Mrincicio

BR2

ORGAN TRANSISTORS

ZTX302	$3 /-$	ZT1700	$17 / 9$	KR54	$27 / 6$	ZS170	$1 / 11$	ACY22	$4 /-$
ZT44	12/9	ZT1701	$22 / 6$	KR56	$24 / 9$	OC28	19/	OAZ203	$12 /-$

All above transistors direct from manufacturer.
Unmarked silicon planar transistors suitable for use in divider circuits: $1 / 6$ each or $£ 5$ per 100 .

LIGHT SENSITIVE DEVICES
GIANT-SIZE SELENIUM SOLAR CELLS - PRO-
DUCE UP TO 6 mA FROM DAYLIGHT! 67 mm diameter, $10 /-$ each. $50 \mathrm{~mm} \times 37 \mathrm{~mm} .2$ for $10 /-$. Transistors similar to OCP 71, 2/- each.
ORP 12 CADMIUM SULPHIDE LIGHT SENSITIVE RESISTORS 9/- each. Light sensitive diodes, $10 /$-per doz.

WIRE-WOUND RESISTORS
Mains dropper type. Up to 30 watts. Some multi-tapped. Fraction of normal price! 10/- per dozen.
MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE! $0 \cdot 001 \mu \mathrm{~F} 400 \mathrm{~V}$ 3d., $0 \cdot 0015 \mu \mathrm{~F}$ $400 \mathrm{~V} 3 \mathrm{~d} ., 0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.0022 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}$. , $0 \cdot 01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0 \cdot 15 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $0 \cdot 22 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d}$., $0 \cdot 27 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /-$

RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES. GP67/2 Mono 15/-, GP91/3 Compatible f1, GP93/1 Crystal Stereo 25/-, GP94/1 Ceramic 30/-.
TRANSISTORISED SIGNAL INJECTOR KIT $10 /-$ SIGNAL TRACER KIT 10/-. CAR REV. COUNTER KIT 10/-.

VEROBOARD

$2 \frac{1}{2} \times I^{\prime \prime} 0.15$ matrix $1 / 3 \quad 5 \times 34^{\sim} 0.15$ matrix $5 / 6 \quad 34 \times 32^{n} 0.1$ matrix $4 / 8$ $34 \times 21^{\prime \prime} 0.15$ matrix $3 / 3 \quad 17 \times 24^{\prime \prime} 0.15$ matrix $11 /=5 \times 2 \frac{1}{2}^{\prime \prime} 0.1$ matrix $4 / /$ 34 x $35^{*} 0.15$ matrix $3 / 11 \quad 17 \times 34^{\circ} 0.15$ matrix $14 / 85 \times 3$ x 0.15 matrix $5 / 6$ Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins $3 / 6$ for 36 . Special Offer! Spot Face Cutter and $52 \frac{1}{2} \times 1^{\circ}$ boards............9/9 only

PAPER CONDENSERS

Mixed bags $0.001 \mu \mathrm{~F}$ to $\cdot 5 \mu \mathrm{~F}, 12 / 6$ per 100 .
SIL VER-MICA
Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /$ - per 100.

RESISTORS
Mixed types and values, $\frac{1}{2}$ to 1 watt, $6 / 6$ per $100,55 /-$ per 1,000 . Wire-wound resistors, 1 watt to 10 watts. Mixed values. 20 for 10/-.

TRANSISTORS
Mixed, unmarked, mainly O.K. 7/6 for 50.
12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF NORMAL PRICE
8 Watt 12 in. tube. Refiector type $£ 2.19 .6$. 15 watt 18 in. Batten type $\mathrm{e}^{3.19 .6}$.
IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYTIC CONDENSERS

$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	10uF	25 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu{ }^{*}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{HF}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1-25 \mu{ }^{\text {P }}$	16 volt	512F	6 volt	$25 \mu \mathrm{~F}$	12 volt	320 HF	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	400 2 F	4 volt
$2 \mu \mathrm{~F}$	350 volt	$81 / \mathrm{F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at	- each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	8 LH	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 as	sorted
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	(our	lection)
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	64 2 F	2.5 volt		

Orders by post to:

G. F. MILWARD
 Drayton Bassett, Near Tamworth, Staffs

Please include suitable amount to cover post and packing. Minimum order $10 /$. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

AUTOCHANGERS

1025 less cartridge

1025 with GCM21 mono cart. ridge. Stereo compat. 2025 TC with GCM21 mono SL55 with J2006 stereo cart ridge
SL65 less cartridge
SL75 less cartridge SL95 less cartridge
A70 Mk II less cartridge BSR UA47 less cartridge

SINGLE PLAYER

SP25 Kk II less cartridge .. e11.19.6 AP75 with AD.76K magnetic caplridge AP75 less cartridge
SRP22 Mains mudel less cart-
\qquad shidge Battery model leas
2e21.0.0 £18.10.0 £6.12.10 cartridge
TRANSCRLPTION DECKS \$7.15.3 488.10.0 401 GARRARD BȦSES WB1 £3.6.11; WB4 Mk II 55.8 .11 : WB5 85.8.11.

OLEARVIEW PERSPEX COVERS: SPC1 \&8.5.0; SPC4 MLk II \&4.6.6.
Postage on all above fl- extra.

DEISHI BDARO KITS

NEW EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEM

The DENSHI BOARD system enables the young experimentor and electronics hobbyist to produce a wide range of transistor circuits of increasing sophistication-without soldering or the use of any tools at all I Basically the system comprises a slotted circait board into which plug-in components and bridge pieces are set to produce up to 30 different circuits. The components are incapoulated in transparent plastic blocks bearing the appropriate circuit symbol and value thus enabling even the complete novice to visually grasp the fundamentals of circuitry after only a few moments study. In addition each DENSHI BOARD KIT comes complete with an 80 page manual of circuits and data.

THESE ARE JUST A FEW OF THE CIRCUITS YOU CAN BUILD IN MINUTES:
VARIOUS RADIO RECEIVERS, AMP. LIFIERS, MORSE CODE PRACTISE DEVICE, CONTINUITY TESTER, SIGNAL INJECTOR, SIGNAL TRACER WIRELESS MICROPHONE ETC., ETC.

DENSHI BOARD KIT SR-1A comprises
Base board; tuner block; 4 resistors; choke coil; transformer; 2SA transistor for RF; 2 diodes: 3 capacitors; battery block; morse key; antenna lead; crystal earphone; various bridge and connecting pieces and 80 page manual. This kit permits the building of 16 basic circuits.

LASKY'S PRICE £4.19.6 Post 3/6

DENSHI BOARD KIT SR-2A as SR-1A but with the following additional parts 2SB transistor for AF; 2 resistors; 1 capacitor; crystal microphone; test probes; electrode additional connecting pieces; 9 V battery. This kit permits the building of 30 basic circuits;

get your Lasky's audio-tronics pictorial
 16 colour page catalogue in large $16 \times 11 \mathrm{in}$. format packed with $1,000 \% \mathrm{~s}$ of items from our vast stocks. Hi-Fi, Radio, Electronics, Test Equipment, Components etc., etc.
 Send 1/- for post only and inclusion on our regular mailing fisi (5)- overseas)

TRIO
MODEL 9R-59DE Brief spec.: 4 band reBries spec.: \& band re-
ceiver covering $550 \mathrm{Ke} / \mathrm{s}$ ceiver covering $550 \mathrm{Ke} / \mathrm{s}$ and electrical band spread on $10,15,20,40$ and 80 metres. 8 valve plus 7 diode circuit. $4 / 8$ ohm output and phone jack. Special features: ssbBFO 8 A band spread dial Sep.

frequency $455 \mathrm{Kc} / \mathrm{s}$ Audio output 1.5 W - Variable RF and AF gain controls. For use on 1151250 A.C. Mains. Beautifully designed control layout finighed in light grey with tion manual and service data.

SP-5D "SPEAKER MATE"

TR10 communications speaker unit-matching the above receiver in both style and size. Contains 5×3 in. eliptical 8Ω speaker specially designed to give extremely erisp reproduction of voice frequencies.
Dark grey metal cabinet-size $7 \times 31 \times 5 i n$ Dark grey metal cabinet-size $7 \times 3!\times 5 \frac{1}{2}$ in.

$$
\begin{aligned}
& \text { LASKY'S } 87 / 6^{\text {Past } \mathrm{Prge}} \\
& \text { PRICE }
\end{aligned}
$$

NEW LASKY'S SCOOP

THE WORLD'S SMALLEST 6 TRANSISTOR TWO WAVEBAND RADIO RECEIVER FROM RUSSIA

THE ASTRAD ORION

Made to the highest Russian space-age standard-this remarkable micro-size set measures only $111 / 16 \times 13 / 10 \times 55 / 16 \mathrm{in}$. yet it contains 6 transistors and other components combined in a photo etched circuit, only $\frac{3}{4} x$ in.; tuning capacitor, ferrite rod (or core) aerial, buttery, waveband selection switch etc. Output to a high impedance, crystal earpiece, giving ample volume (automatically adjusted) and clear tone. Brief tech. spec. Waveband coverage-Medium wave 525 to $1605 \mathrm{kc} / \mathrm{s}$, Long wave $150 \mathrm{kc} / \mathrm{s}$ to 408kc/s. Sensitivity: 35mV max. Selectivity - 10 dB (at 30ke/s de-tuning). Power consumption 4 ma max. Power source: $1 \times 1.4 V$ Mercury battery (Mallory type RM625 or equivalent).

*NOTE: The battery ues supply with the Orion is a rechargeable trpe. Charger units will shortly be available enabling you to recharge the battery from $A C$ mains 220/240V supply. Price 19/6post free if ordered now with radiootherwise $2 /$-. If you purchase your
charger now we will forward as sooncharger now we will forward as soon-
as atocks arrive.

The Orion is supplied fully built and tested complete with battery*, left and right fitting earphone supports and attractive black and fory plastic presentation/carrying case (matching the Orion.) Never miss your favourite music, sport, mews-the Orion ls an ideal price only $39 / 6$, post $9 / 6$. Extra battery available (rechargeable type) $3 / 6$. price only $39 / 6$, post $2 / 6$. Extra batiery a vailable (rechargeable type) $3 / 6$.

LASKY'S 39/6 PRICE
 Post $9 / 6$. Extra battery available $\mathbf{3 / 6}$

NEW INTERNATIONAL TAPE

FAMDUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES
3 in. Message tape, 150 ft .
3 in . Message tape, 2251 tt .
3 in. Triple play, 600 ft . Mylar
3inin. Triple play, 600 ft . Mylar
4in. Triple play, 900 ft Mylar
5in. Double play, 1200 ft . Mylar
5 in , Long play, 900 ft . Acetate.
5 in . Standard play, 600 ft . PVC
5 in. Triple play, 1800ft. Mylar
多in. Double play, 1800ft.Mylar. . . 898
53in. Long play, 1200 ft . Acetate.
5 in . Standard play, 850 ft . PVC. 5 in. Standard play, 850 it. PVC ${ }_{5}{ }^{3}$ inin. Triple play, 2400 ft . Mylar 7in. Standard play, 1200 ft . Aceta 7 in . बtandard play, 1200 ft . Mylar 7in. Long play, 1800 ft . Mylar . 7 in . Double play, 2400 ft . Mylar P. \& P. 1/- extra per reel, 4 reels and over Post Free Mylar

Mainline

ELECTAONICE LIMITED

Service with the personal touch

Mainline Electronics is a new Service for users of electronic equipment and components in the field of experimental work.
Backed by one of Europe's leading Distributors and enjoying the support of the Industry, Mainline Electronics specialises in quality components from leading manufacturers. These products are characterised by excellent materials and workmanship, proved reliability and known performance. Service is the watchword of Mainline Electronics' activities. The company not only supplies the right components at the right price but, also supplies the necessary data through the data service published in the component guide.

Your Complete Professional Guide to Components and Prices

Send today for Europe's finest, most up-to-date and most comprehensive Price List of Semi-conductors and associated components, with details of manufacturers full application data.

Get this invaluable reference now - to RCA - IR-SGS Emihus - Semitron -CCL - Plessey -Morganite-Litesold to name but a few.

A DOZEN OF THE BEST

70Watts of Audio

Mainline introduce a trio of amplifiers the Mainline '12', Mainline '25', Mainline ' 70 '
The design of these audio amplifiers was the result of SGS and RCA combining their tremendous resources to produce these quasi circuits.
Each Kit complete with circuit diagram contains all semiconductors - resistors - capacitors and printed circuit board.

Mainline 12A-£7.0.0.
Prices: Mainline 25A-£8.5.0.
Mainline 70A-£10.10.0.

Mainline Electronics Limited,
Thames Avenue, WINDSOR, Berkshire.
(A member of the ECS Group of Companies)

VALVES
 SAME DAY SERVICE
 NEW! TESTED! GUARANTEED!

SETS 1R5, 185, 1T4, 394, 3F4, DAF91, DF91, DK91, DL92, DL94. Set of 4 for 18/6. DAF96, DF96, DK96, DL96, 4 for 26/6,

024	4/6	19BGBC	O17/6	DL35	6/-	EL84		PCL85			
1A7GT	7/6	20F2	18/6	DL92	5/9	EL90	5	PCL86	8/6	UCC84	7/0
1H6GT	7/8	20P3	$11 / 8$	DL94	6/-	EL500	12/6	PREAA	12/6	UCCBS	8/8
1N5GT	$7 / 9$	20 P 4	$18 / 6$	DL96	7-	EM80	7/6	PFL20	12/6	UCF80	$8 / 3$
1R5	5/9.	25 LGG	T 51	DY86	519	EM81	$7 / 6$	PL36	8/8	UCH42	9/8
185	$4 / 8$	25U4G	111/6	DY87	$6 / 9$	EM84	$6 / 6$	PL81	$7 / 8$	UCH81	$6 / 9$
1T4	$2 / 9$	30 Cl	6/8	EABC8	6/6	EM87	$7 / 6$	PL82	71-	CCLB2	$7 / 8$
384	5/9	$30 \mathrm{Cl5}$	$18 /$	EAF42	$8 / 9$	EY51	7/3	PL83	71-	LCL83	11/6
$3 V 4$ 504	6/-	30 Cl 17 30 Cl	$16 /$. $11 / 6$	EB91	2/8	EY86	6/8	PL84	6/6	UF41	10/6
5U4GGT	4/6 $5 / 9$	30 Fb	11/6	EBC33	$8 /-$	EZ40	$7 / 6$ $7 / 6$	PL500	$13 /-$	UF80	$7 / 10$
${ }_{5} 5 \mathrm{Z4G}$	$7 / 6$	$30 \mathrm{FL1}$	18/9	EBC41	9/9	E280	4/6	PL504	$13 / 6$ $83 / 6$	UF889	9
6/30L2	12/-	30 FL 1	14/6	EBF80	6/9	EZ81	4/9	PL802	14/6	UL41	10/6
6AL5	2/8	$30 \mathrm{FL1}$	121-		6/3	GZ32	$8 / 9$	P		UL44	201-
faM6	3/6	30 L 1	8/6	ECC81	$3 / 9$	GZ34	$9 / 8$		1016	UL84	$7 /=$
6AQ5	4/0	$30 \mathrm{L1} 15$	14/8	ECC82	$4 / 8$	KT6	$8 / 9$	PY ${ }^{\text {P }} 1$	10/6	UM84	71
6AT6	4/-	$30 \mathrm{L17}$	15/6	ECC83	7/-	KT66	161-	${ }_{\text {PY }}$		UY41	$8 / 3$
6AU6	4/6	30 P 4	12/-	ECCC85	6/9	ME1400	15/-	PY33	10/-	UY85	$5 / 9$
6BA6	4/6	30 Pl 12	13/9	ECC804	2/-	ME1400	14/8	PY81	5/8	VP4B	101-
6BE6	4/9	30 P 1	12/-	ECF80	$7 /-$	N78	14/8	PY82	$5 / 3$	VP132	1/-
6BJ6 6BW6	7/-	30 PL 1	13/9	ECF82	5/8	PABC80 PC86	$10 / 3$	PY83	$5 / 9$	Z77	8/6
6 F 13	8/8	30 PL 14	15/6	ECH42	10/6	PC88	$10 / 3$	PY88	6/8	Transi	rs
6 Fl 4	91-	35L6GT	8	ECH81	5/8	PC96	$8 / 6$	PY8800	7/6	AC107	
6 F 23	14/8	35W4	416	ECH84	7/6	PC97	$8 / 8$	PY801	$6 / 9$	AC127	$2 / 6$
6K7G	$2 / 6$	35Z4GT	51	ECL80	6/9	PC900	$81-$	R19	6/6	AD140	$7 / 6$
6 K 8 G	$4 / 8$	6063	$12 / 6$	ECL82	6/9	PCC84	6/6	R20	12/6	AF11s	8/-
6L18	B/-	AC/VP	101-	ECL83	9/-	PCC85	6/6	TH2IC	9/9	AF116	3/-
6V6GT	8/8	AZ31	91-	ECL86	8/8	PCC88	9/8	U25	13/-	AF117	$3 / 8$
6 X 4	$4 / 3$	B729	12/6	EF37A	6/6	PCC89	10/6	U26	12/-	AF124	$7 / 6$
6X5GT	5/9	COH35	10/-	EF39	$4 / 9$	PCC189	11/6	U47	13/6	AF125	$3 / 6$
787	7/-	CL33	18/6	EF41	10/9	PCF80	6/6	U49	18/6	AF126	$7 /$
$7 \mathrm{7C6}$	$8 / 9$	CY31	6/9	EF80	$4 / 9$	PCF82	6/6	U52	4/6	AF127	$3 / 6$
7 Y 4	6/6	DAC32	$7 / 8$	EF85	$61-$	PCF86	9/6	U78	4/3	OC26	5/8
10F1	141-	DAF91	4/3	EF86	6/3	PCF200	13/6	U191	12/6	0044	3
10 P 13	15/6	DAF96	6/6	EF89	5/3	PCF800	13/6	U301	12/6	OC45	$2 / 8$
12AH8	83/-	DF33	$7 / 8$	EF91	3/6	PCF801	$6 / 8$	U801	$10 / 6$	0071	2/6
12AT7	8/9	DF91	$2 / 9$	EF94	4/6	PCF802	9/6	UABC80	8/9	0 C 72	2/6
12AU6	4/9	DF96	6/6	EF183	6/-	PCF8051	11/6	UAF42	9/6	OC76	$2 / 6$
$12 \mathrm{AU7}$	4/8	DH77	4/-	EF184	5/6	PCF808	12/-	UB41	6/6	OC81	$2 / 8$
12AX7	4/8	DK32	7/6	EH90	6/8	PCL81	9/-	UBC41	8/6	$0 \mathrm{C810}$	$2 / 8$
12K8GT	7/-	DK91	$5 / 9$	EL33	$8 / 9$	PCL82	71-	UBC81	7/-	OC82	$2 / 8$
12SN6G		DK02	$9 / 8$	EL34	9/6	PCL83	9/-	UBF80	6/-	Oc82D	$2 / 6$
	8/6	DK96	$7 /$	EL41 1	10/6	POL84	7/6	UBF89	8/8	OC170	$2 / 6$

READERS RADIO
 85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

INCREASE YOUR KNOWLEDCE

MANY COURSES TO CHOOSE FROM incl. RADIO \& TV ENGINEERING \& SERVICING,
TRANSISTOR \& PRINTED CIRCUIT SERVICING, CLOSED CIRCUIT TV, ELECTRONICS,
NUMERICAL CONTROL ELECTRONIC'S,
TELEMETRY TECHNIQUES, SERVOMECHANISMS
PRINCIPLES OF AUTOMATION,
COMPUTERS, ETC.
ALSO EXAMINATION COURSES FOR
C. \& G. Telecommunication Technicians' Certs
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Certificate
P.M.G. Certificates in Radiotelegraphy

Radio Amateurs' Examination
General Certificate of Education, etc
BUILD YOUR OWN RADIO AND INSTRUMENTS
With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your own 5-valve Superhet Receiver, Transistor Portable, and highgrade test instruments, incl. professional-type valve volt meter (shown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post coupon below.

THERE IS AN $\int S$ course for you

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future, If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

fILL in and post this coupon today

You will receive the FREE ICS Prospectus listing the examination and ICS technical courses in radio, television and electronics PLUS details of over 150 specialized subjects.

RACAL RA-17

First ministry ralease of these world famous communication receivers. Fra quency range $500 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Avail able in excellent condition, fully tested and guaranteed. f150. Carr. 40/-

CLASS D WAVEMETERS
A crystal controlled hetero

dyne frequency mete covering 1.7-8 Operation on 6 volte D.C.
Ideal for amateur Avallable in amateur use Avalable in good usad con-
dition. \$5.18.6. Carr. 7/6. Or brand new with acces. Bories. s7.19.6. Carr. 7/6. CLASS D WAVEMETERS No. 2 Crystal enntrolled. $1 \cdot 2-19 \mathrm{Mo} / \mathrm{A}$. Mains or tion charts. Excellent condition. \$12.10.0. Carr. 30 /-

MARCONI CT/44/TF956 AF Absorption Wattmeter $\mu /$ watt to 6 watte. 820. Carr. 10/-

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$. on 2 ranges. Output sied in perfect orater f12 100 . A.S.sup

AVOMETERS Supplied in excellent condition, fully tested and checked. Com plete with prods, leads and instructions. Model 47A む9.19.6. P. \& P. 7/6.

SOLARTRON CD-1016 OSCILLOSCOPE
Double beam. D.C. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent coudition. 255 each. Carr. 20/-.

AM/FM SIGNAL GENERATORS

Oscillator Test No ${ }_{\text {precision }}^{\text {2. }}$ A high quality ment made for th ministry by Airmec 20-80 Mc / g. CW/FM. Incor porates precision dial, level meter, precision attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Operation from 12 volt D.C. or $0 / 110 / 200 / 250$ volt A.C. Bize $12 \times 8 \pm 9 \mathrm{in}$. Supplied in brand new condition complete rith all connectors tully tested. 245. Carr. 20/-

SINCLAIR EQUIPMENT 1010 59/6 PZ4 Power amplifler, 89/6 Sterso 85 Preamp. 29.19 .6 Q14 Speakers
Mieromatic
27.19.6 Mieromatic Rad
49/6. Built $59 / 6$.
SPECLAL OFFER
Two Z12 Amps., PZ4 Power 8 25 Preamplifier e89 or supply, Stereo speakers, $\ddagger 37$.

NEW SINCLAIR 2000 SYSTEM

 35 watt Integrated Amplifier, 829. Carr. $5 /-$ Self-powered FM Tuner, 225 . Carr. 5/-ECHO HS-606 STEREO HEADPHONES

Wonderfully comlortable. Light-
weight weight adjustable
vinyl
headband Finyl headband. cable and stereo jack plug. ${ }_{\text {ohm }}$ E. imp. $2 / 6 .{ }^{\text {cps. }}$

UNR-30 4-BAND CDMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{e}$. Incorporates BFO. Built in speaker and phone jack. Metal cabinet. Operation $220 /$ 240V. A.C. Supplied brand new, guaranteed with instructions.

Carr. $7 / 613 \mathrm{gns}$.

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. continuous and electrical bandspread on $10,16,20$, 40 and 80 metres. 8 valve plus 7 diode circuit. 4/8 ohm output and phone jack. BSB-CW - ANL dial $1 \mathrm{IF} 45 \mathrm{Kc} / \mathrm{G}$ meter Audio output 1.5 W . Variable RF and AF gain controls. 115/250V. Oin. With instrul CATION TYPE HEADPHONES. Normally 85.19 .6 . OUR PRICE 83.15 .0 if purchrsed with above receiver.
TRIO JR-500SE 10-80 METRE AMATEUR COMMUNICATION RECEIVER IN STOCK
e69.10.0. Carr. paid SPECIAL BONUS OFFERI TRIO SP5D Matching Speaker Mate and TRIO HS4 Communication Headphones Normal Value f10.7.0., FREE OF CHARGE with every JR.500SE purchased.

HAMMARLUND SP600JX

 COMMUNICATION RECEIVER High quality professional dual conversion communication recelvers avatable for the first time in this country at a 6 bands variable tuning or 8 channel crystal controlled 2.5 watt output into 600 ohms. Input $110 / 230 \mathrm{~V}$. AC 20 valve circult incorporating: Xtal filter B.F.O. A.N.L. X tal calibrator, s mater ete. Size $19 \times 12 \times 22 \mathrm{in}$. (List £520). Offered in excellent condition, fully tested and checked. $£ 100$ each.
LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, IHF music power, 30
 tortion 1% ore less. Inputs 3 mV cind 250 mV . Output 3 -16 $口$. Separate L and R. volume controls. Treble and bres control Stereo phone jack, Brushed aluminium, gold anodised extruded iront panel with complementary metal case. Size $104 \times$
$39 / 16 \times 713 / 16$ in. $\mathrm{Operation} 115 / 230 \mathrm{~V}$, A. 3 $9 / 16 \times 713 / 16 \mathrm{in}$.
828. Carriage $7 / 6$.

MARCONI TEST EQUIPMENT
EX-MILITARY, RECONDITIONED, TF.144G ${ }^{\text {STANDARD SIGNAL GENERATORS, }} 85 \mathrm{Kc}$ Kc/sTOR 0-5 Mc/B E45 Car. TF. 885 VIDEO OBCILLAQUENCY OBCILLATOR 0 - $\mathbf{- 1 0} \mathrm{Kc} / \mathrm{s}$. $200 / 250 \mathrm{~V}$. A.C. f20 Carr. 30/-. TF. 142 E Distorion Factor Meter, $\$ 20$ Carr. 20/-. All above oftered in ercellent condition, fully tested and checked. TF 1100 VALVE Voltmeter, Brand New, $\mathbf{5 5 0}$. TF. 1267 TRANSMIS SION TEST SET, Brand New, e77. TF. 1371 Wide Band Millivolt Meter, Brand New. $\mathbf{e 5 0}$.

MULTIMETERS for EVERY purpose)

TTH-800 $20,000 \Omega /$ VOLT mirror zcale and overload protection. 6 in. full vie u meter. 2 colour scale. 0 $2-5 / 10 / 250 / 1,000 / 5,000$ $\mathbf{v}_{10 / 50 / 250 / 1}$ O $0 / 25 / 12.5 /$ $10 / 50 / 250 / 1,000 / 5,000 \mathrm{v}$ D.C. $0 / 50 \mu \mathrm{~A} / 110 / 100$ $1500 \mathrm{~mA} / 10 \mathrm{amp}$. D. C $\begin{array}{ll}02 \mathrm{~K} / 200 \mathrm{~K} / 20 \\ \mathrm{OHM} \text {. } 216 \text {. } \mathrm{P} . & \mathrm{MEG} \\ \mathrm{P} .5 /-\end{array}$

MODEL TE-70. 30,000 $11,200 \mathrm{v}$. D.C. $0 / 6 / 30 / 120 /$ $600 / 1,200 \mathrm{v}$. A.c. $0 / 30 \mathrm{LA}$ $13 / 30 / 300 \mathrm{~ms}$. $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $11 \cdot 6 \mathrm{M} / 16 \mathrm{Meg} . \Omega$
$\mathbf{8 5 . 1 0 . 0}$ P. \& P. $3 /-\mathrm{C}$

 OHM. \&15. P. \& P. 5/ scale. Ranges: D.C. and A \dot{C}. $0.500 / 250,500 / 1,000$ volts. Current: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}, 2 \mathrm{megohm}$. Decibels $\bar{P}^{20}{ }^{20}$ to +22 dB . $£ 5.19,6$.
MODEL TE-80. 20,000 O.P.Y. $0 / 10 / \overline{0} 0 / 100 / 5001$
$1,000 \mathrm{v}$
AC
$0 / 6 / 26 / 50 / 250 /$
 $5 / 50 / 500 \mathrm{~mA} \quad 0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 600$ K/6meg. A4.17.6. P. \& P. 3/-

MODEL TE-12
20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 120$ 600/1,200/3,000/6,000v. D.C.
$0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{v}$.
A.C. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA}$. $600 \mathrm{~K} / \mathrm{BMeg} .60$ Meg. $\Omega 50 \mathrm{pF}$ $0 \cdot 2 \mathrm{mFd} .45 .19 .6$. P. \& P . $3 / 6$.

TO-2 PORTABLE OSCILLOSCOPE

 A general purpose lowcost economy oscillo-
scope for everydiy use.
\mathbf{y} amp. Band width Y CPS-1 Bandwidth
2 trop 2 meg Ω 25 25 Illuminated acale. 2 in . 230 mm . Welght ${ }_{81 b}^{\times}$ 220/240v. a.c. Supplied brand new. with hand
book. f22.10.0. Carr. $10 /-$

FIELD TELEPHONES TYPE L
Generator ringing, metal cases. Operates from condition e4 100 (ar auppled). Excellen condition. 24.10.0 per pair. Carr. 10/

TE-40

HIGH SENSITIVITY

AUTO TRANSFORMERS

$0 / 115 / 230 \mathrm{~V}$. Step up or step down. Fully shrouded

TE22 SINE SQUARE WAVE AUDIO GENERATORS

Bridge T. Impedance 600Ω range $(0.1 \mathrm{~dB}$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$ Erequency: d.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB})$. Accur
acy: 0.05 dB . Indication ($\mathrm{x} \quad 0.01$ Meximaum input less than 4W (50V). Built in 600Ω load resistance with internaljexternal switch. Brand new \&27.10.0. P. \& P. 5/-.
TE-20D RF SIGNAL GENERATOR

nal 120 generator covering $120 \mathrm{Kc} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly calibrated. Yariable R.F. at tenuator, audio output $\begin{array}{ll}\text { Xtal socket for calibra- } \\ \text { tion. } & 220 / 240 \mathrm{~V} \text {. A.C. }\end{array}$ Brand new with ingtric tions. \&15. Carr, 7/6 Size $140 \times 215 \times 170 \mathrm{~mm}$

CAR LIGHT FLASHERS

Heary duty light condenser discharge principle operating on electro mechani cal relay. (As inset) Housed in btrong rate between $60-120$
per minute, per minute, 12 D
mum load 6 amps. size $2-11 / 16 \mathrm{in}$. dia. x 4 in sost $6 / 6$ each P P $2 / 6$ i for 17/ 8 or orgina

Fuil range of all components valves semiconductors * test equipment receivers , hi-fi equipment all at discount prices.
G. W. SMITH
$\&$ CO (RADIO) LTD.
Also see oppos. page

GARRARD

FULL CURRENT RANGE OFFERED BRAND_NEW AND GUARANTEED AT FANTASTIC SATINGS
SRP22 Stereo $\mathbf{2 5 . 1 9 . 6} \quad$ MBP25 MK II £11.19.6 *1025 Модо £\%7.10.0 *SLб5

 *2025 Stereo \&7.19.B
-2025T/C

- AL65
AP75 3000 Stere 0 SL75 Carriace/insur 29.19_6 SL05
 Carriage/insurance $7 / 6$ extra any model. WR4

TYPE 13A DOUBLE BEAM OSCILLOSCOPES
 n excellent general purpose
T. B.
8
cps-750
cpscilloscope.
Kc / s. $\begin{array}{lll}\text { T. B. } & \mathrm{cps}^{2}-750 & \mathrm{Kc} / \mathrm{s} . \\ \text { Bandwidth } & 5 \cdot 5 & \mathrm{Mo} / \mathrm{s} .\end{array}$ Bandwidth $5 \cdot 5$ Mo/s.
Sensitivity
$33 \mathrm{~m} / \mathrm{V} / \mathrm{CM}$. Operating voltage o/110/
$200 / 250 \mathrm{~V}$. A.C. Supplied in ercellent working condition, f29.10,0. Or complete with all accessories, 25, Carriage $30 /-$

ADMIRALTY B. 40 RECEIVERS Released by the ministry. High quality 10 valve receiver manufactured by Murphy, coverage in 5 bands $650 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mi} / \mathrm{s}$. I. F.
 $0 \mathrm{Kc} / \mathrm{s}$. Incorporates stages, band-pasg filter, noise limiter, eryatal controlled B. F.O., calibrator. O/F output, ctc. Bullt-in speaker, output for phones. Operatlon $150 / 280$ volt A.C. Size $191 \times 13 \frac{1}{2} \times$
16 in . Weight 114 lbs. 16 in . Weight 114 lbs .
Offered in good working condition. 422.10 .0 . Carr. 30/-. With circuit diagrams. Also available B.41 L.F. Carr. 30 /-

R209 MK II

COMMUNICATION RECEIVER 11 चalve high grade communication receiver ultable for tropical use. $1-20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. cision rernier driver, B.F.O., aerial trim-
 mer,internal speaker and
$12 \mathrm{v} . \quad \mathrm{D.C}$. internal power supply.
Supplied
aprellent Supplied
in excellent condition, and checked 815.0 .0.
Carr. $20 /-$

[^0]

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER
A completely new transistorised receiver covering 152-174 Mc/s. Fully tunable or crystal controlled
(not mupplied) for fixed frequency operation. Incorporates 4 INTEGRATED OIRCITTE. Buil in speaker and illuminated dial. Squelch and vol ume controls. Tape recorder output. 75Ω aerial input. Headphone jack. Operation 230V. A.C. 12V. D.C. Neg. earth. E37.10.0. Carr. 10/-

Variable Voltage TRAHBFORMERS

Brand new, guaranteed and carriage paid.
High quality construction. Input 230 V . $50-60$ eycles.
Output fult variable from $0 \cdot 260$ volts. Bulk quantities available 8 amp . $\mathrm{amp} .414 .10 .0 ; 10 \mathrm{amp} .-818.10 .0 ; 12 \mathrm{amp} .-\$ 21.0 .0$
20 amp. $\mathbf{8} 87.0 .0$.
 Type MR 38P. $1^{21} /$ sain. square fronts.

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

A new portable bridge offering excellent range and accuracy at low $1 \Omega-11 \cdot 1$ meg 0 | $1 \Omega-11 \cdot 1$ |
| :--- |
| 6 Ranges $\quad \pm 1 \%$ |

 ges. 2%. C. 10pF Ranges $\pm 2 \%$. TURNS RATIO 1:1/10001:11100.6 Ranger $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{cps}$. Operated from 9 volts. $100 \mu \mathrm{LA}$. Meter indication. Attractive 2 tone meta

TE-65 VALVE VOLTMETER

High quanity instrument $1,5-1,500 \mathrm{v}$. A.C. volta 1.5-1,500\%. Resistance up to 1,000 megohmas. $200 / 240 \mathrm{v}$. A.C.operation. Complete with probe and nstructions.
Additionel probes ava Additinnal probes avail-
able:R.F.85/-.H.V.42/6.

NOW OPEN IN EDGWARE ROAD

Our new walk around shop is now open at 811 Edgmare Road fully stocked with all Hi-Fi, Commqnication and Test Equipment. Call into your nearest shopEdgware Road for all Equipment-Lisle Streel for all Equipment and Gomponents.酸 quality American tapes. Brand new. Discount on quantities.
3 in. 6001 t. T P mylar 5 in. 600ft. std plastic Sin. 900 ft . L. P. acetat oin. 1,200it.D.P. mylar s? in. 1,200ft. L.P. acetate $5 \frac{5 i n}{} 12,1,200 \mathrm{ft}$. L. P. mylar 5 in. 1,800it. D.P. mylar 7in. 1,2001t. std. acetate $7 \mathrm{~m} .1,8001 \mathrm{tt}$. L.P. P. acetate in. 1,8001t. L.P. mylar 7in. 3,600ft. T.P. mylar
Postage $2 /-$. Over $£ 3$ post paid.
COSSOR 1049 Double Beam Oscilloscopes D.C. coupled. Band width $100 \mathrm{~K} / \mathrm{cs}$. Perfect RECORDING HEADS Reuter $\frac{1}{2}$-track. As fitted to Collaro Mk. IV and Studio Decks. High imp. record playback, low imp. erase. Lower track only. Brand new, 19/6 pair. COSMOCORD 4 -track heads. High imp, record/playback 65/-. Low imp. erase 20/HARRIOTT $\frac{1}{2}$-track heads. High imp record/playback 65/-. Low imp. erase 20/-

LAFAYETTE SOLID STATE HAGDO RECEIVER 5 BAND AM/CW/SSB AMATEDR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $550 \mathrm{Kc} / \mathrm{s}-90 \mathrm{Mc} / \mathrm{s}$ dial Product detector \bullet Veriable BFO Noise limiter $\$ \mathbf{m e t e r}$ - 24 in Bandspread 930V. A.C./12V. D.C. neg. earth operation © RF gain control. size 15 in. $\times 9$ gin. $\times 8$ ilin. Weight 18

CLEAR PLASTIC PANEL METERS

First grade quality Moviug Coil panel meters available exstock. S.A.E. for illustrated leaflet. Discounts for quantity. $500-0-500 \mu \mathrm{~A} 25 /-\quad 50 \mathrm{~mA}$......25/- $\quad 150$ V. D.C. $25 /$

200 mA
300 mA
… $2.25 /-$
50
500mA25/10 V. D.C....25/20V. D.C... $25 /-500$ V.A.C. $25 /-$ S meter $1 \mathrm{~mA} 29 / 6$

* TRANSISTORISED FM TUNER +

TE-16A Trangiatorised
 Signal Generator. 5 ranges pensive instrument for the handyman. Operates on 9 v battery. Wide easy to read scale. 800 kH 2 modulation. $57 \times 5 \% \times 3$ in. Complete with lostructions and leads. E7.19.6.
MODEL ZQM TRANSISTOR OHECKER it has the fullest oxpacity for Equally adaptable for Equaliy adaptable checking diodes, etc. B: 5-200. Ico: 0-50 microamps $0-5 \mathrm{~mA}$. Resistance for diode 200 2-1M Ω. Supplied complete with instructions, battery and lead. \&5.19.6. P. \& P. 2/6 TE-20RF SIGNAL GENERATOR Accurate wide range signal generator cover$\operatorname{ing} 120 \mathrm{Kc} / \mathrm{g}-260$ $3 / 6$
$10 /-$
 Me/s on 6 bands. Variable R.F. attenuator. Operation 200/240v. A.C. Brand new with inP. \& P. 7/6, 8.A.E.

ARF-100 COMBINED AF-RD SIGNAL GENERATOR
 ates dual purpose meter to monitor AF put and o mod. on R F $220 / 240 \mathrm{Y}$ output and mod
880.0 .0 . Carr. $7 / 6$.

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER
$2 \mathrm{pF}-2000 \mathrm{mFd}$ 2 ohms 200 meg ohrms. Also checks impedance, turns ratio, ingulation, $200 / 250 \mathrm{~V}$. A.C Brend Nav
\&17.10.0 217.10 .0
Cart. $7 / 6$

 The'New Picture-Book'way of learning BASIC ELECTRICITY(5vols)

the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity, Electronics, Radio and Telecommunications.

WHAT READERS SAY

"May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice." L. W. M., Birmingham. "I find that the new pictorial method is so easy to understand, and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books." C. B., London.
'They certainly confirm everything your readers say about them and I am more than delighted with them. They will be of great value to me in my job as Hospital maintenance electrician." A. B., Birmingham

A TECH-PRESS PUBLICATION

To The SELRAY bOOK CO., 60 hayes hill, hayes, bromley, kent br2 7hp Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of 20/-followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS $90 /$ - Cash Price, or Down Payment of $20 /$ - followed by 4 fortnightly payments of $20 /$ each, This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

Build yourself a quality transistor radio

roamer seven mk IV SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and goll case. Bize $5 \frac{1}{2} x I_{\frac{1}{3}} x$ $3 \frac{\mathrm{in}}{}$. Tunable over tinth Medium and Long Waves with extended M.W. band for easier tuning of Luxembourg, etc. All first grade components7 stages- 5 transistors and 2 dindes, supersengitive territe rod aerial, fine tone moving cijl speaker, siso Fersonal Earpiece with suitched socket for private listening. Eiasy bulld.

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractlve case wlth red speaker grille. Size of x Alt. x 1 ljn . 7 etages- 6 transistors and 2 diodes, territe rod aerial, tuning condenser, volume control, with switched aocket for private listening. All first grade components. Easy build plans and parts price list $1 / 6$ (FREE with parts.)

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size $7 \frac{x}{} \times 1 \times 1 \mathrm{in}$. with gllt fttinge. The ideal radio for home or outdoors Covers Medium and Loog Waves and Trawler Band. Special circuit incorporatiug 2 R.F. Etagea, pueh pull output, ferrite rod aerial, 7 translatora and 2 diodes, 3 jin. speaker (will drive larger speaker) and sil first grade components. Eaky bulld plens and parta prlce list $2 / \%$ (FREE with parts). (Personal Earpjece with switched sooket for private listening $5 /=$ extra.)

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive ease with gilt fittings. Size 7\% $\mathbf{x} 5 \frac{1}{2} \times$ 1tin. Tunable on Medium and Long waves, two short waves, Trawler Baud Plus an extra M. W. band for easier tuning of Luxembourg, etc. Seasitive territe rod aerial and telescopic aerial for Short Waves. All top grade components. 8 stagen- 6 trannintora and 2 dioden including Micro-Alloy R.F. Transiators etc. (Carrying strap 1/6 extra). Easy
build plans and parts price list $2 / \mathrm{F}$.

* Callers side entrance Stylo Shoe Shop
* Open 10-1, 2.30-4.30 Mon-Fri, 9-12.30 Sat

Extra M.W. band for easier tuning of Laxembourg,
etc. Built in ferrite rod aerial for
Medium and Long Wares. 5 gection 2win.
chrome plated telescopic aerial for short wares-
can be angled and rotated for peak S.W. listening. Socket
for Car Aerial. Poweríul push pull output. 7 transistors and 2
dioder including Moro-Alloy R.F. Transistors. Famous make 7×4 in. P.M. speaker for rioh-tone volume. Air spaced ganged tuxing condenser. Volurne on/off control wave change switches and tuning control. Attractive case with carrying handle. Size $9 \times 7 \times$ in. approx. First grade components. Easy to follow ingtructions and
diagrams make the Roamer 7 a pleasure to build.

Total building costs
P P P B P P $\quad \begin{aligned} & \text { Personal Earpiece with switched socket }\end{aligned}$
Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK melody six

two waveband portable

8 stages-6 transistors and 2 diodes. Covere Merifum and Long Waves. Top quality $3_{2}^{1} \mathrm{in}$. Loudspeaker for quality with switched socket for private linten. ing. Two R.F. stages for extra boost. High "Q". Ferrite Rod Aerial. Push puli output. Handsome pociret size case with gilt fittings. Size $64 \times 4 \times 2 \mathrm{in}$. Easy build plans and parts price list 2/- (FREE with parts).

Total building costs
$69 / 6 \quad \begin{gathered}\text { P. \& } P \\ 4 / 3\end{gathered}$

RADIO EXCHANGE CO

61 HIGH STREET, BEDFORD.
Tel. 023452367
I enclose $f . ~ p l e a s e ~ s e n d ~ i t e m s ~ m a r k e d ~$

ROAMER SEVEN	\square	ROAMER SIX
TRANSONA FIVE	\square	SUPER SEVEN
POCKET FIVE	\square	MELODY SIX

『 Parts price list and plans for
Name
Address ..
| ..

[^1]THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM

* Hoderate size, only $25 \times 14 \times 10 i n$. Complete Kit 20 Gns. t Response $30-20,000$ c.p.s. Impedance 15 ohms.

Can * Performance comparable with units costing Carr. 12/6 considerably more. Consists of (1) $121 n$. 15 watt Bass unit with cast chassis, Roll rubber cone surround for ultra low resonance, and ceramic magnet. (2) 3 -way quarter section series cross-over system. (3) 8 x $5 i n$. high fux middle range 'speaker. (4) High efficiency tweeter. (5) Woollon acoustic damping material. (6) reak yeneered cabinet. (7) circuitand fulinstroct $39 /$ (Total
Dep. \&5. 10.6 and 9 monthy pa DMONSTRATIONS AT ALL BRANCHES
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIEER Highly sensitive. Push-Pull
 Tone factory built units: Hum level-70dB. Frequency response $\pm 3 \mathrm{~dB} 30-20.000 \mathrm{c} / \mathrm{s}$. Sectionally wound output transformer. All high grade components. Separate Bass and Treble Controls. Sensitivity 36 mV . Sultable for high impedance signed for Clubs, Schools, Theatres, Dance Halls or Out door Functions, etc. For use with Electronte Organ, Guitar, String Rass, ete. Gram. Radio or Tape. Reserve L.T. and H.T. for Radio Tuner. Two inputs with associated volume controls so that two separate inputs such as Gram and "Mike" can be mixed. 200-250v. 50c/s A.C. mains. For 3 and 15 ohm speakers. Complete kit of parts with point-to- 14 Gns. point wiring diagrams and instructions.
Twin-handled porforated cover $2 \% / 6$. Supplied factory buit with EL
out
put valves. 12 months' guarantee for 1% gns. TERMS: Deposit 86 output valves. 12 months guaiantee for 17 gns. TELRMS: Deposit s6
and 9 monthiy payments of $32 / \sim$ (Total 220.8 .0). Send S.A.E. for leafet.
R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER PBUER-PULL ULTRA LINEAR OUTRUT Two input sockets with associated controls allowing mixing of 'mike" and gram, etc, etc. allowing mixing of vike and gram, eL ${ }^{\text {High sensitivity }} 5$ valves- ECC 83 (2), FZ81. High quaiity sectionally wound output
transformer. IND. BASS AND TREBLE CONTROLS. Frequency respanse $+3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Eum level - 60 dB . SENSITIVITY 40 millivolts. "mikes". For Musical Instruments such as String Bass. Electronic Guitars etc. Size approx. $12 \times 9 \times 7$ in. For AC mains $200-250 \mathrm{v} .50$ cps 9 Gns. Full instructions and point-to-point wiring diagrams. Carr $11 / 6$ (or factory built 12 Gns.) Twin handled UNITS. Deposit $97 / 6$ and 9 monthly payments of 22/-. (Total £14.15.6).
RSC A11T TRANSISTORISED VERSION of above complete kit 9 Gns
R.S.C. BASS-REGENT 50 WATT AMPLIFIER
 An excoptionally powerful high quality an-purpose
unit for lead, rhythm, bass rayitar, vocal-
guiss ists, gram, Peals $0 / P$ rating. ᄎ Two extra heavy duty 12in. Loudspeakers. \star Four Jack inputs and two Volume Controls for simultaneous use of up to Bass and Treble controls. 55 Gns. Carr, $30 /-$ or and 9 monthly payments of £5.11.9. (Total 60를 gns.). Send S.A.E. for leaflet. G101 100 watt penk output with Pr. speaker columns and a Bass Unit (Six 12' and Two 15 15° Spkrs). 98z gns B.S.C. BATTERY/MAINS CONVERSION UNITS
R.S.C. MAINS TRANSFORMERS FULLI GUARANTEED. Interleaved and Impregnated. Primaries $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$.
MIDGET CLAMPED TYPE $2 \frac{5}{8} \times 2 \frac{2}{6} \times 2 \frac{1}{4} \mathrm{in}$. $250 \mathrm{v}, 60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}$.

15/11
FULLY SHROUDED UPRIGHT MOUNTING $250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}$.
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5 \cdot 6-3 \mathrm{v} .3 \mathrm{a}$. $250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{vv} .4 \mathrm{a} ., 0-5-6-3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{r} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} . .0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$.
$300-0.300 \mathrm{v}$
130 mA,
$6.3 \mathrm{v}, ~ 4 \mathrm{a}$, c.t., $6 \cdot 3 \mathrm{z}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$,
For Muliard 510 Amer
For Mullard 510 Amplifer
$350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{a}, 0-6 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $350-0.350 \nabla .150 \mathrm{~mA}$. $6 \cdot 3 \mathrm{zv}$. $4 \mathrm{a}, 0,0-6-6 \cdot 3 \mathrm{~V} .3 \mathrm{a}$. $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}$, , $6 \cdot 3 \mathrm{v} .3 \mathrm{sa}$, , $5 \mathrm{v} .3 \mathrm{3a}$ $450-0-450 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 8 \mathrm{v} .4 \mathrm{R} ., \mathrm{c} . \mathrm{t} ., 5 \mathrm{v}$. 3 av . TOP SHROUDED DROP-THROUGH TYPE $250-0-250 \mathrm{v} .70 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a} ., 0-5-6 \cdot 8 \mathrm{v} .2 \mathrm{a}$. $30-0-250 \%$. $100 \mathrm{~mA}, 8.3 \mathrm{~F} .3 .6 \mathrm{a}$.
 $580-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 6 \mathrm{v} .3 \mathrm{~s}$.
 $300-0-300 \mathrm{v}$. 130 mA , $6 \cdot 3 \mathrm{v}$. $4 \mathrm{a} .$, 0-5-6.3v. ia Suitable for Mullard 510 Amplifier $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{a} .-\quad 44 / 9$
 FILAMENT or TRANSISTOR POWER PACK Types $6 \cdot 3 \mathrm{v}$. 1.5 a . 7/9; 6.3v. 2a. 8/9; 6.3v. 3a. 10/9; 6.3v $0-9-18 \mathrm{v}$. 1 ta. 17/0; $0-12-25-42 \mathrm{v}$. 2a. 29/9.
GHARGER TRANSFORMERS 0-8-15v. 1 1a. 14/11; $24 a .17 / 9 ; 3 \mathrm{a} .19 / 11$; 5a: 23/9; 6a. 27/9; 8a. 83/9 AUTO (8tep UP/step DOWN) TRANSFORMERS 0-110/120v. 200-230-250v...... $50-80$ watts $15 / 9$ 150 watts, 29/11; 200 watts 49/8; 500 watts 99/8 OUTPUT TRANSFORMERS
Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Puah-Pull 8 watts EL84 to 8Ω or 15Ω Push. Pull 10 watta 8 V6 ECL 86 to $3,5,8$ or
Puah-Pull EL84 to 3 or 158 10-12 watts Puah-Pull EL84 to 3 or 15Ω 10-12 watts
Push-Pull Oltra Linear for Mullard 510 , Push-Pull DItra Linear for Mullard 510, etc. Push-Puil 15-18 watts, sectionally wound 6L6,
KT66, etc,, for 3 or 15Ω. Push-Pul 20 watt high quality gectionally sMOOTHING CHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \Omega 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 10 / 9$ $80 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega 8 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 12$.

[^2]BLACKPOOL AGENT APPOINTEB 227 CHURCH St. R.S.C. COLUMN SPEAKERS \qquad two-tone Rexine R.S.C. COLUMN SPEAKERS Covered in two-tone Rexine Vynair, ideal for $\begin{aligned} \\ \text { Vocalists } \\ \text { and Public Address, }\end{aligned}$
 Overall size approx. $42 \times 10 \times 5 \mathrm{in}$. Or deposit $67 /-16$ Gns. TYPEC412S,50WATTS.Fittedfour $121 n 11.60011 n e 15$ watt 26 Gns.
 30 WATT HI-FI AMPLIFIER for Guitar, Vocal or Instrumental Group arate Bass and Treble controls. Current valves. Peal outputrating. Strong Rexine covered cabinet with handoutpatrating. Atractive black/gold perspex facia. Neon indicator For $200-250 \mathrm{v}$. A.C. mains. For 3 or 15 ohm speakers. Send S.A.E. Forleafet. Deposit 4 Ens. and 18 Gns. Carr.

F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER Solid State Circuitry, 50 Watts Peak Output. 3 separately controlled inputs for mixing purposes. Separate Bass and Treble Controls. Output for loudIubs Theatres, Restaurants, Hotels. Schools etc. For Vocal or Instrumental Groups. Send S.A.E. for leaflet.

HIGH QUALITY LOUDSPEAKERS

In Teak or Afrormosia veneered Cabinets
In Teak or Arrorn
L13 $13^{*} \times 8^{\prime} 10$ Watt

FANE ULTRA HIGH POWER LOUDSPEAKERS
All power ratings are R.M.S. continuous, 2 year guarantee. High All power ratings are R.M.s. continuous, 2 year guar
Flux 14.000 line ceramic magnets. Heavy cast chassis.
'POP' 100
'POP' 60
'POP' 50
$18^{\prime \prime} 100$ Watt $15^{\prime \prime} 60$ Watt
$12^{\prime \prime} 50$ Watt

21 gns. | Carr. |
| :---: |
| free |
| 12 |
| gns. |

POWER PACK KIT Consisting of Mains transformer, Metal Rectifier, Electrolytios. smoothing choke, chassis and circuit. $25 / 11$
$200 / 250 \mathrm{v}$. A.C. mains. Output 250 v .60 mA 6.3 v . 2 a . Supplied with case in ifeu of chassis 29/11. Or assembled 39/i1.
MINI-8 HI-FI Loudspeaker Units Special Offer

ELEGTROVALDE

EVERYTHING bRAND NEW AND TO SPEC. NO SURPLUS SPECIALIST SUPPLIERS OF TRANSISTORS
IN TYPES TO SUIT ALMOST ALL APPLICATIONS

- COMPETITIVE PRICES
- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE PACKED WITH UP TO THE MINUTE ITEMS AND INVALUABLE INFORMATION. Send $1 / 6$ for your copy now.
- DISCOUNTS-10\% on orders for components for $£ 3$ or more. $\mathbf{1 5 \%}$ on orders for components for $£ 10$ or more.
- POSTAGE on orders for $\mathbf{f 1}$, add 1/-. FREE on orders for $£ 1$ or over.
Overseas orders welcome-Carriage charged at cost.

ELECTROVALUE

(Dept. PW), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY. Tel: Egham 5533 (STD 0784-3)

BUILD AND ENJOY THE PW Double 12

This $12+12$ watt integrated stereo hi-fi amplifier and preamp is proving one of the most successful P.W. designs ever. With good ancillary equipment. you will find it one of the best you have over heard, and it is a delight to build and handle. Basically, the design of the "P.W. Double 12" as described in P.W. April, May and June demonstrates the value of using "Cir-Kit". However, Peak Sound have contributed more besides to the success of this project. This include's the power amplifiers, the power pack and the ingenious cabinet which almost assembles itself. Go right ahead and build this exciting new design now with authentic, exact-to-specification Peak Sound kits as recommended by the designers.
This is your PW Double 12 Shopping List

These are the Peak Sound units with which you can build this excellent design. Transistors included.
2 Spools of "Cir-Kit" at $2 /-$ each
2 Preamp and tone control kits
4 Preamp matrix boards $\quad 70$
2 PA.12-15 Power Amplifier Kits
2 Heat Sink assemblies .. 12 0

Supply kit Pack-flat afrormosia teak
$\begin{array}{lll}\text { Pack-flat afrormosia teak } \\ \text { finished Cabinet kit } & \text {.. } & 212\end{array}$
5 Controls as specified $\quad .$.
TOTAL COST E23 56 Hardware Kit of knobs, plugs, sockets, switches, fuses, screws, wire, etc. 62100 nched.
P.W. Double 12 abridged specification

Controis-Bass and treble cut and lift based on Baxandall circuitryl Volume/Balance/Rotary selector.
Input Sensitivity-Magnetic P.U. (per channel) 2.5 mV into $68 \mathrm{k} \Omega$. Ceramic P.U. -25 mV into 27 K . equalised for flat tesponse. Radiol Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response -20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall.
Output-12 watts per channet into 15Ω ($8 \Omega 2$ speakers may be used). Negative Feedback-43dB over each section.
Cabinet-Afrormosia teak finish, pack-flat, easy to build kit. Size $9 \frac{1}{2} \times 5$ in in high $\times 9 \frac{1}{2}$ in. deep.
Transistors-Ultra low noise in pre-amp and tone control stages.

GO TO YOUR DEALER NOW

for your authentic Peak Sound Kits. In case of difficulty, please send drect. giving the name and address of your usual supplier where possible and add 11/- postage for complete assembly, or $5 / 6$ if without powet pack.
TRADE ENQUIRIES INVITED
PEAK SOUND (HARROW) LTD
32 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM
Egham 5316 SURREY.

AMPLIFIERS

DULCl 207 Stereo Amplifier DUIC1207MStereo Amplifier
lakes magnetic P/U
DULCl 220 Princess
GOODMANS Maxamp
New LEAK Stereo 30 Plus
New LEAK Stereo 30 Plus in teak case
New LEAK Stereo 70
LINEAR LT. 66 Stereo Amplifier
QUAD 33 Preamplifier QUAD 303 Stereo Main Amplifier
ROGERS Ravensbourne 50 watt Stereo
ROGERS Ravensbourne in teak case
ROGERS Raven sbrook
ROGERS Ravensbrook in teak case
TELETON 203E
TRUVOX TSA.200.
WHARFEDALE GP 50
Mark II P.A. Amplifier

Rec. Retai Price	Comet Price
£23 20	£18 00
£27 60	£21 190
£44 20	£34 196
154 00	£42 180
£52 0-0	£41 196
£58 100	£48 140
£63 00	£50 196
£15 450	£13 10
£43 00	£34 196
£55 00	$£ 46196$
£59 10 0	24819 6
£64 00	c54 8
£47 00	£34 19
£46 to 0	£39 19
£28 76	¢23 7
£51 90	£42 9
Special Price	£50 0

TUNERS

ARENA 211 Stereo. with decoder
DULCI FMT. 7 FM Tuner DULCI FMT.7S FM Stereo Tuner
GOODMANS Stereomax
AM/FM Stereo Tuner
LEAK Troughline Tuner with multiplex
QUAD Stereo FM Tuner
ROGERS Cadet Mark III Tuner
ROGERS Ravensbourne Tuner with Decoder
TRUVOX FM 200/IC Tuner
TUNER-AMPLIFIERS
ARENA 2400 with Decoder ARENA 2500 complete with Decoder
TELETON MX. 990 Stereo Tunes/Amplifier with AM FM Multiplex Stereo Radio c/w two Speakers each speaker containing sin. bass, 2 in . tweeter.
TELETON 502X AMIFM Stereo TunerfAmplifier 40 Watts RMS
TELET ON F. 2000 AMIFM Stereo Tuner/Amplifier 2×5 watts RMS with siliton transistors
TELETON R. 8000 AM F FM Stereo Tuner/Amplifier 2×6 watts RMS. complete with 2 speaker boxes
TELETON 7ATI Stereo Tuner Amplifier AM/FM 50 watts RMS. Stereo De coder and F.E.T.
TELETON CMS. 400 AM FM Multiplex Tuner/Amplifier with 2 speaker boxes and turntable

21078	3	$£ 64$	0	0

$\begin{array}{lllllll}£ 43 & 0 & 0 & £ 35 & 19 & 6\end{array}$
$\begin{array}{lllllll}£ 60 & 19 & 6 & £ 49 & 19 & 6\end{array}$
$\begin{array}{llllll} & 133 & 0 & 0 & £ 95 & 0\end{array}$
$\begin{array}{llllll}£ 126 & 0 & 0 & \text { £ 99 } & 0 & 0\end{array}$

BUDGET HI-FI STEREO SYSTEMS

ARRARD 3500 Turntable.
Amplifier 8 watts per
channel. VHF Tuner and pair of matched speakers beautifully finished in
teak, at a low price of
only
Also available without radio
£65 00
$£ 5400$

LL NOVA with VHF Radio, Garrard 2025 TC Autochanger with rusing device. 10 watts RMS amplifier and 2 matched bookshell speakers WINDSOR 15005 Solid ${ }^{\circ}$ Teak plinth with Garrard 2025 TC unit solid state amplifier to watts RMS amplifier 10 watts RMS
and 2 speaker units with with 9×5 elfipticals. complete with tweeter domes housed in solid teak cabinets of pleasing design
Also available with Garrard SP25 turntable

CARTBIDGES AL MAKES STOCKED

SPEAKERS

CELESTION Ditton 10 CELESTION Ditton 15 DULCI AS3 Speaker GOODMANS Maxim GOODMANS Mezzo il GOODMANS Magnum-K' GOODM ANS Mirimba GOODMANS Mambo LEAK Sandwich
LEAK Mini-Sandwich TELETON SB. 10028 watts RMS 8 Ohms. 2 Speaker System $5 \frac{1^{\prime \prime}}{} \times 10 \frac{1_{2}^{\prime \prime}}{} \times 7 \frac{1}{2}{ }^{\prime \prime}$ TELETON SA. 1003 Speal 1 Speaker Systems $6^{\prime \prime} \times 9^{*}$ $\times 5^{\prime \prime}$ (Rec. for use with F.2000)

QUAD Electrostatic Wharfedale New Airedale WHARFEDALE Denton WHARFEDALE Super Linton
WHARFEDALE Melton WHARFEDALE New Dovedale 3
Bowers \& Wilkins Speakers also available at discount prices

TURNTABLES

GARRARD SP.25, Mark : GARRARD AP. 75. GARRARD SL. 55 GARRARD SL. 65 GARRARD SL. 75 GARRARD SL. 95 GARRARD 3000 GARRARD 3500 GOLDRING Lenco GL. 68 .. GOLDRING Lenco GL.75.. GOLDRING 75P THORENS TD.125. THORENS TD. 150 THORENS TD. 150 B . THORENS TD. 150 AB THORENS TD.124/11

Bases, plinths and covers stocked, to sult all the above turntables.

a complete stereo system for only 28 gns!

Integrated Transistor

 Stereo AmplifierThe Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
Specification: R.M.S. power output: 3 watts per channel into 10 ohms speakers. Input Sensitivity Suitable for medium or high output crystal cartridges and tuners. Crosstalk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$. Controls: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
Tone Control: Treble lift and cut. Separate on/off switch.
A preset balance control.

81 ${ }^{\mathbf{1}}$ Gns. $+7 / 6 \mathrm{p} \boldsymbol{f} \mathbf{p}$

Controls: Selector switch Tape speed equalisation switch ($3 \frac{3}{2}$ and $7 \frac{1}{2}$ i.p.s.). Volume. Treble. Bass, 2 positlon scratch filter and 2 position rumble filter.

Specification: Sensitivities for 10 watt output at 1 KHz . Tape head: 3 mV (at $3 \frac{3}{4} \mathrm{i} . \mathrm{p} . \mathrm{s}$). Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Radio; 100 mV . Aux.; 100 mV . Tape/Rec. outpul: 100 mV . Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz , Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total distortion: (for 10 watt output) $<1.5 \%$. Signal noise: $<-60 \mathrm{~dB}$. A.C. mains $200-250 \mathrm{v}$. Built and Tested. Size $12 \frac{1}{2} \mathrm{i}$. long, $4 \frac{1}{6} \mathrm{in}$. deep, $2 \frac{3}{9} \mathrm{in}$ high. Teak finished case,

Terms C.W.O. All enquiries stamped addressed envelope.

All orders by post to our Acton address
21c High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.

THE DORSET (600 mW Output)

7-transistor fully tunable M.W.-L.W, superhet portable -with baby alarm faciity. Set of parts. The latest modulised and pre-alignment teohniques makes this simple to build, Sizes: $12 \times 8 \times 3 \mathrm{im}$. MAINS POWER PAGK KIT: 9/6 EXTRA. PRICE 5 GNS. $+7 / 6$ p. \& p. CIRCUIT $2 / 6$ FREE WITH PARTS.

THE ELEGANT SEVEN MK III (350mW Output)
7-transistor fully tunable M.W.L.W. portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for foolproof construction.
MAINS POWER PACK KIT: $\theta / 6$ extra.
Price $\mathbf{f 4 . 9 . 6 ~ p l u s ~} 7 / 6$ p. \& Circuit 2/6 FREE WITH PARTE.

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud Speaker system on one frame, combining three matched ceramic magnet speakers with a low loss cross over network. Peak handling power 10 watts. Impedance 15 ohms. Flux density 11,000 gauss. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size $13 \frac{1}{2} \times 8 \frac{1}{18} \times 4 \frac{1}{2}$ inches. By famous manufacturer. List Price $f 7$. Our price $74 / 6$ plus $5 /-\mathrm{P}$. \& P.
Similar speaker to the above without tweeters in 8 and 15 ohms $44 / 6$ plus Similar spe
s/-P. \& P.

X101

10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP

Specifortions: Power Output (into 3 ohma speaker) 10 watts. Sensitivity (for rated output): ImV into 3 K ohms ($0 \cdot 33$ microamp). Total Distortion at IKHz at 5 watte 0.35%, at rated output 1.5%. Frequency Response: Minus 3 dB points 20 Hz and 40 KEz, Speaker: $3-4$ ohms ($3-15$ ohms may be used). Supply volitge: 24 V d.c. at $800 \mathrm{~mA}(6-24 \mathrm{~V}$ may be used).
Control assembly: including resistors and capactors.

1. Yolume: PRICE 5/-.
2. Treble: PRICE 5/-.
3. Comprehensive hass and treble: PRICE 10/-.

The above 3 items can be purchased for use with the X101.

Price 69/6 plus 2/6 p. \&p.

Power Supplies for the X101:
P101 S (for stereo) 42/6 plus 4/6 p. it p-

CAR TRANSISTOR IGNITION SYSTEM (by famous manufacturer)

For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.). PRICE £4.19.6. (post and packing 5/- extra).

50 WATT AMPLIFIER A.C. MAINS 200-250V

An extrenely reliable general purpose valve amplifier-with six electronically mixed inputs. Suitable for lise with: mics, guitars, gram, tuner, organs, etc. Separate bass and treble controls. Output impedance 3 , 8 and 15 ohms.
Price 27 gns. Plus 20/-p. \& p.

SPECIAL OFFER!

Complete stereo system comprising BALFOUR 4-speed autoplayer with stereo head, 2 duo speaker systems, size 12 in . $x 6 \frac{8}{4}$ in. $x 5 \frac{3}{4}$ in. Plinth (less cover) and the DUETTO stereo amplifier. All above items 19 gns. plus $20 /$ p. \& \& .

SPECIFICATIONS
Output-10 watts \quad Output Impedance -3 to 4 ohms Inputs-1. -xtal mic 10 mV Tone Controls-Treble control range $\pm 12 \mathrm{~dB}$ at 10 KH 2 -grampradio 250 mV Base control range $\pm 13 d \mathrm{~B}$ at 100 H 2 Frequency Response-(with tone controls central) Minus 3 dB points are 20 H 2 and 40 KH 2 . Sjgnal to Noise Ratio-better than -60 dB . Transistors-4 silicon Planar type and 3 Germanium type. Mains input-win $-220-250 \mathrm{~V}$. A.C. Size of chassis- $200-250 \mathrm{~V}$. For use with Std. or T.P. records, musical instruments, all makes of A.C. Mains, $200-250 \mathrm{~V}$. For use with std. or L.P, records, musical instruments, all makes of and mike. Built and tested. $8^{\prime \prime} \times 5^{\prime \prime}$ speaker to suit price $14 / 6$ glus $1 / 6$ P. \& P. Crystal mike to suit 12/6 plus 1/6 P. \& P.
Reliant Mark I. $5 \frac{1}{2}$ gns, plus $7 / 6$ p. \& p.
As above less teak case.
Reliant Mark II. $6 \frac{1}{2}$ gns. plus $7 / 6$ p. \& p.
In teak finishect case.

CYLDON

 2 TRANSISTOR U.H.F. TUNERBrand new. Complete with circuit diagram.
$\mathbf{£} \mathbf{2 . 1 0 . 0}$ plus $1 /-$ p. $\&$ p.

EXTRACTOR FAN

AC Mains $23 / 250 \mathrm{v}$. complete with pull Swit ch c .
Size $6^{\prime \prime}$ $6^{\prime \prime}{ }^{6} 4^{4 \prime}$ Price 27/6
plus $5 /-$ plus ${ }^{\text {P. } \& \text { P. }}$

B.S.R. TD-2 TAPE DECK

This tape deck takes $5 \frac{5}{3}$ in. spools complete with two-track heads. Size $13 \frac{1}{4}$ in. long by 8 8in. wile. 88.19 .6 plus $7 / 6$ p. \& p.

RECORD PLAYER SNIP A.c. MAINS 240v

The "Princess", 4-speed automatic record changer and player engineered with the utmost precision for beauty, long life, and trouble free service. Will take up to ten records which may be mixed $7^{\prime \prime}$ to $10^{\prime \prime}$ or 12^{\prime}. Patent stylus brush cleans atylus aiter each playing and at shat off, the pick-up locks itseli into its rent-other features include pick-up height adjust-ment-other features include pick-up height adjustfine instrument which you can purchase this month
 at only 55.19 .6 complete with cartridge and ready to play. Post and insurance $7 / 6$ extra. at only a5.18.6 complete with cartrige and ready to play. Post and insurance $7 / 6$ extra.

POCKET MULTI-METER
Size $3 f \times 2 t \times 1$ ind. Meter size $2 t \times 17$ ing. Sensitivity 1000
$0 . P . V$ on both A.C. and D.C. volts. $0-15,0-150,0-1000$ O.P.V. on both A.C. and D.C. volts. 0-15, $0-150$, $0-1000$ D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete W/6. FRES GIFT for limited period only. 30 watt fifectric Soldering Iron value 15/- to every purchaser of the Pocket Multi-Meter.

FIRST QUALITY P.V.C. TAPE

 $5^{3^{\prime \prime}}$ D.P. $1800 \mathrm{ft}20 /-\quad 4^{\prime \prime}$ T.P. $900 \mathrm{ft}46 / 6$ P. \& P. on each $1 / 6$.

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in . spool.

Incorporating 3 motors.
A.C. mains, 240 volts, listed at $£ 21.0 .0$.
Our Price £9.19.6, plus 10/- P. \& P.

RADIO \& TV COMPONENTS (ACTON) LIMITED

Goods not despatched outside U.K. Terms C.W.O. All enquiries S.A.E. All orders by post to our Acton address 21 c High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.

TOPIC OF THE MONTH

Third Opportunity

DURING the heyday of the valve era, designers, constructors, equipment makers and service engineers were plagued with the vast proliferation of valve types. From a handful of basic types, valve manufacturers escalated production to the stage where a complete listing of all new, obsolete and replacement types became well nigh impossible due to sheer numbers.

With the advent of transistors, it seemed that a new era of rationalisation was dawning. Starting with a clean slate it was inconceivable that the same mistakes would be made with transistors as with valves. Alas, the result has been even greater chaos!

There must be tens of thousands of semiconductor devices now in the catalogues, or in replacement lists. Many of these are direct, or almost direct, equivalents, or else the parameters are sufficiently close to make duplication wasteful and frustrating, especially when one considers that there are cases of up to twenty variants of some basic types.

There has been little attempt to rationalise the type numbering system between different countries or even different manufacturers, nor any co-ordination in introducing new types to catalogues. And at this stage of the game, it is too late to remedy matters.

We are now on the threshold of yet another major opportunity for industry to work together for the common good. Integrated circuits are no longer a laboratory novelty and are poised to break into the domestic sphere in a big way: Unless industry can prevent itself-lemming fashion-from making the same mistakes the third time, a situation even more chaotic will result. The possibilities (and the temptations) to proliferate will be greater than ever, for we are all set to be overwhelmed by an avalanche of IC devices within the next few years.

Today, ICs are an appetiser. Tomorrow, on the menu, it will be chips with everything. P.W. is preparing for this situation and will have something of great interest to say to constructors in the next issue.
W. N. STEVENS-Editor

NEWS AND COMMENT

Leader 311
News and Comment 312
Practically Wireless by Henry 320
Letters to the Editor 335
CQ! CQ! CQ! CQ! CQ! 347
On the Short Waves by Christopher Danpure and David Gibson, G3JDG351
CONSTRUCTIONAL
CQ2 VHF Receiver by M. J. Gordon 314
Take 20, Transistor Tester Plus
by Julian Anderson 321
Simple Electronic Keyer by S. Niewiadomski 329
Lie Detector by C. R. Bradley 330
The Mini-two by M. Wallis 332
A Versatile Intercom System, Part 2 by J. E. Barrett 336
A Miniature Power Supply by I.J.Kampel 343
OTHER FEATURES
Basic Semiconductor Technology, Part 4 by M. F. Docker, B.Sc. 317
Aerials, Part 4 by A. J. Whittaker 322
P.W. Guide to Components, Part 9 by M. K. Titman, B.Sc. 338
Inductors for the Progressive All-wave Superhet 348
Pulse Circuits in Operation, Part 4 by I. J. Kampel 355
OCTOBER ISSUE WILL BE PUBLISHEDON SEPTEMBER 5th

[^3]
LATEST RADIO-3 STEREOPHONIC TRANSMISSIONS

The unshaded part of this map shows areas where satisfactory stereo reception should normally be obtained. In places where field-strength is low, increased background noise or interference may be heard. Improvement in the sensitivity of the receiving aerial may enable the noise level to be reduced and a more directional aerial may discriminate against interference. Frequencies are: Brighton, 92.3 MHz ; Holme Moss, 91.5 MHz ; Kendal, 90.9 MHz ; Morecambe Bay, 92.2 MHz ; Northampton, $91 \cdot 1 \mathrm{MHz}$; Oxford, $91 \cdot 7 \mathrm{MHz}$; Scarborough, $92 \cdot 1 \mathrm{MHz}$; Sheffield, $92 \cdot 1 \mathrm{MHz}$; Sutton Coldfield, $90 \cdot 5 \mathrm{MHz}$; Swingate, $92 \cdot 4 \mathrm{MHz}$; Wrotham, $91 \cdot 3 \mathrm{MHz}$.

Fitted with Cermet resistanceelements, these potentiometers, Type S106, shown actual size, are immune to high humidity effects and chemical attack, making them very suitable for operation at elevated temperatures.

Wattage rating when mounted on a steel plate $100 \times 100 \times 1 \mathrm{~mm}$. is 2.5 W and when mounted on insulated material, $0 \cdot 7 \mathrm{~W}$. These units are available in values from 100Ω to $1 \mathrm{M} \Omega$, linear only. Tolerance is $\pm 20 \%$ and working voltage 250 V d.c. Manufactured by Rosenthal Isolatoren GmbH , the sole UK distributors are: Radio Resistor Co. Ltd.,9-11 Palmerston Road, Wealdstone, Harrow, Middx.

ASPIRING AMATEURS TAKE NOTE

For the last three years at the Knaresborough Further Education Centre, Stockwell Road, Knaresborough, Yorks, they have offered Evening Courses (7-9 p.m.) leading to the City and Guilds Radio Amateurs' Examination and these have included tuition in Morse code.

This year they intend offering the courses again and the timetable for the 1969-70 session is: RAE (1st year) Monday, September 22nd, 1969 to December 15 th, 1969 and January 5th, 1970 to March 16th, 1970. RAE (2nd year) Thursday, September 25th, 1969 to December 18th, 1969 and January 8th, 1970 to March 19th, 1970.

Fees will be 30s. from September to March.

Local Radio-PO confirms policy on wavelengths

The Postmaster General, the Rt. Hon. John Stonehouse, M.P., has rejected Mr Hughie Green's view that 100 local radio stations could be provided on medium wavelengths. A team of Post Office experts has completed a detailed examination of his proposals and their conclusions were sent to Mr Green.

Mr Green submitted two feasibility studies to the Post Office. Both would have involved the use of directional aerials for some stations, including those for London and Manchester. They would also have involved the use of medium wave frequencies allocated to other countries, under the terms of Article 8 of the 1948 Copenhagen Plan. The Post Office conclusion is that, even by day, not all the stations Mr Green proposed would give satisfactory reception; and, that for the remainder service areas would in general be so reduced after dark as to be completely unsatisfactory. For example, the station proposed for London would cover only 10 per cent of the Greater London area after dark.

Post Office studies reaffirm the conclusions set out in the Government's White Paper on Broadcasting (Cmnd. 3169 para. 32, December 1966) that "no general service of local sound broadcasting, which would be available during the hours of darkness as well as in daylight, can be provided only on medium wavelengths allotted to the United Kingdom."

WOW! A STRIPPER

Multicore's Model 3 Bib Wire Stripper and Cutter has been improved. This new one enables insulation to be removed without nicking the wire. The aperture setting for different diameters is adjusted by setting a sliding screw set in one handle.

In addition, this stripper features two cutting positions-one for normal flex cutting and the other on the tip of the unit, for cutting wire in a confined space. A good example is the removal of wire after it has been connected to a tag or bolt. This cutting tip is also suitable for separating extruded twin flex.

Each stripper is packed on an instruction card and costs 5 s .6 d . from most hardware, electrical and do-ityourself stores. Multicore Solders Ltd., Hemel Hempstead, Herts.

NEW RELAYS

The range of ITT's PZ style relays for printed circuit boards has been augmented by a two-changeover version, the type PZ-2. Overall dimensions of this miniature relay are only $29 \times 16 \times$ 14 mm . The connections are for direct soldering on to printed circuit boards.

The two-changeover contacts are of the twin type with a choice of silver/ palladium or gold/silver contact alloy. Maximum switched power per contact is $12 \mathrm{VA}(1 \mathrm{~A}$ at 100 V a.c. or d.c.). The relay is for d.c. operation. ITT Components Group Europe, Standard Telephones and Cables Limited, ElectroMechanical Product Division, West Road, Harlow, Essex.

TO BEAT THE THUGS

The Glasgow Corporation Transport Department, hard on the heels of the Edinburgh and Wolverhampton Transport Departments, has placed an order for 100 v.h.f. f.m. mobile radiotelephones for use by the city's bus services. Hooliganism has resulted in the placing of this order and the Storno mobile units are to be installed. in buses running on late-night routes and will enable the crews to establish immediate contact with transport control where a direct link to police headquarters will speed the police to any emergency.

JACKSONS' NEW COMPONENTS

A new range of tuning capacitors is announced by Jackson Bros. Type TX5 are capacitors available in single-stator and split-stator versions and with capacitanceswing values ranging from 30 pF to $1,000 \mathrm{pF}$. They have siliconed ceramic endplates and satin-finished aluminium vanes with radiused edges.

The company also manufactures the "Wavemaster" tuning capacitors with swings ranging from 10 pF to 300 pF .

New trimmers of the piston type with PTFE dialectric have also been introduced. Ten models are now made and the smallest, measuring $1 \frac{1}{4} \times \frac{3}{16}$ in. has a capacitance swing of $\frac{1}{4} \mathrm{pF}$ to 8 pF .

Completing the range of new products are two epicyclic ball-drives-the Mini which is designed to fit all makes of miniature variable capacitor with solid dielectric ($4 \frac{1}{2}: 1$ ratio) and the Adjustable-Torque ball-drive which provides a reduction ratio of $6: 1$. On this unit, four spring-loaded screws effect adjustment. Jackson Brothers (London) Ltd., Kingsway, Waddon, Croydon CR9 4DG.

The adjustable-torque ball-drive with reduction ratio of 6:7. The spring-loaded screws to the left of the photograph effect the adjustment of the torque.

The new Audio Plan incorporates qualities gained from both experience and technical advances that have occurred over the past few years. Advances like the "touch tuning" facilities of the RH790 tuner amplifier where tuning is accomplished by applying a variable voltage to a varicap. This voltage is set by potentiometers; one coupled to the main tuning control and the other three to preset controls. The appropriate control (therefore appropriate voltage) is selected by means of transistor switches actuated by hand capacity, when the appropriate one of the four "touch tuning" panels is approached by the operator's finger. The panel is then illuminated and the frequency selected is indicated by a meter which measures the voltage applied to the varicap. The meter is calibrated in MHz , the frequency selected being proportional to voltage applied. Price of this unit is $£ 125$. Philips Electrical Ltd., Century House, Shaftesbury Avenue, London, W.C.2.

Capacitor type TX5. Frontal area is $2 \frac{3}{4}$ in. and depth varies from 3.6 to 8.4in.

Tape head cleaning kit

Bib Division of Multicore Solders have introduced a new compact "size J" Head Maintenance Kit. It comprises a 30c.c. bottle of anti-static, nonflammable Bib cleaner, or alcohol for removing oxide and dirt from the tape heads and all parts of the tape path, 10 double-ended, cotton-wool tipped sticks for access where the Bib tools will not reach, and four Bib tools together with a Hi-Fuster absorbent cloth for cleaning the soiled tools and sticks etc.

All these components are contained in a plastic wallet and the recommended retail price is 9 s . 9d. including 1 s .11 d . P.T. The size J kit is available from all leading stockists. Multicore Solders Ltd., Hemel Hempstead, Hertfordshire.

DATE TO REMEMBER

GB3WRA, operated by a group of local radio Amateurs from the annual Wycombe Show on the Rye, High Wycombe, Buckinghamshire, will be on the air on Saturday, 6th September, 1969.

Operation will be on all bands 160-4 a.m., c.w., s.s.b. and visiting Amateurs will be especially welcomed. Further information may be obtained from A. C. Butcher, G3FSN, 70 Hughenden Avenue, High Wycombe, Buckinghamshire.

WHEN it comes to v.h.f., most fixed amateur stations use either a transceiver, a crystal controlled superhet converter (with the s.w. receiver as i.f. and a.f. amplifier), or a de-luxe triple conversion receiver.
However, these units are usually quite expensive or difficult to build and align, unless one has considerable experience of y.h.f. techniques.

This super-regenerative t.r.f. design will satisfy the needs of many s.w.l.s and prospective G8s, as there is only one tuned circuit to adjust; it can be easily built in one evening and is not difficult to set up. Having only one tuned circuit, it is also very easy to change the frequency coverage.
The f.e.t. tuner is the heart of the device and if so desired could be used on its own with a jack plug to feed into the input socket of a ready-made amplifier. In this case the tuner could be made quite small. This set-up was in fact used by a local G8 for his first QSO. It will not do for DX, but at least it's a start. Many readers will have dabbled around with the regenerative t.r.f. type of receiver but in the super-regenerative design, feedback is introduced (via the source to drain capacitor C3 in the author's design) beyond the point where oscillation just occurs, and the stage is in continuous oscillation until this state is disturbed by an incoming signal. The super-regenerative state brings about a condition of extremely high sensitivity to the circuit; there is also a high level of circuit background noise, commonly referred to as "slush".

The complete circuit of the receiver is shown in Fig. 1. Even without an aerial the receiver has
received good signals from aircraft, radio amateurs and other services up to a distance of approximately 6 miles. Because the prime purpose of building the receiver was to receive local amateur radio transmissions in the Taunton area, the extra encumberance of an elaborate aerial array has not been tried. It is suggested that for experimental purposes an 18 in . length of 18 s.w.g. tinned copper wire is simply fitted to the centre of the coax socket. Vertical orientation of the aerial will normally bring forth optimum performance.
The author has built more than one version of this receiver, but that shown in the photograph was built into a wooden cabinet already on hand. This was approximately $8 \times 8 \times 4 \mathrm{in}$. deep.

As an alternative to the loudspeaker, a low impedance (80Ω) earpiece could be used.

Layout and Construction

Although layout is important at v.h.f., and the effects of extra-long wires and inter-electrode capacitances undesirable, the circuit allows considerable latitude, even on 2 metres. The original mockup.was in fact, built up on a $1 \frac{1}{2} \times 2 \frac{1}{2}$ in. paxolin board. Layout will depend on the cabinet and components used, but VR1 should not be more than 6 in . from the coil.

VC1 was actually an Eddystone 35 pF variable with brass vanes in the prototype. All these were removed except for one stator and one rotor, but a 5pF C804 (Henry's Radio) is a suitable ready made

Fig. 1: Circuit of the complete receiver. If only the tuner is required (as depicted in Fig. 2), the audio output should be taken from the slider of VR2. S1 should be shown wired in the $+9 V$ supply lead.

Fig. 2: Layout of the tuner section of the receiver. The audio amplifier stages are not shown. C3 may alternatively be of the "twisted wire" variety (see text). The leads of L2 should be kept as short as possible, one end being soldered directly to the fixed plate of VC1 (5pF type C804 shown in the above diagram).
component. The stator was cleaned and tinned, and direct soldered connections were made to it.

The coil L2 consists of $3 \frac{1}{2}$ turns of 18 s.w.g. tinned copper wire close wound to $\frac{3}{8} \mathrm{in}$. diameter. Tightly spaced this will get aircraft, and stretched over $\frac{1}{2}$ in. it will cover the 144 MHz Amateur band. Naturally, the coil is sensitive to the effects of hand capacitance. The aerial coupling coil L1 should be a half turn of the same wire placed near to the earthy end of L2.

The 10 pF feedback capacitor C3, if preferred, can be replaced by a conventional tubular variable type, which would also provide a good anchorage for the drain and source of the f.e.t. Alternatively, the unconventional variable "twisted wire" variety may be used. About $\frac{1}{2} \mathrm{in}$. is sufficient to get the circuit "started".

The $1.8 \mu \mathrm{H}$ r.f.c. in the prototype was filched from a turret-type v.h.f./u.h.f. tuner, but this may be difficult to obtain, and about 25 turns of very thin wire on a 1 megohm $\frac{1}{4}$ watt miniature resistor works equally well.

Wiring should be kept as short as possible, and the same tag should be used for all earth connections in the first stage.

Fig. 3:Transistor lead connections.
Distinguish carefully the leads of the f.e.t. and if using the 2 N 3819 remember that the lead-out is different from that of the MPF102. Although the f.e.t. is silicon and should stand up to about 10 seconds heat from a 15 watt iron, it is best to use a heat shunt when soldering, such as long nosed pliers with a rubber band wound around the handles. An earthed soldering iron should be used, as the f.e.t. can be damaged by mains-derived capacitive

components list

Resistors:			
R1	$1 \mathrm{k} \Omega$	R7	$1 \mathrm{M} \Omega$
R2	10k Ω	R8	220k Ω
R3	$15 \mathrm{k} \Omega$	R9	470Ω
R4	220k Ω	R10	620Ω
R5	$10 \mathrm{k} \Omega$	R11	82Ω
R6	220k Ω		
All 10\% $\frac{1}{4} \mathrm{~W}$ miniature			
Capacitors:			
C1 1000pF cerami			
C2 5 pF ceramic			
C3 10pF (see text)			
C4 4700pF ceramic			
C5 $0.01 \mu \mathrm{~F}$ ceramic			
C6 $\quad 0.1 \mu \mathrm{~F}$ miniature			
C7 $8 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic			
C8 $\quad 8 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic			
C9 $0.1 \mu \mathrm{~F}$ miniature			
C10 $50 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic			
C11 $50 \mu \mathrm{~F}$ 12V electrolytic			
VC1	5 pF va	text)	
Semiconductors:			
Tr1 MPF102 or 2 N 3819			
Tr2 2N2926			
Tr3 OC44 ${ }_{\text {Tr }}$ Or ${ }^{\text {ar equivalents }}$			
Tr5 OC81			
Inductors:			
L1 $\frac{1}{2}-1$ turn, near earthy end of L2, 22 s.w.g. insulated copper wire.			
L2 $3 \frac{1}{2}$ turns, 18 s.w.g. tinned copper wire, $\frac{3}{8}$ in. diameter, air cored.			
Miscellaneous:			
VR1, VR2 $5 K \Omega$ potentiometer, $\mathbf{S 1}$ single pole on/of switch (may be combined with VR2), 80Ω loudspeaker, paxolin board, tagstrip, coax socket, battery clips, PP9 battery, wire, solder, etc.			

voltages. As a further precaution, all the f.e.t. leads could be shorted together by the "heat shunt" whilst being fitted.

Operation

Check the polarity of the battery, and the wiring before switching on. If the circuit of Fig. 1 is used the current drain on a 9 V battery should be about $35-40 \mathrm{~mA}$. Check that none of the f.e.t. leads are shorting and switch on, with VR1 at minimum. A lively background hiss will indicate that the f.e.t. is oscillating. If it is not, advance VR1 towards maximum. The hiss should be extremely loud, much louder than ordinary background hiss with which it should not be confused. Experiment with various settings of VR 1 to produce optimum results.

The photograph shows the author's prototype.
When a station is tuned-in there will be a reduction in the circuit background hiss, this depending upon the strength of the received signal. It is usually best to adjust L2 for the desired band on Sunday mornings or evenings as radio amateurs are usually more active on v.h.f. at these times.

The only likely cause of trouble may be Cl working loose or fracturing as a result of the manipulation of L2.

The amount of radiated interference, once the scourge of this class of receiver, appears to be negligible.

BINDERS AND INDEX

Don't let your copies of PRACTICAL WIRELESS become torn and dirty: hard-cover binders are available at 14s. 6d. from:

> BINDING SECTION,
> IPC MAGAZINES, LTD.. SOUTHAMPTON STREET. LONDON, W.C.2.

Indexes to Vol. 43, 1967-8, are also available at 1s. 6d.
These prices include post and packing.

NEXT MONTH $\mathbb{I N}$

AUDIO SIGNAL GENERATOR

This describes the construction of an audio generator, with both sine and square wave outputs. The design is based upon the popular Wien bridge oscillator and covers the frequency range of 15 to $100,000 \mathrm{~Hz}$. A mains power supply is built-in, but as an alternative, the generator could be run from a 12 V 30 mA battery supply.

Thermistor control ensures a constant amplitude output regardless of minor variations in supply voltage and temperature.

PRINTED CIRCUIT DESIGN

Many home constructed transistor designs are invariably built on some form of printed circuit, the tendency is to use ready available SRBP perforated board, or that with copper strip bonded to it. For those who prefer a tailor-made printed circuit, details are given on the preparation and etching of boards to one's own design.

A masking technique utilising adhesive tape gives a professionally finished product.

PLUS OTHER CONSTRUCTIONAL PROJECTS AND REGULAR FEATURES

ORDER YOUR COPY NOW!

Please reserve/deliver the OCTOBER issue of PRACTICAL WIRELESS (3/-), on sale SEPTEMBER 5th, and continue every month until further notice.

NAME
tons in supply voltage and temperature.

I
1
 SEMICONDUCTOR

by M.F.DOCKER, M.Sc.

IN Part 3 the methods of preparing a p-n junction diode were described. The basic p-n junction device is the best known example of the modern diode since it is used extensively in power rectification circuits.

These devices have taken the place of the thermionic diode in most applications. The obvious reason for this is the very significant increase in efficiency over the thermionic counterpart. The voltage drop across a semiconductor diode carrying one ampere is measured in fractions of a volt whilst the voltage drop across the valve is measured in volts. Also the valve requires a filament or heater supply which itself consumes several watts.
The earlier solid state diodes had one disadvantage, their low reverse breakdown voltage. The rectifier has to withstand a voltage several times the peak voltage and in many circuits this can amount to many hundreds of volts. However there are now available diodes with reverse breakdown voltages measured in thousands of volts.
Care has to be taken that this reverse voltage is not exceeded otherwise the diode will suffer irreparable damage. The damage is caused by the excessive heat dissipated by the large reverse current flowing across the high impedance junction.

Point Contact Diodes

The capacitance which a junction diode has between its terminals is dependent upon the area of the junction. For very high frequency applications and for fast switching it is necessary to reduce this capacitance to a minimum. This is achieved in the point contact diode by using a tungsten metal wire with a very fine point which is pressed against a small piece of semiconductor material. This constitutes the simplest type of point contact rectifier similar to the early "cats whisker" detector used in crystal sets.
A much improved performance is obtained when the device is "formed" by passing a short pulse of current through the diode in the forward direction. This produces a heating effect and changes the character of the contact region, although the exact nature of the operation of the device is not wholly clear.

The Metal Rectifier

Although not normally considered when talking about semiconductor diodes the metal rectifier which was used extensively in power rectification in the fifties and before is worth mentioning here. It consists of a metal to semiconductor junction as in the point contact device but a much larger area is used
in order to reduce the series resistance of the diode. A layer of copper oxide, $\mathrm{Cu}_{2} \mathrm{O}$, is produced on a piece of copper by oxidation. The oxide layer acts as a donor, or n-type semiconductor, and the equilibrium energy band diagram can be drawn as in Fig. 1.

Fig.1:Equilibrium energy band diagram for a metal-oxide rectifier.
The Fermi levels of the oxide layer and the metal must coincide at distances from the junction as in the case of the p-n junction. However the carrier concentrations in the metal are such that the conditions in the metal are unaltered and the result is that electrons from the donor sites in the oxide layer diffuse into the metal leaving a wide region with a positive space charge. It can easily be shown, using the same arguments that were used in Part 3, that the device will act as a rectifier. When the n-type oxide layer is negative with respect to the metal the diode is biased in its forward direction. The opposite polarity is of course the reverse bias case. This form of diode is inferior to the junction or point contact diode in that its reverse current is much larger, it has a large parallel capacitance and its reverse breakdown voltage is low.

The Gold Bonded Diode

This type of diode is used in high speed switching circuits. It consists of an alloyed p-n junction with a very small area in order to keep the capacitance to a minimum. This is achieved by using a very fine gallium doped gold wire pressing against an n -type germanium base wafer. The p-type gold wire acts as an anode when it is alloyed to the germanium by passing a short pulse of current through to heat the junction.

A silicon version of the golded bonded diode is also made using an aluminium wire as the p-type
anode, with an n-type silicon wafer. This device gives a lower reverse leakage current than the germanium equivalent but the forward offset voltage is considerably larger; silicon devices typically have offset voltages of 0.6 V compared with 0.3 V for the germanium device. This is undesirable in many circuits as it leads to distortion when the diode is used to detect a low level signal. Consequently a compromise has to be adopted in most applications.

Variable Capacitance Diode

It was shown earlier that when the reverse voltage applied to a diode is altered the width of the depletion layer changes. This effect can be likened to separating the plates of a capacitor. This produces a change in capacitance; an increase in separation leads to a decrease in capacitance and vice versa. The same effect occurs in the diode, with some modification because of the presence of ionised atoms between the plates of the "capacitor". This gives rise to the diode capacitance which changes as the reverse bias is altered.

In the case of the alloyed junction diode the capacitance varies as the inverse square root of the voltage, doubling as the voltage is divided by four. In the case of the diffused junction diode which has a built-in gradient of impurity ions the capacitance increases as the inverse cube root of the voltage, so that an increase in the reverse voltage by a factor of eight is required to halve the capacitance.
The variable capacitance diode is used extensively in circuits which would formerly have used variable reactance valves. Such applications are automatic frequency control of receivers, electronic tuning circuits and parametric amplifier circuits. Diodes are now available which have capacitance ranges of from 500 pF with a reverse voltage of 1 V to 75 pF with reverse voltages of around 100 V .

Zener Diodes

The reverse breakdown of a p-n junction has been shown to be due to one of two effects. Breakdown below 6 V is due to the zener effect in which the field across the junction leads directly to ionisation; above 6 V the breakdown is due to the avalanche process. In practical devices these effects can be made to occur at specific voltages by varying the doping levels and junction widths. A typical characteristic curve is shown in Fig. 2. This type of diode can be used to stabilise a voltage power supply either by using amplification and a series stabilising transistor or by simply using the zener diode as a shunt stabiliser. Breakdown diodes can be obtained with breakdown voltages of from 2 V to several hundred volts, capable of controlling hundreds of watts of power.
Unfortunately the breakdown voltage varies with temperature. The temperature coefficient of the devices varies between $\pm 0 \cdot 1 \%$ per degree centigrade. The negative temperature coefficient applies to the zener diode, the positive to the avalanche diode. The dynamic resistance of the breakdown diode can vary from a few ohms for a good device to several thousand ohms for a low current device.

It is worth mentioning that reference voltages of less than 2 V can be obtained by using the forward offset voltage of forward biased junction diodes. Several diodes can be connected in series to obtain voltages in steps of 0.3 V using germanium devices.

Fig. 2: Zener diode characteristic curve.

Photodiodes

Another form of diode which is used in the reverse biased condition is the photodiode. The reverse current of a diode increases if light is allowed to fall on to the junction. It was explained in Part 3 that the reverse saturation current is due to the thermal generation of minority carriers near to the depletion region, these being swept across the junction by the internal field. If the junction region is illuminated electron-hole pairs are generated by the photoelectric effect. The minority carriers produced near the junction then increase the reverse current.

This effect occurs in any reverse biased junction and consequently care is normally taken to ensure that no light can reach the junction. However in the case of the photodiode a transparent encapsulation is used so that the junction can be illuminated. Sometimes a lens is used to focus the light to the most sensitive area. The lens is formed in the material of the encapsulation.

From Fig. 3 it can be seen that the dynamic resistance of the photodiode is large so that the reverse current is insensitive to the reverse voltage applied to it.

Light Emitting Diodes

Various semiconducting diodes emit radiation when they are forward biased. This is because the hole-electron recombination occurring in the junction

Fig. 3: Photodiode characteristic curve showing change in reverse current with change of light intensity.

(a)

region leads to the production under certain circumstances of radiation. Numerous light emitting diodes are now available, exhibiting laser action when very narrow beams of "in phase" or coherent light are produced.

Wavelengths of between $8,500 \AA$ and $500 \AA$ are available from the devices, giving radiation from the infra red to the ultra violet ends of the spectrum. Only relatively small amounts of light are yet available from the devices; suitable applications are in card reading machines for computers and short range communications systems.

The Tunnel Diode

It might be thought that if an electron meets an obstacle that requires a greater energy to surmount than the energy possessed by the electron, then the electron would be stopped. However the quantum theory of matter predicted that the electron would under these circumstances be able to penetrate a small distance into the barrier, and if the barrier were thin enough the electron could pass straight through it. This process is called tunnelling.
If a diode is made with a very high level of doping the Fermi level will lie within the conduction band in the n-type region and within the valence band in the p-type region. Thus when the junction is unbiased the p- and n-type regions will have overlapping valence and conduction bands respectively, as shown in Fig. 4 (a). If a small reverse bias is applied the situation becomes that of Fig. 4 (b),

Fig. 4: (a) Tunne/diode energy band diagram when in an open circuit state of equilibrium. (b) Tunnel diode with reverse bias, (c) with small forward bias.
where electrons in filled states in the p-type material are opposite empty states in the n-type material so that the conditions for tunnelling apply. This results in a large reverse current flowing.

If a small forward bias is applied electrons from the n -type material will tunnel into the p-type material as long as the conduction and valence bands still overlap as in Fig. 4 (c). However when the forward bias is such that there is no overlap tunnelling stops and only the normal diode forward current flows, this initially being smaller than the tunnelling current.

Fig. 5: Tunnel diode characteristic curve.
The important point in the characteristic above is the sloping region between a and b. This corresponds to a negative resistance region where an increase of the voltage across the device leads to a decrease in current through it. This enables the device to be used in oscillators and amplifiers.

A second point of importance is the fact that at a certain current there are three voltages at which the device can operate. For example the line cd in Fig. 5 cuts the curve at three points. This feature enables the tunnel diode to be used in switching applications.

Impatt Diodes

Various diodes have recently been constructed which are capable of producing oscillations at microwave frequencies. Examples are the Gunn and Read diodes. The theory of these devices is rather involved to discuss here but depends on the bunching of charge carriers as they move across a block of suitable semiconductor.
to be continued

practically Wireless commentary by IEINII

0UR Scientific Correspondent in my daily paper is always quick to tell us that this is the age of automation.

What with telecasts from lunar floorshows and David Frost

Made redundant by a robot.
jumping onto the rocket-wagon, anything so mundane as a handwired valve radio almost qualifies as an objet d'art. Modules are the order of the day.

Is it any wonder that the average chap begins to fear he will soon be made redundant by a robot? Orwell lurks around the corner. My uncle's pacemaker is a Mark II model and Bob Hope is said to hang a sign at the foot of his hospital bed: 'Just dozing -no transplants.'
Henry has heard it all before. Dire predictions that progress would soon make radio engineers a drug on the market have sounded with every innovation. The Jeremiahs welcomed transistors with grim warnings that sets-tobe would never go wrong. Printed circuitboards were heralded similarly. Integrated circuits, in theory, should make fault-finding as archaic as the Morris dance. Modules, I repeat, are the in thing.
Funny thing is that I remember somewhat similar remarks when the double-diode-pentode first appeared. 'A complete output
portion . . .' one advertisement trumpeted. Lee deForest should have lived to see the day!
It was when television receivers first broke out in a rash of modules that big business took up the cry. Service departments were reorganised to cope with modulechanging techniques. We were told that a small stock of P-C boards held by each field engineer would whittle down servicing time. And men, we wondered? Bench engineers surreptitiously studied plumbing between module transplants. Diagnosis, it was whispered, would become a dying art.

Bench engineers perforce began servicing modules, and soon it became a habit. It was cheaper than packaging them, returning them for replacement and hoping a good one would come back.

More important, it was a blow to the pride of a bench engineer to have to send back to the makers a simple printed circuit with a few components, when a modified fault-tracing technique quickly proved where the trouble lay.
In the trade magazines, 'Service Gen' articles began to appear, with C33 and R21 spotlighted as persistent failures. Before the modules had been sculling around long enough to outrun their guarantee, service was back to normal; just a little more difficult because testing a module in situ was not so easy as probing around a tag board.
Biggest joke of the lut wasand still is-the attitude of the copywriters. To read them seriously, one would imagine a setmaker was the engineer's favourite uncle. 'Plug-in modules for easy servicing' claim the blurbs. If you believe that, you'll fall for anything.
Plug-in modules do make for easier fault-finding, true, if all you are concerned to do is swop around willy-nilly. In practice, when half our equipment is . .
what is the word? moduled, modulised modulated (no, can't be that) . . . any shop carrying sufficient replacements would have too much capital tied up in spares.
So we are back to square one, but this time complicated by the hazard of inaccessibility.
Have you ever looked closely at these modular designs? The method of construction keeps the actual circuit out of reach when it is operating. To test many modern modules, one has first to make a multi-plug jumper lead. Every plug and socket differs.

In one tuner-amplifier I recently serviced, nine dinky modules, completely shielded, plugged into what looked like conventional valve-bases. Good, we thought, what an excellent way of using up old stock. Until we peered a little more closely and discovered that the pin formation of these ceramic bases was like nothing BVA had ever envisaged.

A blow to the bench engineer's pride.
I saw a service instrument once, a magnificent piece of apparatus with more tentacular probes than a Portuguese Man-o'-War. It hooks into a receiver and feels its pulse all over. Could PW please have a constructor's project for such a Henry de-moduliser, Mr. Editor?

No. 5
 TRANSISTOR TESTER PLUS

A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build

LOOKING at the circuit I bet that several of you are doubting last month's claim that our project would fulfil several functions. In fact it will test $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors for leakage and comparative gain, test both silicon and germanium diodes, test its own battery and other batteries up to 9 V , measure resistance between about 470Ω and $47 \mathrm{k} \Omega$ and check electrolytic capacitors.

TRANSISTORS

With the switch in the leakage position and a transistor connected in the correct way around (as shown in the circuit), 9 V is applied between the emitter and the collector. A meter in the circuit will indicate the current passed-by definition this is the leakage current.
If the switch is then made to the appropriate position a 330Ω resistor is connected between the base and the collector providing the necessary bias ailowing the transistor to conduct. If the transistor under test is O.K. the current passed should increase thus indicating gain. By noting the leakage and gain of good transistors it will be possible to get an idea of what the acceptable readings are. It will be found that the most common faults of the transistors in the surplus packs are either short or open circuit or high leakage while some have low gain. Don't worry if no leakage is indicated as this is so low in silicon transistors that this instrument will not measure it.

DIODES

Diodes are tested by clipping the leads between the emitter and collector contacts and then reversing them-one way round a negligible current will be measured, the other way a substantially higher one. As with transistors the readings are comparative.

BATTERIES

If R3 is chosen so that when the emitter and collector clips are shorted the meter will read full scale deflection (f.s.d.) it will follow that when the battery voltage is low, f.s.d. will not be achieved. Other 9 V batteries can be substituted and the deflection compared; in fact this test is better than using a sensitive multimeter as, instead of drawing a few dozen microamps, it will test the battery under a 3 mA load. Lower voltage batteries will give smaller deflections and the scale can be calibrated for 1.35 V (mercury cells) $1.5 \mathrm{~V}, 3 \mathrm{~V}$, $4.5 \mathrm{~V}, 6 \mathrm{~V}$ and 9 V .

Circuit of the tester. See text for details on meter and Rx. The switch is a single pole three way.

RESISTANCE

The tester will measure (if not very accurately) resistance between about 470Ω and $47 \mathrm{k} \Omega$ by clipping the resistor between the emitter and collector contacts. If much use is to be made of this facility it would be a good idea to make R3 variable so that the meter can be "zeroed" each time to compensate for battery voltage variation. The scale will have to be calibrated using close tolerance resistors.

ELECTROLYTICS

If an electrolytic capacitor is connected with its positive to the p-n-p emitter and its negative to the collector clip, the meter should kick over and fall slowly. Note that electrolytics with working voltages of less than 9 V should not be tested in this manner.

ADJUSTMENT

The meter in my prototype is a tiny one from an old tape recorder but almost any meter with a sensitivity better than 3 mA can be used. Build a mockup of the circuit in Fig. 1 and substitute a $1 \mathrm{k} \Omega$ pot, initially set at minimum resistance, for $\mathbf{R x}$ and connect a multimeter set on a scale to read 3 mA between the emitter and collector contacts. A $5 \mathrm{k} \Omega$ pot should be substituted for R3. The switch R1 and R2 can be ignored.

First adjust the $5 \mathrm{k} \Omega$ pot so that the multimeter reads 3 mA then adjust the $1 \mathrm{k} \Omega$ pot so that your meter reads f.s.d. Trim the two pots so that f.s.d. on your meter coincides with 3 mA on the multimeter. Finally remove the multimeter and short out the emitter and collector connections and adjust the $5 \mathrm{k} \Omega$ pot to give f.s.d. again. Measuring the values of the two pots will give you Rx and the exact value of R3.

Next month's project will be a one transistor radio which operates a loudspeaker without the use of an external aerial.

PART 5-MATCHING \& RADIATION

THIS is the final part in this series describing transmitter and receiver aerial principles. Most aspects have been covered in sufficient detail, but two important details that have been ignored up to now are aerial matching and radiation patterns. These two subjects will be described in this article, and although the treatment does not pretend to be comprehensive, there should be enough information to be of interest to the beginner and experimenter.

Matching circuits

The most convenient and common impedance matching device for coupling an aerial feeder to a transmitter or receiver is a high frequency transformer using conventional coils and capacitors. If, for example, a 75Ω coaxial line is to be connected to a transistor receiver, an impedance step-up is required, and this can be achieved with the circuit in Fig. 5.1. L1 C1 form the input tuned circuit, with the aerial feeder tapped up the coil, and L2 is the output coil wound to suit the base input impedance. Under these circumstances, there would be an impedance ratio step-down between the feeder part of L1 and L2, and a step-up ratio between the feeder section of L1 and the whole winding of L1 to avoid damping the tuned circuit severely.

Fig. 5.1: A tuned impedance matching circuit for a coaxial feeder to a transistor.

Fig. 5.2: As Fig. 1, but with a completely isolated tuned circuit.

Another way of achieving the same result is shown in Fig. 5.2, where a transformer input is used instead of the tapping on the tuned circuit. The coaxial cable is connected to its own winding, the tuned circuit is completely independent, and the output to the base again has its own winding. A typical transformer for a receiver working over the range 1.6 MHz to 3 MHz would have 6 turns for L1, 40 turns for L2 and 4 turns for L3. The physical dimensions of the transformer would be determined by the capacitor used.

Matching transmitter aerial

One of the most practical ways of matching a transmitter to an aerial feeder is to use a tapped transformer or coil. Figure 5.3 shows one way of doing this.

The end-fed Marconi Aerial is tapped into L_{1} at a convenient point. L_{1} is also tapped to match the 40

Fig. 5.3: A transmitter output impedance match for balanced lines.

Fig. 5.4: A z-match for connecting a balanced transmitter output to a coaxial line.
ohm aerial to a 600 ohm feeder line. This couples to a distant transmitter and is tapped into the tank circuit at 600 ohms, the turns ratio so being arranged to match the feeder to 15 k ohms of the tank (typical figures).
The turns ratio is given by $T_{2} / T_{1}=\sqrt{\frac{600}{40}} \bumpeq 1: 4$

$$
\text { and } T_{3} / T_{2}=\sqrt{\frac{15,000}{600}} \bumpeq 1: 5 .
$$

Figure 5.4 shows one method of connecting a coax feeder to a transmitter.
The 75 ohm coax is fed into a balanced input transformer which matches this to the tank circuit. Assuming the feeder to be 75 ohms and the tank circuit typically 15 k ohms the turns ratio would be

$$
L_{2} / L_{1}=\sqrt{\frac{15,000}{75}}=1: 14 .
$$

Where it is desired to use one aerial system for transmitting or receiving as in the usual amateur or professional set-up it is usual to employ an aerial change-over switch. This is commonly a relay remotely operated.

Polar diagrams

The bebaviour of an aerial system in space may be expressed by polar diagrams. As the aerial length becomes commensurate with the wavelength in use, current variations along it become pronounced and phase differences appear, causing interference effects between radiation components from different parts of the aerial. These may reinforce the signal radiated in some directions and cancel the radiation in others.
Figure 5.5 depicts an aerial slightly longer than $\frac{1}{4} \lambda$ At the point Y radiation may arrive via the direct path XY or by incident path XEY. Provided the radiation arriving at Y via each path is similarly polarised, cancellation may occur when the difference in the length of the path is equivalent to an odd number of half-

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

4

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- oscillators
- SIGNAL TRACER

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- time delay circuit
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

BIGGEST BREAKTHROUGH IN RADIO KITS!

THE REVOLUTIONARY APOLLO "6" CAN BE BUILT

SPECIALLY made for the thousands of discriminating people who want the finest easy-to-build radio . . . at a reasonable price! This is a different breed it will starde your were briefed to produce a radio kit that would fill these tecanical demands:-DEMAND-A. IT SHOULD BE POSSIBLE TO BUILD PAINLESSLY IN ONE EVENING ANSWER-the Apollo " 6 " has simplified, well illustrated step-by-step plans.

CONTAINS FEATURES THAT CAN'T BE BOUGHT IN READY MADE SETS-AT ANY PRICE

receives medium wave \& trawler broadcasts.

- every component brand new-no surplus rejects or "seconds".
- uses latest Silicon Planar Epitaxial Epoxy transistors.
- six stage stable reflex-2 R.F., 1 Diode demodulation, 3 A.F.
- simplified illustrated plans.
fromparts to programmesinan evening
. PLUS MANY MORE!

No soldering iron is necessary and you don't have to have a magnifying glass and a pair of tweezers. DEMAND-B. IT SHOULD WORK FIRST TIME. . . تANSWERApollo " 6 "' uses latest rugged Silicon Transistor Circuitry and every single transistor, diode. capacitor, resistor, inductance etc. is brand new and fully tested-no surplus parts, no manufacturers
rejects, no manu,
facturers"seconds" FOR factures "seconds",
and uses "Ever and uses "Ever
Ready
$\begin{aligned} & \text { DEMAND-Gatery } \\ & \text { MUSTHAVETHE } \\ & \text { MOWER TOOPE }\end{aligned}$
POWER OP POWER TOOPE
ALLLOUDSPEAKER...DEMAND ALD. IT MUST GIVE GOOD RECEPTION IN DIFFICULT AREAS $\dot{\text { MUST }}$ DEMAND-E. IT
OUS ITS OWN MUST WORK ON ITS OWN AERIAL . . . ETC. ETC ANSWER-The Apollo " 6 " does all this-and much more! REVOLUTIONARY SILICON PLANAR EPOXY CIRCUIT DESIGN
Apollo " 6 " will probably be bang up-to-date well into the seventies! it bristles with latest technical innovations. Six stage stable reflex N.P. N and P.N.P. circuit consisting of 2 Radio Frequency stages, 1 Diode demodulation stage and 3 Audio Frequency stages. Uses latest Silicon Planar Epitaxial Epoxy transistors (similar to types used in America's Space

IRON CLAD GUARANTEE Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full, at once and without quibble or question. . .

Project). The first two transistors give amplification of 100 to 400 each, (at only 100 Microamps collector current approx). Output transistor gives amplification
of 235 to 470 . Stable refiexing gives the Apollo "6" staggering selectivity, uncanny sensitivity, true-to-life sound reproduction-in fact its range, power and selectivity must be experienced to be believed.
Enter a new magic world of reception-station after station (home and abroad).
thriling sound of an sos at sea Listen to the thrilling sound of an SOS at sea- tune in to a world you've never heard before... NOTE. Because members of our own Staff (and their friends) are enthu siastic and have already bought Apollo " 6 " parts we know demand will be enormous. DON'T DELAY-
SEND FOR YOURS NOW, send $59 / 6+3 / 6$ P. \& P. for all parts, illustrated plans, personal listening earpiece etc. (all parts can be bought separately) MONEY BACK GUARANTEE (see panel).
Orders despatched in strict rotation.

Dept. PW3) 18 Little Preston St, Brighton, 1. Sussex.

BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1
THE VALVE SPECIALISTS Telephone 01-722-9090
SAVE POSTAL COSTS I CASH AND CARRY BY CALLERS WELCOME

Fig. 5.5: How the image of an aerial affects its radiating properties.
waves. In that case these will be 180° out of phase. The total effect at Y may be assessed by adding together the direct ray radiation with the field due to the image aerial in the earth.

The earth acts as an imperfect mirror to electromagnetic waves. If the reflecting area is damp soil or the sea, over 80% of the energy in the wave will be reflected, but dry sand or wooded countryside are poor reflectors of radio waves. The hilliness of the terrain will also affect radio waves especially at h.f. where a hill may become comparable with the wavelength in use. Furthermore, the earth is a much better reflector of long waves than short waves. Peat is also a poor reflector. During the war the author was in charge of a transmitting station sited on peat (Lochar Moss, Tinwald Downs, Dumfriesshire), where an earth mat of copper strip had to be laid down around the station and aerial system to form an effective counterpoise. This extended beyond the plan view of the aerial system by a distance equal to the height of the aerial masts.

Aerial reactance

When the frequency is low, the length of the aerial is a fraction of a wavelength and acts as a capacitance. As the frequency is increased the capacitive reactance decreases and the aerial becomes resistive at a quarter wavelength. If the frequency is increased further still the aerial becomes inductive and tends towards infinite inductive reactance at half wavelenth. The aerial next becomes infinite capacitance and follows through the same cycle approaching zero for three-quarter wavelength aerial and on to infinite inductive reactance at a full wavelength.

Fig. 5.6: An earthed $\frac{1}{2} \lambda$ aerial produces a 55° lobe (theoretically) and a 10° lobe (in practice).

Figure 5.6 is the vertical polar diagram of an earthed $\frac{1}{2} \lambda$ aerial. The full line occurs when the earth is a perfect conductor. The dotted curve is what happens in practice owing to a poor conducting earth.

The effect of raising the aerial above the ground is to

Fig. 5.7(a): The radiation patterns from a $\lambda / 2$ aerial $\lambda / 2$ above ground.

Fig. 5.7 (b): The $\lambda / 2$ aerial one wavelength above ground produces a much more satisfactory pattern.
cause the radiation to break up into beams. Figure 5.7 (a) is of the $\frac{1}{2} \lambda$ dipole suspended $\frac{1}{2} \lambda$ above the ground.

Figure 5.7 (b) shows the state of affairs when the aerial is raised a full wavelength above the ground ($\lambda=$ wavelength).

The narrow beams of radiation caused by raising the height of the aerial above the ground are concentrated at definite angles increasing as the aerial height is increased. Use is made of this in the design of aerial systems for low-angle radiation. For instance, by stacking arrays of dipoles either in a horizontal or vertical plane and raising these above the ground, usually $\frac{1}{2} \lambda$, the desired polar diagram may be achieved. The Koomans Array is a practical example of this, and the general form is given in Fig. 5.8 below.

Note the stub matching arrangements and the method of terminating the 600 ohm feeder.

Fig. 5.8: The Koomans multi-element aerial array produces a much more predictable pattern than single $\lambda / 2$ aerials.

The horizontal Rhombic aerial

The Rhombic or horizontal diamond shaped aerial is substantially aperiodic when correctly terminated and may be operated over a $2 / 1$ frequency band. Its principle of operation is attributed to the fact that a wire in free space carrying travelling waves produces a cone of radiation around it. Figure 5.9 shows the form of such a system with the lobes of radiation around the wires.

Fig. 5.9: The Rhombic aerial which enjoys great favour in commercial communications systems where space allows its use.

For h.f. aerials the sides should be 5λ and the terminating resistance 900 ohms , while for 1.f. aerials the sides should be 4λ with a terminating resistance of 600 ohms .

As a transmitting aerial the Rhombic wires carry travelling waves and become in effect a special type of transmission line arranged to radiate. The input or characteristic impedance varies between 900 ohms at l.f. $(30-300 \mathrm{kHz})$ and 600 ohms at h.f. $(3-30 \mathrm{MHz})$. The terminating resistance is usually made up of three carbon rods in watertight tubes dissipating $30-60 \%$ of the power input to the system.

Rhombics may be made more efficient for transmitting purposes by grouping two or three either in series or parallel and in such a way that their combined directivity is maintained and the radiation efficiency may exceed 90%.

For the radiation or reception of ultra short waves (i.e. 17 cm .) aerial arrays based on optical principles are employed. These take the form of a paraboloid reflector (usually made of aluminium) with the aerial, a half-wave dipole, fixed at the focus. The aperture of the reflector is typically 18λ across. Figure 5.10 shows the general arrangement of this system.

The gain of this arrangement is in the order of 30 dB . The sharpness of the radiated beam is such that turning the dish reflector through 3° reduces the received signal by 10 dB (i.e. about $3 / 1$).
To conclude this series on aerials details are given
below of a pracical power indicator (Fig. 5.11). This practical low-power meter for indicating line or aerial current may be made up from a $0-5$ milliammeter. A silicon diode type NKT914 is used as the rectifier. Sufficient coupling can be achieved by fixing the coupling wire close to the feeder, aerial or one wire of a balanced feeder. By this method of coupling a deflection of several mA can be recorded on the meter. This instrument may be used for aerial tuning or for checking standing waves on a feeder.

Fig. 5.11: A useful meter for checking line or aerial current. This is invaluable for detecting standing waves on a transmission line.
Components:
470 10 resistor
1000 pF capacitor
NKT914 diode
$0-5 m A$ meter

The general constructional details are left to the constructor. The few components used may be grouped at the back of the meter on a piece of Veroboard and the assembly then mounted in a suitable wood or metal box.

Aerials for amateur use

The most suitable aerial system for amateur use will be determined largely by experience and inspired guesswork, as it is seldom possible to predict with any accuracy the performance of a particular system adopted for the frequency in use. It can be shown that the best height of an aerial is 0.625λ for maximum power efficiency to produce a given field strength at a distant point. Aerials erected at a height of 0.58λ are the usual practice.

References

Radio Communication Handbook, R.S.G.B.
Short wave Radio communication, Ladner \& Stoner. Admiralty Handbook Wireless Telegraphy.

CORRIGENDA

A Comprehensive Audio Mixer. Andrew Dicks The author has drawn our attention to the following errors in his article. VR1, VR2, VR4 and VR6 should be $250 \mathrm{k} \Omega \log$. and the wiring of $S 2, S 4, S 6$ and $S 9$ must be ignored. In Fig. 5, VR3/VR4 and VR5/VR6 should be interchanged; the last hole on the front panel is for Sk8 (not Sk7). In Fig. 3, R22 should be $27 \mathrm{k} \Omega$.
Transistor Output Stages. I. Sinclair
At the foot of the second column on page 118 (May issue), the first formula should read Power out= $\mathrm{Vc}^{2} / 8 \mathrm{R}_{\text {load }}$, and the second should be Power Dissipated $=A \times \mathrm{Vc}^{2} / \mathrm{R}_{\mathrm{L}}$.

QUERY COUPON

This coupon is available until 5 th September, 1969 and must accompany all queries in accordance with the rules of our Query Service. An s.a.e. must be included.
PRACTICAL WIRELESS, SEPTEMBER 1969
 hum. Valve line up: -. \times ECLs6 Triods Pentodes $1 \times$ EZ80 as full wave rectiffer. Two Dual potentiometers are provided for buss and treble control, glving bass and treble boost and cut. A Dual volume control is used. Balance of the left and right hand channels can be adjuated by meane of a eeparate 'Balance' control fitted at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{y}$. for full peak output of 4 Watts per chanael (8
watts mono), into 3 ohm speakera. watts mono), into 3 ohm speakera. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negliglole digtortion. Supplied complete
with knobs. Chassis size $11^{*} \times 4^{\text {s }}$ d. Overall heirht Including valves 5^{\prime}. Ready built and tested to a high including valves 5^{*}. Ready buit
standard. PRICE 8 gna. P. t P. $8 /-$

TRANSISTOR STEREO $8+8$ MK II
Now uging Silicon Transistors in first five stages on each channel reaulting in even lower noise level with improved tenaitivity. A really first-class Hi-Fi Btereo Amplifier Kit. Usea 14 transigtors giving 8 watts push pull output per channel (16W. mono). Integrated pre-amp. with Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohms. Corapact deaign, all parts apppited including drliled metal work. Cir-Kit board, no extras to buy. Sirnple step by step instructions enable any constructor to buld an amplifier to be prond of Brief specification: Freq. reaponse $\pm 3 \mathrm{~dB} .20-20,000 \mathrm{c} / \mathrm{s}$, Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative feedback i8dB over main amp. Power requirements 25 V at 6 amp .
PRICES: AMPIIFIER KIT $\& 10.10$. PRICES: AMPLIFIER KIT \&10.10.0; POWRR PACK KIT 88.0 .0 ; CABINET 83.0 .0 . All Post Free. Circuit diagram. construction details and parts list (free with kit) 1/6. (B.A.E.).

SPECLAL PUROHASE! E.M.L. 4-SPEED PLAYER Heavy 8s호. metal turntable. 250 v. shaded motor (00 v tap). Complete with Jatest lype inghtweight pick-up arm and mono cartridge with to stylii for LP/78. ONLY 68/~
P. \& P. $6 / 6$. P. \& P. $6 / 6$.

4-SPEED RECORD PLAYER BARGAINS Maing models, All brand now in maker's packing, With latest mone compatible cart
Ail plus Garriage and Packing $8 / 6$ LATEST GARRARD MODELS All types available 1025, 2025, SPP5, 3000, AT60 etc. send S.A,E. for latest Prices! UNITS
PLINTI UNE
Cut out for Garrard Modela, 1025, 2025, 2000, 3000. AT60, gP25. With rigld perspex cover. OUR PRICE 5 gns. complete. P. \& P. $8 / 6$. LATEST RONETYE T/O BTEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo/78. Ony 3Q/6. P. \& P. 2/LATEST RONETTE T/O MONO COMPATBLE OARTmono eqnipment. Only $30 /$-. P. \& P. $2 /-$ diamond atylua $50 /$-. P. \& P. $2 /-$ FEW ONLY: ACOB High-G Mono Cartridge for EP and LP. Only $10 /=$. P. \& P. $2 /$

printed circuit panel size 6×3 in,

- Generous size Driver and Output Transformers. Output transformer tapped for 3 ohm and 76 ohm
speakers. Transistors (OET114 or 81 Mullard $A C 128 D$ and matched pair of ACI28 o/p). 91 Mullard AC128D and Evargthing papplied, wire, battery clips, solder, etc. - Comprehensive easy to follow instryctions and circuit diagram 8/6 (Free with KIt). All parts sold separately. SPECLAL PRICE 45/-. P. \& P. 3/-
Also ready built and tested, $52 / 6$. P, \& P. 3/\%

3-VALVE ADDIO
AMPLIFIER HAB4 MK 1 I. Designed for Hi.Fi reproducoperation. Ready built on plated heary gauge metal

 ELSA, EZ80 valves. Heavy duty, double Found mains transformer and output transspeaker, Separate volume control and now with improved vide range tone coutrols giving bass now treble lift and cut. Negative feedback line. Output $4 t$ watts. Front panel can be detached and leads extended for remote mounting of controls. Compiete with knobs, valves, etc, wired and tested for only 84.15 .0 . P. a P. 6/..
A stylishly finished monsural ampllifer 14 watts from ELo4s in push-pull. super reproduction of both music and speech, with negligible hum. Beparate inputs ior mike and and announcements to follow each other.

$$
\begin{aligned}
& \text { to follow each other. } \\
& \text { Fully ohrouded sect }
\end{aligned}
$$ match 3-150 speakerand 2 independent volume controls, and separate bass and treble controls are provided giving EZod ift and cut. Valve line-up 2EL84s, ECC83, EFP86 and parts). All parts sold separately. ONLY 27.9.6. P. \& P. $8 / 6$. Also available ready built and tested complete with std. imput sockets, $89.5 \cdot 0$. P. \& P. $8 / 6$.

BRAND NEW 3 OHM LOUDSPEAKER
 E.M.I. $8 \times$ Sin. With high fux raggnet $21 /$ - E.M.I. $131 \times$ E.M.I. 13×8 in. with two inbuilt tweeters and crosover network. 3 or 15 ohms 4 knis. P. \& P. 5 in . $2 / \cdot, 6 \frac{1}{2} \& 8 \mathrm{in} .2 / 6$ $10 \& 12 \mathrm{in} .3 / 6$ per speaker.
BRAND NEW. 12in. 15w. H/D Speakers, 3 or 15 ohms. Current production by well-known British maker, Now F. a Hiflux ceramic ferrobar magnet assembly 85.10 .0 . P. \& P. 5/-. Guitar modcls: 25 w . $\$ 6.0 .0 .35 \mathrm{w}$. 88.0 .0 . R_M.I. $8 \pm i n$. BEAVY DUTY TWEETERS. Powerful ceramic magnet. Available in 3 or 8 ohms 15/- each; 15 ohma
$18 / 8$ each. P. \& P $2 / 6$. 18/8 each. P. \& P. $2 / 6$.
VYRAIR AND REXINE SPEAKER AND CABINET FABRICS. Approx. 54in. Wide. Usually 85/- yard. Our PRICE $13 / 6$ per ya
S.A. E. for samples

MONO TRANSISTOR AMPLIFIER HSL. 700
A really high fdelity monaural amplifier mith perform-
ance characance characsuit the most
discriminating listener. 6 trans with in-
tegrat-tegrat-
ed preed pre-

fler assembled

on special printed sub

panel. AD $161-\mathrm{AD} 162$ operating
in symmetrical complementary pair. Output transtormer coupled to 3 ohm and 15 hm speaker sockets. Standard phono imput sockets. Foll wave bridge rectifier power supply for AC mains 200-240\%. Controls: Base, Treble Volumefon/off. Function selector for PU1, PU2, Tape Radio. The H8L. 700 is strongly eonstructed on rigid atee chassis bronze hammer enamel finish, size $91 \times 5 \times 4 \frac{1}{2}$ in Genstivity: PUI 50
$1-50 \mathrm{~m} / \mathrm{v} .56 \mathrm{~K}$ input impedance
PU2-110m/v, 1 meg inputimpedance.
Radio- $110 \mathrm{~m} / \mathrm{v}, 1$ meg input impedance
Output power mensured at $1 \mathrm{Kc}-6.2$ watts RMS into 3 ohms, 5.8 watta RMS into 15 ohm. Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}:$ Continuousiy variable tone controls; Basa, +8 db to -12 db at $100 \mathrm{c} / \mathrm{s}$. Treble, +10 db to - 10 db at $10 \mathrm{Kc} / \mathrm{s}$.

The HSL. 700 has been designed for true bigh fidelity reproduction from Radio Tuner, Gramophone deck and Tape Recorder pre amp but is also capable of belng used in the peak outpul powerwill then be in there sion of 15 watts. Supplied ready built and tested, complete with knobe attractive anodised aluminium front escutcheon panel long spindles (can be cut to suit your housing requiremente)
$\begin{array}{lll}\text { full circuit diagram and operating instructions. } \\ \begin{array}{c}\text { Our } \\ \text { Price }\end{array} & \mathbf{2 7} 19.6 & \text { P. \& P. } 7 / 6 .\end{array}$
COLLARO MAGNAVOX 363 STEREO TAPE DECK 3-speeds 4 track, op to Tin, spools. f16.10.0. Carr. $10 /$ /
HIGH IMPEDANCE CRYSTAL STICK MIKES. OUR HIGH IMPEDANCE CRYSTAL STICK MIKES. OUR PRICE 21/-P. \& P. $1 / 6$.
GARBON WIKE INGERTS. Brand new $24 i n$. dia. $5 /-$ P. \& P. 1/6.

QUALLTY RECORD PLAYER AMPLIMER MKII
A top quality record player amplifier employing heavy duty double wound mains iransformer, ECC83, ETA4 EZ80 valves. Beparate Bass, Treble and Volume controls Coraplete with output transformer matched tor 3 ohm speaker. Size 7^{*} w. $\times 3^{\circ}$ d. $\times 6^{*}$ h. Ready bullt and tested board with output trnnsformer and speaker ready to fit into cahinet below. PRICE 97/6. P. \& P. 7.6. DELUXE QUALITY PORTABLE R/P CABINET MKII Uncut motor board size $14 \ddagger \times 12 \mathrm{in}$. Clearance 2 in . below 5inin. above. Will take above amplifier and any B.S.B. or
GARRARD autochanger or Single Plager Unit (excep AThRARD autochanger or single Player Unit (25). Size $18 \times 15 \times 8$ in, PRICE $7 \theta / 6$. P. \& P. $9 / 6$ BRAND NEW MULTI-RATIO MAINS TRANSFORMERS Giving 13 alternatives. Prlmary 0-210-240V. Sccondary combinationa 0.5-10-15-20-25-30-35-40-55-60-V half wave at 14 or $10-0 \cdot 10 ; 20-0-20 ; 30-0-30 \mathrm{~V}$ at 2 A tull wave Size 3 in . h . $\times 31 \mathrm{in}$. W. \times 3in. d. PRICE $32 / 6$. P. \& P. $6 /-$ MAINS TRANSRORMER. Primary 200-240V two separate 1 Wave accondaries glving approx 16 V at 1 amp and 20 V at
1.2 amp; secs. can be connected in series 36 V at l 1.2 amp ; secs. can be connected in series for 36 V at 1.5 amp. Ideal for transiator power supplies. Drop through
 MALIS TRANBFORMER. For transistor power supplies, Pri. 200/240v. Sec. $9-0-9$ at 500 mA . $11 / \mathrm{l}$. P. \& P. $2 / 6$
Pri. 200/240v. Sec. $12-0-12$ at $1 \mathrm{amp} .14 / 6$. P. \& P. 2/6 Pri. 200/240v. Sec. 12-0-12 at 1 amp. 14/6. P. \& P. 2/6.
Pri. 200/240v. Sec. 10-0-10 at 2 amp 27/6. P. \& P. 3/6.

Open all day Saturday Early closing Wed. 1 p.m. A few minutes from south Wimbledon
Tube Station

HARVERSON SURPLUS CO. LTD. 170 HIGH ST., MERTON, LONDON S.W. 19 Tel.: $01-5403985$

SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

Please write clearly PLEASE NOTE: P. \& P PGARARGES

AMAZING MINI•DRILL

 Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6, p.p. 2/6.
De Luxe Professional Kit De Luxe Professional Kit
with 17 tools $130 /-$ p.p. $4 / 6$. Money ref. g'tee.

J. BIRKETT

Assorted $455 / 465 \mathrm{Kc} / \mathrm{s}$ Transistor I.F. Transformers, $8 /-\mathrm{doz}$. Double with S.M. Drive $100+100 \mathrm{pf}$. 2/6, $370+180 \mathrm{pf}$. $3 / 6$. $325+375+20+20 \mathrm{pf} .3 / 6$ Cast alloy Double Heat sinks for T.O.1, case (AC 1ras) etc. 1/- 20 p . 16 Special Heat sinks for 2 N 2926 Transistors. 6d. Transistors, 2N 706A

 Mixed parcel of components including resistors, condensers, computer boards, I.F. Transformers, Transistors, Diodes, Integrated 500 items. 22/6. Carrier current Transmitter with four oc 71 Transistors. Toroid coil. components etc. (For Transmission through the malns), No information avallabie. 22/6. All items post
free. Closed all day Wednesday.

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln
Tel. 20767

speed $u p$ sfruicine
 with RadiosTV Servicing

Here in 4 handy volumes you have on call the vital repair information needed to beat the frustration and time loss that fritters away the opportunity to earn more. In 2,180 pages you have all the CIRCUITS, DATA and VITAL REPAIR INFORMATION for servicing over 1,000 of the popular 1965-69 Televisions including Colour TV, Radios, Radiograms, Car Radios, Record Players and Tape Recorders. RADIO \& TV SERVICING is the only work of its kind and is much sought after in the trade-a guaranteed money-spinner for years to come.

RADIOS
RADIOGRAMS CAR RADIOS RECORD PLAYERS TAPE RECORDERS TELEVISIONS including

all these makes covered Aiwa, Alba, Baird, Beogram, Beolit, Blaupunkt, B.R.C., Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport. Dynatron, Eddystone, Ekco, Elizabethan, Evnatron, Ready, Ferguson, Ferranti, Fidelity, Ever Ready, Ferguson, Ferranti, Fidelity. G.E.C., Grundig, Hacker, H.M.V., Hitachi.
invicta, K.B., Klinger, Kolster-Brandes, Invicta, K.B., Klinger, Kolster-Brandes,
Loewe-Opta,
McMichael, Loewe-Opta, McMichae!, Marconiphone,
Masteradio, Monogram. Motorola, Murphy, National, Newmatic, Pam, Perdio, PetoScott, Philco, Philips, Portadyne, Pye, Radiomobile, Radionette, R.G.D., Regentone, Roberts' Radio, Robux, Sanyo, Sharp. Smith's Radiomobile, Sobell, Suny, Standard, S.T.C.; Stella, Stereo;ound. Standard, S.T.C.: Stella, Sterensound, Ultra. Unitra. Van Der Molen, World Radio

See it for 7 days

象 気

1 To: Buckingham Press Ltd., P.O. Box 14, Gatehouse Rd., Ayleshury, Bucks.
Please send RADIO \& TV SERVICING - 4 volumes, without obligation to buy if you accept my application. I will return the books in 8 days or post:
| Tick (V) \square Full cash price of $£ 16$, or
I here $\quad 20 /-$ dep., and 16 monthly payments of $20 /-$
| If you are under 21 your father must fill up coupon

17in.-f11.10.0
19in. SLIMLINE
SOBELL- 24 Gns.
EX-RENTAL TELEVISIONS

FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23$
WIDE RANGE OF MODELS SIZES AND PRICES DEMONSTRATIONS DAILY

TWO-YEAR GUARANTEED REGUNNED TUBES 70° and $90^{\circ} 141 \mathrm{n}$. $-69 / 6$, 17 in , $-89 / 6$, 21 in ,99/6. $110^{\circ} 17 \mathrm{in} ., 19 \mathrm{in}$. and $21 \mathrm{in},-99 / 6$. 23° (not bonded)-119/6. Exchanged bow/s. Carr. 10/6.

COCKTAIL/STEREOGRAM CABINET 19 gns.
Polished walnut veneer with elegan glass fronted cocktail compartment padded. Position for two 101n. elliptical speakers. Record storage space. Height 35ilin., width $52 \frac{1}{2}$ in. depth $14 \frac{1}{2} \mathrm{in}$. Legs 1 gn . extra.
 Speakers 6/6: $2^{\prime \prime}-75 \Omega$. $22^{\prime \prime}-35$ a. P. \& P. 2/6. Acos Mics, 35/- Standard: Stick Mic. 2 gns. P. \& P, 3/6. Asstd. Condensers: $10 /-$ for' 50. P. \& P. 7/6. Asstd, Reslstors: 10/for 50. P. \& P. 4/6. Asstd. Controls: 10/-for 25. P. \& P. 7/6. Transistors: Mullard matched output kit $9 / \mathrm{m}$ OC81D-2 OC81's P \& P FREE
Ferite Rods $3 / 6: 6^{\prime \prime}, 8^{\prime \prime} \times \frac{3^{\prime \prime}}{2}$ complete with LW $/ \mathrm{MW}$ Colls, P, \& P, FREE, TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 6 \frac{1}{4}{ }^{\prime \prime} \times 3 \frac{1}{2}$ " P, \&P.4/6. Similar cases in plastlc $7 / 6$.
RECORD PLAYER CABINETS 49/6. Cloth covered, size $10 \chi^{\prime \prime \prime} \times 14 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime}$. Takes any modern autochanger. P. \& P. 7/6.
SINGLE PLAYER CABINETS 19/6. P. \& P. 7/6.
STRIP LIGHT TUBES $3 / 9$ each. $11^{\prime \prime}$ (284 mm .) 230/240 volts, 30 watts. Ideal for cocktail cabinets, illuminating pictures, diffused lighting etc. 6 for k 1. P. \& P. free.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12
Tel. 01-478 6001/2/3

F.A.L.'PHASE 50' Public Address Amplifier

A superb solid state A.C. Mains unit for vocal and Instrumental groups and General Public Address use.

Recommended Retail price
$\star 50$ Watts Ouitput (Music Rating) $\quad \star$ High Sensitivity
\star Output matching for speakers from 3-30 ohms
$\star 3$ separately controlled inputs

* Separate Bass and Treble Controls
\star Frequency Response 22 c.p.s. to 30 Kcs .
Available from your local Dealer
Wholesale and Retail enquiries to Manufacturers
SEND S.A.E. for fully DESCRIPTIVE LEAFLET

FUTURISTIC AIDS LTD, 103 Henconner Lane, Leeds 13

YOU should be familiar with the Morse key, which is the simplest device that can be satisfactorily used to operate a transmitter. The key is usually connected in such a way that it causes the output from the transmitter to be interrupted, and all that is needed is some dexterity in manipulating the Morse key in accordance with a recognised code, such as the Morse, Code. Quite high keying speeds can be attained- 25 w.p.m. (words per minute) are not out of the way-but to better this figure considerable practice is demanded.
There is a way to improve one's speed more easily, fortunately, and this involves using a semiautomatic keyer, preferably of the electronic variety. An electronic keyer, unlike a straight Morse key, has a "paddle" which moves in a horizontal plane between contacts on each side so that moving it to the right produces a succession of, say, long pulses (dashes), or moving it to the left produces short pulses (dots). This is a keyer of the simplest type which forms the subject of this article, but it should be noted that there are many improvements which can be made such as the addition of circuitry to avoid breaking up the last dash if the "paddle" is

Fig. 2: The keyer paddle mounted on a wood block. tronic circuitry comprises three multivibrators plus a relay amplifier. Describing the electronics first, the heart of the keyer is a couple of multivibrators $\operatorname{Tr} 1 / \operatorname{Tr} 2$ and $\operatorname{Tr} 3 / \operatorname{Tr} 4$ (Fig. 1), which are operated by taking their supply lines to the differential key. The first multivibrator, $\mathrm{Tr} 1 / \mathrm{Tr} 2$, produces a square wave output at the collector of $\operatorname{Tr} 2$, and is used as the dot generator. The rate is controlled by VR1, and the mark-to-space ratio is governed by VR2. This multivibrator operates when the key is moved

simple electronic keyer

moved prematurely to the opposite contact (selfcompletion of characters), and circuits to make sure that all character spacing is perfect, even during the transition from dot to dash and vice-versa. It is even possible to build a simple memory into the more sophisticated keyers.
To gain practice, however, the simple transistorised keyer which the author has designed is ideal, and cheap to build. The contact assembly uses commonly available components, and the elec-

to the left. The second multivibrator $\operatorname{Tr} 3 / \mathrm{Tr} 4$ produces the dash signal. As before, the overall speed is controlled by VR3, and the mark-to-space ratio by VR4. By juggling the settings of VR1, VR2, VR3 and VR4 the correct ratio of dot to dash and a constant interval between characters can be achieved for any speed. Unfortunately, with this simple circuit it is not possible to incorporate an overall speed control which would preserve the pre-set ratios.

The outputs from the multivibrators are combined and fed to $\operatorname{Tr} 5$, the relay current amplifier. The relay RLA is in the collector circuit of Tr5, and in parallel with it is connected a diode which protects the transistor from high back-e.m.f.s resulting from the interruption of current through an inductor. One set of contacts is used to key the transmitter, while a second set operates a higher frequency multivibrator Tr6 and Tr7, which is used as a keying monitor in conjunction with the headphones. This circuit is particularly useful if the keyer is to be used by an unlicensed enthusiast for practice, but do
amplifier which drives a $0-1 \mathrm{~mA}$ moving coil meter. Tr 1 is normally non-conducting because R 2 holds the base at emitter potential. Tr 2 is normally conducting because current flows from emitter to base and through R3. Full collector current flows through R4 and the 1 mA meter which indicates full-scale deflection.

When skin resistance electrodes are connected to terminals T1 and T2 a small current flows from Tr1 emitter to base through R1, VR1 and the subject's skin resistance. Tr 1 starts to conduct and passes

ECTOR

TWHE title of this article is not to be taken too seriously. The instrument to be described is a skin resistance meter or "psycho-galvonometer", which operates by measuring the resistance between two electrodes held in a person's hands or taped to the wrists by passing a negligibly tiny current through. The resistance is found to vary erratically over a range of about 1 to $50 \mathrm{k} \Omega$ brought on by perspiration which causes large, slow resistance changes, muscle contractions which produce small, slow variations that are hard to detect or sudden changes of emotional mood which can produce large, very fast changes and oscillations of resistance. These form the basis of the uncertain claims for "lie detector" devices.

The circuit of the instrument is shown in Fig. 1. It consists of a two transistor direct coupled current

Fig. 1: The lie detector circuit. D1, D2 and R5 are meter protection components.

components list

$$
\begin{aligned}
& \text { Resistors: }
\end{aligned}
$$

Transistors:
$\begin{array}{llll}\text { Tr1 OC71 } & \text { Tr2 OC71 }\end{array}$

Miscellaneous:

1 mA f.s.d. meter; S1 Toggle switch; B1 9V battery (PP3); T1, T2 Insulated terminals; D1, D2 Germanium diodes (see text); Skin resistance electrodes (see Fig. 4); Cabinet; wire; solder etc.
collector current through R3. The potential at Trl collector becomes less negative so that Tr 2 passes less base current. The collector current therefore decreases also and the meter needle moves towards zero.

VR1 is used to adjust the meter to half-scale deflection (0.5 mA) or slightly above. Any slight change in skin resistance will now produce a large swing of the needle to left or right. Half-scale deflection is regained by readjusting VR1. This control should be fitted with a fairly large knob as it will be in constant use and its adjustment is fairly critical. The meter can be brought to half-scale deflection for any resistance up to about 40 to $50 \mathrm{k} \Omega$ (depending on component tolerances) between T1 and T2. Changes of resistance of as little as 10Ω can be seen on the meter. In view of this the instrument might find use in comparing high tolerance resistors and particularly in finding matched pairs of resistors.

The instrument can be constructed in any kind of cabinet and component layout is not critical. The author used a "Norman" aluminium chassis as a cabinet. The components were mounted on a tiny piece of Veroboard as an enjoyable exercise in miniaturisation and the layout is shown in Fig. 2. There is no need to build so small unless one has the inclination (and the patience) as there is plenty of room in the cabinet. It is

Fig. 2: Wiring of the lie detector and transistor lead identification.
easy to convert the layout in Fig 2 to a larger piece of Veroboard by (say) disregarding alternate holes.

Tr 1 and Tr 2 were OC 71 in the prototype but any small signal transistors with current gains of 40 or more, such as the surplus "red spot" variety will work. They should be soldered as quickly as possible to avoid heat damage. The higher their current gains, the more

Fig. 3: Appearance of the instrument.

Fig. 4: Skin resistance electrodes; (a) for holding in each hand, (b) for holding in one hand and (c) for taping to wrist.
sensitive will be the instrument to small skin resistance changes. M is a 1 mA d.c. moving coil unit and should be as large as possible to show up small deflections, but the calibration is unimportant and any surplus type is suitable. If the instrument is switched on without the electrodes connected a current of almost 3 mA flows through M. This causes the meter needle to bang against the pin alarmingly but should not harm the movement. However, a meter required for other accurate measurements should not be used. A little protection can be provided for the meter by wiring one or two germanium diodes, or the junction of a germanium transistor, across it in the forward direction. If M has an internal resistance of 100Ω the current through it will be limited to about 2 mA , but if this is still considered excessive an additional 100 to 150Ω resistor (R5) in series will give further limiting of the maximum meter current but causes some loss of sensitivity. Note that the red or positive (cathode) ends of the diodes are connected to the negative terminal of M .

Suitable skin resistance electrodes for connection to terminals T1 and T2 are shown in Fig. 4. The hand-held electrodes give best results provided they are not gripped too tightly, and given a chance to warm up to body temperature so that the skin resistance stabilises. As the voltages in the instrument are low there is no danger of shock.

It is not possible to give any hard-and-fast rules for positive "lie detection". This is an experimental instrument. Some people show little or no change in skin resistance, while others show a constantly changing resistance which is possibly triggered by the presence of the meter! Some give a sudden change whenever they answer "yes" to a question and no change for answer "no" (whether true or false) or vice versa. Sometimes the meter indicates random disturbances and the cause is hard to detect. Provided one does not expect the instrument to be usable for prying into private affairs it can be used for many interesting experiments.

SIMPLE ELECTRONIC KEYER

-continued from page 329
remember that if a licence is aspired to, the GPO will require the test to be taken using a conventional Morse key. A relay with more contacts could be used, of course, if other outputs are required; for receiver muting, for example.

Construction of the key should be reasonably self-explanatory from Fig. 2. The whole assembly is mounted on a wooden block measuring 4 in . \times 2in. $\times \frac{3}{4}$ in. Three brackets about 1in. high with a $\frac{1}{2} \mathrm{in}$. lip for securing them to the base should be cut from a sheet of $18 \mathrm{~s} . \mathrm{w} . g$. aluminium, the widths of two being about $\frac{1}{2} \mathrm{in}$. and the rear support, which needs two screws in line, should be about 1 in . wide. The "paddle" is easily made from a 5 in . metal nail file, drilled with a couple of holes at the narrow end for securing it to the rear bracket. Adjustable contacts are merely screws in the front brackets, each locked with a couple of nuts. Wires can be taken from the bracket mounting screws to the electronic circuitry. Any conventional form of construction is suitable for the electronics, such as Veroboard, Cir-Kit, pin-board or tagstrips. Details have not been given because the wiring is really quite simple.

This unit does demand care when switching from dot to dash and vice versa, to maintain correct element spacing. Nevertheless, with some practice

\star components list

Resistors:

R1, 2, 3, 4 1 $\mathrm{k} \Omega$	R7, $8 \quad 15 \mathrm{k} \Omega$
R5 $3 \cdot 3 \mathrm{k} \Omega$	VR1, VR3 $5 \mathrm{k} \Omega \mathrm{lin}$.
R6, $9 \quad 1 \cdot 2 \mathrm{k} \Omega$	VR2, VR4 $5 \mathrm{k} \Omega \mathrm{lin}$.

Capacitors:

$\mathrm{C} 1,2$	$8 \mu \mathrm{~F}, 12 \mathrm{~V}$	C5, $6 \quad 1000 \mathrm{pF}$
$\mathrm{C} 3,4$	$16 \mu \mathrm{~F}, 12 \mathrm{~V}$	C7 $0.1 \mu \mathrm{~F}$

Semiconductors:
Tr1, 2, 3, 4, 5, 6, 7 OC81
D1 0 A81

Miscellaneous:

RLA relay with 200Ω coil and 2 make contacts (see text), BY1, 9V battery, headphones, nail file, $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. aluminium, screws and nuts, wood block $4 \times 2 \times \frac{3}{4}$ in., Veroboard, etc., battery connector.
it will be easier to progress to high-speed sending than with a straight Morse key. It is, incidentally, useful to remember that one dash equals three consecutive dots, the space between characters should equal one dot, the space between letters equals three dots, and the space between words is five to seven dots.

> A MINIATURE T.R.F. RADIO COVERING THE M.W. BAND WHICH CAN BE BUILT FOR LESS THAN 25s. AND ITS SIMPLICITY MAKES IT AN IDEAL PROJECT FOR THE BEGINNER.

EVER since transistors first became available on the amateur market constructors have been building radio sets smaller and smaller and these never lose their fascination to a large proportion of both new and established constructors.

The author is not claiming that the one described here is the smallest yet but it uses readily available components and case (always a problem for such sets) and should cost under 25s. to build. Even though the set is very small things are not so tight that building it is a problem. None of the component valves are critical, which is a common fault with many designs of this type and also the circuit is very stable, very important since the effects of handling some simple designs can send them way off tune.

Choice of transistors

Since the physical size of the set is small, obviously the aerial must be very small and consequently a very high gain is required from the transistors used; also, if very high gain transistors are used it will mean fewer stages are needed. There are on the market several transistors with very high gains but amongst the cheapest and highest gain is the BC109, now being replaced by the BC169 which is identical apart from being plastic encapsulated and cheaper. The BC169 costs under 2 s .6 d . each and two of these are used in the circuit.
In the prototype very cheap near-equivalents were tried with a large measure of success, these being the transistors sold in the 10s. packs, but the component values had sometimes to be altered slightly and consequently such substitutions are not recommended for those building the set straight up without first bread-boarding.

The circuit

Among designs of this type reflexing is very popular, that is, making the r.f. transistor do two jobs, but this was rejected since closer tolerance component values are needed and problems with stability are often encountered.

It is also common practise to bias one of the

transistors in such a way that it will detect, but here again a straightforward detector diode is used, as accurate and individually chosen components would be required.
The basic circuit that we are left with is a high gain r.f. amplifier with a limited amount of regeneration provided by VC2 consisting of two lengths of wire twisted together followed by a detector and a high gain a.f. amplifier. The detailed circuit operation is described separately for those interested, the circuit is shown in Fig. 1. It is common to use a high impedance magnetic earpiece acting as the collector load of the second transistor but these cost two or three times the price of crystal types and the performance between the two types was identical.

Choice of components

About the smallest and cheapest method of tuning a coil is by means of a 250 pF trimmer costing about 2 s . and one is used here. Batteries are a problem and for sets of this sort there is a limited choice. The one chosen was the Ever Ready B154, a 15 V battery costing 2 s . 9 d . This is available from Boots' or other chemists and is used for hearing aids among other things. The current consumption of the radio is only 1.5 mA and will power the radio for months.

Since space is limited, a 2.5 mm rather than 3.5 mm jack and socket are used and the crystal earpiece should be bought with this size. As far as the author is aware, ready wound coils of the size used in the set are not available but it is a relatively easy matter to wind one's own on a $1 \frac{1}{4}$ in., $\frac{1}{4}$ in. diameter ferrite rod. Details of this are shown in Fig. 2.
The majority of the components are mounted on 0.1 in . matrix Veroboard, 13×9 holes. To save sawing it to this size, this matrix is easily broken to the correct size along the holes.

The detector diode, OA81, is available in a miniature size and one of these should be used as the larger version will be a tight fit.
cost of miniature radio

	$s \mathrm{~d}$
VC1	
L1, L2	16
Two BC169Bs	46
D1-OA81	16
Four resistors	10
Two $0.01 \mu \mathrm{Fs}$	10
Crystal earpiece	46
Battery-B154	29
Case	16
Earphone jack	10
Veroboard	20
	233
Prices are only a guide	

circuit operation

The radio waves are picked up on the aerial coil, L1, which has its own inductance and signal pickup qualities greatly increased by the ferrite rod. In combination with VC1, L1 forms a tuned circuit at a particular frequency depending on the position of VC1. The overwind on the coil, L2, considerably transforms the very high impedance of the tuned circuit thus preventing Tr 1 from damping the tuned circuit; C1 is a d.c. blocking capacitor. Tr1 greatly amplifies the r.f. signal and part of this is fed back to the tuned circuit through VC2 providing a regenerative action.

The remainder of the signal is passed through C2 and is detected by D1 which is connected directly to the base of Tr2 which further amplifies the audio signal and applies it across the crystal earpiece. R1 and R3 provide the correct bias current for the transistors and R2 and R4 provide the loads across which the r.f. and a.f. signals are developed. As there is always a certain amount of detection in the first transistor, C2 is made large to feed this to Tr 2 . If it was necessary only to pass an r.f. signal C2 could be considerably reduced.

Construction

The aerial coil should be wound first using 80 turns of 34 s.w.g. enamelled copper wire. A narrow band of adhesive tape should be wound around one end trapping the end of the wire in this. Eight turns of similar wire should be wound on top of the original windings approximately in the middle.

Fig. 2: Details of the aerial windings.
Only one break is needed in the Veroboard strip and this can be made using a $\frac{1}{4} \mathrm{in}$. drill. The components should then be mounted on the Veroboard as shown, taking note of the transistor connections, note that the lead arrangements on this type of case (TO92) positions the collector in the middle. After mounting the components on the board, solder in the wires which will lead to the battery, the earphone socket and the tuning capacitor; finally feed the aerial wires through the appropriate holes, pull tight and solder. The aerial should be pulled close to the board as there is no other means of supporting it.

The tuning capacitor should next be modified. Remove the screw used for compressing the "vanes", screw the fixing nut underneath up tight and saw off the surplus thread. Remove the fixing nut and
Fig. 1: The circuit of the Mini-two.

components list

Resistors:

R1 $180 \mathrm{k} \Omega$	R3	$1.8 \mathrm{M} \Omega$
R2 $10 \mathrm{k} \Omega$	R 4	$56 \mathrm{k} \Omega$

All miniature $\frac{1}{4}$ watt, 10% tolerance

Capacitors:

$\left.\begin{array}{ll}\mathrm{C} 1 & 0.01 \mu \mathrm{~F} \\ \mathrm{C} 2 & 0.01 \mu \mathrm{~F}\end{array}\right\}$ miniature disc types, 12 V
VC1 250pF trimmer (Radiospares, available from most component suppliers)
VC2 See text
Semiconductors:
$\left.\begin{array}{ll}\text { Tr1 } & \text { BC169B } \\ \text { Tr2 } & \text { BC169B }\end{array}\right\}$ Electrovalue Ltd.
D1 OA81, subminiature type

Miscellaneous:

L1, L2-see text: Crystal earpiece with 2.5 mm jack plug; 2.5 mm socket; B154, 15 V battery; Veroboard, see text for size; Plastic case-see text; Tuning knob (Henry's Radio). now be screwed

Fig. 3: Modification of the tuning trimmer.
 through the trimmer and, allowing for the correct amount of movement, fix two locking nuts on the screw. The tuning knob is available as a replacement for some Japanese miniature volume controls.
The battery connections should be soldered, for, although spring contacts could be used these are not as reliable and the battery will have to be changed so rarely that it will be no chore.
The on/off switch is incorporated in the earphone socket by bending the switch section so that instead of being normally on it will be normally off. The jack, when inserted will automatically switch the set on. A $\frac{1}{4} \mathrm{in}$. hole should be drilled in the side of

Fig. 4: The plastic case for the Mini-two.
the case to take the earphone socket, this fits inside the case beside the trimmer.
The actual case used is widely available, sold holding 30 hairgrips (which may be of use to our longer haired friends to avoid singeing whilst soldering or for the closer cropped section to give to their good ladies!) "Kirbigrips" are the manufacturers of these hair grips and box, and they cost 1 s . 6 d .

The only setting-up necessary in this radio is adjusting VC2 which is made up by twisting 2 in. lengths of insulated wire together. If the set fails to break into oscillation reverse the connections of the overwind. This design, together with the transistors used makes for an "overlap" in oscillation, that is, once oscillation starts it is necessary to reduce VC2 (by untwisting the wires) quite a bit before stability is achieved again. Because of this only a limited amount of regen is possible but
of regen is
Only break in
copper strips
copper strips

An inside view of the completed receiver.
it is sufficient to increase sensitivity and selectivity appreciably.
On two prototypes Radios 1, 3, and 4 were received well and under favourable conditions Radio Luxembourg and one or two other continental stations were heard with good volume.

No one knows

I was extremely pleased at first, to read B. R. Meredith's letter (March 1969) on the subject of those elusive fictional holes. I thought that at last people were beginning to understand the work of the theoretical physicist, but I was shattered by the next paragraph, which showed that he had not got the point at all-for he still believes in the fantasy world of the electron. I might even venture to suppose that he regards an atom as consisting of solid spheres of negative charge flying through space round a fixed set of positive and neutral spheres. I dare say many readers believe this as well-but this is where a fundamental misapprehension arises and this belief, I am sorry to say, is fostered by even the best text-books.

The atomic model and the electron-hole theory are not supposed to be, and were never intended to be taken as literal representations. In each case, what the physicists said was: "We can understand how an atom works and we can do our sums on it, by pretending that it consists of particles having mass, charge, momentum etc., in certain fixed relations. The model, for such it is, is only useful for us in so far as it enables us to explain the results we observe." In a similar way, the physicists have never said that the positive hole exists-all they have said is that we can explain semiconductor action most effectively by pretending that such holes exist and that they move like electrons but in the opposite senses.

If Mr. Meredith knew anything of the results of Quantum Mechanics, he would be utterly confused to say the least. Using this system it is easier to explain atomic spectra and other effects by considering the electron as a smeared-out spherical charge distribution around a hypothetical nucleus. But even this is only a model, for the quantum mechanical electron is in fact a wave in space. However the wave is not a wave as we understand it! So you can see how confusing it gets!

The main point of my argument is that the scientist invents a model which will explain his results and gradually, mainly through the
influence of badly written beginners' books, people begin to associate the model with the real thing. I would like to state categorically, here and now, no one knows, or will ever know, exactly what an atom or electron looks like. The nearest we can ever get is to invent a model system which explains all known phenomena.

I must admit, Mr. Meredith's remarks about current flow in paragraph 5, puzzled me somewhat until I realized that he apparently has not yet sorted out the difference between electron flow and conventional current flow. For his benefit and that of his students, I might just point out that for historical reasons the conventional current flow is directly opposite to that of electron

Rhodian mod.

With reference to the "Rhodian Tape Recorder" design by Julian Anderson (P.W. March-April 1968), I have a suggestion which may be of help to other constructors of this unit.

In an otherwise excellent design giving very good results, I have found two difficulties, and after some experimenting I have improved one of these-the record level indication. I found the DM70 indicator was not giving any indication until the level, was so high as considerably to overmodulate the tape.

To make the "line" on the DM70 shorten appreciably, the grid must be several volts negative with respect to the cathode. I therefore decided to amplify the bias signal before it was applied to the grid, and for simplicity and small size. I used transistors, powered by a $\frac{1}{2}$ wave voltage doubler from the heater line-only 7 components are
flow. I find that authors and "experts" tend to deal in either convention to about an equal extent, depending on which system they were educated in. The advice he gives his students ("What are the electrons doing") is very sound but then it is always very useful if one can appreciate the other point of view.
Incidentally, I believe that it is impossible to explain $\mathrm{p}-\mathrm{n}-\mathrm{p}$ action without the use of "hole theory" and I should be very interested to hear how Mr. Meredith does this.

Finally, as for Hiatitis Pungens, I don't think it ever existed, except perhaps in a confused mind.K. H. J. Rainbow (Surbiton, Surrey).
involved. A super-alpha pair is used to match the impedance of the bias signal.
With this arrangement, a short line shows with no signal, and lengthens with increasing amplitude. The only precaution necessary is to keep the unit away from heat, as this alters the d.c. characteristics of the transistors. R1 can be chosen to give a full-length line when recording level is optimum.
This circuit gives a good indication of level, but I should be interested to know whether other constructors have had this problem, and how they have tackled it: also any comments on my other problems, whistles on recording from an a.m. radio, due to radiation from the oscillator coil. Perhaps this is due to building the unit on a printed circuit rather than a metal chassis? I would be glad to hear from other constructors "in any case!"-W. Wright (Muirpark House, Tranent, East Lothian, Scotland).

[^4]IT was desired at one stage to add an extension from the shed to the main unit in the kitchen but to provide such an extension would have proved expensive using a three-wire connection. Consequently a two-wire extension was devised but having the disadvantage that only one such extension may be parented on to a main unit, see Fig. 6. The operation of the extension is somewhat different from usual in that receiving a call at the main from the extension (announced by a bell) requires that the extension selector on the main unit be operated before communication can be established. A call to the extension from the main unit is made in the normal way. The original extension unit consisted of a GPO type non-dial telephone with a pressbutton switch added just in front of the receiver rest for ringing purposes.

Fig. 6: Wiring of the two-wire connected extension.

PART 2 ل.E.BARRETT

Night Extension of Two-Wire Unit

It was found that if the two-wire extension parent was unattended, calls to it were fruitless and since the extension has no outgoing selector keys, no connection could be made to the basic network. To overcome this problem, a night extension facility was added to the parent unit so that calls to it could be re-directed to any unit present on the main unit.

fig. 7: Block diagram of two-wire night extension.
This arrangement is shown more clearly in the block diagram in Fig. 7 and the circuit in Fig. 8. The setting-up operation is to lift the receiver, operate the three keys or buttons simultaneously for "night extension", "shed extension" and the selector switch for the unit to which it is desired to extend the call. A call incoming from the extension to the parent will cause the buzzer to ring at the extended unit

Fig. 8. Wiring of the two-wire night extension.
which can receive the call in the usual way. Note that outgoing calls cannot be made from the extended unit to the extension and the parent cannot be used to receive incoming calls (which will be announced by a buzzer in the usual way) unless the night extension facilities are first cancelled by momentarily depressing the receiver. rest switch. Note also that the receiver must be left off the parent unit so that the keys or buttons hold locked. The unit used by the author to parent the two-wire extension was a seven key unit and it was thus a simple matter to use one of the spare keys for the night extension facility.

Auto-Transfer of Two-Wire Extension

It will be seen from the description of the night extension that if a call originating from the extension cannot be dealt with at the parent unit, it can be extended to any of the other units by setting up a "temporary night extension" arrangement. The procedure is as follows: On hearing the bell (announcing a call from the extension) lift the receiver, operate the extension key or button and speak to caller. If the caller wishes to be connected to another unit, release the caller by temporarily depressing the receiver rest key and call the desired unit. On answering, the extension key and night extension key must be operated whilst holding the selected station key so that all three lock down. Since the receiver of the main unit is cut out of circuit, it will be difficult for the operator of the main unit to know when the conversation is over, hence an automatic transfer arrangement was devised having the following facilities:
(i) A call from the extension to the parent operates the bell.

(b) TRF relay circuit

Fig. 9: Wiring of the auto-transter facility.
(ii) The operator answering is then asked to transfer the call to another unit.
(iii) The auto-transfer key or button is operated (biased off) and the unit required is dialled (1 to 0 for up to ten extensions) and the ring key operated a few times to call the dialled unit.
(iv) The receiver is replaced and a "doll's-eye" indicator remains held whilst the transfer is in operation.
(v) At the termination of the call, the called unit rings the parent in the usual way. This causes the doll's-eye to drop out and the equipment to reset to normal without the intervention of anyone at the parent.
The circuit diagram is shown in Fig. 9.

Auto-Transfer Circuit

After ascertaining the unit required, the "transfer set" key or button is operated. This applies the earth at CN1 to the relay TRF, which latches via TRF2 and CN1. The doll's-eye indicator operates and the indicator lamp lights from the 24 V supply via TRF3. The selector magnet, SR is now disconnected from its self-interrupt springs and homing arc by TRF6. The speech path is set up via TRF1 and TRF4. The incoming wire is switched to the 4.5 V relay CN by TRF5 in preparation for cancelling the transfer. It is necessary to isolate the main unit buzzer as this will otherwise interfere with transmission being coupled in parallel to the extension receiver, this is achieved by TRF7. Dialling now steps the selector to the required outlet. On completion of dialling the ring key or button is operated which applies 4.5 V battery voltage to the dialled unit via TRF4 and SR1 returning via the common return wire. When the dialled unit answers, the call is announced and the receiver is replaced. At the termination of the call, the called unit rings to the parent and in so doing applies 4.5 V across the relay CN via TRF5, CN1 operates to disconnect the earth from TRF which releases. TRF6 deoperates, connecting the selector magnet to the earth on the homing bank via the self-interrupt contacts, SRdm, the magnet now steps successively to home. All other TRF contacts restore to normal causing the doll's-eye to release and the indicator lamp to extinguish. Calls may now be made to and from the parent unit without the further operation of any keys or buttons.

The power supply for the transfer unit is derived from a 20 V transformer (or any other suitable voltage so long as it is sufficient to operate the relay, selector and doll's-eye indicator) and a silicon rectifier to give approximately 18 V r.m.s.

All the apparatus can be housed in a wooden box containing the dial and doll's-eye indicator or the equipment may be housed with the transformer/ rectifier separately from the dial and doll's-eye indicator. No details are given for the construction of the auto-transfer equipment since these will vary with the apparatus of the constructor.

A normally made "transfer cancel" key is connected in series with the relay should it be necessary to cancel a call from the parent unit (e.g. if there is no reply from the call deunit). This takes the form of a key switch (in practice the other "side" of the "transfer set" key).

TO BE CONTINUED

TRANSDUCERS are components which convert physical effects such as temperature, light intensity, mechanical movement, pressure etc. into electrical quantities. Since a number of types of transducer can be used for each physical parameter it will be convenient to consider each group separately.

Temperature

Most electronic components are affected by temperature variation and consequently a wide variety of transducers are available for temperature measurement. Among the most popular are thermostats, thermistors, thermocouples and temperature dependent resistors.

Thermostats

Thermostats are widely used for temperature control where critical operation is not required. The basic construction of a thermostat is illustrated in Fig. 1. Essentially it consists of a bimetal element formed by laminating two metals together. The metals used have radically different coefficients of

Fig. 1: Basic thermostat construction.
linear expansion with temperature and consequently when the temperature is changed one element expands more than the other, which results in the strip bending to accommodate the separate requirements of each material. When the strip is heated or cooled the bending occurs and is used to make or break a contact.

The actual temperature at which this occurs is determined by the contact to strip spacing and can be adjusted by moving the contact position. Because of the variation in strip characteristics and the relatively small movement there is a large variation from one unit to another and individual setting of each thermostat is often required.

Thermostats are effective devices for sensing one particular temperature value within a margin of error of $2.5^{\circ} \mathrm{C}$ and can only be used for a single temperature due to the ON-OFF characteristic of their operation. Consequently they are widely used
as control elements in domestic and industrial temperature control applications but are not generally used for temperature measurement and indication.

Applications

In electronic circuits thermostats are used as delay elements and for miniature circuit breaker applications. Components with delay times of $10-100 \mathrm{secs}$ are available and are used for valve applications where the application of h.t. potentials are delayed until after the heaters have warmed up. Both nor-mally-open and normally-closed contact configurations are available and generally the bimetal strip is indirectly heated with a coil. The heating coil is wound around the bimetal strip and is electrically isolated from the contact. The coils are generally wound to match heater voltage ratings of 4,6 and 27 V and require current levels of $200-750 \mathrm{~mA}$. Contact ratings vary from 0.5 A to 2 A and depend largely upon size and construction. A typical low cost delay element is shown in Fig. 2; such devices vary in price from 5 s. to 15 s . Valve configurations are also available to suit many standard valve bases at prices from $£ 1$ to $£ 3$.

Fig. 2: Miniature thermostat delay e/ement.
Miniature thermostat circuit breakers are used for over current and over power protection. Because of the time-lag inherent in the device due to thermal delay they are insensitive to transient conditions. The operation is similar to the delay elements except that the contact is normally closed. The current at which the contact opens is determined by the thermostat and a delay of $5-20$ secs is inherent. It should be noted that the maximum coil current for operation is dependent upon ambient temperature and reduces as the ambient increases; consequently these devices cannot be regarded as accurate for over current protection applications. They have the advantages of positive switching action and automatic restarting (as the coil cools) and are very cheap at prices from 3 s . to 25 s .

Thermistors

Thermistors are temperature sensitive resistors and the circuit symbol is shown in Fig. 3. They are

ELECTROLYTIC CAPACITORS (Mullard). $\mathbf{- 1 0 \%}$ to $+\mathbf{5 0} \%$.

		Working Voltage (V)_Capacitance $(\mu \mathrm{F})$		
4 V	6.4 V	10 V	16 V	25 V
8	6.4	4	2.5	1.6
32	25	16	10	6.4
64	50	32	20	12.5
125	100	64	40	25
250	200	125	80	50
400	320	200	125	80
800	640	400	250	160
1250	1000	640	400	250
2000	1600	1000	640	400
3200	2500	1600	1000	640
				800
				1250
				2000
				400
				6400

		Price		Pack Prices	
40 V	64V	each	10 off	25 off	100 off
1	$0 \cdot 64$	1/4	12/4	26/6	89/6
4	$2 \cdot 5$	1/2	10/6	23/-	80/3
8	5	$1 / 2$	10/4	22/6	77/9
16	10	1 -	8/9	18/9	63/6
32	20	1/1	9/6	20/9	70/9
50	32	1/2	10/4	22/6	77/9
100	64	1/6	13/4	29/6	102/9
160	100	2/-	18/10	37/9	134/4
250	160	$2 / 6$	22/3	44/3	165/6
400	250	3/-	26/9	59/-	204/3
500	320	5/3	46/6	101/-	343/9
800	500	616	57/6	125/4	427/-
1250	800	81-	71/4	157/-	541/8
2500	1600	12/6	91/6	194/9	843/9
4000	2500	151-	133/4	291/8	1000/-

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular
termination bonding.
JACK PLUGS
tin. Type P1. Standard. Screened. Heavily chromed.
in. Type SE/P1. Side-entry version of Type P1
tin. Type P2. Standard. Unscreened. Unbreakable moulded cover.
$\frac{4}{4}$ in. Type P2. Standard. Ulescreened. Undipereakable moulde
Leads: $35 ; 10 \times 4.3$
Leads: 35
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series).
5% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Series).
Prices-per Ohmic value.

POTENTIOMETERS (Carbon)

Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise. Body dia., $\frac{8}{4 i n}$. Spindle, 1 in. $x+i n . \frac{1}{2}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ over \ddagger M. Lin. 100 ohms to 10 Megohms. Log. 5 Kohms to 5 Megohms. $\begin{array}{llllll}\text { Prices-per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 2 /- & 18 / 4 & 41 / 8 & 150 /-\end{array}$

GANGED STEREO POTENTIOMETERS (Carbon)
$\frac{1}{2} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. Long Spindle.
Logarithmic and Linear: $5 \mathrm{k}+5 \mathrm{k}$ to $1 \mathrm{M}+1 \mathrm{M}$.
$\begin{array}{lccccc}\text { Prices-per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 8 /- & 70 /- & 162 / 6 & 575 /-\end{array}$

SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-sets suitable for printed circuit boards of 0.1 in . P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ above $\$ \mathrm{M}$. Horizontal ($0.7 \mathrm{in} .+0.4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in}, \times 0.2 \mathrm{in}$. P.C.M.). Subminiature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above.
below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above
Prices-per ohmic
Miniature (0.3 W)

each	10 off	25 off	100 off
$1 /-$	$8 / 9$	$18 / 9$	$66 / 8$
10 d.	$7 / 1$	$14 / 7$	$46 / 8$

POLYESTER CAPACITORS (Muilard)
Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}$, 8d. $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, 11d. $0.22 \mu \mathrm{~F}, 1 / \mathrm{F} .0 .33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6$. $0.68, \mu \mathrm{~F}, 2 / 3$. $\mathrm{I} \mu \mathrm{F}, 2 / 8$.
$0.68 \mu \mathrm{LF}, 2 / 3.1 \mu \mathrm{~F}, 2 / 8.2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015$
$400 \mathrm{~V}: 1,000,1,500,2,2$
$400 \mathrm{~V}: 1,000,{ }^{1,500}, 2,200,3,300, \mathrm{~F}^{4,700 \mathrm{pF}}, 6 \mathrm{~d} .6,800 \mathrm{pF},{ }^{0} \cdot 01,0.015$,
$0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0 \cdot 1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 15 \mu \mathrm{~F}, 1 / 2$. $0.22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$.
Modular, metalised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$ $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 \cdot 22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}$, $1 / 5.0 \cdot 47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.
tin. Type P4. Tip-Ring-Sleeve Stereo version of Type P2.
3. 5 mm . Type P5. Standard. Screened. Aluminium cover.
3.5 mm . Type P6. Standard. Unscreened. Unbreakable moulded cover.

Prices				each	10 off	25 off	100 off
P1	.	.	.	3/-	26/8	62/6	233/4
SE/P1	\cdots	\cdots		3/6	30/10	66/8	280/-
P2	\cdots	\%		2/6	23/4	54/2	200/-
P3	.	\cdots		6/6	60/-	137/6	500/-
P4	\ldots	\cdots		6/2	$59 / 6$	127/6	455/-
P5	.	\ldots		2/2	19/2	43/9	158/4
P6	.	\cdots	\cdots	$1 / 8$	15/-	33/4	116/8

JACK SOCKETS
tin. Type S3. Stereo version for use with P3 or P4 plugs. tin. Type S5. Standard. Moulded body. Chrome insert. 3.5 mm . Type S6. Standard. Moulded body. Chrome insert. Available with make or break contacts on Tip. Ring and Sleeve.

SEMICONDUCTORS: OA5, OA $81,1 / 9$. OC44, OC45, OC71, OC81, OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AF115, AF116, AF117, ACY19, ACY21, 3/3. OC140, 4/3. OC200, $5 /-$. OC139, 5/3. OC25, 7/-. OC35, 8/-. OC23, OC28, 8/3.

SILICON RECTIEIERS: (0.5A). 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1250 P.I.V.. 3/9. 1500 P.I.V., 4/-. (0.75A); 800 P.I.V., $3 / 3$. (6A); 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.I.V., $5 /$-. 800 P.I.V., 6/-.

THYRISTORS (5A): 100 P.I.V., 8/-. 200 P.I.V., 10/-. 400 P.I.V., 15/-.
SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125V. Push Buttons: Push-on or Push-off, 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, $5 /-$.

PRINTED CIRCUIT BOARD (Vero).

$5 i n . \times 3$ 各in., $5 / 6$.
 $5 / 3$.

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PW) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale and Retail Premises)
MINLMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 / 6$
generally available with negative temperature coefficients. They are manufactured from semiconductor material and are consequently robust and reliable.

Fig. 3 (right): Thermistor circuit symbol.
Fig. 4 (left): Thermistor logarithmic characteristic,
The resistance falls logarithmically with increase in temperature and a typical thermistor characteristic is shown in Fig. 4. Since the characteristic is continuous they can be used both for control and indication and are particularly useful for power measurement especially in the r.f. to microwave frequency

(a) Linearisation circuit
(b) Linear characteristic

Fig. 5: Linearising the thermistor characteristic.
range. Where a linear characteristic is required this can be achieved by shunting the thermistor with a resistor as shown in Fig. 5(a). This results in the modified characteristic shown in Fig. 5(b).

Applications

In electronic circuits thermistors are used for automatic gain and amplitude control and for surge suppression whilst as transducers they are used for measurement, indication and control. Three basic forms of construction are used to suit the varied design requirements and these forms are illustrated in Fig. 6. Bead thermistors are used for amplitude control and the bead is small in order to reduce the

thermal delay. Consequently they are fast acting and suitable for direct control. Indirectly heated types in
evacuated or gas filled glass encapsulations are also available. Disc thermistors are larger but are not protected except by the end connections. They are therefore more useful for power applications in control and compensation. Rod thermistors have a large surface area for heat dissipation and are particularly useful for surge suppression.

Parameters

Thermistor operating temperatures are wide but generally between $0-300^{\circ} \mathrm{C}$. Resistance values vary considerably and are available from $100 \mathrm{k} \Omega$ to $0.5 \mathrm{M} \Omega$ at $20^{\circ} \mathrm{C}$ ambient temperature. The tolerance on thermistors of a particular type is usually $\pm 20 \%$ of the ambient $20^{\circ} \mathrm{C}$ level. At maximum temperature or dissipation the resistance value is usually between 10Ω and $1 \mathrm{k} \Omega$ depending on type. Disc and rod thermistors have lower ambient resistance values and are supplied to closer tolerances, usually $\pm 10 \%$ or $\pm 5 \%$. Power dissipation levels vary from $20-100 \mathrm{~mW}$ for bead thermistors to 1-5W for dise thermistors.
Prices vary between 7 s . and 20 s . for dise thermistors of wide tolerance to 15 s . to 35 s . for close tolerance devices, whilst bead thermistors vary from 10 s . to 50 s . depending on tolerance and construction. Generally directly heated bead devices are available in the range 10 s . to 25 s . for general purpose application. Whilst these prices apply for standard thermistors specialist r.f. and microwave power measurement devices are considerably more expensive.
Thermistors have a number of advantages when compared with thermostats for control purposes. These include the ability to both measure and control, and also non-mechanical operation which results in reduced size and increased reliability and stability. They are also robust and unaffected by high vibration levels. However they do require additional circuitry for control applications and generally are destroyed by high overload values. This is a particular problem in power measurement at v.h.f. and u.h.f. frequencies.

Thermocouples

Thermocouples are widely used for temperature measurement and control but rarely as components in electronic equipment. Thermocouples are junctions of dissimilar metals and many combinations are used including cromel/alumel, copper/constantan, iron/constantan, and platinum/rhodium to cover the various temperature ranges. They operate by generating a small voltage in the region of mV when the temperature of the junction is raised but have very low source resistances. However when used in conjunction with high input impedance amplifiers rather than galvanometers the lead conditions are not critical.

Temperature ranges vary with the type of metals used for the junction. Commonly copper/constantan $(\mathrm{Cu} / \mathrm{Con})$ is used for temperatures from $-200^{\circ} \mathrm{C}$ to $+300^{\circ} \mathrm{C}$ since these are generally available in wire form, whilst cromel/alumel (Cr/Al) is widely used for more critical applications to $1000^{\circ} \mathrm{C}$. Platinum/ platinum rhodium is used for the range $0-1800^{\circ} \mathrm{C}$ where exceptional accuracy and stability are required.
-continued on page 347

Citasold LONG-LIFE BITS CUT COSTS

Screwdriver

Conical

These new bits are electrolytically ironcoated over their whole length, giving tremendously increased life and freedom from seizure. Real savings in initial cost and maintenance of copper bits can be achieved by using Philips bits.
Now available in the shapes illustrated for all seven LITESOLD models (also fit similar $\frac{1}{6}{ }^{\prime \prime}, \frac{3}{16}{ }^{\prime \prime}$ and $\frac{1}{4}{ }^{\prime \prime}$ bit types).
Send for further details:
LIGHT SOLDERING DEVELOPMENTS LTD.
28 SYDENHAM ROAD, CROYDON CR9 2LL
Telephone: 01-688 8589 and 4559

[^5]
teohinical TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEMN SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12 v) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.

DULCI HI-FI UNITS

The Dulci range of tuners and amplifiers offer exceptional quality at a senslble price.
Amplifiers:207and207M. Tuners: FMT7 and FMT7s SEND NOW FOR FULL DETAILS

TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus Frequency response $20-20.000 \mathrm{c} / \mathrm{s}$ output. 7 mv tracking pressure 2 grammes ± 0.5 grm. Fully guaranteed. Price 85/- p/p free
Bargain-Changer decks at lowest prices eve

	Geautiful teak $\quad 1025$	£8.0.0

plinth and perspex 2025 E8.10.5
cover to suit \quad AT60 Mk. II $\quad \mathbf{E 1 2 . 1 9 . 6}$ these units SP25 Mk. II 5 Gns. P. \& P. Free 3500 with Son 9TA.HC diam. cart. £10.19.6 Add $10 /-\mathrm{p} / \mathrm{p}$ for each Garrard unit

HI-FI SPEAKER K12TC-12in. 12 watt

Offers an exceptionally smooth and extended response, with very low level of distortion from the speclaily designed twin diaphragms.
Frequency Response: $30-16,000 \mathrm{~Hz}$.
Impedance: $\mathbf{1 5 - 1 6 0 H m}$.
$\underset{\text { OUR SPECIAL PRICE }}{\underset{\text { PLUS P. \&P. } 6 / 6}{ } \quad 97 / 6}$
-Bargain-Speakers, Hi -Fi-The Baker Selhurst Stalwart. 121n. round, 15 watt rating, 12,000 lines gauss, 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Base resonance $40-50 \mathrm{c} / \mathrm{s}$, solid aluminlum chassis. Our price £5.9.6.
p/p 6/6

SPEAKER ENCLOSURES
Type: INFINITE BAFFLE
Model 8: $8^{\prime \prime}$ plus $3^{\prime \prime}$ tweeter
Model 138: $13^{\prime \prime} \times 8^{\prime \prime}$ EMI
Both £4.19.6 each
Model 1012: $10^{\prime \prime}$ or $12^{\prime \prime}$ plus $4^{\prime \prime}$ tweeter
£7.19.6
All enclosures are In olled teak, fully built.
Please add 8/- p. \& p. on each enclosure
Bargain - Speakers, $\mathrm{Hi}-\mathrm{Fi}$ - The Baker Selhurst Guitar Group 25, 12in. round, 25 wattrating, 12,000 gauss, 15 ohms, response $30-10,000$ c / s, solld aluminium chassis, heavy duty cone. Our price §5.9.6.
p/p 6/6

The greatest HI-FI Budget system to-daycan't be beaten - price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp. AM-
FM with multiplex decoder and
A.F.C. $-2 \times 5 \mathrm{w}$ channels R.M.S.

Bass Volume Treble Balance con- £ s d trols, a truly outstanding unit
Garrard SP 25 Mk II Transcription deck
Teleton SA 1003 matching speaker enclosures
$9 \quad 50$
Sonotone 9 TA Diamond Cartridge

420	Plinth and Perspex cover	$7 \quad 0 \quad 0$

£78 1911
Exclusively offered by WALDON at the remarkably low price of 63 gns.

E.M.I. HI-FI SPEAKERS

SET 450: 13×8 with two bulit-In tweeters and crose-over unit. Our Price 69/6. 3 or $15 \mathrm{ohm}, 10 \mathrm{w}, 40-13,000 \mathrm{~Hz}$. SET 850: $61^{\prime \prime}$ bass plue $3 \lambda^{N}$ tweeter and cross-over unit. 8 ohm, $10 \mathrm{w}, 65-20,000 \mathrm{~Hz}$. 79/6.
SET 250: $5^{\prime \prime}$ heavy duty bass plus $3^{\prime \prime}$ tweeter and crose-over unit. $80 \mathrm{hm}, 6 \mathrm{w}, 80-20,000 \mathrm{~Hz}$. $65 / \mathrm{w}$.

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door
Phone. Complete with 66tt. connecting Fire. Bettery 2/6. P. \& P. 4/6.

59/6
Why not boost clency with this incredible De-luxe Telephone Ampli* fier. Take down long telephone messages or converse whthout holding the handset. A treful office aid. On/ off s witch. Volume Control. Battery 2/8extra.P. \& P. 8/6. Full price refunded if not aatisfled in 7 daps. WEST LONDON DIRECT SDPPLIES (P/W9)
169 KENSINGTON HIGH STRE $\mathrm{F}_{\text {S }}$ LONDON, W.8.
H.A.C. suoniriseve WORLD-WIDE RECEPTION

Famous for over 30 yearstor Short-Wave Equipment of quality, "H.A.C." Fere the Original supplers of Short-Wave Receiver Kits for the amateur constructor. Over 10,000 satisfed
customers-including Technical Colleges, Hos-customers-including Technical Colleges, Hos-
pitals, Public Schools, R.A.F., Army, Hams, etc.

IMPROVED 1960 RANGE

One-valve model "DX", complete kit-price $58 / 6$ (Postage and packing $3 / 6$).
Customer writes:-"Defliltely the best one-valve S.W. Kit available at any price. America and Australia received clearly at good volume." This kit contsins all genuine ahort-wave components, drilled chassis, valve acceasories and full instructions. Ready to assemble, and of course, es all our products-tully guaranteed. Full range of other S.W. Kits still available, including the famnus model "K" (recommended by radio clubs). All Send now for a descriptive catalogue, order form.
'H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

DIMMASWITCH

This is an attractive dimmer unit which fits in place of the normal wall light switch. The mounting plate is ivory to mateh modern fittings and the control knob is in bright chrome. An ON/OFF switch is incorporated to control up to 500 watts at mains voltages from 200-250 volts, 50 Hz .
These are normally sold at E4 19s. 6d.our price is $\mathrm{E} 3 \mathrm{5s}$. We also offer at £2 15 s . a complete kit of parts with simple instructions enabling you to build this dimmer yourself.
The circuit uses the latest miniature RCA triac and new diac triggering device to give complete reliability. Radio interference suppression is included.
DEXTER \& COMPANY
14 Endsleigh Gardens; Chester CH2 ILT Chester 26432

A MINIATURE POWER SUPPLY

A MINIATURE STABILISED SUPPLY WHICH CAN BE BUILT TO GIVE AN OUTPUT BETWEEN 6V AND 18 V . PROTECTION AGAINST ACCIDENTAL SHORT CIRCUIT IS INCORPORATED IN THE DESIGN.

IN this modern age of the transistor, there is a wide range of small, portable equipment designed to Loperate from batteries, and modern power packs offer a very reasonable life. Considered long term, however, there are many cases where the economy of running this same equipment from a mains supply would be a great advantage.

Due to its small size, $4 \frac{3}{8} \times 2 \frac{3}{8} \times 1 \frac{1}{4} \mathrm{in}$., the supply to be described is small enough to mount inside such equipment where the addition of a switch gives the versatility of mains/battery operation.

The supply has a current limit to protect against accidental short-circuit of the output, or overload, and in the form described has a nominal 18 V stabilised output. A continuously variable output would not enable the circuit to keep its present advantage of simplicity. The 18 V line may be used directly with decoupled line dropping resistors, or even further zeners if very accurate lower voltage lines are required. Alternatively the actual output may be reduced to any desired lower level by small component modifications.

As an example of the economy of such a unit, compare, for instance, the requirement for an 18 V line and a load current of 30 mA . The most convenient method of obtaining this with batteries would be two series PP9's. Assuming a 12 hour/day operation, and allowing the supply to drop to 13 V with the PP9's, lifetime would be about 80 hours for 7 s .6 d . The cost of the miniature mains unit for the same period is less than two-tenths of a penny!
The circuit, including a sub-miniature mains transformer, is constructed on a piece of Veroboard, and this may be mounted inside the smallest of the Eddystone boxes. The supply can be used floating or with earth connected to either polarity. Output is taken from solder pins, and the supply box designed for use as a general purpose bench unit or for mounting inside equipment.

Regulation is better than could be achieved with a simple zener since zener current variation with load current variation has been minimised, thus achieving a 1% regulation.

Figure 1 shows typical output voltage against load current. It is pointed out that the absolute value of output voltage is dependent upon the spread of zener voltage, and will be about 0.7 V less than a given zener voltage. For the BZY94 the spread is $16 \cdot 9 \mathrm{~V}$ to $19 \cdot 1 \mathrm{~V}$.

CIRCUIT DESCRIPTION

A miniature mains transformer, T1, provides from a 240 V mains supply a secondary of 24 V r.m.s. This a.c. voltage is fed to a bridge rectifier formed by diodes D1, D2, D3 and D4. C1 is an initial reservoir capacitor

SPECIFICATION

Output voltage	18 V nominal (16.2V-18.4V
	due to zener spread)
Voltage regulation	$\pm 1 \%$ (measured on prototype)
Ripple voltage	$<1 \mathrm{mV}$ r.m.s. 40 mA (con-
	siderably less at lower levels)
Current range	$0-40 \mathrm{~mA}$
Current limit	$40-60 \mathrm{~mA}$

Fig. 1: Typical output voltage plotted against load current.
tending to lift the full-wave rectified waveform to its peak value, and R1 and C2 provide further smoothing and ripple filtering. C 1 and C 2 should be capacitors suitable for this purpose, and capable of handling large ripple currents.

Resistor R3 provides zener bias current for D6, and the zener holds the base of $\operatorname{Tr} 2$ at a stabilised level, approximately 0.7 V higher than the output voltage. The output is taken as an emitter follower and must therefore be tied to the zener voltage by the $\mathrm{V}_{\text {be }}$ of Tr 2 .

R4 provides a small bleed current to keep Tr2 just on when the supply is on open-circuit, and to further ensure that current variation in $\operatorname{Tr} 2$ base is minimised. The current through D6 should be kept as constant as possible to maintain accurate regulation of the output.
As shown in Fig. 1, the current limit comes into operation just above the working range of 40 mA . This is necessary to ensure that the supply is not overloaded, and means that should an accidental short-circuit be applied to the output, the supply will be protected.
The current limit is provided as follows. The whole of the load current passes through R2, thus the voltage developed across it is proportional to the load current. In fact the circuit biasing current is also passed through R2, and this assists the switching-on action of Tr2, the current limiting transistor. When the voltage reaches a pre-determined level across R2, Tr2 is biased on. The voltage required to do this is the forward voltage across D5 plus the V_{be} of Tr 1 . This will be approximately 1.4 V , but will vary slightly according to diode and transistor spreads. Because of this, slight adjustment of

Fig. 2: The circuit of the power supply.
R2 may be necessary to ensure that the circuit limits at the correct current. It should not be necessary to get to a lower or a higher resistance value than the next preferred values.

When the current increases to limiting value, the voltage across R2 brings on $\operatorname{Tr} 1$ which, on short-circuit at the output, goes into saturation. The voltage at Tr 1 collector is thus made to fall, collapsing the reference voltage provided by the zener diode, and hence the output voltage. $\mathrm{V}_{\text {be }}$ of $\operatorname{Tr} 2$ must not exceed 0.7 V or thereabouts or this transistor will be destroyed. Obviously a short circuit output reduces the emitter to 0 V , and hence the necessity to reduce the base voltage to something less than 0.7 V relative to the 0 V output.

After construction, a test should be made with a current meter and a variable load, such as a potentiometer. If the output voltage, which should also be monitored, does not start to drop just after 40 mA is reached, R2 should be increased slightly. If the voltage falls suddenly before reaching 40 mA decrease R2 slightly. (If two parallel resistors are required for good limiting at the right value, the second resistor may be inserted in the Veroboard layout between holes H11 and H12.)

For further smoothing a capacitor may be placed across the output. There is room for a moderately sized capacitor on the Veroboard between W4 and W11. The higher the capacitance (at appropriate voltage working) the lower the ripple.
Note that whilst a tempting place to put a smoothing capacitor is across the zener diode, this is not to be recommended. If this is done there is a danger of burning out Tr 2 if a short is applied to the output; since this capacitor will then discharge directly through the emitter-base of this transistor unchecked.

COMPONENT NOTES

All the transistors used are silicon types, and since germanium types behave very different thermally to silicon, and since V_{be} 's differ considerably, germanium components should not be substituted. It is also stressed that when alternative silicon components are used in the regulatory or limiting sections, the specification may not be achieved.
Small size, low cost silicon diodes may be employed throughout the circuit, including the bridge rectifier, since the supply is only providing limited power. Silicon alternatives to the OA200's may be freely employed.

With regard to the zener diode, the quality used relates to the degree of regulation with varying load current. Whilst zeners of the OAZ series may be used here, for a better regulation the newer BZY types give a superior performance with their sharper knees and smaller zener voltage variation with zener current.

If the constructor has any of the BZY88 range of silicon zener diodes, two of these might be used in series to give approximately 18 V , for example, two BZY88 C9V1, giving a nominal voltage of 18.2 V . If two such diodes are used in series, however, zener voltages under about $5 \cdot 1 \mathrm{~V}$ are not recommended since for lower voltages slope resistances generally are not as good and regulation will deteriorate. Of the transistors, any $800 \mathrm{~mW}, 30 \mathrm{~V}$ transistor will be suitable for Tr 2 with a reasonable gain, preferably greater than 60 (at 1 mA). A wide variety of silicon transistors may be used for Tr 1 with a reasonable gain and $\mathrm{V}_{\text {ce }}$ of about 30 V . The BC 107 is recommended for availability and low cost, with the ZTX302 or BC167 as alternatives in plastic encapsulation.
The BFX85 or BFX86 are excellent transistors to use as $\operatorname{Tr} 2$ for free-air mounting.
Note: if it is desired to use two zener diodes in series to provide the 18 V reference, these may be mounted on the Veroboard as follows, where the zener shown between U1 and U11 is removed. Connect the cathode of the uppermost to U1 and the anode to U8. Connect the lower diode cathode to V8 and its anode to V11.

OTHER OUTPUT VOLTAGES

It is possible to modify the circuit to give output voltages from anything between about 6 V and 18 V . For simplicity in the circuit, because output voltage is not variable, the power dissipated by $\operatorname{Tr} 2$ may be predicted accurately. It will be appreciated that with a variable control, when the power is not dissipated by the load at a high load voltage, the regulating transistor is required to take over on power dissipation. With a fixed output, this may be conveniently limited to a low value, and hence a free-air mounting used. For a lower line voltage, it must be ensured that Tr2 does not dissipate more than its rated power. With no heatsink, the BFX 85 may dissipate 800 mW up to $30^{\circ} \mathrm{C}$, and this should be reduced to a maximum of 600 mW at $70^{\circ} \mathrm{C}$.
For a lower voltage, select the most suitable zener, then realising that $\mathrm{V}_{\mathrm{e} 2}$ will be about 0.7 V less than the zener voltage, considering a maximum current of about 50 mA , the maximum $\mathrm{V}_{\text {ce }}$ may be calculated where $\mathrm{P}_{\text {max }} \simeq \mathrm{V}_{\text {ce }}$. $\mathrm{I}_{\text {e }}$. This gives 12 V for up to $70^{\circ} \mathrm{C}$ ambient, but if enclosed in a small metal box, even with the

\star components list

AUTO WOUND TRANSFORMERS

All Winding Voltage Ratings and Tapping 0-115-200-220-240v except MT118$\mathrm{MTH13} 20 \mathrm{vF}$

MT113	20W		Wgt 11az	Price 12/6	
MT64	75W	Size $27 \times 2 \frac{1}{3} \times 2 \frac{3}{5}$ in.	Wgt liblioz	Price 21/9	P\&P 4/6
MT4	150W	Size $31 \times 2 \mathrm{t} \times 3 \mathrm{in}$.	Wet 3ib	Price 33/-	P\&P 6j-
MT63	200w	Size $3 \frac{1}{4} \times 4 \frac{1}{6} \times 4$ in.	Wgt 4 lb	Price 39/6	P\&P 6/-
MT66	300w	Size $4 \times 4 \times 3$ 星的,	Wgt 6lb 7 oz	Price 59/4	P\&P 9/-
MT110	400W	Size $4 \frac{18}{} \times 4 \frac{5}{2} \times 4 \mathrm{in}$.	Wgt 11 lb	Price 851-	P\&P 10/-
MT67	500W	Size $5 \frac{1}{2} \times 4 \times 4 \frac{1}{3} \mathrm{~m}$.	Wgt 12 lb) 8 oz	Price 89/-	P\&P 10/6
MT83	750W	Size $4 \frac{1}{2} \times 5 \frac{1}{2} \times 6 \frac{1}{2} \mathrm{in}$.	Wet $13 \mathrm{ib} 40 z$	Price 95/7	PáP 10/6
M	1000W	Sire $4 \frac{1}{2} \times 5 \frac{1}{2} \times 5 \frac{1}{2} \ln$.	Wgt 16 lb	Price 142/2	Carr. ex.
MT93	1500W		Wgt $28 \mathrm{lb} 90 z$	Price 170/6	Carr.ex.
MT94	1750W	Slize $5^{5} / 16 \times 6 \frac{3}{6} \times 6 \frac{1}{2} \mathrm{in}$.	Wgt 31 lb	Price 1951-	Carr.ex.
MT95	2000W	Size $7 \times 6 \frac{1}{2} \times 81 \mathrm{in}$.	Wgt 40 lb	Price 111/2	Carr.ex.
MT73	3000w	Size $8 \frac{7}{6} \times 7 \frac{1}{17} \times 8 \frac{3}{6}$	Wgt 45 Ib 8 zz	Price 300\%	Carr.ex.

Une nams "Keynector" instantly and mains eupply without the use of tif plug. A number of appliancea may be used simultaneously up to the fuill 13 amp rating of thla device. A red light glows when "Hive". The "Keynector"' is fused and has its own robust switeh which is interlocked to prevent connections
when "live". Invaluable to handymen, whel "live, denvaluaber etc.
servicemen, demonstrutors
39/6 т. Р. 3\% VHF AIRCRAFT BAND CONVERTOR. When placed within 1 in .
of a MW band radio full coverage of VHF Air craftBand 10s-135 Mc/s. can be obtajned. All
transistor, $9 v$ battery transistor, 9y battery
operation. Fully turable 18 opation. Fuly turable $\times 7$ eection telescopic aerial, Size 4×29
$\times 1$ in. $79 / 6 . \mathrm{P}$. \& $\mathrm{P} .3 / 6$.

MODEL MAKER'S MOTOR No. 15RN Voltage 11.5r. $12 g$-en. Body size $\frac{13^{\circ}}{}{ }^{\circ}$ Shatt ${ }^{5} / x^{\prime \prime}{ }^{\prime \prime}$ long \times ${ }^{1 / 16^{\prime \prime}}$ dia, Ideal for small models and P. \& P. 1/3. 3 for 15/-. P. \& P. $2 / 6$. each.

DE-LUXE STEREO HEADPHONES
17 With soit rubber earpieces. Impedance $8-16$ ohms. Frequency response $23-13,000 \mathrm{cps}$.
With lead and stereo plug. 59/6. P. \& P. $3 / 6$.
NEW STEFREO/MONO
HEADPHONES GEADPHONES SDH-7. Soft rubber
earpieces with slide earpleces with slide
switch for mono/ stereo listening and Ind. vol. controls. Freq. response $25-$ $15,000 \mathrm{cps}$. Withlead $\underset{\text { and stereo plug. }}{\text { an. } 0 \text {. } P \text {. }}$
VENNER SYNCHRONOUS MOTOR (200) $\begin{aligned} & \text { Mains voltage (200) } \\ & 250 \mathrm{v}) 1 \text { rev. per hour. } \\ & \text { Precision movement }\end{aligned}$

SILICON DIODE RECTIFIERS

Midget Electrolytic Cond. Wire Ends

At 6d. each	
$0.8 \mu \mathrm{~F}$	25 volt
$2 \mu \mathrm{~F}$	350 volt
$4 \mu \mathrm{~F}$	150 volt
$640 \mu \mathrm{~F}$	2.5 volt
At 94, each	
$2 \mu \mathrm{~F}$	300 volt
$4 \mu \mathrm{~F}$	12 volt
$8 \mu \mathrm{~F}$	12 volt
$16 \mu \mathrm{~F}$	16 volt
$30 \mu \mathrm{~F}$	10 volt
$100 \mu \mathrm{~F}$	6 voilt
$125 \sim 5$	4 volt
At 1/- each	
$16 \mu \mathrm{~F}$	250 volt
$50 \mu \mathrm{~F}$	10 volt
$100 \mu \mathrm{~F}$	12 volt
$100 \mu \mathrm{~F}$	25 volt
$200 \mu \mathrm{~F}$	10 volt
$320 \mu \mathrm{~F}$	10 volt
2000 MFD	V 4/-

current 10 ma , gain $70-4 /-$ each. AF149-gain $226-4 / 6$ each. Also $8 \mu \mathrm{~F} 350 \mathrm{~V} 1 / 2,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 3$ and $50 \mu \mathrm{~F} 50 \mathrm{~V} 1 / 9$. Other electrolytics in current list. Postage, Packing and tusurance all above 7í. up to $8 ; 1 /$ Irom 4-11; 12 and over paid.
2 GANG VAR. CONDENSER: Mod., air-spaced, 000 ea ea sec. 5/- (1/-).
SUR-MIN. TRANSFORMERS Output (3Ω for OC72 etc.) $2 / 6$. Driver $2 / \theta$ (either 7d). MULTIMETER: $20,000 \Omega / V$ D.C $r, 10,000 \Omega / \mathrm{V}$ A.C. $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ volts D.C. - $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ volts A.C. $0-50 \mu \mathrm{LA} / 2 \cdot$ onmA/250mA D.C. $0-6 \mathrm{~K} \Omega / 6 \mathrm{meg} \Omega$ - $10 \mu \mu \mathrm{~F}-001 \mathrm{mfd} / \mathrm{Imfd}$. -20 to +22 dB . Complete with testleade and instructions. - Over-load protected 1969 model with every refinement. 84.7.8 (2/6). JUNIOR MODELL at $47 / 6$ (i/6) $1000 \Omega / V$ described in free list.
SOLDERING IRON. Slim Mod. British High speed, $8 \frac{1}{i n}$., all parts replaceable, fully guiranteed ior professional, radio and general D.I.X. use. 19/6 (1/-)
COLLARO 'O'. RO REplacements IP COLLARO O" RONETTE BF40LP; GARRARD GC2LP and GC8LP; ACOS GP65/67; $9 T A H C$, PHYLTPS AG3306, 3060 ($3043,3066,3301,3302,3304$) state whether long or short type. all at 13/6 (6d.)
SAPPHIRE all the above $7 / 6$ types only, also ACOS GP37 at $3 / 8$ each (6 d .). ACOS GP91 at 6/8 (6d.). No other topes at present, and no 78 rpm available in any type.
PICK-DP CARTRIDGES, all fitted styli and Standard Ettinga. Mono GP67/8, 18/6. Mono de Luxe GP91/2, 17/-. Stereo Compatible-Mono which also plays Stereo records monaurally with min. wear, GP91/SC, 19/6. Latest Stereo GP98, 23f-. Ceramic Stereo, top quality for expenaive outtits, GPPG4,
PP3 ELIMINATOA (A.C.) 17/6. (1/6) TWO STATION TRANS. INTER-COM. Excellent baby alarm. Instant, easy fitting with leads, plugs and battery. All you require 52/6 (3/-), TRANSISTORISED AMPLIIIERS, 3 watt, 9 V operation, $45 / 6$ (1/6); $7 \frac{1}{2}$ watt, 6 trans, 24 V operation, $67 / 6$ (2/6)
Extra High Torque MINI-MOTOR, $4 \frac{1}{2}$ to 12V, $1 \frac{1}{2} \times \frac{8}{8}$ in. $5 /-$ (9 d.) $.9,000$ r.p.m.
SUBSTITU'TION BOXES, Capacitance 24/9 (1/6), Resistance 32/6 (1/6). Both full range and complete. Full details in list.
TEST PRODS: Flexible, unbreakable 24" Red and Black leads, thin 4t" prods, $12{ }^{2 \prime}$ plugs
4/9 (9d). $850 \mathrm{ft} .8 / 9,7 \mathrm{in}$. 1200ft. 11/3. LONG PLAX 5in. $900 \mathrm{ft} .10 /-57 \mathrm{in} .1200 \mathrm{ft} .11 / 8,7 \mathrm{in}$. 1800 ft 18/- (1/3 reel). Still the finest quality and value obtainable
 " 60 " $20 / 3$: 8tick " 39 " $28 / 6$ (1/6 each type). Cream plastic hand type 7/6, or with "strut" stand, 8 ritch and 2 leads with 2.5 and 3.6 plugs $11 /$. Lapel (or hand) with clip $6 / 6$ (1/-), 25/-(1/6). DYNAMIC: Cream hand/table 14/- (1/-). MS10 50K $\Omega, 3+\times$ in. with Bage, Adaptor and Neck Cord $37 / 6$ (2/6). MS11, similar, but fixed on flexible Swan neck to switchfitted base $42 / 6$ (2/6). DM128 Oni-directional, $50 \mathrm{~K} / 600$ ohms imp, stand adaptor, very
high quality $61 \times 2 \times 1{ }^{1 *}$ * $25.9 .6(5 /-)$.
CARDIOID DYNAMIC OMNI-DIRECTIONAL: Two recently introduced highly successful mikes 'SQUARE' 20S, 25.10 .0 ' 'BALL"' type, 209, with buitt-in vol. control, switch $50 \mathrm{~K} / 600$ ohms lmp, 55.17 .6 (either type 5/-). Full detalle II list.
M1CROPHONE INSERTS: Diameter $1-75 \mathrm{Sin}$. or 0 -9in either size $5 / 6$ (6 G)
SPEAKERS: 12 in round, fitted Tweeter, $6 \mathrm{~W}, 3$ or 15Ω (state which), $35 / 6$ ($5 / 8$); 2 in 3Ω $3 / 6(1 /-) ; 6 \times 4$ heavy dnty $3018 / 6$ (3/6) or for stereo $32 / 6$ pair, post atc. paid; $8 \times 3 \mathrm{in}$. uhins, excellent, $5 / 6(1 /-)$. HEADPHONES High Res. 2000Ω ea. Earpiece 18/6 ($1 / 6$) Shis, extellent, $5 / 6$ ($1 /-$). HEADPHONES High Res. 2000Ω ea. Eerpiece 18/6 $1 / 6)$; Grystal $4 / 9$ (either 7d.)
AERIALS, Car Types: Telescopic, vandal proot, locks retracted, 2 keys and all ittings, 22/6 (2/6) Motar driven, 12v, 5 section, complete $£ 7.10 .0$ ($5 /-\mathrm{-}$).
FOR ALL PORTABLES end F.M. SETS. Telescopic 5 section $5 \frac{1}{2} 29 \mathrm{in}$. with swivel, 5/-- - -Section 5 h-3gin. noswivel, screw hole in base, 6/6. 10 -section $61-471 \mathrm{in}$., no swivel screw hole in base, 12/6. DISAPPEARING 8 section, swivel flxing assembly, $6 \frac{1}{2} / 33 i \mathrm{in} 10 /-$ New 6 gection $51 / 251218$, gerew hole in base, no swivel $4 /-$. ($1 /-2 l l$ sizes)
DPST 3/- DPDT 3/8. sllde types, Sub-min. DPDT $1 / 6$ each. Small DPD 2/8, BPDT 2/9 DPST 3/-. DPDT 3/8. Sllde types. Sub-min. DPDT $1 / 6$ each. Small DPDT 3 way, centice VIBRATORS: Fitmous makes only. 12 yoit 4 pin nons-synch $2 / 6$. 12 volt 7 pin synch $10 /$ 6 volt ${ }^{7}$ pin syneh $10 /$ - ($1 /$-each, all types).
MAINS NEON TESTER: Fly leads 2/- (7d.). Pocket screwdrivertype 3/6 (6d). PLUGS: Std. Jack. plastic body 2/3. screened 3/-. Sockets $1 / 6$ (all 7d.). VALVE HOLDERS: B7G or B9A, RLoulded Bd. (7d. up to 4; 1/-over 4). CONNECTING W1RE: 5 coils asstd. cols. each 5 yds. Nolid Core 2/6. Flexible 3/-. Super thin for transistor wiring etc. 3/- (Gd. all types, per 5 colls). PICK-UP WIRE: Twin Super thin Flex, Screened, Sheathed, 1/8yd. (6d. up to 6 yds., over 6 gds . post free). TWIN MIKE CABLE: $1 / 8$ Yd. BIEGLE MLKE CABLE: 80Ω, or flat 300Ω transparent polythene insulated, either 6 d . per yd. (all cables up to three yards 8d., each additional yard, 1d. extra).
R.F. INDICATOR, $\overline{5}$-Band, with meter antenna, monitoring crystal earpiece etc., $48 / 6$
(I/G). Detailu in list. with phono plug each end, 6 ft., 4/6; $12 \mathrm{ft} ., 7 / 9$. With phono plug one end, phono socket t other, 6 ft., 5/-, $12 \mathrm{ft} ., 8 / 6$ (9d. on any)
CAR RADIO: Splendid new All-British dish-mounting radio uging Mullard transistors and circuit. M. and L. wave. Separate speaker and baffie. Absolutely complete, for + or COPRENT ITST: Sent
URLENT LISI: Sent with all orders or free fors a.e. details of cable, croc., clips and leads, Continental din plugy for Grundig, Telefunken equipment, ete., dials, plugs and sockets, test prods, tape recorder, special tre recording accessories. Battery chargers, testequipment ents, tools, Veroboard etc., etc. This adviors, portable sets, more switches and othercomplied prior to Junt 30th.

FELSTEAD ELECTRONICS
 (PW22)

longley lane, gatley, cheadle, cheshire, sk8 4 ee
TERMS: Cawh with order only. No C.O.D. or caller service. Post, pscking and insurance charges are shown in brackets after all items. Regret orders under 5 /-plus carriage cannot be accepted, und a minimum charge of $1 /-$ is now made. Charges apply to G.B. and Eire only. Orerseas air or surface mail extra at cost, plus $3 / 2$ registration or insurance fee. only. Orerseas air or surface mall extra at cost, plus $3 / 2$ registi

M. \& B. RADIO

15a HUNSLET ROAD, LEEDS LS10 1 JQ
Telephone: 0532-35649
R210 RECEIVER. Modern 14 miniature valve receiver. $2-16 \mathrm{Mc} / \mathrm{s}$ in 7 bands each 50 in . film strip scale. $10 / 100 \mathrm{Kc} / \mathrm{s}$ xtal calibrator. BFO CW filter. Internal 24 V psu. Supplied c / w handbook and home-made mains psu. £30, carr. 25)-.
VHF MOBILE TX/RX. Miniature valve trans-receiver with 12 V transistor power unit. Double conversion receiver. Xtal controlled but easily converted to tuneable. High or low band models (2 or 4 metres). Please state which when ordering. Positive or negative earth. Supplied c/w circuit and notes. TESTED 99.10 .0 , carr. $27 / 6$.
TRANSISTORISED 2-METRE CONVERTERS. 2 RF stages. Various IF frequencies. Please state preference when ordering. £7.15.9, plus $5 /-\mathrm{pp}$
12 VOLT TRANSISTOR INVERTERS. Gives 240 V DC at 40 watts. Ideal for caravan fluorescent lighting. £6, plus $7 / 6 \mathrm{pp}$. Various other transistor inverters. Please send SAE for details.
RADIOTELEPHONE press to talk microphones. Used. $5 /-$, plus 2/pp.
Prang LOADED mobile whip base sections. Chrome finish Brand new. 6/6, plus $1 / 6 \mathrm{pp}$.
G2/6, plus $7 / 6$. Transistor amps in cabinet with speaker. Tested. G2/6, plus $7 / 6 \mathrm{pp}$.
GPO Telephones with dial, 17/6, plus 6/- pp. Modern style telephone 42/6, plus $6 /-\mathrm{pp}$.
QQV03/10 6/-tested. QQV06/40A 37/6 tested. 800piv 16 amps silicon diodes on heat sink, 6/-. BY128 2/6. $2 \times$ OC35s on heat sink, 10/-, OC35 on small heat sink $5 /-.1 /-\mathrm{pp}$.
STETHOSCOPE HEADSETS. Brand new, Ideal for stereo or mono, Low imp. 27/6, plus $3 / 6 \mathrm{pp}$.
${ }_{2}$-METRE TRANSISTOR P.A. £7.10.0.
Transistor amplifiers, modulators, mic pre-amps. VHF transmitters. Scopes. Aerials. Valves. Etc.
TELEMETER. A well finished cabinet containing lots of useful items for the constructor. Tape unit and head, 2 motors, speaker, auto and
 carriage.
STEREO CABINETS. A beautifully finshed polished wood cabinet supplied in original carton. NEW. $47 / 6$ plus $6 / 6$ carr.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GULLDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE bROCHURE to

ADDRESSn... Caps.
Please
9/69
BRTIISH
SCHOOL
ventilation holes, design on this point should be conservative. Thus go for a Vee smaller than 12 V , in fact as small as practically possible whilst still allowing for spreads. R1 may then be increased to ensure that at this current the $\mathrm{V}_{\text {ce }}$ selected is not exceeded. A zener current of $1-2 \mathrm{~mA}$ is satisfactory. It may be necessary to reduce R 3 when the lowest voltage at Tr 2 collector is considered (i.e. at say 45 mA load current). select R4 to take about 1 mA at the rated output voltage.

Other components will remain the same. For very low output voltages, the centre tap of the transformer may be employed to give full-wave rectification of 12 V r.m.s. with two diodes, in the normal manner.

CONSTRUCTION NOTES

The Veroboard layout for the circuit is shown in Fig. 3. For safety reasons, the copper strips are removed over the whole area in the close vicinity of the mains ideally all the appropriate section of strip removed with a razor blade. Apart from clearing the copper tracks here, only one other break is made in the tracks, this being at hole E12.

Resistors R1 and R2 are vertically mounted; resistors R3 and R4 horizontally mounted. Since the capacitors are rather bulky, they should be the last components to be mounted, after a thorough check of the rest of the circuit has been made. Do not overlook the jumper bar between R2 and R10.

The complete unit may be mounted in the smallest Eddystone diecast boxes size $2 \frac{3}{8} \times 4 \frac{3}{8} \times 1 \frac{1}{4}$ ins. but great

Fig. 3: The component layout on the Veroboard.
care must be taken to ensure that the box has plenty of ventilation holes and that, since mains is being applied to the unit, the insulation of the input is adequate. The box itseif should be earthed.

No mains switch is provided as in many applications this would not be required since when mounted in equipment, this switch would be remote from the box itself. If desired, there are miniature toggle switches which might be fitted near the output sockets.

Needless to say, every care should be taken to ensure correct circuitry and insulation before switching on since this is a mains unit.

OTHER NOTES

The screen contact of the transformer should be wired to the mains earth lead.
Note that the supply is not intended for use as a constant current generator in the limiting mode as prolonged running on the limiting slope means excessive transformer dissipation. The current limit is intended solely as a protective device.

PW GUIDE TO COMPONENTS

-continued from page 340
Great care is required when using thermocouples since the low voltage level requires sensitive sensing devices. Consequently they require calibration for a given length of lead and location and when used in remote positions special compensating cable is required.

Fig. 7: Vacuum v.h.f. thermocouple.
Glass encapsulated and indirectly heated thermocouples are used for v.h.f. power measurement with standard output voltages of 7 mV and $12-15 \mathrm{mV}$, and a typical device is shown in Fig. 7. Prices vary but for this application are between 20s. and 60s.
to be continued

CQ! CQ! CQ! CO! CO! CQ! CQ!

INFORMATION WANTED

. . . using the R1355 and indicator type 6 as a TV unit and circuits for both units. This idea was in radio magazines about 1949.-N. Page, 108 Haden Hill Road, Halesowen, Worcestershire.
circuit diagram of a Grundig radio type 2068 WE.-H. Jones, 41 Sundorne Crescent, Harlescott. Shrewsbury, Shropshire.
. . mods on the 19 set, especially the b.i.o., further bandspread and any method of increasing the TX range.-J. Yates. 6 Dufton Watk, Langley, Middleton, Nr. Manchester, Lancashire.
. the circuit, manual, or any details of the Bird electronic organ, 1959 model, C7 type and the Neosonic tone generator.-S. F. White, 87 Dyas Avenue, Birmingham, 22A.
.. mods to the 19 set Mk 3.-F. Shepherd, 16 Frames Road, Purbrook, Portsmouth, Hampshire.
. hire or borrow the manufacturer's instruction book for Cossor oscilloscope model 339A.-W. Chew, 26 Stallards, Pixie Lane, Braunton, Devon.
. . . circuit or handbook-buy or loan-for Jason Mercury 2.-A. F. Sephton, 16 Bloemfontein Avenue, Shepherd's Bush, London, W.12.
. . . information on re-alignment of Admiralty B40 receiver. Also manual.-A. Parry, Fron Deg, Pistyll, Nr. Pwllheli, Caerns., North Waies.
circuits and information on modlfying the R1155.-W. Wallingford, 1550 Stratford Road, Hall Green, Birmingham, 28
\ldots gen on the R1475 s.w. receiver and/or the plug units that go with it .-C. Townsend, 77 Yews Hill Road, Huddersfield, Yorkshire.
... details of any mods. to a R1155 set or any other information about this set.B. Dunn, 8 Lancaster Drive, Clayton-le-Moors, Accrington, Lancashire.
the valve line-up and size of mains dropper in 4 -valve "Champion" m.w. Rx.D. Pibworth, 333 The Meadway, Tilehurst, Reading, RG3 4NU.

APPARATUS REQUIRED

. . . line socket for a B28 receiver (W 2835 A) also information on this receiver. C. A. Downie, 82 Green Strbet, Eastbourne, Sussex.
... Hivac midget 4 and 5 -pin valveholders also lin. c.r.t.-J. Bubez, 2 Pen-y-Wain Place, Roath, Cardiff, Wales.
ex-surplus 160 m Rx. Will swop for 80 m Command receiver and p.s.u.-E Symonds, 5 John Street, City Road, Cambridge, CB1 1DT.
. an inexpensive Garrard battery tape deck,-C. Drewe, 43 Bentinck Avenue, South Shore Blackpool, Lancashire.
... head for Walter 101 tape recorder.-J. Barningham, 6 Oxford Meadow, Sibac HedIngham, Halstead, Essex.

INDUCTORS FOR THE

 PROGRESSIVE SUPERHETTHIS receiver was described in the March 1969 issue of Practical Wireless and since then some difficulty has arisen in obtaining the specified inductors. Details for fitting alternatives are given here.

IF Stages

Denco Maxi-Q IFT11 $465 \mathrm{kc} / \mathrm{s}$ intermediate frequency transformers are suitable for all positions. Pin connections remain the same: 1-HT positive; 3-anode; 6-grid or diode; 4-a.v.c. or diode load. These i.f.t.s have the same base size and fixing.

The address is Denco (Clacton) Ltd., 357/9 Old Road, Clacton-on-Sea, Essex.

Oscillator Coils

These may be Denco "Red" ($465 \mathrm{kc} / \mathrm{s}$) which have single hole fixing as for the original coils. Ranges are numbered from the l.f. band, and correct padders and pin connections are:

Range 1 (l.w.)	110 pF	Pin 5
Range 2 (m.w.)	350 pF	Pin 2
Range 3 (s.w.)	$1,100 \mathrm{pF}$	Pin 3
Range 4 (s.w.)	$3,000 \mathrm{pF}$	Pin 4
Range 5 (s.w.)	None	Pin 6

With the highest frequency band Range 5, pin 6 is wired directly to chassis, no padder being used.

Other pin connections for these coils are: $1-\mathrm{C} 3$; $8-\mathrm{C} 4 ; 9$-chassis. With Range 1 only, pin 7 is taken to C3 and pin 1 is unused.

Aerial and Mixer Coils

For the receiver with r.f. stage, Denco "Blue" coils are suitable for the aerial circuit and "Yellow" coils for mixer grid. If the receiver is first built without the r.f. stage, but this is to be added later, use "Yellow" coils for the mixer grid (aerial). If the r.f. stage is not to be added "Blue" coils can be fitted here. Ranges and approximate band coverage is as follows:

Range 1 (l.w.)	$150-500 \mathrm{kc}$.	$2,000-750 \mathrm{~m}$.
Range 2 (m.w.)	$515-1,545 \mathrm{kc}$.	$580-194 \mathrm{~m}$.
Range 3 (s.w.)	$1 \cdot 67-5 \cdot 3 \mathrm{Mc}$.	$180-57 \mathrm{~m}$.
Range 4 (s.w.)	$5 \cdot 0-15 \mathrm{Mc}$.	$60-20 \mathrm{~m}$.
Range 5 (s.w.)	$10 \cdot 5-31 \cdot 5 \mathrm{Mc}$.	$28-9 \cdot 5 \mathrm{~m}$.

Pin connections are: Blue, 8-aerial; 1 and 9chassis; 6-tuning capacitor. Yellow, 9-r.f. stage anode; 8-h.t. positive; 1-chassis; 6-mixer grid.

Constructional Points

The Denco coils are slightly larger in diameter than those originally listed, but can be accommodated in the coil box made as in Fig. 3, p.830, March 1969 issue.
Connections to Range 5 and Range 4 in particular, including padder and chassis returns, must be as short as possible, so these coils are sited close to the wavechange switch.

Trimming

The original coils have trimmers incorporated. The Denco coils are without trimmers. No trimmers are needed in the aerial section because a panel trimmer is fitted.

The easiest way to secure maximum efficiency is to place a single beehive or high-stability trimmer across the oscillator section of the ganged capacitor, and to fit a 50 pF variable trimmer for mixer grid. The latter can be operated through an extension shaft so that it occupies the mixer grid section of the coil box. Then no pre-sets are necessary, and no holes for adjusting them are needed in the coil box cover. The mixer grid trimmer is peaked if necessary with very weak signals, in the same manner as the aerial trimmer.
The coil cores are adjusted by threaded rods which project above the chassis, and all normally need unscrewing somewhat as they are fully screwed in for packing. Nuts will lozk the coil cores, alignment being as described.
The address of the supplier of the case, chassis, and side brackets is H. L. Smith \& Co. Ltd., 287/9 Edgware Road, London, W2.

PRACTICAL TELEVISION in the SEPTEMBER issue

* CHIPS WITH EVERYTHING

Chips-trade slang for integrated circuits-are now starting to be used in TV receivers. Their increased use over the next few years is going to change TV receiver design to a far greater extent than any previous changes brought about by technological advance. In the September issue we shall be outlining what this will involve-how the use of integrated circuits will change TV receiver design and what effects this will have on performance and servicing. We shall also be outlining the basic properties of integrated circuits, their capabilities and the problems involved in their use in TV receivers.

TRANSISTOR IF STAGES

The servicing techniques needed in the i.f sections of receivers have changed with the increased number of hybrid chassis in use. In this fault-finding feature, transistorised i.f. circuits are examined in detail and the servicing problems outlined.

* TV NEWS

Of all TV features the News presents some of the most difficult production problems. In the September issue we take a look at the methods employed in bringing up-to-the-minute News to the TV screen and the organisations that make this possible.

\star TRANSISTORISED TIMEBASES

The line output stage with its high peak voltages is one of the most difficult to transistorise. In the second part of our Transistors in Timebases series the problems will be described and several successful designs that have overcome them illustrated.

PLUS ALL THE REGULAR FEATURES on sale

DELUXE PAFAFEAS
trated. To fit standard $75 /-$ playet or autochanger $75 /-$ Ready made and 3 WATM is a 2-stage unit using a triode pentode conden coupled valve giving
3 watts output into 3 ohm loudspeaker. Tone and volume controls mounted on chassis with knobs. Supplied with
loudgpeaker and valve UCL82. Frequen
$50-12,000 \mathrm{eps}$. $50-12,000$ eps.

Sensitivity 200 mV . $59 / 6$ SINGLE PLAYERS MONO EMI Junior Mains 22.19 .6 | Garrard SRP22 |
| :--- |
| Garrard SP25 MkII \& 13.19 .8 |

AUTOCHANGERS MONO AUTOCHANGERS MONO BSRSuperslim UA25 \& 6.19 .6 MA70 Transcrip'n .e13.19.6

All fitted LP/78 stylii and pickup cartridge
Stereo/mono pickup 20/-extra except 3000 .
GARRARD TEAKWOOD BASE WB. 1. Read out out for mounting 1025. 3000, SP25. AT60, ete. 65/= GARRARD PERSPEX COVER SPC. 1 Ior WB. 1
E.M.I. PICK-UP ARM Complete vith mono cartridge 29/6 CRYSTAL MIKE INSERTS $1 \frac{1}{2}$ in. die. ${ }^{6 / 6 ;}$; ACOS 1in. dia. $8 / 6$. BMS, 1 in. dia. $9 / 6$
QUALITY RIBBON MIKE WITH GOOSENECK 811.11 .0 . PORTABLE TRANSISTOR AMPLIFIER PLUS DYNAMIC MICROPHONE
A self-contained fully portable mini p.a. system.
Many uses - ideal for Many uses - ideal for
Parties, or as a Baby Parties, or as a Baby
Alarm, Intercom, Telephone or Record Player Amplifier, etc Attractive rexiue overed cabin, size $12 \times 9 \times 4 i n$, with powertul 7×4 in. speaker and four transistor one watt battery. Brand new in Makeri' carton with full makers'
carton with full makers'
guarantee. Worle famous make. Only $90 /-\begin{gathered}\text { Post } \\ \text { Free }\end{gathered}$
WEYRAD P50-TRANSISTOH COILS RA2W Bin. Ferrite Aerial
with oar aerial ooil
12/t $\left\{\begin{array}{l}\text { Spare Cores } \\ \text { Driver Trans }\end{array}\right.$
with oar aerial ooil... $12 / 6$ Driver Trans LFDTA 1.F. P50/2CC 470 $70 \mathrm{kc} / \mathrm{s}$

$5 / 4$	Printed Circuit. PCA1			
$5 / 7$	J.B. Taning Gane		5/7	J.B. Taning Ggn!
:---	:---			
6/-	Weyrad Booilet	Telescopio Chrome Agrials bin, extends to 23in. $5 /$ Ferrite Rods Only. 8 x $3 \mathrm{in} .4 /-58$ x 8 in. $5 /-$. VOLUME CONTROLS		

Long spindles. Midget Size
5 K , ohms to 2 Meg . LOG or
5K, ohms to 2 Meg. LOG or BRITISH AERIALITE

WIRE-WOUND	3W	POTS.	WIRE-WOUND
Knorled	knob	T.V. Type.	STANDARD SIZE POTS.

EDGE CONNECTORS 16 way $5 /-24$ way $7 / 6$.
PINS 36 per paoket $3 / 4$. FACE CUTTERS $/ 6$.
8.R.B.P. Board 0.15 MATRIX 21 in. wide 6d. per lin. 3 in wide θ d. per lin.; $5 i n$. wide $1 /-$ per lin. (up to 17 in .)
8.R.R.P. undrilled $1 / 1$ in. Board. 10 gin. $3 /-$.
BLANK ALUMIINIUM CHASSIS. 18 s.w.E. 2 ing. sides $7 \times 4 i n, 5 / 6 ; 8 \times 7$ in., 6/6; $11 \times 3 i n .6 / 6 ; 11$.7in. $7 / 6$;
 O MAX CHASSIS CUTTER

Complete: a die, a punoh, an Allen sorew and kep

 WAVE-CHANGE SWITCHES WITH LONG SPINDLES.
2 p. 2-way, or 2 p. 6-way, or 3 p. 4 -way 4/6 esoh.
1 p .18 -way, or 4 p .2 -way, or 4 p .3 -way. $4 / \mathrm{B}$ each
 Waveohange
4 p. 3 -way, 6 . 2 -wag, 1 wafer $12-, 2$ wafer $13 /-, 3$ wafer $24 /-$.
4 wafer $30 /-, 5$ wafer $36 /-$ Estra wafers $6 /-$ each wafer up 4 wafer 30/-, 5 wafer 36/-. Extra waiers 6/- each wafer up to 5 max.
TOGGLE
TOGGLE SWITCHES, sp. 2/6; sp. dt. 3/6; dp. 3/6; dp dt. $4 / 6$.
ALL PURPOSE HEADPHONES H.R. HRADPHONES 2000 ohms Super Sensitive LOW RESISTANCE HEADPHONFS $8-5$ ohms.
DE LUE PADDED STEREO PHONGS 8 ohms.
'ThE INSTANT"
BULK TAPE
ERASER AND
RECORDING HEAD
DEMAGNETISER

BARGAIN STEREO/MONO SYSTEM
Attractive Slim PLayEr cabiner with b.s.r. STEREO
 NEWTUBULAR ELECTROLYTICS CAN TYPES
$2 / 350 \mathrm{~V}$
$2 / 350$
$4 / 350$

4/500V | . $2 / 3$ | $250 / 25 \mathrm{~V}$ | .. $2 /-$ |
| :--- | :--- | :--- | $8 / 600 \mathrm{~V}$ $6 / 600 \mathrm{~V}$

$\begin{array}{ll}8 / 450 \mathrm{~V} & \cdots \\ 18 / 450 \mathrm{~V}\end{array}$
$18 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V}$
$50 / 50 \mathrm{~V}$

 \begin{tabular}{l|l}
$2 / 8$ \& 1

$4 / 8$ \& 1

$3 / 8$ \& 3

$18+16 / 450 \mathrm{~V}$ \& $4 / 3$ \& $60+100 / 350 \mathrm{~V}$ \& $11 / 8$

$32+32 / 350 \mathrm{~V}$ \& $4 / 6$ \& $32+32+32 / 350 \mathrm{~V}$ \& $8 / 6$
\end{tabular} SUB.MIN. ELECTROLYTICS. $1,2,4,5,8,18,25,30,50,100$, CERAMIC, 500 V IpF to $0.01 \mathrm{mF}, 9 \mathrm{~d}$.

PAPER 350V-0.1 $9 \mathrm{~d} ; 0.52 / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3 / \mathrm{F}$. 5007.0 .001 to $0.059 \mathrm{~d} ; 0 \cdot 11 /-\mathrm{O} 0.251 / 6 ; 0.53 /-$
$1.000 \mathrm{~V}-0.001,0 \cdot 0002,0.0047,0.01,0 \cdot 02,1 / 6 ; 0 \cdot 047,0-1,2 / 6$. SILVER MICA. Close toleranoe $1 \% \%$. $5-500 \mathrm{pFI}$ I-; $560-2,200 \mathrm{pF}$ $2 /-: 2,700-5.600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0 \cdot 01$, midd $8 /-$ each.
TWIN GANG. " $0-0$ " $208 \mathrm{pF}+176 \mathrm{pF}$. $10 / 6 ; 365 \mathrm{p}$.
 ture $10 /-: 500 \mathrm{pF}$ stendard with trimmers. $12 / \mathrm{t}_{\text {; }} 500 \mathrm{pF}$ midget less trimmers. 7/6:500pF slow motion, standard 9/-; small 3-Eang 500pF $19 / 8$. Single "O" $385 \mathrm{pF} 7 / 6$. Twin $10 / 6$.
SHORT WAVE. Singie $10 \mathrm{pF}, 25 \mathrm{pF} .50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, SHORT WAVE. Singie $10 \mathrm{pF}, 25 \mathrm{pF}$. $50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ TUNING Solid aieleatric
TRIMMERS. Compression oeramic $500 \mathrm{pF}, 7 /$ - each. 100 pF . $160 \mathrm{pF}, 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, ~ 750 \mathrm{pF}, 1000 \mathrm{pF}, 2 / 6$. CONTACT COOLED $\frac{1}{3}$ wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 8 ;$ BY100 10/-. Full Wave Bridge $75 \mathrm{~mA} 10 /-\mathrm{F}_{1} 150 \mathrm{~mA} 19 / 6$ - TV rects: 10/-. NEON PANEL INDICATORS. 250\%. AC/DC. $3 / 6$. RESISTORS. Preferred values, 10 ohms to 10 meg .
 Ditto $5{ }^{\circ} \mathrm{F}$. Preferred values 10 ohms to 22 meg., 9 d .
5 watt 0.5 to 8.2 ohm 3 w .
$\left.\begin{array}{l}10 \text { watt } \\ 15 \text { watt }\end{array}\right\} \quad \begin{aligned} & \text { WIRE-WOUND RESISTORS } \\ & 10 \text { ohms to } 8,800 \text { ohms }\end{aligned}$ 15 watt $10 \mathrm{~K}, 15 \mathrm{Khms}, 20 \mathrm{~K}, 25 \mathrm{~K}, 88 \mathrm{KK} .10 \mathrm{~W} .3 /-$
FULL WAVE BRIDGE OHARGER RECTIFIERS:
6 or 12q. outputs 1t amp. 8/9; 2a., I1/3; 4a., 17/6.
CHARGER TRANSFORMERS; P. \& P. 5/-. Input 200/2507. lor 6 or 12v.. 1 ! araps., $17 / 6$; 2 amps., $21 /-; 4$ amps., $30 /-$ BRAND NEW TRANSISTORS 6/- each OC71, OC7A. OCB1, OC44. OC45, OC171, OC170, AF117 MAT 100. 7/9: MAT 101, 8/8: MAT 120, 7/9; MAT 121, 8/6. R.PAPANCO TRANSISTOR TRANSFORMERS

TT45. Push Pull Drive, 9:1 CT, 6/-. TT46 Output, CT8:1, 6/TT23/A PAIR 10 watt Amp. Transformers and circuit $35 /-$ -
TRANSISTOR MAINS POWER PACKS FULL WAVE 9 volt $500 \mathrm{~mA} \mathrm{Size} 4!\times 24 \times 2 \mathrm{in}$. Outpot terminals. $\quad 49 / 6$ Hati Wave 9 volt 50 mA Size $2 \mathrm{t} \times 1 \times 1 \mathrm{in}$. Snap terminals $32 / 6$. 9 volt 500 mA TRANSFORMER ONLY. $2 \frac{1}{4} \times 1 \frac{3}{3} \times 1 \frac{1}{2} \mathrm{in} .10 / 8$. BENCK POWER PACK 230-250v. A.C. Mains $\mathbf{f 7}$
with Meter. Supplies $6-\hat{\theta}-12 \mathrm{v}$. 1 imp D.c.

MAINS TRANSFORMERS PRst

250-0-250 50 mA . $\quad 5 /$ each $250-0.25050 \mathrm{~mA} .6 .3 \mathrm{v} .2 \mathrm{~L}$. Centre tapped
$250-0-25080 \mathrm{~mA} .6 .3 \mathrm{v} .3 .5 \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$. or 5 v .2 a.

 MIDGET 220v. 45 mA, , $8.3 \mathrm{v} .2 \mathrm{a} .22 \div 2 \frac{1}{4}-2 \mathrm{in}$. HEATER TRANS. $6.3 \mathrm{v}, 1 \frac{1}{3} \mathrm{~B}, 8 / 6 ; 6.3 \mathrm{v}, 4 \mathrm{a} .$.
Ditto tapped seo. $1.4 \mathrm{v}, 2,2,5,8.3 \mathrm{v}, 1 \frac{1}{2} \mathrm{amp}$ Ditta tapped seo. 1.4v., 2. 3, 4. 5. B.3v, $1 \frac{1}{2}$ amp....
GENERAL PURFOSE LOW VOLTAGE, Outputs $\mathbf{3}$,
 3 amp., $0-120$ and $0-18 \mathrm{p}$
AUTO TRASSFCRMER AUTO TRAXSFORMERS $0-115-280 \mathrm{v}$. Input
$60 \mathrm{w} .18 / 6 ; 150 \mathrm{w} .30 /=500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .195 /-\mathrm{c}$ COAXIAL PLUG $1 / 6$. PANEL SOCKETS 1/3. LINE 2/-. OUTLET BOXES. SURFAGE OR FLUSH $4 / 6$.
BALANCED TWIN FEEDERS $1 /$ - yard 80 or 300 ohms. JACE SOCKEIS Std. open-circuit 2/8, closed circuit 4/6. JMCK PLUGS Std. Chrome $3 /-: 3 \cdot 5 \mathrm{~mm}$ Chrome $2 / 8$ DIN SOCKETS Chassis 3 -pin $1 / 6 ; 5-$ pin $2 /$-. Lead $3-$ pin $3 / 6$; 5 -pin $5 /-$ DIN PLUGS 3-pin $3 / 6$; 5 -pin $5 /$

T.S.L. LOUDSPEAKER CROSSOVER HLP2
2 way crossover for 8 or 15 ohm speakers and tweeters. 3 phono input/output sockets. Made to sell at 42/-. OUR PRIOE 22/6. Post 2/6.

Tape Spools 2/6. Tape Splioer 5/-. Leader Tape 4/6.
Reuter Tape Heads for Collaro modeIs 2 traok 21 . Reuter Tape Heads for Collaro models 2 traok $21 /-$ pair.

MINI-MODULE LOUDSPEAKER KIT 10 WATt 55/- CARR. 5/-

Triple speaker system combining on ready cut baffle. and Trible loudspeskers and crossover condenser. The heary duty 5 in. Bass Wooter unit has a low resonanae cone. The Mid-Range unit is specially designed to add drive to the middle register and the tweeter recreates the top end of the musical spectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm .
TEAK VENEERED ROOKSHELF ENCLOSURE
$16 \times 10 \times 9 \mathrm{in}$. Specially

BAKER 12in. "'SUPERB"' Suitable for all Hi-Fi Systems. Provides rich clear reproduction of the deapest bass and remarkable entrency in the upper
register. Response $20-1 \%, 000$ eps. "Balser" double cone
with special "Ferroba's ceramic magnet. Flux density 16,500 gauss. Bass resonance 22-28 cps. 20 watts rating. Voice coil 8 ohms or 15 ohms.

f15 $\underset{\text { Free }}{\text { Post }}$

48 page Enclosure
Manual $5 / 9$ post paid
LOUDSPEAKER CABINET

WADDING 18in, wile E/6 it.
BAKER "GROUP SOUND" SPEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50'

ALL MODELS "BAKER SPEAKERS" IN STOCK Goodraens Tweeter 3 in. $3 \mathrm{ohm} 35 /-$ E.M.I. 2 in. 8 ohm 17/6. Horn Tweeters $2-18 \mathrm{kc} / \mathrm{s}$, 10 W 15 ohm $29 / 6$ 17/6 each; $6=$ in $22 / 6 ; 8.3$ OHMS. 23 in. 3 in .4 in . $5 \mathrm{in}, 7$, 4 in.
 Cone $13 \frac{1}{2}<8$ in.. 8 or 15 ohm models, $45 /$,, or with twin tweeters, erossover and ceramic magnet. $79 / 6$.
$15 / 6$ EACH $\quad 3 \mathrm{ohm} .2$ iim: $6 \times 4 \mathrm{in} ; 80 \mathrm{obm} .24 \mathrm{in}, 23 \mathrm{in}$;
 8in. LOUDSPEAKER UNITS 3 ohm $21 / 6,15$ ohm 30/-; Sin. De LuTe deramic 3 ohm $45 /-$; 15 ohm $50 /-$ -
Bin.
LOUDSPEAKER TWIN CONE
$30 h m$
$35 /-$
5in. WOOFER. 8 watts max. 20-10.000 cps. 8 or 15 ohm 39/6. SPEAKER COVERING MATERIALS. Samples large S. A E

ALL EAGLE PRODUCTS

SUPPLIED AT LOWEST PRICES

BARGAIN AM TUNER. Medium Wavg.
Transistor Superhet. Yerrite gerial, 9 polt. $\mathbf{7 9 / 6}$ BARGAIN DE LUXE TAPE SPLICER Cuts, $17 / 6$ BARGAIN 4 OHANNEL TRANSISTOR MIXER. Add musical hirhlights and sound efteots to recordings.
Will mix Miorophone. reoords, tape and tuner
$59 / 6$ with separate oontrols into single outpat. 9 volt. $59 / 6$ BARGAIN FM TUNER 88-108 MC/s Six Transistor. Ready built. Printed Circuit. Calibrated slide dial f6.19,6.
tuning. Size $6 \times 4 \times 2 \frac{1}{2}$ in. 9 volt.
BARGANN 3 WATT AMPLIFLER. 4 Transistor
69/6

\star RADIO BOOKS \star (Postage 9d.)

Practical Transistor Reberyers
Praotical Stereo Handbook
Supersensitive Trapsistor Poeset Radio
Gigh Fidelity Spenker Enciosuree and Pians Radio Valve Guide, Books 1, 2, 3; or 4 ea. $5 /$ No. 5 aa.
T.V. Fault Findin $405 / 625$ lines Shortwave Transistor Receirers
Transistor Communication Sets
Modern Transistor Cireults Ior Beginners
Sub-Miniature Transistor Reocivers
Wireless WorlibRadio Va!re Data
At a glenoe valre equivalents.
P.A.L. Colour T.V. by Multard.
Receive Forsigs T.V. by simple modifications
Transistor Circuits Radio Controlled Models
MANUFACTURERS SURPLUS! Tape Recorder
Cabinet. Grey/Red or Grey 2-Tone. Reaine covered. Size $15 \times 12 \times 5$ in.
POCKET MOVING COIL MULTIMETER Post free $-1,000$ AC./DC. ohms 0 to 100 k , eto 49/6 SUPERIOR MOVING COIL MULTIMETER -2-600v.D.C. 20,000 ohms per volt, $0-1,000$ v. A.C 99/6
hms 0 to 6 mer. 50 Microamps (Full list Mcters S.A.E.)
BRAND NEW QUALITY
EXTENSION LOUDSPEAKER Handsome plastic cabinet. 20ft. lead and adaptors. For sny radio, intercom,

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers. starts on 3rd September 1969.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.

The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' O ' Level, Senior Cambridge or equivalent in Mathematics and English.

	T
222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEXPHONE: SOUTHEND (0702) 46344	
heturn of the unbeatable p.i. Pak. NOW GREATER VALUE THAN EVER	Transistorg Price
	AC126 $2 / 6$
	AC127 ${ }^{\text {ACl76 }}$ 2/6
nents, approx. 170. We guarantee at least 30 really high	AD149
quality factory marked Translstors PNP and NPN, and a	ASY29 $5 /-$
	BCl07-8-9....... $4 / 6$
panels. Identification chart supplied to give some	BC171 BC172
information on the transistors.	
PLEASE ASK FOR PAK P.I. ONLY 10/-2/-P \& P on this Pak.	Oc22 OC23
	OC25
Pak No. NEW, UNHARKED, UNTESTED PAKS	OC28............. 10 -
B78 12 Integrated circuits, Mixed types, $10 /-$ data supplied with orders.	
880 80 $\begin{aligned} & \text { Duai Transistors, sil } \\ & \text { Matched output pairs. }\end{aligned}$	0C45 $2 / 6$
	OC71........... $2 / 6$
	0¢839.......... ${ }^{2 / 6}$
$383200 \begin{aligned} & \text { Trans. manufacturer's rejects all } \\ & \text { types NPN, PNP, Sil. and Germ. }\end{aligned} 10 /-$	$0 \mathrm{OC201}$
	0CP71........... 101 -
NEW, TESTED AND MAREED PAKS	2N4285 - $8 / 6$
$379 \quad 4$ IN4007 Silicon Diodes, $100010 /-$	2N $48868 ~$ 2N4287 2N
	2N4288 $3 / 6$
$38110 \begin{aligned} & \text { Reed Switches, mixed types } \\ & \text { large and small }\end{aligned} 10 /$	2N4289........ ${ }_{\text {3/6 }}$
B99 200 Capacitors, Electrolytics, paper, silver mica, etc. Post and packing, this Pak 2/6.	2N4292......... . $3 / 6$
	2N3055 15 1-
	2803

* ALL OUR TESTED SGMICONDUETORS HAVEA WRITLEA GUARANTEE \star Send for our FREE lists and catalogue of all our products. Check your own equivalent with our free substitution chart.

NO CONNECTION WITH ANY OTHER-FIRM MINIMUM ORDER 10/-: OASH WITH ORDER PLEASE, add $1 /$ - post and packing. OVERSEAS ADD EXTRA FOR AIRMAIL

[^6]
MONTHLY NEWS FOR DX LISTENERS

THE month of August seems to be the month when all or most of the DX-ers pack up and go on holiday. Many stay in the British Isles, some go abroad. The ones that travel into Europe want to visit the Radio station in that country. The best way to assure an interesting tour of the offices, studios and transmitter building is to write to the station well in advance of departure from this country and put down dates you would like to visit that station, don't just go over and drive up to the station one afternoon and expect them to welcome you with open arms and show you around!

I must thank all readers of this column who have written in so far over my comments in the June issue, they have included some very good points and some very good logs which will be included under our "Heard and Noted" section which now follows.

HEARD and NOTED

Mr. Ray Read has certainly been having a right DX session in Moninouth, Wales, and heard these Latin American stations at fair to good strength between 03300400, 4,800 R. Yaracuy, 4,890 R. Diffusora Venezuela; 4,900 R. Juventad, 4,970 R. Rumbus, 4,980 Ecos del Torbes, 5,020 R. Nacional, $5,030 R$. Continente, all in Venezuela and Ecos del Torbes has been heard as late as 0800 . From Columbia he heard Radio Santa Fe on 4,965, R. Nacional on 4,955 and R. Sutalenza on 5,075 and 5,095 . Another good \log has come in from Vaughan P. Smith of Banbury, Oxon. Voice of Free China on 9,765 at 1715-1745 SINPO 33242, from Taipei, Formosa. Radio Diffusion Television Algerienne is giving good results with SINPO 44433 on 11,835 from 1700-2400. Radio Amman, Jordan, gives the best signals round about 1500 on 9,560 with SINPO 33333.

The Voice of Vietnam at Hanoi is being heard regularly on 15,018 with SINPO 45343 up until 2030 in Vietnamese, French and English after 1600.

Now from "Heard and Noted" here are some new summer schedule details just received direct from the stations.

EUROPE

Sweden: Radio Sweden, Stockholm is now on the following schedule for its English transmissions. From $1100-1130$ on 15,315 and 9,625 ; 1230-1 300 on 21,690 and 15,105 . $1400-1430$ on 21,585 and 15,$315 ; 1600-1630$ on 21,585 and 15,315; 1900-1930 on 15,240 and 11,860; 2045-2115 on 11,705 and 6,065; 2245-2315 on 15,155 and 11,705;0030-0100 on 11,950;0200-0230 on 11,950; $0330-0400$ on 11,705 and 0515-0545 on 17,840.

CARIBBEAN AREA

Bonaire: Trans World Radio has dropped its transmission to Europe from 2000-2215 for the present, but they hope to resume this service in the future.

THE BROADCAST BANDS Christopher Danpure

NORTH AMERICA

Canada: Radio Canada, Montreal is now on their Summer Service, here is the latest schedule. 0715-0800 on 11,765 and 9,625; 0830-0930 on 9,625 and 5,970; $1100-1212$ on 17,820, 15,325 and 11,720; 1217-1313 on $15,325,11,720$ and 9,$625 ; 1315-1343$ on $17,820,15,325$ and 11,$720 ; 1345-1830$ on $21,595,17,820$ and 15,325 ; 1832-2152 on $21,595,17,820$ and 15,320; 2200-2250 on $17,720,15,190$ and 11,$720 ; 2300-0045$ on $17,720,15,190$ and 9,$625 ; 0100-040015,190,11,720$ and 9,$625 ; 0400-$ 0555 on 11,720 and 9,625 ; $0555-0630$ on 11,765 and 9,$625 ; 0631-0706$ on 11,720 and 9,625.

PACIFIC AREA

New Zealand: Radio New Zealand is now on its Winter schedule. From 1700-1945 to the Pacific Isles on 9,520 and 6,$080 ; 2000-2145$ to Australia and 2000-2400 to Pacific Isles on 15,110 and 11,780; 22002400 to Australia on 15,280. From 0015-0545 to Australia on 15,110 and to the Pacific Isles on 15,280; $0600-0800$ daily to the Pacific Isles on 9,540 and 6,080; $0800-0845$ weekdays only to the Pacific Isles on 9,540 and 6,$080 ; 0800-0845$ on Sundays to the Pacific Isles on 9,540 only. On Sundays from 0815-0845 there is a special transmission to the Antarctic on 6,080 . Finally from 0900-1145 there is a Daily Service to Australia on 9,520 and 6,080 .
Any of our readers who are good writers may be interested in writing a short talk for Radio New Zealand as part of their 21 st anniversary they are asking listeners to write a talk of up to 400 words about New Zealand, a talk which might be broadcast. If any of you are interested write in to me immediately for details as the closing date is the 30th August 1969.

ASIA

Israel: Kol Israel has added a new frequency and transmission to its summer schedule. Now from 2015 2044 to Africa on 9,009 and to Europe on 9,725 and 9,625; 2045-2100 on 9,725, 9,625 and 9,009 to Europe. That was the new schedule for the evening English transmission. There is also a test transmission daily to North America in English from 0400-0415.

Japan: Radio Japan now transmits to Europe daily from 0645-0845 on 21,535 and 17,825 and 1930-2100 on 15,195 and 11,960. The English programmes are heard daily from 0800-0830 and 2030-2100.

Due to various problems which arose at the last minute this column could not appear last month, so I hope that this month's column will make up for that. Please note that on September 7th stations will change to their Autumn or Spring schedules, so information in this column will be liable to alteration from that date onwards. Until next month good listening and 73s.

THE AMATEUR BANDS David Gibson, G3JDG

IT'S been a hard month for the DX enthusiasts. Those goodies have been a bit harder to come by, mainly because conditions were so variable. Going without sleep and meals allowed the really keen types to log the world, but for the less fanatical it's been a case of listening whenever possible and hoping that a nice hole would appear from which our undernourished logs could gain a little sustenance.

Owls and somnambulists (St John's probably) have had quite a time on twenty which has been opening up in the evenings and bubbling away happily, often until long past breakfast time. Generally though, it's been rather unreliable and sometimes more a matter of luck that one managed to listen at the right time.

Similar remarks apply to fifteen which has varied from remarkably good to just plain 'orrible. Oceana has been noticeably absent most of the time while very short skip conditions have had fun with the uninitiated.

If you find the summer months rather heavy going, why not try and plot yourself some propagation maps which you can then compare with those you make next summer? Log all the stations you can hear with as accurate a signal report as you can manage. Log the time too, and by this means you can make up a map of conditions. The final map can take any form you like. You might note the percentage or numbers of stations with, say, reponts of $5 \& 7$ (or better), or you might compare signals from one Continent with those from another.

This is quite a serious task and requires vigilance and concentration. You will need to listen to the QSO in order to hear not only the QTH, but the reports exchanged (compare these with your own report for the stations involved) and you will need to know the power the stations are using. Go on, forget the mini-skirts just this once and become a proper little boffin.

As most readers are aware, these seasonal variations are mainly due to the state of the ionosphere. Interest in the ionosphere is on the increase and enthusiasts will be pleased to hear that a great deal of research is going on. One of the latest methods is to use intensely powerful radar beams to measure the electron density at different heights. I don't suppose this will make the DX any easier to hear, but it may well explain, when all the results are sorted out, why and how the bands do what they do when they do-if you switch on and hear nothing, at least you'll understand why!

LOW HAPPENINGS

Stand smartly to attention with headphones on backwards, we are going to salute the brave few who dared QRX on 7 MHz . Persistence, patience plus Palmer, D. Palmer of Lancashire, to be precise. This combination plus a modified 19 set and a 33 ft . ground plane at 20 ft . raised this lot on 7 MHz s.s.b. - CE3FRR, CN8AW, CP8EN, HPIJC, IS1DMN, OY2A, OY2X, PY1NBF, PY2DL,

PY4ABH, PY6VZ, PY7ARJ, TF3TF, TF5TP, UA9EU, UV9KAG, VP9MI, YV1IBI, ZC4HS, ZP3AB, ZP4MO, 4X4UF, 9H1BL, 9M2DQ. Why don't I hear things like that on 7 ?

Alan Mercer (Lancashire), 9-transistor Ferguson and 71 ft . end fed also reckons that 7 is worth a listen. Alạn hooked-BY1AQ, EA4JK, F6AGE (running 5 W), GW3WEJ/MM (loitering in the Bay of Biscay with 25W), HB9AL, HB9BR, I1ROY. LA6OI, OA8NO, ON4PA (running 800 mW), PA $\varnothing S L R, W \varnothing O P$.

John Moxham (Somerset), really puts me to shame. His \log for $3 \cdot 5 \mathrm{MHz}$ shows just what can be done if you're really determined (and don't mind losing the sleep). The rx is an SR200, the antenna a 140 ft . end fed, the ears are standard issue and came with the body. Eighty metre c.w. producedCN8AW, CR6IK (I'm jealous already), CR6IV, CR6LX, HBøJG, HB9TU/P, HV3SJ, LA2PH/MM (near Ascension Is.), OD5BA, OHØNC, PY1CAD, PY1NBF, PY2DGB, PY7ASQ, VO1FX, VP2AA, VP8FL, VP8HZ, VP8KO, WA1JGO/LA, 4X4MR, $5 \mathrm{~A} 1 \mathrm{TK}, 5 \mathrm{~A} 2 \mathrm{TR}, 5 Z 4 \mathrm{KL}, 8 \mathrm{P} 6 \mathrm{CC}, 9 \mathrm{H} 1 \mathrm{I}$. It's no good, I'll have to get a new cats whisker for the front end.
"Why don't more people listen to topband DX?" writes Paul Tomes whose last known address was Swanage, Dorset. A B40 and 165 ft . of wire produced -GM3YAC, GW3XRZ, HB9CM, HB9NL, OKIDAG, OK2PCN, OL2AKS, OL6AKP, PA \varnothing RTR, W1BB/1, ZB2AY.

HIGH HAPPENINGS

High's the word too. Paul Knight built the 2 metre converter described in the November 1967 P.W. His aerial is a dipole built from a pruned " X " Band I TV antenna duly poked out of the bedroom window. This set up produced-F1RR, F1AOY, F4ZK, F6AGF, F8WE, F9PL, PA $\varnothing C M L$, PAøCMR, PA $\varnothing M O T$. Paul also logged G2XV (Cambridge) running 500 mW to a three ele beam. He also reports hearing $\mathrm{F} 9 \mathrm{NJ} / \mathrm{T}$ receiving TV transmission from G6ADZ/T on 70 cm .

Down to 21 MHz where J. East (Worcestershire), has been listening with his 1475 plus RF24B converter and dipole. Signals a la s.s.b. loud and clear from-AP2MR, CN8EM, CR6JA, DU1RH, EA9AQ, WA8HWB/P/HC2, HSIAF, JAIEBF, JA6KCY, JA8DTD, JA9BE, JHIECQ, KG4DO, KG6ALY, KR6MH, KR8EA, KX6GS, MP4BFO, OX3LP, VE8YI, VK2BNS/MM (Sea of Japan), VK9XI (Christmas Is.), VP2AW, VP8KL, VS6AL, VS9MB, XW8AL, YA1AR, YA1SG, ZS3JJ, 4S7PB, 5AITL, 5L2BJ, 3LØB/MM (Liberia), $5 \mathrm{~L} \varnothing \mathrm{X} / \mathrm{MM}, \quad 7 \mathrm{Q} 7 \mathrm{RN}, 9 \mathrm{HIR}$, 9M2BO. 9V1OE, 9N1MM, 9X5AA.

FUTURE HAPPENINGS

Lots and lots of activity in August. August 4th, 144 MHz s.s.b. contest: 10th, 432 MHz contest; 10th, R.S.G.B. mobile rally at Woburn Abbey; 17th, 70 MHz c.w. contest; 17 th , Derby mobile rally; 24th, Torbay mobile rally; 24th, ARMS/RSARS mobile rally, Dorset; 24th, Swindon mobile rally; and a rare one-August 9th-23rd, G3JDG/P on 160 metres a.m./c.w. from near Mersea Is. (look it up on the map).

LONDON'S LEADING BARGAIN SPECIALISTS FOR THE RADIO • HI-FI \& ELECTRONICS ENTHUSIAST

Special displays of radios, recorders, record decks, tuners, amps., meters, speakers, etc., etc. ALL faulty or damaged needing repairAT GIVE AWAY PRICES!
100's of component bargains from our easy to see and choose from self service racks.
100's OF OLD TYPE VALVES - from 2/- each ASSORTED TRANSISTORS 9d each. 7/6 per doz Huge stocks of shop soiled and reconditioned second hand radios, record players, tape recorders, etc.
SPOT CASH PART EXCHANGES
WE OFFER THE HIGHEST RATES IN LONDON
There's something for everyone
COME AND LOOK TODAY (Open 6 days a weekI)
all these items are available to callers only

PERSONAL CALLERS TO

48 TOTTENHAM CT. RD., W. 1

Tel. 01-636 0647

for fast, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

THIN GAUGE SOLDER, ESSENTIAL FOR

 soldering small components and thin wires. High tin content, low melting point, 60/40 alloy, 202 ft . 22 gauge on plastic reel. Recommended retail price 15/-
invaluable for stripping

 FLEX, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPERAND CUTTER, easily adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price B/6

A RANGE OF SOLDERS IN HANDY DISPENSERS.

[^7]
WOW! a fast easy way TO LEARN BASIC RADIO AND ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build . . . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so! You'LiL and what's more, EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.
You LEARN-but it's as
fascinating as a hobby.
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set ... here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 132-page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 132 -page book -'ENGINEERING OP. PORTUNITIES'--Free and without any obligation.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Dept. 372B , Aldermaston Court, Aldermaston, Berkshire.

STEREO EFFECTS UNIT Add stereo effect to your amplifiers, radios, tape recorders, etc., with this highly compact unit. A scientifically designed unit that will match all types of equipment and will enhance your listening pleasure. Bring the true sound of music into your home. Why spend hundreds of pounds on expensive equipment when you can enjoy stereo effect inexpensively. Price only 251 per unit post free.

Brand new fully transistorised and fully portable Communications Receiver. Specifications; 4 complete ranges $550 \mathrm{Kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$., covering all amateur bands, shipping and trawler bands, and broadcast band. A highly efficient double tuned superhet comprising R / F aerial tuning section, A.V.C. and built in B.F.O. Ideal for fixed or mobile reception. With speaker and headphone output. Hammer finished robust ateel case of pleasing modern design. Size approx. $9 \times 7 \times 6 \mathrm{in}$. British mannfacturer. Due to bulk purchasing we can offer these excellent receivers at less than half their normal worth Complete with handbook, $£ 18.10 .0$, carriage and insurance 15/-. Headphones if required 17/6 extra 2/6 p. \& p.

SUPER WHIP AERIALS

Bulk purchase of brand new specially designed telescopic chrome plated 25in. sectional aerials, Consists of 6 sections and screw base. An ideasl aerial for TX/RX use. Can be used with all types of wire less equipment. Price only $6 / 6$ each, p. \& p. 1/6. Two aerials 12/6 post free. Four aerials \$1 post free.

MINIATURE TRANSISTORISED B.F.O. UNIT This is a miniature transistorised B.F.o. unit (tranable) that will enable your set to receive C.W. or S.S.B. reception. Compact. Single hole fixing. The small wit will fit anywhere, Ideal for all Ex-Govt. Communication Recejvers and most Commerctal Types. Complete with fitting instructions. 49/6, post free.

TELEPHONE BARGAIN The Bargain of the year. Btandard type desk telephones complete in good condition. Only 19/6 each p.p. 5/-. Two for $39 / 6$ post free. Four tor 65/- post free. Limited stocks.

MONSTER CONSTRUCTOR'S PARCEL

Two 1 ind. dia. moving coil speakers. One 12 volt Heavy Duty DPDT switching relay. Up to 20 amp switching plus many low current contacts. Twelve wire wound resistors. One brand new Parachute complete with foll cords. Over 100 sq . ft . of silky material. One 5 ft . whip aerial. Twelve electrolytic condensers. Twelve small plastic boxes suitable for containing transistorised units. One telephone for containing transistorised units. One telephone
dial One raniature 10 henry 60 mA smoothing choke. All for $35 /$-, carriage $5 /-$.

TELEPHONE

 SPARESDIALS
new but working. Only 6/ing. Only $6 /$ each p. \& p. 1/6. Four for E1 post free Telephont bells. Not new but working, 5/- each, p. \& p. 2/-, Four for d1 post free. Complete telephones less handset only 7/6 each, p. \& p. $3 / 6$.

A brand new unit. Famous manufacture. Input $200 /$ 240 volts AC, 50 cis, Output fuily stabilised at 6 voits, 9 voits and 75 volts DC at itmp. Also 250 Sturdy standard rack mounting cabinet. Price only 48.19.6, carr. 10/6. Few only.

19 SET
CONTROL BOXES
Brand new and boxed 10/-, p.p. 5/-. Two for $2 \% / 6$ post free.

SET TX/RX FROM

RUN YOUR 19

We make a brand new unit ready to plug in, complete with full eads and connectors. Cobinet of robust construction. Ideal for the amateur transmitter. Price the a 86.10 .0 , carriage $10 / \mathrm{m}$.
Receiver Power Supply Unit only $\mathrm{E4} .10 .0$, carriage $10 /-$. services. Gas and Electricity Depts. Ideal for receiving 2 metre amateurs. Gives super reception within the range of all transmissions. A fully transis torised receiver covering $97-150 \mathrm{Mc} / \mathrm{s}$ VHF broadcast Robust attractive finished metal cabinet size approx $9 \times 4 \times 4 \mathrm{in}$. Operates from a 9 V internal battery. speaker output. Simple of 6819 B carriage and insurance 10/6. CWO or COD

SMOOTHING UNITS
"CORE YOUR HUM PROBLEMS
Beautifully made pieces of equipment. 12 volts or 24 volts d.c. input gives a fully smoothed fully regulated d.c. output. Worth £30 each. Robust Brand new in maker'seartons. Price 45/- p . $\mathrm{p} .10 /$

TELEPHONE EXCHANGES
PMBX TYPE. Ex-GPO in working order. Cordlese type. Complete and ready to use or for breaking up Only $£ 10$ per exchange carr. and insurance $60 /$ Cord type only $\mathbf{5 7 . 1 0 . 0}$ per exchange carr and insurance 60 /-

MLDE: SATENTITCMITO
 DEPT. PW. ALL ORDERS \& CALLERS TO

 38 BRIDGEND, LEEDS 1Callers weicome to our new showroom premises.

TREAT YOURSELF TO A WORLD TOUR . . . WITH HEATHKIT shortwave receivers

GR-54
LOW COST 4 BAND MODEL GR-64
World-wide reception, shipping, aircraft, radio amateurs plus the popular medium broadcast band. It covers 1 MHz to 30 MHz plus 550 KHz to 1620 KHz AM, with sleek "low-boy" styling, operates on $115-250 \mathrm{~V} 50 \mathrm{~Hz}$ AC. Kit K/GR-64 £22.8.0. Carr. 9/-

DE LUXE 5 BAND MODEL GR-54
It covers 2 MHz to 30 MHz plus 550 KHz to 1550 KHz AM broadcast band and 150 KHz to 420 KHz aeronautical and radio navigation band. Receives AM/CW/SSB, $6 \times 4 \mathrm{in}$. PM speaker and sleek, "low-boy" styling. Operates on $115-230 \mathrm{~V} 50 \mathrm{~Hz}$ AC.
Kit K/GR-54 E44.16.0. Carr. 9/-

Free Catalogue!

See these models and many more in our 1969 catalogue. Models for Stereo/Hi-Fi, Industry, Education and the Home Workshop. Heathkit -the world's largest selling selection of electronic kits and equipment.

pulse circuits I. ل. KAMPEL

T1HE bistable is closely related to both the astable and the monostable circuits but, as its name suggests, the bistable has two stable states. It is incorrect terminology to call the bistable either a multivibrator or a flip-flop, these terms being reserved for astable and monostable circuits respectively. The bistable is sometimes referred to as the Eccles-Jordan Circuit named after the original valve circuit described in 1919 by Eccles and Jordan.
The bistable will rest in either of its two stable states until an external influence causes it to change states. If the output is taken from one collector, therefore, two input pulses are required for every single output pulse at that collector. A series of bistable circuits can thus be used to count input pulses. If there are, for example, four bistable circuits connected such that the output from each feeds the input of the following through to the end of the chain, for every output pulse at the fourth bistable there must be two output pulses from the third bistable, four from the second bistable, and eight from the first bistable. The last bistable will then serve as a counter to a base of 16 . By more or less bistables, and by feedback within the chain where necessary via delay lines, counters to bases of 10 or any other number may be designed.

The basic bistable is similar to the multivibrator, where the capacitors are replaced by resistive couplings. This is shown in Fig. 4.1, where the coupling resistors R3 and R4 are shunted by small value speed-up capacitors. Upon switching on, due to unbalance in the circuit, one of the transistors will draw more current than the other, and this transistor will switch on in one of its stable states. We shall assume that Trl goes into

Fig. 4.1: The simplest form of bistable circuit, which rests in either of two stable states, changing only on application of trigger pulses. C1 and C2 are speed-up capacitors for improving switching times.
the ON state. Trl bottoms, and under saturation conditions with only about $0 \cdot 1 \mathrm{~V}$ at Tr 1 collector, Tr 2 cannot switch on since the base would have to be supplied with approximately 0.7 V , with the extra voltage across R 3 also to be taken into account. The circuit will thus stay in this state. If negative pulses are available, a negative pulse at input B will not affect the circuit since as Tr2 is already cut off, the pulse can do no more than drive the base more negative. If, however, the negative pulse is directed to the base of the transistor in the ON state (Tr 1) it will cut off this transistor. Tr 1 collector will rise towards the positive rail, and as it does so base bias will be provided for Tr 2 via R3. C1 provides extra current during the switching transient to drive Tr 2 into hard saturation, easing off to just holding it in saturation when the switching has been concluded. As Tr2 goes on, its collector voltage drops down to the saturation level cutting off the supply to Trı base. Tr1 can thus not switch on again, and the circuit settles in its second stable state. Only a negative pulse will switch the circuit back to its original state, and this pulse must now be directed to input B. Since there are no large capacitors in this circuit, and the speed-up capacitor may be ignored as far as this is concerned, a fast rise time should be achieved as well as a sharp fall time, unlike the multivibrator, or one side of the monostable.

As in the case of the monostable, it is better to cut the transistor in the QFF state completely off, that is, by reverse bias on the base. Figure 4.2 shows the way to do this by adding a further negative supply rail. If Tr 1 is switched on, the potential divider formed by R4 and R6 is adjusted such that the voltage at $\operatorname{Tr} 2$ base is

Fig. 4.2: An adaptation of the simple bistable to ensure that the non-conducting transistor is completely cut-off.

Fig. 4.3: The bistable can be usefully employed in counters, by modifying the circuit as shown here. The input pulses are divided sequentially by the steering circuit consisting of D1/2, R3/6, C3 and C4.
below the earth potential, i.e., a small negative voltage relative to earth. When a negative pulse is supplied to Trl base cutting this transistor off, the top end of this potential divider instead of being at the small voltage
swing being insufficient to reduce the reverse bias significantly.

Tr 1 collector goes to the positive rail, its base goes negative, and diode D1 goes into hard reverse bias. Meanwhile $\operatorname{Tr} 2$ has switched on as bias is provided when the base is taken to 0.7 V , and with the collector at saturation voltage and base at its more positive voltage, D2 now comes into forward bias. Thus the gate is now open to $\operatorname{Tr} 2$ base for the next negative trigger pulse.

Figure 4.4 is a modified version of the bistable with its steering circuit, and here only one supply is used. This uses the sharing emitter resistor, as described in the case of the monostable, to lift the emitters of both transistors to a potential above earth, and thus allow potential dividers to take the base of the transistor in the OFF state slightly negative with respect to the emitter. The saturation current of both transistors should be the same, and with the same current-this saturation current-always provided for one or other of the transistors, the voltage at the top end of R9 should stay substantially constant.

There is another slight addition to this circuit over that of Fig. 4.3, and that is the diodes placed across the steering circuit resistors. The time constant set by the input capacitors and the steering circuit resistors is set such that the diode will always remain conducting until the end of the input pulse, ensuring that the gate to the other transistor does not open too early. The repetition

PART 4 - THE BISTABLE

of $V_{\text {ced }}$ sat now rises to $+V_{\mathrm{cc}}$, and the potential divider provides a biasing potential on Tr 2 base which switches on Tr2. The potential divider formed by R3 and R5 now takes $\operatorname{Tr} 1$ base to a small negative potential which keeps Tr 1 off until the circuit is triggered again.

Now it has been shown that the triggering pulse must be steered to the correct input for the bistable to change states, i.e., the input negative pulse must be directed to the transistor in the ON state to have any effect. In most circumstances there is only one trigger source, and in such a case it is necessary to introduce further circuitry to direct the incoming pulses to the correct bases. This circuit is known as the steering circuit, and Fig. 4.3 shows this steering circuit added to Fig. 4.2.

The steering circuit operates as follows. Assume initially that $\operatorname{Tr} 1$ is bottomed, and $\operatorname{Tr} 2$ cut off. Now $V_{\mathrm{c}_{1}}=V_{\mathrm{ce}} \mathrm{sat} \simeq 0.1 \mathrm{~V}$, and $V_{\mathrm{eb}_{1}} \simeq 0.7 \mathrm{~V}$. This means that there is a small voltage across D1 in the forward direction, being $V_{\mathrm{eb}}^{1}-V_{\mathrm{ces}} \mathrm{at}=0.7-0.1=0.6 \mathrm{~V}$. The voltage dropped by R 3 may be regarded as negligible since it will only slightly reduce the forward voltage across the diode.
Now considering D2, $V_{\mathrm{e}_{2}}=+V_{\mathrm{cc}}$ and $V_{\mathrm{b}_{2}}=-\mathrm{ve}$, i.e. a voltage negative relative to the earth rail. Diode D2 is thus in hard reverse bias and is non-conducting. The steering circuit viewed from the trigger input is thus a low impedance presented through to $\operatorname{Tr} 1$ base via the forward biased diode, and a very high impedance through to $\operatorname{Tr} 2$ base via the reverse-biased diode. If a negative pulse is applied at the trigger terminal, therefore, the steering circuit guides the pulse to the base of Tr 1 , the transistor in the ON state, and the pulse thus cuts off Tr1. The pulse has no effect on D2, the negative
rate of input pulses is limited by the time required for C 3 or C 4 to return to its initial potential, and for a good triggering action, the time constant should be about

Fig. 4.4: The counter of Fig. 4.3 requires two supply rails. By lifting the bases above ground with R9 in this circuit, only one supply is required.
five times the trigger width. For faster switching rates, the diodes as added in Fig. 4.4 allow the input capacitors to recharge more rapidly through the conducting transistor and its associated conducting diode bypassing the appropriate resistor.

The final instalment, Part 5, will deal with the remaining digital circuits, the Schmitt Trigger and complementary switch, and also the ramp generator.

[^8]COMPUTER MULTI-CORE CABLE $12,14 / 0076$ copper cores, each one insulated by coloured PVC then separately screened, the 12
metal braided cores laid together and PVC metal braided cores laid together and PVC
covered overall making a cable just under in. covered overall making a cable just under $\frac{1}{2}$ in.
dia. but quite pliable. Price $7 / 6$ per ft. Any dia. but qui
length cut.

FLEX BARGAINS

Screened 3 Core Flex. Each core 14/0076 Copper PVC insulated and coloured, the 3 cores laid together and metal braided overall. Price $\$ 8.15 .0$ per 100 yda. coil.
15 Amp 3 Core Non-kink Flex. 70/0076 insulated coloured cores, protected by tough rubber sheath, normal doinestic flex as fitted to 3 Kw . fires. normalar price $3 / 6$ per yd. 50 Fd , coil $84,10.0$, or cut to your length $2 / 6$ per yard.
10 Amp 3 Core Non-kink Flex. As above but cores are 28/0076 Copper. Normal price $2 / 6$ per Yd. 100 yd. coil $\mathbf{f 7} \mathbf{1 0 . 0}$, or cat to your length $1 / 9$ 6 Ampard.
6 Amp 2 Core Flex. As above, but 2 Cores each 23/0076 as used for Facuum Cleaners, Electric

15 Amp FOOT
SWITCH
Suitable for Sewing Machine Motor, Drilling Machine or in fact to
switeh any job where both hands are to be left free. Rated at 13 amps, 250 volts. Price 22/6.

3 DIGIT COUNTER

For Tape Recorder or other application, re-settable by
ressing button. Price $8 / 6$.

TRANSDUCER

Made by Acos, reference No. D. 1001 . For measuring vibra junction with "G", Meter. Regujunction with "G" Meter. Regu-
lar price e5. Our price 49/6. Brand new and unused.

ISOLATION SWITCH
20 Amp D.P. 250 volts. Ideal to control Water Heater or any other appliance. Neon indicator shows when
current is on, 4/6. 48/- per dozes.

LIGHT CELL

Almost zero resistant in sumlight inereases to 10 K . Ohms resin sealed. size approx. lin. dia. by ing. thick. resin seated. Size approx. lin. dia by ing. thick.
Rated at 500 MW , wire ended. $8 / 8$ with circtit. INSTRUMENT BUZZER
6-12 volts, adjustable tone, a very neat metal cased U.S.A. made unit, approx. lisin. x lin. x

12 VOLT SOLENOID For energizing Reed Switches, etc., size approx. I $\frac{3}{t i n}$. long by 1sin. diameter. Hole through Solenoid approx. $\frac{3}{4}$ in. $8 / 6$ each. miniature

WAFER SWITCHES

2 pole, 2 way- 4 pole, 2 way--
3 pole, 3 way- 4 pole, 3 way- 2 3 pole, 3 way- 4 pole, 3 way- 2
pole, 4 way- 3 pole, 4 way- 2 pole pole, 4 way- 3 pole, 4 way. All at $3 / 6$ each, $88 /$ - dosen, your assortment

WATERPROOF HEATING
26 yards length 70W. S
temperature control. $10 /-$ post free

AC FAN
Small but very power-
ful mains motor with ful mains motor with
5ain. blades. Ideal for cooling equipment or as extractor silent but very efficient. $17 / 6$,
post $4 / 6$. Mounts from post $4 / 8$. Mounts from screws.

DRILL CONTROLLER
 Electronically changes speed irom approximately 10 revf. to maximum. Full power at all speeds by fingercludes ant parts, case verything and fult instruotions 19/6, plus $2 / 6$ post made up 29/6. Plus $2 / 6$ post. OUICK CUPPA
Mini Immersion Heater, 350 w . $200 / 240 \%$. Boils full cupe in about two minutes. Use any socket or
lamp holder. Have at bedside lamp holder. Have at bedside
for tea, baby's food, ete. 19/6, post and inaurance $1 / 6$. 12 y car model also a vailable 19/6.

COMBINATION DIAL SWITCH

Three separate settings of the dial are neceseary before this can Ae switched on or off. Comblnations can be ohanged as required. 35/- each.

ELECTRIC CLOCK WITH 20 AMP SWITCH

 Made by Smith's these units are as fitted tomany top quality cookers to coutrol the oven. The clock is mains driven and frequency conrolled so it is extremely accurate. The two small dials enable switch on and off times to be accurately set-also on the left is another timer or
alarm-this maty be set in minutes up to 4 hours. at the end of the period a bell will sound. Ideal for switching on tape recorders. Offered at only ar swftching on tape recorders. Offered at only han the value of the clock alone-post and
 insurance $2 / 9$.

NICAD RECHARGEABLE BATTERIES
3.6 V 500 mA size $1 \frac{1}{\frac{1}{2}} \times 1 \frac{\mathrm{z}}{\mathrm{g}} \mathrm{in}$. dia. type ref. $\mathrm{DKZ500}$ really fowerful whll deliver 1 amp for $\frac{1}{2}$ hour. Regular price $32 / 6$ our able, single cell $1 \cdot 2 \mathrm{~V} 6 / 6$. 10 cell 12 V 65/

THIS MONTH'S SNIP

Horstmann "Time and Set" Switch
(A 20 amp 8 witch.) Just the thing if you want to come home to a warm house nithout it costing you a fortune. etc., up to 14 hours from setting time or you can use the switch to give a boost on period of up to 3 hours. Equally suitable to control processing. Regular price probabily around £5. Special srocessing. Rrice 29/6. $+4 / 6$ post.

MOTORISED CAM SWITCH

Made by the famous meter company Chamberlain and Hookhann, these have a normal maing 200-240V motor which dives a ratchet mechanism so geared to give one ratchet action per minute on a wheel with 60 teeth thos a complete revolution of the cam takes place in one hour. The cam operates 8 switches (0 changeover and 2 on/off thus 480 circuit changes per hour are posible). Contacts, rated at 15 no donlst, be altered to suit a sperial fob. Also other awitch no doubt, be altered to suit a spenial job. Also other awitch approximately one inch. 47/6, p. κ ins. $4 / 6$.

distribution panels

Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$ sockets in metal box to take standard 13 amp fused plugs. Supplied complete with 0 feet of heavy cable and 13 amp plug. Similar advertised at $\varepsilon 5$. Our price $30 / 6,+4 / 6 \mathrm{P} \& \mathrm{I}$

G.E.C. 13A SOCKETS

Opportunity to re-equip vour house or workshop, or if a contractor, to atock up for future jobs. We offer hakelite 13 A sockets for flush or gurface mounting made by the famous (4.E.C. com-
pany and liated from $6 / 6$ each. YOU CAN HAVE A BOX OF 12 pany and listed from 6/6 each. YOU CAN HAVE A BOX OF 12
flush type $24 /$, surface type $29 / 6$, post and ins. $4 / 6$. (Gross or more carriage free.)

HI FI BARGAIN

FULL F1 18 INCH LOUDSPEAKER. This is undoubtedly ne of the flnest loudgpeakers that we have ever offered, pro duced by one of the country's most famous makers. It has a die-cast metal frame and is strongly recommended for Hi-Fi load and Rhythm Gultar and public address.
Flux Densitity 11,000 gauss-Total Flux 44,000 MaxwellsPower Handling 15 pratts R.M.B. Cone Moulded fibre-Freq. response $30 \cdot 10,000$ c.p.s.- - pecity 3 or 15 ohms-Mains re-
sonance 60 c.p.s.-Chassis Diam, $12 i n$. $12 \frac{2}{6}$ in. over mountsonance 60 c.p.s.-Chassis Diam, 12in.-12 ${ }^{2}$ in. over monnt-
ing lugs-Baffe hole 1lin. Diam.-Mounting holes 4, holes ing lugs-Baffle hole 1 lin. Diam.-Mounting holes 4, holea $5 \frac{1}{2} \mathrm{n} . A \& 6$ speaker offered for only $£ 8.9 .6$ plus $7 / 6 \mathrm{p}$. t p . bsin, A
Don't miss this offer. 15 in . 30 watt ty.19.6.

INDICATOR LAMP

Panel mounting consists of neon
lamp in red Plastic lens with
tion. 2/6 each. 24/- dozen.

RADIO STETHOSCOPE

Easiest way to fault find-traces signal from aerial to apeaker-when signal stops you've found the fault. Use it on Radio, TV, amplifier, anything - complete kit comprises two special transistora and all parts including probe tube and crystal earpiece. 29/6-twin stetho-extra-post and ins. $2 / 9$.

MAINS TRANSISTOR POWER PACK
Designed to operate transistor sets and amplifiers. Adjustable output $6 \nabla ., 9 \nabla$., 12 volts for up to of the following batteries: PP1, PP3, PP4. PP6 PP7, PP9, and others. Kit comprises: mains transformer rectifier, amoothing and load resistor, condensers and instructions. Real. anip at only $16 / 6$, plus $3 / 6$ postage.
PROTECT VALUABLE DEVICES
 From thermal rum-
way or overheatway or overheat-
ing. Thyristora, recing. Thyristora, reotifiers, transistors,
ete., which use heat. ete, which use heat
sinks can easily be sinks can easily be protected; simply make the contact
thermostat part of the heat-gink.
Motors and equip. Motors and equip.
ment generally can also be suequately protecte tegic smota on the casing straat has on the casing. Ou contict thermostat has a calbrated dialor sething setting is between 80 to $800^{\circ} \mathrm{F}$. Price 10/-

TELESCOPIC

AERIAL
for poratable, car radio or transmitter. Chrome pla-
screw. $7 / 6$.
REED SWITCHES
Suitable for dozens of different applications, such as burglar alarms, conveyor bett switching. These are simply glass enchsed switches which can be spectal buy enables us to offer these at $2 / 6$ each, or 24/-dozen. Suitable magnetis are 1/- each.

5A, 3 PIN SWITCH
SOCKETS
An excellent opportunity to make that bench dis board you have needed or to stock up for future
jobs. This month we offer 6 Britiah jobs. This month we offer 6 British made (Hicraft) bakelite flush
monnting shuttered 5 A swltch monnting shuttered 5A switch
sockets ior only $10 /-$ plus $3 / 6$ post sockets ior only $10 /-$ plus $3 / 6$ post
and insurance. (20 boxes post and in
free.)
MOVING COHL METER BARGAIN Panel metern are always being needed and they are jolly costly when fou have to buy them in a 2 in . moving coil flush mounting meters nisly $9 / 6$. These are actually R.F. meters and cost about 83 These are actually R.F. meters and cost about al yon have to do is to remove the thermocouple and you will have a $2-3 \mathrm{~mA}$. meter which you can make into ulmost anything by adding shunts. or series resistor. New and umused.

MAINS MOTOR Precision made-as used in record decks and tape recordergtans, blower, heater etc. New and perfect

You never need buy another battery for you transistor radio. Stupendous offer this month-a $6-9 \mathrm{v}$ Nickel Cadminm battery stack together with a mains operated charger which you mount on the back of your set. The mains flex unpluge 80 the set remains completely portable. Offered for less than the cost
plus $3 / 6$ post.

TIMED SWITCH OR

MEMORY JOGGER
If you are the forgetful type this can save you ombarrassment. Pre 0 gettable up to 12 hours, car or anywhere independently of the mains. Switch rated at $15 \mathrm{~A}, 250 \mathrm{~V}$ can control any type of alarm, 29/6d. less than half the current list price. Brand new and unused.

> Where postage is not stated then orders over 83 are post free. Below ef3 add $2 / 9$, Semi-conductors add 1/- post. Over $£ 1$ post free. S.A.E. with enquiries please

the world's most advanced high-fidelity amplifier

This remarkable amplifier has been in production for some months, and now that we have caught up with the backlog of orders, we can supply the IC. 10 promptly. We wish to apologise for the delay in reaching full production which was due to circumstances beyond our control. We hope that now you can purchase the IC. 10 without difficulty, you will enjoy to the full the great possibilities this unique Sinclair device offers.

The Sinclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts , is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.
Monolithic I.C.'s were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most
important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs servo amplifiers (it is d.c. coupled throughout) etc.
The photographic masks required for producing monolithic I.C.'s are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

10 Wart mowounil miteraiz EIMEOTN AMPIIFER

Specifications

Power Output
10 Watts peak, 5 Watts R.M.S. continuous.
Frequency response
5 Hz to 100 KHz 1 dB . Total harmonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms. Power gain $110 \mathrm{~dB}(100,000,000,000$ times $)$ total. Supply voltage 8 to 18 volts.
Size
$1 \times 0.4 \times 0.2$ inches.

Sensitivity
Input impedance

5 mV .
Adjustable externally up to 2.5 M ohms for above sensitivity.

Circuit Description

The circuit diagram of the $1 C-10$ is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class $A B$ with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

GUARANTEE

Should you not be completely satisfled with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facillies available to all purchasers. Goods sent post free In U.K. and Overseas by surface mail. Air-freight charged at cost.

SINCLAIR RADIONICS, 22 Newmarket Road, Cambridge
Telephone OCA3 52996

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers.
The transistors in the $1 \mathrm{C}-10$ have cut off frequencies greater than 500 MHz so the preamp section can be used as an R.F. or I.F. amplifier making it possible to build complete radio receivers without any additional transistors

SINCLAIR IC-10

The complete 1 C 10 with the manual and 5 year guarantee costs

[^9]Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m.

ALL valves guaranteed

A2134	$8 /-$	ECF82	6/6	KT 66	$21 /-$
AR8	$5 /-$	ECH35	$11 /-$	KT 67	$45 /-$

AR8 $\begin{array}{ll}\text { ARP3 } & 3 /- \\ \text { ARP12 } & 8 / 6\end{array}$ $\begin{array}{lr}\text { ART12 } & 8 / 6 \\ \text { ARTP4 } & 2 / 3 \\ \text { ATP4 }\end{array}$ $\begin{array}{ll}\text { BD78 } & 401- \\ \text { BL63 } & 10 /-\end{array}$ $\begin{array}{ll}\text { BL63 } & 10 /- \\ \text { BT85 } & 15 /-\end{array}$ $\begin{array}{lr}\text { BT45 } & 150 /- \\ \text { BT83 } & 85 /-\end{array}$ $\begin{array}{ll}\text { B188 } & \text { 851- } \\ \text { CV102 } & 3 /- \\ \text { CV103 } & 4 /-\end{array}$ CV315
(matched
pairs) 12
CV315
$\begin{array}{lr}\text { (Single) } 50 /- \\ \text { CY31 } & 7 / 6\end{array}$
D41
D77
$\begin{array}{lc}\text { DA100 } & \text { \&6 } \\ \text { DAF90 } & 7 / 6\end{array}$
$\begin{array}{ll}\text { DD41 } & 4 /- \\ \text { DDT }\end{array}$
DET20 2/-
DET25 10/-
$\begin{array}{ll}\text { DF91 } & 3 / 7 \\ \text { DF92 } & 2 / 6\end{array}$
DF91
DF92
DF96
DF9
$\begin{array}{ll}\text { DK96 } & 7 / 6 \\ \text { DL63 } & 8 /- \\ \text { DL92 } & 4 / 6\end{array}$
DL9
$\begin{array}{lr}\text { DL94 } & 6 / 6 \\ \text { DL96 } & 8 /- \\ \text { DLS10 } & 12 /-\end{array}$
DY86 6/-
$\begin{array}{ll}\text { DY87 } & 6 / 6 \\ \text { D80F } & 18 /\end{array}$
$E 805$
$E 980$
E90C
E91H
$\begin{array}{ll}\text { E92CC } & 7 / 6 \\ \text { E180C0 }\end{array}$
E182CC 18/-
$\begin{array}{ll}\text { E1148 } & 2 / 6 \\ \end{array}$
EA7

| EAC91 |
| :--- | :--- |
| EAF |

$\begin{array}{ll}\text { EAF42 } & 9 / 8 \\ \text { EB91 } & 2 /-\end{array}$
$\begin{array}{ll}\text { EBC33 } & 8 /- \\ \text { EBC41 } & 9 / 6\end{array}$
$\begin{array}{cc}\text { EBC41 } & 9 / 6 \\ \text { EBC81 } & 6 / 6 \\ & \end{array}$
$\begin{array}{ll}\text { EBC81 } & 6 / 6 \\ \text { EBF80 } & 7 / 6 \\ \text { HRF88 } & 8 / 6\end{array}$
$\begin{array}{ll}\text { EBF83 } & 8 / 6 \\ \text { EBF89 } & 6 /-\end{array}$

EBF89	$6 /-$	G
EC53	$8 /-$	
EC70	$4 /-$	

EC70	$4 /-$
EC90	$4 /-$
EC91	$8 /-$
G	

$\begin{array}{cc}\text { ECS33 } & 12 /- \\ \text { ECC35 } & 15 / 6\end{array}$
$\begin{array}{cc}\text { ECC35 } & 15 / 6 \\ \text { ECC81 } & 6 /-\end{array}$
$\begin{array}{ll}\text { ECC81 } & 6 /-1 \\ \text { ECC82 } & 5 / 9\end{array}$
$\begin{array}{ll}\text { ECC82 } & 5 / 9 \\ \text { RCC83 } & 5 / 6 \\ \text { ECC84 } & 6 /-\end{array}$

ECC84	$5 / 6$
ECC85	$5 / 6$
ECC	

ECC85	$5 / 6$
ECC86	$8 /-$
ECC88	$7 /-$
ECC91	$4 /-$

P. C. RADIO LTD.
 170 GOLDHAWK RD., W. 12

(01) 7434946

CFF80 6/6

ECF82	6/6	KT66	21/-	RG1-240A
ECH35	11/-	KT67	45]-	28/-
ECH42	10/-	KT71	$7 / 6$	SP61 3/3
ECH81	5/9	KT76	71.	STV280/40
ECH83	8/6	KT88	29/-	60/-
ECL80	8/6	KTZ63	7 J	STV280/80
ECL82	6/-	L63	3/6	90/-
ECL 83	10/9	MH4	5/-	SU2150A
ECL86	8/6	MH41	$8 / 16$	TDO4-20 ${ }^{\text {10/- }}$
EF36	3/6	MHLD6	7/6	1D04-20/-
EF37A	$8 \mathrm{I}-$	ML6	6/-	TP22 5/-
EF39	6/-	N34	81-	TP25 5/-
EF40	9/9	N78	15/-	TT11 3/-
EF41	$10 / 9$	OA2	6/-	TT15 55/-
EF42	$13 / 6$ $4 / 6$	OB2	$6 /-$	TTR31 45/-
EF50	$4 / 6$ $4 / 6$	OCS	$6 / 6$	TZ0502 4/-
EF80	$4 / 6$	OD3	$6 /-$	TZ20. 16/-

EL33
EL34
EL35

EL44
EL50
EL81
EL81
GL84

EL85
RL95
EL360
EM31

RG1-240A	UU5 7/-	X66	$8 / 6$
28/-	UY21 10/6	X76M	$7 /-$
SP61 3/3	UY41 7/-	X 118	$81-$
STV280/40	UY85 5/9	X145	81-
60/-	V246A/1K	Y 63	6/6
STV280/80	190/-	Y65	4-
90/-	VL8681 35/-	Z800U	29/-
8U2150A	VP'23 3/6	Z8010	251-
10/-	VP139 9/-	z900T	121-
TDO4-20	VR99 7/6	$1 \mathrm{B22}$	301-
70/-	VR105/30	1G5GT	6/-
TP22 5/-	6/-	1D8GT	6/-
TP25 5/-	VR150/30	106GT	$61-$
TT11 3/-	6/-	114	$2 / 6$
TT15 55/-	VU39 7/-	1 LA 8	6/-
TTR31 45/-	W118 8/-	1LC6	$71-$
TZ0502 4/-	W119 9/-	1LH4	4/-
TZ20. 16/-	X65 5/-	1R5	61-

154	51-
185	4/6
1T4	3/~
2 AB	51-
2D21	6/-
3A4	4/-
5R4WGA	
	27/6
3B7	5/-
3B24	14/-
3D6	3/-
3E29	501-
3 Q 4	$7 / 6$
3Q5GT	61-
3 S 4	5/8
374	81-
4D1	4/-
5A173G	$5 /$

5A174G 5/-5B251M40/-	
5B252M35/-	
$5 \mathrm{~B} / 255 \mathrm{M}$	
	35/-
5R4GY 10/6	
5 T 4 7/-	
5U4G 4/	
5V4G	
5X4G	8/6
5Y3GT $5 / 6$	
5Y3WGB	
	15/-
5Y3WGTB	
	8/-
5R4G	$7 / 6$
6AB7	4/-

6 ACP
6AG5
6AG7
6AFF6
6AJ7
6AK5
6 AK6
6AK7
6AK8
6AIL
6ALSW
6AM5
6.4M6
6AN5
6AN8
64Q5
6AQ5W

S etc.
${ }^{3 /-6} 6^{6 \mathrm{CW}} 4{ }^{13}$ -

OA5 2/6 OC29 151- Ocy02 1216
NER

OC29	15/-
OC35	10/-
$0 \mathrm{C38}$	8/6
$0 \mathrm{CL4}$	6/-
$0 \mathrm{C42}$	5/-
OC44	4/-
OC4	2/6
OC70	4/-
0071	$2 / 6$
0 Cz 2	4/6
$0 \mathrm{C73}$	11/-
0075	81-
0078	5/-
$0 \mathrm{C81}$	4/-
00811	3/-
OC81I)	M3/m
$0 \mathrm{C82}$	51.
OC82D	3/-
$0 \mathrm{C83}$	$5 /-$
OC83B	4/6
$0 \mathrm{C84}$	5/-
0 Cl 22	10/-
OCl39	7/6
00140	$9 / 6$
OC169	5/-
OC170	5/m
00171	6/-
OC172	$7 / 6$
OC200	$7 / 6$

$\begin{array}{lr}\text { OCD20 } & 18 \\ \text { IN21 } & 3 \\ \text { IN21B } & 5 \\ \text { IN25 }\end{array}$

$|$| AF114 | $5 /-$ | CRS1/3010/- |
| :--- | :--- | :--- |
| AF116 | $6 / 6$ | CRE1/35 |
| AF117 | $5 /-$ | |

$$
\begin{array}{ll}
{[\mathrm{N} 43} & 4]- \\
{[\mathrm{N} 70} & 4 /-
\end{array}
$$

AF117	$5 /-$	CRS1/35				
AF118	$10 /-$	JK				
AF124	$7 / 6$	CRS1/40	JK			
AF125	$5 /-$	CRB3/05 6/-	M			
AFI26	$5 /-$	CRS3/20			$13 /-$	1
---:	---:					
$8 /-$	1					
$8 /-$	1					
$9 /-$						
$7 /-$	1					

\qquad

$4 / 6$	80

R.S.T. valve mall order co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

MOTORISTS!
 Your Cortina Can Deliver 144 B.H.P.
 How? By fitting it with a 3-litre V6 Ford Zodiac engine. Practical Motorist shows you how to carry out this inexpensive conversion.
 * Lotus 7 Road Test
 * BMC 1100 and 1300 Data Sheets PRACTICAL $2 / 6$ motorist September issue On sale Friday August 15

REDUCED IN PRICE	
$\underset{\text { TRANSFORMERS }}{10-0-200-220-240}$ BFY52 Mullard Transistor 5 -each	
15-0-15 at 200 mA	OA70 Diodes 1/6 each
Shrouded. Flying leads colour coded 12/6d each	CAPACITORS
0-200-220-240 12/6d each	1,000pF Muliard. Poly. 6d each
$0-24$ at $0.5 \mathrm{amp}-$	SWITCHES
48 V at 50 mA . 7/6 each	7-way Pushbutton Units
RELAYS	2/p/c, o/ per unit 7/6 each
S.T.C. Miniature Type 24	ALSO IN STOCK
2p/c/o 8-24V D.C. 10 /- each	Relay Bases, Knobs, Resistors,
S.T.C. Miniature Type 25	Capacitors, Pots, Plugs, Sockets,
4/p/c/o 10-19V D.C. 10/- each	etc., etc.
SEMI-CONDUCTORS	All componets NEW
BF115 Mullard Transistor $4 /- \text { each }$	C.W.O. and add $2 / 6 \mathrm{~d}$ for P. \& P. Send stamp for list.
W.E.C. Lto	
THE STREET, ASHSTEAD SURREY	

PADGETTS RADIO STORE

OLD TOWN HALL, LIVERSEDGE, YORKS.

 Tel. Cleckheaton 2866Indicator Unit type 26. Size $12 \times 9 \times 9$ in. with outer case. Fitted with $2 \frac{1}{2 "}^{\prime \prime}$ tube C.R.T. type CV1526. Nine B7G valves. Clean condition, but not tested. 32/6, p. \& p. 10/-
New 12" Speakers with built in tweeter 3 ohm or 15 ohm 6 watts max 28/6, post paid.
Ex Washing Machine Motors. Single phase 230 volt $\frac{1}{4}$ H.P. 1425 R.P.M. All perfect. 26/- p. \& p. 10/-.
Silicon Rectifier $500 \mathrm{~mA}, 800$ P.I.V. No duds. 2/6, post paid. 24/- per dozen, post paid.
Jap Ear Piece. Magnetic 8 ohm . Small and large plug. 1/11, post paid.
Reclaimed TV tubes with six months guarantee, 17in. type AW43/88; AW43/80, $40 /-;$ MW43/69, 30/-. 14in. types, $17 /$. All tubes, 12/-carriage.
Speakers removed from TV sets. All PM and 3 ohms. 6 in. round, $3 /-$, p. \& p. 3/-; 6 for $24 /-$, post paid.
6×4 in., $3 /-$, p. \& p. 3/-; 6 for 24/-, post paid. $7 \times 4 \mathrm{in} ., 5 /=$, p. \& p. $3 /-; 6$ for $34 /=$, post paid. 5 in. round, $3 / \mathrm{m}$, p. \& p. $3 /-; 6$ for $24 /-$, post paid.
Slot Speakers, $8 \times 2 \frac{1}{4}$ in., $5 /-$, p. \& p. $3 /-; 6$ for $30 /-$, post paid.

IndicatorUnit type			valve			
116 V VR97 tube.			ment. 8		nt	
Mu metal screen						
and EF50 valves,	ERP12	1/8 9	PCL83	$51-$	6BW7	2/6
Good condition,	EF85	80-	${ }_{\text {PL36 }}$	51-	6 K 7	1/8
but not tested.	EBF80	$3 /-$	${ }_{\text {PLL81 }}$	$4{ }_{4}^{6-}$	${ }^{6 \mathrm{UV} 4}$	$5 /-$
	ECC81	3/-	PY83	51	$6 \mathrm{V6}$	1/9
22/6. carriage 10/-.	ECC82	8/-	PY81	1/6	${ }_{10 \mathrm{P} 13}$	${ }_{8 / 8}^{1 / 8}$
Untested Pye, KB.	${ }_{\text {ECOL }}{ }^{\text {ECO }}$	$4 /-$	PY82	1/6	${ }_{185 B 6}$	2/6
RDG, Ekco 17in.	EF50	${ }_{1}^{1 / 6}$	PZ30	$5 /-$		$8 / 8$
IV sets. Bush	EF80	$1 /-$	U191	$5 /-$	${ }_{20 \mathrm{P} 1}$	$8 /-$ $5 /-$
17 in . TV sets, $50 /$-,	EF91	9 c ,	U281	5/-	20 P 3	2/6
each, carriage $15 /$.,	EY86	51-	U301	$5{ }_{5-}$	$30 \mathrm{PL1} 1$	$5 /-$
	PCC84	2/-	U329	$5 /$	${ }_{30 \mathrm{~F} 5}$	${ }_{8 / 8}^{6 /-}$
Passenger train,	PCF80	2/-	U251	51-	$30 \mathrm{FL1}$	${ }_{5 / 1}$
double rate.	PCL82	4/-	6B8	1/8	6/30L2	5/-

BI-PAK SEMICONDUCTORS

500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W. 1.

KING OF THE PAKS
 SUPER PAKS

Unequalled Value \& Quality
BI-PAK NEW-UNTESTED SEMICONDUCTORS

FULLY TESTED	
ACL07	3/6
AC126-7-8	2/6
AF116-117	$3 / 6$
AF139	101-
ALI02	151-
BC107-8-9	51-
BFY50-51-52.	$7 / 6$
B8Y26-7	3/6
BSY28-9	4/6
BSY95-95A	4/6
OC22-25	51-
OC26-35	$5 /-$
OC28-29	$7 / 6$
OC44-45	1/9
OC71-81	1/6
OC72-75	2/6
OC81D-82D	$2 / 3$
$0 \mathrm{OC8} 2$.	$2 / 6$
OC140	${ }^{5 /-}$
OC170	$2 / 6$
$0 \mathrm{Cl71}$	8/6
0 O 201	${ }^{7 / 6}$
ORP12-60	$8 / 6$
ocpr1	$8 / 6$
OA5-10	1/9
0447	8/-
OA70	1/8
OA79	$1 / 9$
OA81-8ib	1/6
OA 91	1/3
OA96	$1 / 9$
OAL200	$3 /-$
OA202	3/6
2 N 696 -7	51-
2N706	3/6
2N708	61-
2N2160	15/-
2N2648	15/-
2N2712	5/6
2N2926	2/6
MAT100-101.	$31-$
MATI20-12I	3/6
ST140	3/-
ST141	4/-

TRANSISTOR EQUIVALENT BOOK

52 pages of Cross References for transistors and diodes, types include British, European, American and Japaneae. specially imported by BI-PAK $10 /-$ each.

INTEGRATED CIRCUITS

LC. Operational Amplifier with zener outpat
Type 701C. Ideal for P.E. projects. 8 Lead TO-5 case. Full Data. Our Prioe 18/6 each. 5 off $11 /$ - e8ch. Larg qty prices quoted for. Fairchild Epoxy TO-5 8 Lead. I. C. uL900 Buffer
uL914 Dual Gate uLe23 J.K. Flip-Flop 14/ I.C. Dats Circuits etc. 1/ Mullard 1.C. Amplifiers TAA243 ORP.AMP. 701 TAA263 Min AF Amp 18/6 TAA293 G.P. Axpp 28/ R.CA CA3020 Audio Amp 30/-

PLEASE NOTE.-To Avoid any further Jncrèased Postal Charges to our Customers and enable us to keep our "By rerment and me now requeat you to mend all your order ined our Despatch Order Depar. Direct to our Warehouse and Despatch Dour order postaladdress:--BI-PAK SEMICONDUCTORS, Degatch Dept PO BOX 6 wARE HERT8. Postage and Packing Still $1 /$ per order. Minimum Order 10/-.

S TESTED	TESTED SCR's
PIV 750mA 3A 10A 30A	PIV 1 AMP TA 16A 30A
$\begin{array}{llllll}50 & 1 /- & 2 / 9 & 4 / 3 & 9 / 6\end{array}$	$25 .-776$ - 80/-
$\begin{array}{lllll}100 & 1 / 3 & 3 / 3 & 4 / 6 & 15 /-\end{array}$	$\begin{array}{llllll}50 & 716 & 8 / 6 & 10 / 6 & 35 /-\end{array}$
$200 \begin{array}{lllll} & 1 / 9 & 4 /-1 / 9 & 20 /-\end{array}$	100 [$81610 / \mathrm{ll} 15 /-45 /-$
$\begin{array}{lllll}300 & 2 / 3 & 4 / 6 & 6 / 6 & 22 /\end{array}$	200 12/6 15/- 20/- 55/-
$\begin{array}{llllll}400 & 2 / 6 & 5 / 6 & 7 / 6 & 25 /-\end{array}$	300 15/-201-25/- -
500 3/- $6 /-8 / 680 /-$	400 1716 25]-35]-801-
600 3/3 6/9 9/- 87/-	500 30I-401-45J- $951-$
800 3/6 $7 / 6 \mathrm{11/-} 40 /-$	600 - 40/-50/-
1000 5/- 9/3 12/6 50/-	
1200 6/6 11/6 15/-	
	INTEGRATED
RIATED CIRCUITS	CIRCUITS
EX-COMPUTER	LC. Operational Amplifier with zener outpat.
Packed with semiconductors and components,	
10 boards give a guaran-	Type 701C. Ideal for P.E.
teed 30 trans and 30	projects. 8 Lead TO-5 case.
diodes. Our price 10 boarde	Full Data. Our Prive 18/6 each. 5 off $11 /-$ each. Large
10/-. Plus 2/- P. \& P.	
UNIUNCTION	qty prices quoted for.
	Lead. I.c.
T46 Eqvt. 2N2646, 7/6	uL900 Buffer 10/8
	uL914 Dual Gate 10/6
S	uLe23 J.K. Flip-Flop 14/-
2N3819 10/-	I.C. Dats Circuits etc. 1/6
2N3820........... ${ }^{\text {25 }}$ 251-	Mullard 1.C. Amplifiers
MPF105 $\ldots \ldots \ldots \ldots$, 8/m	TAA243 ORP.AMP. 70/-
	TAA263 Min AF Amp 18/6
AD161-168 NPN-PNP	TAA293 G.P. Amp 26/RCA CA3020
Comp. Pair 12/6 pr.	
28034......... 15/- ea	Audio Amp 30/-

4

Comp. Pair 12/6

8034............ 15/- ea
. Direct to our Warehouse and Descatch Departme

15,000

copies sold

Now in its second printing

Radio Communication Handbook

832 pages of everything in the science of radio communication. The Handbook's British origin ensures easy availability of components. The standard work in its field.

69s post paid

Amateur Radio Techniques

All the good ideas are here. An anthology of the famous "Technical Topics" column from RADIO COMMUNICATION. Fascinating reading and an invaluable information source. 13s 6d post paid

All these and many more, plus free details of the RADIO SOCIETY of GREAT BRITAIN
from RSGB PUBLICATIONS 35 DOUGHTY STREET, LONDON, WC1

Chassis $12 \frac{1}{2} \times 5 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$, high. Front panel aium and blacir$12 \frac{1}{3} \times \frac{1}{2}$ in. 200-250 A.C. Malns Trans. Off/On-Tone; Vol./Mic.; Yol./Gram.; Mic. Input: Gram. Input; Monitor; Valves BBR7, ECC83 EM84, EL84 and Rect. 2 Track $£ 10.10 .0 ; 4$ Track 812 $12 / 6 \mathrm{p} . \& \mathrm{p}$.). Ready for bolting direct to Magnayox deck.

STEREO AMPLIFIER type HV2×3 Watts
Fully built. On offi, sep. vol. and tnue cach channel.
 speaker. duable whumt main trans: tixing Hanger and batse plate: suitable for ers:tal durt, finner etc instructions (8. \& p.). Availathle as bit with full instructions at $\mathbf{8 4 . 1 7 . 6}$ (8/- p. * p.).

STEREO AMPLIFIER type RC-

2×3 Watts

Fully built. $2 \times$ UCL82, metal rect; ganged vol. and tone cont; on-off, hatance. $11 \times 3!x 4 \mathrm{in}$. high double wound mains traus, with supporting brackets. For 3 -ohm speakers. 86 ($8 / \sim$ p. \& p.).

SUPER SIX KIT

Mk, 2

MW and LW fully tunable. Wooden cabinet $9 ; \times 8 \times 8$ in, carrying handle, two tone cabinet; 4in. speaber; f transistors: full book of instructions. $2 / 6$ (free with litit) All parts may be purchased separately. S.A.E. for price list Price of parts $\overline{\Delta 4.5 .0}$ ($6 /-\mathrm{p} . \bar{\AA} \mathrm{p}$.).
We can accept H.P. orders for our Stereo Radiogram Chassis previously advertised and still available at $£ 19.19 .0$. Terms ${ }^{2}$? deposit and 6 monthly payments of $47 / 6$ (by Banker's Order only). Total H.P. Price £21.5.0.

GLADSTONE RADIO
 66 ELMS ROAD, ALDERSHOT, Hants.

(2 mins, from Station and Buses). FD, FULL GUARANTEE. Aldershot 28840
OLOSED WEDNESDAY.
B.A.E. for enquiries please. CLOSEID WEDNESDAY. S.A.E. for enquiries please.

PRINTED CIRCUIT KIT

BUILD 40 INTEERESTING PROJECTS OD a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTB: (1) 2 Copper Laminate Boards 4t" $\times 2 \frac{1}{*}^{\prime \prime}$. (2) 1 Board for Match. bor Radio. (3) 1 Boardid for Wristwestch Radio, etc. (4) Resist. (5) Resiat Solvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Bonklet Printed Circuit: for A matsurs. (9) 2 Miniature Radio Dials SW/MW/LW, Also free with each kit. (10) Essentlal Design Data, Circuits, Chassis Plans, etc. for 40 TRANSIETORIBED PROJECTIS
A very comprehensive selection of circuits to sult everyone's requirements and A very comprehensive selection of circuits to sult everyone's requirements and
constructional ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT 8/6
Postage \& Pack. 1/6 (UK) Commonwealth: sURFACE MAIT، 2/AIR MAIL 81Australia, New Zealand South Atries, Canada.
(1) Oryetal Set with biased Detector. (2) Crystal Set with voltage-quadrupier detector. (3) Cryatal Set with Dyaamic Loudspeaker. (4) Crystal Tuner with Audio Ampifier. (5) Carrier Power Convergion Receiver. (6) Split-Load Neutrallsed Double self-adjuating regeneration (Patent Pending). (9) Bolar Battery Loude Reatiler with The smalleat 3 designs yet offered to the Home Constructor anywhere in the Wadio. 3 Bubminiature Redio Receivers based on the "Tritlexon" circuit. Let us kow if you know of a smaller design published anywhere, (10) Postage Stamp Radio. Size only $1^{1} 62^{*} \times \cdot 95^{\prime \prime} \times \cdot 25^{\prime \prime}$. (11) Wristwatch Radio $1 \cdot 15^{\circ} \times \cdot 80^{\circ} \times \cdot 55^{\prime \prime}$. (12. $)$ Ring Radio $70^{*} \times \cdot 70^{*} \times 5^{\circ} \times$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Redlo Control Tone Receiver. (15) Transistor P/P Amplifier. (18) Intercom. (17) 1-valve Amplifler. (18) Reliable Burglar Alarm. (19) Light-Seehing Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector, (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. Volume Intercom. (28) Remote Control Trat Models (Licence required). (27) Constant Transmitter. (30) Pocket Triple Ceffex Redio (31) by Induction, (29) Inductive-Loop Mransmitter. (30) Pocket Triple Refex Radio. (31) Wristwatch Transmitter/Wire-legs Preamplifter. (35) Quality Stereo Push-Full Amplifier. (36) IIght-Beam Telaphone "Photophone". (37) Light-Besm Transmitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Trausmitter. (40) Thyristor Drill Speed Controller.

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
send a S.A.E. for full details, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects Assembled.

and work at the nerve centres of civil aviation

The National Air Traffic Control Service, a Department of the Board of Trade, needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports such as Heathrow. Gatwick and Stansted. Air Traffic Control Centres, Radar Stations and specialist establishments.
This is responsible demanding work (for which you will get familiarisation training) involving communications. computers, radar and data extraction, automatic landing systems and closed-circuit television and it offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.
If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now.
Starting salary varies from $£ 869$ (at 1.9) to $£ 1.130$ (at 25 or over) : scale maximum $£ 1,304$ (higher rates at Heathrow), and some posts attract shift-duty payments. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

[^10]Name.
Address................................

Not applicable to residents outside the United Kingdom.
NATCS
National Air Traffic Control Service

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. 0 d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

Abstract

EDUCATIONAL BECOME "Technically qualifed" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: haighly informative 120 -page Guide-free. CHAMBERS COLLLEGE (Dept. 857K), 148 CHAMBERS COLLEGE

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132 -page Handbook-FREE. B.I.E.T. (Dept. 168K),

 Aldermaston Court, Aldermaston, Berks.RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies in September and January. Grants available. Day and Boarding students. Stamp for prospectus Wireless College, Colwyn Bay.

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return, WALTON'S WRELESS STORES, 55 Worcester Street, Wolverhampton.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186.

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD
103 North Street, Leeds 7

AVO METERS, MODELS 8 \& 9, ANY QUANTITY, ANY CONDITION, ALSO WEE MEGGERS. SEND FOR PÁCKING INSTRUCTIONS. HUGGETT'S LTD., $2 / 4$ PAWSONS ROAD, W. CROYDON.

LOAN PURCHASE Circuit diagram 1954 "Falcon" Radiogram. VHF, Short, Medium, Long, Gramophone. Box 90

METAL WORK

[^11]
FOR SALE

£6,000 IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools; materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK 12 4HL.

FACT NOT FICTIOX. It you start RIGHT you will be reading amateur and commerclal Morse within a month. (Norial progress to be expected.)

- Using scientifically prepared 3 -speed records you sutomatically learn to recogndse the code RHYTHM without translating. You can't help it, it's easy as learning tune 18 W.P. M. in 4 weeks guaranteed.
For details and course C.O.D. ring. s.t.d. 01-660 2806 For details and course C.O.D. Ting. s.t.d. $01 \cdot 6602896$
send 8d. stamp for explanatory booklet to:
G8CHS (BOX 11), 45 GREEN LANE, PURLE SURREY G3CHS (BOX 11), 45 GREEN LANE, PURLEY, SURREY

NUT DRIVERS in 22 sizes. B.A., A/F. \& M.M.
Send S.A.E. for lists to
Busgan Soot 2685 London Roas, Coyston.
EDDYSTONE "840A" Receiver with " 732 " Mains Filter Unit. £28. 63 Church Hill, Walthamstow E.17.

ELECTRICAL

EEST EVER 200/240 VOLT "MAINS"
SUPPLY FROM 12 VOLT CAR BATTERY SUPPLY FROM 12 VOLT CAR BATTERY Excluaive World Scoop Purchase. The fabalous a Massive 220 watt output and giving the most Brilliant 200/240 volt performance of all time. Marvellous for Telovision, Drills, Power Tools Msing Lighting, AC Flaorgscent Lighting and all 200/240 volt Univeraal AC/DC mains equipment. Made at tremendous cost for U.B.A. Govt. by Delco-Remy. This magnificent machine is unobtainable elsewhere.
Brand New and Frully Tested, only e4.19.6; plus 10/6 postage. C.O.D. with pleasure. Money back if not details. Please send a.a.e. Ior interesting illus
etails.
Dept, PW STANFORD ELECTRONICS, Rear Derby
Road, North Promenade, Blackpool, Lancashire.

BOOKS \& PUBLICATIONS

SURPLUS HANDBOOKS	
Reslstor colour code Indicator $\mathbf{2 / 6} \mathbf{p / p}$ d	
S.A.E. with all enquirles please.	
Postage rates apply to U.K. only.	
Mail order only to:	
INSTRUCTIONAL HANDBOOK SUPPLIES	
DEPT. PW, TALBOT HOUSE,	
28 TALBOT GARDENS, LEEDS 8	

SURPLUS RADIO EQUIPMENT HANDBOOK

Over 120 pages of data including circuits/operating for $40+$ trpes; many useful mods. and valve
transistor equivalents list. a must for all using transistor equivalents list. A must for all using
ex-Government sets. Only $30 /-$ inciuding D . o from:

SYMBOL BOOKS (Dept. 3) 210 EASTERLY ROAD, LEEDS LS8 3ER

AUDIO. America's foremost journal. Year's subscription 50/-. Specimen copy 4/6. All American radio journals supplied-list free. Willen (Dept. 40), 61 a Broadway, London E. 15 .

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 1 B Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from $1 /$-. Over 8,000 models a vailable. Please send S.A.E. with all orders/enquiries HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

[^12]SERVICE SHEETS
(continued)

LARGE SUPPLIER OF

SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS CAR RADIOS)
Only 5/- each, plus large S.A.E. (Uncrossed P.O.'s please, returned if service sheets not available.)

C. CARANNA 71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request.
Mail order only.

SITUATIONS VACANT

SERVICE ENGINEERS-we are an old established electronics company. but headed by a young management team and we need you to help us. Age is no barrier to a high salary as you will find out when you join us. If you have experience in T.V.. Radio or Hi-Fi Service and want a job that looks ahead phone Michael Ader at 01-636 9606 .

RADIO TECHNICIANS

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenhani and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physies, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of Electro-mechanical equipment will be an advantage.
Salary. Scale is from $£ 915$ at 19 to $£ 1,189$ at 25 (highest pay on entry) rising to 11,374 . These scales are being further increased at 1.1.70.) Posts are unestablished, but opportunities exist for establishment and also advancement to higher grades up to $£ 2,145$ with a few posts carrying still higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
RECRUITMENT OFFICER (RT 37/54)
GOVERNMENT COMMUNICATIONS HEADQUARTERS,
OAKLEY, PRIORS ROAD,
CHELTENHAM, GLOS. GL52 5AJ

SITUATIONS VACANT

(continued)

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radic, TV, Electronics, etc. Write for 132 page Handbook-FREE. Please state subject. BRITISH INSTTTUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT

(continued)
ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering -Mech., Elec., Auto., Electronics, Radio Computers, Draughts., Building, etc. For ful Computers, Draughts, Building, etc. For full details write for FREE 132 page guide:
BRITISH INSTITUTE OF ENGINEERING BRITISH INSTITUTE OF ENGINEERING
TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

AIR FORCE DEPARTMENT
 Vacancies at RAF Sealand, near Chester RAF Henlow, Bedfordshire and RAF Carlisle, Cumberland

 interesting and vital work on RAF radar and radio equipment for:
RADIO TECHNICIANS

Minimum qualification, 3 years training and practical experience in radio engineering.
Starting pay according to age, up to $£ 1,130$ p.a. (at age 25) rising to $£ 1,304$ p.a. with prospects of promotion.
5 day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to:

Ministry of Defence CE3h(Air)
Sentinel House
Southampton Row
London W.C.1.
APPLICANTS MUST BE UK RESIDENTS

TECHNICAL TRAINING by
 ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
 First-class opportunities in Radio and Electronics await the I C S trained man.

 Let I C S train YOU for a well-paid post in this expanding field.1 C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELECTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION
* P.M.g. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of IC S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTRRYATIONAL
 correspondence
 SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS You!

International Correspondence Schoois (Dept. 173) Intertext House, Stewarts Road, London, S.W.8.
NAME
Block Capitals Please
address \qquad
1

MISCELLANEOUS

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions 19/6 C.W.O. 'Circuitetch', 12 Cambridge Road, St. Albans, Herts.

BUILD IT in a DEWBOX quality cabinet. 2 in. $x 2$ tin. x any length, D.E.W. Ltd., Ring wood Road, FER NDOWN, Dorset. S.A.E. for leaflet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10s (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.
MUSICAL MIRACLES. Send S.A.E. for details of Rhythm Modules, versatile basspedal unit, self-contained with unique effects, kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meter's, 25/- post paid. HURRY. D.E.W. Ltd. 254 Ringwood Road. Ferndown, Dorset.

YOUR CALL SIGN ENGRAVED. White Letters Black Plate 6×1 in. $5 / 6.2 \times \frac{1}{2}$ in. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled. Northern Road, Cosham, Portsmouth. PO6 3EP.

THE NEW

ELECTRONIC MUSIC FOR YOU

Then how about making yourself an electric organ Constructional data avallablefull circults, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24
stops-uses 41 valves. With its variable stops-uses 41 valves. With its variable
attack you can play Classics and Swing. Write NOW for free leaflet and further details to C. \& S., 20 Maude Street, Darlington, Durham. Send 4d. stamp.

ELECTRONIC SOLITAIRE, Build this game from complete kit. Over 32,000 combinations. Hours of intrigue, relaxing. challenging! Full kit and instructions $55 /-$ Educates in binary logic. D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.
BRAND NEW Sangamo Weston Domestic Time Switches. Models S.302, in makers Boxes. Normally $£ 4.14 .0 \mathrm{~d}$. Special offer, without plug, £3.0.0d. $+5 /-$. p. \& p. Hurry, only 40 available. E.P.H. Co., 17 Cambridge Road, Ellesmere $\underset{\text { Port Wirral, Cheshire. }}{ }$

A Two-way Intercom Set, Ideal for all 2 -way communication, indioor/outdoor use, home/ office use. They will work up to great distances. No G.P.O. 1lcence required. Made to high standard Government specifications As used in Army Communications. The complete set ready to use, nothing more to buy. Batteries suppled. Bargaln offer The set $£ 2.10 .0$. Post
and Packing 10/-, Dept. PW

CHIOBE SHIENTIFIG LTD

38 BRIDGE END,
MEADOW LANE, LEEDS 1.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $\frac{t-20}{}$ watt, 12/6'Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.

SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6, P\& P $1 / 6$ S A E for details and lists WHLSIC ELECTRONICS LTD., 6 Copley Road, Doncaster, Yorks.

HI-FI loudspeaker systems for the home constructor, cabinet kits, the new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding, speaker fabric (samples on request) and all other necessary components. Send 5 d in stamps to: AUDIOSCAN, Dept. PW, 4 Princes Square, Harrogate, Yorks.

RECEIVERS \& COMPONENTS

 (continued)
WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS $2 \mathrm{in} . \times$ 4in. packed with semiconductors
and top quality resistors, capacitors, diodes, etc. Our price, 10 boards, $10 /=$, P. \& P. 2/-. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for $£ 1$. P. \& P. $3 / 6$. With a guaranteed minimum of 85 transistors. 100 boards $65 /-$, P. \& P. 7/6. With a guaranteed minimum of 350 transistors.
GIANT PANELS. $5 \frac{1}{2} \times 4 \mathrm{in} .$, min. 20 transistors, $9 \times 56 \mu \mathrm{H}$ inductors, resistors, diodes etc. 3 for $£ 1$. P. \& P. 2/-.

PANELS with 2 power transistors sim. to OC28 on each board + components, 2 boards ($4 \times$ OC28) 10/=. P. \& P. 2/-
TRIM POTS. On $2 \times 4 \mathrm{in}$. boards + Ta caps and other components. 100Ω, $500 \Omega 15 \mathrm{~K}$., 20K. State requirements. 5 boards 10/-, P. \& P. 2/-.

NPN GERMANIUM TO5 1 WATT POWER TRANSISTORS. On small heat sink, on $2 \times 4 \mathrm{in}$. panel. 5 for 10/-. P. \& P. 2/-.
POWER TRANSISTORS. SIm. to 2N174 ex eqt of Finned Heat SInk (10D). 4 for £1. P. \& P. 5/-,
ORGAN BUILDERS' SPECIAL 300 TO18 TRANSISTORS +200 Si DIODE GATES On panels. \&4. P. \& P. 6/-.
OVERLOAD CUT OUTS. Panel mounting in the following values ... 5/= each. 2, 3, 4, 10 amp. P. \& P.1/-,

MINIATURE GLASS NEONS, $12 / 6$ doz. P. \& P. 1/-.
PAPST FANS, Powerful Extractor/Blower fans. 230/250V. 100 c.f.m., 2,800r.p.m. 35/-. P. \& P. 5/6 ea. MICRO SWITCHES, miniature button type. 10/doz. P. \& P. 1/6.
LONG ARM TOGGLE SWITCHES, S.A.S.T 13/6 doz. D.P.S.T. 15/- doz.D.P.D.T.22/6. P. \& P all types 2/-doz.
NEW SPRAGUE $0.22 \mu \mathrm{~F} 250 \mathrm{~V}$. small capacitors. 5/-doz, P, \& P, 1/-
NEW SPRAGUE ELECTROLYTICS, $4 \mu \mathrm{~F} 150 \mathrm{~V}$. 5/-doz. P. \& P. 1/-.
LARGE CAPACITY ELECTROLYTICS
4itin, 2In, dlam, Screw terminals.
All at 7/6 each. Post free.
$\begin{array}{ll}4,000 \mathrm{mF} & 72 \mathrm{~V} \mathrm{d.c.} \text { wkg. } \\ 10,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. wkg. }\end{array}$
$\begin{array}{ll}10,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. wkg. } \\ 25,000 \mathrm{mF} & 12 \mathrm{~V} \text { d.c. wkg. }\end{array}$
DIODES, Ex eqpt., silicon 150 PIV 10 amp 4 for $10 /-$ 150 PIV 20 amp 4 for $£ 1$
KEYTRONICS 52 Earls Court Road,
London, W.8.
Mail order only

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. Stephens James Ltd., 70 Priory Road, Liverpool 4 Tel. 051-263-7829.

VALVE BARGAINS

Any 5-9/-, 10-14/-, 100 £5.10.0.
From the list below:-
ECC82, ECC83, ECL80, EF80, EF85, EY86, PCC84, PCF80, PCL82, PCL83, PL36, PL81, PL82, PL83, PY33, PY81, PY82, 30F5, 6-30L2, 30FL1, ALL VALVES SET TESTED. P \& P $1 /-$ Velco Electronics, 62 Bridge Street, Ramsbottom, Bury, Lancs.

COMPONENTS

Samples from our catalogue: Geared motors $300 \mathrm{rpm}-1 \mathrm{r} / 24 \mathrm{H}$ from $7 / 6$; 15 v . 300 mW Zeners $3 /-10 \mathrm{~K}+10 \mathrm{~K} 2 \% 3$ in ganged pots, $20 /-, 220$ ohm 200 watt resistors 7/6; 6d stamp for catalogue.
F. HOLFORD \& CO.

6 Imperial Square, Cheltenham.

RECEIVERS \& COMPONENTS

(continued)

BRAND NEW SEMICONDUCTORS

IN914	1/6	2N2220	40361	12	BCY39	
IN916	1/6	2N2221 5j-	40362	14/6	BCY70	5/8
IN4007	4/6	2 N 3222 5-	AC107	8/6	BGY71	
IS021	4)	2N2369A5/6	${ }^{\text {ACl26 }}$	4-	BCY72	
15025	5/-	2N2646 11/6	Ac127	3/-	BD124	
18120	$2 / 6$	2N2904 8J-	AC176	5/6	BF115	/6
18130	$2 / 6$	2N2904A8/-	AC187	12/-	BF167	3/6
IS131	$2 / 6$	$2 \mathrm{~N} 29058 /-$	AC1	12/-	BFI80	8/6
18132	$2 / 6$	2N2905A8/-	ACY17	5-	BF184	7/6
AA119	2/-	2N-2906 8/-	ACY18	5/-	BF19	B/B
BYZ10	9/-	2N2906A8/-	ACYI9	51-	BFX12	5/6
BYZ11	716	2N 2926:	ACY 20	5-		16
BYZ13	5/	Green 3/6	ACY21	51	BFY50	4/6
0 A 5	$2 / 6$	Yellow ${ }^{\text {a/3 }}$	ACY22	41 -	BFY51	4/8
OA79	$1 / 9$	2N3053 6/6	AD140	81	BFY52	B
OA31	1/8	2N3054 12/6	AD149	8/-	BSX19	
0 A85	1/8	2N3055 16/-	AD161	7/6	BSX20	
0491	1/6	2N3391 7/6	AD162	$7 / 6$	BSY26	
OA200	2/-	2N33914 $6 /-$	AF114	51-	BEY27	
OA212	2/-	2N3393 6/6	AF116	$5 /-$	B8Y28	
2N696	5/-	2N3402 8/G	AF117	5 -	B8Y29	
2 N 697	5/-	2 N 3403 9-	AF124	5 5-	BSY95A	
2N705	$2 / 6$	2N3404 12/6	AF126	51.	NKT403	
2N706A	3/-	${ }^{2} \mathrm{~N} 340512 / 8$	${ }_{\text {AF }}{ }^{\text {A } 187}$		NK	-
${ }_{2}^{2 N 1131}$	$9 / 6$ $9 / 6$	$\begin{array}{ll} 2 N 3702 & 4 /- \\ 2_{N} 3703 & 4 / 6 \end{array}$	$\begin{aligned} & \text { AF } 181 \\ & \text { AF } 186 \end{aligned}$	8/8	NKT4	-
2N1302	4/6	2N3704 5/6	AF239	12/6		16
2 N 1303	4/8	2N3705 4/6	AFZ12	5/6	5	
2 N 1304	5/6	2N3706 4/-	Asy26	5/6		
2N1305	5/6	2N3707 4/-	ASY23	5/6	OC26	$8 / 8$
2 N 1306	8/8	2N3708 4/-	48221	7/6	OC28	
2N1307	8/8	2N3709 4/-	BC107	$3 / 6$	0 C 35	
2 N 1308	$81-$	2N3710 4/-	BC108	3/6	${ }^{0} \mathrm{C} 36$	$8 / 8$
2N1309	8/-	2N3711 4/-	BC10	3/8	OC44	
2 N 1613	8/6	2N3819 9/-	BC113	8/6	OC45	$2 / 6$
2N1711	8/6	2N3820 20\%-	BC147	$5 /$	$0 \mathrm{OC7}$	
2 N 1893	81-	2N3823 $21 / 6$	BC148	4/6	0 C 72	$2 / 6$
3 N 21471	17/6	2N4058 $6 / 6$	B0149	5 -	$0 \mathrm{OC7}$	
2N2148	1/6	2N4059 5/-	BCY31	4/8	OC8	
2N2160 1	1/6	2N4060 5/-	BCY32	$7 / 8$	ocis	$4 / 6$
2 N 2217	8/-	2N4061 5/-	BCY33	5/8	OC139	
2 N 2218	6/-	2N4062 5/8	BCY34	4/6	0 Cl 40	
2N2219	81	40250 16/8	BCY 38		ORP12	
POST \& Packing $1 / 6$ per order Send 6d. stamp for complete list, Over 1,000 types Semiconductors in stock. Capacitors, Resistors and Pots also available.						
A. MARSHALL \& SON						
(London) LTD.						
28 Cricklewood Broadway, London, N.W. 2						
01-452 0161/3						

NEW VHF KIT

Receives Television Sound, Ambulances, Aircraft, Radio 2, 3 and 4 on VFF etc.
This novel littie set will give you endless hours of pleasure and can be built in one evening. The Kit comes with easy Complete with built in Jack Plug Socket for use with Earphones or Amplifier,

ONLY 57/-. P. \& P. FREE U.K. ONLY Postal Orders, Cheques to
Dept. P.W. 2
Galleon Trading Co., 298A Lodge Lane, Romford, Essex.
BRAND NEW ELECTROLYTICS, $15 / 16$ volt, $0.5,1,2,5,10,15,20,30,40,50,100,200$, mfds.* 8/-per dozen, postage 1/-. The C.R. Supply Co., 127 Chesterfield Rd., Sheffield S8.

INTEGRATED CIRCUITS at lowest price GE Type PA234 1 Watt Audio Amplifier, Few only at $17 / 6 \mathrm{~d}$, each inc. data. P. \& P, C.W.O. JEF ELECTRONICS, 12 York Drive, Grappenhail, Warrington, Lancs.

Mail Order Only.

AERIALS

BAKER and BAINES

FOR TELEVISION and LOFT AERIALS

Examples of prices: FM dipole $21 / \mathrm{-}$, H $38 /-$, BBC dipole $30 /-$, $\times 38 /-$, H 42/- 3 ele $89 /-$, ITA 3 ele $26 / \mathrm{m}$. 5 ele 34/-, 8 ele 47/6. 11 ele 57/6, double 8 112/double 11 140/-, combined BBC/ITA $1+545 /-, H+5$ 69/-, X+575/-, BBC2 14 ele 37/-, 18 ele 54/-, 22 ele 63/double 22 142/-, Loft speclal BBC/ITA 15 complete with pole and brackets $37 /-$. Prices include clamps and P.P. CWO, state channels please.

11 DALE CRESCENT, TUPTON, CHESTERFIELD

> PLEASE MENTION "'PRACTICAL WIRELESS" WHEN REPLYING TO ADVERTISEMENTS

Guaranteed and Tested 24-HOUR SERVICE

5	$5 / 6$	DL96	6/8	EY86	PL500	12/9
185	4/8	DY86	$5 / 8$	EZ80 3/9	PL504	18/8
1 T 4	$2 / 9$	DY87	5/3	EZ881 4/6	PY32	10/-
384	5/9	EABC80	5/9	KT61 8/3	PY33	10/-
3 V 4	$5 / 9$	EBC41	9/9	KT68 15/9	PY81	5/-
6AQ5	4/6	EBFB0	8/-	N78 14/6	PY82	$5 /-$
6L18	$61-$	EBF89	$5 / 8$	PABC80 6/9	PY83	5/8
25L6GT	4/6	FCC82	4/-	P086 10/8	PY88	6
30 C 18	$8 / 6$	ECC83	4/8	PC88 10/8	PY800	$7 / 8$
OFL1	18/6	ECC85	5/6	PC97 8/3	PY801	8/8
0 FL	14/8	ECH35	6/6	FC900 $\quad 7 / 6$	R19	$8 / 8$
30 FL 1	11/9	ECH42	10/6	PCC84 6/3	U25	12/9
30 P 4	$11 / 6$	ECH81	5/8	PCC89 8/8	U26	11/8
$30 \mathrm{P19}$	11/6	ECL80	6/8	PCC189 11/6	U191	$12 / 8$
30 PL 1	13/6	ECL82	6/3	PCF80 8/-	UABC80	10 8/8
CCH35	9/9	ECL8 8	7/6	PCF801 6/6	UBC41	$8 / 8$
CL33	17/6	EF37A	6/-	PCF805 8/6	UBF89	6/8
DAC32	6/9	EF39	4/6	PCF80811/9	UCC84	7/8
DAF91	4/3	EF80	$4 / 9$	PCL82 8/8	UCC85	6/6
DAF9 ${ }^{\text {d }}$	6/3	EF85	$5 / 3$	$\begin{array}{ll}\text { PCL83 } & 8 / 9\end{array}$	UCF80	8)-
DF33	$7 / 6$	EF86	$6 / 8$	PCE84 7\%	UCH42	10/6
DF91	$2 / 9$	EF89	$4 / 9$	PCL85 819	UCH81	6/3
DF96	6/3	EF183	5/8	PCL86 ${ }^{-8 / 8}$	UCL8 2	6/9
DK32	$6 / 9$	EF184	5/3	PFL20011/9	UF41	$10 / 6$
DK91	$5 / 6$	EH90	6)-	$\begin{array}{ll}\text { PL36 } & \text { 9/3 }\end{array}$	UF89	6/6
DK96	6/6	EL33	$8 / 8$	PL81 7/-	Ul4i	10/3
DL3'5	$4 / 9$	EL41	$10 / 8$	PL82 6/9	UL84	$8 / 8$
DL92	5/9	ELB4	4/8	PL83 6/9	UY41	$8 / 8$
DL94	5/9	EYS1	$7 / 3$	PL84 6/8	UY85	$5 / 8$

GERALD BERNARD
83 OSBALDESTON ROAD STOKE NEWINGTON LONDON, N. 16

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors Loft Mounting, Arrays, 7 element, $37 / 6$. element, 60/-. Wall Mountine ${ }^{52 / 6}$. 18 Cranked Arm, 7 eloment, $60 /-$ I1 element 67/-. 14 element, $75 /$-. 18 element, 82/6. Mast Mounting with 2 in . clamp. 7 element 42/6. 11 element. 55/-. 14 element, 62/-. 18 element, 70/-. Chimney Mounting Arrays Complete. 7 elemont, $72 / 6$. 11 element, $80 /=$ 14 element, $87 / 6$. 18 element, 95/-. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from $75 /-$ State clearly channol number required
on all orders.

BBC • ITV AERIALS
BBC (Band 1). Tele-
 STT, 30/- "H", £2.15.0. ment loft array. $30 / \mathrm{m} .5$ element. 40/- 7 element 50/-. Wall mounting. 3 ele ment. 47/6. 5 element 52/6. Combined \quad BBC
ETV. Loft $1+3.40 /-; 1+5$ 50/- Loft $1+3.40 /-; 1+5$ mounting $1+3,57 / 6 ; ~ 1+5 ;$
6\%/6: Chimney 1+3, 67/6; $676 ;$ Chimney $1+3,676$;
$1+5,75 /$ transistor preamps, $75 /$.
COMBINED BBC1 - ITV - BBC AERIALS $\quad 1+3+9, \quad 70 /-\quad 1+5+9, \quad 80 /$ $1+5+14,90 /-1+7+14.100 /-$. Loft mounting F.M. (Band 2). Laft S/D $15 /$

3 element 55% Externai units "H" 32/6 co-ax. cable 8d. yd. Co-ax. plugs $1 / 4$ Outlet boxes. 5%. Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \& P. 6/-. Send 6d stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884

> PLEASE MENTION
> "PRACTICALWIRELESS'" WHEN REPLYING TO ADVERTISEMENTS

BARGAIN BASEMENT BABY ALARM / INTERPHONE

Ful1y
ully transistorised. Master \& sub Interphone. Only $5^{\prime \prime} \times 3^{\prime \prime} \times 1^{*}$. Crystal clear 2 -way conversations.
 house, etc.). post 3/6. G'teed 7-day trial offer.
 Long connecting lead \& batt. supp.

FANTASTIC

SPEAKER BARGAIN Famous English, $12^{\prime \prime} \mathrm{high}$ lux heavy cone, 10 watts speaker wins b P In tweeter. 3 or 15 ohms. (P. \& I. 4/9)35/-
2 for $66 /-$ (P. \& I. 6/9).

NEW RELEASE
HI-FI COLUMN
SPEAKER CABINET
Beautifully made. Suitable for 7-12 speakers. Rosewood finish. Grey coth front measures $24^{\prime \prime} x$ ${ }^{13} 3^{\prime} \times 10^{\circ}$ with tweeter hole above. 69/6 (Carr. 10/-)
With $12^{\prime \prime}$ speaker as advertised above 99/-(carr. 10/-).
HI-FI HORN ${ }_{\text {Add }}^{10}$ this. ohms unit to your existing speaker system and create real live sound!
(P. \& I. 3/6) 25/6

Variable cross-over unit (for Horn) (P. \& I. 2/6) 21/-

HI-FI PICK-UP
Your reproduction is only as good as your pick-up.
Our diamond turnover unit assures quality sound. Iono 16/-; Stereo 26/-; Post 1/9. Send S.A.E. for Catalogue.

MULTIMETER

Measures AC/DC $0-1,000 \mathrm{v} .1$ AC/DC $1,000 \mathrm{ohms} / \mathrm{V}$. DC ourrent $150 \mathrm{M} / \mathrm{A}$. checking faults in household and for electrics. Guaranteed.
. \& I. 3/6) 39/6
MICROPHONE SNIPS!
High Impedance Crystal with stand (as $35 / 6$ (P. \& I. illust.) 35/6 2/6) Foster Dynamic Model 50K/ ohms, response $50 / 15000 \mathrm{c} / \mathrm{s}$. Vocal perfection. $55 /=$ (P. \& I.

ELECTRAMA

1 George Street, Hailsham, Sussex.

MOBILE S.W. LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6, plus 3/6. Extra coils £3.17.6, plus 3/-.
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES Dover Road, off Ansdell Road, Blackpool.

FसHIM

FANTASTICALLY POPULAR

* TAPE $\quad \star$

We offer yon fully tensilised polyester/mylar and P.V.c. tapes of identical quality hi-f, wide rang recording characteristics as top grade tapes. Quality more coppers than acetate. sub-standard, jointed on cheap imports. TRY ONE AND PROVEIT YOURSELI Standard Play

3 in	1501t.	$2 / 3$
4in.	300 ft .	4/6
5 in .	60015.	$7 / 6$
$5{ }^{3} \mathrm{in}$.	900ft.	10/6
7 in.	1,2001t	12/6
	Double Play	
3 in.	300 ft .	$4 /$
4 in .	600 ft .	81
5 in.	1,200ft.	15/-
5 in.	1,800ft.	19/6
7 in .	2,400ft.	27

3 in	Long Play	
4 in .	450 ft .	
5 in.	900t.	10
$5 \frac{3}{2} \mathrm{in}$.	1,200ft.	13
7 in .	1,800tt.	
	Triple Play	
4 A .	900 tt .	
5 in .	1,800ft.	25
$6 \frac{1}{4} \mathrm{in}$.	2,400it.	34
7 in .	3,600ft.	4

pastages 1/-reel
Post Free less 6% on three reels.
quantity and Trade enquiries invited.

* Hurry Hurry! HUGE SUMMER SALE
* AT ALL * BRANCHES

PLEASE CALL AND INSPECT WITHOUT OBLIGATION IF UNABLE TO CALL SEND LARGE S.A.E. FOR YOUR FREE FLOG LIST NOW

All items previous 1y advertised Fiailable. Huge HiI sind Component tocks at all branand view without
obligation.

\star LONDON

10 Tottenham Court Rd. (MUS 2639)
\star BRIGHTON
6 Queens Rd. (Tel: 23975)
夫 PORTSMOUTH
350-352 Fratton Rd. (Tel: 22034)
SOUTHAMPTON
72 East Street (Tel: 25851)
\star MAIL ORDER
Devonian Court, Park Crescent Place, Brighton (Tel: 680722)

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2
TeI. PARK 5641/2/3

Z \& I AERO SERVICES LTD.

Please send all correspondence and Mail-Orders to the Head Office
When sending cash with order, please include $8 / 6$ in $\&$ for postage and handing minimem charge e/b. No c.o.d. orders accepted.

Retail Shop 85 TOTTENHAM COURT ROAD LONDON WI
Tel. LANgham 8403
Open all day Saturday

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 OL 2 \& $81-$ \& 6AK6 11/6 \& 6C4 5/6 \& 6P25 13/- \& irst 0u \& Ity \& \& Fill \& G1 \& ranteed \& , \& 2/- \& EMC84 \& $7 /-$ \& 105 \& 19 \& 40/-

\hline 0 AB \& $8 / 6$ \& $6 \mathrm{AL} \mathrm{S}^{\text {a }}$ 3/- \& 605 6 6/6 \& 6 P 28 12/- \& irst Mua \& ity \& \& Fill \& 3 \& ranteed \& ECH81 \& $5 / 3$ \& EM8 87 \& 101- \& PCF80612t- \& U20 \& 121-

\hline O82 \& 8/- \& 6AM4 22j- \& ${ }_{6 C 6} 60$ \& $6{ }^{697} \quad 71-$ \& \& \& \& \& \& \& ECH83 \& 81 \& EN32 \& 30/- \& PCF80814/6 \& U22 \& $81 /$

\hline OB3 \& 91- \& 6AMS 5/- \& ${ }_{6089}^{7 /-}$ \& 68.47 5/- \& \& \& \& \& \& \& ECH84 \& 9/- \& EN91 \& 61- \& PCL80 15/- \& U25 \& 14/6

\hline OC3 \& 6/6 \& 6AM6 4/- \& $\mathrm{6C9}_{6 \mathrm{CB6}} 17 / 3$ \& \& \& \& \& \& \& \& ECLS0 \& $8 / 6$ \& EY51 \& 7/6 \& PCL81 9 - \& U26 \& 14/6

\hline OD3 \& 6/- \& $\begin{array}{lr}\text { 6AM8 } & 8 /- \\ \text { 6AN8 } & 10 /-\end{array}$ \& ${ }_{60066}^{608}{ }^{5 /-}$ \& $\begin{array}{ll}68 \mathrm{H} 7 & 4 / 6 \\ 68.7 & 7 /\end{array}$ \& \& \& \& \& \& \& ECLE1 \& $7 / 6$ \& EY80 \& 816 \& PCL82 7/- \& U31 \& 8/-

\hline OM10 \& 11/- \& $\begin{array}{cc}6 A Q D & 6 /- \\ 64\end{array}$ \& 6ED6GA \& 681779T 6j- \& \& \& \& \& \& N \& ECLL82 \& 11/6 \& EY81 \& 70/- \& PCL83 $12 /-$ \& U33 \& 301-

\hline 1 AX 2 \& 12/- \& $6 \mathrm{AQ6}$ 10/- \& $6 \mathrm{CG7}$ 8/- \& 68N7GT 5/6 \& \& \& \& \& \& Nid \& ECLP3 \& $11 / 6$
$10 /-$ \& EY84 \& $10 /-$
$9 / 6$ \& $\begin{array}{ll}\text { PCLE4 } & 8 /- \\ \text { PCLE5 } & 8 / 6\end{array}$ \& $$
475
$$ \& $$
\begin{aligned}
& 41- \\
& 10 \%
\end{aligned}
$$

\hline 183 FT \& 71- \& 6AR5 6/- \& $6 \mathrm{CH6}$ 11/- \& 68Q7 7/- \& \& \& \& \& \& \& ECL8 \& 10/6 \& EY86 \& 7/6 \& PCL86 $8 / 6$ \& U281 \& 8\%-

\hline 1C5GT \& 5/- \& 6AR6 6/- \& 6CL6 8/- \& 68 P 7 7/- \& \& \& \& \& \& \& ECL86 \& 88 \& EY87 \& $81-$ \& PCL88 17/ \& U282 \& \%

\hline tritGT \& 8/- \& 6AS5 $6 / 6$ \& ${ }^{6} \mathrm{CLS} 815$ \& 6897 31- \& \& \& \& \& \& \& EF9 \& 81 \& EY88 \& $8 /-$ \& PCL800 17/6 \& 0403 \& -

\hline 1H5GT \& $7 /$ \& 6.AS6 7/- \& 6CU6 12/- \& $6 \mathrm{T8}$ 6/- \& \& \& \& \& \& \& EF39 \& 81. \& EZ40 \& 81- \& PCLSO1 15/- \& U404 \& $5 /-$

\hline 1 L 4 \& 3/- \& 6AS7G 15/- \& 6CW4 12/- \& 6U4GT 12j- \& \& \& \& \& \& \& EF40 \& $91-$ \& EZ41 \& $8 / 6$ \& PD500 30]- \& CABCS \& 306\%-

\hline 1R5 \& 6/- \& 6AT6 4/6 \& 6CY5 $7 /$ \& $6{ }^{6} 8$ 8/- \& Combingi effe \& \& \& , \& - \& ander. and \& EF41 \& 11/6 \& EZ80 \& $5 /-$ \& PE06-40N \& UAF42 \& 9/6

\hline 184 \& $5 /-$ \& BAU4GTA \& ${ }^{6} \mathrm{CY} 711 /-$ \& 6V6GT 6j- \& import restric \& 8 \& us \& introdu \& ce an \& merease of 1d. \& EF4) \& 13j- \& E281 \& 5/- \& 35/- \& UBC41 \& $8 / 6$

\hline 185 \& 4/6 \& 6aU6 9/- \& 6D3 716 \& 6×4 4/6 \& per shilling \& ch must \& be \& ed to the \& e tota \& of each order. \& EFS4 \& 10/- \& GY501 \& 15/6 \& PEN4s 6/6 \& URC81 \& $8 / 6$

\hline 1 T 4
1U4 \& 4/- \& $\begin{array}{lr}\text { 6AU6 } & 5 /- \\ 6 A U S & 101-\end{array}$ \& $\begin{array}{ll}\text { 6D4 } & 17 / 6 \\ 6 \mathrm{DC6} & 13 / 6\end{array}$ \& $6 \times 5 \mathrm{~T}$ 5/- \& \& \& \& \& \& \& EF55 \& 121- \& CZ32 \& 976 \& PEN45DD \& UBF80 \& 6/6

\hline 1U4 \& $8 / 16$
$8 / 6$ \& 6AU8 10/- \& $\begin{array}{cc}\text { 6DC6 } & 13 / 6 \\ \text { 万DK6 } & 8 /-\end{array}$ \& 6Y6G 11/6 \& $\begin{array}{ll}\text { 12E14 } & 52 / 6 \\ 12 \mathrm{~K} & 10 /-\end{array}$ \& 30 Pl 19 \& \& 5751
5768 \& 11/- \& E83F 20/- \& EF80 \& 4/6 \& G2i3 \& $13 / 6$
101 \& 12/- \& UBF89 \& $7 / 16$

\hline 1 V 2 \& 9/- \& 12/- \& 6DQ6B 11/- \& 7 C 5 14/6 \& 12 kr
12/- \& $30 \mathrm{PLi3}$ \& 17/6 \& ${ }^{5} 886$ \& 401- \& E88CC 12/6 \& EF88 \& $6 / 6$ \& HZ34 \& 101- \& PEN384 9/ \& UC92 \& $8 / 6$
$8 /-$

\hline 1 X 2 B \& 7/- \& 6 AY 6 5/6 \& 6D84 15/- \& $757 \quad 22 / 8$ \& I2Q7GT 5/6 \& 30 PL \& 417 - \& 08080 \& 2\%/6 \& E130L 100/- \& EF86 \& 6/- \& KTtib \& 24/- \& PEN453DD \& UCC85 \& 6/-
$7 /-$

\hline 1Z2 \& 251- \& 6AW8A11/- \& ${ }^{6 D T 5} 81-$ \& 7 Y 4 11/- \& 12907 4/6 \& $35 \mathrm{~A} \overline{5}$ \& 101- \& 61.46 \& $27 / 6$ \& ELROF 17/6 \& EF89 \& 5/- \& KT88 \& 29/- \& 101- \& UCF'0 \& 9/6

\hline 2C26A \& 81- \& $6 \mathrm{AX} 4 \mathrm{G}^{\prime} \mathrm{S}^{18}$ \& ${ }_{6}$ EAS 11/- \& 7Z4 7/6 \& 12847 6/- \& 3585 \& 12/- \& 6146 B \& 47/6 \& ES10F $57 / 6$ \& EF91 \& $4 /-$ \& MH4 \& 7/- \& PF96 107- \& UCH21 \& $9 / 6$

\hline $2 \mathrm{C51}$ \& 81/ \& 8/- \& 6F6GB 6/6 \& 9BW6 7/- \& 128K7 $6 / 6$ \& 35 CL \& 8/6 \& 6197 \& 20/- \& EAF80110/- \& EF92 \& $7 / 6$ \& M $\mathrm{MH} 4^{\text {d }}$ \& $9 /-$ \& PFs18 14/- \& UCH42 \& 12%

\hline 2CW4 \& 12/- \& 6AXō¢T \& ${ }^{6} \mathrm{~F} 7 \mathrm{y}$ 9/- \& 9D2 3/6 \& 12SQ7 7/6 \& 35 OS \& 121- \& 6360 \& 25/- \& EABCSO 6/- \& HF93 \& 4 f - \& MLL4 \& 8/- \& PFL20013/- \& UCH81 \& 6/6

\hline 2 D 21 \& 61- \& 12/6 \& 6FL1 6/- \& $10 \mathrm{C} 2101-$ \& 19AQ5 7/6 \& 35 L 6 T 7 \& T 81 \& 6386 \& 751- \& EBCS3 81- \& EF94 \& $51-$ \& MSPEN \& T \& PL33 8/- \& LCL81 \& 10/-

\hline ${ }^{2 \mathrm{E} 26}$ \& $27 / 6$ \& $6 \mathrm{AX7}$ 10/- \& 6 F 13 6/6 \& $100281-$ \& 200V 62/6 \& 35W4 \& 4/6 \& 6893 \& 47/6 \& EBC41 9/6 \& EF95 \& $5 /-$ \& (\& 10/- \& PL36 10/- \& UCL82 \& 7\%-

\hline 2×2 \& 5/- \& 6B4G 15/- \& ${ }_{6 F 14}$ 12/- \& 10Fl 18/- \& 20 DL 98 - \& 35Z3 \& 101- \& 6939 \& $401-$ \& EBCS1 6/- \& EF96 \& $3 / 6$ \& N78 \& 19/- \& PL81 $0 /-$ \& UCL83 \& 11/-

\hline 3 A 4 \& 401- \& 6B8G $\quad 2 / 6$ \& \& $10 \mathrm{F9} \quad 10 / 7$ \& $20 \mathrm{LL} \mathrm{18/-}$ \& $35 \mathrm{Z4G}$ \& 4/. \& 7159 \& 15/- \& EBFSO $7 / 6$ \& EF183 \& 61- \& NSP1 \& 66 j- \& PL83 81- \& UF9 \& 10j-

\hline 3D21A \& 40/- \& 68A6 $4 /-$ \& ${ }_{\text {bF17 }}{ }_{\text {bF18 }}$ \& 10818 78 \& ${ }^{20 \mathrm{P} 1}$ 10/- \& $35 \mathrm{Z5}$ \& T $61-$ \& 7551 \& $301-$ \& EBF88 8/- \& EFL84 \& 6/6 \& NSPP2 \& 66/- \& PL83 7/- \& UF41 \& 9/8

\hline $$
3 Q 4
$$ \& $7 / 6$ \& 6BA7 15/ \& \& 10L1 ${ }^{\text {10LD }} 1110 / 6$ \& 20P3 $12 /-$ \& 50 A 5 \& $12 /$ \& 7581 \& $22 / 6$ \& EBF89 6/- \& EF804 \& $201-$ \& ORP12 \& 8/6 \& PL84 6/6 \& UF42 \& 11/-

\hline \& \& 6BE6 $4 / 6$ \& 15/- \& D1110/ \& 20P4 19/- \& 5085 \& 12j- \& $758{ }^{\circ}$ \& 22/6 \& EBL1 12/- \& EH90 \& 71 \& ORP61 \& 5/- \& PL500 13/6 \& UF43 \& 10/-

\hline 4B32 \& $80 /$ \& 6BF\% $15 /$ \& 6 F 25 14/- \& $10 \mathrm{PI4}$ 16/- \& GTB \& $50 \mathrm{L6}$ \& \& 75914 \& $20 /-$ \& EBL31 24/- \& EK90 \& $4 / 6$ \& ORP90 \& 22/6 \& PL504 15/- \& UF80 \& 7/-

\hline $8 \mathrm{BR4GF}$ \& 101- \& $\begin{array}{ll}\text { 6BF6 } & 9 /- \\ 6 B F 7 & 12 /-\end{array}$ \& \& 12AC6 $7 /-$ \& - \& 50L6G \& \& 7895
A 2293 \& \& $\begin{array}{ll}\text { EC86 } & 11 / 6 \\ \text { EC88 } & 11 /-\end{array}$ \& EL34 \& $9 / 6$
$8 / 6$ \& ORP9's \& 22/- \& PL509 30/- \& UF85 \& 778

\hline 5U4G \& 5/6 \& 6BF\% 12J- \& 6GH8 11/- \& 12AD6 B/- \& 25 C [${ }^{12 /-}$ \& ${ }^{50 \mathrm{Cl}}$ \& 13/6 \& A 2293
A 1 \& 197- \& $\begin{array}{ll}\text { EC88 } & 11 /- \\ \text { ECC3t } & 8 /-\end{array}$ \& EL36 \& $8 / 6$
$22 / 6$ \& PABC8
PC86 \& 11/6 \& PL802

PY31
13/-
F/- \& UF89 \& 11/-

\hline 5 SUGE \& $71-$ \& 6BG6G 11/-
6 BH 6
$8 /-$ \& 3GKG 12/- \& 12AL5 $7 / 6$ \& $25 \mathrm{CU6}$ 12/- \& 80 \& 77- \& AZ31 \& $9 /-$ \& ECE40 10/- \& EL41 \& 9 \& ${ }^{\text {PC9\% }}$ \& 81- \& $\begin{array}{ll}\text { PY31 } & 5 /- \\ \text { PY32 } & 10\end{array}$ \& ULP4 \& 11/-

\hline \& $81-$ \& $\begin{array}{ll}\text { 6BH66 } & 8 /- \\ \text { 6BJ6 } & 8 /-\end{array}$ \& 6GW6 11/- \& 12AQS 7/J \& 25L6GT 6/6 \& 83 Al \& 12/6 \& CCH35 \& 9/- \& ECoto 17j- \& EL42 \& 10 \& ${ }^{\text {PC990 }}$ \& $8 / 6$

$9 / 6$ \& $\begin{array}{ll}\text { PY32 } & 10 /- \\ \text { PY33 } & 12 / 6\end{array}$ \& ULS4 \& | 6/6 |
| :---: |
| 10% |

\hline 5Y3GT
5Z3 \& 5/6 \& 6BK4 20/- \& $\begin{array}{ll}\text { 654 } & 9 /- \\ 6.55 \mathrm{CT} & 5 / 6\end{array}$ \& $12 \mathrm{AT6}$ 4/6 \& 25 ZiG 6/- \& 85 A2 \& 7/6 \& CLI_{23} \& $15 /$ \& ECCB1 8/- \& EL81 \& $91-$ \& PCC84 \& 6/6 \& PY80 5/6 \& UM84 \& $71-$

\hline COUG \& 8/- \& 6BK7A 9/- \& $\begin{array}{ll}\text { 6.55GT } & \text { b/6 } \\ 656 & 3 / 6\end{array}$ \& $\begin{array}{ll}\text { 12AT7 } & 6 /- \\ \text { 12AU7 } & 5 / 9\end{array}$ \& $11 /$ \& A3 \& $7 / 6$
$48 /-$ \& CY1 \& 8/- \& ECCR $25 / 9$ \& EL83 \& $7 / 6$ \& PCC8O \& 7/6 \& PY81 5/6 \& UU9 \& $7 / 6$

\hline 6/30L2 \& 14/- \& 6BL7GTA \& 957 $8 /-$ \& 12SV6 5/6 \& $30 \mathrm{A5}$ 7/- \& 90 Cl \& 12/- \& DA1996 \& $7 /$ \& \& EL845 \& $4 / 6$ \& PCC88 \& \& $\begin{array}{ll}\text { PY82 } & 5 /- \\ \text { PY83 } & 8 / 6\end{array}$ \& UY21 \& $9 / 6$

\hline 6A8G \& $5 / 8$ \& ${ }_{6 B N G}{ }^{1 / 7 / 6}$ \& 6K6GT 9/- \& 12AX7 5/6 \& $30 \mathrm{CL5}$ 14/- \& 90 CS \& 25/- \& DF96 \& $7 /-$ \& ECCR $51-$ \& ELSS \& $8 /$ \& PCC189 \& 10/- \& $\begin{array}{ll}\text { PY83 } & 6 / 6 \\ \text { PYS } & 7 / 6\end{array}$ \& UY82 \& $7 /-$
$9 / 6$

\hline 6AB4
$6 A 87$ \& $6 / 6$
$4 /$ \& 6BSG ${ }^{7 / 6}$ \& $\begin{array}{ll}6 \mathrm{KiG} & 2 / 6 \\ 6 \mathrm{KgS} & 9 /-\end{array}$ \& 12AY7 13/8 \& $\begin{array}{ll}30 \mathrm{Cl17} & 15 / \\ 30 \mathrm{cl} & 14 /\end{array}$ \& 90 CV \& ${ }^{251}$ \& DH81 \& 10/- \& EC0s6 8 8j- \& EL90 \& $8 /-$
$8 /-$ \& PCC805 \& $18 /$ \& PY500 20/- \& UY85 \& $9 / 6$
$6 /-$

\hline 6AB
$6 A C T$ \& 4/- \& - 12/- \& $\begin{array}{lr}6 \mathrm{~K} 23 & 9 /- \\ 6 \mathrm{~K} 25 & 15]-\end{array}$ \& 12B4A $9 / 6$ \& $30 \mathrm{C18} 14 /$ - \& 120 B 2 \& 11/- \& DH101 \& 9/- \& ECCSS 7/6 \& EL95 \& 6/6 \& PCC806 \& 10/- \& PY800 9/- \& V139 \& $91-$

\hline fabs \& 15/- \& 6RQ7A 7/- \& \& $\begin{array}{ll}\text { 12BA6 } & \text { 6j- } \\ \text { 12BA7 } & \text { 6/- }\end{array}$ \& \& L50B3 \& 10/- \& DK92 \& 8/3 \& ECCa 9 11/- \& EL360 \& 22/- \& PCE800 \& $15 /-$ \& PY801 9/- \& $V 11111$ \& $8 / 6$

\hline 6AF4A \& 91- \& 6BR7 16/- \& 6L7 6/- \& 12BE6 6/- \& $30 \mathrm{FL12} 17 / 6$ \& \& \& \& 13 \& ECC91 3/6 \& EL500 \& 171- \& PCF80 \& 6/6 \& PZ30 7/- \& VU133 \& $81-$

\hline 6AG5 \& 3j- \& $6 \mathrm{CBRB}^{12 / 6}$ \& 6L12 5/- \& 12BH7 6/- \& 30FL13 8/- \& 812 \& $601-$ \& D \& 131 \& ECC80 ${ }^{\text {E }}$ \& ELS21 \& 10/- \& PCF82 \& 6/3 \& QQV06-40A \& W76 \& $7 /$

\hline 6AG7 \& $6 / 9$ \& 638785 \& 6 LIS 6/- \& 12BT6 4/6 \& 30FL14 14/6 \& 813 \& 75/- \& DM70 \& $61-$ \& ECF'82 6/6 \& ELL8 \& 171- \& PCF\% 4 \& $81-$ \& 105/- \& W107 \& $71-$

\hline 6AH6 \& $101-$ \& 6BW6 $15 / 6$ \& 6 L 19 20/- \& 12 BY 7 10/- \& 30 LI 6/- \& 837 \& 151- \& DYR6 \& $61-$ \& ECF83 14/- \& EM34 \& \& PCF86 \& 9/6 \& Qu37 27/- \& W729 \& $101-$

\hline 6 AJ5 \& 9/- \& 6 BWF 13/- \& 6LD20 5/6 \& 12CU6 12/- \& $30 \mathrm{L15} 16 \mathrm{f}$ - \& 865 A \& 14/- \& DY87 \& $6 / 6$ \& ECFS6 11/6 \& EM71 \& $12 / 6$ \& PCFR8 \& 15/- \& 8P41 5/6 \& X65 \& $91-$

\hline 6AJ8 \& $5 / 3$ \& $6 \mathrm{BZ76}$ 6/- \& 5N7GT 6/6 \& 12DQT 10/- \& $30 \mathrm{L17}$ 16/- \& 884 \& 101- \& DY802 \& $91-$ \& ECF'80. 3 30/- \& EM80 \& 71- \& PCF801 \& \& $\begin{array}{cc}\text { SP61 } \\ \text { TP22 } & \text { 10/- }\end{array}$ \& $$
\begin{aligned}
& \text { Z7000 } \\
&
\end{aligned}
$$ \& 81-

\hline $6 \mathrm{AK5}$ \& 5/- \& $68 \mathrm{Cz7}$ 10/- \& $6 \mathrm{P} 1111 / 6$ \& 12El 20/- \& 30 PI 215 l - \& 5670 \& 101- \& E55L \& 52/6 \& ECH35 11/- \& EM81 \& $3 / 6$ \& PCF802 \& 9 \& TT21 45/- \& Z803U \& 15/-

\hline
\end{tabular}

INTEGRATED CIRCUIT AMPLIFIERS

RCA Type ca3020
Integrated Circuit sudio Arpplifer in TOă encapsulation (size of a small trapsistor); equivaleat to sèven n-p-n 550 mW . Total hat 3 dinces and 11 ressistors. Power output voltage from 3 torm 9 volts.

general electric Type parza

Fpory moulded in-line package equivalent to six n-p-n transistors, one diode and six resistors. It will provide output of up to $1-2$ watts into 15 onms. Battery operation The construction of amplifier using the above integrated The construction of nmplificr using the above integrated P.W. Please note that we only supply the IC's and no other parts are supplied by us.

GKNERAL ELEOTRIG TYPE PAR3G
1-watt Audio Arnulifier suftable for supply voltage of Only 3 capacitors ant 3 resistn re are required for making up a complete anmplitter delivering 1 watt for an input voltage of 600 mW . Epoxy moulited double frulr-in-line package. $\quad 27 / 6$ each, plus 2/-P. \& P.

GENERRAL ELECTRIC Type PAR37
Similar to PA234, but 2 watts, $40 /$-, phes 2/- p.p.
RCA Type CA3036
For Stereo Pre-Amplifiers as described in May issue of Practical Wireleiss, 19/-, plus $2 /-$ p.g.
Motorola MC1709CG
Operational Amplifier. Full data supplied on request. 40/-

NAW LIST OF TRANSISTORS, INTEGRATED CIRCUITS IS HOW READY.
The List gives full specifications and prices of over 200 types of Semiconductors.

Available free on request.

MULTIMETERS

TYPE MF16

D.C. voltage range: $0.0-5-10-50-250-500 \mathrm{~V}$. A.C. voltage range: $0.10-50-250-500 \mathrm{~V}$.
D.C. current range:

Resistance ranges: $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$ The nueter is also cellibrated for capacity and output level measure$\begin{array}{lll}\text { ments. } & \text { Sensitivity } & 2000 \Omega \mathrm{~V} \\ \text { Accuracy } & \pm 2.5 \% & \text { for } \\ & \text { D.C. and }\end{array}$ Accuracy $\pm 2.5 \%$ for D.C. and Dimensions: $4 \frac{1}{2} \mathrm{x} 3 \frac{1}{2} \times 1 \frac{1}{2}$. Price 84.5 .0 . Type 108-1T: 24 range precision portable metar, 5000 -p.v. D.C. Volts: $2 \cdot 5-10-50-250-500-2500 \mathrm{~V}$. A.C. Yolts: 10-50-100-250-500-2900V; D.d. carrent 0-5-5-50-500mA Resistance 2000-20,000 ohms; 2-20 megolms. Power output culibration in A.C. for 600 ohmas line. Complete with prods and batteries, 26.5.0. P. \& P. 5/-.

ZENER DIODES

5 watts Stud Mounted 15% tolerance

$22 V$	D816A	$39 V$	D816G	$68 V$	D817B
$27 V$	D816B	$47 V$	D816D	$82 V$	D $817 V$
$33 V$	D $816 V$	$56 V$	D817A	$100 V$	D 817 G

8 watts Stud Mounted 15% tolerance $\begin{array}{ccccc}4 \cdot 7 V & \text { D815I } & 8 \cdot 2 V & \text { D815V } & 15 V \\ 5 \cdot 6 V & \text { D815A } & 10 \mathrm{~V} & \text { D815G } \\ 68 \mathrm{~V} & \text { D815B } & 12 \mathrm{~V} \text { D815D } & 18 \mathrm{~V} & \text { D815Z } \\ & & \text { All at } 7 / 6 & & \end{array}$

SPECIAL OFFER OF MIMIATURE SILICON RECTIFIER IN5399 1000 piv 1.5 Ampa. Max. range 50A $4 / 6$ IN5408 1000 piv 3 Amps. Max. range 200A 6/3 For quantities of 20 or over prices are $3 / 6$ and $5 /-$ respectively.

DRY REED INSERTS

Glas dry reed inserts approx. $\frac{1}{\text { In }} \mathrm{in}$. din. x lin. long with axial leads. One "make" contact of 100 mA capacity at 50 F . Can be operated by permanent magnet or $30-50$ Amp-turns relay coils. PRICE 18/- per doz, post free.

Dattery Powered Portable Resistance Bridge. Range 0.5 Datery Powerd Portable Resistance Bridge. Range 0.6
to 00 ohms with moltiplier settings of $0.1-1-100-1000$, providing a measuring range of 0.05 tre 50000 ohms. Accuracy in the middle 3 ranges- 0.5% approx. PRICE 815.15 .0 .

TRIAGS TYPE 40432

Gated bi-directional Silicon Thyristors with integral trigger. The triac will controi up to 1440 watts at 240 V mans frequency. Supplied complete with heat sink data sheet and application sheeta for motor control and dimmer cireuits. $37 / 6$ each.

UNIJUNCTION TRANSISTORS 2N2646

Power dissipation 300mW R.M.S. Base-to-Base voltage 35 V max. Peak emitter current 2-0A. Suitable for trigger-

D. G. MOVING COIL METERS

SERIES 70 Rectangular fange $80 \times 72 \mathrm{~mm}$ flush mounted. Body diameter $f 8 \mathrm{~mm}$. Scale length ca 50 mm .

A	60	61		40	46/-
$100 \mu \mathrm{~A}$	621-	1 ma	48/-	600 mA	48/-
20001 A	541-	40 mos	46/-	14	48/-
$400 \mu \mathrm{~A}$	521-	150 mA	46J-	$2 \cdot 5 \mathrm{~A}$	46/-
6 V	821 -	60 V	321-	250 V	53/-
40%	82/-	150 V	82j-	600 V	58J-
SERIES 120DA. Rectangular flange $120 \times 104 \mathrm{~mm}$ flush mounted. Body diameter 68 mm . Scale length ca 95 mm .					
$40 \mu \mathrm{~A}$	821-	25 mA	58/-	15 V	62/-
$60 \mu \mathrm{LA}$	781-	60ina	58/-	60 V	62/-
1001 LA	74/-	1A	$581-$	100 V	62/-
$250 \mu \mathrm{~A}$	65/-	1.5A	58/-	250 V	65/-
$600 \mu \mathrm{~A}$	$601-$	10A	601-	400 V	691-
2-5mA	58/-	40A	64/-	600 y	77\%-

Illustrated leaflet available on request.

Valuabie new hanoboolk FhyETO AMBIIIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

RADIO ENGINEERING
Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. -Telecommunications- Sound Recording - Automation Recactical Radio - Radio Practical Radio
Amateurs' Exam.

ELECTRICAL ENG. Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Engineering.

CIVIL ENGINEERING
Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining -

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic. Eng. Applied Electronics - Prac. Applied Electronics Terrac. Electronics- Radar Tech. -
Frequency Modulation Frequency
Transistors.

MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool DesignSheet Metal Work-Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Proship - Metion Eng.

AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Automohile Diesel Maintenance - Automobile Elec. Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICALENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.MUN.E., CITY \& GUILDS, GEN. CERT, OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE job.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting

大 HOW to qualify for rapid promotion.

* HOW to put some letters after your name and become a key man . . . quickly and easily.
* HOW to benefit from our free Advisory and Appointment Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT

CAREER - GUIDANCE

PRACTICAL INCLUDING EQUIPMENT TOOLS

Basic Practical and Theoretic Course for beginners in Radio,T. V., Electronics, Etc A.M.I.E.R.E.City \& Guilds Radio Amateurs' Exam
R.T.E.B.Certificate P.M.G. Certificate P.M.G. Certincate

Radio\& TelevisionServicing Practical Electronics Electronics Engineering Automation

The spectalist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and you should send for your copy now-FREE and without obligation.

POST NOW!

SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT		The mayfair Acclaimed by everyone	
		Favaive	
		过	
-			
$\begin{aligned} & \text { for complete } \\ & \text { fistening satisfaction } \end{aligned}$ greater ada \qquad \qquad $\pm 16.10 .0$			
		TRANSISTORS- SEMICONDUCTORS	
		(tay	

HI-FI equipment to suit EVERYPOOKZT

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD
AND SAVE UP TO £30 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE

Fully
 Illustrated CATALOC

The most COMPREHENSIVE-
CONCISE-CLEAR COMPONENTS catalogue
Complete with 10/- worth discount vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
210 pages of components and equipment.
* 70 pages of microphones, decks and $\mathrm{Hi}-\mathrm{Fi}$ equipment.

6,500 ITEMS

 320 BIG PAGES
[^0]: ADVANCE TEST EQUIPMENT
 Brand new and boxed in original seeled cartons ments in excess of $100 \mathrm{Mc} / \mathrm{B}$ and $\mathrm{D} . \mathrm{C}$ measurementa up to 100 V with accuracy of $+\mathbf{2} \%$ D.C. range 300 MV to 1 KV . A.C. range 300 MY to 300 V RMS. Resistance $\cdot 02-500 \mathrm{M} \Omega$. Price £72.
 VM. 78 A.C. MILLIVOLT METER. Tranistorised $1 \mathrm{MV}-300$ V. Frequency $1 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Price $\mathbf{8 5 5}$.
 VM. 79 UHF MILLIVOLT METER. Transistorised. A.C. range $10 \mathrm{MV}-3$ V. D.C. 1 ohm 10 megohms. Price $\frac{\mathrm{MA}}{2125}$. HIB AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{s}-$ $50 \mathrm{Kc} / \mathrm{s}$. gine or aquare wave. Price $£ 80$. J1B AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{s}-$ $50 \mathrm{Kc} / \mathrm{s}$. Price $£ 30$.
 J2B AUDIO SIGNAL GENERATOR. As per J1B except fitted with output meter. Price T85. TRANSISTOR TESTER. 88\%.10.0. Carriage 10/- per item

 SOLARTRON MONITOR

 ## OSCILLOSCOPE TYPE 101

 An extremely high qnality oscilloscope with time base of 10 cigec to $20 \mathrm{~m} / \mathrm{sec}$, Internal X ampllfer. Separate mains power aupply $200 /$
 250 v . Supplied in excellent condition with cables. probe, etc., as recelved from Ministry. cables. probe, etc., as received from Ministsy.
 68.19 .6 , carriage $30 /$.

[^1]:

 FULLYTKANSISTORISED 2001260 v. A.C. Mains. OUTPUT 10 WATTS R.M.S. cont. into 15 ohms. TRANSISTORS, 9 current types of high quallty by eading manufacturers EQUALISATION to StencTOR SWITCH Characteristics for Gram and Tape Heads. SENSITIVITIES: Magnetio P.U. 4 mV . Crystal or Ceramic P.U. 400 mV Microphono 4.5 mV .
 2.5 mV . RadiolAux or Ceramic $P . U .110 \mathrm{mV}$. FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} 20-20,000 \mathrm{c.p.s}$
 TREBLECONTROL $:+15 \mathrm{~dB}$ to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. NEG FEEEDBACK: 52 dB HASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. FUM LEVEL: -75dB. FARMONIC DISTORTION at 10 Watts 1,000 c.p.s. 0.2% Complete Kit of parts with full constructional details and $1 / \frac{1}{2}$ Gns, point to point whing diagrams. Carr. 12/6. Terms: Deposit 4 Gns. and 9 monthly payments $31 / 1$ (Total $£ 18.3 .9$). Or in Teak or Afrormosia veneer housing as illustrated. 19 Gns.
 housing as illustrated. 19 Gns.
 ALL COMPONENTS ETG. ARE OF A HIGH STANDARD AND
 SUPPLIED BY LEADING MANUFACTURERS.
 BRADFORD 10 North Parade. (Hall-day Wed.) Tel. 25349 BLACKPOOL (Agent) 0 \& \& C. Electronics, 227 Church Street BIRMINGHAM ${ }^{30 / 31} 51$ We Western Arcade opp. Snow Hill DERBY 26 Osmaston Rd. The Spot (Hall-day Wed.) Tel. 41351 DARLINGTON ${ }_{18}$ Priestgate (Hal-day Wed.) Tel. 88043 EDINBURGH ${ }_{133}$ Leth St. (Hall-day Wed.) Tel. Waverley 5766 GLASGOW ${ }_{326}$ Argyle St. (Half-day Tues.) Tel. CiTy 4158 HULL 91 Paragon Street. (Hall-day Thursday) Tel. 20055

 ## RESC
 HI-FI CEMTRES LTD.

 MAIL ORDERS TO: 102 Henconner Lane, Bramiey, leeds 13. No C.O.D. under £1. Terms C.W.O. or C.O.D. £1. Terms C.W.O. or C.O.D.
 Postage $4 / 6$ extra under £2. 5/9 extra under £5. Trade supplied.S. A.E. with enqulries please. Open all day Sats.

 Mail Orders must not be sent to shops

 A DUAI CHANNEL VERSION OF THE SUPER 15. Employing Twin Printed Circuits. Cigh quality -52 dB at 1,000 c.p.s.
 CONTROL. 5 position Input Selector, Bass Control. Treble Control. Volume Control. Balance Control. Stereo/Mono Switch. Tape Monitor Switch. Mains Switch. INPUT
 SoCKETS (Matched Pairs). (1) Magnetic P.U. (2) Ceramic or Crystal P.U. (3) Radio/Aux. (4) Tape Head/Microphone. Operation of the Input Selector Switeh assures appropriate equalisation. Rigid 18 s.w.g. Chassis. Size approx. $12 i n$. Wide, 3in. high and 8in. deep. Neon Pariel indicator. Attractive Fa-
 cia Plate and Spun Siver Matching Knobs. Above facilities, - eto., except for Ganging and Balance Control, apply also to Super 15 ,
 SUPERB' SOUND OUTPUT QUALITY CAN BE OBTAINED BY USING WTTH FIRST RATE ANCILLARY
 EQU1PMENT, All required parts, point to point wiring 2 Carr is/ Ins. diagrams and detailed instructions. \quad Unitfactory built 28 Gns. or deposit 8.5 .0 and 9 montaly payments $56 / 3$. (Total f32.13.3). Or in vencered housing 31 Gns. Carr $15 /-$ or Deposit
 £ 7.3 .6 and 9 monthly paymts $64 /$ (Total 885.19 .6). Snd S.A. for leaflet.

 ## 32 High Street. (Half-day Thurs.) Tel. 56420 LEICESTER

 ##

 ${ }^{41}$ Blackett Street (opp. Fenwlcks store) (Hal-day Wed.) Tel. 21469 NEWCASTLE UPON 13 Exchange Streat (Castle Market Bldgs.) (Half day Thursday) Tel. 20716 FFIELD

[^2]: ## 6/12V CAR BATTERY CHARGERS

 Complete kit of parts with Ammeter and Circult 4 models with variable charge rate selector.
 4 amp $49 / 9 \quad 6$ amp $69 / 9$ 1 types 200-250v. A.C. Mains. Built 10i- extra.

[^3]: (C)IPC Magazines Limited 1969. Copyright in all drawings, photographs and articles published in "Practical Wireless" is fully protected, and reproduction or imitations in whole or in part are expressly forbidden. All reasonable precautions are taken by 'Practical Wireless's to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices are those current as we go to press. Alf correspondence intended for the Editor should be addressed to Tower House, Southampton Street, London, W.C.2. Address correspondence regarding advertisements to Advertising Manager, Fleetway House, Farringdon Street, London, E.C.4.

[^4]: Fig. 1: The "Rhodian" modification. The original circuitry is shown in dotted form.

[^5]: MARTINIS HIGH FIDELITY plus

 ADD-ON-ABILITY
 THRILLING POWER DEPENDABILITY gENUINE ECONON:Y

 Details from:
 MARTIN ELECTRONICS LTD., 155 High St., Brentford, Middlesex. 1SLeworth 1161

 To MARTIN ELECTRON/CS, 155, High Street, Brentford, Middlesex.
 I have not had your leaflets before. Please send them on AMPLIFIERS \square FM TUNER \square RECORDAKITS \square (Tick as required)
 NAME
 How would you like to start with a simple amplifier, say, and add to it until it became a fully stereo twenty watt amplifier with FM tuner and facilities to take the most sensitive low output pickups ever made? With Martin Audiokits it's easy, for with these superbly engineered all-transistor prefabricated units, success is built in from the start and you build to your own preferred plan. IT'S A MONEY SAVING SCHEME, TOO.

 - Trade enquiries invited.

 ADDRESS
 PW9

[^6]: 모모Bㄹ NC. BRONN LTD.
 pacesetters in storage equipment
 Send your free broch.
 URE \square or Send \square how
 (many) Budget Storage Units
 at 517.5 s . in green or grey.

 NAME
 ADDRESS
 Dept. PW Eagte Staelworks, Hevwood. Lancs- Tel: 69018
 London: 25-27 Newton St, W.C.2. Tel: $01-4057931$

[^7]: From Electrical and Hardware shops. If unobtainable, write to:
 From Electrical and Hardware shops. If unobtainable, write
 Multicore Solders Ltd., Hemel Hempstead, Herts.

[^8]: Published approximately on the 7th of each month by IPC Magazines Limited, Tower House, Southampton Street, London, Wi. C. 2 . Printed in England by Index Printers, Dunstable, Beds. Sole Agents for Austraila and New Zealand-Gordon and Gotch (A/sia) Ltd.; South Africa-Central News Agencv Ltid. Rhodesia, Malawi and Zambia-Kingston Litd. : East Africa-Stationery and Office Suppltes Ltd. Subscription rate (including postage): For one Jear to any part of the world e2 2s od.
 lent, resold, hired out or otherwise disposed of by way of Trade ationore nemely, that it shall not. without the written consent of the publishers firstgiven be resold or hired out or otherwise disposed of in a mutilated condition or any unauthorised cover by way of rivade on the cover, and that it shall not be lent, advertising, literary or pletorial matter whatsoever.

[^9]: SINCLAIR RADIONICS LTD., 22 NEWMARKET RD., CAMBRIDGE. Please send post free......IC. 10 Unit(s) for which 1 enclose $£ \ldots . . .$. s.......d. cheque/P.O./money order
 I NAME

 - ADDRESS

[^10]: Complete this coupon for full details and application form
 To: Mr. A.J. Edwards, C. Eng.., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi, John Adam Street, London WC2, marking your envelope 'Recruitment'.

[^11]: METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHLLPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

[^12]: SERVICE SHEETS $(75,000) 5 /$ each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street Oakenshaw, Bradford.

