PRAGTOAL 晋 W i 5 -58
 36

ADCOLA Soldering Instruments add to your efficiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{C}$

*Additional Stock Bits

(illustrated) available
COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

米
Write for price list and catalogue
ADCOLA PRODUCTS LTD.. (Dept. M), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telephone: 01.622 0291/3- Telegrams: Soljoint London Telex •Telex: Adcola London 21851

JACKSON

the big name in PRECISION components

MINIATURE TUNING CAPACITORS

The Jackson 'O' range TYPE "OO' contains six basic types of different air-dielectric tuning capacitors with a wide variation of capacities available in each type. In addition, there are optional extras such as concentricspindle slow-motion drives, built-in trimmers and plastic covers. The
 maximum capacitance per section ranges from 12, 18 or 24 pF for FM types to 420 pF for AM types.

* Type OO miniature twin capacitor at	$12 / 6$ each
* Type OFM two-gang for FM at	$12 / 9$ each
* Type O two-gang for AM at	$12 / 9$ each

Write for literature

JACKSON BROS. (Lomon) LTD. (Dept. P.w.)
KINGSWAY-WADDON, CROYDON, CR9 4DG
Phone Croydon 2754-5 (01-688) Grams: Walfilco, Croydon U.S. Office:-M. SWEDGAL

258 Broadway, New York. N.Y. 10007

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards. Chemicals. Elching Manual, Infra-Red Phororansistor. Latching Relay, 2 Transistors. 3 Diodes, Resistors. Gain Control, Terminal Block. Elegant Case, Screws. etc. In fact everything you need to build a Steady-Ligh Photo-Switch/Counter/Burglar Alarm. etc. (Project No. 1) which can be modified for modulated-light operation

INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for building: I Invisible-Beam Projector and I Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms. Counters. Door

CONTENTS: 2 lenses, 2 mirrors, 245 -degree wooden blocks. Infa-red filter, projector tamp holder, building plans, etc. Price 19/6. Postage and Pack, 1/6 (U.K.). Commonucalth Surface Mail 2/-; Air Mail 8/-
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTFNTS: As above. Tuice the range of standard kit. Larger Lenses. Fitter, etc. Price 29/6. Postage and Pack. 1/6(U.K.). Commonwealth: Surface Mail 2/6; 4ir Mail 10/-.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Retay-less. Steady-light Photo-Suitch. Burglar Alarm, Door Opener, Counter etc.. for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransistor. 3 Transistors, Chassis. Plastic Case. Resistors. Screws, etc. Full Size Plans. Instructions. Data Sheel * 10 Advanced Photo rice 19/6. Posta

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Infra-red Filter, I ampholder. Bracke1, Plans, etc. Everything (except plywood) to build I miniature invisible beam projector and photocell receiver for se with Junior Photoelectric Kit

YORK ELECTRICS

335 BATTERSEA PARK RD., LONDON S.W. 11
Senda S. A.E. for fall detaiks, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Phoroelectric Projects Assembled.

TELETON SAQ203E STEREO AMPLIFIER

A amall but powerful ampliter designed for stereo hi-n reproduction. 10 watts per chanael mueic power. Inpata for Gram (Magnetic and Cryatal), Tuner and Auxiliary. Tape Becord output. Controls: Volume, Balance, Bass, Treble, Stereo/Mono slide switch. Stereo headphone socket. Attractive oiled walnut csbinet with brushed aluminium tront panel. I, ist Price £28.7.0

PREMIER STEREO SYSTEM "FOUR
Teleton 8AQ203E Amplifier (as ahove)
Gamtard BP2.
shure M3D
Teak base and cover
Spakerfi Enclosures fitted E.M.I
Total cont if purchamed weparately
223.2.0
speakers
428.6.0
473.16.0 $\underset{\text { PRICB }}{\text { PREMIER }} 65$ Gns. $\underset{35 /-}{\text { Cart }}$

VERITAS V-149 MIXER
Battery operated 4-channel audio mixer providing four separate inputs. Size $6 \times 3 \times 2 \mathrm{~m}$. suitable for eryatal microphone low impedance micro phone, with tranaformer, 1.6 y . has oup 2.5 y Gain a B B Etandard lack plus mocket inputa. phonopiugs output. Attractive teal wond grain finiah case

ALBA UA100D ALL TRANSISTOR STEREO TUNER AMPLIFIER

Cover: Long, Medium and Short Waves plus VHF/FM with built in etereo decoder and A.F.C. Output 15 watt r.m.s. per channel into 8 ohma (dintortion less tban 0.3%). Reeponse $20 \mathrm{~Hz}-20 \mathrm{kHz}$. Inputs for Magnetic and ceramic p.a. and Tape. Tape outlet socket. Tuning Volume, Basa, Trebie and Balance controls. Push button selector. Black leatherette top, teak ende and briahed aluminium front panel.

PREMIER STEREO SYSTEM
FIVE'
Alba UA100D Tmer/Amplifier 867.11.6

Gartard 8P2í
211-19.6
Bhure M3D 46.19.6

Teak baae and cover 55.10.0

P'air of Hf-Pil Enclogure 898.5 .0 fitted E.M.I. Speakera
228.5.0

Total cost if purchased separately
4118.5 .6

> PREMIERE PRICE $\quad £ 110 \begin{aligned} & \text { Carr. } \\ & 35 /\end{aligned}$

VERITAS V-313 TAPE HEAD DEFLUXER A must for all tape userel Tape heads become permanently nagnetized win constank use: ackroumd noise that prevents perfect recordings. Simply applited thead freer of magnetism. Cleans $34 / 6$ P. st P any tape head in secouds.

A superb stereo amplifier offering every facility for the hi-fil enthosiast. Output 5 watte per channel. Frequency esponse $\$ 0.20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Inputs for radio, P.U Ceramic, P.U. Msgnetic Tape. Separate bass and treble -itoh Ala features headphone socket and tope output. mitch. Aleo th attrative Ilvminated Imit panel size int panel. Aize 14 x . $9 \mathrm{t} \times 31 \mathrm{In}$. A.C. $200 / 250 \mathrm{~V}$

WONDEEFUL VALUE
omty 18 GMS. Carr

PREMIER STEREO SYSTEM "THREE Nova 505 Amplitier (as above)
Gartard AP'25 HCD
Teak hane and cove
Pair of Hi-Fi Euclosures fitted E.M.I
Apeakers
118.18.0

Total cont if purchased separately
£2.15.0 ع85.7.6

PREMIER 55 CRS. Cerr.

TWO STATION
TRANSISTOR INTERCOMS.
Complete with battery and 50 ft . connecting wire. Compact size. two woe ofle eactory, ete
$65 /={ }_{4 / 0}{ }^{4}{ }^{4}{ }^{\mathrm{P}}$
TAPE
CASSETTES

$\operatorname{cg} 0\binom{(90}{$ min }$\quad 12 / 6$
three for 36/
CI20 ($\min _{\text {min }}^{120}$) $17 / 6$
THREE FOR $51 /-$
P. \& P. 1/-.

CASSETTE HEAD CLEANER
Removes unwanted deposite rom delleate tape heads from delleato tape heads

SCOOP Garrard 3000 CUSTOM UNIT

A deluxe custom stylec and built record player unit made by world famous British manufacturer. The unit incorporates the renowned Garrard 3000 four speed autochanger with lightweight tubular pick-up arm FITTED WITH SONOTONE ATA STEAEO
CAMTAIDEE whth diamond stylus. The beautifully made plinth is finished in richly in the lid and with attractive charcoal grey "mirror" insert panel on front. All metal trim parts are satln chrome. Blackleather grain underside. The lid allows the player 5 pin OIN audio output socket areng rear. Overall size $15^{\prime \prime}$ when closed and has snap action "stay when raised. Mains socket

no pin oin
 LASKY'S SPECIAL PRICE \&16.15.0

 SPECIAL OFFER
AT-35\% Stereo magnetic cartridge with quency response $20-25 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Channal separation 30 dB . Output 5 mV . List Price 224.4 .9.
LASKY'S PRICE £17.10.0
Post Free
Aso available AT-35 stereo magnetic cartridges
diamond stylus assemblies. List Price $£ 18.10 .0$ diamond stylus assembies. List Price
La sky's Price 113.10 .0 . Post Free
AT-33 Stereo magnetic cart--trequency response $20-20 \mathrm{kHz}$ with LASKY'S PRICE \&7.19.6

ADC 40
 PRECISION PICK-UP ARM

AD-309K

PRECISION PICK-UP ARM COMPLETE WITH AD-76K MAGNETIC CARTRIDGE

The new AUOIO DEVLOPMENT precision counter-balanced
plek-up arm-ready fitted with the outstanding AD-76K
chrome-plated; uses needle and mintature ball race heavily
保 centres ane adjustment is provided. The fixed head has standard th. mounting wired, with all fixlng nuts and washers. Arm rest also supollad, Completely Overall length 285 mm .; needie to pivol length 223 mm .; of iset angle 24°; overhang

LASKY'S PRICE £9.19.6
Post 3/6

AUDIO DEVELOPMENT AD-76K Stereo magnetic cartridge with diamond stylus \rightarrow Frequency response $20-20.000 \mathrm{~Hz} .5 \mathrm{mV}$ output Replacement diamond stylus Model JS. Py $38 / 6$

 $>$

DIGITAL CLOCK

 FIRST AGAIN!

- MADE ESPECIALLY FOR ASKY'S BY FAMOUS Maker
- MAINS OPERATION - 12 hour alapm - AUTO "SLEEP" SWITCH - HOURS, MINUTES AND SECONDS READ.OFF
- FORWARD AND BACKWARD TIME ADJUSTMENT - SHOCK AND VIBRATION PROOF buZzer
- SILENT OPERATION SYNCHRONUS MOTOR This unique DIGITAL CLOCK is now avallable EXCLUSIVELY FROM LASKY'S in chaseis form for you to mount in any housing that you choose.
All settings are achleved by two dual-concentric controls af the front including: ON-OFF-AUTO and AUTO ALARM, "sleep" switch, 10 minute divislon "click set alarm (up to 12 hout delay), time adjustment. Ultra simple mechanism and hlg quality manufacture guarantee rellable operation and lang life.
The sleep witch will automatically turn off any applance-radlo, TV, light atc at any pre-eet time up to 60 min . and in conjunction with the AUTO setting wil switch on the appliance again next morning.
he clock measures $4!\mathrm{W} \times 1 \mathrm{HH} \times 31 \mathrm{D}$ (overall from front of drum to back of switeh) Hons. HUNDREDS OF APPLICATIONS FOR THE ELECTRONICS HOBEY tions.
sit.
 SPECIAL QUOTATIONS FOR QUANTITIES
FOSTER "Criterion" MkII
HIGH FIDELITY BOOKSHELF SPEAKER
Another high quality, bookshelf system from baffle type enclosure using $5 \mathrm{t} \mid \mathrm{n}$. bass $/ \mathrm{mld}$-rang woofer with rolled cloth edge and a $2 \pm 1 \mathrm{in}$. HF cone type tweeter. The compact cabinet lis consiructed of tin. laminate with handsome olied walnut veneet finlsh and black woven acoustic rauze-iron
panel with satin chrome edge insert. SPEC: Frequency range $90-20,000 \mathrm{~Hz}$. Power Handling 10 watts. Impedance 8 ohms. HF cross-over. Screw Tag connections at rear. Slze $\left.12 \downarrow \times 7 \frac{7}{2} \times 6\right\} \mathrm{in}$. The performance of the "Criterion" is superior to many larger and more expensive units and at Lasky's LASKY'S
 $\leftrightarrow 1 \rightarrow 1 \rightarrow \square$

ELEGANT BUDGET
 PRICED BOOKSHELF
 SPEAKER SYSTEMS

The AS-57 is a real space saver. This fine bookehelf highfidelity speaker system willi provide good quality sound anywhere in your home at remarkabley ow cost. is ideal for the small apartment or isolated area. The spectal high efficiency $5 \times 7 \mathrm{In}$. full range speaker has a frequency range of $70-$ $18,000 \mathrm{~Hz}$ with a peak handling capacity of 10 watts. Imp. 8 ohms.
Finish: oiled walnut. Size: $5 \ddagger \times 15 \frac{1}{z} \times 8 \neq 1 \pi$.
LASKY'S PE DEF PAB P P P $10 /$
PRICE

 NTROL UNITS

These two psychedelic Ilght control units may be fed from the speaker output of the Ampliffer although drawing virtually no signal themselves, they are sultable tor connectlon across athe signal is fed to a thyrlstor light control unit. (In the case of the DJ30L, the s1gnal is spilt 3 ways, bass, giddle, and top, to Indepen-
dent thyristor circuits). Independent intenslity controls and lights-on over-ride switches are provided. Outputs are to 5 A 2 pIn sockets on the back of the Instrument. Main on/off switches and pito max. Ilight output. Input level equivalent to channel thyristor control. DJ30L 3 channel thyrlstor control (bullt-In cross-over). 1000 Watts max. Ilight output. Per channel (de-rate to 600 watts per channel when all three channels are used simultaneously) $220 / 250 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Size $6 \times 10 \times 5 \mathrm{tin}$. Complete with instructions. Both units are panel mounting with brushed aluminum romt pane.

NEW EAGLE LIGHT CONTROL UNIT
NOW AVAILABLE £II.19.6 Post $3 / 6$

We have pleasure in announcing the opening of yet another Lasky's A
Electronics and Hi-Fi Centre- 109 FLEET STREET, E.C.4.
Here you will find the customarlly wide range of everything for the audlo, HI-F and tape recording enthuslast, electronics hobbyist and communicatlons ham. An especially comprehensive range of hlgh fidelity equipment is presented for aasy comparison. We look forward to welcoming you at our newest city branch.

207 EDGWARE ROAD, LONDON, W.2. Tel: 01 - 723327 33 TOTTENHAM CT.RD, LONDON, WIP 9RB. Tel: 01-636 2605 109 FLEET STREET, LONDON, E.C.4. 152/3 FLEET STREET, LONDON, E.C. 4 Open all uay Hurs sday, oariy closing ip.m. Sarurday

Tel: $01-3535812$ Të: 01-353 2633

HIGH FIDELITY AUDIO CENTRES
42-45 TOTTENHAM CT. RD. LDNDON, WIP 9RD. Tel: 01.5802573 Open all day, 9 a.m.-6 p.m. Monday to Saturday

- 18 EDGWARE ROAD, LONDON, W. 2.

,

Tel: 01.7239789

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL STREET, TOWER HAMLETS, LONDON, E1 2BN Tel: 01-790 4821

Ctwar for Gomponeats

SILICON TRANSISTORS FOR HIGH QUALITY EQUIPMENT

BC107	$3 / 3$	BD123	24/3	TIP3EA	23/-	2N8055	15/8
BCl08	3/-	BDY20	24/3	TIB44	1/9	2N3702	3/6
BC109	$3 / 3$	13 F 184	$7 / 6$	TIS49	2/6	2N3703	$3 / 3$
BC158	7/6	HF194	$7 /-$	TISE0	3/8	2N3704	3/9
BC182L	3/2	BFX29	10/4	2N696	4/8	2N3700	8/4
BC183L	2/5	BFX84	8/8	$2 \mathrm{NG9} \mathrm{\%}$	5/-	$\underline{\mathrm{N} 3707}$	4/-
BC184L	$3 / 2$	BFX85	8/8	2N70\%	3/3	9N3708	$2 / 5$
BC212L	3/9	BFY 0	$5 /$	- N1132	10/9	2N3819	91-
BC213L	3/9	BFYO1	4/6	2 N 2904	13/-	2N3820	$18 / 8$
BC214L.	4/-	BFY5!	5/-	2 N 2924	4/4	2N3826	5/11
BCY70	5/4	B8Y95A	3/11	2N4925	5/3	2N4058	$4 / 6$
BCY71	10/4	MJ481	27/3	2 N 4926	3/-	2N4059	3/5
BCY7?	4/6	M.J491	32/11	- N 3080	6/8	-NJう4うt	9/8
BDI21	17/3	T1P31A	17/-				

1 WATT AMPLIFIER MODULE TYPE PCM1
This amplifier unit is a printed circuit modnle incorporating the popular and well tried PA234 i.c. amplitier. The unit is a complete AUDIO AMPLIFIER and requires no external components, you aimply connect an 18 volt power supply and a 15 or 16 ohrn speaker or heal phone, even the supply amoothing capacitor and the output capacitor are included: The overall dimensions, in cluding capacitors are $2 \frac{1^{\prime \prime}}{} \mathrm{I} 3^{\prime \prime} \times \mathbf{t}^{\prime \prime}$. The input for 1 watt output at 1 kHz ts ypically 300 mV into 100 kohms.
his unit is available at only $38 /$ - net complete with deacriptive leaflet or 70/het per pair. Senil for free leaflet.

ELECTRONIC COMPONENTS IN THE WEST MIDLANDS
A wide range of components are avallable from stoek for CALLERS, including the following:
RESISTORS (incluter in \% \& watt. High stathe at only gal. each in $100+$ quantities of MIXED values of your chaice in the E 12 weries from 100 ohm to 10 Mohm) lectrolytics silver miess) REMICONDV (TOHS, (incluies Integrated circuit ransistors, dionles, rectifiers). PLUS ALL the usual comp
asua compments sult as phags ix rockets, pots, Veroboard,

WE ARE AN INTERNATIONAL RECTIFIER SEMICONDUCTOR CENTRE
Mail order, $1 / 6 \mathrm{P} \& P$ fer order inland, Overseas at cost, min. $10 /-$ Open 9.00 a .mı

,

STONE LANE KINVER STOURBRIDGE WORCS Telephone: KINVER 2099

HIGH FIDELITY LOUDSPEAKER KIT SYSTEMS FOR THE HOME CONSTRUCTOR

KIT 2-8
Max. Power Input 10 watts.
Frequency Range
$50-18,000 \mathrm{~Hz}$ in $0.57 \mathrm{cu} . \mathrm{ft}$ cabinet.
Wooter B 65 W Tweeter MT 25 HFC
Cross-over Frequency 4000 Hz . Delivered with components for dividing network and drawing for cabinet.
Price $£ 6-14-0$ incl. tax.

KIT 3-25

Max. Power Input
Frequency Range
25 watts
. $40-18,000 \mathrm{~Hz}$ in $3 \frac{1}{2} \mathrm{cu}$. ft. cabinet
wooter \qquad . CM 120 W
Mid-range G 50 MRC. Tweeter MT 20 HFC
Cross-over Frequencies $750 \& 4000 \mathrm{~Hz}$
Delivered with ready-wired cross-over network and cabinet leaflet.
Price
(15-17-6

KIT 3-15
Max. Power Input 15 watts. Frequency Range .. 45-18 000 Hz in $1.06 \mathrm{cu} . \mathrm{ft}$. cabinet. Woofer P 825 W. Mid-range GT 50 MRC
Tweeter MT 20 HFC Cross-over Frequencies $750 \& 4000 \mathrm{~Hz}$. Detivered with components for dividing network and cabinet leaflet.
Price £12-9-5 incl. tax.

KIT 20-2
Max. Power Input 30 watts. Frequency Range $40-20,000 \mathrm{~Hz}$ in $0.7 \mathrm{cu} . \mathrm{ft}$ cabinet. Woofer L 825 WG Tweeter MT 225 HFC Cross-over Frequency .. 2500 Hz . Delivered with ready-wired crossover network and cabinet handbook. Price £12-12-6 incl. tax

TO. P F \& A. R. HELME, Dedt, PW6, SUMMERBRIDGE HARROGATE, YORKS
(sole U.K. distributors)
Please send me details on the Peerless kit system

Name

Address

Peerless Fabrikkerne A/S have over 35 years of experiencein acoustics and they are today the largest loudspeaker factory in Scandinavia

turers sealed .cartons. Fully guaranteed with after-sales service. - Complete Free price list of over 800 items on request.

STEREO AMPLIFIERS

 ARENA 210 Ampllfier ARMS 207 NG 52 DULCI 207M GOODMANS Maxamp LEAK Stereo 30 Plus LEAK Stereo 30 Plus in ieak LEAKKLEAK Stereo 70 in teak case LINEAR LT. 66 PHELIPS RH 591 PHILIPS RH 590
PHILIPS RH 580
PHILIPS 580
PHILIPS 590
PHILIPS 591
OUAD 33 Pre-amplifier
QUAD 303 Maln Amplifier ROGERS Ravensbourne ROGERS Ravensbourne in
ROGERS Ravensbrook ROGERS Ravensbrook in ROGERS Ras
ROGERS Ravensbrooh
ROGERS R
(Chassis) In teak cas
SINCLAIR 2000
TELETON 203E
TRUVOX TSA. 200
TUNERS
ARENA F211 with decoder ARMSTRONG 523 AM/FM ARMSTRONG 524 FM ARMSTRONG M8 decoder DULCI FMT S St DULCI FMT.7S Stereo LEAK Troughiline with MPX LEAK Stereofetic Chassls LEAK Stereotetic In teak cas PHILIPS RH 690
PHILIPS 690 .
QUAD Stereo FM
ROGERS Ravensbourne
Thner with Decoder Tuner with Decoder
SINCLAR 2000
TRUVOX FM 200/IC with
TUNER/AMPLIFIERS ARENA 2400 wIth MPX
ARENA 2600
Stereo AM/FM ARENA 2700 Stereo FM With MPX decoder ARENA T1500F with MPX ARENA T9000 with MPX.
ARMSTRONG 525
ARMSTRONG 526
(Teak Case for 127)
GOOD Case for 3000
PHILIPS RH781
PHILIPS RH790
PHILIPS RH 691
TANDBERG SolvSuper
TELETON F.2000
TELETON 7ATI
COMPLETE HI-FI SYSTEMS
METROSOUND Stereo 1010 TELETON MX. 990 TELETON CMS 300
TELETON CMS. 400
MARCONI UNITA
GOODMAN 3000 suite WYNDSOR System
VIDEORAMA

CARTRIDGES
Goldring 800 Cartridge
Goldring 800H

$£ 52$ $£ 31$

$£ 8210$ | $£ 59$ |
| :--- |
| E 567 |
| £ 69 |

$\begin{array}{r}\mathrm{E} 105 \\ \mathrm{f} 72 \\ \hline\end{array}$
$\begin{array}{r}£ 72 \\ £ 303 \\ \hline\end{array}$

$£ 83$
$£ 75$
$£ 51$
$\begin{array}{rrr}£ 51 & 0 \\ £ 133 & 0 \\ £ 51 & 15\end{array}$ $£ 105$
$£ 126$

Rec. Retail Comet \begin{tabular}{lr}
13

2 \& 0

5 \& 0

4 \& 0

3 \& 0

9 \& 10

5 \& 0

1 \& 10

3 \& 18

9 \& 0

6 \& 0

6 \& 0

3 \& 0

3 \& 0

3 \& 0

5 \& 0

9 \& 10

64 \& 0

44 \& 0

4 \& 0

45 \& 0

51 \& 5

30 \& 9

28 \& 7

\hline 54 \& 12

 0000000000000000000 £28 0

8 \& 0 \& 0

7 \& 19 \& 0

0 \& 19 \& 0

\hline
\end{tabular}

路

Goldring 800 E Goldring G850 Goidring CSSo Stereo
Ceramic Cartridge Ceramic Cartrid Goldring CS91/E Plickering V15 AC2. Ortofon SL
Ortoton 2 CL
15K Shure M3DM Shure N3D Shure M31E Shure M32E Shure N32E Shure M32-3 Shure N32-3 Shure M44-5 Shure N44-5
Shure M44-7 Shure N44-7 Shure M44-C. Shure M44E Shure N44E Shure M55E Shure N55E
Shure M75G Shure N75G Shure M75-6 Shure N75-6. Shure M75EJ. Shure M75E-95G Shure N75E Shure V15.11 Shure V15-11-7 Shure VN7

$\begin{array}{llll}539 & 10 & 0 & £ 3319\end{array}$ | $£ 9$ | 10 | 0 | $£ 34$ | 19 |
| ---: | ---: | ---: | ---: | ---: |
| $£ 22$ | | | | |
| $£ 22$ | 1 | 0 | $£ 19$ | 6 |
| $£ 31$ | 0 | | | | $\begin{array}{llllll}\mathbf{\Sigma 5 1} & 10 & 5 & £ 71 & \mathbf{5} & 0 \\ £ 59 \\ £ 59 & 10 & \mathbf{f} 39 & 19 & 6\end{array}$ £39 0 $\begin{array}{llllll}£ 39 & 0 & 0 & £ 32 & 19 & 6 \\ £ 51 & 0 & 0 & & & 6\end{array}$

$\begin{array}{lllll}£ 61 & 17 & 9 & £ 52 & 12 \\ 5 & 6\end{array}$
$\begin{array}{llll}560 \\ 11 & 10 & £ 3919 & 6\end{array}$
$\begin{array}{llllll}£ 90 & 6 & 0 & 56919\end{array}$

$\begin{array}{r}5115 \\ 839 \\ \hline\end{array}$
$£ 776$

$\begin{array}{r} \\ \times 59190 \\ \hline\end{array}$
$\begin{array}{rlllll}\mathbf{£ 5 9} & 19 & 6 & £ 49 & 19 & 6 \\ £ 42 & 19 & 6 & £ 35 & 0 & 0\end{array}$
$\begin{array}{rrrrrr}£ 13 & 0 & 0 & £ 10 & 7 & 6 \\ £ 10 & 13 & 0 & £ 8 & 10 & 6\end{array}$
TURNTABLES
ARENA SP25 with base, cover and Plckerling magnet. GARRARD SP. 25, MK II GARRARD AP. 75 GARRARD SL, 55 GARRARD SL, 65B GARRARD SL. 75 B GARRARD SL. 95 B GARRARD SL, 72B GARRARD 3500 with GKS Cartridge GOLDRING GL 69
GOLDRING 69P GOLDRING GL. 75 GOLDRING 75P
GOLDRING COVERS fo GOP and 75P GOODMANS 3025 PHILIPS 228. PHILIPS GA PHILIPS 202 Electrön THORENS TD. 125 THORENS 125 AB THORENS 150A MK II THORENS 150AB MK Bases, plinths and covers stocked

SPEAKERS

ARENA HT 27
ARENA HT 28
ARENA HT 21
ARENA HT 7
ARENA HT 10
ARENA HT 20
ARENA HT 26
B \& W DM3
B \& W P2H
CELESTION DItton 10 CELESTION DItion 15 DULCI AS 3
GOODMANS Majesta
GOODMANS MaxIm

Customers Welcome
Open Daily to the public from $9 \mathrm{a} . \mathrm{m}$. Closed Tuesday 1 p.m Mon. \& Sat. 5-30 p.m. Opén until 8 p.m. Wednesday, Thursday \& Friday

COMET Hi-Fi DISCOUNT WAREHOUSES

Reservoir Road, Clough Road, Hull HU6 7QD. Tel 407906 also at 68a Armley Rd (Artist St) Leeds LSI2 2EF Tel 32055

Customers are welcome to call personally. Ample Gar Parking facilities

Complete stereo system - £29-10

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally. Type 1 SPECIFICATION:-
limpedance 3,8 or 10 ohms (please state requirement) high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker and $2 \frac{1}{4}$ " tweeter. Teak finish $12^{\prime \prime} \times 6 \frac{3}{4} \times 5 \frac{1}{4}$ ". 4 guineas each. 7/6d. p. \& p.
Type 2 as type 1. Size $17 \frac{1}{\frac{1}{2}} \times 10 \frac{3^{\prime \prime}}{4} \times 6 \frac{7^{\prime \prime}}{}$. Incorporating $10 \frac{1^{\prime \prime}}{2} \times 6 \frac{1}{4}{ }^{\prime \prime}$ speaker and $2 \frac{10}{4 \prime \prime}$ high frequency speaker 3 ohms impedance $£ 6$-6-0 plus 15/- p. \& p.

Garrard Changers from $£ 7.19 .6 \mathrm{~d}$. p. \& p. $7 / 6 \mathrm{~d}$. Cover and Teak finish Plinth $£ 4.15 .0 \mathrm{~d}$. $7 / 6 \mathrm{~d}$.p. \& p .

The items illustrated can be purchased logether for £29-10.

The Duetto is a good quality amplifier, attractively styled and Inished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION:-
R.M.S. power output: $\mathbf{3}$ watts per channel into 10 ohms speakers. INPUT SENSITIVITY. Suitable for medium or high output crystal cartridges and tuners. Cross-talk better than 30dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4-position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL: Treble lift and cut. Separate on/cff switch. A preset balance control.
29-10
Dweita
Integrated Transistor Stereo Amplifier plus 7/6d.
p. \& p.

The above 5 items can be purchased together for $\mathbf{E 2 9 . 1 0}+£ 1.10 .0$ p. \& p.

- he Olassic

£9 plus 7/6 p. \& p.
Controls: Selector switch Tape speed equalisation switch (3z and $7 \frac{1}{4}$ i.p.s.) Volume. Treble. Bass. 2 position scratch filter and 2 position rumble filter.
Specification: Sensitlvities for 10 watt output at $1 \mathbf{K H z}$ Into 3 ohms. Tape head: 3.nV (at 3:द्व. p. s.). Mag.P.U.: 2 mV . Cer.P.U.: 80 mV . Tuner: 100 mV . Aux. : 100 mV . Tape/Rec. output: Equalisation for each inputis correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at rak Hz. Total distortion: (Hor 10 watt output) $<1.5 \%$. Shonal noise: $<-60 \mathrm{~dB}$. A.C. mains $200-250 \mathrm{v}$. Built and tested. Stze $12 \frac{1}{2} \mathrm{In}$. long, 4 iz . deep, $2 \mathbf{z} \mathrm{I} \mathrm{In}$, high. Teak finished case.
f14.5 plus $7 / 6$ p. \& p.
Integrated High Fidelity Transistor Stereo Amplifier, Specification-Output: 10 watts per channet into 3 to 4 ohms speakers (20 watts monaural). Input: 6 positlon rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. out. Sensitlvitles: All inputs 100 mV Into $1 \cdot 3 \mathrm{M}$ ohm. Frequency Response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{~dB}$. Tone Controls: Separate bess and treble controls; treble, 93 dB lift and cut (at 15 KHz); Bass, 15 dB IIft and 25 dB cut (at 60 Hz). Volume Controls: Separate for each channel. A.C. Mains Input: $200-$ $240 \mathrm{~V} .50-60 \mathrm{~Hz}$. Size, $12 i^{\prime \prime} \times 6^{n} \times 2$ in $^{\prime \prime}$ In teak finlshed case. Built and tested. VISCOUNT MARK II for use with magnetlc pick-ups specification as above VISCOUNT MARK II for use with magnetlc pick-ups specification as above.
Fully equalised for magnetic pick-ups. Sultable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at 1 kc . Input Impedance 47 k . $£ 15.15 \mathrm{p} / \mathrm{us} 7 / 6 \mathrm{p}$. \& p_{p}

SPECIAL OFFER!

Complete stereo system comprising BALFOUR 4-speed autoplayer with stereo head, 2 Duo speaker systems, size $12 \mathrm{in}, \times 6 \mathrm{zin}$. $x 5 \mathrm{zin}$. Plinth (Iess cover) and the DUETTO stereo amplifier. All above Items
£25 plus £2 p. \& p.

NEW COMPLETE HI-FI STEREO SYSTEM - £41

comprising SP 25 Garrard Mk II with damond cartridge, or 2025 TC, Viscount Mk I amplifier, two type 2 speakers, plinth and cover

C41 plus \&2-10-0 p. \& p.

FREE WITH PAKTS

The ELEGANT SEVEN

 Mk. III (350mW Output)transistor Iully tunable M.W.-L.W. Euperhet portable set of parts. Complete with all componente, including ready etched and drilled orinted circuit boari-hach printed for foolprool construction. MAINS POWER PACK KIT: 9/6 extra Price $£ 5.5 .0$ plus $7 / 6 \mathrm{P}$ \& P

The DORSET

(600 mW Output)

7-tranaistor fully tonsble M.W.-L.E. superhet port able-with baby alarm facility. Bet of parts. The thls simple to build. Sizes; $12 \times 8 \times 3 \mathrm{in}$.

Price $£ 5.5 .0$ plus $7 / 6 \mathbf{P} . \& \mathbf{P}$.
MAINA POWER PACK KIT : $9 / 6$ extra

FREE WITH PARTS

EXTRACTOR FAN

A.C. mains $230 / 250 v$. complete with pull awitch.

Bize: $6 \times 6 \times 414$
Price 27/6 plus 7/6 P. \& P.

X101

10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP

Specitications: Power Output (into 3 ohms speaker) 10 watt pertifivity (for rated output): 1 mV into 3 K ohms (0.33 microamp)
Total /istorion $u t 1 \mathrm{KHz}$ at 5 watts, $0.3 \overline{\mathrm{~J}} \%$, at rated output
1.5%.
Frequency Response: Minus $31 B$
pointa 20 Hz
and
40 KHz . Speaker: $3-4$ ohms (3.15 ohms may be used). Supply wollage: 24 V DC. at 800 mA (6-24V, way be used).

Price $69 / 6$ plus 2/6 P. \& P.
Control assembly; Including resistors and
capacltors. 1. Volume: PRICE $5 /-$. Power Supplies for the E101:
$\begin{array}{lll}\text { capacitors. PRICE } 5 /-3 \text {. Comprehensive } & \text { P101 M (for nono) } 35 /- \text { plus } 4 / 6 \mathrm{p} . \& \mathrm{p} \\ \text { 2. Treble: PR } \\ \text { bsas and treble: PRICE } 10 / \text {. The above } & \text { P101 } \mathrm{g} \text { (for atereo) } 42 / 6 \mathrm{plus} 4 / 6 \mathrm{p} . \& \mathrm{p}\end{array}$
3 bass and
X 101

CAR TRANSISTOR IGNITION SYSTEM

by famous manufacturer
For it voit or 1"2 volt poultive earth systems, Comprising: special bigh voltage working hermetlally sealed silicon transistor mounted in finned heat-sink, high output ignition coll, ballast resistor and hardwear (screwh, washers, etc.).

Price $£ 4.19 .6$ plus 5/- P. \& P

50 WATT AMPLIFIER

Price £28.10 plus 20/-p. * p .
A.C. Mains 200-250V

An extrentely reliable general purpose alve ampliffer. Its rugged construction vet space age blying and deviga makes by far the best value for money. TECHNICAL SPECIFICATIONS 3 electronically mixed channels, with 2 inputs per channel, enables the use of 6 separste instruments at the same thme. The volune controls for each channel
are located directly above the correaponding input sockets. SENBITTVITIES AND INPUT IMPEDANCES. Channels $1, \frac{5}{2} 4 \mathrm{mV}$ at 470 K . These 2 channels (4 inputs) are suitable for microphone
 1m. Suitable for most high output lnstrunents (gran, cuner; organ, ecc.) Mrys.

 are 30 Hz and 20 KHz . POWER OUTPUT: For speech and music 50 watta $\mathrm{K}_{\text {mis. }} 100$ watts peak. For sustalned music 45 watts rmse. 90 watts peak. For sinc wave 38.5 watts ruts. at 20 watte 0.15% at 1 KHz . Oun at rated output 3.2% at KHz . speaker aystem. negative feedback 20dB at 1 KHz . sighal to nolse ratio 60dB. mants voltages adjustable from $200-250$. A.C. $50-60 \mathrm{~Hz}$. A protective fuse is located at the rear of unit. Output tmpedance, 3,8 anal 15 ohnis.

B.S.R. TD-2 TAPE DECK

Takes \bar{y} in. spools, atted with B.A.R. Track Heade. Bize $13 \mathrm{i}_{\mathrm{in}}$. long by 8 gin. wide. Price £8.19.6 plus 7/6 P. \& P

TERMS C.W.O
All enquiries S.A.E.

SOLID-STATE GENERAL
PURPOSE
AMPLIFIER

SPECLFICATIONS
Output- 10 watts Output Impedance- 3 to 4 ohms Imputs-1. xtal mic 10 mV Tone Controls-Trehle control ramge $\pm 12 \mathrm{dk}$ at 10 KHz . ments-1. © $\mathrm{Gram} / \mathrm{radio} 250 \mathrm{mV}$ Bass control range $\pm 13 \mathrm{~dB}$ at 100 H 2. Response-(with tone controls central) Minus 3 dB points at 20 Hz and $40 \mathrm{~K} \mathrm{~Hz}_{\text {c }}$ Signal to Nolse Ratio-better than-60dB. Transistors-4 ailicon Planar ${ }^{\text {syp }} \times$ and 3 Germanium type. Mails input-220/200V. A.C. size of chassis- 10 , $x 4$
 treble lift control. Two bing and mike. Built and tested
RELIANT Mk. I
RELIANT MK. II

As a bove less tealk cane
£5.15 plus 7/6 P. \& P
In teak fintished case.
c6.16 plus $7 / 6 \mathrm{P} . \& \mathrm{P}$

RECORD PLAYER SNIP

The "Princess", 4-speed automatic record changer and player engineered with the utmost precision for beauty, long lite, and trouble free service. Will take up to ten records which may be mixed $7^{\prime \prime}$ to 10° or 12^{2} Patent stylus brush cleans stylus after each playing and at shut off, the pick-up locks itself into its recess a most useful feature with portable equipmentother festures inclucte pick-up height adjus is a fine atylus pressure adjustment. This truly is a ane onstry is complete with cartridge and really to play. Post and ins. 7/6 extra.
ONLY £5.19.6 plus 7/6 P. \& P

POCKET MULTI-METER

Size $3 f \times 2+\times 11 \mathrm{~m}$. Meter size $2 \mathrm{z} \times 1$ in. Sensitivity 1,000 O.P.Y
 Resistance $0-100 \mathrm{k} \Omega$ Complete with test prode, battery and full instruc tions.
$42 / 6$ plus $3 / 6$ P, \& P
FREE GIFT for limited perlod only, 30 watt Electric Soldering lron value $15 /-$ to every purchaser of the Pocket Multi-Meter

40W FLUORESCENT LIGHT KIT

1ncorporating GEC Choke size $8 \frac{1}{2} \times 1 \% \times 1$ inin, 2 bi-pin holders.

11/6
ntarter and starter-holder, P. \& $\mathbf{P} .5 / 6$ Blmilar to above: 80 W . Fluorescent Light. Nin holders, skart $\begin{array}{llll}\text { GEC choke 日ize } 11: \times & 1 \% \times 1!\text { in. } 2 \text { bi-pin how } \\ \text { and ntarter holder. } & \text { P. \& P. } 6 / 6\end{array} 17 / 6$

THREE-IN-ONE HI-FI 10 WATT SPEAKER

A complete Loud speaker systen on one frame, combining threp watched ceramic magnet speakers with a low loss crosbover network. Peak handing porer Frequency Impedance to ohnis. Fux density 1

List price £7 OUR PRICE 74/6 plus 5/- P. \& P
Similar speaker to the above without tweeters in 3 and 15 ohms $44 / 8$ pius $\overline{5} /-\mathrm{p}$. $\$ \mathrm{p}$.

PYE CAR RADIO

Push Button Tuning Heart This PRESTOLOCK 5 atation Push-Button Tuner Heart with Manual Over-ride is an ideal basis for a quality AM car rallo. Bize 6

As illustrated but without knobs.

25/- plus 3/- P. \& P.

QUALITY MAINS TRANSFORMER

Input 250 volts. OUTPUT (All RMS values) 4 windings of 11.5 volts connected in serles total 46 volth at 4.5 alups conservatively rated). 2.46 volts
Both of these above voltages are commonly used in medium to high powered transistor amplifiers, power supplies, etc.

Price $35 /-$ plus $7 / 6$ P. \& P.

Goods not despatched outside UK
RADIO \& T.V. COMPONENTS (ACTON) LTD. 21c High Street, Acton, London W.3. Also at 323 Edgware Road, London, W.2. ALL ORDERS BY POST TO OUR ACTON ADDRESS

GARRARD TURNTABLES GOLDRING-BSR-GARRARD ALWAYS EXTRA BARGAINS FOR CALLERS AT OUR 309 EDGWARERD.

Credit Sale
(Callers Only)
For purchases
For purchases
from the 309
Store from $£ 30$

Cartridge Model	Less Cartridge	9TAHC Diam.	$\begin{aligned} & \text { AT21 or } \\ & \text { M3DM } \end{aligned}$	$\begin{aligned} & \text { AT66. } \\ & \text { AT21X. } \end{aligned}$	AT33 Deram		G800	$\begin{aligned} & \text { J2203 } \\ & 8005 E= \end{aligned}$	Cs9IE Ceramic
SP25 Mk		1312	19						
AP75	17150	1915 \%		230	270		210		
GL75P	4600		53100	${ }_{60} 0^{\circ} 0^{\circ}$	5510	0	53.	${ }_{70}{ }^{17} 170$	2510
GL69P	3500	37 \%	4210	$40 \quad 0$	4410	0	4200	$590^{\circ} 0^{*}$	4210
MA70	12100	14100	200	17126				16100	20 O
AT60 Mk II	13100	15150	21.7	190	18.	0*		1712	2110
	$\begin{array}{lll}33 & 0 & 0\end{array}$	3500	40 32 32	$47{ }^{17}{ }^{0} 0^{0}$	4210	0	400	$57{ }^{51} 0^{0 \times}$	4010
SL728	$\begin{array}{lll}25 & 0 & 0 \\ 31 & 0 & 0\end{array}$	${ }_{33}^{27}$	3210 3310	3010 36 10	3410 40	0	340	29	3210
SL95B	3900	410	4610	$5310{ }^{5 *}$	4810	0	48.	350	3810 46 10
SL65B	15196	180	2310	21100	2010	${ }_{0}$	25.	1915	23100
GL69	23	250	3010	280	3210	0^{*}	30.	47000	3010

[^0]
BRAND NEW FULLY GUARANTEED TRANSISTORS \& DEVICES

Send for Free Copy of 1970 Transistor List (36) of a 1,000 Types Today:

INTEGRATED		CIRCUITS		DISCOUNTS
BPIO10	25/-	PA424	$59 / 6$	
CA3014	29/6	PAA ${ }^{\text {PA6 }}$	7966	10% on $12+$ and 15% on $25+$ any one typ
CA3018 CA3020	22/6	MC1304	55/-	OUANTITY PRICES $100+$
CA3028A	23/6	TAD 100	451-	AN
${ }_{\text {CA }}{ }^{\text {c }} 1036$	16/6	TAA263	15/-	Phone 01-723-0401 Ex. 4.
${ }_{\text {PA }}^{\text {P/ }} 10$	23/6	UL900	10/-	
PA2 ${ }^{14}$	20/-	UL910 U1914	$\xrightarrow{1016}$	Post/Packing add $2 / 6$ on your order.
PA237	37/6	UL914	1216	

Hanirs hano
Man Oeter Depr Comporems Orow Devt 303 EDGWARE ROAD. LON
Telephone: Ol-723 1008 9 relephone : Ol-723 10089

TECHNIGAL thaining in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for-a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how ?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW $\mathbf{S E L F}^{\text {build radió courses }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.
(NTERNATIONAL

Abstract

R．S．C．SENSATIONAL HIGH FIDELITY STEREO \star Super 30 Amplifier（ 30 watt）in veneered housing ＊Goldring Transcription Turntable on Plinth太 Shure or Goldring Magnetic Pick－up Cartridge天 Pair of Stanway 11 Loudspeaker Units Apeciai total price．Four fully wrired units ready to

86 Gns． units ready to＂plug－in＂．Carr．30／－． TA18 Amplifier（IS watt）in veneered bousing． ap．Autochanger unit on plinth．Sonotona 9 TA P Garrard 3000 Palr of Dorchester Loudspeaker unita Special Total Price $47 \frac{1}{2}$ Gns Gns． cam Or Dep．$£ 9$ and 9 monthly payments．\＆5．4．e（Total ع5n．2．9） AUDIOTRINE HIGH FIDELITY LOUDSPEAKERS onstruction．Latent high efficiency ceramic magnets．Treated Cone sur－ round．＂D＂indicates Tweeter Cone providing extended frequency range up to 15,000 c．p．a．＇L＇Indicates Roll Rubber to 15,000 c．p．e．＇L＇indicates Roll Rubber ohms．Please＇state choice．Exceptional HF510L HF801D HF102D performance at low cost． $10 \mathrm{~W} \quad 49 / 9$ HF120 $\begin{array}{lllllllr}10^{\prime \prime} & 8 W & 54 / 3 & \text { HP120D } & 12^{\prime \prime} & 15 W & 15 \mathrm{~W} & 89 / 9 \\ 67 / 11 & \text { HF128 } & 12^{\prime \prime} & 15 W & \mathbf{~} 5.5 .0\end{array}$ $\begin{array}{cccc}\text { HF100D } & 10^{\prime \prime} & 15 \mathrm{~W} & \text { e4．19．9 } \\ \text { HFIOSDL } \\ 10^{\prime \prime} & 10 \mathrm{~W} & 6 \mathrm{gns} .\end{array}$ HIGH FIDELITY LOUDSPEAKER UNITS Cabinets latest style Satin Teak or Alrormosis venear Acoustically lined or flled acoustic damping．Ported where DORCHESTER Range $45-15,000$ c．p．s．Rating 8 gin．appr． Fitted High fux $13 \times 8 i n$ ．Dual 88199 Cone apkr．Imp． 3 or 15 obms． $\mathbf{E 8} 19.9$ STANWAY II Bize $20 \times 10{ }^{2} \times 9$ gin．approx． Rating 10 watts．Inc．Fane 13xitn．speaker throw higaly flexible cond 11,000 line magnet High fux tweeter．Handsome Scandinavian design cab－ inet．Range $35-20,000$ c．p．s．Imp． 15 ohms．Gives smooth realistic sound output

16 Gns． R．S．C．TA6 6 Watt HIGH FIDELITY SOLID STATE AMPLIFIER

Foo－950v．AC maine operated Frequency Reaponse $30-20,000$ c．p．s．－2dB．Harmonic Distor tion 0.3% at 1,000 c．p．s． Beparate Bass and Treble ＇Hift＇and＇cut＇controis． 3 Beparate liput sockets for Mind Treble，Gram， Ralio or Tape．Input selector switch．Output for 3－15 ohm spkrs．Max．sensitivity 5 mV ．Output rating I．H．F．M．Fully enclosed enamelled case， $94 \times 2\} \times 5 \mathrm{tin}$ ．Attractive brushed silver finigh facia plate $10 \frac{1}{x} 3$ ifin．and matching knobs． Complete kit of parts with full wirlng 7 Gis． diagrams and ingtructions． diagrams and instructions，

THE＇YORK＇HIGH FIDELITY 3 SPEAKER SYSTEM \star Moderate size，only $25 \times 14 \times 10 \mathrm{ia}$ ．COMPLETE KIT 20 Gns \star Response $30-20,000$ c．p．s．Impedence 15 ohms t Response 30－20，000 c．p．s．Impedence is obms ＊Performance comparable with units costing condiderabley more．Conslats of（1） $12 i n$ ．Is wat considerabley more．Conslats of（1） 12 in ．Is watt Bass unlt wart．12／6 cast chasis，Roll rubber cone surround for ultra iow resonance，and ceramic high fux middle range speaker．（4）High efficiency tweeter．（5）Appro－ priate quantity acoustic damplag material（6）Teak veneered cabinet． full instructlons．Terms：Dep． $25,10.6$ and 9 monthly payments $39 /=$（Total LEMONSTRATIONS AT ALL BRAYCERS 9 monthly payments 39／－（Total 223．1．0）

Matching an recommended lor optimum performance． Send lor coloured brochure showing other moner ssving ofers

Package prices apply pro－ viding all individual units are purcnated trom any

EXTREMELY ATTRACTIVE PLITTHS finished in Teak or Airormosia vencer．Trans plastic cover ＇PACKAGE＇OFFERS \star Super 30 amplifier $(15+15$ watt）in vencered housing ＊Garrard SP25 Mk II Turntable on Plinth ＊Goldring CS90 Ceramic P．U．Cartridge with diamond stylus ＊Pair Stanway II Speaker Units Four fully wired units resdy to 76 GnS．Carr． ＇plug－in＂．Bpecial total price ＂plug－In＂．Special total price TA12 Amplifer（13 watt）in veneered housing Goldring CS80 Ceramic P．ర．Cartrldge 53 gns Pair ol Dorcbester Loudspeaker Units．SJgns． Or Dep．£10．0．3 and 8 mithly．payments E 5.15 .5 Total 58 gns．）．Transparent plistic cover 3 gns．extra TERMS AVAILABLE ALL PACKAGE OFFERS

\section*{RECORD PLAYING UNITS}

Money saving units．Mounted on Plinth．Bupplled with trans－ parent plastic cover．Ready to plug into Amplifer or Tape recorder．farrard SP25 Mk II fited（with heavy turntable） fitted Goldring Cs90 high com pliance cerbmic Bterco／Mono cart ridge with diamond atylus．Carr． $9 / 6$ $\mathbf{6}$ Gns． RP5C Garrard 2025 Auto Unit Btereo Cartridge warrard GCS 23 Plinth \＆Cover as RP2C IF carr．9／6． 15 Gns． Other sypes available with Mag－ netic certridges and with alternative denign plinths．

\section*{Limited Number of CLEARANCE LINES in leading makes of Ei－Fi equipment at Brauches only} trans．plastio cover．Carr．iree $\stackrel{\text { tor }}{\text { Recorrit }}$ Playing units， cut for $102 \overline{0}, 202 \bar{s}$, $102 \overline{0}, 202 \overline{3}$, 3000, AT 60, SP²a etc． 3 gns. 6 gns

\section*{INTEREST CHARGES REFUNDED}

On Credit Sales settled in 3 months．

LINEAR LIO HIGH FIDELITY IOW AMPLIFIER 10 Gns． with separate Pre－amp Magnetic P．U．matching．To clear

R．S．C．TAI2 MKII I3 WATT STEREO AMPLIFIER FULLY TRANSISTORISED，SOLID STATE CONSTRDCTION HIGE FIDELITY OUTPUT OF 6．5 WATTS PER CEANNEL Designed for optimum pertormance with any crystal or ceramic Gram P．U．cart etc．$\$ 3$ separate swifched input sockets on each channel S Separste Bass and Treble controls \star Blide Switch for mono $^{\text {fine }}$ use 南 Speaker Output 3－15 ohms \＆For 200－250v．A．C．mains $*$ Frequenc Response $30-20,000$ c．p．s．-2 dB \＆Harmonic Disturtion 0.3% at 1000 c．p．B．Hum and Nosse $\rightarrow 70 \mathrm{~dB}$ c．p．s．Hum and Nolse $\rightarrow 70 d B$＊Sensitivites（1） 300 mV （2） 50 mV （3） finish Facte sind Knobs Complete kit of Rart with 12 mith gntee 17 Gns or Deposit $£ 5.2 .6$ and 9 mithly pytnts 132 Gns． 34／－（Tota！$£ 20.8 .6$ ）．Or in Teak or Afrormosia veneer hou Dep．£j．10．6 and 9 monthly payments $£ 8.1 .7$（Total £24．4．9）．

\section*{AUDIOTRINE HI－FI SPEAKER SYSTEMS}

Consisteing of matched 12in．11，000 ine 15 Watt igh quailty speaker，cross－over unit and sweeter．Smootil esponse and extended frequency range ensure surpriaingl Or Senior 15 wation． 5,000 line Speaker e．HF126 65.15 .0

HI－FI SPEAKER ENCLOSURE Teak or Afrormosia veneer finlsh．Modern design．Acoustically ilned． pleasing results with any sin．HI．Fi＇speaker． $\mathbf{C 4} .15 .0$ SE8 For optimum performance with any sin．f5．｜5．0 Hi－Fi speaker．Blze $22 \times 16 \times 91 \mathrm{~h}$ ．Ported SE10 For outatanding resulta SE12 For exclat primnce Size 24xi5xioin．P＇td．©5．19．6 Size $25 \times 16 \times 10 \mathrm{f}$ Carr．5／9

R．S．C．TFMI SOLID STATE VHF／FM RADIO TUNER \star High－senatitivity． sny amplifier（appror． $500 \mathrm{~m} . \mathrm{v}$. ）．\＄Output for leeding stereo Multiplerer．\star Tunet head using silicon Planar Transistors．t Designed for atandard 80 ohm co－azial input．Visually matching our Super 15 and 30 amplifiers and of the same high ntandard of performatice and rellability．Printed circuitry． A quailty product at conaiderably less than the cost of comparable units．Factory and 9 monthir payments．\＆gni．Total $£ 24.19 .0$ ．Stereo version，23．ons．Carr．10／8 extra

RS．C．SUPER 30 MkII HIGH FIDELITY STEREO AMPLIFIER

High Grade Components Specifications comparable with units costing considerably more． TRANBISTORS 9 high quality types in each channel．
0 TTPDT 10 Watts R．M．S．continuous into 13Ω（per channel）． 15 Watts R．M．s． continuous into 3Ω ．
MIPOT SEMSITIVITIES Mag．P．U． 4 mV Ceramio P．U． 35 mV ．Tape Amp． 400 mV Auz． 100 mV ．Mic． 5 mV ．Tape Head 2.5 mV FREQUENCY RESPONSE $\pm 2 \mathrm{~dB}$ ． $10-$ 20,000 c．p．s．
$\underset{\text { at }}{\text { TRELE }} \mathbf{~ C O N T R O L}+17 \mathrm{~dB}$ to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$ ．
BASS CONTROL +17 dB to -15 dB at $80 \mathrm{c} / \mathrm{s}$ HOM LEVEL -80 dB ．
BARMONIC DISTORTION 0.1% at 10 watts 1，000 c．p．s．

Emploging Twin Printed Circuits 2008s TALK 52 dib at 1,000 c．p．s． CONTROLS 5 Positlon Input Belector． Bass，Treble，Vol．，Bal．，Stereo／Mono $\mathbf{S w i t c h}^{\text {wit Tape Montor }}$（witch，Malns Switch．
INPUT
NPUT SOCKETS（1）P．U．（2）Tape Amp． （3）Radio，（4）Mic．or Tape Zead．（Opera－ equalisation）．
CRelector assures appropriate
CRASSIS equalsation．Birong Bteel construction．
GAPs8is
Approx． $12 \times 3 \times 81 \mathrm{n}$ ．
plastic silver background black lettering Silver finigh matching control knobs as available．
Eminently suitable for ane with any make Ot plek－up or Mic．（Ceramic or Magnetic Moving Coil，Ribbon or Crystal）currently available．Saperb hound output quality can ba obtained by use with frst rate ancillar

cquipment．
 COMPLETE KIT OF PARTS

Point to point wring dlagrams 22 gns and detaled instructions． Cart． 15
UNIT FACTORY BUILT 29 gns With 12 months guarantee． or Deposit 82.3 .0 and 9 monthly paymenta
68／9（Total 233.13 .9 or in Teak or Afrormosia 8eneer housing 32 Gna．Cart．15／$\%$ ．Terms： Deposit \＆7．8．6 and 9 monthly payments of 68／6（Total z37．2．0）．Send B．A．E．for leaflet．

R．S．C．BATTERY／MAINS
CONYERSION UNITS
 An alledry bat－ tery eliminator．
tion
 2in．approz． Completely replaces batteries aup－
plying 1 Sv，and 90 v ．where A．C． plying $15 v$ ，and 90% ．Where A．C． complete kit with diagram $52 / 6$ or sasembled 3 Gns ．
SUPER IS HIGH FIDELITY SOLID STATE AMPLIFIER
Appror．as Super 30 bat single channel．Complete kit with full constructional detaila and point to point wiring diagrems．

$$
2 \frac{1}{2} \text { gns．Carr．} 12 / 6
$$ OR FACTORY BUILT 164 Gn： Carr．12／6．Terms：Depostt 4 Gn and 8 monthly payments $81 / 1$ （Total 218.8 .8 ）or In Teak or Afror

PARTRIDGE＂JOYSTICK＂SHORT WAVE AERIALS AND TUNERS AT ALL BRANCHES（S：A．E．for full list）

BRADFORD 10 North Parade．（Half－day Wed．）Tel． 25349 BLACKPOOL（Azent）O．\＆C．Electronies， 227 Chureh 5trees BIRMINGHAM $30 / 31$ Gt．Western Arcade 022－236－1279 DERBY 26 Osmaston Rd．，The 5pot（Half－day Wed．）Tel． 41361 DARLINGTON 18 Priestgate（Half－day Wed．）Tel． 68043 EDINBURGH 133 Leith St．（Hall－day Wed．）Tel．Waverley GLASGOW 326 Argyle St．（Half－day Tues．）Tel．CITy 4158 HULL 91 Parazon Street（Half－day Thursday）Tel． 20505

MAIL ORDERS TO： 102 Hanconn Lande Bramey，Lo．d．13．No c．O． posiase 410 extra under 82 ． 519 extra undeer ES．Trada suppllod．S．A．E．wit Branches： MAIL ORDERS MUST NOT AL OROERS MUST NOT

32 High Street（Half－day Thurs．）Tel． 56420 LEICESTER 5－7 County（Mecca）Arcade，Briggate（Half－day Wed．）LEEDS 73 Dale St．（Half－day Wed．）Tel．CENtral 3573 LIVERPOOL 238 Edgware Road，W2（Half－day Thurs．）Tel． LONDON 60A Oldham Streat（Half－day Wed．）MANCHESTER 106 Newport Rd．（Halfday Weld．）MIDO96 MIDDESBROUGH 41 Blackett Street（Opp Fen ictics Sorere）NEWCASTLEUPON

R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI
 AMPLIFIER $\begin{aligned} & \text { Highly senaltive. } \\ & \text { high output, } \\ & \text { Fith } \\ & \text { Presh-Pull }\end{aligned}$ Tone Control stages. Performance figures of Tone Control Stages. Performance figures of
lactory built unlts: Hun level-70dB. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Bectionally wound output trangformer. All high grade components. Valves EF86, EF88, ECC83, 807, 807, GZ34. Separate Bass and Treble Controls. Sensitivity 36 mV . Suitable for high impedance microphones. Cryatal or Ceramic P.U's. Designed for Clubs, Schoold, Theatren, Dance Halls or Ortdoor Functions, etc. For use with Electronic Orgon, Guitar, striag Base, etc. Gram, Radlo or Tape. Reserve L.T. and H.T. for Radio Tuner. Two inpuks with can be mired. $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s} \mathrm{A.C} \mathrm{maing}$.For 3 and 15 ohm speakers. Complete kit of parts with point-to-point wiring diagrams and instruc- $\mid 5$ Gins. Carr. Twins.handled perforated cover 27/6. Supplied factory built with EL34 output valves. 12 months' gusrantee for 18 gns. TERMS: Depodit 86.8 .0 and 9 monthly paytuents of 84 - - Total 881.9 .0). Bend S.A.E. for leaflet
R.S.C. AII HIGH FIDELITY 12-14 WATT AMPLIFIER
 PUSH-PULL ULTRA LIHEAR OUTPUT "BUITT-IA" TONE CORTROL PRE-AMP. Two input socketa with mixing facilities High Bensitivity, 5 valvcs. Independent Bass and treble controls. Frequency. response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$.
Hum level - 60 dB . Bensitlvity 40 nillivolts. For Hum level - ${ }^{60 \mathrm{~dB}}$. Sensitlvity 40 nillivolits. For For Musical Instruments etc. Std. AC mains. For $3 * 15$ ohm splcrs. $9 \frac{1}{2}$ GISS. wiring diagrama, Carr. 11/6. Twin handled metal cover 27/6. Price Factory built 181 gns. or Deposit g9/6 and 9 monthly payments of $26 /-$ (Total $£ 16.13 .6$). RSC Al1T TRANSIS
(Asrembled 18 Gns.)

30 WATT HI-FI AMPLIFIER

FOR GUITAR, VOCAL OR HASTRUMEATAL GROUP A 4 input, 2 volume control Hi-Fi unit with Separate
Bass and Treble controls. B.V.A. valves. Peak output rasing. Strong Rexine covered cabinet with haudlea. Attractive black/gold facia panel, Neon indicator. For $200-250 \mathrm{v}$. A.C. matins. For 3 or 15 ohm $\mid 9$ Gns. Carr.
$12 / 6$ speakers. Send 8.A.E. for leafiet.
Nep. 8 ghs \& 9 monthl psyments of 39 (Total 28 gas) FANE ULTRA HIGH POWER LOUDSPEAKERS All power rstings are R.M.S. continuous. 2 years guarantee. High flux ceramic magnets.

R.S.C. COLUMN SPEAKERS
are/Vrair covered in two-tone
R.SC

TYPE C4BS 25/30 WATM8, Fitted four 8 in . high fux 8 watt apesker!. Overall sise approx. 42 I 10 I 8 in . 16 Gns. carr. 10 . Or depoalt $87 /$ - and 9 montbly payments $84 / 9$ (Total 818.19 .9). TYPE C412S 50 WATrs. Fitted four 18in 11,000 line 16 watt apeskert. Overall wise $56 \times 14 \times 9 \mathrm{in}$. spprox.

26 Gns. ${ }^{\text {citar }}$
Or Deposit 45.17.6 and
9 monthly payments of $54 / 6$ (Total 280.7 .0)
HIGH QUALITY
LOUDSPEAKERS
In Tesk or Afrormosia vencered Cabineta
$\mathrm{L} 1313^{\prime \prime} \times 8^{\prime \prime}$ 8-10 Watt 10,000 lines 3 or 15 ohms.
Type Ll2 $12^{*} 20$ Watt 10,000 lines 15 ohms.
£4-19-9 Carr: 7/6 \&8-19-9 Carr. 8/8

R.S.C. BASS-REGENT 50 WATT AMPLIFIER

 A poweriul high quality all-purpose unit for lead, rhythm, bass guitar, vocalists, gram. radio, tape. Peak Output rating.
F Two extra heavy duty 18in. Londspeskers. * Four Jack inputs and two Volume Controls or "mikes". Bass snd Treble controls.
55 GnS. Carr. 30/. or dep. 218.4.9 and 9 monthly psyments of 25.11 .9 . (Total $60 \frac{1}{2} \mathrm{gns}$.). Bend B.A.E. for leaflet.
O100 100 watt peek output with Pr. apeaker colvmna snd a Basa Unit (Six 12" and Two

RS.C. MAINS TRANSFORMERS PULLX GUARARTEED, Interleaved and Im-
 IIDGET CLAMEED TYPE $24 \times 25 \times 2 \frac{1}{4}$ in. $250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v}$. 2 s
$17 / 11$
 $250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{~F} .2 \mathrm{~s} ., 0-5-6.3 \mathrm{v} .2 \mathrm{z}$ $250-0-250 \mathrm{v}$. $100 \mathrm{~mA}, 6.3$ v. $4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 3 a . $39 / 9$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 8.3 \mathrm{v}$. $4 \mathrm{a}-, 0-6-6.3 \mathrm{v}$. 路. $89 / 9$ $300-0-300 \mathrm{v}$. 130 mA .6 .3 v . $4 \mathrm{a}-$., c.t., 6.3 v .1 a . For Mullard 510 Amplifer

47/11 $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{a} ., 0.5-6.3 \mathrm{v}$. 3 s . $89 / 9$ $350-0-350 \mathrm{v}$. $150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $47 / 9$ $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{a} .$, c.t., 5 v . 3 a . $425-0-425 v .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 6.3 \mathrm{v} .3 \mathrm{a} ., 6 \mathrm{v}$.
3 a (1). 9819 $50-0-250 \mathrm{v}$. 70 mA . 6.3 v . $2 \mathrm{a} . .0-5-6.3 \mathrm{v}$. 2s. 28/9 $2 \pi 50-0-250 \mathrm{v}, 100 \mathrm{~mA} .6 .3 \mathrm{v} .3 .5 \mathrm{~s}$.
$2.50-00-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a} ., 6.3 \mathrm{v}, 1 \mathrm{a}$. $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} .0-5-6.3 \mathrm{v}$. 2 s . $29 / 11$ $2.50-0-250 \mathrm{v} .100 \mathrm{nA}, 6.3 \mathrm{v} .4 \mathrm{~s} ., 0-5-6.3 \mathrm{v} .3 \mathrm{~s} . \quad 89 / 9$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a} . \quad 89 / 8$ Suitable for Mullard 510 Amplifer $48 / 9$ $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $89 / 9$ $350-0-3.50 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} \cdot, 0-5-6.3 \mathrm{v}$. 3 s.
$350-0.550 \mathrm{v}, 150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .11$ FILAMENT OT TRASSISTOR POWER PACK Types 6.3 v .1 .5a. 8/9; $6.3 \mathrm{v} .2 \mathrm{~s} .9 / 9 ; 6.3 \mathrm{v} .3 \mathrm{~s} .18 / 9$;
 CHARGER TRAISFORMERS $0-9.15 \%$. 1 Ia. $18 / 9$ 21a. 19/11; 3a. 21/11; 5a. 25/11; 5s. 29/9; 8a. 88/9. A UTO (8tep UP/ain DOWa) RRANSEORHEAK $0-110 / 120 \mathrm{v}$. $200-230-250 \mathrm{v} ., 50-80$ waste $19 / 9$; OUTPUT TRARSFORMERS $7,00 \Omega$ to $8 \Omega 8 / 8$
Standard Pentode $\overline{0}, 000 \Omega$ or $7,000 \Omega$ to 8Ω Push-Pull 10 watts 6V6, FCL8 8 to 3,5, 8 or
Push-Pull EL 154 to 3 or 15 ® $10-12$ watts. . Push-Pull Ultra Linear for Mullard 510. etc Pugh-Pull 15.18 watts, sectionally wound 6L6, KT66, etc., for 3 or $15 \Omega \ldots \ldots$. Puah-Full 20 watt high quality fectionally wound ELS4, 12/9: $100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega \mathrm{~mA}, 7-10 \mathrm{H} .250 \mathrm{~mA}, 10 \mathrm{H}$, $350 \Omega 8 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 11$.
SELENTIUM RECTIFIERS F. W. (Bridged) All $/ 2 / 12 \mathrm{v}$. D.C. output. Max. A.C. input 18v.
1a. $4 / 3$. 2a. B/11. 3a. $8 / 9.4 \mathrm{a}$. $12 / 9.6 \mathrm{a} .16 / 9$.

SURPLUS
 $\stackrel{\text { EX }}{\text { EOV }}$

AMPLIFIER RF NO. ${ }^{2}$ ATK III. Increases output of 19 set to 25 watta. Brand New. 12v operation. 75/-, Carr. 15 Su. 19 thet New 810.10 .0 Carr. Paid. All Ancillary Equipment available. 12v D.C. Power Units $60 /$ C. Carr. 10% 70%, Carr. 10/ Wer unita wil H/mic sETs. Used 15/-, New 22/6, P. P. 5/-Malnk P.B.U.'e for 19 TM/RC é8.16.0. Carr. 10/-. R.F. Antenna Tuner (ATU) $25 /$-. P. \& P. $\mathbf{D} /$.

FEW ONLY!

Ho. 10 Mg. III CAMADIAM TRAMCEIVERS. Rebuilt ats, variometer, control bor and serials. 222.10.0. Carr. $80 /-$
B. 41 RECEIVEr. LF Version of B.40. Coverage $15 \mathrm{Kc} / \mathrm{A}$ $700 \mathrm{Kc} / \mathrm{s}$. Mains Operation. As recelved from Ministry 48.10.0. Cart, 30/-, Tested, working 216 , Carr. 30/-.

 Mc/s. 4 bands. AM/FM. CW. BFO.
12 v DC. Internal Power Sapply. Teated. E18.10.0. Carr. 15/Raclicanater mis 4 netre Receiver. Ex TAL contronled
double conversion 12.10 carr 20 double convertion 212.10. carr. 20;TELEESCOPIC MASTS. $20 f t$. Closes to 5 ft. $8 \mathrm{in} .70 \mathrm{j}-\mathrm{C}$. Carr. 34 ft Ditto 80/, Cart. $1 \overline{10}$.
85 FT . AERIAL MASTs. $355 T$ A AERIAL MAST8.
Seven 2 in. dia gections. Seven 2 in. dia. sections. Interlock 8 in . Complete
with bese. Nylon Guys. With base. Nylon Guya. TELE CT, FIELD TELEPEONES Communlcations up tos 10 miles. Tested with batteries.
EETIREMEMT, All tocka to bo cleared.
 Many bargains
Fri. 8.12 gat.
A.J.THOMPSON (Dept.P.W) - Eiling Loulge," Codicote, Hitct

UNREPEATABLE PRE STOCKTAKING OFFER

SAVE

 NEARLY 20 \%LATEST NEW \& IMPROVED "JULIETTE'* NA5OIBA COMMUNICATIONS RECEIVER SAMD MAIN (with AFC and BFO) SOLID STATE PORTABLE RECEIVER
 LIST PRICE E44.17.if OUR
PRICE

34 gns. (cash only)
$+9 /=p /$ Limited quautity

- AM Band : Full Mediunt wave cover Mand Mana. Band: Shipplig HManja: Radios 2, 3, 4: TV Sound. Public Bervices, etc.
(improved *ensitivity): Airlines snd
(rround Control (HIgh VEF Band): TV Hound, Fire, Ambulance,
etc., Taxis, Fuel Boards, Oil Rigx, Gus and Blectric Boards, Local Hames, Indusirial and Commercial Mobiles, etc. (De-FEATURES:- 4" Dynamic PM speaker. Directional telescopic VHF aerial. Internac Ferrite rod aerial. Illuminated Dlal. size $9 \frac{1}{\prime \prime}^{\prime \prime} \times 5 \frac{1}{2} \times 4^{\prime \prime}$. Weight Efylbs, Impressive and aturdy design in Chrome and Biack Leather. Ultra senaitive 18 transistor circuit. Earpiect and socket. Lesther carrying and shoulder ntraps. Batteries incl.

RETAIL TRADERS SUPPLIED Enquiries to wholesale dept. STOCKTON PARTNERS (DEPT. PW) BRIGHOWGATE, GRIMSBY, LINCS.
Imports, Wholesale Electronic Equipnient Dixtributor:

LOOK AT THESE PRICES

CARTRIDGES

A cos CP67-2, GP91-3EC 28/6; Acos GP93-1 28/8; Acos CPP94-1 88/6; Sonotone 9TAHC 89/6; All sbove in makers cartons; Japaneas Stereo 16/-

1 WATM' AMPLIETER

Complete with volume control, rectlier, moothing cct, fully tranaistorised, OUR PRICE 27/6

PLUGS \& 8OCKETS
Phono plage, red, white, yellow, green, grey, blue, black $11 d$ gi-per doz; Coasial plugs, aluminium 1/6; Coaxial couplers 1/-; 2 pin DIN plugs $8 /-; 3$ pin DIN plugs $8 /-$; 5 pin DIN plugs $3 / 5 ; 2$ pin, 3 pin DIN sockets $1 / 6$; wander Plugs Bd; sockets $8 d$; Banans pluge 1/1, sockets 1!-; 3.5mm J/Plugs $1 / 6$ \& 2/6; Standard J/Plugs with solder terminals 2/-; Chrome 8/-; Side Entry J/Plugs black and chrome 4/8; Insulated $1 /$ Bockets, o/cct $8 / 3$, e/cct $8 / 6$.

ELECTROL FTIC CAPACITORS
4uF, 150v 0d; $8 \mathrm{uF} 500 \mathrm{v} 8 /-; 8 \mathrm{uF} 12 \mathrm{v} 10 \mathrm{~d}: 8 \mathrm{uF}+$ $8 \mathrm{uF} 450 \mathrm{v} 4 / 8 ; 10 \mathrm{uF}$ 150v 9d; 12uF 25v 9d; 16uF $450 \mathrm{v} 2 / 9 \mathrm{~d} ; 16 \mathrm{uF}+16 \mathrm{uF} 450 \mathrm{v} 4 / 8 ; 30 \mathrm{uF} 10 \mathrm{v} 9 \mathrm{~d} ; 50 \mathrm{uF}$ $10 \mathrm{v} 9 \mathrm{~d} ; 100 \mathrm{uF} 9 \mathrm{v}$ 8d; 100uF 12v 0d; 150uF 12 v 9 d ; $320 \mathrm{uF} 9 \mathrm{v} 1 /-$; $1500 \mathrm{uF} 30 \mathrm{v} 8 / 9 ; 2000 \mathrm{uF} 30 \mathrm{v} 4 / 2$; $5000 \mathrm{uF} 25 \mathrm{v} 10 /-$; $10,000 \mathrm{uF} 25 \mathrm{v} 15 /-; 20,000 \mathrm{uF}$ 30 v 21/-

MICROPEONES

Acos Mic 45 22/6; Acos Mic 60 19/11; Planet CM70 $80 /-$; Hand Mike 15/-; Shure $201 \mathrm{f5}$; Shure 444 810.10.0.
valves
PY81 7/2; PCL82 7/9; EF183 9/-; EF184 9/-.
GEORGE FRANCIS (Dept PW),
98 Balderton Gatt, Hewark, Notss.
Telephone: Newark 4788.

RADIO COISTRTUGTOR

FREE CUT-OUT ART SUPPLEMENT of WORKSHOP PLANS

Full Working Diagrams including Printed Circuit Board Layout
SOLID-STATE DISTORTION METER

Copies may also be obtained direct from the Publishers-4/- including postage.
Published by:

DATA PUBLICATIONS LTD., 57 MAIDA VALE, LONDON, W.9.

MAY ISSUE ON SALE NOW 3/6

OTHER CONSTRUCTIONAL PROJECTS INCLUDE

- C.R.O. Beam Switching Unit Electronic Siren Module
- Neon-L.D.R. A.F. Oscillator

NEW SERIES

"UNDERSTANDING TAPE RECORDING"
PLUS
^ EXCLUSIVE MOTORING * OFFER
(Maserati Air Horns, etc.)

CHDO EDISTRITHOB

Let us give you the facts
From cover to cover Goodmans Manual is packed with fascinating articles on Stereo; a beginners guide to High Fidelity: Stage-built Systems: complete details of Goodmans High Fidelity Audio products. 28 pages you can't afford to miss . . . and it's yours FREEI

Please send me a free copy
Name
Address
PW/670

Goodmans Loudspeakers Limited Axiom Works, Wembley. Middlesex. Tel: 01-902 1200

high grade components and transistors.
LTA 15 WATT AMPLIFIER
HIGH FIDELITY OUTPUT
SWITCHED INPUTS FOR
GRAM, 'MIKE'. TAPE.
AND RADIO
Frequency Response 10-40,000
cps -3 dB . Bass Control +17 dB
$10-16 \mathrm{~dB}$ at 40 cps . Treble Control
17 dB to -14 dB at 14 Kcs . Hum and
Noise -80 dB . Harmonic Distortion
0.2% at rated output. Output for $\begin{aligned} & \text { Recommended } \\ & \text { Retail Price }\end{aligned}$ (18.10. 0.
3-8-15 ohm Loudspeakers.
PTA30 HI-FI
PUBLIC ADDRESS
AMPLIFIER
A SUCCESSOR TO OUR
POPULAR CONCHORD
30 WATT UNIT
 Size $9 \frac{1}{2} \times 3 \frac{3}{3} \times 5 \frac{1}{4}$ in. approx

Output 30 watts
Output Sockets for Loudspeaker or Recommended
combination of Speakers with total Retail Price 823
impedance between 5 ohms and 30 Size $12 \times 3 \frac{1}{2} \times 6$ in. approx.
ohms. Three individually controlled
lnputs for mixing purposes. Housed in fully enclosed stove enamelled steel case. Controls Vol. (1) Vol. (2) Vol. (3) with mains switch, Treble "lift'. and "cut". Bass "lift" and "cut"
AN IDEAL UNIT FOR VOCAL AND INSTRUMENTAL GROUPS SUITABLE FOR ANY KIND OF 'MIKE' AND INSTRUMENT PICK-UP, ALSO FOR RADIO, TAPE ORGRAM.

If required an attractive wood cabi-	Please send a stamped addressed envelope for full descriplive detai/s of above units, a/so TUNERIAMPLIFIERS STEREO and MONO.
net Fith veneer	AVAILABLE FROM YOUR LOCAL HI-FI DEALER
finish can be supplied for any	Wholesale and Retail enquiries to:
$\begin{aligned} & \text { model. } \\ & \text { Prices from } \\ & \hline \end{aligned}$	1

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed bv after sales service

NEW! roamer eight mkl WITH VARIABLE TONE CONTROL
 7 Tunable Wavebands: Medtum Wave 1, Medium Wave 2, Long Wave, 8W 1, 8W2, sw3 and Trawler Band. Bult in Ferrite Rod Aerial for Medium and Long Waves, Fivésection 22in. chrome plated Telescopic aerial for 8 hort waves can be angled and rotated for maximum performance. Push pull output using 600 mW transistors. Bocket for car aerial. Tape record socket. Belectivity switch. 8witched earpiece socket complete with earpiece for private listening. Eight translatora plus 3 diodes. Famous make 7 in . x 41 n, 8peaker. Air spaced ganged tuning condenser. On/Off switch volume control. Wave change switch and tuning control. Atractive case in rich chestnut ahade with gold mamer Eight a pleasure to build.
 Parts Price List and Easy Build Plans 5/- (FREE with parts).
 £6.19.6

roamer seven mkIV

gEVEN FULLY TUNABLE WAVE-BANDS-MW1, MW2, LW, gW1, SW2, SW3 and Trawler Band. Extra
Medium waveband provides easier tuning of Radio Luxembourg, etc, Built in ferrite rod aerial for Medium and Long Waves. Five section $22 i n$. chrome plated telescopic aerial for Short Waves-can be angled and rotated for peak 8.W. Listening. pull output. Seven transistors and pull output. Seven transistors and R.F. Transistors. Famous make $7 \times 4 i n$. P.M. speaker. Air spaced ganged tuning condenser. Volume/on/of

control, wave change switches and tuning contr

Attractive cose with carrying handie. Size $9 \times 7 \times 4 \mathrm{in}$.
approx. Easy to follow instructions and diagrams make the
Rosmer 7 a pleasure to build. Parts price list and easy build plans (FREE with parts). Personal Earpiece with switched socket for
private listening. 5/- extra.

$$
£ 5.19 .6
$$

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE WITH SPEAKER
Attractive black and gold case. Size $31 \times 1 / \times 3$ in Tunable over both Medium and Long Waves with extended M.W band for easier tuning of Luxensbourg, etc. 7 stages- 5 transistors and 2 diodes, coll speaker. Easy bulld plans and parts price list 1/6 (FREE with parts).

Total building costs

roamer six

SIX WAVEband portable WITH 3in. SPEAKER

Attractive case with glit fittings. Size 7f x 5 x 1 in. Tuazble un Medium and Long waves, two short maves, Trawler Band Plus an extra M.W. band tor easier tuning of Lurembourg, etc. Sensitive ferrite rod aerlal and telescople arerial for short
wavea. 8 stages- 6 transistors and 2 diodea inwrves. 8 atages- 6 transistors and 2 diodes in-
cluding Mlcro-Alloy R, \mathbf{F}. TraLaistors atc. (Carrying cluding Mlcro-Alloy R.F. Trainistors otc. (Carrying
strap $1 / 6$ extra). Easy build plans and parta price ${ }^{\text {strap }} 1 / 6$ extra). Easy build

Total building costs $7818 \quad$ P. \& P

transona five

medlum wave, long wave AND TRAWLER BAND PORTABLE WITH SPEAKER AND EARPIECE

Attractive case with red speaker grille. Bize
$6 \frac{1}{x} 4 \neq 1$ in. 7 stage - 5 transistors and 2 diodes, territe rod aerial, tuning coadenser, volume control, fine tone moving coil speaker
also Personsl Earplece with switched soclet also Personsl Earplece with switched socket parts price list $1 / 6$ (FREE with parts).

RADIO EXCHANGECO

| 61 HIGH STREET, BEDFORD, Tel. 023452367

ROAMER EIGHT	\square	ROAMER SEVEN	\square
TRANSONA FIVE	\square	TRANS EIGHT	\square
POCKET FIVE	\square	ROAMER SIX	\square
Parts price list and plans for			
Name			
Address			

CAR LIGHT FLASHERS

Heavy duty light flasber employs a condenper discharge
principle operating on electro mechanical relay. (As inset). Howsed la strong plantic cane. Flashing rate between $60-120$
per minute. 12 V per minute. 12 V mum load 6 amps. Size $2-11 / 16 / \mathrm{ln}$. dia. $\mathbf{x} 4 \mathrm{in}$. cost. 6/6 each. P. P. 2/6. (3 for 17/6. P. P. 4/6).

CLASS D WAVEMETERS
 A crystal controlled hetero$\begin{array}{lll}\text { dyne frequency } & \text { meter } \\ \text { covering } & 1.7-8 & \mathrm{Mc} / \mathrm{s} .\end{array}$ covering $1-7-8 \quad$ Mc/g.
Operatlon on 6 volts
D.C. Operation on 6 volts D.C.
Ideal for amateur use. Available in good used con. dition. 85.10 .6 . Carr. 7/6. Or brand new with acces-
fories, $£ 7.19 .6$. Cart. $7 / 6$. CLASS D WAVEMETERS No. 2 Crystal controlled. $1-2-19 \mathrm{Mc} / \mathrm{s}$. Mains or tion charta. Excellent condition. 1210. Carr. 30/-.

R209 MK II
COMMUNICATION RECEIVER 11 valve high grade communication receiver aultable for tropical use. $1.20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. AM/CW/FM operation. Incorporatea premion

UNR-30 4-BAND COMMUNICATION RECEIVER
Covering $550 \mathrm{Kcm}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built in speaker and pbone jack. Metal cabinet. Operation $220 / 240 \mathrm{~V}$. A.C. Supplied brand new; guaranteed witb ingtractions. Carr. 7/6. 13 gns.
TRIO JR. 310 New Amateur Band 10-80
Metre Receiver in stock. £77.10.0. 2

LAFAYETTE SOLID STATE HA600 RECEIVER - BAND AM/CW/GSB AMATEUR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{g}$ nnd $550 \mathrm{Kc} / 9-30 \mathrm{Mc} / \mathrm{s}$ FE T front end 2 mechanical filtera © Huge dial Product detector
Noise limiter
I ariable Bro
meter

 ibs. EXCEPTIONAL VALUE. E45. Cart. $10 /-$ 8.A.E. for full detailia.

Lafayeite ha-800 solid gtate

AMATEOR COMMOWICATIO RTATE RECVER
Six bands $3 \cdot 5-4,7-7 \cdot 3,14-14 \cdot 35,21-21 \cdot 45,28-29 \cdot 7,30-54 \mathrm{Mc} / \mathrm{m}$. Imat converwion on all bands. $2 \times 455 \mathrm{~K}$ c/f mechanical Allers. FET tront end. product detector, varlable BFO, $100 \mathrm{Kc} / 8$ crystal calitrator. '8' Meter. Huge slide rule dial. Operation 230 V AC or 12 V
$\mathrm{DC} . \mathrm{B} / \mathrm{ze} 15 \times 94 \times 84 \mathrm{in}$. Complete with ingtruction manual. 557.10 .0 Carr. Paid. $10 \mathrm{Kc} / \mathrm{s}$
 crystal 39/B extra.

UR-IA SOLID STATE COMMUNICATION RECEIVER
4 bands covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{me} / \mathrm{s}$ contrinuous. special featurea are use of FET tranisistors. S meter, built in speaker and
telescopic aerial, variable BFO for 8SB reception, noine 1 Imiter, bandispread con. trol, seniltivity control. Output for low Impedance headphones. Operation $220 / 240$
 $\times 7$ in. Excellent ralue. ONLY ER4. Carr. 7/8.

trio communication

 RECEIVER MOOEL 9R-590E4 band receiver covering $\mathbf{3 5 0} \mathrm{Kc} / \mathrm{m}$ to 30 si continuous and electrical bandspread on $10,15,20$ 40 atd 80 metres. 8 valve plun 7 diode circuit. 4/8 ohm output and rhone jack. 88B-CW © ANL dial $1 \mathrm{~F} \mathbf{4 5 0} \mathrm{Kofk}$ And Variable $R F$ and $A F$ gain controls. $115 / 250 \mathrm{~V}$.
 IMn, With ingtruction manual and service data. E42, carriage paid. TRIO COMMUNX above reciever.

TRIO JR. 500SE 10-80 Metre
TRIO TS 510 AMATEUR TRANSCEIVER with speaker and msins P.S.U.
\& 180 IN STOCE!

RCA COMMUNICATIONS

 RECEIVERS AR88DLatest release by minintry BRAND NEW in original cases. 110-250v. A.C. operation. Frequency in Bands. $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{g}$ continuous. Output imnolse limiter, variable BFO, variable selectivty, etc Price £65.0.0. Carr. £2.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transistorised recelver covering
$152-174 \mathrm{Mc} / \mathrm{s}$. Fully tinable or $152-174 \mathrm{Mc} / \mathrm{s}$. Fully tunable or crystal controlled (not supplied) for Axed frequency operation. In-
corporates 4 INTEGRATED CIRCUITA. Built in speaker and illuminated dial. Squelch and volume controls. Tape recorder output. 75Ω arrial $1 \geqslant V_{n}$ D.C. Neg. earth. 887.10 .0 . Carr. $10 /$

TELETON CR-10T AM/FM STEREO TUNER AMPLIFIER

A new model from Teleton. 31 aolid qtate devices. $4+{ }^{+}+4$ matt ontput. Frequency range $\mathrm{AM}{ }^{5}{ }^{2} 40-1600 \mathrm{KHz}$
 Stereo reception. Stereo Indicator. Controls: Tuning, function selector, Tone and $R{ }^{\text {\& }} \mathbf{L}$ volume controle. AFC switch. Stereo lieadphone socket.

CLEAR PLASTIC PANEL METERS
First grade quality Moring Coll panel meters. Type Mи 381 $12 \frac{3}{3}$ in. square fronts.

. $500-0-500 \mu \mathrm{~A} 27 / 6$		1.00V. D.C. . 27/6
ImA. $27 / 6$	$100 \mathrm{~mA} \mathrm{}. \mathrm{}. \mathrm{} 27 /$.	300V. D.C. . .27/6
$1.0-1 \mathrm{~mA} \mathrm{...27/6}$	150 mLA $27 / 8$	300V. D.C. . . $27 / 6$
$\cdots \mathrm{mA}$. $2^{2 \% / 8}$	$200 \mathrm{~mA} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{} 27 /$.	750 V . D.C. . . $27 / 6$
5 mA $27 / 6$	300mA $27 / 6$	15V. A.C. . . .27/6
10 mA $27 / 6$	6nomi27/6	50V. A.C. - $27 / 6$
750mA $27 / 6$	3V. D.C. . .87/6	150V. A.C. . $27 / 6$
1 amp $27 / 6$	10V. D.C. ${ }^{\text {a/f6 }}$	$300 \mathrm{~V} . \mathrm{A} . \mathrm{C} . . .27 / 6$
2 amp27/6	10V. D.C. . $27 / 6$	500 V. A.C. . $27 / 6$
5 amp $27 / 6$	onv. D.C. . . 27/6	8 nieter $1 \mathrm{~mA} 38 /-$
20mA27/6	100V. D.C. ...27/6	VU meter . . 42/

Variable Voltage TRANAFDAMERS
 High quality construction. Input 230 V . $\mathbf{\tilde { 0 }} \mathbf{0 - 6 0}$ cycles.
 Output full variable from $0-260$ volts. Bulk quantitiey avallable 1 amp - $25.10 .0: 2.5 \mathrm{amp}-26.15 .0 ; 5 \mathrm{amp}-29.15 .0:$ $8 \mathrm{amp}-214.10 .0 ; 10 \mathrm{amp}-18.10 .0 ; 12 \mathrm{amp}-\mathbf{2 R 1 . 0 . 0}$ 20 amp. 287.0 .0 .

ges $-2 \% \mathrm{C} .10 \mathrm{p}$
Rangen $\pm 2 \%$. TURNS RATIO $1: 1 / 1000 \rightarrow$ $1: 11100$. 6 Ranges $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{cps}$. Operated trom 9 volts. $100 \mu \mathrm{~A}$. meter indication. Attractive 2 tone metal
cinse. Size $7 \% \times 5 \times 2 \mathrm{in}$. P . $\$ \mathrm{P}$. $5 /-$.

CRYSTAL CALIBRATORS NO. 10

Small portable erystal controlled wavemeter. Bize wavemeter. Bize
7×7 4in Frequency range $500 \mathrm{Kc} / \mathrm{s}-10 \mathrm{Mc} / \mathrm{s}$ (up to $30 \mathrm{Mc} / \mathrm{s}$ on barmonics). Callbrated dial. Power require ments 300 V. D.C
15 mA and 12 V 15 mA and 12 V D.C. 0.3 A.

TE-40 HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges: 300 V . R NB Decibela -40 to +50 dB . supplied brand new complete with leads and instructions. Operation 230V. A.C. 217.10. Cart. b/-.

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$. on 2 ranges. Outpat supplied in perfect order. \&12.10.0 Carr. $10 /-$

TE-65 VALYE YOLTMETER

High quality instrument with 28 ranges. D.C.volts
$1.5-1,500 v$. A.C. volts $1.5-1,500 \mathrm{v}$. A.C. vesistance up to 1,000 megohms. $200 / 240 \mathrm{v}$. A.C. operation. Complete with probe and instructions £17.10.0. P. \& P. 6/-, able: R.F.35/-.H.V.42/6.

COSSOR 1049 DOUBLE

BEAM OSCILLOSCOPES
D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{s}$. Perfect order. \&25. Carr. 30/-
 ttenuator $1 \mathrm{~V}-100 \mathrm{mV}$ Operation precimion olt D.C. or $0 / 110 / 200 / 250$ rolt AC. 8 $12 \times{ }^{\circ} 8 \pm \times 9 i n$. Supplied in brand new conintion complete with all connectors fully tested. £45. Carr. 20/

EDDESTONE VEF RECEIVERS Model 770R 10-165 Mc/s. Excellent condition. $\mathbf{2 1 5 0}$

PLESSEY 8L. 403 A 3 wntt Integrated Ampli
fier Circuit 49/6. Poat pald.

HOSIDEN'DH-08S DE-LUXE STEREO HEADPHONES Features unique mech anical 2 way unitm and Atted adjustable level controis. 8 ohm int pedance. 20-20,000cp Complete with spring £7.19.6. P. \& P. 2/6.

AUTO TRANSFORMERS $0 / 115 / 230$ V. Step up or step down. Fullp throuded.

$\begin{aligned} & \text { hrouded } \\ & 150 \mathrm{~W} . \end{aligned}$	£2. 2.6. P. \& P. 3/6.
300 W.	22.19.6. P. \& P. 4/6.
500 W .	84.10.0. P. \& P. 6/G.
1.000 W.	46.10.0. P. \& P. $7 / 6$.
b00 W.	27.19.6. P. \& P. $8 / 6$.

ARF-100 COMBINED AF-RD SIGNAL GENERATOR
 ${ }_{20}^{\text {A.F. SNE WAVE }}$ Aquare wave $20-$ $30,000 \mathrm{c} / \mathrm{s}$ o O / P. HIGH IMP. 21V. $\mathrm{P} / \mathrm{P} 600 \Omega \mathrm{3.8V} . \mathrm{P} / \mathrm{P}$
$\mathrm{TF} 100 \mathrm{Kc} / \mathrm{B}-300$ TF $100 \mathrm{Kc} / \mathrm{s}-300$ attenuation int/ext. morulation. Incoporput and \% mod. on R.F. $220 / 240 \mathrm{~V}$. A.C. £38.10.0. Carr. $7 / 6$.

TE-20RF SIGNAL GENERATOR

 Directly callorated
Variable R.F. attenuator, Operation $200 / 240 \mathrm{~V}$. A.C. Brand new with in-
structions.
 for details.

PRAK-8OUND PRODUCTS. Full range Ampliters, Kits, Speakers, in slock.

aARCONI TPLAEE DISTORTION FACTOR METERS. Excellent condition. Fully tested. s20. Carr. 15/-

TO-2 PORTABLE OSCILLOSCOPE A general purpose dow cost economy oscilloscope Bandwidth 2 CPG-1 MHZ Bandwidth 2 CPS-1 MHZ.
Input imp. 2 meg 25 P.F. Illuninated scale. 2 2in. tube. $115 \times 180 \times$ 230 mm . Weight 81 b . $220 / 240 \mathrm{~V}$ a.c. Supplied brand new with hand-

ADVANCE TEST EQUIPMENT Braud naw and boxed in original aealed JIB. AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{Kc} / \mathrm{s}$. Bine wave. Output 600 Ohms or 5 ohms EHP MILLIV VM79. UHP MILLIVOLT METER. $100 \mathrm{Kc} / \mathrm{m}$ to $1,000 \mathrm{Mc} / \mathrm{s}$. AC. 10 mV to 3 v DC. 10 m to $3 v$. Current 0.010 a 1125.0.0. TT18. TRANSISTOR TESTER. Full rang sistors in or out of circuit.
£87.10.0.
Carriage 10/- per item.

HOSIDEN DHO4S 2.WAY STEREO HEADSETS

Each headphone con and a tin. tweeter. Built in individual level controls. $8 \Omega \mathrm{imp}$. $25-18,000 \mathrm{c} / \mathrm{s}$ with cable and stereo plug. 25.18.6.
P. \& P. 2/6.

[^1]

SEND NOW-ONLY $7 / 6$ P\&PI.

Note: 4th Edition now printing-reserve your copy now!

GARRARD

FULL CURRENT RANGE OFFERED BRAND NEW AT FANTASTIC SAVDGS

For AP75, SL75, SL95 25.18.8
For 8P25 etc. to operate with lid in place E5.19.6.
Carriage $7 / 6$ extra each type. Full range of Garrard accesnorles svailable.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

10 transistors, 8 diodes, 1 HF music poxer, 30 W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis tortion 1% or less. Mputs and R. volume con Output $3-16 \Omega$. separate L and R. Volume con Brushed alumintum, gold anodised extruded fron panel with complementary metal case. Bize $10 \downarrow \times$ $39 / 16 \times 713 / 16 \mathrm{in}$. Operation $115 / 230 \mathrm{~V}$. A.C e24. Carriage $7 / 6$.

MULTIMETERS for GUERY purposel

MODEL AS-100D. 100 K @/VOLT. sin. mirror scale. Built-in meter
protection. 0/3/12/60/ 120/300/600/1,200v D.C. $0 / 6 / 80 / 120 / 300 / 600 \mathrm{~V}$

A.C. $0 / 10 \mu \mathrm{~A} / 6 / 60 / 300$	mA $/ 12$ amp. $0 / 2 \mathrm{~K} / 200 \mathrm{~K}$
/2M	$2 \mathrm{M} / 2 \mathrm{~dB} .812 .10 .0$. \mathbf{P}. P. $3 / 6$.

MODEL TE-80 50,000 OPV mirror scale overload pro1200v. D.C. $0 / 6 / 30 / 120 / 300 /$ 1200 v D.C. $03 / 6 / 60 / 600$ mA. D.C. $16 \mathrm{~K} / 160 \mathrm{~K} / 1.6$ 16 meg $\Omega .-20$ to +63 dB
87.10 .0 P. \& P. $3 /+$
W. F. \& P. MODEL TE-70. 30,000
OPV. $0 / 3 / 15 / 80 / 300 / 600$ 11200 v D.C. $0 / 6 / 30 / 120 /$ 71200 v D.C. $0 / 6 / 30 / 120 /$
$600 / 1200 \mathrm{v}$ A.C. $0 / 30 \mu \mathrm{~A}$ $13 / 30 / 300 \mathrm{~mA}$. $0 / 16 \mathrm{~K} / 160$ $\mathrm{K} / 1.6 \mathrm{M} / 16 \mathrm{Meg} . \Omega$
$\mathbf{E 5} .10 .0$ P. \& P. $3 /-$

MODEL PT-34.
1,000 OPV. $0 / 10 / 50$

and D.C. $0 / 1 / 1001$ and D.C. $0 / 1 / 100 /$
500 mA D.C. $0 / 100 \mathrm{~K}$ 500 mA D.C. $0 / 100 \mathrm{~K}$
$\Omega .38 /$ B. P. $\&$ P. $1 / 6$

$\begin{array}{ll}\text { TE- } 900 & 20,000 \Omega / V O L T \\ \text { GIANT } & \text { MOLTMETER }\end{array}$ GIANT MOLTEETER mirror scsle and ovarload protection, 6 in . full view meter. 2 colour acale. of
$2.5 / 10 / 250 / 1,000 / 5,000$ $2.5 / 10 / 250 / 1,000 / 5,000$
v. A.C. $0 / 25 / 12.5 / 10 / 50 /$ F. A.C. $0 / 25 / 12 . \delta / 10 / 50 /$
$250 / 1,000 / 5,000 \mathrm{v}$.
D.C. $20 / 50 \mathrm{LA} / 110 / 100 / 500 \mathrm{~mA} /$ 10 amp. D.C. $02 \mathrm{~K} / 200 \mathrm{~K} /$ 20 MEG. OHM. \&15. P. \& P. $5 /-$

MODEL TE-10A. 20k $\Omega /$ Volt 10/50/100/500/1,000 $0 / 50 \mu \mathrm{AA} / 2.5 \mathrm{~mA} / 250 \mathrm{~mA}$ $0 / 6 \mathrm{~K} / 6 \mathrm{meg}$. ohm. - 20 to +22 dB . $0.100-0.1 \mathrm{mFd}$ 69/6. P. \& P. $2 / 6$.

LAFEYETTE 57 Range Super $50 \mathrm{~L} \Omega /$ volt Multimetor D.C. volts 12 mV -1000 V. A.C. .C. current $25 \mu \mathrm{~A}-10$ smp. Ohms 0 $10 \mathrm{meg} \Omega \mathrm{dB}-20$ to +81 d13. Overload protection 212.10.0. Carr. $3 / 6$.

MODEL TE-80. 20,000 O.P.V. $0 / 10 / 50 / 100 / 500 / 1,000 \mathrm{~V}$ A.C. $0 / 5 / 25 / 50 / 250 / 500 / 1,000$. D.C. $60 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg}$ 4.17.6. P. \& P. 3/-

MODEL TE-12 20,000 O.P.V. $0 / 0.6 / 6 / 30 / 120 /$
 $600 / 1,200 / 3,000 / 6,000 \mathrm{v}$. D.C $0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{v}$. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA}$. $0 / 6 \mathrm{~K}$ $600 \mathrm{~K} / 6 \mathrm{Meq} . / 60 \mathrm{Meg} . \Omega \mathrm{S} 0 \mathrm{pF}$
$0.2 \mathrm{mFd} .85 .19 .6 . \mathrm{P} . \& \mathrm{P} .3 / 6$.

T TRANSISTORISED FM TUNER $*$ U4 Heat HIGH QUALITY HIGH QUALITY ONLY $6 \times 4 \times 2$ in 3 I.F. stages Double tuned discriminator. Ample out put to teed most mplifiers. Operates on 9 V battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$ Ready built resdy tor use. Fan Stereo multiplex adaptors $99 / 8$.

TRANSISTORISED
TWO-WAY
TELEPHONE
INTERCOM
Operative over amazingly long distances. Reparate call and press to talk buttong,
$2-$ wire connection. 1000 's of 2-wire connection. 1000's of applicetions. Beautifully finIshed In ebony. supplied complete with batteries and wai brackets.

SINCLAIR EQUIPMENT Project 60 range of new models now in stock
230 Ampliter
$89 / 8$ $\begin{array}{cc}\text { STEREO } 60 \text { Control Onit } & \text { S9.19.6 } \\ \text { PZ5 Power 8upply } & \text { E4.19.8 }\end{array}$ PZ6 Power Supply 87.18 .6 016 Epeakers
All Post Pald
$\$ 8.19 .6$ All Poat Pald SPECIAL PACKAGE OFPER?

\qquad - $2 \times$ Z30 Amplitersi Stereo 60 and PZ5 Power Supply 219 . Carr. 7/6 | or with $2 \times$ Q16 Speakers | \& 35 Carr. |
| :--- | :--- |
| Micromatic Radio Kit | $49 / 6$ | Micromatic Radio Kit

Micromatic Radio Bult 69/6 SIRCLAIR 1C/10 IN STOCK 6976
6976 2000 Amplifer $\quad \$ 23.10 .0$ Carr. $7 / 6$ Neoteric Amplifier \quad E42.10.0 Carr. $7 / 6$

TEIII. DECADE RESISTANCE ATTENUATOR
111dB. Connectionn

Bridge T Impertance 800Ω range $(0.1 \mathrm{~dB}$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$ Trequency: d.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB}$). Accur acy: 0.05 dB . + Indicstion $\mathrm{dB} \times 0.01$ Maximum input leas than $4 W$ (50V). Built in 600Ω load resistance with internal/oxterna
switch. Brand aew 827.10 .0 . P. \& $\mathrm{P} .5 /$.

RECORDING HEADS

COSMOCORD t-track heads. High imp. record/playback 65/-. Low imp. erase ع0/record/playback 65/-. Low imp. erase 20fPobt extra.

7in. B,600tt TP. mylar
Postage $2 /-$. Over $£ 3$ post pald

TAPE CASSETTES

Top quality in plastic library boxes
C60 $60 \mathrm{mmln} 8 / 6,3$ for 24/6
C120 $120 \mathrm{~min} 15 \mathrm{i}, 3$ for $43 / 6$
Cassette Head Cleaner 11/8. Post Extra

OOKN

PRACTICAL!

VISUAL! Nur Ho

 EXCITING!
a new 4-way method of mastering ELECTRONICS by doing - and - seeing

1 OWN and complete range of presentday ELECTRONIC PARTS and COMPONENTS

2 BUILD \quad and USE

 a modern and professional CATHODE RAY OSCILLOSCOPE3 READ and

U N DERSTAND CIRCUIT DIAGRAMS

4

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- Valve experiments
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT - BASIC RADIO RECEIVER - ELECTRONIC SWITCH - SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

Whentiless

TOPIC DF THE MONTH

LO, HI or MID?

FOR a good many years, a number of people (including the present writer) have argued the case for establishing a British standard for hi-fi equipment. Nothing, however, has been done in this direction in the UK and manufacturers wishing to put a label on their audio products are forced to quote the German DIN specifications.
The trouble is that progress has caught up with, and passed, requirements so that to many enthusiasts the fact that a piece of equipment meets the DIN45 500 specification is not so much a guarantee of high qualtiy but rather an assurance that the equipment is not of low quality. The DIN specifications were drawn up several years ago and while they may have been adequate at the time are now sadly out of date as a criteria of top quality audio. Today they could reasonably be interpreted as being the minimum requirement of anything with any pretensions to quality and that any equipment below this specification is poor indeed.

This, of course, is the result of technical progress made, in the past few years, and it leaves open to question current terminology. With the advent of really high quality audio equipment, the term "hi-fi" became part of the language, with inferior products dismissed contemptuously as "lo-fi" and other similar derisory terms. Around "hi-fi" grew up a certain mystique, which was encouraged not only by elements in the manufacturing world but by purist audio enthusiasts. The term became, as it were, the "in" thing.

But this barrier (which is based partly on snobbery) is becoming dissipated, due mainly to the vast improvements made in ordinary "domestic" audio equipment, which, once far removed from the real high quality equipment, has placed good quality sound reproduction within reach of most families. In other words, the gap in narrowing. And this has lead to another frightful term, unfortunately gaining favour, namely "mid-fi".

So, what is the answer? The DIN45 500 standard (once hi-fi) is nawadays reckoned to be mid-fi by British thinking. The mid-fi of today, equivalent to the hi-fi of yesterday, will no doubt be the lo-fi of tomorrow. Do we abandon all labels, or set up a British audio standard which is subject to revision every few years? Or do we forget the whole mess and just sit back and enjoy listening to music?
W. N. STEVENS-Editor.

JULY ISSUE WILL BE PUBLISHED ON JUNE 5

NEWS AND COMMENT

Leader 105
News . . . News . . . News 106
On the Short Waves by Malcolm Connah and David Gibson, G3JDG 124
MW Column by Charles Molloy 132
Practically Wireless by Henry 142
CONSTRUCTIONAL
Wide-Range L.F. Signal Generator by T. J. Melville 108
I.C. of the Month, National Semiconductors LM 100 by L. A. J. Ireland 112
Take 20, Record Player Amplifier by Julian Anderson 114
Light Beam Telephone by J. Thornton Lawrence 128
Mains Connector by B. Hunter 136
10 or 15 Metre Convertor by C. Drinkwater $\cdot 137$
Transmitter/Receiver for the L.F. Bands by F. G. Rayer, G3OGR 145
OTHER FEATURES

Going Hi-Fi by R. Hindle

Going Hi-Fi by R. Hindle 115 115 115 115 115

Sums plus Circuits equals

Sums plus Circuits equals

Sums plus Circuits equals

Sums plus Circuits equals

Sums plus Circuits equals Understanding Part 3 by Leslie Moore by Leslie Moore by Leslie Moore by Leslie Moore by Leslie Moore 119 119 119 119 119

Aerials for Mobiles Part 2

Aerials for Mobiles Part 2 by F. C. Judd, G2BCX by F. C. Judd, G2BCX 126 126 126 126 126

Superconductivity by I. R. Sinclair

Superconductivity by I. R. Sinclair 133 133 133 133 133
P.W. Guide to Components Part 18
by M. K. Titman, B.Sc .
by M. K. Titman, B.Sc 153 153 153 153 153

[^2]
METHS... MSTVS... MENS...

Eliminators

Recently announced by RCS Products Ltd., II Oliver Road, Walthamstow, London, E.17, is a unit which enables a cassette tape recorder or portable radio to be used from a car battery supply. It is said to be particularly useful to people who have to make "notes" whilst driving or to people who want to just listen to music. Operating from the car supply it is possible to turn the volume up fully without any drain on a recorder's internal batteries.

Units can be supplied to deliver $6 \mathrm{~V}, 7.5 \mathrm{~V}$ or 9 V . When ordering. the manufacturers ask if readers will state the make of recorder or radio and type of plug required on the unit lead. Price is 35 s . plus 2 s 6 d . p.p.

Mini Space Dishes

GEC-AEI (Electronics) have been awarded a substantial contract by the Ministry of Defence (Navy). for the development of a small shipborne satellite communications terminal (SCOT) to operate through the Skynet system, and provide secure communication links between small oceangoing warships and the U.K. The dish aerial, only $3 \frac{1}{2}$ feet in diameter, will be the smallest ever used in satellite communications.

While designed as part of the Skynet system, SCOT will be capable of operation through the American Defence Communication Satellite system should the need arise. More significantly, terminals as small, reliable and cheap as these could open the way for a large expansion in satellite communications for other purposes, both military and civil. SCOT is seen to have a considerable export potential.

Police Equipment

The police forces of three of the states of the Federal Republic of Germany have recently installed fingerprint facsimile transmission equipment manufactured by Muirhead Limited of Beckenham, Kent.

Fingerprint photographs can now be transmitted within minutes between the Bundeskriminalamt in Wiesbaden and the Landeskriminalaemter in Dusseldorf (Nordrhine/Westphalia). Stuttgart (Wuttenburg), and Hannover over normal telephone lines.
With this equipment a fingerprint picture 8 inches square when scanned at a density of 7.54 lines/ mm (190 lines $/$ inch) can be transmitted with extremely high definition in 14 minutes. The picture received is fully processed inside the receiver.

Dynatron Phones

Dynatron Radio Limited feel confident that the use of high quality Stereo Headphones for personal listening will very soon become as popular here in the U.K. as they have been for some time past in the U.S.A., Canada and Scandinavia, and accordingly, have equipped their range of radiograms and audio separates for 1970/71 with a jack socket to enable every item in their range to have stereo headphones connected.

The quality of sound obtainable through their new Stereo Headphones type S.P. 2 which are suitable for use with their range of products is said to be quite equal to high quality Stereo Loudspeaker Systems. Price is $£ 710$ s.

Bedfast Club

Would readers of Practical Wireless like to help in the good work done by the Radio Amateur Invalid \& Bedfast Club?

They would be grateful for any foreign stamps, which will be sorted and packeted and sold at the International Radio Engineering and Communications Exhibition to be held in London later this year, all proceeds going to R.A.I.B.C. funds.

Stamps need not be soaked off, but should have their backing paper cut to leave a generous margin on all sides. The address to which they should be sent is: Allan Herridge, G31DG. 96 George Street, Basingstoke, Hants.

Should there be a large response, it may not be possible to acknowledge individually, but donors may rest assured that all offerings, whether large or small, will be equally appreciated.
Readers may also be interested to know that the Bedfast Club. founded in 1954, now has 365 disabled licensed amateur and shortwave listener members in 12 countries.

Low-cosi scope

Mitre Electronic Products of 22 Powis Terrace, London. W.II. have introduced a new oscilloscope type EA0669-2 at only $£ 29$ 15 s . Od. Features include: $2 \frac{3}{4} \mathrm{in}$. diameter tube; d.c. to 100 kHz Yamplifier bandwidth; calibrated Y attenuator giving deflection sensitivities of $100 \mathrm{mV} / \mathrm{cm} ., 250 \mathrm{mV} / \mathrm{cm}$., $1 \mathrm{~V} / \mathrm{cm}$., $2.5 \mathrm{~V} / \mathrm{cm}$., $10 \mathrm{~V} / \mathrm{cm}$., and $25 \mathrm{~V} / \mathrm{cm}$.; a.c. or d.c. input coupling; automatically synchronised timebase with four ranges (plus off) from $100 \mathrm{mS} / \mathrm{cm}$. to $10 \mu \mathrm{~S} / \mathrm{cm}$.

NEWS...
 MEWS...
 WEWS...

Receiver Kil

The GR-78 General coverage Receiver recently announced by Heath Company provides a.m., c.w. and s.s.b. coverage from 190 kHz to 30 MHz in six switchselected bands. The all solid-state circuit employs Field Effect Transistors in the r.f. section and four ceramic i.f. filters. The ceramic i.f. filters eliminate the need for alignment. Built-in bandspread tuning can be calibrated for either the short-wave broadcast or amateur radio bands, and a switchable 500 kHz crystal calibrator insures accurate dial calibration.
This receiver comes complete with a rechargeable nickel-cadmium battery pack with a built-in charging circuit. Wiring options permit operation from either 120 or 240 V a.c., and 12 V d.c. This receiver incorporates switched a. ..c. and an automatic noise limiter. Additional features include headphone jack, built-in speaker, external antenna terminals, receiver muting for use with a transmitter and a front panel relative signal strength meter.

Styled in Heath charcoal wrinkle finish with grey, black and chrome accents, the unit measures only $4 \frac{5}{8} \mathrm{in}$. $\mathrm{H} \times 11 \frac{3}{8} \mathrm{in}$. W $\times 8 \frac{5}{8}$ in. D and weighs only 11 lbs . The Kit GR-78 costs $£ 68$ 18s. Daystrom Ltd., Heathkit Division, Gloucester. Telephone OGL2 29451.

Price changes

The prices in the Codar Radio advertisement on page 53 of the May issue are incorrect. The following are the revised prices: T28 $£ 16$ 10s., carriage 4 s . 6 d . CR45 ready built $£ 13$ 10s., carriage 10s. Preselector PR30 £6 10 s ., carriage 4s. 6d. PR30X $£ 8$ 10s., carriage 4s. 6 d . Mini Clipper 55s., carriage 3s.

Chesterfield R.S.

The above Society met at its Headquarters at Hunloke Adult Education Centre, off Derby Road, on the 11th February. Twenty members were present and after the conclusion of the normal business, two extremely interesting films were shown from the Mullard Film Library, entitled: "Mirror in the Sky" and "Girdle round the Earth."

Other events have included a talk on colour television on the 11 th March by Mr A. Barsby and a talk and demonstration on transistor principles by Mr G. C. Oxley on the 25th March.

P.C. Boards

Cirkitrite Ltd. have achieved a breakthrough in printed circuit design by developing a process by which electrically conductive patterns can be produced by direct application of a special pen to selected areas.

A Cirkitrite "pen" containing a special chemical is applied directly to specially prepared materials which are subsequently immersed in a metal reducing solution. Since the chemical provides a catalytic surface to the selected areas only, the chemical reduction of metal is confined to those areas-even when the whole material is immersed in the reducing solution. In this way an electrically conductive pattern can be drawn directly on to the substrate without the necessity for etching or removing conductive material from unrequired areas.

Further details may be obtained from Cirkitrite Limited, c/o Haven Green, Ealing, London, W. 5 .

Engineer appoinfment

Phil Keene (44) at present an Engineer at the BBC's studios in Glasgow, has been appointed Engineer for BBC Radio Derby. Mr Keene joined the BBC in December 1941 as an Engineering trainee in London. For the past eighteen years he has lived and worked in Glasgow.

Thanet R.S.

Meetings of the above Society are held at Hilderstone House, Broadstairs each Friday at 7.30 p.m. except when the South East UHF/VHF Group hold their meetings. Further gen from Dick Trull, G3RAD, I Approach Road, Broadstairs, Kent.

2-hour Cassefte

The range of Scotch magnetic tape cassettes has been expanded to include a two-hour version. A feature of this new Philips-compatible cassette-the Scotch C120 -is an improved shim material which offers reliability while eliminating tape binding and jamming.
The Scotch C-120 cassette, which retails at a recommended price of 33 s .6 d ., utilises Scotch Dynarange low-noise magnetic tape, which provides good highfrequency response while offering complete compatibility with slow (17 i.p.p.) recording speed. As with the other cassettes in the range (the Scotch $\mathrm{C}-60$ which gives 60 minutes recording and the Scotch C-90 giving 90 minutes) the new cassette is supplied in a durable hinged plastic case designed to protect the tape and provide easy storage.

A WIDE-RANGE L.F. SIGNAL GENERATOR

THE SIGNAL GENERATOR to be described is a sine-wave oscillator employing a Wien bridge feedback network, and the frequency coverage is from 15 Hz to 1.5 MHz in five ranges. The circuit uses the minimum of components consistent with reliable operation, and is easy to build and use. However, it is as well to say right away that if a really good output waveform is required, high quality components must be used throughout, particularly in the case of the ganged tuning potentiometers. The theoretical harmonic distortion of the instrument is under 1 per cent.

If the constructor needs only a general-purpose signal generator, and does not, for instance, wish to make distortion measurements on audio amplifiers, economies can be made. Using readily available components, an inexpensive dependable instrument can still be built.

Operation

The theoretical operation of the system is illustrated in Fig. 1. In its most elementary form, the oscillator is an amplifier with a resistance-capacitance network providing positive feedback between output and input. R-C networks are, of course, frequency selective; so the amount of feedback available reaches a peak at one particular frequency (f). If the gain of the amplifier, and hence the positive feedback, were not controlled in some way, the waveform of the oscillations would be an indescribable monstrosity, with only peaks in amplitude corresponding to f. Very careful regulation of the amplifier's gain is therefore essential, and so a negative feedback loop is added to the circuit.
This loop cuts the gain of the amplifier down to the point where oscillation can only just be sustained;

negative feedback
Fig 1: Block diagram of Wien bridge osclliator.

thus regeneration can only occur at f, the frequency at which the Wien bridge permits the maximum amount of positive feedback, and the output is a sine wave.
In a circuit such as this, it is usual to make the components in the two halves of the Wien bridge of equal value, to simplify design calculations, and to enable variable tuning to be employed. Therefore, $R=\mathrm{R} 1=\mathrm{R} 2, \quad C=\mathrm{C} 1=\mathrm{C} 2$ and the frequency of oscillation is calculated from the formula $f=\frac{1}{2 \pi C R}$ the units being hertz, farads and ohms. Varying either C or R alters the frequency, and in this design, C is varied decade-fashion to provide "coarse" tuning for the instrument, and R is varied by potentiometers for the "fine" tuning.

In Fig. 1, R3 and R4 constitute a potential divider between the amplifier's output and earth. An accurately determined portion of the output voltage is fed back to the input from this, but in reverse phase. Consequently, the gain of the amplifier is drastically reduced. Given that $\mathrm{C} 1=\mathrm{C} 2$ and $\mathrm{R} 1=\mathrm{R} 2$, the forward gain has to be cut to times 3 .

The amplifier used in the signal generator is a simple two-stage circuit. The first stage comprises Tr 1 and Tr 2 (of Fig. 2) connected as a Darlington pair and has a high input impedance. This has to be high to prevent the lowish impedance of the bridge from being shunted. The second stage is a common-emitter amplifier with a small collector load to provide a low output impedance.

Practical details

Since the gain requirement is so low, a wide range of bipolar transistors can be used in this circuit, germanium or silicon, npn or pnp. (Note: if pnp types are used, the power supply lines and electrolytic capacitors will need to be reversed in Figs. 2 and 4).

Fig. 2 : Circuit of signal generator based on Wien bridge oscillator.

However, if the instrument is required to operate on the top range, transistors with a high cut-off frequency are essential. The types specified have an F_{T} of 200 MHz , which enables the scale calibration to remain unchanged for all ranges. If poorer devices were used (eg. F_{T} about 10 MHz) a modified scale would be needed for the 1.5 MHz range at least.

After extensive experimenting, the author finally opted for "untested" 2 N 706 's, which, at a few pence each, are the most economical choice. Silicon planar transistors with their low leakage (Icbo) offer the further advantage that the operation of the instrument is substantially unaffected by large changes in supply voltage or ambient temperature.

To move on to the actual circuit diagram (Fig.2), R3 and VR1b correspond to R1 in Fig.1, and R2 and VR1a to R2,; C1-5 of Fig. 2 are C1 of Fig.1, and $\mathrm{C} 6-10$ are C 2 . From the formula quoted above, the theoretical range of the instrument is 14.950 Hz to 2.453 MHz , but as should be clear from Fig. 3,

Fig. 3: Typical dial callbration showing cramping at top end of scale when using lineartrack potentiometers.
the scale above the 150 mark is too cramped for accurate calibration. Consequently, the nominal top frequency of the instrument is taken to be 1.5 MHz .

The scale follows a more or less logarithmic course, and this admittedly unfortunate fact is principally due to the use of linear-track potentiometers for VR1. Anti-log types would improve the situation considerably, if reliably matched anti-log, or indeed matched log pots were available. The so-called logarithmic carbon pots that are offered by retailers are, of course, nothing of the sort. They merely have their track divided into two, one part being low-resistance and linear, and the other highresistance and linear. To try and use a "matched" ganged pair of these in the present application is definitely not possible.

Ganged carbon pots usually claim to be matched to within 2 dB , a figure which appears admirably low, but to the author at least, an unqualified decibel rating is more or less meaningless. He can only assume 2 dB matching means a mismatch of up to $+25 \%,-20 \%$. From tests made on such components, however, this would appear to be a too pessimistic view.

Figure 3 illustrates the behaviour of VR1 in the prototype, which does, in fact, use a ganged carbon pot, and this probably makes the calibration more "logarithmic" than it should be. For the best possible results, ganged wire-wound potentiometers must be used. Suitable types are available from Colvern Ltd, Spring Gardens, Romford, Essex.

Negative feedbaek is derived from the collector of $\operatorname{Tr} 3$ and taken to the emitter of $\operatorname{Tr} 2$ via the
potential divider comprising VR3 and R5+VR2 ($=$ R3 and R4 of Fig.1). VR3 varies the amount of feedback applied, so that the user can obtain the best waveform from the oscillator at any frequency. With VR3 at minimum resistance, the forward gain will be too low for oscillation to commence. The user should back off the control just to the point where it does occur.

The typical output level with VR3 correctly set and with VR2 at maximum is around 700 mV , but variations of up to 10% can be expected due to mismatching in the bridge and the reduced efficiency of the amplifier at extreme frequencies.
At this point, the author must introduce Fig.4. This is a modified version of the original circuit employing a thermistor to give automatic gain control. It is ideal for those who do not like having an excess of knobs to twiddle, and who want a constant 1V output (VR2 can then be accurately calibrated). But the use of a thermistor has disadvantages. First, its dual roles of giving a constant output voltage and regulating the gain of the amplifier are not necessarily compatible. Consequently, the hi-fi constructor is advised to retain VR3 to get the best waveform, and not to worry too much about the output voltage.

The maximum dissipation of the only thermistor suitable is 3 mW , with means that the careless must be very careful with their soldering irons and heat sinks. Also, its purchase would almost double the cost of the instrument. If the thermistor is to be used, a small pre-set potentiometer (about $1 \mathrm{k} \Omega$) may have to be wired in series or parallel with it (experimenting will decide which) in order to get the best results. Once adjusted, this potentiometer should of course be left alone, since continued twiddling would invalidate the use of the thermistor in the first place.

Using the Frequency Meter

The capacitors C1-10 should be close-tolerance types, and can be checked with the frequency meter described in PW May 1970, even if the signal generator to be used for the testing signal is the present design and still under construction. Although the output waveform will doubtless be rather nasty, the signal generator will function with capacitors that are quite badly mismatched. By judicious manipulation of VR1 and the f.s.d. pre-set control in the frequency meter, a considerable overlap of ranges is possible.
If, for example, two $0.1 \mu \mathrm{~F} \pm 20 \%$ capacitors are temporarily wired in for C 2 and C 7 in the signal generator (and if oscillation occurs), $1 \mu \mathrm{~F}, 0 \cdot 1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors can be accurately checked with the frequency meter. As the latter does not contain a 100 pF capacitor, two of these will need to be purchased.
If the constructor has already built the frequency meter, calibration of the scale for VR1 is no problem at all: some might not consider it even necessary. There is surely nothing more tedious than inscribing scales and dials, especially if they are cramped at one end. This constructor for one invariably gets an acute attack of Calibrator's Cramp! On the prototype of the signal generator, only one scale was found to be necessary, calibration for the bottom range being correct for the top range. Though as the latter (if included) cannot be checked against
the frequency meter, a radio set should be called into use.

Construction

The instrument must be housed in a metal case or box, and screened leads used for output connections. The reason for this is simply to avoid r.f. radiation from the instrument. Readers may well think that operating the oscillator at 1 kHz , say, is unlikely to interfere with anyone's radio reception. It won't, as long as the output waveform is kept sinusoidal.

Fig. 4: Modifed circuit using a thermistor to provide a.g.c.
Most of the components are accommodated (vertically) on a Veroboard module. (See Figs. 5 and 6). Layout is not critical, though wiring between the module and the other bits and pieces, should be short,' direct and rigid to minimise stray capacitances.

Flg. 5: Circuit board shown actual size.

Fig. 6 : Enlarged view of circuit board showing location of components.

This is particularly important if the top range is to be included. The tuning capacitors $\mathrm{C} 1-10$ are mounted on a group board, and this should have more than the required minimum of ten parallel pairs of tags, to allow room for padding capacitors, if necessary.

\star components list

Resistors			
R1	$6.8 \mathrm{k} \Omega$	VR1a/b	10k Ω linear ganged
R2, 3	$650 \Omega \pm 1 \%$	VR2	$5 \mathrm{k} \Omega$ linear
R4	$3 \cdot 3 \mathrm{k} \Omega$	*VR3	$3 \mathrm{k} \Omega$ linear
R5	220Ω		
R6	680Ω		
R7	$1 \cdot 2 \mathrm{k} \Omega$		
Capacitors			
C1-10 see Table 1			
C11 $100 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic			
C12 $50 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic			
C13 $500 \mu \mathrm{~F} 3 \mathrm{~V}$ electrolytic			
Semi-conductors			
Tr1, 2, 3 2N706			
Miscellaneous			
TH1 Thermistor type R53 (Fig. 3: only)			
Veroboard, 2 pole 5 way switch, metal case, insulated terminals, group board for C1-20.			
Power Supply			
*Transformer*Capacitor**			
*Four silicon diodes 50 p.i.v. $50 \mathrm{~mA}(\mathrm{OA} 200, \mathrm{OA} 202)$			
On-off switch, group board for diodes.			

Table 1

Values for C1-10 (all $\pm 1 \%$) and ranges covered

$$
\begin{array}{ll}
\mathrm{C} 1, \mathrm{C} 6=1 \mu \mathrm{~F} & 15-150 \mathrm{~Hz} \\
\mathrm{C} 2, \mathrm{C} 7=0.1 \mu \mathrm{~F} & 150 \mathrm{~Hz}-1.5 \mathrm{kHz} \\
\mathrm{C} 3, \mathrm{C} 8=0.01 \mu \mathrm{~F} & 1.5-15 \mathrm{kz} \\
\mathrm{C} 4, \mathrm{C} 9=0.001 \mu \mathrm{~F} & 15-150 \mathrm{kHz} \\
\mathrm{C} 5, \mathrm{C} 10=100 \mathrm{pF} & 150 \mathrm{kHz}-1.5 \mathrm{MHz}
\end{array}
$$

Power supply

Figure 7 illustrates a suitable power supply for mains operation of the instrument. There is a lot to be said for powering the equipment from batteries if this is feasible, since a ripple-free supply is essential. However, the power needed is at least 20 V at 15 mA , so readers may consider a mains supply more practicable.

Fig. 7: Circuit of suggested power supply unit.

The mains transformer and smoothing capacitor will need to be of modest dimensions if they are to be housed in the same portable case as the rest of the circuitry. The author in fact used a miniature 120 V transformer, with a $12 \mathrm{k} \Omega$ resistor as a voltage dropper (on the mains side), and certainly a resistor of this size helps the smoothing considerably.

If miniature silicon diodes such as the OA200 (or "untested" equivalents) are used for the rectifiers, it should be noted that they have a high forward resistance at 15 mA or so, compared to the more orthodox types of rectifier diodes. Consequently, if one's transformer gives out 25 V a.c., the output from the rectifier bridge will still be only $25-30 \mathrm{~V}$ d.c. (It should be about 36 V with a large capacitance reservoir). The maximum operating voltage of the signal generator is about 30 V , but the rating of the smoothing capacitor will normally limit this to 25 V .

The author used a box $9 \times 6 \frac{1}{2} \times 1 \frac{1}{2}$ in to house his instrument. A large front panel area is needed, if the controls are to be comfortably spaced out, and the depth will largely be determined by the size of the mains transformer or battery used.

AFEATURE of the present phase of integrated circuit development is the increasing number of special-purpose linear units becoming available. and this month one such application is discussed, the question of precision voltage regulators.
Here the close matched characteristics of monolithic active elements is particularly useful. Operation is by comparison of the voltage delivered to the load at any instant with a stabilised reference voltage, with any deviation being amplified and applied to the actual regulating element.
In a given case this may be either a series or parallel element: the former procedure places the control transistor in series with the load, so that its d.c. resistance (dependent on the bias applied by the deviation amplifier) forms a potential divider, together with the load, across the unregulated supply voltage, while the latter method divides the output current between the load and a transistor in paralle] with it, the transistor being biased so that the total current drawn remains constant despite fluctuations of the load.

Block diagram of a series regulator.
The standard voltage regulator is the National Semiconductors type LM100. This is a "positive" regulator, in that the negative line is common to both the input (unregulated) and output circuits. It can accept an input voltage of up to 40 V and provide an output of from 2 to 30 V , the precise value being determined by a potential divider across the
regulated output which supplies the comparison signal to match the fixed reference voltage.
"Line regulation," that is, the variation of output voltage as the input unregulated voltage fluctuates, is better than 0.05% per volt, while load regulation, or the variation in voltage as the current drawn from the regulator changes from its minimum to its maximum.limit, is 0.1%. Further, a current limiting feature is built in, so that the circuit is self-protecting against output short circuits.

The only obvious limitation on the usefulness of this device is the low value of permitted output current which can be drawn from the regulated output, 12 mA . This is due to the fact that a high current transistor requires a relatively large junction area, while in the LM100 the whole circuit occupies a chip of silicon only 38 mils. square. However, if the output of the circuit is used as the base current of an external discrete transistor, a current of 200 mA . is available, or even several amps. if a power transistor is used.

Operation of the LM100

Now to examine the actual device and its application in detail. In use, the reference voltage is compared with a fraction of the output voltage; therefore to allow the maximum range of permissible output voltages, the reference should be as low as possible. Further, on the stability of the reference depends the maintenance of the preset output voltage as temperature drift occurs.
In the LM100 the basic reference is provided by the zener D1; 6.3 volts appears across this element when supplied with current from the constant current source Q2. However, it has a positive temperature drift, amounting to $7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at the output of the emitter follower buffer transistor. This is compensated for by the negative drift of Q 7 , so that the definitive reference voltage of approx. 1.8 V at the junction of R1 and R2 is stable to within 0.3% over an extended temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$.
The deviation or error amplifier is basically a single stage differential pair (Q8 and Q9) followed by a Darlington output circuit, Q11 and Q12. If, however, an external transistor with a higher current 'rating is to be employed, access to the collector of Q12 is provided to supply the base drive, with R8 already in place to act as an emitter-base resistor for
the transistor; when used "straight" pins 2 and 3 are shorted, eliminating this resistor from the circuit.

Q10 is responsible for the current-limiting function. At a level determined by an external resistor, Q10 is biased on, reducing the drive to Q11 of the Darlington pair. The emitter-base voltage of Q12 also affects the bias of Q10, and with the difference in temperature drift between these two transistors due to the difference in current density in their emitter junctions, the current limit for operation of Q10 drops as the temperature rises.

Complete circuit of the LM100.

The amateur will probably prefer to use the commercial variant of the LM100 circuit, having little need for the extended temperature range which can be traded off against unit cost. The LM200 operates from -25° up to $+85^{\circ} \mathrm{C}$ and cheaper still is the LM300, further restricted in temperature and also in input voltage (30 rather than 40). However, all three have the same internal layout, and the degree of regulation achieved is similar.

Applications

As for amateur applications, two will be mentioned to indicate possibilities. Standard transistor radios, tape recorders, etc. have a current consumption dependent on audio output level, since they commonly employ a class B arrangement. Should it be desired to operate such a device from, say, a 12 volt car battery, a simple dropper resistor in series

With an external transistor stabilised outputs up to 200 mA can be obtained.
would not provide the 6 or 9 volts required, as by Ohm's law the voltage drop would be current dependent.

Optimum values of R1/R2 as a function of the output voltage.
An LM100 type regulator, however, with a suitable external transistor, would be ideal as a source of stabilised d.c. for such a load. In another field, every constructor has at some time desired a variable d.c. power supply unit to replace batteries when experimenting or developing transistor circuits. If pin 6 is supplied from the slider of a $50 \mathrm{k} \Omega$ potentiometer, an LM100 is a very fine continuously variable power supply; further, with the current limit facility, should there be a fault in the experimental circuit no excessive current can be drawn, so that not only is the regulator protected, but also the equipment under test.

Circult to provide a continuously variable output.
Already, too, there is news of improved regulator circuits on the way, which will not require external transistors to carry a useful current; G.E. (U.S.A.) are working on a PA264 with a 5 watt capability, similar in appearance to the PA246 audio amplifier already, mentioned in these pages. Motorola are introducing an MC1461 with a reported 10 watt dissipation, in a new can with integral heat sink; and from National a negative regulator (LM104) is expected. So perhaps in the future a return to this month's theme will be called for; meanwhile the "simple" positive regulator can be usefully investigated and applied.
The LM300 can be obtained from the Semiconductor Marketing Co. Ltd., 140 High St., Egham, Surrey.

TAKE 2자

 - JULIAN ANDERSON
A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build

THERE must be many constructors who have purchased record players and have added ready built amplifiers to these. Our project for this month is for such an amplifier for those who may wish to build their own and save money. Although designed for use with a record player, the amplifier has, of course, uses in several other fields. It is extremely simple and should be very quickly built and this, together with the fact that it should cost well under 20s., makes it an ideal project for the raw beginner.

There should be no problem in obtaining the components from almost any supplier, though by shopping around it is usually possible to save quite a bit.

Output from the amplifier is about 750 mW , which is of course very small by current standards, but this sort of volume is more than adequate for normal use. The quality is very acceptable and although far from being in the Hi-Fi category, it is unlikely to be the main cause of poor quality when used with a cheap record player using a crystal pickup on 45 r.p.m. discs. It should be the ideal companion for one of the cheap battery operated turntables.

THE CIRCUIT

Crystal pickups have a high output but also have a high impedance and for best matching should be connected to a load of at least $500 \mathrm{k} \Omega$. VR1, nominally $1 \mathrm{M} \Omega$, could in fact be any value between $500 \mathrm{k} \Omega$ and $2 \mathrm{M} \Omega$. Although the volume control presents a high impedance to the pickup, the amplifier has a very much lower impedance input and it will be seen that when the volume control is at maximum the input impedance of the first stage causes a mismatch. In fact in this position the tone does alter because of this. However this is not objectionable and while theoretically it is bad practice, it has been left like this for simplicity.
$\mathrm{Cl}, 0.5 \mu \mathrm{~F}$ is rather lower than one would expect to see but in the protoype no improvement was gained by increasing the value.
Tr1 acts as a straightforward amplifier with R1 providing the base bias and R2 acting as the collector load. We have made considerable use of the transistor used here, the BC169C, in previous circuits and will do so in future. It is a plastic encapsulated, high gain, low noise silicon transistor costing around 2 s 6 d . (It has two further features to recommend it, neither of which are made use of in this circuit, of handling an appreciable collector current and having a high frequency cut-off). In this circuit we are using it for its high gain.
Tr2 is a germanium PNP type power transistor and in the circuit is "inverted" so to speak. The base is

No. 14
RECORD PLAYER AMPLIFIER

Fig. 1: The circuit of the record player ampllfier. In the prototype R2 was 39Ω.

\star components list

Fig. 2: The layout on a small aluminlum chassis. Note that the power transistor, Tr2, should be insulated from the chassis in the directly coupled to the collector of Tr 1 and the loudspeaker acts as the collector load.

The value of R2 is critical for it sets the quiescent current through Tr 2 . If its value is high excessive current is drawn leading to short battery life; if too low it causes "clipping" and severe distortion. Its value should be chosen so that it is the lowest that does not cause clipping on maximum output on the peaks of the signal. In the prototype 39Ω was the final value chosen but in earlier mock-ups it was 56Ω and 100Ω. One could use a preset here but trial and error selection is just as good. If one has a testmeter it will be found that the quiescent current is around 30 mA using the best value.

Since the quiescent current for Tr 2 is passing through the speech coil of the loudspeaker it is important that a decent sized one is used. Speakers under about 6 in . diameter will sound dreadful operated from this amplifier as the biased speech coil causes it to operate at an unfavourable point; this effect is not noticeable on larger diameters.

GOING HI-FI

R. HINDLE

THERE is a minimum specification that should be met before the tag $\mathrm{Hi}-\mathrm{Fi}$ is attached to an installation but there are often signs of misuse of the term and there is no widely accepted definition. Specifications can be in technical terms such as power output, degree of distortion, frequency range and so on but, although these factors are important, they cannot tell the whole story because, firstly, they do not cover the whole chain of reproduction; and, secondly, the environment (e.g., the type of room and its furnishings) has a profound effect on the result.

The overall system involves one or more sources of signal-a radio tuner, a record player or a tape deck, or a combination of those-an amplifier and a speaker system. Maybe present needs are thought not to call for equipment capable of stereo reproduction (resulting in doubling up the amplifier and speaker systems) to qualify as Hi-Fi, but the time when this must be insisted upon is surely coming.

The Hi-Fi enthusiast is also unlikely to accept into his world any equipment built as a single unit; he has good reasons for his belief that high fidelity in reproduction can be achieved only by the use of speakers separate from other equipment.

COMPARING EQUIPMENT

The usual advice given to purchasers of $\mathrm{Hi}-\mathrm{Fi}$ equipment is to go where they can hear comparisons between a wide range of models. This is good theoretical advice but it is not really practicable. This is because it is quite impossible to carry in one's mind a sufficient impression of successive permutations and combinations of equipment for the mutual comparison to be valid. Even if this were not so it would not be possible to make a reliable, final choice without taking into account the environment, so that the ultimate tests would have to be made in the user's own room.

Is the equipment, in fact, to be stereo or mono? The answer these days surely must be stereo; even though the full aim may not be realised immediately
and the intention is to reproduce in mono for the time being everything to be bought at this time must be suitable for a stereo ensemble.

INPUTS

Next, specify all the input sources that are likely to be needed, not just now but during the lifetime of the equipment. Almost certainly there will be a record player, perhaps in the first place using a cheaper, ceramic cartridge but later to acquire a more expensive cartridge which will not only give a much smaller signal but will also have a different characteristic.

So the amplifier must have two suitable input facilities if it is intended to progress from a cheaper to a more expensive cartridge. Typical input sensitivities looked for would be around:-

$$
100 / 200 \mathrm{mV} \text { for ceramic cartridges }
$$

$2 / 4 \mathrm{mV}$ for magnetic cartridges.
A stereo cartridge in either variety would be chosen. This will play either mono or stereo records but the mono cartridge would not deal with stereo records.

There is also likely to be a need to budget for a radio tuner (typically giving 200 mV). Perhaps also a tape deck is to be used. In practice it is extremely unlikely that a modern amplifier will be deficient in these input facilities or in the provision of the necessary equalisation circuits to compensate for standard characteristics now adopted for the input signals. Not all operate equally well with regard to the input overload characteristic and this is very significant. The input sensitivity previously referred to indicates the input signal to give rated output, and if there is more input signal than rated the volume control can be set lower so that the output circuits are not overloaded. However, the volume control is unlikely to be in the input circuit itself but will follow the low noise first stage and consequently its adjustment cannot prevent the input stage from overloading.

"go where they can hear comparisons"

Having determined the input characteristics needed, any amplifier unsuitable on this account can be rejected on the basis of considering the technical specifications given in the manufacturer's literature and in technical reviews. The rest can be surveyed without further consideration of input requirements and demonstrations can be taken using a single, high quality input device-probably a pickup cartridge because of the ease and speed with which a range of different sounds can be demonstrated using records.

THE BUDGET

There is the question of cost and it is pointless to produce a short list of possibles only to find that none can be fitted into one's budget, though most people finish up by paying more than they had originally intended. If a complete outfit is to be purchased about a third of the total money available should be spent on the amplifier and about another third on the speakers, leaving a third for a motor, pickup arm and cartridge; the proportion will change if a tuner or tape deck is also to be included.

The important consideration is that the quality of the various units should be compatible. However, it is perhaps worth bearing in mind that amplifier design is probably nearer perfection than other links in the chain and a good choice now is going to be acceptable for a long time.

POWER OUTPUT

Power output from the amplifier is worthy of thought. Advertisements give one the impression that power needs are increasing all the time and figures up to hundreds of watts are seen. But first make sure that the watts are genuine. Only ratings of continuous sine wave output (or so called r.m.s.) should be accepted for comparison and if interesting amplifiers are not specified in this way (read the small print to make sure), ask for a conversion of the specification provided into continuous sine wave form.

Practically the whole of one's listening is done at the level of a fraction of a watt, so why bother about high output? The truth is that it is not so important as one might imagine, but it does come into its own on the occasional peaks that contribute so much to the overall satisfaction derived from listening to music.

Probably many people can get by with some 3 to 4 watts per channel, but musically it is unlikely to be satisfying. Ten watts per channel will be a great improvement and most people will be content. An increase to $20 / 25$ watts per channel will be worth while, but it is doubtful whether any further increase will be an advantage in most cases.

Speakers vary in acoustic efficiency and therefore have a bearing on power output needed. The smaller units are less efficient and need more power input for a given noise but are rated at lower maximum power input than the larger more efficient speakers. The larger units are commonly rated at 25 watts and if fed by power up to their full rating will give a very healthy volume.
It is not necessary to be overstrict in comparing amplifier peak output ratings with speaker power ratings-the figures need not necessarily be identical.

Speakers with a higher rating than the amplifier are obviously acceptable and even if they have a somewhat lower rating it need be no cause for concern. Speaker impedance varies as frequency varies and so matching to amplifiers is not an exact science.
However, one should choose speakers with a nominal impedance equal to that specified by the makers of the amplifier. This impedance is commonly 8 ohms with modern transistor amplifiers but there are variations, for instance 16 ohms as commonly used for valve amplifiers. If an amplifier is to be bought for use with existing speakers and if perhaps the preferred amplifier specifies an impedance differing from that of the speakers caution is called for.
Small increments in power output are quite unnoticeable. An increase from, say, 10 to 12 watts (other things, and particularly distortions, being equal) will be pointless. Increases by a factor 2 are necessary to make an impression of greater power.

DISTORTION

Having dealt with input and output, what goes on in the middle? In the process there will be the inevitable production of distortion and this is specified in relation to output. For modern amplifiers a total harmonic distortion at full rated output of 1% is mediocre; the better amplifiers will have a figure of 0.1% or less. Since the greater part of one's listening time involves output at a fraction of a watt, distortion at these low levels can be very annoying.

The intending purchaser should look for a specification of low level distortion, ideally in the form of a graph or a statement covering a range of output levels rather than a specification at a single output level. The surest way of avoiding this unpleasant rise in distortion at lower outputs is to use Class A output in which case there is an intrinsic fall in distortion at lower levels; such amplifiers sound distinctly better than most and are as good as the best of Class B amplifiers.
Frequency response is unlikely to be inadequate in these days. It should, and generally does, extend from below 40 Hz to above 20 kHz without significant deviation from level response. However, this is usually measured at comparatively low power levels and it is important to know if the frequency range is held at higher powers-this is often called the power bandwidth. A satisfying statement by the makers of a well-known amplifier is "Frequency response maintained up to full power ($25 \mathrm{~Hz}-25 \mathrm{kHz}$ $\pm 0.5 \mathrm{~dB}$)."

CONTROLS

Finally the controls provided should be considered. There must be an input selector for the various inputs chosen. A switch is needed to ring the changes between stereo and mono, in the latter case permitting either left hand or right hand input to be used or for the two to be combined into a single signal. Volume, bass and treble tone controls are needed in each channel for stereo-ganged controls with single knobs are preferred and this makes a balance control essential.

BENTLEY ACOUSTIC CORPORATION LTD.

Suppliers to H.M. Government. 38 CHALCOT ROAD, LONDON, N.W.I relephone 01-722-9990
EXPRESS POSTAL SERVICE, SAME DAY DESPATCH BY FIRST CLASS MAIL ALL GOODS ARE NEW, BEST QUALITY MANUFACTURE ONLY, AND SUBJECT TO MAKER'S GUARANTEE

[^3]
SIM8 alus CIRCUITS

TRIGONOMETRY

FOR a full understanding of circuit operation and relevant mathematical treatment, a few trigonometrical exercises should be dealt with, so a few simple definitions are required for further work. Consider the right angled triangle shown in Fig. 3.1. Definitions of trigonometrical ratios are:-

> Sine of angle $A=\frac{a}{c}($ written as $\sin A)$.
> Cosine of angle $A=\frac{b}{c}($ written as $\cos A)$.
> Tangent of angle $A=\frac{a}{b}($ written as $\tan A)$.

Fig. 3.1.

These relationships are valid only for right angled triangles. The sinusoidal waveforms discussed in the last article are in fact graphs of angle sines against angle, and as trigonometrical tables exist which give us angles for given sines, cosines and tangents, the above relationships are of importance.

Further information of use to us in given in Pythagoras' Theorem which states that for a right angled triangle:
$c^{2}=b^{2}+a^{2}$ (with reference to fig. 3.1.)

$$
\begin{gathered}
\text { e.g. when } a=4, b=3 . \\
c^{2}=4^{2}+3^{2}=16+9=25 \\
c=\sqrt{25}=5
\end{gathered}
$$

In this particular case:

$$
\begin{aligned}
& \operatorname{Sin} \mathrm{A}=\frac{4}{5}=0.8 \\
& \operatorname{Cos} \mathrm{~A}=\frac{3}{5}=0.6 \\
& \operatorname{Tan} \mathrm{~A}=\frac{4}{3}=1.33
\end{aligned}
$$

The size of angle A can be found from any of the trigonometrical tables mentioned. In this case angle $\mathrm{A}=53^{\circ} 8^{\prime}$ (53 degrees 8 minutes).

These few facts are of use in determining out of phase angles in a.c. circuits as will be seen later.

Sinusoidal waves

The sine wave is the basic alternating waveform we use. Figure 3.2 shows one cycle of a waveform and indicated are several values of importance.

1. R.M.S. or root mean square value is the voltage/current normally quoted. This is the value which must be used for determining power in a circuit.
2. Average value is the mathematical average of the waveform obtained by dividing the waveform's bounded area by its base length.
3. Peak value which should be known when considering electronic circuitry so that "bottoming" of a transistor and exceeding diode peak-inverse voltage limits may be avoided.
4. Peak-peak value, twice the peak value, is used when determining useful amplifier gain graphically.
The base of a waveform can be graduated in units of time or angle. e.g. A frequency of 1 Hz will have a waveform of 1 second periodic time. One complete cycle which occurs in the periodic time, can also be considered as 360° of angular rotation. From this consideration waveform amplitudes may be obtained for each angle using sinusoidal tables.

Fig. 3.2: Typical sine wave and four methods of defining its value.

Reactive Components

Inductive and capacitive components have "reactance" in a.c. circuits and it is the reactance value which gives us most useful information.

Capacitance is the property which exists between two conducting surfaces held apart by an insulating material or "dielectric".

The value of capacitive reactance is determined by the formula:

$$
\mathrm{Xc}=\frac{1}{2 \pi \mathrm{fC}} \Omega
$$

where $\mathrm{f}=$ frequency in Hz .
$\mathrm{C}=$ capacitance in Farads.
$\mathrm{Xc}=$ capacitive reactance in ohms.
A capacitor in an a.c. circuit has the effect of producing a current out of phase with the applied voltage. Figure 3.3 gives an example. Values of current and voltage can be calculated using Ohm's law, however, phase change should be taken into account.

Fig. 3.3a: CR series circuit. 3.3b: Voltage and current wave forms.

Inductance is due to the build up of magnetic fields around a coil of wire. An alternating current in the coil produces an alternating magnetic field which tries to oppose the flow of current. This opposition to current flow is termed inductive reactance and is determined from the formula:

$$
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL} \Omega
$$

where L is the inductance in henries
X_{L} is the inductive reactance in ohms.
Inductance in an a.c. circuit gives a phase shift in the opposite direction to that of capacitance. This is demonstrated in Fig. 3.4.

Fig. 3.4a: LR series clrcuit. $3.4 b$: Voltage and current waveforms.

Calculation of phase angle

Phase angle is determined from resistive and reactive values in a circuit. This can be most easily demonstrated by representing voltage drops by the method of vectors.

Only resistive components in an a.c. circuit will consume power, therefore they are known as "real" components. Reactive components, however, absorb no power and are known as "imaginary" components.
Vector representation utilises real and imaginary components as different axis on a graph, each current, voltage, or impedance being represented as a single straight line. Purely real components are drawn along the horizontal axis and purely reactive components are drawn along the vertical axis. Any component which is not purely reactive or resistive is drawn at a relevant angle to the horizontal plane.
The representative straight lines, known as vectors, are drawn to scale, e.g. 1 inch represents 1 volt in magnitude. It should be noted that all vectors should represent the same type of component value, rms values are normally used.
Figure 3.5 (a) shows a CR circuit with all voltages and current marked. A vector diagram for this circuit has been constructed in Fig. 3.5 (b).

Fig. 3.5a: CR series circuit.
3.5b: Vector diagram for CR circuit.

Supply current to a series circuit is common to both R and C components and therefore taken as reference vector. Resistive volt drops are in phase with current, hence V_{R} is a real component. Voltage across a capacițor is, outt of phase with current by 90°, and as current reaches a maximum value 90° after the voltage, voltage is shown on the plus reactive scale.

Supply voltage to the circuit can now be determined by adding resistive and reactive volt drops vectorially.

The reconstruction of the voltage vectors in Fig. 3.6 and as can easily be seen, supply voltage and its angle with supply current can be measured.
Fig. 3.6.
Having drawn the diagram, from comparison with the introduction of this article, we can determine a method for calculating phase angle and supply voltage.

Tangent of the phase angle is given by the ratio $\frac{\mathrm{Vc}}{\mathrm{V}_{\mathbf{R}}}$, and by Ohm's law:

$$
\mathrm{Vc}=\mathrm{I}_{\mathrm{S}} \mathrm{X}_{\mathrm{C}} \text { and } \mathrm{V}_{\mathrm{R}}=\mathrm{I}_{\mathrm{S}} \mathrm{R}
$$

Tangent of phase angle (often written as $\tan \phi$) is given by:

$$
\tan \phi=\frac{\mathrm{I}_{\mathrm{S}} \mathrm{X}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{S}} \mathrm{R}}=\frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}
$$

Phase angle can be obtained accurately directly from trigonometrical tables.

DIScosound

DJ DISCO-AMP

The DJ Disco-amp has been designed specifically for use with discotheques and has many exclusive features not normally found on P.A. amplifiers. The unit will be of use to the professional D.J. as well as in clubs and mobile discotheques.

The pre-amp section features independent inputs and volume controls for two mics with separate bass, treble and master volume. plus two independent inputs and volume controls for turntables. again with separate bass, treble and master volume controls.

A complete Pre-fade listen (P.F.L.) cueing monitor section is also featured with separate input for headphones (either stereo or mono) with an independent volume control for headphone monitoring, and a P.F.L. switch, so that either turntable can be monitored for accurate cueing up of records. A mic over-ride switch is also added which cuts the music volume by half so that mic announcements may be made over the music without altering the volume controls.

The power amplifier section has an output of 70 watts R.M.S. into 8 ohms and has elaborate protection against thermal. short or open circuit. The unit is designed for panel mounting.

SPECIFICATION

Output power

Frequency response Harmonic distortion Signal/noise ratio Speaker impedance Headphone impedance
Bass control
Treble control
Inputs:
turntable

70 watts R.M.S. $\pm 1 \mathrm{db}$ at 8 ohms. $30-20,000 \mathrm{~Hz} \pm 3 \mathrm{db}$. Less than 1% at full output. Better than -65 db .
8-16 ohms.
8-16 ohms.
Variable 20 db at 100 Hz .
Variable 20 db at 10 kHz . Miç 1 \& 25 mV at 50 K ohms. I \& 2100 mV at 1 meg ohm.

50 ohm or 600 ohm mic inputs may be ordered at extra cost. Size: Front Panel $16 \frac{1}{2^{\prime \prime}} \times 7^{\prime \prime}$. Cut out $15 \frac{1}{2}^{\prime \prime} \times 6^{\prime \prime}$. Fuses: A.C. 1.5 amp (B.S.) mounted on back panel.

PRICE £85.0.0 inc. P \& P.

DISCOSOUND PRE-4
This is a four channel fully mixable pre-amp, with separate treble, bass and master volume controls. and is completely self powered. All four inputs are by standard jack socket
 on the front panel with the
addition of inputs 3 and 4 being
duplicated on the back panel,
with two paralleled outputs also featured for versatility in use.
Frequency response: $30-20,000 \mathrm{HZ} \pm 3 \mathrm{db}$.
Signal/Noise Ratio: -65 db .
Size: front panel $12 \frac{1}{2} \times 5 \frac{1}{2}$ cut out required $11 \frac{1}{2} \times 4 \frac{1}{2}$.
Completely built and tested.
PRICE $£ 18.0 .0$ inc. P \& P.

PRICE \&37.10.0 inc. P \& P.

DJ $70 S$
 INTEGRATED MIXERAMPLIFIER

One of the finest units available on the markel today. regardless of price. The front end of the unit consists of a four channel mixer with separate inputs and volume controls. plus a separate bass. treble and master volume control. One of the main features of this remarkable amplifier is its elaborate protection against short and open circuit and we can guarantee that it is virtually indestructable. Allied to this is its very high power output (70 watts R.M.S.) a frequency response $(30-20,000 \mathrm{~Hz} \pm 3 \mathrm{db})$ that is superb and distortion that is well below 1% even at full output. The unit is suitable for use with discotheques, groups, P.A.. clubs etc., or anywhere that high quality high output is required. Size: $15 \frac{1}{2} \mathrm{in} \times 5 \mathrm{in} \times 6 \mathrm{in}$.
PRICE £55.0.0 inc. P \& P.
Also available DJ105S 30 watt P.A. Amplifier. Similar specification to above.

PRICE £35.0.0 inc. P \& P.

DISCOSOUND 70 MAIN AMPLIFIER

A 70 watts RMS (8 Ohms) High Fidelity power Amplifier which utilises all silicon transistors of modular construction and features full automatic overload protection against short or open circuits. Frequency response: $20-20,000 \mathrm{~Hz} \pm 2 \mathrm{db}$. The High output is Frequency response: $20-20,000 \mathrm{~Hz} \pm$ 2do. The Hish onp, clubs, etc., or anywhere where reliability and quality are required. This unit is the companion where reliability and quality are required. This unit is the PRE-4, of model for use with our control pre-amp Discosound PRE-A, in can be used with any other high quality pre-amp control unit. Size: $7 \times 9 \times 1 \times{ }^{\circ} \times$

PRICE £30.0.0 inc. P \& P.

For full details of these and all Discosound Products write direct to:-

> Full money back guarantee if returned within 10 days. All Discosound Products are guaranteed for 12 months. Demonstrations given at any time.

Fully guaranteed Individually packed VALVES

CY81 $\quad 7 /-\mid$ EP36

DAF96	$7 / 9$	EF37A	$7 /-$
PABC80			

DF96	$7 / 6$	EF39	$6 J^{-}$	PC97
DK96	$7 / 8$	RF40	$10 J^{-}$	PC900

DL92	$7 / 6$	EP40
DL94	$6 / 6$	EF41
D1		

Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m.
 TRANSISTORS, ZENER DIODES etc.
brand

ALL valves guaranteed

DY86	$6 /-$	EF86				
DY87	$6 / 6$	EF89		L88CC/01	EF92	
:---	:---	:---				
27/-	EF95					
RABC80	E/6	EF18				

 \begin{tabular}{ll|ll|l|l|}
\hline BF80 \& $7 / 6$ \& RL41 \& $10 / 6$ \& PCF808 \& $11 / 6$

8F83 \& $8 / 6$ \& EL42 \& 1018 \& PCH200 \& 14

BBC81 \& $6 / 6$ \& ELS4 \& $10 / 6$ \& PCF808 \& $14 / 6$

RBF80 \& $7 / 6$ \& RL41 \& $11 / 6$ \& PCH200 \& $14 /-$

BF83 \& $8 / 6$ \& EL42 \& $10 / 6$ \& PCL81 \& $9 / 6$

BF89 \& $6 /-$ \& EL84 \& $4 / 9$ \& PCL82 \& $7 / 6$

ECB1 \& $6 /-$ \& EL85 \& $8 /-$ \& PCL83 \& $18 /-$

RCO

BCO

\hline
\end{tabular}

$8 /=10 A$
$1-1045$

11/-19405

29/41ft. AERIALS each conslating of ten 3 ft . IIn. dia. tubular acrew-in sectiont. 11ft. (6-tection) whip aerial with adaptor to fit the $7 \mathbf{I n}$. rod, Insulated base, stay plate and stay asemblles, pege, reamer, hammer, otc. In canvas bag e3.s.s. P. \& P. $10 / 6$.
HETERS \quad Full List of our very large

ALL OVERSRAS ENQUIRIES AND ORDERS Please address to Colomor (Electronics) Ltd. 170 GOLDHAWK ROAD, LONDON WI2. Tel: 01-743 0899

P.W. STEREO DECODER

Complete kits of parts exactly as specifed:-
Resintor kit (including pre-set)
Capacitor kit (13 pieces)
Pemiconductor kit (6 Transistors and 2 Diodes)
Hardware Kit: Comprising group board, tag strip, aluminfum, buib \& holder, wire and sleeving. $13 \quad 0$

Complete kil:
$¢ 417$ 6d.
402 reel 408WQ en, wire (not included in Kit) 96
Or alternatively, coil bobbins can be supplied ready wound,
Post and packing per or
$\begin{array}{rr}10 & 0 \\ 2 & 6\end{array}$
Parts atill avatlable for PW FM Tuner (P.W. Feb.-March 89) and Low cost Hi-FI Amplifer (P.W.Jan.-Feb. 68). B.A E. for liat.

C \& D ELECTRONICS,
 1, NEVILLE ROAD, ST. LUKES CROSS, SUNDERLAND.

SYLVAMIA MAGNETIC SWITCH-a magnetically activated switch operating in a vacuum. Swltch speed- 4 ms . temperature- 54 to $+200^{\circ} \mathrm{C}$. Silver contacta normally closed rated $\$$ ampas. at 120 v 1.5 amp . at 240 v . $10 /-$ each. 84.10 .0 per dozen. Apecial quotations for 100 or over. Reference Magneta avaliable $1 / 6$ each.

STLVANIA CLRCUIT BREAKERS gas flled providing a last thermal response between 80° and $180^{\circ} \mathrm{C}$. Wlll withstand pressures up to $2,000 \mathrm{lb}$. sq / m. rated 10 amp . at 240 v . continuous. Fault silver contacts. Supplied in any of the following opening temperatures (degs. cent.) $80,85,95,100$ $105,110,120,125,130,135,140,145,150,155$, $160,170,175,10 /=$ each or 84.10 .0 pet dozen

MINIATURE "LATCHMASTER" RELAY 6, 12, or $24 v$. DC operation. One make on current la applied, relay remeins Istched until input polarity is reversed. Manafactured for high acceleration requirement by sperry Gyroscope Co. Slize: Length fin. dia. tivin (including mount). Please state vertical or horizontal mount and voltage, 82.5 .0 each.

ELECTRO-TECH. SALES
"Knowle" (U.S.A.) Sab-MIniature Moving Coil Microphone Capanlo. Type 1501: as used in miniature hearing-aids. bugsing devices, etc. Slze: H" sq. I \#" thlck. All tested,
go/- each. Also "Knowle" moving coil sub.min. ear trans. go/- each. Also "Knowle" moving coil aub.min. ear trans
ducera type 1530 . Size: $\frac{7}{6}$ " $x \frac{7}{3} \times \frac{1}{2}$ " thick, $15 /-$ each.
"Welwyn" Readetors Type Hiz. One value only. 1 kilo-meg $\pm 20 \%, 5 /-$ each. P. \& P. 9 d .

Tansitor (U.S.A.) Tantalum, Wek Sintared Anodo Polarined Capacitora: 200 UF. 25v. D.C. size: lin. long x ? F in. dis.
 30 v . D.C. 娄in. long \times 고in. dia., 33 TFF. 75 v . D.C. size: in. long $\times 9 / 32 \mathrm{in}$. din. One wire each end. All types $5 /=$ each. Also few only Translator "MICRO-MODULE" capacitors 0.2 Mid. 15 v . wire-ended, size: $3 / 32 \mathrm{in}$. dia
(diac) $5 /=$ each.
-
Krnesk Turner 5in. $\times 41 \mathrm{n}$. $0-1 \mathrm{Ma}$. Meters calibrated $0-10$ in 50 divislons mirrored scale, handsome chrome escutcbeon for fivsh mounting. A quality instrument

New 75-0.75 Micro-ammeter by 8ifam. 750 ohm movement, clear reading, E μ a divisions \times tin.; plastic tront, projection in. (tapering forward). size: 4 inin. $\times 3 i \mathrm{in}$.,

264 PENTONVILLE ROAD, LONDON, N. 1 (ONE MIN. FROM KINGS X STATION) T:1. 01-827 7401

Welwyn high value Resitstors Type GA 86501. Values between 9.4 and $10.9 \mathrm{kilo-meg} \pm 1 \%$, glass encapsulated 15/-.
"Welwyn" Resistors Type H12. 1 value only. 1 kilo-meg $\pm 20 \%$, 10/- per palr

Isolation Transformers. 1 to 1 ratio, 24 Cv , input 240 v . centre tapped out, at 2 K.V. A., mounted in metal case measuring $8 \frac{1}{2}$ in. $\times 8$ in. \times llin, high. Weight 6 ōlbs. \&16.10.0, cart. $\& 1$.

Now "Magnetic Devices" Solenold. 240V A.C. Type 42117. 1 to 3lb. pull, frame size: $1 \frac{1}{\mathbf{y}^{*}} \times 1 \mathfrak{1}^{*} \times 1^{*} .20 /-$ each.

Now "FF.I.R.E." Plug-in Relay. 115V Coil 50/60 C.P.S. 3 heavy duty silver change-over contacts, perspex cover. very robust. $17 / 6$ each.
Tow Diamond "E" 240才 A.C. Relay. 3 heavy duty nilver change-over contacts. 17/6 each.

Now "Carter Electric" 12 r.p.m. Wotor. Non-reversible 4" apindle. 240V A.C. open frame with cast alumtntum cased

It is now also obvious that supply voltage magnitude can be determined using Pythagoras'.theorem.
then $\mathrm{V}_{\mathrm{S}}{ }^{2}=\mathrm{V}_{\mathrm{C}}{ }^{2}+\mathrm{V}_{\mathrm{R}}{ }^{2}$
therefore $\mathrm{V}_{\mathrm{S}}{ }^{2}=\mathrm{I}_{\mathrm{s}}{ }^{2} \mathrm{X}_{\mathrm{C}}{ }^{2}+\mathrm{I}_{\mathrm{S}^{2}} \mathrm{R}^{2}$
therefore $\mathrm{V}_{\mathrm{S}}=\sqrt{ } \overline{\mathrm{IS}^{2} \mathrm{X}_{\mathrm{C}^{2}}+\mathrm{I}^{2} \mathrm{R}^{2}}$

$$
=\mathrm{I}_{\mathrm{S}} \sqrt{\mathrm{X}_{\mathrm{C}^{2}+\mathrm{R}^{2}}}
$$

The term $\sqrt{X_{C^{2}}+\mathrm{R}^{2}}$ is the circuit impedance, Z .
It seems then, that by using a few simple calculations useful information may be obtained for resistivereactive networks. Unfortunately not all circuits are quite so simple to work with and other techniques have been utilised to handle them.

j Notation

Complicated vector diagrams can be solved by a series of small calculations which take up time.
j notation can be used to represent vectors mathematically and so eliminate some of the more tedious work.

The vector diagram axis of real and imaginary terms is used. Positive and negative real axis are graduated with real numbers whereas positive and negative imaginary axis terms are prefixed with +j and -j terms.

Although j has the meaning of a vector of unity magnitude at 90° from the reference, j also has the numerical value of being the square root of -1 .

The following table lists vector positions in terms of j.

Angle	0° or 360°	90°	180°	270° or -90°
j notation	$(\mathrm{j})^{\circ}=1$ or $\mathrm{j}^{4}=1$	j	$\mathrm{j}^{2}=-1$	$\mathrm{j}^{3}=-\mathrm{j}$

Any vector lying at some angle between axis has two components, real and imaginary. Figure 3.7 shows a vector which can be written as $2+\mathrm{jl}$.

There are a few rules which should be obeyed when manipulating j items, but these are best demonstrated in an example.

Figure 3.8 shows a parallel circuit. Circuit impedance in j items is given by:-

$$
\begin{aligned}
\mathrm{Z} & =\frac{-j X_{C}\left(R+j X_{L}\right)}{R-j X_{C}+j X_{L}} \\
& =\frac{X_{C} X_{L}-j X_{C} R}{R+j\left(X_{L}-X_{C}\right)}
\end{aligned}
$$

If $\mathrm{R}=10 \Omega, \mathrm{X}_{\mathrm{L}}=5 \Omega, \mathrm{X}_{\mathrm{C}}=10 \Omega$

$$
\text { then } Z=\frac{50-\mathrm{j} 50}{10+\mathrm{j} 5} \Omega
$$

This term is rather cumbersome, so to produce an impedance term which can be easily handled the lower term of the fraction (or denominator) must be made into a real number. This is done simply by multiplying both numerator and denominator by a term which contains the denominator's real part and the opposite sign of its imaginary part.

$$
\begin{aligned}
\mathrm{Z} & =\frac{50-\mathrm{j} 50}{10+\mathrm{j} 5} \cdot \frac{10-\mathrm{j} 5}{10-\mathrm{j} 5} \\
& =\frac{500-\mathrm{j} 250-\mathrm{j} 500-250}{100-\mathrm{j} 50+50+25} \\
& =\frac{250-\mathrm{j} 750}{125} \\
& =2-\mathrm{j} 6 \Omega
\end{aligned}
$$

Flg. 3.7: Relating vectors to j notation.

Polar Representation

A further method of representing vectors can often prove useful, especially when vectors are to be multiplied or divided. This involves representing each vector by its magnitude and angle.
e.g. (I) $\mathrm{A} \underline{\mathrm{X}}$; (II) B $\underline{\underline{Y}}$; (III) $\mathrm{C} \underline{\underline{Z}}$
where A, B and C are the vector magnitudes (or lengths) and X, Y and Z are the vectors' angles.

Rules for multiplying are:
Multiply magnitudes and add angles.
Rules for dividing are:
Divide magnitudes and subtract angles. (It should be noted that we cannot add and subtract vectors when represented by their polar forms.)
Conversions from j notation to polar form are often made necessary. Suppose the term $\mathbf{D}+j E$ is to be converted to A \underline{x}. Using rules duscussed previously, $\mathrm{A}^{2}=\mathrm{D}^{2}+\mathrm{E}^{2}$.

$$
A=\sqrt{D^{2}+E^{2}}
$$

$\tan X=\frac{E}{D}$, therefore angle X, can be obtained from trigonometrical tables.

Applications

Numerous applications for this type of calculation include the determination of lower and upper half power points of amplifiers, calculations involving filter networks and attenuators, determination of oscillator operating frequency and accurate measuring bridge calculations.
Application of some of the theorems mentioned here will be discussed later in the series.

MONTHLY NEWS FOR DX LISTENERS

THE FIRST report this month is another excellent one from Geoffrey Gilham, ISWL G-10056, of London S.E.12. Goeff's equipment includes an Eddystone EC10 and a TRIO 9R59D.

4820 HRVC, Honduras with classical music at 0215.

4940 R. Yaracuy, Venezuela with Ident. at 0227
4960 R. Sucre, Venezuela with news at 0200
5020 Trans. Caldas, Colombia at 0704
9560 R. Australia with DX News at 0730
11650 R. Pakistan, Dacca at 1500
11920 Abidjan, Ivory Coast with Eng. news at 1830
$15105 B B C$. Ascenśion Island relay, Ident. at 0915 15365 RNE, Canary Islands with Ident. at 0105
Chris Stacey of Tunbridge Wells has a Lafayette HA-700 with a Joystick antenna and A.T.U. and he sent me the following log:

7295 Athens, Greece at 1412-1445
7306 Polish Pathfinders at 1530-1555
9009 Israel Broadcasting Auth. at 2045-2127
17810 R. Nederland, Bonaire in Dutch at 1955030
Roy Patrick of Derby has an impressive line-up of equipment including an Eddystone 840, Hallicrafters $S \times 24$, Codar Preselector and various aerials and seems to have been concentrating on MiddleEastern stations:

7155 R. Amman, Jordan in English at 2015
9667 R. Damascus, Syria in English at 2030-2100
17820 R. Ankara, Turkey in English at 1415
Roy also reports that Radio Iran will have a 250 kW shortwave transmitter on the air very soon.
T. R. McKirdy, ISWL GM-1 3209, of Hamilton used a TRIO 9R59D, RF Preselector and a 66 ft dipole at 18 ft to send in a log which included :

5975 VOA, Okinawa with Science of Medicine at 0240

6050 HCJB , Ecuador with Religious Service at 0930
$9630 C B C$, Canada with Ident, in English at 1615
11720 VOA Tangier with 'Jazz Hour' at 2340
15040 R. Peking with news in English at 0000
21535 NHK, Japan in English at 0820.
Ray Hounslow of Carlton near Bedford has a Hallicrafters S-76 and sent in the following items:

The Windward Islands Broadcasting Service (WIBS) transmits with a power of 5 kW at 0245-0315 on a frequency of 11970. The QSL card is a bit drab but it is worth the effort.

The Broadcasting Service of the Kingdom of Saudi Arabia uses 11855 at $0615-0645$ with a power of 50 kW .

John W. Smith of Anstruther, Fife has, once again, made good use of his Eddystone 840 C and Joystick to hear several interesting stations:

THE BROADCAST BANDS Malcolm Connah

6255 Schulungssender des Osterreicheschen Bundesheeres at 1830-1900

15080 All India Radio at 1850
15155 R. Dif. de Sao Paulo, Brazil at 2145
15155 ELW A, Liberia sign off at 2230
15160 R. Ankara, Turkey at 2210
15370 R. Tamois and Tupi, Brazil (33443) at 2200
21455 Voice of Nigeria (44444) at 0705
John also reports that a new QSL card will be issued to mark the 25th anniversary of the International Service of $C B C$, Canada.

Africa

Malagasy Republic: According to a recent schedule from the IV network of R.T.V. Malagasy there is a programme in English on Tuesdays, Thursdays and Saturdays and in French on Mondays at 1700-1715. The programme, titled "QSL Service," is followed by a musical programme until close down at 1730 on 17730 with a power of 100 kW .

Asia

Afghanistan: Radio Afghanistan, Kabul broadcasts in German at 1730 and English at 1800 on new frequencies of 9530 and 11790.

Ceylon: The Commercial Service of Radio Ceylon in English now starts at 0100 on frequencies of 9720 and 15120.

Indonesia: The Voice of Indonesia is now using the frequency of 11710 and broadcasts news in English to the United Kingdom at 1915.

Philippines: Radio Veritas, Manila is broadcasting test transmissions on 15170 and 11830 from 0530 to 0630 and from 1100 to 1400 .

South America

British Honduras: Radio Belize has increased power from one to five kilowatts on its shortwave channel of 3300 and broadcasts until close down at 0600.

Ecuador: A note received from HCJB, Quito says that in order to receive a QSL from them the following details must be given:- date, time, frequency in MHz (only 5 kHz variance is allowable and metre band only is not acceptable), name of programme and items that would identify the programme. If an airmail reply is required three International Reply Coupons must be enclosed.

El Salvador: YSS, Radio Nacional, El Salvador is to broadcast in English and French. The programmes will be transmitted Monday to Saturday at 0300-0330 and on Sunday at 0030-0100 and consist of news items in Spanish, French and English. The frequent cies used will be 5980 and 9555.

All reports, preferably in frequency order, should arrive at 58 Kensington Gardens, Cranbrook, Ilford, Essex by the 17th of each month.

THE AMATEUR BANDS David Gibson, G3JDG

EVEN listeners with cloth ears must have had themselves a ball this past month. All bands from 1.8 MHz to 144 MHz have been humming and, judging by the logs received, plus the remarks accompanying them, the resultant happy lug-holes are in a state of high jubilation.
L. Bunnewell (Norwich) claims that there is no achievement in receiving DX if you use a commercial receiver, and that it is the receiver and not the operator which should get due credit. (How many photographers do you know who make their own cameras, OM?) Any readers agree with this, or have any other ideas?
D. Henbry (Sussex), KW77, 7 ft . vertical at 30 ft . is back in the r.f. saddle again and sends in a fantastic all-band log. Down among the spurious and curious on 80 metres his ears beheld the wonders of: CN8HL, CR4BC, CR4BB, CT2AP, HC2GG, HK3WO, HP1JC, HS5ABD, KZ5AE, KZ5NR, MP4BFO, TI9CF (Cocos Is.), VP5NB, VP5TH, VP7NY, VS6DO, W5JV, W9FIU/KS4, WA1AIM/ VO2. XE1CE, XE1KS, YV $\angle U A, Z M 1 B A Z, ~ Z M 2 G L, ~$ ZL2BCG, ZL4NH, 3A2MJC, 4X4UF, 9L1RP, 9Y4MM. (Cor! It's better than my log for 20 metres.)

On 40 metres David logged: CE3RR, CO2DC, CO2FA, CP1GN, EA8BZ, HBØLL, HI7CAF, HK1BWC, HT1HF, KZ5NR, OA4NLA, PY7PYQ, PZ1AH, TF5TP, TG8IA, TI2CAP, VP2VI, VP9GE, XE1BR, YV4CH, ZL3JC, 4X4KT.
D. Isaac (S. Wales), 9R-59DE, 60ft. end fed, caught this bunch red-handed on 80 as they crossed the Welsh border: CT2AT, HC2GG, HK3WO, K3UZE, K5KLA, K8UDI, KP4CL, OA4NLA, PY7VIZ, VE3TC, W2JKI, W3GM, W4BVV, W5IOU, W5QWF, XE1CE, XE2IH, YV4UA, YV5TS, ZL4NH, ZM3GQ, ZM3LE, 4X4UF.
J. Moore (Leicester), CR100/2, 60ft. end fed, reports happenings on the lower frequencies. 160EI4AN, GI3TLT, GM3LIB, GM3NVU. 80-CT2AK, HV3SJ, K1BXI, KP4CL, VO1DE, W1CBU, WA1JFX. W2NIN, XE1KS, YV5BTS, ZC4CV. 40-K2BQI, PY7BFN, W2IUY, WA2BVU, W3ZKH/ P/3, ZM3RK, 6W8DY. All this lot on s.s.b.

An urgent message for the chemistry master at Sir Thomas Rich's School, Gloucester. Messrs. Anderson, Davies and Apperley are holding sneaky listening sessions on your HRO plus 80 ft . end fed. On 15 metres this trio logged: CN8HD, EP2EX, G3CGD, VE3ACD, W6ARJ, W6NWU, W8LIC, W9KHW, YA1HD, YT2FVW, 3Z6AAT, 4X4DK, 4Z4BG, 9H1BI. Well done lads-back to the tuck shop.
D. Robbins '(Warks), CR70A, 60ft end fed, got these on s.s.b with the help of his b.f.o.: AX4PX, CN8HD, CR4BB, ET3USA, G3RTU/4X4, IS1LMN, JA6JNQ, JA6KCY, JX3MN, LU9DZ, PY7AF, VS6DA, VS6BE, ZC4HS, ZD9BM (Tristan da Cunha), ZL3BJ, ZS6AO, 5 H 3 JR , $5 \mathrm{H} 3 \mathrm{KJ} / \mathrm{A}$ (Zanzibar), 9E3USA, 9G1GD. All these on 15 metres. On 20 s.s.b.-AX6RU, CE6DP, CP1GT, FP8CSV, HI8UD, HV3SJ (Vatican), JX3MN, JX4DN, JW3XK, KL7EBK, KP4FS, KZ5EK, LU1DM, DU6DLN, LU8AFB, LU9DDH, MP4QBK,

PY4ATG, PY6AG, PZ1AP, TI9CF, TR8DG, VK3MO, VP2AA, VP2GLE, YV1ABO, ZP5AA, 4U1ITU, 5Z4LW, 8 R1U, 9L1RP, 9Y4MM, 9Y4PL.
T. Maxwell (Lanarkshire), CR70A, 18 ft . end fed sent a thin slip of paper with a fat log. Fifteen s.s.b.: CT1GD, EA6BJ, ET3REL, HPØLL, HR2HHP, JAøENB, JA3TXN, JA8AHH, JR1DQH, JW1CI, KZ5MP, OD5GD, PAØWEJ/SM/MM, SVØWP, VE5MW, VE6AJS, WB6UZF, YO9CN, ZM2NY, ZS6RO, 4U1ITU, 4X4RW, 6Y5ET, 7P8AB, 9Q5NW, 9U5CR.
K. Webb (Bucks), CR45, 12 ft . whip antenna, says Vive la t.r.f. and promptly shows what can be heard. His \log for 15 reads: AX3AKP, EA6BN, EA8FS, FP8CT, HR2WTA, JX3MN, KL7YM, KP4BBK, KR6HS, KV4GN, LU8FLO, PY2PA, SV1AR, VE1FN, VEØNA, VP2VI, VK3ZL.
A. Markham (Essex), 9R-59DE, 33ft. end fed, received these on 10 metres: AX3ACR, AX6BDO, AX6NM, HK5NE, JA1LBR, KH6QR, KZ5KZ, VE6UM, YV5CIL, ZE3JO, ZE4JG, 6Y5GB, 9J2PU, 9Q5RH.
A. Crooks (Leicester), RA1, PR30, 45ft. end fed logged FM7WR (Martinique) on 10 metres a.m. On s.s.b., Andy logged: CE3RR, CE8AA, CR7GC, CR7IK, EP2BI, HR1EMM, K6QVT, KP4ZC, LU2DAW, MP4QBK, OA4J, PY3APH, PY8JL, RA1AKZ (U.S.S.R.), SV1DA, VE2DMG, VE6AJD, VE6ANO, VP7DL, VP8KD, VP8KL, VU2OLK, W5RMC, W6GU, W7KPK, WøDQQ, WA6FQY, WA6UAG, WB6SMG, XW8BP, ZE1BS, ZP5OJ, 5N2AAF, 7Q7LZ, 9G1GD, 9H1BX, 9J2WS.
J. Stevenson (Surrey) is working on a collapsible 3-element 2 metre beam which can be dragged off the roof and hidden under the bed when the landlord is in. Mind how you turn over in bed OM, or you'll get more dB's than you bargained for. John has constructed the CQ-2 with certain modifications. His present antenna is a simple dipole made from 14 s.w.g. wire and he reports many fairly local signals. His main criticism of 2 metres is the overall standard of modulation. "Class C a.f. stages don't do much for R5 copy", he says. (Down you mutinous G8's.)
G. Richards (Isle of Wight) says, "Tell L. Coombs that I have declared war on him". Glyn has a 4 over 4 slot-fed yagi, JXK converter into a Mohican receiver tuning $28-30 \mathrm{MHz}$. Stations in the $70-110$ mile range received on 144 MHz include-GW8ASA, GW3MFY, G2JF, G2DRT. From further afieldG3EGK (Leicester) and G6CW (Nottingham) both on s.s.b.
N. Richardson (Bucks), 5-element yagi (handrotated), Garex converter, PR30 plus CR70A as tuneable i.f. Nicholas reports some good openings and his \log includes signals from-G2DQI, G2MR, G2BVW, G3HRH. G3KPB, G3MJW, G3NJV, G3RJC, G3SLJ, G8LT, G8ASR/A, G8BBB, G8BSH, G8BIC/P, G8CAF, G8CLX.

Goings on in May include: May 2nd. - 3rd., 144 MHz contest; 10th., Ealing and District A.R. Mobile Rally at Hanwell, London, W. 7.; 17th. D/F event at Grimsby; 17th., Northern Mobile Rally; 30 th ., and $31 \mathrm{st} ., 70 \mathrm{~cm}$. contest; June 6th., and 7th., National Field Day.

Please remember that logs must reach me by the 18th. of the month and should be in alphabetical order. Several logs received last month arrived on the 20th. and were too late to be included. Summer is aerial weather so how about trying a new aerial this year and let me know how you get on?

Continued from last month

Matching the Aerial to the Transmitter

One of the problems which many mobile operators find difficult to overcome is that of matching the aerial to the transmitter which is most important if maximum power is to be transferred into the aerial. As all loaded aerials for the h.f. bands are resonant to a quarter-wavelength they are current fed. A ten watt transmitter should put at least 0.3 to 0.4 A into the aerial. However, this is only

Fig. 11 : Wide range matching system.
a rough guide and the aerial resonance should be adjusted until no further increase in aerial current can be obtained. There is also the problem of maintaining resonance over the whole of the band and which is closely bound with matching. The transmitter output must in the first instance be of low impedance, i.e., from a pi-network or link coil coupling. From here the aerial can be fed by a co-axial cable of 70 to 80Ω impedance. Unfortunately the feed impedance of loaded aerials is usually much lower than that of a full quarter-wave aerial and because of their low efficiency accurate matching is important.

A simple method is that shown in Fig. 11 which can be adapted to all the h.f. bands. The method provides not only accurate matching but also allows the aerial to be set to resonance. over the band. The total amount of inductance in series "with the feed to the aerial itself must be sufficient to maintain resonance at the lowest working frequency. As the sections of inductance are switched out the aerial will resonate at higher frequencies. Some operators use a coil with a sliding contact but these are difficult to obtain and/or make. Normally a mobile operator will work over a fairly narrow frequency band to avoid constant retuning of the aerial. Another method of tuning the aerial so as to be able to cover the whole band is to use a ferrite slug as illustrated in Fig. 12. The aerial and the matching inductance should be adjusted to resonate at the high frequency end of the band. Resonance at the lower frequencies is obtained by sliding the ferrite further into the coil. This method should only be used for the lower frequency bands of 1.8 and 3.5 MHz .

Capacity Hats

The capacity hat is rarely used now for low frequency aerials since it would have to be fairly large to produce any worthwhile reduction in coil inductance. Capacitive elements above the loading coil can, however, be used to tune the aerial to resonance over an appreciable proportion of the low frequency bands 1.8 and 3.5 MHz . A fairly simple arrangement is shown in Fig. 13 and consists of two rods, one fixed and one moveable. Each rod should be about 12 in . long and $\frac{1}{8}$ in. diameter brass or copper. When the two rods are in line the capacity is minimum and as they are spread apart to form a ' V ' the capacity increases. Both rods are in contact with the whip section above the coil and with each other.

Ground Wave Field Strength at 1.8 MHz

The most popular amateur band for mobile operation is 1.8 MHz on which propagation is predominantly ground wave. Field strength is therefore very much influenced by the ground over which the wave travels and particularly by built up areas. In open flat country transmitting ranges of up to 100 miles are possible but in rolling country this can soon be reduced to 30 miles or so. In heavily built up areas the range may well be limited to 10 miles or less. This is assuming a reasonably

Fig. 14: Ground wave measurements on 1.8 MHz .
efficient mobile aerial, a transmitter input power of around 10 watts and that the receiving station also has a good aerial. Mobile to mobile ranges will normally be much less. A few years ago the writer carried out a series of field strength/distance checks with a 1.8 MHz mobile transmitter (1). These were made over fairly flat country and compared favourably with field strength/distance calculated by the Sommerfeld formula.

The calculated and measured field strengths/distance are given in Fig. 14. The small increases in measured signal strength at X and Y were due to an increase in the height of the ground over which the mobile station was travelling.
(I) Ground Wave Propagation at 1.8 MHz by F. C. Judd, A.Inst.E. R.S.G.B. Bulletin, December, 1960.

P.W. BINDERS

Preserve your copies of Practical Wireless. Don't let them become torn and dirty-buy a hard-cover binder for 14 s .6 d . from:

Binding Department,
 IPC Magazines Limited,
 Tower House,
 Southampton Street,
 London, W.C.2.

Price includes post and packing

P.W. INDEX

The Index to Volume 44 (May 1968 to April 1969) is now available, price 1s. 6d. Copies may be obtained from:

P.W. Index Department, IPC Magazines Limited, Carlton House, Great Queen Street, London, W.C.2.

Price includes post and packing

does not involve transmission and reception on frequencies requiring a Post and Telecommunications Licence.

Basically, the transmitter consists of a lamp which is amplitude (brightness) modulated by the voice signal to be transmitted. The lamp is mounted in an optical system, so as to produce a parallel beam of light, which is directed at the receiver. The receiver consists of a phototransistor mounted in a similar optical system to the transmitter.

The resultant audio frequency currents in the phototransistor, produced by the received light, are amplified to a level suitable to operate an earphone. By using a transmitter and receiver at both ends, a two way speech link may be established.

Technical Considerations

When the light source consists of a filament lamp, the thermal inertia, i.e. the time taken for the filament temperature to follow rapid changes of the applied current, causes the higher audio frequencies to be severely attenuated. To counteract this effect it is necessary to provide frequency compensation in the amplifier cincuits, having an opposite characteristic which rises at the higher audio frequencies, in an attempt to produce a relatively level response.

The compensation is done in the coupling and de-coupling circuits in the transmitter and at the receiver. The effect is to produce an overall frequency response which is within 3 dB over the range, $300-3000 \mathrm{~Hz}$, normally required for good voice communication.

Circuit Description

The circuit of the transmitter is shown in Fig. 1. The direct energising current for the carbon microphone M1 is provided by R1. The resultant a.f. signal voltage developed across R1 is coupled by Cl to the base of Tr 1 . Tr1 and Tr 2 are connected as a 'Darlington pair' with the transmitter lamp LP1 connected in the collector circuit. R2, R3 and VR1 provide an adjustable potential divider which enables the operating current of $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ to be varied, so that the brightness of the transmitter lamp may be set to the level which gives the best modulation characteristics.

The necessary rising high frequency response is provided by the time constant of the coupling capacitor C1 and the potential divider resistors, and by negative current feedback at low frequencies by C2 and R5. H.T. line de-coupling is provided by C3.

In the receiver, Fig. 2., a.f. signals are developed across R 7 , the collector load resistor of the phototransistor Tr3. The signals are coupled via C4 to the base of $\operatorname{Tr} 4$. $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ comprise a direct coupled

Fig. 1: Circuit of transmitter.

Fig. 2 : Circuit of receiver.

amplifier. D.C. stabilisation of the operating conditions is provided by current shunt feedback from R11 and R8 to the base of Tr4. A rising high frequency response is produced by C4 and R7 also by C5 and R9.

For good signal to noise ratio the rising high frequency response has to be restricted to the required passband, this is done by C6 which provides voltage shunt feedback to reduce the gain of $\operatorname{Tr} 5$ at frequencies beyond about 8 kHz .

Amplified a.f. currents in the collector circuit of Tr 5 are fed to the earphone in the telephone handset. An a.f. gain control is provided by VR2 which forms part of the a.f. feedback loop with R11 to the base of Tr4. The overall measured frequency response is shown in Fig. 3.

Fig. 3: Frequency response of receiver.

The Optical System

A number of experimenters have used different types of optical systems having varying beam widths and efficiencies. For the best results it is important to have a parallel beam of light from the transmitter to the receiver. The optics required to produce a near-parallel beam would normally be quite expensive.

The optics used in this system are built from four Mullard optical projector units, salvaged from old projection-type television receivers, such as Decca 1000, Ferranti 20T4, Peto Scott 169 and Philips 1700A series etc.

The Mullard optical unit contains a precision concave mirror, which is part of the Schmidt optical system and capable of giving a remarkably parallel beam of light. The focal length of the concave
mirror is about 9.5 cms giving an equivalent aperture of about $\mathrm{f} 1 \cdot 8$. The lamp in the transmitter is positioned so that its filament is at the focal point of the mirror and at the receiver a similar arrangement has the phototransistor at the focal point.

Construction

Construction of the unit is not critical, and the layout shown in the photographs is just one possible arrangement. Each Mullard optical unit frame is stripped of all hardware except the concave mirror and its fixing clips. Two units are bolted together feet-to-feet with an aluminium plate sandwiched between, to act as an optical screen. Aluminium plates are also fitted over the aperture left by removing the corrector lens.

The transmitter lamp and the receiver phototransistor are mounted on suitable brackets at the focal point of the mirror (about 9.5 cms out from the centre). Due to the very narrow beam width that can be obtained it is essential to have an optical sight attached to the units to facilitate correct alignment of both stations.

Fig. 4: Constructional details of optical sight.

The construction of the sight is shown in Fig. 4 and consists of a brass tube with a small aperture at the eye end and cross-wires at the remote end. The sight is attached by clips at the top junction of the optical unit feet and is packed into its correct position as described in the setting-up instructions.
The optical units may conveniently be bolted to a baseboard and the complete light beam telephone may be cased-in to prevent accidental damage to the components and to afford some protection against direct sunlight and the weather, when used for portable work outdoors.

Modified Construction

The original set of Light Beam Telephones wére built some years ago and since that time, it has become increasingly difficult to obtain redundant Mullard optical units.

A very satisfactory alternative to the Mullard unit is the metal reflector from a car headlamp. This type of reflector can be found on most pre-1955 British cars and on current production cars of Continental manufacture. One of the easiest headlamps to modify are those found on Volkswagen vans. The reflector is readily removable and has an excellent lampholder on which the lamp or phototransistor can be mounted. These and similar types can be purchased from most car breakers for about 10s each.
It may be possible to use headlamps with surface silvered glass reflectors, but the front glass would have to be removed to avoid diffusion of the beam.
A suitable mounting arrangement is shown in Fig. 5. Here the reflector is mounted on the front

Fig. 5: Alternative construction using headlamp mirrors.

General view of modified unit.
components list (for one unit only)

Resistors		
R1	220Ω	
R2	$4 \cdot 7 \mathrm{k} \Omega$	
R3	$10 \mathrm{k} \Omega$	
R4	820Ω	
R5	47Ω	
R6	$68 \mathrm{k} \Omega$	
R7	$4 \cdot 7 \Omega$	
R8	$12 \mathrm{k} \Omega$	
R9	$1 \mathrm{k} \Omega$	All $\frac{1}{2}$ watt 10% carbon
R10	$10 \mathrm{k} \Omega$	
R11	$33 \mathrm{k} \Omega$	
R12	680Ω	
R13		
VR1	$10 \mathrm{k} \Omega$	preset
VR2	500Ω	

Capacitors

C1	0 -	125	Paper/polyester
C2	$4 \mu \mathrm{~F}$	15V	Electrolytic
C3	$500 \mu \mathrm{~F}$		Electrolytic
C4	$0.1 \mu \mathrm{~F}$	125V	Paper/polyester
C5	$4 \mu \mathrm{~F}$		Electrolytic
	$0.001 \mu \mathrm{~F}$	125 V	Paper/polyest

Semiconductors

Tr1 OC42 Mullard or 2N1303 T.I.
Tr2 OC82 Mullard
Tr3 OCP71 Mullard
Tr4 OC42 Mullard or 2N1303 T.I.
Tr5 OC42 Mullard or 2N1303 T.I.

Miscellaneous

M1 and P1 Standard telephone handset.
LP1 6 V 0.06 amp m.e.s. pilot lamp.
2 Mullard optical units (see text)
Miscellaneous screws, nuts, aluminium plates, lampholder etc.
panel by three long 4BA screws. The reflector has clearance holes drilled in its edge at 120 degree spacing and corresponding holes are drilled in the front panel. The long screws pass through the front panel, through three compression springs, through the reflector and are held in place by three 4BA nuts which wedge in the return flange of the reflector. The screws are tightened sufficiently to compress the springs and adjustment of elevation and bearing can be made from the front of the unit by adjusting the appropriate screws.
The phototransistor or lamp is mounted on short support rods of 18 s.w.g. tinned copper wire which are soldered to the lampholder contacts. This enables the original terminals to be used for connections.
The setting up instructions for the lamp and phototransistor in the Mullard unit apply similarly to the car headlamp reflectors. However, the fact that the reflectors can be tilted individually means that the sights on both units should be aligned on each other first, then the reflectors adjusted for correct alignment of the beams.

Circuit Board

The photographs show a prototype unit in which the transmitter and the receiver units were constructed on separate circuit boards.
In the final version the two boards were combined on a single board consisting of a piece of Veroboard $5 \frac{1}{4} \times 2 \frac{5}{8} \mathrm{in}$. of $0.15 \times 0 \cdot 15 \mathrm{in}$. matrix.

The board contains all the components with the exception of the gain control, the lamp and the phototransistor.
Details of the circuit board are given in Figs. 6 and 7. The board should je mounted as close to the phototransistor as possible in order to reduce the lead lengths. The gain control is mounted at the rear of the chassis at the same end as the circuit board.

Setting up

The easiest way to adjust and align the units is to set them up at each end of a fairly long room or corridor, facing each other, parallel and level.
Set the 'SET BRILL' control on one unit for near maximum brightness of the lamp and fix a piece of white paper over the opposite receiver unit aperture.

			2		4		6		8		10		12		14		16		18		20		22		24		26		28		30		32		34	
																	0		0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0				-
\bigcirc	0		0	0	0	0	O	c	-	\bigcirc	0	0	-	0		-	0		0	0	O		-	-	-	0	0		0	0	0					-
N	-		-	0	0	0	0	c	-	0	0	0	0	0	\bigcirc	0	0	0	0	0	-	-	O	0	0	0	0	-	0	0	0					
M	0		0	-	0	-	0	c]	\bigcirc	0	0	-	-	-	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	-	-	0	-	0	-
L	0		0	\bigcirc	0	.	0	0	0	0	0	0	0	0	0	-	-	0	-	0	0	-	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	0	0	0	0	0	0
K	,		0	0									0	0	0		0	0	0	0			0	0	0	0	0	-	-	\bullet	\bigcirc	0	-	0	0	\bigcirc
K	0		0	\bigcirc	\bigcirc	0	0	0	0	0	0	\bigcirc	0	0	0	-	-	-		-	0		-	-	0	0	-	0	0	0	0	0	0	0	-	-
J	0		0	\bigcirc	0	0	0	0	0	0	\bigcirc	0	0	0	0	-	0	0	0	0	0		0	-		0	-	-	0	-	-	-		0		
1	0		0		0	0	0	0	0	0	0	0	0	-	-	0	-	0	0	0	0		0	-	-	-	-	0	-	\bigcirc	O	0	0	O		
H			0		-	0	\bigcirc	0	-	0	0	-	0	O	-	0	0	\bigcirc	-	-	0		0	0	-	0	-	-	0	0	0	-	0	0	0	0
G			0	0	0			0	0	0	0		10	-	-	-	0	\bigcirc	-	-	0		\bigcirc	-	-	-	0	0	\bigcirc	0	0	0	0	0	0	0
F			-	\square	10	0	0	0	-	0	-	0	0	0	0	0	0	0	0	0	0.		0	0	0	0	0	0	0	0	0	\bigcirc	0	\bigcirc	0	0
E			0	\bullet	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	\bigcirc	0	\bigcirc	-	-	-	-	0	0	0	0
			-			0	0	0	0	0	0	0	0	0	0	\bigcirc	0	\bigcirc	0	-	0		0	O	0	\bigcirc	0	\bigcirc	0	0	0	0	0	0	0	0
D			\bigcirc	0	0	0	0	0	0	0	0		0	0	0	-	0	0	0	-	0		\bigcirc	0	\bigcirc	0	0	0	0	0	0	0	\bigcirc	0	0	0
C			0	0	0	-	0	0	0	0	0	-	-	O	0																					
B			0	\bigcirc	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	-	\bigcirc	0	0	0	-	0	0	0	0	0	-	c	0	0
A			-	-	O	0	-	0	-	0	-	0	0	-	0	O	-	0	-	0	0	-	\bigcirc	-	0	-	-	-	0	0	-	0	0	-	0	0

Fig. 6: Basic circuit board for combined transmitter and receiver.
Fig. 7 : bottom: Top of board showing component layout.

Darken the room or corridor and adjust the position of the transmitter lamp to obtain an even parallel beam, focussed on the paper and centred on the axis of the receiver optical unit. Remove the paper and adjust the position of the phototransistor for maximum illumination of its sensitive area.

Re-set the 'SET BRILL' control on the transmitter for about half full brightness and with a sound signal, e.g. voice or 'ticking clock', check the control setting for best modulation. If necessary make a final adjustment to the phototransistor position to give maximum audio volume.

The setting-up procedure for the other channel should now be carried out, but care should be taken not to move either unit or the original alignment will be upset. When both channels are fully operational, the optical sights on each unit should be aligned by packing the sight within its fixing clip so that the cross-wire on each is correctly sighted on the end of the sight of the other unit.

Operation

A range of several hundred feet should be obtained under normal daylight conditions, providing the sun is not shining directly into either receiver unit. An extended front cowl will normally overcome this problem, if it arises.

View from transmitter end of prototype unit.

At night the range will be increased to several hundred yards or more in very dark conditions. The gain control may be adjusted to suit the particular operating conditions.

Note

The concave mirrors are surface silvered and care should be taken to avoid damaging or marking the surface. If the mirror requires cleaning, this may be done by very gentle rubbing with a small pad of cotton wool slightly moistened with Stergene, diluted in accordance with the maker's instructions for cleaning glass.
Other sources of suitable reflectors, in order of suitability, include Aldis signalling lamps, aircraft runway landing lights, and projector lamphouse reflectors. The successful operation of the system depends on having a well focussed beam and good alignment.
Finally, should it be found necessary to use headlamp reflectors great care must be taken in removing any front glass to avoid injury to the hands. If necessary wrap the reflector unit in a cloth and then tap the glass gently with a hammer until it breaks.

THE

MW column
|||||||||||||||||||||||||||||||||||||||1||

WEST AFRICAN stations are usually at their best at this time of year. Listen from sunset onwards, preferably using a loop aerial since DX is to the south while any interference will probably be from the east. Conakry 1403 kHz is invariably a good signal after 2300 hrs GMT-it was logged in Germany recently on a transistor portable! Listen for French announcements and Affican style music and singing. Dakar 746 kHz in Senegal also signs off at midnight and has similar programming. Try after Sottons goes off the air at 2300 hrs (except on Saturdays). More difficult stations from this area include ELBC 629 kHz in Monrovia Liberia which signs off at 0045 hrs with announcements in English; Radio Abidjan 1240 kHz in the Ivory Coast in French; CQA 759 kHz on the Portuguese island of Sao Tome in the Gulf of Guinea. Further south in Angola, CR6RZ on 1088 kHz is sometimes heard in Portuguese after BBC4 on the same channel finishes for the night. Among easier stations in the north are Radio Sahara 656 kHz in Spanish Sahara with closedown at midnight and Tenerife 620 kHz in the Canary Islands which signs off at 0100 hrs. The Voice of Morocco 1232 kHz in Tangiers is usually strong and can be heard quite late in the evening, broadcasting in Arabic or French.
The continued improvement in conditions on the medium waves since the maximum of the current sunspot cycle is illustrated in an interesting letter from Chris Pearson of Bolton Lancashire. Chris made his first attempt at MW DX on the 13th and 14th February using a domestic receiver and a 60 ft aerial. During the period 2300 to 0130 GMT he logged CFCY 630 kHz in Charlottetown Prince Edward Island; WOR 710 in New York City; CHER 950 Sydney Nova Scotia; WINS 1010 N.Y.C.; CBA 1070 Sackville New Brunswick; WBAL 1090 Baltimore; WCAU 1210 in Philadelphia; WGAR 1220 Cleveland. A very good beginning Chris. North American stations can still be heard from 0230 GMT until sunrise in May.
Sunset is a profitable time for the MW DXer. Before European QRM becomes too troublesome it is often possible to pick-out quite rare stations. Khania 1511 kHz in Crete is one that has been logged at sunset during May. Although part of Greece, Crete is generally regarded as a separate country for DX purposes. Another 'DX Country' in this area is Rhodes in the Dodecanese Islands. In spite of QRM the VOA Rhodes on 1259 kHz is occasionally logged. From the Persian Gulf the BBC Eastern Relay, Radio Mazirah 1410kHz in Sharjah, Trucial Oman, was heard regularly last summer in Arabic and Hindi up to sign off at 2115 hrs. Further east, Urumchi 1525 kHz in the Sinkiang Province of Western China beams programmes westward and can be heard quite clearly during the evening in Russian, in spite of jamming. Urumchi is one of a small number of high power MW stations intended for other than domestic or medium range reception; it's power is believed to be in the region of 2000 kW .

ChARLES MOLLOY

SUPERCONDUCTIVITY

OF all the surprising effects which research in physics has uncovered in the 20th century, effects which include transistor action, lasers, parametric amplification and many others which have affected communications, one of the strangest to influence electronics must be superconductivity. It had, of course, been known that all good conductors decreased in resistance as they were cooled, and also that, contrary to what might be expected, the resistance then became constant for most materials at low temperatures.

By "low" in this context, we mean temperatures at which most gases are frozen solid, and to measure such temperatures we use a scale of temperature called the Kelvin or Absolute scale. We shall have to become used to this scale, as it is now internationally recognised as a standard, and will soon be the only scale of temperature taught in schools. The familiar term "degree" will disappear, to be replaced by the "Kelvin." and the temperature of "nought" Kelvin will be the absolute zero of temperature.

There are no temperatures below zero on the Kelvin scale, as we have very convincing evidence that it is impossible to have colder temperatures, and in practice we can only approach to within a few hundredths of a Kelvin to zern temperature. The zero of the Kelvin scale is at $-273 \cdot 16^{\circ}$ on the Celcius (often wrongly called Centigrade, even by the BBC) scale on which water freezes at 0° and boils at 100°.
On the Kelvin scale, water freezes at $273 \cdot 16^{\circ} \mathrm{K}$, oxygen at $91^{\circ} \mathrm{K}$ and nitrogen at $79^{\circ} \mathrm{K}$. Incidentally, if you think that this is another new fangled continental measurement, the scale was originated by Lord Kelvin in 1854, and has been in use since that time.

Research

By 1933, it was known that certain metals, in particular lead and tin, showed a sudden drop in resistance at temperatures of only a few Kelvin. Such temperatures could only be attained in baths of liquid helium, which is the last gas still to be liquid as the temperature approaches absolute zero, and the discovery must have seemed to readers of the newspapers of the time (if they troubled to report it) a useless piece of pure research with no practical significance.
It has great significance now. When lead is cooled, the resistance starts to fall very noticeably at about $7^{\circ} \mathrm{K}$ and by the time $4^{\circ} \mathrm{K}$ has been reached, the boiling temperature of liquid helium, the resistance of the lead is only a millionth of a millionth (10^{-12})
of its value at the freezing point of water. The transition temperature at which such metals suddenly drop in resistance varies from one metal to another; for tin it is $3.7^{\circ} \mathrm{K}$, for mercury it is $4.1^{\circ} \mathrm{K}$, and so on.

Much of the work which has been done on superconductivity has been aimed at finding alloys whose transition temperatures are higher than those of pure metals; the highest known at the time 'of writing is about $22^{\circ} \mathrm{K}$. There is even a faint prospect of finding non-metallic substances which may be superconducting at ordinary room temperatures.

The Superconductivity State

To form any idea about what happens when materials become superconducting, we must use the modern theory of solids (see "The Solid State" in Practical Wireless, December 1968 and January 1969). This theory pictures a solid as an arrangement of positively charged nuclei surrounded by electrons of various energies arranged in groups or bands. The transfer of electrons from one band to a higher energy band can be arranged by providing the electrons with energy in the form of heat, light, or other radiation, sufficient to cause the transfer.
In many substances there are gaps between the bands, meaning that no electron can ever have values of energy corresponding to the gaps. If these gaps are wide, the transfer of electrons may never take place under any conditions which we can arrange, if the gaps are narrow, the transfer may be easy.

Insulators are materials whose highest energy band in use is filled with electrons, and whose next empty band is a large energy gap away. Insulators become conducting only at very high temperatures when some electrons transfer to the empty band and become free to move from the region of one nucleus to others.

Semiconductors have a smaller band gap, so that conductivity increases rapidly as the material is heated because of the easy transfer of electrons into a vacant band, leaving behind holes which can also act as conductors. Metals have overlapping bands, and electrons can move easily at normal temperatures. In this case the effect of heating is to move too many electrons into higher band regions, so causing what amounts to a traffic jam and raising resistance.

If we could examine an atom of a substance, we might find that the energies of the electrons were carefully graded in steps of energy which formed into bands only when atoms were forced to live close together, as when a gas is condensed into a
solid. In each step of energy, a maximum of two electrons can only ever be found, distinguished from each other by their "spin," that is they appear to spin in opposite directions.

We should not take this too literally, because we cannot observe this spin, nor can we imagine any axis around which an electron should be spinning, but there is a sound basis for the idea of electron spin, not least in the explanation of magnetism, and spin is as good an idea as any to describe the difference between electrons which appear to be identical in every other respect.
As a metal is cooled, electrons of opposite spin in different energy levels appear to team up to form pairs (called Cooper Pairs) which have identical energy values, a situation which never exists at higher temperatures. These pairs with identical energy values stay together and move together without any interference from the rest of the particles forming the material.

An Analogy

The nearest thing which we know to this in everyday electronics is series resonance. Suppose we call an inductor a "resistor with clockwise spin"expressing the idea that the voltage across the inductor is 90° ahead of the current through it. Since the voltage across a capacitor is 90° behind the current through it, we could call a capacitor a "resistor with anti-clockwise spin," and we might not be surprised if we found that the combination of an inductor and a capacitor had, under certain circumstances of energy (frequency) practically no resistance.
We cannot press this similarity very far, however, for nothing in electronics prepares us for the idea that all pairs of electrons will have the same energy and will move together. It is as if tuning one resonant circuit in a vast tuned amplifier caused all the other circuits to come into resonance at the same time.
The idea is not entirely unfamiliar, because the action of a laser depends on electrons moving from one energy level to another in a large number of atoms together. In the laser, however, the "sync. pulse" which causes the electrons to move in step is the light ray travelling to and fro along the laser tube or rod; in the superconductor, the "sync. pulse" seems to be the vibrations (called phonons) of the nuclei of the atoms of the solid which in certain substances reach the correct frequency for stimulating the pairing of electrons at the transition temperature.
When a substance becomes superconducting, an energy gap appears which did not previously exist in the substance, and the paired electrons are all in a band which is just below this gap. If the paired superconducting electrons are given enough energy to travel across this gap into another energy band, they can no longer contribute to superconduction, and they "unpair" rapidly.
If enough energy is put in, by heating above the transition temperature, or by the application of strong magnetic fields, then the energy gap disappears and superconduction stops.
The ability of superconduction to be switched on and off in this way is the principle behind the use of superconducting wire in computer memories. For
some other purposes, the destruction of superconductivity by magnetic fields is a disadvantage, and alloys have been developed (for winding electromagnets) in which the magnetic field for the breakdown of superconductivity is very large.

The Josephson Effect

We have seen that superconducting electron pairs cause other electron pairs to move in the same way and have the same energies. The situation is similar to the hypothetical case of a set of oscillators being brought to the same frequency by a sync. pulse applied to one oscillator, the others being very closely coupled.

We know also that if the coupling between the oscillators in our imaginary case were made loose, it would be most unlikely that they would pull into line so willingly, but what happens when we loosen the coupling between electrons in a superconductor?

The way in which we can do this is by inserting an insulator between two portions of superconductor. If the insulator is "thick" to the extent of several thousand atoms, then the conditions existing in one superconductor have no relation to the conditions existing in the superconductor on the other side of the insulator; there is no synchronisation.

If, on the other hand, the insulator is very thin, perhaps one or two atoms in extent, the superconductivity is unaffected by the insulator. We say that the superconducting electrons have tunnelled through the insulator, implying that there has been a superconducting current in an insulator.

Fig. 1: The Josephson Junction
The effects which can be produced in these sandwich constructions of superconductor-insulatorsuperconductor (Fig.1) were discovered by a research student, B. D. Josephson, in 1962. He found that the current flowing in an insulator-superconductor junction, now called a Josephson Junction, was expressed by a comparatively simple formula which involved the steady voltage across the junction, the alternating voltage applied, the frequency of this alternating current, the charge on the superconducting electron pair, and a well known constant called Planck's Constant which appears in any description of energy levels, and can be crudely described as being the atom of energy.

We can obtain several solutions to the Josephson equation by filling in values for the voltages which we can adjust. If, for example, we have no voltages, direct or alternating, across the junction, the equation predicts a steady flow of current. Such a current, flowing without an applied voltage is a superconducting current, and shows that the junction is behaving as a superconductor.

If a steady 'voltage only is applied, the solution
of the equation is now an oscillating current whose frequency is equal to 483.6 MHz for every microvolt applied. This appears to be a very simple way of generating very high frequencies, with the frequency easily varied by varying the voltage applied.

When alternating voltage alone is applied to the junction, the results are not particularly interesting, a current at the applied frequency; but when both alternating and direct voltage are applied together, the output is a direct current whose amplitude is proportional to the frequency of the alternating voltage, plus a series of harmonics of the alternating voltage. This implies that a Josephson Junction can be used as a detector, even at extremely high frequencies.

Superconductivity Switches

Up until now, switching with superconductor materials has been done by the principle mentioned earlier that the superconducting state can be destroyed by added energy. It turns out, however, that a Josephson Junction is much easier to switch. At low currents, the junction is superconducting and has zero voltage across it, at higher currents the junction conducts by electron tunnelling and has about 1 mV across it.

Fig. 2 : Josephson Junction with gate.

Adding a third electrode, a strip of lead carrying a control current, makes a more satisfactory arrangement similar in construction to a mosfet (Fig.2). A flip-flop has already been constructed (Ref.1) which has a switching time of less than $0.8 \mathrm{~ns}(1000 \mathrm{~ns}=1 \mu \mathrm{~s})$.

The Future

To my mind, the whole future of the Josephson Junction depends on the achievement of superconductivity at higher temperatures. The use of any device which depends on supplies of liquid helium for its operation is inevitably going to be restricted to applications for which absolutely nothing else will do.

If we reach the stage where the developments in superconductive materials and the developments in electrical cooling (by Peltier-Thomson junctions) overlap in their temperature range, then the Josephson Junction may suddenly become the big growth industry in electronics. Until then we only watch and wait.

References:

1. Matisoo, J., "The Tunnelling Cryotron," Proc. Inst. Elect. Electronics Engrs. 1967, 55. pp 172-180.
2. Solymar, L., "Josephson Junctions," "Electronics \& Power," Aug. 1968, p. 316.

NEXT MONTH IN

ThitiES

REVERBERATION UNIT

All lovers of good music, be it classical or 'pop', will appreciate the importance of 'reverb' on the end product as it comes from their speaker systems.
This unit can be added quite simply to any existing amplifier chain and it will provide the necessary reverberation effect with adjustable time delay. Tape recording enthusiasts can also put the unit to good use when re-recording those old discs and tapes.

NOVEL SIGNAL INJECTOR

A two transistor signal generator complete with power supply can hardly be described as novel. But when it is built into the handle of a small screwdriver, such as is carried around by every radio enthusiast in his top pocket, then it IS novel!

LIGHT OPERATED SWITCH

This 3 transistor unit built into a clear plastic box can be sited indoors or outside and will operate a lamp or relay when darkness falls. The heart of the unit is a photoconductive cell that costs around 10s. Incidentally, the three transistors together will hardly break the bank at 9 s !

PLUS THE REGULAR "TAKE 20" AND "I.C. OF THE MONTH" FEATURES AND OTHER CONSTRUCTIONAL ARTICLES AND FEATURES

Don't miss your copy of the July issue of Practical Wireless -on sale 5th June-price 3s. 6d.

MAlisconnector

B. HUNTER

WHEN setting up a workshop, the author was careful to provide mains sockets for all the common types of plugs in use so that plugs would not have to be changed on apparatus being serviced. This method worked well until equipment arrived without plugs or when testing newly constructed apparatus which did not yet have a plug. Fitting plugs was time consuming and so some method of connecting the bare wires to the mains was desired so the author decided to construct the mains connector described here. Using this, apparatus without plugs may be quickly connected to the mains and the bare wires are completely covered and safe.
The connector consists of a base to which three crocodile clips are fixed. These clips are connected to the mains supply and provide Live, Neutral and Earth connection to the wires from the apparatus. The clips are completely covered by the top and sides of the connector so that the user is protected from electric shock whilst the unit is closed. It seemed a pretty safe bet that at some time or other, the user would open the top whilst the unit was still live and possibly receive quite a shock, so a means of cutting off the supply when the unit was opened was required. The simple addition of a micro-switch provided this facility. The micro-switch is in the live side of the mains, the normally open contacts being used so that the switch is closed when the top of the unit is closed.

A mains neon may be fitted if thought necessary, and by adding the neon after the micro-switch, a visual indication of the unit switching off when the top is opened is obtained. This is an added safety feature in the unlikely event of the micro-switch failing to break the supply.

The unit was constructed from $\frac{1}{4}$ in. Perspex which was glued together with 'Araldite'. The size of the unit is, of course, in no way important. The sizes given in Fig. 1 may be changed to suit individual taste.

The bolts in the crocodile clips should be removed and the end of the clip shown in Fig. 2 should be broken off. The clips are held to the base by bolts which fit through the holes shown in Fig. 1. These holes should be countersunk so that the heads of the bolts sit well below the surface of the perspex. The clips are screwed to the base with countersunk bolts, solder tags being fitted underneath the clips. The clips are already tapped for 6BA bolts, so it is not necessary to use nuts on the bolts. When the clips are tightened, the heads of the counter-sunk bolts should be completely covered with 'Araldite' because these are connected to the mains when in use.

The sides are cut out as in Fig. 1, slots being filed as in the diagram to accommodate the wires. The sides are then glued to the top so that they are out of the way when the unit is opened.

The micro-switch should be bolted to one of the sides so that the switch operates just as the top is

Fig. 1 : The constructional details of the mains connector.
opened. It is best to construct the box then fit the switch so that the position of it can be adjusted for correct operation. If the unit is fitted with a 13 amp plug, this will already be fused, but it is a good idea to fit one inside the unit for ease of replacement.

When the glue on the sides has set (up to 3 dayssee instructions on Araldite packet), a hinge should be fitted on side 1 and the base 2 .

When the plastic work is complete, the three-core mains cable should be fitted through the slot in side 1 and held in place with a cable clip. The black (neutral) lead from the mains cable should go to the
-continued on page 141

解局

THERE are many good receivers in use which do not cover the 15 and 10 metre bands, and this article is intended to provide a relatively cheap unit which is both useful to the more experienced and instructional to the beginner. The tuning depends upon the main set, and bandspread or a good length of tuning scale is needed for the $2.5-3.5 \mathrm{MHz}$ i.f. No crystal or tuning gang is employed in the converter, and it is suggested that the beginner start with the 15 metre version to gain experience, before tackling the 10 metre version.
The omission of crystal control does cause oscillator drift, but this was not found troublesome, even for s.s.b. once the unit has settled down after switching on. Results obtained have been surprisingly good, and it is recommended that the beginner should read and act upon one of the many articles covering aerials although an unmatched long wire will work quite well. Ten metres is more prone to ignition interference, and if the location is near a busy road the answer is a good aerial or a limiter on the main set, or both in a particularly bad spot.

The circuit

R.F. is tuned by L2/TC1, coupled to the base of amplifier Trl by L3, aerial coupling by L1. Output is coupled to mixer stage by L4, tuned by L5/TC2, and coupled to $\operatorname{Tr} 2$ by L6. T:3 is a Colpitts circuith.f.c., C8, L8, TC3 with C9 to base-operated above signal frequency, and coupled via L7 to mixer $\operatorname{Tr} 2$ emitter. As the oscillator is at a fixed frequency, a variable i.f. is obtained via C5; e.g. on 15 metres, 24.5 MHz will mix with an incoming signal of 21.0 MHz to give an i.f. of 3.5 MHz , signal of 21.5 MHz will give i.f. of 3.0 MHz etc. On 10 metres, 31.5 MHz with 28.0 MHz gives 3.5 MHz i.f., with 28.5 MHz gives 3.0 MHz , etc. It will be found that the tunable i.f. range extends beyond 2.5 3.5 MHz , but results may be erratic due to the fixed front end.

It is desirable to fit a lid to the box to minimize breakthrough of local TV or v.h.f. stations, and to prevent the local oscillator from interfering with domestic TV. Note the position of C7 in Fig. 2 to prevent radiation from the battery leads. The battery was fitted externally to avoid disturbing the wiring accidentally, and to reduce the effects of changing characteristics. The battery life should be extremely long since little current is drawn.

The h.f.c. used was the " 56 UH " type found in common use on those computer panels which most good "junk-shops" seem to have. Note the use of

AF115 transistors for 15 metres, and AF114 for 10 metres. These will in fact work either way round, but it was found to be more stable and with better gain if used as indicated. If used transistors are to be fitted, be certain that they are of known good quality. Many fruitless hours can be spent when all that is wrong is a transistor of unknown response failing at these higher frequencies.

Cx is only to bring the oscillator into the range required, and if it is over 5 pF it will probably be better to rewind the coil, although it can be as much as 10 pF . Usually the ends of the coil have come away in fitting and as this will cause a weaker oscillator, it is better to rewind.

Construction

The original was made in a box of heavy-gauge tinplate, soldered at all edges, but the second unit was constructed in a die cast box, easily obtained although the screens had to be made-see Fig. 2 for dimensions. Rubber sleeves were used to deaden any vibration on the leads passing to other compartments, as a tendency was found for the unit to be microphonic. Drill the $\frac{1}{8} \mathrm{in}$. holes for these at a depth of $\frac{1}{2}$ in., two in each screen, and a larger one for the battery leads. Apply a little Bostik or Evo-Stik to the sleeves and push them in and allow to set. A short length of 18 -gauge tinned copper wire is then carefully pushed through and the ends formed into a tight loop to form an anchoring point for the various components either side. Drill the larger holes for the co-ax. input and output sockets switch S 1 and the smaller holes for mounting the trimmer capacitors and fit these components.

If it is possible to get enough heat from the soldering iron without over-heating everything else, it is better to solder all points marked MC to the chassis direct. Solder tags can be used, but fit a non-slip washer on the screw first, then fix the tag on a

Fig. 1: The circuit of the converter. Coil winding details are given below.
cleaned surface as tightly as possible, bending up the end to allow the wire to be pushed through for soldering. It is important that these are good chassis contacts.

Fit the four-way tag strips about half the depth of the box to allow room for the transistors to be fitted last of all. Fix the coils to the chassis and wire in all components. Some of the components are intended to be self supporting, a check with Fig. 2 will show which. Keep the leads as short as possible, and stick to the layout as near as components will allow, particularly in the oscillator section as this affects frequency. If a lid is fitted drill holes to allow access to the coils and trimmers, as the lid causes a considerable shift in frequency when in place.

Check wiring carefully on completion, make sure transistors are fitted correctly before fitting battery, and ensure battery positive is connected to chassis.

Alignment without signal generator

Switch on main set and tune to 3.0 MHz , connect aerial and connect converter. Set dust cores extending half-way out and trimmers halfway open. Swing main set tuning for some indication of life. The aim is to get the band central on 3.0 MHz i.f., this can be done if care is taken. The newcomer at this point needs some information on what he is listening for; briefly, once the amateurs can be heard, the "Calling CQ on 10 " etc., will soon establish where you are. The bands consist of amateur a.m., amateur s.s.b., commercial a.m., out when fitting.
with various c.w., telegraphy, etc., to either side. If you hear the "Citizens-Band" you are too low for ten metres, they are around 27.0 MHz and you should be around 28.0 MHz .

Centre up the band by means of the oscillator trimmer capacitor adjusting the dust core on the 15 metre' version until the right spot is found. Do this slowly, as little movement shifts the frequency a lot. Peak up L5 and L2 at this point, re-adjusting L8 to keep the band central on 3.0 MHz until no improvement can be made. Tune to a signal on $2 \cdot 5 \mathrm{MHz}$ i.f. and adjust $\mathrm{TC} 2, \mathrm{TC} 1$, but do not adjust the oscillator.

Remember, the 10 metre band is liable to fold up

COIL DATA AND CONSTRUCTION

Coil	$\begin{gathered} \hline \text { Turns } \\ \text { 10metres } \end{gathered}$	Turhs 15metres	Positioning	Wire
L2	10	13	Wind on first, close	22 gauge enam.
L1	3	4	Over L2 opposite	22 gauge DCC
			direction Over L1 lower end,	
$\begin{aligned} & \text { L5 } \\ & \text { L4 } \\ & \text { L6 } \end{aligned}$	$\begin{aligned} & 9 \frac{12}{2} \\ & 3 \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{gathered} 12 \\ 4 \\ 2 \frac{1}{2} \end{gathered}$	$\begin{aligned} & \text { as L2 } \\ & \text { as L1 } \\ & \text { as L3 } \end{aligned}$	as L2 as L1 as L3
$\begin{aligned} & \mathrm{L7} \\ & \mathrm{~L} 8 \end{aligned}$	4	$\begin{array}{r} 5 \\ 11 \end{array}$	For 10 metres, wind L8 on dust core, with L7 over and opposite. For 15 metres, wind L8 on former first, with L7 over and opposite direction	22 gauge DCC 22 gauge enam.

Use $\frac{1}{4}$ in. $\mathrm{x} \frac{3}{3} \mathrm{in}$. plastic formers with $\frac{3}{3} \mathrm{in}$. long dust cores with fine thread; be sure they are h.f. type. Use quick setting cement; hold in jig while setting. Wind coils tightly. Keep ends straight and do not allow them to open

Mainline set the NEW standard in amplifiers

Mainline 70ABD

The 70ABD is a fully integrated Preamplifier and Power Amplifier to the specifications of the Pre-4 and 70AB. Size $6 \frac{33^{\prime \prime}}{} \times 15 \frac{1_{2}^{\prime \prime}}{} \times 4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$.

Recommended Retail Price $\mathbf{\text { E4.0.0. }}$

Mainline 70AB power amplifier

The MAINLINE 70AB is a high fidelity power amplifier, which is in every respect one of the finest u its available on the market today, regardless of price. One of the main features of this remarkable amplifier is its elaborate protection against short and open circuit, and we can guarantee that it is virtually indestructible. Allied to this is the very high power output (70 watts RMS) a frequency range that is superb, and distortion well below 1% even at full output. The unit is suitable for use in discotheques, groups, P.A., etc., or anywhere that high quality, high output is required. Coupled to our Pre-4 Control Unit the results are quite remarkable. The Mainline 70 AB main amplifier can be used with any other good quality control unit.

Specification

POWER OUTPUT 70 watts RMS $\pm 1 \mathrm{db}$ at B OHMS.
FREQUENCY RESPONSE 20-20.000 $\mathrm{HZ} \pm 1 \mathrm{~d}$
SIGNAL/NOISE RATIO-70 db at full output HARMONIC DISTORTION less than 5% at full output.

INPUT SENSITIVITY 700 mV at $20-30 \mathrm{~K}$ OHMS
SIZE 7"•9* $0 \frac{1}{2}$
A.C. FUSE 1.5 amps (Eritish Standard).

Recommended Retail Price $\mathbf{£ 3 5 . 0 . 0}$

Mainline Pre-4 mixer pre-amp control unit

The MAINLINE Pre-4 is a high quality control unit, which has been designed specifically for use where mixing facilities are essential, and features many facilities not normally found on. control units of this type.
The unit has four individual inputs each with its own gain control, plus separate bass, treble and master volume controls, for versatility in use. Inputs 3 and 4 are duplicated on the back panel so that if the unit is panel mounted the two auxiliary inputs (which are suitable for P.U. Tuners, Tape-recorders, etc.) may be connected from the rear. As the Pre-4 is self-powered it can be used with any other Power Amplifier, but has been designed basically as the control unit for our MAINLINE 70AB Amplifier Module.

Specification

INPUTS VOL. 18 mV at 50 K OHMS (mic). VOL. 28 mV at 50 K OHMS (mic). VOL. 350 mV at 500 K OHMS (aux) VOL. 450 mV at 500 K 0 HMS (aux). 50 OHM and 600 OHM Mic inputs may be ordered at $£ 2.0 .0$. extra per Input.
1 or 2 meg OHM aux inputs may be ordered at no extra cost.
FREQUENCY RESPONSE $30-20.00{ }^{+} \mathrm{H} 2 \pm 3 \mathrm{db}$.

SIGNAL/NOISE RATIO Better than - 65 db. HARMONIC DISTORTION Less than 5\% 1 volt.
BASS Continuously variable 20 db at 100 HZ . TREBLE Continuously variable 30 db at 10 KHZ . SI2E 12 t $^{*} \times 6^{\text {² }} \times 4$ t *.
CUT OUT REQUIRED $11 \frac{1}{2} \times 5^{*}$
FUSE 60 ma internally mounted.
Recommended Retail Price E24.0.0.

5
 stops you paying through the nose for your components

You could be paying too much for your semiconductors and electronic components. One sure way of saving money is to buy RCA, IR, SGS, Emihus, Semitron, Keyswitch, Plessey, Morganite, Litesold devices (together with manufacturers' application data) direct from us.

For example :PLESSEY SL403A

As described in Practical Electronics

Integrated Circuit (Dual in Line Package) Audio Amplifier incorporating its own Pre-Amplifier. A Class A-B Power Amplifier stage capable of delivering up to 3.5 Watts RMS. The SL403A can be used to form the basis of a simple Audio Amplifier using a minimum of external components. Complete with Data Sheet. 44/-each.

SOLDERING IRONS?

Whatever your particular application we are almost certain to have just the tool for the job.

ADAMIN-featherweight instruments with the slip-on bits and the big performance.

LITESOLD-the best-selling seven-model range of topquality 'conventional' irons.

THERMOSTATIC CONTROL?
The new LITESTAT instruments are surely the most advanced available - at not so advanced prices.

You ought to get the whole story. Ask for catalogues L10. Free.

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Telephone: 01-688-8589 \& 4559

BAKER 12in. MAJOR £8

The remarkable quality and performance of the "Major" makes possible truly brilliant and rich sound from a single loudspeaker. It recreates the entire musical spectrum from 30 to 14,500 c.p.s. The unit consists of the latest double cone, woofer and tweeter cone together with a special Baker CERAMIC magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 4,000 gauss and a total flux of 145,000 Maxwells. Bass resenance 45 c.p.s. For Hi-fi or P.A. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Major Module 30-17,000 cps with tweeter, crossover, baffle 19 : 10.19 .6

Sond 4d Slamp for
Further Dotails

Baker Reproducers Lidd

Bensham Manor Road Passage, Thornion Heath, Surrey. 01.684-1665

A GUIDE TO AMATEUR RADIO

By Pat Hawker, G3VA

Fourteenth edition. 100 pages.
The new edition of this indispensable aid to all who want to know more about amateur radio. Designed to assist the newcomer to this unique hobby. Revised and expanded. 8s 10d post paid

over
,000
copies sold
Now in its second printing

Radio Communication Handbook
832 pages of everything in the science of radio communication. The Handbook's U.K. origin ensures easy availability of components. The standard work in its fleld.

69s post paid

THE VHF-UHF MANUAL

By George Jessop, G6JP
A complete manual for frequencies above 30 MHz . Covers aerlals, receivers, transmitters and test equipment. The first book of its kind outside the USA.
$23 s$ post paid
Obialnable from
RADIO SOCIETY of GREAT BRITAIN 35 DOUGHTY STREET, LONDON, WCI

H.A.C.
 Electronic Kits

DID YOU KNOW?

That we have specialized in the supply of kits for the Amateur Constructor for over 35 years. (Established 1934.)
That we now have available a full range of Complete transistur kits with comprehensive instruction manual, for constructing-Radios-Resistance Bridge-Lightmeter-Electronic Counter-Voltmeter-80 metre Converter. etc. etc. (Details for 40 different electronic circuits are available.) Complete kits from 54/-, Fully guaranteed. Illustrated brochure upon application. send S.A.E. please
H.A.C. Products. 29 Old Bond Street. London W.1,

over L2, adjust L5 for maximum whilst re-adjusting TC3. Adjust L2,, reducing signal by removing loop until no further gain is obtained. Set main tuning to $2 \cdot 5 \mathrm{MHz}$ and feed in 22.0 MHz via loop to L2, adjust signal generator if needed to final signal, peak up TC2 and TC1.

10-Metre version. L8 is not adjustable. Using TC3, adjust to receive 28.5 MHz on 3.0 MHz main tuning, coupling as for 15 metre version, and adjusting L5, L2. Set to receive 29.0 MHz , around 2.5 MHz on main tuning, peak up on TC2, TC1. If Cx is needed, see end of circuit description, it should not be more than 10 pF .

Fig. 2: The companent layout.
much quicker than the 15 metre band, and good DX is more likely to occur during daylight. On 15 it does continue for several hours after sunset, with s.s.b. coming in from the daylight side.

Alignment using a signal generator

$15-\mathrm{Metre}$ version. Set main tuning at 3.0 MHz i.f., feed in 21.5 MHz via an one turn loop fitted to the test lead held over L5. Adjust L8 and TC3 together, a little at a time until signal is heard. Place loop

\star components list

Resistors

R1	$12 \mathrm{k} \Omega$	R7	$1.5 \mathrm{k} \Omega$
R2	$3.3 \mathrm{k} \Omega$	R8	$10 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$	R9	$1.5 \mathrm{k} \Omega$
R4	$1.5 \mathrm{k} \Omega$	R10	$10 \mathrm{k} \Omega$
R5	$3.3 \mathrm{k} \Omega$	R11	$10 \mathrm{k} \Omega$
R6	$12 \mathrm{k} \Omega$	R12	$2.2 \mathrm{k} \Omega$

All resistors $\frac{1}{4} \mathrm{~W}, 10 \%$ types.

Capacitors:

C1 $0.01 \mu \mathrm{~F}$ disc ceramic
C2 $0.01 \mu \mathrm{~F}$ disc ceramic
C3 $0.01 \mu \mathrm{~F}$ disc ceramic
C6 $0.01 \mu \mathrm{~F}$ disc ceramic
$\mathrm{C} 70.01 \mu \mathrm{~F}$ disc ceramic
C8 60pF silver mica
C9 300pF silver mica
C10 0.047 disc ceramic

Miscellaneous

Tr1, Tr2, Tr3: AF115 for 15 metres, AF114 for 10 metres; coils-see data box; coil formers; 3 off 4 -way tag strips; on-off switch; metal chassis; 2 off co-ax sockets, etc.

Mains Connector

-continued from page 136

crocodile clip on the left, and the green (earth) lead should go to the middle clip. The red (live) lead should go first through the micro-switch then the fuse and on to the right-hand crocodile clip. The fuse-holder may be fitted in any convenient position inside the unit. A fuse-holder as used in television and radio sets should be used, indeed the one used in the authors unit was stripped from an old set.

Fig. 2: The modification to the crocodile clips.

As was stated earlier, a mains neon may be fitted in any convenient position and should be wired between the live and neutral clips.
A 5 amp fuse should be the largest that should be required in the unit. If the workshop mains fuses are 5 amp then the fuse in the unit should be smaller so that this fuse will blow before the main fuse. The three crocodile clips should have identifying letters beside them so that confusion as to which clip is which does not arise. These letters (L, N, E) may be painted on, or 'Instant Lettering' may be used, the latter giving a neater appearance.

The author's model was made from perspex because some scrap perspex was available, but there is no reason why wood or any other insulating material should not be used, providing it has physical strength. Although Araldite was used for bonding the perspex together, perspex cement might possibly make a neater job.

The unit has been in use for some months now and has proved extremely useful by eliminating the annoyance of fitting plugs.

practically Wireless commentary by IEINII

ONCE upon a time-oh, long before then-manufacturers of 'wireless' equipment took great pride in not only making a good product but also a good 'image' by which to foster its sales. Slogans abounded. Individual makes were as instantly recognisable by their style as by their name. And there was a similar sense of company pride about the brochures and handbooks that accompanied the equipment.

In the springtime turnout that Mrs. Henry employs to remind the rest of the menage of her superiority, we came across some of these old handbooks and nostalgically leafed through them. What struck us immediately was not the amount of information they contrived to pack into the board-like pages but the significance of the lechnical data they had left out.

Wavebands were mentioned--in metres of course, and only occasionally in cycles. Hertz hadn't come along then. Now and again a power output figure would be quoted. One took it for granted, these being British and the need for dissimilation not yet having arisen, that these watts were r.m.s. It was never manifest.

Curiously, although practically every radio set on the market used one of three distinct intermediate frequencies (more by convention

"What sort of m/crophone should / buy...?
than agreement), the i.f. was almost always stated. It was one of the things that the user could do little about, but we presumed that some advertising mogul had opined that this pearl of wisdom gave comfort and all his rivals followed suit.

After which it comes as no surprise to read in a recent audio publication that the HMV little dog' has been adopted by several different countries.

The ironic comment on that is that the dog was a bitch and the original gramophone that the artist painted was a cylinder type, not the better-known hom. Anyway, says Joe, the animal should have been a cat, which does appear to make much more note of recorded sound.

But it is not my intention to knock the advertising boys-this time. Henry is more concemed with the omission of vital information from these 'come-on' compilations. Technical data, mostly.

Quite often, we are called upon to match odd pieces of equip-ment-some, very odd-and have recourse to the precious 'user's handbook' for connections, impedances and sensitivities. Said user may have bought an amplifier or tape recorder and now wishes to record the rumblings of his ancient radiogram and perhaps replay the recordings through its massive 'super-mellow' loudspeakers.

Can we find the notes we want in that lavish publication? Can we heck! Connections may be given, but impedances are never more than 'high' or 'medium' and sensitivity quotes are as elusive as the Greek calends. This is so commonly the case that we are nowadays resigned to 'suck-it-andsee', more scientifically known as 'empirical performance testing.'

As a variant on this theme, we have to answer off-the-cuff telephone enquiries. 'What sort of microphone do you think I should buy to play my Whizzispool?'

Opulent brochures given away to small boys.
cries the distraught owner. We are expcited to know, and this is one reason that the files of service information are right there above the head of the bloke who answers the workshop phone. (And sometimes on it when he pulls too desperately).

But whoever is responsible for the compilation of the average service sheet does not live in Kedar's tents. He believes that the buyer of product X is never going to purchase anything from maker Y. It is inevitably taken for granted that matching of items from X's stable will be in order, so nobody bothers to quote the figures, on the circuit diagram or on the specification sheet that accompanies it.

We could name at least five firms with this obnoxious \sin of omission, and yet three of them publish opulent sales brochures, given away to small boys at exhibitions, that contain all this and much besides.

Not British companies-oh no! These are either too good, or so completely out of touch that their service data is a smudged sheet of blotting paper with half the components wrongly rated. At least, you know where you are with them. Up the creek, oarless. The culprits are Continental and Japanese organisations whose determined efforts to improve their 'image' make the effusions of their advertising almost believable.

All together now, lie down in the driveways of that bright new factory and shout: 'Come on makers-we want data.'

Never Built a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

Stereo Record Player
Exciting Sound - Budget Price Kit: K/SRP-I - - E27.6.0 Carr. II/-

Economy SW Recieiver
World-wide Recept on I to 30 MHz plus $550-16,20 \mathrm{KHz}$ Kit: K/GR-64 - - $£ 24.16 .0$ Carr. 9/-

For D.I.Y. Car Mechanics Kit: K/ID-29 - \quad £ 17.8 .0 Carr. 5/-

Deluxe Car Radio
Heathkit Value-Powerful Output Kit: K/CR-I (speakers) £|2.12.0 Carr. 5/.

Portable 'VVM'

For Hobbyists - Householders

Kit: K/IM-I7
$£ 14.8 .0$ Carr. 6/-

A Schlumberger Company
DAYSTROM LTD. GLOUCESTER GL2 6EE
\star Please rush me a copy of your Free Catalogue

NAME

ADDRESS
POST CODE. \qquad

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, REGENT STREET, LONDOH W.1.		SUPER PAKS NEW BI-PAK UNTESTED SEMICONDUCTORS Unequalled Value and Quality Satidaction GUARANTEED in Every Pak, or money back. Pak Fo . U1 120 Glass Sub-min. General Purpose Germanium Diodes	I.C. AMPLIFIER \qquad dentical encepsulation and pin contiguration to he following: 8L402.3,
NEW LOW PRICED TESTED			and 1C403. Each
		U2 60 Mixed Germaniun Transistors AF/RF 10/-	
cas	$\begin{array}{cccccc}50 \\ 100 & 1 / 3 & 2 / 9 & 4 / 3 & 4 / 6 & 15 / 6\end{array}$	U4	ramp atake capable
PIV each each each each	$\begin{array}{lllll} & 200 & 1 / 9 & 4 /- & 4 / 9 \\ 300\end{array}$		of delivering up to 3 watte
$\begin{array}{rllllll}50 & 4 / 6 & 5 /- & 9 / 6 & 10 / 6 & 25 & 20 \\ 100 & 5 /- & 8 / 6 & 10 / 6 & 12 / 6 & 50 & 23\end{array}$	$\begin{array}{lllll}300 & 2 / 3 & 4 / 6 & \text { 6/6 } & 22 /- \\ 400 & 2 / 6 & 5 / 6 & 7 / 6 & 25 /-\end{array}$	U6 30 Silicon Planar Transistors NPN sim. BBY	5
200 $7 /-$ $7 / 6$ $11 / 6$ $15 /-100$ 1	500 3/- $6 /-81630$	U7 16 silicon Rectifers Top-Hat 750 mA up to 1.000 V	complete with circult
$\begin{array}{lllllllll}400 & 8 / 6 & 9 / 6 & 13 / 6 & 18 / 6 & 200 & 32\end{array}$	$\begin{array}{llllll}600 & 3 / 3 & 6 / 9 & 9 / . & 37\end{array}$	U8 50 8il. Planar Diodes 250 mA OA/200/202	delaio. OUR LOWEST
$\begin{array}{llllll}600 & 10 / 6 & 11 / 6 & 15 / 6 & 25 /-400 & 35\end{array}$		U9 20 Mixed Volls 1 watt zener	PRICE 30/
800 12/6 14/- 18/- 30/- 800	$5 /-9 / 312 / 650$	U11 30 PNP Silicon Planar Transistors TO-s sim. 2N1132 10/-	
PRINTED CIRCUITS EX-COMPUTER Packed with semiconductors and components. 10 boards give a guaranteed 30 trans. and 30 diodes. Our price 10 boards 10/-. Plus 2/-p. \& p.		30 PNP-NI'N Bil. Trangiato	
		14150 Mixed silicon and Germanium Diodes	
		25 NPN Silicotı Planar Transistorn TO-5. gin	MENTARY PAIRS OF
		ype up to 1000 PIV	GERM-POWER TRAN.
TRANSISTOREQVT, \& SPECIFICATION BOOK (German publication). A complete cross reference and equivalent book for European, American and lapanese Transistors. Exclusive 20 BIPAK. 15/-ea.		U17 30 Germanium PNP AF Transistors TO-5 !ike ACY 17.22 .. 10/-	
		U18 86-Amp sillicon Rectiters HYZ1	
		Silicon NPN Transistors like BC	
	2N3055 IIS WATT SIL. OUR PRICE 12/6 EACH	U20 $\quad 121.5 \mathrm{smp}$ 8ilicon Rectifers Top-Hat up to 1,000	T PRICE
		30 AF Germanium slloy Transistors 20300 Ser. \& OC71	
		30 Madt 's like Mat Series PNP Transistors	UNIJUNCTION
		20 Germanium 1-amp Rectifers GJM up to 300	6. EqYt. 2N2646
TEXAS. Our price 5/. ea. suitable for		$25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Tranelistors 2 N 708.	
B NIXIE DRIVER P.E. Organ,		U26 30 Fast 8witching 8ilicon Diodes like IN914 Mi	25-89 5/- 100 UP 4/-
ANSISTOR. Sim. Motal TO-	2/8ea. I-jW (Top Hat)	Experimentern' Assortment of Integrated Circuits, untested. Gates, Flip. Flops, Registers, etc., 8 Assorted Pieces 20/-	NPNSilicon PLANAR
			BC107/8/9. 2/- each 50.
CODED ND120. A-24, each. An	ted 5% tol. and	U31 30 8it. Planar NPN trans. low noise Amp	
$3 / 6$ each. T			
		U32	
PLEASE NOTE. To avoid any further Increased Postal Charges to our Custo. mers and enable us to keep our "By Return Postal service'" which is second to none, we have re-organised and streamlined our Despatch Order Department and we now request you to send all your orders together with your remittance, direct to our Warehouse and Despatch Department, postal address: BI-PAKSEMICOND UCTORS, Despateh Dept., P.O. BOX 6, WARE, HERTS. Postage and packinz still 1/-per order. Minimum order 10/-.	BRAND NEW TEXASGERM. TRANSISTORS	H	
	Coded and Guaranteed.	U36 25 Sil. Planar NPN trans. TO-5 BF	r
	$\begin{array}{llll}\text { T1 } & 8 & 2 \mathrm{Ca371} \\ \text { T2 } \\ 8 & 29374\end{array}$	U37 30 sil. alloy trans. 80-2 PNP, OC200 28322	ching and meas
	T3 812 g 3744 A OC81D	U38 20 Fast \$witching 8il trans. NPN. $400 \mathrm{Mc} / \mathrm{s} 2$	e indicato
	T4 8 2G381A OC81	U3 25 RF Germ. PNP trans. 2N1303/5 TO-5 10/-	
	$\begin{array}{llll}\text { T5 } & 8 & 20382 \mathrm{~T} & \text { OC82 } \\ \text { T6 } & 8 & 2 \mathrm{G} 344 \mathrm{~A} & \text { OC44 }\end{array}$	U40 10 Dual trans.	EACH. S0 OR
		U4l 30 RF Gertn. traus. TO	
	$\begin{array}{llllll}\text { T8 } & 8 & 268378 & 0 & \end{array}$	U42 10 VHF Gerin. PNP trans. TO-1 NKT667	
	T9 8 2G399A 2 N		
		th	

1,750 COMPONENTS FOR 65/- ? ?

YES. QUITE TRUE. READ ON
BUMPER BARGAIN PARCEL We guarantee that this parcel con tains at least 1.750 component
Short-leaded on pancls. including minimum of 350 transisturs (mainly NPN \& PNP germanium. audio and switching types-data supplied). The rest of the parcel is made up with: Resistors 5% or better (including some 1%) mainly metal oxide. car bon film. and comporsition lypes Mainly $1 \&$ " "att diodes miniature silicon types OA90. OA91
OA95. JSI 30 . etc. . capacitor: OA95. ISI30. etc. . clamacitors.
including tantalum. elecrulytic. ceramies \& polyesters ... induc tors, a selection of values... alses
the odd transformer. trimpor, etc. the odd transformer. trimpot, etc. up to date. professional. top qualit components. Don't miss this. one of our best uffers yet!! Price. 65/Post and Packing 6/6d U.K. New Zealand 20/- post and packing Zealand $20 /$ post
Limited stucks only.

KEYTRONICS, PW

52 Earls Court Road. London. W\& Tel. 01-478 8499

MAIL ORDER ONLY. Retail and Trade supplied. Export enquiries particularly weicome.

BY RETURN SERVICE
S.A.E. for list of other guods.

DIAMOND STYLII Replacenent for RBR TCBLP/BT (Compatibie), Coliaro "O", Ronette BF40. Garrard cet and GCB, Aco GPo, ail /8d. each (1-d.) Philipu AG $330 \mathrm{~B}, 30 \mathrm{FO}$ ($3063,3066,3301,3302,3304$) allat $15 /$-each ($1 \cdot \mathrm{~d}$).
dotble diamond (secom Diamund in plate it the 78 stylut-doublen life) for $8 \mathrm{~T} 4,(\mathrm{BT3}, 8 \mathrm{sT}$
 at cart ridgen). GP91sc for GPq1sc cartridges, al
CARTRIDGES Replaceusenta for (\because Pfi/l (stereu). 24/6: (GP44 (8terea Cerallic) $38 / 8:(1 / 1-)$

diamond cartridges fitel with a Diamon Stylum on the LP and or Btereo wide the if side i sapphire fitted). For OP918C. (D1A918C) 30/(P93 (DIA93) 35/-, OP94 (DIA 44) 50;- (A11 1/
each). 80N0T0N

STANDARD $5^{\circ \prime}$ bion. $73.33^{\prime \prime}\left(000,101-7^{\prime \prime} 1200,11 / 3\right.$ LONG PLAY $\mathrm{s}^{\prime \prime} 900$, $10-5 \mathrm{~S}^{\prime \prime}\left(200,11 / 3, \bar{\prime}^{\prime \prime \prime} 1800\right.$. 18/-. (1/3 per reel).
NEW ENLARGED LIST w-ith mowt of our unua popular linem and many new tema including Transistorn, A.D.R's antid other devices, 10 types of car-radion from 4)- to $\mathbb{E}^{7} .10 .0$. Microphones, Boldering Ironm, Super-thit pickup wire, three trpen of coll necting wire, single and twin mike cable, pluge and nomeroun small but umefui items, phoner. ear piecer. VALVEG, Meterm, etc. elc. LIAT SENT
FREF ON HECEIPT OF R.A.E. Overspar, powt $\underset{\text { FREC) }}{\text { FRE }}$
ANNUAL HOLIDAYS. NO ORDERE RECEIGES AFTER MAY 14TH. WILL BE DEALT WITH UNTILJUNE8th.
FELSTEADELECTRONICS (PW3I)
longley lane. gatley. cheadle. cheshire सK8 +EF

[^4]
DIMMASWITCH

The DiMM.IsWITC'I to an elestrunic dimmer capable of controling from 40-600 watts of incan: descent lighting at maina volkages from $200 / 20^{\circ} \mathrm{V}$ at 50 Hz . The DIMMABWITCH bas the same dimiensionn ($3 z^{\prime \prime} x 3 子^{\prime \prime}$) as a standard switch and is intende. an an alternatice fitting
Two models of the DIMMASWITCH are now avallable, each incorpornting an on/ofl switwh, and at 10/- less in each caue a kut in prodinced to enable a competent constructor to self boild the Both models are svailable with either clockwise or anti-clockwise dinumling and internal clocktise or ami-clockwime dimming and internal $3 /-$ in each case, or $2 / 6 \mathrm{~d}$. for the $k i t$.
MODEL Ins 500%-utiliaes an whancel devign of iriggering circult to enable wooth fade up from at E5 5s.
MODEL DB500/E/P - DDMMASWITCH corporating a newly patented on/off control enabling the lamp to the switched on and ond at any hriliance setting by punh/pull action of the knob-es 188. All momels give control trom zer" to maximum and use RCA and Mullard compments add semiconductors, and coinply generally with the recoumendat ions of B. R. 80
likeal fur T.V. virwing allil tor chitirefis night lighte.
PEXTER \& COMPANY
OLVER HOUSE, 19 EING STREET.
CHESTER CHI 2AH
Tel. Chester 25883
A* mupplied to H.M. Converninent Departments, Hosplta! ${ }^{2}$, etc.
TRAIISIIITTER / RECEIUER

THIS equipment incorporates all the required circuitry for transmission and reception, and with internal power pack and speaker, offers a neat "one box" station for regular use, or for /A (alternative address) working. The equipment described runs the full permitted power (10 watts) on the 160 m band, and can eas ly be modified to cover 80 m . Anyone who has used a transmitter at this relatively low power level will have found that results are generally sur, risingly good. Many receiver S-meters are calibrated at about 6 db per S-point, so if 150 W input gives an S 9 contact, 10 W input will give about $S 7$, which ought to be quite acceptable.

Fig. 1 is the complete circuit, and brief notes on the function of each stage will make its working clear.

Circuit

Transmitter $R F$ Section. V1 is a Vackar type v.f.o. tuned by VCl and covering $1 \cdot 8 \cdot 2 \cdot 0 \mathrm{MHz}$. The voltage regulator VR providss 150 V for V 1 and the screen grid of the buffer V2. L2 is broadly resonant, and V2 drives the power amplifier V3, the test point ' G ' being provided to check: grid current. The p.a. tank coil L3, with tuning and loading capacitors, allows V3 to be matched to most ordinary aerials.

Audio and Modulator Section. V4A/V4B is a highgain microphone amplifier giving full modulation from a crystal microphone V5 with the primary of transformer Tl provices anode and screen modulation of V3. When receiving V5 drives the loadspeaker.

Receiver RF Section. V6 is a tuned r.f. amplifier, followed by the mixer V7. V8 is the i.f. amplifier, a diode giving detection and AGC bias for all stages. VR1 is the receiver r.f. gain, and VR2 the audio gain control.

Power Supply. This delivers about 120 mA at 300 V
on 'transmit', reduced to 220 V on 'receive'. It is not absolutely necessary that the voltage is reduced when receiving, but this was found helpful in obtaining cooler running over long periods by avoiding the heat of series dropping resistors.

Switching

Change-over of all required circuits is achieved with a 2 -way 8 -pole rotary switch. It is possible to change some circuits slightly so that fewer poles are needed, as described later. The functions of each pole are given below, and this should be checked when wiring.

Section 1: In the 'transmit' position T this applies h.t. to v.f.o. V1, and the buffer V2. In the 'receive' position R, h.t. is taken to r.f. mixer and i.f. stages, V6, V7 and V8.

Section 2 and 3. These contacts allow the same meter to be used to show PA anode current and to operate as a dip type tuning meter on reception. Section 2 supplies h.t. to either the p.a. anode, or to the receiver. Section 3 takes h.t. directly from the h.t. line, via $\$ 1$, for reception, or from the modulator V5 for transmission. The main advantage of this method is that a 50 mA meter can be used for both functions without any shunts having to be made up.
Section 4. On transmit this switches the aerial to the p.a. tank circuit L3 and to the receiver aerial coil L4 on receive.
Section 5. On transmit input to V5 is from the microphone amplifier V 4 B and from the receiver gain control VR2 on receive.

Section 6. This connects the anode of V5 to the anode (via meter) and screen grid circuits of V3 to modulate the latter when transmitting.

Section 7. This closes only on receive to bring in the speaker.
Section 8 . This opens during reception converting the power supply to choke input to reduce the h.t. voltage without resorting to dropping resistors.

Net. This switch is temporarily closed while receiving to put h.t. on the v.f.o. and buffer stages so that the v.f.o. can be tuned to the frequency on which transmission will be wanted. Stray r.f. coupling into the receiving operates the tuning meter thus
indicating when the v.f.o. and receiver are tuned to the same frequency.

It may be found more convenient to make this switch a spring loaded one rather than a toggle switch.

Fig. 1 : Complete circuit diagram of the transmitter/receiver and power supply.

PORTABLE AMPLIFIER

Porrable mía p.a. ysulem Partien, or as a Buby Alarm, Intercom, Telephone or Record Player Amplliter, etc. Attractive
 ise $12 \times \theta \times$ in., with and four transistor one power ampllifer. Usen PP9 batter
Brand nem in Makers' carton with
full makern' gatrantee.
World lamioua make.

WEYRAD P50 - TRANSISTOR COILS
RARW Perrite Aerial 12/6|Spare Cores 6

8rd I.F. P50/3CC 6/7 J.B. Tuning Gang s/7 Werrad Booklet

VOLUMECONTROLS 80 obm Coax 8 d . yd.

Loing pipiaderen, Milidet Elive SE. obma to 2 Mes. Log or AERAxill-ARR spacei

WIRE-WOUND 3-WATT POTS. WIRE-WOUNL 3-WAT Emall type with manal knob
 VEROBOARD 0.15 MATRIX
 PDNE 36 per packet $8 / 4$. FACE COTTERS: $/ 16$
E.R.B.P. Board 0.15 mATRIX 2 hin. wide 6d. per 1 in .
 E.B.B.P. undrilled titn. Board $10 \times 8 \mathrm{in}$. g / m

ELANE ALUMINIUM CHASSIS 18 a.w.R. 2in. sides, 7×4 in.. $8 /-; 11 \times 8 \mathrm{in} ., 7 / 6 ; 11 \times 7 \mathrm{in} .8 / 6: 18 \times 8 \mathrm{in}$., $10 / 6$ 15×14 in., $15 /=; 9 \times 7 \times 2 i n ., 8 / 6 ; 14 \times 11 \times 2 i n ., 14 / 6$.
 $5 / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in} .8 / 6 ; 8 \times 61 \mathrm{n} .2 / 6 ; 8 \geqslant 4 \mathrm{in} ., 1 / 6$. IVInch DIAMETER WAVE-CHANGE SOTTCEES

 2 p. 6-way, 3 p. 4-way, $4 \mathrm{p.3-way}$.6 p .2 -way. 1 wifor $12 /-$ TOGGLE 8WITCHES, sp. 2/8; sp. dt. 3/6; dp. $3 / 6$; tip. dt. $4 / 8$ ALL PURPOSE HEADPHONES H.R. HEADPHONES 2000 ohm: Snper Sensitive DE LUEP PADDED ETEDRO PBOTE 3 ohms
"THE IN8TANT

BULK TAPE

ERABER AND
RECORDING
HEAD
DEMACNETISER

A ALL PURPOSE TRANSISTOR
9-12v, and 200-300v. D.C. operation. Sizo $11^{*} \times 11^{*} \times 1^{*}$ Responie $25 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{db}$ gain. For ure with valve $\begin{aligned} & \text { or transintor equipment. Fall inatructions. } \\ & \text { Brand new. Guaranteed. Details S.A.z. }\end{aligned} 7 / 6$ each KEW TUBELAR ELECTROLYTICS KEW TU
$2 / 350 \mathrm{~V}$
$4 / 350 \%$
$4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$ $16 / 450 \mathrm{~V}$
$92 / 450 \mathrm{~V}$ $25 / 25 \mathrm{~V}$

$50 / 50 \mathrm{~V}$ | $2 / 8$ |
| :--- |
| $2 / 6$ |
| $2 / 6$ |
| $3 /-$ |
| $4 /-$ |
| $2 /-$ | $00 / 25 \mathrm{~V}$

$00 / 25 \mathrm{~V}$
$+8 / 45$ $8+8 / 450 \mathrm{~V}$ $\begin{array}{ll}8+8 / 450 \mathrm{~V} & 3 / 6 \\ 8+16 / 450 \mathrm{Y} & 4 / 6\end{array}$
 SUB-MIN, ELECTROLYTICS. 1, $2,4,5,8,16,25,30,50,100$, $200 \mathrm{mF} 15 \mathrm{~V} 2 /-; 500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 6: 2000 \mathrm{mF} 25 \mathrm{~F}$ 7/CERAMIC. 1 PF to 0.01 mF , 9 d . Bilver Jica 2 to $5000 \mathrm{pF}, 9 \mathrm{~d}$. PAPER 350V-0.1 9d, $0.5 \mathrm{E} / 6 ; 1 \mathrm{mF} 3 /-2 \mathrm{mF} 150 \mathrm{~V} 3 /$ $500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-0.251 / 8 ; 0.47 \mathrm{~b} / \mathrm{e}$ $1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$ SILVER MICA. Close tolerance 1%. $6-500 \mathrm{pF} 1 /-; 580-2,200 \mathrm{pF}$ 2/-; 2,700-5,800pF 3/8; 6,800pF-0.01, mild 6/-; each. TWIN GANG. "0-0", $208 \mathrm{pF}+176 \mathrm{pF}, 11 /-; 365 \mathrm{pF}$, miniature $11 /-; 500 \mathrm{pF}$ standard with trimmeri, $15 /-; 500 \mathrm{p}$ midget less trimmers. $8 /-$; 500 pF alow motion, atandard $8 /-;$ mant SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{DF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ 180pF, 200pF, $10 / 6$ each
TUNING. Solid dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each.
$100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 6 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{p}$ P; 750pF, $2 /-; 1000 \mathrm{p}$ F, $2 / 6$. RECTIFIERS CONTACT COOLED \ddagger weve $60 \mathrm{~mA} 7 / 6$; RECTIFIERS CONTACT COOLED 1 Wive 60 m
$85 \mathrm{~mA} 9 / 6$. SILICON BYZ 13 B/-; BY100 $10 / \%$
Full wave Bridge $75 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 10 / 6 ;$ TV rects. $10 /$ NEON PANEL INDICATORS 250v. ACDC Red, Amber 5 RESISTORS. Prelerred valuel, 10 ohm to 10 meg .
 HIGE STABILITY. W. $1 \% 10 \mathrm{ohms}$ to $10 \mathrm{meg} ., 2 / \mathrm{c}$ Ditto 5%. Preferred valuea 10 ohme to 22 mes., θd. WIRE-WODND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohms to $100 \mathrm{~K} .2 /$ - each; $2!$ watt. 1 ohm to 8.2 ohme, $2 /$ -
MAX CHASSIS CUTTER Complete: a die, a punch, an Allen gerew and key

TRANSISTOR MADS POWER PACKS. FULL WAVE 9 volt 600 mA . Size $41 \times 24 \times 2 \mathrm{in}$. Metal case. $49 / 6$ Crackle faith. Outpnt terminala. On/oll awitch. 9 volt 500 mA . TRANSFORMER ONLY. $2 \frac{1}{2} \times 12 \times 1 \| \mathrm{in} .10 / 6$

MAINS TRANSFORMERS $\underset{\substack{\text { Pont } \\ \text { Sice }}}{ }$
 250-0+250 50 mA .6 .3 v. 2 amps , centre tapped $10 / 6$ $250-0-25080 \mathrm{~mA} .6 .3$ ₹. 3.5 g .6 .3 ₹. 1 a , or 5 v. 2 a . 38 f HEATER TRANS. $6.3 \mathrm{v}, 1 ; \mathrm{a}, 10 / 6 ; \ldots 6.3 \mathrm{~F}, 4 \mathrm{a}$ GENERAL PORPOSE LOW YOLTAGE. Outpati 3, 4,5 AOTO TRANSFORMERS $0-116-230$. Input/Oatput

 6 or 12v. outputs. 11 amp . $8 / \mathrm{F} ; 2 \mathrm{amp}$. 11/-; $4 \mathrm{amp} .17 /-$ COAXIAL PLOG $1 / 3$, PANEL SOCKETS $1 / 3$. LINE $3 / 6$ OUTLET BOXES. SURFACE OR FLUSH 4/6.BALANCED TWIN FEEDERS $1 /-5 \mathrm{~T} .80$ ohms or 300 ohms . JACK SOCKET Std. open-circuit $2 / 6$, closed circuit $4 / 6$, Chrome Laad Socket 7/ 8 . Phono Pluga $1 /$. Phono Socket $1 /=$ ACK PLUGS Std. Chrome $3 /-; 3.5 \mathrm{~mm}$ Chrome $2 / 6$. DIN OCKETS Chassis 3 -pin $1 / 6 ; 5$-pin $8 /-$. DIN SOCKETS Lesd -Din
VALVE HOLDERS,
Od.; CERAMIC $1 /-; ~ C A N S ~$
$1 /-$

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

 LOUDSPEAKERS
With fiared tweeter cone and ceramic

 magnet. 10 watta. Basi res. 45-60 cps. Flaz 10,000 gauss $45 /=$ tweators. Complete with crossover. 3 or 8 or $1579 / 6$ ohms. 10 wate. Recommended Teak CabinetSize $16 \times 10 \times$ gin.

MINI-MODULE

 LOUDSPEAKER KIT
10 watt 65/- carriage 5/-

Triple speaker aytom combining on ready cnt bafle tin. chipboard $16 \mathrm{in} . \times 8$ in. Beparato Bass, Middle heavy doty 5 in Bass Woofor anithas condenger. Nhe cone. The Mid-Range unit is specially designed to add drive to the midde register and the tweeter recreates the top end of the mosical spectram. Total response $20-15,000 \mathrm{cps}$. Full instractions for 3 o $\mathrm{r}^{8} \mathrm{obm}$.
TEAK VENEERED BOOKSHELF ENCLOSURE $16 \times 10 \times 9$ in. Modern Scandinsvisn $\quad(5$ Post $\$ /-$

ALL MODELS "BAKER SPEAKERB" II STOCK BAKER 12in MAJOR £8

$30-14,500$ c.p.s., 121 n donble cone, woofer and tweeter cone together with a BAKER ceramic magret ansembly havin fax denalty of 14,000 ganes and a total fux o 145,000 Marwells. Bas! resomance 45 c.p.s. Rated 20 watts. Foice coils 3 or 8 or 25 ohme

Modale kit, $30-17,000$ c.p. with iweeter, crossover bafte and $\mathbb{1} 0.19 .6$ BAKER " GROUP SOUND " SPEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50
 TEAK HI-FI SPEAKER CABLIETS. Fluted wood front For 10 or $12 i n$ ronnd Londapeazer For 13×8 in or 8 in round Loudapeaker
For 10×8 in or 8 in ronnd Londapeaker
5.0 25.0 .0 LOUDSPEAKER CABINET WADDING 18 in wide, $2 / 614$ Horn Tweeter! 2-16kc/a, 10W 8 ohm 28/6.
De Luxe Horn Tweateri $8-18 \mathrm{Kc} / \mathrm{a}, 16 \mathrm{~W}, 16 \mathrm{ohm}$ 89/6 EMI Plantic Cone 2 tin 8 chm 17/6: Cronsovers 3 or 8 or 15 $0 \mathrm{hm} 16 / 6$.
SPECIAL OTFER! 80 ohm. $21 \mathrm{in}, 27 \mathrm{in}$. dia.; 35 ohm, 3 in . $25 \mathrm{ohm}, 3 \mathrm{hn}$. dia. $; 8 \times 4 \mathrm{tm}$
$15 \mathrm{ohm}, 7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$
$3 \mathrm{ohm}, 2$ in, 3 in, $5 i \mathrm{~m}_{5} 5$
ohm, 2 in, 3in, $81 \mathrm{~m}, 5 \times 31 \mathrm{n}, 7 \times 410$ $8 \times 2 \frac{1 n}{} 21 /-; 8 \mathrm{in} 35 /-; 10 \times 6 \mathrm{in} 30$
5 in. WOOFER. 8 watferne 20-10, GLAC 8 . watirnaz. 20-10,000 cys. 8 or 15 ohm. $39 / 8$. 8 in LoUDSPEAKER. TWII CONE 16 ohm $35 /$ RICHARD ALLAN 10 or 121 in Twin cjne 3 or $15 \mathrm{ohm} 39 / 6$ OUTPUT TRANS. EL84 etc. 6/-; MIKE TRAN8. $50: 1 \mathrm{~B} /$ SPEARER COVERING MATERILLLS. Samples LITre ©AAE THE FAMOUS "MULLARD 510"

Main power, ampliffer and 2 rilve preamplifier. Silver groy facia panel, Volume, treble, bain controle. Punction switch: Radio, Tape 1, Tape 2, Mic, Gram LP, Gram 78
Tape ontput socket. Valves: $2 \times$ EL84, $3 \times$ EF86 $1 \times$ ECC83, $1 \times$ EZ81. Ultra linear Parmeko outpa tranaformer. 20 db negative feedback. 10 watt rma.
mono. 3 and 15 obm output. Brand new. Gusranteed.
ALL EAGLE PRODUCTS
8UPPLIED AT LOWEST PRICES
ILLUSTRATED EAGLE CATALOGUE $5 /-$. Poat free.
 BARGAIN DE LUXE TAPE SPLICER Cuts, $22 / 6$ BARGAIR 4 CHANNEL TRANSISTOR MIXER. Add mix Licrophone, records, tape and tuner with $59 / 6$ eeparate controls into single output. 9 volk. BARGALI FM TUNER 88-108 Mc/a Sir Tranisior. 9 volt.
 FM STEREO MULTIPLEX ADAPTOR $99 / 6$ BARGAIN 3 WATT AMPLIFIER. 4 Transistor $69 / 6$
Pusb-Pull Ready built, with volnme control. 9v. \star RADIO BOOKS \star (Postage 9d.)
Practical Transistor Receivera
Practical Transistor Recoiv
Practical Radio Inade Ont
Radio Valvo Guide, Books 2, 3, or 4 ea. 5/- No. 8 ea. $8 / \mathrm{c}$
T. V. Fant Finding 406/6e5 lines.

Shortwave Tranaistor Receivers
Trantintor Communication Sets
Sub-Miniature Tranditlor Receiveri
Wirelest World Radio Valve Data..
International Radio Stations Gaide
Transintor Circaits lor Radio Controllod Model
Inch MOVING CO\&L METERS BRITISH MAD 3 Inch MOVING COiL meter ${ }^{\text {Farious calibrations/movements. } 800 \text { Hicroamp: } 37 / 6}$

MAINS ELECTRIC MOTORS

 PRICE
3 Ior $50 /=; 6$ for $90 /=$.

CUSTOMERS FREE CAR PARK
CALLERS WELCOME

M. \& B. RADIO
 38 BRIDGE END, LEEDS 1

Telephone: 0532-35649 STEREO CABINETS. A beautifully finished polished wood cabinet supplied in original carton. Size approx. $22 \times 16 \times 8 \mathrm{in}$. New
 47/6 plus 6/6 carriage.
TELEMETERS. A well finished cabinet containing lots of useful items for the constructor. Endless tape unit and tape head, 2 motors, auto and mains transformers, miniature valve I.F. strjp etc. Ideal for
 modifying or stripping. 77/6 plus $7 / 6$ carr.
STETHOSCOPE HEADSETS. Brand New. Ideal for stereo or mono. Low impedance. $27 / 6$ plus $3 / 6 \mathrm{pp}$.
MICROPHONES. Radiotelephone type, used. $5 /$ - plus $2 /-\mathrm{pp}$.
TRANSISTORISED 2 METER CONVERTERS. Please state
 preference of i.F. frequency when ordering. VHF Marine band model 4 metre models avai
£8.5.0 plus $5 /-\mathrm{pp}$.
12V TRANSISTOR INVERTERS. 12 vdc input. 275 vac at 150 mA output, Size of aluminium case $1 t^{\prime \prime} \times 27^{\prime} \times 4^{\prime \prime}$ approx. Size of transformer approx. $11^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. $£ 3.5 .0$ plus 5/-pp.
2 to 3 WATTS INTEGRATED CIRCUITS. Tested c / w circuit. \&1 plus $1 /-\mathrm{pp}$.
60 UNTESTED TRANSISTORS 5/- plus 1/- pp.
60 UNTESTED DIODES $2 / 6$ plus $1 / \mathrm{pp}$. BYX25 800R Silicon diodes 800 piy 16 amps on heat sink $5 /$ - plus $1 /-$ DD. $455 \mathrm{Kc} / \mathrm{s}$ FM Transistorised I.F. strips. Faulty usually low in gain but new. 6 transistors. $12 / 6$ plus $1 /$-pp. USED TESTED VALVES. QOVO3/10 6/-; 6AQ5/EL90 3/-. 6BJ6 1/6, 6BH6 1/6. 12AX7/ ECC83 2/6, 5 U 4 6/-, ECF80 $2 /$-. All plus
${ }^{2} / 6{ }^{1 / 6}$

AERIAL CHANGE OVER RELAYS $6 \mathrm{v}, 12 \mathrm{y}$ or $50 \mathrm{v} 4 /$-plus $1 / 6 \mathrm{pp}$. UHF Coaxial AERIAL CHANGE OVER RELAYS. BNC Sockets. 27/6 plus 2/6 pp.
BRAND NEW HEADPHONES. A well known make of headset which combines quality with comfort. Mono or Stereo. 54/- plus 4/- pp.
PLEASE NOTE NEW ADDRESS. NO CONNECTION WITH FIRM PREVIOUSLY AT THIS ADDRESS
LIST OF OTHER EQUIPMENT PLEASE SEND 6d. PLUS S.A.E.

BULLD YOUR CIRCUTS

 on vEROBOARD-the Universal Wiring Boardobtainable from your local Retailer
Trade enquiries to:
NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

the BIG one

Send the
Coupon with cheque or P.O. for 12/6

The price of 12/6 applles only to catalogues purchased by customers residing in the U.K.

The HOME RADIO CATALOGUE is the complete answer to the problem of tracking down components. This Catalogue, one of the largest ever compiled, is a must if you are interested in Radio and Electronics. With each catalogue is a Book Mark giving Electronic Abbreviations, an Order Form and Addressed Envelope. All for only 12/6 (8/6 plus 4/- Post, Packing and Insurance). In addition every catalogue contains 6 vouchers, each worth $1 /-$ when used as indicated.

And for users of our catalogue. a CREDIT ACCOUNT SERVICE to simplify and speed up your orders

You can now order components just by picking up a telephone any time of day or night, Sundays included I No need to bother with postal orders, cheques, registering envelopes every time you order. Prepaid envelopes and order forms are provided and only one payment is required each month. So simple- 8,000 Items as near to you as your telephone. Write for details or 'phone 01-648 8422.

Alternative Switching

Switching as in Fig. 1 was completely satisfactory, but as the circuit lends itself to changes, to use items to hand, or for experiment, it is worth noting other ways in which change-over from transmit to receive can be arranged.
If a small matching transformer is used with the speaker, S7 is unnecessary since S6 can transfer to the matching transformer primary on receive. This dispenses with one switch pole.
S8 may be eliminated by using capacitor input in the usual way, a $4.7 \mathrm{k} \Omega 5 \mathrm{~W}$ resistor then being placed, in series with the h.t. supply to V6, V7, and V8.

By not switching the meter to indicate tuning on receive eliminates the need for S2 and S3. A 'tuning eye' operated from the a.g.c. line could be incorporated in the receiver section. It is then possible to utilise a 4-pole switch only-S1, S4, S5 and S6 to perform all the necessary switching functions.

After calibration a piece of perspex $7 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. is bolted over the scale.

VC6/VC7 tunes mixer and oscillator circuits. VC5 tunes the aerial circuit only but space was left for a 3 -gang capacitor to tune aerial, mixer and oscillator, with VC5 as an aerial trimmer, but this was not found necessary.

The meter is immediately above VC1. VC2 and VC3/VC4 were fixed to a flanged plate bolted to the chassis to avoid bolts in the panel. If these capacitors have feet they can be fixed to the chassis instead.

The r.f. choke, C9 and C10 are supported on a tag strip, and a lead passes down through a hole close to pin 1 of V3. L3 is 65° turns of 22 swg enam. wire, layer wound on a lin. dia. paxolin tube. The tube is bolted to a strip of paxolin $1 \frac{3}{4} \times \frac{1}{2} \mathrm{in}$. fixed to the frame of VC2.

The loudspeaker is bolted to a piece of 3 -ply wood about $6 x 7$ in. This is spaced from the chassis side by a strip of wood. When the chassis is in its

Fig. 2: Top of chassis showing location of major components.

Construction

Fig. 2 shows dimensions, and positions of the valveholders and major componerits. Holes for the valveholders are readily made with a chassis punch, $\frac{5}{8} \mathrm{in}$. dia. for the B7G holders, and $\frac{3}{4}$ in. for B9A holders.
The panel is bolted to the chassis flanges, and also to side brackets bolted to the chassis. The two ball drives are fitted in holes aligned with the spindles of VC1 and VC6/7. The type of drive having a flange allows a perspex cursor to be fitted with 8ba screws, or a stiff wire pointer can be soldered or screwed on. The scales are s:out paper or thin card.
cabinet, the speaker locates behind rows of holes in the cabinet side.

Adjustment

Variable Frequency Oscillator. The coil-can L1 in Fig. 2 also contains C1, C2, C3 and R1, forming a temperature compensated v.f.o. unit. This part of the circuit is completed by the leads to the numbered pins and VC1. For Top Band use it is only necessary to adjust the core of L 1 until VCl gives $1 \cdot 8 \cdot 2 \cdot 0 \mathrm{MHz}$ coverage, with a little to spare at the ends of the scale.

C17 $32 \mu \mathrm{~F} 450 \mathrm{~V}$
C18 $8 \mu \mathrm{~F} 450 \mathrm{~V}$
Rectifiers, 2xSE-05
250 mA fuse and holder
T2 Parmeko P2931, 250/0/250V 150mA, 6.3V 4A
Receiver Section

C19	100pF mica	C26	200pF mica
C20	100pF	C27	47pF mica
C21	$0.02 \mu \mathrm{~F} 500 \mathrm{~V}$ disc ceramic	C28	400 pF sllver mica (padder)
C22	$0.02 \mu \mathrm{~F}$ disc	C29	$0.25 \mu \mathrm{~F} 150 \mathrm{~V}$
	ceramic	C30	$0.02 \mu \mathrm{~F} 500 \mathrm{~V}$ disc
C23	$0.25 \mu \mathrm{~F} 350 \mathrm{~V}$		ceramic
C24	$0.02 \mu \mathrm{~F} 500 \mathrm{~V}$ disc ceramic	$\begin{aligned} & \text { C31 } \\ & \text { C32 } \end{aligned}$	200 pF mica 100 pF mica
C25	100pF mica		
R19	1M ${ }^{\text {d }}$ W	R24	$22 \mathrm{k} \Omega 1 \mathrm{~W}$
R20	$33 \mathrm{k} \Omega 1 \mathrm{~W}$	R25	68k 21 W
R21	$1 \mathrm{M} \Omega+\mathrm{W}$	R26	$1 \mathrm{M} \Omega+\mathrm{W}$
R22	$33 \mathrm{k} \Omega 1 \mathrm{~W}$	R27	100k Ω ¢W
R23	$47 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$		
VR1	$25 \mathrm{k} \Omega$ linear pot	V7	ECH81 B9A holder
VR2	$500 \mathrm{k} \Omega \log$ pot	V8	EBF89 B9A holder
V6	6BA6 B7G holder		
L4	$1 \cdot 8 \mathrm{MHz}$ bandspread		al coll Types 1-8/46
L5	, "	mi	Electroni-
L6	i, "	osc	, \int ques

1FT1/2 Denco 1FT11/465
VC5 50 pF air spaced tuning
VC6/72-gang 20 pF or similar
Miscellaneous
Metal cabinet with panel $15 \times 9 \times 8 i n$. (H. L. Smith \& Co., 287/9 Edgware Road, W.2.)
$13 \times 8 \times 2 \frac{1}{2} \mathrm{in}$. chassis Type 1
,
Pair 4 in. Type C panel brackets
50 mA miniature meter: 8 -pole 2-way rotary switch: Two DL50A ball drives with flange for pointer (Home Radio, Mitcham): Two co-axial sockets: (Microphone and, aerial). Knobs, etc. Panel fitting lamp holder. 6.3 V lamp. 2-SPST toggle switches.

Regulator VR. This provides 150 V for V1 and the screen grid of V2 with the power supply as given. If a 250 v or similar supply is to be utilised, and VR fails to strike when switching to transmit, R3 can be reduced to about $6 \cdot 8 \mathrm{k} \Omega$ or R 5 to $2 \cdot 2 \mathrm{k} \Omega$.
Buffer-amplifier. The anode coil L2 of V2 is a medium-wave type broadcast band coil, with primary removed. Due to the low parallel capacitance, this can be tuned to about 160 metres. When.first setting up the transmitter, cohnect a milliampmeter between test point G and chassis with positive to chassis. Set the v.f.o. to about 1.9 MHz and adjust the core of L2 for maximum grid current. This should be about 3 mA , falling off only slightly towards 1.8 MHz and $2.0 \mathrm{MHz} . \mathrm{R} 7$ is included so that grid current can be measured without disconnecting R6.
RF Power Amplifier. The supply is 300 V , so an anode current of 30 mA on the panel meter represents an input of 9 watts. If the equipment is later used on 80 m , the current can be 40 mA , or about. 12 watts.

Going HI-FI -continued from page 116

A bass filter might be needed to suppress rumble from the motor and treble filters can help to take roughness and background noise out of reproduction and these should be provided with switches to bring them in and out at will.

Loudness controls are controversial. These vary the frequency response with sound volume to counteract the variations in sensitivity of the ear to different frequencies at different volume levels. However, a switch separate from the volume control, to reduce volume and adjust tone appropriately (sometimes called a "quiet" switch) is most useful.

If a cheaper cartridge is to be used for the time being it would be as well to include this in the demonstration and if at all possible the demonstration should take place in one's own home. At least, by eliminating most of available equipment from individual consideration on the lines given above, the demonstration required has been reduced to manageable proportions with reasonable hope of a conclusive result.

MINIATURE
WAFER SWITCHES

MICRO SWITCH
6 amp. changover contacts, $1 / 9$ $1 /=$ each or $21 /-$ doz 18 mp Model

TOGGLE SWITCH

3 amp 250 v . with flxing ring. $1 / 6$

CONSTRUCTORS PARCEL

. Plessey miniature 2 gang tuning condensor With built in trimmers and wave gang switch. 8. ening sond artar 8 . Circuit disgram givlng uning condensor. 8. Circuit diagram giving all full medium wave and the long wave band around Radio 2. The three items for only 7/6d which is half of the price of the tuning condenser alone.

10 AMP 24V BATTERY CHARGER

Ideal unit for garage, boat gtation etc. Ez8.10.0d

 each plus carriage and cost
BEHIND THE EAR DEAF-AID

Made by a very famous maker. Thoroughly over 6 months. Regular price aronnd $\mathbf{5 0} 0$. Our price 810 .

ISOLATION TRANSFORMERS 200 -

250 Mains

A must if you work on mains equlpment. Prevents sccidents and shocks even in damp conditions. nput and output separately screened by connec

SLOW MOTION DRIVES

For coupling to taning condensers etc. One end fin. shaft, the other end fits to a din. shaft with grub screws. Price $4 / 6$ each 48/- dozen.

LARGE PANEL MOUNTING MOV-

ING COIL METERS

Size 5 in . $x 4 \mathrm{in}$. Centre zero $200 \cdot 0-200$ micro amp made by Sangamo Weston. Regular price prob-
A.C. Ammeter $0-5 \mathrm{amps}$. flush mounting-moving iron. Ex equlpment but guaranteed perfect 29/6.

CIRCUIT BOARDS

Heavy copper on 3/32 paxolin sheet ideal for making power packa etc. as sheet is very strong with hackesw blade 5 in x in $1 / 6$ each 15 in $5 \mathrm{in} .4 / 6 \mathrm{~d}$. each.

BKVA Auto-tranaformer in ventilated sheet steel case-tspped $110 \mathrm{v}-140 \mathrm{v}-170 \mathrm{v}-200 \mathrm{v}-230 \mathrm{v}$. Ex equipment but guarsnteed perfect 819.10 .0 . carriage at coat.

PP3 BATTERY ELIMINATOR ,FEt

 Run your small transistor radio from the maina-full wave circuit-made up ready to wire into your set andadjuatable high or low current. $8 / 6$ each.

REED SWITCHES
Glass encased, switches operated by external magnet-gold welded contacts. We can now offer 3 types:
diaiature. 1 in . long x approximately in. diameter. Will make and break up to 1 A up to 8tandard. 2ince $2 / 6$ eaca, 24/-dezen. This wlll break currents of up to 1 A , voltages up to 250 Tolts. Price 2/- each. $18 /-$ per dozen.
Ylat. Flat type, 2 in . long, Jugt over $1 / 16 \mathrm{in}$, thick, approximately 4 tn . wide. The Standard Type space or a larger quantity may be packed into a square aolenoid. Rating 1 amp 200 volts. Price 6/- each. \&s per dozen.
Small ceramic magnets to operate these reed switches $1 / 9$ each. 18/- dozen.

0.005 mFd TUNING

CONDENSER

Proved design. ideal for straight or
reflex circnits $2 / 6$ each, $84 /-$ doz.

SUB-MINIATURE MOVING COIL MICROPHONE

as used in behind the ear deaf aids
 Reguiar price probably 23 or more. Our price $18 / 6$ working order they will be exchanged.

INTEGRATED CIRCUIT BARGAIN

A parcel of integrated circuits made by the famoua fleasey Company. A once \cdot in-a ilfetime offer of micro-electronic devices well below cost of manufacture. The parcel containa 5 ICa all new and perfect, first-grade device, definitely not subgtandard or seoonds. The ICs are all single sillicon chip General Purpose Ampliflers. Regular price of which is well over 81 each. Full circuit detsils of the iCs are included and in addition you will receive a list of 50 diferent ICs available at bargan peses apwis parcel only 21 post paid; or List and all
order IU's vatue of 30 -and upwards.

24 HOUR TIME SWITCH

Mains operated. Adjustable Contacts give 2 on/offs per 24 hours. Contracts rated 15 amps , repeating mechanism so ideal for shop Window control, or to switch hall lights (anti-burglar precaution) while you are on holiday. Made
by the famous Smiths Company. This month only $89 / 6$ with Perspex cover, plus $3 / 6$ postage and insurance, a real snip which should not be missed.

DISTRIBUTION PANELS
Just what you need for work bench or lab. neon warning light (in nuetal box). Takes standard 13 amp fused plugs Aupolied complete with 7 feet of heavy cable $89 / 6$ wired up, ready to woric plus $4 / 6$ post \& insurance.
5 amp model $84 / 6$ plus $4 / 6 \mathrm{p} . * 1$.

THIS MONTHS SNIP

REPAIRABLE RADIOS

7 translator Key chain Radio in very pretty
 leather
Circuit: $\quad 7$ ipped bag. $\begin{gathered}\text { Bpeclfication:- } \\ \text { transistor }\end{gathered}$ Circuit: ${ }^{7}$ translistor Buperheterodyne.
Frequency range: 530 to $1600 \mathrm{Kc} / \mathrm{s}$. Sensitivity: $5 \mathrm{mv} / \mathrm{m}$. Intermedlate frequency $465 \mathrm{Kc} / \mathrm{s}$ or $455 \mathrm{Kc} / \mathrm{s}$. Power output: 40 mW . Antenna : ferrite rod. Loudspeaker Permanent magnet type.
These radios require attention. Circuit diagran is not available. Price only 24/6 plus $2 / 6$ post and insurance rechargealble batteries 8/6 post.

VARIAC CONTROLLERS

With these you can vary the voltage applied to your circuit from zero to full mains without generating undue heat. One obvious application therefore is to dim lighting. We offer a range of these, ex-equjpment but little used and in every way as good as new. Any not so, will be exchanged or cash relus.

15,30 \& 100 WATT HI-FI SPEAKERS

PULL FI 12 INCH LOUDSPEAKER. Thls is undoubtediy one of the finest loudspeakers that we have ever oflered, produced by one of the country's most famous makcrs. It has a die-cast metal frame and is atrongly recommended for Hi-F'l load and Rhythm Guitar and public address. Flux Density 11,000 gausa-Total Flux 44,000 MaxwellgPower Handling 15 watts R.M.S. Cone Moulded fibre-Freq- response $30-10,000$ c.p.s.-2-specify 3 or 15 ohms-
Mains resonance 60 c.p.s,-Chasais Diam. 12 in , -12 lin . Mains resonance 60 c.p,8, - Chasais Diam. $121 \mathrm{n},-121 \mathrm{in}$. holes 4, holes- $\frac{1}{2}$ in, diam. on pitch circle 111 in. diam. Overall height 5 tin. A \&B speaker offered for only \&8.19.6 plus $7 / 6 \mathrm{p} . \&$ p. Don't miss this offer. 15 in . 25 watt 27.19 .6
18 in .100 watt 19.10 .0 . 18in. 100 watt $\mathbf{2 1 9 . 1 0 , 0 .}$

THE 5-5 WATT STEREO AMPLJFIER

Made by one of our most famous makers for a de-luxe player. This amplifier has a quality of reproduction much better than sverage. Using a total 16 tranbalance and volume, Juitable for 8 -16 ohms pack. Controls include bass, terble for tweeter mid-range and bass thus giving option of 1,2 or 3 apeakers per channel. Offered at about one third of its original price only $£ 9.19 .6 \mathrm{~d}$. plus 6/6d post and insurance.

I HOUR MINUTE TIMER

Made by famous Smiths company, these have a large clear dial, alze 4! $\times 3$! , which can be set in minutes up to 1 hour. After preset period the bell rings. Ideal tor processing, a memory jogger or, by adding aimple lever, would operate micro-switch 29/6.

A.C. Condensers-these make good voltage droppers for wor appliances from AC mains-the big advantage being there is no heat. Alao aseful in power factor correction, motor starting and in DC circuita where reverse voltage is encountered.
$1.5 \mathrm{mfd} 400 \mathrm{v} 8 / 6$
5 mfd 570 v
$2 \mathrm{mfd} 440 \mathrm{v} 4 / 6$
6.25 mfd 250 v
$12 \mathrm{mfd} 250 \mathrm{v} 11 / 8$
$3.4 \mathrm{mfd} 440 \mathrm{v} 6 / 6 \quad 8 \mathrm{mfd} 250 \mathrm{v} \quad 8 / 6 \quad 15 \mathrm{mfd} 250 \mathrm{v} 18 / 6$

Gro-lux Lighting. Special tubes give light rich in U.V. and other rays necessary for plants and figh kept indoors away from natural sunlight. 121n. 8 watt tube hoider and diagram 19/8-post and insarance $8 / 6$ on either or $4 / 6$ on both items.

VARYLITE

Will dim ineandescent lighting up to 600 watts from full brilliance to out. Fitted on M.K. Hush plate, same size and fxing as standard wall switch so may be fitted in place of this, or mount on surface. Price complete in heavy plastic box with
control knob 88.19 .6 .

NEED A SPECIAL SWITCH
Donble Leat Contact. Very slight presaure closes
 rod suitable for operating, $1 /$

50 -Way Connector Block. Heavy duty block, size 24 in . $x 21 \mathrm{in}$. x 1 ijn . approximately. Each of th 50 ways has a multi cable inlet and outlet designed for easy connection, Also, each way has 2 test ing ammeter or other device without breaking ing ammeter or other device without breaking fraction of the regular price, postage and insurance \$/6.

Under-floor Eitating Cable. 200ft, lengths, suitable for disaipating 1,000 watts at 80 volts. Join three in series to make a 240 volt mains operated ele-
ment of 3 kW . Price $20 /-$ per length, $4 / 6$ post on any quantlty.
8-Core Leadr. Heavy duty 23/36, gverage length 5ft. 10/- per dozen lengths, plus 4/6 P. d I,

Papat Motora. Est. $1 / 40$ th h.p. Made for $110-120$ volt working, but two of these work idealiy together off our standard
240 volt mains. A reanly 240 volt mains. A really besutiful motor, extremely quite running
and reversible. $80 /-$ each.

Instrument Knobs. in. dis. head with tin. shank to $8 /-$ dozen. Ditto but with metal disc, 1/- each, 11/- dozen.

Midget Oatpat Transformer. Ratio 140:1. Size approx. lin. x in. x in rimary impedsnce 450Ω. Con 48/- doz.
Midget Outpat Transformer. Ratio 80 il. Slze approx. Itin, x 1 in. x Fin. circuit board connection, $5 / 8$ each. 3 doz

4-Gang Air spacod Tun nE Condenner for AM/F 200 pf osc section 80 p both with trimmers. FM ri section 9.5 pI oec section 11.2 pi-integral
slow-motion
drive $9 / 6$ each.

Mains Conntetor. A quick way to connect equip ment to the masing safely E. coded to new colou echeme; disconnection by plugs preventa accidental switching on; has sockete which allow insertion of meter without disconnection; cable inlets on up to four 7.029 cables. $12 / 6$ each

DRILL

CONTROLLER Electronically change speed from ${ }^{\circ}$ approzi maximum. Full power at all speeds by finger-ti control. Kit includes a parts, case, everything 19/6. plus $2 / 6$ post and Insurance.
Made up model also avallable $87 / 6$ plus $2 / 6 \mathrm{p} . \& \mathrm{p}$.

ELECTRIC CLOCK
WITH 25 AMP SWITCH Made by Emith'b, these units are as fitted to many top quality cookers to control the oven. The clock is mains driven and frequency controlled so it is exdials enable gwitck on and oft dials enable switch on and on for switching on tape recorders. Offered at only fraction of the regular price-new and unused only $89 / 6$, lese than the value of the clock alonepost and insurance $2 / 9$.

MAINS TRANSISTOR POWER

 PACKbesigned to operate transistor eets and ampliters. Adjuatable output 6v., $9 \mathrm{v} ., 12$ volts for up to 600 mA (class B workjig). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6 PP7, PP9, and others. Kit comprises: mains ransiormer rectifter, Bmoothing and losd resistor 16/6, plus $3 / 6$ postage.

Where postage is not atated then orders over $\mathbf{L} 5$ ars poet free. Below $\subset 5$ add $2 /$. 8.A.E. with enquiries please.

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, I6a WELLFIELD ROAD, STREATHAM, S.W. 16

Mon.-Sat. 9 a.m.

Closed Sat. 1.30-2.30 p.m
Open Daily to Callers

1 A 7	7/9	6BR8	12/6	6K76T		10 Cl	$201-1$	25L6GT		150 B	11/6	DE32	${ }^{7 / 9}$	ECH35	11/8	EY8	-	PCF'80	${ }^{6 / 9} 1$	PY801	/6	CL83	$101-$										
115	$7 / 6$	6BE7	25/-	6 K 8	$2 / 9$	10 C 2	18/6	25 Y 5		150 C	$9 / 6$	D	6/-	ECH 42	13/9	EZ35	6/-	PCF82	$8 / 6$	R29	$7 / 9$	UF81	10/6										
1H5	7 -	6BW6	14/6	6K8M	11/6	10F1	14/9	2524			$9 / 6$.	DK92		CH81	$5 / 9$	EZ40	9/-	PCFP4	$8 /-$	R19	$7 / 9$												
LLJS	6/-	6BW7	13/-	6K8G:		10F3	18/-	$25 \mathrm{Z5}$			9/-	DK96	7/8	ECH83	$8 / 6$	E241	9/6	PCF86	$9 /-$	RG5/500	80--	UL41	2/-										
1N5 ${ }^{\text {dT }}$	8 /-		51-	6K8GT		10F3	$10 / 6$	2578	8/6	813L8.		DL6	$25 /-$	ECL80	$71-$	EZ80	$5 / 6$	PCF801	$9 / 9$	8130	40\%-	UL84	7/-										
IRE	8/-	6C5G	5/-	6K25	15/-	10 F 18	8/-	$281{ }^{\text {2 }}$	973		120/-	DL9	6/3	ECL8:	7/-	EZ81	6/6	PCF802	9/8	$8 \mathrm{P} \downarrow$	8 8-	U480	5/8										
184	5/6	8C6	3/9	6 Ll	12/-	10 L 1	81-	30C1	6/9	813	751-	DL93		ECL83	10/3	GY501	15/-	PCF805	$15 / 1$	SP41	$3 / 6$	UU6	$21 /-$										
185	4/6	6C8G	6/-	6L6C!	7/8	10LDII	10/6	0 Cl 5	15/-	866A	15/- D	DL94	$8 / 9$	ECL8 6	8/-	GZ30	10/-	PCF806	13/-	8 P 61	3/6	UU8	21/-										
IT4	1/-	6CD64:	$24 /-$	6L18	6/-	10P13	13/6	0 Cl 7	18/-		5/3 D	DL95	$7 / 9$	ECLL8		O232	10/-	PCF808	15/6			UUY											
3A4	4)-	6CH5	7/6	607G	$6 /-$	11E3	$701-$	$0 \mathrm{C1} 8$	15/-	62	6/6	DL96	$7 / 6$	EF9	20/-	G234	11	CL82	9			Y 21											
304	7/9	60W4	18/6	6Q7CT	8/6	12AT6	$4 / 9$	$0 \mathrm{~F}{ }^{\text {d }}$	17-		67/-	DM70	6/-	EF37A	71	HN309		CL8	10/3			UY41											
3Q5	$7 /-$	6D6	3/9	68A7M	7/-	12AT'	$6 /-$	1	151-		$2 /$	86	$6 /-$	39		K 136		C	8	T41	17/8	UY8	6/6										
384	6/3	6E5	7/8	68C7	7/-	12AU6	5/9.	OFL1	19/-		$2 /$	$8{ }^{8}$	6			K		PCL85	9/3	TDD	8/6	VMP4G	17\%										
3 Y4	0/9	6F1	12/6	6897	6/-	12AU̇	$5 / 9$	30 FLJ 4	$15 / 6$	7475	14/-	E88CC	12/-	EF50	4/6	K T661	30j-	PCL500	29/-	U10	8/8	VP4B	$25 /-$										
$5 \mathrm{R4GY}$	10/6	6F5 ${ }^{\text {d }}$	8/-	68H\%	3/8	124×7	8/3	30 LLS	171	${ }^{\text {A }}$ / ${ }^{\text {P1 }}$	${ }^{9 / 6}$	EA50	$3 / 6$ $8 / 6$	EF80	4/6	KT81	$\left.{ }_{(7 \mathrm{C} 5}{ }^{35}\right)^{-}$	PD500	20j-	U14	7/8	VP4B	30818										
5 U 40	5/6	6F6G	5/-	68 J 7	6/-	12BA6		30 L 17	17/-	ATP4	$2 / 3$	EABC80	8/6	EF85	7/8	KT81	${ }_{2}{ }_{2} / 8$	PENB4	$20 /-$	U19	351-	YR150	3080										
$5 V 46$	8/-	6F8G	5/6	68K7GT	4/8	12BE6	6/3	${ }_{30 \mathrm{~Pa}}^{3}$	22/6	ATPP	12/-	EAF42	10/-	EF86	6/8 $5 / 6$		34/-	PEN ${ }^{\text {P }} 4$	207-	U25	15/6	VT2G	151-										
5 Y 3 GT	6/-	$6 \mathrm{Fl1}$	6/6	68 LTGT	6/-	12C8GT	51-1-1	$30 \mathrm{Pl}{ }^{3}$	16/-	${ }_{\text {ATP }}{ }^{\text {AU }}$	80/6	EB41	10/-	EF98	$3 / 6$	KT8861	$1 \begin{aligned} & \text { 34/- } \\ & 12 / 6\end{aligned}$	PEN46	4/-	U26	15/6	VT31	80\%										
524 G	$7 /-$	6 Fl 3	6/6	6SN7GT	5/6	12E1	20/-	$30 \mathrm{Pl}{ }^{3}$	15/-	AU2	$80 / \sim$	EB9C33	$8 / 6$	EF91	$2 / 6$	KTZ ${ }^{\text {K }}$	$1 \begin{array}{r}12 / 6 \\ 6 /- \\ \hline\end{array}$	PL36 ${ }^{\text {P }}$	$10 / 9$	U78	4/6	VU111	$8 / 9$										
$6 / 30 \mathrm{~L}$ 2	15/-	6 F 14	12/6	68Q7	7/6	12J5GT	2/6 ${ }^{2 / 6}$	30 PLI	18/6	AUS	$8 / 8$ 8/-	EBC41	$8 / 8$ $9 / 9$	EF98	$15 /$	ML4	17/6	PL81	8/8	U191	13/9	VU120	12/6										
6 A7	15/-	6 F 23	16/-	6U4GT	12/-	12J7GT	8/6	$30 \mathrm{PL13}$	18/6	AZ1 AZ31	8/-	EBCA1	$1 / 9$	EF183	$6 / 6$	ML	17/6	PL82	$8 / 6$	U251	18/3	VU508	35/-										
648 G	12/6	$6 \mathrm{~F}^{24}$	14/-	6U5G	$7 / 8$ 12	12K7GT	7/-	30PLI4	12/6	${ }_{\text {CBL31 }}$	16/-	EBBC90	$7 / 6$	EF184	$7 /$	MSP4	$101-$	PL®3	$7 / 6$	U301	$12 / 6$	W81M	13/6										
$6 \mathrm{AC7}$	4/-	$6 \mathrm{~F}^{20}$	15/-	6V6M	12/-	12K8GT	8/-	$35 A 5$ 35 L	12/6-1	CBL31	16/-	EBP883	81.	EL32	$3 / 6$	MU14	$7 / 6$	PL84	7/-	U403	6/6	X H_{1-5}^{5}	51										
6AK5	5)-	${ }_{6}^{6 F 28}$	14/-	6 V 6 C 6 V (4/8	${\underset{128 A 7}{12 Q 7 G T}}_{128}$	$\begin{aligned} & 8 /- \\ & 8 /- \end{aligned}$	35L6	9/6	CL33 ${ }^{\text {cha }}$	20/-	EBF89	8/6	EL33	12/6	MX40	12/6	PL500	14/6	U404	$7 / 8$	XP1-5	6/-										
6 AMJ	4/6	6 632	2/9	6V6GT	6/6	$\begin{aligned} & 128 А 7 \\ & 12867 \end{aligned}$		35 W 4	4/6	CV43	20]-	EBPL1	14/6	EL34	$10 / 6$	N78	18/-	PL504	$18 /-$	U801	23/B	X8G1-	110/-										
6 AM6 6	3/6	6G6	3/8	6X4		$\begin{aligned} & 12867 \\ & 128 H 7 \end{aligned}$		$35 \mathrm{Za3}$	$10 /$ $8 / 6$	CY430	20/6	EBLL21	12\%-	EL38	$22 / 6$	N108	25/-	PL508	$29 /-$	UABC80	8/6	Y 63	7/6										
$6 \mathrm{~A} \mathrm{Q}^{5}$.6/3	6H6	3/-	6X56		$\begin{aligned} & 128 \mathrm{SH} \\ & 198.17 \end{aligned}$		35Z4GT		CY31	$12 / 6$ $8 / 6$	EBL3I	27/6	EL41	$11 /$	NGT1	8/8	PL509	29/-	UAF42	$10 / 6$	Tubes											
$6 \mathrm{AS7G}$	15/-	6 J 5 M	9/-	${ }_{7 \mathrm{~B}}^{6 \times}$		$\begin{aligned} & 128 \mathrm{~J} 7 \\ & 128 \mathrm{~K} \end{aligned}$	$3 / 8$ $4 / 9$	3625		DAC32	87	EC90	5/-	EL42	$11 / 6$	NGTi	55/-	PL802	18/6	UBC41	98	3EGI	85/-										
6 6T6	4/9	6J5G	5/6	$7 \mathrm{CB6}$	11/6	$128 \mathrm{x} 7$			6/6	DAC32	4/6	ECCs	8	EL84	$4 / 8$	OA2	$6 /-$	PX4.	24/-	UBCA	$9 / 3$	${ }^{3} \mathrm{FPP}^{\mathbf{7}}$	29/-										
	5/-	J5GT	16	${ }^{785}$	22/6	$\begin{aligned} & 128 R 7 \\ & 14 H 7 \end{aligned}$	5/8 $9 / 8$	42 BE	$8 / 8$	DAF96	$7 / 6$	ECC82	5/9	EL95	8/6	OC3	$5 /$	PX25	27/6-	UBPRO	71	$5 \mathrm{CP1}$	55/-										
${ }_{6}^{684 G}$		6J7M	$8 / 6$	70	15/-	19AQ5		50 C 5	6/3	1)ccao	201-	ECC83	8/3	ELL*0	$20 /$	OZ4	4/6	PY33	10/9	UBF84	7/6	CV152	65/-										
6BAE	5/-	6 J 7 G	8/-	7 DE	81-	20D1	10/m	50CD6t	311	DF33	81	ECC84	5/6	EM34	$16 /$	PC86	11/6	PY81	5/8	UCC84	$8 / 6$	ACK13	00/-										
6BE6	5/-	6J7GT	7/8	787	8/6	30F*	14/-	$50 \mathrm{L6GT}$	8/-	DF'70	91-	ECC8s	5	EM80	7/6	PC8	11/6	PY82\%	5/8	UCCB5 UCE80	$7 / 6$ $8 / 8$	VCR97	45/-										
6BH6	9/-	6K6GT	8/-	7R ${ }^{\text {i }}$	13/-	20 Ll	20)		$9 / 6$	DF91	4/-	ECC88		EM81	10/		$8 / 9$	PY83 PY500	18/6														
$6 \mathrm{BJ6}$	9/-	6K 7	1/9	787	$45 /-$	20 P 4	$201-$			DF'ry ${ }^{\text {d }}$		ECFP80		EM84	$20 /$	PC	$8 / 6$	PY500	18/6														
6BQ7A	71	6K 7M	6/6	7 Y 4	$8 / 6$	$20{ }^{5} 5$	5	80				ECF82	12	ESI	$20 /$	PCC88 PCC189	10,	PY800		UCL88	7/6		46/-										
	171-	K7				6		85.A?		H7	\& TRANSISTORS				$\begin{aligned} & \text { OA10 } \\ & 0 \wedge 79 \end{aligned}$		3/-10c36		$8 / 610$	OC77	$8 /-$	OCI	1214										
Manufacturers and Export Inquiries Welcome									VALYES 8						1/9			$0 \mathrm{C7} 8$	3/-	OC123	${ }_{6}^{1}$												
								OBSOLETE TYPES A SPECIALITY									OABI		1/6	OC45	3/3	0C78D	$3 / 3$	OC139									
																			$\begin{aligned} & \text { YG414 } \\ & \text { QN1305 } \end{aligned}$	$\begin{aligned} & 6 / 0 \\ & 5 /- \end{aligned}$	ACl2h $4 / \mathrm{h}$		18 1\%-0			OAgI	1/6	OC45	3/-	$0 \mathrm{C79}$	5-	OC140	
UOTATIONS FOR A					E	T LI	LISTED		ACliri	6/2					BC108		3/6	OA:00			12/6	OC81	$4 /-$	C141	121^{3}								
					Express postage 9d, per valve.									+N2147 16/6		- ACYO	1 4/-	3/t	DA:0:	$\begin{aligned} & 2 /-1 \\ & 2 /- \end{aligned}$	OC58	17/-	OCA11]	$3 /-$									
																			2N2369A $51 /$			BF	Y ${ }^{1}$	- 0	AK24?	4/6	070	3/6	OC81D	$3 /-$		6)	
Ordinary postage 6d. per valve.					C.W.O. No C.O.D				$\begin{array}{ll}\text { ACY39 } & 19 / 6 \\ \text { AD149 } & 12 /-\end{array}$		B	$\begin{array}{ll}\text { YM } \\ 100 & 12\end{array}$	$\begin{array}{l\|l} 16 \\ 1610 \end{array}$	AZ246	4/6	C72	3/-	OC813			5/-	OC171	7%										
											$\cdots \mathrm{N} 2996$		G	11;	$1-0$	C19	8/6	C73	7/3	OC820	$3 /-$	OC200	5/6										
Tube postage 7/6 each									2N3819 8/		AD181		GJ\%	M	16	C20	201-	C54	4/6	OC83	4/6	OC201	$8 / 6$										
Special Express Mail Order Service									AC107 ACl27		AD162		NK	T 4274	190	C28	12/6	75	4/6	OC84	$4 / 9$	OC20\%	$8 / 6$										
									AF117			NK	T713		C35	6/3	76	3/-	0 Cll 4	7/6	OC203	6/-											

SEND S.A.E. FOR LIST OF 3,000 TYPES

The'New Picture-Book'way of learning BAS E ELECTRICITY (5vols.) ELECTRONICS (6vols.)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity, Telecommunications.

WHAT READERS SAY

'Everything is clearly set out .
. I am well pleased with this pictorial system. Everything is clearly set out in diagrams , . L.P., Co. Armagh
'. . . very pleased with the set ...'
I was very pleased with the set of Basic Electronics. Please send Basic Electricity ...D.W., Margate.
'. . . how understandable your books are . . .
Pleased to say how understandable your books are, I now have a sound knowledge of the subject . . . A.A., Hull.
A TECH-PRESS PUBLICATION

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of $20 /$ - followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS 90/- Cash Price, or Down Payment of $20 /-$ followed by 4 fortnightly payments of $20 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

- Tick Set required (Only one set allowed on free trial)

BASIC ELECTRICITY BASIC ELECTRONICS Prices include Postage and Packing.

Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
FUDL PESS

CIRCUITS

(continued)

Linear I.C.'s

THE term linear integrated circuit is applied to all non-digital devices. Originally they were d.c. amplifier circuits used in analogue computers for differentiation, integration etc., and were consequently required to have precise and linear characteristics. Now the term is used loosely and includes many specialist devices.

The d.c. amplifiers produced utilise fully the advantages of matched pair operation in long tail pair circuits. Again in order to minimise resistive elements active constant current generators are used. Consequently the amplifiers-such as the operational amplifier shown in Fig. 18-are extremely stable in terms of temperature and drift. This basic configuration is used for many applications such as a.f., i.f., r.f. and wideband amplifiers.

Special Circuits

Many specialist circuits are now available such as audio amplifiers, power control circuits, motor control circuits, i.f. strips and complete receiver circuits which only require the addition of tuned circuits and controls. Most of these circuits are the control devices for power stages and are rarely designed as complete devices. The power limitations restrict the output stages, although 5 W audio amplifiers are available in integrated circuit form. Table 2 gives, a list of some of the devices available together with costs, parameters and applications.

Summary and Future Trends

We have seen how integrated circuits are fabricated and investigated some of their advantages and disadvantages. Perhaps the greatest advantage is reliability and simplicity of design. When using circuit blocks, design time is reduced and all the layout

Fig. 18: Typical linear Integrated c/rcult.
and interaction difficulties solved. They are still new and consequently the full potential has yet to be realised. Undoubtably the very basis of electronics will change through the widespread use of integrated circuits since multi-element, complex devices will become feasible and perhaps commonplace. Undoubtably as the range widens designers will increasingly operate simply as systems engineers, building circuits with integrated circuit "bricks". It is because they are the devices of the future that it is important they are understood, just as it is important to be aware of the many devices which are available.

With this final article the series "PW Guide to Components" comes to an end. The series which began. in December 1968 has covered the whole range of components used in the field of electronics from simple resistors to the latest in integrated circuits. It is hoped that the series has proved of some worth to our readers.

Table 2: Parameter and Cost of Some Linear Integrated Circuits

Device, designation and circuit function		Parameters	Cost	Suppller
Operational amplifier:	High gain, linear d.c. amplifier for critical applications	Open loop V gain 3,000 to 75,000 Zin $15 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$ Common mode rejection $75-100 \mathrm{~dB}$	50/- to £5 upwards to £25	Most
Wideband Amplifier:	Wideband d.c. and video amplifiers	Frequency d.c. to 2 or 5 MHz Power gain about 50dB Signal to noise about 70dB Power output about $\frac{1}{2} \mathrm{~W}$	$\begin{aligned} & 201-\text { to } 50 /- \\ & \text { upwards to } £ 10 \end{aligned}$	Most
R.F. amplifiers:	R.F. and I.F. amplification	Voltage gain about 25dB Frequency d.c. to 40 MHz	301- to 50/upwards to $£ 17$	Most
I.F. Amplifiers:	A.M. and F.M. I.F. amplifiers and discriminators	Voltage gain $60-70 \mathrm{~dB}$ at 4.5 MHz Noise figure about 8.5 dB A.F. output level about 200 mV	12/6 to 301-	Most
Audio amplifiers:	Direct low output to speakers or to drive p.a. stage	Voltage gain about 20-50 Power output about 0.5-5W Bandwidth about 500 KHz	£2 to £6	Most
Pre-amplifiers:	Low level audio stages, f.e.t. input	Bandwidth from $20 \mathrm{~Hz}-10 \mathrm{kHz}$ to d.c. -500 kHz	12/6 to 30/upwards to $£ 15$	Most
Differential amplifiers:	General purpose with Darlington input stages and cascode output	Differential voltage gain 60-150 Bandwidth d.c. to 0.2 up to 2 MHz	30/- to 501upwards to £10	Most
Diode and transistor Arrays:	General purpose circuits with matched diodes or transistors	Signal diodes $1.8 \mathrm{pF}, 0.73 \mathrm{~V}$ Transistors VcE. about 15 V Icmax about 50 mA hFE about 60	Approx. 20/-	Most
Receiver semiconductors:	All semiconductors in receiver or transmitter; a.m. or f.m., and i.f. and 10 MHz amplifier	R.F. range $10-30 \mathrm{MHz}$ I.F. $\quad 100-500 \mathrm{kHz}$ Amp. gain 50dB	Approx. 50/-	Mullard
Optoelectronic amplifier:	Gallium arsenide diode and photodiode interface	Computer and communications	-	T.I.
Phase control:	Module for controlling phase switching of triacs and thyristors	Gate current 2A peak Supply 8.5V Input-feedback or manual	Approx. £4	G.E.
Voltage regulator:	Error amplifiers for controlling d.c. power supplies	D.C. voltages to 15 V direct	20/- to £5	Most
Zero switch module:	Thyristor and triac controller switching at zero volts only	Zero line voltage sensing, output to 15A, 240V triac	Approx. $£ 5$	G.E.
Complementary unijunction:	Monolithic complement of p-emitter unijunction	Frequency 100 kHz Stability $+0.6 \%$ Voltage (Vbb) 30V max.	Approx. 30/-	G.E.

BLUEPRINT SERVICE

We would like to draw readers' attention to the fact that the BLUEPRINT SERVICE has been discontinued and therefore no further BLUEPRINTS are available.

QUERY COUPON

This coupon is available until 5th June 1970 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, JUNE 1970

[^5]
New for Project 60
 Active Filter Unit

The Sinclair Active Filter Unit is a new addition to our Project 60 range of high fidelity modules and is designed to complement the other modules in the range. Its performance is such, however, that users of other amplifier systems might well consider adding it to their assemblies.
The purpose of a filter unit is to reject frequencies above (scratch) or below (rumble) a specific cut off frequency when these frequencies contain unwanted interference. The Sinclair A.F.U. is unique in that the cut off frequency is consinuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapid (12 dB per octave), the removal of interference can be achieved with less loss of the wanted signal than has previously been possible.

Each channel of the A.F.U. has an overall gain of unity and, as the imput impedance is high and the output impedance is low, it may be connected between the pre-amplifier and power amplifier sections of any amplifier. Both amplitude and phase distortion have been made quite negligible by the careful design and the large amount of negative feedback employed.

Specifications

Designed for connection between the Stereo 60 pre-amplifier and two Z-30 or Z-50 power amplifiers.
Employs two Sallen \& Key type active filter stages, the first being a rumble (high pass) filter and the second a scratch (low pass) filter. The two stages use complementary transistors to minimise distortion. Supply voltage 15 to 35 V Current 3 mA max.
Gain at 1 kHz , filters flat $0.98(-0.2 \mathrm{~dB})$
H.F. cut off (-3 dB) variable from 28 kHz to 5 kHz
H.F. filter slope 12 dB /octave
L.F. cut off (-3 dB) variable from 25 Hz to 100 Hz
L.F. filter slope $12 \mathrm{~dB} / 0 \mathrm{ctave}$

Distortion at 1 kHz (35 v supply) 0.02% at rated output (250 mV R.M.S.)
Frequency response, flat position, 35 Hz to $20 \mathrm{kHz}-1 \mathrm{~dB}$
25 Hz to $28 \mathrm{kHz}-3 \mathrm{~dB}$
Built, tested and guaranteed
£5.19.6

FORTY WATT R.M.S. (80 WATT PEAK)

The Z-50 has been designed for applications requiring higher output power than the $\mathrm{Z}-30$. The maximum supply voltage is raised to 50 Volts and the output power is 40 watts continuous R.M.S. in to 3 or 4 ohms and 30 watts continuous into 8 ohms. The $Z-50$ is otherwise identical to the $\mathbf{Z - 3 0}$ in design and specification, the increased power being obtained by using much higher current power transistors used well within their rated limits.
The Z-50 is, of course, compatible with the other Project 60 modules, such as the Stereo 60, and since the price is only 20/- higher than that of the $Z-30$, customers may like to consider the advantages of buying two $\mathbf{Z}-50$'s for their systems now in case higher power is required later.
Where the full output power is not required the $\mathrm{Z}-50$ may be used with the $\mathrm{PZ}-5$ or 'PZ-6 but for the full output power the PZ-8 should be used. This unit is a stabilised power supply providing 45 volts at up to 3 amps. It is supplied without mains transformer as it is designed for use with a readily available "Radiospares" unit.

£5.9.6
${ }_{P Z-8} £ 5$.19.6

Project 60 an exciting alternative

It is not likely that anyone purchasing an amplifier today would have difficulty in finding one that met all his requirements, although the price might not be as low as could be wished. But one's needs can change, also the technically correct amplifier may be physically inconvenient. If there is an amplifier available, of the right size and price, to meet all your needs for the foreseeable future, then that is your best buy. If not, we offer a possibility which we believe to be an exciting alternative approach. That alternative is Project 60.

Project 60 now comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.

The modules now are: 1. The $z-30$ and $z-50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may
be added later. In a normal domestic application, there will be no significant difference between using PZ-5 or PZ-6 uniess loudspeakers of very low efficiency are being used, in which case the PZ-6 will be required. For assemblies using two Z-50's there is the new PZ-8 stabilised supply unit to ensure maximum performance from these amplifiers.

All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit. Any slight slip here will be covered by the aluminium front panel of the Stereo 60 . The Project 60 manual gives all the buildings and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

Z. 30 TWENTY WATT R.M.S. (40 WATT PEAK) HIGH FIDELITY POWER AMPLIFIER

The $Z .30$ is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The $Z .30$ is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z.30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the $Z .30$ are covered in the manual of circuits and instructions supplied with every $\mathbf{Z} .30$ high fidelity power amplifier.

SPECIFICATIONS

Power output -15 watts R.M.S. into 8 ohms using a 35 volt supply: 20 watts R.M.S. into 3 ohms using a 30 volt supply
Output-Class AB.
Frequency response:
Distortion:
Signal-to-noise ralio: Inpul sensitivity:
Damping factor:
Loudspeaker Impedanc
Power requirements:
Size:
30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
0.02% total harmonic distortion at full output into 8 ohms and at all lower output levels. better than 70 dB unweighted.
250 mV into 100 Kohms .
>500.
3 to 15 ohms.
From 8 to 35 V.d.c.(The $Z .30$ will operate ideally from batteries if required.) $31 / 2 \times 21 / 4 \times 1 / 2$ inches.

STEREO 60 P®E:AMplefe ano
 CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup- 3 mV : correct to R.|.A.A. curve $\pm 1 d 8 ; 20$ to 25,000 Hz . Ceramic Pickup-up to 3 mV : Auxiliary-up to 3 mV .
- Output- 250 mV
- Signal-to-noise ratio-better than UOdB.
- Channel matching-within 1d8
- Tone controls-TREBLE + 15 to -15 dB . at $10 \mathrm{KHz}:$ BASS +15 to -15 dB at 100 Hz .
- Power consumption 5́mA.
- Front panel-brushed aluminium with black knobs and controls.
- Size $81 / 4 \times 4$ ins.

SINCLAIR Manss powe
 SUPPLY UNITS

P2-5 30 volts unstabilised-sufficient to drive two $Z .30$'s and a Stereo 60 for the majority of domestic applications.

P7-6 35 volts stabilised-ideal for driving two Z.30's and a Stereo 60 when very low efficiency speakers are employed.

P2-8 45 volts power supply un it for use with 2.50 amplifiers (less mains transformer)

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us. you are dissatisfied with them. we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for services thereafter. No charge for postage by surface mail. Air-mail charged at cost.
£4.19.6
£7.19.6

E5.19.6

APPLICATIONS

Hi-fi amplifier; car radio amplifier; record player amplifier fed directly from pick-up; intercom; electronic mbsic and instuments; P.A.; laboratory work etc. Full details for these and many other applications are given in the manual supplied with the Z.30.

2.30

Built. tested and guaranterd. with
circuits and instructions manual

Ready for immediate E9. 19s. 6d.
instalfation

IC. 10 MICROMATIC AND 0.16. Please see next page
To: SINCLAIR RADIONICS LTD.', 22 NEWMARKET RD., CAMBRIDGE Please send

..	NAME
$\cdots \cdots \cdots \cdots$	ADDRESS
.............................	.-..... ..
For which / enclose cash/cheque/ money onder PW 670

SINCLAIR IC. 10 MONOLITHIC INTEGRATED CIRCUIT HI-FI AMPLIFIER COMBINED WITH PRE-AMP

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This device is more rugged and reliable than any previous amplifier and has considerable performance advantages. The most important are complete freedom from thermal runaway and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition tone and volume control network and a battery or mains power supply. The IC-10 may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout). Stabilised power supply, oscillator, etc. The pre-amp section can be used as R.F. or I.F. amplifier. We give a full guarantee on every IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR MICROMATIC

In kit complete with earpiece, case, instructions and solder in fitted pack.

49/6

Ready built, tested and guaranteed. with earpiece.

59/6

Mallory Mercury Cell, RM675 (Two needed) 2/9 each.

A powerful high quality radio smaller than a matchbox

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver with remarkable standards of selectivity, power and quality. Powerful A.G.C. counteract fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy at all times. Venier type tuning and self-contained special ferrite rod aerial makes station separation easy. The plug-in matching high quality magnetic earpiece ensure wonderful reproduction of speech and music. Everything including the batteries is contained within the attractively designed black and aluminium case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SPECIFICATIONS

Output :
Frequency response :
10 Watts peak. 5 Watts R.M.S. continuous
Total harmonic distortion : Load impedance :
Power gain
Supply voltage:
Size:
Sensitivity: 5 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$ Less than 1% at full output. 3 to 15 ohms.

Input impedance: Adjustable externally up to 2.5 M ohms.
3 transistors are used in the pre-amp and 10 in the power amplifier. Class $A B$ output with closely controlled quiescent current which is independent of temperature. Generous negative feedback round both sections, completely free from cross-over distortion at all supply voltages, making battery operation eminently satisfactory.

With comprehensive manual of circuits \& instructions Post free.

0.16 an outstandingly fine loudspeaker

Developed on entirely original design principles, this compact, beautifully styled shelf-speaker accepts up to 14 watts R.M.S. loading at 8Ω. Frequency response $60-16,000 \mathrm{~Hz}$. Size $9 \frac{3}{4}^{\prime \prime}$ square $\times 4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ deep, on plinth. Teak surround, with all-over cellular foam front and special seamless sealed sound chamber.
£8.19.6

$=-\infty-$ DEPT.D. 222-224 WEST ROAD, WESTCLIFF-ON-SEA. ESSEX TELEPHONE: SOUTHEND (0702) 46344

FULLY TESTED AND MARKED			
ACl^{107}	3/-	OC170	$3 .-$
AC126	2/6	OC171	4/-
AC127	3/6	OC200	3/6
AC128	$2 / 6$	OC201	$7 /-$
AC176	5/-	2G301	$2 / 6$
ACY17	3/-	2 G 303	$2 / 6$
AF:14	4/-	2N1302-3	4/-
AF115	3/6	$2 \mathrm{~N} / 304-5$	5/-
AF116	3/6	2N1306-7	$6 /$
AF117	3/6	2 N 1308 -9	9/-
AF239	12/6	2N3819 FET.	9/-
AF186	10/-	2N3844A	5/-
AF139	10/-	Power	
BFY50	4/-	Transistors	
BSY25	7/0	OC^{20}	10/-
BSY26	3/-	OCL^{23}	10/-
BSY27	$3 /-$	OCP^{25}	8/-
BSY28	3/-	OC26	5/-
BSY29	3/-	OC28	$7 / 6$
BSY95A	3/-	OC35	5/-
$0 \mathrm{OC4}$	2/6	OC36	7/6
$0 \mathrm{OC44}$	$2 / 6$	AD149	10/-
$0 \mathrm{OC45}$	$2 / 6$	AUY 10	30/-
$0 \mathrm{OC71}$	$2 / 6$	2N3055	115/-
$0 \mathrm{OC72}$	$2 / 6$	2 SO 34	10/-
OC73	3/6	Diodes	
$0 \mathrm{OC81}$	$2 / 6$	AAY42	2/-
OC81D	$2 / 6$	OA91	2/-
OC83	4/-	OA79	1/9
OC139	2/6	OA81	1/9
OC140	3/6	IN914	1/6
Packs of your own chaice up to the value of $10 /$ with orders over $£ 4$.			

RETURN OF THE UNBEATABLE P. PAK. NOW GREATER VALUE THAN EVER
Full of short lead semiconductors and electronic components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP and NPN. and a hoss of diodes and rectifiers. Mounted on printed circuit panels. Identification chart supplied to give some information on the transistors.
P1 PLEASE ASK FOR PAK P.I. ONLY 10/-

NEW UNMARKED UNTESTED PAKS

B78 12	Integrated Circuits. Data and $10 /=$ Circuits of types, supplied with orders.
8808	Dual Trans. Matched O/P pairs 10/NPN. Sil. in TO-5 can.
B82 1	OC45. OC81D and 0 aC8110/Trans Mullard glass type.
B83 200	Trans. Makers rejects. NPN/ $10 /=~$ PNP, Sil, and Germ.
B84 100	Siticon Diodes DO-7 glass equiv, 10/= to OA200, OA 202.
B66 150	High quality Germ. Diodes. Min. 10/= glass rype.
B86 5	Sil. Diodes sub. min. IN914 and 10/= IN916 types.
$B 87100$	erm. PNP Trans. cquiv. to $10 /=$ OC44, OC45, OC81, erc.
${ }^{\text {B88 }} 50$	Trans. NPN, PNP, equivalent 10/= C200/1, 2N706A, BSY95A, etc.
B60 10	7 Watt Zener Diodes. Mixed 10/= voltages.
H5 16	1 Amp. Plastic Diodes, $50-1,00010 /-$ Volis. 6 large, 10 small
H6 40	250 mW . Zener Diodes DO-7 10/ min. Glass Type. AV. $\mathbf{4 0} \%$ Good.

NEW TESTED \& GUARANTEED PAKS
B2 4 Photo Cells, Sun Batteries 3 to 10/=
B77 2 AD16I-AD162 NPN/PNP Trans $10 /=$

B81 10 | Reed Switches. mixed types, $10 /=$ |
| :--- |
| large and small. |

$0892 \quad$ SSPS Light Sensitive Cells. $10 /=$

B91 $8 \quad$| NKT163/164 PNP Germ. TO-5 $10 /=$ |
| :--- |
| equivalent to OC44, OC45. |

B92-4 NPN, Sil. Trans. AO6 BSX20 10/-
2N2369 500 MHz . 360 mW .
B93 $5 \quad$ GET113 Trans. equiv. to ACY1710/-

B96 5	2N3136 PNP Sil. Trans. TO-18, $10 /=$
	HFE $100-300$
I.C.	
600 mA	

B98 $10 \begin{aligned} & \mathrm{XB} 112 \text { and XB102 equiv to } 10 /- \\ & \mathrm{AC} 126, ~ \mathrm{AC156} \text { OC81/2, }\end{aligned}$
B99 $200 \begin{aligned} & \text { Capacitors, Electrolytics, paper } 10 /- \\ & \text { silver mica, etc. Post and pack. }\end{aligned}$ ing, this Pak $2 / 6$

H4 250 Mixed Resistors, Post and pack- 10 / | H7 $40 \quad \begin{array}{l}\text { Wirewound Resistors. Mixed } 10 /= \\ \text { Values. Postage } / 6.6\end{array}$ |
| :--- | :--- | :--- |

Complementary Set NPN/PNP Germ. $2 / 6$ trans., Pak F. 3.

PAIR

* ALL OUR TESTED SEMICONDUCTORS HAVE A WRITTEN GUARANTEE *

SEND FOR OUR FREE LISTS AND CATALOGUE OF ALL OUR PRODUCTS. CHECK YOUR OWN EQUIVALENT WITH OUR FREE SUBSTITUTION CHART.

NO CONNECTION WITH ANY OTHER FIRM MINIMUM ORDER $10 /-$ CASH WITH ORDER PLEASE. Add 1/- post and packing per order

H.A.C. ${ }^{\text {shofr:wave }}$ 'KITS

WORLD-WIDE RECEPTION

Famous for over 35 years for Short-Wave Equip ment of quality, 'H.A.C.' were the Origina suppliers of Short-Wave Receiver Kits for the amateur constructor. Over 10,000 astiafied customers-including Technical Colleges, Hos-
pitals, Publlc Schools, R.A.F., Army, Hame, etc.

IMPROVED 1870 RANGE
One-valve model "DX", complete kit-price 58/6 (Poatage and pack ing 3/6).
Customer writes:-'Deflitity the best one-valve 8.W. Kit available at any price. America and Australla received clearly at good volume." Thin drilled chassit, valve, accessories and full instruc. tions. Ready to assemble, and of course as all our product-fully zuaranteed. Foll range of other 8.W. Eith including the famous model "K" aud "K plus" (illuat rated ubove.) All orders desputched by return. (Mail order only.) send now for a descriptive catalogue, order form.
"'H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1
 tion problem with thls 4-gtation Transiator Interoom aystem (1 manter and 8 8ubs), in de-luxe plastic cabinets for dest or wall Eubs to Master. Idealiy suitable for Buminest, surcery, Schools, Hospltal, Offloe and Home. Operates on one 8 V bettery. On/ofl bwitch. Volume control. Complete with 3 connecting wires each 60 ft . and other accesmories. P. \& P. 7/6

MAINS INTERCOM
No batteries-no wires.. Just plug in the mains for instant two-way. loud and clear
communication. On/off suich and volume control. Prlce £11.19.6. P. \& P . $8 / 6$ extra

Bame as 4-Bthation Intercom for two-way inatant communlcation. Ideal an Baby Alorm and Door Phone. Complete with 68ft. connecting wiro
 clency with this incredible De-luxe Telephone Amplifier. Take dowa long telephone messages or converie Without holding the handset. A useful office aid. On/ off awitch. Volume Control. Battery $2 / 6$ extra. P. \& P. 8/6. Full price refunded if not astishod in 7 daya 169 KLFSINGTON EIGI BTREET, LONDON, W.8.

Mallive ally as for IRANGIBTOR EqURS of IUNT

The Ideal, economlcal and safe way of ruining Translstor Radios, Record Players, Tape Recorders, AmpllIsolated from mains by double wound transformer
ensuring 100% safety.

PLUS-3

MAINS UNIT

Provldes three separate switched output voltages $6 \mathrm{v} .7 \frac{1}{2} \mathrm{v}$, and 9 v . DC. attracthe case with Indicator light, malns lead output socket, plug and lead (Extra lead with DiN plug for

45/- P. \& P. 2/6

57/6

POWER PLUS MAINS UNIT for transistor equipment using $7 \frac{1}{2} v$. Complete with DIN plug for power socket. Can also be supplled for a 6 -volt output complete with sultable plug, (State make, model and voltage requitred.)

```
NOW AVAILABLE-UNIT FOR USE WITH
I2v CAR BATTERY as featured thls Issue. Sultable for running transistor radlos etc (State output reqd. - \(6 \mathrm{v}, 7 \frac{1}{2}\) v or 9 v ) Price \(35 /=\) In. cludlng fused lead P. \& P. \(2^{1 / 6}\)
```


MAJOR POWER PLUS

MAINS UNITS

For single outputs, $6 \mathrm{v}, 9 \mathrm{v}, 12 \mathrm{v}, 18 \mathrm{v}, 39 / 6$ For two separate outputs, $4 \frac{1}{2} v+4 \frac{1}{2}$ unlt. (Please state outputs read.).
R.C.S. PRODUCTS (RADIO) LTD.

ELECTROVALUE

RESISTORS

Code	Power	Tolerance	Renge	Velue: a vajiable		$\begin{array}{r} 10 \\ \text { NOT } \end{array}$	$0 \mathrm{w}^{\mathrm{up}}$
C	1/20w	5%	$82 \Omega-220 \mathrm{~K} \Omega$	E12	18	16	
C]/8W	5\%	$4.7 \Omega 330 \mathrm{~K} \Omega$	E24	$2 \cdot 5$	2	1.75
C	1/4W	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E12	$2 \cdot 5$	2	1.75
C	1/2W	\$\%	$4.7 \Omega-10 \mathrm{M} \Omega$	E24	3	$2 \cdot 5$	2.28
MO	1/2W	2\%	$1.0 \Omega-1 \mathrm{M} \Omega$	E24	9	8	7
C	1W	10\%	$4 \cdot 2 \Omega-10 \mathrm{M} \Omega$	E12	6	5	$4 \cdot 5$
Ww	1w	10\% +1/20 Ω	$0.22 \Omega-3.3 \Omega$	E12		quan	
WW	3W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12		quan	
WW	7W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12		quan	
Codes:	$\begin{array}{r} \text { C } \\ \text { MO } \end{array}$	= carbon film, $=$ metal oxide $=$ wire wound	high stability, Flectrosil TRS Plessey.	woise. ultra low			
Faluen:	E12 de deca E24 d	notes series: 1 , des. notea aeries: as nd their decad	$\cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2$ E12 plus 1-1, 1 es.	$2 \cdot 7,3 \cdot 3,3 \cdot 9$ 3, 1-6, 2, 2			their

Prices aro in pence each for quantities of resisiors of name ohmic value and po
NOT mixed eatues. (Ignore fractions of one panny on total resistor order.)

COLVERN 3 WATT WIRE-WOUND POTENTIOMETERS:
$10 \Omega, 15 \Omega 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K} \Omega, 1.5 \mathrm{~K} \Omega, 2 \cdot 5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega$ $10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega$, $25 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega$. Price only $5 / 6$ each

CARBON TRACK POTENTLOMETERS: Double wiper enaures minimum noise level. Long plastic spindies.
Single gang linear: $220 \Omega, 470 \Omega, 1 \mathrm{~K}$ etc. to $2 \cdot 2 \mathrm{M} \Omega$
Single gang log: $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$, etc. to $2.2 \mathrm{M} \Omega$
Dual gang linear: $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$ etc. to $1 \mathrm{M} \Omega$
Dual gang log: $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$ etc. to $2 \mathrm{M} 2 \Omega$
Log/Anti-log: $10 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{M} \Omega$ only
Dual anti-log: 10K only
Any type with $\frac{1}{3}$ amp. double pole maine switch
FETS n-channel low coat NEW PLESSEY INTEGRATED CRRCDIT POWER FETS
general purpose $2 \mathrm{~N} 5103,25$ general oniy $5 /-$ each. Audio/ t.t. Texas 2N3819 8/6. Motorola 2N5459 (MPF105) AMPLIFIER TYPE SL403A. Only 48/6 nett. Operates with 18 V power rupply. Senilitivity 20 mV finto $20 \mathrm{M} \Omega$, $9 / 9$ each.

PE Nov. 69 Steero Amplifer kit less metal work PE Nov. 69 Steero An
$\mathrm{E} 11 / 18 /-$ NET complete.

30 WATT BAILEY AMPLIPIER COMPONENTS:
Transistors for one channcl $\varepsilon 7 / 5 / 6$ list., with 10% discount only $\varepsilon 6 / 11 / 0$.
Transistors for two channels E14/11/0 list, with 15% discount only E12/7/5.
Capactiors and resistors tor one channel list $£ 2$.
Printed circuit boaril tree with each transistor $/ \mathrm{et}$.
Complete unregulated power supply kit $£ 4 / 17 / 6$ mono or stereo, subject to discount. Complete unregulated power apppyit $\varepsilon 9 / / /$ /- subject to discount. Further details on application.

MULLARD Sub-min electrolytic C426 range: Price $1 / 3$ each. Axial leads, Valne MULLARD Sub-min electrolytic C426 range: Price 1/3 each. Axial leads, Value 8/4; 8/40; $10 / 2 \cdot 5 ; 10 / 16 ; 10 / 64 ; 12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ; 25 / 25 ; 32 / 4$ $32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ; 40 / 2 \cdot 5 ; 50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16$ $80 / 25 ; 100 / 6 \cdot 4 ; 125 / 4 ; 125 / 10 ; 125 / 16 ; 160 / 2.5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5$ $320 / 6 \cdot 4 ; 400 / 4 ; 500 / 2 \cdot 5 \mu F / V$.
Wavechange switches: 1P 12W; 2P 6W; 3P 4W; 4P 3W long spindles, $4 / 9$ each. Slider switches, double pole double throw, $3 /=$ each

Suppliers of PEAK SOUND, SINCLAIR MALT LINE PRODUCTS, etc., as advertised Aloo large stocke of all types of transistors, etc.

COMPONENT DISCOUNTS

10% on orders for components for $\& 5$ or more
$\mathbf{1 5 \%}$ on orders for components for $\mathbf{\$ 1 5}$ or more
(No discount on net Items.)
POSTAGE AND PACKIMG:
Free on orders over $£ 2$
Piease sidd $1 / 6$ if order is under $£ 2$
Overseas orders welcome; carriage charged at cost

ELECTROVALUE
 DEPT.
 PW. 6

28 ST. JUDES ROAD. ENGLEFIELD GREEN,
EGHAM, SURREY, Hours 9.5.30. sat. $1.0 \mathrm{p} . \mathrm{m}$.
Telephone Egham 5533 (STD 0784-3) Telex: 264475

EX-RENTAL TELEVISIONS

TWO-YEAR GUARANTEE

17" SLIMLINE 405 only \&ll 100
$19^{\prime \prime}$ SLIMLINE 405/625 39 Gns.
Carriage and Insurance 30/-
FREE ILLUSTRATED LIST OF
TELEVISION
$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIUE RANGE OF MODELS,
SIZES AND PRICES
DEMONSTRATIONS DAIL

TWO-YEAR GUARANTEED TUBES 100% REGUNNED

 Slim Line Tubes $110^{\circ} 17^{\prime \prime}$ and $19^{\prime \prime} 109 / 6,21^{\prime \prime}$ and $23^{\prime \prime} 129 / 6$. Normal Tubes 70° and $90^{\circ} 17^{\prime \prime} 99 / 6,21^{\prime \prime} 119 / 6,14^{\prime \prime}$ and other sizes $79 / 6$. $4^{\prime \prime} 10 \Omega, 3^{\prime \prime} \times 5^{\prime \prime} 8 \Omega .7^{\prime \prime} \times 4^{\prime \prime} 3 \Omega$,
$3^{\prime \prime} 3 \Omega$. $3 R A N D N E W . P . \&$ P. $21-$.
Transistors: Mullard matched output
kit $7 / 6,0 C 81 D-2$ OC8|'s. P. \& P. FREE.
Transistor Radio Cases: 4 for $£ 1$ Size $9 \frac{1}{2}{ }^{\prime \prime} \times 6 \frac{1_{2}^{\prime \prime}}{} \times 3 \frac{1}{2}{ }^{\prime \prime}$. P. \& P. 9/6. Ferrite Rods 3/6: $6^{\prime \prime}$ and $8^{\prime \prime}$ complete STRIP LIGHT TUBES $3 / 9$ each. $11^{\prime \prime}(284 \mathrm{~mm})$. $230 / 240$ volts, 30 watts. Ideal for cockrail cabinets, illuminating pictures, diffused lighting, etc. 6 for fl'.' P. \& P.free $^{\prime}$

\qquad
(DUKE \& CO. LONDON) LTD.
621/3 Romford Road, London, El2
Tel. $01-4786001 / 2 / 3$

VALVES SAME DAY SERVICE NEW! TESTED! GUARANTEED

SETS $\begin{gathered}\text { 1R5, } 185,1 T 4,384,344, \text { DAF91, DF91, DK91, DL92, DL } \\ \text { Set of } 4 \text { ior 18/6, DAF96, DF } 96, \text { DK96, DL96, } 4 \text { FOR 27/-. }\end{gathered}$

024	4/6	12K8GT $7 / 3$	\%91	EF184 $\quad 5 / 6$	PCL82 7/3		$6 / 8$
1A7GT	7/6	19BG6G17/6	DK92 8/8	EH90 6/3	PCL83 12/		
185GT	7/3	20F2 13/6	DK96 7/3	EL33 9/9	PCL84 7/8		71.
1N5G	$7 / 9$	$20 \mathrm{P} 311 / 9$	DL35 5/-	EL34 9/6			a
1 R 5	5/9	20P4 18/6	DL92 5/9	EL41 11/-	PCL86 8/3	UCF80	3
185	4/3	25L6GT 5/-	DL94 8/3	EL84 4/9	PENA4 12/6	UCH42	12/6
1 T 4	$2 / 8$	25U4GT11/8	DL96 7/8	EL90 4/6	PFL20011/9	UCE81	8
384	$5 /$	$30 \mathrm{Cl} 18 / 8$	DY86 5/9	EL500 12/6	PL36 $\quad 9 / 9$	UCL82	-
$3{ }^{3} 4$	6/3	$30 \mathrm{C15}$ 18/-	DY87 5/8	EM80 7/6	PL81 8/9,	UCL83	11/8
5Y3G	$5 / 8$	$30 \mathrm{Cl} 7^{18 /-}$	EABC80 8/6	FM81 7/6	PL81A 10/6	UF41	10/6
5Z4G	7/8	30 Cl 814 1-	EAF42 10/-	EM84 $\quad 6 / 9$	PL82 6 6/6\|	UF80	-
6/30L2	12/-	30 Fs 10/-	EB91 $2 / 3$	FM87 7/0	PL83	UF85	
6 AL 5	2/3	$30 \mathrm{FL1} 14 /-$	EBC33 8/-	EY51 $\quad 7 / 3$	PL		
6AM6	2/9	$30 \mathrm{FL12} 14 / 6$	EBC41 8/6	EY86 6 6/6	PL500 $13 /-$		
6AQ5	4/6	30FL14 14/9	EBF80 $8 / 9$	EZ40 8/-	PL50		
6AT6	4/-	30 Ll 8/6	EBF89 ${ }^{\text {E/3 }}$	EZ41 4 8//	PL508 ${ }^{\text {PM84 }}$ 23/6	UM84	
AU6	4/6	$30 \mathrm{LL} 514 / \mathrm{B}$	LCC81 $3 / 9$ CC82 $4 / 9$	$\begin{array}{ll}\text { E2800 } & 4 / 6 \\ \text { EZ81 } & 4 / 9\end{array}$	PM84 $\begin{array}{ll}\text { PX20 } & 12 /-\end{array}$	UY41	
BA6	4/6	30L17 15/6	ECC82 4/9	$\begin{array}{ll}\text { EZ81 } & 4 / 9 \\ \text { G232 } & 8\end{array}$	$\begin{array}{ll}\text { PY20 } & 10 /- \\ \text { PY32 }\end{array}$	UY85	
B E6	4/9	30P4 12/-	ECC83 7/-	$\begin{array}{ll}\text { GZ32 } & 8 / 9 \\ \text { GZ34 } & \text { 8/9 }\end{array}$	$\begin{array}{ll}\text { PY33 } & 10 /-\end{array}$	VP4B	
BJ6	8/6	30 P 12 13/8	ECC85 5/	G76	PY81 513	W77	
BW6	13/-	30P19 12/-	ECC91 3/-	$\begin{array}{\|cr\|}\text { KT61 } & \text { \%/9 } \\ \text { KT66 } & 16 / 9\end{array}$	$\begin{array}{ll}\text { PY81 } & 5 / 3 \\ \text { PY2 } & 5 / 3\end{array}$	W119	$7 /$
$6 \mathrm{C5G}$	4/9	30PL1 14/0	ECC804 12/-	$\begin{array}{ll}\text { KT66 } & 16 / 8 \\ \mathrm{~N} 78 & 17 / 6\end{array}$	PY82 5		2/9
6 F 13	$8 / 6$	30PL13 17/6	$\begin{array}{ll}\text { ECF80 } & 6 / 6 \\ \text { ECF82 } & 6 / 6\end{array}$	N78 PABC80 17/-	$\begin{array}{ll}\text { PY83 } & 5 / 9 \\ \text { PY88 } & 6 / 9\end{array}$	Transi	2/8
6F14	91-	30PL14 16/6	$\begin{array}{ll}\text { ECF82 } & 6 / 6 \\ \text { ECH35 } & 6 /-\end{array}$	PABC80 PC86 $10 / 3$	$\begin{array}{ll}\text { PY88 } & 6 / 8 \\ \text { PY800 } & 7 / 8 \\ \text { PY801 }\end{array}$	C107	3/6
6 F 23	$14 / 3$ $13 /-$	$\begin{array}{ll}\text { 35L6GT } & 8 / 6 \\ 35 \text { W4 } & 4 / 6\end{array}$	ECH35 ${ }_{\text {ECH }}$ 18/-	$\begin{array}{ll}\text { PC86 } & 10 / 3 \\ \text { PC88 } & 10 / 3\end{array}$	$\begin{array}{ll}\text { PY800 } & 7 / 8 \\ \text { PY801 } & 7 / 6\end{array}$	AC127	2/8
6 F 25	13/-	35W4 ${ }^{\text {35Z4T }}$ 5/-	ECH881	$\begin{array}{lr}\text { PC86 } & \text { 1/8 }\end{array}$	R19 6/6	AD140	$7 / 6$
656	3/-	6063 12/6	ECH83 8/3	PC97 8/6	R20 12/6	AF115	3/-
K7G	2/6	807 9/-	ECH84 7/6	PC900 7/8	5 13/-	16	$3 /$
6K8G	$2 / 8$	AC/VP210/-	ECL80 7/-	PCC84 616	12		4
6L18	6/-	AZ31 9/6	ECL82 6/9	PCC85			/6
68N7GT	4/3	B729 12/6	ECL83 8/6	8			5/6
6V6G	3/3	CCH35 13/6	ECL86 8/-	PCC89 10/6	U78 418	OC26	$5 /$
6V6GT	6/6	CL33 18/6	EF37A 6/6	PCC189 11/6	U191 12/6	$0 \mathrm{C44}$	
6×4	4/3	CY31 6/9	EF39 4/8	PCF80	U193 8/6	${ }^{0} \mathrm{C} 4{ }^{5}$	
6X5GT	5/8	DAC32 7/8	EF41 10/9	PCF82 P6/6	U251 14/6	0 C 71	
10F1	14/-	DAF91 4/3	EF80 4/6	PCF86 $10 / 6$	$\begin{array}{ll}\text { U301 } & 10 / 6 \\ \text { U3 } & 14 / 6\end{array}$	C72	
10F18	7/-	DAF96 $7 / 3$	EF85 6/3	PCF800 13/6	$\begin{array}{ll}\text { U329 } & 14 / 6 \\ \mathbf{U 8 0 1} & 19 / 6\end{array}$		
10P13	12/-	DF33 7/9	EF86 6/3	PCF801 6/9	U801 $19 / 6$ UABC80 16		
12AT7	3/9	DF91 $\quad 2 / 9$	EF89 5/3	PCF802 ${ }^{\text {9/ }}$		OC8	
12AU6	4/9	$\begin{array}{ll}\text { DF96 } & 7 / 3 \\ \text { DH77 } & 1 /-\end{array}$	$\begin{array}{ll}\text { EF91 } & 2 / 9 \\ \text { EF94 } & 4 / 6\end{array}$	$\begin{aligned} & \text { PCF805 14/- } \\ & \text { PCF806 12/9 } \end{aligned}$	UB41 $6 / 6$	OC82	$2 / 6$
12AU7	$4 / 8$	DH77 4/-	EF94 4/8	PCF806 12/9	UBC41 $9 /-$	OC170	210

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7441.
Postage on 1 valve ga. extra. On 2 valves or more, postage 6 d . per Falve extra Any Parcel Insured against Damage in Transit 6d. extra

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /$-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 510 \mathrm{~s}$. 0 d . per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

MISCELLANEOUS

SERVICE MANUALS for Pre 1958 H.M.V. and E.M.I. MODELS. Radio and Record Player Manuals 5/-each. Television Manuals $7 / 6$ each. Send C.W.O. stating model required. Also limited range of components and spares. Send details of your requirements. R.D.I. Led.. Chilton Works, Garden Road, Richmond, Surrey.

BUILD IT in a DEWBOX quality cabinet. 2 in. $2 \frac{1}{2}$ in. x any length. D.E.W. Lid. Ringwood Road, FERNDOWN Dorset. S.A.E. for leaflet. Write now-Right now.

TOP TRANSISTORS

ACY22 $1 / 9 \quad$ OC45 $1 / 9 \quad$ ZTX $3001 / 9$ $\begin{array}{lllll}\mathrm{BC} 108 & 1 / 9 & \text { OC71 } & 1 / 9 & 2 N 706 \\ 1 / 9\end{array}$ $\begin{array}{llllll}\text { BFY51 } & 1 / 9 & \text { OC200 } & 1 / 9 & 2 N 2926 & 1 / 9\end{array}$ $\begin{array}{llllll}\text { BFY52 } & 1 / 9 & \text { OC201 } & 1 / 9 & \text { 2N3708 } & 1 / 9\end{array}$ All the above types are available at 16 for £1. Brand New. Individually Tested. MONEY BACK GUARANTEE.

P \& P $1 /$.

J. M. KING (Z),

17 BUCKRIDGE, PORTPOOL LANE, LONDON, E.C.1.

500 ITA CONVERTER TUNERS 3/- for sample.-E. Graley, 15 Roskell Road. Liverpool 25 OLN.
 PARAPHYSICAL LABORATORY, Downton, Witts. Telekinesis. Magazines. Send S.A.E. for list. Samples 20s.

SERVICE FOR THE AMATEUR electronic enthusiast. Are you buijding equipment requiring a transformer? If so, send for an immediate quotation, or s.a.e. for our comprehensive price list. Also available on request. enamelled copper wire price listBanner 'Transformers, 84 Old Lansdowne Rd. West Didsbury, Manchester, 20.

PHOTO ELECTRIC SWITCH KIT
Light celi, transistor, relay etc. Elegant case in hammer finish $5!^{\prime \prime} \times 2 t^{\prime \prime} \times 4 t^{\prime \prime}$ fitted with light etc. 35/- Post Paid.

6 OR 12 VOLT

FLUORESCENT LIGHTS
12 ins. 8 Watt tube ample light for caravan, tent etc. Fully translstorised. low battery drain. Unbeatable at 65/6 post paid. or in kit form 57/6

4 WATT GRAM AMPS.

Volume and tone controls, mains operation 3Ω output, hew and boxed $72 / \mathrm{B}$ POST
SALOP ELECTRONICS Callers welcome 23 Wyle Cop, Shrewshury, Shropshire
S.A.E. for /ists

MUSICAL MIRACLES: Drum. Cymbals, Waa-Waa and Fuzz modules. New unique effects units. Percussion etc. Good waa-waa kits 49/. Famous "Mister Bassman" bass pedal unit. Also bargain components list of reed switches etc. Send S.A.F. NOW!D.E.W. Ltd., 254 Ringwood Road, Ferndown. Dorset

MISCELLANEOUS (continued)

DO-IT-YOURSELF PRINTED CIRCUIT KITS
AMAZING VALUE! Each pack contains \star P. C. Boards (assorted sizes) \star Etchant $\star \underset{\star}{\text { Resist }}$ Etching Tank * Full instructions

Price $16 /$ - and $30 /=$ (extra large). C.W.O CLIFFORD ELECTRONICS, (Dept. P.W.) 177 Watford Road, Harrow, Middx.
"FLAME FROM THE AIR" A revolutionary cigarette lighter that has no wick, flints or moving parts: uses no petrol, gas or batteries: cannot be blcwn out. Awarded Gold Medal Luxembourg International Gold Medal Luxembourg international
Trades Fair. $39 / 6+2 / 6$ pp from JW $\underset{\text { Trades Fair. } 39 / 6+2 / 6 \text { pp from JW }}{\text { (Dept. MO2). } 44}$ Earls Court Exports. (Dept. MO2). ${ }^{44}$ Ear
Road, Kensington. London W. 8 .

THE NEW

ELECTRONIC MUSIC FOR YOU

Then how about making yourself an elecTric organ? Constructional data available full circuits, drawings and notes! It has 5 octaves. 2 manuals and pedals with 24 stops-uses 41 valves. With its varlable attack you can play Classics and Swing. Write Now for free leafet and further detalls to C. \& S., 20 Maude Stret. Darlington, Durbam. Send 4d. stamp.

NOTES ON USE of TV for UFO Detection. Optical Detector Circuits, 8 s 6d. Radar \& Electronic Publications. "Highiands," Needham Market. Sutfolk.

EXPRESS ROTARY SWITCHES. Switches for Mullard audio circuits, also switches for Mullard audio circuits, also switches details and price list. write or phone to 189 Edgware Road., London W.2. Tel. 01-723 4455 .

AERIALS

> BAKER AND BAINES
> BBC dipole 30/-. H 42/-. 3 ele 89/-. 1TA 3 ele $26 /-5$ ele $34 /-8$ ele $47 / 5$. I ele $57 / 6$. ITA doubles 8 ele $112 /$. II ele $140 /$-. 13 ele $159 /$ - Combined BBCJITA D+545/-D+852/$\mathrm{H}+569 /-X+575 /$-. Combined Loft Special $D+5$ with loft pole and fixings $37 /$ - $\mathbf{~ U H F}$ Aerials BBC-ITA 14 ele $37 /$-. 18 ele $54 /-$. 22 ele $63 / 3$. Double 22 ele $142 /$. $1 / 4$. AX $1 / 3$. $2 / 3$. Co-Ax plugs $1 / 4$. UHFIVHF loss at Diplexers and Triplexers-Matched. UHF/VHF Diplexers. VHF/UHF Pre Amps 75/-
> Poles, Lashings. Clamps. Couplers, etc. Postage Paid inland on aerials. Extra on accessories. Please state channels when ordering.
> II Dale Cres., Tupton, Chesterfield.

HI-FI EQUIPMENT

SHURE MAGNETIC CARTRIDGES. Manufacturers pack, brand new, post free M3DM £4.19.6. M44/5/7 £7.10.0. M44E £8.17.6. M55E £9.17.6. M75/6 Type 2 or M75G Type 2 £12.5.0. M75EJ E15.15.0.
 $\begin{array}{lll}800 & \text { M7.17.6. GARRARD SP. } 25 & \text { G10.17.6. }\end{array}$ AP. 75 £ 16.10 .0 . P. \& P. 7/6. Complete Hi Fi Stereo System normally 57 gns . Our price ${ }^{29}$ gns. P. \& $P_{\text {. }} 27 / 6$ Mayware \& Co- 38 Achilles Road, London, N.W.6. Mail Order only.

FOR SALE

MORSE MADE ! !

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commerclal Morne within a month. (Normal progress to be expected.)
Using scientifically prepared 3 -apeed records you wutomaticsily learn to recognise the code RHYTHM Fithout tranalating. 18 W.P.M. in 4 weeks guaranteed.
For detalls and course C.O.D. ring, a.t.d. 01-860 2896 aend 8d stamp for explanatory booklet to: G80H8 (BOX 11), 45 GREEN LANE, PURLEY, SURRET

SEEN MY CAT? 5,000 items. Mechanical \& Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PW, NEW MILLS. Stockport.

TO CLEAR.-Sets of over 35 uscful components from ex. adm. amplifier panels, sub chassis, rectifiers. condensers, diodes, resistors. James plugs, valve holders, etc. Only 3/-plus 1/6 P\&P. Also valves CV2127. CV455, CV4055, CV4024, 2/6 each or 6 for 10%-Greene, Fieldings. Poulner, Ringwood. Hants.

TX. (10 WATTS INPUT) RX. $150 \mathrm{~m}-80 \mathrm{~m}$ 40 m . Mains or 12 v . $£ 12$ two for $£ 20$ o.n.o. G8CER 5. Quiney Way, Oadby, Leicestershire. Vintage Valves. And New.

JENNINGS ORGAN. two manual. A.R.C.O. pedal board. Suit enthusiast. A bargain at $£ 100$. Madins Organ Centre. 487 Sheffield Ruad, Chesterfield. Phone 5404

ALL KINDS OF EVERYTHING for sale to Irish readers. Write for price list, plus Bargain page. Toner Electronics. Lismore Park, Waterford. Phone 3048.

WANTED

CASH PAID for New Vaives. Payment by return. WILLOW VALE, ELECTRONICS. 4 The Broadway, Hanwell, London. W.7. 01-567/5400-2971.

WE BUY New Valves and Transistors. State price: A.D.A. MANUFACTURING CO.. 116 Alfreton Road. Nottingham.

WANTED
(continued)

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return WILLIAM CARVIS LTD. 103 North Street, Leeds 7

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street. West Bromwich, Staffs. Tel.: WES 0186.

WE BUY New Valves, Transistors and ciean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES. 55 Worcester Street. Wolverhampton.

SERVICE SHEETS AND MANUALS PURCHASED. Highest prices paid. Sultan Radio. 29 Church Road, Tunbridge Wells, Kent. Phone T.W. 22093.

SERVICE SHEETS

SERYICE SHEETS (1925-1970) for Televisions, Radios. Transistors. Tape Recorders,
Record Players, etc., by return post, with Record Players, etc. by return post, with
free Fault-Finding Guide. Prices from $1 /$. free Fault-Finding Guide, Prices from $1 / \ddot{\sigma}^{*}$
Over 8,000 models available. Catalogue $2 / 6$. Please send S.A.E. wth all orders/enquiries. Hamilton Radio, 54 London Road, Bexhill. Sussex.

SERVICE SHEETS. Radio, TV etc. 8,000 models. List $2 /-$. S.A.E. enquiries. TELRAY. 11 Maudland Bank, Preston.

TRADER SERVICE SHEETS

5/- each plus postage

We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.s returned if sheets not available.

OAKFIELD ENTEPPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio/TV

1970 List now available at 2/-

If list is required plus postage

```
indicate with X
```


From

Address
enclose remittance of
(and a stamped addressed envelope) s.a.e, with enquiries-please

MAIL ORDER ONLY (February PW)

LARGE SUPPLIER OF

SERVICE SHEETS
(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS, CAR RADIOS)
Only $10 /$ - each, plus large S.A.E.
(Uncrossed P.O.'s please, orlginal returned if service sheets not available.)

C. CARANNA
 71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request with order.
Mail order only.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, lb Shepherds Bush Rd., London W.6. SHE 8441 .

SERVICE SHEETS $(75,000) 5 /-$ each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

RECEIVERS \& COMPONENTS

RECEIVERS \& COMPONENTS
(continued)

A. J. H. ELECTRONICS 59 Waverley Road, The Kent, Rugby Warwickshire.
 Tel. Rugby 71068

P. C. RECEIVER BOARDS

PCR.1, 6 transistors OC44, 2/OC45, OC81D, 2/OC81, but less the audio transistors ie:OC81D. \& 2/OC81, double tuned 1st. IF. speaker will work with any impedance, size $8 \frac{1}{2} \times 3^{\prime \prime}$ less ferrite aerial, tuning capacitor, etc. similar to item previously advertised with data $25 /-$ each.

PCR.2, 7 transistors 3/AF117, 2/AC127. 2/AC128, watt output to 5 ohm speaker. size $3 \frac{1}{2}{ }^{\prime \prime} \times 7 \frac{1}{2}{ }^{\prime \prime}$ IF. \& audio complete, no osc. coil. tuning capacitor, ferrite aerial, etc. requires 9 v supply, modern board with miniature components, $35 /$-each with circuit.h

PCR.3, 6 transistors OC44, 2/OC45, OC81D, 2/OC81, transformerless output approx 400 milliwatts requires 6 v battery, edgewise volume mintalts requires 6 V battery, edgewise volume
control, \& osc. coil on this board, $3^{\prime \prime} \times 5^{\prime \prime}$ as used in pocket portables no details or circuit 25/- each.

All boards as new and unused

250 pf postage stamp type ceramic compression trimmers 6 d each $5 /$ - doz. (new) Screw in type car distrlbutor \& coil suppressors 6 d each
(new). (new).

PUSH-PULL output transformers to match EL84s to 15 ohm speaker with negative feedback winding only 9/-each
Postage add $1 / 6$ MAIL ORDER ONLY

A CORNUCOPIA OF COMPONENTS: Scarce valve, selected T.V. components, Speakers, Cabinets. Computer panels-long leads NOT printed circuits. Transistors. resistors-new and recovered, State require-resistors-new and recovered, State require-
ments. S.A.E. (F.S.) for details. MAILments. S.A.E. (F.S.) for details. MAILSussex.

LOW PRICE, HIGH QUALITY SPEAKER SYSTEMS
All cabinets are new and carefully designed acoustically with speakers mounted on $\frac{1}{2} \ln$. chipboard banfies. All epeakers are ex.TY high quality with hi-flux magnets carefully matched andetested.

CAXTON COLUMN. This is a column cabinet $23 \% \times 5 \frac{1}{2} \times 5 t i n$. deep finlehed in black or wood grain cloth with blue Vynair front. Keyhole slot for wall mounting. Fitted with three speaker unlts, 9 ohms impedance. Handles 8 watts. Makes volume of tape recorders and record players. Real bargain at 59/6d. P. \& P. 10/6d. each.

SPEAKERS: Elac Heavy duty Ceramic Magnets 11,000 line, 101 n , round, $10 \times 6 \mathrm{in}, 3 \mathrm{ohm}$ or 15 ohm , 4!/6. P. \& P. 3/6. Sin. round 15, 42/5. P. \& P. 3/6. E.M.1. $13 \frac{1}{1} \times 8$ in. 3 ohm, $45 /=15 \mathrm{ohm} 48 / 6$.
 15 ohm 77/G. P \& $\mathbf{4} / 6$. E.M 134×8. weeters.

(15 ohm) Hi-Fi quality £5.19.6. P. \& P. 4/6. E.M.I. 4/6. E.M.I. Crossover, 18/G. P. \& P. 1/-. EAGLE Crossover units 3 or 16 ohms, $17 / 4$. P. \& P. $1 /$-. Bakers 12in., 25 watt 15 ohm é.6.6. P. \& P, $3 / 6$.

VYNAIR Widths from 40 to 54 in ., 15/-. yd. off roll. P. \& P. $1 / 9$. $\frac{1}{\text { y }}$ yard, $8 /-$, P. \& P. $1 / 9$. Send $1 /-$ stamps for samples.

SPEAKER MATCHING TRANSFORMERS. 3, 7,15 ohms, 8 watt, 13/6. P. \& P. 1/6.

EXCOMPUTERPRINTEDCIRCUIT PANELS 2 in $\times 4$ in packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards $10 /-\mathrm{P}$ \& \& P . $1 / 6$. With a guaranteed minimum of 35 transistors. Transistor data included.

SPECIAL BARGAIN PACK. 25 boards for fl. P. \& P. 3/6. With a guaranteed minimum of 85 transistors. Transistor data included.

PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times O C 28$) $10 /-$. P. \& P. 1/6d.

9 OAS, 3 OAIO, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET 872, 3 GET 8728, I GET 875. All long leaded on panels $13^{\prime \prime} \times 4^{\prime \prime}$.
4 for 20/-. P. \& P. 5/.

EX COMPUTER '"MEMORY'" CORE STORE PLANES

160 BITS \&1 P. \& P. 2/-
4,000 BITS \&4 P. \& P. 4/-
10,000 BITS 68 P. \& P. 8/-

250

MIXED RESISTORS
\& \& $\frac{1}{2}$ watt 12/6 P. \& P. 1/6

DIODES Skitapr

10 AMP 150 PIV 4 for $10 /-$
20 AMP 150 PIV 4 for $£ 1$
35 AMP 150 PIV 4 for $45 /-$ P. \& P. I/-

EXTRACTOR / BLOWER

FANS (Papst)
100 c.f.m. $4 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2} \times 2^{\prime \prime}$
2800 r.p.m.
50/- ea. P. \& P. 5/-

RELAY OFFER

Single pole changeover silver contacts $2^{\prime \prime} \times 6^{\prime \prime} \times 7^{\prime \prime} 2.5 \mathrm{~K} \Omega$ coil operates on 25 to 50 v \& for $10 /-$ P. \& P. $1 / 6$

LT/STEP DOWN TRANSFORMER PRIO, 200,215,230,245v
5EC 1. 0. $10.25 \vee 4 \mathrm{~A}$ 0. 115 v 2 A

30/- P. \& P. 6/- Quantity available

I2V 4A POWER SUPPLY

Extremely well made by Frako GMBH in West Germany with constant voltage mains transformer, tapped input from 115 to 240 V full wave rectification and capacitor smoothing. Size $9 \times 6 \times 5$. Weight lllbs. These units are brand new unused and fully guaranteed. Makers price believed to be around f 80 .

OUR PRICE $£ 9.10 .0 \underset{\text { cor }}{\substack{\text { carr } \\ \text { lo }}}$

150 HIGH STABS $\frac{1}{4} \cdot \frac{1}{2}$ and I Watt 5\% and Better 12/6d. P. \& P. 1/6

LARGECAPACITY
 ELECTROLYTICS

1500 MFd 150 V
4000 MFd 72v $\quad 7 / 6$ each
16000 MFd 12v \quad P. \& P. $1 / 6 \mathrm{~d}$.
\&3 100 Doz. P. \& P. 10/-

EXTENSION

TELEPHONES
19/6 Ea. ${ }^{\text {p }}$
$35 /=$ for \& 2 P. $7 /-$

These phones are extensions and do not contain bells.

MAILING ADDRESS KEYTRONICS

52 EARLS COURT ROAD, LONDON WB WAREHOUSE \& DISPATCH

O1 4788499

R. \& R. RADIO (P.W.1)

51, Burnley Road, Rawtenstall, Rossendale, Lanc's. BB4 8EW.

EB91	$2 /-$	EBF89	$3 / 6$	ECC82	$3 /-$
ECL80	$3 /-$	EF80	$2 /-$	EF85	$3 /-$
EF183	$3 / 6$	EY86	$4 /-$	PCC84	$3 /-$
PCC89	$4 /-$	PCF80	$3 /-$	PCL83	$4 /-$
PCL82	$4 /-$	PCL84	$5 /-$	PL36	$5 /-$
PL81	$5 /-$	PY33	$5 /-$	PY81	$3 / 6$
PY82	$3 /-$	U191	$4 / 6$	$6 B W 7$	$3 /-$
30F5	$3 / 6$	$30 P 12$	$4 /-$	PY800	$3 / 6$

All valves guaranteed 3 months. Post one valve 9d over six post paid. Quotations given for any items required, S.A.E. please.

[^6]
VALVE BARGAINS

Any 5, 9/-; 10, 14/-; 100, £5 10s from the following: 183 EBF89. ECC82, ECL80, EF85, EF 183, EBF89.
EB91, EY86, PCC84, PCC89, PCF80, $\begin{array}{ll}\text { EB91, } & \text { EY86, } P C C 84, ~ P C C 89, ~ P C F 80, ~ \\ \text { PCF86, } & \text { PCL82, PCL83, PCL84, PL36, }\end{array}$ PL81, PY33, PY81, PY82, PY800.

AERIAL BOOSTERS 59/-

Three types of High Gain Transistorised UHF 625 Type L45, Tunable over the complete UHF Stations
VHF 405 Type L12 with Separate Tuning for \mid Band 1 and Band 2. Please state channel numbers
FM UHF RADIO PRE-AMPLIFIER
SAE for Full Details. All complete with battery and leads, 7 day money back guarantee if not satisfied

VELCO ELECTRONICS, 62 BRIDGE ST., RAMSBOTTOM, BURY, LANCS.

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plasticcoated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.

Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit. All edges are polished.

LIST OF PRICES AND SIZES which are made to fit Standard

CHASSIS in Aluminium, Standard Sizes, with Gusset Plates
Sizes to fit Cases. All $2 \frac{1}{2}^{\prime \prime}$ Walls

Sizes to fit Cases.			All $2 \frac{1}{2}{ }^{\prime \prime}$ Walls			
$6^{*} \times 3^{*}$	6	$10^{\circ} \times 7^{-8 .}$	${ }_{6}$	$14^{-} \times 3^{-}$	7	
$6^{*} \times 4^{*}$	9	$12^{\circ} \times 3^{*} 6$	9	$14^{*} \times 9^{*}$	14	
$8^{-8} \times 3^{*}$	6	$12^{*} \times 5^{*}=7$	${ }^{6}$	${ }_{10^{\circ}}^{16^{\circ} \times 6^{*}} \times 10^{*}$	10	

Chassis-Post 3 s . Od. per order.
Discounts available on quantities.

E. R. NICHOLLS

Manufacturer of Electronic Instrument Cases
46 LOWFIELD ROAD STOCKPORT - CHESHIRE

Tel: 061-480 2179
JEF ELECTRONICS
New Full Specification Devices
Integrated circuits complete with data:
GE PA230 Audio Preamplifer $18 / 6 \mathrm{~d}$
GE PA234 1W Audto Amplifier $17 / 6 d$
GE PA237 2 W Audio Amplifier $32 / 6 \mathrm{~d}$
$\begin{aligned} & \text { Plessey SLA02A Preamp \& 2W Amp } 42 /-1 \\ & \text { MEL } 11 \text { Photo Darlington Amp 9/6d }\end{aligned}$
Connectors for GE I.C.'s 7/-
High Quality low cost transistors:
GE 2 N 5172 NPN 200 mW 1/9d; ME 0412
PNP 200 mW 3/9d; TI 2 N 4059 PNP 250 mW
3/6d; MUL BFX86 NPN 800 mW 6/-; MUL
BD124 NPN 15 W 12/~; S 2N3055 NPN
115 W 14/6d.
Triacs for full wave power control:
RCA 40669 8A 400 V 24/-; RCA 40583
Trigger Diode $5 / 3 \mathrm{~d}$.
Plastic rectifiers for power supplies;
$1 \mathrm{~N} \quad 4820 \quad 1.5 \mathrm{~A} \quad 400 \mathrm{~V}$ Si Rectifier $2 / 6 \mathrm{~d}$;
WOO5 1 A 50 V full wave bridge Si $7 / 6 \mathrm{~d}$;
PD40 2 A 400 V full wave bridge $\mathrm{Si} 15 /-$
C.W.O. P. \& P. $1 /-$ per order.
York House, 12 York Drive, Grappen-
hall, Warrington, Lancs. Mail order only

EMSAC FOR ANTENNA SYSTEMS AND CONVERTERS. Please send s.a.e. for details of 2 metre converters, antennas and transmatches for receiving and transmitting. ELECTRONIC \& MECHANICAL SUBASSEMBLY CO. LTD. Highfield House, West Kingsdown, Kent. Tel. W.K. 2344.

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab. Vitreous, t-20 watt, 15/- Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Ruad, West Ealing. W. 13.

Free and Illustrated Lists of all types of $\mathrm{Hi}-\mathrm{Fi}$ equipment; Tuners, Amps, etc., Electronic equipment. components, and gadgets at lowest prices from:

ALBION ELECPRONICS SUPPLIES, D/
16 Albion Road, Birchington, Kent.

RECEIVERS \& COMPONENTS

 - (continued)
NEW MODEL V.H.F. KIT MK2

Our latest Kit improved design and performance plus extra Amplifier Stage receives Aircraft, Amateurs, Mobile, Radio 2, 3, 4 etc.
This novel little set will give you endless hours of pleasure and can bee built in one evening. Powered by 9 Volt Battery, complete with easy to follow instructions and built in Jack Socket for use with Earphones or Amplifier
ONLY 68/-. P. \& P, FREE U,K, ONLY, Postal Orders, Cheques to:

Dept.P.W
Galleon Trading Co., 298A Lodge Lane. Romford, Essex
COMPLETE RANGE of Amateur Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Ltd. 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

COMMUNICATIONS RECEIVERS: EXGovt. bargains in the $£ 10$ to $£ 20$ range, including: R209, PCR2, CR300, B40, B41, Murphy HF/MF, and others. Write or phone for details. P. R. GOLLEDGE. G3EDW, Glen Tor, Torrington, Devon. 08-052 2411.

AUDIOSCAN-HI-FI loudspeaker systems for the home constructor, cabinet kits, new range of Peerless speakers, speaker kit systems and cross-over networks, BAF wadding and all necessary components. Free speaker fabric samples on request. Send 9d in stamps to: AUDIOSCAN, Dept. P.W., 4 Princes Square, Harrogate, Yorks.

BOOKS \& PUBLICATIONS

TAPE RECORDING YEAR BOOK

COMPLETELY NEW NINTH EDITION WITH COMPREHENSIVE CATALOGUE
SECTION AND ARTICLES BY EXPERTS
PRICE 10/6d. from
7 ALVERSTONE AVENUE,
EAST BARNET, HERTS.

SURPLUS HANDBOOKS

19 set Circult and Notes
1155 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Instructions 46 set Working Instructions., 88 set Technical Instruction: BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr. 18 zet Circult and Notes BC. 1000 (31 set) Circuit and Notes CR.100/B.28 Circuit and Notes R. 107 Circuit and Notes AR.88D Instruction Manual AR.88D Instruction Manua 62 set Circult and Notes 7/0 p/p 9d. 7/0 p/p 9d 3/0 p/p 9d. $10 \mathrm{p} / \mathrm{p} 9 \mathrm{~g}$.
$10 \mathrm{p} / \mathrm{p} 9 \mathrm{~d}$ 3/0 p/p 9d.
//0 p/p 9d. 6/0 p/p $9 d$.
$7 / 6 p / p 9 d$. 6/0 p/p 9d. /0 p/p 9d. $10 \mathrm{p} p \mathrm{~g}$ d. 6/0 p/p 9 d. 10/0 p/p $1 / \mathrm{p}$ 10/6 p/p 1/2 7/6 p/p 9 d. 18/6 p/p 9d.
$7 / 0 \mathrm{p} / \mathrm{p} 9 \mathrm{~d}$. R.1224/A, R.1355, R.F. 24,25 and 28, A.1134, T.1154, CR.300, BC.312, BC.342, BC.348J, BC. 348 (E.M.P.), BC.624. 22 set.

Colour Code Indlcator. 2/6 p/p 6 d . 52 set Sender and Recelver circuits $8 /-$ poat free S.A.E. with all enquirles please. Postage rates apply to U.K. only. Mall order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
DEPT, PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

EDUCATIONAL

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio. TV servicing and maintenance. T.T.E.B., City and Guilds. etc.: highly informative 120 -page Guidefree. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.1.

EDUCATIONAL

(continued)

TELEVISION

This private College provides efficient theoretical and practical training in Radio and TV Servicing. One-year day courses, commencing in Sept., January and April, are avallable for beglnners, and shortened courses 'for men who have had previous training. Write for free prospectus to:-
London Electronics College, Dept. LX/4. 20 Penywern Road, Earls Court, London, S.W. 5

Tel. 01-373 8721

TRAIN FOR SUCCESS

WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms Techn's Cert. and Radio Amateurs') R.T.E.B., etc. Many non-exam courses incl. Closed circuit TV, Numerical control \& Computers, Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can helD you in your career. ICS, DEPT. S4I INTERTEXT HOUSE, STEWARTS ROAD, LONDON. SW8

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV, automation, etc. send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168 K). Aldermaston Court, Aldermaston, Berks.
RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology. Newport. Mon.

APPOINTMENTS

CAREERS IN SCIENCE AND ENGINEERING

Exciting and rewarding opportunities in these fields are almost unlimited Write now for details of the following courses offered by:-

BOURNEMOUTH COLLEGE OF TECHNOLOGY

UNIVERSITY OF LONDON EXTERNAL DEGREES

B.Sc. General (Hons.)-Mathematics, Physics, Chemistry, Botany,
Zoology, Statistics
B.Sc. (Eng.) (Hons.)-Electrical (including Electronics)
These courses are suitable for both men and women.
Study by the Sea in Britain's foremost international and cultural resort.

For prospectus apply to:

The Principal, Room 69,
College of Technology, Lansdowne, Bournemouth, BHI 3JI. Tel. B. 20844

SITUATIONS VACANT

Radio Operators

There will be a number of vacancles in the Composite Signals Organisation for experienced Radio Operators in 1971 and in subsequent years.
Speclallst training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. During tralning a salary will be pald on the following scale:-

Age 21
22
23
24
25
25

Free accommodation will be provided at the Training School. operators will be paid on the of the course. Age ${ }_{21}^{21}$ be paid on the Grade 1 sca

22		1025	-	."
23		1085	-	-.
24		1145	"	
	(hlghest age point)	121		

then by six annual increases to a maximum of $£ 1,650$ per annum.
promotion. Opportunitles good prospects of promotion. Oppontunitles for service abroad. years of age at start of training courser 35 years of age at start of training. course and must have at least two years operating also have GCE or PM quallfications.
Interviews at intervals throughout the year. fiom:-

RECRUITMENT OFFICER,

Government Communications
Headquarters,
Oakley, Priors Road, CHELTENHAM, Glos. GL52 5Ad Tel: No. Cheltenham 21491 Ext 2270

ENGINEERS, A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem, and ady, private postal courses for C.Eng., A.M.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto. Electronics, Radio, Computers. Draughts., Building, etc. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169K), Aldermaston Court. Aldermaston, Berks.

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV. Electronics, etc. Write for 132 page Handbook -FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept 137 K). Aldermaston Court, Aldermaston, Bierks.

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

ELECTRICAL

BEST EVER 200/240 VOLS "MAINE"
SUPPLY FROM 12 VOLT CAR BATTEAY
Exclusive World Scood Purchase. The fabulous Mk. 2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most brilliant 2001240 olt performance of all time. Marvelloun for Televislon, Drills, Power Tools, Mains Lighting, AC Fluorescent Lighting and all $200 / 240$ volt Universal Ac/D cost for U.S.A. Govt. by Delco-Remy. This magnificent Govt. by iselco-Remy ine elsewhere. machine is unobtalna Nested, only $£ 4.18 .6$, plus $10 / 6$ postage. C.O.D. with pleasure. Money back if not delighted. Please send s.a.e. for interesting $111 u s$. detalls.

Dept. PW STANFORD ELECTHONICS. Rear Derby Road, North Promenade. Blackpool, Lancashire

PADGETTS RADIO STORE

OLD TOWN HALL, LIVERSEDGE.
YORKS. Tel. Heckmondwike 4285
Amplifier Units Type A1413, Complete with Valves Type 5Z4 and 6V6GT. 230-250 Volt 50 cycles. Transformer Class Condition. Untested 25/-. Carriage B.R.S. 15/-
Air Mileage Units complete with 24 volt Motor and Gears etc. Clean condition Special Sale of New C.V. Valves. Removed from units. 12 months Guarantee. \mathbf{P} / \mathbf{P} on any Valve 9d.
$\begin{array}{lllll}\text { CV138 } & 2 /- \text { CV140 } 2 /- \text { CV455 } & 2 /- \text { CV284 } & \text { 1/- } \\ \text { CV287 } & \text { 1/- CV345 }\end{array}$ Speakers P.M. All 3 ohm. Perfect condition. removed from TV sets. P/P on any Speaker 4/-. 6 inch Round 3/-, 5 inch Round 3/8×5 Elliptical $6 /-7 \times 4$ Eliptical $7 /-0$ Elliptical $3 /-$, Slot Speakers 8×24 Eliptical 3/-.
AW43/80 T.V. Tubes. Good Picture. No Guarantee £1. Plus carriage 15/-
Reclaimed T.V. Tubes with 6 months Guarantee $17^{\prime \prime}$ Type AW43/80. AW43/88. £2 each. MW43/69 30/-. All Tubes 15/-carriage.
Sillcon Rectiffers. 500 MA. 800 P.I.V. $2 / 6$ or 24/- Per doz. Post Paid
Jap Earpleces. Magnetic. 8 ohms. Small or Large Plug. $1 / 11$ Post Paid.
Top Grade Mylar Tapes 7 inch Long Play 14/-. 5 inch Long Play 10/-. Post on any Tape $1 / 9$.
Panel of 19, mixed Parts 7/6 Post Paid. Ex Units. Panels of Resistors and Condensers. 9/- Post Paid Ex Unlts
Complete Untested 17 inch T.V. Sets 12 Channel 50/-carriage $£ 1$.
Aircraft Sighting Head. with Gyro Unit. Condition Fair. 18/6. Carriage B.R.S. 12/-.
VALVE LIST-EX Equipment, 3 months' guarantee. Single Valves Post $7 \mathrm{~d} .$, , over 3 Valves p. \& D. paid

ARP12	1/6	PCL82	4/-	6B8	1/6
EB91	9 d	PL36	5/-	6 BW 7	$2 / 6$
EBF80	3/-	PL81	$4 /-$	6U4	$5 / 1$
ECC81	3/-	PY81	$1 / 6$	10 P 13	$2 / 6$
ECC82	3/-	PY 33	$5 /-$	20D1	$3 /-$
EF50	1/-	PY82	1/6	20P1	5/-
EF91	9 d	PZ30	$5 /-$	20 P 3	$2 / 6$
EY86	5/-	U191	5/-	30PL 1	$51-$
PCC84	2/-	U251	5/-	30F5	$2 / 6$
PCF80	2/-				

NEW RAMGE U.I.I. TV AERALS

All U.H.F. aerials new fitted with tilting bracket and 4 element grid reflectors Loft Mounting Arrays, 7 element, 40/1ement 62/6. Wall Mounting with Cranked element, 62/6. Wall Mounting with Cranked Arm, 4 element, 75/-. 18 element, 82/6. Mas Mounting with 2 in . Clamp. 7 element, 426 11 element, $55 /$ - 14 element, $62 /-.18$ element 70/-. Chimney Mounting Arrays. Complete 7 element, 72/6. 11 element, $80 /-14$ element 87/6. 18 element, 95/-. Complete assembly instructions with every unit. Low Los: Cable, $1 / 6$ yd. U.H.F. Preamps from 75$)^{-}$ State cle
orders.

BBC - ITV AERIALS
BBC (Band 1). Lofi, 25/-: External S/D, 30/-. "H" £2.15.0. ITV (Band 3). 3 element loft array, 30/5 element, 40/-. 7 element $50 /-$. Wall mounting, 3 ele ment, 50/-. 5 element, $55 /=$ Combined BBC/ITV. Loft $1+3,40 /-1+5,50 /=$ $+7,60 /-$; Wall mounting $1+3,60 /-1+5,70 /-$
Chimney $1+3.70 /-; 1+5$ $80 /=$
VHF transistor pre-amps. 75/-.
COMBINED BBC1 - ITV - BBC2 AERIALS $1+3+9,70 /-1+5+9.80 /-$ $1+5+14,90 /-1+7+14,100 /-$ Loft mounting only
F.M. (Band 2). Loft S/D, 17/6. "H", 35/3 element, $57 / 6$. External units available. Co-ax. cable 8d, yd. Co-ax. plugs, 1/6. Outlet CW O or C.O.D. P. \& P, 6/6. Send 6d. stamps for illustrated lists.
Callers welcomed - open all day Sarurday

K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884

Est. 1943 JOHNONS Tel: 24864
New! CV2-a unique triple-purpose VHF kit for the Amateur enthusiast. Integrated converter, receiver, and tuner-feeder. Fantastic single transistor performance! Comprehensive kit of high grade parts with three coils covering $80-178 \mathrm{MHz}, 9 \mathrm{v}$ battery, etc., together with simplified diagrams and instructions. Price complete, £4, post, packing and insurance paid, direct from makers. S.A.E. for literature

JOHNSON'S (RADIO)

St. Martin's Gate, Worcester

Please mention PRACTICAL WIRELESS

when replying to advertisements

NEW VALVES!
Guaranteed and Tested 24-HOUR SERVICE

GERALD BERNARD
 83 OSBALDESTON ROAD stoke newington LONDON, N. 16

AUDIO EFFECTS

5 SHAW LANE, HALIFAX YORKS

Buy with confldence and obtain the right results. Refunds without question if any of our products ail to give 100% satisfaction

NSISTOR
SUPERHET RECEIVER KIT. No fuss, no drilling. Just fit the components on our IF alignment Perspex front panel. Push pull IF alignment. Perspex front panel. Push pull AF amp drives your b-1 Denm sped to accept a Can be used seper BFO signal. Uses Denco plug in coils 2T 0.5 to 1.54 Mhz 3 T .1 .67 to 5.3 Mhz 4 T 5.0 to 15 Mhz 5 T . 10.5 to 31.5 Mhz Range 31 normally supplied with kit. Uses 9 volt battery. Easy step by step instructions. Complete Kit £8.19.6 plu
per range. CONTROLLER. Power at your finger tlps. Not merely half wave control but full wave. A single variable control gives zero to full power, Uses latest 15 amp 3 kW triac and special trigpering device. Ideal for an types of lighting, fres, motors, driks, etc. Complete with box, power sockct, cables, etc. In kit form with easy to follow instructions RFVERBERATION AMPIIEIER Self con REMERBERATION AMPLITY operated Con tained transistorised, battery operated. An entirely different approach to soundion from tion. Normally, sound reproduction Irom a single source, has a fat one dimensional efect. With this unit. proper sound delay through third dimension for concert hall originality Two controls adjust volume and reverberation Two controls adjust volume and reverberation. Simply plug microphone, guitar. etc., in, and the ourpur indo your amplif. $\times 3$ in \times in £10.4.0 plus $6 /-$ P. P. \& Ins
£10.4.0 plus 6/: P. P. \& Ins.
VOX SWITCH. This sound operated switch is ideal switching, etc. You speak, it switches. High and medium imp. inputs. AF take on point. Drives your 12 vol6 Ready buill tested and full instructions $42 / 6$. Readus $2 / 6$ P. P.
METRONOME UNIT, Variable beat. Listen while you play and keed in time. Easily built wockel size pocket size with personal mini earphone. In kit form 27/6, post paid. Ready built in an attractive

post paid.

MORSE OSCILLATOR. PC board, tran sistors, high stab. components, battery carrier, ear piece. Adjustable tone. Just attach your key. Drives phones or speaker. In kith 17/6 Dost paid. Ready built in similar case as above 25/- post Daid.
STRAIGHT FROM THE PRESS. Latest Mullard manual: Audio Amps, FM tuners Stereo decoder. Receiver
etc. etc. $32 / 6$ post paid.
etc. etc. $32 / 6$ post paid,
JUST ARRIVED IN STOCK. Texas tran sistors. Complementary symmetry. Driver NPN. PNP output. The set of three ONLY 6/6 post paid.
Free llsts with every order. For lists only send $1 / 6$ (deducrible from firsi order).

STEREO AMPLIFIER type HV-2 2×3 Watts Fully built. On off. sep. vol, and tone each channel $12 \times 41 \times 6$ in. high. EZ80. $2 \times$ ECL 86 : for 3 ohm speakers, double wound main trans: Axing flanzes and base plate, suitable for crystal
cart, tuner etc, $£ 6.10 .0(8 /-$ p. \times p.) Superior version - separate base, treble \& vol each channel with mono/stereo switch $15 /$ - extra

STEREO AMPLIFIER type RC-

2×3 Watts

Fully built. $z \times$ UCL82, metal rect: ganged vol. and tone cont: on-off. balance. $11 \times 3 \frac{1}{2} \times 4$ in high. Double wound mains trans. with supportins brackets. For 3 -ohm speakers. $\mathbf{i 6}(8 /-\mathrm{p} . \& \mathrm{p}$.$) .$

MONO GRAM CHASSIS 3 WATT
3 Wave band long-med-short. Gram., 200-250v AC Ferrite aerial. Chassis $13 \times 7 \times 5 \mathrm{in}$. Dial $13 \times 4 \mathrm{in}$. Double wound mains transformer 5 valves ECH81 EF89, EBC81, EL84, EZ80. Price £10.12.6. ($7 / 6$ p. \& p.) Output trans, for $3-0 h m$ speaker.

NEW TAPE AMPLIFIER for 4 track B.S.R. Deck TD2. Mains and output Trans. $10^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime \prime}$ overatl. Rect; ECC83, EL84. Mike and Gram Inputs. £7.5.0 (10/- P. \& P.). For 3-ohm sDeaker.

GLADSTONE RADIO
66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. from Station and Buses). FULL GUARANTEE. Aldershot 22240 CLOSED WEDNESDAY. S.A.E. for enquiries please.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Seryo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading. Berks.
Please send free brochure to
NAME ... Block ADDRESS Caps.
\qquad

Head Otfice and Warehouse 44A WESTBOURNE GROVE
 LONDON W2
 Tol．PARK 50N1／2／3

Z \＆I AERO SERVICES LTD．

Please send all correspondence and Mall－Orders to the Head Office
When sending cash with order，please include 26 in $\&$ for postage and handing MINIMUM CHARGE 2／6．No C．O．D．orders accepted

Retall Shop
5 TOTTENHAM COURT ROAD LONDON W1
Tel．LANgham 403 Open all day Saturday
please note that the valves offered helou are not necessarily of t．k．origin

First Quality Fully Guaranteed

ELECTRONIC VALVES 30 Cl
30 F 5
30 FL 30 FL
30 FL
30 FL 30 L 1 30 L 1
30 PI
30 PI

30 P䧺侖 \begin{tabular}{l}
30PL

35 Sa

\hline

35 B 5

35 C

35 D

\hline
\end{tabular} 35 W

35 Z
3 Z 4 $\begin{array}{ll}35 Z 4 G & 6 /- \\ 3 \text { iZEGT } & 7 / 6 \\ 50 \mathrm{~A} \\ 50 & 13 /-\end{array}$ 50CD6G30

aout BRANDzarily
 H 766
KT88 KT88
N78 PABC
PC88
PC88
PC97 PC88
PC88
PC97 27／6
PL36
PL81 11／－

－$\begin{array}{rr}6 & 27 / 6 \\ 8 & 33 /- \\ 81 /- \\ 8 & 80 \\ 8\end{array}$\begin{tabular}{ll}

- \& PL

-6 \& PL

\hline
\end{tabular}$80 /-$

$10 / 9$
$10 /-$

TRANSISTORS

Quantity prices quoted on request					
2 N 404	$3 / 8$	2N3710	3／－	BCY 39	$5 /-$
2N410	3／6	2N3819	12／－	BCY72	$3 / 10$
2N412	3／6	2N3906	6／－	BCZ11	7／6
$2 \mathrm{~N} 4+4 \mathrm{~A}$	6／－	$\mathrm{ACll3}^{\text {c }}$	3 －	BD121	18／5
2N698	4／6	ACl^{25}	6／8	BCl23	251－
2N697	4／6	AC126	\＄／－	BF167	$5 /-$
2N698	8／6	AC127	5／8	BC173	8／－
2N705	15／－	ACl28	4／b	BF181	6／－
2N706	3／－	ACl53	5／－	BF184	7／6
2N708	3／6	AC154	3／－	BF194	3／6
2N753	4／8	AC157	4／－	BF195	8／－
2N929	6／－	AC169	2／－	BF198	4／6
2N930	8／8	AC176	6／9	BF197	4／6
2N987	6／6	ACY 17	$8 \mathrm{j}-$	BFX88	5／4
2N1131	8／6	ACY18	4／－	BFY17	$8 / 6$
2N1132	$9 / 8$	ACY19	$4 / 8$	BFY18	5／－
2N1301	7／－	ACY20	4／－	BFY19	$5 /-$
2N1302	$7 /$	ACY21	$3 / 11$	BFY50	5／－
2N1304	4 ／6	ACY22	2／8	BFY01	1／6
2N1305	4／6	AD140	16／－	BFY52	$4 / 10$
2N1306	$5 /-$	A D149	12／6	BSY26	$5 /-$
2N1307	61－	AD161	8／－	B8Y27	$5 / 6$
2N1308	$2 / 8$	AD162	9／－	BEY28	5／－
2N1309	$9 / 6$	AD102	15／6	B8Y65	4／6
2N1756	18／－	AFl14	$6{ }^{6}$	B8Y95A	3／9
2N2147	$14 / 9$	AF115	61－	OC16	15／－
2N2160	$281-$	AF116	5／6	0 C 22	18／－
2N2217	6／6	AF117	4／6	OC23	12.6
2N2218	$7 / 8$	AF118	10／－	0 C 24	15／－
2N2219	$8 / 6$	AF125	$8 /-$	0 C 25	7／6
2N2369A	4／6	AF126	$5 / 3$	OC86	6／－
2 N 2477	12／6	AF127	\＄／3	0 C 28	14／6
2N2646	12／6	AF178	12／6	OC29	14／9
2N2905	101－	AF186	11／－	OC30	15／－
2N2923	3／－	AF239	10／－	OC35	11／3
2 N 2924	31－	AFY19	22／6	OC36	12／6
2N2928＇b＇	3／－	AFZ11	日1－	0 C 42	8／6
2N2926＇r＇	3／－	ASY26	B／－	0 O 44	4／－
2N2926 ${ }^{\circ}{ }^{\circ}$	3／－	ABY27	6／6	$0 \mathrm{OC45}$	3／6
2N29＊26＇${ }^{\prime}$＇	3／－	A8Y28	6／6	$0 \mathrm{C71}$	$3 / 6$
2N2926＇g＇	， $5 / 6$	A8Y29	6／－	OC72	5
2 N 5053	6／3	A8Yb4	8／－	$0 \mathrm{C73}$	$7 / 6$
2 N 3055	15／－	A8Y73	10／－	OC75	51
2N3133	7－	ABY74	18／－	0676	\＄／－
2N3134	$8 / 6$	A8Y77	7／－	$0 \mathrm{C78}$	$5 /-$
2N3391	4／－	ABY82	4／－	OC78D	3／3
2N3392	3／2	ASY86	4／6	$0 \mathrm{C81}$	4／8
2N3393	2／6	BC107	3／－	OC81D	3／－
2N3394	$2 / 6$	BC108	3／－	0 C 83	4／6
2N3395	3／6	BC109	4／－	OC84	5／－
2 N 3402	5／－	$13 \mathrm{Cl13}$	8／6	0 OCl 39	7／6
2 N 3403	5／－	BC118	8／6	0 Cl 40	9／6
2N3404	6／6	BC147	4／6	$0 \mathrm{Cl17}$	$5 /$
2N3414	4／－	BCl48	3／3	0 Cl 71	$5 / 6$
2 N 3415	$4 / 3$	BC149	3／8	OC200	4／4
2N3416	4／6	BC152	3／2	0 C 201	10／－
2N3417	5／2	BC175	5／8	OC202	13／－
2N3702	4／6	BCY30	71	OC203	6／3
2N3703	3／10	BCY 31	5／－	0 C 204	8／－
2N3704	$5 / 8$	HCY33	5／－	OC205	23／－
2N3707	4／5	BCY 34	5／－	OC206	14／－
2 N 3709	$3 / 5$				

SILICON POWER RECTIFIERS

WIRE ENibed

ETUD MOUNTED－supplied with Washers and Nuts

D242	100p．1．	10 A	6／－
KD202A	50p．i．v．	3 A	5／－
K D2023	$50 \mathrm{p} .1 . \mathrm{s}$ ．	14	3／－
KD202D	200p．1．v．	3 A	6／－
KD202E	$200 \mathrm{p} .1 . \mathrm{v}$ ．	1 A	$3 / 6$
KD202G	100p．i． v ．	1 A	$3 / 3$
KD2021	300 p ．i．v．	1 A	3／8
KD202V	100p．i．v．	3A	5／－

MULTIMETERS

TYPE MF16

D．C．voltage range：
$0-0.0-10.50-250-500 \mathrm{~V}$.
A．C．voltage range：
$0.10-50-250-500 \mathrm{~V}$
D．C．current range ：
D．C．current range
$500 \mu \cdot 10-100 \mathrm{~mA}$ ．
Resistance ranges： $100 \mathrm{M} \Omega \cdot 1 \mathrm{M} \Omega$ ．The
meter is also callbrated for capacity and
Output level measurements．Eensitivity $2000 \Omega \mathrm{~V}$ ．Accuracy $\pm 2.5 \%$ for D．C．and
Dimensions： $41 \pm 4 \%$ ior A．C．mearurements．

MOVING COIL METERS

Modern Rectangular Face Moving Coil Meters 1．5\％ accuracy．4＂$\times 41^{\prime \prime}$ face
101 DA 40 amps FsD．Basic movement 1 mA

101 DV 600 v FSD，Basic movement 1 mA
120DA 40 microamps
120DA 250 microamp
120DA 10 amps with internal shunt
$\times 21^{\prime \prime}$ face
70DA 250 microampa
$70 \mathrm{DA} \quad 600 \mathrm{microamps}$
70DA 250 mA
$\begin{array}{ll}\text { 70DA－} & 600 \mathrm{~m} \\ 70 \mathrm{DV} & 150 \mathrm{v}\end{array}$

INTEGRATED CIRCUIT AMPLIFIERS

CA 3005 RF Ampllfer with $100 \mathrm{mc} / \mathrm{s}$ bandwidth．Max． dianjpation 26 mW ．For use as RF amplifer，balanced mixer，product detector or self－obcillating mixer 2\％／－
CA3012 wide Band Amplifer（up to $20 \mathrm{mc} / \mathrm{s}$ ），suitable as IF CA3012 wide Band Amplifer（up to $20 \mathrm{mc} / \mathrm{s}$ ），suitable as IF Ampliber for VHF／FM recelvers CA3020 General Purpose Audio Amplifler of 850 mW output
CA3036 Buffer amplifer consistling of two＇super－alpha＇ pair of transistors suitable for stereo plek－up syatems 19／－ The above four I．C＇s are in TOS encapsulation．
CA8052 Four－in－one
PAR22 Audio Amplifier providing a max．output of $1 \cdot 2$ PA234 Audio Amplifier providing a max．output of 1 watt
PA23： 2 watts Audio Amplifier
thre C a are in eposy moulded double four－ in－line package．
MC1709CG General Purpose operational amplifler in TO－99 TAA263 3－rtage direct coupled amplifer for use from DC to $600 \mathrm{kc} / \mathrm{s} ; 70 \mathrm{inW}$ dissipation．Output 10 mW into 150Ω load
TAA293 3－stage amplifier with connection brought out to the individual leads．Bandwidth $600 \mathrm{kc} / \mathrm{s} .160 \mathrm{~mW}$ dig－
sipation．Output 10 mW into 150Ω load
TAA320 MORT input stage followed by a bi－polar tran－
sistor stage， 200 mW dissipation
TAD100 Integrated AM receiver circuit containing al active components，except output stage，required to build SL403A 3 watts Audio Amplifer into $7-5 \Omega$ Loudspeaker Operating voltage 18 V ．Overvoltage protection $\quad 49 / 6$ Data sheets are available for all the above I．C＇s．
Please note that certain external components like resistors， capacitors，etc．are required to build complete smplifers， hut are charge at $1 /$ each if aupplied separstely．

1969／1970 CATALOGUE LI8TING SOME 4，000 TYPES OF VALVES，TUBES AND SEMICONDUCTORE IS AVAILABLE FREE OF CHARGE．ESSENTIAL DATA OF TRANBIBTORS，CATHODE RAY TUBES ETC． AS WELL AS EQUIVALENT TYPES OF TRANBI8－ TORG ARE GIVEN．PLEASE ENCLOSE QUARTO B．A．E．

Valuabie new hanobooik FhEEtio ambilious

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering. Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. Telecommunications - Sound Recording - Altomation Practical Radio - Rudio Amateurs' Exam.

ELECTRICAL ENG. Advanced Electrical Eng Gen. Electrical Eng. Installations Dralughts-
manship-Ihuminating Eng. - Refrigeration - Elem Electrical Science - Electrical Supply - Mining Elec. Engineering.

CIVIL ENGINEERING Advanced Civil Eng. - Gen Civil Eng. - Manicipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. Sanitary Eng. - Road Eng.

- Hydraulics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG. Adranced Electronic Eng. Gen. Elecrronic Eng. Applied Electronics - Prac. Electronics - Radar Tech. Frequency Modulation Transistors.

MECHANICAL ENG.
Adranced Mechanical Eng.Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool DesignShect Meral Work-Welding

- Eng. Pattern Making Inspection - Drullqhtsmanship - Metallurgy - Production Eng.

AUTOMOBILE ENG.
Advanced Automohile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Alltomotile Diesel Maintenance - Automobile Elec. Equipment - Garage Management.
*WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG ., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION. ETC. job. obligation.

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting
\star HOW to qualify for rapid promotion.
\star HOW to put some letters after your name and become a key man . . . quickly and
HOW to benefit from our free Advisory and Appointment Depts

* HOW you can take advantage of the chances you are now missing
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT CAREER - GUIDANCE
PRACTICAL EQUIPMENT

Basic Practical and Theore. tic Cobrue for beghmers in Radio, T. . . Ele ctronies, Etc A.M.L.E.R.K. City \& cinilds Radin Amateurs Fxam. R.T.E.B. Certificate
P.M.l. Certificate P.M.G. Certificate

Radios Televiaionsorvicing Practical Electromsea Lectronica Engineering Automation

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and you should send for your copy now-FREE and without

The specialiat Electronics Division of tronics
B.I.E.T. B.I.E. NOH offers you a real laboratory training at hom.e with pracrical cutipment. Ask for details.

TO B.I.E.T., 453A, ALDERMASTON COURT
ALOERMASTON. BERKSHIRE.
I
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (statc subject, exam., or career)

NAME ADDRESS

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

monemmerner Hinchand

new catalogue REPRINT

350 PAGES FULLY DETAILED AND ILLUSTRATED. COMPONENTS \& EQUIPMENT-
AUDIO/HIGH FIDELITY
Complete with $5 \times 2 \%$ - Discount vouchers for use with picture

PRICE 7/6 p.p. 2/-

ALITY 4 TRACK TAPE RECORDER
To get the best out of your MAGNAVOX DECK, youneed a MARTIN RECORDAXIT. This comprises a special high quality 6 valve amplifier and pre-amplifier which
comes to you assembled on its prineed comes to bou assembled overything for making a superb Tape Recorder. You need no experience or technical skill to bring this about.
THE INSTRUCTIONS MANUAL MAKES THE INSTRUCTIONS MANUAL MAKES
BUILDING EASY, AND SUCCESS IS ASSURED. Kit comprises Deck, Amplifier, Cabinet and speaker, with microphone, 7in. 1200 tr tape, and spare spool
NOTHING ELSE TO BUY.
AMPLIFIERS IN STOCK

- PA77 watr \quad ¢ 126
- MPAI2312wate 44100
- MPAI2 1512 watt $£ 550$

MA7 7 watt Amp

- Preamp Mono

Ma66 Stereo Amp

- Preamp
$£ 8 \quad 10 \quad 0$
- PA25 25
watt
± 16100
- PA50 50 wart 69100

SINCLAIR STEREO 60

Two Z30, PZ5 and Stereo 60 (usually £23.18.0) PRICE $E \mid 9$
(ADD £2 for PZ6 in place of PZS).

MONO STEREO UNIT EQUIPMENT
Mono or Stereo Audio equipment devel
oped irs will compare favourably with system will compare favourably with other professional equipment selling
much higher prices. COMPLETE SYSTEMS AND MIXERS from CII 126 to $£ 38 \quad 176$
(all units available separately).
THE FINEST VALUE IN LOW COST HIGH FIDELITY - CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE WATT AMPLIFIERS. STEREO AND MONO PREAMPLIFIERS ANO MODULES. REAMPLIFIERS AND - SEND FOR BROCHURES No. 12/14

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED - A CATALOGUE IS A MUST!

ALSO SEE EARLIER PAGES FOR MORE ADS

HI-FI equipment to suit EVERYPOKKI

BUILD THIS VHF FM TUNER 5 MULLARDTRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH. PRINTED CIRCUIT. HIGH FIDELITY REPRODUC TION. MONO \& STEREO. A popular VHF FM Tuner tor quality and reception of mono and stereo sound. All parts sold separately PARTS TOTAL COST \&6 196 DECODER £5 196 ASK FOR BROCHURE No. 3 (FOR STEREO)

HENELEC 5-5 STEREO AMPLIFIER

Excellent low priced British designed Stereo 16 transistor use with Record Decks. Tuners. 16 transistor mains operated. Output $5+5$ and wood finish. size 13 in $\times 3$ in $\times 6$ in.
PRICE 13100 pp. $7 / 6$
Complete Sterco System 5-5.
Garrard 2025 TC or 3000 LM with 9 TAHC
Diam. Ceramic cartridge, 5-5 Amplifier, Plinth
Cover. Two 10 watt speakers with tweeters in polished cabinets. Size $18^{*} \times 11^{-1}$ $\times 7{ }^{\prime}$
Usual price $£ 50.0 .0$. OURPRICE $£ 39100$ pp. 20/- ASK FOR BROCHURE 13

SILICON POWER AMPLIFIERS

 WITH DIRECT COUPLED, SYMMETRICAL OUTPUT- henelec 'Pa25' power amplifier

This silicon design from Henry's Radio uses complementary eransistors in the symmetrical output stage direct coupled to a loudspeaker of 8 ohms
impedance or higher. Power output is 25 watts RMS with an 8 ohms load or 12 watts for 15 ohms , over a frequency range of $15 \mathrm{~Hz}-25 \mathrm{kHz} 3 \mathrm{~dB}$. Cool running is assured by the use of generously dimensioned black anodised heatsinks. Input 700 mV 15 K ohm. Price $\mathrm{C7} 100$

- HENELEC 'Pa50' POWER AMPLIFIER

Basically similar to the 'PA25' the 'PAS0' will deliver 50 watt RMS to a 3-4 ohm load. Extra power is handled by compiementary triplet circuits using the latest PNP and NPN silicon power transistors. As a result of
extra heatsinking the 'PA50' runs as cool as the 'PA25'. Price 19 10 0

* HENELEC MU442 POWER SUPPLY

Designed to run one or two 'PA25's' or one 'PA50' the MU422 connects to the amplifiers by means of plug-on harnesses. No soldering is required to connect up the system. Audio input plug and speaker plug go to the panel of the MU422.

- SEND FOR FREE BROCHURES No.: 24/25

Transistors, integrated circuits, test equipment, Garrard and Goldring turntables all at special save money prices-See our adverts on earlier pages of this magazine.

ELECTRONIC ORGANS

CALL IN and SEE THE NEW MODELS!
MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY BUILT

1. TEAK OR WALNUT VENEERED

- CABINETS FOR ALL MODELS
- 49 NOTE, 61 NOTE SINGLE MANUAL OESIG
NOTE
- Kits available in sections as

1. HP and CREDIT SALE FACILITIES

E15E kit form and ready built-write or phone
 kit form and ready built-write or phone
to ORGAN DEPT. Ask for Peter Elvins.

[^0]: DISCOTHEQUEAND PUBLIC
 ADDRESS EQUIPMENT

[^1]: AVOMETER MOVEMENTS
 $80 \mu \mathrm{~A}$
 20 K Q/V
 Spare movements for Model 8 or 9 . (Fitted with Model 9 scale) or bsals for any multimeter. Brand New \& Bored. 69/6. P. \& P. 3/6.

[^2]: OIPC Magazines Limited 1969. Copyright In all drawings, photographs and articles publlshed In "Practical Wireless" Is fully protected, and reproductlon or Imltations In OIPC Magazines Limited 1969, Copyright In all drawings, photographs and articles publighed in "Practical Wireless inat the advice and data given to readers are reliable.
 should be addressed to Fleetway House, Farringdon Street, London, E.C.4. Address correspondence regarding advertisements to Advertisement Manager, Fieetway House, Fhould be addressed to Feetway H. Orders for back numbers should be addressed to IPC Magazlnes Ltd., Back Numbers Department, Carlton House, Gt. Queen Street, London W.C.2.

[^3]:

[^4]: Cash with order only. Šn. C.O.D. or Caller vervice Post, packing athl insurance charges are shown brackets after all iteins, and apply to $\mathrm{GB} / \mathrm{Eire}$ only
 Nin. Charge I/-S.A.E for ennuiries pleawe.

[^5]: Published approximately on the 7th of each month by IPC Magazines Limited, Fleetway House. Farringdon Street, London. E.C. 4 . Tel: O1-236 8080,
 Printed in England by Index Printers, Dunstable, Beds. Sole Agents for Australia and New Zealand Gordon and Gotch (A/sia) Ltd.; South Africa Central
 Ing postage): For one year to any part of the world $£ 25 \mathrm{~s} 0 \mathrm{~d}$.
 ing postage): For one year to any part of the world £2 5s od, PRACTICAL WIRELESS is sold subject to the Iollowing conditions, namely, bithat be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and given, be lent, resold, hired out or otherwise disposed oi disway of irade ait more condition or any unauthorised cover by way of trade, or affixed to as part of any publication or advertising, literary or pictorial matter wharsoever.

[^6]: BRAND NEW ELECTROLYTICS $15 / 16 \mathrm{~V}$ $0.5,1,2,5,8,10,20,30,40,50$, 100 mfds. 8.5d. postage 1 s . The C.R. Supply Co., 127 Chesterfield Rd., Sheffield,

