# PRACTICAL WIRELESS

JANUARY 1975

25p

PW

MODEL CONTROL

by

RADIO

PART 1

ALSO:

LOW FREQUENCY AND MARINE RECEIVER
PRE-PUBLICATION BOOK OFFER: details inside CONCLUDING SECTION of PW BUYERS' GUIDE 74/5



**Total Building Costs** £7-23 PP & Ins. 44p (Overseas P & P £1.85) (+ 8% VAT 57p)

### Completely Solderless Electronic Construction Kit Build these projects without soldering iron or solder

- ★ 4 Transistor Earpiece Radio.
- W Signal Tracer.
- → Signal Injector.
- ★ Transistor Tester NPN-PNP.
- \* 4 Transistor Push Pull Amplifier.
- ★ 5 Transistor Push Pull Amplifier.
- ★ 7 Transistor Loudspeaker Radio MW/LW.
- ★ 5 Transistor Short Wave Radio.
- \* Electronic Metronome.

ROAMER

WITH VHF INCLUD-ING AIRCRAFT

10 Transistors. Latest 4" 2 watt Ferrite Magnet Loudspeakers

Loudspeakers.
9 Tunsble Wavebands.
MW1, MW2, LW, SW1,
SW2, SW3, Trawler
Band, VHF and Local
Stations also Aircraft Band.

Total building costs (Overseas P & P £1.85)

Built in Ferrite Rod Aerial for MW/LW. Chrome plated 7 section Telescopic Aerial, can be angled and rotated for peak short wave and VHF listening. Push Pull output using 600mW Transistors. Car Aerial and Tape Record Sockets. 10 Transistors plus 3 Diodes. Ganged Tuning Condenser with VHF section. Separate coil for Aircraft Band. Volume on/off. Wave Change and tone Controls. Attractive Case in black with silver blocking. Size 9" × 7" × 4". Easy to follow instructions and diagrams. Parts price list and plans 16th (1918).

diagrams. Parts price list and plans 50p (FREE with

£8·50

(+ 8% VAT 68p)

PP& Ins. 52p

EDU-

KIT"

Build Radios. Amplifiers, etc., from easy stage

diagrams.

TEN

- ★ Electronio Noise Generator
- \* Batteryless Crystal Radio.
- \* One Transistor Radio.
- 2 Transistor Regenerative Radio.
- 3 Transistor Regenerative Radio.
- \* Audible Continuity Tester.
- \* Sensitive Pre-Amplifier.

Components Include: 24 Resistors • 21 Capacitors • 10 Transistors • 3½" Loudspeaker • Earpiece • Mica Baseboard • 3 12-way connectors • 2 Volume controls • 2 Slider Switches • 1 Tuning Condenser • 3 Knobs • Ready Wound MW/LW/SW Coils • Ferrite Rod • 6½ yards of wire • 1 Yard of sleeving etc. • Parts Price List and Plans 50p. (Free with parts).

# NEW **ROAMER** NINE

WITH V.H.F. AIRCRAFT



Nine Transistors, 9 Tuneable wavebands as Roamer Ten. Built in ferrite rod aerial for MW/LW. Retractable chrome-plated telescopic aerial for VHF and SW. Push Pull output using 600 mW transistors. 9 Transistors and 3 diodes, tuning condenser with V.H.F. section, separate coil for aircraft, moving coil loudspeaker, volume ON/OFF and wavechange controls. Attractive all white case with red grille and carrying strap. Size  $9\frac{1}{2}" \times 7" \times 2\frac{3}{2}"$  approx. Parts Price List and Plans 40p (Free with parts).

Total Building Costs

£6·95

P P & Ins. 44p

(+ 8% VAT 55p)

# **NEW** Everyday Series

Build this exciting New series of designs

E.V.5. 5 Transistors and 2 diodes, MW/LW, Powered by 44 volt Battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3" londspeaker. Attractive case with red speaker grille. Size 9" × 5½" × 2½" approx. Parts Price List and Plans 20p. Free with parts.

Total Building **£2-95** P P & Ins. 30p (+ 8% VAT 23p) (Overseas P & P £1.25)

E.V.6. Case and looks as above. 6 Transistors and 3 diedes. Powered by 9 volt battery. Ferrite rod aerial, 3' loudspeaker, etc., MW/LW coverage. Push Pull output. Parts Price List and Plans 30p. Free with parts.

Total Building **£3-60** P. P. & Ins. 30p (+ 8% VAT 29p) (Overseas P & P £1-25)

E.V.7. Case and looks as above. 7 Transistors and 3 diodes. Six wavebands. MW/LW, Trawler Band, SW1. SW2, SW3, powered by 9 volt battery. Push Pull output. Telescopic aerial for short waves. 3" Loudspeaker. Parts Price List and Easy Build Plans 35p. Free with parts. Overseas P & P £1.05.

Total Building £4-08

P P & Ins. 31p Overseas P & P £1.85 (+8% VAT 32p)

# **POCKET** FIVE

NOW WITH 3" LOUD-SPEAKER SPEAKER
3 Tunable wavebands. M.W.
L.W. and Trawler Band,
7 stages, 5 transistors and
2 diodes, supersensitive
ferrite rod aerial, attractive black



Total Building Costs and gold case. Size 54" × 14" × 34" approx. Plans and Parts
Price List 20p (Free with parts). (+8% VAT 20p)



Total Building Costs £2.75 PP & Ins.

(+8% VAT 21p)

# TRANSONA FIVE NOW WITH 3"

Wavebands, transistors and speaker as Pocket Five. Larger Case with Red Speaker Grille and Tuning Dial. Plans and Parts Price List 20p (Free with parts).

(Overseas P & P £1.25)

# ROAMER EIGHT MkI

NOW WITH VARIABLE TONE CONTROL

TOME CONTROL
7 Tunable Wavebands: MW1,
MW2, I.W. SW1, SW2, SW3
and Trawler Band. Built in
Ferrite Rod Aerial for MW and LW. Chrome plated Telescopic aerial can be angled and rotated for peak short
wave listening. Push pull output using 600mW transistors.
Car aerial and Tape record sockets. Selectivity switch.
8 transistors plus 3 diodes. Latest 4°2 watt ferrite magnet
loudspeaker. Air spaced ganged tuning condenser. Volume/
on/off, tuning, wave change and tone controls. Attractive
case in rich chestnut shade with gold blocking. Size 9 × 7 ×
4in. approx. Easy to follow instructions and diagrams.
Parts price list and plans 50p (FREE with parts).



Components include:

Tuning Condenser: 2 Volume Controls: 2 Slider Switches: Tuning Condenser: 2 Volume Controls: 2 Slider Switches; Fine Tone 3" Moving Coil Speaker: Terminal Strip: Ferrite Rod Aerlal: Battery Clips: 4 Tag Boards: 10 Transistors; 4 Diodes: Resistors: Capacitors: Three ½" Knobs. Units once constructed are detachable from Master Unit, enabling them to be stored for future use. Ideal for Schools, Educational Authorities and all those interested in radio construction.

Parts price list and plans 40p (FREE with parts).

Total building £5.50 PP& Ins. 33p (Overseas P& P£1.85)

Five units including master unit

(+ 8% VAT 44p)

Callers side entrance "Lavells" shop. ★ Open 10-1, 2.30-4.30, Mon.-Fri. 9-12 Sat. 

# TRANS EIGHT 8 TRANSISTORS and 8 DIODES

8 TRANSISTORS and 3 DIODES

8 TRANSISTORS and 3 DIODES

8 TRANSISTORS and 3 DIODES

8 TRANSISTORS and Trawler Band.

Sensitive ferrite rod aerial for M.W. and L.W. Telescopic aerial for Short

Waves. 3in. Speaker. 8 improved type transistors plus 3 diodes. Attractive

case in black with pred grille, dial and

black knobs with polished metal inserts.

Size 9 × 5½ × 2½in. approx. Push pull

output. Battery economiser switch for

extended battery life. Ample power to

drive a larger speaker. Parts price list

and plans 35p (FREE with parts).

Total building costs

(+ 8% VAT 36p)

(Overseas P & P £1.25)

# **ROAMER SIX**

CASE AND LOOKS AS TRANS-EIGHT

Trawler band plus an extra Medium waveband for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and telescopic aerial for Short Waves. 3in. Speaker 8 stages—6 transistors and 2 diodes. Attractive black case with red grille, dial and black knobs with polished metal inserts. Size 9 × 5½ × 2½in. approx. Plans and parts price list 35p (FREE with parts).

\*\*Brank-Eight 1992.\*\*

6 Tunable Wavebands: MW, LW, SW1, SW2.

8 rank-Eight 1992.

8 rank-Eight 1992.

6 Tunable Wavebands: MW, LW, SW1, SW2.

8 rank-Eight 1992.

8 rank-Eight 199

(+ 8% VAT 32p)

| To RADIO EXCHANGE CO., 61a HIGH STREET, BEDFORD, MK40 ISA Tel.: 0234 52867. Reg. No. 788372. |
|----------------------------------------------------------------------------------------------|
| I enclose £ for                                                                              |
| Name                                                                                         |
| Address(Dept. PW1.)                                                                          |

# PRACTICAL RELESS

VOL. 50 NO. 9 ISSUE 815 JANIIARY 1975

BRITAIN'S PREMIER MAGAZINE FOR THE DO-IT-YOURSELF RADIO AND ELECTRONICS CONSTRUCTOR

Lionel E. Howes, G3AYA

ASSISTANT EDITOR

Eric Dowdeswell, G4AR

ART EDITOR

Peter Metalli

PRODUCTION & NEWS

**EDITOR** 

Colin R. Riches

PROJECTS SUB-EDITOR

Geoffrey C. Arnold

TECHNICAL ARTIST

Alan Martin

SECRETARIAL Jenny Maunder 01-634 4292

Susan King

ADVERTS. MANAGER

01-634 4293

Roy Smith

**CLASSIFIED ADVERTS** 

01-634 4301

Colin R. Brown

Published by IPC Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD. Tel. 01-634 4444 Tel. 01-634 4444

### SUBSCRIPTIONS

Publisher's Subscription Rate for one year to the UK is £3.25 and to the rest of the world £4.35 including postage. Enquirles to Subscription Department, IPC Magazines Ltd., Carlton House, 68 Gt. Queen Street, London, WC2 5DD. Phone 01-242 4477. International Giro facilities Account No. 5122007. Please state reason for payment "message to payee'

Binders (£1.34) and indexes 30p (inc. VAT) can be supplied by the Binders Dept at the same address.

### **BACK NUMBERS**

We regret that we are unable to supply back numbers of Practical Wireless. Readers are recommended to enquire at a public library to see copies. Requests for specific back numbers of Practical Wireless and Television only can be published in our CQ Column.

### **NEWS & COMMENT**

798 THINGS TO COME-Leader article

799 NEWS... NEWS... NEWS...

805 P.W. AT THE AUDIO FAIR-Pictures

806 NEXT MONTH IN PRACTICAL WIRELESS

808 PRODUCTION LINES Products reviewed by Colin Riches

821 ARRA EXHIBITION at Leicester

828 ON THE AIR

828 Amateur Bands-Eric Dowdeswell, G4AR

829 Broadcast Bands-Medium Wave-Charles Molloy

830

---Short Wave---Derek Bell

835 Tele-Tennis reprint

836 HOTLINES on recent developments by Ginsberg

# CONSTRUCTIONAL

800 LOW FREQUENCY AND MARINE RECEIVER-Part 1-Charles Heath

810 AN ACTIVE AERIAL—Charles Heath

817 P.W. 'KEMPTON' CAR STEREO CASSETTE PLAYER-Part 2-Keith Cummins & Tony Francis

822 MODEL CONTROL BY RADIO—Part 1—Receiver—F. G. Rayer, G30GR

831 TAKE 20, No. 67, BASIC WOBBULATOR—David Andrews

839 EXPERIMENTAL WORKSHOP Phase Shift Circuits (contd)-M. J. Hughes, M.A., C. Eng., MIERE

# OTHER FEATURES

830 POINTS ARISING . . .

835 TECHNICROSS No. 8

847 GOING BACK-Equipment of yesteryear-Colin Riches

SPECIAL PRE-PUBLICATION BOOK OFFER-Page 832 BUYERS' GUIDE to Radio and Electronic Components—FINAL PART

COPYRIGHT AND QUERIES

© IPC Magazines Limited 1974/5. Copyright in all drawings, photographs and articles published in "Practical Wireless" is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by "Practical Wireless" to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

We regret that we cannot answer technical queries by telephone nor can we provide information or advice on manufacturers' products other than that given in the magazine. We will endeavour to assist readers who have queries relating to articles published but we cannot offer advice on modifications to our published designs. All correspondents expecting a reply should enclose a stamped addressed envelope.

# HUGE DISCOUNTS

ON LEADING ALL RSC PRICES INCLUDE VAT BRAND HI-FI LOW DEPOSIT CREDIT TERMS

Full labour and material guarantees for 12 months
List Price RSC Price
WHARFEDALE DENTON £42.31 Pr. £29.95 WHARFEDALE DENTON £52.39 Pr. £38.95 WHARFEDALE LINTON **LEAK 250 SPEAKERS** £65.48 Pr. £42.00 **LINEAR 202 AMPLIFIER** £39·23 £24.95 ROTEL RT222 AM/FM Tuner £50.57 £38.95 **ROTEL RT322** £73·16 £53.50 ROTEL RX150 A Tuner/Amp £77 · 09 £54.95 LEAK 2000 Tuner/Amp £165.70 £134.95 Wharfedale Denton Tun/Amp £93.28 £59.95 RANK 150a Stereo System £ 37.35 £79.95

Also Shure Cartridges, Basf Tape, Koss H/Phones, etc.

Prices of above correct at Nov 12 1974

All £1 carr. **AKAI TAPE UNITS** GXC 510D Rec. £189.90 £135.95 GXC 36D Rec. £110.72 £72.50 GXR 82D £122.65 £89.95 **GXC 38** £147.19 £105.95 4000 DS £130.12 £94.95 **GXC 38D** £137.38 £97.95 4000 DB(Dolby)£196.27 £139.95 GXC 46D £157.59 £109.95 1721 L £118.58 £84.95 **GXC 40T** £186.09 £135.95 CR 81D £98.10 £69.95 **GXC 75D** £199.90 £142.95 CS33D £105.81 £75.95 GOLDRING GL72 T/Table & G800 £29.95 (Approx. value £46) Carr. 75p GOLDRING GL75 T/Table & G800 £34.95 (Approx. value £65) Carr. 85p PIONEER PLI2D T/Table on plinth & cover £41.75 List £61.90 BSR TD8S 8 track player. Special price £14.95 T/TABLES with MAGNETIC CARTRIDGE/PLINTH & COVER GARRARD SP25 MK IV with G850 Special Price £19.95 (Carr. £1) McDONALD MP60 with G800 or G850 ,, ,, £19.95 (Carr. £1)

# RANK BD2000 FANE HI-FI LOUDSPEAKERS AT APPROXIMATELY HALF-PRICE

UNREPEATABLE OFFER BRAND NEW BOXED FULLY GUARANTEED for High-Fidelity NOT Group Disco use

Available by Mail Order only due to small quantities of some models. SAE for leaflets. Please state impedance required where not ind.

Model Price Model Pr

# RSC G66 MkII 6+6 WATT high quality STEREO AMPLIFIER



Controls: Bass, Treble, Vol. and Bal. 10 Transistors plus Diodes. Output rating I.H.F.M. Frequency range 20-20,000 c.p.s. Bass Control ± 12db.

Treble Control ± 13db. Selector switch for Crystal P.U. or Tape/Radio. For speaker output impedances of 3 — 15 ohms. For standard 200-250v. A.C. mains operation. Attractive Black and Silver finished metal fascia plate and matching control knobs.

COMPLETE KIT OF PARTS INCLUDING FULLY WIRED PRINTED ORIGUIT and COMPLETE KIT OF PARTS INCLUDING TOTAL THE TRACE PRINTED CHECKER AND SILVER FOR AND COMPLETE AND SILVER FOR AND SILVER F



### **AUDIOTRINE HIGH FIDELITY SPEAKERS**

Heavy construction. Latest high efficiency ceramic magnets.

Plasticised Cone surround. "D" or "T" indicates Tweeter Cone providing extended frequency range up to 15,000 c.p.s. Impedance 3 or 8-15 ohns. PLEASE STATE CHOICE.

Exceptional performance at low cost.

HF808T 8" 10W 23-55 HF180D 12" 15W 26-50 HF120 12" 15W 48-50 HF120 12" 15W 48-50

# **AUDIO FIDELITY MODEL 80 HI-FI SPEAKER**

A full range 8in. 10 watt unit for excellent sound quality, in suitable enclosure. Cast chassis Roll P.V.C. cone surround and long throw voice coil to achieve very low fundamental resonance of 30 c.p.s. Tweeter cone is fitted to extend high note response. Frequency range 25 Hz to 15 KHz. Gauss 10,000. Impedance 8-15 Ω. 44-50 ca 

47-98 £4.50 ea £7.98 pr.

ENOUGH 83 8" 15w. with parasitic Tweeter. 25.99 ca. £10.95 pr. Response 25 Hz to 15 KHz. Gauss 13.000 Imp 8-15Ω.



# HI-FI SPEAKER ENCLOSURES Teak veneer Sizes approx. Carr. 50p. per enc.

Cut for 10in. and Tweeter £8-95 Cut for 12in. and Tweeter £8.95

# **AUDIOTRINE HI-FI SPEAKER SYSTEMS**

Consisting of matched 12in. 11,000 Gauss 15 Watt 15 ohm high quality speaker, cross-over unit and tweeter. Smooth reaponse and extended frequency range ensure surprisingly realistic reproduction.

OR SENIOR 15 WATT INCLUDING HF123 13,000 GAUSS SPEAKER

L8.95 Carr. 50p.

Rec. Price £67.27 £48,95(Carr. £1)

# R.S.C. TA6 6 Watt HI-FI AMPLIFIER

200-280v. AC mains operated. Response 30-20,000 c.p.s. -2dB. Separate Base and Treble lift and cut controls. 3 input sockets for Mike, Gram, Radio or Tape. Input selector switch. Output for 3-15 ohm spkrs. Max. sensitivity 5mV. O/P rating I.H.F.M. Enclosed enamelled case 9½ × 2½ × 5½in. Silver finish facis 10½ × 3½in. £7-95 Carr. Complete kit, wiring diagrams and instructions. £7-95 Carr. £10-95



# R.S.C. TAI2 MKIII 6.5+6.5 WATT STEREO AMPLIFIER

Fully Transistorised. Hi-Fio/p of 6.5 watts per channel. Optimum performance with any crystal or ceramic P.U. Cartridge, Radio Tuner, Tape Rec. etc. Input Sel. Switch, Bass, Treble, Vol. & Bal. Controls.

COMPLETE KIT OF PARTS WITH FULL £ 12.95 Carr. WIRING DIAGRAMS & INSTRUCTIONS WIRING DIAGRAMS & INSTRUCTIONS WIRING DIAGRAMS & INSTRUCTIONS 12.50 & 8 mthly pymts 12 mths guarantee £16.61 Or in Teak Veneer housing £19.55 Dep. £2.50 (Total £22.50).



AUDIO FIDELITY FRI SPEAKER KIT Response 30Hz-15KHz. Rating 15 watts in scaled cabinet. Imp. 8-15 ohns. 8" Bass Unit with P.V.C. Cone surround for ultra low resonance. Pressure Tweeter. Printed Circuit. Inductive/Capacitive Cross-over. Damping \$10.95 Material, Screws, Terminal Panels.

SPECIAL OFFER £14-99 Pair Carr.

# R.S.C. Mkill SUPER 30 HIGH FIDELITY STEREO AMPLIFIER

BUILD AN AMPLIFIER WORTH APPROXIMATELY DOUBLE THE KIT PRICE INCLUDING CABINET Only high grade components by leading manufacturers

- \* Push Button Selector Switching Jack Socket for Headphones Neon Indicator
- Satin Silver Finish Metal Fascia Solid State Circuitry Twenty Silicon Transistors

Four Diodes, Four Rectifiers Send S.A.E. for full descriptive leaflet.

For Magnetic or Ceramic Pick-Ups



Ceramic Pick-Ups regardless of Price.
Output (per channel) 15 watts RMS (less cabinet).
Into 8Ω. Frequency Response 7 Hz to 70 KHz ± 1½ dB.

COMPLETE KIT (Complete Kit (

# 'YORK' HIGH-FIDELITY 3 SPEAKER SYSTEM

★ Moderate size only 25×14×10in. approx. ★ Respouse 30-20,000 c.p.s. Impedance 15 ohms Performance comparable with COMPLETE KIT units at twice the cost

£25.95 Carr. 75p Deposit 24.71 and 8 monthly payments 23.12 (Total 229.67)
Consists of (1) 12in. 16w Base unit with cast chassis. Roll rubber cone surround for ultra low resonance. (2) 3-way quarter section series cross-over system. (3) 8 x 5in. high flux middle range speaker. (4) Dome Pressure Tweeter. (6) Quantity acountic damping material. (6) Handsome Teak veneered cabinet. (7) Circuit and full instructions.



R.S.C. TRANSFORMERS, L.F. CHOKES & RECTIFIERS FULLY GUARANTEED, Impregnated and Interleaved where necessary.

MIDGET CLAMPED TYPE 2½ × 2½ × 2½ × 2½ 10.
250 v., 60mA, 6 3 v. 2a.
250 v., 60mA, 6 3

SELENIUM RECTIFIERS F. W. (Bridged)

All 6/12v. D.C. output. Max. A.C. input 18v... 1a, 38p. 2a, 49p. 3a, 65p. 4a, 81p. 6a, 97p.

L.F. CHOKES 150mA, 7-10H, 250 Ω £1·10; 100mA, 10H, 200 Ω 95p; 60mA, 10H, 400 Ω 35 n.



DEP. £19.95 & 19 fortnightly. payments of £7.87 (Total £169.48).

STEREO VERSION OF ABOVE SYSTEM Carr. £3.50 Or DEP £29.95 and £199.95 18 fortnightly pymts. £11.11 (Total £229.93)

Units listed below

(a) DISCOMASTER TWIN
TURNTABLE CONSOLE with
integral 100W amplifier
(b) PAIR OF HI-FI HEADPHONES
(c) MATCHING DYNAMIC
'MIKE' (attached to h' phone)
(d) PAIR 50 WATT SPEAKERS
Black Rexine covered
Cabinets Size approx.
18" × 18" × 8" £ 149.95
(a) (b) (c) & £ 149.95
(a) (b) (c) & £ 149.95
(d) Carr. £3.00

P. £19.95 & 19 fortnightly.

-\* £7.87 (Total £169.48).

of above Car. £1.60
Terms. Dep. £15.00
and 18 fortnightly
payments £6.51 (Total £182.18)

### DISCOMASTER TWIN TURNTABLE POWER CONSOLE

Garrard SP25 or McDonald MP60 turntables. Sonotone or Acos cartridges with diamond styli. Facilities as TDI Console but with built-in 100 watt Power Amplifier, complete with lid. Or Deposit £11 48 and 18 fortnightly payments £5.74 (Total £114.80)

£145

or DEP. \$20 and 18 fortnight'y ymts \$8.15 (Total £166.70). Carr. £3

# R.S.C. COLUMN SPEAKERS IDEAL FOR YOCALISTS

All types 15 Ohms covered in Rexine and Vynair

All types 15 Ohms covered in Rexine and Vynair

TYPE C132 30-40 WATTS Fitted two
exceptionally efficient, low feedback howl characteristic high flux 18" x 8" 20 watt \$19.95\$

speakers. Terms: Dep. 23-95 and 8 \$19.95

m'thly payments 22-67 (Total 225-31) Carr. 65p.

(Total 245-99) Carr. 85p

AND PUBLIC ADDRESS

£99.95

Carr. £2.50

# FANE ULTRAHIGH POWER LOUDSPEAKERS

All power ratings are R.M.S. continuous. 2 YEARS' GUARANTEE High flux ceramic magnets. ALL CARRIAGE FREE. High flux ceramic magnets. ets. ALL CARRIAGE 'POP' 50

18" 100 Watt 14,000 gauss 8/15Ω £29.95

Dep: 28-80 and 8 mthly payments £3.80 (Total £34.20)

'POP' 25/2 12" 30W.

Dual cone. 15 ohm Imp. (Not for Bass Guitar use)

£16.95 Dep. £2.17 and 8 monthly payments. £2.17 (Total £19.53)

15" 60 Watt 14,000 gauss 8/15Ω

13,000 gauss 150 £12.95

12" 50 Watt

Terms for pairs Dep £3:90 & 8 mthly pymts £3:16 Total £29:18 PAIR SUITABLE ALL PURPOSES

FOR BASS GUITAR, ELECT. ORGAN, ETC.

£8-95

# ALL RSC PRICES INCLUDE VAT

**INTEREST** on Credit Purchases **REFUNDED** settled in 3 months

### MINSTREL 8W GUITAR AMP.

Incorporating Tremolo and 12" × 8" or 10" Speaker. Output 8 watts R.M.S. Continuous. 3 Jack Inputs for Microphone and Instrument. Mains Neon Controls: Volume, Tone, Tremolo Speed Tremolo Intensity. Terms: DePosit 24 40 and 8 monthly payments £2.67 (Total £25.76) Carr. iree

# FAL MAESTRO COMBINED 30W AMP. £43-74 Carr.

For Lead Guitar, Mic, Gram, Radio, Tape (Not for use with Bass instruments) Inc. 3 inputs and 2 vol controls plus Trehle & Bass, TREMOLO with associated controls. Attractively finished in black with silver-finished fascia. Compact size Fitted carrying handle. Deposit £5.59 and 8 mthly payments £5.59 (Total £50.31)

RSC 'PHANTOM 50' Rating 50 watts. 3 inputs, 2 vol. controls. Bass, Treble, Presence
Terms: Deposit 26:39 & 8 mthly. pymts. 26:39 (Total 257:51).



FANE

CRESCENDO

**SPEAKERS** 

FULL RANGE AVAILABLE AT ALL BRANCHES

FAL PHASE 50 Mk. III AMPLIFIER 50 WATT Solid state. 4 Separately controlled inputs Plus master vol. control. Ind. Bass and Treble Controls. Protective Circuitry against serious output overloading. Output for Speaker/s 8 to 15 ohms. Size 17" × 7" × 7½". 200–250v. A.C. mains. Output 50 watts music rating. Or deposit \$5.75 & 8 monthly payments \$5.75. Total \$51.75. Carr. Free

# PH50 HIGH POWER

TWEETER Rating 50 Watt with 4 to 6 mfd filter. Imp 8  $\Omega$ £5.95

### GROUP EQUIPMENT PACKAGE OFFERS

F.A.L. PHASE 50 MK. III AMPLIFIER PR. FAME POP 35/2 30W L/SPEAKERS Terms: Deposit £7-35 and 8 monthly payments of £7-35 (Total £66-15)

F.A.L. PHASE 50 MK.III AMPLIFIER PR. FANE POP 50 L/SPHAKERS
Terms: Deposit 222-00 and 12 monthly payments of 24-20 (Total 272-40)

F.A.L. PHASE 50 AMPLIFIER
PAIR L12/25G SPKRS (in Cabinets)
Terms: Deposit 222:00 and 12 monthly
payments 24:20 (Total 272:40)

448-95 PACKAGE PRICE \$17-90 £56.95 21.10 £61 ·85

£43.95 £25.90 PACKAGE PRICE £63.95 21.10 £69·85

PACKAGE PRICE £63.95 £2.00 £69·85

# HIGH QUALITY LOUDSPEAKER UNITS

ALL TWO TONE VYNIDE AND VYNAIR FINISH L12/2 50 WATT Fitted pair of 12" 30 C39-95 watt high flux speakers for conservative rating. Impedance 8-15 ohms. Carr. £1-50 J39-95 C4-47 and 8 monthly payts. of 24-47. Total £40-28 L12/256 12" 25 WATT 18,000 lines 16 ohms. Terms for Pairs. Dep £8-82 & 8 £12-95 Thilly pymts £8-32 & 8 £12-95 (Total £29-88) Carr. 65p. Terms for Pairs. Dep. £2-05 & 8 mthly pymts £2-05 (Total £28-45).

L12/256 12" 25 WATT 13,000 lines 15 ohms Terms for Paira. Dep 28:32 & 8 #12.95 (Total 229:88)

00000

# REGENT 50X 50 WATT AMP.

A powerful high quality unit for lead, rhythm guitar, vocalists, gram, radio, tape. 50w Peak O/P rating, Not for Bass Guitar. \*\*Two Fane heavy duty high flux 12in. spkrs. \*\*Four Jack inputs and two Volume Controls for instant use of up to four pick-ups or "mikes". Bass and Treble controls. Send S.A.E. for leaflet. Credit Terms: Deposit 27-98. & 18 fortnightly £69-95 payments of £3-99 (Total 279-80). Carr. £2-50

REGENT 50B for Bass Guitar and general purposes. Or Dep. £9:18 & 18 fortnightly payments \$4:59. £79.95

FAL DISCO PRE-AMPLIFIER T/Table mixing in-Headphone Monitoring, Mic. Jack & Tape inputs. Independent ## 18-50 Vol. Control. Std. 200-250v A.C. Mains operation



For Guitar, Vocal or Instr. Group, Gram, Radio or Tape. 4 inputs. 2 Vol. Controls. Current Valves. Peak o/p rating. Strong Vynide covered cabinet with carrying handles. Black/Silver Facia. Neon Indicator. For 200-250v A.C. For 3 or 15 0.

**GP30 AMPLIFIER** 

For 200-250v A speakers, Send SAE for leaflet, Terms: Dep 25-58 & 8 mthly pymts 23-58 (Total 234-22)

£29.95 Carr. 75p



# **REGENT '50' AMPLIFIER** As supplied with Regent 50x or 59B. Terms: Dep. 24.72 & 8 mthly pymts 24.72 (Total \$42.48) £36.95

Carr. £1

# COMPLETE 199.95 **'SOUND TO LITE' SYSTEM**

AT A WORTHWHILE SAVING ON individual units purchased separately. Terms: Deposit £11.48 and 18 fortnightly payments £5.74.

(Total Credit Price £114.80). Super SL Unit. 1000 watt per channel. Manual override buttons, 2 spotbanks with 6 bulbs (3 sep. colours) 5 yd and 10 yd leads, fitted plugs. Units sold sep.

### TITAN 18" 100W SPEAKERS 15 ohms impedance List **£35** Carr 75p £25.95

**NEW BRANCHES AT** 

# BOLTON, COVENTRY DONCASTER, PRESTON





Barclaycard and Access accepted

All items subject to availability Prices correct at 23.10.74 E. & O.E.

HI-FI CENTRES LTD.

MAIL ORDERS & EXPORT ENQUIRIES TO:—
AUDIO HOUSE, HENCONNER LAME, LEEDS, 13.
Tel: Pudsey (09785) 77681.
MAIL ORDER MUST NOT BE SENT TO SHOPS
TERMS C.W.O. or C.O.D. No C.O.D. under \$1.
POSTAGE 40p FER ORDER OR AS QUOTED.
TRADE SUPPLIED.
S.A.E. PLEASE WITH ENQUIRIES.

AND STOCKPORT

OPEN ALL DAY SATURDAYS (5 Day Week)

BRADFORD 10 North Parade (Closed Wed.). Tel. 25349

BOLTON 23 Deansgate. (Closed Wed.). Tel. 25349

BOLTON 23 Deansgate. (Closed Wed.). Tel. 253549

BIRMINGHAM 30/31 Great Western Arcade.

Tel. 021-236 1279 (Closed Wed.). Tel. 25983

COVENTRY 17 Shelton Square, The Precinct.

Tel. 25983

DERBY 97 St. Peter's Street. (Closed Wed.). Tel. 41361

DARLINGTON 19 Northgate (Closed Wed.). Tel. 41361

DARLINGTON 19 Northgate (Closed Wed.). Tel. 48040.

HI-FI CENTRES LTD.

DONCASTER 3 Queensgate, Waterdale Centre.

(Closed Hours.). Tel. 63069

MANCHESTER 60A Oldham Street (Closed Wed.).

Tel. 229 9501

Tel. 248 4158

NEWCASTLE UPON TYME 24 Newgate Shopping

Centre (Closed Wed.). Tel. 21459

NOTTINGHAM 19/19A Market Street

(Closed Thurs.). Tel. 48068

At Pléase WITH ENQUIRIES.

MANCHESTER 60A Oldham Street (Closed Wed.).

Tel. 248 4158

NEWCASTLE UPON TYME 24 Newgate Shopping

Centre (Closed Wed.). Tel. 21459

NOTTINGHAM 19/19A Market Street

(Closed Thurs.). Tel. 59420

At Priergate Walk, St. Georges-Shoppg Prec. Tel. 51979

SHEFFIELD 13 Exchange Street (Closed Thurs.). Tel. 20716

LIVERPOOL 73 Dale St. (Closed Wed.). Tel. 223 3573

Tel. 723 1629

SUNDERLAND 5 Market Sq. (Closed Wed.). Tel. 70573



# Newnes-Butterworths

Books on Radio, TV, Electronics etc . . .

BEGINNER'S GUIDE TO ELECTRONICS—3rd Edn. Squires and Deason £1.90
BEGINNER'S GUIDE TO RADIO—7th Edn. King. £1.60
BEGINNER'S GUIDE TO TELEVISION—5th Edn. King. £1.60
BEGINNER'S GUIDE TO TRANSISTORS. Reddihough. £1.60
FM RADIO SERVICING HANDBOOK—2nd Edn. King. £3.00
FOUNDATIONS OF WIRELESS AND ELECTRONICS—8th Edn. Scroggie. £3.00, limp £1.80
110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR. Marston. Cased £1.80, limp £1.20
110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR. Marston. Cased £1.80, limp £1.20
110 THYRISTOR PROJECTS USING SCRS AND TRIACS. Marston. Cased £2.40, limp £1.40
PRACTICAL WIRELESS CIRCUITS—18th edn. The Technical Staff of 'Practical Wireless'. £1.20
PRINCIPLES OF TRANSISTOR CIRCUITS—4th edn. Amos. Cased £3.00, limp £1.50
QUESTIONS AND ANSWERS ON ELECTRONICS. Brown. £0.75
QUESTIONS AND ANSWERS ON INTEGRATED CIRCUITS. Hibberd. £0.75
QUESTIONS AND ANSWERS ON RADIO AND TELEVISION—3rd Edn. Hellyer. £0.75
QUESTIONS AND ANSWERS ON RADIO AND TELEVISION—3rd Edn. Hellyer. £0.75
RADIO AND ELECTRONIC HANDBOOK. Wilding. £1.20
RADIO VALVE AND TRANSISTOR DATA—9th Edn. Ball. £0.75
RAPID SERVICING OF TRANSISTOR FOR THE HOME. Marston. Cased £1.60, limp £1.00
WIRELESS SERVICING MANUAL—10th Edn. Cocking. £1.50

All these books. and many more. are available from

All these books, and many more, are available from

### BELL'S TELEVISION SERVICES

190, KINGS ROAD, HARROGATE, YORKSHIRE. Telephone: 0423-55885

Please add 10% for Postage and Packing on all books. Send large S.A.E. for FREE booklists. Open until 6 pm Daily and 8 pm Saturday

10000000000

# THIS CHRISTMAS

have a TV Tennis game exactly like the pub. Plug into your own TV aerial socket. Special features inc. score shown on screen, sound when ball hits bat etc.





PRACTICAL WIRELESS

### **ELECTRONIC IGNITION SYSTEM**

This Capacitor-Discharge Electronic Ignition System was described in *Practical Wireless*, and has proved extremely

The kit is supplied with a ready-drilled roller-tinned printedcircuit board and fully machined die-cast case with AMP Electrical Spade Connector Block together with a custom wound transformer, first grade components and full constructional details.

The original circuit employed Germanium Power Transistors for the negative earth version. WE OFFER SILICON P.N.P. POWER DEVICES AT NO EXTRA COST! All components are available separately. Case size  $4\frac{3}{4}$ " x  $3\frac{3}{4}$ " x 2". Complete assembly and construction manual free with kit, available separately 25p.

SUITABLE FOR 12V SYSTEMS WITH NEG. OR POS. EARTH.

PRICE: £9.50 . U.K. ORDERS PLEASE ADD VAT

Quantity Discounts:

Trade and Overseas 1-5 Nett 6-9 less 10% Enquiries Invited 10-49 less 15% 50-99 less 20% Mail Order Only. 100-999 less 25% 1000 up less 30%

PLEASE STATE POS. OR NEG. EARTH WHEN ORDERING

### DABAR ELECTRONIC PRODUCTS



98 LICHFIELD STREET WALSALL, Staffs WSI IUZ



# MAPLIN ELECTRONIC SUPPLIES

Trade enquiries

# ORGAN BUILDERS

MES announce the very latest development in organ circuitry.

THE DMO2

13 Master Frequencies on ONE tiny circuit board.

LOOK AT THESE AMAZING ADVANTAGES

LOOK AT THESE AMAZING ADVANTAGES

\*\( 13\) frequencies from C8 to C9. \( \struct \) Each frequency
digitally derived from a SINGLE h.f. master oscillator.

\*\( \struct \) Initial tuning for the WHOLE ORGAN: ONE
SIMPLE ADJUSTMENT. \( \struct \) Relative tuning NEVER
DRIFTS! \( \struct \) External control allows instant tune-up
to other musicians. \( \struct \) Outputs will directly drive most
types of dividers including the 8\( \struct \) Jill. \( \struct \) And each
output can also be used as a direct tone source. \( \struct \) Variable DEPTH AND RATE termulant optional extra.

\( \struct \) Gold-plated plug-in edge connexion. \( \struct \) Complete
fibre glass board (including tremulant if required) ONLY
3.7 in. \( \struct \) 4.5 in. \( \struct \) Very low power consumption.

\( \struct \) EXTREMELY ECONOMICAL
PRICE. \( \struct \) Ready built, tested
and fully guaranteed.

\( \text{DMO2T}\) (with tremulant) ONLY

\$\frac{14.25}{2.45}...

\( \text{Trade enquiries}\)

DMO2 (without tremulant) £12.25.

DMU2 (without tremulant) \$12.25. I wetcome.

8AJ110 7-stage frequency divider in one 14 pin DIL
package. Sine or square wave input allows operation
from almost any type of master oscillator including the
DMO2 (when 97 notes are available). Square wave
outputs may be modified to saw-tooth by the addition
of a few components. 8AJ110: \$2.63 each OR special
price for pack of 12: \$25.00. S.a.e. please for data sheet.

Keyboards: High quality adjustable type. £18-50 Sloping front 61-note C to C Sloping front 49-note C to C £14-25 Flat front 48-note F to E £14-25 Contact Blocks GB2 (2 make contacts) 19p Palladium earth bar per octave length 15p Stop Tabs rocker type not engraved (white, red, grey or black) with DPDT switch 49n

### REVERBERATION UNIT

Enhances the sound of any electronic musical instrument. Ready built spring line driver module suitable for use with almost any spring line £5.34

Two types of spring line available: Short line Long line

S.a.e. please for details, leaflet MES 24

Swell pedal 10k log pot fitted



# DISCOUNTS! DISCOUNTS!

Every time you spend over £2 (excluding VAT) you will receive some MES Discount Vouchers, one for each full pound spent on goods, two for each full pound if you spend over £6 on goods. When you've collected over 25 vouchers send them to us with an order and we'll give you FREE GOODS TO THE VALUE OF £1.

### **CIRCUIT** ORGAN

£5-93

Leaflet MES 51 shows complete circuit for a basic fully polyphonic organ. Send only 15p for leaflet and start building now! REMEMBER—when you have built this organ you will later be able to use the same top quality component parts as the basis of a large sophisticated instrument with all the facilities you want. Watch our ads for details.

Leaflet MES 52 shows how to extend your MES 51 basic organ to two keyboards with lots more stops. Just send 5p (starph) with an page and we will send your acrops. (stamp) with an s.a.e. and we will send you a copy.

# **CAPACITORS**

Sub-miniature Axial lead electrolytic

|     |            |       |     |    |             |      | _   |       |
|-----|------------|-------|-----|----|-------------|------|-----|-------|
| Mid | <b>v</b> : | Price | Mfd |    | rice        |      |     |       |
| 1   | 63         | 6p    | 68  |    | 3 <b>6p</b> | /    | 46  |       |
| 1.5 | 63         | 6p    | 68  | 16 | 6p          |      |     |       |
| 2.2 | 63         | 6p    | 68  | 63 | 14p         |      |     |       |
| 3.3 | 63         | δÿ    | 100 | 4  | 6p          | Mfd  |     | Price |
| 4.7 | 63         | 6p    | 100 | 10 | 6p          | 470  | 6.3 | 69    |
| 6.8 |            | 60    | 100 | 25 | 6p          | 470  | 10  | 14p   |
| 6.8 |            | бр    | 100 | 40 | 6p          | 470  | 25  | 16p   |
| 10  | 25         | 6p    | 100 | 63 | 16p         | 470  | 40  | 25p   |
| 10  | 63         | 6p    | 150 | 6. | 3 6p        | 680  | 6.3 | 14p   |
| 15  | 16         | δp    | 150 | 16 | 6p          | 680  | 16  | 16p   |
| 15  | 40         | 6p    | 150 | 25 | 6p          | 680  | 25  | 25 p  |
| 15  | 63         | 6p    | 150 | 40 | 14p         | 680  | 40  | 28p   |
| 22  | 10         | 6p    | 150 |    | 16p         | 1000 | 4   | 14p   |
| 22  | 25         | 6р    | 220 | 4  | вр          | 1000 | 10  | 16p   |
| 22  | 63         | 6p    | 220 | 10 | 6р          | 1000 | 16. | 25p   |
| 88  | 6          |       | 220 | 16 |             | 1000 | 25  | 281   |
| 83  | 16         | бp    | 220 |    | 14p         | 1500 | 6.3 | 16    |
| 33  | 40         | 6p    | 220 | 40 |             | 1500 | 10  | 251   |
| 47  | 4          | бp    | 220 | 63 | 25p         | 1500 | 16  | 28    |
| 47  | 10         | бр    | 830 | 4  | 8p          | 2200 | 6.3 | 251   |
| 47  | 25         | 6p    | 330 | 10 | 6p          | 2200 | 10  | 28t   |
| 47  | 40         | 6p    | 330 | 16 | 14p         | 3300 | 6.3 | 281   |
| 47  | 63         | 6p    | 330 | 63 | 28p         | 4700 | 4   | 28    |
|     |            |       |     |    |             |      |     |       |

### OMNIUM GATHERUM

| PP3, 6 etc. battery clip dual min. Op                                                   |
|-----------------------------------------------------------------------------------------|
| PP1, 9 etc. battery clip separate per pair 6p                                           |
| Pair crocodile clips 1 red, 1 black insulated sleeve.                                   |
| Solder Multicore 22swg 10 metres 25p                                                    |
| Silicone grease in special dispenser 20ml. 54p                                          |
| Red neon 240V panel mounting 23p                                                        |
| Lacing Cord Strong rayon cored PVC 25m. 51p                                             |
| Panel fuse holders 20mm 20p: 11" 41p                                                    |
| Transformers LT700 min. output transformer Pri. 1-2k $\Omega$ Sec. 5 $\Omega$ 200mW 50p |
| Sub-min. Mains Transformer<br>  6-0-6V 100mA 95p                                        |
| 12-0-12V 50mA 95p<br>Size:Both approx. 30 × 27 × 25mm.                                  |
| Min. Mains Transformer (Size: 46 × 31 × 38mm) 0-12V 250mA, 0-12V 250mA \$1.38           |
| Mains transformer MT3AT<br>Pri. 200-220-240V, Sec. 12-15-20-24-30V 2A                   |

### MES CATALOGUE 25p

Mains Transformer MT206AT
Pri. 200-220-240V, Sec. 0-15-20V 1A,
0-15-20V 1A
\$3.98

Our 80 page catalogue has over 20 pages showing connexion details and data for our complete range of transistors, diodes, I.C.'s etc. + Over 100 Photographs + Over 100 line drawings. Seeing exactly what you're buying makes ordering so easy!

# PLUGS AND SOCKETS



DIN PLUGS 2 pin (1 flat) 3 pin 4 pin, 5 pi 8p 9p A B 4 pin, 5 pin A (180°), 5 pin B (240°), 6 pin 10p

DIN Sockets 2 pin 6p 3 pin, 4 pin, 5 pin McM A (180°), 5 pin B RP8 (240°), 7p. 6 pin 9p plug

Page 3 pin 1-5A chassis plug with line socket. Per pair 30p SA 2190 3 pin 5A chassis plug 22p SA 1862 Line socket for above 25p

McMURDO RP8 8 way chassis

RS8 8 way chassis socket 68p PHONO

Plug plastic 5p Plug screened 12p Chassis socket 4p JACK Std. 1" mono plug

Plastic Screened

Std. ‡" stereo plug Plastic 18p Screened 30p Open mon socket 2" 10p; Moulded mone socket ‡" with 2 break contacts 14p; Moulded stereo socket ‡" with 3 break contacts 18p; 3-5mm. plug plastic 5mm. plug plas 9p; screened 1
open socket 9p.

# WE KNOW YOU NEED

**IT!** The MES 1974 Catalogue is STACKED with dozens of tempting new lines. BRIMMING OVER with clear illustrations clear illustrations and detailed data. WE'RE WAITING

WE'RE WAITING
TO RUSH YOU
A COPY.
You'll be IMPRESSED
with our POST FREE
ordering system, EXGITED by our BIG
VALUE discount vouchers, STAGEREED by our
UNBEATABLE speed of
service. Take the first
step towards real service
NOW! Send ONLY 25p
for our beautifully
produced catalogue and
leave the rest to us!

### POTENTIOMETERS

Rotary miniature carbon track 1" spindle.



Single gang Lin or Log 5k, 10k, 25k, 50k, 100k, 250k, 500k, 1M, 2M (and 1k Lin) **16**p

Single gang with DP switch 250V 2A Log or Lin 5k to 2M as above 38p



Dual gang (Stereo) without switch Log or Lin 5k to 2M as 5k to 2 above **49p**.

PRESETS Sub-miniature 0·1W Vert or Horiz. 100, 250, 500, 1k. 2·5k, 5k, 10k, 25k, 50k, 100k, 250k, 500k, 1M

# NE555V 8-pin DIL

69p

# RESISTORS

 Carbon Film ½W 5% 1 Ω to 1M; 10% 1.2M to 10M E12
 1p

 Carbon Film ½W 5% 1 Ω to 10Ω; 10% 1.2M to 10M E12
 1p

 Carbon Film ½W 5% 11Ω to 910k
 E12 & E24

 Carbon Film 1W 5% 10Ω to 10M
 E12 & E24

 Metal Oxide ½W 2% 10Ω to 1M
 E12 & E24

 Wirewound 2½W 10% 0.22ohms to 0.47ohms
 E12

 Wirewound 2½W 5% 10Mn to 270ohms
 E12

E12 values 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and decades E24 values 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75, 91 and decades

Post & packing FREE in U.K.

Slide Sub-DPDT

LINEARS LINEARS

CA3046
LH0042C. T099 (TO5), FET i/p Op Amp
LM301A. 8-pin DIL. Op Amp
MC1303L. 14-pin DIL. Stereo Preamplifier
MC1310P. 14-pin DIL. FM Stereo Decoder (no colls needed)
MFC06040. electronic attenuator
MFC8010. 8-pin base, IW Audio Power Amp
MFC4000B i watt Audio Amp
NE565V. 8-pin DIL, Precision Timer
NE561B. 16-pin DIL. Phase Locked Loop
SG3402N Amplifier/Multiplier
SG1495D. 14-pin DIL Four Quadrant Analogue Multiplier 69p £4·25p 39p £1·39p £2.15p £1 87p 38p £2.70p 75p 75p 36p 45p £1.05p £1.20p plier
μA723C. TO99 (TO5), 2 to 37V Voltage Regulator
μA723C. 14-pin DIL, 2 to 37V Voltage Regulator
μA741C. 8-pin DIL, Op Amp
μA741C, 14-pin DIL, Op Amp
μA747C. 14-pin DIL, Dual Op Amp
μA747C. 8-pin DIL, Op Amp
μA748C. 8-pin DIL, Op Amp
μA748C. 8-pin DIL, Op Amp Full data, pin connexions, etc., on nearly all types listed in our catalogue. Price 25p

# SWITCHES

Rotary with adjustable stop I pole 2 to 12 way; 2 pole 2 to 6 way; 3 pole 2 to 4 way; 4 pole 2 or 3 way, each 36p.

Mains rotary DPST 250V 2A 20p



Toggle 250V 1.5A with ON/OFF plate 25p.

High quality "sub-minia-ture" toggle switches

SPDT 1-5A 204V AC 56p
DPDT 1-5A 240V AC 75p
DPDT 3A 240 AC 77p
Four Pole DT 3A 240V AC
\$1:37

Please add 8% (15p handling charge on orders under £1.) First class post pre-paid envelope supplied free with every order. to the final total.

Orders and enquiries for catalogues to MAPLIN ELECTRONIC SUPPLIES, P.O. Box 3, Rayleigh, PHONE SOUTHEND (0702) 44101

# Radio Operators. How to see more of your wife without losing sight of the sea.



The work
is just as
interesting, just
as rewarding as aboard ship,
but you get home to see your
wife and family more often. You
need a United Kingdom General
or First Class Certificate in
Radiocommunications, or an
equivalent certificate issued by a
Commonwealth Administration
or the Irish Republic.

Radio Operators at

several of our

coastal stations.

Starting pay for a man of 25 or over is £2,270, plus cost of living allowance with further

In addition to your basic salary, you'll get an average allowance of £450 a year for shift duties and there are opportunities for overtime.

happy to

take people

Other benefits include a good pension scheme, sick pay and prospects of promotion to Senior Management.

For more information, write to: ETE Maritime Radio Services Division (RC12), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London, EC1A 1AS.

Post Office
Telecommunications





# **L**omponents

BARGAIN CAPACITOR 2,200MFD at 63v. DC wkg. Size = 2" × 1½" diameter. Tag ended. All new and unused. Our price 35p.

STEREO/MONO HEADPHONE VOLUME CONTROL BOX
Plug stereo
phones into this

control box and you then incorporate a right and left hand volume control and a stereo/monoswitch. Complete with stereo jack plug and 2m cable. A bargain at £1. TWO WAY STEREO ADAPTOR

Stereo Jack plug to two stereo free sockets, com-plete with 110mm cable. For connecting stereo inputs into one,

A hargain at 650.





| -11 1                                 |           |
|---------------------------------------|-----------|
| LIGHT EMITTING DIODES                 |           |
| Til 209 (Red) With Clip               | 22p each  |
| Til 209 (Green) With Clip             | 38p each  |
| Til 209 (Yellow) With Clip            | 90p each  |
| Mled 500 T092 Type                    | 16p each  |
| LED READOUTS                          |           |
| Litronix                              |           |
| DL707 .3 Character 14 Pin Dil.        | £2·00     |
| DL701 as above but $\pm 1$            | £2.00     |
| DL747 ·6 Character                    | £2·62     |
| Minitron                              |           |
| .3015 7 Segment 16 Pin Dil            | £1·18     |
| 3015G as above but $\pm 1$            | £1·18     |
| Clock Chip                            |           |
| CT7001 MOS/LSI Digital Clock/Calendar | Chip Plus |
| full Circuits and Information leaflet | £8.95     |
| Circuits and Information Sheet        | 15p       |
| Lit 704 Led Display for above         | £1·35     |
| Or 4 for                              | £5 · 25   |
|                                       |           |

| WAFER    | SWITCHI |
|----------|---------|
| 1 Pole   | 12 Way  |
| 2 Pole   | 2 Way   |
| 2 Pole   | 3 Way   |
| 2 Pole   | 4 Way   |
| 2 Pole   | 6 Way   |
| 3 Pole   | 4 Way   |
| 4 Pole   | 3 Way   |
| 22n each |         |
|          |         |



| ZZU Cac | ;h                              | - 0.00           |                 |
|---------|---------------------------------|------------------|-----------------|
|         | TIOMETERS<br>es 1" and less dia | ımeter           |                 |
| Singles |                                 | Dual             |                 |
| 5K      | Log or                          | 5K               |                 |
| 10K     | Lin Less                        | 10K              |                 |
| 25K     | Switch                          | . 25 K           | Less            |
| 50K     | 15p each                        | 50K              | Switch          |
| 100K    |                                 | 100K             | <b>45p</b> each |
| 250K    | Double                          | $250 \mathrm{K}$ |                 |
| 500K    | Pole                            | 500K             |                 |
| 1M      | Switch                          | 1M               |                 |
| 2M      | 30p each                        | 2 <b>M</b>       |                 |

 PRE SETS

 Sub Miniature
 Skeleton
 Type 0.1
 Watt Horizontal Mounting 100, 250 and 500 ohm, Ik, 2.5k, 5k, 10k

 25k, 50k, 100k, 250k, 500k, and 1M ohm
 6p each

MAINS TRANSFORMERS

Open Type Double Wound Continuously Rated, two hole fixing clamp with colour coded fiying leads, varnish impregnated. Approx. size: \( \frac{1}{2}'' \times 1\frac{1}{2}'' \times

200/250v MAINS RELAY Heavy duty contacts 2:500 ohm coil. All new and unused D.P.D.T. mains relays 50p, Carr. Free. Special quantity \$40 per 100 off.

MINIATURE RELAYS
Brand new range of British made Relays, Size 1½" × 1". All two changeovers with 250v 1.5A contacts and suitable for fitting on 1m Veroboard.

| Type Volts 27/A 12v 21/A 12v 12/A 6v |       | Ohms<br>700<br>430<br>185 | All<br>£1.30<br>each |
|--------------------------------------|-------|---------------------------|----------------------|
| 12/A 0V                              | 33M/A | 199                       | eacn                 |

**DOUGLAS TRANSFORMERS**All types are standard 240 volt primary.
MT 102 ct. 0 = 19 = 25 = 33 - 40 = 50 at 500M/A

| MT237cs 20-0-20 at 150M/A | £2.00 each |
|---------------------------|------------|
| MT241cs 20-0-20 at 30M/A  | £1.25      |
| MT240cs 15-0-15 at 30M/A  | £1.05      |
| MT230cs 12-0-12 at 50M/A  | £1.05      |
| MT238cs 3-0-3 at 200M/A   | £1.05      |
| MT238cs 3-0-3 at 200M/A   | £1·05      |

POWER PACKS
PP1 Switched 3 - 6 - 7½ - 9 volt 400M/A Transistor and Zener Stabilised On/Off Switch and Polarity Reversal Switch, in a black metal case

\$5.25 each.
PP2 Switched 6 - 7½ - 9 volt Battery Eliminator. Approx. size 2½" × 2½" × 3½". Ideal for cassette recorders \$2.75 each (philips type £3.00).
PP3 Car converter. From 12v Pos. or Neg. to = 6 - 7½ - 9 volt. Easy to fit and transistor regulated

\$2.50 each



| VEROBOAR                                               | D.          |       |            |     |
|--------------------------------------------------------|-------------|-------|------------|-----|
|                                                        | - 4         | ·15   | Plain · la | 5   |
| $2\frac{1}{2} \times 3\frac{3}{2}$                     | 32p         | 24p   | 15p        |     |
| 21 2 5                                                 | 84p         | 34p   | 18p        |     |
| $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | 34p         | 34p   |            |     |
| 34 × 5                                                 | 39p         | 45p   |            |     |
| $17 \times 24$                                         | 1.06p       | 77p   | 60p        |     |
| 17 × 33                                                | 1 45p       | 1·16p | 75p        |     |
| $17 \times 5$                                          | 1.85p       |       | 1·10p      |     |
| Pin insertion                                          | ı tool      |       |            | 72p |
| Spot face cu                                           | tter        |       |            | 52p |
| Pkt. 36 pins                                           | (state 1 or | 15)   |            | 25p |
|                                                        |             |       |            |     |

| LOUDSPEAKERS         |               |
|----------------------|---------------|
| 21" 8 ohm            | 50p           |
| 2‡" 40 ohm           | 50p           |
| 2¦" 80 ohm           | 50p           |
| 5" 8 ohm             | ceramic £1.25 |
| 6½" 8 ohm dual cone  | ceramic £2.50 |
| 10" 8 ohm dual cone  | ceramic £3.75 |
| 7" × 4" 8 ohm        | ceramic £1.60 |
| 8" × 5" 8 ohm Perman |               |
|                      | £1.60         |

\*EMI 13" × 8" 450 Kit
3 -- 8 -- 15 ohm
\*EMI 13" × 8" 350 Kit 8 ohm
\*EMI 13" × 8" 350 Kit 8 ohm
FANE ULTRA HIGH POWER LOUDSPEAKERS

FANE ULUKA HIGH POWER LOUDSPEAKERS
\*Pop 25/2 30 watt 150 ohm 12"
\*Pop 56 60 watt 8/15 ohm 12"
\*Pop 50 50 watt 15 ohm 12"
\*Pop 60 60 watt 8/15 ohm 15"
\*Pop 100 100 watt 8/15 ohm 18"
\* Carr. on L/S over 13 × 8 and 12" 50p per L/S.

MAINS KEYNECTOR
Keynector connects any Electrical
Equipment to the mains supply in
seconds. Ideal for beach, garage
demonstrations, etc. Multi connections
can be made (max. load 13A fused).



ALUMINIUM BOXES

Metal project boxes give your work a professional finish 54p 63p 54p 63p 2# AB7 AB8 AB9 AB10 AB11 AB12 AB13 54p 45p 4 R14 AB15 AB16 AB17 £1.20 £1.50

ABS PLASTIC BOXES
Handy boxes for construction projects. Moulded extrusion rails for P.C. or chassis panels. Fitted with 1mm front panels.

1005 = 105mm × 73mm × 45mm = 51p 1006 = 150mm × 75mm × 47mm = 66p 1007 = 184mm × 124mm × 60mm = 96p 1021 = 106mm × 74mm × 45mm (sloping front) = 50p

BARGAIN BOARDS

Components galore for the experimenter Ex Computer boards with Resistors, Capacitors and useful Transistors—at least 4 transistors per board. Five boards £1.00.

CLEAR PLASTIC PANEL METERS

Size 59mm × 46mm × 35mm these meters require a 38mm hole for mounting.

oomm note for mounting.

= 0 to 50 micro amp Full Scale
ME7
= 0 to 500 micro amp Full Scale
ME8
= 0 to 500 micro amp Full Scale
ME10
= 0 to 1 m/a Full Scale
ME11
= 0 to 10 m/a Full Scale

Scale ME12 = 0 to 50 m/a Full

Scale
ME15 =0 to 1 amp Full

Scale
ME16 = 0 to 50 volts A.C.

ME16 = 0 to 50 volts A.C.
Scale
ME17 = 0 to 300 volts
A.C. Full Scale
ME18 = "S" Meter
ME19 = "VU" Meter

OUR PRICE £8:00

Q-MAK. SHEET METAL PUNCHES

The easiest and quickest way of punching holes in sheet metal (up to 1-625mm Mild Steel)

SIZE PRICE

| DECON DALO 38PC          | SIZE       | PRICE           |
|--------------------------|------------|-----------------|
| ETCH RESIST PEN          | . 3//      | 68p \ Key       |
| The Decon Dalo 33PC      | ñ"         | 75p / 'T' 6p    |
| The Decon Dail 33FC      |            | 00 3            |
| is a unique instrument   | ½"         | 83p             |
| for the professional and | g //       | 83p Key         |
| amateur electronics eng- | 3"         | 83p ("A"        |
| ineer, enabling him to   | ų"         | 88p ∫6p         |
| prepare in minutes a     | 3″         | 88p             |
| perfect printed circuit  | 1₹″        | 90p 1           |
| board                    |            |                 |
| OUR PRICE 80p            | ₹š″        | 98p   Key       |
|                          | i"         | 98p ("B"        |
| ADD LUXURY TO            | 1 ለ "      | 98p {10p        |
| YOUR CAR                 | 1 %"       | £1.03           |
| with a motor driven      | 1          |                 |
| car aerial               | 13"        | £1 05           |
| SPEC:- * 5 section       | 17/32"     | £1 10 Key       |
| <b>★</b> extended        | 1½"<br>1¾" | £1.25 } "B"     |
| length 100cm             | 18"        | £1.43 10p       |
| ★Length under            | 13"        | £1.50           |
| fender 40cm              |            | £2.05 \ Key     |
| * Cable length           | 2"         |                 |
| 120cm                    | 23/32"     | £2.30 ∫ "C" 13p |
|                          | 25"        | £4-10   Key     |
| Supplied complete with   | 21"        | £5.25 \ "E"     |
| fixing bracket and con-  | 3"         | £8-10 20p       |
| trol switch £7.50        | f 2        | 2010 ) 209      |

| STOP PRESS   BHA0002   15 watt Amp Module   \$2.50   780   7805   Regulator   TIP 29A   TIP 30A   BC105   BC 105   BC 1   | UOI BWICH | 27 00 1                   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|-------|
| BHA0002 15 watt Amp Module 785 MC1810P Stereo Decoder I.C. 785 MC1810P Stereo Decoder I.C. \$2.00 TIP 29A TIP 30A BG107 BC 108 BC | 1" SQUAR  | E PUNCH complete with key | £2·10 |
| 10 Water Amp Robots     | STOP PRE  | SS                        | *0 *0 |
| MC1310P Stereo Decoder I.C. \$2.00<br>7805 Regulator 557<br>TIP 29A 637<br>TIP 30A 637<br>BC105 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BHA0002   | 15 watt Amp Module        |       |
| MC1310P Stereo Decoder I.C. 52-00 7805 Regulator 55 TIP 29A TIP 30A BC107 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NE555     | Timer I.C.                |       |
| 7805 Regulator 51.46 TIP 29A 557 TIP 30A 631 BG107 100 BC 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Stereo Decoder I.C.       |       |
| TIP 29A 537 TIP 30A 637 BC108 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                           | £1·49 |
| TIP 30A 633<br>BC107 101<br>BC 108 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 108 diacol                | 55p   |
| BC107 10r<br>BC 10s 10r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                           | 63p   |
| BC 108 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                           | 10p   |
| BC109 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BC109     |                           | rob   |



|              | 10 |
|--------------|----|
| I.C. SOCKETS |    |
| D.I.L.       |    |
| 8 pin        |    |
| 14 pin       | 14 |
| 16 pin       |    |
|              |    |

### BARGAIN TRANSFORMERS 12-0-12 volt 500m/a

240 volt primary transformer bargain. approx size =60mm x 40mm x 50mm fixing centres=75mm

-£1.20. Our Price

### 18 volt 500m/a

240 volt tapped 120 volt with screen. approx size =60mm x 40mm x 50mm fixing centres = 75mm

=£1.00.

Our Price BARGAIN BOX

BARGAIN BUX Loud buzzer mounted in a metal box complete with two U2 battery size holder. Designed and can be used as a fire alarm but is ideal as a door or morse code practice buzzer. Approx. size— $2\P'' \times 6\frac{1}{2}'' \times 1\frac{1}{2}''$ . OUR PRICE—50p.

If you construct You should own one.

U.K. POSTAGE 15p UNLESS OTHERWISE STATED

V.A.T. Please add 8% to all Totals

# CRESCENT RADIO LTD.

All mail to 11 MAYES ROAD, WOOD GREEN, LONDON N22 6TL Phone: 01-888 3206

Callers Welcome at 15 Mayes Road & 13 South Mall, Edmonton N9. CRESCENT CATALOGUE Price 20p.

# **FOR AUDIO** AT A BUDGET

# COMPLETE STEREO SYSTEM



# System 1.£51-00

40 Watt Amplifier. Viscount III - R102 now 20 watts per channel.

System I includes

Viscount III amplifier – volume, bass, treble and balance controls, plus switches for mono/ stereo on/off function and bass and treble filters. Plus headphone socket.

20 watts per channel into 8 ohms. Total distortion @ 10W @ 1kHz 0-1%. P.U.1 (for ceramic cartridges) 150mV into 3 Meg. P.U.2 (for magnetic cartridges) 4mV @ 1kHz into 47K. equalised within  $\pm$  1dB R.I.A.A. Radia 150mV into 220K. (Sensitivities given at full power). Tape out facilities: headphone socket, power out 250mW per channel. Tane controls and filter characteristics. Bass: +12dB to -17dB @ 60Hz, Bass filter: 6dB per octave cut. Treble controls treble +12dB to -12dB @ 15kHz. Treble filter: 12dB per octave. Signal to noise ratio: (all controls at max.) - 58dB. Crosstalk better than 35dB on all inputs. Overload characteristics better than 26dB on all inputs. Size approx. 13 4 × 9"× 3 4".

Two Duo Type II matched speakers – Enclosure size approx.  $17\frac{1}{2}$ °×  $10\frac{2}{4}$ °× 6° in simulated teak. Drive unit 13°× 8° with parasitic tweeter, 10 watts handling.

Complete System £51 00

# **System 2. £69·00**

Viscount III amplifier (As System I) Garrard SP 25 Mk III deck (As System I)

Two Duo Type III matched speakers – Enclosure size approx | 27" x 13" x 11½"
Finished in teak veneer. Drive units 13" x 8" bass driver, and two 3" (approx.) tweeters.
20 watts R.M.S., 8 ohms frequency range — 20 Hz to 18,000 Hz.

Complete System £69.00

### PRICES: SYSTEM 1

Viscount III R102

amplifier

£24.20 + £1 n & n

2 Duo Type il speakers £14.00 + £2.20 p & p

Garrard SP 25 with Mag. cartridge

de luxe plinth and hinged cover

£21.00 + £1.75 p & p

total: £59.20

Available complete for only: £51 .00

### PRICES: SYSTEM 2

Viscount III R102

amplifier £24.20 + £1 p & p

2 Duo Type III speakers £39.00 + £4.00 p & p

Garrard SP 25 with Mag. cartridge

de luxe plinth and hinged cover £21.00 + £1.75 p & p

total: £84.20

Available complete for only: £69.00

+ £4.00 n & n



# STEREC

# UALITY SOUND OR LESS THAN £20.00

Stereo 21, easy to assemble audio system kit. No soldering required. The unit is finished in white P<sub>\*</sub>V.C. and the acrylic top presents an unusually interesting variation on the modern deck plinth.

Includes:- BSR 3 speed deck, automatic, manual facilities together with stereo cartridge, Two speakers with cabinets.

Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions Specifications: For the technically minded:

Input sensitivity 600mV. Aux. input sensitivity 120mV. Power output 2.7 watts per channel. Output impedance 8-15 ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs – radio, tape, etc., and outputs for taping discs. Overall Dimensions . Speakers approx,  $15\frac{1}{2}'' \times 8'' \times 4''$ . Complete deck and cover in closed position approx.  $15\frac{1}{2}'' \times 12'' \times 6'$ 

Complete only £19.55 + £1.60 p & p. Extras if required, Optional Diamond Styli £1.37. Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance, £3.85.



# ILD YOUR OWN\*

For the man who wants to design his own stereo - here's your chance to start, with Unisound - pre-amp, power amplifier and control panel. No soldering just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240V. AC only.

£7.64 + 55p. p&p

# 8TRACK HOME CARTRIDGE PLAYER



Elegant self selector push button player for use with your stereo system. Compatible with Viscount III system, Unisound module and the Stereo 21. Technical specification Mains input, 240V, Output sensitivity 125mV Comparable unit sold eleswhere at £24.00 approx. Yours for only

£11.95 + 90p p & p.



INCORPORATES Pre-Amp with full mixing facilities, including switched input for mic with volume control, switched input for auxiliary with volume control, bass and treble controls, volume control and blend control for turntables.

Two B.S.R. single play professional series decks, fitted with crystal cartridges. The turntables are designed and precision engineered. They combine clean modern styling with superb reproduction. Their many special features include square section aluminium tonearms, (high precision low mass design fully counterbalanced, with calibrated stylus pressure control for perfect tracking), and conveniently grouped easy to read linear controls. The turntables have viscous cueing devices which allows the tonearms to be placed or lifted at any point on the record

The two lightweight cartridge shells have slide-in-holders to facilitate easy inspection of needles and cartridges.

TECHNICAL SPECIFICATION:

Pre-amp - Output - 200mV.

Auxiliary inputs — 200mV and 750mV into 1 meg. Mic input - 6mV into 100K. 240 volt operation. Turntables capacity - 7", 10" or 12" records.

Rumble, wow and flutter — Rumble Better than -35dB. Wow Better than 0,2%, Flutter Better than 0.06% (Gaumont kalee meter), Finish – Satin black mainplate with black turntable nat inlaid with brushed aluminium trim. Tonearm and controls in black and brushed aluminium.

Console size -

Unit Closed  $-17\frac{3}{4}" \times 13\frac{3}{4}" \times 8\frac{3}{4}"$  (approx.) Unit Open  $-35\frac{3}{4}" \times 13\frac{3}{4}" \times 4\frac{3}{8}"$  (approx.)

This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifier.

The unit is finished in black PVC with contrasting simulated teak edging diamond spun control knobs with matching control panel.

Yours for only £45.00 +£3.50 P. & P.

# EMI SPEAKERS AT FANTASTIC REDUCTIONS



### 20 WATT SPEAKER SYSTEM \*

System consists of a 13" × 8" (approx) eliptical woofer unit with a 8" × 5" (approx.) mid range unit incorporating parasitic tweeter and crossover

components.
Technical Specification:

Flux density-100 K, speech coil-1½", Cone. Triple laminated paper with PVC surround

Flex density-33K, speech coil-1" with

parasitic tweater Power Handling 20 watts R<sub>s</sub>M<sub>s</sub>S<sub>ss</sub> impedance — 8 ohms, ancy response - 20 Hz to

**OUR PRICE** £6.60. Complete

+90pp&p.



15" 14A/780 BASS UNIT Bass unit on a rigid diecast chassis. Superior cone material handles up to 50

watts RMS, and is treated to give a smooth frequency response. Resonance 39 Hz. flux density 360,000 Maxwells, impedance at 1 kHz is 8 ohms; 3" voice coll;

Recommended retail price £40.80. **OUR PRICE £18-70** 

+ £1.50 p & p



Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Outputs 20 watts R.M.S. into 8 ohms (suitable for 15 ohms). Inputs \*4 electrically mixed inputs. \*3 individual mixing controls. \*Separate bass and treble controls common to all 4 inputs.

\*Mixer employing F.E.T. (Field Effect Transistors) \*Solid State circuitry. \*Attractive styling.

INPUT SENSITIVITIES -Input - 1.) Crystal mic. guitar or moving coil mic, 2 and 10mV. (Selector switch for desired sensitivity). -Inputs – 2), 3), 4). Medium output equipment – ceramic cartridge, tuner, tape recorder, organs, etc. - all 250mV sensitivity. AC Mains, 240V operation. Size approx: 12½"×6"×3½". £15.00 + 60p. p & p

# **PUSH BUTTON** AR RADIO $\mathbf{T}^*$ The Tourist II



# NO SOLDERING REQUIRED!

# NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO

Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully built and tested to mate with printed circuit board. £7.70 + 55p p & p

Technical specification: (1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Module. Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands.

Size chassis  $\tilde{7}''$  wide, 2'' high and  $4\tilde{3}''$  deep approx

Speaker including baffle and fixing strip £1.65+23p. p&p. Car Aerial Recommended — fully retractable £1.37+20p. p & p

The Tourist | Kit For the experienced constructor If you can solder on a printed circuit board you can build this model.

Same technical specification as Tourist II

Price £6.60 + 55p p & p.





DO NOT SEND CARD

Just write your order giving your credit card number

Mail orders to Acton. Terms C.W.O. All enquiries stamped addressed envelope. Goods not despatched outside U.K. Leaflets available for all items listed thus \* Send stamped addressed envelope. All items subject to availability. Prices correct at 1st Nov. 1974 and subject to change without notice. All prices include V.A.T. at 8% rate.



21 High Street, Acton, London W3 6NG 323 Edgware Road, London W2

Personal Shoppers Edgware Road: 9a.m.—5.30p.m. Half day Thurs. Acton: 9.30a.m.—5p.m. Closed all day Wed.

VI bus nibes

Components

(Acton) Ltd.

# **NEW MULLARD & MAZDA VALVES**

All individually boxed and guaranteed. Full trade discounts to bona fide companies. Price and availability lists on

# **EXPRESS** POSTAGE

6p for 1 Valve. Each additional Valve add 2p.

| appli   | rai  | iΛn    |      | GY501    | 1.18 | PL82     | 0.48   | 30C1/PCF | 80   |
|---------|------|--------|------|----------|------|----------|--------|----------|------|
| ahhii   | Cal  | HOII.  |      | GZ34     | 0.80 | PL83     | 1.04   |          | 0.54 |
|         |      |        |      | PC86     | 0.95 | PL84     | 0.68   | 30C15/   |      |
| DM70    | 0.61 | ECL83  | 0.66 | PC88     | 0.95 | PL50     | 0.80   | PCF800   | 1.01 |
| DY51    | 0.80 | ECL86  | 0.64 | PC97     | 0.42 | PL504    | 0.90   | 80C17    | 1.01 |
| DY86/7  | 0.41 | EF80   | 0.42 | PC900    | 0.57 | PL508    | 1.24   | 30C18/   |      |
| DY802   | 0.46 | EF83   | 0.98 | PCC84    | 0.54 | PL509    | 1.56   | PCF805   | 1.00 |
| EABC80  | 1.08 | EF85   | 0.42 | PCC85    | 0.80 | PL802    | 1.40   | 30F5/PF8 |      |
| EB91    | 0.64 | EF86   | 1.16 | PCC88    | 0.86 | PY33     | 0.65   |          | 1.08 |
| EBC81   | 0.79 | EF89   | 1.14 | PCC89    | 0.64 | PY81/800 | 0.49   | 30FL1/   | 1 00 |
| EBF80   | 0.56 | EF91   | 1.00 | PCC189   | 0.80 | PY82     | 0.57   | PCE800   | 0.80 |
| EBF83   | 0.59 | EF92   | 1.37 | PCF80    | 0.54 | PY88     | 0.56   |          |      |
| EBF89   | 0.53 | EF95   | 1.47 | PCF82    | 1.22 | PY500A   | 1.02   | 30FL2    | 0.80 |
| EC86    | 0.78 | EF183  | 0.68 | PCF86    | 0.64 | PY800    | 0.49   | 30FL12   | 1.13 |
| EC88    | 0.76 | EF184  | 0.68 | PCF200   | 1.00 | PY801    | 0.49   | 30FL14   | 0.94 |
| EC90    | 0.86 | EH90   | 0.85 | PCF201   | 1.00 | U26      | 0.88   | 30L1/PCC |      |
| EC97    | 0.60 | EL34   | 0.92 | PCF801   | 0.84 | U191     | 0.88   |          | 0.54 |
| ECC81   | 0.47 | EL36   | 1.01 | PCF802   | 0.70 | U193     | 0.54   | 30L15/   |      |
| ECC82   | 0.44 | EL81   | 0.85 | PCF806   | 0.64 | UABC80   | 0.90   | PCC805   |      |
| ECC83   | 0.47 | EL84   | 0.47 | PCH200   | 1.15 | UBC81    | 0.71   | 30L17    | 0.89 |
| ECC84   | 9.58 | EL85   | 0.85 | PCL82    | 0.58 | UBF89    | 0.58   | 30P4MR   | 1.27 |
| ECC85   | 0.71 | EL86   | 0.92 | PCL83    | 0.64 | UCC85    | 0.59   | 30P12/   |      |
| ECC88   | 0.84 | EL91   | 0.00 | PCL84    | 0.61 | UCH81    | 1.12   | PC801    | 1.01 |
| ECC189  | 0.68 | EL95   | 0.72 | PCL85    | 0.64 | UCL82    | 0.72 i | 30P19/   |      |
| ECF80   | 0.60 | ELL80  | 2.50 | PCL86    | 0.64 | UCL83    | 0.72   | PC802    | 0.89 |
| ECF82   | 0.86 | EM84   | 1.19 | PCL805/8 | 5    | UF89     | 0.80   | 30PL1/   |      |
| ECF86   | 0.68 | EM87   | 1.16 |          | 0.64 | UL84     | 0.92   | PCL801   | 1.00 |
| ECH81   | 1.16 | EY51   | 0.79 | PD500    | 1.86 | UY85     | 0.54   | 30PL13/  |      |
| ECH83 · |      | EY86/7 | 0.40 | PFL200   | 0.83 | 6/30L2/  |        | PCL800   | 1.15 |
| ECH84   | 1.00 | EY88   | 0.72 | PL36     | 0.90 | ECC804   | 0.98   | 30PL14/  |      |
| ECL80   | 0.67 | EZ80   | 0.54 | PL81     | 0.77 | 6F23/EF8 |        | PCL88    | 1.85 |
| ECL82   | 0.64 | EZ81   | 0.38 | PL81A    | 0.90 |          | 1.08   | 30PL15   | 1.13 |
|         |      |        |      |          |      |          |        |          |      |

# NEW VALVES

| NEV             | VV           | ALV            | ES           |                  |              | PY500<br>PY81/800    | 1·10<br>0·50 | 6J5M            | 0.75<br>0.65 |
|-----------------|--------------|----------------|--------------|------------------|--------------|----------------------|--------------|-----------------|--------------|
|                 |              |                |              |                  |              | PY801<br>SP41        | 0.55<br>3.00 | 6J5G            | 0-20<br>0-85 |
|                 |              | ually          |              |                  |              | SP61                 | 0.85         | 6J7G            | 0.80         |
| quar            | ant          | eed b          | 111t         | of Fu            | ro-          | T41<br>U14           | 1.00         | 6J7M            | 0.65         |
|                 |              |                |              |                  |              |                      | 0.75         | 6K6GT           | 0.80         |
| pean            | r othe       | U25<br>U26     | 1.00<br>0.85 | 6K7G<br>6K7M     | 0.35<br>0.45 |                      |              |                 |              |
|                 | redu         | <b>T</b> 191   | 0.75         | 6K8G             | 0.45         |                      |              |                 |              |
|                 |              |                |              |                  |              |                      | 0·75<br>0·40 | 6K8M            | 0.45         |
| Quo             | tati         | ons            | fo           | r a              | ıny          | UAF42                | 0.75         | 6K25            | 1.00         |
|                 |              | ot lis         |              |                  |              | UBC41<br>UBC81       | 0.60<br>0.50 | 6L6G<br>6Q7G    | 0.55         |
|                 |              |                |              | J. 36            | mu           | UBF80                | 0.50         | 8Q7M            | 0·40<br>0·60 |
| SAE             | fo           | r lists        | \$ -         |                  |              | UBF89                | 0.50         | 68L7GT          | 0.55         |
|                 |              |                | •            |                  |              | UCC85                | 0.50<br>0.80 | 6SN7GT          | 0·55<br>0·40 |
| AZ1             | 0.75         | EF39           | 1.25         | N78              | 8.50         | UCH42<br>UCH81       | 0.50         | 6SQ7GT          | 1.25         |
| AZ31            | 0.60         | EF80           | 0.85         | OA2              | 0.45         | UCL82                | 0.40         | 6V6G            | 0.80         |
| CBL31           | 1.40         | EF85           | 0.45         | OB2              | 0.45         | UCL83                | 0.70         | 6V6GT           | 0.60         |
| CL33<br>CY31    | 1.50<br>0.60 | EF86<br>EF89   | 0.50<br>0.35 | PC86             | 0.65<br>0.65 | UF41                 | 0.75         | 6X4             | 0.45         |
| DAF91           | 0.40         | EF91           | 0.40         | PC97             | 0.55         | UF89<br>UL41         | 0·50<br>0·85 | 6X5G<br>6X5GT   | 0.45         |
| DAF96           | 0.60         | EF92           | 0.50         | PC900            | 0.55         | UL84                 | 0.50         | 7B6             | 0.55<br>0.80 |
| 'DCC90          | 1.35         | EF95           | 0.45         | PCC84            | 0.45         | UY41                 | 0.85         | 7B7             | 0.80         |
| DF91            | 0.40         | EF98           | 0.80         | PCC88            | 0.62         | UY85                 | 0.45         | 7C5             | 1.30         |
| DF96<br>DK91    | 0.60<br>0.50 | EF183<br>EF184 | 0 40<br>0 40 | PCC89<br>PCC189  | 0·55<br>0·65 | VR105/30             |              | 7C6             | 1.00         |
| DK92            | 1.00         | EL32           | 0.60         | PCF80            | 0.40         | VR150/30<br>OA2      | 0.45         | 7H7<br>7R7      | 0.80<br>0.80 |
| DK96            | 0.75         | EL33           | 2.00         | PCF82            | 0.42         | OB2                  | 0.45         | 787             | 2.25         |
| DL92            | 0.50         | EL34           | 0.70         | PCF86            | 0.65         | 1R5                  | 0.50         | 7Y4             | 0.80         |
| DL94<br>DL96    | 0·48<br>0·55 | EL36<br>EL37   | 0.60<br>2.50 | PCF801<br>PCF802 | 0.60<br>0.55 | 185                  | 0.40         | 12AT6           | 0-45         |
| DY86            | 0.42         | EL41           | 0.90         | PCF802           | 0.90         | 1T4<br>384           | 0.40         | 12AT7           | 0·45<br>0·50 |
| DY87            | 0.45         | EL42           | 1.65         | PCF806           | 0.80         | 3V4                  | 0.85         | 12AU6<br>12AU7  | 0.88         |
| DY802           | 0.47         | EL84           | 0.85         | PCF808           | 0.90         | 5R4GY                | 1.00         | 12AX7           | 0.38         |
| EABC80<br>EAF42 | 0.38         | EL95<br>ELL80  | 0.60<br>2.00 | PCL82<br>PCL83   | 0·45<br>0·70 | 5U4G_                | 0.55         | 12BA6           | 0.50         |
| EB91            | 0.25         | EM80           | 0.55         | PCL84            | 0.50         | 5 Y 3 G T<br>5 Y 4 G | 0.65<br>0.60 | 12BE6           | 0.60         |
| EBC33           | 1.00         | EM81           | 0.60         | PCL85            | 0.60         | 5Z4G                 | 0.65         | 30C1<br>30C15   | 0·40<br>1·00 |
| EBC41           | 0.75         | EM84           | 0.40         | PCL86            | 0.50         | 6/3OL2               | 0.90         | 30C17           | 1.00         |
| EBC81<br>EBF80  | 0·40<br>0·40 | EM85<br>EY51   | 1.00         | PCL805/8         |              | 6AK5                 | 0.45         | 30C18           | 0.90         |
| EBF83           | 0.40         | EY86           | 0·45<br>0·45 | PD500            | 0.60<br>1.50 | 6AM5<br>6AQ5         | 1 00<br>0 50 | 30F5            | 1.00         |
| EBF89           | 0.82         | EZ40           | 0.60         | PEN45            | 0.85         | 6AB7G                | 1.00         | 30FL1<br>30FL2  | 1·00<br>0·75 |
| EBL31           | 2.00         | EZ41           | 0.75         | PL36             | .0.68        | 6AT6                 | 0.60         | 30FL14          | 0.90         |
| ECC81<br>ECC82  | 0·45<br>0·38 | EZ80<br>EZ81   | 0.80         | PL81<br>PL82     | 0.55<br>0.50 | 6AU6                 | 0.40         | 30L15           | 0.95         |
| ECC83           | 0.38         | GY501          | 0·81<br>0·90 | PL83             | 0.50         | 6BA6<br>6BE6         | 0.38<br>0.45 | 30L17           | 0.95         |
| ECC84           | 0.35         |                | 0.65         | PL84             | 0.50         | 6BH6                 | 0.75         | 30P4MR<br>30P12 | 1·30<br>1·00 |
| ECC85           | 0.45         | GZ32           | 0.65         | PL500            | 0.85         | 6BJ6                 | 0.75         | 30P19           | 0.95         |
| ECC88           | 0.50         | GZ34           | 0.75         | PL504            | 0.85         | 6BQ7A                | 0.55         | 30PL1           | 0.95         |
| ECH35<br>ECH42  | 1·50<br>0·85 | GZ37<br>HN309  | 1 25         | PL508<br>PL509   | 0.90<br>1.55 | 6BR7                 | 1.20         | 30PL13          | 1.10         |
| ECH81           | 0.85         | KT61           | 1.50<br>2.00 | PL802            | 1.00         | 6BS7<br>6BW6         | 1.40         | 30PL14<br>35W4  | 1·10<br>0·60 |
| ECH83           | 0.50         | KT66           | 2.50         | PX4              | 3.50         | 6BW7                 | 1 00         | 35 <b>Z</b> 4GT | 0.70         |
| ECL80           | 0.60         | KT81 (7C       | 5)           | PX 25            | 3.50         | 6C4                  | 0.40         | 50CD6G          | 1.20         |
| ECL82<br>ECL83  | 0·42<br>0·75 | TZ 7007        | 1 30         | PY33             | 0.63         | 6CD6G                | 1.25         | 807             | 1.00         |
| ECL88           | 0.75         | KT81<br>KT88   | 1.75         | PY81<br>PY82     | 0-45<br>0-45 | 6CH6<br>6CW4         | 1.50<br>1.00 |                 | 14.00        |
| ECLL800         | 3.50         | KTW61          | 2.90<br>1.50 | PY83             | 0.50         | 6F23                 | 0.90         | 813USSR<br>866A | 8-00<br>1-20 |
| EF37A           | 1.20         | MU14           | 1.00         | PY88             | 0.50         |                      | 1.00         |                 | - 20         |

### **EXPRESS** POSTAGE

5p for first Transistor, for each additional add

| AA119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       | Fairc    | hild | , L     | uca  | S.      | etc. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|------|------------|-------|----------|------|---------|------|---------|------|
| AC126 0.26 BF197 0.28 AC127 0.26 BF180 0.35 AC128 0.20 BF186 0.35 AC128 0.20 BF196 0.13 AC187 0.25 BF194 0.13 AC187 0.25 BF196 0.13 AC188 0.20 BF197 0.15 OC20 2.00 ZTX503 0.16 2N2904 0.20 ACY39 0.65 BF896 0.32 OC23 1.25 ZTX531 0.25 2N2904 0.20 ACY39 0.65 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD140 0.50 BF896 0.25 OC25 0.40 ZTX505 0.18 2N2905 0.32 AD161 0.39 BFX83 0.22 OC36 0.65 IN4002 0.07 2N3905 0.30 AF116 0.25 BFY51 0.20 OC44 0.18 IN4004 0.06 2N3905 0.30 AF116 0.25 BFY51 0.20 OC44 0.18 IN4004 0.08 2N3905 0.30 AF116 0.25 BFY51 0.20 OC44 0.18 IN4004 0.08 2N3905 0.30 AF116 0.25 BFY51 0.20 OC44 0.18 IN4006 0.10 2N3905 0.30 AF116 0.25 BFY51 0.20 OC44 0.18 IN4006 0.10 2N3905 0.30 AF116 0.25 BFY51 0.20 OC45 0.18 IN4007 0.12 2N3905 0.30 AF186 0.40 BY100 0.15 OC72 0.25 IN4007 0.12 2N3905 0.30 AF186 0.40 BY100 0.15 OC72 0.25 IN4007 0.12 2N3905 0.35 ABY27 0.30 BY127 0.15 OC75 0.55 IN4148 0.06 2N3703 0.12 ABY27 0.30 BY127 0.15 OC75 0.55 IN4148 0.06 2N3703 0.12 ABY28 0.25 BZX61 series OC31 0.25 IS205 0.20 2N3706 0.15 BC107 0.12 CR61-05 0.30 OC31 0.35 IS205 0.20 2N3706 0.15 BC107 0.12 CR61-05 0.30 OC31 0.35 IS205 0.20 2N3706 0.15 BC107 0.12 DC108 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                   |   | AA119    | 0.07 | BD132      | 0.50  | Quar     | +1+  | ر ما: د |      | mto     |      |
| AC126 0-25 BF179 0-38 AC127 0-25 BF180 0-35 AC128 0-20 BF180 0-35 AC128 0-20 BF181 0-35 AC128 0-20 BF194 0-18 AC186 0-20 BF195 0-13 AC186 0-20 BF196 0-13 AC186 0-20 BF196 0-13 AC186 0-20 BF196 0-13 AC186 0-20 BF197 0-15 OC20 2-00 ZTX503 0-18 2N2904 0-22 ACY39 0-65 BF861 0-25 OC23 1-25 ZTX503 0-18 2N2904 0-22 ACY39 0-65 BF861 0-25 OC23 0-00 ZTX503 0-18 2N2904 0-22 ACY39 0-65 BF861 0-25 OC23 0-40 ZTX503 0-18 2N2904 0-22 ACY39 0-65 BF861 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF868 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF868 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF868 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF868 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF868 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF868 0-25 OC23 0-40 ZTX503 0-18 2N2906 0-28 AD140 0-50 BF870 0-20 OC44 0-18 IN4002 0-08 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4003 0-08 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4003 0-08 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-25 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-20 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-20 BF80 0-20 OC44 0-18 IN4006 0-10 2N2906 0-20 AF116 0-20 |   | AAZIS    | 0.10 |            | 0.22  |          |      |         |      |         |      |
| AC126 0-25 BF179 0-38 AC127 0-25 BF181 0-35 AC128 0-20 BF181 0-35 AC128 0-20 BF181 0-35 AC128 0-20 BF181 0-35 AC128 0-25 BF194 0-18 AC186 0-25 BF194 0-18 AC186 0-25 BF194 0-18 AC186 0-20 BF195 0-13 OC16 1-00 ZTX501 0-15 2N2904 0-20 AC189 0-20 BF195 0-15 OC20 2-00 ZTX503 0-16 2N2904 0-22 AC189 0-25 BF197 0-15 OC20 2-00 ZTX503 0-16 2N2904 0-22 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-32 AD140 0-50 BF898 0-25 OC25 OC31 0-40 IN4003 0-08 2N3955 0-30 AF115 0-25 BF895 0-20 OC44 0-18 IN4006 0-10 2N3616 0-50 AF116 0-25 BF895 0-20 OC41 0-18 IN4006 0-10 2N3616 0-50 AF116 0-25 BF895 0-20 OC71 0-15 IN4009 0-01 2N3616 0-50 AF126 0-40 BF195 0-20 OC71 0-15 IN4009 0-10 2N3616 0-50 AF126 0-40 BF195 0-20 OC31 0-22 IN4007 0-12 2N3702 0-11 ASP32 0-25 BA105 0-10 BC107 0-12 DC107 0-1 |   |          |      |            |       | appli    | cati | on.     | Ser  | nd S    | SAE  |
| AC128 0-20 BF181 0-35 AC176 0-25 BF194 0-13 AC187 0-20 BF194 0-13 AC187 0-20 BF195 0-13 OC16 1-00 ZTX501 0-15 2N2904 0-20 AC188 0-20 BF195 0-13 OC20 2-00 ZTX503 0-16 2N2904 0-20 AC189 0-20 BF196 0-15 OC20 2-00 ZTX503 0-16 2N2904 0-22 AC189 0-25 BF581 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-25 AC189 0-25 BF581 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-25 AC189 0-20 BF196 0-25 OC25 0-40 ZTX505 0-18 2N2905 0-25 AC189 0-20 BF196 0-25 OC25 0-40 ZTX505 0-18 ZN2905 0-25 AC189 0-20 BF196 0-25 OC25 0-40 DF196 0-10 OC5 N2926 0-10 AC189 BF28 0-25 OC28 0-70 IN1400 0-05 ZN2926 0-10 AC189 BF28 0-25 OC28 0-70 IN1400 0-05 ZN2926 0-10 AC189 BF28 0-25 OC24 0-40 IN400 0-05 ZN2926 0-10 AC189 BF28 0-25 OC44 0-18 IN4004 0-05 ZN3926 0-80 AF115 0-25 BF29 0-20 OC44 0-18 IN4005 0-10 ZN3616 0-80 AF116 0-25 BF29 0-20 OC44 0-18 IN4006 0-12 ZN3616 0-80 AF116 0-25 BF29 0-20 OC71 0-15 IN4000 0-12 ZN3616 0-80 AF116 0-25 BF29 0-20 OC71 0-15 IN4000 0-12 ZN3616 0-80 AF116 0-25 BF29 0-20 OC71 0-15 IN4000 0-12 ZN3616 0-80 AF116 0-25 BF29 0-20 OC71 0-15 IN4000 0-12 ZN3616 0-80 AF116 0-25 BF29 0-20 OC71 0-15 IN4000 0-12 ZN3616 0-80 AF116 0-25 BF29 0-20 OC810 0-28 IS203 0-20 ZN3700 0-11 BC107 0-12 BC107 0-12 BC107 0-12 BC107 0-12 BC107 0-12 BC107 0-12 BC108 0-12  |   |          | 0.25 |            |       | for f    |      | linta   |      |         |      |
| AC176 0-26 BF194 0-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | AC127    | 0.25 | BF180      | 0.85  | 101 1    | un   | nsts.   | -6   |         |      |
| AC187 0-20 BF196 0-13 OC16 1-00 ZTX501 0-18 2N2904 0-20 AC188 0-20 BF197 0-15 OC20 3-00 ZTX503 0-18 2N2904 0-22 AC Y39 0-65 BF891 0-25 OC23 1-25 ZTX501 0-25 2N2905 0-32 AC Y39 0-65 BF891 0-25 OC25 0-40 ZTX505 0-18 2N2906 0-32 AC Y39 0-65 BF891 0-25 OC25 0-40 ZTX505 0-18 2N2906 0-32 AD 140 0-60 BF981 0-25 OC25 0-40 ZTX505 0-18 2N2906 0-32 AD 140 0-60 BF981 0-25 OC25 0-70 IN944 0-06 2N2926 0-10 AD 141 0-60 BF982 0-25 OC25 0-70 IN944 0-06 2N2926 0-32 AD 142 0-39 BFX89 0-22 OC42 0-40 IN4003 0-08 2N3906 0-40 AF 115 0-25 BF98 0-20 OC44 0-18 IN4004 0-08 2N3926 0-40 AF 116 0-25 BF98 0-20 OC44 0-18 IN4004 0-08 2N3926 0-40 AF 116 0-25 BF98 0-20 OC44 0-18 IN4004 0-08 2N3926 0-40 AF 116 0-25 BF98 0-20 OC41 0-18 IN4004 0-08 2N3926 0-40 AF 116 0-25 BF98 0-20 OC71 0-15 IN4001 0-12 2N3912 0-24 AF 239 0-48 BY126 0-14 OC76 0-30 IN4009 0-08 2N3920 0-14 AF 239 0-48 BY126 0-14 OC76 0-30 IN4009 0-08 2N39704 0-14 AF 239 0-48 BY126 0-14 OC76 0-30 IN4009 0-08 2N39702 0-11 AF 239 DF 24 DF  |   |          |      |            |       | 1        |      |         |      |         |      |
| AC188 0-20 BF197 0-15 0-C20 2-00 ZTX.503 0-16 2N2906 0-25 ACY21 0-22 BF200 0-25 0-C25 0-40 ZTX.551 0-25 2N2905 0-32 ACY39 0-65 BF961 0-25 0-C25 0-40 ZTX.550 0-18 2N2905 0-32 ACY39 0-65 BF961 0-25 0-C25 0-40 ZTX.550 0-18 2N2905 0-32 ACY39 0-65 BF986 0-25 0-C28 0-70 1N914 0-06 2N2926 0-20 AD149 0-50 BFW10 0-81 0C36 0-55 1N4001 0-06 2N2926 0-10 AD161 0-38 BFX89 0-22 0-C44 0-18 1N4001 0-06 2N2926 0-10 AD161 0-38 BFX89 0-22 0-C44 0-18 1N4003 0-08 2N2905 0-20 AF115 0-25 BF961 0-20 0-C44 0-18 1N4003 0-08 2N2905 0-04 AF116 0-25 BF961 0-20 0-C44 0-18 1N4004 0-08 2N2925 0-20 AF117 0-20 BF961 0-20 0-C44 0-18 1N4004 0-08 2N2925 0-20 AF117 0-20 BF961 0-20 0-C44 0-18 1N4005 0-10 2N2961 0-29 AF117 0-20 BF961 0-20 0-C44 0-18 1N4006 0-12 2N2962 0-20 AF118 0-25 BF961 0-20 0-C44 0-18 1N4006 0-12 2N2962 0-20 AF118 0-25 BF961 0-20 0-C44 0-18 1N4006 0-12 2N2962 0-20 AF118 0-25 BF961 0-20 0-C44 0-18 1N4006 0-12 2N2962 0-20 AF118 0-25 BF961 0-20 0-C44 0-18 1N4006 0-12 2N2962 0-10 AF128 0-20 BF962 0-20 0-C55 1N4007 0-12 2N2962 0-11 AF128 0-06 AF128 0-46 BF961 0-20 0-15 CC71 0-15 IN4006 0-12 2N2962 0-12 AF128 0-10 0-15 CC72 0-25 IN4007 0-12 2N2963 0-12 AF128 0-10 0-15 CC72 0-25 IN4007 0-12 2N2963 0-12 AF128 0-10 0-15 CC72 0-25 IN4007 0-12 2N2963 0-12 AF128 0-10 0-15 CC72 0-25 IN4007 0-12 2N2963 0-12 AF128 0-10 0-15 CC72 0-25 IN4007 0-12 2N2963 0-12 AF128 0-10 0-15 CC72 0-15 IN4009 0-10 2N2963 0-12 AF128 0-10 0-15 CC72 0-15 IN4009 0-10 2N2963 0-12 AF128 0-10 0-15 CC72 0-15 IN4009 0-10 2N2963 0-15 DF961 0-15 DF961 0-15 CC72 0-15 IN4009 0-10 2N2963 0-15 DF961 0-15  |   |          |      |            |       | 0030     |      | 1       |      | 1       |      |
| ACY21 0-22 BF200 0-32 OC23 1-25 ZTX 531 0-25 ZN2905 0-25 AD140 0-50 BF861 0-25 OC25 OC25 0-40 ZTX 550 0-18 ZN2905 0-28 AD140 0-50 BF808 0-25 OC25 0-60 ZTX 550 0-18 ZN2905 0-28 AD161 0-39 BFX29 0-28 OC36 0-65 IN4001 0-06 ZN2906 0-28 AD162 0-39 BFX29 0-28 OC36 0-65 IN4002 0-07 ZN3053 0-28 AD162 0-39 BFX29 0-28 OC36 0-65 IN4002 0-07 ZN3053 0-28 AF115 0-25 BFY50 0-20 OC44 0-40 IN4003 0-08 ZN3925 0-30 AF115 0-25 BFY50 0-20 OC44 0-40 IN4004 0-80 ZN3925 0-30 AF115 0-25 BFY50 0-20 OC44 0-418 IN4004 0-82 ZN3925 0-30 AF115 0-25 BFY51 0-20 OC45 0-18 IN4002 0-10 ZN3053 0-20 AF116 0-25 BFY51 0-20 OC45 0-18 IN4004 0-10 ZN3051 0-48 ZN3925 0-30 AF117 0-20 BFY52 0-20 OC71 0-15 IN4006 0-12 ZN3051 0-48 AF129 0-44 BY126 0-14 OC76 0-30 IN4009 0-66 ZN3703 0-12 ASY29 0-30 BY127 0-15 OC77 0-55 IN4007 0-12 ZN3702 0-11 ASY29 0-36 BA102 0-25 BA105 0-10 BC108 0-12 CR81-05 0-30 OC38 0-28 IS920 0-0 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-45 IS9205 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-65 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-65 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-65 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-65 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-65 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-65 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-25 IS9206 0-20 ZN3706 0-15 BC109 0-12 CR81-05 0-30 OC34 0-25 IS9206 0-25 ZN3706 0-10 DC37 DC37 DC37 DC37 DC37 DC37 DC37 DC37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | VC194    | 0.20 |            | 0.12  | 0016     |      | ZTX501  | 0.18 |         | 0.20 |
| ACY39 0-65 BF868 0-25 OC28 0-60 ZTX-550 0-18 2N3905A 0-25 AD140 0-50 BFW96 0-25 OC28 0-70 INP014 0-06 2N3908 0-28 AD161 0-39 BFX29 0-28 OC36 0-65 IN4001 0-06 2N3908 0-28 AD162 0-38 BFX89 0-22 OC42 0-40 IN4003 0-08 2N3905 0-80 AF115 0-25 BFY50 0-20 OC44 0-18 IN4004 0-08 2N3905 0-80 AF115 0-25 BFY50 0-20 OC44 0-18 IN4003 0-08 2N3905 0-80 AF116 0-25 BFY51 0-20 OC46 0-18 IN4004 0-08 2N3905 0-80 AF117 0-20 BFY51 0-20 OC46 0-18 IN4005 0-10 2N3614 0-99 AF186 0-40 BFY51 0-20 OC46 0-18 IN4006 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC71 0-15 IN4006 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC71 0-15 IN4006 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC71 0-15 IN4006 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC71 0-15 IN4007 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC71 0-15 IN4007 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC71 0-15 IN4007 0-12 2N3702 0-11 AF187 0-20 BFY52 0-20 OC81 0-28 IS921 0-07 2N3705 0-15 BA102 0-25 BZK61 series OC81 0-28 IS921 0-07 2N3706 0-15 BC107 0-12 DC107 DC |   | ACV21    | 0.22 |            |       |          |      |         | 0.02 |         |      |
| AD140 0-50 BR898 0-25 0-28 0-70 1N914 0-06 2N9398 0-29 AD161 0-39 BFX29 0-28 0-26 0-65 IN4001 0-06 2N9398 0-29 AD162 0-39 BFX89 0-22 0-24 0-40 IN4002 0-07 2N8053 0-20 AF115 0-25 BFY50 0-20 0-24 0-40 IN4004 0-08 2N3392 0-10 AF115 0-25 BFY50 0-20 0-24 0-40 IN4004 0-08 2N3392 0-20 AF115 0-25 BFY50 0-20 0-24 0-40 IN4004 0-08 2N3392 0-20 AF116 0-25 BFY51 0-20 0-24 0-40 IN4004 0-08 2N3392 0-20 AF117 0-20 BFY52 0-20 0-24 0-40 IN4004 0-10 2N3815 0-46 AF117 0-20 BFY52 0-20 0-24 0-40 IN4004 0-10 2N3815 0-45 AF117 0-20 BFY52 0-20 0-24 0-40 IN4004 0-10 2N3815 0-45 AF117 0-20 BFY52 0-20 0-24 0-40 IN4004 0-10 2N3815 0-45 AF117 0-20 BFY52 0-20 0-24 0-40 IN4004 0-10 2N3815 0-45 AF117 0-20 BFY52 0-20 0-24 0-40 IN4004 0-10 2N3815 0-45 AF117 0-20 BFY52 0-20 0-24 IN4007 0-12 2N3810 0-44 BFY126 0-14 0-26 0-30 IN4009 0-06 2N3703 0-12 BA102 0-25 BZK61 series BA102 0-25 BZK61 series 0-20 0-20 IN4007 0-12 SIS931 0-07 2N3705 0-15 BC107 0-12 BC108 0-12 CR81-40 0-45 0-20 IN4007 0-12 SIS931 0-07 2N3705 0-15 BC107 0-12 BC108 0-12 CR81-40 0-45 0-20 IN4007 0-12 SIS931 0-20 2N3707 0-13 BC109 0-12 CR81-40 0-45 0-20 0-20 IN4007 0-25 2N3709 0-10 BC109 0-12 CR81-40 0-45 0-20 0-20 IN4007 0-25 2N3709 0-10 BC109 0-12 CR81-40 0-45 0-20 0-20 IN4007 0-25 2N3709 0-10 BC109 0-12 CR81-40 0-45 0-20 0-20 0-20 IN4007 0-25 2N3709 0-10 BC109 0-12 CR81-40 0-45 0-20 0-20 0-20 IN4007 0-25 2N3709 0-10 BC109 0-12 CR81-40 0-45 0-20 0-20 0-20 0-20 IN4007 0-25 2N3709 0-10 BC103 0-10 IN4007 0-20 IN4007 0-25 2N3709 0-10 BC103 0-10 IN4007 0-20 IN4007 0-2 |   |          |      |            |       |          | 0.40 |         |      |         |      |
| AD161 0-39 BFX29 0-28 0036 0-55 IN4001 0-06 2N3993 0-10 AD161 0-39 BFX29 0-28 0036 0-65 IN4002 0-07 2N3953 0-90 AF116 0-25 BFY50 0-90 0044 0-18 IN4004 0-08 2N3955 0-90 AF116 0-25 BFY51 0-20 0045 0-18 IN4004 0-08 2N3955 0-90 AF117 0-20 BFY52 0-20 0071 0-15 IN4006 0-12 2N3615 0-65 AF186 0-40 BFY100 0-15 0072 0-25 IN4007 0-12 2N3702 0-11 AF239 0-44 BFY126 0-14 0076 0-30 IN4009 0-06 2N3703 0-14 AF239 0-44 BFY126 0-14 0077 0-55 IN4007 0-12 2N3702 0-11 AF239 0-44 BFY127 0-15 0077 0-55 IN4009 0-06 2N3703 0-14 AF239 0-25 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BA102 0-25 BA105 0-26 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BZK51 series 0081 0-28 IS921 0-07 2N3705 0-15 BC108 0-12 BZK51 0-07 0-12 BZK51 |   |          |      |            |       |          |      |         | 0.08 |         |      |
| AD161 0-39 BFX89 0-28   OC36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |          |      |            |       | OC35     | 0.55 |         | 0.06 |         | 0.10 |
| AF115 0-25 BFY56 0-20 0C44 0-18 IN4003 0-08 2N39525 0-80 AF116 0-25 BFY56 0-20 0C45 0-18 IN4005 0-10 2N3614 0-89 AF117 0-20 BFY51 0-20 0C71 0-15 IN4006 0-12 2N3615 0-85 AF117 0-20 BFY52 0-20 0C71 0-15 IN4006 0-12 2N3615 0-85 AF128 0-40 BFY100 0-15 0C72 0-25 IN4009 0-12 2N3702 0-11 AF239 0-44 BFY126 0-14 0C76 0-30 IN4009 0-06 2N3703 0-12 AF239 0-24 BFY127 0-15 0C77 0-55 IN4148 0-06 2N3703 0-12 AF239 0-25 BA102 0-25 BA103 0-25 BA102 0-25 BA102 0-25 BA103 0-25 BA102 0-25 BA103 0-25  |   |          |      |            |       |          |      |         | 0.07 |         |      |
| AF116 0-25 BFY51 0-20 OC71 0-15 IN4005 0-10 2N3615 0-84 AF117 0-20 BFY52 0-20 OC71 0-15 IN4006 0-18 2N3615 0-85 AF188 0-40 BFY52 0-15 OC72 0-25 IN4009 0-06 2N3702 0-11 AF239 0-44 BY126 0-14 OC76 0-30 IN4009 0-06 2N3702 0-11 ASY27 0-30 BY127 0-15 OC77 0-55 IN4148 0-08 2N3702 0-11 ASY28 0-25 BZK51 series OC81 0-28 IS921 0-07 2N3705 0-15 BA102 0-25 BA105 0-10 BZY88 series OC81 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BC107 0-12 BC108 0-12 CR81-40 0-45 OC812 0-45 IS921 0-07 2N3705 0-15 BC107 0-12 BC107 0-12 BC107 0-12 BC108 0-12 CR81-40 0-45 OC170 0-25 IS921 0-07 2N3706 0-10 BC113 0-16 CR83-40 0-75 OC200 0-55 ZN596 0-15 2N3710 0-11 BC113 0-16 CR83-40 0-75 OC200 0-55 ZN596 0-15 2N3710 0-11 BC113 0-16 BC147 0-12 MJE340 0-45 OC201 0-80 ZN706 0-19 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-50 OC201 0-80 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-65 OC202 0-90 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-80 DC202 0-90 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-80 DC202 0-90 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-80 DC202 0-90 ZN706 0-19 ZN3820 0-85 BC148 0-19 MJE340 0-80 DC202 0-90 ZN706 0-19 ZN3820 0-80 DC202 0-90 ZN706 0-19 ZN3820 0-80 DC202 0-19 ZN706 0-19 ZN3820 0-80 ZN706 0-19 ZN706 0-1 |   |          |      |            |       |          |      |         |      |         | 0.60 |
| AF117 0-20 BFY52 0-20 OC71 0-15 IN4007 0-12 2N3702 0-12 AF239 0-44 BY126 0-14 OC76 0-30 IN4009 0-06 2N3703 0-12 AF239 0-44 BY127 0-15 OC77 0-25 IN4007 0-12 2N3702 0-11 AF239 0-44 BY126 0-14 OC76 0-30 IN4009 0-06 2N3703 0-12 AF239 0-26 BA15 0-26 DC77 0-55 IN4007 0-12 BZX61 series OC81 0-28 IS921 0-07 2N3705 0-15 BA15 0-10 BZX61 series OC81 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BC108 0-12 CRS1-00 0-00 OC81 0-28 IS9203 0-20 2N3707 0-11 BC107 0-12 CRS1-00 0-00 OC83 0-25 IS9203 0-20 2N3707 0-11 BC108 0-12 CRS1-00 0-00 OC83 0-25 IS9203 0-20 2N3707 0-11 BC103 0-16 CRS3-05 0-40 OC171 0-25 2N696 0-15 2N3709 0-10 BC109 0-12 CRS1-00 0-00 OC170 0-25 2N696 0-15 2N3710 0-11 BC117 0-21 CRS1-00 0-00 OC200 0-55 2N706 0-10 2N3819 0-15 BC143 0-30 MJE340 0-50 OC200 0-55 2N706 0-10 2N3819 0-15 BC143 0-30 MJE340 0-50 OC200 0-55 2N706 0-10 2N3819 0-15 BC144 0-12 MJE3070 0-88 OC202 0-90 2N1131 0-22 2N3820 0-80 BC148 0-10 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC148 0-10 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1132 0-22 2N3820 0-80 BC184 0-18 MJE520 0-65 OC203 0-55 2N1380 0-18 2N3805 0-22 BC184 0-18 MJE520 0-65 OC203 0-55 2N1380 0-18 2N3805 0-22 BC184 0-18 MJE520 0-65 OC203 0-55 2N1380 0-18 2N3805 0-22 BC184 0-18 MJE520 0-65 OC203 0-55 2N1380 0-18 2N3805 0-22 BC184 0-18 MJE520 0-65 OC203 0-55 2N1380 0-18 2N3805 0-22 BC184 0-18 MJE520 0-18 DC184 0-18 MJE520 0- |   | AFILD    |      |            |       |          |      |         | 0.08 |         | 0.80 |
| AF186 0-40 BY106 0-16 OC72 0-25 INA007 0-12 2N3702 0-11 AF239 0-44 BY126 0-14 OC76 0-30 INA009 0-06 2N3703 0-12 AF327 0-30 BY127 0-15 OC77 0-55 INA148 0-06 2N3704 0-14 AF328 0-25 BZX61 series OC81 0-28 IS921 0-07 2N3705 0-15 BA102 0-25 BA105 0-10 BZX85 series OC81 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 BC108 0-12 CR81-05 0-30 OC812 0-45 IS921 0-07 2N3705 0-15 BC107 0-12 BC108 0-12 CR81-05 0-30 OC140 0-65 IS921 0-07 2N3706 0-11 BC103 0-12 CR81-05 0-30 OC140 0-65 IS921 0-07 2N3707 0-13 BC103 0-12 CR81-05 0-30 OC140 0-65 IS921 0-07 2N3708 0-10 BC107 0-12 CR81-40 0-45 OC170 0-25 2N696 0-15 2N3709 0-10 BC107 0-12 CR81-40 0-45 OC200 0-55 2N696 0-15 2N3710 0-11 BC113 0-16 CR83-05 0-40 OC171 0-30 2N697 0-15 2N3710 0-10 BC147 0-12 MJE340 0-50 OC201 0-80 2N7064 0-12 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 2N7064 0-12 2N3819 0-85 BC148 0-10 MJE340 0-50 OC201 0-80 2N7064 0-12 2N3819 0-85 BC148 0-10 MJE520 0-65 OC203 0-55 2N7064 0-12 2N3819 0-85 BC148 0-10 MJE520 0-65 OC203 0-55 2N1132 0-25 2N3803 0-15 BC182 0-12 MJE3605 0-75 OC201 0-55 2N1302 0-18 2N3804 0-20 BC182 0-12 MJE505 0-10 OCF71 1-00 2N1302 0-18 2N3804 0-20 BC182 0-12 MJE505 0-75 OC812 0-75 DC771 1-00 2N1303 0-18 2N3804 0-20 BC182 0-12 MJE505 0-75 OC812 0-75 DC771 1-00 2N1303 0-18 2N3805 0-25 BC182 0-12 MJE505 0-75 OC812 0-75 DC771 1-00 2N1303 0-18 2N3805 0-25 BC182 0-12 MJE505 0-75 DC771 1-00 2N1303 0-18 2N3805 0-25 BC182 0-12 MJE505 0-75 DC771 1-00 2N1303 0-18 2N3805 0-25 BC792 1-90 MFF104 0-25 TC44 0-29 2N1305 0-28 2N4055 0-10 BC771 0-20 DC771 0-20 DC771 1-00 |   |          | 0.20 |            | 0.20  |          |      |         | 0.10 |         |      |
| ASY27 0-80 BY127 0-15 OC77 0-55 IN4009 0-06 2N3703 0-12 ASY27 0-80 BY127 0-15 OC77 0-55 IN4148 0-06 2N3704 0-15 BA102 0-25 BZX61 series OC81 0-28 IS921 0-07 2N3705 0-15 BA115 0-10 BZY88 series OC81 0-28 IS921 0-07 2N3705 0-15 BC107 0-12 0-10 OC83 0-25 IS2003 0-20 2N3706 0-15 BC108 0-12 CR81-05 0-80 00140 0-65 IS2001A 0-20 2N3707 0-13 BC108 0-12 CR81-05 0-80 00140 0-65 IS2001A 0-20 2N3709 0-10 BC109 0-12 CR81-40 0-45 OC170 0-25 ZN996 0-15 2N3710 0-11 BC117 0-21 CR81-40 0-45 OC170 0-25 ZN996 0-15 2N3710 0-11 BC117 0-21 CR83-40 0-75 OC200 0-55 ZN706 0-10 2N3711 0-11 BC117 0-21 CR83-40 0-50 OC201 0-80 ZN706A 0-12 2N3819 0-85 BC143 0-80 MJE340 0-50 OC202 0-90 2N1131 0-25 ZN3823 0-80 BC144 0-12 MJE370 0-68 OC202 0-90 2N1131 0-25 ZN3823 0-80 BC148 0-10 MJE320 0-65 OC203 0-55 ZN108 0-12 ZN3823 0-80 BC148 0-10 MJE320 0-65 OC203 0-55 ZN108 0-18 ZN3823 0-80 BC148 0-10 MJE3205 0-65 OC203 0-55 ZN108 0-18 ZN3890 0-80 BC184 0-18 MJE3905 0-65 OC203 0-55 ZN108 0-18 ZN3890 0-15 BC182L 0-12 MPF102 0-40 ORF60 0-45 ZN1080 0-18 ZN3890 0-28 BC184L 0-13 MPF104 0-25 TIC44 0-29 ZN1305 0-22 ZN3905 0-28 BC184L 0-13 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BC184L 0-13 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 1-20 MPF104 0-25 TIC44 0-29 ZN1306 0-22 ZN3905 0-28 BCY32 0-30 SN7407 0-40 SN7407 0-4 | è |          |      |            |       |          |      |         |      |         | 0.65 |
| ASY27 0.30 BY127 0.16 CO77 0.55 INA148 0.00 2N3704 0.14 ASY28 0.25 BZX61 series 0C81 0.28 IS2033 0.20 12N3706 0.11 BA115 0.10 0.28 series 0C812 0.45 IS2033 0.20 12N3706 0.11 BC108 0.12 CRS1-05 0.30 00140 0.65 IS2051A 0.20 2N3707 0.12 BC108 0.12 CRS1-05 0.30 00140 0.65 IS2051A 0.20 2N3707 0.10 BC109 0.12 CRS1-05 0.30 00140 0.65 IS2051A 0.20 2N3708 0.07 BC109 0.12 CRS1-05 0.40 00171 0.30 2N697 0.15 2N3710 0.17 BC113 0.16 CRS3-05 0.40 00171 0.30 2N697 0.15 2N3710 0.17 BC113 0.16 CRS3-05 0.40 00171 0.30 2N697 0.15 2N3711 0.11 BC117 0.21 CRS3-0 0.65 0020 0.55 2N706 0.15 2N3711 0.11 BC117 0.21 MJE300 0.65 0020 0.90 2N706 0.12 2N3819 0.55 BC148 0.10 MJE320 0.65 00202 0.90 2N1131 0.85 2N3823 0.56 BC148 0.10 MJE320 0.65 00203 0.55 2N1132 0.25 2N3908 0.15 BC182 0.12 MJE305 0.40 0077 1.00 2N3809 0.15 BC182 0.12 MJE305 0.40 0077 1.00 2N1309 0.18 2N3904 0.20 BC184 0.13 MJE305 0.40 0077 1.00 2N1309 0.18 2N3904 0.20 BC184 0.13 MJE305 0.40 0077 1.00 2N1309 0.18 2N3904 0.20 BC184 0.13 MJE305 0.40 0077 0.40 0.40 0.40 0.40 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            | 0.14  |          | 0.20 |         |      |         |      |
| BA102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          | 0.80 |            |       |          |      |         |      |         |      |
| BA102         0.26         D-20         OC81D         0.28         IS2033         0.20         2N3706         0.11           BC107         0.12         CH2788         eeries         OC81Z         0.45         182061A         0.20         2N3707         0.11           BC108         0.12         CR81-05         0.30         OC83         0.25         IB2100A         0.20         2N3709         0.07           BC113         0.16         CR83-05         0.40         OC171         0.20         2N996         0.15         2N3710         0.11           BC113         0.21         CR83-40         0.50         OC171         0.30         2N996         0.15         2N3710         0.11           BC143         0.30         MJE340         0.50         OC201         0.80         2N706A         0.12         2N3820         0.80           BC144         0.12         MJE370         0.68         OC202         0.90         2N1131         0.25         2N3820         0.80           BC143         0.10         MJE370         0.68         OC203         0.55         2N1130         0.12         2N3820         0.80           BC143         0.10         MJE3705         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | ASY28    | 0.25 |            | eries |          | 0.28 |         |      |         |      |
| BC107         0-12         0-10         OC83         0-25         IS2100A         0-25         2N3708         0-07           BC108         0-12         CR81-05         0-30         OO140         0-65         IS3010         0-25         2N3709         0-10           BC113         0-16         CR83-08         0-40         OC170         0-25         2N596         0-15         2N3710         0-11           BC113         0-20         CR83-40         0-50         OC200         0-55         2N706         0-12         2N3711         0-11           BC143         0-30         MJE340         0-50         OC201         -80         2N706A         0-12         2N3819         -85           BC148         0-10         MJE320         0-65         OC202         0-90         2N1131         0-25         2N3823         0-80           BC148         0-10         MJE3955         1-10         OCP71         1-00         2N1302         0-18         2N3803         0-15           BC182         0-12         MJE9055         1-10         OCP71         1-00         2N1302         0-18         2N3905         0-28           BC182L         0-12         MJE9104 <td< td=""><th></th><td></td><td>0.25</td><td>1</td><td></td><td></td><td>0.28</td><td></td><td>0.20</td><td></td><td>0·11</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |          | 0.25 | 1          |       |          | 0.28 |         | 0.20 |         | 0·11 |
| BC108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          | 0.10 | BZY88      | eries |          | 0.45 |         | 0.20 | 2N3707  | 0.13 |
| BC109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          | 0.12 | CDGT OF    |       |          |      | I82100A |      |         |      |
| BC113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       |          |      |         |      |         | 0.10 |
| BC117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | BC113    |      |            |       |          | 0.20 |         |      |         |      |
| BC143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       |          |      |         | 0.10 |         |      |
| BC147         0-12         MJE370         0-88         OC202         0-90         2N1131         0-28         2N3903         0-18           BC168         0-10         MJE520         0-65         OC202         0-90         2N1131         0-28         2N3903         0-18           BC182         0-12         MJE3905         0-75         OCP71         1-00         2N1302         0-18         2N3904         0-20           BC182         0-12         MJE3905         0-75         ORP12         0-55         2N1303         0-18         2N3906         0-25           BC182         0-12         MJF103         0-38         T1005         0-20         2N1305         0-22         2N4058         0-16           BCY32         0-38         MJF104         0-35         T1C44         0-29         2N1305         0-22         2N4059         0-10           BCY32         0-38         MJF105         0-46         T1C2261         1-50         2N1307         0-28         2N4060         0-13           BCY33         0-38         MJF105         0-46         T1C2261         1-50         2N1307         0-28         2N4060         0-13           BCY71         0-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٠ | BC143    | 0.80 | MJE340     | 0.50  | OC201    |      |         |      |         |      |
| BC148 0·10 MJE520 0·65 0·203 0·55 2N1182 0·28 2N3908 0·18 BC169C 0·14 MJE2905 1·10 0CP71 1·00 2N1302 0·18 2N3904 0·20 BC182 0·12 MJE2905 0·75 0RP12 0·55 2N1303 0·18 2N3905 0·25 BC1821 0·12 MPF103 0·38 T1005 0·20 2N1305 0·28 2N3905 0·25 BC1821 0·12 MPF103 0·38 T1005 0·20 2N1305 0·28 2N3905 0·25 BC1821 0·12 MPF103 0·38 T1005 0·20 2N1305 0·28 2N3905 0·25 BC1821 0·12 MPF103 0·38 T1005 0·20 2N1305 0·28 2N3905 0·25 BC1821 0·12 MPF103 0·38 T1005 0·20 2N1305 0·28 2N4059 0·15 BCY33 0·38 MPF106 0·46 T1C295 1·50 2N1306 0·28 2N4059 0·15 BCY33 0·38 MPF106 0·46 T1C295 1·50 2N1306 0·28 2N4059 0·15 BCY34 0·45 NKT404 0·40 T1L209 0·25 2N1306 0·28 2N4050 0·13 BCY77 0·15 0A5 0·60 ZTX107 0·12 2N1309 0·30 2N4060 0·13 BCY71 0·20 0A10 0·40 ZTX108 0·10 2N1613 0·20 2N4289 0·30 BCY72 0·16 0A79 0·10 ZTX300 0·14 2N1614 0·45 SN141 0·31 BD121 1·00 0A91 0·07 ZTX302 0·20 2N2160 1·00 40361 0·45 BD121 1·00 0A91 0·07 ZTX302 0·20 2N2160 1·00 40361 0·45 BD121 1·00 0A91 0·07 ZTX302 0·20 2N2160 1·00 40361 0·45 BD121 0·45 0A200 0·38 ZTX304 0·24 2N2309A 0·18 40352 0·45 BN7401 0·20 BN7427 0·37 BN7401 0·20 BN7427 0·37 BN7475 0·59 BN74110 0·57 BN74107 0·38 BN7403 0·30 BN7427 0·37 BN7476 0·45 BN74110 0·57 BN74174 1·29 BN7410 0·30 BN7428 0·38 BN7448 0·30 BN7438 0·30 BN7431 0·30 BN7418 1·30 BN74112 0·30 BN74110 0·30 BN7438 0·30 BN7438 0·30 BN7440 0·30 BN7438 0·30 BN7440 0·30 BN7438 0·30 BN7440 0·30 BN7440 0·30 BN7438 0·30 BN7440 0·30 BN7438 0·30 BN7440 0·30 BN7440 0·30 BN7450 0·30 BN7440 0·30 BN7440 0·30 BN7440 0·30 BN7450 0·30 BN7440 0·30  |   |          |      |            |       |          | 0.90 |         |      |         |      |
| BC189C 0-12 MB28055 1-10 OCP71 1-00 2N1302 0-18 2N3904 0-28 BC182L 0-12 MPF102 0-40 ORF60 0-45 2N1304 0-28 2N3905 0-28 BC184L 0-13 MPF103 0-88 T1005 0-20 2N1305 0-28 2N4058 0-15 BCY32 1-30 MPF104 0-35 T1C44 0-29 2N1305 0-28 2N4058 0-15 BCY32 0-38 MPF105 0-46 T1C245 1-50 2N1307 0-28 2N4050 0-10 BCY32 0-36 NKT404 0-80 T1C245 1-50 2N1307 0-28 2N4050 0-10 BCY32 0-15 OA5 0-60 ZTX107 0-12 2N1309 0-30 2N4050 0-10 BCY70 0-15 OA5 0-60 ZTX107 0-12 2N1309 0-30 2N4050 0-10 BCY70 0-15 OA5 0-40 ZTX108 0-10 ZN1309 0-30 2N4050 0-10 BCY71 0-20 OA10 0-40 ZTX108 0-10 ZN1309 0-30 2N4050 0-10 BCY71 0-20 OA10 0-40 ZTX108 0-10 ZN1309 0-30 2N4050 0-10 BCY71 0-20 OA10 0-40 ZTX108 0-10 ZN1309 0-30 2N4050 0-10 BCY71 0-15 OA5 0-10 ZTX300 0-14 2N1613 0-20 2N4059 0-30 BD131 0-65 OA81 0-10 ZTX301 0-14 ZN1613 0-20 XN140 0-30 BD131 0-07 ZTX301 0-14 ZN1613 0-20 XN140 0-30 BD131 0-45 OA202 0-10 ZTX301 0-14 ZN1630 0-10 0-40551 0-45 BD131 0-45 OA202 0-10 ZTX300 0-15 SN72645 0-50 0-45 BN7417 0-28 BN7400 0-20 BN7425 0-37 BN7474 0-48 BN7410 0-57 BN7417 0-88 BN7400 0-20 BN7425 0-37 BN7476 0-45 BN7411 0-38 BN7417 0-38 BN7407 0-40 BN7425 0-37 BN7486 0-50 BN74111 0-38 BN7417 1-29 BN7417 0-48 BN7410 0-20 BN7425 0-38 BN7435 0-48 BN7482 0-30 BN7412 0-30 BN7417 0-48 BN7410 0-30 BN7435 0-48 BN7486 0-50 BN74110 0-80 BN7417 0-48 BN7410 0-30 BN7417 0-48 BN7410 0-30 BN7417 0-38 BN7410 0-30 BN7417 0-48 BN7410 0-30 BN7417 0-48 BN7410 0-30 BN7417 0-30 BN7410 0-30 BN7410 0-30 BN7410 0-30 BN7410 0-30 BN7410 0-30 BN7411 0-38 BN74110 0-30 BN74110 0-3 |   |          |      |            |       | OC203    |      | 2N1182  |      |         |      |
| BC182L         0-12         MPF102         0-40         ORP60         0-45         2N1304         0-28         2N3905         0-25           BC184L         0-18         MPF103         0-38         T1005         0-20         2N1305         0-22         2N4058         0-10           BCY32         1-30         MPF104         0-35         T1044         0-29         2N1307         0-28         2N4050         0-10           BCY33         0-46         NKT404         0-66         T1L209         0-25         2N1307         0-28         2N4060         0-13           BCY70         0-15         OA5         0-60         ZTX107         0-12         2N1309         0-30         2N4060         0-13           BCY71         0-15         OA5         0-60         ZTX107         0-12         2N1309         0-30         2N4060         0-13           BCY17         0-16         OA79         0-10         ZTX300         0-14         2N1613         0-20         2N4289         0-30         2N4060         0-13           BD121         1-00         OA91         0-07         ZTX300         0-14         2N1613         0-20         2N4289         0-30         2N1411 <td< th=""><th></th><th></th><th>0.14</th><th></th><th>1.10</th><th></th><th>1.00</th><th></th><th></th><th>2N8904</th><th>0.20</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |          | 0.14 |            | 1.10  |          | 1.00 |         |      | 2N8904  | 0.20 |
| BCY32 0.38 MPF103 0.38 T1005 0.20 2N1305 0.22 2N4658 0.10 BCY32 0.38 MPF105 0.48 T1C225D 1.50 2N1306 0.23 2N4656 0.15 BCY32 0.45 NKT404 0.60 T1C225D 1.50 2N1307 0.28 2N4660 0.13 BCY37 0.45 NKT404 0.60 T1C225D 1.50 2N1308 0.88 2N4661 0.13 BCY71 0.20 0.A10 0.40 ZTX108 0.10 ZN1613 0.20 2N4620 0.14 BCY71 0.20 0.A10 0.40 ZTX108 0.10 ZN1613 0.20 2N4289 0.30 BCY72 0.16 0.A79 0.10 ZTX300 0.14 2N1613 0.20 2N4289 0.30 BCY72 0.16 0.A91 0.07 ZTX300 0.14 2N1614 0.45 NN141 8.31 BD121 1.00 0.A91 0.07 ZTX302 0.20 2N2160 1.00 40361 0.45 BD121 0.00 0.A91 0.07 ZTX302 0.20 2N2160 1.00 40361 0.45 BD121 0.00 0.491 0.07 ZTX302 0.20 2N2160 1.00 40361 0.45 BD121 0.00 0.491 0.07 ZTX302 0.20 2N2160 1.00 40361 0.45 BD121 0.00 0.491 0.07 ZTX302 0.20 2N2160 1.00 40361 0.45 BD121 0.00 0.491 0.07 ZTX302 0.20 2N2160 1.00 40361 0.45 BN7410 0.45 BN7410 0.50 BN7427 0.87 BN7400 0.20 BN7427 0.87 BN7474 0.48 BN7410 0.51 BN7417 0.88 BN7410 0.20 BN7427 0.87 BN7474 0.48 BN74110 0.88 BN7411 0.88 BN7410 0.20 BN7427 0.87 BN7400 0.20 BN7422 0.87 BN7480 0.80 BN7410 0.80 BN7432 0.48 BN7483 1.20 BN7411 0.88 BN7417 1.20 BN7410 0.80 BN7438 0.43 BN7483 1.20 BN7411 0.88 BN7417 1.40 BN7410 0.80 BN7438 0.43 BN7483 1.20 BN7412 0.87 BN7410 0.85 BN7410 0.80 BN7410 0.8 |   | BUIST.   | 0.12 |            |       |          | 0.55 |         | 0.18 | 2N3905  |      |
| BCY32         1.90         MPF104         0.28         TIC44         0.29         2N1306         0.28         2N4060         0.10           BCY32         0.38         MPF106         0.46         TIC245         1.50         2N1307         0.28         2N4060         0.13           BCY34         0.45         NKT404         0.60         TIL209         0.25         2N1307         0.28         2N4060         0.13           BCY70         0.15         O.A5         0.60         ZTX107         0.12         2N1309         0.30         2N4060         0.13           BCY71         0.20         O.A10         0.40         ZTX107         0.12         2N1309         0.30         2N4060         0.13           BCY11         0.20         O.A10         O.40         ZTX300         0.14         2N1613         9.20         2N4289         0.30           BD121         1.06         O.A81         0.10         ZTX301         0.14         2N1613         9.20         2N1411         81           BD121         1.00         O.A91         0.77         ZTX302         0.20         2N1260         1.0         40351         0.45           BN7400         0.20         BN74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |          |      |            |       |          | 0.20 |         | 0.28 |         | 0.25 |
| BCY33         0-38         MPF105         0-46         TIC226D         1-50         2N1307         0-28         2N4650         0-18           BCY70         0-15         OA5         0-60         TIL2299         0-25         2N1308         0-28         2N4061         0-13           BCY70         0-15         OA5         0-60         TIL299         0-25         2N1309         0-28         2N4061         0-14           BCY71         0-20         OA10         0-40         ZTX107         0-12         2N1613         0-20         2N4289         0-38           BCY21         0-16         OA79         0-10         ZTX300         0-14         2N1613         0-20         2N4289         0-38           BD121         1-00         OA91         0-7         ZTX302         0-14         2N2147         0-75         40380         0-46           BD121         1-00         OA91         0-7         ZTX304         0-24         2N2369A         0-16         40362         0-40           BD131         0-45         OA202         0-10         ZTX500         0-15         2N2646         0-80         40430         0-85           SN7400         0-20         SN7427 <th></th> <th></th> <th>1.20</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |          | 1.20 |            |       |          |      |         |      |         |      |
| BCY34         0.45         NKT404         0-80         TIL209         0.25         2N1308         0-88         2N4061         0-10           BCY71         0.20         0.15         0.45         0-60         ZTX107         0-12         2N1309         0-30         2N4062         0-14           BCY71         0-20         0.10         0-40         ZTX108         0-10         2N1613         9-20         2N4062         0-14           BCY71         0-65         0.481         0-10         ZTX301         0-14         2N1614         0-45         3N141         6-81           BD121         1-06         0.491         0-07         ZTX301         0-14         2N1610         -05         3N141         6-45           BD121         1-00         0.491         0-07         ZTX301         0-14         2N2160         -05         40351         0-45           BD131         0-45         0.420         0-08         ZTX304         0-24         2N2160         -01         40351         0-45           BN7400         0-20         BN7425         0-37         BN7477         0-44         BN74107         0-51         BN74157         0-59         BN74110         0-85         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          | 0.38 |            | 0.46  | TIC226D  | 1.50 |         |      |         |      |
| BCY70         0-15         OAD         0-60         ZTX107         0-12         ZN1309         0-30         2-804602         0-14         BCY71         0-10         OAD         CXTX108         0-10         ZN1613         0-20         2-84692         0-10         BCY72         0-15         OAD         0-10         ZTX300         0-14         2N1613         0-20         2N4289         0-30           BCZ11         0-65         OAB1         0-10         ZTX301         0-14         2N1614         0-45         3N141         8-81           BD121         1-00         OA91         -0.7         ZTX302         0-20         2N2160         1-0         403851         0-45           BD131         0-45         OA200         0-08         ZTX300         0-14         2N1260         0-16         403851         0-45           BN7400         0-40         OA200         0-08         ZTX300         0-14         2N1260         0-16         403851         0-45           BN7401         0-40         OA200         0-10         ZTX300         0-14         2N1260         0-16         403851         0-46           BN7402         0-20         BN7427         0-87         BN7477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |          |      |            |       |          | 0.25 | 2N1808  |      |         |      |
| BCY72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       |          |      |         |      | 2N4062  |      |
| BCI11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       |          |      |         |      |         | 0.80 |
| BD121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       |          |      | 2N 1014 | 0.40 |         |      |
| BD124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |      |            |       |          |      |         | 1.00 |         |      |
| BD131   0-45   0A202   0-10   ZTX500   0-15   2N2646   0-80   40430   0-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |          |      |            | 0.08  | ZTX304   |      |         |      |         |      |
| SN7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | BD131    | 0.45 | OA202      | 0.10  | ZTX500   |      |         |      |         |      |
| SN7401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |      | #175 · · · | A 6=  |          |      |         |      |         |      |
| BN7402         0.20         BN7428         0.48         BN7475         0.59         BN74111         0.88         BN74174         1.80           BN7403         0.20         BN7450         0.20         BN7476         0.45         BN74118         1.00         BN74174         1.80           BN7405         0.20         BN7432         0.38         BN7482         0.48         BN74119         1.92         BN74110         2.30           BN7405         0.40         BN7433         0.43         BN7482         0.47         BN74121         0.57         BN74190         2.30           BN7405         0.40         BN7438         0.43         BN7483         1.20         BN74121         0.57         BN74190         2.30           BN7405         0.25         BN7440         0.20         BN7484         1.00         BN74121         0.80         BN74192         2.30           BN7405         0.25         BN7441AN         BN7486         0.50         BN741141         1.00         BN74192         2.30           BN7411         0.28         BN7442         0.85         BN7491AN         BN74154         1.44         BN74192         2.30           BN7412         0.28         BN7455 </th <th></th> <th></th> <th></th> <th>BN7425</th> <th></th> <th>BN7478</th> <th>0.44</th> <th></th> <th>0.51</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |      | BN7425     |       | BN7478   | 0.44 |         | 0.51 |         |      |
| BN7403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |      |            |       |          |      |         |      |         |      |
| SN7404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |      |            |       |          |      |         |      | 8N74174 |      |
| BN7405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |      |            |       |          |      |         |      |         |      |
| SN7405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |      |            |       | BN7482   | 0.87 |         |      |         |      |
| SN7407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |      |            |       | BN7483   |      |         |      |         |      |
| BN7408         0:20         BN7440         0:30         BN7441         0:30         BN7441         0:30         BN7441         0:30         BN7441         0:30         BN7441         0:30         BN7441         0:30         BN7415         0:44         BN7415         0:44         BN74105         0:42         BN74105         0:42         BN74115         0:44         BN74105         0:42         BN74105         0:42         BN74115         0:44         BN74105         0:42         BN74105         0:42         BN7415         0:42         BN74105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |          |      |            |       | BN7484   | 1.00 |         |      |         |      |
| BN7410         0.80         BN7420         0.85         BN7491AN         BN74150         2.80         BN74105         1.44           BN7411         0.85         BN7450         0.85         BN7492         0.75         BN74151         1.15         BN74195         1.44           BN7413         0.20         BN7451         0.90         BN7492         0.75         BN74151         1.15         BN74197         1.58           BN7413         0.20         BN7451         0.20         BN7492         0.75         BN74155         2.80         BN74191         1.58           BN7416         0.80         BN7453         0.20         BN7494         0.85         BN74155         1.15         BN74199         2.88           BN74120         0.80         BN7450         0.20         BN7495         0.20         BN7495         1.00         DIL         14         pin 15p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |      |            |       |          |      |         |      | BN74193 | 2.80 |
| 8N7411 0-28 8N7420 0-28 8N7450 0-20 8N7492 0-75 8N74151 1-15 8N74197 1-58 8N7415 0-30 8N7451 0-30 8N7452 0-75 8N74154 2-30 8N74197 1-58 8N7415 0-30 8N7455 0-20 8N7493 0-75 8N74156 1-15 8N74199 3-16 8N7417 0-30 8N7454 0-20 8N7494 0-35 8N74156 1-15 8N74199 2-88 8N74120 0-30 8N7454 0-30 8N7455 0-30 8N7459 1-30 8N7459 1- |   |          |      | BN7441A    |       |          |      |         |      |         |      |
| BN7412         0-28         8N7450         0-20         8N7492         0-75         8N74154         2-30         8N74170         1-58           8N7413         0-30         8N7451         0-20         8N7493         0-75         8N74155         1-15         8N74198         3-16           8N7417         0-80         8N7454         0-20         8N7494         0-85         8N74156         1-15         8N74199         2-88           8N7420         0-20         8N7496         0-20         8N7496         1-00         DIL         14 pin 15p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |          |      | GN7440     |       | DN/491A1 |      |         | 2 80 |         |      |
| BN7418 0-20 BN7451 0-20 BN7492 0-75 BN74155 1-15 BN74198 3-15 BN7416 0-80 BN7454 0-20 BN7494 0-85 BN74156 1-15 BN74199 2-88 BN74120 0-20 BN7454 0-20 BN7495 0-85 BN7496 0-20 BN7496 1-00 DIL 14 pin 15p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |          |      |            |       | 8N7492   | 0.75 |         |      |         |      |
| 8N7416 0-80 8N7453 0-20 8N7494 0-88 8N74156 1-15 8N74199 2-88 8N74120 0-80 8N7465 0-80 8N7495 0-85 8N7420 0-80 8N7496 1-00 DIL 14 pin 15p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |          |      | BN7451     |       |          |      |         | 1.15 |         |      |
| 8N7417 0-80 8N7454 0-20 8N7495 0-85 8N7495 0-85 8N7495 0-80 8N7490 0-20 8N7495 1-00 DIL 14 pin 15p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |          |      |            | 0.20  |          |      |         | 1.15 | SN74100 |      |
| 9N7490 A.00 9N7470 A.00 9N7407 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | BN7417   | 0.80 | BN7454     |       |          | 0.85 |         | ~ 10 |         |      |
| 8N7423 0-40 8N7472 0-88 8N74100 2-16 SOCKETS 16 pin 17p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | BN7420   | 0.80 | BN7460     |       | BN7496   |      | DIL     |      | 14 pin  | 15p  |
| 887428 0-90   887472 0-88   8874100 2-16   30CN-13 10 pin 1/p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | BN7422   |      | BN7470     |       | BN7497   | 4.32 |         | 2    | 14 5    | 17-  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | DR / 423 | U-4U | DN 7472    | 0.99  | DN/4100  | 5.16 | SOCIULI | •    | to bin  | 17P  |

TRANSISTORS-INTEGRATED CIRCUITS

ranti.

Fairchild,

All transistors, I.C's offered

are new and branded.

lard, Texas, RCA, Fer-

Motorola,

Lucas,

Mul-

ITT,

etc.

Manufactured by

8% to be added to all orders including

# THIS MONTH'S

OSCILLOSCOPE TUBE TYPE VCR 139A Price £8.00 p & p 25p

# SPECIAL OFFER

TERMS OF BUSINESS: C.W.O. A/c's available to approved companies on application. Telephone and telex orders accepted. Export and trade enquiries welcomed. Lists, etc. on application. Open daily to callers 9 a.m.-5 p.m. Mon.-Sat. Closed Sat. 1-3 p.m. Prices correct when going to press.

ORDER CO.

16a Wellfield Rd., London, SW16 2BS Tel: 01-677 2424 Telex: 946 708.



# for fast easy reliable soldering EASY TO USE DISPENSERS AND REELS IDEAL FOR HOME CONSTRUCTORS

Ersin Vulticare So der contains 5 cores of non-corrosival tius, instantly cleaning heavily oxidised surfaces. No axrra flux le regul ac-

# SAVBIT handy solder dispenser



A coil of Frsin Multicore Savbit Solder in a dispenser 7ft 6 in of 18 s.w.g. (2.2 metres of 1.22mm). The Solder that reduces the wear of soldering iron hits.

Size 5 32p

### SAVBIT solder for general purpose work

A handy plastic reel of SAVBIT alloy, 63ft of 18 s.w.g. (19.2 metres of 1.22mm)

Size 12 £1.72



# ALU-SOL for soldering aluminium

New Multicore Alu-sol flux-cored solder in 16 s.w.g. No extra flux needed. Plastic reel holds 36ft. Supplied with full instructions. Also available in solder dispenser.

Size 4 £2.32



### Fine gauge solder for soldering small components

Fine gauge solder for soldering small components 138ft of 22 s.w.g. (42.0 metres of 0.71mm) Ersin Multicore 5 core solder wound on a plastic reel. Suitable for intricate work and small components.

Size 10 £1.44





### circuits. Size 15 36p

Or size 19A for kit wiring or Radio and T.V. repairs 7ft. (2.1 metres) of 18 s.w.g. (1.22mm) Ersin Multicore Solder.

For soldering

Oispensers

of Frsin

Multicore

Solder make

those small

iobs easier.

21ft of 22

s.w.g. (6.4 metres of

0.71mm)

solder, specially

and for repairing

printed

suitable for

soldering tine wires, small components

fine joints

Size 19A 34p

# **NEW** BIB WIRE STRIPPER & CUTTER



Fitted with unique 8 gauge selector with handle locking device and easy grip handles. Spring incorporated for automatic opening. Strips insulation from flex and cables in seconds and can also be used as a cutter.

Model 8B, 70p

### NEW **SOLDER WICK** Absorbs solder instantly, from tags and



printed circuits. Only needs 40 to 50 Watt soldering iron. Quick and easy to use. Does not need flux and

Size 18 90p

# Bib Hi-Fi Accessories Limited,

Soit U.K. Sales Concess praires, F.O. Box 78 terre. Hemparket Hous, HP2 7E<sup>b</sup>.

frices afrown are recommended retail excluding V.A.T. From Electroal and Tardware Online. If workfill mable, sond If Drives and specifications subject to change without notice.

# TECHNOMATIC LTD. 14 SANDHURST

11p BFY52 11p MPF103 11p MPF104 11p MPF105 12p OC16 11p GC28 43p OC44 83p OC44 83p OC71 18p TIP9955 BRIDGE RECTIFIERS
50v 100v 400v 600v
1A 20p 21p 24p 25p
2A 30p 35p 45p 45p
4A 48p 64p 70p
6A — 58p 75p 100p Rectifiers 1N4001 31p 31p 47p 48p 46p 11p 1 N4004 1N4004 1N4007 BY127 Signal Diodes 1N914 AC174 7p 12p C187 C188 SCR-THYRISTORS
50v 100v 400·
14 42p 48p 60p
94 48p 781 1N4148 100v 400v 600v 48p 60p 78p 48p 78p 96p 60p 84p 114p 78p 96p 120p OA91 OA200 OA202 AF115 70 p AF117 BC107 25p 18p 180 380 180 80 180 400 Zeners 400MW 1.3W 1.5W TRIACS 50v 400v 85p 99p 88p 120p 109p 154p 145p 180p Other Diodes AEY11 LED TIL209 500v 120p 150p 165p 200p Tun'l DC104 BC212 BC213 BC214 TB [31 BD132 BFY50 11 p 11 p 10 p 10 p 11 p 20 p 160 16A DIL SOCKETS 8 pin 12p; 14 pin 13p; 16 pin 15p Mica Washers + 2 Bushes (TO3 or TO66) 6p BFY51 SERIES 140 7448 180 7478 180 7478 180 7478 180 7475 180 7475 180 7489 180 7400 180 7400 180 7400 750 74121 659 74141 MOSFETS LINEAR ICS
555 555 536 £2.25
556 120p 8038 £3.20
7401
769 28p MC1310 £2.40
741 28p MC1310 £2.40
741 28p MFC4000 40p 7410
747 70p TBA800 £1.20
748 38p TBA810 £1.25
749 £1.40 TBA820 80p 7430
7812 £1.40 TBA820 81.00
7441
Data shts on above ICs 10p ea. 7441 8607 55 C-MOS 55 CD4001AE 45 CD4016AE 34 CD4017AE 85 CD4047AE 50p £1.20 FOR MORE SELECTION PLEASE REFER TO OUR ADVERTISEMENT IN P.E. & WW Complete Semiconductor Kits (inc. DIL Sockets for various projects available e.g. SPECIAL **PRICES** Tele-tennis 555 55p Tri-colour Unit 723 55p PE Minisonic Miniature battery-operated Sound 741 28p Synthesiser CA3046 55 p hythm Generator MC1310P 2 . 40 Novel Transistor Tester
For data sheets & prices, please send S.A.E. +25p. MC1312P 2-20

Minimum Order £2. All prices exclusive of VAT.
P. & P. 10p orders below £5. Trade, Colleges enquiries welcome.

# YOUR CAREER in RADIO & ELECTRONICS P

Big opportunities and big money await the qualified man in every field of Electronics today—both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY & GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation. Big opportunities and big money await the qualified man

To: British National Radio & Electronics School, Dept W.C. 15 P.O. Box 156, Jersey, C.i.

|              | FREE BROCHURE TO                        |        |
|--------------|-----------------------------------------|--------|
| NAME         | ······································  | Block  |
| ADDRESS      | *************************************** | Caps.  |
| ************ | l                                       | Please |

BRITISH NATIONAL **RADIO** AND ELECTRONICS SCHOOL

.....

# FAST SERVICE.

MELECTRONICS ITA 58-60 GROVE ROAD,

WINDSOR, BERKS.

SEND C.W.O. ADD VAT TO ALL PRICES IN U.K. P&P. 15P. EUROPE 25P. OVERSEAS 65P.

MONEY BACK IF NOT SATISFIED. LARGE STOCKS. LOW PRICES. ALL BRAND NEW TOP GRADE FULL SPEC DEVICES.CALLERS WELCOME.

CATALOGUE/LIST FREE SEND S.A.E.

WHICH PRICEP!

vero

# Dinital Displays



MINITRON 3015F 0-9DP fl.15 ea LED 0.3" digit 0-9DP £1.49 ea JUMBO LED 0.6" 0-9DP £2.25 ea LIQUID CRYSTAL 6 digit £18

LEDS 14 p./

MINI PIN SOURCE OR RED DIFFUSE LEDS. 209 STYLE. NO CLIP. 14P ea TIL209 RED LED & CLIP 17P ea BIG 4" RED LED & CLIP 18P ea ORANGE & GREEN LEDS: MINI 25P ea.BIG & CLIP 33P ea

INFRA RED LED \$1.2N5777 33P. PS12 PHOTO IC/amp/switch £1.

# DIGITAL CLOCH

MOS INTEGRATED CIRCUITS. AY51224 4 DIGIT CLOCK supplied with 14pin socket & data £4.25 MM5311/14 6 DIGIT CLOCK with 28 pin socket & data £7.50 31DIGIT DVM AY53500 £7.50 4DIGIT COUNTER/DRIVER £7.50

CASSETTE mechanics £12-50 STEREO CASSETTE MECHANISM.

As used in imported types costing £100.0nly requires a case & electronics.Heads supplied.Send for data 15p.

[C's & Semiconductors TOO OPA

703 RF/IF 709 T099 25 p 702 DIL 14 710 DIL 14 Sep 720 Radio \$1.39 723 Regulatororp 741 TO99 29n 741 DIL8 31p 741 DIL14 31p 747 Dual 741 89p 748 DIL 8 36p 1505 IC A/D

CA3046 LM301 OPA 49p LM307 OPA 49p LM308 HiBoPa 95p LM309K Reg. £2.29 LM371 RF71F £2 LM372N AF/IF £2 LM380 2W AF 99p LM381)2xpre.£2 LM382)amp £2 LM3900 4xOPA 69p

MC1303 £1.20 MC1306 49p MC1310 & LED £2.69 MC1312 SQamp £2.50 MC1330 69p MC1339 £1 55p 71p MC1352 MC1357

MC1358

MFC4060 W AF 35p MFC4060 W AF 35p MFC4060 MFC6030 MFC6040 MFC8010 9De 4FC8040 AFC8040 £1 NE531 35V/us £2 NE536 FET OPA\$2 NE540 Driver \$1 NE546 AM Rx\$1.50 NE550 2v ref 79p

NESSS TIMER 67p NE555 T1MEK 6/P NE556 Dtual"51.30 NE560 PLL 53.15 NE561 PLL 53.15 NE565 PLL 53.19 NE565 PLL 52.69 NE566 Gen 52.49 NE566 Code 52.69 SN72709 709 29p SN72741 741 31p SN72748 748 36p

SN76131 £1.20 SN76660 FMIF £1 SN76611 IF £1.25 TAD loo & IF £2 ZN400E ZN402T £1.75 ZN403 Servo£2.50

ZN414 AM Rx£1.09 **መ**ገգበ TTL

7400 etc gates 16p 7413 schmitt 31p 7447 driver £1.09 7470/72 32p 7473/74/76 39p 32p 39p 48p 7490 Counter 63p 69p 45p 7492 Counter 74121 mono 74141 driver Full range in Cat.

SPECIAL OFFERS 741 29p MFC4000 35p 555 67p ZN414 £1.09

BC107, BC108, BC109 9p aa 2N3055 39p Three for S1 115W/T03 or 90W plastic 2N3819E 16p 2N3053 17p BFY50/51/52/53 all 18p 1A50Vrect 4p ea IN914 4p

Price each: -Price each:AC127/128 16p
AC187/188 19p
AD161/162 35p
BC107/8/9 9p
BC132/4/7 18p
BC147/8/9 10p
BC157/8/9 12p
BC167/8/9 12p TTP2955 TIP2933 TIP3055 TIS43 UJT' IN4001 IN4004 IN4148/914 2N697 2N706/8 BC157/8/9 12p BC167/8/9 12p BC177/8/9 18p BC182/3/4\*11p 2N2646 2N2904/5 BC212/3/4\*12p \*A or L BCY70/1/2 15p BD131/2 39p 2N2926royg 2N3O53 2N3O55 2N3614 49 BFY50/1/2 18p BFY53 17p BSX20 12p 2N3702/3 2N3704/5 2N3706/7 105 95p 62p 49p 2N3708/9 2N3710/11 MJE2955 M.TE 3055 MPU131put 2N3563/64 2N3566/67 2N3638 2N3641/2 16p 16p 16p OA91 TIP29A TIP3OA 8 0 16p 16p

2N3819E 2N3832E

16p

TIP31A TIP32A TIP41A TIP42A 78p 89p 2N3904/6 2N4249 BZY88 400mW ZENERS TAG 1/400 55P C107D1 SCR 4A/400V 55p 9p BRIDGE RECT 1A SOV 2 20p GAS SENSOR £2 GAS " KIT £5 SC146D TRIAC 10A 400V 75p

TIPTIA

VERO PINSx36 25p. COPPER CLAD VEROBOARD 0.1" 2½x5" 27p.2½x3¾" 24p.3¾x3¾"27p.
1¾x5" 29p.3¾x17" £1.50 DIL IC's BOARDS 6x4½" £1.50 24 way edge connector 60p 36way 90p. PLAIN 3¾"x17 £1

FACE CUTTER 43p. FEC ETCHANT

**DALO**pen69p PRINTED CIRCUIT BOARD KIT 11.69 COPPER BOARD 6x4" 40p DESOLDER BRAID reel 59p

HEATSINKS

5f/T05 & 18f/T018 5p ea. TV4 12p.TV3/T03 16p.4YI/T03 29p.

CAPACITORS

22pf to O.luf 4p ea.ELECTROLYTIC 25V 2/10/50/100uf 6p.1000uf 20p PRESETS VERT: 5p.RESISTORS5% 12p

POTS ABor EGIN ROTARY: 12p. SWITCH 13p. DUAL 38p.

SLIDERS: SINGLE 26p. DOUBLE 48p. SWITCHES:SPST 18p.DPDT 259 MINI 4":SPST 39p.PUSH 39

BENCH POWER SUPPLY 3-12V JE. DIN PLUGS all 13p ea.Sockets 9p TRANSFORMERS 1A 6/12V £1.34

BHA 0002 MODULE 15WATT AMP £ EA1000 4W AF MODULE £2.4 8W/12V FLUORESCENT LIGHT £3. £2.49

OIL sockets PROFESSIONAL GOLD PLATED & GREY NYLON. 8,14 or 16 PIN ONLY 15p each. 16 PIN



# G. F. MILWARD, 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

## 12 VOLT FLUORESCENT LIGHTING



INVERTER TRANSFORMERS 13/15 WATT 70n (CIRCUIT INCLUDED) "CURRENT ECONOMY" TRANSISTOR (600 ma.) 50p "MAXIMUM LIGHT" TRANSISTOR (1.3A) 50p RESISTORS/CAPACITORS TO SUIT 15n LAMPHOLDERS (LONG LEAD) 30p PAIR

(SHORT LEAD) 20p PAIR WHITE ENAMEL CASE, 18" or 21" (Postage 30p) 70p TUBE, 18"-15 WATT or 21"-13 WATT 45p (NOTE:- TUBE ONLY SUPPLIED IF CASE ORDERED,

TO PREVENT POSTAL DAMAGE) 13 WATT FITTING READY BUILT AND TESTED-

INCLUDING TUBE (Postage 30p) £3.75

Post/Packing 25p per order except where shown



### **NEW IMPROVED** CIRCUIT!

Drives 21" 13 watt 18" 15 watt

or adaptable for 2 x 12" 8 watt

### BRAN TUB!!!

- \* Resistors, Wire-wound and Carbon
- Capacitors, Silver-mica, Paper, Ceramic, Polyester and Electrolytic
- ★ Controls, Volume, Carbon, Wire
- ★ Diodes, Silicon, Germanium, Zenér
- ★ Transistors, Silicon, Germanium All the above are new and unused stock

We have made up packs of 2lb gross weight, all are different in content, and contain a mixture of components from the above list. This is a fantastic, unrepeatable offer that will enable you to get a good stock of spares at a tiny fraction of normal price!

To make things even more interesting
—TWENTY OF THESE BAGS ALSO
CONTAIN A POUND NOTE!
TWENTY CUSTOMERS WILL BE
VERY PLEASED INDEED

And the price that we are asking? Only £1.50 including both postage and VAT!

Rush your order now! This offer is only made to reduce our surplus stock! It is unlikely that in these days of rising prices we shall ever be able to repeat!

100 1-1 WATT RESISTORS 100 CERAMIC CAPACITORS 100 DIODES

1 VERO-BOARD CUTTER 5 2½ in. x 1 in. x -15 BOARDS 50 SQ. INS. "ODD PIECES" VERO

20 ASSORTED UNUSED MARKED, TESTED TRANSISTORS

6 COMPUTER PANELS CONTAINING MASSES OF DIODES, TRANSISTORS, INDUCTORS, RESISTORS & CAPACITORS PACK No. 7

POSTAGE 25p

POSTAGE 25p

100 RESISTORS 100 CERAMIC CAPACITORS 100 POLYSTYRENE CAPACITORS

PACK No. 1 POSTAGE 25p

100 RESISTORS 100 CERAMIC CAPACITORS 50 MULLARD POLYESTER CAPACITORS

PACK No. 3 POSTAGE 25p

1 TRANSISTORISED SIGNAL TRACER KIT 1 TRANSISTORISED SIGNAL INJECTOR KIT

PACK No. 5 POSTAGE 30p

£ 1 100 RESISTORS 100 CAPACITORS (ASSORTED TYPES)

PACK No. 8

PACK No. 2 POSTAGE 25p PACK No. 4 POSTAGE 25p PACK No. 6 POSTAGE 25p NOTE:- ALL GOODS PLUS 8% vat (except overseas)

# 

Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORIES

### **GUARANTEED TESTED HIGH PERFORMANCE** MODULES—now better value than ever

£5.45 CV32 35W RMS 25-50V 7 transistors, 7 diodes

£6.90 Carriage **SA50** 

50W RMS 25-65V 7 transistors, 7 diodes

Carriage free **SA100** £12.50 100W RMS 45-70V 10 transistors, 7 diodes

120 watt module complete with builtin supply-extra heavy duty £22.50

Carriage | \* 25Hz-25kHz | \* 0.2% distortion | \* Noise—80dB | \* 500mV into 20K | \* 4-16 ohms | \* Simple wiring | \* Sheet and open

★ Short and open circuit proof circuit proof
Continuously
rated
Top-grade
components

# **POWER SUPPLIES**

UNSTABILISED-READY WIRED Suits 2 SA35 or 1 SA50 (4 ohm) £5.45 **PU45** 

Carriage 30p Suits 2 SA50 (8 ohm) or 2 SA100 Carriage 40p £8.45

Carriage £4.45 ·

Suits 2 SA35 or 2 SA50 (4 ohm) free Carriage 30p Transformer for £3.50 Carriage Suits 2 SAI00 £5.45

**PS70** Carriage 40p Transformer for £4.90 **MT70** 

N.B. PS70 is not suitable for the SA50

### Mk II STEREO DISCO MIXER £22.50

Carr. 30p
This well tried unit mixes two decks, handles any ceramic cartridge, and feetures This well tried unit mixes two decks, handles any ceramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both mic and deck inputs. Ample headphone power is available for P.F.L. May be used for mono and is mains operated. Fitted with sturdy screening case. Controls: Mic vol, base, treble. Left/Right fade, deck volume, bass, treble, h/phone select. vol, Mains, Size 17½in × 3in × 4in deep.



**PU70** 

**PS45** 

**MT45** 

STABILISED

DISCO MODULE £9.50 Carr. 20p
Thousands sold of this extremely popular mono version. A mic input may be fitted using the VA30 (see below). Low consumption from a 9V battery. Features the same high standards of reproduction as the Stereo version. Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, treble, master vol. Size 12½in × 3in × 2in deep.

### 3-CHANNEL SOUND-LITE £22.50 Carr.

Only SAXON can supply such incredible value for money. This unit features 3kW power handling, full-wave control, bass, middle, treble AND master controls. Twin loudspeaker jacks for "through" connections. It may be used free standing or will panel mount next to either of the above. Also features unique CUT-BACK circuitry for extra wide range response. Size 12in × 3in × 2½in deep. Professional standards at a price you can afford!

Carr. free

SINGLE CHANNEL VERSION £7.50
Carr. free Carr. free

ADD 8% VAT TO ALL ORDERS

O



Saxon disco-module

# **MULTI-PURPOSE MIXERS**

M4HL

M6HL

M4HL

£19.50 Carr.
50p

Featuring multiples of our VA30 module, the M4HL
and M6HL fulfil the requirements of all clubs, groups,
etc. where a high quality mixer is required. Each
channel has one high and one low impedance input,
plus volume, treble and bass controls. Input
impedances may, if required, be easily changed.
The M4HL has four channels, and one output, and
the M6HL six channels (12 inputs) and a master
control and two outputs. Either unit may be used
free-standing or panel mounted. These mixers will
feed all types of amplifier. Recommended for their
versatility and high performance, and excellent
value for money.

MA20 CHANNEL (2) FO Carr.

VA30 CHANNEL £3.50 Carr. free
This is the basic channel module in the above mixers and may also be used for extra imputs on either the mono or stereo mixers. Fitted with volume, bass and treble controls, requires just a jack and supply (9.100.04)



### SAXON CSE 100

COMPLETE **AMPLIFIER** 

£34.90 Carr. free 100W of speech and music—Two separately controlled inputs. Wide range bass and treble. controls. Sturdy and attractive vynide case. Twin outputs. Ideal for groups, discos, etc. Fully tested and guaranteed.

guaranteed. 50W version identical



£29.50 Carr. free



Four individually controlled FET input stages plus wide range bass and treble controls. 120W of speech and music output from two bulled by the coutput from two bulleds by the coutput from the coutfut from the coutput from the coutfut from the co

sockets. Sturdy case, and an attractive facia make this excellent value for money. Hundreds in use by groups, discos, clubs, etc.

50W version identical in appearance.

SAXON 100 COMPLETE **AMPLIFIER** 

£53.00 Carr. free

**SAXON 50** £37.50 Carr. free

CALLERS AND MAIL ORDER

# SAXON ENTERTAINMENTS LIMITED 327-333 WHITEHORSE ROAD · CROYDON CRO 2HS

(Please quote magazine when ordering)
SHOP HOURS: 9 a.m.-5 p.m. — LUNCH 12.30-1.30 p.m. MAIL ORDER DESK: 10 a.m.-3 p.m.
24-HOUR ANSWER SERVICE. TEL. 01-684 6385. TECHNICAL ENQUIRIES: 01-684 0098.

SEND 10p FOR OUR 26 PAGE MANUAL—full circuits & details. TERMS OF BUSINESS: C.W.O. C.O.D. or ACCESS (just send in card number). Send 50p for C.O.D. Please send S.A.E. with all enquiries. VAT (a: 8% must be added to all orders including carr, charges.



# TUAC

TRANSISTOR UNIVERSAL AMPLIFICATION CO.LTD. 163 MITCHAM RD-LONDON SW17 9PG 01-672 3137/9080



# TUAC DISCOTHEQUE MIXER WITH AUTO FADE



Designed for the discerning D.J. of professional standard Offering a vast variety of functions. Controls; Mic Vol; Tone, over-ride depth; auto/Manual Sw; Tape Vol; L. & R. Deck Faders; Deck Volume; Treble and Bass; H. Phon Vol Selector; Master Vol On/Off Sw. Max output IV RMS.

Specification: Deck Inputs—50 mV into  $\text{Im}\Omega$ ; Deck Tone Controls—Treble +20-10 dB at 12 kHz. Bass +22-15 dB at 40 Hz; Mic input—200 ohms upwards. 2 mV into  $10 \text{k}\Omega$ ; Mic Tone Control—Total Variation Treble 15 dB. Total Variation Bass 10 dB; Tape input -30 mV into  $47 \text{k}\Omega$ ; Power Requirements—30-45 volts at 100 mA.

£26.50

PANEL SIZE 18  $\times$  4½ in. DEPTH 3in.

# HOW TO ORDER BY POST

Make cheques/P.O.'s payable to TUAC LTD (P.W.). OR QUOTE ACCESS/BARCLAYCARD No. and post to TUAC LTD (P.W.). 163, MITCHAM ROAD, LONDON S.W.17 9PG.

We accept Phone orders against ACCESS/Barclay Card Holders. Phone. 672-3137,

# Stockists—Callers only

A.I Music Centre, 88 Oxford St., Manchester I. Tel. 061-236-0340. Bristol Disco Centre, 86, Stokes Croft, Bristol I. Tel. Bristol 41666. Calbarrie Audio, 88, Wellington St., Luton, Beds. Tel. Luton 411733. Mitchell Electronics, 64, Winchester St., Salisbury. Tel. Salisbury 23689. Socodi, 9, The Friars, Canterbury, Kent. Tel. Canterbury 60948. Wec Lighting, 35, Northam Road, Southampton, Hants. Tel. Southampton 28102.

# **NEW! 3 CHANNEL LIGHT MODULATOR**

R.C.A. 8 Amp Triacs ● 1000W per channel ● Each channel fully suppressed and fused
 Master control to operate from IW to 100W ● Full wave control—I2 easy connections



MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT OPEN 6 DAYS A WEEK 9:30am-6.00pm



TRANSISTOR UNIVERSAL AMPLIFICATION CO.LTD. 163 MITCHAM RD·LONDON SW17 9PG 01·672 3137/9080

# **NEW TUAC POWER MODULES**

offering more power and quality than ever before.



Specification on all power, modules: All output power ratings ± 0.5dB; Output impedance 8-15 ohms; THD at full power 2% typically 1%; Input sensitivity 60mV into 10k%; Frequency response 20Hz~20kHz ±2dB; Hum and noise better than

**TP125** 

 $7 \times 6\frac{1}{2} \times 3$ in

£17:00

125 watts RMS continuous sine wave output

TL30

 $4 \times 5\frac{1}{4} \times 2\frac{1}{2}$  in



£9.30

- ★ 4 R.C.A. 150 watt 15 amp output transistors
- Rugged layer wound driver trans-
- former.

  Short—Open—and Thermal overload
- protection Only 6 connections
- ★ 30 watts RMS continuous sine wave
- ★ 2 R.C.A. 40 watt output transistor



TL100  $5 \times 5 \times 3$ in

- ★ 100 watts R.M.S. continuous sine wave output
- ★ 2 R.C.A. 150 watt 15 amp transistors

Power supplies vacuum impregnated Transformers with supply board incorporating pre-amp supply:

| <b>PS 125</b> ± 50 volts for one TP125 | £11.50 |
|----------------------------------------|--------|
| <b>PS 100</b> ± 45 volts for one TL100 | £10.50 |
| <b>PS 60</b> ± 40 volts for one TL60   |        |
| <b>PS 30</b> + 50 volts for one TL30   |        |
| PSU 2 for supplying disco mixer        | £4.65  |

# TUAC HIGH POWER AMPLIFICATION—ALL PURPOSE AMPLIFIER

£13.20

built to high standards, and built to last Suitable for Disco, PA, Guitar, 4 inputs, 2 volume controls. Master volume, treble, middle and bass controls. Rugged circuit, rugged leathercloth covered case, short and open circuit protection. Tone control specification as VAO8 pre-amp. FULLY FUSED

RMS SINE WAVE 50 WATT £43.00 100 RMS SINE WAVE WATT £64.50

Also available

100 WATT SLAVE AMPLIFIER Spec as above. £48.50.



# ALL PRICES INCLUDE V.A.T. (8%) AND POSTAGE AND PACKING

ACCESS & BARCLAY CARDS ACCEPTED - Just Send or Phone us Your Number - H.P. ARRANGED THROUGH PAYBONDS

# **How to order** the cassette unit for your Kempton or Ascot player.

As a reader of Practical Wireless, you can get the cassette mechanism for your car stereo player direct from Goldring

The units for both the PW Kempton and Ascot are made by Lenco and based on the famous STARR design. with wow and flutter reduced to 0.3% max.

All you have to do is send the coupon to us, with a cheque or PO made out to Goldring Ltd. Be sure to state which unit you need. For the Kempton, it's Lenco FFR at £18.90; for the Ascot, it's Lenco CRV at £19.98. Prices include packing, carriage and VAT.

The units are also available from selected distributors.



|                   | ) Bayford Street, Hackney, London E8 3SE.<br>Lenco FFR at £18.90 |
|-------------------|------------------------------------------------------------------|
|                   | Lenco CRV at £19.98                                              |
|                   |                                                                  |
| l enclose PO, che | que for £                                                        |

PC ETCHING KIT
Contains 100 sq Ins copper laminate
board DALO etch resist pen, 1lb
Ferric Chloride, etching dish, abra
sive cleaner, and instructions, all for only £3:30.

RESISTORS & CAPACITORS
500 assorted resistors £1·35, 2500 £5
200 poly, mica, ceramic capacitors £1
250 Hi-Stab resistors, 1, 2 & 5% £1·20
15 different airspaced & compression trimmers up to 1250pF £1.

VEROBOARD

100 sq ins assorted sizes & pitches.
About 8 pieces. £1·10. 1ib £3·50.

### 3W TAPE AMPLIFIERS

3W TAPE AMPLIFIERS
Polished wooden cabinet 14 × 13 × 9"
containing a sensitive (20μV) 4
valve amplifier with tone and volume
controls. 3 watts output to the 7 × 4"
3Ω loudspeaker. Also a non-standard
tape deck. Supplied in good working
condition with circuit. Standard
mains operation £4·50. Suitable
cassette £1·10. Spare head 33p.
Tape (ex-computer) 57p. Amplifier
Chassis only, complete & tested
(2×ECC33, EL84, EZ80) and speaker
£3. With circuit.

£3. With circuit.

VERSATILE POWER SUPPLY
Contains mains transformer, 2 amp
thermal cut-out and bridge rectifier
in neat plastic case. Will give 1-710-5V output with 2 extra capacitors
(provided). Supplied complete with
data sheet. Only £1-20.

STABILIZED POWER UNITS
Made by WEIR Electronics. Mains
input, output +26, +15, +6, 0, -6V.
All fully stabilized. (Uses 8 2N3055,
and 20 other transistors. £16.

### UNISELECTORS

4 Bank (1 continuous) 25 way, 100  $\Omega$  coil. Ex-equipment in good condition £2.50.

### FERRIC CHLORIDE

Anhydrous technical quality to Mil-Spec in 1lb double sealed packs. 1lb 80p, 3lb £1·60, 10lb £4·45, 100lb £33

### PO AMPLIFIER UNIT

PO AMPLIFIER UNIT
Contained in steel case 5½ × 5 × 3½"
are 2 GET116 transistors on heat
sinks, 3 pot cores, 2 30V zeners, 4
audio transformers, 1% R's & C's.
With circuit diagram £1.

7 ib BARGAIN PARCELS
Hundreds of new components—Pots, resistors, capacitors, switches + PC boards with transistors & diodes, Also loads of odds & ends. Contents always changing as new stocks arrive Amazing value at £2·30.

Amazing value at £2:30.

COMPUTER PANELS
3lbs assorted £1:40, 7lbs £2:65, 56
lbs £15. Pack containing 500 components, including at least 50 transistors, 90p. 12 high quality panels with power transistors, trimpots IC's etc. £2:50. Pack with 20 trimpots + other parts £1 Pack with 24 FCH181 or MC1818 DTL IC's £1. Panels with 12 2N3053, 12 2N706 + 69 other parts £1. Export Pack—special selection of Panels, delivered anywhere in the World for £8.

World for £8.

MISCELLANEOUS
Transformers: (All mains Pri.)
16-0-16V with 9V tap @ 1½A £2;
6-0-6V @ 100mA 95p; 9-0-9V @ 100mA
90p; 12-0-12V ... 100mA 95p. Balanced
armature earplece, use as mic or
spkr, 20, 23 90p. Silicon grease 20z tube
60p. IN4001 10/50p; IN4004 10/80p;
IN4007 10£1; SC40D Triac £1; 2200µF
25V 25p, AC127-128-151-176-187-188
All 20p. BC107-8-9 10p; 2N3055 38p,
741C 35p.
Good range of Multimeters in stock
from £3-50.
Surplus components & equipment

Surplus components & equipment wanted for cash.

All prices shown include 8% VAT and postage (mainland only) SAE list, enquiries.

# **GREENWELD ELECTRONICS (PW10)**

Mail order dept., wholesale/retail shop 51 SHIRLEY PARK ROAD, SOUTH-AMPTON. Tel 0703 772501. Other retail shops at 21 Deptford Broadway SE8, el 01-692 2009 and 38 Lower Addiscombe Road, Croydon. Callers Welcome

# ENGINEERS

higher pay? "New Opportunities" shows you how to get them through a low-cost home study course. There are no books to



Inis neight guide to success should be read by every ambitious engineer. Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you

| Draughtsmanship                                           | Maintens ☐ Repairs          | ince and | etc. etc.                                                 |      |
|-----------------------------------------------------------|-----------------------------|----------|-----------------------------------------------------------|------|
| and wiring                                                | Radio Serv                  | icing,   | Radio Amateurs<br>etc. etc.                               |      |
| Electrical Engineering Electrical Installation            | Computer Program Generál Ra | dio and  | Electrical<br>Technicians<br>CITY AND GU                  | ILDS |
| Build-As-You-Learn PRACTICAL RAD AND ELECTRONI (with kit) | CS Computer 1               | ring [   | CITY AND GU<br>Installations and<br>Wiring<br>CITY AND GU | ı    |

include dynamic noise

limiting, auto-stop and

cassette ejection.

# SUPERSOUND 13 HI-FI MONO

AMPLIFIER A superb solid state audio amplifier. Brand new components A superb solid state audio amplifier. Brand new components throughout. 5 silicon transistors plus 2 power output transistors in push-pull.
Full wave rectification.
Output approx. 13 wats r.m.s. into 8 ohm. Frequency response 12Hz-30KHz ± 3dB. Fully integrated pre-amplifier stage with separate Volume. Bass boost and Treble cut controls. Suitable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Sepsitivity approx. 40mV for full output. Supplied ready built and tested, with knobs, escutcheon panel. Input and output plugs. Overall size 3" high x 6" wide x 71" deep. AC 200/250V. PRICE £13-50. P. & P. 50p.

DE LUXE STEREO AMPLIFIER



fully isolaransform transform er with full
wave rectification
giving adequate

rica 110 h giving adequate smoothing with negligible hum. Valve line up:-2 × ECL86 Triode Pentodes. 1 × EZ80 as rectifier. Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be adjusted by means of a separate 'Balance' control fitted at the rear of the chassis. Input sensitivity is approximately 300m/v for full peak output of 4 watts per channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Bupplied complete with knobs, chassis size 11"w x 4"d. Overall height including valves 6". Ready built & tested to a high standard. £10.75. P.&P. 50p. POWER SUPPLY UNIT 2001/240v. AC. input. Four switched fully smoothed D.C. outputs giving 6v. and 7½v. and 9v. and 12v. at 1 amp on load. Fitted insulated output terminals and pilot lamp indicator. Hammer finish metal case overall size 6" x 3½" x 2½". Suitable for Transistor Radios, Tape Recorders, Ampliers etc. etc. Ready PRICE £5-20 P.&P. 35p.

tiers etc. etc. Ready PRICE £5.20 P. & P. 35p.

VYNAIR & REXINE SPEAKERS & CABINET FABRICS app. 54 in. wide. Our price 21.20 yd. length. P. & P. 15p per yd. (min. 1 yd.). S.A.E. for samples.

HARVERSON'S SUPER MONO AMPLIFIER
A super quality gram amplifier using a double wound fully isolated mains transformer, rectifier and ECL82 triode pentode valve as audio amplifier and power output stage. Impedance 3 ohms. Output approx. 3-5 watts. Volume and tone controls. Chassis size only 7in. wide × 3in. deep × 6in. high overall. AC mains 200/240v. Supplied absolutely Brand New completely wired and tested with good quality output transformer.

P. & P. 40p BARGAIN PRICE

FEW ONLY!
High grade mains transformer with grain orientated lamination. Primary 200/240 Secondary 18.5 volts at 0.66 amps and 46 volts at 0.3 amps. Size 2" h×23" w×2" d overall. £1.35 plus 25p P. & P.

2" d overall. £1.35 plus 25p P. & P.

BRAND NEW MULTI-RATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primary: 0-210-240v.
Secondary combinations 0-5-10-15-20-25-30-35-40-60v.
half wave at 1 amp or 10-0-10, 20-0-20, 30-0-30v. at
2 amps full wave. Size 3in. long × 3½in. wide × 3in. deep.
Price £2.60 P. & P. 40p.
MAINS TRANSFORMER. For transistor power supplies.
Pri. 200(240v. Sec. 9-0-9 at 500 mA. £1-20. P. & P. 25p.
Pri. 200(240v. Sec. 12-0-12 at 1 amp. £1-40. P. & P. 26p.
Pri. 200(240v. Sec. 12-0-12 at 1 amp. £1-40. P. & P. 25p.
Pri. 200(240v. Sec. 10-0-10 at 2 amp. £2-00. P. & P. 35p.

HI-GRADE COPPER LAMINATE BOARDS 8" × 6", Five for 70p plus 30p P. & P.

GENERAL PURPOSE HIGH STABILITY
TRANSISTOR PRE-AMPLIFIER
For P.U. Tape, Mike, Guitar, etc. and suitable for
use with valve or transistor equipment. 9-18v.
battery or from H.T. line 200/300v. Frequency
response 15Hz-25KHz. Gain 26dB. Solid encapsulation size 14" x 14" x 17". Brand new complete
with instructions. Price 1.20p, P. & P. 15p.

ANDBOOK OF TRANSISTOR EQUIVALENTS AND

A must for servicemen and home constructors. Including many 1000's of British. U.S.A. European and Japanese transistors. ONLY 40p. Post 5p.

3 Reference Encyclopedias for Electronic Engineers and Designers, covering between them transistor characteristics, diode and transistor equivalents. Many thousands of up to date European types listed.

Diode Equivalents, 80p; Transistor Equivalents, 90p; Transistor Characteristics, £1·15; POST FREE All three teacher Characteristics, £1·15; POST FREE All three

together, £2 60

NEW ISSUE Thyristor, Triac. Diac etc. encyclopedias 95p, Post Free 8 pole 3 way 2 bank low loss Yaxley type switches 12'' sections. Standard spindle. 2 switches 64p + 10p P. & P.

### HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER



### Enjoy fabulous stereo radio at this fabulous low introductory price!

Designed and styled to match our 10 + 10 amplifier but Designed and styled to match our 10 + 10 amplifier but will suit any other standard stereo amplifier. The design incorporates the very latest circuitry techniques with highgain, low noise IF stages. Automatic frequency control to "lock-on" station and prevent drift. IC stereo decoder for maximum stereo separation. I.E.D. for stereo beacon indicator. Nominal output of tuner 100m. Approximate size 12" wide × 8" deep by 23" high, Supplied ready fully tested and fully guaranteed (not available in

Price 423.00 Post and Packing 50p.

A.C. mains 200-240 v. U s i n g heavy duty

or tuner. Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hints and tips) supplied. £5.00 plus 10p. P. & P. Stereo beacon light if required 40p



SPECIAL BARGAIN OFFER! SPECIAL BARGAIN OFFER! Limited number of BSR C123 Auto Changer De Luxe with lightweight tubular arm and stereo cartridge. Brand new. ONLY \$8.00 + p. & p. 60p.

LATEST Hi Sensitivity Uni-directional slim-line condenser microphone as used by many professionals. Very low acoustic feedback. Available hi impedance or low impedance. State which required. £13.50 plus 25p P. & P.

LATEST ACOS GP91/1SC mono compatible cartridge with t/o stylus for LP/EP/78. Universal mounting bracket. £1.46. P. & P. 15p.

SONOTONE STAHC COMPATIBLE STEREO CARTRIDGE SONOTOME STAHC COMPATIBLE STEREO CARTRIDGE T/O stylus Diamond Stereo LP and Sapphire 78. ONLY 22-27 P. & P. 10p. Also available fitted with twin Diamond T/O stylus for Stereo LP. \$2.76, P. & P. 15p. LATEST T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo/78. \$1.60 P. & P. 15p. LATEST T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on mono equipment. Only \$1.47, P. & P. 15p.

QUALITY RECORD PLAYER AMPLIFIER MK. II A top quality record player amplifier employing heavy duty double wound mains transformer, ECC83, EL84, and rectifier. Separate Bass, Treble and Volume controls. and rectiner. Separate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size 7in. wide × 3in. deep × 6in. high. Ready built and tested. PRICE £5.50, P. & P. 50p. ALSO AVAILABLE mounted on board with output transformer and speaker. PRICE £8-70, P. & P. 60p.

### HI-FI LOUDSPEAKER SYSTEMS

Beautifully made teak finish enclosure with most attractive Tygan-Vynair front. Size 16" high × 10½" wide × 6" deep. Fitted with E.M.I. Ceramic Magnet 13" × 8" bass unit, two H.F. tweeter units and crossover. Maximum power handling 10 watts. Available 3 or 8 or 15 ohms impedance.

OUR PRICE £9.50 Carr. 90p

Cabinet Available Separately \$5.00, Carr. 90p Also available in 8 ohms with EMI 13" × 8" bass speaker with parasitic tweeter \$8.00, Carr. 90p.

### LOUDSPEAKER BARGAINS

LOUDSPEAKER BARGAINS

5in. 3 ohm \$1.25, P. & P. 15p. 7 × 4in. 3 ohm \$1.40, P. & P.

20p. 10 × 6in. 3 or 15 ohm \$2.10, P. & P. 30p. E.M.I.

8 × 5in. 3 ohm with high flux magnet \$1.70, P. & P. 20p.

E.M.I. 13½ × 8in. with high flux ceramic magnet with

parasitic tweeter 3, 8 or 15 ohm \$2.50, P. & P. 30p.

E.M.I. 13 × 8in. 3, 8 or 15 ohm with two inbuilt tweeters

and crossover network \$4.65, P. & P. 30p.

E.M.I. tweeter. Approx. 3½". Available 3 or 8 or 15 ohms,

\$1.25 + 20p.p. & p.

BRAND NEW. Bakers Loudspeakers at substantial discounts. 12in. 15w. H/D Speakers, 3, 8 or 15 ohms. State which, Current production by well-known British maker. Now with Hffux ceramic ferrobar magnet assembly \$7.50. Guitar models: 25w £7.50, 35w, £7.50, P.&P. 45p.

12in. "RA" TWIN CONE LOUDSPEAKER. 10 watts peak handling. 3 or 8 or 15 ohm (state which) £3.00, P. & P. 36p.

"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size 114" × 14\f" × 1\f" deep. Weight 19oz. Power handling 20W r.m.s. 40W peak). Impedance 8 ohm only. Response 40Hz-20kHz. Can be mounted on ceilings, walls. doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details. Only \$8.60 each. P. & P. 34p.

### HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT



A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise, level with improved sensitivity. Integrated pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceranic or Crystal cartridges—instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parks supplied including drilled metalwork high quality ready drilled printed circuit board with component identification clearly marked, smart bruehed anodised aluminium front panel with matching knobs, wire, solder, nuts, botts—no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification; Power output: 14 watts r.ms., per channel into 5 ohms. Frequency response ±3dB 12-30,000 Hz Sensitivity; better than 80mV into 1MΩ. Full power bandwidth: ±3dB 12-15,000 Hz. Bass boost approx. to ±12dB. Treble cut approx. to −16dB. Negative feedback 18dB over main amp. Power requirements 35v. at 1.0 amp. Overall Size 12"w. × 8"d. × 2½"h.
Fully detailed 7 page construction manual and parts list free with bit or sand 18m plus bares S A E

Fully detailed 7 page construction manual and parts list free with kit or send 18p plus large S.A.E.

AMPLIFIER KIT .. £12.96 P. & P. 30p (Magnetic input components 33p extra)

(Post Free if all units purchased at same time)

Full after sales service Also available ready built and tested £28.08. Post Free. Note: The above amplifier is suitable for feeding two mono sources into inputs (e.g. mike, radio, twin record decks, etc. and will then provide mixing and fading facilities for medium powered Hi-Fi Discotheque use, etc.

### 3.VALVE AUDIO AMPLIFIER HAS4 MK II

Designed for Hi-Fi reproducof records. A.C. tion of records. A.C. Mains operation. Ready built on plated heavy gauge metal chassis, size 7¼"w. x 4"d. x 44½"h. Incorporates ECC83, EL84, EZ80 valves. Heavy duty, double wound mains transformer and output transformer matched for 3 ohm

transformer and output transformer matched for 3 ohm speaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output 41 watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knoba, valves, etc., wired and tested for only 28.50. P. & P. 45p.

HSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and advanced circuitry. Complete set of parts, etc \$5.50 P. & P. 45p.

# 10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push pull. Super reproduction of both music and speech, with negli-gible hum. Separate inputs for mike and gram allow records and announcements to follow each other.



to follow each other.
Fully shrouded section wound output transformer to match 3-15  $\Omega$  speaker and 2 independent volume controls, and separate base and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet 15p + 3AE (Free with parts)' All parts sold separately. ONLY £10-25 P. & P. 60p. Also available ready built and tested £14-00 P. & P. 70p.

### HI-FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam earmufs. Wirel and fitted with standard stereo in jack plug. Frequency response 30-15,000Hz. Matching impedance 8-16 ohms. Easily converted for Mono. PRICE £3.50, P. & P. 25p.

# PRICES INCLUDE VAT

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.

few minutes from South Wimble-Tube Station

# HARVERSON SURPLUS CO. LTD.

(Dept. P.W.) 170 HIGH ST., MERTON, LONDON, S.W.19 Tel.: 01-540 3985

SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

(Please write clearly)

PLEASE NOTE: P. & P. CHARGES QUOTED APPLY TO U.K. ONLY. P. & P. ON OVERSEAS ORDERS CHARGED EXTRA.

GRO NO. 331 7056 C.W.O. only. P. & P. 10p on orders below £5 Discount: £10-10%, £20-15% (except net items) Export Order enquiries welcome (VAT free)

Official Orders accepted from Educational & Government Departments ALL PRICES INCLUDE VAT AT 8%

SPECIAL RESISTOR KITS (Prices include post & packing) 10E12 ½W KIT: 10 of each E12 value, 22 ohms—IM, a total of 570 (CARBON FILM 5%), £3.58 net 10E12 ½W KIT: 10 of each E12 value, 22 ohms—IM, a total of 570 (CARBON FILM 5%), £3.77 net 25E12 ½W KIT: 25 of each E12 value, 22 ohms—IM, a total of 1425 (CARBON FILM 5%), £8.19 net 25E12 ½W KIT: 25 of each E12 value, 22 ohms—IM, a total of 1425 (CARBON FILM 5%), £8.28 net 5E12 ½W KIT: 5 of each E12 value, 10 ohms—IM, a total of 305 (METAL FILM 5%), £2.80 net

Due to current world shortages, resistor kits may contain some wattage and value substitutions.

MULLARD POLYESTER CAPACITORS C280 SERIES 2509 P.C. Mounting:  $0.01\mu\text{F}$ ,  $0.015\mu\text{F}$ ,  $0.022\mu\text{F}$ ,  $0.033\mu\text{F}$ ,  $0.047\mu\text{F}$ ,  $3\frac{1}{2}\text{p}$ ,  $0.068\mu\text{F}$   $0.1\mu\text{F}$ ,  $4\frac{1}{2}\text{p}$ ,  $0.15\mu\text{F}$ ,  $4\frac{1}{2}\text{p}$ ,  $0.22\mu\text{F}$ ,  $5\frac{1}{2}\text{p}$ ,  $0.33\mu\text{F}$ , 8p,  $0.47\mu\text{F}$ , 9p,  $0.68\mu\text{F}$ , 12p  $1\mu\text{F}$ , 15p,  $1.5\mu\text{F}$ , 23p,  $2.2\mu\text{F}$ , 26p.

15p. 1·5μF, 23p. 2·2μF, 26p.

MULLARD POLYESTER CAPACITORS C296 SERIES
400V: 0·001μF, 0·0015μF, 0·0022μF, 0·0033μF, 0·0047μF, 2½p. 0·0068μF, 0·01μF,
0·015μF, 0·022μF, 0·033μF, 3½p. 0·047μF, 0·068μF, 0·1μF, ½p. 0·15μF, 6½p
0·22μF, 8½p. 0·33μF, 12p. 0·47μF, 14p.
160V: 0·01μF, 0·15μF, 0·022μF 3p. 0·047μF, 0·068μF, 3½p. 0·1μF, ½p. 0·15μF, 5p.
0·22μF, 5½p. 0·33μF, 6½p. 0·47μF, 8½p. 0·68μF, 12p. 1μF, 14p.
0·22μF, 5½p. 0·33μF, 6½p. 0·47μF, 8½p. 0·68μF, 12p. 1μF, 14p.

MINIATURE CERAMIC PLATE CAPACITORS
50V: (pF) 22, 27, 33, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680, 820, 1K, 1K5, 2K2, 3K3, 4K7, 6K8, (μF) 0·01, 0·015, 0·022, 0·033, 0·047, 2½p. each. 0·1;30V, 5p.

POLYSTYRENE CAPACITORS 160V 5%

POLYSTYRENE CAPACITORS 160V 5% (pF) 10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, 10,000, 4½p.

each E12 value and E12 value a MF-High Stab Metal Film, 5% 19h Stab F 500-999 0·60 0·60 1·32 [·2] 1000+ 0·55 0·55 0·55 Size mm 2·4x7·5 3·9x10·5 5·5x16 3x7 4·2x10·8 0.99 MF 10-10M MF 10-10M 3 4·5 6·6x13 8x17·5

For value mixing prices, please refer to our catalogue. (price in pence each). VALUES AVAILABLE—E12 Scries only. (Net prices above 100.)

PRESET SKELETON POTENTIOMETERS MINIATURE 0-25W Vertical or horizontal 6p each 1K, 2K2, 4K7, 10K, etc, up to 1M  $\Omega$ SUB-MIN 0-05W Vertical, 100  $\Omega$  to 220K  $\Omega$  5p each.

# B. H. COMPONENT FACTORS LTD.

(P.W.) 61 CHEDDINGTON ROAD, PITSTONE NR. LEIGHTON BUZZARD, BEDS, LU7 9AQ Tel.: Cheddington 668446 (Std. Code 0296) CATALOGUE No. 3 20p

| Miniature | Mulla            | ırd Electrol  | ytics            |
|-----------|------------------|---------------|------------------|
| 1.0µF 63V | 6½p              | 68μF 16V      | 6½P              |
| 1 5μF 63V | 6 1 P            | 68µF_63V      | 12p              |
| 2 2µF 63V | 6 <u>‡</u> p     | 100µF 10V     | 6 1 p            |
| 3 3µF 63V | 6½p              | 100µF 25V     | $6\frac{1}{2}$ p |
| 4 0µF 40V | 6∳₽              | 100µF 63V     | 14p              |
| 4 7µF 63V | 6 <u>₹</u> p     | 150µF .16V    | . 6½p            |
| 6 8µF 63V | 6 1 p            | 150µF 63V     | 15p              |
| 8 0µF 40V | 6 <u>₹</u> p     | 220µF 6 4V    | 6 <u>÷</u> p     |
| 10µF 16V  | 6 ½ P            | 220µF 10V     | 6½p              |
| 10µF 25V  | 6½P              | 220µF 16V     | 8p               |
| 10µF 63V  | $6\frac{1}{2}p$  | 220µF 63V     | 2lp              |
| 15µF 16V  | 6 <u>‡</u> p     | 330µF 16V     | 12p              |
| 15µF 63V  | 6 ½ p            | 330µF 63V     | 25p              |
| 16µF 40V  | 6 <sup>‡</sup> b | 470µF 6 4     | 9p               |
| 22μF 25V  | 6∮P              | 470µF 40V     | 20p              |
| 22µF 63V  | 6½ p             | 680µF 16V     | I5p              |
| 32µF 10V  | 6 <u>‡</u> p     | 680µF 40V     | 25p              |
| 33µF 16V  | 6½ p             | 1000µF 16V    | 20p              |
| 33µF 40V  | 6∳p              | 1000µF 25∨    | 25p              |
| 32µF 63V  | 6 <del>1</del> p | 1500µF6 · 4V  | 15p              |
| 47µF 10V  | 6 <u>1</u> p     | 1500µF 16V    | 25p              |
| 47µF 25V  | 6∮p              | 2200µF 10V    | 25p              |
| 47µF 63V  | 8p               | 3300µF6 · 4 V | 26p              |
|           |                  |               | -                |

|                     | BOARD   | 0.1 0.15                |
|---------------------|---------|-------------------------|
| 2+ × 5"             |         | 36p 36p                 |
| 2½ × 3½"<br>3½ × 5" |         | 33p 25p<br>42p 46p      |
| 34 × 34"            |         | 36p 36p                 |
| 2½ x 1″             |         | 9p 9p                   |
| 2½ x 5" (           | Plain)  | — 19p                   |
| 2½ x 3¾"<br>5 x 3¾" | (Plain) | — 16p<br>— 29p          |
| Insertion           | tool    | 73p 73p                 |
| Track C             | utter   | 56p 56p                 |
| Pins, Pk            | t. 25   | 22p 22p                 |
| TRANS               | ISTORS  |                         |
| ACI27               |         | 212L 12p                |
| ACI28               |         | 2 3L  2p                |
| BC107<br>BC108      |         | 214L 17p  <br>244   18p |
| BC109               | 13p 00  | 77 130                  |
| BC148               | 12p 00  | 16p                     |
| BC149.              | 12p OC  | 170 23p                 |
| BC182L              | 12p TIS | 43 33p                  |

| n tool<br>utter<br>t. 25                | 73p 73p<br>56p 56p<br>22p 22p                          | N4005 12p                                  |
|-----------------------------------------|--------------------------------------------------------|--------------------------------------------|
| 16 p Be<br>22 p Be<br>11 p Be<br>12 p O | C2 2L  2p<br>C2 3L  2p<br>C2 4L  7p                    | OA81 11p                                   |
| 13p O                                   | C71 13p<br>C81 16p<br>C170 23p<br>S43 33p<br>V2926 11p | Integrated<br>Circuits<br>µA709C<br>µA741C |
| 1                                       |                                                        |                                            |

Carbon Track 5K Ω to 2M Ω, log or lin (and IK lin). Single, 161p Dual Gang 46p. Log single with switch 26p. Slider Pots. 10K, 100K, 500K, semi log 30mm, 34p. 45mm, 47p. 60mm, 55p. | Second | S

49p 50p 98p £1 ⋅30

POTENTIOMETERS

| Jack                  | 10p<br>12p<br>15p<br>13p<br>6p | 16/450, 23p. 32/350, 33p.<br>METALLISED PAPER<br>250V: 0.05µF, 0.1µF, 6p.<br>0.025, 0.05, 6p. 0.1, 6p.<br>11p. 0.022, 13p. 0.047, 0 |
|-----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Twin Stereo<br>Connec | creen<br>Screen                | ire, Metre<br>ed Wire, Metre<br>ned Wire, Metre<br>Wire, All colours, Metre<br>90V Wire Ended 5                                     |

| reened Wire, Metre 617 vin Screened Wire, Metre 127 stree Screened Wire, Metre 127 nonnecting Wire. All colours, Metre 217 con Bulb, 90V Wire Ended 5 for 247 nel Neon. 240V Red, Amber, Clear 207 | Low cost 4<br>All values E<br>1-24 25-99 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                    |                                          |

R DIODES 100mW Tol +7% E24 series 3V-30V 100-499 1000-6½p 5½p

MULTIMETER U4323
22 Ranges plus AF/IF Oscillator 20,000 \( \Oldon \) / Volt.
Vdc--0·5-1000V in 7 ranges
Vac--2·5-1000V in 6 ranges
Idc--0·5-500mA in 5 ranges
Resistance--5\( \Oldon \) IM\( \Oldon \) in 4

Resistance—512—1712 III 7
ranges.
Accuracy—5% of F.S.D.
OSCILLATOR—1 KHz and 465
KHz (A, M.) at approx. 1 Volt.
Size—160 x 97 x 40mm.
Supplied complete with carrying
case, test leads and battery.
PRICE £8-30 net p & p 25p.



BCI83L BCI84L

MULTIMETER U4341

27 Ranges plus Transistor Tester.
16,700Ω/Volt. Overload protected.
Vdc—0·3—900V in 8 ranges.
Vac—1·5—750V in 6 ranges.
Idc—0·06—600mA in 5 ranges.
Idc—0·06—600mA in 5 ranges.
Resistance—2KΩ—2MΩ in 4 ranges.
Resistance—2KΩ—2MΩ in 4 ranges.
Accuracy—dc—24%, ac—4% of F.S.D.
hfe—10—350 in 2 ranges.
Size—115 x 215 x 90mm.
Complete with steel carrying
case, test leads, and battery.
PRICE £11·30 net p & p 30p.



U4341

NEW CAPACITOR KITS C280 Kit—PC Mounting polyester 250V. 5 of each value: 0.01 0.022, 0.047, 0.1, 0.22 µF. 2 of 0.47, 1 µF. £1.30 net.

C296 Kit—Tubular polyester, 400V. 5 of each value: 0.01, 0.022, 0.047, 0.1, 0.22µF. 2 of 0.47µF. £1.30 net.

Ceramic Kit—square plaquette 50V. 5 each value: 22, 33, 47, 100, 220, 330, 470, 1000pF, 2200, 4700pF, 0.01µF. £1.30 net.

250V Paper kit.—Tubular metal case. 3 of each value: 0.05, 0.1, 0.25, 0.5,  $1\mu$ F. 90p net.

500V Paper Kite—Tubular metal case. 3 of each value: 0.025, 0.05, 0.1, 0.25, 0.5µF. 90p net.

1000V Paper Kit --Tubular metal case. 3 each value: 0-01, 0-025, 0-05, 0-1 µF. £1-10 net.

MULTIMETER U4324 MULTIMETER U4324
34 Ranges. High sensitivity.
20,000 Ω/Volt. Overload protected.
Vdc—0·6—1200V in 9 ranges.
Vdc—3-900V in 8 ranges.
Idc—0·06—3A in 6 ranges.
Idc—0·06—3A in 6 ranges.
Resistance—25Ω—5MΩ in 5 ranges.
Resistance—25Ω—5MΩ in 5 ranges.
Accuracy—dc and R—2½% of F.S.D.
ac and db—4% of F.S.D.
Size—167 × 98 × 63mm.
Supplied complete with storage case, test leads, spare diode, and battery.
PRICE £9·95 net p & p 25p.





U4324

MULTIMETER U4313

33 ranges. Knife edge with mirror sca
20,000@/Volt. High accuracy. mVdcVdc-1·5-600V in 9 ranges.
Idc-60-120 microamps in 2
Idc-0·6-1500mA in 6 ranges.
Idc-0·6-1500mA in 6 ranges.
Resistance-1KQ-1MQ in 4 ranges.
Accuracy-dc-1½%, ac-2½%
Size-115×215 x 99mm.
Complete with steel carrying case,
test leads, and battery.
PRICE £13·40 net p & p 30p.



S-DeC PANEL METERS S-DeC £2·14 T-DeC £3·92 μDeC "A" 2" scale 100µA μDeC "B" 44·30 500 uA 1mA 5mA 10mA £3.75 ANTEX 50mA CCN240 £2·43 CN240 £2·01 X25 £2·01 100mA 500mA

All

Dalo Pen 98p
"expert" solder gun £6 -56
Wire pack 5 x 5mtrs. 27p
Diode pack (Ge) 50 for 25p
Jackson "00" 365pF 98p
C804, 5pF, 10pF, 15pF 83p
20pF, 25pF, 50pF 89p
60pF, 75pF, 100pF 98p
Dilecon 100, 300,
500pF £1-15
LED. Til. 209 5 for £1
Panel I/holder 4 colours 22p
R'ry Sw'chs, IP12W, 2P6W,
3P4W, 4P3W 6P2W 30p

Newest, neatest system ever de-vised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Trans-

N-T-E-R-L-O-C-K-1-N-G PLASTIC STORAGE DRAWERS TIEN! parent plastic drawers have label slots. ID have space dividers. Build up any space dividers. Build up any size cabinet for wall, bench or table top.

SINGLE UNITS (5"x2½"x2½") £2.00 Dozen

DOUBLE UNITS £3:50 Dozen. TREBLE (3D) £3:50 for 8

DOUBLE TREBLE £4.90 for 8.

EXTRA LARGE SIZE (6DI) £4.50 for 8.

Carriage 40p. Orders over £10 post free.

QUANTITY DISCOUNTS! 5% in £1 for orders over £15

7½% for orders over £30. Quotations for large quantities.

PLEASE ADD 8% VAT TO TOTAL REMITTANCE. S SIZES ALL INTERMOC

FLAIRLINE (Dept. PWI), 124 CRICKLEWOOD BROADWAY, LONDON N.W.2 01-450 4844

### MASSIVE CLEARANCE BARGAINS

IA

Bargain component parcels contain Resistors, Capacitors, Potentiometers, Knobs, Rotary and Slide Switches, If's, Tag Strips, Drive Drums, Coil Formers, Wire, Grommets, Relays, Pulley Wheels, Magnets, Transistor Panels, etc. Save yourself £'s on these well selected parcels, 6lb net weight £1.00, p.p. 50p.

Brand New Wire-wound Resistors 1-7 watts, mo GWS-1-3-5-7. Good selection. 100 for £1.00, p.p. 20p. mostly Plessey

Mullard Ferrite Cores LA3 50p, LA4 75p, LA2100 50p.

SPECIAL OFFER. Metallised Polyester Capacitors by Erie, Mullard, etc. Values include 01/160V, 01/250V, 015/160V, 022/160, 033/160, 047/160V, 068/160V, 1/160-250V, 22/160V, etc. This is a bargain not to be missèd. 100 for £1.50, p.p. 20p.

Assorted Capacitors, Silver Mica, Tubular and Disc Ceramics, Polystyrene, Tremendously good selection. 300 for £1, p.p. 20p. Please add 8% V.A.T.

Mail Order Only.

XEROZA RADIO, I, EAST STREET, BISHOPS TAWTON, DEVON.

# I.L.P. (Electronics) Ltd

# SHEER SIMPLICITY!



### MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN



The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers—the first contains frequency equalisation and gain correction, while the second caters for tone control and balance.

control and balance.

TECHNICAL SPECIFICATION
Inputs: Magnetic Pick-up 3mV RIAA: Ceramic Pick-up 30mV; Mictophone 10mV; Tuner 100mV; Auxillary 3-100mV; input/Impedance 47kΩ at 1kHz. Outputs: Tape 100mV; Main output 0db (0·775V RMS). Active Tone Controls: Treble ± 12db at 10kHz; Bass ± 12db at 100Hz. Distortion: 0·5% at 1kHz. Signal/Noise Ratio: 68db. Overload Capability: 40db on most sensitive input. Supply Voltage: ± 16-25V.

PRICE £4.50 + 36p VAT P. & P. free



The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connections are provided, input, output, power lines and earth.

power lines and earm.

TECHNICAL SPECIFICATION

Output Power: 25W RMS into 8kΩ. Load Impedance: 4-16Ω. Input Sensitivity 0db (0·775V RMS). Input Impedance: 47kΩ. Distortion: Less than 0·1% at 25W typically 0·05%. Signal/Noise Ratio: Better than 75db Frequency Response: 10Hz-50kHz ± 3db. Supply Voltage: ± 25V. Size: 105 x 50 x 25mm.

PRICE £5.98 + 48p VAT P. & P. free



The PSU50 can be used for either mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage: 50V (25-0-25V). Input Voltage: 210-240V.
Size: L.70. D.90. H.60mm.

PRICE £5 + 40p VAT

# TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

| Te | l (022 | 7) 63 | 3218 |
|----|--------|-------|------|
|    |        |       |      |

| Total Purchase price                                                  | • • • • • • • • • • • • • • • • • • • • |
|-----------------------------------------------------------------------|-----------------------------------------|
| I Enclose, Cheque ☐ Postal Orders<br>Please debit my Access account ☐ | s                                       |
| Account number                                                        |                                         |
| ••••••                                                                | Signature                               |

# BRAND NEW FULLY GUARANTEED DEVICES

| Type<br>AC107     | Price<br>0.22 | Type<br>AD162     | Price 1      | Type<br>BC149   | Price 0.18   | Type<br>BD124  | Price              | Type<br>BF181    | Price         | Type<br>MAT121    | Price         | Type<br>2G306    | Price<br>0·44 | Type<br>2N2160       | Price<br>0 · 68 | Type<br>2Nd055    | Price<br>0.55 | Type              | Price        |
|-------------------|---------------|-------------------|--------------|-----------------|--------------|----------------|--------------------|------------------|---------------|-------------------|---------------|------------------|---------------|----------------------|-----------------|-------------------|---------------|-------------------|--------------|
| AC113             | 0.20          | AD161 &           | 3            | BC150           | 0.20         | BD131          | 0.55               | BF182            | 0.44          | MJE295            | 5 0.95        | 2G308            | 0.39          | 2N2192               | 0.89            | 2N3391            | 0.18          | 2N4059<br>2N1060  | 0-11<br>0-18 |
| AC116<br>AC117K   | 0·22<br>0·32  | AD162(3<br>ADT140 |              | BC151<br>BC152  | 0·22<br>0·19 | BD132<br>BD133 | 0·66<br>0·72       | BF183<br>BF184   | 0·44<br>0·28  | MJE3054<br>MJE344 |               | 2G309<br>2G339   | 0.39          | 2N2193<br>2N2194     | 0.39            | 2N3391A           |               | 2N4061            | 0.13         |
| AC122             | 0.18          | AF114             | 0.27         | BC153           | 0.31         | BD135          | 0.44               | BF185            | 0.88          | MPF102            | 0.46          | 2G339A           | 0.18          | 2N2217               | 0.24            | 2N3392<br>2N8393  | 0·16<br>0·16  | 2N4062<br>2N4284  | 0·18<br>0·19 |
| AC125<br>AC126    | 0·19<br>0·19  | AF115<br>AF116    | 0.27         | BC154<br>BC157  | 0·33<br>0·20 | BD136<br>BD137 | 0·44<br>0·50       | BF187<br>BF188   | 0.80          | MPF104            |               | 20344            | 0.20          | 2N2218               | 0.22            | 2N3394            | 0.16          | 2N4285            | ( .19        |
| AC127             | 0.20          | AF117             | 0.27         | BC158           | 0.18         | BD138          | 0.55               | BF194            | 0·44<br>0·18  | MPF105<br>OC19    | 0·41<br>0·39  | 2G345<br>2G371   | 0·18<br>0·18  | 2N2219<br>2N2220     | 0·22<br>0·24    | 2N3395<br>2N3402  | 0·19<br>0·28  | 2N4286<br>2N4287  | 0·19<br>0·19 |
| AC128<br>AC132    | 0·20<br>0·16  | AF118<br>AF124    | 0.88         | BC159<br>BC160  | 0·18<br>0·50 | BD139          | 0.61               | BF195            | 0.13          | OC20              | 0.70          | 2G371B           | 0.13          | 2N2221               | 0.22            | 2N3403            | 0.23          | 2N4288            | 0.19         |
| AC134             | 0.16          | AF125             | 0.38         | BC161           | 0.55         | BD140<br>BD155 | 0.88               | BF196<br>BF197   | 0·16<br>0·16  | OC22<br>OC23      | 0·52<br>0·54  | 2G373<br>2G374   | 0·19<br>0·19  | 2N2222<br>2N2368     | 0·22<br>0·19    | 2N3404<br>2N3405  | 0·31<br>0·46  | 2N4289<br>2N4290  | 0·19<br>0·19 |
| AC137             | 0.16          | AF126             | 0.31         | BC167           | 0.13         | BD175          | 0.66               | BF200            | 0.50          | OC24              | 0.62          | 2G377            | 0.33          |                      | 0 16            | 2N3414            | 0.17          | 2N4290<br>2N4291  | 0.19         |
| AC141<br>AC141K   | 0.20          | AF127<br>AF139    | 0·31<br>0·38 | BC168<br>BC169  | 0·13<br>0·13 | BD176<br>BD177 | 0·66<br>0·72       | BF222<br>BF257   | £1.05<br>0.50 | OC25<br>OC26      | 0.42          | 2G378            | 0.18          | 2N2369A              |                 | 2N3415            | 0.17          | 2N4292            | 0.19         |
| A C142            | 0.20          | AF178             | 0.55         | BC170           | 0.18         | BD178          | 0.72               | BF258            | 0.66          | OC28              | 0.32          | 2G381<br>2G382   | 0·18<br>0·18  | 2N2411<br>2N2412     | 0 27<br>0 27    | 2N3416<br>2N3417  | 0·31<br>0·31  | 2N4293<br>2N5172  | 0·19<br>0·18 |
| A C142K<br>AC151  | 0·28<br>0·17  | AF179<br>AF180    | 0·55<br>0·55 | BC171<br>BC172  | 0·16<br>0·16 | BD179          | 0.77               | BF259            | 0.94          | OC29              | 0.55          | 2G401            | 0.88          | 2N2646               | 0.52            | 2N3525            | 0.83          | 2N5294            | 0.60         |
| AC154             | 0.22          | AF181             | 0.55         | BC173           | 0.16         | BD180<br>BD185 | 0·77<br>0·72       | BF262<br>BF263   | 0·61<br>0·61  | OC35<br>OC36      | 0·48<br>0·55  | 2G414<br>2G417   | 0·33<br>0·28  | 2N2711<br>2N2712     | 0·23<br>0·23    | 2N3614<br>2N3615  | 0·74<br>0·82  | 2N5457.<br>2N5458 | 0·35<br>0·35 |
| AC155             | 0.22          | AF186             | 0.55         | BC174           | 0.16         | BD186          | 0.72               | BF270            | 0.89          | OC41              | 0.22          | 2N388            | 0.39          | 2N2714               | 0.28            | 2N3616            | 0 82          | 2N5459            | 0.44         |
| AC156<br>AC157    | 0.22          | AF239<br>AL102    | 0·41<br>0·72 | BC175<br>BC177  | 0·24<br>0·21 | BD187<br>BD188 | 0·77<br>0·77       | BF271<br>BF272   | 0·38<br>0·88  | OC42<br>OC44      | 0.27          | 2N388A           | 0.61          | 2N2904               | 0.19            | 2N3646            | 0.10          | 2N6221            | 0.75         |
| AC165             | 0.22          | AL103             | 0.72         | BC178           | 0.21         | BD189          | 0.88               | BF273            | 0.39          | OC44<br>OC45      | 0·17<br>0·14  | 2N404<br>2N404A  | 0·22<br>0·31  | 2N2904A<br>2N2905    | 0.23            | 2N3702<br>2N3703  | 0·18<br>0·18  | 28301<br>28302A   | 0.55         |
| AC166<br>AC167    | 0·22<br>0·22  | ASY26             | 0·28<br>0·33 | BC179<br>BC180  | 0·21<br>0·27 | BD190<br>BD196 | 0.83               | BF274            | 0.89          | OC70              | 0.11          | 2N524            | 0.46          | 2N 2905A             | 0.23            | 2N3704            | 0.14          | 28302             | 0.46         |
| AC168             | 0.27          | ABY28             | 0.28         | BC181           | 0.27         | BD198          | 0.94               | BFW10<br>BFX29   | 0.86          | OC71<br>OC72      | 0·11<br>0·16  | 2N527<br>2N598   | 0·54<br>0·46  | 2N2906<br>2N2906A    | 0.17            | 2N3705<br>2N3706  | 0·13<br>0·13  | 28303<br>28304    | 0·61<br>0·77 |
| AC169             | 0·16<br>0·22  | A8Y29             | 0·28<br>0·28 | BC182           | 0.18         | BD197          | 0.88               | BFX84            | 0.24          | OC74              | 0.16          | 2N599            | 0.50          | 2N2907               | 0.22            | 2N3707            | 0.14          | 28305             | 0.86         |
| AC176<br>AC177    | 0.22          | ASY50<br>ASY51    | 0.28         | BC182L<br>BC183 | 0·16<br>0·16 | BD198<br>BD199 | 0.99<br>£1.05      | BFX85<br>BFX86   | 0·33<br>0·24  | OC75<br>OC76      | 9·17<br>0·17  | 2N696<br>2N697   | 0·14<br>0·15  | 2N2907A<br>2N2928    | 0.24            | 2N3708<br>2N3709  | 0.09          | 28306             | 0.86         |
| AC178             | 0.31          | ASY52             | 0.28         | BC183L          | 0.16         | BD200          | £1.05              | BFX87            | 0.27          | OC77              | 0.28          | 2N698            | 0.13          | 2N2924               | 0.16            | 2N3709<br>2N3710  | 0.10          | 28307<br>28321    | 0.86         |
| AC179<br>AC180    | 0·31<br>0·22  | A8¥54<br>A8¥55    | 0·28<br>0·28 | BC184<br>BC184L | 0·22<br>0·22 | BD205<br>BD206 | 0.88               | BFX88<br>BFY50   | 0·24<br>0·22  | 0C81              | 0.17          | 2N699            | 0.39          | 2N2925               | 0.16            | 2N3711            | 6-10          | 28322             | 0.46         |
| AC180K            | 0.32          | ABY56             | 0.28         | BC186           | 0.31         | BD207          | £1 · 05            | BFY51            | 0.22          | OC81D<br>OC82     | 0·17<br>0·17  | 2N706<br>2N706A  | 0·09<br>0·10  | 2N2926(<br>2N2926(   | Y) 12           | 2N3819<br>2N3820  | 0·31<br>0·55  | 28322A<br>28325   | 0.46         |
| AC181<br>AC181K   | 0.22          | ASY57<br>ASY58    | 0·28<br>0·28 | BC187<br>BC207  | 0·31<br>0·12 | BD208<br>BDY20 | £1 · 05<br>£1 · 10 | BFY52<br>BFY53   | 0.22          | OC82D             | 0.17          | 2N708            | 0.13          | ] 2N2926(C           | 0) 11           | 2N3821            | 0.39          | 28324             | 0.77         |
| AC187             | 0.24          | ASY73             | 0.28         | BC208           | 0.12         | BF115          | 0.27               | BSX19            | 0·19<br>0·17  | OC83<br>OC139     | 0·22<br>0·22  | 2N711<br>2N717   | 0.33          | 2N2926(1<br>2N2926(1 |                 | 2N3823<br>2N3903  | 0.31          | 28325<br>28326    | 0.77         |
| AC187K<br>AC188   | 0.25          | ABZ21<br>BC107    | 0·44<br>0·14 | BC209<br>BC212L | 0·13<br>0·14 | BF117<br>BF118 | 0.50               | BSX 20           | 0.17          | OC140             | 0.22          | 2N718            | 0.27          | 2N3010               | 0.77            | 2N3904            | 0.38          | 28327             | 0.77         |
| AC188K            | 0.25          | BC108             | 0.14         | BC213L          | 0.14         | BF119          | 0.77               | BSY25<br>BSY26   | 0·17<br>0·17  | OC169<br>OC170    | 0·28<br>0·28  | 2N718A<br>2N726  | 0·55<br>0·31  | 2N3011<br>2N3053     | 0·18<br>0·19    | 2N3905<br>2N3906  | 0·81<br>0·30  | 28701<br>40361    | 0-46<br>0-44 |
| ACY17<br>ACY18    | 0·28<br>0·22  | BC109<br>BC113    | 0.15         | BC214L          | 0.18         | BF121          | 0.50               | BSY27            | 0.17          | OC171             | 0.28          | 2N727            | 0.31          | 2N3054               | 0.51            | 2N4058            | 0.13          | 40362             | 0.50         |
| ACY19             | 0.22          | BC114             | 0.17         | BC225<br>BC226  | 0·28<br>0·39 | BF123<br>BF125 | 0·55<br>0·50       | B8Y28<br>B8Y29   | 0·17<br>0·17  | OC200<br>OC201    | 0·28<br>0·31  | 2N743<br>2N744   | 0·22<br>0·23  |                      | DIOD            | ES AND            | RECTI         | TERS              |              |
| ACY19<br>ACY20    | 0·22<br>0·22  | BC115             | 0.17         | BC301           | 0.30         | BF127          | 0.55               | BSY38            | 0.20          | OC202             | 0.31          | 2N914            | 0.16          | Type                 | Price           | Type              | Price         | Type              | Price        |
| ACY21             | 0·22<br>0·18  | BC116<br>BC117    | 0·17<br>0·20 | BC302<br>BC303  | 0·27<br>0·35 | BF152<br>BF153 | 0·61<br>0·50       | BSY39<br>BSY40   | 0·20<br>0·31  | OC203<br>OC204    | 0·28<br>0·28  | 2N918<br>2N929   | 0·33<br>0·23  | AA119                | 0.09            | BY128             | 0·17<br>0·18  | OA10              | 0·15<br>0·08 |
| ACY22<br>ACY27    | 0.20          | BC118             | 0.11         | BC304           | 0.40         | BF154          | 0.50               | BSY41            | 0.81          | OC205             | 0.39          | 2N930            | 0.23          | AA120<br>AA129       | 0.08            | BY130<br>BY133    | 0.18          | OA47<br>OA70      | 0.08         |
| ACY28<br>ACY29    | 0·21<br>0·39  | BC119<br>BC120    | 0·33         | BC440<br>BC460  | 0·34<br>0·40 | BF155<br>BF156 | 0·77<br>0·53       | BSY95<br>BSY95A  | 0·14<br>0·14  | OC309             | 0.44          | 2N1131           | 0.22          | AAY30                | 0.10            | BY164             | 0.55          | OA79              | 0.08         |
| ACY30             | 0.31          | BC125             | 0.13         | BCY30           | 0.27         | BF157          | 0.61               | Bul05            | £2·20         | OCP71<br>ORP12    | 0·48<br>0·48  | 2N1132<br>2N1302 | 0·24<br>0·16  | AAZ13<br>BA100       | 0·11<br>0·11    | BYX38/<br>BYZ10   | 0.89          | OA81<br>OA85      | 0·08<br>0·10 |
| ACY31<br>ACY34    | 0·31<br>0·23  | BC126<br>BC132    | 0·20<br>0·13 | BCY31<br>BCY32  | 0·29<br>0·38 | BF158          | 0.61               | Cille            | 0.55          | ORP60             | 0.44          | 2N1303           | 0.16          | BA116                | 0.23            | BYZ11             | 0.33          | OA90              | 0.07         |
| A CV35            | 0.23          | BC134             | 0.20         | BCY33<br>BCY34  | 0.24         | BF159<br>BF160 | 0·66<br>0·44       | C400<br>C407     | 0.83          | ORP61<br>P20      | 0.44          | 2N1304<br>2N1305 | 0·19<br>0·19  | BA126<br>BA148       | 0·24<br>0·16    | BYZ12<br>BYZ13    | 0.33          | OA91<br>OA95      | 0.07         |
| ACY36<br>ACY40    | 0·31<br>0·19  | BC136             | 0.13         | BCY34           | 0.28         | BF162          | 0.44               | C424             | 0.28          | P346A             | 0.22          | 2N1306           | 0.23          | BA154                | 0.13            | BYZ16             | 0.44          | OA200             | 0-07         |
| ACY 40            | 0.20          | BC136<br>BC137    | 0·17<br>0·17 | BCY70<br>BCY71  | 0·16<br>0·22 | BF163<br>BF164 | 0·44<br>0·44       | C425<br>C426     | 0·55<br>0·39  | P397<br>ST140     | 0:46<br>0:14  | 2N1307<br>2N1308 | 0.23          | BA155                | 0.16            | BYZ17             | 0.39          | OA202             | 0.08         |
| ACT 44.           | 0.39          | BC139             | 0.44         | BCY72           | 0.16         | BF165          | 0.44               | C428             | 0.22          | ST141             | 0.19          | SN1309           | 0·26<br>0·26  | BA156<br>BA173       | 0·15<br>0·16    | BYZ18<br>BYZ19    | 0·39<br>0·31  | SD10<br>SD19      | 0.08         |
| A D 130<br>AD 140 | 0·42<br>0·53  | BC140<br>BC141    | 0.33         | BCZ10<br>BCZ11  | 0·22<br>0·28 | BF167<br>BF173 | 0·24<br>0·24       | C441             | 0.83          | TIS43             | 0.84          | 2N1613           | 0.22          | BY100                | 0.17            | CG62              |               | 1N34              | 0.08         |
| AD140<br>AD142    | 0.58          | BC142             | 0.33         | BCZ12           | 0.28         | BF176          | 0.39               | C442<br>C444     | 0.38          | UT46<br>ZN414     | 0·30<br>£1·20 | 2N1711<br>2N1889 | 0·22<br>0·35  | BY101<br>BY105       | 0·13<br>0·19    | (OA91 E<br>CG651— |               | 1N34A<br>1N914    | 0·08         |
| AD142             | 0.42          | BC143<br>BC145    | 0.38         | BD115<br>BD116  | 0.68         | BF177<br>BF178 | 0.89               | C450             | 0.24          | 2G301             | 0.21          | 2N1890           | 0.50          | BY114                | 0.13            | (OA70-7           | 9)0.07        | 1N916             | 0.08         |
| AD149             | 0.55          | BC147             | 0.11         | BD121           | 0.66         | BF178          | 0·33               | MAT100<br>MAT101 |               | 2G302<br>2G303    | 0·21<br>0·21  | 2N1893<br>2N2147 | 0.41          | BY124<br>BY126       | 0·13<br>0·16    | OA5<br>OA5 sho    | 0.39          | 1N4148<br>18021   | 0·08<br>0·11 |
| AD161             | 0.39          | BC148             | 0.11         | BD123           | 0.72         | BF180          | 0.88               | MAT120           |               | 2G304             | ŏ∙27          | 2N2148           | 0.63          | BY127                | 0 17            | leads             |               | 18951             | 0.07         |

| LINEAR   | I.C's-FU | LL S  | PEC. |
|----------|----------|-------|------|
|          |          | Price |      |
| Type No. |          | 25    | 100- |
| 72702    | 50p      | 48p   | 45p  |
|          |          |       |      |

| Type No. | 1     | 25    | 100+  |
|----------|-------|-------|-------|
| 72702    | 50p   | 48p   | 45p   |
| 72709    | 85p   | 33p   | 30p   |
| 72709P   | 83p   | 81p   | 29p   |
| 72710    | 45p   | 43p   | 40p   |
| 72741    | 40p   | 38p   | 35p   |
| 72741C   | 45p   | 48p   | 40p   |
| 72741P   | 38p   | 36p   | 34p   |
| 72748P   | 38p   | 36p   | 34p   |
| 8L201C   | 59p   | 45p   | 40p   |
| SL701C   | 50p   | 45p   | 40p   |
| 8L702C   | 50p   | 45p   | 40p   |
| TAA263   | 80p   | 70p   | 600   |
| TAA293   | £1.00 | 95p   | 90p   |
| TAA350A  | £1.85 | £1.80 | £1.70 |
| μA703C   | 28p   | 26p   | 24p   |
| μA709C   | 85p   | 83p   | 30p   |
| μA711    | 45p   | 48p   | 40p   |
| TBA800   | £1.50 | 30h   | TOP   |
| IDAGOO   | PT.00 |       |       |

| NUMERI       | CAL IN  | DICAT | TOR T  | UBE  | \$   |
|--------------|---------|-------|--------|------|------|
| CD66         |         |       |        |      | L-87 |
| GR116        |         |       |        | #:   | L·70 |
| 3015F Min    |         |       |        |      | 1.50 |
| MAN 3M. I    |         |       |        |      |      |
| All indicat  | ors 0.9 | + 1   | ecima) | l po | int. |
| All, side v  |         |       |        | for  | all  |
| types, avail | able on | reque | est.   |      |      |
| ZN414        |         |       | £1.    | 20 e | ach  |

# I.C. Radio Rec. incl. full cir. data.

TRIPLE 66-bit DYNAMIC
SHIFT REGISTER EDSR 3166
Comprises three 66-bit 20 dynamic
shift registers with independent
inputs and outputs. TTL compatibility and buffered clock lines to
reduce the capacitive load presented at the clock pins. A bootstrapped buffer ensures a full logic
swing at the output.

£2-50 each

| DUAL-IN-LINE 8  | OCKE?  | rs.   |         |
|-----------------|--------|-------|---------|
| 14 & 16 Lead S  | ockets | for u | se with |
| DUAL-IN-LINE    | I.C's. | TWO   | Ranges  |
| PROFESSIONAL    | & NE   | W LOW | COST.   |
| PROF. TYPE No.  | 1-24   | 25-99 | 100up.  |
| TSO 14 pin type | 33p    | 30n   | 27a     |
| TSO 16 ,, ,,    | 38p    | 85p   | 32n     |
| LOW COST No.    |        |       |         |
| BPS 14          | 16p    | 140   | 120     |
| BPS 16          | 17p    | 15p   |         |
| BPS 8 spin type | 15p    | 135   | 115     |

DTL 930 SERIES LOGIC I.C's

Type 1 25 100+
BP930 15p 14p 13p
BP932 16p 15p 14p
BP933 16p 15p 14p
BP935 16p 15p 14p
BP935 16p 15p 14p
BP935 16p 15p 14p
BP945 16p 15p 14p
BP944 16p 16p 14p
BP944 30p 28p 25p
BP946 15p 14p 13p
BP948 30p 28p 25p
BP948 30p 28p 25p
BP948 30p 28p 25p
BP949 15p 14p 13p
BP949 45p 43p 40p
BP9099 45p 43p 40p

# ALL PRICES INCLUDE VAT.

# 74 Series T.T.L. I.C's

BI-PAK STILL LOWEST IN PRICE. FULL SPECIFICATION

| GUARANTEED. ALL FAMOUS MANUFACTURERS                  |           |
|-------------------------------------------------------|-----------|
| Type Quantities Type Quantities Type Qu               | antities  |
| 1 25 100+ 1 25 100+ 1                                 | 25 100+   |
| fp fp fp fp fp fp                                     | e p & p   |
|                                                       | 0.86 0.84 |
|                                                       | L·54 1·50 |
|                                                       | 0.82 0.79 |
|                                                       | 1.54 1.50 |
|                                                       | 2.40 2.80 |
|                                                       | L·05 1·00 |
|                                                       | L·10 1·00 |
|                                                       | 1.75      |
|                                                       | 1.15 1.10 |
|                                                       | 1.15 1.10 |
|                                                       | 1.15 1.10 |
|                                                       | 70 1.65   |
|                                                       | .70 1.65  |
|                                                       | .70 1.65  |
|                                                       | .70 1.65  |
|                                                       | 10 2.00   |
|                                                       | 10 2.00   |
|                                                       | .30 2.25  |
|                                                       | .95 1.90  |
|                                                       | .85 1.30  |
|                                                       | .55 1.50  |
|                                                       | .55 1.50  |
|                                                       | 55 1.50   |
|                                                       | 50 4.00   |
|                                                       | 45 1.40   |
|                                                       | 30 2.20   |
|                                                       | ·10 2·00  |
|                                                       | ·10 2·00  |
|                                                       | 10 2.00   |
|                                                       | 10 2.00   |
|                                                       | ·80 1·70  |
|                                                       | ·50 1·40  |
| 7444 1.20 1.15 1.10 74111 0.95 0.92 0.90 74196 1.73 1 | 70 1.65   |
|                                                       | ·70 1·65  |
|                                                       | ·85 3·20  |
| 1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1               | 00 2.90   |

Devices may be mixed to qualify for quantity price. (TTL 74 series only) data is available for the above series of I.C.'s in booklet form. Price 35p.

Price

# P.W. TELE-TENNIS KIT OF PARTS

Including all resistors, capacitors, semi-conductors, I.C. sockets, switches and transformer

Our Usual Price £27.50

### SPECIAL OFFER

£23.50 incl. V.A.T. and P. & P. We regret free pack not applicable to this offer

ND 120 NIXIE DRIVER TRANSISTOR.

Suitable replacement for BSX 21, C 407, 2N 1893 BSX 21, 120veb-

0.19 0.17 0.16

Sil. trans. suitable for P.E. Organ. Metal TO-18 Eqvt. ZTX300 6p each. Any Qty.

GP 100 TOS METAL CASE GERMANIUM

Vebo=80V. Veco=50V.
I.C.=10 amps. Ptot=
30W. hte=30-170.
Replaces the majority of
Germanium power transistors in the 'OC, AD
and NKT range.

1 25 100+ 0·47 0·44 0·40

GP 300 TO3 METAL CASE SILICON

CASE SILICON

Vebo=100V. Veco=60V

I.C.=15 amps. Ptot=
115W. hfe=20. 100fT.=
1MHz. Suitable replacement for 2N 3055,
BDY 11 or BDY 20.

25 100+ 0·53 0·51 0 · 55

**NEW 8th EDITION** 250 pages

Z50 pages
TRANSISTOR EQUIVALENTS BOOK. A complete cross reference and
equivalents book for
European, American and
Japanese Transistors.
Exclusive to BI-PAK. £1:85 each.

A LARGE RANGE OF TECHNICAL AND DATA BOOKS ARE NOW AVAILABLE EXSTOCK. SEND FOR FREE LIST.

SIL. G.P. DIODES &p 300mW 40PIV(Min.) 100 500 30 0.55 100 1.65 500 5.50 000 9.90 Sub-Min. 500 Fully Tested 1,000 Ideal for Organ Builders

### AD161/162

PNP
M/P COMP GERM.
TRANS. OUR LOWEST PRICE OF 75p
PER PAIR.

LOOK FOR OUR AUDIO & **ELECTRONIC** COMPONENTS

**ADVERTISEMENTS** PRACTICAL WIRELESS EVERYDAY **ELECTRONICS AND** 

FIII.I. RANGE FULL RANGE OF ZENER DIODES VOLTAGE RANGE 2-33V. 400mV (DO-7 Case) 12p ca. 1½W (Top-Hat) 18p ca. 10W (SO-10 Stud) 32p ca.

# QUALITY TESTED SEMICONDUCTORS

Q1 20 Red spot transistors PNP 0-55
Q2 16 White spot R.F. translators PNP 0-55
Q3 4 OC 77 type transistors 0-55
Q4 6 Matched transistors OC44/45/81/81D 0-55
Q5 4 OC 75 transistors 0-54/45/81/81D 0-55
Q6 5 OC 72 transistors 0-55
Q7 4 AC 128 transistors PNP high gain 0-55
Q8 4 AC 126 transistors PNP 0-55
Q8 7 OC 31 type transistors 0-55
Q10 7 OC 71 type transistors 0-55
Q11 2 AC 127/128 Complementary pairs
PNP/NPN 10-55
Q12 3 AF 116 type transistors 0-55
Q13 3 AF 117 type transistors 0-55
Q14 3 OC 171 H.F. type transistors 0-55
Q15 7 2N2926 Sil. Epoxy transistors
mixed colours 0-55

Q15 7 2N2926 8H. Epoxy transistors
mixed colours
Q17 5 NPN 2 × ST.141 & 3 × ST.140 ...
Q18 4 MADT'S 2 × MAT 100 & 2 × MAT
120 ...
Q19 3 MADT'S 2 × MAT 101 & 1 × MAT 0.55 

 Q26
 8 OA95 Germanium diodes sub-min

 IN69
 0.55

 Q27
 2 10A PIV Silicon rectifiers IS425 R.
 0.55

 Q28
 2 Silicon power rectifiers BYZ I3
 0.55

 Q29
 4 Silicon transistors 2 × 2N698,
 1 × 2N697, 1 × 2N698
 0.55

 Q30
 7 Silicon switch transistors 2N706
 NPN
 0.55

 Q31
 6 Billoon switch transistors 2N708
 2N708
 0.55

RADIO CONSTRUCTOR

555 I.C. 65p each

# MAMMOTH I.C. PACK

APPROXIMATELY 200 PIECES ASSORTED MANUFACTURERS FALL-OUT INTE-GRATED CIRCUITS INCLUDING LOGIC 74 SERIES LINEAR and AUDIO AMPLIFIERS

MANY CODED also SOME UNKNOWN TYPES - YOU TO IDENTIFY

**PAK NO. M.I.C. 200** 

PRICE £1.25 per PAK including p & p & V.A.T.

KING OF THE PAKS **Unequalled Value and Quality** 

### **NEW BI-PAK UNTESTED SEMICONDUCTORS**

Money back refund if not satisfied

| Pak I          | io. | Description                                          | Price<br>£p |
|----------------|-----|------------------------------------------------------|-------------|
| U 1            | 120 | Glass Sub-Min. General Purpose Germanium Diodes      | 0-55        |
| U 2            |     | Mixed Germanium Transistors AF/RF                    | 0.55        |
| U 3            | 75  | Germanium Gold Bonded Sub-Min. like OA5, OA47        | 0-55        |
| U 4            |     | Germanium Transistors like OC81, AC128               | 0.55        |
| U 5            | 60  | 200mA Sub-Min. Silicon Diodes                        | 0.55        |
| Ū 6            | 30  | Sil. Planar Trans. NPN like BSY95A. 2N706            | 0.55        |
| Ű 7            | 16  | Sil. Rectifiers TOP-HAT 750mA VLTG. RANGE up to 1000 | 0.55        |
| U 8            | 50  | Sil. Planar Diodes DO-7 Glass 250mA like OA200/202   | 0.55        |
| U 9            | 20  | Mixed Voltages, 1 Watt Zener Diodes                  | 0 - 55      |
| U10            | 20  | BAY50 charge storage Diodes DO-7 Glass               | 0 · 55      |
| U11            |     | PNP Sil. Planar Trans. TO-5 like 2N1132, 2N2904      | 0.55        |
| Ū13            | 30  | PNP-NPN Sil. Transistors OC200 & 28 104              | 0.55        |
| U14            | 150 | Mixed Silicon and Germanium Diodes                   | 0.55        |
| Ū15            |     | NPN Sil. Planar Trans. TO-5 like BFY51, 2N697        | 0.55        |
| U16            | 10  | 3 Amp Silicon Rectifiers Stud Type up to 1000PIV     | 0.55        |
| U17            |     | Germanium PNP AF Transistors TO-5 like ACY 17-22     | 0.55        |
| <b>U18</b>     | 8   | 6 Amp Silicon Rectifiers BYZ13 Type up to 600 PIV    | 0.55        |
| U19            |     | Silicon NPN Transistors like BC108                   | 0.55        |
| U20            | 12  | 1.5 Amp Silicon Rectifiers Top Hat up to 1000 PIV    | 0 - 55      |
| U21            |     | AF. Germanium Alloy Translators 2G300 Series & OC71  | 0.55        |
| U23            |     | MADT's like MHz Series PNP Translators               | 0.55        |
| U24            | 20  | Germanium 1 Amp Rectifiers GJM Series up to 300 PIV  | 0 - 55      |
| U25            | 25  | 300 MHz NPN Silicon Transistors 2N708, BSY27         | 0.55        |
| U26            | 30  | Fast Switching Silicon Diodes like IN914 Micro-Min   | 0.55        |
| U29            | 10  | 1 Amp SOR's TO-5 can, up to 600 PIV CRS1/25-600      | 1.10        |
| U32            | 25  | Zener Diodes 400mW DO-7 case 3-18 volts mixed        | 0.55        |
| USS            | 15  | Plastic Case 1 Amp Silicon Rectifiers IN4000 Series  | 0 · 55      |
| U34            | 30  | Silicon PNP Alloy Trans. TO-5 BCY26 28302/4          | 0.55        |
| U35            | 25  | Silicon Planar Transistors PNF TO-18 2N2906          | 0.55        |
| U36            |     | Silicon Planar NPN Transistors TO-5 BFY50/51/52      | 0.55        |
| <del>U37</del> | 30  | Silicon Alloy Transistors SO-2 PNP OC200, 28322      | 0.55        |
| U38            | 20  | Fast Switching Silicon Trans. NPN 400 MHz 2N3011     | 0.55        |
| U39            | 30  | RF. Germ. PNP Transistors 2N1303/5 TO-5              | 0.55        |
| U40            | 10  | Dual Transistors 6 lead TO-5 2N2060                  | 0.55        |
| U43            | 25  | Sil. Trans. Plastic TO-18 A.F. BC113/114             | 0.55        |
| U44            |     | Sil. Trans. Plastic TO-5 BC115/116                   | 0.55        |
| U45            | 7   | 3A SCR. TO66 up to 600PIV                            | 1.10        |
| U46            | 20  | Unijunction transistors similar to TIS43             | 0.55        |
| U47            | 10  |                                                      | £1·10       |
| U48            | 9   |                                                      | £1·10       |
| U49            | 12  | NPN Sil. plastic power trans. 60W like 2N5294/5296   | £1·10       |

Code No's, mentioned above are given as a guide to the type of device in the pak. The devices themselves are normally unmarked.

One 55p Pak of your own choice free with orders valued £4 or over

**CADMIUM CELLS** 

ORP12 48p

### INTEGRATED CIRCUIT PAKS

Manufacturers "Fall Outs" which include Functional and Part-Functional Units. These are classed as 'out-of-spec' from the maker's very rigid specifications, but are ideal for learning about I.C's and experimental work.

| Pak No. Conte          | nts Price | Pak No. Contents        | Price | Pak No. Contents          | Price  |
|------------------------|-----------|-------------------------|-------|---------------------------|--------|
| UIC00-12×74            | 00 0.55   | UIC46-5×7446            | 0.55  | UIC90 = 5 × 7490          | 0.5    |
| $UIC01 = 12 \times 74$ | 01 0.55   | $UIC48 = 5 \times 7448$ | 0.55  | $UIC91 = 5 \times 7491$   | 0.8    |
| $UIC02 = 12 \times 74$ | 02 0.55   | UIC50 = 12 × 7450       | 0.55  | $UIC92 = 5 \times 7492$   | 0.5    |
| $UIC03 = 12 \times 74$ | 03 0.55   | UIC51-12×7451           | 0.55  | UIC93 - 5 x 7493          | 0.5    |
| UIC04=12×74            |           | UIC53-12×7453           | 0.55  | $UIC94 = 5 \times 7494$   | 0.5    |
| UIC05=12×74            |           | UIC54-12 x 7454         | 0.55  | UIC95 = 5 x 7495          | 0 . 54 |
| UIC06 = 8 x 740        | 6 0.55    | U1C60=12 x 7460         | 0.55  | UIC96-5×7496              | 0.8    |
| UIC07-8 x 740          |           | UIC70-8×7470            | 0.55  | UIC100=5×74100            | 0.5    |
| UIC10→12×74            |           | UIC72=8×7472            | 0.55  | $UIC121 = 5 \times 74121$ | 0.5    |
| UIC20=12 x 74          |           | UIC73=8×7473            | 0.55  | UIC141 = 5 × 74141        | 0.5    |
|                        | A 12      | TTTOP . O PARA          | O. KE | ******* E 743 KT          | A #    |

0.28

UIC20=12 × 7420 · U·50 UIC74=8 × 7474 UIC40=12 × 7430 0·55 UIC76=8 × 7474 UIC40=12 × 7440 0·55 UIC76=8 × 7476 UIC41=5 × 7441 0·55 UIC81=5 × 7480 UIC42=5 × 7442 0·55 UIC81=5 × 7481 UIC44=5 × 7444 0·55 UIC82=5 × 7482 UIC45=5 × 7445 0·55 UIC83=5 × 7483 UIC45=5 × 7445 0·55 UIC83=5 × 7486 UIC45=5 × 7445 0·55 UIC83=5 × 7486 UIC45=5 × 7445 0·55 UIC86=5 × 7486 UIC45=5 × 7445 0·55 UIC86=5 × 7486 UIC45=5 × 7445 0·55 UIC45=5 × 7486 UIC45=5 × 7445 0·55 UIC45=5 × 7486 UIC45=5 × 7445 0·55 UIC45=5 × 7486 0·55 UIC45= UIC161=5 × 74151 0.65 UIC154=5 × 74154 0.65 UIC193=5 × 74193 0.65 UIC199=5 × 74199 0.65 0.55 0.55 0.55 0.55 0.55 0.55

UICXI=25 Assorted 74's £1.65

Packs cannot be split, but 25 assorted pieces (our mix) is available as PAK UIC X1.

1974 CATALOGUE NOW READY 10p

### **NEW LOW PRICED TESTED S.C.R.'s**

PIV 1A 3A 5A 5A 7A 10A 16A 30A TO5 TO66TO66TO64TO48TO48TO48TO48 

SIL. RECTS. TESTED

PIV 300mA 750mA 1A 1.5A 3A 10A 30A 70 0-05 0-06 1N4001 0-05 0-08 0-15 0-21 0-60 100 0-05 0-07 1N4002 0-08 0-10 0-17 0-23 0-75 200 0-08 0-15 1N4004 0-08 0-15 0-30 0-38 1-35 600 0-09 0-17 1N4004 0-08 0-15 0-30 0-38 1-35 600 0-09 0-17 1N4005 0-10 0-18 0-36 0-45 1-90 800 0-12 0-19 1N4006 0-11 0-20 0-38 0-55 2-10 1000 0-14 0-30 1N4007 0-12 0-25 0-48 0-65 2-50 1200 — 0-35

| DIACS FOR USE WITH TRIACS. BR100 (D32) 25p each                        | vво               | M 2A           | IACS<br>6A<br>TO-66 | 10 A<br>TO-48          |
|------------------------------------------------------------------------|-------------------|----------------|---------------------|------------------------|
| IO amp POTTED<br>BRIDGE RECTIFIER<br>on heat sink.<br>IOOPIV. 99p each | 100<br>200<br>400 | 88<br>55<br>77 | 55<br>66<br>83      | #p<br>83<br>99<br>1.21 |

2N3055

115 WATT SIL POWER NPN 55p EACH

Giro No. 388-7006 Please send all orders direct to warehouse and despatch department

P.O. BOX 6, WARE · HERTS
Postage and packing add 15p. Overseas add extra for airmail. Minimum order 55p. Cash with order please.

Guaranteed Satisfaction or Money Back

2 Amp. BRIDGE RECTS.
50 v RMS 35p each
100 v RMS 40p ...
200 v RMS 45p ...
400 v RMS 50p ...
1,000 v RMS 55p ...
Size 16 mm × 16 mm.

D1699 NPN SILICON DUAL TRANSISTOR (Similar to 2N2060) 25 100+ 0·26 0·23

LINEAR INTEGRATED CIRCUIT PAKS ULIC709 ULIC710 ULIC741 10 × 709 ..... 7 × 710 ..... 7 × 741 ..... 5 × 747 ..... 7 × 748 ..... .. 0.55 .. 0.55 .. 0.55 .. 0.55 .. 0.55

# THINGS TO COME

WITH the year of 1974 almost behind us—what of 1975?
During 1974 Practical Wireless introduced to the constructor the first bulld-it-yourself TV tennis game and now it is universally known as P.W. Tele-Tennis.

The popularity of this design has been immense, and to those readers who visited our stand at the recent international Audio Festival & Fair especially to see P.W. Tele-Tennis in operation, we trust that you all got your chance to have a go—despite the queues. Interest was high, especially with regard to our new range of constructional projects that were on display and that we have especially commissioned for the New Year. To start 1975 off, we are featuring in the January issue of Practical Wireless Part 1 of a constructional series on model control by radio. A radio controlled boat—using the system to be described—was on display on our stand at the Audio Fair.

A new version of the popular Texan Amplifier was also on display. This was of Swedish origin and the manufacturers expect to introduce the kit to the U.K. market during 1975. Known as the Texan U66, it had in addition to numerous extra features, a push button FM tuner! We shall be giving brief details of this interesting design in our

February issue.

Author, Richard Mann of Texas Instruments Limited, designer of the original P.W. Texan amplifier is currently engaged in updating and uprating the original design. This amplifier was especially designed for Practical Wireless magazine by Richard Mann in 1972. Full constructional details on this Mk II version will be published in Practical Wireless during 1975.

The February issue of Practical Wireless features the P.W. Ascot Stereo Cassette Deck. Especially designed for home hi-fi systems, it utilises a Goldring tape transport mechanism and also includes dynamic noise reduction. Start building the P.W. Ascot with the February issue.

Our March issue will feature Part 1 of the P.W. Easy-Build Electronic Organ—for use with home hi-fi systems. For those readers who require further details of these unique P.W. constructional projects and do not want to miss other new and exciting P.W. constructional designs that will be appearing in 1975 we recommend that you order P.W. on a regular basis.

To our many readers wherever you may be—
the Editor and staff of

PRACTICAL WIRELESS wish you all

seasonal greetings and a prosperous 1975.

Do not miss out—place a regular order with your local newsagent or alternatively write to our Subscription department, details are given on page 777.

LIONEL E. HOWES-Editor.

# NEWS...

### 'Look ahead' Radar

ARGE modern tankers may have little time to spare for manoeuvre in a potentially dangerous situation. A fully automatic radar system can speed up the work of the watch officer and provide those extra vital seconds. With this in mind, four new Shell tankers are getting the Predictor system of anti-collision radar. Predictor was developed by Marconi Marine with co-operation from Shell International Marine.

When the equipment is fitted to the new tankers Limnea, Liparus and Lancella (all 300,000 tonners) and the liquified natural gas carrier Genota, 15 Shell tankers will be carrying Predictor radar.

Predictor was the first commercial radar system which released the navigating officer from the task of manually assessing other ships' movements. As its name implies, it enabled him to 'see ahead'. Predictor gives the navigating officer an accurate prediction of the effect a contemplated change of course or speed by his ship would have on the entire radar scene, before he actually takes any such action.

Predictor was also the first system to provide fully automatic plotting of all targets visible on the radar screen. It shows up all above-surface objects-ships, coastlines or buoys-in its area. Simply by pressing a switch, and without the need for any prior action or calculation, the tracks of all fixed and moving objects are plotted continuously. Predictor presents them either in relative motion- relative, that is. to the radar-carrying ship in its present position-or true motion. The plot is updated every 10 seconds, but situations up to 18 minutes previously can be shown.

When the Predictor system was originally being developed, Marconi approached members of Marine Operational Services division in Shell International Marine. They were sufficiently impressed with the Predictor approach to suggest that when a prototype model was available it should be tested on a Shell tanker.

# Practical Wireless Tele-Tennis on BBC's "Nationwide" programme





IKE HUGHES, the author of P.W. Tele-Tennis, was recently interviewed on BBC's "Nationwide" programme.

It was suggested by the interviewer, pretty Suzanne Hall, that all the equipment one required for playing our armchair tennis game was a soldering iron and a pair of slippers!

It was stated on the programme that most of the 12,000 television tennis games are situated in pubs and clubs but the *Practical Wireless* design was the only do-it-yourself game available for the home constructor.

Mike Hughes explained to viewers that the P.W. Tele-Tennis had been designed with the home constructor in mind and that it employed integrated circuits and printed circuit boards. The aver-

age constructor could build it providing he had some ability to carry out the soldering and follow a circuit layout.

When asked how the Tele-Tennis worked in relation to an ordinary television set. Mike Hughes explained that at the back of the Tele-Tennis case, there was a socket, just like the aerial socket on the back of a TV receiver. All that was needed was a length of cable like TV aerial downlead cable with a standard co-axial plug each end. One end plugged into the game and the other end plugged into the TV aerial socket. The game was then connected to the mains and switched on. The next move was then to tune the TV to a spare channel just as if one were tuning in a normal television programme. Suzanne Hall asked if the unit could be adapted to play other games and Mike Hughes replied, "Yes, in fact the basic game we are looking at here is very fundamental. It can be turned into a football or basket-ball game but I must admit some of them stretch the imagination a little."

Mike then played a few games of Tele-Tennis with Suzanne Hall and explained to viewers that he was not the real expert. The Tele-Tennis 'champ' was his seven-year-old son, Andrew.

Admitting defeat, Suzanne concluded the interview and admitted she was not quite quick enough on the trigger. She told Mike Hughes that she would have to have a lot more practice before she could win a game of Tele-Tennis.

# **Mullard Data Book**

A NEW feature of the 1974/75 edition of the Mullard Data Book is brief data on radio, audio and TV modules and TV assemblies.

The traditional formula has been changed slightly to show ICs separately. The full ranges of valves, TV picture tubes, semiconductors, capacitors, resistors and other components for entertainment applications are fully covered.

As before, different coloured papers are used for each of the main products sections, i.e. blue for semiconductors and ICs;

orange for valves and TV picture tubes; green for capacitors, resistors, modules and assemblies.

Copies may be obtained from local booksellers or Technical Press Limited, Freeland, Oxford OX7 2AP. for 40p.

# IBA Journal

THE Independent Broadcasting Authority has launched a new quarterly journal of opinion with the object, as the foreword describes, "Of presenting the opportunity to provide frank accounts of the problems the Authority must face and the

elements which go into deciding its policies and plans".

The journal is also to give a wide range of people, as well as those engaged in broadcasting, a chance to present their own views about the many opinions expressed in it or to raise any fresh issues for examination in future editions.

The first issue contains articles on "Impartiality in Broadcasting". "Future pattern of the ILR", "Television Coverage", "Role of Television in Science Education."

For further information, contact the Editor, Independent Broadcasting, IBA, 70 Brompton Road, London, SW3 1EY.

# **PART**

# HARLES HEATH

ANY receivers provide no tuning coverage over the frequency range of about 300kHz to 550kHz, this being the "gap" between the long wave band of approximately 150-300kHz, and the medium wave band extending from about 550kHz to 1,500kHz. Such receivers usually have an intermediate frequency of around 470kHz, which lies between these LW and MW bands.

By adopting an IF of 1.6MHz it is possible to arrange tuning to give continuous coverage, thereby including the 600m or 500kHz shipping band, as well as other signals using adjacent frequencies. The receiver described here does in fact have three bands, with continuous coverage from 150kHz to 5MHz (except for a small gap at the 1.6MHz IF). These ranges therefore include ship and shore; 1.8-2.0MHz and 3.5-3.8MHz amateur bands; 2.5MHz standard frequency transmissions; other signals in these ranges, as well as the usual medium and long wave bands.

Ranges are selected with a bandswitch, and are approximately as follows:

> Range 1. 150-470kHz. 2000-640m. Range 2. 470-1500kHz. 640-200m. Range 3. 1.55-5.0MHz. 190-60m.

The receiver will operate with AM (amplitude modulation), CW (Morse) and SSB (single sideband) signals, which will be found in the broadcast. amateur, and other bands covered.

Circuitry is confined to three boards; mixer, oscillator and IF sections, BFO unit, and 3-stage audio amplifier.

# MIXER AND OSCILLATOR

Fig. 1 shows this part of the circuit. S1 and S2 select the aerial coils L1, L2 or L3 as required, S3 and S4 are the remaining sections of the 3-way switch, and select oscillator coils L4, L5 or L6, each with its own padder capacitor, C7, C8 or C9.

The 2×500pF tuning capacitor VC1/2 is operated by a dual ratio ball drive. As a panel trimmer TC1 is provided, with a fixed capacitor, C10, in the oscillator section, individual trimmers for each coil are not necessary. Even if individual trimmers were fitted for each range, changes to the aerial might upset alignment, while the use of TC1 does make sure this circuit can be peaked up at any frequency.

Tr1 is gate-protected, with signals at gate 1, oscillator injection at gate 2, and the drain circuit running

to the first IF transformer.



### IF AMPLIFIER

This is on the same board, using the circuit in Fig. 2, and operates at 1.6MHz. IFT1 and IFT2 are double tuned, and IFT3 is single tuned. These IFT's are pre-set by the manufacturer, the cores of which should not be adjusted except for final alignment after construction is completed.

Automatic gain control is applied to Tr3 through R12 and R7 in the usual way, while VR1 constitutes

the audio gain or volume control.

R9 can be 560 ohms. However, the actual gain of Tr3 and Tr4 may vary quite widely. If gain is high, instability arises, and whistles accompany all signals. It is then necessary to increase R9 in value. On the other hand, where gain is low, R9 can be of lower value, or might in some cases be omitted completely. R9 therefore is not critical, but efficiency is at a maximum when the value here is the lowest which prevents instability. There is probably no point in having available more than three or four possible values, such as 100, 330, 560 ohm, and perhaps  $1k\Omega$ .

### **BFO UNIT**

The beat frequency oscillator is constructed on a separate board, using the circuit in Fig. 3. (If this section is omitted, the receiver is suitable for reception of AM only, from 150kHz to 5MHz.)

The BFO operates at 1.6MHz, and is set to this frequency by rotating the core of L7, with VC4 half



Fig. 1: Circuit of the mixer and oscillator stages of the Marine receiver. For simplicity the remaining stages are shown as separate diagrams.

Band switches S1 to S4 are ganged.



Fig. 2: The IF amplifier, circuit shown here, is built on a common circuit board with the mixer/oscillator.

closed. The frequency can then be shifted either side the IF by turning VC4. This allows an audible beat frequency to be obtained for CW reception, or allows the reception of SSB signals by adjusting the oscillator to the frequency of the suppressed carrier.

S5 (Fig. 4) and S6 has three positions, these being "Off," "AM" and "CW-SSB" reception. Tr5 operates in the last position only. The large capacitor C19 prevents frequency modulation at voice frequency by smoothing out the fluctuating current demand on the battery made by the output stage, at other than

low-volume levels.

### AUDIO AMPLIFIER

This has three stages and is constructed on its own board (Figs. 4 and 9). Tr6 is a pre-amplifier, followed by the driver Tr7, and push-pull output stage Tr8/9. Quiescent current is pre-set by the adjustable resistor VR2, which gives good gain and volume, depending upon operating conditions and transistors used. It is preferable that Tr8/9 are a matched pair. Many other transistors of comparable type will be suitable as driver and for output purposes.

# ★ components list

| Desistano                                             | Canacitore                                             |
|-------------------------------------------------------|--------------------------------------------------------|
| Resistors                                             | Capacitors                                             |
| R1 120kΩ                                              | C16 180pF                                              |
| R2 100kΩ                                              | C17 330pF Silver Mica                                  |
| R3 2·2kΩ                                              | C18 5000pF                                             |
| R4 2·7kΩ *                                            | C19 220µF 10V electrolytic                             |
| R5 1M $\Omega$                                        | VC4 15pF Jackson C804                                  |
| R6 5·6kΩ                                              |                                                        |
| R7 47kΩ                                               |                                                        |
| R8 120kΩ                                              | Inductors                                              |
| R9 560Ω                                               | L7 55 turns 32swg enamelled wire on 7/16 in.           |
| R10 330kΩ                                             | diameter cored former.                                 |
| R11 390Ω                                              |                                                        |
| R12 27kΩ                                              |                                                        |
| R13 1·5kΩ                                             | Semiconductors                                         |
|                                                       | Tr5 BC107                                              |
| VR1 10kΩ log potentiometer                            |                                                        |
| , ,                                                   |                                                        |
| Capacitors                                            | Miscellaneous                                          |
| C1 100pF                                              | Veroboard (0-15in matrix) 23 x 23in., Switch (S5-S6)   |
| C2 0·05µF                                             | 2-pole 3-way rotary.                                   |
| C3 10pF                                               | m bara a seema a seemal .                              |
| C4 0-01µF                                             |                                                        |
| C5 100pF Silver Mica                                  | AUDIO BOARD                                            |
|                                                       | Resistors                                              |
| C6 0.1µF                                              | R16 1kΩ                                                |
| C7 35pF 1% Silver Mica                                | R17 2·2MΩ                                              |
| C8 100pF 1% Silver Mica                               | R18 10kΩ                                               |
| C9 350pF 1% Silver Mica                               | R19 2-2kΩ                                              |
| C10 22pF SM                                           |                                                        |
| C11 8µF 6-4V electrolytic                             | R20 12kΩ                                               |
| C12 0·01μF                                            | R21 47kΩ                                               |
| C13 0·1μF                                             | R22 680Ω                                               |
| C14 220µF 10V eletrolytic                             | R23 10kΩ                                               |
| C15 0·01µF                                            | R24 10kΩ                                               |
| VC1/VC2 Polar 2 x 500pF gang with feet. (Home         | R25 4·7Ω                                               |
| Radio)                                                | All resistors 5% <del>1</del> W                        |
| TC1 50pF Jackson C804                                 | VR2 250Ω miniature pre-set potentiometer               |
|                                                       |                                                        |
| Inductors                                             |                                                        |
|                                                       | Capacitors                                             |
| L1 Blue, Range 1                                      | C20 0·5μF                                              |
| L2 Blue, Range 2                                      | C21 100µF 10V electrolytic                             |
| L3 Blue, Range 3                                      | C22 8µF 6·4V electrolytic                              |
| L4 White, Range 1                                     | C23 100µF 10V electrolytic                             |
| L5 White, Range 2                                     | C24 100µF 6-4V electrolytic                            |
| L6 White, Range 3                                     |                                                        |
| All miniature, valve type (Denco)                     | •                                                      |
|                                                       | Semiconductors                                         |
| Semiconductors                                        | Tr6 BC107                                              |
| Tr1 40673                                             | Tr7 AC198                                              |
|                                                       | Tr8 AC128 matched pair                                 |
| Tr2 MPF102                                            | Tro Actor > matched pair                               |
| Tr3 BF195                                             | Tr9 AC128 S Matches pair                               |
| Tr4 BF195                                             |                                                        |
| D1 OA90                                               | Miscellaneous                                          |
|                                                       |                                                        |
| Miscellaneous                                         | T1 (Home Radio TR64), T2 (Home Radio TR65A),           |
| IFT1/2 (Denco IFT18/1-6), IFT3 (Denco IFT17),         | Veroboard (0·15in. matrix) 4½ x 2in.                   |
| Veroboard (0·15in. matrix,) 3½ x 4in., Switch (S1-S4) |                                                        |
| 4-pole 3-way rotary.                                  | CADINETETO                                             |
| Those cand totally                                    | CABINET ETC.                                           |
|                                                       | 8 x 7 x 4in. universal chassis box with extra 7 x 4in. |
| BFO BOARD                                             | flanged side and 7 x 8in. flat plate.                  |
| Resistors                                             | DL6 dual-ratio drive (Home Radio, Mitcham). Knobs,     |
| R14 270kΩ                                             | rubber or plastic feet, insulated sockets, bolts and   |
| R15 5·6kΩ                                             | tags etc. Battery PP9, with terminal clips.            |
| *                                                     |                                                        |
|                                                       | . 1                                                    |

# MIXER/OSC./IF BOARD

These stages are assembled on plain Veroboard, approximately  $3^{1}2 \times 4$ in in size, and perforated with holes on a  $0\cdot 15$ in matrix. It would be possible to use plain unperforated 1/16in thick paxolin sheet, drilling this in advance for resistors and other items.

Holes are drilled so that the IFT pins come as in Fig. 6. Central holes to reach the cores are necessary under IFT1 and IFT2.

A metal bracket approximately  $3 \times 1^{1}$ 4in with a  $^{5}$ 8in flange is drilled for the switch and TC1 (Fig. 5), and bolted to the insulated board. (A piece cut from a flanged universal chassis member is ideal here.) Components can then be fitted as in Fig. 5, taking care to observe the polarity of C11, C14 and D1.

When starting the construction, it will be found that the easiest method is to fit a few items at a time, then turn the board over, and solder connections as in Fig. 6. In some places 24swg or similar connecting wire will be necessary. Place sleeving on any leads which may touch other wires or joints.

It can be a little confusing to check the leads of Tr1 and Tr2 when these are fitted. This can be overcome by using short pieces of coloured sleeving and referring to Fig. 6. For example Tr1, blue can be used for g1, green for g2, orange for d, and s can be left bare. Tr2 on the other hand can have blue for g, orange for d, and leave s bare.



Inside the Marine receiver with the audio board across the top, the mixer/oscillator board at the left and BFO board to the right.



Fig. 3: Circuit of the BFO unit. Below, view of the receiver with casework removed.





Fig. 4: The final circuit is of the audio amplifier. The speaker is fitted over a suitable aperture in the side of the case.



Figs. 5 and 6: Component layout and wiring of the combined mixer/oscillator and IF amplifier board.

R9 is soldered directly to pin 5 of IFT2, enabling it to be changed easily if this proves necessary. Flying leads are provided from D1 and C15 to go to the volume control and chassis return (Fig. 6). Connections also rundown through the board to go to VC1 and VC2 and to L4, L5 and L6. The switch and TC1 are now fitted, but the bush nuts of these are later used to hold the assembly to the front of the case.

### **BFO UNIT**

Prepare another metal bracket as already described, and bolt Veroboard approximately  $2^3_4 \times 2^3_4$ in to this, as in Fig. 7. The nuts holding VC4 and the switch will eventually secure this unit to the panel, as with the earlier board.





Fig. 7: above and Fig. 8, right, show both sides of the circuit board for the BFO unit.

L7 has 55 turns of 32swg enamelled wire, close wound on a 7/16in diameter former with adjustable core. Begin at the bottom of the former, leaving an end to reach to VC4 as in Fig. 7. Wind 45 turns, scrape the wire, and form a loop or tapping. Continue winding for another 10 turns, and take the wire down through the board to C17.

Wire switch S5/S6 as follows:

- (1) Off.
- (2) Battery positive to IF and AF amplifiers.

**(**)

(3) Battery positive to IF and AF amplifiers, and BFO Unit via R15 and C19 and S6.

tab

GCF 025)

Fig. 8 shows the underside of the BFO unit board. As mentioned, normal AM reception is obtained without this in use, so it can be built and added later if preferred.

### PART 2 NEXT MONTH ON ALIGNMENT AND TESTING



In the picture below, visitors to the Audio Fair gather round our stand to watch Tele-Tennis on the JVC "Videosphere".

The Top-right photograph shows a typical crowd round the stand. It was like this every day of the exhibition.

(Bottom right) Two visitors play Tele-Tennis while two pretty P.W. readers study some Data Cards.







# complete your HI-FI System... arithour

# INNEXT MONTH'S PRACTICAL WIRELESS

# ASCOTUBUEU BUNDEUBUEBUE

A stereo cassette deck designed especially for the home constructor, using the Goldring-Lenco CRV front-loading tape transport mechanism. Features include dynamic noise reduction circuitry, inputs for microphones and radio, and a premonitor facility which allows the sound levels to be set before recording commences. Separate record and replay amplifiers and electronic switching greatly reduce mechanical complexity.





# HOME TELEPHONE EXCHANGE

Completely silent ... except for the bell! A single PCB provides facilities for up to nine subscribers. Solid state switching using reed relays. Mains operation, taking just three watts. Overall size an unbelievable  $5'' \times 5'' \times 8''$  long.





# With the Doram catalogue, even the guarantee is guaranteed.

Doram is an entirely new way of buying electronic components.

So, to succeed, it's got to have something going for it, right?

We agree with you. And where Doram scores is in the security it gives the amateur buyer.

We'll give you peace of mind three ways.

# No-quibble guarantee.

Firstly, we guarantee to replace any component which arrives faulty. Absolutely free of charge.

And secondly, our guarantee is backed by the biggest electronics distribution Group in Britain.

# 7-day service.

Thirdly, we guarantee you'll have your components within 7 days from our receipt of your orders.

We're so confident of our service that if we can't supply

the part you want within 7 days we'll give you an immediate refund.

So you'll never get a tedious wait.

You know just where you stand with Doram.

# All branded goods.

All goods supplied by Doram are made by big-name manufacturers. And they're all to manufacturer's specifications. They're the best money can buy.

In fact, Doram gives the amateur the sort of service only professionals have enjoyed before.

# Millions of components.

All in all, we're big enough to offer you stocks of millions of components, on over 4,000 product lines.

All you do is buy the Doram catalogue for 25p (that's a yearly reference book for the price of a pint of lager) and then take your pick from it.

Use the coupon now. Send today for the first-ever Doram catalogue. It can take a lot of worry out of amateur components buying.

And for 25p that's not bad, is it?

| I ENCLOSE 25p* PLEASE<br>SEND ME THE NEW DORAM<br>CATALOGUE.             |
|--------------------------------------------------------------------------|
| Name                                                                     |
| Address                                                                  |
|                                                                          |
|                                                                          |
| <b>Doram Electronics Limited,</b> PO Box TR8,                            |
| Wellington Road Industrial Estate,<br>Wellington Bridge, Leeds LS12 2UF. |
| *This will be refunded on orders of £5 (less VAT) or more received       |
| by us before March 31st, 1975.                                           |
| Doram                                                                    |

# PRODUCTION LINES colin riches

# EMITAPE X1000

EMITAPE X1000 a new ultra dynamic ferric oxide cassette—has been introduced by EMI Tape Ltd., at the recommended retail price of 99p for a C.60 (excluding VAT).

Having satisfied itself of the tape's characteristics under laboratory conditions EMI Tape adopted the move of proving the tape in the way that hi-fi enthusiasts will judge it—by its sound reproduction qualities under user conditions.

To this end a programme of comparative listening tests was mounted over a three-month period. Under the adjudication of Mr. Denys Killick, who is publisher and editor of Hi-Fi Trade Journal as well as being audio editor of Cassettes and Cartridges, these tests set out to determine whether leading musicians and others representing the many sectors of music today—from the classics to pop—could discriminate in 'blind' tests between X1000 and expensive chrome formulations.

To ensure absolute impartiality in the tests, the performance of the Tandberg cassette decks used was checked to specification by Tandberg engineers and the recorders sealed by Denys Killick.

Music was recorded onto standard production cassettes—both X1000 and chrome—from EMI master tapes at Abbey Road under the scrutiny of Denys Killick and two senior audio engineers from AIR London, the biggest independent studios in London.

Later, at a series of listening tests the cassettes were played back—under supervision—to the musicians who made the original recordings ranging from the L.S.O. to the Spinners folk group.

In every case the participants were asked to record their opinions on a questionaire and subsequent analysis of these shows clearly that even the trained ear has difficulty in discerning any difference between X1000 and the expensive chrome cassettes used in the tests.

Mr. Ted Naef, managing director





of EMI Tape Ltd., commented "We began our research from the belief that what really matters to an audio enthusiast is the quality of sound he gets from his chosen medium, related to the cost of the product. Our new cassette which gives as pleasing a reproduction as expensive chrome dioxide cassettes is considerably cheaper to buy. In addition X1000 is a much less abrasive tape, and there is no need for a special bias switch on the recording machine. It will without doubt improve the performof many cassette ance recorders."

The main technical improvements in X1000 are:

- 1) An increase of 3-4dB in the 8-15kHz frequency range, compared to low noise tapes such as EMITAPE Hi-dynamic, giving a more realistic treble resulting in a brighter, more sharply defined sound.
- 2) Superior overload characteristics ensuring low distortion at high recording levels.
- 3) A wider dynamic range is obtained due to the tape's increased magnetic remanence, which results in less tape hiss.
- 4) When used with comparably high quality audio equipment, the tape exhibits a usable frequency response extending from 25Hz to 15kHz, giving a smooth clear bass coupled with crisp treble performance.
- 5) The improved high frequency response ensures a low level of intermodulation distortion providing a cleaner recording.

Further details may be obtained from EMI Electronics and Industrial, Blyth Road, Hayes, Middlesex.

# PEAK READING V.U. METER.

Partridge Electronics announce the release of a special V.U. meter system which registers true peak programme levels. This is achieved by the use of a professional grade Bach-Simpson meter with special electronic circuitry, which responds to both positive and negative peaks. It also has an attack and decay time normally only associated with PPMs: and does not suffer from zero drift; is independent of normal voltage fluctuations and therefore requires no setting up. 0dB reading is equivalent to 6 on a standard PPM meter. Operates from a 24 volt positive supply, and only consumes 4mA. This unit fills the gap left between the shortcomings of the conventional V.U. system and high cost PPM units. It will market at £8.32 plus VAT. Partridge Electronics, 21-25, Hart Road, Benfleet, Essex, England. SS73PB.

### **BEYER PHONES**

Beyer Dynamic, the West Germany based manufacturer of microphones, headsets and audio equipment, has produced a new headphone, type DT 302.

The DT 302 is a very lightweight headset. This is achieved by the design of the headband, which allows simple adjustment of the ear pieces up or down. These are protected by foam plastic pads eliminating any interference from "local noise", at the same time being exceptionally comfortable to the wearer. Three metres of lightweight cable complete the DT 302

Frequency response is quoted as 20-20,000Hz. Impedance: 2 × 600 ohms (can be connected directly to either high or low impedance outputs). Rated Power is approx. 7mW=7, IV for 600 ohms. The price of this headset is £7.83 plus V.A.T. Beyer Dynamic (GB) Limited, 1 Clair Road, Haywards Heath Sussex.



### IN CIRCUIT TESTER

Daystrom-Schlumberger have just released an in-circuit tester designated Type 670. It is aimed at those engineers and constructors who need to take voltage, current and resistance measurements in solid-state circuitry.

With the 670, it is simply a question of connecting the two probes across the current carrying conductor then reading off the value of the current.

To provide this measurement facility—claimed by the manufacturers to be unique for an instrument in its price range—the 670 uses a pair of two-terminal concentric probes. Capable of contacting circuit board rails 0.015in. apart, these specially-designed probes can be snapped together for fixed spacing, or detached for separate use.

One contact in each probe senses the voltage drop across the current-carrying conductor under test. A differential amplifier senses this and generates a bucking current until the voltage drop is balanced. The bucking current is therefore proportional to the circuit current, which is read directly on the meter.

In addition to the "in-circuit" current measuring capability, the FET multimeter offers eight voltage ranges and fourteen resistance ranges. Seven of the resistance ranges use low-power techniques—max 85mV—for testing semiconductors. Conventional current measurements can

be made with the standard probes also supplied with the "670".

The 670 is priced at £132. The kelvin clip probes for "in-circuit" current measurements in solid wire conductors are an optional extra. Daystrom Schlumberger, Gloucester.



### VIDOR POWER PLUS

Vidor have introduced the Power Plus line of batteries to extend their range.

The Power Plus line comprises six alkaline manganese and five mercury types.

A four-page colour leaflet describing the new batteries is available from: Crompton—Parkinson Ltd., Vidor Division, 50-52 Marefair, Northampton, NNI INY.

### PRINTED CIRCUIT KIT

This printed circuit kit from Eagle International of Wembley, Middlesex contains all the items necessary to reproduce a printed circuit to exact individual requirements. Designated the PK3 it is supplied in a durable case complete with comprehensive instructions.

The contents of the kit include: polishing powder, etch resist, etching liquid, resist remover, flux, copper clad phenolic circuit boards, stencil knife, spatula and etching tray. Recommended retail price of the PK3 is £2.86 excluding VAT. Eagle International, Precision Centre, Heather Park Drive, Wembley HA0 1SU.



### BATTERY FLUORESCENT

The Electronics Design Associates' 12V fluorescent lighting kit comes complete with printed circuit board, transformer, ready-drilled metalwork, tube end-caps, components, 8W tube, nuts, bolts etc.

The unit, which only takes about half-an-hour to build up, draws about 0.6A from the battery.

Full instructions for building are supplied with every kit and construction is simplicity itself—all you need to know is how to wield a soldering iron!

At the price of £3:19, which includes post and packing, this kit represents very good value for money and would make a good investment particularly at the time of the year we are often threatened with power cuts.

If you want to order a diffuser to give a really professional finish, there is an extra charge of 59p including VAT (12p post and packing if ordered separately).

The kit is available from *Electronics* Design Associates, 82 Bath Street, Walsall, WS1 3DE.



The built unit and a kit of parts.



HOUGH this unit is particularly intended for use with the Low Frequency & Marine 3-Band receiver described elsewhere in this issue, it can be employed with other receivers of suitable type, covering tuning long, medium and short wave bands up to 5MHz. It allows such a receiver to be operated without the use of an outdoor or extended wire aerial. The additional tuned circuit also considerably reduces second channel interference.

### **CIRCUIT**

This is shown in Fig. 1, and uses a 3-band ferrite aerial. For LW coverage, S1, is at L, and L1, L2 and L3 are in series, tuned by VC1. L4 and L5 are the base coupling windings for Tr1. For MW reception, S1b shorts the LW coil L3. With the specified ferrite aerial, no switching of the base circuit is necessary for the change to this band. For SW reception, L2, L3 and L5 are shorted, leaving L1 and L4 in use. L6 wound on L1, and L7 situated between L2 and L3 allow an external aerial to be coupled, if wanted.

Transistor Tr1 provides RF amplification; its gain is controlled by VR1. This is necessary to avoid overloading the receiver input. The transistor can be adjusted to be nearly regenerative, giving best sensitivity.



In the 3-band receiver mentioned, the bandwidth selects one of the three aerial coil primaries. This winding is present from Aerial to Earth sockets of the receiver, as in Fig. 1, and forms the collector load for Tr1, and also provides its DC return.

The active aerial unit is constructed in a screened box, except for the ferrite aerial, which is protected by an external insulated tube. The receiver described is also screened, and this prevents unwanted coupling between aerial and Trl collector inductors, which would cause feedback.

### CIRCUIT BOARD

This is approximately  $2^{1}_{2} \times 1^{1}_{2}$ in, Fig. 2. Two tags are first secured with  $^{1}_{2}$ in 6BA bolts, for the points MC. The resistors and capacitors can then be inserted, and connected as shown, keeping the leads against the board. R3 must be mounted close to the base of Tr1. If wished, R5 can be modified to suit the actual gain of Tr1, though  $1 \cdot 2k\Omega$  is generally satisfactory.

continued on page 813 -



Fig. 1: Circuit of the Active Aerial. It is essential that there is a DC path between the aerial and earth terminals on the receiver being fed by the Active Aerial.

# electronics really mastered

... practical ... visual ... exciting!

no previous knowledge no unnecessary theory no "maths"







**BUILD, SEE AND LEARN** 

step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

#### 1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

#### 2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS



as used currently in the various fields of electronics.

3/ CARRY OUT **OVER 40** EXPERIMENTS ON BASIC ELECTRONIC **CIRCUITS & SEE HOW** THEY WORK, including:

RAPY

valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit, servicing procedures.

This new style course will enable anyone to really understand electronics by a modern, practical and visual method-no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc.

for BROCHURE

or write if you prefer not to cut page

To: BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept., WLIS P.O. Box 156, JERSEY. Please send your free brochure, without obligation, to:

we do not employ representatives

**BLOCK CAPS** 

**ADDRESS** 

NAME

**PLEASE** 

gift also to all our students



# WILMSLOW AUDIO

### THE Firm for speakers!

| SPEAKERS                                                                                        |                      |
|-------------------------------------------------------------------------------------------------|----------------------|
| Baker Group 25 3, 8 or 15 ohm<br>Baker Group 35 3, 8 or 15 ohm<br>Baker Group 50/12 8 or 15 ohm | £7·75                |
| Baker Group 35 3, 8 or 15 ohm                                                                   | £8 50                |
| Baker Deluxe 12" d/cone                                                                         | £12 50<br>£10 75     |
| Baker Maior                                                                                     | €8 50                |
| Baker Regent                                                                                    | £7·75                |
| Baker Superb                                                                                    | £14·50               |
| Baker Auditorium 12<br>Celestion MH1000 horn                                                    | £12 · 50<br>£10 · 95 |
| Celestion PST8 for Unitex                                                                       | £2-55                |
| Celestion G12M 8 or 15 ohm                                                                      | £12.00               |
| Celestion G12H 8 or 15 ohm                                                                      | £15 00<br>£24 00     |
| Celestion G15C 8 or 15 ohm<br>Celestion G18C 8 or 15 ohm                                        | £33 ·00              |
| Coral 61"d/cone roll aurr. 8 ohm                                                                | £2-50                |
| Coral 8"d/cone roll surr. 8 ohm                                                                 | £3 · 25              |
| EMI 13 x 8 3, 8 or 15 ohm<br>EMI 13 x 8 150 d/c 3, 8 or 15 ohm                                  | £2·25<br>£2·50       |
| EMI 13 x 8 450 t/tw 3. 8 or 15 0hm                                                              | £3 · 75              |
| EMI 13 x 8 450 t/tw 3, 8 or 15 ohm<br>EMI 13 x 8 type 350 B or 15 ohm                           | £8 25                |
| EMI 13 x 8 20 watt base<br>EMI 61 93850 4 or 8 ohm                                              | £6 · 60              |
| EMI 5 1 93850 4 or 8 ohm<br>EMI 5 98132CP 8 ohm                                                 | £3·00<br>£2·50       |
| EMI 8 x 5 d/cone, roll surr 10 wait                                                             | £2 50                |
| EMI 21" tweeter 97492AT                                                                         | - 65                 |
| Eagle DT33 30 watt tweeter                                                                      | £5-45                |
| Eagle HT15 horn tweeter                                                                         | £3·80<br>£1·75       |
| Eagle CT5 cone tweeter<br>Eagle CT10 tweeter 8 or 16 ohm                                        | £2.55                |
| Eagle MHT10 horn tweeter                                                                        | £3 · 80              |
| Eagle crossover CN23, CN28, CN216<br>Eagle FR4                                                  | £1 · 50<br>£5 · 30   |
| Eagle FR65                                                                                      | £8.35                |
| Eagle FR8                                                                                       | £10.65               |
| Elac 9 x 5, 59RM109 15 ohm,                                                                     |                      |
| 59RM114 8 ohm                                                                                   | £2·80<br>£3·50       |
| Elac 6½" 6RM171 d/c roll surr.<br>Elac 6½" 6RM220 d/cone<br>Elac 4" tweeter TW4                 | £2.65                |
| Elac 4" tweeter TW4                                                                             | £1 · 21              |
| Elac 10" d/cone 10RM239 8 0hm                                                                   | £2-85                |
| Elac 8" 8CS175 3 ohm<br>Fane Pop 15 watt 12"                                                    | £4.80                |
| Fane Pop 25/2 25 watt 12"                                                                       | £6.95                |
| Fane Pop 40 watt 10"                                                                            | €8 - 50              |
| Fane Pop 50 watt 12"                                                                            | £11 00               |
| Fane Pop 55 12" 60 watt<br>Fane Pop 60 watt 15"                                                 | £12:50<br>£13:00     |
| Fane Pop 100 watt 18"                                                                           | £22 · 50             |
| Fane Crescendo 12A 100 watt 12"                                                                 | £29 · 00             |
| Fane Crescendo 128 bass<br>Fane Crescendo 15" 100 watt                                          | £29 · 00             |
| Fane Crescendo 18" 150 watt                                                                     | £36.00<br>£49.50     |
| Fane 801 T 8" d/c roll surr.                                                                    | 0= 00                |
| Fane 801T 8" d/c roll surr. Fane 807T 8" d/c roll surr. Fane 808T 8" d/c                        | £3.85                |
| Fane 808T 8" d/c                                                                                | £2.75<br>£35.00      |
| Fane 701 twin ribbon horn Fane 910 horn                                                         | £12.75               |
| Fane 920 horn                                                                                   | £33 · 00             |

| Goodmans 8P 8 or 15 ohm             | £5.00    |
|-------------------------------------|----------|
| Goodmans 10P 8 or 15 ohm            | £5.30    |
| Goodmans 12P 8 or 15 ohm            | £12.95   |
| Goodmans 12P-D 8 or 15 ohm          | £16 - 75 |
| Goodmans 12P-G 8 or 15 ohm          | £15 · 75 |
| Goodmans Audiomax 12AX 100 watt     | £37·50   |
| Goodmans Audiomax 15AX              | £40 · 00 |
| Goodmans 15P 8 or 15 ohm            | £21 · 00 |
| Goodmans 18P 8 or 15 ohm            | £36.00   |
| Goodmans Midax 750                  | £15.00   |
| Goodmans Axent 100 tweeter          | £7.25    |
| Goodmans Audiom 100 12"             | £12.00   |
| Goodmans Axiom 401 12"              | £17-25   |
| Goodmans Twinaxiom 8                | £8·25    |
| Goodmans Twinaxiom 10               | £9.00    |
| Kef T27                             | £5 25    |
| Kef T15                             | £6-00    |
| Kef B110                            | £7·25    |
| Kef B200                            | £8 ⋅ 25  |
| Kef B139                            | £14.25   |
| Kef DN8                             | £2.00    |
| Kef DN12                            | £4·95    |
| Kef DN13                            | £3.30    |
| STC4001 G auper tweeter             | £6 · 1 9 |
| Richard Allan CG8T 8"d/c r/surr.    | £6 · 3 5 |
| Wharfedale Super 10RS/DD            | £9.80    |
| 21" 64 ohm, 70mm 80 ohm, 70mm 8 ohm | · 6 5    |
| 21" 75 ohm                          | ·5 0     |
| 7" x 4" 3 or 8 ohm                  | £1 · 4 0 |
| 8" x 5" 3 or 8 ohm                  | £1 · 5 0 |
| 10" x 6" 3, 8 or 15 ohm             | £2-30    |
| SPEAKER KITS                        |          |

#### SPEAKER KIT

| A:                         |                |
|----------------------------|----------------|
| Baker Major Module         | each £10 · 75  |
| Fane Mode One              | each £9.90     |
| Goodmans DIN 20            | each £9.75     |
| Heime XLK 25               | pal r £22 · 00 |
| Helme XLK 30               | Dair £14 95    |
| Helme XLK 50               | pair £39-95    |
| Keffit 2                   | each £24 · 75  |
| Keffit 3                   | each £36 · 75  |
| Richard Allan Twinkit      | each £8.95     |
| Richard Allan Triple 8     | each £13.75    |
| Richard Allan Triple       | each £19 95    |
| Richard Allan Super Triple | each £23 75    |
| Wharfedale Linton 2 kit    | pair £19 · 25  |
| Wharfedale Glendale 3 kit  | pair £34 · 50  |
| Wharfedale Dovedale 3 kit  | pair £52 · 50  |
|                            |                |

| PA/DISCO AMPLIFIERS                |          |
|------------------------------------|----------|
| (carr. and ins. £1)                |          |
| Baker Major 100 watt               | £49 · 75 |
| Linear 30/40                       | £30 ·00  |
| Linear 40/60                       | £35.00   |
| Linear 80/100                      | £58 95   |
| Linear 100 watt slave              | £44-00   |
| Eagle PA range in stock-ask for ca | talogue. |

CHESHIRE, SK9 1HF

#### Free with speaker orders over £7-

"Hi-Fi Loudspeaker Enclosures" book. All units guaranteed new and perfect. Prompt despatch. Carriage and packing: speakers 38p each, speaker kits 75p each (£1.50 pair) tweeters and crossovers 20p.

# ALL PRICES QUOTED INCLUDE VAT.

WILMSLOW AUDIO (Dept. PW)
Loudspeakers: Swan Works, Bank Square, Wilmslow, Cheshire. SK9 1HF Discount Radio, PA, Hi-Fi: 10 Swan St. Wilmslow Send stamp for free booklet "Choosing a Speaker"



Cut-price prerecorded cassettes-send stamp for list

Wire Wound Resistors. Our selection of mixed values. 30 for £1.50.

tion of mixed values. 30 for £1·50. 100 for £4·00.

Audio Amplifier Module. Mullard LP1173, output power, nominal 10 watt, supply voltage +24 volt, with data and circuit, £2·50.

Ferguson Stereogram chassis Model 3357, all transistor, medium long, VHF/FM. 3 watts per channel S/M. with connection data, less tuning scale £20 scale, £20.

்ு″ 15p.

Matched pair of bookshelf speakers. Teak finish, size 12" × 8" 5". 8 × 5 8" ohms ceramic, 5 watts RMS. Complete with din leads. £11:00 pair.

Thorn TV IF chassis, 950 series (less valves), £1:75.

UHF 625 transistor push button tuner (NSF Telefunken) as used on Decca MS2400. Brand new and boxed, £3:25.

Light Dependent Resistors (RCA sq3536) 30p each, 4 for £1:00.

P-C Boards (not computer panels) 1 off 6 transistor single wave band. 1 off 4 transistor audio. 1 off 3 transistor £1:60, three boards.

1 off 4 transistor audio. 1 off 3 transistor £1·60, three boards.

Rank EVR Teleplayer colour transitator panels, type and components on new panels listed as follows, £2·50, each panel. Z605—14 off BC148: 2 RCA ca3054 (ic): 1 crystal 4·433618 MHz—Z607—12 off BC148: 1 BC108: 1 BC158: 1 RCA ca3046 (ic), 1 RCA ca3045 (ic): Z608—23 off BC148: 2 BC158—Z612—12 off ME4103: 2 BC-2518·1 BEY50 251B: 1 BFY50.

Mains Droppers, 10 mixed values, £1.00.

Edgewise Level meters, 200 µA,

Edgewise Level meters,  $200\mu\text{A}$ , size  $\frac{3}{4}$ " overall. 50p. Chrome Plastic knobs, 3 types, 4 off each with spring clip, £1·25. Die Cast Boxes,  $4\frac{1}{2}$ "  $\times 3\frac{1}{4}$ "  $\times 3$ " 95p:  $8\frac{1}{2}$ "  $\times 5\frac{1}{2}$ "  $\times 2$ " £1·20.  $8\frac{1}{2}$ "  $\times 5\frac{1}{2}$ "  $\times 4$ " £1·70. Aluminium Chassis,  $7\frac{1}{2}$ "  $\times 5\frac{1}{2}$ "  $\times 2\frac{1}{4}$ " 85p. 11"  $\times 7\frac{1}{2}$ "  $\times 2\frac{1}{4}$ "

BSR P128, similar to HT70 single play, with heavy die cast turntable, less cartridge, £11 00.

Transistorised FM tuner head, with A.M. gang, slow motion drive 88-108 Mcs, with circuit diagram, £2:30. Mono Amp Transistorised (Mains) Ideal for record player 8 ohms 2 watts.

Ferguson Stereogram Chassis. MW/ LW/VHF with tuning scale (5+5 watts sine wave) 15 ohms £28 50.

Goods not despatched outside UK (Post and packing free in UK) 15p handling charge on orders under £1.00. All items include VAT

# SURPLECTRONICS

216 LEAGRAVE ROAD, LUTON, LU3 IJD, BEDS.



Fig. 3: above, gives details of the additional windings required on the ferrite rod aerial.

Fig. 2: below, shows the component layout of the small circuit board.



#### AN ACTIVE AERIAL—continued from page 810

Flying leads are left from the MC line for 4 and VC1. Battery positive and R6 circuits are connected to the chassis R4 is connected to VR1 wiper, and VR1 outer tag to negative. The board is mounted as in Fig. 4, with extra nuts on each bolt to give a  $^38$ in space between board and metal chassis.

#### FERRITE AERIAL

The rod may be either 5in or 6in long, and is  $^{3}8$ in in diameter. The 1in paxolin tube should be the same length as the rod.

Two supports are made, each of  $^38$ in wood, about  $1^18$ in wide and  $3^12$ in high overall. First drill a  $^38$ in diameter hole to a depth of about  $^18$ in. as in Fig. 3, to support the end of the rod. A lin diameter channel is then cut to the same depth, to take the paxolin tube. This is most easily done with an adjustable tank cutter.

Two brackets are cut from aluminium angle and drilled to allow the supports to be mounted vertically, at such a distance apart as to take the rod and tube.

All leads will pass down the right hand support, and a hole is drilled through chassis and bracket here. The wooden support (or one end of the paxolin



tube) is notched to leave space for the leads. The whole aerial is wired and tested before the tube is placed over it. This can be done by loosening the left hand support.

A tag strip which will provide seven connecting points for the leads (including MC) is bolted under the chassis, as in Fig. 4. These can also be identified by using thin coloured sleeving, as shown.

Details of the aerial, which is a standard component with four additional windings, can be seen from Figs. 1 and 3. Connections must be so made that all turns are in the same direction, beginning at 1, going to junction of L1 and L2 at 2, and on through L3 to point 4. L4, L5 and L3 are also in the same phase, as are L6 and L7.

This is most easily arranged by fitting L2 first, with the base winding L5 towards the centre of the rod. Now identify the ends of L3, either by examination, or by testing with a meter—the resistance from 3 to the tapping will be much higher than the resistance from 4 to the tapping. Place L3 as shown in Fig. 3.

Wind L7—25 turns of 32swg enamelled wire—on a strip of paper or thin card. L5 can then be connected to the tap on L3. L2 and L3 can also be connected together, and a green lead taken down to tag 3 on the strip. L7 and L3 are also joined, and a black lead is taken down to tag 4.

Next wind L1 in the same direction as L2. L1 has 28 turns of 32swg enamelled wire, side by side on thin card. Cover L1 with paper or tape, and wind on L4, comprising two turns, as in Fig. 3. Note that L4

### \* components list

#### Resistors All resistors $1 \le 5\%$ 15 $k\Omega$ R1 R2 $39k\Omega$ .39Ω R3 $820\Omega$ R4 **R5** 1 · 2kΩ R6 $3 \cdot 3k\Omega$ VR1 1kΩ linear pot with switch Capacitors 0.047µF C2 0.1µF 0.22uF VC1 Jackson 365pF single, reduction drive optional Miscellaneous L2, L3, L5, Denco MW/LW ferrite rod aerial L1, L4, L6, L7, see text Tr1 BF195 S1, 3-pole 3-way rotary switch. S2 ganged with VR1. 1in, dia. paxolin tube (see text). Universal chassis 7 x 4 x 2in. and extra 7 x 4in. flat plate. Plain Veroboard, 0.15 matrix. Rubber feet, Tag strip, Knobs, battery clips, insulated sockets.





is in the same direction as L5. Add three turns for L6, as in Fig. 3, in the same sense as L7. Thin insulated wires may be soldered on for connections or the leads themselves may be run through sleeving, and taken to the appropriate tags.

It is possible to modify band coverage in the usual way, by sliding the windings on the rod. However, as this circuit is individually tuned by VC1, and does not have to gang with another tuned circuit, this is not essential.

If the wires are kept against the support, and run down to the tags as the aerial is prepared, the paxolin tube can be fitted over the finished aerial with little disturbance.

#### **ASSEMBLY**

This can be seen in Fig. 4. VC1 is secured with three 4BA bolts, which may have washers, spacers or extra nuts, as they must not project inside the capacitor. A reduction drive is not essential, but eases tuning.

The battery is held with a clip inside the case. No external connections are required except to plug the output and chassis return leads into the Aerial and Earth sockets of the receiver. The active aerial unit is placed to the right of the receiver mentioned, and a short output (Aerial) lead is possible, so that no screening is necessary for this connection. Tuning scale markings are not essential, as tuning is readily peaked for best reception.

#### USE WITH RECEIVER

In most cases VR1 is not advanced for maximum gain, as this is likely to cause overloading. When receiving SSB or CW signals it is generally essential to turn the RF gain VR1 back, while advancing the receiver AF gain control, in order that the relative strengths of the received signal and BFO will allow proper resolution. If not, SSB cannot be received, or will sound like severely over-modulated AM.

The receiver aerial trimmer is peaked for best reception for each band, as with an extended aerial in use. The ferrite rod aerial and additional tuned circuit will considerably reduce second channel signal interference.

At some time of day and in some conditions a receiver with a high, extended outdoor aerial will pick up untunable noise at a high level. A similar pick-up of external noise can be encountered with the active aerial unit, and in these circumstances does not indicate any fault in the latter.

If the unit is to be employed with any receiver other than that described, the receiver must have an aerial coupling winding, as in Fig. 1, for Tr1 collector circuit. A receiver with a low impedance input such as  $75\Omega$  is not very suitable.

Due to the addition of L1, MW coverage is changed from that obtained by L2 alone. With L2 unmodified, and the coils situated approximately as in Fig. 3, coverage is 140-360kHz, 300-1150kHz, and 1.65-5.0MHz for the three bands. If it is wished to modify this, 22 turns can be removed from the outer end of L2 (junction with L1). Coverage is then 140-350kHz, 350-1500kHz, and 1.2-5.0MHz, which is convenient for the 3-Band receiver mentioned.

Signal pick-up is influenced to some extent by the bearing of the ferrite rod, and by the proximity of large areas of metal, as with a portable receiver. With construction and values as shown, regeneration to the point where oscillation arises is not obtained on all frequencies, but interference-free reception of many signals should be obtained.



Well here's a fine how d'y do! Santa himself caught in the act of 'borrowing' a few of our catalogues. . . and Rudolph laughing his silly head off! We can't see the old chap getting away with it, but we did warn him to lay in a large stock of catalogues. Well, let's hope he gets bailed out in time to deliver one to you. The demand for this famous components catalogue grows by leaps and bounds each year. We at Home Radio Components work hard on it to make sure it more than comes up to everybody's expectations. If you haven't seen one you really should treat yourself for Christmas. It costs 65 pence plus 33p packing and postage, but with it we give you 14 vouchers, each worth 5p when used as directed. That means you can get 70 pence back. In which case this magnificent publication will have cost you only 28 pence! It can be bought over our counter at Mitcham for only 65p... or send the coupon below with a cheque or postal order today for 98 pence. If by any chance Santa Claus is still 'detained for questioning' we'll send your catalogue round by postman!

The price of 98p applies only to customers in the U.K. and to B.F.P.O. addresses.



HOME RADIO (Compenents) LTD : Dept Pw., 234-240 London Road, Mitcham CB4 3HD : Phode 01-648 8422

#### **POWER UNIT Type A125**

Supplying 6 or 9 Volt DC at 200 mA.

In moulded case forming a 2 pin 5A mains

2 metre output lead with 4-way mutiplug giving 2·1 and 2·5 mm sockets and 3·5 mm plugs.

Price £2;25. Post 10p.



### 2" and 4" PANEL METERS

| 2"            |        | 4"            |          |
|---------------|--------|---------------|----------|
| SIZE: 60mm    | Wide   | SIZE: 110mn   | a Wide   |
| x 45mm H      | igh x  | × 82mm H      | igh ×    |
| 40mm Deep.    | -      | 43mm Deep.    | -        |
| Movement      | I.R.   | Movement      | I.R.     |
|               | Ohms   |               | Ohms     |
| 0-50 micro A. | 1250   | 0-50 micro A. | 1400     |
| 0-100 micro A | . 580  | 0-100 micro A | . 730    |
| 0-500 micro   | 1. 170 | 0-500 micro / | 4. 200   |
| 0-1 mA        | 170    | 0-1 mA        | 200      |
| 0-5 m.A.      | 170    | 0-5 mA        | 200      |
| 0-10 mA       | 6      | 0-10 mA       | 6        |
| 0-50 mA       | 0.5    | 0-50 mA       | 0.5      |
| 0-100 mA      | 0.5    | 0-100 m.A     | 0.5      |
| 0-500 mA      | 0.5    | 0-500 mA      | 0.5      |
| 0-1 AMP       | 0.5    | 0-1 AMP       | 0.5      |
| 0-2 AMP       | 0.5    | 0-2 AMP       | 0.5      |
| 0-25 Volt     | 15K    | 0-25 Volt     | 15K      |
| 0-50 Volt     | 50K    | 0-50 Volt     | 50K      |
| 0-300 Volt    | 300K   | 0-300 Volt    | 300 K    |
| "g" Meter     | 170    | "g" Meter     | 200      |
| VU Meter      | 5250   | VU Meter      | 5250     |
|               |        |               |          |
| VU Meters 2   | re com | plete with de | tectors. |

Modern wide view.

Price 2" £3·15 Post 10p. Price 4" £4·15

Post 10p. Lamps 75p per set.

#### # watt CARBON FILM RESISTORS

# watt at 70°C E 12 range  $10\,\Omega$ —1M  $\Omega$  5% tol above 470 K  $\Omega$  10% tol at 95p per 100.

#### **ELECTRONIC MAINS TIMER**

A reliable unit ideal for timing Bathroom/Toilet Ventilators Ventilators
Stairway/
Cloakroom
Lighting etc.
Gives up to 30
mins delay before
switching off.
Delay 1-30 mins.

belay 1-30 mins. adjustable, Max Load 400VA or 1000 watts resistive. White Case  $3\frac{3}{4}$ "  $\times$   $3\frac{3}{4}$ "  $\times$  2". Fitting instructions included.

Trade Price \$5.80. Post 20p.

#### MAINS KEYNECTOR

The safe, quick, connector for electrical appliances, aur electrical appliance 13 Amp rating, fused, will connect a number of appliance of appliances quickly and safely to the mains, the mains, ideal for testing, demonstrating, window disect. Warning Light, interlocked to coting when live.

# TRANSFORMERS

# SAFETY ISOLATING Prim. 120/240V. Sec. 120/240V. Centre Tap

| with S  | creen.    |       |           |        |      |
|---------|-----------|-------|-----------|--------|------|
| VA      | Ref       | Price | Price     | Price  |      |
| (watts) | No.       | Cased | Plugs     | Open   | Post |
| • •     |           | £     | 2 Pin +   | £      | £    |
|         |           |       | 1 Earth   |        |      |
| 60      | 149       | 7.35  | 0.80      | 4.00   | 0.38 |
| 100     | 150       | 8.22  | 0.80      | 4.60   | 0.52 |
| 200     | 151       | 10.20 | 0.80      | 7.40   | 0.52 |
| 250     | 152       | 11.68 | 0.80      | 8.88   | 0.65 |
| 350     | 153       | 14-10 | 0.80      | 10.80  | 0.80 |
| 500     | 154       | 15.68 | 0.80      | 12.38  | 1.00 |
| 750     | 155       | 24-63 | 1.00      | 18.72  | 1.20 |
| 1000    | 156       | 32-19 | 1.00      | 26 50  | 1.20 |
| 1500    | 157       | 38-18 | 1.00      | 30.34  | 0.4. |
| 2000    | 158       | 45.20 | 2-40      | 34-68  | O.A. |
| 3000    | 159       | 66.50 | 2.40      | 53-35  | 0.A. |
| 12.0    | 241       | V-14- |           |        |      |
| 12 &    | <b>24</b> | AOIES | Prim. 200 | -240V. |      |

#### 60 Volts 50 Voits Prim. 230-240V. Sec. 24, 30, 40, 48, 60V. Prim. 200-240V. Sec. 19, 25, 38, 40, 50V. Ref. Ref. No. Post Amps Price 0.5124 126 127 125 123 40 120 2.08 2.96 4.63 6.84 7.94 8.86 10.15 13.58 102 0.5 103 3·00 4·57 0.38 104 5·20 6·89 105 0.52 0.52 106 0.82 11-17 0.67 107 121 1.00 118 14-19 0.97 10

#### Ref. Price Post Amps 0/11

| 12 V   | 24 V | 110. | -     | ~    |
|--------|------|------|-------|------|
| 0.3    | 0.15 | 242  | 1.34  | 0.22 |
| 0.5    | 0.25 | 111  | 1.38  | 0.22 |
| 1      | 0.5  | 213  | 1.58  | 0.22 |
| 1 2    | 1    | 71   | 2.09  | 0.22 |
| 4      | 2    | 18   | 2.58  | 0.38 |
| 6      | 3    | 70   | 3.80  | 0.42 |
| 6<br>8 | 4    | 108  | 4.20  | 0.52 |
| 10     | 5    | 72   | 4.80  | 0.52 |
| 12     | 6    | 116  | 5.01  | 0.52 |
| 16     | 8    | 17   | 6.22  | 0.52 |
| 20     | 10   | 115  | 9.47  | 0.69 |
| 30     | 15   | 187  | 11.95 | 0.97 |
| 40     | 20   | 232  | 13.26 | 1.00 |
| 50     | 30 - | 226  | 15.30 | 1.10 |

| Sυ | Valte |
|----|-------|

| Prim. | 200-240V. | Sec. 12, 15, 20, | 24, 801 |
|-------|-----------|------------------|---------|
| Amps  | Ref.      | Price            | Post    |
| _     | No.       | £                | £       |
| 0.5   | 112       | 1.72             | 0.22    |
| 1     | 79        | 2.21             | 0.38    |
| 2 3   | 3         | <b>3</b> ·26     | 0.38    |
| 3     | 20        | 4.10             | 0.42    |
| 4     | 21        | 4.68             | 0.52    |
| 5     | 51        | 5.80             | 0.52    |
| 6     | 117       | 6.50             | 0.52    |
| 8     | 88        | 8.50             | 0.67    |
| 10    | 89        | 8.97             | - 0.67  |
|       |           |                  |         |

| MINIATURE AND EQUIPMENT                                 |         |          |             |            |              |              |
|---------------------------------------------------------|---------|----------|-------------|------------|--------------|--------------|
| Prim. 240V with screen. Volts Milliamps Ref. Price Post |         |          |             |            |              |              |
| Sec. 1                                                  | Sec. 2  | Sec. 1   | Sec. 2      | No.        | £            | £            |
| 3-0-3                                                   |         | 200      |             | 238        | 1.23         | 0.10         |
| 0-6                                                     | 0-6     | 500      | 500         | 234        | 1.30         | 0.10         |
| 0-6                                                     | 0-6     | 1000     | 1000        | 212        | 1.93         | 0.22         |
| 9-0-9                                                   | _       | 100      | _           | 13         | 1.23         | 0.10         |
| 0-9                                                     | 0-9     | 330      | 330         | 235        | 1.43         | 0.10         |
| 0-8-9                                                   | 0-8-9   | 500      | 500         | 207        | 1.75         | 0.22         |
| 0-8-9                                                   | 0-8-9   | 1000     | 1000        | 208        | 2.80         | 0.30         |
| 15-0-15                                                 |         | 40       |             | 240        | 1.23         | 0.10         |
| 0-15                                                    | 0-15    | 200      | 20 <b>0</b> | 236        | 1.30         | 0.10         |
| 20-0-20                                                 | _       | 30       |             | 241        | 1.23         | 0.10         |
| 0-20                                                    | 0-20    | 150      | 150         | 237        | 1.30         | 0.10         |
| 0-15-20                                                 | 0-15-20 | 500      | 500.        | 205        | 2.47         | 0.38         |
| 0-20                                                    | 0-20    | 300      | 300         | 214        | 1.72         | 0.22         |
| 0-20                                                    | -       |          | O SCREEN    | 1116       | 3.00         | 0.40         |
| 20-12-0-12-20                                           |         | 700 (D/C |             | 221        | 2.31         | 0.30         |
| 0-15-20                                                 | 0-15-20 | 1000     | 1000<br>500 | 206<br>203 | 3·22<br>2·73 | 0-38<br>0-38 |
| 0~15-27                                                 | 0-15-27 | 500      | 1000        | 204        | 3.52         | 0.38         |
| 0-15-27                                                 | 0-15-27 | 1000     | 1000        | 204        | 3 9Z         | 0.50         |

#### PLASTIC CASED SILICON BRIDGE RECTIFIERS

| One Amp        | Two Amp        | Four Amp       | Six Amp        |
|----------------|----------------|----------------|----------------|
| 50 P.I.V. 25p  | 50 P.I.V. 35p  | 100 P.I.V. 55p | 50 P.I.V. 65p  |
| 100 P.I.V. 25p | 100 P.I.V. 40p | 200 P.I.V. 59p | 100 P.I.V. 70p |
| 200 P.I.V. 28p | 200 P.I.V. 45p | 400 P.I.V. 65p | 200 P.I.V. 80p |
| 200 P.I.V. 28p | 200 P.I.V. 45p | 400 P.I.V. 65p | 400 P.I.V. 90p |
| 600 P.I.V. 30p | 400 P.I.V. 50p | 600 P.I.V. 75p |                |

ADD 10n P & P PER ORDER



#### **AUTO TRANSFORMERS**

Cased versions are 240 Volt Mains to 115 Volts, smart steel cased units coated in tough resin with power lead, fuse and 115 Volt American type socket up to 500VA, only a reliable enterior 500VA. above 500VA cable entry.

| V.A    | Ref.    | Price<br>Cased | Price<br>Plugs | Price<br>Open | Post |
|--------|---------|----------------|----------------|---------------|------|
| Watts  | No.     | £              | 2 & 3 pin      | £             | £    |
|        | at 115. | 220, 240 V     |                |               |      |
| 20     | 113     | 8.00           | 0.15           | 1.55          | 0.30 |
| Tapped | at 115, | 200, 220, 1    | 240 Volts      |               |      |
| 150    | 4       | 5.80           | 0.15           | 3.98          | 0.39 |
| 200    | 65      | 6.40           | 0.15           | 4.50          | 0.40 |
| 300    | 66      | 7.27           | 0.15           | 5.28          | 0.52 |
| 500    | 67      | 9.99           | 0.15           | 8-29          | 0.67 |
| 750    | 83      | 12.58          | 0.75           | 9.76          | 0.82 |
| 1000   | 84      | 15.70          | 0.75           | 12.40         | 0.82 |
| 1500   | 93      | 19.88          | 0.75           | 16.58         | 1.50 |
| 2000   | 95      | 30-10          | 1.44           | 22.05         | 1.50 |
| 3000   | 73      | 43.58          | 1.90           | 32-00         | 1.90 |

PLEASE ADD 8% FOR V.A.T.

#### POWER UNIT Type CC 12-05

Output switched 3, 4-5, 6, 7-5 9 and 12 voits at 500 mA D.C. Operates from 240 V mains, suitable for Radios, Tape Recorders, Record Players etc Size 7-5-5-0 × 14-0cm. Price 23-95. Post 25p.



#### MINIATURE NEONS

6mm dia., 12mm length leads length approx. 20mm. Recommended ballast resistor 150K ohms for 240 Volt operation Price: Packet of 10 for 50p. Postage 10p.

# S.P. LT

DEPT PW12, SIMMONDS ROAD, WINCHEAP, CANTERBURY, KENT. Tel: (0227) 52436

# poly-planar

20-Watt Full Range Speaker

Completely replaces the conventional cone speaker Super-thin construction permits new installation ideas.

Power capability: 40 watts peak. Frequency range: 40 Hz-20 KHz Sensitivity: 85 dB/M for 1 watt electrical input. Input impedance: 8 ohms. Operating temperature range: —20°F to +175°F. Size (WxDxL): 1-7/16" x 11·3/4" x 14·11/16". Weight: 19 ounces.

£7.50 each Stereo pair £14.50 INCLUSIVE OF VAT AND POSTAGE

web europa P.O. Box 162, Watford WD1 1AA AERIAL BOOSTERS £3·30
We make three types of Aerial Boosters: B45-UHF 625, B12-VHF 405, B11-VHF, RADIO
VALVE BARGAINS

Any 5—50p, 10—75p, 50—43-30:—

ECC82, ECL80, EB91, EBF89, EF80, EF85, EF183, EF184, EY86, PCC84, PCC89, PCC189, PC97, PCF80, PCF86, PCF805, PCF808, PCL82, PCL83, PCL84, PCL85, PFL200, PL36, PL81, PL504, PY33, PY82, PY800, PY801, 30L15, EH90, PC88, PC86.

TV COLOUR VALVES

PL508, PL509, PY5001A, 25p EACH.

Press Button U.H.F. Tuners—£2-50.

Rotary U.H.F. Tuners—£2-00.

PLUGS SOCKETS (Price per item, in brackets for ten) CO-AX PLUGS 6p (50p) Socket surface 7p (60), Connectors 4p (35p).

4p (35p).
D.I.N. PLUGS. 2 pin, 3 pin and 5 pin 20p (£1.65).
JACK PLUGS. Standard 18p (£1.50), 3.5 mm 10p (80p), 2.5 mm 10p (80p).

All prices include V.A.T. P. and p. 10p per order. Money back refund. S.A.E. for leaflet.

ELECTRONIC MAILORDER (BURY) LTD. 62 Bridge Street, Ramsbottom, Bury, Lancs. Tel: Rams. 3036



### MOTOR CONTROL

The motor control board contains circuits for two basic functions, motor speed regulation and automatic stopping of the machine at the end of a cassette.

We shall deal first with the motor speed control. It will be seen from the circuit diagram (Fig. 2) that the motor is fed from the nominal 12V supply line via transistor Tr52 and resistors R55, R56 and R58. The base current for Tr52 is formed by the collector current of Tr51, the sensing transistor.

When power is supplied to the system, by inserting a cassette, a potential of just under two volts appears at the junction of resistors R53 and R54. This potential is applied, via diode D51, to the base of Tr51, so turning this transistor on. Collector current flowing in Tr51 provides the base current to turn Tr52 on and the resultant current flows into the motor via R55 and R56 in parallel. The motor starts to turn and diodes D52 and D53 conduct, so clamping the emitter of Tr51 at a fixed voltage negative with respect to the positive side of the motor.

This action results in the emitter of Tr51 moving positive, but the base also moves positive since the

\* Hamilton Electronics Ltd.

collector of Tr52 is connected to Tr51 base via network R51, VR51 and R52. As a consequence, D51 becomes reverse-biased, so disconnecting the starting circuit, R53, R54 from Tr51 base. The emitter-base bias on Tr51 is now a function of the voltage developed across R55 and R56, since the top end of these resistors feeds the base circuit, while the bottom end is clamped to the emitter of Tr51 via D52 and D53.

If the motor load increases, so does its current drain. As a result, the voltage drop across R55 and R56 increases, so increasing the forward bias on Tr51. The increase in Tr51 collector current increases the flow of current in Tr52, so applying more power to the motor to compensate for its increase in load. If the load decreases, the process operates in reverse. Likewise, changes in the supply voltage are accommodated since the only reference required is the measure of current through the resistors in series with the motor, and the apparent DC resistance of Tr52 is adjusted accordingly.

The running speed of the motor is set by VR51 which varies the preset forward bias applied to Tr51. R58 provides a bleed current through the motor in the starting condition and also shunts Tr52, reducing its dissipation.



Fig. 2: Circuit of the motor control board. The motor, solenoid and commutating switch are part of the cassette mechanism.

NOTES:

- 1. The Motor Speed control should be labelled VR51.
- 2. Capacitor C62 should be labelled C52.

Fig. 3: Layout for the motor control board, using 0·1 in pitch Veroboard

Both these boards are viewed from the component side.

Fig. 4: Layout for the amplifier board built on 0·1 in, pitch Veroboard 6·75 x 2·5 in. The lower half of the board (Right channel) is a mirror image of the upper half except for the transistors shown, which are reversed for ease of assembly.





UK'S LARGEST RANGE OF TRANSISTORS, IC'S RECTIFIERS, ALL SEMICONDUCTOR DEVICES BEST PRICES · RETAIL · TRADE · EXPORT & INDUSTRIAL

# INTEGRATED **CIRCUITS**

#### **EXTRA DISCOUNTS**

Semi-conductors
Any one type or mixed
SN 74 Series 'IC'
12 EXTRA 10%
25 EXTRA 15%
100 EXTRA 20%



| 100 EXTRA                    | 10%                                |                                    |
|------------------------------|------------------------------------|------------------------------------|
| 74 Series £ p                | ,£ p                               | £ρ                                 |
| SN7400N 0-16                 | SN7485N 1 63                       | 5N7419IN 2.00                      |
| SN740IN 0-16                 | SN7486N 0-47                       | 5N74192N 2.00                      |
| SN7402N 0.16                 | SN7489N 3-87                       | SN74193N 2.00                      |
| SN7403N 0-16                 | SN7490N 0.55                       | SN74194N 1-30                      |
| SN7404N 0-16                 | SN7491AN1-00                       | SN74195N 1-10                      |
| SN7405N 0.16                 | SN7492N 0·70                       | SN74196N 1 · 20                    |
| SN7406N 0.42                 | SN7493N 0.70                       | SN74197N I · 20                    |
| SN7407N 0-42                 | SN7494N 0.80                       | SN74198N 2 77                      |
| SN7408N 0.28                 | SN7495N 0.80                       | SN74199N 2 · 52                    |
| SN7409N 0.28                 | SN7496N 0.95                       | Linear                             |
| SN7410N 0-16                 | SN7497N 3.87                       | RCA                                |
| SN7411N 0-25                 | SN74100N 1-89                      | CA3012 I · 32                      |
| SN7412N 0-30                 | SN74104N 0 58                      | CA3014 1.80                        |
| \$N7413N 0 36                | SN74105N 0 - 53                    | CA3018 1.02                        |
| SIMILAIM B. VT               | SN74107N 0 -45                     | CA3019 1-12                        |
| SN7416N 0-36                 | SN74110N 0.58                      | CA3020 I-80                        |
| SN7417N 0-36                 | SN74111N 0-88                      | CA3022 1-93                        |
| SN7420N 0-16                 | SN74116N 1-89                      | CA3028A 1.03                       |
| SN742IN 0-33                 | SN74118N 0 · 90                    | CA3036 I · 08                      |
| SN7422N 0-25<br>SN7423N 0-37 | 5N74119N 1.68<br>SN74120N 0.95     | CA3046 1.03                        |
| SN7425N 0-37                 |                                    | CA3048 2 78                        |
| SN7425N 0-37<br>SN7426N 0-32 | \$N74121N 0.50<br>5N74122N 0.70    | CA3075 1.75<br>CA3081 1.80         |
| SN7427N 0 37                 | SN74123N 1 00                      | CA3089E 2.94                       |
| SN7428N 0-40                 | SN74125N 0 65                      | CA3090Q 5 40                       |
| SN7430N 0-16                 | SN74132N 0 72                      |                                    |
| SN7432N 0-37                 | SN74141N 0-90                      | Signetics                          |
| SN7433N 0.37                 | SN74145N 1 28                      | NE555 0.85                         |
| SN7437N 0.37                 | SN74150N 1-75                      | NE560B 5 00                        |
| SN7438N 0-37                 | SN74151N 1 00                      | NE561B 5 00<br>NE562B 5 00         |
| SN7440N 0-22                 | SN74153N 0 95                      |                                    |
| SN7441AN0-92                 | SN74154N 2-00                      |                                    |
| SN7442N 0.79                 | SN74155N 1 00                      | Motorola                           |
| SN7443N 1 20                 | SN74156N 1 00                      | MC1303L 1-42                       |
| SN7444N 1 27                 | SN74157N 0.95                      | MC1304P 1.79                       |
| SN7445N 1-60                 | SN74160N 1 · 38                    | MC1310P 2-91                       |
| SN7446N 1-35                 | SN74161N 1-38                      | MC1458CP0-77                       |
| SN7447AN I -60               | SN74162N 1 · 38                    | MC1710CC0-80                       |
| SN7448N I · 27               | SN74163N 1 38                      | MFC4000P 0 · 46<br>MFC4010P 0 · 56 |
| SN7450N 0-16                 | SN74164N 1-76                      |                                    |
| 5N745IN 0-16                 | SN74165N 1-76                      | MFC6040P I · 00                    |
| SN7453N 0-16                 | SN74166N 1-60                      | Others                             |
| SN7454N 0 16                 | SN74167N 3 · 00                    | TBA800   ·50                       |
| SN7460N 0-16                 | SN74170N 2 · 52                    | 5N76003N 1 - 50                    |
| SN7470N 0.38                 | SN74173N 1-66                      | SN72741P 0.60                      |
| SN7472N 0.38                 | SN74174N 1 57                      | SN72748P 0.81                      |
| 5N7473N 0-41<br>SN7474N 0-42 | SN74175N   10                      | 702C 0.75                          |
| SN7474N 0-42<br>SN7475N 0-59 | SN74176N 1 · 26<br>SN74177N 1 · 26 | 709C 0:39                          |
| SN7476N 0-45                 | SN74177N 1:26<br>SN74180N 1:26     | 723C 0·90<br>728C 0·46             |
| SN7480N 0-60                 | SN74180N 1-20<br>SN74181N 3-95     | 728C 0.46<br>741C 0.50             |
| SN748IN 1-10                 | SN74182N 1 · 26                    | 747C 1:00                          |
| SN7482N 0-87                 | SN74184N 1-80                      | 748C 0.61                          |
| SN7483N 1-10                 | SN74185N 1-80                      | LM309K 2:00                        |
| SN7484N 1-00                 | SN74190N 2 · 00                    | TAA960 1.75                        |
| 3.17.70714 1.00              | 3.17712014 2.00                    | 177300 1773                        |

### COMPONENTS



Ceramic Filters
Miniature 10-7 MHZ filters
40p pair.
ZN414 Radio IC with
circuit £1-20

Strobe Tubes ZFT8A (similar to 4A) £4·00. ZFT12A £5·00. 7 segment



#### SPECIAL OFFER CASSETTE STORAGE



Rotating unit up to 32 cassettes stackable £3:60 pp 15p Car unit with bracket for 10 cassettes £2:80 pp 10p

**ELECTRONIC** COMPONENTS & EQUIPMENT

More selection — bigger stocks of electronic components and equipment for supply purpose. Let us quote for your require-

ments.
(Please enclose large SAE with all enquiries).

# COSMOS INTEGRATED CIRCUITS - FULL RANGE IN STOCK

| AC107<br>AC107<br>AC107<br>AC108<br>AC107<br>AC108<br>AC107<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>AC108<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC109<br>BC | 0 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | BLY36. BSX20 BY100 BY100 BY127 BYZ13 CIET1115 GET1115 GET1116 GETT116 | 100 130 130 130 130 130 130 130 130 130 | TIP42 A TIS43 TIS43 VATX108 ZTX300 ZTX300 ZTX500 2N766 2N706 2N987 2N1132 2N1304 2N1613 2N1671 2N2160 2N3053 2N3053 2N3054 2N3055 2N3440 2N3525 2N3440 2N3702 2N3714 2N3771 2N3790 2N3819 404084 40408 | 0 0 262 0 0 0 0 1 8 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| BFX90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.31                                        | TIP4IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 - 74                                  | 40430                                                                                                                                                                                                                                                                                                                  | 0.85                                                        |

|                          |      | 111 117 | V / T           | 70730                                 | 0 63         |
|--------------------------|------|---------|-----------------|---------------------------------------|--------------|
| SILICON                  | 1    |         | TRIAC           | CS                                    |              |
| CONTRO                   | LLED |         | SC35A .         |                                       | 0⋅85         |
| RECTIFI                  |      |         | SC35B .         |                                       | 0 91         |
| TO5 I An                 |      | £ p     |                 |                                       |              |
| CRS1/05AF                | ,    | 0 42    | 6 Amp           |                                       |              |
| CRSI/IOAF<br>CRSI/20AF   |      |         | SC40B .         |                                       | 0 · 97       |
| CRSI/40AF<br>CRSI/60AF   |      |         | SC40E .         |                                       |              |
| TO48 3 A                 | шÞ   |         | IO Amp<br>SC45A |                                       | .09          |
| CRS3/025A<br>CRS3/10AF   |      | 0 · 48  |                 |                                       |              |
| CRS3/20AF                |      |         | SC45E .         |                                       |              |
| CRS3/60AF                |      | 0 80    |                 |                                       | 1 · 46       |
| TO48 7 A                 |      | 0 · 84  |                 | • • • • • • • • • • • • • • • • • • • |              |
| CRS7/600.                |      | I · 14  |                 |                                       |              |
| TO48 18 A                |      |         | 40430           |                                       | 0.85         |
| CR\$16/200<br>CR\$16/400 |      |         | 40669           |                                       | 0·90<br>0·85 |
|                          |      |         |                 |                                       |              |

#### **BRIDGE SILICON** RECTIFIERS

| ∄Amp £ p      |              |
|---------------|--------------|
| B025/025 0 14 |              |
| B025/05 0·16  |              |
| I Amp         |              |
| B1/05 0·20    | B4/20 0-54   |
| B1/10 0.21    | B4/40 0 · 60 |
| B1/20 0 · 24  | 0.446        |
| BI/60 0 · 25  | D 4/00       |
| BI/100 0·30   | 6 Amp        |
| 2 Amp         | 56.45        |
|               | B6/05 0·50   |
| B2/05 0·30    | B6/10 0·58   |
| B2/10 0·35    | B6/20 0 · 68 |
| B2/20 0 · 40  | B6/40 0·75   |
| B2/40 0·44    | B6/60 0·87   |
| B2/60 0 · 45  | Amp Tubular  |
| 001100        |              |
|               | W005 0 27    |
| 4 Amp         | W01 0·29     |
| B4/05 0·45    | W02 0 · 30   |
| B4/10 0·48    | 14444        |
| D-1/10 9 40   | VV06 0·33    |

## EQUIPMENT ULTI-METERS O

(carr./packing 35p) U4324, 20k/V with case £9·25 U435, 20k/V with steel case £8·75 U435, 20k/v steel case £8.75 U4313, 20k/v with steel case £12.50 U4317, 20k/v with case £16.50 U4341, 33k/v + transistor tester steel £10.50 U4341, 33k/V + transistor tes case U4323, 20k/V plus I KHZ OSC with case ITI-2, 20k/V slim type THL33D (L33DX) 2k/V Robust TP53N, 20k/V (Case £2.00) TP10S 2K/V U-423, 20k/V plus IKHZ
OSC with case
ITI-2, 20k/V slim type
THL33D (L33DX) 2k/V Robust
TP53N, 20k/V (Case £2 · 00)
TP10S 2K/V
TW20S 20k/V
TW50K 50K/V
EP10KN 10K/V
EP10KN 10K/V
AF105 50k/V blus (case £1 · 90)
S100TR 100k/V Plus trans. tester
£22 · 50

#### GENERAL TEST EQUIPMENT

CENTENAL IESI EQUIPMEN († carr/pack 50p. \*c/p 30p unless stated)
New Revolutionary Supertester 680R 680R Multi-tester £18-50
Accessories
Transistor tester £11-00
Electronic volt. £18-00
Ampclamp £11-95
Temp. probe £11-95
Gauss meter £11-95
Signal injector £5-95

Electronic volt. Ampclamp (11-95)
Temp. probe (11-95)
Gauss meter (11-95)
Signal injector (55-95)
Phase Sequence (55-95)
Shunts 25/50/10A (44-50)
13100 IMA Stripchart recorder (19-95)
TEE15 Grid dip meter 440KHZ-28MHZ (19-95)

†TE65 28 Range valve voltmeter †22 50 †Tk20D RF Generator 120-KHZ †G3-36 R/C osc. 20HZ-200KHZ £19-75
\*C3042 SWR Meter £5-75
\*SE350A Deluxe signal tracer £12-95
\*SE400 Mini-lab all in one tester £15-50.
C1-5 Scope 500,000KHZ (carr.£1) £43-00
\*C30435 CH F/A meter I-300MHZ £5-75
Resistance sub box Post, etc. £2-40
Capacitor 20 £2-10
2 amp var. transformers (carr.£1) £6-55 Radio activity counter 0-10 (carr. £1)

Mains unit for above (carr. 50p) £3.75
PA-DISCO-LIGHTING Equipment



Without doubt UK's best range of modular and complete equipment, Lighting, mixing, microphones, accessories, speakers, amplifiers, lenses, etc., etc. FREE stock lists (Ref. No. 18) on request CALL IN AND SEE FOR YOURSELF AT HENRY'S DISCO CENTRE 309 EDGWARE ROAD 01-723 6963.

#### QUALITY CASSETTE TAPES

"Living Sound" made specially for Henry's by EMI Tapes Ltd. 5 screw type with library case Post paid (GB)

3 for 6 for 10 for 25 for £1:10 £2:00 £3:15 £7:50 £1:47 £2:85 £4:65 £11:37 £1:83 £3:54 £5:60 £14:00 C60 C90 C120

8% VAT TO BE ADDED TO ALL ORDERS (EXPORT VAT FREE)

# **EDGWARE ROAD, W2** Prices correct at time of preparation. Subject to change without notice. E. & O. E

Electronic Centres
404-406 Electronic Components & Equipment 01-402 8381
309 PA-Disco-Lighting High Power Sound 01-723 6963
303 Special offers and bargains store

All mail to 303 Edgware Road. London W2 1BW

Hi Fi and Electronics Centres Open 9 am - 6 pm

### 'SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING



Type SS15. These

Type SS15. These fine motors are easily reversed, starting and stopping in less than 50 without electrical or mechanical braking. Simple relay circuit can be applied to give DC., to winding for a maximum holding torque of 300oz/in with 350 at 0.35 amps through winding. For AC. (synchronous) operation at 120v., 50Hz. Speed 60 rpm at 60Hz., 72 pm. STEPPING. Holding torque at 50 steps per second—100 oz/in. Can be wired to give 100 or 200 steps per revolution with accuracy of 0.10 per step non-cumulative. Torque characteristics can be modified by simple R.C. circuits. Dimensions: dia. 47, body length 42°, spindle length 24° x +5° dia. Weight 6½ lbs. BRAND NEW in maker's price.

OUR PRICE ONLY £15 length 2¼" x 1%" dia. weight 02 150. maker's packing. Offered at less than ½ maker's price. OUR PRICE ONLY £15

Fibre-glass copper-clad laminate. Finest quality epoxy resin base. Heat resistant, ideal for P.C.'s Sizes: 12"x 12"; 24"x 12"; 24"x 24"; FULL SHEET 43"x 37" (11 sq ft.) Single-sided Copper with thickness of 1/32", 3/64", 3/32". Also double-sided 1/32", 1/16", 3/32". £1 per sq ft. Cut sizes (1-10 sq. ft.) 25p. P. & P. Full Sheet £8 each. Carr. £1 for 1st sheet plus 25p each additional sheet.



#### SMITHS RINGER-TIMER

Reliable 15 minute times, spring wound (concurrent with time setting) 15 x 1min divisions, approximately ½" between divisions. Panel mounting with chrome bezel 3½" dia. £1 40. 15p P. & P.

KNOWLE (U.S.A.) MINIATURE MICROPHONE CAPSULES
Impedance approx. 200Ω, output 60 or 80 DB at 1 Kc. As used in deaf aids, bugging devices, etc. Size (60 DB) 7/32" x 5/32" x ½"; (80 DB) ½" x 5/32" x ½". Exequipment, all tested. £1·20 each. P. & P. FREE.

#### **Ultra PRECISION** CENTRIFUGAL BLOWER by Air Control Ltd.



30 segments individually balanced in heavy cast alloy case. 2,300 r.p.m. 240 A.C. Very powerful and silent running. 5½" dia, 3" inlet dia. Outlet flange 3" x 2½". LIMITED NUMBER ONLY £8.95. P & P 40p.

#### MAINS SOLENOID

This little unit gives vertical lift of approximately 1" through hinged "e I b o w".

Bracket incorporates 2 fixing screws. Length of arm, 2½", 240V AC. Pull at coil is approximately 1lb. £1.

FREE P. & P. Special quotes for quantities.

#### SOLENOIDS by WESTOOL

240AC type MM6, 3ib. pull, 2½" x 1" x 1½". Travel 1". 90p. each. P. & P. 10p. 240AC type MM4. 2ib. pull, 1½" x 1½" x 1". Travel ½" 70p each. P. & P. 10p. Quantity discounts: 10-50 10%, 50 up-wards 25%.



#### **OPEN FRAME** shaded pole **GEARED MOTORS**

(Dural gear case)
240 AC., 28rpm. NEW
HIGH TORQUE, approx.
overall size: 3½ " x 3½" x
2½" + spindle ½" dia. as illustrated. £2 70. P. & P. 30p.
Similar to above, 19rpm. £2 70. P. & P. 30p.
110rpm with pressed steel gear case (similar to above but slightly smaller). £2 70. P. & P. 30p.

#### SILVANIA **MAGNETIC SWITCH**

Now complete with reference mannet!

A magnetically activated switch, vacuum sealed in a glass envelope. Silver contacts, normally closed. Rated 3amp at 120v. 1½amp at 240v. Size: (approx.) 1½° long x ½° dia. Ideal for burglar alarms, security systems etc., and wherever non-mechanical switching is required. 10 for £2:10; P. & P. 15p. 50 for £8:80; 100 for £15:50. FREE P. & P. over 10.

#### AMPEX 7.5v. D.C. MOTOR



An ultra precision tape motor designed for use in the AG20 portable recorder. Torque 450GM/CM. Stall load at 500ma. Draws 60ma on run. 600rpm ± speed adjustment. Internal AF/RF suppression. 1" dia. x 1" spindle, motor 3" dia. x 18". Originalcost £16:50. OUR PRICE £3:30. P. & P. 25p. Quantity available. Mu-metal enclosure available. Free P. & P.

#### **ALL PRICES** INCLUDE V.A.T.

Whilst we welcome official orders from established companies and Educational Departments, it is no longer practical to invoice goods under £5. Therefore, please remit cash with orders below this amount.

# ELECTRO-TECH COMPONENTS LTD.

315/317, EDGWARE ROAD. LONDON, W2. Tel: 01-723 5667 01-402 5580

# TWO NEW ADDITIONS TO FANE 'POP' RANGE LOUDSPEAKERS

POP 70 10" 70 Watt

Impedance 8 ohms or .15 ohms

Gauss 17,000

Voice Coil Diam. 2"

70 watt RMS Range 45-8,000 Hz

9.95 Rec. Retail Price inc. VAT

BRIEF DETAILS OF 'POP' RANGE NOW AVAILABLE IN 8 ohms or 15 ohms

Rec. Retail 12" 15 Watt £6.30 POP '15' I" Voice Coil inc, VAT

POP '25T' 12" 25 Watt £8.99 I" Voice Coil inc. VAT POP '50' 12" 50 Watt £12.95

2" Voice Coil inc. VAT

POP '60' 15" 60 Watt £16.95 2" Voice Coil inc. VAT POP '100'

18" 100 Watt £31.00 3" Voice Coil inc. VAT

Also for those who can afford the very best For Instrument Reproduction

Two Super Sensitive Models

## GRESGENDO '12'

Ideal for Lead Guitar etc. 12" 75 Watt 2" Pole Diam. Gauss 20,000

#### CRESCENDO '15/100A' General Purpose

15" 100 Watt 2" Pole Diam. Gauss 20,000



Rec. Retail Price
CRESCENDO '12' B CRESCENDO '15/100A'

£39·96 £46.59

There is also a l2" Crescendo Speaker for General Purpose Public Address, and a 12" and 15" for Bass Guitar etc.

Please send S.A.E. for leaflet on HORN UNITS & 'POP' or 'CRESCENDO' Range of Loudspeakers

POP 55 12" 60 Watt

Impedance 8-15 ohms Gauss 15,000 Voice Coil Diam. 2" Range 50-9,000 Hz AN ALL PURPOSE UNIT OF HIGH SENSITIVIT Rec. Retail Price

£15·99

#### HIGH FREQUENCY HORN UNITS

MODEL 910 Rating 50 watts with recommended



£15.96 inc. VAT MODEL 920 Mk II (as illust)
SIGNIFICANTLY
INCREASED SENSITIVITY.
UNCHANGED PRICE. Rating with recommended filter

recommended filter 100 watts £39.23 inc. VAT Filters for either model available if required

Distributors to Wholesale and Retail Traders—LINEAR PRODUCTS LTD., ELECTRON WORKS, ARMLEY, LEEDS. Manufacturers enquiries to—FANE ACOUSTICS LTD., 286 BRADFORD ROAD, BATLEY, YORKS Prices shown correct at Nov 7, 1974

#### AUTO STOP

Now we come to the autostop mechanism. When the cassette is pushed in, it will only hold in provided the solenoid is energised, to operate the latch. The solenoid is controlled by transistor Tr53. Attached to the cassette feed-spool hub is a commutating switch, below the deck, which constantly switches a common contact between the others provided the hub is rotating.

When power is applied to the circuit by inserting a cassette, capacitor C51 charges via R60, R59 and the base circuits of both Tr53 and Tr54. The resultant collector current in Tr53 energises the solenoid to hold the latch. The flow of collector current in Tr54 reduces the charging voltage applied to C51, so forming a "Miller integrator" circuit linearising the charging of the capacitor. Under these circumstances C51 would eventually become fully charged, and the current would stop flowing, so de-energising the solenoid and releasing the latch. However, this process is not allowed to complete.

#### LATCHING

As soon as the cassette is inserted, the motor starts to move the tape, and the commutating switch commences operation. C52 is alternately charged from the 12V supply, and discharged via R63 into the base of Tr54. The process is integrated by C51 so that a constant hold-in current flows through the solenoid. R64 is included to prevent excessive charging current in C52, with the attendant risk of contact wear and electrical interference.

When the cassette comes to the end, the feed hub stops rotating, and with it the commutating switch. As a result, no current pulses are fed into the base of Tr54, and C51 reaches its point of maximum charge. Current flow in the transistors then ceases, so de-energising the solenoid. The latch drops out releasing the deck mechanism and the cassette is

Obviously, any attempt to re-insert the cassette without turning it over will be fruitless, since the commutating switch will be inoperative and the cassette will be promptly ejected again.

#### THE THIRD MIDLAND

# Amateur Radio & **Electronics Exhibition**

Third Midland Amateur Radio and Electronics Exhibition was held at the Granby Halls, Leicester on October 31st and November 1st and 2nd 1974. It was organised for the Amateur Radio Retailers' Association by T. Darn, G3FGY and L. J. Hellier, G3TED.

The following manufacturers, retailers and organisations were represented: Radio Society of Great Britain; D. P. Hobbs, Luton; Amateur Radio Bulk Buying Group; J. & A. Tweedy, Chesterfield; Home Office (Posts & Telegraphs); Homer & Whitbread, Crayford; Taurus Electrical, Loughborough; British Amateur Teleprinter Group; Stephen James, Liverpool; LMB Speakers, Loughborough; M & B Components, Leeds; Eley Electronics; International Short Wave League; Baginton Electronics; Datong Electronics; Doram, Leeds; Burns Electronics; Garex Electronics; Radio Shack Ltd.; Lowe Electronics; John Birkett; Amateur Radio Shop; Bamber Electronics; Western Electronics; RAIBC; D. Tilcock; Richard White; Bennison, Kings Lynn; Amateur Electronics; Microwave Modules; Isherwood Electronic; Telford Communication; Heath, Gloucester.
The "DX" station and talk-in station were opera

The "DX" station and talk-in station were operating under the call GB3ARE.

### CONSTRUCTION

Construction can commence with the two circuit boards. The motor control board, Fig 3, is quite straightforward but take care to cut the tracks in the correct places. When completed, the board is mounted on the rear panel of the cassette mechanism in the position shown in the photographs. Nylon nuts and bolts should be used to avoid shorting or earthing any of the tracks.

The rear panel also acts as the heatsink for Tr52 and is supplied already punched with the necessary pattern of holes. An insulating mounting kit must be used for this transistor.

The amplifier board carries the two channels side by side, one being a mirror image of the other apart from five of the transistors. These are turned around to make mounting easier. See Fig. 4.

Note that the amplifier starts in the middle of the panel and moves towards the controls. The signal is then conveyed via screened cables to the other half of the board, where it progresses towards the output transistors at the rear of the unit. Because of this layout it is essential, if feedback is to be avoided to place a screen across the middle of the board, as shown in the diagram. This screen is a piece of thin tinplate, soldered to two tags in the negative rails at the centre of the board. It should not touch any other metalwork.

The main earthing is via the deck mechanism; nylon fixing bolts are used to secure the amplifier board to the case. This method of earthing at one point avoids feedback loops which can affect both the stability of the equipment and its immunity to interference. It also eases the conversion to positive earth working.

When constructing the boards, it is wisest to cut the tracks in the appropriate places first, using the lists provided. Then, as you fit the components, check against the circuit diagram that the actual circuit you are making follows it precisely. Any apparent deviations should be checked, and will probably reveal incorrect positioning of components or incorrect cutting of the copper strips.

Next month we will conclude with details of the metalwork required plus final assembly and testing.

During the Exhibition hours the following programmes were scheduled for showing in the film theatre: Cough and You'll Deafen thousands; The History of the B.B.C.; Television Camera Tube; The Electroneers; Semi-Conductor Physics; Television Carrier Wave; Its The Tube that makes the Colour; Something Big in Micro-Circuits; A Planned Environment.

From all reports, the exhibition was a huge success-it was very well organised!





The crystal controlled oscillator of the receiver also gives a high degree of reliability and frequency stability so that the receiver is unlikely to need regular adjustment. The receiver operation is not influenced by changes to the aerial, which can be critical with super-regenerative circuits.

#### RECEIVER CIRCUIT

The circuit shown in Fig. 1 employs five transistors and one IC. The aerial tuned circuit L1C2 is coupled through C1. The length of aerial used naturally influences the maximum range obtainable and can generally be some 12in. to 18in. or so. There is no critical or exact length which must be fitted.

Coil L2 couples signals to the base of the mixer Tr1 while Tr2 is the crystal controlled oscillator, coupled to Tr1 by C4. There is a difference of 455kHz between this oscillator and the frequency of the transmitter. Mixing in Tr1 thus provides a 455kHz output feeding the intermediate frequency transformer IFT1. IFT1 and IFT2 from a compact but quite selective IF filter and signals pass to pin 2 of IC1 providing IF amplification, automatic gain control and demodulation, the resultant audio tone being obtained at pin 1. Tr3 an audio amplifier after which the audio tone is coupled to Tr4 by the driver transformer T1.

When no tone is present Tr5 base is negative via R10 and no collector current passes. When the tone

#### TAKE NOTE!

The use of radio for controlling a model is permitted only under the authority of a licence issued by the Home Office. This authorises the use of A1, A2, F1 and F2 emissions in the frequency band 26.96 to 27.28 MHz with a maximum effective radiated power of 1.5 watts and in the band 458.5 to 459.5 MHz with a maximum effective radiated power of 0.5 watt. The licence authorises the use of the apparatus anywhere in the UK and Is valid for five years. Applications for the licence should be sent to:—Home Office (Radio Regulatory Division), Waterloo Bridge House, Waterloo Road, London SE1 8UA together with the fee of £1.50 NO EXAMINATION IS REQUIRED.

# ECEIVER

is present Tr4 conducts when its base is driven positive by Tl and these pulses are smoothed by Cl2. Tr5 base bias now results in collector current which operates the relay. The relay switches the circuit to magnetic or similar devices which in turn control steering or other functions in the model.

Current drain of the whole circuit is small and it is intended for use with any 4.5 volt or 3-cell battery.

#### CRYSTAL FREQUENCY

With a 27.005MHz crystal in the transmitter the receiver crystal is 27.460kHz, giving a difference, or IF, of 455kHz. There is no need to use these specific frequencies which are quoted as an example. Model control crystals are available for various channels, some being colour coded. If the equipment is being used by itself, remote from other model control transmitters, any channel may be used. But if other persons are operating model control equipment nearby each transmitter should use a separate channel to avoid interference. If a change in frequency is ever found necessary both transmitter and receiver crystals have to be pulled out and replaced by a pair for the new working frequency.

#### CIRCUIT BOARD

This board measures about 358 x 158in. without the relay but may be extended to permit a small relay to be mounted on it near Tr5, but the relay can just



F. G. RAYER

G3OGR



The finished receiver board mounted in a protective plastic box together with the relay. The battery switch and battery are mounted externally.

▼ Fig. 1 : Circuit diagram of the crystal controlled receiver.





as well be separated from the receiver. Both sides of the circuit board are shown in Fig. 2. Holes are drilled for the pins and screening can tags of IFT1 and IFT2, for T1 and the crystal holder before fitting any items. The coil L1/L2 is a push fit in a hole and is cemented in place. A flying lead is left for the aerial connection and leads for battery positive and battery negative. The on-off switch S1 is placed in an easily reached position on the model. Two leads are soldered to Veropins which run to the relay.

The RF choke has 46 turns of 32SWG enamelled copper wire, close wound on a <sup>1</sup>4in diameter former about <sup>3</sup>4in long cut from insulated rod (some potentiometers have an insulated shaft which is suitable). A small hole is drilled near each end of the rod, the wire is taken through one hole and the choke wound then the wire is cut and passed through the other hole. Adhesive at the ends holds the choke to the board. The whole winding should not be covered with adhesive or any other protection.

In most places the wire ends of components are long enough to reach connecting points. Elsewhere, 22SWG wire can be used. Sleeving is necessary on leads which cross other wires or run near joints. Tr1 has tags which pass directly through the circuit board holes. The leads of the other transistors and IC1 are arranged as shown. Leads 1 and 2 of IC1 must be well separated as in Fig. 2.

The can tags of the IFT's are connected to the negative line as is the core of T1. The secondary centre tap of T1 is not used.

#### TESTING

The receiver is adjusted by setting the cores of L1, IFT1 and IFT2 and is best done with the aid of a multi-range meter. Set the meter to 100mA range

and clip it to the relay pins, with a resistor of about 100 ohms or so in series with one lead (the resistor is essential). Meter positive is taken to the positive pin. With the receiver switched on, current should be almost zero.

The transmitter (Part 2) is then switched on and the cores of IFT1 and IFT2 are rotated for maximum meter reading. To avoid overloading the transmitter aerial should not be extended and no aerial need be present on the receiver. A correctly shaped tool, such as that available from the IFT makers, should be used to adjust the cores, as a steel blade is unsuitable and wedge-shaped tools may split the cores so that they cannot be rotated. It may be helpful to have someone take the transmitter a short distance away so that the relay current shown by the meter only rises to 15 to 20mA or so. The core of L1 is also peaked for best results. In the absence of a transmitter a signal generator will suffice.

When the IFT's have been set they need no further adjustment. But when changing or connecting the aerial some small re-adjustment of L1 core may be needed.

#### **AERIALS**

A vertical or slightly sloping aerial will not appear out of place on many models. It can be the small telescopic receiver-type of aerial or a rod or stout wire which can be inserted in an insulated socket. A self-supporting vertical wire should have a loop formed on the top so that it is not a hazard to face or eyes. The length of the aerial will depend on the size of the model and the maximum range wanted. For close ranges the aerial can be short which would be useful for a small model boat controlled over a limited distance.



#### RECEIVER PROTECTION

In a model boat there may well be moisture, spray or oil so the receiver can be protected by fitting it into an insulated box with a tight lid, with aerial, relay and battery leads emerging through small holes.

A check on operation and range should always be made after any changes to the equipment. If loss of control may result in the model not being recovered, a careful watch should be kept on the condition of all batteries. These may appear adequate after an interval of rest, but may soon lose voltage when delivering current, if in poor condition.

#### RELAY

Provided the relay opens and closes reliably when the transmitter is keyed, at the range wanted, it will probably need no further attention. However, as range is increased, the rise in current decreases. The maximum range which can be obtained thus depends on the relay sensitivity, as well as other adjustments. For example, if the relay requires

### \* components list

| Resis                                                                                                 | tors          |             | ,                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------------|--|--|--|--|--|
| R1                                                                                                    | 18kΩ          | R6          | 100kΩ                 |  |  |  |  |  |
|                                                                                                       | 15kΩ          | R7          | 10kΩ                  |  |  |  |  |  |
| R3                                                                                                    | 2·7kΩ         | R8          | 1·8MΩ                 |  |  |  |  |  |
|                                                                                                       | 47kΩ          | R9          | 33Ω                   |  |  |  |  |  |
|                                                                                                       | 1 ·2kΩ        |             | 2-2kΩ                 |  |  |  |  |  |
| A                                                                                                     | 1 1 or 1W 5%  |             |                       |  |  |  |  |  |
| İ                                                                                                     |               |             |                       |  |  |  |  |  |
| Capac                                                                                                 |               |             |                       |  |  |  |  |  |
|                                                                                                       | 20pF SM       | C8          |                       |  |  |  |  |  |
|                                                                                                       | 20pF SM       | C9          |                       |  |  |  |  |  |
|                                                                                                       | 0-01µF        |             | 0·1μ <b>F</b>         |  |  |  |  |  |
|                                                                                                       | 5pF SM        |             | 0·1μF                 |  |  |  |  |  |
|                                                                                                       | 0·047μF       |             | 30μF 6V               |  |  |  |  |  |
| C6                                                                                                    | 22pF SM       | C13         | 200μF 6V              |  |  |  |  |  |
| C7                                                                                                    | 33pF SM       | •           |                       |  |  |  |  |  |
| Semi                                                                                                  | conductors    | ,           |                       |  |  |  |  |  |
|                                                                                                       | BF194         | Tr4         | BC108                 |  |  |  |  |  |
|                                                                                                       | 2N3706        | Tr5         |                       |  |  |  |  |  |
|                                                                                                       | BC109         | IC1         | ZN414                 |  |  |  |  |  |
|                                                                                                       | Miscellaneous |             |                       |  |  |  |  |  |
| IFT1/2 (Denco IFT13), Pair of crystals, Type HC6U, see text (Henrys) and crystal holders. Transformer |               |             |                       |  |  |  |  |  |
| T1 (                                                                                                  | Home Radio T  | R64). S1, ! | slide switch, on-off. |  |  |  |  |  |

Waterproof box to suit. Plain Veroboard 3\{ x 1\{ \}in.

0.15in matrix. Former 7mm dia. and core.

35mA to close, operation will be satisfactory where this or a higher current is obtained, but will become unreliable and cease when current falls below 35mA. So if the relay were set to close at 25mA instead, control would still be obtained at an increased range.

The simplest way to check the operation of the relay, if necessary, is to connect the relay, a  $2k\Omega$  or similar wire-wound potentiometer and a 9V battery in series, with the meter on 100mA range also in circuit. Begin with the full resistance and on reducing this note at what current the relay closes. Some relays have an adjusting spring and can be set to very close limits. With others, careful bending of the contact springs or a flat spring will be needed.

Both a miniature model control relay, with a coil having a resistance of 35 ohms and a larger surplus type relay were found suitable. The small relay originally required 60mA but was re-adjusted to pull in at 25mA and this easily gave control at 100 yards. The larger relay was capable of more sensitive adjustment. A miniature relay is more appropriate for a model having limited space. In general, a relay of moderately high resistance, such as 100 to 250 ohms, will be more sensitive than relays of under 100 ohms but the greater coil resistance naturally reduces maximum current. If wanted, an extra battery could be added in series with the relay so that the additional voltage is available for Tr5 only, but this was not needed with relays of the type mentioned.

Where the relay may switch circuits carrying appreciable power it is necessary to watch that the relay contacts are suitable or they will rapidly deteriorate and become pitted or stick together. A small relay can control the circuit to a small actuator or motor but it is not suitable for controlling directly speed models where a propulsion motor may consume several amperes. Where the receiver relay is unsuitable for the current required, it should control a relieving relay of more robust type, which will in turn switch the circuit required.

With a 100 ohm relay and 4.5V battery supply, current through the relay cannot exceed 45mA. Using this receiver at ground level, with a 20in aerial and the hand-held 5-transistor tone transmitter described in Part 2 a current change of about 40mA was maintained up to a distance of 100 yards. This easily gives strong, reliable operation of the relay. With no tone radiated, the receiver draws approximately 3mA which is a very light load for even small cells.

PART 2 NEXT MONTH DEALS WITH THE TRANSMITTER CONTROL UNIT.

# Now-two fascinating ways to enjoy saving money!

# NEW! Sinclair Scientific kit



# Britain's most original calculator now in kit form

The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200-decade range—features normally found only on calculators costing around £100 or more.

Yet even ready-built, the Sinclair Scientific costs a mere £32.35 (including VAT).

And as a kit it costs under £20!

# Forget slide rules and four-figure tables!

With the functions available on the Scientific keyboard, you can handle directly

sin and arcsin.

cos and arccos,

tan and arctan,

automatic squaring and doubling,

 $log_{10}$ , antilog<sub>10</sub>, giving quick access to  $x^{Y}$  (including square and other roots),

plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

## So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied — all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.

Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer – they're still exceptional value. Use the order form.

Components for Scientific Kit (illustrated)

- 1. Coil
- 2. LSI chip
- 3. Interface chips
- 4. Case mouldings, with buttons, windows and light-up display in position
- 5. Printed circuit board
- 6. Keyboard panel
- 7. Electronic components pack (diodes, resistors, capacitors, etc)
- 8. Battery assembly and on/off switch
- 9. Soft carrying wallet
- 10. Comprehensive instructions for use

Assembly time is about 3 hours.



# **Features of the Sinclair Scientific**



- 12 functions on simple keyboard
  Basic logs and trig functions (and their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lower case' operation means basic arithmetic keys each have two extra functions.
- Scientific notation Display shows 5-digit mantissa, 2-digit exponent, both signable.
- ●200-decade range 10-99 to 10+99.
- Reverse Polish
  iogic Post-fixed
  operators allow chain
  calculations of unlimited
  length eliminate need
  for an = button.
- 25-hour battery life
  4 AAA manganese alkaline batteries (e.g.
  MN2400) give 25
  hours continuous
  use. Complete
  independence
  from external
  power.
- pocketable
  41/3" x 2" x 11/16".
  Weight 4 oz. Attractively styled in grey, blue and white.

# Sinclair Cambridge kit



At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below – then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

#### Components for Cambridge Kit

- 1. Coil
- 2. LSI chip
- 3. Interface chip
- 4. Thick film resistor pack
- 5. Case mouldings, with buttons, window and light-up display in position
- 6. Printed circuit board
- 7. Keyboard panel
- 8. Electronic components pack (diodes, resistors, capacitors, transistor)
- 9. Battery clips and on/off switch
- 10. Soft wallet

Assembly time is about 3 hours.

# Take advantage of this money-back, no-risk offer today

The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch — and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

#### Scientific

Price in kit form £19.95 inc. VAT. Price built £32.35 inc. VAT. Cambridge
Price in kit form £14.95 inc. VAT. Price built £21,55 inc. VAT.

# **Features of the Sinclair Cambridge**



- To: Sinclair Radionics Ltd,
  FREEPOST St Ives,
  Huntingdon, Cambs. PE174BR

  Please send me
  Sinclair Scientific kit at £19.95
- ☐ Sinclair Scientific built at £32.35 ☐ Sinclair Cambridge kit at £14.95
- Sinclair Cambridge kit at £14.95

All prices include 8% VAT.

- \*I enclose a cheque for £...., made out to Sinclair Radionics Ltd, and crossed.
- \*Please debit my \*Barclaycard/ Access account. Account number

\*Delete as required.

Signed

Name

Address

Please print. FREEPOST – no stamp needed. PW/1/75



Sinclair Radionics Ltd, FREEPOST St. Ives, Huntingdon, Cambs. PE174BR.

Reg. No: 699483 England. VAT Reg. No: 213 8170 88.



#### by Eric Dowdeswell G4AR

JUST back from a couple of weeks of sunshine in SV-land, to be greeted by a nice pile-up of logs. Personally, I prefer a pile-up on 20m, especially if I am the focal point! All letters and logs will have been answered by the time this appears in print. I normally try to answer mail within a day or so of receipt but I have to have a break some time!

Eric Carling (Lymington, Hants) expresses surprise at the lack of logs for 10m especially since his Yaesu FR50B has rounded up 113 countries for him on that band this year. All round signals from a quarter wave vertical feed a Hamgear PMIIA preselector. Andrew Darragh (Nr. Wetherby, Yorks) apologises for the absence of a log this month. He's been busy rewiring his AR88 and promises better things henceforth. Just so long as you haven't deserted us OM!

Paul Barker BRS 34898 (Sunderland) volunteered to provide some photos taken off his SSTV monitor but until I can persuade the Editor to give me some more space I am afraid it is not possible to include photographs. But, I can promise that there will not be any pics of any Fred Bloggs and a desk full of commercial equipment! Paul will be glad to assist those interested in SSTV. Also had a very interesting letter from MK Products, 5 Lancashire Drive, Belmont, Durham (alias G3LIV and G3RDI) who can provide PC boards for homebrew SSTV equipment, such as used by Paul Barker, and promise info and help to interested readers.

Lately 15m has been a happy hunting ground for Bernard Hughes BRS 25901 and his FR500SDX, logging 36 JA's in a couple of days. His comprehensive logging system shows a band/countries total of 533 countries on SSB from 10 to 160m so far this year with an all-time total of 1,048. Not to be outdone by Paul Barker and his SSTV antics, Peter Roughley (Warrington, Lancs) weighs in with a long list of RTTY call signs copied on 14·1 MHz in just a couple of days. His modest gear, fed from a 60ft wire or 21ft whip aerial is a BC312 with a Racal IF unit "grafted on as a Q5-er" feeding a homebrew terminal unit and 7B printer.

Michael Green A8088 (Northwich, Cheshire) bemoans his folk's colour TV timebase QRM and appeals for suggestions on suppressing same. Try shorting the aerial input to the chassis and see

how much is coming through the mains OM. Fit a mains suppressor if necessary, or try earthing your gear to a separate point such as an earth rod, after disconnecting the mains earth. All my own gear is earthed to an extensive buried radial system, used for 160m, and I get no QRM from a colour set situated about 15ft away. Max France (Warrington, Lancs) found that a 20ft vertical plus ATU produced better signals from the DX than separate dipoles for 10, 15 and 20m. Generally will OM, if one can tolerate the lack of horizontal discrimination such as a dipole will provide when placed end-on to the Euro ORM! Tim Charles (Colchester, Essex) has been braving our English summer and getting up at 0400 to check on 80m, usually finding ZL's at the top end. He is not too happy at a certain G-net station relaying VK and ZL's from 20 or 40m on to 80m giving the impression of a two-way QSO on 80m!

Kind letters from Leonard Page (Kilmarnock), Malcolm Nesland (Blyth) and Bill Major (Keighley) with hints on curing the hum on Yaesu 9R59 series of receivers, mentioned recently in this column. All amount to fitting an attenuator to the output and then turning up the audio gain. Try 100 and 10 ohm resistors in series across the output, the 100 ohm going to the live side and connect the phones to the junction of the resistors and earth. Bill Urquhart (Sutherland) repositioned the output transformer but got more joy replacing the 2kΩ resistor in the power supply circuit with a 10H choke. Len Allard (Leigh-on-Sea) wrote direct to Japan, to the makers, who suggested additional smoothing capacitors but again little improvement resulted. On my own 9R59DS I spent a week-end making some 25 mods to improve the overall performance, some taken from past articles in Radio Constructor, so it looks as if a separate article on the subject is now called for!

Alan Rae (Glasgow) has also taken the advice of your OT and provided himself with a 60ft vertical plus ATU for his CR100 and "it proved very effective especially on 80m" enabling Alan to log his first ZL's on the band.

#### Log extracts

Alan Rae:—80m VK2VQ VK4NE ZL2AR ZL3ACW ZL4BX 20m EA8TR TU2EF 3A2CP VE6JL/P.

Tim Charles:—80m VK2ALK ZL2BFT ZL3GX ZL4AA ZL4FB 40m BU3OS ST2RE ZL1AOP 20m AP9VHE XE6OMB YS2RL.

Max France:—80m FL8DJ ZD3R 6W8FP 9M2CJ 20m VK9YV VP8NS XP1AA 7P8AQ 15m KX6NQ 5N2ESH 10m CR6UE ZE4JW 3B8CV.

Michael Green:—40m HK4DHR 20m 7SL2AO



TU2DO.

Peter Roughly:—20m ALL RTTY DAILS DJOCP DL2BR EA3OT EA8FF F5WG F9IB G3AWA G8FC HA5KDQ HZISH IIPXC I3BA IC8SMY SM0ASW TF3IRA VE7BDQ VK3KF W3KV 3A2GX.

Bernard Hughes:—20m KL7HRP VK5YH ZL1PZ ZD3R 3D2AZ (Fiji) 15m A35AF JG1MVA JR1YFD JE1MLK.

Paul Barker:—20m DUINRS FM7AQ TJ1AF TU2DO ZB2CJ (QSL G3ATU) KL7GDX JR1VMC 15m VQ9BP/D 7P8AY 10m A4XFE (Oman) HZ1KE 3B8CV.

Eric Carling:—10m VU2DK EA9FA VQ9BP/D (Desroches Is) 9Y4SH HC1CW FY7YM 5U7BA FH8CJ 7Q7DW CT2AK ZS3AW KC4AAC 9J2DT PAOIWH/S21 (Bangladesh) JY9GR VP8HZ.

CW stations in bold, remainder SSB. Please note that logs should be in alphabetical order for every band.



# MEDIUM WAVE BROADCASTS by Charles Molloy

RODNEY ARMSTRONG who lives at Ashby-Cum-Fenby, near Grimsby refers to the October issue of PW and the reception of the Yorkshire TV sound on the medium waves by E. Jenkinson of Sheffield. Rodney has had similar reception which he has traced to re-radiation from his domestic TV receiver. He can also receive BBC1 sound on the 49m band when his TV is switched to that programme. Reception was on a Sony 7R33L portable connected to a 50ft longwire antenna.

Timothy James reports again from Southampton. With his Fidelity RAD 16 he has pulled-in BBC local stations at Medway on 1034kHz (290m); London on 1457kHz (206m); Brighton on 1484kHz (202m); Oxford, also on 1484kHz; Bristol on 1546kHz (194m) and the BBC1 relay at Bournmouth on 1484kHz; the IBA outlets, Capital Radio on 557kHz and London Broadcasting on 719kHz. Europeans heard include AFN Frankfurt on 872kHz; Cluj, Romania on 1151kHz; Radio Sweden 1178kHz; Radio Prague 1268kHz and Radio Norway 1578kHz (this station has an English programme at midnight on a Sunday and there is a DX programme on the first Sunday/ Monday of the month at 0020hrs GMT).

Paul Slinger refers to Radio City, the new Independent Local Radio outlet in Liverpool which is now on the air for twenty-four hours a day. The frequency is 1546kHz (194m) and the transmitter has a power of 1200 watts.

Brendon McNamee (Portrush, N. Ireland) reports that the low power relays at Dublin and Cork, both

of which transmit on 1250kHz have been experimenting recently with individual local programmes during the daytime.

Long distance reception on the medium waves is at its best during the winter months when a path of darkness exists for part of the day between the UK and the American continent to the west and to large parts of Asia to the east. Ideally, a communications receiver and medium wave loop aerial are the tools used by the MW DXer, but complicated equipment is unnecessary on this band. A domestic radio connected to an outdoor aerial will pull-in some DX and when conditions are favourable for reception of this area, will certainly receive a few of the stronger North American outlets.

DX from the west begins about 2330hrs when the path starts to open and a number of Europeans have closed down for the night. Canadians appear first. Listen for CJON in St. John's, Newfoundland on 930kHz; CBN also in St. John's on 640kHz; CHER in Sydney, Nova Scotia on 950kHz and CBA in Moncton, New Brunswick on 1070kHz. High power outlets on the east coast of the United States appear by midnight. Search for WNBC in New York City on 660kHz; WOR also in NYC in 710kHz; WINS in NYC on 1010kHz; WBZ in Boston on 1030kHz and WNEW in NYC on 1030kHz. Latin Americans to look for are Radio Jornal, Rio de Janeiro on 940kHz; Radio Belgrano, Buenos Aires on 950kHz; Radio Margarita, Venezuala on 1020kHz; Radio el Mundo, Buenos Aires on 1070kHz and Radio Tupi, Rio de Janeiro on 1280kHz. DX from North and South America reaches a peak between 0100hrs and 0200hrs GMT but it continues throughout the night until it gradually becomes swamped by Europeans opening up again for the next days broadcasting.

# SHORT WAVE BROADCASTS by Derek Bell

THE main topic of conversation among the short wave enthusiasts over the past few weeks has been the heavy storms that have reached us from the sun, dosing the ionosphere with radiation. This spectacular solar hiccup produced very far reaching effects that ruined many an evening's listening on the short wave frequencies.

The main disturbance was centered round the 14, 15, 16, of September with a visible aurora in Finland on the evening of the 15th. The outbreak started to bite on the Sunday the 15th at 1430, and by nightfall the 80 metre band went out completely. The BBC North Atlantic path also went out, along with most of the hope of amateurs engaged in contests. On Thursday, September 19th, another smaller disturbance was registered, and between them these two sent the sound of frying bacon and assorted grunts and groans down the spectrum to remarkably low frequencies, still it's an ill wind, I suppose our VHF colleagues enjoyed the fun.

To move on to the latest QSL news, Radio Canada is sending out a multi-coloured card depicting the world cycling championships 1974. This is a nice example of the graphic designer's skill, a pity it is unsigned and thus robs the artist of his due credit. Meanwhile, "Down Under" Radio Australia is accepting reports that are sent to its London office at 54 Portland Place, London W1, they are still "clocking" between 60 and 90 days for a reply though. One of the most original "QSLs" that I have heard of comes



from Radio Baghdad, I have it on good authority that a certain collector received through the post (would you believe) two pounds of Dates!! Another QSLer has had the three volume biography of Kim Il Sung, from the Lebanon, he thinks that it came via the Radio Fyongyang mailing list.

While on the subject of the broadcasting stations, we must welcome Radio Israel to the ranks of those that put out a DX show, they have one due to start shortly hosted by one **Ben Dolphin** who I am told is an amateur and who hopes that his listeners will send him technical questions. Radio Israel also announce that they are to start a transmission to Australia and South East Asia at 1030 on their usual frequencies these are on the air with short gaps for twenty four hours a day, and the tuning signal is a national hymn on trumpets and drums with the spoken announcement "Kanshidurei Yisrael Mi-Yerusalayim"

in Hebrew.
One final station to look at is Radio Finland who recently resumed their English Transmissions to North America at 0300-0330 with a 100kW on 9585 dropping their 2300 to 2330 transmission.

Turning now to postbag, letters are sparse this month due to the changeover. However, I have beside me a missive from **Trevor Bland** who resides at Lea in Lincolnshire. He operates a Teleton TF182 FB and the pick of his loggings are as follows:—

9545 Radio Ghana at 2115 in English 11880 Voice of Turkey at 0005 in English 15265 Radio Afghanistan at 1145 in English

His aerial is a built-in telescopic five feet long assisted by a seventy-five foot-long external wire.

Mr. J. A. Martin (sorry about the formality but I have no more information) of Staines in Middlesex also tells us of his catches on his Codar CR70A, he runs a hundred foot aerial in the loft among the spiders and this picks out of the ether such goodies as:—

15270 Voice of Nigeria at 0600 in English 15012 Radio Hanoi at 1800 in English

To be awake at 0600 and DXing show that we have a dedication to our hobby equalled only by such people as fisherman, mountain climbers, or ardent PW readers!

Well folks that brings this month to a close so it only remains for me to wish you all good DX and long may your long-wires prove truly fruitful!

#### **BROADCAST BANDS**

Short Wave and VHF reports by the 15th of the month to Derek Bell c/o Practical Wireless, Fleetway House, Farringdon Street, London, EC4A 4AD.

Medium Wave Logs to Charles Molloy, 132 Segars Lane, Southport, PR8 3JG.

#### AMATEUR BANDS

Logs covering any amateur band/s in band/ alphabetical order by the middle of the month to Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey, KT21 2TW.

# points arising...

#### "TELE-TENNIS"

We have heard from several readers of problems in setting up Board A. Symptoms are the display of two or more "courts" side by side on the television screen.

A cure may generally be effected by increasing the value of R4 to  $2.7k\Omega$ , though it may be necessary to change VR2 to  $25k\Omega$  to be sure of coping with timing spreads in IC2.

#### 'EPSOM' SHORT WAVE RECEIVER

The following points should be noted in conjunction with Fig. 13 in the October, 1974 issue.

1. The various coils and IF transformers are all wound with 28swg enamelled copper wire.

2. Winding L9 is a straight 40 turns—no centre tap.

#### 'SANDOWN' F.M. TUNER

From experience gained in constructing several more tuners to this design, the authors have recommended a number of minor modifications to ensure consistent performance.

1. With certain samples of Tr102 and Tr103, spurious oscillations occur in the mixer stage at about 400MHz. These may be cured by inserting a ferrite bead between Cl10 and the junction of R107, R108, and Tr102 g2. If Cl10 is stood on end, the bead can be threaded onto the longer lead.

2. To reduce the effect of hum pickup in the oscillator tuned circuit, increase C118 to  $0 \cdot 1\mu F$  and insert a  $100 k\Omega$  resistor, R118, between the junction of R111 and C118 and the tuning line (H). No modification to the pcb is necessary as R118 can replace the wire link beside C118.

3. The decoupling capacitor C227 on pin 11 of IC202 should be changed to a  $22\mu F$  tantalum bead type.

4. If stronger a.f.c. action is required, R217 may be increased in value up to a maximum of  $47k\Omega$ .

5. Some mains transformers, although of the rating specified in the components list, may be incapable of driving scale lamps as shown in Fig. 3.

If the resistance of the secondary winding is too high, the voltage drop due to the lamp load will cause the supply to IC301 to fall below the level required for satisfactory operation. The ripple on the stabilised 13V line will increase and cause hum on the audio output.

For those constructors requiring the dial lamps, the solution is to use a transformer of a higher current rating or a slightly higher secondary voltage. If the voltage at pins 11 and 12 of IC301 exceeds 19V, a resistor of about  $10\Omega$  should be inserted in the line to these pins to restore it to that level.

# TAKE 2®

No. 67 BASIC WOBBULATOR

# DAVID ANDREWS

# A series of simple transistor projects, using not more than twenty components.

ALTHOUGH we call this month's project a Wobbulator it is in fact a voltage controlled r.f. oscillator and as such might prove a valuable experimental circuit for many applications. Its most obvious application is as an aid to circuit alignment and we have designed it to operate from about 400kHz to just over 1MHz. Basically it consists of a conventional Hartley oscillator centred around Tr2, Fig. 1.



Fig. 1: Circuit for the Basic Wobbulator.

The coil used was one of the Denco Maxi-Q transistor aerial coils (Blue type) range 2T to give the desired frequency range. This is tuned by means of C2 and gives good coverage of the medium wave band as well as conventional intermediate frequencies. A high level is available at the output at quite a low impedance, nevertheless the oscillator is liable to "pulling" if too high a capacitative load is applied to the output. In most applications it will be found desirable to attenuate the signal by means of a suitable RC network—alternatively the output can be very loosely coupled to receivers under test (the output being taken "close" to the circuit in question without physical connection).

# Higher frequencies

The prototype has only been tried with the above coil in the frequency range mentioned but there is no reason why it should not work at higher frequencies with different coils—provided the transistor has sufficient gain and circuit parasitics do not present problems. Should the gain of the transistor fall off at higher frequencies feedback coupling can be increased by increasing the value for C3. Excessive feedback will distort the output waveform as clipping sets in so do not make C3 larger than necessary for satisfactory oscillation.

# "Wobbulating"

To obtain "Wobbulator" control of the frequency we must arrange to frequency modulate the oscillator with a control signal. In most applications this signal will be a sawtooth waveform extracted from the time base circuits of the test oscilloscope. The voltage control part of the circuit is around Trl. The d.c. level at Tr1 emitter is set by VR1 and the sawtooth sweep is superimposed upon this. The voltage from Tr1 is used to control the shunt capacitance in the tuned circuit of the r.f. oscillator stage by means of D1. This diode is acting as a cheap substitute for a varacter diode and works extremely well. The principle of operation depends on the parasitic capacitance of the diode's depletion layer. When a diode is reverse biased very little current flows through it because of the layer between the p and n regions-known as the depletion layerwhich is temporarily devoid of charge carriers. The depletion layer thus acts as a dielectric and the junction acts as a capacitor the value of which depends on the area of the junction and the width of this depletion layer. To get significant capacity we are using a large area junction—as found in a power rectifier-this gives capacity in the order of tens of picofarads.

### \* components list



The diode's capacity is varied by altering the width of the depletion layer. The greater the reverse bias on a diode the wider the depletion layer and hence the lower the junction capacity. Conversely as the bias on the diode is shifted in a forward direction the capacitance increases as the depletion layer gets narrower up to the point when the depletion layer disappears altogether and the diode is then said to be conducting in the forward direction.

Our circuit shows this diode as DI and, of course, its polarity is very important. The polarity is such that it is always reverse biased by signal levels at the emitter of TrI and if these voltages vary, the internal capacity of the diode will change. The higher the voltage from TrI (in a positive direction) the more the diode is reverse biased and hence the

lower its capacitance and vice versa. Although it is not obvious from the diagram, this variable capacitance diode is acting in parallel with the main tuning capacitor C2 and hence input signal voltages will alter the frequency of the r.f. oscillator. For a wider range of control (together with a general increase in shunt capacity) you can put two or more similar diodes in parallel—this is shown by the dotted lines in both the schematic drawing and the layout.



Fig. 2: Layout of Wobbulator on plain Veroboard with components mounted on pins or tags. Dotted lines indicate wiring below the board. A B9A valve-holder may be used to take L1/L2, especially if different bands are contemplated.

The basic frequency of oscillation is set by C2 and this can be modified by the d.c. level at Tr1 emitter which is itself set by VR1. The degree of voltage control (as a percentage of the basic frequency) depends on the relative values of D1 and C2. At high frequencies (when C2 is at a low value) there will be a wider range of control than at low frequencies. In extreme cases the percentage variation is from about 100% to almost zero so some experimentation is needed. Of course, the voltage control is NOT linear with the output frequency over wide ranges nevertheless it can be considered linear for a few percent modulation. R1 and R2 are present to prevent Tr1 being biased in extreme directions so that the input signal will always have some effect but it should be remembered that an excessive input signal could push Tr1 into an extreme conduction state if VR1 is set at either extreme.

As the title implies, this is a very basic circuit and although we cannot guarantee its quantitative accuracy it could prove very useful as a simple qualitative aid. Other applications could include experimental circuits involving phase locked loops and possibly self-tracking local oscillators for constant frequency reception of c.w. morse signals.

### DID YOU MISS THE PW TELE-TENNIS **SERIES?**

#### THIS TIME YOU ARE LUCKY!

For reprint information see page 835

Ensure you do not miss PW by taking out a subscription.



# RADIO SERVICING POCKET BOOK

3rd Edition

by Vivian Capel

- Completely rewritten to include developments and trends since the 1962 edition . . . including Stereo Radio and Car radios with more on various forms of interference.
- Gives basic theory on modern radio circuitry and design . . . plus useful information on older equipment.
- Emphasis has been placed on the practical aspect with chapters on Planning the Workshop, Test Equipment, Fault Finding and Alignment.
- Workshop routine and servicing techniques are prominently featured with a view to cutting Jahour costs
- Incorporates a useful data section designed to reduce superfluous information, concentrating on the important facts.
- Incorporates for the first time in book form, a Makers' and Service Depots Directory that will prove invaluable for obtaining spare parts and service data for particular models.

#### NOT TO BE MISSED by

Radio Hobbyists Radio Service Trade Students working for RTEB examination

#### CONTENTS

Modern Radio Components. Valve Receivers. Modern Transistor Radios. FM Receivers. Stereo Broadcasting. Car Radios. Radio Aerials. Interference. Setting up the Workshop. Workshop Equipment. Workshop Techniques. Fault Diagnosis. Receiver Alignment, Useful Data, Directory of Radio Manufacturers and Service Depots.

256 pages  $7\frac{1}{2} \times 5$  ins. Illustrated, available at the end of December

Cover Price £1.95 (£2.10 inc. p/p)

#### SPECIAL PRE-PUBLICATION **OFFER** only to readers of PW

**SEND** just £1.60 to:-

**NEWNES-BUTTERWORTH (Dept PW)** BOROUGH GREEN, SEVENOAKS, KENT TN15 8PH

Do not send money or correspondence on this offer to Practical Wireless.



| SPEAKER BARGAINS                                                                                                                                                                                                                                                                                                                                      | £                                                    |                                                                                                                                                                                                | £                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| EMI 13" x 8" 3, 8 or 15 ohm                                                                                                                                                                                                                                                                                                                           |                                                      | GOODMANS 61 8 ohm                                                                                                                                                                              | ~                                                 |
| Plain                                                                                                                                                                                                                                                                                                                                                 | 2.05                                                 | Dualcone                                                                                                                                                                                       | 2.15                                              |
| With Co-Axial Tweeter                                                                                                                                                                                                                                                                                                                                 |                                                      | ELAC 8" 8 ohm Dualcone                                                                                                                                                                         | 2.25                                              |
| 8 ohms only                                                                                                                                                                                                                                                                                                                                           | 2 · 20                                               | ELAC 8 ohm Dualcone 10 watt                                                                                                                                                                    | 3.50                                              |
| Twin Tweeter                                                                                                                                                                                                                                                                                                                                          | 3.70                                                 | FANE 7" x 4" 3 or 8 ohm                                                                                                                                                                        | 1.00                                              |
| Type 350 8 or 15 ohm,                                                                                                                                                                                                                                                                                                                                 |                                                      | ADASTRA 10" 8 or 15 ohm,                                                                                                                                                                       |                                                   |
| 20 watt                                                                                                                                                                                                                                                                                                                                               | 7.50                                                 | 10 watt                                                                                                                                                                                        | 3-45                                              |
| 61" 8 ohm, 10 watt                                                                                                                                                                                                                                                                                                                                    | 2.40                                                 | BAKER GROUP 25 12" 8 or                                                                                                                                                                        | U 70                                              |
| 8" 8 ohm, 10 watt                                                                                                                                                                                                                                                                                                                                     | 3.75                                                 | 15 ohm, 25 watt                                                                                                                                                                                | 7.95                                              |
| 12" 8 ohm, 20 watt                                                                                                                                                                                                                                                                                                                                    | 6.70                                                 | P. & P.                                                                                                                                                                                        | .30                                               |
| 8" x 5" C/Mag. 5 watt                                                                                                                                                                                                                                                                                                                                 | 1.25                                                 | 5" 8 ohm, C/Mag                                                                                                                                                                                | -85                                               |
| 8" x 5" Dualcone                                                                                                                                                                                                                                                                                                                                      |                                                      | 2½" 8 ohm or 64 ohm                                                                                                                                                                            | . 50                                              |
| 8 ohm, 10 watt                                                                                                                                                                                                                                                                                                                                        | 2 · 45                                               | P. & P                                                                                                                                                                                         | 15                                                |
| TWEETER & CROSSOVE                                                                                                                                                                                                                                                                                                                                    | ₹                                                    |                                                                                                                                                                                                |                                                   |
| EMI 31 3 or 8 ohm C/Mag                                                                                                                                                                                                                                                                                                                               | 1 · 20                                               | Dome Tweeter 8 ohm, 30 watt                                                                                                                                                                    | 5.40                                              |
| Cone Tweeter 8 or 15 ohm,                                                                                                                                                                                                                                                                                                                             |                                                      | Crossovers CN23 (3 ohm),                                                                                                                                                                       |                                                   |
|                                                                                                                                                                                                                                                                                                                                                       | 2.40                                                 | CN28 (8 ohm), CN216 (16                                                                                                                                                                        |                                                   |
| Cone Tweeter 8 ohm, 3 watt<br>Horn Tweeter 8 ohm, 20 watt                                                                                                                                                                                                                                                                                             |                                                      | ohm)                                                                                                                                                                                           | 1 - 20                                            |
|                                                                                                                                                                                                                                                                                                                                                       | 6 40                                                 | P. & P                                                                                                                                                                                         | -10                                               |
|                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                                                                                                                                                                |                                                   |
| KIT FORM CABINETS TE                                                                                                                                                                                                                                                                                                                                  | AK V                                                 | ENEER .                                                                                                                                                                                        | -                                                 |
| 12 x 12 x 6 with 8" 8" x 5" or                                                                                                                                                                                                                                                                                                                        |                                                      | 18 x 11 x 9 with 13" x 8" cutout                                                                                                                                                               | -                                                 |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 31" cut out.                                                                                                                                                                                                                                                                                                   | AK V                                                 | ENEER<br>18 x 11 x 9 with 13" x 8" cutout<br>for EMI 350                                                                                                                                       | 4 · 25                                            |
| 12 x 12 x 6 with 8" 8" x 5" or<br>6\frac{1}{2}" and 3\frac{1}{2}" cut out<br>17 x 10 x 9 with 8" or 13" x 8"                                                                                                                                                                                                                                          | 2 · 45                                               | 18 x 11 x 9 with 13" x 8" cutout<br>for EMI 350                                                                                                                                                |                                                   |
| 12 x 12 x 6 with 8" 8" x 5" or 6\frac{1}{2}" and 3\frac{1}{4}" cut out 17 x 10 x 9 with 8" or 13" x 8" cutout                                                                                                                                                                                                                                         |                                                      | 18 x 11 x 9 with 13" x 8" cutout                                                                                                                                                               | 4·25<br>·45                                       |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 31" cut out                                                                                                                                                                                                                                                                                                    | 2 · 45                                               | 18 x 11 x 9 with 13" x 8" cutout<br>for EMI 350 P. & P. ea.                                                                                                                                    | · 45                                              |
| 12 x 12 x 6 with 8" 8" x 5" or<br>6½" and 3;" cut out<br>17 x 10 x 9 with 8" or 13" x 8"<br>cutout<br>MICROPHONES<br>CM70 Planet stick metal.                                                                                                                                                                                                         | 2 · 45                                               | 18 x 11 x 9 with 13" x 8" cutout<br>for EMI 350                                                                                                                                                |                                                   |
| 12 x 12 x 6 with 8" 8" x 5" or<br>61" and 31" cut out.<br>17 x 10 x 9 with 8" or 13" x 8"<br>cutout<br>MICROPHONES<br>CM70 Planet stick metal,<br>switch crystal                                                                                                                                                                                      | 2 · 45                                               | 18 x 11 x 9 with 13" x 8" cutout<br>for EMI 350 P. & P. ea.<br>TW209<br>CONDENSER MIKE 600 ohm,                                                                                                | · 45                                              |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 31" cut out. 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal  DM160 Dynamic omni-dir.                                                                                                                                                                             | 2·45<br>3·50                                         | 18 x 11 x 9 with 13" x 8" cutout<br>for EMI 350                                                                                                                                                | · 45                                              |
| 12 x 12 x 6 with 8" 8" x 5" or 6\frac{1}{2}" and 3\frac{1}{2}" cut out 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal                                                                                                                                                 | 2·45<br>3·50                                         | 18 x 11 x 9 with 13" x 8" cutout for EMI 350 P. & P. ea.  TW209 CONDENSER MIKE 600 ohm, uni-dir Cassette Stick Mike with R. Control on/off switch                                              | · 45                                              |
| 12 x 12 x 6 with 8" 8" x 5" or 6;" and 3;" cut out. 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50K/600 ohm. uni-dir.                                                                                                                                        | 2·45<br>3·50<br>1·55<br>3·85                         | 18 x 11 x 9 with 13" x 8" cutout for EMI 350  P. & P. ea.  TW209  CONDENSER MIKE 600 ohm, uni-dir  Cassette Stick MIke with R.  Control on/off switch (2:5 & 3:5mm J/Ply)                      | · 45                                              |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 31" cut out. 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50K/600 ohm, uni-dir ball me al                                                                                                                             | 2·45<br>3·50                                         | 18 x 11 x 9 with 13" x 8" cutout for EMI 350 P. & P. ea.  TW209 CONDENSER MIKE 600 ohm, uni-dir Cassette Stick Mike with R. Control on/off switch                                              | · 45<br>5·75<br>9·35                              |
| 12 x 12 x 6 with 8" 8" x 5" or 6½" and 3½" cut out 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50K/600 ohm, uni-dir ball me'al  SOLDERING IRONS                                                                                                              | 2·45<br>3·50<br>1·55<br>3·85                         | 18 x 11 x 9 with 13" x 8" cutout for EMI 350  P. & P. ea.  TW209  CONDENSER MIKE 600 ohm, uni-dir  Cassette Stick MIke with R.  Control on/off switch (2:5 & 3:5mm J/Ply)                      | 45<br>5·75<br>9·35                                |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 31" cut out. 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50K/500 ohm, uni-dir ball me'al  SOLDERING IRONS ANTEX CN240 15 watt                                                                                        | 2·45<br>3·50<br>1·55<br>3·85                         | 18 x 11 x 9 with 13" x 8" cutout for EMI 350 P. & P. ea.  TW209 CONDENSER MIKE 600 ohm, uni-dir Cassette Stick Mike with R. Control on/off switch (2-5 & 3-5mm J/Ply) P. & P. X25 25 watt (low | 45<br>5·75<br>9·35                                |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 3;" cut out. 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50k/600 ohm, uni-dir ball me al  SOLDERING IRONS ANTEX CN240 15 watt SK1 Kit (15 watt iron                                                                  | 2·45<br>3·50<br>1·55<br>3·85<br>5·95                 | 18 x 11 x 9 with 13" x 8" cutout for EMI 350 P. & P. ea.  TW209 CONDENSER MIKE 600 ohm, uni-dir Cassette Stick Mike with R. Control on/off switch (2.5 & 3.5mm J/Ply) P. & P. & P.             | 5·75<br>9·35<br>1·45<br>·20                       |
| 12 x 12 x 6 with 8" 8" x 5" or 6½" and 3;" cut out 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal  DM160 Dynamic omni-dir. ball metal  UD130 50K/600 ohm, uni-dir ball me al  SOLDERING IRONS  ANTEX CN240 15 watt  SK1 Kit (15 watt Iron 2 spare Bib etc.)                                             | 2·45<br>3·50<br>1·55<br>3·85<br>5·95                 | 18 x 11 x 9 with 13" x 8" cutout for EMI 350 P. & P. ea.  TW209 CONDENSER MIKE 600 ohm, uni-dir Cassette Stick Mike with R. Control on/off switch (2-5 & 3-5mm J/Ply) P. & P. X25 25 watt (low | 5·75<br>9·35<br>1·45<br>·20                       |
| 12 x 12 x 6 with 8" 8" x 5" or 61' and 31' cut out 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal  DM160 Dynamic omni-dir. ball metal  LD130 50K/600 ohm, uni-dir ball me al  SOLDERING IRONS  ANTEX CN240 15 watt  SK1 Kit (15 watt iron 2 spare Bib etc.)  CARTRIDGES & STYLIII                       | 2·45<br>3·50<br>1·55<br>3·85<br>5·95                 | 18 x 11 x 9 with 13" x 8" cutout for EMI 350 P. & P. ea.  TW209 CONDENSER MIKE 600 ohm, uni-dir Cassette Stick Mike with R. Control on/off switch (2.5 & 3.5mm J/Ply) P. & P. & P.             | 5·75<br>9·35<br>1·45<br>·20                       |
| 12 x 12 x 6 with 8" 8" x 5" or 61" and 31" cut out. 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50K/500 ohm, uni-dir ball me ai  SOLDERING IRONS  ANTEX CN240 15 watt iron 2 spare Bib etc.)  CARTRIDGES & STYLII ACOS GP91/2SC or 3SC ster.                | 2·45<br>3·50<br>1·55<br>3·85<br>5·95<br>1·90<br>3·30 | 18 x 11 x 9 with 13" x 8" cutout for EMI 350                                                                                                                                                   | -45<br>5-75<br>9-35<br>1-45<br>-20<br>1-90<br>-10 |
| 12 x 12 x 6 with 8" 8" x 5" or 61 and 31" cut out 17 x 10 x 9 with 8" or 13" x 8" cutout  MICROPHONES  CM70 Planet stick metal, switch crystal DM160 Dynamic omni-dir. ball metal UD130 50K/600 ohm, uni-dir ball me al  SOLDERING IRONS  ANTEX CN240 15 watt SK1 Kit (15 watt iron 2 spare Bib etc.)  CARTRIDGES & STYLII ACOS GP91/2SC or 3SC ster. | 2·45<br>3·50<br>1·55<br>3·85<br>5·95                 | 18 x 11 x 9 with 13" x 8" cutout for EMI 350                                                                                                                                                   | 5·75<br>9·35<br>1·45<br>·20                       |

| G<br>G<br>BSR X5M<br>SX6 | cryst<br>P94/1 c<br>ceram.<br>P101 cry<br>P104 ste<br>f or X5H<br>iM or | or 96/1 ste                          | 1·35<br>1·75<br>0·80<br>1·65<br>p. 1·70 | GOLDRING G850                                              |
|--------------------------|-------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------------------------|
| SC5                      | omp<br>Mister.                                                          |                                      | . 1·90<br>. 2·60                        | G800E 3.9                                                  |
| Cambri                   | dge                                                                     |                                      | . 19.00                                 | Scientific 29·0                                            |
| 240v inpu                | it 6, 7·5                                                               | MINATOR<br>or 9 300m.<br>ecify outpu | A 2.95                                  | 6, 7·5 or 9 d.c. output at 300mA 2·3                       |
| TAPES<br>5"<br>5#"<br>7" | Stnd.<br>50p<br>65p<br>85p                                              | LP<br>65p<br>80p<br>1·10p            | DP<br>1·00p<br>1·40p<br>1·80p           | PLASTIC LIBRARY CASES For 5" Reels 18  5\frac{1}{2}" Reels |
| LOW N<br>C60<br>C90      | 0ISE 0<br>1-5<br>35p<br>45p                                             | 6-10<br>33p                          | 11-20<br>30p                            | Cassette Cases 19p<br>Cassette Head Cleaner 35p            |

| C90<br>C120                                                                                           | 45p<br>55p                                                                               | 43p<br>52p                                                                   | 40p<br>50p                                | P. & P. 1-5, 3p ea. 6-10, 15p 11-20, Post Free.                                                                                                                                                                        | 35p<br>lot.                                  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Tape Ed<br>Recordi<br>Splice<br>Cassette<br>Cassette<br>12's Cas<br>Stylus E<br>Spirit Lo<br>Hi-Fi St | e Tape, edit<br>e Salvage P<br>ssette Cas<br>Balance<br>ever<br>tereo Test<br>Kleen Reco | Ref. 23 Ref. 20 ting Ref. 29 e Ref. 34 Ref. 32A Ref. 46 Cassette ord Cleaner | 45<br>£1 50<br>1 20<br>50<br>2 10<br>1 90 | WHARFEDALE SPEAKER BARGAINS  Linton 2 Kit (pr) 19 00 Glendale 3 Kit (pr) 33 50 Dovedale 3 Kit (pr) 52 00 Denton 2 Speaker (pr) 39 50 Dovedale 3 Speaker (each) 42 00 Glendale 3 Speaker (pr) 57 00 Kingsdale 3 Speaker | 1.50<br>1.50<br>2.00<br>2.00<br>2.00<br>3.00 |
|                                                                                                       | P.                                                                                       | & P.                                                                         | -10                                       | (each) 59-95                                                                                                                                                                                                           | 3.00                                         |

Send 25p for COMPLETE CATALOGUE, refundable upon first order.
ALL OUR MERCHANDISE IS FULLY GUARANTEED.
Subject to manfacturer increase and awailability.

# **Riversdale Electronics**

Mail Order Department PWI P.O. Box 470, Manchester M60 4 BU.



#### "I MADE IT MYSELF"

Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

# Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn—and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

You build a modern Transistor Radio . . a Burglar Alarm. You learn Radio and Electronics by doing actual projects you enjoy—making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs!

# No soldering—yet you learn faster than you ever dreamed possible.

Yes! Faster than you can imagine, you pick up the technical know how you need. Specially prepared step-by-step lessons show you how to: read circuits—assemble components—build things—experiment. You enjoy every minute of it!

You get everything you need. Tools. Components. Even a versatile Multimeter that we teach you how to use. All included in the course. AT NO EXTRA CHARGE! And this is a course anyone can afford. (You can even pay for it by easy instalments).

#### So fast, so easy, this personalised course will teach you even if you don't know a thing today!

No matter how little you know now, no matter what your background or education, we'll teach you. Step by siep, in simple easy-to-understand language, you pick up the secrets of radio and electronics.

You become a man who makes things, not just another of the millions, who don't understand. And you could pave the way to a great new career, to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire highpowered technical qualifications, because our famous courses go right up to City & Guilds levels.

#### Send now for FREE 76 page book—see how easy it is—read what others say!

Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.

POST TODAY FOR FREE BOOK

To: ALDERMASTON COLLEGE DEPT. BPW 85 READING RG7 4PF

Yes, I'd like to know more about your course. Please send me free details—plus your big, 76-page book that tells about all your courses.



ADDRESS

NAME



BPW85

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

# Trannies LTD.

Retail shop open 9.30 to 5.30 Monday to Saturday Closed all day Wednesday

ALL PRICES **FULLY INCLUSIVE** OF VAT

## 4 BUSH HOUSE, HARLOW, ESSEX

#### **SEMICONDUCTORS**

| ſ | TRA                                          | NSI                             | STOR                                      | SD                              | IODES                                      | 5R                                   | ECTIFI                                         | ERS                             | -THY                                                           | RIS                             | TORS-                                          | -TR                             | IACS-74                                                              | ERIES                                   | -IC                             | 's—T ł                                    | IERM                                      |                                                                              |
|---|----------------------------------------------|---------------------------------|-------------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------|------------------------------------------------|---------------------------------|----------------------------------------------------------------|---------------------------------|------------------------------------------------|---------------------------------|----------------------------------------------------------------------|-----------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|
|   | Transis<br>AA119<br>AC107<br>AC126           | 7p<br>25p<br>22p                | BA145<br>BA154<br>BA156<br>BAX16          | 24p<br>14p<br>18p<br>8p         | BCY30<br>BCY31<br>BCY70<br>BCY71           | 58p<br>69p<br>17p<br>27p             | ME04075<br>ME0491<br>ME0492<br>ME0493          | 34p<br>23p<br>23p<br>21p        | NKT713<br>NKT773<br>OA5(GH5                                    | 19p                             | 2N930<br>2N1131<br>2N3132<br>2N302             | 22p<br>26p<br>26p<br>30p        | Ther-<br>mistors<br>VA10668 15p<br>VA10558 15p                       | Diode                                   | 3                               | 7437<br>7738<br>7440<br>7441              | 77p<br>77p<br>20p<br>81p                  | 74154 £2:20<br>74155 £1:75<br>74156 £1:75<br>74157 £1:82                     |
|   | AC127<br>AC128<br>AC141<br>AC141k            | 18p<br>18p<br>22p<br>29p        | BC107<br>BC108<br>BC109<br>BC113          | 14p<br>14p<br>14p<br>18p        | BCY72<br>BD124<br>BD131<br>BD132           | 14p<br>1·30<br>52p<br>57p            | ME1001<br>ME1002<br>ME1075<br>ME1100           | 16p<br>17p<br>19p<br>20p        | OA10<br>OA47<br>OA90<br>OA91<br>OA95                           | 24p<br>9p<br>6p<br>6p           | 2N1303<br>2N1304<br>2N1305<br>2N1306           | 30p<br>38p<br>88p<br>47p        | VA1056 15p<br>VA1067 16p<br>VA1039 14p<br>VA1040 14p                 | Thyris 1 amp                            | -                               | 7442<br>7443<br>7444<br>7445<br>7446      | 81p<br>£1·40<br>£1·57<br>£2·31<br>£1·61   | 74160 \$2.18<br>74161 \$2.18<br>74162 \$4.84<br>74163 \$4.84<br>74164 \$8.78 |
|   | AC142k<br>AC142k<br>AC151<br>AC152<br>AC153k | 22p<br>29p<br>23p<br>28p<br>39p | BC114<br>BC115<br>BC117<br>BC125<br>BC126 | 19p<br>19p<br>26p<br>17p<br>17p | BD131<br>BD132<br>BDY20<br>BF167<br>BF173  | M/P<br>£1·18<br>91 p<br>25 p<br>28 p | ME1120<br>ME2001<br>ME2002<br>ME3001<br>ME3002 | 20p<br>15p<br>16p<br>21p<br>26p | (HG1005<br>OA200<br>OA202<br>OA19                              | 7p<br>9p<br>9p<br>55p           | 2N1307<br>2N1308<br>2N1309<br>2N1613<br>2N1711 | 47p<br>53p<br>56p<br>24p<br>25p | VA1077 15g<br>VA1100 14g<br>Bridge<br>Rectifiers                     | 200v<br>400v<br>3 amp                   | 32p<br>37<br>46p<br>36p         | 7447<br>7448<br>7450<br>7451              | £1.58<br>£1.98<br>20p<br>20p              | 74165 23.78<br>74166 24.28<br>74174 23.78<br>74175 22.92                     |
|   | AC153k }<br>AC176k }<br>AC176k<br>AC176      | M/P<br>82p<br>42p<br>24p        | BC135<br>BC137<br>BC140<br>BC147          | 19p<br>19p<br>85p<br>12p        | BF177<br>BF178<br>BF179<br>BF194           | 27p<br>34p<br>88p<br>16p             | ME3011<br>ME4001<br>ME4002<br>ME4003           | 21p<br>16p<br>17p<br>19p        | OC25<br>OC28<br>OC29<br>OC35                                   | 45p<br>65p<br>69p<br>59p        | 2N2218<br>2N2218a<br>2N2219<br>2N2219a         | 33p<br>48p<br>42p<br>58p        | 1 amp<br>50v 38p<br>200v 43p<br>400v 46s                             | 5 amp                                   | 40p<br>44p<br>59p               | 7453<br>7454<br>7460<br>7470<br>7472      | 20p<br>20p<br>20p<br>36p<br>36p           | 74177                                                                        |
|   | AC187<br>AC187k<br>AC188<br>AC188k<br>ACY17  | 22p<br>28p<br>22p<br>28p<br>28p | BC148<br>BC149<br>BC157<br>BC158<br>BC159 | 11p<br>18p<br>17p<br>16p<br>16p | BF195<br>BF244<br>BF254<br>BFX29<br>BFX84  | 16p<br>27p<br>16p<br>84p<br>25p      | ME4101<br>ME4102<br>ME4103<br>ME4104<br>ME6001 | 16p<br>17p<br>16p<br>16p<br>18p | OC36<br>OC41<br>OC44<br>OC45<br>OC70                           | 65p<br>20p<br>20p<br>20p<br>23p | 2N2484<br>2N2646<br>2N2904<br>2N2904a          | 46p<br>51p<br>25p<br>80p        | 2 amp<br>50v 49p<br>100v 56p<br>400v 67p<br>5 amp                    | Triacs                                  | 54p<br>60p                      | 7473<br>7474<br>7475<br>7476              | 49p<br>49p<br>65p<br>55p                  | 74190 23.08<br>74191 22.80<br>74192 22.53<br>74193 22.53                     |
|   | ACY18<br>ACY19<br>ACY20<br>ACY21             | 22p<br>26p<br>23p<br>24p        | BC167<br>BC168<br>BC169<br>BC177          | 18p<br>18p<br>18p<br>28p        | BFX85<br>BFX86<br>BFX87<br>BFX88           | 82p<br>25p<br>27p<br>25p             | ME6002<br>ME6003<br>ME6101<br>ME6102           | 19p<br>17p<br>19p<br>20p        | OC71<br>OC72<br>OC75<br>OC81                                   | 18p<br>18p<br>24p<br>28p        | 2N2905a<br>2N3053<br>2N3055<br>2N3702          | 38p<br>23p<br>49p<br>12p        | 50v <b>£1.89</b><br>200v <b>£1.98</b><br>400v <b>£2.25</b><br>10 amp | 400v<br>6 amp<br>400v<br>10 amp<br>400v | 70p<br>90p<br>£1-80             | 7480<br>7481<br>7482<br>7483<br>7484      | 98p<br>£1·47<br>£1·10<br>£1·83<br>£1·22   | 74194                                                                        |
| İ | ACY22<br>AD140<br>AD142<br>AD143<br>AD149    | 19p<br>67p<br>59p<br>52p<br>65p | BC178<br>BC179<br>BC182<br>BC183<br>BC184 | 21p<br>24p<br>12p<br>11p<br>12p | BFY50<br>BFY51<br>BFY52<br>BFY64<br>BFY90  | 23p<br>19p<br>23p<br>39p<br>£1·15    | ME8001<br>ME8002<br>ME8003<br>ME9001<br>ME9002 | 19p<br>21p<br>23p<br>19p<br>18p | OC81D<br>OC83<br>OC84<br>TIP29a<br>TIP30a                      | 25p<br>24p<br>28p<br>54p<br>64p | 2N3703<br>2N3704<br>2N3705<br>2N3706<br>2N3707 | 11p<br>12p<br>11p<br>11p<br>11p | 50v #2:45<br>100v #2:51<br>400v #2:95<br>Silicon                     | 7400<br>7401<br>7402<br>7408            | 20p<br>20p<br>20p<br>20p<br>21p | 7485<br>7486<br>7489<br>7490<br>7492      | £3.25<br>49p<br>£4.95<br>82p<br>84p       | 74199 \$6.65<br>IC's<br>307 8 Pin DIL                                        |
|   | AD161<br>AD162<br>AD161 \<br>AD162 }         | 46p<br>44p<br>M/P<br>95p        | BC212<br>BC213<br>BC214<br>BC257          | 18p<br>15p<br>15p<br>15p        | BY100<br>BY127<br>BFZ10<br>BFZ11           | 17p<br>17p<br>89p<br>38p             | ME9003<br>ME9021<br>ME9002<br>MP8111           | 16p<br>19p<br>18p<br>88p        | TIP31a<br>TIP32a<br>TIP33a £<br>TIP34a £                       | 77p<br>88p<br>1-12p<br>1-66p    | 2N3708<br>2N3709<br>2N3710<br>2N3711           | 10p<br>11p<br>11p<br>11p        | Rectifiers IN4001 7p IN4002 7p IN4003 8p                             | 7404<br>7405<br>7406<br>7407<br>7408    | 21p<br>44p<br>44p<br>26p        | 7493<br>7494<br>7494<br>7495              | 82p<br>£1·04<br>£1·04<br>£1·14            | 709c DIL 38p<br>709c T099 38p<br>723c DIL 99p<br>723c T099                   |
| 1 | AF114<br>AF115<br>AF116<br>AF117<br>AF124    | 20p<br>20p<br>20p<br>20p<br>20p | BC258<br>BC259<br>BC267<br>BC268<br>BC269 | 18p<br>15p<br>14p<br>18p<br>14p | BFZ12<br>BY213<br>C407<br>MA8001<br>MA8002 | 88p<br>28p<br>19p<br>36p<br>40p      | ME8112<br>MP8113<br>NKT211<br>NKT212<br>NKT213 | 88p<br>49p<br>29p<br>29p<br>29p | TIP35a \$4<br>TIP36a \$4<br>TIP41a<br>TIP42a \$1<br>TIP2955\$1 | 88p<br>-10p                     | 2N3794<br>2N3819<br>2N2926<br>2N3904           | 20p<br>27p<br>11p<br>17p        | IN4004 9p<br>IN4005 10p<br>IN4006 11p<br>IN4007 13p                  | 7409<br>7410<br>7411<br>7412<br>7413    | 26p<br>20p<br>86p<br>40p<br>38p | 7496<br>74100<br>74104<br>74105<br>74107  | £1.25<br>£2.05<br>£1.28<br>£1.28<br>48p   | #1·10<br>741c DIL 39p<br>741c 8 Pin DIL<br>38p                               |
| ı | AF125<br>AF126<br>AF127<br>AF139             | 29p<br>29p<br>29p<br>62p        | BC270<br>BC271<br>BC272<br>BC297          | 15p<br>24p<br>25p<br>26p        | MA8003<br>MEO401<br>ME0402<br>ME0404       | 40p<br>23p<br>24p<br>19p             | NKT214<br>NKT217<br>NKT261<br>NKT271           | 27p<br>58p<br>25p<br>21p        | TIP3054<br>TIP3055<br>TIS43<br>V763                            | 55p<br>66p<br>27p<br>88p        | 2N3906<br>2N4036<br>2N4058<br>2N4059<br>2N4060 | 17p<br>57p<br>13p<br>13p<br>18p | PL4001 9p<br>PL4002 10p<br>PL4003 11p<br>PL4004 12p<br>PL4005 14p    | 7416<br>7417<br>7420<br>7422            | 49p<br>44p<br>20p<br>60p        | 74110<br>74111<br>74118<br>74119          | 67p<br>£1.62<br>£1.80<br>£1.74            | 741c T099 38p<br>747c DIL 94p<br>748c DIL 54p                                |
| I | AF239<br>AF279<br>ASY26<br>ASY27<br>ASY28    | 66p<br>73p<br>89p<br>50p<br>89p | BC298<br>BC300<br>BC301<br>BC302<br>BC303 | 24p<br>41p<br>40p<br>86p<br>49p | ME0404/1<br>ME0404/2<br>ME0411<br>ME0412   |                                      | NKT274<br>NKT403<br>NKT404<br>NKT405           | 21p<br>77p<br>72p<br>95p<br>41p | IN33a<br>IN914<br>IN916<br>IN4148                              | 11p<br>8p<br>9p<br>5p           | 2N4061<br>2N4062<br>2N5172<br>4N5192           | 18p<br>12p<br>11p<br>89p        | PL4006 17p<br>PL4007 22p<br>IN5400 18p<br>IN5401 20p<br>IN5402 21p   | 7423<br>7425<br>7426<br>7427<br>7428    | 60p<br>45p<br>45p<br>48p<br>79p | 74121<br>74122<br>74123<br>74141<br>74145 | 57p<br>\$1.60<br>\$3.15<br>£1.20<br>£1.65 | Sockets<br>8 Pin 20p<br>14 Pin 32p<br>16 Pin 39p                             |
|   | ASY29<br>BA111<br>BA115                      | 42p<br>82p<br>10p               | BC304<br>BC441<br>BC461                   | 39p<br>89p<br>45p               | ME0413<br>ME0414<br>ME0462<br>ME0463       | 19p<br>28p<br>23p                    | NKT603F<br>NKT613F<br>NKT674F<br>NKT677        | 38p<br>83p<br>80p               | IN4149<br>1544<br>2N696<br>2N706                               | 8p<br>9p<br>22p<br>12p          | 40361<br>40362<br>40636                        | 48p<br>46p<br>69p               | IN5404 23p<br>IN5405 26p<br>IN5406 26p                               | 7430<br>7432<br>7433                    | 20p<br>45p<br>79p               | 74150<br>74151<br>74143                   | #3-80<br>#1-81<br>#1-42                   | All Prices incl.<br>of V.A.T.                                                |

| watt 5% carbon 3 watt 5% carbon 4 watt 2% m/o 10 ol 1 watt 5% carbon 5 watt wirewound 1 watt wirewound 1 watt wirewound | hms t<br>6 ohi | o 1 me<br>ms to | eg<br>10 meg | 1          |
|-------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------------|------------|
| 10 watt wirewound                                                                                                       | "              | "               | "            | 12r<br>18r |

Potentiometers Carbon track 1k to 2meg Dual Gang Stereo Single type with D.P. Switch

Miniature Presets Carbon Skeleton type All values 100 ohms to 5 meg ohms

·1 watt 6p each ·25 watt 7p each

Neons

8mm neon indicators Red or Amber at 6v, 12v, 28v, 110v or 230 volt.

miniature neon lamps 240v or 110v

Silver Mica 350v DC, ±1% Values in pfs 2·2 to 220pf. 11p; 250 to 820pf. (12p; 1000 to 1800pf. 17p; 2200pf. 18p; 2700, 3600·F. 24p; 4700. 5000pf. 33p; 6800pf. 44p; 8200. 10,000pf, 55p.

Tantalum Bead

Solid tantalum capacitors To1 ±20%. All values 20p each.
MF/voltage: ·1/35, ·22/35, ·33/35, ·47/35, 1/35, 2·2/35, 4·7/35, 10/6·3, 10/16, 10/25, 22/16, 47/6·3, 100/3.

| Veroboard                 |              |            |     |      |
|---------------------------|--------------|------------|-----|------|
| ·1                        | -15          | Pin insert | ion |      |
| 21 × 31 26p<br>21 × 5 31p | 22p<br>81p   | tool       | 68p | 68p  |
| 3½ × 3½ 81p               | 81p          | Spot face  |     |      |
| 3½ × 5 35p<br>17 × 2½ 93p | 7 <b>4</b> p | cutter     | 57p | 57 p |
| 17 × 31 41.82             | £1·18        | Pkt 50     |     |      |
| 17 × 5 Plain              | £1·10        | Pins       | 22p | 22p  |

#### **Electrolytic Capacitors**

| # AOUL             | IO AOUT    | SO AOTI.           | AO AOTI           |
|--------------------|------------|--------------------|-------------------|
| 47μF 611           | 220μF 8p   | 47μF 6+p           | 470μF 19p         |
| 100μF 641          | 330µF 10p  | 100µF 8p           | 680µF 25p         |
| 200μF 61           | 470μF 10p  | 150μ <b>F</b> 8p   | 1000µF 250        |
| 320µF 641          | 1000µF 11p | 220μ <b>F 10</b> p | 2200µF 44p        |
| 1000µF 181         | 1500μF 20p | 470µF 18p          |                   |
| 4700μF <b>29</b> 1 | 2200µF 24p | 680µF 20p          |                   |
| 6-8 VOLT           | 16 VOLT    | 1000µF 22p         | 63 VOLT           |
|                    |            | 2200µF 89p         | 1μF 61p           |
| 33μF 611           | 15µF 61p   |                    | 2.2µF 6 p         |
| 68μF 611           | 33µF 610   |                    | 4.7µF 61p         |
| 150μF 611          | 150μF 61p  | ł                  | 6.8µF 6ip         |
| 470µF 11p          | 150µF 8p   |                    | 10µF 619          |
| 680μF 18p          | 220μF 9p   | 40 VOLT            | 22μF 6ip          |
| 1500µF 181         | 680μF 17p  | 6.8µF 61p          | 68μF 10p          |
| 2200μF 18p         | 1000µF 17p | 15µF 6 p           | 100µF 11p         |
| 3300µF 261         | 1500µF 250 |                    | 150µF 18p         |
| 10 VOLT            | 2000µF 48p |                    | 220µF 22p         |
| 22μF 6ip           | 25 VOLT    |                    | 330µF 22p         |
| 47μF 610           | 10µF 61p   |                    | 470µF 26p         |
| 100µF 611          | 22μF 6ip   | 220µF 119          | 1000012 445       |
| 100µF 61p          | 22μF 6}p   | 220pt 119          | 1000μF <b>44p</b> |
|                    |            |                    |                   |

Ceramics

Miniature Ceramics 50v DC. All values 1.8pF of 10,000pF 8p each.

#### **Mullards Polyester Capacitors**

C280 SERIES 250V P.C. mounting: 0·1\(\mu\text{F}\), 0·015, 0·022 8\(\mu\text{p}\), 0·033, 0·047, 0·068 4\(\mu\text{p}\), 0·15, 0·22 5\(\mu\text{p}\), 0·33 7\(\mu\text{p}\), 0·47 9\(\mu\text{p}\), 0·68 12\(\mu\text{p}\), 1·5\(\mu\text{F}\) 22\(\mu\text{p}\), 2·2\(\mu\text{F}\) 27\(\mu\text{p}\).

0-68 125. 1µF 145. 1-5µF 225. 2-2µF 275.

C298 SERIES
400V: 0-001µF, 0-0015, 0-0022, 0-0033, 0-0047 3p. 0-0068, 0-01, 0-015, 0-022, 0-033 3p. 0-047, 0-068, 0-1 4p. 0.15 6p. 0.22 8p. 0-33 12p. 0p47 14p.

0.22 8p. 0-33 12p. 0p47 14p.
160V: 0-01µF. 0-015, 0-022, 0-033, 0-047, 0-068 3p. 0-1 4p. 0-15 4p. 0-1 4p. 0-15, 0-22 5p. 0-33 7p. 0-47 9p 0-68 12p. 1µF 14p. 1-5µF 22p. 2-2µF 24p.

#### **£I BARGAIN PACKS**

- 21 10 Silicon npn power transistors (2N3055), tested/un-
- marked.
  30 Plastic FET's unmarked/untested. Similar to 2N3819. 30 Plastic FET's unmarked/untested. Similar to 2N3819. 20 TO5 transistors pnp 2 to 5A, untested/unmarked. 20 TO18 transistors pnp like BC178, BC179, etc., untested/unmarked. 30 Plastic 2N3055, unmarked/untested. TO220 case. 10 General purpose, fully tested FET's.

COMPLETE 100watt DISCO £194.95 inc. V.A.T. SYSTEM



Complete System includes:

- \* DJ DISCO Amp a real 100 watt RMS full mixing and PFL facilities.
- Trannies DISCO console with two Garrard SP25 Mk IV or McDonald M60 turntables fitted with diamond high compliances cartridges.
- \* Pair robust 50watt speakers.
- Stereo headphones and microphone.
  Complete System £189.95 Carriage £4.00.
- \* NO DEPOSIT terms available £10.63 monthly over two years.

We stock a full range of Disco Equipment. Send for list or pay us a visit at Bush fair.

# You've asked for it here it is!



# **AVAILABLE NOW**

# Reprint of PW's TELE-TENNIS

# **SERIES JULY TO NOVEMBER '74**

Send 75p + 5p (post & packing) to:-Chief Cashier (PW Tele-Tennis), I.P.C. Magazines, Tower House, Southampton St., London, WC2E 9QX

# DW TECHNICROSS UZZLE No.8



#### **ACROSS**

- 3 It shows the power of a circuit! (9)
- 8 Call-sign of an outside broadcaster (4)
- 9 Record twister in sound reproduction! (9)
- 10 Need a rectifier for perfect garden reception?(4)
- 12 If re-echoing within, it's unstable (4)
- 14 Sound level in a sporting arena (5)
- 15 Press-button control of breeding (4)
- 17 A call for cats-whisker enthusiasts? (5)
- 19 The heart of electro-magnetism (4) 21 Decay in earthing technique (5)
- 22 Circuitous safety device (4)
- 26 Scots resort to bandwith induction (4)
- 27 Electrical manufacturer may be dynamic (9)
- 28 An insulator from the mainland (4)
- 29 The frequency with which it transposes! (9)

#### DOWN

- 1 It starts strongly but weakens (5, 4)
- 2 It reveals current pressure in receiver design (8)
- 4 A strange connection made by Lily! (4)
- 5 A fine selector of wavelengths! (5)
- 6 Uses the by-pass technique (6)
- 7 Girl central to model laser design? (4)
- 11 Electrical unit from the old German (3)
- 12 Picturesque type of aerial (5)
- 13 I nosed about around Meg for an early phonograph (6, 3)
- 16 Aim be set to adapt oscilloscope system? (8)
- 18 Low howls with someone unknown inside? (3)
- 20 Result of cultivated distortion is a fact! (6)
- 23 Band that's not cold-shouldered (5)
- 24 Ferrite terminals cause a celebration (4)
- 5 Eastern European electrode? (4)

FOR AMUSEMENT ONLY ANSWERS NEXT MONTH

#### ON RECENT DEVELOPMENTS

#### TV WALLPAPER

Printed circuit boards are all very well in saving the amount of wiring which needs to be done by hand, but the idea has now been taken a step further. A laminate company is offering for sale printed circuit boards which have a resistive layer beneath the copper layer. The idea is that one first etches away all the copper not required leaving only the desired connection pattern on the board surfaces. This exposes the layer of resistive material which the copper etchant does not affect. The required resistor pattern is then selected by printing using a negative and photoresist just as in normal PCB processing. The board is then etched in a solution which dissolves the unwanted restive layer and bingo, resistive networks etc can be printed down and connected via the copper connection pattern. One company recently exhibited some tiny resistive patterns connected in this way. The patterns had small holes drilled through the PCB. The idea was that one simply pushed a transistor into the holes and the active device, together with the resistors already connected up, formed the well-known Schmitt trigger circuit. I wonder what else can be printed down onto the PCB? Perhaps in the end, the circuitry for television sets will be printed rather like wallpaper.

#### MEDICAL HELP

One of the most distressing ailments of our time is cancer. A British doctor, with the aid of electronics, is trying to do something about it. One way to check for cancer is to "tag" tumor antibodies in the patient and then measure the quantity. The "tagged" antibodies react with the patient's cells and give an indication of any cancer which might be lurking. Trouble is that all this takes time. The new method employs a minicomputer and allows some seven times the amount of samples per day to be processed when compared to other methods less automated. There's even a print out system which keeps the physician informed as to just how the test is going.

#### **DEATH RAY**

Readers may remember my commenting on a cigar-sized laser which was capable of putting out some very high power. I hear now that a nuclearpumped laser has just arrived on the scene which would appear (at least in theory) to be capable of arc welding a missile to the nearest cloud. Experiments so far have been confined to using a helium-xenon gas laser which is excited by a neutron pulse from a reactor. Because of the military applications possible with this device, information is sketchv. However, it seems that the "death ray" is here and that metal could be melted and destroyed at quite vast distances.

#### MAGNETIC BUBBLES

Magnetic bubbles are back in the news. These are tiny bubbles which can be magnetised and passed along a chain thus forming a kind of memory which could be used in These applications. computer bubbles are only tiny—around 5 micrometers. "Too big," say Bell Laboratories who aren't known for telling fibs. Bell think that a single solitary micrometer is quite big enough. The effect will be to give greater packing density and lower power consumption. Well worth watching, these bubbles. Bell produced a bubble device about 12 to 14 months ago which took the form of a 100-bit shift register. Now they have succeeded in building an 8,000 bit array onto a 40 imes 40 mil chip. How's that for progress in just over a year! If you really want to get technical about it, the film which contains these tiny bubbles in the latest device is composed of a gadoliniumcobalt-molybdenum alloy which in turn has been sputtered onto a glass substrate. Looks like future electronics engineers will need a degree in chemistry too.

Before you get all excited about the bubbles for memories, don't forget that charge coupled devices are bubbling along; an 8 million-bit memory was the highest count I last heard of—but then that was a month or two ago! Another interesting comparative newcomer is the

Josephson effect device. These are almost unbelievable if all the tales are true. To date they are claiming switching speeds in million-millionths of a second and power consumptions of meagre microwatts. Already these devices have been mentioned in applications for amplifications at 300GHz.

#### WELL 'ORGANISED'

Electronic organ enthusiasts will be pleased at the sound of the new SAH 200. It's an integrated circuit which can produce the top 13 notes of an electronic organ. Previously this task took three of the company's ICs. The device needs a single supply of 22V and is based on MOS technology. It comes in a 16-pin dual in-line package.

#### I.C. A CAR!

Motoring enthusiasts may like to know of a different IC; this time it's designated SAK 140 and it is intended for engine rev counters. It converts input pulses from the engine contact breaker into output current pulses of constant width and amplitude. I hope to give greater details next month if the circuitry (which is extremely simple) arrives in time.

#### DIGITAL TUNING

A parting thought. Your hi fi amplifier may be digitally tuned and controlled in future. Some ICs on the market require only a variable d.c. applied to be able to control such things as frequency response. One application given by the manufacturers shows an active bandpass filter whose response is controlled by a simple d.c. signal. Other examples include channel selection from a number of separate inputs. One advantage is that the d.c. control signal is not prone to interference in the same way that an a.c. control signal would be.



# **NO EXTRUS**

FREE delivery



ALL ITEMS SUBJECT TO MANUFACTURERS INCREASE AND AVAILABILITY

#### Personal Callers are Welcome!



High Quality Construction Kits. stocked at all branches Send for catalogue!

|                                             | THE R. P. LEWIS CO., LANSING, MICH.                  |          |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|------------------------------------------------------|----------|----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMPLIFIERS                                  | Adastra 'Hi-Ten' 10in                                |          | G800                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Teleton SAQ3078+8 watt £27-00               |                                                      | £3 · 60  |                                  |            | 95 CALCULATORS 95 Sinclair Cambridge Build £19-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rotel RA211 £43.95                          | The one of the speaker                               | £0 99    |                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RA311 £54-95                                | Z2m V Or V r Ontil                                   |          | SHURE                            | •          | may yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RA611 £86-95<br>Leak Delta 30 £54-75        |                                                      | £0·50    |                                  | 4.95 3.    | 95 SINCLAIR PROJECT 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>-</b>                                    |                                                      |          | M55E_                            | 6.25 4.    | 95 Stereo Pre-amp. £11.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Samsui AU101 £48-25<br>AU505 £74-95         |                                                      | (ER      |                                  | 11·75 8·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sinclair 2000 £34.95                        | BARCAINC                                             |          | MISEI Type 2                     | 9.75 6.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sinclair 4000 £45 - 95                      |                                                      | £26 · 75 | VI5 Type 3 3                     | 32 · 25    | Z60 25 watt Amp £6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2,3,7,3                                     | Denton 2 pr.                                         | £32 · 00 |                                  |            | P25 Power Supply for 240 £4-98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TUNERS & RECEIVERS                          |                                                      | £40 · 75 | MICROPHONES                      |            | P26 Power Supply for 240 £7-98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Leak Delta AM/FM 658-75                     |                                                      | £60·95   | UD130 50K/600 ohm                |            | P28 Power Supply for 260 £7-98 FM Tuner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sinclair 2000/4000 Tuner £34-95             |                                                      | £64 · 95 |                                  | £5 ·       | oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rotel RT222 £42.75                          | Dovedale 3 ea.                                       | £44 · 95 |                                  | ₹9.        | 27.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rotel RX150A Tuner/                         |                                                      |          | Condenser Mic. 600               | ohm        | 23 Q16 Speaker £7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Amp. £59-95                                 | KITS                                                 |          | uni-dir                          | £9         | 50 PORTABLE RADIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rotel 152A £69-95                           | Linton 2 pr.                                         | £20·95   | Cassette Stick Mic. v            |            | Vega lade to we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sansui                                      |                                                      | £35·95   | R/Control                        | £I·        | Vega Zircon (6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 210 AM/FM/MPX £84-25                        | Dovedale                                             | £55·50   | Mic-Mixers Mono/ste              | ereo £5·   | 30 1/ 6 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 310 AM/FM/MPX £99 50                        |                                                      |          | AKAI ADMI4                       | £5·        | 95 Vega VEF206 £13.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 350A AM/FM/MPX £106.95                      | SPEAKER CABINETS                                     | IN       |                                  |            | Micado LM/MW/FM/5SW £18-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | KIT FORM (Teak Vene                                  | eri      | HEADPHONES "                     |            | Murphy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RECORD DECKS                                | 12in x 8in x 6in                                     | ,        | Rotel                            |            | B633 MW/VHF £9-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SP25 Mk III £11-00                          | $(8 \times 5 \text{ or } 7 \times 4 \text{ cutout})$ | £2 · 50  | RH430                            | £4·3       | BA838 LW/MW/VHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Garrard SP25 MkIV £12.95                    | 14in x 12in x 9in                                    |          | RH 630                           | £7 · 7     | /5 M/Batt £18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BSR MP60                                    | (10", 8 × 5, 8", 64" & 34")                          | £3·75    | RH 700<br>Koss                   | £II        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BSR Invicta P & C/SC7M £9.95<br>Garrard     | 18in x I lin x 9in                                   |          | K711                             | £10-9      | Radio LW £7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SP25 MkIV P & C G/800 £21 00                | (8″ x ≩″ or 13 x 8)                                  | £4·95    | KRO711                           | £10.9      | Bush                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             | 22in x 14in x 9in                                    |          | K6 ·                             | £11.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AP76 Module £30.00 Goldring GL78 P & C/     | (12" & ₹" or 13 x 8)                                 | £6·25    | K6LC                             | £14.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G800E £59.95                                |                                                      |          | KO727B                           | £16.0      | A 10 A4 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Connoisseur                                 | TWEETERS & CROSSO                                    | VERS     | KO747                            | £20 · 7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3DI Kit £13-50                              | EMI 34" c/magnet in 3 or                             |          | HVI                              | £21-9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BD2 Chassis/SAU2 £32.50                     | 8 ohm                                                | £1·25    | PRO4AA                           | £26-9      | 5 2SW M/Batt 631.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAU2 £14-25                                 | Cone Tweeter 10 watt                                 |          | PRO54                            | £29 · 9    | 5 BY5661 LW/MW/VHF £14.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SCUI £5.95                                  | _ 8 or_15 ohm (K2006)                                | £2·70    | K6LCQ                            | £26·0      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | Cone Tweeter 3 watt                                  |          | Sansui SS10                      | £14·2      | CLOCK RADIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TAPE DECKS (Insurance 2:00)                 | 8 ohm (K2003)                                        | £1·55    | *Headphone adaptor               |            | Bush CR128 I W/MW 413.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Akai                                        | Horn Tweeter 8 ohm                                   |          | (Junction box)                   | £2 · 5     | O BULL CODED MINIMULE 194 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4000DS Reel to Reel £93.95                  | (K2007)                                              | £6·50    | extension lead 2ft o             | curly £1.3 | Murphy MV5600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4000DB Reel to Reel                         | Dome Tweeter 8 ohm                                   |          |                                  |            | MW/VHF £22⋅95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dolby £149-50                               |                                                      | £5·50    | CASSETTES                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1721L Special Offer £77.95                  | 2-way Crossovers (CN23,                              |          | C40 C60                          | C90 C120   | CASSETTE RECORDERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GXC36D £82.00<br>GXC38D £103.95             |                                                      | £1:30    | Low Noise - 35p                  | 45p 55p    | Murphy BA206 416.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             | 3-Way Crossover (CI436)                              | £2·75    | Philips — 55p<br>Memorex 65p 79p | 75p   10p  | Bush TP66 M/Batt £25-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CS33D <b>£79.95</b> Akai CR8ID 8-track Rec. |                                                      |          | Ampex (360) 45p 55p              | 110p 155p  | The part of the court of the co |
|                                             | CARTRIDGES & STYLII                                  |          | Ampex (300) 439 339              | /UP 99p    | Bush BT8504 (miniature) £25-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| player £73.95                               |                                                      | D/D      | (20-20+) 59p 65p                 | 00- 125-   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPEAKERS                                    | Cart.                                                |          | Chromium                         | 779 133P   | NADIO CAUSELLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chassis Speakers                            | ACOS £                                               | £        | Dioxide — 99p                    | 140n -     | (Mains/Batt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EMI (Plain) 13in x 8in.                     | GP91/2SC or 3CS<br>(ster. comp) 1-10                 | 1 25     | Casette Head Cleaner             | 45         | Micado 8155 AM/FM £25.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3, 8 or 15 ohm Bass unit £2:30              | (ster. comp)   -   0<br>GP93/1 or 95/1               | 7.5      | Ampex Head CleanerD              | Demag£1.6  | Murphy BA209 MW/VHF £33:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| with Single Tweeter                         |                                                      | I · 25   | BIB Stereo Test Casse            | tte £2     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (only 80hm) £2:45                           | GP94/1 or 96/1                                       | 1 23     | Cassette Racks (hold 6           | 6) £0.41   | . SIEREO RECORD PLATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| with Twin Tweeter 43.05                     | ster. ceram. 1.75                                    | 1 - 25   | Cassette Rotating Rac            | ks         | 0 3131ET?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Type 350 Kit 15 watt 8 ohm sa 28            | GPIOI cryst.                                         | 1 23     | (hold 20)                        | 63.50      | Bush SPR58 £29.50 Bush SPR59 £31.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Idin x bin Bass unit                        | comp. 90                                             | _        | Cassette Carrying Cas            | e          | Buch A 1905 EST SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15 watt 8 ohm £4.95                         | GP104 ster.                                          |          | (BIB) (hold 12)                  | £1.60      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81n x 51n 5 watt 3, 8 or                    | ceram. 1 · 75                                        | 1 - 25   | 8-Track Cartridge B              |            | Hanimex H101 £39.95 Hanimex HRC5060 8-track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 obm £1-50                                | BSR ·                                                |          | C40                              | C64 C80    | AM/FM/MPX+Speaker£116.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8in × 5in 10 watt Dualcone 8 phm 62-50      | X5M or X5H                                           |          | Ampex 80p                        | 95p £1.10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | cryst. comp. 1.75                                    | i · 25   | 8-track H/Cleaner                |            | CAR AUDIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             | SX6M or SX6H                                         |          | Demagnetiser                     | £1 · 90    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                          | Cryst. ster. 2.00                                    | J · 25   | 8-track Carrying Cases           | s          | Hitachi Car Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fane 8 in 4 or 15 ohm £2.25                 | SC5M ster. ceram. 2.75                               | i · 25   | (BIB)                            | £1 · 65    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fane 7in x 4in 3 or 8 ohm £1.20             | SONOTONE                                             |          |                                  |            | KM1510 LW/MW/VHF £32-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Elac 8in 8 ohm Dualcone 27-50               | 9TAHC or                                             |          | TAPES & CASSETT                  |            | Hitachi Car Cassette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Elac 10in 8 ohm Dualcone \$3.78             | 9TAHC/G<br>(Diam.) 1 · 85                            | 1.05     |                                  | OP Cases   | C5114 £45.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Goodman 6½in 8 ohm                          |                                                      |          |                                  | ·00 20p    | ALL ITEMS SUBJECT TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dualcone £2.40                              | AUDIO TECNICA                                        | l · 25   |                                  | ·35 25p    | ALL ITEMS SUBJECT TO<br>MANUFACTURERS INCREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Baker Group 25 12in 8 or                    | AT55 1.95                                            |          | AAD 11AD 1                       | ·85 30p    | AND AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15 oʻhm <b>∉7.9</b> g                       | EMPIRE 999 REX 3:95                                  | _        | High frequencyAmpex              |            | AITO ATRICADICITÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Adastra 'Top 20' 12in                       | GOLDRING                                             | _        | 5" — 1·40p<br>7" — 1·90p         | i ·55p     | PERSONAL CALLERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25 watt 8 or 15 ohm £8-25                   | CO                                                   |          | AKAI Metal Reel 7"               | 2·95p      | MATE COLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                                      |          |                                  | £1·99      | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | ALL MERCHAN                                          |          | <b>FULLY GUARANTE</b>            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**ELECTRONICS** 

Mail Order Dept PW/ Belmont St, Monton, Eccles, Manchester. Tel: 061-789 5268

Manchester 30-32 Shudehill, tel 061:832 7710 Leed's 4 New Market St. tel 0532 42708 Liverpool 15 Whitechapel tel 051-236 0738



Solve your communication problems with this 4-Station Transistor Intercom system (1 master and 3 Subs), in robust plastic cabinets for desk or wall mounting. Call/talk/listen from Master to Subs and Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospital, Office and Home. Operates on one 9V battery. On/off switch. Volume control. Complete with 3 connecting wires each 66ft, and other accessories. P. & P. 50p

#### MAINS INTERCOM NEW MODEL

No batteries—no wires. Just plug in the mains for instant two-way, loud and clear communication. On off switch and volume control. Price £23.75 per pair P. & P. 60p



Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 66ft. connecting wire and Battery. P. & P. 40p



Why not boost

70p (27p)

£6.50

business effi-ciency with this incredible Telephone Amulifier. Take down long telephone messages or converse without holding the handset A useful office aid, On/ off switch. Volume Control. Complete with Battery. P. & P. 30p. Full price refunded if not satisfied in

WEST LONDON DIRECT SUPPLIES (PW.9)
169 KENSINGTON HIGH STREET, LONDON, W.8.

#### TRANSISTORS (p. & p. 10p.)

All new and full spec.

BC107/8/9, BC147/8/9, BC157/8/9 all 9p BF180 25p, BF182/3 40p, BF184 17p, BF187 13p, BFW10 55p, 741 8DIL 34p, BF336 35p, 2N3771 £1 10, 2N3441 50p, BD131 40p.

#### **EX COMPUTER PC PANELS**

4 x 2in packed with semiconductors and top quality resistors, capacitors, diodes etc. Guaranteed min. 35 transistors, plus data 25 boards £1 (30p) DURAL EXTRUDED HEATSINKS, 10D outline, black anodised, drilled for 4 x TO3 transistors 5 x 4 x 1 1 40p (15p) Sim. to above but for 8 x TO3 5 x 8 x 1 1

#### **ELECTROLYTICS**

| 15,000µ 30v, 68,000µ   | 16v 65p (22p)    |
|------------------------|------------------|
| 30,000µ 25v            | 65p (22p)        |
| 4,000µ 70v, 3,600µ 40v | 4 x 2" 55p (15p) |
| 5,000µ 35v             | <b>40p</b> (12p) |
| 20A 100 piv Si recs.   | 4 for £1 (12p)   |
| 3A 100 piv Si recs     | 4 for 50p (8p)   |
| 250 mixed resistors    | <b>60p</b> (13p) |
| 250 mixed capacitors   | <b>60p</b> (11p) |
| 150 mixed HI-STABS     | <b>60p</b> (11p) |
| 200 Si planar diodes   | <b>60p</b> (8p)  |
| QH bulbs 12v 55w       | <b>50p</b> (7p)  |
| 2N3055 EQUIV           | 4 fo £1 (10p)    |
|                        |                  |

Postage and packing shown in brackets ADD 8% VAT TO TOTAL

### KEYTRONICS

(Mail Order only)

44 EARLS COURT ROAD LONDON W8. 01-478 8499

# **AMBIT** INTERNATIONAL

'74 Dataloque issue:

The latest datalogue has more data, more new devices than ever. Linear, Digital, Discrete, LEDS. now 20p

New trade and professional price structure for quantity buyers.

| NE561B AM/FM PLL        | £3·19   |
|-------------------------|---------|
| NE 562B FM (synth)      | £3 19   |
| NE565A FM/FSK           | £2.55   |
|                         |         |
| NE567V AM/FM tone       | £2·75   |
| NE555V Timer            | 77p     |
| CA3089E FM IF           | £1 · 95 |
| CA3090Q Stereo dec.     | £3·55   |
| SN76660N FM IF          | £1 00   |
| μA753 FM gain           | £0·99   |
| MC1310P Stereo dec      | £2·85   |
| TBA651 AM/FM/SSB        | £1 · 81 |
| TAD 100 AM              | £1 · 47 |
| LM309K 5v 1amp          | £1 · 90 |
| NE550/μA723 reg. IC     | £0.85   |
| 710 comparator          | £0.47   |
| 741 op amp              | £0.38   |
| 3900 quad amp in 14 DIL |         |
| versatile               | £0.68   |
|                         |         |
| 1496 bal mix. (SSB)     | £1 · 02 |
| LM380 audio power amp   | £1 · 00 |
| TBA810S 7w rms AF       | £1 · 50 |
| 8038 sine : square : tr |         |
| generator. 1000:1       | sweep   |
| complete audio gener    | rator—  |
| including 12 pages of   | data    |
|                         | each    |
|                         |         |

See the datalogue for more details of more devices.

#### TOKO INDUCTORS AND FILTERS. Only from AMBIT

| CFS 10.7 FM ceramic                         | £0·40   |
|---------------------------------------------|---------|
| CFT 455 ceramic                             | £0·45   |
| CFU 455 ceramic                             | £0.50   |
| MFH *T mechanical                           | £1 · 35 |
| KACS 586 HM (CA3089                         |         |
| 150J now 220K ,,                            |         |
|                                             | 30p     |
| MW & IF coils (10mm)                        |         |
| BLR2011N 19 & 38kHz fil                     |         |
| stereo                                      | £1 · 80 |
| TOKO inductors and fi                       | iters—  |
| only from Ambit.                            |         |
| DELA 0 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |

DFM & TIMER constructors: FND70 7 seg. LED display with 7490 & 9368 on a DS FG PCB £5:00 ea. £4:50 ea 4 off

1 MHz TTL Clock — Divided down to 1 Hz £9·50 inc. xtal.

#### AMBIT INTERNATIONAL (PW7)

37a High Street, Brentwood, Essex CM14 4RH. (216029)

New devices + data ...... PLEASE ADD 8% VAT. P.P. 10p.

# H.A.C. SHORT-WAVE

#### **WORLD-WIDE RECEPTION**



Lamous for over 15 year for Short-Wave Equipment of quality. If A.C. were the Original suppliers of Short-Wave Receiver Kits for the anateur constructor. Over 10,000 satisfied customers—including Technical Colleges, Hospitals, Public Schools, R.A.F., Army, Hams, etc.

considers—moduling recurring to the colleges, mospitals, Public Schools, R.A.F., Army, Hams, etc.

1974 "DX" RECEIVER

Complete kit—Price 24-60 (incl. p. & p. & v.A.T.).
Customer writes: "Australia, India and America at loud volume."—"I have now heard over 300 stations including many Amateurs. I have received 32 Q.S.L. verified reports—from all continents, An amazing one-valver."

This kit contains all genuine short-wave components, drilled chassis, valve, accessories and full instructions. Ready to assemble, and of course, as all our products—fully guaranteed. Full range of other S.W. kits, including the famous model "K plus" (illustrated above). All orders despatched by return. Send now for free descriptive catalogue of kits and components. Test Report available.

EXCITING COMPETITION for Short-Wave listeners. Send stamped envelope for details.

"H.A.C." SHORT-WAVE PRODUCTS
P.O. BOX No. 16, EAST GRINSTEAD,
SUSSEX RH19 3SN

RUN YOUR TRANSISTOR RADIO OR CASSETTE RECORDER FROM YOUR CAR BATTERY (Similar to illustration)

This unit enables you This unit enables you to run your cassette tape recorder from the car whilst travelling It is easily fitted and comes complete with fitting instructions, Please state make of cassette, voltage and type of plug required



ONLY £2'86

RUN YOUR TAPE RECORDER OFF AC MAINS

Mains unit supplied complete and ready to plug into your cassette recorder (State voltage, make and type of plug required, if in doubt send diagram of recorder socket.)



ONLY £3.40

MAINS UNIT FOR TRANSISTOR RADIO ONLY

For single outputs, 6v, 9v £2.86 For two separate outputs, 6v + 6v,

9v + 9v £3 5 2 per unit. (Please state outputs required.)
All units are completely isolated from mains by double wound transformer ensuring 100% safety. All British Made. All Prices inc. V.A.T. and P. & P. R.C.S. PRODUCTS (RADIO) LTD. (Dept. P.W.J.)

31 Oliver Road, Walthamstow, London, El7

Full refund if not completely satisfied.



# LEARNING BY PRACTICAL PROJECT STEPS

# PART 14—PHASE SHIFT CIRCUITS (cont)

HERE are innumerable applications of positive feedback and it would be impossible to give examples of all of them. Nevertheless following on from last month's experiments we felt it would be logical to continue with two other types of circuit which rely on phase shift and can be used in conjunction with feedback to make oscillators. At the same time we hope to show that positive feedback, alone, is not sufficient for oscillation to take place—there must always be a loop gain greater than unity.

We have selected two important circuits to describe this month; the Wien Bridge and the Twin-T or Bridged-T network.

Fig. 99 shows the basic circuit of a Wien Bridge. Basically it is a top cut and bottom cut filter rolled into one. Although it needs a lot of mathematics to prove it one can consider it as a circuit that will attenuate low frequencies and high frequencies to a great extent but will not have such a dramatic attenuation effect on middle frequencies. The ressponse curve showing what the output voltage would be for different frequencies of input voltage is shown in Fig. 100.

The frequency of maximum output is called the resonant frequency and if the values of components in the bridge circuit follow the rule that R1=R2 and C1=C2 the output voltage at the resonant frequency is always one third of the input voltage

$$V_{\text{out}} = \frac{V_{\text{in}}}{3}$$

For all other frequencies the output voltage is considerably lower than the input.

Provided the two resistors and capacitors are of equal value there is a simple formula that relates the resonant frequency to these components

$$f(\text{resonance}) = \frac{1}{2\pi \times R \times C}$$

where R is in ohms, C in farads and f is in hertz. Clearly, one could use this circuit as a passive filter of the "band pass" variety by inserting it between two stages of an amplifier—rather like the simple top and bottom cut filters described in an earlier part.



Fig. 99: Basic circuit of a Wien Bridge. Usually R1 = R2 and C1 = C2.



Fig. 100: top, shows that the output from a Wien Bridge is maximum at a particular frequency (resonance), below, indicates that there is no difference in phase between input and output at the resonant frequency.

The Q, or *quality factor* of such a filter is not very great so consequently it could not be used for accurate frequency selection.

When dealing with complex filters of this type one must not overlook what happens to the *phase* of the signal as it is processed by the circuit. In practice one can draw two curves to describe a filter's characteristics; the amplitude/passband characteristic that we have just described, also the relative phase of the output signal with respect to the phase of the input at different frequencies. Such a phase plot is shown in Fig. 100.

It should be noticed that for all frequencies below the resonant frequency the output lags behind the input by up to  $90^{\circ}$  in the extreme case, but above the resonant frequency the output has changed through zero phase to a leading condition and in the extreme this can be  $+90^{\circ}$ . This means that at resonance the output signal is exactly in phase with the input—in other words the network offers zero phase shift at resonance.

We can make use of this effect to produce a very versatile oscillator, the basic block diagram of which is shown in Fig. 101. We have already established



Fig. 101: When connected into the feedback path of an amplifier having zero overall phase shift the Wien Bridge offers a simple way of making a sine wave oscillator.

that a two stage grounded emitter amplifier has an overall phase shift of 360° (which is the same as zero). Thus, if the output was connected back to the input we would have a condition for positive feedback.

continued on page 843



# **TRANSFORMERS**

| -                                                                                                                       |                                                                                                                                                               | _                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                       | -                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | _                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                |                                                                                        |                                                                                                                              |                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Pr                                                                                                                      | r. 120                                                                                                                                                        | 240                                                                                                                       | Y M<br>V S                                                                                                          | AII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45<br>20/                               | 1S0<br>240                                                                                                       | OL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATI<br>Cen                                                                                           | NG<br>tre                                    | TR.<br>Tap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AN:<br>ped                                                                             | SFOF           | RMI<br>Scr                                                                             | ERS                                                                                                                          | d                                                                                                                                        |
| Ref.                                                                                                                    |                                                                                                                                                               | . VA                                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wei                                     | ght                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | S                                            | ize c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m.                                                                                     |                |                                                                                        | P                                                                                                                            | & P                                                                                                                                      |
| No.                                                                                                                     | , '                                                                                                                                                           | (Wat                                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ib.                                     | 8                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                    | ·0 ×                                         | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        | 6-0            |                                                                                        | £                                                                                                                            | 3                                                                                                                                        |
| 149                                                                                                                     | •                                                                                                                                                             | 60                                                                                                                        |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                       | 12                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | šŝ                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | 8.6            |                                                                                        | 2.55<br>3.98                                                                                                                 | 4                                                                                                                                        |
| 150<br>151                                                                                                              |                                                                                                                                                               | 200                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                       | 8                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | 9 x                                          | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                      | 8∙6            |                                                                                        | 4.45                                                                                                                         | 4                                                                                                                                        |
| 152                                                                                                                     | <u>.</u>                                                                                                                                                      | 250                                                                                                                       |                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>3 I                                | 2                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                   | l x                                          | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                      | 0·2            |                                                                                        | 7·39<br>8·93                                                                                                                 | 5.<br>7.                                                                                                                                 |
| 153                                                                                                                     | )                                                                                                                                                             | 350                                                                                                                       | )                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                       | 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.                                                                                                  | όŵ                                           | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | χÏ                                                                                     | 1.8            |                                                                                        | 10:80                                                                                                                        | 7                                                                                                                                        |
| 154<br>155                                                                                                              |                                                                                                                                                               | 500                                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                       | 8                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.                                                                                                  | 0х                                           | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×Ι                                                                                     | 1 · 8          |                                                                                        | 12.41                                                                                                                        | 9                                                                                                                                        |
| 156                                                                                                                     |                                                                                                                                                               | 750                                                                                                                       |                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                       | ŏ                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17:                                                                                                  |                                              | 14·0<br>16·6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x 14                                                                                   |                |                                                                                        | 18·65<br>26·50                                                                                                               |                                                                                                                                          |
| 157                                                                                                                     | •                                                                                                                                                             | 1500                                                                                                                      | )                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                       | 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21⋅                                                                                                  | 6 ×                                          | 13-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × 14                                                                                   | 9·I            |                                                                                        | 30·23                                                                                                                        |                                                                                                                                          |
| 158                                                                                                                     |                                                                                                                                                               | 2000                                                                                                                      | )                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                       | 0                                                                                                                | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.                                                                                                  | 6 x                                          | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × IE                                                                                   | 3-1            |                                                                                        | 33.70                                                                                                                        |                                                                                                                                          |
| Ref.                                                                                                                    | . VA                                                                                                                                                          | 14                                                                                                                        | /_:_h                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | FO                                           | RMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |                |                                                                                        |                                                                                                                              |                                                                                                                                          |
| No.                                                                                                                     |                                                                                                                                                               | ts)                                                                                                                       | eigh<br>Ib oz                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 3                                                                                                                | ize (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cm.                                                                                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Auto                                                                                   | Taps           |                                                                                        | £                                                                                                                            | ° & /                                                                                                                                    |
| 113                                                                                                                     | 20                                                                                                                                                            | )                                                                                                                         | 0                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 >                                     | 5                                                                                                                | ·I×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                    | 5 0.                                         | 115-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210-                                                                                   | 240            |                                                                                        | 1 · 52                                                                                                                       | 36<br>45<br>5                                                                                                                            |
| 64                                                                                                                      | 150                                                                                                                                                           | 3                                                                                                                         | 4                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 x                                     |                                                                                                                  | ·7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | ı o.                                         | 115-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210-                                                                                   | 240            |                                                                                        | 2.64                                                                                                                         | 38                                                                                                                                       |
| 66                                                                                                                      | 300                                                                                                                                                           | 6                                                                                                                         |                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·9 x                                    | ģ                                                                                                                | ·7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | 220-2          | 40                                                                                     | 3·75<br>5·29                                                                                                                 | 4:                                                                                                                                       |
| 67                                                                                                                      | 500                                                                                                                                                           | 12                                                                                                                        | . 8                                                                                                                 | +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·l >                                    | ш                                                                                                                | ·2 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.                                                                                                  | 2                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | 11             |                                                                                        | 8.02                                                                                                                         | 67                                                                                                                                       |
| 84<br>93                                                                                                                | 1500                                                                                                                                                          | 130                                                                                                                       | 8                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 13                                                                                                               | 4 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                   |                                              | ř                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ř.                                                                                     | 7.7            |                                                                                        | 12.44                                                                                                                        | 9                                                                                                                                        |
| 95                                                                                                                      | 2000                                                                                                                                                          | 30<br>32                                                                                                                  | ō                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·ž ŝ                                    | 16                                                                                                               | ·9 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14-                                                                                                  | 0                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | **             | -                                                                                      | 16·65<br>22·00                                                                                                               | -                                                                                                                                        |
| 73                                                                                                                      | 3000                                                                                                                                                          | 40                                                                                                                        | . 0                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·6 ×                                    | : 13                                                                                                             | ·4 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.                                                                                                  | t                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | 11             |                                                                                        | 31.90                                                                                                                        | *                                                                                                                                        |
| (15)                                                                                                                    | V main                                                                                                                                                        | دماء                                                                                                                      | CAS                                                                                                                 | ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A                                       | IJΤ                                                                                                              | ر ي<br>د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rra                                                                                                  | NS                                           | FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RME                                                                                    | RS             | ca .                                                                                   | 05                                                                                                                           | 20                                                                                                                                       |
| 500                                                                                                                     | VA £9                                                                                                                                                         | 50 p                                                                                                                      | p 80                                                                                                                | D I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000                                     | VΑ                                                                                                               | έΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92                                                                                                   | via                                          | B. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .s. 2                                                                                  | UVA            | r.z.                                                                                   | 85 PP                                                                                                                        | 385                                                                                                                                      |
|                                                                                                                         |                                                                                                                                                               |                                                                                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |                                              | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                |                                                                                        |                                                                                                                              |                                                                                                                                          |
| PI                                                                                                                      | RIMA                                                                                                                                                          | RY 2                                                                                                                      | 40-2                                                                                                                | 50 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | νö                                      | ĽΤ                                                                                                               | S IZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A I                                                                                                  | ١D                                           | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 \                                                                                   | VOL            | TR                                                                                     | ANC                                                                                                                          | :E                                                                                                                                       |
| Ref.                                                                                                                    | . Am∌                                                                                                                                                         | s. \                                                                                                                      | Veig                                                                                                                | ht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | Siz                                                                                                              | e cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | Wind           |                                                                                        |                                                                                                                              | & P                                                                                                                                      |
| No.                                                                                                                     | 12V 2                                                                                                                                                         | 4V<br>25                                                                                                                  | ib c                                                                                                                | 8 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.8                                     |                                                                                                                  | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                    | ·5 0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                | _                                                                                      | £                                                                                                                            |                                                                                                                                          |
| 213                                                                                                                     | 100                                                                                                                                                           | 5                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                  | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                              | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ati                                                                                    | 25A            | XX                                                                                     | 1.58                                                                                                                         | 23<br>30<br>38<br>38<br>45<br>45<br>53<br>60<br>73<br>85                                                                                 |
| 71                                                                                                                      | 2                                                                                                                                                             | 1                                                                                                                         | Ţ.                                                                                                                  | 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                      | × 6                                                                                                              | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x 6                                                                                                  | -1 0                                         | 1.12V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at                                                                                     | IA x 2         |                                                                                        | 2.09                                                                                                                         | 38                                                                                                                                       |
| 18                                                                                                                      | 6                                                                                                                                                             | 2                                                                                                                         | 3 1                                                                                                                 | 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 . 3                                   | ×                                                                                                                | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × 7                                                                                                  | 0 0                                          | -12V<br>-12V<br>-12V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at .                                                                                   | 2A x 2         |                                                                                        | 2.60                                                                                                                         | 38                                                                                                                                       |
| 70<br>108                                                                                                               | 8                                                                                                                                                             | 4                                                                                                                         | 5                                                                                                                   | 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | x 8                                                                                                              | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | 6 0                                          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | at .                                                                                   | A x            | 5                                                                                      | 3·75<br>4·15                                                                                                                 | 45                                                                                                                                       |
| 72                                                                                                                      | 10                                                                                                                                                            | 5                                                                                                                         | 6                                                                                                                   | 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                       | K 9                                                                                                              | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | κ 8∙                                                                                                 | ě õ                                          | · i 2 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at!                                                                                    | OA X A         | Σ                                                                                      | 4.67                                                                                                                         | 53                                                                                                                                       |
| 116                                                                                                                     | 2<br> 6                                                                                                                                                       | 6                                                                                                                         | 6 I                                                                                                                 | 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                  | ) 2 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | 6 (                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | A x 2          | 2                                                                                      | 5.02                                                                                                                         | 53                                                                                                                                       |
| 7<br>  5                                                                                                                | 20 I                                                                                                                                                          | υ :                                                                                                                       |                                                                                                                     | B  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I-0 :                                   | κ 9                                                                                                              | .6 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (   0 ·                                                                                              | έŏ                                           | ·   2V<br>·   2V<br>·   2V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ati                                                                                    | 3A x 2<br>0A x | 2                                                                                      | 6·62<br>9·45                                                                                                                 | 73                                                                                                                                       |
| 187<br>226                                                                                                              | 30 I<br>60 3                                                                                                                                                  | 5                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 0                                     | C ! ?                                                                                                            | : [ >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٠IJ٠                                                                                                 | 8 0                                          | -120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at l                                                                                   | OA x<br>5A x   | 2 !                                                                                    | 2.29                                                                                                                         | 85                                                                                                                                       |
| 210                                                                                                                     | 60 3                                                                                                                                                          |                                                                                                                           | 2 1                                                                                                                 | 0 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 :                                     | < 15                                                                                                             | j·3 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | 0.0                                          | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | at J                                                                                   | OA x           | 2                                                                                      | 5.30                                                                                                                         | *                                                                                                                                        |
| Ref.                                                                                                                    | Amps                                                                                                                                                          | . W                                                                                                                       | eigh/                                                                                                               | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | Siz                                                                                                              | e cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ).                                                                                                   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | NGI<br>Taps    | =                                                                                      | P                                                                                                                            | & P                                                                                                                                      |
| No.                                                                                                                     |                                                                                                                                                               | IЬ                                                                                                                        | oz.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                |                                                                                        | £                                                                                                                            |                                                                                                                                          |
| 79                                                                                                                      | 0·5<br>1·0                                                                                                                                                    | 2                                                                                                                         | 4                                                                                                                   | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l x<br>0 x                              | 5.8                                                                                                              | 3 x<br>7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4·8<br>6·1                                                                                           | 0-1                                          | 2-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20-2                                                                                   | 4-30\          | /                                                                                      | 1 65                                                                                                                         | 30<br>30                                                                                                                                 |
| 3                                                                                                                       | 2.0                                                                                                                                                           | 3                                                                                                                         | 4                                                                                                                   | g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 x                                     | 7.                                                                                                               | 7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7                                                                                                  |                                              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                      |                |                                                                                        | 2·18<br>3·18<br>4·12                                                                                                         | 38                                                                                                                                       |
| 20                                                                                                                      | 3.0                                                                                                                                                           | 4                                                                                                                         | 8                                                                                                                   | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 x<br>9 x                              | 8.                                                                                                               | 3 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6                                                                                                  |                                              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                      |                |                                                                                        | 4.12                                                                                                                         | 45                                                                                                                                       |
| 21<br>51                                                                                                                | 4·0<br>5·0                                                                                                                                                    | 6                                                                                                                         | 12                                                                                                                  | 9.<br>12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 x                                     | 9.                                                                                                               | 6 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6                                                                                                  | •                                            | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                |                                                                                        | 4.67                                                                                                                         | 38<br>38<br>45<br>53<br>53                                                                                                               |
| 117                                                                                                                     | 6.0                                                                                                                                                           | 12                                                                                                                        | 0                                                                                                                   | 2.<br> 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ιŵ                                      | 9.                                                                                                               | 3×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 2                                                                                                 | '                                            | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                     |                |                                                                                        | 5.83                                                                                                                         | 60                                                                                                                                       |
| 88<br>89                                                                                                                | 8.0                                                                                                                                                           | 12                                                                                                                        | .0                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 11.                                                                                                              | 8 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10·2<br>10·2                                                                                         |                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                      |                |                                                                                        | 6·51<br>9·00                                                                                                                 | 60<br>67<br>73                                                                                                                           |
| 97                                                                                                                      | 10.0                                                                                                                                                          | 13                                                                                                                        | 12                                                                                                                  | 14-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | λ×                                      | 10.                                                                                                              | 2 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.8                                                                                                 |                                              | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ '1                                                                                   |                |                                                                                        | 8.97                                                                                                                         | 73                                                                                                                                       |
| Ref.                                                                                                                    | Amps                                                                                                                                                          | . w                                                                                                                       | eigh                                                                                                                | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                       | ize                                                                                                              | cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | 20                                           | cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OFY.                                                                                   | Tabs           | GE                                                                                     | P                                                                                                                            | & P                                                                                                                                      |
| No.                                                                                                                     |                                                                                                                                                               |                                                                                                                           | oz<br>12                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | 50                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | u, ,                                                                                   | · ups          |                                                                                        |                                                                                                                              | , b                                                                                                                                      |
| 102                                                                                                                     | 0.5                                                                                                                                                           | 1                                                                                                                         | 12                                                                                                                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X S                                     | 6                                                                                                                | 4 x<br>4 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1                                                                                                  | 0-1                                          | 9-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -33-                                                                                   | 40-50          | ٧                                                                                      | 2·35<br>3·08<br>4·26                                                                                                         | 30                                                                                                                                       |
| 104                                                                                                                     | 2.0                                                                                                                                                           | 5                                                                                                                         | 8                                                                                                                   | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                       | 8                                                                                                                | 9 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7·0<br>8·6                                                                                           |                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • 1                                                                                    |                |                                                                                        | 4.76                                                                                                                         | 38<br>45<br>53                                                                                                                           |
| 105                                                                                                                     | 3.0                                                                                                                                                           | 6                                                                                                                         | 12                                                                                                                  | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                       | 10                                                                                                               | 2 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6                                                                                                  |                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | **                                                                                     |                |                                                                                        | 5·28<br>6·91                                                                                                                 | 53                                                                                                                                       |
| 106<br>107                                                                                                              | 4·0<br>6·0                                                                                                                                                    | 10                                                                                                                        | ŏ                                                                                                                   | 12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x                                       | 10.                                                                                                              | 5 x<br>2 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10·2                                                                                                 |                                              | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                      | •              |                                                                                        | 6-91<br>I-00                                                                                                                 | 67                                                                                                                                       |
| 118                                                                                                                     | 8.0                                                                                                                                                           | 18                                                                                                                        | 0                                                                                                                   | 14-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) x                                     | 12:                                                                                                              | 7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.8                                                                                                 |                                              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                     |                |                                                                                        | 1.80                                                                                                                         | 67<br>85                                                                                                                                 |
| 11.9                                                                                                                    | 10.0                                                                                                                                                          | 25                                                                                                                        | 0                                                                                                                   | 17:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 ×                                     | 12.                                                                                                              | 7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.0                                                                                                 |                                              | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,,                                                                                     |                |                                                                                        | 5.45                                                                                                                         | *                                                                                                                                        |
| Ref.                                                                                                                    | Ambe                                                                                                                                                          | 14                                                                                                                        | eigh                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e:                                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      | ر 60                                         | /OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TR                                                                                     | ANG            | 3 E                                                                                    | _                                                                                                                            |                                                                                                                                          |
| No.                                                                                                                     | Amps.                                                                                                                                                         | 16                                                                                                                        | ÖZ                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31,                                     | ze c                                                                                                             | m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | 36                                           | conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ary                                                                                    | Taps           |                                                                                        | £"                                                                                                                           | & P                                                                                                                                      |
|                                                                                                                         |                                                                                                                                                               |                                                                                                                           | 4                                                                                                                   | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 6.7                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1                                                                                                  | 0-2                                          | 4-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -40-4                                                                                  | 48-60          | 2                                                                                      | 2.12                                                                                                                         | 38                                                                                                                                       |
| 124                                                                                                                     | 0.5                                                                                                                                                           | 2                                                                                                                         |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | У.                                      | 7:                                                                                                               | 7 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7                                                                                                  |                                              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                |                                                                                        | 3-10                                                                                                                         | 38                                                                                                                                       |
| 126                                                                                                                     | 0·5<br>1·0                                                                                                                                                    | 2 3                                                                                                                       | 4                                                                                                                   | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                       | 0.4                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |                                              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * 1                                                                                    |                |                                                                                        | 4 22                                                                                                                         |                                                                                                                                          |
| 126                                                                                                                     | 3.0                                                                                                                                                           | 2368                                                                                                                      | 4                                                                                                                   | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                       | 9.6                                                                                                              | źΧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8·6<br>10·2                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                     |                | 4                                                                                      | 4-62                                                                                                                         | 45<br>60                                                                                                                                 |
| 126<br>127<br>125<br>123                                                                                                | 3.0                                                                                                                                                           | 8                                                                                                                         | 4 12 12                                                                                                             | 9.9<br> 2. <br> 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                       | 9.6<br>9.9                                                                                                       | x<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2                                                                                                 |                                              | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "                                                                                      |                | 6                                                                                      | 4·62<br>5·84<br>7·96                                                                                                         | 60<br>67                                                                                                                                 |
| 126<br>127<br>125<br>123<br>40                                                                                          | 2·0<br>3·0<br>4·0<br>5·0                                                                                                                                      | 8                                                                                                                         | 4<br>12<br>12<br>10                                                                                                 | 9.9<br>12.1<br>12.1<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                       | 9.6<br>9.9                                                                                                       | x<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.2                                                                                                 |                                              | 77.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                     |                | 67                                                                                     | 4·62<br>5·84<br>7·96<br>3 87                                                                                                 | 60<br>67<br>73                                                                                                                           |
| 126<br>127<br>125<br>123<br>40<br>120<br>121                                                                            | 2.0<br>3.0<br>5.0<br>6.0<br>8.0                                                                                                                               | 8                                                                                                                         | 4<br>12<br>12<br>10<br>8<br>0                                                                                       | 9.9<br>12.1<br>12.1<br>14.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 9.9<br>9.9<br>11.0<br>12.1                                                                                       | 5 x<br>9 x<br>8 x<br>2 x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10·2<br>10·2<br>1·8<br>11·8                                                                          |                                              | );<br>();<br>();                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>21<br>34<br>23                                                                   |                | 6<br>7<br>8                                                                            | 4·62<br>5·84<br>7·96<br>3·87<br>0·27                                                                                         | 60<br>67                                                                                                                                 |
| 126<br>127<br>125<br>123<br>40<br>120<br>121<br>122                                                                     | 2.0<br>3.0<br>4.0<br>5.0<br>8.0<br>10.0                                                                                                                       | 8<br>12<br>15<br>25<br>25                                                                                                 | 4<br>12<br>12<br>10<br>8<br>00                                                                                      | 9.9<br>12.1<br>12.1<br>14.0<br>14.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 9.6<br>9.9<br>11.1<br>12.1<br>4.7                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.2<br>10.2<br>1.8<br>1.8<br>1.8                                                                    |                                              | 77.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19<br>91<br>34<br>35                                                                   |                | 10                                                                                     | 4·62<br>5·84<br>7·96<br>3·87<br>0·27<br>1·64<br>5·93                                                                         | 60<br>67<br>73<br>85                                                                                                                     |
| 126<br>127<br>125<br>123<br>40<br>120<br>121                                                                            | 2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0                                                                                                        | 8<br>12<br>15<br>25<br>25<br>29                                                                                           | 4<br>4<br>12<br>12<br>00<br>8<br>00<br>00                                                                           | 9.9<br>12.1<br>14.0<br>14.0<br>14.0<br>17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 9.6<br>9.9<br>11.1<br>12.7<br>4.7<br>4.0                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.2<br>10.2<br>1.8<br>11.8<br>1.8<br>14.0<br>4.0                                                    | B.C                                          | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>31<br>33<br>33<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34<br>34 |                | 1013                                                                                   | 4·62<br>5·84<br>7·96<br>3·87<br>0·27<br>1·64<br>5·93<br>3·16                                                                 | 60<br>67<br>73<br>85<br>*                                                                                                                |
| 126<br>127<br>125<br>123<br>40<br>120<br>121<br>122<br>189                                                              | 2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>10.0<br>12.0<br>MINI                                                                                                       | 8<br>12<br>15<br>25<br>25<br>29                                                                                           | 4<br>12<br>12<br>10<br>8<br>0<br>0<br>0<br>0<br>JRE                                                                 | 9.9<br>12.1<br>12.1<br>14.0<br>14.0<br>17.2<br>17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 9.6<br>9.9<br>11.1<br>12.7<br>4.7<br>4.0<br><b>ISF</b>                                                           | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10-2<br>10-2<br>1-8<br>11-8<br>1-8<br>14-0<br>4-0                                                    | RS                                           | %;<br>%;<br>WIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TH:                                                                                    | SCRI           | 1013                                                                                   | 4·62<br>5·84<br>7·96<br>3·87<br>3·27<br>1·64<br>5·93<br>3·16<br><b>NS</b> P a                                                | 60<br>67<br>73<br>85<br>*<br>*                                                                                                           |
| 126<br>127<br>125<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref.<br>238                                               | 2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>MINI<br>MA.<br>200                                                                                  | 8<br>12<br>15<br>25<br>25<br>29<br>ATU                                                                                    | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>0<br>0<br>0<br>0<br>0<br>JRE                                                 | 9.9<br>12.1<br>12.1<br>14.0<br>14.0<br>17.2<br>17.2<br>TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X X X X X X X X X X X X X X X X X X X   | 9.6<br>9.9<br>10.2<br>12.7<br>4.7<br>4.0<br><b>1SF</b><br>Size                                                   | X<br>X<br>X<br>X<br>X<br>X<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>Y<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10:2<br>10:2<br>11:8<br>11:8<br>14:0<br>4:0<br>1ME                                                   | 3-                                           | %;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%;<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rH:                                                                                    | SCRI           | 13<br>13<br>18<br>18                                                                   | 4.62<br>5.84<br>7.96<br>3.87<br>3.27<br>3.64<br>5.93<br>3.16<br>NS P &                                                       | 60<br>67<br>73<br>85<br>*<br>*<br>*<br>*<br>P P                                                                                          |
| 126<br>127<br>125<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref.<br>238<br>212                                        | 2:0<br>3:0<br>4:0<br>5:0<br>8:0<br>10:0<br>MINI<br>MA.<br>200<br>1A 1A                                                                                        | 8<br>12<br>15<br>25<br>25<br>29<br>ATU                                                                                    | 4<br>12<br>12<br>10<br>8<br>0<br>0<br>0<br>0<br>JRE                                                                 | 9.9<br>12.1<br>14.0<br>14.0<br>17.2<br>17.2<br>TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × × × × × × × × × × × × × × × × × × ×   | 9.6<br>9.9<br>10.2<br>12.7<br>4.0<br>1SF<br>Size<br>1x5                                                          | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 2<br>10 8<br>11 8<br>11 8<br>14 0<br>14 0<br>14 8                                                 | 3-<br>0-                                     | WI-<br>0-3<br>6 0-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rH:                                                                                    | SCRI           | 13<br>13<br>15<br>18<br>18                                                             | 4.62<br>5.84<br>7.96<br>3.87<br>3.27<br>3.64<br>5.93<br>3.16<br>NS P &<br>€ 1.40                                             | 60<br>67<br>73<br>85<br>*<br>*<br>*<br>*<br>*<br>P P D 30                                                                                |
| 126<br>127<br>125<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref.<br>238                                               | 2:0<br>3:0<br>4:0<br>5:0<br>8:0<br>10:0<br>12:0<br>MINI<br>MA.<br>200<br>1A0                                                                                  | 8<br>13<br>12<br>15<br>25<br>25<br>29<br>ATU                                                                              | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>0<br>0<br>0<br>0<br>0<br>JRE                                                 | 9.9<br>12.1<br>12.1<br>14.0<br>14.0<br>17.2<br>17.2<br>TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X X X X X X X X X X X X X X X X X X X   | 9.9<br>11.1<br>12.7<br>4.7<br>4.0<br>1SF<br>Size<br>3×2<br>3×2<br>3×2                                            | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 2<br>10 8<br>11 8<br>14 0<br>14 0<br>14 9<br>14 9                                                 | 3-<br>0-<br>9-                               | %; ; ; ; ; VV<br>0-3 0-6<br>0-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rH:                                                                                    | SCRI           | 13<br>13<br>18<br>18<br>18                                                             | 4.62<br>5.84<br>7.96<br>3.87<br>3.27<br>3.16<br>4.5.93<br>3.16<br>NS.P.8<br>1.40<br>1.67<br>1.28                             | 60<br>67<br>73<br>85<br>*<br>*<br>*<br>*<br>*<br>P P D 30                                                                                |
| 126<br>127<br>125<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref.<br>238<br>212<br>13<br>235<br>207                    | 2:0<br>3:0<br>4:0<br>5:0<br>6:0<br>8:0<br>10:0<br>12:0<br>MINI<br>MA.<br>200<br>1A 1A<br>100<br>330,33<br>500, 5                                              | 8<br>13<br>12<br>15<br>25<br>25<br>29<br>(ATU                                                                             | 4<br>4<br>12<br>12<br>10<br>8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | 9:1<br>12:1<br>14:0<br>17:2<br>17:TR<br>18:2<br>4 4 4 4 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X X X X X X X X X X X X X X X X X X X   | 9.6<br>9.9<br>10.2<br>12.7<br>4.0<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7                | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2<br>10.2<br>10.8<br>11.8<br>14.0<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9 | 3-<br>0-<br>9-<br>0-                         | WI-<br>0-3<br>6 0-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TH:                                                                                    | SCRE           | 10<br>13<br>15<br>18<br>18<br>18                                                       | 4.62<br>5.84<br>7.96<br>3.87<br>3.27<br>3.64<br>5.93<br>3.16<br>NS P &<br>€ 1.40                                             | 60<br>67<br>73<br>85<br>* * P<br>100<br>30<br>13                                                                                         |
| 126<br>127<br>125<br>120<br>120<br>121<br>122<br>189<br>Ref.<br>238<br>212<br>235<br>207                                | 2:0<br>3:0<br>5:0<br>6:0<br>8:0<br>10:0<br>MINI<br>MA.<br>200<br>1A 1A<br>100<br>330,33<br>500, 5                                                             | 8<br>13<br>12<br>15<br>25<br>25<br>29<br>(ATU                                                                             | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 9:114:00<br>12:14:00<br>14:00<br>17:17 Tht<br>00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00<br>12:14:00                                                                                                                                                                                                 | X X X X X X X X X X X X X X X X X X X   | 9.6<br>9.5<br>11.1<br>10.2<br>4.7<br>12.7<br>4.0<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7 | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2<br>10.2<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8<br>11                           | 3-<br>0-<br>9-<br>0-<br>0-                   | VITO-3<br>60-9<br>9, 0-8-9, 0-8-9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FH:<br>590-8-90-8-90-8-90-8-9                                                          | SCRE           | 10<br>13<br>18<br>18<br>18<br>18<br>18                                                 | 4.62<br>5.84<br>7.96<br>3.87<br>3.16<br>3.16<br>3.16<br>3.16<br>3.16<br>40<br>-28<br>-42<br>-75                              | 60<br>67<br>73<br>85<br>* * P P0<br>30<br>13<br>30<br>31<br>30<br>38                                                                     |
| 126<br>127<br>125<br>40<br>120<br>121<br>122<br>189<br>Ref.<br>238<br>212<br>235<br>208<br>236<br>214                   | 2·0<br>3·0<br>5·0<br>8·0<br>10·0<br>12·0<br>MiNi<br>MA.<br>200<br>1A 1A<br>100<br>330,33<br>500, 5<br>1200, 2                                                 | 8<br>13<br>12<br>15<br>25<br>25<br>29<br>ATU                                                                              | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>00<br>00<br>00<br>URE                                                        | 9:114:00<br>14:01<br>14:01<br>17 Tht<br>00<br>12<br>44<br>00<br>12<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X X X X X X X X X X X X X X X X X X X   | 9:9:10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                       | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2<br>10.2<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8<br>11                           | 3-<br>0-<br>9-<br>0-<br>0-                   | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9<br>0-8-9<br>1-15                                                                     | SCRE           | 10<br>13<br>15<br>18<br>18<br>18                                                       | 4.62<br>5.84<br>7.98<br>7.98<br>7.98<br>7.93<br>1.64<br>7.93<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67 | 60<br>67<br>73<br>8 * * P PO<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                         |
| 126<br>127<br>125<br>40<br>120<br>121<br>122<br>189<br>Ref.<br>238<br>212<br>235<br>208<br>236<br>214                   | 2:0<br>3:0<br>5:0<br>6:0<br>8:0<br>10:0<br>MINI<br>MA.<br>200<br>1A 1A<br>100<br>330,33<br>500, 5<br>1A, 1<br>200, 2<br>330,3<br>3700 (E                      | 8<br>13<br>12<br>15<br>25<br>25<br>29<br>0<br>ATU                                                                         | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>00<br>00<br>JRE                                                              | 9:9:114:00<br>114:00<br>114:00<br>117 TRt<br>1012:44<br>100<br>124:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X X X X X X X X X X X X X X X X X X X   | 9.6<br>9.5<br>11.1<br>10.2<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12.7<br>12                         | 55 X<br>56 X<br>57 X   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1022<br>1023<br>1188<br>1180<br>1180<br>1180<br>1180<br>1180<br>1180<br>118                          | 3-<br>0-<br>0-<br>0-<br>0-                   | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9<br>0-8-9<br>1-15<br>1-20<br>1-12                                                     | SCRE<br>S      | 10<br>13<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 4.62<br>5.84<br>7.98<br>7.98<br>7.98<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93                         | 60<br>67<br>85<br>* * P P0<br>30<br>31<br>31<br>31<br>30<br>31<br>31<br>30                                                               |
| 126<br>127<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref. 238<br>212<br>235<br>207<br>208<br>231<br>24<br>221<br>206  | 2:0<br>3:0<br>6:0<br>8:0<br>10:0<br>MINI<br>MA.<br>100<br>330,33<br>51A, 1<br>200, 2<br>300, 3<br>700, (D                                                     | 8<br>12<br>15<br>25<br>25<br>29<br>ATU                                                                                    | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>00<br>00<br>JRE                                                              | 9:9:114:0<br>114:0<br>117:17 TRt<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:44:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:46:0<br>12:                                                                                                             | X X X X X X X X X X X X X X X X X X X   | 9:5<br>9:5<br>10:1<br>10:1<br>10:1<br>10:1<br>10:1<br>10:1<br>10:1<br>10                                         | 5 x<br>3 x<br>3 x<br>1 x<br>1 x<br>1 x<br>1 x<br>1 x<br>1 x<br>1 x<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.2288814.0 E                                                                                       | 3-<br>0-<br>0-<br>0-<br>0-<br>0-             | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77             | SCRE           | 2 6 7 8 10 1 3 1 5 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 | 4.62<br>5.84<br>7.98<br>7.98<br>7.98<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93                         | 60<br>67<br>73<br>8<br>* * P P0<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                      |
| 126<br>127<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref. 238<br>236<br>237<br>208<br>236<br>214<br>220<br>206<br>203 | 2:0<br>3:0<br>4:0<br>5:0<br>6:0<br>10:0<br>12:0<br>MINI<br>MA.<br>200<br>1A, 1A<br>100<br>330,33<br>500, 5<br>1A, 1<br>200, 2<br>300, 3<br>700 (E<br>13,0), 5 | 8<br>13<br>12<br>15<br>25<br>29<br>27<br>29<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 4<br>4<br>4<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                     | 9:9:114:00<br>9:9:114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>1 | X X X X X X X X X X X X X X X X X X X   | 9 (9 11 10 12 13 14 17 14 10 12 14 17 14 17 14 17 14 17 14 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18          | 5 x 3 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-2-10-10-10-10-10-10-10-10-10-10-10-10-10-                                                         | 3-<br>0-<br>0-<br>0-<br>0-<br>0-             | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77             | SCRE           | 2 6 7 8 10 1 3 1 5 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 | 4.62<br>5.84<br>5.87<br>5.87<br>5.87<br>5.87<br>5.87<br>5.87<br>5.87<br>5.87                                                 | 60<br>67<br>73<br>85<br>* * * P PO<br>30<br>31<br>31<br>31<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 |
| 126<br>127<br>123<br>40<br>120<br>121<br>122<br>189<br>Ref. 238<br>212<br>235<br>207<br>208<br>231<br>24<br>221<br>206  | 2:0<br>3:0<br>6:0<br>8:0<br>10:0<br>MINI<br>MA.<br>100<br>330,33<br>51A, 1<br>200, 2<br>300, 3<br>700, (D                                                     | 8<br>13<br>12<br>15<br>25<br>29<br>27<br>29<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 4<br>4<br>12<br>12<br>10<br>8<br>00<br>00<br>00<br>JRE                                                              | 9:9:114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:00<br>114:0 | X X X X X X X X X X X X X X X X X X X   | 9.5<br>9.5<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2                                       | 5 x<br>6 x<br>1 x 1<br>1 x 1 | 10-2-10-10-10-10-10-10-10-10-10-10-10-10-10-                                                         | 3-<br>0-<br>9-<br>0-<br>0-<br>0-<br>0-<br>0- | 0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-20<br>0-10-2 | 77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77             | SCRE<br>'S     | 2 6 7 8 10 1 3 1 5 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 | 4.62<br>5.84<br>7.98<br>7.98<br>7.98<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93<br>7.93                         | 60<br>67<br>73<br>8<br>* * P P0<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                      |

### RRIE electronics

3, THE MINORIES, LONDON EC3N 1BJ

TELEPHONE: 01-488 3316/8

NEAREST TUBE STATIONS: ALDGATE & LIVERPOOL ST

# With a kit as complete as this, all you need add is a little time.



You may have found, from past experience, that your definition of 'complete' is not quite the same as other people's. And your so called complete kit comes minus a cabinet, or knobs, or a multitude

of other bits and pieces.

That won't happen with a Heathkit. Take our very popular digital alarm

clock kit. Every part you need will be there, right down to the solder. And you'll also receive a very easy to understand instruction manual that makes light work of assembly.

In fact all you need are a few basic tools and a few enjoyable hours of your time.

> After which you may like to try your hand at our AR-1214 stereo receiver. Or even a TV.

And how about an ultrasonic burglar alarm disguised as a book?

Or, for a bookful of other ideas, just clip the coupon and we'll send you the Heathkit catalogue.

Otherwise call in and see us at the London Heathkit Centre, 233 Tottenham Court Road. Or at our showroom in Bristol Road, Gloucester.

You'll find it well worth your time.

Heath (Gloucester) Limited, Dept. PW-15,

Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.

To: Heath (Gloucester) Limited, Dept. PW-15, Gloucester, GL2 6EE My free Heathkit catalogue, please. Name

Postcode.

Remember easy terms are available with the Heathkit Monthly Budget Plan.

top quality electronic components for price-minded buyers

112 p. CATALOGUE · FREE POSTAGE (U.K.) · ATTRACTIVE DISCOUNTS · SPECS. GUARANTEED

#### A 100 OF THE BEST

| From             | our trans      | istor stoc       | k *            |
|------------------|----------------|------------------|----------------|
| 2N1307           | 47p            | BC149C           | 14p            |
| 2N2646           | 51p            | BC158B           | 15p            |
| 2N3053           | 26p            | BC159            | 15p            |
| 2N3054<br>2N3055 | 60p<br>70p     | BC167B<br>BC168B | 13p            |
| 2N3702           | 11 p           | BC168B           | 12p<br>12p     |
| 2N3703           | 10p            | BC169C           | 13p            |
| 2N3704           | 11p            | BC179B           | 26p            |
| 2N3705           | 10p            | BC182L           | 26p            |
| 2N3794           | 18p            | BC184L           | 26p            |
| 2N3819           | 25p            | BC212L           | 12p            |
| 2N4062           | 11 p           | BC214L           | 14p            |
| 2N4443           | 93p            | BC257A           | 14p            |
| 2N5062<br>2N5163 | 42p<br>20p     | BC259B<br>BCY58  | 14p<br>30p     |
| 2N5459           | 32p            | BD130            | 90p            |
| 40361            | 48p            | BD131            | 48p            |
| 40362            | 44p            | BD132            | 52p            |
| 40602            | 46p            | BD135            | 37p            |
| 40636            | £1 · 36        | BD136            | 39p            |
| 40669<br>A C128  | £1 ·10         | BDY20            | 83p            |
| AC151R           | 17p<br>23p     | BF194<br>BFR39   | 15p<br>23p     |
| AC153            | 27p            | BFR79            | 23p            |
| AC153K           | 37p            | BFX29            | 33p            |
| AC176            | 24 p           | BFX84            | 27p            |
| AC176K           | 38p            | BFY51            | 23p            |
| AC187K           | 31 p           | BRY39            | 45p            |
| AC188K           | 29 p           | BY164            | 51 p           |
| AD133            | £1 92          | C106B1           | 42p            |
| AD136<br>AD149   | £1 · 11<br>65p | C106D1<br>C1406  | 62p            |
| AD161            | 42p            | MJ481            | 78p<br>£1 ⋅ 20 |
| AD162            | 40p            | MJ491            | £1 · 35        |
| AF200U           | 40p            | MJ2955           | 80p            |
| AF239            | €0p            | MJ E371          | 89p            |
| B1906            | 36p            | MJE521           | 81p            |
| BA138<br>BB103   | 31p            | MJE2955          | £1 · 12        |
| BB105            | 24p<br>34p     | MJE3055<br>OA91  | 68p            |
| BB109            | 48p            | SD4              | 6p<br>8p       |
| BC107A           | 15p            | TIP31A           | 70p            |
| BC107B           | 15p            | TIP32A           | 80p            |
| BC108B           | 14p            | TIP41A           | 80p            |
| BC108C           | 14p            | TIP42A           | £1 · 00        |
| BC109B           | 18p            | WO2              | 30 p           |
| BC109C<br>BC147A | 18p            | ZTX300           | 14p            |
| BC147B           | 12p<br>13p     | ZTX304<br>ZTX500 | 23p<br>14p     |
| BC148B           | 12p            | ZTX504           | 45p            |
| 100s MO          |                | TALOGUE 7        | 730            |
|                  | IN CA          |                  |                |

#### BAXANDALL SPEAKER KIT

As designed by P. J. Baxandail and described originally in "Wireless World." Simple to assemble, fantastically good results and a greater money saver. Carries 10 watts RMS, 15 ohms impedance. Size 18in x 12in x 10 in. Complete kit, including pack-flat cabinet, £14-90.
The size and weight of this product obliges us to charge 70p part cost of carr. In U.K. Equaliser Assembly, £2:30.

Loudspeaker Unit 59RM109, £2-45. Cabinet Kit (to Baxandali design), £10-45. Cross-over choke for additional woofer to

above, £1.50.

#### DISCOUNTS

Available on all Items except those shown with NETT PRICES 19% on orders from £5 to £14-99. 15% on orders £15 and over.

#### FREE POSTAGE

In U.K. for pre-paid mail orders, For mail orders for £2 list value and under there is an additional handling charge of 10p. Overseas orders - carriage char-ged at cost. Giro A/C No. 38/671/4002

#### RESISTORS

|   | Code | Watts | Ohms      | 1 to 9 | 19 to 9<br>see note | 9 100 up<br>below) |
|---|------|-------|-----------|--------|---------------------|--------------------|
|   | С    | 1/3   | 4-7-470K  | 1 - 3  | 1-1                 | 0·9 nett           |
|   | С    | 1/2   | 4·7-10M   | 1.3    | 1.1                 | 0.9 nett           |
|   | c    | 3/4   | 4 · 7-10M | 1.5    | 1.2                 | 0.97 nett          |
|   | С    | 1     | 4·7-10M   | 3 2    | 2.5                 | 1 · 92 nett        |
| İ | MO   | 1/2   | 10-1M     | 4      | 3.3                 | 2·3 nett           |
|   | ww   | 1     | 0.22-3.9Ω | 11     | 10                  | 8 nett             |
|   | ww   | 3     | 1-10K     | 9      | 8                   | 6 nett             |
|   | ww   | 7     | 1-10K     | 11     | 10                  | 8 nett             |

Codes:

Codes:
C = carbon film, high stability, low noise.
MO = metal oxide. Electrosii TR5 ultra low noise.
WW = wire wound. Plessey.

Values: All E12 except C ⅓W, C ∄W and MO ⅓W. E12: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and their E12: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and their decades. E24: as E12 plus 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75, 91 and their decades.

Tolerances: 5% except WW 10%  $\pm$  0.05 $\Omega$  below 10 $\Omega$  and  $\frac{1}{4}$ W MO 2%.

same ohmic value and power rating. NOT mixed values. (Ignore fractions of one penny on total value of resistor order). Prices for 100 up in units of 100 only

| Code | Watts | Ohms      | 1 to 9 | 10 to 5<br>see note | 9 100 up<br>below) |
|------|-------|-----------|--------|---------------------|--------------------|
| С    | 1/3   | 4·7-470K  | 1 - 3  | 1.1                 | 0·9 nett           |
| С    | 1/2   | 4·7-10M   | 1.3    | 1.1                 | 0.9 nett           |
| c    | 3/4   | 4 · 7-10M | 1.5    | 1.2                 | 0·97 nett          |
| С    | 1     | 4·7-10M   | 3 2    | 2.5                 | 1 · 92 nett        |
| MO   | 1/2   | 10-1 M    | 4      | 3.3                 | 2·3 nett           |
| ww   | 1     | 0·22-3·9Ω | 11     | 10                  | 8 nett             |
| ww   | 3     | 1-10K     | 9      | 8                   | 6 nett             |
| ww   | 7     | 1-10K     | 11     | 10                  | 8 nett             |
|      |       |           |        |                     |                    |

### Prices are in pence each for quantities of the

#### POTENTIOMETERS ROTARY, CARBON TRACK.

Double wipers for good contact and long working life

P.20 SINGLE linear 100 ohms to 4.7 megohms. each 14p P.20 SINGLE log. 4-7 Kohms to 2-2 megohms, each 14p

JP.20 DUAL GANG 1in. 4·7 Kohms to 2·2 megohms, each 48p

JP.20 DUAL GANG log, 4·7 Kohms to 2·2 megohms, each 48p JP.20 DUAL GANG Log/antilog 10K, 22K, 47K, 1 megohm only, each 48p

JP.20 DUAL GANG antilog 10K only

2A DP mains switch for any of above 14p extra.

Decades of 10, 22 and 47 only available in ranges above. Skeleton Carbon Presets, Type PR, horizontal or vertical 6p each.

Linear or log mono 4.7K to 1 meg. in all popular values each 39p STEREO, matched tracks, lin. or log in all popular values from 4.7K to 1 meg. 60p

Escutcheon plates, mono, black, white or light grey, each 10p Control knobs, blk/wht/red/yel/grn/blue/dk, grey/lt, grey. each 7p

## ELECTROLYTIC CAPACITORS

|   | Axial L    | ead |      |          |     |      |      |      |      |  |
|---|------------|-----|------|----------|-----|------|------|------|------|--|
|   | qF<br>0∙47 | 3V  | 6.3V | 10V      | 16V | 25 V | 40V  | 63V  | 100V |  |
|   | 0.47       | _   | _    | _        |     |      |      | 11p  | 8p   |  |
|   | 1.0        | _   |      |          | _   | - E  | 11p  | _    | . 8p |  |
|   | 2.2        |     |      |          | _   | 11p  |      | 8p   | 9p   |  |
|   | 4.7        |     |      | _        | 11p |      | 8p   | 9p   | 8p   |  |
|   | 10         | _   | -    | -        | _   | 8p   | 9p   | 8p   | 8p   |  |
|   | 22         | _   | _    | 8p       |     | 9p   | 8p   | 8 p  | 10p  |  |
|   | 47         | 8p  |      | 9p       | 8p  | 8p   | 8p   | 10p  | 13p  |  |
|   | 100        | 9p  | 8p   | 8p       | 8p  | 9p   | 10p  | 12p  | 19p  |  |
|   | 220        | 8p  | 8p   | 9p       | 10p | 10p  | 11 p | 17p  | 28p  |  |
|   | 470        | 9p  | 10p  | 10p      | 11p | 13p  | 17p  | 24 p | 45p  |  |
|   | 1.000      | 11p | 13p  | 13p      | 17p | 20 p | 25p  | 41p  | -    |  |
| ĺ | 1 2.200    | 15p | 18p  | 23p      | 26p | 37p  | 41 p |      | _    |  |
|   | 4,700      | 26p | 30p  | 39p      | 44p | 58p  | -    | -    | _    |  |
|   | 10,000     | 42p | 46p  | <u> </u> |     | _    | -    | -    |      |  |
|   |            |     |      |          |     |      |      |      |      |  |

MINITRON DIGITAL INDICATORS
3015F Seven segment filament compatible with standard logic modules. 0-9 and decimal point: 9mm characters in 16 lead DIL £1-20
Sultable BCD decoder driver 7447 £1-15
3015G showing + or - &1 & dec. pt. £1-20

LEDS (Light Emitting Diodes)
Photo Cells Cabmium Sulphsuilde, each

**ANTEX Soldering Irons** 

Spare bits

### DESOLDER BRAID

6 ft strip WAYECHANGE SWITCHES 1 pole 12 way; 2 pole 6 way 3 pole 4 way; 4 pole 3 way each 29p TAG STRIP 28 way 11p

TAG STRIP 28 way
NUTS, SCREWS, etc.
in lots of 100 each
4BA NUTS 28p: 6BA NUTS 28p
4" 4B Screws 28p: 4" 6BA Screws 24p
Threaded pillars 6BA, 4" hexagonal
£2:10
Plain spacers 4" round
£1:40

Plain spacers !" round
Other sizes available
ENAMEL COPPER

# WIRE in 2 ounce reels

16, 18, 20, 22 SWG 34p 24, 26, 28, 30 SWG 40p 32, 34 46p: 36, DIN CONNECTORS

Socket Plug 10p 12p 18p 12p 12p 15p 12p 15p 13p 15p 3 way audio 10p 5 way audio 240 12p 5 way audio 240 12p 6 way audio 240 13p EV CATALOGUE 7

EV CATALOGUE 7
2nd printing—Green and yellow
Cover
112 pages, thousands of Items;
Illustrations; diagrams; much useful
technical information. The 2nd
printing has been updated as much
as possible on prices. It costs only
25p post free including refund voucher
for 25p for spending when ordering
goods list value £5 or more.

#### QUALITY GUARANTEE

All goods are sold on the understanding that they conform to manufacturers

orm to manufacturers' specifications and satisfaction is guaranteed as suchno relects, 'seconds' of substandard merchandise is offered for sale.

Prices quoted do not include V.A.T. for which 8% must be added to total nett value of order. Every effort is made to ensure the correctness of information and prices at time of going to press. Prices subject to alteration without notice. notice.

#### CAPACITORS

CAPACITORS

DALY ELECTROLYTIC in cans, plastic sleeved 1000mF/25V 28p 5000/100 £1\*56 5000/100 £2\*51 1000/50 41p 5000/25V 62p 2000/50 57p 5000/50 £1\*18

POLYESTER TYPE C.280, Radial leads for P.C.B. mounting. Working voltage 25V d.c.
0-01, 0-015, 0-022, 0-033, 0-047, ea. 3p 0-058, 0-1, 0-15 0-025 5p; 0-33 7p; 0-47 8p; 0-68 11p; 1-014p; 1-5 21p; 2-2 24p

SILVERED MICA. Working voltage 500V d.c.

500V d.c. Values in pFs---2-2 to 820 in 32 stages

ea. 5p 1000, 1500 7p; 1800 \$p; 2200 10p; 2700, 3600 12p; 4700, 5000 15p; 6800 20p; 8200, 10,000 25p

\$800 12p; 4700, 5000 13p; 6800 2dp; 8200, 10,000 25p

TANTALUM BEAD

0·1, 0·22, 0·47, 1·0 mF/35V, 1·5/20V, a. 14p
2·2/16V, 2·2/35V, 4·7/16V, 10/6·3V
ea. 14p
4·7/35V, 10/16V, 22/6·3V
ea. 18p
10/25V, 22/16V, 27/6·3V, 100/3V, 6.8/25V, 15/25V
ea. 26p
POLYCARBONATE
Type B42540 Working Voltage—250V
Values in mF:
0·0047; 0·0068; 0·0082; 0·01; 0·012; 0·015
0·018; 0·022; 0·027; 0·033; 0·039; 0·047; 0·056; 0·088; 0·082; 0·1 ea. 4p
CERAMIC PLATE
Working voltage 50V. d.c.
In 26 values from 22pf to 6800pF, ea. 2p

#### All postal communications, mail orders etc. to Head Office at Egham address, Dept. PW.12. S.A.E. with enquiries re-

quiring answers.

28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 0HB Telephone Egham 3603 Telex 264475 Shop hours 9-5.30 daily: Sat. 9-1 p.m. NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1NA

Telephone (061) 432 4945 Shop hours 9 - 5.30 daily: Sat. 9-1 p.m. U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore PA 19081.

### **EXPERIMENTAL WORKSHOP**—contd. from page 840

If we insert our Wien Bridge network in this feedback loop the bridge will alter the phase relationship of all frequencies *except* for the resonant frequency of the bridge in question; thus we would only obtain positive feedback at the resonant frequency.

The feedback signal is attenuated to one third of the output level, as we have just explained hence to obtain oscillation the gain of the two stage amplifier should be three. Although there is no problem in obtaining a low gain like this there are problems in maintaining its stability particularly as we are forced into using two stages to get the necessary phase response. Consequently our experimental circuit shown in Fig. 102 looks a little complex as we have built in two stages of negative feedback to fix and adjust the gain at this low level.

R6 in conjunction with R5 provide one negative feedback path which is fixed and VR1 allows a variable degree of feedback for experimental purposes. In practical production circuits a thermistor might be used instead of R6 to control the overall gain automatically.

If the gain diverges considerably from the desired value two things can happen. If it is too low the circuit will not oscillate, and if too high the output waveform at the collector of Tr2 might suffer from clipping. You should be able to experience this effect with the following experiment.

Make up the circuit of Fig. 102 complete with loudspeaker driver stage. Set the wiper of VRI to the bottom end of its track. Depending on the components you have used the chances are that the circuit will not oscillate because we have excessive negative feedback around Tr2.

Increase the gain of the amplifier by reducing this negative feedback (advance the wiper of VR1) and the circuit should oscillate nicely. If you increase the gain too much you should hear the onset of clipping by a sudden change in tone of the signal from the loudspeaker.

You will find that there is a certain degree of sluggishness in getting oscillations started and they might build up in amplitude over a second or two which is caused by the high degree of negative feedback.



Fig. 104: Basic circuit of a 'Twin-T' or 'Bridged-T' filter. Normally the circuit is symmetrical with R1 = R2 and C1 = C2. R3 should equal  $\frac{1}{2}R1$  and C3 should be 2 x C1.

A big advantage of this type of oscillator (compared with the phase shift type described last month) is that you only need change the values of two components in the frequency determining network (the bridge) to alter frequency and the range of adjustment is very large. In theory one can change the values of C1 and C2 or R1 and R2. However, in our experimental circuit you are limited to playing with different values for the capacitors only because R2 forms part of the potential divider biasing for Tr3

and changing its value would modify the quality levels of the amplifier. Nevertheless try substitution different pairs of values for C1 and C2 in the rate 2,200pF to  $0.1\mu$ F.

This circuit is widely used by audio oscillator manufacturers for test instruments; for what it does it is a very simple circuit and is often used in amateur projects.

Whereas the Wein Bridge is a pass filter at resonance the **Bridge-T** filter, shown in Fig. 104 gives a high degree of attenuation at its resonant frequency. The onset of resonance is very sharp and this circuit is often used as a *notch* filter when a particular frequency needs to be removed from a series without significant influence on the amplitudes of neighbouring frequencies.



Fig. 105: top, output voltage at different frequencies for a fixed amplitude input signal. Below, at the resonant frequency 180° phase shift occurs.

The relationship between the component values is slightly more complex than the previous filter and although there is an unlimited variety of values one can use the Bridged-T is usually represented in its symmetrical form. This means that RI should equal R2 and R3 should be half the value of R1. At the same time C1 should equal C2 and C3 should be twice the value of C1. Provided this relationship is maintained the resonant frequency is given by

$$f = \frac{1}{2\pi \times C_1 \times R_1}$$

where  $C_1$  is in farads,  $R_1$  in ohms and f in hertz.

The phase response of the filter is somewhat more complex. At the resonant frequency there is a sudden 180° phase shift between input and output. Depending on which side of the resonance frequency one looks one can say that the output is 180° out of phase with the input or it is in phase with the input. However, at the resonant frequency the theoretical output from the filter is zero, Fig. 105.

We can use this filter in the negative feedback loop of an amplifier (Tr1 of Fig. 106). Because of the rather strange phase response we shall get negative





feedback on one side of resonance and positive feedback on the other side. By careful adjustment of the amplifier's gain we can get the circuit to oscillate at a frequency just slightly one side of resonance, by reducing the gain a little we have a complex balance between negative feedback on the one hand and positive feedback on the other. Thus it is possible to make a frequency selective amplifier that has a maximum gain (because of the zero negative feedback signal at resonance) at the resonant "notch".

This is very useful in many special applications and is frequently used by amateurs to make Waa-Waa effects with guitars and organs particularly if it is possible to sweep the resonant frequency by adjusting one of the components in the feedback circuit (usually R6).

You can experiment with the circuit as an oscillator or a frequency selective amplifier by suitable adjustment of VR1. Notice (as for the Wien Bridge)

that reducing VR1 too much (increasing gain) causes *clipping* and, in this case shifts the frequency further away from the notch.

As an amplifier connect the output of a crystal cartridge (through an attenuator if necessary) to the base of Tr1 through a  $0 \cdot 1 \mu F$  capacitor and substitute a variable  $50\Omega$  potentiometer for R6.

By advancing the gain of the amplifier to just below the oscillating point you can deliberately make a ringing amplifier; i.e. a circuit that will respond to a pulse input and give a decaying train of sinewaves out. This effect is commonly used to produce electronic percussion effects to simulate drums or bells. You can stimulate such a ring by momentarily shorting the junction of R1 and R2 to the +9V rail. Altering the values of R4, R5, R6, C3, C4 and C5 will produce different sound effects.

Next month: Radio frequency oscillators.

SEMI-CONDUCTORS TO SUPPLIERS THE WORLD



# **Telephone** Corner

COMPLETE TELEPHONES Normal Household Type

EX. G.P.O.

H38

H39

H41

Her

H64

only 99p PAP 45p each

#### TELEPHONE DIALS

Standard Post Office type. Guaranteed in working order.

only 25p POST & PACKING 11p

# Tested and **Guaranteed** Paks



50p

50p

50p

| B79 | 4   | IN4007 Sil. Rec. diodes.<br>1,000 PIV lamp plastic         | 50p |
|-----|-----|------------------------------------------------------------|-----|
| B81 | 10  | Reed Switches, 1" long,<br>‡" dia. High Speed P.O.<br>type | 50p |
| H35 | 100 | Mixed Diodes, Germ,                                        | 500 |

| 100 | Mixed Diodes, Germ,<br>Gold bonded, etc.<br>Marked and Unmarked. | 50p |
|-----|------------------------------------------------------------------|-----|
| 30  | Short lead Transistors,<br>NPN Sillcon Planar types              | 50p |

| v | NPN Silicon Planar types                     | Joh |
|---|----------------------------------------------|-----|
| 6 | Integrated Circuits. 4 Gates BMC 962, 2 Flip | 50p |

|   | Tropo with a sto        |
|---|-------------------------|
| 2 | SII Power transistors   |
|   | comp pair BD131/132     |
| 4 | 2N3055 type NPN Sil.    |
|   | nower translators Ralow |

#### spec. devices 4 3819 N Channel FETs 2N3819 in plastic case

### Electronic Transistor Ignition £6.00 Complete kit

Now in kit form, we offer this "up-to-the-minute" electronic ignition system. Simple to make, full instructions supplied with these outstanding features. Transistor and con-ventional switchability, burglar proof lock-up and automatic alarm, negative and positive compatability.

#### Extension Telephones

Ideal for childrens toys 70p each P. & P. 25p.

# New X Hatch

Our new vastly improved Mark Two Cross Hatch Generator is now available Will align the colour guns on a colour T.V.

receiver Featuring plug in IC's and a more sensitive sync. pick-up circuit. The case is virtually unbreakable—ideal for the engineer's tool box—and only measures 3" x 5\{\partial}" x 3".

Ready built £9-95 Complete £7-95 only

(includes p. & p. but no batteries)



# AUDIO IC

We have just received a large consignment of LM380 IC's. These are specially selected to a higher grade and are marked with the number SL60745.

SL60745. This fantastic little 3watt audio IC only requires two capacitors and two potentiometers to make an amplifier with volume and tone control. The quality-is good and has to be heard to be believed.

Our special **£100**ea complete with data and price

**Transistors** 

in stock

# **Unmarked Untested Paks**

| B1  | 50  | Germanium Transistors<br>PNP, AF and RF                    | 50p  |
|-----|-----|------------------------------------------------------------|------|
| B66 | 150 | Germanium Diodes<br>Min. glass type                        | 50p  |
| 883 | 200 | Transistors, manufacturer rejects, AF, RF, Sil. and Germs. | ⁵50p |
| B84 | 100 | Silicon Diodes DO-7<br>glass equiv. to OA200,<br>OA202     | 50p  |
| B86 | 100 | Sil. Diodes sub. min.<br>IN914 and IN916 types             | 50p  |
| H34 | 15  | Power Transistors, PNP,<br>Germ. NPN Silicon<br>TO-3 Can.  | 50p  |
| H67 | 10  | 3819N Channel FETs plastic case type                       | 50p  |

# We hold a very large range of fully marked, tested and guaranteed translators, power translators, diodes and rectifiers at very competitive prices. Please send for free catalogue.

### Our very popular 4p transistors

TYPE "A" PNP Silicon alloy, TO-5 can
TYPE "B" PNP Silicon, plastic encapsulation
TYPE "E" PNP Germanium AF or RF
TYPE "F" NPN Silicon plastic encapsulation
TYPE "G" NPN allicon similar ZTX 300 range

RELAYS FOR 21-00p

# **V Tuner Units**

Brand new by a famous manufacturer Data supplied £2'50

# **Plastic Power** Transistors &

NOW IN TWO RANGES

These are 40W and 90W Silicon Plastic Power Transistors of the very latest design, available in NPN or PNP at the most shatteringly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed terms.

| Range 1, VCE, Min 15.  | HFE MI             | n 15.               |                     |
|------------------------|--------------------|---------------------|---------------------|
| 40 Watt<br>90 Watt     | 1-12<br>20p<br>24p | 13-25<br>18p<br>22p | 26-56<br>16p<br>20p |
| Range 2. VCE. Min. 40. |                    | fin 40              |                     |
| 40 Watt                | 1-12<br>30p        | 13-25<br>28p        | 26~50<br>26p        |
| 90 Watt                | 35p                | 33p                 | 30p                 |
| Please state NPN or PN | IP on o            | rder.               |                     |

HIGH SPEED MAGNETIC COUNTERS 4 Digit (non-reset) 4 x 1 x 1 in ex G.P.O. 30p

#### INTEGRATED CIRCUITS

We stock a large range of I.Cs at very competitive prices (from 10p each). These are all listed in our FREE Catalogue, see coupon below.

METRICATION CHARTS now available This fantastically detailed conversion calcula-tor carries thousands of classified references between metric and British (and U.S.A.) measurements of length, area, volume, liquid measure, weights etc.

Pocket Size 12p Wall Chart 18p

LOW COST DUEL IN LINE I.C. SOCKETS 14 pln type at 15p each \ Now new low profile 16 pin type at 17p each \ type

#### BOOKS

We have a large selection of Reference and Technical Books in stock. Details are in our latest Catalogue. Send for it TODAY, using the coupon below. N.B. Books are void of V.A.T.

Send for lists of publications 

### Our famous P1 Pak is still leading in value

Full of Short Lead Semiconductors & Electronic Components, approx. 176. We guarantee at least 30 really high quality factory marked Transistors PNP & NPN, and a host of Diodes & Rectiflers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. only  $50_{
m P}$ 

| Please<br>I encios | send<br>se la | me th | ie FR<br>LE wi | EÉ Bi-<br>th 5p s | Pre-Pak<br>stamp | Catalogue               |
|--------------------|---------------|-------|----------------|-------------------|------------------|-------------------------|
| NAME               |               |       |                |                   |                  | en en en en en en en en |
| ADDR               | ESS           |       | • • • • •      |                   |                  |                         |
|                    | r r bar       |       |                |                   |                  |                         |

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add 15p post and packing per order OVERSEAS ADD EXTRA FOR POSTAGE

BUY THESE GOODS WITH ACCESS

### Lenco cassette tape recorder mechanisms

Type FFR for the P.W.Kempton car stereo cassette player

£21.50 30p p&p

Dept.D. 222-224 WEST ROAD, WESTCLIFF ON SEA, ESSEX. TELEPHONE: SOUTHEND (0702) 46344.

# 



GARRARD SP25 MkIV GARRARD SP25 MKIV
Plinth & Cover
Garrard SP25 MkIV deck. Goldring
G800 Cartridge. Teak finished Plinth/
Cover (Non Hinged) All Leads.
GLOBAL'S PRICE £19-80
Carr. & Ins. £1-93

TURNTABLES
Please add £1.05 for p & p & Ins.
Garrard SP25 Mk IV Chassis £12.95
Garrard 85SB P/C Cart (Mod.) £47.50
Garrard 86SB Chassis £22.46
Garrard 401 Chassis £22.46
Goldring 101 Mk II P/C G800 £23.70
Goldring GL75 P/C G800 £44.40
Goldring GL75 P/C G800 £44.40
Goldring GL75 P/C G800 £44.50
Floneer PL 12D ... £66.95
Ploneer PL 12D ... P.O.A.
Thorens TD125 MkII £72.25
Thorens TD125 MkII £72.25
Thorens TD160 ABC ... £59.95
Thorens TD165 ABC ... £52.95 TURNTABLES

| Transcriptor<br>Vestigal Ar | Satu      | rn V    | √ith<br> | £63·95    |
|-----------------------------|-----------|---------|----------|-----------|
| AMPLIFIER:                  | S         |         |          |           |
| Please add £                | :1 · 05 f | or pr d | L p d    | i ins.    |
| Amstrad Inter               | gra 400   | 0 Mk !! |          | £25·75    |
| Amstrad I C20               | 00 Mkl    | 1       |          | £31·95    |
| Amstrad 8000                |           |         |          | £18 · 58  |
| Eagle AA2                   |           | • •     |          | £31 .96   |
| Eagle AA4                   | ••        |         |          | £43 · 10  |
| Metro-Sound                 | STORE     | MkII    |          | £26-15    |
| Metro-Sound                 | STAN      | 1811/15 |          |           |
| Metro-Sound                 | STED      |         |          | £46.75    |
| Metro-Sound                 | 3100      |         |          | P.O.A.    |
| Sansul AU10                 |           |         | • •      |           |
| Sinclair 2000               |           | • •     | • •      | 277 22    |
| Sinciair 4000               |           | • •     |          |           |
| Teleton GA20                |           |         |          | £30 · 50  |
| Teleton SAQ                 |           | • •     |          |           |
| Teleton SAQ                 | 307D      |         |          | £27·20    |
| COMBINAT                    | ION I     | MITS    | 2        |           |
| Piease add £1               |           |         |          |           |
| Goodmans Co                 | 10 10 I   | 2017    |          | 1434.4E   |
| Coodmans C                  | ampaci    | 00      | oun,     | 20.0212   |
| Goodmans Co                 | Comm      | 204     | ı.iòʻ    |           |
| (Teak)                      | Comp      | act     | -10      | E191 · 00 |
| TUNERS                      |           |         |          |           |
| Please add £                | 4 - 05 fo | rne     | 20 6     | ne.       |
| Amstrad MLX                 |           |         |          | £26·25    |
| AIIIOUAU MLA                | UVVV      | • •     | • •      |           |

| Teleton ST202                              | • 1   |       | £36.   | 81 |
|--------------------------------------------|-------|-------|--------|----|
| Sinclair 2000 Mk III                       |       |       | £29 ·  | 95 |
| Sincial r4000                              |       |       | £37·   | 45 |
|                                            |       |       |        |    |
| TUNER/AMPLIFIE                             | KĐ.   |       | _      |    |
| Please add £1 · 21 for                     | rpap  | O. HI | £56 ·  | a  |
| Amstrad 5000                               | w     | • •   | £92.   |    |
| Goodmans Module 9                          |       | • • • | £108   |    |
| Goodmans 1-10 Mod                          |       |       | £113   |    |
| Goodmans 120                               |       |       | EII3   |    |
| SPEAKERS                                   |       | _     |        |    |
| Add £1 .82 for p & p                       | & Ins | Det F | alr.   |    |
| Amstrad 1500                               |       |       | £25 ·  |    |
| Amstrad 2500                               |       |       | £29·   |    |
| Celestion County                           |       |       | £45.   |    |
| Celestion Ditton 10 l                      | Mkii  |       | £42.   |    |
| Celestion Ditton 15                        |       |       | £65 ·  |    |
| Celestion Ditton 25                        |       |       | £129 · |    |
| Celeation Ditton 44                        | • •   |       | £108   |    |
| Celestion Ditton 66                        |       | • • : | £198·  |    |
| Celestion Hadlelgh                         |       |       | £39·   | Z  |
| Goodmans Dimensi                           | on 8  |       | E127   |    |
| Goodman's Havant S                         | L     | • •   | £44·   |    |
| Goodmans Magister                          | 8     |       | £107   |    |
| Goodmans Magnum                            | K2 SI |       | £84 ·  |    |
| Goodmans Minister                          |       |       | £36-   |    |
| Goodmans Mezo 3SI                          |       |       | £67    |    |
| Marsden Hall 110F/C<br>Marsden Hall 150F/C |       |       | £31 ·  |    |
| Marsden Hall 150F/C                        | ••    |       | £36    |    |
| Marsden Hall 200F/C                        |       | *. *  | £44 ·  |    |
| Marsden Hall 300F/C                        |       | • •   | €87    |    |
| Wharfedale Denton                          |       | • •   | £32.   |    |
| Wharledale Doveda                          |       | ••    | £85.   |    |
| Wharfedale Glendal                         | e     |       | £59 ·  | 23 |
| CARTRIDGES                                 |       |       |        |    |
| Please add 12p for p                       | apal  | ns.   |        |    |
| Goldring G800H                             |       |       | £3-1   |    |
| Goldring G800E                             |       |       | £6.    |    |
| Goldring G800                              | 4.9   |       | £3.    |    |
| Shure V15 Type 3                           |       |       | £28    |    |
| Shure M75EJ Type 2                         |       |       | £7·1   | 36 |

| £29.95    |
|-----------|
| £37·45    |
|           |
| & ins.    |
| £56.05    |
| 1.32.34   |
| £108·58   |
| £113·95   |
|           |
| per Pair. |
| £25 65    |
| £29·85    |
| £45.25    |
| £42·65    |
| £65·50    |
| £129.95   |
| £108·45   |
| £198·95   |
| £39·25    |
| £127·95   |
| £44·50    |
| £107·75   |
|           |
|           |
| £67·35    |
| £31 · 95  |
| £44 · 95  |
| €87.50    |
| £32·25    |
| £85·25    |
| £59·25    |
|           |
| ns.       |
| £3·87     |
| £6·20     |
| £3·48     |
|           |

|                                        |                                                                     | V                                                      |                                                           | 1                                  |                        |                                                 |                                                                         |                             |
|----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------|------------------------|-------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|
| 2 A P P 2 C H C                        | Amst<br>owe<br>lete<br>500<br>leck,<br>linge                        | REO<br>rad I<br>r 25-<br>with<br>spea<br>G80<br>ed) al | SY1<br>C20<br>H25<br>a pa<br>kers<br>0 C<br>I lea<br>5 PI | wat<br>ir of<br>. G<br>art.<br>ds. | ikii v<br>ta an<br>Ams | rith li<br>nollfic<br>itrad /<br>i SP:<br>h/Cov | Acous                                                                   | om-<br>stra<br>kIV          |
| F************************************* | leas<br>(088<br>(088<br>(088<br>(088<br>(088<br>(088<br>(088<br>(08 | e add<br>ESP<br>ESP<br>K7/11                           | A PLC/                                                    | for<br>d Di<br>A<br>Cick           |                        | NES                                             | £47<br>£64<br>£9<br>£11<br>£12<br>£18<br>£20<br>£24<br>£27<br>£9<br>£10 | 159 70 25 90 35 60 15 90 75 |
| UDIM                                   |                                                                     | "                                                      | "                                                         | 1                                  | ľΉ                     |                                                 | CILIT<br>BLE FO                                                         |                             |
|                                        |                                                                     |                                                        |                                                           |                                    |                        |                                                 |                                                                         |                             |

FABULOUS OFFER



Please Note Every effort is made to ensure prices listed are correct at time of going to press, but are subject to alteration

**FULL 12 MONTH AFTER SALES SERVICE** We give a FULL 12 MONTH GUARANTEE on all products purchased at any branch parts and labour absolutely FREE

without prior notice. (E&OE)

BIRMINGHAM : Tivoli Shopping Centre

Tel: 01-550 1086

1536 Coventry Road, Yardley Tel: 021-706 9949 ESSEX
4 High View Parade.
Redbridge Lane East.
Woodford Avenue, liford.

NO HIDDEN PRICES AT GLOBAL

AUDIO - ALL OUR PRICES ARE

SHOWN WITH VAT INCLUDED

LONDON. 328 Edgware Road, W2, Tel: 01-262 3847

246 Pentonville Road, NI. Tel: 01-837 5535 126 Notting Hill Gate, W11 Tel: 01-229 1437 50 Stamford Hill, N16. Tel: 01-806 4599

PORTS 12 London Road, North End Tel: 0705 68321

READING 46 Market Place. Tel: 0734 595331

PERSONAL CALLERS VERY WELCOME!

COMPARE OUR PRICES WITH ANY IN THE BOOK! OPEN MONDAY TO SATURDAY 9.30 am -- 6 pm LATE NIGHT FRIDAY OPEN UNTIL 7 pm.

WATFORD 105 St Albans Rd. Tel: 39832

PERSONAL CALLERS ONLY MAIL ORDERS MAIL ORDERS
TO 174 PENTOWVILLE
ROAD, LONDON, NI.
Order with confidence
Send Postel Order.
Cheque, Money Order.
Bank Draft, Giro or
Cash by Reg. Mail.
PLEASE NOTE All Cheques.
NOTE All Cheques.

Money Orders, Postal Orders, Bank Draft, or Giro to be made payable to MAUTOMEAD LTO.

# PRANTEMKII

Electronic Ignition... Better on all points

The SPARKRITE MK.2 is a full capacitive discharge electronic system. Specifically designed to retain the points assembly — with all the advantages and none of the disadvantages. No misfire because contact breaker bounce is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker burn is eliminated by reducing the current to about 1/50th of norm, thus avoiding arcing. But you can still revert to normal ignition if need be. In seconds. If points go (very unlikely) you can get replacements anywhere. All these advantages.

Fitted in 15 minutes. • Up to 20% better fuel consumption. ● Instant all weather starting. ● Cleaner plugs — they last 5 times longer without attention. ■ Faster acceleration. ● Faster top speeds. ● Coil and battery last longer. ● Efficient fuel

burning with less air pollution. The kit comprises everything needed

Ready drilled scratch and rust resistant case, metalwork, cables, coil connectors, printed circuit board, top quality 5 year guaranteed transformer and components, full instructions to make positive or negative earth system, and 6 page installation instruction leaflet.

WE SAY IT IS THE BEST SYSTEM AT ANY PRICE!





Sparkrite MK II — full capacitive discharge electronic system — not just a transistorised inductive discharge booster.

Because you keep your points!

D.I.Y. Kit Only £10.93 incl. VAT and P & P Ready Built Unit £13.86 incl. VAT and P & P (Both to fit all cars with coil/distributor ignition up to 8 cylinders).

We can supply units for any petrol-engined vehicle (boat, motorcycle etc) with coil/contact breaker ignition.

Details on request, Call in and see us for a demonstration.

| OR | DER | N | OW | I T | 0: |
|----|-----|---|----|-----|----|
|    |     |   |    |     |    |

**ELECTRONICS DESIGN ASSOCIATES** (Depti PW 11) 82 Bath Street, Walsall WS1 3DE Phone 33652

Please supply Sparkrite Mk.2 D.I.Y. Kit(s) at £10.93 each incl. VAT and P & P (Will make pos. or neg. earth).

Sparkrite Ready Built Neg. Earth Unit(s) at £13.86 each Incl. VAT and P & F

Sparkrite Ready Built Positive Earth Unit(s) #19.86 each incl VAT and P&P

|     | SHEET COURT INCH | , , , | _        |
|-----|------------------|-------|----------|
| NAM | E                | 58    |          |
| ADD | RESS             |       | <u> </u> |
| -   |                  |       |          |

I enclose cheque/P.O. for £. Send SAE for brochure.

# GOING BACK...



R. A. Midgley from Northwood Middlesex has been kind enough to let me have some information on an Ediswan "One-Der" receiver his father once owned.

This set employed an ES 220 valve which was described as the "outcome of prolonged research and experiment". In c1925 it cost 22s. 6d.

Hints for obtaining maximum efficiency from the "One-Der" were as follows:

The "ONE-DER" Receiver, owing to the system of amplification employed, is capable of giving the purest reception at present obtainable, and in order



Interior view of the "One-Der."



Front panel of the receiver.

that this may not be marred by any faults, in or about the installation, the following hints are given:—

AERIAL.—Upon the efficiency of the aerial and earth system depends the amount of energy collected and supplied to the set, and every effort should be made to see that the aerial is as good as it is possible to obtain under the circumstances.

The aerial should be as large and as high as possible, and the lead-in wire from the aerial to the point of entry into the house should be clear of walls or buildings. If it must run parallel or side by side with a wall or any other obstruction, it should be kept at least two feet away, this may be achieved by propping it out. Good insulation of the aerial is absolutely essential, and where bare wire is employed the porcelain or other insulators used for its suspension should be periodically cleaned, particularly in large towns where smoke is prevalent. The aerial wire itself should be of the stranded variety known as 7/22, and each strand should be insulated from the other by a coating of enamel. This type of wire can be obtained at most dealers. This insulation, however, is not good enough to render the use of porcelain insulators unnecessary. This wire is usually sold in lengths of 100 feet, and where possible, erection should commence at the free end and the wire should be brought right to the AERIAL terminal on the set without being broken, so as to avoid making a joint.

EARTH.—Too much attention cannot be paid to the earth connection. The lead from the Receiver to earth should be as short as possible, and the cable should be at least as heavy as that employed for the aerial, or preferably heavier.



The Ediswan "One-Der" speaker (£2·10s in 1925).

There is nothing better than what is known as cab tyre, which is insulated with a thick external sheath of rubber.

In most cases we expect that the connection will be made to the water system, and this is quite good provided connection can be made to a "rising main." On no account should connection be made to the hot water system as the joints which are inevitable in all such systems are usually with non-conducting packed material, and the fact that such pipes are usually made of iron. makes this method most unsatisfactory. Always endeavour to connect to a lead pipe. First scrape the lead perfectly clean and screw on the clean place some clip arrangement, many satisfactory types of which are obtainable at wireless dealers, and when this is clipped in position, it is a good plan to cover the joint made with tallow or Vaseline as this to some extent, will prevent the oxidisation of the newly-cleaned lead and will ensure a good electrical joint. LOW TENSION ACCUMULATOR -The L.T. accumulator which is the source from which the current for heating the filament is drawn, as a rule gives very little trouble beyond the need for re-charging when it is run down. It does, however, require careful charging, and the owner is advised to take the accumulator for re-charging to a reliable electrician who will

not overcharge it and so shorten its life. Accumulators which have glass for their outer container are always to be preferred before those in celluloid containers. The terminals of the accumulator should be kept clean and occasionally covered with Vaseline, and any connection made to the terminals of the accumulator should be screwed down tightly.

HIGH TENSION SUPPLY—The high-tension supply to most wireless sets is probably obtained from dry batteries, and it is essential that these should be of reliable make, otherwise the discharge may be somewhat intermittent, or noisy. Batteries of inferior manufacture often give rise to noises not unlike atmospherics, and for this reason high-tension batteries bearing a reputable name should always be purchased. As the "ONE-DER" Valve requires only a very small anode current, even when working a loudspeaker at full strength (it takes only 1-112 milliamperes, which is probably less than any other valve available), a very small high-tension battery therefore is all that is needed, but it must consist of sufficient units to give 120 volts. GRID BIAS.—It will be noted that the high-tension batteries

used include tappings for Grid Bias at the negative (-) end, so that if this type of battery is used there is no need to employ a separate Grid Bias battery.

Place valve in holder, the two legs which are close together being put to the sockets which are similarly spaced. The others will be found to fit.

The coils are placed so that the one having the most winding and which has four inside tappings is put on the left-hand side, while the one with the lesser winding and only two connections is placed on the right-hand side. Both coils have four pins, but in the case of one coil there are only two of these pins which have wire connections, the other two being left blank—this is visible on looking down inside the coil. The coil is placed on the right hand side working from the front of the set. To switch "on" or "off" pull out, or push in respectively, the small knob on lower front of set. The filament voltage required by this valve being 2 volts no filament rheostat is needed, as the filament is correctly dimensioned for this voltage.

Tuning is effected by means of the two larger knobs. As a general rule start with both

pointers at zero and advance each equally. It will be found that the two indicators will be at approximately the same positions on the scales. If any difference it will be found that the righthand one is slightly higher up the scale than the one on the left-hand. Tuning is rather critical and this is purposely made so in order that powerful nearby stations can be eliminated without the use of a wave-trap, Continue to turn until the station wave or "mush" is heard, when a forward and backward final adjustment of both condensers will enable the station to be tuned in correctly. Should the set be inclined to oscillate even when the right-hand pointer is at zero, a reduction of voltage on the Green wire will always prevent this."

When new, the Ediswan "ONE-DER" Single Valve Receiver complete with valve, one pair of coils, H.T. and L.T. leads, and including all royalties, cost £5 10s. Daventry Coils were 10s. 6d. per pair. The Ediswan "ONE-DER" Loudspeaker (full size model) cost £2 10s., the Ediswan "Loten" Accumulator, XLG 282 was 10s. 6d. Ediswan 60 volt. High-tension Dry Batteries (two required), with tappings for Grid Bias, were 10s.

## ESSENTIAL BOOKS FOR RADIO AMATEURS

New book from RSGB

NBFM MANUAL bу R. S. Hewes, G3TDR and G. R. Jessop, G6JP

The use of frequency modulation by radio amateurs as a communication system has generally been confined to the vhf and uhf bands. When used for this purpose it is essentially a narrow band mode radically different from that used for high fidelity broadcasting. Until now references to narrow band frequency modulation equipment have been confined to articles appearing in various journals, but this manual is intended to present complete coverage of the subject from

It is hoped that it will encourage the home construction of equipment which is truly narrow band, using the frequency or phase methods of modulation and taking full advantage of the mode by the use of the correct demodulator.

The relative freedom from interference to television, radio and audio equipment, and the excellent rejection of impulse noise, makes the mode attractive and economic for both fixed and mobile operation, 60 pages

Price: £1 inc p & p

New Editions Just Published

### AMATEUR RADIO TECHNIQUES (5th edition)

by Pat Hawker, G3VA

Basically an ideas and source book, this ever-popular work brings together a large selection of new circuits and devices and many constructional and fault-finding hints. In this new edition some 50 pages of new material have been included and other sections have been revised and expanded.

304 pages

Price £2.25 inc p & p

Over 700 diagrams

### RSGB AMATEUR RADIO CALL BOOK 1975

Incorporates new callsigns and amendments notified between August 1973, when the previous edition closed, and August

Also includes valuable operating data such as band plans, beacons, amateur radio prefixes in country order, ITU zone list, beam headings and QSL Bureau sub-managers, and a list of RSGB affiliated societies, clubs and groups.

160 pages

Price £1 · 20 inc. p & p

These are just three of a complete range of technical publications, log books and maps for the radio amateur. Send a large s.a.e. for the complete list.

The RSGB is the national society representing all UK radio amateurs. Membership is open to all interested in the hobby: write to the General Manager and ask for full details.

### RADIO SOCIETY OF GREAT BRITAIN





## C. T. ELECTRONICS

### NOW AT 267 & 270 ACTON LANE, LONDON W4 5DG

| SEMICONDUCTORS                                                                                        | S.C.R.s                                                                                                         | * * SPECIAL OFFERS * *                                                                                    |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| AC107 35pl BCY30 40pl MJ340 55pl OC36 85pl TIPA1C 85pl                                                | CRS1/05 40p TRIACS                                                                                              | MINIATURE MAINS TRANSFORMER PRI                                                                           |
| AC125 25p BCY31 55p MJ481 95p OC42 40p TIP42C £1-10 2N2904 25p                                        | CRS1/10 56p TXL228B 8A 400V 95p CRS1/20 60p SC40D £1-40                                                         | 240V. SEC. 12V 100MA Manuf , Hinchley<br>Size 30 x 45 x 40mm. F C 53mm                                    |
| AC127 27P BCY33 45p MJ2901 £2-20 OC44 20p (1850 40P 2N2905 25p 20 20 20 20 20 20 20 20 20 20 20 20 20 | CRS1/40 65p SC40E £1-65                                                                                         | Price 1-65p. 100-50p ea. 1.000-50p ea. 10 000-40p ea.                                                     |
| AC176 27P BCV38 85p MJE370 75p OC71 17p 2TV500 15p 2N2907 25p                                         | CRS1/60 90p SC45D £1-70                                                                                         | 3 CORE PVC INSULATED MAINS CABLE,                                                                         |
| ACY17 25p BCY39 £1-00 MJE371 90p OC72 20p ZTX501 20p 2N3053 25p                                       | CRS3/10 62p SC45E £2-10<br>CRS3/20 62p SC50D £2-42                                                              | GREY ML6650 3×7/0·2mm Price 100-<br>£4-50, 1000m-£35, 10 000m-£330,                                       |
| ACY19 30p BCV70 23p MC2050 03p OC75 23p ZTX504 50p 2N3054 65p                                         | CRS3/40 90p SC50E £2.70                                                                                         | 0-47mfd. 50V MYLAR FILM CAPACITOR<br>Size 1in × 0-35in × 0-65in P.C. Mount                                |
| ACY20 25p BCY71 22p MJE3055 85p OC77 40p ZTX550 25p 2N3035 50p                                        | CRS7/400 £1.00 DIAC                                                                                             | Price 100-4p es. 1000-3p sa.                                                                              |
| ACY21 30p BD121 75p MM1712 60p OC83 25p 1N314 80 2N3525 95p                                           | CRS16/200 90p LINEAR I.C.s                                                                                      | 240V. A.C. SOLENOID. Reversible opera-<br>tion, twin coil Size approx 2\frac{1}{2} \times 1\frac{1}{2} in |
| AD149 650 BD123 75p MPF102 45p OC84 25p IN916 8p 2N3703 12p                                           | CRS16/600 £1-60 LM309K 5V. 1A. Volt-<br>C106B 45p age Reg £2-10                                                 | 90p es.                                                                                                   |
| AD161 40p BD131 75p (2N5457) 35p OC140 30p IN4002 9p 2N3704 12p                                       | C106D 70p LM723C 2-37V, 150mA                                                                                   | 25 UNMARKED 250MW Zenedode 4 7V                                                                           |
| AF114 25p BD153 75p (2N5458) 35p OC171 30p IN4003 9p 2N3706 12p                                       | 40669                                                                                                           | 5 1V, 6 2V 7 5, 9 1V, 10V Measured and tested £1.00                                                       |
| AF116 250 BD156 75p MPF105 0C200 50p IN4005 12p 2N3708 12p                                            | 2N4444 £1.90 TBA800 5Watt Audio £1.50                                                                           | Please state voltage required 50 GE Diode OA47 equivalent £1.00                                           |
| AF117 25p BDY17 £1.60 MPSA06 35p OC202 75p N400Z 18p 2N3709 12p                                       | BT10/5004 R 90p 709C Op Amp D.I.L./                                                                             | TRANSFORMER: DOUGLAS PRI. 0, 115<br>200, 220, 240 SEC 25-0-25-0-6V 21A £4-50                              |
| AF172 30P BF152 200 MPSA56 350 TIP29A 500 NATION OF 2N3772 £2.75                                      | Bridge RECTIFIERS   741C Op Ama 8/14                                                                            | + 50p.p                                                                                                   |
| AST28 SUP BF194 14p MPSU06 75p TIP31A 82p 2N697 20p 2N3819 35p                                        | WO2 1A 200V 38p   D.I.L./TO99 55p                                                                               | TRANSFORMER PRI 0 115, 160, 205, 225, 245, SEC 35-0-35.                                                   |
| BA102 33P BFX29 30P NKT135 35P TIP33A £1.05 2N706 12P 2N3866 85P                                      | MDA952/2 747C Dual Op Amp . £1-20                                                                               | 1-2A 14-50 - 50p. p.p.<br>MULLARD TUBULAR CERAMIC UHF                                                     |
| BA114 16P REVAS 30P NETAD1 11934A 21-55 2N706A 15P 2N3904 22P                                         | 6A 100V 80p ZN414 Radio ! C £1-25                                                                               | TRIMMERS (PROFESSIONAL)                                                                                   |
| BC107 140 BFX88 300 NKT773 300 TIPATA 75- PAISTON 200 2N4058 120                                      | BZY88 Series 400mW   Inc. Filter £1-90                                                                          | 801 0-8-2 2p Price 10p ea                                                                                 |
| BC108 14p BFY10 35p NKT774 25p TIP42A 90p 2N1302 18p 2N4059 12p                                       | 13-3V-33V 5% 11p   CA3014 £1-55                                                                                 | 991 0-5-1-3p ) QUANTITY DISCOUNTS PLEASE TELE-                                                            |
| BC147 12p BFY50 25p OA10 20p TIP30B 66p 2N1303 16p 2N4061 12p                                         | 1.5W range 25p CA3018£1.00<br>10W range 45p CA3028£1.20                                                         | PHONE                                                                                                     |
| BC149 12p BFY51 25p CA47 10p TIP31B 70p 2N1305 25p 2N4286 15p                                         | CA3036 . £1.00 CA3046                                                                                           | 1000pF Feedthrough capacitor 5p ea. Miniature tubular P C trimmers                                        |
| BC153 15p BFY53 25p OA79 12p TIP33B £1-12 2N1307 25p 2N4287 15p                                       | TIL209                                                                                                          | 3·5-13pF<br>6-30pF 10p ea.*                                                                               |
| BC158 15P BSW63 65p OA90 10p TP35P c2-81 201308 25p 2N4289 15p                                        | HP5082 28p CA3075 £1-60<br>MA2082R 25p CA3090Q £4-85                                                            | 4p c/o Variey 700Ω relay 50p ea. TO3 VOLTAGE REGULATORS                                                   |
| BC169C 140 BSW68 80p CA91 10p TIP36B £3.64 2N1613 25p 2N4444 £1.90                                    | L.D.R. MC1303L £2-20                                                                                            | L005 5V 650mA<br>L036 12V 500mA                                                                           |
| BC182 14p C111 50p CA202 10p TIP42B 98p 2N2147 70p 2N4871 35p                                         | ORP12 60p SN76023 6W Audio I C. NE555 Timer 90p with circuit £1-75                                              | L037 15V 450mA £1-60 ea.                                                                                  |
| BC184 14P BY100 15P OA211 38P TIP30C 78P 2N217 35P 2N5191 96P                                         |                                                                                                                 | VEROBOARD                                                                                                 |
| BC213 140 BY125 200 CC10 900 TP31C 850 2N2218 250 40360 500                                           | METAL BOXES ALUMINIUM BOXES IDEAL FOR VEROBOARD WITH BASE                                                       | 0 1 0 15<br>2½ × 3½<br>32p 23p                                                                            |
| BC238 120 19104 65p 0C22 55p TIP33C £1-30 2N2222 20p 40362 55p                                        | AND P.K. SCREWS<br>AB7 21 Long 51/Wide 12/High 50p.                                                             | 21 × 5 35p 35p<br>31 × 31 35p 35p                                                                         |
| BC239 12p IS103 20p OC28 65p TIP35C 23-20 2N2398 70p                                                  | ABB 4' 4 11 50p ABB 4" 22 11 50p                                                                                | 32 × 5 40p 41p<br>17 × 21 £1·05 79p                                                                       |
|                                                                                                       | AB10 4 5½ 1½" 50p<br>AB11 4' 2½' 2' 60p                                                                         | 17 × 31 £1 43 £1 12<br>17 × 5 £1 84                                                                       |
| DIGITAL INTEGRAL CIRCUITS                                                                             | AB12 3 2 1· 44p<br>AB13 6 4" 2" 70p                                                                             | PIN INS. TOOL 72p 72p<br>SP F CUTTER 52p 52p                                                              |
| SN7400 20p SN7428 50p SN7473 40p SN74110 50p SN74166 £4.00 /                                          | AB14 7' 5 24' 84p                                                                                               | 100 PINS SS 30p 30p<br>100 PINS DS 30p 30p                                                                |
| SN7402 200 SN7430 200 SN7474 400 SN74118 £1-00 SN74170 54-10                                          | AB16 10' 7 3 £1-22                                                                                              | 500 PINS SS £1-20 £1-20                                                                                   |
| SN7403 20p SN7433 70p SN7476 45p SN74179 £1.90 SN74174 £2.00                                          | AB18 12 5 3 £1 20                                                                                               | 500 PINS DS £1-20 £1-20<br>Prices Correct June 12                                                         |
| SN7405 20p SN7438 850 SN7481 51.95 SN74122 £1.35 SN74176 £1.60                                        | AB19 12 8 3 £1.60<br>ALUMINIUM BOXES WITH SLOPING TOP PANEL—IDEAL                                               | NEW SERIES TRANSISTOR DATA BOOKS                                                                          |
| SN7407 300 SN7441AN 750 SN7482 870 SN74141 £1.00 SN74180 £1.55                                        | AB20 8' Long 9" Wide 31" High at back                                                                           | <ol> <li>DTA3 USA Band 3 Transistor Characteristics, 2N21—2N6269 all numbers</li> </ol>                   |
| SN7408 20p SN7442 75p SN7484 90p SN74150 £3-35 SN74181 £7-00                                          | 2" High at front 6" Slope to front With P.K. Screws                                                             | 2 THT Thyristor, Triac, Diac, Put_UJT s<br>3 DT15 Japanese Transistor Charac-                             |
| SN7410 200 SN7445 £2.00 SN7490 750 SN74151 £1-10 SN74184 £2-45                                        | AB21 As above but 10" long £2 20 .                                                                              | teristics 2SA, 2SB 2SC, 2SD numbers<br>4 DVT Diode, Comparison Tables                                     |
| SN7411 23p SN7446 £2.00 SN7491AN £1.00 SN74154 £2.00 SN74190 £1.95                                    | /41 VU METER 52.ED                                                                                              | 5 Band 1 Transistor Characteristics<br>European numbers AC, AF, BC, BF, etc.                              |
| SN7413 30p SN7448 £1-75 SN7493 75p SN74155 £1-55 SN74191 £1-95 SN7416 30p SN7450 20p SN7450           | The V41 is calibrated -20 to -3 and 0-100% making it suitable for use as a recording level meter or as a power. | 6 TVT Transistor Equivalent Tables All books contain pin connections and                                  |
| SN7417 30p SN7451 20p SN7495 80p SN74160 52:60 SN74193 52:00                                          | output indicator<br>Sensitivity: 130 μΑ. Internal resistance: 600 ohms                                          | semiconductor outlines PRICE, £1-19 per book £6 per 6 books inc                                           |
| SN7422 48p SN7454 20p SN7495 £1.00 SN74161 £2.60 SN74195 £1.85                                        | Jimenajona: 40 x 40 x 29mm                                                                                      | THOC. IT IS PER DOOK IN PER BOOKS INC                                                                     |
| SN7423 48p SN7460 20p SN74100 £2-50 SN74163 £3-40 SN74196 £1-50                                       | ALSO STOCKED Electrolytic Capacitors Mullard. Sprague. Lorin etc                                                | V.A.T. Unless otherwise stated all prices are                                                             |
| SN7427 42P SN7472 30P SN74105 \$1.45 SN74164 £2.75 SN74198 £4-60                                      | Resistors #W-18W Potentiometers carbon wirewound                                                                | EXCLUSIVE of VAT Please add 8% to all orders Carriage orders under                                        |
| QUANTITY DISCOUNTS-12+ 10%, 25+ 15%, 100+ 20%.                                                        | witches, rotary, slide toddle, atc. Cable, vershoard                                                            | £5 + 20p Over £5 post free                                                                                |
| AUDIO ACCESSORY SHOP, 17 TURNH                                                                        | AM CDEEN TEDDAGE                                                                                                | 01110111011                                                                                               |
| MICROPHONES OF SHOP, IT INVINIT                                                                       | MINI GREEN LEKKACE,                                                                                             | CHISWICK, W.4                                                                                             |
| MICROPHONES TWEE                                                                                      | TERS                                                                                                            |                                                                                                           |

|               | MICROPHONES                                                                                                     | • · · · · · ·       | , -   | TWEETERS                                                                                       | , , , ,        |                                                              | •                                                                                           | <b>VV.4</b>          |
|---------------|-----------------------------------------------------------------------------------------------------------------|---------------------|-------|------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|
| l             | PRICES INC VAT                                                                                                  |                     |       | PRICES INC. VAT                                                                                |                |                                                              | ETTES                                                                                       |                      |
| CM10          | Crystal Lapel Microphone with Lead and                                                                          | CT                  | 75    | Cone Tweeter Freq 3000-15000Hz Cross-<br>over freq 3000Hz Imp 8 ohms Suitable for              |                | C60                                                          | INC VAT                                                                                     | C120                 |
| CM20<br>CM73  | Plug General purpose Crystal Microphone Crystal Stick Microphone with Switch                                    | 50p<br>£1-20 CT     | 10/8  | systems up to 10 watts AMS<br>Pressure Unit Type Tweeter Freq                                  | £1·98          | BASF LH 88p<br>MEMOREX<br>MROX2 Oxide 99p                    | £1·21                                                                                       | £1 · 78              |
| CO92          | Omni Directional Capacitor Microphone                                                                           | . £2·20             |       | 1500-16000Hz Crossover freq 3000Hz<br>Imp 8 ohms Suitable for systems up to 20                 |                | MROX2 Oxide 99p<br>CROX2 £1:47<br>PHILIPS 85p                | - £1-32<br>£1-91<br>£1-19                                                                   | £1·78                |
|               | with built-in Preamplifier. Cable and Wind shield                                                               | . CT                | 10/16 | As above but 16 ohms                                                                           | £2.60<br>£2.60 | QTY Discounts 12-10%, 24-15%<br>SPEAKER CLOTH                | . 36-20% . 60-25%                                                                           | £1.75                |
| CO96<br>DD1   | both types with Switch, both 600 ohms                                                                           | \$18.00             | 33    | Dome Tweeter Freq. 2000-18000Hz Cross-<br>over freq. 3000Hz Imp 8 ohms. Suitable for           |                | Available in Black or Green:<br>£1.75 yd.                    | Approx width 54in                                                                           |                      |
|               | Cassette Dynamic Microphone with Plugs<br>for signal and stop/start 200 ohms                                    | . £2·20 FF2         | 27    | Dome Tweeter Freq 2000-20000Hz Cross-                                                          | . £5∙70        | HEADPHONES Type H-202 Features Mono/st                       | ereo switch. Voluma                                                                         |                      |
| DD5<br>DD6    | with gooseneck and switch, 600 ohms                                                                             |                     | 28    | over freq 3000Hz Imp. 8 ohms Suitable for systems up to 30 watts RMS                           | £6 80          | Impedance 4-16 ohms £4-50.                                   | response 20-20 000Hz                                                                        |                      |
| UD6           | Lavalier Microphone with Windshield,<br>Lavalier Cord. 6 metres Cable. 600 ohms:<br>50kΩ                        | ,                   | ~ ~   | over freq 3000Hz Imp 8 ohms Suitable for                                                       |                | TEAK VENEERED SPEAKER CA<br>For 8 × 5m Speaker Siz           | e 9 <sub>7</sub> ≻ 13 <sub>7</sub> × 5 <del>1</del>                                         | £3·50                |
| DM:18HL       | Dual Impedance Dynamic Microphone                                                                               | .£11-20 HT          | 15    | Horn Tweeter Freq 2000-18000Hz Cross-<br>over freq 3000Hz imp 16 ohms Suitable for             | £8.20          | 8in - Tweeter<br>13×8in                                      | 73 × 113 × 51<br>104 × 17 × 6                                                               | £5-00<br>£5-75       |
| Ð <b>M</b> 73 | With desk stand 600 chms/50kΩ Omni Directional Dynamic Microphone with desk stand, 6 metres Cable and Plug 50kΩ | НТ                  | 21    |                                                                                                | £4·00          | 13 × 8ın + Tweeter<br>12ın Tweeter<br>VALVE A                | 12 × 18 <sub>7</sub> × 8 <del>1</del><br>15 <del>1</del> × 18 × 8 <del>1</del><br>APLIFIERS | £7 · 50<br>£9 · 00   |
| D <b>M</b> 81 | Remote Dynamic Microphone Cassette type with Plugs 200 ohms                                                     | £10-00<br>£1-80 MH  | IT10  | Horn Tweeter Freq 2000-18000Hz                                                                 | £6 ⋅ 20        | PRICES Robust units suitable for most P                      | INC VAT                                                                                     |                      |
| DM82          | Remote Cassette Cardioid Microphone with Plugs 200 ohms                                                         | £1-80<br>£2-40      |       | Crossover freq 3000Hz Imp 8 ohms Suit-                                                         | £4-00          | 5 watt 2 inputs, Vol. Treb<br>15 watt 4 inputs, Vol. Treb    | Bass Controls                                                                               | £12-50<br>£24-50     |
| DM94          | Omni Directional Dynamic Microphone with Slide on Windshield and Switch 50kg                                    | £2·40<br>£9·50      |       |                                                                                                | 24 00          | 30 watt 4 inputs. Vol. Trebi<br>50 watt 4 inputs. Vol. Trebi | e. Bass Controls                                                                            | £29 · 50<br>£38 · 25 |
| DM614         | Cable Lavalier Cord and Base 50kO                                                                               | £3·20               |       | CROSSOVERS                                                                                     | • .            | 150 watt 4 inputs with separa<br>plus master vol. tr         | eble, nass                                                                                  | £75·90               |
| PROM5         | Lavalier Capacitor Microphone with Tie                                                                          | £16-00 CN           | 123   | PRICES INC. VAT                                                                                |                | 500 watt 4 inputs each with i<br>treble and bass con         | itrols plus overali mas                                                                     |                      |
|               | Omni Directional Capacitor Micro-                                                                               | .£30.00             |       | 2 Way Crossover Network, Imp 3 ohms<br>Crossover 3000Hz Suitable up to 15 watts<br>RMS         |                | vol. controt MICROPHO                                        | NE MIXERS                                                                                   | £124·50              |
|               | with 6 metres Cable 600 ohms                                                                                    | FF5                 | 5     | 3 Way Crossover Network Imp. 8 chms                                                            | £1·70          | FF1 4 Channel Mono Mi                                        | NC VAT                                                                                      |                      |
|               | Capacitor Boom Arm Microphone with Arm two Windshields, Cable 600 ohms                                          | . <b>234-60</b> FF3 | 30    | Crossover freqs 1000 and 5000Hz Suitable up to 25 watts RMS 3 Way Crossover Network Imp 8 ohms | £3 - 30        | with individual i                                            | slide controls Batt                                                                         | ery<br>£26 · 00      |
| UD50HL        | with Switch, 6 metres Cable and Plug 600                                                                        |                     |       | Crossover freqs 1000 and 5000Hz Suitable                                                       | CO 30          | FF10 7 Channel Stereo Mil<br>with individual                 | ker and Preamplifier<br>ilide controls Batt                                                 |                      |
| 200C          | ohms/50kΩ<br>Slim Line Crystal Microphone with Switch.<br>Cable and Connector                                   | £12-00 SN7          | 75    | 2 Way Crossover Network Imp 8 ohms<br>Crossover 3000Hz Suitable for eveters up                 | £9 20          | FF11 Stereo Frequency (                                      | Controller and De-                                                                          | £34-00               |
| AH            |                                                                                                                 | £3-80               |       | to 15 watts RMS                                                                                | £4-60          | amplifier uses five<br>operated                              | slide controls Batte                                                                        | ery<br>. £34-00      |

All mail order and enquiries to 270 Acton Lane Tel. 01-994 6275

# Forward with Project 80 into



Everything you want in one pack to build the world's most advanced modular hi-fi WITHOUT SOLDERING

- 1 Stereo 80 Control Unit For mag. and ceramic cartridges, radio and tape.
- 2 Project 80 power amplifiers Two Z.40s to give 8/8 watts R.M.S. output per channel.
- 3 Power supply unit One PZ.5.
- 4 Connecting wires All wires plus nuts, bolts, screws etc.
- 5 Project 805 Masterlink For input and output connections.
- 6 Mains switch block and instructions manual (not illustrated).



SINCLAIR RADIONICS LTD London Rd, St. Ives, Huntingdon PE17 4HJ Telephone St. Ives (0480) 64646

# This is Project 80 made even easier to build

You have seen how the marvellously compact Project 80 modules (only 2'' high  $\times \frac{3}{4}''$  deep) are so adaptable and easy to install. Now, with Project 805, this wonderful system is made easier still to put together. In this, you have not only all the Project 80 modules in one pack for building an 8/8 watt R.M.S. hi-fi amplifier — there is also a loom of colour coded wires cut to length and tagged for clipping on so that you don't even have to solder! Input and output connections go via the 805 Masterlink panel. With the explicit stage-by-stage large 32 page instructions manual included, it becomes easy for anyone, no matter how inexperienced to install an ultra-modern assembly so advanced in appearance and design that it sets brand new concepts in domestic hi-fi—and of course, you can convert to quadraphony just whenever you wish by adding 805SQ. Only Sinclair know-how and manufacturing facilities could hope to bring you such quality and versatility.

### TAGGED WIRES CUT TO LENGTH NO SOLDERING

# Project 805

## the complete ready-to-build hi-fi STEREO AMPLIFIER

Project 805 comprises a Stereo 80 Pre-amp/Control Unit with input for both magnetic and ceramic cartridges, radio, tape; separate bass and treble cut/lift, and volume controls 2 × Z.40 power amplifiers, PZ.5 power unit, 805 Masterlink, wire loom, instructions manual, etc down to nuts, bolts and washers.

£39.95

+£3.20 VAT (R.R.P.)



# true quadraphonics... NOW!



The most effective and economical way to enjoy this spectacular breakthrough in hi-fi listening

- 1. Project 80SQ decoder with controls.
- 2. Two Z 40 power amplifiers.
- 3. PZ.5 power pack
- 4 Project 80Q Masterlink unit.
- 5 Wire loom, with clip-on tags NO SOLDERING!
- 6. (Not illustrated) instructions manual, nuts bolts, washers, etc.

# Add a fourth dimension to your stereo sound

It's so simple to convert to quadraphonics when you already have Project 80, or are about to start with Project 805. Project 805SQ is a complete add-on system at the heart of which is the Project 80SQ decoder. It uses the CBS.SQ matrix principle, by now the widest used method of containing four sound channels within the groove of the record. Project 805SQ includes two power amplifiers, power supply unit, connecting wire loom, 805Q Masterlink, switch block and instructions manual. The 80SQ decoder (also obtainable separately) has independent tone and volume slider controls on the two rear channels for matching true four channel sound to domestic environment. Project 805SQ is money saving too since you do not have to scrap existing Project 80 equipment to enjoy the newest and most exciting form of home listening in the entire history of sound, and your Project 80 quadraphonic assembly is compatible with stereo and mono records.

Project 80SQ Decoder (available separately)

£18.95 \$\$\\(\frac{1}{2}\)!

- Frequency response 3db 15 Hz\*25kHz
- Rated output 100mV
- S/N ratio 58dB
- Distortion 0-1%
- Power requirements 22-35 volts
- Phase shift network 90 ± 10, 100 Hz-10kHz
- Adaptable to discrete (CD4) use



# Project 805SQ



The output from any good stereo cartridge feeds into Stereo 80 and passes via the tape outlet to the 80SQ decoder. Here the signal is separated into its constituent 4 channels, those for the front being accepted by the Stereo 80, those for the rear going from the decoder to the two additional power amplifiers and speakers.

£44.95

+£3 60 VAT (R.R.P.)

Guarantee If, within 3 months of purchasing any product direct from us, you are dissatisfied with it, your money will be refunded on production of receipt of payment. Many Sinclair Appointed Stockists also offer this guarantee. Should any defect arise in normal use within 2 years, we will service it without charge. For damage arising from mis-use a nominal charge will be made.

All Project 50 modules, Project 805 and Project 805SQ are obtainable from your local Sinclair stockist or direct, post free, in case of difficulty

# **Audio Bargains**



DECODER

Ready-built unit, ready for connection to the IF stages of existing FM Radio or Tuner. The very latest 2nd Generation coil less integrated circuit design, operating on this phase locked loop system, offering even better stereo separation. Only owing to our bulk buying capacity are we able to offer this at the old price. LED stereo indicator lights available. RED at 25p. GREEN at 40p.

# only£1.50



## / & 10W AMPS



5WONLY £1.80 W ONLY £2.26

inc. P. & P.

These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only  $2\frac{1}{4}$ "x  $1\frac{1}{4}$ ". The 5W amp will run from a 12V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass, volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request Cheapest in the UK. Built and tested.

### Now available for 5 & 10

Pre-assembled printed circuit boards 2" x 3" available in stereo only, will fit .15 edge connector.

Stereo Pre-Amp 1 (Pre 1). This unit is for use with low gain crystal or ceramic pick-up cartridges.

Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic £1 · 55 pick-up cartridges.

Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut.

Instruction leaflet supplied with all units. Post and packing included in prices. Add VAT at current rate.

| l en  | close £ for Decoders/                                  |
|-------|--------------------------------------------------------|
| 3W /  | Amps/ 5W Amps/ 10W Amps/                               |
| Stere | eo Pre-Amps 1 Stereo Pre-Amps 2                        |
|       | eo Tone Controls                                       |
| (Plea | ase insert quantities and delete those not applicable) |
| Nam   | e                                                      |
| Add   | ress                                                   |
|       |                                                        |

Dept. D, 222/224 West Road, Westcliffe-on-Sea, Essex SS0 9DF Telephone: Southend (0702) 46344

168 The Castle 8. RS. DD. A highly sensitive, full range eight inch unit designed for use in the recommended cabinet, or one of similar dimension. Suitable for use with good quality stereo installations, tape recorders, car radios, public

address and background music systems, it has a frequency range of 50 to 20,000 kHz - the lower limit variable with increases in cabinet volume. Recommended retail price is £9.00 excluding VAT

Aluminium Voice Coil High Flux 14,000 Dersteds Ceramic Wagnet Roll Surround

Double Diaphragm 8" Die Cast Chassis

\$8 ohms Impedance 15 Watt DIN Power Handling

Park Will; Shortbank Road, Skipton, Yorks, Tel: Skipton 5333.

## ROMASONIG electronics

Dept. 1

56, Fortis Green Road, London, N10 3HN. telephone: 01-883 3705

### RESISTORS

The standard ranges of Resistors stocked one either £12 or £24 and the values are all in multiples of ten times the descade shown below. The £12 terms are only those in bold type. The £24 terms are both those in bold and light type.

| 10 | 118 | 33 | 56   |
|----|-----|----|------|
| 11 | 20  | 36 | 62   |
| 12 | 22  | 39 | 58   |
| 13 | 24  | 43 | 75   |
| 15 | 27  | 47 | - 82 |
| 16 | 30  | 51 | 91   |

CARBON FILM /4 watt ± 5% tol. E12 Series 100 to 330KA

CARBON FILM 1 watt + E24 Series 1000 to 10MI

'CERMET' THICK FILM & watt + 2% tol . . 8p eq . E12 series 56stro 150Ks

METAL OXIDE FILM ½ watt ± 2% tol. 4½p ea. E12 series 10Ω to 1MΩ

elitteramment or en until trace

CARBON COMPOSITION 1 wat:  $\frac{5\frac{1}{2}p}{2.2}$  ea. 2.2 ; 2.7 ; 3.3 ; 3.9 ; 4.7 ;  $\frac{+}{2}$  0.5 tol.  $\frac{+}{2}$  10% tol.

3½p ea. CARBON FILM 1 watt ± 5% tol. E12 series 10 \Omega to 10 M \Omega

CARBON FILM 2 watt ± 5%tol. E12 series 10Ωto 10MΩ 6 peq.

WIREWOUND 2½ watt ± 5% tol 0.22 to 0.470 15½p E12 series ± 10% " 1 to 2700 13p



1.5K 1.8K 2K 2.2K 2.5K 2.7K 3K 3.3K 25 30 39 50 60 68 75 82 100 125 133 150 250 270 300 330 350 400 470 560 600 680 750 820 1 K 3.5K 3.9K 4.7K 5.6K 6.8K

WIRE WOUND 10 watt 14p e
All the values shown in bold in the 5 watt range

WIRE WOUND 10 wart ± 59 10K ; 15K ; 20K , 25K

WIRE WOUND 15 watt All the values from 1000 upward shown in bold in the 5 watt range. 13 p ea.

## **POTENTIOMETERS**



ritch (and 1K Lin) 10K 25K 50K 100K Log or Lin with Switch
Dual Less Switch
1 Meg Log only
10K Log + 10K Antilog Less Switch 500K 1 Meg 2 Meg

Sliders

10K 25K 50K 100K Sinale 33p 55p DUAL

Presets Vertical or .25 Watt 7p 1 Watt 5½p 10K 25K **5**0K 100K 250K 500K l Meg 2.5 Meg 5Meg

Cermets 25K 50K 100K 250K 500K 1 Meg 500 1K 5K 10**K** 40p

VDR's & Thermistors 17p 18p 18p CZ1 CZ13A CZ19 E298CDA 258 E 298EDA 258 18p 13p 13p 13p 13p 13p 13p 13p 14p 14p 14p 14p 14p 14p 14p 160 160 160 160 E298EDA 262 E298EDA 262 E298EDA265 E298EDP268 E298ZZ05 E298ZZ04 E2990 DP336 E299DDP338 E299DDP342 E299DDP348 GL16 GL23

VAIMS VA1005 VA1026 VA1033 VA1034 VA1039 VA1040 VA1053 VA10555 VA10565 VA 1066S VA10575 VA10675

19p 19p 21p 31p

295

R53

VA1077 VA1098 VA1104

CAPACITORS

| Ceramic Plate   |                     |        | 4    |              |
|-----------------|---------------------|--------|------|--------------|
| Mullard         | Mullard C333 Series |        |      | ts Wkg.      |
|                 | all                 | at 5½p | each |              |
| + 0 25pf 1.8 pf | + 2%                | 12 pf  | +2%  | <b>68</b> pf |
| 2.2 pf          | -                   | 15 pf  | -    | B2 pf        |
| 3.3 pf          |                     | IB of  |      | 100 pf       |
| 3.9 pf          |                     | 22 pf  |      | 120 pf       |
| 4.7 pf          |                     | 27 pf  |      | 150 pf       |
| 5.6 pf          |                     | 33 pf  |      | 180 pf       |
| 6.8 pf          |                     | 39 pf  |      | 220 pf       |
| 8 2 pf          |                     | 47 pf  |      | 270 pf       |
| 10 pf           |                     | 56 pf  |      | 330 pf       |

Mullard 630 series 40 volts ± 10% tol. \* 629 series 100 volts all at 5 p each

1000 pf 1200 pf 1500 pf 1800 pf 3300 pf 3900 pf 4700 pf \* 10 nf \* 22 nf 2200 pf 

Erie Monolithic Ceromic 30 Volts Wkg 27 nf 11p; 47 nf 13p; 100 nf 17p

Low Voltage Disc Ceramics ; 0.1 uF ; 0.22 uF ; 0.47 uF 0.01 uF 0.022 uF 0.047 uF 16v 184

Mylar Film 0.05 uF 1000 of 5p 5p 62p 7p 0.068uF 0.1 uF 0.2 uF 0.47 uF 2000 pf 5000 pf 0.01 uF 0.02 uF

MULLARD C295 Series 63 volts Polystyrene C295 AH/D6K8 C295 AH/D8K2 C295 AH/D13K C295 AH/D18K C295 AH/D20K C295 AH/D30K C295 AH/D30K Tolerance ± 1% 6,800pf (6 8,200pf (8 13,000pf (13) 18,000pf (16) (6.8nf) (8.2nf) (13nf) (18nf) 11p 15p 15p 15p 18p 18p (.02uF) (.03uF) 20nF 30nF 39nF 51nF ( 030 F) 25p (.051uF) C295 AH/D51K

Polystyrene 160 valts Wkg.
Talerance <u>†lpf up to 33pf; † 5% 47pf up.</u>

10 pf to 10,000 pf (0.01 uF) in multiples of: 10 ; 15 ; 22 ; 33 ; 47 ; 68.

± 5% 100v 0.22uF Wima MKS



Mullary C280 Series. 250 Volts Wkg. Metallised Polyester Film

0.22 uf 5½p 0.33 uF 7p 0.47 uf 9p 0.68 uF 12p 1.0 uF 14½p 1.5 uF 22p 2.2 uf 26½p 0.01 uF 0.015 uF 0.022 uF 0.033 uF 0.047 uF 0.068 uF 0.1 uf 0.15 uf

100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 100 A 400 Volts Wkg. Mulland C281 series Metallised Polycarbonate film ±10%

5p 5p 5p 6p 62p 62p 0.1 uF 8p 0.15 uF 9p 0.22 uF 11p 0.33 uF 15 p 0.47 uF 16 p 0.01 uf 0.015 uF 0.022 uF 0.033 uF 0.047 uf 0.068 uF

CAPACITORS

| 9    | ilvered Mic                       | •                                | 350∨.                            |
|------|-----------------------------------|----------------------------------|----------------------------------|
| ,    | ol.± 0.5p                         | f                                | 11p each                         |
|      | 2.2 pf<br>3.3 pf<br>5 pf<br>10 pf | 18pf<br>20pf<br>22pf<br>25pf     | 30 pf<br>33 pf<br>39 pf<br>47 pf |
|      | fol.± 1%                          |                                  | 11p each                         |
|      | 50pf<br>56pf<br>68pf<br>75pf      | 82pf<br>100pf<br>120pf           | 150pf<br>180pf<br>200pf<br>220pf |
| 4    |                                   |                                  | 12p each                         |
|      | 250pf<br>270pf<br>300pf           | 330pf<br>390pf<br>470pf<br>500pf | 560pf<br>680pf<br>820pf          |
|      | 1000 pf                           | 1500pf<br>1800pf                 | 17p each<br>220pf                |
|      |                                   |                                  | 26p each                         |
|      | 2700pf                            | 3600pf<br>4700pf                 | 5000pf                           |
|      | 6800pf                            | 8200pf                           | 33p each<br>10000pf              |
| ,000 |                                   | 2,447                            |                                  |
|      |                                   |                                  | 10 M 14 Mari                     |

Mixed Dielectric 600 Volts Wkg. 0.1 uF 0.22 uF 0.47 uF 1 uF 0.01 uE 0.022 uF 0.033 uF 0.047 uF 0.068 uF

1000 Volts Wkg 0.022 uF 0.047 uF 0.1 uF 0.22 uF 0.47 6½p, 6½p, 7p; 7p; 10p; 1000 pf 2200 pf 3300 pf 4700 pf 13p 242p

10 oF 10 oF 10 oF 22 oF 47 oF 35√ 35√ 0.22 uF 0.47 uF 1.0 uF 2.2 uF 16v 25v 16v 35v 35v 35v 35v 35v

Feed-through Caromics 1000 of 350v



750 Volt Wkg Disc Ceramics

470 pf; 1000 pf; 5000 pf; 0.01 uf



Tubular H1-K Ceramics 750 Valts Wkg

3000 pf 5000 pf 0.01 uf 1000 pf 1500 pf 5加 5加 5加 5加 5加 5加 2000 pt

Pulse Ceromics all at 10p each

12 kv. b. C. Wkg 10pf 120pf 22pf 140pf 68pf 150pf 82pf 100pf 100pf 200pf 8kv D.C. 200pf 220pf 250pf 270pf 300pf

VAT INCLUSIVE PRICES AT 8% OVERSEAS CUSTOMERS DEDUCT 2/27 VAT INVOICES ON REQUEST P&P. On U.K. Orders 15p. Overseas Orders at Cost

## GUROMASONIG electronics

Dept, 1

56, Fortis Green Road, London, N10 3HN.

telephone: 01-883 3705



OVERSEAS CUSTOMERS DEDUCT 2/27
VAT INVOICES ON REQUEST.
P&P On U.K. Orders min. 15p.. Overseas Orders at Cost

12" LONG PERSISTANCE CRT. Full spec. Price £6:50 to include V.A.T. and Carriage.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 Hz to 8 MHz. Hook up a 9 volt battery and connect to your scope and have two traces for ONLY £6:25, P. & P. 25p. (Not cased, not calibrated.)

WIDE RANGE WOBBULATOR.
5 MHz to 150 MHz up to 15 MHz sweep
width. Only 3 controls. preset RF
level, sweep width and frequency.
Ideal for 10-7 or TV IF alignment,
filters, receivers. Can be used with
any general purpose scope. Full
instructions supplied. Connect 6 3V
A.C. and use within minutes of
receiving. All this for ONLY £5-75,
P.&P.25p. (Not cased, not calibrated.)
20 Hz to 200 kHz WB. 20 Hz to 200 kHz WB.

SINE and SQUARE GENERATOR. Four ranges, Independent amplitude controls, thermistor stabilised. Ready to use, 9V supply required. £8.85 each, P. & P. 25p. (Not cased, not calibrated.)

GRATICULES 12cm x 14cm high quality plastic 15p each, P. & P. 5p.

Large quantity of good quality components — NO PASSING TRADE — so we offer 3lbs of ELECTRONIC GOODIES for £1.50, Post paid.

ROTARY SWITCH PACK-brand new switches (1 ceramic; 1 c 4pole 2 way etc.). 50p, P. & P. 20p,

P.C.B. PACKS S. & D. Quantity 2 sq ft—no tiny pleces. 50p plus P. & P. 20p.

CAPACITOR PACK-50 Brand new components, only 50p, P. & P. 20p. TRIMMER PACK. 2 Twin 50/200pF ceramic 2 Twin 10/60pF ceramic; 2 min. strip with 4 preset 5/20pF on each; 3 air spaced preset 30/100pF on ceramic base. ALL BRAND NEW. 25p the lot. P. & P. 10p.

PHOTOCELL equ. OCP71, 13p each.
MULLARD OCP70—10p each.

DELIVERED TO YOUR DOOR 1 cwt of Electronic Scrap chassis, boards, etc. No rubbish. FOR ONLY \$4.00.

MODERN TELEPHONES type 706.
Two-tone grey, £3-75 each. Two-tone
green £3-75 each. Black £3-75 each.
P. & P. 35p.

Ideal EXTENSION TELEPHONES with standard GPO type dial, beli and lead coding. £1 75 each, P. & P.

HANDSETS — complete with 2 inserts and lead 75p each, P. & P. 37p, DIALS ONLY 75p each, P. & P. 25p.

HIGH VALUE—PRINTED BOARD PACK. Hundreds of components, transistors, etc.—no 2 boards the same—no short leaded transistor computer boards £1.75 post paid.

Beehive Trimmer 3/30 pf Brand new, Qty. 1-913p ea. P. & P. 15p 10-99 10p ea. P. & P. 25p; 100-999 7p ea. P. & P. free.

HF Crystal Drive Unit, 19in. rack mount, Standard 240V input with superb crystal oven by Labgear (no crystals) £5 ea. Carr. £2.00

1000pf FEED THRU CAPACITORS only sold in packs of 10, 30p, P. & P. 10p.

ALWAYS some CHEAP SCOPES AVAILABLE—or build your own— send for our tube list with a S.A.E.



PLEASE ADD V.A.T. AT 8% OPEN 9 a.m. to 6.30 p.m. ANY DAY

CHILTMEADLTD



(near Tech. College)

Tel.: Reading 582605/65916

## Tele-Tennis

As described in Practical Wireless

Play the game that's sweeping the nation. You've seen it in pubs, clubs and arcadesnow you can play it in the comfort of your own home.

Plugs into the aerial of your U.H.F. 625 Black & White or Colour television. No internal connections to your T.V. set. Does not interfere with other T.V. programmes. Built from 6 neat sub-sections, purchase a complete kit or sub-section at a time.

All parts available separately including P. C. boards, case and ready, punched and slotted facia panel.

S.A.E. for full details.

## DABAR ELECTRONIC PRODUCTS



98 LICHFIELD STREET WALSALL, Staffs WSI IUZ







Brochure, without obligation to:

BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept., W.B. 15

P.O. Box 156, Jersey, Channel Islands.

NAME -

ADDRESS.

\_Block caps please 🛢

## £5.50 Post 25p. R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. Acos stereo/mono cartridge. Base-plate. Size 11in × 8½in. Turntable. Size 7in. diameter. A/C mains. 200/250V motor has a separate winding 14 voit to power a small amplifier. Three speeds. Plays all

### COMPACT PORTABLE STEREO HI-FI

Two full size loudspeakers  $13\frac{1}{4} \times 10 \times 3\frac{1}{4}$ in. Player unit clips to loudspeakers making it extremely compact. Overall size only  $13\frac{1}{4} \times 10 \times 8\frac{1}{4}$ in. 3 watts per channel, clays



SPECIAL OFFER SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0-60 MINUTES

TIME SWITCH 0-60 MINUTES
Single pole two-way,
Surface mounting with fixing
screws. Will replace existing wall
switch to give light for return home,
garage, automatic anti-burgular lights, etc. Variable knob
Turn on or of at full or intermediate settings. Makers
last list price \$4.50. Brand new and fully guaranteed.
Fully insulated.

OUR PRICE \$1.95 Post 25p

| WEYRAD P50-TF                                        | RANSISTOR COILS                                      |
|------------------------------------------------------|------------------------------------------------------|
| RA2W Ferrite Aerial 85p<br>I.F. P50/2CC 470 kc/s 40p | Printed Circuit, PCA1 85p<br>J.B. Tuning Gang \$1.20 |
| Srd I.F. P50/3CC40p<br>Spare Cores3p                 | Weyrad Booklet 10p<br>OPT1                           |
| P50/IAC60p                                           | Driver Trans T.PDT4 65-                              |
| Ferrite Rod 8 × In. 20p 6 ×                          | åin. 20p 3 × lin. 10p                                |

VOLUME CONTROLS | 80 Ohm Coax 5p. rd. 5 K. ohms to 2 Meg. LOG or LIN. L/S 20p. D.P. 35p. \$TEREO L/S 55p. D.P. 75p. Edge 5 K.S.P. Transistor 25p Ideal 625 & colour 10p y

### 8in & 10 × 6in ELAC HI-FI SPEAKER

Dual cone plasticised roll surround. Large ceramic magnet. 50-16,000 c/s.

Bass resonance 55 c/s.

8 ohm 10 watt.

43-75 Fach
Post 52p

10 inch 12 watt Twin Cone, 8 ohm \$4:50

E.M.I.  $13\frac{1}{2} \times 8in$ . SPEAKER SALE!

With twin tweeters and crossover, 10 watt. \$4.50 (As illustrated)

With flared tweeter cone and ceramic magnet. 10 watt.
Base res. 45-60 c/s.
Plux 10,000 gauss.
State 8 or 8 or 15 ohm. Post 25p

BOOKSHELF CABINET Size 16 × 10 × 9 in. teak finish



£6.60 Post

E.M.I.  $13 \times 8$  in. BASS WOOFER. 20 WATTS  $15\Omega$ RUBBER COME SURROUND. 45 50 Post 25p.

BLANK ALUMINIUM CHASSIS. 18 s.w.g.  $2^{\frac{1}{2}}$ in. sides 6 × 4in. 46p; 8 × 6in. 53p; 10 × 7in. 65p; 12 × 8in. 85p; 14 × 9in. 90p; 16 × 6in. 90p; 12 × 3in. 50p; 16 × 10in. £1. ALUMINIUM BOXES 3 × 3 × 3in. 60p; 4 × 4 × 4in. 70; 6 × 4 × 4in. 80p; 9 × 4 × 4in. £1; 12 × 4 × 4in. £1 · 30. ALUMINIUM PANELS 18 s.w.g. 6 × 4in. 12p; 8 × 5in. 19p; 14 × 3in. 20p; 10 × 7in. 24p; 12 × 5in. 25p; 12 × 8in. 34p; 16 × 6in. 34p; 14 × 9in. 40p; 12 × 12in. 47p; 16 × 10in. 60p PAXOLIN PANEL 10 × 8in. 30p.

### SPECIAL OFFER

100 ohm 20W Rheostat 24in. diam. Ceramic Former, screw terminals, 4in. diam. spindle. 95p, post 25p.

### ANOTHER RCS BARGAIN!

ELAC 9  $\times$  5in. HI-FI SPEAKER. TYPE 59RM. THIS FAMOUS AND WIDELY USED UNIT NOW AVAILABLE AT BARGAIN PRICE 10 WATT, 8 OHM. CERAMIC MAGNET. £2.95

R.C.S. STABILISED POWER PACK KITS R.C.S. STABILISED FOWER PACE REST.

All parts and instructions with Zener Diode, Printed Circuit,
Bridge Rectifiers and Double Wound Mains Transformer.
Input 200/240V a.c. Output voltages available 6 or 9 or 12
or 16 or 18 or 20V d.c. at 100mA or less.

PLEASE STATE VOLTAGE REQUIRED. £2.20 Post
Details S.A.E. Size 3; × 1; × 1; in.

## R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE

Ideal for Mike, Tape, P.U., Guitar, etc. Can be used with Battery 9-12v. or H.T. line 200-200v. d.c. operation. Size  $11^{s'} \times 12^{s'} \times 12^{s'}$ . Response 25 c/s. to 25 Kc/s, 26 dB gain. For use with valve or transistor equipment. 99p Post Pull instructions supplied. Details 8.A.E.

TEAKWOOD LOUDSPEAKER GRILLS. Will easily fit to baffle board, Size 18½ × 10½ in.—75p. 10½ × 7½in.—45p.

### E.M.I. WOOFER AND TWEETER KIT

Woofer 10<sup>‡</sup> × 6<sup>‡</sup>in. Ceramic Magnet, 44oz. 13,000 lines, Tweeter 3<sup>‡</sup>in. square, 10,000 lines. Crossover condenser full instructions supplied. Impedance 8 ohms. Power 12 watts. £5.75 Post 45p.

### BRITISH FM/VHF TUNING HEART

88 to 108 M/CS British made. 2 Transistors ready aligned requires 10.7 M/CS I.F. Complete with tuning gang. Connections supplied but some technical experience 10.7 M/Cs IF Strip £4.95 essential Our price £3.95

|   | MAINS TRANSFORMERS                                   | All post  |
|---|------------------------------------------------------|-----------|
|   | 250-0-250 8mA. 6.3V 2amp                             | 25p each  |
| ı | 250-0-250 80 m a 6.977 0 K a 6.977 1 a               | £2.00     |
| 1 | 250-0-250 80 mA. 6-8V 8-5A 6-8V 1A or 5V 2A          | £2·50     |
| ı | 350-0-850 80 mA 8 8V 8 5A, 6 8V 1A or 5V 2A.         | £8.00     |
| 1 | 800-0-300V 120mA, 6-3V 4A C.T.; 6-3V 2A              | £4.25     |
| ı | MINIAIURE 2004 20MA, 6.34 IA                         | £1        |
| 1 | MIDGET ZZUV 40MA, B-3V ZA                            | 41 10     |
| I | HEATER TRANS. 6.8V & amu 85n. 3 amu 81.              | 20        |
| ı | GENERAL PURPOSE LOW VOLTAGE Transact                 | Antonia   |
| ı | at 2 amp. 3. 4. 5. 6. 8. 9. 10. 12. 15. 18. 24 and 9 | 017 AB.00 |
| ł | 1 amp, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, | 20 20 00  |
| ı | 2 amp, 6, 8, 10, 12, 16, 18, 20, 24, 80, 86, 40, 48, | 00 20.00  |
| ı | 8 amp. 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, | 00 24.00  |
| ı | 5 cm 8 8 10 10 10 10 00 04 00 00 40, 48,             | an \$6.00 |
| ı | 5 amp. 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, | 60 £9.75  |
| Į | 3, 5, 8, 10, 13V or 5-0-5V 5 amp. £1.50; 6-0-6V 50   | 0mA 90p   |
| ı | 9V 1 amp 95p 12V 300mA 75p 12V 500mA 85p 12V         | 7 750mÅ   |
| 1 | 50P. 12, 00, 45 V 2 8 mp £2, 20 V 3 a mp £2          |           |
| l | AUTO TRANSFORMERS, 116V to 280V or 280V              | to 115V   |
| 1 | 400 W #2'90: DUU W #7.DU: 7KNW #10 - 1 000W #1K      |           |
|   | UMARUER TRANSFURMERS Innut onn/oknv                  |           |
| L | for 6 or 12V, 1; amp £1.50; 2 amp £1.80; 4 am        | 49.84     |
| L | BATTERY CHARGERS. Ready built with leads             | neils bu  |

BATTERY CHARGERS. Ready built with leads and clips 1½ amp 22; 4 amp 24; 5 amp. 24:50.
FULL WAVE BRIDGE CHARGER RECTIFIERS; 6 or 12V outputs. 1½ amp 40p; 2 amp 55p; 4 amp 85p.

### MAINS ISOLATING TRANSFORMER

Primary 0-110-240V. Secondary 0-240V. 3A. 720W. Insulated terminals. Varnish impregnated. Fully enclosed in steel case with fixing feet. OUR PRICE £12 Carr. Famous make. (Value £19)
Can be used as 800W auto transformers 240-110V.

IDEAL FOR COLOUR T.V. OR GARDEN TOOLS.

| NEW B                                                                                    | פיניים. די                             | OT WITH HOME | DEMOS                                         |                                                                                                       |          | _                                             |
|------------------------------------------------------------------------------------------|----------------------------------------|--------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|
| NEW E<br>2/850V<br>4/850V<br>8/850V<br>16/450V<br>82/450V<br>32/500V<br>25/25V<br>50/50V | 14p<br>14p<br>22p<br>25p<br>35p<br>50p |              | 10p<br>14p<br>20p<br>85p<br>47p<br>22p<br>25p | 3RS<br>50+50/300V<br>350+50/325<br>82+32/350V<br>82+32/450V<br>32+32+32/35<br>32+32+32/45<br>900/350V | ov<br>ov | 50p<br>85p<br>40p<br>60p<br>65p<br>85p<br>95p |

LOW VOLTAGE ELECTROLYTICS

LOW VOLTAGE ELECTROLYTIUS

1, 2, 4, 5, 8, 16, 25, 30, 50, 100, 200mF. 15V. 10p.

500mF. 12V. 15p; 25V. 20p; 50V. 30p.

1000mF. 12V. 20p; 25V. 85p; 50V. 47p; 100V. 70p.

2500mF. 5V. 25p; 25V. 48p; 50V. 57p.

2500mF. 50V. 62p; 3000mF. 25V. 47p; 50V. 65p.

5000mF. 6V. 25p; 12V. 42p; 25V. 75p; 35V. 85p; 50V. 95p.

MICRO SWITCH. Single Pole Change Over. 20p. Sub Min 25p.

Sub Min 25p.

CERAMIC 1pf to 0.01mf, 4p. Silver Mica 2 to 5000pf, 4p. PAPER 350V-0.1 4p. 0.5 13p; 1mf 15p; 2mf 150V 15p. 500V-0.001 to 0.05 4p; 0.1 5p; 0.25 8p; 0.47 25p. TWIN GANG, "0.0" 208pf+176pf, 21.20; 500pf standard 75p; 365+865 with 26+25pf 5low motion drive 50p. SHORT WAVE, SINGLE. 10pf 30p; 26pf 56p; 50pf 56p. NEON PANEL INDICATORS, 280V AC/DC Amber 25p. RESISTORS, ½W, ½W, 1W, 20% 1p; 2W, 5p, 10 At 510M. HIGH STABLLITY, ½ w. 2% 10 chms to 6 meg., 10p. Ditto 5% Preferred values 10 chms to 10 meg., 4p. WIRE-WOUND RESISTORS. 5 watt, 10 watt, 15 watt 10 chms to 100k 10p each.

TAPE OSCILLATOR COIL. Valve Type 35p.

NEW MODEL "BAKER LOUDSPEAKER" 12in. 50 watt GROUP 50/12 8 or 15 chm high power full £12.95

### BAKER MAJOR 12" £8.50



30-14,500 c/s, 12in. double cone, wooder and tweeter cone together with a BAKER ceramic magnet assembly having a finx density of 14,000 causs and a total flux of 145,000 Maxwells. Bass resonance 40 c/s Rated 20 watts. NOTE: 3 or 8 or 15 ohms must be stated.

Module kit, 80-17,000 c/s with tweeter, crossover, baffle and instructions. £10-95 Post free Please state 8 or 8 or 15 ohms.

BAKER "BIG-SOUND" SPEAKERS

Post free \*Group 25'
12 inch £7.75 | 12 inch £8.50 | 15° w £17.80 | 15° w £17.80 | 15° w £17.80 | 15° w £17.80

TEAK VENEERED HI-FI SPEAKER CABINETS
For 12in. or 10in. dis. speaker 20 × 13 × 9° 210-50 Post 75p
For 13 × 8in. or 8in. speaker 16 × 10 × 9° 56-60 Post 45p
For 8 × 5in. speaker 16 × 6 × 24 × 96 Post 35p
For 6in. and tweeter 12 × 8 × 6° 24 × 90 Post 25p
LOUDSPEAKER CABINET WADDING 18in. wide, 20p fi

### EMi 64in. HI-Fi WOOFER

8 ohm, 10 watt. Large ceramic magnet Special Rubber cone surround. Frequency response 30-12,000 c/s. Ideal P.A. Columns, Hi-Fi Enclosure Systems, etc. Suitable cabinet 12 × 8 × 6 24·00. Suitable Tweeter £2·00.



### **ELAC CONE TWEETER**

The moving coil diaphragm gives a goo de radiation pattern to the higher frequencies and a smooth extension of total response from 1,000 c/s to 18,000 c/s. Size 3; × 3;×2in. deep. Rating 10 watt, 3 ohm Suitable Library 1000 Post 20p Crossover £1.30

SPEAKER COVERING MATERIALS. Samples Large S.A.E Horn Tweeters 2-16kc/s, 10W 8 ohm or 15 ohm \$1.95 CROSSOVERS TWO-WAY 3000cps 3 or 8 or 15 ohm \$1.30 LOUDSPEAKERS 3 OHMS. 7 × 4in. \$1.25; 6iin. \$1.50. 8 × 5in. \$1.60 8in. \$1.75; 10 × 6in. \$1.90; 10in. \$2.00. SPECIAL OFFER: 80 ohm, 2in.; 2iin. \$5 ohm. 2in. \$3in. \$25 ohm. 2in. dis., 5in. dis., 5iv. dis., 5iv. 4 EACH 15 ohm, \$iin. dis., 5iv. dis., 5iv. \$4 in.; 8 × 5in. TYPE 3 ohm, \$iin.; 2iin.; 5in.; 5in. dis. (6 × 4in. 8 ohm \$1.50) RICHARD ALLAN TWIN CONE LOUDSPEAKERS. 8 in. diameter 4 watt \$2.50. 10in. diameter 5 watt \$2.50; VALVE OUTFUT TRANS. 40p; MIKE TRANS. 50:1 40p. Mike trans. mu metal 100:1 \$1.25.

### MAJOR 100 WATT **ALL PURPOSE GROUP OR DISCO AMPLIFIER**



All purpose transistorised. Ideal for Groups, Disco and P.A. 4 inputs speech and music. 4 way mixing. Output 8,15 ohm. a.c. Mains. Separate treble and bass controls. MAJOR 50 WATT 4 INPUTS. 2-WAY MIXING 239-95 IDEAL FOR DISCO.

3-WAY CROSSOVER 950 CPS and 3000 CPS with leads ready assembled

BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER. Add musical highlights and sound effects to recordings. Will mix Microphone, records, tape and tuner with separate controls into single output. 9 volt.

TWO CHANNEL STEREO VERSION

£5.95

BARGAIN 3 WATT AMPLIFIER. 4 Transistor Push-Pull Ready built, with volume, treble and bass controls 18v. DC operation.

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18p COAXIAL OUTLET BOXES, surface, 35p. BALANCED TWIN FEEDER 300 ohms 7p yard. JACK SOCKET Std. open-circuit 15p, closed-circuit 23p. Chrome Lead Socket 45p. Phono Plugs 8p. Phono Socket 8p. JACK PLUGS 8td. Chrome 20p; 3:5mm Chrome 12p. DIN SOCKETS Chassis 8:pin 10p; 5-pin 10p. DIN SOCKETS Lead 3-pin 18p; 5-pin 25p. DIN PLUGS 3-pin 18p; 5-pin 25p. DIN PLUGS 3-pin 18p; 5-pin 25p. VALVE HOLDERS. 5p; CERAMIC 10p; CANS 5p.



REVERSIBLE 4 POLE MOTOR £2.25 1,400 r.p.m. Reversible 42 Watt. Post 25p spindle 11"×7'00", size 31"×8" 1,400 r.p.m. Reversible 42 Watt, Post 25p spindle  $1\frac{1}{2}$ "×7/32", size  $3\frac{1}{2}$ "×3". As illustrated. With Cooling Fan 240V A.C.

E.M.I. GRAM MOTOR 120v. or 240v. A.C. 2,400 rpm. 2-pole 70mA. Size 2; × 2; × 2; in.

£1.00 Post 25p.

### COMPONENT KADIU SPECIALIST Minimum post 20p. Illustrated Brochure, Radio Books & Components Lists 10p.

337 WHITEHORSE ROAD, CROYDON

Open 9-6 Wed. 9-1 Sat. 9-5 (Closed for lunch 1.15-2.30) Buses 50, 68, 159. Rail Selhurst. Tel. 01-684 1665



The incredible new 004 "MEMORY" Claculator heralds the beginning of a new era in pocket-size electronics! And, thanks to a special arrangement we have made with the suppliers, you can be among the first in this country to own one AND SAVE OVER £36 INTO THE BARGAIN! Brilliantly designed! Manufactured to the highest standards! So much is incorporated into this incredibly compact product of advanced modern science it's almost unbelievable! Only  $2\frac{1}{4} \times 4\frac{1}{2} \times \frac{3}{4}$  in. overall approx.' So small & light-weight you can slip it into your pocket or handbag & not know it's there at all! Yet wonderful also on Desk Top, in the office, shop or home Extremely reliable & robust. Designed to give years of perfect. service. Bold, clear visual display reading. Large, well-spaced keys for fast accurate use with utmost ease. The most incredibly complicated calculations completed in a wink with miraculous "space-age" electronic accuracy! Everything worked out with utter simplicity! Accountant, schoolboy or professor, the 004 "Memory" Calcualtor has a virtually limitless capacity to solve your every mathematical problem! Works off standard batteries (obtainable everywhere) also works off 220/250v. A.C. Mains using mains battery eliminator (available as optional extra). Brand spanking new. Complete with Owner's Manual, Quick Reference Guide, simple instructions with working examples, and WRITTEN GUARANTEE, ONLY £15-47, post etc. 50p. Standard battery & special protective carry case 50p extra. Mains battery eliminator £2.50 extra, if required. Buy one, or buy as many as you like! What an investment! At this incredible price you just can't lose. You save ££££'s & ££££'s! Send quickly, test on 7 days Mail Order approval from receipt of goods. Refund if not delighted. Or call at either store.

Order by post to Uxbridge Road or call at either store. Callers: ACCESS & BARCLAY CARDS ACCEPTED Bargains galore at both stores-(COMMERCIAL TRAVELLERS NOTE: Merchandising office at Holborn)

. Astronatic true credit balance plus or minus

Correction of decimal point position

Last answer can be recalled even after clearing

ECT.82

Dept WP/40, 164 UXBRIDGE ROAD, (facing Shepherds Bush Green), LONDON W12 8AQ. (Thurs. 1, Fri. 7). Also at 37/39 HIGH HOLBORN (opposite Chancery Lane), LONDON, W.C.I. (Thur. 7 p.m.) BOTH OPEN MON. TO SAT. 9 A.M. TILL 6 P.M.

.21 BYZ13 .33 FSY11. .28 FSY41.

FSY11A FSY41A  $^{f \cdot 25}_{f \cdot 25}$ 

## BENTLEY ACOUSTIC

7a GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX Telephone 6743 wises inclusive of V.A.T.

Automatic minus sign

MASSIVE entry and recall capacity

| Ali pr               | ices inclusive | Telepho    | ne 6745                |                      |                                          |
|----------------------|----------------|------------|------------------------|----------------------|------------------------------------------|
| OB2 .40              | 6BA6 .28 6     | L7 .50 (1  | 2Q7GT ·45              |                      | DY802 35 E                               |
| OZ4 .47              | 6BC8 -60 6     | L18 .55 1  | 28C7 .50 2             | 35Z5GT .75           |                                          |
|                      |                | L19 2.00 1 | 28G7 .40 4             |                      | E80CC 2 20 E                             |
| 1Abgr .50            | 6BH6 60 6      |            |                        |                      |                                          |
|                      | 6BJ6 .55 6     | N7GT .60 1 |                        |                      |                                          |
|                      | 6BO7A .55 6    |            |                        |                      |                                          |
| 1H5GT .60            | 6BR7 1.00      |            |                        |                      |                                          |
| 1L4 .28              | 6BR8 1.50 6    | Q7(M) 55 1 |                        |                      | E180F 1.00 4<br>E182CC1 25               |
| 1N5GT .65            |                |            |                        |                      | E1148 .53                                |
| 1R5 .45              | 6BW6 .80       |            |                        |                      | EA50 .27                                 |
| 184 .88              |                |            | 19G6 6.00              | SDAS COL             | EA76 100                                 |
| 1U4 .60              |                |            |                        | 90AG 2.50            | EA76 1.00 1<br>EABC80 .88 1<br>EAC91 .75 |
| 1U5 .75              | 1002           |            |                        | 90C1 .75             | EAC91 .75                                |
| 2D21 ·45             | 0000           |            |                        |                      | EAF42 .75                                |
| 2GK5 .55             | 1000           |            |                        |                      | BAF801 .75                               |
| 2X2 ·60              |                |            |                        |                      |                                          |
| 844 .50              |                |            | 20P5 1.80<br>25A6G .60 | 4033X 6.00           | EB91 20                                  |
| \$D6 .40             |                |            |                        |                      | EBC41 .75                                |
| 8Q4 .60              | 10010          |            |                        |                      | EBC81 .35                                |
| 8Q5GT .55            | 00202          |            |                        |                      | EBF80 .29                                |
| 384 40               |                |            | 25Z5 ·80               |                      | EBF88 .48                                |
| 3V4 ·70              |                |            |                        | 7193 -58             | EBF89 .82                                |
| 4CB6 -55<br>5CG8 -55 |                |            | 28D7 1.00              | 7475 1.00            | BBL21 2.00                               |
|                      |                |            | 30A5 .65               | 9002 .50             | EC86 .70                                 |
|                      |                | 7¥4 .75    | 30015 .80              | 9006 .80             | EC88 .70                                 |
| 5V4G .50             |                | 7Z4 .80    | 30C17 .80              |                      | EC92 .45                                 |
| 5Y8GT .45            |                | 9D7 .65    | 30C18 .80              | AC2/PEN/             | ECC32 1.50                               |
| 5Z3 ·75              |                | 10C2 .65   | 80F5 .80               |                      | ECC35 95                                 |
| 5Z4G -45             |                | 10DE7 .75  | 30FL1 .67              |                      | ECC40 1.00                               |
| 5Z4GT -48            |                | 10F1 .75   | 30FL2 .67              | AC/TH1 #1            | ECC81 .84                                |
| 6/80L2 .80           |                | 10F9 .65   | 30FL12 .90             | AL60 1.00            | ECC82 .88                                |
| 6A8G 1.2             |                | 10F18 .55  | 30FL13 .55             | ATP4 ·50             | ECC83 .88                                |
| 6A07 .4              |                | 10LD11 .70 | 30FL14 .78             | AZ1 .25              | ECC84 .80                                |
| 6AG5 .8              |                | 10P13 .75  | 30L15 .78              | AZ41 .25             | ECC85 .40                                |
| 6AH6 .6              |                | 10P14 2.00 | 30L17 .70              |                      | ECC86 .85                                |
| 6AJ5 .6              |                | 12A6 1.00  | 30P4MR                 | CL83 1.60            | ECC88 .44                                |
| 6AK5 .4              |                | 12AC6 .70  | 1.00                   | CY1C 1.00            |                                          |
| 6AK6 .6              |                | 12AD6 .65  | 30P12 .80              | CY31 .50             |                                          |
| 6AM8A 5              |                | 12AE6 .65  | 30P19/                 | DAF91 .80            | ECF82 .88                                |
| 6ANS ·7              |                | 12AT6 .40  | 30P4 .75               | DAF96 .50            | ECF86 .75                                |
| SAQS 4               |                | 12AU6 .45  | 30PL1 .85              |                      | ECF804                                   |
| 6AR5 ·6              | 0 6J5GT .45    | 12AV6 .50  | 30PL13 .95             |                      | 2.25                                     |
| 6AB7 1.0             | 0 6J6 .30      | 12BA6 .45  | 80PL14 1-10            | DF96 .50             | ECH21 2.00                               |
| 6AT6 .4              | 5 6J7G .80     | 12BE6 .50  | 30PL15 .90             | DK40 .70             | ECH35 1.25<br>ECH42 .70                  |
| 6AU6 .8              | 0 6JU8A •75    | 12BH7 .50  |                        | DK92 .70             | ECH42 .70                                |
| 6AV6 .4              | 5 6K7G .30     |            | 35D5 · 75              |                      | ECH83 .44                                |
| 6AW8A .9             |                |            |                        | DL96 .55<br>DM70 .60 | ECH84 .44                                |
| 6AX4 .7              | 5 6LI 2.00     | 12K5 1.00  | 35W4 .50               |                      | ECL80 .55                                |
| 6B8G .8              | 80 6L6GT .58   | 12K7GT .50 | 35Z3 75                | DM71 1.50            | TROMOS . DO                              |

EY88 .40 EY91 .58 EZ40 .50 EZ41 .55 EZ80 .23 EZ81 .29 GY501 .70 GZ32 .50 GZ33 1.25 GZ34 .60 40 Transistors
40 & Diodes
77 11N4744 -15
45 2N404 -20
75 2N966 -68
45 2N1756 -55
70 2N3147 -92
75 2N3963 -36
88 2N3121 2-75
655 2N3703 -27
655 2N3703 -27
655 2N3703 -27
70 AA119 -17
35 AA120 -17
44 AA129 -17
44 AA129 -17
44 AA129 -17
44 AA129 -17
45 AC113 -27
46 AC168 -17
47
48 AC126 -17
48 AC128 -17
49 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC168 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
40 AC177 -17
4 PCH200 .80 PCL82 .38 PCL83 .50 PCL84 .45 UBF89 UBL21 UC92 UCC84 UCC85 UCF80 AF117 AF121 AF124 AF125 AF126 AF180 AF186 BA115 70 .60 .60 .40 .75 .70 .70 1.50 1.00 .26 1.00 ·15 ·20 ·58 ·55 ·94 ·25 ·15 PCL83 .50 PCL84 .45 PCL86 .47 PCL805 .55 PEN45 .80 PEN45DD .80 EF22 EF40 EF41 70 | GZ32 | 50 | PEN45D | 70 | GZ32 | 1.25 | PEN45D | 70 | GZ32 | 1.25 | PEN45D | 70 | GZ32 | 1.00 | PEN46 | 50 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | PEN45D | 70 | UCH21 2.00 UCH42 UCH42 UCH81 UCL82 UCL83 BA116 BA129 EF42 40 88 .55 .70 .70 .35 BA130 BA153 BC107 BC108 BC109 BC113 BC115 BC116 BCY12 BCY34 BCY38 BCY34 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 BCY38 75 21 22 17 17 17 20 UF41 UF42 UF80 EF86 UF80 UF85 UF86 UF89 UL41 UL84 UM80 UY41 UY85 U10 U12/14 EF89 EF91 EF92 .44 1.00 .40 .75 .42 .44 .45 ·28 ·14 ·19 EF183 EF184 22 23 28 28 28 28 28 42 61 21 21 21 21 EF804 EH90 EL32 EL34 EL35 EL37 U19 U25 U26 U33 U35 U81 U191 U261 U301 U403 U404 U801 U4020 VP23 VU111 VU120 VU120 -85 -66 1.50 1.50 -80 -75 -80 OC78D OC81 OC81D OC82 OC82D OC83 OC84 OC123 EL41 EL81 ·18 RIAS MS102 1001 P61 50 PABC80 28 PC86 60 PC88 60 PC97 38 PC990 48 PC084 40 PCC85 44 PCC85 60 PCC89 50 PCC199 57 PCF80 40 PCF82 35 PCF84 59 PCF84 59 PCF86 60 PCF801 50 ELSA ELSS ELSS ELSS ACY17 ACY18 ACY19 ACY20 ACY21 ACY22 ACY28 AD140 AD149 AD161 AD162 AF114 BF185 BF194 ·17 BFY50 BFY51 BFY52 BY100 BY114 BY126 .75 .55 .85 .60 OC123 OC139 OC169 OC172 OC200 OC201 OC202 OC203 EL360 21 22 20 20 17 20 ·25 EL506 ELL80 ·20 ·40 ·55 ·50 ·50 EM80 EM81 EM83 EM84 .40 QQV03/10 44 QS75/201-00 U4020 50 QS75/201-00 VU110 50 QS95/101-00 VU120 57 QV04/71-00 VU120 40 R19 .60 VU100 59 TF26201.00 W709 60 UABC80.40 W729 50 UAF42 .60 X65 50 UBC41 .60 X101 50 UBC41 .60 X759 .45 .65 .55 .40 1.60 .80 1.00 BY127 BYZ10 EM85 ·28 BYZ11 ·17 BYZ12 1.00 AF114 AF115 28 OC205 EM87 .80 1.00 1.00 1.25 VU133 1.00 MATCHED TRANSISTOR SETS:—
1.00 LP15 (AC113. AC154. AC157. AA120) ·58p per pack. 1—OC81D & 2—OC81, 47p.
2.00 LOC44 & 2—OC45, 47p, 1—OC82D. & 2—OC82 ·58p. Set of 3—OC83 ·72p. EMM803 \$2 EY61 EY83 PCF802 PCF806

UBF80

VALVES ALSO REQUIRED FOR CASH. LOOSE OR BOXED, BUT MUST BE NEW. OFFERS MADE BY RETURN.

MADE BY RETURN.

All goods are unused and subject to the standard 90 day guarantee. Cash or cheque with order only. All goods are unused and subject to the standard 90 day guarantee. Cash or cheque with order only. Despatch charges:—Orders below £5, add 10p total to cover up to three items. each additional item 3p extra. Orders between £5 and £10 add 25p total. Orders over £10 are post free. Same day despatch. Any parcel insured against damage in transit for only 3p per parcel extra. Terms of business free on request. Many others in stock too numerous to mention.

Please enclose S.A.E. for reply to any correspondence.

### RECORD PLAYBACK HEADS (TRUVOX)

(TRUVUA)
Individual prices of these are:
2 track record playback heads 55p each.
4 track record playback heads 80p each.
Ersae heads are also available separately—
2 track 40p—4 track 65p.

### NEED A SPECIAL SWITCH



Double Leaf Contact. Very slight pressure closes both contacts. 9p each, 10 for 74p Plastic pushrod suitable for operating. 7p each, 10 for 63p.

## I R.P.M. MOTOR+GEAR BOX Made by the famous Chamberlain & Hookham Ltd. These could be made to drive clock or similar. Really robust reliable unit. Price \$1.25 each.

AUTO-ELECTRICAL CAR AERIAL

AUTO—ELECTRICAL CAR with dashboard control switch—fully extendable to 40in or fully retractable. Suitable for 12V positive or negative earth. Supplied complete with fitting instructions and ready wired dashboard switch. 26-95 plus 25p post and insurance.

### MAINS TRANSISTOR POWER

PACK
Designed to operate transistor sets and amplifiers.
Adjustable output 6v., 9v., 12 volts for up to
500mA (class B working). Takes the place of any
of the following batteries: PPI, PPS, PP4, PP6,
PP7, PP9 and others. Kit comprises: mains
transformer rectifier, smoothing and load resistor,
condensers and instructions. Real snip at only
\$1.50.



MINIATURE WAFER SWITCHES

2 pole, 2 way—4 pole, 2 way—
3 pole, 3 way—4 pole, 3 way—2
pole, 4 way—3 pole, 4 way—2 pole
6 way—1 pole, 12 way. All at 30p
each.

### MULTI-SPEED MOTOR.

Six speeds are available 500, 850 and 1,100 r.p.m. and 8,000, 12,000 and 15,500 r.p.m. Shaft is ½ in. diameter and approximately 1 in. long. 230/240v. Its speed may be diameter and approximately 1 in. long. 230/240v. Its speed may be further controlled with the use of our Thyristor controller. Very powerful and useful motor size approx. 2 in. dia. × 5 in. long. Price £1.00 plus 25p postage and insurance.



SLIDE SWITCHES
Slide Switch. 2-pole changeover panel
mounting by two 6B.A. screws. Size
approx. 1m × in rated 250V lamp.
10p each. 10 for 90p. Ditto as above but
for printed circuit 8p each 10 for 72p.
Sub Miniature Slide Switch. DPDT 19mm
rox.) between fixing centres. 20n each or

(fin approx.) between fixing centres. 20p each or 10 for 21-90. SP Change over spring return 250v 1

### ISA ELECTRICAL PROGRAMMER



Learn in your sieep:
Have radio playing and kettle boiling as you awake — switch on lights to ward off intruders — have a warm house to come home to.

All these and many other things you can do if you invest in an electrical programmer. Clock by famous maker with 15 amp. on/off switch. Switch-on time can be set anywhere to stay on up to 6 hours. Independent 60 minute memory logger. A beautiful unit. Price 22:30 + 20p p. & p. or with glass front, chrome bezel. \$1:00 averse. logger. A beautiful unit. Price 22:30 + 20p p. & or with glass front, chrome bezel, £1.00 extra.

### BALANCED ARMATURE UNIT

500 ohm, operates as speaker or micro-phone, so useful in intercom or similar circuits, 37p each.



### 12 VOLT I AMP. POWER PACK

POWER PACK
This comprises double-wound 250/240V mains transformer with full wave rectifier and 2000 mF smoothing. Price 25:50 plus 20p post & packing.

Heavy Duty Mains Power Reavy Duty Mains Power at 40V to 15 amp at 16V. This really is a high power heavy duty unit with dozens of workshop uses. Output voltage adjustment is very quicksimply interchange push on leads. Silicon rectifiers and smoothing by 3,000mF. Price 26:95 plus 21:00 post.

### PC BOARD MARKER

Yalve action fibre tipped marking pen filled with black etch resist—it's easy with this to make a perfect PC board, just draw straight on to the copper—allow 15 minutes to dry, then immerse in ferric cloride or other etchant on removal the circuit stands in high relief. 99n.

### HONEYWELL PROGRAMMER

HONEYWELL PROGRAMMER

This is a drum type timing device, the drum being calibrated in equal divisions for switch setting purposes with trips which are infinitely adjustable for Position. They are also arranged to allow 2 operations per switch per rotation. There are 15 changeover micro switches each of 10 amp type operated by the trips thus 15 circuits may be changed per revolution. Drive motor is mains operated 5 revs. per min. Some of the many uses of this timer are Machinery control, Boiler firing, Dispensing and Vending machines. Display lighting animated and signs, Signalling, etc. Price from makers probably over \$20 each. Special snip price \$7.50 plus 25p post and insurance. Don't miss this terrific bargain.



### TANGENTIAL HEATER UNIT



This heater unit is the very latest type, most efficient, and quiet running. Is as fitted in Hoover and blower heaters. Comprises motor, impelier, 2kW, element allowing switching 1, 2kW, and with thermal safety out-out. Can be fitted into any metal line case or cabinet. Only needs control switch, \$22.75. Don't miss this. Control Switch, \$44p. P. & P. 40p.

### STEREO RADIO CABINET

Long, Low and Modern. Teak veneered with sliding front and tapered legs. Speaker spaces each end. Size approx. 4ft. 2in × 15in × 15in. Probably cost over £20 to make. Our Price £8:10 each.

## TWENTYLITE

Fluorescent lighting units with polyester choke and finished white enamel, 40 ins. model. Ideal kitchen, bedroom, hallway, porch, lift, etc., with tube. Assembled ready to install. Price £2.20 + 40p p. & p.



### -THIS MONTH'S SNIP SOUND TO LIGHT UNIT

Add colour or white light to your amplifier. Will operate 1, 2 or 3 lamps (maximum 450w) Unit in Box all ready to work. £7.95 plus 95p VAT and posters



### HORSTMANN 24-HOUR TIME SWITCH

With 6 position programmer. When fitted to hot water systems this could programme as follows:—

| rogramme<br>0 | Hot Water<br>Off       | Central Heating<br>Off |
|---------------|------------------------|------------------------|
| 1<br>2        | Twice Daily            | Off                    |
| 3             | All Day<br>Twice Daily | Off<br>Twice Daily     |
| 4             | All Day                | All Day                |
|               | Continuously           | Continuously           |

Suitable of course, to programme other than central heating and hot water, for instance, programme upstairs and downstairs electric heating or heating and cooling or taped music and radio. In fact there is no limit to the versatility of this Programmer. Mains operated, Size 3in. × 3in. × 2in. deep. Price \$4.35 as illustrated but less case.

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives really amazing results.
You will receive an amazing assortment of stations over the 19.25.31.39 & 49 metre bands—Kit contains chassis front panel and all the parts. £1.25—crystal earphone 50p.

### MULLARD UNILEX STEREO SYSTEM

There is no coubt that it is a good system, we believe that for the money it is without comparison. We demonstrate gladly at our Tamworth Road depot. Prices of the individual

items for this:—
I Unilex Amplifier

tems for this:—
| Unilex Amplifier | Ref. EP.9000 21.60 |
| Unilex Amplifier | Ref. EP.9001 21.60 |
| Unilex Pre-Amp | Ref. EP.9001 21.60 |
| Unilex Power Unit Ref. EP.9002 22.53 |
| Control panel kit with spun aluminium faced knobs 28.30

1 Control panel kit with spun aluminium faced knobs ... ... 23-30
Or the complete outfit —£11-80 post paid.
Pair of 15 ohm speakers made by Goodmans are also available if required, price £3-30 the pair. No extra postage if ordered with the above, otherwise add on.

SPECIAL PRICES TO COLLEGES AND INSTITUTION ENGINEERING: THIS KIT IN THEIR CURRICULUM.

### SWITCH TRIGGER MATS

So thin is undetectable under carpet but will switch on with slightest pressure. For burglar alarms, shop doors, etc. 24in × 18in £1.90
13in × 0in £1.50



HORSTMANN "TIME AND SET" SWITCH
(A 30 amp switch). Just the thing if you want to come home
to a warm house without it costing you a fortune. You can
delay the switch on time of your electric fires, etc., up to
14 hours from setting time or you can use the switch to give
a boost on period of up to 3 hours. Equally suitable to control
processins. processing.
Two models 15 amp £2.18, 30 amp £3.35. P. & P. 25p each.

### TERMS ....

ADD 8% V.A.T.

Send postage where quoted-other items, post free if order for these items is £6.00, otherwise add 30p.

AM/FM TUNER
Unit made by the American GEC company,
8 transistor, all-wired ready to work. Complete
with tuner condenser, needs only scale and
pointer. Tunes AM range 540 to 1620 KHz, FM
range 88 to 108 MHz. Switches for on-off and AFC.
Output for MXP or direct. Special snip price 25
plus 30p post. Three or more post free.

### 7 WATT STEREO AMPLIFIER

Again by the American GEC company. This has exceptionally good tone quality. Is complete with pre-amp and treble base, volume and balance controls. Also has mains smoothing circuit and rectifiers so requires only mains transformer. Output for 15 ohm speakers. Inputs for tuner; pick-up, mike, etc. Special snip price £6 plus 30p post. Three or more post free.

### COMPLETE SYSTEM AM/FM and MPX Tuner

Decoder and stereo amplifier. Specifications of tuner and amplifier are approximately as given above. This is ready built and tested system complete with scale and pointer, ready to install into suitable cabinet. (Our big stereo cabinet should be ideal for this.) Limited quantity, \$15 each.

### AMPLIFIER PANELS



ery nice looking, polished black pressphan with fing holes. 6 phono sockets and changeover slide fixing holes. 6 phono sockets and changeover si switch and is printed as sketch. Price is 30p.

### **BATTERY CHARGERS**

Famous Atlas in metal case with meter, output leads terminated by crocodile clips. For 6 or 12v charging simply by changing plug on front panel. Ready built new and still in maker's original packing. Two models: 1\(\frac{1}{2}\) amp \$21.99 and 3-4 amp \$2.95. Please add 40p postage for one and 75p postage for two.





## MOTORS

7 powerful battery motors as used in racing cars and power models. Output and types vary to make them suitable for hundreds of different projects—tools, toys, models, etc. All brand new reversible and for 10 to 12v. Bats., wiring diagrams included. Post and VAT 30p.

FREE

Transport

### **NEW ITEMS THIS MONTH**

Car Cassette Power Kit. With a stabilised output of 69, 9v or 12v. The kit comprises transistors, zener diode, resistors and condensers. Price 22:10. Suitable plastic case 40p extra.

cener diode, resistors and condensers. Price 22:10. Suitable plastic case 40p extra.

Black Light as used in discotheques and for stage effects, etc. Virtually no white light appears until the rays impinge on luminous paint or white shirts, etc. We offer 12" 8w tubes complete with starter, choke, lamp holders and starter holder. Price 22:75 + 30p post. Tubes only 22 + 30p post. 8 KV Rectifiers. For replacements in colour TVs or for experimenting with really high voltage for doublers and triplers, etc. Famous maker. 45p each Quantity prices available.

Meters. All flush mounting with chrome-plated surround. 0-2 amp 40p. 0-3 amp 46p. 0-4 amp 85p. 0-10 amp 95p.

Rectifiers. All 24v full wave (bridge) with cooling fins. 1½-2 amp 25p. 3-4 amp 85p. 5-7 amp £1.25.

15 way Screen Cable. Suitable for equipment wiring, multi-way telephone installations, etc. Each core has seven strands copper, PVC insulated and colour coded differently from every other core. These are then laid together encased first by a metal screen and then grey PVC. Price 30p metre or 10 metres 22:50.

Touch Switch. This switch suitable for up to 10 amps mains voltage. Stands up approximately 4" rather like a joy stick and no matter which direction it is pushed, it makes contact. Base size approximately 24" x 2". Price 25p each. Light Switch. Automatically switches on lights at dusk and off at dawn. Can also be used where light and dark is a convenient way to stop and switch plate size. 1 amp model £2.95.

J. BULL (ELECTRICAL) LTD. (Dept. PW), 102/3 Tamworth Road. CROYDON CRO IXX

**OR 12 VOLT** \* + VE AND - VE GROUND

Here's the new, improved version of the original PE Scorpio Electronic Ignition System—with a big plus over all the other kits—the PE Scorpio Kit is designed for both positive and negative ground automotive electrical systems. Not just+ve ground. Nor just-ve ground. But both! So if you change cars, you can be almost certain that you can change over your PE Scorpio Mk. 2 as well. Containing all the components you need, this Electro Spares PE Scorpio Mk. 2 Kit is simply built, using our easyto-follow instructions. Each component is a branded unit by a reputable manufacturer and carries the manu-facturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car.

When your PE Scorpio Mk. 2 is installed, you instantly benefit from all these PE Scorpio Mk. 2 advantages.

- ★ Easier starting from cold ★ Firing even with wet or oiled-up plugs \* Smoother running at high speed ★ Fuel saving ★ More power from your engine
- ★ Longer spark plug life ★ No more contact-breaker burn

Electro Spares prices:

Deluxe Kit only £11.50 inc. VAT and p & p. Ready Made Unit £14.75 inc. VAT and p & p. State 6V or 12V system.

Send SAE now for details and free list.

### FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics'. Superb Hi-Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge). Electro Spares price only £28.50 inc. VAT and p & p.

### GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is —3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100s and 100s of these Kits. Get yours now! Depending on your choice of certain components, the price can vary from £50 to £60 inc. VAT and p & p.

- ★ All components as specified by original authors, and sold separately if you wish.
- ★ Full constructional data book with specification graphs, fault finding guides, etc. 55p plus 4p postage.
- ★ Price List only. Please send S.A.E. (preferably 9 x 4 minimum) for full details.



The Component Centre of the North 288 ECCLESALL RD., SHEFFIELD S11 8PE (C) Tel: Sheffield (0742) 668888

A. Marshall & Son (London) Limited Dept. PW

42 Cricklewood Broadway London NW2 3HD Tel: 01-452 0161

& 85 West Regent Street Glasgow G22 QD Tel: 041-332 4133

Everything you need is in our new catalogue available now price 20p

Trade and export enquiries welcome

### PW TELE TENNIS

As featured in PRACTICAL WIRELESS July - November 15 Also on BBC Nationwide and in the Daily Mail October 2nd 1974.

This exciting new game is now available in kit form. Due to popular demand we are now able to offer a fantastic saving on list prices. Ideal game for whole family. No need to modify your TV set, just plugs in to aerial socket. Parts list as follows:

| Α | Resistor Pack      |   |     | <br>      |       | -27   | £1.00 p.p. 20p                   |
|---|--------------------|---|-----|-----------|-------|-------|----------------------------------|
|   | Potentiometer Pack |   | 44. | <br>***   | ***   | * *** | £1 25 p.p. 20p<br>£3 10 p.p. 20p |
|   |                    |   |     | <br>• • • | • • • | • • • | £14 50 p.p. 20p                  |
| D | Semiconductor Pack | 2 |     | <br>      |       |       | £4.00 p.p. 20p                   |
| Ε | IC Sockets         |   |     | <br>• • • | ***   |       | £1 · 15 p.p. 25p                 |
| F | Transformer        |   | *** | <br>      | 6.8.8 |       | £7 · 50 p.p. 20p                 |
| G | PCB's              |   |     | <br>      |       |       | £4 50 p.p. 20p                   |
|   |                    |   |     | <br>• • • | ***   |       | £7 · 20 p.p. 20p                 |
| Ĺ | UHF Modulator Kit  |   |     | <br>***   |       |       | £7 . 20 p.p. 20p                 |
|   |                    |   |     |           |       |       |                                  |

Special Prices—complete kit (excluding case) £42.00 p.p. 50p Sections A-Fincl.

| CO2 FO - 1  | 20-  | Accombly inch | reuctions  | with comp | lete kit c | r 75p on request.   |
|-------------|------|---------------|------------|-----------|------------|---------------------|
| £23 50 plus | JUP. |               | e, accions | 00.17450  | 10-        | SN7491 £1-10        |
| SN7400      | 16p  | \$N7420       | 6p         | SN7453    | 16p        |                     |
| SN7401      | 16p  | SN7423        | 37p        | SN7454    | 16p        | SN7492 75p          |
| SN7401AN    | 38p  | SN7425        | 37p        | SN7460    | l 6p       | SN7493 65p          |
|             |      | SN7427        | 45p        | SN7470    | 30p        | SN7494 85p          |
| SN7402      | [6p  |               | l6p        | SN7472    | 38p        | SN7495 80p          |
| SN7403      | 16p  | SN7430        |            |           | 44p        | SN7496 £1.00        |
| SN7404      | 24p  | SN7432        | 45p        | SN7473    |            | SN74100 £2-16       |
| SN7405      | 24p  | SN7437        | 35p        | SN7474    | 48p        |                     |
| SN7406      | 45p  | SN7438        | 35p        | SN7475    | 59p        | SN74107 43p         |
|             |      | SN7440        | 16p        | SN7476    | 45p        | SN74118 £1.00       |
| SN7407      | 45p  |               |            | SN7480    | 75p        | SN74119 £1.92       |
| SN7408      | 25p  | SN7441        | 85p        | SN7481    | £1 .25     | SN74121 57p         |
| SN7409      | 33p  | SN 7442       | 85p        |           |            | SN74122 80p         |
| SN7410      | 16p  | SN7445        | £1.59      | SN7482    | 87p        |                     |
|             | 25p  | SN7446        | £2.00      | SN7483    | £1 · 20    | SN74123 <b>72</b> p |
| SN7411      |      | SN7447        | £1.30      | SN7484    | 95p        | SN74141 £1.00       |
| SN7412      | 28p  |               |            | SN7485    | £1 · 58    | SN74150 €1.44       |
| SN7413      | 50p  | SN7448        | £1.50      |           |            | SN74190 £1-95       |
| SN7416      | 45 p | SN7450        | 16p        | SN7486    | 45p        | 31474190 21 75      |
| SN7417      | 30 p | SN7451        | l6p        | SN7490    | 65p        |                     |

## OUR NEW GLASGOW SHOP IS NOW OPEN

Prices correct at August 1974, but all exclusive of V.A.T. Post and Package 20p postage and package charges

| Popular        | Semi-conduc             | ctors          |                        |   |
|----------------|-------------------------|----------------|------------------------|---|
| 2N696          | 22p <sub>i</sub> 2N3707 | 13p AD 142     | 59p BC309              | ļ |
| 2N697          | 16p 2N 3708             | 70p AD143      | 45p BC237<br>45p BC238 | 1 |
| 2N698<br>2N699 | 45p 2N3716              | £1 80 AD162    | 45p BCY70              |   |
| 2N1302         | 10-12 N12771            | 42.20(AD(6) )  | pr BCY71               | 1 |
| 2N 1303        | 19p 2N 3772             | £1.80 AD 162 } | 40p BD 23              |   |

30p BDI 32 30p BDI 35 28p BDI 37 39p BDI 37 39p BDI 39 65p BDI 18 58p BDI 16 72p BFI 16 72p BFI 16 72p BFI 16 72p BFI 18 16p BFI 81 15p BFI 81 15p BFI 81 15p BFI 81 13p BFI 94 13p BFI 95 13p BFI 96 13p BFI 97 13p BFI 97 13p BFI 98 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 99 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 13p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98 14p BFI 98

38p AF124
3 £1-42 AF125
4 27p AF126
5 24p AF127
5 63p AF139
7 42p AF178
1 20p AF178
1 20p AF180
7 34p AF280
8 4p AF280
8 4p AF29
9 2p BC107
£1-24 BC108
£1-46 BC109
49p BC147
49p BC147
49p BC147
49p BC168C
88p BC168B
50p BC168B
50p BC168B
58p BC169C
33p BC169C
33p BC189

2N3703

88p 9C169B 44p 8C169C 33p 8C182 50p 8C182L 52p 8C183 52p 8C183L 42⋅25 BC184L 46p BC124L 56p BC212L 20p BC214L 20p BC214L 20p BC237 24p 40406 26p 40407 19p 40409 21p 40409 22p 40410 24p 40411 11p 40602 25p 40604 60p 40669 75p AC112

21p ACI52V 21p ACI53K 12p ACI76 14p ACI76K 12p ACI87K 9p ACI88K

20p BC2 20p BC2 20p BC2 20p BC2 20p BC2 25p BC2

17p BC258 25p BC259 18p BC300 25p BC301 23p BC307 34p BC308

iip BFX88 25p1
lop BFX89 45p
lop BFY19 62p1
21p BFY51 23p1
09p BFY52 21p1
09p BFY59 75p1
09p BFY90 75p1
09p BFY90 65p
09p CA3020A1-80
13p CA3046 70p
€2-12 CA3048 €2-11
34p CA3089€£1-96
10p CA30900£4-23
09p LM301A 46p 70p TIP2995 68p 70p 76p 20p 25p 1 · 46 1 · 89 1 · 96 2 · 39 1 · 96 1 · 50 1 · 50 1 · 50

46p ZTX500

# ITAIN'S FASTEST SERVICE!

| ALL ITEMS | ARE | BRAND | NFW      | AND  | EIIIIV | GUARANTEED |  |
|-----------|-----|-------|----------|------|--------|------------|--|
|           |     |       | 14 12 44 | MILL | PULLY  | GUARANTEED |  |

|                                     | THE DIVINE                                      | HEN AND FO                    | JELY GUARAF                  | ITEED .                            |
|-------------------------------------|-------------------------------------------------|-------------------------------|------------------------------|------------------------------------|
| AA119 7p                            |                                                 | MJ802/MJ4502                  | ZTX302 24p                   | ( 2N6027 (D13T1)                   |
| AC107 68p<br>AC126 25p              | BDY20 96p<br>BF115 36p                          | £7·65<br>MJ900 £1·88          | ZTX303 15p                   | 580                                |
| AC128 22p                           | BF167 29p                                       | MJ900 £1.88<br>MJ1000 £1.58   |                              |                                    |
| AC128/AC176                         | BF180 50p                                       | MJ4502 £4 00                  |                              | 3N140 92p<br>3N141 82p             |
| AC151 26p                           | BF194 18p                                       | MLM309K £2 08                 | ZTX500 20p                   | 3N152 92p                          |
| AC152 40p                           | BF195 18p<br>BF196 18p                          | MPF102 49p                    | ZTX501 22p                   | 741/T05 50p                        |
| AC153 42p                           | BF200 46p                                       | MPF103 (2N5457)<br>45p        | ZTX502 25p                   | 741/8DIL 34p                       |
| AC176 29p                           | BF254 17p                                       | MPF104 (2N5458)               | ZTX503 20p<br>ZTX504 60p     |                                    |
| AC153/176K 71p                      | BF255 17p                                       | 61 p                          | 1N914 4p                     | 748/T05 41p<br>3015F £1·40         |
| AC187K 40p<br>AC188K 36p            | BFX29 39p<br>BFX84 34p                          | MPF105 (2N5459)               | 1N3754 18p                   | 3015G £2⋅00                        |
| AC187/188K 76p                      | BFX85 41 p                                      | NE555V 78p                    | 1N4001 4p                    | 7400 24p                           |
| ACY17 41p                           | BFX86 35p                                       | NKT0033 92p                   | 1N4002 4p<br>1N4003 5p       | 7401 24p<br>7402 24p               |
| ACY18 28p<br>ACY19 32p              | BFX87 33p                                       | NKT211 32p                    | 1N4004 7p                    | 7403 <b>24p</b>                    |
| ACY20 26p                           | BFX88 30p<br>BFY50 33p                          | NKT212 32p                    | 1N4005 7p                    | 7404 30p                           |
| ACY21 30p                           | BFY51 30p                                       | NKT271 22p<br>NKT274 22p      | 1N4006 8p                    | 7405 39p                           |
| ACY22 10p                           | BFY52 31p                                       | NKT274 22p<br>NKT275 29p      | 1N4007 9p<br>1N4148 4p       | 7408 30p<br>7409 30p               |
| AD140 80p                           | BFY53 28p                                       | NKT279A 36p                   | 1N5400 16p                   | 7410 <b>24p</b>                    |
| AD149 70p<br>AD161 64p              | BFY90 £1·35<br>BPX29 £1·62                      | NKT281 22p                    | 1N5404 22p                   | 7413 <b>36</b> p                   |
| AD162 64p                           | BR100 22p                                       | NKT401 88p<br>NKT402 96p      | 1N5408 33p                   | 7420 <b>24</b> p                   |
| AD161/162 £1 · 28                   | BRY39 66p                                       | NKT403 82p                    | 1S44 4p                      | 7425 <b>36p</b><br>7430 <b>24p</b> |
| AF106 40p                           | BSX19 26p<br>BSX20 25p                          | NKT404 78p                    | 1S920 10p<br>2N404 58p       | 7440 29p                           |
| AF114 46p                           | BSX20 25p<br>BSY27 27p                          | NKT405 £1.00                  | 2N697 26p                    | 7442 £1 · 39                       |
| AF115 40p<br>AF116 58p              | B5 195A 12p                                     | NKT406 79p<br>NTGD10 50p      | 2N706 <b>25</b> p            | 7443 £1 · 74                       |
| AF117 40p                           | BT106 £1 26                                     | OA10 (NTGD10)                 | 2N706A 27p                   | 7444 £1·74<br>7445 £2·47           |
| AF124 38p                           | BTY79/400R                                      | 50p                           | 2N708 20p<br>2N914 25p       | 7445 £1 74                         |
| AF125 38p                           | £2·52<br>BY100 20p                              | OA47 10p                      | 2N914 25p<br>2N918 54p       | 7447 £1·50                         |
| AF126 39p<br>AF139 64p              | BY127 12n                                       | OA79 6p                       | 2N930 25p                    | 7450 24p                           |
| AF186 30p                           | BZY88C3V3 to                                    | OA90 6p<br>OA91 6p            | 2N1303 61p                   | 7451 <b>24p</b><br>7453 <b>24p</b> |
| AF239 69p                           | BZY88C30V 10p<br>BZX61C7V5 to                   | OA95 9p                       | 2N1305 65p<br>2N1307 69p     | 7454 24p                           |
| AF279 74p                           | BZX61C30V 28p                                   | UA200 8p                      | 2N1309 73p                   | 7460 24p                           |
| ASY26 70p<br>ASY27 72p              | BZY93C9VI 80p                                   | OA202 8p<br>OC25 72p          | 2N1613 26p                   | 7470 54p<br>7472 36p               |
| BA138 35p                           | BZY93C12V 80p<br>BZY93C15V 80p                  | OC25 72p<br>OC28 87p          | 2N1711 30p                   | 7473 54p                           |
| BB103 27p                           | BZY93C15V 80p<br>BZY93C18V 80p                  | OC29 88D                      | 2N1893 46P<br>2N2218 34P     | 7474 55p                           |
| BB104 50p                           | CA3005 £1.35                                    | OC35 78p                      | 2N2218A 48p                  | 7475 54p                           |
| BB105 37p<br>BC107 16n              | CA3011 83p                                      | OC36 78p<br>OC41 57p          | 2N2219 43P                   | 7476 54p 7480 80p                  |
| BC107 16p<br>BC107/BC177            | CA3013 £1-17                                    | OC44 200                      | 2N2219A 50P                  | 7482 £1 · 04                       |
| 46p                                 | CA3014 £1·37<br>CA3018 72p                      | OC45 20p<br>OC71 20p          | 2N2368 26p<br>2N2369 23p     | 7483 £1 · 58                       |
| BC108 14p                           | CA3018A 83p                                     |                               | 2N2369A 25p                  | 7486 39p<br>7490 84p               |
| BC108/BC178<br>49p                  | CA3020 £1.39                                    | OC72 20p<br>OC75 20p          | 2N2484 48p                   | 7491A £1.54                        |
| BC109 16p                           | CA3028A 79p                                     | OC76 46p                      | 2N2646 58p                   | 7492 £1.02                         |
| BC109/BC179                         | CA3035 £1.37<br>CA3043 £1.57                    | OC77 62p                      | 2N2904 32p                   | 7493 <b>90</b> p                   |
| PO4000 44p                          | CA3046 70p                                      | OC81 32p                      | 2N2904A 35P<br>2N2905 38P    | 7494 £1·36<br>7495 96p             |
| BC109C 18p<br>BC140 52p             | CA3048 £2 11                                    | OC81D 29p<br>OC83 32p         | 2N2905A 40p                  | 7496 £1.78                         |
| BC147 16p                           | CA3052 £1·62<br>CA3053 47p                      | OC84 32p                      | 2N2924 23p                   | 74100 £1 · 97                      |
| BC148 16p                           | CA3065 £1.28                                    | OC170 44p                     | 2N2925 27p<br>2N2926 10p     | 74107 <b>62</b> p 74121 51p        |
| BC149 16p<br>BC157 17p              | CA3088E £1 24                                   | OC171 47p<br>OCP71M 42p       | 2N2926 10P<br>2N3053 30P     | 74121 51p                          |
| BC157 17p<br>BC158 15p              | CA3089E £1 94                                   | OCP71M 42p<br>ORP12 50p       | 2N3054 60p                   | 74150 £4.02                        |
| BC159 17D                           | CA3090AQ<br>£4·20                               | PM7A2 £1.98                   | 2N3055 65p                   | 74151 £1.32                        |
| BC147/157 33p                       | CA3123E £1 ·46                                  | PM7A6 £2.62                   | 2N3228 88p<br>2N3391 A 40p   | 74153 £1.62<br>74154 £2.40         |
| BC148/158 31p<br>BC149/159 33p      | CR1/051C 65p                                    | PN70 13p<br>PN71 13p          | 2N3525 £1.04                 | 74155 £1 86                        |
| BC167 15p                           | CR1401 C 86p                                    | PN71 13p<br>PN107 9p          | 2N3702 14p                   | 74156 £1 · 86                      |
| BC168 14p                           | CZ6 17p<br>D10 (NTGD10)                         | PN108 9p                      | 2N3703 14p                   | 74190 £2·16                        |
| BC169 14p                           | 50p                                             | PN109 9p                      | 2N3704 14p<br>2N3705 14p     | 74191 £2·16<br>74192 £2·09         |
| BC169C 15p<br>BC177 36p             | IR2160 82p                                      | PN3819 (2N3819)<br>24p        | 2N3705 14p<br>2N3706 14p     | 74193 £2.09                        |
| BC177 36p<br>BC178 35p<br>BC179 28p | IRC20 60p                                       | SL103A 54p                    | 2N3707 14p                   | 74196 £1 80                        |
|                                     | JA424 £2·08<br>LD30A 29p                        | SL403A                        | 2N3708 14p<br>2N3709 14p     | 74197 £1 · 80 40250 580            |
| BC182 15p<br>BC182L 15p             | MC1303L £1-59                                   | (Rectifier) 71p<br>SL803A 94p | 2N3709 14p<br>2N3710 14p     | 40250 58p<br>40310 56p             |
| BC183 14p                           | MC1305P £1.99                                   | SL803A 94p<br>ST2 22p         | 2N3711 14p                   | 40312 <b>56</b> p i                |
| BC183L 14p                          | MC1307P £1.38                                   | T2700D £1.01                  | 2N3773 £3 20                 | 40360 40p                          |
| BC184 16p                           | MC1310P £2·80<br>MC1330P 88p                    | T2800D 90p                    | 2N3819 35p                   | 40361 38p<br>40362 40p             |
| BC184L 13p                          | MC1352P 90p                                     | T2800M £1.33<br>TAD100 £1.97  | 2N3866 82p<br>2N3904 20p     | 40406 44p                          |
| BC212 19p<br>BC212L 19p             | MC1466L £3 50                                   | TAD100 £1.97<br>TAD110 £1.97  | 2N3906 24p                   | 40407 <b>34p</b>                   |
| BC238 14p                           | MC1468L £2·41<br>MC4024P £1·84                  | TBA810S £1.32                 | 2N4058 15p                   | 40408 50p -                        |
| BC238/308 28p                       | MC4024P £1 · 84<br>MC4044P £1 · 84              | TIL112 £2.00                  | 2N4060 16p                   | 40409 52p<br>40410 52p             |
| BC257 16p<br>BC258 15p              | MFC4000B 59p                                    | TIL209 30p<br>TIS43 36p       | 2N4061 16p<br>2N4062 16p     | 40430 £1 01                        |
| BC259 16p                           | MFC6030 £1 21                                   | TR1 220                       | 2N4062 16p<br>2N4441 70p     | 40468A 44p                         |
| BC307 17p                           | MFC6040 £1-15                                   | VA1039 15p                    | 2N4444 £2·20                 | 40575 £1 ·13<br>40576 £1 ·31       |
| BC308 14p                           | MFC8010 £1 44<br>MFC8040 £1 24<br>MFC9020 £1 56 | VA1040 15p<br>VA1066s 15p     | 2N4871 48p                   | 40602 46p                          |
| BCY70 22p<br>BCY71 33p              | MFC9020 £1 56                                   | VA1066s 15p<br>VA1077 17p     | 2N4990 54p<br>2N4991 46p     | 40673 52p                          |
| BCY71 33p<br>BCY72 19p              | MJE371 94p                                      | W005 25p                      | 2N4991 46p<br>2N5245 68p     | li                                 |
| BD241 A 54p                         | MJE520 70p<br>MJE521 82p                        | W01 26p                       | 2N5457                       | 1                                  |
| BD242A 60p                          |                                                 | W02 26p<br>W04 27p            | (MPF103) 45p                 | 9                                  |
| BD243A 72p<br>BD244A 78p            | MJE3055 87p                                     | W06 32p                       | 2N5458<br>(MPF104) 61p       | li                                 |
| BD124 £1 00                         | MJ480 £1 15<br>MJ481 £1 45                      | W08 40p                       | 2N5459                       | e                                  |
| BD131 24p                           | MJ491 £1 84                                     | ZTX107 14p<br>ZTX108 11p      | (MPF105) 45p<br>2N5756 £1.00 | to                                 |
| BD132 32p                           | MJ802 £3.65                                     | ZTX300 19p                    | 2N5756 £1.00<br>2N5777 54p   | ď                                  |
|                                     |                                                 | •                             |                              | l b                                |

| COS | MAC | 10 | CIC |
|-----|-----|----|-----|
|     |     |    |     |

| MULLARD MODULES                                                  |         |
|------------------------------------------------------------------|---------|
| LP1185 FM IF Module<br>LP1186 FM Tuner Module with Diode Tuning  | £4·69   |
| LF1400 High penormance stereo decoder module using               | £6·00   |
| frequency multiplex system ORDER AS TYPE NO. + "MULLARD MODULES" | £6 · 08 |
| REQUEST REPLICATION CIRCUIT FREE WITH MODULE                     |         |
| N.B. SEE BELOW FOR SPECIAL DISCOUNT ALLOW                        | ANCE    |

INTEGRATED CIRCUIT TEST CLIP
Indispensable aid to the engineer working with DIL IC's. For use
with both 14 & 16 lead packages. Clips on to device under test.
Can be used as a removal tool. Accidental shorting of IC leads
eliminated & Capacitance effects at HF are negligible.
£1.95 each

15p

15p

INTEGRATED CIRCUIT PINS
The lowest priced IC mounting available. Pin Sockets come in a reel, just drill your board at required centres, drop in pins and solder, break off frame holders—your DIL mounting is complete! es

| П | Sockets | 1,000 piece |
|---|---------|-------------|
| П | Sockets | 100 Pieces  |

| NE555V               | TIMER I.C   |          |                    |      |     |
|----------------------|-------------|----------|--------------------|------|-----|
| As used<br>Wireless. | in magazine | articles | inclu <b>din</b> g | July |     |
|                      | ID CIRCUITS |          |                    |      | 78p |

CA3123E Superhet System with RF Amp. IF Amp, Mixer, OSC. g.c. Detector and Voltage Regulator, Ideal for car radio applications.

### APPLICATION SHEET & DATA

### SEVEN WATT AUDIO AMP. I.C. TBA810S Featuring thermal protection. Ideal for car radio applications. APPLICATION SHEET & DATA

PACKAGED CIRCUITS The complete range of Newmarket modules currently being featured in magazine articles. See catalogue for details.

### ANTEX SOLDERING EQUIPMENT

X25/240v 25w iron. £2·25 SK2/240v 15w kit £3·60 MLX 12v 25w kit, essential for car tool kit £2·85 X50TC 240v 50w temperature controlled £8·50

### ARROLL

SPECIALISE IN EDUCATIONAL AND GOVERNMENT ORDERS

-See catalogue for further details.

### ARROLL

### SERVICE PLUS

10% DISCOUNT OVER £4. NO POSTAGE AND PACKING. TOP QUALITY PRODUCTS ALWAYS BY RETURN

### COMPREHENSIVE CAT. \*\*\*

Important Notice "All prices a exclusive of V.A.T. Please add V.A.T. to the final total of your order after deducting any discount which may be due" VAT. REG. 246062672

## DEPT. PW 14, 7 COPTFOLD ROAD BRENTWOOD ESSEX CM14 4BN

80 Chedie Aron Deorgiology Book O restrict to the Co Address REGISTRATION No. 1062424

## Practical Wireless Classified Advertisements

Classified advertisements 12p per word (minimum 12 words). Box No. 30p. Semi-display setting £10 per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd."

### **Receivers and Components**



### CRATA F.M. TUNER

| ack 1. | Resistors          | 36p     |
|--------|--------------------|---------|
| 2.     | Capacitors         | £1 · 70 |
| 3.     | Semi Conductors    | £5·85   |
| 4.     |                    | £7·00   |
| 5.     | Chassis & hardware | £5·00   |
|        | 7. A.M. Parts      | £3 65   |

| TEXAN 20 + 20W A   | mp.     |
|--------------------|---------|
| k 1. Resistors     | 80p     |
| 2/3. Capacitors    | £3·65   |
| 5. Switches        | £1 · 00 |
| 6. Potentiometers  | £1 · 45 |
| 7. Semi Conductors | £8·25   |
| 8. Transformer     | £6·95   |
| 9. Printed Circuit | £2·50   |
| 10. Chassis        | £3.00   |
| 11. Cables         | 40p     |
| II. Cabies         |         |

V.A.T. EXTRA add 20p p/p etc. except transformer

S.A.E. for lists

TELERADIO ELECTRONICS,
325-7 Fore Street, Edmonton,
London N9 OPE 01-807-376 01-807-3719

Closed Thursdays

### ALLARD ELECTRONICS

| Branded Components—Full Specification |       |           |        |            |                   |
|---------------------------------------|-------|-----------|--------|------------|-------------------|
| Branded                               | Cor   | nponents- | -Full  | Specifica  |                   |
| TRANSISTO                             | 90    | SCR's     | Price  | DIODES     | Price             |
|                                       | Price | 2021 2    | ea.    |            | ea.               |
|                                       | ea.   | CRS1/05   | 0.30   | 1N914      | 0.05              |
| AC125/6/7/8                           | 0.15  | CRS1/10   | 0.58   | 1N4001/2/  | 3/40-06           |
|                                       | 0.49  | CRS1/20   | 0,60   | 1N 4005/6/ | 7/8 <b>0-08 [</b> |
| AD140/149                             | 0.37  |           | 0.45   |            | ·                 |
| AD161/162                             | 0.15  |           | 0.55   |            |                   |
| AF114/5/6/7                           | 0.35  |           | 0.98   | FRE        | E                 |
| AF118                                 |       |           |        | INTRODU    | CTORY             |
| BC107/8/9                             | 0.09  | CRS16/200 |        |            | ER.               |
| BC147/8/9                             | 0.10  |           |        | 25 Met     | res               |
| BC182/3/4                             | 0.10  |           | 1 00   | Connectin  |                   |
| BC212/3/4                             | 0.11  |           | 1 00   |            | w order           |
| BCY70/71/7                            | 20.19 | TBA800    | 1.35   | (5 × 5     | m in              |
| BD131/132                             | 0.95  | free data | _      | 770779     | colours)          |
| BF194/5/6                             | 0.13  | SPECIA    | L L    | Various    | 00104157          |
| BFY50/51/5                            | 2/03  | OFFE      | R I    |            |                   |
|                                       | 0.16  |           | 4      |            |                   |
| BY127                                 | 0.25  |           | I/C    | FULL F     | LANGE             |
| MJE370                                | 0.62  | CI Troo C | ircuit | SN7400     | series.           |
| MJE371                                | 0.78  |           |        | Veroboar   |                   |
| OC28                                  |       | ZENERS    |        |            | tc. etc.          |
| OC85                                  |       | BZY88     | 0.10   | Send for   | Free List         |
| OC83                                  | 0.20  |           | es     | S.A.E.     | nlease            |
| T1L209                                | 0.22  |           |        | i          | prouse            |
| 2N2218                                | 0.19  |           | 0.17   |            |                   |
| 2N2906                                | 0.13  |           | - 17   | 74-7       |                   |
| 2N2926 all                            | 0.11  | BRII      | OGE R  | ectifier   | 5                 |
| 2N3053                                | 0.15  |           |        | e each     |                   |
| 2N 3054                               | 0.50  |           |        | A 4A       | 6A                |
| 2N3055                                | 0.44  |           |        | 34 —       | 0.84              |
| 2N3702/3/4                            | 0.10  |           |        | 39 0.54    | 0.69              |
| 03T9705 (6                            | 0.16  | 000 7 0   | .97 0. | 44 0.58    | 0.79              |

2N3702/3/4 0·10 100 0·24 0·39 0·54 0·69 2N3705/6 0·10 2009 0·27 0·44 0·58 0·79 2N3707/8/9 0·10 400v — 0·49 0·64 0·89 2N3819 0·29 600v 0·29 — 0·74 — 299/301 BALLARDS LANE LONDON M12 8NP MAIL ORDER ONLY Telephone enquiries: 01-445 5188 Cash with order. Add V.A.T. Orders under £2 plus 12p P, & P,

MULLARD 10W RMS AMPLIFIER MODULES. Absolutely complete. £2.65 inclusive. LTE, 46 Minehead Road, South Harrow, Middx.

### BETA DEVICES

| FOR BETTER PRICES                                               |                                            |                                                                            |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| TRAMETORI<br>AC187/188<br>PR. 0-40<br>BC107/<br>BC108 0-09      | 1 0 s                                      | 1001/8 & RECT.<br>1N914 0.04<br>1N4148 0.04<br>BY127 0.14<br>1N4001/2 0.05 |  |  |  |
| BC109C 0.11<br>BC147/8/9 0.10<br>BCY70/71/720-18<br>BFX86/87/88 | 747C D.I.L. 0.85                           | 1N4003/4/5 0.06<br>1N4006/7 0.08<br>BRIDGES<br>WO1 1A<br>100V 0.20         |  |  |  |
| BFY50 0·18<br>BFY51/52 0·19<br>0C28 0·48<br>0C35 0·88           | TBA 800 £1.50. Data free with every order. | WO6 1A<br>600V 0.80<br>ZENERS<br>BZY88 3.3-                                |  |  |  |
| 2N2646 0-86<br>2N3053 0-14<br>2N3055 0-86<br>2N8442 \$1-46      | 8-Pin 0·12<br>3 14-Pin 0·12<br>16-Pin 0·14 | 33V 5% 0.09<br>1 Watt 6.8-<br>200V 5% 0.15                                 |  |  |  |
| 2N3773                                                          | All prices                                 | 209—Red 0.17<br>L.E.D. Clip 0.02                                           |  |  |  |

C.W.O. PLUS P.P. 10p TO BETA DEVICES, 263 THE RIDGEWAY, ENFIELD, MIDDX.

NEW MODEL V.H.F. KIT MK2
Our latest kit. Improved design and performance plus extra amplifier stage, receives aircraft, amateurs, mobile, radio 2, 3, 4, etc., this novei title set will give you endless hours of pleasure and can be built in one evening. Powered by 9 volt battery, complete with easy to follow instruction and built in jack socket for use with earphones or emplifier.

amplifier. Only £4:00 +p&p 20p U.K. only. Illustrated catalogue of selected kits and components, 20p inc. VAT, P&P free.

ALL PRICES PLUS 8% VAT
Galleon Trading Co,
12, Burrs Way,
Corringham,
Stanford-Le-Hope,
Essex. SS17 9DE

250mA. Cartridge Fuses 1½" 90p per 100.
Unused Carbon Resistors. 100 different 45p.
Unused W/W Resistors. 100 assorted £1-10.
100 Capacitor Mixture, 85p.

100 Capacitor Mixture, 85p.

Ib. 8 to 2BA. Nut & Bolt mixture 28p. Brass 32p.
20 Assorted Potentiometers Unused £1·15.
Ex Government Standard Jack Plugs 4 for 50p 6 volt 36 or 18 watt Bulbs. SBC, 70p per doz.
Earphones Ex Govt. 70p per pair.
New Meter or Cassette Cases, stiff imitation leather 6½" x 3½" x 4". Only 55p.
Ex T.V. Speakers. Perfect. 3Ω eliptical 55p.
0·300mA Meters New. £1·75p.
7" Tape Spools 16p each.
All postage included in price

All postage included in price

SOUND SYSTEMS OF SUFFOLK 676 Foxhall Rd., Ipswich, Suffolk IP3 8NQ

BRAND NEW COMPONENTS by return. Electrolytics, 15V, 25V, 50V 0·47, 1, 2·2, 4·7, 10 Mfds.—4p. 22, 47—4¹2 p (50V—5p). 100—5¹2 p (50V—7p). 220—6p (50V—9p). Subminiature beadtype tantalums 0·1/35V, 0·22/35V, 0·47/35V, 1/35V, 2·2/35V, 4·7/35V, 10/16V, 22/16V, 47/6V, 100/3V—9p. Mylar Film 100V 0·001, 0·002, 0·005, 0·01, 0·02—2¹2 p. 0·04, 0·05—3p. Mullard Tubular Polyester 400V E6 series, 0·001-0·022—3p. 0·033-0·1—4p. Mullard miniature C333 ceramics E.12 series 2% 1·8pf.·47pf.—2¹2 p. 56pf.·330pf.—3p. Polystyrene 63V. E12 series 10pf.·1,000pf.—2¹2 p. 1,200pf.·10,000pf.—3¹2 p. Miniature Highstab Carbon Film Resistors ¹3 W E12 series 5% 1Ω·10MΩ (10% over 1 Megohm)—1p. Postage 8p. Prices VAT inclusive. The C.R. Supply Co., 127 Chesterfield Road, Sheffield S8.

NEW COMPONENTS Post Free, 8% VAT included. 2N3702, 2N3704, 12p. Guest UPM 050 ½ W Carbon Film resistors lp each. Seven segment common anode LED displays, 0.3in DL707 £2.19, 0.6in DL747 £2.89. Siemens B32540 250V Polycarbonate 0.01, 0.015, 0.022, 0.033, 0.047, 4p; 0.068, 0.14F, 5p. Triac TAG 250 400V/8A, 75p. D32 diac 25p. 300W Light Dimmer, £2.75. Delivery from stock or your money returned. GREENBANK ELECTRONICS, 94 New Chester Road, Wirral, Merseyside L62 5AG.

### Precision Polycarbonate Capacitors rich Stability - Extremely Low Leakage

| All High planmes                                                                                                             | - Preference                                 | ., 2011 -               |                             |                            |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------|-----------------------------|----------------------------|
| All High stands 440 V AC (±10%) 0-1µF (1‡"ׇ") 50p 0-22µF (1‡"ׇ") 52p 0-25µF (1‡"ׇ") 62p 0-47µF (1‡"ׇ") 71p 0-5µF (1‡"ׇ") 75p | 63V Ras<br>0·47μF<br>1·0μF<br>2·2μF<br>4·7μF |                         | ±2% 46p 56p 65p £1.05 £1.29 | ±5% 36p 46p 55p 85p \$1.09 |
| 0·68μF (2"ׇ") 80p<br>1·0μF (2"ׇ") 91p<br>2·0μF (2"×1") £1·22                                                                 | 10·0μF                                       | £1 64<br>£2 00<br>£2 75 | £1.80<br>£2.15              | £1.40<br>£1.90             |
| TANTALUM BEAD 0<br>0·1, 0·22, 0·47, 1·0, 2·2,<br>10·0μF at 16V/20V or<br>33·0μF at 6V or 10V; 47                             | APACITO<br>4.7, 6.8μ.                        | Fat 15 Y                | 7/10V O                     | r 16V;                     |
| ATT, at 100 each, 10                                                                                                         | for 95p, 5                                   | 0 for £4                |                             |                            |

ALL at 109 each, 10 107 509, 10 107

TRANSISTORS: | BC183/183L 11p | BFY50

BC107/8/9 9p | BC184/184L 12p | BFY51

BC114 12p | BC212/212L 14p | BFY51

BC184/7/8/9 10p | BC547/558A 12p | AF178

BC185/7/8 12p | BF194 12p | OC71

BC182/182L 11p | BF197 13p | 2N3055 

MARCO TRADING (Dept. WI),
The Old School, Edstaston, Nr. Wem. Shroyshire.
Tel: Whixall 464/465 (STD 094 872)
(Proprs.: Minicost Trading Ltd.)

### INCOMPARABLE V.H.F. KIT

CVZ—unique triple-purpose (Converter, Receiver, Tuner—Feeder) kit for the amateur enthusiast. Fantastic transistorised performance, World Wide Sales. Complete kit of top grade parts covers 80-180 mHZ with easy build diagrams only £5 direct from makers or S.A.E., for free literature.

JOHNSONS (RADIO) Est. 1943 SHAW ST., WORCESTER WRI 3QQ.

COMPONENTS GALORE. Pack of 500 mixed components manufacturers surplus plus once used. Pack includes resistors, carbon and W.W., capacitors various, transistors, diodes, trimmers, potentiometers etc. Send £1+10p p&p. C.W.O. To: Caledonian Components, Strathore Road, Thornton, Fife.

MULLARD UNIVERSAL AUDIO PRE-AMPLIFIER ready built and tested, £9·70. For complete data send SAE to Quantec, Mile Road, Widdrington, Morpeth, Northumberland.

### Service Sheets

SERVICE SHEETS for over 6,000 models of Televisions, Radios, Transistors, Stereo, Tape Recorders, Record Players, etc., at only 30p plus SAE with free Fault-Finding Guide. Over 50,000 sheets in stock for 10,000 models. SAE enquiries. Catalogue 20p plus SAE. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 429066.

SERVICE SHEETS, Radio, TV etc., 8,000 models. Catalogue 20p. S.A.E. enquiries. Telray, 11 Maudiand Bank, Preston.

BELL'S TELEVISION SERVICES for Service Sheets, Manuals, Books on Radios, TVs, etc. Service Sheets 40p plus s.a.e. Free booklists on request. Back issues of PW, PE, EE, TV available 25p plus 7p post. S.a.e. with enquiries.—B.T.S. (Mail Order Dept.), 190 Kings Road, Harrogate, Yorks. Telephone (0423) 55885.

### For Sale

NELSON-JONES Stereo Tuner built from Integrex kit. Push button vari-cap tuning, Portus and Haywood decoder. Performs to specification. £44. I. G. Bowman, 35 Park Hill Road, Torquay S. Devon Torquay, S. Devon.

MICROPHONES: AKG D109, £12.65; AKG D202EI, £43.45; AKG D190C, £18.70; AKG D190E, £20; AKG D224 £55; Sennheiser MD211N, £49.50; Sennheiser MD413N, £29.70. All brand new and boxed. Send CWO to J. J. Francis, (Wood Green) Ltd., Manwood House, Matching Green, Harlow, Essex. Tel: Matching 476.

sound to light convertors 3-channel, 1.5 kW £18, 3 kW £25, single channel £9; Sequencer £93; Strobes from £19; Projectors from £24; etc. Call or mail Aarvak Electronics, 98A West Green Road (Side Door), London N15 5NS. 01-800 8656.

VALVES, VALVES & MORE VALVES. Large stocks 1930-1974, many obsolete. Also available many types of transistors and styli. Price lists available, 15p. Cox Radio, The Parade, East Wittering, Sussex. West Wittering 2023.

SEEN MY CAT? 5,000 items. Mechanical & Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PW, NEW MILLS, Stockport.

### Wanted

TOP PRICES PAID for NEW VALVES and TRANSISTORS popular T.V. and Radio types.

KENSINGTON SUPPLIES (C). 367 Kensington Street, Bradford 8, Yorkshire.

EARLY WIRELESS receivers, components and magazines, details to Johnson Raffles, Haverbreaks, Lancas-

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S. 55 Worcester return. WALTON'S. Street, Wolverhampton.

EARLY WIRELESS components, valves, magazines, please contact C. Sawyer, 210 Gordon Avenue, Camberley, Telephone 0276 29460.

WANTED. Valve preamplifier (Williamson or Mullard 512 type). Details to Hughes, "Brooklands", Hall Bank Drive, Bingley, West Yorks. BD16 4BZ.

AVO. 7 & 8 any condition. Any quantity. Huggett's, 2 Pawsons Road, W.

SONY TR8460 or Heathkit GR98, also Standard SR4555F. In good working order, Box No. 120.

### Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8JZ.

### Aerials



IMPERIAL TRAINING AND SETTING THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SE

J. & A. TWEEDY LTD. Incorporating R. Baines Prices include VAT and Postage
Multibeams: MBM 30 £5-20, MBM 46 £8-35,
MBM 70 £14-25. PBM 12 £4-05, PBM 18 £5-15, Log-Parabeams: PBM 12 £4.65, PBM 18 £5.15, Log-periodic £7.20. Stereobeams: SBM 1 £2.65, SBM 2 £3.66, SBM 3 £5.30, SBM 4 £5.80, SBM 6 £8.75. Masthead Amplifiers UHF or FM VHF £10.00, Setback £5.50. We are stockists of AMTRON KITS and BIB ACCESSORIES. VHF Co-ax \$p/m, Low Loss 12p/m. Open Tuesday to Saturday 0900-1730. 79 Chatsworth Road, Chesterfield \$40 2AP.

### Situations Vacant

Jobs galore? Tens of thousands of Jobs galore? Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! Pay prospects? £3500 + p.a.

You know you can rely on us as we are the only computer school recognised by the Government backed National Computing Centre.

After training, our executive appointments bureau—one of the world's leaders of its kind—introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.

**London Computer Operators** Training Centre

Y19, Oxford Hse., 9-15 Oxford St. W1. Tel: 01-734 2874

### Ladders

**LADDERS**, timber and aluminium. Tel: Telford 586644 for brochure.

### **Books and Publications**

UFO CHARTS: Wave Prediction 54p; Daily Flight Pattern, 50p; Map, 50p; TV UFO Detection, 2 Optical Circuits; 63p; Propulsion Theory, 55p; "Anti-Gravity", 55p. Circuits: Transistor Optical Detector, 66p; Radiation/Optical, 44p; Microdetectors, memory, auto-record, 80p. Sighting Recorder, 55p. R. & E. Highlands, Needham, Suffolk.

## lechnical Books

| Handbook of Tested Transistor Circuits                                          | £0-40   |
|---------------------------------------------------------------------------------|---------|
| Audio Amplitiers                                                                | £0.53   |
| Boys Book of Crystal Sets & Simple Circuits                                     | £0.25   |
| Lelevision Timehase Circuite                                                    | 64.00   |
| now to Solve Solid State Circuit Troubles.                                      | £1.75   |
| now to get the best out of your Tabe Recorder                                   | £1 50   |
| Modern Electronic Troubleshooting                                               | £1.30   |
| Jack Darr's Service Clinic                                                      | £1.0E   |
| Transistor Circuits for Modern Test Equipment                                   | 60.60   |
| 130 & Electr Colour Codes and Data Chart                                        | CO 4E   |
| Handbk of Transistor Equiv and Substitutes                                      | 60.40   |
| TI FI FA & Disco Amplitier Design Hadak                                         | CO-75   |
| nacio Servicino Problems                                                        | ഹ ഹ     |
| Electronic Circuits for the Amat Photographer                                   | £0.60   |
| Handbook of Simple Transistor Circuits                                          | £0-35   |
| How to build Solid State Audio Circuits                                         | . £1-75 |
| Sound and Loudspeaker Manual                                                    | . £0-50 |
| TV Technicians Bench Manual                                                     | £2-50   |
| Radio Amateur Operator's Handbook                                               | . £0.70 |
| Television Servicing Vol. No. 1                                                 | £0-85   |
| Television Servicing Vol. No. 2.                                                | - £1-10 |
| Television Servicing Vol. No. 3.                                                | . £0-60 |
| Television Servicing Vol. No. 4.                                                | .£0-85  |
| Radio Technicians Bench Manual                                                  | £3-00   |
| Servicing Transistor Radio Receivers.  1st Book of Hi Fi Loudspeaker Enclosures | .£0-75  |
| 2nd Book of Hi Fi Loudspeaker Enclosures                                        | . £0,60 |
| Manual of Electronic Circuits for the Home                                      | . £0-60 |
| Modern Crystal Set Circuits for Beginners.                                      | . £0-50 |
| Electronic Novelties for the Motorist.                                          | .10-35  |
| 2nd Book of Transistor Equiv. & Substitutes                                     | 10-50   |
| Handbook of Electronic Musical Novelties.                                       | . EU-95 |
| Transistorised Novelties for Hi Fi Enthusiast                                   | £0-50   |
| Fault Location Exercises in Rad.& TV Vol.1                                      | .EU-35  |
| Fault Location Exercises in Rad.& TV Vol.2                                      | £0-80   |
| COIOUT I V Picture Faults                                                       | 00.50   |
| Practical Transistor Novelty Circuits                                           | EQ 40   |
| DOVS DOOK Of Practical Radio & Electronics                                      | CO CO   |
| naulo Receiver Construction using ICs & Tennels                                 | EU EU   |
| ics a Transistor Gadgets Construction Handbik                                   | £0-B0   |
| Integrated Circuits Equiv. & Substitutes Hisk.                                  | 50.75   |

FREE!\*\*\*\*\*\*\*\*\*\*\*\*\*\* A 'Resistor Colour Code Disc Calculator' (Invaluable to the keen radio constructor!)

OFFERED FREE ON REQUEST FOR ORDERS £3 AND OVER \$ PLEASE ADD 10% FOR POSTAGE & PACKING #

### RADIO BOOK SERVICE 40 Elwill Way. Beckenham BR3 2RZ

### Miscellaneous



MINI ACCUMULATORS 2 volt MULTI - USE Sealed Lead Acid Re-chargeable Cells. Size L450—1-4" x 1-1" x -44", 3 for £1-50 inc. P. & P. Size GA2--1-7" x 1-3" x -5". 3 for £1-95 inc. P. & P. GARFIELDS, 269 Rye Lane, London, S.E.15

### **NEW YEAR BONANZA!**

NEW YEAR BONANZA!

B.B. SUPPLIES offer:—
LEVER key switch, 4-pole, lock-off-lock, in black plastic stackable case app. 120mm x 120mm x 25mm. Brand new 75p PUSH button switching unit, 3 two-pole c/o units, one cancels others, room for one more unit. App. 75mm x 60mm x 35mm. Brand new (wired and numbered) 50p RELAY, 24 volt, 3600 ohms, 4 c/o contacts. Size: 40mm x 33mm x 15mm (wired and covered). Brand new 50p AMP fitting, 6 volt—contained in hammer finished, grey steel box on wood plinth. Ideal case for small projects. Sixe app. 75mm x 75mm x 75mm x 75mm x 75mm m x 70mm. Brand new 50p SPECIAL price until 31-3-75 for all 4 above items + useful accessory. £2-00 417 S/energising earpleces (salvaged) 20p All prices include VAT and p. & p. Many other Govl. surplus, new and sihand items at bargain prices, S.A.E. for New Year Catalogue of teletronic parts to:

38 HEATHWOOD GARDENS, SWANLEY 38 HEATHWOOD GARDENS, SWANLEY KENT BR8 7HN

LOW COST I.C. MOUNTING. Lengths of 100 I.C. pin sockets, 60p (p & p 5p). Quantity rates, SAE details & sample. L.E.D. (MLED500), 20p each. (post paid). P.K.G. Electronics, "Oak Lodge", Tansley, Derbyshire.

HEADPHONES: 8 ohms. Suitable communications receivers, £3.39. Partridge Electronics Ltd., Broadstairs, Kent.







SUPERTESTER 680 R ICE 20,000 Ohm per Volt/sensitivity • Fully screened against external magnetic fields • Scale width and small case dimensions (128 x 95 x 32mm) • Accuracy and stability (1% in D.C., 2% in A.C.) of indicated reading • Simplicity and readibility • Full ranges of accessories • 1000 times overload • Printed circuit board is removable without de-soldering • More ranges than any other meter. Ask for free catalogue £18.50 SUPERTESTER 680 R ICE

Accessories available to convert Supertester 680R into following: SIGNAL INJECTOR. GAUSS METER. ELECTRONIC VOLTMETER, AMPER-CLAMP, TRANSISTOR, 1ESTER, TEMPERATURE PROBE. PHASE SEQUENCE INDICATOR—Send for details.



The Alphanumeric NIXIE
tube has the
ability to display
all the letters of
the alphabet.
numerals 0 thru
9 and special
characters in a
single tube.
From the standpoint of both
readability and
electrical characteristics, the Alphanumeric
NIXIE tube provides many unique benefits
including \* 17v-21mA \* All d.c. operation
\*\* Uniform, continuous line characters of equal
height \*\* Memory with simple solid state drive
circuits \*\* Readability in high ambient light . . .
200 footlamberts brightness \*\* Long life with no
loss of brightness \*\* Character height 2½in.

Price only \*\* Pack to the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the provided of the

Price only 99P each plus 16p P/P. Bases for above 50p each.

### **UST ARRIVED!!** NUMERIC INDICATOR TUBES

NUMERIC INDICATOR TOBES

ultra-long-life, high quality,
0-9 & 2 independent decimal points. Supply
voltage 200V D.C. Current 14mA, Pulse duration
100µs, Character height 0-51, overall size 1-4.
Brand new, guaranteed. Surplus to manufacturers
requirements. Type B5953st
1-25 £1.00 25+90p 100+80p
1000+ price on application
Add 8% VAT to all items + 35p P & P

ELECTRONIC BROKERS LTD. 49-53 Pancras Road, London NW1 2QB

Tel: 01-837 7781

ANTIQUE WIRELESS ENTHUSIASTS. For all your requirements in radio, pre-1945, contact Tudor Rees's Antique Wireless Service. Retail shop now open at 64 Broad Street, Staple Hill, Bristol. Tel: 0272 565472.





P.W. TENNIS KITS. All semiconductors (61 pieces) £13·50. Socket set (30 pieces) £3·50. Post free inclusive prices. ISLAND DEVICES, PO BOX 11, Margate, Kent.

GADGETS GALORE!!

Alarms — Test Gear — Musical Instruments
Timers — Audio — Disco — Sound Effects

\*\* READY BUILT + TESTED \*\* Sample prices: Signal Injector £1.95 Signal Tracer £2.95

Prices include U.K. Postage and Batteries
—Mail Order Only—
S.A.E. list to:

G.K. SERVICES, 83 Westdale Road, London SE18 3BQ

## Synthesiser Sounds Supreme

by Dewtron (VA extra.

Famous kits. e.g. waa-waa complete kit £3.50; Fuzz kit £5.50. P&P 25p under £10. Ring Modulator modules £9. "Mister Bassman" Bass Fedal Units and whole range of synthesiser modules, musical novelties, etc. Catalogue 15p from D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset.



### **PSYCHEDELICATESSEN**

Is the only way to describe the paradise of Freaky gear now available from Boffin. Look!

KITS No Licence Exam Transmitter/ Receiver £6-90 Receiver Variable-rate, Bright-Flash, Pocket Mini-Strobe

READY-MADE EXPERIMENTAL MODULES

MADI - MADE EAPERIMEN
MODULES
Maxi-Voit Spark Generator (±
inch spark), 15,000 Voits!
Mini Dream-Laboratory
Sensitive non-anatomical
electronic 'Voice-Thrower'
Ghost-Hunting Aid
People Detector
Speak-Thru-Water-Fone
Psychedelic Meditation Aid
Bird-Watchers' Remote Monitor
Psychological Cross-Eyed Ears
Device

Device
(All prices include VAT. packing & £1 90 £3 20 £3·20 £3·20 £3·20 £3·20 £6·40 £3·20 £3·20 (All prices include VAT, packing & postage)

Send remittance to:

### BOFFIN PROJECTS 4 Cunliffe Road, Stoneleigh Ewell, Surrey

(Mail order U.K. only)

Or for more details, send 20p for lists, plus free design project sheet

HARDWARE. Comprehensive range of screws, nuts, washers, etc. in small quantities, and many useful Constructors' items. Sheet aluminium to individual requirements, punched, drilled, etc. Fascia panels, dials, nameplates in etched aluminium. Printed circuit boards for this magazine and other individual requirements, one-offs and small runs. Machine engraving in metals and plastics, contour milling. Send 2 x 4½ p stamps for catalogue. Ramar Constructor Services, Masons Road, Stratford on Avon, Warwicks., CV37 9NF. Road, Stra CV37 9NF.

12 VOLT 21" 13 Watt Fluorescent Lighting (by Thorn/AEI) with diffuser & on/off switch, ideal caravan, boat, emergency lighting,etc. Guaranteed.



£5 · 50 inc. VAT& Post. List price £7·02 inc. VAT

SALOP ELECTRONICS 23 Wyle Cop. Tel. 53206 Shrewsbury, Shropshire

SUPERB INSTRUMENT CASE by Bazelli, manufactured from heavy duty PVC faced steel. Hundreds of Radio, Electronics and Hi-Fi enthusiasts are choosing the case they require from our range of over 200 models. Generous trade discount. Fast despatch: Free literature, Bazelli, Department No. 25, St. Wilfrids, Foundry Lane, Halton, Lancaster LA2 6LT.

LOWEST COST IC SOCKETS. Use Soldercon IC socket pins for 8 to 40 pin DILs. Make 8 pin sockets for 4p, 14 pin for 7p (at 300 pin price). In strips of 100 pins: 100+ pins 70p, 300+ 50p, 1,000+ 40p. Instructions supplied. 10p p&p for orders under £2. Add 8% VAT. SINTEL, 53n Aston Street, Oxford.

PRINTED CIRCUIT MANUFACTURERS offer P.W. Project P.C.B.'s, 70p each. Also, Production, Design, Artwork, Photography, Electroplating, Screen-printing, Tinning. Undertaken. Estimates by return or phone W.K.F. Electronics, Welbeck St., Whitwell, Worksop, Notts. Tel. 695.

AERIAL WIRE. High quality PVC covered multi-strand copper, 50ft 60p (10p), 75ft 86p (13p), 100ft £1·19 (15p), 150ft £1·77 (24p), 200ft £2·36 (26p), 250ft £2·95 (28p), 300ft £3·54 (31p). Egg insulators 12p pair (6p). P&P in brackets. S.A.E. all enquiries. A.I. Radio Components, 14 The Borough, Canterbury, Kent CTI 2DR.

AUDIOSCAN, the "do-it-yourself" speaker mail-order specialists. High fidelity speaker kits, chassis units, sound absorbent, grille fabric and much more. Send 7p in stamps for bargain list to: Audioscan, Dept. PW-8, 4 Princes Square, Harrogate, Yorks.

PRINTED CIRCUIT BOARDS. PCB from your patterns £1 plus 5p per square inch. From published patterns in this magazine 50p per board. Add VAT, 5p p&p per PCB. Mail order only. T.E.C. 241 Burnt-oak Broadway, Middlesex. Middlesex.

HAVE YOU HAD YOUR CHIPS?
AY-5-1224 Digital Clock chip now £3.95
inc. VAT, post free. Circuit and details s.a.e. GREENBANK ELECTRONICS (Dept. 322), 94 New Chester
Road, Wirral, Merseyside L62 5AG.

ALL PRICES INCLUDE VAT
AERIAL MAST POLES, Approx. 5ft. 2in.
high, 2in. dia. Interlocking ends. Minimum
order 3. As new £1 25 (each) P. & P. 40p

AERIALS. As new. Whip Type 11ft. 21 each Collapsible type. P. & P. 20p. New Bases, for the above 75p. P. & P. 30p.

PAIR OF 4 × 150A VALVES complete with bases execution not tested. Good condition £3. P. & P. 30p.

BARGAIN PARCELS 14lb at £1·60 plus 35p p.p.; 28lb at £3·00 plus 57½p p.p.; 56lb at £4·95 plus £1·37½ p.p. Contains pots, Res. Valves, Diodes, Tagboards, Chassis, Valveholders, etc. Good value save £££s. Lucky Dip Service.

FANTASTIC BARGAIN. New 6 inch tubes. E450 4/B/16 4VH, medium Persistance, green. Ideal scope tube.

Also 7BP7. All unused as new. Price £2 post

Patic.

TRANSISTOR BOARDS—consisting of transistors, diodes and resistors, etc. Long leads. Good value 12 for £1.00 (min. order) P. & P. 30p. Quotations for quantity.

OUR SELECTION OF 6-Ex. Equ. METERS consisting of 3in., 2in., 2in., 2il amps, volts, amps. Mixed at the bargain price of £2·20 P. & P. 30p, minimum order

NEW AERIAL WIRE ON BOARDS 7/22 UNCOVERED 90ft £1, p. & p. 25p. AERIAL POLES 4st high 2in. in diameter push-in type as new £1 each p. & p. 25p each minimum four.

C.W.O. CARRIAGE CHARGES MAIN-LAND ONLY. WOULD CUSTOMERS PLEASE EN-SURE THAT ALL ORDERS ARE PRINTED IN BLOCK CAPITALS AND INCLUDE YOUR ADDRESS.

### A. H. THACKER & SONS LTD.

Radio Dept. High Street, Cheslyn Hay, Nr Walsall, Staffs.

### SINCLAIR CALCULATORS



Cambridge Memory £20-95 (£1-95)
Cambridge Assembled £15-95 (£1-55)
Sinclair Sclentific £22-45 (£2-05)
Executive with Memory £25-95 (£2-49)
Executive £22-75 (£2-25)

### FERRANTI ZN414

iC radio chip with data £1·20 (22p). Also available kit of extra parts to complete a radio £2·45 (42p). Send sae for free leaflet.



### ECONOMICAL QUADRAPHONICS

ECONOMICAL QUADRAPHO Introducing the Napolex QA10 self contained matrix quadraphonic synthesizer. Just feed the output of any stereo system (including Project 80 or 60) into it and hook on 4 speakers to obtain the latest experience in sound. Send sae for free leaflet. Only £10.15 (£1.10).



SINCLAIR SUPER IC12 6W rms power. With 44 page booklet and circuit printed circ £1⋅80 (40p).



NEW SINCLAIR IC20

High power IC audio amplifier £8 ⋅ 45 (£1 ⋅ 05).

### DELUXE KIT FOR THE IC12

Includes all parts for the printed circuit and volume, bass and treble controls needed to complete the mono version £1.70 (26p). Stereo model with balance control £3.70 (43p).

### IC12 POWER KIT

Supplies 28V 0.5 Amps £2.97 (52p).

LOUDSPEAKERS FOR THE IC12 8 ohm £1.30 (29p). 5" x 8" 8 ohm £1.65 (37p).

### PREAMP KITS FOR THE IC12

Type 1 for magnetic pickups, mics and tuners. Mono model £1·40 (25p). Stereo model £2·50 (33p). Type 2 for ceramic or crystal pickups. Mono 70p (19p). Stereo £1·40 (24p).

SEND SAE FOR FREE LEAFLET ON KITS

### BATTERY ELIMINATOR BARGAINS

The most versatile battery eliminator ever offered. Switched output of 3,  $4\frac{1}{2}$ , 6,  $7\frac{1}{2}$ , 9 and 12V at 500 mA £3·90 (70p).

Other eliminators stocked:— 250mA:—3 way switched model giving 6, 7½ and 9V £2·25 (55p).

 $4\frac{1}{2}$  £1 95 (40p). 6V £1 95 (40p). 9V £1 95 (40p).  $7\frac{1}{2}$ V cassette type £2 50 (40p). Double  $4\frac{1}{2}$ V +  $4\frac{1}{2}$ V £2 75 (43p). 6V + 6V £2 75 (43p). 9V + 9V £2 75 (43p).

Heavy duty deluxe models 6V £2.78 (55p).  $7\frac{1}{2}$ V £2.78 (55p). 9V £2.78 (55p). 500mA:-

### S-DECS AND T-DECS

S-DeC £1.98 (31p) T-DeC £3.63 (47p) μ-DeC A £3.99 (51p) μ-DeC B £6.99 (81p)



VIIII.

#-DeC B £6.99 (81p)
IC carriers:—
16 dil: plain 81p (15p)
with socket £1.77 (25p)
10 TOS: plain 78p (15p). With socket £1.68 (24p).
Experiment guides:—A £1.50 (26p), B £1.77 (29p),
C 90p (18p), D £2.40 (35p), E £4.20 (53p).

### SWANLEY ELECTRONICS PO BOX 68, SWANLEY, KENT BR8 8TQ.

Please add the sum shown in brackets after the price to cover the cost of post and new VAT. Official credit orders from schools etc. welcome. No VAT charged on overseas orders.

## **TELEVISION CAMERA** KITS

Complete kits are available for both "Mullard" and "P.E." design. Each kit includes a comprehensive construction manual, and a completely FREE technical back up service to ensure your success. VHF and UHF Modulator Kits also available to allow standard domestic T.V. to be used as monitor.

All parts available separately, including a wide range of lenses, vidicon tubes, special mains transformers and focus/scan coil assemblies, ready built cameras also available. Complete kits also available P.W. tele-tennis game. Send 5" x 7" S.A.E. for full details or come along for a demonstration and a chat with our technical staff.

## **CROFTON ELECTRONICS**

124 Colne Road, Twickenham, Middlesex, TW2 6QS

Tel: 01-898-1569 Telex 934642 Cadanac LDN

## BRIARWOOD TRADING CO.

161 Brownroyd Hill Road, Wibsey, Bradford,

Tel. Bradford (0274) 671960

Offer the following list of T.V. spares—

### Push button transistorised tuners Philips UHF/VHF 210 series

Philips single standard Philips G6 dual standard and single standard colour

Pye/Echo, UHF/VHF Decca MS 1700 & DR 21, MS 2000 and

MS 2400 GEC 4 & 6 button

£4 Bush D/S 6 button £ĥ

### ROTARY TRANSISTORISED **TUNERS**

Pye/Echo D/S (as used in olympic and Europa chassis) £3·50 (State whether cable or micro switch optional S/S) GEC 2010 series £3·50 Decca DRI £3

Colour Panels for Spares & Parts

Convergence S/S £2 & D/S £4 TIB boards £1.75 **RGB** boards £2 LOPT boards £1 S/F boards £1 · 45 Pye 36 & Olympic I.F. panels £4

Trade sets available for personal callers. All prices include P. & P. and VAT.

£7

£7

£7

£6

£5

## WATFORD ELECTRONICS

35 CARDIFF ROAD, WATFORD, HERTS, ENGLAND
MAIL ORDER. CALLERS SATURDAYS ONLY
1.0. Please. P. & P. add 15p to orders under £3. Prices exclusive of VAT

|                                               |                          |                          |                            |                  |                          | _            |
|-----------------------------------------------|--------------------------|--------------------------|----------------------------|------------------|--------------------------|--------------|
| All components brand new and fully guaranteed |                          |                          |                            |                  |                          |              |
| TRANSISTORS (less 10% for 25+ of one type)    |                          |                          |                            |                  |                          |              |
| AC107 16p                                     | BCY42 28p p              | OC82 15P I               | 2N1306 24p<br>2N1307 26p   |                  | 6p 7481                  | 110p         |
| AC125 13p                                     | BCY43 25p                | OC83 20p<br>OC140 100p   | 2N1893 30P                 |                  | 6p 7482                  | 86p          |
| AC126 13p                                     | BCY58 18p                | OC201 70p                | 2N1990 45p                 | 7403 1           | 6p 7483                  | 110p         |
| AC127 13p                                     | BCY59 18p  <br>BCY70 15p | OC202 80p                | 2N2217 23P                 |                  | 9p 7484                  | 95p          |
| AC128 13p                                     | BCY71 18p                | TIP29 43P                | 2N2303 25p                 |                  | 9p 7485<br>9p 7486       | 187p         |
| AC176 14p<br>AC187 13p                        | BCY72 12p                | TIP29 A 45p              | 2N2483 30p                 |                  | 19p   7486<br>19p   7487 | 155p         |
| AC188 13p                                     | BD131 40p                | TIP30 48p                | 2N2894 30p<br>2N2906 15p   |                  | 1p 7489                  | 360p         |
| ACY17 35p                                     | BD132 40P                | TIP30A 54p               | 2N2907 18p                 |                  | 4p 7490                  | 62 p         |
| ACY19 25p                                     | BD137 45p<br>BD145 55p   | TIP31. 54p               | 2N2926 .9p                 |                  | 6p 7491                  | 99p          |
| ACY20 24p                                     | BD145 55P<br>BDY11 115P  | TIP32 64p                | 2N3053 18P                 |                  | 2p 7492                  | 69p          |
| ACY21 29p                                     | BDY17 135p               | TIP34 130p               | 2N3054 42p                 |                  | 28p 7493                 | 69p<br>80p   |
| ACY22 16p                                     | BDY18 125p               | TIP41 65p                | 2N3055 45p                 | 7413 2<br>7414 ( | 28p 7494<br>30p 7495     | 80p          |
| AD140 48p<br>AD149 48p                        | BDY19 195p               | TIP41 A 68p              | 2N3614 59P<br>2N3615 65P   | 7416             | 35p 7496                 | 95p          |
| AD161 35p                                     | BDY60 52p                | TIP42 70p                | 2N3702 12p                 |                  | 5P 74104                 | 53p          |
| AD162 35p                                     | BDY61 50p<br>BF194 10p   | TIP42A 74p               | 2N3703 12p                 |                  | 6P 74105                 | 53p          |
| AF114 14p                                     | BF195 10p                | TIS43 26p                | 2N3704 12p                 |                  | 24P 74107                | 43p          |
| AF115 14p                                     | BF196 12p                | TIS44 17p                | 2N3705 12p                 |                  | 38p 74110                | 56p          |
| AF116 14p                                     | BF197 15P                | TIS45 50P                | 2N3706 10p<br>2N3707 10p   |                  | 38P 74111<br>28P 74118   | 85p<br>90p   |
| AF117 14p<br>AF118 40p                        | BFX84 22p                | TIS60- 16p               | 2N3708 8p                  |                  | 37P 74121                | 50p          |
|                                               | BFX86 21p<br>BFX88 22p   | TIS61 19P                | 2N3709 *P                  | 7428             | 39D   74199              | 70p          |
| BC107 9p<br>BC108 9p                          | BFY50 16P                | TIS62 28p                | 2N3713 120p                |                  | 16P 74123                | 99p          |
| BC109 10p                                     | BFY51 16p                | TIS91 28p                | 2N3715 150p                |                  | 37p 74141<br>36p 74150   | 90p          |
| BC147 10P                                     | BFY52 16p                | ZTX107 10p               | 2N3716 150p<br>2N3771 140p |                  | 00-117100                | 145p<br>100p |
| BC148 10p                                     | BFY53 17p                | ZTX108 10p<br>ZTX109 12p | 2N3772 160p                | 7438             | 43p 74151                | 99p          |
| BC149 10p                                     | BFY55 35p<br>MJE370 63p  | ZTX300 12p               | 2N3773 240P                | 7440             | 16p 74154                | 166p         |
| BC157 13p<br>BC158 11p                        | MJE371 78p               | ZTX301 14p               | 2N3819 28P                 | 7441             | 75P   74155              | 105p         |
| BC159 13p                                     | MJE520 62p               | ZTX302 18p               | 2N3820 38p                 | 7442<br>7443 1   | 75p 74156                | 100p         |
| BC159 13p<br>BC167 12p                        | MPF102 30p               | ZTX304 22p               | 2N3823 60p<br>2N3903 15p   |                  | 1 /4100                  | 135p         |
| BC168 12P                                     | MPF103 30p               | ZTX311 10p<br>ZTX341 19p | 2N3903 15p                 | 7445 . 1         | 60p   74407              | 160p<br>300p |
| BC169 12p<br>BC170 11p                        | MPF104 28p<br>MPF105 36p | ZTX500 15p               | 2N3905 17p                 | 7446 1           | 89p 74174                | 160p         |
| BC171 11p                                     | OC26 40P                 | ZTX502 18p               | 2N3906 17p                 |                  | 05P 74476                | 126p         |
| BC172 11p                                     | OC28 58p                 | ZTX504 42p               | 2N4037 35p                 | 7448 1<br>7450   | 18p 74180                | 126p         |
| BC177 16P                                     | OC35 48p                 | ZTX531 23p               | 2N4062 12p<br>40311 34p    |                  | 16p 74182                | 126p         |
| BC178 16p                                     | OC36 52p                 | ZTX550 18p<br>2N706 11p  | 40323 32p                  | 7453             | 16p 74184                | 180p         |
| BC179 18P                                     | OC41 35p                 | 2N708 16p                | 40324 47P                  | 7454             | 16p 74185                | 180 p        |
| BC182 11p<br>BC183 11p                        | OC42 35p                 | 2N1131 20p               | 40326 35p                  | 7460             | 16p 74190                | 195p         |
| BC184 11p                                     | OC45 12P                 | 2N1132 20p               | 40360 40p                  | 7470             | 28p 74191<br>28p 74192   | 195p<br>200p |
| BC212 13p                                     | OC70 12p                 | 2N1301 20p               | 40361 45p                  | 7472             | 37p 74193                | 200p         |
| BC213 13p                                     | OC71 12P                 | 2N1302 20p               | 40362 39p<br>40407 32p     | 7474             | 37p 74194                | 130p         |
| BC214 17p                                     | OC72 12p                 | 2N1303 20p<br>2N1304 24p | +040/ 32P                  | 7475             | 55p 74198                | 277p         |
| BCY39 99p                                     | OC74 28p<br>OC81 12p     | 2N1304 24P               |                            | 7476             | 37p 74199                | 270P         |
| BCY40 80p                                     |                          | 400 15                   | DIODES BE                  | IDGE             | . TRIA                   |              |
| LINEAR IC                                     | 'S  MC1304               | D 2750                   | A120 10p RE                | CTIFIER          | 400V 3A                  | 85p          |
| 700C DILITO                                   | 99 35p MC1310            | NCG 60n                  | A IZV TOP                  | setic Case       | 1 500V 3A                | 120P         |

| MC1304P 160P        | DIODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BRIDGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4001/ 3A BEn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMC1310P 275p       | A A 400 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RECTIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400V 3A 85p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PIMC1710CG ROP      | BV400 60-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Plastic Case)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DOOR OUT THEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PINECASONE AND      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DOOR OU SAAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LINE 222 Illust 625 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11A 400V 23P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400V 10A 145P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NE562 FM Syn 390P   | 01211 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 A 600V 25m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500V 10A 180p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| p[PA246 150p        | UA5 39P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DA FOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| piPA263 445p        | OA9 9p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2A 50V 30P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TENED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| []SL403D 150p       | OA79 18n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2A 200V 40p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ZENER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| "ISL414A 165p       | O 4 04 9m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24 BOOV 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PIT A D100 AM 1580  | UASI SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AA OOOV EAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3·3V-33V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| "ITHAKOO SVV AUU.   | 10 A 25 16 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4A 2007 34P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40011144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | O A DO BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14A 600V 70P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1·3W 17p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DITM444 1455        | 0.404 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BA 200V BRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DITEMPT             | UA91 6P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 A 6001/ 975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALUM, BOXES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | OA200 5p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DA OUUV BIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | OA201 6p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23x54x14" 45p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PELECTRONICS        | DI 4004 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4x4x1 1 45p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MINISTRA 2016E      | ( ) FACCE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (tnymstor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4x2+x1+" 45p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| piwinitron 3015F    | PL4004 8p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 50V 38p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4x5\x1\frac{1}{2}" 48P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| pl/seg display      | PI 4007 19m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 A 100V 42n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IDIOCE/V TOP        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 A 400V 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3x2x1" 38p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PIOCP71 85P         | 1N914 5P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 A BOOV 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7x5x2½" 78p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| piORP12 58p         | 1 N4001/2 5p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8x6x3" 99p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DDIORP60 43P        | 1 N4003 6 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13A 100V 43P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10x7x3" 118P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pIORP61 46p         | 4 14004/5 #=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13A 400V /3P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| inited Til 209(Red) | 1144004/2 0D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13A 600V 91P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nni with socket 190 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3[ 1 M 000 4 100 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116A 400V 90p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12x8x3" 150p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1446 AAA            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | MC1310P   275p   MC1310P   275p   MC1710CG   60p   MFC4000B   40p   MFC4000B   40p   MFC555 Time   65p   MFC555 Time   65p   A246   150p   PA263   445p   SL403D   150p   SL403D   150p   SL403D   150p   TAD100   AM   150p   175p   135p   2 N414   115p   15p   MInitron 3015F   7 seg display   40p   20p   MC(1310P   275p   AA120   10p   MC(1310P   60p   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100   8100 | MC1310P   275p   A4120   10p   RECTIFIERS   MC1710CG   60p   BY100   18p   (Plastic Case)   PMC1710CG   60p   BY100   18p   (Plastic Case)   BY164   35p   1A 50V   29p   NE555 Timer   65p   BY164   35p   1A 600V   23p   PA266   45p   A50   
| <b>POLYESTER CAPACITORS:</b> Axial lead type, (Values are in $\mu$ 1), 400V: 0.001, 0.0012, 0.0015, 0.0018, 0.0022, 0.0033, 24p; 0.0047, 0.0088,                | 0.01, 0.015, |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 490 V : 0.047, 0.068, 0.1, 4p; 0.15, 0.22, 7p; 0.33, 10p; 0.47 13p; 180 V : 0<br>0.22 5p; 0.33 5p; 0.47 9p; 0.68 10p; 1.0 13p, 250 V : 0.22 5p; 0.33 8p; 0.68 1 |              |
| 2-218p.                                                                                                                                                         |              |

RADIAL LEAD P.C. TYPE (Values are in 147). 250V: 0.01, 0.015, 0.022, 3p. 0.033, 0.047, 0.068 3½p; 0.1 4p; 0.15 4p; 0.22, 0.33 5p; 0.47 7p; 0.68 10p; 1.0 11p; 1.5 20p; 2.2 22p.

ELECTROLYTIC CAPACITORS. Axial lead type (Values are ln μt) 63V: 1·0, 1·5, 2·2, 3·3, 4, 4·7, 6·8, 10, 15, 20, 22, 47, 8·8 pe each, 100 12p. 46V: 100, 6p. 36V: 3500, 35p. 25V: 68, 6p: 180, 6p: 220, 11p: 470, 13p. 25V: 680, 18p: 1000, 24p; 2200, 34p: 3000, 39p. 16V: 40, 125, 250, 6p. 16V: 1000, 1500, 16p. 10V: 4, 100 5p; 640, 10p: 1000, 14p; 2200, 18p.

| CERAMIC CAPACITORS 50V d.c. Plaquette body 25mm leads.                   |    |
|--------------------------------------------------------------------------|----|
| Range: 5pf-10,000pf price 2p each.<br>0-015µf, 0-022µf, 0-033µf, 0-047µf | 3р |

POTENTIOMETERS (AB) Carbon Track, 0-25W Log & 0-5W Linear values 1ΚΩ-2M Ω single gang D/P 5ΚΩ-2M Ω single gang D/P switch 2KΩ-2M Ω dual gang stereo 42p

SLIDER POTENTIOMETERS 0·25W log and linear values 5ΚΩ-500ΚΩ single gang 10K-500Kohm Dual gang 35p

KNOBS for above Black or Silvered 8p

| MYLAR FILM                                           | CAPACITORS                                                 |                   |
|------------------------------------------------------|------------------------------------------------------------|-------------------|
| 100 V: 0.001 µf, 0.02 µf, 0.04 µf, 50 V. 0.47 µf 6p. | $0.002\mu f$ , $0.005\mu f$ , $0.05\mu f$ 3p. $0.1\mu f$ , | 0·01 µ<br>0·2 µ f |

PRESET POTENTIOMETERS 0.25W: 100  $\Omega$ =1M  $\Omega$  Horizontal 1K=1M  $\Omega$  Vertical 0·1W: 50 Ω-1M Ω Vertical

RESISTORS High Stability Low noise
Pr. Type Tol. Range Val. 1-4950+
½W C 5% 2-2Ω-10M E24 1p - 8p
½W C 5% 2-2Ω-10M E12 1p - 8p
½W C 5% 2-2Ω-10M E12 2-5p 2p
4W WW 10% 1 Ω-100Ω E12 8p —

6p

4p

|                                                    | JAC   | K PLUGS                               | & SOCKET                |                           |                                      |  |
|----------------------------------------------------|-------|---------------------------------------|-------------------------|---------------------------|--------------------------------------|--|
|                                                    |       | Screened<br>chrome                    | Plastic<br>Body         | Open<br>metal             | Moulded<br>with<br>break<br>contacts |  |
| 2·5mm<br>3·5mm<br>Standard mono<br>Standard stereo |       | 10p<br>14p<br>17p<br>30p              | 8p<br>10p<br>13p<br>18p | 8p<br>8p<br>13p<br>15p    | 17p<br>2⋅5                           |  |
| -                                                  | PLUGS | SCKTS.                                | CPLRS.                  | DIL SOCKETS               |                                      |  |
| DIN<br>2 Pln-6 Pin                                 | 12p   | 8p                                    | 15p                     | 8 Pin<br>14 Pin<br>16 Pin | 14p<br>15p<br>16p                    |  |
| CO-AXIAL (TV)                                      | 10p   | 8p                                    | 15p (f.f.)              | CAR AERIAL<br>PLUGS       | 10p                                  |  |
| PHONO assorted colours                             | 6р.   | 5p (agl.)<br>7p (dbl.)<br>10p (trpl.) | 9p                      | CHOKES (RFC)              |                                      |  |
| BANANA                                             | 6р    | 5p                                    |                         | 2 · 5mH                   | each                                 |  |
| TOGGLE: SPST                                       | 1     | WITCHES<br>Sp SLID                    | E: 1A DP 25             | 0V                        | 10p                                  |  |

| DPDT SUB-MINIATURE TOGGLE SP changeover SPST on/off DPDT | 35p<br>35p<br>64p | PUSH BUTTON: Miniature push to make break nonlocking 1!  ROCKER (white): 5A 250V SP changeover centre off 2:  ROTARY WAFER: 1 pole/12 way, 2p/6w, 2p/2 2p/4w, 3p/3w, 3p/4w, 4p/2w, 4p/3w, 2p/2 2p/4w, 3p/3w, 3p/4w, 4p/2w, 4p/2w, 4p/3w, 2p/2 2p/4w, 4p/2w, 4 |
|----------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOGGLE: SPST<br>DPDT                                     | 18p<br>22p        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                          | 35p               | ROCKER (white): 5A 250V SP changeover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SPST on/off                                              | 35p               | ROTARY WAFER: 1 pole/12 way, 2p/6w, 2p/2<br>2p/4w, 3p/3w, 3p/4w, 4p/2w, 4p/3w, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| ı |                                        |               |         |
|---|----------------------------------------|---------------|---------|
| ١ | TRANSFORMERS                           | Main          | •       |
| ı | Primary 220V-240V<br>8-0-6 (miniature) | 100mA         | 98p     |
| 9 |                                        | 100mA         | 90p     |
| ı | 9-0-9 ,,<br>12-0-12 ,,                 | 100mA         | 90 p    |
| ı | 12-0-12 ,,<br>18-0-18 also 24V         | 100mA         | 90p     |
| 1 | 24-0-24                                | 500mA         | 220p    |
|   | 30-24-20-15-12-0                       | 1A            | 230p    |
| 1 | 9-0                                    | 2A            | 110p    |
|   | 8-0                                    | 2 A           | 110p    |
| 1 | 5-0                                    | 2A_           | 110p    |
| Į |                                        | Disab         |         |
|   | VEROBOARD 0-1                          | Pitch<br>0·15 | 0.15    |
| 1 | (0000                                  | er clad)      | (plain) |
| ١ | 100pp                                  | 230           | 14p     |

| JV          |         |               |         |
|-------------|---------|---------------|---------|
| VEROBO      | 0.1     | Pitch<br>0·15 | 0:15    |
|             | (coppe  | r clad)       | (plain) |
| 2±x3₹"      | 30p     | 23p           | 14p     |
| 2+x5"       | 32p     | 32p           | 15p     |
| 31x31"      | 32p     | 32p           |         |
|             | 38p     | 38p           | 26p     |
| 31x5"       | 98p     | 75p           | 55p     |
| 2 x17"      |         | 1050          | 79p     |
| 3 x17"      | 130p    | HOOP          | 105p    |
| 4±x17"      | 173p    | _             |         |
| Pkt of 36 p | ns      |               | 20 p    |
| Spot face   | cutter  |               | 49p     |
| Din Incerti | on tool |               | 69p     |

| LES HOLD<br>Green/Yello | ERS Dom   | e top, Re  | d, Blue,       |
|-------------------------|-----------|------------|----------------|
| Les Bulbs 6<br>MES HOLD | v and 12v |            | 6p<br>ind top  |
| Red, require            | SED roun  | d top #" h | 25p<br>ole 25p |
| NEON. As<br>RED top     |           |            | 726            |
| NEON. As green top      | above bu  | t With 3   | 25p            |

| KNOBS (To fit #" shaft) K1 Black pointer type         | <b>\$</b> p |
|-------------------------------------------------------|-------------|
| K2 Slim silvered aluminium                            | 10p         |
| K2 Sitm stivered aluminum                             | 15p         |
| K3 Black 11" with chrome rim                          | IAb         |
| K4 Black with bright metal top.                       | 18p         |
| K5 Black with metal top and skirt numbered 0-10, 37mm | 26p         |
| K6 As K5 but with black pointer<br>on skirt           | 20p         |
| K7 Tapered Black with metal top ar                    | nd          |
| objet numbered 0-10, 30mm dia,                        | 20p         |

### FELSTEAD

HAVE REDUCED ALL PRICES FOR THE XMAS SEASON TO HELP FIGHT INFLATION!

ALL prices in our current list (sent immediately for S.A.E.) and advertised in this magazine's December issue reduced by 10%

### FROM NOW UNTIL JANUARY 11th ONLY

Orders received by us on and after JAN. 13th must revert to our very reasonable prices as per our NOV. 1974 and/or FEB. 1975 advertisements in this journal, and our current list. (This special offer cannot cover charges which are not under our control.) Regret not applicable overseas.

MAKE SURE YOUR PLAYER HAS A NEW CARTRIDGE and/or STYLUS (our offer includes All Diamond and Sapphire Styli, English, Continental and JAP. Offer also includes RECORDING TAPE, SPEAKERS, HEADPHONES, MIKES, CASSETTES, PLUGS, SOCKETS, LEADS, MAINS UNITS, TRANSISTORS, SWITCHES, VOL. CONTROLS, CON. WIRE, etc., and many other Hi-Fi components and accessories.

Send S.A.E. NOW for free, up-to-date LIST by return to-

FELSTEAD ELECTRONICS (PW87), LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE SK8 4EE

## **PUBLISHER'S ANNOUNCEMENT**

Due to production difficulties existing at the time this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing.

## CODAR

THE WORLD!

## R70A



COMMUNICATION RECEIVER

**★MADE** ORDER!

£34·14!

VAT PAID CARR. 87p

The CODAR CR70A is an outstanding general coverage communication receiver, ideal for the keen S.W.L. It tunes from 540 metres medium through to 10 metres with no gaps. Covers shipping, coastguard and distress frequencies, all six amateur bands 160-10 metres, International broadcast, Met. stations etc. etc. giving world-wide reception. Exclusive features include Air-spaced CODAR-COIL Hi-"Q" Aerial input, illuminated Meter and Slide Rule Scale, Two Speed vernier tuning. Switched B.F.O. for CW/SSB signals. Separate output for Tape recorder. Ready to plug in to 200/240 volts A.C. it only needs your aerial and a 2/3 ohm loudspeaker to bring the world to your finger tips. 12 months full guarantee.

### \* IMPORTANT NOTE

This fine receiver is not a mass produced item, but each set is hand built to your order, individually checked and air tested. Please allow for this when ordering—your delivery date will be shown on your order receipt, sent by return.



P.R.40

CARR. 32p

R.F. PRESELECTOR

PR40 R.F. Preselector is the solid state version of the world famous The PR40 R.F. Preselector is the solid state version of the world famous PR30 which it now supersedes. It employs Silicon "N" Channel FET (Field Effect Transistor) front end followed by silicon NPN Broad Band R.F. Amp., and will substantially improve receiver performance over the range 1.5 to 35 MHz, providing a considerable increase in gain up to an overall average of 30dB, with improved image rejection and noise ratio.

Supplied complete with co-ax plug (less standard 9 volt PP6 Battery). 12 months Guarantee . . .



## MULTIBAND-6

SHORT WAVE RECEIVER KIT £16.90! CARR. 43p

All transistor T.II.F. Receiver tunes 550 KHz to 30 MHz (540 to 10 metres) complete coverage—no gaps. Medium waves—Trawlers—Ship / Shore Trebphone—All Six Amateur Bands 160—10 metres—International Broadcast from Australia, Far East, Russia, USA etc. using 4 miniature plug in Coils. Hi-Gain FET Regen. Det./AF/AF Module giving full loudspeaker output to any external 2/3 ohm speaker. Receives AM/CW/SSB. Separate Electrical Bandspread, Calibrated Main Tuning. A Quality CODAR-KIT with 12 months Guarantee. No technical knowledge required, simple to build, printed circuit and Pictorial Instruction Manual. Complete Kit with 4 Coils (less standard PP6 battery).

ILLUSTRATED LEAFLETS FREE ON REQUEST



ON THE DESIGN STAFF-G31RE

## 

TELECOMMUNICATIONS AND ELECTRONIC EQUIPMENT SUPPLIERS TO H.M. AND OVERSEAS . GOVERNMENTS

VALCON WORKS - BURRELL BUILDINGS - CHURCHILL INDUSTRIAL ESTATE - LANCING - SUSSEX

Tel. 090-63-61901

### INDEX TO ADVERTISERS Allard Electronics Ambit International ... ... ... 838 Arrow Electrics ... A.S.P. Ltd. 816 B.B. Supplies Barrie Electronics Bentley Acoustics ... ... 841 858 ... Beta Devices 862 794 B.H. Component Factors Ltd. Bib Hi-Fi Accessories Ltd. ... ... 787 796-797 Bi-Pak Semiconductors Bi-Pak Semiconductors Bi-Pre Pak Ltd. ... ... ... 845, 852 Boffin Projects ... 864 Briarwood Trading ... ... 865 British Institute of Engineering Technology ... 792, 833, cover iii School .... Bull, J. (Electrical) Ltd. ... 859 Castle Acoustics Ltd. ... Chiltmead Ltd. ... 852 856 854-855 ... 867 Chromasonics Electronics ... Colomor (Electronics) Ltd. Crescent Radio Ltd. 868 783 ... ... ... Crofton Electronics C.T. Electronics 849 Dabar Electronic Products 780, 856 D.E.W. Ltd. 864 Doram Electronics Ltd.... 807 Electronics Brokers Ltd. Electronic Design Assoc. 846, 868 Electronic Mail Order Ltd. 816 Electrospares ... ... 860 820 842 ... Electrovalue Ltd. ••• E.T.E.H. 782

| Felstead Electronics                               |                |                |             | ) ac                     |
|----------------------------------------------------|----------------|----------------|-------------|--------------------------|
| Flairline Supplies                                 | •••            | • • •          | • • • •     | 86                       |
| F.W. Electronics                                   | •••            | •••            | •••         | 79                       |
| Title Licentoffics                                 | •••            | •••            | •••         | 86                       |
| Galleon Trading Co.                                |                |                | •••         | 862                      |
| Garfields                                          |                | •••            | •••         | 863                      |
| G.K. Electronics                                   |                | •••            | •••         | 864                      |
| Global Audio                                       |                | •••            |             | 846                      |
| Goldring                                           |                | •••            | •••         | 792                      |
| Greenweld Electronic                               | s              | •••            | •••         | 792                      |
| H.A.C. (Shortwave) P                               | roduct         | s              |             | 838                      |
| Harverson Surplus Co                               | . Ltd.         |                |             | 793                      |
| Heath (Gloucester) Lt.                             | d.             |                |             | 841                      |
| Henry's Radio Ltd.                                 |                | 8              | 19. co      | ver iv                   |
| Home Radio Compone                                 | ents           |                | ,,,         | 815                      |
| I.L.P. (Electronics) Ltd<br>Imperial Trading (Aeri | als) Lt        | d              | •••         | 795<br>863               |
| Johnsons (Radio)                                   |                | •••            |             | 862                      |
| Kensington Supplies<br>Keytronics                  |                | •••            | •••         | 863                      |
| ,                                                  | •••            | •••            | •••         | 838                      |
| ogic Leisure Ltd. ondon Computer Ope               | <br><br>rators | <br><br>Traini | <br><br>ing | 864<br>782<br>820<br>780 |
| aplin Electronic Suppl                             | ies            |                |             |                          |
| larco iradino                                      |                | •••            | •••         | 781                      |
| larshall, A.<br>lilward, G. F.                     |                |                |             | 862                      |
| lilward, G. F.                                     | •••            | •••            | •••         | 860                      |
| Intitite Classes !                                 | ••             | •••            | •••         | 788                      |
|                                                    | ••             | • • •          | •••         | 864                      |

| Newmart Electronics<br>Newnes-Butterworth                                                                                                                                                                                              | 837<br>780                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Partridge Electronics-Ltd                                                                                                                                                                                                              | 853                                                          |
| Radio Book Services Radio Component Specialists Radio Exchange Ltd. Radio Shop, The Radio Society of Great Britain R.C.S. Products Ltd. RSC (Hi-Fi) Centre Ltd. RST Valve Mail Order Co. R & TV Components Ltd. Riversdale Electronics | 863 857 cover ii 782 848 838 778-779 786 784-785 833         |
| Salop Electronics Saxon Entertainments Ltd. Shopertunities Ltd. Sinclair (Cambridge) Ltd. Sinclair Radionics Ltd. Sound Systems of Suffolk Surpletronics Swanley Electronics                                                           | 864<br>789<br>858<br>826-827<br>850-851<br>862<br>812<br>865 |
| Technomatic Ltd. Teleradio Electronics Thacker, A. H. Trampus Electronics Ltd. Trannies Ltd. Tuac Ltd. Tweedy, Ltd. (J. A.)                                                                                                            | 787<br>862<br>865<br>788<br>834<br>790-791                   |
| Watford Electronics West London Direct Supplies Web Europa Ltd Wilmslow Audio                                                                                                                                                          | 866<br>838<br>816<br>812                                     |
| Xeroza Radio  Z & I Aero Services                                                                                                                                                                                                      | 794                                                          |
|                                                                                                                                                                                                                                        | 606                                                          |

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2 5SF Tel: 727 5641/2/3

### Z & I AERO SERVICES LTD.

Please send all correspondence and Mail-Orders to Head Office When sending cash with order, please include 0.15 in £ for postage and handling MINIMUM CHARGE 15p. No C.O.D. orders accepted

Retail Shop 85 TOTTENHAM COURT ROAD LONDON WI Tel: 580 8403 Open all day Saturday

### AC/DC MULTIMETER **TYPE U4324**



33 ranges up to 3 Amps AC/DC; 1200V DC, 900V AC, 500kΩ, +12 dh.

Sensitivity: 20kΩ/V DC; 4kΩ/V AC

Accuracy: ±2.5% DC; ±4% AC

Movement is protected by silicon diodes.

Dimensions 167×98×63 mm. Weight: 1.5lb.

PRICE: complete with test leads, instruction manual and fibre-board storage case £9 25. Packing & carr. £0.50.

### MULTIMETER **TYPE U4323**

Sensitivity: 20,000Ω/V.



7 D.C. Voltage ranges 0.5-1000V 6 A.C. Voltage ranges 2.5-1000V 5 D.C. Current ranges 0.05-500mA 4 Resistance ranges  $1k\Omega$ - $1m\Omega$ Built-in oscillator providing AF output of 1kHz and I.F. output of 465kHz with an amplitude of 1 volt minimum.

Dimensions: 140×87×40 mm. Weight 0.5kg

PRICE complete with leads and plastic storage case £7.70. Packing & postage £0.50

### AC/DC MULTIMETER **TYPE U4313**



39 ranges: 600μA to 1.5A 60μA to 1.5A DC 75mV to 600V DC 1.5V to 600V AC 1M $\Omega$ , 0·5 $\mu$ F, 12db Accuracy: 1.5%

DC; 2.5% AC

Sensitivity: 20k  $\Omega/V$  DC;  $2k\Omega/V$ AC

Mirror scale 86mm long.

12N 2053

Dimensions:  $115 \times 215 \times 90$  mm, Weight 3.31b.

PRICE, complete with test leads, service manual and steel carrying case £12.50. Packing & carriage £0.50.

ALL THE ABOVE INSTRUMENTS FEATURE TAUT SUSPENSION MOVEMENTS PRICES ARE EXCLUSIVE OF V.A.T.

## Fully guaranteed Individually packed VALVES

|             | A W F                | V L J                 |                  |
|-------------|----------------------|-----------------------|------------------|
| A1065 £1.25 | ECL80 55p            | GZ34 702              | PY80 40p         |
|             | ECL82 35p            | GZ37 £1.00            | PY81 40p         |
|             | ECL83 70p            | KT66 £2.50            | PY82 40p         |
|             | ECL86 45P            | KT88 £3.00            | PY83 40p         |
|             | EF36 65p             | MH4 75p               | PY88 45p         |
|             | EF37A                | ML6 65p               | PY500 £1 00      |
| DF96 50p    | £1.20                | OA2 45P               | PY800 45p        |
| DK96 70p    | EF40 75p             | O82 45p               | PY801 50p        |
| DL92 40p    | EF41 65p             | PABC80 40p            | QQV03-10         |
| DL96 60p    | EF80 30p             | PC97 50p              | \$1.40           |
| DY86/87     | EF83 \$1.25          | PC900 50p             | QQV06-40A        |
| 40p         | EF85 <b>85</b> p     | PCC84 40p             | 88.00            |
| DY802 40p   | EF86 35P             | PCC85 40p             | QV03-12<br>£1·10 |
| E88CC/01    | EF89 30p             | PCC88 60p             |                  |
| £1.20       | EF91 45p             | PCC89 50p             | R19 60p          |
| E180CC 70p  | EF92 50p             | PCC189 60p            | SC1/400<br>£8.00 |
| E182CC      | EF95 40p             | PCF80 40p             |                  |
| £1.25       | EF183 35p            | PCF82 40p             | SC1/600<br>£5.00 |
| EA50 40p    | EF184 35p            | PCF84 60p             | SP61 75p         |
| EABC80 40p  | EFL200 75p           | PCF86 60p             | TT21 \$5.00      |
| EAF42 759   | EL33 £2.50           |                       | U25 85p          |
| EB91 25p    | EL34 70p             |                       | U26 75p          |
| EBC33 £1.00 | EL36 60p             | PCF801 55p            | U27 65p          |
| EBC41 75p   | EL37 \$1.80          |                       | U191 75p         |
| EBF80 40p   | EL41 80p             | PCF805 90p            | U801 75p         |
| EBF83 50p   | EL81 60p             | PCF806 75p            | UABC80           |
| EBF89 85p   | EL82 55P             | PCF808 90p            | 40p              |
| EC52 85p    | EL84 80p             | PCH200 80p            | UAF42 65p        |
| ECC81 40p   | EL85 60p             | PCL81 55p             | UBC41 60p        |
| ECC82 88p   | EL86 45p             | PCL82 40p             | UBF80 40p        |
| ECC83 33p   | EL90 45p             |                       | UBF89 40p        |
| ECC84 35p   | EL504 80p            |                       | UBL1 21.00       |
| ECC85 40p   | EM31 60p             | PCL86 50p             | UBL21 700        |
| ECC86 90p   | EM80 55p             | PCL805 60p            |                  |
| ECC88 50p   | EM84 40p             | PFL200 70p            | UCF80 75p        |
| ECC189 70p  | EM87 21.00           |                       | UCH42 75p        |
| ECF80 40p   | EY51 45p<br>EY81 45  | PL81 50p              |                  |
| ECF82 40p   |                      |                       |                  |
| ECF801 75p  |                      |                       |                  |
| ECH35       | EY88 50p             | PL84 45p              | UCL83 65p        |
| £1.40       | EZ40 70p<br>EZ41 75p |                       | UF41 701         |
|             |                      |                       | UF80 35r         |
| ECH81 83p   | EZ80 30p             |                       | 1                |
|             |                      | PL802 95p<br>PY33 60p | MANY             |
| ECH84 45p   | GY501 75p            | TIOS GUD              | 24 A II I        |

A lot of these valves are imported and prices vary for each delivery, so we reserve the right to change prices for new stock when unavoidable.

### TRANSISTORS, DIODES etc.

. 0.4.000

| AC 113 | AF 139  | BSY 27     | OA 202  | OC 200    | 211 3000 |
|--------|---------|------------|---------|-----------|----------|
| AC 126 | AF 178  | BSY 38     | OAZ 200 | OC 206    | 2N 3054  |
| AC 127 | AF 186  | BSY 95A    | OC 22   | SX 754    | 2N 3055  |
| AC 128 | AFZ 12  | BYZ 16     | OC 25   | ZR 11     | 2N 3390  |
|        | ASY 26  | CRS 1/10   | OC 26   | ZR 21     | 2N 3391  |
| AC 176 | ASY 27  | CRS 1/20   | OC 28   | 1N 23A    | 2N 3730  |
| ACY 18 |         | CRS 1/30   | OC 29   | 1N 25     | 2N 3731  |
| ACY 19 | ASY 28  |            | OC 35   | 1N 32A    | 2N 3819  |
| ACY 20 | BC 108  | CRS 1/40   |         | 1N 38A    | 2N 4038  |
| ACY 28 | BC 118  | CRS 3/10   | OC 36   | 1N 43     | 2N 4058  |
| ACY 39 | BC 119  | CRS 3/20   | OC 42   |           |          |
| ACY 40 | BC 136  | CRS 3/30   | OC 44   | 1N 70     | 2N 4061  |
| AD 149 | BC 137  | CRS 3/40   | 0 45    | 1N 277    | 2N 4785  |
| AD 161 | BC 148A | CRS 25/C25 | OC 70   | 1N 415C   | 2N 5295  |
| AD 162 | BC 172  | GET 115    | OC 73   | 1N 4148   | 3N 128   |
| ADZ 11 | BC 172A | GET 116    | OC 78   | 2N 456A   | 3N 154   |
| ADZ 12 | BC 212A | GEX 66     | OC.78D  | 2N 708    | 3N 159   |
| AF 114 | BCY 31  | NKT 222    | OC 81   | 2N 918    | 28 303   |
| AF 115 | BCY 33  | OA 5       | OC 82   | 2N 1304   | 404      |
|        | BCY 72  | OA 47      | OC 82D  | 2N 1305   | 2082     |
| AF 116 |         | OA 70      | OC 82DM | 2N 1307   | 40250    |
| AF 117 | BF 115  |            | OC 83   | 2N 1309 ~ | 40251    |
| AF 118 | BF 167  | OA 71      | OC 139  | 2N 2062   | 9668     |
| AF 124 | BF 185  | OA 73      |         | 2N 2147   | 2000     |
| AF 125 | BFY 51  | OA 79      | OC 140  |           | 1        |
| AF 126 | BFY 52  | OA 91      | OC 170  | 2N 2411   | İ        |
| AF 127 | BFY 90  | OA 200     | OC 172  | 2N 2989   | 1        |

|         |        |        |       |              |       | _     |     |       |       |       |        |
|---------|--------|--------|-------|--------------|-------|-------|-----|-------|-------|-------|--------|
| UF85    | 45n    | 1R5    | 40p   | /            | I.A   | \.T   |     | 6BG6G |       | 6H6   | 35p    |
| UF89    |        | 184    | 30p   |              |       |       |     | 6BJ6  |       | 6J4WA |        |
| UL41    |        | 1T4    | 30p   | riea         |       |       |     | 6BQ7A |       |       | 81.25  |
| UL84    | 40p    | 1X2A   | 60p   | to a         | all a | ordei |     | 6BR7  |       |       | 65p    |
| UY41    | 45p    | 1X28   | 75p   | -            |       |       |     |       |       | ыбат  | 50p    |
| UY85    |        | 2D21   | 50p   | 5Y3GT        |       | 6AQ5  |     | 6BW7  | £1.00 |       | 30p    |
| VR105/  |        | 2K25   | £9.00 |              |       | 6AQ5W |     | 6C4   |       | 6J7   | 60p    |
| 1       |        | 3A4    |       | 5 <b>Z</b> 4 |       | 6A86  |     | 6C6   |       | 6J7G  | 40p    |
| VR150/  |        | 3D6    | 40p   | 5Z4GT        |       | 6AT6  |     | 6CB6  |       | 6K6GT |        |
| 1.20200 | 45p    | 384    | 40p   | 6AB7         |       | 6AU6  |     | 6CH6  |       | 6K7   | 55p    |
| X61M #  |        |        | 85p   | 6AC7         |       | 6AV6  |     | 6CL6  |       | 6K7G  | 80p    |
| X66     | 65p    | 58/254 | M     | 6AH6         |       | 6AX4G | T   | 6D6   |       | 6K8GT |        |
| Z800U   |        | ,      | £4·00 |              | 40p   |       |     | 6EA8  |       |       | £1.00  |
|         | £2·70  | 5B255  |       | 6AK8         |       | 6AX5G | T   | 6F7   | £1.10 |       | £1.25  |
| Z801U   | \$2.70 |        | £8·50 |              | 25p   |       |     | 6F8G  |       | 6L6G  | 40p    |
| Z900T   | £1·20  | 5R4G   |       | 6AL5W        |       | 687   |     | 6F23  |       | 6L7G  | 40p    |
| 1A3     | 55p    | 5U4G   | 45p   | 6AM6         |       | 6BA6  |     | 6F32  |       | 6SA7  | 50p    |
| 1L4     | 25p    | 5V4G   | 55p   | 16AN8        | 45p   | 6BE6  | 85p | 6F33  | £8.50 | 68A7G | l. 40b |

MINIMUM POSTAL ORDER 21, PERSONAL CALLERS WELCOME.

MANY OTHERS IN STOCK include Cathode Ray Tubes and Special Valves.

Postage Up to 22 12p. 22-23 22p. Over 23 post free. C.O.D. 25p extra.

29/41FT. AERIALS each consisting of ten 3ft., Jin. dia. tubular screw-in sections. 1ft. (6-section) whip aerial with adaptor to fit the 7in. rod, insulated base, stay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag. £7-50 new £4-50 slightly used. Carriage £1-50.

## CHAMIN

ALL valves

| ŧ | LEET          | MIN          | ೯              | AL           | L va         | ives    |
|---|---------------|--------------|----------------|--------------|--------------|---------|
| ı | LT            | 137.5        | 1              | gua          | ırant        | eed     |
| ı | 68C7GT        | 40p          | 20P4           | £1.10        | 6060         | 70p     |
| 1 | 68G7          | 50p          | 25 L6G         |              | 6064         | 60p     |
| ı | 6SJ7          |              | 30C15          |              | 6065         | £1.00   |
| ı | 6SJ7GT        |              | 30C17          | £1.00        | 6067         | 70p     |
| í | 68K7          | 55p          | 30C18          | 90p          | 6080         | £2-30   |
| 1 | 6SL7GT        |              | 30F5           | £1.00        | 6146         | £2·25   |
| 1 | 6SN7GT        |              | 30FL1          |              | 6146B        | £3·25   |
| ı | 6SQ7          |              | 30FL1          |              | 802 <b>0</b> | £5.00   |
| 1 | 6V6G          | 15p          |                | £1·10        | 9001         | £5:00   |
| 1 | 6V6GT         |              | 30FL1          | 4 90p        | 9002         | 50p     |
| 1 | 6X4           |              | 30L15          |              | 9003         | 70p     |
| 1 | 6X5G          | 40p          | 30L17          |              |              | 85p     |
| 1 | 6X5GT         | 50p          |                |              | 9006         | 85p     |
| ı | 6Y6G          | BOD          | 30P19          |              |              |         |
| 1 | 6Z4           |              | 30PL1<br>30PL1 |              | C.R. T       | ubes    |
| ı | 6-30L2        | 90p<br>80p   | SUPL           | £1.10        | DG7-         |         |
| ı | 7B7<br>7¥4    | 80p          | 30P14          |              | DG1-6        | £12·00  |
| 1 |               | 40p          | 35L60          |              | DG13         |         |
| ı | 9D6<br>11E2 # | 6 00         | 35W4           | 50p          | 2020         | £18.00  |
| ı | 12A6          | 55p          |                |              | MW1          |         |
| 1 | 12AT6         | 45p          |                | 600          |              | £85.00  |
| 1 | 12AT7         | 40p          | 50CD           |              | VCR1         | 39A     |
|   | 12AU7         | 88p          |                | £1.10        |              | £8-00   |
| L | 12AV6         | 50p          | 75             | £1.00        | 3BP1         | £4·50   |
| ī | 12AX7         | 88p          |                | 75p          | 88D          | £9.00   |
| , | 12BA6         | 45p          | 76             | 75p          | 88J          | £8-00   |
| ٦ | 12BE6         | 50p          | 78             | 70p          | 88L          | £9.00   |
| 5 | 12BH7         | 50p          | 80             | 75p          | ł            |         |
| p | 12C8          |              | 85A2           | 75p          | l <b></b> .  |         |
| Ď |               | 8.50         |                | b \$8∙00     | Specia       |         |
| p |               | B1-10        |                | #6·00        | Valve        |         |
| p | 12K7G7        |              |                | £14·00       | CV23         | 9       |
| P | 12K8G7        |              |                | 65p          |              | £45.00  |
| p | 12Q7G1        |              | 813            | \$6.50       | M503         | £42.00  |
| Þ | 128A7G        |              | 866A           | £1.20        | K301         | £7.00   |
| p |               | 70p          | 931A           | £6.00<br>50p |              |         |
| p | 128G7         | 55p<br>55p   |                | 50p          |              | ~~£6.00 |
| 0 | 12837         | 40p          |                | 50p          | OY4-         |         |
| 5 | 12Y4          | 200<br>21:00 |                | 50p          |              | £19.00  |
| p | 1487<br>19AQ5 | 65p          |                | 20p          | TY4-         |         |
| p |               | 90·83        |                | 70p          |              | £80.00  |
| P |               | £6.60        |                | £1.00        |              | £23.00  |
| p | 19H5 \$       |              |                | \$8.00       |              |         |
|   | 20P3          | 60p          |                | 75p          |              | £140·00 |
|   |               | Jop          | 1000           | ,,           |              |         |

VALVES AND TRANSISTORS
Telephone enquiries for valves, transistors, etc., retail 749 3934; trade and export 743 0899.

Colomor (Electronics) Ltd.
170 GOLDHAWK ROAD, LONDON W12.
Open 9-12.30, 1.30-5.30 p.m. Thuraday 9-1 p.m.

This FREE 76 page

Practical Radio & Flectronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know

> about *Radio &* **Electronics** maintenance and repairs for a *spare* time income and a *career* for a better future.

ver 150 book can put you on the road to success througha BIET. Home ways to Study Course, Choose your subject now! eng better future



## find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home—equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast—make learning easier and something to look forward to Those are no books to have and you can pay serve learn. forward to. There are no books to buy and you can pay-as-you-learn.

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call in on you . . . but it could be the best thing you ever did.

### Others have done it, so can you

"Yesterday I received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained, a view echoed by two colleagues who recently commenced the course". Student D.I.B., Yorks.

"Completing your course, meant going from a job I detested to a job that I love, with unlimited prospects"—Student J.A.O. Dublin.

"My training quickly changed my earning capacity and, in the next few years, my earnings increased fourfold". Student C.C.P., Bucks.

### FIND OUT FOR YOURSELF

These letters and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to

### ALDERMASTON COLLEGE

Dept. TPW01, Reading RG7 4PF.

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

| Tic                                                                                                                                                                                                       | k or | state subject o<br>st to address b                                                                                                                                               | f in | terest.                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MECHANICAL  Society of Engineers— A.M.S.E. (Mech) Institute of Engineer & Technicians (A.M.I.E.) CITY & GUILDS Gen. Mech. Eng. Maintenance Eng. Welding Gen. Diesel Eng. Sheet Metal Work Eng. Inspection |      | DRAUGHTSMAN- SHIP Institute of Engineering Designers (A.M.I.E.D.) General Draughtsmanship Elec. Draughtsmanship Architectural Draughtsmanship Technical                          |      | Construction Surveyors Institute L.C.S.I. City & Guilds General Building (all branches) Heating & Vent. Inst. Clerk of Works Site Surveying Health Engineering Road Construction Quantities Estimates Hydraulics |
| Eng. Metallurgy  ELECTRICAL & ELECTRONIC CITY & GUILDS  Gen. Electrical Engineering Electrical Installations Electrical Maths Computer Electronics Electronic Eng. Practical Radio                        |      | RADIO & TELE- COMMUNICATIONS City & Guilds Telecoms. Gen. Radio & TV Eng. Radio Amateurs Exam Radio Servicing  AUTOMOBILE & AERONAUTICAL                                         |      | GENERAL Agricultural Eng. Council of Eng. Institutions Farm Science Plastics Supplimentary courses for Nat. Certificates.                                                                                        |
| & Electronics (with kit)  MANAGEMENT & PRODUCTION Institute of Cost & Management Acctuts. Computer Programming Works M'ment Work Study Gen. Production Eng.                                               |      | Institute of the Motor Industry A.M.I.I. MAA/IMI City & Guilds Auto Eng. Gen. Auto Eng. Motor Mechanics Auto Diesel Eng. Garage M'ment AEC Aero Engineering Exams Gen. Aero Eng. |      | G.C.E. —choose from 58 'O' & 'A' level subjects                                                                                                                                                                  |
| Eng. Estimating & Planning Storekeeping Management Skills Quality Contro                                                                                                                                  |      | CONSTRUCTIONAL Institute of Building L.I.O.B. A.B.T. Clerk of Works                                                                                                              |      | Coaching for many exams, including C & G                                                                                                                                                                         |

TODAY FOR A

..... POSTCODE ......

Member of A.B.C.C.

.....AGE......

To Aldermaston College,

Accredited by C.A.C.C.

Dept. TPW01, Reading RG7 4PF.

Published on approximately the 7th of each month by IPC Magazines Limited, Fleetway House, Farringdon Street, London EC4A 4AD. Printed in England by Index Printers, Dunstable, Beds. Sole Agents for Australia and New Zealand—Gordon and Gotch (Asia) Ltd.; South Africa—Central News Agency Ltd. Publisher's subscription rate (including postage): for one year UK 43-25, Overseas 44-35. International Giro facilities Account No. 5122007. Please state reason for payment "message to payee". Practical Wireless is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to V.A.T., and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

### SO MUCH MORE – AND YOU PAY LESS VAT WITH HENRY'S LOW PRICES

### You can build the Texan and Stereo FM Tuner TEKAN 20 + 20 WATT IG STERED AMPLIFJERS

Features glass fibre PC board, Gardners low field transformer, 6-IC's, 10-transistors plus diodes, etc. Designed by Texas Instruments engineers for Henry's and, P.W. 1972. Supplied with full chassis work, detailed construction handbook and all necessary parts. Full input and control facilities. Stabilised supply. Overall size 15½" × 2½" × 6½" mains operated. Free teak sleeve with every kit. £31.00 (GB post paid). (also built and tested £37.50)



STEREO FM TUNER Features capacity diode tuning, lead and tuning meter indicators, stabilised power supply—mains operated. High performance and sensitivity with unique station indication IC stereo decoder. Overall size in teak sleeve  $8'' \times 22'' \times 65''$ . Complete kit with teak sleeve **£21.00** (GB post paid). (also built and tested £24.95)

### JOIN THE LARGE BAND OF HAPPY CONSTRUCTORS!

| POWER SUPPLIES I                | MAI    | NS INPUT (* chassis-                             | rest cased) |
|---------------------------------|--------|--------------------------------------------------|-------------|
| 470 C 6/71/9V 300 MA with ad'rs | 2 · 25 | *PI08I 45V 0 · 9A                                | 7 · 80      |
| P500 9 volt 500 MA              | 3 · 20 | PI2 4½-I2V. 0 · 4-1 amp                          | 7 · 15      |
| HC244R 3/6/7½/9v. 400 MA        |        | SEI01A 3/6/9/12V. I amp:                         |             |
| stabilised                      | 5 · 50 |                                                  | 12 · 75     |
| *PII 24v. 🖠 amp. 3·30           | 3 · 30 | P1076 3/42/6/7½/9/12V. ½ : SE800A 1-15 VOLT 0-½A | amp 4·20    |
| *P15 28V. 🖟 amp                 | 3 · 30 | SE800A 1-15 VOLT 0-1A                            | stabilised  |
| *P1080 12 VIA 4 70              | 7 · 80 | _                                                | 17 50       |

### SINCLAIR MODULES & KITS

| SINCLAIR PROJECT 80                          |        |                            |         |
|----------------------------------------------|--------|----------------------------|---------|
| ST80 Stereo preamplifier                     | 11.95  | FM TUNER                   | 11.95   |
| Audio Filter Unit                            | 6.95   | STEREO DECODER             | 7 · 95  |
| Z40 15 Watt Amplifier                        | 5 45   | IC20 power amp kit         | 7 . 95  |
| Z60 25 Watt Amplifier                        | 6 · 95 | PZ20 power supply for I or | -       |
| PZ5 Power Supplies                           | 4.98   | 2 IC20                     | 5 · 45  |
| PZ6 Power Supplies (S Ta3)<br>for I or 2 Z40 | 7 · 98 | PACKAGE DEALS (carr./pack  | g 35p)  |
| PZ8 Power Supplies (S Ta3)                   |        | 2 x Z40 ST80 PZ5           | 25 00   |
| for I or 2 Z60                               |        | 2 × Z60 ST80 PZ6           | 27 · 75 |
| TRANSFORMER FOR PZ8                          | 3 · 95 | 2 × Z60 ST80 PZ8-trans     | 34 · 40 |
| CINICIAID SPECIAL DIIR                       | CHAS   | EC                         |         |

| SINCLAIR SPECIAL PURCHASES |                   |
|----------------------------|-------------------|
| *Project 60 stereo preamp  | £6·75 (post 20p)  |
| *Project 605 Kit           | £19·95 (post 25p) |
| IC 12 6W amp               | £12·10 (post 15p) |
| Cambridge Calculator kit   | £13 50 (post 15p) |
| Sinclair Cambridge Memory  | £22 · 50          |
| Cambridge Calculator built | £17·50 (post 15p) |
| Cambridge Scientific built | £26.95 (post 15p) |

### **FM MODULES**

| Mullard LP II86 FM tuner (front end) with data 10.7 MHZ O/P | 4 · 85 |
|-------------------------------------------------------------|--------|
| Mullard LP 1185 10 7 MHZ IF unit with data                  | 4 · 50 |
| Gorler Permability FM tuner (front end) 10:7 MHZ O/P        | 4 · 20 |
|                                                             |        |

### FM AND AM TUNERS AND DECODERS

| FM5231 (tu 2) 6 volt fm tuner                          | ١               | 7 - 95 |
|--------------------------------------------------------|-----------------|--------|
| TU3 12 volt version (FM use with Decoder)              | All models      | 7 95   |
| SD4912 Stereo Decoder for Tu 3.12 volt                 |                 | 7 - 95 |
| · ·                                                    | supplied with I | i · 95 |
| SP62h 6 volt stereo FM tuner                           |                 | 4 · B0 |
| A1007 9 volt MW-AM tuner                               |                 | I · 95 |
| Sinclair 12/45 volt FM tuner stereo recorder for above |                 | 7 · 45 |
| A1018 9 volt FM tuner in cabinet                       |                 | 3 . 95 |
| A1005M (S) 9-12 volt Stereo decoder FM for above       |                 | 7 - 50 |
| 106Z 12 volt Stereo decoder general purpose            |                 | 6 · 50 |
|                                                        |                 |        |

### PREAMPLIFIERS

| Sinclair | Stereo 60 Preamplifier with controls | 6 75   |
|----------|--------------------------------------|--------|
| E1300    | Cart/Tape/Mic Inputs 9 volt Module   | 2 · 85 |
| E1310    | Stereo 3-30 mV mal cart 9 volt       | 4 · 75 |
| FF3      | Stereo 3 mV tape head 9 volt         | 4 95   |
| 3042     | Stereo 5-20 mV Mag. cart. mains      | 5.95   |
| EQ25     | Mono 3-250 mV Tape/Cart/Flay 9 volt  | 5 · 95 |
|          |                                      |        |

### TRANSISTORISED MODULES

| Tuners - Power Suppliers - Amplifiers |                                                        |         |  |
|---------------------------------------|--------------------------------------------------------|---------|--|
|                                       | FIERS (All single channel unless stated)               | £р      |  |
| 4-300                                 | 9 volt 300 MW O/P 3-8 OHM, I-10 MV I/P Special Offer   | 1 . 75  |  |
| 2004                                  | 9 voit 250 MW O/P 3–8 OHM, 10–100MV I/P                | 2 · 70  |  |
| 104                                   | 9 volt   watt O/P 8–16 OHM, 10 MV I/P                  | 3 - 10  |  |
| 304                                   | 9 volt 3 watt O/P 4–8 OHM, 10 MV I/P                   | 3 . 95  |  |
| <b>5</b> 55                           | 12 volt 3 watt O/P 8–16 OHM, 150 MV I/P                | 4 - 10  |  |
| 555ST                                 | 12 volt 1 + 1 watt O/P 8 OHM, I50 MV I/P Stereo module | 5 - 95  |  |
| E1208                                 | 12 volt 5 watt O/P 4-16 OHM, 25-60 MV I/P              | 5 10    |  |
| 608                                   | 24 volt 10 watt O/P 4-8 OHM, 30-50 MV I/P              | 4 9     |  |
| 410                                   | 28 volt 10 watt O/P 8 OHM, 160 MV I/P                  | 4 . 93  |  |
| 620                                   | 45 volt 30 watt O/P 4-8 OHM, [50 MV I/P                | 9 - 95  |  |
| Z40                                   | 30/35 volt 15 watt O/P 4-8 OHM, 100 MV I/P             | 5 · 45  |  |
| Z60                                   | 45/50 volt 25 watt O/P 4-8 OHM, 100-250 MV I/P         | 6 . 95  |  |
| SA6817                                | 24 volt 6 + 6 O/P 8 OHM 100 MV I/P Stereo module       | 10 · 20 |  |

### **EMI SPEAKERS SPECIAL PURCHASE**

13 in x 8 in chassis speakers (Carr./packing 30p each or 50p pr.)

\*150 TC 10 watts 8 ohms twin cone £2 · 20

\*450 10 watts 4, 8, 15 ohm wich twin tweeters and crossover £3 · 85 each

EW 15 watt 8 ohm with tweeter £5 · 25

550 20 watt 8, 15 ohm with tweeter £7 · 80 ea.

\* Polished wood cabinet £4 · 80 carr., etc.

35p each or 50p pair.

### **EXCLUSIVE** 5 WATT IC **AMPLIFIERS**

Special purchase 5 watt output 8-16 ohm load. 30 volt max. DC operation, complete with data. Price £1.50 each or 2 for £2.85 Printed Circuit Panels. 50p

### UHF TV TUNERS

625 line receiver UHF transistorised tuners FM UK operation. Brand new. (Post/packing 25p each).
TYPE C variable tuning £2.50
TYPE B 4-button push-button (adjustable)
£3.50

### TABE LIEADS

| IAFE HEADS                            |         |
|---------------------------------------|---------|
| Marriot XRSP/17 1 Track High          | £2 · 50 |
| Marriot XRSP/18 1 Track Med.          | £3 · 50 |
| Marriot XRSP/36 1 Track Med.          | £5·00   |
| Marriot XRSP/63 ½ Track High_         | £1 ·75  |
| Marriot Erase Heads for XRSP 17/18/36 |         |
| XESII                                 |         |
| Marriot BXIZE 343                     | 75p     |
| R/RPI Record/Play ½ Track             | 45 p    |
| H/RP Single Track Rec/Play            | 35p     |
| Bogen Type UL290 Erase                | £1 50   |
| Miniature Stereo Cassette Rec/Play    | £2 · 25 |
| CALCULATORS                           | -       |

| Sinclair Cambridge Kit     | £13 · 50 | 4,444 |
|----------------------------|----------|-------|
| Sinclair Cambridge (Built) | £17·50   | 303   |
| Sinclair Memory            | £22·50   | 9000  |
| Sinclair Scientific        | £26 95   | 9000  |
| 200114111120               |          |       |

### DOSIEMETERS

| 0-5R   | 62p | ) 45p     |
|--------|-----|-----------|
| 0-50R  | 62p | } EÁCH    |
| 0-150R | 62p | PER DOZEN |

### **HENRY'S** HOME ENTERTAINMENT CENTRES

| London                         |          |      |
|--------------------------------|----------|------|
| 354/6 Edgware Rd. W2           | 01-402   |      |
| 376/8 Edgware Rd. W2           | 01-723   |      |
| 372 Edgware Rd. W2             | 01-402   | 8140 |
| 120 Shaftesbury Ave. WI        | 01-437   | 9692 |
| 230 Tottenham Court Rd. WI     | 01-580   | 1785 |
| 144 Burnt Oak B'way, Burnt Oak | ak, Edgw | /are |
| ,,                             | 01-952   | 7402 |
| 190/4 Station Rd., Harrow, Mid | dlesex   |      |

01-863 7788 Out of Town 256 Banbury Rd., Summertown, Oxford

(0865) 53072 (0272) 45791 55 Gloucester Rd., Bristol 7

FREE STOCK LISTS STOCK LISTS

No. 36 Transistors

valves' semiconductors

No. 18 Discolighting-high
power sound

No. 17 Hi-F; TVTape Equipment
Send large
stamped
addressed
envelope with
all enquiries

**PORTABLE RADIO Activity Counter** Complete with Power Pack £9.97 pp £1

**GRAVINER INFRA RED DETECTOR DESIGNED** FOR HEAT OR LIGHT **DETECTOR. CONTAINING** 931A PHOTO MULTI-PLIER & GK45 & NETWORK £3.50

**AMTRON KITS AVAILABLE EX-STOCK** SEND FOR FREE LISTS

**JOSTY KITS AVAILABLE EX-STOCK** SEND FOR FREE LISTS

INVERTOR KITS 15 WATT £5 20 pp 30p 40 WATT £6.80 pp 40p

P.P.9 BATTERY **ELIMINATOR COMPLETE** KITS OR PARTS **INCLUDING P/C BOARDS** £1.95 COMPLETE KIT

**HENRY'S** UK'S No. I FOR **ELECTRONICS AND** HI-FI

8% VAT TO BE ADDED TO ALL ORDERS **VAT-UK ONLY** 

> Hitrand Electronics: Centres Open 9 am - 6 um

### SUPPLIERS OF ELECTRONICS FOR OVER YEARS



Electronic Centres 404-406 Electronic Components & Equipment 01-402 8381 309 PA-Disco-Lighting High Power Sound 01-723 6963 303 Special offers and bargains store

All mail to 303 Edgware Road, London W218W

Prices correct at time of preparation. Subject to change without notice + & O.E.