount Road, Haywards Heath, sussex. PRAcrioal. Wrxprsps ia sold subiect to the following conditions, namely that it shall not, without the written consent of the price is subject to v.A.T. and that it be ent, resold, hired out or otherwise disposed of by lent, resold, hired, out or otherwise disposed of in a muthated condition or in any unautborised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE

Four inputs. Four way mixing, master volume, treble and bass chassis is suitable for all groups, disco, P.A., where high quality chassis is suitabie 5 or all groups, disco. .A., Where high qualis output. Produced by demand for \& quaiity valve amplifier. Send for details.

Price $\mathbf{4 1 0}$ Chassis only $\$ 94$ carr. $£ 5$

$10^{\prime \prime}$ ELAC

HI-FI SPEAKER
Large ceramic magnet. Response: $50-18,000$ cps.
Bass resonance 55 cps . 18 ohm impedance 10 watts. Post 40p
teak veneer hi-fi speaker cabinets MODEL "A". $20 \times 13 \times 12$ in. For 1 18in.
 MODEL "B" BOOKSHELF
 MODEL "C" BOOKSHELF
For $6 \frac{1}{2}$ in and tweeter- $\mathbf{~} 5,95$ post 75 p LOUDSPEAKER CABTNET WADDING 18in. Wide, 20 p ft .

GOODMANS CONE TWEETER
 3inn diam. 18.000 C.P.S. 25 WATTS 8Ω € $3 \cdot 25$ 8in. Addax 15 watts $\mathrm{E}_{5} 4.95$ 5in. EnH mid range $£ 5$. 10in. 30 watt GOODMA

GARGAMA 4 GHANNEL TRANSISTOR MONO MIXER. Add musical híghlights and sound effects to recordings. Will mix Microphons. records, tape and output. 9 yolt battery $\quad \mathbf{6 6 . 7 5}$

operated,
TWO CHANNEL STEREO VERSION OF ABOVE $£ 8 \cdot 50$

BARGAIN 3 WATT AMPLIFIER. 4 Transistor ± 3.95 Push-Pull Ready built with volume, treble and bass
controls. 18 volt battery operated or Mains Supply 22.95.

THE "INSTANT" BULK TAPE ERASER \& HEAD DEMAGNETISER Suitahle for cassettes, and
reels. A.C. mains $200 / 249 \mathrm{~V}$
reels. A.C. Ma
Leaflet S.A.E.
$\$ 4$.

wafer heating ELEMENTS

Size $10 \frac{1}{2} \times 8 \frac{8}{3} \times \frac{1}{16} \mathrm{in}$. Operating voltage $200 / 250 \mathrm{~V}$ a.c. 250 W approx. Suitable for Heating Pads, Food Warmers, Convector Heaters eto. Must be clamped between two sheets of metal or asbestos. ONLX 40 EACH (FOOR FOR E1-50) ALL POST PAID. Discounts for quentity.

BLANK ALUMIMIOM CHASSIS, 18 s.w.g. 2 Lin , Bides $8 \times 4 \mathrm{in}$. 70 p

DE LUXE BSR HI-FI AUTOCHANGER
Plays 12in. 10 in . or 7in. records Auto or Manual. A high quality Auto or mianual. A
unit backed by BSR reliabillty
with 12 months guarantee. A.C
$200 / 250 \mathrm{~V}$. Size $13 \frac{1}{2} \times 11 \frac{1}{\mathrm{i}} \mathrm{in}$.
Above motor board 33 in .

Below motor board 2tin.
With MAGNETC STEREO CARTRIDGE
\&21.50
Cueing Device, Bias Compensetor, Balanced Arm, All Post 75p OR with Sonotone V100 magnetic cartridge. $\quad 221.50$ NEW DECKS
BSR MP60/P128 with Goldring G850 magnetic cartridge.
BSR Budget Antochanger with ceramic cartridge. Garrard AP7b. Single player less cartridge.
BSR. P163. Belt drive. Turntable less cartridge. Garrard 5300. Autochanger with ceramic cartriage. £14.85 Garrard Minichanger. Plays all size records. Ceramic cartridge.

Protessional smplifier uaing adpanced circuit design. Ideal for disco, groups, P.A. or musical instruments. 4 inputs 4 was mixing. Master treble, bass and volume centrols. 3 speaker output sockets to suit various combinations o1 aperkers. 4-8-18 ohm. Slave output. A/C mains.

675
100 WATT DISCO AMPLIFIER
made by jeminge micial intrrumgts

B.S.R. SINGLE PLAYER DECK

3 speed. Plays all size records, Stereo Cartridge. Cueing device, Ideal Disco Deck.

f $15 \cdot 50$ Post 7 5o

DRILL SPEED CONTROLLER/LIGFT DIMMER KIT. EAGY to
 STEREO PRE-AMP KIT, Al parts to build this pre-amp. ainputs tor high medium or low gain per channel, with volume contro
and P.C. Board. Can be ganged to make multinway
$\mathbf{2} 2.95$ sterso mixers.

R.C.S. SOUND TO LIGHT DISPLAY

 Complete kit of parts with R.C.S. printed cireuit. Three to 100 watts signel source. Gabinet extra $£ 4$.
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights. Edison Screw Fifting 75p. Each.

MAINS TRANSFORMERS ${ }_{50}$

20 VOLT 5 AMP. AND 34 VOLT 2 AMP. C.T. $£ 3.45$
20 VOLT 1 AMP, $22 \cdot 002$ AMP, $22.2020-0-20$ VOLTT 1 AMP. 22.95 $0-20-40-60$ VOLT 1 AMP. $£ 3 \cdot 502 \times 18$ VOLT 8 AMP. 29
GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at
 R.C.S.

BOOKSHELF
SPEAKERS
$13 \times 10 \times 6 \mathrm{in}$.
8 wats rms. 8 omms
£16 pair post t 130

BAKER DISCO SPEAKERS
high quality-british made
$2 \times 12^{\prime \prime}$ CABINETS
for Disco or PA all fitted with carrying handles and cornera. Black
SAE for lesfet
vo WATT R.M.S. $\Varangle 52$
With one horn $t 60$
With two horns $\underset{\text { Carr. }}{\mathbf{E} 68}$

80 WATT R.M.S. $\Varangle 56$
With one horn 464
With two horns $f 72$
Carr. 88

100 WATT
R.M.S. 169

With one horn f78
With two horns ± 86

SINGLE 12inch CABS COMPLETE 30 WATT R.M.S. £32. WITH HORN 440. 40 WATT R.M.S. 34. WITH HORN $£ 42$. 60 WATT R.M.S. £41. WITH HORN $£ 49$. CARRE3EA.
"SUPERB HI-FI"
I2in 25 watts
A hlis tualits Poudipeacer, the remarkable low cone resonance onsnres clear reproduction of the leepest bass. Fitted with a special copper drive and concentric ange reproduction with remark= ble efficiency in the upyer Register.
Bess Resonance
lux Density $\quad 16,500$ ganas 8 or 16 ohms models

£22.00

 $\underset{\&}{\text { Post }}$
"AUDITORIUM"

I2in. 35 watts A full range reproducer for high
Dower, Ideal for Hi-Fi and
Discotheques. Electric Guitars. public address, multi-speaker Byst Resonance organs. 35cps Bass Resonance $\quad 15,000$ grauss Useful response $25-16,000$ ens 8 or 16 ohms model

$£ 21 \cdot 00$

"AUDITORIUM"
15in. 45 watts
A high wettage loudspeaker of exceptional quality with a Ievel lor Public Address, Discothenues or Public Address, Discotheques, flectronic instraments and the $\begin{array}{lr}\text { Bras Resonance } & \text { 35eps } \\ \text { Flax Deasity } & 15.000 \text { geves }\end{array}$ Tlux Density 15,000 gaus Usetul response $\quad 20-14,000 \mathrm{cps}$
$€ 26 \cdot 00$

Loudipeater Cabinet Wadding 18in wide, 20p per ft. Hi-FI Enclosure Manual containing pians, designg, crossover
E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!

Fith teater. And crossover.	$\underset{p_{0}:=45 p}{£ 7.95}$
15W model	E10.
ms.	Post 6 B
GOODMANS 20	
$\frac{\text { Size }}{} 12 \times 10$ inin 4 ohms.	£9.9

Cash price includes VAT.

กiึplun

in a modern world of electronics

THE 'DRUMSETTE' RHYTHM GENERATOR - Organists, pianists, guitarists . . . an automatic drum set to accompany you Nine highly realistic instruments play fifteen different rhythms. Fifteen rhythm-select touch switches and a touch plate for stop/start without rhythm change gives absolute ease of operation. Build it yourself for under £65 including smart teak-effect cabinet. See it and hear it in our shop! Send for full construction details now MES 49 price 25p

AUDIO MIXER
A superb stereo audio mixer. It can be equipped with up to 16 input modules of your choice and its performance matches that of the very best tape-recorders and hi-fi equipment. It meets the requirements of professiona recording studios FM radio stations, concert halls and theatres. Full construction
details in our catalogue. A component schedule is available on request.

- INTEGRATED CIRCUITS Over 35 pages in our catalogue devoted to hundreds of useful I.C.s. All with data, pin connections and many with applications circuits and projects to build. Post the coupon now!

3

SYNTHESISER
The International 4600 Synthesiser. A very comprehensive unit. Over 400 sold. We stock all the parts costing less than $£ 500$ including fully punched and printed metalwork and a smart teak cabinet. Far less than half what
you'd pay for a ready made
synthesiser of equal quality.
Specification on request, full construction details in our construction book £1-50

10 CHANNEL
STEREO GRAPHIC EQUALISER
A new design with no difficult coils to wind, but a specification that puts it in the top-flight hi-fi class. All this for less than $£ 70$ including fully punched and printed metalwork and woodwork. Send for our component schedule now. - Full construction details price 40 p

[^0]: POST THIS COUPON with cheque or $P .0$. for $£ 1 \cdot 40$ Please write your Name and Address in block capitials $-\overline{1}$ adDRESSADDRESS1

[^1]: CONTINENTAL SPECIALTIES CORPORATION (UK) LTD., SPUR ROAD, NORTH FELTHAM TRADING ESTATE,FELTHAM.MIDDLESEX TW14 OTJ. TELEPHONE:O1-890O782.

[^2]: Number 2, Gresham Road, Brentwood, Essex. CM14 4HN telephone (0277) 216029
 Our new prem/ses are only 200 yards from Brentwood station - with parking facilities outside the door !!

