

ADCOLA

THE RELIABLE SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET

ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4

SEMICONDUCTORS

BRAND NEW AND FULLY GUARANTEED

1N914	1/6	2N 2904	8/-	ACY18	5/-	BL124	$121-$	MJ491	29/8
1N916	1/6	2N2904A	81-	ACY19	5/-	BF'115	$4 / 6$	MPF102	$8 / 6$
18010	$3 /-$	2N2905	$81-$	ACY20	4/-	BF'117	$10 / 6$	MPF103	$7 / 6$
13020	3/6	2N 2905 A	81 -	ACY21	51 -	BF167	6/6	MPF104	$7 / 6$
18021	4/-	2N2906	$81-$	ACY22	4/-	BF173	$7 / 6$	MPF105	$8 /$
18025	$5 /-$	2N2906A	81-	ACY28	4/-	BF180	$91-$	NKT0013	8/6
18113	3/-	2N2907	8/-	AD140	8/-	BF181	8/6	N KT216	10/6
18120	$2 / 6$	2N2907A	$81-$	AD149	8/-	BF184	$7 / 6$	NKT217	8/6
18121	2/6	2N2923	$51-$	AD161	7/6	BF194	6/6	NKT261	$4 / 6$
18130	216	2N2924	5/-	AD162	$7 / 6$	BFX12	5/6	NKT262	$4 /$
18131	$2 / 6$	2N2925	5/6	AF114	5/-	BFX 13	5/6	NKT264	
13132	$2 / 6$	2N2926		AF116	51-	BFX29	12/6	NKT271	$4 / 8$
1844	21-	- Green	3/-	AF117	5/-	BFX 30	8/6	NKT272	$4 / 6$
2G301	4/-	", Yellow	$2 / 9$	AF118	12/6	BF'X35	$19 / 6$	NKT274	$4 / 6$
2G302	4/-	, Orange	$2 / 6$	AF124	5/-	BFX43	$8 / 6$	NKT275	$4 / 6$
2 C 303	$4 /-$	2N3011	5/-	AF127	$5 /-$	BFX44	$8 / 6$	N K T281	
2G371	$3 /-$	2N3053	$6 / 6$	AFI39	$7 / 6$	BFY 84	$81-$	NK T403	$15 /-$
2N69tj	$5 /-$	$2 \mathrm{N3054}$	12/6	AF181	$8 / 6$	$\mathrm{BF}^{\text {² }}$ 85	101-	NKT404	12/6
2N697	$51-$	2N3055	19/6	AF186	11/-	BFX86	$8 /-$	NKT40	$15 /$
2N698	$4 / 6$	2N3702	4/-	AF239	7/6	BFX888	101-	NKT613	8/8
2N706	$2 / 6$	2N3703	$4 / 6$	AFZ12	$5 / 8$	BFX88	$5 /-$	NKT674	6/-
2N706A	2/6	2N3704	$5 / 8$	AsY 26	5/6	BFY10	4/6	N KT677	$5 /$
25708	$4 /-$	2N3705	$4 / 8$	ASY27	8/8	BFY 11	4/6	NKT713	8
2N929	$5 / 6$	2 N 3708	4/6	ASY 28	5/6	BFY 17	$4 / 6$ $4 / 6$	NKT7\%3	516
2N930 2N1090	6/6 $8 / 6$	2N3707 2N 3708	$4 /-$	As ${ }^{\text {P29 }}$	4/6	BFY18 BFY 19	$4 / 6$ $4 / 6$	NKT781	6/-
2N1091	$9 / 6$	2N3709	4/-	ARZ21	4/6	BFY41	$101-$	NKT2032	
2N1131	$9 / 6$	2N3710	$4 / 6$	BAX13	$2 / 6$	BFY43	13/6		
2N1132	9/6	2N3711	41	BAX 16	$2 / 9$	BFY50	4/6		15/6
2F1302	4/6	2N3819	$9 /-$	BAY31	1/6	BFY51	$4 / 8$		
2N1303	$4 / 6$	2N3820	23/6	BAY38	3/6	BFY5 2	4/6		
2N1304	$5 / 6$	2N3823	17/6	BC107	$3 / 6$	BFY76	9/6	NKT8011	18/6
2N1305	$5 / 6$	2N4058	6/6	BC108	$3 / 6$	BFY77	11/8	NKT8013	22/6
2N1306	$8 / 8$	2N4059	$51-$	BC109	$3 / 6$	BFY90	12/6	OA5	22/6
2N1307	$8 / 6$	2N4060	$5 /-$	BC113	8/6	B8X 19	5/6	OA9	$2 /-$
2N1308 2N1309	$8 /-$ $8 /-$	2N 4061 2 N 4062	$5 /-$ $8 / 6$	${ }^{\text {BCIL }}$	$12 / 6$	B8X20	$5 / 6$ $8 /-$	OA70	1/6
2N1309	$8 / 6$ $5 / 6$	${ }_{2}^{2 N 4062}$	$6 / 6$ $9 / 6$	${ }_{\text {BC12 }}$	8/8	BSX21	10/6	OA73	81-
2N1613	$8 / 6$	2N4255	$8 / 6$	BC147	13/6-	BSX 27	10/8	OA79	$1 / 9$
2N1711	6/6	2×1284	$3 / 6$		-	BSX 28	61-	\bigcirc	
2N1889	81.	2 N 4285	3/6	${ }^{\text {BCL48 }}$	6	B8X29	10/6	OA	
2N1893	$81 /$	2N4286	$3 / 6$			BSY26	4/-		1/6
2N2102	13/6	2N 4287	$3 / 6$			B8Y27	4/-	OA91	$1 / 6$
2 N 2147	$17 / 8$	2N4288	$3 / 6$	${ }^{\text {BCl6 }}$	3/6	B8Y28	$41-$	OA95	$1 / 8$
2N2148	$12 / 6$	2N4289	$5 /-$	${ }_{\text {BC1 }}{ }^{\text {BC12 }}$	$3 / 8$	B8Y29	4/6	OA200	$2 /-$
2玉2160	14/6	2N4291	3/6	BC212L	${ }^{5 / 8}$	BSY 38	4/6	OA202	$2 /-$
2さ2193	5/6	2N4292	$3 / 6$	BCY30	$7 / 6$	BSY39	4/6	OC26	8/6
2N2193A	5/6	2N40361	12/6	BCY31	$4 / 6$	BSY 40	5/6	OC28	8/8
2N2194A	$5 / 6$	2N403n2	14/6	BCY32	5/6	BSY51	10/6	0 C 35	6/6
2N2217	61-	2N 4259	$5 /-$	BCY33	$5 / 6$	B8Y52	61-	0036	6/8
2N2218	$8 /-$	3N128	18/6	BCY34	$4 / 6$	BSY53	$9 /-$	$0 \mathrm{OC44}$	3/-
2 N 2219	$8 \mathrm{f}-$	AAZ13	$21-$	BCY38	$5 / 6$	B8Y54	$6 /-$	$0 \mathrm{C45}$	$2 / 6$
2N2220	5/-	AAZ15	$2 / 6$	BCY 39	6/6	BSY95A	$3 / 6$	$0 \mathrm{C71}$	2/6
2N222	5/-	AAZ17	$2 / 6$	BCY40	$7 / 6$	BY'100	4/6	$0 \mathrm{C72}$	$2 / 6$
2N2202	$5 /-$	AC107	8/6	BCY42	$51-$	BYX10	5/6	OC75	4/6
2N2,368	$6 / 6$	AC120	4/-	BCY43	6/6	BYZ10	$9 /-$	OC81	4/-
2N2369	7/6	ACl27	3/-	BCY54	7/6	BYZ11	7/6	$0 \mathrm{C83}$	4/6
2N2369A	5/-	Adi28	41 -	BCY 70	5/6	BYZ12	6/-	OC81D	3/-
2N2539	4/6	AC176	$81-$	BCY71	$9 / 6$	BYZ13	$51-$	$0 \mathrm{OC139}$	6/8
2N2540	4/6	ACl8 7	121-	BCY72	51-	MJ480	$20 / 6$	OCl 40	6/6
2N2546	11/8	AC188	121-	BD12	3/6	MJ481	27/6	OC200	$5 / 6$
2N2696	6/6	ACY17	5/-	B10]21	18/-	MJ490	22/6	0 C 201	$5 / 6$

A. MARSHALL \& SON

28 CRICKLEWOOD BROADWAY, LONDON N.W. 2 0l-452 016I/2/3 CALLERS WELCOME

TECHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.t.e.b. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW $\mathbf{S E L F}^{\text {sbuild radio courses }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

MARCONI C.R. 150/2 DOUBLE CONVERSION SHORT WAVE RECEIVERS, freq e $1 \cdot 5-22 \mathrm{Mc} / \mathrm{g}$. Features are us tollows: Fitted 'g' meter, geared tunlog with no backlash 2 xpeed motion, slide rule dial, calibrated in Mc/s, logging acaley for accuracy, $500 \mathrm{Kc/a}$
xtal callbrator, mechanical bandspread. Techaical dencription, lst IF is $1.6 \mathrm{Mc} / \mathrm{s}, 2 \mathrm{ad}$ IF 465 with xtal filter giving a paasband from 100 c.p.s. to 10,000 e.p.a., B.F.O. variable $3.0-3$ Kc/N. Rectitted IFO/p. D.F. input, suit teleprinter o/p, output 600 ohins and 3 ohms for L.S. Front end has 2 R.F. stages of amplification giving a senaitivity of $2-4 \mu \mathrm{~V}$ depending on band in use. Separate ruixer/oncllator. Znd oscillator is also yariable $5-0-5 \mathrm{Kc} / \mathrm{s}$ band apread. A separate power supply is needed to power the above set at 300 at at 100 mA and
o. 3 v 4 amps l.t. A.C./D.C. circuit connections supplied to purchasers of this very fine receiver. These \mathbf{R} X sare not new but are in quite good condition and tested on degpatch Unrepeatable offer. Price is £22.10.0 plus 30 /-carriage.
R808 EX ARMY RECEIVERS. $1-20 \mathrm{Mc} / \mathrm{s}$ in 4 tunable bands, II valve miniature auperbet 1 EF 91 R.F. stage, 2 I.F. stager at $465 \mathrm{kc} / \mathrm{m}_{\text {, }}$, variable B.F.O. Ab trimroer. internal L. 8 dition and working orcter, complete with headphoues Price 913.100 plus e1 cerrlan HEADPHONES, new ex W.D. chamols paded low impedance moving coil with magnetic microphone. These are extremely comfortable to wear and adjustable. As they are of rare type and we have limited stock we are asking $25 /-$ a pair pluas $3 / 6$ p.p. Uned and checked D.L.R. 5 headphones, balanced armature type, $18 / 6$ a pair plus $2 / 6$ p.p.

ARRIALS in new condition extenting tu llft. fully open. Whip type. Price 18/6 plus $3 / 6$ p.p. Whip aerials l2ft. collapsible type, soiled condition ex tank aerial. Price 10/- plus 3/6 p.p. Bases for above available at $5 /$ - each plus $2 / 6$ p.p.
BARGAIN PARCELS, 141 bs . it $28 /$ - plun $6 / 6$ p.p. 28/br. at $55 /-$ plus $12 / 6$ p.p. 561 bs at $90 /-$ plus 25/-carriage. Contain rea., cond., inductors, diodes, valves, tagboards, chassis, valve alueky dip pontal aervice.
COMPUTER COMPONENT BOARDS with minimum 30 transistors, aleo contain silicon/ germanium diodes, rea. cond., u.h. chokes, trim pots. Transiators are n-p-n or p-n-p or both. 10 boards for $10 /-$ plue $2 / 6$ p.p. 25 bosards for $29 / 6$ plus 4/- p.p
We have a large selection of moving coil meters at reasonable prices e.g. 1 mA 75 ohma 21 in at $10 /-\mathrm{ex}$ equiproent plus $5 \mathrm{y}^{-}$post and ins. S.A.E.
MOBILE POWER DNITS made by Pye Limited for the C. 12 tranaceiver but are quite
 rotary transformer and 300 N at 100 m usios vibratory supply, in good condition. Price $465 \mathrm{Kc} / \mathrm{s}$ quartz erystals 10 XJ . Tested. $10 /-$ each plus $1 / 6 \mathrm{p} . \mathrm{p}$
We have available sigial generators type T.F. 1446 , ("T 218 and othera at keen pricen. Pleuse send s.a.e. for tist of V.F.Os. All ordern marked Radio Dept.

A. H. THACKER

HIGH ST., CHESLYN HAY, WALSALL, STAFFS.
Radio and electrical surplus Government surplus

RECORD PLAYER suild your own hi-F Record Playor with the Serenade tully transistarised amplifier which comes complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the Istest BSR 4 Speod Sterpo Mang Rocord Changer. Advanced solid state amplilier only $4 t^{*}$ deep, 14 transistors ales 4 diodes, separate Bass ont Treble-10 watts total jower. Frequency respanse 50-15,000 c/s.

EASY TD INSTALL
O TECHNICAL KNOWLEDG NO TECHNICAL KEOURE onit $28^{\text {Gn }}$ H P terms available f9.16.0 \& 12 mon thly payments of $36 / 9$ (Total HP $£ 31.17,0)$ Send £10.13.6 today Amplifier available separately at only 17 Gns .
"TRANSCONTINENTAL"
FULLY TRANSISTORISED STEREOPHDNIC RADIOGRAM CHASSIS
Complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer-a complete radiogram at half normal price ONLY

10 Watts Total output $3,1 / 2$ 17 Transistors \& 10 diodes $4,2 \mathrm{GNS} .17 / 6$ EASILY FITTEO ND TECHNICAL KNDWLEDGE NECESSAAY H.P. available £12.1.6 dep. plus 18 monthly payments of 32/- (Total H.P, £40.17.6).

POST
THIS
COUPON
NOW

- please send me free detalis of your range Address

LEWIS radio
IÓ CHASE ṠİE, SOUTHGATE. Dep.P1168 LONDON. N.14. TELEPHONE PAL 3733/966G

COMET DISCOUNT WAREHOUSE

Reservoir Road, Clough Road, Hull. Tel 407906
 68a Armley Rd (Artist St) Leeds LS12 2EF Tel 32055
 Customers are welcome to call personally. Ample Car Parking facilities

Comet guarantee that all prices quoted are genuine. All items offered available at these prices at the time this issue closed for press. Add 9/- for post and packing on all orders. Make cheques, Money Orders payable to "COMET"

Complete stereo system - 28 gns.

The new Duo general-purpose 2-way speaker system is beautifully finished in po ished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.
Type 1 SPECIFICATIO V:-
Impedance 10 ohms. It incorporates Goodmans high flux $6^{n} \times 4^{\prime \prime}$ speaker and $2 \frac{1}{4}$ " tweeter. Teak finish $12^{\prime \prime} \times 66_{4}^{3 "} \times 5 \frac{3}{4} " .4$ guineas each. $7 / 6 \mathrm{~d}$. p. G p.
Type 2 as type 1. Size $17 \frac{1}{2} \times 10 \frac{3^{\prime \prime}}{} \times 66^{\frac{2}{4} "}$. Incorporating Elac $10 \frac{1}{2} \times \times 6 \frac{1}{*}^{"}$ 10,000 lines and $2 \frac{1}{*}$ tweeter. 3 ohms impedance $5 \frac{1}{2}$ guineas plus 7/6d. p. E p.
Garrard Changers from $£ 7.19 .6 \mathrm{~d}$. p. 6 p. $7 / 6 \mathrm{~d}$.
Cover and Teak finish Plinth £4.15.0d. 7/6d. p. Ep.
The items illustrated can be purchased together for 28 gns.

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION:-
R.M.S. power cutput: 3 watts per channel into 10 ohms speakers.

INPUT SENSIITVITY: Suitable for medium or high output crystal cartridges and tiners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged voaume control.
TONE CONTROL: Treble lift and cut. Separate on/off switch. A preset balance contro.

The above 5 items can be purchased together for 28 gns. $+E 1.10 .0$ p. $8 p$

Controls: Selector switch Tape speed equalisation switch ($3 \frac{3}{4}$ and $7 \frac{1}{\frac{1}{2}} \mathrm{i} . \mathrm{p} . \mathrm{s}$.) Volume. Treble. Bass.? position scratch filter and 2 position rumble filter.
Specification: Sensitivities for 10 watt output at 1 KHz into 3 ohms . Tape head
 Tape/Rec.out ρ ut: Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ a 15 KHz . Total distortion: (for 10 watt output) $<1.5 \%$. Signal noise: $<-60 \mathrm{~dB}$ A.C. mains $200-250 \mathrm{v}$. Built and tested. Size $12 \frac{1}{2} \mathrm{i}$. long. $4 \frac{1}{2} \mathrm{i}$. deep, $2 \frac{2}{2} \mathrm{in}$. high Teak finished case

Integrated High Fidelity Transistor Stereo Amplifier. Specification-Output: 10 watts per thannel into 3 to 4 ohms speakers (20 watts monaurai). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. out. Sensitivities: All inputs 100 mV into 1.8 M ohm. Fre quency Response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls; treble, 13 dB lift and cut (at 15 KHz); Bass, 15 dB lift and 25 dB cut (at 60 Hz). Voluma Controls: Separate for each channel. A.C. Mains Input: 200$240 \mathrm{~V} .50-60 \mathrm{~Hz}$ Size, $12 \frac{1}{1^{\prime}} \times 6^{\prime \prime} \times 2 \frac{3}{3}^{\prime \prime}$ in teak finished case. Buill and tested. VISCOUNT MARK II for use with magnetlc plck-ups specification as above. Fully equalised for magnetic pick-ups. Suitable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at 1 kc . Input impedance 47 k . 15 gns . plus $7 / 6 \mathrm{p}$. \& p .

SPECIAL OFFER!

Complete stereo system comprising BALFOUR 4 -speed autoplayer with stereo head, 2 Duo speaker systems, size 12 in . $\times 6 \frac{1}{2} \mathrm{i} \mathrm{n}$. $\times 5 \frac{1}{2} \mathrm{in}$. Plinth (less cover) and the DUETTO stereo amplifier. All above items
19 Gis. plus $20 /$ p. \& p.

Circult 2/6
FREE WITH PARTS.

The ELEGANT SEVEN Mk. III (350 mW Output)

- transistor fully tunable M. W, - L. W. portable. Eet of parts. Complete with all components, including eady ctched and drilled printed circuit board-back rinted for foolproof conatruction

Price $£ 4.9 .6$ plus $7 / 6$ P. \& P

The DORSET (600 mW Output)
T-transistor fulty tunable M.W,-L.W. superhet portable -with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes thi
simple to build. Sizes: $12 \times 8 \times \sin$. Price $£ 5.5 .0$ plus $7 / 6$ P. \& P mains power pack kit: 9/6 extra

Circuit $2 / 6$
FREE WITH PARTS

EXTRACTOR FAN

A.C. mains 230/250v. complete with pull switen. Prize $0 \times 6 \times+1$ in. 6 plus $7 / 6$ P \& P

$\times 101$

10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP

Specifications: Pouer Outpu (into 3 ohms upeaker) 10 watt
Sensificily (for rated output): ImV into 3 K ohms (0.33 mleroamp) Total Distortion at 1 KHz it 5 watte, 0.35%, at rated output 1.5% Frequency Resporse: Minus 3 d 13 points 20 Hz and 40 KHz . Speaker: 3-4 ohmis (3-15 ohms may be lused).
Suppin rollage: 24 V . 1).C. at 800 mA ($6-24 \mathrm{~V}$. masy be used).
Price 69/6 plus 2/6 P. \& P.
Control assembly: including resiatior and
'RIC'E 5/-3. Comprehensive bass and treble: PPICE $10 /-$. The above 3 items can

Power Supplies Ior the Xlo1:
Plo1 M (for mono) $35 /$-plus $4 / 6 \mathrm{p}$. \& p be purchased for une with the $\mathbb{X} 101$.

CAR TRANSISTOR IGNITION SYSTEM

by famous manufacturer
For 5 wolt or 12 volt posititve earth systems. Comprising: special high voltage morking hernetically sealed silicon transtbtor mounted in thitied heat-sink, high output ignition coil , wallist resistor and hard wear (tcrewa, washera etc.)

Price $£ 4.19 .6$ plus $5 /-\mathrm{P}$. \& P
50 WATT AMPLIFIER A.C. Mains $200-250 \mathrm{~V}$

plus 20/-p. \& p. Chanmels of 40 nV at 1 m . sutable for most high oupu CONTROLS ARE COMMON TO ALL INPUTS Bass Boost +12 dB at 100 Hz . Bass $\mathrm{Cut}-13 \mathrm{~dB}$ at 60 Hz . Treble Boost +11 dB at 15 KHz . Treble Cut -12 dB at 15 KHz . With bass and treble controls central -3dB points are 30 Hz and 20 KHz . POWER OUTPUT: For apeech and music 50 watth rmas. 100 watts peak. For sustained music 45 watts ring. 90 watts peak. For sinc wave
38.5 watts rmas. Nearly 80 wats peak. Total distortion at rated output 3.2% at 1 KHz . 38.5 watts rmas. Nearly 80 watts peak. Total digtortion at rated output 3.2% at 1 KHz .
The Total distortion at 20 watts 0.15% at 1 KHz . Output to match into 8 or
 MAINS VOLTAGES ndjustable from $200-250 V$. A.C. $50-6$

B.S.R. TD-2 TAPE DECK

 Price $£ 8.19 .6$ plus $7 / 6$ P. \& P

SPECIFICATIONS
Ouppit- 10 watts \quad Output Impedance- 3 to 4 ohins 2. -gratu/radio 250 mV Tone Controls-Treble control range $\pm 12 \mathrm{~dB}^{\text {B at }} 10 \mathrm{KHz}$ Frequency Rexponse- (with tone controls central) Minus $3 d B$ points at 20 Hz and 40 KHz . gignal to Noise Ratio-better than-60dB. 'Transistors-4 silicon Planar type and 3 Germanum cype. Mains with Std. or L. P. recoris, musical matrumena, $8^{n} \times 5^{\circ}$ " RELIANT Mk. 1 RELIANTMK. I\| $5 \frac{1}{2}$ gns. plus $7 / 6 \mathrm{P} . \& \mathrm{P}$
$6 \frac{1}{2}$ gins. plus $7 / 6$ P. \& P

RECORD PLAYER SNIP A.C. Mains 240 V

The "Princess", 4-apeed automatic record changer and player engineered with the utinnst precision for heauty, long life, and trouble free service. Will take up to ten
records which may be mixed $7^{\prime \prime}$ to $10^{\prime \prime}$ or 12^{*}. Patent stylus brush cleatis stylus after each playing and it shut off, the plek-up locks itself into its recess, a most weful feature with portable equipinent-other features include pick-up helght adjust ment and stylus pressure adjuatment. This truly io at fine inatrument which you can purchuse this month at only $\mathbf{8 5 . 1 9 . 8 \text { complete with }}$ ONLY $\mathbf{~} 5.19 .6$ plus $7 / 6$ P. \& P

POCKET MULTI-METER

gize $34 \times 2 i \times 1$ in. Meter size $2 t \times 1$ in. Senaltivity 1,000 O.P. 4 , on both Size $34 \times 21 \times 1$ in. Meter size 21×1 in. Senifulty 1,000 O.P. ©n both
A.C. ani D.C. volts. $0-15,0-150,0-1,000 \mathrm{D} . \mathrm{C}$. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete with test prods, battery and full instructions 42/6 plus 3/6 P, \& P
FREE GIFT for limited period only. 30 watt Electric Boldering 1 ron value $15 /$ - to every purchaser of the Pocket Multi-Meter

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in . spool Incorporating 3 motors A.C. mains, 240 volts. Listed at $£ 21$ Our Price £9.19.6 plus 10/- P. \& P
CYLDON 2 TRANSISTOR U.H.F. TUNER Brand new. Complete with circult diagrann.
Price $£ 2.10 .0$ plus $1 /-P \& P$.

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud speaker system on one frame, combining three matched ceramic magnet speakers with a low loss crossover network. Peak handing power 10 watta. impedance 15 ohms. Fhix density 11,000 gause. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{a}$ to $20 \mathrm{Kc} / \mathrm{s}$. Size $132 \times 8^{1} / 4 \times 44 \mathrm{in}$. By famous madufactur

List price f7 OUR PRICE 74/6 plus 5/-P. \& P

PYE CAR RADIO

Push Button Tuning Heart
This PRESTOLOCK 5 station Push-Button Tune Heart with Manual Over-ride is an icleal basis fo quality
$25 /-$ plus $3 /-P . \&$

QUALITY MAINS TRANSFORMER

Input 250 volts. OUTPUT (All RMS values) 4 windings of 11.6 voits connected in serler total 46 volts at $4 \cdot 5$ amps (con ervatively rated. The volles. 1. 23-0-23 valts. 2. 45 volts.
are commonly used in medlum to Price $35 /-$ plus $7 / 6$ P. \& P.

Goods not despatched outside UK

TERMS C.W.O.
All enquiries S.A.E

R.S.T. VALVE MAIL ORDER co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m
-5.30 p.m.
Closed Sat. 1.30-2.30 p.m. Open Daily to Callers

147	$7 / 8$	6BQ7A	71	6K7M	6/6	7 Y 4		
1D5	7/6	6BR7	17/-	6K7G	2/-	9BW6	71	
1H5	71	6BR8	12/6	6K7GT	$4 / 6$	10 Cl	12/6	
1LDS	6/-	6B87	25/-	6 K 8	$2 / 8$	10C2	12/6	
IN5GT	8/-	6BW6	14/6	6K8M	11/6	10F1	$14 / 9$	
185	6/-	6BW7	18/-	6 K 8 G	$8 /-$	10F3	18/-	
184	6/8	6 C 4	5/-	6K8GT	7 -	$10 \mathrm{F9}$	10/6	
185	4/6	6C50	$5 /-$	6K25	151-	10F18	$8 /$	
1 T 4	4/-	6C8	$8 / 9$	6 L 1	12/-	10Ll	8/-	
$3 \mathrm{A4}$	4/-	6C8G	61-	6L6G	7/8	10LD 1	10/6	
$3 \mathrm{Q4}$	$7 / 9$	6CD6G	24/-	$6 \mathrm{L1} 18$	$61-$	10 Pl 13	18/6	
3Q5	71.	6CH6	$7 / 6$	6 Q 7 C	6/-	11 E 3	$70 /$	
354	6/8	6CW4	12/-	6Q70T	8/6	12AT6	$4 / 8$	
3V4	6/9	6D6	819	68A7M	$7 /-$	12AT7	$6 /$	
6R4GY	10/6	6 EF	$7 / 6$	68187	7-	12AU6	$5 / 8$	
6U4G	6/6	${ }_{6} \mathbf{F 1} 1$	$12 / 6$	6897	6/-	12AU7	5/8	
5 V 4 G	$81-$	6 F 5 G	$81-$	68H7	$8 / 8$	12AX7	6/8	
5 S 3 GT	81 -	${ }^{6 F 6 G}$	$5 /-$	$68{ }^{77}$	61-	12BA6	61	
5Z4G	$7 /-$	6F8G	$5 / 8$	68K7GT	T 4/9	12BE6	8/8	
6/30L2	16)-	6 F 11	$8 / 6$	68L7GT	8/-	12C8G	6/-	
6 A7	16)-	6 Fl 13	6/6	68N7GT	8/6	12E1	\%	
6A8G	12/6	6 Fr 4	18		$7 / 8$	12 J 5 G	$2 / 6$	
$6 \mathrm{AC7}$	41 -	${ }_{6 F 24}^{6 F 23}$	14/-	$6 \mathrm{6U5G}$	12/6	12	-	
6AK5	5/-	6 F 25	15/-	6V6M	12)-	12K8G	$8 /$	
		6 F 28	14/-	6Vba	4/6	1297GT	81-	
	$8 / 8$	6F32	2/9	6V69T	6/6	12847	81	
6AM6	$8 / 6$	6c6	$2 / 6$	6×4	4/6	12897	8/-	
GAQS	$6 / 8$	6H6	3/-	6X5G	$4 / 6$	12847	81	
6A87G	$18 /$	6.J5M	9/-	6X5GT	8/-	128J7	8/9	
6AT0	419	6J5G	$41-$	7B6	11/6	128 K 7	$4 / 8$	
6AU6	5/-	6 J 5 GT	$6 / 6$	$7 \mathrm{B7}$	$7 / 6$	128R7	$51-$	
${ }^{6844}$	201-	6 J 6	$3 / 6$	7 CS	2e/6	14H7	$9 / 6$	
$6 \mathrm{B8}$ G	2/-	6.57M	8/6	7 C 6	151-	19AQ5	$51-$	
6BA8	51-	6J7G	$6 /-$	$7 \mathrm{D6}$	81-	20 D 1	101-	
6 BE 6	$81-$	657GT	$7 / 6$	7H7	6/6	20 F 2	14,	
6BH6	$91-$	6K6GT	6/-	7R7	181-	$20 \mathrm{L1}$	$801-$	
6BJ6	9/-	6 K 7	$1 / 8$	787	$45 /-$	20 P 4	201-	

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Express postage 9d. per valve.
Ordinary postage 6 d . per valve.
C.W.O. No C.O.D

Manufacturers and Export Inqulries Welcome

Special 24 Hour Express Mail Order Service

A SOLDER'S BEST FRIEND IS HIS GUN

From the Burgess All-electric Workshop: a light, balanced solder gun with a range of screw-in tips. The tips-and only the tips-heat up in 7 short seconds, Antithermal casing keeps the rest of
the gun cool. Note the slim barrel-it reaches right down into confined spaces. There are spike-like extension barrels for real 'in-deep' work. A prefocused lamp pinpoints work detail. Fail-safe soldering even for delicate work! The price of this tough, modern instrument? Just £ 4126 complete with iwo tips; a $6^{\prime \prime}$ extension barrel, a double-ended probe and solder. FREE 24-PAGE CATALOGUE! For details of the Burgess instant heat solder gun, plus other equipment in the Burgess All-Electric Workshop, write for a free copy of our information-

TilicalRANGE Of SOLID STATE A.C. MAINS AMPLIFIERS Employing only

high grade components and transistors.

LTA15 15 WATT AMPLIFIER

HIGH FIDELITY OUTPUT

SWITCHED INPUTS FOR
GRAM, 'MIKE', TAPE,
AND RADIO
Frequency Response $10-40,000$ cps-3dB. Bass Control +18 dB
to -16 dB at 40 cps . Treble Control + 17 dB to -14 dB at 14 Kcs . Hum and Noise- 80 dB . Harmonic Distortion
 Recommended 17 gns Retail Price
Size $9 \frac{1}{2} \times 3$ 要 $\times 5 \frac{1}{2} \mathrm{in}$ $0 \cdot 2 \%$ at rated output.
$3-8-15$ ohm Loudspeakers.

PTA30 HI-FI

PUBLIC ADDRESS
AMPLIFIER
A SUCCESSOR TO OUR
POPULAR CONCHORD
30 WATT UNIT
Input Sensitivity 2 niv (max.)
Output 30 watts. (Music rating)
Output Terminals or Loudspeaker or combination of Speakers with total impedance between 3 ohms and 30

Recommended
Retail Price
Size $12 \times 3 \frac{1}{2} \times 6$ in.

19/- plus postage 197- plus postage
27/6 plus postage DAF96, DF96, DK96, DL96

CRANSISTORS

 ohms. Three individually controlled
Jack Inputs for raixing purposes. Housed in fuliy enclosed stove enamelled steel case. Controls Vol. (1) Vol. (2) Vol. (3) with mains switch, Treble 'lift' and 'cut'. Bass 'lift' and 'cut'
AN IDEAL UNIT FOR VOCAL AND INSTRUMENTAL GROUPS, SUITABLE FOR ANY KIND OF 'MIKE' AND INSTRUMENT PICK-UP, ALSO FOR RADIO, TAPE OR GRAM.

[^0]Burgess Products Company Limited, Electric Tools Division, Sapcote, Leicester LE9 6JW.

The 'PICTURE BOOK' way of learning BASTE ELECTRICITY (5 VOLUMES) : AS F ELECTRONICS

You'll find it casy to learn with this outstandingly successful PICTORIAL METHODthe essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects. TO TRY IT, IS TO PROVE IT

BELOW ARE EXTRACTS FROM THE MANY LETTERS RECEIVED

What readers say...

'. . . played an important part ..
These Manuals have played an important part in my career K.W., West Drayton.
'. . . a sound basis . . .
These books create a sound basis on which to build a successful future . . . R.G., Lowestofr.
'. . . well set out . . .'
I am well pleased with the series. Everything is well set out in selfexplanatory diagrams . . . D.D., West Ham
'. . . make interesting reading . ..'
These books make interesting reading of a complicated subject V.L., Basingstoke.
'. . so easy to follow . . .'
I am delighted with these marvellous manuals, so easy to follow, well done . . . W A., Bushy.
'. . . clear and easy to understand ...'
I have found these manuals extremely clear and easy to understand... L.L., York.
'. . . readily understood . . .
The Basic Electricity volumes, were readily understood by my 13 year old son . . F.B., Wolverhampton.
'. . . every confidence in your series ..."
I have every confidence in your series for creating a sound basis on which to build a successful future ... X.R., Birmingham. 'Everything is clearly set out . . ''

I am well pleased with this pictorial system. Everything is clearly set out in diagrams, ..L.P., Co. Armagh.
'. . . very pleased with the set . ..'
I was very pleased with the set of Basic Electronics. Please send Basic Electricity . . . D.W., Margate.
'. . . how understandable your books are . . .'
Pleased to say how understandable your books are, I now have a sound knowledge of the subject ... A.A., Hull.

'. . . lucid and clear . . '

\ldots I find them easy to follow because of their lucid and clear descriptive format . . . M.V., East Grinstead.
'. . carefully written . ..'
I am very satisfied with these carefully written and well expressed manuals ... A.W., Shanklin.
'. . . valuable assistance . . .'
Your valuable assistance has enabled me to find a good position as a Radio and TV Engineer . . D.S., Bristol
'. . they are invaluable . . .
I find that as a base for a course in Electronics they are invaluable and I have yet to find anything even to approach the same standard H.N., Roiherham.

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

To the SELRAY BOOK CO.,
60 HAYES HILL, HAYES, BROMLEY, KENT, BR2 7HP
Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/-. Cash Price or Down Payment of 20/-followed by 3 fortnightly payments of $20 /$ - each. BASIC ELECTRONICS 90/-. Cash Price or Down Payment of $20 /-$ followed by 4 fortnightly payments of $20 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS \square
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
Name
Block letters
Full Postal
Address.

CAR LIGHT FLASHERS Heavy duty light
flasher
employs a condenser discharge principle operating on electro mechanical relay. (As inset).
Housed in strong plastic case. Flashing rate between 60-120 DC operation. Maximum load 6 ampas. 8ize $2-11 / 16 \mathrm{in}$. dia. $\times 4 \mathrm{in}$
fupplied brand new at a fraction of original cost. $6 / 8$ each P. P. $2 / 6$. (3 for $17 / 8$ P. P. 4/6).

R209 MK II

COMMUNICATION RECEIVER no \forall alve high grade communication receiver AM/CW/FM operation. Incorporates precision vermier driver, B. F.O., z.erial trim-
 mer, internal speaker and
12 v . D.C internal posuppiled in excellent tully tested and checked E15.0.0.
Carr. $20 /-$
TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general purpose D/B oscilloscope.
T.B. $2 /$ cps 750 Kc/a
 genaltivity 33mV/CM. Operating voltage $0 / 110 /$ in excellent worging condition. eses. 10.0. Or complete with all accessories, plobe, leads, lid, etc.
e\&5. Carriage $30 / \mathrm{F}$.

MARCDN:
T/44/TF956
AP Absorption Wattmeter
$\mu /$ watt to 6 watta
820. Carr. 10/-

SOLARTRON CD-1016 OSCILLOSCOPE
Double beam. D.C. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent condition, 255 each. Carr. 20/-.

CLASS D WAVEMETERS

 dyue frequency meter $\begin{array}{ccc}\text { dyue } \\ \text { covering } & \text { frequency } & \text { meter } \\ \mathbf{1} \cdot 7-8 & \mathrm{Mc} / \mathrm{s} \text {. }\end{array}$ Operation on 6 volts D.C. Ideal for amateur uase. Available in good used con-
dition. 85.19 .6 . Carr. $7 / 6$. dition. 85.19.6. Carr. $7 / 6$.
Or brand new with acces-
 CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19 \mathrm{Mc} / \mathrm{s}$. Maing or 12V. D.C. operation. Complete with calibration charts. Excellent condition. 812.10.0. Carr. 30/-

SOLARTRON CD.711S. 2 OSCILLOSCOPES Doubie beam. D.C. to $9 \mathrm{Mc} / \mathrm{s}$. Perfect order. 265. Carr. 50 j-.

TO-3 PORTABLE OSCILLOSCOPE
 3in. tube. Y amp. Sensiti-
 Input imp. $2 \mathrm{meg} \Omega \mathrm{MHFF}^{25 \mathrm{~F}}$. $\begin{array}{ll}\text { Input imp. } 2 \text { meg } \Omega & 26 \mathrm{pF} \text {. } \\ \mathrm{X} \text { amp. sensitivity } & 0.9 \mathrm{~V}\end{array}$ p-p/CM. Bandwidth 1.5 cps -800 KHz . Input imp. ${ }_{2}$ meg $\Omega 20 \mathrm{pF}$. Time base. 6 ranges $10 \mathrm{cpa}-300 \mathrm{KHz}$. synchronization. Internal/ catrrnal. Illuninated scale $140 \times 215 \times 330$ brand new with hand books. 2a5.0.0. Carr. 10/-

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

A new partable bridge offering excellent range and
accuracy at
at cost. Ranges: R. $\frac{10-11.1}{}{ }_{6}$ manges ${ }_{\mathrm{L}}^{6}$ Ranges $\pm 1 \%$. L.1 M H $\mathrm{H}=111$
HENRY 6 Ran-
ges $-2 \% \%$ C. 10 pF ${ }^{ \pm} 1110 \%$ mird. $10 \mathrm{pF}{ }_{6}$ Ranges $\pm 2 \%$. TURNS RATIO 1:1/1000-
 $1,000 \mathrm{cps}$. Operated from 9 volts. $100 \mu \mathrm{~A}$.
Meter indication. Attractive 2 tone metal case. Size $71 \times 5 \times 2$ in. tion. P. \& P P. $5 /-$,

LAFAYETTE SOLID STATE HAGOD RECEIVER 5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $550 \mathrm{Kc} / 8-80 \mathrm{Mc} / \mathrm{s}$ ial Product detector 2 menal dial Product
Noise limitector
8 matar Variable BFO
 gain control. size 15in. $\times 9$ gin. $\times 8$ inin. Weight 18 Ibs. EXGEPTIONAL VALUE. 845. Carr. 10/8.A.E. for full details.

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{B}$ continuous and electrical bandspread on $10.15,20$. 40 and 80 metres. 8 valve plus 7 diode circuit, 4/8 ohm output and phone jack. 88B-cW ANL - Variable BFO \& meter. Bep. bandspread
 A.C. Mains. Beautifully designed. Size: $7 \times 15 \times$ NICATION TYPE EEADPHONES. Normally \&5.19.6. OUR PRICE $\$ 3.15 .0$ if purchased with above recelver.

TRIO JR-500SE 10-80 Metre AMATEUR RECEIVER

TRIO Ts 510 AMATEUR TRANS2012. IN STOCK!

Covers all the amateur bands in 7 separate ranges between 3.5 and $29.7 \mathrm{Mc} / \mathrm{f}, 7$ valves, 2 transistora
and 5 diodes plus 8 crystals: output 8 and 500 ohm and 5 diodes plus 8 crystals: output 8 and 500 ohm
and 5,000 ohm phone juck. Crystal controlled osclllator. Variable BFO. VFO. AVC. ANL. B meter ssB-CW. Stand-by switch. Special double gear dial drive with direct reading down to $1 \mathbf{k H z}$. Remote control socket for connection to a transmitter. Audio output 1 watt. $115 / 250 \mathrm{v}$. A.C. mains. Superb modern styling. Size $7 \times 13 \times 10 \mathrm{in}$. with ingtruction
manual and service data. $£ 69.10 .0$. ${ }^{2}$.

$$
\begin{array}{cl}
\text { SPECIAL BONUS } & \text { TRIO 8P5D Matching Speaker Mate and TRIO H8 H8 } \\
\text { OFFER! } & \text { Communication Headphoneg. Normal Value \&io. } \\
\text { FREE OF CHARGE with every JR.500sE purchaved. }
\end{array}
$$

HAMMARLUND SP600JX COMMUNICATION RECEIVER High quality profersional dual conversion communication receivers available for the first time in this country at a
reasonable price. Frequency range $540 \mathrm{~K} / \mathrm{a}-54$ reasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{g}-54 \mathrm{Mc} / \mathrm{m}$, in
6 bands variable tuning or 8 channel cryalal controled $2 \cdot 5$ watt output into 600 ohms. Input $110 / 230 \mathrm{~V}$. A.C 20 valve circuit incorporating: Xtal Alter B.F.O. A.N.L. Xtal calibrator, 8 meter etc. Size $19 \times 12 \times 22 i n$. (List
2520). Offered in excellent condition, fully teated and checked $\mathbf{8 1 0 0}$ each.

RCA COMMUNICATIONS

RECEIVERS AR88D

Latest release by miniatry BRAND NEW in original cases. $110-250 y$. A.C. operation. Frequency $\ln 6$ Bands. $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$ continuous. Output impedance $2 \cdot 5-600$ ohms. Incorporating crystal Blter, noise limiter, variable BFO, variable selectivity, etc. Price \&87.10.0. Carr. $^{2} 2$.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

 A completely tuew transistorised receiver covering $152-174 \mathrm{Mc/g}$. Fully tunable or crystal controlled(not aupplied) for Axed frequency operation. In(not aupplied) for Axed frequency operation. In-
corporates 4 INTEGRATED CIRCUITS. Built in apeaker and illuminated dial. Squelch and vol ume controls. Tape recorder output. 75Ω aerial
input. Headphone fack. Operation 230 V . A.C. input. Headphone jack. Operation 230 V. A.C.

1001 A $100-0.100$ A $200 \mu \mathrm{~A}$ $00 \mu \mathrm{~A}$ \qquad
CLEAR PLASTIC PANEL METERS
First grade quality Moving Coil panel meters. Type MR 38 P . ${ }^{11} /$ gin. square fronts.

500.0-5001	LA87/6
1 mA	27/8
$1.0-1 \mathrm{ma}$	27/8
2 ma	27/8
5 ma	$27 / 8$
10 mA	27/6
750 mA	27/8
1 amp	27/6
2 amp	
δ amp	
20 mA	$27 / 8$

	50 ma
	100 mA
	150 mA
	200 mA
	300 mA
	500 ma
	3 V . D.C.
	10V. D.C.
	20V. D.C.
	$100 \mathrm{~V} . \mathrm{D} . \mathrm{C} .$.

${ }_{2718}^{27 / 8}$

150v. D.C.. $27 / 6$ 300 V D.C.. $27 / 6$ 500 V . D.C... $27 / 6$ 750 V. D.C... $27 / 8$
15 V. A.C. 15V. A.C.... $87 / 6$
50 V . A.C.. $87 / 6$ ${ }^{50 \mathrm{~V} . \text { A.C... }}{ }^{27 / 8}$ 300V. A.C. . $27 / 6$ $500 \mathrm{~V} . \mathrm{A} . \mathrm{C} . \mathrm{C} 876$
VU meter . . $42 /$

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Contlnuous rating. Wide range ex-stock. Single hole fixing, zin. dia, ahafts. Bulk quantities available ${ }^{25}$ WATT- $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ or 5,000 ohms, 14/8, P. \& P. $1 / 6$ $100 \mathrm{WATT} .1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000$ or $2,500 \mathrm{ohms}$ 27/6. P. \& P. $1 / 6$.

AVOMETER MOVEMENTS

Spare movementa for Model 8 or 9 . (Fitted with Model 9 scale) or basis for any multi-
meter. Brand New \& Boxed. $69 / 6$. P. \& P. $3 / 6$

TE-40 HIGH SENSITIVITY

A.C. VOLTMETER

10 meg. input 10 ranges $01 / \cdot 003 / \cdot 1 / \cdot 3 / 1 / 3 / 10 / 30 /$ $100 / 300 \mathrm{~V}$. $\begin{array}{ll}\text { 1-2 Mc/s. } & \text { Declbels }-40 \text { to } \\ +50 d B . & \text { Supplied }\end{array}$ new complete with leads and instructions. operation 230
Carr. $5 /-$

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$. on 2 ranges. Output plied in perfect order. $\mathbf{x 1 8 . 1 0 . 0 \text { . Carr. } 1 0 / \text { - }}$

TE-65 VALVE VOLTMETER

 High quality instrument with 28 ranges.D.C. volts $1 \cdot 5-1,500 \mathrm{v}$. A.C. volte up to 1,000 megohms. $200 / 240 \mathrm{v}$. A.C. operation. Complete with probe and instructions. 8 P. $6 /-$ Additionsl probes avail-

COSSER 1049 DOUBLE
 BEAM OSCILLOSCOPES

D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{l}$. Perfect order. E85. Carr. 30/-

AM/FM SIGNAL GENERATORS

Oscillator Teat No.
2. A high quality preciaion inatru-
ment made for the ment made for the
ministry by Alrmec. Frequency coverage $20-80 \mathrm{Mc} / \mathrm{B}$. AM CW/FM. Incorporates precision dlal, level meter, precision attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Operation from 12 volt D.C. or $0 / 110 / 200 / 250$ volt A.C. Bize $2 \times 8 \frac{1}{6} 9$ in. supplied in brand new conlition complete with all connectors fully ested. 245. Carr. 20/

GEARED MAINS MOTORS

Paraiux type 8D19 230/250V. A.C. Reversible. 30 r-p.m. 40 lb ./ins. Complete with capacitor. Excellent condition. 89/6. Carr. 10/-.

TE-16A Tranaintoriced Signal Generator. 5 ranges $100 \mathrm{kHz}-30 \mathrm{mHz}$. An frexpensive instrument for the handyman. Operates on 9v battery. Wide easy to
read scale. 800 kH a moduread scale. 800 kHz modu-
lation. $5 \$ \times 5 \frac{1}{2} \times 3 \mathrm{in}$ Complete with Instructions and leads. s7.19.6. P. \& P. 4/-

FIELD TELEPHONES TYPE L
Generator ringing, metal cases. Operater from wo 1.5 V batteries (not supplied). Excellent condition. 84.10 .0 per pair. Carr, 10/-

G. W. SMITH 8 CO (RADIO) LTD. Also see oppos. page SIGNAL GENERATOR
 A.F. GINE WAVE $20-200,000 \mathrm{c} / \mathrm{A}$
8 a .
30 are wave $20-$
3000 $\begin{array}{ll}30,000 & \mathrm{c} / \mathrm{s} . \\ \text { HIGH } \\ \text { O/P. } \\ \text { IMP. }\end{array}$ P/P600 3.8 BV . P/P. $\mathrm{TF} 100 \mathrm{Kc} / \mathrm{s}-300$
Mc / s. Variable K.F. ttenuation imlext. modulation. incorpor ates dual purpose meter to monitar $A F$ output and \% mod.
ta0.0.0. Carr. $/ 6$.

TE-200 RF SIGNAL GENERATOR

Accurate wide range sig	nal	generator covering
120		
$\mathrm{Kc} / \mathrm{c}-\mathrm{j} 00$	Mc / s on	${ }_{6}$ hands. Directy calibrated Variable R F attenuator, audio output.

Xtal socket for calibration. $\quad 220 / 240 \mathrm{~V}$ Brand new with instruc-
tions. \&15. Carr. 7/h. Size $140 \times 215 \times 170 \mathrm{~mm}$.
PEAK-SOUND PRODUCTS. Full range Ampiners, KIs, speake GENERATOR Sine Wave 20 c /s to 200 kc/g. Bquare Wave 20c/a to 30xc/s. High and low impedance output. Out-
vut variable up to 6 volls. put variakle up to 6 volts.
$220 / 240$
volts A.C. Bize $210 \times 130 \times 120 \mathrm{~mm}$

MARCONI TPI42E DISTORTION FACTOR METERS. Excellent condition. Fuily teated. 220. Carr. 15 /-.

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER $2 \mathrm{pF}-2000 \mathrm{mFd}$
2 ohma 200 meg-
ohnus Also checks
impedance, turns ${ }^{\text {ratioo, insulation, }}$ Brand New si7.10.0
Carr. $7 / 6$

MODEL ZQM TRANSISTOR CHECKER checking on A, B and Ico checking in A, B and checking spece: A: $\begin{gathered}\text { difores, ete } \\ 0.7-0.9967\end{gathered}$ B: $5-200$. microamps
 Reaistance for $0-5 \mathrm{~mA}$. $200 \Omega-1 \mathrm{M} \Omega$. Supplie
complete with instruc-
tions, battery and lead. \&5.19.6. P. \& P. 2/6
ADVANCE TEST EQUIPMENT Brand now and bozed in original sealed cartons
VM. 78 VALVE VOLTMETER. R.F. measurements in excess 100 Mc/a and D.C measurements up to 100 V with accuracy of +2\% D.C. range 300 MV to 1 KV . A.C.
range 300 MV to 300 V RMs. Reslatance $.02-500 \mathrm{Ma}$. Price 272. VM. 78 A.C. MILLIVOLT METER. Tran$1 \mathrm{Mc} / \mathrm{s}$. Price 855. aistorised A.C range 10 MV-3 V. D.C current range $\cdot 01 \mu \mathrm{~A}-9 \mathrm{MA}$. Resistance 1 ohm - 10 megohms. Prlee e12.
GIB AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{s}-$ 50 Kc/fo, sine or gquare wave, Price 280 . JIB AUDII SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{g}-$ $60 \mathrm{Kc} / \mathrm{s}$, Price 230 .
J1B ADDIO SIGNAL GENERATOR. As per
 car riage $10 / \mathrm{F}$ per item.
SONOTRONIC PORTABLE OSCLLLOSCOPES. Ex govt. scupe, general purpose. 3in. CRT Maing operated. Fule
\&12.10.0. Carr. $7 / 8$.

SOLARTRON MONITOR

OSCILLOSCOPE TYPE 101 An extremely high quality oscilloscope with timue base of $10 \mu /$ ase to 20 mofaec . Internal Y
amplifier. Beparate mains power supply $200 /$ 250 v . Supplled in excellent condition with cables, probe, etc., as recelved trom Ministry. 88.19.6, carriage 30/-

GARRARD

FULL CURRENT RANGE OFYERED BRAND NEW AND GUARANTEED AT FANTASTIC savings
BRP22 8terea 85.19.6 :3P25 MK II 211.19 .6

 ${ }^{*}$ 2025 steren 87.19 .8 - ${ }^{2}$ L65 $\begin{array}{llll}\text { "2025T/C } & & \text { AP75 } & \text { E17.17.0 } \\ \text { Mono/Sterw. } & 88.178 & 401 & \text { E88.7.6 }\end{array}$ $\begin{array}{llll}\text { Mono/Steruo } & \text { E8.17.6 } & \text { SL75 } & \text { 228.10.0 }\end{array}$ * 3000 Steren \quad E9.19.6 81.95
 Carriage/ninurance 7,0 extra auy model. Wha Bases 23.19.6. Perapex covers \&s.10.0. "specia models at a4.15.0. Carr. $5 /$. Full range of Garrarri accesannies available.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 19 transistors, 8 diodes, IHF nusic power, 30W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis.
tortion 1% or leas. Lnputs 3 mV and 250 mV . Output 3 -16 Ω. Separate L and R. volume controls. Treble and bass control, Stereo phone jack. Brushed aluminium, goid anodised extruded front panel with complementary metal case. Size $10!\times$ 288. Carriage $7 / \mathrm{f}$.

MULTIMETERS for GIGEY purposed

TE-51. NEW 20,000 $/$ VOLT MOLTIMETER with overload protection and

mirror acale. $0 / 6 / 60 / 120 /$ \begin{tabular}{ll}
mirror acale.

$1,2000 \mathrm{c}$

\hline

$1,200 \mathrm{v}$

$300 / 600 / 3.000 \mathrm{Cl}$. \& $0 / 3 / 30 / 60 \mathrm{C}$

\hline
\end{tabular} $0.60 \mu \mathrm{~A} / 12 / 200 \mathrm{~mA}$. D.C.

$0 / 60 \mathrm{~K} / 6 \mathrm{meg}$. ohm. $22 / 6$. P. \& P. 2/6.

MODEL As-100D. 100 K ת/VOLT. Sin. mirror scale. Built-ln meter
protection. $0 / 3 / 12 / 60 /$ protection. 0/3/12/60/
$120 / 300 / 600 / 1200 \mathrm{v}$ DC $120 / 300 / 600 / 1,200 \mathrm{v}$ DC
$0 / 6 / 30 / 20 / 300 / 600 \mathrm{v}$ $016 / 30 / 120 / 300 / 600 \mathrm{v}$
AC
$0 / 10 \mu \mathrm{~A} / 6 / 80 / 300$ $\mathrm{mA} / 12$ amp. $0 / 2 \mathrm{~K} / 200 \mathrm{~K}$ $12 \mathrm{M} / 200 \mathrm{M} \Omega$.

P. 3/6.

MODEL TE-80 50,000 OPV mirror seale overload protection 0/3/12/60/300/600/1200
v. 0 (6)
0/30/120/300/ $1200 \mathrm{v} . \mathrm{DC} .03 / 6 / 60 / 600 \mathrm{~mA}$ DC. $16 \mathrm{~K} / 160 \mathrm{~K} / 1-6 / 16 \mathrm{meg}$ S. -20 to +63 dB .27 .10 .0 .
P. $\mathrm{P} .3 /-$

TE-000 20,000 / $/ \mathrm{VOLT}$ GIANT MOLTIMETER mirror feale and overload
protection. $6 i n$. full view protection. 6 in. . Full view
meter. 2 color scale. $0 /$

2.5110. | meter. 2 color scale. 07 |
| :--- |
| $2 \cdot 5 / 10 / 250 / 1,000 / 5,000$ | Y.

$10 / 50 / 250 / 1,000 / 5,000 \mathrm{v}$. D.C. $0 / 50 \mu \mathrm{~A} / 110 / 100$ 1500 ta A/10 amp. D.C.
$02 \mathrm{~K} / 200 \mathrm{~K} / 20$ ME

Volt $5 / 25 / 50 / 250 / 500 / 2,50 \mathrm{k}$ / D.C. $10 / 50 / 100 / 500 / 1,000 \mathrm{v}$
$0 / 50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C. $0 / 6 \mathrm{~K} / 6 \mathrm{n}$
+22 dB.

MODEL TE-70. 30,000 OPV. 0/3/15/60/30/600
1200 v DC. $0 / 6 / 30 / 120 /$ 60001200 v AC. $0 / 304 \mathrm{~A}$ $13 / 30 / 300 \mathrm{~mA} .0 / 16 \mathrm{~K} / 160$ K/1. $0 \mathrm{M} / 16 \mathrm{Meg}$. R .
E 5.10 .0 P. \& P. $3 /$.

MODEL PT-84. 1,000 OPV. 0/10/50 $1250 / 500 / 1,000 \mathrm{v}$ AC
and DC. $0 / 1 / 100 /$
500 mA DC. $0 / 100 \mathrm{~K}$

Lafeyette 57 Range Super 50 k Q/volt Mange $\mathrm{Malti-}$ meter. D.C. volte 12 mV -1000 V . A.C. volts 1.5 V $25 \mu \mathrm{~A}$-io amp. chms 0 10 meg $\Omega \mathrm{dB}-20$ to +81 dB. Overlond protec
\&12.10.0. Carr. $3 / \mathrm{h}$.

MODEL TE-12
20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 1201$ $600 / 1,200 / 3,000 / 6,000 \mathrm{v}$
$0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{v}$ $0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{v}$
$0 / 60 \mu \mathrm{~L} / 6 / 60 / 600 \mathrm{~mA}$. $\begin{array}{ll}0 / 60 \mu \mathrm{LA} / 6 / 60 / 600 \mathrm{~mA} . & 0 / 6 \mathrm{~K} / \\ 600 \mathrm{~K} / 6 \mathrm{Meg} . / 60 \mathrm{Meg} . \Omega & 50 \mathrm{pF} .\end{array}$ $0 \cdot 2 \mathrm{mFd} .85 .19 .6$. P. \& P. $3 / 6$.
\star TRANSISTORISED FM TUNER \star
 6
HIGH
TUN RaNBISTOR TUNER, $81 Z E$ ONLY $6 \times 4 \times 2 \mu 10$ Double tuned dha criminator. Ample amplititers.Operatea on 9Vbuttery. Coverage 88 $-108 \mathrm{Mc} / \mathrm{s}$ Ready built ready for use. Fantaatic value for money. 26.7.6. P. a P. $2 / 6$ Btereo multiple I adaptors $99 / 6$.

TRANSISTORISED
TWO-WAY
TELEPHONE
INTERCOM
Operative over amazingly long diatances. Beparate call 2 -wire connection. 1000 's of applications. Beautifully finlshed in ebony. Bupplied complete with batteries and wall brackets. $3 / 6$
 SINCLAIR EQUIPMENT Z12 12 watt amplifier, 89/6 Z4 Power Supply Unit $89 / 6$ $\begin{array}{cc}\text { Stereo } \\ \text { Q14 } \\ \text { Speakers } & \text { Preamp. } \\ 87.19 .6\end{array}$ Micromatic Radio Kit. 49/6. Built 59/6. Now in Stock SPECIAL OEFER
Two Z18 Ampa., PZ4 Power Supply, Storto apeakers, 2 .

NEW SINCLAIR 2000 SYSTEM 35 watt Integrated Amplifier, 289 . Carr. 5/-
Self-powered FM Tuner, 205 . Carr. S/-

HOSIDEN DHO4S 2-WAY STEREO HEADSETS
Each headphone con-
tains it 2 lin. wooler and a yin. tweeter. Built in individual $25-18,000 \mathrm{c} / \mathrm{g}$ with cable and stereo plug. ©5.19.B and stered plug. 条.19.6
P. \& P. $2 / 6$.

TE111. DECADE RESISTANCE ATTENUATOR
Variable range 0-
111 dB . Connections,

 的

 Unbalanced T andBridge T. Impedance 600Ω range ($0.1 \mathrm{~dB} \times$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$. Frequency: d.c. to 200 kHz (-3 dB). Accuracy: 0.05 dB . + Indication $\mathrm{dB} \times \mathbf{0 . 0 1}$ Maximum input less than $4 W$ (50 V). Built in 600Ω had resistance win internalexterua *witch. Brand new ez7.10.0. P. \& P. © ${ }^{-1}$.

RECORDING HEADS

Reuter 1 -track. As fitted to Collaro Mk. $1 V$ and Studio Decks. High Imp. record play back, low lmp. erase. Lower track only Brand new. 18/6 pair.
COSMOCORD l-track
COSMOCORD 1-track heads. High limp. record/piayback 657-. Low imp. erase $80 /-$
MARRIOTT
t-track beads. High imp record/play back 65/-. Low imp. erase 201Post extra

AMERICAN TAPE

First grade quallty Amertcan tapes. Brand new. Discount on quantitle 3 in .225 ft . L.P. acetate
$3 \dot{\mathrm{in}} .600 \mathrm{ft}$. T. P. mylar 5 Sin. 600 ft . std. plastic. Sin. 900ft. L.P. acetate 5 in. 1,200ft. D.P. mylar. $5 \mathrm{in} .1,200 \mathrm{ft}$. L.P. acetate
5 gin. $1,200 \mathrm{ft}$. L.P. mylar 5 gin. 1,200ft. 1.P. mylar
bin. $1,800 \mathrm{ft}$. 1.P. inylar 5in. 1,800ft. 1.P. inytar
5 gin. $2,400 \mathrm{tt}$. T.P. mylar 7 in . $1,200 \mathrm{ft}$. std. acetate 7 in . 1,800it. I. P. mylar $7 \ln .2,400 \mathrm{ft}$. D.P. mylar $7 \mathrm{in} .3,60 \mathrm{ft} . \mathrm{T} . \mathrm{P}$. mylar Portage $2 /-$. Over $£ 3$ post paid.

MAXELL TAPE CASSETTES C60, 10/8; C90, 14/8; C120, 19/8. Poat extra

prestitats

AMAZING VALUE AD-309K PICK-UP ARM

TMK METER KITS ANO

These tuo ueter kils by TME offer both the professional, electronics hobbyist and student the unique opportunity of building a really firat-class precision multimeter at a worthwhlie
saving in cost. The impact resistant bakelite cabinets are suppifed with the meter scile and saving in cost. The impact resistant bakelite cabinets are supplied with the meter scule and
 MODEL $200{ }^{20,000}$ o.p. . Multimeter. Fea. mirror scale. Large $3 \times 2 \mathrm{in}$. meter. Full scale accuracy: DCV and urrent: $\pm 2 \%$, ACV: $\pm 3 \%$, resistance $\pm 3 \%$. special 0.6 V DC cuit measurements.

LASKY'S PRICE 85/

MODEL 5025
50,000 O.P.V.
FEATURING 57 MEASUREMENT RANGES
wow range selection the use of a really large meter in a inore compact cabinet. The range selected is clearly indirated on the actual meter face fachitating instan identification without laking your eyes from knob: also features polarity revers relection shielded meter tection circuit: Special uA and mA measire ment ranges.
SPECIFICATION

- DCV: $0 \cdot 0 \cdot 25 \cdot 2 \cdot 5-10-50 \cdot 250 \cdot 1,000 \mathrm{~V}$ at $25 \mathrm{~K} / \mathrm{OPV} .0 .0125$ $1 \cdot 25-5 \cdot 0 \cdot 25-125-500 \mathrm{~V}$ at $50 \mathrm{~K} / \mathrm{OPV}$. ACV: $0 \cdot 3 \cdot 10-50-250-1.000 \mathrm{~V}$ at $2.6 \mathrm{~K} / \mathrm{OPV}$, $0.1-5$ 5.25-125-500V at 5K/OPV. DCUA: 0-25uA at $125 \mathrm{~mA}: 0-50 \mathrm{uA}$ at 250 mA . DCmA $0.2 .5-25-250 \mathrm{~mA}$ at $125 \mathrm{mV} ; 0.5-50-500 \mathrm{~mA}$ at 250 mV . DC Amps: 0.5 A at 125 mV seale). Output: Capacitor ($0-1 \mathrm{uF}, 400 \mathrm{VW}$) in -20 to $+81-5 \mathrm{~dB}$ in 10 ranges. Operstes on two geries with ACV ranges. Decibels. lite cabinet, size $5 \frac{1}{2} \times 1 \times 21 \mathrm{in}$. Strong, resilient plastie handle. Complete with test learls.

LASKY'S PRICE $\mathbf{f 1 0 . 1 0 . 0}$ pott

Garrand
SP25 MkII
LASKY'S price $£ 11.19 .6$

OTOCHANGERS

1025 less cartridge
ridge ridge. stereo compa cartridge Stereo compono $8 L 55$ with J2006 stereo cartrid L65 less cartridge LL75 less cartridg SL95 less cartridge A70 MkII less cartridge AT 60 MkII BSR OA47 less cartridge SINGLE PLAYERR

P75 less cartridge
SRP22 Mains model less cart.
RP22 Battery model less TRANSCRIPTION DECES 401
garrard base
WB1 £3.8.11; W8 CLEARVIEW PERSPEX COVERS
SPC1 E3.5.0; SPC4 MK II $44 . f 8$. SPC1 23.5.0; SPC4 MK II $\mathbf{2 4 . 6} 6$
£21.10.0
18.10.0
416.12 .10
87.15 .3
£28.10.0

THER LASKY'S EXCLUSIVE

tlon. The htghest quality components and 1% tolerance resistora are used throughout Both offer professional standards of sccuracy. Supplied complete in every detail with full constructional, circuit and operating instructions.
SPECIFICATION - DCV: $0-0 \cdot 6-6-30-120-600-1200 \mathrm{~V}$ at $20 \mathrm{~K} / \mathrm{OPV}$ current: 0.0.06-6.60.600mA Resistance: $0.10 \mathrm{~K} \cdot 100 \mathrm{~K} \cdot 1 \mathrm{M}-10 \mathrm{M}$ on $(58-580.5 \cdot 8 \mathrm{~K}-58 \mathrm{~K}$ mid-acale). Capacitsnce: $0 \cdot 002 \cdot 0 \cdot 2 \mathrm{LF}$ (AC 6 V range). Decibels -..20 to -83 c B . 0 . 0.05 F blocking capacitor. Uses two 1.5 V (U.7 type) batteries. Black bakelite cabinet--sta 2 $\times 3 \mathrm{~F} \times 1 \mathrm{hin}$. Complete with test leads

DEISHI BOARD KITS
 NEW EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEM

The DENSHI BOARD system enables the young experimenter and electronics hobbyist to produce a wide ange of tramsigtor circuits of increasng sophistication-without soldering or the use of any tools at alld Basically the system comprises a slotted circoit board into which plug-in componenta and bridge pieces are set to produce up o 30 different circuits. The components are incapsulated in trans. parent plastic blocks bearing the appropriate cincuit symbol and value thus enabling even the complete novice to visually grasp the funda. mentals of circuitry after only a few noments study. In addition each DENSHI BOARD KIT comes com-
plete with an 80 page manual of circuits and data.

THESE ARE JUST A FEW OF THE CIRCUITS YOU CAN BUILD IN MINUTES:
VARIOUS RADIO RECEIVERS, AMPLIFIERS, MORSE CODE PRACTICE DEVICE, CONTINUITY TESTER, SIGNAL INJECTOR, SIGNAL TRACER, WIRELESS MICROPHONE ETC., ETC. DENSHI BOARD KIT SR-1A comprises

Hise board, tuner block; 4 resistors; choke coil; transformer; 28 A transistor for RF; 2 ridge and connecting pieces and 80 page manual. This kit permits the poilding of 18 pasic circuits.

LASKY'S PRICE £4.19.6 Pat $3 / 6$

DENSHI BOARD KIT SR-2A as $S R-1 A$ but with the following additional parts;保 citional connecting pieces; 9 V battery. This kif permits the building of 30 basic circuit

LASKY'S PRICE £7.2.6 Poot $2 / \beta$

GETYOUR LASKY'S AUDIO-TRONICS PICTORIAL
16 colour page catalogue in large $16 \times$ ilin. format packed with 1,000 's of items from our.
Send 1/- for now only and inclusion on our regular mailing ifst (5/-ovarteas)

 Branches \mid High Fidelity Audio Centres
 207 EDGWARE ROAD, LONDON. W. 2
 33 TITIENHAM CT. RD. LONDON, W. 1
 Open all day, 9 a.m. -6 p.m. Monday 10 Saurday
 152/3 FLEET STREET,LONDON, E.C. 4
 Open all day Thursday, eally closing 1 . .m. Salurday
 Tel. 01.723 3271 42-45 ToTTENHAM CT. RDD., LONDON. W. 1 Tel: 01-580 2573 Tel.: 01.6362605 Open all day. 9 a.m. -6 p.m. Monday to Saturday
 ALL MAIL ORDERS AND CORRESPONDENCE T0: 3-15 CAVELL STBEET, TOWER HAMLETS, LONDON. E, 1

scoop!

THE WORLD'S SMALLEST 6 TRANSISTOR TWO WAVEBAND RADIO RECEIVER FROM RUSSIA

THE ASTRAD ORION

Made to the highest Ru-mian space-age standard-this
markable micro-size qet meatsurew
 contains is trankiators athel othty components combined in it phin tuning capacitor. ferrite rat aerial battery, wave band gelec-
 thonswitel etc. Output to a high impedance erystal earpiece. giving ample volume (iatomatically iuljusted) and clear tone. Brief tech. spec: : Waveband caverage-Medinn witve 525 to $110 \mathrm{kc} / \mathrm{s}$, Long

 The Orion is aupplied fully biilt and tesied complete with battery, left and right fitting earphone supports and at matching the Orion). Never mise your favourite music, spart, newt-the Orion case (matagg tur ail, procising a constamt surce of enjoyment withont disturbing others.
LASKY'S
ONLY
39/6
Post $2 / 6$ Extra
echargeable
rechargeable
battery $3 / 6$

BATTERY CHARGER UNHTS - NOTE: The battery we supply with the Orion is a rechargeable type. Charger units are Price 19/6 post lree with radio-otherwise $2 /$ -

NEW FOSTER "'Criterion" MkII

2 SPEAKER TWO WAY BOOKSHELF

 SPEAKER SYSTEMAnother high quality sub-miniature bookshelf system from Foster. The "Criterion" Mk II is a sealed infinite bafle type enclosure using $5 \frac{1}{2} i n$. bass/mid range wooler with rolled cloth edge and a $2 \frac{1}{2} i n$. HF cone type tweeter. The compact cabinet is constructed of $\frac{1}{2} \mathrm{in}$. laminate with handsome oiled walnut veneer finish and black woven acoustic gauze front panel with satin chrome edge insert. SPEC: Frequency range $90-20,000 \mathrm{~Hz}$. Power handiting 10 watts. Impedence 8 ohms. HF crossover. Screw tag connections at rear. Size $12 \frac{1}{2} x$ $7 \frac{2}{3} \times 6 \frac{3}{4} \mathrm{in}$. The periormance of the "Criterion" is superior to many larger and more expensive unts and at Lasky's exclusive prlce ofters absolutely unbeatable value.

Lasky's Price $£ 9.10 .0$ or $\mathbf{2}$ for $£ 18$
Post 1-7/6. 2-12/6.

TTC MODEL C-1000

A really tiny 1,000 O.P.V. pocket multi-tester with "big" meter performance. Precision 2 Jewel meter movement. Hand calibrated to $\pm 3 \%$ accuracy on full scale of DC ranges, 4% on $A C$ ranges. $2 \frac{1}{3} \mathrm{in}$. square meter. SPECIFICATIONS AC/V ranges: $0-10.50,250.100 \mathrm{~V}$ at $1 \mathrm{~K} / \mathrm{O} . \mathrm{P} . \mathrm{V}$ DC currents: $0-1-100 \mathrm{~mA}$. Resistance: $0-$ $150 \mathrm{~K} / \mathrm{hm}$ (3,000 ohms centre scale). Decibels -10 to +22 dB . Operated on one penlight cell Two colour buffgreen case-size only $3 \frac{1}{2} \times 2 \frac{1}{3} \times 1 \mathrm{in}$. Click stop range selection switch. Ohms zero adjustment. Complete whth test leads, battery and instructions with circuit data.

LASKY'S PRICE 39/6 Post 2/6

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6, p.p. $2 / 6$. De Luxe Professional Kit with 17 tools $130 /$ - p.p. 4/6. Money ref. g'tee.

MERIN SUPRTYCD.

Dept. PW11D, Nailsea, Bristol BS19 2LP

Mr wequon ricee LONDON'S LEADING BARGAIN SPECIALISTS FOR THE RADIO • HI-FI \& ELECTRONICS ENTHUSIAST

[^1]

LOUDSPEAKERS
construction．Latest high efficiency ceramic magnets．Treated Cone sur round for，low．fundamental reso－ providing extended frequency range providng extended frequency range up to 15.000 c．p．s．Impedance 3 or 15 tional performance at low cost

Prices include HF501D HF102D 1 HIGH FIDELITY LOUDSPEAKFR UNITS Cabinets latest style Satin Teak or Arrormosia ve neer．Acoustically lined or flled woollen damping．
\qquad
 DORCHESTER Size $16 \times 11 \times 91 n$ ．Appr． Range 45－15，000 c．p．s．Rating 8－10 wat． Fitted High flux $13 \times 81 \mathrm{n}$ ．Dual $\mathbf{C 8} 19.9$
Cone spkr．Imp． 3 or 15 ohms STANWAY II Size $20 \times 10 \mathrm{z}$（1）Carr．Rating 10 watts．Incorporating Fane $13 \times 81 \mathrm{n}$ ． speaker with rubber cone surround and
11,000 line magnet．High fiux tweeter． Handsome Scandinavian design cabl－ net．Range $35-20,000$ c．p．s．Imp． 15 ohms． 16 Gis． GLOUCESTER Size $25 \times 16 \times 10 \mathrm{in}$ ． 12 in ．High flux 12，000 line speaker．Cross－over unit and I weeter． Rating 10 watts．Frequency range $12 \frac{1}{2} \mathrm{G} \mathrm{GS}$.
$40-20,000 \mathrm{c} . \mathrm{p.s}$.Impedance 15 ohms．

E2 CABINET Size17 wide
$14 t^{*}$ deep． 11 F * high．Cut for TA12 Super 15＇Super 30 and other am－ tic cover．Satin Teak or Afror－ mosia veneer finish 8 Gins． MoTOR BOARDS cut for Garrard
Turntables and many other units．Price

R．S．C．TA6 6 Watt HIGH FIDELITY SOLID STATE AMPLIFIER
 $200-250 v$ ．AC mains operated
Frequency Response $30-$ 20.000 c．p．s． 2 dB ．Harmonic
Distortion 0.3% at 1.000 c．p．s． ＇lift＇and＇cut＇controls． 3 input sockets for Treble Gram．Radio or Tape．Inputselectorswitch．Outputfor 3－15 ohm spkrs．Max．sensitivity $5 m$ V．Output rating
I．H．F．M．Fully enclosed enamelled case， $9 t \times 24 \times 5 i n$ Atractive brushed silver finish facia plate $10 t \times 3!1 \mathrm{n}$ ． and matching knobs．Complete kit of parts with full wiring diagrams and instructions． 7 Gins Or factory built with 12 months guarantee．$£ 8.1$

EXTREMELY ATTRACTIVE PLINTHS fini－ shed in Teak or Afrormosia veneer．Transparent plastic＂roll over＂cover．

RECORD PLAYING UNITS

 Money saving units．Mounted on Plinth．Supplied with transparent plastic cover．Ready to plug into Amplifer or Tape recorder．
RP2 Garrard SP25 Mk II fitted Goldring CS90 high compliance ceramic Stereo Mono cartridge with dlamond stylus．Inc Carr．22Gns．

RP3 Goldring Lenco GL68 CS90 cartridge．Inc． 28 Gns ．
Carr．

Carr

Other types avallable with Magnetic cartridges and with alternative design plinths．

R．S．C．PLINTHS

Avallable $59 / 9$
with trans．plastic 6 Gins INTERES
On Credit CHARGES Sales settled REFUNDED in 3 months．

＇PACKAGE＇OFFERS

30 WATT OUTPUT

＊Garrard SP25 Mk II Turntable on Plinth
＊Goidring Cs90 Ceramic PU Cartride Plinth diamond stylus K Pair Stanway II Speaker Units Fourfully wired units ready to 76 Gns．Carr 13 WATT OUTPUT
＊Garrard SP25 Mk II 4 sp player unit on plinth ＊Galding Csifier in venc P．U．Cartridge ＊Pair of Dorchester Loudspeaker 51 GNS Units．Special total price．
Or Dep．$£ 10$ and 9 mthly payments $\mathbf{E 5 . 1 1 . 0}$ Carr， $25 /$
\＆59．19．0）．Transparent plastic cover 3 ens（Tota

RSCGAIRIB WAIT STIERED AMPIIFIITR

FULLY TRANSISTORISED，SOLID STATE CONSTRUCTION HIGH FIDELITY OUTPUT OF \＆．5 WATTS PER CHANNEI with any crystal or ceramic Gram
P．U．cartridge，Radio tuner．Tape re－
corder corder．＇Mike＇etc．$\star 3$ separate
switchied switched input sockets on each chan－ nel \star Separate Bass and Treble con－ trols \star Slide Switch for mono use \star
Speaker Output 3－15 ohms

Response $30-20,000 \mathrm{c}, \mathrm{p}, \mathrm{s}, 2 \mathrm{~dB}$ Harmonic Distortion 0.30 c．p．s．Hum and Noise－ $70 \mathrm{~dB} \star$ Sensitivities （1） $300 \mathrm{mV} 0.3 \%$ at 1000 100 mV （ 4 ） 2 mV ．Outputrating I．H．F．M．+ Handsome brushed sllve finish Facla and Knobs．Complete kit of partswith full 191 Carr
wiring diagrams \＆instructions．Factory built with 12 wiring diagrams \＆instructons．Factory built with 12
mth gntee 16 GiNS or Deposit $\mathbf{2 5 . 2 . 6}$ and 9 mthly $\frac{1}{2}$ Carr． $7 / 9$ GNS． mth gntee 16 GNS or Deposit \＆5．2．6 and $9 \mathrm{mthly}-2$ GNS ins $18 \frac{1}{2}$ Gns．Des．$£ 5.10 .6$ and 9 mthly or Afrormosia veneer hots $39 /$ ．（Total £23．1．6）．

AUDIOTRINE HI－FI SPEAKER SYSTEMS
Consisting of matched 12in．11，000 line 15 watt 15 ohm high quality speaker，cross－over unit and tweeter． sure surprisingly realistic reproduction． $\mathbf{f 5} 15.0$
or Senior 15 wat inc．HF 126 Or Senior 15 wat inc．HF 126
15,000 line Speaker $£ 6.15 .0$ Carr． $6 / 6$

LINEAR L10 HIGH FIDELITY 10W AMPLIFIER with se 2 arate Pre－amg．Marnet P．U．matching．To clear 10 GNS

HI－FI SPEAKER ENCLOSURES Teak or Afr
finish．Modern design．Acoustically lined Prices Inc．car
JE8 Size $16 \times 11 \times 91 n$ ．Pressurised．Gives pleasing results with any 81 n ．H1－F1＇speaker SE8 For optimum performance with any 8in cr H1－Fi＇speaker．Size $22 \times 15 \times 9 i n$ ．Ported．

 SE10FOr outstanding results SE12 For with 101 n Hi－Fi＇spkr $\mathbf{C 5} 15.0$ Fi speaker and Tweeter． C 6.15 .0
Size $24 \times 15 \times 101 \mathrm{n}$ ．P＇td．

R．S．C．TFM1 SOLID STATE VHF／FM RADIO TUNER

Total cost of parts with detailed wiring
diagrams $\&$ instruc－ tions． Inc． Car 161 gnctory built 161 gns．Or in Teak
finished cabinet as inlustrated cabinet as Terms：Deposit $£ 5$ and 9 monthly pay－ and 9 monthy pay－
ments 22. Total $\mathbf{2} 23$.

太 Migh－sensitivity $\star 200-250 \mathrm{v}$ ．A．C．Mains opera－ tion．太 Sharp A．M．Rejection．太 Wrift－iree recep－
tion．太 Output ample for any amplifer（approx $500 \mathrm{~m} . \mathrm{v}$ ．）．\star Simple allgnment instructions．\star Out－ put available for feeding tuning meter．t output for feeding Stereo Multiplexer．t Tuner head using silicon Planar Transistors．$\frac{\text { D }}{}$ Designed for standard 80 ohm co－axial input．Visually matching our Super 15 and The pre－wired tuning head facilitates speed and simplicity of construction． Printed circuitry．Oniy high grade transistors and components used．A qualtty product at considerably less than the cost of comparable units． gualry product at considerably ess than the cost of comparable units．

R．S．C．SUPER 30 Mk II HIGH FIDELITY STEREO AMPLIFIER

High Grade Components．Specifications comparable with units costing considerably more．

THANSISTORS 9 high quality types in each channel
OUTPLTT 10 Watts R．M．S．continuous into 15Ω（per channel）． 15 Watts R．M．S．con－ tinuous into 3Ω
INPLT SENSITIVITIES Mag．P．U． $4 \mathrm{~m} . V$ ． Ceramic P．U． 35 mV ．Tape Amp． 400 mV ．
Aux． 100 mV ．Mic． 5 mV ．Tape Head 2.5 mV ． FREQUENCY IRESPONSE ± 2 dB．10－ 20,000 c．p．s．
TREBLE：CONTROL +17 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$ ．
BASS CONTROL +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ． HUM LEVEL－ 80 dB
HARMONIC DISTOIRTION 0.1% at 10
Watts 1.000 c．p．s．
CROSS TALK 52 dB at 1,000 c．p．s．
BRADFORD 10 North Parade．（Hall－dyy Wed．）．Tel． 2549
BLACKPOOL（Agent） 0.8 C ．Electronics． 227 Church Street

DERBY ${ }_{26}$ osmaston Re．The Sot（Hall－day Wed．，Tel．41381
DARLINGTON 18 Priestate（Hall－day Wed．）．Tol．seau3
EDINBURGH 133 Lelth St．（Half－day Wed．）Tel．Waverley 5766
GLASGOW 326 Argyle St．（Hall－day Tues．）Tel．CITy 4158

Employing Twin Printed Circuits CONTROLS 5 Position Input Selector Bass，Treble．Vol．，Bal．：Stereo／Mono Switch．Tape Monitor Switch．Mains ，
INPUT SOCKETS（1）P．U．（2）Tape Amp． （3）Radio．（4）Mic．or Tape Head．（Operation of Input Selector assures approprlate equalisation）．
CHASSIS Strong Steel construction
FACIA PLATE：Attractive design in rigid Perspex．Spun silver matching control knobs as avallable．Complete 22 Gns． point to point wiring diagrams and detalled Point to poin
instructions．

BASC
H！－FI GENTRES LTD． MAIL ORDERS TO： 102 Henconner Lane，Bramley， Leeds 13．No C．O．D．under £1．Terms C．W．O．or C．O．D． Postage $4 / 6$ extra under fa 5／9 extra under £5．Trade supplled．S．A．E．withenquirles please．Open all day Sats．

Eminentiy suitable for use with any make of rick－up or Mic．（Cerami or Magnetic，Moving Coll，Ribbon or Crystal currently available．Superb
sound outiout quality can be obtained sound outbut quality can be obtained
by use with first－rate ancillary equipment．Unit factory 28 ancinary or Deposit e\％．5．0 and 9 monthly pay－ ments $56 / 3$（Total £32．11．3 or in Teak or Afrormosia veneer housing 31 Gns． 9 monthly payments of $64 / 3.6$ and £35．19．6）．Send S．A．E．for leaflet．

32 High Street．（Half－day Thurs．）Tel． 56420 LEICESTER 5－7 County（Mecca）Arcade，Briggate（Half－dayWed）Tel28252 LEEDS

73 Dale St．（Half－day Wed．）Tel．CENtral 3573 LIVERPOOL 238 Edgware Road，W2（Half－day Thurs．）Tel．PAD 1629 LONDON 60A Oldham Street（Half－day Wed．）MANCHESTER 106 Newport Rd（Half－day Wed）Tel． 47096 MIDDLESBROUGH 41 Blackett Street（Opp．Fenwicks Store）NEWVASTLE UPON （Half－day Wed．）Tel． 21469
13 Exchange Street（Castle Market Bldgs．）
（Half day Thursday）Tel．20716

THE＇YORK＇HIGH FIDELITY 3 SPEAKER SYSTEM
 \star Response 30－20，000 c．D．s．Impedance 15 ohms． Carr．12／6 considerably more．Consists of（1） 121 ． 15 watt Bass unit with cast chassis，Roll rubber cone surround for ultra low resonance， and ceramic magnet．（2） 3 －way quarter section series cross－over system．（3） $8 \times 5 \ln$ ．high flux middle range＇speaker．（4）High efficiency tweeter．（5）Woollen acoustic damping material．（6） Deak 5 eneered 10.6 and 9 mithiy payments $39 /$－（Total $£ 23.1 .0$ ）．

R．S．C．A10 30 WATT ULTRA LINEAR HI－FI AMPLIFIER Highly sensitive，Push－Pull，
 Tone Control Stages．Performance figures of factory built units：Hum level－70dB．Frequency put transformer．All high grade components． put transformer．All high grade components． Separate Bass and Treble Controls．Sensiti－ vity 36 mV ．Suitable for high impedance microphones，Crystal or Ceramic P．U＇s．De－ slgned for Cluls，Schools，Theatres，Nance Falls or Outdoor Functions，etc．For use with Electronic Organ，Guitar， String Bass，etc，Gram，Radio or Tape．Reserve L．T．and H．T．for Radlo Tuner．Two inputs with associated volume controls so that two separate inputs such as Gram and＂Mike can be mixed．200－250v． For 3 and 15 ohm speakers．Complete kit of parts whin Carr $12 / 615$ UnS． Twin－handled perforated cover 27／6．Supplied factory built with EL34 out

R．S．C．A11 HIGH FIDELITY 12－14 WATT AMPLIFIER

PUSII－PULL ULTRA LINEAR OUTPC＇I ＂BUILT－IN＂TONE CONTROL PRE－AMP． allowing mixing of＂mike＂and gram．etc，etc． High sensitivity 5 valves－ECC83（2），EL84（2）， EZ81．High quality sectionally wound output transformer．IND．BASS AND TREBLE CON－
TROLS．Frequency response $+3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$ ． Hum level -60 dB ．SENSITIVITY 40 millivolts． For Crystal or Ceramic PUs．High Impedance ＂mikes＂．For Musical Instruments such as String Bass．Electronic Guitar etc．Size approx $12 \times 9 \times 7 \mathrm{in}$ ．For AC mains $200-250 \mathrm{v}$ ． $50 \mathrm{cps} 9 \frac{1}{2}$ GinS．
Output for 3 and 15 ohm spkrs．SAE for leaflet．Complete kit． Full instructions and point－to－point wiring diagrams．Carr 11／6（or factory Full instrugs，Twin handled metal cover $27 / 6$ ．TERMS ON ASSEMBLED
buNITS．Deposit $99 / 6$ and 9 monthly payments of 23／－（Total $515,6,6$ ）

RSC A11T THANSIS－ above complete kit θ Gns （Assembled 13 Ging）
R．S．C．BASS－REGENT 50 WATT AMPLIFIER An exerption－ ally powerful high quality all－purpose unit for lead，
rhythm，bara guitar，vocill guitar，voosle radio，tape． t．Two extra heavy duty 12 in ．Loudspeakers． t Four Jack inputs and two Volume Controls for
simultaneous use of up to simulaneous use of up tack－ups or＂mikes＂． four pick－ups or mikes 55 Gns．Carr． $30 /$ or or and 9 monthly payments of 25．11．9．（Total 60t gns．）． Send S．A．E．for leafiet． G100 100 watt peak output With Pr．speaker columis and a Bass ${ }^{\text {and Two } 15}$ Spkrs）． 991 ning R．S．C．BATTERY／MAINS CONVERSION UNITS
 Type BM1 An all－dry
battery eli－ $\operatorname{minator}_{\text {Size }}$ ． 2in．approx． Completely replaces bat－ teries supplying 1.5 v ．and 90 V ．Where A．C．mains 200 v ． $50 \mathrm{c} / \mathrm{s}$ is available． 250 v ． $50 \mathrm{c} / \mathrm{s}$ is avallable． $49 / 11$ or assembled $59 / 11$ ． SELENIUM F．W． RECTIFIERS（Bridged） All 6／12v．D．C．output．Max． A．C．input $18 v .1$ a． $4 / 3$ ．
$2 a .6 / 11.3 a .9 / 8.4 a .12 / 9$.
6a．15／9．

R．S．C．MAINS TRANSFORMERS FULLY GUARANTEED．Interleaved and Impreg－ nated．Primaries $800-850 \mathrm{v}$ ． $50 \mathrm{o} / \mathrm{s}$ ．Soreened MIDGET CLAMPED TYPE $81 \times 24 \times 84 \mathrm{in}$ ． $250 \mathrm{v}, 60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}$.
$250-0-250 \mathrm{v} ., 60 \mathrm{~mA} 6.3 \mathrm{v}$
FULLY 8HROUDED UPRIGHT MOUNTING $250-0-250 \mathrm{v}, 80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}$ ．
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v}$ ． $100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ ． $300-0-300 \mathrm{v}$ ， $130 \mathrm{~mA}, \quad 8 \cdot 3 \mathrm{v}$ ． 4 a ．
For Mullard $\$ 10$ Amplifer．
 $350-0-350 \mathrm{v}, 150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$ ． $4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$ ． 3 s $425-0-425 v .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}$ ．，c．t．， 5 v .3 a ． $450-0-450 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a} .$, c．t．， 5 v ． 3 a ． TOP 8FROUDED DROP－THROUGH TYPE $250-0-250 \mathrm{v} .70 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} \cdot 2 \mathrm{a}, 6$
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .3 .5 \mathrm{~s}$.
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 6.3 \mathrm{v} .1 \mathrm{a}$.
$350-0.350 \mathrm{v}, 80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{~s} ., 0-5 \mathrm{v} \cdot 3 \mathrm{v} .2 \mathrm{a}$ $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$ $300-0-300 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$ ． $4 \mathrm{a} . .00-5-6 \cdot 3 \mathrm{v}$ ．ia Buitable for Mullard $\$ 10$ Amplifier．
 PILAMENT OF TRANSISTOR POWER PACK TYDe $6.3 \vee .1 \cdot 5 \mathrm{a}, 7 / 9 ; 6 \cdot 3 \mathrm{v}, 2 \mathrm{a}, 8 / 9 ; 6 \cdot 3 \mathrm{v}$ ． 3 a ． $1019 ; 6 \cdot 3 \mathrm{v}$ ． $6 \mathrm{a} .21 / 9 ; 12 \mathrm{v}, 1 \mathrm{~A} .8 / 9 ; 12 \mathrm{v} .3 \mathrm{a}$ ．or 24 v ． $1 \cdot 5 \mathrm{a}, 21 / 9$ ； 0－9－18v．1ta．17／9；0－12－25－42v．2a．29／9．
OFARGER TRAN8FORMERS 0－9－15v．1才a．14／11；
$2 \mathrm{~s} .17 / 9 ; 3 \mathrm{~s}, 19 / 11 ; 5 \mathrm{~s} .28 / 0 ; 6 \mathrm{~s} .27 / 9 ; 8 \mathrm{~s} .38 / 0$ ； $23 \mathrm{~s} .17 / 9 ; 3 \mathrm{~s} .19 / 11$ ；5s．28／0；6s．27／0；8s． $88 / 0$ ． AUTO（8tep UP／atep DOWN）TRANBFORMERS 150 watts， $29 / 11 ; 250$ watti $49 / 9$ ； 500 watto $99 / 9$ OUTPUT TRANSFORMERS
Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω ush－Pull 8 watta EL84 to 3Ω or 15Ω Push－Pull EL84 to 3 or $15010-12$ watte Push－Pull EL84 to 3 or $15 \Omega 10-12$ watte． $15 \Omega 88 / 9$ Push－Pull Ultra Linear for Mullard 510，etc．80／9
 Push－Pull 20 watt high quality sectionsily 150 ．．59／9 8MOOTHING OHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \Omega 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 10 / 9$
6／12V CAR BATTERY CHARGERS
 Compiote kit of parts with Ammeter and circun
 11 types $200-200 \%$ A．C．Mans．Built 101 －extra．

FANE POP 30c LOUDSPEAKERS R．SC ${ }^{122 \mathrm{n}} \mathrm{B}^{8-150}{ }^{25}$ watts R．M．S．\quad f5．19．9

翏

30 WATT HI－F｜AMPLIFIER

for Guitar，Vocal or Instrumental Group arate Bass and Treble controls．Current valves．Peak output rating．Strong Rexine covered cabinet with hand－ es．Attractive black／gold perspex facia．Neon indicator For $200-250$ v．A．C．malns．For 3 or 15 ohm speakers．Send S．A．E．for leafiet．Deposit 5 gns ．and
9 mthiy payments of $38 / 8$（Total 22 ens）． 19 Gns．Carr $12 / 6$

F．A．L．＇Phase Fifty＇PUBLIC ADDRESS AMPLIFIER Solid State Circuitry． 50 Watts Peak Output． 3 separately controlled inputs for mixing purposes．Separate Bass and Treble Controls．Output for loud－ speakers 3 － 30 ohms．Suitable for Dypamic．Ribbon or Crystal 29 Gins Vocal or Instrumental Groups．Send S．A．E．for leafle

HIGH QUALITY LOUDSPEAKERS

n Teak or A frommosia veneered Cabinets

10，000 lines Carr7／6
for15 ohms． $49.9 \begin{aligned} & \text { 20 Watt } 10,000 \text { lines } \\ & 15 \text { ohms．Carr } 8 / 9\end{aligned} \mathbf{8 . 1 9 . 9}$
FANE ULTRA HIGH POWER LOUDSPEAKERS
解 continuous． 2 year guarantee．Htgh Flux 14,000 line ceramic magnets．Heavy cast chassis．
＇POP＇ 100
$18 " 100$ Watt
＇POP＇ 60
＇POP＇ 50
18＂ 100 Watt
$15^{\prime \prime} 60$ Watt
12＂ 50 Watt

POWER PACK KIT Consisting of Mains transformer．Metal

MINI－8 HI－FI Loudspeaker Units Special Offer Teak or Afrormosta veneered cabinet，stze approx． 10 x $61 \times 7+$ in
Inc．Carr
Peak power handling 8 watts $3-5$ ohms． 69／11

Learn at home First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry Chambers College provides first rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
Satisfaction or Refund of Fee' Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885 -Over 150,000 successes CHAMBERS COLLEGE
incorp. National inst. of Engineering
(Dept. 205 F) 148 Holborn, London, E.C.1.

The ideal, economical and safe way of running Transistor Radios, Record Players, Tape Recorders, Ampli fiers etc. trom A.C. Mains. All units are completely isolated from mains by double wound transtormer ensuring 100% safety
PLUS-3
MAINS UNIT
Provides three separate switched output voltages 6 v ., 7tiv. and 9v. DC. at tractive case with indica. tor llght, mains lead output socket, plug and lead Size $41 \times 3 \frac{1}{2} \times 21$ in.

$57 / 6$
DIN plug for

45/- P.\& P. $2 / 6$

Cassette ReP. 2/6 POWER PLUS MAINS UNIT for Cassette Tape Recorders using 7iv. Complete with DIN plug for recorde power socket. Can alsobe supplied for a 6 -volt output complete with sultable plug. (Please state make, model and voltage required.)
Also avallable-Unit to run your Cassette Recorde from 12v. Car Battery 32/6. P. \& P. 2/6.
MAINS UNIT for FI-CORD 202A
TAPERECORDER P.\& P. 5/-
£4.15.0

MAJOR POWER PLUS

 MAINS UNITSFor single outputs, $6 \mathrm{v}, 9 \mathrm{v}, 12 \mathrm{v}, 18 \mathrm{v}, 39 / \mathrm{s}$ For two separate outputs, $4 \frac{1}{2} v+4 \frac{1}{2}$ $6 v+6 v ., 9 v+9 v .42 / 6$. P. \& P, $2 / 6$ pe unit. (Please state outputs reqed).

R.C.S. PRODUCTS (RADIO) LTD

SAFEST \& QUICKEST WAY TO CONNECT ELECTRICAL EQUIPMENT TO THE MAINS

No plugs-no sockets-no risk of bare wires o connect anything electrical, from an oscillo housing depress thic drill, simply open the fuse housing. depres the keys, insert the wire:s and the Ke housing. A neon light on the front of he Keynector glows to indicate proper connec . 13 uni palel connections can be made up EN amps Keys are colour coded and lettered - Nosing is inck identification The Keynecto $5 \times 3 \times 13$ iwo-tone plastic and meatures $5 \times 3 \times 1 \frac{3}{4} \mathrm{in}$. Price $39 / 6$, plus $5 /-\mathrm{p} 8 \mathrm{p}$
E. B. INSTRUMENTS

RISIO OF FLECTRONIC BROKERS LTI
49-53 PANCRAS ROAD LONDON NW1
Telephone* 01-8377781

BIGGEST BREAKTHROUGH IN RADIO KITS!

THE REVOLUTIONARY APOLLO ' 6 '' CAN BE BUILT

SPECIALLY made for the thousands of dis criminating people who want the finest easy-to-build radio ... at a reasonable price! This is a different breed-it will startle you! EIGHT MONTHS AGO our two designers were briefed to produce a radio kit that would fill these technical demands :-DEMAND-A. IT SHOULD BE POSSIBLE TO BUILD PAINLESSLY IN ONE EVENING ANSWER-the Apollo " 6 " has simplified, well illustrated step-by-step plans.

CONTAINS FEATURES THAT
 CAN'T BE BOUGHT IN READY MADE SETS-AT ANY PRICE

- receives medium wave \& trawler broadcasts.
- every component brand new-no surplus rejects or "seconds".
uses latest Silicon Planar Epitaxial Epoxy transistors.
- six stage stable reflex-2 R.F., 1 Diode demodulation, 3 A.F
- simplified illustrated plans.
- from parts io programmesin anevening PLUS MANY MOREI

No soldering iron is necessary and you don't have to have a magnifying glass and a pair of tweezers. DEMAND-B. IT SHOULD WORK FIRST TIME . . . -ANSWERApollo " 6 " uses latest rugged Silicon Transistor Circuitry and every single transistor dinde caracitor, resistor, inductance etc. is brand new and fully tested-no surplus parts, no manufacturers
rejects, no manu-
facturers"seconds", and uses "Ever
Ready" battery
DEMAND-C, IT
MUSTHAVETHE
POWER TO OPERATE OPTION.
AL LOUDSPEAKER...DEMAND -D. IT MUST GIVE GOOD RECEPTION IN DIFFICULT AREAS - DEMAND-E. IT MUST WORK ON ITS OWN INTERNAL FERRITE ROD AERIAL ETBE ETC. ETC. ANSWER-The Apollo " 6 " does
all this-and much more!
REVOLUTIONARY SILICON PLANAR EPOXY CIRCUIT

DESIGN

Apollo " 6 " will probably be bang up-to-date well into the seventies! it bristles with latest technical innovations. Six stage stable reflex N.P.N. and P.N.P. circuit consisting of 2 Radio Frequency stages, 1 Diode demodulation stage and 3 Audio Frequency stages. Uses latest Silicon Planar Epitaxial Epoxy transistors (similar to types used in America's Space

IRON CLAD GUARANTEE

 Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full. at once and without quibble or questionProject). The first two transistors give amplification of 100 to 400 each, (at only 100 Microamps collector current approx). Output transistor gives amplification
of 235 to 470. Stable refiexing gives the Apollo "6" staggering selectivity, uncanny sensitivity, true-to-life sound reproduction-in fact its range, power and selectivity must be experienced to be believed. Enter a new magic world of reception-station after station (home and abroad).

THRILLING SOUND OF AN SOS AT SEA Listen to the thrilling sound of an SOS at sea-tune in to a world you've never heard before... NOTE. Because members of our own Staff (and their friends) are enthusiastic and have already bought Apollo " 6 " parts we know demand will be enormous. DON'T DELAYSEND FOR YOURS NOW, send $59 / 6+3 / 6$ P. \& P. for all parts, illustrated plans, personal listening earpiece etc. (all parts can be bought separately)

18 Little Preston St, Brighton, 1. Sussex.

LINDPAIRIPTRONICS LTD

See our vast range of Electronic Components and Accessories at our enlarged Component Centre 25 Tottenham Court Road

MAINS KEYNECTOR SAVES TIME-SAFELYI

31001

J001	3.	Long Play PVC	225 ft .	916
J100\%	$3{ }^{*}$	Triple Play Poly	$6001 t$.	10/6
J1003	古	Long Play PVC	900 ft .	10
51004	0^{*}	Double Play Poly	1200 ft .	151
J1005	E"	Long Play PVC	1200ft.	12/6
J1006	11*	Double Play Poly	1800ft.	22/6
J1007	-	Standard Play PVC	1200ft.	12/6
11008	7"	Long Play PVC	1800 ft.	17/6
J 1009	7"	Double Play Poly	2400 ft.	25
	7"		3600ft.	

MTOMe

Visit our Brand New eniarged Hi-Fi Demonstration Room, Tape Record Bar and Sclentific Show Microscopes, Binoculars. Teleacopes and Watches at 18/49 Tottenham Court Road
THC.C1001 MULTITESTER in leather case. 20,000 opv AC volts

20,000 opv. AC volt DC volts 5.25. 125 rent $0-50 \mu \mathrm{~V}, 0-250 \mathrm{~mA}$ Realstance $0-60 \mathrm{~K}, 0-6$ Megohm. Decibels -20

TRANEFORMERS

AUTO WOUND TRANSFORMERS

LOW VOLTAGE 12 VOLT RANGE

${ }^{\text {Primary }}$ MT111 0.5 Amp
 MT69 4 Ainp Bize $3 t \times 24 \times 2 \ddagger \mathrm{in}$. MT70 6 Amp Size $4 \times 3 \times 3 \mathrm{in}$. MT72 10 Amp Bize $3 \mathrm{f} \times 4 t \times 4 \mathrm{in}$. Wgt $6 \mathrm{lb} 30 z$ Price 51/ MT187 10 anp

LOW VOLTAGE 24 VOLT RANGE

LOW VOLTAGE 30 VOLT RANGE
Primary 2001950y secondary Tapped 12-15-20-24-30
MT112 0.5 Amp Bize $3 t \times 2^{7 / 1} \times \quad$ Wgt 1 th 402 Price $17 / 4 \quad$ P\&P $3 / 9$
MT79 1 Amp size $\begin{aligned} & 169 / 18 \mathrm{in.} . \\ & 29\end{aligned}$

LOW VOLTAGE 5O VOLT RANGE
Primary 200-250v 8ECONDARY TAPFED 10-25-83-40-50v

 Wigt 191blo Price 165/-P\&P 13/6 LON VOLTAGE 60 VOLT RANGE

Primary 200/250v. Becondary Tapped 24-80-40-48-60

 MARNS H.T. RANGE. Size PricePAP, $\begin{array}{lllllllll}\text { MT1AT } 250-0-250 v & 80 \mathrm{MA} & 6.3 \mathrm{v} 3.5 \mathrm{~A} & 5 / 6 \cdot 3 \mathrm{~V} & 1 \mathrm{~A} & 31 \times 3 \times 3 \mathrm{in} . & 38 /- \\ \mathrm{MT}\end{array}$ MT6AT $250-0-250 \mathrm{v}$ 100MA $6 \cdot 3 \mathrm{v} 3 \cdot 5 \mathrm{~A} \quad 5 / 6 \cdot 3 \mathrm{v} 1 \mathrm{~A} \quad 4 \times 3 \mathrm{~K} \times 31 \mathrm{in}$. MT110 $250-0-250 \mathrm{v}$ 120MA $6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A} \quad 5 / 6 \cdot 3 \mathrm{~V}$ 1A $4 \times 4 \times 3 \mathrm{in}$. KT12AT $300-0-300 \mathrm{~V} 120 \mathrm{MA} 6 \cdot 3 \mathrm{v} 4 \mathrm{~A} 5 / 6.3 \mathrm{v} 1 \mathrm{~A} \quad 4 \times 34 \times 3$ in. MT33AT 300-0-300v 150MA MT2AT $350-0-350 \mathrm{v} \quad 80 \mathrm{MA} \quad 6 \cdot 3 \mathrm{v} 3 \cdot 5 \mathrm{~A} 5 / 6 \mathrm{v} 1 \mathrm{~A} \quad 4 \times 3 \mathrm{t} \times 3 \mathrm{in}$. MT7 $\quad 350-0-350 \mathrm{v} 100 \mathrm{MA} \quad 0.3 \mathrm{v} 3.5 \mathrm{~A} \quad 5 / 6.3 \mathrm{v} 1 \mathrm{~A} \quad 4 \times 3 \frac{1}{2} \times 3 \mathrm{lin}$. MT8 $\quad 350-0-350 \quad 120 \mathrm{MA} \quad 6.3 \mathrm{v} \quad 3.5 \mathrm{~A} \quad 5 / 6-3 \mathrm{v} \quad 1 \mathrm{~A} \quad 4 \times 3 \% \times 3 \mathrm{ln} . \quad 50 /$ BATTERY CHARGER TYPES
Primary Voltage 200-850\%. Secondary 6-12v.
M77 1 Amp Size $2!\times 2 \ddagger \times 2$ in. Wgt 1 lb $60 z$ Price $15 /-$ P\&P 4/6
 MT46 2 Ainp Bize $3 \frac{1}{4} \times 2 \hat{S} \times 2 \mathrm{ilin}$. Wgt 21 b 40 z Price $85 / 4$ P\&P8/-

 $\begin{array}{llll}\text { MT78 } & 5 \mathrm{Amp} & \text { size } 4 \times 3 \times \times 3 \text { in. } & \text { Wgt } 5 \mathrm{lb} 40 \mathrm{z} \text { Price } 42 /- \\ \text { MT86 } & 6 \mathrm{Amp} & \text { gize } 4 \times 3+\times 3 \mathrm{i} \mathrm{in} . & \text { Wgt } 5 \mathrm{bl} 120 \mathrm{z} \text { Price } 48 /-\end{array}$ MT86 6 Amp gize $4 \times 31 \times 37 \mathrm{im}$. Wgt 5 bb 120 z Price $48 /-$

 MT147 10 Amp Size $4 i \times 3$. 4 in . Wgt 9 lb 3 oz Price $105 /-\quad$ P\&P 9/-
 Ampersger are D.C. with nominal selenium bridge rectiflers MAINS ISOLATING RANGE ALSO AVAILABLE

SHIRA 62D MULTI TKRTER 20,000 o.p.V. DC voltage: $50-25-60-250-$ $500-2 \cdot 5 \mathrm{~K}$ (80,000 ohms per
volt). AC voltage; $10-50-1$ Yolt). AC Voltage: $10-50-$
$100-500-1000$ volts ohms per volt). DC Cu rent: $0-50 \mu \mathrm{~A}, 0-2-5 \mathrm{~mA}, 0$
er $4 t \times 31 \times 1 \mathrm{ln}$.
P. $\& P$.

$$
\begin{aligned}
& \text { o-6Mg (300 ohm and 30K } \\
& \text { at centre scale.) Capacitan }
\end{aligned}
$$

mfd, $001 \mu \mathrm{t}$ to 1 luf . Decibels: -2001 +22 dB . 8 ize $4 \frac{1}{3} \times 31 \times 1 \mathrm{in} .71 /-$ P. \& P. $3 / 6$ 8-DeC BREAD

Bribish Made
Bolderless breadboard panels, for tast Lible component connectlons.
Single DeCs. One g-DeC with Control Panel, Jig and Accessories for solderless connections to controls, et., with booklet detalls for a variety of circuits $89 / 8$ Petals ${ }^{\text {del }}$ 4-DeC KIT. Four g-DeCs with two Control Paneia, Jigs and Accessories and the book-
let "Projects on S -DeC" all contained in a atrong attractive platic case. Ideal for th professional user. $\mathbf{4 5 . 1 7 . 6 .}$
GARFARDDECKS

8RP22 less cartridge 1025 Btereo/Mono with cart 2025 Stereo/Mono with cart 30008 Stereo/Mono with cart
3000 D Stereo/ Mono with cart SP25 less cartridge $8 \mathrm{SP25}$ less cartridge sLss less cartridge gL55 with Decca Deram cart 8L65 less cartridge Covers for above
Bases for above Basen for above
AP75 less cartridge AP75 less cartridge $9 L 75$ less cartrige BL05 lebs cartridge BPECLAL OFFER
25. 9.6 SP26 less cart., with base \$13. 2.6 37.19 .6 27.18 .6
80.19 .6 810.19 .6 811.18 .6 817.18 .6
$\$ 11.19 .0$ 817.4 .6 ${ }^{\$ 14.9 .6}$先. 19.0 88.10.0 $\$ 18.18 .0$ +888.7.0 238.19 .6
84.19 .6 P. \& P. Deck/Cover/Base 17/-. MINIATURE SOLDERING IRON
\qquad
Britigh made and designed for uae with tranaistor circuitry but ideal or many $7^{3} / 1$, in. fin. alide on bit. Price $32 / 6$ P. 88 P. $2 /-$

| $1-$ |
| :--- | | OWN and |
| :--- |
| HANDLE a |

2 BUILD $\begin{aligned} & \text { and USE }\end{aligned}$ a modern and professional CATHODE RAY OSCILLOSCOPE

3 READ and $\begin{aligned} & \text { DRAW and }\end{aligned}$

UNDERSTAND CIRCUIT DIAGRAMS

4CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- Valve experiments
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- oscillators
- SIGNAL TRACER
- Photo electric circuit
- Computer circuit
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- time delay circuit
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

TOPIC DF THE MONTH

Fair Comment

FOR the manufacturer and retailer, audio is now very big business-and the build-up has by no means yet reached its peak. This is a good thing for several reasons. Apart from the smaller, specialised, hi-fi companies the big boys have jumped on the bandwagon with budget schemes of audio separates. These are attractive propositions to the purchaser with more limited means and most of those that we have heard make very acceptable listening. Not, perhaps, always true hi-fi but a definite giant step from the often awful radiograms and other instruments of torture long accepted by the public as music reproducers.

The optimists amongst us are really beginning to believe that the man in the street is at last learning to realise that audio (be it from tape, radio or record sound sources) can be so much more enjoyable when played through decent equipment. And with all this new gear, the emphasis in the tuners is on f.m. reception and stereo at that. Loud applause from all the P.W. staff, who marvel why any listener without cloth ears can still listen to low-fi a.m. when f.m. offers such incomparable improvement.

And on the home constructor front, a keen interest is being maintained in audio projects and shows no sign of abating. This, and the activity on the commercial side, are complementary factors. The sheer quantity of audio merchandise on the market, not to mention the number of technical innovations and ideas, serves to whet the appetites of the home constructors and experimenters for constructional and theoretical reading matter on the subject.

This is one reason why Practical Wireless and Practical Electronics will be sharing a demonstration booth at the Audio Fair this month-their first participation in the event-to display and demonstrate some of the audio projects now part and parcel of the coverage of the two journals. We hope as many readers as possible will get along and look us up on stand 73 on the ground floor. For those unable to visit the Fair, perhaps the special supplement in this issue will be some consolation.

W. N. STEVENS-Editor.

NEWS AND COMMENT

Leader473News and Comment 474
Showtime'69 487
Practically Wireless by Henry 491
Audio Fair Preview 499
Letters to the Editor 511
M.W. Column 513
On the Short Waves by Malcolm Connah and David Gibson, G3JDG 522,525
CONSTRUCTIONAL
Pedal Steel Guitar by F. C. Judd 476
I.C. of the Month, Audio amplifier by L. A. J. Ireland 483
Medium Wave DX Receiver Part 2 by David Gibson, G3JDG 492
Sub-Miniature Power
Supply by A. Ring 512
Mono-Stereo Amplifier by James Hossack 521
Beginner's Transistor Capacitance Bridge Part 2 by Keith Johnson 526
Take 20, Signal Generator/B.F.O. by Julian Anderson 533
OTHER FEATURES
P.W. Guide to Components Part 11 by M. K. Titman, B.Sc. 496
Basic Semiconductor Technology, Part 6 by M. F. Docker, M.Sc. 514
DECEMBER ISSUE WILL BE PUBLISHED ON NOVEMBER 7th

[^2]
news And comment

FREE RADIO AND MORE FOR TELEVISION

No, not pirate stations-but the abolition of the radio licence. On 1st April, 1970 , the combined radio/TV licence will go up 10s to $£ 610$ s. Also on this date, the 25 s . separate sound and car radio licence will go.

Announcing these changes recently, Mr. Stonehouse, the PMG, said that the increased revenue of $£ 5,600,000$ would finance a general service of local revenue by the BBC.

A further $£ 3,500,000$ would be gained from licence evaders as a result of intensified measures against them. This would make a total of $£ 9,100,000$ extra revenue.

Mr. Stonehouse pointed out that abolition of the sound radio licence would benefit many elderly people. He said that the fee involved in collecting licence revenue was quite expensive-being 4s. 10d. per licence-this would be the same for the combined fee.

Goonhilly I uses Mullard Parametric Amplifiers

Goonhilly 1 station, inaugurated recently by the PMG John Stonehouse uses Mullard parametric amplifiers to boost the low power of $10-12 \mathrm{~W}$ signals received from Japan and Australia via the new Intesat III communications satellite. This new link (over the Indian Ocean) provides for direct TV communication with Japan and it is planned to cover "Expo 1970" the international exposition whose site in the hills above Osaka is being completed for the opening next year.
Goonhilly I was used to receive Apollo || TV pictures bounced off satellites positioned above the Indian and Pacific oceans.
The only other device that could be used in the same role as the parametric amplifier is the maser but this has the disadvantage that it always needs to be cooled. Although the Goonhilly parametric amplifiers are cooled it is possible for them to operate at room temperature. The maser used in Goonhilly II uses a pumped liquid helium cooling system to keep it at a temperature of $1 \cdot 4^{\circ} \mathrm{K}$ giving a "noise" temperature of $10^{\circ} \mathrm{K}$. The parametric amplifier cooled with liquid helium to $4 \cdot 2^{\circ} \mathrm{K}$ has a noise temperature of $20^{\circ} \mathrm{K}$.

The parametric amplifier also has the advantage that it can handle a bandwidth of 500 MHz and the maser can only handle 50 MHz . This makes possible the reception and transmission simultaneously of TV programmes and hundreds of telephone channels.
The picture shows a development engineer at Mullards, Mitcham, checking one of the parametric amplifiers prior to installation at Goonhilly.

The Litegard

Soldering irons, like some predatory animal, have a nasty habit of leaping at you as soon as you move at your workbench. If you have, like some members of the P.W. staff, burnt hands, ruined shirts and scorched ties, the Litegard soldering iron stand is almost an essential.
Designed for virtually all soldering irons up to 35 W , the Litegard incorporates a bit cleaning pad and screw holes for bench mounting. It retails at 25 s . Light Soldering Developments Ltd., 28 Sydenham Road, Croydon, CR9 2LL.
ONE TO LISTEN FOR GB3MAN, 28th September-5th October 1969. From the City of Manchester during Fresher's Week at the University of Manchester Institute of Science and Technology. It's intended to give novices an insight into the working of Amateur radio and the station is being operated by members of the UMIST Amateur Radio Society. Transmission is on all bands $10-160 \mathrm{~m}$ running a.m./c.w./s.s.b./RTTY. Details and QSLs from T. F. C. Davis, G3YMM, Hon. Sec., Amateur Radio Society, Students' Union, UMIST, Sackville Street, Manchester 1.

New from Roberts' Radio Co. Lid., comes the model R 707 which incorporates v.h.f., medium, long and short wavebands. Twelve transistors and 7 diodes are used in the design and an i.f. amplifier module employing combined 10.7 M Hz and 470 kHz is used. The a.f. amplifier has a transformerless output and power output is approximately $1 \cdot 5 \mathrm{~W}$. Short waves covered are 41 and 49 m bands. Price including batteries and PT is $£ 3410 \mathrm{~s}$. Roberts Radio Co. Ltd., Molesey Avenue, West Molesey, Surrey.

MAINLINE MARKETS

An assembled amplitıer
A new company, Mainline Electronics Ltd., has been formed specifically to give the amateur enthusiast the price and other advantages enjoyed by industrial and professional component buyers. The company is a subsidiary of Electronic Component Supplies (Windsor) Ltd. which was established in 1965 and now represents 12 of the leading electronic component manufacturers.

In addition to components, Mainline are introducing kits, starting off with a series of hi-fi amplifiers. Three basic types are available, in $12 \mathrm{~W}, 25 \mathrm{~W}$ and 70 W r.m.s. versions, all universal quasi-complementary-symmetry amplifiers using the same assembly board (see picture) providing full power to beyond 20 kHz . The kits are the result of joint research and development by RCA and SGS (UK) Ltd. Basic performance figures (of the Mainline 12) are 12 W r.m.s. output, hum and noise 75 dB input shorted, sensitivity 500 mV at $20 \mathrm{k} \Omega$, intermodulation distortion $(60 \mathrm{~Hz}$ and $70 \mathrm{kHz}, 10 \mathrm{~dB}$ below continuous power output) 0.2%.

The prices of the kits are $£ 7$, $£ 85$ s., and $£ 1010$ s. which include all transistors, resistors, capacitors, heatsink, printed circuit board and full instructions for assembly. For those wishing to buy the transistor packs only, these are available at $£ 53 \mathrm{~s} ., £ 62 \mathrm{~s}$. 6 d . and $£ 86 \mathrm{~s} .8 \mathrm{~d}$. respectively. Further kits are to be introduced, including suitable preamplifiers for the Mainline amplifiers, by the end of the year.

Detailed price lists and descriptive literature on the amplifiers is available from Mainline Electronics Ltd., Thames Avenue, Windsor, Berks. Also available, at 4 s . post paid, is a catalogue containing full details of the numerous components available from the company.

WANSTEAD AND WOODFORD RADIO SOCIETY

Are any readers interested in re-establishing the Wanstead and Woodford Radio Society and helping it again to be active in forwarding the hobby of radio and electronics in London, E. 11 and E.18? If so, please contact Ken Smith, G3JIX, at 82 Granville Road, Walthamstow, London, E. 17 or at the Electronics Laboratory, The University, Canterbury, Kent.

HOME RADIO CREDIT ACCOUNT

Mr. A. Sproxton, Director of Home Radio (Components) Ltd., has announced a new scheme to help home constructors.

In a letter to P.W: he says: "It has often occurred to us that the serious experimenter must sometimes suffer frustrations at the time taken to obtain a certain component. Supposing he is working on a project Sunday afternoon and finds he needs a certain item; even if he has a cheque book, envelope and stamp to hand, his suppliers would not receive his order until Tuesday and the customer would not receive his item until Thursday or Friday.
"If he could 'phone his requirements, how much easier and quicker the transaction would be. We would like to give customers this facility but it would be necessary to offer a credit account and the problem arises as to how this can be done without the tedious and often unreliable method of taking up references.
"After much thought we came up with this solution-the Credit Deposit Account. This offers to customers the facility for starting a credit account and at the same time protects us against incurring too great a loss through bad debts.
"This scheme of course is only offered to customers using our catalogue and we have a telephone answering machine for customers wishing to place orders outside business hours."

How it works is simple: the customer decides what monthly credit he requires to the nearest $£ 10$. He then fills in a simple form and sends it to Home Radio with his deposit (which is half the amount of credit he requires). For example, if he requires credit of $£ 10$, he sends Home Radio $£ 5$ deposit. He may then receive goods up to the value of three-quarters of the credit he has selected. This three-quarters only applies to the first month's buying-after this he may purchase goods to the full amount of his selected credit. Further details from Home Radio (Components) Ltd., 234-240 London Road, Mitcham, Surrey, CR4 3HD.

Added to the Eagle range of stereo headphones are two new models-SE. 5 and SE. 30.

Model SE. 5 is a budget model, retailing at 59 s . 6 d . The SE. 30 ($£ 77 \mathrm{~s}$.) is the more sophisticated of the units, incorporating a stereo/mono slider switch which eliminates any possibility of phase distortion when listening to a mono signal through stereo equipment. Leather ear-cushions make the SE. 30 comfortable to wear even over long periods. Eagle products are available from retail radio stores.

T1HE popularity of "Country and Western" style music has brought about a new kind of electrical musical instrument which stems from the Hawaiian steel guitar and which has become generally known as the "pedal steel guitar". The basic playing technique is similar to that of the Hawaiian guitar, i.e., the notes are selected with a "steel" and the strings are sounded with finger picks but here the similarity really ends.

The modern pedal guitar allows the production and rapid playing of full chords of the major, minor, diminished seventh, major sixth, minor sixth and minor seventh etc. etc. without complicated manipulation of the steel, in fact without the aid of the pedal controlled tuning system, rapid playing in chords of this calibre would be difficult, to say the least. The pedal steel guitar can be tuned in a number of different ways but the various combinations are far too numerous to deal with in these articles which are concerned with the construction of an otherwise very expensive musical instrument and not how to play it. Those who contemplate building such an instrument and then learn to play it are advised to have proper tuition because it is not an instrument that can be easily "played by ear". However, for the purpose of understanding the musical function of the pedal steel guitar a basic tuning is given for the instrument described in these articles. This is an 8 string E6th tuning which, with the aid of two pedals, will allow the playing of full major, minor, diminished 7th, major 6th, minor 6th and minor 7th chords without slanting or other difficult manipulation of the steel, i.e., such chords

Fig. 1: As explained in the text; many different chords can be played with a straight steel, i.e., without slanting.
can be produced with what is called "straight steel" which means that the steel is across the strings and at right angles to them as in Fig. 1.

Readers with a knowledge of music and especially of either the plectrum guitar or Hawaiian steel guitar will of course realise that more than 8 strings and 2 pedals could be used. Some commercially available single neck models have 8 or 12 strings and up to 4 pedals whilst twin neck instruments may employ as many as 8 pedals divided between 8 or 12 strings per neck, hence the earlier comment about the many possible tuning and tuning change combinations. Incidentally the cost of a commercially made pedal steel guitar ranges from around $£ 250$ to $£ 350$. The instrument described here should not involve a total outlay of more than about $£ 30$. It is however only fair to point out that a very considerable amount of "mechanical" construction is called for and which must be quite accurate if the finished instrument is to play correctly and in perfect pitch at all fret positions. None of the "mechanical" parts, except the machine head tuning pegs, can be purchased ready made. The special fret board and the 8 string magnetic pick-up are however both available (details later).

Eight Strings-Two Pedals

The pedal guitar shown on the cover and described in this article could of course be modified for additional pedals by duplicating the pedal controlled string tension or release tension arrangements shown in Figs. 2 and 3 respectively. Otherwise the design featured here employs 8 strings for an E6/7th tuning with the pedals operating on strings 2 and 4 . With the E6/7th tuning as shown in Fig. 4 it will be seen that string 2 is tuned to C sharp which is the 6th note of the scale of E major. This string can be raised a half-tone by a pedal so as to become D natural which is the diminished 7th of the scale of E. With no extra tension on string 2, i.e., with the pedal off, strings $1,2,3$ and 4 together produce a chord of E6. When the pedal is pressed the pitch of string 2 is raised by a half-tone and strings 1, 2, 3 and 4 together will produce a chord of E diminished 7th or E7th.
To produce minor chords, string 4 , which is G sharp and the third note of the scale of E , must be lowered in pitch to G natural so that it now becomes the minor 3rd

Fig. 2 (above): Pedal mechanism for tensioning a string, i.e., to raise the pitch by a tone or semitone.
fig. 3 (top right): Pedal mechanism for de-tensioning a string. i.e., to reduce the pitch by a tone or semitone.

Fig. 4 (right): Tuning for the pedal guitar described in this article and for use with pedal control on strings 2 and 4 as shown.

Figs. 5A/B/C: Details for constructing the pedal steel guitar console. Note the different depths of the cutaways at the top of the left and right hand sides. The sections A, B and C are fitted together as in Fig. 6. Section A is the left-hand side and not as indicated on drawing.
of the scale of E. This string is pre-tensioned by means of a spring as shown in Fig. 4 so that it can be detensioned when the pedal is pressed. When this is done the chord of E minor can be obtained with strings 3, 4 and 5 or 1,3 and 4 . By playing strings $1,2,3$ and 4 a chord of E minor 6th will be produced. If the other pedal is simultaneously pressed then strings $1,2,3$ and 4 will produce a chord of E minor 7 th. The remaining strings,

5, 6, 7 and 8, when played together will produce the chord of E7. If string 6 is not played then the chord produced by 5,6 and 7 will of course be E major. As pointed out earlier the combinations of tuning and chord patterns obtainable with multiple stringed pedal guitars of this nature are almost endless so here all further reference to the musical possibilities must stop and we will go on to the actual construction.

Console Construction

Like the commercially available pedal guitars this is a small console type instrument which allows the player to be seated. The console itself, as shown in the photographs, was constructed from Contiboard and if the dimensions given are adhered to then standard 12 inch wide $\frac{3}{4}$ inch thick Contiboard can be used. This is supplied in cut lengths and two 6 foot lengths will make the entire console to the dimensions given in Fig. 5. The guitar itself is fitted to the top of the console as shown by the outline in Fig. 5D. Note also the cut-out on the top panel which is for the guitar preamplifier.

Although both sides of the console have the same overall dimensions please note that the right hand side has a wider and deeper cutaway at the top which extends below the level of the console top panel to allow the pedal rods to go through. This side also carries the DIN output socket to take the signals from the built-in preamplifier to a suitable external power amplifier. The complete console assembly is shown in Fig. 6. All the sections should be screwed together to provide a good solid structure and when the console is completed the wood, if it is Contiboard, should be sanded down and given two or three coats of Contipol varnish for a high gloss finish.

The Guitar Body

Next comes the woodwork for the guitar itself, the dimensions for this being shown in Fig. 7. The wood for this must be absolutely straight, completely free of any warping and $30 \frac{3}{4}$ inches long, $3 \frac{1}{8}$ inches wide and 1 inch

Fig. 5D (top right): Position of the pedal guitar and pre-amplifier on the console.
Fig. 6 (right): The assembly of the console. Note the tie bar at the bottom which also serves as the pedal stop.
Figs. 7A/B (below): Details for constructing the guitar body including the positions of the peg heads, nut, fretboard, magnetic pick-up and roller bridge assembly.

COMPONENTS AND MATERIALS

Parts 1 and 2-The Console and Guitar

Console:
Contiboard-12ft. ($2 \times 6 \mathrm{ft}$. cut lengths) $12 \mathrm{in} . \times \frac{3}{4} \mathrm{in}$.
Mild steel square tube $-\frac{3}{4} \mathrm{in} . \times \frac{3}{4} \mathrm{in} . \times 25 \mathrm{in}$. (pedal stop rail)
Quantity c/s woodscrews- $1 \frac{1}{2} \mathrm{in} . \times$ size 5 or 6
Contipol varnish as required

Guitar and Pedal Mechanism:

Hardwood (mahogany)-303inin. $\times 3 \frac{1}{1} \mathrm{in} . \times 1 \mathrm{in}$. (guitar body)
Hardwood- $2 \mathrm{ft} . \times 1 \mathrm{in} . \times 1 \mathrm{in}$. (wing pieces and tail)
Mild steel- $\frac{1}{16}$ in. thick (piece $12 \mathrm{in} . \times 6 \mathrm{in}$. should be sufficient for bridge frame and pedal plates etc.)
Aluminium angle $-4 \mathrm{in} . \times \frac{1}{2} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. (tail piece)
Aluminium angle $-4 \mathrm{in} . \times \frac{3}{4} \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. (lower stop bar)
Mild steel square tube-12in. $\times \frac{1}{2} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. (pedals)
Dome head screws (with chromed dome caps) 1 in . long \times size 7 or 8 (6 off)
Dome head screws $1 \frac{1}{2}$ in. long \times size 7 or 8 (3 off)
2BA Allen screws 1 in . long (12 off) (lever stops)
Compression springs $\frac{1}{2} \mathrm{in}$. to $\frac{8}{8} \mathrm{in}$. long with inside 2BA clear
Brass- $\frac{1}{4}$ in. thick (1 piece approx. $12 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$. for roller levers and stop screw bars etc.)
Silver steel rod- $\frac{1}{4} \mathrm{in}$. dia. 12 in . long (roller bridge and foot pedal volume control)
Mild steel rod- $\frac{3}{16} \mathrm{in}$. dia. Approx 5 ft . (pedal linkage)
Mild steel rod- $\frac{1}{8} \mathrm{in}$. dia. Approx 3 ft . (lever linkage)
Brass tube- $\frac{3}{8}$ in. dia. with $\frac{1}{4} \mathrm{in}$. dia. inner bore (roller lever spacers)
Brass tube or rod- $\frac{5}{8} \mathrm{in}$. dia. (tube with $\frac{1}{4} \mathrm{in}$. dia. inner bore) (rollers)
Tension spring-Approx 2 in . long $\times \frac{1}{2} \mathrm{in}$. dia. with loops
Fret board—24fret 25in. scale 8 string. Cyril Proctor. (see text for address etc.)
Magnetic pick-up-H.G. 8 string. Cyril Proctor. (see text for address etc.)
Machine head tuning pegs-4 LH and 4 RH Cyril Proctor (see text for address etc.)
3-pin DIN socket-(1 off) (preamp output)
Sundry 6BA, 4BA and 2BA screws and nuts as indicated in diagrams

Part 3-The Preamplifier and Footpedal Volume Control

The Footpedal Volume Control:
Contiboard or deal-(see text) cut as per diagrams.
Duraluminium- $\frac{1}{16}$ in. thick. Piece approx. 14in. \times 7in. (sides and front)
Aluminium angle- $20 \mathrm{in} . \times \frac{1}{2} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. (inside supports)
Aluminium angle- $3 \mathrm{in} . \times \frac{3}{4} \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. (foot pedal bearings)
Silver steel rod- $\frac{1}{4} \mathrm{in}$. dia. (allowed for in previous list)
Jack socket-standard (1 off)
3-pin DIN socket (1 off)
L.D.R.-type ORP12 (1 off)

6 or 12 V lamp (1 off) see text
R9-47k $\Omega \frac{1}{4} \mathrm{~W}$ resistor
RL-(see text)
3-pin DIN plugs-(2 off)
Sundry screws, 4BA and 6BA screws and nuts, screened cable etc. as per text

The Preamplifier:

Panel-Aluminium $\frac{1}{16} \mathrm{in}$. thick $6 \mathrm{in} . \times 3 \mathrm{in}$. Also aluminium angle $\frac{1}{2}$ in $\times \frac{1}{2} \mathrm{in}$. and approx 5 in . long
Assembly board- $3 \frac{3}{4} \mathrm{in} . \times 2 \frac{3}{4} \mathrm{in}$. perforated s.r.b.p.
Control knobs-(2 off) type PK2 (Henrys Radio Limited)
On/Off switch—S.P. toggle type (1 off)

Transistors:

Tr1 and Tr2 BC109
Capacitors:

C1 $0.05 \mu \mathrm{~F}$ paper	C4 $0.02 \mu \mathrm{~F}$ paper
C2 $100 \mu \mathrm{~F}$ elec 12 V	C5 100 pF mica
C3 $0.01 \mu \mathrm{~F}$ paper	C6 $100 \mu \mathrm{~F}$ elec 12 V
C7 $2.5 \mu \mathrm{~F}$ elec 12 V	

C7 2.5μ F elec 12 V

Resistors:

R1 $4 \cdot 7 \mathrm{k} \Omega$	R5 $150 \mathrm{k} \Omega$
R2 $120 \mathrm{k} \Omega$	R6 470Ω
R3 $1 \mathrm{k} \Omega$	R $1.2 \mathrm{k} \Omega$
R4 $12 \mathrm{k} \Omega$	R8 $1.8 \mathrm{k} \Omega$

All $10 \% \frac{1}{2} \mathrm{~W}$ carbon
Potentiometers:
VR1 $4.7 \mathrm{k} \Omega$ preset
VR2 $50 \mathrm{k} \Omega$ linear
VR3 $100 \mathrm{k} \Omega \log$
Power supply: Transformer T1 Rectifier MR1

Henrys Radio type as per circuit Capacitor C $2500 \mu \mathrm{~F} 25 \mathrm{~V}$ wkg Bridge type 1 H 3

Materials for chassis as suggested in diagrams.

Come and see the Pedal Steel Guitar on Practical Wireless Stand 73 at the International Audio and Photo-Cine Fairs, Olympia, 16-22nd October, 1969. Opening hours: daily 10 a.m, to 9 p.m. (excluding Sunday, 19th October). Admission: Adults 4/-; Children 2/-.
thick. The writer eventually obtained a piece of 1 inch thick mahogany for this. Very soft wood should be avoided. The shaping of the machine peg head section is the most tedious part and calls for a little fancy work with files and sandpaper. The section between the "nut" and the recess for the magnetic pick-up is left flat to take the plastic fretboard and only requires a smooth sandpapered surface. The two "wings", each 1 inch wide, serve as decor and to anchor the guitar to the top of the console. Holes are drilled at a, b and c as shown in Fig. 7A. These take $1 \frac{1}{2}$ inch dome head screws to secure the finished guitar to the console. Similar dome head screws are used to fix the roller bridge frame to the tail of the guitar as in Fig. 7A. These screws are marked $\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$ and are each 1 inch long.

As the special bridge assembly is 4 inches wide, the tail of the guitar must be widened by $\frac{7}{8}$ ths of an inch. This is done by means of two pieces of wood shown in Fig. 7A as X and Y. The final part of the guitar "woodwork" is the recess for the magnetic pick-up and if the 8 string pick-up specified is used then the recess will be approximately $4 \times 1 \frac{3}{4} \times \frac{3}{8}$ inches deep. If anything the recess may be a bit oversize to allow for a thin felt packing around the pick-up.

The guitar woodwork is completed by sandpapering and for a gloss finish two or three coats of Contipol varnish applied. Do not varnish the section for the fretboard because it has to be glued on and this should be left until all other assembly work is completed.

Please note that reference will be made later to Fig. 7 in connection with the fitting of the bridge frame and the magnetic pick-up. This is why the position of the 12 th fret and the centre line of the bridge roller spindle are both indicated. Note also that no measurements have been given for the spacing between the holes for the geared tuning pegs as this will depend on the physical size of those obtained. The shafts of the pegs must however be located on the centre line (C / L) as shown in Fig. 7B and should be spaced at least $1 \frac{1}{4}$ inches apart.

Fig. 8 (below): Details for constructing the "nut" which is the small bridge at the peg head end of the fretboard.

Next comes the mechanical work involved in the making of the "nut", the special roller bridge assembly and the pedal mechanism which not only calls for some ability in metal working but also reasonable accuracy. None of these parts can be obtained ready made.

Details of the "nut" which is the bridge at the top end of the fretboard are given in Fig. 8. It consists of a piece of $1 / 16$ th inch thick mild steel, the lower portion of

STEREO DECODER

Stereophonic f.m. transmission are at present available to listeners in the service areas of a number of BBC v.h.f./f.m. sound transmitters. In order to hear these programmes "stereophonically" a v.h.f./f.m. receiver with a special "decoder" is required. The decoder may be added to the majority of those receivers and tuners which do not have a built-in decoder.

The design is compatible-no manual switching is required from stereo to mono operation. A stereo beacon is included which lights when a stereo. transmission is present.

All components are readily available including the specially wound potted coils.

AUDIO LIMITER

A self contained unit fitting between the headphone jack socket and headphones. It minimises ignition noise, static and even sideband splash; the circuit having a number of advantages over previous designs.

THE INJECTRACE

An ingenious piece of test gear small enough to fit into an inside jacket pocket, that functions as a wideband signal injector from 1 KHz to over 200 MHz and becomes an a.f./r.f. signal tracer simply by plugging in a miniature earpiece.

DECEMBER issue on sale NOVEMBER 7th.

which is recessed into the guitar body as shown in Fig. 7B, so as to leave the top edge containing the slots for the strings about $\frac{8}{8}$ th inch above the fretboard. The slots must be spaced as accurately as possible and can be made with a fine hacksaw blade or thin triangular file. They should not be more than about $1 / 32$ nd of an inch deep but those for strings $8,7,6$ and 5 will have to be slightly wider because the strings are thicker. The nut itself is secured to a brass block which in turn is screwed on to the guitar body.

The next items include the roller bridge assembly and the pedal mechanism which will be dealt with in the next article. The final article, part 3, will cover the special tone control preamplifier for the magnetic pick-up and a "swell" pedal (pedal operated volume control) which employs a light-discriminating resistor instead of the more usual gear operated potentiometer.

To be continued

TARILBLLE VOLTAGE TRANSFORIERS

INPUT $230 / 240 \mathrm{v}$. A.C. 50/60OUTPUT VARIABLE 0-260v. BRAND NEW
Keenest prices in the country. All Types (and Spares) from to 50 amp . from stock.

SHROUDED TYPE

amp, £5.10.0. 2.5 amps, £6.15.0. 4 amps, £9.0.0. 5 amps , £9.15.0. 8 amps, £14.10.0. $10 \mathrm{amps}, ~ £ 18.10 .0$. $12 \mathrm{amps}, £ 21.0 .0 .15 \mathrm{amps}, £ 25.0 .0$. $20 \mathrm{amps}, ~ £ 37.0 .0 .37 \cdot 5 \mathrm{amps}, \mathrm{E}_{2} 72.0 .0$. $50 \mathrm{amps}, £ 92.0 .0$.
OPEN TYPE (Panel Mounting) \ddagger amp, £3.10.0. 1 amp, £5.10.0. 2) amps, £6.12.6.

100 WATT POWER RHEOSTATS (NEW)

 AVAILABLE IN THE FOLLOWING VALUES $10 \mathrm{hm}, 10 \mathrm{a} . ; 5 \mathrm{hm}, 4 \mathrm{a} .710 \mathrm{hm}, 3 \mathrm{a}, ; 25 \mathrm{hm}$ $2 \mathrm{a} . ; 50 \mathrm{ohm}, 1.4 \mathrm{a}$.; $100 \mathrm{ohm}, 1 \mathrm{a} ; 250 \mathrm{ohm}, 7 \mathrm{a} . ;$ 500 ohm, 45 a .; $1,000 \mathrm{ohm}, 280 \mathrm{~mA} ; 1,500$ ohm. $230 \mathrm{~mA} ; 2,500 \mathrm{ohm}, 2$ a. Diameter $3 \frac{1}{\mathrm{i}} \mathrm{in}$. Shaft length 7 in .; dla. ${ }^{15} / \mathrm{s4}$ in. All at 27/6 each. P. \& P. $1 / 6$ s0 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500 \mathrm{ohm}$. All at 21/-. P. \& P. 1/6.25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm. All at I 14/6. P. \& P. $1 / 6$.

DEMONSTRATION TRANSFORMER

 (STENZYL TYPE)Two separate removable colls tapped at $0,110,220$ volts, and $6,12.36$ volts respectively. A composite apparatus designed for class demonstration. Electro magnetic Induction, Jumping ring, induction lamp, relationship between fleld Intensity and ampere turns, induction melting, are just a few of the posslble experiments. New modified model. £14.10.0. P. \& P. $10 /-$

230v. A.C. SOLENOID

Heavy duty type. approx. 3 lbs. pull. Price 17/6 plus 2/6 P. \& P.
12v. D.C. SOLENOID
Approx. 1 lb . pull. 10/5 plus $1 / 6$ P. \& P 50 v . D.C. SOLENOID
Approx. 1 lb . puli. $10 / 6$ plus $1 / 6$ P. \& P

50 v . D.C. SOLENOID
Approx. 2 lb . puil. 12/6 plus 1/6 P. \& P.
Large Digit 12v. D.C. MAGNETIC COUNTER. 4in. drum calibrated 0-9. Figures 1itin. high, zin. wide. Set of $1 \mathrm{~m}, 1 \mathrm{~b} ; 1 \mathrm{c} / 0$ contacts operated by drum cam. The units can be used in pairs and are Ideally sulted for batch or lap recording or for the many purposes where large easily read numerals are required. Price 18/6. P. \& P. 2/6.
LIGHT SOURCE AND PHOTO CELL MOUNTING Preclsion engineered light source with focusable lens assembly and ventllated lamp housing, to take MBC bulb. Separate photo cell mountling assembly for ORP 12 or similar cell. Both units are single hole fixing. Price per pair £2.15.0. P. \& P. 3/6.

CONSTANT VOLTAGE TRANSFORMER
Input 185-250 v. A.C. Output 230 v. A.C. Capaclty 250 watt. Attractive metal case. Fitted red slgnal lamp. Rubberfeet. Weighti7lb. Price £11.10.0. P. \& P. 15/-.

L.T. TRANSFORMERS

 All primaries $\mathbf{2 2 0 - 2 4 0}$ volts.Type No. Sec. Taps
$230,40,50 \mathrm{v}$. at 5 amps
2 30, 40, 50 v . at 5 amps
3 10, 17, 18v. at 10 amps
4 6,12v. at 20 amps
$517,18,20 \mathrm{v}$. at 20 amps
6,12, 20v. at 20 amps
24v. at 10 amps.
4, 6, 24, 32v. at 12 amps
DOUBLE WOUND VARIABLE L.T. TRANSFORMER Input 230v. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36v. A.C. 0-36v. at 5 mmp . £9.12.6. P. \& P. 8/6. $0-36 \mathrm{~V}$. at 20 amp . ع21.0.0. P. \& P. 15/-.

LIGHT SENSITIVE SWITC

 mium Sulphide Photocell, Relay, (Transistor and Circuit, etc., 6-12 volt D.C. op, price 25/. plus 2/6 P. \& P. ORP 12 including circult, 10/6 each, plus $1 /-\mathrm{P}$ \& \& P.
A.C. MAINS MODEL. Incorporates Mains Transformer. Rectifier and special relay with two 5 amp malns clo contacts. Priceinc. circuit $47 / 6$ plus 2/6 P. \& P .

NICKEL CADMIUM BATTERY

 $1.2 v_{n} 35$ A.H. Size 8ilin. high \times in. x 1ilin. 30/each plus $4 /-\mathrm{P}$. \& P .Sintered Cadmium Type 1-2v. 7 AH. Size: helght $3 \frac{1}{2}$ in., width 2 in in. x 1 $\frac{3}{16}$ in. Weight approx 13 oz. Ex-R.A.F. Tested. 12/6. P. \& P. 2/6.

MINIATURE UNISELECTOR SWITCH

3 banks of 11 positions plus homing bank. 40 ohm coil 2436 v . D.C. operation. Tested. 22/6 plus 2/6P. \& P.

VEEDER ROOT

230 v . A.C. 50 cycle, 5 -flgure counter (non-resettable). 18/6 P. \& P. 1/6.

- $=$

2

SANWA MULTI

 RANGE METERSNew Model U50D Multl tester, 20,000 OPV, mirror scaled with overload protection. Ranges-D.C. volts: $100 \mathrm{mV}, 0.5 \mathrm{v} ., 5 \mathrm{v} ., 250 \mathrm{v} .$, $1,000 \mathrm{v} . ;$ A.C. volts: $2.5 \mathrm{v} ., 10 \mathrm{v} ., 50 \mathrm{v} ., 250 \mathrm{v}$. . f,000V. D.C. current: $5 \mu \mathrm{~A}, 0.5 \mathrm{~mA}, 5 \mathrm{~mA}, 50 \mathrm{~mA}$, 250 mA . Complete with battery and test probe 87.5.0 post paid

STROBE! STROBE! STROBE!

Three easy to build Strobe Units using the
latest type Xenon white IIght flash tube. Solid state timing and triggering circult. 230/250v. A.C. operation.
ECONOMY KIT. Flash rate 1-36 flash per second. All components Including Unijunction, thyristor, tube and clicuit. £5.5.0 plus 3/6 P. \& P
NEW INDUSTRIAL KIT
Ideally sultable for schools, laboratories etc. Roiler tin printed circuit. New trigger coil. plastic thyristor and new improved type of tube. 1-80 f.p.s. Price 9 gns. 7/6 P. \& P.

HY-LYGHT STROBE

This strobe has been designed for use in large rooms, halls and the photographic fleld. tt has 4 times the light output at 30f.p.s. and utillzes a sllica tube for longer life expectancy, printed circuit for easy assembly also a special trigger coil and output capacitor, Light output approx. 4 Joules. Price £10.17.6. P. \& P. $7 / 6$.
7in. POLISHED REFLECTOR. Ideally suited for above Strobe Kits. Price 10/6 plus 2/6 P. \& P. or post paid with kits.

RELAYS

Bulk purchase enabies us to ofier the following new SIEMENS, PLESSEY, etc. miniature plug in relays complete with base, at a fraction of maker's price.

$\begin{array}{cc}\text { Coll } & \text { Working } \\ \Omega & \text { Voltage }\end{array}$

6-12 2
$2 \mathrm{c} / \mathrm{o}$
$2 \mathrm{c} / \mathrm{o}$
16-24
16-24
10-24 $\quad 4 \mathrm{M} 2 \mathrm{~B}$
$\begin{aligned} & 20-40 \\ & 30-50\end{aligned} 2 \mathrm{c} / \mathrm{OH.D}$
$30-50$
$40-70$$\quad 2$ c/o H.D.
H.D. - Heavy Duty.

4STATIONINTIERCOM
 4-8tation Tranilator Intoroom ayatem (1 mator and 4-8tetion Tranistor Intar00m ayatem (1 master and
8 Subs), in de-iuxe plastic cabinets for deak or wall mounting. Call/talk/listen from Mater to 8ubs and Subs to Mastor. Ideally suitable for Buainess, Burgery, Bchools, Hoapital, Office and Home. Operatea on one 9 V battery. On/off awitch. Volume control. Complete with 3 connecting wires each 68 ft . and other accessories. P. \& P. 7/6

MAINS INTERCOM

No battaries-no wires. Just plug in the maize for Instant two-way, loud and clear communication. On/oII switch sand
P. \& P. $8 / 6$ extra.

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 66ft. connecting wire. Battery 2/6. P, \& P. 4/6.

ciency with this incredible De-lure Telephone AmpHfier. Take down long telephone messages or converse without bolding the bandeet A useful office converse of 15 witch. Volume Control. Bettery $2 / 6$ extra. \mathbf{P}. \& \mathbf{P} 3/6. Full price refunded if not astisted in 7 deys. 169 KHARSIFGTON EIGE BTREET, LONDON, W.8.

H.A.C. stomiriseve

WORLD-WIDE RECEPTION

Famous for over 30 years for Short-Wave Equipment of quaiity. "H.A.C." were the Origlinal suppliers of Short-Wave Receiver Kita for the
amateur constructor. Over 10,000 satlisfed amateur constructor. Over 10,000 satisied
customers-Including Technical Colleges, Hos-customers-Including Technical Colleges, Hos-
pitals, Pablic Schools, R.A.F., Army, Hama, otc.

IMPROVED 1968 RANGE

One-valve model "OX". complete kit-price 50/6 (Postage and packing 3/6).
Customer writea:-"Definltely the beat one-valve S.W. Kit available at any price. America and Australia received clemrly at good volume." This kit contains all genuine short-wave components, tions, Ready to producta-fully guaranteed. Full range of other 9.W. kits atili available, including the famora model "K" (recommended by radio clubs). All ordera deapatched by return. (Mail order only.) Send now for a descriptive catalogue, order form.
"H.A.C.'" SHORT-WAVE PRODUCTS 29 Old Bond Streat, London W. 1

Number 1
The SL402A and SL403A, audio amplifiers

Since the word "microelectronics" first became current, this magazine has kept before its readers the latest developments in this field, and has repeatedly induced its readers to gain practical experience in the application of integrated circuits by the publication of realistic constructional projects. However, the stream of new devices has become a flood, so that it is totally impossible to give full instructions in article form for the wealth of i.c. projects now possible. At the same time such a source of ideas for the enthusiast must betapped, and hence this new feature. It is intended, each month, to present a new device, idea, or theme from the world of microelectronics which readers can develop for themselves as their experience, interests, or leisure permit. Detailed instructions will not be given-for such articles will continue to appear as in past issues-but all sorts of goodies which must otherwise be left in obscurity as far as the amateur is concerned, will be sought out.

FIOR a starter, a pair of interesting new audio amplifier circuits from the Plessey stable has been chosen. These products from a UK firm are emerging as strong favourites in a field until recently dominated by American imports, and are a really good example of the results available to the home constructor as a result of the fierce competition in the industrial world. The SL402A has a typical output power of 2 watts operating from up to 14 volts (a car battery is an ideal source, and car radios or tape players an obvious application), while the SL403A is rated for up to 21 volts, with a corresponding increase in power delivered, to 3 watts.

The internal circuit

Each unit, in a circuit containing 13 transistors, a zener, and several other diodes, provides a complete audio system, preamplifier as well as power amplifier, with an overall voltage gain of 50 dB . Further, as a glance at the equivalent circuit will confirm, the input to both preamp and power amp is through an emitter follower chain, giving a very high in-
Fig. 1: The internal circuit of both the SL402A and the SL403A. The only difference between them is the maximum working
 put impedance in both cases. This obviously increases the utility of the circuit when used in conjunction with crystal record player cartridges; more sophisticated applications in the instrumentation field are also evident, since signal tracers, for example, are only useful to the extent that the loading they place on a test circuit is minimised.

It also permits the introduction of a really comprehensive tone control system, despite the severe signal attenuation this involves. This final point relies also on the fact that the noise level is -75 dB relative to the output signal, while overall distortion is a negligible 0.5%. An attractive feature from the point of view of the constructor of economy mains-powered equipment utilising either of these new Plessey units is an inherent

Constructional notes

For safe operation, a heatsink of 20 square inches of 18 s.w.g. aluminium is advisable; the integral heatsink of the device should be in good thermal contact with this larger metal sheet, which could well form part of the structure of the audio system in which the unit is incorporated.

The last point may well be the most attractive of all; these Plessey units are currently available from distributors at 39 s . 6d. each, plus postage. This is a sample of what is available right now, if one knows where to look. More next month!

PRACTICAL TELEVISION in the NOVEMBER issue
 \star GETTING STARTED WITH CLOSED-CIRCUIT TV

If you think closed-circuit TV is a bit of a mystery beyond your capabilities this new series is designed to show how with reasonably simple equipment you can hook-up your own CCTV network. To start with the basic requirements-equipment, signal levels, etc-and the scope for CCTV work are outlined.

STABILISING THE BLACK LEVEL

A great deal is talked about black-level clamping. If you are not sure what the basic problems arehow for example simple a.g.c. systems affect the black level-this article will give you the full story. Details are also given of circuits that have been used to improve receiver performance in this respect.

FAULTS OF THE DEVIL

Why are some faults so very hard to pin down? In this feature the shortcomings of standard test procedures are detailed: it is these shortcomings that lead to the culprit so often being overlooked.

FOCUS ON WAVETRAPS

Wavetraps determine the basic response of a receiver and thus the quality of the display. The various types of wavetrap found in TV receivers are illustrated and their operation explained. The wavetrap requirements of the luminance channel in colour receivers are also described and typical circuits shown.

DX-TV FILTER

An aerial notch filter giving sharp rejection of interference from local stations to aid DX reception.

PLUS ALL THE REGULAR FEATURES on sale

OCTOBER 17th

Radio Mechanics-read this now

£100 a year for a fortnight's camp plus 2 week ends

You are paid the above minimum amount for a fortnight's camp in the Summer, sometimes abroad, plus two week ends in the Winter by joining the ROYAL ELECTRICAL \& MECHANICAL ENGINEERS, TERRITORIAL AND ARMY VOLUNTEER RESERVE as an Army Telecommunications TechnicianExisting Volunteers find it great for a change from the same dull routine and faces. Adventure and comradeship as a member of an Army Unit are the keynotes, but full use is made of your trade skills and at least one year in every three you will be taught new techniques and new equipment as an individual at one of REME's Ultra Modern Technical Schools. As a Telecommunications Technician you will work on Army receivers and transmitters employing both valves, transistors, printed circuits and their ancillary equipment, using modern electronic test equipment. You are not expected to know it all on entry.
We are interested in men between 18 and 40 years of age with or WITHOUT former service. We want men with apprenticeships and several years' practical experience plus a good basic theoretical knowledge and are also interested in the enthusiastic amateur who does another job but spends much of his time working on (and not dreaming about) radio. We need practical men who can do a job of work.
If you are one of these tell us about your experience.
Let us send you details. Fill in the coupon and post it now.

bullo ano enoor THE PW DOUBLE 12

This $12+12$ watt integrated stereo hi-fi amplifier and preamp is proving one of the most successful P.W. designs ever. With good ancillary equipment, you will find it one of the best you have ever heard, and it is a delight to build and handle. Basically, the design of the "P.W. Double 12" as described in P.W. April, May and June demonstrates the value of using "'Cir-Kit". However, Peak Sound have coritributed more besides to the success of this project. This includes the power amplifiers, the power pack and the ingenious cabinet which almost assembles itself. Go right ahead and build this exciting new design now with authentic, exact-to-specification Peak Sound kits as recommended by the designers.
This is your PW Double 12 Shopping List

These are the Peak Sound units with which you can build this exceltent desion. Transistors Included.
2 Spools of "Clr=Kit" at 2/-
-ach
2 Pre-amp and tone control
kite 4130
4 Pre-amp matrix boards .. 70
2 PA.i2-i5 Power Amplifier
Kits 7 i9 0
2Hest Sink assemblies
P.W. Double 12 abridged specification

Controle-Bass and treble cut and lift based on Baxandall circultry/ Volume/Balance/Rotary selector.
Input Sensitivity-Magnetlc P.U. (per channel) 2.5 mV Into $68 \mathrm{k} \Omega$. Ceramic P.U.-25mV into 27K. equalised for flat response. Radio/ Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response- 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall.
Output-12 watts per channel into 15Ω (8Ω speakers may be used). Negative Festback-43dB over each section.
Cabinet-Afrormosia teak finish, pack-flat, easy to bulld kit. Size $9 \frac{1}{4} \times 5 \frac{1}{1} \mathrm{In}$. high $\times 91 \mathrm{in}$. deep.
Trenslators-Ultra low nolse in pro-amp and tone control stages.
GO TO YOUR DEALER NOW
for your authentic Peak Sound KIts. In case of difficulty, please send drect, glving the name and address of your usual suppller where possible and add 11/- postage for complete assembly, or $5 / 6 \mathrm{If}$ without power pack.
TRADE ENOUIRIEB INVITED
PEAK SOUND (HARROW) LTD
32 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM Egham 5316 SURREY.

Reprinted April1963, October 1964, Očtober 1966, February 1969 PRICE 7s 6d (8s 6d post free) semi-stiff cover
Now available in cloth bound Library Edition at $15 \mathrm{~s}, 16 \mathrm{~s} 6 \mathrm{~d}$ post free
Intended for the "Do-it-yourself" man and the audiophils, this book contains a lot of first-hand information about woodworking, vengering, polishing, etc. But its main value, probably rests on the vital information given on cabinet design and the acoustic principles involved, particularly in relation to compact enclosures which are now so popular for stereo.

CONTENTS

Pages							Pages
Bibliogr	apl		1	Chapter		Resonance	
Introduc	tio		2	.'	10	Absorbents	11
Chapter		Materials	9	"	11	Home Equipment	
''	2	Plywood	8	,	12	Cabinet Design	22
'	3	Adhesives	3	"	13	Treble Enclosures	
''	4	Veneering	7	,	14	Electric Guitars	
"	5	Machines	6	"	15	Room Treatment	
-	6	Assembiy	5	Conclus	ion		
-	7	Polishing	6	Index		' i	

Please send orders and enquiries to
RANK WHARFEDALE BOOK DEPT. B.W.S.
is WELLS ROAD, ILKLEY, YORKSHIRE Telephone: Ilkley 4246
Published by RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKSHIRE

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra.flux required

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR.

Ecomically packed for
 general electrical and electronic soldering. 90 ft 18 gauge on plastic reel. Recomniended retail price 15/-

A RANGE OF SOLDERS IN HANDY DISPENSERS.

REF. ALLOY SWG			
4A	60/40	18	2/6*
Size5 (ill-			
ustrated)	Savbit	18	2/6*
15	60/40	22	3/-*

INVALUABLE FOR STRIPPING FLEX. THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily

THIN GAUGE SOLDER,

ESSENTIAL FOR
soldering small components and thin wires. High tin
 60/40 alloy, 202 ft . 22 gauge on plastic reel Recommended retail price 15/-
 adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 8/6

[^3]
SHOWTIME '69

NEARLY fifty firms exhibited in this year's radio-trade shows in late August. Most of them took space in London's best-known hotels, but a few staged exhibitions on their own premises. The shows were once again for the Trade only, the manufacturers obviously taking the view that their aim must be to sell to the dealers, leaving them to persuade the public to buy.

TRENDS

The emphasis of the shows this year was on colour TV, as might be expected, and we found no signs of startling developments in radio and audio. True, there were many new models to see, but the main differences between them and their predecessors was in the styling and cabinets rather than circuitry.

More of the "popular" firms seem to be bringing out better quality audio equipment such as recordplayers and stereograms. For example, many more stereograms now have detachable loudspeakers which give much better results than loudspeakers positioned about 3 ft . apart and housed in the same cabinet. The makers seem to be realising at last that a lot of people want equipment somewhat better than the very cheap type, but at a price less than that charged for hi-fi units.

NEW ITEMS

Details of new TV receivers are contained in a special report in the November issue of our companion magazine Practical Television, on sale on 17 October.

News from Alba was model 665, an a.m./f.m. personal radio with eight transistors and four diodes. The receiver covers m.w. and v.h.f./f.m. and the recommended price is $£ 917 \mathrm{~s}$. Od. The Alba 5007 stereogram has a price of $£ 95$ 2s. Od. and features a mains-powered 15 -transistor chassis. Later in the year, Alba will release the 6003 stereogram at about $£ 71$. Like the 5007 , it will cover l.w., m.w., and f.m. (with a.f.c.).

The Beomaster 3000 from Bang and Olufsen gives 30W r.m.s. output per channel with less than 0.6% distortion. The radio tuner section has six keys to give instant selection of six f.m. programmes. The unit is available in teak or Brazilian rosewood finish at $£ 135$ 9s. Od. and $£ 13610 \mathrm{~s}$. Od. respectively.

The Beocord 2400 tape recorder by B. and 0 . is a four-track machine with studio-type slide controls for microphone, radio, gram or line. A fifth slider controls the volume. The 2400 sells at $£ 20819 \mathrm{~s}$. Od. in teak and $£ 210$ in rosewood. -

A clock radio, model 450, from 'Benkson uses nine transistors and has an automatic alarm. It covers m.w. and l.w. and is available in green, brown and black. The suggested retail price is $£ 919 \mathrm{~s} .6 \mathrm{~d}$. The Benkson 458 is a ten-transistor radio covering m.w., l.w., and f.m. and retails at 12 gn .

A $3 \frac{3}{4} \mathrm{in} . / \mathrm{sec}$. tape recorder from Bosch, the Uher 714 , retails at $£ 4917 \mathrm{~s} 8 \mathrm{~d}$. and has a frequency range of 40 Hz to 15 kHz . It records mono on four tracks and will accommodate 7 in . spools. On the radio side, Bosch have a new luxury receiver, the Supernova. This set covers f.m., l.w., m.w., and s.w. (187 m . to 10 m .) and operates from mains or batteries. The price is $£ 9310 \mathrm{~s}$. Od. At the other end of the price scale is the Dixie covering a.m. and f.m. for $£ 16$ 3s. Od.

The New York stereogram from Bosch incorporates slider-type controls for tone and volume etc., and has an automatic stereo decoder which has $7 \mu \mathrm{~V}$ sensitivity. The price of the New York is $£ 33013 \mathrm{~s}$. 2 d .

The CR128 is a combined clock and radio introduced by Bush. It covers m.w. and incorporates an alarm clock. The price is 14 gn . The Bush VHF101 is a mains-operated transistorised table radio with long low styling in teak or tropical olive veneer. Coverage is l.w., m.w., and v.h.f./f.m., and there are sockets for tape recording and external v.h.f. aerial. This model is priced at $£ 30 \mathrm{19s}$. 9 d .

Model TR-145 from Crown is a four-band eleventransistor portable with 1.8 W output. It covers m.w. $(525 \mathrm{kHz}$ to 1605 kHz) and s.w. $(1.6 \mathrm{MHz}$ to 22 MHz in three wavebands). This model sells at $£ 2715 \mathrm{~s}$. 8d.

Among new items from Dansette was the Graduate stereo system, a record-playing unit and amplifier with separate loudspeakers. The retail price is $£ 47$ 0s. 4d. The Dansette Compact is another new stereo record-playing system and retails at $£ 399 \mathrm{~s} .4 \mathrm{~d}$. The cabinet is finished in teak and the two loudspeakers are detachable.

New to the Decca range of radios are the PR303, a three-band a.m./f.m. receiver with switchable car aerial, and the PR205 (Parade), a three-waveband set with switchable a.f.c. for the f.m. band. The prices of these two models have yet to be announced.

Beocord 2400 from Bang and Olufsen.

Dansette 'compact' with detachable speakers.
From Ekco at $£ 21$ was the Nautilus covering m.w., l.w., s.w., and f.m. This mains/battery radio has an olive green padded cabinet.

The 3247 from Ferguson is a new tape recorder in charcoal grey with teak or rosewood veneer. This four-track machine operates at $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$. and retails at $£ 42 \mathrm{l} 0 \mathrm{~s}$. Od.

A radio from Fidelity-the RAD16-covers m.w., l.w., s.w., and the marine band. Other features include an earphone or tape socket together with a push-button and socket for car aerial. The price is 17 gn . The other new radio from Fidelity is the RAD18 which has a wrap-round dial and nine pushbuttons for waveband selection and on/off switching. This set has a teak-veneered cabinet and retails at £287s. Od.

The G989/1 stereo radio tuner from G.E.C. retails at $£ 3312 \mathrm{~s}$. Od. and works with any stereo system or amplifier since it has its own power supply. Mono and stereo transmissions are kept in tune by a.f.c. and there is a pilot light to indicate stereo programmes.

The three-waveband Solo Boy from Grundig covers I.w., m.w., and f.m. This receiver has an r.f. stage for f.m. reception and gives 700 mW audio output. The price is $£ 17$ 19s. 6d.

The VHF Herald from Hacker is a portable receiver for f.m. only, and is finished in black padded leather-cloth with satin silver trim. The audio output is $1 \frac{1}{2} \mathrm{~W}$, and there are sockets for external aerial and output to tape recorder. The sensitivity is better than $1 \mu \mathrm{~V}$ for 10 dB signal-to-noise ratio, with full limiting at $5 \mu \mathrm{~V}$. The price is $£ 2918 \mathrm{~s}$. Od.

From $I T T K B$ comes an unusual mains table radio which has a sloping front, with tuning scale on the right and loudspeaker on the left. The sides of the cabinet are finished in teak, the l.s. grille is black, and the trim is brushed aluminium. The list price of the receiver, model KR068, which covers l.w., m.w., and f.m., is $£ 3215 \mathrm{~s}$. 0 d .

Interesting items at the National show included stereo headphones with built-in radio, and a miniature personal radio which can also be plugged into a separate amplifier unit to make a table radio. These two items formed a part of a display of equipment at present available in the USA, but not yet on sale here.

National also showed the RF-5000 19-transistor portable which covers l.w., m.w., f.m., and s.w. $(1.6 \mathrm{MHz}$ to 30 MHz$)$. This eleven-band set sells at £169 4s. Od.

A new receiver from Perry and Pharo is the Action by Nova-Tech. This portable five-band set covers 30 MHz to $50 \mathrm{MHz} ; 1.5 \mathrm{MHz}$ to $4.5 \mathrm{MHz} ; 550 \mathrm{kHz}$ to 1600 kHz ; and 200 kHz to 400 kHz .

From Philco comes model R440WA, an elegant mains table radio covering m.w. and f.m. The price is $£ 20 \mathrm{6s}$. 1d. An a.m./f.m. clock radio, model R 530BK, retails at the same price.

The GF822 stereo record player by Philips features a new press-button auto-changer with builtin cueing device. Two dual-cone loudspeakers with teak-veneered enclosures are provided, and the retail price of the complete system is $£ 6119 \mathrm{~s}$. Od.

The Philips RL693 mains/battery radio was also on show. This has two medium wavebands, and also covers I.w., s.w., and v.h.f. The price is $£ 7816 \mathrm{~s}$. Od.

Sony unveiled a vast range of new items which included the ICR200, an integrated-circuit radio with rechargeable batteries. This receiver covers m.w. and is available in red or black, and comes complete with battery charger. The price is $£ 18$.
The ICF8500, also from Sony, covers f.m., m.w., and the aircraft, marine, and beacon bands. The retail price of this model is $£ 60$. The Sony TFM 6600 L is a portable covering l.w., m.w., and f.m. It has a $3 \frac{1}{2} \mathrm{i}$ in. 1.s. and operates from internal batteries or a.c. mains (via an optional adapter). The retail price is $£ 2115 \mathrm{~s}$. 0 d .

Philco's clock radio, model R530 BK.
One of the lowest priced items seen during the shows was the Teleton 6×705 single-waveband portable receiver which weighs only 8 oz . The suggested retail price is $£ 215 \mathrm{~s}$. 0 d .

Two new stereograms were shown by Unitra; the Sandpiper at $62 \frac{1}{2}$ gn. covers l.w., m.w., and f.m. and has 4W peak output per channel. The DGS303 has five wavebands including f.m. and has an output of $2 \frac{1}{2} \mathrm{~W}$ per channel into 5Ω loudspeakers. The DGS303 retails at $89 \frac{1}{2}$ gn.

Van der Molen showed the Sonic $4+4$ stereo record-player. One of the loudspeaker enclosures may be detached for optimum results. The system retails at $£ 24$.

The Stereo 88 unit audio system from Videorama sells at $39 \frac{1}{2} \mathrm{gn}$. and consists of amplifier/record-player, and two loudspeaker enclosures. The Stereo 99 system has three units, too, but the record-player section also contains an f.m. radio tuner. The units are finished in teak veneer and the output is 5 W , per channel. The price of the Stereo 99 is $69 \frac{1}{2} \mathrm{gn}$.

T2 RECEIVER FOR 160 2 TZ RECEIVERANDS

 moblie or home recelver. E . Carr. $4 / 6$. circults. ONLY $£ 15,17.6$. Carr. 4/6.

CRES MAINS T.R.F. SHORT-WAVE RECEIVER Teception. *Separate Output 3 watts Warld wide recop motlon drives. *C81, EL84, EZ80, spread. *3 $2 / 3 \mathrm{ohm}$ speaker. \# Valves ECCBI, ELit 3 couls for $2 / 3$ ohm spean. CODAB-KIT CR, 45 K . 5.0 . Carr
 $6 / \%$ or ready bullt CR.
$6 / \%$ or realls $5 / 4$ each.
6... Extra colls $5 / 4$ each.

MNI-CLIPPER-OUR FAMOUS MINI-CLIPPERERECEIVER * Can be bultt in one coll 25-75 metres plete with valve, one con manual. Pilc and 4 page 22.6 . Carr. 3/-. Extra colls 5/4. R.F. PRE-SELECTOR-MOD
 rejectlon. Improved tivity. Power amp L.T. Size 81 6.3 voits, 3 amp cables, plugs anered P.R. $30 x$ comple. Carr. 4/6. Soll-por
 Pleasase supply \square Nu statape (lick as requised) cheque!
 \qquad
\square ADDRESS

Mainline ELEETRONIES LIMITED Service with the personal touch

Mainline Electronics is a new Service for users of electronic equipment and components in the field of experimental work
Backed by one of Europe＇s leading Distributors and enjoying the support of the Industry，Mainline Electronics specialises in quality components from leading manufacturers．These products are char－ acterised by excellent materials and workman－ ship，proved reliability and known performance．
Service is the watchword of Mainline Electronics＇ activities．The company not only supplies the right components at the right price but，also supplies the necessary data through the data service pub－ lished in the component guide

Your Complete Professional Guide to Components and Prices

Send today for Europe＇s finest，most up－to－date and most comprehensive Price List of Semi－conductors and associated components，with details of manufacturers full application data．

4.Get this invaluable reference now－to RCA－IR－SGS－ Emihus－Semitron －CCL－Plessey－ Morganite－Litesold to name but a few．

A DOZEN OF THE BEST

Mainline Electronics Limited，
Thames Avenue，WINDSOR，Berkshire．
（A member of the ECS Group of Companies）

TRANSISTORS etc．

 \begin{tabular}{ll|ll}
10120 \& $8 /-$ \& 0044 \& $2 / 0$

AF115 \& $8 /-$ \& $0 C 45$ \& $2 / 0$

AFll \& $3 /-$ \& $0 C 70$ \& $8 / 8$
\end{tabular} AF116 AF117 BFY18 BFY51

GET118 OA5 OA： \begin{tabular}{ll|ll}
049 \& $1 / 8$ \& $0 C 81$ \& $2 /-$

0.

\hline 0447 \& $1 / 9$ \& OC81D \& $2 /-$

0481 \& $1 / 6$ \& OC82D \& $2 / 3$
\end{tabular}

OA81
0485
OA91
$0 \mathrm{C23}$
0025
0026
0 O 26
$\mathrm{OC28}$
Crystal Diodea－6 for 2／6．（7d．）

SILICON DIODE	
RECTIFIERS	
BY100 800 piv	2／10
New 500 mA	
250 plv	1／9
Avalanche 1tA	
1200 piv	4／－
Six Amp Soriez	
BYZ13 300 piv	8／6
BYZ12 600 piv	4／6
BYZ11900 piv	$5 /-$
BYZ10 1200 piv	5／6
Mallard Stack FW	
Eridge	
12A 100 plv 89／6	（3／－）
THYRISTORS	
8 mmp stries	
100 piv	7／6
200 piv	91－
300 piv	10／6
400 piv	12／－
800 piv	25］－
10 ampgeria	
50 piv	10／－
100 piv	12／－
100 amp series	prices

Also $8 \mu \mathrm{~F} 350 \mathrm{~V} 1 / 2,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 8$ and $50 \mu \mathrm{~F} 50 \mathrm{~V} 1 / 9$ ．Other electrolytios in current uas Postage，Packing and Insurance all above $1 /-\mathrm{up}$ to 11,12 and over charges paid．
\＆GANG VAR．CONDENSER：Mod．，air－spaced， 0005 ea．sec． $5 /-(1 /-)$ ．
SUB－MIN TRANBFORMERS：Output（ 3Ω for OC72 etc．）2／6．Driver 8／9（up to six， $1 /$ ） MOLTDERTER： 20,000 Q／V D．C．， 10,000 Q／V A．C． $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ volta D．C． － $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ voits A．C． $0-50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D．C． $0-6 \mathrm{~K} \Omega / 6$ meg －Over－load protected 1969 model with every reflmement．\＆4．7．6（2／6）．JUNIOR MODEL at $47 / 8$（2／6） $1000 \mathrm{a} / \mathrm{V}$ described in iree list．
SOLDERING IRON glim Mod．British High gheed， $8 t$ in all parta replaceable，fully guaranteed for professional，radio and general D．1．Y．use． $19 / 8(1 / 6)$
DIA $=10 N D$ 8TYLI Replacemente for BSR TC8LP，TCA／S and TC8LP／ETEREO： COLLARO＂O＂；RONETTE BF40LP；GARRARD GC2LP and GC8LP；ACOS GP65／67； all at $7 / 8$ each（1／－）．ACOS GP91 8T／LP：B8R ST4 and 8T9；GONOTONE 9TA and OTABC，PHILIPS AG3306， 3060 （ $3063,3066,3301,3302,3304$ ）state whet her long or Short type，all at $18 / 6$（1／－）．
BAPPHine all the above 7 ．
BAPPHIRE all the above $7 / 6$ types only，alen ACO8 GP37 at 8／8 each（ $1 /-$ ）．ACOS GP91 at 619 （1／－）．No other types at prement，and no 78 rpm available in any type
PICK－UP CARTRIDGES．all fitted Styll and 8tandard fittings．Mono GPG7／8，18／6 GP91／8C，19／6．Lateat stereo GP98，28／－．Ceramic Stereo，top quality for expensive outtits，GP94，88／6（all 1／－）．
PP8 WHMNATOR（A．C．）1\％／6．（1／6）TWO STATION TRANS．INTER－COM．Excellent baby alarm．Instant，easy fitting with leads，plugs and battery All you require $52 / 6$（ $3 /-$ ）． TRAHGLSTORIEED AMPLIFTER8， 3 watt， 9 V operation， $45 / 6$（1／6）；71 watt， 6 trans． 24 V operstion， $67 / 6$（2／6）．
Extra High Torque MINI－MOTOR， $4 \frac{1}{\frac{1}{2}}$ to $12 \mathrm{~V}, 1 \frac{1}{} \mathrm{x}$ fin． $5 /-(1 /-) .9,000$ r．p．m．
SUBSHIUUTION BOXFS，Capacitance 24／0（1／6）．Resistance 32／6（1／6）．Both full range and complete．Full detail in liat
．crible，unbreakable 24^{*} Red and Black leads，thin $44^{\text {＂prods，}} 1 z^{*}$ pluge RECORDING TAPE；Finest quality British Mylar．STANDARD：5in． $600 \mathrm{ft} .7 / 3,5!\mathrm{in}$ ． $850 \mathrm{ft} .8 / 9,7 \mathrm{in} .1200 \mathrm{ft}$ ． $11 / 8$ ．LONG PLAY 6 in． $900 \mathrm{ft} .10 /-.54 \mathrm{in}$ ． $1200 \mathrm{ft} .11 / 8,7 \mathrm{in}$ ． 1800 ft ． 18／－（ $1 / 3$ reel $)$ ．stlll the finest quality and value obtainable．
MOROPHONR8－CBY8TAL．MIC91，Desk，16／8；MIC45，curved band grip 17／8；gtick ＂60＂20／8；Stick＂ $39^{\prime \prime}$ 88／6（1／6 each type）．Gream plastic hand type $7 / 8$ ，or with＂strut＂ stand，switch and 2 leads with 2.6 and 3.5 plugs $11 /-$ ．Lapet（or hand）with clip $6 / 6$（1）－）． $\mathbf{8 5 / - (1 / 6)}$ ．D YFAMIC：Cream hand／table $15 / 8(1 / 6)$ ．M $\$ 1050 \mathrm{~K} \cap$ ， $3 \mathrm{f} \times \mathrm{x}$ in．with Base，
 fitted base $42 / 6$（2／6）．DM128 Unj－directional， $50 \mathrm{~K} / 600 \mathrm{ohms}$ imp，stand adaptor，very high quallty $61 \times 2 \times 1 \frac{L^{*}}{}$ e5．9．6（5／－）．
CARDIOID DYFAMC OMNI－DIRECTIONAL：Two highly successful miken＂gquARE＇ 208， 5.10 .0 ．＂BALL＂type，209，with built－in vol．control，switch $50 \mathrm{~K} / 600$ ohms imp．， 58．17．6（either type 5／－）．Full details in list．
MOROPHONE INSERTS：Diameter 1.75 in ．or 0.9 in ．either size $5 / 6$（ $1 /-$ ）．
SPRAKERR：18in．round，fitted Tweeter， $6 \mathrm{~W}, 3$ or 15Ω（state which）， $85 / 6$（ $5 / 6$ ）； 21 in .3 a （1／－）．Limited quantity powerful 2 tin．PM transistor replacenient speaker，hish ohms （1／－）．Limited quantity powerful 2tin．PM transistor replacement speaker，high ohms， Btereo Dyn $8-16 \mathrm{n}, 68 /-(3 /-)$ ．EARPIECES with lead etc．，Min．Plug Magnetic $1 / 6$ ； Cryatal $4 / 9$（either，np to three， $1 /-$ ）． 28／8（2／B）Motor driven， 12 V ， 5 section，complate $27.10 .0(5 /-)$ ．
FOR ALL PORTABLES，and F．M．8ETS． 7 －Bection $5 \frac{1}{1-32 i n ., ~ n o ~ n w l v e l, ~ s c r e w ~ h o l e ~ i n ~ b a g e, ~}$ 6／6．10－dection 61－47i in．，no swivel，screw hole in base，18／6．DI8APPEARING 8 section swivel flxing asaembly， $6 \frac{1}{2} / 33$ in $10 /-$ ．New 6 section $5 \$ / 25 \frac{1}{2}$ in，screw hole in base，no swivel （T）all sizes）
BWITCHAB：Btandard toggle，metal，250V 2A．One hole firing：8PST $2 / 8$ ，SPDT $2 / 9$. ＂of＂ $1 / 9$ ．Reed magnetic types．Sub－min．DPDT $1 / 6$ each．gmall DPDT 3 way，centre Twitches etc．in list．
VIBRATORS：Famous makes only． 12 volt 4 pin non－synch 2／6． 12 volt 7 pin synch 10／－． 6 volt 7 pin synch $10 /-$（ $1 /$－each，sll types）．
MANS NEON TYSTER：Fly leads 2／－．Pocket grewdriver type 8／6．PLOGS；std．Jack， plastic body 2／8．Screened \＄／－．Sockets 1／6．VALVE HOLDERS：B7G or B9A，Moulded Bd．（alt above，1／－up to three）．CONNECTING WIRE： 5 coils asstd．cols．each 5 yds．Solid PICK－UP WIRE：Twin Super thin Flex，Bcreened，Sheathed， $1 / 3$ yd．（6icl．up to 6 yds．， over 6 yds，post iree）．TWIN MIRE CABLE： $1 / 3$ yd．SINGLE MKE CABLE：7d．yd． Both flextble，screened and sheathed．FAEDER OABLE：Twin raf．bal．＂fg． $8^{\prime \prime}$ ， 80Ω or fiat 300 n transparent polythene insulated，either 6d．per yd．（all cables up to 3 yds
8d．，each additional yard，1d．extra）．
R．F．MDICATOR， 5 －Band，with meter antenna，monitoring cryatal earpiece etc．， $48 / 6$ （1／6）．Detalle in liat
RHTRACTABLE FLHXIBLE LEADS．Bpace saving＇Curly＇，many uses in car and home： With phono plug each end， 6 ft．， $4 / 6 ; 12 \mathrm{ft} ., 7 / 9$ ．With phono plug one end，phono socket With phono plug each end， 6 ft．， $4 / 6 ; 12 \mathrm{ft} ., 7 / 9$ ．
CAR RADIO：Bplendid new All－British dash－mounting radio using Mullard transistor and clrcuit．M．and L．wave．Eeparate speaker and baffe．Absolutely complete，for + or －chassls． 81.11 .0 （6／6）．A huge success since introduction．
CURRENT LIST：Sent with all orders or free for sa．e．details of cable，croc．clips and leads， Continental din plugg for Grundig，Telefunken equipment，etc．，dials．plugs and sockets， panel metera，record player and tape recording acceasories．Battery chargers，teat equip－ ment，terminals，tape recorder，apecial transistors，portable sets，more switches and other components，tools，Veroboard etc，etc This advertisement cancels all previous ones and
FELSTEAD ELECTRONICS
（PW24）LONGLEY LANE，GATLEY，CHEADLE，CHESHIRE，SK8 4EE
TERMS：Cash with order only．No C．O．D．or caller service．Post，packing and insurance charges are shown in bracketa atter all items．Regret orders under $5 /$－plus carriage eannot be accepted，and a minimum charge of $1 /-$ is now made．Charges apply to G．B．and Eire S．A．S．please for all enquiries，otherwise regret cannot be replied to

practically Wiriess commentar by HENRY

with guest writer FRANK P. YOUNG

0HHARLES Curran warns us that the long-term future for radio in this country lies with v.h.f. . . . last year's total of v.h.f. receivers manufactured exceeded 119,000 . . there are v.h.f. radio stations now in eight cities . . . we are all high-band minded. But what about the low band? Just because the GPO allows Private Mobile Radio to operate in this country between $87 \cdot 5-88 \mathrm{MHz}$ and cross-modulate our entertainment, we must not imagine we have entered the sophisticated world of open communications. As an example of what could happen, let's take a look at the States, where the Citizens' Band is open to all, up to about 40 miles coverage per set at maximum 5 watts on 27 MHz , with up to 23 potential channels.

Our guest writer tells Henry that the women in USA have dropped their telephones and picked up microphones: 'They never could resist a party line,' says Frank Young, an American resident of Bristol, who sorely misses his CB facility. Now read on . . .

"Joe to Willie, Joe to Willie. Do you read me? Over . .."
 "Willie to Joe, receiving you five-by-five, over."
 "Willie, they're moving up over the hill now, heading east pretty fast . . . circle around that lower road . . . don't let 'em spot you until you're ready to fire."
 "Roger, Joe, keep your heads down-over and out."

The Dieppe Raid? Anzio Beach? Breaching the Siegfried Line? No. Deer season in Potter County, Pennsylvania.

It is walkie-talkie time in the woods, America's last stronghold of the male on the airwaves. Its khaki webbing is worn and batteries are increasingly hard to get, but the war surplus instrument is lovingly coddled by its master. Once a year, he contributes to the language by re-enacting-and thus preserving the strange tongue of the Ardennes, circa 1944.

They're coming up the hill fellowsrun for it I

He does this, to the infinite delight of all rifle-toting, back-at-thelodge beer-swilling old soldiers. courtesy of the Federal Communications Commission. This is the same outfit that a few years ago, via an Act establishing Citizen's Band Radio, brought women into our preserve.

Time was when Amateur Radio was a comradely all-male secret society, with its own cabalistic language and signs. The whole thing was carried on in private seances in little back rooms, full of black boxes and huge dials and coils and throwswitches, all making peculiar noises and bakelite smells and bitty sparks. Every man was his own Merlin, staying awake long hours into the deep night in commune with fellow-wizards.

Citizen's Band was welcomed at first. It meant more wizards-a lower class, of course, but nevertheless. We men were wrong. It was a classic case of turning over the cauldron to the Sorcerer's Apprentice. The Apprentice, in this case, was Mum, and she simply didn't fit in.

To begin with, she wanted to talk, too. It was a novelty at the start, but you all know how women are. They never shut up. Then she wanted our sanctum door left open. Then she began hanging out in there. Then she said the place was untidy. Then, Lord help us, she cleaned it up.

Then she said it would be better

Every man was his own Merlin.
as a sewing room. The radio would look nice in the kitchen, right next to the Super-Six-Burner-Over-And Under-Oven Mark VII All-Automatic Stove, with its IBM computer console for making tea. She figured that just because we were too stupid to figure out the stove, we couldn't work our radio, either.
Now they're making the damn things in mauve and pink cases to match refrigerators. I don't know how long we'll last out here in the woods. My buddy, Charlie, bought it last week when his wife zeroed in on the lodge with her auto receiver, and caught him calling the beer truck for an extra delivery.
But we're working on evasive action. We've invented a new gadget that can't be picked up by any radio. All it takes is two used bean cans. Then you take a piece of fishing string, see, and . . .

INTERNATIONAL AUDIO FAIR 1969

AT OLYMPIA. . .
... LOOK OUT FOR THE "PRACTICAL WIRELESS" STAND—No. 73
OCTOBER 16th-22nd

MEDUUM WAVE PD:-- RECEIVER D. GIBSON G3JDG

LAST month, in part one, we discussed the theoretical aspects of the receiver and considered various alternative front ends. In this part, we will be concerned with the construction and alignment of the unit.

It is not imperative that the layout shown be strictly adhered to. Experienced constructors, the type of person who might build this receiver, will have their own ideas. Providing the layout follows a sensible pattern and the rules of common sense are adhered to there should be no difficulty. Short leads carrying signal voltages and other obvious rules of construction must be observed.

The case is a bought item and is made of steel. The front panel is aluminium. The only hard work is making a cut-out for the loudspeaker in the steel side of the case. A neat group of holes would be the easiest way out. The writer made such a hash of this simple task that it was necessary to cover the resultant scars with a plastic fret gleaned from a "surplus" store.

The front panel is enamelled and although reasonably hard can still be scratched. It is best to make a template of paper marking out the position of the individual controls. These centre marks can then be transferred to the panel by laying the paper template in position and pressing with a sharp-pointed scriber. The meter cut out is made using a hacksaw while the other holes can be drilled.

Tuning Drive

The dial must be positioned carefully in order to line-up with the spindle of the tuning capacitor. Any inaccuracy here will result in undue strain on the spindle of the tuning capacitor, which is very undesirable. The hole for the drive was cut with a B9A cutter. Fortunately, the dials are supplied with a paper template, and this can be laid on the front panel and the position of the holes marked quite accurately. The writer's somewhat cowardly method was to pitch the main spindle hole a little high and then to pack the tuning capacitor with brass washers under the small aluminium plates which hold it to the chassis.

All controls, with the exception of the dial plate and " S " meter, should be mounted and the panel then bolted to the chassis with four bolts. The chassis
was cut from aluminium to form a final shape 10 in . wide by $5 \frac{1}{2} \mathrm{in}$. deep. The back drop is 2 in . and the front lip is bent upwards forming a $\frac{1}{2} \mathrm{in}$. strip to which the front panel is bolted.

The wiring is in a modular form, this being an easy way to build most complex projects. The front end is wired up on its small plain Veroboard "chassis" which, when completed, is bolted to a cut out in the main aluminium chassis by four 6BA bolts. This Veroboard holds the mixer, oscillator and buffer stages.

The r.f. stage is wired separately and the pins of the r.f. coil are used as anchoring points for the discrete components. This has the advantage that the entire r.f. section is under the chassis well away from the mixer. The chassis affords excellent screening and the physical distance combines with this to ensure that undesirable feedback and instability due to the stages "seeing" each other are eliminated. Constructors varying the layout should bear this point in mind when deviating.

The layout shown offers several advantages. Placing the r.f. coil and components as shown ensures the shortest possible leads from aerial to input. Again, the positioning of the Veroboard strip and i.f. strip allows short leads between mixer and i.f. input.

The i.f. strip is also a bought item. It was thought that many constructors would not have access to sophisticated test equipment and that the building and alignment of a strip with a half lattice crystal filter would present difficulties. Constructors with both test gear and confidence might consider building their own i.f. section.

Filter Matching

If one of the transistor front-ends is used, then the extra i.f. transformer is needed, coupling being via a small capacitor. If this capacitor is made too large in value, then the filter characteristics will be impaired because of the heavier loading effects.

As an experiment, the collector of the mixer was connected direct to the input transformer on the strip which amounted to a large mismatch of impedances and consequent distortion in the shape of the filter

Top view of the completed receiver.
passband. However, surprisingly enough results were still quite passable and the tuning remained tolerably sharp, although the filter passband shape was not viewed on an oscilloscope which might have told a harrowing story. Brave men with suitable 'scopes proceed with caution.

If the f.e.t. front end is used and the extra i.f. transformer is to be used, then a simple modification is well worth while and is shown in the diagram. This modification is very easy and ensures a higher impedance load to the f.e.t.
The a.f. section follows the same pattern of construction as the front end. It may be built on its Veroboard "chassis" and tested before bolting it to the main aluminium chassis. Heavy decoupling was found necessary due mainly to the high gain of the amplifier. The two $1,000 \mu \mathrm{~F}$ decoupling capacitors were mounted by means "of a small aluminium plate which in turn was bolted to the backdrop 'of the main chassis. A single $2,000 \mu \mathrm{~F} 15 \mathrm{~V}$ capacitor would be equally suitable providing it will fit into the space available.

The $200 \mu \mathrm{~F}$ loudspeaker "coupling" capacitor C18 is more usually some ten times this value. However the value was gradually decreased to $200 \mu \mathrm{~F}$ with no apparent effect on performance and thus this value was used since it takes up a very much smaller volume.

The complementary pair output transistors have small slip-on heatsinks. These were drilled and cleaned with emery cloth and bolied to the chassis with 6BA bolts thus utilising the main chassis as a heatsink. Although probably not strictly necessary, it does afford a neat layout and an additional safety factor.

The two batteries are wired in series to give a 12 V line. They are held in position with a length of 4 BA brass studding bolted to the chassis at one end, while the other end is pushed through a hole in a strip of Paxolin which traverses the length of both batteries. This method is hardly elegant and constructors might consider making a small aluminium bracket or some form of more secure housing for them.

When the wiring of the two Veroboards is completed and these are bolted in position the various interconnecting wiring may be completed.

Fig. 7: Front panel drilling and layout.

Fig. 8: Layout of components on the underside of the chassis.

Fig. 9: Layout on the above side of the chassis.

fig. 10: Lavout of components on the r.f. board.

The " S " meter should now be mounted and wired in last. This has a plastic front which is easily scratched as is the dial cover which is not fitted until after final calibration of the dial itself.

The circuit which the manufacturers show for the i.f. strip depicts a resistor in series with the meter, nominally $1 \mathrm{k} \Omega$. In the prototype this resistor was found to be unnecessary and was thus omitted. The "meter zero" front panel control provided ade ${ }_{-}$ quate adjustment of the meter.
After all wiring has been completed it is prudent to re-check the entire receiver. In the front end the coils used are Denco miniature transistor plug-in types, the surplus pins being used as anchoring points. Check that the wiring around these coils is correct as it is extremely easy to make an error here.
With both $n-p-n$ and $p-n-p$ devices, and possibly f.e.t.s used in the design, it is also all too easy to make a mistake. Check wiring of all devices, including the zener diode.
For proper alignment a signal generator is imperative. Lucky types who possess a 'scope and wobbulator will have a decided advantage.

First, check the a.f. section. Touching the "live" terminal of the a.f. gain control should produce a violent hum in the speaker with the gain turned threequarters up.
The values shown in the amplifier were adjusted on test mainly with an eye to battery conservation. If the circuit as shown is strictly adhered to, then, under no-signal conditions, the a.f. section on its own will draw approximately 8 mA . On peaks of signal this will rise to 100-150mA. Although the circuit will, in theory, produce around 1W of audio, turning up the a.f. gain fully does introduce noticeable distortion. It was found in practice that with half this amount belting out of the loudspeaker, volume was more than adequate. Perhaps "fiddling" the circuitry for low-standing current together with ruthless pruning of components brings distortion as the price to be paid, however, this is only noticeable when the gain is fully up.

Once the a.f. section is functioning the i.f. strip may be checked roughly. Touching the pins of the crystals with a finger will produce an agonising cacophony of pure audio bedlam from the speaker.

The front end is by far the most difficult section to check and align and extreme care is required. The trouble-taking in alignment here will dictate whether the receiver is a communications type or just a sophisticated m.w. receiver.

Alignment

The signal generator should be adjusted throughout the lining-up procedure for minimum output voltage at all times. It should be connected via a capacitor to the circuitry, a value of $0.01 \mu \mathrm{~F}$ is suitable. For alignment, it will be assumed that the constructor has only a signal generator. This can be conveniently used in conjunction with the " S " meter which gives an indication of the signal level and can thus show when a peak is reached.

The signal generator output is applied via a $0.01 \mu \mathrm{~F}$ capacitor to the input side of the extra i.f. transformer. A 1.62 MHz signal must be produced
which is accurate in frequency. This is a "must" because the filter will strongly attenuate anything outside its passband which is set at around 2 kHz . If there is any doubt here, check the frequencies of the individual crystals. These will be stamped on the top of each crystal case and the signal generator should be adjusted to fall midway between these two frequencies.

Adjust the generator output so that the " S " meter reads about $\frac{1}{4}$ deflection. Now carefully adjust the bottom core of the first i.f. transformer on the strip. Note, only the bottom core should be adjusted and it will only require small variation. The top core of this transformer is carefully set by the manufacturers and should on no account be touched. The bottom core only is gently adjusted for peak reading on the " S " meter. Following this, the cores of the extra i.f. transformer should be adjusted for peak meter reading.

The generator is now connected, via the capacitor, to the aerial terminal. The input arrangement will vary here depending on the type of aerial to be used. If it is to be a balanced 80Ω input, then the aerial leads will go to the two connections on the input winding of the r.f. coil. If, as in the prototype, a long wire aerial is to be used, then one side of the winding will be earthed and the aerial taken to the other end of the winding, which is the place to inject the signal generator voltage.

The signal generator should be set to 0.515 MHz and the tuning capacitor fully meshed. The core of the oscillating coil is now adjusted for peak signal on the meter.

Set the generator to 1.545 MHz and fully open the tuning capacitor. The oscillator trimmer is now adjusted for peak signal. These two steps, at either end of the tuning range, are repeated until no further adjustment is necessary.

Now adjust the cores in the extra i.f.t. again and repeat the high and low frequency alignment to check that this still holds. If there is any slight deviation, these steps should be repeated.

Re-tweek the bottom core of the i.f.t. on the i.f. strip. This adjustment will be very fine so care should be exercised. Now repeat the high and low frequency checks for peak reading on the meter.

This procedure will take time and patience but is very necessary if the receiver is to function at its best.

The generator is now set to 566 kHz , which is the l.f. tracking point, and the signal tuned-in with the tuning capacitor, again for peak meter reading. The tuning capacitor should be around 20° from the fully-meshed position. The cores of the mixer and r.f. coils are now adjusted.

Set the generator to the h.f. tracking point, $1,390 \mathrm{kHz}$, and tune-in the signal. Here, the tuning capacitor should be approximately 15° from minimum. The mixer and r.f. trimmers are now adjusted for maximum response.

The method of "mounting" the trimmer capacitors is not really satisfactory. It would be far better

Fig. 11: The layout on the a.f. board.
to obtain a copper strip and bolt this along the upper length of the tuning capacitor, soldering the trimmers to this. A strip of this sort will offer far superior support to the trimmers than the length of 16 s.w.g. tinned copper wire used in the prototype which tends to buckle very slightly when the trimmers are adjusted and requires a very light touch if tuning and alignment is not to be affected. Again, beehive trimmers may well prove better than the postage-stamp types used.

Once the alignment has been successfully carried out the main dial may be marked in. A crystal frequency marker giving 100 kHz points would be useful here, otherwise stations with known frequencies might be used. Two dials are included when purchased and one has five blank scales plus a logging scale marked 0 to 100 . Thus one scale might be marked in kHz or MHz , while the others can be left blank or used to pinpoint stations.

"S" Meter

The " S " meter would need to be calibrated if a meaningful report is to be furnished. In this case it would be necessary to know the exact output from the signal generator so that a signal of known strength could be fed in. This is left to individual constructor's discretion and those possessing a signal generator of this calibre will not need the whole procedure outlined. Even uncalibrated, the meter offers a very useful comparison of signal strengths comparing one station with another.

The a.v.c. may be switched in and checked, thus ensuring that the switch is wired-in correctly. The b.f.o. may also be checked and will produce a definite indication of its presence. The b.f.o. pitch may be altered some $\pm 5 \mathrm{kHz}$ of centre frequency. A stability of better than 0.002% is claimed.

The i.f. strip has a product detector and an a.m. detector, the correct one being automatically switched via the b.f.o. switch. The i.f. gain control provides some 50 dB of gain control and the a.g.c. is quite remarkable on strong signals affording some 6 dB increase in output for 80 dB increase in input when receiving s.s.b. On a.m., the i.f. strip sensitivity is such that a $10 \mu \mathrm{~V} 80 \%$ modulated $(400 \mathrm{~Hz})$ signal will produce $180 \mathrm{mV} \pm 3 \mathrm{~dB}$ across the a.f. gain control. The crystal filter is immediately apparent when tuning across the band. Bandwidth is 2 kHz min . $(6 \mathrm{~dB})$ and 5 kHz at 60 dB down.

P.W. ©UIDE TO Cox Pouncive

 PART 11

 PART 11

 M. K.TITMAN, B.Sc. (Eng)

 M. K.TITMAN, B.Sc. (Eng)}

DIODES are essential components in most electronic circuits and have been available since the early days of radio. Indeed diodes were the first useful thermionic devices. They are used for power rectification and in signal paths for rectification and transmission.

Zener diodes however are of fairly recent origin and have only been available since the general use of transistors. This is mainly due to their reliance on modern semiconductor materials and processes. They are used as voltage reference elements and for specialist applications in transistor circuits. The circuit symbols for both diodes and zener diodes are still not completely standardised and they are shown

Fig. 1: Commonly used diode circuit symbols.
B.S. preterred
+
+
i

Fig. 2: Circuit symbols for zener diodes.
in Figs. 1 and 2 respectively. In both cases the British Standard preferred symbols are indicated. In Fig. 1 the polarity indicated is for conduction through the diode and in Fig. 2 for the zener reference voltage.

Diode Characteristics

The ideal diode would have zero voltage drop in the forward conducting direction and zero current flow in the reverse or non-conducting direction. In practice these conditions are not fully met, although modern semiconductor diodes closely approach the ideal for most practical purposes, as can be seen in the forward and reverse characteristics of a silicon diode shown in Figs. 3(a) and 3(b) respectively. In contrast to the early metal rectifiers-which used semiconductor properties - the modern rectifier has a considerably smaller voltage drop in the forward direction. The voltage drop is 0.5 to 1 V for silicon diodes and 0.2 to 0.7 V for germanium diodes. Hence the power dissipation ($\mathrm{Vf} \times \mathrm{If}$) is lower, and smaller devices can be used. From the reverse characteristic it can be seen that a small reverse current flows and
can be as low as 1 nA or $10^{-9} \mathrm{~A}$ in certain silicon diodes. The reverse current in germanium diodes is considerably larger and can be as much as 0.5 mA . In order to illustrate how closely the silicon diode approaches the ideal a combined foward and reverse characteristic, using normal transistor circuit values, is shown in Fig. 4.

Fig. 3(a): Silicon diode forward characteristic.

Fig. 3(b): Silicon diode reverse characteristic.
The reverse current and forward voltage drop at a maximum forward current are given by manufacturers as diode parameters. Both the voltage drop and reverse current are considerably affected by changes in temperature. The forward voltage drop reduces with increased temperature by between 2 and $2 \cdot 4 \mathrm{mV}$ per ${ }^{\circ} \mathrm{C}$ rise in temperature, resulting in a re-

Fig. 4: Silicon diode characteristic curve drawn using normal circuit current and voltage values.
duction in forward voltage drop from say 0.7 to 0.46 V for a $100^{\circ} \mathrm{C}$ rise in temperature. The reverse current increases with temperature but the increase is of little importance in most applications utilising silicon diodes. Due to the structure of the semiconductor junctions the practical maximum operating temperatures of the junctions are $+85^{\circ} \mathrm{C}$ for germanium diodes and $+175^{\circ} \mathrm{C}$ for silicon.

A further significant diode parameter is the maximum reverse voltage which it can withstand, and this is determined by the avalanche breakdown point shown in the reverse characteristic. At this point the current suddenly increases rendering the diode useless as a blocking component. Ranges of diodes are produced with differing maximum reverse voltages and a comparison of cost for differing reverse voltages and forward currents is given in Table 1.

Zener Diode Characteristics

Zener diodes utilise both the avalanche effect and the true zener effect to obtain the typical characteristic shown in Fig. 5. Stabilising, or commonly zener, diodes using the avalanche effect-which is due to breakdown of the junction-are usually greater than 6 V and have a positive temperature coefficient. True zener diodes, which utilise the zener effect (due to break-up of the atomic bonds in a high impurity concentration junction), have values between $2 \cdot 7$ and 6 V and have a negative temperature coefficient. Ranges of values are produced and a list of standard zener voltages for the 5% range is shown in Table 2. Commonly 30 or 33 V is the maximum volt-

Fig. 5: Zener diode characteristic.

Table 1: Rectifier cost comparison

age in a given range but zeners up to 100 V are available. The normal tolerance ratings are 5% and 10% but 1% ranges and special purpose zeners of 0.1% tolerance are available.
The ideal zener characteristic shown dotted in Fig. 5 would provide a constant voltage reference over a wide range of current, whilst the practical characteristic illustrates two main divergences from this ideal. First, there is the knee of the characteristic, at which point the voltage changes rapidly and nonlinearly with current; following this there is the useful range, which is linear as the voltage changes proportionately with current. To eliminate the effect of the knee of the characteristic the zener diode is biased with a standing current-usually 5 mA -which biases it into the working range where the voltage change with current is linear. But unlike the ideal this is of finite resistance and is known as the slope or dynamic resistance. This resistance determines the usefulness of the device as a voltage stabiliser and the aim should always be towards the ideal of zero resistance.

The temperature coefficient also affects the usefulness of the zener as a voltage stabiliser. As we have seen the temperature coefficient varies from negative below 6 V to positive above, with 5.6 V as the almost zero coefficient value. However at 5.6 V the range of temperature coefficient is wide and a more generally zero coefficient can be obtained by matching a diode and a $6 \cdot 2 \mathrm{~V}$ zener as shown in Fig. 6.

The maximum current which can be passed through
Table 2: Standard zener diode values (5\% tolerance range)

$2 \cdot 4$	$6 \cdot 2$	16	43
$2 \cdot 7$	$6 \cdot 8$	18	47
$3 \cdot 0$	$7 \cdot 5$	20	51
$3 \cdot 3$	$8 \cdot 2$	22	56
$3 \cdot 6$	$9 \cdot 1$	24	62
$3 \cdot 9$	10	27	68
$4 \cdot 3$	11	30	75
$4 \cdot 7$	12	33	82
$5 \cdot 1$	13	36	91
$5 \cdot 6$	15	39	100

Table 3: Selected zener diode characteristics (400 mW range)

Zener voltage (V)	Maximum zener current (mA)	$\begin{gathered} \text { Slope } \\ \text { resistance } \\ \mathbf{R}_{\mathbf{Z}}(\Omega) \end{gathered}$	Mean temperature coefficient \% per ${ }^{\circ} \mathrm{C}$	5\% Tolerance voltage limits (V)
$3 \cdot 3$	85	75	-0.060	3.1-3.5
$3 \cdot 6$	80	75	-0.055	3.4-3.8
3.9	75	75	-0.050	3.7-4.1
$4 \cdot 3$	68	62	-0.040	4.0-4.6
$4 \cdot 7$	60	55	-0.020	4.4-5.0
$5 \cdot 6$	50	25	$+0.005$	5.3-6.0
$6 \cdot 8$	42	6	$+0.030$	6.4-7.2
$7 \cdot 5$	38	5	+0.045	7.1-7.9
$9 \cdot 1$	31	7	+0.060	8.5-9.6
10	28	10	$+0.065$	9.4-10.6
12	23	14	+0.080	11.4-12.7
15	19	22	$+0.085$	13.8-15.5
18	15	32	$+0.090$	16.8-19.0
22	13	40	$+0.090$	20.8-23.0
27	10	52	+0.090	25-4-28.6
33	8	60	+0.090	31-3-34-5

a zener diode is limited by the maximum power of the device. Since the power dissipation is fixed by the construction, and for each device is given by the zener voltage multiplied by the current through it, the maximum current reduces as the zener voltage increases. As an illustration a 300 mW range of zeners is capable of carrying 100 mA maximum at 3 V zener voltage (100×3) or 10 mA maximum through a 30 V zener (10×30). Power dissipation .up to 10 W is commonly available.

Fig. 6 (left): Use of an ordinary diode and zener diode combination to provide a zero temperature coefficient assembly.

Table 3 illustrates a typical 400 mW range of zener diodes and only selected values have been incorporated. From the parameters shown it can be clearly seen that the 5.6 V zener is almost of zero temperature coefficient whilst the 7.5 V zener has the lowest slope resistance. The current decreases rapidly with zener voltage and is somewhat lower than expected due to allowance for elevated ambient temperatures and tolerances.

Let us now consider the construction of modern semiconductor diodes. The early metal oxide semiconductor rectifiers have been neglected since they are used only in special applications. In general zener diodes are manufactured by diffusion processes in the same way as diodes, except that impurity concentrations are varied to give the required reverse characteristics.

Point Contact Diodes

* Point contact diodes were an early form of miniaturised diode. They are manufactured from germanium wafers usually of n-type impurity mounted on a header and connected to a lead-out wire as shown in

Fig. 7: Typical point contact diode.

Fig. 7. The contact is formed by a fine wire attached to the second lead-out wire so that the fine wire is sprung with a point contact to the wafer. The glass envelope encapsulation maintains the contact which is also stuck to the wafer. The actual junction is formed by passing a high current pulse through the device and this forms a junction at the point contact. The diode is then identified by coloured bands or numerals, and the cathode indicated by the proximity of the bands.

The main advantage of this form of construction is that the junction area is small so that the junction capacitance is low (about 1 pF) and as a result operation at high frequencies is possible. The point contact diode is therefore particularly suited for use as a signal diode at v.h.f. and for switching circuits. A further advantage is that it is cheap to construct and point contact diodes are available at between 1 s . and 5 s . each.

Disadvantages with this form of construction are that the maximum forward current is low ($<100 \mathrm{~mA}$) and the reverse current relatively high-typically $10-50 \mu \mathrm{~A}$ at ambient temperature and $25-250 \mu \mathrm{~A}$ at elevated temperatures. The forward voltage drop is also high, a drop of 0.5 V at 1 mA is common. Also the mechanical structure is not as robust as other forms, although perfectly sufficient for all but the most stringent requirements.

Junction Diodes

The title junction diode usually refers to the alloy junction construction shown in Fig. 8. The alloy junction is formed by alloying a pellet of impurity material at high temperature on to a p-or n-type wafer.

Fig. 8: Alloy junction diode construction.
One lead-out wire is connected directly to the wafer whilst the other is connected via an " S "-shaped metal connection. This shape is sprung to the junction prior to bonding in order to allow latitude in alignment and after encapsulation to prevent damage to the glass encapsulation or junction by expansion of the materials. The glass encapsulation is often paint coated and designation numerals or coloured bands are used to indicate the device type. The cathode is indicated by a coloured band.
continued on page 534

This is not intended to be a comprehensive description of the exhibits to be seen at Olympia -there are some 80 exhibitors, most of them with large ranges of equipment and some (notably importers) with several manufacturers' ranges to display. This supplement, then, may be taken as a guide to some of the more interesting exhibits known to the compiler at the time of going to press serving as a general impression for those unable to get along and as an appetite-whetter to those fortunate enough to be Olympia-bound for the Fair.

Come and see P.W. on stand 73!

Pick-ups and Players

Pick-ups are not the simple things they used to be. The modern arm is a futuristic-looking device, slender and tubular, and hung with an assortment of weights, wires, levers'and other attachments. This has spread to even the cheaper models, and stylus pressure adjustment, cueing devices, bias compensators and lifting systems are becoming almost standard. To set up a modern pick-up arm on installation is nowadays an engineering exercise..
? "This section of the hi-fi field is dominated by British manufacturers. Perhaps' the first of the modern precision pick-ups was introduced in 1962; its descendent can be seen on the SME stand in their Series II arm. Its features include very light gauge aluminium alloy arm carried on virtually frictionless knife edges, bias adjuster graduated to correspond with tracking force (sidethrust being compensated in the form of a weight on the end of a nylon thread running over a guide at the rear of the arm), a baseplate sliding on a graduated bed plate for precise tracking adjustment, pillar bearing with high precision ball races totally enclosed against dust. This unit has been described elsewhere as "the best pick-up arm in the world" and the price is $£ 316 \mathrm{~s}$. 3.d.

Another advanced design will be shown by Transcriptors who will exhibit their Transcriptor Fluid Arm, so called because of its unique pivot arrangement incorporating a fluid as a damping and supporting agent. Using a precision unipivot working down into a deep oil well, the arm beam assembly relies for its lateral support, stability and resonant damping, on the fluid by which the pivot is surrounded. The friction generated by the unipivot is claimed to be so low as to defy measurement. A secondary feature is the bias compensating device which produces a pure rolling motion. An adjustable bias weight, operating through a pulley, provides correction as the stylus moves to the centre of the record. The lowering (cueing) device is also noteworthy in that the whole assembly swings round the support tube, facilitating positioning. The fluid arm costs E 22 16s. 4d.

Goldring are introducing a new transcription deck and pick-up arm. The GL69 unit follows the tradition of previous Goldring-Lenco turntables and features continuously variable speeds from $30-86$ r.p.m. It is fitted with the new $L 69$ arm, which is also obtainable separately, and which can be lowered

Transcriptors fluid arm, añother British precision product.

on to the record by a viscously damped lowering device. Height of arm and position of stylus on the headshell can be adjusted for optimum tracing. Stylus pressure is adjustable by a sliding counterweight. The idler wheel is automatically disengaged from both turntable and drive as the unit is switched off. The GL69 costs $£ 251 \mathrm{~s} .6 \mathrm{~d}$. and the $L 69$ alone $£ 95 \mathrm{~s} .9 \mathrm{~d}$. A lid and plinth are optional extras.

Another respected name on the British hi-fi scene is Garrard who will be showing four new additions to their well-known range of Synchro-Lab record playing units. Model SL95B is an automatic transcription turntable fitted with a Synchro-LAB motor which combines the best features of both induction and synchronous motors. Other points include automatic play of single records, cue and pause facilities, bias

The Audio-Technica AT35, a typicalexample of the modern magnetic cartridge with detachable sty-
lus assembly.

giving rumble levels below audibility. An isolated pick-up platform and balanced turntable mounting plate greatly reduces the effects of acoustic feedback and shock excitation. The Truspeed unit is fitted with a pick-up arm with raising and lowering device, bias compensation and adjustable counterweight. The frequency response of the cartridge is claimed to be free from resonances within the range $20-20,000 \mathrm{~Hz}$ and the stereo separation is better than 25 dB at 1 kHz . Less plinth the price is $£ 6111 \mathrm{~s} .6 \mathrm{~d}$, with plinth $£ 6513 \mathrm{~s} .3 \mathrm{~d}$.

BSR, the world's largest manufacturer of record changers will include in their display many keenly priced units, including the latest models in the range-MA65, MA70 and MA75. They will

Three new high quality turntable units. Left-the Goldring GL69 fitted with the new $L 69$ arm. Centre-the Leak Truspeed unit with isolated pickup platform. Right-the Garrard $S \angle 75 B$ with Synchro-LAB motor and tab controls.
compensation and calibrated stylus force adjustment. A novelty is the low resonance pick-up arm of wood and aluminium which incorporates a resiliently mounted counterbalance weight and gimbal-type pivots. Like almost all the modern pick-up arms, a detachable cartridge carrier is fitted (this one slides in; others plug in). The SL75B, SL72B are similar in many respects and all have tab controls for easy operation. The fourth new one is the SL65B which offers the facility of combined record size and speed selection.

Also new from Garrard are two units based on the recently introduced "compact" mechanism of the CC10 4-speed autochanger. Features include automatic play of single records, single record repeat provision, automatic switch off at at end of a single record.

The name of Leak is normally associated with amplifiers, but at the Fair the company is introducing a new transcription turntable. Operating at two speeds ($33 \frac{1}{3}$ and 45 r.p.m.) it incorporates a 12-pole hysterisis motor with belt drive and has less than 1.15% wow and 0.02% flutter. A neoprene drive belt decouples the turntable and pick-up from motor vibrations
also feature the AA50 "minichanger", which weighs only $4 \frac{1}{2} \mathrm{lb}$. and is 35% smaller and 40% lighter than conventional record changers. Visitors will be able to see a display showing all the working parts of a BSR deck in action.

The modern trend in cartridges is decidedly towards the miniature magnetics with detachable cantilever systems and there is a lot of overseas competition here by companies such as Shure, Audio-Technica, Dual, Orbit, Audio Development, etc. On the Shriro stand, for instance, visitors can see the Audio-Technica cartridges such as the AT35 which features a V-shaped lightweight moving element supported by a wired damper mechanism. Specification figures include frequency response $10-25,000 \mathrm{~Hz}$, stereo channel separation 30 dB at 1 kHz , compliance 23 cu's, tracking force $0.5-2.5 \mathrm{gm}$, tracking error less than 1.5°, output voltage 5 mV . The AT33 is an economical version retaining many of the features but at very competitive price. While here, also note the AT1007 pick-up arm which has a direct reading stylus pressure control calibrated every 0.1 gm , two balance weights to minimise dead mass, hydraulic arm lift and inside force cancellation device.

Loudspeakers

Just as there have been notable changes and improvements in pick-up and cartridge design, so has there been advancement at the opposite end of the audio chain. The old maxim of "the bigger the better" still holds a certain amount of truth but for average home listening this is not nearly so important today. A lot of research and development has gone into improved cone materials, enclosures and multiple unit assemblies, resulting in a veritable rash of shelf-mounting infinite baffle boxes, many of
them producing remarkable results considering their size (and price). There will be so many of these, both imported and home grown, that it would be pointless attempting a run through in this review.

There is, however, a current trend to offer kits of speaker assemblies to the home constructor, usually with instructions for mounting and making enclosures. P. F. \& A. R. Helme, importers of the Peerless speaker kits (described recently in

Just what is this ABR, that makes such a vital difference to the 'DITON 15'?

1. Studio quality high frequency unit (HF1300 Mk. 2).
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR)-plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing excursions up to 3^{3} " with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba ll magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network

VISIT US ON STAND No. 2

and listen to the acknoviledged 'DITTON' Hi-F Speaker Systems, and hear the vital differences.

international

-11 \& \&
DGI(0)T(0)- CDNES F:TIS
OLYMPIA 16-22 OCTOBER 1969

It's an interesting story-and worth enquiring about. Send for detalls of the three Celestion 'Ditton' Hi-Fi Speaker systems.

Loudspeakers for the Perfectionist

Suite Music at the Audio Fair on Goodmans Stand

No.15, National Hall Balcony Olympia

We will be demonstrating our Audio Suite and the recently introduced Music Suite. See and hear Goodmans quality for yourself.

All the units in Goodmans Suites amplifiers, radio tuners, tuner/ amplifiers, record players and loudspeaker systems - are of course available separately.

You will be able tc compare, too, our
famous ' M ' range of loudspeaker systems. And see all our latest products.

We'll be waiting to welcome you each day from 10 a.m. to 9 p.m. October 16th to 22nd.

If you are unable to visit the Audio Fair, make an early call on your Goodmans dealer and find out about Goodmans High Fidelity. Or send the coupon for our free 28 page Manual.

Please send me a free copy of the Goodmans High Fidelity Manual

Name

Address
(1)

Goodmans Loudspeakers Ltd Axiom Works, Wembley. Middx. Telephone: 01-902 1200

Three of the latest in the Goodmans M range of $I B$ enclosures --left to right, the Magister, the Magnum and the Mezzo.

News and Comment) will be showing a new one-the 4-30 $\mathrm{KIT} / 12$. This comprises a 12 in . bass speaker, a $5 \times 7 \mathrm{in}$. midfrequency unit, and two closed-back $2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. tweeters, with dividing network crossing over at 500 Hz and 3.5 kHz . The system frequency range is $30-18,000 \mathrm{~Hz}$ and the power handling capacity 40 W at 4Ω (8 or 16Ω available if required). Complete with mounting instructions and drawings for 1.75 cu . ft. cabinet, the kit costs $£ 235$ s.
E.M.I. also have matched speaker kits. Set 215 comprises a $14 \times$ 9in. bass unit with heavy ceramic magnet and new laminated glass reinforced cone, two 5 in . mid-range units with preformed p.v.c. suspensions, a high frequency unit and panelmounted crossover network with input terminals and "brightness" adjustment switches. Overall frequency range is 20 Hz to 20 kHz and the power handling capacity is 30 W at 8Ω. Set 315 has a new 15 in . bass unit capable of handling 35 W with a bass resonance of 20 Hz , two new 5 in . mid-range high-flux units, two moulded chassis h.f. units and a switch plate/crossover network.

Rola Celestion will be demonstrating a full range of hi-fi loudspeaker systems and will also be running an interesting electronic demonstration designed to offer visual evidence of the way in which the auxiliary bass radiator functions. Also on display will be a range of Celestion high fidelity drive units for the home constructor, in addition to the well known range of Ditton enclosures.

Wharfedale will be showing their new Unit 3 hi-fi speaker kit. An 8in. unit of 48,000 Maxwells covers bass and midfrequencies, leaving the h.f. to be dealt with by a pressure unit featuring the new Acoustiprene dome diaphragm with diffuser cap. With a suitable enclosure the system has a frequency range of $40-17,000 \mathrm{~Hz}$. Power handling capacity is 15 W at $4-8 \Omega$. The kit comes complete with crossover network, connecting wire, mounting bolts, acoustic wadding and instructions.

Another one for the home constructor is the new Heathkit Ambassador 3 -way speaker system. Using ceramic magnet speakers a frequency range of $30-20,000 \mathrm{~Hz}$ is obtained. There is a 15,000 gauss 12 in . bass unit, a 5 in . enclosed mid-range

unit and a 1 in . dome direct radiator type tweeter (16,000 gauss). Crossovers are at 1 kHz and 6 kHz . The teak or walnut veneered infinite baffle cabinet is supplied ready-assembled, the front and rear being of high density chipboard and the frame lined with Celotex. Assembly time for the complete system is estimated at $3-4$ hours. The kit costs $£ 2916 \mathrm{~s}$., plus 15 s . carriage.

The electrostatic speaker, with moving elements some 200 times lighter than the diaphragms of m.c. speakers and freedom from cabinet resonances and coloration, are still popular with those seeking the ultimate in natural reproduction and have the cash to spare. The Quad model has a bandwidth of 48 Hz to 18 kHz with a rate of attenuation asymptomic to 18 dB /octave. The speaker is enclosed within expanded metal grilles with polished wood end frames and feet and is designed for use in rooms of up to 500 cu . ft . per speaker. Impedance is $30-15 \Omega$ at

Interior view of the Rola Celestion Ditton 25, showing the advance in design of modern compact enclosures.

40 Hz to 8 kHz after which it falls; it is therefore important that this type of speaker should be used only with amplifiers designed for such applications.

To see what can be achieved in speaker design the visitor should seek out the Model 70 being shown by B \& W Electronics. It is a hybrid comprising a new low distortion bass unit and enclosure, on which is mounted a 701 electrostatic unit. The latter is an 11 -module assembly covering frequencies above 400 Hz providing performance figures such as input distortion at 30 W r.m.s. in the order of 0.5% and dispersion over a 60% arc showing a variation of not greater than $\pm 1 \cdot 5 \mathrm{~dB}$.

Amplifiers

Most of these are becoming so sophisticated, with their banks of controls, knobs, buttons and switches, that they look more like something from a Space Control Centre than an item of domestic equipment. Silicon and f.e.t. transistors are the order of the day, with quite a few incorporating integrated circuits, the ICs permitting considerable elaboration of circuit features in less space. Wattage (even real, r.m.s. ones) are creeping up and input and output facilities more comprehensive. Most are stereo.

One magnificent amplifier to catch the eye is the Grundig SV140, which incorporates 51 transistors, 20 diodes and 3 rectifiers and delivers 50W per channel r.m.s., the output being monitored by two calibrated meters. No less than 5 tone controls are fitted, each operated by slider-type controls, the centre frequencies being $40,200 \mathrm{~Hz}, 3,7.5$ and 16 kHz . Apart from the general versatility it is possible to use this system to form a type of presence control to bring soloists and vocalists, etc., more into prominence. The frequency response is $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ with a power bandwidth of $10-50,000 \mathrm{~Hz}$ measured at 1% distortion. The distortion factor at full rated output is less than 0.5% within $40-16,000 \mathrm{~Hz}$ and 0.1% at 1 kHz . Signal-noise ratio is 60 dB (pick-up) or 86 dB (tuner, tape) at full output.

Inputs are PU1, PU2, Mic, Tape, Tuner. Outputs are for speakers, stereo headphone, additional amplifiers. An electronic protection circuit disconnects the amplifier whenever the output load exceeds a predetermined level, responding to capacitive and inductive overload. A thermal cut-out is also provided to switch off the amplifier if excessive internal temperatures reach danger level. There are provisions for volume compensation through two contour buttons (1) up to 25 dB bass lift at 30 Hz , (2) up to 33 dB bass lift at 30 Hz and treble lift up to 10 dB at 15 kHz . Price not available at time of going to press.

Few companies are marketing Class A amplifiers, fewer are producing separate control units and companion main amplifiers. J. E. Sugden are doing both with their C51 and A51

Trio KA-6000 with 58 W per channel r.m.s.

The new Leak Stereo 70 stereo amplifier.
units released in time to show at the Audio Fair. The C51 control unit has inputs for magnetic, ceramic (2.5 mV) and special $(250 \mu \mathrm{~V})$ cartridges, all equalised to RIAA, plus radio, tape and auxiliary, with overload capabilities of 25 dB for disc and infinite for other inputs. Total harmonic distortion is better than 0.1% (mainly 2 nd harmonic) at rated output of 600 mV . Frequency response is 30 Hz to $20 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$. Controls are provided for rumble filter, h.f. filter, h.f. filter slope, quiet (16 dB at 1 kHz). Price is $£ 42$. The companion Class A amplifier delivers $25+$ 25W r.m.s. at clipping level into 8 or 15Ω with a total harmonic distortion of better than 0.1% at $20+20 \mathrm{~W}$, better than 0.01% at $1+1 \mathrm{~W}$. Signal-noise ratio is 90 dB and frequency response $30-20,000 \mathrm{~Hz} \pm 0 \cdot 5 \mathrm{~dB}$. Price is $£ 65$.

There are so many other fine amplifiers that it is hard to select representatives. The Trio KA6000, distributed here by B. H. Morris \& Co. is, however, a good example of the more expensive imported item, selling at $£ 105$. Inputs are provided for magnetic pick-ups at $2 \mathrm{mV}, 0.5 \mathrm{mV}$ and 0.05 mV , tape head, mic, tuner, tape play, and main amp. Features include a -20 dB muting switch for momentary quietness (during telephone calls, etc.), high and low filters, 2dB step-type tone controls with tone mode switch, preamplifier outputs for use with another amplifier or multichannel system, speaker terminals for two sets of stereo speakers (A, B, A \& B and phones selection by front control knob), automatic circuit breaker to protect power transistors, frequency response $20-50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ at high level input.

On the home front again, the latest Leak amplifier-Stereo 70 -is less flamboyant but quietly efficient. With $35+35 \mathrm{~W}$ r.m.s. output, it boasts specification figures such as $0 \cdot 1 \%$ total harmonic distortion for all power levels up to $25+25 \mathrm{~W}$, total intermodulation distortion less than 0.5% for all power levels, overload distortion less than $0 \cdot 1 \%$ for input signals up to 20 dB above stated sensitivities, hum and noise 66 dB below 30 W output (tuner and replay), crosstalk between channels 50 dB up to $1 \mathrm{kHz}, 30 \mathrm{~dB}$ at 10 kHz . Price is $£ 6910 \mathrm{~s}$, in cabinet.

Another adherent to the policy of separate control unit is, of course, Quad, who will be showing their latest range. The 33 control unit follows Quad tradition in comprehensive filter facilities. Push buttons provide selection of $5 \mathrm{k}, 7 \mathrm{k}$ and 10 k filters, with separate variable filter slope control and a fixed filter to take out unwanted signals below 20 Hz . The main amplifier, model 303, features symmetrical triples in the output stage to reduce distortion and to render the quiescent current independent of output transistor temperature. Output is $45+45 \mathrm{~W}$ at 8Ω with distortion less than 0.03% at $70 \mathrm{~Hz}, 0.1 \%$ at 10 kHz and the frequency response is -1 dB at 1 kHz reference between $30-35,000 \mathrm{~Hz}$. Hum and noise is 100 dB below full output. Prices are $£ 43$ (33), $£ 55$ (303). A matching f.m. tuner costs $£ 51$.

Now to this country is the range of Nikko equipment, marketed here by Howland-West. The TRM50 uses four silicon output transistors, the rest of the circuitry being built up around ICs. It gives $17+17 \mathrm{~W}$ r.m.s. output with a frequency

Component units of the new Sinclair Stereo-60 audio module system-power unit, main amplifiers and control unit.

The Nikko TRM-50 amplifier built up around ICs.
response of 10 Hz to $70 \mathrm{kHz} \pm 1 \cdot 5 \mathrm{~dB}$. Channel separation is better than 50 dB and hum $/$ noise at rated output is -65 dB (pick-up) or -75 dB (tuner, tape). Price is approximately f58. A budget-priced model from the range is the TRM40 retailing at around $£ 35$. On the same stand, the Dynaco SCA80 is worth inspecting. This is Dynaco's first integrated solid state amplifier; price not yet known.

Sinclair usually come up with something to talk about. This time it is their Stereo-60 module system. The basic unit is the preamplifier/control chassis, providing bass, treble,

volume and balance facilities, push-button selection of three inputs (sensitivities up to 3 mV , equalised to within $\pm 1 \mathrm{~dB}$ of RIAA). The unit drives two Z30 amplifier modules, each of which provides 15 W r.m.s. output at 8Ω with a frequency response of $20-30,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}, 0.02 \%$ total harmonic distortion at full output. Silicon epitaxial planar transistors are used throughout. Alternative power supplies are the PZ5 (30 V unstabilised) and the PZ6 (35 V stabilised). Prices for the modules are control unit $£ 919 \mathrm{~s} .6 \mathrm{~d} ., \mathrm{Z} 30 \mathrm{89}$ s. 6 d . each, PZ5 99s. 6d., PZ6 £7 19s. 6d.

Tuners and Tuner/Amplifiers

These reflect the same increasing sophistication as the amplifiers. Many facilities and controls-not always pure gimmickry-are common tendencies, all aimed at more rewarding listening and appreciation of good quality reproduction. Circuitwise, we again see the infiltration of FETs and ICs, with ceramic filters in the i.f.s and multiplex stereo decoders well established.

Of major interest is the new Leak Stereofetic tuner. It features FETs in the front end, ICs in the i.f. strip and decoder to increase rejection of ignition interference and to improve stereo separation, ceramic filters to improve i.f. selectivity and reduce stereo distortion, no less than three 19 kHz and two 38 kHz band stop filters to eliminate pilot tone whistles when using the tuner with a tape recorder and a double-action muting circuit to eliminate inter-station noise and reducing "in-andout" tuning plops.

It has been designed as a dual-purpose tuner. For casual listening to local stations, by pressing the appropriate buttons, only signals above $12 \mu \mathrm{~V}$ will be heard, with a.f.c. operative. For reception with minimum distortion, low noise and for long distance reception, input signals as low as $2.5 \mu \mathrm{~V}$ will produce reasonably noise free and low distortion output. There is also a "Quasi Stereo" button which, when depressed, reduces noise on distant stereo signals without losing the stereo effect. This fine tuner costs $£ 5611 \mathrm{~s}$. (chassis only) or $£ 6314 \mathrm{~s}$. 5 d . in wooden case.

Bang \& Olufsen will be displaying the latest Beomaster Model 3000/stereo tuner/amplifier. This clinical looking unit also incorporates FETs, ICs and ceramic filters in the tuner section, which provides instant selection of six f.m. programmes by means of panel keys. It is also equipped with a new tuning aid-a double finger wheel on the tuning slide (see photograph) which gives effective slow motion drive and a tuning indicator with two illuminated panels. On each panel is an arrow and the panel which lights more brightly indicates by its arrow which way the slide control should be moved for optimum tuning. A calibrated tuning meter is also provided. Comprehensive input and output sockets are fitted including the provision to individually switch each of two pairs of speakers to one of two programme sources. Power output is $30+30 \mathrm{~W}$ r.m.s. with less than 0.6% distortion. Cost? $£ 1359$ s.

Another impressive new offering from Grundig is the TR100 stereo tuner, which incorporates 45 transistors, 35 diodes and 2 rectifiers. Coverage is LW, MW, SW1 and SW2 plus v.h.f.-f.m. The a.m. and f.m. circuits are entirely separate. Five auxiliary f.m. scales allow press-button selection of up to six stations and manual tuning is aided by a Tunoscope arrangement based on light-sensitive transistors which, like the B. \& O. 3000,
shows the correct direction of rotation. On f.m. there are 17 tuned circuits (4 tunable, 11 i.f., 2 absorption); on a.m. there are 10 (2 tunable, 4 i.f., 2 i.f. with bandwidth selection, 2 absorption). The stereo decoder is fitted with level controlled mono/stereo changeover, the trigger level may be varied between 6 and $60 \mu \mathrm{~V}$. A low-pass filter controls the audio bandwidth, the narrow band reducing the a.m. bandwidth to 3 kHz . The specification figures for this tuner as every bit as good as the recommended price of $£ 1717 \mathrm{~s} .11 \mathrm{~d}$. suggests.

Trio have an assortment of tuner and tuner/amplifiers. In the high price bracket, the KT7000 features three FETs, four ICs and two crystal filter i.f. stages, with interstation muting circuit, automatic stereo/mono switching with stereo beacon lamp, filter for eliminating noise on stereo signals, signal strength and tuning indicators and heavy flywheel tuning system. Usable sensitivity is $1.5 \mu \mathrm{~V}$ and capture ratio 1.3 dB . Price is $£ 132$. Also using ICs are a.m. - f.m. tuner KT3500 (£65) and a.m.-f.m. multiplex stereo tuner KR77 at $£ 125$.

Another tuner/amplifier using FETs(3) and ICs (3) is the Lux HO555 shown by Shriro. The tuner f.m. section has five i.f. stages and a practical sensitivity of $2 \mu \mathrm{~V}$. The amplifier has

The Beomaster 3000 tuner/amplifier-an advanced design.

The HO555, new from Lux, incorporates three FETs and three /Cs.

all the usual controls, filters and facilities including a loudness control and A/B speaker system selection. This one sells at £159 18s. 9d.

Also with an FET front end and ICs is the Nikko STA301 tuner/amplifier, with $12+12 \mathrm{~W}$ output and a frequency response of $20-50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ (IHF). Price is f 9910 s .

From Armstrong are two additions to their recently introduced 500 Series of audio equipment-the 525 and 526 tuner/amplifiers. The 525 has inputs for magnetic and ceramic pick-ups and tape playback; outputs for tape recording and headphones. Features include tape monitor, f.m. interstation noise suppression, automatic stereo/mono switching on f.m. with stereo indicator, tuning meter. Price is $£ 8716 \mathrm{~s}$. 9d. The 526 is similar but has MW and LW a.m. coverage also and costs £98 15s. 6d.

Heathkit add to their range with model AR-17, a stereo f.m. tuner/amplifier using 28 transistors and 7 diodes. It has many points of interest, such as 6 -position source selection switch, pre-aligned f.m. front end, a clutched volume control allowing simultaneous or independent adjustment for each channel, automatic stereo indicator lamp, adjustable phase control for optimum stereo separation, stereo headphone socket, output of 5 W r.m.s. per channel and a frequency response of $25-$ $35,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. This adds up to good value at $£ 3610 \mathrm{~s}$. for the kit, with full constructional details.

Brush Clevite will be showing a large range of Sansui products, from which we select the new 800 a.m.-f.m. stereo tuner/amplifier as of considerable design interest. It provides

Above-the 525 tuner/amplifier, latest in the Armstrong range.

Below-the new Leak Stereofetic f.m. tuner.

$28+28 \mathrm{~W}$ r.m.s. output at 8Ω and has a frequency response of $15-50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ at normal listening levels. Features include FET front end, a 4 -stage i.f. section and 3 -stage limiter (3 dB capture ratio and 50 dB selectivity), a new style noise limiter, muting switch to suppress interstation mush, a sophisticated switching matrix system giving stereo separation above 35 dB and keeping distortion down to 1% at 1 kHz , automatic stereo/mono switching, ceramic filter in a.m. section i.f. protection circuit for output transistors, two-system speaker selection, multiplex separation adjustor, tape monitor and stereo headphone sockets, and comprehensive filters and input facilities. Another expensive one, the Model 800 sells at £145 19s. 7d.

Unit Systems

For those who find the out-and-out hi-fi installations fascinating but out of reach financially, the now popular audio budget systems present a way to build up gradually to a worthwhile hi-fi ensemble. Goodmans is one company showing such a system of matching units-their recently introduced Music Suite, comprising stereo tuner/amplifier 3000, record player unit 3025 and loudspeaker enclosures 3005, which add up to just under $£ 140$ of merchandise. Five f.m. tuning scales are provided, the station being preset by push-and-turn knobs; sensitivity is $3 \mu \mathrm{~V}$ for 26 dB signal/noise ratio and limiting level better than $10 \mu \mathrm{~V}$. The amplifier delivers $15+15 \mathrm{~W}$ output with total harmonic distortion less than 0.5% at 1 kHz and frequency response of $30-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$.

Following the successful launching of the Ferguson Unit Audio range, British Radio Corporation are entering the hi-fi market with their new HMV units, both ranges being

shown at Olympia. The HMV High Fidelity is a package deal consisting of a record player, a tuner/amplifier and a pair of speakers. Philips will be showing their Audio Plan units, a very comprehensive range of equipment in which the various bits and pieces can be permutated virtually to suit almost any pocket from the modest to the affluent.

Bush will be showing their Sound System units, eight pieces in all: A746 amplifier (35 gns.), A747 tuner (35 gns.), A749 record player (28 gns .), A758 tuner/amplifier (67 gns .), A762 equipment trolley (16 gns.), A764 shelf speakers (32 gns. pair), A763 column speakers (29 gns. pair), A765 floor standing speakers (58 gns. pair). All equipment is stereo.

Above-audio units from Bush: A746 amplifier, A747 tuner and A749 record player.

Right-the latest unit system: HMV High Fidelity.

PEERLESS FABRIKKERNE A/S
Gladsaxe Ringvej 11.2860 Copenhagen Denmark

This is the new PEERLESS kit system 20-2, one of many high quality speaker kits available. Kit 20-2 has a power input of 30 watts and a level response over a range of $40-20,000 \mathrm{~Hz}$. Peerless Fabrikkerne A / S have been dealing with acoustics for more than 35 years and are the largest loudspeaker factory in Scandinavia. Send NOW for full detals of kits and chassis speakers.

Sole distributors for the U.K.:
P. F. \& A. R. HELME, SUMMERBRIDGE, HARROGAIE, YORKS.

Heathkit Present The 'Compact'

Sound

of the 70's

See what's New in the World of sound from Heathkit at the Audio Fair 1969, Olympia

Daystrom Ltd. will be exhibiting the latest Heathkit Hi -Gi Stereo Amplifiers, Tuner-Amplifiers, F.M. Tuners, Stereo 'Compacts’, Loudspeakers, etc. A selection of these will be on demonstration in the Audio Studio on our stand.

New models include two stereo 'compacts' models AD -17 and AD-27. The AD-17 comprises a BSR MA65 Turntable with Shure M44-MB magnetic cartridge and a 10 watt (rms) per channel stereo amplifier all mounted on a teak or walnut plinth. The AD-27 is similar but uses the MA70 turntable and includes an FM stereo tuner. In this case the 'plinth' is better described as a small cabinet. It has a 'roller shutter' lid and is available in teak or walnut.

A new loudspeaker has been added to the Heathkit range. The 'Ambassador' is a first-class hi-fi loudspeaker. The cabinet comes ready assembled and finished in teak or walnut to match other current Heathkit equipment. It uses three loudspeaker unitsa $12^{\prime \prime}$ bass unit, a $5^{\prime \prime}$ mid range and a small tweeter.

See these and

 other New Hi-Fi models in the Latest FREE Catalogue!
Compacts

The modern version of the "radiogram" is the audio compact, presented in various forms but basically consisting of an amplifier or tuner/amplifier with record playing deck in the same shelf-mounting cabinet. Of considerable interest to P.W. readers are the two new ones shown for the first time at the Fair by Heathkit.

The AD-27 has a stereo f.m. tuner with a sensitivity of $5 \mu \mathrm{~V}$ and a 27 dB channel separation. Capture ratio is 4 dB . The amplifier delivers an output of $10+10 \mathrm{~W}$ r.m.s. and the harmonic and intermodulation distortion throughout the system are both less than 1%. Frequency response is $12-60,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ at 1 W . The playing deck is a BSR MA70 fitted with a Shure M44-MB cartridge. The complete kit costs $£ 82$, plus 13 s . carriage.

The AD-17 is a similar compact without the f.m. radio section and is provided with a BSR MA65 deck and Shure magnetic cartridge. Price is $£ 54$ plus 13 s carriage.

A large range of "portable phonographs" and "home music systems" will be shown by Dual Electronics in addition to audio "separates". The HS33 comprises an automatic player deck with cue and pitch control mounted atop a 6 W per channel stereo amplifier with loudness/contour control, and two separate

speaker enclosures. It sells at $£ 8710$ s. A similar model but with more advanced turntable is an intermediate version between the HS33 and the expensive (£165) HS35.

This incorporates a 9 W per channel r.m.s. amplifier with a frequency response of 20 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{~dB}$, power bandwidth of $30-20,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N}$ ratio of better than 55 dB and crosstalk damping at 1 kHz of better than 20 dB (pickup), 40 dB (tuner, tape). It has 17 semiconductors. The HS35 is fitted with a type 1209 turntable unit which features 4 -pole high-torque synchronous motor, anti-skating device which can be set even during playing, pitch control (range approx. 1 semitone), sili-cone-damped cue control elestically damped counterbalance with calibrated increments of 0.01 gram, maximum tracking error of $1 \frac{3}{4}$ gram. A Shure M71 magnetic cartridge is fitted.

Tape Recorders

Readers will not need reminding that tape recorders are proliferating in a bewildering manner. We can only pick out one or two of particular interest that will be seen at the Audio Fair.

The compact cassette, still looked at rather condescendingly in some quarters, continues to gain ground and with the introduction of the Teac A20, shown by B. H. Morris takes another stride forward. For this machine has been designed as a high quality machine. This stereo model features a 4-pole hysterisis synchronous motor, twin VU meters, easy cassette loading and unloading and other refinements, and sells at $£ 78$.

Bosch are showing several new Uher recorders. Most interesting are the models 23 (2 W output) and 63 (6 W output) Variocords and their stereo counterpart model 243. Common features include interchangeable head mounts (changing from 2 to 4 track simply), optional modification to automatic recording level, a new tape tension comparator in which the tape tension is determined by the tension of a coil spring enabling thin tapes to be used without danger of looping during braking. Also shown is a model aimed at the budget hi-fi market-the 714, which can accommodate up to 7in.
spools and features a recording level meter calibrated in dB , a 4 -digit counter, monitoring facilities via loudspeaker or headphones, automatic end-of-tape shut off, silicon transistor circuitry, three inputs, frequency response $40-15,000 \mathrm{~Hz}$ (at $3 \frac{3}{4}$ i.p.s.), wow and flutter better than $\pm 3 \%$, signal/noise ratio 48 dB . All this for $£ 4917 \mathrm{~s}, 8 \mathrm{~d}$.

High quality equipment shown by Brenell will include a new stereo tape recorder ST200 (or ST400 for 4-track operation). This is a 3-speed, 3-motor machine with a hysterisis synchronous motor for capstan drive, and all-silicon transistor circuitry including a quasi-complementary output stage producing 6 W r.m.s. per channel. Push buttons select record mono upper track, record mono lower track, record stereo, monitor during mono recording, replay mono (either track) into both speakers, combine both tracks for playback through both speakers, replay stereo tapes. Low and high level inputs are fitted and three pairs of output sockets for driving an external hi-fi amplifier for monitor outputs (headphones) or for driving an externa amplifier requiring a higher input level, and for feeding externa speakers (which automatically switch out the internal speakers)

Right-one of the new tape recorders from Uher, the budgetpriced Model 714.

The first automatic recorder from Telefunken, Model M202.

From Bang \& Olufsen there is the new Beocord 2400 which features hyperbolically ground tape heads which present a smaller contact area to the tape and thus improve frequency

PREVIEW OF
AUDIO FAIR
response and dynamic range. Also, with the stronger magnetic field, and coupled to the result of using silicon transistor circuitry, the signal/noise ratio has been improved to better than 60 dB using low noise tapes. The 2400 has four pairs of slide potentiometers to adjust independently the levels for mic, radio, gram and line inputs, a fifth slider being used to adjust output volume. The sliders give independent adjustment to the left and right channels and the two VU meters show the level in dB. Together, these facilities provide professional style mixing, with eight mono or four stereo channel inputs. In addition to the conventional metal foil system, the 2400 uses a thyristor controlled auto stop.

Accessories

Colton \& Co., apart from their standard lines of replacement stylii, record storage racks and record carrying cases, will be showing a fascinating range of accessories including a series of pick-up arm raising and lowering devices which can be used with any arms-the Precise, the Varilift and the Magnalift. Quite new is the Cueoptic, an optically enlarged vernier slide for groove cueing, contact of the cue feeler with the pick-up arm being registered by a neon light. It reads clearly to 0.004 in ., the average pitch of an I.p. groove. Also new is a Tape/Slide Synchroniser, a purely mechanical device operated by paper stickers attached to the tape causing the switch to open and shut at the preset intervals on electrically operated slide projectors. Being mechanical, it does not tie up a track for impulse recording and thus leaves both tracks clear for stereo sound, Colton also show a $\times 50$ Microscope, a pen-like microscope for examining small parts such as stylus tips, the new Variscale stylus timer, a range of precision circular bubble levels, plus antistatic fluids, antistatic turntable mats and cleaning cloths, etc.

A lively business is done these days in the accessory field, due to the fact that the more one gets interested in audio, the more involved it becomes. Our old friends the Bib Division of Multicore Solders have catered proudly for us over the years with tape slicers, tape cleaning kits, instruments, cleaners, wire strippers and the like. They have now come up with a Stylus and Turntable Cleaning Kit comprising 30c.c. bottle of
antistatic cleaner, a cleaning brush with a suction cap end (so that it can be kept conveniently near the turntable) and an absorbent, washable, cleaning cloth. The cleaner is nonflammable and cannot harm stylii, cartridges or records. On a card with instructions it costs 6 s .10 d .

A novelty from Diamond Stylus Co. is their Record-Matic which, in their words, is a "self-flipping album browser". It looks like a flat tray, into which I.p. records are stacked vertically. A flip of the first record sets the stack flipping forward until the required record is extracted at which time the motion stops, and so on. The makers claim "no strings, no magnets, no motor".

Highgate Acoustics will be showing a new range of Schweizer record cleaning accessories. The Record Grip is a special circular pad used to hold the record correctly and safely during handling (5 s .9 d.). The Record Service is a'cleaning cloth and stylus cleaning brush package (17s. 6d.). There are also two record cleaner brushes-one is a hand-operated brush with reservoir of cleaning fluid, the other is an automatic cleaner with infinitely adjustable degree of moistening from a container holding enough fluid to clean 150 l.p. records. (Prices 9s. 6d. and 65 s .6 d .). There is also a new record stacking system which can be built up as required, each flexible section holding from $5-7$ records and costing 5 s . 6d.

Useful stylus microscope from Colton gives x50 magnification.

The new Varilift from Colton, one of several lowering devices which will be seen at the Audio Fair.

New record stacking system introduced by Schweizer. 2 , (

More Stereo

As a long established reader of your magazine I am suggesting that you start a campaign through your editorial column concerning the BBC's failure to provide stereo reception THROUGHOUT the UK. I am prompted to suggest this to you after reading Broadcasting in the Seventies just released. I quote the second paragraph from the sub-heading "Stereo":
"There is, however, an insistent demand for stereo to be extended to other networks and to more parts of the country. It would be idle to pretend that, at present, there is much chance of this, but it would be relatively simple to equip local radio stations to transmit in stereo and we are studying other ways of doing more to meet one of radio's long-term priorities."
Note particularly the second sentence which seems to indicate that the BBC simply do not care about stereo north of Manchester, nor about the equipment such as stereo recorders, stereo radios, decoders, etc., that have been purchased in anticipation of stereo reception.J. B. Morris (Glasgow).

The BBC replies . . .

The BBC is well aware of the demand for more stereo transmissions and we have for some time been installing new equipment in studios and modifying recording channels to enable us to increase the stereo content of Radio 3.
We want to extend stereo to other parts of the country and to other networks, but this involves the manufacture and installation of new networks of special radio links suitable for the distribution of the stereo signal to the transmitters. It is not possible at this time to give any dates for these developments, since much depends on our financial situation and on the availability of technical manpower and equipment.-H. T. Greatorex (Assistant Headof Engineering Information Department).

Some notes on early radio

I thought some notes on Early Radio may be of some interest to readers.
I obtained my first licence in 1920 direct from the PMG

London after obtaining a reference from my local magistrate and the local postmaster who inspected the position of the proposed aerial. This licence was to operate a crystal set only.
Owing to radio components being very difficult to obtain, I constructed this set from cardboard lino tube formers, a section from my father's wooden grocery counter and phones from two old wall telephones. After completing the construction of this set, I listened many nights for nearly three months without receiving a signal of any type! Eventually Eiffel Tower was heard on a long wavelength (after silencing my watch to hear the very feeble signal).

In 1921 a revised licence was obtained together with necessary permits to purchase a valve and other components suitable for this new set. I may add that John Scott Taggart, Leslie McMichael and Peto Scott were just a few of the early suppliers of diagrams and components. I also had a mobile licence which enabled me to carry out experiments within 15 miles of the fixed station. These experiments were tried out with the use of a kite aerial which gave much improved reception.
I well remember hearing Madam Melba singing on 5th June, 1920, when I laid the phones in a china hand basin to enable three more members of my family to listen.

In 1924 I built a 4 -valve portable receiving set with a frame aerial in the.lid and the whole set complete with batteries weighed 28 lb . In 1926, a 4 -valve preset receiver with push-button control was my favourite and now I own a modern a.m./f.m. receiver from which I get many hours of enjoyable listening. - F. Towndraw (Newquay, Cornwall).

Oh dear, so this is progressiveness!

I note your comments on the change over by Practical WireLess to the term "Hertz" instead of "cycles".

You don't sound very keen on it and your reason is not very con-
vincing either. I can't help wondering what the powers that be would have done, had the name of the gentleman who first noticed the alternating effect had had a name like Pong for instance! (apologies to all Pongs of course).

Likewise we have the idiocy of the recent official announcement that in future it will be obligatory to drop red as the "live" lead in an a.c. circuit and use brown.

It seems to me that the only gains are made by manufacturers who will have a glorious time supplying new equipment to replace that rendered obsolete by these moves.

The adopting of a decimal currency based upon the division of the $£ 1$ into 100 parts when it was only necessary (if at all) to decimalise the pence column, using the 10 s . and decimalised pence for day to day stuff and retaining the $£$ for the bankers (bless their cotton socks) if they couldn't cope without it--everyone else could. Regarding temperature measurement, I understand that on the Continent, Fahrenheit is used now for cold store plants, being a more sensitive calibration.

The fairly obvious one, namely inches or millimetres, is equally stupid. Any engineer who cannot work either in inches or millimetres is hardly worthy of the name.

As in most of the "changes for the best" these days, they are merely changes for the sake of change, and so that someone can trot around and say how clever he has been. Honestly, because some of our rulers appear to have gone barmy, do we have to quietly acquiesce and let them mess everything up?-J. T. Harold (Oxford).
[Amen.]-Editor.

PRACTICAL WIRELESS
 and PRACTICAL TELEVISION FILM SHOW

CAXTON HALL, CAXTON STREET. LONDON S.W.1. FRIDAY, MARCH 6th., 1970

A SUB-MINIATURE POWMR SUPPIT

A VERY SMALL STABILISED POWER SUPPLY USING AN UNUSUAL METHOD OF REGULATING AND MAKING USE OF A SPECIAL TRANSFORMER NOW AVAILABLE.

THE circuit to be described was designed to fulfil the need for a low-voltage supply unit which may be used to power radios, taperecorders, and other transistorised equipment in the workshop where continual supplies of batteries would prove expensive.

Design criteria were that an output similar to that of the large layer batteries (e.g. Ever Ready PP9) should be provided, furthermore this output should be stabilised and have low ripple current and also be short-circuit proof without the annoyance of fuses. Miniature dimensions and low cost with reliability were further requirements.

The circuit shown (Fig. 1) uses as few components as possible to fulfil the specification, and is consequently as small, reliable and as cheap as possible; the prototype costing about 30s.

The Circuit

A.C. mains is fed to the primary of Tl , a subminiature transformer and 12 V a.c. is generated across the secondary. The centre tap is not used. The inter-winding screen may be connected to mains earth.

The secondary is connected to a bridge rectifier consisting of four miniature silicon rectifiers and the pulsating d.c. output of this bridge is clipped to the required voltage by ZD1. The excess voltage between the bridge output and the zener diode when it is conducting is dropped in the secondary winding of the transformer which is wound with resistance wire. A small proportion of this voltage also appears across the diodes D1-D4. Explanatory waveforms are shown in Fig. 2.

The clipped pulsating d.c. across ZD1 is then applied to an electrolytic capacitor and the resultant d.c. is taken to the output terminals. The internal resistance of the transformer secondary limits the short-circuit current to about 300 mA maximum and the output may be shorted for fairly prolonged periods without damage. This low short-circuit current prevents further damage to any faulty equipment that is connected to the power supply and its intrinsic safety in this respect makes it ideal for powering prototype circuits.

A 9 V output was required from the prototype and thus ZD1 is a 9 V type. The output voltage remained very close to the zener voltage when drawing currents up to 100 mA (the maximum recommended current to be drawn from a PP9 battery) and reduced gradually to zero when 300 mA were drawn. However, for different output voltages ZD1 can be

The completed power supply.

Fig. 1: The circuit of the p.s.u. See text for explanation of the

Fig. 2,- a) The waveform at the output of the bridge rectifiers. b) The waveform after being clipped by D5 but before smoothing by $C 7$.

\star components list

Transformer, subminiature mains type, primary 240V, secondary 12V, available from Bell, 59 Fairfield Drive, West Monkseaton, Whitley Bay, Northumberland, at 13s. 6d.
Capacitor, C1, miniature electrolytic $1,000 \mu \mathrm{~F} 12 \mathrm{~V}$. D1-4 silicon rectifiers 1 N482B or similar; ZD1, Z5D91 CF; Veroboard 2.3 by $2 \cdot 0$ ins.
(A complete kit of the above, including Veroboard is available from Bell, address as above for 30s)
chosen for any voltage between 6 and 12 V . The maximum stabilised current will be less with a 12 V zener and greater with a 6 V one.

Construction

The unit is constructed on a small piece of Veroboard and details of this are given in Fig. 3. Only two breaks are necessary in the copper strip and three holes must be drilled for the transformer mounting screws and the zener. Use a large nut for securing ZDI so that it contacts strips 1, 2 and 3 and hence has an adequate heatsink.

The Veroboard on which the unit is constructed may be the same as an amplifier, radio etc. is built on its small size making it suitable for use as a "built-in" unit.

Fig. 3: The component lavout.
In the interests of safety the primary should not be taken to the circuit board but rather via flying leads, as shown in Fig. 3.

Uses

If the power unit is to be used on the workbench it may be conveniently mounted in a plastic box from some household product and will take up very little room. If required as a battery eliminator it should be noted that the prototype is half the size of a PP9 battery and can easily be fitted with pressstud connectors and fitted into the battery compartment.

PRACTICAL GIFT FOR A PRACTICAL MAN

A full year series of PRACTICAL WIRELESS issues delivered by post each month would be an ideal Christmas present. Why not give a subscription to a friend. He would certainly find the magazine just as interesting as you do, and each issue would remind him of your good wishes.

But don't think too long-Christmas is very close. Just fill in both parts of the forms below, and post it with your remittance (f220 United Kingdom and overseas) to: Subscription Manager, Practical Wireless, Dept. X Tower House, Southampton Street, LONDON W.C. 2.

We will despatch first copies to arrive in time for Christmas, and send an attractive Christmas greeting card in your name, to announce your gift.

To: Subscription Manager (Practical Wireless) Dept. X. Tower House, Southampton Street, W.C. 2.
MY NAME
ADDRESS

[^4]
THE

MW

COLUMN

||่||||||||||||||||||||||||||||||
With longer nights rapidly approaching, the medium waves will start to provide good DX listening. For those who want to try this hobby a few notes on aerials are given.

WHICH type of aerial is best for MW DXing? Is it essential to have an outdoor aerial? These questions, put to the writer on numerous occasions, have left the impression that many potential MW DXers are deterred simply because they lack the facilities for erecting an outdoor aerial.

An ordinary TV aerial will give good results on the medium waves. Unplug the coax cable from the TV and connect the outer conductor (braiding screen) to the aerial socket of the MW receiver. Join a good earth to the receiver earth terminal and the TV aerial plus downlead will now act as a vertical aerial. If electrical interference is troublesome connect the inner conductor to the receiver aerial terminal and the outer screen to earth. A reader of this column who lives in Hull used his TV aerial last season to receive a number of US stations including WJR (760) Detroit and WCFL (1000) Chicago!

One of the best MW aerials is the loop; the writer does most of his DXing on one. The loop is an indoor antenna based on the popular frame aerial used in the early days of radio. Its main advantage is that it is directional. There are two nulls-directions of little or no pick-up-pointing in opposite directions at right angles to the plane of the loop. These nulls are very useful indeed for dealing with the crowded conditions prevailing on the medium waveband in Europe, many stations become audible simply by rotating the loop until interference is at a minimum.

The writer's loop consists of 7 turns of plastic covered hook-up wire of about 22 s.w.g. wound in the shape of a square of 40 in . side. The supporting framework is made of two pieces of wood joined to each other to form a letter \mathbf{X}. The turns are wound on to spacers fitted to the ends of the frame and are joined to a 500 pF variable capacitor mounted at the centre of the crossshaped frame. An additional single turn acts as a coupling winding and is wound beside the main turns. This is joined to the MW receiver via a short length of coax cable or 300 ohm feeder which terminates on either the dipole inputs or the aerial and earth terminals. The loop is fixed to a stand so that it can be rotated on its vertical axis. Constructional details of a MW loop appeared in the November 1966 issue of Practical Wireless. \dagger

To operate the loop, tune-in a station on the receiver, peak it with the 500 pF variable on the loop and rotate the loop until interference is at a minimum. Interferencefree reception of more than one station on the same frequency is often possible by rotating the loop until one of the nulls points in the direction of the station to be suppressed. Although the pick-up of a loop is less than a long wire aerial the signal-to-noise ratio is superior as a result of the loop's directional properties; consequently a clearer signal can frequently be obtained, even in the absence of interference.

CHARLES MOLLOY

by M.F. DOCKER, M.Sc.

THIS month some other types of transistor will be discussed. The reason for manufacturers producing different types of transistor is the fact that it is difficult to meet all possible requirements with a single type. One user may require an audio amplifier with low distortion and high power handling capacity at low cost, another may require a transistor which is good when used as a switch, and yet another may require a device which will amplify signals at v.h.f.

Surface barrier transistors

In order to increase the frequency range in which transistors can be applied it is necessary to reduce the time that the injected current carriers spend in the base region. This can be done in two ways. First the width of the base can be reduced and secondly the velocity of the carriers can be increased. The surface barrier transistor exploits the first method.
They are essentially p-n-p or n-p-n transistors with very thin bases. In order to produce these devices a germanium dice is etched on both sides to produce two depressions opposite each other as shown in Fig. 1. In this way it is possible to produce a base

Fig. 1: Structure of a $\rho-\pi-\rho$ surface barrier transistor.
which is only one ten-thousandth of an inch across. After this etch collector and emitter regions are added by electroplating a suitable metal such as indium on to the depressed regions.

The current gain for this type of transistor is lower than for the p-n-p alloy junction device because they have a lower injection efficiency and because the combination of small base width and high resistivity leads to the device having a low punch through voltage. Finally the small collector size limits the maximum power dissipation of the device. These all lead to limitations on the use-
fulness of the device, the only real applications being low power, high frequency amplifiers.

Micro-alloy transistors

A second type of surface barrier transistor is the micro-alloy transistor, or the MAT as it is commonly called. This is produced in a similar way to the SBT. However instead of using a low melting point solder to attach leads to the metal electrodes as is done in the SBT a higher melting point solder is used together with suitable dopents. The electrodes are then melted and micro-alloy junctions formed. In this way a very low emitter resistance can be obtained leading to a much higher injection efficiency than can be obtained with the SBT. Also higher punch through voltages and higher current gains can be achieved.

A third type of surface barrier transistor is the micro-alloy diffused base transistor, or MADT for short. This again uses a similar process in manufacture but instead of starting by etching directly into a high resistivity base slice, a thin layer of low resistivity material is formed by diffusing in phosphorus (a donor impurity). Etching is then carried out in the same way as before, but with this technique the collector is etched more deeply than the emitter. This leads to a base region which has a graded impurity concentration, resulting in a higher collector-to-base breakdown voltage because of the higher resistivity of the collector base junction region. A higher punch through voltage and a lower base resistance result from the low resistivity material near the emitter-base junction.

Another important fact which results from the variation in the impurity concentration in the base region is the drift field which is developed across the base region. This accelerates carriers across the base region from the emitter to the collector resulting in an increased frequency response (this is in fact the second method of increasing the frequency response mentioned previously).

Severe disadvantages of all the surface barrier transistors is that they have a low emitter-to-base breakdown voltage and a rather low injection efficiency.

Diffused transistors

It has been shown how very carefully alloy junction transistors have to be prepared in order to get a narrow base region. It is necessary for the emitter and collector to penetrate a distance of one mil into the dice from each side and they have to stop at a distance of about one-hundredth of a mil from each other. Naturally the difficulties of achieving this accuracy are very great and this

There are Catalogues

INDEXED THOROUGHLY. F'rinstance "Aerials Telescopic" under " A " and "Telescopic Aerials" under " T ".

PLANNED LOGICALLY. Having over 8,000 items it needs to be! Components are listed alphabetically in logical sections.
ILLUSTRATED PROFUSELY. Over 1,800 pictures. Some are photos, some are drawings, but all clearly show the features you look for.

PRINTED CLEARLY. No eyestrain here. Large easy-to-read type, on 330 sensible-size pages- $9 \frac{3}{4} \times 7 \frac{1}{4} \mathrm{in}$. (ignore our artist's enthusiastic exaggeration!)
BOUND SECURELY. This catalogue is bound to receive long and frequent use. Glossy laminated covers don't show fingerprints, don't tear easily.
PRICED REASONABLY. Just $8 / 6 \mathrm{~d}$ plus $3 / 6 \mathrm{~d}$ for post, packing and insurance. Folk tell us it's worth twice the price! We quite
 agree.

Yes - the Home Radio Catalogue is a pleasure to buy and to use

""RRDIO CONSTRUCTOR
 WORKSHOP PLANS FOR THE NGE PHEMTE

The plans contain large scale point-to-point wiring diagram: drilling plans: tables etc.
The amplifier is a practical easy-to-build project especially commissioned.

PLUS

SIMPLE COLOUR PRINTER
"CIR-KIT" PERSONAL PORTABLE SUPERHET ETC. ETC.

ALSO
EXCLUSIVE MOTORING OFFER

ON SALE NOW 3/-
over

Radio Communication Handbook
832 pages of everything in the science of radio communication. The Handbook's U.K. origin ensures easy availability of components. The standard work in its field.

69s post paid

THE VHF-UHF MANUAL

By George Jessop, G6JP
A complete manual for frequencies above 30 MHz . Covers aerials, receivers, transmitters and test equipment. The first book of its kind outside the USA. 22s 6d post paid

THE RSGB AMATEUR RADIO CALL BOOK

1970 edition

Complete up to date listing of all amateur stations in the U.K. and Eire together with much operating information including beam headings and list of prefixes.

7s 3d post paid
Obtainable from:
RADIO SOCIETY of GREAT BRITAIN 35 DOUGHTY STREET, LONDON, WC1

$\text { Phase } 32$	
You must	
hear this	
superb	
unit	
$15+15$WATT	
HIGH	
FIDELITYOUTPUT	
SULID STATE STEREO AMPLIFIER	
Recommended Retail Price ONLY 36 Gns. Retail Price \star Excellent performance \star High grade components and transistors	
\star Attractive appearance	\star Impressive technical specification
\star Modest cost	SEND S.A.E.
Housed in Teak veneered Cabinet,	for fulir
Switched selection of Mic., Mag-	descriptive
netic P.U., Ceramic P.U., Radio	Leaflet
Available from your local Hi-Fi Dealer	
Wholesale and Retail enquiries to Manufacturers	
FUTURISTIC AIDS LTD, 103 Henconner Lane, Leeds	

results in the devices having a large spread in their characteristics.

It was soon recognised that diffusion processes were far easier to control than the alloying processes. Alloying takes place at about $500^{\circ} \mathrm{C}$ and this temperature has to be maintained accurately for about ten minutes. Diffusion takes place over a much longer period, perhaps an hour or so, and during this period the temperature can be far more easily controlled. This means that the characteristics of the devices made this way are far more reproducible. The basic process of diffusion has been described in the section dealing with the doping of semiconductors but more details are required to understand how the transistor can be prepared in this way.

Fig. 2: Concentration of different dopents at different distances from the surface of the semiconductor wafer.

When an impurity is diffused into a dice it does not form a doped region of uniform concentration but rather the sort of distribution shown at a in Fig. 2. Different dopents have different rates of diffusing into the dice; thus for example gallium diffuses faster than does phosphorus. In Fig. 2 the concentration of gallium is represented by curve a and that for phosphorus by curve b.

Early diffused transistors

The first diffused transistors were formed by a single diffusion. For example an n-type wafer of germanium could be used to make a p-n-p transistor in the following way: First the wafer would be cleaned by etching in a suitable acid and washed in de-ionised water to remove all surface defects which would result in degradation of the transistor performance. The wafers would then be put in an atmosphere containing the appropriate dopents and heated to a high temperature for sufficient time for the impurity atoms to diffuse into the wafer. This results in an n-type base region with p-type emitter and collector regions. The wafer is then cut up to give single transistor chips.

The diffused base, alloyed emitter transistor

In this device a p-type dice has a region of n-type material produced on one surface by diffusion of phosphorus. The p-type material acts as a collector and the n-type region as the base. The emitter is produced by alloying an aluminium strip into the base as an acceptor impurity to give a p-type region. A gold wire doped with antimony is also alloyed into the base to provide an ohmic junction which acts as the base contact. In order to reduce the area of the emitter and collector junctions the device can now be etched to produce the shape seen in Fig. 3. The structure is called a mesa transistor
because of the similarity between the shape of the transistor and a mountain plateau.
The diffusion process produces a graded impurity

Fig. 3: The structure of the diffused base, alloyed emitter mesa type of transistor.
concentration in the base region which of course introduces the advantages mentioned during the discussion of surface barrier transistors.

The diffused base, diffused emitter transistor

In the diffused base, diffused emitter transistor a similar approach is used in producing the base region as just described. However instead of alloying the emitter a second diffusion is used. After the base region has been prepared a layer of silicon dioxide is grown over the surface of the wafer. A mask of wax is prepared over the surface and a small hole cut into it where the emitter is to go. The oxide layer, which is resistant to the diffusion process, is then etched away in the area of the hole in the wax, the wax preventing the oxide being etched away elsewhere. A second diffusion, this time of a p-type dopent, is then carried out to produce the emitter.
Using this technique higher emitter-to-base and collector-to-base breakdown voltages are obtained and higher power ratings at high frequencies can be obtained.

The alloy diffiusion transistor

Another process frequently used to produce transistors is the alloy diffusion process. This uses a combination of alloying and diffusion in order to produce a very thin base region with the built-in field characteristic of the graded junction. The emitter is produced by alloying a lead-antimonygallium button on to a thin n-type layer which has been produced on a p-type dice. This mixture is allowed to diffuse into the n-type skin and because of the different diffusion coefficients of antimony and gallium a separation of the dopents occurs leading to the production of a thin n-type base region. Contact with the base is made by diffusing an n^{+}-type region into the base, through emitter, and a lead is subsequently soldered to this. Using this technique high frequency devices with relatively high power capabilities are available.

Phototransistors

The phototransistor is similar in operation to the ordinary transistor. A reverse biased junction is provided between the collector and base. However it is possible to dispense with the emitter junction! The depletion layer of the collector-to-base junction is exposed to the light and this light liberates current
continued on page 530

JAMES HOSSACK AMPLIFIER Part 2

As its name implies, this amplifier was designed with the experimenter, rather than the sound enthusiast, in mind. For this reason, it was thought desirable to make it not only adaptable to a variety of experimental stereo arrangements, but also capable of fairly easy modification should the need arise.

Figure 2 shows the complete wiring diagram. It should be emphasised at the outset that this is merely a detailed guide to the under-chassis wiring, rather than a blueprint in the strictest sense of the word. The position of cutouts for valve-holders, transformers, sockets, etc. will depend on the size of the individual components which are available. As this is the case, no precise dimensions are given for preparing the chassis. It is recommended that the larger components are first of all collected, and a cardboard template made up, to simulate the chassis, of the approximate dimensions indicated in Fig. 2, or perhaps $\frac{1}{2}$ in. larger all round. Sketch in on this template the required cut-outs, together with holes for fixing bolts and chassis lead-through wiring. Make sure that these holes will not later be obscured by the components mounted above the chassis. Figure 3 shows the position
which this top wiring will be likely to occupy, and can therefore be used as a guide at this stage.

The wiring operation will be simplified if the position of valveholders and tagstrips, which carry most of the smaller components, corresponds approximately with that shown in Fig. 2, but this will depend to some extent on the size of the two output transformers. The actual spacing used in the amplifier was, in fact, slightly closer than that shown. Tagstrips carrying additional tags can, of course, be employed if desired, since the spare ones will provide handy anchoring points for additional wiring should modifications to the original circuit be contemplated later on.

Having decided on the exact position of the valveholders and all the larger components, and prepared a suitable chassis, the main components can now be mounted in position, making sure that the valveholders have their terminals facing in the correct direction. Commence with the wiring to the valve heaters. For the sake of clarity, the full heater wiring is not included in Fig. 2. If unbalanced heaters were adopted, it is probable that hum, picked up from the single heater wire, and chassis

Fig. 2: Chassis underside wiring.
The interconnection of valve heaters have been omitted in this diagram. Refer to the text for details.

INCREASE YOUR KNOWLEDGE

RADIO TELEVISION
 ELECTRONIC ENGINEERING

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

MANY COURSES TO CHOOSE FROM incl.
RADIO \& TV ENGINEERING \& SERVICING,
TRANSISTOR \& PRINTED CIRCUIT SERVICING, CLOSED CIRCUIT TV, ELECTRONICS,
NUMERICAL CONTROL ELECTRONICS,
TELEMETRY TECHNIQUES, SERVOMECHANISMS
PRINCIPLES OF AUTOMATION,
COMPUTERS, ETC.
ALSO EXAMINATION COURSES FOR
C. \& G. Telecommunication Technicians' Certs C. \& G. Electronic Servicing
R.T.EB. Radio/TV Servicing Certificate
P.M.G. Certificates in Radiotelegraphy

Radio Amareurs' Examination
General Certificate of Education, ete
BUILD YOUR OWN RADIO AND INSTRUMENTS With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your own 5 -valve Superhet Receiver, Transistor Portable, and highgrade test instruments, incl. professional-type valve volt meter (shown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post coupon below.

THERE IS AN CO cOURSE FOR you

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.

There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.

ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY
You will receive the FREE ICS Prospectus listing the examination and ICS technical courses in radio, television and electronics PLUS details of over 150 specialized subjects.

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12v) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-

DULCI HI-FI UNITS
The Dutcl range of tuners and ampllfiers offer exceptional quallty at a senslble price. Amplifiers: 207 and 207M. Tuners:FMT7 and FMT7s. SEND NOW FOR FULL DETAHLS

Sonotone 9TA and 9TA/HC. Diamond Cart- TRIO Stereo Moving Magnet Cartridge ridge brand new, boxed in manufacturers' Model AD76K. Diamond Stereo LP Stylus. carton 49/6 + 2/6 p/p. Acos GP 91-1 and GP Frequency response 20-20,000 c/s output. $91-3$ stereo compatible cartridges, new in 7 mv tracking pressure 2 grammes ± 0.5 sealed manufacturers' cartons $22 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. grm. Fully guaranteed. Price $85 /-\mathrm{p} / \mathrm{p}$ free.

BASF TAPE 25 \% off

$5^{\prime \prime} 600 \mathrm{ft}$. 14/- 900ft. 19/- 1200ft. 30/53." 900ft. 19/- 1200ft. 24/- 1800ft. 39/$7^{\prime \prime}$ 1200ft. 24/- 1800ft. 35/- 2400ft. 57/P. \& P. 2/-per reel.-over $£ 5$ FREE

HI-FI SPEAKER K12TC-12in. 12 watt

Offers an exceptlonally smooth and extended response, wlth very low level of distortion from the speclally deslgned twin dlaphragms.
Frequency Response: $30-16,000 \mathrm{~Hz}$.
Impedance: $\mathbf{1 5 - 1 6 0 H m}$.
OUR SPECIAL PRICE
PLUS P. \& P. 6/6
97/6
\$ Bargain-Speakers. Hi -Fi-TheBaker Selhurst Stalwart. 12in. round, 15 watt rating, 12,000 Ilines gauss, 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solld aluminlum chassis. Our price £5.9.6.
p/p 6/6

- Bargain-Changer decks at Jowast prices ever
Beautiful teak 1025 E8.0.0. ollnth and perspex 2025 cover to sult AT60 Mk. II cover to sult these units SP25 Mk. II 3500 with Son 9TA HC dlam ex. 20.0 Add 10/- p/p for each Garrard unit

Type: INFINITE BAFFLE
Model 8: $8^{\prime \prime}$ plus $3^{\prime \prime}$ tweeter
Model 138: $13^{\prime \prime} \times 8^{\prime \prime}$ EMI
Both f 4.19 .6 each
Model 1012: 10^{*} or $12^{\prime \prime}$ plus $4^{\prime \prime}$ tweeter £7.19.6
Alf enclosures are in olled teak, fully bullt.
Please add 8/- p. \& p. on each enclosure

- Bargain - Speakers, Hi-Fi - The Baker Selhurst Guitar Group 25, 121n. round, 25 watt rating, 12,000 gauss, 15 ohms, response $30-10,000$ c / s, solid aluminlum chassis, heavy duty cone. Our price £5.9.6.
p/p 6/6

The greatest HI-FI Budget system to-daycan't be beaten - price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp. AM-
FM with multiplex decoder and
A.F.C. $-2 \times 5 w$ channels R.M.S.

Bass Volume Treble Balance con- $£$ s d
trols, a truly outstanding unit 4310
Garrard SP 25 Mk II Transcrip-
tion deck
151111
Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge
Plinth and Perspex cover
$9 \quad 5 \quad 0$

£78 1911 remarkably low price of 63 gns .
E.M.I. HI-FI SPEAKERS

SET 450: 13×8 with two built-In tweeters and cross-over unit. Our Price 69/6. 3 or $15 \mathrm{ohm} .10 \mathrm{w}, 40-13,000 \mathrm{~Hz}$.
SET 850: $6 \frac{1}{2}$ " bass plus $3 \frac{3}{4}^{\prime \prime}$ tweeter and cross-over unlt. 8 ohm, $10 \mathrm{w}, 65-20,000 \mathrm{~Hz}$. 79/6.
SET 250: $5^{\prime \prime}$ heavy duty bass plus $3^{\prime \prime}$ tweeter and cross-over unit. 8 ohm, $6 \mathrm{w}, 80-20,000 \mathrm{~Hz}$. $65 /-$.

Add 5/6 p/p for each speaker set

earth return, would find its way to the input circuits, and be amplified by the remaining stages. To prevent this it is recommended that the valve heaters be wired as follows: Obtain several feet of stiff twisted twin flex of fairly heavy gauge, and run this from the 6.3 V output on the mains transformer to V3, V1 and V2 in that order, soldering one lead to the " X " valveholder terminal and the other to "Y". Now do the same for V53, V51, and V52, starting with fresh wire from the transformer. These twisted leads should be routed as close to the chassis as possible.

Now, go back and complete all the earth connections to each valveholder including the centre spigots-refer to Fig. 2. Finally, run a fairly heavy piece of single insulated wire between all the tagstrip and valveholder earths, not forgetting the soldering tags which, in some cases, are mounted below the valveholder fixing nuts, and take this wire by the shortest route either to the point marked "screen" on the mains transformer, or to the centre-tap of the h.t. winding. Neither this "bus-bar" nor the twin heater wiring already mentioned are indicated in Fig. 2, but their inclusion can lead to a marked reduction in hum level, particularly when operating the EF86 stage at high gain.

The wiring proper of Fig. 2 can now be tackled, completing one valveholder at a time, and keeping leads, as short and direct as possible. Although not indicated -again in the interests of keeping the main diagram as clear and uncluttered as possible-the following leads should be screened and the screen braiding earthed: (1) all four leads from the coaxial input terminals; (2) the connections to S1; (3) the connection between R16 and R17; (4) the connection between C64 and R69; (5) the connection between R20 and R21; and finally that between R70 and R71.

After completing the valveholder wiring, proceed to the power supply connections.

All wiring should be carefully checked over, and an ohmmeter connected in circuit across the h.t. line to ensure that no short or low-resistance path exists here. If all is well, plug in the valves for one channel (V1-V4), connect a loudspeaker, and, with the amplifier on its side, turn the balance to mid-position and all other controls to
minimum. Switch on and, after a few seconds, check for valve glow and hum from the loudspeaker. The latter should be easily audible, since there is, as yet, no negative feedback to counteract it. Touching terminal 3 on V3 valveholder with the blade of an insulated screwdriver should result in a loud buzz from the speaker, proving that the output stage is functioning. If a highimpedance voltmeter is available, a careful check is recommended at this stage, which should reveal a voltage pattern similar to the figures indicated in Fig 1.

Switch off, and temporarily solder the unconnected "A or B" arrowed lead above chassis (Fig. 3) to one side (either A or B) of the output transformer secondary, and, with the set switched on again, touch the unconnected feedback lead below chassis to the opposite wire leading from the transformer (if the A and B wires through the chassis are distinctively coloured, identification of the correct connection is simplified). The occurrence of positive instead of negative feedback on doing this will then be indicated by a loud squeal from the speaker, while, if feedback is in the correct phase, a noticeable reduction of hum should be heard. If the phase is incorrect, simply reverse the two connections.

With the mono-stereo switch in the stereo position, feed an audio signal, from a pick-up, etc., into the highlevel input for the appropriate channel, and advance the ganged volume control, VR4/VR54. Check that bass and treble controls are satisfactory. The balance control should provide a fair degree of attenuation of the signal without having too much interaction with the bass control, but some effect is unavoidable for the reasons already discussed. Now, inject a signal of a few millivolts from, for example, a microphone, into the lowlevel input, advance VR1, and check that mixing and general stability are satisfactory when both inputs are applied simultaneously.

All the above tests refer to one channel. Insert the valves for the second channel and repeat the above procedure exactly as outlined. Finally, with S1 in the "mono" position, both speakers connected. and a suitable high-level input, test the range of the balance control over both channels, and verify that its midposition gives approximately equal outputs to both speakers.

Fig. 3: Above chassis layout and wiring of the mono-stereo amplifier. The actual pasitions of the larger components-
transformers--will depend to some extent upon their size.

THERE has been a great deal of discussion of late on the subject of countries' lists. Every DX organisation seems to have its own definition of what constitutes a "country" and hence its own, individual countries' list.

Most organisations recognise the different states of the USSR as separate countries because they form part of a federation and each can, theoretically, leave the Union at any time.

Biafra was part of the Federation of Nigeria until it seceded and by the same reasoning that applies to the USSR, Biafra should count as a separate country. Hardly any of the DX organisations, however, recognise it as such. (Biafra was taken as an example not for political reasonş but because it is one of the countries which are, or were, part of a federation that have a Broadcast Bands transmitter within their boundaries.)
This is only one example of the dozens of anomalies that exist in this field. What is needed is an international agreement between all the DX organisations on a common list of DX countries. The European DX Council ($E D X C$) has already begun the work of compiling such a list but, unfortunately, Britain is not, as yet, represented on this body. Britain is one of the foremost countries in the field of DXing and it is surely time that one of the British based clubs thought of joining the Council.

PROPAGATION FORECAST

The predicted smoothed sunspot number for the month of October is 93 (Switzerland Calling) and as we are still in the equinox period the bands that I predicted last month are still the most suitable.

The comments that I made about propagation last month may have confused newcomers to the hobby so I will try to clarify the situation.

World-wide reception of shortwave broadcasts is possible because of the existence of ionised layers in the atmosphere; one of these layers, the F layer, is the most important to DXers. Under certain conditions this layer reflects the electromagnetic radiation from the transmitter and returns it to the earth. A series of hops from the earth to the layer and back again can cause the signal to travel round the world.

The highest frequency that can be reflected from the F layer is determined by the level of ionisation in the layer. The higher the level of ionisation the higher the frequency that can be reflected.

The ionisation is caused by radiation from the sun hitting the atmosphere and exciting the molecules of the air. The level of ionisation obviously depends on the length of time that the layer is exposed to the sun's radiation.

An area which is in daylight is exposed to the radiation and the level of ionisation increases but when darkness falls the source of the radiation is removed and the level falls gradually until the sun reaches the area

THE BROADCAST BANDS Malcolm Connah

again. If a transmission path is entirely in daylight the Maximum Usable Frequency (MUF) is high but as soon as darkness falls on any part of the path the MUF is reduced. This is because the layer has a lower level of ionisation and can only reflect lower frequencies.

AFRICA

Angola: A Voz de Angola has been heard at 0530 in Portuguese on the new frequency of 5,960 ; this was in parallel with the usual frequency of 9,660 .

Ivory Coast: Abidjan has an English transmission on 11,920 from 1830 to 1900 . There is also a programme in local languages from 1900 to 1930 and in French from 1930 to 2400 .

ASIA

Kuwait: Since the last article the Kuwait Broadcasting Service has altered some of its frequencies. The English programme from 0400 to 0600 is now on 15,370 and the Arabic programme from 0900 to 1100 has been heard on 21,525 and 21,590. The English programme for Europe at 1600-1900 has changed frequency from 15,405 to 15,345.

Pakistan: The Home Service from Karachi in English at 1500 uses the new frequency of 9,513 in parallel with 17,935. The European Service of Radio Pakistan uses the new frequency of 15,240 for its English transmission from 1945 to 2030.

EUROPE

Finland: Radio Finland has changed frequency from 9,550 to 9,590 for its English programme at 1800 .

Sicily: It may have escaped the attention of some of the "country chasers" among our readers that there is a Broadcast Bands transmitter on the island of Sicily. Most of the DX organisations regard this as a separate country although the transmitter is part of the RadioTelevisione Italiana (RAI) network.

The programme broadcast is Notturno dall'Italia from 2306 to 0459 which consists of continuous "piped" music. The main distinguishing feature of the programme is the fact that news is given in English and Italian on the hour and in French and German on the half-hour. The station is situated at Caltanisetta and broadcasts on 6,060 and 9,515 with a power of $5 / 25 \mathrm{~kW}$.

Switzerland: The Swiss Broadcasting Corporation made the following frequency changes on the 7th September: the old frequency of 17,795 from 1715-1915 for Africa became 21,540 and 15,305 to North America from 0130 to 0300 became 6,120.

SOUTH AMERICA

Columbia: Radio Nacional in Bogota has been heard at 0300 on the frequency of 6,030 , this frequency is given as inactive in the World Radio TV Handbook.

73 s and good DXing until next month.

Quality Transistor Radios to build yourself

 after sales service
NEW! roamer eight mkI WITH VARIABLE TONE CONTROL
 7 Tunable Wavebands: Medium Wave 1, Medium Wave 2, Long Wave, sW1, sW2, sw3 and

 Trawler Band. Built in Ferrite Rod Aerlal for Medium and Long Waves. Flye gection 2 din. chrome plated Teleacopic aerlal for Short Waver can be angled and rotated for maximum per-formance. Puah pulf output uing 500 mW transiators. Socket for car aerial. Tape record socmance. Fush pull output uing soombe transiators. socket ior car aterlal, Tape record ing. Eight transators plus 3 ditodes. Famous make 7 in . 4 ln. Speaker. Alr spaced ganged tuning condemser. On/Off awitch volume control. Wave change switch and tuning control. Attractive case in rich chestaut shade with gold blocking. Size it $x 7$ I 4 in. approx. First grade components. Easy to follow instructions and diagrams make the Roamer
Efght a pleasure to build. Parts Price List and Easy Build Plans 5/-(FREE nith parts).
$\mathbf{P}_{\&} \& \mathbf{P}_{7 / 6}$.

roamer seven mkIV

SEVEN FULLY TUNABLEWAVE-BANDS-MW1, MW2, LW, SW1, Medium wavehand provides easier tuning of Radio Luxemiourg, etc. Buitt in ferrite rod acerial for Medium and Long Wares. Five Section 22 in. chrome plated telescopic aerial for Short Waves-can be angled and rotated for peak 8.W. listening. socket output. Seven trownistors and pull output. Seven trashastory and
two dionden incluling Micro-Alloy R.F. Transistors. Fannoun make $7 \times$ 4in. P.M. speaker. Air spaced ganged tuning conlenser. Volume/on/or contryl, wave change switches and turing control.
Attractive case with carrving handle. Size $9 \times 7 \times$
 Attractire case with carrying handle. Size $9 \times 7 \times 4 \mathrm{in}$. approx. First grade components. Easy to follow instructions and diagrams make the Roarner 7 a pleanure to bulli.
P^{2} arts price lint and easy build plans $3 /-$ (FREE with Parts price liat and easy build plans 3/- (FREE with parts).
Peranal Equrpiece with swituded pocket for private listening, $5 /-$ extra

$$
£ 5.19 .6
$$

P.\& P. $7 / 6$

NEW!

 trans eightSIX WAVEBAND SIX WAVEBAND
PORTABLE WITH PORTABLE WI
3in. SPEAKER Attractive case in black with red grille and cream knobs and dial with polished brass in-
 approx. Tunable on Nedunit and
Long Waves, three Short Waves and Trawlur Band. Sensitive ferrite rod aerial for M. W, and L. W. Telescopic aerial for Short Waves. Eight improved type transistors plus 3 diodes. All top grade components. Push pull output. Ample power to drive a larger speaker. Parrs price list and easy build plans $5 /-$ (FREE with parts). Earpiece with switched socket for private listening $5 /-$ extra.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE

 with extealled M.W. band for easier tuniug o
Luxembourg, etc. All frst grade conmponeuts
 also Personal Earpiece with awiteched bock tor for private listening. Easy build plans and parta prow list 1/6 (FREE witb parts).

Total building costs

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red apeaker grille. Siz: diodes, ferrite rod aerlal, tuning condenser volume control tine tone moving condenser. Total also Pernonal Earpiece with awitched socker Total building costs for private listening. All first grade com. ponents. Easy build plans and parts price list
$1 / 6$ (FREE with parts.)

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt altings, Size 7f $x 8 k$ litin Tunable on Medium and Long waves, tit
Bhort wares. Trawler Band Plus an extra M short wares. Trawler Band Plus an extra M. $\$$ bal.
for easigr tuwing of Luxambourg, etc. Sensitire lerrte rod aerial and telescopic aerial for shurt waver, All top grade components. 8 stayes t Transistors' and 2 diodes inclupting Micro-Alloy R.F. Tranisistora etc., (Carrying itifap $1 / 6$ extra). Eavy
build plans and parts price list $2 /$. (FREE whit build
parts).

Total building costs 7918 P. \& P.

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon-Fri. 9-12 Sat

RADIO EXCHANGE CO

Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m.
MANY OTHERs IN gTOCK inelude Oathode Ray Tubes and Speolal Velves. U.K. Orders

DF92
 OA5 OA10 DF92
DK96
DL92 DL94

DL
DM
DM71
DY86

| DY87 $6 / 6$ |
| :--- | :--- |

| |
| :--- | :--- | 802819

EABL80 $6 /-$
EAF42 $9 / 8$
EB91 $\mathrm{RBC33}$
$\mathrm{HBC41}$ EBC41

\qquad $\begin{array}{ll}\text { EBF83 } & 8 / 6 \\ \text { KBF89 } & \text { 6/- }\end{array}$ EBF89
ECC81
6 ECC82
ECC83 ECC8 $\begin{array}{ll}\text { COC84 } & 6 /- \\ \text { COC85 } & 5 / 6\end{array}$ ECCB6 $\begin{array}{ll}\text { ECC88 } & 7 / \\ \text { ECC189 } & 9 / 9\end{array}$ ECC189 $9 / 8$

EOC804 $12 / 6$ ECF80 $8 / 6$ \begin{tabular}{ll}
ECF82 \& $8 / 6$

\hline

 ECF83 $18 / 6$ ECF80112/8 ECF80212/6

ECF803

ECH \& $78 / 6$

\hline 76
\end{tabular} $\begin{array}{ll}\text { ECH84 } \\ \text { ECH } & 716 \\ 11 /-\end{array}$ ECH35 11/-

ECH42 10/ECH81
$5 / 9$ ECR83 10/9 ECH200

P. C. RADIO LTD.
 170 GOLDHAWK RD., W. 12

(01) 7434946

$2 / 6$	0
$8 /$	0 O
9-	0 C
2/-	OC2
$1 / 9$	0 C
1/6	0 CB
$1 / 9$	0 C
$2 /-$	0 C
$7 / 6$	OC4
9/6	0 Cl
011/-	0 Cl
110/-	OC7
2 to	0 C 7
6 8/6	$0 \mathrm{C7}$
$79 / 6$	0 CB
8 to	$0 \mathrm{C8}$
3 8/6	0 CB
3 to	O
510/-	
5/8	
7	U80
71 -	UAB
$9 / 8$	UA
$9 / 6$	UBC
18/6	UB
3. 10	UB
251-	UCL
-40	UC
85/-	UCL
3-40A	UCL
1001-	UF4
0 5/-	UF8
81-	UF8
$7 / 6$	ULA
14/6	UL8
14/6	U
81-	U
14/-	UY

29/41ft. AERIALS each consisting of ten 3ft. 7 In dia. tubular screw-in sectlons. 11 ft . (6-section) whip aerlal with adaptor to fit the 7 in . rod, insulated base, stay plate and atay assemblles, pegs, reamer, hammer, etc. Absolutely brand now and complete ready to erect, in canvas bag, €3.9.6. P. \& P. 10/6.
\triangle E E R ${ }^{2}$ Full List of our very large

\qquad
$12 B$

ENER DIODES etc.

$\left\lvert\, \begin{array}{ll}\mathrm{ACl} 76 & 7 / 6 \\ \mathrm{ACY} 28 & 4 /- \\ \text { ACI }\end{array}\right.$

C

6K6GT 8/ $6 K 7$

6 K 7 G 6 \begin{tabular}{ll|l}
6 K 8 GT \& $7 / 8$ \& 12

6 K 26 G \& $16 /-$ \& $12 Q$

6 L 6 GA \& $14 / 8$

$9 / 6$ \& 1

6 P 25 \& $18 /-$
\end{tabular} $\begin{array}{ll}68 A 7 & 7 /- \\ \text { 68A7GT } & 6 / 6\end{array}$ $68 \mathrm{C7GT}$

$88 G 7$ 88.17
6857 cT $68 J$
$68 K$

$68 L$	
$\left.\begin{array}{ll}68 K 7 & 7 /- \\ 68 L 7 G T & 6 / 6 \\ 68 N 7 G T & 8 /-\end{array} \right\rvert\,$	
6	
:---	:---
6 VBG	$8 / 6$

$6 \times 5 G$
$6 \times 5 \mathrm{GT}$ $6-30 \mathrm{~L} 2$
$6 \mathrm{Z4}$
7 $7 C 8$
747
744
$9 \mathrm{~F}_{6}$
11 E
12
12
12
12

12BE6 6/\begin{tabular}{ll|lr|ll}
\& 12 CB \& $8 /-$ \& 955 \& $2 / 6$

6 K 9 GI \& $4 / \mathrm{l}$ \& 12 E \& $17 /-$ \& 956 \& $2 /-$

\& 12 K \& $10 /-$ \& 957 \& $8 /$

6 K 8 G \& $4 /-$ \& 12 K 5 \& $10 /-$ \& 956 \& $2 /-$

6 K 8 GT \& $7 / 8$ \& 12 K \&

\hline
\end{tabular} ALL OVERSEAS ENQUIRIES AND ORDERS Please address to

Colomor (Electronics) Ltd.

170 GOLDHAWK ROAD, LONDON W12. Tel.: 01-7430899

Books from Pitman...

Transistor Electronic Organs for the Amateur
Alan Douglas and S. Astley Second Edition
20s net
This second edition leaves the basic tonal design of the organ unaltered but the authors have exploited many of the changes in transistor circuitry that have taken place since the original organ was built and have corrected errors and omissions.

Radio Communication

J. H. Reyner and P. J. Reyner Second Edition
60s net Paperback 45s net
Here is a book covering the work required for the City and Guilds Telecommunications Technician's Certificate (Radio Subjects) to final year.
". . . . this book should be of help to both the student and the practising engineer." -Proceedings of the Institute of Electronic and Radio Engineers.

PITMAN PUBLISHING

39 Parker Street, London WC. 2

THE AMATEUR BANDS David Gibson, G3JOG

F1OR those who are firm followers of the occult, the prediction that conditions are calculated to be improving will come as no surprise. For ordinary mortals not blessed with prophetic powers, the news of these improvements, particularly on the h.f. bands, will come as a pleasant surprise.

This is the time of year when the summer doldrums of propagation and freak skip conditions fade out and give way to the autumn and winter happy hunting grounds for the DX enthusiasts. A period when old-timers fondly polish gleaming 807 p.a. bottles and the student of solid state pays his last instalment on an innocent looking transistor assured by the manufacturers to offer at least 30 watts of r.f. at up to 50 MHz .

This is also a good time to check over the gear, ensure that the dial calibration is accurate etc., and get ready for the long winter evenings when all that lovely frosty DX will play sweet music on each headphone simultaneously.

Ten metres should prove an interesting band to monitor this autumn. The summer has produced mostly African signals with an occasional burst from Oceana. A dipole for the band is only some 16 ft . 6 in . and could be suspended vertically from the eaves of the house thus taking up no room at all. Give it a whirl and let me know how you got on.
S. Norris (Suffolk) queries the JW prefix which, according to my little black book is Spitzbergen. Stan also mentions that he's heard a whisper that Lord Howe Island and Bouvet Island will be active later this year. Anyone else heard anything on this?

THIS AND THAT

Important. If you send in a log to The Amateur Bands, please send it direct to my home QTH. This will avoid the delay in mail being sent on via the magazine's London office. Only logs to: 5 Edward Close, St. Albans, Herts. Any other mail to PW in London please. The deadline for logs is such that they must reach me before the 18 th of each month, otherwise, no matter how good they are, they miss the boat and are out of date by the following month and thus cannot be used.
C. J. Morris, G3ABG, sends word of the Worked All Britain award (WAB) but more interesting is a parallel award for s.w.ls called a Heard All Britain award (HAB). He claims 43 UK stations took part in a recent Sunday afternoon WAB net on 7 MHz s.s.b. A special book is available which contains 114 sheets of foolscap and gives full information on the awards. The price is 10 s . and is available from G3ABG, The School House, 24 Walhouse Street, Cannock, Staffs. Those requiring any further information should drop John a line, but don't forget the s.a.e.
J. Moore (Leicester) complains of the static and general noise level on topband. This should improve now, with a bit of luck. John also informs that Polish stations are beginning to use a $3 Z$ prefix beside the more usual SP callsigns. 3Z5CJT was heard to remark that although the new prefix attracted attention, contacts took twice as long because of explaining the new 375 tag. How about everyone using their callsigns back-wards-just to be with it?
E. Marner (Swansea) has taken me up on the "radio
maps" idea. He suggests that a useful exercise might be to monitor the various beacon stations which are liberally sprinkled throughout the r.f. spectrum. Provided the receiver is always set up exactly the same each time this would seem a good idea. Some (in fact most) " S " meters are affected by the setting of the gain controls, usually the r.f. and i.f., so these would need to be set the same when each reading was made. Needless to say, everything must remain constant, the same aerial, earth etc., otherwise the readings and logs would be inaccurate.

THE OTHER

On topband-GM3VIO/A, GM3YCB, GW3DZJ, GW3YGH. The aerial is a 60 ft . end fed and on $3 \cdot 5 \mathrm{MHz}$ -CN8AW, CR6IV, F9RY/FC, 3V8NC. On 7MHz s.s.b. -PYICAD, UW9AF, YV1PR. The receiver is a CR $100 / 2$ and on 14 MHz s.s.b.-CE3FI, CEØAE, EA8FE, ET3ZU, FØHI/FC/M, FL8MB, HC2RZ, HV/SJ, I1 BUP/P (DXpedition to Tremiti Is.), K6MHO. KF7BSA (Scouts Jamboree station in Idaho), HG6AAY KL7EBK, LG5LG, LI2B, LU3FAN, OX5BA, OY9LV, PY6OA, TF2WLW, TI2AD, VEIRA, VE3BPV, VE7AZT/KL7 (Ice Is. $84.5^{\circ} \mathrm{N} 123.6^{\circ} \mathrm{W}$), VE8RCS, VK2ADJ, VK7AZ, VP7NN, VU2BX, W6VQD, W7JRT, WA5YRG/P/VE8 (Baffin Is.), WA9L.XG/P/ KP4, XE1IX, YN2JS, ZL1AV, 3V8NC, 3Z3PS, 9G1DY. The listener is J. Moore (Leic.), and on 28 MHz he logged-CR6AR, EA8CL, HG8QF, LU3DTV, PY1BKQ, PY1BOR, PY1DBE, UP2PG, 5A1TN, 5H3MA, 9J2DT.
A. Watson (Dartford) has recently wrapped his lucky digits around a new Star 200 receiver. Another addition is a 100 ft . long wire. A tentative eavesdrop on 80 dis-closed-HV3SJ, PY1NBF and 5A2TR the latter in a DX net with GW3AX in the chair.

Twenty proved more fruitful with sigs fromCTISQ, DU1AA, FØOX/FC, HBØXWS, HC4WM, HZ1AB, JA4ZA, JX3DH, KP4BBN, OD5FB, PY2DOS SVØTE, TF2EA, VE3FOR, VK3MO, WA3HIA/AM, 5H3LV, 5Z4LW, 6Y5SR, 9N1MM.

Many logs unhappily, did not qualify this month because they weren't in alphabetical order or did not have signal reports. Please, slaves, dates, times, frequencies, standard RST (and not some weird mixture of SINPO and Arabic) and, most important, alphabetical order, it makes life so much easier this end.

NEWS AND CONTESTS

October proves to be quite a busy time for Hams. October 5 th, 1296 MHz contest; 5 th, Scottish mobile rally in Aberdeen; 11th-12th, 28 MHz telephony contest (quick, get that dipole cut); 12th, Peterborough mobile rally, talk-in stations on topband, 4 and 2 metres; 25th -26 th, 7 MHz c.w. contest; 25th-26th, CQ WW contest (phone section); this should be a good one to \log a few of those extra zones.

On November 3rd, there's the 2 metre s.s.b. contest and on November 8th-9th, the phone section of the 7 MHz contest.

Jamboree-on-the-air

[^5]
a beginner's TRANSISTOR CAPACITANCE BRIDGE

PART 2

CONSTRUCTION

The unit is built up on a Cir-kit board measuring 5 in. $\times 3$ in. Switches, batteries, meter, and the main potentiometer, VR1, are located on a separate front panel. The Cir-kit system results in a very presentable and easily made printed circuit, with the copper channels consisting of adhesive strip pressed into position on the underside of the board, following the diagram of Fig. 7. This figure also shows the component layout on the upper side of the board. Commence operations by drilling $\frac{1}{8} \frac{1}{2}$ in. holes for all components and wires leading into the board. The approximate positions for these holes are shown by small crosses, the exact positions depending on the precise size of the transformer and other components used. Now, cut and press the Cir-kit strip into position, piercing this with a pin where it overlays each hole. Finally, place all resistors, capacitors, etc. in position, and thread the wire ends through to the copper strip side of the board, finally soldering them into position on the strip. Place a drop of solder,
also, at each strip junction (marked J in Fig. 7) where pairs of copper strips overlap.
The flying leads to the battery connectors, meter, VR1, etc. and the capacitor bank can now be inserted from the top of the board. If fairly long wires are necessary, e.g. the battery leads, a useful tip is to cover the wire with a piece of thick sleeving (unless the sleeving round it is already fairly thick), leaving a small wire end protruding to pass through the hole and solder on to the copper strip. It is most important that no component is left held loosely by the copper to which it is soldered, as the latter will inevitably come adrift from the board, and, with the flexing of the connecting leads, eventually break. For the same reason, no components should be soldered directly to the copper strip side of the board (except temporarily for experimental purposes), the only exceptions being the five jumper wires, marked W in Fig. 7.

The two holes at the front of the panel are for small metal brackets to hold the front panel to the p.c. board. Drilling details for this panel are given in Fig. 8. After drilling, scribe a line lin. from the bottom, and bend the top portion of the panel back to make an angle of approximately 130 deg . with the

Fig. 7: The Cir-kit wiring board layout used by the author.

60 r.p.me. Geared Motor. This is a powerful unit, driven by a mains motor of aimilar type to, bu Record Player motor. The gear boxes may be detached. It ls, in fact, a unit measuring approxi mately $3 \frac{1}{2} \times 2 \frac{1}{2} 1 \mathrm{l}$. thick. The final drive shafi

A Micro Meter bargain. Limited quantity only, centre zero 50-0-60 micro amps. This is a Weaton Meter enclosed in clear perspex case for flush mounting. Dial size approxinnately $2 \ddagger i n$. wide. The scale is not engraved but has a red part in the centre and a green part to the left of centre. Scale particular requirements. Regular price probably over $£ 5$ each, our price $29 / 6$ each.
Battery Record Player. Made by Collaro. This is made up on a unit plate with speed selector and pick-up. The turntable is a heavy one and measures approximately 94 ins . Pick-up is fitted with the famous "'Studio" cartridge. Price 69/6, postage and insurance 6/6.
C.H.T. Condenser. 28 K v. $0 \cdot 0011 \mathrm{mfd}$. Suitable for litenmitting test conditions 6 A at $300 \mathrm{k} / \mathrm{c}$. Bake85 case. $18 / 6$ each.
The element is wound on a porcelain former then encased in a brass tube terminated with beaded leads 12in. long. Normal inains toltage. Price $5 /-$ each or $54 /-$ per doz.
Preas to Make Switch. Double pole, 5 amp contacts or can be used us single pole, 10 amp, contacts 250 voit working. Bingle hole fixing- $2 / 6$ each, 4/- dozen.
Door Switch. Contacts open when plunger is depreased. Prevents lights being left un. 15 amp
contacts, 230 volt working. Made by Arrow. $3 / 6$ each, $36 /$-per dozen. Rotary Appliance Switch. $16 \mathrm{amp}, 230$ volt on mouded ceramic hase. Operated hy pol
$1 / 40$ th h.p. Motor. Made by the French (Cassor) Company. This is an excellent totally encloged motor, powerful enough to operate rmall lathe, drilling machine, washing machine, ete. It's speed is volts mains, totally enclosed, size cycle, $230 / 250$ with lin. of tin. spindle. Price 19/8 plus $4 / 6$ postage and insurance.
Burglar Alarm Kit. Protect your home and family by frightening away the intruder. With our circuit maing operated bell rings loudly dirently the door or window is opened. Kit comprises 12 reed switches, 12 magnets, relay, mains transformer and
bell with circuit. Prlce 49/6.

NICAD

RECHARGEABLE

BATTERIES

3.6 V 500 mA size 1i x 1 inin. dia. type ref DK 2500 . Realy powerful, will deliver 1 amp for $\frac{1}{}$ hour. uaranteed. Other voltages avallable, single cell $1 \cdot 2 \mathrm{~V} 6 / 6$. 5 cell $6 \mathrm{~V}, 29 / \mathrm{B}$.

ELECTRIC CLOCK

 WITH 25 AMP SWITCH Made by Smith's, these unite are as fitted to many top qualtty clock is mains Iriven and frequency controlled so it is ex cremely accurate. The two amal dials enable switch on and of or swltching on tape recordera tor swltching on tape recorders. Offered at only a 89/6, less than the value of the clock alone- onost and insurance $2 / 9$.
(先) INDICATOR LAMP
Panel mounting, consists of neon lamp in red Plaatic lens with resistor in leads
malns operation. $8 / 6$ each. $24 /-$ dozen.

BECKASTAT This is an instant theryour appliance into it and its lead into wall plug. Adjustable setting for normsil air temperatures. 13A loading Will save its cost in a insurunce 2/9.

13- SOLDER GUN

 A must for every buny man. Given almost instant heat: also illuminates job. 100 watt $220 / 240 \mathrm{v}$. $39 / 8$ (gaves you over $301-$), post \& ins. $4 / 6$.BIG TOB 250 watt model $90 / 6$ (A . you over $E \leq .10 .0$), post \& ins. 6/6.

FLEX BARGAINS

Sereened 3 Core Flex. Each core 14/0076 Copper PVC insulated and coloured, the 3 coren laid together and metal braided overall. Price $\$ 3.15$. per 100 ydd. coil.
15 Amp 8 Core Non-kink Flex. $70 / 0076$ insulated coloured cores, protected by tough rubber sheath, then black cotton braided with white tracer. A normal domestic flex as fitted to 3 Kw . fires. cut to your length $2 / 6$ per yard.
10 Amp 8 Gore Non-kink Flex. As above but corea are $28 / 0076$ Copper. Normal price $2 / 6$ per yd. 100 yd. coil 27.10 .0 , or cut to your length $1 / 9$ yd. Amp 2 Core Flo, As above, but 2 Cores each 23/0076 as used for Vacuum Cleaners, Electric
Blankets, etc. $39 / 6100$ yd. coil.

ELECTRIC TIME SWITCH
Made by Emiths theae are AC mains operated, NOT CLOCK WORK. Ideal for mounting on rack or shelf or can be built into box with 13A socret. 2 completely adjuatable time periods per 24 hours, 5 amp changeover contacte will switch circut on or of during these periods. 89/6, post and ins. 4/6. Additional time contacti 10 -p parr.

The amplifier sensation of the year You will be amazed at the fullmeas of reproduction and at the added qualities your records or tuner willi reproduce. Buit into metal cabinet elegantly styled and modern furnishings, thim amplifier uses an integrated solid state circuit with modern furnishings, this amplifier uses an integrated solid state circuit with ts ldeal for use with normal pick-ups and tuners, it has a double wound mains transformer and ganged volume and tone controls-also switching for Mono to gtereo, tuner or pick-up. Other controls include "treble lift and cut", "balance" and separate mains on/oft switch. Price is eq lift plus $7 / 6$ post and insurance. Speakers (with tweeters) in olled teak flaiwh cabinets to match amplifier, 88.8 .0 per pair.

THIS MONTH'S SNIP

 'Gladiator" $\mathbf{2}$ wave band transintor radio 7 transistor, 2 wave band (mediumio and long) pocket radio wwith carrying handleand earplug. These radios use a ferrite slab aterial and a conventional auperhet circuit with built in moving coil speaker. Completely built up, ready to play. Offered at less than importers price due to bankrupt
 39/8 plus $3 / 6$ post and insurance

3 STAGE PERMEABILITY TUNER

This Tuner is a precision instrument made by the famous "Cyldon" Company for the equally famous Radiomobile Car Radio. It is a medlum wave tuner (but get of longwave coils $1620 \mathrm{Kc} / \mathrm{g}-625 \mathrm{Kc} / \mathrm{a}$ and Intended to operate with average value of $470 \mathrm{Kc} / \mathrm{g}$. Extremely compact pize only $2 \mathrm{f} \times 2 \times \mathrm{I}$ I.F. thick) with reduction gear for fine tuning. 8 nip price this month 12/6, with circuit of front end suitable for car radio or as a general purpose tuner for use with Amplifier. Post Free.

DISTRIBUTION PANELS
5 ust what you need for work bench or lab. standard 13 anp fused plugs. supplied complete with 6 feet of heavy cable and . Our price $39 / 6,+4 / 6 \mathrm{P} \& \mathrm{I}$

Will dim tneandesce VARYLITE

Will dim incandescent lighting up to 600 watta from full brilliance to out. Fitted on M.K. flush plate, same size and flixing as standard or mount on surface. Price complete in heavy or mount on surface. Price complete in
plastic box with control knob 88.18 .8 .

BUY TIME SLOT METERS

If you hire out equipment auch as TV seta by the hour then 8 d . an hour, $1 /$ - an hour and $1 / 6$ an hour. Brand new. Made by the famous Weaton Company. Price \&3.19.6, portage and insurance $6 / 6$.

THERMOSTAT WITH PROBE This has a sensor attached to a 15 A switch by 14 in . length of flexibje capillary tubing-control range is $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ so it is auitable to control soll heating and liquid heating especlally when in buckets or portable vessela as the sensor can be raised out and lowered into the vessel. This theralarm when critical temp. is reached in or other heap subject to spontaneous combustion or if lignid is being heated by gas or other means not controllable by the switch. Made by the famous Teddington Co., we offer these at 12/6 each. Poatage and insurance $2 / 9$.

HI FI BARGAIN

FULL F1 12 INCH LOUDSPEAEER. This is undoubtedly one of the finest loudspeakers that we have ever offered, prodiced of one of the country's most famous makers. It has a load and Rhythm Guitar and public address.
Flux Densitity 11,000 gause-Total Flux $44,000 \mathrm{Maxwellg}$ Power Handling 15 watts R.M.B. Cone Moulded fibre-Freq. response $30 \cdot 10,000$ c.p.s.-specify 3 or 15 ohms-Mains resonance 60 c.p.s. Chassis Diam. 12in. -12 in. over mounting lugs-Raffle hole 1 lin. Diam.-Mounting holes 4, holes
 Don't miss this nffer. 15in. 30 watt 27.19 .8 . 18 in . 100 watt 224.10 .0

Where postage is not stated then orders
over $£ 3$ are post free. Below $\mathbf{2 3}$ add $2 / 9$. over $£ 3$ are post free. Below $£ 3$ add $2 / 9$.
Eemi-conductors add $1 /-$ post. Over $\& 1$ pont free. S.A.E. with enquiriea please

There's Something for Everyone in the NEW HEATHKIT CATALOGUE!

GUITAR PRACTICE

 AMPLIFIERPerfect for the youngster.
Kit K/JK-37£1980 Carr 8/-

ELECTRONIC METRONOME For student or professional musician.

Kit TD-17£7120
Carr 3/-

Send for the FREE

 Catalogue and see for yourself, Today!This catalogue describes these and many more kits and ready-to-use models for stereo/Hi-Fi, Domestic Radio, Record Players, Amateur Radio, Short Wave etc.
Whatever your vocation motorist, hobbyist, Do-it-yourselfer, Engineer or Education here's a chance to make significant savings.

DAYSTROM LTD GLOUCESTER GL2-6EE

A D.I.Y. RADIOGRAM WITH SYSTEM PACKS. For building in your own cabinet or use in new 'ENVOY' Radiogram Cabinets.

PORTABLE VVM
For householders, hobbyists.
Kit K/IM-17£12180
Carr 6/-
SEVERN AM/FM RADIO
Features modular construction.

Kit K/Severn $£ 18180$ Carr 5/-

STEREO HI-FI ‘COMPACTS' Record playing plus FM stereo.

Kit K/AD $27 \mathbf{£ 8 2 0 0}$
Stereo Record playing only
Kit K/AD $17 £ 5400$
Carr 13/- on each
STEREO RECORD PLAYER Exciting sound/Budget price.

Kit K/SRP-1 £2760 Carr 11/-
D.I.Y SPEAKER SETS for building into your own cabinets.

Kits from $£ 7100$ Carr 5/to $£ 13100$ Carr 9/-

Send for details.
TECHNICIANS
LOW COST 'VVM'.
7AC, 7DC, 7 ohms ranges
Kit K/IM-18U £16140
Carr 5/-
'AMBASSADOR'
SPEAKER
Luxurylooksplus Hi-Fisound.
Kit Ambassador $£ 29160$ Carr 15/-
AUTO-TUNE-UP METER Three instruments in one.

Kit K/ID-29£1780 Carr 5/-
AIRCRAFT MONITOR RECEIVER
Tunes $108-136 \mathrm{MHz}$.
Portable.
Kit K/GR98 £27120 Carr 5/-
CAR RADIO
Luxury motoring entertainment.

Kit K/CR-1 £12120
Spkr. extra $£ 120$
Carr 5/-

Fig. 8: (a) Cutting and drilling details for the capacitance bridge panel. Aluminium sheet of any gauge between 22 and 16 is quite satisfactory. (b) How to bend the panel to fit the case shown - in Fig. 10.
bottom half; so that a ruler, placed at right angles against the back of the Cir-kit board (after bolting to the panel), would just touch the top edge of this angled portion. These details will be clear from Fig. 8b.

Before finally bolting the panel and printed circuit board together, mount the switches and other components in position on the panel and solder on the interconnecting wires, keeping leads conveniently short. Colour coding, especially of the capacitor bank leads will be found a considerable help at this stage.

Figure 9 gives details of the battery holder. This actually consists of a small aluminium box designed to hold two PP3 batteries fairly tightly in position, and is bolted to the front panel by means of a single fixing screw-indicated by " B " in Fig. 8a. With the intermittent use of this type of tester, replacing batteries will be an infrequent operation. Because of the different current requirements of oscillator and amplifier sections, interchanging PP3s after a period of use may, in fact, be all that is necessary to restore the bridge to a fully-operational state.

A suitable cabinet can be constructed from $\frac{1}{2} \mathrm{in}$. plywood, cut and nailed together as shown in Fig. 10. Self-tapping screws, bolted to three metal brackets which are screwed to the inside of the cabinet, as shown in the figure, serve to hold the bridge securely in place. Before mounting the instrument in its cabinet, however, it will be advisable to complete (in pencil only, at this stage) the details on the range and other scales, since, as mentioned in the theoretical section, it may be necessary to alter some of the capacitors in order to obtain best agreement on all the ranges.

TESTING THE BRIDGE

When all the wiring and constructional work has been completed, and the oscillator and amplifier tested individually as already described, set R3 to zero resistance, VR1 to maximum, S 2 to the $\times 1$ range, and switch S1 on. If desired, headphones can be connected across T3 primary in order to monitor the signal. (In the completed instrument, an earpiece jack was connected across this point, and
mounted on the front panel (see photograph) for connecting a pair of high-impedance headphones. This was found useful, not only for monitoring purposes, but also for greater accuracy when testing very small capacitors on the $\times 1$ range, where the meter deflection can be very small.)

At this stage the meter reading should be zero. Touching the test points with one hand should now cause the meter to read, provided S3 is in the sensitive position. Now, switch to the $\times 10$ range, and a meter reading should be obtained without touching the terminals, together with a noticeable increase in headphone response. Operating S3 should decrease the reading without affecting the volume of note heard in the phones. Check also that a decrease in the value of VR1 resistance causes an increase in current on both of the ranges mentioned. Now switch to the $\times 100$ range. The meter should go from the hard-over position (minimum value of VR1) to about mid-scale, on operating VR1. This is as far as one can go at this stage, since a maximum meter reading will almost certainly be obtained on all the higher ranges.

Fig. 9: The battery holder box, also cut out of thin aluminium sheet.

Fig. 10: An attractive style of cabinet, designed to be made from $\frac{1}{2}$ in. plywood.

Assuming all the above tests are satisfactory, a test capacitor can now be connected across the test points; 300 pF is a suitable value to start with. On range $\times 100$, a dip should be obtained about midscale, and a pencilled " 3 " scribed at this spot. Now check that a dip is obtained at roughly the same spot
with $3,30,3000 \mathrm{pF}$ etc., as discussed in the previous section, on operating the range switch. If necessary, alter the fixed capacitors, as recommended. If cramping of the scale is noticeable, increase resistance R3 slightly, until a suitable spread is obtained, finally locking this in position with a spot of wax or Duco cement.

APPLICATIONS

The most common application for a capacitance bridge is, of course, to determine whether a capacitor is showing its rated value, to evaluate the capacitance of an unknown component or one from which the marking has been obliterated. In addition, the present instrument is a very sensitive indicator of capacitor leakage, since a leaky component will give either a very shallow dip, or perhaps none at all, depending on the extent of the resistance which it exhibits. This effect is particularly noticeable with faulty electrolytics. In some commercial bridges, the extent of these "losses" can be precisely evaluated, by incorporating a variable resistance in parallel
with the range capacitor, thus effectively neutralising the "resistance" of the test capacitor, and enabling the full dip to be once more obtained. This refinement was not considered necessary in the present case.

An interesting application of the measurement of capacitance occurred recently, when the writer was asked to help with the final lining-up of a "Progressive Short-Wave Receiver", built according to this popular P.W. blueprint. In the text accompanying that article, instructions for bandspreading are given, which include the removal of vanes from a ganged capacitor, so as to give the requisite maximum capacitance on each section. Use is made of a mathematical formula, taking the intital capacitance of the capacitor as a guide. Instead of this procedure, it was decided to measure the maximum capacitance directly with the bridge, removing some vanes and adjusting the remainder at each stage until the correct capacitance for satisfactory bandspreading, coupled with perfect oscillator tracking, was obtained.

BASIC SEMICONDUCTOR TECHNOLOGY

-continued from page 517

carriers which are swept across the junction. Consequently the device is sensitive to the presence of light. The reader may by now have realised that the device is identical to the photodiode.

A much greater sensitivity however can be obtained by using a different device, the n-p-n phototransistor. This device makes use of a hook-collector, which is found in $p-n-p$ devices.

The frequency response of phototransistors is limited by the time taken for the liberated carriers to diffuse to the collector junction. This depends on the distance away from the junction that the carriers are produced, with the consequence that phototransistors have to be physically. small if they are to operate at high frequencies.

Operating limitations of transistors

Several factors have to be taken into account when a transistor is connected in circuit if it is not to be immediately destroyed after switching on.

Maximum power dissipation

The power which a transistor can dissipate is limited by its physical construction. The temperature at which the device can work is the limiting factor and it is necessary to remove the heat dissipated in the device so that this temperature is not exceeded. All three methods of heat transfer-radiation, conduction and convection-come into play in cooling a transistor. In order to avoid a large tem-

Fig. 4: Use of a rectifier diode to protect equipment against accidental reversal of the power supply connections.
perature of operation power transistors are mounted on large heatsinks which provide a large area to dissipate the heat. When using them care should be taken that sufficient air can reach the sink in order to keep it cool. A matt black or anodised aluminium heatsink is better for radiating heat than a shiny aluminium one. The manufacturer of the transistor normally specifies the type of heatsink to use to get the maximum performance with a particular transistor.

Maximum voltage ratings

There is a maximum voltage to which the collector junction can be exposed. Two effects can give this limitation. First, avalanche multiplication of carriers can cause an excessive current to flow and cause breakdown of the junction. Secondly punch through can occur. This is due to the depletion layer in the base region extending to the emitter and causing an effective short-circuit of the transistor. The type of breakdown which occurs at the lowest voltage sets the limit of the maximum collector voltage, and this is determined by the construction of the particular device.

When a transistor is used as a switch very little power is dissipated in the device except during the actual switching operation, so care must be taken to avoid overloading it during this period.

Safety precautions

Whereas in valve circuits some measure of overloading can be tolerated with transistor circuits none of the maximum ratings given by the manufacturer should be exceeded. In the interests of economy it is wise for the amateur to derate these specifications by 25% and to incorporate protective devices such as resistors, fuses and current limiters wherever possible. A diode wired in series with the power supply lead as in Fig. 4 will avoid damage to the circuit if the power supply is inadvertently connected the wrong way.

Next month majority carrier devices such as the field effect transistor and MOST will be described.

TO BE CONTINUED

.M.I. PICK-UP ARM. Complete with mono cartridge $29 / f$ צTAL OP87 17/6; Stereo Ceramic 35/-. ACOs LP only $10 / 6$

CRYSTAL MIKE INSERTS

PORTABLE TRANSISTOR AMPLIFIER PLUS DYNAMIC MICROPHONE A seli-contained fully portable minip.a. system.
Many uses - ideal for Many uses-ides pabr Alarm, Intercom, TeleAmone or Record Player
 Amplifier, etc. Attractive rexine

covered csbinet, vize $12 \times 9 \times 4 \mathrm{in}$., with powerful $7 \times 4 i n$. speaker and lour transiator one watt power amplifles plus ultra engitive microphone. Uses PP9 battery. Brand new in makers | battery. Brand nowin makers' $\begin{array}{c}\text { with inall } \\ \text { carton } \\ \text { guarantee. World lamous make. }\end{array} \quad$ Only $90 /-\begin{array}{c}\text { Post } \\ \text { Free }\end{array}$ |
| :--- | WEYRAD P50-TRANSISTOR COILS

 Telescopic Chrome Aerials 6 in. extends to $23 \mathrm{in} .5 /$ Ferrite Rods Only $8 \times$ lin. 4/-. $8 \times$ in. $5 /-$. VOLUME CONTROLS 80 ohm Coax 8^{D} yd.
 LIN. L/S $/$ /- D.P. 5/- 40 Yd. $20 /-$; 60 Yd. $30 /-$ STEREO L/S 10/B, D.P. 14/8
ERIge SK. S.P. Transistor, $5 /-$.

Ideal B25 lines Edge SK. S.P. Transistor, $5 /-$ Ideal 625 lines	T.V. Type. Knurled Enob.
Falues 10% to $80 \mathrm{~K} ., 4 / 6$ STANDARD SIZE POTS	
LONG SPINDLE	Cerbon 80 K to 2 meg. $4 / \mathrm{l}$ ORMS to 100 K . $/ 0$

$21 \times 5 \mathrm{in} .3 / 8.2 \dagger \times 3 y \mathrm{in} .3 / 2.38 \times 33 \mathrm{in} .3 / 8.8 \frac{1}{2} \times \mathrm{in} .5 / 2$
EDGE CONNECTORS 16 WAy $5 /-i$ 24 Way $7 / 8$.
S.R.B.P. Board 0.15 MATRIX 21 in . wide 6 d . per 1 in .

BLANE ALUMINIUM. CHAS8IS $18 \mathrm{s.W.g} \quad 2 \mathrm{gm}$. sides, $18 \times 9 \mathrm{in}, 9 / 6 ; 14 \times 11 \mathrm{in}, 12 / 6 ; 15 \times 14 \mathrm{in}^{2}, 15$
ALUMINIUM PANELS 18 s.w.g. $12 \times 18 \mathrm{in} ., 6 / 8 ; 14 \times 9$ in

Q MAX CHASSIS CUTTER

 Complete: a die, a punch, an Allen screw and key in. 16/9 $1^{1 / 16 i n .18 / 6 ~} 1^{\frac{3}{3} \mathrm{in} . ~ 21 / 6 ~ 8 i n . ~ 39 /-1 i n . ~ s q . ~ 36 / 6 ~}$ WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p .2 -way, or 2 p .6 -way, or 3 p . 4 -way $4 / 8 \mathrm{each}$.
1 p .12 -way, or 4 p. 2 -way, or 4 p. 3 -way, $4 / 8$ each.
Wavechange "MAKITs" 1 p. 12 -way, 2 p. 6 way, 8 p. 4 -way, 4 p. 3 -way. 6 p. 2-way, 1 wafer $12 /-, 2$ waler $18 /-, 3$ waler $84 /-$,
 ALL PURPOSE HEADPHONES H.R. HEADPHONES 2000 ohms Super Sensitive LOW RESISTANCE SEADPEO PHONES 8 ohms

BARGAIN STEREO/MONO SYSTEM

Attractive Slim PLAYER CABINET with B.8.R. Stereo
Autochanger, 8 valve Stereo Amplifier, two Bi in. LOUDSPEAKERS. (Only 4 paits ol wires to join). f19.19.6
Carr. 10/6. 8.A.E. Ior details

NEW TUBULAR ELECTROLYTICS CAN TYPES
2/350V … $2 / 3 \mid 100 / 25 \mathrm{~V}$ … $2 /$
$4 / 850 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$8 / 4 / 450 \mathrm{~V}$
$18 / 450 \mathrm{l}$
$32 / 450 \mathrm{~V}$
$25 / 450 \mathrm{~V}$
25150 V
$20 / 25 \mathrm{~V}$
$50 / 50 \mathrm{~V}$

$16+16 / 450 V$	$4 / 3$	$32+32+32 / 350 v$.	$8 /-$	
SUB-MIN	$2 /-$	$32+32 / 350$ V	$4 / 8$	$100+50+50 / 350 \mathrm{v}$
$8 / 6$				

SUB-MIN. ELECTROLYTICS. $1,2,4,5,8,18,25,30,50,100$, CERAMIC $500 \mathrm{~F}, 500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 8 ; 2000 \mathrm{mF} 25 \mathrm{~V}$
PAPER 350V-0.1 $8 \mathrm{~d}, 0.52 / 8 ; 1 \mathrm{mF} 8 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3 /-$
$500 \mathrm{~V}-0.001$ to $0.058 \mathrm{~d} ; 0.11 /-0.951 / 6 ; 0.58 /-$
$1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 8 ; 0.047,0.1,2 / 8$. SILVER MICA. Cloze tolerance 1%. $5-500 \mathrm{pF} 1 /-; 560-2,200 \mathrm{pF}$
 TWIN GANG. "0-0" $208 \mathrm{pF}+178 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pF}$, minia-
tare $10 / 6 ; 500 \mathrm{pF}$ standard with trimmers, $12 / 6 ; 500 \mathrm{pF}$

 SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each.
TUNING. Solid dielectric $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /$ e each. TRIMMERS. Compression $30,50,70 \mathrm{pF}, 1 /-; 100 \mathrm{pF}, 150 \mathrm{pF}$, $1 / 8 ; 850 \mathrm{pF}, 1 / 8 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 8 ; 1000 \mathrm{pF}, 2 / 6$. RECTIFIERS CONTACT COOLED $\frac{2}{2}$ wave $80 \mathrm{~mA}, 7 / 6$; $85 \mathrm{~mA}, 9 / 6$. SILICON. BYZ13, B/-; BYi00, $10 /$ -
Full wave Bridge $75 \mathrm{~mA} 10 / \mathrm{F} ; 150 \mathrm{~mA} 19 / 6$; TV rects. $10 /-$ NEON PANEL INDICATORS 250 v . AC/DC $3 / 6$, Red, Green. RESISTORS. Prelerred values, 10 ohms to 10 meg.
 Ditto 5%. Preferred values 10 ohm to 22 meg., 9 d. ., $2 /$ -WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohme to $100 \mathrm{~K}, 2 /$ - each; 3 watt, 0.5 ohm to $8 \cdot 2$ ohms, $2 /-$. BRAND NEW TRANBIBTORS E/- ERCh
OC71, OC72 OC81 OC44 OC45, AFI17 MAT100, 7/9; MAT101, 8/6; MAT120, 7/9; MAT181, 8/6. REPANCO TRANSISTOR TRANSFORMERS
TT45. Push Pall Drive, 日:1 CT, 8/- TT46 Ontput, CT8:1 6/--
TT49, Interstage, $4 \cdot 5: 1,6 /-;$ TT52 Output 3 ohms, $20: 18 /$. TT23/4 PAIR 10 watt Amp. Transformers and circuit $36 /$ -
TRANSISTOR MAINS POWER PACK8, FULL WAYE

 Hall Wave 9 volt 50 mA . Size 21
θ volt 500 mA . TRANSFORMER ONLY. $2 t \times 14 \times 1 \frac{1}{3} \mathrm{in}$. $10 / 6$

MAINS TRANSFORMERS

Post
$5 /-$ each
250-0-250 50 mA . 8.3 ₹. 2 amps, centre tapped $\quad 18 / 6$ $250-0-25080 \mathrm{~mA} .6 .3$ v. 3.5 a. 6.3 v .1 a , or 5 F
 MINIATURE $200 \mathrm{v} .20 \mathrm{~mA} ., 6.8 \mathrm{\nabla} .1 \mathrm{a} .21 \times 2 \times 1 \mathrm{in}$
 HEATER TRANS. 6.3 Y. $1,8,4,8 ; 6.3$ Y. 4 a GENERAL PURPOSE LOW VOLTAGE. Outputs 3 $6,8,9,10,18,15,18,24$ and 307 . at 2 a. 1 amp., 6, $8.10,12,16,18,20,24,30,36,40,48,80 \ldots 35$ AUTO TRANSFORMERS $0-115-230$ \%. Input/Outpus,
$60 \mathrm{w}, 18 / 8 ; 150 \mathrm{w} .30 /-500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w}$. $195 /-$. 60w, 18/8;150w. 30-i500w. 98/6; 100 F . 190 $5 /-$ Input $200 / 250$ for 6 or $12 \mathrm{v}, 11$ smp., $17 / 6: 2$ amp. $81 /-; 4$ a mp.
FULL WAYE BRIDGE CHARGER RECTIFIERS: FULL WAVE BRIDGE CHARGER RECTIFIERS:
6 or 12 v . outpute. $1 \mathrm{~g} \mathrm{mp} .8 / 0 ; 8$ amp. $11 / 3 ; 4 \mathrm{amp} .17 / 6$. COAXIAL PLUG 1/8. PANEL SOCKETS $1 / 3$. LINE $2 /-$ OUTLET BOXES. SURFACE OR FLUSE 4/8.
BALANCED TWIN FEEDERS $1 /-$ Yd. 80 ohme or 300 ohms JACK SOCKET Std. open-circuit $2 / 6$, closed circult $4 / 8$; Chrome Lead Socket 7/6. Phono Plugs $1 /-$. Phono Socket $1 /=$ SOCKETS Chassis 8 -pin $1 / 6 ; 5$-pin $2 /-$ DIN SOCKETS Lead $3-\mathrm{pin} 3 / 6 ; 5$-pin 5/- DIN PLUQS 3 -pin $8 / 6$; 5 -pin B/-
VALVE HOLDERS, Gd.; CERAMIC 1/-; CANS $1 /$.

T.S.L. LOUDSPEAKER CROSSOVER HLP2
2-way crossover for 8 or 16 ohm speskers and tweeters. 3 phono input/output sockets.
Made to sell OUR PRICE 22/6 at $42 \mathrm{j}-\quad$ Post 2/6.

Tape Spools 2/6. Tape Splicer 5/-. Leader Tape 4/6. Reuter Tape Heads for Collaro models 2 track $21 /$ - pair

MINI-MODULE LOUDSPEAKER KIT

10 WATT 55/- CARRIAGE 5/-

Triple speaker rystem combining on ready cut baffle $\frac{1}{2}$. chipboard 15in. $\times 8$ in. Seperate Bass, Middle and Treble loudspeakers and crossover condenser. The heavy dnty Sin. Bess Woofer unit has a low resonance cone. The Mid-Range unit is apecially designed to add drive to the middie regtster and the tweeter recreates the
top end of the musical spectrum. Total reaponse $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm . TEAK VENEERED BOOKSHELT ENCLOBURE. $18 \times 10 \times$ Oin. Modern Scandinavian $\quad 94 / 6$ Poot denign for Mini-Module above.

BAKER 12in. 'SUPERB' LOUDSPEAKER
 Suitable for all Hil-Fi Sysiems. Provides rich clear reproduction of the deepent bass and remarkable effliency tn the upper resister. Responite 20-17,000 register. Response 20-17,000 cps. "Baker" double cone with special "Ferroba"' ceramic magnet. Flux density 16,500 gauss. Bass resonance $22-26$ 8 ohme or 15 ohme.
 $£ 15 \xrightarrow{\text { Post }}$
 48-page Encld 6/8 post paid
 LOUDSPEAKER CABINET

AKER "GROTP SOUND" SPEAKERS-POST FREE
'Group 25" 'Group 35" 'Group 50' 25 whtt $6 \mathrm{gns} .12 \mathrm{in} .8 \frac{1}{2} \mathrm{gns} .15 \mathrm{~min} 18 \mathrm{gns}$.

ALL MODELS "BAKER SPEAKERS" IN STOCK
Goodmans Tweeter 31 in $8 \mathrm{ohm} 35 /-$ EMII $2 \frac{1}{2 n} 8$ ohm $17 / 6$ Horn Twetters $2-18 \mathrm{kc} / \mathrm{s}$, 10 W 15 ohm $2 \% / 6$. Cronsover $18 / 8$.
 $17 / 6$ each; $61 \mathrm{in} 22 / 6 ; 8 \times 5 \mathrm{in}, 21 /-; 8 \times 2 \mathrm{hin}, 21 /-;$
$30 /-10 \mathrm{in}$ or 12 in . Double cone 3 or 15 ohm, $38 / 6$. E.M.I. Double Cone $13 \downarrow \times 8$ in, 3 or 15 ohm models, $45 /-$ DITTO With twin twe日ters and X/over, 3 or 8 or 15 ohm $79 / 6$, $15 / 6$ EACH 8 ohm, ohm, $6 \times 4 \mathrm{in} ; 35$ olim, 25 in ;
 ELAC 8in. De Luxe Ceramic 3 ohm $45 /-15 \mathrm{ohm} 50 /-$ 8 in . LOUDSPEAKER. TWIN CONE $3 \mathrm{ohm} 35 /-$
5 in, WOOFER. 8 watts max. $80-10,000$ cps. 8 or 15 ohm. $39 / 8$. OUTPUT TRANS. EL84 etc. 4/6; MIKE TRANS. $50: 13 / 9$ SPEAKER COVERING MATERALS. Ssmples Large S.A.E.
 Long, Med., Short, Gram. A.C. $200-250 \mathrm{~F}$. F81, ELE4, EZ88,
12-month guarantee. 12 -month guarantee. A.C. $200-250 \mathrm{~F} . \quad$ Forrite Aeria
5 wetts 3 ohm. Chassis $13 \frac{1}{2} \mathrm{in} \times 7 \mathrm{in} . \times 5 \mathrm{in}$. dial size 13 in. $\times 4$ in. Two pllot Lamps. Four Knobs. f 11.18 Aligned calibrated. Chassis isolated from mains VHF/FM, LW, WW, 8W, push buttons, 8 valve $\mathbb{E} 22.10$ plan rect. Size $17 \times 8 \times 6$ in. bikh.

ALL EAGLE PRODUCTS SOPPLIED AT LOWEST PRICRS
 BARGAIN AM TUNER. Medium Wave. $79 / 6$

 BARGAIN DE LUXE TAPE SPLICER. Cuts, $\quad 17 / 6$ BARGAIN 4 CHANNEL TRANSISTOR MIXFRR musical highlights and soand eflects to recordings. Will musicai Minophone, recorde, tape and taner withimeparate controls into single output. 8 volt. BARGAIN FM TUNER 88-108 Mc/s Siz Transistor. Ready built. Printed Circuit. Calibrated slide dial $\mathbb{E 6} 19.6$ | BARGAIN 3 WATT AMPLIFIER. 4 Transistor |
| :--- |
| Pubh-Pull Ready buils, with volume control. 97 . | \star RADIO BOORS \star (Pontage 0 d .)

Practica! Transistor Receiver
Practical Radio Inside out
Supersensitive Tranisistor Pocket Radio
High Fidelity Speaker Enclosures and Plans
Radio Valve Guide, Bookg 1, 2, 3 or 4 ea. 5/- No. 6 ea.
Shortwave Tranaistor Receivers
Transistor Communication Sets
Modern Tranaistor Circuits Lor Begincer:
Sub-Miniature Transintor Receivers.
Wireless World Radio Valve Data
At a glance valve equivalents
International Radio Stations Gnide
ReceiveloreignTV prostammes by simple modifisations $\$ /-$
MANUFACTURERS SURPLUSI 25/-
TAPE RECORDER CABINET. Grey/Red or
Grey 2 -Tone. Rexine covered. Size $15 \times 12 \times 54 \mathrm{in}$. POST FREE
Grey e-Tone. Rexine covered. sise $15 \times 12 \times 5 i n$. PO8T FREE
POCKET MOVING COIL MULTMETER. $49 / 6$
$0-1,000$ AC./DC. ohms 0 to 100 k , eto. $49 / 0$
SUPERIOR MOVING COIL MULTIMETEF: M9/6
O-2-500. D.C. 20,000 ohmi per volt, $0-1,000 \mathrm{v}$ A.C. Ohms 0 to 8 meg. 50 Microampa (Fell list Meters 8.A.E.)

LOW PRICE, HIGH QUALITY SPEAKER SYSTEMS

All cabinets are new and carefully designed acoustically with speakers mounted on $\frac{1}{2} i n$. chipboard baffies. All speakers are ex-TV high quality with hi-flux magnets carefully matched and tested.

ADASTRA DOUBLE 5 stereo solid state ampllfter housed in handsome cabinet veneered in natural teak. Size $11 \frac{1}{2} \times 6 \times 5 \frac{1}{2}$. 10 Transistors -power output 5 watts peak perchannel. 220-240v AC. Outputimpedance 12 to 15 ohms (our Cowdrey speaker system eminently sultable). Smart blue escutcheon. ©44.14.0. P. \& P. 10/6.

SCOTT. The elegant tapered cabinet, for table or wall mounting measuring $10 \frac{1}{4} \times 16 \times 5 \frac{1}{2}$ in. deep. is attractively finished in black cloth with a striped grey Vynair front fitted with $131 \times 8 \mathrm{in}$. speaker with volume control. Please state 1 m pedance required 3 or 15 ohm. E4.5.0. P. \& P. $7 / 6$ each. Fitted with E.M.I. $13 \times 8 \mathrm{in}$. speaker and fwin tweeters, 15 ohm impedance capaclty 10 watts $30 /$ extra.

COWDREY FIVE. Specially designed Corne Cabinet; Fitted rubber feet. $20 \frac{1}{a} \times 13 \times 7 \frac{1}{\mathrm{i}} \mathrm{i}$. deep. Finished in natural teak veneers with Vynair front. Fitted 8×3 in., 7×4 in. and three Sin. round speakers wired in series to match. 15 ohm impedance (handles 15 watts). \&6.6.0. P. \& P. 8/6 each

SPEAKERS: Elac Heavy duty Ceramic Magnets $\mathbf{1 1 , 0 0 0}$ line, 10 in . round, $10 \times 6 \mathrm{in} .3 \mathrm{ohm}$ or $15 \mathrm{ohm} .48 / 6$, P. \& P, 3/6. 8 in . round 15 or 3 ohm, 42/6, P. \& P. 3/6. E.M.I. $13 \frac{1}{1} \times 8 \mathrm{in}, 3$ ohm, $45 / \mathrm{l}, 15 \mathrm{ohm} 48 / 6$, P. \& P. 1/6. E.M.I. 3in. tweeter 17/6, P. \& P. 1/6. E.M.I $13 \frac{1}{x} \times 8 \mathrm{in}$ filted two $2 \frac{1}{4} \mathrm{i}$. . tweeters. $15 \mathrm{ohm} 77 / 6$, P. \& P. $4 / 6$. E.M.I. $13 \frac{9}{\frac{1}{2}} \times 8 \mathrm{in}$.

CAXTON COLUMN. This is a column cabinet $23 \frac{7}{4} \times 5 \frac{1}{2} \times 5 \frac{1}{1} \mathrm{in}$. deep fitted with three speakers. Handles 8 watts and will improve the quality of any tape recorder or record player. Finished in wood grain eloth with sandstone Vynair front it is a real bargain at 59/6. P. \& P. 10/6 each

ELF. An extension speaker of quality. $9 \times 5 \frac{1}{2} \times 3^{\frac{4}{1}} \mathrm{i} \mathrm{i}$, veneered in natural teak, with smart gold and brown Vynair front trimmed with white. Fitted re-conned $51 n .3$ ohm speaker. The baffle is half inch thick. A real bargain at 37/6. P. \& P. 3/6.

BROADWAYEIECTIONICS (Few minutes from Tooting Broadway Underground Stn)
(15 ohm) Hi-Fi quality £5.19.6, P. \& P. 4/6. E.M.I. Woofers. $6 \frac{1}{2} \times 6 \frac{1}{2}$ In. square, 8 ohm, 59/6, P. \& P. 4/6. E.M.I. Crossover. 18/6, P. \& P.1/-. EAGLE Crossover units 3 or 16 ohms. 16/-, P. \& P. 1/-. Bakers 12in., 25 watt 15 ohm £6.6.0, P. \& P.3/6.

TEAK PLINTH AND PERSPEX DUST COVER for SP25 etc. *5.5.0. P. \& P. 5/FYNAIR. Widths from 40 to $54 \mathrm{in}, 17 / 8$ yd. off roll. P. \& P. 1/9. 古 yard, $9 /-$,
P. \& P. 1/9. Send $1 /$ gtamps forsamples. SPEAKER MATCHING TRANBFORMERS. 3, 7,15 ohme, 8 watt, $11 / 6$. P. \& P. $1 / 6$.

MTCRORHONES: Xtal Hand Mikes. B1201 with stand, 54/6. P. \& P. $3 / 6$. ACOS Mike 45, 21/- ACOS Mike 40 , 18/6. Dym. Mike DM-391, 80/-. CM21 Ptal, 12/6. Telephone Fick-up, 10/0. Mike, 12/6. P. \& P. 1_{i}-.
FERROX RODS: $6 \times{ }^{5} / 11^{\mathrm{ln}}, 2 / 6 ; 4 \frac{1}{1} \times$ in., $2 /-\mathrm{i}$. $6 \times 1 \mathrm{in} ., 8 / 6 ; 8 \times 1 \mathrm{in}, 8 /-$. P. \& P. $1 /$ - eack.

FRRROX RODS WITH COILS, 4$\} \times i \mathrm{in}$., $8 / 6 ; 8 \times 5 / 1{ }^{\text {in }}$ in $5 / 6$. P. \& P. $1 /-$ each. ROTARY SWITCBES: 2 Pole Mains Bwitch, $3 /-; 1$ pole 12 way, 2 pole 2 way, 3 pole 3 way, 3 pole 4 way, 4 pole TRANSISTOR SPEAKERS 8 ohm 2 in ., 8/6. 3in., 10/6. P. \& P. 1/-.
CARTRIDGES. Stereo: Sonotone 9TA H/C Dlamond, 47/6. 9TA Sapphire 87/6. 8TA Sapphire, 80/-. Ronette 8105 Medium Output, 28/6. s106 High Output, 28/6. DC284 Stereo Compatible, 82/6. Acos GP93/1 Bapphire, 87/6. GP94/1 Sapphire, 39/6, GP81 Diamond, 48/-. GP91 Stereo Compatible (High, Medium or Low Output), 25/m. TA800 B.S.R. SX1H. Plug-in head complete with cartridge, $50 /-$. Ta700 equivalent to B.8.R. BXIM, 85/-. Japanese equivalent to B.S.R. TC8. $35 /$.
Mono: Acos GP67/2 will replace Collaro and Garrard Mono cartridgea, 18/6. TC8H Jap. equivaient, $28 /$ /- Sonotone 2Tss, 15/-, P. \& P. $1 / 6$.
EARPIECES WITH CORD and 3.5 mm . plug. 8 ohm magnetic, $3 /-.250$ ohm, 4/-. PLANO KEY PUSA BUTTON 8WIT92 MITCHAM ROAD, TOOTJNG BROADWAY, LONDON, S.W.17 01-672 3984 (Closed a// day Wednesday) banks of 6 P.C. 0 ., $8 / 6$. P. \& P. 1/-. 6

IMP. Wedge shaped extension speaker cabinet is fitted with $7 \times 4 \mathrm{in}$. speaker. Covered in walnut wood grain cloth with fawn Vynairfront, keyhole slot in back. $7 \frac{1}{1} \times \frac{1}{\frac{1}{8} i n}$. Only 25/6. P. \& P. $4 / 6$ each.

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors. Loft Mountligg Arrays, 7 element. $37 / 6$. 11 element. 45/- 14 element. 58/6. 18
element, $60 /-$ wall Mounting with Cranked Arm, 7 element, 60%-. 11 element, $67 /$-. 14 element, $75 /$-. 18 element. $82 / 6$. Mast Mounting with 2 in. clamp. 7 element. 42/6. 11 element, 55/-. 14 element, 62/-. 18 element, 70/-. Chimney Mounting Arrays, Complete. 7 element 72/6. 11 element. $80 /$ 14 element, 87/6. 18 element, 95/-, Complete assembly instructions with every unit. Low 75/- State clearly channel number required on all orders.

COMBINED BBC1 - ITV - BBC2 $1+5+14,90 /-1+7+14,100 \%$. Loft mounting only. Special leaflet available.
F.M. (Band 2). Loft S/D, 15/-. "H", 32/6. 3 element, $55 /$ - External units available. Co-ax. cable $8 d$. yd. Co-ax. plugs. $1 / 4$. 13/6. CWO or COD P \& P 6/- Send 6d stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884

TAKE 2® JULIAN ANDERSON

> A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build

0NE of the main aims of the Take 20 series is to introduce readers to a wide variety of simple circuits. With some exceptions, a few components can be made to do the job of a large number of components though less efficiently; however efficiency and accuracy are not always of prime importance. By designing and writing articles on very simple projects I am not pretending that highly complicated circuits are a waste of time. This shows up the Take 20 philosophy; some designers-most of them in fact-try very hard to make their equipment as perfectly as possible, the Take 20 attitude is to use the absolute minimum of components that will do the job. Of course the fewer components used, the easier the project is to build and the less the likelihood of mistakes. I mention this because our project this month is an r.f. signal generator, which while very simple, will prove very useful when building other equipment and lining up superhet receivers, as well as acting as a Beat Frequency Oscillator (B.F.O.) for radios using either a 465 kHz or 1.6 MHz i.f., it cannot however be compared to other designs for signal generators or commercial equipment of this type.

The Circuit

Figure 1 shows the circuit. It consists of a straightforward Hartley Oscillator using a high gain $n-p-n$ transistor. There is however no need to use the BC169B, almost any r.f. transistor could be used-such as the

Fig. 1. The circuit of the signal generator.

No. 7
M.W. SIGNAL GENERATOR/B.F.O.

The m.w. signal generator and B.F.O.
old faithful OC44-except of course when p-n-p transistors are used the battery polarity must be reversed.

Coils are not the easiest things to construct and where possible I try to use readymade ones, in this case an i.f. transformer of 465 kHz . Most of these are fitted with a capacitor of 250 pF or below and by removing this and replacing it with a variable capacitor we will not only be able to tune to the i.f. but also cover the complete range of the medium wave broadcast band, if not on fundamentals than on harmonics. The tuned circuit comprising the i.f. coil and VC1 is in the collector circuit and feedback is by means of Cl which couples back part of the signal to maintain oscillation. The value of Cl can be almost anything between 10 pF and $1,000 \mathrm{pF}$, its actual value being unimportant. R1 provides the base bias.

Construction and Uses

Building the signal generator is a simple matter and should present no problems; the layout of the components is shown in Fig. 2. The prototype was built on a
pin-board but Veroboard or Paxolin could easily be used. For equipment of this type an on/off switch is hardly necessary and removing the battery terminals will serve this function.

After switching on place the unit near a superhet radio tuned to a station and adjust VCl until a whistle is heard. Unscrew the i.f. adjusting core and retune until VC1 is nearly in the fully-meshed position (maximum

Next month's Take 20 describes an intercom unit which doubles as a baby alarm. It makes use of two balanced armature earpieces or 80Ω loudspeakers and a simple amplifier.

components list

	$390 k \Omega \frac{1}{4}$ watt miniature 10%	3d.
	68 pF -see text	9d.
VC1	500pF variable	5s. Od. \dagger
Tr1	BC169B-see text	2s. 3d.
I.F. T	Transformer, 465 kHz .	1s. 6d. \dagger
Miscellaneous		
Paxolin board, 9 V battery, battery clips, knob etc.		5s. Od.
		14s. 9d.
\dagger A.J.H. Electronics, 59 Waverley Road, The Kent,		
	by, Warwickshire. Both ite age.	8s. inc.

capacitance) when the whistle is heard. Some i.f. transformers will not be suitable for tuning this low but the actual position is unimportant. Set your radio to 530 kHz (567 metres) and mark the position of the setting of VCl when the signal generator is on that frequency, similarly tune to $1,602 \mathrm{kHz}$ (187 metres) and mark the position. These two points, together with a mark where a whistle is heard on all stations, will be all that is necessary for lining up a superhet on the medium wave band. If the unit is tuned to the i.f. frequency of a receiver and placed near it a beat note will be heard enabling c.w. and s.s.b. transmissions to be heard; all in all your signal generator should prove to be a very useful piece of equipment.

MEDIUM WAVE DX RECEIVER

-continued from page 495
A number of queries have arisen with regard to the first part of this article that appeared last month. IFT1 is made by Electroniques and not Denco. Capacitors C7, 9, 10, 11 should be silver mica and VR1, 2, 4, 5 are linear. VR3 is log.

Fig. 1.-The junction of C9, C10, VC3, TC3 should be shown going to earth and not the negative line via R11.

Fig. 2.-IFT1 lead marked "from Tr2 collector" should go to tapping point and not to top of winding as shown.
Fig. 3.-Gain of this circuit may be improved by decoupling the $5.6 \mathrm{k} \Omega$ resistor in the source lead of Trl, with a $0.1 \mu \mathrm{~F}$ capacitor.

Fig. 3/Fig. 4.-The 30 pF capacitor shown at the right hand lower side in both diagrams is in fact C7 in Figure 1 and should not be duplicated.

Fig. 3.-Add to caption . . . "IFT1 modified as Fig. 6"

Fig. 6.-Add to caption . . . for f.e.t. front end (IFT1 modification is only required for f.e.t. front end).

QUERYCOUPON

This coupon is available until 7th November, 1969 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, осTOBER 1969

GUIDE TO COMPONENTS

Junction diodes have a greater current capability than point contact devices and are used as power rectifiers as well as general purpose signal diodes. Both silicon and germanium are used but silicon diodes predominate for rectification as they are capable of operating at high temperatures $\left(+175^{\circ} \mathrm{C}\right)$. The junction capacitance and charge storage is high in junction diodes and they are therefore of limited value at high frequencies.

Diffused Diodes

The great majority of rectifiers and general purpose low-frequency diodes are manufactured by gaseous diffusion techniques. They are manufactured by passing a stream of gases containing impurity

Fig. 9: Sections through diffused power rectifiers. (a) Medium power diffused rectifier. (b) Power rectifier-stud mounting.
elements over the doped p - or n -type slice to give a $p-n$ junction. The slices are mounted on metal headers for power rectifiers as shown in Fig. 9, or in glass encapsulations as shown in Fig. 8.

The power rectifiers shown in Fig. 9 are designed to give increased thermal dissipation from the junction and hence increased power dissipation. This is achieved by attaching the header to the metal casing. Figure 9(a) illustrates a medium power rectifier of 1-2A rating and is of a wire ended configuration which can be used directly in printed circuits. Figure 9 (b) is a stud mounting encapsulation and is used for rectifiers in the range $2-15 \mathrm{~A}$. In both cases the slice is bonded to the casing and the lead-out terminal is brought out through a resin or glass seal. The casing is therefore electrically connected to one side of the junction but usually diodes are available with either anode or cathode connected to the casing.

TO BE CONTINUED

CO2 VHF RECEIVER
 (September 1969 issue)

The value of R6 is correctly shown in the circuit diagram as $22 \mathrm{k} \Omega$ and not $220 \mathrm{k} \Omega$ as given in the componentslist.

[^6]

MONOLITHIC INTEGRATED CIRCUIT HIGH FIDELITY AMPLIFIER AND PRE-AMP

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output power of 10 watts. It contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The .most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required for producing monolithic I.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. It also enables us to give a 5 year guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Sensitivity
input impedance
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to
2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distórtion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

2.30

0.02\% DISTORTION AT FULL POWER
 OPERATES IDEALLY FROM 8 TO 35 VOLTS

SIZE $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ ins.
FREQUENCY RESPONSE FROM 20 Hz TO 30 kHz

USE IT FOR HIGH FIDELITY MUSIC INSTRUMENTS, ECONOMY RECORD PLAYER, P.A., INTERCOM, ETC.

89/6

THE WORLD'S LOWEST DISTORTION HIGH FIDELITY AMPLIFIER.

For four years, the Sinclair 2.12 dominated the constructor world, being the best selling unit of its kind this side of the Atlantic. Excellent as it was, the new Sinclair Z.30 is still better. Half the size of the Z .12 , it has more than twice the power, very much greater gain and a level of distortion 50 times lower. This incredible figure results from using over 60 dB of negative feed back with a constant current load to the driver stage obtained by incorporating a two transistor circuit in place of the more usual bootstrapping. 9 silicon epitaxial planar transistors are used to provide enormous power (up to 25 watts RMS continuous sine wave (50 watts peak). The circuitry of this marvellous amplifier allows it to be operated from any voltage from 8 to 35 to perfection. At all output levels, distortion is only 0.02%. This puts true laboratory standards into the hands of every user of a Z.30. Two Z.30s and a new Stereo Sixty will make a stereo assembly of such perfection that it could not be bettered in its class no matter how much you spent. But the Z.30 has an enormous variety of applications, particufarly where quality, precision and reliability are essential. Yet this brilliant new Sinclair design costs not a penny more than its famous predecessor.

- Input Sensitivity-250 mV into 100 Kohms
- Signal to noise ratio-better than 70 dB unweighted
- Class AB output
- Power requirements 8-35 volts from batteries or PZ.5

This attractive and completely new unit is intended for use with two new Z.30 amplifiers to provide the finest possible standards of stereo ieproduction. Four press buttons and four rotary controls are used to provide on-off, three input selectors and Volume, Bass cut/boost, Treble cut/hoost and Stereo balance. The on-off button also switches the power amplifiers. The front panel in brushed aluminium is flush mounted to the cabinet front, it being necessary only to drill holes to accommodate the controls. Rear adjustable brackets hold the chassis tight to the cabinet. The very latest ganged rotary controls are used to afford compactness and extra long working life free from noise.
The Stereo-60 mav also be used with $21 \mathrm{C}-10$'s or any other high performance amplifiers.
Frequency range: Radio \& Aux. $20-25,000 \mathrm{~Hz} L 1 \mathrm{~dB}$ Pick-up corrected to within

Inputs
Overload factor
Distortion:
Signal to noise ratio
Controls:

Size:
Finish

PZ. 5 POWER SUPPLY UNIT

A new heavy duty mains power supply unit designed specially to drive two $Z .30$ s and a Stereo Sixty. New compact design.
For AC Mains, $200-240 \mathrm{~V} / 50 \mathrm{~Hz}$. £4.19.6
USE THIS COUPON FOR Z.30.STEREO 60 AND P.Z. 5

SINCLAIR MICROMATIC the world's most successful miniature radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation much easier than with many larger sets. The plug-in magnetic earpiece which maiches exactly with the output provides wonderful standards of reproduction. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

Specifications
Size:
1 1胞" $\times 1$ 高" " \times " $(46 \times 33 \times 13 \mathrm{~mm})$
Weight incl. batteries
1 oz. ($28 \cdot 35 \mathrm{gm}$) approx.
Tuning
Medium wave band with bandspread at higher frequency end.
Earpiece
Magnetic type.
Case:
Black plastic with anodized aluminium front panel, spun aluminium dial.
Complete kit incl. earpiece, case, solder and instructions in fitted pack.
Plus 11 d. P.T. surcharge
Ready built, tested and guaranteed, with earpiece.
59/6
Plus $1 / 1 \mathrm{~d}$. P.T. surcharge

Mallory Mercury Cell RM675 (2 required) each 2/9d

USE THIS COUPON FOR MICROMATIC AND O. 16 ORDERS

To: SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE
Please send
NAME For which / enclose cash/cheque/money Forder.

SINCLAIR RADIONICS LTD.
22 NEWMARKET ROAD
CAMBRIDGE
Tel : 022352731

SINCLAIR 0.16

new elegance in a loudspeaker of outstandingly fine performance

All the superb features which went to make the Sinclair 0.14 have been incorporated in the new 0.16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, the new 0.16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The 0.16 is compact and slim. ts new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of 0.16 s in stereo and marvel at the standards of quality and clarity they give.

The 0.16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$. with exceptional smoothness. A specially designed driver system is used in a sealed and contoured pressure chamber to ensure good transient response at all frequencies. Size: $9 \frac{3}{4}$ " square $\times 4 \frac{3}{4}$ " deep from front to back.

£8.19.6

SINCLAIR GENERAL GUARANTEE
Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full serviçe facilities are available to all Sinclair customers.

ELECTROVALUE

RAPID
MAIL ORDER SERVICE
everything brand new and to exact SPECIFICATION • NO SURPLUS GOODS

AMPLIFIER KITS

PEAK SOUND P．W．DOUBLE 12
Complete stereo kit including cabinet，but less panel and other metalwork． $\mathbf{£ 2 3}$ net．Available in separate packages as follows： Main amplifier kit $£ 3.19 .6$ per channel，net．Accessories 19／－ mono，36／－stereo．
Pre－amplifier kit $£ 1.7 .0$ per channel，net．Accessories $13 / 6$ mono， 27／3 stereo．
Tone control kit 19／－per channel，net．Accessories $8 / 9$ mono， 22／6 stereo．
Power supply kit $\mathbf{£ 4 . 1 0 . 0}$ mono or stereo，net．
Cabinet kit $£ 2.12 .6$ net．Metalwork available separately from other sources，details on request．

30 WATT（designed by Dr．A．R．Bailey）．Published May 1968 W．W．，modified November 1968 W．W．
Full kit for main amplifier $\mathbf{£ 9 . 9 . 6}$（less power supply）．Transistors only for main amplifier $£ 7.9 .6$ ．PC board supplied free with above kit．Heat sinks for output transistors $8 / 6$ extra．
Power supply kit，unregulated，November 1969 circuit $£ 4.14 .0$ ． Regulated version， 60 V 1.6 A or 0.8 A ，current limiting，re－entrant characteristic：does not need re－set button $£ 8.10 .0$ ．Transformer only：0－25－45－50V 2A 58／－
8×8 watt Stereo only．Peak Sound SA 8×8 kit．Sensitivity 50 mV into $1 \mathrm{M} \Omega$ ，output into 5Ω ．Complete with cabinet and power supply．Kit complete $\mathbf{£ 1 6 . 1 0 . 0}$ net．Built and tested $\mathbf{£ 2 1}$ net．

BARGAINS IN BRAND NEW ELECTRONIC COMPONENTS

Ultra low－noise resistors（under $0.1 \mu \mathrm{~V} / \mathrm{V}$ ）Electrosil TR5： Metal oxide， 2% tolerance，range 10Ω to $1 \mathrm{M} \Omega$ ．All values in E24 series available．$\frac{1}{2} \mathrm{~W}$ rating．1－24 10d．each；25－99 9d．each； 100 up 8d．each．（Ohmic values may be mixed to obtain quantity price．） Potentiometers，carbon track，long plastic spindles：Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega 2 / 6$ each； $\log 4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega 2 / 6$ each． Dual gang stereo－matched lin or $\log 10 \mathrm{~K}$ to $1 \mathrm{M} \Omega 8 / 6$ each． Stereo balance log／anti－log $10 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{M} \Omega$ only， $8 / 6$ each． All types available with $\frac{1}{2}$ A D．P．switch $2 / 3$ extra．

TRANSISTORS，etc．

2N696	5／6	2N3704	3／9	BC107	3／6	BFY51	4／3
2N697	6／－	2N3705	3／5	BC108	3／－	MC140	6／3
2N706	3／5	2N3707	4／－	BC109	3／6	MJ480	21／－
2N1302	4／－	2N3794	$2 / 11$	BC125	12／－	MJ481	27／－
2N1303	4／－	2N4286	2／11	BC126	12／－	MJ491	31／－
2N1304	4／－	2N4289	2／11	BC148	3／3	MPF103	11／6
2N1305	4／－	2N4291	2／11	BC149	4／3	MPF105	7／6
2N2147	18／9	cheape	ET：	BC169	2／3	OA47	1／9
2N2926	w 1／9 $2 / 3$	2N5163	5／－$\}$	BC183L	2／－	OA90	1／3
2N3053	5／3	40361	12／6	BC184L	2／3	OA91	1／3
2N3054	15／6	40362	16／9	BD124	16／－	OA202	2／－
2N3055	16／6	AD149	17／6	BFX85	8／3	P346A	5／9
2N3702	3／6	AD161	14／－	BFX88	7／9	TPMD	
2N3703	3／3	AD162	pr．	BFY50	4／9	（ $=$ ORP12）	6／－

Large capacitors，high ripple current types． $2000 \mu \mathrm{~F} 25 \mathrm{~V} 7 /$－； $2000 \mu \mathrm{~F} 50 \mathrm{~V} 9 / 3 ; 5000 \mu \mathrm{~F} 25 \mathrm{~V} 10 / 3 ; 5000 \mu \mathrm{~F} 50 \mathrm{~V} 17 / 6$ ．S－DeC 30／6；2－DeC DeCstore 69／6；4－DeC 119／6
－DISCOUNTS（on all but net items）： 10% for total order value of $£ 3$ or over． 15% for total order value of $£ 10$ or over．
－POSTAGE and packing：on orders up to $£ 1$ add $1 /$－．Over $£ 1$ post free in U．K．Overseas orders welcomed：carriage charged at cost．
－CATALOGUE gives further details of above products and much information on semiconductor characteristics etc． $1 / 6$ post free．

ELECTRTVALUE
 （Dept．P．W．11）

28 ST．JUDES ROAD，ENGLEFIELD GREEN，EGHAM， SURREY．

Tel：Egham 5533

17in．－f11．10．0
19in．SLIMLINE SOBELL－24 Gns．

TWO－YEAR GUARANTEE EX－RENTAL TELEVISIONS

```
        FREE ILLUSTRATED
        LIST OF TELEVISIONS
        \(17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}\)
        WIDE RANGE OF MODELS
        SIZES AND PRICES
        demons trations daily
```



```
    WO-YEAR GUARANTEED
        REGUNNED TUBES
\(70^{\circ}\) and \(90^{\circ} 14 \mathrm{in}\).- \(69 / 6,17 \mathrm{in}\).-89/6, 21 in .-
99/6. \(110^{\circ} 17 \mathrm{in}\)., 19 in . and \(211 \mathrm{n} .-99 / 6\).
\(23^{\circ}\) (not bonded)-119/6. Exchanged bowls
```

Carr. 10/6.

COCKTAIL／STEREOGRAM CABINET 19 gns． Polished walnut veneer with elegant glass fronted cocktall compartment， padded．Position for two 10in．elllp－ tical speakers．Record storage space．Helght 35$\} \ln$ ．，width $52 \frac{1}{4} \ln +1$ depth 1411n．Legs 1 gn．extra． Speake $6 / 6: 2^{\prime \prime}-750$ 21＂-350 P \＆Pers 6／6： 2 Mice 35／－Stand． P．\＆P．2／6．Acos Mics． $35 /-$ Stand－ ard：Stick Mic． 2 gns．P： $10 / \%$ for 50. P \＆ $7 / 6$ Asste Reslstore：10／－ P．P． 16. Asstd．Resistors： $10 /-$ for 50．P．\＆P．4／6．Asstd．Controls： 10／－for 25．P．\＆P．7／6．Translators： Mullard matched output klt 9／＊ OC81D－2 OC81＇s．P．\＆P．FREE Ferrite Rods $3 / 6: 6^{\prime \prime}, 8^{\prime \prime} \times \frac{3}{}^{\prime \prime}$ complete with LW／MW Colls．P．\＆P．FREE． TRANSISTOR CASES 19／6．Cloth covered，many colours．Slze $9 \frac{1}{1 "} \times 6 \frac{1}{4} \times 3 \frac{1}{3}$ P．\＆P．4／6．Simllar cases In plastic 7／6．
RECORD PLAYER CABINETS 49／6．Cloth covered，slze $16 \frac{3}{4}{ }^{\prime \prime} \times 141^{\prime \prime} \times 8^{\prime \prime}$ ．Takes any modern autochanger．P．\＆P，7／6．
SINGLE PLAYER CABINETS 19／6．P，\＆P，7／6．
STRIP LIGHT TUBES $3 / 9$ each． $11^{\prime \prime}$（ 284 mm ．） $230 / 240$ volts， 30 watts．Ideal for cocktall cablnets，illuminating plctures，diffused lighting etc． 6 for $£ 1$ ． P．\＆P．free．

DUKE \＆CO．（LONDON）LTD．
621／3 Romford Road，London，E12
Tel．01－478 6001／2／3

W．E．C．LTD． HARDWARE and SUNDRIES

SCREWED ROD BRASS 6 BA $1 / 6 d, 4$ BA $21 ., 2 \mathrm{BA} 2 / 6 \mathrm{~d}$
VEROBOARD ． 15 Matrix $21^{2} \times 3 z^{\prime \prime}$ 3／3d ea．3i⿻肀二 ${ }^{*} \times$ s $^{7} 5 / 6 \mathrm{~d}$ ．ea．
STEEL SHEET（See catalogue） $12^{\prime \prime} \times 12^{*}$ $\times 22$ 8WG $2 / 6 \mathrm{dea} .12^{*} \times 6^{\prime \prime} \times 20$ sWG $1 / 6$ ез．
ALUMINIUM ALLOY（See catalogue） 12＂x $12^{\prime \prime} \times 22$ SWG 6／－ca．
BAKELITE SHEET $12^{\prime \prime} \times 8^{\prime \prime} \times{ }^{\prime \prime} 3 / 9 \mathrm{~d}$ ea． S．R．B．P．SHEET $12^{\prime \prime} \times 8^{\prime \prime} \times{ }^{\prime \prime} 9 / 9 \mathrm{~d}$ ea． S．R．B．P．TUBING 18＂lengths f＂dia． ／9ea．＂dia． $2 /$ er．${ }^{\frac{1}{2} \text {＂dia．2／3d ea }}$ ped da．2／6d ea．

GROMMETS Ass， 10 for $1 / 6 \mathrm{~d}$ SOLDER 22 SWG $3 /$
SINGLE STRANDED P．Y．C．14／．0076＊ 4 d per $y \mathrm{~d}$ ．
50 Ass．Screws 6 BA C．H．\％\％＂ $1^{\prime \prime} 4 / 9 \mathrm{~d}$
With nuts and washers
60 Ass．Screws 4 BA C．H． $\left.1^{\prime \prime}\right]^{\prime \prime} 5 / 9 \mathrm{~d}$
With nuts and washers
50 Ass．Screws 2 BAC．H．\＃＂ $7 / 3 \mathrm{~d}$ FREE Plastic Storage box with each 50 FREE Plastic stor screws．
Relays，Capacitors，Knobs，Switches．
Terminals，semiconductors，etc．
Terms C．W．O．plus 3／．p．\＆p． Terms C．W．O．plus
SEND FOR FREE

W．E．C．LTD．
74 THE STREET，ASHTEAD，SURREY．

THE BEST STORIES BY THE BEST WRITERS

ARGOSY is the most lively and stimulating fiction magazine of today．It publishes new short stories from all over the world．Only the best writers contribute to its pages；in fact，there is only one test for an ARGOSY story－it must be good．Buy it every month．

Ohtainable from all Newsagents and Bookstalls－ Monthly $3 / 6$

NEW! HSL. 700 MONO TRANSISTOR AMPLIFIER

aymmetrical complementary pair. Output transiormer phono Input oockets. Full wave bridge rectifier standard phono Input aockets. Full wave bridge rectifier power Volume/on/ofr. Function selector for PU1, PU2, Tape, Radio. The HsL. 700 is strongly constructed on rigid steel chassis bronze hammer enamel finish, size $9 \mathrm{f} \times 5 \times 4 \mathrm{in}$, Pertormance Agures:
senaltivity: PUl-50m/v. 56 K input impedance
PU2-110m/v, 1 meg input impedance.
Tape- $110 \mathrm{~m} / \mathrm{v}, 1$ meg input impedance.
Output power measured at $1 \mathrm{Kc}-8.2$ watts RMs into
output power measured at $1 \mathrm{Kc}-6.2$ watts RMS into 3
ohms, $\delta .8$ watts RMs into 15 ohm. Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}$: Continuously variable tone controls; Bass, +8 db to -12 db at $100 \mathrm{c} / \mathrm{s}$. Treble, +10 db to rue high fidellty phone deck and Tape Recorder preamp. Supplied ready built, and teated, complete with knobs, attractive anodised aluminium front escutcheon panel, full circuit diagram $\underset{\text { Orice }}{\text { Our special }} \mathrm{F} 7.19 .6$

LOUDSPEAKER BARGAINS

Sin. 3 ohm 16/-. P. \& P. $3 /-.7 \times 4 \mathrm{in} .3$ ohm $21 /-$, P. \& P. $4 / . \mathrm{l} 10 \times 6 \mathrm{in} 3$ ohm. 27/6. P. \& P. 6/-. E.M.1. $8 \times 5 \mathrm{in}$. 3 ohm with high flux magnet $21 /-$ P. \& P. 4/ヶ. E.M.I. $131 \times 8 \mathrm{in}, 3$ ohm with high flux ceramic magnet $42 /-$
$(15 \mathrm{ohm} 45 / \mathrm{m}$). P. \& P. $6 /=$. E.M.I. $13 \times 8 \mathrm{in}$. 3 or 15 ohm with two inbuilt tweeters and crossover network 4 gns.
P. \&P. 6/-.
BRAND NEW. 12in. 15 w . H/1) Speakers, 3 or 15 ohms.
Current production by well-known Britiah Current production by well-known Britiah maker. Now
 E.M.I. 8 fin. HEAVY DUTY TWEETERS, Powerfulceramic magnet. A vatlable in 3 or $80 \mathrm{hms} 15 /-$ each; 15 ohms $18 / 6$ each. P. \& P. 2/6. peak handling. 3 or 15 ohm 37/6. P.
35 OHM SPEAKERS

High Flux Magnet. 2lin. dia. 18f- each. P. \& P. $1 / 6$. Praing 250 oswitGies s/P. C/O. Lever roller action,
 action. Rating 250 v . AC at 15 amps. Size spprox $17 \times 1 \times$ in. $5 /-$ each. P, \& P. $1 /-(6$ or more post free $)$
TELESCOPIC AERIALS WITH SWIVEL JOINT. Can be angled and rotated in any direction, 12 section Heavy Chrome, Extends from 7 in . to approx. 56in. Maximum diameter itr. 10/- each. P. \& P. 1/6. 6 section lacquered diameter $\frac{4}{}$ in. $5 /$ - each. P. \& P. $1 / /-$. BRAND NEW MULTI-RATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{v}$. Secondary
cotnbinations. $0-5-10-15-20-25-30-35-40-60 \mathrm{v}$. half wave at 1 smp , or $10-0-10,20-0-20,30-0-30 \mathrm{v}$. at 2 zmps full wave, Size 3 in. long $\times 3 \frac{1}{2}$ in. wide $\times 3$ in. deep. Price $32 / 6$. MAINS TR
MAINS TRANSFORMER . For transintor power aupplies. Pri. 200/240v. Sec. 9-0-9 at 500 mA . 11/-. P. \& P. $2 / 6$. Pri, 200/240v. Sec. 12-0-12 at $1 \mathrm{amp} .14 / 6$. P. \& P. $2 / 6$.
Pri. 200/240v. Sec. $10-0-10$ at 2 amp . $27 / 6$. \& P. $3 / 6$. PRIAND NEW MAIN8 TRANSFORMERS for Bridge Rectilier. Pri. 240 v . AC Sec. 240 v . at 50 mA and $6 \cdot 3 \mathrm{v}$, at $1 \cdot 5 \mathrm{mmp}$. Stack size $21 \times i \times 2 \downarrow \mathrm{in}$.
(8pecial quotations for quantities.)
HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifler using a double wound mains transformer, EZ80 rectifier and ECL82 triode pentode valve as audio amplifier and power output atage. Impedence 3 ohms. Output approx. $3 \cdot 5$ watts. Volume and tone controls. Chasis size only 7 in . wide $\times 3 \mathrm{in}$. deep \times
6ln, high overall, AC mains $200 / 240 \mathrm{v}$. Supplied absolutely 6ln, high overall. AC mains 200/240v. Supplied absolutely
Brand New completely wired and tested with valves and good quality output transformer. FEW ONLY
$\begin{aligned} & \text { OUR ROCK BOTTOM } \\ & \text { BARGAIN PRICE }\end{aligned} 40 / 6 \quad \begin{aligned} & \text { P. \& } \\ & 6 /-\end{aligned}$
BRAND NEW! PARMERO MAINS TRANSFORMERS Primary $110 \mathrm{v}-250 \mathrm{v}$. Secondary $330-0-330 \mathrm{v} .100 \mathrm{~mA}$ and $6-3 v$. at 2 amps, 63 Fv at 2 amps and 6.3 v. at 1 amp . ConSuitable for vertical or drop through mounting Overall

TRANSISTOR STEREO $8+8$ MK II

Now using sticon Transistors in first flve stages on each channel resulting in even lower noise level with improved sensitivity. A really frst-class Hi-F1 Stereo Amplifer Kit. Uses 14 transistora giving 8 watts push pull output pe channel (16W. mono). Integrated pre-amp. with Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohms. Compact design, all parts
supplied including drilled metal work. Cir-Kit board supplied including drilied metal work. Cir-Kit board, no extras to buy. simple step by step instructions enabl any constructor to build an ampliffer to be proud of Brie1 specification: Freq. responae $\pm 3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{s}$ Bass boost approx. to +12 dB . Treble cut approx. to
-16 dB . Negative feedback 18 dB over main amp Power requirements 25 V at $\cdot 8 \mathrm{amp}$.
PRICES: AMPLIFIER KIT \&10.10.0; POWER PACK KIT 88.0.0; CABINET 88.0.0. All Post Free.
Also available BTEREO $10+10$. As above but 10 watte per channel. PRICES: AMPLIFIER KIT 212. POWEA Circuit diagram, construction detaila and parts list (free with rit) 1/6. (S.A.E.)

Offcial stockista of all PEAK SOUND HI-FI EQUIPMENT

W including the
P.W. DOUBLE 12 STEREO AMPLIFIER as featured in Practical Wirelens April, May and June issues. Component pack as specified. Total cost 228.5 .6 Plus P. P. 11/-. (Excluding metalwork, knobs, plugs

SPECIAL PURCHABE!
E,M.I. 4-SPEED PLAYER Heavy 8 in. metal turntable 250 v . shaded motor (90 v tap). Complete with latest type lightwelght pick-up arm and mono cartridge with t/0 stylii for LP/78. ONLY 68/P. \& P. 6/6.

QUALITY RECORD PLAYER AMPLIMER MEII A top quality record player amplifier employing heavy EZ80 valves wound mains transiormer, ECC83, EL84, Complete with output transformer matched for 3 ohm speaker. Size 7in. wide \times 3in deep $\times 6 \mathrm{in}$. high. Heady built and tented, PRICE 70/F. P \& P. 6/-
ALsO AVAILABLE mounted on board with output ranaformer and speaker ready to fit into cabinet below OELUYE QUALTY PO
DELUXE QUALITY PORTABLE R/P CABIMET MKII Uncut motor boand aize $14 \frac{1}{2} \times 12 \mathrm{in}$. clearance 2 in . below. GARRARD above. Will take above ampliter and any B.S.R. or AT60 and SP25). Size $18 \times 15 \times 8$ in. PRICE 79/6. P $\& P .9 / 6$.

S-VALVE AUDIO
AMPLIFIER HA34 MX 11. Designed for Hi-Fi reproduction of records. A.C. Mains
operation. Heady built on operation. Ready bullt on
plated heavy gauge metai

 EL84, EZ80 valves. Heavy
duty, double wound mains transformer and output trans speaker, Separate volume control and now with improved speaker, Separate volume control and now with improved
wide range tone controls giving bass and treble ift and cut. Negative feedback line, Output 4$\}$ watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etce, wired and tested for only f4.15.0. P. \& P. 6/-.
HSL "FOUR"' AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and advanced
circuitry. Complete set of parts, etc. 79/6. P. \& P. 6/-.
BRAND NEW TRANSISTOR BARGAINS. GET 15 (Matched Pair) 15/-; V15/10p 10/-; OC71 $5 /-$; OC76 6/-; AF117 3/8: 2G339 (NPN) 8/-.
matched pair AC128 25/-; ORP12 Cadmium AC128D Cella 10/8. All poat free.
VYNAIR AND REXINE SPEAKER AND CABINET FABRIC8. Approx. 54 in , wide. Usually 35/- yard. Our
PRICE 18/6 per yard length. P. \& P. $2 / 6$ (min. one yd.). PRICE $18 / 6$ per ya
B.A E. for samples.

SPFCIAL OFFER! PLESSEY TYPE 29 TWIN TUNWNG GANG, $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and S:1 integral slow niotion. Suitable for nominal $470 \mathrm{kc} / \mathrm{s}$
I.F. Size approx. $2 \times 1 \times 1 \frac{\mathrm{in}}{} \mathrm{k}$. Only $8 / 6$. P. \& P. $2 / 6$.

HIGH GRADE COPPER LAMINATE BOARDS
$6 \times 1 / 15$ in. FIVE for $10 / \mathrm{m}$, P. \& P. $2 / \mathrm{F}$,

DE LUXE STEREO AMPLIFIER

 , \times Finalve line up: $-3 \times$ ECL86 Triode Pentodes. $1 \times$ EZ80 as fuil wave rectifier. Two Dual potentiometers are provided for basa and treble control, giving bass and treble boost and cut. A Dual volume control is used. Balance of the left and right hand chamela can be adjusted by means of a separate 'Balance' control ftted $300 \mathrm{~m} / \mathrm{v}$. for full peak output of 4 watts per chanately watts mono), into 3 ohm speakera. Full negative feed (in a carefully calculated cireuit, allows high volume levels to be used with negligible distortion. supplied complete with knobs. Chassia size $11^{\prime \prime} w \times 4^{\text {n }} \mathrm{d}$. Overall height including valver $5^{\prime \prime}$. Ready built and tested to a high standard. PRICEE 8 gns. P. \& P. $8 /-$

4-SPEED RECORD PLAYER BARGAINS

B.S.R. UA\&S with latest mono compatible oert pactring. All plus Cerriseno and Packing 6/6
LATEST GARRARD MODELS. All types available 1025,
 PLINTE UNITS cut out in Garrand Models, 1025, 2025, 2000, 3000, AT60, SP25. Wlth transparent plastic cover. OCR PRICE 5 gns. complete. P \& P. $8 / 6$.
LATEST RONEMTE T/O BTEREO/COMPATIBLE CARTRIDGE for EP/LP/Biereo/78. Only $38 / 6$. P. \& P, $2 /$ LATEST RONETTE T/O MONO COMPATIBLE CARTRiDGE for playing EP/LP/78 mono or
mono equlpment. Only $30 /-$. P. \& P. $2 /$ -
SONOTONE 9TABC compatible 8tereo Cartridge with diamond stylus $50 /$-. P. \& P. 2/-.
FEW ONLY: ACOS High-G for EP and LP. Only 10/-.

printed circuit panel size $6 \times 3 \mathrm{in}$.

- Generous size Driver and Output Transformers. speakers. Transistors (GET114 or 81 Mullard 15 ohm and matched pair of AC128 o/p). © volt operation. - Everything supplied, wire, battery cilps, solder, etc. - Comprehensive easy to follow instructions and circuit diagram $2 / 6$ (Free with Kit), All parts sold separately.
SPECLAL PRICE 45/-. P. \& P, 3/--.
Also ready bult and teated, $52 / 6$. P. \& P, $3 /-$
 match 3-15 Ω speakerand 2 independent volume controls, and separate basd and treble controls are provided giving good lift and cut. Valve lime-up 2ELS4日, ECC83, EF86 and Ez80 rectifer. Blmple inst ruction bookiet $2 / 6$ (Free with partso . All parts sold separstely. ONLY 27.9.6. P. \& P. 8/6 Also a vailable ready built and teated complete with std.
input sockets, $\$ 9.5 .0$. P. \& P. $8 / 6$.

> Hi-Fi Celestion Speaker OL OFFER
> Bi-Fi Celestion Speakor Unit. Size 6 I 4 in. PowerIui round. $10-18$ ohm impedance. Few oniy at $20 /$ P. \& P. 8/6.

DUAL PURP08E BULE TAPE ERASER AND TAPE CRYSTAL MIKES. High tmp. for desk or hand use. High aensitivity. 18/6. P. P P, 1/6.
MIGH IMPEDANCE CRYSTAL STYCK MIKES. OUR
PRICE 21/-P. \& P,

Open all day Saturday
Early closing Wed. 1 p.m.
A few minutes from South Wrimbledon
Tube station
send stamped addressed envelope with all enquiries

Please write c/early
PLEASE NOTE: P. \& P. GEARGES QUOTED APPLY TO U.K. ONLY. oigarged extan.

M. \& B. RADIO

15a HUNSLET ROAD, LEEDS LS10 1JQ

Telephone: 0532-35649

R210 RECEIVER. Modern 14 miniature valve receiver. $2 \cdot 16 \mathrm{Mc} / \mathrm{s}$ in 7 bands each 50 in . film strip scale. $10 / 100 \mathrm{Kc} / \mathrm{s}$ xtal calibrator. BFO. CW filter. Internal 24 V psu. Supplied c / w handbook and home-made mains psu. £30, carr. $25 /-$
VHF MOBILE TX/RX. Miniature valve trans-receiver with 12 V transistor power unit. Double conversion receiver. Xtal controlled transistor power unit. Doubeble. High or low band models (2 or 4 but easily converted to tuneable. High or low band models (2 or metres). Please state which when ordering. Positive or negative
Supplied c/w circuit and notes. TESTED £9.10.0, carr. $27 / 6$.
TRANSISTORISED 2-METRE CONVERTERS. ${ }^{2}$ RF stages.
Various IF frequenc
12 VOLT TRANSISTOR INVERTERS. Gives 240 V DC at 40 watts. Ideal for caravan fluorescent lighting. $£ 6$, plus $7 / 6 \mathrm{pp}$.
Various other transistor inverters. Please send SAE for details
RADIOTELEPHONE press to talk microphones. Used. $5 /$-, plus
2/-pp.
SPRING LOADED mobile whip base sections. Chrome finish. Brand new. 6/6, plus $1 / 6 \mathrm{pp}$.
GRANADA 4. Transistor amps in cabinet with speaker. Tested. $62 / 6$, plus $7 / 6 \mathrm{pp}$.
GPO Telephones with dial, 17/6, plus 6/- pp. Modern style telephone 42/6, plus 6/- pp.
QQV03/10 6/-tested. QQV06/40A $37 / 6$ tested. 800piv 16 amps silicon diodes on heat sink, $6 / \mathrm{F}$. BY $1282 / 6.2 \times$ OC35s on heat sink, $10 /$. OC35 on small heat sink $5 /-.1 /-\mathrm{pp}$.
STETHOSCOPE HEADSETS. Brand new. Ideal for stereo or mono. Low imp. 27/6, plus 3/6 pp.
Low imp. 27/6, plus 3/6 pp.
2-METRE TRANSISTOR P.A. $£$ 7.10.0. Scopes. Aerials. Valves. Etc.
TELEMETER. A well finished cabinet containing lots of useful items for the constructor. Tape unit and head, 2 motors, speaker, auto and mains transformers, miniature valve I.F. unit etc. Ideal for stripping or modifying.
77/6 plus $7 / 6$
carriage.
STEREO CABINETS. A beautifully finished polished wood cabinet supplied in original carton. NEW. $47 / 6$ plus $6 / 6$ carr.

LISTS 6d., plus SAE.

NO CONNECTION WITH ANY OTHER FIRM MINIMUM ORDER 10/-
CABH WITH ORDER PLEABE, add 1 1- post and packing.
OVEREEAS ADD EXTRA FOR AIRMAIL

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.
Oscillator Coil
1st I.F. Transformer
2nd I.F. Transformer ...
3rd I.F. Transformer

C (For OC45)	P50/1AC	(For AF117)	14
P50/2CC (For OC45)	P51/1	(For AF117)	
P50/2CC (For OC45)	P51/2	(For AF117)	5/7
P50/3CC (For OC45)	P50/3V	(For AF117)	6/-

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

T41/1E	1st I.F. Transformer	7/6
T41/2E	2nd I.F. Transformer	.7/6
T41/3T	3rd I.F. Transformer	..10/6
T41/3T	B.F.O. Coil	10/6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4d. postage please.

BENTLEY ACOUSTIC CORPORATION LTD.

Suppliers to H.M. Government 38 CHALCOT ROAD, LONDON, N.W. 1
EXPRESS POSTAL SERVICE. SAME DAY DESPATCH BY FIRST CLASS MAIL. All goods are offered subject to the standard three month guarantee.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 \& 5/9 \& \(6 \mathrm{E} 5 \quad 7 / 6\) \& 12AU6 \(4 / 8\) \& 90AY 67/6 \& E80F 24/- \& EL37 17/8 \& P61 2/6 \& \& \& \& \\
\hline OB2 \& 6/- \& 6 Fl l \(8 / 8\) \& 12AU7 4/6 \& 90C6 34/- \& E83F 24j- \& EL41 9/8 \& PABC80 \(7 / 8\) \& UAF42 \(8 / 8\) \& \(\begin{array}{lr}\text { W63 } \& 10 / 6 \\ \text { W76 } \& 5 / 9\end{array}\) \& \(\begin{array}{lll}\text { A8Y29 } \& 10 /- \\ \text { B1181 } \& 10 /-\end{array}\) \& \(\begin{array}{ll}\text { OA10 } \\ \text { OA47 } \& 8 / 6 \\ 8 /-\end{array}\) \\
\hline 024 \& \(4 / 8\) \& fF6G 4/- \& l2AV6 \(5 / 8\) \& \(90 \mathrm{CV}^{58 / 6}\) \& E88CC 12/- \& EL42 8/0 \& PC86 \(9 / 6\) \& UB41 6/6 \& W7\% 2/6 \& \(\begin{array}{lll}\text { B1181 } \\ \text { BA102 } \& \text { 10/- } \\ \text { g/- }\end{array}\) \& OA47 8 8/- \\
\hline 143 \& 4/6 \& 6F6M 12/6 \& 12AV7 8/- \& \(90 \mathrm{Cl} 16 /-\) \& E18000 8/- \& EL81 8/- \& PC88 9/6 \& UBC41 7/6 \& W81M 6f- \& \(\begin{array}{ll}\text { BA102 } \& 8 /- \\ \text { BAl15 } \& 2 / 8\end{array}\) \& \(\begin{array}{ll}0870 \\ 0.73 \& 8 /- \\ \text { OA7 }\end{array}\) \\
\hline 145 \& 5/- \& \(6 \mathrm{FI2}\) 2/8 \& I2AX7 4/6 \& 150B2 14/6 \& E180F \(17 / 6\) \& EL83 6/9 \& PC95 8/8 \& UBC81 71- \& W101 26/8 \& BA116 9/- \& \(\begin{array}{ll}\text { OA73 } \& 8 /- \\ \text { OA79 } \& 1 / 9\end{array}\) \\
\hline 1A7GT \& \(71-\) \& \(6 \mathrm{Fl3} 3 / 6\) \& 12 AY 7 9/8 \& \(150 \mathrm{C} 2 \quad 5 / 9\) \& Eas0 1/8 \& EL84 4/6 \& PC9: 8/6 \& UBF80 8/9 \& W107 7/- \& BA129 \({ }^{\text {B/6 }}\) \& \(\begin{array}{ll}\text { OA79 } \& 1 / 9 \\ \text { OA81 } \& 1 / 9\end{array}\) \\
\hline 1 Cl \& 5/6 \& 8F15 9/6 \& 12BA6 8/- \& 301 20/- \& EA76 13/- \& EL85 7/6 \& \(\begin{array}{ll}\text { PC900 } \& 8 / 8\end{array}\) \& UBF89 6/9 \& W 729 10/- \& BA130 2j- \& \(\begin{array}{ll}\text { OA81 } \& 1 / 9 \\ 0485 \& 1 / 6\end{array}\) \\
\hline 1 C 2 \& \(7 / 9\) \& \(6 \mathrm{~F} 18 \quad 7 / 6\) \& 12BE6 \(5 / 9\) \& \(30216 / 6\) \& EABC80 6/- \& EL86 8j- \& PCC84 \(67-\) \& UBF89 \({ }_{\text {U }} \begin{aligned} \& \text { U1- }\end{aligned}\) \& \(\begin{array}{ll}W 728 \& 10 /- \\ \times 24 \& 16 / 6\end{array}\) \& \begin{tabular}{ll}
BA130 \& \(2 /-\) \\
BCY10 \& 5 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { OA85 } \& 1 / 6 \\ \text { OA86 } \& 4 /-\end{array}\) \\
\hline \(1 \mathrm{C3}\) \& \(71-\) \& 6 F 231818 \& 12BH7 \(6 /\) - \& 303 15/- \& EAC91 8/- \& EL91 \(2 / 6\) \& \(\begin{array}{ll}\text { PCC84 } \& 6 /- \\ \text { PCC85 } \& 6 / 6\end{array}\) \& \(\begin{array}{ll}\text { UBL2 } \& 8 /- \\ \text { UC92 } \& 8 / 6\end{array}\) \& \(\begin{array}{ll}\mathrm{X} 24 \& 10 / 6 \\ \mathrm{X} 41 \& 10 /-\end{array}\) \& \(\begin{array}{ll}\text { BCY10 } \& 5 /- \\ \text { BUY12 } \& 5 /- \\ \text { BCY }\end{array}\) \& \(\begin{array}{ll}\text { OA86 } \& 4 /- \\ \text { OA90 } \& 8 / 6\end{array}\) \\
\hline 1 C 5 \& 4/9 \& 6F24 11/9 \& 12E1 17/- \& \(30516 / 6\) \& EAF42 8/9 \& EL95 5/- \& PCC88 619 \& UCe84 8/- \& \(\begin{array}{ll}\times 41 \& 10 /- \\ \times 619\end{array}\) \& \begin{tabular}{l}
BCY12 \\
BCY33 \\
5/- \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { OA90 } \& 2 / 6 \\ \text { OA9 } \& 1 / 9\end{array}\) \\
\hline 1D5 \& \(6 / 9\) \& 6 F25 11/8 \& 12550T 2/6 \& 306 18/- \& EB34 7/6 \& EM71 14/- \& PCC89 9/6 \& \(\begin{array}{ll}\text { I'CC85 } \& 6 / 6\end{array}\) \& \(\begin{array}{ll}\mathrm{X} 63 \& 5 / 8 \\ \mathrm{X} 63 \& 5 / 6\end{array}\) \& \(\begin{array}{ll}\text { BCY33 } \& 8 /- \\ \text { BCY34 } \& 4 / 8\end{array}\) \& \(\begin{array}{ll}\text { OA91 } \& 1 / 9 \\ \text { OAl82 } \& 2 /-\end{array}\) \\
\hline 1D6 \& 916 \& 6F28 10/6 \& 12J7GT 6/6 \& 807 11/9 \& EB41 4/6 \& EM80 6/8 \& PCC1n9 9/6 \& UCF80 818 \& \& BCY34
BCY
5/-
5/- \& \(\begin{array}{ll}\text { OA182 } \& 2 /- \\ \text { OA200 } \& 1 /-\end{array}\) \\
\hline 1 1FD1 \& \(81-\) \& 6 F 32 3/- \& \(12 \mathrm{K5} 10 /-\) \& 956 2j- \& EB91 2/8 \& EM81 B/9 \& PCF80 616 \& UCH21 9/- \& \begin{tabular}{lr}
X64 \\
\(\times 12 / 8\) \\
\(\mathbf{X 6 5}\) \\
\hline 1
\end{tabular} \& \(\begin{array}{ll}\text { BCY38 } \\ \text { BCY } \& \text { 5/- } \\ 4 / 6\end{array}\) \& OA200 \(1 /-\) \\
\hline 1FD9 \& 819 \& \({ }^{606 G} 2 / 6\) \& 12K7ST \(5 / 9\) \& 1821 10/6 \& EBC4] 8/6 \& EM84 6/- \& PCF82 \(61-\) \& UCH42 9/8 \& X \(\times 186\) \& \(\begin{array}{ll}\text { BCY39 } \& 4 / 6 \\ \text { BCZ11 } \& 8 / 6\end{array}\) \& \begin{tabular}{ll}
OA202 \& \(2 /-\) \\
0 O 210 \& \(0 / 8\)
\end{tabular} \\
\hline 166 \& 6/- \& 6H6GT 1/8 \& 12K8GT \(7 / 6\) \& 5763 10/- \& EBC81 5/9 \& EM85 11/- \& PCF84 8/- \& UCH81 6/6 \& \(\times 76 \mathrm{M} \quad 7 / 6\) \& BC107
BC1- \& \(\begin{array}{rrr}\text { OA210 } \& \text { O/6 } \\ \text { OA211 } \& 18 / 6\end{array}\) \\
\hline 1H5GT \& - 7/- \& 6 J 5 G 818 \& 12Q7GT 4/6 \& 6060 5/6, \& EBC90 4/- \& EM87 7/3 \& PCF86 9/- \& UCL82 7/- \& \(\times 81 \mathrm{M}\) 80/6 \& \(\begin{array}{ll}\mathrm{BC107} \& 4 /- \\ \mathrm{BCl} \& 8 / 6\end{array}\) \& \[
\begin{aligned}
\& \text { OA211 } 18 / 6 \\
\& \text { OAZ } 20018 /-
\end{aligned}
\] \\
\hline lla \& \(2 / 6\) \& 6J5GT 4/6 \& 128A7GT6/9 \& \(719310 / 6\) \& EBC91 5/6 \& EY51 6/9 \& PCF803 7/- \& UCL83 10I- \& \(\times 101\) 29/1 \& BC113 5/- \& OAZ20018/- \\
\hline 1LD5 \& 5/- \& \(6 \mathrm{6J6}\) 3/- \& \(128 \mathrm{C7}\) 4J- \& 7475 4/- \& EBF80 8/- \& EY81 71- \& PCF×02 8/- \& UF41 9/8 \& X109 28/- \& \(\begin{array}{ll}\text { BCl } \& 8 /- \\ 8 /-\end{array}\) \& \[
\begin{aligned}
\& 0 A Z: 0110 / 6 \\
\& 0 A Z 202 \text { of }
\end{aligned}
\] \\
\hline ILN5 \& \(8 /-\)
\(7 / 0\) \& 6.57G \(4 / 9\) \& 128G7 3/- \& A1834 20/- \& EBF83 8/- \& EY83 8/3 \& PCFnos \(8 / 8\) \& \({ }^{1} \mathrm{~F} 42\) 9/- \& X119 6/6 \& BC116 5/- \& OAZ203 9/8 \\
\hline liN5GT \& \(7 / 10\)
\(7 /\) \& \(\begin{array}{ll}637 \mathrm{GT} \& 6 / 6 \\ 6 \mathrm{~K} 6 \mathrm{~T} \& 5 /-\end{array}\) \& 128H7 8/- \& AC2PEN \& EBF89 6/8 \& EY84 7/6 \& PCFs06 11/6 \& UF80 6/8 \& X719 6/9 \& BC118 4/8 \& OAZ204 9j- \\
\hline 1 P 10 \& 4/8 \& \(\begin{array}{ll}6 \mathrm{KBGT} \& 5 /- \\ 6 \mathrm{~K} 7 \mathrm{~g} \& 8 /-\end{array}\) \& 128J7 4/6 \& 19/6 \& EBL21 11/- \& EY86 \(81-\) \& PCF808 \(12 / 8\) \& UF85 6/9 \& Z63 4/9 \& BD119 9f- \& OAZ205 9/- \\
\hline \(1 \mathrm{Pl1}\) \& \(5 / 6\) \& 6K7cT 4/6 \& 128Q7GT7/8 \& \& ECo3 12/6 \& EY87 6/- \& PCL81 9/- \& UF86 9/- \& Z77 3/8 \& BFY50 4/- \& OAZ206 9/- \\
\hline 1R5 \& 5/8 \& \(6 \mathrm{K8G}\) 3/- \& 12 Y 4 2/- \& AC6PEN4/9 \& \(\begin{array}{ll}\text { EC04 } \& 6 /- \\ \text { EC70 } \& 4 / 8\end{array}\) \& EY88 7/8 \& PCL84 \(7 /-\) \& ¢F89 8/3 \& Z152 \(4 / 8\) \& BFY51 4/- \& OAZ20710/8 \\
\hline 184 \& \(4 / 9\) \& \(6 \mathrm{K8GT} 71\) - \& 13 Dl 5/- \& AC/PEN (5) \& EC86 12/6 \& EZ35 5/- \& PCL83 \({ }^{9 / 7}\) \& ULA1 9/6 \& Z329 18/6 \& BFY52 \(4 / 6\) \& OAZ210 7J- \\
\hline 185 \& \(8 / 9\) \& 6L1 18/8 \& 13D3 0/- \& 19/6 \& EC88 12/- \& EZ40 7/8 \& PCL84 78 \& UL46 12/6 \& 2719 4/6 \& BF154 8/- \& OAZ213 7/- \\
\hline \(1 T 4\) \& \(2 / 8\) \& 6L6GT 7/9 \& 14H7 9/6 \& AC/PEN (7) \& EC92 8/6 \& EZ41 7/3 \& \(\begin{array}{ll}\text { PCL85 } \& 8 / 8 \\ \text { PCL86 } \& 8 / 6\end{array}\) \& UL84 616 \& 2729 6/- \& BF159 5/- \& OAZ224 16/6 \\
\hline 1 U 4 \& \(5 / 9\) \& 6L7 12/6 \& 1487 16/- \& \(10 / 6\) \& ECC31 15/6 \& EZ80 4/8 \& PCL88 \(15 /-\) \& UM80 8/6 \& 2748 18/8 \& BF163 4/- \& OC19 25/- \\
\hline 1U5 \& 6/9 \& 6 L 18 5/- \& 18 12/6 \& AC/TH110/- \& ECC32 \(4 / 6\) \& \(\begin{array}{ll}\text { EZ81 } \& 4 / 8 \\ \text { EZ81 } \& 4 / 6\end{array}\) \& PCL88 \(15 /-\) \& UR1C 10/6 \& Z759 45/- \& BF173 7/6 \& OC23 5/- \\
\hline 2 A 7 \& \(12 / 6\) \& 6 LL 19 19/- \& 19 10/6 \& AC/TP 10/6 \& ECC33 29/1 \& \begin{tabular}{ll}
EZ890 \& \(8 / 6\) \\
\hline
\end{tabular} \& PEN45D1) \& UU5 71- \& Transiniors \& Briso
Brisl
\(8 /-\) \& 0 C 23 5/- \\
\hline 21013 C \& \(71-\) \& 6 LD 20816 \& 19AQ5 4/0 \& AC/VP2 \({ }^{10 / 6}\) \& \({ }_{\text {ECC34 }}\) \& \(\begin{array}{lr}\text { EC4 } \& \text { 12/6 }\end{array}\) \& PEN451) \(12 /-\) \& \(\begin{array}{cr}\text { UU8 } \& 14 /- \\ \text { UU9 } \& 7 / 8\end{array}\) \& \begin{tabular}{l}
and diodes \\
2 G 225 \\
\hline \(10 / 6\)
\end{tabular} \& \begin{tabular}{ll}
BFIB1 \\
BFi85 \& \(8 /-\) \\
\hline
\end{tabular} \& \(0 \mathrm{C24} 5 /-\) \\
\hline 2D21 \& \(5 / 6\) \& 6N7(9T 6/6 \& \(19 \mathrm{Hl} 40 /-\) \& ARP3 71- \& ECCA4 \(9 / 6\) \& FW4/500 6/6 \& PEN46 \({ }^{12 /-}\) \& \(\begin{array}{ll}\text { UU9 } \& 7 / 8 \\ \text { UU12 } \& 4 / 6\end{array}\) \& \(\begin{array}{cc}\text { 2G225 } \& 10 / 6 \\ \text { 2N404 } \& 6 /-\end{array}\) \& \& OC25 6/- \\
\hline \(2 \times 2\) \& 4/9 \& \(6^{6 P 1} 12 /-\) \& 20 Dl 18/- \& \(\begin{array}{ll}\text { ATP4 } \& 2 / 3\end{array}\) \& ECC81 \(8 / 9\) \& FW4/800 \& PEN453DD \& \(\begin{array}{ll}\text { UYIN } \& 9 / 6 \\ 0 /-\end{array}\) \& \begin{tabular}{lll}
2N404 \\
2N 17.56 \\
\(10 /-\) \\
\hline 1
\end{tabular} \& BTX34/400 \& \(\mathrm{OC}^{26} 615\) \\
\hline 3A4 \& 8/6 \& 6P25 12/- \& \(20 \mathrm{D} 480 / 5\) \& AZ1 8i- \& ECC82 \(4 / 6\) \& 10/- \& PEN45 10/6 \& UY21 \(9 / 6\) \& 2N1758 10/- \& BY100 \({ }^{40 /-}\) \& \(0 \mathrm{OC28}\) 81- \\
\hline 3A6 \& 101- \& 6 P 26 12/- \& 20F゙2 14/- \& AZ31 8/9 \& ECC83 4/6 \& (1230 7\% \& PENA4 19/6 \& UY41 \(6 / 8\) \& 2N2147 \& BY100
BY101 \(11 / 6\) \& OC29 83/6 \\
\hline 3 B 7 \& 5/- \& 6 P 28 25j- \& 20 Ll 18/- \& AZ4. \(7 / 6\) \& E(4C84 516 \& GZ32 9/- \& PEN/DD \& UY85 5/8 \& 2N2369A 4/8 \& BYY01
BYi05
\(10 / 6\) \& OC30 \(51-\) \\
\hline 3D6 \& 3/8 \& 6Q7G 6/- \& \(20 \mathrm{Pl} 17 / 6\) \& B36 4/6 \& ECC85 5- \& \(\begin{array}{ll}\text { G2333 } \& 12 / 6\end{array}\) \& \({ }_{4020} 17 / 6\) \& \(\begin{array}{ll}\text { UY85 } \& \text { 5/6 } \\ \text { U10 } \& 8 /-\end{array}\) \& 2N2368A \(4 / 8\)
2N2613 7/8 \& BY105 \({ }_{\text {BY114 }}\) B/8 \& 0 O 35 5/- \\
\hline 3Q4 \& 6/6 \& 6Q7GT 8/6 \& \(20 \mathrm{P} 318 /-\) \& BL63 10\% \& ECC88 7- \& GZ34 10\%- \& PFL200 12/- \& U12/14 \({ }_{\text {U/6 }}\) \& \begin{tabular}{l}
2N2613 \\
2N 3053 \\
\hline 18
\end{tabular} \& \(\begin{array}{ll}\text { BY114 } \& 8 / 8 \\ \text { BY126 } \& 5 /-\end{array}\) \& \(\mathrm{OCSH}^{7 / 8}\) \\
\hline 3Q5GT \& 6/- \& 6R7G 7/- \& 20P4 18/6 \& CK506 6/6 \& ECC91 3j- \& GZ37 14/6 \& PL33 10/6 \& U16 15/- \& 2N3121 50/- \& BY127 5/- \& OC33 11/6 \\
\hline 384 \& 4/8 \& 6 R 7 M 11/- \& \(20 \mathrm{P5}\) 18/- \& CL4 1916 \& ECCl89 9/6 \& H30 5j- \& PL36 9/6 \& U17 5/- \& 2N3703 3/9 \& BY1234 4 - \& OC4 101- \\
\hline 3 V 4 \& 6/6 \& 68A7GT \%- \& 25A64 7/8 \& CL33 18/8 \& ECC804 12/6 \& HABC80 8/- \& PL81 7/8 \& U18/20 10/- \& 2N3709 41 - \& \(\begin{array}{ll}\text { BY236 } \& 4 /-\end{array}\) \& \(0 \mathrm{OC42}\) 12/6 \\
\hline 4 DI \& 3/9 \& 6847 7\%- \& 25L64 8/6 \& CV6 \(10 / 6\) \& ECC807 27/- \& HL2 7/8 \& PL81A 10/6 \& U19 84/6 \& 2N3866 20/- \& BY238 4 4/- \& \(0 \mathrm{OC43}\) 28/8 \\
\hline \(5 \mathrm{R4GY}\) \& 8/9 \& 68C7GT 6/6 \& 25 YS 6/- \& C'V63 \(10 / 6\) \& ECF80 6/6 \& HL13C \(4 /-\) \& \(\begin{array}{ll}\text { PL82 } \& \text { P/6 }\end{array}\) \& \(\begin{array}{ll}\text { U19 } \& 84 / 6 \\ \mathrm{U} 22 \& 7 / 9\end{array}\) \& 2N3868
2N3988
10/- \& BYYY23 \(20 j-\) \& \(0 \mathrm{C44}\) 81- \\
\hline 5U4G \& \(4 / 9\) \& \(68 \mathrm{G7}\) 6/- \& \(25 \mathrm{Y5G} 816\) \& CV271 12/6 \& ECF82 6/6 \& \(\begin{array}{ll}\text { HL23 } \& \text { 6/- }\end{array}\) \& \(\begin{array}{ll}\text { PL82 } \& 6 / 6 \\ \text { PL83 } \& 6 / 6\end{array}\) \& \(\begin{array}{cc}\text { U22 } \& 7 / 9 \\ \mathrm{U} 25 \& 18 /-\end{array}\) \& 2N3988
2 S323
10/- \& BYY23 \(20 /-\)
BYZ10
6\%- \& OC44PM 8/8 \\
\hline \(5{ }^{519}\) \& \(7 / 6\) \& \(68 \mathrm{H7}\) 3/- \& \(25 \mathrm{Z4G}\) 8/- \& CV428 19f- \& ECF86 9/- \& HL23DD \(5 /-\) \& \(\begin{array}{ll}\text { PL83 } \& 6 / 6 \\ \text { PL84 } \& 6 / 3\end{array}\) \& U21; 11/9 \& [10/- \& \begin{tabular}{ll}
BYZ10 \& \%/- \\
BYZ11 \& \(6 \%\) \\
\hline
\end{tabular} \& \[
\text { OC45 } 1 / 9
\] \\
\hline 5Y3GT \& \(8 / 8\) \& 6857 6/6 \& 2575 7/- \& CYl 18/4 \& ECF80442/- \& HL41 3/9 \& PL3022

PL/

18/- \& U31 8/- \& $\begin{array}{ll}\text { AA119 } & 8 j- \\ \text { AA120 } \\ 8 /-\end{array}$ \& \begin{tabular}{ll}
BYZ11

BYZ12 \& 6%

\hline

\end{tabular} \& \[

OC45M 8 /-
\]

\hline ${ }_{5 Z 49}$ \& $81-$ \& 68K7GT 4/8 \& $25 \mathrm{C6G}$ - 8/6 \& CYlC 10/6 \& ECF805 12/6 \& HL41DD ${ }^{\text {d/8 }}$ \& PL500
12/- \& U33 29/6 \& $\begin{array}{ll}\text { AA120 } & 3 /- \\ \text { AA129 } & 3 /-\end{array}$ \& $\begin{array}{ll}\text { BYZ12 } & 6 /- \\ \text { BYZ13 } \\ \text { bf- }\end{array}$ \& $\mathrm{OC46}^{\text {OC65 }}$

\hline $5 \mathrm{E4G}$ \& $8 / 9$ \& 68N7GT 4/6 \& $30 \mathrm{Cl} \mathrm{ll}^{6 / 6}$ \& CY31 7/6 \& ECH21 12/6 \& H 19/6 \& PL504 12/6 \& $\begin{array}{ll}\text { U35 } & \text { 16/6 }\end{array}$ \& AA129 ${ }^{8 /-}$ \& $\begin{array}{ll}\text { BYZ13 } \\ \text { BYZ15 } & \text { 35/- }\end{array}$ \& ${ }_{0}^{0665} \quad 22 / 6$

\hline 6/30L2 \& $12 / 6$ \& 68Q7GT 6/- \& $30 \mathrm{Cl15} 1816$ \& $1) 1$ 1/8 \& ECH35 5/9 \& HLA2DD8/- \& PL508 27/10 \& U37 84/11 \& $\begin{array}{ll}\text { AAZ13 } \\ \mathrm{ACl13} & 5 /-\end{array}$ \& CG12E 4 ¢ \& OC70 018

\hline 6A8G \& 5/6 \& 6857 8/- \& $30 \mathrm{Cl7} 12 / 6$ \& L41 10/8 \& ECH42 10\%- \& HN309 27/4 \& PL509 28/9 \& U43 6/9 \& AC114 8j- \& | CG64H | 4 |
| :--- | :--- |
| f- | | \&

\hline ${ }^{64 C 7}$ \& $8 /-$ \& ${ }^{6044 G T} 18 /-$ \& 30 Cl 8819 \& D63 5/- \& ECH81 5/9 \& HVR2 8/9 \& PL802 15/- \& $\begin{array}{ll}\text { U45 } & 15 / 6\end{array}$ \& $\begin{array}{ll}\text { AC12 } & 8 /- \\ \text { AC127 }\end{array}$ \& $\begin{array}{ll}\text { CG64H } & 4 /- \\ \text { GD4 } & 8 / 6\end{array}$ \& $\begin{array}{lr}0672 & 2 /- \\ 0073 & 16 /-\end{array}$

\hline 6AG5 \& 8/6 \& $6 \mathrm{UT7G} \quad 7 /-$ \& $30 \mathrm{F5}$ 13/8 \& D77 9/8 \& ECH83 8i- \& HVR2A 8/9 \& PM84 7/9 \& U47 18/- \& $\begin{array}{ll}\text { AC12 } & \text { 2j- } \\ \text { Ald }\end{array}$ \& $\begin{array}{ll}\text { GD4 } & \text { 6/6 } \\ \text { GD5 } & 5 / 6\end{array}$ \& $\begin{array}{ll}0 \mathrm{OC3} & 16 /- \\ 0 \mathrm{Cl} 4 & 2 / 6\end{array}$

\hline 6AJ5 \& $8 / 6$
$4 / 6$ \& $\begin{array}{lll}\text { 6V6G } & 3 / 6 \\ \text { 6V6G\% } & 6 /-\end{array}$ \& 30 FLl 151 - \& DAC32 7/- \& ECH84 $71-$ \& IW3 $5 / 8$ \& PX4 14/- \& U49 11/9 \& AC155 8 8/6 \& GD6 $\quad 5 / 6$ \& $\begin{array}{ll}\text { OC74 } & 2 / 6 \\ 0 \mathrm{Cl} 5 & 8 /-\end{array}$

\hline 6AK5 \& 4/6
6/- \& $\begin{array}{ll}\text { 6V6GT } & 6 /- \\ \text { BX4 } & 3 / 6\end{array}$ \& 30FL12 16/- \& DAF91 3/9 \& ECL80 $6 / 6$ \& IW $4 / 3505 / 6$ \& PY31 $6 / 6$ \& U50 5/6 \& AC156 4/- \& GD8 41 - \& $\begin{array}{ll}0 \text { OCJ } & 2 /- \\ 0068 & 2 / 6\end{array}$

\hline BAK8 \& 6/- \& 6X3GT ${ }^{3 / 6}$ \& $30 \mathrm{FL14} 12 / 6$ \& $\begin{array}{ll}\text { DAF96 } & 6 /- \\ \text { DCC90 } & 10 \mathrm{j}\end{array}$ \& $\begin{array}{ll}\text { ECL82 } & 6 /- \\ \text { ECL83 } & \text { \%/- }\end{array}$ \& \& $\begin{array}{ll}\text { PY32 } & 9 / 6 \\ \text { PY33 } & 9 / 6\end{array}$ \& U52 $4 / 9$ \& AC157 5/- \& GD9 4i- \&

\hline 6AL5 \& 2/8 \& 6Y60 8/- \& 30 Ll 8/- \& DD4 10/6 \& ECL84 18/- \& $\begin{array}{ll}\text { KT8 } & 84 / 6\end{array}$ \& $\begin{array}{ll}\text { PY33 } & 9 / 6 \\ \text { PY80 } & 5 / 8\end{array}$ \& U76 4/9 \& ACl65 5/- \& GD10 4/- \& OC-8D $8 /-$

\hline BAM5 \& 216 \& 6Y7G 12/6 \& $30 \mathrm{Ll5}$ 13/9 \& DF33 7/9 \& ECL85 11/- \& $\begin{array}{ll}\text { KT32 } & \text { 5/6 }\end{array}$ \& PY80 5/8 \& U78 3/8 \& $\mathrm{ACl}^{\text {ch }}$ 5/- \& GD11 4/- \& 0 Ca 98 l

\hline 6AM6 \& 818 \& 7A7 12/6 \& $30 \mathrm{L17}$ 18/- \& DF72 301- \& ECL86 8/- \& KT41 19/6 \& | PY81 | |
| :--- | :--- |
| PY82 | $5 / 8$ | \& [107 18/8 \& ${ }^{\text {AC167 12/- }}$ \& GD12 4 - \& OCN1 2j-

\hline 6AQ5 \& 4/9 \& 7AN7 6/- \& 30 P 4 12/- \& DF91 2/8 \& ECLL800 ${ }^{\circ}$ \& $\begin{array}{ll}\text { KT41 } \\ \text { KT44 } & \text { 20/6- }\end{array}$ \& $\begin{array}{ll}\text { PY82 } & 5 /- \\ \text { PY83 } & 5 / 6\end{array}$ \& $\begin{array}{ll}\text { V151 } & 6 / 9 \\ \text { U153 } & 5 / 8\end{array}$ \& ${ }^{\text {ACl }} 168816$ \& GD14 10/- \& OC81D 2/-

\hline 6AR ${ }^{\text {B }}$ \& 201- \& 7B6 10/0 \& 30 P 4 MR \& DF96 6/- \& 30/- \& $\begin{array}{ll}\text { KT461 } \\ \text { KT61 } & \text { 201- }\end{array}$ \& $\begin{array}{ll}\text { PY83 } & 5 / 8 \\ \text { PY88 } & 6 / 8\end{array}$ \& $\begin{array}{ll}\text { U153 } & 5 / 8 \\ \mathrm{U} 154 & 5 /-\end{array}$ \& AC169 ${ }^{\text {A }}$ (176 \& GD15 $8 / \mathrm{m}$ \& OC81M 5/-

\hline 6AT6 \& 4/- \& $7 \mathrm{B7}$ 71- \& $17 / 6$ \& DF97 10/- \& EF22 12/B \& KT63 18/- \& $\begin{array}{lr}\text { PY88 } \\ \text { PY301 } & 12 / 8\end{array}$ \& $\begin{array}{lr}\text { U154 } & 81 \\ \text { U191 }\end{array}$ \& \& GD16 $4 /-$ \& $\mathrm{OCX}_{2} 2 / 3$

\hline 6AU6 \& 51- \& $7 \mathrm{C6}$ 6/- \& 30 P 12 13/- \& DH30 16/6 \& EF36 3/8 \& $\begin{array}{ll}\text { KT66 } & 17 / 8\end{array}$ \& $\begin{array}{ll}\text { PY801 } & 12 / 6 \\ \text { PY800 } & 6 / 8\end{array}$ \& U192 \& $\begin{array}{ll}\text { ACL77 } & 8 / 6 \\ \mathrm{ACY17} & 8 /-\end{array}$ \& GET103 4/- \& $\mathrm{OCH2D}^{\text {O }}$ D $2 / 8$

\hline 6AV6 \& 5/6 \& 7D6 15/- \& $30 \mathrm{P19}$ 12/- \& DH63 6/- \& EF37A 7- \& KT74 18/6 \& $\begin{array}{ll}\text { PY800 } \\ \text { PY801 } & 6 / 6\end{array}$ \& U193 $6 / 6$ \& $\begin{array}{ll}\text { ACY17 } & 8 /- \\ \text { ACY18 } & 8 / 8\end{array}$ \& GET10518/- \& 0 C 83 2j-

\hline ${ }^{688 G}$ \& 216 \& $7 \mathrm{~F} 812 / 6$ \& $30 \mathrm{PLL} 15 /-$ \& DH76 4/6 \& EF39 8/- \& $\begin{array}{lll}\text { KT76 } & 12 / 6\end{array}$ \& $\begin{array}{ll}\text { PY801 } & \text { P/6 } \\ \text { PZ30 } & 9 / 6\end{array}$ \& $\begin{array}{ll}\mathrm{U} 251 & 16 /-\end{array}$ \& $\begin{array}{ll}\text { ACY18 } & 8 / 8 \\ \text { ACY19 } & 3 / 9\end{array}$ \& GETIIS 4/- \& $0 \mathrm{OCS4}$ 3/-

\hline 6BA6 \& 4/6 \& $7 \mathrm{H7}$ 5/6 \& $30 \mathrm{PL13} 15 /-$ \& DH77 4/- \& EF40 8/0 \& KT88 80/- \& QP'21 8/- \& U281 8/- \& ACY20 ${ }^{\text {A/6 }}$ \& GET11517/- \& $0 \mathrm{Cl123}$ 4/6

\hline 6BE6 \& $4 / 8$ \& 7R7 12j- \& $30 \mathrm{PL14} 15 /-$ \& DH81 $10 / 8$ \& EF41 9/6 \& KTW61 8/6 \& QQVO3/10 \&	0281
182	
$8 /-$	\& ACY 20

ACY 218
$8 / 8$ \& GET116 8/6 \& OCl39 12/-

\hline 6BG6a \& $20 / 5$ \& 7 V 7 5/- \& $30 \mathrm{PLJ} 315 /-$ \& DH101 85/- \& EF42 8/6 \& KTW62 10\%- \& QQVO3/10/6 \& $\begin{array}{ll}\mathrm{U} 291 & 8 / 6\end{array}$ \& $\begin{array}{ll}\text { ACY } 21 & 8 / 8 \\ \text { ACY } 22 & 8 / 6\end{array}$ \& GET118 4/- \& OCL40 10j-

\hline ${ }^{68} \mathbf{B H 6}$ \& $7 / 6$ \& $7 \mathrm{Y} 4 \quad 6 / 6$ \& 3543 9/- \& DH107 \& EF54 10\% \& KTW63 5/9 \& Q875/20 ${ }^{\text {2 }}$ \& U301 11/- \& $\begin{array}{ll}\text { ACY22 } & 8 / 6 \\ \text { ACY } 28 \\ \text { /- }\end{array}$ \& GET573 $7 / 6$ \& OCL69 8/6

\hline $6^{68 J 6}$ \& 6/9 \& $7 \mathrm{Z4}$ - 4/6 \& 35A5 15/- \& 17/11 \& EF73 6/6 \& KTZ41 6/- \& Q875120/6 \& U329 18/- \& AD140 7/6 \& GET5878/6 \& $0 \mathrm{OC172}$ 4/-

\hline 6BQ5 \& 4/6 \& ${ }_{9076} 7 /-$ \& 35 DS 12/6 \& DK32 71- \& EFRO $4 / 6$ \& LN152 $6 / 8$ \& Qvo4/7 8/- \& U339 12/6 \& AD149 8 8- \& GET87219/- \& $\begin{array}{ll}0 \mathrm{CL} 200 & 4 / 4 \\ 0 \mathrm{C} 201 & 6 / 6\end{array}$

\hline ${ }^{6 B 8 R 7 A}$ \& $8 / 6$ \& $9 \mathrm{D7}$ 9/- \& 3516GT 8/- \& DK40 101- \& EF83 9/6 \& LN309 9/- \& R10 15/- \& U403 6/6 \& AF102 18\%- \& GET873 8/- \& $\begin{array}{ll}0 \mathrm{OC201} & 5 / 6 \\ 0 \mathrm{C} 202 & 4 / 6\end{array}$

\hline 6BR7
6BR8 \& $8 / 6$
$8 /-$ \& $\begin{array}{ll}10 \mathrm{Cl} & 12 / 6 \\ 10 \mathrm{C2} & 10 /-\end{array}$ \& 35W4 4 4/8 \& DK91 5/6 \& EF85 5/8 \& LN319 15/- \& R.11 19/6 \& U404 7/6 \& AF106 10.6 \& GET88210)- \& $\begin{array}{ll}0 \mathrm{C} 202 & 4 / 6 \\ 0 \mathrm{O} 203 & 4 / 6\end{array}$

\hline 6B87 \& 16/8 \& 10 Dl 18- \& $35 \mathrm{Z4GT}$ 4/8 \& DK92 \& $\begin{array}{ll}\text { EF866 } \\ \text { EF89 } & \text { 6/- } \\ \text { 4/9 }\end{array}$ \& LN339 15/- \& $\begin{array}{lr}\text { R12 } & 8 / 9 \\ \text { R16 } & 84 / 11\end{array}$ \& $\begin{array}{ll}\mathbf{U} 709 & 4 / 6 \\ \mathbf{4 0 1} & 18 /-\end{array}$ \& AF114 4/- \& GET887 4/6 \& OC204 $6 / 6$

\hline 6BW6 \& $18 / 8$ \& $10 \mathrm{D} 214 / 7$ \& $35 \mathrm{Z5GT} 6 /-$ \& DL33 6/- \& $\begin{array}{ll}\text { EF89 } \\ \text { EF91 } & \text { 4/8 }\end{array}$ \& L2319 $\begin{array}{r}\text { ME1400 } \\ \text { 1/6 }\end{array}$ \& $\begin{array}{rr}\text { R16 } & \text { 84/11 } \\ \text { R17 } & 17 / 6\end{array}$ \& $\begin{array}{lr}\text { l'801 } & 18 /- \\ \text { l'4020 } & 8 / 9\end{array}$ \& AF115 $4 / 8$ \& GET889 4/6 \& $0 \mathrm{C205} \quad 7 / 6$

\hline 6BW7 \& 11/- \& 10 Fl 15/- \& 42 5/- \& DL35 4/9 \& EF92 216 \& MHL4 $12 / 6$ \& $\begin{array}{rr}\text { R17 } & 17 / 6 \\ \text { R18 } & \text { 9/6 }\end{array}$ \& $\begin{array}{ll}\text { V4020 } & 8 / 9 \\ V \mathrm{P} 4 \mathrm{~B} & 10 / 6\end{array}$ \& $\begin{array}{ll}\text { AF119 } \\ \text { AF121 } & 8 /- \\ \text { AF- }\end{array}$ \& GET890
GET896
$4 / 6$ \& OC206 10/-

\hline $6 \mathrm{BX6}$ \& $4 / 6$ \& $10 \mathrm{F9}$ 9/- \& 43 10/- \& DL72 151- \& EF94 8/- \& MHLD6 7/6 \& $\begin{array}{ll}\mathrm{R} 18 & \text { R19 } \\ \mathrm{R} 2 / 6\end{array}$ \& VP4BC \& $\begin{array}{ll}\text { AF121 } \\ \text { AF124 } & \text { 7/6 } \\ \\ \text { AF12 }\end{array}$ \& GET896
GET897
4/6 \& $0 \mathrm{O812} 81-$

\hline ${ }_{6}^{6 \mathrm{CL}} 4$ \& 6/- \& 10 Fl 8 7/6 \& 50B5 6/8 \& DL75 80/- \& EF95 4/8 \& MU12/14 4/- \& $\begin{array}{ll}\mathrm{R} 20 & 11 / 8\end{array}$ \& VP23 $\quad 2 / 6$ \& $\begin{array}{ll}\text { AF124 } & 7 / 6 \\ \text { AF125 } & 8 / 6\end{array}$ \& GET897
GET898
4/6 \& OCP71 27/6

\hline 6C4
6 CsGT \& $2 / 0$ \& 10LD3 7/6 \& $50 \mathrm{C5}$ 6/8 \& DL92 4/9 \& EF97 101- \& MX40 12/6 \& RK34 7/6 \& VR75 24/- \& AF120
AF126
5/- \& GEX13 3/6 \& 8M1036A

\hline ${ }_{6}^{6 C 56}$ \& 6/- \& 10LD1110/- \& 50CD6G41/- \& DL94 5/6 \& EF98 10/6 \& N78 38/4 \& sP4 9/- \& VR105 5/- \& AF'39 13/- \& GEX35 4/6 \& 10/-

\hline 668
609 \& 11/9 \& $\begin{array}{ll}10 \mathrm{P} 13 & 18 /- \\ 10 \mathrm{Pl4} & 12 / 6\end{array}$ \& $\begin{array}{lll}50 \mathrm{L6GT} & 9 /- \\ 52 \mathrm{KU} & 14 / 6\end{array}$ \& $\begin{array}{ll}\text { DL96 } & 7 /- \\ \text { DLS10 } & \text { 9/6 }\end{array}$ \& $\begin{array}{ll}\text { EF183 } & 6 /- \\ \text { EF184 } & 6 /-\end{array}$ \& N108 27/10 \& $\begin{array}{lll}\text { SPI3C } & 12 / 6 \\ \text { gP42 } & 10 / 6\end{array}$ \& VR150 5/- \& AF178 1816 \& GEX 36 10\% \& 8T1276 10/-

\hline 9 CDBG \& 19/6 \&	12 Al	$12 / 6$
186		\&
:---	:---	
3 K	146	\& $\begin{array}{ll}\text { DLA10 } & \text { 9/6 } \\ \text { DM70 } & \text { 6j- }\end{array}$ \& ${ }_{\text {EF184 }}$ \& $\begin{array}{lr}\mathrm{N} 152 & 7 / 3 \\ \mathrm{~N} 308 & 17 / 8\end{array}$ \& $\begin{array}{cr}\text { SP42 } & 12 / 6 \\ \text { SP61 } & 8 / 8\end{array}$ \& $\begin{array}{ll}\text { VT61A } & 7 /- \\ \text { VT501 } & 3 /-\end{array}$ \& AF179 ${ }^{\text {A }}$ 18/6 \& GEX45 6/6 \& 8X $1 / 6 \quad 8 / 6$

\hline 6 CH 6 \& 61- \& 12AC6 7\%- \& 72 6/6 \& DM71 76 \& EH90 6/6 \& N339 85/- \& $\begin{array}{ll}\text { SP61 } & 8 / 8 \\ \text { TH4 } & 10 /-\end{array}$ \& $\begin{array}{ll}\text { VTb11 } \\ \text { VU111 } & 7 / 8\end{array}$ \& $\begin{array}{rrr}\text { AF180 } \\ \text { AF181 } & \text { 14/6 } \\ \text { AF180 }\end{array}$ \& GT3 5/- \& MaT100 7/9

\hline $6 \mathrm{CL6}$ \& 8/6 \& 12AD6 6/- \& 77 6/6 \& DW4/3508/6 \& EL32 8/6 \& N359 $7 / 3$ \& TH233 $7 /-$ \& VU120 12/- \& AF181
AF186
14, \& M1 2/10 \& MAT1018/6

\hline 6CW4
6 CD \& 12/- \& $\begin{array}{ll}\text { l2AE6 } & 7 / 6 \\ \text { l2ATB } & 4 / 6\end{array}$ \& $\begin{array}{ll}78 & 4 / 9 \\ 8549\end{array}$ \& DW4/5008/6 \& EL33 12f- \& N379 6/8 \& TP22 5 S- \& VU120A12/- \& ${ }^{\text {AF186 }}$ AF239 716 \& M3 $2 / 10$ \& MAT120 7/8

\hline 6D3 \& $7 / 6$
$3 /-$ \& $\begin{array}{ll}12 A T 6 & 4 / 8 \\ 12 A T 7 & 8 / 9\end{array}$ \& $\begin{array}{lr}85 A 2 & 8 / 6 \\ 80 A(& 67 / 6\end{array}$ \& $\begin{array}{ll}\text { D Y86 } & 5 / 9 \\ \text { DY87 } & 5 / 9\end{array}$ \& EL34 9/6 \& N389 12/- \& TP25 5/- \& VUl33 7\%- \& A8Y27 8/6 \& OA5 5/6 \& MAT121 8/6

\hline 6D6 \& $3 /-$ \& 12 AT 7 8/8 \& 90A 67/6 \& DY87 5/8 \& EL35 10/- \& N709 4/6 \& TP2620 8/8 \& W $42 \quad 10 / 6$ \& A8Y28 6/6 \& OA9 2/6 \& ZE12V7 $1 / 9$

\hline
\end{tabular}

we require for prompt cash settlement all types of above goods loose or boxed, but must be new

 | |
| :--- | :--- | $50 \mathrm{v} 9 / \mathrm{B} ; 2000 \mathrm{mfd} / 50 \mathrm{v} 13 / 3 ; 5000 \mathrm{mfd} / 25 \mathrm{v} 15 / \mathrm{mf} / 2000 \mathrm{vfd} / 50 \mathrm{v} 27 / 9 ; 800 \times 16 \mathrm{mfd} / 275 \mathrm{v} 23 / 3 ; 100 \mathrm{mfd} / 100 \mathrm{v} 5 / 6 ; 200 \mathrm{mfd} / 350 \mathrm{v} 12 / 3 ; 200 \times 200 \times 100 \mathrm{mfd} / 350 \mathrm{v} 27 / 2 ; 300 \times 300 \mathrm{mfd} / 300 \mathrm{v} 31 / 6 ; 1000 \mathrm{mfd} /$

$3 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / \mathrm{m} ; 10 \mathrm{mfd} / 50 \mathrm{v} 2 / 3 ; 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 6 ; 16 \mathrm{mfd} / 500 \mathrm{v} 4 / 6 ; 16 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 25 \mathrm{mfd} / 25 \mathrm{v} / / 6 ; 25 \mathrm{mfd} / 50 \mathrm{v} 2 / 6 ; 32 \mathrm{mfd} / 150 \mathrm{v} 2 / 3 ; 8 \mathrm{mfd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mfd} / 500 \mathrm{v} 3 / \mathrm{m} ; 8 \times 8 \mathrm{mfd} / 450 \mathrm{v} 2 / 9 ;$

SAVE POSTAL COSTS. CASH AND CARRY CALLERS WELCOME!

[^7]
WOW! a FAST EASY WAY TO LEARN BASIC RADIO and electronics

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way.
Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning casy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.

You LEARN-but it's as

fascinating as a hobby,
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a veaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and casy to understand, practical projects from a burglar-alarm to a sophisticated Radio set here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 164 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 164 -page book -'ENGINEERING OP. PORTUNITIES'-Free and without any obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 372B, Aldermaston Court, Aldermaston, Berkshire.

MONO GRAM CHASSIS

3 Wave band long-med-short. Gram., $200-250 \mathrm{v} \mathrm{AC}$ Ferrite aerial. Chassis $13 \times 7 \times 3 \mathrm{Fin}$, Dial $13 \times 4 \mathrm{x}$. EF89, EBC81, EL84, ER80. Price $\mathbf{E 1 0}_{10.12 .6}$
(T/ $/ \mathrm{p}$. \& p.).

GLADSTONE RADIO

VALVES

SAME DAY SERVICE

NEW! TESTED! GUARANTEED!
SETS 1R5, 185, 1T4, 334, 3V4, DAF91, DF91. DK91. DL92, DL94. - Set of 4 for 18/6. DAF96, DF96, DK96, DL96, 4 for 28/6.

OZ4	4/6	12AX7 4/8	DK32	1	EH00	91		519
1A7GT	$7 / 6$	12 K 8 GT 7 -	DK91	510	EH90 $8 / 8$	PCL84 $7 / 6$		
$1 \mathrm{H6GT}$	$7 / 3$	128N70T6/8	DK92	$9 / 3$	EL33 8/9	PCL85 91-		
INSGT	718	19BG6G17/6	DK96	$7 /-$	EL34 9/6			
1 R5	519	20 F 21816	DL35	51-	$\begin{array}{lr}\text { ELA } & 10 / 6 \\ \text { EL84 } & 4 / 9\end{array}$		UC	
185	$4 / 3$	$20 \mathrm{P3} 1119$	DL92	8/9	$\begin{array}{ll}\text { EL84 } & 4 / 9 \\ \text { EL90 } & 4 / 6\end{array}$	PL36	UCH4	$11 / 8$
1 T 4	$2 / 9$	20 P 41816	DL94	$\xrightarrow{81}$	EL90 ${ }^{\text {E/5 }}$	PL81 7/3	UCH8	6/3
4	519	25L6GT 5/-	D1.96	71-	ELV00 rer	PL8' $2 / 8$ 1816	UCL8	$71-$
	81-	$25 \mathrm{U4GT11/6}$	DY86	519	EM80 ${ }^{\text {EM81 }}$	$\begin{array}{ll}\text { PL83 } & 8 / 6\end{array}$	UCL8	1/8
5U4G	4/6	30 Cl 8/6	DY87	6/6	EM84 ${ }^{\text {E/6 }}$	PLS4 8/6	UF4	$10 / 6$
5Y3GT	5/9	$\begin{array}{ll}30 \mathrm{ClF} & 18 /- \\ 30 \mathrm{Cl1} & 18 /-\end{array}$	EAF42	$8 / 9$	EM87 7/6	PI500 13/-	UFs	71
5Z4G	7/6	$30 \mathrm{Cl7} 181-$	B91	$8 / 9$	$\begin{array}{ll}\text { EM87 } \\ \text { EY51 } & 7 / 6\end{array}$	PL504 13/B	UF'85	6/8
6/30L2	121-	$\begin{array}{lll}30 \mathrm{Cl} \\ 30 \mathrm{Fs} & 11 / 6 \\ 18 /-\end{array}$	BC33	81-	EY86 B/B	23/6	9	
6ALs	$2 / 3$	30 Fs 30FL1 $18 / 9$	${ }_{\text {EBC4 }}$	8/8	EZ40 7/6	802 14/6	UL41	10/6
6AM6	$2 / 9$	30FL1 ${ }^{\text {30FL12 }} 18 / 6$	EBF80	6/9	EZ80 4/6	$7 / 9$	144	$201-$
$6 \mathrm{AQ5}$	4/6	30FL12 14/6	EBF889	6/3	EZ81 $4 / 9$	$10 / 6$	UL84	71-
6AT6	$4 / \mathrm{4}$	$30 \text { FLI4 12/- }$	ECC81	6/8	$\begin{array}{ll}\text { EZ832 } & 8 / 9\end{array}$	Y32 101-	UM84	71
6AUB	4/8	30LI6/8 30 LI 5 $14 /-$	ECC82	4/8	$\begin{array}{ll}\text { GZ34 } & 8 / 9\end{array}$	PY33 101-	CY41	$8 / 3$
68A6	4/6	$\begin{array}{ll}30 \mathrm{~L} 15 & 14 / 7 \\ 30 \mathrm{~L} 17 & 15 / 6\end{array}$	ECC83	7/8	KT61 8/9	$\begin{array}{ll}\text { PY81 } & 5 / 8\end{array}$	UY85	$5 / 8$
6BE6	$4 / 9$	$\begin{array}{ll}30 \mathrm{L17} & 18 / 6 \\ 30 \mathrm{P} 4 & 12 /-\end{array}$	ECC85	$5 / 9$	KT66 16/-	PY8' 518	VP4B	101-
6 BJ 6	8/6	$\begin{array}{lll}30 \mathrm{~Pa} & 12 & 18 / 9\end{array}$	ECC91	$3 /-$	ME140015/-	PY83 519	W119	$71-$
$6 \mathrm{BW6}$	13	30P12 1819	ECC804	121-	N78 17/6	PY88 619	277	2/
	91-	$30 \mathrm{PLI} 18 / 8$	ECF80	8/6	PABC80 7/-	PY800 7/6	Trana	
$6 \mathrm{~F}^{4} 23$	14/3	30 PL13 15/6	ECF82	$5 / 9$	PC86 $10 / 8$		${ }^{\text {ACl }}$ - 7	
6 F 25	18/-	30 PL14 15/6	CH35	6/-	$\begin{array}{lr}\text { PC88 } & 1013 \\ \text { PC96 } & 8 / 6\end{array}$	$\begin{array}{lr}\mathrm{R} 19 & 6 / 6 \\ \mathrm{R} 20 & 12 / 6\end{array}$	140	$7 / 6$
56	$31-$	35L6GT 8/8	ECH42	$10 / 6$	$\begin{array}{ll}\text { PC96 } & 8 / 6 \\ \text { PC97 } & 8 / 6\end{array}$	U25 131-	AF115	31
6K7G	$2 / 6$	$35 W 4$ 4/6	ECH81	7/8	${ }^{\text {PC900 }} 8081-$	U26 12\%	AF'116	$81-$
$6 \mathrm{K8G}$	$2 / 9$	35Z4GT 5/-	ECH84	$7 / 6$ $6 / 9$	CC84 816	U47 $13 / 6$	AF117	13
6L18	$81-$	$\begin{array}{lr}6063 & 12 / 6 \\ \text { AC/VPP210/- }\end{array}$	ECL82	$6 / 9$ $8 / 8$	$\begin{array}{ll}\text { PCC84 } & \text { 8/- } \\ \text { PCO85 } & \end{array}$	U49 13/6	AF125	$8 / 6$
6 V 6 C	$3 / 8$	AC/V P210/- AZ31 16	ECL82	$8 / 6$	PCC88 $91-$	U52 416	AF127	3/6
6V6G'	6/6	$\begin{array}{lr}\text { AZ31 } & 9 / 6 \\ \text { B729 } & 12 / 6\end{array}$	ECL86	81	PCC89 $10 / 6$	U78 4/3	OC26	18
6×4	8	$\begin{array}{ll}\text { B729 } & 12 / 6 \\ \text { ССН35 } & 10 / 5\end{array}$	EF37A	$6 / 6$	PCC189 11/6	U191 12/6	OC44	2/8
6×50	\%-	$\begin{array}{ll}\text { CCH35 } & 18 / 6 \\ \text { CL33 } & 18 / 6\end{array}$	EF39	4/9	PCF80 6/6	6	$0 \mathrm{OC45}$	/3
7 C 6	6/9	CY31 6/9	EF4	$10 / 9$	PCF82 ${ }^{6}$		C72	$2 / 6$
10F1	141-	DAC32 7/3	EF80	$4 / 6$	PCF20018/6		C72	$2 / 6$
10 Fl 18	71	DAF91 $4 / 3$	EF85	$5 / 3$ $8 / 3$		¢ 4801 19/6	$0 \mathrm{C81}$	$2 / 3$
10 P 13	$15 / 6$	DAF96 $8 / 6$	EF86	6/8 $5 / 3$	PCF802 $9 / 6$	UABC80 6/6	OC811	2/3
12AH8	33/-	$\begin{array}{ll}\text { DF33 } & 7 / 9 \\ \text { DF91 } & 2 / 9\end{array}$	EF89	$2 / 9$	PCF805 11/6	UAF42 $9 / 6$	OC82	$2 / 3$
l2AT7	$8 / 9$ $4 / 9$	$\begin{array}{ll}\text { DF91 } & 2 / 9 \\ \text { DF96 } & 6 / 6\end{array}$	EF94	$4 / 6$	PCF80812/-	UB41 6/6	OCs2D	$2 / 6$
12AU6	$4 /$	DF96 6/6	188	4	PCL82 71-	UBC41 8/6	OC170	2/6

READERS RADIO
 85 TORQUAY GARDENS, REDBRIDGE, ILFORD.

SUPER-BARGAIN STOCKTAKING SALE!

Use the form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value

COMPARE THESE PRICES!!!

[^8]\begin{abstract}
TRANSISTOI BARGAIN! THEY CAN'T GET ANY CHEAPER!H! P.N.P. Audio. Untested, unmarked. Mainly O.K., $10 /$ - per 100 .

Power Output (similar Oc35). All Tested, 41-each, £2.0.0. dozen
SILICON PLANAR TRANSISTORS. All Tested. No Leaks or Shorts. Gain of 20/50, Bd. each; $30 / 100$, 9d. each; 100/200. 1/- each. Transistors sivir to
REC current type in $40062 / 6$ each. $24 /-$ dozen. 300 volt peak, 1 amp. mean 2/6 each, 24/-dozen. £7.10.0 100. BYZ 13 or 19 (6 amp .) 2/6 each, 24/-dozen. \&7.10.0 100 .

MAINS DROPPER TYPE RESISTORS. Hundreds of types from 7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Multi-tapped be offered 'assorted'. 10/-per dozen.

TRANSISTORISED SIGNAL INJECTOR KIT. 10/TRANSISTORISED SIGNAL TRACER KIT. 10/TRANSISTORISED REN. COUNTER (CAR). 10/-VERO-BOARD

51. $\times 1 \times 15$	1/3	5**34* $\times 15$	5/6		
$\begin{aligned} & 31^{-} \times 21^{\circ} \times 15 \\ & 31^{\circ} \times 33^{-} \times \cdot 15 \end{aligned}$	$3 / 3$	$17^{\circ} \times 2 t \times 15$		$5 \times 2 t^{0} \times 1$	$4 / 2$
$5^{\prime \prime} \times 2{ }^{\text {t }} \times \times 15$	3/11	$17^{*} \times 34^{-\times} \times 15$	14/8	$5^{*} \times 31^{\prime \prime} \times 1$	

Spot Face Cutter, 7/6. Pin Insert Tool, 9/6. Terminal Pins, $3 / 6$ for 36. Spot Face Cutter and $\mathrm{Ev} \in \mathbf{2 1}^{\circ} \times \mathbf{1}^{\circ}$ boards, $9 / 9$.

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing Minimum 2/-

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W. 1.
 KING OF THE PAKS
 SUPER PAKS
 Unequalled Value \& Quality BI-PAK NEW-UNTESTED SEMICONDUCTORS
 Satiglaction GUARANTEED in Every Pak, or money back.

U2	60 Mixed Germanium Trangistora $\Delta F / R F$
U3	75 Germanium Gold Bonded Diodersim. OA5
[14	40 Germanium Transistory like OC
${ }^{+}$	60200 mA Sut-min. Sil. Dioules
U6	40 Silicon Planar Transistors NPN
C7	16 silicon Rectiflers Top-Hat 750 mA up t
U8	50 Sil. Planar Di
L9	20 Mixed Volts 1 watt Zener Diodes
U11	30 PNP Silicon Planar Transistors To-5
	12 Bilicon Rectifiters EPOXY BY126/1
$\bar{T} 13$	
V14	150 Mixed silicon and (iermanium bi
15	30 NPN Silicon Planar Transistura T0-5 sim. 2N697
C16	103 -Amp Silicon Reetifers 8
	30 Germanium PNP AF Transistors TO-5 like ACY
U18	8 b-Amp silicon Rectifters BYZ13 Type up to 600 Pl
U19	30 Silicon N PN Transistors live BCl
U20	121-5-amp silicon Rectif
T	30 AF Germianium alloy Trunsistors 26;300 Series
	101 -amp Glass Min. Silicon Rectifters High
U23	30 Malt's like Mat Seriea
E24	20 (iermanium 1-amp Rectitier
	$25300 \mathrm{Mc} / 8 \mathrm{~s}$ NPN Bilicon Transistors 2 N708. B8Y27
U26	30 Fast 8witching silicon Diodes like 1 N 914 Micro-min.
$\overline{129}$	Experimenters Assortment ot Integrated Circuits, untested. Gates, F'lip-Flops. Registera, etc., 8 Absorted Pieces.
	10 leamp BCR's To-5 can up to 600PIV' CRS1/25-600 80
530	15 Plastic silicon Planar trans. NPN 2N2924-2N2926 10
31	20 sil. Planar NP'N trans. Liw noise
- 32	25 Zener diolles 400 inW D07 case mixed Volts. 3-18
C	15 Playtic caxe 1-amp silicon Rectifiers $1 \mathrm{~N}-4000$ series 10
U3	30 sil. PNP alloy trans. TO
U3	25 8il. Planar trans. PNP TO-18 2N 2906
U2	25 Bil. Planar NPN trans. T0-5 BFY $50 / 51 / 52$
U37	30 sil. alloy trans. 80-2 PNP, OC200 28322
U38	20 Fast switching Sil. trans.
U39	30 RF (terin. PNP trans. $2 \mathrm{~N} 1303 / 5 \mathrm{TO-5}$
U40	10 Dual trans. 6 lead T0-5 2N2060 10
	$0 \cdot 10045$ N KT72

Code Nos. mentioned above are given as a guide to the type of

FULLIY TESTED

${ }_{\text {ACl }}$
AP116-117
AF139
AL102
BC107-8-9
BFY50-51-5
BSY $26-7$
BSY28-9
B8Y $95-95$ A
OC23-25
${ }^{0} \mathrm{C} 26-35$
OC28.29
OC44-45
${ }_{0}^{0} 741.81$
$0072-75$
OC81D-82D
$\mathrm{OC82}$
OCl 40
${ }^{\circ} \mathrm{CCl} 170$.
$\mathrm{OCl77}$
$\mathrm{OCl7}$
$\mathrm{OCl21}$
OC201.
ORP12-60
OCP71
OA5-10
OA47
OA70
OA $79 . .$.
$0 \mathrm{OA} 81-85$
OA 91
OA 95
${ }^{\circ} \mathrm{A} 95$
OA 200
OA 202
OA 202
2N696-
2N706
2N708
2N2160
2N2646
${ }_{2}^{2 N} 2712$
MAT100
MAT120-121
$8 T 140$
$8 T 141$
ST141
2N3819
N
${ }_{2}^{2 N} 3820$

TESTED SCR's ${ }^{\text {BRAND NEW TEXAS }}$ PIV 1 AMP 7A 16A 30 A GERM. TRANSISTORS

Coded and Guaranteed
Pak No
Ti
EQVT.

FULL RANGE OF ZENER DIODES
voltage range 8-16y 400 mW …..... $2 / 6$ each
 All fully tested voltage required.
120 VCB NIXIE DRIVER TRANSISTOR. Sim. B8X21 Th C407, 2N1893 FULLY
TESTED AND
CODEI TEBTED AND CODEI NDI20. $1-24 \quad 3 / 8$ each.
TO-5NPN 25 up to $3 /$ - each.

UNIJUNCTION

UT46 Eqvit. $2 \mathrm{~N} 2648.7 / 6$ Equt. TIB43 BEN 3000 each
PRINTED CIRCUITS EX-COMPUTER Packed with semicon ductors and components, 10 boarrds give a guaran
teed 30 trang and 30 teed 30 trans and
diodes. Our price 10 boards $10 /$. Plua $2 j$. $\quad \mathbf{P}$. \& $\quad \mathbf{P}$.

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS on a PRINTED CIRCOIT CHASSIS with PARTS and TRANSISTORS Irom your 8PARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $44^{*} \times 21^{*}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (9) Etchant. (7) Cleanser/Degreaser. (8)/LW. Also free with each kit. (10) Essentia) Design Ista, Circuits, Chassig Plans, ete. for 40 TRANsIsTORISED PROJECTS A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S

PRINTED CIRCUIT KIT

8/6

Postage * Pack. I/6 (UK) Commonwealth: SURFACE MAIL \&/ AlR MAIL 8/Australia, New Zealand South Africa, Canada.
(1) Crystal get with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Cryatal Set with Dyuanic Loudspeaker. (4) Cryatal Tuner with Audio Amplifier. (5) Carrier Power Conversion Receiver. (6) Aplit-Load Neutralised Double Reflex. (7) Matchbox or Photocell Radio. (8) 'TRI-FLEXON' Triple Renex wio The amalling regeneration (Patent Pending). (9) Solar Battery Lounspeaker World 3 Subminiature Radio Receivers based on the "Triflexon" circuit. Let us know if you know of a sraaller design published anywhere. (10) Poatage stamp Radio.

 hread. (17) Radio Control (18) Reliable Burglar Alarm. (19) Light-Seeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Teater. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required). (27) Constant Volume Intercom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Rettex Ranio. (31) Wristwatch Transmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Ultrasonic 8witch/Alarm. (34) Btereo Preamplifer. (35) Quality Stereo Push-Puil Amplifer. (36) Ligh-Beam Felephon "Photophone". (37) Light-Beam Transmitter. (38) silent TV Sound Adaptor. (39)

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11

Send a S.A.E. for full delaits, a brief description and Pholopraphs of all K its and all $\overline{5} 2$ Radio, Electronir and Photoeloctric Profects Assembled.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROCHURE to

ADDRESS

DUXFORD ELECTRONICS

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /$-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 5$ 2s. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

EDUCATIONAL

Abstract

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: maintenance. T.T.E.B. 120 -page Guide-free. highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.I.

CITY \& GUILDS (electricial, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of faction or Refund of Fee terms. Thousands all passes. For details of electrical engineering, electronics, radio, TV, automation. etc., send for 132-page Handbook--FREE. B.I.E.T. (Dept. 168 K). Aldermaston Court, Aldermaston, Berks.

RADIO OFFICER training courses. Write:
RADIO OFFICER training courses. Write:
Principal. Newport and Monmouthshire Principal, Newport
College of Technology, Newport, Mon.

FOR SALE

SEEN MY CAT? Tools, Rod, Bar and Tube, Small Screws, mechanical and electrical gear. 21 -years' trading 56,000 in vouchers given away, Free Cat. of 5,000 item: S.A.E. to: K.R. WHISTON, Dept. VCW, New Mills, Stockport.

MORSE MADE !!

FAOT NOT FIOTION. If you start RIGET you will be reading amateur and conimercial Morse within a month. (Normal progreas t_{a} be expected.)
Uaing scientitlcally prepared 3-speed records you automatically learu ha recoguse the code RHVIHM
without tranklating. You calit heip it, it'm easy as learning witune. IN W.P.M. in 4 weeks guaranterd.
For details and contse C.o. I). ring, w.t.d. $01-6602886$ aend ad. ataup for explanaturg buckiet to:
G80ES (BOX 1i), 45 GREEN LANE, PURLEY, SURREY

VHF R/T system, 5 mobiles, 1 base set, 1 remote control. Offers Box No. 93.

RETIRED Service Engineer has a quantity of Valves, Service Sheets, Books \& service components for sale. S. Timmings, 98 Marshprook Rd., Birmingham, 24, erd 3059.

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street. West Bromwich, Staffs. Tel.: WES 0186.

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

AVO METERS, MODELS 8 \& 9, ANY QUANTITY, ANY CONDITION, ALSO WEE MEGGERS. SEND FOR PACKING INSTRUCTIONS. HUGGETT'S ILTD. $2 / 4$ PAWSONS ROAD, W. CROYDON.

BOOKS \& PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circult and Notes 6/6 p/p 6d.
1155 set Circult and Notes 6/6p/p6d. H.R.O. Technical instructions 38 set Technical Instructions 48 set Working instructions 88 set Technlcal Instructions BC. 221 CIrcuit and Notes Wavemeter Class D Tech. Instr, 18 set Clrcult and Notes BC. 1000 (31 set) Circult and Nöes CR,100/B.28 Clrcult and Notes R. 107 Clircuit and Notes $\begin{array}{llll}\text { R. } 107 \text { CIrcuit and Notes } & . & . . & 7 /-\mathrm{p} / \mathrm{p} 0 \mathrm{~d} . \\ \text { AR.88D Instructlon Manual } & \text {.. } & \text {. } 18 / \mathrm{p} / \mathrm{p} 6 \mathrm{~d} .\end{array}$ $5 / 6 p / p 6 d$.
$5 / 6 p / p 6 d$. 5/8 p/p 6 d . 7/-p/p 6d. 7/p/p $6 d$.
$5 / 6 \mathrm{p} / \mathrm{p}$ d. $5 / 6 p / p 6 d$.
$5 / 8 p / p 6 d$. 5/6 p/p Bd. $5 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$. $5 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
$5 / 6 / \mathrm{p} 8 \mathrm{~d}$. 5/6 p/p $8 d$.
$10 /-\mathrm{p} / \mathrm{p} 9 \mathrm{~d}$. 62 set Circuit and Notes $/ \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$. Circuit Dlagram 5/• each post free, R.1116/A, R.1224/A, R.1355, R.F. 24, 25 and 26, A.1134, T 1154 , CR 300, BC 312 BC. 342, BC. 348 d, BC. 348 T.I154, CR.300, BC.312.
(E.M.P.), BC.624, 22 set.
52 set Sender and Receiver circulte $7 / 6$ post free Colour code Indicator $2 / 6 \mathrm{p} / \mathrm{p}$ 6d. S.A.E. with all enquirles please. Postage rates apply to U.K. only. Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
DEPT. PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

MISCELLANEOUS

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions 19/6 C.W.O. 'Circuitetch', 12 Cambridge Road, St. Albans, Herts.

BUILD IT in a DEWBOX quality cabinet. 2 in. $x 2 \frac{1}{2}$ in. x any length. D.E.W. Lid., Ringwood Road, FERNDOWN, Dorset. S.A.E. for leaflet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10 s . (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

THE NEW

ELECTRONIC MUSIC FOR YOU

Then how about making yourself an electric organ? Constructional data availablefull circults. drawings and notes! lt has 5 octaves, 2 manuals and pedals with 24 attack you can play Classics and Swing. Write Now for free leaflet and further details to $C, \&, 20$ Mande street. Darlington. Ilurham. Send 4d. stamp.

YOUR CALL SIGN ENGRAVED. White Letters Black Plate $6 \times 1 \frac{t}{2} \mathrm{in}$. $5 / 6.2 \times \frac{1}{2} \mathrm{in}$. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled, Northerı Road. Cosham. Portsmouth. PO6 3EP.

MUSICAL MIRACI.ES. Send S.A.E. for details of Rhvthm Modules, versatile bass pedal unit. self-contained with unique effects kits for watwaa pedals. Also new 50μ A meters. 25/- posi paid. HURRY. D.E.W. Lid., 254 Ringwood Road, Ferndown, Dorset.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston. Lancs.

LARGE SUPPLIER OF
 SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS CAR RADIOS)
Only 5 /- each, plus large S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

C. CARANNA 71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of
Service Sheets (strictly by return of post).
Please state make and model number alternative.
Free TV fault tracing chart or TV list on request.
Mail order only,

SERVICE SHEETS

(continued)
SERVICE SHEETS (75.000) 5/- each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., RECORDERS, RECORD PLAYERS, etc.,
by return post, with free fault-finding guide. by return post, with free fault-finding guide.
Prices from $1 /-$. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road. Bexhill, Sussex.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, ib Shepherds Bush Rd., London W.6. SHE 8441.

SITUATIONS VACANT

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132 page Handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

ENGINEERS. A TECHNICAL CERTIFICATE or yualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.)., City \& G.I.E.R.E., A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering - Mech., Elec., Auto.. Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K). Aldermaston Court, Aldermaston, Berks.

SERVICE ENGINEERS-we are an old established electronics company, but headed by a young management team and we need you to help us. Age is no barrier to a high salary as you will find our when you join us. If you have experience in T.V. Radio or Hi-Hi Service and want a job that looks ahead phone Michael Adler at 01-636 9606 .

ELECTRICAL

BEST EVER 200/240 VOLT "MAINS" SUPPLY FROM 12 VOLT CAR BATTERY Exclugive World scoop Purchase. The falualouw Mh. 2D American Heavy Duty Dynamotor Onit with a Massive 220 watt output and giving the most
Brilliant $200 / 240$ volt performance of all Marvellous for Television, Drills, Power Time. Malna Lighting, AC Fluorescent Lighting anlil all 200/240 volt Universal AC/DC mains equipnent. Made at tremendous cost for [${ }^{\top}$ S.A. Govt. by Delco-Remy. This magnificent machme is unolitain able elsewhere.
Brand New and Fully Tested, only e4.10.6, plus 10/6 pontage. C.O.D. with pleasure. Money back if not delighted. Please send s.a.e. for interesting illus. details.
Dept. PW STANFORD ELECTRONICS, Rear Derby
Road, North Promenade, Blackpool, Lancashire.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $t-20$ watt, $12 / 6$ Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road. West Ealing, W.13.

[^9]
RECEIVERS \& COMPONENTS

 (continued)
WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS 2in. x din. packed with semiconductors and top quality resistors, capacitors, diodes, etc, Our price, 10 boards $10 /-$. P, \& P. 2/-. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for £1. P \& P. 3/6. With a guaranteed minimum of 85 transistors. 100 boards $65 /-$. P. \& P. 7/6. With a guaranteed minimum of 350 fransisiors.
GIANT PANELS. $5 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in} . \min .20$ transistors, $9 \times 56 \mu \mathrm{H}$ inductors, resistors, diodes, etc, 3 for £1. P. \& P. 2/-. As above only 21 transistors 70 diodes, 62 min. $1 / 10 \mathrm{~W}$. resistors. 3 for 25/-. P. \& P. 2/-

PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards $(4 \times 0 \mathrm{OC} 28)$ 10/-. P. \& P. 2/-.
TRIM POTS. On $2 \mathrm{in} . \times 4 \mathrm{in}$. boards + Ta caps and other components. $100 \Omega, 500 \Omega, 15 \mathrm{~K} ., 20 \mathrm{~K}$ State requirements. 5 boards $10 /-$ P. \& P. $2 /-$ NPN GERMANIUM TO5 1 WATT POWER TRANSISTORS. On small heat sink on 2 in . x 4 in. panel. 5 for $10 /-$ P. \& P. 2/-.
POWER TRANSISTORS, SIm. to 2N174 exeqt. On Finned Heat Sink (10D). 4 tor E1. P. \& P. $5 /-$
DIODES. Ex-eqt. Silicon, 150 PIV, 10 amp. 4 for 10/-. 150 PIV, 20 amp .4 for £1. Post free
OVERLOAD CUT OUTS. Panel mounting in the following values. 5/- each. 2, 3, 4 amp. P. \& P $1 /$
MINIATURE GLASS NEONS, 12/6 doz.P. \& P 1/-
PAPST FANS. Powerful Extractor/Blower fans $4 \frac{1}{2} \mathrm{n} . \times 4 \frac{1}{\mathrm{i}} \mathrm{in} . \times 21 \mathrm{n} .230 / 250 \mathrm{~V} .100$ c.f.m., 2,800 r.p.m. 50/-post free

MICRO SWITCHES. Miniature button type 10/- doz. P. \& P. 1/6.
NEW SPRAGUE. $0.22 \mu \mathrm{~F} 250 \mathrm{~V}$ small capacitors 5/-doz. P. \& P. 1/-
NEW SPRAGUE ELECTROLYTICS. $4 \mu F$ 150V. 5/-doz. P. \& P. 1/-.
LARGE CAPACITY ELECTROLYTICS. 4iin 2In. diam. Screw terminals
7/6 each post free.
$\begin{array}{ll}4,000 \mu \mathrm{~F} & 72 \mathrm{~V} \text { d.c. } \text { whg } \\ 10,000 \mu \mathrm{~F} & 25 \mathrm{~V} \text { d.c. } \mathbf{w k g} \\ 25,000 \mu \mathrm{~F} & 12 \mathrm{~V} \text { d.c. wkg }\end{array}$
4 in. x 1 1 in. Plessey $5.000 \mu \mathrm{~F} 55 \mathrm{~V}$ d.c. wkg. $8 /-$ ea. $3 \mathrm{in} . \times 1 \mathrm{in}$. Plessey $2,000 \mu \mathrm{~F} 25 \mathrm{~V}$ d.c. wkg. $6 /$ - ea $41 \mathrm{In} . \times 1 \frac{1}{\mathrm{i}} \mathrm{in} . \mathrm{screw}$ terminals, $2,500 \mu \mathrm{LF} 55 \mathrm{~V}$ d.c. wkg. $6 /-$ ea.
KEYTRONICS 52 Earls Court Road,
London, W.8. Mail order only Tel. 01-478 8499

COMPONENTS

EVERYTHING you need-capacitors, trimmers, resistors, pots, VDR's. thermistors, meters, Veroboard, switches, solder, wires and cables, tagboards and strips, screws, nuts, knobs, panel lamps and bulbs, plugs and sockets, etc. etc., not to mention VALVES AND SEMICONDUCTORS.

Full price lists free on request
J. R. HARTLEY

78B High Street Bridgnorth Shropshire
HI-FI loudspeaker systems for the home constructor, cabinet kits, the new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding, speaker fabric (samples on request) and all other necessary components. Send 5d in stamps to: AUDIOSCAN, Dept. PW, 4 Princes Square, Harrogate, Yorks.

INTEGRATED CIRCUITS at lowest price GE Type PA234 1 Watt Audio Amplifier 17/6d. each inc. data. Newest GE Silicon NPN plana transistor 2N5172. Epoxy for economy Passivated for reliability. 25 volt 200 mW hfe 100 min. 1/9d. each. C.W.O. P. \& P. $1 /$-d. per order. JEF ELECTRONICS, 12 York Drive, Grappenhall, Warrington, Lancs. Mail Order Only.

RECEIVERS \& COMPONENTS

 (continued)| STABILISED | POWER | SUPPLY |
| :---: | :---: | :---: |
| as described in this issue | | |
| Transformer | | 13/6d |
| Smoothing Capaci | | 3/9d |
| Rectifier diodes (4) | | . 6/0d |
| Zener diode | | 4/6d |
| Veroboard $2 \frac{1}{2}{ }^{\prime \prime} \times 3$ | | 3/3d |
| Complete kit of ab | - | 27/6d |
| All parts as specified in article. Postage and Packing 1/- | | |
| BELL,
 59. Fairfield Drive. Whitley Bay, Northumberland | | |

BRAND NEW ELECTROLYTICS, $15 / 16$ volt. $0,5,1,2,6,8,10,15,20,30,40.50,100.200$ mfds. $8 / .6,8,10,15.20,30,40,50,100.200$ Supply Co., 127 Chesterfield Road, Sheffield 8.

BARGAIN LIST

 Metal Rectiflers, BYZ 12, BYZ16 at $3 /$ - each. Metal Rectifers, 12 v 2 amp at $3 / 9$ each. Metal Recrifery. 12v 4amp at 7/6 each. TV Metal Rectifiers, 250v $200 \mathrm{~m} / \mathrm{n}$ at $4 / 6$.
Edgewise Volume Controle 5 x Jap Replacements, $3 / 8$ each. Pranel Meters, new square Clear Plastic. $1.85 \times 1.680 .1 \mathrm{mi}$ Froat at 81.0 .0 each.
Panel Meters 500 micro amp at 81.4 .0 each.
Toggie 8witches 8PsT; 2\%6. IPDDT at 8/- eitch.
Transtorniers-subminiature output 3 ohbus for oci etc. at $2 / 6$ each.
Transformers-subminiature Driver for above at $2 / 6$ each. Jack Plings Btandard at 8/-. Jack Bockeve at $1 / 8$. Pax Panels $6 \mathrm{in} . \times 4 \mathrm{in} . \times 1 / 16 \mathrm{in}$. at 10 d . *in. \times fin. "t
$1 / 6$ each. $1 / 6$ each.
Condeusers 25 mi 25 v at 11 - tin. Iron dust core. it
Bd. per doz. Bd. per doz
miature slide awitches DPIOT at $1 / 8$ each.
Aluminium Panels 6 in. $x 4 i n$. at $1 / 3$. 8in. x fin. at $9 /$ - earch Earpieces with legd and 3.5 mm Plug $1 / 9$.

HALSE SERVICES ${ }^{\text {Pr }}$
36 GLOUCESTER ROAD, FELTEAM, MIDDIESEX
PACKS of mixed 4BA and 6BA plated screws and nuts. Min. quantity of 150 items per pack. 10 - per pack incl. postage. For specific require ments send SAE. WESTEK, P.O. Box 7. Rickmansworth, Herts.

EMSAC BASIC ANTENNA SYSTEMS. Two meter converter-assembled $£ 10$, kit £8.10.0. Send SAE for details of this and antenna systems, antenna tuning units, etc. toElectronic \& MechanicalSub-AssemblyCo.Ltd.. Highfield House, West Kingsdown, Kent.

VALVE BARGAINS

Any 5-9/-, 10-14/-, 100 £5. 10. 0 , From the list below:
ECC82, ECL80, EF80, EF85. EY86, PCC84, PCC89, PCF80, PCL82, PCL83, PL36, PL81. PL82, PL83, PY33, PY81, PY82, 30F5, 6.30L2, 30FL1, ALL VALVES SET TESTED P \& P $1 /-$

S. ASHWORTH

Velco Electronics, 62 Bridge Street, Ramsbottom, Bury, Lancs.

NEW VHF KIT

Receives Television Sourd, Ambulances, Alreraft, Radio \% , 3 and 4 on VHF etc.
This novel little set will give you endless hours of pleanure and can be built in one evening. The Kit comes with easy Complete with bullt in Jack Plag Bocket for use with Earphones or Amplifier.

```
ONLY 57/-. P. \& P. FREXE U.K. ONLY
Pnstal Orders, Cheques t,
```

Galleon Trading Co., 298A Lanige L
SILICON PLANAR TRANSISTORS. 100% tested and full data supplied with orders. NPN types for organ projects, 25 for $£ 1$. PNP types similar to 2 N 3702 and germanium similar to ACY22, 50 for $£ 1$. Post free. WESTEK, P.O Box 7, Rickmansworth. Herts.

RADIO TELEMETER UNIT
These are a low freq. Rx working on 120 Kc for use on 230 v mains, they can be modified to 200 Kc Radio 2 or provide basis for swt tuned radio or gram amp. Uses valves ECF $82 \times 3,6 \mathrm{BE} 6,12 \mathrm{BH} 7,6 \mathrm{BA} 8$, as $3 \frac{1}{2}$ spk. 2 low speed motors, tape head with tape loop, also relays coils swts etc. Complete in case size $14 \times 7 \times 6$ in. In good plete in case size $14 \times 7 \times 6$ mods.
condition with circ and mods.

Price $£ 3$ 5s. plus $7 / 6$ carr.
RX UNIT 6449
This is an R.F. I.F. unit. The R.F. section tunes approx. 180 to $220 \mathrm{Mc} / \mathrm{s}$. This is motor tuned by a small 24 v motor. Uses valves EC91 RF. EF91 Mix, 6C4 L.O.: this is followed by a 6 stage $45 \mathrm{Mc} / \mathrm{s}$ I.F. strip with EF91 valves, EB91 Det and EL91 Vid O / P. A small 24 v cooling blower is also fitted. These are ex equipment in good condition.

Price $£ 4$ plus $7 / 6$ post.

AMPLIFIER UNIT 469

$1 / \mathrm{P} 230 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$. These are a record playback amp and use valves $6 \mathrm{X} 4,6 \mathrm{AQ} 5.12 \mathrm{AT} 7$, 6BA6 in the main artp. This has a 3 ohm monitor O / P and a 15 ohm main O / P line, input is 600 ohm or 100 K . There is also a mixer channel for injecting time markers mixer channel for injecting rime markers
with valves $12 \mathrm{AT} 7 \times 2$ and 6 ALS . An O/P with valves is also fitted, jack sockets for mike and replay monitor are fitted, also preset level controls. The normal O/P of these units is approx 2.5 watts: this can be increased to 5 watts. 2 P.O. relays are also fitted for remote control, also a 50 v relay supply. These are a well made unit in good condition.

Price $£ 4$ plus 10 - carr.

SELECTOR UNIT 7003

These contain a number of useful parts as follows: Meter 1 mA scaled 0 to 1 and 0 to $180^{\prime} .2$ in. sq. Motor P.M. 24 v driving into a reduction gear the o/p operates a 24 way switch, 13 relays 24 y 2 pole c/o fuse, ind. lamp etc. Complete in case with outer cover size $12 \times 5 \frac{1}{2} \times 7 \frac{1}{2} \mathrm{in}$. Good condition.

Price 30/-plus $7 / 6$ carr.
CONTROL UNIT 903
Contains 9 24v relays, 2 and 4 pole c/o, 212 v relays. 2 and 4 pole c / o, small $400 \mathrm{c} / \mathrm{s}$ motor driving into a small gearbox. The o/p operates a micro switch. Modern unit in good condition.

Price $17 / 6$ plus $6 /$-post.
I.F. UNIT 215

This is a $45 \mathrm{Mc} / \mathrm{s}$ I.F. strip with 5 stages, also Det and Vid o/p stage valves EF50 $\times 6$, supplied with coax and power plugs, ex equipment.

Price $15 /-$ plus $5 /-$ post.
E.H.T. P.U.

This is an R.F. EHT unit O/P $8 \mathrm{~K} v$ with valves CV2231 and CV4024 with H.V. connector, ex equipment.

Price 25/- plus 5/- post.

CONTROL PANEL

Contains 15 miniature pots as follows: 1 meg $\times 6,100 \mathrm{~K} \times 8$ and 1 K . All have tin . shafts with single nut fixing, min. shaft size年in.. body size $\frac{8}{4} \times \frac{1}{2} \mathrm{in}$. Ex equipment, good condition.

Price $12 / 6$ plus $3 /$ post.
MAINS TRANSFORMER
Pri. 230y $50 \mathrm{c} / \mathrm{s}$, sec. $350-310-0-310-350$ at 220 mA . 5 v at $6 \mathrm{a}, 6.7 \mathrm{v}$ at $5 \mathrm{a}, 6.3 \mathrm{v}$ at 3 a twice, 6.3 v la twice. Potted type ex equipment.

Price 35/- plus 7/6 carr.

METERS

Two types available, edgewise reading type 1 mA scaled 0 to 2000 yds linear scale 10 divisions scale $2 \frac{1}{5} \times \frac{4 i n}{}$., $3 \frac{1}{2} \mathrm{in}$. deep. Ex equipment, also $500 \mu \mathrm{~A}$ scaled 0 to 5 $2 t \mathrm{OSD}$ req. 2 in . hole. Ex equipment.

Price both types $17 / 6$ plus $2 / 6$ post.

57 Main Road, Sheffield S9 5HL. Open to callers Mon, Wed, Fri and Sat only

METAL WORK
METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

AERIALS

BAKER and BAINES

FOR TELEVISION AND F.M. AERIALS
Examples fo prices: F. M. dipole 21/-, H $38 /$ - BBC dipole $30 /-$, X $38 /-$, H $42 /-$, 3 ele $89 /-$, ITA 3 ele $36 /-$, 5 ele 34/-, 8 ele 47/6, 11 ele 57/6, double 8 112/-, double 11 140/-, combined BBC/ITV $1+545 /-, H+569 /-1$ $x+575 /-$ BBC 28 ele 29/-, 14 ele $37 /-18$ ele $54 /-, 22$ ele 63/- double 22 ele $142 /$-. Loft special BBC/ITA $1+5$ 63/. domplete with pole and brackets 37/-. Prices ele complete wi PO. CWO state channels please Include clamps \&PP. CWO. state chamnels please.
SAE enquiries. Coax, diplexes, poies, iashings etc. SAE enqu
avallable.

11 DALE CRESCENT, TUPTON, CHESTERFIELD

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plasticcoated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.

Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit. All edges are polished.

LIST OF PRICES AND SIZES
which are made to fit Standard

W'idh	Depth	Alloy Chassis				71" Heigh	
		$4{ }^{-1} \mathrm{Heio}$		$6^{*} \mathrm{He}$			
	3\%	¢ ${ }^{8} 12$	${ }_{6}$	± 15	0		
61°	41^{1}	13	6	18	0		
81°	$3{ }^{3 \%}$	15	0	10	6		
$81^{\circ}{ }^{\circ}$	${ }^{60^{\circ}}$	18	${ }_{8}$	115	6	11	
122*	3i*	1	0	1.6	8		
121*	31.	8		114	0	1	
12:*	${ }^{81}$	${ }_{1} 16$	0		${ }_{6}$	${ }_{1}^{2} 1$	
144 $14 \times$	3\%		${ }_{0}^{0}$	215	9	21	
164°	$6^{6}{ }^{\circ}$	118	6		3	21	
16:*	101*	2	0	3		31	

Discounts, available on quantities.
CHASSIS in Aluminium, Standard Sizes, with Gusset Plates
Sizes to fit Cases. All $2 \frac{1}{2}$ " Walls

$6^{6 *} \times 3^{*}$	5	${ }_{6}^{6}$	$\begin{array}{cc}10^{\prime \prime} \times 7^{\prime \prime} & 8 \\ 12^{\prime \prime} \times{ }^{\prime \prime} & 6\end{array}$	${ }_{9}^{6}$	$14^{\prime \prime} \times 3^{\prime \prime}$ $14^{*} \times 9^{* \prime}$	4
$6{ }^{\circ} \times 4^{* *}$ 8×3	5	9			${ }_{16 *}^{14 \times 6^{*}}$	10
$8_{8 *} \times 6^{*}$	7	9	$12^{\prime \prime} \times 8^{\prime \prime} 10$		$16^{*} \times 10{ }^{*}$	
Chassis-Post 3s. Od. per order.						

E. R. NICHOLLS

Manufacturer of Electronic instrument Cases 46 LOWFIELD ROAD STOCKPORT - CHESHIRE

Tel: 061 -480 2179

-
PLEASE MENTION
"PRACTICAL WIRELESS""
WHEN REPLYING TO
ADVERTISEMENTS

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE. YORKS.
ndicator Unit Type 26 . Sleckheaton 2866
Size $12 \times 9 \times 9 i n$ Indicator Unit Type 26. Size $12 \times 9 \times 9 \mathrm{in}$.
With Outer Case fitted with $2 \frac{1}{\frac{1}{2}} \mathrm{in}$. CRT Type CV1526 9 B7G Valves. Clean condition but not tested. 32/6, p. \& p. 10/-.
Aircraft Sighting Head with Gyro Unit complete with Transit Case. Condition fair. 18/6, carriage B.R.S. 12/-
Oscillator Type 37. Complete with AC230 Volt Power Pack, Circuit and Grid Ref. Volt Power Pack, Circuit and Grid Ref.
Map condition good 37/6, carriage B.R.S. $12 /$
N.S.F. Toggle Switches D.P.D.T. Ex Units $1 /-$, post $1 /$; ; 12 for $10 /-$ post paid.
Ex Washing Machine Motors. Single phase 230 volt 1425 R.P.M. All perfect $26 /-$, post and packing 10/-.
Model Makers Motor with Train of Gears. 24 volts. Will run off 12 or 6 volts at slower speeds. $5 /-$, post and packing $3 / 6$.
Speakers removed from T.V. Sets. All PM and 3 ohm . 6in. round $3 /-$, p. \& p. $3 /-$; 6 for $24 /-$ post paid. $6 \times 4 \mathrm{in} .3 /-$, p. \& p. $3 /-$ 6 for $24 /-$, post paid. 5 in . round $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$ post paid. $7 \times 4 \mathrm{in} .5 /-$, p. \& p. $3 /-$; 6 for 34 /- post paid. Slot Speakers 8×2 in. $5 /-$, p. \& p. $3 /-; 6$ for $30 /-$ post paid; Reclaimed T.V. Tubes, with 6 months guarantee 17 in . Type AW43/80, AW43/88 guarantee 17 in . Type AW4 $40 /$ MW $3 / 69$, 14 in . Type $17 /$. All Tubes $12 /-$ carriage. T.V. Tubes as above with slight scratch on face $£ 1$ each. Carriage 12/-
Silicon Rectifier 500 MA 800 PIV. 2/6 post paid. $24 /$ - per dozen post paid.
Jap Earpiece. Magnetic 8 ohm . Sinall and Large Plug $1 / 11$ post paid.
G.P. Diodes $3 / 6$ per dozen, post paid.

Top Grade Mylar Tapes. 7 in. Standard $11 / 6$. 7in. Long Play 14/-, 7 in. Double Play 19/6. 5 in . Standard $7 / 9$. 5 in . Long Play $10 /-$ plus post on any tape $1 / 9$.

VALVE LIST-EX Equipment. 8 months guarantee Single valves Post 7 d ., over 3 valver p. \& p. paid | ARP12 | $1 / 6$ | PCL82 |
| :--- | :--- | :--- |
| EB91 | 9 d. | PCL83 |

EB91	9d.	PCL83
EF85	$8 /-$	PL36
EBF80	$8 /-$	PL38
EL81		

ECC
ECC8
ECC83
ECL80
EF50
EF50
EF80
EF91
EF91
EY86
PCCB
PCCB4
PCF80

3 V	688.	$1 / 8$
4 4-	$6 \mathrm{B8}$	$1 / 8$
51-	6BW7	2/6
5	6 K 7	$1 / 9$
6/-	6 U 4	81
4/-	6 P 28	$81-$
$51-$	10P13	8/6
1/6	185BT	$8 / 6$
$1 / 6$	20D1	81-
$51-$	20 Pl	$81-$
51-	20P3	$2 / 6$
51-	30 PLL	$61-$
5j-	$30 \mathrm{Pl2}$	$51-$
$51-$	30 Fs	$2 / 8$
51-	30 FL 1	51-
8J-	6/30L2	$5 /-$

NEW VALVES!
Guaranteed and Tested 24-HOUR SERVICE

IR5	5/6	DL94	5/9	EYB1 6/9	PL84	$6 / 6$
188	4/8	DL96	6/9	EY86 $5 / 9$	PL500	18/1
$1 \mathrm{~T}^{4}$	$8 / 8$	DY86	518	EZ80 3/8	PL504	$18 / 8$
384	$5 / 9$	DY87	$5 / 8$	EZ81 $4 / 6$	PY32	101
3V4	819	EABC80	5/8	KT61 8/8	PY33	101-
6ACS	4/8	EBC41	918	K T66 15/9	PY81	$5 /-$
6V6G	$31-$	EBF80	61-	$\begin{array}{ll}\mathrm{N} 78 & 17 /-\end{array}$	PY82	-
2616GT	$4 / 6$	EBF89	$5 / 9$	PABC80 $6 / 9$	PY83	8/8
30 Cl 8	816	ECC82	4/-	PC86 10/3	PY88	8/8
30 FLl	18/6	ECC83	4/9	PC88 10/8	PY800	$6 / 8$
$30 \mathrm{FLl2}$	$14 / 8$	ECC85	5/6	PC97	PY801	6/8
30 FL 14	$11 / 8$	ECH35	5/6	PC900 7\%-	R19	$6 / 8$
30 P 4	11/6	ECH42	$10 / 8$	PCC84 618	U25	18/8
30 P 19	11/6	ECH81	$5 / 8$	PCC89 9/9	U26	$11 / 8$
30 PL 1	18/8	ECL80	8/8	PCF80 5/11	${ }^{\text {U191}}$	18/-
30 PL 13	14/9	ECL82	$6 / 8$	PCF801 $6 / 8$	U193	$8 / 6$
CCH35	$9 / 8$	ECL86	716	PCFB02 8/6	UABC80	
CLS3	17/8	EFF37A	81-	PCF805 8/6	UBC41	$8 / 8$
DAC32	6/9	EF39	$4 / 6$	PCF808 $11 / 9$	UBF89	$8 / 8$
DAF91	$4 / 8$	EF80	$4 / 6$	PCL82 6/9	UCC85	6/8
DAF96	$6 / 8$	EF85	419	PCL83 8/9	UCR42	$10 / 6$
DF33	$7 / 8$	EF86	818	PCL84 7 7-	UCH81	$8 /$
DF91	219	EF89	4/9	PCL85 819	UCL82	$8 / 9$
DF96	8/8	EF'183	5/8	PCL86 8/-	UF41	$10 / 6$
DK32	$6 / 9$	EF184	$5 / 8$	PFL20011/9	UF89	8/6
DK91	$5 / 6$	EH90	$61-$	PL36 9/8	UL41	10/8
DE96	$8 / 6$	EL33	$8 / 8$	PL81 71-	UL84	6/8
DL35	4%	EL41	$10 / 8$	PL82 5/9	UY41	8/8
DL92	$5 / 9$	EL84	4/9	PL83 6/8	UY	5/8

postage 6d. per valve sxtra. Any parcel insured against
GERALD BERNARD
83 OSBALDESTON ROAD STOKE NEWINGTON

LONDON, N. 16

Horstmann "Time and Set" Switch
A 15 amp 8 witch). Just the thing if you want to come hume o a warm humse without it costing you a fortune. Yol can delay the gwitch on time of your electric fires, etc., up to a bonst period of up to 3 hur you can une the suitch to give processing. Regular price prone Equaly suitable to control priec 29/6, p. \& inar t/h.

ATLAS SLIMLINE FLUORESCENTS THE TWENTYLITE

A Fluorescent lighting Ant made by the famous Atias company, with
ouper super milent polyester
filled choke and radio filled choke and radio
starter. The tube beautifully made and finished white enamel. Amazingly ecomomical. If left on all the time costs only one penny per day (luses unit). Meanures 2ft, long. la ideal in Kitchen. Bedroom, Hallway. Porch, Loft, etc. Don't miss this amazing offer, $39 / 6$ with tube. Assembled
ready to install. Postage and insurance $6 / 6$ extra.

DREAMLAND

 CLOCK SWITCHThe womlerind DREAMLAND mains operated clock wwitch will atutonatically wwitch yon blariket oll wat off each evening and sou will dways have a warm bed. It'x luminous 500 call ilways see the time and it's a realy lematiful unit. An ileal gift (en als really taperiturder, An heal gitc. Cin also contro $39 / 6$ purn

LEX CABLE BARGAIN
3/00.6t triple core P.V.C'. covered, wircular. normally aold at $1 / 6 \mathrm{yd}$. Our price (10 yol. coil \&3.10.6. P'ast and insurance 6/6.

Where postage is not stated then orders wer tia are post free. Below \&:3 adil w/g. semi-conductors add 11 post. Over $f 1$ prat frew. R.A.E. with entuiries pleise.

OUT OF SEASON BARGAIN
Famous Norvic electric blanket claimed to be the most reliable in Britain. We offer at less than Hholesale price "Corona de Juxe" model, this has thick fleecy corer asfe element and double undo the press studs to wash cover-double bed size $60 \times 48 \mathrm{in}$. - with control switch giving choice of three heata-in presentation box showing regular price se.3.6-we offer at 85.19 .6 , post and
ins. paid.

THERMAL CUTOUT

A miniature device $\frac{i n}{}$ in. dia. on one screw protection-fire alarm-soldering iron overtch ond etc., etc.- 16 amp contacts open with filameradiant or conducted heat. 1/6 eacb, 15/- doz. e 5100 .

STEREO CABINET

size $25 \times 14 \times 9$ in. deep-speaker compartment each end-centrc portion with hinged lid and removable bottom has platform for autochanger and room for amplifler-two tone (red and grey) rexise covered by loud speaker ends neell metal grills-with handle and clipe-29/6, carriage
and packing $15 /$.

$2 \frac{1}{2} k W$ FAN HEATER Three position switching to Three position owitching to suit changes in the weather. kW), switch fown for hall heat I\&kw), switch central blows cold tor summer cooling -adjustable thermostat acts as auto control and safety cutout. Complete kit $\quad 83.15 .0$.
Post and ins. $7 / 6$.
COPPER CLAD ELEMENT 3250 watts-4ft. long but bent to U shape, ideal $18 / 6$ each, plus $1 / 6$ post 88 duz poect abo

500W IMMERSION HEATER
For small process tankn, etc., $200 / 240 \mathrm{~V}$ For small process tank, etc., $200 / 240 \mathrm{in}$. dia. approx. 1 in., chrome plated $14 / 6$. Post and insurance 4/6.

ELECTRONICS (CROYDON) LTD Dept PW 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

Head Office and Warehouse 4AA WESTBOURNE GROVE LONDON W2
Tal．PARK 5641／2／3

Z \＆I AERO SERVICES LTD．

Please send all correspondence and Mail－Orders to the Head Omice
When sending cash with order，please include $2 / 6$ in \mathcal{E} for postage and banding MINIMUM CHARGE 2／6．No C．0．D．orders accopted．

Retail Shop
85 TOTTENHAM COURT ROAD LONDON WI
Tel．LANgham 8403
Open all day Saturday

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& 6DK6 8／6 \& \& First Dua \& \& \& Fuly G \& ant \& \(d\) \& \[
\begin{aligned}
\& \text { EL360 } \\
\& \text { E1s } 83 /- \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{cc}
\text { PCC85 } \& 8 /- \\
\text { PCC88 } \& 12 /-
\end{array}
\] \& \[
\begin{array}{ll}
\text { PL500 } \& 15 /- \\
\text { PL504 } \& 16 /-
\end{array}
\] \& \[
\begin{array}{ll}
\mathrm{U} 801 \mathrm{CO} \\
\text { UABCRO } \\
\hline
\end{array}
\] \\
\hline OA3 \& \(91-\) \& 6A1 \& 6DGAB 12／－ \& 9BW6 8／6 \& Filst Cua \& \& \& \& \& \& ELK21 11／－ \& PCC89 \(10 / 6\) \& PLL509 80／－ \& UAF61 10／－ \\
\hline B2 \& 8／8 \& 81－ \& 61594 15／－ \& \(10 \mathrm{C2}\) 10／－ \& \& \& \& \& \& \& EL822 181 \& PCC189 \(11 /\) \& PL508 17／6 \& UAF42 10／6 \\
\hline B3 \& 10／－ \& fillisct \& 6 EAB 11／－ \& 10D1 \& \& \& \& \& \& \& ELL80 15！ \& PCC805 171 \& PL801 16／－ \& BC41 9／6 \\
\hline 3 \& \(71-\) \& 22／6 \& \(6 \mathrm{EH} 7 \quad 6 / 6\) \& \(\begin{array}{lr}10 \mathrm{D} 2 \& 8 /- \\ 10 \mathrm{Fl} \& 18 /-\end{array}\) \& \& \& \& \& \& \& EM34 16／－ \& PCC806 17／－ \& PL802 \({ }^{\text {PLL80 }} 11 /-\) \& UBC41 \\
\hline OD3 \& 8／6 \& 6 ALV 6／－ \& \({ }^{6 E 5 J}\) 6F1 \({ }^{\text {6／－}}\) \& \(\begin{array}{ll}10 \mathrm{Fl} \& 18 /- \\ 10 \mathrm{Fg} \& 10 /-\end{array}\) \& \& \& \& \& \& \& \(\begin{array}{lr}\text { EM71 } \& 12 / 8 \\ \text { EM80 } \& 8 /-\end{array}\) \& PCE80015／－ PCF80 8／6 \& \& UBC81 \({ }_{\text {U }}\) 7／3 \\
\hline 1B3GT \& 7／8 \& 6AV5GTA \& \(\begin{array}{ll}\text { 6F1 } \\ 6 \mathrm{FFG} \& 14 /- \\ 5 /-\end{array}\) \& \(\begin{array}{lr}10 \mathrm{Fl} \\ \text { l0 } \& 8 /-\end{array}\) \& \& \& \& \& D \& \& \(\begin{array}{ll}\text { EM80 } \& 8 /- \\ \text { EM81 } \& 8 / 6\end{array}\) \& \(\begin{array}{ll}\text { PCF80 } \& 8 / 6 \\ \text { PCF82 } \& 6 / 9\end{array}\) \& \(\begin{array}{ll}\text { PM84 } \\ \text { PX4 } \& \text { 80／－}\end{array}\) \& UBF89 7\％－ \\
\hline 114 \& 3／6 \& 6Av6 13／－ 6 ／－ \& \(\begin{array}{lll}\text { 6F6G } \\ 6 \mathrm{~F} 11 \& \text { B／6 }\end{array}\) \& 10 LI 81－ \& \& \& \& \& \& \& 18184 \& PCF84 9f－ \& PX25 80／－ \& UBL1 101－ \\
\hline 1N5GT \& 8／6 \& 6AV6 67－ \& \(\begin{array}{ll}\text { 6F11 } \\ 6 \text { F12 } \& 4 / 6\end{array}\) \& \(10 \mathrm{LD1111/-}\) \& \& \& \& \& \& \& \(\begin{array}{ll}\text { EM84 } \& 716 \\ \text { EM87 } \& 11 /-\end{array}\) \& PCF86 11／－ \& PY31 5／－ \& UBL21 12／－ \\
\hline 1 R 4 \& 6／6 \& 6AX4GTB \& 6 F13 7／－ \& 10 P 13 11／－ \& \& \& \& \& \& \& EN91 6／6 \& PCF87 16／ \& PY32 11／－ \& \(\begin{array}{ll}\text { UC92 } \& 0 / 8 \\ \text { UCC85 } \& 8 /-\end{array}\) \\
\hline 1R5 \& \(71-\) \& 9／－ \& 6 F14 12J－ \& 10 Pl 1480 \& \& \& \& \& \& \& EY51 8／－ \& PCF800 15／－ \& PY33 12／8 \& C \\
\hline 15 \& 5／6 \& 6AX5GT \& 6 F15 11／ \& 12ABE 10／－ \& \& 35A1 \& 25／－ \& DY802 10／－ \& ECL82 \& 6／8 \& EY80 91－ \& PUP801 10／－ \& PY80 6／6 \& ICF80
UCH210／6
11／－ \\
\hline 185 \& \(51-\) \& 13／－ \& 6F18 8／－ \& 12AC6 7／6 \& 20 P 4 201－ \& 85 A2 \& \(7 / 6\) \& E55L 55／－ \& ECL83 \& 12／8 \& EY81 81－ \& PCF802 10／－ \& \begin{tabular}{ll}
PY81 \\
PY82 \& \(6 /-\) \\
\hline \(6 /-\)
\end{tabular} \& UCH42 \\
\hline 1T4 \& 4／6 \& 6BAB \(4 / 6\) \& 6F22 6／6 \& 12ADG \({ }^{\text {12，}}\) \& 0P5 20／－ \& 90 A \& \(481-\) \& E1301 90／－ \& ECL84 \& 11／－ \& EY83 11／－ \& PCF805 15／－ \& \(\begin{array}{ll}\text { PY82 } \& 6 /- \\ \text { PY80 } \& 7 / 6\end{array}\) \& \begin{tabular}{ll}
UCH 42 \& \(18 /-\) \\
\\
\& \\
\hline
\end{tabular} \\
\hline 1014 \& \(61-\) \& 68Ef 5／－ \& \(\begin{array}{ll}\text { 6F23 } \& 15 / 8 \\ 6 \mathrm{~F}^{24} 4 \& 13 / 6\end{array}\) \& 12AH7GT－ \& 25 Cs 9／－ \& 90 AV \& 481－ \& E180F 19／－ \& \(\underset{\text { ECLL86 }}{ }\) \& \(10 / 8\)
\(8 / 8\) \& EY84
EY86
10／－ \& PCF806 13／－ \& \[
\begin{array}{ll}
\text { PY8: } \& 7 / 6 \\
\text { PY } 88 \& 8 /-
\end{array}
\] \& \[
\begin{aligned}
\& \text { UCH43 } \\
\& \text { 18CHI } \\
\& 6 / 6
\end{aligned}
\] \\
\hline 1U5 \& \[
\begin{aligned}
\& 9 / 8 \\
\& 9 /-
\end{aligned}
\] \& \(\begin{array}{cc}\text { 6BF5 } \& 16 /- \\ 68 P 6 \& 9 /-\end{array}\) \& \(\begin{array}{ll}6 \mathrm{~F} 24 \& 18 / 6 \\ \text { 6F25 } \& 15 /-\end{array}\) \& 12AL5 8／－ \& \(25 \mathrm{L6GT} 7 / 6\) \& \({ }_{90 \mathrm{CG}}^{90 \mathrm{Cl}}\) \& 12／－ \& E280F 48／－ \& ECL86 \& 888 \& \(\begin{array}{ll}\text { EY86 } \& 8 /- \\ \text { EY87 } \& 8 / 6\end{array}\) \& PCF80815／6
PCH200 \& PY880 201－ \& UCL81 11／－ \\
\hline \[
\begin{aligned}
\& \text { IV2 } \\
\& 1 \times 2 \mathrm{~B}
\end{aligned}
\] \& \[
9 /-
\] \& 6BF6
6 BGGG
\(12 /-\) \& \(6 \mathrm{FF}^{6} 26\) 7／－ \& \(12 \mathrm{AQS} 81-\) \& \(25 \mathrm{Z4G}\) 6／－ \& 90CG \& 251－ \& EABC80 \({ }^{\text {E／8 }}\) \& EF39 \& \(8 /-\) \& \(\begin{array}{ll}\text { EY8 } \\ \text { EY8 } \& 8 / 6\end{array}\) \& 14／－ \& PY800 101－ \& UCL82 \(71-\) \\
\hline 2CW4 \& 12／－ \& 6В \({ }^{\text {¢ }} 6816\) \& 6F＇28 14／－ \& 12AT6 5／－ \& \({ }_{3045}^{2586 G T}\) 81－ \& 807 \& \(9 / 6\) \& EAF801 9／B \& EF40 \& 101－ \& EZ35 5／6 \& PCLS \({ }^{\text {PCL }} 161\)－ \& PY801 10／－ \& UCL83
UDI
18／－
18 \\
\hline 2 D 21 \& 8／6 \& 6BJ6 8／8 \& F29 6／6 \& \(\begin{array}{ll}\text { 12AT7 } \& 8 / 6 \\ \text { 12AN6 } \& 5 / 6\end{array}\) \& \(\begin{array}{ll}\text { 30A5 } \& 81- \\ 304 \& 8 /-\end{array}\) \& 866A \& 14／－ \& EBC33 9／－ \& EF41 \& \(12 / 6\) \& EZ40 8／－ \& PCL81 101－ \& 22－6 \& UDI43
TF9
11／－ \\
\hline 3A3 \& 11／ \& 3BK4 21／－ \& 7／6 \& \(\begin{array}{ll}16 \& 6 / 6 \\ 7 \& 67\end{array}\) \& \(\begin{array}{ll}30 \mathrm{Cl} \& 8 / 6 \\ 3 / 6\end{array}\) \& tin 80 \& \(27 / 8\) \& EBC41 \(10 / 6\) \& EF42 \& 14／－ \& \(\begin{array}{ll}\text { EZ41 } \& \text { E／80 } \\ \text { E／8 }\end{array}\) \& \[
\text { PCLBZ } 710
\] \& 42／－ \& U＇F9 \({ }_{\text {UF11 }}\) \\
\hline 3 A 4 \& \(4 / 7\) \& 6BK7A 10／－ \& 9／6 \& 12AV年 \(61-\) \& 30 Cl 5 15 \(/-\) \& \({ }^{6} 1466\) \& \(301-\) \& \(\begin{array}{ll}\text { EBC81 } \& 6 / 6 \\ \mathrm{EBC} 90 \& 5 /-\end{array}\) \& EF55 \& 18／－ \& \(\begin{array}{ll}\text { EZ80 } \& 5 / 6 \\ \text { EZ81 } \& 6 / 6\end{array}\) \& \[
\begin{array}{lll}
\text { PCL83 } \& 18 /- \\
\text { PCL84 } \& 8 / 9
\end{array}
\] \& 25／－ \& \({ }^{\text {＇1F41 }} 101\) 10／－ \\
\hline 3A5 \& \(101-\) \& 12／－ \& \(\begin{array}{ll}\text { 65\％} \& 8 / 8\end{array}\) \& 12Al\％of－ \& \(\begin{array}{ll}30 \mathrm{Cl17} \& 18 /- \\ 30 \mathrm{Cli} \& 15 /-\end{array}\) \& 6146B \& \(47 / 6\)
\(6 / 8\) \& \(\begin{array}{ll}\text { EBC90 } \& 5 /- \\ \text { EBC91 } \& \text { f／－}\end{array}\) \& EF83 \& 101－ \& EZ90 \({ }^{\text {E／－}}\) \& \(\begin{array}{ll}\text { PCL85 } \& 9 / 6\end{array}\) \& 3－201 \& \({ }^{1+542}\) 18／－ \\
\hline \(3 \mathrm{Q4}\) \& 81 \& 6BL8 7／－ \& かK6GT 10／－ \& 12AX4GTB \& 30 Cl 8 \& 6 \& \(251-\) \& EBF80 8／－ \& EF85 \& \(71-\) \& FW4／500 \& PCL86 \(9 / 6\) \& 105／－ \& 1543 \(11 /{ }^{-1 / 6}\) \\
\hline 3 QSGT \& 81 \& 6 BN 4 13／－ \& 6 K 7 6／6 \& 10／－ \& \begin{tabular}{ll}
30 Fb \& 171 \\
30 FLI \& 15 \\
\hline
\end{tabular} \& 6939 \& 42f－ \& EBF83 816 \& EF86 \& 6／6 \& 18／6 \& PC1．88 171－ \& \& \begin{tabular}{ll}
［F80 \\
UF85 \& \(7 / 6\) \\
\hline \(1 /\)
\end{tabular} \\
\hline 384 \& \(71-\) \& GBN5 8／6 \& 84 6／－ \& 12 AXt \％6／－ \& \(30 \mathrm{FLL} 218 / 6\) \& 7199 \& 151－ \& EBF89 8／6 \& EF89 \& \(5 / 6\) \& 6847X 56t－ \& PCL800 18／－ \& 110 \& UF89 7／－ \\
\hline V4 \& 81 \& 6BN6 8／－ \& 6 K 23 10／－ \& 12AY7 \(13 / 6\) \& L13 101－ \& 7591A \& \(201-\) \& EBL31 25／－ \& EF91 \& 4／8 \& GY501 16／－ \& PCL801 15／6 \& \& UF89
UL41
12／－ \\
\hline \(5 \mathrm{R4G}\) \& \(11-\) \& \(6 \mathrm{BQ5}\) 5／－ \& 6K25 \(15 /-\) \& 12B4A \({ }_{\text {12 }}\) 10／－ \& 30FL14 15／6 \& 9002 \& \(6 / 6\) \& Ex－53 10／－ \& \({ }_{\text {EF92 }}\) \& \(7 / 6\)
\(4 / 6\) \& \(\begin{array}{ll}\text { aZ30 } \& 7 / 6 \\ \text { GZ31 } \& 6 /-\end{array}\) \& PL500 80／－ \& 18／－ \& \(\begin{array}{ll}\text { TL84 } \& \text { 12／8 }\end{array}\) \\
\hline U4G \& \(81-\) \& ABQ6GTB \& \(\begin{array}{ll}\text { 6LiGT } \& 9 /- \\ 6 \mathrm{Li} \& 6 / 6\end{array}\) \& \(\begin{array}{ll}12 \mathrm{BA6} \& 6 / 6 \\ \text { 12BA7 } \& 6 / 6\end{array}\) \& \[
30 \mathrm{~L} 1 \quad 71
\] \& 9003 \& 101－ \& ECx6 121－ \& \({ }_{\text {EF93 }}\) \& 4／6 \& \[
\begin{array}{ll}
\text { GZ31 } \& 6 /- \\
\text { GZ32 } \& 0 / 6
\end{array}
\] \& DL \& SP41 7\％ \& UM4 8／－ \\
\hline 50゙44B \& \(7 / 6\) \& 13／－ \& \(\begin{array}{ll}6 L 7 \& 8 / 6 \\ 6118 \& 6 /-\end{array}\) \& \[
\begin{array}{ll}
\text { 12BA7 } \& 6 / 6 \\
\text { 12BE6 } \& 6 / 6
\end{array}
\] \& \[
30 \mathrm{~L} 15 \quad 17 /-
\] \& AZ31 \& 101－ \& \(\begin{array}{cc}\text { EC88 } \& 18 /- \\ \text { EC90 } \& 6 /-\end{array}\) \& \(\underset{\text { EF94 }}{\text { EF95 }}\) \& 8／－ \& \(\begin{array}{cr}\text { GZ32 } \& 9 / 8 \\ \text { GZ33 } \& 16 /-\end{array}\) \& P \& SP42 12／－ \& ＇M84 4I－ \\
\hline 5V4G \& 81－ \& \({ }^{6 B Q 7 A}\) 7／6 \& \[
\begin{array}{ll}
6 \mathrm{~L} 18 \\
61 / 1020 \& 8 /- \\
8 / 6
\end{array}
\] \& \[
\begin{array}{ll}
12 \mathrm{BE} 6 \& 8 / 6 \\
12 \mathrm{BH} 7 \& 6 / 6
\end{array}
\] \& \(30 \mathrm{L17}\) 17／－ \& CBLL \& 181－ \& EC90 \(61-\) \& EF95 \& \& \[
\begin{array}{ll}
\text { GZ33 } \& 16 /- \\
\text { GZ34 } \& 11 /-
\end{array}
\] \& 6C \& 8P61 7／－ \& UY1N 10／－ \\
\hline 5 Y 3 GT \& 6／－ \& \(\begin{array}{ll}\text { 6BR7 } \& 17 /- \\ \text { fBR8 } \& 13 /-\end{array}\) \& \[
\begin{array}{ll}
611020 \\
6 \times 7 G T \& 8 / 6 \\
6 /-2
\end{array}
\] \& \[
\begin{aligned}
\& 12 \mathrm{BH} \mathrm{H} \\
\& 12 \mathrm{BY} 7 \\
\& 10 / \mathrm{l}
\end{aligned}
\] \& \[
30 \mathrm{P} 1218-
\] \& CBL31 \& 17／1／ \& \(\begin{array}{ll}\text { EC92 } \& 6 / 8 \\ \text { EC93 } \& 9 / 8\end{array}\) \& \({ }_{\text {EF96 }}\) \& \({ }^{41} 10\) \& GABC808／6 \& PEN45 \({ }^{\text {13／6 }} 7\)（－ \& 8t2150A \& UY11 11／－ \\
\hline \(5 \mathrm{Z3}\)
\(5 \mathrm{Z4G}\)
58 \& 9／1－ \& \(\begin{array}{ll}\text { 6BR8 } \& 13 /- \\ \text { 6BS7 } \& 26 /- \\ \text { 6856 }\end{array}\) \& \({ }_{6 \times 1}^{6 \times 7} 12 /\) \& \[
1208 \quad 6 /-
\] \& \(30 \mathrm{Pl8}\) 7／－ \& \({ }^{\text {Cl33 }}\) \& 17／6 \& \(\begin{array}{ll}\text { EC93 } \& 9 / 8 \\ \text { ECC34 } \& 8 /-\end{array}\) \& EF97
EF183 \& 10／6 \& HABC808／6
HBC90 \(5 /-\) \& PEN45 7/- \& 15／－ \& UY21 11／ \\
\hline \[
\begin{aligned}
\& \mathbf{Z 4 G} \\
\& \mathbf{Z 4 G T}
\end{aligned}
\] \& \(7 / 6\)
\(8 /-\) \& \(\begin{array}{ll}\text { 6B87 } \& 26 /- \\ 68 W 6 \& 16 /-\end{array}\) \& \(\begin{array}{ll}\text { 6P1 } \& 12 /- \\ 6828 \& 12 / 6\end{array}\) \& \(12 \mathrm{CL} 615 /-\) \& \(30 \mathrm{Pl9} 15 /-\) \& CY31 \& 717－ \& ECC34 8／－ \& EF183 \& \(87 /\) \& \[
\begin{array}{ll}
\mathrm{HBC} 90 \& 5 /- \\
\mathrm{HBC} \& 6 /-
\end{array}
\] \& PEN451）I \& TT21 48／－ \& CY41 81－ \\
\hline E4GT \& 151－ \& 6BW7 13／6 \& 6Q7 \(\quad 7 / 6\) \& \(12.55974 /\) \& \(30 \mathrm{PL1} 15 / 6\) \& DAF41 \& 11／－ \& ECC81 \(6 / 6\) \& EFP80 \& 201－ \& HF93 6／8 \& \& 1178 \& UY82 101－ \\
\hline A8G \& 6／6 \& \(6 \mathrm{BX} 651-\) \& \(6 \mathrm{Cl} \mathrm{C}^{7 /-}\) \& 12 ks 10／－ \& \(177-\) \& \& \(8 / 6\) \& ECC82 6／－ \& EF804 \& 201－ \& HF94 5／6 \& \& 118／20 \(18 / 6\) \& Y85 616 \\
\hline AB4 \& 6／8 \& 6BZ6 6／6 \& 6828 \& \(12 \mathrm{~K} 7 \mathrm{GT} 7-\) \& \(35 \mathrm{~A} 3101-\) \& DAF96 \& \(7 / 9\) \& ECC83 3／－ \& FFF811 \& 151－ \& HK90 6／6 \& 10 \& \(1{ }^{\prime} 20818 / 6\) \& P23 61－ \\
\hline 6AC7 \& 4／6 \& 6C4 6／－ \& \(684 \mathrm{~A} \quad 11 /-\) \& 12 K 810 \& 35A3
35 A5

$11 /-$ \& 11090 \& $91-$ \& ECC＇4 ${ }^{\text {8／－}}$ \& EF812 \& 15／6 \& HL92 7\％ \& \& 25 15 \& P41 717

\hline 6AF4A \& $9 / 6$ \& 5GT 7／－ \& $\begin{array}{ll}\text { 68A7 } & 7 / 6 \\ 6847 \\ 8 / 8\end{array}$ \& 12 \& $35 \mathrm{B6}$ 18／－ \& 1）F96 \& $7 / 0$ \& ECx－m 5／6 \& EFR14 \& 13／6 \& HL94 87－ \& 101－ \& U26 \&

\hline 6AG7 \& $7 / 6$ \& $17 / 8$ \& 68877 6 6／8 \& \& $35 \mathrm{C5} 7 \mathrm{7}$ \& DK40 \& 101－ \& ECChfi 9／6 \& Ek90 \& $51-$ \& KT66 27／6 \& \& U31 \&

\hline 6AH6 \& 101－ \& 6CAt 5／6 \& H8， 7 \& \& $35 \mathrm{D5}$ 13／－ \& DK91 \& 71－ \& ECCx9 11／－ \& EL34 \& 10／6 \& KT88 331－ \& \& $\begin{array}{cc}1737 \\ 150 & 307- \\ 175\end{array}$ \&

\hline 6A．J8 \& $5 / 9$ \& 6CA7 10／6 \& B8K7 6／6 \& 8857 \& $35 \mathrm{L6GT} 9 / 6$ \& DK92 \& 91－ \& ECC91 4／－ \& EL36 \& 9／6 \& ME140028 \& \& \&

\hline 6AK5 \& 8／－ \& 6CB6 5／6 \& 68L70T 6／6 \& 128א\％${ }^{128 J}$ \& $35 \mathrm{~W}^{\prime} 4$ 5／－ \& DK96 \& $81-$ \& ECF\％ $7 /-$ \& EL38 \& 27／8 \& M8PENT \& PENA4 8／6 \& $\begin{array}{ll}152 & 61- \\ 1768 & 5\end{array}$ \&

\hline BAK6 \& $11 / 6$ \& 6CD6GA \& 3N7CT 6／－ \& 128KT7GT ${ }^{87}$ \& $\begin{array}{ll}3514 \\ 3573 & 11 /-\end{array}$ \& DL91 \& 5／6 \& ECFr $27-$ \& EL41 \& 11／－ \& 10－ \& PF86 11／－ \& $\begin{array}{ll}176 & 5 /- \\ \text { U88 } & 5 /-\end{array}$ \& 33 10／8

\hline 6AL3 \& 8／6 \& $231-$ \& 7 81－ \& \& $35 \mathrm{Z4G}$ 5／－ \& D L92 \& $71-$ \& ECF83 15／－ \& EL42 \& 11／6 \& M112／14 \& PF818 17／－ \& 188
481

$181-$ \& $$
\begin{array}{ll}
\text { VU33 } & 10 /- \\
\text { VU39A } & 10 /-
\end{array}
$$

\hline 6ALS \& $8 / 3$ \& 6CG7 81－ \& $8 / 6$ \& $8{ }^{-}$ \& $35 \mathrm{Z5GT} 7 / 6$ \& DL93 \& 4／－ \& ECF86 12／6 \& EL81 \& 101\％ \& 101－ \& PFL20014／－ \& $\begin{array}{ll}\text { 1191 } & 15 /-\end{array}$ \& $$
\text { VU111 } 10 /-
$$

\hline 6AM5 \& $51-$ \& BCH6 11／ \& $6 \mathrm{CH}^{6 / 8}$ \& \& 50 A 5 13／－ \& ［）L94 \& $81-$ \& ECF804301－ \& EL83 \& 8／3 \& | N 7 H | $21 /-$ |
| :--- | :--- | \& $\mathrm{PL33}^{\mathbf{p l 3 6}}$ \& 120］7／－ \& \[

$$
\begin{aligned}
& \text { VU111 } 10 /- \\
& \text { VU120 } \\
& \hline
\end{aligned}
$$
\]

\hline 6AM6 \& 4／6 \& 6CLb 10／ \& 6U4GT 12／6 \& \& 50B5 7／－ \& UL95 \& 8／－ \& ECH42 13／－ \& EL84 \& $5 /-$ \& PABCS0 8／－ \& PL36 $11 /-$ \& ［̌28］8／－ \& VU133 10\％－

\hline 6AQ5 \& 6／6 \& 6CUA 18／－ \& 6188 \& $8 / 6$ \& 50 CS 71－ \& DL96 \& 7／8 \& ECH81 5／9 \& EL85 \& $8 / 8$ \& PC86 $11 / 6$ \& PL81 ${ }^{\text {PLA2 }}$－${ }^{\text {P／}}$ \& U2x： $81-$ \& W729 12／－

\hline 6 AQ 6 \& 10 \& 6CW $418 / 6$ \& fiV6GT \& ${ }^{6 / 6}$ \& 50CD \& DM70 \& 6／6 \& ECH83 8／8 \& E1，86 \& $8 / 8$ \& $\begin{array}{lr}\text { PC88 } & 13 /- \\ \text { PC97 } & 8 / 6\end{array}$ \& $\begin{array}{ll}\text { PLC82 } & \text { 9／－} \\ \text { PL83 } & 8 /-\end{array}$ \& U301 11／6 \& 2309 10／－

\hline 6AR5 \& 6／6 \& GCY5 8／－ \& \& － \& $801-$ \& DY70 \& 12／－ \& ECH81 91－ \& EL90 \& 6／6 \& ${ }^{6}$ \& $\begin{array}{ll}\text { PL83 } & 8 /- \\ \text { PL84 } \\ 7 /-\end{array}$ \& O403 101－ \& Z309 101－

\hline 6AR6 \& 6／8 \& $\begin{array}{ll}6 \mathrm{CY} 7 & 12 /- \\ 6 \mathrm{DO} & 8 /-\end{array}$ \& 1／－ \& 20 Ll 20l－ \& 50LGGT 81 － \& 1）Y86 \& $6 / 6$ \& ECl80 9／－ \& EL91 \& \& $\begin{array}{ll}\text { PC900 } & 9 / 6 \\ \text { PCC84 } & 7 /-\end{array}$ \& $$
\begin{array}{ll}
\text { PL84 } \\
\text { PL302 } & 7 /- \\
\hline 15 /-
\end{array}
$$ \& U404 7／6 \& $\begin{array}{ll}\text { Z319 } \\ \text { Z329 } & \text { 17／－}\end{array}$

\hline 6 \& 71 \& $\begin{array}{lc}6 \mathrm{D} 3 & 8 /- \\ 6 \mathrm{DC} 6 & 13 / 6\end{array}$ \& \& 20P1 10／－ \& $83 \mathrm{Al} \mathrm{14/-}$ \& DY87 \& $7 /$ \& ECL81 8／6 \& EL95 \& 7 \& PCC84 \& \& U404 216 \& Z329 17－

\hline
\end{tabular}

INTEGRATED CIRCUIT AMPLIFIERS

Ca8005 RF Amplifer with $100 \mathrm{mc} / \mathrm{s}$ bandwidth．Max． dissipation 26 mW ．For use as RF amplifier，halanced mixer，product detector or self－oscillating mixer 27／－ IF Amplifier for VHF／FM receivera

WESTINGHOUSE EPOXY ENCAPSULATED WIRE 1N5399， 1,000 p．i．v．， $1 \cdot 5$ amps J．C．；Max．surge 50A diameter 140 in ．Overall length（with leads）surge 200 A ．

MULTIMETERS

TYPE MF16
D．C．voltage range：
$0-0.5-10-50-250-500 \mathrm{~V}$ ． A．C．voltage range：
D．C．current range $500 \mu-10-100 \mathrm{~mA}$ ．
Resistance ranges： $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$ ． The meter is also callbrated for capacity and output level measure－ $\begin{array}{ll}\text { menta．Senaitivity } 2000 \text { DV．} \\ \text { Accuracy } & \pm 2.5 \% \text { for D．C．and }\end{array}$ $\pm 4 \%$ for $\pm \mathbf{A . C} \%$ for D．C．and
Dimensions： $4 \frac{\text { I }}{4}$ 3t x l Dimensions： 4 I $108-1 T: 24$ range precision portable meter， 5000 o．p．V．D．C．Volts： $2 \cdot 5-10-50-100-250 \cdot 500-2500$ ：D．C．current $0 \cdot 5-5-50-500 \mathrm{~mA}$ Resistance $2000-20,000$ ohms；2－20 megohms．Power output calibration in A．C．tor 600 ohms line．Complete with prods and batteries，86．5．0．P．\＆P．5／－

ZENER DIODES

300 mW wire ended， 10% tolerence $\begin{array}{llll}\text { K8139A } & 3.9 \mathrm{~V} & \text { K8168A } 6.8 \mathrm{~V} \\ \text { K8147A } & 4.7 \mathrm{~V} & \text { D814A } & 7.8 \mathrm{~V} \\ \text { K8156A } & 5.6 \mathrm{~V} & \text { D } 1414 \mathrm{~B} & 8.8 \mathrm{~V} \\ & & \text { All at } 3 / 6\end{array}$
5 watte 8 tud Mounted 15% tolerance $\begin{array}{llll}22 \mathrm{~V} & \text { D816A } & 39 \mathrm{~V} & \text { D816G } \\ 27 \mathrm{~V} & \text { D816B } & 47 \mathrm{~V} & \text { D816D } \\ 33 \mathrm{~V} & \text { D816V } & 56 \mathrm{~V} & \text { D817A }\end{array}$ All at \％／6
8 watts 8tud Mounted 15% tolerance
4.7 V D815I 8.2 V D815V 4.7 V D815I $\quad 8.2 \mathrm{~V}$ D815V $5-6 \mathrm{~V}$ D815A $\quad 10 \mathrm{~V}$ D815G 6.8 V D815B

12V D815

SLIDEWIRE
WHEATSTONE BRIDGE
£15．15．0

Battery Powered Portable Resistance Bridge．Range 0．5 to 50 ohms with multiplier setting if $0-1-1-100-1000$ ， providing a measuring range of 0.05 to 50000 obmas． Accuracy in the middle 3 ranges－ 0.5% approx． PRICE 215．15．0．

TRIACS TYPE 40482

Gated bi－directional silicon Thyriators with integral trigger．The triac will control up to 1440 watta at 240 V mains frequency．supplied complete with heat sink data sheet and application
dimmer circuits． $87 / 6$ each．

UNIJUNOTION TRANSISTORS 2N8646 Power disalpation 300 mW R．M．B．Base－to－Base voltege ing of thytistors． $12 / 6$ ．

SPECLAL OFFER OF PNP GERMANIUM TRANSIETORS AC154，large aignal type，auitable for class＇B＇output and oacillator applications．Max．collector－base voltage－ 26 V Max disapation 200 mW ．Audio power output per pair 400 mW free air or $1 \cdot 1 \mathrm{~W}$ on heat aink．Price，per pair， $6 /$ AC169 PNP Bias Stabllizing Transittor．Max dissipation 60 mW ．Max．collector－base voltage－2V．Max collector
current 30 mA ．Price，each，

SILICON MATCHED DIODE PAIR8

 1N4851 Two diodes in common TO92 epoxy case．Beparate anode leads and joint cathode．Diodes are atatically and dynamically balanced．Max．reverse voltage $20 V$ ．Max． diseriminators and similar applications．Price 8／－each Considerable diacount for quantities
VALUABIE NEW HANDBOOII F 1 ECEOAMBIIIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPOR-
obligation.

You are bound to benefit from reading "ENGINEERING OPPORTUNI. TIES", and you should send for your copy now-FREE and without

[^10]Please send we a FREE copy of "ENGIVEERING I OPPORTUNITIES." I am interested in (state suhject, I exam., or career).
I

TUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO EVGINEERING Adranced Radio -Gen. Radio - Radio \& TV
Servicing - TV Eng, Servicing -
Telecommunications- Sns, Sound Telecommunicanoms- Sound
Recording - Automation Recording $\overrightarrow{\text { Radionomation }} \overline{\text { Practical }}$ Radio Amatcurs' Exam.
ELECTRICAL ENG.
Advanced Electrical Eng. Ger. Electrical Eng. -
Installations - Draughts-manship-Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Engineering.
CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Munticipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG.
Adranced Electronic Eng. Gen. Electronic Eng. Applied Electromics - Prac. Electronics - Radar Tech. Frequency Modulation Transisıors

MECHANICAL ENG. Adsanced Mochanical Eng.Gen. Mechanical Eng. Maimenance Eng. - Diesel Eng. - Press Tool DesignSheet Mefal Work-Welding - Eng. Pattern Making Inspection - Druughsmanship - Mesallurg. - Production Eng.

AUTOMOBILE ENG Advanced Aluomobile Eng. Ger. Automohile Ens. Altomobile Maintenance -Repair-Automohile Diesel Maintenance - Automohile Elec. Equipment - Garage Management.
we have a wide range of courses in other subjects in cLuding chemical eng., aero eng., management, instrument technology, works study, mathematics, etc

Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B. A.M.I.P.E., A.M.I.M.I., A.R.I.B.A.., A.I.O.B. P.M.G.', A.R.I.C.S M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILLSS, GEN. CERT OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTDN COURT, ALDERMASTON, BERKSHIRE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

[^11]| GMELAMDS L3:DLS companz | | | |
| :---: | :---: | :---: | :---: |
| SOLID STATE-HIGH FIDELITY AUDIO EOUIPMENT | | | |
| | | Acclaimed by everyone | |
| Monoor Steree Audio Eavipment devel- | | | |
| | | | |
| COMPLETE S | | | |
| FROM | | | |
| | | 2nmen | |
| the finest value in high fidelityCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS | | \% | |
| SEND FOR FREE BROCHURE (No. 21) TODAY! demonstrations daily at 3o3' edgware road | | | |
| | | | |
| | | | |
| ${ }^{\text {cken }} 10$ | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | TRANSISTORS SEMICONDUCTORS OMPLETELY NEW 1969 LIST OF | |
| | | | 5 |
| | | COMPLETELY NEW 1969 LIST OF 1000 types. Send tor your FREE COPY TODAY. (list 36) | |
| | | | 2810 |
| | | | |
| | | Diodes and Rectifiers from 1/6 | |

HI-FI equipment to surit ETIRYPOKKEI

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD
AND SAVE UP TO 40 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE for a// leading makes AMPLIFIERS TUNERS
DECKS
SPEAKERS
MICROPHONES TEST EQUIPMENT HEADPHONES CARTRIDGES, etc.
All with

rorrific Savings
It will Pay you
COMPLETE SYSTEMS from $\mathbf{4 6} \mathbf{- S}$ - Saves $\mathbf{£ 1 2 . 1 0 . 0 1}$ to pay us a VISIT! Send for now I-poga fllustioted Hi-fi list $16: 17$.

Illustrated CATALOGUE

6,500 ITEMS 320 BIG PAGES

303 Edgware Road, London, W.2. Mail Order Dept all types of Components. Orgian Dept. (on) 723-100s/s 309 Edgware Road, London, W.2. Highh Fidelity Sales, P-A and Test Equipment, Record Decks(01) 123 -6e33

[^0]: If required an attrac- Please send a slamped addressed envelope for full descriotive tive wood cabinet with veneer finiph can be supplited for any model.
 Prices from
 705.
 delalls of above units, also TUNERIAMPLFIERS STEREO and MONO.

 Wholesale and Retail enquiries to:

[^1]: Special displays of radias, recorders, record decks, tuners, amps., meters, speakers, etc., etc. ALL faulty or damaged needing repairAT GIVE AWAY PRICES!
 100 's of component bargains from our easy to see and choose from, self service racks. 100's OF OLD TYPE VALVES - from $2 /$ - each ASSORTED TRANSISTORS 9d each. 7/6 per doz
 Huge stocks of shop soiled and reconditioned second hand radios, record players, rape recorders, etc.

 ## spot cash part exchanges

 WE OFFER THE HIGHEST RATES IN LONDON
 There's something for everyone
 COME AND LOOK TODAY (Open 6 days a weekI) all these items are avallable to callers only

 PERSONAL CALLERS TO:
 48 TOTTENHAM CT. RD., W. 1
 Tel. 01-636 0647

[^2]: C)IPC Magazines Limited 1969. Copyright In all drawings, photographs and articles published in "Practical Wireless" is fully protected, and reproduction or imitations in whole or in part are expressly forbidden. All reasonable precautions are taken by "Practical Wireless' to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices are those current as we go to press. All correspondence intended for the Editor hould be addressed to Tower House, Southampton Street, London, W.C.2. Address correspondence regarding advertisements to Advertisement Manager, Flaetway House, Farringdon Street. London, E.C.4. Orders for back numbers should be addressed to IPC Magazines Ltd., Back Numbers Department, Carlton House, Gt. Queen Street, London W.C.2.

[^3]: From Electrical and Hardwaro shops. It unobtainable. wite to: Multicore Solders Ltd., Hemel Hempstead, Herts.

[^4]: enclose $\mathrm{P} / \mathrm{O} / \mathrm{MO} / \mathrm{Cheque}$ (made payable to IPC Magazines Ltd.) for the sum of (.) for a Christmas Gift subscription of 12 issues of PRACTICAL WIRELESS.
 It should be sent to:
 NAME
 ADDRESS

 To avoid disappointment, make sure of your own copy by placing a regular order NOW with your newsagent.

[^5]: The twelfth annual opportunity for Scouts to participate in amateur radio will take place on the weekend of 18/19 October. The Jamboree will start at 01.00 Saturday morning, and conclude at 23.59 Sunday night. This event is not, incidentally, a contest but a chance for Scouts in all countries to exchange news and establish international friendships. Information on how to help Scout troops during the event can be obtained from G3BHK, Katoomba, Tyneham Close, Sandford, Wareham, Dorset.

[^6]: Published approximately on the 7th of each month by IPC Magazines Limited. Tower House. Southampton Street. London. W.C.2. Printed in England by Index Printers. Dunstable. Beds. Sole Agents for Australla and New Zealand-Gordon and Gotch (A/sia) Ltd.: South Africa-Central News Agency Ltd.: Rhodesia. Malawi and Zambia-Kingston Ltd.; East Africa-Stationery and Office Supplies Ltd. Subscription rate (including postage): For one year to any part of the world $22 \mathrm{ss} \mathrm{0d}$.
 PRACTICAL WIRELESS is sold subject to the following conditions, namely, that it shall not. without the written consent of the Publishers first given be lent. resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent. advertising, literary or pictorial matter whatsoever.

[^7]: any tem not listed with B.A. E. Pleane note that no enquiries can be answered unless a B.A.E. Is enclosed for reply.

[^8]: RECOIRDING TAPE GIVE-AWAY:I!
 ALL BRITISH MADE, BEST QUALITY. $5^{\circ} 600^{\circ}, 7 / 3 ; 57^{*} 900^{\prime}, 9 /-$ - $7^{*} 1.200^{\circ}$. 12/-; $3^{\prime \prime}$ 'odd-ends'-may be standard. long or double play-but minimum'
 150 . $2 / 3$.

 GIANT SELENIUM SOLAR CELLS. Last few to clear at half price Circular, $67 \mathrm{~m} . \mathrm{m}$. diameter, $5 /-$ each. $50 \mathrm{~mm} \times 37 \mathrm{~mm}, 3$ for $10 /-$.

 ## RECORD PLAYER CARTIIIDGES

 ACOSGP67/2,15/(Mono); GP91/3, 20/-(Compatible): GP93/1,25/-(Stereo);
 GP94/1, 30/- (Stereo, ceramic); GP93/1 with diamond needle. 32/6;
 GP94/1 with diamond needle, $37 / 8$.
 TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
 8 watt $12^{\prime \prime}$ tube, Reflector type, 58/6. 15 watt $18^{\prime \prime}$ tube, Batten type, 79/6.
 Complete with tube, Postage $3 /-$.

[^9]: COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Ltd., 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

[^10]: TO B.IE.T., 453A, ALDERMASTON COURT,
 ALDERMASTON, BERKSHIRE.
 TO B.IE.T., 453A, ALDERMASTON COURT,
 ALDERMASTON, BERKSHIRE.

[^11]: Published on or about the 7 thof each month by I.P.C. MAGAZINES LIMITED, Tower House. Southampton Street, I.ondon, W. C. 2 . at therecammendad maximum price shown on the cover. Printed in England by Index Printers, Dunstable. Beds. Sole Agents for Australia and New Zealand: GORDON \& GOTCH (A'sia) Ltd. South Africa: CENTRAL NEWS AGENCY LTD. Rhodesia. Malawl and Zambla: KINGSTONS LTD. East Africa; STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World 22.2 s .0 d .

