

ADCOLA Soldering Instruments add to your efficieiency

ADCOLA 64

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{C}$.
*Additional Stock Bits
(illustrated) available

COPPER

B 42 LL $\frac{3}{16}{ }^{*}-4.75 \mathrm{~mm}$

chisel face

B 38 LL $\frac{1}{3}$ * -32 mm chisel face B14 LL $\frac{3}{3}$, -24 mm chisel face

B 44 LLL $\frac{3}{16 *}-475 \mathrm{~mm} \underset{\text { FACE }}{\text { SCREWDRIVER }}$

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service... reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction

ADCOLAPRODUCTS LTD
(Dept. M), ADCOLA HOUSE, GAUDEN RD., LONDON, S.W.4. Telebhone: 01-622 0291/3 - Telegrams: Soljoint London Telex © Telex: Adcola London 21851

The Premier Stereo System "ONE" consists of an all transistor stereo amplifier. Garrard 2025 T/C auto manual record player unit fitted stereo mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket. Controls: Bass, Treble, Volume, Balance, Selector. Power on off, stereo mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12 \times 5 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$. high (Amplifier available separately if required $£ 14.19 .6$. Carr. 7/6.)

PREMIER STEREO SYSTEM "FOUR Teleton $\operatorname{AAQ203E}$ Amplifier (as above) -. sis3.2.0 Garrard SPL
Shure M3D
211.19 .6

Teak base and cover
Pair of H-Fi Enclosures fitted E.M.I.
Speakers
Total cost if purchased separately
£73.16.0
$\underset{\text { PRIGE }}{\text { PRERER }} 65$ Gns. ${ }_{35 /-}^{\text {Gatr. }}$

ALBA UA100D ALL TRANSISTOR STEREO TUNER AMPLIFIER

Covers Long, Medium and Short Waves plus VHF/FM with built in stereo decoder and A.F.C. Output 15 watts r.m.s. per channel into 8 ohms distortion less than 0.3%. Response 2,12 ceramic p.u. and Tape. Tape outlet socket. Tuning selector. Black leatherette top, teak ends and brushed aluminium front panel.

PR EMIER STEREO SYSTEM "TWO" As system 'ONE' above but with Garrard \$P25. PREMIER 45 Gns: Carr. PRICE 45 GNS: 35/-

VERITAS V-149 MIXER

Battery operated 4-cbannel audio mixer providing feur separate inputs. Size $6 \times 3 \times 2 \mathrm{in}$, suitable for crystal micrs.phone low impedance micro phone, Fith
radio, tape, etc. Max. inpurnt radio, tape, etc. Max. input
1.5 v . Max. output 2.5 v . Gaia 6 dB . Standard jack plug socket inputs, phonoplugs
output. Attractive teak wood grain faish case.
MONO
MODEL
$59 / 6$
STEREO
MODEL

69/6
P. 8
\& P. 2/6.

PREMIER STEREO SYSTEM
Alba UA100D Tuner/Amplifier 267.11.6 Garrard Sp25
$\pm 11.19 .6$
Share M3D
Teak base and cover
Pair of Hi Fi Enclosures
fitted E.M.I. Speakers
$\$ 5.10 .0$

Total cost if purchased separately
£118.5.6

PREMIER STEREO SYSTEM " THREE" Nova sō̃ Amplifier (as above) Garrard SP20
 - \quad E18.18.0
 Sonotone 9TAHCD
 $\underset{82.15 .0}{ }$
 Teak base and cover
 Pair of $\mathrm{H} \cdot \mathrm{Fi}$ Enclosures fitted E.M.I.I Speakers
 Totala cost if purchased separately
 $$
\underset{\sim}{£ 26.5 .0}
$$

VERITAS V- 313 TAPE HEAD DEFLUXER A must for all tape users! Tape heads become permaneatly magnetized with constant use: this leads to background noise
this leads to
that prevents perfect recordings. Simply
别
applied to recording head the V813
leaves head tree of mannetism. Cleans $34 / 6{ }^{P}$ \& P
any tape head in reconds.

E.M.I. 13×8 in

HI-FI SPEAKERS
Fitted two $2 \frac{1}{2}$ in tweeters and crossover network. Impedance 3 \& 15 ohros. Handling capacity 10w. Rrand new. 99/6 Р. \& P. $7 / 6$
Also available without tweeters. 49/6 Р.\& Р. 7/6

TAPE CASSETTES
$\mathrm{C60}\binom{(60}{\min } \quad 7 /$.
 $\operatorname{CgO}\binom{90}{\min } \quad 12 /$. C| $20 \quad\binom{$ (20) }{ min. }$\quad 17 / 6$ THREE FOR 51/P. \& P. 1/-

CASSETTE HEAD CLEANER
Removes unwanted deposits from delicate tape heads. $11 / 6^{\mathrm{P}} \& \mathrm{P}$
"VERITONE" RECORDING TAPE
specially manufactured in u.S.A. from extra strong PRESTRETCHED MATERIAL. THE QUALITY IS UNEQUALLED. TENSILISED to engure the most permanent base. Highly resistrant to breakage, moisture, heat, cold or humidity. High polished aplice free finish. Smooth output throughout the entire audio range. Double wrapped-attractively boxed. $\begin{array}{llllllllll}\text { LP3 } & 3^{n} & 250^{\prime} & \text { P.V.C. } & 5 / 8 & \text { LPG } & 59^{7} & 1200^{\prime} & \text { P.V.C. } & 12 / 8 \\ \text { TT3 } & 3^{\prime} & 450^{\prime} & \text { POLYESTER } & 7 / 6 & \text { DT6 } & 57^{\prime \prime} & 1800^{\prime} & \text { POLYESTER } & 22 / 6\end{array}$
 $\begin{array}{lllllllll}\text { SFS } & 5^{*} & 600^{\prime} & \text { P.V.C. } & 8 / 6 & \text { SP7 } & 7^{\prime \prime} & 1200^{\prime} & \text { P.V.C. } \\ \text { SP5 } & 5^{\prime \prime} & 900^{\prime} & \text { P.V.C. } & 10 /- & 12 / 6 \\ \text { LP7 } & 7^{\prime \prime} & 1800^{\prime} & \text { P.V.C. } & 15 /-\end{array}$ $\begin{array}{lllllllll}\text { LP5 } & 5^{\prime \prime} & 900^{\prime} & \text { P.V.C. } & 10 /- & \text { LP7 } & 7^{\prime \prime} & 1800^{\prime} & \text { P.V.C. } \\ \text { DT5 } & 5^{\prime \prime} & 1200^{\prime} & \text { POLYESTER } & 15 /- & \text { DT7 } \\ 7^{\prime \prime} & 2400^{\prime} & \text { POLYESTER } & \text { 250/- }\end{array}$

SKYRNOER mbll

COMMUNICATION
 RECEIVER

A short wave receiver, exclusive to Lasky's, at a real econusing one each 6BE6, 6BA6, 6AV6 and 6AR5 valves, gives highly sensitive reception and powerful gain. Switch selected SW frequency range cover: 1.5 to 30 MHz in three separate bandspread ranges and tull AM medium waveband cover in one range 550$1,600 \mathrm{kHz}$. Reduction drivetuning with hair line cursor. Controls include volume on/off BFO , Band selector. Power on indicator lamp. External antenna connections and mains fuse at rear. Internal speaker plus standard 5 mm jack socket for phones on front. For $220 / 240 \mathrm{~V}$ a.c. mains operation. Strong metal cabinet finished in grey lead and full inslructions IDEAL BEGINNERS RECEIVER
LASKY'S PRICE $\mathbf{E 1 3 . 1 3 . 0}{ }_{s}^{\text {port }}$

TRO 9R-59DI
 - 8 valve plus 7 diode circuit continuous coverage from 550 kHz to 30 MHz with Calibrated Bandspread on 10. 15, 20, 40 and 80 metre bands © Clear SSB reception is achieved through the use of a product detec- tor. \bullet Finished in light grey with dark grey case. Fully guaranteed, complete with instruction manual

 and service data.SPECIFICATION: Frequency Ranges: $550-1600 \mathrm{kHz} ; 1.6-4.8 \mathrm{MHz} ; 4.8-14.5 \mathrm{MHz}$; $10.5-30 \mathrm{MHz}$. Bandspread: (Direct Reading on Ham Bands) $3.5 \mathrm{MHz} 80 \mathrm{~m} ; 7 \mathrm{MHz} 40 \mathrm{~m}$; $14 \mathrm{MHz} 20 \mathrm{~m} ; 21 \mathrm{MHz} 15 \mathrm{~m} ; 28 \mathrm{MHz} 10 \mathrm{~m}$. Sensitivity: $A, B, C, B a n d s-L e s s$ than 6 dB (for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio); D Band -13 MHz ; Less than 18 dB (for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio); 28 MHz ; Less than 10 dB (for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio). Selectivity: $\pm 5 \mathrm{kHz}$ at -50 dB . Audio Output: 1.5 w . Power Requirements: AC $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Recommended Speaker Type: 4 or 8 ohm. Built-in Clrcults: Bandspread; Automatic Noise LImiter (ANL) ; Automatic Volume Control (AVC); Headphone Jack. Dimenslons: 7in. H 15in. W, toin. D.
LASKY'S PRICE £42.0.0
Carriage free
T1 ? SP- D Communications speaker unit ceivers in both styla and size. Containg 5×3 in. eliptical 8 ohms speaker specially designed to give extremely crisp reproduction of voice frequencies. Dark grey metal cabinet-size $7 \times 3 \frac{1}{2} \times 5 \frac{1}{i n}$.

LASKY'S PRICE 87/6 post 5/-

TRIO HS-4 HEADPHONES

Rugged construction plus comfort make these a must for the Rugged construction plus comfort make these a must for the
Ham. Dynamic headset. Input Impedance 8 ohms, matching 4-16 ohms. Max. power $3 w$. Frequency range $300-3000 \mathrm{~Hz}$. LASKY'S PRICE £5.19.6 ${ }^{\text {mosict }}$

TTC B-IOI6

A handy microphone for communications 6 ft retractable lead, special hanger bracket built in "taik" switch| imp: 50,000 ohms. Size: $3 \frac{1}{2} \times 2 \ddagger \times 1 \ddagger$ in.

AUTOCHANGERS

5L 728
complete with ste..... cart.
3000 complete with $9 T A H C$
$\mathbf{s L}^{\text {stereo cart. }}$
SL 658
1025 complete with stereo car
SL 958.
SL 7SB PLAYERS
AP 75 … 10 O...........
AP 75 with AD 76 K mag. cart. $£ 2110$
SP 25 Ak 11
stereo cart
401 Transcription unitsis 100
BASES AND COVERS FOR GARRARD UNITS
Type WB4 and WBS for models 2025 TC, 3000, SL65B, 1025, SP25 wk, It. Price WBy es 16 6. WB5 £5 12 6. Type WB4 tor models SL72B, SL75B. SL95B Price c5 12 6, Perspex covers: SPC1 for WB1 E3 141. SPC4 for WB4 and WB5 (allows

anit to be played with the cover in place-Price $x 480$.
 PACKAGE DEALS

AP 75 complete with AD 76K Stereo magnetic cart., $\boldsymbol{1 0 . 0 . 0}$ Post 10/leak plinth and perspex cover (illustrated). SP 25 Mk II complete with AD 76 K magnetic t19.0.0 Post 7/6 cartridge teak plinth and perspex cover. 1025 complete with J 2105 stereo crystal cart., teak $\mathbf{4}$ 1/. 19.6 Post $7 / 6$ Post on Garrard units: 6/- extra-except AP 75, SL 75B, SL 95B and $4017 / 6$ extra Post on bases and covers $5 /$ - extra.
AUDIO DEVELOPMENT AD-76K
Stereo magnetic cartridge with diamond stylus
Frequency response $20-20,000 \mathrm{~Hz}$. 5 mV output.
LASKY'S PRICE \&4.10.0 post Free

THE AMAZING

Astrad ORION

THE WORLD'S SMALLEST 6 TRANSISTOR TWO WAVEBAND RADIO OVER 50,000 SOLD
Made to the highest space-age standards-this remarkable microsize set measures only iff $x 1$ is $x \frac{3}{16}$ in, yet it contains 6 transistors and other components combined in a photo etched circuit, only $\frac{3}{2} \times \frac{1}{2} \mathrm{in}$. tuning capacitor, ferrite rod aerial, etc. Output to a high impwith crystal earplece, giving ample vol-
 ume (automatically adjusted) and
clear tone. Brief tech. spec.: Waveband coverage-Medium wave 525 to 160 kHz Long wave 150 kHz to 480 kHz . Sensitivity: 35 MV max. Selectivity -10 dB (at 30 kHz de-tuning). Power source: $1 \times 1.4 \mathrm{~V}$ Mercury battery
The Orion is supplied fully built and tested complete with battery, left and right itting earphone supports and attractive black and ivory plastic presentation/carrying case (matching the Orion). Never miss your favourite music, sport, news-the Orio is an ideal gift for all, providing a constant source of enjoyment without disturbing others.
LASKY'S
PRICE

* NOTE: The battery we supply with the Orion is a rechargeable type. Charger units are available enabling you to rewcharge the battery from AC Mains $220 / 240 \mathrm{~V}$ supply.
Pine

BOOHS BY G.A. BRIGGS

over a quarter of a million copies sold since 1948
AERIAL HANDBOOK (second edition)
176 pages, 144 illustrations.
PRICE (semi-stiff cover) 15/- (16/6 post tree)
Cloth bound $22 / 6$ (24/- post free).

CABINET HANDBOOK

112 pages. 90 illustrations
PRICE (semi-stiff cover) 7/6 (8/6 post free)
Cloth bound 15/- (16/6 post free)

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound.
PRICE 25/- (27/- post free).

MUSICAL INSTRUMENTS AND AUDIO 240 pages, 212 illustrations. Cloth bound PRICE 32/6 (34/6 post free)

LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations Cloth bound.
PRICE 30/- (32/6 post free).

A TO Z IN AUDIO
224 pages, 160 illustrations, Cloth bound.
PRICE 15/6 (17/- post free).

PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound.
PRICE 18/6 (20/- post free).

ABOUT YOUR HEARING
132 pages, 112 illustrations
PRICE (semi-stiff cover) 15/6 (16/6 post free)
Cloth bound $22 / 6$ (24/- post free)

READERS OPINIONS

I have recently been going through eight of your books and they have been a feast of information. I have been like a dog with eight tasty dishes, not knowing which one to tackle first but nipping about and sampling each one. Somerset, Sept. 69

Having read the majority of your 'Bibles on Hi Fi ', of such a remarkably 'hi' standard, l eagerly await a copy of your Cabinet Handbook.

London N22, Nov. 69

Please send orders and enquiries to:-
RANK WHARFEDALE BOOK DEPT. B.W.S. 13 WELLS ROAD ILKLEY YORKS
Telephone: ILKLEY 4246

Published by:

RANK WHARFEDALE LTD IDLE BRADFORD YORKSHIRE

for fast, easy, reliable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR. Ecomically packed for general electrical and electronic soldering. 75 ff . 18 gauge on plastic reel. Recommended retail price 15/-	THIN GAUGE SOLDER, ESSENTIAL FOR soldering small components and thin wires. High tin content, low melting point, 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 15/-
A RANGE OF SOLDERS IN HANDY DISPENSERS. REF. ALLOY SWG	INVALUABLE FOR STRIPPING FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 8/6
From Electrical and Hard Multicore Solders Lti.	

Arrs sealed cartons. Fully guaranteed with after-sales service.

- Complete Free price list of over 800 items on request.

Open Daily to the public from 9 a.m. Closed Tuesday 1 p.m. Mon. \& Sat. 5-30 p.m. Open until 8 p.m. Wednesday, Thursday \& Friday.

$$
\underset{\text { Price }}{\substack{\text { Rec, Reiall }}} \begin{gathered}
\text { Comet } \\
\text { Price }
\end{gathered}
$$

Rec. Retail
Price
Comet
Price

THORENS TD 12
THORENS 125 AB
THORENS 150 A MK
THORENS 150A MK II
THORENS $150 A B$ MK II
$\begin{array}{lllllll} & £ 43 & 12 & 7 & £ 32 & 19 \\ \text { THORENS TD. } 124 / I I & £ 47 & 8 & 7 & £ 40 & 19\end{array}$
$\begin{array}{llllllllllllll}\text { THORENS TD. } \\ \text { Bases, plinths and covers stock } & 15 & 10 & £ 39 & 19 & 6\end{array}$ PHILIPS RH 590
PHILIPS RH 580
QUAD 33 Pre-amplifier QUAD 303 Main Amptifier ROGERS Ravensbou vi in
ROGERS Ravensbou e in
teak case '
ROGERS Ravensbróok ROGERS Ravensbrook in teak case SINCLAIR 2000 TRUVOX TSA. 200

TUNERS
ARENA F211 with decoder
ARMSTRONG 523 AM/FM ARMSTRONG 524 FM ARMSTRONG M8 decoder DULCI FMT. 7 FM DULCI FMT. 7 S Stereo LEAK Troughline with MP̈X LEAK Stereofetic Chassis LEAK Stereofetic Chassis PHILIPS RH 690 QUAD Stereo FM ROGERS Ravensbourne Tuner with Decoder SINCLAIR 2000
TRUVOX FM 200/IC
decoder
with

TUNER/AMPLIFIERS

ARENA 2400 with MPX
ARENA 2600 with MPX ARENA T1500F with MPX ARENA T900 with MPX ARMSTRONG 525 ARMSTRONG 526 ARMSTRONG 127 GOOK Case for 127) GHILIPS RH781 PHILIPS RH781
PHILIPS RH790 PHILIPS RH790 TANDBERG SolvSuper TELETON F. 2000
 2
0
8
10
18
6
7
12
5
17
17
17
8
17
9
8
4
1

 6
6
0
0
6

ARENA SP25 with base, GARRAR and cartridge GARRARD AP. 75 GARRARD SL. 55 GARRARD SL. 65B GARRARD SL. 75B GARRARD SL. GARRARD 401 $72 \dot{B}$ GARRARD 3500 with GKS Cartridge GOLDRING GL 69**

GOLDRING 69P \begin{tabular}{l}
GOLDRNNG 68P

GOLD

\hline

GOLDRRNG GL, 7

GOODMANS

\hline
\end{tabular}

GOODMANS 3025°
GOLDRING COVERS for'
69P and $75 \mathrm{P} \quad .$.

HI-FI STEREO TAPE DECKS AND TAPE RECORDERS
AKAI 150D
AKAI X-360 D deck
AKAI 1710
AKA 1800
AKAI 4000 D deck
TRUVOX PD 102 deck
MARCONI 4218 Stereo tape
 Recorder
TRUVOX R52 \& R54" 3-speed 2-track Tandberg also available
$\begin{array}{lllll}£ 130 & 2 & 4 & £ 109 & 0 \\ £ 339 & 0 & 0 & £ 284 & 0 \\ £ 290 & 0 & 0 & £ 243 & 0\end{array}$ $\begin{array}{llllll}£ 290 & 0 & 0 & £ 243 & 0 & 0 \\ £ 109 & 0 & 0 & £ 89 & 19 & 5\end{array}$ $\begin{array}{llllll}£ 109 & 0 & 0 & £ 89 & 19 & 6 \\ £ 158 & 0 & 0 & £ 133 & 0 & 0\end{array}$ $\begin{array}{rrrrrr}£ 158 & 0 & 0 & £ 133 & 0 & 0 \\ £ 199 & 0 & 0 & £ 167 & 0 & 0 \\ £ 87 & 10 & 0 & £ 71 & 19 & 0\end{array}$ $\begin{array}{rrrrrr}£ 199 & 0 & 0 & 167 & 0 & 0 \\ £ 87 & 10 & 0 & £ 71 & 19 & 0 \\ £ 114 & 15 & 3 & £ 79 & 0 & 0\end{array}$ $\begin{array}{llllll}f 89 & 11 & 2 & £ 69 & 19 & 6\end{array}$ $\begin{array}{lllllll} & £ 58 & 11 & 0 & £ 49 & 19 & 6\end{array}$

CARTRIDGES

Goldring 800 Cartridge
Goldring 800 H
Goldring 800E
Goldring 800 Super E Goldring CS90 Stereo
Ceramic Cartridge
Goldring CS91/E
Ortoion SL 15E Ortoton 2X 15 K Shure M3DM Shure N3D Shure M3iE . Shure N31E Shure M32E Shure N32E . Shure N32-3 . . Shure M44-5 Shure M44-5. Shure N44-5 .
Shure M44-7. Shure N44-7. Shure M44-C. Shure N44-C.
Shure M44E . Shure N44E . Shure M55E . Shure N55E . Shure M75G Shure N75G , Shure M75-6 . Shure N75-6 . Shure M75EJ. Shure N75EJ.. Shure M75E-95G Shure N75E Shure V15-11 Shure VN15E Shure Vi5-1
Shure VN7
$\begin{array}{rrrrrr}213 & 0 & 0 & £ 10 & 7 & 6\end{array}$ £10 $13 \quad 9 \quad £ 8106$ $\begin{array}{llllll}£ 18 & 17 & 1 & £ 15 & 0 & 0\end{array}$ $\begin{array}{llllll}£ 26 & 0 & 1 & £ 20 & \mathbf{5} & 0\end{array}$

$\begin{array}{llllll}\text { £5 } & 4 & 0 & \text { £4 } & 3\end{array}$ $\begin{array}{llllll}£ 7 & 16 & 1 & £ 6 & 4 & 6\end{array}$ £29 1211 £23 1211 $\begin{array}{ccccccc}\text { £7 } & 0 & 0 & £ 5 & 5 & 4\end{array}$ $\begin{array}{rrrrrr}£ 7 & 8 & 3 & £ 6 & 8 & 3 \\ £ 5 & 11 & 2 & £ 4 & 8 & B\end{array}$ $\begin{array}{rrrrrr}£ 5 & 11 & 2 & £ 4 & 8 & 8 \\ £ 12 & 19 & 5 & £ 10 & 6 & 0\end{array}$ $\begin{array}{rrrrrr}£ 12 & 19 & 5 & £ 10 & 6 & 0 \\ £ 9 & 5 & 3 & £ 7 & 8 & 6\end{array}$ $\begin{array}{rrrrrr}£ 9 & 5 & 3 & £ 7 & 8 & 6 \\ £ 12 & 0 & 11 & £ 9 & 12 & 0\end{array}$ $\begin{array}{rrrrrr}£ 12 & 0 & 11 & £ 9 & 12 & 0 \\ £ 8 & 6 & 9 & £ 6 & 13 & 0\end{array}$ $\begin{array}{rrrrrr}£ 8 & 6 & 9 & £ 6 & 13 & 0 \\ £ 11 & 2 & 4 & £ 8 & 17 & 6\end{array}$ $\begin{array}{rrrrrr}£ 11 & 2 & 4 & £ 8 & 17 & 6 \\ £ 6 & 9 & 8 & £ 5 & 3 & 6\end{array}$ $\begin{array}{rrrrrr}£ 6 & 9 & 8 & £ 5 & 3 & 6 \\ £ 11 & 2 & 4 & £ 8 & 17 & 6\end{array}$ $\begin{array}{llllll}£ 7 & 8 & 3 & £ 6 & 8 & 3\end{array}$ $\begin{array}{llllll}£ 10 & 3 & 10 & \text { £ } 8 & 5 & 0\end{array}$ $\begin{array}{rrrrrr}£ 6 & 9 & 8 & £ 5 & 3 & 6\end{array}$ £10 $\begin{array}{llllll}1 & 10 & £ 8 & 5 & 0\end{array}$ $\begin{array}{llllll}£ 6 & 9 & 8 & £ 5 & 3 & 6\end{array}$ $\begin{array}{llllll}\text { £14 } & 16 & 6 & £ 11 & 16 & 6\end{array}$ $\begin{array}{lrrrrr}\text { £10 } & 3 & 10 & £ 8 & 5 & 0 \\ £ 16 & 13 & 6 & £ 14 & 13 & 6\end{array}$ $\begin{array}{lrrrrr}\text { £11 } & 2 & 4 & £ 8 & 17 & 6\end{array}$ $\begin{array}{lrllll}£ 11 & 2 & 4 & £ 8 & 17 & 6 \\ £ 17 & 12 & 1 & £ 14 & 0 & 0\end{array}$ $\begin{array}{rrrrrr}\text { £17 } & 12 & 1 & £ 14 & 0 & 0 \\ £ 9 & 5 & 3 & £ 8 & 17 & 6\end{array}$ $\begin{array}{rrrrrr}£ 9 & 5 & 3 & £ 8 & 17 & 6 \\ £ 16 & 13 & 6 & £ 13 & 6 & 0\end{array}$ $\begin{array}{rrrrrr}216 & 13 & 6 & x 13 & 6 & 0 \\ £ 8 & 6 & 9 & £ 6 & 13 & 0\end{array}$ £24 199 £19 46 $\begin{array}{rrrrrr}£ 11 & 2 & 4 & £ 8 & 17 & 6 \\ & 527 & 15 & 11 & f 22 & 3 \\ 6\end{array}$ | £27 | 15 | 11 | £22 | 3 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{rrrrrr}£ 12 & 19 & 5 & £ 10 & 6 & 6 \\ £ 40 & 15 & 3 & \mathbf{5} 32 & 19 & 6\end{array}$ $\begin{array}{llllll}\text { £40 } & 15 & 3 & £ 32 & 19 & \\ £ 16 & 13 & 6 & £ 14 & 13 & 6\end{array}$ $\begin{array}{rrrrrr}\text { £16 } & 13 & 6 & \text { £14 } & 13 & 6 \\ \text { £38 } & 18 & 3 & £ 31 & 0 & 0\end{array}$

Reservoir Road, Clough Road, Hull HU6 7QD. Tel 407906 also at 68a Armley Rd (Artist St) Leeds LSI2 2EF Tel 32055

Customers are welcome to call personally. Ampie Car Parking facilities

Complete stereo system - £29-10

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally. Type 1 SPECIFICATION:-
Impedance 3, 8 or 10 ohms (please state requirement) high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker. and $2 \frac{t^{\prime \prime}}{4}$ tweeter. Teak finish $12^{\prime \prime} \times 66^{\frac{3}{4}}$ " $\times 5 \frac{3}{4}$ ". 4 guineas each. 7/6d: p. \& p.
Type 2 as type 1. Size $17 \frac{1}{2} \frac{1}{2}^{\prime \prime} \times 10 \frac{3_{4}^{\prime \prime}}{4} \times 6 \frac{3}{4}$ ". Incorporating $10 \frac{1}{2}{ }^{\prime \prime} \times 6 \frac{1}{4}$ " speaker and $2 \frac{1}{4}$ " high frequency speaker 3 ohms impedance $\mathbf{x} 6-6$ - $\mathbf{0}$ plus 15/- p. \& p.

Garrard Changers from $£ 7.19 .6 \mathrm{~d}$. p. \& p. 7/6d.
Cover and Teak finish Plinth $£ 4.15 .0 \mathrm{~d}$. 7/6d p. \& p.
The items illustrated can be purchased together for £29-10.

The Duetto is a good quality amplifier, attractively styled and finished: It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION:-
R.M.S. power output: 3 watts per channe! into 10 ohms speakers. INPUT SENSITIVITY. Suitable for medium or high outpit crystal cartridges and tuners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4-position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL: Treble lift and cut. Separate on/off switch. A preset balance control.

29-10
Integrated Tranisistor Stereo Amplifier plus 7/6d.
p. \& p.

The above 5 items can be purchased together for $£ 29.10+£ 1.10 .0$ p. $\&$ p.

Whe Classic f9 plus 7/6 p. \& p.
Controls: Selector switch Tape speed equalisation switch ($3 \frac{3}{2}$ and $7 \frac{1}{2}$ i,p.s.). Volume. Treble. Bass. 2 position scratch filter and 2 position rumble filter.
Specification: Sensitivities for 10 watt output at $1 \mathrm{KHz} \mid$ nto 3 ohms. Tape head:
 Tape/Rec, output: Equalisation for each inputis correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz , Tone control fange; Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total d/stortion: (for 10 watt output) $<1.5 \%$. Signal noise: $<-60 \mathrm{~dB}$. A.C. mains $200-250 \mathrm{v}$. Built and tested. Size $12 \frac{1}{2} \mathrm{i}$. long, $4 \frac{1}{2} \mathrm{i}$. deep $\mathrm{z}^{\frac{2}{2} \mathrm{i}} \mathrm{i}$. high. Teak finished case.

She O/iscount
ntegrated High Fidelity Transistor Stereo Amplifier. Specification-Output 10 watts per channel into 3 to 4 ohms speakers (20 watts monaural). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. out. Sensitivities: All inputs 100 mV into 1.8 M ohm. Frequency Response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls; trebie, 13 dB jift and cut (at 15 KHz) ; Bass, 15 dB lift and 25 dB cut (at 60 Hz). Volume Controls: Separate for each channel. A.C. Mains Input: 200$240 \mathrm{~V}, 50-60 \mathrm{~Hz}$. Size, $12 \frac{1}{12} \times 6^{\prime \prime} \times 2 \frac{3^{\prime \prime}}{}$ in teak finlshed case. Built and tested.
VISCOUNT MARK II for use with magnetic pick-ups specification as above. Fully equalised for magnetic pick-ups. Suitable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. ai 1 kc . Input impedance 47 k . £ 15.15 plus $7 / 6 \mathrm{p} . \& \mathrm{p}$.

SPECIAL OFFER!

Complete stereo system comprising BALFOUR 4 -speed autoplayer with stereo head, 2 Duo speaker systems, size $12 \mathrm{in} . \times 6 \frac{3}{4} \mathrm{in} . \times 5 \frac{3}{2} \mathrm{in}$. Plinth (less cover) and the DUETTO stereo amplifier. All above items
£25 plus $\mathrm{E}_{2}^{\mathrm{p} . \mathrm{q} \text { p. }}$

NEW COMPLETE HI-FI STEREO SYSTEM - £41

comprising SP 25 Garrard Mk II with diamond cartridge, or 2025 TC, Viscount Mk 1 amplifier, two type 2 speakers, plinth and cover
£41 plus e2-10-0 p. \& p.

CAR TRANSISTOR IGNITION

SYSTEM

by famous manufacturer
For 6 wolt or 12 volt positive earth systems, Comprising: special bigh voitage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resintor and hardwear (screws, washers, etc.).

Price £4.19.6 plus 5/- P. \& P

50 WATT AMPLIFIER

Itu. Suitable for most high output in

SPECLFICATIONS
Output-10 watt
 Impats-1. - xtal mic 10 ml Toue Contrus - Trebie control range $\pm 12.1 \mathrm{~B}$ at 10 KHz . Frequency Response-(with tone controls central) Minux 3 ilB points at 20 Ez and 40 KHz . Signal to Noise Ratio-better than - 60 dB . Transistors- 4 silicon Plarar type and 3 Germanium type. Mains input-200/200V. A.C. Size of chassis - $1.0^{1} \times 4_{4}{ }^{\prime \prime} \times$ $22^{\prime \prime}$. For use with Std. or L.P. recorls, mutre Two tuput with makes foplens and mikes. Separate batctand trent Built and tested.
RELIANT MK.I
RELIANT MK. I

Ac above less ter
£5.15 plus 7/6 P. \& P.

RECORD PLAYER SNIP
The "Princess", 4 -speed automatic record changer and player engineered with the utmost precision for beauty, long life, and trouble free service. Will take up to ten records which may be mixed $7^{\prime \prime}$ to $10^{\prime \prime}$ or $l^{\prime \prime}$ Patent stylus brush cleans stylus after each playing a most useful feature with portable equipmentother features include pick-up height adjustment and stylus pressure adjustment. This truly is a fine instrument which you can purchase this roonth at only 85.18 .6 complete with cartridge and ready to play. ${ }^{\text {TPost and ins. } 7 / 6 \text { extra. }}$

A.C. Mains 240V

ONLY £5.19.6 plus 7/6 P. \& P.

POCKET MULTI-METER

size $3 \frac{7}{E}, 2 \% \times 13 i n$, Meter size $2 \frac{1}{4} \times 1$ in. Nensitivity 1,000 O.e. win both A.C. and D.C. volts $0-15,0-150,0-1,000$ D.C. current $0-100 \mathrm{~mA}$ Resistance $0-100 \mathrm{k} \Omega$ Complete with teat prods, batiers and full instruc$42 / 6$ plus $3 / 6$ P. \& P.
FREE G1FT tor limited period only, 30 watt Mlectric Soldering lrun value 15/- to every purchaser of the Pooket Multi-Meter

40W FLUORESCENT LIGHT KIT

ninorp

 holders.P. \& P. \boldsymbol{y}^{6}
$11 / 6$
similar to above: 80w. Fluorescent Light Kit incorporating GEC choke size $11 \frac{3}{4} \times{ }^{17} \times 13 \mathrm{in} .2 \mathrm{bj}$-pin holders, start
und starter holder.

THREE-IN-ONE HI-FI 10 WATT SPEAKER

A complete Loud speaker system on one frane, combining threp matched ceramic magnet speakers with a low loss crossover network. Peak handling power 10 watts Impedance $1 \overline{5}$ ohms. Flux density 11,000 gauss. Resonance $40-60 \mathrm{e} / \mathrm{s}$

List price e7 OUR PRICE $74 / 6$ plus 5/-P. \& P.
Similar speaker to the above without tweeters in 3 and 15 obms $44 / 6$ pius $5 /-\mathrm{p} . \& \mathrm{p}$.

PYE CAR RADIO

Push Button Tuning Heart
This PRESTOLOCK \bar{s} station Push-Button Tuner Beart with Manual Over-ride is an idea Tuner Heart with Mantual over-ride is an ideal basis for
$4^{\prime \prime} \times 2^{\prime \prime}$.
As illustrated but without knobs.

25/- plus 3/- P. \& P.

QUALITY MAINS TRANSFORMER

Input 250 volts. OUTPUT (All RMS values) 4 windings of 11.5 volts connected in series total 46 volts at 4.5 amps used. 1.23-0-23 volts. 2.46 volts.
Both of these above voltages are conmontr used in medium to high powered transistor amplifiers, power supplies, etc.

Price 35/- plus 7/6 P. \& P.

Goods not despatched outside UK
RADIO \& T.V. COMPONENTS (ACTON) LTD. 21c High Street, Acton, London W.3.

Also at 323 Edgware Road, London, W.2. ALL ORDERS BY POST TO OUR ACTON ADDRE'SS

HENRY'S FAMOUS CATALOGUES-SEE BACK COVER FOR DETAILS

BRAND NEW FULLY GUARANTEED TRANSISTORS \& DEVICES

 \qquad			

Send for Free Copy of 1970 Transistor Liast (36) of a 1,000 Types Today!

INTEGRATED		CIRCUITS		
${ }^{\text {PP }} 1010$	23/-	PA424	79/6	DISCOUNTS
${ }_{\text {CA }}$	22/6	PA246	S2/6	
$\mathrm{CA}^{3} 3020$	229/6	MC1304 TAD100	${ }_{45}^{55 /-}$	QUANTITY PRICES $100+$
${ }_{\text {CA3036 }}$	18/6	TAA263	15/-	
1 Cl 10	59/6	SL403	49/6	Phone 01-723-0
${ }_{\text {Pa }}^{\text {PAZ }}$	${ }_{301 / 5}^{23 / 6}$	U1910	101-	
PA237	37/6	UL914	12/6	Post/Packing add $2 / 6$ on your order

HNWITS HADO
Mall Orte Dept Comuonemts Organ Dept
303 EDGWARE ROAD. LONOON W. 2 Telephone: $01-723$ 1008 9

Special express detivery service 6d. per unit postage. Orders $50 /-$ or more post free $\xrightarrow[\text { Send S.A.E. for complete list of plugs, sockets, drive belts, ready-made leads etc. }]{\text { E.M.I 20W MATCHED }}$

GARRARD SP25 Mark II Guaranteed new and boxed Normal Price £15.11.4
OUR PRICE
$\mathbf{E 1 0 . 1 9 . 6}$ carriage
Wired with mains cable and 5 ft. twin screened stereo cable, 5 pin plug. $10 / 6$ extra. AP75 Complete with base and
 SPEAKER SET 350 recommended £12.10.0 our
price $\$ 6.19 .6$ plus $7 / 6$ post, packing. 13.5" $\times 8.125^{\prime \prime}$ eliptical woofer coupled to a coaxially mounted
$3.125^{\prime \prime}$ high frequency choke and condenser dividing network. The high fre= has a critically curved
cone and also uses a high flux ceramic magnet
ALSO
E.M.I 450 SPEAKER $\begin{aligned} & \text { our } \\ & \text { price }\end{aligned} 65 /=\begin{aligned} & \text { plus } 7 / 6 \\ & \text { carriage }\end{aligned}$
 cover $£ 25$ plus $15 /$ - extra

8TA 9TA 9TAHC	all at
GP91 ST4 ST9	$5 /$ each
EV26 GC8	
others on reqsest	p.p. $1 / 6$

COUNTDOWN SPEAKER teak cabinet \{12 insurance

A speaker of
outstanding speoutstanding spetechnical merlt Solid teak cabinet size: $14^{\prime \prime} \times 10^{\prime \prime}$ $\times 6^{\prime \prime}$. Origlnally designed for use budget system but now available separately.

PLINTH AND COVER unbea
Suitable for AT60; SP25; 3000 2500 ; 3500. Superb finish Spindle can be left in position with cover on. Cover of natura smoke tint perspex.
Also available for AP75; SL99
L75 £6.17.6 plus 101 - carr.
£5.5.0
plus 101-p.p
 all compact cassette recorder. Fits playback units CASSETTE

ONOTONE CARTRIDGES Ceramic. (list pric Sensitivity: 9 TA
80 mV 9TAHC 55 mV / at 45° at $1,000 \mathrm{~Hz}$ measured $2 / 6 \mathrm{p}$. \& p RONETTE 105 STEREO CARTRIDGE Saphire (78) Dlamond (LP) 25/= 2/6
Recommended prics £3.15.0.
 MAGNETIC (Diamond styl) CARTRIDGE Our
Todays value 86.95
Stylus replace- 95
 NHEABA ment is simple
 finest portable tape and can be car- $2 / 6 \mathrm{p}$ \& p
ried out without removing the cartridge. Fully guaranteed.
 ARENA F210 AMPLIFIER $\mathbf{1 2 8}$ plus $10 /$ carriage A smart purpose built and decor styled allround monaural/stereo ampinier constructed ARENA F211 Tuner. Stereo Decoded tuner avall-
 J. J. FRANCIS (WOOD GREEN) LTD 123 ALEXANDRA ROAD, HORNSEY LONDON, N.8.

FLASHERS
Heavy duty light thasher employs a condencer diwcharge orinciple operating ni electro mechani－ cal relay．（As inset）． Housed in strong
plastic case．Flashing plastic case．Flaghing rate betweer $60-120$ Der minute．Mavi－ num load 6 amps．Size $2-11 / 16 \mathrm{in}$ ．dia．$x 41 \mathrm{n}$ ． Supplied brand new at a fraction of original
cost． $6 / 6$ each．P．P． $2 / 6$ ．（ 3 for $17 / 6$ ．P．P． $4 / 6$ ）．

CLASS D WAVEMETERS

crystal controllea hetero－ ＂拺 Operation on 6 volts D．C．
ldeal for amateur use． Available in good used com lition．25．19．8．Carr，Titi． Or brand new with acces－ CLASS D WAVEMETERS No． 2 Crystal controlled．］－2－19 Mc／s．Mains or tion eharts．Excellent condition．f12．10．0． Carr．30／－

R209 MK II

COMMUNICATION RECEIVER II valve high grade conumunication receiver Auitable for tropical use． $1 \cdot 20 \mathrm{Me} / \mathrm{s}$ on 4 bands．
AD／CW／FM operation．Incorporates pre rision vernier driver，i：F．O．，aerial trim－
 mer，interna speaker and
liv．D．C． internal po－ ниг suppir
supplied in excellent condition， and checked
e15．0．0 E15．0．0．
Cart．
20／－

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general pur－ pose D／A oscilloscope．
T．B． 2 cps－750 Kols． $\begin{array}{lll}\text { T．B．} \\ \text { Bandwidth } \\ \text { chs } \\ 5.5 & \mathrm{Kols} \\ \mathrm{Mc} / \mathrm{s} .\end{array}$ Sensitivity $33 \mathrm{mV} / \mathrm{CM}$ ． Operating voltage 0／t10／ 200／250V．A．C．Supplied in excellent working con
fition． $\mathbf{~ 2 2 ~} 10.0$ ．Or com plete with all accessories probe，leads，lid，etc．
\＆25．Carriage $30 /-$ ．

MARCONI T／44／TF956 AF Absorption Wattmeter
£20．Carr． $10 /-$ ．

SOLARTRON CD 711S2
Double Beam Oscilloscopes
D．C．to $9 \mathrm{Mo} / \mathrm{s}$ ．Perfect order ± 65. Carr． $\mathbf{~ อ 0 / ~}$ （Few available less C．R．T．） 225 Carr．50／－

TO．3 PORTABLE OSCILLOSCOPE

 and
 x amp．sensitivity 0 p－p／CM．Bandwidth 800 KHz ．Input ithp meg $\Omega 2$ opF．Tinne bave．
ranges $10 \mathrm{cps}-300 \mathrm{~K} 1 \mathrm{c}$ ir ranges 10 eps－ 300 KHz
Synchronization．Internali xternal． 1 lluminated scale $140 \times 215 \times 330$ rand new with handtronk．\＆ $37.10,0$ ．Carr 10i－．

TRANSISTORISED L．C．R．A．C． MEASURING BRIDGE
 A new portable
hingenffering ea vellent range and ururary at low

kint．Ranges： F ． $1 \Omega-1 \cdot 1$ meg $\Omega 2$ | 6 Ranges |
| :---: |
| $\mathrm{L}, ~$ | HERRYS 6 Ral

K－ Ranges $+2 \%$ ．TERN：RATIO $1: 1 / 1000-$ $\{11100$ ． 6 Ranges $\pm 1 \%$ ．Bridge voltage at Meter indication oped from 9 volts． $100 \mu \mathrm{~A}$ ， csse．Size $7 \mathbf{T}$

UNR－30 4－BAND COMMUNICATION RECEIVER

 Covering $350 \mathrm{Kcy}-30 \mathrm{Mc} / \mathrm{s}$ ．Jucenporates BJO．Built in weaker and phone jack．Metal calinit．Operation$220 / 240 \mathrm{Y}$ ．A．C．Supplied brand new．guaranteed with intructions．Supplen brand carr． $\begin{aligned} & \text { ifis．} 13 \\ & \mathbf{g n s} \\ & \text { g }\end{aligned}$
TRIO JR．310 New Amat ur Band 10－80
Wetre Receiver i，stock．£77．10．0．

LAFAYETTE SOLID STATE HAGOO RECEIVER
弓 BAND AMCW／SSB TMATEIR IND SHOP WAYE $150 \mathrm{Kc} / s-400$ Ke／s and $5.0 \mathrm{Kc} / 5-30 \mathrm{Mc}$ ，

 ibs．EXCEPTIONAL، VALEE．E45．Carr． 101 s．．．．E．for full details．

LAFAYETTE HA－800 SOLID STATE
AMATEUR COMMUNICATION RECEIVER

 erystal $39 / 6$ extra．

UR－1A SOLID STATE COMMUNICATION RECEIVER

4 bands covering $550 \mathrm{Kcjs}-30 \mathrm{mc} / \mathrm{s}$ com－ tintous．Special features are use of FET transistors．$\$$ meter，built in speaker and
trester in telescopic arrial，variable BFO for S8B
reception noise liniter，bandspread con－ reception，uopise limiter，bandspread con－
trol，sensitivity control．Output for los trol sensitivity control．Output
impedance headphorec．
Operation
20 wit A．C．or 12 volt D．C．size 10 in $\times 42 \mathrm{in}$ ．

TRIO COMMUNICATION

 RECEIVER MODEL 9R－59DE ＂ontinuous and ectrical bansispread on 80 metres． 8 valve vilus 7 diode circuit，

 Variable RF and AF gain centrols． $115: 20$ 4．C．Maing．Beautifuly designed．Size： 7×1.5 ，
vice data．E42，carriage paine TRIO COMMUNI

TRIO JR．500SE 10－80 Metre
TRIO TS 510 AMATEUR TRANS－
Receiver $£ 69.10 .0$
OEIVER with speaker and m
\＆180 IN STOCK！

RCA COMMUNICATIONS RECEIVERS AR88D
Latest release by mininiry BRAND NEW in orighal caser．110－250，A．C．operation．Frequency in f Bards． $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mt} / \mathrm{s}$ continuous．Output im－ pedance $2.5-600$ ohms．Incarporating crystal filter， nolise limiter，variable BFO，variable selectivity，tte： Price 887.10 .0 ．Carr．

LAFAYETTE PF－60 SOLID STATE VHF FM RECEIVER A completelf new transistorised receiver unvering
$152-174 \mathrm{Me} / \mathrm{k}$ ．Fully tunable or crystal controll．1！ （ （ant supplied）for fixed frequency operation．In： corparates 4 INTEGRATEO CIRCUITS．Buil in speaker and illuminated dial．Squetch and wi． unne controts．Tape recorder sutput． 75Ω aerial
input．Headphone jack．Operation 230 V ．A．C． input．Headphone jack．Operation 230 V ．A

TELETON CR－10T AM，FM STEREO TUNER AMPLIFIER
 A new model irom Teleton． 31 sobid
utate devices． $4+4$ watt output liputy for ceranic ${ }^{\prime}$ efystal cartridge． Frequency ranse AM $340-1600 \mathrm{KHz}$ FM $88-105 \mathrm{MHz}$ Automatic PH stereo reepption．Stereo indicator． Controls：Tuninis，function selector， Tone and R \＆is volume controls．

强
$100 \mu \mathrm{~A} . .$.
$100-0100 \mu$
$100-0100 \mu$

800 LA.
50 O
1

Warable voltone Thalisfinminis

Hith quality construction．Liput 230 S ． $\mathbf{2}$（）－60 rveles
 8 amp．－£14．10．0； 10 amp．－\＆18．10．0； 12 anı－\＆21．0．0； 20 амр．－237．0．0．

CRYSTAL CALIBRATORS NO． 10

small portable crystal controlled wavemeter．Size ${ }^{7} \times 7 \frac{1}{2} \times 4 \mathrm{in}$ ．
 $200 \mathrm{Ke} / \mathrm{s}-10 \mathrm{Mc} / \mathrm{g}$ harmonics）． Calibrated Calibrated dial
Power require ments 300 Y ．D．C f．mat and 12 V ． D．C．0．3A．
89／6．Carr． $7 / 6$

TE－ 40 HIGH SENSITIVITY A．C．VOLTMETER 0 meg．input 10 ranges 01／－003／－1／－3／1／3／10／30／100 300 V ．R．N． 8.4 cps．－1－2 Mc / F Decibels -40 to +5016 Fipplied brand new complet Operation 230 V ．A．$£ 1710$ Cperation

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$ on 2 ranges．Output 500Ω or iok Ω ．Operation $200 / 250 \mathrm{~V}$ ．A．C Supplied in perfect order．£12．10．0 Carr．10／－

TE－65 VALVE YOLTMETER

High quality instrument $1 \cdot 0-1,500 \mathrm{v}$ ．A．C．volts i：－ i ， 000 v ．Resistance up to 1,000 megohms to0／240y．A．C．operation monplete with probe ant
£17．10．0．P．
Additional probes aya Additioha probes ayait

COSSOR 1049 DOUBLE
BEAM OSCILLOSCOPES
D．C．conpled．Band width $1 \mathrm{Ke} / \mathrm{s}$ ．Perfect order．225．Carr．30／m

HOSIDEN＇DH－0BS DE－LUXE STEREO HEADPHONES
Features unique meen－ anical way unitrant controls． 8 ohrn
pedance， $20-20,00 \mathrm{cops}$
Complete with spring
lead \＆stereo jack plugs
f\％．19．6．P．\＆P． $2 / \mathrm{f}$ ．

AUTO TRANSFORMERS
$0115 / 230 \mathrm{~V}$ ．Step up or step down．Fully shrouded．

\＆CO（RADIO）LTD Also see oppos．page

ARF-100 COMBINED AF-RD SIGNAL GENERATOR

A.F. SINE WAVE $20-200,000 \mathrm{c} / \mathrm{s}$. $\begin{array}{lll}\text { square } & \text { wave } & 20- \\ 30,000 & \mathrm{c} / \mathrm{s} . & 0 / \mathrm{P}\end{array}$ HIGH IMP. 21V $\mathrm{P} / \mathrm{P} 600 \Omega 3.8 \mathrm{~V}$. P/E Mels $100 \mathrm{Ke} / \mathrm{s}-300$ odulation Incopor atteiuation int/ext. modulation. noopor. ates dual purpose meter to monitor A nut and or mod.

TE-20D RF SIGNAL GENERATOR

Accurate wide range sig nal generator covering $120 \mathrm{Kc} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$ on bands. Directly calibrated Variable R.F at enuator, audio output tion. $\quad 220 / 240 \mathrm{~V}$. A.C Brand new with iustruc	Fions	
Size $140 \times$	Carr.	
15	170	um.

PEAK-SO Amplifiers, Kits, Speakers, in stock.

TY75 AUDIO SIGNAL

 GENERATORke/s. Square Wave $20 \mathrm{c} /$ to $30 \mathrm{kc} / \mathrm{s}$. High and low impedance nutput. Out put variable up to 6 volts $220 / 240$ volts $4 . C$. Size
$210 \times 150 \times 120 \mathrm{~mm}$. Brand new with instru tions. §16. Carr. 7/6.

MARCONI TF142E DISTORTION FACTOR METERS. Excellent condition. Fully tested. QRO. Carr. 10/-

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER

$\therefore \mathrm{pF}-2000 \mathrm{mF}$

ohms also cheeg
impedance, turns
ratio, insulation Brand Now
\&17.10.0

ullissThe fatest editon giving full detals of a comprehensive fange of H1 FI EQUTPMENT. MENT an ${ }^{*}$ COMMUNICATIONS EOUIPMENT... Over 230 COUPONS
VALUE $10!$

SEND NOW-ONLY 716 P\&PO

 102 J stereo $\mathbf{2 7} 7.19 .6$ AP7: 816.19 .6 KI. With sonotone 3C00 stertereo $£ 8.17 .6$For AP75, SLi5, SL05 $\mathbf{~ 5 5 . 1 9 . 6}$

MODEL ZQM TRANSISTOR CHECKER It has the fullest capacity for checking on A, B and
Ico. Equaily adaptable for checking diodes Spec.: A: $0.7-0.9067$. B: $5-200$. Ico: $0-70$ Resistance for diode $200 \Omega-1 \mathrm{M} \Omega$. Supplied complete with instruc

TE-51. NEW 20,000 Ω, VOLT MULTIMETER and mirror scale. $0 / 6 / 60$ $120 / 1,200 \mathrm{~V}$. A.C. $0 / 3 / 30$, $60 / 300 / 600 / 3,000 \mathrm{v}$. 0/60K/6ineg. ohm. 92.6 P. \& P. $2 / 6$.

MODEL AS-100D. 100K S/VOLTS. bin, mirror protection. $0 / 3 / 12 / 60 /$ 120/300/600/1,200V D.C $0 / 6 / 30 / 120 / 300 / 600 \mathrm{v}$ A.C. $0 / 10 \mu \mathrm{~A} / \mathrm{CK} / 60 / 300$
$\mathrm{~mA} / 12$ amp. $0 / \mathrm{K} / 200 \mathrm{~K}$ $12 \mathrm{M} / 200 \mathrm{M} \Omega .120$
$+17 \mathrm{~dB} .812 .10 .0 . \mathrm{P} .{ }^{-20}$

MODEL TE-90 50,000 OPV mirror scale overload pro tection $0 / 3 / 12 / 60 / 300 / 600$ 1200 v . D.C. 0/6/30/L20/300
1200 w . D.C. $.03 / 6 / 60 / 600$ 1200\%. D.C. $.03 / 6 / 60 / 600$ $16 \mathrm{meg} \Omega .-20$ to +63 d 3 87.10.0.

MODEL TE-70. 30,000 OPV 0/3/15/60/300/600 $\mathrm{F}_{600 / 1200 \mathrm{~F}}$ A.C. $0 / 30 \mu \mathrm{~A}$ $:: 130 / 300 \mathrm{~mA} .0 / 16 \mathrm{~K} / 160$ に/1.6M/16 Meg. Ω £5.10.0. P. \& P. 3/-

MODEL PT-34.
1,000 OPV. $0 / 10 / 50$ 1,000 OPV. 0/10/J
$250 / 500 / 1,000 \mathrm{v}$
A and D.C. 0/1/100 $\Omega .39 / 6$. P. \&P. 1 i.

E-900 GIANT MULTIMETER mirror scale and overload protection. bin. full view $5 / 10 / 250 / 1000 / 5000$ A.C. $0 / 25 / 12.5 / 1000$ $50 / 1,000 / 5,000 \mathrm{y}$ D.C $0 / 50 \mu \mathrm{~A} / 110 / 100 / 500 \mathrm{~mA}$ 10 amp. D.C. $02 \mathrm{~K} / 200 \mathrm{~K}$ 30 MEG.
1

MODEL TE-10A. $20 \mathrm{k} \Omega / \mathrm{V}_{\text {olt }}$ $10 / 50 / 100 / 500 / 1,000$ $0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA} / 250 \mathrm{~mA}$ $0 / 6 \mathrm{~K} / 6$ meg. ohm. $+22 \mathrm{~dB}$. $10.0,100 \mathrm{mF} \mathrm{d} .0$.
$69 / 6$. P. \& P. $2 / 6$.

LAFEYETTE 57 Range Super $50 \mathrm{k} \Omega /$ volt Multimeter' D.C. volts 12 mV -1000 V. A.C. volts 1.5 V
-1000 V . D.G. current ? 10 A- 10 amp. Ohms $0-$ $10 \mathrm{meg} \Omega \mathrm{dB}-20$ to +81 dB. Overload protection
E12.10.0. Carr. $3 / 6$.
HOSIDEN DHO4S 2-WAY STEREO

Each headpho Each headpho tains a $2 \frac{1}{2}$ in. woofer Buit in individua level econtrols. 8Ω imp. - $18,000 \mathrm{c} / \mathrm{s}$ with cab ${ }_{p}^{\text {and }}$ stereo plug. £5.19.6.

AVOMETER MOVEMENTS

Spare movements fur Hodel 8 or 9 . (Fitted with Model 9 geale) or basis for any multi

MODEL TE-80. 20,000 O.P.V. $0 / 10 / 50 / 100 / 500 / 1,0000$
A.C. $0 / 5 / 25 / 50 / 200 / 500 / 1,000$

MODEL TE-12 0,000 O.P.Y. 0/0.6.5,30 ! -10 $600 / 1,200 / 3,000 / 6,000 \mathrm{v}$. $0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{v}$. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} /$ 0.2 me . P \& $\mathrm{P} / 6$
pages, fuly thustrated and detaifnge thousands of
items-mfaty at Faggan prices:

GARRARD

FULL CURRENT RANGE OFFERED BRAND NEW AT FANTASTMC SAVINGS

£5.19.6.
Carriage $7 / 6$ extra each type. Full range of Garrard aces anties available.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

transistors, 8 diodes, 1RF music power, sow at 8Ω. Response $30-20,000 \pm 2 d B$ at $1 W$. Dis
tortion 1% or less. Inputs 3 mV and 250 mV . Output $3-16 \Omega$. Separate L and R. volume con. trols. Treble and bass control. Sterco phone iackBrusheid aluminium, gold anodised extruded front panel with complementary metal case. Size 10 .

WULTMETERS for GUERY pupposel

TRANSISTORISED FM TUNER
 HIGH QUALITY TIGH QUALITY TUNER, SIZE ${ }_{3}$ ONLY $6 \times 4 \times 2 \frac{1}{3} \mathrm{I}_{1}$ bouble tuned dis riminator. Ample nutput to feed most atuplifiers. Operates on 9 Y battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$ Ready built ready for use. Fan tastic value for money. $\mathbf{2 6}$.7.6. P, \& P. 2/6 Stereo multiplex adaptors $99 / 6$

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate call 2 -wire connection. 1000 's of applications. Beautifully finlikhed in ebony. Supplier complete with batieries and Wall brackets.
£6.19.8. P, \& P, 3/6

SINCLAIR EQUIPMENT
inct 50 range of new models now in stock
 TEREO 60 Control Unit $£ 9.19 .6$
PZ.5 Power Supply
$£ 4.19 .6$ $\begin{array}{ll}\text { PZ Power Supply } & \text { £4.19.6 } \\ \text { Power Supply } & \mathbf{5 7 . 1 9 . 6}\end{array}$ 016 speakers All Post Paid

SPECJAL PACKAGE OFFER Z30 Amplifiers. Stereo 60 and PZy l'ower Supply f18. Carr. 7/6 | Or with $2 \times$ Q16 Speakers | 235 Carr. |
| ---: | :--- |
| $49 / 6$ | | Micromatic Radio Kit

Bridge T. Impedance 600Ω range ($0 . \mathrm{L} k \mathrm{~B}$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$ Trequency: d.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB})$. Accur acy: 0.05dB +Indication $\mathrm{dB} \times 0.01$. Maximum input less than $4 \mathrm{~W}(50 \mathrm{~V})$. Built in 600Ω load resistance with infernal/externa switch. Brand new $£ 27.10 .0$. P. \& P. 5/-.

RECORDING HEADS

COSMOCORD $\frac{1}{2}$-track heads. High imp record/playback 65/-. Low imp. erase 20/MAR 65 , Low imp arase 201record/playback 65/-. Low imp. erase 20/Post extra.

AMERICAN TAPE

First grade quality American tapes. Brand new. Discount on quantities.
3in. 225ft. L.P. acetate
3 in. 600 ft . T.P. mylar
bin. 600 ft . std. plastic
in. 900 ft . L.P. acetate
gin. 1,200ft. D.P. mylar .
otin. 1,200ft. L.P. acetate
gin. 1,, 800 ft . D.P. mylar
, inin. $1,400 \mathrm{ft}$. T.P. mylar in. $1,200 \mathrm{ft}$. std, acetate . ia. $1,800 \mathrm{ft}$. L.P. acetate in. 1,800ft. L.P. mylar Tin. 2,400ft. D.P. mylar
Tin. 3,600ft. T.P. mylar Tin. $3,600 \mathrm{ft}$ T.P. mylar
P'ostage $2 /$. Over $\& 3$ post paid

TAPE CASSETTES

 Top quality in plastic library boxes $\begin{array}{cc}\text { C60 } & 60 \mathrm{~min} 8 / 6,3 \text { for } 24 / 6 \\ \mathrm{C90} & 90 \mathrm{~min} 12 / 6,3 \text { for } 361\end{array}$ C120 $90 \mathrm{~min} \mathrm{12/6}$,3 for $36 /-$ Cassette Head Cleaner 11/3. Post Extra.
No sold e ring 19 -circuits work first time. Build and learn about electronics with these exciting kits

Build a radio set in an evening with a Radionic radio kit. Construct a digital computer that adds, subtracts, divides and multiplies. Make electronic music with the simple yet highly effective electronic organ.
Special 'Radionic mounted' components require no soldering and can be used time and time again. You can build 26 circuits with just one kit. And you can learn as you build.
Suitable for study towards G.C.E., City and Guilds,
 National Certificate, or even higher qualifications.
Write to the address below for free details of Radionic radio and electronics construction kits.

Radionic Products Ltd
 St. Lawrence House, Broad Street, Bristol BS1 2HF.

NEW FOR THE HOME CONSTRUCTOR
 BRITISH MADE

LEM PLINTH

TO FIT MOST MAKES OF

35 - ${ }_{\text {Parrid }}^{\text {Carr }}$
Complete and ready for easy sssembly of Neutral cover tint. Epindle can be lett in position with cover on.

ALSO AVAlLABLE
L \& M Plinth \& Cover
Fully Assembled 95/- Carr. Paid
Most makes of audio equipment available

37B HIGH ST. CHISLEHURST, KENT Tel. 01-467-0934

Listen to the world with Eddystone

When you own an Eddystone communications receiver, you have the
 broadcasting world at your finger tips wherever you happen to be - on land or
at sea. The reputation these sets have attained is proof of their excellence and reliability and at Imhofs, there is a special Eddystone department. Where you can see, hear and compare all models listed here.
Same day despatch to any part of the world; free delivery in the U.K.; plus after sales service for which Imhofs and Eddystone are world famous.

EDDYSTONE EB35 Mark II broadcast receiver AM/FM transistorised. A high performance all-band receiver, can also be used as a ' $\mathrm{Hi}-\mathrm{Fi}$ ' tuner. Powered by 6 SP2 torch cells, or, with TYpe 924 power supply unit, from AC mains. £82.4.9d.

EDDYSTONE 940 (13 valve) communications receiver. A connoisseur's instrument combining 'Professional' appearance with performance; has a world-wide reputation, two RF stages ensure high-sensitivity. $£ 158.0 .0 \mathrm{~d}$.

EDDYSTONE EC10 transistorised communications receiver. An enthusiast's receiver at a modest price. Embodies features usually only found in much more expensive designs. Powered by $6 \mathrm{SP2}$ torch cells or Type 924 power unit (AC). $£ 59.10 .0 \mathrm{~d}$.

EDDYSTONE EC10 Mark II transistorised communications receiver. A de-luxe version of this famous design now incorporating ' S ' meter and limited fine tuner. $\mathbf{£ 6 9 . 1 0 . 0 d}$

EDDYSTONE EA12 'Ham Band' receiver. Built to professional standards but specifically for the amateur enthusiast. High sensitivity for all reception modes $C W, M C W$, AM and SSB. FSK adaptor available as ancillary $£ 195.0 .0 \mathrm{~d}$.

There is an Eddystone Communications receiver for any frequency between 10 kHz and 870 MHz full details from Imhofs or your local Eddystone agent.

TMTOES MAINEDDYSTONE
 DISTRIBUTORS

Dept: PW5
112-116 New Oxford Street, London, WC1 Tel : 01-6367878

R36C

Never Buill a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

Economy SW Receiver
World-wide Reception
I to 30 MHz plus $550-1620 \mathrm{KHz}$
Kit: K/GR-64 - - £24.16.0
Carr. 9/-

For D.I.Y. Car Mechanics
Kit: K/ID-29 - - £I7.8.0 Carr. 5/-

Deluxe Car Radio
Heathkit Value-Powerful Output Kit: K/CR-I (speakers) $\underset{\text { Lell }}{\text { Less }} 12.0$ Carr. 5/-

Portable 'VVM'

For Hobbyists - Householders

Kit: K/IM-I7 - = $£ 14.8 .0$ Carr. 6/
Aircraft Monitor
Receiver
Kit: K/GR-98
Carr. $5 /-$

Technician's	
Versatile	
'VVM'	
7AC, 7DC,	
7 ohm ranges	
Kit: K/IM-18U	-
Carr. $5 /$	

	Modellers
	Low-cos
	Tachometer
	Uses reflected ambient light
Kit: K/GD-69	- - $\quad 111.0 .0$
	r. Paid

Many more kits to choose from in the 1970 Catalogue
 * Please rush me a copy of your Free Catalogue

\qquad
\qquad GLOUCESTER GL2 6EE

LOUDSPEAKERS

 construction．Latest high efficiency ceramic magnets．Treated Cone sur－round．＂D＂indicates Tweeter Cone round．＂D＂indicates Tweeter Cone providing extended frequency range up to $15,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ ．＇L＇indicates Holl Rubber come turround．Impedarep 3 or 15 ohms．Plesin state choice

$\begin{array}{lllllllr}\text { HF8102D } & 8^{\prime \prime} & \text { 8W } & \text { 10W } & \text { 49／6 } & \text { HF120D } & 12^{\prime \prime} & 15 W\end{array}$

HIGH FIDELITY LOUDSPEAKER UNITS Cabineta latest style Satin Tesle or Afrormosia veneer． Acounticelly lined or flled acoustic damping．Ported where
appropriate，credit terms available．

DORCHESTER ${ }_{\text {size } 16 \times 11 \times 9 i n . ~ a p p r . ~}^{\text {x }}$
 Range $45-15,000$ c．p．b．Rating 8－10 watts． Fitted High fux $13 \times 8 i n$ ．Dual
Cone spkr．Imp． 3 or 15 ohms． $\mathbf{8} .19 .9$ Cone spkr．Tmp． 3 or 15 ohms．$\frac{\text { E8．19．9 }}{\text { Carr．} 7 / 6}$
 Rating 10 watts．Tnc．Fane $13 x 8 i n$ ．speaker with higbly flexible cone surround，long throw voice coil and 11,000 line magnet．
High flux tweeter．Handsome Scandin． High flux tweeter．Handsome Scandin－
avaian design cabinet．Range $35-20,000$ c．p．s．Imp． 1 is ohrus．Gives
smooth realistic sound output． 16 Gns． R．S．C．TA6 6 Watt HIGH FIDELITY SOLID
 STATE AMPLIFIER 200－250v．AC mains operated． Frequency Response $30-20,000$
c．p．s． $\mathbf{2 d B}$ ．Harmonic Distor
 Separate Bass and Treble ＇lift＇and＇cut＇controls． 3 input sockets for Mike＇，Gram，
Kadio or Tape．Input selector switch．Out put for $3-15$ ohn Kadio or Tape．Input selector switeh．Output for 3－15 ohn
spirs．Max．sensitivity 5mV．Output rating Y．H．F．M．Ihully
 silver finish facia plate io x 3 ${ }^{2}$ in．and matching knobs
Complete kit of parts mith full wiring diagrams and instructions． 7 Gns diagrams and instructions．
Or factory built pith 12 months＊guarantee．Carr． 76
\＆8．

EXTREMELY ATTRAOTIVE PLINTHS finished in Teak or Afrormosia veneer．Trans plastic cover．

RECORD PLAYING UNITS

 Money saving units．Mornted on Plinth．Supplied with trans parent pho cover．Ready t recorder．Amplifier or Tap RP2C Garrard SP25 Mk II fitted Goldring Csivy high com pliance ceramic stereo／Mono cart－ ridge with diamond 23 Gns．stylus．Carr． $9 / 6$ stylus．Carr．9／6 23 Gns．
RPSC Garrard 2025 Auto Unit RPSC Garrard 2025 Auto Unit Stereo Cartridge with diamond tip Plinth \＆Cover as RP2C 15 Gns． Other types agilable th netic csitridges and with alternative design plinths．
Limited Number of CLEARANCE IINES in leading makes of $\mathrm{Hi}-\mathrm{Fi}$ equipment at Branches only

R．S．C．PLINTHS

for
Record
Playiag unita，
cut for cutior
1025，
2025,
2005
2026,
3000,
AT60，
SP25 et
3 gns．
Available 3 gnS．
with trans．plastic cov
with trans．plastic cover． 6 gns．

INTEREST CHARGES

 REFUNDEDOn Credit Sales settled in 3 months．
＇PACKAGE＇OFFERS
\star Super 30 amplifier（ $15+15$ watt）in veneered housing
\star Garrard SP25 Mk II Tumtable on Plinth \star Goldring CS90 Ceramic P．U．Cartridge with diamond stylus
\star Pair Stanway II Speaker Units
Four fully wired units ready to 76 GMS．Carr．
plug－in－Special total price TAI2 Amplifier（ 13 watt）in veneered housing Garrard SP25 Mk II 4 mp ．player unit on plinth Goldring CS90 Ceramie P．D．Cartridge 53 gns． Special total price Carr． $25 /$－ Or Dep． 210.0 .8 and 9 mthly．pay ments 85.15 .5
（Total 58 gas．）．Trangparent plastic cover 8 gna．extra． TERMS AVAIIABLE ALL PACKAGE OPFERS

LINEAR LIO HIGH FIDELITY IOW AMPLIFIER

10 Gns.
R．S．C．TAI2 MKII 13 WATT STEREO AMPLIFIER FOLLE TRANBISTORISED．SOLID STATE CONSTRUCTION HIGB FDEELITY OUTPUT OF 8.5 ．WATTS PER CHANXEL
Designed for optimam perrormance with any crsstal or ceramic Gram P．U．cart－
ridge，Radio tuner，Tape recorder，Mike： etc．$t 3$ separate switched input sockets On each channel \star Separate Bass and Treble controls t Slide 8 witch for monn use $*$ Gpeaker Output $3-15$ obms \star For
$200-250 \vee$ ．A．C．msins Response 30－20．000 e．p．s．－2dB Frequency c．p．s．Hum and Noise－ 70 dB B 太ensitivites（1） 300 mV （2） 50 mV （3） 100 mV （4） 2 mV ．Output rating $\mathrm{I} . \mathrm{H}_{\text {．}} \mathrm{F} . \mathrm{M}$ ．\star Handsome brushed milver inish Facia and Knobs，Complete kit of parts with
full wiring diagrams \＆instructions．Factory built with $\quad 31$ Car．7／9． full wiring diagrams \＆instructions．Factory built with 12 mith gntee 17 Gns or Deposit $85.2 .6 \mathrm{and} 9 \mathrm{mth} y \mathrm{pymas}-2$ Gn 34／－（Total £20．8．6）．Or in Teak or Afrormosia veneer housing 201 Gny． Dep．£5．10．6 and 9 monthly payments $£ 2.1 .7$（Total £24．4．8）．

AUDIOTRINE HI－FI SPEAKER SYSTEMS

Consisting of matched 12 in ． 11,000 line 15 Watt 15 ohm high quality speaker．cross－over unit and tweeter Smooth response and extended frequency \quad fange ensure surprisingly realistic reproduc－ $\mathbf{5 . 0}$ tion．Or Senior 15 Watt inc．HF126 Carr．5／9 15,000 line Speaker 86.15 .0 ．Carr．6／6

> HI-FI SPEAKER ENCLOSURE Teak or Atrormosia $\begin{aligned} & \text { veneer finish. Modern design. Acousticality lined } \\ & \text { All sizes approx } \\ & \text { Carr. }\end{aligned}$ All sizes approx. Carr. 5%, per enclosure
HirFi speaker．size $22 \times 15 \times$ 9in．Ported SEith For ontstanding results SE12 For excint primnce with 12 in

THE＇YORK＇HIGH FIDELITY 3 SPEAKER SYSTEM太 Moderate size，only $25 \times 14 \times 10 \mathrm{in}$ ．COMPLETE KIT 20 Gns \star Response $30-20,000$ o．p．s．Impedance 15 ohms considerabley more．Conisists of（1）ivin． 1 j watt Bass unit with cast chassie．Roll rubber cone surround for wiltra low resonance，and weramic
 high fux middle range speaker．（4）High effeicncy tweeter．（5）Appro
 $\star 200-250$ v．A．C．Mains operation \star High－sensitivity．
 any amplifer \star Drift－free recaption．\star Outpat ample for Stereo 期口litiplezer．$\$$ Turer hesd uning ailicon Plang Transistory．\star Designed for head using ailicon Rlanar

RSS．C．SUPER 3OMKII HIGH FIDELITY STEREO AMPLIFIER

High Grade Components Specifications comparable with units costing considerably more． TRANSISTORS 9 high quality types in each channel．
OUTPUT 10 Watts R．M．S．continuous
into 15Ω（per channel） continuous into 3Ω ．
TNPDT SENSITIVITIES Mas．P．U． 4 mV ． Aux． 100 mV. Mic． 5 mV ．Tape Head $2 . \overline{\mathrm{S}} \mathrm{mV}$ ． FREQUENGY RESPONSE ± 2 dB．10－ 20,000 c．p．s．
TREBLE CONTROL +17 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$ ．
BASS CONTROL +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ． HOM LEVEL－ 80 dB ．
GARMONIC DISTORTION 0.1% at 10 watts
1，000 c．p．

Enploying Twin Printed Circuits． CROSS TALE $\overline{52}$ dB at 1,000 e．p．s． CONTROLS 5 Position Input Selector． Bass．Treble，Vol．．，Bal．：Stereo／Mono Switch，Tape Monitor Switch，Mains Swited．${ }^{\text {INPUT SOCKETS（1）P．U．（2）Tape Amp．}}$ （3）Radio，（4）Mic．or Trape Head．（Opera－ tion of Input Selector assures appropriate equalisation）．
CHASSIS Strong Steel construction．

Facia plate attractive design in rigid Perspex．Silver finish matching control knobs as available．
Eminently suitable for nge with any make of pick－np or Mic．（Ceramic or Magnetic， Moving Coil，Ribibben or Cryssar）currently
available．Superb sound outpat quality ean be obtained by use with first rate ancillary equipment．
COMPLETE KIT OF PARTS 22 gns． Point to point wiring diagrams Carr．15／－
UNIT FACTORY BUILT
29 gns． or Deposit $£ 7.5$ ． 0 and 9 monthly payments 58／8（Total £33．1a．9）or in Teak or Afrormosia veneer housing 32 Gan．Carr．10／－．Terms： ${ }_{66}$ Deposit $\mathbf{E 7 . 3 . 6}$ and 9 monthly payments of

PARTRIDGE＂JOYSTICK＂SHORT WAVE AERIALS AND TUNERS AT ALL BRANCHES
 Trpe Bhifl
An all－iry bat－
tery eliminator．
Size $5 \nmid x 4 \frac{1}{5} x$
2in．
Contpletely replaces batteries sup． plying 1 bv．and 90y．where A．C． mains $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is available． Complete kit with diagram 52／6 or assembled 3 Gns．
SUPER IS HIGH FIDELITY SOLID STATE AMPLIFIER
Approx．as Super 30 but single
channel．
Complete kit with constructional details and point to point wiring diagrams．
$12 \frac{1}{2}$ gns．Carr．12／6 OR FACTORY BUILT 151 Gna． 12／6．Terms：Deposit 4 Gns． and 9 monthly payments $31 / 1$ （Total \＆18．8．9）or in Teak or Afror－
mosia reneered housing． 18 gns．BLACKPOOL（Agent）O．\＆C．Electronies， 227 Church StreetBIRMINGHAM 30／31 Gt．Western Arcade 021－236－1279DERBY 26 Osmaston Rd．，The Spot（Half－day Wed．）Tel． 41361DARLINGTON 18 Priestgate（Half－day Wed．）Tel． 68043EDINBURGH 133 Leith St．（Half－day Wed．）Tel．WaverleyGLASGOW 326 Argyle St．（Half－day Tues．）Tel．CITy 4158
HULL 91 Paragon Street (Half-day Thursday) Tel. 20505

MAIL ORDERS TO： 102 Henconner Lane，Bramlay，Leeds 13 ．No C．O．D．
under $\mathrm{E1}$ ．Terme C．W．O．or C．O．D．
 under 5 en Trade suppiled．S．A．E．with
enquiries．
Brath enquiries．
Branchos MAIL ORDERS MUST NOT BE SENT TO SHOPS

32 High Street（Half－day Thurs．）Tel． 56420 LEICESTER 5．7 County（Mecca）Arcade，Briggate（Half－day Wed．）LEEDS 73 Dale St．（Half－day Wed．）Tel．CENtral 3573 LIVERPOOL 238 Edgware Road，W2（Half－day Thurs．）Tel．LONDON 60A Oldham Street（Half－day Wed．）MANCHESTER 106 Newport Rd．（Half－day Wedtral．） 2778 MIDDLESBROUGH 41 Blackett Street（ Opp Fenwicks Store）NEWCASTLEUPON
（Half－day Wed．）Tel 21469 13 Exchange Street（Castle Markec Bldgs．）SHEFFIELD

AMTT ULTRA LINEAR HI-FI AMPLIFIER Highly sensitive. Push-Pull Tone Control Stages. $\begin{gathered}\text { output, with Pre-amp } \\ \text { Performance }\end{gathered}$ factory built units: Hum level-70dB. Frequency response $\pm 3 d B 30-20,0000 / \mathrm{s}$. Seetionally wound output transformer. All high grade components. Valves EF86, EF86, ECC83, 807, 807, GZ34 Separate Bass and Treble Controls. Sensitivity 36 mV . Suitable for high impedance microphones, Schostal or ceranic P.U's. Designed for Clubs, Punctions, etc. For use with Electronic Organ Guitar String Batg etc Gram Radio or tape. Reserve L.T. and H.T. for Radio Tuner. Two inputs with associated volume controis bo that two separate inputs such as Gram and "Mike" an be mixed. $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ A.C mains. For 3 and 15 ohm speakers. Complete tions parts with point-to-point wiring diagrams and instrue- $\quad 15$ Gns. ${ }_{12 / 6}^{\text {carr. }}$
Twin-handled perforated cover 2\%/6. Supplied factory built with EL 34 output valves. 12 months' guarantee for 18 gns. TGRMS : Deposit £6.3.0 and 9 monthly payments of 34/- (Total $\mathbf{2} 21.8 .0$). Send S.A.E. for leafiet
R.S.C. AlI HIGH FIDELITY |2-I4 WATT AMPLIFIER POSH-PULL ULTRA LINEAR OUTPUT Two input soctets with mixing tacilities High Two input sockets with mixing facilities High constrols. Frequency response $+3 \mathrm{~dB} 30-20.000 \mathrm{c} / \mathrm{s}$ Hum level-60dB. Sensitivity 40 millivolts. For Crystal or Ceramic PUs. High Impedance "mikes"
For Mustcal Instruments etc. Std, AC mains. For $3 \& 15$ ohm spkrs. $9 \frac{1}{2}$ Gns. SAE for leaflet. Complete kit. Full instructions and point-to-point $9 \frac{1}{2}$ Gns. $18 \frac{1}{2}$ gns. or Deposit $99 / 6$ and 9 monthly payments of $28 /-$ (Total 816.18 .6). S AIIT TRANSISTORISED VERSION of above complete kit $\mathbf{9}$ Gns Assembled 18 Gns.)
30 WATT HI-FI AMPLIFIER
FOR GUIXAR, VOCAL OR IHSTRUMENTAL GROUP A 2 or 4 input, 2 vol. control Hi-wi unit with Separate rating. Strong Rexine covered cabinet with handles. Attractive black/gold facia panel Neon indientor. For 200-250v. A.C. mains. For 3 or 15 ohm speakers. Send S.A.E. for leaflet. Deposit 5 gns. and 9
montliy payments of $89 / 8$ (Total 22 gns) 19 Gns. Carr. $12 / 6$
fane Ultra high power loudspeakers
All power ratings are R.M.S. continuous. 2 years' tuarante. Higs mux ceraic magnets

GALPA. AMPLIERS PRASE 29 GME

FANE LOUDSPEAKERS 'POP' 30 C $12^{\prime \prime} 25$ Watt f5-19-9
R.S.C. COLUMN SPEAKERS Govered
in two-tone Rexine/Vynair, ideal for vocalists and Public Address. 15 ohm matehing $\mathbf{C 5 7} 15$ watte inc. five $7 \times 4 \mathrm{in}$. speakers $\boldsymbol{\$ 7 . 1 9 . 1 1 .}$

TYPE C48S 25/30 WATTS. Fitted lour 8 in. high fiux 8 watt spenkers. overall size approx $42 \times 10 \times 5$ in 16 Gns. cart. 10% Or deposit $69 /$ and 9 monthly or deposit $88 / /-$ and 9 monthy TYPE C412S, 50 WATMS. Fitted four 12in 11,000 line 15 watt speakers. Overall size $56 \times 14 \times 9$ in. approx.

Carr.
15/. 66 GinS. Or Deposit
9 monthly payments of $54 / 6$ (Total $£ 30.7 .0$)

HIGH QUALITY LOUDSPEAKERS

In Tese or Atrormonis veneered Cabineta
L13 $13^{\prime \prime} \times 8^{\prime \prime} 10$ Watt 10,000
\&4-19-9
lines 3 or 15 ohms.
Carr". 7/6
Type $41212^{\prime \prime} 20$ Watt 10,000 lines 150 hms Carr. 8/9
f8-19-9
R.S.C. BASS-REGENT 50 WATT AMPLIFIER

A powerful high quality all-purpose unit for lead, rhythm, bass guitar, vocalists, gram. radio, tape. Peak C ${ }^{\circ}$ rating.

* Iwo extra heavy duty 12 in . Loudgpeakers. * Four Jack inputs and two Volume Controls or "mikes", Bags and Treble controle pick-ap
55
Sis. Car. 30/ or dep. $21 a .4 .8$ and 9 monthly payments of 45.11 .9 . (Total $60 \frac{1}{2}$ gns.). Send S.A.E. for leaflet. G100 100 watt peak output with Pr. speaker columns and a Bass Unit (Six $12^{\prime \prime}$ and Two
$15^{\prime \prime}$ Speakers). $98 \frac{1}{2}$ gns.
R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impregnated, Primaries $200-250 \mathrm{y}$. 50e/s. Screened MDGET CKAMPED TYPE $2 \frac{5}{8} \times 2 \frac{3}{4} \times 2 \frac{1}{2}$ in
$250 \mathrm{v} ., 60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}$
$250-9-250 \mathrm{v} ., 60 \mathrm{~mA} 6.3 \mathrm{Y} 2 \mathrm{a}$
FULLY SHROUDED UPRIGHT MOUNTiNG $18 / 11$
$250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v}$.
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \mathrm{v} .2 \mathrm{a}$. $24 / 9$ $300-0-300 \mathrm{v} 100 \mathrm{~mA} 6.3 \mathrm{v}$ 4a 0.50 v . 3 a 39/9 $300-0-300 \mathrm{v}, 130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$. t . 6.3 v . 3 a .
For Mullard 510 Amplifier $350-0-850 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0.5-6.3 \mathrm{v}$. 3 a . $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .$, c.t., 5 v . 3 a . $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}-, 6.3 \mathrm{v}$. $3 \mathrm{a} ., 5 \mathrm{v}$.

$450-0$

TOP 8HPOOD $250 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$, , c.t., 5 v . 3 a .
250-0.250v. 70 mD DROP-THRO' TYPE $250-0-250 \mathrm{v}-100 \mathrm{~mA} .6 .3 \mathrm{v} .3 .5 \mathrm{a}$.

50-0 $27 / 9$ $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v}, 2 \mathrm{a}, 0-5 \mathrm{~b}-3 \mathrm{yv}, 2 \mathrm{ai}{ }^{28 / 9}$ 250-0-250v. 100mA, 6.3v. 4a., 0-5-6.3v. 33 29/9 $300-0-300 \mathrm{v}$. $100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 3 a . $39 / 9$ $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 1 a . $\begin{array}{ccc}\text { Suitable for Mullard } 510 \text { Amplifier } \ldots . . & 46 / 9 \\ 350-0-350 \mathrm{v} . ~ & 100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a} . & 89 / 9\end{array}$ $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{y} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}$. 3a. $46 / 11$ FILAMENT or TRANSISTOA POWER PACK Typer 6.3v. $1.5 \mathrm{aa} .8 / 9 ; 6.3 \mathrm{v} .2 \mathrm{a}, 9 / 9 ; 6.3 \mathrm{v} .3 \mathrm{a} .13 / 9$; $6.3 \mathrm{v}, 6 \mathrm{a}, 22 / 9 ; 12 \mathrm{~F}$. 18. $9 / 11 ; 12 \mathrm{v}$. 3s. ог 24 v . CEABGER TPAYGORHRS 0-9-15v, $2 a .81 / 8$ 2ta. 19/11; 3a. 21/11;5a. 25/11; fa, 29/9; 8a. 36/9, AJTO (Step UP/step DOWN) TRANSFOBMERS $0-110 / 120 \mathrm{v} .200-280-260 \mathrm{v}, 550-80$ watts $19 / 9$; 150 watts, $83 / 6250$ watts $49 / 9 ; 500$ watts $105 /-$ ODTPUT TRANSFORMERS
Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Push-Pull 8 watts EL84 to 3Ω of 15Ω. Push-Pull 10 watts 6V6, FCL 86 to $3,5,8$ or 15Ω
Push-Pul
Push-Pull EL84 to 3 or 15 Q 10 -12 watts Push-Puil Ultra Linear for Mullard 510, etc Push-Pull $15-18$ watts, sectionally wound
$6 \mathrm{~L} 6, \mathrm{KT} 66$, etc., for 3 or $15 \Omega \ldots .$. . Push-Pull 20 watt high quality sectionally wound EL34, 6L6, KT66 etc. to 3 or 15Ω SMOORHING CHOKES $150 \mathrm{~mA}, 7-10 \mathrm{H}$. 250Ω $12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 10 / 9 ; 80 \mathrm{~mA}, 10 \mathrm{H}$, $350 \Omega 8 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 11$.
SELENIUM RECTIFIFRS F. W. (Bridged) All $6 / 12 \mathrm{v}$. D.C. output. Max. A.C. input 18 v

 The'New Picture-Book'way of learning BASIC ElectricitrisvolsYou'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity,
Electronics, Radio and Electronics, Radio and
Telecommunications

WHAT READERS SAY

'Everything is clearly set out . . .'
I am well pleased with this pictorial system. Everything is clearly set out in diagrams, . . L.P., Co. Armagh.
'. . . very pleased with the set . . .
I was very pleased with the set of Basic Electronics. Please send Basic Electricity . . . D.W., Margate.
‘. . . how understandable your books are . . .
. . . Pleased to say how understandable your books are, I now have a sound knowledge of the subject . . . A.A., Hull.
A TECH-PRESS PUBLICATION

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of 20/- followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS 90/- Cash Price, or Down Payment of $20 /$ followed by 4 fortnightly payments of $20 /$ each This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
FULL POS
ADDRESS

Fully guaranteed Individually packed VALVES

(3

Y:

DAFY $7 / 9:$	EF3

6/- PABC8 7/6 EF40 \begin{tabular}{ll|l}
DK92 \& 9/- \& EF41

DK96 \& $7 / 6$ \& EF80

DK96 \& $7 / 6$ \& EF80

DL9:2 \& $6 / 6$ \& EF83

DL9: \& 6/6 \& EF8:

DL94 \& 6/6 \& EF85

DM70 \& $6 /-$ \& EF88

DM \& $7 / 0$ \& D88

 DM71 $\quad 7 / 6$ EF89

DY86 \& $6 /-$ \& EF91

DY87 \& $6 /$ \& DF92

DY87 \& $6 / 6$ \& EF91

DY \& EF82

DY802 \& 日/9 \& EF92

DF95

EABC80 \& 6/6 \& EF95

EF183

EAF42 \& 10/- \& EF183

EBBI \& E/ $/-$ \& EF184

EF800

EBC33 \& $8 /-$ \& EF812

EBC33 \& $8 /-$ \& EF8800

EF812 \& 1

EBU41 \& $10 / 6$ \& EFL200

EBC81 \& $6 / 8$ \& FL34

\hline EBC81 \& $6 / 6$ \& EL 34 \& $10 / 6$ \& PCF8802

EBF80 \& $7 / 6$ \& EL41 \& $11 / 6$ \& PCF805

\hline EBF80 \& $7 / 6$ \& EL41 \& $11 / 6$ \& PCF806

EBF83 \& $8 / 6$ \& EL42 \& $10 / 6$ \& PCF808

EBF89 \& $6 /-$ \& EL84

ECC81 \& $6 /-$ \& EL85 \& 8
\end{tabular}

| ECC82 | $5 / \theta$ | EL86 |
| :--- | :--- | :--- | :--- |
| ECC83 | $5 / 6$ | EL90 |
| ECC84 | $6 /-$ | EL91 |

Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. MANY OTHERS IN STOCK include Csthode Ray Tubes and Special Valves, U.K. Orderz TRANSISTORS, ZENER DIODES etc.

brand

ECC84	$6 /-$	EL91	$5 /$
ECC86	$7 / 6$	EL95	$7 /$
ECC8inn	$7 /$	EL500	$12 /$
ECCI89	O/8	EL8035	$17 /$

ALL valves guaranteed

29/41ft. AERIALS each consisting of ten 3 ft. Zin. dia.
tubular screw-in sections. 11 ft (6 -section) whip aeriai with adaptor to fit the 7in, rod, insulated base, stay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect.
in canvas bag £3.9.6. P. \& P. iD/6.
METERS

Fuil List of our very large
stock of meters on request.

ALL OVERSEAS ENQUIRIES AND ORDERS Please address to Colomor (Electronics) Ltd. 170 GOLDHAWK ROAD, LONDON W12. Tel: 01-743 0899

SURPLUS EXI BARGAINS

 Brand New. $12 p$ Opera-
tion. $75 /$, Carr. $15 /$. Nu. 19 set New $\varepsilon 10.10 .0$, Cart. Paid. All Ancillary Equip
 12242 V D. C . P
H/MIC SETS. Used 15/-, New 22/6, P. \& P. 5 /. Mains P.S.U's for is TM/RC E'6.15.0. Carr. 10/. R.F. Autenna Tuner (ATC) 25-- P. \& P.

FEW ONLY!

No. 19 Mk. III CANADIAN TRANCEIVERS. Rebuilt as new. Complete station with all connectors, headset, variometer, control box and aerial 222.10.0. Carr. 50/-
B.41 RECEIVER. LF Version of B. 40 . Coverage $1 \overline{0} \mathrm{Ke} / \mathrm{H}$. 700Ke/s. Mains Operation. As received from Ministry

R. 209 MK II COMMUNICATION RECEIVERS. 11 valve. Covere $1: 20$ $\mathrm{Mc} / \mathrm{s} .4$ bands. AM/FM. CW. BFO.
12 V DC. Internal Power supply. L2Y DC. Internal Power Supply.
Tested. 513.10 .0 . Carr. 10\% HALLICRAFTER RH9
 TELESCOPIC MASTS. 00 ft . 34ft. Ditto $80 / \mathrm{l}$. Carr 1 s . 35FT, AERIAL MASTS. seven 2 int dia. sections. Interiock 8in. Complete with base, Nylen Guys. E12.10.0. Carr. $50 /-$ TELE CF FIELD Comermunications up to 10 miles. Tested with batteries.
f5.15.0. RETIREKENT. All Many bargains for callers only. $9 \cdot \overline{3}$ Mon-

1,750 COMPONENTS FOR 65/- ? ?

YES. QUITE TRUE. READ ON

BUMPER BARGAIN PARCEL We guarantee that this parcel contains at least 1,750 components Short-leaded on panels. including a minımum of 350 transistors (mainly NPN \& PNP germanium, audio and switching types-data supplied). The rest of the parcel is made up with Resistors 5\% or better (including some 1% mainly metal oxide, car bon film, and composition types
 miniature silicon types OA90, OA91. OA95. IS130, etc. . capacitors ceramics \& polyesters $\quad .$, induc tors. a selection of values ; inducthe odd transformer, trimpot, etc. etc. . These are all miniature, up to date. professional, top quality components. Don't miss this. one of our best offers yet!! Price.
Post and Packing $6 / 6 \mathrm{~d}$
65
New Zealand $20 / \mathrm{F}$ post and packing. Limited stocks only.

KEYTRONICS, PW

52 Earls Court Road, London. W8 Tel. 01-478 8499
MAIL ORDER ONLY. Retail and Trade supplied. Export enquiries particularly welcome.

BY RETURN SERVICE
S.A.E. for list of other goods.

UNREPEATABLE PRE STOCKTAKING OFFER SAVE NEARLY 20 \%

LATEST NEW \& IMPROVED "JULIETTE" NA5OIBA COMMUNICATIONS RECEIVER 5 BAND MAINS/BATTERY SOLID STATE

LIST PRICE £44.17.f
ORICE
PRIC
34 gns.
(cashonly) only) +9
AM Band : Full Medium wave cover Marine Gand: Shipping, Hams
SW, etc. Radios 2, 3, 4: TV Sourd, Publicservices, etc. aensitivity): Airlines and
Ground Control (High VHF Band): TV Sound, Fire, Ambulance. Fuel Boards, Oil Righ, fias and Electric Boards, Loca Hams, Industrial and Com
FEATURES:- 4" Dynamic PM. Speaker. Directiona elescopic VHF aerial. Internac Ferrite rod aeriat Illuminated Dial, size $9 \frac{1}{2}^{\prime \prime} \times 5 \mathbf{3}^{\prime \prime} \times 4^{\prime \prime}$. Weight öllbs. Impressive and sturdy design in Chrome and Black Leather. Ultra sensitive 18 transistor circuit. Earpiece
and Socket. Leather carrying and shoulder strap:. and Socket.

RETAIL TRADERS SUPPLIED

Enquiries to wholesale dept.
STOCKTON PARTNERS (DEPT. PW)
BRIGHOWGATE, GRIMSBY, LINCS.
Tel: 0472 58815/64196
Ituporty, Wholesale Electronic Equipment Diatributors

			DE LUXE STEREO AMPLIFIER		
		che			
		$\begin{aligned} & \text { PACK KIT } \mathbf{~} 8.10 .0 \\ & \text { Circuit diagram, } \\ & \text { (free with kit) } 1 / 6 \text { (S.A.E.). } \end{aligned}$			
3 in. HEAVY DUTY TWEETERS. Powic magnet. A vailable in 3 or 8 ohms 15/-					
or 15 ohm 37/6, P. 350 OMM SPEAKERS 31in. 14/-, P. \& P. 2/6; $7 \times 4 \mathrm{in}$. 21/-, P. \& P. 4/ 80 OHM MOVIMG COIL SPEAKERS High Flux Masnet. $2 \frac{5}{6}$ in. dia. 12/-each. P. \& P. 1/6.					
		PRics mit			
Aprox onhm ONLY $3 / 6$. P \& P. $1 / 6$. 					
32, 2.8					
and					
			OUR PRICE 15/- per yard one yd.). S.A.E. for samples.		
Open all day Saturday Early closing Wed. I p.m. A few minutes from South Wimble. don Tube Station.					

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

1)	2) BuILD	draw and
completer rangeof presesnt- day ELECTRONIC PARTS	a modern and profes sional LATHODE OSCILOTSOPE RAY	UNDERSTAAD
$-$		
-		

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC		
- VALVE EXPERIMENTS	- PHOTO ELECTRIC CIRCUIT	- A.C. EXPERIMENTS
- TRANSISTOR EXPERIMENTS	- COMPUTER CIRCUIT	- D.C. EXPERIMENTS
- AMPLIFIERS	- basic radio receiver	- SIMPLE COUNTER
- OSCILLATORS	- ELECTRONIC SWITCH	- time delay circuit
- Signal tracer	- SIMPLE TRANSMITTER	- SERVICING PROCEDURES
This new style course will enable any no maths, and a minimum of theoryto test, service and maintain all type	to really understand electronics by previous knowledge required. It wis Electronic equipment, Radio and	dern, practical and visual methodenable anyone to understand how ceivers, etc.

PRACTICAL Wikticss

TOPIC DF THE MONTH

The Vintage Years

SOMETIMES in this column, certain elements are berated for not being as up-to-date as we think they should be. This month, with that special perversity of editors, the clock is going to be turned backwards-not, exactly, to the dawn of time but to those days when radio was a crude, exciting newcomer.
It has become clear from correspondence that there is a growing interest in those early days. So many readers have written to us on the subject that it has not been possible to answer everyone individually. These interesting letters have been greatly appreciated and, for those who have not had an acknowledgement, a grateful thank-you. Those who have asked for a feature on the history of radio will be pleased to know that something will be done about this as soon as possible. In the meantime, historicallyminded readers might care to ponder on a couple of points.

Quite a few enthusiasts have added a useful sideline to their hobby by collecting pieces of vintage radio equipment, either components or complete models. In this way, some useful little private collections have been formed, quite apart from specimens in museums or owned by radio companies. These pieces of equipment are quickly passing from the phase of being 'junk' to becoming respectable 'antiques'. We think it important that readers keep a weather eye open for anything in this line which might otherwise end up in the dustbin-a good home can always be found for such items.

The second point is that, although there are vintage car organisations, vintage record societies, vintage gramophone clubs and vintage-practically-everything-else-clubs, there is to our knowledge no vintage radio equipment organisation. The need obviously exists and such an organisation could do much to collate information and put fellow enthusiasts in touch with each other. We would be pleased to give space to any readers wishing to start such an enterprise.

W. N. STEVENS-Editor.

JUNE ISSUE WILL BE PUBLISHED ON MAY 5

NEWS AND COMMENT

Leader 19
News and Comment 20, 21
Practically Wireless by Henry 30
MW Column by C. Molloy 41
On the Short Waves by Malcolm
Connah and David Gibson; G3JDG 57
CONSTRUCTIONAL
FM Stereo Decoder by W. Cameron 22
Direct Reading Frequency Meter by T. J. Melville 26
3-Band TRF 4 Receiver by F. G. Rayer 38
Take 20, Two Transistor Radio by Julian Anderson 48
Beginners' AF Amplifier
by A. S. Ellis51
Electronic Receiver Switch for Transmit-Receive
by F. G. Rayer, G3OGR 54
I.C. of the Month, R.C.A. CA 3052 by L. A. J. Ireland 61
OTHER FEATURES
Sums plus Circuits equals Understanding Part 2 by Leslie Moore 33
Miniaturisation, Making Printed Circuit Boards by R. A. Yates 42
Aerials for Mobiles by F. Judd, G2BCX 44
What do you know about Meter Shunts? Part 2 by H. A. Cole 49
P.W. Guide to Components, Part 17 by M. K. Titman, B.Sc. 65
P.W. Pedal Steel Guitar,
Alternative Construction
for Preamplifier
by H. G. Middleton 70

[^0]
MEWS... MEWS... NEWS...

Marconiphone 1970

First new models for 1970 announced by British Radio Corporation are three Marconiphone sets, a portable radio and two tape recorders.

The Marconiphone model 4170 is a a.m./f.m. transistor radio with a recommended retail price of $£ 3210$ s.

Waveband coverage includes long, medium, short and v.h.f., with built-in a.m. and f.m. aerials. There is a permeability-tuned aerial circuit for matching a car aerial on long and medium wavebands. The receiver has automatic frequency control on v.h.f. with push button on/off switch.

Model 4170 receiver.
Output is approximately 1 W , at less than 5% harmonic distortion through a 6×4 in. \cdot loudspeaker. Sockets are included for a car aerial, tape recorder, earphone and an external power unit; when this latter socket is used the internal battery is switched out.

The Marconiphone tape recorder model 4245 is a twin-track single-speed machine with $5 \frac{3}{1}$ in.

Model 4245 tape recorder.

Model 4246 tape recorder.

spools. With lid removed it will accommodate spools up to 7 in . diameter. Tape speed is $3 \frac{3}{4}$ i.p.s.

Incorporating an entirely new BRC tape deck, model 4245 has automatic recording level control, switched for either speech or music. Other facilities include a combined input and output socket for recording and playback, automatic end stop, pause control and 4-digit tape position indicator with reset button.

Solid state, model 4245 has an amplifier output of 3 W , speech and music rating at 5% distortion; speaker size is $5 \frac{1}{2} \times 2 \frac{3}{4} \mathrm{in}$. elliptical.

Supplied with a moving coil microphone, 900 feet of LP tape on a $5 \frac{3}{4}$ in. spool, a DIN 2 -pin speaker plug and connecting lead in a plastic wallet, model 4245 has a recommended retail price of £35 19s.

Marconiphone model 4246 is a 4-track single speed tape recorder running at $3 \frac{3}{4}$ i.p.s. Of very similar specification to the 4245, the model 4246 has a switched automatic recording level control for the more advanced recording enthusiast to go on to manual when required. Recommended retail price of Marconiphone model 4246 is $£ 41$ 14s.

Rastra Catalogue

Rastra Electronics Ltd. announce the issue of a new 17-page looseleaf catalogue of i.c.'s, transistors, triacs, thyristors, rectifiers, computer diodes, breadboards, sockets etc. Rastra Electronics Ltd., 275 King Street, Hammersmith, London, W.6.

Local Radio on MW

The BBC local radio stations, soon numbering 20, can use the Medium Wave in the future. The Minister of Posts and Telecommunications (GPO) John Stonehouse recently released the necessary frequencies and freed the BBC from its restrictive v.h.f. allocation.

The reason for this move is that while v.h.f. gives superior reception only a limited number of listeners have or can afford suitable receivers. Local stations will in future use the "opt-out" channels used for local radio.
These stations will, of course, be best received during the daytime as at night the Continentals come up and make local reception on m.w. virtually useless. V.H.F. will still however be used.

ITT Power Supply

ITT Components Group Europe now offer a new MP range of stabilised power supplies.

The MP range is available in output d.c. current ratings of 0.5 , 1, 2, 3, 5 and 10A. Each current rating may be specified in stabilised output voltage ranges of 0-16, $0-30$ and $0-50 \mathrm{~V}$.

A key feature of the MP range is that two versions of each unit are offered. The "industrial" version meets the majority of normal industrial requirements.
Stability ratio of the industrial version is $1000: 1$ above 6 V output and $250: 1$ below, compared with 10000:1 for the professional version at all voltages. ITT Components Group, Europe, Standard Telephones and Cables Limited, Edinburgh Way, Harlow, Essex.

WEWS...
 WEWS... NEWS...

IC FM tuner kit

We have been informed by General Avionic Associates Ltd. that they have changed their address to: 2 Cheam Court, Station Way, Cheam, Sutton, Surrey. They apologise for any inconvenience caused to readers and ask that if they sent cheques and postal orders to the old address (9 Wimpole Street, London, W.1) would they be kind enough to cancel them and re-order from the Sutton address.

Amateur radio network links 'shut-in' operators

In an age when satellites make communications swifter and more extensive than ever before, it can be surprising to discover that some people are still cut off from their fellow men by physical handicaps. For the deaf and the blind there are hearing aids, Braille printing and similar devices to help overcome disabilities. Yet other ailments can shut in the victim from the worldunless he is determined not to be left out, and some physically sound friends respond to that determination.

That is what happened in San Ysidro, a city in California close to the Mexican border, where two young men, victims of a crippling disease, have become amateur radio operators, able to communicate with the world. The identical twin brothers, Henry and Jack Johnson, are only able to talk, move their eyeballs and control a capillary nerve in one arm. But now, thanks to the efforts of a group of dedicated amateur radio "hams," they are able to talk to the four corners of the earth.

As a result, there is now a radio network linking handicapped operators around the world. The organisation, called International Handicappers' Net (IHN), grew out of a conversation with the disabled twins and a Lieutenant Commander Ray E. Meyers, a retired Navy communications officer. Soon other amateurs joined the group and an exotic control system was developed for operating the radio

Practical Wireless and Prachical Television Filmshow-1970

The meeting was opened by the Chairman, W. N. Stevens, Editor of $P . W$. and P.TV. He paid tribute to Mr. A. T. Collins, the recently retired Managing Editor of the Practical Group magazines who had been with the firm 40 years, and who had worked with F. J. Camm in the early days of P.W. When Mr. Camm died, Mr. Collins took over as Managing Editor. Referring to the subject of the evening, the Chairman said that the integrated circuit was not the end of the Home Constructor by any means and that it should stimulate ideas and open up new fields. He said that Practical Wireless tried to keep up to date as far as it possibly could and that it was one of the first magazines to publish regular articles on integrated circuit projects in each issue.

Two films were shown, the first entitled "Mullard-ability" and was described as a profile of Mullard Ltd, the largest manufacturer of electronic components in the U.K. The second film, entitled "Something Big in Microcircuits" was set against a background of a $\frac{1}{4}$-million square feet of production space, years of scientific work in research labs and millions of pounds of invested capital.

The film showed how hundreds of components are created on a tiny chip of silicon less than three square millimetres in area and described why modern technological progress has made this process necessary. Also shown, were some of the ways in which microcircuits are already being used and outlined the future of these devices in the 1970s.

After the films, there was the usual break for refreshments and when the audience had returned, Philip Hunt deputising for Ian Nicholson gave a talk entitled "The Integrated Circuit". He said that integrated circuits had necessitated an entirely new approach to the whole subject of circuitry and circuit design. He discussed the reasons for and the results of this and told of their development and manufacture by Mullard Ltd.

After the talk, the meeting was opened to questions and some interesting points of view were brought forward.
equipment within the limited abilities of Henry and Jack.

It was the Johnson brothers who suggested starting a radio network of handicapped amateurs along with the possibility of listing the members so that others might immediately recognise fellow members. The result would be "on the air" contact, discussion, or relaying of messages.

Members are classified as operators or honorary-the honorary members are unhandicapped persons who help the handicapped to learn to operate their sets and solve problems of managing transmission and receptión. Membership is also graded according to the operator's skills, as novice, technician, general and extra. The net has more than 3,000 members in all the states and in almost all countries. Many operators were
"hams" before they became handicapped; the others learned their skills after illness made them shut-ins.

Because the physical handicaps include a wide range of crippling conditions, the honorary members have resorted to a variety of systems of instruction in addition to creating ingenious devices to meet individual difficulties in handling transmission and reception of messages.

Some helpful amateurs developed voice-controlled relays permitting an armless or paralyzed operator to send intelligible code. Others have perfected radio controls which can be turned on and off by the flick of an eyelid. Another device enables a bed-ridden operator to manage his controls by air pressure blown through a flexible hose.

W.CAMERON

SINCE publication of the Author's "Transistor FM Tuner" (P.W. Feb.-Mar. 1969) there has been a considerable call from constructors for a stereo decoder unit suitable for use with this tuner. The tuner unit itself was designed for use with a decoder, so it requires no modification. The decoder may be used with other tuners which have an output which by-passes, or otherwise renders inoperative, the de-emphasis network.

This or any other decoder will not work satisfactorily from a tuner which has inadequate i.f. bandwidth, poor a.f. response, or is verging on instability, which may cause lack of bandwidth or a poor frequency/phase relationship. It is also very desirable, if not essential, that the tuner have a.f.c. or be crystal controlled, as channel separation depends largely on the signal being always correctly tuned.
A signal which is of just sufficient strength to provide acceptable mono reception is likely to be inadequate for stereo. Similarly, at some sites or beyond the service area of the v.h.f. station concerned, the change from mono to stereo reception may introduce additional background noise. This is an unavoidable consequence of the decoding process which can only be overcome by improving the signal into the tuner by means of a better aerial system.
In any case the aerial should be in a fixed position and not just a flying lead hanging from the receiver's aerial socket.

With these points already in mind, it is as well to have some idea of how stereo broadcasting works.

The system the BBC is using is the pilot tone (Zenith G-E) system, which is a method of transmitting both left (A) and right (B) channels on a single wavelength, coded at the transmitter by a multiplexing process.

At the receiver, the decoder converts the multiplexed signal back into the A and B signals for the two channels. The system is compatible, so that on a mono only receiver the stereo signal is reproduced only as mono, being the sum of the A and B signals.
For stereo reception however, additional information is necessary to enable the decoder to seperate the A and B signals. This extra information consists of a "difference" signal (A-B) which is transmitted

as the upper and lower sidebands of a 38 kHz suppressed sub-carrier.

A simple way to envisage this operation, and which would give the same result; is as a process of alternately switching the signal to left and right hand channels at a rate of 38,000 times per second.

The same sort of switching process in the decoder extracts the A and B channels for feeding to the respective left and right amplifiers and loudspeakers.

This rate of switching is syncronised between the transmitter and receiver by means of a 19 kHz pilottone, which is doubled to 38 kHz for the switching operation. The two frequencies are phase coherent.

The block diagram (Fig.1) should explain the operation of the decoder.

CIRCUIT DESCRIPTION

The first stage, Tr1, has unity gain and serves only to provide an inverted audio signal from the collector with respect to the emitter. The 19 kHz pilot tone is taken off by the tuned circuit L1-C5 via R5 and C3, and amplified by $\operatorname{Tr} 2$. $\operatorname{Tr} 3$ is directly coupled to the collector of $\operatorname{Tr} 2$ and its base bias is set (by adjustment of VR1) to or beyond cut-off to ensure efficient frequency doubling in the 38 kHz tuned circuit L2-C8. The silicon diode D1, holding the emitter at 0.6 V , ensures that the .transistor will turn on only when the pilot tone reaches a sufficient amplitude to operate the transistor switches $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$. The diode therefore also en-

Fig. 1 : Block diagram showing operation of decoder sures that Tr 3 remains cut off when no pilot tone is received (mono) so that the switches will not be spuriously operated by high level audio signals, which may otherwise shock L1 and hence T1 into excitation.

The transistors Tr 4 and Tr 5 are shunt gates, driven by the anti-phase voltages appearing at each end of the centre-tapped L3.

Outputs A and B will be left and right channels

Fig. 2: Circuit shown is for -ve earth. For + ve earth, chassis connection is made to + rail and C1 reversed in polarity,
respectively when the phasing of T1 is as shown in the circuit diagram (Fig.2). Reversing the connections of L3 will invert the channels.
Series gate systems were tried, but were found to have the disadvantage that a large switching rate signal was present in the output, sufficient to overload the following amplifier if its response extended to over 38 kHz , unless rather elaborate filtering was used.
Although a transistor switch can never be like a perfect switch, the shunt gate system is very efficient. Crosstalk (measured at 1 kHz) due to inefficiency is -26 dB , which is improved to better than 40 dB by applying an out of phase signal via

components list

Resistors:

R1	$33 \mathrm{k} \Omega$	R12	$3 \cdot 9 \mathrm{k} \Omega$
R2	33 k ת	R13	$10 \mathrm{k} \Omega$
R3	$1 \cdot 5 \mathrm{k} \Omega$	R14	$4 \cdot 7 \mathrm{k} \Omega$
R4	$1 \cdot 5 \mathrm{k} \Omega$	R15	$4 \cdot 7 \mathrm{k} \Omega$
R5	$22 \mathrm{k} \Omega$	R16	$5 \cdot 6 \mathrm{k} \Omega$
R6	$10 \mathrm{k} \Omega$	R17	$5 \cdot 6 \mathrm{k} \Omega$
R7	$2 \cdot 2 \mathrm{k} \Omega$	R18	$820 \mathrm{k} \Omega$
R8	$120 \mathrm{k} \Omega$	R19	$820 \mathrm{k} \Omega$
R9	$1 \mathrm{k} \Omega$	R20	47Ω for 60 mA bulb
R10	$22 \mathrm{k} \Omega$		68Ω for 40 mA bulb
R11	$3 \cdot 9 \mathrm{k} \Omega$		
All resistors $\frac{1}{4}$ watt, 10\% miniature types			
VR1 $470 \mathrm{k} \Omega$ 1in. miniature preset			

Capacitors:

Capacic			
C 1	$8 \mu \mathrm{~F} 12 \mathrm{~V}$	C 8	$0.01 \mu \mathrm{~F} 2 \%$ polyester
C 2	$8 \mu \mathrm{~F} 12 \mathrm{~V}$	C 9	$0.1 \mu \mathrm{~F}$ ceramic
C 3	$0.01 \mu \mathrm{~F}$ ceramic	C 10	$4,000 \mathrm{pF}$ ceramic
C 4	$8 \mu \mathrm{~F} 12 \mathrm{~V}$	C 11	$4,00 \mathrm{pF}$ ceramic
C 5	$0.01 \mu \mathrm{~F} 2 \% \mathrm{p}$ 'ster	C 12	$0.1 \mu \mathrm{~F}$ ceramic
C 6	$8 \mu \mathrm{~F} 12 \mathrm{~V}$	C 13	$0.1 \mu \mathrm{~F}$ ceramic
C 7	$8 \mu \mathrm{~F} 12 \mathrm{~V}$		

Semiconductors:

Tr1-Tr6 BC108 or BC109
D1 Silicon diode BA100, OA202, etc.
D2 Germanium diode AA119, OA91, etc.

Miscellaneous:

Pot Core assemblies, STC 10D/WR Type A1; Miniature 18 -way group board; 13-way tag strip; Aluminium panel $5 \mathrm{in} \times 5 \mathrm{in}$; Bulb 6 V 60 mA (or 40 mA); Bulb holder; 40 s.w.g enamelled wire for coils.

R18 and R19 to each channel. These resistors may be adjusted to improve overall seperation as mentioned later. The potential of the switching signal in the output is very small and is almost completely removed by the de-emphasis capacitors C 10 and $\mathrm{C11}$.

The germanium diode D2 and transistor Tr6 and associated components are optional, and are to provide an indication by means of a light when a stereo programme is being transmitted. The power supply for the decoder will dictate whether or not it can be used.

Without the pilot light circuit, the decoder requires a supply of 9 V at only 11 mA , but with the light and Tr 6 etc., requires a supply of 9 V at 70 mA .

In the Author's case, both tuner and decoder are powered from the amplifier supply, (Low Cost Hi-Fi, P.W. Jan.-Feb. 1968) the tuner from the negative supply line and the decoder from the positive line, the chassis or earths all being common. Figure 3 shows the additional components required when the decoder is powered from a 12 V source. The decoupling capacitor should be $1000 \mu \mathrm{~F}$ if audio is present on the 12 V line.

The input impedance to the decoder is $10 \mathrm{k} \Omega$ and is suitable for direct connection to a transistor tuner with an output of 600 mV to 1 V peak to peak

TRANSISTOR VOLTAGE READINGS

MONO STEREO

	E	B	C	E	B	C
$\operatorname{Tr} 1$	3.8	4.2	5.0	3.8	4.2	5.0
$\operatorname{Tr} 2^{*}$	0	0.4	0.3	0	0.15	0.2
$\operatorname{Tr} 3^{*}$	0.6	0.3	9.0	0.6	0.2	9.0
$\operatorname{Tr} 4$	0	0	0	0	1.5	0
$\operatorname{Tr} 5$	0	0	0	0	1.5	0
$\operatorname{Tr} 6$	0	0	9.0	0	0.7	0.9

* Depends upon setting of VR1.

Readings may vary slightly, Measured using a $20 \mathrm{k} \Omega / \mathrm{V}$ meter; 9 V battery supply.

Fig, 3: Additional components required when using a 12V supply.
(approx. 200 to 300 mV r.m.s.).
With a valve tuner, it may be necessary to fit a resistor in series with the input (typically $10 \mathrm{k} \Omega$ to $47 \mathrm{k} \Omega$) to provide the correct input level to the decoder and also to reduce the tuner discriminator loading to an acceptable value. It may be necessary to shunt the resistor with a capacitor of $300-1000 \mathrm{pF}$ to maintain the h.f. response.
The amplifier input impedance should be not less than $50 \mathrm{k} \Omega$ for the de-emphasis to be effective, and so that the decoder shall not give an insertion loss.

Allowance must be made for the fact that on stereo, as the audio modulation is shared at the transmitter between the A and B channels, the output per channel will be approximately halved compared to mono.

CONSTRUCTION

Layout is not critical provided the coils L1 and Tl are not too close to each other. They should be about 3in. apart to avoid mutual coupling.
The layout shown (Fig.4) is preferred as it results in a rigid as well as a compact unit, while the aluminium chassis gives a useful degree of screening and provides a good earth connection for the ferrite pot cores.

Coil winding details are given in Fig.5. The capacitors C5 and C8 may be either polystyrene or silver mica types with a tolerance of 2 per cent or better.

To allow for winding and capacitor tolerances, it is wise to wind the tuned windings L1 and L2 with a few extra turns, which can be removed later if necessary depending on how the coils tune. (It is not important that the centre tap be exact except for L3).

I1 L2 170 turns C.T. L3 170 turns C.T. 40 s.w.g. enamelled wire

Fig. 5; Coll winding details.
The coils and the length of tag strip with its associated components are mounted first. Only the end lugs on the strip are used for mounting, the remainder being cut off. The completed group board is then put into position, taking care that the transistor cases (which are internally connected to the collector) do not come into contact with any metal part. The board is secured to the chassis with a couple of 6BA screws; nuts between the board and chassis serve as spacers to hold the board clear of the chassis.
A solder tag on each screw provides the screen connection for the input and output screened leads. A single lead from the chassis to the negative line

Fig. 4 : Component layout and wiring details.

TEST TONE TRANSMISSIONS, BBC RADIO 3 WEDNESDAYS AND SATURDAYS

TIME	LEFT CHANNEL(A)	RIGHT CHANNEL(B)
2330	250 Hz at zero level	440 Hz at zero level
2332	440 Hz at zero level	440 Hz at zero level, antiphase to left channel
2335	440 Hz at +8 dB	440 Hz at +8 dB , antiphase to left channel
2337	440 Hz at +8 dB	440 Hz at +8 dB , in phase with left channel
2339	250 Hz at +8dB	440 Hz at +8 dB
2340	250 Hz at zero level	Nothing
2344	Nothing	440 Hz at zero level
2347.20 approx.	Tone sequence at $-4 \mathrm{~dB}: 60 \mathrm{~Hz}, 900 \mathrm{~Hz}$, $5 \mathrm{kHz}, 10 \mathrm{kHz}$. This sequence is repeated.	Nothing
2348.20 approx.	Nothing	Tone sequences as for left channel at 2347.20
2351 approx.	250 Hz at zero level	Nothing
2352	Nothing	Nothing
2353	Reversion to mo	onophonic transmission

LEFT CHANNEL(A)
RIGHT CHANNEL(B)
440 Hz at zero level 440 Hz at zero level, 440 Hz at +8 dB , antiphase to left channel 440 Hz at +8 dB , in phase with left channel
440 Hz at +8 dB
Nothing
440 Hz at zero level Nothing

Tone sequences as for left channel at 2347.20
Nothing
Nothing

NOTES
1 This schedule is subject to variation to accord with programme requirements and essential transmission tests.

2 The zero level reference corresponds to 40 per cent of the maximum level of modulation applied to either stereophonic channel before pre-emphasis. All tests are transmitted with preemphasis.

3 Periods of tone lasting several minutes are interrupted momentarily at oneminute intervals.

Every day except Wednesday and Saturday

To facilitate channel identification and adjustment of channel cross-talk, 250 Hz tone is transmitted in the left channe! only from about four minutes after the end of the Third Programme until 2355. This test may be interrupted from time to time.
completes the earth line when the unit is to be powered from a negative earth supply. This lead will be taken to the positive line in the case of a positive earth supply, and C1 reversed in polarity.
When operating from a 12 V supply the dropping/ decoupling resistor will be in the positive line in the case of negative earth, or in the negative line for positive earth. (Fig.3).

SETTING UP

The unit can be set up on any BBC stereo transmission, and checked finally with the BBC test transmissions, details of which are given in this article.
It is first necessary to set VR1 to its approximate operating position. This is done by adjusting VR1 until the voltage at the collector of $\operatorname{Tr} 2$ is 1 V .
Temporarily connect a potentiometer (any value between $50 \mathrm{k} \Omega$ and $250 \mathrm{k} \Omega$ will do) across the tuner output, with the slider connected to the decoder input. Turn the control to maximum and tune the receiver to a stereo broadcast. Connect a meter (2.5 V scale) between the negative line and the base of Tr4 (or Tr5), negative probe to base, and adjust the cores of L1 and T1 for maximum, when the reading will be about 1.5 V . Limiting occurs at this point and it will not be possible to tune the coils accurately, so the input signal must be reduced to below the point of limiting by means of the potentiometer so that the reading at Tr4 base is 1 V or less and the coils adjusted again for maximum. Repeat as necessary always keeping the input low enough below the point of limiting to obtain a definite peak.
The stereo indicator lamp itself can serve as an indication of correct tuning if desired, with only slightly less accuracy than a meter, by reducing the input as above so that the lamp glows at half brilliance and adjusting the cores for maximum brightness.
It is desirable that when correctly tuned, the screw cores of L1 and T1 should be neither right out of nor
right into the coils. If right out, turns should be removed as necessary. If right in, it is rather difficult to add more turns, but it is permissable to shunt the $0.01 \mu \mathrm{~F}$ capacitor with a small capacitor of $100-200 \mathrm{pF}$. Now remove the potentiometer and connect the decoder direct.

The pre-set VR1 must now be set correctly. Turn the pre-set to minimum so that only R8 is in circuit. At this point there will be no voltage at the bases of $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ and the indicator lamp will be out. Gradually increase the value of VR1 when the voltage on the bases will rise and the lamp will light. The correct point of adjustment of VR1 is where the voltage at the base of $\operatorname{Tr} 4$ just reaches maximum (maximum brilliance). Further adjustment will cause the voltage (and bulb brightness) to fall again as Tr 3 is driven beyond limiting and producas a distorted waveform.

When the decoder is set up as described, it should require little or no further adjustment, as in this unit when L1 and T1 are correctly peaked, maximum output coincides with correct phase.

The unit can now be checked with the BBC test transmission, but if it has been carefully set up on a normal stereo broadcast, it is likely that only marginal improvement can be made for channel separation, by slight adjustment of T1 and VR1.

As resistors R18 and R19 are fixed and are about optimum for cancelling crosstalk due to switch inefficiency, it is possible to improve overall separation by making these resistors variable.

The procedure would be to identify the left channel while a tone is being transmitted, and then disconnect this channel from the amplifier. The resistor in the right hand channel should then be adjusted for minimum crosstalk. The procedure is repeated in the other channel.

Messrs. C. and D. Electronics, who advertise elsewhere in this issue have agreed to wind the coil bobbins at a nominal fee for those constructors who may hesitate to wind their own.

A Direct Reading

 FREQUENCYThe design incorporates a device known as a "diode-transistor pump", which was originally developed a few years ago to operate as an f.m. discriminator, frequency divider or, as used in this meter, a linear frequency to voltage converter. The basic design and theoretical operation of the system have been described by D. E. O'N. Waddington (Wireless World, July 1966); so the author claims no particular credit for the present design.

Operation

Figure 1 illustrates schematically the various stages of the circuit, and Fig. 2 shows the circuit in component form. The pre-amplifier is a straightforward single transistor stage (Tr1 of Fig. 2), using a silicon npn transistor in the common emitter mode, and enabling the instrument to test low-level signals. The mark/space ratio standardiser is D1 of Fig. 2. This diode comprises the base-emitter junction of an npn transistor connected in reverse across the base-emitter junction of Tr 2 . The negative-going portion of the waveform reaching D1 will therefore be earthed, leaving only the positive going pulses to be amplified by TR2. In practice D1 will

ARELIABLE direct-reading frequency meter has various uses in the home workshop. It can, for example, check the frequency of oscilloscope timebases, bias oscillators in tape recorders, and, of course, the output from signal generators. To be of any value, such an instrument should be capable of giving accurate readings regardless of the waveform and amplitude of the signal presented to it, and the meter to be described is, in fact, capable of a high level of accuracy from 10 Hz to 200 kHz , providing the input signal is above a certain minimum level, typically 50 mV r.m.s. (for sine waves) at the extreme frequencies. and somewhat less for those in between.
Readers with little or no other test gear should have few difficulties in building or using this meter, since setting-up requires the adjustment of only one pre-set potentiometer, and the microammeter retains its linear $0-200$ calibration.
maintain the mark/space ratio of the waveform at a constant 1:1.
Since a square wave is needed to drive the diodetransistor pump part of the circuit, the next stage required is the waveform standardiser, or squarewave converter, which is, in effect, an overdriven amplifier stage consisting of Tr2. Assuming for the moment that sinusoidal pulses are being fed into Tr2's base, the collector current available for the transistor in its given circuit reaches the maximum well before the input pulses reach their peak. Hence the corresponding pulses appearing at the collector of Tr2 will have their tops clipped, and if the input pulses are of sufficient amplitude, a square-wave output will be obtained. Clearly, sawtooth waveforms will be modified in the same way as sine waves, and square waves, not requiring modification, will come out as they went in. It also follows that once full limiting of Tr 2 has been reached, any

Fig. 1 : Block diagram showing stages of the Frequency Meter
increase in signal input amplitude cannot affect the pulses 'appearing at the collector.

Although $\operatorname{Tr} 2$ has been described as an overdriven amplifier, it could just as well be thought of as an electronic switch, especially as the box labelled switch operating at input frequency in Fig. 1 is operated by this transistor. Tr2's bias resistor, R4, provides only a small amount of base current, and the transistor is, in practice, switched on and off by the pul'ses reaching it from the previous stage. When the transistor is "off", very little current passes through R5, enabling whichever of the capacitors C3-6 that is in circuit to charge up to almost the full supply voltage. However, with $\operatorname{Tr} 2$ in the "on" state, current in R5 increases, and a larger voltage is dropped across it. Hence, the voltage charge available for C3-6 varies square-wave fashion, and is directly related to the square wave of the original signal that reaches $\operatorname{Tr} 2$'s collector.

As the supply voltage is the nominal reference level for the charge stored in C3-6, the resistor R5 must have a low value. Ideally, there should be no resistance at all in between the power supply and the capacitor to be charged, but obviously the circuit could not function if this were the case. If the author had the inclination (or more likely the wit!) to produce pages of theoretical calculations on the effect of different time constants for the combinations R5/C3-6, it could no doubt be shown mathematically that R5 must be well under 500Ω for measurements at different frequencies to be reasonably accurate. Experimentally, it was found that 470Ω was the maximum permissible value of R 5 before non-linearity of readings on the meter became apparent. To put it simply, since capacitors C3-6 draw current initially on charging up ($\operatorname{Tr} 2$ off), a large blocking resistor would prevent them from attaining their full charge before $\operatorname{Tr} 2$ switched on again. To allow for "experimental error", the value chosen for R5 is 270Ω, as indicated in Fig. 2. This value allows for more than an adequate output to drive the pump, which comprises the reservoir capacitors, D2 and Tr3. These two semiconductors also constitute the discharge path for the reservoir, and D1 the resistive emitter load for Tr 3 .

The charging and discharging of a capacitor is momentary of course; so although the switching voltage available for charging C3-6 would look like a square wave on a graph, the actual current flow in and out of these reservoirs would graphically look like a row of spikes. The spikes or pulses reaching D2 and Tr3 switch from a positive potential to zero and back again. When positive, D2 conducts and prevents current flowing in $\operatorname{Tr} 3$; when zero, $\operatorname{Tr} 3$ conducts, and a proportion of the average collector current is registered on the scale of the meter M1.

As indicated in the block diagram, $\operatorname{Tr} 3$ operates as a common-base amplifier with a current gain of almost unity. In fact, the gain is slightly under that, as the collector current includes base as well as emitter current. The power gain of the final stage is however much greater than unity, enabling a pulsed d.c. voltage to appear across the transistor's

Fig. 2: Circuit of the Frequency Meter
collector load. The meter M1 can thus be considered to be either a voltmeter measuring the voltage drop across VR1, or as a current meter sharing the collector load with the pre-set potentiometer. In either case, the current flow and output voltage of Tr 3 are linearly related to the number and size of the pulses at its emitter.

Increasing the frequency of the input signal obviously increases the number of pulses reaching $\operatorname{Tr} 3$, and if only one reservoir capacitor, say $1 \mu \mathrm{~F}$, were used, the meter's pointer would reach full scale at 200 Hz , and the instrument would be unable to check higher frequencies. Fortunately, the substitution of different value capacitors for the reservoir is quite straightforward, since the average current flow in Tr3's collector remains unchanged when the pulse count at the emitter is increased, provided that the amplitude of the pulse is reduced by the same amount. So, if our $1 \mu \mathrm{~F}$ reservoir is reduced by a factor of ten to $0 \cdot 1 \mu \mathrm{~F}$, pulse size will be similarly reduced, and f.s.d. will be achieved with an input signal of 2 kHz .

Practical Considerations

The accuracy of readings obtainable on the meter over the four ranges depends on the absolute values of the reservoir capacitors C3-6. These should have a tolerance of $\pm 1 \%$, or better. Polyester or silver mica types are preferable, though old-fashioned, large paper types with a high voltage rating may be suitable if they can be tested for low leakage. But on this score, most modern minature paper capacitors have to be ruled out, and minature disc ceramics are equally suspect. $1 \% 1 \mu \mathrm{~F}$ polyester types are usually unobtainable, and if they were they would be inordinately expensive. The usual solution to this problem is to select a capacitor with a nominal tolerance of 10% or 20%, which turns out to be slightly under $1 \mu \mathrm{~F}$, and then wire an extra small capacitor in parallel, using a capacitance bridge as a check. Alternatively, the frequency meter can be used to test its own $1 \mu \mathrm{~F}$ capacitor, preferably with a suitable signal generator, and this process will be described below.

The accuracy of the meter also depends on the semiconductors used. Transistors with a high cut-off frequency are essential (the F_{T} of the types specified
is 200 MHz), but their current gain is relatively unimportant, and so almost any silicon planar epitaxial transistors would do. A high-gain type for Trl will improve sensitivity somewhat, but little advantage is to be gained by using high-gain transistors for Tr 2 and $\operatorname{Tr} 3$. The reverse-connected diode pairs (D1/Tr2 base-emitter and D2/Tr3 base-emitter) must be fairly accurately matched, not only for different Vf's at different currents, but also for frequency-dependent characteristics: the easiest way to achieve this is to use the base-emitter junctions of transistors of the same type as $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$. In any case, general purpose diodes, such as the germanium OA81 and silicon OA200 have been found to be unsuitable. The 2N706's used in the final version of the prototype were "untested" types obtained from advertisers in this journal at very low prices. Providing some preliminary testing (for short and open circuits) is undertaken, these types appear to be eminently suitable for this design.

The capacitor connected across the meter M1 needs to be large, certainly at least $100 \mu \mathrm{~F}$. The waveform at $\operatorname{Tr} 3$'s collector is pulsed d.c.. and so the varying inductive reactance of the meter winding will produce inaccurate readings if this current is not smoothed. Further, at very low frequencies, the vibration of the meter's pointer would make readings impossible without a large amount of smoothing.

components list

Resistors:

R1 $82 \mathrm{k} \Omega$
R2 $27 \mathrm{k} \Omega$
All $\frac{1}{2}$ watt 10%
R3 $5 \cdot 6 \mathrm{k} \Omega$
R4 220k Ω
R5 270Ω

Capacitors:

C1 $50 \mu \mathrm{~F} 6 \mathrm{~V}$ èlectrolytic
C2 $4 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C3 $1 \mu \mathrm{~F} 1 \%$
C4 $0.1 \mu \mathrm{~F} \quad 1 \%$
C5 0.01μ F 1%
C6 $0.001 \mu \mathrm{~F} \quad 1 \%$
C7 $500 \mu \mathrm{~F} 4 \mathrm{~V}$ electrolytic
C8 $100 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic
Semiconductors:
Tr1, Tr2, Tr3, D1 and D2
all Type 2N706

Miscellaneous:

VR1 500Ω pre-set, panel mounting
S1 s.p.s.t. toggle switch
S2 1-pole 5 way rotary switch
M1 $200 \mu \mathrm{~A}$ moving coil meter
Battery, Veroboard, terminals, metal case.

Construction

Most of the components in the prototype are accommodated on a small piece of 0.15 in . matrix Veroboard (normally advertised as $2.5 \times 1 \mathrm{in}$.), and the layout is shown in Figs. 3 and 4. Note the breaks in the copper strip at holes D9, D15 and E4. Layout is not particularly critical, and the author more or less followed the "layout" of the circuit diagram.

Two holes are provided in the module for fixing purposes. C3-6 are connected directly to the tags on S2 and to a thick copper busbar (eg. 16s.w.g. wire) secured to one of the $C x$ terminals. $C 7$ is wired directly across M1, and C8 in the prototype is a largish type requiring a separate securing clip.

The power supply is a small battery mounted inside the metal case housing the instrument. The minimum supply voltage has been found to be 4 V and the maximum 9 V . It should be noted that higher voltages increase the collector current of Tr 3 to the point where linearity is not maintained. A battery of 6 to 9 V (PP3, PP4 types, etc.) is quite suitable, and should have a long life, since the quiescent current drain is only 1.5 mA . This, however, will increase to up to 20 mA when a hefty input signal is applied. Incidentally, the maximum input signal should be limited to about 4 V r.m.s. or 6 V peak. The maximum can be roughly determined from the maximum reverse voltage that can be applied to Trl's base-emitter junction; in the case of the 2 N 706 . this is 3 V . With the prototype, signals of up to 10 V r.m.s. have been applied without any ill effects, apart from Trl getting rather warm, but such experimenting is inadvisable.

Fig. 3 : Basic circuit board

Fig. 4 ; Top of circuit board

It is strongly recommended that the whole instrument is housed in a metal box, since powerful magnetic figlds from domestic mains wiring will otherwise affect the instrument's performance. Far less than the nominal limiting voltage is needed at the input terminals for "things to happen", and if a length of unshielded wire is connected up and allowed to float around near a mains cable or an unscreened oscillator, the behaviour of the meter's pointer can only be described as berserk. This will in fact tell the user without access to a millivoltmeter when full limiting has occurred. In the latter condi-
tion, the needle wiil stay motionless at some point on the scale; just below limiting, a higher reading will be indicated, but the pointer tends to waver about, and at lower input levels still, the meter movement becomes more erratic until it finally settles at zero when the input is removed.

Providing suitable components have been used, the pre-set pot VR1 need only be adjusted on one range. An accurate signal generator can of course be used to check all four ranges, but with the prototype it is sufficient to set VR1 for a reading of 50 Hz on the lowest range with a mains-derived input; the author then gets an accurate reading of 200 kHz on the top range on connecting the instrument up to a signal generator tuned to Radio 2.

Since a 1 pole 12 -way switch will normally have to be purchased for $\mathbf{S 2}$, the constructor can add extra ranges if desired; eg. a $0 \cdot 2 \mu \mathrm{~F}$ capacitor will give a f.s.d. of 1 kHz . A 20 Hz range could theoretically be provided if a close tolerance $10 \mu \mathrm{~F}$ capacitor could be acquired. But electrolytic capacitors are quite unsuitable as a rule, since they have a poor leakage factor, a typical $+100-20 \%$ tolerance, and frequently do not assume their maximum capacitance until an unpredictable fraction of the stated working voltage is applied to them. Unfortunately, a 2 MHz range seems to be an equally unlikely possibility from extensive experiments carried out by the author. The a.c. gain of most "r.f." and "fastswitching" transistors ($\mathrm{F}_{T} 100-300 \mathrm{MHz}$) falls quite rapidly above 100 kHz , so that the input signal level required for limiting of Tr 2 increases to several volts even at 1 MHz .
The main reason, in fact, why a $200 \mu \mathrm{~A}$ meter was chosen for M1 instead of a more standard $100 \mu \mathrm{~A}$ type, was because the useful response of the instrument with a 50 mV or so input almost abruptly stopped at about 300 kHz . A claimed response of up to 200 kHz might therefore seem rather presumptuous. Certainly no "guarantee" is offered, but various types of high F_{T} silicon transistors have been tried, and the equipment demolished and rebuilt several times without affecting the response at this frequency. An additional reason for making 200 kHz the top frequency was that even with an uncalibrated home-made signal generator, an accurate check can be made using a radio tuned to Radio 2 to check the signal generator.

Capacitance Meter

This is merely a logical refinement to the basic frequency meter design. If a wide-range lowfrequency signal generator is available, the "standard" capacitors incorporated in the frequency meter may as well be put to good use. The only extra cost incurred is that of buying four instead of two connecting terminals. The extra two are marked $C x$ in Fig. 2. The unknown capacitor is simply connected across them, and the range selector $S 2$ switched to the appropriate position. The signal generator is connected to the input terminals of the meter, and the test frequency increased from the lowest a a ailable up to $200 \mathrm{~Hz}, 2 \mathrm{kHz}, 20 \mathrm{kHz}$ or 200 kHz , the frequency selected being the one at which a reading somewhere between 20 and 200 is obtained on the meter. One of the capacitors C3-6 is then switched into circuit as appropriate, and the
signal generator adjusted, if necessary, to obtain an exact reading of 200 . The reading given by " Cx " is then rechecked. If, for example, "Cx" gives a reading of 100 on the 20 kHz range, the value of the capacitor can be readily calculated as $\frac{100}{2} \%$ of $0.01 \mu \mathrm{~F}$ or $0.005 \mu \mathrm{~F}$. Suspect capacitors can be checked against any other close-tolerance types in a similar fashion of course, not only against the four in the meter.

As mentioned earlier, it is possible to use a nondescript capacitor fished out of the junk box for the $1 \mu \mathrm{~F}$ standard in the meter, using the $0 \cdot 1 \mu \mathrm{~F} \pm 1 \%$ already acquired as a reference, and using furthermore only a 50 Hz input, if no signal generator is available. If a mains-derived input is to be used, a higher resistance pot should be temporarily substituted for VR1 ($1-5 \mathrm{k} \Omega$ should do). With a 9 V supply, adjust this so that the meter reads 20 (instead of 5) on the 2 kHz range, and then "pad up" a capacitor slightly under $1 \mu \mathrm{~F}$ connected to the $C x$ terminals so that a reading of 200 is obtained with S 2 in the $C x$ position.

The reliability of this procedure depends on the meter's being accurately calibrated and having a hairline pointer (and the constructor having good eyesight!). A somewhat more dependable but more laborious or expensive method would be to use ten close-tolerance $0.1 \mu \mathrm{~F}$ capacitors-each one could be an ordinary type checked against C 4 , if necessary. The tolerance of this cumulative capacitor would still be $\pm 1 \%$, if C4 was of that rating. A less bulky $1 \mu \mathrm{~F}$ could then be assembled and checked against this.

CORRIGENDA

Noise limiter-December 1969. In Fig. 2; the component layout, R2 should be shown connected between $9-\mathrm{k}$ and $7-\mathrm{k}$ and not between $9-\mathrm{k}$ and $8-\mathrm{k}$ as shown.
A Stereo Decoder-December 1969. In the circuit diagram Fig. 1: the base of $\operatorname{Tr} 1$ should go direct to the bottom end of R3. C3 should be between R1 and the junction of R3/Tr1 base.
The Chelmer Six-February 1970. In the Component List the three i.f.t.'s should be types P51/1, P51/2 and P50/3v respectively. The output transformer T2 used in the prototype was a Weyrad OPT1.
Vox Control Unit-March 1970. In the circuit diagram the value of the potentiometer should be shown as $470 \mathrm{k} \Omega$ and marked VR1. The capacitor CX should be shown as C 1 .
A Versatile Power Supply Stabiliser-March 1970. If the stabilised output current is to be of the order of several amperes the Zener diode Z2 must be capable of handling this current and not of a low power rating as indicated in the text. Stabilised currents up to the limit set by $\operatorname{Tr} 3$ may however be taken from point Vx and earth.

practicially Wireless commentary by HENRIY

AUDIO again - and what better subject, with Sonex 70 soon to be ringing in our ears? Will the arguments ever cease? What is better, the intimacy of the hotel room or the garish fair of an open exhibition? About the same number that thought last year's jamboree at Olympia an audio success have decried it in the trade and specialist magazines as an expensive waste. Very soon we shall know their opinion of the Skyways venture.

That is the trouble with audio; its progress has been strewn with the besoms of criticism rather than the psalms of praise. Gimmickry! cries a weary public at the news of each fresh development. Now it is Quadrasonics that stands on trial.

Four-channel stereo is not all that new, despite the hysterical ranting of some advertisements. We had multi-channel stereo in 1933, and when Bell Telephones settled for 3-channel systems it was to fill the 'hole in the middle' of a twochannel frontal stage, and the Philadelphia and Washington DC experiments at that time included four, five and more channels. It was only on grounds of economy that a two-channel system was used when stereo tape was launched. Twenty years ago, believe it or not.

Six-channel stereo systems were

Will the arguments never cease?
used for Cinerama and only Mickey Mouse knows how many channels Disney's 'Fantasia' was planned for. But these were aural gimmicks, unashamedly. Serious multi-channel work included a 12 channel system by one of tape recording's pioneers, Martin Camras, an eight-channel recording of the Boston Symphony Orchestra by Prof. Bose and those complicated hundred speaker systems with circuits like a telephone exchange that EMI and Philips used for their 'ambiphonic' experiments.

Four-channel stereo is supposed to fill the room, not just the hole in the middle. One of the complaints of the audiophile has been the added reverberation of his listening room (not solved by using phones, merely altered) and the unfaithful rendering of the reverberation of concert hall or studio where the recording originated. Quadraphonics puts this lost ambience back by using the rear two speakers of a four-speaker system for the reverberation, and delayed direct sound, as it would be in the concert hall-or, mark the term, for 'special purposes'.
O.K. so you would like to hear the Berlioz Requiem played properly, with a brass band in each corner of the lounge. Me, I prefer to keep the peace with my neighbours.

Edward Tatnall Canby-who is Associate Editor of the American magazine 'Audio'-started the controversial ball rolling over here with a report in the December 1969 Hi-Fi News, 'Four-channel Stereo'. He reported on the venture by Vanguard Recording Society in New York, who were bringing out four-channel recordings on $\frac{1}{4}$-inch tape, and then on an experimental series of stereo broadcasts from Boston which had commenced on September 27th, 1969.
$P W$ readers will be interested in knowing that while so many of us are fretting busily over the continued inability of the BBC to comply with their charter and give

My transat/antic spies.
us even two-channel stereo, the Acoustical Research Company was able to sponsor two simultaneous broadcasts from Boston stations of Boston Symphony Orchestra concerts. The programmes are picked up on two f.m. multiplex receivers. The series of demonstrations should have finished in April, and to judge by the reports of my transatlantic spies, initial reception will have been maintained and the four-channel stereo boom is decidedly on.

The other experiments, with Vanguard tape and the 'surround stereo' system, were less encouraging. Henry was tickled by Ed Canby's comment that 'the lady who sang out in front of us seemed about forty foot tall'.

A four-channel multiplex broadcasting licence is being petitioned for, and the FCC are reported to be wilting. The sponsors want to use the 'Halstead System'. That is normal stereo for the two front channels and two additional f.m. modulated subcarriers in a leftright configuration at 72 kHz and 92 kHz for the rear two channels. Len Feldman (who already has the hardware on the shelf at $\$ 89.95$) claims that 'using Panoramic Spectrum Analyser' no problem of sideband spillage is encountered.

You know, that comforts Henry, with his single channel, unmultiplexed, wavering f.m. noisebox. The only thing multi about his reception are the paths along which the mono signal bounces.

Two new Build-it-yourselfspeaker kits from Wharfedale

"Why don't you produce kits for bigger speakers?" people asked us when Unit 3 proved such a success. We hope you'll like our answer-Unit 4 (2-speaker floor

Unit 4 full range

floor standing system.

2 speakers ($12^{\prime \prime}$ Bass and $3^{\prime \prime}$ Treble) to give full range, balanced reproduction.
Frequency response of 45-17,000 Hz , when housed in suitable cabinet. Superior 4-element crossover unit ensures optimum performance from each speaker.
Rec. Retail Price $£ 160-0$

All kits include speakers, crossover network, acoustic wadding, mounting bolts and connecting wire, together with full assembly instructions. No expert technical knowledge needed.
the true sound in High Fidelity \pm
 Rank Wharfedale Ltd., Idle • Bradford • Yorkshire
standing system) and Unit 5 (3-speaker monitor system). So if you're a high fidelity enthusiast who enjoys building his own equipment, send for details.

Unit 5 the monitor system

 you can build yourself.3 speakers ($12^{\prime \prime}$ Bass, $5^{\prime \prime}$ Mid-Range unit, and $1^{\prime \prime}$ Treble) give clean, smooth performance.
Frequency response of $40-20,000$ Hz . when housed in suitable cabinet .
Unique mechanical/electrical 6 element crossover unit.

Rec. Retail Price £23-10-0.

BENTLEY ACOUSTIC CORPORATION LTD.

 Suppliers to H.M. Government 38 CHALCOT ROAD, LONDON, N.W.I Telephone 01-72.9990EXPRESS POSTAL SERVICE, SAME DAY DESPATCH BY FIRST CLASS MAIL
ALL GOODS ARE NEW, BEST QUALITY MANUFACTURE ONLY, AND SUBJECT TO MAKERS GUARANTEE

WE REQUIRE FOR PROMPT CASH SETTLEMENT ALI TYPES OF ABOVE GOODS LOOSE OR BOXED, BUT MUST BE NEW

ELECTROLYTICS. Can types: $8 \times 8 \mathrm{mfd} / 500 \mathrm{v} 7 / 6 ; 8 \times 16 \mathrm{mfd} / 500 \mathrm{v} 7 / 9 ; 16 \mathrm{mfd} / 500 \mathrm{v} 6 / \cdots ; 16 \times 16 \mathrm{mfd} / 500 \mathrm{v} 500 \mathrm{v} 8 / 9 ; 16 \times 16 \times 16 \mathrm{mfd} / 275 \mathrm{v} 7 /-; 16 \times 32 \mathrm{mfd} / 450 \mathrm{v} 9 / 9 ; 16 \mathrm{mfd} / 600 \mathrm{v}$ $15 / 9 ; 32 \mathrm{mfd} / 500 \mathrm{v} 8 / ; 32 \times 32 \mathrm{mfd} / 350 \mathrm{v} 8 / 9 ; 32 \times 32 \mathrm{mfd} / 450 \mathrm{v} 5 / 9 ; 50 \times 50 \mathrm{mfd} / 275 \mathrm{v} 8 / 6 ; 50 \times 50 \mathrm{mfd} / 350 \mathrm{v} 5 / 6 ; 50 \times 50 \times 50 \mathrm{mfd} / 350 \mathrm{v} 12 / 3 ; 60 \times 250 \mathrm{mfd} / 275 \mathrm{v} 9 / 9 ; 64 \times 100 \mathrm{mfd} / 450 \mathrm{v}$
 $2000 \mathrm{mfd} / 50 \mathrm{v} 13 / 3 ; 10000 \mathrm{mfd} / 30 \mathrm{v} 29 / 6$.

 $32 \times 32 \mathrm{mfd} / 350 \mathrm{v} 4 / 9 ; 40 \mathrm{mfd} / 1 \mathrm{Bv} 1 / 6 ; 50 \mathrm{mfd} / 5 \mathrm{v} 2 / 6 ; 50 \mathrm{mfd} / 25 \mathrm{v} 1 / 6 ; 50 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 50 \mathrm{mfd} / 350 \mathrm{v} 6 /-; 64 \mathrm{mfd} / 10 \mathrm{~V} 1 / 6 ; 64 \mathrm{mfd} / 450 \mathrm{v} 9 / 6 ; 10 \mathrm{mfd} / 12 \mathrm{v} 1 / 6 ; 100 \mathrm{mfd} / 15 \mathrm{v} 2 / 6 ; 100 \mathrm{mfd} / 25 \mathrm{v}$ $1 / 6 ; 100 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 100 \mathrm{mfd} / 450 \mathrm{v} 10 / 9 ; 250 \mathrm{mfd} / 25 \mathrm{v} 2 /-; 250 \mathrm{mfd} / 50 \mathrm{v} 5 /-; 500 \mathrm{mfd} / 25 \mathrm{v} 5 /-; 500 \mathrm{mfd} / 50 \mathrm{v} 6 /-; 1000 \mathrm{mfd} / 12 \mathrm{v} 2 / 6: 1000 \mathrm{~m} / \mathrm{d} / 25 \mathrm{v} 7 / 6 ; 1000 \mathrm{mfd} / 50 \mathrm{v} 9 / 9 ; 2000 \mathrm{mfd} / 25 \mathrm{v}$ $10 / \mathrm{F} ; 2000 \mathrm{mfd} / 50 \mathrm{v} 10 / \mathrm{F}$

SAVE POSTAL COSTS. CASH AND CARRY CALLERS WELCOME!

[^1]
SIMs olves Clifulits equals Lnameftanaing

PART 2

GRAPHS

OF all mathematical techniques available to circuit designers, graphs often prove to be the most useful; they conveniently display much information which would otherwise be contained in complicated formulae or be widely dispersed in leaflets giving technical data; they provide a practical approach to circuit design and eliminate many possible sources of error. It is often thought that graphs provide approximate solutions only, and that results obtained from them will most likely be in error. This leads to an important point which should be understood from the outset.

If the component tolerances with which one is working are large, then of course results will be approximate. Allowances should be made for spreads in component characteristics, for instance; although modern production techniques have improved the possibility of being able to interchange field-effect transistors, without altering other circuit parameters to compensate for characteristics spreads, field-effect transistors of the same type number can still vary by as much as $\pm 30 \%$ in drain current for the same value of gate current.

Conversely, many high precision voltmeters etc are provided with calibration graphs allowing voltage measurements to within a $\pm 0.05 \%$ accuracy. Graphs will give the result to a problem as accurate as associated factors (tolerances, graph scale etc) will allow.

The most basic graphs show a mathematical relationship between one variable and another. The simplest of these are:-

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{a} & \mathrm{y}=\mathrm{l} \\
\mathrm{y}=\mathrm{x} & \mathrm{y}=\mathrm{dx} \\
\mathrm{y}=\mathrm{x}+\mathrm{b} &
\end{array}
$$

(where x^{2} is x multiplied by x).
The graphs these equations described are shown in Fig. 2.1.
In the equations the letters $\mathrm{a}, \mathrm{b}, \mathrm{c} \& \mathrm{~d}$, represent constant values whereas the letters x and y represent variables. The graphs show how y will vary as x varies for the different equations.
$y=a$ means that for all values of x, y will have the value a. When $y=x$, y will have the value of x at all times. Obvious perhaps, but the simplest of facts can prove awkward in much more complicated equations.

The equation $y=c x$ has a direct application to our work as it is in a similar form to that derived from Ohm's law: $V=$ RI.

Assuming that the resistance R is held constant, then the relationship between voltage V and current I, is the resistance.

Fig. 2.1: Basic graphs
Simple relationships can be useful in graphical analysis in determining the operation or limits of operation of a component or circuit.

The load line drawn on a set of transistor characteristics to determine operation limits etc is a straight line determined by $\mathrm{V}=\mathrm{RI}$.

A further example is the maximum power limit of a transistor or similar device.

Suppose a transistor is rated at 25 mW (or 0.025 Watts). Power is related to voltage and current in the manner:

$$
\text { power }=\mathrm{VI}
$$

Due to transistor operation it is convenient to use units of volts and milliamperes (mA), and we can write that

$$
1 \mathrm{~mW}=1 \text { Volt } \times 1 \mathrm{~mA}
$$

To draw a graph of the maximum power we must treat the maximum power limit as a constant and therefore:

$$
\mathrm{VI}=25 \text { therefore } \mathrm{I}=\frac{25}{\mathrm{~V}}
$$

From this simple equation we can form a table of different values of current flow obtained by varying the voltage value.

$$
\text { e.g. when } V=1 \text { volt, } \mathrm{I}=25 \mathrm{~mA} \text {. }
$$

V volts	\ldots	1	2	5	10	12.5	25
I mA	\cdots	25	$12 \cdot 5$	5	2.5	2	1

This may be plotted as shown in Fig. 2.2. Such curves are usually given, or must be plotted, where a maximum power limit is an important consideration as for all semi-conductor components.

Fig. 2.2 : Plot of maximum power dissipation

Graphs and Amplifiers

Graphs have particular use in electronic and radio circuitry for describing the characteristics of a circuit.
For an amplifier several relationships are important:
(I) Between output and input: showing the limits which must be placed on the input signal to prevent saturation of the output, and it indicates the amplifier's linearity.
(II) Between gain and frequency: showing the useful range of frequencies for which the amplifier can be operated.
(III) Distortion level and frequency: this plot can indicate an amplifier's usefulness for specific applications.
(IV) Output voltage and supply voltage for constant levels of input signal: This will indicate the variation of power supply voltage allowable for good performance.
Examples of these graphs are given in Fig. 2.3.
Waveforms are a form of graph often taken for granted. These show how a voltage or current magnitude varies with time. A few common waveforms are shown in Fig. 2.4.

Fig. 2.3: Examples of graphs showing amplifier characteristics

Waveforms

An ability to understand the formation of these waveforms and how and where they are used in electronic circuitry is essential in practice, especially when oscilloscopes are used.
The waveforms with which we are concerned are periodic functions of time, that is, they produce a pattern which repeats at regular intervals. The time - taken for the waveform to completely pass through one cycle of operation is known as "periodic time". The number of repeats in one second is called the waveform "frequency" whose units are Hertz (Hz), although called "cycles per second" until recently.

Fig. 2.4: Examples of waveforms
It can be shown mathematically that all waveforms which are not sinusoidal are, in fact, composed of a number of sinusoidal waveforms having different frequencies. A square waveform is made up of a fundamental frequency and all its odd harmonics.

[^2]

FULLY TESTED AND MARKED

AC107	3/-	OC170	3 -
AC126	2/6	OC171	4/7
AC127	3/6	OC200	3/6
AC128	2/6	OC201	7/-
AC176	5/-	2G301	$2 / 6$
ACY17	3/-	2 G 303	$2 / 6$
AF114	4/-	2N1302-3	4/-
AF115	3/6	2N1304-5	5/-
AF116	3/6	2N1306-7	6/-
AF117	$3 / 6$	2N1308-9	9/-
AF239	12/6	2N3819 FET.	9/-
AF186	10/-	2N3844A	5\%
AF139	10\%-	Power	
BFY50	4i-	Transistors	
BSY25	7/0	OC20	10/-
BSY26	3/-	OC23	10/-
BSY27	3/-	OC25	8/-
BSY28	3/-	$0 \mathrm{OC26}$	5/-
BSY29	3/-	OC28	$7 / 6$
BSY95A	3/-	OC35	5/-
$0 \mathrm{OC41}$	2/6	0 OC 36	$7 / 6$
OC44	2/6	AD149	10/-
OC45	2/6	AUYY 10	30/-
OC71	2/6	2N305S	15/-
OC72	2/6	2 S 034	10/-
OC73	3/6	Diode5	
OC81	2/6	AAY42	2/-
OC81D	$2 / 6$	OA91	2,-
OC83	4/-	OA79	1/9
${ }_{0} \mathrm{OC139}$	2/6	OA81	1/9
OC140	3/6	IN914	1/6
1	Packs of your own choice up to the value of $10 /$ - with orders over $£ 4$.		

B78 12	Integrated Circuits, Data and $10 /=$ Circuits of types, supplied with orders.
B80 8	Dual Trans. Matched O/P pairs $10 /=$ NPN. Sil. in TO-5 can.
B82 10	OC45., OC81D and 0 and 10/= Trans Mullard glass type.
B83 20	Trans. Makers rejects. NPN/10/= PNP, Sil. and Germ.
B84 10	Silicon Diodes DO-7 glass equiv. 10/= to OA200, OA202.
B66 15	igh quality Germ. Diodes. Min. 10/m
B86 50	Sil. Diodes sub. min. IN914 and 10/= IN916 types.
	Germ. PNP Trans, equiv. to $10 /=$ OC44, OC45, OC81, etc.
88850	Trans. NPN, PNP, equivalent $10 / m$ OC200/t, 2N706A, BSY95A, etc.
${ }^{\text {B6 }} 610$	7 Watt Zener Diodes. Mixed $10 /=$ voltages.
H5 16	1.Amp. Plastic Diodes, $50-1,00010 /=$ Volts. 6 large, 10 small
H6 40	250mW. Zener Diodes DO-7.10/- min. Glass Type. AV. 40% Good.

NEW TESTED \& GUARANTEED PAKS
B2 $4 \quad$ Photo Cells, Sun Batteries 3 to10/-

B77 2
B79 4
4

B79 4	1N4007 Sil. Rec. Diodes. $1,00010 /=$ P.I.V. 1 amp. Plastic.
B81 10	Reed Switches, mixed types, 10// large and small.

$\overline{\text { B89 }} 2 \quad$| SSPS Light |
| :---: |
| Light Res. 400Ω Densitive |
| Dark $1 M \Omega$ | Cells. $10 /=$

B91	NKT163/164 PNP Germ. TO-5 10/ equivalent to OC44, OC45.

	W.
B93 5	GET1 13 Trans equiv to AC to ACY21 PNP Germ.

B96 $5 \quad \underset{\text { HFE }}{\text { 2N3136 PNP Sil. Trans. TO-18, }} 10 /=$ HFE
200 MHz .
39810×8112 and $X B 102$ equiv to 10/AC126, AC156.

399 Capacitors, Electrolytics. paper 10/ ing, this Pak $2 / 6$.
H4 250 Mixed Resistors, Post and pack-10/-

H7 40 | Wirewound Resistors. Mixed $10 /-$ |
| :--- |
| $\begin{array}{c}\text { Values. Postage } 1 / 6 .\end{array}$ |

P.O. RELAYS	8 FOR
Various Contacts and Coil	$\mathbf{2 0} / \mathbf{}$
Resistances.	
Post \& Packaging 5/-	

$*$ ALL OUR TESTED SEMICONDUCTORS HAYE A WRITTEN GUARANTEE $*$

SEND FOR OUR FREE LISTS AND CATA	NO CONNECTION WITH ANY OTHER FIRM.
LOGUE OF ALL OUR PRODUCTS. CHEEX	MINIMUM ORDER IO-, CASH WITH ORDER
YOUR OWN EQUVAENT WITH OUR FREE	MLEASE. Add 1/ Dost and packing per Order
SUBSTITUTION CHART.	OVERSEAS AND EXTRA FOR AIRMAIL.

YOUR OWN EOUIVALENT WITH OUR FREE
SUBSTITUTION CHART. PLEASE. Add $1 /$ post and packing per or
OVERSEAS AND EXTRA FOR AIRMAIL.

HOME RADIO (Components) LTD. Dept. PW, 234-240 London Rd., Mitcham, CR4 3HD. Phone 01-648 8422

We're making life

 EASY for you!

We've never seen the sense in wasting time and energy tramping round the shops trying to locate components for radio and electronic projects-especially when the Brit why we lisus the Home Radlo Components Catalogue which for many years has enabled thousands of enthusiasts to order by post. We've bullt up a mall-order service which for speed and efficiency is second to none. But recently we've gone a step further in making life easy for you. Now you need not even walk round to the post box. With our Credit Account Service you can Just telephone-any time of day or night, week-ends included! If your call comes out of shop hours a recording machine takes your message for us to deal with when we open next day.
For full detalls just drop us a line or 'phone 01-648 8422. After you have avaifed yourself of the service for 12 months we regularly send an up-to-date catalogue-FREE.
If you've not already got a Home Radio Catalogue, send the coupon with cheque or P.O. for $12 / 6$ ($8 / 6$ plus $4 /-$ P. \& P.). Even if you don't intend to use our Credit Account Service you certainly need the catalogue-it has 350 pages, lists over 8,000 components and has over 1,500 illustrations!

The price of $12 / 6$ applies only to catalogues purchased by customers residing

Please wite Name and Address in block capitals NAME 1 ADDRESS

HOME RADIO (COMPONENTS) LTD., Dept. PW, 234-240 London Road, Mitcham, Surrey, CR4 3HD

A square wave of 1 Volt peak to peak amplitude and 1 Hz frequency will have the following sinusoidal components.

			peak-peak Amplitude	Frequency
Fundamental	..	\ldots	1 Volt	1 Hz
3rd harmonic	.	\ldots	$1 / 3$ Volt	3 Hz
5th harmonic	.	..	$1 / 5$ Volt	5 Hz
7th harmonic etc.	\ldots	$1 / 7$ Volt	7 Hz	

This fact is used in a technique called "pulse testing" which, simply, is the application of a square waveform to the input of an amplifier and comparing it against the output waveform. In doing this, the amplifier is subjected to a complete range of frequencies so the output waveform can yield much valuable information. Fig. 2.5 gives examples of waveforms obtained from pulse testing.

Output having a slightly oscillatory output due to teedback (or inductance in the load)

Fig. 2.5: Puise testing

Graphs and Bandwidth

Due to reactive components inherently contained in semi-conductor devices, thermionic devices and other necessary circuit components, amplifiers do not reproduce input signals as might be expected. Those illustrated indicate (a) an amplifier with low bandwidth i.e. only suitable for fairly low frequency work and, (b) an unstable amplifier due to some sort of feedback within the amplifier circuit.

Amplifiers which amplify one frequency only are called tuned amplifiers. It would be desirable, if in practice, we could amplify only one frequency. We are, however, able to reach a good approximation to a perfect tuned amplifier. The reasons for capacitance and inductance in an amplifier circuit affecting gain at different frequencies will become more apparent later in the series, here we shall discuss the use of graphs in tuned amplifier design.

The factors which govern the design of a tuned amplifier are, required amplifier bandwidth, power output, signal frequency and gain at that signal frequency. A typical tuned amplifier stage is shown in Fig. 2.6.

Flg. 2.6: Typical tuned amplifler stage

Bandwidth is dependent on transistor characteristics, Q factor of the tuned circuit (or its "goodness"), transformer turns ratio and the amplifier load resistance. Often a compromise must be made between one or other of these factors as the amplifier's tuned frequency also depends on tuned circuit characteristics and loading.

(a) Gain-frequency characteristic of a tuned amplifier

(b) Output power-load resistance characteristic

Fig. 2.7: Useful graphs for a tuned amplifier
Often maximum power output is required. This means that the transistor output resistance must be equal to the load multiplied by the transformer turns ratio. The frequency response of the amplifier and the output power/load curve are shown in Fig. 2-7.

Graphs can be shown to give far more assistance to the electronics engineer or enthusiast. However, to understand them and their uses further basic mathematical concepts must be understood. We shall begin to covèr some of these in the next article.

FOUR transistors in a reflex type t.r.f. circuit will give good loudspeaker volume from quite a large selection of stations, and a receiver of this kind is easy to assemble and wire. The receiver shown here has a main tuning range of about $2,000-480 \mathrm{kHz}$, or $150-620$ metres. Tuning at the h.f. end of the medium wave band is usually rather critical so the band selection switch brings into use a "bandspread" type of circuit, similar to that in some superhets, covering approximately $2 \cdot 2$ 1.7 MHz , or $140-185$ metres, with the full rotation of the tuning capacitor. To avoid switching inductors, the third switch position loads the ferrite aerial so that a band of about $190-210 \mathrm{kHz}$ is obtained, for reception of the 200 kHz or 1500 metre BBC transmission.

These ranges, and particularly that in the bandspread position, can be easily changed. The $2 \cdot 2-$ 1.7 MHz range was used because it was found that quite a number of interesting amateur and other signals could be received.

The actual receiver is $5 \times 2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$., the ferrite rod increasing the width to 6 in . To this must be added space for the battery and loudspeaker. Headphones may be plugged in when wanted.

CIRCUIT

This is shown in Fig. 1 and the ferrite aerial L1 is tuned by VCl with the switch in the "M". (Medium Wave) position. Moving the switch to

"BS" (Bandspread) brings the small capacitor TCl in series with VC1, so that only a narrow band near the h.f. end of the range is tuned. The highest frequency reached is slightly increased because the minimum capacity is lower. When the switch is at "L" (Long Wave) VC1, C1 and TC2 are in parallel across the tuned portion of L1, and TC2 is adjusted so that 200 kHz will be reached with VCl about half closed. This arrangement does not give full long wave frequency coverage, but allows a narrow band around 1500 m or 200 kHz to be tuned.

Feedback from Trl collector is through TC3, and regeneration is controlled by VR1. R.F. is blocked

Fig. 1 : Circuit of complete receiver
by the r.f. choke, but reaches diodes D1 and D2 through C3. The audio obtained by detection passes through L1 to Tr1 base, and after amplification signals reach Tr 2 from C5, R1 being Tr 1 collector audio frequency load.

Tr2 is an audio amplifier, driving the push-pull transistors Tr3 and Tr4 through the driver transformer T1 and T2 is the output transformer.

CIRCUIT BOARD

Construction is on a ready-perforated board $2 \frac{1}{2} \times 5 \mathrm{in}$. and having holes at 0.2 in . intervals but plain ${ }^{1}$ in . thick paxolin can be drilled to suit.

The receiver panel is $5 \times 1 \frac{1}{2} \mathrm{in}$. and $\frac{1}{16} \mathrm{in}$. thick, and is fixed with two brackets, Fig. 2. A lead is soldered to the frame tag of VCl and passed down through the board. $\mathrm{VC1}$ is mounted with very short 4BA bolts. When the completed receiver is put in a cabinet it is held by the fixing nuts of VR1 and the band switch so bolt heads on the panel should be countersunk.

Two pieces of paxolin $2 \times \frac{1}{2} \mathrm{in}$. are shaped at the top to fit the ferrite rod, and are drilled for elastic and mounting brackets, so that they can be fitted as in Figs. 2 and 4.

CONSTRUCTION

The resistors and other items can now be inserted in the positions shown in Fig. 2. Place diodes D1 and D2, and the electrolytic capacitors with the positive ends as indicated. The wire ends are spread slightly, to prevent the components falling out.

The board can then be turned over, and wired as in Fig. 3. A wire between the two tags forms the positive line. Bend and shape the leads, solder them, and cut off excess. Sleeving should be put on wires which cross other leads.

components list

\section*{Resistors:
 | Resistors: | R6 | 680Ω | |
| :--- | :--- | :--- | :--- |
| R1 | $4 \cdot 7 \mathrm{k} \Omega$ | R7 | $4 \cdot 7 \mathrm{k} \Omega$ |
| R2 | $270 \mathrm{k} \Omega$ | $\frac{1}{4}$ watt | |
| R3 | $47 \mathrm{k} \Omega$ | R8 | 100Ω |
| R4 | $1 \mathrm{k} \Omega$ | R9 | $4 \cdot 7 \Omega$ |
| R5 | $12 \mathrm{k} \Omega$ | watt | |
| 10\% | watt unless otherwise stated. | | |
 Capacitors:
 | C1 | , | C | - |
| :---: | :---: | :---: | :---: |
| C2 | $0.01 \mu \mathrm{~F} \mathrm{150V}$ | C6 | $100 \mu \mathrm{~F} 12$ |
| C3 | 330pF mica | C7 | $50 \mu \mathrm{~F} 6 \mathrm{~V}$ |
| C4 | $4 \mu \mathrm{~F} 12 \mathrm{~V}$ | C8 | $100 \mu \mathrm{~F} 12 \mathrm{~V}$ |
| VC1 365pF Jackson Type 01
 TC1 3-30pF Type VC29C (Home Radio)
 TC2 40-1250pF Type VC29SA (Home Radio)
 TC3 4-50pF pre-set | | | |
| | | | |
| | | | |
| | | | |
 Semiconductors:
 | D1 | OA81 |
| :--- | :--- |
| D1 | OA81 |
| Tr1 | OC44 |
| Tr2 | OC81D |
 Tr3/4 OC81's (matched pair)
 Miscellaneous:
 T1 Weyrad LFDT4
 T2 Weyrad OPT1
 Paxolin panels $1 / 16 \mathrm{in}: 2$ off $2 \times \frac{1}{1} \mathrm{in}$. 1 off $5 \times 1 \frac{1}{1} \mathrm{in}$.
 Paxolin or eyelet board BTS33 (Home Radio)
 Opening circuit miniature jack plug and socket
 On/off toggle switch
 2 pole 3-way rotary switch
 3Ω speaker
 Ferrite rod 6 in $\times 3 / 8 i n$
 26 s.w.g. DCC wire}

The receiver is intended to use the internal ferrite aerial but a short external aerial (rod or wire) can be connected to A on L1, Fig. 1, a very small capacitor (such as 30 pF pre-set) being put in series with the lead.

Fig. 2: Top of circuit board with panel attached

Fig. 3: Reverse side of circuit board

TRANSISTOR'S AND DIODES

The wire ends of these can be at least $\frac{1}{2}$ in. to $\frac{3}{4}$ in. long. It should only be necessary to keep the iron in contact with the joint to be made for a second or two, and this will normally cause no damage but a heat shunt can be used. Place sleeving on the transistor wires, or shape them so that they cannot touch each other. The transistor type given for $\operatorname{Tr} 1$ is recommended. If any alternatives are tried, it may be necessary to change R1 and R2.
If diodes D1 and D2 are not as given in the component list, R2 may have to be changed, for best results and will generally lie between about $100 \mathrm{k} \Omega$ and $470 \mathrm{k} \Omega$. If totally different types are used for $\operatorname{Tr} 2$, and $\operatorname{Tr} 3 / 4$, the values of R3, R5 and R6 may need changing, or R7 and R8. If other transistors are to hand resistors R3 to R9 should be of the values recommended for the actual transistors fitted. T1 and T2 may also have to be changed.

Fig. 4: Details of ferrite aerial and associated wiring

AERIAL

The ferrite rod is $6 \times \frac{3}{8} \mathrm{in}$. and the winding is 26 s.w.g. double cotton-covered wire, 76 turns wound side by side, with a tapping at 11 turns, Fig. 4, which also shows the switch wiring.

In both long and medium wave positions S1 shorts out trimmer TC1 but this is in series with VC1 for bandspread. S2 connects C1 and TC2 across the 65 turn position of the rod, for 1500 m reception. TC2 is mounted in a hole in the paxolin support but TC1 is soldered directly to the switch tags.

TESTING

A meter may be placed in one battery lead, and should indicate about $10-12 \mathrm{~mA}$ with no signal or moderate volume. A much lower current, with distortion, may indicate that R7 and R8 are of unsuitable values for Tr 3 and Tr 4 . With good volume, current peaks will be about $25-40 \mathrm{~mA}$.

Unscrew TC3, switch to medium waves, and rotate VR1 clockwise for about two-thirds of its travel. Tune in a signal with VCl , screwing TC3 down, until oscillation just commences.' Switch to long waves, set VC1 half closed, and adjust TC2 until the 200 kHz BBC transmission is tuned in. With the switch at bandspread, coverage is adjusted with TC1, which is slightly unscrewed. Screwing down TC1 increases coverage at the l.f. end of this band.

For all but strong signals, VR1 must be advanced just enough to bring the receiver near oscillation giving best sensitivity. Turning

VR1 too far will worsen reception. If necessary, adjust TC3 slightly, so that smooth regeneration is possible on all three bands, controlled by VR1. With a t.r.f. receiver results depend very much indeed on the correct control of regeneration, and this circuit can give a smooth build up of volume on all bands.

If bandspreading is to cover the bottom of the medium wave band, a 50 pF trimmer can be connected across the tuned portion of L1, or the number of turns on the ferrite rod can be increased. In each case, frequencies which occupied only a few degrees rotation of VC1, at the high frequency end of the band, are opened out to occupy the full 180 degrees. Reception on these frequencies will normally be greatly improved as darkness falls, though 160 m amateurs are often active during daylight hours, especially at weekends.

CABINET

A suitable size, inside dimensions, is $6 \frac{1}{2} \mathrm{in}$. wide, 6in. high, and 3in. deep. Work is greatly simplified by using ready-planed wood $3 \times \frac{1}{4}$ in. Top and bottom are then $7 \times 3 \mathrm{in}$., and the sides are $6 \times 3 \mathrm{in}$. and the front can be $\frac{1}{8}$ in. hardboard, $7 \times 6 \frac{1}{2} \mathrm{in}$. Put adhesive on all meeting surfaces and fix them together with a few small panel pins. When the adhesive is dry, smooth joints and edges with a glasspaper block. The case shown was covered with self-adhesive material but the wood must be smooth and free of dust beforehand. Place the cabinet front down upon a piece about $9 \times 8 \frac{1}{2} \mathrm{in}$., smooth out wrinkles, and cut each corner, so that about lin. folds over on to top, sides and bottom. A strip about 4 in . wide is then cut, long enough to go round and overlap. This is put on, tightly stretched, and the corners cut so that excess can be folded over inside.

With the cabinet shown, the front was cut to clear all the control knobs, and a panel was glued behind this opening for the receiver. Silk was placed over the speaker aperture in the cabinet front before covering the case, and a hole cut in the covering material.

The headphone outlet and switch are fixed directly to the cabinet. If headphones are not required, connect the speaker directly to the secondary of T 2 . When the headphone plug is inserted, this opens contacts which silence the speaker.

THE APRIL ISSUE OF PRACTICAL WIRELESS WAS THE LAST OF VOL. 45

WHY NOT BIND YOUR VOLUME?

THE

THERE are a few countries that do not broadcast on the short waves, consequently the DXer who would like to add them to his list of countries heard and verified, will have to turn to the medium waves. The listener in the UK is fortunate that a number of these 'medium wave only' countries can be logged without too much difficulty.

The nearest and easiest is Andorra which currently is broadcasting on two frequencies only, both on the medium waves. Radio Andorra 701 kHz has programmes in Spanish while Radio Sud 818 is in French: both verify. Further south and more difficult is Gibraltar on 1484 kHz which is an international common frequency also used by Radio 4. Try in summer before the BBC signs-on. The BBC relay in Malta is now on 1546 kHz and is audible as a background to Radio 3 during the evening. It has been heard clear of interference at 0430hrs GMT. Spanish Sahara has two medium wave transmitters, Radio Sahara EAJI03 654 kHz in El Aaiun is usually logged in the late evening with programmes in Spanish and EAJ203 Radio Villa Cisneros on 998 kHz is sometimes audible about 2100 hrs GMT broadcasting in Hausa and Spanish. The Portuguese island of Madeira has CSB91 on 1529 kHz which can be recognised by it's fluttery signal during the hour before closedown at midnight GMT.

The Faroe Islands have a single 5 kW transmitter at Torshaven on 584 kHz . This is a difficult station but it was logged several times last winter shortly after sunrise. A loop aerial is essential to combat interference on this channel. Nearby Iceland is much easier: Hofn 665 kHz is usually strong after midnight. Radio St. Pierre 1375 kHz on the French islands of St. Pierre and Miquelon near Newfoundland is fairly easy but be careful not to confuse it with Lille on 1376 kHz which closes down at 2300 hrs GMT. There are three MW stations in Bermuda the easiest being ZBM1 on 1235 kHz which is usually heard when the path to North America is open. The other two, ZFB1 960 and ZBM2 1340 are more difficult but can sometimes be heard amid North American QRM. There are a number of 'MW countries' in the Caribbean. Listen after midnight for Point Galina 750 kHz in Jamaica; WIVI 970 and WBNB 1000 in the U.S. Virgin Islands; WKVM 810, WBMJ 1190 and WMDD 1480 in Puerto Rico; Trinidad on 730 ZNS 1540 in Nassau, Bahamas. ZNS is usually logged at sunrise during the summer when European QRM is light.

Mediumwave DXers now have their own radio programme from Radio Nederland. Included in 'DX Juke Box' on the 5th Thursday of the month, the next is on April 30th, is a feature on mediumwave DXing run by the National Radio Club of America. It is broadcast on two frequencies in the 49 m band at 2000 hrs GMT and at other times from the relay in Bonaire. Full information is available from Radio Nederland, Postbox 222, Hilversum, Holland.

CHARLES MOLLOY

MAKING PRINTED CIRCUIT BOARDS

THE "art" of miniaturisation is within the reach of everyone and made possible by the use of printed circuits and suitable for small current circuits such as radio tuners, pre-amps, multivibrators and electronic switches.
The process of miniaturisation is relatively simple but it can become tedious if one is not experienced in printed circuit techniques.

CHOICE OF COMPONENTS

The choice of components is very critical and will dictate the final size of the device. Sub-miniature components are available but they tend to be too expensive for the ordinary constructor.

Resistors are no worry at all as there are relatively cheap types on the market which are small enough for our needs. The normal Radiospares $1 / 4 \mathrm{~W}$ resistor measures 0.12 in diameter and 0.25 in . long. The $\frac{1}{4} \mathrm{~W}$ carbon film resistor measures $0 \cdot 12 \mathrm{in}$ in diameter and 0.32 in long. Both types are excellent, the difference being that the latter is more stable and reliable but is slightly more expensive.

Capacitors are available small enough for miniature circuits but they are expensive, compared to resistors. Electrolytic capacitors are quite reasonable, especially the Mullard C426 range, which are available up to $400 \mu \mathrm{~F}$ in the 4 V working range. Other suitable types of capacitor are ceramic, polystyrene, polyester and silver mica. Polystyrene capacitors are quite suitable as they are tubular but at least one centimetre of the leads must be left. Ceramic capacitors can be obtained in either disc or tubular form and they are both suitable for printed circuits. For the person who puts size above cost there are extremely small capacitors available. These "tantalum bead" capacitors, are expensive, costing about 4 s each.
Transistors can be quite large when compared with the rest of the miniature components. Transistors like OC71's tend to stand well above the rest of the circuit, their leads having to be left quite long so that a heat sink can be used between the encapsulation and the soldered ends.

The coils in a circuit are usually a problem. I.F. coils (Japanese) can be obtained quite smallmeasuring only $0.4 \times 0.4 \times 0.5 \mathrm{in}$. Aerial coils can be made quite small by using a suitable former and radio frequency chokes can be obtained in miniature form. These are quite expensive but can be made by using a resistor as a former.

PRELIMINARY DESIGN

By means of a scaled-up drawing the components are positioned so that the device is made as small as possible. The positioning of the components can be done in either of two ways; first, so that the final device is relatively thick (all the components standing up-Fig. 1) and a small area of copper
laminate board used; secondly, so that the device is relatively thin (all the components lying flatFig. 2), and a large area of copper laminate board used. The former of these two ways is usually the more compact as some components when laid flat take up too much space.

Fig. 1: 'Vertical' mounting of components

Fig. 2: 'Horizontal' mounting of components

FINAL DESIGN

Once the position of the components has been decided the job of interconnecting the components can begin. The components are drawn in plain view about four times actual size. This is best done in rough as more than one sketch will have to be made. The distances between the components should be exaggerated as this will make the interconnections clearer. These are seen better if they are represented by a thick line made with a soft pencil.

The components should be rearranged slightly until none of the interconnections cross. If this is impossible to do without waste of space an external connection should be made by means of an insulated jumper lead.

MAKING THE PRINTED CIRCUIT

Once the design has been finalised a life size drawing is made (graph paper is a boon at this stage). The outline of the components should be drawn in lightly and the holes for their leads and the interconnections shown clearly. The copper laminate board is now cut to size with the copper side facing upwards so that the copper foil (which is only about 0.002 in . thick) is not forced off the laminate board.

The "patina" on the surface of the copper is now removed by means of a damp cloth and a domestic cleansing powder which acts as an abrasive and therefore a good electrical contact is ensured.

A tracing of the holes for the leads is now taken from the life size drawing and this is reversed (the original drawing was done as if one was looking
down on the component side of the printed circuit board and the holes are to be transferred on to the copper side of the printed circuit board) and accurately located on the copper side of the printed circuit board.

With a pointed bradawl the positions of the holes are transferred to the copper foil. The holes can now be drilled with a ${ }^{1} / 3^{2} \mathrm{in}$. drill. As the drill bit is very fine a special brace, for use with small bits, should be used. If one of these special braces is not obtainable an electric drill can be used, but very carefully as these bits are very easily broken.

The masking of the copper laminate board can now be done. The design is painted on to the copper, using a suitable medium such as nail varnish, but gloss, cellulose, or enamel paint can be used with equally good results.

The masking of the copper laminate board can be done by either of two ways depending on the size of the copper laminate board.

By the first method the interconnections are painted directly on to the copper using a fine brush. This method is suitable for large printed circuits where there is enough room to use a brush.

By the second method the copper is painted with the medium and then the paint around the interconnections scraped away using a pin or a fine pointed bradawl. This method is suitable for small printed circuit boards where a brush is too large to use.

Both these methods have the same effect but the latter is more suitable for miniaturisation as it is possible to put the interconnections closer together than if they were directly painted on.

Now that the "resist" has been applied the excess copper can be etched away. There are several solutions that can be used but one of the quickest acting solutions is 50% concentrated nitric acid and 50% water. A good solution for those afraid of handling concentrated acids is ferric chloride $\left(\mathrm{FeCl}_{3}\right)$. It is much slower acting than nitric acid but just as effective. A suitable solution of ferric chloride is 920 grams of ferric chloride in one litre of water.

NOTE!-apart from the fact that nitric acid is extremely corrosive it is also dangerous giving off poisonous brown fumes when reacting with copper.

The solution is poured into a suitable glass or plastic vessel and the copper laminate board immersed copper side up, and left for a while. If nitric acid is used the etching process will be finished when no more brown fumes are given off. If ferric chloride solution is used the way to find out whether or not the etching process has been completed is to look at the copper itself. When the etching process has been completed any remaining unwanted pieces of copper can be removed with a knife. The "resist" can now be removed with a cloth and a suitable soivent.

FINAL ASSEMBLY

The components are now prepared for soldering to the copper laminate board by bending the leads into the correct shape (Fig.3), and then tinning the ends, care being taken not to enlarge the ends of the leads too much, by tinning, because the enlarged leads might not fit into the holes previously drilled.

The transistors are soldered in place after as many
as possible of the other components have been fitted. The leads are pushed through the appropriate holes with about $\frac{1}{1}$ in. protruding out of the copper foil. These leads are now bent over (Fig. 4) and carefully soldered to the copper. It is advisable, when soldering a printed circuit board, to use a miniature soldering iron of not more than fifteen watts rating with a one millimetre bit, so that the joints can be made closer together.

Fig. 3: Left and centre: preparation of component leads
Fig. 3: Right: Position of leads in circuit board

When soldering transistors special care has to be taken so as not to permanently damage them a heat-sink being used between the encapsulation and the joint. A pair of long nosed pliers is suitable but surgical forceps are better as they grip the lead leaving both hands free. 22 s.w.g., $60 / 40(60 \%$ tin and 40% lead) solder should be used with a quick, firm application of the soldering iron directly on the tinned lead, making sure that none of the solder flows on to an adjacent joint and therefore producing a short-circuit. If a short-circuit is produced in this manner it can be rectified by either scraping away the offending solder with a pointed bradawl or by quick and careful use of the soldering iron.

When all the components are soldered in place the printed circuits should be checked against the circuit diagram, and that there are no short circuits, and that all the joints are good. This may be done by moving the components slightly and if any joint is worked lose it will not be electrically sound.

These printed circuit techniques described may not be the same as those that other printed circuit makers use but they are tried and tested and work well and give good results.

BLUEPRINT SERVICE

We would like to draw readers' attention to the fact that the BLUEPRINT SERVICE has been discontinued and therefore no further BLUEPRINTS are available.

QUERY COUPON

This coupon is available until 8th May 1970 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, MAY 1970

AERIALS for mobile operation in the h.f. amateur bands between 1.8 and 28 MHz are normally short vertical types with inductive loading, especially those operating at the lower frequencies. Short vertical aerials produce a vertically polarised wave which is radiated in the horizontal plane equally well in all directions, i.e., the aerial is omni-directional. Assuming the ground to be flat and perfectly conducting and that the current distribution in the aerial is sinusoidal, the radiated power in the vertical plane of an aerial less than $\frac{1}{8}$ th of a wavelength is approximately as shown in Fig. 1.

Fig. 1 : Radiation pattern of a short vertical aerial.
As the aerial length is increased, the pattern of the vertical radiation (as in Fig. 1) tends to flatten with a resultant increase in energy along the ground and a reduction of energy skywards. Mobile aerials for the lower frequency bands $(1 \cdot 8,3 \cdot 5$ and 7 MHz etc) must, for obvious reasons, be much smaller physically than even $\frac{1}{8}$ th of a wavelength and although they may be tuned to resonance they can not radiate with the same efficiency as a resonant aerial a $\frac{3}{4}$ wavelength long.

The main reason for the high efficiency of a $\frac{1}{4}$ wavelength aerial is that an aerial of this length being resonant behaves as an almost pure resistance. This resistance is known as the radiation resistance and is equivalent to the impedance at the feed point of the aerial as in Fig. 2. Almost all the power fed into the aerial will be radiated. As the aerial length is reduced to fractions of a wavelength less than a quarter the aerial will show an increasing capacitive reactance and a decreasing radiation resistance. For an

Fig. 2 : (Left) Feedpoint of short vertical aerial
Fig. 3 : (Above) Equivalent circuit of loaded vertical aerial
average 6 to 8 ft . long mobile whip aerial the capacitive reactance may range from about 150Ω at 21 MHz to as high as $8,000 \Omega$ at $1 \cdot 8 \mathrm{MHz}$ resulting in a radiation resistance of about 15Ω at 21 MHz to as low as 0.1Ω at 1.8 MHz .

If the radiation resistance is low a large current must flow in the circuit if any power is to be radiated at all. By cancelling out the capacitive reactance with an equivalent inductive reactance the aerial can be made resonant resulting in a higher and much more useful radiation resistance. This does not, however, produce an aerial of high efficiency, i.e., one equal to a truly self resonant aerial of a quarter-wavelength or more in physical length.

Radiation resistance is also reduced as the effective height of the aerial is reduced and physically small mobile aerials particularly those for $1 \cdot 8,3 \cdot 5,7$ and 14 MHz have a very small effective height. Inductively loaded aerials of small dimensions are, therefore, something of a compromise and the only way of preserving efficiency is to keep all other possible losses to a minimum, for example, in mobile operation there are losses due to ground resistance which at the lower frequencies may be quite high. Coils used for loading also introduce resistance loss and although the coil may radiate some energy, thus adding to the all important radiation resistance, this will usually be small compared to the coil resistance loss.

The equivalent circuit of a loaded whip is shown in Fig. 3. The reactance due to the self capacity of the aerial X_{0} is of course cancelled by the inductive reactance of the loading coil X_{1}. This still leaves the coil resistance \mathbf{R}_{c} and the ground loss resistance \mathbf{R}_{g} in series with the radiation resistance \mathbf{R}_{r}. Only the power flowing in \mathbf{R}_{r} is radiated. That in \mathbf{R}_{c} and \mathbf{R}_{g} is dissipated in heat! A resonant mobile aerial for 1.8 MHz and about 8 ft overall is by comparison with its full quarter-wave counterpart (132 ft) only approximately 4% as efficient.

Mobile Aerials for the HF Bands

Any amateur radio mobile rally will reveal a wide assortment of loaded aerials, some unusual, some dangerous, some efficient and some not so efficient. They range from base loaded types to helical coil arrangements with or without 'capacity' hats but which will all add up to the same thing-a resonant aerial, i.e., one tuned by inductive loading to simulate $\frac{1}{4}$ wavelength resonance.

The 28 to $29 \cdot 7 \mathrm{MHz}$ band is the only one for which inductive loading will not be required providing the physical length of the aerial is a quarterwavelength. If the aerial is to be of fixed length, i.e.,, non telescopic, this should be 8 ft . 3 in . which allows for series tuning to resonance over the whole of the band by means of a 500 F variable capacitor in series with the co-axial feed cable as shown in Fig. 4. With this system a co-axial cable of $70-80 \Omega$ can be used to couple the aerial to the transmitter even though the feed point impedance is only about 40Ω. The capacitor should be adjusted for maximum current into the aerial at point \mathbf{X}.

If a telescopic aerial is used the overall length should be that required for the lowest frequency $(28 \mathrm{MHz})$. This is 8 ft . 5 in . and the aerial can be adjusted to resonance by sliding in the top section of the whip. In this case the co-axial feeder should be 50Ω but it may be worthwhile using an impedance

Fig. 4 : (Left) Capacity tuned aerial for the 10 metre band.
Fig. 5 : (Right) Alternative version with inductance loading.
matching arrangement similar to that shown in Fig. 5. The amount of inductance required for L_{m} will be very small and is best determined experimentally. Five or six turns of 16 or 14 s.w.g. wire on a 2 in . diameter former with $\frac{1}{4} \mathrm{in}$. spacing between turns should be ample. The aerial should first be adjusted to resonance at a midband frequency with a grid dip oscillator but with the co-axial feed line disconnected. The line is then connected to a point along the coil which produces maximum current into the aerial at point X .
It is worthwhile keeping in mind that the top of an aerial 8 ft . or so in length may well be 11 or 12 ft . above the ground if it is mounted on the rear of a car body. This should be regarded as a reasonably safe height limit even for a whip of fairly rigid but otherwise lightweight material. At 21 MHz a quarterwavelength is a little over 11 ft . and just a bit too long for safety. Reduction of the overall aerial length to 8 ft . or so means using inductive loading for 21 MHz and of course for the $14,7,3 \cdot 5$ and $1 \cdot 8 \mathrm{MHz}$ bands, in fact aerials for all these bands should be restricted to an overall length not exceeding 8 ft . It may be necessary to make the aerial even shorter depending on the size of the car and the point where the aerial can be safely mounted.
The proximity of the loading coil and the whip section to the car body must also be given consideration. It is not possible therefore to give precise dimensions and constructional details for any given types of aerial. The inductance of the loading coil for instance will vary with the length of aerial above it and to some extent its own proximity to the car body. For this reason final adjustment of coils and aerial lengths for resonance should be carried out with the aerial mounted on the car.
The two most efficient forms of loaded mobile aerials are the base loaded and centre loaded types. The base loaded aerial has the advantage of greater physical stability and the fact that the coil resistance
loss is lower because a smaller value of inductance is required. The centre loaded aerial, having a smaller whip section above it, requires a larger inductance which may result in a higher coil resistance loss. The use of a capacity hat above the coil does help to reduce the inductance required and therefore the coil resistance losses but it is generally believed that because the largest proportion of current will be flowing in the section of aerial beneath the loading coil the radiation resistance of the aerial will be greater. Measurements have shown a gain of 3 dB or so over a base loaded aerial of the same physical length and height. There is little that can be done about ground loss resistance except good earth contact between the transmitter and the car body. The screening braid of the co-axial feed line to the aerial should be earthed at the transmitter and to the car body at a point as close to the feed point of the aerial as possible.

Loading Coils

The inductance of the loading coil depends very largely on the capacity of the aerial section above it which, for an aerial approximately 8 ft long and averagely a $\frac{1}{4} \mathrm{in}$. diameter, will be about 25 pF . This means a fairly large inductance for a 1.8 MHz base loading coil and if the Q is to be kept high and the coil resistance losses low, the coil itself will be quite big. As the length of the aerial section above the coil becomes smaller the coil inductance must be increased. This applies also to centre loaded aerials where the inductance may be as much as twice that required for base loading.

Tables 1 and 2 give approximate inductance values and winding details for base loaded and centre loaded aerials of about 8 ft . total length including the coil. It must be noted that the coil winding will have to be adjusted to bring the whole aerial to resonance when it is mounted on the car.

In order to keep the Q of the coil as high as possible it is recommended that low loss formers are used but these must, however, be strong enough to support the aerial section above. Paxolin tube with a $\frac{1}{8}$ th to $\frac{1}{4} \mathrm{in}$. wall thickness is ideal. Plastic drain pipe with a wall thickness of $\frac{3}{16}$ ths to a $\frac{1}{4}$ in. is also suitable. Solid wood formers should be avoided, for despite coats of varnish, water can seep in and will not only lower the coil Q but also detune it. Plugs at each end of the former for attaching a supporting stub and/or the whip section can be of hard wood or metal but if metal is used the ends of the coil windings should finish at least lin. from the plugs because the plugs can behave as short circuited turns and lower the Q of the coil.

When the loading coil has been finally adjusted it may be given two or three coats of good quality varnish which will not effect the Q . Plastic containers also make good rain covers but never use a metal cover.

Mounting the Aerial on the Car

The exact place on the car at which the aerial is to be mounted may have some bearing on the construction of the aerial as a whole. Some mobile operators favour the offside of the rear bumper

TABLE 1
BASE LOADING COILS for 8 ft aerials

$\begin{aligned} & \text { Band } \\ & \mathrm{MHz} \end{aligned}$	Inductance		$\begin{aligned} & \text { Wire } \\ & \text { Size } \\ & \text { s.w.g. } \end{aligned}$	Coil Dia (inch)	Approx winding length (inch)
	$\mu \mathrm{H}$	Turns			
1.8	345	135	18	3	10
3.5	77	75	14	$2 \frac{1}{2}$	10
3.5	77	29	12	5	4 $\frac{1}{2}$
7	20	17	16	$2 \frac{1}{2}$	$1 \frac{1}{4}$
7	20	22	12	$2 \frac{1}{2}$	$2 \frac{3}{4}$
14	4.5	10	14	2	114
14	4.5	12	12	$2 \frac{1}{2}$	4
21	$1 \cdot 25$	6	12	1年	2

TABLE 2
CENTRE LOADING COILS for 8 ft aerials

Band					
B MHz	$\mu \mathrm{H}$	Inductance	Turns	Wire Size s.w.g.	Coil Dia (inch) winding length (inch)
$1 \cdot 8$	700	190	22	3	10
$3 \cdot 5$	150	100	16	$2 \frac{1}{2}$	10
7	40	28	16	$2 \frac{1}{2}$	2
7	40	34	12	$2 \frac{1}{2}$	$4 \frac{1}{4}$
14	$8 \cdot 6$	16	14	2	2
14	$8 \cdot 6$	15	12	$2 \frac{1}{2}$	3
21	$2 \cdot 5$	8	12	2	2

bracket provided this projects far enough from the rear of the car body. On most small modern cars the bumpers seem to have become part of the body and offer no safe area for supporting a long aerial. If a bumper or bumper bracket is used be sure that the aerial remains fairly rigid when the car is in

Fig. 6 : Importance of adequate rigidity in aerial mountings.
motion. Long, thin and very flexible aerials with heavy centre loading coils can be dangerous as illustrated in Fig. 6. An alternative to bumper bracket mounting is a flat bracket extending from beneath the chasis as in Fig. 7. This form of mounting is suitable for cars where the rear comes down directly from the roof. A centre loaded aerial would be advantageous here to keep the loading coil away

Fig. $7: 8: 9:$ Three possible methods of mounting whip aerials
from the vertical part of the car body. For cars where the boot extends back from the rear window the offside bodywork might be found suitable for direct mounting of base loaded aerials as in Fig. 8. The method suggested is suitable for a centre loaded aerial and is used by the writer on a Triumph Herald Fig. 9. Note that the drawing is not to scale

Fig. 10 : Base loaded aerial for Top Band.
and the section of aerial rod inside the boot is only a few inches long. This has no effect on the efficiency of the aerial. Aerials should always be mounted on the offside of the car so as to remain clear of overhanging trees and hedges on country roads. Also remember that the aerial must either be demountable or can be telescoped to get the car into a garage. A demountable type is best and for this purpose $\frac{1}{2}$ in. diameter copper water pipe is useful for making mounting stubs as these can be fitted with screwed couplers. Large co-axial type sockets can also be used for demountable base loaded aerials the plug being fitted to the bottom of the loading coil.

Aerial Construction

For centre loaded aerials the coil should not be too large in diameter or the former made of too heavy material. Plastic piping 2 to 3 in . in diameter is very suitable and plastic rolling pins have been used with success. The lower section of a centre loaded aerial should be either copper, brass or dural of at least $\frac{1}{2}$ in. diameter. Lengths, up to about 4 ft . will support a loading coil and top whip section without swaying. The whip section above the coil may be a telescopic receiving aerial but use a heavy duty type that will not telescope of its own accord. Base loaded aerials require a long whip section and most of the receiving type telescopic aerials are too short. A section of copper or dural tube plus a telescopic section will make up height and copper-plated steel whips can be used successfully as they have nothing to support but their own weight.

Methods of joining whip sections to coil formers must be left to the reader but such joins must be secure and able to withstand vibration. As long as the aerial is fairly rigid it will not be affected very much when the car is in motion. A typical method of assembly is shown in Fig. 10.

A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build

FROM the letters we receive it would seem that there are thousands of readers continually constructing simple radios using one, two or three transistors. I can well understand these people since I belong in their ranks and must have built over fifty of these in various sizes and to different designs in the last few years.

I make no apology for describing yet another radio; if you follow this series you will remember that a one transistor and a three transistor design have already been described. The circuit described here is particularly suitable for miniaturisation and although no direct constructional details are given, several comments are made later regarding component choice etc.

The problem with most published designs is that to achieve the high gains necessary for such sets very accurate biasing etc. is required, and since transistors have appreciable spreads in their characteristics the published circuits will only work well with ones used in the prototype. The circuit shown here has been thoroughly tested and over thirty transistors were tried. All worked well and only one resistance has to be chosen with care for the complete circuit to be sensitive and stable.

The supply voltage can vary between 3 V and 15 V with no circuit modifications though performance is, of course, better using the higher supply voltages. The circuit has very high gain and so the ferrite rod aerial-which is a problem when miniaturisation is the aim-can be very small. The prototype uses a $1 \frac{1}{2} \mathrm{in}$. $\mathrm{x} \frac{3}{8} \mathrm{in}$. size cut from a longer length.

The Circuit

$\mathrm{VCl}, \mathrm{Ll}$ and Cl comprise the tuned circuit and the overwind on L1 auto-transforms the r.f. picked up and feeds this to the base of Tr 1 . The collector of $\operatorname{Tr} 1$ is connected directly to the base of $\operatorname{Tr} 2$ whose emitter voltage is raised to the necessary level by R3 smoothed by C2. Detection takes place in in Tr 2 and the rectified r.f. is smoothed by C 3 connected between the negative and the collector of Tr 2 . R2 acts as the collector load of Tr 1 and provides the bias for $\operatorname{Tr} 2$.

The base bias for $\operatorname{Tr} 1$ is provided by RI which is connected through the aerial coil. This gives a measure of regeneration to the first stage and has the advantage over capacitively coupled feedback in that it is not frequency selective and gives smooth regeneration over the complete m.w. band. It is this resistor that has to be chosen with care. Stray capacitance will contribute to the regenerative process and so the value will depend not only on the actual transistor used but on the physical layout. The values in the prototypes varied between $56 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$.

The earpiece used should be a high impedance

No. 13
 TWO TRANSISTOR RADIO

Fig. 1: The circuit of the two transistor radio. If the jack socket is connected as shown a switch is unnecessary.
magnetic type between 250Ω and 2000Ω. These earpieces seem to be fairly widely available (they're all made in Japan of course) but if these are difficult to obtain in your area a crystal earpiece connected across a $3 \cdot 3 \mathrm{k} \Omega$ resistor will work just as well.

components list

Resistors:

R1 $390 k \Omega-$ see text R3 $2 \cdot 2 k \Omega$
R2 $4 \cdot 7 \mathrm{k} \Omega$
All $\frac{1}{6}$ th watt

Capacitors:

C 1	$0.01 \mu \mathrm{~F}$	C 3	$0.001 \mu \mathrm{~F}$
C 2	$10 \mu \mathrm{~F} 10 \mathrm{~V}$	VC1	250 pF trimmer

Transistors:
Tr1 BC169C Tr2 BC169C
Available from Electrovalue Ltd of Egham.

Miscellaneous :

L1-see text; 250Ω or 2000Ω magnetic earpiecesee text; miniature jack socket; $4.5 \mathrm{~V}-15 \mathrm{~V}$ battery -see text.

Construction

The aerial rod is easily made and about 80 turns on a $\frac{3}{8} \mathrm{in}$. ferrite rod tapped at 8 turns will do. Enamelled copper wire of almost any guage will suffice.

The cheapest and smallest tuning capacitors are the Radiospares 250 pF or 500 pF trimmers and these are ideal for miniature radios. The 250 pF is quite adequate for this set and using the aerial coil described above will give a coverage from about 600 kHz to 1.5 MHz .
The components can be mounted on Veroboard or on paxolin sheet. The battery switch can easily be incorporated in the earphone socket by bending the contacts so that the jack socket makes rather than breaks the switch contacts.
The finished set draws only about 1.5 mA and so all resistors can be $\frac{1}{8}$ th watt types and the battery will last a long while.

THE principle of the universal shunt method for multirange current measurement is illustrated in Fig. 5.A single shunt ($\mathrm{R}_{\text {st }}$) consisting of a number of seriesconnected resistors ($\mathrm{R}_{\mathrm{s}} 1-\mathrm{R}_{\mathrm{s}} 5$), is permanently connected in parallel with the meter. The interconnections between the constituent resistors which make up the total shunt ($\mathrm{R}_{\text {st }}$) are taken to a number of input sockets or to a single pair of sockets by way of a range selection switch.
The main advantage of the universal shunt is that contact resistance of the switch, if used, has a negligible effect on the measurement accuracy. This is because the shunts are always positively connected across the meter whereas in the separate shunt method they are connected through the contact resistance of the switch. The contact resistance is still present, of course, but it is now in series with the resistance of the external circuit which is producing the current where its comparatively low value will have little effect.
The first thing which has to be considered when designing a multi-range universal shunt, is the choice of an overall resistance ($\mathrm{R}_{s t}$) for the shunt. The major factor influencing this decision is the maximum effective resistance which can be accepted for the testmeter. The larger this resistance, the greater will its effect be on the total resistance of the external circuit supplying the current to be measured; and hence the greater will be its influence on the measurement accuracy. For good accuracy it is necessary to keep the effective resistance of the testmeter as low as possible. One can now develop a design procedure for the same current ranges previously catered for in the separate shunt method. The same type of meter will be used, $50 \mu \mathrm{~A}$ f.s.d. (I_{m}) and $1,000 \Omega$ internal resistance (R_{m}).

Firstly, to derive a simple formula which will then be used to determine the individual sections of the universal shunt, consider the meter circuit for the lowest current range (range 1). This range uses the total value of the shunt (R_{st}), and the simplified circuit looks like that shown in Fig. 6. ' I_{t} ' is the total current flowing in the testmeter; I_{s} is the current in the shunt, and I_{m} is the current in the meter. Determine the value of R_{st} by

Fig. 6 Single range shunt.
using equation (iii) i.e., $\mathrm{R}_{\mathrm{st}}=\frac{\mathrm{R}_{\mathrm{m}}}{\mathrm{N}-1}$ (where N is the f.s.d. magnification factor). The next step is to draw the circuit showing the next higher current range i.e., range 2. This has been done in Fig. 7 where the same circuit has been drawn in two different ways in order to make the explanation clearer. The total shunt resistance (R_{st}) is the same value as shown in Fig. 6 but it is now split into the two sections formed by $\mathrm{R}_{\mathrm{s}} 1$ and $\mathrm{R}_{\mathrm{s}} 2$ (Fig. 7a).

When the input current (I_{i}) is applied to the range 2 socket, some flows into the shunt section $\mathrm{R}_{\mathrm{s}} 2$, and the remainder (I_{m}) flows into the shunt section $\mathrm{R}_{\mathrm{s}} \mathbf{1}$, now in series with the meter resistance (R_{m}). The value of $\mathbf{R}_{\text {st }}$ has been calculated using equation (iii). The problem is to determine the value of $\mathrm{R}_{\mathrm{s}} 2$. It is known that $\mathbf{R}_{\mathrm{s}} \mathbf{1}+\mathbf{R}_{\mathrm{s}} 2=\mathrm{R}_{\mathrm{si}}$, and also that $\mathbf{I}_{\mathrm{s}}+\mathrm{I}_{\mathrm{m}}=\mathbf{I}_{\mathrm{t}}$. From these two facts is derived the equation needed.
The voltage developed across $\mathrm{R}_{\mathrm{s}} 2$, due to the current I_{s}, equals that developed across $R_{s} 1+R_{m}$, due to I_{m}. From Ohm's law:

$$
\mathrm{I}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}} 2=\mathrm{I}_{\mathrm{m}}\left(\mathrm{R}_{\mathrm{s}} 1+\mathrm{R}_{\mathrm{m}}\right)
$$

But $R_{s} 1=R_{s t}-R_{s} 2$, therefore substituting for $\mathbf{R}_{s} 1$ in the above equation:

$$
\mathrm{I}_{\mathrm{s}} \cdot \mathbf{R}_{\mathrm{s}} 2=\mathrm{I}_{\mathrm{m}}\left(\mathrm{R}_{\mathrm{st}}-\mathbf{R}_{\mathrm{s}} 2+\mathrm{R}_{\mathrm{m}}\right) .
$$

multiplying the terms within the brackets by I_{m},

$$
\mathrm{I}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}} 2=\mathrm{I}_{\mathrm{m}} \cdot \mathrm{R}_{\mathrm{st}}-\mathrm{I}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}} 2+\mathrm{I}_{\mathrm{m}} \mathrm{R}_{\mathrm{m}} .
$$

Collecting the terms containing $\mathrm{R}_{\mathrm{s}} 2$:

$$
I_{s} R_{s} 2+I_{m} R_{s} 2=I_{m} R_{s t}+I_{m} R_{m}
$$

Factorising both sides:

$$
R_{s} 2\left(I_{s}+I_{m}\right)=I_{m}\left(R_{s t}+R_{m}\right)
$$

But $\mathrm{I}_{\mathrm{s}}+\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{\mathrm{t}}$, therefore:

$$
\begin{gathered}
\mathbf{R}_{s} \mathbf{I I}_{\mathrm{t}}=\mathbf{I}_{\mathrm{m}}\left(\mathbf{R}_{\mathrm{st}}+\mathbf{R}_{\mathrm{m}}\right) \\
\text { or, } \mathbf{R}_{\mathbf{s}} 2=\mathbf{I}_{\mathrm{m}}\left(\mathbf{R}_{\mathrm{st}}+\mathbf{R}_{\mathrm{m}}\right)
\end{gathered}
$$

Now, the f.s.d. current range factor

$$
\mathrm{N}^{\prime}=\frac{\mathrm{I}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{m}}} \text {, therefore } \frac{\mathrm{I}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{m}}}=\frac{1}{\mathrm{~N}}
$$

Substituting $\frac{1}{N}$ for $\frac{I_{m}}{I_{t}}$ in the above equation:

$$
\begin{equation*}
R_{s} 2=\frac{R_{s t}+R_{m}}{N} \tag{iv}
\end{equation*}
$$

(this is the same value of N as used in equation (iii), and it means exactly the same).

This equation can be used to determine any sectional value of $\mathrm{R}_{\text {st }}$, having first selected the value of $\mathrm{R}_{\text {st }}$ using equation (iii).

Fig. 7(a) Two range shunt.

Fig. 7(b) Equivalent circuit.

Now use these two equations to derive the values of the shunt sections shown in Fig. 5. First determine $\mathrm{R}_{\text {st }}$ for range $1(200 \mu \mathrm{~A})$, using equation (iii).

$$
\begin{gathered}
\mathrm{R}_{\mathrm{st}}=\frac{1,000}{\left(\frac{200}{50}-1\right)}=\frac{1,000}{3} \\
\text { Therefore } \mathrm{R}_{\mathrm{st}}=333 \Omega
\end{gathered}
$$

Now derive the shunt section required for range 2 (1 mA), using equation (iv); (note that this section of $\mathrm{R}_{\text {st }}$ is composed of $R_{s} 2+R_{s} 3+R_{s} 4+R_{s} 5$, which we will label $\mathrm{R}_{\mathrm{s}} 2-5$).

$$
\begin{gathered}
\mathrm{R}_{\mathrm{s}} 2-5= \\
\left(\begin{array}{c}
\left.\frac{1,000}{50}\right) \\
\mathrm{R}_{\mathrm{s}} 2-5=66 \cdot 66 \Omega
\end{array} \frac{1,333}{20}=66 \cdot 66\right.
\end{gathered}
$$

Similarly, for range $3(25 \mathrm{~mA})$,

$$
\begin{gathered}
\mathrm{R}_{\mathrm{s}} 3-5=\frac{\frac{333+1,000}{\left(\frac{25,000}{50}\right)}=\frac{1,333}{500}=2.666}{\mathrm{R}_{\mathrm{s}} 3-5=2.666 \Omega}
\end{gathered}
$$

For range $4(100 \mathrm{~mA})$,

$$
\begin{gathered}
\mathrm{R}_{\mathrm{s}} 4-5=\frac{\frac{333+1,000}{\left(\frac{100,000}{50}\right)}=\frac{1,333}{2,000}=0.666}{\mathrm{R}_{\mathrm{s}} 4-5=0.666 \Omega}
\end{gathered}
$$

Lastly, for range $5(500 \mathrm{~mA})$,

$$
\begin{gathered}
\mathrm{R}_{5} 5=\frac{333+1,000}{\left(\frac{500,000}{50}\right)}=\frac{1,333}{10,000}=0.1333 \\
\mathrm{R}_{5} 5=0 \cdot 1333 \Omega
\end{gathered}
$$

Beginners A.F.AMPLIFIER The low cost and simplicity of this little amplifier

Tmake it eminently suitable as a beginner's project. Despite this simplicity, however, the unit is capable of a fairly high standard of reproduction, albeit at very modest output levels, and is ideal for boosting the output from a phones-only transistor radio to loudspeaker strength.

In the prototype, the frequency response is exceptionally good, $(-2 \mathrm{~dB}$ at 15 Hz and 40 kHz$)$.

Fig. 1: Circuit of amplifier

CIRCUIT

The circuit diagram is shown in Fig. 1. It will be noted that direct coupling has been used between the two stages: this makes for simplicity and minimises the number of circuit components. Tr1 operates in common collector mode, feeding the common emitter amplifier Tr2. The $10 \mathrm{k} \Omega$ resistor R2 is part of the base-bias network for Tr1, and incidentally also introduces negative feedback, so contributing to the stability of the configuration. The base bias current for $\operatorname{Tr} 2$ is derived from the standing emitter current of Trl. The emitter resistor R4 introduces a small amount of negative feedback, in addition to that already provided by R2. The overall effect of the total feedback shows up in the extremely good frequency response of the unit. (See Fig. 2).

Fig. 2: Response curve of amplifier

CONSTRUCTION

All small components, including Tr , are mounted on a miniature 6-way groupboard as in Fig. 3. The power transistor, however, is mounted on a suitable flat surface (ideally paxolin) and is connected to the groupboard by flying leads. Fig. 4 gives drilling details for the paxolin mount. The unit is small

Fig. 3 : Component board
enough to be constructed inside a 2 oz . tobacco tin, complete with input and output jacks. But note that if general practice were followed, using the tin as earth (+VE supply) the output jack would need to be of the insulated variety. Neither would it be permissible to mount $\operatorname{Tr} 2$ directly on the tin, since the transistor collector is directly connected to its casing. In this event, a suitably large hole would need
to be cut in (say) the lid of the tin, and the paxolin sheet carrying $\operatorname{Tr} 2$ bolted over it. In circumstances where such a transistor was running at full power, it would need to be bolted to a metal plate heatsink. In the circuit here however, the device operates well within its power rating, and remains cold at all times: a heatsink is therefore unnecessary.

Fig. 4: Mounting board for power transistor
Although an OC72 has been specified for $\operatorname{Tr} 1$, an OC81 will do just as well, and the author has even used some of the more robust specimens of a batch of unmarked, untested transistors, all with equal success. Alternative transistors have not been tried in place of $\operatorname{Tr} 2$, although it is probable that ither types could be used, provided that one is prepared to juggle a little with component values.

\star components list

Resistors:	
R1	$6.8 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$
R3	$1 \mathrm{k} \Omega$
R4	1Ω
All re	esistors $\frac{1}{2}$ watt 20%
VR1	$5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ Log.
Capacitors:	
C1	$25 \mu \mathrm{~F} 12 \mathrm{~V}$ wkg.
C2	$100 \mu \mathrm{~F} 12 \mathrm{~V}$ wkg.
Semiconductors:	
Tr1	OC72 (see text)
Tr2	OC22
D1	10 p.i.v. 250 mA
Miscellaneous:	
Groupboard (6 way); Input and output sockets;	
Piece of paxolin $2 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}$; 4BA nuts \& bolts; Switch,	

Finally, a word about power supplies: unlike the more commonly encountered class B transistor amplifiers, this unit draws a steady high current all the time it is switched on (class A), regardless of whether or not a signal is applied. The prototype has an appetite which requires about 110 mA at 4.5 V to satisfy it. Correspondingly, the battery needs to be as large as convenience allows. The prototype draws its nourishment from a 4.5 V Bell-battery Type 126. A couple of these in parallel or a PP11 might be a better idea.

Damage resulting from incorrect connection of the power supply is prevented by the inclusion of diode D, in the negative supply line.

NEXT MONTH IN

LIGHT BEAM TELEPHONE

The light beam telephone provides a convenient method of short range point-topoint communication without the use of wires, which does not involve transmission and reception on fréquencies requiring a Post and Telecommunications Licence.
Basically, the transmitter consists of a lamp which is amplitude (brightness) modulated by the voice signal to be transmitted. The lamp is mounted in an optical system, so as to produce a parallel beam of light, which is directed at the receiver. The receiver consists of a phototransistor mounted in a similar optical system, plus an amplifying system to operate an earphone.

WIDE RANGE L.F. GENERATOR

The frequency coverage of this signal generator is 15 Hz to 1.5 MHz in five ranges. The circuit uses a minimum of components, consistent with reliable operation and is easy to build and use. The basic unit is built on a Veroboard panel and operates from a built-in mains unit.

L.F. BANDS TRANSMITTERRECEIVER

This equipment incorporating all the required circuitry for transmission and reception and with an internal power pack and loudspeaker, offers a neat "one box" station for regular use, or for / A working. The transmitter runs the full permitted power (10 watts) on the 160 metre band, and can easily be modified to cover 80 metres.

PLUS THE REGULAR "TAKE 20" AND "I.C. OF THE MONTH" FEATURES AND OTHER CONSTRUCTIONAL ARTICLES AND FEATURES

Don't miss your copy of the June issue of Practical Wireless -on sale 8th May-price 3 s . 6 d .

 F.G.RAYER G30GR

IT is usual to employ the same aerial for transmission and reception, and to have an aerial change-over switch, change-over relay, or switching in the transmitter to transfer the aerial from the transmitter output socket to the receiver aerial input socket. As the receiver speaker generally needs to be muted while transmitting, this makes necessary some inter-connection of units, which may be found a nuisance when using two or more transmitters.

The circuit in Fig. 1 avoids the need for such switching, and is permanently connected to the aerial, which will also be used for transmission. During reception, V1 acts as a cathode follower, with bias and output developed across R4. C3 couples signals to the receiver.

V 2 is the first audio amplifier of the receiver, in this case with contact potential bias from R5 and $R 2$. C4 is coupled to the volume control, and C6 provides signals for the output stage and speaker.

When the transmitter is on, a high r.f. voltage appears at V1 control grid, and rectification develops bias across R1 and R2, thus virtually cutting off V1 so that the signal is not applied to the receiver aerial circuit. The bias voltage developed across R2 is beyond the cut-off value for $V 2$, thus muting the audio section and speaker.

Stray coupling through VI and elsewhere allows the receiver a.g.c. circuit to cut down the sensitivity of i.f. and other controlled stages while transmitting. When the r.f. signal from the transmitter is removed, the receiver returns almost instantly to its usual condition.

CONSTRUCTIONAL POINTS

As the circuit was fitted in a home-built receiver, Vl was mounted on the chassis between aerial socket and aerial coils. This stage should be assembled on a small sub-chassis, and fully screened as far as possible. The voltage across Cl depends on the type of aerial and transmitter power, so a 1 kV mica component was fitted. For Top band, moderate power, or feeding from a 75Ω or similar line, 500 V would suffice. The r.f. voltage across Cl is greatest with end-fed half-wave systems where the receiver is operated from the aerial without a tuner but this is not recommended.

R4 suits the general medium impedance receiver aerial input circuit. For a receiver with 300Ω or 75Ω input, signal strength would be improved by reducing R4 and increasing C3. The h.t. voltage is not very important, and can be about 150250 V , taken from the receiver supply.

The speed of recovery of the whole circuit depends largely on the receiver a.g.c. component values. Re-

Fig. 1 : Circuit of switch.
covery of the cathode follower and audio stage is practically instantaneous. If the receiver has a very sluggish a.g.c. circuit, the effects of this can be reduced by decreasing the capacitor and resistor values in the a.g.c. circuit.

With the circuit in use, omit all inter-connection of receiver and transmitter, and any aerial changeover relay or similar device. The aerial is permanently connected to the receiver by a single lead, or preferably by co-axial cable, to suit the type of aerial feed. The transmitter is connected to the aerial directly, or through a tuner, as usual. If desired the tuner may be in circuit for reception.

The transmitter is normally switched on by closing a switch in the main h.t. circuits. where low voltages are involved, or a switch or relay in the supply to a transformer which provides h.t. current in other cases.

The circuit was intended for use in conjunction with a.m. transmitters. Where high power is used, the voltage rating of Cl should at least be equal to that of the p.a. anode circuit coupling capacitor.

The circuit was found to be satisfactory with an s.s.b. transmitter, for automatic receiver muting, but not suitable for c.w., due to the long time constant of the receiver a.g.c. circuits.

It is not recommended that this switch be used with receivers having transistorised r.f. stages as the transistors could be damaged by the high r.f. voltages that exist around V1 in the transit mode

Heathkit for the new "Compact" Sound of the 70's

The fabulous stereo "Compacts" Models AD-17 and AD-27 are setting the pace in hi-fi for the 1970's. They offer outstanding value and performance. The AD17 comprises a BSR MA-65 turntable/Shure M44-MB magnetic cartridge and a 10 watt (RMS) per channel stereo amplifier all mounted on a Teak or Wainut plinth. Kit Price f54. Carr. 13/-

The AD-27 is similar but uses the MA-70 turntable and includes an FM stereo tuner. In this case the "plinth" is better described as a small cabinet. It has the additional features of a "Roller Shutter" lid and is available in Teak or Walnut.

Kit Price £82. Carr 13/-

Heathkit offer many excellent loudspeaker systems the new. "Ambassador" Hi-Fi loudspeaker is winning many friends. Its cabinet is supplied ready assembled and finished in selected Teak or Walnut veneers to harmonise with other current Heathkit hi-fi equipment. It uses three loudspeaker units a 12 in . bass, 5 in . mid range and a 1 in . Dome Pressure Tweeter.

Kit Price £29.16.0 Carr. 15/-
The complete Heathkit hi-fi range of stereo amplifiers, tuner/amplifiers, FM tuners, Stereo "Compacts", loudspeaker systems and ancilliary hi-fi equipment are all described and illustrated, many in full colour. In a wonderful free catalogue.

Send for the FREE Catalogue and see for yourself. . . Today!

THE STICK THAT DOES THE TRICK！！！
 JUST LISTEN TO THE SIGNAL FROM THE

NITYSTIEK
REGD．
VARIABLE FREQUENCY ANTENNA

ALL BAND－WORLD RECORD AWARD WINNING AERIAL－ JUST 7 ft． 6 ins．LONG！

OSC．HI－RI CENTRES at ：
BIRMINGEAM．Gt．Western Arcale
BRADFORD． 10 N．Parade
DARLINGTOK． 18 Priestgate
DERBY． 16 Osmaston Rd．
EDINBURGE． 133 Leith St．
GLASGOW． 326 argyle St．
HULL． 91 Paragon St．
HELLDS．${ }_{5}^{61}$ Paragon County Pde
LEICESTER． 32 High St．
LIVERPOOL， 73 Dale St．
MANCHESTER 60a Oldham St．
MIDDLESBROUGGH． 106 Newport Rd．
NEWCASTLE／TYNE． 41 Blackett St．
SHEFFMELD． 13 Exchange St．
LONDON． 238 Edgware Rd．
LASKY＇S RADIO at ：
LONDON． 207 Edgware Rd． 33 Tottenham Ct．Rd． 152－3 Fleet St．
G．W，SMIMH \＆CO，at：
LONDON． 3 se 34 Lisle St．WC2
311 Edgware Rd．W2
TMHOF＇S（Eddystone Dist．）at：
LONDON．New Oxford St．WCI．
AND AT：
ABERDEEN．L．Hardie，J42 George St．

ASHFORD（MIDDX）．Ethelford Comms． BATH．Rrtand Huntley，Is Old Bond St BIRMINGHAM．Amateur Electronics
BOURNEMOU PE．Forresters Nat．Radio BRADFORD．Eadio Ham Shack，Gindwin St BRIGHTON．Arthur Sailis，Gardener St． CARDIFF．Wesek Redio，Cathays CHELMSFORD．Radio Service，New st． CHESTERFIELD．J．\＆A．Tweedy Ltd． EDINBURGH，F．Brown \＆Co．Geo．V．Bdge． EXETER．Electrosure Ltd．Fore St． FRASERBURGH．Murray Mackie GLASGOW．RME Surplus Supplies GOODMAYES．Unique Radio，Facade GT．YARMOUTH．The Record Shop HALIFAX．Albert Hind Ltd． HARTLEPOOL．Specialist Radio HUDDERSFIELD，Radio Craft Lted． HULL．Short Wave，Newland Ave． ILFORD，Radio Der：Clayhall Ave． IPSWICH．Eagle Elect．（Dunslac）． LEEDS．Henry Elect．Harrogate Rd． LEICESTER．S．May，12－14 Church Gate LIFERPOOL．Stephens－Janes，Priory Rd． Super Radio（Whitechapel）

LONDON．City Radio，Ealing Wi．
R．T \＆I．Elect．Ashville Rd．E11． LUTON．Coventry Rdo．Dunstable R．d． NEWARK．Geo．Francis，Balderton Gate NEWCASTLE／TYNE．Richley \＆Freeman NEWPORT（MON）．K．F．Paull，Dock St． NEWQUAY，R．V．Heming Ltd， NORWIGA，Radiomaties，St．Benedicts St． NOMTINGHAM．Pete＇s Elect．Arkwright St． OLDHAM，The Electronic Centre，The Mumps PLYMOUTH．Radioparts，I Market Way ROMFORD．Newbury Rdo． 120 No ROMFORD．Newbury Rdo． 120 North St． SOUTHAMPTON．Frank Victor，Northam S．SHIELDS，J．R．Gough Flect．Imeary St． SUNDERLAND．Red Radio Shop，Cowtree Ru． SWANSEA．W．J．Holt，Oxford St． WESTCLIFF－on－SEA．Radio Const．Co． WEYMOUTE，Jorset Radio Lectronic WORCESTEER．Jack Porter，College St． WOLVERHAMPTON．Lings Rdo．Snow Hill
WORTHTNG．（ WORTHING．（：W．M．Rdo．Portland Rd． or from
PARTRIDGE ELECTRONICS LTD．，（PWA）， BROADSTAIRS，KENT．Tel：Thanet 6253°

H．A．C．Electronic Kits DID YOU KNOW？

That we have specialized in the supply of kits for the Amateur Constructor for over 35 years．（Established 1934．）

That we now have available a full range of Complete transistor kits with comprehensive instruction manual，for constructing－Radios－Resistance Bridge－Lightmeter－Elec－ tronic Counter－Voltmeter－ 80 metre Converter，etc．etc． （Details for 40 different electronic circuits are available．） Complete kits from 54／－．Fully guaranteed．Illustrated brochure upon application，send S．A．E．please．

H．A．C．Products， 29 Old Bond Street．London W．1．

Abstract

SYLVANIA MAGNETIC SWITCH－－a magnetically activated switch operating in a vacuum．Switch speed－4ms．temperature－-54 to $+200^{\circ}$ C．Silve contacts normally closed rated 3 amps．at $120 \mathrm{c}^{\circ}$ ． 1.5 amp．at 240 v ． $10 /=$ each．e 4.10 .0 per dozen－ Special quotations for 100 or over．Referenc Warnets available $1 / 6$ each．

SYLVANIA CIRCUIT BREAKERS gas filled providing a fast thermal response between 80°
and $180^{\circ} \mathrm{C}$ ．Will withstand pressures up to 2000 Ib ． andin，rated 10 amp．at 240 v ．continnous．Fault curknts of 28 amps．at 120 v ．or 13 amp．at 240 v ． silver contacts．Supplied in any of the following opening temperat tures（degs．cent．） $80,8 \overline{5}, 95,100$ ， $105,110,120,125,130,135,140,145,1501 \%$ $160,170,175,180,10$ ！－each or 84.10 .0 per tozeri－

MTNLATURE＂LATCHMASTER＂RELAY 6,12 ，or 24 v ．DC operation．One make one break，contacts rated 5 amps．at 30 V ．Once current is applied，relay remains latched until input polarity is reversed．Manu－ factured for high acceleration requirement by Sperry Cyroscope Co．Size：I，ength $\frac{1}{8}$ in．dia $\frac{p}{18}$ n （including mount）．Please state vertical or horizontal mount and voltage， $\mathbf{£ 2 . 5 . 0}$ each．

Tansitor（U．S．A．）Tantalum，Wet Sintered Anode Polarised Capacitors： 200 UF． $2 \overline{5} v$. D．C．size：$\overline{5}$ in．long $\times \frac{3}{5} \mathrm{in}$ ．dia． 180 UF． 24 r ．D．C．size：$\frac{z}{2 i n . ~ l o n g ~} x$ 者in．dia． 150 UF ． ${ }_{5}^{30 \mathrm{v}}$ ．D．C．$\frac{3 \mathrm{in}}{} \mathrm{l}$ long \times 弪in．dia． 33 UF ． 75 r ．D．C．size： $\frac{5}{5}$ in．long $x 9 / 32 \mathrm{in}$ ．dia．One wire each end．All types 5／－ each．Also few only Transistor＂MICRO－MODULE＂ capacitors 0.2 Mid．15s wire－ended，size：3／32in．dia
（dise） $5 /-$ each．

Ernest Turner sin．入 4 An ． 0.1 Ma ．Meters calibrated $0-10$ in 50 ilivisions mirrored scale，handsome chrome escutcheon for fush morunting．A quality instrument． £6．10．0．

New 75－0－75 Micro－ammeter by Sitam． 750 ohm move－

 $57 / 6$ each．

Welmyn high value Resistors Type GA 36501．Values between 9.4 and 10.9 kilo－meg $\pm 1 \%$ ，glass encapsulated 15／－．

MINIATURE
B．P．L． $500-0 / 500$ Micro－Ammeter．13／16iu．Diam．scale． Through－Panel mounting，45／－

Berco Rotary＂Regavolt，＂variable voltage transformers input $240 \mathrm{v}, 50 / 60$ ces．，output $0-240 \mathrm{v}$ ．C．T．at 6 amps． P．\＆C． $10 /=$ ．

Isolation Transformers．I to 1 ratio， 340 v ．input 240 v ceutre tapped out，at $12 \mathrm{~K} . V$ ．A．，mounted in metal case
 \＆16．10．0．carr．£1．

Motor Driven Variable Voltage Trans－
formers by Ohmite（U．S．A．）．Input $720 / 240 \mathrm{v} ., 50 / 60$ e．p．s．Output $0 \cdot 240 \mathrm{v}$ ． at 480 v．a．A reversible lior．a．c． geared Hotor drives the contact sweep arm in the direction requited．Ihere
the track which is cam－operated and intended to －the track which is cann－operated and intended to be P．\＆P．10／－

MONTHLY NEWS FOR DX LISTENERS

 OR the second month in a row I have received enough information to fill several pages. I would like to thank all those who have reported to this column and to apologise for the fact that I have had to severely edit their reports in order to include the maximum amount of information.
Reader's logs and news

Alexander Lex-Arnold of Hemel Hempstead uses a Heathkit Mohican Mk. II and a 16 foot indoor wire which enabled him to hear:
11795 WINB, Red Lion, Pa., 2115-2200 SINPO, 52533. 11855 Saudi Arabia 1935-2000 in English, 53444. 15110 WIBS, Grenada, 2005-2045 in English, 55434. 21480 RSA, S. Africa, 1800-1850 in English, 43433.

Geoffrey Gilham of London SE12 heard my plea for l.f. logs and used his Eddystone EC10 and Trio 9R59D to send in some of the best DX this month:
4680 R. Nacional Espizo, Ecuador 0437, 44333. 4690 R. Reloj, Costa Rica at 0535, 44444. 4720 R. Clube Mindelo, Cape Verde at 2200, 33333. 4850 R. Mauritania at 2030, 43443. 4865 Ponta Delgada, Azores at 2035, 43443. 4965 R. Sante Fe, Colombia at 0737, 43443. 15110 XERR, Mexico at 2339, 54444.

Mr. N. Colton of Ventnor, I.o.W. reports hearing Radio RSA, S. Africa on 21480 as above but also on 15250 at the same time. He has also heard Radio Kiev in English to West Europe at 1930-2000 on 7120 and 5920; Radio Ghana in English at 1445-1530 on 13930, 16790, 17870 and 21505; WNYW, Radio New York World Wide at 2200 on 15440. His equipment consists of a 4 valve domestic superhet and a longwire antenna.
Maurice Williams of Sleaford, Lincs. is yet another reader who has a Trio 9R59DE this time with a 20 foot base loaded vertical or a 70 foot long wire:
4967 KBS, Kuwait at 2100, 34233. 11765 HCJB, Ecuador at 2210-2300 in English, 32332. 11855 Saudi Arabia at 1830-2000, 44444. 15115 WIBS, Grenada at 2110, 45444.

Chris Stacey of Tunbridge Wells has a Lafayette HA700 and a Joystick antenna yielding:
3295 R. Zambia at 2009, unreadable. 4040 R. Yerevan, Armenia, Domestic Service at 1644. 4500 Urumchi, China with poor reception at 1552. 4775 Afghanistan in Pustu/Dari at 1611, poor. 4880 R.TV Congolaise at 1810, poor. 7255 VOA, Okinawa in Chinese at 1628, poor.
Richard Ellis of Stroud has a 1944 vintage Hammarlund receiver and a 49 metre ' V ' dipole and heard:

THE BROADCAST BANDS Malcolm Connah

11710 R. Nacional, Argentina at 2300-2352, 55445. 15125 ELWA, Liberia in Arabic with Eng. ID. every 15 minutes from 2130 to 2200 , 54555. 17705 Radio Havana, Cuba at 2010-2030, 54344. 17825 NHK, Japan at 0800-0830, 33233.

Nigel Pope of Chesterfield does not seem to have much luck with his Codar CR70A and Joystick, the only station he reported was:

17705 Radio Havana, Cuba at 2047, 44444.
The station asked for reports and suggestions to be sent to P.O.Box 7026, Havana, Cuba.
C. Williams of London SW18 had more luck with his Codar CR45 and 40 foot end-fed antenna and heard:

11710 Radio Australia at 0645-0745, poor. 15185 Radio Finland in English at 1800-1830, strong. 21690 UN Radio with news in English at 1800 \& 1825.
Roy Patrick of Derby reports that $H C J B$, Ecuador has placed a new 100 kW transmitter into service on s.w. They plan to introduce two further 100 kW transmitters in the future.

Radio Brazzaville, Congo has been heard on a new frequency of 4800, at 1915 they relay Paris with an English programme, reception is good apart from the c.w. QRM.

John Adams of Sheffield does not let us know what equipment he has but he managed to hear:

9600 approx. R. Vilnius, Lithuania at 2240, 55545. 17720 WINB, Red Lion, P.a., at 1800.
John W. Smith of Anstruther, Fife used his Eddystone 840 C and Joystick to send in a very interesting log of Brazilian stations:

9610 R. Tamois at 2035-2100. 11875 R. Soc. de Bahia, Brazil. 15125 R. Dif. de Soc. de Bahia, Brazil. 15145 R. Journal do Comercio at 2035-2100. 15155 R. Dif de Sao Paulo at 2035-2100. 15370 R. Tamois \& Tupi at 2035-2100.

News from the Clubs

The Pathfinder Radio Group (PRG) is now a special section of Euradio and has an observer on the European DX Council. Euradio accounts are via the PRG and all communications should be sent to them at 13 Little Road, Hemel Hempstead, Herts.

The International Shortwave League (ISWL), 60 White Street, Derby, DE3 1HA, now offers a reduced subscription rate of 25 s . to members under the age of 18 years. It is hoped that this move will encourage young people to take an interest in the hobby at a time when they may be unable to afford the full subscription.

All reports, preferably in frequency order, should arrive at 58, Kensington Gardens, Ilford, Essex by the 17 th of each month.

THE AMATEUR BANDS
 David Gibson, G3JDG

THERE have been so many logs this month that it seems a good idea to get in as many as possible and let readers draw their own conclusions about the amateur bands. One or two letters have pointed out that two metres is far from dead and that the souls of long lost carriers do roam about in the 144 MHz region. A few more point out that the Codar CR70A is a superhet and not a t.r.f.
D. Robbins (Warks.), draws attention to the prefix game and confesses confusion. He says that YU is now YT, UA and RA are the same, I1 is $1 \emptyset$ to commemorate the founding of Rome, VK is AX and HT1HSM lives in Nicaragua but so does YN1HSM. Heard during the A.R.R.L. contest, 9E3USA who became ET3USA the following day.
J. Leaver (Lancs.), has a BC348L, a 100 ft . long wire round the attic and the mains earth. Goodies bagged on topband c.w. include-DL9KRA, GD3SVK, GI3JEX, GI3RNY, GM3TMK, HB9ANW, HB9NL, K1PBW, K2GNC, OE3AX, OI3NQ, seventeen OL stations, nine OK stations, PA ONF , PAøPN, VO1FB, VO1HN, W1BB, W8ANO, WB2OZW, YU3TMX, ZB2BO, 5Z4LE/HZ. James notes hearing VO1HN coming through at 2200 calling CQ and ZB2BO at 2355 also calling CQ but getting no replies.
W. Waldron (Mon.), 840 C , a.t.u. fed by a threewire folded dipole, claims this bunch for 80 metresCO2DR, CO2FA, CR4BC, HS5ABD, HV3SJ, K3UZE, KV4FZ, KZ5AG, MP4BFO, OA8V, OY5NS, PJ7JC, PZ1DF, TA3MQ, VO1FB, VP5TH, WB2LWH/P/VP9, W5KUC, W8KYD, 4S7PB, 4X4UF, 6Y5EM, 9H1CB, TG9EP.
D. Henbry (Sussex), KW77, 7ft. vertical at 30ft., (that could be dangerous to a low-flying gull), skewered these on 80 s.s.b.-CP1GN, CT2AC, CT2AK, EA8HA, FP8AP, HK3WO, HV3SJ, KG4AS, KP4CL, MP4BFO, OD5FA, TG9EP, VP2SY, VP2VI, VS6DO, W5GC, WB2LWH/VP9. XE1KS, XW8BP, YV5BPG, ZB2BX, 4X4UF, $5 Z 4 \mathrm{KL}$. On 40, David hooked--CT2AC, HC2HM, HK6BRK, YV1PW, YV4YC, XE1RRK.
G. Jones (Ayrshire), GR64, 88ft. end-fed, went s.s.b-ing on 80. Rewards include-CT1BH, CT2AK, GB2DX (?), PZ1DF, TA3MQ, VE1IE, VO1BD, VO1DE, VP1AAW, VP2VI, VP5TH, W1FRR, W5AEQ, XW8BP, 4S7PB, 4X4UH, 5Z4KL, 9H1BI, 3Z5BT.
S. Ireland (Kent), PW Clubman Mk II, 19-set variometer, 67 ft . end-fed is also an l.f. enthusiast. Eighty produced - CT1VY, CO2FA, CR4BC, EA6BC, HC1RF, HK3BQM, HK3WO, HL1HN, HL1LLA, IS1DF, KG4AS. KP4CL, KZ5AE, LX1BW, OX5BJ, OA3KD, OA4ABK, TI9CE, TF5TP, scores of VE/VO/W including VE2BUP/ P/VE1 on Prince Edward Is.. VP2VI, VP2SY (St. Vincent), XE1KS, XE2IH, ZL4NH, ZM3LE. 9 Y 4 MM .

No doubts about the l.f. end and v.h.f. sleuths are enthusiastic about the coming summer days, so it could be a bumper DX year.
S. Cole (Mon.), tells that ON4UN has worked over 200 countries since January 1969. Stephen claims 111 countries which include $9 \mathrm{M}, \mathrm{ZF}$, PY. 3V8 and VP9.
A. Mercer (Lancs.), no mention of a receiver or aerial so he must have mighty sensitive headphones. Twenty metres yielded-AC3DK, CN8MC, CR8AF, CRØRL, EP7BST, FG7US, KC4AA, LX1CV, MP4DDI, OA7AC, OX2EY/MM, PJ1HT, PY1AY, PZ1BC, SV1DK, TN2TJ, VK2XQ, VK7AV, VK7PN, VKøAN (Heard Is.), VP9VV, YA8RMO, YA5ZAR, YV5VX, ZS6SR, 4X4PZ, 6W8DY.
A. Crooks (Leics.), RA1 plus PR30, 45 ft . end-fed, invaded twenty to discover-AC3PT (Sikkim), AX7DK, ET3USA, FP8CS (Miquelon Is.), HI8LA, JX3MN, OA4LM, OX3BE, OY3B, PY7AEW, SU1MA, TA2SC, VO1CU, W7EQB, YV5CRZ, ZB2BV, ZL3BQ.

On fifteen, Andy bagged-AX1JL, AX2AU, AX3ADO, AX4FD, AX6NM, C31AP (Andorra ?), EA8DZ, EP2JP, FG7TD, HT1HSM, IRøIJ, JW7UH, JX3MN, MP4TDA, SV1BX, TF2WKI, UAOBP, VE5TM, VP2MA, VP5GM (South Caicos Is.), VP7CG, VU2DK, W6LZV, YA1GNT, ZM3NS, 9N1RA.
M. Bayes (Surrey), 9R59DE, TV aerial (Cor, Peyton Place and ZLs), reports signals on fifteen fromAX2ADJ, AX2BAS, AX4UL, CE3FA, CT1UV, EA6BK, EA8HB, EA9EA, EL9BVZ, ET3RU, HC2GG/1, HR1WSG, IRØWRP, IT1SPI, JA1ISG, JA2GAR, JA3MNR, JA6DGN, JA7ECH, JA8ADJ, K2MKD/MM, KP4BCM, KZ5IT, LU3JS, LX1BW, OY1WP, SV \varnothing WII, TI2MGM, VE2DFY, VE3GEC. VE5TM, VE8EQI, VK2ASS, VK2FU, WA5ZUB, WB6IYK, 9G1GD, 9H1BH.
P. Starling (Essex), had a quick look around ten metres. His best include - K6UDR, OD5BZ, SVøWII, VE1ATJ, VE1QJ, VP2VI, YL9APB, 3V8AL, 9J2RQ.
D. Robbins (Warks.), CR70A superhet. plus 60 ft . end-fed listened to s.s.b. from-HC2KF, HR2WTA, KZ5EK, LU2AHI, LU6DRB, SV1AB, VP9BK, W5NMF, W5RER, W6DLN, YV3AQ, ZC4JW, 6W8DY, 9H1BP.
G. Richards pens some strong words disagreeing with my comments about two metres. His best on this band to date are PA \varnothing CML and PAØWTE at distances of 300 and 410 miles respectively. Glyn uses a GC-1U, a JXK converter with an i.f. tuning $28-30 \mathrm{MHz}$, and the aerial is a 120 ft . long wire. He now has a four-over-four slot-fed yagi so things should improve. A listen on ten produced K7TEG. VP7CG, WA6BVY/P/W6, WA6DLI, WA6GRQ. WA6UAG, WAøTOF, 9J2DT all s.s.b. On a.m.UA9KMK, VE5VV, W7RSP, YV3MC.
"What about some six metre logs?" queries \mathbf{F}. Smales (Yorks). This band is used by American amateurs and ranges from $50-54 \mathrm{MHz}$. Using a National NC155 with a four-element broad-band beam, the following were logged on six metresWA1BSR, W2ERV, W3FAU, W3FET, W4OGX. W4OSJ, W9EKP, W9BGX.

Still a large proportion of mail received asks about the various prefixes and where can a list be found. So, for all those who are thinking about asking the question, here's the answer. Send 1s 4 d to the Radio Society of Great Britain, 35 Doughty Street, London, W.C.1., and ask for a "Countries List". Incidentally, it pays to get a new one each year, just to try to keep track of all the changes.

Goings on in April include: April 5th., 80 metre low power contest; 11-12th., 4 metre open contest; 19th., North Midlands Mobile Rally; 26th., DF qualifying event (good fun these if you like streaking about the countryside with a small d.f. portable).

for full details of these and all Discosound Products write direct to:-
DISEOSOXND, 122 EALIS POND ROAD, LONDON, N.1. Tel: 0f-254 5779
Full money back guarantee if returned within 10 days.
All Discosound Products are guaranteed for 12 months.
Demonstrations given at any time.

AUDIO AMPLIFIERS

16 Transistor and Valve Designs for the Home Constructor
Amplifiers for Tuner Units, Record Players, Tape Recorders, Public Address, etc., etc.

Includes contributions by such well-known authors as
A. S. Carpenter, A. Kinloch, E. Govier,
G. A. French, F. G. Rayer,
P. F. Bretherick, K. Jones, D. Aldous, R. Murray-Shelley, C. Swires,
G. A. Stevens and V. E. Holley.

Edited by J. R. Davies

124 pages
PRICE 10s. 6d.
Postage 8d.

TO: DATA PUBLICATIONS LTD., 57 Maida Vale London W9

Please supply \qquad copy(ies) of "Audio Amplifiers", Data Book No. 18 I enclose cheque/crossed postal order for

NAME
ADDRESS \qquad

AUDIO EFFECTS

5 SHAW LANE, HALIFAX YORKS
Buy with confidence and obtain the right results. Refunds without question if any of our products fail to give 100% satisfaction
AMATEUR BANDS ALL TRANSISTOR
SUPERHET RECEIVER KIT. No fuss, no drilling. Just fit the components on our printed circuit. Slow Motion tuning. Simple IF alignment. Perspex front panel. Push pull AF amp drives your $8-15$ ohm speaker. Amp can be used seperately. Designed to accept a BFO signal. Uses Denco plug in coils 2 T . 0.5 to 1.54 Mhz 3T. 1.67 to 5.3 Mhz 4 T 5.0 to 15 Mhz 5 T . 10.5 to 31.5 Mhz Range 3 T normally supplied with kit. Uses 9 volt battery. Easy step by step instructions. Complete Kit E8.19.6 plus 5/6 P. P. \& Ins. Extra ranges $12 / \mathrm{F}$ per range.
POWER CONTROLLER. Power at your finger tips. Not merely half wave control but full wave. A single variable control gives zero to full power. Uses latest 15 amp 3 kW triac and special trigegering device. Ideal for all types of lighting, fires, motors, drills, etc. Complete with box, power sockct. cables. etc. £6.9.6. Ready built $\mathrm{E}^{2} .4 .6$ plus $5 / 6$ P. P. \& Ins. REVERBERATION AMPLIFIER. Self contained transistorised, battery operated. An entirely different approach to sound reproduc tion. Normally, sound reproduction from a single source, bas a fat one dimensional effect With this unit, proper sound delay through reverberation, tones, are created with a truly third dimension for concert hall originality. Two controls adjust volume and reverberation. Simply plug microphone, guitar, etc., in, and the output into your amplifier. Supplied in a beautiful walnut cabinet 74 in $\times 3$ in $\times 4 \frac{1}{4}$ £10.4.0 plus 6/-P. P. \& Ins.
VOX SWITCH. This sound operated switch is ideal for mobile TX work. tape recorder switching, etc. You speak, it switches. High and medium imp. inputs. AF take off point. Drives your 12 volt relay. In kit form with Drives your 12 volt relay. In kit form with guaranteed. 62/6, plus $2 / 6$ P. P.
guaranteed. $62 / 6$, plus $2 / 6$ P. P. .
METRONOME UNIT. Variable beat. Listen while you play and keep in time. Easily built while you play and keep in time. earphone. In pocket size with personal mini earphone. In attractive black and white polythene case. $37 / 6$ post paid.
MORSE OSCILLATOR. PC board, transistors, high stab. components, battery carrier, car piece. Adjustable tone. Just attach your key. Drives phones or speaker. In kit form 17/6 post paid. Ready built in similar case as above 25/-post paid
STRAIGHT FROM THE PRESS. Latest Mullard manual: Audio Amps, FM tuners Stereo decoder, Receiver circuits, Hi Fi Tape, etc. etc. $32 / 6$ post paid.
JUST ARRIVED IN STOCK. Texas transistors. Complementary symmetry. Driver. NPN. PNP output. The set of three ONLY $6 / 6$ post paid.
Free lists with every order. For lists only send $1 / 6$ (deductible from first order).

NEW VALVES!

Guaranteed and Tested 24.HOUR SERVICE

1Ry	$5 / 6$	DL94	5/9	EL84 4/9	PL504	13/3
185	4/3	DL90	7/-	EY51 7/-	PY32	10/-
1 T 4	$2 / 9$	DY86	5/3	EY86 6/3	PY33	10/-
354	$5 / 9$	DY87	5/3	EZ80 4/3	PY81	5/-
$3 V 4$	$5 / 9$	EABC80	$5 / 9$	EZ81 $4 / 6$	PY82	5/-
$6 / 30 \mathrm{~L} 2$	11/6	EBC33	$7 / 9$	KT61 9/8	PY83	5/6
6AQ5	4/3	EBC41	9/3	KT66 6 16/6	PY88	6/6
6 V 6 G	3/-	EBF80	6/-	N78 17/-	PY800	7/-
25 L 6 GT	4/6	EBF89	5/9	PABC80 $6 / 9$	PY801	$6 / 9$
30 FL 1	13/9	ECC81	3/6	PC86 10/3	R19	6/3
30 FL 12	14/8	ECC82	4/-	PC88 10/3	U26	$12 / 9$
30 P 4	11/6	HCC83	4/9	PC900 7/-	U26	11/6
$30 \mathrm{P19}$	11/6	ECC85	5/-	PCC84 6/8	U191	12/-
30PL1	14/6	ECH35	5/6	PCC89 8/11	U193	$8 / 6$
$30 \mathrm{PL13}$	16/9	ECH 81	5/9	PCF80 6/11	U25]	14/-
COH35	13/-	ECL80	6/6	PCF801 6/6	U301	101-
CL33	17/6	ECL82	6/3	PCF802 8/9	U329	14/-
DAC32	6/9	ECL83	8/	PCL82 6/9	UABC80	18/-
DAF91	4/3	ECL86	$7 / 6$	PCL83 11/9	UBC41	8/8
DAF96	6/9	EF37A	6/-	PCL8 $4 / \mathrm{m}$	UBF89	$6 / 8$
DF33	7/6	EF39	4/6	PCL85 6 8/6	UCC85	$7 / 8$
DF91	2/9	EF80	$4 / 6$	PCL96 8 8/-	UCH81	$6 / 6$
DF96	6/9	EF85	$5 / 9$	PFL20011/-	UCL82	6/8
DK32	6/9	EF86	6/3	PL36 9/8	UF41	10/6
DK91	5/6	EF89	4/9	PL81 8/-	UF89	6/-
DK92	8/3	EF183	$5 / 6$	PL82 5/9	UL41	11/9
DK96	7/8	EFF184	5/3	PL83 6/3	UL84	6/8
DL35	4/9	EH90	6/-	PL84 6/-	UY41	7/-
DL92	5/9	EL33	8/3	PL500 12/9	UY85	$5 / 6$

GERALD BERNARD
83 OSBALDESTON ROAD
STOKE NEWINGTON. LONDON, N. 16

MARCONI CR $150 / 2$ DOUBLE CONVERSION SHORT WAVE RECEIVERS, frequency $1.5-22 \mathrm{mc} / \mathrm{s}$. Features are as follows: Fitted ' s ' meter, geared tuning with no backlash, 2 speed motion, slide rule dial, calibrated in M / Cs, logging scales for accuracy. 500 K e/s Xtal Cali1st 1 F is $1.6 \mathrm{Mc} / \mathrm{s} 2 \mathrm{nd} 1 \mathrm{~F} 465$ with X tal fiter passband from 100 c.p.s. to 10,000 eps fiter giving a 3-0-3 Kc/s. Rectified 1FO/p, DF input, suit teleprinter o/p; output 600 ohms and 3 ohms for LS Front end has 2 R.F. stages of amplification giving a sensivity of $2-4 \mu \mathrm{y}$ depending on band in use. Separate mixer/oscillatior 2nd oscillator is also variable $5-0-5 \mathrm{Kc} / \mathrm{s}$ bandspread A separate power supply is needed to power the above set at 300 v at 100 MA and 6.3 v 4 amps Lt. AC/DC circuit connection supplied to purchasers of this very fine receiver These RXs are not new but are in quite good condition and tested on despatch. Unrepeatable ofter.

R209 RECEIVER AM/OW/FM 1-20 Mc/s Four bands. Vernier taning, 12 volt DC input. Tested and working. Price $\mathbf{\$ 1 3 . 1 0 . 0}$ plus $\mathbf{1 1}$ p.p
COMPUTER BOARDS Min 30 transistors and diodes and res. etc. 10 boards at 10/- plus 2/6 p.p.; 25 boards at 22/6 plus 4/6 p.p.
HEADPHONES Chamois padded, low impedance Moving coil, magnetic microphone new, ex W.D., rar type, limited stock. \quad also \quad used and checked DLR pair plus $3 / 6 \mathrm{p}$ peadphones, armature type. $\quad 12 / 6$ per pair plus $2 / 6 \mathrm{p} . \mathrm{p}$
ABRIALS new condition, extending to 11 ft fully open: whip type: $12 / 6$ each plus $3 / 6$ p.p. Whip aerials, 12 ft collapsible type; used condition: 10/- each plus $3 / 6 \mathrm{p} . \mathrm{p}$ 2/6 p.p
BARGAIN PARCELS 14lb at 29/- plus $8 / 6$ p.p.: 281 lb at 56/- plus 12/6 p.p.; 561 b at 90/- plus 25/- p.p. Contain pots, Res. Valves, Diodes, Tagboards, Chassis, Valve
holders, etc. Good value save fexs. Lucky Dip Service.
FURZEILL BEAT FREQUENCY OSCILLATOR $0-10 \mathrm{ke} / \mathrm{s}$ $110 / 250$ volt. Good condition complete with spares.
f5.10.0 plus 25/. p.p
VHF Receiver, Type 715, less crystal $60-100 \mathrm{Mc} / \mathrm{s}$ cal input, not tested; complete with valves and speaker
f3.0.0 plus £1 p.p.
VIBRATOR Power SUPPLY TYPE 69 by BCC for 69T/R Small compact 12V input gives 250V DC at 80 MA and $12 \vee$ output. Good condition

25/- plus 7/6 p.p
MOBLE POWER UNITS by PYE for the C12 T/R Power output is 400 V DC at 140MA and 300 V DC at 100 MA Good condition. 83.10 .0 plus $£ 1 \mathrm{p} . \mathrm{p}$
INSULATION TESTERS. Bench or fieldwork; speed clutch, new condition, complete with leather case;
500 V . 500 megohms.
f20.0.0 plus $12 / 6$ p.. Also 1000 V megohms.
£23.0.0 plus 12/6 p.p
CRYSTALS AS NEW: Hc 6u, 5,$345 ; 5,055: 5,030: 5,005$ 4,$945 ; 4,875 ; 4,840 ; 4,795 ; 4,580 ; 4,660 ; 4,520 ; 4,510$ 2,$300 ; 2,295 \mathrm{Ke} / \mathrm{s}$ and $10 \times \mathrm{J} 465 \mathrm{Kc} / \mathrm{s}$
$10 /-$ each plus $1 / 6$ p.p.
METERS MOVING COIL EX-EQUIPMENT GOOd condition; all from $0-10 \mathrm{~mA} 30 \mathrm{~mA} 50 \mathrm{~mA}, . .100 \mathrm{~mA}$, From 15 amp D.C., 20 amp D.C., 40 amp D.C. All 2 in. SCOOP PURCEASE OF BRAND NEW CARBON SCOOP PURCEASE ORS. 10% tolerance A N Watt. Preferred
 per 100 and 6 d . per extra 100 .
TRIMMER BARGAINS. These are lOPF sub-min airspaced trimmers on board with min, wire ended Xtal. Brand new. No details; Contents 2 trimmers, some $250 \mathrm{Mc} / \mathrm{s}, 255 \mathrm{Mc} / \mathrm{s}$. No choice.

Trimmers without Xtal $12 /$ per doz plus
Trimmers with Xtal $15 /=$ per doz plus
$3 / 6$ Also 20 PF min. brand new air spaced.

10/- per doz plus 3/6 p.p.
SIGNAL GENERATORS OSOLLATOR No. 2. Size 12in. x $8 \frac{1}{2} \mathrm{in}$. x 9 in. Tdeal for VHF work. $20-80 \mathrm{Mo} / \mathrm{s}$ Functions are AM/CW. Deviation up to $40 \mathrm{Kc} / \mathrm{s}$ RF meter. Measuring levels; RF output 1 microvolt to 100 microvolts set. Mod-set carrier controls. Good cotidition with accessories; 230 V AC 12V DC.
£20.0.0 plus $15 /-\mathrm{p} . \mathrm{p}$
TF 144 G Signal Generators $85 \mathrm{Kc} / \mathrm{s}$ to $25 \mathrm{Mc} / \mathrm{s}$ Good
condition and complete with accessories.
£22.0.0 plus $30 /-$ p.p.
RF Thermo Couple Meters. New and boxed. $0-1$ amp
MAINS MOTOR, 250 volt AC; 1/40th H.P. at 1,500 R.P.M. Ex WD type; Size 6 in $x 4 i n$. Tested and in 35/- plus 7/6 p.p TELESCOPIC MASTS. New condition, 20 ft closes to 5 Ft 9 in $90 /-$, carriage $15 /-.34 \mathrm{ft}$ closes to $5 \mathrm{ft} 9 \mathrm{in} 120 /-$, carr. $15 /$. Used condition, $20 \mathrm{ft} 70 /-, 34 \mathrm{ft} 80 /-$, carr. $15 /-$. Base for same 20/-, carr. 7/6.
VIBRATORS-4 pin, 12 volt DC in good condition. Non Sybol Type NS $12 \quad 5 /-$ each plus 1/- p.p

A. H. THACKER,
 Radio Dept.,

HIGH STREET, CHESLYN HAY. Nr. Walsall, Staffs.
C.W.O. Carriage charges to Mainland only.

Callers welcome at anytime during the week and un $12.30 \mathrm{p} . \mathrm{m}$.

Number 7
The R.C.A. CA3052 with 4 Amplifiers

THERE are many quality high power audio amplifiers on the market nowadays such as the Sanken SI-1020A model with a power output of 25 watts which may be purchased at a fairly reasonable price but they nearly all require an external preamplifier stage before they can be driven to their full output power. Very few microphones or pick-ups are capable of producing an output signal in the region of 300 mV which is the usual level required for such amplifiers and so the constructor is faced with the problem of building a suitable preamplifier. Another consideration is the necessity for having more than one input facility

Fig. 1 : top : Schematic diagram of a single amplifier, bottom : Pin connections for the four amplifiers.
and this together with the associated volume and tone controls very often make the preamplifier and mixer unit more expensive than the main amplifier.
One of the newer types of IC's recently released by RCA, CA3052, provides in a 16 lead dual-inline package four independent A.C. amplifiers. A schematic diagram showing one of the amplifiers is given in Fig. 1 together with a block diagram indicating the pin configuration of the various amplifiers. It can be seen by referring to Fig. 1 that a choice of input impedances is provided. By feeding the input signal to the Darlington pair Tr1, $\operatorname{Tr} 2$ via pin 9, a medium input impedance of about $90 \mathrm{k} \Omega$ is obtained while alternately pin 10 offers an input impedance in the region of 50Ω. The amplified signal appearing at the collector of Tr 2 is further amplified by $\operatorname{Tr} 4, \operatorname{Tr} 5$ and $\operatorname{Tr} 6$ with the output taken from pin 11, the collector of Tr6, via an external capacitor. A degree of negative feedback is applied to the base of $\operatorname{Tr} 3$ by the resistor chain from pin 11.

Tone Control Unit

Ideally tone control circuits should be placed, electronically speaking, as close to the loudspeaker as possible but in actual practice this is impossible as the main amplifier would need to handle all input signals without overloading. Most quality amplifiers compromise and place volume and tone control circuits after the preamplifier stage. The CA3052 pro-vides this facility for the constructor who wishes to make a high quality stereo preamplifier with a signal to noise ratio greater than 70 dB . Fig. 2 gives the theoretical diagram and component values for one channel. Two amplifiers are used in each channel since the equalisation and tone control circuits reduce the overall gain of the first stage by about 30 dB .

Mixer Unit

The average constructor, however, is not concerned with looking for such high quality reproduction and would consider the use of the two preamplifiers as rather wasteful. To locate the volume and tone controls at the input to the amplifier will be quite adequate and a signal to noise ratio of about 50 dB obtainable by this mode of operation is acceptable. Consequently, each amplifier can then be utilised separately to provide a four-channel mixer. Used in this way only a handful of passive components

Fig. 2: Circuit for a tone control unit utilising two of the ampliffers for one channel of a stereo preamplifier.

is required for each amplifier and a reasonable quality four-channel mixer can be built for under £4. Fig. 3.

Another interesting feature of the CA3052 is its use as a tremolo unit as shown in Fig.4. The tremolo effect is obtained by amplitude modulating

Fig. 3 : One channel of a four channel mixer.

Fig. 4 : Circuit for a tremolo unit.

Fig. 5 : Outline dimenslons of the i.c.

Fig. 6 : Graph showing variation of gain with change in feedback res/stance.
the signal from a musical instrument at a very low frequency, typically under 10 Hz . In the diagram amplifier No. 2 is used as a Wien bridge oscillator running at a frequency of 5 Hz . Its output is fed through a $100 \mathrm{k} \Omega$ variable resistor acting as a modulation depth control, to the preamplifier stage No. 3. The output is taken to the power amplifier through the $5 \mu \mathrm{~F}$ capacitor. This arrangement can, of course, be duplicated with the other two amplifiers in the IC or they can be used as two independent amplifiers.

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus,Semitron,Keyswitch,Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us at manufacturers' prices e.g. IN914 1/3d. \square IN916 1/11d. \square 2N697 4/5d. \square 2N706 2/3d. \square 2N706A 2/9d. \square 2N929 5/8d. $\square 2 N 1613$ 4/8d. $\square 2 N 3011$ 9/1d. $\square 2 N 3053$ 6/2d. \square 2N3055 15/9d. \square 3N140 15/3d. BFY50 4/8d. \square BFY51 3/9d. \square BSY27 18/BSY95A 3/3d. \square C407 4/6d. \square CA3012 18/3d. \square CA3014 25/6d. \square CA3020 25/9d. \square OA200 1/9d. \square OA202 111d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS	$\mathbf{1 2 A}$
and RCA, these quasi circuits set new standards	$\mathbf{2 5 A}$
in quality and performance. Each kit is complete	$\mathbf{4 0 A}$
with circuit diagram, all semiconductors, resis-	$\mathbf{7 0 A}$
tors, capacitors and printed circuit board.	Any two will make an outstanding
	equipment.

R.S.T. valve mall order co. BLACKWOOD HALL, I6a WELLFIELD ROAD, STREATHAM, S.W. 16

Mon.-Sat. 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$.
Closed Sat. 1.30-2.30 p.m
Open Daily to Callers
Tel. 769-0199/4649

	7/9	6BR8	12/6	6K7	$4 / 6$	1001	12/6	${ }^{25 L 6 G T}$	7/-	150 B	$11 / 6$	DK32	$7 / 9$	ECH35	11	S		PCC189	10	析	7/6	UF1	,
1	7/6	6BS7	25/-	6K8	2/9	10C2	12/6	$25 Y 5$	6/-	150 C 4	9/6	DK91	6/-	ECH42	12/6	EY86	7/-	PCF88	6/9	R19	$7 / 9$	UF89	$7 / 6$
5	7/-	6BW	14/6	6 K 8 M	11/6	10F1	14/9	25Z4	6/3	801	$9 / 6$	DK92	9/-	ECH81	5/9	EZ35	8/-	PCF82	$6 / 6$	RG5	80/-	UL41	12/-
II	$8 /-$	68W	13/-	6K8G	$3 /-$	10F3	18/-	25 Z 5	8/-	807	9/-	DK96	7/9	ECH83	$8 / 6$	EZ40	$8 / 9$	PCF84	8/-	S130	40/-	UL84	7/-
INEGT	8/-	6 C 4	5/-	6 K 8 G	$7 /$	10F9	10/6	$25 \mathrm{Z6}$	$7 / 6$	813 U		DL66	25/-	ECL80	5/9	EZ41	$9 / 6$	PCF86	$9 /-$	SP4	$3 /-$	UM80	5/6
IRE	8/-	$6 \mathrm{C5G}$	5/-	6 K 25	15/-	10 F 18	8/-	28 D 7	$9 / 3$		120/-	DL92	$6 / 3$	ECL82	/	EZ80	$5 / 6$	PCF801	$9 / 9$	SP41	$5 / 6$	UU6	21/-
IS4	5/6	6 C 6	3/8	6 L 1	12/-	10L1	8/-	$30 \mathrm{C1}$	6/9	813	75/-	DL93	4/-	ECL83	10/8	EZ81	5/6	PCF802	$0 / 0$	SP61	5/-	UU7	21/-
155	4/6	6C8G	6/-	${ }^{6 L 6 G}$	$7 / 9$	10LD11	10/6	30 Cl D	15/-	866A	15/-	DL94	6/9	ECL86	9/-	GY501	15/-	PCF805	15/-	STV2		UU8	21/-
IT4	4/-	6CD6G	24/-	6 L 18	6/-	10 P 13	13/6	$30 \mathrm{C17}$	16/-	954	5/3	DL95	7/8	ECLL800		GZ30	10/-	PCF806	12/-		951-	UU9	8/3
3 A 4	4/-	6GB6	7/6	687G	6/-	$11 \mathrm{E3}$	70/-	$30 \mathrm{C1} 8$	15/-	1625	6/6	DL96	$7 / 8$		30/-	GZ32	10/-	PCF1088	15/6	SU25	10/6	UY21	9/6
3Q4	7/9	6CW4	12/-	607GT	8/6	12AT6	4/9	30 F 5	17/-	4022 A	$67 /-$	DM70	6/-	EF	20/-	GZ34	11/-	PCL82	$7 / 9$	SU2150	12/6	UY41	8/6
3Q5	7/-	6D6	$3 / 9$	6SA7M	$7 /-$	12AT7	6/-	30 FLI	16/-	5763	12/-	DY86	6/-	EF37A	71	HN309	22/6	PCL83	10/3	T41	17/6	UY85	8/5
384	6/3	$6 \mathrm{E5}$	7/6	$6 \mathrm{SC7}$	$7 /-$	12AU6	5/9	$30 \mathrm{FLI2}$	19/-	7198	2/-	DY87	5/-	EF39	8/-	KT36	18/-	PCL84	$8 / 8$	TDD	$8 / 6$	VMP4G	17/-
3V4	6/9	6 Fl	12/6	6SG7	$6 /-$	$12 A U 7$	5/9	$30 \mathrm{FL14}$	15/6	7475	14/--	E88CC	12/-	EF41	12/-	KT61	17/6	PCL85	$9 / 8$	U10	$7 / 6$	VP4B	25/-
5R4GY	10/6	6F5G	8/-	68H7	3/3	12 AX 7	8/3	30 L 15	$17 /-$	A61	9/6	EA50	3/6	EF50	5/-	KT66	21/	PCL86	9/8	Ul 4	$7 / 6$	VB10	6/6
5U4G	5/6	6F6G	5/-	68.57	$6 /$	12BA6	6 6-	$30 \mathrm{L17}$	17/-	ATP4	2/3	EABC80	6/6	EF80	4/8	KT81	35/-	PD500	20/-	U19	35/-	$V n$	
5V4G	8/-	${ }_{6}^{6 F 8 G}$	5/6	6SE7GT	4/9	12BE6	6/3	30 P 4	15/-	АTP号	12/-	EAF42	$101-$	EF85	$7 /-$	KT81	(7C5)	PENA4	$201-$	U25	15/6	VT25	15/-
5Y3GT	6/-	6 F 11	6/6	6SL7GT	6/-	$12 \mathrm{C8GT}$	5/-	30 Pl 12	16/-	ATP7	8/8	EB41	10/-	EF86	8/6		22/6	PENB4	201-	U26	15/6	VT31	80/-
4 C	7/-	6F13	6/6	6SN7GT	5/6	12E1	20/-	$30 \mathrm{P19}$	15/-	AU2	80/-	EB91	3/-	EF89	$5 / 6$	KT88	34/-	PEN45	71-	U78	4/6	VU111	8/9
$6 / 30 \mathrm{~L}$	15/-	6F14	12/6	6SQ7	7/6	12.56GT	2/6	30 PL 1	16/-	AU5	8/8	EBC33	8/6	EF91	2/9	KTw61	$18 / 6$	PEN46	4/-	U191	$13 / 9$	VU120	12/6
6A7	15/-	6F23	16/-	6U4GT	12/-	12 J 7 GT	6/6	$30 \mathrm{PL13}$	18/6	AZ1	8/-	EBC41	10/6	EF92	$2 / 6$	KTZ41	8/-	PL36	10/9	U251	16/8	VU508	35/-
6A8G	12/6	${ }_{6} 6$	14/-	6U5G	72/6	12K7GT	7/-	30 PL 14	15/-	AZ31	10/-	EBC90	4/9	EF98	15/-	ML4	17/6	PL81	8/-	U301	12/6	W81M	13/6
$6 \mathrm{AC7}$	4/-	$6 \mathrm{~F}^{25}$	15/-	6V6M	12/3	12K8GT	8/-	35AE	11/6	CBL31	18/-	EBF80	7/8	EF183	6/6	ML6	7/6	PL82	8/6	U403	6/6	XH1-5	5/-
6AK ${ }^{\text {a }}$	$5 /-$	$6{ }^{6} 28$	14/9	6V6G	4/6	12Q7GT	6/-	35 L 6	9/-	CCH35	15/-	EBF83	$9 /-$	EF18	$7 /-$	MSP4	10/-	PL83	$7 / 6$	U404	$7 / 8$	XP1-5	5/-
6AM5	4/6	6 F 32	$2 / 9$	6V6GT	6/6	12SA7	8/-	35 W 4	4/6	CL33	$20 /-$	EBF89	6/6	EL32	3/6	MU14	7/6	PL84	$7 /-$	U801	28/6	XSG1-	10/-
6AM6	3/6	6G6	2/6	6×4	4/6	12SG7	6/-	$35 \mathrm{Z3}$	10/-	CV450	25/-	EBL1	14/-	EL33	12/6	MX40	12/6	PL500	14/6	UABC80	6/6	Y 63	
6AQ5	6/3	6H6	3/-	6X5G	4/6	12SH7	$3 / \mathrm{m}$	35Z4GT	$8 / 6$	CY30	12/6	EBL21	12/-	EL34	10/6	N78	19/-	PL508	$29 /-$	UAF42	10/6	Tubes	16
6AB7G	16/-	6J5M	9/-	6XJGT	6/-	12S.7 7	$3 / 9$	$3 \overline{55}$	6/-	CY31	$8 / 6$	ERL31	$27 / 6$	EL38	22/6	N108	25/-	PL509	$29 /-$	UBC41	$9 / 6$	SEGI	65/-
6AT6	4/9	6J5G	4/-	$7 \mathrm{B6}$	11/6	12sK7	$4 / 9$	37	6/6	DAC32	7/-	EC90	5/-	EL41	10/6	NGT1	3/6	PL802	18/6	UBC81	9/3	3FP7	$20 /-$
6 Av6	5-	6.55	5/6	$7 \mathrm{B7}$	7/6	12SR7	$5 /-$	42	$6 /$	DaF91	4/6	ECC81	6/-	EL42	10/6	NGT7	$551-$	PX4	14/-	UBF80	$7 /$	5CP1	55/-
6 B	20/-	656	$3 / 6$	7 Cb	22/6	14H7	9/6	$50 \mathrm{B5}$	6/6	DAF96	$7 / 6$	ECC82	5/8	EL84	4/9	OA2		PY33	$10 / 9$	UBF89	$7 / 6$	CV1526	40/-
6BSG	2/-	6J7M	$8 / 8$	7 C 6	15/-	19AQ5	$5 /-$	$50 \mathrm{C5}$	6/3	DCC90	10/6	ECC83	6/3	EL95	6/6	OC3	5/-	PY81	$5 / 9$	UCC84	$8 / 6$	ACRI31	
6BA6	5/-	6J7G	6/-	7D5	$8 /-$	20D1	10/-	50CD6G	31/-	DF33	8/-	ECC84	5/6	ELL80	201-	OZ4	4/6	PY82	4/0	UCC85	$7 / 6$		100/-
6 BE 6	51-	$6 J 7 \mathrm{GT}$	7/6	7 H 7	6/6	20F2	14/-	50L6GT	$8 /-$	DF70	9/-	ECC85	$5 /-$	EM34	21/-	PG86	11/6	PY83	$7 /-$	UCF80	$8 / 6$	VCR97	85/-
6 BH 6	9/-	6K6GT	$5 / 5$	7 R 7	18/-	20L1	20/-	75	9/8	DF91	4/-	ECC88	$7 / 6$	EM80	7/6	PC88	11/6	PY500	18/6	UCH42	10/6	VCR517	
6 BJ 6	9/-	6 K 7	1/9	787	45/-	${ }^{20 \mathrm{P} 4}$	$20 /-$	78	5/-	DF92	$8 / 6$	ECF80	6/6	EM81	8/8	PC97	$8 / 9$	PY500	29/-	UCH81	$7 /-$		46/-
${ }_{6 B Q 7 A}$	7/-	6K7M	6/6	7 Y 4	8/6	20 P 5	$201-$	80	7/6	DF96	7/6	ECF82	8/6	EM84	7/6	PCC84	$8 / 6$	PY800	$9 / 6$	UCL82	$8 / 9$	VCRE17	
$6 \mathrm{BR7}$	17/-	6K7G	2/-1	9BW6		25A6	5/9	8542		DH77	4/9	ECE21	12/6	ESU150	$20 /$	CC89	10/8	PY801	9/6	UCL83	$10 /$		46/-

Manufacturers and Export Inquiries Welcome OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Express postage 9d. per valve.
Ordinary postage 6d. per valve. C.W.O. No C.O.D
Tube postage $7 / 6$ each
Special Express Mail Order Service

TUBES
14 inch
$\begin{array}{lcccc} & \text { TUBES } & & & \\ 14 \text { inch } & \cdots & \text { e4 } & 0 & 0 \\ 17 \text { inch } & \cdots & \text { e4 } & 5 & 0\end{array}$ 19 incb 21 inch 23 inch 27 inch
$\begin{array}{lrr}24 & 5 & 0 \\ e 6 & 0 & 0 \\ e 6 & 10 & 0\end{array}$
$\begin{array}{lll}2 & 0 & 0 \\ 8 & 0 & 0\end{array}$

SETS OF VALT
DAF96, DF96, DK96, DL96
ACl27 5/- 0 OC25
$\begin{array}{ll}\text { AF114 } & 5 /-0 \mathrm{OC25} \\ 5 /-00\end{array}$
AF115 5/- 5 OC35

AF116	$4 / 6$	OC44
AF117	$4 / 6$	$0 \mathrm{OC45}$

TRANSISTORS

SEND S.A.E. FOR LIST OF 3,000 TYPES

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS 4 TRACK

Chassis $12 \frac{1}{2} \times 5 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$. high. Plastic front panei finished in Black and "Silver". 200-250 A.C. Record/Playback amp. switch; Off/On-Tone; Vol./Mc.; Vol./Gram; Mic. Input; Gram. Input; Valves 6BR7; 12AX7; Separate Output TransSeparate Output Transformer (Already wired to
amp). PRICE
\&12 ($10 / \mathrm{F}$ Amp). PRICE 3-ohm speaker $7^{\prime \prime} \times 4^{\prime \prime} 16$ - 1 extra.

STEREO AMPLIFIER type HV2×3 Watts
Fully built. On off. sep. vol. and tone each channel $12 \times 4, \times 6 \mathrm{in}$. high. EZ80. $2 \times$ ECL86; fixing flanges and base plate, suitable for crysta cart, tuner etc. $\mathbf{£ 6 . 1 0 . 0}$ (8/- p. \times p.)

STEREO AMPLIFIER type RC-

2×3 Watts
Fully built. $2 \times$ UCL82, metal rect: ganged vol. and tone cont: on-off. balance. $11 \times 3 \frac{1}{2} \times 4 \mathrm{in}$. brackets. For 3 -ohm speakers. $£ 6(8 /-$ p. \& p.).

MONO GRAM CHASSIS 3 WATT

3 Wave band long-med-short. Gram., 200-250v AC Ferrite aerial. Chassis $13 \times 7 \times 5 \mathrm{in}$. Dial $13 \times 4 \mathrm{in}$. Double wound mains transformer 5 valves ECH81 EF89, EBC81, EL84. EZ80. Price £10.12.6 (7/6 p. \& p.) Output trans. for 3-ohm speaker.

NEW TAPE AMPLIFIER for 4 track B.S.R. Deck TD2. Mains and output Trans. $10^{\prime \prime} \mathrm{x} 6^{\prime \prime} \times 4^{\prime \prime}$ overall. Rect; ECC83, EL84. Mike and Gram Inputs. £7.5.0 (10/- P. \& P.). For 3 -ohm speaker. $£ 27.5 .0$ ($10 /-\mathrm{P}$. \& P.).

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants
(2 mins. from Station and Buises). FULL GUARANTEE. Aldershot 22240 CLOSED WEDNESDAY, S.A.E. for enquiries please.

If you have difficulty in obtaining PRACTICAL WIRELESS

Please place a regular order with your newsagent or send 1 year's subscription (£2-5-0) to Subscription Department, Practical Wireless, Tower House, Southampton St., London, W.C.2.

INTEGRATED

CIRCUITS

(continued)

Design Limitations

MOST active devices can be produced in integrated circuit form and indeed many integrated circuit f.e.t. and m.o.s.t. devices are on the market. All the specialist devices discussed in parts $5,6,11,12,13$ and 14 of this series can be fabricated and many are.
Monolithic circuits have resulted in new design techniques due in part to the method of isolating components which automatically incorporate parasitic resistors and capacitors. Also the limitations in component values-particularly inductors-considerably reduce design flexibility. Initially design is carried out from basic, known circuits with parasitic elements included. Very often this design is analysed by computers and studied at a breadboard stage. In order to give cost effectiveness a minimum die size must result in order to give maximum yield per wafer.

Now die size depends largely on component values since a high value capacitor requires a large surface area, as does a high value resistor. In fact the area required for one transistor is roughly equivalent to that required for a resistor of 500Ω to $1.5 \mathrm{k} \Omega$ or a capacitor of 3 to 6 pF . A typical discrete circuit may require, say, 27Ω for base bias and 100 pF for feedback etc. In terms of die size required these components would accupy the area equivalent to $25-30$ and 20 transistors respectively. In consequence design is regulated by a primary requirement to use active components as much as possible. A circuit containing two low value resistors and 20 transistors is therefore considerably smaller than one containing one high value resistor and one or two transistors. It is for this reason that seemingly complicated multi-transistor circuits-such as the JK flip flop discussed later-are produced.

Two further basic design rules are followed: resistor ratios are used in preference to single resistors in order to reduce tolerances from $\pm 10 \%$ to $\pm 3 \%$ as discussed earlier; also matched pairs of transistors are used since true matching can be achieved and hence temperature and other effects
can be minimised. These design principles are illustrated in the circuit for an operational amplifier discussed later.

Parasitic Components

Parasitic components are also fundamental in design consideration. As illustrated in Fig. 8 isolation is achieved by reverse biased diodes which have associated capacitance and leakage resistance paths. In this case each capacitance is directly across the output and can considerably reduce the overall frequency response. In addition feedback and modulation effects can occur through the capacitance varying with changing bias levels.

Figure 11 illustrates the parasitic elements associated with the diffused resistor structure shown in Fig. 9. Again capacitance will reduce frequency response and must be carefully taken into account in the basic design. Other design limitations include crosstalk from interconnecting leads and p-n-p-n (Thyristor) switching action. However, good design and layout can usually reduce all these effects at least to the levels associated with discrete component circuits.

Fig. 11 : Parasitic elements of diffused resistor structure.

Using Monolithic IC's

The previous discussion has shown how monolithic integrated circuits are fabricated and some of the reasons for the seemingly peculiar circuits which result. In the light of this knowledge let us examine the rules associated with the use of such components.

Initially it will be appreciated that they are essentially low power, low dissipation assemblies. At no stage should the loads to such circuits be exceeded since localised overheating could result. Generally the supply voltages are limited to around 6 V and the reason for this relatively low voltage is generally the breakdown characteristics of the isolation diodes

Fig. 12: Three typical logic systems.
-coupled with maximum power dissipation in resistive elements. Commonly the supply voltage is directly connected to the substrate but, if not, care should be taken to ensure that it is connected to the highest supply potential in order to eliminate loss of isolation or p-n-p-n switching action taking place. Interfaces between integrated circuits and other mechanisms or circuits should always be within the voltage and current ratings of the device.

Having emphasised the limitations let us consider the advantages of using integrated circuits. They are small-but this is not an advantage to everyone. They are extremely reliable, and this is a very considerable advantage in many fields. They are complete, in that they can perform the entire specification of some requirements. They are cheap-this at first seems rather hasty but relative to the cost of design and development or even the construction of equivalent circuits they are very often cheaper substitutes.

Digital Devices

Digital devices are designed to operate in switching logic circuits. Generally they are derived from transistors operating in two stable states, "off" and "on" (fully saturated). They are many ways of applying potentials to a transistor in order to change its state from fully on to off and as a result there
are many forms of logic available. The three most common logic systems are illustrated in Fig. 12 and each of these circuits represents what is known as a three input gate.
Figure 12(a) shows the schematic of a resistor transistor logic (RTL) gate and the circuit is often referred to as a NOR (NOT OR) gate. The NOR terminology is derived from its operation-since if input A or B or C is connected to the positive rail then the transistor conducts and produces a negative (i.e. NOT positive) potential at the output. Fig. 12(b) illustrates a different bias system known as diode transistor logic (DTL) and this circuit is commonly referred to as a NAND gate. Again the terminology is derived from its operation since if inputs A and B and C are connected to the positive rail the output is negative (NOT +). Fig. 12(c) shows a transistor transistor logic (TTL or TLL) circuit which is also a NAND gate. It follows therefore that only DTL and TTL circuits are interchangeable.
Many other logic forms are available but these three are by far the most common. RTL was the first system and is generally a direct replacement of discrete component modules used in computers. DTL was produced at roughly the same time but TTL is relatively new and is superior in speed of operation over DTL. At present it would seem that TTL is the form most likely to be used in the future.
A typical family of gates is shown in Table i together with costs for the three logic systems. Most of us will continue to think of these gates in terms of the basic circuit but for complex circuits logic symbols are used and these are illustrated in the table. Many other digital circuits are available such as monostables, normal or Set Reset (RS) bistables, expanding circuits, driver units, etc. Most can how-

| Function |
| :---: | :---: | :---: | :---: | :---: | :---: |

Note All RTL gates are NOR symbol and all DTL or TTL gates are NAND
Table 1: Typical gates and their average costs.

FLUORESCENT CONTROL KITS Each kit comprises seven items-Choke, 2 tube ends, starter, starter bolder and 2 tube clips, with wiring instructions. Suitable for normal fluorescent tubes or the new "Grolux' tubes for fish tanks and indoor plants. Chokes are supersilent, mostly resin filled. Kit A-15-20 w. 19/6.
 E-65 T. 19/6. Kit MF1 is for 6in., 9 in. and and B $4 / 6$ tor one or two kits then $4 / 6$ for each two kits ordered. Kits C, D and E $4 / 6$ on first kit then $3 / 6$ for each kit ordered. Kit MF1 $3 / 6$ on first kit then $3 / 6$ on each two kits ordered.

REED SWITCHES

Glass encased, switches operated by externa magnet-gold weided contacts. We can now offer 3 types:
Miniature. lin. long x approximately tin.
diameter. Will make and break up to $\frac{1}{2} \mathrm{~A}$ up to 300 volts. Price $2 / 6$ each. 24/- dozen.
standard. 2in long $\times 3 / 16 \mathrm{in}$. diameter. This will break currents of up to 1A, voltages up to 250 las. Price 2/- each. $18 /=$ per doaer
approximately in. wide. The Standard Type approximately sin. Wide. The Standard rype space or a larger quantity may be packed into a square solenoid. Rating 1 amp 200 volts. Price 6/w each. 83 per dozen.
Small ceramic magnets to operate these reed s witches $1 / 9$ each. 18/- dozen.

TELESCOPIC
 AERIAL

For portable, ear radio

 ted-six transmitter. Chrome pla7 to six sections, extends from TOGGLE SWITCH $3 \mathrm{amp}{ }^{250 \mathrm{v}}$. $\mathrm{ach}, 15 /-$ doz.
MINIATURE EAR PIECE

 As used
ISOLATION SWITCH

15/20 AMP CONNECTORS
 Polythene insulated 12 -way trip. $2 / 6$ each, $24 /-$ doz.

13 AMP FUSED SWITCH Made by G.E.C. For connecting water heater etc., into 13 amp
ring main. Flush type $8 / 6$ each, ring main. Flush type $3 / 6$ each, mounting $1 / 6$ each, $15 /-$ doz.

MICRO SWITCH
amp. changover contacts, $1 / 9$ 2/- each or 21/- doz.

SUPPRESSOR

 CONDENSER TCC 1 mfd. 250 V . A.C. Working, metaltased with fiving lue. $1 / 9$ each 18 . doz.

REED RELAY

laws encapsulated reed switeh in 24 -volt solen. neatly enclosed in neat metal case, size $2 \frac{1}{4} \mathrm{in}$. fin. $\times \frac{1}{4}$ in. $3 / 6$ each. Operates from 24 volts D.C. or from A.C. mains using rectifier, resistor and
condenser ($3 / 6$ extra).

SHEET PAXOLIN

Ideal for transistor projects, panels 12 in . > 6in

G.E.C. MULTIPLE
 SWITCHES

Metal boxes (with cable knockouts. sprayed silver with cover and witch mounting grid. For 1 witches $6 /-, 6$ switches

G.E.C. Clipper Switches

rating, one-way 1/6, 2-way 2/-, Bell push 2/-,

[^3]15, 30 \& 100 WATT HI-FI SPEAKERS
FOLL FI 12 INCH LOUDSPEAKERR. This is undoubtedly one of the finest loudspeakers that we have ever offered, produced ay one of the come and is strongly recommended for Hi-Fi load and Bhythm Guitar and public addreas Flux Density 11,000 gaussmetal Fuitar and public address. Power Handling 15 watts R.M.S. Cone Moulded flbreFreq. response 30-10,000 c.p.s.-Specity 3 or 15 ohmsMains resonance 60 c.p.s.-Chassis Diam. 12 in .-12 12 in . over mounting lugs-Baffle hole 1lin. Diam.-Mounting holes 4, holes- tin. diam. on pitch circle 11 inin. diam.Overall height $5 \frac{1}{8} \mathrm{in}$. A $£ 6$ speaker offered for only 88.19 .6
plos $7 / 6 \mathrm{p}$. \& p. Don't miss this offer. 15 in . 25 watt $\mathbf{\& 7 . 1 9 . 6}$ plus $7 / 6 \mathrm{p}$. \& p. Don't mi
18in. 100 watt $£ 19.10 .0$.
MINIATURE EXTRACTOR FAN
Beautifully made by famous German Company PAPST System, $230 / 240$ A.C. Mains operated, size $3 \frac{1}{2}$ in. $\times 3 \frac{1}{2}$ in. $\times 2$ 2in. Made for instrument cooling but ideal to

DISTRIBUTION PANELS

Just what you ueed for work bench or lab

$\Delta 5=1 \div 1+1$ less plug, $45 /$ - With fitted 13 amp plug. $47 / 6 \mathrm{with}$ fitted 15 amp plug. plus $4 / 6$ post \& insurance.

No of Poles	2 way	$3 \text { way }$	Standard Size $1 \frac{1}{2}$ contact standard it $^{\prime \prime}$ washer and nut.			8 way	10 way	5 amp locking 12 way
			4 way	3 way	6 way			
1 pole	6/6	676	6/6	6/6	6/6	6/6	6/6	6/6
2 poles	6/6	6j/6	6/6	6/6	6/6	6/6	10/6	10/6
3 poles	6/6	6/6	6/6	6/6	10/6	$10 / 6$	14/6	14/6
4 poles	6/6	$6 / 6$	6/6	10/6	10/6	$10 / 6$	18/6	18/6
5 poles	6/6	0/6	10/6	10/6	14/6	14/6	-22/6	$22 / 6$
6 poles	6/6	10/6	10/6	1076	14/6	14/6	26/6	$36 / 6$
7 poles	6/6	10/6	10/6	14/6	$18 / 6$	18/6	30/6	30/6
8 poles	10/6	10/6	10/6	14/6	18/6	18/6	34/6	$34 / 6$
9 poles	10/6	$10 / 6$	14/6	14/6	22/6	32/6	38/6	38/6
10 poles	10/6	10/6	14/6	$18 / 6$	$22 / 6$	22/6	$42 / 6$	$42 / 6$
11 poles	10/6	14/6	14/6	18/6	26/6	26/6	46/6	46/6
12 poles	10/6	14/6	14/6	18/6	26/6	26/6	30/6	50/6

THIS MONTHS SNIP
A parcel of integrated circuits made by the famous Plessey Company. A once in a lifetime offer of Micro-electronic devices well below cos of manufacture. The parcel contains 5 ICs all new and perfect, firs grade device definitely not sub-standard or seconds. The ICs are al single silicon chip General Purpose Amplifiers. Regular price of which is well over \&1 each. Full circuit details of the ICs are included and in addition you will receive a list of 50 different ICs available at bargain prices 5s. upwards with circuits and technical data of each. Complet parcel only $\$ 1$ post paid or List and all technical data.

1 WATT AMPLIFIER \& PRE-AMP

 With tapehead G4 but equally suitable for use With tapehead G4 but equally suitable formicrophone or pick up-limited quantity Full eirenit diag. also shows tape controls 5

VARIAC CONTROLLERS

With these you ean vary the voltage applied to your ircuit from zero to full mains without generating undue heat. One obvious application therefore is to dim lighting. We offer a range of these, ex-equipment but little used and in every way as go r cash retunded \qquad 8 amp £12.19.6. 10 a mpp £15.19.6.

HOUR COUNTERS

If you wish to know how long your equipment has been switched on then this is what you need. Counts running time up to 909 hours. Resettable 3in. dial. io $\mathbf{c / s}$ mains operation. $49 / 6$ plus $3 / 6$ post and insurance. Resettable type 69/6 tilus $8 / 6 \mathrm{p}$. 8

THE PECTRON HEATING/VENTILATING CONTROL-

 This neat unit contains all the controls neededfor a gas-ired central heating system as follows:-
(a) A clock switch giving 2 on/off periods per 24 (b) A thermal delay switch to
being blown while fire warms up.
being blown while fire warms up. control fan speed.
(d) A 24 -volt transformer to provide the low voltage necessary to uperate solenoid of gas val
(f) Changeover switch to cut off heat so allowing cold ain til be blown for Sunimer ventilation.
(f) Neon indicator und fuses

The unit has a circuit diagram and five leads labelled "Mains,"' Fan," "Thermo
See in the dark

INFRA RED MONOSCOPE

This equipment is complete and portable. Basically it consists of an inira red inage converter tube with optical lenses for focosing The monoscope is housell in a hide case size $9 \times 6 \times 4 \mathrm{in}$. approx Made originally for the army for night observations, suiping ete.. this equipment has many scientiffe and practical applications; a limited quantity only is available in original sealed carton. Price

NOTE. Although unused in fact still in original sealed cartons. The equipmen is approx. 25 years old and consequertly the Zambini pile may not be operating Drying out might help but a better idea might be to replace it with a battery operated power unit; there is plenty of room

Where postage is not stated then orders over $£ 3$ are post free. Below $£ 3$ add $2 /$
Serni-conductors add $1 /-$ post. over $£ 1$ post free. S.A.E. with enquiries please.
miniature
WAFER SWITCHES

COILL Electronically changes speed from approximately 10 revs. to maximum. Full power a all speeds by finger-tip parts, case, everything and full instructions 19/6, plus $2 / 6$ post and insurance Made up model als.
$37 / 6$ plue $2 / 6 \mathrm{p} .8 \mathrm{p}$.

MAINS MOTOR

 Precision made - as and tape recorders ideal also for extractor fans, blower, heater, etc. New and perfect. Snip at 9/6. Postage 3/- iotfrst one then ach one ordered 1.2 and over post

ELECTRIC CLOCK
WITH 25 AMP SWITCH
Made by Smith's, these units ar
as fitted to many top qualit
clock is mains driven and tre
quency controlled so it is ex
quency controlled so it is es
dials enable switch on and o
times to be accurately set. Idea

for switching on tape recorders. Offered at only a fraction of the regular price new and unused only $39 / 6$, less than the value of the clock alone-post and insurance $2 / 9$.

COOKER CLOCK

with Temperature Control Cooker clock with tempera ture controller. This is as the clockswitch described abov but with additional panel which incorporates oven thernometer and thermostati witch. The thermostat switch may be set anywhere between $0^{\circ} \mathrm{C}$. and $90^{\circ} \mathrm{C}$. Made for
 his is a very fine instrument 4.19 .6 , plus $£ 1.10 .0$ for oven 0.005 re
0.005 mFd TUNING CONDENSER

circuits $2 / 6$ each, 24/- doz.

COMINIATUREMOVIN

as used in behind the ear deaf aids Acts also as earphone size only $\frac{1}{2} \mathrm{in}$. $\times \frac{8}{8}$ in. x in. Regular price probably $£ 3$ or more. Our price $18 / 6$. Note these are ex-equipment but if not in perfect
working order they will be exchanged.
MAINS TRANSISTOR POWER PACK
besigned to operate transistor sets and amplifiers. idjustable output 6v., 9 v ., 12 volts for up to 500 mA (class B working). Takes the place of any PP7 PP9 and others. Kit comprises: mains Pranstormer rectifler smoothing and load resintor transtormer rectifler, smoothing and load resistor. 16/6, plus $3 / 6$ postage.
PP3 BATTERY ELIMINATOR Run your small transistor radio from, up ready to wire into your set and 8/6 each.
85 Watt Tubular Element. Very well nitie unt The element is wound on a porceiain former theit encased in a brass tube terminated with beaded leads 12 in . long. Normal mains voltage. Price 5/* each or 54/- per doz.
250 V AC working condensers for power factor correction, motor starting etc. 3.5 mifd. 6/6 ea. 6.5 nifd. $8 / 6$ ea., $8 \mathrm{mfd} .9 / 6$ ea.

3 amp battery charger kit comprises copper backed circuit board, 3 amp mains transformer, regulator diagran, post $\&$ ins. $4 / 6$.

BALANCED ARMATURE UNYT A 5ho ohe so operates speaker or microcircuits. $6 / 6$ ea., $£ 3.10 .0 \mathrm{doz}$.

BI-PAK SEMCONDUCTORS

500 CHESHAM HOUSE, REGENT STREET, LONDON W.1.
NEW LOW PRICE TESTED S.C.R's.

	$\begin{gathered} 1 \mathrm{~A} \\ \left(\begin{array}{c} \mathrm{A} \\ \text { case } \end{array}\right. \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} 3 \\ \text { (TO-66 } \\ \text { Case) } \end{array} \end{gathered}$	$\begin{aligned} & 7 \mathrm{~A} \\ & \text { (TO } \end{aligned}$ case	$48{ }^{16} \text { (T) }$	$\mathrm{A}_{\mathrm{A}}^{\mathrm{O}} \mathbf{4 8}$	
PIV	each	each		${ }^{\text {cach }}$		each
50	$5 / 6$	5/-	$10 / 6$	$12 / 6$	55	23--
200	7/-	$7 / 6$	$11 / 6$	15/-	100	28/-
400	$8 / 6$	$9 / 6$	$13 / 6$	$18 / 6$	200	32/-
600	$10 / 6$	$11 / 6$	$15 / 6$	251-	400	35/-
800	$12 / 6$	14/-	18/-	30/-	800	80/-

PRINTED CIRCUITS EX-COMPUTER
Packed with semiconductors and components, 10 boards give a guaranteed 30 trans. and 30 diodes. Our price 10 board

TRANSISTOR EQVT, \& SPECIFICA. TION 8 OOK (German publication). A book for European, American and Japanese book for European, American and Japanese
Transistors. Exclusive to BI-PAK. IS/- ea. 2N2060 NPN SIL. DUAL TRANS. CODE D1699

120VCB NIXIE DRIVER TRANSISTOR. SIM. BSX21 \& C407, 2N1893 CODED NESTED AND CODED ND120, $1-24$, 3/6 each, TO-5 NPN
25 up $3 /-$ each.

Sil. trans. suitable for P.E. Organ, Metal TO. 18 Eqve. ZTX300 $1 / \mathrm{m}$ each. Any
each.

PLEASE NOTE. To avoid any further Increased Postal Charges to our Customers
and enable us to keep our "By Return and enable us, to keep our "By Return
Postal service, which is second to none, we have re-organized and streamlined our Despatch Order Department and we now request you to send all your orders together with your remittance, direct to our Warehouse and Despatch Department, DUCTORS, Despatch Dept., P.O. BOX 6, WARE, HERTS. Postage and packing still l/- per order. Minimum

SIL. RECTS. TESTED $\begin{array}{ccccc}\text { PlV } & 750 \mathrm{~mA} & 3 \mathrm{~A} & 10 \mathrm{~A} & 30 \mathrm{~A} \\ 50 & 1 /- & 2 / 9 & 4 / 3 & 9 / 6 \\ 100 & 1 / 3 & 3 / 3 & 4 / 6 & 15 /- \\ 200 & 1 / 9 & 4 /- & 4 / 9 & 20 /- \\ 300 & 2 / 3 & 4 / 6 & 6 / 6 & 22 /- \\ 400 & 2 / 6 & 5 / 6 & 7 / 6 & 25 /- \\ 500 & 3 /- & 6 /- & 8 / 6 & 30 /- \\ 600 & 3 / 3 & 6 / 9 & 9 /- & 37 /- \\ 800 & 3 / 6 & 7 / 6 & 11 / 6 & 40 /- \\ 1000 & 5 /- & 9 / 3 & 12 / 6 & 50 /- \\ 1200 & 6 / 6 & 11 / 6 & 15 /- & \end{array}$

TRIACS

VBOM 2A 6A 10A 20 4

2N3055 If5 WATT SIL OUR PRICE $12 / 6$ EACH.

FULL RANGE OF ZENER DIODES
VOLTAGE RANGE 2-
16V. 400 mV (DO-7 Case)
16 V .400 mV (DO-7 Case)
$2 / 6$ ea. $1-5 \mathrm{~W}$ (Top-Hat)
$3 / 6$ ea. 10 W (SO-10
Stud) 5/- ea. All fully $\begin{array}{ll}\text { tested } & 5^{\circ}{ }_{0} \text { tol. and } \\ \text { matked. } & \text { State }\end{array}$ marked.

BRAND NEW TEXAS GERM. TRANSISTORS Coded and Guaranteed,
Pak No.
EQVT

$\begin{array}{lllll}\text { T1 } & 8 & 2 \mathrm{G} 371 \mathrm{~A} & \text { OC71 } \\ \text { T2 } & 8 & 2 \mathrm{G} 374 & \text { OC75 }\end{array}$ $\begin{array}{lll}8 & 2 G 374 & \text { OC75 } \\ 8 & 2 G 3744 A & O C 81 D\end{array}$ $\begin{array}{ll}8 & 2 \mathrm{G} 3744 \mathrm{~A} \text { OC81D } \\ 8 & 2 \mathrm{G} 381 \mathrm{~A} \text { OC } 81\end{array}$ $\begin{array}{llll}8 & 2 G 381 A & \text { OC81 } \\ 8 & 2 G 382 T & O C 82\end{array}$ | 6 | 8 | $2 G 382 \mathrm{~A}$ | OC 44 |
| :--- | :--- | :--- | :--- | $\begin{array}{llll}16 & 8 & \text { GG344A } & \text { OC44 } \\ \text { T7 } & 8 & 2 G 345 A & \text { OC45 }\end{array}$ $\begin{array}{llll}\text { T8 } & 8 & 2 G 378 & 0 \mathrm{OC78} \\ \text { T9 } & 8 & 2 \mathrm{G} 399 \mathrm{~A} & 2 \mathrm{~N} 1302\end{array}$ T108 ${ }^{2}{\underset{10}{2 G 417}}^{2 G}$ AF117 All 10/- each pack

SUPER PAKS
 NEW BI-PAK UNTESTED SEMICONDUCTORS

Unequalled Value and Qually

Satisfaction GUARANTEED in Every Pak, or money back
Pak No
U1 120 Glass Sub-min. General Purpose Germanium Diodes 10 /U2 60 Mixed Germanium Transistors AF/RF $10 /$ -
U3 75 Germanium Gold Bonded Diodes sim. OA5. OA47 $10 /-$
U4 40 Germanium Transistors like OC81, AC128.
U5 60200 mA Sub-min. Sil. Diodes
$\bar{U} 640$ Silicon Planar Transistors NPN sim. BSY95A, 2N706 10
U7 16 Silicon Rectifiers Tod-Hat 750 mA up to $1,000 \mathrm{~V}$
U8 50 Sil. Planar Diodes $250 \mathrm{~mA} \mathrm{OA} / 200 / 202$
U9 20 Mixed Volts 1 watt Zener Diodes.
U11 30 PNP Silicon Planar Transistors TO-5 sim. 2N1132
Ut3 30 PNP-NPN Sil. Transistors OC200 \& 2S 104
U14 150 Mixed Silicon and Germanium Diodes
U15 30 NPN Siticon Planar Transistors TO-5 sim. 2 N $697 .$.
U16 10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV 10
U17 30 Germanium PNP AF Transistors TO-5 like ACY17-22 $10 /-$
U18 8 6-Amp Silicon Rectifiers BYZ13 Type up to 600 PIV 10/-
U19 30 Silicon NPN Transistors like BC108
U20 121.5 amp Silicon Rectifers Top-Hat up to $1,000 \mathrm{PIV} 10 /-$ U21 30 AF Germanium alloy Transistors 2 G300 Ser. \& OC71 10/U23 30 Madt's like MAT Series PNP Transistors U24 20 Germanium 1-amp Rectifiers GJM up to 300 PIV.. U25 $25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2N708, BSY27..
U26 30 Fast Switching Silicon Diodes like IN914 Micro-min. U28 Experimenters' A ssortment of Integrated Circuits, un-
tested. Gates, Flip-Flops, Registers, etc., 8 Assorted Pieces 20 U29 101 -amp SCR's TO-5 can ud to 600 PIV CRS $1 / 25-600 \quad 20 /$. U31 20 Sil. Planar NPN trans. low noise Amp 2N3707.
U32 25 Zener diodes 400 mW D07 case mixed Volts. $3-18$
U33 15 Plastic case 1 amp Silicon Rectifiers in 4000 series
U34 30 Sil. PNP alloy trans. TO-5 BCY26, 2S302/4
U35 25 Sil. Planar trans. PNP TO-18 2N2906
U36 25 Sil. Planar NPN trans. TO-5 BFY $50 / 51 / 5$
U37 30 Sil. alloy trans. SO-2 PNP, OC 2002 S322
U38 20 Fast Switching Sil. trans. NPN, $400 \mathrm{Mc} / \mathrm{s}$ 2N3011 - 10
U39 30 RF Germ. PNP trans. 2N1303/5 TO-5
U40 10 Dual trans. 6 lead TO-5 2N2060
U41 30 RF Germ. trans. TO-1 OC45 NKT72
U42 10 VHF Germ. PNP trans. TO-1 NKT667 A $\overline{\text { F1 }} 17$
Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked.

Identical encapsulation and pin configuration to IC10 and IC403. Each circuit incorporates a Dre amp and class A B Power amp stage capable of delivering up to 3 watts RMS. Fully tested and guaranteed. Supplied complete with circui detalls and data. CODED BP1010. OUR LOWEST PRICE 30/- each.
10 up 25/- each.

ADI61 NPN

AD162 PNP
MATCHED COMPLEMEN-
TARY PAIRS OF GERM. POWER TRANSISTORS. For mains oriven output
stages of Amplifiers and Radjo receivers.
OUR LOWEST PRICE

UNIJUNCTION

 UT46. Eqre. $2 N 2646$,Eqve. TIS43. BEN3000 $25-99$ 5/-

NPN Silicon PLANAR BC107/8/9, 2/- each/ 50-99. $1 / 10$ lo0 up, 1/8 each,
1,000 of, 1/6 each. Fully tested and coded TO-18
case. case.
NPN DIFFUSED SILICON
PHOTO-DUODIODE TYPE IS701 (2N2175) or Tape Readout, high switching and meas urement indi-
cators, $50 \mathrm{~V}, 250 \mathrm{~mW}$ OUR PRICE 10/- EACH. 50 OR
OVER B/6. EACH. FULL DETAILS.

FET'S

$\begin{array}{lll}\text { 2N } 3819 & \ldots \ldots . . & 8 /- \\ 2 N & 3820 & \ldots \ldots . . \\ \text { MPF105 } & \ldots \ldots . . & 8 /-\end{array}$

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.

Please send FREE BROCHURE tò

NAME . Biock
ADDRESS
Caps.
Please
1/70

Khuyer for Bomponents

LINEAR INTEGRATED CIRCUITS

High Performance operational Amplifiers. Texas Type SN72709N $21 /-$ each This device is electronically similar to MIC709, MC709C, $\mu \mathrm{A} 709 \mathrm{C}$, N5709A etc. supplied complete with specification sheet.
Also in stock:

PA234	23/-	CA3012	26/3	293	21/8
PA237	34/-	CA3020	27/6	TAA310	32/-
${ }^{-}$A 246	57-	CA3028A	20/-	TAA320	13/5
CA3000	$54 / 9$	CA3028B	$37 / 6$	SL403A	49/6 ne
CA3001	79/6	CA3029	$26 / 3$	IC-10	59/6 ne
CA3011	20.6	CA3035	30/-	D13T1	10/8
		TAA231	56/8	2N5306	11/6

Add $1 /-$ to the above i.g.s for data sheets if required ($1 / 9$ with SL403A. free with IC. 10), Other dat
post free.

1 WATT AMPLIFIER MODULE TYPE PCM1

This amplifier unit is a printed circuit module incorporating the popular and weil tried PA234 t.c. amplifier. The unit is a complete AUDIO AMPLIFIER and reouires no speaker or head phone, even the supply smoothing capacitor and the ousput capacitor are included! The overall dimensions, including capacitors, are $2^{1 / 2 \mathrm{in} .} \times 3 \mathrm{in} \times 5 / \mathrm{sin}$ The input for 1 watt output at 1 kHz is typically 300 mv into 100 kohms
This unit is avalable at only $\mathbf{3 6} / \mathbf{=}$ net, complete with descriptive leaflet or 70/- ne! per parr. Send for free leaflet.

SILICON TRANSISTORS FOR HIGH QUALITY EQUIPMENT

BC107	3/3	+	RD123	24/3	TIP32A	23/-	${ }^{2} \mathrm{~N} 3055$	15/9
BC108	$3 /-$		RDY20	24/3	TIS44	1,4	2N 7702	315
BC109	3/3		RF184	7/6	TIS49	16	2 N 7703	$\$^{1 / 1}$
BC158	$7 / 6$		BF194	7/-	T1S50	3 y	2 N 7704	519
BC 182L	3.2		BFX29	10/4	2N696	414	2N1705	3.4
BC 183L	1'5		\#F X84	$6 / 8$	2N697	Y:-	${ }_{2} \mathrm{~N} 3707$	4i-
BC184L	N 2			$8 / 8$	2N706	313	2 N 3708	215
BC212L	2.9		바Y50	$5 /$	2N1132	10/9	2N3819	$6 \cdot$
BC213L	3/9		1FY51	4/6	2N2906	13/-	2N3820	119
BC214L	4/-		BFY 52	$5 /$	2N2924	4/4	1N3826	$5: 11$
BC Y 70	5/4		BSY95A	3/11	2N2925	5/3	2 N 4058	4.6
BCY71	10/4		- J 481	$27 / 3$	2N2926	3/-	2 N 4059	3.5
BCY72	4\%6		W5J491	32/11	2N3053	$6 / 8$	2 n 5457	9,9
BDI21	17/3		TIP31A	17/-				

COMPONENTS CATALOGUE-2/- post free (Inland)

P\&P I/6 mland, overseas at $\cos :(\min .10 /-)$. Cash with order please, discounts mas be deducted as follows: order over $f 5-10 \%$: order over $f 10-15 \%$. Trade ordersnet 30 days
Please send SAE with ensuiries. CALLERS WELCOME. Open 9.00 a.m.-12. 50 p.m-,

Fig. 13: Left: Circuit of a JK flip-flop. Note the number of components contained in this relatively inexpensive.device.

Fig. 14; Block diagram of Fig. 13 : to facilitate understanding the operation of the flip-flop circult.

-continued from page 66

ever be built up from the basic gate units and additional discrete components.

Currently, very much more sophisticated binary circuits have appeared such as complete decade counters, code changing circuits, shift registers and half adders. Although at present they are expensive the space saving and reliability very often outweigh this consideration. In addition f.e.t. and m.o.s.t. binary elements are now available and although expensive they have advantages in terms of noise immunity; power requirements, speed of operation and feedback.

In order to illustrate the circuit complexity which can be achieved in a relatively inexpensive device the circuit of a JK flip flop is shown in Fig. 13. This device illustrates the advantages derived from using many active elements in preference to passive components. It is also a device which is often misunderstood because of the terminology (JK) used to describe it. Because of the circuit complexity-which contains two cross connected bistables-it is preferable to refer to the block diagram shown in Fig. 14. The circuit has five inputs T, J, K, R and S as well as the two outputs Q and Q .
T is the trigger or clock pulse input whilst the other inputs inhibit or direct the bistable. If the R or S inputs are activated then the bistable is held in a fixed state until the input is released. If the \mathbf{J} or \mathbf{K} inputs are operated then the bistable will change when the clock pulse occurs. Hence a delayed pulse on the J or K inputs can be retimed at the bistable output by the system timing sequence at T. The JK flip flop can therefore be used as a divide by two binary or a retiming circuit.

Encapsulations

Unlike a great many other semiconductor devices the encapsulations used for integrated circuits have been standardised. The three main encapsulations are : the 10 - or 12 -terminal TO- 5 casing shown in Fig. 15; the flat pack illustrated in Fig. 16; and the dual in-line package shown in Fig. 17. Fig. 15 also shows a typical chip with interconnections. In all cases the numbering is standard and in a very large number of c̣ases the terminals used for supply

Fig. 15: TO-5 encapsulation and typical chip interconnections.

Fig. 16: Flat pack outline.
voltages and polarities are common.
Both the flat pack and dual in-line packages are available with ceramic mouldings when used for high frequency circuits, but in general epoxy resin is used. Although the TO-5 can is still the most widely used encapsulation it is rapidly being superseded by the plastic dual in-line package. The plastic

Fig. 17: Dual in-line package outine.
package has resulted in a cheaper encapsulation and the dual in-line structure has the added advantage that it can be plugged directly into a socket. As a word of warning however it must be emphasised that dual in-line sockets are expensive (about $30 /$-) and are in consequence often dearer than the integrated circuit. TO BE CONTINUED

PW STEEL GUITAR

Alternative Construction for Preamplifier

READERS building the Practical Wireless Pedal Steel Guitar described in the November, Decermber (1969) and January (1970) issues may prefer to assemble the preamplifier on Veroboard rather than plain pin-board, which makes for a tidier layout and some simplification of construction. A prototype Veroboard preamplifier has been built and the layout is given in the accompanying diagram.
A sheet of 0.15 in . matrix Veroboard with copper strips, 20 holes long by 16 holes wide ($2 \frac{1}{2}$ in.) is required, and any larger size can easily be cut to size with sidecutters. To ensure that everything will fit into the space shown it is suggested that constructors endeavour to obtain the following components, which are described a little more fully than in the Components and Materials table (Part 2), and in most cases differ.
All resistors are $\frac{1}{8}$ th watt hi-stabs, which are quite
freely available from the larger suppliers. C 1 is a $0.05 \mu \mathrm{~F}$ Mylar (Japanese, green), while C3 and C4 are $0.01 \mu \mathrm{~F}$ and $0.022 \mu \mathrm{~F}$ Mullard polyester ("candystripe'). The electrolytics are Mullard (blue): C2, $100 \mu \mathrm{~F} 4 \mathrm{~V} ; \mathrm{C} 6,80 \mu \mathrm{~F} 16 \mathrm{~V} ; \mathrm{C} 7,10 \mu \mathrm{~F} 16 \mathrm{~V}$; C 5 is an ultra-miniature ceramic with side leads. VR2 and VR3 are not critical, but VR1 is a miniature $5 \mathrm{k} \Omega$ skeleton preset with $0 \cdot 15 \mathrm{in}$. lead spacings. Trl and Tr 2 are BC 169 s , which is the cheaper plastic encapsulated version of the BC109. They are not, however, physically interchangeable, because the lead order is different.

Construction is very easy, only four strips needing to be broken. One bridging wire is needed from Q7 to Q13, so that the braid from the pickup coax can be anchored close to the input point. The board will mount straight onto the original board fixing holes if the drilling positions on the layout drawing are followed.

MONOLITHIC INTEGRATED CIRCUIT HIGH FIDELITY AMPLIFIER AND PRE-AMP

theworld's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output of 5 watts R.M.S. (10 watts peak). It con. tains 13 fransistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total harmonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms. Power gain $110 \mathrm{~dB}(100,000,000,000$ times $)$ total. Supply voltage Size
Sensitivity
Input impedance
$1 \times 0.4 \times 0.2$ inches.
Adjustable externally up to 2.5 M ohms.

- CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

- APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors:

SINCLAIR
IC. 10 : 59/6
pOST FREE

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available. of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1. The $\mathrm{Z}-30$ high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, ore Stereo-60 and a PZ-5 or PZ-6. The power supplies differ in that the PZ-6 is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.

In view of the very high performance of an amplifier system built with Project 60 modules, the cost may seem surprisingly low. There are two reasons for this: Firstly, we are the largest producers of this type of module in Europe and we are able therefore to use highly efficient production methods. Secondly, you are not paying for a cabinet which you may not require anyway.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Project 60 modules have been carefully designed to fit easily into virtually every type of plinth or cabinet to provide a complete unit of great compactness. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive filter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.

Z. 30 TWENTY WATT R.M.S. (40 WATT PEAK) HIGH FIDELITY POWER AMPLIFIER

The $Z .30$ is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The $Z .30$ is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 voits. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a 2.30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the $Z .30$ are covered in the manual of circuits and instructions supplied with every $\mathbf{Z . 3 0}$ high fidelity power amplifier.

SPECIFICATIONS

Power output- 15 watts R.M.S. into 8 ohms using a 35 volt supply: 20 watts R.M.S. into 3 ohms using a 30 volt supply.
Output-Class AB
Frequency response:
Distortion:
Signal-to-noise ratio:
Input sensitivity:
Damping factor:
Loudspeaker Impedances:
Power requirements:
Size:

$$
30 \text { to } 300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB} \text {. }
$$

0.02% total harmonic distortion at full output into 8 ohms and at all lower output levels. better than 70 dB unweighted.
250 mV into 100 Kohms .
>500.
3 to 15 ohms .
From 8 to 35 V.d.c.(The $Z .30$ will operate ideally from batteries if required.) $31 / 2 \times 21 / 4 \times 1 / 2$ inches.

APPLICATIONS

Hi-fi amplifier; car radio amplifier; record player amplifier fed directly from pick-up; intercom; electronic music and instuments; P.A.; laboratory work etc. Full details for these and many other applications are given in the manual supplied with the 2.30 .

Built. tested and guaranteed, with
circuits and instructions manual
89/6

STEREO SIXTY pREAMPLIFIER AND CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and exceilent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup- 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ to 25,000 Hz . Ceramic Pickup-up to 3 mV : Auxiliary-up to 3 mV .
- Output-250mV
- Signal-to-noise ratio-better than UOdB.

Channel matching-within 1dB.

- Tone controls-TREBLE + 15 to -15 dB . at $10 \mathrm{KHz}:$ BASS +15 to -15 dB at 100 Hz .
- Power consumption 5 mA.
- Front panel-brushed aluminium with black knobs and controls.
- Size $81 / 4 \times 4$ ins.

Ready for immediate
installation 19. 6. 6d.

SINCLAIR POWER SUPPLIES

PZ-5
30 volts unstabilised-sufficient to drive two Z.30's and a Stereo 60 for the majority of domestic applications.

Price: £4. 19s. 6d.

35 volts stabilised-ideal for driving two $Z .30$'s and a Stereo 60 when very low efficiency speakers are employed.

Price: £7. 19s. 6d.

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for services thereafter. No charge for postage by surface mail. Air-mail charged at cost.

SINCLAIR 0.16

new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair 0.14 have been incorporated in the new 0.16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, the new 0.16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The 0.16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of 0.16 s in stereo and marvel at the standards of quality and clarity they give.

The 0.16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$ with exceptional smoothness. A specially designed driver

£8.19.6

POST FREE
ber to ensure good transient response at all frequencies. Size: $9 \frac{3}{4}{ }^{\prime \prime}$ square $\times 4 \frac{3^{\prime \prime}}{4}$ deep from front to back.

SINCLAIR MICROMATIC

The world's most successful miniature radio

SPECIFICATIONS-Size: $1 \frac{13^{\prime \prime}}{} \times 1 \frac{7}{16} \times \frac{1^{\prime \prime}}{2}$ $(46 \times 33 \times 13 \mathrm{~mm})$. Weight incl. batteries: 1 oz . (28.35 gm) approx. Tuning: Medium wave band with bandspread at higher frequency end. Earpiece: Magnetic type. Case: Black plastic with anodized aluminium front panel, spun aluminium dial.

Complete kit incl. earplece, case, solder and instructions in fitted pack.
Ready built, tested and guaranteed, with earpiece.

49/6
59/6
Mallory Mercury Cell RM675 (2 req.) $2 / 9$ each

A GUIDE TO AMATEUR RADIO
 By Pat Hawker, G3VA

Fourteenth edition. 100 pages.
The new edition of this indispensable aid to all who want to know more about amateur radio. Designed to assist the newcomer to this unique hobby. Revised and expanded. 8s 10d post paid
\qquad

over

20.000
 copies sold

Now in its second printing

Radio Communication Handbook

832 pages of everything in the science of radio communication. The Handbook's U.K. origin ensures easy availability of components. The standard work in its field.

69s post paid

THE VHF-UHF MANUAL

By George Jessop, G6JP

A complete manual for frequencies above 30 MHz . Covers aerials, receivers, transmitters and test equipment. The first book of its kind outside the USA. 23s post paid

Obtainable from:
 RADIO SOCIETY of GREAT BRITAIN 35 DOUGHTY STREET, LONDON, WC1

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 2 Transistors, 3 Diodes, Resistors, Gain Control, Terminal Block. Eleggant Case, Screws, etc. In fact everything you need to build a Steady-Light
Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modified for Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

invisible beam optical kit

Everything needed (except plywood) for building: IInvisible-Beam Projector and I Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms. Counters, Door Openers, etc: 2 lenses, 2 mirrors, 2 45-degree wooden blocks, Infa-red filter, projector lamp holder, building plans, etc. Price 19/6. Postage and Pack. 1/6 (U.K.). Commonwealth: lamp holder, building plans, etc.
Surface Mail $2 /-$ Air Mail $8 /-$.
long range invisible beam optical kit
CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Filter, etc. Price 29/6. Postage and Pack. I/6 (U.K.). Commonwealth: Surface Mail 2/6; Air Mail 10/-.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door
Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis, Plastic Case, Resistors, Screws, etc. Full Size Plans, Instructions, Data Sheet " 10 Advanced Photoelectric Designs"
Price 19/6. Postage and Pack. 1/6 (U.K.). Commonwealth 2/-; Air Mait 4/-.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible beam projector, and photocell receiver for use with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U.K.), Commonwealth: Surface Mail 2/-; Air Mail 4/-.

YORK ELECTRICS

335 BATTERSEA PARK RD., LONDON S.W. 11
Send a S.A.E. for full detalls, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects Assembled.

TEOHNIGAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available,
including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

IEVV SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

TRANSISTORS etc.

AC107	3/-	OC35	9/-
AC126	2/-	OC44	2/-
AF115	3/-	0045	2/-
AFI16	3/-	0C70	2/3
${ }^{*}$ AF117	4/-	0 C 71	2/-
BFY18	4/6	0C72	2/2
BFY51	4/-	0 C 73	2/9
GET113	2/6	0075	2/2
OA5	1/6	0081	2/-
OA9	1/8	0C81D	2/-
OA47	1/9	OC82D	2/3
OA81	1/6	$0 \mathrm{Cl40}$	5/-
OA85	1/6	OC169	3/6
OC23	6/6	OCl70	2/6
0 C 25	81-	*OC170	4/-
OC26	$7 / 6$	OC171	$2 / 2$
$0 \mathrm{OL8}$	8/6	OC202	4/6
		TK22C	1/6

* With 4 leads

Crystal Diodes- 6 for $2 / 6$ (7d.)
Also $8 \mu \mathrm{~F} 350 \mathrm{~V} 1 / 2,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 3$ and $50 \mu \mathrm{~F} 50 \mathrm{~V} 1 / 9$. Other electrolytics in current list. Postage, Packing and Insurance all above $1 /-$ up to 11, 12 and over charges paid.
2 GANG YAR. CONDENSER: Mod., air-spaced, 0005 ea. sec. $5 /-(1 /-), 3$ GANG. $7 / 6$ (1/6) SUB-MIN. TRANSFORMER: Output (3Ω for 0 OC72 etc) $2 / 9$ (Up to six $1 /-$). MULTMMETER: 20,000 S/V D.C., 10,000 $\Omega /$ V A.C. $0-5 / 25 / 50 / 500 / 1 \mathrm{~K}$ volts D.C. Q-10/50/100/500/1K volls A.O. $\ominus_{0-50 \mu \mathrm{~A}} 2.5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C. $0-6 \mathrm{~K} \quad \Omega / 6$ meg Ω. $10 \mu \mathrm{~F}-001 \mathrm{midd} / 1 \mathrm{midd} .0-20$ to $\times 22 \mathrm{~dB}$. Complete with test leads and instructions-
0 Over-load protected 1970 model with every refinement. $\mathrm{E4.10.0}(2 / 6)$. JUNIOR MODEL Over-load protected 1970 model with every retinement. E4.10.0 SOLDERING IRON. Slim Mod. British High speed, $8 \frac{1}{2}$ in., all parts replaceable, fully guaranteed for professional, radio and general D I.Y. use, $19 / 6$ (1/6).
DIAMOND STYLI Replacements for BSR TC8LP, IC8/S and TC8LP/STEREO: and GC8LP: ACOS GP65/67; all at 7/6 each (1/-). ACOS GP73 and GP91. BSR ST4 and ST9; SONOTONE STA, 9TA and 9TAHC; PHILPS AG3306, $3060,(3063,3066,3301$, 3302, 3304), all at 13/6 (1/-). Double diamond types omitting 78 r.p.m., out shortly at lowest prices.
SAPPHIRE all the above $7 / 6$ types only, also ACOS GP37 at $3 / 3$ each (1/-). ACOS GP91 at 7/6 (1/-) No other types at present, and no 78 rpm available in any type. Stereo records monaurally with min. wear, GP91/SC, 21/-. Hatest Sterco GP93, $24 / 6$. Stereo records monaurally with min. wear, GP91/SC, 21/- 8 latest Ster
PR3 ELIMMNATOR (A.C.) 17/6 (1/6). TWO STATION TRANS. INTER-COM. Excellent baby alarm. Instant, easy fitting with leads, plugs and battery. All you require $52 / 6$ (3/-). alarm. Instant, easy fitting with leads, plugs and battery. Al you require $52 / 6$ (4 (rans. 24 V operation $67 / 6$ (2/6).
 and complete. Full details in list.
TEST PRODS: Flexible, unbreakable 24in. Red and Black leads, thin $4 \frac{1}{4} \mathrm{in}$. prods, 1 集in. plugs $4 / 9$ (1/-). CROC. CLIPS: Plated with screw, or with red/black hn dles, 6d. each,
RECORDING TAPE Finest quaiity British Mylar. STANDARD: 5in. 600ft. 7/3. $10 /-5$, $5 \mathrm{in} .1200 \mathrm{ft} .11 / 3,7 \mathrm{in} .1800 \mathrm{ft} .18 /-(1 / 3 \mathrm{reel})$. Still the finest quality and value obtainabIe. "60" 20/3; Stick "39" 26/6 (1/6 each type). Gream plastic hand type 7/6, or with "strut" stand, switch and 2 leads with 2.5 and 3.0 plugs'12/6 ($2 / 3$). Lapel (or hand) with clip $6 / 6$ ($1 /-$). Machined metal tapered stick type Fith neek cord and adaptor to it standard foor stands, $25 /-(1 / 6)$. DYNAMIC: Crearn hand/table 15/6 (1/6). MS $1050 \mathrm{~K} \Omega, 3 \frac{1}{2} \times 7 \mathrm{in}$. With Base. Adaptor $37 / 6$ (2/6). MSII, similar but fixed on flexible Swan neck to switch-fitted base 42/6(2/6).
OARDIOID DYNAMIG OMNI-DIRECTIONAL: Two highly suceessful makes 'SQUARE" 208, 85.10 .0 " "BALL" type, 209, with $50 \mathrm{~K} / 600$ ohms imp., $\mathbf{2 5 . 1 7 . 6}$ (either type $5 /-$).
SPEAKERS: 12in. round, fitted Tweeter, $6 \mathrm{~W}, 3$ or 15Ω (state which), $37 / 6$ ($5 / 6$); or for
 replacement speaker, high ohms, excellent 5/8 (1/-). HEADPHONES: High Res. 2000Ω ea. earpiece $18 / 6$ (1/6); Stereo Dyn $8-16 \Omega 63 /-(3 /-)$. EARPIECES with lead and min. jack plug, magnetic $1 / 8$. Crystal $4 / 9$ (up to 3 for $1 /-$ on either). State if 2.5 mm , or 3.5 mm . plug required. (Crystal 3.5 mm . only).
AeriALS, Car Tspes: Telescopic, vandal proof, locks retracted, 2 keys and ail fittings, 22/6 (2/6). Motor driven, $12 \mathrm{~V}, 5$ section, complete $87.10 .0(5 /-)$.
OR ALL PORTABLES and F.M. SETS. 7-Section $51-32 i n$, , no swivel, screw hole in base, DISAPPEARING 8 section, swivel fixing assembly, $6 \frac{1}{2}-33 i n .10 /-$. New 6 section $5 \frac{1}{2}-20 \frac{1}{2} \mathrm{in}$., screw hole in base, no swivel $4 /-$ (1/- all sizes).
SWITCEES: Standard toggle, metal, 250V 2A. One hole fixing: SPST 2/3, SPDT 2/9, DPST 8/- DPDT 3/3. Slide type, Sub-min. DPDT $1 / 6$ each. Small DPDT 3 way, centre "off" 1/9, Reed magnetic on/off $1 / 9$ (up to tbree, 1/-; Id each all additional). Rotary Switches etc. in list.
VIBRATORS: Famous makes only, 12 volt 4 pin non-synch, 4/6. 12 volt 7 pin synch. 12/6 (1/- each either type). No other types available.
plastic body 2/3. screened $3 /-$. VALVE HOLDERS: B7G or Bype 3/6. PLUGS: Std. Jack, 1/-up to three). thin for transistor wiring etc. 3/- (/1- all types per a cols). PiCk-UP Wike: Twin super thin Flex, Screened, Sheathed, $1 / 3$ yd. (6 d , up to 6 yds., over 6 yds. post free). TWIN MIKE CABLE $1 / 3$ yd. SINGLE MIKE OABLE: 8 d . yd. Both flexible, screened and sheathed. (Up to 3 yds. 8d., each additional yard 1d. extra.)
R.F. FIELD INDICATOR, 5•band with antenna, monitoring crystal earpiece, visible RETBAOTABLD FITEIBIF LBADS Space
RETRAGTABLE FLEXBLE LEADS. Space saving "Curly", many uses in car and home: with phono plugg each end, 6ft., 4/6; 12ft., 7/9; With phono plug one end, phono socket CAR RADIO: Splendid new All.British dash-mounting radio using Mullard transistors and circuit. M. and L. wave. Separate speaker and baffle. Absolutely complete for + or - chassis,
£11.11.0 (6/6). A huge success since introduction. advertisement cancels all previous ones and lists supplied pricr to March 31st 1970. ANNUAL HOLIDAYS

FELSTEAD ELECTRONICS (PW30) LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE, SK8 4EE

TERMS: Cash with order only. No C.O.D. or caller service. Post, packing and insurance charges are shown in brackets after all items. Regret orders under 5/-plus carriage cannot be accepted, and a minimum charge of $1 /$ is now made. Charges apply to G.B. and Eire tered and uninsured unless specified and min. insurance/reg, fee of $3 / 2$ sent.
S.A.E. please for all enquiries, othervise regret camnot be replied to.

M. \& B. RADIO
 38 BRIDGE END, LEEDS 1

Telephone: 0532-35649
STEREO CABINETS. A beautifully finished polished wood cabinet supplied in original carton. Size approx. $22 \times 16 \times 8$ in. New $47 / 6$ plus $6 / 6$ carriage.

TELEMETERS. A well finished cabinet containing lots of useful items for the constractor. Endless tape unit and tape head, 2 motors, auto and mains transformers, miniature valve I.F. strip etc. Ideal for modifying or stripping. 77/6 plus 7/6 carr.
STETHOSCOPE HEADSETS. Brand New. Ideal for stereo or mono. Low impedance. $27 / 6$ plus $3 / 6$ pp
MICROPHONES. Radiotelephone type, used. $5 /$ - plus $2 /-\mathrm{pp}$. TRANSISTORISED 2 METER CONVERTERS. Please state preference of I.F. frequency when ordering. £7.15.0 plus 5/-pp. 4 metre models available at the same price. VHF Marine band model £8.5.0 plus $5 /-\mathrm{pp}$.
12V TRANSISTOR INVERTERS. 12 vdc input. 275 vdc at 150 mA output. Size of aluminium case $1^{5 \prime \prime}{ }^{\prime \prime} \times 27^{\prime \prime} \times 4^{\prime \prime}$ approx. Size of transformer approx. $11^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime} \cdot 23.5 .0$ plus
$5 /-\mathrm{pp}$. $5 /-\mathrm{pp}$
2 to
WATTS Tested c/w circuit. £1 plus $1 /-\mathrm{pp}$.
60 UNTESTED TRANSISTORS $5 /-$ plus 60 Un
60 UNTESTED DIODES $2 / 6$ plus $1 /-\mathrm{pp}$. BYX25 800 R Silicon diodes 800 piv 16 amps BY heat sink 5/- plus $1 /-\mathrm{pp} .455 \mathrm{Kc} / \mathrm{s} \mathrm{FM}$ ransistorised i.F. Strips. Faulty usually low USED TESTED VALVES. QOVO3/10 6 6 -
 6AO5/EL903/-, 6BJ61/6, 6BH6 1/6.12AX7 ECC83 $2 / 6,5 \mathrm{U} 46 /-$, ECF80 $2 /$. . All plus $1 / 6 \mathrm{pp}$.
ERIAL CHANGE OVER RELAYS $6 \mathrm{v}, 12 \mathrm{v}$ or $50 \mathrm{v} 4 /$ - plus $1 / 6 \mathrm{pp}$ UHF Coaxial AERIAL CHANGE OVER RELAYS. BNC Sockets 27/6 plus $2 / 6 \mathrm{pp}$.
BRAND NEW HEADPHONES. A well known make of headset which combines quality with comfort. Mono or Sterco. 54/- plus $4 /$ - pp. PLEASE NOTE NEW ADDRESS. NO CONNECTION WITH FIRM PREVIOUSLY AT THIS ADDRESS
LIST OF OTHER EQUIPMENT PLEASE SEND 6d. PLUS S.A.E.

luild your awn lit Rocord Player with the Sarenade fully transistorised amplifier which comes complate with $2-10^{\prime \prime} \times 6^{y}$ speakers and the latest BSR 4 Speed Advanced solid state amplifior only $4 \frac{1}{4}^{-}$deap. 14 transistors plus 4 diodes. separate and Treble-10 watts $50-15,008 \mathrm{c} / \mathrm{s}$

EASY TO MSTALL NO TECHNICAL KNON Only 28 Gns. ${ }_{17 / 6}{ }^{\text {PsP }}$ Credit terms available. first monthly payment £3.6.2 followed by 9 monthly payments of E3.6.2. (Total "Credit Sale" Price ${ }^{\text {f33.1.8) }}$ Send f4,3.8 today.

FANTASTIC BARGAIN OFFER! "TRANSCONTINENTAL" FULLY TRANSISTORISED STEREOPHONIC RADIOGRAM CHASSIS
Complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest Complete with $2-10^{\circ} \times 6$ speakers and the latest
BSR Mono/Stereo Record Changer $-a$ complete radiogram at half normal price ONLY
 17 Transistors \& 10 diodes \sin a 1 . $17 / 6$
FASILY FITIED NO TECHNICAL KNOWLEDGE NECESSARY Credit Terms available. First monthly payment £4.2.2 followed by 9 monthly payments of £4.2.2

POST LEASE SEWO ME FREE DETALIL Of YOUR RANGE
THIS
COUPON NOW $/$

LEWISTradio
 LONDON. N.14. TELEPHONE EB6 $3733 / 2666$
peak sound ${ }_{\text {englefield }}$
peak sound $\boldsymbol{\Delta}_{\text {englefeleld }}$

developed out of the highly successful PW. 12-12 and now in complete kit form to save you still more

The Peak Sound Englefield is a system offering great flexibility whilst providing cost-performance ratios which have never been bettered in high fidelity. Here top-flight circuitry is housed in a cabinet of elegantly original styling which is both beautiful and completely practical front and back. Now we carry design standards further by offering a $12+12$ watt version completely in kit form. The resultant specification surpasses that even of the original PW.12+12 which again was based on Peak Sound design. In this Englefield kit, printed circuit boards are supplied for you to mount the components on. Standards of input sensitivity and overload factor on all channels as well as filter performance are all improved. By giving you the satisfaction of building the Englefield this way, you save considerably and finish with a completely professionally styled instrument. Go to your dealer and start building now, or send direct for delivery by return in case of difficulty.

and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as used in equipment reviews appearing in this and other leading British hi-fi journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.) into stated loads at stated frequencies.

The specification that tells you everything (See guarantee)

Using two Peak Sound PA. 12-15's, driven simultaneously at 1 KHz from 240 V . mains supply.
Output per channel: 11 watts into 15Ω : 14 watts into 8Ω.
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into $15 \Omega-0.1 \%$
Input Sensitivities: Mag. PU.3.5 mV. R.I.A.A. equalized into $68 \mathrm{~K} \Omega$: Tape, 100 mV linear into $100 \mathrm{~K} \Omega$: Radio, 100 mV linear into $100 \mathrm{~K} \Omega$.
Overload factor: 29 dB on all input channels. Signal/noise ratio: -65dB on all inputs. Vol, control at max.
Controls: Volume, Trẹble, Bass, Low-pass Filter. Mono/Stereo: On/off; Balance.
Complete kit of parts including cabinet assembly, knobs, transistors, well-prepared instructions and wire to length, colour coded and stripped at ends as well as built-in mains power supply. (Post free in U.K.)
£33.2.0
Englefield assembly as above, but in easy-to-put-together modules.
(Post free in U.K.)
£38.9.0
Peak Sound ES.10-15 BAXANDALL LOUDSPEAKER. Fantastic performance and value. Ideal with your Englefield. Cabinet 18"x12" x10" natural teak finish. Ready built-18 $\frac{1}{2}$ gns. Parts available separately for building yourself with appreciable saving. Leaflet on request.

peak sound

PEAK SOUND (HARROW) LTD., SAINT JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY. Egham 5316

[^4]
COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

Oscillator Coil	P50/1AC (For OC	P50/1A	(For AF117).	4
1st I.F. Transformer	P50/2CC (For OC45)	P51/1	(For AF117)	5/7
2nd I.F. Transforme	.P50/2CC (For OC45)	P51/2	(For AF117)	5/7
3rd I.F. Transforme	P50/3CC (For OC45)	P50/3V	(For AF117)	6/-

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".
T41/1E 1st I.F. Transformer 7/6
T41/2E 2nd I.F. Transformer 7/6
T41/3T 3rd I.F. Transformer 10/6
T41/3T B.F.O. Coil 10/6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4 d . postage please.

WEYRAD (ELECTRONICS) LIMITED
 SCHOOL STREET, WEYMOUTH, DORSET

H.A.C. ${ }^{\text {shogirimave }}$

WORLD-WIDE RECEPTION

Famous for over 3y years for Short-Wave Equipment of quality, "H.A.C." Were the Original amateur constructor. Over 10,000 satisfled customers-including Technical Colleges, Hospitals, Pubiic Schools, R.A.F., Army, Hams, etc.

MMPROVED 1970 RANGE

One-valve model "TDX", complete kit--price 56/6 (Postage and packing 3/6).
Customer writes:- 'Tefinitely the best one-valve S.W. Kit available at any price. America and Australia received clearly at good volume." This kit contains all genuine short-wave components,
drilled chassis, valve, accersoriea and full instrucdrilled chassis, valve, accessories and full instructions. Ready to assemble, and of course, as all our
products-fully guaranteed. Full range of other products-fuly guaranteed. Full range of other
$\mathbf{S . W}$. kits inclading the fumous model " K " and S.W. kits inclading the fumous model "K" and
"K plus" (illustrated above.) All orders despatched K plus" (illustrated above.) All orders despatched
by return. (Mail order only.) Send now for a by return. (Mail order only.) Se
descriptive catologue, order form.
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

NEW RANGE U.H.F. TV AERIALS

All U.H.F. aerials new fitted with tilting bracket and 4 element grid reffectors. Loft Mounting Arrays, 7 element, 40/11 element, $47 / 6$. 14 element, $55 / \% 18$ element, 62/6. Wall Mounting with Cranked Arm, 7 element, $60 / \sim .11$ element, $67 / \mathrm{m}$. 14 element. 75/w. 18 element, 82/6. Mast Mounting with 2 in. clamp. 7 element, $42 / 6$ 11 element, $55 /-14$ element, $62 /-.18$ element, 7 element, $72 / 6$. 11 element $80 /$. 14 complete. 7 element, 72/6. 11 element, $80 /-14$ element,
$87 / 6$. 18 element, $95 /-$. Complete assembiy 87/6. 18 element, 95/-. Complete assembly instructions with every unit. Low Loss
Cable, $1 / 6 \mathrm{yd}$. U.H.F. Preamps from $75 /-$. State clearly channel number tequired on all State cl
orders.

BBC - ITV AERIALS
BBC (Band 1). Loft, 25/-; External S/D, 30/-, "H'" £2.15.0. ITV (Band 3). 3 element loft array, $30 /=$. 5 element, 40/-. 7 element, 50/-. Wall mounting, 3 element, $50 /-5$ element, $55 /-2$ Combined BBC/ITV. Loft $1+3,40 /-; 1+5,50 /-$
$1+7,60 /:$ Wall mounting $1+3,60 /-; 1+5,70 /-$: Chimney $1+3,70 /-; 1+5$, 80/-.
VHF 75/-。
COMBINED BBC1 - ITV - BBC2 AERIALS $1+3+9,70 / \ldots+5+9,80 /-$ $1+5+14,90 / \% 1+7+14,100 / \cdots$ Loft mounting onty
F.M. (Band 2). Loft S/D, 17/6. "H", 35/-. 3 element, 57/6. External units available. Co-ax. cable 8d. Yd. Co-ax. plugs, 1/6. Outlet boxes $5 /$. Diplexer Crossover Boxes, $17 / 6$. C.W.O. or C.O.D. P. \& P. 6/6. Send 6 d . stamps for illustrated lists.
Callers nefcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884

BSR 4-SPEED SUPERSLIM

 MODEL UA25 RECORD CHANGER Plays $12^{\prime \prime}$, 10° or $7^{\prime \prime}$ records Auto or Manual. A high quality unit bselked by BSRrelisbitity with 19 months' reliability with 12 months Intin. Above motor board 3 th below 2 ing. AC 200/250y MONO
PRICE $5.19 .6 \quad \underset{\text { PRICE }}{ } \mathbf{1} 6.19 .6$ POSt
$5 / 6$ BSR UA70 sterco/Mono Transcription 412.19 .6 BSR Minichanger DAS0 Stereo/Mono: $\mathbf{~} 7.19 .6$ Size $12 \because 8$ Bin. AO $200 / 250 \mathrm{v}$. Post $5 / 6$

GARRARD PLAYERS with Sonotone 9TA Gartridges. Stereo Diamond/Mono Sapphire. SR25 Ms II \$14.19.6. ATEOMK II 214.19.6. Model 3000 212.19.6. Post 5/6. RECORD PLAYER PORTABLE CABINET 75/RCS DESLUSE 3 WATT AMPLIFIER. Rendy made and tested. A 2 -stage nnit using triode ventode valve fiving 3 watts output. Tone and volume controls. Isolated main ransformer. With knobs, loudspeaker and valves ECL82 E280. Frequency response $50-12,000 \mathrm{cps}$.
Sensitivity 200 mV . Post $5 / 6$. $89 / 6$ -
$77 / 6$
GARRARD TEAKWOOD BASE WB. 1 Ready GARRARD PLASTIC COVER SPC. 1 Ior WB. 1 77/6
EMI PICE-णF ARM. Complete with mono cartride eq9: EMI JUNIOR 4 SPEED REOORD PLAYER Mains operated mote
complete. Post $5 / 6$.

HI-FI PICK UP CARTRIDGES
GP84 55/-: GP93 45/-; GP91 30/-; GP67 1976, AC0S L.P. only 10/B. All stendard fixing complete with stylus.
$11^{\times 1}$ dia. 8/6. CRYSTAL MIKE INSERTS

PORTABLE AMPLIFIER

Portable mini p.a. system. Pattieg uses - ideal for Raties, of as a Baby phone or Recom, TeleDhone or Recotd Player Amplifier, etc, Attractive roxine covered cablnet,
mize $12 \times 8 \times 4 \mathrm{n}$, with pewerial 7×4 in, speaker and four fransjator one \quad Fa Bowez amplider. Uses PP9 battery. tull makers' guarantee.
World famous make.

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial .. 12/6! Spare Cores IRO. P50/1AC $470 \mathrm{kc} / \mathrm{s}$. Frd I,F. P30/3CC

5/4 $\begin{aligned} & \text { Driver Trang, LFDT4 } \\ & \text { Prinied Gircuit, PCA }\end{aligned}$ | $5 / 7$ | Priated Gircuit, PCA |
| :--- | :--- |
| $6 /$ | J.B. Tuning Gang |
| $5 / \%$ | Wrenrad Boak | 916

966
1616 p51/1, $\mathrm{P} 1 / 2$ Telesconic Aif Weyrad Booklet

VOLUMECONTROLS 80omm Coax 8d. yd. Long spindies. Midgot Size BRITISH AERIALITE
 STEREO L/S 10/B. D.P. 14/G FRINGE LOW LOSN $/ 16$ WIRE-WOUND 3-WATT POTS. WIRE-WOUND 3-WATT Small type with small knob. STANDARD SIZE POT
 VEROROARD 0.15 MATRIX
$2 \frac{1}{2} \times 5$ in. 3/8. $2 \frac{1}{2} \times 3$ in. $3 / 2.3$ 3 $\times 3$ in. $3 / 8$. $3: \times 5$ in. 512. EDGE CONNECTORS 16 Way 5/-; 24 Way $7 / 6$.
G.R.B.P. Board 0.15 MATRIX $2 \frac{1}{2}$ in. wide 6d. per lin., Sin. wip. undrilled inin. Board $10 \times 8 \mathrm{in}, 8$ lin. (up to 17 in .) BLARK ALUMINIUM OHASSIS. 18 s .W.g. 2 in. Sides

 11inch DIAMETER WAVE-CHANGE SWITCEES 2 p. 2-way, or 2 p. 6-way, or 8 p. 4 -way $4 / 6$ each. 1 p. 12-way, or 4 p. 2-way, or 4 p. 3-way 4/4 each. 2 p. 6-way, 3 p. 4 -way, 4 ग. 3 -way. 6 p. 2 -way. 1 water $12 /$, TOGGLE SWITCHES, $\mathrm{sp}, 2 / 6 ; \mathrm{sp}$. dt. 3/6; dp. 3/6; dp. dt. $4 / 6$ ALL PURPOSE HEADPHONES
H.R. HEADFHONES 2000 ohms Super Sensitive LOW RESISTANCE HEADPHONES $3-5$ ohms.
DE LUXE PADDED STEREO PFONES 8 ohm
"THE INSTAN

BULK TAPE

BULK TAPE ERASER AND

ERASER AND
RECORDING HEAD
DEAMGNETISER
200/250 v. A.O. Leaflet S.A.E. $\$$ N N Fost $2 / 642 / 6$

ALL PORPOSE TRANSISTOR PRE AMPLIFIER BRITISH MADE 9-12v. and 200-300v. D.C. operation. Size $17^{\prime \prime} \times 11^{\prime \prime} \times$ or trangistor equipment. Full instructions. $7 / 6$ or transistor equipment. Full instructions,

Brand new. Guaranteef. \begin{tabular}{ll|l|l|}
\hline NEW TUBULAR ELECTROLYTICS \& CAN TYPES

$2 / 350 V$ \& $.2 / 3$ \& $100 / 25 V$ \& $2 /-$

$16+16 / 500 \mathrm{~V}$

$2 / 350 \mathrm{~V}$ \& $\cdots 2 / 3$ \& $100 / 25 \mathrm{~V}$ \& $2 /-$ \& $16+16 / 500 \mathrm{~V}$ \& $11 /$

$4 / 350 \mathrm{~V}$ \& $\cdots 2 / 3$ \& $250 / 25 \mathrm{~V}$ \& $2 / 6$ \& $50+50 / 350 \mathrm{~V}$ \& $7 /$

$4 / 350 \mathrm{~V}$ \& $\ldots 2 / 3$ \& $250 / 25 \mathrm{~V}$ \& \ldots \& $2 / 6$ \& $50+50 / 350 \mathrm{~V}$

$8 / 450 \mathrm{~V}$ \& $\ldots 2 / 3$ \& $500 / 25 \mathrm{~V}$ \& $7 /-$

$18 / 450 \mathrm{~V}$ \& $\ldots 3 /-$ \& $60+100 / 350 \mathrm{~V}$ \& $11 / 6$

$32 / 450 \mathrm{~V}$ \& $\ldots 3 / 9$ \& $8+8 / 450 \mathrm{~V}$ \& $3 / 6$ \& $32+32 / 250 \mathrm{~V}$ \& $3 / 6$

$3 / 1650 \mathrm{~V}$ \& $3 / 9$ \& $32+38 / 450 \mathrm{~V}$ \& $6 / 6$

$32 / 450 \mathrm{~V}$ \& \cdots \& $3 / 9$ \& $8+16 / 450 \mathrm{~V}$ \& $3 / 9$ \& $32+32 / 450 \mathrm{~V}$

$25 / 25 \mathrm{~V}$ \& \cdots \& $1 / 9$ \& $16+16 / 450 \mathrm{~V}$ \& $4 / 3$ \& $32+32+32 / 850 \mathrm{v} .8 / 6$
\end{tabular}

 SUB-MTN. RLECTROLYTTCS. 1, 2, 4, 5, 8, 16, 25, $30,50,100$ CERAMIC, 500 V 1 pF to 0.01 mF , Od
PAPER 350V-0.1 9d, 0.5 2/6; 1mF $81-$; 2 mF 150 V 81
$500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.111 \cdot 0.251 / 6 ; 0.53 /$
$1,000 \mathrm{~V}-0.001,0.0022,0.004 \mathrm{y} .0 .01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. SILVER MICA. Close tolerance $10.5-500 \mathrm{pF} 1 /-; 500-2,200 \mathrm{pF}$ $2 /-; 2,700-5,800 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0.01$, mid $6 /-$; each. Wure 10 GANG. " $0-0$ " 208pF $+176 \mathrm{pF}, 10 / 6$; 365 pF , minia midget less trimmers, $7 ; 6 ; 500 \mathrm{pF}$ slow motion, $12 / 6 ; 500 \mathrm{p}$ small 3-zang 500pF 19/6. Single "c0" $365 \mathrm{pF} 7 / 6$. TWIF 10/6. SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each.
TUNING. Solid dieleotric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each. TRIMMERS. Compression 30,50, ropF, $1 / \epsilon ; 100 \mathrm{pF}$
$150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 250 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{pF}, 2 / 6$. RECTIFIERS CONTAGT COOLED 1 wave $60 \mathrm{~mA} 7 / 6$; 85mA 9/6. SILICON BYZ13 6/-; BYI00 $10 /-$ Fnll wave Bridge $\quad 4 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 19 / 6 ;$ TV rects. $10 /-$ NEON PANEL INDICATORS 250 v . AC/DC Red, Amber $4 / 6$ RESISTORS. Preferred values, 10 ohms to 10 meg .
 HIGH STABILITY. $\stackrel{\text { w. }}{ } 1 \% 10 \mathrm{ohms}$ to 10 meg., $2 /$ Ditto 5%. Preferred values 10 ohms to 22 meg., 9 m . WIRE-WODND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohms to 100 K . 21 -each; $2!$ watt. 1 ohm to 8.2 ohms. $2 f$

BRAND NEW TRANSISTORS 6/- EACH
MAT 100 \%/9; MAT $1018 / 6 ;$ MAT 120 \%/9; MAT $1218 / 6$ REPANCO TRANSISTOR TRANSFORMERS. TT45. Push Pull Drive, $9: 1$ GT, $6 /$-. TT46 Output, CT8:1, 6/Tr49. Interstage, $4.6: 1,6 / \mathrm{m}$; TT52 Output 3 ohms, $20: 1,6 /-$ T123/4 PAIR 10 watt Amp. Transiormers and circuit $35 /$-. TRANSISTOR MAINS POWER PACKS. FULL WAVE 9 volt 500 mA . Size $41 \times 2 \mathrm{z} \times 2 \mathrm{in}$. Metal case. $49 / 6$
Crackle Anish. Output terminals. On/oft switch. $49 / 6$ Crackle thish. Output terminals. On/oft switch. $47 / 6$

 COAXIAL PLUG 1/8, PANEL SOCKETS I/3. LINE 3:6. OUTLET BOXES. SURFACE OR FLUSH 4/6.
BALANCED TWIN FEEDERS 1/- Fd. 80 ohms or 300 ohms. Chrome Lead Socket $7 / 6$. Phono Plags $1 /-$. Phono Socket $1 / m$; JACK PLUGS Std. Chrome 3/-; 3.5 mm Chrome 2/6. DIN SOCKETS Chassis 3 -pin $1 / 6 ; 5-\operatorname{pin} 2 / \%$. DIN SOCKETS Lead

E.M.I. $13 \frac{1}{2} \times 8$ in. LOUDSPEAKERS With flared tweeter cone and ceramic magnet. 10 watts.
Bass res. $45-60$ cps.
Flux 10,000 gauss.
Speech coil, 3 or 15 ohm. Recommended Teal Cabinet $94 / 6$
Sixe $16 \times 10 \times 9$ in.

MINI-MODULE LOUDSPEAKER KIT

10 watt 65/- carriage 5:-

Triple speater system combining on ready cut baffle. in. chiphoard 15 in. $\because 8$ in. Separate Bass, Middle and Treble loudspeakers and crossover condenser. The cone. The Mid-Range unit is specially designed to add drive to the middle register and the tweeter recreates the top ond of the musical spectrum, Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 of 8 ohm . TEAK VENEERED BOOKSEELF ENCLOSURE. $16 \times 10 \times 9$ in. Modern Scandinavian $94 / 6$ Post $5 /-$
finted front design for Mini-Module.

$30-14,500$ c.p.s., 12 in
double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and 2 total fux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watty. Voice coils 3 or 8 or 15 ohms.

Module kit, $30-17,000$ c.p.s. with tweeter, crossover,
baffle and
instructions. BAKER "GROUP SOUND" SPEAKERS - POST FREE 'Group 25' 'Group 35' 'Group 50
 TEAK MI-FI SPEAKER CABINETS. Fluted wood front. For 10 or 12 in round Loudspeaker 24.14.6.
 LOUDSPEAKER CABINET WADDING 18in wide, 2/6ft
Goodmans Tweeter 8 in $3 \mathrm{ohm} 35 /$, EMI 2 in $8 \mathrm{ohm} 17 / 6$. Horn Tweeters $2-18 \mathrm{ke} / \mathrm{s}, 10 \mathrm{~W} 15$ ohm 29/6. Crossover $16 / 6$. LOUDSPEAKERSP.M. 3 OHMS. 23 in , $3 \mathrm{in}, 4 \mathrm{An}, 5 \mathrm{in}$, $5 \times 3 \mathrm{in}$,
 SFECIAL OEFER : $80 \mathrm{ohm}, 2 \mathrm{in}, 2 \mathrm{in}, 35 \mathrm{ohm}, 3 \mathrm{in} .25 \mathrm{ohm}$, $15 / 6 \underset{\text { TYPE }}{\text { EACH }} \quad 6 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$. $15 \mathrm{ohm} .7 \times 4 \mathrm{in}$; 8in LODDSPEAKER UNITS 3 ohm 27/8; 15 ohm $80 / \mathrm{in}$. HinAC 8 in. De Luxe Ceramic 3 ohm 45/-; 15 ohm $50 /-$ 8 Bin LOUDSPEAKER. TWIN CONE 3 ohm 35/: 5 in . WOOFER. 8 watts max. $20-10,000 \mathrm{cps} .8$ or $150 \mathrm{hm} .39 / 6$, SPEAKER COVERING MATERIALS. Samples Large S.A.E.

Main power, amplifier and 2 valve preamplifer. Silver grey facia panel. Volume, trebie, bass controis. Function
switch: Radio, Tape 1, Tape 2, Mic, Gtam IP Gram Tape output socket. Valves: $\mathbf{2} \times$ Gtam LP, Gram 78 . \therefore ECC83, $1<$ EZ 81 . Ultsa linear Parmoko ontput mono. 3 and 15 ohm output. Brand new, Guaranteed

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICES.ILLUSTRATED EAGLE CATALOGUE 5/-. Post free. $\begin{aligned} & \text { RARGALN AM TUNER. Medium } \\ & \text { Transistor Superbet. Ferrite aerini. }\end{aligned} \underset{9 \text { volt. }}{\text { Wave. }} 79 / 6$

BARGAIN DE LUXE TAPE SPLICER Cuts,
trims, joins for editing and repairs. With 8 blades. $22 / 6$
BARGAIN 4 GHANNEL TRANSISTOR MIXER.
musical highlights and sound effects to recordings. Wil mix microphone, records, tape and tuner with
pare controis iato single oulpal. 9 volt.
$59 / 6$
BARGATN FM TUNER 88-108 Mc/a Six Transistor. 9 volt. Printed Circuit. Calibrated slide dial tuning. $\$ 9.10 .0$
Walnat Cabinet. Size $7 \times 5 \times 4 i n$. BARGAIN 3 WATR AMPLIFIER. 4 Ttansistor $69 / 6$
Pushopall Ready built, pith volume control. 9v. $69 / 6$

\star RADIO BOOKS \star (Postage 9d.)

Practical Transistor Receivers
Practical Radio Inside Out
upersensitive Transisior Pocket Radio
Radio Valve Guide, Books 1, 2, 3, or 4 ea, 5/- No. 5 ea. \$hortwave Transistor Receivers.
Transistor Communication Sets.
Modern Transistor Circuits for Eeginnera
Sub-Miniakure Transisior Receivers
Wireless World Radio Valve Data.
International Radio Stations Guide
Transistor Circuits for Radio Controlled Model
m MOVING OOIL METERS BRITISH MADE

3 inch MOVING COIL METERS ERITISH MADE | Various calibrations/movements. $500 \mathrm{Microamp;}$ |
| :--- |
| 1 Milliamp; $50-0-50$ Mieroamp. ete. S.A.E. for list. |

MAINS ELECTRIC MOTORS

(120v. or 240\%, AC). Size $2 \frac{2}{2} \times 21 \times 1 \frac{1}{2}$ in. Clock wise 1,200 r.p.m. of load. Heayy
duty 4 pole 50 ma . Spindle $\times 3 / 20$.

List 1/.. Written guarantee with every purchase. (Export: Remit cash and extra postage.) Buses 133,68 pass door. S.R. Stn. Selhurst. Tel. $01-684-1665$.

Just like the children, your car will appreciate being treated to its very own annual! It will enjoy your new-found confidence in putting right any minor troubles, keeping it all tricked out in the best accessories, and your ability to keep both the bodywork and machinery in mint condition!

ROUTINE MAINTENANCE

advice on the cooling system, de-coking, brakes, clutch, etc.

TROUBLE-SHOOTING SECTION

A peculiar noise? Here's how to diagnose and correct typical faults.

FAULT-DIAGNOSING CHART

A 'family tree' of the working parts of your car,

50 GET-YOU-HOME TIPS

Could save you a lot of trouble and embarrassment! OVERHAUL
The complete A-Z of all that needs to be done and how to do it including starter, dynamos, suspension.
RENOVATION
Repairing bodywork, tidying interior and exterior trims, 'touching up' with crude equipment.

PRESERVATION

Cleaning your car, anti-rust precautions, sorting out water leaks.
ALSO: A-Z Car Electrics, Motoring Holidays (9 pages)

Workshop Hints, Accessories.

PADGETTS RADIO STORE
 OLD TOWN HALL, LIVERSEDGE, YORKS

Telephone: Heckmondwike 4285

AW48-80 TV Tubes good picture no guarantee 51 plus 12/- carriage. Aircraft Sighting Head with Gyro Unit. Condition Fair 18/6, carriage B.R.s. 12/-.
Small 12-way Plug and Socket, $1 / 6$ each p. \& p. 1/-, 15/- per doz. p. \& p. 3/6. Ex unit.
Panel of 19 mixed pots, 5/- post paid. Ex. unit
Panels of Resistors and Condensers $8 /$ - per doz., post paid. Ex unit.
Bombsight-Computors containing a large selection of gears. A delight for The Model Maker. 55/- carriage paid.
Complete untested 17 inch TV Sets 12 channel $50 /-, 15 /$ carriage
Small Sub Chassis containing small 12 -way plug and socket. Few Resistors and Condensors $5 /-$, p. \& p. $1 / 6$.
Speakers removed from T.V. Sets. All PM and 3 ohm. Gin. round $3 /=$, p. \& p. $3 /-;$ 6 for $24 /-$, post paid 6×4 in. $3 /-$, p. \& p. $3 /-; 6$ for $24 / \sim$, post paid. 5in. round $3 /-$; p. $\&$ p. $3 /-; 6$ for $24 /-$ post paid. $7 \times 4 \mathrm{in} .5 /-$, p, \& p. $3 /-; 6$ for $34 /-$ post paicl.
Slot Speakers 8×2 in. $5 /-$ p. \& p. $3 / \sim 6$ for $30 /-$ post paid

Reclaimed T.V. Tubes, with 6 months' guarantee 17in. Type AW43/80. AW43/88
40/-. MW43/69 $30 / \sim$. I4in. Type 17/-. All Tubes 12/-carriage. $40 /-$. MW43/69 30/-. 14in. Type 17/-. All Tubes 12/- carriage.
Silicon Rectifier 500 mA 800 PJV. 2/6, post paid. 24/- per dozen, post paid. Jap Earpiece. Magnetic 8 ohm . Small and Large Plug 1/11, post paid. G.P. Diodes $3 / 6$ per dozen, post paid.

Top Grade Mylar Tapes, 7 in . Standard 11/6. 7in. Long Play 14/-. 5in. Standard 7/9bin. Long Play $10 / \mathrm{F}$, plus post on any tape $1 / 9$.

VALVE LIST

Ex Equipment, 3 months' guarantee

ARP12	1/6	PCL82	4/-	6B8	1/8
EB91	9d	PCL83	5/-	6BW7	2/6
EF85	3/-	PL36	5/-	6 K 7	1/9
EBF80	3/-	PL38	6/-	6 V 4	5/-
ECC81	3/-	PL81	4/-	${ }^{6} \mathrm{P} 28$	5/-
ECC82	3/-	PY33	$5 /-$	10P13	2/6
		PY81	1/6	185BT	8/6
ECC83	4/-	PY82	1/6	20D1	3/-
ECL80	1/6	PZ30	5/-	20 PL	5/-
EF50	1/-	0191	5/-	$20 \mathrm{P3}$	2/6
EF80	1/6	U281	5/-	30PL1	5/-
EF91	9 d	U282	5/-	30 P 12	$5 /-$
FY86	5/-	U301	5/-	30 Fs	$2 / 6$
PCC84	2/-	U329	5/-	$30 \mathrm{FL1}$	$5 /-$
PCF80	2/-	U251	5/-	6/30L2	5/-

BAKER 12in. MAJOR £8
The remarkable quality and performance of the "Major" makes possibie truly brilliant and rich sound from a single loudspeaker. It recreates the entire musical spectrum from 30 to 14,500 c.p.s. The unit consists of the latest double cone, woofer and tweeter cone together with a special Baker magnet assembly Alcomax il having a flux density o 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 C.p.s. For Hi-Fi or P.A. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Major Module 30-17,000 cps with tweeter, crossover, baffe
19 : 12 inin. andinstructions. $\mathbf{1} \mathbf{0 . 1 9 . 6}$
Baker Reproducers Lid
end 4d Slamp for
Further Details
01-684-1665.

WITH ALL THESE FEATURES

* 20,000 ohm/volt \star Overload protection
* Mirror Scale \star Free batteries
* D,C volts : $0.6,3,12,30,120,300$.
\star A, C. volts: 3. 30, 120, 600
\star D.C. amps : $50 \mu \mathrm{~A}, 600 \mu \mathrm{~A}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$.
t Resistance: $10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{meg}, 10 \mathrm{megs}$. Half scale reading: $60 \Omega, 600 \Omega, 6000 \Omega, 60 \Omega \mathrm{~K}$.
\star Decibels: - 20 to +46db.
大 Slze: 6/x $4 \frac{1}{2} \times 2 \frac{1}{2}$.
Money back if not deliohted

ONLY SPECIAL £6.5.0 OFFER

The famous

'GOSCUT' CUTTER \& SHAPER
The easy way to cut \& shape metals, plastics,
iflaf different uses. Never need re-sharpening. List price, $37 / 6$. OUR PRICE ONLY 28/6; p. \& p. 2/6.
Dept. PW5,31 Albert Rd., Hendon, London, N.W.4.

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mkI WITH VARIABLE TONE CONTROL

7 Tupable Wavebands: Medium Wave 1, Medium Wave 2, Long Wave, SW1, sW2, BW3 and Trawler Band. Built in Ferrite Rod Aerial for Mediom and Long Waves. Five section $22 i \mathrm{in}$ chrome plated Telescopic aerial for 8 hort Waves can be angled and rotated for maxlmum performance, Push pull output using 600 mW transistors. Socket for car aerial. Tape record ing. Eight transistors plus 3 diodes. Famous ralke 7 in . $\pm 4 \mathrm{in}$. Speaker. Air spaced ganged tuning condenser. On/Off switch volume control. Wave change switch and toning control. Attractive case in rich chestnut shade with gold blocking. Bize $9 \times 7 \times 4 \mathrm{in}$ approx. Easy to follow instructions and diagrama make the Roamer Eight a pleasure to build.
Parts Price List and Easy Build Plans 5/- (FREE with parts).
£6.19.6

roamer seven mkIV

SEVEN FULLY TUNABLE WAVE-BANDB-MW1, MW2, LW, SW1, Medium waveband provides easier turing of Radlo Luxembourg, etc: Built in ferrite rod aerial for Medium and Long Waves. Five Section 22 in . chrome plated telescople aerial for ghort Waves-can be angled and rotated for peak S.W. listening. socket ior car Aerial. Powerfur puen pull output. Seven transistors and R.F. Tranaistors. Famous make 7×4 in. P.M. speaker. Alr spaced ganged tuning condenser. Volume/on/on
control, wave change switches and tuning control.
Attractive case with carrying handle. Bize $9 \times 7 \times 4 i n$.
approx. Easy to follow instructions and diagrams make the
Roamer 7 a pleanure to bulld. Parta price list and easy build plans 3 (FREE with parts). Personal Elarplece with switched socket fo private fistening, 5/-extra.

$$
£ 5.19 .6
$$

P.\& P. 7/6

NEW!

trans eight

SIX WAVEBAND
PORTABLE WITH
3in. SPEAKER
Attractive case in black with red grille and cream knobs and dial with polished brass inserts. Size 9×54 upprox. Tunable on 2 男in Long Waves three Short Medium and Long Waves; three Short Waves and Trawler
Band. Sensitive territe rod aerial for M.W. and L.W.
Telescopic aerial for Short Waves. Eight improved type transistors plus 3 diodes. Push pull output. Ample power to drive a larger speaker. Parts price list and easy build plans 5/- (FREE with parts). Earpiece with switched socket for private listening 5/-extra.

Total building costs O P $8 / 6$ F \& P

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE WITH SPEAKER AND EARPIECE

Attractive case with red apeaker grille. Size $64 \times 4 \frac{1}{2} \times 1 \frac{1 n}{} 7$ atage 6 transistors and 2 diodes, ferrite rod aerial, tuning condenser, also Personal Earpiece with switched socket or private, listening. Easy build plans and parts price list $1 / 6$ (FREES with parts).

RADIO EXCHANGE CO

; 61 HIGH STREET, BEDFORD. TeI, 023452367

ELEGTROALUE

Everything brand new and to specification - Large stocks - Good service

Code	Power	Tolerance	Range	Values	1 to	10 to	100
				availabie		NOTE	OW
C	1/20w	5\%	$82 \Omega-200 \mathrm{~K} \Omega$	[12	18	16	15
C	1/8W	5\%	$4.7 \Omega-830 \mathrm{k} \Omega$	E24	2.5	2	1.75
C	$1 / 4 \mathrm{~W}$	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$	512	2.5	2	1.75
C	1/2W	5\%	4.7 Ω-103 Ω	E24	3	2.5	2.25
MO	1/2w	2\%	$10 \Omega-1 \mathrm{M} \Omega$	E24	9	8	7
C	1W	10\%	$4.2 \Omega-103 \mathrm{M} \Omega$	E12	6	5	4.5
WW	1w	$10 \%+1 / 20 \Omega$	$0.22 \Omega-3.3 \Omega$	E12	15 d	ntities	
WW	3W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$	E12	15d	ntities	
WW	7W	5%	$12 \Omega-10 \mathrm{~K} \Omega$	E12	18 d	ntities	
Codes : $\quad \mathrm{C}=$ garbon film, high sta MO = metal oxide, Electrosi WW = wire wound, Plessey.							
Values : E12 denotes series: $1,1.2,1.5,1.8,2.2 .2 .7,3.3,3.9,4.7,5.6,6.8,8.2$ and their decades. E24 denotes series: as E12 plus 1.1, 1.3, 1.6, 2, 2.4, 3, 3.6, 4.3, 5.1, 6.2, 7.5, 9.1 and their decades.							
Prices are in perice each for quantities of resistors of same ohmic value and power rating NOT mixed values (Ignore fractions of one penny on tolal resistor order.)							

COLVERN 3 WATT WIRE-WOUND POTENTIOMETERS
$10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 200 \Omega, 1 \mathrm{~K} \Omega, 1.5 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega$. Price only 5/6 each

CARBON TRACK POTENTIOMETERS : Double wiper ensures minimum noige level
Single gang linear: $220 \Omega, 470 \Omega, 1 \mathrm{~K}$ etc. to $2.2 \mathrm{M} \Omega$ Single gang log: $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$, etc. to $2.2 \mathrm{M} \Omega$ Dual gang linear: $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$ ete. to $1 \mathrm{M} \Omega$ Dual gang log: $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$ etc. to $2 \mathrm{M} 2 \Omega$
FETS n-channel low cost general pur FETS n-channel low cost general pur-
pose $2 N 5163,25$ volt, only $5 /-$ each. pose 2ND163, 25 vol, only 5/- Moach. rola 2N5459 (MPF10 1) 9/9 each Motorola 2N5457 (MPF103) 9/9 each.

NEW PLESSEY ENTEGRATED CIRCRIT POWER AMPLIFIER TYPE SL408A. Only $48 / 6$ nett. Operates with $18 V$ power supply Sensitivity $20 \mathrm{n} V$ inoy $20 \mathrm{M} \Omega, 3$ watts into 7.5Ω. Applications data fith two or more. PE
fil/18/- NET complete.

30 WATT BAILEY AMPLIEIER COMPONENTS:

Transistors for one channel es/5/6 list, with 10% discount only $£ 6 / 11 / 0$.
Transistors for fwo channels $214 / 11 / 0$ list, with 15% discount only $812 / 7 / 5$.
Capacitors and reatstors for one channed list $£ 2$.
Printed circuit board free with each transistor set.
Complete unregulated power supply kit $£ 4 / 17 / 6$ mono or stereo, subject to discount

SINCLAIR IC. 10 Integrated Circuit Amplifier and Pre-amplifer. This remarkable monoithic sotegrated circuit ampliter and preamp now available from stock. The equivalent of 13 transigtor/ 18 resistor eircuit plus 3 diodes and the first of its kind ever. It is as detailed in the manual provided with it is advertised post free 59/6 NET.

CARBON SKELETON PRE-SETS small high quailty. type PR: Linear niy, $100 \Omega, 220 \Omega, 470 \Omega, 1 \mathrm{~K} \Omega, 2 \mathrm{~K} 2$, ${ }_{1}^{4 \mathrm{~K}} \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, montal mounting, 1/- Ω vertical or hori

S-DeCs put an end to "birdsnesting'. Components just plug in. Saves valuable time. Use components again and again. S-DeC only $30 / 6$ post free. Compact T+DeC, increased capacity, may be temperature-cycled T•DeC only $51 /=$ post free. Full range available.

OAPACITORS: All new stock
High ripple current types:
$2000 \mu \mathrm{~T}^{72} 2 \mathrm{~V}$ 7/4: $2000 \mu \mathrm{~F} 50 \mathrm{~V}$ 11/4: $5000 \mu \mathrm{~F}$ Medium electrolytic
$2000 \mu \mathrm{~F} 25 \mathrm{~V} 7 / 4 ; 2000 \mu \mathrm{~F} 50 \mathrm{~V} 11 / 4 ; 5000 \mu \mathrm{~F}$
$25 \mathrm{~V} 12 / 6 ; 5000 \mu \mathrm{~F} 50 \mathrm{~V} 21 / 11 ; 1000 \mu \mathrm{~F} 200 \mathrm{~V}$ $18 / 3 ; 2000 \mu \mathrm{~F} 100 \mathrm{~V} 28 / 9 ; 5000 \mu \mathrm{~F} 70 \mathrm{~V} 88 /-$ $5000 \mu \mathrm{~F} \quad 100 \mathrm{~V} \quad 58 / 3 ; 1000 \mu \mathrm{~F} \quad 50 \mathrm{~V} 8 / 2$; $2500 \mu \mathrm{~F} 64 \mathrm{~V}$ 15/5; $2500 \mu \mathrm{~F} 70 \mathrm{~V}$ 19/6,

$$
\begin{aligned}
& \text { Medium electrolyt } \\
& \text { Axial leads: Values }
\end{aligned}
$$ $0 / 50 \quad 2 /-$; $100 / 25 \quad 2 /-: \quad 100 / 50$ 500/250/20 2/6; 250/50 3/9; 4/6; $1000 / 251000 / 103 / 3 ; 500 / 50$ 2000/25 6/-; 3030/25 2/6.

PEAK SOUND ENGLEFIELD KITS Brilliant new styling and available in two forms: Stereo wit form with channel amplifier and pre-amplifier modules and power supply. Build it $12+12$ or $25+25$ Output per channel into $15 \Omega 12$ watts R.M.S. Price $238 / 9 / \sim n e$ 25 WATTS PER CHANNEL. As above but Output per channe into $15 \Omega 25$ watts R.M.S. Price $858 / 15 /$ - Net
Brief specification: Cotal barmonic distortion 0.1%
Inputs: Magnetic, Ceramic, Tape, Fadio, Signal to noise ratios Better than 60dB all inputs. O/load factor $28 d B$ all channeis.
ENGLEFIELD CABCNET to house either above assemblies (a illustrated) $£ 6$ Net. OTHER PEAK SOUND PRODUCTS AS

BARGAINS IN NEW TRANSISTORS

All power types supplied with free insulating sets

2N696	5/6	2N5192	25/-
2N697	5/6	2N5195	28/3
2N706	2/9	4036	12/6
2N1132	9/9	40362	16/-
2N1302	4/-	AC126	6/6
2N1303	4/-	AC127	6/-
2N1304	4/6	AC128	6/-
2N1305	4/6	AC176	11/-
2N1306	6/9	ACY22	3/9
2N1307	6/9	ACY40	4/-
2N 1308	8/9	AD140	19/-
2N1309	8/9	AD149	17/6
2N1613	6/-	AD161\}	16/-
2N1711	7/-	AD162	p. pr.
2N2218	9/3	AF118	16/6
2N2147	18/9	AF124	7/6
2N2369A	5/3	AF127	7/-
2N2646	10/9	BA102	9/-
2N2924	4/-	BC107	2/9
2N2925	4/6	BC108	2/6
2N2926R	2/3	BC109	2/9
2N2926O	2/3	BC147	3/6
2N2926Y	2/3	BC148	3/3
2N2926G	2/3	BC149	3/6
2N3053	5/6	BC153	10/-
2N3054	14/3	BC154	11/-
2N3055	16/-	BC157	3/9
2N3391A	$6 / 3$	BC158	3/6
2N3702	3/6	BC159	3/9
2N3703	3/3	BC167	2/6
2N3704	3/9	BC168	2/3
2N3705	3/5	BC169	2/6
2N3706	3/3	BC177	6/3
2N3707	4/-	BC178	5/8
2N3708	3/-	BC179	6/-
2N3709	3/-	BD121	18/-
2N3710	3/6	BD123	24/3
2N3711	3/11	BF178	10/6
2N3904	7/6	BFX29	10/9
2N3906	7/6	BFX85	8/3
2N3731	24/-	BFX88	6/9
2N4058	5/3	BSX20	3/9
2N3325	10/9	BFY50	4/6
2N3794	3/3	BFY51	4/3
2N4284	3/3	MJ480	21/-
2N4286	3/3	MJ481	27/-
2N4289	3/3	MJ491	30/-
2N4291	3/3	P346A	4/6
2N4292	3/3	V405A	7/9
2N4410	4/9	NKP403	15/6
		NKP405	15/-

MAIN LINE AMPLIFIER KITS as advertised. Prices Net. Authorised dealer.

COMPONENT DISCOUNTS :
10% on orders for components for 25 or more.
15% on orders for components for $\& 15$ or more
(No discount on net items.)
postage and packing :
Free on orders over 12 .
Please add $1 / 6$ if order is under $£ 2$.
Overseas orders wetcome; carriage charged at cost.

EX-RENTAL TELEVISIONS
 TWO-YEAR GUARANTEE

17" SLIMLINE 405 only Ell 100
19" SLIMLINE 405/625 39 Gns.
Carriage and Insurance 30/FREE ILUSTRATED LIST OF TELEVIIIONS $17^{\prime \prime}-19^{\prime \prime}-2!^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS, SIZES AND PRICES

TWO-YEAR GUARANTEED TUBES 100% REGUNNED
Slim Line Tubes $110^{\circ} 17^{\prime \prime}$ and $19^{\prime \prime} 109 / 6,21^{\prime \prime}$ and $23^{\prime \prime} 129 / 6$.
Normal Tubes 70° and $90^{\circ} 17^{\prime \prime} 99 / 6,21^{\prime \prime} 119 / 6,14^{\prime \prime}$ and other sizes 79/6.

SPEAKERS $10 /-2 \frac{2^{\prime \prime}}{\prime \prime} 8 \Omega, 3 \frac{1}{\prime \prime}_{\prime \prime \prime}^{25 \Omega}$, RECORD PLAYER CABINET $4^{\prime \prime} 10 \Omega$; $3^{\prime \prime} \times 5^{\prime \prime} 8^{\prime 2} 7^{\prime \prime} \times 4^{\prime \prime} 3 \Omega, 8^{\prime \prime} \times$ 3" 3 2 . BRAND NEW. P. \& P. $2 /$-.
Transistors: Mullard matched output kit 7/6,
FREE.
Transistor Radio Cases: 4 for $£ 1$. Size $9 \frac{11^{\prime \prime}}{} \times 6 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$. P. \& P. $9 / 6$.
Ferrite Rads 3/6: $6^{\prime \prime}$ and $8^{\prime \prime}$ complete with LW/MW Coils. P. \& P. FREE.
$\underset{1 /=(284 \mathrm{~mm}) .}{\text { STRIP }} \mathbf{2 3 0 / 2 4 0 \text { velts, } 3 0 \text { each. }}$ STRIP $(284 \mathrm{~mm}) .230 / 240$ volts, 30 wath.
Ideal for cocktail cabinets, illuminating Ideal for cocktail cabinets, illuminating
pictures, diffused lighting, etc.

RECORD PLAYER CABINET

Cloth covered. Size $16 \frac{1}{2}^{\prime \prime} \times 14 \frac{1}{2}{ }^{\prime \prime} \times$ 7/". Takes any modern auto-
changer. P. \& P. $7 / 6$.

(DUKE \& CO. LONDON) LTD.
621/3 Romford Road, London, El2
Tel. 01-478 6001/2/3

VALVES SAME DAY SERVICE

6AU6	$4 / 6$	$30 L 15$	$14 /-$	ECC81	$3 / 9$	EZ 80	$4 / 6$	PM84	$7 / 6$	UM84
6BA6	$4 / 6$	$30 \mathrm{LL17}$	$15 / 6$	ECC82	$4 / 9$	EZ81	$4 / 9$	PX25	$12 /-$	UY41
EBE										

6J5G	$4 / 9$	$35 Z 4 G T$	$5 /-$	ECH81	$5 / 9$	PC96	$8 / 6$	R19	6/6	AD140
6J6	$3 /-$	6063	$12 / 6$	ECH83	$8 / 8$	PC97	$8 / 6$	R20	12/6	AF115

6V6G	$8 / 8$	CCH35	18/6	ECL 86	8/-	PCC89	$10 / 6$	U78	$4 / 8$	OC26	$5 /$
6V6GT	$6 / 6$	CL33	188/6	EF37A	$6 / 6$	PCC189	$11 / 6$	U191	12/6	OC44	$2 / 6$

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel, 01-550 7441.
Postage on 1 valve 9d. extra. On 2 valves or more, postage 6d. per ralve extra, Any Parcel Insured against Damage in Transit 6d. extra

Opportunities with Redifín in Radio Communications

Experienced Test Engineers are invited to write to Redifon with regard to vacancies in our Test Department at Wandsworth. The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment from military pack-set to broadcast transmitter, including communications receivers, M.F. beacons, teleprinter terminals, complete radio office installations for the Merchant Marine and mobile H.F. S.S.B. Stations. Our Test Engineers have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F. Communications equipment. The work is varied and interesting and offers excellent opportunity to broaden experience in semiconductors, S.S.B. and Frequency synthesis.
Limited vacancies also exist for engineers experienced in Test gear maintenance.
Please write in the first instance to: The Personnel Officer, REDIFON LTD.
Broomhill Road, Wandsworth, SW18.

Suppliers of Radio Communications equipment to Home. Commonwealth, and foreign governments. Contractors to B.B.C., G.P.O., Crown Agents. Cable and Wireless, leading shipping companies of the world, etc.

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 510 \mathrm{~s}$. 0 d . per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

MISCELLANEOUS
MISCELLANEOUS
(continued)

ELECTRONIC MUSIC FOR YOU

Then how about making yourself an electric organ? Constructional data a vailable -full circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops--uses 41 valves. With its variable attack you can play Classics and swing. Write Now for free leaflet and further Darlington, Durham. Send 4d. stamp.

NOTES ON USE of TV for UFO Detection. Optical Detector Circuits, 8s 6d. Radar \& Electronic Publications, "Highlands." Needham Market, Suffolk.

EXPRESS ROTARY SWITCHES. Switches for Mullard audio circuits, also switches made to customers own specifications. For details and price list, write or phone to 189 Edgware Road., London W.2. Tel. $01-7234455$.

6 OR I2 VOLT FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan, fent etc. Fully transistorised, low battery drain. Unbeatable at $\mathbf{4 2 . 1 9 . 6}$ post paid. or in kit form 50/-

4 WATT GRAM AMPS.

Volume and tone controls, mains operation
3Ω output, new and boxed $65 /=$ POST
SALOP ELECTRONICS Callers welcome
23 Wyle Cop, Shrewsbury, Shropshire
S.A.E. for list

MUSICAL MIRACLES. Send S.A.E. for details of Rythm Modules. versatile basspedal unit, self-contained with unique effects. kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters, $25 /$ post paid. HURRY. D.E.W. Lid., 254 Ringwood Road. Ferndown, Dorset.

TOP TRANSISTORS

High Stability 5\% $\frac{1}{2}$ watt Resistors 12/6 for 50.10Ω to $1 \mathrm{M} \Omega$ your selection. $\begin{array}{llll}\text { ACY22 } & 1 / 9 & \text { OC45 } & 1 / 9 \\ \text { ZTX300 } & 1 / 9\end{array}$ $\begin{array}{lllll}\mathrm{BC} 108 & 1 / 9 & \text { OC71 } & 1 / 9 & 2 N 2926 \\ 1 / 9\end{array}$ $\begin{array}{lllll}\text { BFY52 } & 1 / 9 \quad \text { OC202 } & 1 / 9 \quad 2 N 3708 & 1 / 9\end{array}$ All the above types are available at 16 for £1. Brand New. Individually Tested. MONEY BACK GUARANTEE. P.\&P. i/-

J. M. KING.

17 Buckridge, Portpool Lane, E.C. 1

SERVICE MANUALS for Pre 1958 H.M.V. and E.M.I. MODELS. Radio and Record Player Manuals 5/-each. Television Manuals $7 / 6$ each. Send C.W.O. stating model required. Also limited range of components and spares. Send details of your requireand spares. Send detanls of your require-
ments. R.D.L. Ltd.. Chilton Works. Garden ments. R.D.I. Ltd.. Chilt
Road, Richmond, Surrey.

Be well-equipped

You need not worry about the painful and lingering minor burns that occur from time to time in leisure pursuits if you keep BURNEZE close to hand. This unique new scientific aerosol cools and anaesthetizes BURNEZE takes the heat out of a burn in just 8 seconds, then controls the blistering and pain that steal skill from nimble fingers. Be well-equipped - buy BURNEZE, from chemists.

Potter \& Clarke Lotd Croydon CR9 3LP

BUILD IT in a DEWBOX quality cabinet. zin.x 2fin. x any length. D.E.W. Ltd., Ringwood Ruad, FERNDOWN. Dorset. S.A.E. for leaflet. Write now-Right now.

BOOKS \& PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes
1155 set Circuit and Notes
H.R.O. Technical Instruction H.R.O. Technical instructions 38 set Technical instructions 88 set Technical Instructions BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr 18 set Circuit and Notes BC. 1000 (31 set) Circult and Notes R 107 Circuit and Noit and Notes AR. 88 D instruction Manua 62 set Circuit and Notes 62 set Circuit and Notes $\quad . \quad, \quad 18 / 6 \mathrm{p} / \mathrm{p} 9 \mathrm{~d}$ C. $1224 /$ Diagram 5/6 each post free, R.1116/A, . 214 A/A, R. 1355, R.F. 24,25 and 26, A. 1134 (EM.P), BC 624, BC. 312, BC. 342 , BC. $348 \mathrm{~J}, \mathrm{BC}$. (E.M.P.), BC. 624,22 set.

52 set Sender and Receiver circuits 8/: post free
Colour code indicator $2 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
S.A.E. with all enquiries please.

Postage rates apply to U.K. only
Mail order only to.
INSTRUCTIONAL. HANDBOOK SUPPLIES
DEPT, PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

TAPE RECORDING YEAR BOOK

COMPLETELY NEW NINTH EDITION WITH COMPREHENSIVE CATALOGUE SECTION AND ARTICLES BY EXPERTS PRICE 10/6d. from
7 AlVERSTONE AVENUE, EAST BARNET, HERTS.

FOR SALE

MORSE MADE !!
 1.

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month. (Normal progress to be expected.)

Using scientifically prepared 3 -speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's easy as learning For details and course C. 0 D 18 , ring st.
For detaila and course C.O.D. ring, s.t.d. 01-660 2896 gend 8d stamp for explanatory booklet to:

SEEN MY CAT: 5,000 items. Mechanical \& Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PW, NEW MILLS, Stockport.

CASH PAID for New Valves. Payment by return. WILLOW VALE, ELECTRONICS. 4 The Broadway, Hanwell, London, W.7. 01-567/5400-2971.

WANTED NEW VALVES ONLY

 Musi be new and boxed Payment by return WILLIAM CARVIS LTD. 103 North Street, Leeds 7WE BUY New Valves and Transistors. State price: A.D.A. MANUFACTURING CO.. 116 Alfreton Road, Nottingham.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILL: radiograms, transistors, etc. STAN WILL-
ETIS, 37 High Sireet, West Bromwich, Staffs. Tel.: WES 0186.

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

WANTED
(continued)

SERVICE SHEETS AND MANUALS PURCHASED. Highest prices paid. Sultan Radio, 29 Church Road. Tunbridge Wells, Kent. Phune T.W. 22093.

ELECTRICAL

BEST EVER 200/240 VOLS "MAINS" SUPPLY FROM 12 VOLT CAR BATTERY Exclusive World Scoop Purchase. The fabulous Mk. 20 American Heavy Daty Dynamotor Unit with a Massive 2g0 watt outvolt periformance the most brilinnt $200 / 240$ for Television, Drill all time. Marvelion Lighting, AC Fluores, Power Toals. Main $200 / 240$ volt vuorescent Lighting and al noent made Universki AC/DC mains equipment. Made at tremersdous cost for U.S.A Govt.. by Deleo-Remy. This magnificent machine is unobtainable elsewhere Grand New and Fully Tested, only f4.19.6, plus $10 / 6$ postage. C.O.D. With pleasure. s.a.e. for interesting illus. detalls.

Dept. PW STANFOKD ELECTRONICS. Kear Iberby Road, North Promenade. Blackpool, Laneashire.

SERVICE SHEETS

SERVICE SHEETS (1925-1970) for Televisions, Radios, Transistors, Tape Recorders Record. Players, etc. by return post, with frec Fault-Finding Guide. Prices from 1/Over 8,000 models available. Catalogte $2 / 6$ Please send S.A.E. with all orders/enquiries. Hamilton Radio. 54 London Road, Bexhill, Sussex.

SERVICE SHEETS. Radio, TV etc. 8,000 models. I.ist $2 /-$ S.A.F. enquirien. TEL. RAY. II Maudland Bank, Preston.

RADIO, TELEVISION over 3,000 models, JOHN GILBERT TEIFVISION, Ib Shep herds Bush Rd.. london W.6. SHE 8441,

LARGE SUPPLIER OF SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS, CAR RADIOS)
Only 10/- each, plus large S,A.E.
(Uncrossed P:O. s please, original returned if service sheets not available.)

C. CARANNA

71 BEAUFORT PARK LONDON, N.W. 11
We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault:tracing chart or TV list on request with order.
Mail order only.

SERVICE SHEETS

(continued)

TRADER SERVIICE SHEETS

5/- each plus postage

We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.s returned if sheets not available.

OAKFIELD ENTERPRISES LIMITED

30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	RadiolrV

LOW PRICE, HIGH QUALITY SPEAKER SYSTEMS

All cabinets are new and carelully designed acoustically with speakers mounted on $\frac{1}{2} i n$. chiphoard baffles. All speakers are ex-TV high quality with hiflux magnots carefully matched and tested.

RECEIVERS \& COMPONENTS

 (continued)TRANSISTOR METRONOME ready built on printed circuit board with control for variable printed circuit board with control for variable peate and battery, but will drive with lourpiece and battery, but will dive any loudspeaker. Fuly tested and guaranteed. Com-
pare our price $32 / \mathrm{m}^{2}+2 / 6$ P.P. BRAND NEW pare our price
HEADPHONES complete with heand NEW
handmike Outy handmixe. Our best seller. only $15 /-+{ }^{5}-5$ for $3 /-+1 /-$ P.P., 6 for $6,-$ post free, 12 for 10/-post free. NEW ARP12 VALVES. 6 for 6/- post free, 12 for 10%-post free

MEPPEN-WALTER MAIL ORDER,
12 Gledhow Park View. Leeds LS: $4 J Q$.
COMPLETE RANGE of Amateur Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Lid.: 70 Priory Road, Liverpuol 4. Tel. 051-263-7829.

TO HELP THE HOME CONSTRUCTOR, Heathkit now make available our surpius Resistors, Capacitors, etc. at hargain prices. Send for lists. F. Moyle, Daystrom Led., Gloucester.

AUDIOSCAN-HI-FI loudspeaker systems for the home constructor, cahinet kits, new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding and all necessary components. Free speaker fabric samples on request. Send 9d in stamps to: AUDIOSCAN, Dept. P.W., 4 Princes Square, Harrogate, Yorks.

COMMUNICATIONS RECEIVERS: ExGovt. bargains in the $£ 10$ to $£ 20$ range, including: R209, PCR2, CR300. B40, B41, Murphy HF/MF, and others. Write or phone for details. P. R. GOLLEDGE, G3EDW, Glen Tor, Turrington. Devon. 108-052 2411.

A CORNUCOPIA OF COMPONENTS: Scarce valve, selected T.V. components. Speakers, Cabinets. Computer panels-long leads NOT printed circuits. Transistors, resistors-new and recovered. State requirements. S.A.E. (F.S.) for details. MAII. MART. 6 Eastbourne Road, Pevensey Bay, Sussex.

SPEAKERS: Elac Heavy duty Ceramic Magnets 11,000 line, 10 in . round, $10 \times 6 \mathrm{in}$, 3 ohm or 15 ohm , 48/6. P. \&P. 3/6. 8 in . round 15, 42/6. P. \& P. 3/6.
 1/6. E.M.I. $13 \frac{1}{2} \times 8$ in. fitted two $2^{\frac{1}{1} i n}$. tweeters. 150 hm 77/6. P. \& P. 4/6. E.M.S. $13 \frac{3}{3} \times 8 i n$. (15 ohm) Hi-Fi quality £5.19.6. P. \& P. $4 / 6$. E.M.I. Wooters, $6 \frac{1}{2} \times 6 \frac{1}{2} i n$. square, 8 ohm, $59 / 6$. P. \& P.
$4 / 6$. E,M.I. Crossover, $16 / 6$. P. \& P. 1/. EAGLE 4/6. EMM.I. Crossover, $16 / 6$. P. \& P. 1/-. EAGLE Bakers 12 in, 25 watt 15 ohm £6.6.0, P. \& P. $3 / 6$.

VYNAIR Widths from 40 to 54in., 15/-. yd. off roll. P. \& P. $1 / 9$. $\frac{1}{2}$ yard, $8 / \mathrm{m}$, P. \& P. $1 / 9$. Send $1 / \mathrm{m}$ stamps for samples.

SPEAKER MATCHING TRANSFORMERS. 3, 7, 15 ohms, 8 watt, 13/6. P. \& P. $1 / 6$,

BROADWAY ELECTRONICS
(Closed (ay)

RECEIVERS \& COMPONENTS

(continued)

EX COMPUTERPRINTED CIRCUIT
PANELS 2 in $\times 4$ in packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards $10 /=$ P. \& P. 1/6. With a guaranteed minimum of 35 transistors. Transistor data included.

SPECIAL BARGAIN PACK. 25 boards for $\mathbf{4 1}$. P. \& P. 3/6. With a guaranteed minimum of 85 transistors. Transistor data included.

PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times O C 28$) $10 /-$. P. \& P. $1 / 6 \mathrm{~d}$.

9 OA5, 3 OAl0, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET 872, 3 GET 872B, I GET 875. All long leaded on panels $13^{\prime \prime} \times 4^{\prime \prime}$.
4 for 20/-. P. \& P. 5/-.

EX COMPUTER "MEMORY" CORE STORE PLANES

160 BITS \&1 P. \& P. 2/~
4,000 BITS $£ 4$ P. \& P. 4/-
10,000 BITS E8 P. \& P. 8/-

250
 MIXED RESISTORS
 $\frac{1}{4} \& \frac{1}{2}$ watt 12/6 P. \& P. 1/6

D101E EXIERPT

10 AMP 150 PIV 4 for $10 /-$
20 AMP 150 PIV 4 for $\& 1$
35 AMP 150 PIV 4 for 45/- P. \& P. I/
EXTRACTOR/BLOWER
FANS (Papst)
100 c.f.m. $4 \frac{1^{\prime \prime}}{2} \times 4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime}$
2800 r.p.m.
50/- ea. P. \& P. 5/-

RELAY OFFER

Single pole changeover silver contacts $2^{\prime \prime} \times 6^{\prime \prime} \times 7^{\prime \prime} 2.5 \mathrm{~K} \Omega$ coil operates on 25 to 50 v \& for 10/- P. \& P. 1/6
KEYTRONICS

52 EARLS COURTROAD LONDON W8
WAREHOUSE \& DISPATCH 01 4788499
LT/STEP DOWN TRANSFORMER PRIO,

200, 215, 230.245v
SEC 1.
0. 10.25 v 4 A

SEC 2.
0. 115 v 2 A

30/-P. \& P. 6/-Quantity available

I2V 4A POWER SUPPLY

Extremely well made by Frako GMBH in West Germany with constant voltage mains transformer, tapped input from 115 to 240 V full wave rectification and capacitor smoothing. Size $9 \times 6 \times 5$. Weight lllbs. These units are brand new unused and fully guaranteed. Makers price believed to be around $\mathbf{f 8 0}$.

OUR PRICE $\mathbf{£ 9 . 1 0 . 0}{ }^{\text {carr }}$

$150 \begin{aligned} & \text { HIGH STABS } \frac{1}{2}, \frac{1}{2} \text { and I Watt } \\ & 5 \% \text { and Better } 12 / 6 d . P \text { \& } P \text {. } 1 / 6\end{aligned}$
LARGE CAPACITY
ELECTROLYTICS
1500 MFd 150 v
4000 MFd 72v
5000 MFd 36v
16000 MFd $12 v$
7/6 each
P. \& P. $1 / 6 \mathrm{~d}$.
\& P. 10/-

EXTENSION

$19 / 6 \mathrm{Ea} .{ }^{\mathrm{P} . \mathrm{s}_{5 / 4} \mathrm{P} .}$
$35 /=$ for \& 2 P. $7 /-$
These phones are extensions and do not contain bells.

MAILING ADDRESS

> JEF ELECTRONICS
> New Full Specitication Devices Integrated Circuits complete with data: GE PA230 Audio Preamplifier 18/6d GE PA234 1W Audio Amplifier 17/6d GE PA237 2W Audio Amplifier 32/6d Plessey SI.402A Preamp \& 2W Amp 42/MEL 11 Photo Datlington Amp 9/6d High quality low cost transistor GE 2NS172 NPN 200mW 1/9d: ME 0412 PNP 200mW 3/9d: TI 2N4059 PNP 250 mW 3/6d: MUL BFX86 NPN 800 mW 6/-: MUL BDI24 NPN 15 W 12/-: S 2 N 3055 NPN 115 W 14/6d. Triacs for full wave power control: RCA 406698 A 400 V 24/:- RCA 40583 Trigger Diode 5/3d.
> Plastic rectifiers for power supplies: IN 4820 1.5A $400 \mathrm{~V} . \mathrm{si}$ Rectifier 2/6d: W005 1A 50 V full wave bridge $\mathrm{Si} 7 / 6 \mathrm{~d}$; PD40 2A 400 V full wave bridge $\mathrm{Si} 15 /-$. C.W.O. P. \& P. $1 /-$ per order. York House. 12 York Drive. Grappenhall, Warrington, Lancs. Mail order only

VALVE BARGAINS

Any 5, 9/-: $10,14 /-: 100$, e5 10 , P\&P I/6 from the following: ECC82. ECL80, EF85. EF183. EBF89 EB91. E786. PCC84. PCC89. PCF80 PCF86. PCL82. PCL 83. PCL84. PL36 PL81. P733, P781. P782. P7800.

AERIAL BOOSTERS 59/-

Three types of High Gain Transistorised pre-amplifiers all at the same price UHF 625 Type L45. Tunable over the complete UHF Stations VHF 405 Type L12 with Separate Tuning for Band 1 and Band 2 . Pleaes state channel number
FM LHF RADIO PRE-AMPLIFIER SAE for Full Detail. All complete with battery and leads. $;$ day money back guarantee if not satisfied
VELCO ELECTRONICS, 62 BRIDGE ST., RAMSBOTTOM, BURY, LANCS.

RECEIVERS \& COMPONENTS (continued)

Free and Illustrated Lists of all types of tronic equipment, components. and gadgets at lowest prices from:

ALBION ELECTRONICS SUPPLIES, D/3, 16 Albion Road. Birchington, Kent.

EMSAC FOR ANTENNA SYSTEMS AND CONVERTERS. Please send s.a.e. for details of 2 metre converters, antennas and transmatches for receiving and transmitting. ELECTRONIC \& MECHANICAL SUBASSEMBLY CO. LTD.. Highfield House, West Kingedown. Kent. Tel. W.K. 2344.

150 NEW ASSORTED Capacitors, Resistors. Silvered Mica. Ceramic. etc, Carbon, Hystab, Vitreous. $\frac{1}{4}-20$ wat1. $15 /-$ Post Free. WHITSAM ELECTRICAI.. 33 Drayton Green Road, West Eatiny. W. 13.

BRAND NEW ELECTROLYTICS, $15 / 16$ volt $0.5,1,2,5,8,10,20,30,40,50$. $100 \mathrm{mfds} .8 \cdot 5 \mathrm{~d} .200 \mathrm{mfds} .10 \mathrm{~d}$, postage 1 s . The C.R. Supply Co.. 127 Chesterfield Ruad, Sheffield 8.

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plasticcoated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.

Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit. All edges are polished.

LIST OF PRICES AND SIZES which are made to fit Standard Alloy Chassis

Width		Alloy Chassis				72" Height	
	Depth	$4^{*} \mathrm{He}$	ght.	$6^{*} \mathrm{He}$			
		\& 8.		\pm s.			
$66^{\prime \prime}$	$3{ }^{\text {\% }}$	12	6	15	0	18	0
$6{ }^{\prime \prime}$	47\%	13	6	18	0	10	0
$81^{\prime \prime}$	$3{ }^{\frac{7}{6}}$	15	0	10	0	11	0
$81^{\prime \prime}$	$68^{\prime \prime}$	11	0	16	6	111	3
$10{ }^{\prime \prime}$	7\%**	18	6	115	6	118	9
124"	3 \% ${ }^{\text {\% }}$	11	0	16	6	111	0
12:"	$5{ }^{\text {¢ }}$ "	18	0	114	0	117	6
124**	$8{ }^{\text {\% }}$	116	0	23	0	27	3
14***	$3{ }^{7 \%}$	15	0	111	6	114	0
144**	$9{ }^{\text {¢ }}$ " ${ }^{\prime \prime}$	23	0	215	9	218	6
16+"	$6{ }_{6}{ }^{\text {n }}$	118	6	26	3	211	6
164"	10? ${ }^{\text {¹ }}$	210	0	35	-	311	O

Cases-Post 4s. 6d. per order. Discounts available on quantities.

CHASSIS in Aluminium, Standard Sizes, with Gusset Plates
Sizes to fit Cases. All $2 \frac{1}{2}^{\prime \prime}$ Walls

Chassis-Post 3s. Od. per order. Discounts available on quantities.
E. R. NICHOLLS

Manufacturer of Electronic Instrument Cases 46 LOWFIELD ROAD STOCKPORT - CHESHIRE

Tel: 061-480 2179

AERIALS

BAKER AND BAINES

BBC dipole 30/m. H $42 /-3$ ele $39 /-$ ITA 3 ele $26^{\circ}, 5$ ele $34 /-.8$ ele $47 / 5$, 11 ele $57 / 6$. ITA doubles 8 ele 112,11 ele $140 / \% 13$ ele
 $52,-\mathrm{H}+5$
Special
$\mathrm{D}+5$
with loft pole and fixings
Loft Special D+5 with loft pole and fixings $37 /-$ CHF Aerlials BBC-IMA 14
$54,-22$ ele $63 /-$. Double 22 ele $142 /-$. COAX iow loss at $1 / 3$ and $2 / 3$. Co-Ax plugs $1 / 4$.
Diplexers Triplexers-Matched UHF/VHF Diolexers. UHF/VHF Preamps.
Poles. Lashings, Clamps. Couplers, etc. Postage paid on all aerials. Extra on accessories.

Please state channels when ordering.
11 Dale Cres. Tupton, Chesterfield.

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced Level in the GCE and passed in one subject (or have obtained a good ONC or OND in Engineering) a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation, Statistics, Economics and Law, Electronics, Control, Telecommunications, Power and Machines. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities.

Accommodation will be arranged by the College if desired.
Enquiries about the course starting in September 1970 should be made to :-
E. JONES, B.Sc., Ph.D., C.Eng., M.I.E.E.

Head of Department of Electrical Engineering
Norwich City College
Ipswich Road, Norwich, Norfolk. NOR 67 D.

BECOME "Technically yualitied" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B.. City and Guilds. and maintenance. T.I.E.B. City and Guilds. etc.: highly informative $20-p a g e ~ G u i d e-~$
tree. CHAMBERS COLLEGE (Dept. 857 K), tree. CHAMBERS COLLEGE
148 Holborn. London. F.C. 1.

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee' terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio. TV. automation. etc., send for 132 -page Handbook-FREE. B.I.E.T. (Dept. 168 K), Aldermaston Court, Aldermaston, Berks.

RADIO OFFICER training courses. Write: Principal. Newport and Monmouthshire College of Technolegy, Newport, Mon.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio. TV and Electronics. Expert tuition for City \& Guilds (Telecoms Techn's Cert. and Radio Amateurs') R.T.E.B.. etc, Many non-exam courses incl. Closed circuit TV. Numerical control \& Computers. Also self-build kit courses --valve and transistor.
Write for FREE prospectus ahd find out how ICS can help you in youlr career. ICS, DEPT. 54I INTERTEXT HOUSE, STEWARTS ROAD, LONDON. SW8

RADIO OFFICERS see the world! Seagoing and shore appointments. Traince vacancies during 1970 . Grants available. Day and Boarding students. Stamp for prospectus, Wireless College, Colwyn Bay.

SITUATIONS VACANT

ENGINEERS, A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng.. A.M.E.R.E. A.M.S.E. (Mech. \& Elec.). City \& Guids, A.M.I.M.I., A.I.O.B., and City \& Guids, A.M.I.M.1.. A.I.O.B:, and Granches of Fidineering-Mech.. Elec.. branches of Fngineering-Mech. Elec.
Auto. Auto. Electronics. Radio, Computers,
Draughts.. Building, etc. For full derails Draughts. Building, etc. For full deails
write for FREE 132 page guide: BRITISH write for FREE 132 page yuide: BRITISH
INSTITUTE OF ENGINEERING TECHINSTITUTE OF ENGINEERING TECHCourt, Aldermaston. Berks.

JUNIOR ELECTRONICS TECHNICIAN required for construction and repair of electronic instruments and maintenance of a Linear Accelerator. G.C.E. ${ }^{\circ}{ }^{*} \cdot$ level in Physic, and Maths required: "A" levels or O.N.C an advantage. Day release for further study is possibie. Salary aceording to ase and experience. Apply with full to age and experience. Apply with full Council Cyclotron Unit. Hammersmith Hospicat, London, W.12.

SERVICE ENGINEER for repairing Audio Equipment required by Dixons Photographic Lid., to be employed at North Acton: If interested. please contact P. Rowley for more details, either by telephone ($01-965$ 0411) Or by letter to Camera House, 95 Victoria Road. London. N.W. 10.

TV and Radio, A.M.I.E.R.E., City \& Guilds, R,T.E.B. Certs., etc on 'Satisfac tion or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all. branches of Radio, TV. Electronics, etc. Write for 132 page Handbook tronics, etc. Write for 132 page Handrook INSTITUTE OF ENGINEERING TECHNOLOGY (Dept 137K), Aldermaston Court, Aldermaston, Berks.

Radio
 Operators

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1970 and in subsequent years
Specialist training courses lasting approxi mately nine months, according to the trainee's progress. are held at intervals Applications are now invited for the course
starting in September 1970.
During training a salary will be Daid on the following scale:-

Free accommodation
the Training School.
After successful completion of the course,
operators will be paid on the Grade 1 scale:

tors will be paid on the Grade 1 sca	
Age 21	2
22	1065
23	1025
23	1085
n	\cdots

23
25
(highest
then by six annual tncreases to a "maximum of $£ 1.650$ per annum.
Excellent conditions and good prospects of promotion. Opportunities for service ebroad, Applicants must normally be under 35 years of age at itart of training course and must have at least two years operating apperience. Preference given to those Interviews will be arranged throughout 1970.

Application forms and further particulars Appi-
nom:

RECRUITMENT OFFICER,

Government Communications
Headquarters,
Oakley, Priors Road,
CHELTENHAM, Glos.
GL52 5AJ
Tel: No. Cheltenham 21491 Ext 2270

Est. 1943 JOHNSONS Tel: 24864

New! CV2-a unique triple-purpose VHF kit for the Amateur enthusiast. Integrated converter, receiver, and tuner-feeder. Fantastic single transistor performance / Comprehensive kit of high grade parts with three coils covering $80-178 \mathrm{MHz}$, 9 v battery, etc., together with simplified diagrams and instructions. Price complete, $£ 4$, post, packing and insurance paid, direct from makers. S.A.E. for literature.

JOHNSON'S (RADIO)

St. Martin's Gate, Worcester

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept D258, Aldermaston

Court, Reading RG7 4PF.

Address

HENRY'S RADIO Fully IIIUstroted CATALOGUES

COMPREHENSIVE CLEAR CONCISE CATALOGUES A. 350 pages fully detailed and illustrated with more than 6,000 stock
items. Everything for amateur a'id professional use. Complete with 5 vouchers. Io/-value, for use with purchases. New th impression now ready.
ORDER AS CATALOGUE. A. PRICE $7 / 6$ pp. 2/-
B. New Audio and high fidelity catalogue. 120 pages con- WHY NOT training ideas and equipment for every application. Special SEND low prices for all leading makes. Plus $12 / 6$ extra discount AWAY voucher. Over 40 recommended Stereo Systems. TODAY
ORDERASCATALOGUE B . PRICE 5/-pD. I/-.

ALITY 4 TRACK TAPE RECORDER DECK, you need a MARTIN RECORDAKIT. This comprises a special high quality 6 valve amplifier and preamplifier which comes to you assembled on its printed circuit board-in fact everything for making a superb Tape Recorder, You need no experience or technical skill! to bring this about. THE INSTRUCTIONS MANUAL MAKES BUILDING EASY, AND SUCCESS IS ASSURED. Kit comprises Deck, Amplifier, Fin. 1200 ft tape, and spare spool.
ASK FOR BROCHURE 6: TODAYS VALUE £60.
PRICE 39 gins. PP. 22/6. NOTHING ELSE TO BUY.

MONO STEREO UNIT EQUIP MINT
Mono or Stereo Audio equipment devel-
oped from Dinsdale Mk. IL-each unit or system will compare favourably with
other professional equipment selling at much professional
much higher prices.
COMPLETE SYSTEMS AND MIXERS from fill 126 to $£ 38 \quad 176$
(all units available separately)
THE FINEST VALUE IN LOW COST HIGH FIDELITY - CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE YOURSELF POUNDS. 7,12 and 25
WATT AMPLIFIERS, STEREO AND WATT AMPLIFIERS, STEREO AND
MONO PREAMPLIFIER AND
MODULES

21 TODAY!
HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED - A CATALOGUE IS A MUST!

HI-FI equipment to suit ETZRYPOKXI

BUILD THIS VHF FM TUNER
5 MULLARDTRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION. MONO \& STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it-VHF FM gives the REAL sound. All parts sold separately. PARTS TOTAL COST £6 196 DECODER £5 196 ASK FOR BROCHURE No. 3 (FOR STEREO)

HENELEC 5-5 STEREO AMPLIFIER

Excellent low priced British designed Stereo Amplifier for use with Record Decks. Tuners. 16 transistor mains operated. Output $5+5$ wats for 8-15 ohm speakers. Black, silver and wood finish. size 13 in $\times 3$ in $\times 6$ in. PRICE 13100 pp. $7 / 6$
Gerard 2025 TC or 3000 LM
Gerard 2025 or $\mathbf{C l}$. Cover. Two 10 watt speakers with tweeters in polished cabinets. Size $18^{\prime \prime} \times \|^{\prime \prime}$ Usual price $£ 50.0 .0$. OUR PRICE $£ 39100 \mathrm{pp} .20 / \mathrm{m}$. ASK FOR BROCHURE 13

PA25
(25 watts RMS)

PA 50
(50 wat
(50 watts RMS)

SILICON POWER AMPLIFIERS

WITH DIRECT COUPLED, SYMMETRICAL OUTPUT

* HENELEC 'PA25' POWER AMPLIFIER

This silicon design from Henry's Radio uses complementary transistors in the symmetrical output stage direct coupled to a loudspeaker of 8 ohms impedance or higher. Power output is 25 watts RMS with an 8 ohms load or
12 watts for 15 ohms, over a frequency range of $15 \mathrm{~Hz}-25 \mathrm{kHz} 3 \mathrm{~dB}$. Cool running is assured by the use of generously dimensioned black anodised running is assured by the use of generously dimensioned black anodised
heatsinks. Input 700 mV | 5 K . 0 hm.
Price $£ 7 \mathrm{I} 00$

* HENELEC 'PA50' POWER AMPLIFIER

Basically similar to the 'PA25' the 'PA50' will deliver 50 watts RMS to a 3-4 ohm load. Extra power is handled by complementary triplet circuits using the latest PNP and NPN silicon power transistors. As a result of
extra heatsinking the 'PA50' runs as cool as the 'P A25'. Price 69100

* HENELEC MU442 POWER SUPPLY

Designed to run one or two 'PA25's' or one 'P A50' the MU422 connects to the amplifiers by means of plugin harnesses. No soldering is required to connect UP the system. Audio input plug and speaker plug go to the panel
of the MU422.

* SEND FOR FREE BROCHURES No.: 24/25

Transistors, integrated circuits, test equipment, Garrard and Golding transistors, integrated circuits, test equipment, Gerard and Golding of this magazine,
FIEF 16 Page Testgear Catalogue Ref 'T' 16 Page Testgear Catalogue Ref 'T' Semiconductor Price List Ref. 36.

ELECTRONIC ORGANS

CALL IN and SEE THE NEW MODELS!
K TORISED ALL BRITISH TRANSISKITS OR READY bUILT
t TEAK VENEERED CABINETS FOR ALL MODELS

- 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE
* KITS AVAILABLE in sections as
th HP and CREDIT SALE FACILITIES
CREE 16 page organ brochure covering organs in
16 page organ brochure covering organs
kit form and ready built--write or phone kit form and ready built--write or phone
to ORGAN DEPT. Ask for Peter Elvins.

[^0]: CIPC Magazines Limited 1969. Copyright in all drawings, photographs and articles published In "Practical Wireless" is fully protected, and reproduction or imitations in whole or in part Limited 1969, Copyright in all drawings, photographs and arices "Practical Wireless" to ensure that the advice and data given to readers are reliable whole or in part are expressly forbidden. All reasonable precautions are taken by Practical Wireless to ens ent are tho We cannot, however, guarantee it, and we cannot accept legal responsibility tor it. Prices are those current as we go to press, Alo Advertisement Manager, Fleetway House should be addressed to Fleetway House, Farringdon Street, London, E.C.4, Adrdress torrespond Magazines Litd., Back Numbers Department, Carlfon House, Gt. Queen Street London W.C.2.

[^1]: Mon.-Fri. 9.00 to 5.30 p.m. 8 ats. 9.00 to 1 p.m. Complete list of modern and obsolete valves, resistors, condensers, transformers, etc., with terms of business 10 d . Please enquire for any item not listed with S.A.E. Please note that no enquiries can be answered unless a s.A.E. is enclosed for reply. Minimum export order \&2I.

[^2]: -continued on page 37

[^3]:

 ## THERMOSTAT

 Continuously variable $30^{\circ}-90^{\circ} \mathrm{C}$. Has sensor bulb connected by 33in. of flexible tubing. On operation is amp 250 volt switch is opened and in addition a plunger moves
 through approx. $\frac{1}{2}$ in. This through approx. $\frac{1}{2}$ in. This
 could be used to open valve on could be used to open valve on
 ventilator etc. $29 / 6$ plus $4 / 6$ ventilator
 p. \& ins.

 ## RING MAIN JUNCTION BOXES

 Made by Rock. This won Designs Award for making quick and neat junctions in 9.029 twin and earthed cable as used for ring main circuits.Our price $1 / 6$ each, $15 /=$ per dozen.

[^4]: To Peak Sound, Saint Judes Road, Englefield Green, Egham, Surrey

 - Details of Englefield systems, please and1 NameI
 Address1
 Write your stockist's name and address in margin below and cut out with coupon if necessary

