WReqielest

ADCOLA

THE RELIABLE

 SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET

ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4

NAME		
I ADDRESS		
-		
\|		
I		
1		
,	PW171 \|	

17in.-f11.10.0
19in. SLIMLINE
SOBELL-24 Gns.
FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-23^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS SIZES AND PRICES DEMONSTRATIONS DAILY
TWO-YEAR GUARANTEED REGUNNED TUBES
70° and $90^{\circ} 14 \mathrm{in}$.- $69 / 6$, $17 \mathrm{In} .-89 / 6,21 \mathrm{In}$.$99 / 6$. $110^{\circ} 17 \mathrm{in} . .19 \mathrm{in}$. and $21 \mathrm{in} .-99 / 6$. 23° (not bonded)-119/6. Exchanged bowls. Carr. 10/6.

COCKTAIL/STEREOGRAM CABINET 19 gns.
 Polished walnut veneer with elegant glass fronted cocktail compartment. padded. Position for two 10 ln . elliptical speakers. Record storage space. Helght 351 in.. width $52 \frac{3}{4}$ in.. depth $14 \frac{1}{2} \mathrm{In}$. Legs 1 gn . extra. Speakers 6/6: $2^{\prime \prime}-750$. $2 \frac{1_{1}^{\prime \prime}-35 \Omega \text {. }}{}$ P. \& P. 2/6. Acos Mics. 35/-Standard: Stick Mic. 2 gns. P. \& P. 3/6. Asstd. Condensers: 10/- for 50. P. \& P. 7/6. Aestd. Resistors: 10/for 50. P. \& P. 4/6. Asstd. Controls: 10/-for 25. P. \& P. 7/6. Transistors: Mullard matched output kit 9/-OC810-2 OC81's. P. \& P. FREE.
Ferrite Rods $3 / 6: 6^{*}, 8^{* *} \times \frac{3^{\prime \prime}}{6}$ complete with LW/MW Coils. P. \& P. FREE.
TRANSISTOR CASES 19/S. Cloth covered, many coiours. Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 3 \frac{1}{1 "}^{\prime \prime}$ P. \& P.4/6. Similar cases in plastic 7/6.

RECORD PLAYER CABINETS 49/6. Cloth covered, size $16 \frac{3^{\prime \prime}}{} \times 141^{\prime \prime} \times 8^{\prime \prime}$. Takes any modern autochanger. P. \& P. 7/6.
SINGLE PLAYER CABINETS 19/6. P. \& P. 7/6.
STRIP LIGHT TUBES $3 / 9$ each. $11^{7 \prime}$ (284 mm .) 230/240 volts, 30 watts. Ideal for cocktail cabinets, Jlluminating plctures, diffused lighting etc. 6 for $£ 1$. P. \& P. free.

PRINTED CIRCUIT KIT

BOLLD 40 INTERESTING PROJECTS ON A PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $44^{\prime \prime} \times 21^{*}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (9) 2 Ministure Radio Diala SW/MW/LW. Also free with each Kit. (10) Essential Denign Data, Circuits, Chassis Plans, etc. for 40 TRANEISTORIRED PROJECTS. A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very effcient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S
PRINTED CIRCUIT KIT

8/6

Postage \& Pack. 1/6 (UK) Commonwealth:
SURFACE MAIL 8/-
AIR MAIL $8 /-$
Australia, New Zealand Gouth Africa, Canada.
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifier. (5) Carrier Power Conversion Receiver. (6) Split-Load Neutraliged Double Refex. (7) Matchbox or Photucell Railo. (8) (9) Solar Battery Loudapeaker Radt seif-adjusting regenerstion (Patent Pending). (9) Solar Battery Loudspeazer Radio. 3 Subminiature Radio Receivers based on the "Trifiexon" circuit. Let us know if yon know of a smaller design published anywhere. (10) Postage Stamp Radio. Size only $1-62^{\prime \prime} \times 195^{\prime \prime} \times{ }^{-25^{\prime \prime}}$. (11) Wristwatch Radio $1-15^{\prime \prime} \times .80^{\prime \prime} \times \cdot 55^{\prime}$. (12) Ring Radio $\cdot 70^{\prime \prime} \times \cdot 70^{*} \times \cdot 55^{\circ}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifier. (16) Intercom. (17) 1-valve Amplifier. (18) Reliable Burglar Alarm. (19) Light-Beeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. Volume Intercom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Tranamitter/Wire-leas Microphone. (32) Wire-less Door Bell. (33) Ultrasonic Switch/Alarm. (34) Stereo Presmpliffer. (35) Quality Stereo Push-Pull Amplifier. (36) Light-Beam Telephone "Photophone" (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controller.

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full details, a brief detcription and Photographe of all Kite and all 52 Radio, Electronic and Photoelectric Projects Assembled.

TMK
20,000 O.P.V. Multiteater for the anateur or professlousl. Features mirror scale and wood grain finish frout panel. sPEC.; DC/V ranges: $0 \cdot 6,3,12,30,120,500 \mathrm{~V}$ at $20 \mathrm{~K} / \mathrm{O}$.P.V. AC / V ranges : $3,30,120,600 \mathrm{~V}$ at $8 \mathrm{~K} / \mathrm{O}$.P.V. DC current: $50 \mu \mathrm{~A}, 0.6,60,600 \mathrm{~mA}$. Resistance: 10 K , $100 \mathrm{~K}, 1 \mathrm{M}$ and 10 M ohms end acale ($65,650,6.6 \mathrm{~K}$ and 65K ohms centre scales. Decibels: -20 to +57 dB in four ranges. Operates on $2 \times 1.5 \mathrm{~V}$ U7 type batteries, Size: $57 \times 41 \times 21 \mathrm{n}$.

LASKY'S PRICE

 Pos: ($/=$

TTC Model C-1000

A realiy thy 1,000 O.P.V. pocket multi-tester with "big" Hand callbrated to $\pm 3 \%$ accuracy on full scale of DC ranger, 4% on AC ranges. 2 fin . Bquare meter, SPECI. FICATIONS: AC/V ranges: $0-10$, $50,250,1,000 \mathrm{~V}$ ht DC current: $0-1-100 \mathrm{~mA}$ Resist 25,150 at 0 . ohmas centre scale), Decibelis: -10 to $\$ 22 \mathrm{~d}$ B. Operated on one penlight cell. Two colour buff/green cuse-size only $3 i \times 2\} \times 1 \mathrm{n}$. Cuck ntop range melection switch. Ohms zero adjustment. Complete with teat leads, battery and instris. tions with clrcult data.

$\begin{array}{ll}\text { LASKY'S } \\ \text { PRICE } & 39 / 6\end{array}$

Post 1/6

TTC Model C-1051

A completely new dengn 20,000 O.P.V. pocket protectlon circuit. Exceptionally large easy to read meter with D'Armonval movement. Colour coded scales. slingle ponltive olick-in, recessed selection switch for all rangea. Ohmn zero adjuatment. Rapge spec. AC voits: $0-f i-30-300-1200 \mathrm{~V}$ at ut $20 \mathrm{~K} /$ ohinsiV. Resistance: $0-60 \mathrm{~K}-6 \mathrm{mueg}$. DC current: $0-80 \mu \mathrm{~A}-300 \mathrm{~mA}$. Decibels: -20 dB to

+17dB. Hand calibration glves extremely high atandard of accuracy on all ranges. Uges one $14 V$ penlight battery. Strong impnet resistant plastlo cabinet-size only $41 \times 3 i \times 1 / \mathrm{in}$. Two colour buffgreen Aninh. Complete with teat leada and battery. Original list price Egns.
LASKY'S
PRICE

LASKY'S CLEAR PLASTIC PANEL METERS

Type MK-88A 1 In. square
5 mA
.100 ma
300 V
$50 \mu \mathrm{~A}$
1 ma 8 meter
$100 \mu \mathrm{~A}$
$500 \mu \mathrm{LA}$
Type MK-65A 31 n, square
lmA
$1 \mathrm{~mA} \ldots . . .38818 \quad 50 \mu \mathrm{~A}68$
$100 \mathrm{~mA} \cdots38 / 6 \quad 1 \mathrm{ma}$ is meter $88 / 6$

.29/6	1 ma	
. $27 / 8$	5 mA	28/6
.27/6	100 mA	$28 / 6$
27/6	300 V	28/6
. $37 / 6$	$80 \mu \mathrm{~A}$	49/6
.29/6	1 mA S meter	32/8
.87/6	$100 \mu \mathrm{~A}$	42/6
.29/B	$500 \mu \mathrm{~A}$	85/-
	Type KR-65 $31 \times 3 \mathrm{ln}$	
.69/6	1 mA $38 / 6$	$50 \mu \mathrm{~A}$. . . . $59 / 6$
38/8	5 ma $37 / 8$	1 mAS meter $42 /$ -
. $62 / 6$	100 mA $88 / 8$	$100 \mu \mathrm{~A}$. . . 681 -
.42/-	300 V 38/-	$500 \mu \mathrm{~A}$. . . . $481-$

Branches
 Open all day, 9 a.m,-6 p.m. Monday to Saturday $152 / 3$ FLEET STREET, LONDON, E.C. 4

ANOTHER EXCLUSIVE FIRST PRESENTING THE IC-403 integrated circuit amplifier module AVAILABLE NOW!

These tiny modules-dize oniy $26 \times 10 \times 5$ millimetres-
represent the most amazing breakthrough in circuit
deaign giace the introduction or the transistor. The nctua clrcnit-an bigger than a pris head-la encapsulated in solid plantic fused with the beatsink ind connecring plns to make an almost indestructible unit. The $1 \mathrm{C}-403$ ls an integrated power and preanplifier requirlag olete sudio ampliner of 3 W output. O controla, gower nource and spenker to form a comthere are many apphcations for this unique device, wherever high and apace projectscompact slze is required, i.e. miniature \mathbf{P} A and audio ampliners, ineercoma, electron rgans, tape recordera eto.
SPECIFICATION (ratinge at $20^{\circ} \mathrm{C}$): Output power typically 3 W tron 250 mV input Frequency response 20 Hz to $80 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Power amp. iletortion $0 \cdot{ }^{3} \% \mathrm{a}$ (at $1 \mathrm{~W}, 400 \mathrm{~Hz}$) Pre-amp. gain 24dB. Power amp, gain $26 \mathrm{~dB}, \mathrm{Max}$. operathg voltage 21. Min. operating load power amp. D.C. input current $50 \mu A$
THE IC-403 IS AVA/LABLE FROM STOCK EXCLUSIVELY FROM LASKY'S-COMPLETE WITH INSTRUETON DATA AND SUGGESTED CIRCUIT APPLICATIONS.

${ }_{\text {Lasich }}^{\text {LASKY's }}$ ONLY 52/6:

NEW FAntavox TRC-2
SOLID STATE COM-
PACT CASSETTE
RECORDER
A new Lanky's BTAR BARQAIN thls beautiuly made compact cassette recorder performance and value. BRIEF SPEC: θ tranaintor and 1 thermiater circuit Constant speed capstan drive system. AC blus re-
cording. PM maguet erase. 2fin. PM Dynamlc speaker. Economical operation on 4, FEATURES: Absolutely foolproot opera. tion. Plano key controls. Powerful volume with recessed control. Handsome impact resistant cabinet falshed in black with batin aluminium and ivory trim. Slze $91 \times 51 \times 2$ in. Jack sockets for remote control mlorophone, earplece and external GV battery pack (or AC adaptor). COMPLETE WITH Remote control Dynamic atrap, batterles, full inatructlons and
 three C-60sX chssettes.

LASKY'S G17, 10.0 post PRICE

'OVERTURE' BUDGET PRICED CASSETTES
High quality cassettes from the U.S.A.
C.60-10/6 C.90-15/- C.120-20/-Spacial| 6-C.60-59/6 Post Fie日

GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL

High Fidelity Audio Centres
42-45 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: 014580 2573
Open all day, 9 a.m. - 6 p.m. Monday to Saturday
118 EDGWARE ROAD, LONDON, W. 2 Thel.: 01-723 9789
Open all day Salurday, early closing 1 p.m. Thusaday

 It TELLS yOu All. about -Installing domestic wiring, regulations. equipment, testing. cables
 WITH PRACTICAL ELECTRICAL ENGINEERING

and faults, muters and switchgsar, lighting. water heating, space heating, cookers.
relrigeration, public address squipmant $+{ }_{+}+$in fect avarpthing you meed to add to your income, to really advasce in your work.

You can have this handsomely-bound library of facts, vital theory and day-to-day practices sent to your home to examine free of charge. It will help you understand the many branches of the vast electrical industry from installation work, Equipment, Instruments. Motors and Machinss, Repair work. Maintenance and Operation right through to the Generation and Distribution of electricity. And, to make the 2,350 pages of absorbing text crystal clear there are over 2.000 "action photos and explanatory drawings.
LEADING EXPERTS EXPLAIN IN DETAIL Written by 87 experts. this PRACTICAL library is planned to give you the knowledge which would normally take a lifetime to acquire.

YOU RECEIVE 4 vOLUMES strongly bound in Grey Moroquette, containing 2.352 pages of instructive information on latest practice: 2.100 Photographs, Diagrams. Working Drawings. 24 Data Sheets in colour. 12 Quick-reference Blueprint Charts, each in the large size of $16 \mathrm{iz} \mathrm{in} . \times 11 \mathrm{zin}$, NUCLEAR POWER STATIONS BOOKLET.
free Gift, Newnes Electrical Pockat Book. Nearly 400 pages with 258 illustrations, diagrams, tables. (Value 10/6d)

Sent to you br post on 7 days free trial

To: Buckingham Press Ltd., 1E-98 Warren Street, London, W. 1 Please send PRACTICAL ELECTRICAL ENGINEERING without obtigation to buy if you accept my applicatlón. I will return the books in 8 days or postTick ($\sqrt{ }$) here Full cash price of $£ 16$, or
\square 16/-deposit and 16 monthly payments of 20/-.
If you are under 21 your father must fill up the coupon.

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SETS 1R5, 185, 1T4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94. Set of 4 for 18/6. DAF96, DF96, DK96, DL96, 4 for 26/e.

OZ4	4/6	20F2	18/8	DK96	71	EL41	10/6	PEN	/6	4	$7 / 8$
LA7GT	$7 / 6$	20 Ps	$11 / 9$	DL35	51-	EL84	$4 / 8$	PEN36	5/-	UCC8S	6/9
1H5GT	$7 / 8$	20 P 4	18/6	DL92	$5 / 8$	RL90	8/-	PFL2001	12/6	UCF80	$8 / 8$
1N5GT	719	$25 \mathrm{L6G}$	T $51-$	DL94	$8 /-$	EM80	\$/9	PL38	919	UCH48	9/9
$1 \mathrm{R5}$	5/9	25 U 4 GT	T11/6	DL96	$71-$	EM81	$6 / 9$	PL81	$7 / 8$	UCH81	6/8
185	$4 / 8$	30 Cl	6/8	DY86	5/9	EM84	6/6	PL82	$71-$	UCL82	$7 / 8$
1T4	$2 / 8$	$30 \mathrm{C15}$	181-	DY87	$5 / 9$	EM87	$7 / 6$	PL83	$7 /-$	UCL83	$11 / 8$
384	$5 / 9$	30 Cl 7	16/-	EABC8	8/6	EY51	$7 / 8$	PL84	8/6	UF41	9/9
3 V 4	6/-	30 Cl 8	8/6	EAF42	810	EY88	6/8	PL500	13/-	UF80	717
5U4G	$1 / 6$	30 Fs	16/-	EB91	$2 / 8$	EZ40	$7 / 6$	PLL04	18/6	UF85	6/9
5Y3GT	$5 / 9$	30FL1	$18 / 9$	EBC33	816	EZ41	$7 / 8$	PL508	28/6	UF89	$6 / 9$
524G1	$7 / 8$	301512	14/8	EBC41	8/8	EZ80	$4 / 6$	PL802	$14 / 6$	UL41	10/6
6/30L2	$12 / 6$	30 FL 14	12/-	EBF'80	6/8	EZ81	$4 / 9$	PM84	$7 / 9$	UL44	80/-
6AL5	$2 / 8$	30 Ll	$8 / 6$	EBF89	6/8	GZ32	$8 / 8$	PX25	1016	UL84	$7 /-$
6AM6	$8 / 6$	30 L 15	14/-	ECC81	819	K1'32	6)-	PY31	8/6	84	$7 / 6$
GAQ5	$4 / 9$	$30 \mathrm{L17}$	18/6	ECC82	$4 / 8$	KT61	$8 / 8$	PY32	101-	UY41	717
6AT6	$4 /-$	30P4	12/-	ECC83	$7 /$	KT66	161-	PY33	101-	UY85	8/9
6BA6	$4 / 6$	30 Pl 12	13/9	ECC84	5/6	MR1400	151-	PY81	$5 / 8$	VP4B	10/-
6 BE 6	$4 / 9$	30 Pl 19	12/-	ECC85	5/9	N78	14/9	PY82	$8 / 8$	VP132	81/-
$6 \mathrm{BJ6}$	$7 /-$	$30 \mathrm{PL1}$	18/9	ECC804	$12 / 6$	PABC	\% $7-$	PY83	$5 / 9$	Z77	$8 / 6$
6BW6	13/-	$30 \mathrm{PL1}$	15/6	ECF80	$7 /-$	PC86	$10 / 8$	PY88	$8 / 8$	Tranaia	
${ }_{6} \mathrm{~F} 13$	$8 / 6$	30 PL 14	15/6	ECF82	6/0	PC88	$10 / 8$	PY800	716	AC107	8/6
6F14	$91-$	$35 L 6 \mathrm{GT}$	T 8/-	ECH35	61-	PC96	$8 / 6$	PY801	$6 / 9$	AC127	81-
$8 \mathrm{~F}^{2} 23$	14/8	35W4	4/6	ECH42	10/6	PC97	8/6	R19	6/6	AD140	7/8
6K7G	$8 / 6$	35Z4G	5/-	ECH81	6/9	PC900	$8 /-$	R20	$12 / 6$	AF102	18/-
6K8G	$4 / 8$	6063	18/6	ECH84	$7 / 6$	PCC84	6/6	TH21C	9/8	AF115	81-
6L18	6/-	AC/VP	$2101-$	ECL80	6/9	PCC85	$9 / 8$	U25	181-	AF116	81-
6V6GT	8/6	AZ31	9/-	ECL82	6/9	PCC88	919	U26	181-	AFI17	$8 / 8$
6×4	$4 / 8$	B729	12/6	ECL83	9/-	PCC89	$10 / 6$	U47	18/6	AF'124	$7 / 6$
6X5GT	$5 / 9$	CCH35	101-	ECL86	$8 / 8$	PCC189	11/8	U48	$13 / 6$	AF125	$8 / 8$
7B6	10/9	CL33	$18 / 8$	EF37A	6/6	PCF80	$6 / 8$	U52	4/6	AF126	71
7B7	$71-$	CY31	8/9	EF39	4/8	PCF82	6/6	U78	$4 / 8$	AF127	$8 / 6$
7C6	$6 / 9$	DAC32	$2 / 3$	EF41	9/6	PCF86	9/6	U191	12/8	0026	$5 / 8$
7 Y 4	8/6	DAF91	4/3	EF80	4/9	PCF800	13/6	U301	$18 / 6$	$0 \mathrm{C4} 4$	2/8
10F1	15/-	DAF96	6/6	EF85	$61-$	PCF'801	$6 / 8$	U801	19/6	0C45	$2 / 8$
10 P 13	15/6	DF33	719	EFP6	6/8	PCF802	9/6	UABC80		$0 \mathrm{C71}$	$2 / 6$
12AH8	231-	DF91	$2 / 9$	EF89	$5 / 8$	PCF805	8/6	UAF42	$9 / 6$	$0 \mathrm{C72}$	$2 / 6$
12AT7	$3 / 9$	DF96	61 -	EF91	8/6	PCF808	12/-	UB41	6/8	$0 \mathrm{C75}$	$2 / 6$
12AU6	$4 / 9$	DH77	4/-	EF183	$6 /-$	PCL82	$71-$	UBC41	8/6	$0 \mathrm{C81}$	$2 / 8$
12AU7	$4 / 8$	DH81	10/9	EF184	5/6	PCL83	9/-	UBC81	$71-$	OC81D	2/8
12 Ax 7	$4 / 8$	DK32	776	EH90	6/3	PCL84	$7 / 8$	UBF'80	6)-	OC82	$2 / 8$
12 K 8 GT	7/-	DK91	$5 / 8$	EL33	$8 / 9$	PCL85	$91-$	UBF89	6/8	OC82D	$2 / 6$
19BG6G	17/6	DK92	9/8	EL34	9/6	PCL88	$8 / 6$	UC92	\%	OC170	8/6

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7441
Postage on 1 valve 9 d . extra. On 2 valves or more, postage 6d. per
 Buidd your with the Seranade
Play wister fully transistorised amplifter which comes complete with 2-10 $\times 5$ spaskers and latest BSR 4 Shanger. Mono Recard Changer. Advence deep, 14 transistors fles 4 diodas, separate Bass and Treble -10 watts total anwer Frequency respense power. Frequ
50-15.000 t/s
EASY TO INSTALL ND TECHNICAL KNOWLEOGE Only $28^{\text {REOUIR }}$ $+\underset{17 / 6}{\text { P\& }}$ H. P. terms available. Dep. 29.16 .0 a. $36 / 9$ thly payments 31 17.0) Send £10.13.6 today Send Ifler avallable separately at only 17 Gns.

"TRANSCONTINENTAL"

FULLY TRANSISTORISED STEREOPHONIC RADIOGRAM CHASSIS
Complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer-a complete radiogram at half normal price ONLY

10 Watts Total output 34, 2 GNS $17 / 6$ TASILY ITTED \& TECHNICAL KNOWLEDGE NECESSABY EASILY EITTEO NO TECHNICAL KNOWLEOGE NECESSARY H.P. avallable £12.1.6 dep. plus 18 monthly pay ments of 32/-(Total H.P. £40.17.6)

 rob omir 39 GWS

CARRIAGE 35/-

500.

The Premier Stereo System consists of an all transistor stereo amplifier, Garrard Model 2025 auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor Amplifier has an output of 5 watts per channel with inputs for pick up, tape and tuner also tape onimput socket. Controls: Bass, Treble, Volume, Selector. Power on/off, stereo/mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12^{\prime \prime} \times 5 \frac{1}{2} " \times 3 \frac{1}{2} "$ high (Amplifier available separately if required $£ 14.19 .6$. Carr. 7/6).

WIDE RANGE OF HI-FI STEREO EQUIPMENT ON DEMONSTRATION All leading makes available including Rogers, Armstrong,
Dulei, Wharfedale, Goodmans, Goldring, shure, ete. etc.

GARRARD RECORD UNITS

1025 8tereo/Mono cart 2025 Stereo/Mono car 3000 with 9TABCD Carriage $7 / 8$ extra 8P2s MKII less cart.

AP75 less cart ess cart. 87.19 .8
$8_{88} 19.6$ 88.19.6 Teak Punth with 29.10.6 perspex cover as £18.19.6 Carr. 6/G extra. 811.19 .6
219.0.0) Teak Plinth with
$\left.\begin{array}{l}219.0 .0 \\ \text { 220.0.0 }\end{array}\right\}$ peraper cover $229.0 .0 \int_{87.10 .0 \text { Carr. } 7 / 6 \mathrm{ex}}$ sl95 legs cart. 238.10.0. Carriage 10/- extrib.

GOLDRING RECORD UNITS

OL58 iess cart. 222.7.0. GL75 lens cart. \&35.15.5 arriage 10 - extre

PICK-UP CARTRIDGES
at money saving prices!
GOLDRING G800 (stereo)
B a 0 spl (stereo)
PICKERING VIB/AC2 (Stereo)
SONOTONE 9TABC/Dlamond (Sitereo)
ACOS GP91/18C (Mono compatble)
ACOS GP93-1 (Btereo)
B8R X3M (Mono compatibie)
B8R X3E (Mono compatible)
RONETTE 105 (stereo)
RONETTE 106 (8tereo)
Powt and Packing $1 / 6$ each
SPECIAL OFFER OF

SHURE

STEREO CARTRIDGES

Look at our spacial prices I

 M3DM44-
444-0 Premior Price 86.19.6 M44C List 212.19 .5 . Premier Price 210.10 .0 M44E List £17.8.4. Premier Price £13.10.6 mise Lint ezo.15.1. Pramier Price 2l8.19.0 M75-6 Lint E17.8.4. Premior Price E13.19.0 M75E List 225.18 .10 . Premier Price \&21.0.0 Post and Packing $1 / 6$ each

"PREMIER"

TAPE CASSETTES

C60 $\left.\begin{array}{c}\text { (80. } \\ \text { min }\end{array}\right)$ 10/6
C90 $\binom{90}{$ mim } 15/-
C120 (${ }_{(120}^{120}$) 20/-
P. \& P. $1 /$

CASSETTE
HEAD
CLEANER
Remover unwanted deposits from dellicate tape heada. Fits all cassette reconders. $15 /-\mathrm{P}_{5} \mathrm{I}$

HI-FI STEREO HEADPHONE Designed to the highest possible standard. Fitted at" speaker unita with or padded ear mutis. Bohm impedance. Com plete with fift. lead and stereo jack plug.
$59 / 6$ P. 8 P .

MONO HEADPHONES 2000 ohm $14 / 6$ P. \& P. $2 / 6$. STEREO STETHOBCOPE SET Low imp. 25/-P. \& P. $2 /$ MONO STETHOSCOPR 8ET Low Imp. $10 / 6$ P. \& P. 2/-

"PREMIER SPEAKER SYSTEM

 Epecially deaigned oiled teak cabinat with vynalr tront. Size 12 ' bigh, 8ohm Bans apeaker with rolled
surround and matching 3° E.M.I. surround and matchin
tweeter. Fully lagged
£7.19.6 ${ }_{7 / 1 / 8}^{\text {cur }}$

MULTI TESTERS
 MODEL D14. A really versatile instrument that makea a hundy pocket size tool. Measurea AC or DC voltage in three
ranges of $0-15-150-1000$ volts, Reaistance ranger of $0-100,000$ ohtus. Current $0-150 \mathrm{~mA}$ D.C. slze only; $31 \times 2 t \times 1 / \mathrm{in}$. Complete with battery, test leads and $49 / 6$ 2/8. P.
instructions.

POCKET SIZE MODEL. With wideangle, jewelled meter movement, ceramlc long-life, low-losa switching, tough fimpact resist D.C. case. 10,000 ohms/volt A.C. 18 Renges: 0.5-25-50-250-500.2500 18 Ranges: $0-5-25-60-250-500-2500$ voits
DC. $0-10-50-100-500-1000$ volts AC. $0-50 \mathrm{uA} \cdot 2 \cdot 5 \mathrm{~mA}-250 \mathrm{mADC} .0-8000$ ohms 6 megohms, 10 u uf-0.001 midd- midd. 20 to +22 dB . Complete battery, teat $\begin{aligned} & \text { lead and } \\ & \text { ingtructions. }\end{aligned} \mathbb{4 . 1 9 . 6} \underset{3 / 8}{P}$.

MONO GRAM AMPLIFEER
2) wath output. Unen Eles raive, doubse wound maina transformer. Ideal for use with any resord deck. Volume/ on/off and tone controls on fiping leads. Out Fut impedance
 ONLY 49/6. P. \& P. $\overline{5} /=$

JULIETTE NA. 50185 BAND 18 TRANSISTOR MAINS/BATTERY RADIO
Covers AM $540-1600 \mathrm{Kc} / \mathrm{s}$. Marine l.f-4.6Mc/s. FM 88-108Mc/ VHF 108-134Mc/8. PB $148-174 \mathrm{Achs}$. Ferrite bar aernal for AM/MB: Telescople speaker. Operates on AC 50 v . or D.C. by four 1.6 v . batteries. Size: $9 \mathrm{~g}^{-} \times 5 \mathrm{I}^{-} \mathrm{x} 31$
$\begin{array}{lll}\text { PREMIER } \\ \text { PRICE } & 33 & \text { GN8. } \\ \text { P. \& P. } 10\end{array}$

TWO STATION
TRANSISTOR INTERCOMS.
Complete
Complete with battery and Soft. connecting way call system. Ideal for home, office, factory, ete. $49 / 6$ P P .

FOUR STATION INTERCOM. Master undt and 3 slaves. Ideal for office and home. Complete with battery and connecting wire $£ 7.19 .6$ P. \& P. $\mathbf{J} / 6$

'VERITONE' RECORDING TAPE

specially manofactured in o.s.a. from extra strong PRE-STRETGHED MATERIAL. TEE QUALITY IS UNEQUALLED. TENSILIAED to ensure the most permanent base. Highly reaistant to breakage, molsture, heat, cold or humidity. High poliehed splice free finish. Smooth output throughout the eilre zado range ion LP3 $3^{* *} 250^{\circ}$ P.V.C. $\quad 1 / 6$ DT6 51" 1800^{\prime} POLYESTER 22/6 TT3 $3^{* *} 450^{\circ}$ POLYESTER 7/6 TT6 54^{*} 2400' POLYESTER 37/6 DT3 83* 600° POLYESTER $11 / 6$ SPY $\boldsymbol{7}^{*}$ 1200 POLYESTER 12/6 P5 5 (SP5 5" 600° P.V.C. 8/6 LP5 5" 900° P.V.C. 10JDT5 6 6° 1200 POLYWSTER 15/LPG 5\% 1200 P.V.C. 12/8
TAPE SPOOLS $3^{*} 1 /-, 5^{*}, 67^{*}, 7^{*} 1 / 9$. TAPE CASES $5^{*}, 57^{\prime \prime}, 7^{\prime \prime} 2 / 6$.
Poat and Packing $3^{\circ} 1 /-$, 5°, 54* $1 / 6.7^{* \prime} 2 /-$, (3 reels and over Post Free).

RACAL RA-17Reme man an famous communication recaivers. Frequency range $500 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Avail able in excellant candition, fully tested and guarantesd. ©150. Carr. 40/-.

CLASS D WAVEMETERS

 dyne frequenct mete covering 1-7-8 Mc/a Operation on 6 volts D.C Ideal for amateur use Available in good used con
dition. 55.19 .6 Carr. $7 / 8$ dition. 5 or brand new with accee Or brand new with acce

CLASS D WAVEMETERS No. 2 Cryatal controlled. $1.2-19 \mathrm{Mc} / \mathrm{s}$. Mains o 2 V. D.C. operation. Complete with callbraCarr. 30/-.

MARCONI CT/44/TF956 AF Abworption Wattmeter 280 . Carr. 10/-

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / 4$. on 2 ranges. Output plied in perfect urder. 812.10 .0 . Carr. $10 /-$

AVOMETERS
Supplied in excel
lent condition fully teated and checked. Com plete with prod leads and instruc tions. Model 47A 89.1
$7 / 6$.

SOLARTRON CD-1016 OSCILLOSCOPE
Double beam. D.C. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent condition. es5 each. Carr. 20/-.

AM/FM SIGNAL GENERATORS

 Oscillator Teat No. 2. \mathbf{A} high quality
precision ment made for th miniatry by Airmec Frequency coverag
$20-80 \mathrm{Mc} / \mathrm{s}$. 20-80 Mc/s. AM CW/FM. Incor poratea precision dial, level meter, precision attenuator $1 \mu V-100 \mathrm{mV}$. Operation from 12 $12 \times 84 \times 9$ in. gupplied in brand new condition complete with all connectors fully teated. 245. Carr. 20/*.

GEARED MAINS MOTORS Paralux type sDig $230 / 250$ V. A.C. Revercapacitor. Excellent condition. $9 \theta / 6$. Carr сарас.

sinclair equipment
Z12 12 watt amplifter, 88/6 PZ4 Power gupply Unit $89 / 6$ Q14 Speakera 87.19. Micromatic Ra
8PECLAL OFFSR
8PECLAL OFFER
Z18 Ampa, PZ4 Power PAID 5 Preamplifier 288 , or Bupply, Storoo speakera, $\mathbf{8} 87$.

NEW SINCLAIR 2000 SYSTEM

 35 watt Integrated Amplifier, 889 . Carr. $5 /$ ECHO HS-606 STEREO HEADPHONES

UNR-30 4-BAND COMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / \mathrm{f}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built in ${ }^{\text {gpeaker and phone jack. Metal cabinet. Operation } 220 /}$ 240V. A.C. Supplied brand new. guaranteed with
instructions.
Carr. $7 / 613$ gns.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE
4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{m}$
 4/8 ohm output and phone jack. SSB-CW ANL. - Variable BFO \& meter - Bep. bandspread dial $1 \mathrm{IF} 455 \mathrm{Kc} / \mathrm{B}$ - Audio output 1.5 W . Varisble RF and AF gain controls. $115 / 250 \mathrm{~V}$ Beauthully degigned. sfize: $7 \times 15 \times$ 10in. With instruction manual and service data. A4. above recelver.

TRIO JR-500SE 10-80 METRE AMATEUR COMMUNICATION RECEIVER IN STOCK

HAMMARLUND SP600JX

 COMMUNICATION RECEIVER High quality profersional dual conversion communicatlon receivers available for the first time in this country at areasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{s}-54 \mathrm{Mc} / \mathrm{s}$. in reasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{B}-54 \mathrm{Mc} / \mathrm{s}$. in
6 bands variable tuoung or 6 channel crystal controlled. 6 bands variable tuning or 6 channel crystal controlied.
2.5 watt output into B00 ohms. Input $110 / 230 \mathrm{~V}$. A.C. 2.5 watt output into B00 ohms. Input $110 / 230 \mathrm{~V}$. A.C.
20 valve circuit incorporating: Xtal Bilter B. F.O. A.N.L. Xtal calibrator, 8 meter etc. 8 ize $19 \times 12 \times 22 \mathrm{in}$. (List ${ }_{8520}$). Offered in excellent condition, tully tested and checked. 2100 each.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 diodes, IHF music power, 30 W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis tortion 1% or less. Inputs 3 mV and 250 mV Output 3-16 Ω. Separate L and R. volume con-
trols. Treble and basa control. Stereo phone fack. trols. Treble and bass control. Stereo phone jack.
Brushed aluminium, gold anodised extruded front Brughed aluminium, gold anodised extruded front $39 / 16 \times 713 / 16 \mathrm{in}$. ${ }^{\text {poreration }} 115 / 230 \mathrm{~V}$. A.C. 288. Carriage 7/6.

MARCONI TEST EQUIPMENT
ex-military reconditioned. tF. 144a ETANDARD SIGNAL GENEHATORS, 85 Kc/a25 Mc/s, \&25. Carr. 30/-. TF. 885 VIDEO O8CLLLA TOR 0 -5 Mc/s 445 Carr. 30I- TF. 195 M BEAT FREQUENCY OSCILLATOR $0-40 \mathrm{Kc/s}$. $200 / 250 \mathrm{~V}$. A.C. ${ }_{2}^{2} 20$ Carr. 30/- TF. 142 E Diatortion Fautor Meter. 820 Carr. 20/-. All above "ffered in excellent condl-
tion. fully tested and checked. TF. 1100 VALVE vol SIUN TEAT SET, Brand New, 275. TF, 1371 Wide Band Millivolt Meter, Brand New. $\begin{gathered}\text { ato }\end{gathered}$

MULTIMETERS fon GUERY purposel

LAFAYETTE DE-LUEE 100 E n/VOLT
"LAB TESTER" Glant B!in. Bcale. Built-in
 $2.5 / 10 / 50 / 2501500 /$
$1,000 \mathrm{~V}$ D.C. $0 / 3 / 10 / 50$ $1,000 \mathrm{~V}$ D.C. $0 / 3 / 10 / 50 /$
$250 / 500 / 1,000 \mathrm{~V}$ A.C. $0 /$ $250 / 500 / 1,000 \mathrm{~V}$ A.C. $\% /$
$10 / 100 \mu \mathrm{~L} / 10 / 100 /$
 $10 \mathrm{M} 0 .-10$ to 49.4 dB
818.18 .0 . P. \& F.
$5 /-$,

MODEL AS-100D. 100E al VOLT. Sin. mirror scale. Buititin meter protection
$0 / 8 / 12 j 60 / 120 / 300$ ${ }^{1600 / 1,200 v . ~ D . C . ~} 0 / 60 / 30 /$ $120 / 300 / 60 \mathrm{~V}$.
 GE-900 20,000』/VOLT GIANT MULTIMETER mirror conlo and overload protection. 6 in full view meter. 2 2 colour scale. of
$2 \cdot 5 / 10 / 250 / 1,000 / 5,000$ $2 \cdot 5 / 10 / 250 / 1,000 / 5,000$
 D.C. $0 / 50 \mu \mathrm{~A} / 110 / 100$ ${ }_{0}^{1500 \mathrm{~mA} / 10 \text { amp. D.C- }}$ $02 \mathrm{~K} / 200 \mathrm{~K} / 20$
$0 \mathrm{HM} .215 . \mathrm{P}$.
LAFATETTE 57 Range 8aper 50 k a/volt Multi- \square metar. D.C. volts 12 mV
-1000 V . A.C. volts 1.5 V -1000 V A.C. Dolts $1 \cdot 5 \mathrm{~V}$ $-25 \mu \mathrm{~A}-10 \mathrm{Bmp}$ ohms 0$20 \mu \mathrm{~A}-10 \mathrm{smp}$ Ohms $0-$
$10 \mathrm{meg} \Omega \mathrm{dB}-20$ to +8 i dB. Overioad protection. E12.10.0. Carr. $3 / 6$.

200 Ma . -20 to +17 dB \&18.10.0. P. \& P. $3 / 6$.

MODEL TE-90 50,000 O.P.V mirror scele overload protection $0 / 3 / 12 / 60 / 300 / 600 / 1200 \mathrm{v}$.
$0 / 6 / 30 / 120 / 300 / 1200 \mathrm{v}$. D.C. $\begin{array}{r}0 / 6 / 30 / 120 / 300 / 1200 \mathrm{y} \\ \text { D. } \\ 03 / 6 / 60 / 600 \mathrm{~mA} . \\ \text { D. }\end{array}$ $16 \mathrm{~K} / 160 \mathrm{~K} / 16 / 16 \mathrm{meg} \mathrm{a}$. -20 $0+63 \mathrm{~dB} .87 .10 .0$ P. \& \mathbf{P}.

MODEL TE-70, 30,000 O.P.V. $0 / 3 / 15 / 60 / 300 / 600$ $11,200 \mathrm{v}$. D.C. $0 / 6 / 30 / 120 /$ $600 / 1,200 \mathrm{v}$. A.C. $0 / 30 \mu \mathrm{~A}$
$13 / 30 / 300 \mathrm{~mA}$. $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $13 / 30,300 \mathrm{ma}$.

scale. Fanges: 1/10/50/250/50ction, mirro scale. Ranges: $1 / 10 / 50 / 250 / 500 / 1,000$ volts.
D.C. and A.C. $0-500 \mu \mathrm{~A}, 10 \mathrm{~mA}, 250 \mathrm{~mA}$ Gurrent: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}, 2$ megohm. Decibelg -20 to +22 dB . $\mathrm{E}_{\mathrm{s}} .18 .6$.

P. \& P. $2 / 6$.

HODEL TER-80. $\mathbf{2 0 , 0 0 0}$

 O.P.Y. $0 / 10 / 50 / 100 / 500 /$$1,000 \mathrm{AC} \quad 0 / 5 / 25 / 50 / 200 /$ $500 / 1,000 \mathrm{v}$ $5 / 50 / 500 \mathrm{~mA}$. $0 / 6 \mathrm{~K} / 60 \mathrm{~K} / 600$ $\mathrm{K} / 6 \mathrm{meg}$. 4.17 .6 . P \& $/ 60 \mathrm{P} / 600$

MODEL TE-18
20,000 O.P.V. 0/0-6/6/30/120 $600 / 1,200 / 3,000 / 6,000 \mathrm{v}$ $0 / 8 / 30 / 120 / 600 / 1,200 \mathrm{v}$. $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA}$. $0 / 6 \mathrm{~K}$ $600 \mathrm{~K} / 6 \mathrm{Meg} . / 60 \mathrm{Meg} . \mathrm{Q} 50 \mathrm{pF}$
0.2 mFd .8 .19 .6. P. \& P. $3 / 6$.

TO-2 PORTABLE OSCILLOSCOPE
 brand new with hand-
book. ane.10.0. Carr. 10/-

FIELD TELEPHONES TYPE 4

Generator ringing, metal cases. Operates from two 1.5 V batteries (not supplied). Excellent condition. 84.10.0 per pair. Carr. 10/

TE-40

HIGH SENSITIVITY

AUTO TRANSFORMERS

$0 / 115 / 230 \mathrm{~V}$. Step up or step down. Fully shrouded.

150 W.	81.12.6. P
300 W.	2. 7.6. P. \& P. 3/6.
500 W.	\$8.10.0. P. \& P. $8 / 6$.
1,000 W.	25.10.0. P. \& P. 7/6.
1,500 W.	88.10.0. P. \& P. 8/6.

7,500 W. 216.10.0. P. \& P. 20/-

TE22 SINE SQUARE WAVE

AUDIO GENERATORS

 sine: $\mathrm{Kc/ac}$ on 4
bands.
Square
 Output imped ance 5,000 ohms.
$200 / 260 \mathrm{~V}$. A.C. $200 / 250 \mathrm{~V}$. A.C.
Bupplied brand new and guarannew whit inaran
teed with
e16.10.0. Carr. 7/6 tion manual and leads, 216.10-0. Carr. 7/6.

TE111. DECADE RESISTANCE ATTENUATOR

Variable range 111dB. Connections

111dB.Connections,
Unbalance Timpedand
Bridge T. mpedance 600Ω range $(0.1 \mathrm{~dB} \times$
$10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$ Frequency: d.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB})$. Accur acy: 0.05 dB . + Indication $\mathrm{dB} \times \quad \times \quad 0.01$. Maximum input leas than 4W (50V). Built in 600 B load resistance with internal/externa switch. Brand new $\$ 27.10 .0$. P. \& P. 5/-.

TE-20D RF SIGNAL GENERATOR

Accurate wide range sig$\begin{array}{ll}\text { nal } & \text { generator } \\ 120 & \text { Kovering } \\ \mathrm{Kc} / \mathrm{s}-50 \\ \mathrm{Mc} / \mathrm{s} \\ \mathrm{on}\end{array}$ 6 bands. Directly callbrated. Varlable R.F. attenuator, audlio output. Xtal bocket for calibra-
tion. $220 / 240 \mathrm{~V}$. ${ }^{\text {A.C. }}$ Brand new with instrucSize $140 \times 215 \times 170 \mathrm{~mm}$.

TY75 AUDIO SIGNAL GENERATOR
Sine Wave 20 CPS-200 Ke/s. Square Wave 20 CPS-30 Kc/s. High and low impedance output Output variable up to Brand new with instruc tions. E16. Carr. 7/6 Slize $210 \times 150 \times 120 \mathrm{~mm}$

Full range of all components valves semiconductors . test equipment receivers . hi-fi equipment - all at discount prices.
G. W. SMITH \& CO (RADIO) LTD. Also see oppos. page

GARRARD

FULL CURREAT RANGE OFFIRED BRAND NEW AID GUARANTRED AT FANTASTIO SAVITA8
8RP22 MOno 88.10 .0 -gP25 MK II 211.19 .6 8RP22 Stereo $\mathbf{2 8 . 1 8 . 6 ~ \$ 1 . 8 5 ~} \quad 411.19 .8$ 1025 Mono 87.10 .0 A70 MK II 818.10 .0 $\begin{array}{lll}1025 \text { Stereo } & 27.16 .0 & \text {-AT60 MK II } 818.10 .0 \\ \text { \& SL65 } \\ & 214.14 .0\end{array}$ 2025 Stereo \$7.19.6 $2025 \mathrm{~T} / \mathrm{C}$
Mono/Stereo 88.17 .6
3000 Stereo 20.18 .6
AP65
401
300 stereo 20.18.6 8L95
Base 2.19.8. Perspex covers 43.10 . ${ }^{\text {g }}$.

TYPE $13 A$ DOUBLE BEAM OSCILLOSCOPES
 neral pur $\begin{array}{llll}\text { pose } & \text { D/B oscilloscope. } \\ \text { T.B. } 2 & \text { cp } 3-750 & \mathrm{Kc} / \mathrm{s} .\end{array}$ $\begin{array}{ll}\text { Bandwidth } & 5.5 \mathrm{Mc} / \mathrm{B} \\ \text { Bensitivity } & 33 \mathrm{mV} / \mathrm{CM}\end{array}$ Bensitivity $33 \mathrm{mV} / \mathrm{CM}$ Operating voitage $0 / 110$) in excellent working con in excellent working con
dition. \&22,10.0. Or com plete with all accessories, 295. Carriage $30 /-$

ADMIRALTY B. 40 RECEIVERS the miniatry. High 10 valve receiver manuiactured by Murphy
 $550 \mathrm{Kc} / \mathrm{g}-30 \mathrm{Mc} / \mathrm{g}$. $\mathbf{I} . \mathrm{F}$. R.F. and 3 I.F. stages, band-pass filter, nolse limiter, crystal controled $\mathbf{B . F . O}$, call
hrator.
$0 / \mathrm{F}$
output etc. Built-ta output output for phones Operation 150 /230 volt
 offered in good work ang condition. s22.10.0. Carr. ${ }^{301-}$ With circuit diagrans. Also available B. 41 L.F Carr. $30 /$

R209 MK II
COMMUNICATION RECEIVER 11 walve high grade communication receive suitable for tropicse use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands AM/CW/FM operation. Incorporates pre
 mer, internal speaker and
12v. D.C. laternal po-
wer aupply supplied in excellent fully tested and checked
\&15.0.0.
Casr.

ADVANCE

TEST EQUIPMENT
Brand new and boxed in original sealed cartons VH. 76 VALVE VOLTMETER. R.F. measure teasurements up to 100 V with saccuracy of $+2 \%$ D.C. range 300 MV to 1 KV . A.C. range 300 MV to 300 V RMS. Resletance -02-800 Ma. Price 782.
VM. 78 A.C. MILLIVOLT METER. Tran1 Mc/a. Price $\$ 55$.
VM.79 UHF MILLIVOLT METER. Tran-
 1 ohm-10 megohms. Price 2185.
HIB AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{B}-$ 50 Kc/g. sine or gquare wave. Price 230 .
JIB AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{B}-$ $50 \mathrm{Kc} / \mathrm{B}$. Price 880
J8B ADDIO SIGNAL GENERATOR. As per I1B except fitted with output meter. Price TT18
CTIS TRANBISTOR TESTER. E87.10.0

SOLARTRON MONITOR

OSCILLOSCOPE TYPE 101 An extremeity high quallty oscilloscope with time base of $10 \mu /$ sec to $20 \mathrm{~m} / \mathrm{sec}$. Internal Y 250 p . Supplied in excellent condition with cables, probe, etc., as recelved from Ministry. 8.18.6, carrlage 30

LAFAYETTE SOLID STATE HAG00 RECEIVER BAND AM/CW/SBB AMATEUR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{B}-400 \mathrm{Kc} / \mathrm{h}$ and $550 \mathrm{Kc} / \mathrm{a}-80 \mathrm{Ko} / \mathrm{A}$ ial Product detector Oryital calibrator ∇ ariable BFO - Noise llmitor - 8 meter -24 in Bandspread - 2s0V. A.C. 127 . D.C. nos. esurth operation RF galn control. 8ize 15in. $\times 9$ tin. \times 845. Carr. 10/-. 8.A.E. for toll detaile. z4s. Carr. 10/-. 8.A.E. or foll detalk.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

completely new transistorised receiver covering (not supplied) for fixed frequency operation. Incorporater 4 INTEGRATED CIRCUITS. Built in speaker and jlluminated dial. squelch and volume controls. Tape recorder out put. 75Ω aerial input. Headphone jack. Operation 230v.

Variable Voltage ThANIEDRWERB

Brand new, guaranteed and casriage paid
Output full variable from $0 \cdot 260$ volta. Bulk quantitiea avaitabl 1 amp . $25.10 .0 ; 2.5 \mathrm{amp}$ - $28.15 .0 ; 5 \mathrm{amp}$ - $\mathbf{8 9 . 1 6 . 0 \text { ; }}$
$8 \mathrm{smp}-\$ 14.10 .0 ; 10 \mathrm{amp} .-818.10 .0 ; 12 \mathrm{amp} .281 .0 .0$

20 amp - 287.0 .0

CLEAR PLASTIC PANEL METERS
First grade quality Moving Coil panel meters avallable ex stock. R.A.E. for illustrated leaflet. Dlecounts for quantity Type MR 38P
500-0-500 2.425

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE

bridge offering ex
cellent range and cellent range and
aecuracy at low ascuracy git low
cost. Ranges:
R $1 \Omega-11 \cdot 1$
6 Ranges meg Ω

a
 L. 1 H -111
HENRYS 6 Ran
ges - 2% C. 10p Ranges $\pm 2 \%$ TURNS RATIO $1: 1 / 1000$ 1:11100.6 Ranges $\pm 1 \%$. Brige voltage a $1,000 \mathrm{cps}$. Operated from 9 volts, $100 \mu \mathrm{~A}$. Meter indicatin. Attractive 2 tone meta

TE-65 VALVE VOLTMETER

Wigh quality instrument with 28 ranges. D.C. volts $1 \cdot 5-1,500 \mathrm{y}$ Resistance up to 1,000 megohms $200 / 240 \mathrm{v}$. A.C.operation. Complete with probe and instructions.
217.10.0. P. \& P. 6/-. adde:R.F.85/-H.V.42/6.

NOW OPEN IN EDGWARE ROAD
Our new walk around shop it now open at 311 Edgware Rosd fally stocked with all Hi-Fi, Communication and Test Eqnipment. Call into your nearest shop-

AMERICAN TAPE

First grade quality American tapes. Brand new. Discount on quantities.
3 in. 225tt. L.P. acetate
3tin. 600 ft . T.P. mylar
in. 600 ft . std. plantic
δ in. $1,200 \mathrm{ft}$. L. P. B. acetate
$5 \mathrm{in} .1,200 \mathrm{ft}$. L.P. acetate
Silin. 1,800ft. D.P. mylar
5 in. $2,400 \mathrm{ft}$. T.P. mylar
7 in . 1.800 ft . L. P. acetate
7 in . $1,800 \mathrm{ft}$. L.P. mylar
Tin. 2,400ft. D.P. mylar
$7 \mathrm{in} .3,600 \mathrm{ft}$. T.P. mylar
Portage 2/~. Over $£ 3$ post paid

RECORDING HEADS

Keuter t-track. As atted to Collaro Mk. IV and Studio Decks. High imp, record play. back, low imp. erage. Brand new. $19 / 6$ pair COSMOCORD t-track heade. High imp. record/playback 65/-. Low imp. erase $80 /$ MARRIOTT record/playback 65/-. Low Imp. orase 20/ Post extra.

Edoware Road for all Equipment-Lisle Stree for all Equipment and Components.

* TRANSISTOREED FW TUNER +
 $400 \mathrm{kHz}-30 \mathrm{mHz}$. An fnexenslve instruraent for the andyman. Operates on vo battery. Wide easy to read scale. 800 kHz modu omplete with instruc. ons and leadis. instruc

MODFW ZQM TRANSISTOR CHECKISAS It has whe fullest capacity for Equaling adaptable for checking dlodes
Bpec.: A: 0-7-0-4967
B. $5-200$. Ico: $\$-50$
micrommps 0-5mA.
$200 \Omega-1 \mathrm{M} \Omega$. Supplied
complete with instruc
tons, battery and lead. s5.10.6. P. \& P. $2 / 6$ TE-2JRF SIGNAL GENERATOR Accurate wide range signal generator cover$\mathrm{ng} 120 \mathrm{Kc} / \mathrm{s}-280$ Mc/s on 6 bands.
Directly calibrated Variable R.F. attenuator. Operation $200 / 240 \mathrm{v}$. A.C. Brand new with inP. \& P. $7 / 6$, 815.0.0. P. \& P. $7 / 6$

ARF-100 COMBINED AF-RD SIGNAL GENERATOR
 A.F. SINE WATE $20-200,000$ o/h.
Square wave 20
and 30,000 c/a. $0 / \mathrm{P}$.
HIGH
 TF 600 O
$\mathrm{TF} 10 \mathrm{BV} . \mathrm{P} / \mathrm{P}$.
$\mathrm{Kc} / \mathrm{g}-300$ Mc/s. Varlable R.F. attenuation int/ext, modulation. Incorpor: put 20.1% mod. on R.F. $220 / 240 \mathrm{~V}$. A.C

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER $\mathrm{pF}-2000 \mathrm{mFd}$
ohms 200 meg. ohms. Also checks impedtance, turns ratio, ingulation, Brand Tow Brand 17.10
ent

E.A.L.
 You must hear this superb unit
 $15+15$
 WATT
 HIGH
 FIDELITY
 OUTPUT
 SOLLD STATE STEREO AMPLIFIER

Recommended Retail Price ONLY 53 Gns.

* Excellent performance
* High grade components and transistors
* Impressive technical specification
* Attractive appearance
\star Modest cost
SEND S.A.E.
Housed in Teak veneered Cabinet,
Switched selection of Mic., Magnetic P.U., Ceramic P.U., Radio

FOR FULLY DESCRIPTIVE LEAFLET Tuner, Tape Rec.

Available from your local Hi-Fi Dealer

Wholesale and Retail enquiries to Manufacturers
FUTURISTIC AIDS LTD, 103 Henconner Lane, Leeds 13

player. To ft atandard $75 /$ trated. or antoohanger.
RCS AMPLIFISR 8 WATT. Ready made and tested This is a 2-gtage unit using
triode pentode condenger coupled valve giving 3 wate output into an Tone and rolum controle mounted on chassis with knobs Supplied with
Joudspeaker and valve UCL82. Frequency respons $50-12,000$ cpa.
Sensitivity 200
SINGLE PLAYER EMI Junior Matne monO Garrard SRP20 Gartard SP25 MrII 214 19.6 Stereo/mono pickup 20/- pxtrg cartridge complet有 GARRARD TEAKWOOD BASE WB.1. Read
\qquad GARE. Durable tinted COVER SPC. 1 for WB. 1
DE LUXE STEREO GRAM CHASSIB V.H.F., MW, SW
 British made. Details S.A.E.
G.M.I. PICK-UP ARM Complete with mono cartridge $29 / 6$ al Grb7 17/6; Stereo Ceramic 35/-. Power point 56 15/-. CRYSTAL MIKE INSERTS I_in, dia. 6/8; ACOS 1才in. dia. 0/8. HM3, 1in. dia. $9 / 8$
MOVING COIL MIKE with Remote Control 8 witoh $19 / 6$ PORTABLE TRANSISTOR AMPLIFIER PLUS DYNAMIC MICROPHONE A melf-contained fully Many ures - ideal for Parties, or as a Baby Alarm, Intercom, Telephone or Record Player, Amplifer, etc Attractive rexine powerful 7×4 in power amplifier plus ultra nensitive transistor one watt battery. Brand new in Makers' carton with full makers guarautee. World lamous make. Only $90 /-$ Port

WEYRAD P50-TRANSISTOR COILS RARW 6in. Ferrite Aeris \mid Spare Comes whth oar aerisl ooll.... 12/6 Driver Trens. LFDTA 8d. Osc. P50/1AC 4 Fion $5 / 4$ Printed Circuit. PCA1 3rd I.F. P50/3CC $\quad \cdots \quad 6 / 7 \left\lvert\, \begin{array}{ll}\text { J.B. Tuning Gang } \\ \text { Weyrad Eooklet }\end{array}\right.$ Telesoopio Chrome Aorials 8in. extends to 23 kn . 5/ Ferrite Rods Only. 8 z $\frac{3}{\text { in. }} 4 /-\mathrm{F} 8$

VOLUME CONTROLS

80 obm Coax 8^{D} yd. Long ipindes. Midget Size BRITISH AERIALITE LIN. L/S 3/-; D.P. $5 /-\quad 40$ yd. $20 /-$; 60 5d. 307Edge 5 L/8 10/6, D.P. 14/6. PRINGE LOW LOSS $1 / 6$ WIRE-WOUND 8-WATT | PoT8. T.V. TYpe. Valnei | STANDARD SIZE POTS. | |
| :--- | :--- | :--- |
| 10 ohma to $30 \mathrm{E} .$, | $4 / 6$ | LONGSPINDLE | Carbon 30K to 2 meg . $4 / \mathrm{b0}$ OH: 8 to 100 K . $/ / 0$ VEROBORRD 0.15 MATRTX

$24 \times 5 \mathrm{in} .3 / 8.21 \times 32 \mathrm{in} .3 / 2.31 \times 84 \mathrm{in} 3 / 8.31 \times 5 \mathrm{in} .5 / 2$. PINS 38 per paoket $3 / 4$. FACE CUTTERS $7 / 8$.
8.R.B.P. Board 0.15 MATRIX 2itin. Wids 8d. per lin. 3 in. 8.R.B.P. undrilled $1 / 18$ in. Board. $10 \times$ Bin. $3 /-$

BLANK ALUMINIUM CEASSIS 18 s.W.g. \&in. sided
 ALUMINIUMPANEHS 18 s.w.E. 12×12 in. $6 / 6 ; 14 \times 9$ in. $5 / 6$; $12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7$ in. $8 / 8 ; 8 \times 6$ in. $2 / 6 ; 6 \times 4$ in. $1 / 8$. Q MAX CHASSIS CUTTER

Complete: a die, a panch, an Allen screw and key

'SONOCOLOR' CINE RECOFDING TAPE

 5^{*} reel, 900 with LP strobe markings, also oine ligh
Tape Spools 2/6. Tape 8plieer $5 /$-. Leader Tape $4 / 6$. Router Tape Heade lor Collaro models 2 track 21/- pair

BARGAIN STEREO/MONO SYSTEM
Attractive Slim PLAYER CABINET With B.S.R. STEREO Aubchanger $4+4$ AMPLLFIER and TWO matched (Only 4 pairs of wires to Carz. 10/6
f19.19.6.
NKW TUBULAR ELECTROLFTICS

NAL			
$2 / 350 \mathrm{~V}$	\ldots	$2 / 3$	$100 / 25 \mathrm{~V}$

CAN TYPEB
 SOB.MIN. ELECTROLYTIC8. $1,2,4,5,8,18,25,30,50,100$,
 CRRA MIC. 500 V 1 pF to 0.01 mF , 8d. Disos $1 /$
PAPER 350V-0.1 9d; 0.5 $2 / 6 ; 1 \mathrm{~m} 73 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3 /-$ $1,000 \mathrm{~V}=0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. SILVER MICA. Close tolerance $1 \% .5-500 \mathrm{pF} 1 /-580-2,200 \mathrm{pF}$ $2 / \sim 2,700-5,600 \mathrm{pF} 8 / 6 ; 6,800 \mathrm{pF}-0 \cdot 01$, mld $6 /-$ esoh.
 ture $10 /=; 500 \mathrm{pF}$ staudard with trimmerg $12 / \mathrm{B}$: 500 p F midget less trimmera. 7/6: 500 pF alow motion, standard 9/small 8-gang 500 pF 18/6. Single " 0 " $385 \mathrm{pF} 7 / 6$. Twin $10 / 6$. GHORT WAFE, 8 ingle $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $180 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each
TURING. Solid dieleotric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ each.

250V RECTIFIERS. Selendum | wave $100 \mathrm{~mA} 5 /-; B Y 10010 /$ CONTACT COOLED \& wave $60 \mathrm{~mA} 7 / 8 ; 85 \mathrm{~mA} 9 / 6$. Full Wave Bridge $75 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 19 / 6 ;$ TV re NEON PANEL INDICATORS. 250v. AC/DC, $3 / 6$
RESIGTORS. Preferred values, 10 ohms to 10 meg.
 Ditto 5%. Preferred values 10 ohms to 22 meg., 0 d .

15 watt 10 ohm to 6,800 ohm:
FULL WAVE BEIDGE CEARGER RECTIFIERS
6 or 12 p . outputs. $1 / \mathrm{amp} .8 / 9 ; 2 \mathrm{a} ., 11 / 8 ; 4 \mathrm{a} ., 17 / 6$
CHARGEB TEANSFORMERS, P. \& P. 5/-. Input 200/250v.
 VALYE HOLDERS, 9d; CERAMIC $1 /$-; CAN8 $1 /-$
BRAND NEW TRANSISTORS 6/- each
OC71, OC78, OC81, 0C44, 0045, OC171; OC170, AP117
MAT $100,7 / 9:$ MAT 101, 8/6; MAT 120, 7/9; MAT $121,8 / 6$ REPANCO TRANBIETOR TRANSFORMERS
TT45. Push Pull Drive, $9: 1$ CT, $6 /$-. TT46 Output, CT8:1, $6 /-$ TTR3/4 PAIR 10 watt Amp. Transtormers and circuit $45 /$

TRANBISTOR MAINS POWER PACKS. FULL WAVE 9 volt 500 mA Size $4 \ddagger \times 2 \frac{1}{2} \times 2 \mathrm{in}$. Output terminals. $49 / 6$ Hell Wave 9 volt 50 mA size 24×1 in. Snap termingla 9 yolt 500 mA TRANSFORMER ONLY. $2 \frac{1}{2} \times 1 / \times 14$ in. $10 / 6$ BENCH POWER PACK 230-250v. A.C. with $\mathbf{I} 7$ Mete. Supplies $6-\theta-12 v .1$ amp D.C.

MAINS TRANSFORMERS

$250-0-25050 \mathrm{~mA} .6-3 \mathrm{v} .2 \mathrm{~s}$. Centre tapped
$250-0-25080 \mathrm{~mA} .6 .3 \mathrm{v} .8 .5 \mathrm{a} .6 .3 \mathrm{v}$. 1a. or 5 v . 2 a
 MINIATURE $200 \mathrm{v} .20 \mathrm{~mA}, 8.3 \mathrm{v}, 1 \mathrm{~A} .2 \dagger \times 2 \times 1$ in. MIDGET $220 \mathrm{v}, 45 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{~s} .21 \times 21 \times 2 \mathrm{in}$. HRARTER TRANS. $6.8 \mathrm{v}, 1 \nmid \mathrm{a} ., 8 / 6 ; 6.3 \mathrm{v}, 4 \mathrm{a}$.
 $4,5,6,8,9.10 .12 .15 .18 .24$. and 307 . at 22. i. binp.. $6,8,10,12,16,18$. 20, 24, $30,38,40,48,60$ 8 smp., $0-12 \mathrm{v}$. and $0-18 v$ AUTO TRANSFORMERS $0-115-290 \%$ 19/6 60w. 18/6; 150w. $30 /-500 \mathrm{w}, ~ 98 / 8: 1000 \mathrm{w} .175 /-$
COAXIAL PLUG $1 / 3$. PANEL SOCKETS $1 / 3$. LINE $2 /-$ OUTLET BOXES, 8URFACE OR FLOSE 4/6
BALANCED TWIN FEEDERS 1/- Yard 80 or 300 ohms Chrome Lead Socket 7/8. Phono Plugs $1 /$-. Phono Socket $1 /$ JACK PLUGs Std. Chrome $3 /-; 3.5 \mathrm{~mm}$ Chrome $2 / 6$. DIN 8OCXETS Chassis 3-pin 1/6; 5-pin 2/-. Lead 3-pin 3/6 6-pin 5/- DIN PLUGS 3-pin 3/6; 5 -pin $8 /$

WAVE-CHANGE SWITCHES WITE LONG SPINDLES

 9 p .8 -way, or 2 p .6 -way, or 8 p .4 -way $4 / 6$ eaoh. 1 p. 12-way, or 4 p. 2 -why, or 4 p. 8 -way, $4 / 8$ eaoh Wp. 3 -way, 6 p. 2-way, 1 wafer $12 /-, 8$ wifer $18 /-8$ w. ${ }^{2}$. 4 -why TOGGLE SWITCHES, sp. 2/6; sp. dt. $3 / 6$; dp. $3 / 6$; dp ds. $4 / 6$

MINI-MODULE LOUDSPEAKER KIT

10 watt 55/- carr. 5/

Triple speaker system combining on ready cut baffle. 1 in. chipboard 15 in. $\times 8 \frac{8}{2} \mathrm{in}$. Separste Brat, Middle and Treble louds peakers and crossover condenser. The heaty duty 5 in. Bass Woofer unit has a low resonance cone. The Mid-Range unit is specislly designed to add drive to the middle register and the tweeter recrestes the top end of the musical spectrum. Total renpons $20-18,000 \mathrm{cps}$. Full instructious 1 or 3 or 8 ohm
TEAE VENEERED BOOKSEELF ENCLOSORE $17 \times 101 \times 71 \mathrm{in}$. Specially
degigned for Mini-Module above.
E5. 10.0

Post

- eath
19/8 $19 / 6$
$80 /-$ $80 /-$
$85 /-$

LOUDSPEAKER CABINET WADDING 18in. wide, $2 / 6$ it. BAKER "GROUP SOUND" SPEAKERS-POBT FREE 'Group 25' 'Group 35' 'Group 50' 25 ws ti $6 \mathrm{gmS} .35 \mathrm{watt} 8 \frac{1}{2} \mathrm{gns} .50 \mathrm{matt} 18 \mathrm{gnS}$ ALL MODELS "BAKER SPEAKERS" IN STOCE Goodmans Cone Tweeter 3in. quare, 2-18xc/s. 10W $35 /$ LOUDSPEAKERS P.M. 3 OHM8, $2 t \mathrm{in}, 3 \mathrm{in}, 4 \mathrm{kn}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}$
 12in. Double cone 3 or 16 ohm $89 / 6: 10 \times 8 \mathrm{kn} .30 /-; 8 \times 2 \mathrm{in}$. $21 /$ G.M.1. Double Cone 181×81 n. 3 or 15 obm modeln, $45 /-{ }^{0} 02$
 $15 / 6$ EACE 25 ohm, $8 \times 4 \mathrm{in}$: 35 ohm . 3 in 8 in. LOUDSPEAKER UNITS 3 ohm $27 / 6$, 15 ohm $30 /-$; in. LOUDSPEAKER TWIN CONE Sohm $35 /$ -
in. WOOPER. 8 watts max. $20-10,000 \mathrm{cps} 8$ or $15 \mathrm{ohm} 39 / \mathrm{k}$ UTPUT TRANS. EL84 etc. 4/6; 1MEE TRANS. $50: 1,3 / 8$. SPEAKER FRET Vsrious TyRan samples. Send S.A.E.

ALL PURPOSE HEADPHONES H.R. HeADPHONKS 2000 ohms Super Sonaitive DE LUXEP PADDED 8 TEREO PHONES 8 ohma.
MINETTE

AMPLIFIER

A.C. Matns Tranaformer. Chastis size $7 \times 8 \mathrm{H} \times 4 \mathrm{ln}$. EIZSO. Quality ontpus 3 ohm. With engraved fascia, valves, knobs, volume and bone controls, $\quad 69 / 6$
wired and tested. 12 month guarartee. Pont $5 / 6 \quad 169$

ALL EAGLE PRODUCTS
 SUPPLIED AT LOW EST PRICES

BARGAIN AM TUNER, Modium Wave.
Tranaintor Snperhat. Ferrite aerial, 9 vol 79/6 BARGAIN DE LUXE TAPE SPLICER Onte.
trims, joins for fodthe and repsirs. With 3 bladen. $17 / 6$ BARAAIN 4 CHANIEL TRANSISTOR MIXER. Add musieal highlights and wound offegt to rooordinge. Will mix Miorophone, reoords, Lape and tuner
with separate oontrols tato singio output, 9 volt.
$59 / 6$ WIth separate controls into singie output. $\frac{8 \text { yolt, }}{\text { BAR FM TUNER } 88-108 \mathrm{Me} / \mathrm{s} \text { Six Transistor. Resdy }}$ built. Printed Circait. Calibrated slide dial $\mathbf{E 6}$.19.6.
tuning. Etze $6 \times 4 \times 2$ in. 9 volt.
BARGAIN 3 WATT AMPLIFIER 4 Traneintor
Puab-Pull Ready built, with volume ontrol. 9v. $\mathbf{6 9 / 6}$

t RADIO BOOKS t (Postare 9d.)

Practical Transistor Reeciver
Practical Stereo Handbeok
Supersensitive Transistor Pooket Radio
High Fidelity Speaker Enclosures and Plant Practioal Radio Inside Out
Shortwave Transistor Recelvers
Transistor Communication Setr
Modern Transistor Ciroultu for Beginnors
Sub-Miniature Transistor Recelers
Wirelese World Bedio Falve Data
Wireless World Rsdio Valve D
At a glance valve equivalents
Valves, Transistors, Diodes equivalents manual Receive Foreign T. V. by simple modification: rantictor Circuite Redio Controled Models

MANUFACTURERS SUAPLUS! 25/-
TAPE RECORDER CASE. Red/Cream or
Grey 2 -tone. Rezine covered. Size $15 \times 12 \times 5 \|$ in. PO8T FREE
 SUPERIOR MOVING COIL MULTIMETER
$0-2-500$.D.C. $20,000 \mathrm{ohm}$ per volt. $0-1,000 \mathrm{v}$. A.C. $\mathbf{9 9 / 6}$ Ohms 0 to 6 meg. 50 Miorosmps (Full list Meters 8.A.E)

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Handmome plastic cabinet, 20ft. lead
and adaptori. For any radio, intorcom, and adaptorn. For any radio, intorcom, tape recorder, etc. 3 to 15 ohms. $30 /-$
Size: $7 \downarrow \times 5 \neq \times 8$ in.

tedhnical tranince in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

[^0]

Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive full-" length trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6 " extension barrel, doubleended probe, gun and solder. £4 126 .
Full details and
nearest stockist from:
Burgess Products Co Ltd,
BURGESS

Sapcote, Leicester LE9 6JW

a complete stereo system for only 28 gns!

THE DUETTO 9 GNS.
Integrated Transistor P\&P7/6 Stereo Amplifier
The Duetto is a good looking quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
Specification: R.M.S. power output: 3 watts per channel into 10 ohms speakers.
Input Sensitivity: Suitable for medium or high output crystal cartridges and tuners. Crosstalk better than 30 dB at $1 \mathrm{kc} / \mathrm{s}$. Controls: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
Tone Control: Treble lift and cut. Separate on/off switch. A preset balance control.

THE DUO

4 GNS.
The new Duo general purpose 2-way system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.
Specification: Impedance 10 ohms. It incorporates Goodmans high flux $6^{\prime \prime} \times 4^{\prime \prime}$ and $2 \frac{1}{4}$ " tweeter. Teak finish. $12^{\prime \prime} \times 64_{4}^{\prime \prime} \times 5 \frac{3}{4}$ ", 4 gns each, p \& p 7/6

Garrard Changers from£7.19.6
p \& p 7/6

Cover and Teak finish Plinth £4.15.0 p \& p 7/6

THE RELIANT

Solid State General Purpose Amplifier

$6 \frac{1}{2}$ GNS. P\&P7/6

Specification-Output: 10 watts into a 3 ohm speaker. Inputs: (1) for mike (10 mV). Input (2) from gram, radio (250 mV) individual base and treble control. Transistors: four silicone and three germanium. Mains Input: 220/250, volts. Size: $10 \frac{1}{4}^{\prime \prime} \times 4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 2 \frac{1}{2}{ }^{\prime \prime}$. Price: $6 \frac{1}{2}$ guineas in teak finished case. Less teak case $5 \frac{1}{2}$ gns, p \& $p 7 / 6$. Mike to suit (Crystal): $12 / 6$ plus $1 / 6 p$ \& p.
$8^{\prime \prime} \times 5^{\prime \prime}$ speaker $14 / 6$ plus 3/-p \& p.

THE VISCOUNT

$13 \frac{1}{2}$ GNS. P\& $\mathrm{P}^{17 / 6}$
Integrated High Fidelity Transistor Stereo Amplifier Specification-Output: 10 watts per chamnel into 3 to 4 ohms speakers (20 watts monaural). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Out. Sensitivities: All inputs 100 mV into 9.8 M ohm. Frequency Response: $40 \mathrm{~Hz}-$ $20 \mathrm{KHz}+2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls; treble, 13 dB lift and cut at 15 KHz ; Bass, 15 dB tift and 25 dB cut at 60 Hz . Volume Controls: Separate for each channel. AC Mains Input: 200-240v. $50-60 \mathrm{~Hz}$. Size, $12 \frac{1}{2}^{n} \times 6^{\prime \prime} \times 2 \frac{3}{2}^{n}$ in teak finished case. Built and tested.

RADIO \& TV COMPONENTS (ACTON) LIMITED
 All orders by post to our Acton address

21c High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.

LT55 6 WATT AMPLIFIER

A HIGH FIDELITY UNIT PROVIDING EXCELLENT RESULTS AT MODEST OUTPUT LEVELS.
Sensitivity 5 mv (max).

Recommended 9 gns
Size $91 \times 2 \frac{1}{4} \times 54 \mathrm{in}$. Controls (5) Volume, Bass, Treble, Mains Switch, Input Selector Switch.

Frequency Response $30-20,000 \mathrm{cps}-2 \mathrm{~dB}$ Harmonic Distortion 0.5% at $1,000 \mathrm{cps}$ Output for 3-8-15 ohm Loudspeakers. Input Sockets for "Mike," Gram and Radio Tuner/Tape Recorder.

LT66 12 WATT

 STEREO AMPLIFIERA TWIN CHANNEL VERSION OF THE LT55 PROVIDING UP TO 6 WATTS HIGH FIDELITY OUTPUT ON EACH CHANNEL.
Switched Input Facilities
Socket (1) Tape or crystal PU
(2) Radio Tuner (3) Ceramic PU

Microphone.

Controls (8) Volume, Bass, Treble, Balance, Mains Switch, Input Selector Switch. Stereo/Mono Switch.
Facia Plate Rigid Perspex with black/silver background and matching black edged knobs with spun silver centres.

If required an attrac-
tive wood osbinet with tive wood oabinet with
Satin Teak veneer Anlsh can be supplied for any model. 7 If Prices from

Please send a stamped addressed envelope for full detalls of above un/ls, a/so TUNER/AMPLIFIERS STEREO and MONO
AVAILABLE FROM YOUR LOCAL HI-FI DEALER Wholesale and Retall enquifies to:
LINEAR PRODUCTS LTD, Elactron Works, Armiay, Laeds

Announcing...

The VHF/UHF Manual

by George Jessop, G6JP

If you have any interest in the frequencies above 30 MHz then you need this book. It is the first complete manual for the metre and decimetre bands ever published outside of North America. It is probably the most comprehensive work of its kind ever produced, ranging from advanced material to simple circuits for the rank beginner to VHF. Illustrated with over 600 drawings.

Like all of RSGB's technical books, it is British produced and thus all parts are available in this country. An attractive layout and clear style make the VHF/UHF Manual equally suitable for construction or just reading.

Obtainable at 21/- over the counter or 22/6 by post from:-

R S G B Publications 35 DOUGHTY STREET, LONDON, W.C.1.

Aerial Whre: Colls of 25 yds. solid core, $2 / 3$ plus 1/-P.\& P.

Battory Ellminators for Transiator Supplies. Ov., 71v., 8v., 29/6 plus 2/6 P. \& P.

Condensers: Large range avallable from ed. each.
Coax Socketa: Flush, 8d, plus 8d. P. \& P.
Cartridges: Acos GP67/2G, 14/9; ESR TC8H, 30/-; TC8M, 20/6; X1M Inserts, 22/6, etc.

Ear Pieces: $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Mag., $2 / 6$ plus $1 /-$ P. \& P. $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Crystal, $5 / 6$ plus $1 /$ P. \& P.

High Impedance Horns: $1 \frac{1}{1}$ to $4 \frac{1}{1}$ volt, ideal for alarme, 3/6 plus 1/- P. \& P.

Loudepeakers: Large range. 2in. ohm, 7/6; 4In. $8 \mathrm{ohm}, 12 / 6 ; 5 \mathrm{ln} .8 \mathrm{ohm}, 16 / 6$ plus 2/- P. \& P.

Transistors: Full range, l.e. OC44, OC45, OC71, OC82, 2/6; OC35, 9/-; Fet.MPF103, 9/5.

Transformers: 12 volt battery charger, £1.2.5. $250-0-250$ volt $60 \mathrm{~mA}, 18 / 9 ; 0-250$ with 6.3 volt, $19 / 6$ plus 3/6 P. \& P.

Relays: 12 volt sultable for car alarm, 21/-; 6 volt AC, 2 /6; 240 volt AC, $27 / 6$ plus $3 /-$ P. \& P.

Ex. Govt. Panel Meters: O-SM/A, 17/6; 0-300v AC/DC, 25/6 plus 2/7 P. \& P.

Many other Items, please send S.A.E. for free price list.

BOTEFWLLL FLEOTRIC

64 FGLLITOM STRMET,
GLASGOW, C.5. Tel. 041 gOUth 2904
Member of the Lander Groap
 Same as 4-Station Intercom for two-way Instant
communication. Ideal maby Alarm and Door Phone. Complete with 6ift. connecting wire. Phone. Complete with

Trassiste TELEMOWE ANOUFIVR
59/6
Why not boost business effldency with this incredible De-luxe Tolephone Amplifier. Take down long telephone messagea or converse without holding the handset. A usetul office sid. On/ off 5 witch. Volume Control. Bmttory
$8 / 6$. Full price refunded if not sathified in 7 days. /8. Full price retunded if not astiafied in 7 diss. 169 KEHELAGTON HGEI EREET, LONBON, W.8.

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors. Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, $45 /-14$ element, 58/6. 18 Cranked Arm, 7 element. $60 /-11$ element 67/-. 14 element, 75/- 18 element. 88/6. Mast Mountine with 2 in. clamp. 7 element. 48/6. 11 element, $55 /$-. 14 element, 62/-. 18 element. 70/- Chimney Mounting Arrays, Complete. 7 element, 78/6. 11 element, $80 /-$ 14 element, $87 / 6.18$ element, $95 / \mathrm{F}$. Complote Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75/-. State clearly channel дumber required on all orders.

ITV AERIALS
BBC (Band 1). Telescopic loft, 25/5; Hxtermal
 ITV (Band 8).
ment loft grray, $30 / 0-5$ element. $40 /$. 7 element 50/-. Wall mounting. 3 ele ment, $47 / 6$. 5 element.
$52 / 6$. Combined BBC/ ITV. Loft $1+3,40 /-; \frac{1+5}{} 1+7$. mounting $i+3$. $57{ }^{1+7} \boldsymbol{j}_{6} ; 1+5$. 67/6; Chimney $1+3,67 / 6$;
 smps, 75/-.
COMBINED BEC1 \quad ITV - BBCR AERIALS $1+3+9 . \quad 70 /-1+5+9$. $80 /-$ $1+5+14.90 / \mathrm{m} .1+7+14$, $100 / \sim$. Loft mounting only. Special leaflet available.
F.M. (Band 2). Loft S/D. 15/ .. "H'" 38/6. element, 55/- Externgl units available. Co-ax cable 8d. yd. co-ax. plugs, $1 / 4{ }^{\circ}$ 13/6. C.W.O. or C.O.D. P. \& P. 6/-. Send 6d. stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dapt. P.W.) 40-41 MONARCH PARADE LONDON ROAD. MITCHAM, SURREY 01-648 4884

Build yourself a quality transistor radio

backed by our after sales service!

roamer seven mk IV SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold case. Sise 51 x 11 z $8+i n$. Tunable over both Medium and Long Wavea With ortended M.W. band for eaaler tuning of 7 stages- isgansiatorn and 2 diodes, nupersensitive ferrite rod merisl, fine tone moving cofl speaker, aloo Personal Ferplece with switchod socket for private listening. Hacy build plani and parta price List 1/8 (FRER with parts).

transona five

medium wave, long wave
AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attrective case with red upeaker grille. Bizo of x $41 \ln$. I $14 \ln 7$ atages- 5 transintora and 2 diodes, ferrite rod aerial, tuning condenser, volume control, Ane tone moving voil apeaker also Paraonal Earplece trede components. Easy bulid plana and parta price list 1/6 (FREE with parte.)

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
 attings. The ideal radlo for home or outdoors. Covers Medium and Long Wave and Tramler Band. Bpecind circult incorporating 2 R.F. Stages, puin pull output, ferrite rod eerial, 7 tranalstora opoaker) and all iret gredo component larger bulld plan and parta price Hot $2 /$ (F'RER with parts). (Pernonal EArpiece with s witahed sock wit or private Hetening 5/-extra.)

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case with gilt ittings. Stse $71 \times 6 / \times$ lim. Tunable on Medium and Long wavea, two sor owaler tuning of Luzambourg. oto, Gonaitive forrite rod aorisl and talembopic aorial for Short waven. All top grade components. 8 thagem- 6 transiotorn and 2 clodes including Miero-Alloy R.F. Tranaintora eto. (Carrying etrap $1 / 6$ extra). Eisy build plage and parts price Hot $2 /$.

Total building costs
47'6

Total building costs

[^1]Fistra M.W. band for
easier tunting of Luxembourg,
etc. Built in ferrite rod aerial for Medime and Loag waves. I Sectlon 22in
chrome plated telescoplc aerial for short Waves-
diodes includtng Micro-Alloy R.F. Transistora. Famous mative 7 in 4in. P.M. speater for rich-tone volume. Air bpaced ganged tuning condenser. Volume on/on control wave change switches and tuning control. Attractive case with carrylag handle,
Gize $9 \times 7 \times 4 \ln$. approx. Firat grade componenta. Basy to follow instructions and diagrama make the Roamer 7 a pleasure to build.
Total building costs
S Q P. \& P Personal Earpiece with ewitched socket
Parts price list and easy build plans $3 /-$ (Free with parts).

NEW LOOK melody six

two waveband portable
8 stages- -8 tranaiators and 2 diodea. Covern Medium and Long Wavea, Top quality 3 In. Loudspeaker for quablity output and also with Porsonal karplece ing. Two. R.F. stages for oxtre boost. High "Q". Ferrite Rod Aerial. Puah-puli output. Hendsome pocket ise canee with gilt fittingu. Size of $x 4 \times 2 \mathrm{~mm}$. Resy builh plans and parta price list $8 /$ - (FRER with parts:.

Total building costs

RADIO EXCHANGECO

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM
 * Performance comparable with units costing Carr. 12/ considerably more, Consists of (1) chassis, foll rubber cone surround for ultra low resonance, and ceramic magnet. (2) 3-way quarter section series cross-over system, (3) 8 x $51 n$. high flux middle range 'speaker. (4) High efficiency tweeter. (5) Measured welght of woollen acoustic damping material. (6) Teak veneered cabinet. (7) Circuit and full instructions. Terms: Dep. $\frac{\text { dis.10. }}{}$ and 9 monthly payments
DEMONSTRATIONS AT ALL BRANCHES.
R.S.C.STEREO/20 HI-FI AMPLIFIER

PROVIDING Retaren igit watt Ulita linear peak pushepull

 compensation and input selector switch. \ddagger sterea/Mono switch. \star Neon panel indicator. \star Handsome Perspex Frontplate. \star Separate Bass and Treble controls. Output transformers are high quality sectionally wound. Outputs for 3 and 15 ohms speakers. Complete set of parts. point 15 Gns. to-poiint wiring diagrams and instructions. Or factory assem Carr. 12/6 9 monthly payments tP (Total fina 10.01. Send S.A.E. For ieaflet.
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Highly sensitive, Push-Pull Tone Control Stares. Perrormance figures of factory built units: Hum level-70dB. Frequency Valves EF86, EF86, ECC83, 807. 807, GZ34. Valves EF86, EF86, ECC $83,807.807, ~ G Z 34$
Separate Bass and Treble Controls. SensitiSeparate Bass and 36 mV . Suitable for high Impedance
vity
microphones. Crystal or Ceramic P.U's. Demicrophones, Crystal or Ceramic P.U's. DeHalls or Outdoor Functions, etc. For use with Electronic Organ, Guitar, String Bass, etc. Gram, Radio or Tape. Reserve L.T. and H.T. for Radio Funer. Two For 3 and 15 ohm speakers. Complete kit of parts with polnt-to- 14 Gns. point wiring diagrams and instructions. pupplied factory buitt with output valed perforated cover 27io. for 17 gns . TERMS: Deposit 26 output valves. 12 months guarantee for 18 gns. TERNS: Deposit en 9 monthly payments of $32 i-$ Total 220.8 .0) Send S.A.E. for leaflet.

R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER

PUSH-PULL ULTRA LINEAR OUTPUT Two input sockets with essociated controls Two input sockets "With associated controls High sensitivity. 5 valves-ECC83 (2), EL84 (2) EZ81. High quaility sectionally wound output transformer. IND. BASS AND TREBLE CONTROLS. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. For Crystal or Ceramic PUs, High Impedance "mikes". For Musical Instruments such as String Bass, Electronic Guitar otc. Size approx. 12×9 x 7 in . For AC mains $200-250 \mathrm{v}$. 50 cps 9 GnS.
Output for 3 and 15 ohm spkrs. SAE for leaflet. Complete kit. Full instructions and point-to-point wiring diagrams. Carr $11 / 6$ (or factory built 12 Gns, Twin handled metal cover $27 / 6$. TERMS ON ASSEMBLED UNITS. Deposit $97 / 6$ and 9 monthly payments of $22 / \%$. (Total £14.15.6) RSC A11T TRANSIS RSC AIIT VRRAN above complete kit 9 Gns
Assembled 13 Gns) R.S.C. BASS-REGENT 50 WATT AMPLIFIER

R.S.C. MAINS TRANSFORMERS

FULLY GUARARTGHND, Interleaved and ImprogMIDGET OLANPED TYPE $81 \times 24 \times 2 t$ In. $250 \mathrm{v} .1,60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. 2 s .
$250-0.250 \mathrm{v} .60 \mathrm{~m}$
FULLY SHROUDED UPRIGHT MODNTITG $250-0-2200 \mathrm{v} .60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a} .10 .5 \cdot 6 \cdot 3 \mathrm{v} .2 \mathrm{a}$. $250-0 \cdot 250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{a}$
$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-\mathrm{b}-6.3 \mathrm{v} .3 \mathrm{a}$ $300.0-300 \mathrm{v}$. $130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. 4 s ., c.t., $6 \cdot 3 \mathrm{v}$, 1 s For Mullard 610 Amplifier.
$350-0-350 \mathrm{v}$. $100 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{~m} ., 0 \cdot 6-6-3 \mathrm{y} .3 \mathrm{a}$. $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6-3 \mathrm{v}$. $4 \mathrm{a} ., 0-6-6.3 \mathrm{v} .3 \mathrm{a}$ $425-0-426 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~m} .$, c.t. 5 v . Sa. . $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, 6 \cdot 3 \mathrm{v} .3 \mathrm{~s} ., 6 \mathrm{v} .3 \mathrm{a}$
$450-0-450 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 6 . \mathrm{t}, 5 \mathrm{z}$ TOP GHROUDRD DROP-THROUGH TYP运 $250-0-250 \mathrm{v}, 70 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. 2a. , 0-6-6.3v. 2a. $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 3 \cdot 5 \mathrm{~s}$
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 6 \cdot 3 \mathrm{v} .1 \mathrm{a}$. $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{~A} ., 0-6-6 \cdot 3 \mathrm{v}-2 \mathrm{a}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-6-6 \cdot 3 \mathrm{v} .3 \mathrm{~m}$.
 $300-0.300 \mathrm{v}$. $130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. $4 \mathrm{~A} ., \mathrm{j} 0-5-6.3 \mathrm{v}$. Buitable for Mallard 510 Ampliner $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-6-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$ $350-0-360 \mathrm{v}, 150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~s}, 0-6-6.3 \mathrm{v} .3 \mathrm{~s}$ FILAMIXNT or TRANEISTOR POWER PAC $6 \cdot 3 \mathrm{v} .1 \cdot 5 \mathrm{a} .7 / 8 ; 6 \cdot 3 \mathrm{v} .2 \mathrm{~s} .8 / 9 ; 63 \mathrm{v}$. 3a, 10/9;6-3v. 8s. 81/9; 12v. 12. 8/9; 12v. 2a, or 24\%. 1-5a. 21/9; $0-9-18 \mathrm{v}$. $14 \mathrm{~m} .17 / 0 ; 0-12-25-42 \mathrm{v}$. 2m. 89/9. CRARGMR TRANSFORMRAS 0-9-16v. 11a. 14/11; $21 \mathrm{~m} .17 / 9$; 3ı. 19/11; 5a. 88/9; 6a. 87/9; 8a. 88/8. 10a. $55 / 11$.
AUTO (8tep UP/atep DOWN) TRANBFORMERS
 150 watts, $29 / 11$; 250 watta
OUTPUT TRANSFORMERS
Standard Pentode $5,000 \cap$ or $7,000 \Omega$ to 8Ω
Push-Pull 8 watte ELL8 to 30 or 150
Push-Pull 10 matte 6v6 BCL8 to 3 5, 8 or 180 $18 / 0$
Push-Pull CL84 to 3 or $15 \Omega 10-12$ watts
Push-Pull Ultrs Linesr for Mullard 510, etc
Push-Pull 15-18 watts, sectionally wound 6 L 6
KT66, etc., for 3 or 15 D .
Push-Pull 20 watt high quality sectionaily wound EL34, 8L6, KT66 etc. to 8 or 150
8MOOTHING CHOKRS
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \varrho 18 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200010 / 9$ 80 mA , $10 \mathrm{H}, 350 \Omega 8 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 11$.

\section*{BLACKPOOL | AGENT APPOINTED |
| :---: |
| o. $\begin{array}{c}\text { G2 C. ELECTRONICS } \\ \text { G27 CHUCH ST. }\end{array}$ |}

R.S.C. COLUMN SPEAKERS

Covered two-tone Rexinel Vynair, Ideal for vocalists and Public Address, 15 ohm matching.

30 WATT HI-FI AMPLIFIER
Por Guitar, Vocal or Instrumental Group
A 2 or 4 tinput, 2 vol. control Hi-F1 unit with Sop arate Bass and Treble controls. Current valves. Seaparate Bass and Treble controls. Current valves. Peak les. Attractive black/gold perspex facla. Neon indtcator For $200-250 v$. A.C. mains. For 3 or 15 ohm speakers. Send S.A.E. forleafet. Deposit 4 gns. and 18 GnS. Carr.
9 mthly payments of $39 / 8$ (Total21 gns). $12 / 6$

12in. HIGH QUALITY LOUDSPEAKERS In Teak or Arrormosla vencered Cabinets

FANE ULTRA HIGH POWER LOUDSPEAKERS
All power ratings are R.M.S. continuous. 2 year guarantee. High
Flux 14,000 line ceramic magnets. Heavy cast chassis.

100		
0 Watt	$15^{\prime \prime} 60$ Watt	12" 50 Watt
19 gns Camr ${ }_{\text {L }}^{15}$		10

POWER PACK KIT Consisting of Mains transformer. Metal
 case in iteu of chassis Re/ll. Or assembled $39 / 11$.

CLEARANCE LINES

HIGH QUALITY $8^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKERS 10000 Gauss $11 / 9$
$15^{\prime \prime} 40$ WATT LOUDSPEAKERS IN CABINET 14 Gns Heavy construction. Covering Rexine and Vynair

14 WATT HI-FI AMPLIFIERS $\begin{gathered}\text { HIEb } \\ \text { separate inputs. Two } \\ \text { senitivity. }\end{gathered}$ controls for mixing purposes. Separate Bass and Treble Controis. Valves A.C. mainsoperation. Size approx. $8 \times 8 \times 81 \mathrm{n}$. Factory $\mathrm{f} 7-19-11$ Carr buit and fully guaranteed. Lfmited number to clear at $\mathbf{f / - 1 9 - 1 1} 101$ 10/-
E.M.I. HIGH FIDELITY LOUDSPEAKERS $13^{*} \times 8^{80} 150 \mathrm{hms} \quad \mathbf{~} \frac{1}{2}$ Gauss 13,000 lines. Formed flextble P.B.C. cone surround for very 2 EXTENSION 'SPEAKERS 29/9

EXTENSION 'SPEAKERS 29/9
Cabinet size $12 \times 8 \times 5$ xin approx.
attractive grey lizard skin finish.
Fitted high flux 5 watt 3 ohm
speaker
with P.U. 4 speed. Turnover cartridge. Limited number.
Mono $59 / 9 \quad$ Stereo
69/9
PHONE AMPLIFIERS
1 WATT TRANSISTOR AMPLIFIERS
$\begin{array}{lll}\text { loudspeakers. Miniature size. Brand now boxed. } & \text { for } 3.5 \mathrm{ohm} \\ \text { Post free } & 37 / 9\end{array}$ PRINTED CIRCUIT KITS for making printed circuits. 12/9
 J.B. VHF/FM DIAL \& DRIVE ASSEMBLIES ONLY 9/9 Complete with escutcheon. Size $7^{7} \times 44^{\circ}$. Escutcheon $77^{\circ} \times 24^{\circ}$. Post $2 / 9$ TAPE RECORD/PLAYBACK AMPLIFIERS ${ }_{4 \text { watts output. Magic }}$
 ARMSTRONG UNITS CLEARANCE Our Price
 MINI-8 HI-FI LOUDSPEAKER UNITS

JASON VHF/FM TUNER DESIGNS

 STEREO/TEN HIGH QUALITY AMPLIFIER

5 watts hlgh quallty peak output on each channel Sensitivity 50 millivolts. Suitable all crystal or ceramic stereo cartridges. Ganged Bass and
Treble Controls. Valves ECC83(2), EL84 (2), EZ81. For $2-3$ ohm speakers.
Assembled with 12
months' guarantee
marr.
$7 / 9$
6/12V CAR BATTERY CHARGERS
Complete kit of parts with Ammeter and Circuit Both models with variable charge rate selector.
$4 \mathrm{amp} 49 / 9 \quad 6 \mathrm{amp} 69 / 9$ $4 \mathrm{amp} 49 / 9 \quad 6 \mathrm{amp} \mathrm{69/9}$ All types 200-250v. A.C. Mains. Built 10-- extra.

FUNLY TRANSISTORISED 200/250v. A.C. Mains OUTPUT 10 WATTS R.M.S. cont. into 15 ohms. TRANSISTORS. 9 current types of high quality by 5 POSITIONINPUT SELECTOR SWITCH EQUALISATION to Standard R.I.A.A. and C.C.I.R Characteristics for Gram and Tape Heads. SENSITIVITIES: Magnetic P.U. 4 mV . Crystal or Ceramic P.U. 400 mV . Microphone 4.5 mV . Tape Head
2.5 mV . Radiol Aux or Ceramic P.U. 110 mV . FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} 20-20,000 \mathrm{c} . \mathrm{p}$
TREBLECONTIROL: +15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. NEG FEEDBACK:52dB BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HUM LEVEL: -75 dB HARMONIC DISTORTION at 10 Watts 1,000 c.p.s. $0 \cdot 2 \%, 19 \frac{1}{2}$ Gns. Complete Kit of parts with full constructional details and $1 / \frac{1}{2}$ Gars.
point to point wiring diagrams.
Supplied factory buit $12 / 6$ Gins. Carr. $12 / 6$. Terms. Deposit 4 Gns. and Supplied factory built 15 Ging. Carr. 12/6. Terms: Deposit 4 Gns, and 9
monthly payments $31 / 1$ (Total \&18.3.9). Or in Teak or Afrormosia veneer mousing as 111 ustrated. 19 Gns. ALI COMPONENTS ETC. ARE OF A HIGE STANDARD AND

SPECIFICATIONS COMPARARLE WITH UNITS COSTING CONSIDERABLY MORE

BRADFORD

BLACKPOOL (Agent 0 . a C. Electornics, 227 Church Street

 darlington EDINBURGH 133 Lellt 5 st. (Hall-dar) Wed.). Tel. Wavertes 5 I6e GLASGOW Sist
 MAIL ORDERS TO: 102
Henconner Lane, Bramley Leeds 13. No C.O.D. unde £1. Terms C.W.O. or C.O.D. Postage $4 / 6$ extra under $£ 2$. 5/8 extra under $£ 5$. Trade please Open all day Sate.
Mail Orders must not be sent to shops

A DUAL CIANNEL VERSION OF THE SUPER 15. Employing Twin Printed Circuits. High quality CONTKOL: 5 position Input Selector, Bass Control. Treble Control. Volume Control. Balance Control. StereolMono Switch. Tape Monitor Switch. Mains Switch. INPUT SOCKETS (Matched Pairs). (1) Masnetic P.U. (2) Ceramic or Crystal P.U. (3) Radio/Aux. (4) Tape Head/Microphone. Operation of the Input Selector Switch assures appropriate equalisation. Rigid 18 s.w.g. Chassls. Slze approx. 12in. Wide, 3in. high and 8in. deep. Neon Panel indicator. Attractive Faetc, except for Ganging and Balance Control, apply also to Super 15 . ANY MAKE OF PICK-UP OR MICROPFONE (CER USE WIMA Magnetic, Moving Coll, Ribbon). CURRENTLF AVAILABLE SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BY USING WITI FIRST RATE ANCILLARY EQUEPMENT, All required parts, point to point wiring \quad Carr. 15/- Gns. diagrams and detalled lastructlons.
Unit factory built 28 Gns. or deposite 7.5 .0 and 9 mont. $15 /-\quad$ Ins. Unit factory built 28 Gns. or deposit er 5.0 and 9 monthly payments 56/3, (Total £32.13.3). Or in veneered housing 31 Gins. Carr. 15/- or Deposit

PRACTICAL!

VISUAL!

 Nh Ahr EXCITING!
a new 4-way method of mastering ELECTRONICS by doing - and - seeing

3 READ and $\begin{aligned} & \text { DRAW and }\end{aligned}$ UNDERSTAND CIRCUIT DIAGRAMS

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING ...

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT - BASIC RADIO RECEIVER - ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS - D.C. EXPERIMENTS - SIMPLE COUNTER - TIME DELAY CIRCUIT - SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^2]

TOPIC DF THE MONTH

Self-satisfaction

WHY do we do it ? Now, there's a leading question if ever there was one. With the keenly competitive market of today, and the resultant multiplicity of receivers, units, test equipment, and the like, often at prices impossible to match by the lone enthusiast, it would seem to the outsider to be difficult to account for the continued popularity of our hobby.

Yet, despite all logical attempts to understand the reasons why the home constructor should still spend his leisure hours making something he could probably buy cheaper, the ranks increase in number. Certain projects, of course, are much cheaper to build oneself, especially if the proverbial spares box has any pretensions. But it is necessary to dig a little deeper to discover why more and more people are actively engaged in connecting R1 to C4. For it is obvious that the mere saving of money is not the primary motive.

Man is a curious animal (in at least two definitions of the phrase I). In the first place he is blessed with an intuitive inquisitiveness which may manifest itself in anything from wanting to go to the moon to wondering if it is possible to build a portable radio that not only looks good but sounds good. Perhaps this is the main driving force.

Another well-established characteristic of many specimens of homo sapiens (though not in all, by a long way!) is an inherent seeking for the pride that comes from a sense of achievement. In the past, very many people could attain this mental condition at their workbenches but the days of individual craftsmen are fast disappearing. With mass production and modern manufacturing techniques, many erstwhile craft jobs have given way to those offering little in the way of personal satisfaction. This seems to have created a void and is no doubt a strong reason for the astonishing boom in all kinds of do-it-yourself activities.

Many of these frustrated artisans take up radio and electronics. And it is paradoxical that one of the reasons for the de-humanising of industry is the increasingly widespread use of electronics!
W. N. STEVENS-Editor.

NEWS AND COMMENT

Leader 167
News and Comment 168
Electronics at the Norway Trade Centre 169
Practically Wireless by Henry 181
MW Column by C. Molloy 195
Letters to the Editor 200
On the Short Waves by Christopher Danpure and David Gibson, G3JDG 211
CONSTRUCTIONAL
AC/DC Meter by H. T. Kitchen 170
Ready Calibrated Signal Generator by F. G. Rayer 175
A.F./I.C. Signal Injector by S. Elliott 188
Directional Microphone by C. R. Bradley 193
Take 20, Mini Metronome by Julian Anderson 203
OTHER FEATURES
Pulse Circuits in Operation، Part 2, by I. J. Kampel 182
Aerials, Part 4, Transmission Lines by A. J. Whittaker 190
Transistor Output Stages, Part 2 by I. R. Sinclair 196
P.W. Guide to Components, Part 7 by M. K. Titman, B.Sc. 204
AUGUST ISSUE WILL BE PUBLISHED ON JULY 4th
QUERYCOUPON

This coupon is available until 4th July, 1969 and must accompany all queries in accordance with the rules of our Query Service. An s.a.e. must be included.

PRACTICAL WIRELESS, JULY 1969

[^3]
newh RID comment...

RADIO AND TV SERVICING FOR THE YOUNG
The Department of Employment and Productivity has produced a Choice of Careers booklet (No.66) on careers in radio and television servicing. The booklet states that most homes now contain at least a radio and television and in many cases a record player and tape recorder as well. It says that it is therefore essential that adequate repair facilities are available and that there are excellent prospects for the "keen young man who has the aptitude for the job, applies himself wholeheartedly to learning it thoroughly and is prepared to keep abreast of current developments".

The book says that prospects are not limited solely to servicing and those with the ability to extend their knowledge through further study and training may qualify for executive and administrative posts.

Radio mechanics and technicians are responsible for the maintenance of radio receivers and transmitters, weather radar sets, direction and position finding equipment and a wide range of electronic safety and navigational aids. There are also jobs with independent and multiple retailers, with the service organisations, with manufacturers' servicing departments, rental and relay companies, the radio and television organisations and government departments.
There are openings for girls-on production, sometimes with servicing, and some jobs doing semi-skilled work.

The booklet is amply illustrated with photographs showing the branches of the work.

The price of the booklet is 1 s .6 d . and is obtainable from H.M. Stationery Office.

Automents Ltd., New Street, Oadby, Leicester, LE2 4LB, specialise in designing, developing and manufacturing car instruments and accessories and their latest design is called the "Watercheck". It consists basically of a Darlington pair and is a water-level indicator. Whenever the water level falls to the level of the probe, fitted into the header tank at a predetermined level, a signal is passed to the Watercheck instrument on the dashboard flashing an amber light, so warning the driver to take action before engine damage occurs. The makers claim the unit can be fitted by the average driver in 20 minutes and there are only three electrical connections to make. Two models are available- 12 V positive and 12 V negative earth. The cost is $£ 3.15 \mathrm{~s}$ including postage.

Automents Ltd. state that they will be launching, within the next few months, a windscreen wiper control and a unit called the "Speedset"-an audible speed computer which sounds an alarm as soon as a predetermined speed has been exceeded.

Futuristic Aids Ltd., 106 Henconner Lane, Leeds, announce their "Phase Thirty-Two" solid state stereo amplifier. Sensitivites are: Magnetic p.u., 3.5 mV , Ceramic, 30 mV , Radio, 100 mV, Tape, 500 mV . Microphone, 5 mV and Tape Head, 2 mV . Frequency response is $10-40,000$ c.p.s. $-3 d B$; hum level, - $80 d B$ and signal-to-noise, $-60 d B$. Harmonic distortion is 0.1% at 10 W r.m.s. 1,000 c.p.s.

The unit is housed in a satin teak veneered cabinet and the fascia plate is Perspex with black background and silver lettering. There is a 5-position input selector-disc, radio, tape, mic., tape head. The price is 35 guineas.

CODAR MOVE

Codar Radio Co. (Inc. Codar Electronics Co.), Bank House, Southwick Square, Southwick, Sussex, have moved into their new factory.

Now all correspondence and goods must be addressed to: "Codar Radio Company, "Codar Electronics ("as applicable) Thesiger Close, Meadow Road Industrial Estate, East Worthing, Sussex. Telephone: Worthing 37315.

NEW MULLARD PUBLICATION

Consumer Electronics is the title of a new Mullard quarterly which concentrates entirely on the existing and future applications of electronics in consumer goods.

Among topics dealt with in the 18 -page March issue are: the control of domestic appliances by thyristors, an electronic controller for electric blankets, rental for domestic appliances, colour TV picture tubes, microminiaturisation and hearing aids, and a quartz-controlled wristwatch.

Consumer Electronics is free to all interested in the design and manufacture of consumer goods in which electronic devices are or could be used. It is not, however, intended for retailers or consumers. Requests for issues should be addressed, on company headed notepaper, to C.I.H./C.M.S. Dept., Mullard Ltd., Mullard House, Torrington Place, London, W.C. 1.

CABLE \& WIRELESS APPOINTMENT

Mr. Robert F. Forrest, is the new secretary of Cable and Wireless Ltd.

During the Second World War he saw service on one of the famous Blue Trains-mobile radio stations which provided frontline communications for Allied troops.

Mr . Forrest, in fact, travelled with his Blue Train from Algiers to Vienna, visiting Naples, Rome, Frankfurt and other war-torn cities on the way.

new And comment...

NEW MULLARD PHOTO-CELL A new cadmium sulphide cell announced by Mullard has a larger photo-sensitive element than the wellestablished ORP60, but is the same size externally (6 mm in diameter and 16.5 mm long excluding leads). Hence, the new cell, type ORP69, is more sensitive and has a higher dark resistance.

The ORP69 will dissipate 100 mW and withstand voltages up to 350 V d.c. Its initial dark resistance is greater than $100 \mathrm{M} \Omega$; in an illumination of 50 lux from a lamp with a colour temperature of $2700^{\circ} \mathrm{K}$, the cell resistance is typically $30 \mathrm{k} \Omega$. It has a sensitivity of approximately $17 \mu \mathrm{~A} / \mathrm{lux}$.

PERIOD STYLE SEPARATES

In Queen Anne style, the Dynatron Hambledon Model HFC13, illustrated on the right, incorporates the SRX25 tuner-amplifier with the Garrard 3500 auto-changer with stereo cartridge and diamond stylus.

Recommended retail price inc/uding purchase tax f139 15s.

Matching Queen Anne style loudspeaker enclosuresModel LS250-are available for this model at the recommended retail price including purchase tax of $£ 30$.

Mr. S. Walter Rostoft, the Norwegian Minister of Industry, recently opened the first exhibition at the new Norway Trade Centre at 20 Pall Mall, London, S.W.1.

Called "Design for Export", the exhibition showed a wide range of Norwegian export products. Many of the exhibits were design articles for the home, including glass, china, cutlery, furniture etc. but another section of the exhibition featured a number

From Tandbergs Radiofabrikk A/S, radio "Huldra" in palisander with two loudspeakers also in palisander. On the left, tape recorder 1200X, the series 15 and the tape recorder 11 which is battery driven. The TP 3-3 portable radio is on the right.
of electronic articles including tape recorders, radio receivers and television.

Tandbergs Radiofabrikk A/S Oslo, represented in the United Kingdom by Elstone Electronics Ltd., Leeds, were the major exhibitor at the exhibition. Tandbergs export 50% of production to the UK, Sweden and the USA.

Norway's oldest radio manufacturer, A/S Radionette, established in 1927, was showing its Multirecorder f.m. tape recorder, its Kurer u.h.f./v.h.f. portable TV working from mains or battery and housed in a wooden cabinet, and its new Soundmaster HiFi stereo radio which employs pressure chamber speakers. This set cover 6 wavebands: Long, Medium, Short 1 (60-24m), Short 2 (24-10m), f.m. and Marine Band. In the UK Radionette is represented by Denham \& Morley Ltd., London, W.1.

From A/S Radionette, the Soundmaster Mi-Fi Stereo with pressure-chamber speakers, the "Kurer" 11 in. TV and the Mutti-recorder-FM-a one-spool portable tape recorder with built-in f.m. radio.

THE further the enthusiast ventures along the electronics path, the more he realises the limitations of the ubiquitous test meter. For many applications the test meter is adequate, often indispensable, and it is only when he begins to delve into the regions of millivolts, or begins to soar into the kilohertz region that the limitations of the ordinary test meter become obvious. In order to explore these regions successfully, more sophisticated equipment is necessary. It was to fulfil such a requirement that the test set to be described was evolved.

The cost of such an instrument, even if home made, is relatively high when one considers the multitude of cheap and usually good test meters available to the enthusiast.

In the "good old days" of vacuum state equipment, test meters having input resistances of one or two $\mathrm{k} \Omega / \mathrm{V}$ were quite adequate. A $10 \mathrm{k} \Omega / \mathrm{V}$ meter was occasionally necessary; a $20 \mathrm{k} \Omega / \mathrm{V}$ meter was really something. Nowadays, silicon transistors drawing only a few hundred micro-amps collector current are not uncommon, with base currents in the $n A(n A=$ nanoamp $=0.001 \mu \mathrm{~A})$ or la few $\mu \mathrm{A}$ region. In such an instance, even a $20 \mathrm{k} \Omega / \mathrm{V}$ meter can impose an intolerable drain on the circuit, giving readings well below the true value, or even no reading at all. Quite clearly, a much higher input resistance meter is required, and since the major requirements, such as sensitivity, and robustness and resistance against damage due to mechanical shock, conflict, there is a limit to the degree of sensitivity attainable in the meter movement itself. Recourse has to be made to "active" voltmeters containing amplifiers that can increase the minute voltages to the extent that relatively insensitive, and therefore mechanically robust, meter movements can be used. These amplifiers constitute what are in effect, impedance transformers that allow the low resistance high current consumption meter movement to be connected into a high resistance low current consumption circuit without affecting it adversely.
One other limitation of the ordinary test meter is its restricted measuring range. Few test meters are intended for measuring voltages below a few volts a.c. and d.c., so that the very limited a.c. output voltages from tape leads, moving coil pickups and microphones are virtually undetectable, let alone measureable. As far as d.c. in concerned, voltage differences of a few hundred mV are not uncom-mon-and are difficult to measure accurately on the average test meter.

A further limitation is that of frequency response, or rather the lack of it. Most of the older test meters employed selenium rectifier for the a.c. ranges, and the response of these rarely exceeded several kHz . The response of the germanium or silicon rectifiers, however, in current use, is much better.
Having proved, I hope, the necessity of parting with more hard earned (?) cash, we can now get to grips with the article itself.

The design to be described consists of two eatirely separate amplifiers, one for a.c. and one for d.c., the outputs of which may be selected, to feed a moving coil meter. Two separate meter amplifiers are used for maximum efficiency; one meter movement for maximum economy. In practice, where it matters most, the compromise works well, since the inputs of the amplifiers can be connected into the parts of the circuit under examination, and the meter switched into the output of either meter amplifier as required. This method therefore resulting in the minimum of circuit disturbance.

DC Amplifier

The d.c. amplifier is the simpler of the two, and will accordingly be described first. The circuit shown in Fig. 1 contains five transistors of which the first four $\operatorname{Tr} 1-\mathrm{Tr} 4$ function as a long tailed quartet. and form the amplifier proper. The fifth transistor operates as a constant current source serving two different, and very useful functions.

Without the amplifier, the d.c. meter would have an input resistance of only $20 \mathrm{k} \Omega / \mathrm{V}$ at a f.s.d. (full scale deffection) current consumption of $50 \mu \mathrm{~A}$. With the amplifier added, the meter has an effective input resistance of $3 \mathrm{M} \Omega / \mathrm{V}$ and an f.s.d. current consumption of 333 nA . The amplifier therefore, has a current gain of $\times 150$. Even higher gains are possible, bat as will be explained later, are not a practical proposition.

An explanation of the action of the d.c. amplifier is perhaps best effected by temporarily ignoring Tr5 and its associated components R19 and D1 and by connecting the slider of VR2 to the negative line. Trl to Tr4 will then be seen to comprise a very high gain push-pull amplifier, with input voltage applied between the bases of Trl and Tr 4 with the output voltage developed by Tr 2 Tr 3 across R 13 R16 applied to the meter. The amplifier is therefore a differential amplifier.

Assuming component equality "either side" of the meter movement, the bases of $\operatorname{Tr} 1$ and $\operatorname{Tr} 4$ will be at the same potential as each other, as will the collectors of Tr2 and Tr3. There will therefore be no current flow through the meter. If a d.c. voltage is now applied between the bases of $\operatorname{Tr} 1$ and Tr 4 , the balance will be disturbed and the current flowing through one pair of transistors, ($\operatorname{Tr} 1 \mathrm{Tr} 2$) will increase, the current through the other pair will decrease, and a current will therefore flow through the meter. Due to the amplification afforded by the transistors, a minute current into the bases, in this instance 330 nA , will cause the meter to pass $50 \mu \mathrm{~A}$ and so read full scale.
Due to manufacturing tolerances, component equality cannot be assured, and so other means have to be sought to bring the meter pointer initially to zero. This is achieved by VR1 and VR2, the former equalising the base voltages, the latter the emitter. Base bias is by R11 R12 VR1 for Tr1 Tr2, and by R17 R18 and VR1 for Tr3 Tr4.

The reason for requiring two equalising controls is quite simple. It is quite possible to effect meter zero by equalising the emitter voltages only by means of VR2, even if the base voltages are dissimilar. However, the transistors will amplify the difference in the base voltage as well as the wanted voltage. Considerable errors are therefore possible, the error being a function of the difference in polarity and magnitude of the "difference" and "wanted" voltages.

An unfortunate aspect of high gain d.c. amplifiers is that the zero once set, tends to drift, the tendency to drifting increasing with increased amplifier gain. Unless this drift can be curtailed, meter readings will be subject to error.

SPECIFICATION

D.C. METER

Ranges:
$100 \mathrm{mV}, 300 \mathrm{mV}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}$, $100 \mathrm{~V}, 300 \mathrm{~V}$.
Input Resistance:
$3 \mathrm{M} \Omega / \mathrm{V}-10 \mathrm{~V}$ constant at $30 \mathrm{M} \Omega$ thereafter.
Input Current:
330 nA for f.s.d. to 10 V thereafter $1 \mu \mathrm{~A}$ for $30 \mathrm{~V}, 3.3 \mu \mathrm{~A}$ for $100 \mathrm{~V}, 10 \mu \mathrm{~A}$ for 300 V .
Accuracy: 3\% or better.

A.C. METER

Ranges:
$3 \mathrm{mV}, 10 \mathrm{mV}, 30 \mathrm{mV}, 100 \mathrm{mV}, 300 \mathrm{mV}$, $1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}$.
Input Resistance:
$3 \mathrm{M} \Omega+35 \mathrm{pF} 3 \mathrm{mV}-1 \mathrm{~V}$.
$10 \mathrm{M} \Omega+15 \mathrm{pF} 3 \mathrm{~V}-300 \mathrm{~V}$.
Frequency Response:
$\pm 0 \cdot 5 \mathrm{~dB} 20 \mathrm{~Hz}-200 \mathrm{kHz}$
$\pm 3 \mathrm{~dB} 10 \mathrm{~Hz}-400 \mathrm{kHz}$.
Noise:
$10 \mu \mathrm{~V}$ on 3 mV range, input short circuited.
Accuracy: 3\% or better.

Fig. 1: Complete circuit of the d.c. differential amplifier.

Assuming the zero is initially correct, drift is caused by a component altering its characteristics. The adoption of high stability close tolerance resistors assists in the maintenance of good zero stability, and also by the use of silicon transistors. The biggest enemy of good zero stability is a temperature differential existing between components, principally the transistors on "opposite" sides of the meter. This can be easily demonstrated on the completed instrument by lightly resting a finger-nothing warmer is required-on one of the input transistors, when the zero will be seen to rapidly drift. Even the output transistors will cause a change in the zero setting, though this is usually less severe than the drift due to the input transistors. On removing the finger, or by placing another finger on the "opposite" transistor, the zero setting will be restored, assuming equality of finger temperature of course! The temperature differential can be minimised by placing the opposite pairs of transistors in close proximity or by enclosing them in a common heatsink, though normally a heatsink is quite unnecessary due to the minute power dissipation in each transistor.
Heavy negative feedback is developed in the circuit in two ways. Firstly, by means of R12 and R17 which are returned to the collectors, and thus passes back any variation in collector voltage to the base. Secondly, by means of R14 VR2 and R15, as variations in emitter voltage take place through the common load Tr 5 , and are therefore once again in opposition. The effect of this feedback is threefold. It stabilises amplifier gain, reduces zero drift, and improves linearity.

Equalisation of the emitter and base voltages is effected, as already explained, by VR1 and VR2. As both affect the collector voltages, it is necessary to adjust VR2 first by temporarily short-circuiting the bases of Tr 1 and $\operatorname{Tr} 4$ together. The $\mathrm{s}-\mathrm{c}$ is then removed and the bases are equalised by VR1. As there is a degree of mutual interdependence, several attempts are necessary before correct zero is obtained.

We come at last to the purpose of Tr 5 , which serves two purposes. Firstly, it improves the common mode rejection ratio, which is the ability of the amplifier to amplify the wanted signal applied to the bases of Tr1 and Tr2 differentially, and to reject any unwanted signal that may reach both bases simultaneously. This purpose is fulfilled by $\operatorname{Tr} 5$ in a most acceptable manner. The other purpose of Tr 5 is almost incidental. It improves the stability of the amplifier gain most markedly, so that whilst the zero shifts with changing supply voltage (temporarily disregarding D2) the gain remains constant.

When the amplifier was first built, a sensitivity exceeding $20 \mathrm{M} \Omega / \mathrm{V}$ was obtained. Zero stability was however unacceptably poor, drifting (in time) to the extent of $\pm 10 \mu \mathrm{~A}$, and it was necessary to improve matters. As feedback was at a maximum, it was decided to reduce the sensitivity of the meter movement. This was done by means of VR3 and the zero drift dropped to about $\pm 1 \mu \mathrm{~A}$, the input resistance dropping to $3 \mathrm{M} \Omega / \mathrm{V}$.

Another reason for reducing the sensitivity was the virtually impossible task of obtaining economically the very high value resistors necessary. Assuming one would tolerate a slow drift of $\pm 10 \mu \mathrm{~A}$, where would one obtain a resistor of $6,000 \mathrm{M} \Omega$ in order to provide a 300 V range? Even with the sensitivity
reduced to the level of $3 \mathrm{M} \Omega / \mathrm{V}$, a series of shunt resistors (R 7 R 8 R 9) are required to keep within the range of easily obtained resistor values.

Range switching is effected by S 1 a and S 1 b . S1b switches in the series resistors R1-R6. After R6, the contacts are connected together and S1b is used to bring the series of shunt resistors into circuit, so reducing the sensitivity and allowing a maximum voltage of 300 V to be measured. In the final position, position 9, S1a and SIb are arranged to s-c the bases of Tr 1 Tr 4 together, so allowing emitter zero to be set. This end of the scale was deliberately chosen so that, having set zero, one started at 300 V and worked way down the scale, so obviating the possibility of setting zero and then absentmindedly (it has been done) trying to measure 300 V on the 300 mV switch position.

The power supply of 27 V is provided by three 9 V batteries in series. This is dropped to, and stabilised at 20 V by R20 and D2. The current consumption is very modest and the batteries should have a long and useful life. On/off switching is effected by S2a-b, a miniature slide two-pole two-way switch.

AC Amplifier

As far as the a.c. amplifier is concerned, at least two bipolar transistors, in the Darlington configuration, would be required to provide the requisite high input resistance and the use of an f.e.t. in this position was considered to be a viable proposition. The a.c. amplifier, Fig. 2, is basically quite simple. The a.c. input is applied to a coarse attenuator comprising S3a-b, R21 TC1 and R22 C1. The output from the slider of S3a is applied via C2 to the gate of the f.e.t Tr6. Bias to this stage is by means of the gate resistors R26-R32 in the source circuit, the source current being $450 \mu \mathrm{~A}$. Bootstrapping of Tr1 is by means of C 3 which feeds back the a.c. signal at the source to the junction of the gate resistors R23 R24 and R25. The input resistance of Tr6 stage is in the region of $5 \mathrm{M} \Omega$ in parallel with 3.5 pF .

From the wiper of S3b, the a.c. signal is passed via C6 to the base of Tr7, which is the input transistor of the amplifier proper comprising Tr7 Tr8 and Tr 9 . These three transistors are d.c. coupled throughout. The coupling, from $\operatorname{Tr} 9$ collector to Tr 7 base forms a d.c. feedback loop that very effectively stabilises the collector currents of all three transistors. Since only d.c. feedback is wanted along this route, a.c. decoupling is necessary and is effected by C7. Originally, R37 and R38 were used for feedback purposes, being $270 \mathrm{k} \Omega$ each. However, due most probably to the variation in the d.c. leakage resistance of C 7 , the d.c. conditions tended to be somewhat unstable. No sooner were R37 and R38 selected for the requisite collector current in Tr9, than they had to be changed again. Reducing R37 and R38 and introducing R41, small in comparison to the leakage resistance of C 7 , has improved matters and the d.c. characteristics are now stable.

Negative feedback with all its advantages is via meter rectifier diodes D3-D6 and C10 to the emitter circuit of Tr8. Variation of feedback and hence of the amplifier gain, is effected by VR4 and C9. When the slider of VR4 is at the earthy end of its travel,
feedback is at minimum, the emitter is short-circuited (to a.c.) by VR4 and the amplifier gain is at a maximum. With VR4 slider at the emitter end of its travel, C9 is undecoupled, feedback is at a maximum and the amplifier gain is at minimum. Variation of VR4 allows the gain to be set at any intermediate figure. The meter deflection for any given input can therefore be set within quite wide limits, thereby allowing for the variation in hfe between individual transistors.

So much for the "active" side of the circuit. We come now to the "passive" side, the attenuator

Briefly then, the primary attenuator passes all voltages below $1,000 \mathrm{mV}$ or IV to the gate of Tr6, the secondary attenuator which is of course coupled to the primary attentuator, tapping off the sequence 1-3-10-30 etc., so that the input to $\operatorname{Tr} 7$ never exceeds 3 mV . The "attentuation" factor of the primary attenuator is, at this stage, zero, i.e. the a.c. imput is fed directly to the gate of $\operatorname{Tr} 6$ via the d.c. blocking capacitor C2.

Voltages exceeding IV are still fed to the gate of Tr6 via C2, but have now to pass through the primary attenuator which now offers an attenua-

Fig. 2: The a.c. amplifier-note the use of an f.e.t. in the input.
comprising S3a-b together with other sundry components. The "split" attenuator used is a timehonoured design intended to overcome a number of problems involving input resistances and voltage, and frequency compensation. The sensitivity of the main amplifier $\operatorname{Tr} 7-\mathrm{Tr} 9$ is 3 mV for $\mathrm{f} . \mathrm{s} . \mathrm{d}$. on the meter. Inputs exceeding 3 mV will cause the meter to exceed f.s.d and if excessively high, could damage the transistors and/or the meter. In the source circuit of Tr6 is a six position (essentially) attenuator that limits the input to Tr 7 to 3 mV on each of its ranges. The total resistance of this chain of resistors comprising R26 to R32 is 1,000 , low enough not to require frequency compensation at the frequencies involved.

The input stage Tr6 will accept voltages up to $1,000 \mathrm{mV}$ without undue stress. Since we will wish to measure voltages greatly exceeding this figure, the primary of the split attenuator is arranged to feed the gate of Tr6 limiting the input to $1,000 \mathrm{mV}$ or less.
tion of $\times 1,000$. The inputs to the base of $\operatorname{Tr} 7$ are still only millivolts, i.e. 3 V is reduced to $3 \mathrm{mV}, 10 \mathrm{~V}$ to 10 mV and so on. The last five positions of the secondary attenuator are connected to the first six, i.e. 1 to 7,2 to 8 , and so on, so that the 1-3-10 sequence established for millivolts is still retained for volts, and the main amplifier still receives its requisite 3 mV for meter f.s.d.

Frequency compensation of the primary attenuator is eased by having only two attenuation factors, of $\times 0$ and $\times 1,000$. Since the $\times 0$ is straight through, only the $\times 1,000$ requires compensation, and this is effected by TC1, which is set so that the time constant of TC1 \times R21 is equal to the time constant of $\mathrm{C} 1 \times \mathrm{R} 22$, the frequency response then being, in theory anyway, to infinity.

The primary and secondary attenuators are built on two separate single-pole twelve-way wafers mounted on a common spindle, thus transference of the primary attentuator from volts to millivolts, and

Resistors:

R1	300 k ת 1\% 1W	R23	$120 \mathrm{k} \Omega$
R2	700 k ת 1\% 1W	R24	$3 \cdot 3 \mathrm{M} \Omega$
R3	2M Ω 1\% 1W	R25	$2 \cdot 2 \mathrm{M} \Omega$
R4	$6 \mathrm{M} \Omega 1 \% 1 \mathrm{~W}$	R26	$400 \Omega 1 \% 1 W$
R5	10M ${ }^{*} 1 \% 1 W$	R27	$300 \Omega 1 \% 1 W$
R6	$10 \mathrm{M} \Omega^{*} 1 \% 1 \mathrm{~W}$	R28	200 $1 \% 1 W$
R7	700 k ת 1\% 1W	R29	70ת 1\% 1W
R8	200k ${ }^{\text {1 1 \% 1 W }}$	R30	20ת 1\% 1W
R9	100k $\Omega 1 \% 1 \mathrm{~W}$	R31	$7 \Omega \dagger$
R10	$1 \mathrm{~K} \Omega$	R32	$3 \Omega \dagger$
R11	$560 \mathrm{k} \Omega$	R33	$8 \cdot 2 \mathrm{k} \Omega$
R12	$560 \mathrm{k} \Omega$	R34	$1.5 \mathrm{k} \Omega$
R13	$2 \cdot 2 \mathrm{k} \Omega$	R35	$6.8 \mathrm{k} \Omega$
R14	56Ω	R36	$1.5 \mathrm{k} \Omega$
R15	56Ω	R37	$15 k \Omega$
R16	$2 \cdot 2 \mathrm{k} \Omega$	R38	$47 k \Omega$
R17	$560 \mathrm{k} \Omega$	R39	68Ω
R18	$560 \mathrm{k} \Omega$	R40	$10 \mathrm{k} \Omega$
R19	$3 \cdot 3 \mathrm{k} \Omega$	R41	680Ω
R20	470Ω	R42	390Ω
R21	10M ${ }^{\text {1 1 }}$ 1W	R43	$2 \cdot 2 \mathrm{k} \Omega$
R22	10k Ω 1\% 1W	R44	$2 \cdot 2 \mathrm{k} \Omega$

All resistors $5 \% \frac{1}{2} \mathrm{~W}$ hi-stabs except where shown as $1 \% 1 \mathrm{~W}$. R5 R6 may be replaced by single $20 \mathrm{M} \Omega$ 1% if available. \dagger R31 R32 may be selected from 10\% range or wound from 36 s.w.g. Eureka wire. 42.5 cm and 18.5 cm for 7Ω and 3Ω respectively.

Switches:

S1a, b, S3a, b R.S. "Maka-switch" shafting (2 off) Four single pole twelve-way wafers.
S2 Two-pole two-way slide switch
S4 Two-pole two-way slide switch
S5 Two-pole two-way slide switch
S6 Two-pole two-way slide switch

Meter:

50μ A f.s.d. Sifam type M404. $4 \frac{1}{2}$ in. square. Scaled $0-3$ and $0-10$ (internal resistance 1250 $)$) or similar.

Capacitors:

C1 $0.015 \mu \mathrm{~F}$ silver mica or paper

C2 $\quad 0 \cdot 1 \mu \mathrm{~F}$ paper 250 V wkg. p.c. mounting (see note below)
C3 $50 \mu \mathrm{~F} 15 \mathrm{~V}$ wkg. p.c. mounting
C4 $50 \mu \mathrm{~F} 15 \mathrm{~V}$ wkg. p.c. mounting
C5 $\quad 50 \mu \mathrm{~F} 15 \mathrm{~V}$ wkg. p.c. mounting
C6 $\quad 50 \mu \mathrm{~F} 15 \mathrm{~V}$ wkg. p.c. mounting
C7 $\quad 50 \mu \mathrm{~F} 15 \mathrm{~V}$ wkg. p.c. mounting
C8 $\quad 125 \mu \mathrm{~F} 6 \mathrm{~V}$ wkg. p.c. mounting
C9 $\quad 125 \mu \mathrm{~F} 6 \mathrm{~V}$ wkg. p.c. mounting
C10 $250 \mu \mathrm{~F} 6 \mathrm{~V}$ wkg. p.c. mounting
C11 $1000 \mu \mathrm{~F} 6 \mathrm{~V}$ wkg. p.c. mounting
TC1 15 pF trimmer
Note: D.C. working voltage of C2 depends on magnitude of d.c. it is likely to be connected across. For example, when measuring a.c. ripple on a high potential d.c. supply, the difference could easily be 300 V d.c. to 100 mV a.c. or even greater.

Semiconductors:

Tr1 to Tr4 2N2484
Tr5 BC109
Tr6 NKT80112
Tr7 to $\operatorname{Tr} 9$ 2N3708
D1 3.9V 5\% 400mW zener
D2 $20 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ zener
D3 to D6 GEX34
D7 $7.5 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ zener
D8 and D9 1S940
Potentiometers:
VR1 $25 \mathrm{k} \Omega \mathrm{w} . \mathrm{w}$. or carbon linear
VR2 $5 \Omega \mathrm{w} . \mathrm{w}$. linear or up to $25 \Omega \mathrm{w} . \mathrm{w}$.
VR3 $10 \mathrm{k} \Omega$ linear, skeleton p.c. mounting
VR4 $1 \mathrm{k} \Omega$ linear, skeleton p.c. mounting
Miscellaneous:
Knobs; $\frac{1}{4} \mathrm{in}$. r.h. chromed 6BA screws with nuts; $\frac{1}{4} \mathrm{in}$. self-tapping screws; insulated wire assorted colours; terminals, two red, two black, one black earthing type.

Fig 3: Switching circuitry, relevant to the moving coil meter and amplifiers.
of the two "separate" sections of the secondary attenuator, are completely automatic. The synchronisation of the primary and secondary attenuators on to a common switch means only one switch has to be manipulated in order to measure any voltage from 3 mV to 300 V .

The power supply is again by means of batteries, two of 6 V each being employed to give a 12 V supply. This is then dropped to, and held at the required 7.5 V by R 42 and the zener diode D7. The current consumption is quite modest and the batteries should have a usefully long life. On/off switching is effected by a miniature two-pole two-way slide switch, S 4 .

In the interests of economy, which is of more interest to the average amateur than the slight increase in operating time, a single meter is used, switched into the output of either amplifier as required by S 5 . On a.c. the meter connects straight into the output of the a.c. amplifier; but for d.c. a polarity reversing switch S 6 is interposed between the meter movement and the d.c. amplifier.

TO BE CONTINUED

READY CALIBRATED SIGNAL GENERATOR

ASIGNAL generator giving an audio output, c.w. or modulated output in the range about $150 \mathrm{kc} / \mathrm{s}$ to $35 \mathrm{Mc} / \mathrm{s}$ is extremely useful for stage-by-stage checks of audio and intermediate frequency stages, the alignment of i.f. and aerial circuits, and similar purposes. When such an instrument is constructed, its calibration can be something of a problem unless other accurately calibrated equipment or means of calibration are available.

To overcome this difficulty the signal generator described here has ready-made fixed-inductance coils L1, L2, L3, L4 and L5, see Fig. 1, tuned by a particular specified variable capacitor VC1. As these coils are manufactured to high accuracy and other items have very little influence on frequency, it is possible to adopt ready-made scales.

Five bands are covered, as follows:
(1) $35-10 \mathrm{Mc} / \mathrm{s}$
(2) $10-3 \cdot 2 \mathrm{Mc} / \mathrm{s}$
(3) $4-1 \cdot 2 \mathrm{Mc} / \mathrm{s}$
(4) $1500-425 \mathrm{kc} / \mathrm{s}$
(5) $450-150 \mathrm{kc} / \mathrm{s}$

This covers all bands from about 9-2000 metres and includes those frequencies generally needed for i.f. circuit alignment. Tuning is by means of a reduction drive which has a $0-100$ logging scale so frequencies can be written directly on the dial.

In Fig. 1, V1a is the r.f. oscillator, each coil L1 to L5 having its own feedback winding selected by SW1b. R.F. is taken through R3 and C3 to VR1, which allows adjustment of output; C5 isolates external circuits. Space was left for a buffer/ amplifier between V1a and the output circuit, but with r.f. taken from the feedback windings in the way shown, such a stage was found unnecessary.

V1b is the audio oscillator, with transformer T1; the audio tone can be provided as output through C 4 or used to modulate V1a. With SW2 at "c.w." an unmodulated radio frequency signal is obtained, with this switch at "Mod." the r.f. signal is modulated and thus audible on an ordinary receiver. When the switch is at "a.f." an audio frequency output is obtained for a.f. circuit tests.

Cabinet and chassis

A strong and inexpensive case is made from "Universal Chassis" members, the case top, chassis, and case bottom are $8 \times 3 \mathrm{in}$. and flanged. Cut away $\frac{1}{2}$ in. from the ends of the long flanges on one 8×3 in. member so that it will fit inside the side members which are $7 \times 3 \mathrm{in}$. This 8 x 3 in . item forms the chassis and it is bolted to the $8 \times 7 \mathrm{in}$. plate (panel) $2 \frac{2}{8}$ in. from the bottom, see Fig. 2.

L3, L5 and T2 are fixed to the panel before fitting the dial using countersunk bolts. Wiring is completed and the signal generator is tested before adding the bottom and right-hand side (viewed from the rear). The box is closed with perforated zinc, or with a second $8 \times 7 \mathrm{in}$. plate in which holes have been punched. Self-tapping screws have to be used here.

Layout from behind

Figure 2 shows the positions of most components; - the drive listed has a paper template as a guide to

drilling. An insulated lead is soldered to the lower fixed tag of VCl , before mounting this item and passes down through a hole to SW1a.
C6/C7 is a dual capacitor and its common negative tag is connected to the chassis. The con-tact-cooled rectifier D1 is held by means of bolts.

The positions for other items can be seen from Fig. 3. T1 should have a ratio of about 3:1, and a primary suitable for the combined anode currents of both sections of the ECC81; transformers intended for use with transistors are not suitable. Connections in Fig. 3 are for the specified transformer. If another transformer is used and no audio tone is obtained, reverse the connections to one winding.

A three core flexible cord is required for the mains lead, and the earth conductor is secured to the case by a bolt holding the chassis and side together. Output was arranged with a co-axial lead, the inner conductor going to C5 and the outer brading to chassis. A co-axial socket may be preferred as shown in Figs. 2 and 3.

Coils and switching

The coils are placed to allow short connections for the h.f. ranges, and to prevent absorption by windings not in circuit. Red tags go to SW1a. For ranges 2, 3, 4 and 5 the next tag clockwise goes to SW1b. The next tag on all coils is wired to chassis, and the remaining tag of coils for ranges 2, 3, 4 and 5 go to the h.t. circuit at C 2 . For range 1, tag 2 goes to R2, and tag 4 to SW1b (anode), Fig. 3. The following details should be helpful.

Range 1. Solder a $\frac{3}{4} \mathrm{in}$. wire from red tag to adjacent tag of SWla. Take a wire isin. long from

tag 3, directly to chassis near the valve, Fig. 3. Join C2 immediately between this chassis tag and tag 2 of L1. Connect tag 4 to SW1b.
Range 2. This coil mounts on the case side, Figs. 2 and 3. The wire from SWla to tag 1 is $\frac{1}{2}$ in. long, and the chassis return from tag 3 is $1 \frac{1}{4} \mathrm{in}$. long. Tag 4 is wired directly to C2 and tag 2 on L1.

Range 3. This is mounted on the panel in the position shown in Fig. 2. Leads pass down through the chassis, and their exact length has no significant effect on frequency coverage.
Range 4. This is secured to the chassis, Fig. 2. As with other coils, it is a little over the coil-diameter away from metal parts.

Range 5. This is mounted above L3, leads passing down to the switch.
Coil connections are shown in Fig. 3. Referring to Fig. 1 and Fig. 3, switching must be so arranged that each tuned winding L1 to L5 is selected by SW1a and the appropriate anode winding is in circuit (via SW1b) at the same time. Feedback windings must also be in correct phase or no r.f. output will be obtained.

Function switch

In the "c.w." position, SW2a applies h.t. to the r.f. oscillator, and SW2b shorts the primary of T1. With this switch in the "Mod." position, SW2a obtains h.t. for V1a from the anode of V1b, for a modulated output. In the "a.f." position, no h.t. reaches Vla, and a.f. from V1b is via C4 to the output circuit.

Scales

The drive listed has a half-cursor, used temporarily for calibration. Marks made along the straight edge of this cursor will afterwards be under the hair-line of the normal cursor. One scale provided with the

Resistors:

R1 $47 \mathrm{k} \Omega \frac{1}{2}$-watt
R2 $47 \mathrm{k} \Omega 1$-watt
R3 $10 \mathrm{k} \Omega \frac{1}{4}$-watt
R4 $2 \cdot 2 \mathrm{M} \Omega \frac{1}{2}$-watt

R5 $2 \cdot 2 k \Omega \frac{1}{2}$-watt
R6 $1 \mathrm{k} \Omega \frac{1}{2}$-watt
R7 $390 \Omega \frac{1}{2}$-watt
VR1 $25 \mathrm{k} \Omega$ carbon linear pot

Capacitors:
C1 47pF silver mica
C5 1000pF mica
C2 2000pF 500V disc ceramic C6 $16 \mu 350 \mathrm{~V}$
C3 10pF silver mica
C7 $8 \mu \mathrm{~F} 350 \mathrm{~V}$
C4 $0.01 \mu \mathrm{~F} 400 \mathrm{~V}$
VC1 500pF Jackson E1, Home Radio (Mitcham)
Cat. No. VC5.
Fixed Inductance Coils:
L1 $0.5 \mu \mathrm{H}$ Home Radio (Mitcham) Cat. No C084D
L2 $5.5 \mu \mathrm{H}$ ". " ". ". CO84E
L3 $37 \cdot 5 \mu \mathrm{H}$ ". ", ". CO84F
L4 $310 \mu \mathrm{H}$., ", "., C084G
L5 $2200 \mu \mathrm{H}$., ". ". ". CO84A
Miscellaneous:
T1 3: $1 \mathbf{1 2 m A}$ Home Radio (Mitcham)
Cat. No TIV1
T2 Half-Wave $200 / 230 \mathrm{~V} 25 \mathrm{~mA}, 6.3 \mathrm{~V} 0.5 \mathrm{~A}$ or similar
D1 250v contact-cooled rectifier.
Drive and Dial, Electroniques, SMD2
$8 \times 7 \times 3 \mathrm{in}$. Universal Chassis box and extra $8 \times 3 i n$. runner
$8 \times 7 \mathrm{in}$. perforated zinc
Type A, H2, 4in. handle (Home Radio)
Mains toggle switch
2-pole 3 -way rotary switch
2-pole 6-way ditto
Three knobs
3-tag strip (2 insulated)
Co-axial socket or cable, 3-core mains cord, etc. ECC81 valve
B9A valve holder
drive is numbered $0-100$ and has five spare ranges. The innermost is used for range 5 and and the outermost for range 1 . This agrees with the positioning of the bandswitch knob.

Readings should be taken from the calibration table and written on the spare scales. Set VCl fully closed and the cursor at 100 before beginning. When markings are finished, fit the usual cursor and dial cover.
If the generator is assembled as shown, with the specified coils and VC1 as listed, accuracy should be similar to that of popular, readymade signal generators. The coils are doped, and so calibration should not change.

If the necessary equipment is available, there is no reason why the generator should not be individually calibrated from this source. The calibration table will then provide a close guide. The use of an all-wave communications type receiver and $1 \mathrm{Mc} / \mathrm{s}$ and $100 \mathrm{kc} / \mathrm{s}$ crystal oscillators will allow most satisfactory and easy calibration. The required $1 \mathrm{Mc} / \mathrm{s}$ or $100 \mathrm{kc} / \mathrm{s}$ harmonics are tuned in on the receiver and the signal generator is then tuned to the same frequency and its scale marked. The $500 \mathrm{kc} / \mathrm{s}$ and $50 \mathrm{kc} / \mathrm{s}$ markings can be obtained by beating the generator 2nd harmonic against the $1 \mathrm{Mc} / \mathrm{s}$ or $100 \mathrm{kc} / \mathrm{s}$ crystal harmonics.

Generator uses

It is only proposed to give brief notes on these,

Fig 2: The component layout viewed from the rear. The added chassis plate is fixed $2 z^{3} \mathrm{in}$. from the bottom.
as more comprehensive details have appeared from time to time.

AF CIRCUIT CHECKS. If a receiver or audio amplifier gives no results an audio signal can be injected, working back point by point from the output stage. When the source of the fault has been passed, the audio tone is no longer heard in the speaker. Investigation is then confined to one stage or a few components or connections.

IF CIRCUIT CHECKS. A fault in the intermediate frequency section of a receiver, causing lack of reception, can be quickly found by injecting a modulated r.f. signal in at the final i.f. transformer, working backwards from here, stage by stage. Signals stop when the fault has been passed. Thus a single i.f.t., transistor, or valve, and its associated wiring etc., only need be checked in detail. If the intermediate frequency is not known, tune the signal generator until the receiver provides an audible output (probably around $455-470 \mathrm{kc} / \mathrm{s}$, for most receivers; or around $1.6 \mathrm{Mc} / \mathrm{s}$ for s.w. receivers or the first i.f. section of dual-conversion receivers).

IF CIRCUIT ALIGNMENT. A signal of the appropriate frequency is injected at various points in the i.f. amplifier and the i.f.t.'s are adjusted for best results.

RF CIRCUITS. Wavebands of a receiver can be trimmed and aligned to secure best results or agreement with a calibrated dial on the receiver. A direct connection is usually not needed, the generator output lead inner conductor being placed near the receiver aerial circuit.

CALIBRATION TABLE

Range 1		Range 4	
Mc / s.	Dial	Kc/s.	Dial
35	9	1500	$5 \frac{1}{2}$
30	15	1300	11
28	17	1100	181 ${ }^{1}$
25	22	1000	23
20	331 ${ }^{1}$	900	28
17	44	800	36
15	53	700	461
14	59	600	571 $\frac{1}{2}$
13	65	550	$65{ }^{2}$
12	711 $\frac{1}{2}$	500	74
11	$80 \frac{1}{2}$	450	851 $\frac{1}{2}$
10	91	425	92
Range 2		Range 5	
Mc / s.	Dial	Kc / s.	Dial
10	5	450	5
$9 \cdot 5$	8	400	11
9	11	350	171 ${ }^{1}$
8	171 $\frac{1}{2}$	300	29
7	$25 \frac{1}{2}$	250	431 ${ }^{2}$
6	$36 \frac{1}{2}$	220	55
5	$50 \frac{1}{2}$	200	64
$4 \cdot 5$	60	180	741
4	71	170	81
$3 \cdot 8$	76	160	$88 \frac{1}{2}$
$3 \cdot 5$	85	150	97
$3 \cdot 2$	961 ${ }^{2}$		
Range 3			
Mc / s.	Dial	The positio	s for
4	$5 \frac{1}{2}$	intermedia	markings
$3 \cdot 5$	112	can be est	nated.
3	18		
$2 \cdot 5$	29		
2	45		
1.8	53		
$1 \cdot 7$	571 $\frac{1}{2}$		
$1 \cdot 6$	63		
$1 \cdot 5$	69		
$1 \cdot 4$	76		
$1 \cdot 3$	84		
$1 \cdot 2$	94		

An interior view of the finished signal generator.
In all tests signal strength is kept down to avoid overloading stages in the receiver. The c.w. signal will operate a tuning meter or indicator, and is most suitable for some adjustments. For an audible signal with r.f. tests, the switch is placed at "Mod."

PRACTICAL TELEVISION

IN THE JULY ISSUE

WAVEFORMS IN COLOUR RECEIVERS

There are many more waveforms in a colour receiver than in a monochrome one-the colourdifference signals, the ident, reference oscillator and burst signals, various pulse trains, convergence waveforms and so on-and a knowledge of these is an essential aid to colour receiver servicing. A comprehensive guide is provided by Gordon J. King in this new illustrated series.

AERIALS FOR ALL!

A corner reflector u.h.f. loft aerial with bow-tie dipole which has a gain equal to a 9-12 element Yagi array and, for DX enthusiasts, a Band I omnidirectional X array.

FIELD LINEARITY FAULTS

Field linearity faults are a common cause of picture distortion. A detailed guide to faultfinding in this part of the receiver is provided.

DE LUXE STEREO AMPLIFIER

C. maina

 20.240 volts. Using hearyduty fully duty fully isolated
$m a i n a$ former
with full with full wave reciving ifation mootivig adequate um. Vaive line up: $-2 \times$ ECL88 Triode Pentodes. are provided for bass and treble control, giving bass and treble boost and cut. A Dual volume control is used. Balance of the left and right hand channels can be adjusted by means of a separate 'Balance' control fitted at the rear of the chassis Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$. for full peak output of 4 watts per channel (8 watta mono), into 3 ohm speakers. Full negative feedback to a careruly calculated circuit, allows high volume levels with knobs. Chassin size $11^{\prime \prime} \times 4^{\prime \prime} x$. Over complete including valves 5^{*}. Ready built and teated to a high atandard, PRICE 8 gna. P. \& P. $8 /-$

TRANSISTOR STEREO 8 + 8 MK II Now using silicon Transiators in flrat five stages on each channel resulting to even lower nolse level with improved sensitivity. A really firat-clase Hi-Fi 8tereo Amplifter Kit. Uses 14 tranaistors giving 8 watte purh puil output per
channel (16W. mono). Integrated pre-amp. with Bass channel (16W. mono). Integrated pre-amp. With Bass,
Treble and Volume controls. Bultable for use with Cerarnic or Crystal cartridges. Output stage for any supplied including drilled metal work. Cir-Kit basis suppiled including drilled metal work. Cir-Kit board, no extras to buy. Simple step by step ingtructions enable any constructor to build an amplifier to be proud of. Brief specification: Freq. response $\pm 3 \mathrm{~dB} .20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Treble cut approx, to $-16 d B$. Negative feedback 18 dB over main amp. Power requirements 25V at - 6 amp.
PRIT 29.0 .0 ; CABINET 880 All Po; POWER PACK KIT 83.0.0; CABINET 88.0.0. All Post Free. Circuit diagram, construction detsilg and parts list (free with

SPECLAL PURCHASE! E.M.I. 4-SPEED PLAYER Heavy 8iln. metal turntable. Low futter performance 200/ 250 v . shaded motor (90 v. tap). Complete with latest type lightweight pick-up arm and mono cartridge with t/o
sty 1 il for LP/78. ONLY 68/-. P. \& P. $6 / 6$.

4-SPEED RECORD PLAYER BARGAINB Mains models. All brand new in maker's packing. C.M.I. MODEL 998 Single Player with unit mounted pick-ap arm and mono cartridge 25.50 B.8.R. UA85 with latest mono compatible cart." 26.18.6 LATEST GARRARD MODELSE. All types available 1025, 8025, 8P25, 8000, AT60 etc. Send 8.A.E. for latert Prices! PLINTH UNITS cut out for Garrard Models, 1025, 2025, 2000, 3000, AT60, SP25. With rigid perspex cover OUR PRICE 5 \%a, comllete. P. \& P. $8 / 6$
LATEST RONETTTE T/O TTEREO/COMPATIBLE CARTRIDGE for EPP/LP/Btereo/78. Only 39/6. P. \& P. $2 /$ LATEAST RONETTE T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on mono equipment. Only $80 /-$ P. \& P. $2 /-$ 8OFOTONE 日TAHC compatible Stereo Cartridge with diamond atylus 50/-. P. \& P. 2/-. FEW ONL I 1 ACOS High-G Mono Cartridge for EP and
LP. Only $10 /-$. P. \& P. $2 /-$.

Opan all day Saturday

Early closing Wed. 1 p.m.
A fow minutes from South Wimbledon Tube Station

SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

Please write clearly PLEASE Mots: P. \& P. Gearges
 dinkged extra.

MOBILE S.W. LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6. plus $3 / 6$. Extra coils $£ 3.17 .6$, plus $3 /-$.
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES Dover Road, off Ansdell Road, Blackpool.

Est. 1943 JOHNONS Tel: 24864

VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, $75 / 6$, p.p. 4s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

PLEASE MENTION
"PRACTICAL WIRELESS"
WHEN REPLYING TO
ADVERTISEMENTS

practically Wireless commentary by IEINTI

YOU are always going on about computers, Henry: have you seen the latest news?
About the Edinburgh University computer that taught itself to balance a pole on a moving cart for 90 minutes, you mean? That must have been fun for Professor Donald Michie. The best one of his students could do was five seconds flat. I wonder if it was a caber that the Department of Machine Intelligence experimented with. That would have been worth watching at next year's Highland Games.
No, I was not being frivolous. I was referring to the chess matches.

Oh, that's old hat. Computers have been whacking men at chess and noughts and crosses since the abacus was invented by Confucius' nephew.
That is just the point. This was a Russian
Confucius'" "ed nephew then. What's the difference? Moscow has been crowing ever since their M-20 beat an American version some time last year.

You are getting warmer. It was actually the M-20 that was involved in this incident, in a contest sponsored by the Uralsky Rabochy and the Soviet Academy of Sciences' Institute of

Computer that balanced a pole

Theoretical and Experimental Physics.
Sounds as if you are making this up!

Do not be sceptical, Henry. I am indebted for my information to Janus of Electronics Weekly, and the Soviet chess champion, Lev Polugayevsky.
Apparently the contest went on for four months. Playing against the computer were chess fans from 80 towns in the Urals, and this was the first mass competition to involve an electronic computer.

Evidently, you haven't heard about Operation Match.

Frivolity again, I am not concerned with computer selection of dating couples, and, anyway, that was in London. The point I am trying to impress upon you is that the USSR competition was arranged by feeding moves suggested by the majority of fans, via letters to the aforesaid newspaper, to the M-20 computer. which worked under the same programme it had used to beat the Americans in the straight computer match last year. So what! First prize a trip to Siberia; second prize a longer trip. The computer always comes out on top. What's the point of all this?

If you will stop interrupting, Ill tell you. During the play, the computer exhibited some "human" weaknesses. It began by taking an opposing pawn without due caution-and after 19 moves, the computer resigned.

SAY THAT AGAIN!

After nineteen moves the computer resigned. It could foresee an inevitable mate in three further moves. This would seem to indicate a triumph for the human mind. and some hope for the future of mankind in a world rapidly becoming more and more dominated by-

Shut him up, Mr. Editor. Who let that man in? Surely it is obvious that the computer was com-

After 19 moves the computer resigned
pletely bemused by the variation in approach, in style of play, by the 80 groups of fans, many of them probably mere enthusiastic amateurs, even in Soviet Russia. We must be careful how we treat our. electronic brains. Look at what happened at. St. Louis, and again at Harvard, for example. In the first case, an engineer fed a computer with the listed numbers in four local exchanges and the machine gave him back all the nonlisted numbers. He then used these to get access to privateleased trunk lines. The Wall Street Journal doesn't tell us whether the computer was arrested as an accessory.

In the second case, students at Harvard used a computer, a recorder (the type you blow through), and their native ingenuity to imitate signalling tones and bypass the telephone company's billing computer, getting free calls anywhere. They even obtained access to Defence Department trunk lines-when they were finally caught. There is a thousand dollar fine for this Federal offence, but apparently these lads got away with it, after they had told the Trunks and Telegraphs Company exactly how they performed their anti-social swindle.

SYATURATION switching was dealt with in last month's article. We shall now turn to various switching circuits, a large number of which employ saturation switching. Others avoid this in order to minimise the stored base charge.

The multivibrator is surely the simplest and the most familiar pulse circuit there is, yet the transistors seen in multivibrator designs are all too frequently required to operate in conditions which exceed their maximum ratings. Since most such ratings include a safety factor, operation under such conditions is usually satisfactory, but the practice can hardly be recommended. The multivibrator has an inherently slow rising edge, and it is not always appreciated that with a slight circuit modification, such a fallibility may be overcome.

The term "multivibrator" is frequently used erroneously to describe any two-transistor circuit which has regenerative action and switches between stable or quasi-stable states. The true "multivibrator" has two quasi-stable states, that is to say there are two basic states which the circuit may be in at any moment in time, but without any external stimuli, the circuit oscillates between these two states. The multivibrator may be used to generate an approximately square wave in its most basic form, or, with unequal quasi-stable states, act as a pulse generator. As such, the multivibrator may be the heart of a section of pulse circuitry.

Figure 2.1a shows the simplest form a multivibrator may take, with the two quasi-stable states as follows: Trl bottomed, Tr2 cut off; Tr2 bottomed, Trl cut off. Operation is as follows. When the circuit is initially switched on random current flows in the circuit, and even though basically a symmetrical circuit, the slightest unbalance, which must exist, will cause one or other of the transistors to take more current than its partner. In consequence, this transistor now turns fully on, the regenerative action to be described switching the other transistor into the OFF state.
Figure 2.1b shows the voltage waveforms at various points in the circuit for a short duration. We shall assume that initially Tr 1 switches on. Base current flows through R2 and collector current through R1. The baseemitter voltage (V_{BE}) may be regarded as substantially constant at 0.7 V for a silicon transistor, and for the rest of this article only silicon transistors will be considered. Since $V_{B 1}=0.7 \mathrm{~V}$, a current $\mathrm{I}_{\mathrm{B} 1}=\frac{\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R} 2}$ is set. This programmes the current which will flow in the
collector of Tr 1 with no saturation since this will be the d.c. gain times the base current, i.e., $\mathrm{I}_{\mathrm{c} 1}=\mathrm{h}_{\mathrm{FE} .} . \mathrm{I}_{\mathrm{B}}$. The collector load is chosen such that Trl is driven into saturation with the programmed base current.

Section (a) of Fig. 2.1b shows the collector voltage during the first part of the cycle at V_{CE} sat, and part (b) shows the base voltage at $V_{\text {BE1 }}$. During the initial period before Trl switched on, both capacitors have charged through the collector loads. As Trl switches on, the charge on capacitor C 1 thus takes the base of Tr 2

Fig. 2.1(a): The basic form of multivibrator (n-p-n).

Fig. 2.1(b): Voltage waveforms of the multivibrator.

LIND-AIR OPTRONICSLTE

See our vast range of Electronic Components at Our new
Component Centre 25 Tottenham Court Road

 selector 8 witeh and onionf awitch. Casespuze

Sil号: less cartridge

 20-3 Steren/Mnnon with cart 3000 s Stereo/MonAP:25 lewn cartridge
$8{ }^{1} 25$ with becca 1
3.5.5 whth lecea
lohs less cartrilge
Covers for iugov
A P'Ts less cartring
SLJ less cartridge
SI.9. lesu cartridge
B Isers for above
SPECIAL. OFF'ER
£5. 9.6

SP:25 lesm carl, with base $£ 6.19 .8$
$£ 7.19 .6$
$£ 9.19 .8$
$£ 10.19 .8$
$£ 11.19 .6$
$£ 17.1 .6$
$£ 11.18 .6$
$£ 17.48$
$£ 14.9 .6$
$£ 2.19 .8$
$£ 2.10 .0$
$£ 18.18 .0$
$£ 28.7 .0$
$£ 38.19 .6$
$£ 4.19 .6$
P. P-Decks $12 / 6$, Cover $4 / 6$. Base $4 / 6$ "HI-TEN" LOUDSPEAKER
Britinh made full range 10 in . unit binnlles
up ti 10 watts. Cenamic magnet. lireq. response: 40-10.000 cps. Imp: 15Ω
Flux denalty: 10,000 limes $49 / 8$. 15 TTC.C1001 MOLTITESTER in leather case

SOLDERING GON
Comfortable grip winh
trigger cositral, "t
ahaped 3yin hit to inini.
ahaped $3!\mathrm{in}$, bit to mink
mise weir.. ight berm is
antomhtically directed on
to end of bit when $\mathrm{ON} / \mathrm{OH}^{\circ}$
to trigger is in use $2350-250$ volts. 85 "ADASTRA" SOLDERING IRON 30 watt. Employs its prolective cover
a it hatulle. AC $236 / 250 \mathrm{v}$. With 4 ft . leind. 12/6. BEW-VHFAIRCRMFT BAND CONVERTOR. When placed within lint.
of $a \mathrm{MW}$ band radio full coverage of VHF Aircan lie obtained. All trinkistor, 9 y butitery operation. Fully tunable 18 itin. $\times 7$ section ele sc spic aerial. Slze $4<27$
$\times 14 \mathrm{in} .79 / 6$. P . $\mathrm{P} .2 / 6$.

Mohm Phono 100 mV into 1 Mohm. 3 Hohm. Phono 100 mv into 1 Mohm. 3 p ennce. 4cho тully $£ 23.2 .0$. LIND•AIR PRICE 181 Gns. Plus P^{P} \& $9 /-$

 IC-10 CIRCUIT 10 watt. Amplifier. Size only $1 x$ $0.4 \times 0 \cdot 2 \mathrm{ln}$. A true hi-fi amplifter complete
with manual giving detaila of a wide range of applications anul irstructions. Guaran-
SPECIAL PURCHASE!

NEW STEREO/MONO NEW STEREO HEADPBONES
gDH.
Boft rubbe
earpieces with slide earpieces
switch switch for inonol
sterea listening ind
 Freg. response 25 $15,000 \mathrm{cps}$. With le: and steren plug.
26.6.0. P . \mathbf{P}.
\square

HITTONE REC

8 watta per channel. Integrated high fideli ty tranaiator Btereo amplifler. An attrac tive free standing unit with provision for markting in equipment cabinet. Finsin Front panel satin alloy. Specihcation Sensitivity, thationTape 100 mV int S-DeC BREAD

Sidderless breat board panels,
liahle component amnertions.
Single DeCs. One S -DeC with Contro Single DeCs. One $\mathrm{S}-\mathrm{DeC}$ with Contro
Prinel, Jig ind Accensories for molderless "lrojects on sobec"g givilig construction P. \& P. 2/6

4-DeC KIT. Hour S-DeC's with twa Control Panels, Jigs and Acceswories and the bonk at roug attractive plastic chase lileal for the protessional user. 85.17 .6 . 1 '. \& P. $3 / 6$.

BRITISH MADE. TOP QUALITY		
Long Play l PVC	L2sft.	5/6
Triple Phay Poly	600ft.	10/6
Long Play PVC	900 it .	$10 j^{-}$
Donble Play Poly	1200tt.	15/-
Long Play PVC	1200 ft .	12/6
bouble Play Poly	1800 ft .	22/6
Staudard Play PVC	1200ft.	12/6
Long Play P ${ }^{\text {PC }}$	1800it.	17/6
Double Play Poly	3400 ft .	251-
Triple Play Poly	3600 ft	$501-$

If Tane

1311. PHONO PRE AMPLIFIER. Size 2×1
R. 1. R.I.A.A. characte hutput matrong fow
volt. Input 100 Ko be : Amplitied up Max, outpint 3 y : Max, input 50 mV . Dis
tortion 0.15% (ist Iv level). Power sipply E-1313. MICR. MOPHONE PRE-AMPLIFIER. Euables a low output microphone to be used with at amplitier or radio. Input imp. $100 \mathrm{Kohnws:} \mathrm{Gain} 28 \mathrm{lB}$: Max output 3 v Max imput 50 mV : Diatortion 0.15% (it
Is level) Frey. reaponae $10 \mathrm{~Hz}-50 \mathrm{~K} \mathrm{~Hz}$ Power supply $9-12 \mathrm{v}, 29 / 6$. P . \& $\mathrm{I}^{\mathrm{B}} .2 /-$ E. 1318 . DUAL LAMP FLASHER. A switch minature bulbs, $6 V^{\prime}, 100-200 \mathrm{~mA}$. Ideal for models. toy bostr and planes, displinge, warning anil security devices, communicathon signals, etc. Flasher tjme sec Lamp 6 v 150mA. $25 /-$ P. \& P. $2 /-$. E.1315. ELECTRONIC ORGAN TONE
OSCILLATOR. Used inconjunctlon with all OSCILLATOR. Used in conjunction with an 9 organ keyboard, varintie resistances and it the oscillator unit for an electronic organ. Tone Frequency: $200-1,000 \mathrm{~Hz}$: Ontput
80mW: Current $15 \mathrm{~mA} .25 /-$. P. \& P. $2 /-$.

Visit our Brand New Fi Demonstration Room, Tape Bar, Scientific Show of Microscopes, Binoculars, Telescopes also Watches at 18 Tottenham Court Road

COMPACT 2-WAY INTERCOMS

For table or wall monnting. Snart two tone grey chses auze $3 k \times 11$ Sins. Complete P \& P. 3/6.

MAINS KEYN ECTOR SAVES TIME-SAFELY!

One thains "Kieynector" Instantly and astely condecte electrical isplinances to A number of appliances may be used situutaneously up to the frill 13 amp rating of this device. A red licht glows wher "live". The "Keynector" in funed and has to prevent connections when "live". Invaluable connections when inve demonstrators

39/6

NEW TEA
FOECKER. beca and lco. factors o ofanslatirs alsu for check con germanjum ant silis battery. Wide reading scale. Moulded case size
$7 \times 4 i \times 3$ nin. Ranges: Alpha $67-0.9967:$ Bet: $0-300$; leo $0-50.5,000 \mathrm{~A}$ Diode test: forward and everse internal resistamee Repistauces
00 ohm- -1 megohm. Complete with con nectors and instruction booklet. $\mathbf{I V}^{2} 19.6$.

SHIRA 62D MULTI-
TESTER 20,000 o.p.7.
DC voltage: $5.25 \cdot 50 \cdot 250$ $500-4-5 \mathrm{~h}$ (20.000 ohms per 100-500-1000 volts (1000 D hms per volt) 10.000 chms per volt). DC Cu
rent: $0.50 u \mathrm{~A}, ~ 0.2 .5 \mathrm{~mA}$. 260 mA Resistance: 0-6F
 0.8 Mg (300 ohrn and 30 K \qquad $\mathrm{mfi}, \cdot 001 \mu \mathrm{f}$ to $1 \mu \mathrm{f}$. Wecibels: -20 t
 LIND-AIR OPTRONICS LTD
18, 25 \& 53 TOTTENHAM COURT ROAD, LONDON W. 1. Telephone: 01-580 2255/4532/7679

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m. -5.30 p.m. Closed Sat, 1.30-2.30 p.m. Open Daily to Callers

Tel. 769-0199/1649

147	7	cres		$6 K$	2/-	9BW	910	20P5	201-	80	$7 / 6$	DF9	$7 / 6$	ECF80	8/6	EM80	716	PC97	8/9		-	7/6
1D5	716	6BR7	171-	6K7GT	4/6	10 Cl	12/6	25A6	5/9	85 A2	$7 / 3$	DE77	4/9	ECF82	$8 / 6$	EM81	$8 / 8$	PCC84	6/8	40/-	UL41	21-
$1 \mathrm{H5}$	$7 /-$	6BR8	12/8	8K8M	11/8	10C2	12/6	25 L 6 O	7 -	15082	11/6	DK32	7/9	ECH21	12/6	EM84	$7 / 8$	PCC89	$10 / 6$	8P4 8/-	ULA4	I-
1LDS	81-	6B8	251-	6 K 8 G	$3 /-$	10F1	$14 / 9$	$25 Y 5$	6/-	150 C 4	$9 / 6$	DK9	81-	ECH35	11/6	EsU15	0)-	PCCI8	10/6	SP41 3/6	UM80	5/6
$1 \mathrm{N5GT}$	81-	6BW	14/6	6 K 8 GT	71	10F3	18/-	$25 Z 4$	$8 / 3$	801	9/6	9K92	$91-$	ECH42	11/-	EY51	$7 / 6$	PCF90	6/8	SP61 3/6	UU6	21/-
1R5	$81-$	6BW	13/-	6 K 25	151-	10F9	$10 / 6$	2525	$81-$	807	9/-	DK96	718	ECH81	$5 / 9$	EY86	$7 /-$	PCF82	6/8	STV280/80	UU7	21/-
184	5/6	6C4		6 Ll	121-	10F18	$81-$	2586	$8 / 6$	813 U		DL6	951-	ECH83	8/6	EZ35	$81 /$	PCF84	$81-$	95/-	UU8	81/-
186	$4 / 6$	$6 \mathrm{C5G}$	-	6L6G	$7 / 9$	10 LI	81-	28D7	$9 / 8$		120/-	DL92	$8 / 3$	ECL80	71-	EZ40	$8 / 3$	PCF86	9/-	8U25 19/6	UV9	$8 / 3$
1 T 4	4/-	60	$3 / 8$	6 L18	61-	10LD1	$10 / 6$	30 Cl	6/8	813	$751-$	DL93	4/-	ECL82	$71-$	EZ41	$8 / 6$	PCF'80	9/9	SU2150 12/6	UY21	$9 / 6$
$3 \mathrm{A4}$	$4 /-$	$6 \mathrm{C8G}$	6/-	6Q7	8/-	$10 \mathrm{P13}$	$13 / 6$	30 C 15	15/-	8684	151/	DL94	$8 / 9$	ECL83	10/3	EZ80	$5 / 8$	PCF80	9/9	T41 17/6	UY41	$8 / 6$
3Q4	$7 / 9$	6CD66	$24]$	6Q7GT	$8 / 8$	${ }^{112}{ }^{\text {d }}$	701	30017	16/-	954	5/3	DL95	$7 / 9$	ECL86	$9 /-$	EZ81	516	PCF8	151-	TDD4 8/6	UY85	6/6
3Q5	710	8CH6	$7 / 6$	6SA7M	71 -	12AT6	4/9	30 Cl 8	15/-	1625	6/8	DL96	$7 / 6$	ECLL	00	GZ30	101-	PCF8	13/-	U10 $7 / 6$	VMP	71-
384	6/3	6CW 4	12/-	$68 \mathrm{C7}$	$71-$	12AT7	6/-	${ }^{30 \mathrm{~F} 5}$	$17 /$ $16 /-$	40224 5783	67\%-	DM70	$81 /$		$301-$	GZ32	$10 /-$	PCFI808	15/8	U14 7/8	VP41	$25 /-$
3 V 4	6/8	6D6	$3 / 9$	68G7	-	12AUB	5/9	30 FLL 1	18/-	5763	12j-	DY86	81.	EF9	$201-$	GZ34	11/-	PCI82	$7 / 9$	U19 35/-		
$5 \mathrm{R4GY}$	$10 / 6$	6E5	$7 / 8$	17	8/3	124U7	5/9	30 FL 12	19/-	7193	21-	DY87	6/6	EF37A	7/-	KT36	18/-	PCLE8	10/3	U25 15/6		8/6
5U4 ${ }^{\text {d }}$	5/8	6F1	12/6	J7	$81-$	12AX 7	8/3	$30 \mathrm{FL14}$	15/8	7475	14/-	R88CC	12/-	EF'39	81-	KT61	17/6	PCL84	$8 / 8$	U26 15/6		
5V4G	8j-	${ }_{6}^{6 F 5 G}$	$8 /-$	8K7G	T $4 / 9$	12BA6	61-	30 L 15	17\%-	A61	9/6	EA50	8/8	EFF41	101-	KT66	81/-	PCL8	818	U78 4/6		8/-
SY3G	$8 /$	6F6G	$5 /-$	L7G	8/-	12BE6	6/8	$30 \mathrm{L17}$	171-	ATP4	$2 / 3$	EABC8	$08 / 6$	EF50	$51-$	KT81	351-	PCL86	$9 / 3$	U191 $13 / 9$	VT25	15/-
$5 \mathrm{Z4G}$	71 -	6F8G	5/6	N7G	5/6	12 CBG	5/-	30P12	16/-	ATPS	12/-	EAF42	101-	EF80	$51-$	KT81	7C5)	PENA	$201-$	U251 18/3	VT31	$801-$
6/30L2	15/-	6 F 11	8/6	7	$7 / 6$	12E1	$201-$	30 P 19	15/-	ATP7	$8 / 6$	EB41	10/-	EF8	$71-$		15/-	PENB	$20 /$	U301 12/6	VU111	$8 / 9$
	16	6 F 13	8/8	4GT	12/-	12F5GT	2/6	30PL1	16/-	AU2	801-	EB91	3/-	EF86	6/8	KT88	301-	PEN45	71-	U403 8/6	VU120	12/6
6A8G	12/6	6 F 14	12/6	J5G	$7 / 6$	1257 GT	6/8	30 PL 13	18/6	AUS	$8 / 9$	EBC33	$8 / 6$	EF89	6/6	KTW6	8/6	PEN46	4/-	U404 7/6	VU508	35/-
$6 \mathrm{AC7}$	4/-	6 F 23	$16 /-$	6V6M	12I-	12K7GT	T 7-	30P1	5/-	AZ1	8/-	EBC41	9/9	EF91	$3 / 6$	KTZ41	6/-	PL36	10/9	U801 23/6	W81M	12/6
$6 \mathrm{AK5}$	61	$6 \mathrm{FFO}^{24}$	14/-	V6G	4/6	12K8GT	7 81	35As	11/6	AZ31	101-	FBC90	$4 / 9$	F9	$2 / 6$	ML4	$17 / 6$	PL81	$81 /$	UABC80 $6 / 6$	XP1-5 $\mathbf{X P 1 - 6}$	$5 /-$ $5 /-$
6AL5	$31-$	$6 \mathrm{~F}^{2} 25$	15/-	6V6G7	$8 / 8$	12Q7GT	T $61-$	$35 \mathrm{L6}$	9/-	CBI31	18/-	EBF80	$7 / 8$	EF98	151-	ML6	$7 / 6$	PL82	$8 / 6$	UAF42 $10 / 6$	XP1-6 XAG1.	51-
6AM5	$4 / 6$	6F*2	14/-	6×4	$4 / 6$	128A7	8/-	35W4	4/6	CCH35	15/-	EBF83	9/-	EF183	8/8	MSP4	101-	PL83	$7 / 8$	UBC41 9/3	$\begin{aligned} & \text { X8G } \\ & \text { Y63 } \end{aligned}$	7/6
6AM	$3 / 6$	606	$2 / 6$	6 X 50	4/8	128G7	6/-	$35 \mathrm{Z3}$	10/-	CL33	$201-$	EBF89	8/6	EF184	$7 /$	MU14	$7 / 6$	PL84	$71-$	UBC81 9/3	Tubes	$7 / 6$
	$8 / 3$	$6 \mathrm{H6}$	$31-$	6X5GT	8/-	128E7	$3 /-$	3574GT	$8 / 6$	CY30	18/6	EBLI	141-	EL32	3/6	MX40	12/6	PL500	14/6	UBF80 7/-	Tubes	-
6As7G	18/-	${ }_{6}^{615 M}$	$9 /-$	786	$11 / 6$	128J7	$3 / 9$	$35 \mathrm{Z5}$	$8 /-$	Cx31	$8 / 6$	EBL21	121-	EL33	22/6	N78	18/-	PX4	14/-	UBF89 $7 / 6$	3FP7	291-
6AT'8	4/9	6J56	4/-	7 B 7	$71 / 6$	128K7	4/9	37	$6 / 6$	DAC32	$71-$	EBL31	27/6	EL34	10/6	1108	25/-	PY33	10/9	UCC84 8/8	${ }_{5} \mathrm{CPP} 1$	55/-
6 6UB	51	6J5GT	$5 / 6$	${ }_{7}^{7 \mathrm{C} 5}$	15/-	$12 \mathrm{SR7}$	5/-	42	$81-$	DAF91	4/6	EC90	5/-	EL41	10/8	NGT1	$8 / 6$	PY81	$5 / 9$	UCC85 716	CV1526	$\begin{aligned} & 551 \\ & 401- \end{aligned}$
6.849	201 -	$6{ }^{6} 56$	$3 / 6$	7 C 6	15/-	$14 \mathrm{H7}$	9/6	50B5	6/6	DAF96	$7 / 6$	ECC81	6/-	EL42	10/8	NGT7	$55 /-$	PY82	$5 / 3$	UCF80 8/8	$\text { ACR } 181$	1100%
${ }_{6}^{688 G}$	2/-	${ }_{6}^{6.57 M}$	$8 / 8$ $8 /-$	7D9	8/-	19AQ5	51-	$50 \mathrm{C5}$	8/3	DCC90	1016	ECC82	3/9	EL84	4/9	OA2	$8 /-$	PY83	7/-	UCH42 10/6	$\begin{aligned} & \text { VCR18 } \\ & \hline \end{aligned}$	$35 /-$
6BA6	8/-	657	$61 /$	7H7	6/8	20D1	101-	50 CD 8	31/	DF33	$8 /-$	ECC83	6/8	EL90	6/3	0 C 3	5/-	PY800	$9 / 8$	UCH81 7/-	VCR	
6BE6	-	6.J7GT	$7 / 6$	787	131-	20 F 2	14/-	50L6GT	$81-$	DF70	$91-$	ECC84	5/6	EL95	8/6	OZ4	$4 / 6$	PY801	$9 / 6$	UCL $827 / 8$		46/-
6 B	9/-	6 K	$51-$	787	$451-$	20Ll	20\%-	75	9/6	DF91	$41-$	ECC85	$5 /-$	ELL80	201-	PC86	11/6	R2	$7 / 8$	UCL83 10\%		
6RJ6	91-	6K7M	6/6	7 Y 4	$8 / 6$	20P4	201-	78	51-	DF92	3/6	ECC88	$7 / 6$	EM34	21/-	PC88	$11 / 6$	R10	$7 / 9$	UF41 10/6		46/-

SPECIAL 24 HOUR SERVICE OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Express postage od, per valve. Ordinary postage 6d. per valve. C.W.O. No C.O.D. Complete range of T.V. Tubes avallable from £4.5.0. Manulacturers and Export Incuirles Welcome

Special 24 Hour Express Mail Order Service

DAF91, DF91, DK91, DL92 or DL94 FLVES DAF96, DF96, DK96, DL96

TRANSIETORS								
AC127	2/8	OC25	11/-	$0 \mathrm{C71}$	4/6	OC81	OC82D	6/-
AF114	71 -	OC28	18/-	0 C 72	6/-	$0 \mathrm{C81D}$	$0 \mathrm{C83}$	$61-$
AFl15	71	OC36	$11 / 6$	0c75	61 -	OCs1DM	$0 \mathrm{OC170}$	71-
AF116	71-	0 O 44	$4 / 8$	OC76	81-		0 Cl 11	$81-$
AFl17	71 -	OC46	4/-	$0 \mathrm{C77}$	81-		OC200	

HOME RADIO (Components) LTD., Dept. PW, 234-240 London Road, Mitcham, Surrey, CR4 3HD Phone: 01-648 8422

hard negative. Initially the capacitor will have a voltage at its terminals equal to the line voltage, $V_{c c}$, the collector end of Cl just before switching being $+V$ ec. Since the collector goes to near the ground potential and the voltage still remains across the capacitor, $\mathrm{V}_{\mathrm{B} 2}$ goes to - V_{cc}, or more exactly, $\mathrm{V}_{\mathrm{cE} 1} \mathrm{sat}-\mathrm{V}_{\mathrm{cc}}$. Thus if the line voltage was 5 V , the capacitor has 5 V across its terminals initially. Upon switching, $\mathrm{V}_{\mathbf{c 1}}$ drops to 0.1 V and $V_{B 2}$ is taken to -4.9 V .

Tr 2 is driven into reverse bias and is thus cut hard off, ensuring that only $\mathrm{I}_{\mathrm{cbO}} 2$ flows through R4 and that $\mathrm{V}_{\mathrm{C}_{2}}$ is approximately at $+\mathrm{V}_{\mathrm{cc}}$. In normal operation C2 would not be charged, but at the initial cycle it may well be. If it is not fully charged, it now becomes so, charging from $\mathrm{V}_{\mathrm{B} 1}=0.7 \mathrm{~V}$ to $+\mathrm{V}_{\mathrm{cc}}$. Section (c) of Fig. 2.1b shows the collector of $\operatorname{Tr} 2$ at line potential and the positive-going voltage at Tr2 base is seen in section (d).

This latter waveform shows how the voltage at the negative side of C 1 is changing. Directly after switching it is at $-V_{c c}$, but it then begins to discharge through the Tr2 base resistance, R3, in an effort to charge its negative end to $+V_{c c}$ through this resistor. The voltage thus reduces across the capacitor until, with the capacitor totally discharged, Tr2 base is taken to $+0 \cdot 1 \mathrm{~V}$. The capacitor now begins to charge in the opposite potential as the negative side of the capacitor aims for $+V_{\text {cc. }}$. It is not allowed to charge to this potential, however, for when it reaches the V_{bs} of $\operatorname{Tr} 2, \operatorname{Tr} 2$ is switched on, and the emitter base holds the negative end of the capacitor from rising any further. By this time capacitor C 2 will be fully charged at line potential.
Tr 2 switches on, its collector dropping to $\mathrm{V}_{\mathrm{CE} 2} \mathrm{sat}$, as shown in Fig. 2.1b. Just as Tr caused Tr 2 base to drive negative on switch-on, now Tr 1 base is driven negative to $-\mathrm{V}_{\mathrm{cc}}$, and Tr 1 is cut off. Now C2 begins to gradually discharge through R2, and C1 begins to charge through R1 since $\mathrm{V}_{\mathbf{c} 1}=\mathrm{V}_{\text {cc. }}$.

It will be appreciated that due to the difference between magnitudes of base and collector currents, the base resistances are very much larger than the collector resistances. It is thus ensured that the time constant for the capacitors to charge through the collector loads is shorter than for the discharge through the base resistances, and thus it is certain that upon switching, the new timing capacitor to come into action will start fully charged. This action is repeated and regenerative switching continues as long as the supply is connected.

Examining the waveforms more closely, at first glance their shapes might seem a little unusual, but when considering the full cycle in detail the shapes are explained. Considering the base waveforms, they are seen to cut off sharply when reverse bias is applied, as might be expected. We then see a normal capacitor discharge into the positive region, followed by the rather unusual "pip". At this point the capacitor is aiming to charge to the line potential through the base resistor, and as the emitter-base diode comes into conduction there is for a short period an interaction as the base current settles down to a steady state value, whilst the voltage at the base attempts to increase above V_{BE}. The emitter-base is finally in full conduction and holds constant at 0.7 V .

Considering the collector waveforms, a fast falling edge is observed. When a transistor goes into the ON state it is switched on sharply and wastes little time in dropping to Vcesat. When the transistor switches off however, the situation is a little different. The capacitor attached to the collector is charged a little in the opposite polarity, and it now has to recharge in its normal polarity through the collector resistance. With a small
voltage across the terminals in the reverse polarity, it tends to pull down on the collector as it tries to rise to line potential, and hence we see the slow rising edge of the basic multivibrator.

The switching periods of the multivibrator may be determined as follows. Taking the situation where $\operatorname{Tr} 2$ has just switched on, and $\operatorname{Tr} 1$ base has just been driven to $-\mathrm{V}_{\mathrm{cc}}$, the base end of C 2 begins to charge to an aiming potential of $+V_{c c}$, i.e. an effective $2 . V_{c c}$ volts. It does not reach this potential since when it reaches an effective $V_{c c}$ volts (i.e., really approximate potential of the earth line), switching occurs.

The basic expression for the instantaneous voltage of a capacitor C , charging through a resistor R , to a potential V , is given by:
instantaneous voltage, $\mathrm{v} \doteq(\mathrm{V} / \mathrm{R}) \mathrm{e}^{-\mathrm{t} / \mathrm{CR}}$
Applying this to the case in question,

$$
V_{b_{1}}=2 . V_{c c}\left(1-\mathrm{e}^{\left.-t 1 / R^{2} \cdot c^{2}\right)}-V_{c c}\right.
$$

This simplifies to

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{b}_{1}}=2 . \mathrm{V}_{\mathrm{cc}}-2 . \mathrm{V}_{\mathrm{cc}} . \mathrm{e}^{-\mathrm{t} 1 / \mathrm{R} 2 . \mathrm{c}^{2}}-\mathrm{V}_{\mathrm{cc}} \\
& =V_{c c}\left(1-2 . \mathrm{e}^{-1 / \mathbf{R}^{2} . \mathrm{c}^{2}}\right) \text {. }
\end{aligned}
$$

To simplify the expression, assume the emitter-base voltage is negligible, i.e. assume $\mathbf{V}_{b_{1}}=\mathbf{0}$.

Then,

$$
0=\mathrm{V}_{\mathrm{cc}}\left(1-2 \cdot \mathrm{e}^{-\mathrm{t} 1 / \mathrm{R}^{2} \cdot \mathrm{C}^{2}}\right) .
$$

Therefore,
$1-2 . \mathrm{e}^{-\mathrm{t} 1 / \mathrm{R} 2 . \mathrm{c}^{2}}=0$ since V_{cc} is not zero.
Simplifying,

$$
\text { 2. } \mathrm{e}^{-t 1 / R^{2} \cdot c^{2}}=1
$$

Taking logarithms to base e, $\log _{e} 2+\left(-t_{1} / R_{2} \cdot C_{2}\right) \log _{e} e=\log _{e} 1$.
Therefore,

$$
\log _{\mathrm{e}} 2-\mathrm{t}_{1} / \mathrm{R}_{2} \cdot \mathrm{C}_{2}=0
$$

Rearranging,

$$
\mathrm{t}_{1} / \mathrm{R}_{2} \cdot \mathrm{C}_{2}=\log _{\mathrm{e}} 2 .
$$

Therefore,

$$
\mathrm{t}_{1}=\log _{\mathrm{e}} 2 \cdot \mathrm{R}_{2} \cdot \mathrm{C}_{2}=0.693 \cdot \mathrm{R}_{2} \cdot \mathrm{C}_{2}
$$

This thus explains the approximation frequently used for such circuits of $t=0.7$ C.R.

If the capacitors and base resistors are identical, and with the usual circuit only the capacitors might differ, the ON and OFF states for both transistors will be equal. If one capacitor is larger than another, it will take longer to discharge, and will hold the transistor in the OFF state for a longer period of time. Unequal quasistable states will result, and one collector will provide short positive-going pulses, the other collector long positive-going pulses. Output may be taken from either collector, most simply by capacitive coupling. It is possible to d.c. couple, however, if this is desired.

The frequency is given approximately by:

$$
\mathrm{f}=\frac{1}{\mathrm{t}_{1}+\mathrm{t}_{2}}
$$

In these articles n-p-n transistors will be dealt with for consistency, and since they are the more common types with modern silicon planar transistors. A p-n-p version of any of the n-p-n circuits would simply have a reversed rail polarity, and reversed capacitor and diode polarities.

Figure 2.2 has been included to illustrate this point, being the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ version of Fig. 2.1a.
To now consider the practicalities of calculating component values, some very simple mathematics show the requirements.

Assuming $\mathrm{V}_{\mathrm{CE}} \mathrm{Sat} \simeq \mathrm{V}_{\mathrm{EB}} \simeq 0$
Then, where R_{B} is the base bias resistor and R_{c} the collector load,

$$
\mathrm{R}_{\mathrm{B}} \simeq \frac{\mathrm{~V}_{\mathrm{cc}}}{\mathrm{I}_{\mathrm{B}}} \text { and similarly, } \mathrm{R}_{\mathrm{c}} \simeq \frac{\mathrm{~V}_{\mathrm{cc}}}{\mathrm{I}_{\mathrm{C}}} .
$$

Fig. 2.2: A p-n-p mutivibrator of similar design to Fig. 2.1(a).
Now, $I_{C} \simeq h_{\text {PE }} . I_{B}$. Therefore,

$$
\frac{\mathrm{V}_{\mathrm{cc}}}{\mathrm{R}_{\mathrm{C}}} \simeq \mathrm{~h}_{\mathrm{FE}} \frac{\mathrm{~V}_{\mathrm{cc}}}{\mathrm{R}_{\mathrm{B}}}
$$

Simplifying,

$$
\frac{1}{\mathrm{R}_{\mathrm{C}}} \simeq \frac{\mathrm{~h}_{\mathrm{PE}}}{\mathrm{R}_{\mathrm{B}}} .
$$

Therefore,

$$
\mathrm{R}_{\mathrm{B}}=\mathrm{h}_{\mathrm{FE}} \cdot \mathrm{R}_{\mathrm{C}}
$$

i.e., the base resistance will be approximately larger than the collector load by the factor of the d.c. gain for saturation switching. Thus if the required collector current is 1 mA into a collector load of $4.7 \mathrm{k} \Omega$, the base resistance should be $4 \cdot 7 \mathrm{k} \Omega \times \mathrm{h}_{\mathrm{Fe}}$. For a high gain silicon transistor $h_{\text {FE }}$ might be 200 , giving a base resistance of $940 \mathrm{k} \Omega$, say $820 \mathrm{k} \Omega$ as the nearest lower preferred value. We see that $V_{c e}$ is set at $I_{c .} R_{c}=4.7 \mathrm{~V}$, and have only to substitute R_{B} into the 0.7 CR formula to design for a particular frequency.

Out of interest, and to conclude the mathematics, let us calculate the minimum value of h_{FE} for reasonable operation. To simplify the maths, let us select a suitable voltage for V_{C} to reach. If we allow V_{C} to reach $0.99 \mathrm{~V}_{\mathrm{cc}}$ we are assured of the collector voltage making its full excursion.

We may express the requirement in terms of an unknown, X for the moment.

Let $t_{1}=0 \cdot 7 . C_{2} \cdot R_{2}$ be greater than $x . C_{1} \cdot R_{1}$
and thus $\left(1-e^{x}\right)=0.99$
Therefore, $\mathrm{e}^{-\mathrm{x}}=0.01$.
Thus, $x=4 \cdot 6$.
Now if $\mathrm{C} 1=\mathrm{C} 2$

$$
0 \cdot 7 \cdot R_{2}(\min)=4 \cdot 6 \cdot R_{1}
$$

Therefore,

$$
\mathbf{R}_{2} \min =6 \cdot 6 . \mathrm{R}_{1} .
$$

Or in more general terms,
Therefore,

$$
R_{B}=6 \cdot 6 . R_{C}
$$

$\mathrm{h}_{\text {FE }} \min =6.6$.
With the gains of modern silicon transistors it is seen that we should do far better than $\mathrm{V}_{\mathrm{C}}=0.99 \mathrm{~V}$ cc. Higher gain, that is, of the order of one or two hundred, allows smaller capacitors to be used and consequent saving in space, and possibly cost.

It was stated at the beginning of this article that transistors in multivibrator circuits are sometimes seen in circuits where the maximum ratings are exceeded. The rating referred to is the maximum emitter-base reverse bias. With typical silicon transistors, this is usually of the order of 5 V . A 5 V line will thus take the transistors to this limit when the capacitor takes the base to 5 V below the earth rail. It is not always appreciated that this is in fact what happens, and if the supply voltage for the multivibrator exceeds the maximum reverse bias of the emitter-base junctions of the transistors, special pre-

Fig. 2.3: Emitter diodes protect the transistors against excess reverse emitter-base voltage.
cautions should be taken in a correctly designed circuit.
Figure 2.3 shows one method of overcoming this problem. Here diodes have been placed in the emitter lines of the two transistors, and if the bases of the transistors are now taken more negative than the maximum rating for the transistor's reverse V_{EB}, even a modest diode will not break down at normal line voltages, and the reverse-biased diode will protect the transistor.

Speeding-up the Rising Edge

For some applications it may be desirable to improve the rather slow rising edge which is a characteristic of the basic multivibrator. This may be achieved by the addition of two further resistors, and two diodes, as shown in Fig. 2.4. Operation of the multivibrator is now as follows.

Assuming Trl is initially on, and Tr 2 cut off, C1 is discharging from - V_{cc} at the base of Tr 2 , and C 2 is now charging chiefly through $R 5$. With $V_{\mathrm{C}_{2}}=\mathrm{V}_{\mathrm{cc}}$, diode D2 is reverse biased as far as the charging capacitor is concerned, and it charges through the resistor indicated. C2 will be fully charged by the time that the potential at $\operatorname{Tr} 2$ base rises to +0.7 V . When $\operatorname{Tr} 2$ switches on its collector goes negative, taking with it Trl base. Trl collector now suddenly rises toward the $+V_{\text {ce }}$ rail, and it is here that the capacitor Cl would normally exert its influence in slowing down the collector's rise towards the rail.

Fig. 2.4: A low voltage multivibrator'with fast switching times
Initially, with about 0.7 V reverse bias on it, the anode of D1 is at about earth potential, and when Trl cuts-off and the collector rises, the diode is cut off into reverse bias. This acts as a gate, a block between Cl and Tr 1 collector, and the collector is free to rise sharply up to the positive rail. Capacitor C 1 may now recharge in normal polarity through resistor R2.

It should now be possible to obtain fast rise and fall times from either collector, provided that the value of R2 is suitably chosen. When a transistor is in saturation,
the diode connected to its collector will be forward biased and conducting, and if the diode coupled resistor is small, it will shunt the true collector load resistance, and may cause the transistor to come out of saturation. It was pointed out before that since the collector load is usually much smaller than base bias resistors, this ensured that the capacitors could recharge fully before switching took place due to the discharging capacitor. It is therefore necessary to make the diode coupled resistor significantly smaller than the base bias resistor.

For normal silicon transistors, a useful rule of thumb is to make the diode coupled resistor about one-half the value of base bias resistor. It will be seen that for a transistor with a gain of say 100 , with a $1 \mathrm{k} \Omega$ collector load, and a $100 \mathrm{k} \Omega$ base resistance, this would give a diode coupled resistance value of about $50 \mathrm{k} \Omega$. Such a value will not appreciably shunt $1 \mathrm{k} \Omega$, and will provide a much shorter time constant for the charging capacitor than it will see on discharge.

Low gain transistors should be avoided in this type of circuit. Rise and fall times of the order of 100 nS are possible to achieve with this type of circuitry and high frequency transistors. For high speed operation, the diodes should also be fast types.

The method of placing emitter diodes in circuit to protect transistors against excessive reverse V_{be} 's may not be desirable in certain circumstances. One disadvantage of this is that when the transistor is driven into saturation, its collector voltage will be $\mathrm{V}_{\text {CES }} S a t+V_{F}$ where V_{F} is the forward voltage of the diode, which will be of the same order as a V_{bE}. With silicon components, the collector voltage in saturation might therefore be slightly larger than 0.8 V . A voltage dropping right to the earth rail (effectively) might be desired, and if so, a diode cannot be placed in the emitter.

Fig. 2.5: A high voltage multivibrator with fast attack and decay.
A method of protecting the emitter-base for higher line voltages without using emitter diodes is shown in Fig. 2.5. If we assume Trl has just switched on, the negative-going collector will have just taken the anode of D4 negative to - $V_{\text {cc. }}$. Diode D1 comes into conduction when Trl drives into saturation, so the potenttial at the anode of $D 1$ will be $V_{C E} s a t+V_{F}$. Now with the anode of D4 taken below the earth rail, it is reversed biased, cutting off the base current supply to Tr2, and hence cutting off $\operatorname{Tr} 2$. The base of $\operatorname{Tr} 2$ cannot be taken more negative than the forward voltage of diode D6 since this comes into forward conduction when $\mathrm{V}_{\mathrm{B}_{2}}$ is taken down to approximately -0.7 V .

If we consider D4 short-circuited for the moment, Tr 2 emitter-base would still be protected, and would still cut off, but the restraining voltage of the diode D6 would prevent the capacitor from going as far negative as it wishes to, and reflects back to the collector of Trl .

With D4 in circuit, since reverse-voltages may be anything under the breakdown, the capacitor is free to go to full $-V_{\mathrm{cc}}$.

As in normal operation, Cl will rise towards the positive rail through R 4 eventually, Tr 2 will come back into conduction, at a slightly later point, when D4 anode voltage is $\mathrm{V}_{\mathrm{F}}+\mathrm{V}_{\mathrm{EB}}$, and regenerative switching takes place.

Without diodes D3 and D4 the circuit will operate in that it will oscillate, but, another point to bear in mind, apart from the resulting degraded waveform, is that diodes D5 and D6 will then present a low impedance discharge path, and the frequency of operation will also be affected.

Fig. 2.6: Basic form of a variable pulse generator.
Figure 2.6 shows the basic form a pulse generator might take, the heart of which is a high speed multivibrator. Since an output will only be required from one side, it is not necessary to achieve a fast rising edge at the collector side which will not be used. A diode coupled resistor is thus only used on the output side, D3. Now in a pulse generator, we shall wish to vary the repetition rate and pulse length, and have a constant amplitude output with good fast edges. For low repetition rates, excessively large capacitors might be required, leading to stability problems. In the figure, the left-hand components will determine the repetition rate, whilst the transistor $\operatorname{Tr} 2$ will determine pulse length with its associated components.

A Darlington Pair, Tr 1 and Tr 3 give the repetition rate transistors a high gain, which enables us to use very high resistances in the base bias, and consequently reduced capacitance values to still obtain a long repetition rate. VRI in series with a fixed resistor to ensure that the base bias resistance can never be zero, enables the repetition rate to be adjusted over a given range, related to $C 2$, and TR2 similarly allows an adjustment of pulse length. For a wide range instrument since the resistance range is limited for reasonable bias conditions and assurance of transistor saturation, capacitors C1 and C2 will simply be selected capacitors in switched ranges, the variable resistors allowing variation between the limits set by these ranges.

In this circuit, a zener diode D4 sets a fixed and stable V_{cc} and hence pulse height, and $\operatorname{Tr} 2$ should drive into saturation for a stable bottom level of the pulse. Diode protection has been afforded to allow a large voltage output in a similar manner to that described in Fig. 2.5.

There is thus more to the simple multivibrator than might at first be thought. A single article on it alone proves this point.

In next month's article, the family of monostable circuits will be discussed.

integrated circuit audio signal

This pocket signal injector takes full advantage of the size and cheapness of the more available I.C.s and will provide an excellent introduction for the beginner to these new components.

S. ELLIOTT

on the component bodies themselves and prolonged heating could ruin them.

The circuit

The circuit of the injector shown in Fig. 1 is a straightforward multivibrator (astable) with no frills. Suppose Tr 1 is off and Tr 4 is on; therefore as the collector of Tr 4 is more or less at earth Cl charges through Tr4 and R1. This causes the base of Tr1 to become more positive and so it begins to conduct. A regenerative action occurs and Trl switches on quickly. The negative-going pulse at Tr1 collector is transferred via C2 to Tr4 base and causes it to turn off, which in turn sends a positive-going pulse via Cl to Trl base which makes Trl conduct even more. Now Tr4 is off and Trl is on. C2 charges through R2 and Trl, and so the cycle repeats.
The output is taken from Tr4 collector via C3 to the injector probe.

The period of oscillation is deter-

Fig. 1: The circuit of the 1.C. audio signal injector.

$$
\text { where } \mathrm{T} \text { is the time constant. }
$$

$$
\mathrm{f}=\frac{1}{\mathrm{~T}}
$$

components list

R1 and R2 10k $\Omega, 0.1$ watt subminiature type. $\mathrm{C} 1, \mathrm{C} 2$ and $\mathrm{C} 30.1 \mu \mathrm{~F} 3 \mathrm{~V}$ subminiature type. Integrated circuit: Fairchild μ L.914 (Henry's Radio). Miniature press button switch (G. W. Smith). 2 in . $\times \frac{1}{2} \mathrm{in}$. diameter copper tube. Coax plug. Crocodile clip. Araldite. Batteries: two RM675H (Ever Ready). mined by:

$$
\begin{aligned}
& \mathrm{T}=0.69(\mathrm{R} 1, \mathrm{C} 1+\mathrm{R} 2, \mathrm{C} 2) \\
& \text { but } \mathrm{R} 1=\mathrm{R} 2=\mathrm{R} \\
& \text { and } \mathrm{C} 1=\mathrm{C} 2=\mathrm{C}
\end{aligned}
$$

$$
\therefore \mathrm{T}=1 \cdot 38 \mathrm{RC}
$$

$$
f=\frac{1}{1 \cdot 38 \mathrm{RC}}
$$

In this particular case:

$$
\begin{aligned}
\mathrm{f} & =\frac{1}{1 \cdot 38 \times 104 \times 10^{7}} \\
& =\frac{10^{3}}{1 \cdot 38} \\
& =725 \mathrm{c} / \mathrm{s}
\end{aligned}
$$

This is slightly modified by transistor impedances in the final circuit.

Construction

To start, leads 1 and 5 are cut off as near to the I.C. as possible, lead 4 is cut off about $\frac{3}{10} \mathrm{in}$. from the I.C. and a lead soldered on, this is the negative supply to the oscillator. Next R2 is connected up by positioning it inside the lead configuration, the lower end being taken

Fig. 2: The arrangement of the I.C. and the discrete components.
to lead 3 and the upper to lead 8, the positive supply line. R1 is positioned beside this, the top of it connected to the top of R2 and the bottom to lead 2. Lead 8 is cut off above the join of R1 and R2 and is soldered to a length of wire, this is the positive supply line. The two capacitors C 1 and C 2 are miniature disc ceramic types and are roughly the same diameter as the I.C. They are positioned above R1 and R2 and directly over the 1.C. The leads are bent and soldered as in Fig. 2. A lead is soldered to lead 6 , this will eventually go to C3 and the output probe.

Testing

The oscillator should be checked at this stage to see if it is functioning correctly. The two power leads are

This piece of the plug has striations down its side. A plug should be chosen that has not got these striations down its whole length; if the unstriated part is filed down it should be a tight fit into the end of the copper tube. It may be found that the end of the rube has to be expanded by pushing a pair of long nosed pliers down it and twisting them round so forcing the sides of the tube outwards slightly.

The probe end of the injector is formed by the other pieces of the coax plug. The pin is removed from the nylon insulator by heating with a soldering iron and withdrawing it when the nylon is just melting around the pin. The shoulder is then cut off the nylon with a razor blade so that it will go right to the end of the remaining part of the plug as shown in Fig. 3. This remaining part of the plug is then cut in half just below where the threads finish. This should now fit into the end of the copper tube loosely.

The probe is then heated and fitted into the nylon so that it barely comes out the other side. C3 is then soldered to this end. The nylon is glued with Araldite or a similar resin glue to the piece of coax plug. The hollow in which C3 is fitted is completely filled with Araldite, care being taken that the leads do not touch the case. A piece of wire is soldered to the other side of C3 and the whole assembly is glued to the copper tube. It will probably be found that the assembly will have to be clamped in place while the glue is setting so that it is

Fig. 3: The assembly of the completed signal injector.
connected to a 3 V battery or the two mercury cells that will be used in the final injector. The output is taken via a $0 \cdot 1 \mu \mathrm{~F}$ capacitor to an amplifier and loudspeaker; upon connecting the battery a note should be heard. If it is not, disconnect immediately and check the wiring against the circuit diagram. If all is well the whole circuit is wrapped in p.v.c. tape to insulate it from the case, care being taken that none of the leads are likely to come intc contact with each other. Now the next stage of construction, the case, can be started.

The case

The main body of the case is a piece of half-inch inside diameter copper tubing (the type used in small bore central heating). A piece is cut 2 in . long and its ends are filed smooth. A coax plug is used for the ends. The end through which the cable should go is of sufficient size to incorporate a push-button switch sold by G. W. Smith Ltd., at 1s. 6d.
The switch is put into place and the nut tightened up.
not glued in at an angle to the copper tube. A hole is drilled in the copper tube near the prod end for the earth wire (-ve). This wire is soldered to pin 4 of the I.C.

The mercury batteries are soldered together-care being taken so that they are not overheated. It doesn't matter whether the positive or negative lead is switched; in the prototype the negative was switched. One side of the switch goes to pin 4 of the I.C. and the other is more or less soldered directly to the negative button of the battery. The other side of the battery is taken to pin 8 of the I.C. The batteries are wrapped in p.v.c. tape and the whole electronics assembly is slid into the tube. The injector is now ready for use.

The output waveform is not good enough for measurements and assessing the frequency response of an amplifier but it provides a portable audio source that can be used in many ways for tracing circuit faults. In conjunction with an audio amplifier it could be used as morse oscillator but in this case it need not be built into such a small housing.

PART 4-TRANSMISSION LINES

T[HE fourth part of this series on aerials will primarily concern transmission lines, or feeders, but to introduce the subject we will describe an amateur bands transmitting aerial which uses transmission lines in rather a special way to enable it to function over a wide band of frequencies. The aerial is the G5RV dipole, 102 ft . long, designed to cover the $1 \cdot 8,3 \cdot 5,7,14,21$ and 28 MHz amateur bands.

Fig. 4.1: The G5RV multiband dipole aerial.
The aerial is shown in Fig. 4.1. It is made from two lengths of covered wire, each 51 ft . long, and coupled in the centre by a suitable strong insulator. From this centre point is taken a 34 ft . open wire feeder, which acts as a matching stub, and to this is connected any convenient length of 75Ω coaxial cable. The whole aerial should be suspended above ground $\frac{1}{2} \lambda$ at 14 MHz , i.e., 33 ft ., which will ensure a good match to the 75Ω feeder. On 1.8 MHz , the two feeder wires at the transmitter end should be joined and fed via a series tuned coupling network. On 3.5 MHz , the electrical centre of the aerial appears to be some 15 ft . down the feeder, meaning that 30 ft . of the aerial are folded into the open wire line. At 7 MHz , the aerial is two half-waves in phase, also with a section "folded" in the line in the centre. On 14 MHz , the aerial is three half-wavelengths long, and the stub acts simply as a $1: 1$ transformer. On 21 MHz , it is a slightly lengthened two-wavelength aerial, and on 28 MHz , it consists of two $1 \frac{1}{2} \lambda$ aerials fed in phase.
The important part of this aerial which enables it to function over such a wide frequency range is the matching stub. The theory behind this stub comes under the general category of transmission lines, which is a very complicated and lengthy subject to explain. In the rest of this article, however, we will attempt to provide a simple explanation of the fundamentals, and if you find
that after reading it you are sufficiently interested in studying the subject, some suitable references will be provided for further reading.

Transmission Lines

Generally speaking, there are two types of aerial feeder: (i) the parallel or open wire feeder, and (ii) the concentric feeder, i.e., coaxial cable.

Dealing with (i) first, this consists of two wires running parallel and supported at least 6 ft . above the ground. Spacers are provided at regular intervals to support and keep the wires an equal distance apart. Twin feeders are essentially balanced devices and are suitable only for feeding balanced aerial systems such as dipoles or an array of dipoles.

At any point along the twin-wire feeders the currents in the two wires are equal in magnitude and opposite in sign, so as the wires are close together the possible radiation is cancelled. The characteristic impedance for a twin wire feeder is given by

$$
276 \log \frac{2 D}{d}
$$

where D is the distance from the centre to centre of feeder wires and d is the diameter of the feed wires (Fig. 4.2a). This formula gives a typical impedance of between 400 and 800Ω.

(b)

Fig. 4.2: Conductor identification for open wire and coaxial feeders.

Concentric feeder has one conductor completely enclosed by the other, as in the construction of coaxial cable. The characteristic impedance for a concentric feeder is given by

$$
138 \log \frac{b}{a}
$$

where a is the diameter of the inner conductor and b is the inside diameter of the outer conductor or screen. Fig. 4.2b. The usual characteristic impedance for this type of feeder is 75Ω, although 50Ω is quite common for transmitters. Losses are higher than with twinwire feeder, for a low loss coaxial cable described as having an impedance of 75Ω and a shunt capacitance of 18 pF per foot, exhibits losses of 0.68 dB at 10 MHz and $2 \cdot 7 \mathrm{~dB}$ at 200 MHz .

Transmission line theory

A transmission line made up of two parallel wires has distributed inductance (L) and capacitance (C) per unit length. Fig. 4.3.

If the end of the line is short-circuited, standing waves are set up along the wires, i.e., the current waves which
have travelled along in one direction will return along the other wire and produce a standing wave pattern on the feeder. Fig. 4.4.

Fig. 4.3: The equivalent circuit of a transmission line without resistive loss.

Fig. 4.4: How sianding waves are represented. In this case 100\% reflection occurs.

In this condition the receiving end becomes a point of low impedance (volts low, current high). Similar conditions occur if the receiving end is open-circuited. In either case the relative impedance will vary along the wires with the distance from the generator or source. If no energy is reflected no standing waves will be present on the feeder wires and these will only carry travelling waves and behave as if the lines were of infinite length. It can be shown that such a line possessing distributed inductance (L) and capacitance (C) has the property of a resistance given by
$R=V \overline{L / C}$ called characteristic impedance.
If a resistance of this value be fixed across the ends of a feeder it will behave as if it were infinitely long and waves will travel along it without reflection (i.e. travelling waves). The only losses are due to the high frequency resistance of the wires which is higher than the ohmic resistance due to the phenomenon of skin effect. (i.e. h.f. currents induce a voltage into the current carrying conductors in opposite direction to the currents producing them, so forcing the initial currents to travel along the surface, or skin, and so effectively increasing the resistance.)

Fig. 4.5: The theoretical appearance of waves travelling along a feeder (Fig. 4.3).

Figure 4.5 is a sketch of travelling waves along a feeder, where each successive $\frac{1}{2} \lambda$ may be considered as a tuned circuit (series or acceptor circuit). The peak value of the current is given by,

$$
I=\frac{V}{\omega L} \quad(\omega=2 \pi \times \text { Frequency })
$$

As the circuit is tuned

$$
\omega=\frac{I}{\sqrt{L C}}
$$

By substitution

$$
I=V \sqrt{\frac{L}{C}}
$$

As the wave travels along the feeder towards the receiving end it will carry its stored energy with it. If the receiving end is terminated with an impedance Z_{r} the peak value of current flowing through it will be

$$
I=\frac{V}{Z_{r}}
$$

and if there is no reflection

$$
I=\frac{V}{Z_{r}}=V \sqrt{\frac{L}{C}}
$$

That is $\mathrm{Z}_{\mathrm{r}}=\sqrt{L / C}$

The $\frac{1}{4}$ Wave Matching Line

If a transmission line is $\frac{1}{2} \lambda$ the impedance at each end will be the same: $\mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{r}}$ (I)

It therefore follows that the $\frac{1}{2} \lambda$ line behaves as a $1 / 1$ transformer. The ratio of the impedances at each end depends upon $\sqrt{\mathrm{L} / \mathrm{C}}$ and from transmission line theory we have $Z_{s} Z_{r}=Z_{0}{ }^{2}$ (2).
This relationship is true when there is no reflection and $\mathbf{Z}_{s}=\mathbf{Z}_{\mathrm{r}}=\mathbf{Z}_{0}=\sqrt{\bar{L} / \mathrm{C}}$. Equation 2 means that a $\ddagger \lambda$ line acts like a step up or down transformer, and this led to the $\dot{1}^{\lambda}$ matching line. For example, if a 600 ohm line is to be matched to an 80 ohm dipole the matching line would have a characteristic impedance of $\sqrt{600 \times 80}=$ 220 ohms approx.

The process of matching consists of adjustment of the $\frac{1}{4} \lambda$ matching line spacing " Z_{0} " until no reflection occurs in the transmission lines. A 4λ matching line is also known as a "Q" bar (Fig. 4.6).

Fig. 4.6: An impedance matching device known as a Q-bar.

The Balun Transformer

The name balun is derived from BALanced to UNbalanced and this device is used when an aerial requires a balanced feed with respect to ground. The balun converts the unbalanced co-ax feeder to the balanced output required by the aerial system, an example being matching an unbalanced feeder to a dipole.

Figure 4.7 below is a sketch of $\frac{1}{4} \lambda$ OPEN Balun or "Pawsey Stub".

Fig. 4.7: An open Balun made from coaxial cable.
Point A presents a high impedance preventing the wave from travelling over the surface and spilling over the end and tending to travel back along the braiding of the co-ax. If this occurs the re-radiated wave on the surface
of the braiding modifies the aerial polar diagram and the outer surface of the feeder is found to have a r.f. voltage on it. This may be detected by placing your hand around the co-ax. If r.f. is present it will affect a received signal.

A Balun may be made using a $\lambda / 4$ piece of coaxial cable and connected as above.

To complete these notes on feeders a word or two about audio-frequency lines would not be out of place. Here then are a few empirical rules.

Short high impedance A.F. lines

Main factors affecting short line (about 100ft. long) working are,

> 1 Series inductance;
> 2 Series resistance;
> 3 Shunt capacitance.

Series inductance offers a variable impedance to the line current which varies with frequency. Typical values for series $L=20 \mu \mathrm{H}$ per 100 ft .

Series resistance provides a uniform resistance at all frequencies, typical values for single and double core cables ranging from 1 ohm to $1 \cdot 5$ ohms per 100 ft .

Shunt capacitance provides a by-pass to the line current which varies inversely with frequency (i.e., falls in value with increasing frequency). Typical values for single core cable are $6,000 \mathrm{pF}$ and for double core cable $4,000 \mathrm{pF}$ per 100 ft . The maximum effect of these impedances will depend on the relative value of the generator and load impedances. The series R and L will have little effect if the generator or load impedances
are high in comparison (i.e. so that the line current will be low). In general, the generator or load impedances should be at least twice the value of the impedance of L and R at the highest frequency it is desired to transmit down the lines.

Shunt capacitance-here the impedances offered by the generator or load should be less than half the impedance offered by the shunt capacity at the highest frequency it is desired to transmit down the line. Typical examples of shunt capacities are, $26 \mathrm{k} \Omega$ at 8 kHz for 30 ft , $\frac{1}{4}$ mile, shunt capacitance 500Ω at 8 kHz .

References:

1 Short Wave Radio Communication (Ladner \& Stoner).
2 Admiralty Handbook Wireless Telegraphy.
3 Amateur Radio Handbook.

TO BE CONTINUED

CQ! CQ! CQ! CQ! CQ! CQ!

ISEUES FOR DISPOSAL
... all the lssues of Practical Electronks from the No. 1 lesue. What offers?E. Salter, c/o Practical Wireless Editorial.
many lesues of Practical Wireless, Practical Television, Practical Electronics, Rad/o Constructor, RSGB Bulletins etc. All at cover price. Send s.a.e. for detalls.R. Collint, 39 Cadogan Gardens, South Woodford, E. 18.
... Augut 1986, October 1968 and June 1966 Issues of Practical Wireless. Whil swop for any Interesting electronic bitt and pieces.-L. Cook. 7 Plum Tree Close, Eccieston Park, Prescot, Lancashire, L35 7JT.
. . . exchange about 50 or mors issues of P.W. (with blueprints) from 1962 to date, for the Simtech Ejementary Radlo Book.-P. P. Sklvington. 16 Bowood Road, Enfleld, Middiesex.

NEXT MONTH IN

PRAGFGAL Wrieless

THE TRANSET

Assembly details of a seven transistor, three waveband portable receiver. It includes, in addition to long and medium wavebands, coverage of the 21-50 metre short waveband. Easy to follow constructional details make this an ideal project for the enthusiast.

The August issue also contains details of an inexpensive miniature pocket organ (costs less than 20/- to build), a further constructional project in the popular "Take 20" series by Julian Anderson.

VERSATILE INTERCOM SYSTEM

Do not miss your copy of the August issue of Practical Wireless -on sale 4th July price 3/-

Inlit MICR
 C.R.BRADLEY

THE directional microphone to be described was built for outdoor tape recording in connection with amateur movie sound-tracks. It effectively reduced offstage noises e.g. wind noise, traffic roar, camera sounds.

A directional microphone has many other applications. Public address systems can be operated at higher levels before feedback howl is produced. The acoustic characteristics of a "noisy" (reflective walled) room, such as a tiled bathroom, can be reduced or exaggerated for recording purposes. If the microphone is pointed at a speaker in such a room his voice will sound "flat" and echoless. If the microphone is directed away from the speaker it will pick-up his voice by reflection from the walls, giving the voice an echo-chamber effect. Another advantage of a directional microphone is that distant sound sources which cannot be approached easily (birds, animal, trains, aeroplanes) can be recorded with less background noise.

The heart of the microphone is a magnetic microphone cartridge. This is mounted at one end of a cylindrical case made of plaster of Paris. The heavy case shields the cartridge from sound sources behind and to the side. Ordinary carpet felt is used to deaden reflections inside the case (Fig. 2a). The cartridge "sees" only a small angle of the outside world and the microphone is sensitive in this direction. It is very directional but rather insensitive. This is remedied by a low-noise self-powered preamplifier.
The directional microphone can be built quite cheaply.
The microphone casing is cast in plaster of Paris in a simple mould made of card or heavy paper.

Fig. 1: Directional microphone and preamplifier, with microphone table stand.

There should be no difficulty in doing this if the mould is waxed (by rubbing with a candle) before the plaster is poured in. This should be mixed with plenty of water and poured in immediately. The cast will get quite warm as the plaster hardens. Small air-bubbles in the cast do not matter. The outer surface can be left plain, painted, or covered with material as desired. A coat of glossy paint will help protect it against chipping.

The microphone cartridge chosen' has a metal case and a tiny gauze-covered round "window". It is not very directional as the case is very thin. The first step is to encapsulate the cartridge in Araldite epoxy cement leaving only the "window" exposed. Successive layers of cement are applied until the cartridge is deeply embedded. Use pleaty of cement (about half a 6 s . two-tube pack) to give the encapsulation plenty of weight. Three cotton threads are

Fig. 2 (a): Cross-section of the mierophone.

Fig. 2 (b): Cartridge connections. Leave sufficient slack in the leadout wires to allow for cartridge movement.

Fig. 3: Paper mould for casting the microphone case.

Fig. 4: Microphone cartridge encapsulation.
embedded with the cartridge as shown in Fig. 4 and the lead-out wires are brought out at the back. The cartridge will now be found to be less sensitive but much more directional. The weight of Araldite used also makes it less sensitive to handling noises. i.e. sounds picked up by mechanical contact.

About six inches of stiff wire is bent into a round frame about two inches in diameter. This should be a tight push fit into the plaster case. The encapsulated cartridge is now mounted in the frame by tying and cementing the support threads to it. In this way the cartridge is mechanically isolated as far as possible. It is mounted eccentrically with the sensitive "window" at the centre of the frame. It must not touch the frame and some Araldite should be filed away it this occurs.

The stranded lead-out wires are stripped and cut down to a single strand each. They are soldered to a screened cable as shown in Fig. 2b. Note that the strands are left slack to allow for movement of the cartridge. The cable screen is connected to the wire frame.

Fig. 5: Cartridge mounting. Sensitive window must be in centre of frame, and the frame a push fit in the plaster microphone case.

Two pieces of ordinary carpet felt are used. Felt about $\frac{1}{2} \mathrm{in}$. thick is suitable. A 2 in . diameter disc of felt is cut and glued inside the plaster case. The frame carrying the cartridge is now pushed into the case until the cartridge almost touches the felt. Another piece of felt is now rolled into a 4 in . long cylinder and pushed into the case, not far enough to touch the cartridge. The microphone cable is brought out under the felt to the front (or through a small hole drilled in the plaster) and the microphone is complete. The cartridge "window" should just be visible at the back of the case and the encapsulated cartridge should not touch the wire frame, the felt or the case.

To compensate for the low sensitivity of the microphone a two-transistor preamp is used. This is wired inside a small (tobacco) tin and is selfpowered. The input cable from the microphone should be as short as possible.

Two silicon n-p-n transistors are used. The microphone signal is coupled by Cl to the base of Tr 1 which is operated at low collector current for low noise. The divider R1/R2 furnishes base bias. Part of the emitter resistance (R4) is not decoupled by C 2 and therefore provides negative feedback, reducing noise further. The amplified signal is taken from Tr 1 collector to the base of Tr 2 by $\mathrm{C} 3 . \mathrm{Tr} 2$ is connected as an emitter follower with the output

Fig. 6: The preamplifier can be conveniently wired on Veroboard.

components list

Resistors:			
R1	$39 \mathrm{k} \Omega$		
R2	$6 \cdot 8 \mathrm{k} \Omega$	R5	$4.7 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$	R6	$22 \mathrm{k} \Omega$
R4	470Ω	R7	$22 \mathrm{k} \Omega$
		R8	$1.8 \mathrm{k} \Omega$
		All $\frac{1}{4} \mathrm{~W}$	10%

Capacitors:

C1 $50 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C2 $50 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C3 $50 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C4 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic
Semiconductors:
Tr1 BC109 (Mullard)
Tr2 2N2926 (yellow)

Miscellaneous:

'Norman' magnetic microphone cartridge; 1 pack Araldite epoxy cement; cotton thread; 6in. heavy gauge wire; plaster of Paris; $\frac{1}{2}$ in. carpet felt; S1 SPST on/off switch; B1 $2 \times$ PP3 batteries; battery clips; Veroboard; metal box; screened cable, etc.

Fig. 7: Low-noise preamplifier circuit.
signal appearing across $R 8$. The output here is of low impedance and may therefore be run through several yards of screened cable without hum pickup problems. It can be fed to an amplifier or tape recorder.

The circuit can be wired on a small piece of Veroboard as shown in Fig. 6. The components are closely packed, so check that they will fit on the board before wiring. After cutting the copper strips as shown in Fig. 6 the components are wired, leaving the transistors until last. No excessive precautions need be taken with these but do not shorten their leads and do solder as quickly as possible. Note the different wire arrangements of the two transistors.

The circuit is connected via S1 to two PP3 9 -volt batteries in series and mounted inside the tin. The tin is connected to the input and output cable screens. The output lead is fitted with a suitable plug and the microphone is ready for use. The way in which it is mounted will depend on the application; a suitable table stand is shown in Fig. 1.

THE

MW COLUMN

IT is unlikely that the MW DXer will be content merely to \log a distant station. Much of the pleasure of DXing in this band comes from writing to stations, telling them they have been heard and hoping they will reply with a "verification" which can be preserved as a memento and shown to other DXers.

Obtaining a QSL from medium wave stations requires a rather different approach than when writing to those on the short waves. The latter operate international services aimed at listeners abroad and these stations are usually very pleased to make contact with their audience and to provide them with QSL cards, programme schedules etc. The MW DXer however is located well outside the service area of the stations he listens to and he should remember that they are doing him a favour when they reply as he is really an eavesdropper. Many MW stations are genuinely surprised and pleased to have been heard at a great distance and will verify a correct report with pleasure, sometimes publicising it over the air or in the local press.

A reception report to a MW station should contain sufficient evidence in the form of programme details to enable the station to check that they were really heard by the DXer. It should be sent off as soon as possible after the logging and must always be accompanied by return postage. Unused foreign postage stamps can be obtained from stamp dealers but an International Reply Coupon is more convenient and can be purchased at main post offices.

North American stations are good verifiers. Many issue QSL cards and nearly all will reply to an accurate reception report. These should be sent to the Chief Engineer while the address should include the station call letters (e.g. Radio Station WINS) followed by the name of the city or town and the state (or province if in Canada). Mention the frequency, call letters, date and time of reception (preferably in the local time of the station) and details of the programmes heard must always be given. A common error made by beginners is to compile a list of records or the titles of tunes played over the air. Unfortunately, stations seldom retain this imformation. In the United States a station \log is kept of all announcements made. Station identification comes on the hour and generally on the halfhour too. Commercials, names of announcers, weather reports, public service announcements, station slogans, provide the "meat" from which the DXer can compile a report which the station staff can check against the station log. Reporting codes such as SINPO or RST should be avoided, so should the use of International Q Code abbreviations such as "QRM" as it is unlikely these will be understood. Just give a simple verbal description such as "the signal was strong (or weak". Conclude the report with a brief description of the receiver and aerial in use and then request a verification. Finally, do not forget to thank the Chief Engineer for taking the time and trouble to reply-he is probably a busy man.

CHARLES MOLLOY

©UTPUT PART 2
 Continued from June

Transformer Input

This type of input is shown in Fig. 7. The input transformer has three windings, the two primaries usually being wound bifilar,

Fig. 7: A transformarless-output amplifier with a driver transformer enables the amplifier to be driven by a single-ended stage. meaning that two wires are wound as one so that the windings are as near as possible identical. The ratio is not very important and is usually about $3: 1+1$, meaning three primary turns to one turn on each secondary.

The use of a transformer means that singleended stage can be used for driving, and that the driving transistor need not supply the full current required for the bases of the output transistors. This is important in a high power stage where the bases may take peak currents of 0.5 A , requiring a lower power output stage to drive them. For amplifiers with outputs of 10 W or more, this is an economical and reliable circuit, and the transformer imposes very little restriction on the band-width. A suitable transformer design is shown in Table 2.

Paraphase Transistor Input

A long-tailed pair circuit driving through CR coupling can be used just as in valve practice, provided that the bias is suitable for each transistor of the totem pair, but the most common transistor driving circuit is the complementary pair shown in Fig. 8, which is directly coupled to the output pair.

The bias on the output pair now depends on the current in the complementary pair, which in turn is regulated by the voltage between their bases; the voltage at the output (which should be midway between - and + lines) is regulated by the voltage level at the collector of the driver. In most circuits the driver bias is used to adjust the voltage level of the output and the small load resistor between base connections to the complementary pair is used to adjust output current. This small load resistor usually consists of a resistor in parallel with a thermistor so that there is some compensation for temperature effects. Note that each transistor of the complementary pair must be able to supply the maximum base current demanded by each output transistor, so that load resistors must be small and bias current fairly high.

Complementary Pair Output

If, in the previous circuit, the complementary pair can provide sufficient power, we can remove the final pair and use the complementary pair as the output. This is an admirably simple arrangement provided suitable pairs of transistors can be found. Such pairs are now available in the lower powers (for example AC128/ AC176 for about $2 \frac{1}{2} \mathrm{~W}$, AD161/AD162 for about 6 W) although not so easily found in the higher power range among transistors manufactured in this country. A typical circuit is shown in Fig. 9.

Load Coupling and Drive Impedance

A totem-pole output pair can be coupled directly to a load, provided that the other terminal of the load can be biased to the same voltage as the no-signal voltage at the output. This normally requires a tapped power supply, which is no difficulty if the amplifier is designed to operate from two 12 V batteries, as are many public address amplifiers, but there is always a difficulty in ensuring that no direct current flows through the load; particularly important when this load is a loudspeaker, as a steady current causes the cone to be displaced from rest position.

In a mains operated circuit it is more normal to
Table II

CORE: Laminations should be approximately of the size shown, and can be obtained from an old transformer provided that it has not been a blocking oscillator transformer.
PRIMARY: 700 turns of $36-38$ gauge wire, enamelled, wound in about six layers with a layer of transformer paper between each layer. Insulate primary from secondary with two layers of paper.
SECONDARY: Two wires of 30-32 gauge enamelled copper are wound for 200 turns, with a layer of paper between each layer.

- SIMPLIFIED UNIT CONSTRUCTION
A INGENIOUS TEAK
CABINET DESIGN
\triangle PROFESSIONAL IN EVERY WAY AND MONEY SAVING TOO!

This is your" ${ }^{\text {PP.W.Double }}$

 12' shopping listThese are the Peak Sound units with which you can build this excellent design. They are exact to specification. Transistors included.
2 Spools of "Cir-Kit" at 2/-each 2 Pre-amp and to ne controlkits 4 Pre-amp matrix boards
2PA.12-15 Power Amplifier Kits
2 Heat Sink assemblies
2 P.A. matrix boards
1 PS.45K 45 volt power supply kit
1 Pack-flat afrormosia teak finished Cabinet kit 5 Controls as specified

TOTAL COST E23 56
Metal work (make or buy), knobs, plugs and sockets, fuses etc. allow £3.0.0. From your local dealer.

Go to your Dealer NOW

for your authentic Peak Sound Kits. In case of difficulty, please send direct, giving the name and address of your usual supplier where possible and add $11 /$ - postage for complete assembly, or $5 / 6$ if without power pack.
TRADE ENQUIRIES INVITED

Peak Sound are justifiably proud to be associated with this outstandingly successful P.W. design and that so much of it has been made possible because of Peak Sound products and design techniques. Basically, the design of the "P.W. Double 12" demonstrates the value of using "Cir-Kit" in modern circuit board units whether for single or prototype examples. In this instance, however, Peak Sound have contributed more besides to the success of this project. This includes the remarkable power amplifiers, the power pack and the ingeniously styled cabinet which almost assembles itself, it is so simple to build. The "P.W. Double 12 " has already been fully described in Practical Wireless for April, May and June, so that you can go right ahead now and build this exciting new design with authentic, exact-to-specification Peak Sound kits as described. With this unit you will be able to enjoy standards of reproduction of the highest order for very modest outlay.

"CIR-KIT" makes it possible!

"Cir-Kit" is at the heart of building this fine design. Made from almost 100% pure copper with unique adhesive backing, it is the suparb circuit buitder for all requirements. in 5 'spools. $\frac{1}{18}$ " wide, 2/-each.
A P.W. Double 12 abridged specification

Formation-Two pre-amp panels, two tone control panels, two power ampllfier modules, power supply unlt on chassis, housed within teak finished cabinet. Controls-Bass and treble cut and lift based on Baxandall clrcuitry/Volume/Balance/Rotary selector. Input Sensltivity-Magnetic P.U. (per channel) 2.5 mV Into $68 \mathrm{k} \Omega$. Ceramic P.U. -25 mV into 27 K . equalised for flat response. Radlo/Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response- 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall, Output-12 watts per channel Into 15Ω (8Ω \$peakers
may be used).
Negative Feedback-43dB gever each sectlon.
Power required-45V D.C. (supplled by bullt-In power unlt).
Cabinet-Afrormosia teak tinish, pack-flat, easy to bulld klt. Slze $9 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{ln}$. hlgin \times giln. deep.
Transisters-Ultra low nolse in pre-amp and tone control stages.
PERFORMANCE CHARACTERISTICS. PARTS REQUIRED, ETC., SEE P.W. FOR APRIL, MAY AND JUNE.

THESE PEAK SOUND PRODUCTS WILL HELP

PA.12-15 POWER
AMPLIFIER
As specifled for 'P.W. Double $12^{\prime \prime}$ and avallable ready bullt complete with heat sink for mounting directly into position as described, but can also be used In other applicatlons. Also avallable as a klt leas heat sink and board. Built $£ 5.19 .6$
KIt (less heat sink, board and "Clr-Kit") 79/6 Heat sink and baseboard assembly 10/Please add $2 / 6 \mathrm{p} / \mathrm{p}$ elther model if ordered direct. or 5/-for two.

ES. 10-15 BAXANDALL
SPEAKER
This easy to bulld loudspealier provides genuine hl-fi standards by the use of unlque equalising princlples. Frequency response $60-14,00 \mathrm{~Hz}$ (100-10kHz $\pm 3 d 8$). Easy-tobulld kit including $18 \times 12 \times 10 \mathrm{in}$ cabinet.
f10.2.3
(Carr. 12/6), Leaflet avallable. $+£ 1.2 .0 \mathrm{P} / \mathrm{Tax}$

BENTLEY ACOUSTIC CORPORATION LTD.

Suppliers to H.M. Government 38 CHALCOT ROAD, LONDON, N.W. 1
Telephone Primrose 9090
EXPRESS POSTAL SERVICE. SAME DAY DESPATCH BY FIRST CLASS MAIL.
All goods are offered subject to the standard three month guarantee.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OAS \& 5/9 \& 6D6 3/- \& 12AT7 3/9 \& 90av 87/6 \& DW4/350 \& EH90 8/8 \& N78 \(38 / 4\) \& R20 \& 11/9 \& \(\begin{array}{lrr}\text { VP4B } \& 10 / 6 \\ \text { VP13C } \& 7 /-\end{array}\) \& \[
\begin{array}{ll}
\text { AFZ12 } \& 5 /- \\
\text { AsY } 27 \& 8 / 6
\end{array}
\] \& \[
\begin{array}{lr}
\text { M3 } \& 2 / 10 \\
\text { OA5 } \& 5 / 6
\end{array}
\] \\
\hline OB2 \& \(61-\) \& 6E5 \(7 / 6\) \& 12AU6 4/9 \& 90 CG 34/- \& 8/6 \& \(\mathrm{EL32}^{3 / 6}\) \& N108 \(27 / 4\) \& \& \(7 / 6\)
\(9 /-\) \& \begin{tabular}{ll}
VP13C \\
VP23 \& \(7 /-\) \\
\hline 18
\end{tabular} \& \(\begin{array}{ll}\text { ASY } 27 \\ \text { A8Y28 } \& 8 / 6\end{array}\) \& \(\begin{array}{ll}\text { OAS } \& 5 / 6 \\ 049 \& 8 / 6\end{array}\) \\
\hline OZ4 \& \(4 / 3\) \& 6 Fl 8/9 \& \(12 \mathrm{AU7} 7 / 8\) \& 90 CV 33/6 \& DW4/500 \& EL33 12/- \& \begin{tabular}{lr}
N152 \\
N 308 \& \(7 / 3\) \\
\hline 176
\end{tabular} \& \({ }_{8}^{\text {8P4 }} 13 \mathrm{C}\) \& \(\stackrel{\text { 12/6 }}{ }\) \& VR75 241- \& ABY29 10\% \& OA47 2/- \\
\hline 1 A3 \& 4/8 \& 6 FGGG 4/- \& 12AV6 \(5 / 6\) \& 90 Cl 18/- \& DY86 \(\begin{aligned} \& \text { 8/6 } \\ \& 5 / 8\end{aligned}\) \& \& \begin{tabular}{ll}
N308 \\
N339 \& \(17 / 6\) \\
\hline \(25 /-\)
\end{tabular} \& 8P132 \& 12/6 \& VR105 5j- \& BA102 8/- \& OA70 3/- \\
\hline 1Aठ \& 51- \& 6F6M 12/6 \& 12AV7 8/- \& \(150 \mathrm{B2}\) 14/8 \& DY86 5/8 \& \(\begin{array}{ll}\text { EL35 } \& 10 /- \\ \text { EL37 } \& 17 / 3\end{array}\) \& \(\begin{array}{lr}\text { N339 } \\ \text { N350 } \& 7 / 3\end{array}\) \& \({ }_{\text {SP61 }}\) \& 12/3 \& VR150 5j- \& BA115 2/8 \& OA73 3/- \\
\hline 1A7GT \& 7/- \& \(6 \mathrm{~F} 12 \quad 3 / 3\) \& 12AX7 \(7 / 6\) \& \(150 \mathrm{C}^{2}\) 5/9 \& DY87 \({ }^{\text {L } 80 \mathrm{~F}^{5}} \mathbf{5 4 / 8}\) \& \(\begin{array}{cr}\text { EL37 } \& 17 / 3 \\ \text { EL41 } \& 9 / 3\end{array}\) \& \begin{tabular}{ll}
N359 \\
N379 \& \(7 / 3\) \\
\hline 18
\end{tabular} \& TDD4 \& \(8 / 8\) \& VT61A 7\%- \& BA116 9/- \& OA79 1/9 \\
\hline 1 Cl \& 5/6 \& 6 F 13 3/6 \& \(12 \mathrm{AY7} 9 / 8\) \& \(301 \quad 20 /-\) \& \begin{tabular}{ll}
E80F \\
E83F \& \(24 /-\) \\
\hline 1
\end{tabular} \& \(\begin{array}{ll}\text { ELA } \\ \text { EL42 } \& 9 / 9\end{array}\) \& N389 12f- \& TH4B \& 101 \& VT501 3/- \& BA129 \(2 / 6\) \& OA81 1/9 \\
\hline \(1 \mathrm{C2}\) \& 7/9 \& 6F15 9/6 \& 12BAB \(6 /-\) \& \(\begin{array}{ll}302 \& 16 / 8 \\ 303 \& 15 /-\end{array}\) \& E88FCC \({ }^{\text {E4/- }}\) \& EL81 \(81-\) \& N709 4/6 \& TH233 \& \& VUl11 \(7 / 3\) \& BA130 2/- \& OA85 1/6 \\
\hline 1 C 3 \& 7- \& \(6 \mathrm{Fl} 8 \quad 7 / 6\) \& 12BE6 \(5 / 9\) \& \(\begin{array}{ll}303 \& 15 /- \\ 305 \& 18 / 8\end{array}\) \& E880C 12/- \& \(\begin{array}{ll}\text { EL81 } \& 8 /- \\ \text { EL83 } \& 6 / 9\end{array}\) \& \(\begin{array}{ll}\text { N709 } \\ \text { P61 } \& \text { 2/6 }\end{array}\) \& TP22 \& \(5 /-\) \& VU120 12- \& BCY10 5/- \& OA86 4/- \\
\hline 1C5 \& 4/8 \& \({ }_{6}^{6 \mathrm{~F}^{\prime} 23} 13 / 3\) \& 12BH7
l2E1
17/-
17/- \& \(\begin{array}{ll}305 \& 18 / 8 \\ 306 \& 13 /-\end{array}\) \& E1800C 8/-
E180F 17/6 \& \(\begin{array}{ll}\text { EL83 } \& 6 / 9 \\ \text { EL84 } \& 4 / 6\end{array}\) \& P61 \({ }^{\text {PAC80 }} 7 / 3\) \& TP25 \& \(5 /-\) \& VU120A12/- \& BCY12 5/- \& OA90 2/6 \\
\hline 1D5 \& 6/9 \& \(6 \mathrm{Fr24} \quad 11 / 9\) \& \(\begin{array}{ll}12 \mathrm{El} \& 17 /- \\ 12550 \mathrm{~T} \& 2 / 6\end{array}\) \& \(\begin{array}{ll}306 \& 13 /- \\ 807 \& 11 / 9\end{array}\) \& \(\begin{array}{ll}\text { E180F } \& 17 / 6 \\ \text { EA50 } \& 1 / 6\end{array}\) \& \(\begin{array}{ll}\text { EL84 } \\ \text { EL85 } \& 7 / 6\end{array}\) \& \({ }^{\text {PA8 } 660} 6\) \& TP2620 \& \(8 / 9\) \& VU133 7\%- \& BCY33 5/- \& OA91 1/8 \\
\hline 1D6 \& \(8 / 6\) \& \(\begin{array}{ll}6 \mathrm{~F} 25 \& 11 / 9 \\ 6 \mathrm{~F} 28 \& 10 / 6\end{array}\) \& 12 J 5 CT
\(12 \mathrm{~J} / 6\)
\(12 / 6\) \& \(\begin{array}{lr}807 \& 11 / 8 \\ 956 \& 2 /-\end{array}\) \& EA50
EA76
13/- \& EL85 \(7 / 6\) \& \(\begin{array}{ll}\text { PC86 } \& 9 / 6 \\ \text { PC88 } \& 9 / 6\end{array}\) \& UABC8 \& \(55 / 9\) \& W42 10/6 \& BCY34 4/6 \& OA182 2/- \\
\hline 1 FDl \& 8/- \& \(\begin{array}{cc}6 \mathrm{~F} 28 \& 10 / 6 \\ 6 \mathrm{~F} 32 \& 3 /-\end{array}\) \& \(\begin{array}{ll}12 J T G T ~ \& 6 / 6 \\ 12 \mathrm{~K} 5 \& 10 /-\end{array}\) \& \(\begin{array}{lc}956 \& \text { 2/- } \\ 1821 \& 10 / 6\end{array}\) \& EA76 13/-
EABC80 \& \(\begin{array}{ll}\text { EL86 } \& 8 /- \\ \text { EL91 } \& 2 / 6\end{array}\) \& \begin{tabular}{ll}
PC88 \& \(8 / 6\) \\
\hline \& \(8 / 8\)
\end{tabular} \& UAF42 \& 9/6 \& W63 10/6 \& BCY 38 5/- \& OA200 1/- \\
\hline \(1 F D 9\) \& 3/9 \& \(\begin{array}{ll}6 \mathrm{~F} 32 \& 3 /- \\ 6 \mathrm{GGG} \& 2 / 6\end{array}\) \& 12K5 \(12 \mathrm{~K} 7 \mathrm{GT} 5 / 9\) \& \(\begin{array}{ll}1821 \& 10 / 8 \\ 5763 \& 10 /-\end{array}\) \& EABC80
EAC91
\(3 /-\) \& EL95 5/- \& \(\begin{array}{ll}\text { PC97 } \& 8 / 6\end{array}\) \& UB41 \& \(8 / 8\) \& W76 5/9 \& BCY 39 4/6 \& OA202 2/- \\
\hline \(1 \mathrm{G6}\) \& 6/- \& \(\begin{array}{ll}\text { 6G6G } \& 2 / 6 \\ 6 \mathrm{HGGT} \& 1 / 9\end{array}\) \& 12K7GT 5/9 \& \(\begin{array}{ll}5763 \& 10 /- \\ 6060 \& 5 / 8\end{array}\) \& EAF42 8/8 \& EM71 14/- \& PC900 8/3 \& UBC41 \& \(7 / 6\) \& W77 2/6 \& BCZ11 3/8 \& OA210 9/6 \\
\hline \({ }_{1}^{1 H 5} 4\) \& \(71 /\)
\(2 / 8\) \& \(\begin{array}{ll}6 \mathrm{HGGT} \& 1 / 9 \\ 6 \mathrm{~J} 5 \mathrm{G} \& 3 / 9\end{array}\) \& 12K8GT 7/6 \& \(\begin{array}{lr}6060 \& \text { 5/8 } \\ 7193 \& 10 / 6\end{array}\) \& \(\begin{array}{ll}\text { EAF42 } \\ \text { EB34 } \& \text { 7/8 }\end{array}\) \& EM80 \(5 / 8\) \& PCC84 \(6 /-\) \& UBC81 \& \(7 /-\) \& W81M 6/- \& BC107 4/- \& \(0 \mathrm{O} 21113 / 6\) \\
\hline lL4 \& \(2 / 8\)
\(5 /-\) \& \(\begin{array}{ll}\text { 6J5G } \& 3 / 9 \\ \text { 6J5GT } \& 4 / 6\end{array}\) \& 12Q7GT 4/6 \& \(\begin{array}{ll}7193 \& 10 / 8 \\ 7475 \& 4 /-\end{array}\) \& EB41 \(4 / 6\) \& EM81 8/9 \& \(\begin{array}{ll}\text { PCC85 } \& 8 / 6\end{array}\) \& UBF80 \& 5/9 \& W101 28/2 \& BC108 \(3 / 6\) \& OAZz2012/- \\
\hline 11.N5 \& 8j- \& \begin{tabular}{ll}
656 \\
656 \\
\hline
\end{tabular} \& \(128 \mathrm{C7}\) 4/- \& A1834 201- \& EB91 2/3 \& EM84 6/- \& PCC88 919 \& UBF89 \& 6/9 \& W107 71- \& BCl13 5/- \& OAZ20110/6 \\
\hline 1N5CT \& \(7 / 9\) \& 6J7G \(4 / 9\) \& 12897 3/- \& AC2PEN \& EBC41 8/6 \& EM85 11/- \& PCC89 0/6 \& UBL21 \& 91 \& W729 10/- \& BC115 3j- \& OAZ202 9/- \\
\hline 1 Pl \& 71 \& 6.57 GT 6/6 \& \(128 \mathrm{H7}\) 3/- \& 19/6 \& EBC81 5/9 \& EM87 7/3 \& PCC189 9/6 \& UC92 \& \(5 / 6\) \& 16/6 \& BC116 5/\% \& 03 9/6 \\
\hline 1 P10 \& \(4 / 8\) \& \(6 \mathrm{K6GT} 51\) - \& 128.77 4/8 \& AC2PEN/ \& EBC90 4/- \& EY51 6/9 \& PCF80 \(6 / 6\) \& UCC85 \& \(8 /-\) \& \(\begin{array}{lr}\text { X41 } \& 10 /- \\ \times 61 \& 5 / 9\end{array}\) \& \begin{tabular}{ll}
BC118 \\
BD19 \& 4/8 \\
\hline
\end{tabular} \& OAZ204
OAJ205
O/- \\
\hline 1P1] \& 5/6 \& 6 K 7 C 2/- \& \(12 \mathrm{SK7} \quad 4 / 9\) \& DD 19/6 \& EBC91 5/6 \& EY81 7/- \& \(\begin{array}{ll}\text { PCF82 } \& 8 /- \\ \text { PCFP4 } \& 8 /-\end{array}\) \& UCF80 \& \(8 / 6\)
\(8 / 3\) \& \({ }^{\mathbf{X} 63} 51 / 6\) \& BFY50 4j- \& OAZ206 8j- \\
\hline 1 RS \& 5/6 \& 6K7GT 4/6 \& 128Q7GT7/6 \& AC6PEN \(4 / 9\) \& EBF80
EBF83
8/-
8/- \& \(\begin{array}{ll}\text { EY83 } \& 8 / 3 \\ \text { EY84 } \& 7 / 6\end{array}\) \& \(\begin{array}{ll}\text { PCF84 } \& 8 /- \\ \text { PCF86 } \& 9 /-\end{array}\) \& UCH21 \& 88 \& \(\begin{array}{lr} \\ \times 64 \& 12 / 6\end{array}\) \& BFYS1 4j- \& OAZ20710/8 \\
\hline 194 \& \(4 / 8\) \& 6K8G 31- \& 12Y4 2/- \& AC/PEN (\({ }^{\text {a }}\)) \& EBF83 \(81-\) \& EY84 \(7 / 6\) \& \begin{tabular}{ll}
PCF86 \\
PCF801 \\
\\
\(7 /-\) \\
\hline \(1 /-\)
\end{tabular} \& UCE42 \& \({ }^{8 / 9}\) \& X65 5/- \& BFY52 \(4 / 6\) \& 0 OZ210 7/- \\
\hline 185 \& \(3 / 9\) \& \(6 \mathrm{K8GT}\) 7/- \& 13D1 5/- \& \(19 / 6\)
EN (7) \& EBF89 \({ }_{\text {E }}\) E/3 \& \(\begin{array}{ll}\text { EY86 } \& \text { 6/- } \\ \text { EY87 } \& 6 /-\end{array}\) \& PCF801
PCF802
9/- \& UCE81 \& \(8 / 6\) \& X66 7/8 \& BF154 5j- \& OAZ213 7\% \\
\hline 1T4 \& \(2 / 9\) \& \({ }_{6}^{6 \mathrm{~L} 1} 1019 / 6\) \& \(\begin{array}{ll}13 \mathrm{D} 3 \& 9 /- \\ 14 \mathrm{H7} \& 9 / 6\end{array}\) \& /P EN (7) \& \(\underset{\text { ECb3 }}{\underset{\text { EBL2 }}{ }} 111 /-\) \& \(\begin{array}{ll}\text { EY87 } \\ \text { EY88 } \& 7 / 6\end{array}\) \& PCP805 8/9 \& UCL82 \& 7 - \& \(\times 76 \mathrm{M} \quad 76\) \& BF159 5j- \& OAZ224 \\
\hline 1 U 4 \& 5/8 \& \(6 \mathrm{L6CT}\) 7/9 \& \(\begin{array}{lr}14 \mathrm{H7} \& 9 / 6 \\ 1487 \& 15 /-\end{array}\) \& TH110/8 \& EC53
EC54
cie, \& \({ }_{\text {EY91 }}\) \& PCF80611/6 \& UCL83 \& \(101-\) \& X81M 30/6 \& BF163 4j- \& 10/6 \\
\hline 1U5 \& 6/9 \& \& \(\begin{array}{ll}1487 \& 15 /- \\ 18 \& 12 / 6\end{array}\) \& C/TH110/- \& \(\begin{array}{ll}\text { EC54 } \& 6 /-1 \\ \text { EC70 } \& 4 / 9\end{array}\) \& \(\begin{array}{ll}\text { EY91 } \\ \text { EZ35 } \& \text { 3/- } \\ \text { 5/- }\end{array}\) \& PCF8808 12/6 \& UF41 \& 9/6 \& \(\times 101\) 29/1 \& BF180 12/- \& \(0 \mathrm{OC19}\) 25/- \\
\hline 2 A 7 \& 12/6 \& 6 L 18 8/- \& \(\begin{array}{ll}18 \& 12 / 6 \\ 19 \& 10 / 6\end{array}\) \& AC/TP 18/6 \& \begin{tabular}{rr}
EC70 \\
EC86 \& \(10 / 8\) \\
\hline
\end{tabular} \& EZ35 \(7 / 3\) \& PCL81 \(9 /-\) \& UF42 \& \(91-\) \& \(\times 109\) 20/- \& BF181 8/- \& \(\mathrm{OC2}^{2} 251-\) \\
\hline \(2 \mathrm{D13C}\) \& 7/8 \& \(\begin{array}{lr}6 \mathrm{L19} \& 18 / 7 \\ 6 \mathrm{LD} 20 \& 8 / 6\end{array}\) \& \(\begin{array}{ll}19 \& 10 / 6 \\ 19 \text { AQ5 } \& 4 / 9\end{array}\) \& \begin{tabular}{l}
AC/VP210/6 \\
ARP3 \\
\hline
\end{tabular} \& \(\begin{array}{rr}\text { EC86 } \& 10 / 8 \\ \text { EC92 } \& 8 / 8\end{array}\) \& EZ41 7/3 \& \begin{tabular}{ll}
PCL81 \\
PCL82 \& \(7 /-\) \\
\hline
\end{tabular} \& UF80 \& \(8 / 9\) \& X119 6/8 \& BF185 8/- \& \(0 \mathrm{C23} 5\) 5 - \\
\hline 2 D 21 \& 518 \& \(\begin{array}{ll}\text { 6LD20 } \& 8 / 6 \\ \text { 6N7GT } \& 8 / 6\end{array}\) \& \(\begin{array}{lr}19 \mathrm{AQ5} \& 4 / 9 \\ 19 \mathrm{HI} \& 40 /-\end{array}\) \& \(\begin{array}{ll}\text { ARP3 } \& 7 /- \\ \text { ATP4 } \& 8 / 3\end{array}\) \& \(\begin{array}{lr}\mathrm{EC92} \& 8 / 6 \\ \mathrm{ECO31} \& 15 / 6\end{array}\) \& \({ }_{\text {E280 }}\) E2418 \& PCL83 9 9- \& UF85 \& \(8 / 9\) \& \(\times 719\) 5/9 \& BTX34/400 \& 0 C 24 5/- \\
\hline 2 X 2 \& \(4 / 9\)
\(3 / 6\) \& 6N7GT
\(6 \mathrm{CP1}\)

12/6
12/- \& $\begin{array}{ll}\text { 19H11 } & 40 /- \\ \text { 20D1 } & 13 /-\end{array}$ \& $\begin{array}{ll}\text { ATP4 } & 2 / 3 \\ \text { AZ1 } & 8 /-\end{array}$ \& $\begin{array}{ll}\mathrm{ECC} 32 & 4 / 6\end{array}$ \& $\begin{array}{ll}\text { E280 } \\ \text { E781 } & 4 / 6\end{array}$ \& PCL84 $71 / 8$ \& UF86 \& $91-$ \& $\mathbf{Y} 65$ 5/- \& 40j \& 0025 5J-

\hline 3A4 \& 3/6 \& $\begin{array}{ll}\text { 6P1 } & 12 /- \\ 6 \mathrm{CP}^{2} 5 & 12 /-\end{array}$ \& $\begin{array}{ll}\text { 20D1 } & 13 /- \\ 20 \mathrm{D} 4 & 20 / 5\end{array}$ \& $\begin{array}{ll}\text { AZ1 } & 8 /- \\ \text { A731 } & 8 / 9\end{array}$ \& ${ }_{\text {ECO33 }} \mathbf{2 9 / 1}$ \& $\begin{array}{ll}\text { EZ780 } & 3 / 6\end{array}$ \& ${ }^{\text {PCL85 }}$ P18 \& UF89 \& $8 / 3$ \& Z63 4/9 \& BY100 3/6 \& $0 \mathrm{OC26} 51-$

\hline 3A5 \& 10j- \& $\begin{array}{ll}{ }^{6 P 2} 25 & 12 /- \\ 6 \mathrm{P}^{2} 6 & 12 /-\end{array}$ \& $\begin{array}{ll}20 \mathrm{D} 4 & 20 / 5 \\ 20 \mathrm{~F} 2 & 14 /-\end{array}$ \& $\begin{array}{ll}\text { AZ31 } & 8 / 8 \\ \text { AZ41 } & 7 / 8\end{array}$ \& ECC34 29/6 \& ${ }_{\text {FC4 }}{ }^{\text {E }}$ 12/8 \& ${ }^{\text {PCL88 }} 88 / 6$ \& UL41 \& 9/6 \& Z77 3/8 \& BY101 $11 / 8$ \& $0 \mathrm{OC28} 51-$

\hline 3B7 \& 5/- \& $\begin{array}{ll}6 \mathrm{CP}^{2} 6 & 12 /- \\ 6 \mathrm{P} 28 & \mathbf{2 5 1}\end{array}$ \& $\begin{array}{ll}20 \mathrm{~F} 2 & 14 /- \\ 20 \mathrm{~L} 1 & 13 /-\end{array}$ \& B36 $4 / 6$ \& ECC40 9/6 \& FW4/500 $/ 8$ \& PCL88 15/- \& VL46 \& $12 / 6$ \& Z152 4/6 \& BY105 10/8 \& OC29 23/6

\hline 3Q4 \& $3 / 6$ \& 6Q7G 8i- \& 20P1 17/6 \& B319 6/- \& ECC81 3/9 \& FW4/800 \& PEN45 7\% \& UL84 \& 6/6 \& Z329 13/8 \& BY114 8/8 \& $\mathrm{OC30}^{0 \mathrm{C} 35} 51-$

\hline 3 Q 5GT \& 6/- \& 6Q7GT 8/6 \& $20 \mathrm{P3}$ 18/- \& B339 4/6 \& ECC82 4/6 \& 10/- \& PEN45DD \& UM80 \& $51-$ \& 2719 4/6 \& BY126 8/6 \& $0 \mathrm{C35}$ 5/-

\hline 384 \& 4/9 \& $6 \mathrm{R7G}$ 7, \& 20P4 18/6 \& B729 12/6 \& ECC83 4/6 \& G730 71- \& 121- \& UR1C \& ${ }^{10 / 6}$ \& 7729 \& \& 6

\hline 3V4 \& 516 \& 6R7M 11/- \& $20 \mathrm{P5}$ 18/- \& BL63 10/- \& ECC84 5/6 \& GZ32 \& PEN 46 \& UU8 \& 4/- \& Transistors \& BY236 4/- \& OC41 10/-

\hline 4D1 \& 3/9 \& 88A7GT 71- \& $25 \mathrm{~A} 60 \mathrm{O} / 6$ \& CK506 6/6 \& E6C85 51- \& GZ33 12/6 \& DD \& UU9 \& $7 / 3$ \& and diodes \& BY238 4/- \& OC42 6/8

\hline $5 \mathrm{R4GY}$ \& 8/9 \& 6847 7- \& 25L8G 5/8 \& CL4 10/6 \& ECC88 7/- \& $\begin{array}{ll}\text { GZ34 } & 10 /- \\ \text { G737 } & 14 / 6\end{array}$ \& \& UU12 \& $4 / 8$ \& 2G225 10/6 \& BYY23 20/- \& $0 \mathrm{C43}$ 23/6

\hline 5U4G \& 4/9 \& 68C7GT 8/6 \& 25 Y 5 6/- \& CL33 18/8 \& $\begin{array}{ll}\text { ECCO1 } \\ \text { ECC189 } & \text { 9/6 }\end{array}$ \& $\begin{array}{cr}\text { GZ37 } & 14 / 8 \\ \mathrm{H} 30 & 5 /-\end{array}$ \& PENA419/6 \& UYIN \& $9 /-$ \& 2N404 6/- \& BYZ10 5/- \& $0 \mathrm{C44}$ 21-

\hline 5V49 \& 7/6 \& 68078 \& $\begin{array}{ll}25 \mathrm{Y} 50 & 8 / 6 \\ 25 \mathrm{Z} 4 \mathrm{G} & 8 /-\end{array}$ \& $\begin{array}{ll}\text { CV6 } & 10 / 6 \\ \text { CV63 } & 10 / 6\end{array}$ \& ECC189
ECC804
12/6 \& H30
HABC808 \& \& UY21 \& $9 / 6$ \& 2N2297 4/6 \& BYZ11 5/- \& OC44PM 8/3

\hline 5Y3GT \& $5 / 6$ \& $68 \mathrm{B7}$ 31- \& 25846 \& $\begin{array}{ll}\text { CV63 } & 10 / 6 \\ \text { CV271 } & 12 / 6\end{array}$ \& ECC804 12/6

ECC807 27/- \& | HABC808/- |
| :--- |
| HL |
| 18 | \& PFL200 12j- \& UY41 \& 6/9 \& 2N2369A4/3 \& BYZ12 5/- \& OC45 1/8

\hline ${ }_{5}^{583}$ \& $8 / 19$
819 \& $68.57 \quad 6 / 6$

$68 \mathrm{~K} 7 \mathrm{GT} 4 / 6$ \& $\begin{array}{ll}2575 & 7 /- \\ 25 Z 6 \mathrm{C} & 8 / 8\end{array}$ \& $\begin{array}{ll}\text { CV271 } & 12 / 8 \\ \text { CV428 } & 19 /-\end{array}$ \& ${ }_{\text {ECC807 }}$ \& $\begin{array}{ll}\text { HL2 } \\ \mathrm{HL13C} & \text { 4/6 }\end{array}$ \&	PL 33
$19 / 8$	\& UY85 \& $5 / 6$ \& $2 \mathrm{~N} 312150 \%$ \& BYZ13 5/- \& OC45M 8/-

\hline 6740 ${ }^{5}$ \& $8 / 9$
$12 / 6$ \& $68 \mathrm{~K} 7 \mathrm{GT} 4 / 6$
$68 \mathrm{~N} 7 \mathrm{GT} 4 / 6$ \& $\begin{array}{ll}25866 & 8 / 8 \\ 30 \mathrm{Cl} & 8 / 6\end{array}$ \& $\begin{array}{ll}\text { CV428 } & 10 /- \\ \text { CY1 } & 18 / 4\end{array}$ \& $\begin{array}{ll}\text { ECF880 } & \text { b/6 } \\ \text { ECF82 } & 8 / 6\end{array}$ \& $\begin{array}{ll}\text { KL13C } & 4 /- \\ \text { HL23 } & 6 /-\end{array}$ \& $\begin{array}{ll}\text { PLa36 } & 19 / 6 \\ \mathrm{PL} 3\end{array}$ \& U10 \& $9 /-$ \& 2N3703 3/9 \& BYZ15 351- \& $0 \mathrm{OC46}$ 31-

\hline 6/30L2
6 A 8 C \& $18 / 6$
$5 / 6$ \& 68N7GT 4/6
6807 GT 8/- \& $\begin{array}{lr}30 \mathrm{Cl} & 8 / 6 \\ 30 \mathrm{Cl15} & 13 / 6\end{array}$ \& $\begin{array}{ll}\text { CY1 } & 18 / 4 \\ \text { CY1C } & 10 / 8\end{array}$ \& $\begin{array}{ll}\text { ECF82 } \\ \text { ECF86 } & \text { 9/- } \\ \text { ECF80 }\end{array}$ \& HL23DD5/- \& ${ }_{\text {PL28 }} 19 / 9$ \& U12/14 \& $7 / 8$ \& 2N3709 4t- \& CG12E 4/- \& OC65 22/6

\hline 6A8Cl \& 5/8
$3 /-$ \& 6807 GT 6/-
6887
$3 /-$ \& $\begin{array}{ll}30 C 15 & 13 / 6 \\ 30 \mathrm{Cl7} & 12 / 6\end{array}$ \& $\begin{array}{lr}\text { CY1C } & 10 / 8 \\ \text { CY31 } & 7 / 8\end{array}$ \& ECF804 421- \& HL41 3/9 \& PL81 7/3 \& U16 \& 15j- \& 2N3866 201- \& CG64E 4/- \& $0 \mathrm{OC70}$ 8/3

\hline 6AC7 \& $3 / 8$ \& 604GT 12/- \& 30018 8/8 \& D1 1/8 \& ECF'805 12/6 \& HL410D \& PL81A 10/6 \& U17 \& 5)- \& AAl19 3i- \& GD3 6/6 \& 0071 21-

\hline 6 6.J5 \& $8 / 6$ \& 6 670 71- \& 30 F 5 13/8 \& D41 $10 / 6$ \& ECH21 12/6 \& 19/6 \& PL82 6/6 \& U18/20 \& $101-$ \& AA120 3/- \& GD4 $\quad 8 / 6$ \& $0 \mathrm{C72} 21-$

\hline 6AK5 \& 4/6 \& $6 \mathrm{~V} 6 \mathrm{C} \quad 3 / 6$ \& $30 \mathrm{FL1}$ 15/- \& D63 5/- \& ECH35 5/9 \& HL42DD8/- \& PL83 6/6 \& U19 \& 34/6 \& AA129 3/- \& GD5 5/6 \& $0 \mathrm{C73}$ 18/-

\hline 6AK6 \& 6/- \& 6V6GT b/- \& 30FL12 16/- \& D77 2/8 \& ECH42 10/- \& HN309 27/4 \& PL84 6/8 \& U22 \& 719 \& AAZ13 $\quad 3 / 6$ \& GD6 $5 / 6$ \& $0 \mathrm{C} 44^{2 / 6}$

\hline 6 AK8 \& $61-$ \& $6 \times 4 \quad 3 / 6$ \& $30 \mathrm{FL13} 8 /-$ \& DAC32 7/- \& ECH81 5/9 \& HVR2 8/9 \& PL302 12/- \& U25 \& 13/- \& AC107 3/- \& GD8 4/- \& 2/-

\hline 6AL5 \& $2 / 3$ \& $6 \times 50 \mathrm{~T}$ 5/- \& 30FL14 12/6 \& DAF91 3/0 \& ECH83 8/- \& HVR2A 8/9 \& P1.500 12/- \& V26 \& $11 / 9$ \& $\mathrm{ACll3}^{51}$ \& GD9 4 \& 6

\hline 6AMS \& $2 / 6$ \& 6Y6G 8/- \& 30 Ll 6/- \& DAF96 6/- \& ECH84 7/- \& IW3 5/8 \& PL504 12/8 \& U33 \& 61- \& AC114 81 \& GD10 4/ \& OC78 3/-

\hline 6AM6 \& $3 / 3$ \& 6 67G 12/6 \& $30 \mathrm{Ll5} 1319$ \& DCC90 10/- \& ECL80 8/6 \& IW4/350 5/6 \& PL509 $28 / 8$ \& \& $29 / 6$ \& ACL2 \& GD11 41 \& $0 \mathrm{OC7}$

\hline 6AQ5 \& 419 \& $7 \mathrm{~A} 712 / 6$ \& $30 \mathrm{LI7}$ 13/- \& DD4 $10 / 6$ \& ECL82 8j- \& IW4/500 8/- \& PL802 15/- \& U35 \& 16 \& 5 \& GD12 \& 0 C 7

\hline 6AR6 \& $201-$ \& 7AN7 6/- \& 301 '4 12/- \& DDT4 $8 / 3$ \& ECL83 9/- \& KT2 5/- \& PM84 7/9 \& U37 \& $34 / 11$ \& AC155 6/ \& GD14 10/ \& ${ }_{0} 0 \mathrm{C81}$ O1D

\hline 6AT0 \& $41-$ \& $7 \mathrm{B6} \quad 10 / 9$ \& 30P4MR \& DF33 719 \& ECL84 12/- \& KT8 34/8 \& PX4 14/- \& U45 \& 619 \& ${ }^{\text {ACl }}$ - ${ }^{\text {c }}$ \& GD16 4/- \& OC81M

\hline 6AU6 \& $5 /-$ \& 7B7 71- \& 17/6 \& DF72 80/- \& ECL85 11/- \& KT32 5/6 \& PY31 0/6 \& U46 \& 1516 \& AC165 \& GFT102 4/- \& ${ }_{0} 0 \mathrm{C82}$ 2/3

\hline GAV6 \& $5 / 6$ \& $7 \mathrm{C6}$ 6 ${ }^{1 /}$ \& 30 P 12 13/- \& DF91 2/9 \& ECLS ${ }^{\text {8j- }}$ \& KT41 19/6 \& PY32 9/6 \& U49 \& 1119 \& AC16 $61-$
Ald \& GET103 4/- \& OC82D $2 / 3$

\hline 6B8G \& $2 / 6$ \& $7 \mathrm{D} 6151-$ \& 30P19 12/- \& DF96 6/- \& ECLL800 \& T44 20/- \& PY33 9/6 \& U50 \& 5/6 \& AC167 12/- \& GET10518/- \& 0C83 2/-

\hline 6BA6 \& 4/6 \& $7 \mathrm{H} 7 \quad 5 / 6$ \& $30 \mathrm{PL1} 15 /-$ \& DF97 10/- \& 30/- \& ${ }_{\text {KT61 }} 12 /-$ \& $\begin{array}{ll}\text { PY80 } & 5 / 3 \\ \text { PY81 } & 5 / 3\end{array}$ \& U52 \& $5 / 8$
$4 / 8$ \& ${ }_{\text {AC188 }} \quad 7 / 6$ \& GET113 4/- \& 0 C 84 3/-

\hline 6BE6 \& 4/3 \& 7R7 12j- \& $30 \mathrm{PL1315/-}$ \& DF30 15/6 \& EF22 12/6 \& ${ }_{\text {KT63 }}{ }_{\text {KT66 }}{ }^{4 /-}$ \& $\begin{array}{ll}\text { PY81 } & 5 / 3 \\ \text { PY82 } & 5 /-\end{array}$ \& U76 \& $4 / 8$ \& $\begin{array}{ll}\text { AC169 } & \text { 6/6 }\end{array}$ \& GET11517- \& OC123 4/8

\hline 6BGFG \& $20 / 5$ \& 787 201- \& $30 \mathrm{PL14} 15 /-$ \& DH63 8/- \& EF36 3/6 \& $\begin{array}{ll}\text { KT66 } & 17 / 8 \\ \mathrm{~K}^{7} 4 & 12 / 6\end{array}$ \& $\begin{array}{ll}\text { PY82 } & 5 /- \\ \text { PY83 } & 5 / 6\end{array}$ \& U76 \& 4/8 \& ${ }_{\text {AC176 }} \mathbf{1 1 /}$ - \& GET116 6/6 \& ${ }_{0} 0 \mathrm{Cl39}$ 12/-

\hline 6BH6 \& 7/8 \& 7 7 7 5/- \& 30 PL15 151- \& DH76 $4 / 6$ \& ${ }_{\text {EF37A }}{ }_{\text {EF }}{ }^{\text {7j- }}$ \& $\begin{array}{ll}\text { K T74 } & 12 / 6 \\ \text { KT76 } & 7 / 6\end{array}$ \& $\begin{array}{ll}\text { PY83 } & 6 / 6 \\ \text { PY88 } & 6 / 3\end{array}$ \& U107 \& 18/3 \& AC177

ACl \& QET118 4/- \& OC140 19/-

\hline 6B56 \& $6 / 9$ \& $7 \mathrm{Y} 4 \quad 6 / 6$ \& 35A5 15/- \& DH77 4/- \& EF39 ${ }_{\text {EF }}$ \& KT76 \& $\begin{array}{lr}\text { PY88 } \\ \text { PY301 } & 18 / 6\end{array}$ \& U151 \& 8/9 \& ACY17 3/- \& QET119 4/- \& OC169 3/8

\hline 6BQ5 \& 4/6 \& $7 \mathrm{Z4}$ 相 $4 / 6$ \& $35 \mathrm{D} 511 / 9$ \& DH81
DH101

$10 / 9$ \& | EF10 | |
| :--- | :--- |
| EF41 | $8 / 8$ |
| 18 | | \& $\begin{array}{lll}\text { KT88 } & \text { 29/- } \\ \text { KTW61 } & 8 / 6\end{array}$ \& $\begin{array}{ll}\text { PY301 } & 18 / 6 \\ \text { PY800 } & 6 / 6\end{array}$ \& U153 \& $5 / 8$ \& $\begin{array}{ll}\text { ACY18 } & 3 / 8\end{array}$ \& GET573 7/8 \& $0 \mathrm{Cl72}$ 4/-

\hline 6BQ7A \& $71-$ \& 9BW6 7/- \& 35160 T 8/- \& DH101 25/- \& $\begin{array}{ll}\text { EF41 } & 9 / 8 \\ \text { EF42 } & 3 / 6\end{array}$ \& KTW62 10/- \& $\begin{array}{ll}\text { PY800 } & 6 / 6 \\ \text { PY801 } & 6 / 6\end{array}$ \& U154 \& $5 /-$ \& ACY19 3/8 \& GET587 8/6 \& OC200 4/4

\hline 6 BR 7 \& $8 / 6$ \& $9 \mathrm{D7}$ 9/- \& $\begin{array}{lr}35 \mathrm{W4} & 4 / 6 \\ 35 \mathrm{Z3} & 101-\end{array}$ \& $\mathrm{DH107}_{17 / 11}$ \& $\begin{array}{rlr}\text { EF42 } \\ \text { EF54 } & \text { 10/6 }\end{array}$ \& KTW63 5/9 \& $\begin{array}{ll}\text { PY801 } & \text { P/6 } \\ \text { PZ30 }\end{array}$ \& U191 \& $12 / 8$ \& ACY20 3/6 \& GET87210/- \& OC201 5/6

\hline ${ }_{6} 6 \mathrm{RR} 8$ \& 8/-7 \& $\begin{array}{ll}10 \mathrm{Cl} & 12 / \mathrm{B} \\ 1002 & 10 /-\end{array}$ \& $\begin{array}{lll}35 Z 3 & 101- \\ 35 Z 4 G T & 4 / 8\end{array}$ \& DK32 ${ }^{\text {17/11 }}$ \& | EF54 | |
| :--- | :--- |
| EF73 | $10 /-$ |
| 18 | | \& KTZ41 $6 /-$ \& QP21 5/- \& U192 \& $51-$ \& $\begin{array}{ll}\text { ACY21 } & 3 / 9\end{array}$ \& CEET873 3/- \& OC202 4/6

\hline $6 \mathrm{BS7}$ \& 18/6 \& $\begin{array}{cc}10 \mathrm{C2} & 10 /- \\ 10 \mathrm{D1} & 8 /-\end{array}$ \& 35Z4GT 4/9 \& DK32 10\%- \& EF80 4/8 \& LN152 6 6 \& QQVO3/10 \& U193 \& 6/6 \& ACY22 3/6 \& GET88210/- \& OC203 4/6

\hline 6BW6 \& $12 / 9$ \& $\begin{array}{cc}10 \mathrm{D} 1 & 8 / 7 \\ 10 \mathrm{D} 2 & 14 / 7\end{array}$ \& $\begin{array}{ll}3025 \mathrm{Cl} \\ 42 & 5 /-\end{array}$ \& $\begin{array}{ll}\text { DK91 } & 5 / 6\end{array}$ \& EF'83 9/6 \& LN309 9/- \& Q27/6 \& U251 \& 16/- \& ACY28 4/- \& GET887 4/6 \& OC204 5/6

\hline 6BW7
6 BX 6 \& 11/8 \& 10 Fl 15/- \& 43 10/- \& DK92 7/9 \& EF85 5/3 \& LN319 15/- \& Q875/20 \& U281 \& 8/- \& AD140 7/6 \& GET889 4/6 \& OC205 7/8

\hline 6BZ6 \& 6/- \& $10 \mathrm{F9}$ 9/- \& $50 \mathrm{B5} \quad 8 / 3$ \& DK96 7/- \& EF86 6/- \& LN339 15/- \& 10/8 \& U282 \& $8 / 1$ \& AD149 8/- \& GET890 4/6 \& OC20b 10/-

\hline 6 C 4 \& 2/8 \& 10 F 18 7/6 \& 50 C 5 6/3 \& DL33 6/- \& EF89 4/9 \& LZ319 6/6 \& Q8150/15 \& U291 \& $9 / 6$ \& AF114 4/- \& GET896 4/8 \& $0 \mathrm{C812} 81-$

\hline 605GT \& $61-$ \& 10LD3 7/6 \& 50CD8041/- \& DL35 4/9 \& EF91 3/3 \& LZ329 6/6 \& $9 / 8$ \& U301 \& 11 \& AF119 3/- \& GET887 4/6 \& $0 \mathrm{CP71} 27 / 8$

\hline 8С6 \& $3 / 8$ \& 10LD11 10\%- \& 50L6GT 6/- \& DL72 15/- \& EF92 $2 / 6$ \& LZ339 13/6 \& QVO4/7 8/- \& U329 \& 12/8 \& $\begin{array}{ll}\text { AF125 } & 3 / 6\end{array}$ \& GEX13 3/8 \& V10/15A

\hline 6 C 9 \& 11/- \& 10P13 13/- \& 62KU 14/6 \& DL75 30/- \& EF94 5/- \& ME1400 \& R10 15/- \& U439 \& 8/6 \& AF'126 7/- \& GEX35 4/6 \& 121-

\hline 6CD6G \& 19/6 \& 10P14 12/6 \& 53 KU 14/6 \& DL92 4/9 \& EF93 4/6 \& 14/9 \& $\begin{array}{lr}\text { R11 } & 19 / 6 \\ \mathrm{R} 12 & 6 / 9\end{array}$ \& U404 \& 7/6 \& AF139 11/- \& GEX 36 10/- \& MAT100 7/9

\hline 6CD7 \& 9/6 \& $\begin{array}{ll}12 \mathrm{~A} \\ 12 \mathrm{AC6} & 3 / 6 \\ 7 /-\end{array}$ \& $\begin{array}{ll}72 & 8 / 6 \\ -7 & 8 / 8\end{array}$ \& DL94 5/6 \& EF97 ${ }_{\text {EF98 }} 10 /-$ \& $\begin{array}{ll}\text { MHD4 } & 8 / 3 \\ \text { MHI } & 12 / 6\end{array}$ \& $\begin{array}{ll}\text { R12 } \\ \mathrm{R} 16 & \text { 34/11 }\end{array}$ \& U709 \& 4/8 \& AF178 18/G \& GEX45 6/6 \& MAT101 8/6

\hline 6CH6 \& 8/- \& 12AD6 6/- \& 78 4/9 \& DLS10 9/6 \& EFl83 8/- \& MHLD $67 / 6$ \& R17 17/6 \& U719 \& $7 / 3$ \& AF179 13/6 \& GEX 66 15/- \& MAT120 7/9

\hline 6CL6 \& 8/8 \& 12AE6 7/6 \& $85 \mathrm{~A} 2 \quad 8 / 6$ \& DM70 6/- \& EF184 8/- \& MU12/144/- \& R18 9/6 \& U801 \& 18/- \& AF180 9/8 \& GT3 5/- \& MAT121 8/6

\hline 6D3 \& $7 / 8$ \& 12AT6 4/6 \& 90 AG 67/6 \& DM71 7/6 \& EF804 $20 / 5$ \& MX40 12/6 \& R19 6/6 \& U4020 \& 6/0 \& AF181 14/- \& 2/10 \& ZE12v7 1/9

\hline
\end{tabular}

MATCHED TRANSISTOR SETS 1—OC44 and 2-OC45 8/6;1-OC81D and 2-OC817/6;1-OC82D and 2-OC828/8; get of three-OC83(GET118/119)8/6; LP15 package (AC113, AC154,
We require for prompt cash settlement all types of above gooos loose or boxed, but must be new
ELECTROLYTICS. Can types: $8 \times 8 \mathrm{mid} / 500 \mathrm{v} 7 / 6 ; 8 \times 16 \mathrm{mfd} / 500 \mathrm{v} 7 / 9 ; 16 \mathrm{mfd} / 500 \mathrm{v} 6 /-16 \times 16 \mathrm{mid} / 500 \mathrm{~V} 8 / 9 ; 16 \times 32 \mathrm{mid} / 450 \mathrm{v} 9 / 9 ; 32 \mathrm{mfd} / 500 \mathrm{v} / /-32 \times 32 \mathrm{mfd} / 450 \mathrm{v} 5 / 9 ; 50 \times 50 \mathrm{mfd} /$ $350 \mathrm{v} 5 / 6 ; 60 \times 250 \mathrm{mdd} / 275 \mathrm{v} 9 / 9 ; 50 \times 50 \mathrm{mfd} / 275 \mathrm{v} 8 / 6 ; 64 \times 100 \mathrm{mfd} / 450 \mathrm{v} 21 / \cdot ; 64 \times 120 \mathrm{mfd} / 350 \mathrm{v} 8 / 6 ; 100 \times 200 \mathrm{mfd} / 275 \mathrm{v} 8 / \cdot ; 100 \times 200 \mathrm{mfd} / 350 \mathrm{v} 10 / 6 ; 100 \times 200 \times 60 \mathrm{mf} / 300 \mathrm{v} 18 / 6 ; 100 \times 300 \times$ $100 \times 16 \mathrm{mfd} / 275 \mathrm{v} 24 / 9 ; 100 \times 400 \mathrm{mfd} / 275 \mathrm{v} 12 / 9 ; 100 \times 400 \times 16 \mathrm{mid} / 275 \mathrm{v} 23 / 3 ; 100 \mathrm{mfd} / 100 \mathrm{v} / 7 \mathrm{f} ; 27 / \mathrm{min} \times 50 \times 50 \mathrm{mfd} / 350 \mathrm{v} 12 / 3 ; 16 \mathrm{mfd} / 600 \mathrm{v} 15 / 9 ; 10000 \mathrm{mfd} / 30 \mathrm{v} 29 / 6$.
Tubular types: $1 \mathrm{mfd} / 25 \mathrm{v} 2 /-1 \mathrm{mfd} / 500 \mathrm{v} 2 / 6 ; 2 \mathrm{mdd} / 150 \mathrm{v} 2 /-; 2 \mathrm{mid} / 500 \mathrm{v} 2 / 9 ; 4 \mathrm{mfd} / 150 \mathrm{v} 2 /-; 4 \mathrm{mfd} / 500 \mathrm{v} 3 /-; 5 \mathrm{mfd} / 50 \mathrm{v} 2 /-; 8 \mathrm{mfd} / 150 \mathrm{v} 2 / 3 ; 8 \mathrm{mfd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mfd} / 500 \mathrm{v} 3 / 6 ; 8 \times 8 \mathrm{mfd} / 450 \mathrm{v} 2 / \mathrm{m} ;$ $8 \times 16 \mathrm{md} / 450 \mathrm{v} 3 / \cdot 10 \mathrm{mfd} / 50 \times 2 / 3 \cdot 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 6 ; 16 \mathrm{mid} / 500 \mathrm{v} 4 / 6 ; 16 \times 16 \mathrm{mid} / 450 \mathrm{v} 3 / 6 ; 16 \times 32 \mathrm{mfd} / 350 \mathrm{v} 3 / 6 ; 25 \mathrm{mid} / 25 \mathrm{v} 1 / 6 ; 25 \mathrm{mfd} / 50 \mathrm{v} 2 / 6 ; 32 \mathrm{mid} / 350 \mathrm{v} 3 / \cdots ; 32 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 32 \times 32 \mathrm{mfd}$ $350 \mathrm{v} 4 / 9 ; 50 \mathrm{mfd} / 12 \mathrm{v} 1 / 6 ; 50 \mathrm{mfd} / 25 \mathrm{v} 1 / 6 ; 50 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 50 \mathrm{mid} / 350 \mathrm{v} 6 / ; 64 \mathrm{mfd} / 450 \mathrm{v} 9 / 6 ; 100 \mathrm{mfd} / 12 \mathrm{v} 1 / 6 ; 100 \mathrm{mid} / 25 \mathrm{v} 1 / 6 ; 100 \mathrm{mld} / 50 \mathrm{v} 1 / 9 ; 100 \mathrm{mfd} / 450 \mathrm{v} 10 / 9 ; 250 \mathrm{mfd} / 25 \mathrm{v} 2 /-$.

Fig. 8: A transformerless-output amplifier driven by a complementary pair.

Fig. 9: A simplification of Fig. 8 which can be adopted if the complementary pair can be made to provide sufficient power.
couple the loudspeaker through a large capacitor (typically $1,000 \mu \mathrm{~F}, 6 \mathrm{~V}$), and earth. This inevitably causes attenuation at low frequencies, but this can be compensated for by positive feedback (bootstrapping) back to the driver stage. An example of this is shown in Fig. 10. For this to be effective the feedback time constant ($\mathrm{C}_{\mathrm{F}} \times \mathrm{R}_{\mathrm{F}}$) should be considerably greater than the load time constant ($\mathrm{C}_{\mathrm{L}} \times \mathrm{R}_{\mathrm{L}}$), and fortunately this is usually easy to arrange.
In class B stages where the driver is CR coupled to the output transistors, the low input impedance is made worse by the low resistance of the bias network; necessarily low to prevent thermal runaway. This causes a restriction on low frequency amplification which can be dealt with by isolating the base from the bias network during the "on" time of the transistor. This is most easily arranged by connecting the bias through a diode which is back-biased during drive (Fig. 5).

Thermal Calculations

The power which can be dissipated in an output stage depends much more on the efficiency with which heat can be removed from the collector junction than on the type of transistor used. Several American manufacturers publish dissipations calculated for the case where all the heat generated in the case of the transistor could be removed with 100% efficiency (infinite heatsink); the practically obtainable dissipations are much less. British manufacturers usually quote more realistic ratings; for example, the dissipation of the OC28 is given as 30 W provided the case temperature is less than $45^{\circ} \mathrm{C}$. The actual dissipation which can be used depends on (1) the maximum collector junction temperature which can be tolerated (usually $90^{\circ} \mathrm{C}$ for germanium transistors and $200^{\circ} \mathrm{C}$ for silicon types) and (2) the resistance to the removal of heat caused by the connection to the case, heatsink etc.

For every transistor, the thermal resistance (which is

Fig. 10: If a loudspeaker coupling capacitor is used, positive feedback can be used to compensate for a lack of bass response.
the heat equivalent of electrical resistance) of the collector junction is quoted. But before heat can be totally removed, it has to flow through mica washers, if used, to a heatsink and from there to the air around whose temperature must also be taken into account. Since all these resistances are in series, they have to be added together, and the power dissipation permissible is given by $\mathrm{P}=\frac{\mathrm{T}}{\theta}$ where T is the difference between the maximum junction temperature and the maximum air temperature and θ is the total thermal resistance in ${ }^{\circ} \mathrm{C}$ per watt.

For example, if the maximum junction temperature is $90^{\circ} \mathrm{C}$, the maximum air temperature is $30^{\circ} \mathrm{C}$ and the thermal resistance is $4.5^{\circ} \mathrm{C} / \mathrm{W}$, the maximum dissipated power is $\frac{90-30}{4 \cdot 5}-\frac{60}{4 \cdot 5}=13 \cdot 3 \mathrm{~W}$.

As a guide, the maximum air temperature for use in industrial atmosphere and in car radios is taken as $45^{\circ} \mathrm{C}$; for indoor use in living rooms (for example, hi-fi equipment) $25^{\circ} \mathrm{C}$ is more realistic as the maximum provided the transistors are not in the path of heat from a radiator, fire or TV set. A thermal resistance of $4 \cdot 0$ $4.5^{\circ} \mathrm{C} / \mathrm{W}$ is also reasonable for most power transistors well bolted down to a blackened heatsink of aluminium at least 7in. square. If extruded alloy heatsinks are used, the thermal resistance should be known and should be added to that for the transistor (usually $1-2^{\circ} \mathrm{C} / \mathrm{W}$) plus an allowance of $0.5^{\circ} \mathrm{C} / \mathrm{W}$ extra if a mica washer is used or $0 \cdot 2^{\circ} \mathrm{C} / \mathrm{W}$ if the transistor is bolted directly to the heatsink. In every case silicone grease should be used between transistor, mica and heatsink to ensure good thermal conductivity.
For most applications, it is preferable to mount transistors on separate heatsinks which are insulated from the chassis; this avoid the use of mica washers. The heatsink should be blackened before use by using matt black paint (obtainable from photographic suppliers) or printer's ink. The difference in thermal resistance between a polished metal surface and a matt black one is enough to mean the loss or use of two good transistors!

All a question of holes

Mr. Green is perfectly correct when he says that we have no difficulty in discussing a hole in our bank balance as an overdraft but this does not make it a tangible reality. You cannot withdraw an overdraft in the bank and pay it into another bank. You must first get an overdraft in another bank by withdrawing money from it and then you can satisfy the overdraft at the first bank.
In the same way a "hole" in a semiconductor cannot move without an equal and opposite movement of electrons. It is impossible to move a "hole" without moving electrons because it is not a tangible reality-it has no mass, no existence in its own right. The fact that we have to use the idea of holes in explaining transistor action would seem to point to an error in physical theory. In reality we have not explained transistor action but have "explained it away". Surely this is unscientific. D. H. Ross (Edinburgh).

A little therapy

I have to thank Mr. Green (Letters P.W. May 1969) both for taking the trouble to write and also for supplying a splendid example of incomprehensible thought-the characteristic symptom found in those of our unfortunate friends afflicted with Hiatitis Pungens.A little therapy might help.

I have always understood, and the massive Oxford Dictionary convinces me, that the English language is the richest in the world fully capable of supplying the needs of anyone for any purpose. Certainly I have seldom been at a loss for words.

It would also give me much pleasure to be present at any time when Mr. Green found it necessary to explain to a man that the severe electric shock he had just received was an abstract idea quite incapable of description in the English language. No, Sir, it just will not do.

It is not the English language which is inadequate, it is the ideas which are wrong. For too long have the "blinders with Science" had it all their own way and the time has come to call their bluff. I maintain that there is nothing at all complicated or diffi-
cult about transistor operation and, when I wrote my (March 1969 P.W.) letter I was under the impression that 1 was alone in denouncing "hole theory" in print. Since then one of my students has lent me a book which gives me powerful support. It is written by Dr. M. G. Suffern who, among other achievements before and since, ended the war-1945-as Deputy Director of Electronics, Ordnance Dept., US Forces.

Referring to $\mathrm{n}-\mathrm{p}-\mathrm{n}$ he writes:
"... Note the arrow on the emitter points away from the base, because of the same unfortunate compromise found in other devices in which the supposed current flows in an opposite direction to that of electrons. Conservative thinking cannot break away from old ideas and tend to complicate rather than simplify.

For our purposes, rather than to surrender to outmoded ideas, we shall continue to observe the (-ve) direction of current flow as is proper."

Again, later, referring to $\mathrm{p}-\mathrm{n}-\mathrm{p}$, he writes:
'". . In fact, some individuals call such positive charges 'holes', (atoms lacking an electron and bearing a positive charge). For our purposes, however, the actual electron flow comprises the electric current and the direction of such current is that of electron flow."

I like that "some individuals" bit. It puts the "holier than thou" theorist firmly in his place.

English is inadequate indeed! I am having to forcibly restrain myself to avoid writing sufficient to fill an issue of P.W.
A mathematician myself, I cannot see that directed numbers have any bearing on our discussion and Mr. Green has himself answered the only point he made, i.e., if the accident of history had been reversed and electrons were called positive instead of negative, he (not l) would have been talking about - ve "holes" so what difference does that make?
Even so, I still seem to be the only person with an alternative electron theory of p-n-p. The textbooks now appearing are adopting the crafty habit of describing $n-p-n$ in detail and giving only a casual unexplained reference to $\mathrm{p}-\mathrm{n}-\mathrm{p}$.
I do not know if my ideas are
100% correct but I do know that I am happy to go on record as stating categorically that "hole" theory is 100% nonsense.

I am in no predicament. I am simply heartily sick of teaching nonsense at the insistence of authors and examiners who should be setting an example of clear thought and not simply redrafting the same ideas in this uncritical manner. I am very grateful for the opportunity which P.W. has given me of making this firm protest. As I had already said in another place before this opportunity arose, I believe that "hole theory" is a great mistake and sooner or later it will have to be discarded. When that happens, all the "hole theorists" will jump on the wagon and will happily talk about things as they really are and hope that nobody will remember that they previously said something quite different. If anything I have said hastens this day, I shall be more satisfied. I repeat-there is nothing unimaginable about transistor theory as long as the imagination stays firmly with electrons. It is the incorrectness of the whole idea of "holes" which makes THAT theory unimaginable.-B. R. Meredith, G2CYV (London).

A fair swop

Which British reader of Practical Wireless would like to exchange his already-read monthly edition with the Dutch radiomagazine Radio-Bulletin.

Radio-Bulletin is a monthly with a contents identical to that of P.W., but in the Dutch language. This, however, will not give many difficulties, because schemes, sketches and symbols are international.
You will also find lots of advertisements in it, just as in P.W.
Please write to me.-B.W.C. van Albeslo (Bumerweg 8 WinterswijkHolland).

We should like to thank readers for correspondence received on the subject of Commercial Radio. We shall shortly be publishing a selection of these letters.

"Listen in" on the World with HEATHKIT shortwave receivers

TREAT YOURSELF TO A WORLD TOUR...WITHOUT LEAVING HOME I

LOW COST 4 BAND SHORTWAVE RECEIVER GR-64 Makes an ideal present for the youngster. It has high performance features plus world-wide reception, shipping, aircraft, radio amateurs plus the popular medium broadcast band. It covers 1 MHz to 30 MHz plus 550 KHz to 1620 KHz AM, with sleek "low-boy" styling, operates on 115-250V $50 \mathrm{~Hz} \mathrm{AC}$.

Kit K/GR-64 £22.8.0. Carr. 9/-

GENERAL COVER-

AGE RECEIVER
GC-1 U
A welcome traveller wherever you go ICovers 580 to 1550 KHz and 1.69 to 30 MHz in 5 bands with calibrated bandspread scales for
 80, 40, 20, 15 and 10 metre amateur bands. Completely solid state and self contained for portability. Operates on two internal PP6 batteries (not supplied) or 230V AC with a suitable power supply.
Kit K/GC-1 U £39.16.0. Carr. 11/-

DELUXE 5 BAND BHONTWAVE RECEIVER GR-54
This receiver offers exceptional performance and many special features at such a low price. It covers 2 MHz to 30 MHz plus 550 KHz to 1550 KHz AM broadcast band and 150 KHz to 420 KHz aeronautical and radio navigation band. Receives AM/CW/SSB, $6 \times 4 i n$. PM speaker and sleek, "low-boy" styling. Operates on $115-230 \mathrm{~V} 50 \mathrm{~Hz}$ AC.
Kit K/GR-54 £44.16.0. Carr. 9/-

GR-64

AMATEUR BANDS

 RECEIVER RA-1Unequalled value for the radio amateur. Covers 160 to 10 metres. High quality lattice crystal filter for optimum communications selectivity. Op-
 tional 100 KHz crystal calibrator plugs in inside receiver. 8 valve and 2 diode circuit. Operates on 115, 200-250V $\mathrm{AC}, 50 \mathrm{~Hz}$.

Kit K/RA-1 £39.16.0. Carr. 9/-

Free Catalogue !

See these models and many more in our 1969 catalogue. Madels for Stereo/Hi-Fi, Industry, Education and the Home Workshop. Heathkit -the world's largest selling selection of electronic kits and equipment.

Fully guaranteed Individually packed VALVES

A2134 8／－ \begin{tabular}{ll|l}
AR8 \& $5 /-$ \& E

ARP3 \& $8 /-$ \& R

ARP12 \& $8 / 6$ \& E

ARTP1 \& $6 /-$ \& E

ARTP1 $6 /-$ \& ECH81

\& \& ECH81 \& $5 / 9$ \& KT71 \& $7 / 6$

KT76 \& $1 /$

\hline \& ECH83 \& $8 / 6$ \& TP4 \& \&

\hline

AZB1 \& $9 / 6$ \& EC

BD78 \& $40 /$ \& EC

BL63 \& 101 \&
\end{tabular} BD778

BL68
BT35 $\begin{array}{lr}\text { BT45 } & 180 /- \\ \text { BT83 } & 85 /- \\ \text { CV102 } & 8 /-\end{array}$
TDO4 CV102 8／－ CV815 （matche paira） 1 （Bingle）
CY 31 （Bing
CY 31
D41 D41
D74里 DAF＇90 $7 / 6$ DD41
DET20 DET25 10／－ $\begin{array}{ll}\text { DF91 } & 8 /- \\ \text { DF92 } & 8 / 6\end{array}$ DF92
DF96 DK92 DK
DL6
DL $\begin{array}{ll}\text { DL63 } & 8 /- \\ \text { DL92 } & 4 / \\ \text { DL03 } & 1 /-\end{array}$ DL93
 $\begin{array}{ll}\text { DY88 } & 6 / \\ \text { DY87 } & 6 / 8\end{array}$ DY87 6／6 E80 R90
R92

R9 E1800C 7／－ E1820C 18f－	1148
EA78 $7 /$	EABC80

EAC91
EAF42 EB91 $8 / 8$ EB91
EBC33 RBC41

EBC81 EBFB0 7／6 EBF83 $8 / 8$ $\begin{array}{ll}\text { EBF88 } & 8 /- \\ \text { EBF } & 6 /-\end{array}$ $\begin{array}{ll}\text { EC53 } & 8 /- \\ \text { EC70 } & \text { i／－}\end{array}$ $\begin{array}{ll}\text { EC90 } & 4 /- \\ \text { EC91 } & 8 /- \\ \text { ECC33 } & 19 /-\end{array}$ $\begin{array}{ll}\text { ECC33 } & 12 /- \\ \text { ECC35 } & 15 / 8\end{array}$ ECC40 10／0 $\begin{array}{ll}\text { ECC81 } & 1 /- \\ \text { ECC82 } & 4 / 8\end{array}$ $\begin{array}{ll}\text { ECC82 } & 4 / 8 \\ \text { ECC83 } & 5 / 6\end{array}$ $\begin{array}{ll}\text { ECC83 } & 6 / 6 \\ \text { ECC84 } & 6 / 7 \\ \text { ECC85 } & 5 / 6\end{array}$ \begin{tabular}{ll}
ECC85 \& $5 / 6$

EC086 \& $8 /-$

\hline

 $\begin{array}{ll}\text { ECC88 } & 7 /- \\ \text { RCC91 } & 1 /-\end{array}$

ECC 91 \& $4 /-$

$\mathrm{ECC1}$

\hline
\end{tabular}

P．C．RADIO LTD． 170 GOLDHAWK RD．，W． 12

（01） 7434946
RG1－240A SP61 88／－ $\underset{8 T V 280 / 40}{8 / 8}$
$80 /-$
STV280／80
901

$$
\mathrm{SU}
$$

$$
\mathrm{Su}
$$镸窓$\begin{array}{ll}\text { TP2 } & 5 / \\ \text { TP25 } & 5 / \\ \text { TT11 } & 8 /- \\ \text { TT15 } & 85 /- \\ \text { TTR81 } & 45 /- \\ \text { TZ0502 } 4 /- \\ \text { TZ20 } & 18 /-\end{array}$

OA
OA
OA
OA

PERSONAL CALLERS WELCOME

Open 9－12．30，1．30－5．30 p．m．Thursday 9－1 p．m．

brand

ALL valves guaranteed

240A	UUS 71－	X66	7／6
88／－	UY21 10／6	X76M	71
8／8	UY41 7i－	$\times 118$	8／－
／40	UY85 5／9	X145	8／－
601－	V246A／1K	Y63	6／6
$280 / 80$	1901－	Y65	4－
901－	VLS631 35／－	Z800U	29／－
50A	VP23 3／8	Z801U	25／－
10／－	VP133 0／－	Z900T	12／－
4－20	VR99 7／6	1822	301－
70／－	VR105／30	1G5GT	6／－
$51-$	6／－	1D8GT	6／－
51	VR150／30	1G6GT	6／－
8／－	6／－	114	8／8
851－	FU39 7／－	1LA6	6／－
81 451－	W118 8／－	1LC6	71－
502 4／－	W119 9／－	1LH4	4／－
18／－	$\mathbf{X 6 5}$ 5／－	1 RJ	61－

TRANSISTORS，ZE

I－6CW4

$18 /-$	12
$8 /-$	12
$8 /-$	12

$18 /-$	12
$8 /-$	12
$8 /-$	12

6 E
6 E
6 E
6 F
6 F
6 F
6 F
61
6
6
6
6
6
6
6
6
6
6
6

JK11A	$18 / 6$
JK19A	$82 / 6$
JK20A	$17 / 6$
JK21A	$18 / 6$
JK 100 B15／－	

AD149 16／－	CR81／10 5／－
AEY11 15／－	CR81／209／6
ARY12 18／6	CRS1／3010／－

12AT6
$\% \frac{1}{7} \cos _{6}^{\infty}$ 三Nom
$8 / 8$
$5 /-$
$8 / 8$
$5 /-$ $\underset{\substack{8 / 8 \\ 8,6}}{8,6}$

OC42	$8 /-$	OC206	$17 / 6$	AF117	$5 /-$	
OC44	$4 /-$	IN21	$8 / 6$	AF118	$10 /-$	CR83／05 $6 /$
OC45	$8 / 6$	IN21B	$5 /-$	AF124	$7 / 6$	CRS3／20

$0 C 70$
$0 C 71$
0.72
0.72
0 C 75
0
出納

F58
FFGT
FF＇7
6F8GJK11A $18 / 6$
JK19A $82 / 6$
JK20A
JK218
JK10
JK100B15／6
MAT100 7／9
MAT101 $8 / 6$
MPF102 11／－$M P h 1018 / 6$
$M P F 10211 / 6$$M P F 1098 / 8$
$M P F 100_{1}$
$M P F l 0510 \%$
M
F32
F36
6 66G
5A2
282A
307 A
313 C
357 A$\begin{array}{clll} & \text { C81D } 8 /- & \text { 2N1091 } & 9 / 6 \\ \text { 2N1306 } & 7 / 6 \\ \text { C81DM } 8 /- & 2 N 1307 & 7 / 6\end{array}$6 RA

$0 \mathrm{CO}_{1} \mathrm{DH}$
$0 \mathrm{Cl}_{2}$

OC139	$7 / 6$	ACY	77
OC140	$0 / 6$	ACY 18	$5 / 6$
OC169	$5 /-$	ACY19	$6 / 6$

DC MOVING

DC MOVING	
$200 \mu A$	$2^{\prime \prime}$
1 mA	$2^{\prime \prime}$
5 mA	$2^{\prime \prime}$
$10-0-10 \mathrm{~mA}$	$21^{\prime \prime}$

COIL METERS
2 round panel sealed5 mA
$10-0-10 \mathrm{~mA}$$\begin{array}{ll}0-30 \mathrm{~mA} & 21^{\prime \prime} \text { round pa } \\ 75 \mathrm{~mA} & 2 \mathbf{I}^{\prime \prime} \text { plug－in }\end{array}$
N
6AB7G 14／－
$\begin{array}{ll}75 \mathrm{~mA} & 21^{\prime \prime} \text { plug－} \\ 100 \mathrm{~mA} & 1 \frac{1}{\prime \prime}^{\prime \prime} \text { proj．}\end{array}$
$100 \mathrm{~mA} \quad 11^{\prime \prime}$ round panel$\begin{array}{ll}100 \mathrm{~mA} & 21^{\prime \prime} \text { round panel } \\ 2 \mathrm{amp} & 2^{\prime \prime} \text { round panel }\end{array}$
$\begin{array}{ll}25 \mathrm{amp} & 31^{*} \text { round panel } \\ 50 \mathrm{amp} & 21^{\prime \prime} \text { round prol．}\end{array}$
$\begin{array}{ll}50 \mathrm{amp} & 21^{\prime \prime} \text { round panel } \\ 20 \mathrm{~V} \text { DC } & 2^{\prime \prime} \text { square panel }\end{array}$
R．F．METERS
120 mA 21＊$29 / 4 f 1$ ．AERIALS each consisting of ten 3tt．기n．2／4it．AERIaLs each consisting of ten 3tt．ㄱin．dia．tubular screw－In sactions． 11 ft ．（e－section）whipaerial with adaptor to fif the 7in．rod，Insulated base，stay plate and stay assemblies，pegs，reamer，hammer，
etc．Absolutely brand new and complete ready toetc．Absolutely brand new and complet
erect，in canvas bag．£3．9．6．P．\＆P．10／6．

FIELD TELEPHONES TYPE＂F＂housed In portable wooden cases．Excellent for communication in－and out－doors for up to 10 mlles．For palr Including bat＊ terles and $1 / 6$ th mile field cable on drum．Slightly
used，$E 6.10 .0$ ．Carriage $10 /-$ ．

Aerials for All \star Waveforms in Colour Receivers \star Field Linearity Faults \star How TV Documentaries Are Made

All in the new large－page size

＊HERE＇S YOUR

PRACTICAL TELEVISION LINE－UP FOR JULY

Indispensable for precision drilling，grinding，polishing， etching，gouging，shaping． Precision power for the en－ thusiast．Shockproof．Com－ pletely portable power from 4i $\frac{1}{2}$ volt external battery．So much more scope with MINI－DRILL．Super Kit （extra power，interchange－ able chuck）79／6，p．p．2／6． De Luxe Professional Kit with 17 tools 130／－p．p．4／6．

Money ref．g＇tee．

TAKE 2®

JULIAN ANDERSON

A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build.

THIS month we have a really simple project-a unit that simulates beautifully the sound of a time bomb ticking away! For those more attracted to gentler pastimes it may also serve as a metronome, that is it gives a loud click at regular intervals, the actual interval being varied by a potentiometer in the circuit. It's very simplicity also makes it highly suitable for use as an audio warning device, inserting the alarm switch in the supply line.

THE CIRCUIT

The actual working of the circuit is fairly simple; on applying a voltage across R1, VR1, C1 and the loudspeaker, the capacitor C 1 charges up till a point is reached when Trl switches on, this in turn switches Trl to a conducting state meaning that a voltage is applied across the loudspeaker causing it to "plop". As these little electrons charge up the emitter lead and out through the collector a few get diverted and pass out through the base and neutralise the charge on C1 and soon the voltage on the base will reach the stage where the transistor is turned off; thus the cycle starts all over again. The rate at which C1 charges depends upon VR1 and thus by altering this the interval between each cycle can be varied.

SURPLUS TRANSISTORS

The actual transistors used are unimportant, I have tried a large variety and all have worked successfully. One of the transistors is a $\mathrm{p}-\mathrm{n}-\mathrm{p}$, the other $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and several advertisers are offering 60 or more germanium transistors and 30 or more silicon types at 10 s. for each pack. The germanium ones are similar to the OC71, OC44 etc. and the silicon ones are like the BC108, BC109, 2N2926 etc; not all the transistors in these packs work, you will probably get about 10% duds (even many of these can be used as diodes) but those you have left work out at only pennies each and are ideal for projects such as this. In the near future I will be describing many projects using these unmarked transistors and for those who are following Take 20 a pack of each will be an investment.

CONSTRUCTION

The components are mounted on a small piece of Veroboard, one end is drilled to take the potentiometer ($\frac{3}{8} \mathrm{in}$. spindles are virtually standard) and the other components are mounted and soldered at the other end. The project is so simple that very little can go wrong and immediately you switch on regular "plops" will be heard. By altering VR1 a wide range

No. 3
A MINI METRONOME
of intervals should be covered but if you want slower ones-that is with several seconds' interval, increase the value of Cl , if you want faster ones lower its value.

Fig. 1: The circuit

USES

The circuit described is certainly the cheapest method of getting a sound from a loudspeaker and thus it makes an ideal warning device, the plops themselves are loud and the unit could be used as a burglar alarm arranging the supply voltage to be switched on when a window is opened etc; even if the plopping isn't heard by anyone you can bet it'll get your unwelcome visitor worried. The

Fig. 2: The component layout on the Veroboard

* components list

```
R1 22k\Omega,10%, 1 W W
C1 }30\mu\textrm{F 12V
VR1 250k\Omega lin pot
Tr1 BC169, see text
Tr2 0C81, see text
Loudspeaker any }3\Omega\mathrm{ or }8\Omega\mathrm{ type
Veroboard 1\frac{3}{4}\times1
9V battery
```

time intervals are regular and the unit will serve well for its intended use as a metronome providing the beat for music lessons etc.

Next month our project will be an electronic organ using a unijunction transistor. For those wanting to build it a 2 N 2646 or equivalent is needed; this should cost between 7/6 and 10/-."

 PART 7

ELECTROMAGNETIC devices are components which use the magnetic field derived from an energised coil to provide a force to actuate a mechanical movement. The most important components in this group are: relays, solenoids, loudspeakers, microphones and meters. As the principle of electromagnetic force has been understood for a considerable time all the devices in this group have been available in some form for many years. Therefore little discussion will be spent on operating principles but attention given to constructional features, design restrictions, availability, price and reliability.

Relays

Relays have been used since the days of the earliest "electric telegraph". Since then improved materials and methods of construction have increased their reliability and decreased their size. Figure 1 shows the essential

Fig. 1: Basic construction of a relay.
construction of a relay. It consists of a coil wound on a bobbin and soft iron core. The armature piece is fixed by means of a pivot and spring loaded away from the core pole. In this position the contacts are open. When the coil is energised the armature is attracted to the pole against the spring force and closes the contacts. The spring returns the armature to the contact open position when the coil is de-energised.
The action of a relay is that of a switch controlled by an electrical circuit. As the coil power is low a considerable power gain is inherent. Ideally therefore a relay should have a control coil which uses a minimum of power whilst the contacts should be capable of switching a maximum power. Also the mechanical construction should be such as to give the fastest speed of switching and greatest reliability.
The coil is constructed as a solenoid wound on a plastic bobbin with a soft iron or similar magnetic material core. The coil is designed for a specific operating voltage and the resistance determined by the magnetic force (ampere-turns (AT)) necessary to close the contacts. The coil power also has to overcome frictional forces and usually a power of $1-5 \mathrm{~W}$ is used to
give the required characteristics, such as speed of switching, reliability etc. By semiconductor standards this power requirement is high and as a result usually necessitates a driver transistor in order to operate the relay. Because the relay coil is inductive, several limitations result in surge voltages due to the inductance which would break down the transistor. As a result a protection diode as shown in Fig. 2 is incorporated in

Fig. 2: Relay symbols.

Fig. 3: Plug-in relay.
the circuit and allows a circulation path for the inductively maintained current. However this has the effect of maintaining the ampere-turns and consequently delays the contact release by $10-20 \mathrm{msecs}$. The inductance and inertia also reduce the switch-on time which is also of the order of $10-20 \mathrm{msecs}$.
The other essential component of a relay is the contacts. Usually the armature operates a bank of changeover contacts and from one to four such contacts are usual. The actual contact face is welded to a link and often the link is of spring steel and itself provides the return force for the armature. Contacts are made of palladium, silver-gold-plated silver, or gold, in order to have a low surface resistivity. The contact resistance determines the maximum current which the contacts can pass. However this is usually considerably greater than the maximum current which can be switched.
The relay contacts are perhaps the most unreliable component in the relay, especially in relays working near the maximum contact rating. The faults associated with contacts are: dirt on the contact surface which increases contact resistance; pitting and corrosion of the surface due to arcing; and welding of the contacts. For these reasons the contacts are manufactured from pure, inert metals and for greatest reliability should be operated well below the rated power levels. Modern relays are also often enclosed in a plastic casing in order to minimise the effect of dust and other surface corrosive elements. Plug-in relays are also commonly employed in modern circuits and Fig. 3 shows a typical plug-in, plastic enclosed relay. It is worth noting that for reliable operation it is essential to use a retaining clip to prevent movement of the relay.

Relays are commonly specified in terms of coil

Comet Discount Warehouse

DELIVERY. Comet guarantee that all prices quoted are genulne. All items offered avallable at the se prices at the time this issue closed for press
Reservoir Road, Clough Road, Hull. Tel. 42363

COMBINED 4 WAVEBAND RADIO \& 126 TRACK TAPE RECORDER

gIVINg 46 HOURS OF RECORDING TIME

OLR O O RHM CARR.\& PRLEE O ING PKG.50\%

An amazing piece of equipment combining a 4-band radio and a 126 track tape recorder in one modern compact unit $31 \times 13 \times$ 11 in . The recorder section gives 46 hours of continuous unrepeated playing timo-fantestic but true- 46 hours of music can be yours at the touch of a switch. Brief specification: Incorporates 27 transistors and 15 diodes. Four wavebands VHF/MW/LW/SW. with exclusive "Auton Control" to give precise station tuning. Separate Bass and Treble controls. A wide magnetic tape records 126 tracks of 22 minutes each. Every track is able to record/replay so that you need not touch the machine for the total 46 hours record/replay time. Rewind time for each 22 minutes track only 25 seconds. Tape speed $10.5 \mathrm{~cm} / \mathrm{sec}$. Inputs for direct recording from microphone and record player. Pause control fitted. 10 watts quality output. Built-in 10 in speaker and tweeter. Sockets for extension speakers. Beautifully housed in wooden cabinet. Complete with switched audio input adaptor for mike and gram. Brand New in Maker's Carton.

OBAINABE LODGE TRADING CQ. ONLY FROM 21 Lodge Lane, North Finchley, London, N:12

TEL: 01-445 0749 (AFTER HOURS DEMONSTRATIONS AND SALES 01-445 2825)
PERSONAL CALLERS WELCOME - 9 a.m. to 6 p.m. (Sats. 9 a.m. to 4 p.m.)

BI-PRE-PAK LTD
 GLL-LL4 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX PHONE: SOUTHEND (0702) 46344

return of the unbeatable p.i. Pak. NOW GREATER VALUE THAN EVER
Full of short lead semiconductors and electronic components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP and NPN, and a host of dlodes and rectiflers. Mounted on printed circuit panels. Identfication chart supplied to glve some information on the transistors.
P. 1 PLEASE ASK FOR PAK P.I. ONLy $10 /-$

Pak No.	NEW. UNMARKED.
8	$12 \begin{aligned} & \text { Integrated circuita, Mixed types, } \\ & \text { data supplied with orders. }\end{aligned}$
O	$8 \begin{aligned} & \text { Dual Transistors, } 811 \\ & \text { Matched output pairs. }\end{aligned}$ NPN $10 /-$
B82	
B83	$\begin{aligned} & 00 \text { Trans. Newmarket reject and } \\ & \text { other types NPN and PNP. } \\ & \text { ot } \end{aligned}$
	$\begin{aligned} & \text { Bilicon diodes D0.7. Case, OA200 } 10 /- \\ & - \text { OA202 Polarity marked. } \end{aligned}$
	NEW, TESTED AND MARKED PAKS
79	$4{ }_{\text {P.I.V. }}^{\text {IN407 Amp Min. Type. }}{ }^{\text {Silicon Diodes, }} 100010 /-$
B81	$10 \begin{aligned} & \text { Reed switches Min. Type with } \\ & \text { Coils and Magnets. } \end{aligned} 10 /-$
885	24 Integrated circulis on panels. $10 /-$

Transistors	['rice
AC1-26	2/6
ACl27	2/6
AC176	51-
AD149	10/-
ASY'29	5/-
BC107-8-9	4/6
BC171	3/-
BC172	3/-
BC173	$31-$
OC22	61-
OC23	6/-
$00^{2} 2$	$7 / 6$
OC26	$51-$
$00^{2} 28$.101-
OC35	5i-
OU44	2/6
OC45	$2 / 8$
0 C 71	2/6
$0 \mathrm{C8} 3$	41-1
OC139	2/6
OC140	3/6
OC201	81-
$0 \mathrm{CP71}$	10/-
SC108	3/6
SC109	$3 / 6$
2 N 4284	. 3/6
2 N 4285	. 3/8
2N4288	3/6
2N4287	3/6
2N4288	3/6
2N4489	3/6
2N4290	3/6
2 N 4292	
2N3055	. 15 /-

- ALL OUR TESTED SEMICONDUCTORS HAvE A WRITTEN GUARANTEE 甾 Bend for our FREE lists and catalogue

No CONNECTION WITH ANY OTHER FIRM MINIMUM ORDER 10/CASH WITH ORDER PLEABE, add 1/- post and packiag OVERBEAS ADD EXTRA FOR AIRMAIL

voltage ratings and contact current and voltage ratings. The coil resistance is also included especially for low voltage coils intended for transistor circuits. Standard coil voltages are 6,12 , and 24 V d.c. with coil resistances of $100 \Omega-1000 \Omega$. A.C. operated coils are usually for 115 , 240 , and 440 V r.m.s. circuits. Coil power is generally $1 \mathrm{~W}-5 \mathrm{~W}$ for most electronic relays but is considerably more for power relays and contactors.

Coils are normally rated for continuous operation and for this reason a maximum coil voltage is stated together with a minimum coil voltage for the justoperate condition. It is preferable to operate relays at their rated voltages since the mechanical characteristics are designed for these conditions. Working at low voltages gives low speed switching and increases the danger of arcing or welding of the contacts. High voltage working decreases the reliability of the coil whilst the mechanical shock of the contacts through faster switching causes switch bounce and vibration and a consequent reduction in mechanical life.

Contact ratings are often ambiguous since commonly they are rated for maximum voltage and current. Whilst these are true for the steady state closed or open conditions, they do not apply to the transient opening and closing periods during which arcing may occur. The transient condition is usually limited by the power rating of the contacts which is considerably lower than the value indicated by the maximum voltage and current ratings. Thus contacts with maximum ratings of 250 V a.c. and 3A a.c. steady state ratings usually have a power rating of 200 VA or 80 W .

Relays are inherently unreliable components since they have a definite mechanical life. However due to the use of modern materials the reliability has increased and a life of $10^{6}-10^{8}$ operations is often quoted. Reliability is very high for relays employed in low power switching applications but falls with high power levels.

Relays are common circuit elements particularly in control circuits and they are consequently readily available. Average prices for the smaller devices used in electronic circuits vary from 15 s . to $£ 5$ depending on quality and standardisation. It should be remembered that the cheaper relays unless bulk produced are of poorer quality and as a result tend to be less reliable. With relays the familiar quotation "You get what you pay for" is particularly true.

Reed relays

Reed relays are essentially a development of the relay to increase the reliability and speed of operation. The reed consists of two leads of sprung magnetic material encapsulated in a glass envelope as shown in Fig. 4. The leads have contact faces, usually of diffused gold, which are brought together by the action of an external magnetic field. The reed therefore is simply an encapsulated contact, and the contact operation is illustrated in Fig. 5.

Reed switches can be purchased as contacts for use with permanent or electromagnet systems. For example reeds are commonly employed for proximity applica-

Fig. 4: Reed relay contacts.

(a)

Contact closed

(b)

Contact open

Fig. 5: Reed relay operation.
tions in conjunction with permanent magnets. Generally however they are used in conjunction with separate coils which are for printed circuit mounting or in complete encapsulations. One or more coils are employed to switch the relay and by changing the coil polarities logic functions can be achieved. One or more reeds are employed and changeover configurations are available. Thus a complex system of reeds and coils can be built up.

The design of reed relay assemblies is easily achieved since reed parameters always quote the minimum or just-operate ampere-turns (AT) required to switch the contacts. Average values of AT are from $20-50$ for small reeds $1 \cdot 5 \mathrm{in}$. long to $70-150 \mathrm{AT}$ for 3 in . power reeds. Thus a 100 AT reed requires a coil of 100 mA current and 1,000 turns to just operate the switch. Wound coils on printed circuit bobbins are also available suitable for 12 V circuits and have resistance values from 500Ω to $2 \mathrm{k} \Omega$.

Reed contacts are rated for maximum current and voltage but the maximum power for reliable operation is considerably lower than conventional relays. Typical maximum power ratings are $3-10 \mathrm{~W}$ for small reeds and 10-20W for the larger types. Again, operation well below the rated power level gives a considerable increase in life expectancy. Generally breakdown voltages are in excess of 400 V and the maximum current ratings are $0 \cdot 25-1 \mathrm{~A}$.

The principal advantages of reed relays are their long switching life of 10^{8} operations and the speed of switching. Typical turn-on time is from 1-2msecs with turn-off times of the same order. Reed switches can therefore be used for switching at up to 2 kHz rates. Another important advantage, particularly in logic circuits, is the lack of switch bounce.

Reeds and relay assemblies are now readily available. Individual reeds vary in price from 4s. to $£ 1$ whilst coil assemblies vary in price from 6 s . to $£ 1$. Complete encapsulations including a magnetic shield range from £l to $£ 4$.

Mercury wetted relays

Mercury wetted relays are designed for extremely reliable systems where the characteristics of high speed switching and lack of switch bounce are required. Lifetimes in excess of $10^{9}-10^{10}$ operations can be achieved and this is due to the construction which continually "wets" the contact surfaces with mercury by capillary action. These devices are available for operation between 6 V and 50 V supply voltages and cost from $£ 3$ to $£ 5$. A disadvantage results from the limitations in mounting, since for the capillary action to operate they must be mounted vertically.

Meters

Meters are devices which convert electrical power into a mechanical force which is counterbalanced by a

Fig. 6: Basic moving-coil meter construction.
spring movement. The physical movement of the coil is used to give an indication on a dial. As moving-coil meters are by far the most widely used type only these will be considered here.

Figure 6 illustrates the essential components of a moving-coil meter. A coil is suspended in a strong magnetic field produced by a permanent magnet. The bearings are often jewelled and movement of the coil is prevented by a coil spring. When the coil is energised by a direct current flowing through it, a rotational force is exerted on the coil due to the interaction of the permanent and electromagnetic fields. This force is opposed by the torque characteristics of the spring and in consequence the accuracy of reading depends upon the linearity of the force-displacement characteristics of the spring. As springs generally have a linear relationship between force and displacement moving-coil meters have a linear scale reading. It can be seen therefore that moving-coil meters are direct current meters since it is direct current which is linearly related to the mechanical force exerted upon the spring.

The ideal moving-coil meter should have an absolute linearity between coil current and scale reading and the range of current measured should be as large as possible. Also the time taken for the meter to arrive at a stable reading should be a minimum. In order to achieve the ideal meter the suspension system of the coil would have to be frictionless and the permanent magnetic field should be uniform and radial. The reading accuracy and range of an instrument are largely determined by the physical size of the scale over which the pointer moves. This is physically limited by the size of the meter and the pivot and suspension system. But in any event as the scale is linear, accuracy at the low end of the scale is essentially less than at the top end.

The speed in which a reading is obtained is also important especially since a force instantly applied to a coil inherently results in an oscillation of the spring

Fig. 7: Exploded view of moving-coil meter.

Fig. 8: Meter modifications to measure (a) d.c. voltage and (b) direct current.
system. Thus practical meters have damping systems which are designed to give critical damping. This is an oscillatory condition in which stability is achieved in a minimum time. If the movement is overdamped then the pointer moves slowly and creeps up to the final reading, whilst underdamping results in the pointer swinging about the final reading.

Most of these limitations have been reduced to minute proportions by the practical meter design shown in the exploded view of Fig. 7. The magnet has a strong radial field and is generally of Al Ni Co , whilst the spring and coil system is light with little inertia or friction. Damping is by air vanes, magnet systems or oil dash-pots. Scales are physically limited in size and 2 to 5 in . is general but 10 to 20 in . can be achieved. To improve reading accuracy mirrored scales are used. However the basic limitation due to linearity remains, and a reading accuracy of 1% of the full scale value is only possible with high quality meters.

All moving-coil meters are basically direct current operated and the current required by the coil to give full-scale deflection varies, from $10 \mu \mathrm{~A}$ to 10 mA for average meters. Most however are within the range $50 \mu \mathrm{~A}$ to lmA. This basic current determines the quality of the meter since moving-coil meters can be used for the measurement of most electrical quantities providing a direct current in the above range is present. By using resistors as shown in Fig. 8 the meter can be used to measure d.c. voltage and current, whilst the addition of a rectifier enables the meter to read a.c. voltage and with a transformer alternating current.

The resistors R_{v} and R_{s} for d.c. measurements can be calculated from the following formulae:

$$
R_{\mathrm{v}}=\frac{V_{\mathrm{d} . \mathrm{c} .}}{I_{\mathrm{m}}}-R_{\mathrm{m}}
$$

where $V_{\mathrm{d} . \mathrm{c} .}$ is the full scale voltage reading in volts, I_{m} the basic meter current in amps and R_{m} the meter coil resistance.

$$
R_{\mathrm{s}}=\frac{I_{\mathrm{m}} R_{\mathrm{m}}}{\left(I_{\mathrm{d}, \mathrm{c}}-I_{\mathrm{m}}\right)}
$$

where $I_{\text {d.c. }}$ is the full-scale current reading in amperes.
The quality of a meter is dependent upon the current for full-scale deflection and the figure of merit quoted on most universal meters is derived from the series resistance required to measure d.c. volts; and is stated in ohms/volt. Thus from the formula a $50 \mu \mathrm{~A}$ meter requires $1 / 50 \times 10^{-6}$ or $20,000 \Omega / \mathrm{V}$ total series resistance, whilst a 1 mA meter requires $1 / 1 \times 10^{-3}$ or $1,000 \Omega / V$ series resistance. Inherent meter resistance (R_{m}) reduces with figure of merit and is of the order of 100Ω for 1 mA meters to $1 \mathrm{k} \Omega$ for $50 \mu \mathrm{~A}$ meters.

The most economical method of running transis torised equipment irom A.C. mains. Power radios record pluyers, etc. Mark 1 model: replaces al
9 volt batteries. Prlce only $85 /-$ p. \& p. $8 /-$. Mark 9 volt batteries. Prlce only $85 /-$, p. \& p. $8 /-$ Mark 2
model: output 6 , 7 and 9 V. STABILIBED, making imodel: output 6, 7i and 9 . STABAL for running $\mathrm{Hi}-\mathrm{Fi}$ and test gear and cassette type tape recorders. Price only $86 /-$, p. \& p. $6 /$. SURPLUS BARGAINS HEAVY DUTY
ACCUMULATORS
Type 1 (6 volt) 40 AB . In metal cablnet. Size approz.
$10 \times 8 \times 5$ in. Complete with output socket, carrying $10 \times 9 \times$ bin. Complete with output mocket, earrying
ntrap. Brand new ind unused. Worth $\varepsilon 10$ each. Our Price $55 /-$, carriage and insurance 15) Type 2 (6 volt) 16 AH . In sturdy wooden cablnet with carrying strap. Worth $£ 7$ each. Brand new and bozed, only $32 / 6$ each, p. \& p.
FI
Type F. Housed in a portable wooden case. Ideal for Indoor/outdoor communication up to 10 miles
Absolutely brand new. Price only 25.19 .6 per pair carriage and ingurance 15/-
19 Set Feadphones and Mike. Not new but in working 18 order. Only $7 / 6$ per net, p. i pu $4 / 6$.
Tannoy Mikes. As new, $9 / 8$ emch, p.
duty, ideal for P.A. work).
duty, deal for P.A. work). Brand new only $17 / 8$ coil headphones and mike Brand new, only 17/6, p. \& p. $5 / 6$. Suit
applications (cost approx. \&3 per pair)

NNE ALL TYPES OF SCIENTIIC : ELECTRONIC EEMUPMENT TESTGEAR

Pleame let us know what you have in aingle items or large quantities. Send B.A.E. We will send you an oftor by return. Alao required are all types of electric motors. Dynamotors, rotary con
equipment, lenses and prisma etc

TRANSISTOR SALE

OC44 $1 / 6$ each, p.p. 4d. Three for $5 /$-post iree $0 \mathrm{C7} 21 / 6$ each, p.p. 4d. Three for $5 /$ - post free OC71 $1 / 8$ each. p.p. 4d. Three for $4 / 6$ post free oc4s $1 / 3$ each, p.p. 4d. Three for $3 / 6$ poat free AC128 2/-each. p.p. 4d. Three for $5 /-$ poat free B8Y $95 a$ - $3 / 6$ each, p.p. Gd. Three for $10 /$-post free. BEY 958 $3 / 6$ each, p.p. Bd. Three for $10 /-$ post free. BC108/107 4/6 each, p.p. Three for $6 / 8$ post free. 2N2926 $2 /$ - each, p.p. 4d. Three for $5 /-$ post free. B8Y27 $300 \mathrm{~m} / \mathrm{ca}$ silicon $7 / 6$ each, p.p. 4 d . Three for 81 pont free

-
 AIRCROMUN AELECOMMUNICATIONS

Listen to the thrills of BANDREC.
Aircraft
Pilots and
Alrport at work. Also Civil Depte, Fire and Ambulance service.. Gas and electrictiy depts. Ideal for recelving 2 meter amateurs. Gives super reception within the range of all transmissions. A fully trsn-
sistorised recelver covering $97-147 \mathrm{mac} / \mathrm{s}$ VBF sistorised recelver covering
broadcasts. Robust attractive
broadcasts. Robust attractive 2 -tone finish metal cabinet size approx. $7 \times 4 \times 4 \mathrm{in}$. Operates from a
9 volt internal battery. Speaker or carphone output plus chrome telescopic serial. Only 28.19 .6 carr. and pias carome telescople serial. On
innurance $10 / 60 . W .0$ or C.O.D

An electronic unit capable of controlling electrical of all AC \& Universal apparatua. Givea full wav control from zero to full power. Buitable for the control of electric motors of up to 2 hp. Buitable for controlling all types of lighting. Maken an ideal dim $3 \mathrm{~K} . \mathrm{W}$. Elesters. Ideal for fine control of Lathes Power Tools, Conveyor belts, pumpu ete. Contained in a robust metal cabinet, Bize appror. $8 \times 5 \times 2 \mathrm{in}$. Now design makes posible full wave control. Not to be confused with earller half wive thyriator unita Now employs the latent electronic techniques. Ideal for sll industrial spplications. Price $\begin{aligned} & \text { 20.19.6. } \\ & \text { Carriage and Insurance } 10 / \mathrm{F} \text {. }\end{aligned}$.

RUN YOUR 19 SET TX/RX FROM AC MAIMS We manuiacture a brand new unit ready to operat all 19 set Trana/Rec. direct from the mains. Com plete ready to plug in with full connecting instruc tions. Contained in an attractive steel cabinet only, 24.10.0,

NEW SHOP (NOWOPEN

38 Bridge End. Meadow Lane, Leeds 1 Open 9 a.m. to 6 p.m. weerdays and Saturdays.
All goods advertised available for inspection and All goods advertised available for inspection and demonstration. The North's newest walk-round Scientific and Electronle Btore

PRECISION PANEL METERS

 Brand new, boxed and fully goar 3yln. gquare. fring nuts and bolts. bize approx. Ex-stock, only $80 /-$, p. \& p. 5/-. Two for 55/-post motHEAVY DUTY POWER SUPPLY UNITS
Bulk Purchase. Famous manufacturer. Must have cost nearly 240 each. Input $200 / 250$ volts $50 \mathrm{c} / \mathrm{s}$ a.c. Output 250 volts d.c. at spprox. 175 m.a. $6.3 / 12$ volts at approx. 4 amps a.c. Robust metal rack mounting
cabinet, size approx. $19 \times 15 \times 8 \mathrm{in}$. Price only $85 /-$, cabinet, size approx. $19 \times 15 \times 8$ in. Price only $86 /-$. carriage and insurance $15 /-$. All units are fully fused
and metered. and metered.

TANK AERIALS
Fully interlocking copper plated rods. One foot section. Ideal for car or scooter aerials. Will make excellent dipoles, six sections for only 4/6, p. \& p. 1/6. 12 sections for $10 /$ post 1 iree

What have you for sale in this line. Anything con-

MORSE PRACTICE
 OSCILLATOR SET

Complete with "Hints on Learning Morse" manual. Fully Transistorised 19/6, p. \& p. $3 / 6$.

SNIPS

METER TEST
KITS
TRANSFORMERBARGAINS Absolutely Fully Guaranteed. Inter-
volla $50 \mathrm{c} . \mathrm{B}$.
UPRIGYT MOUTING (full ihrouded) Type 1 250-0-250 60 m. . 6.3 v 2 ampe. 0.-5.-6.3 volts 2a. 21
Type 8. $250-0-250$ v 100 mA 8.3 v 48 0-5-6.35 at 4a. 85/-
Type 8. $300 \cdot 0-300 \mathrm{v}$ at 140 ma . 613 v 4 a .
Type 4. $350-0.350$ at 150 ma .6 .3 v 4 a
0.5 .6 .3 v at $4 \mathrm{a} .48 / 4$.

Type 5. 425-0-425 at 2
0.5.6.3v at 4 amps. $72 / 6$. ms. 8.3 v 4 s $4 a$ c.t. 5∇ at 4 a. $85 /-$
Postage, packing and insurance $5 /$
Flament and Transistor Power Pack types. $6.3 \mathrm{v} 1.5 \mathrm{~s} 7 / 6,6.3 \mathrm{v} 2 \mathrm{a} 8 / 6$. 8.3 v at $3 \mathrm{amp} 10 / 6.6 .3 \mathrm{v}$ at 6 a 19/11. 12v
la $8 / 6$. $12 \mathrm{v} 3 \mathrm{amp} 19 / 11$. Postage and 1a $8 / 6$. 12v 3 amp 19/11. Postage and
Packing and Ingurance 2/6 on each. CRARGRGR TRANSFORMERS

CRARGER TRANSFORMERS

 8 amps, 32/6. Portage and packing $3 / 6$
AU each TRANSFORMERS (8TKEP UP/ DOWH TYPES 15/- 150 . 500 watte $86 /$-. Poatage and packing Price $2 / 6$ per copy
Khord Hi-F
Khord Hi-Fi
Solid State
Amplifier
10 watts continuous output. 15
watts Music. Outwatt to $3-16$ obms impedance. Freq. Reaponse +2 dB 20-20000 c.p.s Distortion at full power $<0.15 \%$ (Contained in a robuat cabinet with a built-in high $\begin{aligned} & \text { quality loudapeaker. Few only as new. Price } 84.18 .6,\end{aligned}$ Complete with carr. \& insurance 10/6.
pre-amp main MATCHING P.8.J. For R1132 and 1392 Reccivers, amp and power MATCHING P.8.D. For R1132 and 1392 Reccivers, anit all welf con- Dew in maker's cartons
tained. 5 ponition selector switch input. Mains input 200/250 volts 50 c/s. Attractively housed in compact metal cabinet biz
appror. gin. bin. x 5in. Disbin. \times Sin. Din-
tingulshed contingulahed panel. Full trol panel. Full
tape monitoring facilities. supplied factory
built with full

ARR/SEATHANSRKCC.

gua
gał
?
HTLLT BATTERY ELIMNA Tor. All dry battery eliminaall batteries at $1 \cdot 5 v$. and $90 v$ Price 65/- \quad D. \& p, prolag
SPECLAL BT/LT for running Surplus Radio equipment. Output 150 v . and 3 v . WIII run others. Price 68/6. p. \& p. $51-$

MINIATURE TRANSISTORISED

Compact VHF Trans./Rec. Fits in the pooket.
Consists of Mike
温peaker, ampHer, trammitter and receiver. Were made to operate up to 100 miles depending on terrain. Operates from dry batteries. Completely selicontained. Coat Oovt. over 250 each. Regula-
tlons ntate munt not be operated in UK so tlons ntate must not be operated in UK so
please mention "For Dismanting purposea please mention "For Dismanting purposes
only" when ordering. Price 28.10 .0
each $10 /$. Two gets for

B.F.O. UNIT

This is a miniature tranais torised B.F.O. unlt (tunable) that will emable your net to
receive C.W. or g.s.B. recep tion. Compact. Single hole fixing. Thim mail unit will fit anywhere. Ideal for all Ex-Govt. Communication Receivers and most com mercial Types. Complete nith
free. 8 ETS CONTROL BOXES
Brand new and boxed $10 /-$ D. \& p. B/-. Two for 27/8 post phones and mike, deduct $6 /$ from total
4y

DRPT. P.W. 24 CAWOODS YARD, MABSE LANE, LEEDS θ

M. \& B. RADIO

15a hUNSLET ROAD, LEEDS LS10 1Ja Telephone: 0532-35649

R210 RECEIVER. Modern 14 miniature valve receiver. $2-16 \mathrm{Mc} / \mathrm{s}$ in 7 bands each 50 in . film strid scale. $10 / 100 \mathrm{Kc} / \mathrm{s}$ xtal callbrator. BFO. CW filter. Internal 24 V psu. Supplied c / w handbook and home-made mains psu. $£ 30$, carr. $25 /$ /-
VHF MOBILE TX/RX. Minlature valve transreceiver with 12 V transistor power unit. Double conversion receiver. Xtal controlled but easily converted to tuneable. High or low band models (2 or 4 metres). Please state which when ordering. Positive or negative earth. Supplied c/w circuit and notes. TESTED E9.10.0, carr. 27/6. TRANSISTORISED 2METRE CONVERTERS. 2 RF stages, Various IF frequencies. Please state preference when ordering. \&7.15.9 plus 5/- pp.
12 VOLT TRANSISTOR INVERTERS. GIVES 240 V DC at 40 watts. Ideal for caravan fluorescent lighting. 86, plus 7/6 pp.
Various other transistor inverters. Please send SAE for details.
Radiotelephone press to talk microphones. Used. 5/-, DIus $2 /-\mathrm{pp}$.
Spring loaded moblie whip base sections. Chrome finish. Brand new. 6/6, plus 1/6 pp.
GRANADA 4. Transistor amps in cabinet with speaker. Tested. 62/6, plus 7/6 pp.
GPO Telephones with dial, 17/6, plus 6/- pp. Modern style telephone 42/6, plus $6 /-\mathrm{pp}$.
QQV03/10 6/- tested. QQV06/40A 37/6 tested. 800plv 16 amps silicon difodes on heat sink, $6 /-$ BY128 2/6. $2 \times$ OC35s on heat sink, $10 /$-. OC35 on small heat sink $5 /-, 1 /-\mathrm{pp}$.
STETHOSCOPE HEADSETS. Brand new Ideal for stereo or mono. Low imp. 27/6, plus 3/6 pp.
2-METRE TRANSISTOR P.A. $\mathbf{8 \%} \mathbf{1 0 . 0}$.
Transistor ampliflers, modulaters, mic preamps. VHF transmitters, Scopes. Aerials. Valves. Etc.

LISTS 6d, plus SAE.

H.A.C
 SHORT-WAVE KITS WORLD-WIDE RECEPTION

Famous for over 30 years for Bhort-Wave Rquipment of quality "H A.". Dere Wave Rquip suppliers of Short-Wave Recelver Kits for the amateur constructor. Over 10,000 gatisfled customere-including Technical Colleges. Hospitsis, Public Bchools, R.A.F., Army, Hams, ete

TMPROVED 1969 RANGE

One.valve model "DX", complete kit-price 68/6 (Postage and packing $3 / 6$).
Customer writes:-"Definitely the best one-valve 3.W. Kit available at any price. America and Australia received clearly at good volume." This kit contsins all genulne sbort-wave components, drilled chassis, valve accessories and full inatruc tions. Ready to assembie, and of course, at all our s.W. kits atill available, including the famous model "K" (recommended by radio clubs). All orders despatched by return. (Mall order only.) Bend now for a descriptive catalogue, order form.
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Streat, London W. 1

TRADER SERVICE SHEETS

5/- each plus postage

We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.s returned if sheets not available.

OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	RadiolTV

1969 List now
available at 2/plus postage

If list is required indicate with X

From
Address
enclose remittance of...
(and a stamped addressed envelope) s.a.e. with enquiries please

MAIL ORDER ONLY (July PW)

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

Oscillator Coil	'.1.........P50/1AC (For DC45)	P50/1AC)	4
1st I.F. Transformer	$\ldots . . .-)^{-} P 50 / 2 C C ~(F o r ~ O C 45) ~$	P51/1	(For AF117)	. $5 / 7$
2nd I.F. Transformer		P51/2	(For AF117)	. $5 / 7$
3rd I.F. TransformerP50/3CC (For OC45)	P50/3V	(For AF117)	.6/-
	Rod AerialR2W		.12/6	
	Driver TransformerLFDT4	/1..........	... 9/6	
	Output Transformer.....................OPT110/6	
	Printed CircuitPCA1-..............	.. 9/6	

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

T41/1E	1st I.F. Transformer	6
T41/2E	2nd I.F. Transformer	7/6
T41/3T	3rd I.F. Transformer	.10/6
T41/3T	B.F.O. Coil ...	10/6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4d. postage please.

MONTHLY NEWS FOR OX LISTENERS

THE days seem to fly by and we are now in the summer season here in the Northern Hemisphere. With summer conditions the best DX is found during night hours and early morning. So set your alarm clocks for 0400 and you may get some good DX on $11,9,7,6,5,4$ and 3 MHz . But during the day you'll find $25,21,17,15$ and 11 MHz swamped by R. Liberty, R. Free Europe plus the whole Russian and Iron Curtain jamming network working overtime, together with R. Moscow, The Voice of America and all the high power stations. So sleep at day and DX at night. Now on to the propagation predictions for the summer months.

West Africa: 0800-1600 21, 17 and $15 \mathrm{MHz} ; 1600-1800$ $21,17,15$ and $11 \mathrm{MHz} ; 1800-200021,17,15,11,9,7$ and $6 \mathrm{MHz} ; 2000-220017,15,11,9,7,6,5,4$ and 3 MHz ; $2200-020015,11,9,7,6,5$ and $4 \mathrm{MHz} ; 0200-040011$, $9,7,6,5,4$ and $3 \mathrm{MHz} ; 0400-060015,11,9,7,6,5$ and $4 \mathrm{MHz} ; 0600-080017,15,11$ and 9 MHz .

South Africa: 0800-1600 21 and $17 \mathrm{MHz} ; 1600-1800$ 21,17 and $15 \mathrm{MHz}, 1800-200021,17,15,11,9$ and $7 \mathrm{MHz} ; 2000-220017,15,11,9,7,6,5$ and 4 MHz ; $2200-240015,11,9,7,6$ and $5 \mathrm{MHz} ; 2400-020011,9,7$, 6 and $5 \mathrm{MHz} ; 0200-04009,7,6$ and $5 \mathrm{MHz} ; 0400-0600$ 11,9 and $7 \mathrm{MHz} ; 0600-080021,17$ and 15 MHz .

East Africa: 0600-1600 21, 17 and $15 \mathrm{MHz} ; 1600-1800$ $21,17,15,11$ and $9 \mathrm{MHz} ; 1800-200017,15,11,9,7$ and $6 \mathrm{MHz} ; 2000-220015,11,9,7,6,5$ and $4 \mathrm{MHz} ; 2200-$ $240011,9,7,6$ and $5 \mathrm{MHz} ; 2400-020011,9,7$ and $6 \mathrm{MHz} ; 0200-040011,9$ and $7 \mathrm{MHz} ; 0400-060017,15$, 11 and 9 MHz .

South Asia: 0600-1400 17 and $15 \mathrm{MHz} ; 1400-160017$, 15 and $11 \mathrm{MHz} ; 1600-180017,15,11,9$ and 7 MHz ; 1800-2000 15, 11, 9, 7, 6, 5 and $4 \mathrm{MHz}, 2000-220015,11$, $9,7,6,5,4$, and $3 \mathrm{MHz} ; 2200-240011,9,7,6,5$ and $4 \mathrm{MHz} ; 2400-020011,9,7$ and $6 \mathrm{MHz} ; 0200-040011$ and $9 \mathrm{MHz} ; 0400-060015$ and 11 MHz .

South East Asia: 0600-1200 17MHz only; 1200-1400 15 MHz only; $1400-160017,15$ and $11 \mathrm{MHz} ; 1600-1800$ $17,15,11$ and $9 \mathrm{MHz} ; 1800-200015,11,9,7,6$ and $5 \mathrm{MHz} ; 2000-220011,9,7,6$ and $5 \mathrm{MHz} ; 2200-2400$ 11 and $9 \mathrm{MHz} ; 2400-0400 \quad 11 \mathrm{MHz}$ only; $0400-0600$ 15 MHz only.

East Australia via Asia: This circuit is rather unpredictable in results, the official forecast reads as follows: $1600-1800$ on 11 MHz only; $1800-20009 \mathrm{MHz}$ only; $2000-220011$ and $9 \mathrm{MHz} ; 2200-240015$ and 11 MHz . But signals have been logged via this route round about 0700 on 21 MHz and 0900 on 15 MHz .

West Coast South America (South of Peru): 1200-1800 17 MHz only; $1800-200021,17$ and $15 \mathrm{MHz} ; 2000-2200$ $21,17,15$ and $11 \mathrm{MHz} ; 2200-240017,15,11$ and 9 MHz ; 2400-0200 15, 11, 9, 6, 5 and $4 \mathrm{MHz} ; 0200-040011,9,6$, 5,4 and $3 \mathrm{MHz} ; 0400-060011,9,6$ and $5 \mathrm{MHz} ; 0600-$ 08009 MHz only.

Those were the propagation predictions as supplied be Cable and Wireless, London.

THE BROADCAST BANDS Christopher Danpure

The other day I received a very nice letter from Mr. P. J. McNamara concerning a new Shortwave Listeners' Club which has just opened. The name of the club is the "Limerick City Short Wave Radio Club". They publish a very well produced monthly bulletin which as well as giving DX tips also has tips on such things as how to report correctly to a station for a QSL card. The cost to receive the club bulletin for 1 year is 7 s .6 d . and membership is open to all SWL's anywhere in the world. The address to write to for further information is Limerick City Short Wave Radio Club, 7 Colbert Park, Janesboro, Limerick City, Ireland.

Now on to this month's DX and SWL's tips.

ASIA

North Vietnam: R. Hanoi has been heard closing at 1700 on 15,018 in Vietnamese irregularly. This station does QSL and sends out schedules and information about N. Vietnam, I believe, and according to loggings this station is not using directional aerials for this frequency.

AFRICA

Ghana: External Services, R. Ghoma, Accra is now beaming its English service to Europe from 2045-2215 on 15,285 according to Limerick City S.W. Club Bulletin.

Liberia: R. Station $E L W A$ has been heard closing at 2200 in English on new frequency of 9,760 according to Limerick City S.W. Club Bulletin.

NORTH AMERICA

USA: R Station $W N Y W$ is now on the following schedule. To Europe from $1600-1830$ on 21,$525 ; 1600$ 1820 on 15,$440 ; 1830-2130$ on 17,$760 ; 1900-2140$ on 15,440 . To Africa from $1600-1850$ on 21,$580 ; 1850-2140$ on 21,525. To Caribbean and the Americas 1600-2145 on 17,$845 ; 2140-2145$ on $21,525,15,215$ and 15,130 ; $2145-215021,525,17,760,15,215$ and 15,$130 ; 2150-0020$ on $21,525,17,835,17,760,15,215$ and 15,130 . Many thanks for this tip to Mr. C. M. Pearson in Epsom, Surrey. A good fresh item.

EUROPE

Switzerland: The Swiss Shortwave Service, Berne is now on the following schedule until September 7 for its English programmes. 0700-0800 (daily) on 11,775 and 9,$590 ; 0700-0800$ (weekdays only) on 9,535 and 6,165 ; $1000-1100$ on $21,520,17,795$ and 15,$305 ; 1130-1230$ on 11,865 and 9,665 ; 1315-1415 on 21,520, 17,845 and 15,$135 ; 1500-1600$ on 17,830 and 15,$305 ; 1815-1915$ on 17,795 and 15,$180 ; 1930-2030$ on 11,865 and 9,665 ; $0130-0230$ on $15,305,11,715$ and 9,535 ; finally 0445 0545 on 11,715 and 9,720 . Well that's about it for this time. Deadline for all those DX-logs is May 20th. So until next time good listening and 73s.

EVEN those with a piece of wet string and a cat's whisker must have heard DX this month on the amateur bands. It was uncle David's month for draping the ageing eardrums around 10 metres, and cor, wasn't it lively up there? Must have been purgatory for the owners of beams, wondering which way to point the darned things for fear of missing something good in the other direction. Using just one vertical in the loft raised all five continents at the same time. The citizens band, too, was really humming with a collection of the most amazing callsigns and conversations you could think of. Incidentally, if "Big fat mumma" somewhere in Brooklyn reads this, you owe me thirty bob for a new front end and I strongly disagree with your remarks concerning women in the summer.

The other end of the spectrum didn't fare too well with me, but logs received indicate that the DX was there, so it must be me. Certainly one could log quite a large number of W stations in the 3.8 to 4 MHz segment, but apart from this there didn't seem much about, discounting EUs.

Nigel Thornley (Northamptonshire), tells tales of a strange noise which blanketed 20 metres but no remarks from any other sleuths. (It's like that most evenings on 160 anyway). Only a very small number of logs for the l.f. bands but a large number cashed in on the 10 metre openings.

LOGS LOW

Successful ingredients for an r.f. topband cake coming up. Take one $B 40$ receiver, 175 ft . of wire and poke in the terminal marked "antenna". Oh yes, put the head of one R. Moore (Dorset) between the headphones and you get-GC3ULZ/P, GD3VMQ, GM3FXM, GW3WBU/P, OE3KIW, OK1TH, OK1VC, OK1KVW, OK2BFI, OK2PCN, OK3CJV, OK3YBE, OL1AKG, OL2AIO, OL5ALY, PAøCC, TA2E, ZB2AY. Most of these on c.w.

Rumours that a GM station has been known to "drop in" for a chat on the Verulam 160-metre club net. Cynics should QRX Saturday nights around 2230 BST on 1980 or thereabouts.

Christopher Lamb (Dorset) sends me hieroglyphics which turn out to be the best of his "heard on 80 metres" log-KP4S, K2ISM, K2VOE, VE1AFY, W1ABC, W2BGG, ZL2GJ, ZL4II, ZL4JW. Wish I could hieroglyph like that.

Bill Wright (Staffs) has an RG-1 and a 180 ft . long wire. A fantastic \log for 3.5 MHz (that's the posh way to write 80 metres) all s.s.b.-CN8AW, CO2DC, CO2FA, CR4BB, EA8EX, EP2BQ, FG7XX, FG7TI/ FS7 (French St. Martin), HI8OSA, K1THQ, K2BZT, K4JN, KP4AST, KZ5WH, MP4TAF, MP4TCU, OD5BA, PJ7JC, PY7ASQ, PY7GV, TF3BV, TI2ES, VE1OW, VE2AYA, VE3AGW, VO1FG, VP2AA, VP9L, W1AP, W2AC, W5LHO, W8GZ, W9BV, WA3LFN, XE1CE, XE3AF, YV1SA, YV3RP, YV4DN, YV5BPG, ZB2BS, ZC4GM, ZL4LM, 3A $\varnothing C U, ~ 4 X 4 A S, 5 A 1 T N, 5 R 8 A O$ (Malagasy), 6Y5CC, 9E3USA, 9H1BL, 9Y4LP, 9Y4MM.

LOGS HIGH

Congrats to Jim Baker who now wears a shiny new badge engraved G3YHB. Jim is now working
them instead of just listening, although he confesses to a spot of TVI teething troubles. On 20, he man-aged-CR6TP, CT2AK, 4X4AS, 7X2AL, 9K2BV; while 15 brought-OD5CX, TJ1AI. All with a PCR3 and a Panda Explorer tx.
O. Shaw (Yorks.), AR88D, 180ft. end fed went s.s.b.-ing on 20 for-EA8RCS, HC1SJ, HS1HS, HK \varnothing PKS, HK7UL, HZ1AB, IS1LIO, KG6AKR, TF3AP.
D. Isaac (S. Wales) is 13 and has a homebrew (good lad) 4 -valve (what are they?) superhet. Sixty feet of wire and 20 metres produced-CR61V, EL2E, FR7ZG, HI5PW, HK3VO, KH6AFN, KP4CL, VK2AO, VK3TG, VK5MQ, VK7AZ, VK3RX, VK2AO, VK3TG, VK5MQ, VK7AZ, VK7RX, VO1CX, ZL1AGO, ZL2RC, ZL3QN, ZP5JB, ZS5JY, 3A ØCU, 4X4IX, 5Z4KO.

Robert Dinning (Ayrshire) sends a 15 -metre log plus a photograph of himself and his station (he's got more hair than me!). The line-up is HA350 plus PR3OX plus RQ1OX and a 380ft. long long wire with a Z-match on the end. All s.s.b.-CR6GA, CR7BO, HR1WSG, JX1OM, KZ5BU, MP4TCE, OHØNI, PX1JQ, VK2FU, VK2FA, VQ9GA, ZC4HS, ZD5R, ZE5JU, 9J2GJ, 9M2DQ, W1-W \varnothing, VE1-8.

TEN METRES

J. Moore (Leicestershire) reports great happenings on 10. The \log to prove it reads-CR6CA, CR6IS, CR7IC, EP2JP, ET3REL, FG7XX, HK3VA, HK4AZX, HS3DR, JA1NVF, JA1OYT, JA2BVZ, JA3GFO, JA6BEE, K5CNZ/P/YV5, KR6EL, KR6JT, PY2EOQ, TL8GL, VK6KM, VK6NM, VK9BB (New Guinea territory), VS6AA, WA6GZZ/ AM, ZS1JC, ZS4AA, 4X4CY, 5A1TA, 5N2AAF, 5N2ABG, 7Z3AB (Saudi Arabia), 9X5AA.
G. Lawlor (Ireland) R1155 plus RF24B, 10-metre dipole logged-CR6CA, EP2CF, ET3USA, FG7XT, HS3AL, MP4BHL, OA4OS, PY6WG, SVØWJJ, UH8UU, ZD8JW, ZS5KS, 5A3TX, 5Z4DW, 6W8DY, 7Q7WW, 9H1BN.
P. Cavill (Gloucestershire), 'CR45 plus 65 ft . end fed eavesdropped on-CE7DW, CP5ED, CR6CA, EL2BE, HS3DR, KV4AD, OD5AP, PY7EC, SV1AL, VE5CK, W4NMK/MM, YV5CPA, ZD3D, 5A1TK, 5A3TX, 6W8DY, 9H1BG, 9J2DT which is pretty good for a t.r.f.
R. Pusey (London, N.2), KW201 and 20ft. whip at 30 ft logged this bunch on s.s.b.-CE3RR, CR6CA, HK3VA, HS3DR, JA3JAZ, JA6DCE, KH6GRW/P, KV4AD, KZ5JW, TU2BC, VK4HR, VK6KN, VP2BQ, VP8KD, VQ8CG, VS6AD, VU2DK, VU2OLK, YB $\varnothing A A C, 8$ P6AH, 9G1BS, 9J2RV.

NEWS

Happenings for the month of June include: June 5th-7th, special station from Edinburgh, callsign unknown; 7th-8th, National Field Day (start brushing up on your c.w. now); 22nd, 4-metre portable contest; 29th, Mobile rally at Longleat, near Warminster in Wilts; July 5th-6th, topband contest; 5th-6th, 2-metre contest; 6th, South Shields mobile rally.

RADIO STETHOSCOPE
Eacieat why to fault and-traces aignal from aertal to speather-when algnal stope you"ve found the thult. Use it on Realo, TV, plete tit comprises two special pransistora and all parts including probe tube and cryatal earpleoe. $89 / 8$-twin stethonat instead of earpiece 11/-axtra-poat and ins. 2/9.

MINIATURE

WAFER SWITCHES
2 pole, 2 way - 4 pole, 2 way-
8 pole, 3 way 4 pole, 3 way- 24 pole, 4 way -3 pole, 4 way- 2 pole, 6 way -1 pole, 12 way. All at $8 / 6$
each. $88 /$ dozen, your aseortment.

WATEREROOF HEATING
 ELEMTMNT
 26 yarda length 70w. Self-regulating

BATTERY CHARGER FOR NICADS This is in plartio case, aize $\delta \times 4 \times 31 \mathrm{nn}$. appror. All Wired up with 3 core output lead and 3 core mains input lead. Contalns mains tranaformer with 40 v . Also contandary full wave bridge rectifer, neo indicator, wired up with realators to charge 2 Nicad batteries stmultaneously. Charge rates of 50 mA and 25 mA respectively. Batteriea up to 50 volts may be charge
postage and insurance.

MAINS TRANSFORMER SNIP

 Haking a power pack for ment These transformore have normal maing primaries ($230 / 40 \mathrm{v}$.) and tholinted secondartes two types (1) 12 v .600 mA at

(
PPA ELDMHATOR. Play your pocket radio from the matnsl Bave \&a. Complete component Idt comprises rectiflers-mains dropper resistanoes, moothing condenser and instruc tions, only $6 / 6$ plus $1 /$-post.
WIDE ANGLE LENS FOR CLOSED CIRCUIT TV
16mm. Made by the f wise company, Kern Paillerd. Yyar $1.2 .8 \mathrm{f}=75 \mathrm{~mm}$. Brand new in leather case t99, which be les than hali current fiat price

TIMED SWITCH OR

 MEMORY JOGGERIf you are the forgetful type this can asve you ombarrasament. Pre-settable up to 12 hourb, oar or nywhere lndependently of the mains. Bwitch rated at 16A, 250V can control any type of alarm, $29 / 6 d$ less than half the current list prloe. Brand new and unused.

KETTLE ELE明ENT

$230 / 240 \mathrm{~V} 1500$ watt. Made by Best for kettles with $10 / \mathrm{s}$ in. dis. hole Including: Best, Beaco, Chalfont, Davidson, DimJurymad, Mirroware, Monogram, Pifco, Revo, Towen, swan.

MAIMS TRANSISTOR POWER PACK Dealgned to operate transistor sets and amplifiers.
 of the following batteries: PP1, PPS, PP4, PP6, PP7, PP9, and others. KIt comprises: maina craviormer rectifier, amootbing and load reaistor, ondensers and instructions. Real unip at only 10/8, plus $3 / 6$ poetage.

16 RPM GEARED MOTOR

 Made by 8mith's Electrics, these are almost at lent unaling, but are very powertar. they operate ram 16 r.p.m. 15/-. Post \& ins. 2/9.
REED SWITCH

sultable for dozens of different applications, sultable for doxens of ding burglar alarms, conveyor belt switching. Thete are simply glags encased switches With can be operated by a passing permanent magne coll. A spectal buy enables us to offer these at
/6 ason, or © / / a dosen. Auitable magnets are 1/- each.

ELECTRIC TIME SWITCH
Made by Smiths these are \triangle C mans operated, NOT CLOCKWORK. Ideal for mounting on rack or shel or can be built into box with 13A socket. 2 completely adjustable time periods per 24 hours, 5 amp changeover contacts will switch circuit on or off during these eriods. 59/6, post and ins. 4/6. Additional time

NICAD RECHARGEABLE CELLS

8.6 V 500mA alre lt I 1inin. dis. type ref. DKZ 600 really powerful will deliver 1 amp for thour. Regular price $32 / 6$ our price $17 / 8$ each. New and guaranteed. Other voltagea avallable ingle cell 1 -2V $0 / 6.6$ cell $6 \mathrm{~V} 29 / 6.9$ cell $10.8 \mathrm{~V} 47 / 6$.

REPAIRABLE RADIOS

7 transintor Key chain Radio in very pretty case,
size 2t $12 \ddagger$ I $1 \nmid i n,-c o m p l e t e ~ w i t h ~ s o f t ~ l e a t h ~$ istor superheterodyne. Frequency range: 530 to $1600 \mathrm{Kc} / \mathrm{s}$. Bendilivity: $\delta \mathrm{mv} / \mathrm{m}$. niermediske frequency: $406 \mathrm{Ko} / \mathrm{g}$, or 200 . o/a. Pow Loudspeaker: Permanent magnet type.
These radios require attention. Circuit diagrami in not avallable. Price only $17 / 6$ each plus $2 / 9$ poot and insurance. 4 radion 48 post free

LAST CHANCE FOR THIS BARGAIN

CASSETTE LOADED

 DICTATING MACHINE for only 99/6 Battery operated and with all acceasories. Really fantastic offer Arritish made 231 outat for only apeed and efficiency-cassette speed and emclency-cassette out for easy loading-all normal functions - accessories include: stethoscople earplece- cryatal microphone has on/off awltch-telephone pcis-ap-DON MIBS THIB UN REPEATABLE OFFER-SEND TODAY 4.18 .6 plus $7 / 6$ post and insurance Foot switch $18 / 6$ extra. Apare Cassettes at $4 / 6$ each, three for $10 /$

THERMOSTAT WITH PROBE This has a sensor attached to a 16 A switch by a 14in. length of Gexible capillary tubling-control range is $20^{\circ} \mathrm{F}$ to $160^{\circ} \mathrm{F}$ so it is suitable to when in buckets or portable vesaela an the sensor can be ratsed out and lowered into the vessel. This thermostat could also be used to sound s bell or other alarm when critical temp. is reached n stack or heap subject to spontaneous com bustion or if liquid is being hested by gas or other means not controllable by the switch Made by the famous Teddington Co., we ofler these at $18 / 6$ each. Poatage and lusurance 2/9.

MOTORISED CAM SWITCH

Made by the famous meter company Cuamberiain and Hookham, these have a normal mains $200-240 \mathrm{~V}$ motor which drives a ratchet mechaniam oo geared to give one ratchet action per minute on a wheel with 80 teeth thus a complete revolution of the cam takes place in one hour, the cam 480 operates 8 switches (our are possible). Contacta, rated at 15 ampe have been set for certaln afitch combinations but can no doubt, be altered to sult a special job. Also other awitch watera or devices can be attached to the ahaft which extend approximstely one inch. 47/6, p. \& ins. 4/6.

HI FI BARGAIN

ULL EI 18 INCE LOODBPEAKER. This is undonbtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's most famous makers, It has on die-caat metal frame and is strongly recommended for H1-Fi load and Bhythm Guitar and public address.
Flux Denslty 11,000 gauss-Total Flux 44,000 MaxwelisPower Handling 15 watts R.M.s. Cone Moulded fibre-Freq reaponse $30-10,000$ c.p.s.- ipecity 8 or 16 ohms-main re lugin-Bafle hole 1lin. Diam.-Mounting holen 4, holes-tin diam. On pltah circle 11 zan . diam.-Overall height $\delta \frac{1}{2} \mathrm{in}$. A \&
 ofter. 15in. 80 watt s7.19.6.

SNIPERSCOPE

Famous war-thue for seelng in the dark. This is an infra-red image con verter cell with an which lights ap (IFE a cathode ray tube when the electron when the olectran Infra-red strike it, A golden opportunity for some interesting experiments. 7/8 etach, poat 2/6. Dat will be supplied with celle, if requested.

AC FAN

Small but very poweriul maing motor With 8 in. blades. Ideal for ment or as extrac tor. Sllent but very emcient. 17/6, poe back or front from 4BA acrewa.

FLUORESCENT CONTROL KITS Hach Et comprises everen items-Choke, 2 tube Each sit comprisas starter, starter hooder and 2 tube cltpe, ofth shiting instructions. suitable for normal Guorescent tubee or the new" "Grolur" tubee for fish tank and indoor plants. Chokea ere eupersilent, montly reain fillind. Kit A-15-20 \quad. 19/8. KIt B- $80-40$ w. 19/6. Ktt C- $80 \mathrm{w} .19 / \mathrm{e}$
 and 12 in . mintature tabes, 19/6. Postage on KIt A and B $4 / 6$ for one or two vits then $4 / 6$ for each two kits ordered. Klts a, D and Eif $4 / 6$ on first Eit then $8 / 6$ for each kit orchered kit hirder
on first kit then $3 / 6$ on each two

TELESCOPIC
AERIAL
yor portable, cas radio or transmitter. Chrome pla it to 47 th . Hole in bottom for 6BA acrew. 7/8.
MOVING COIL METER BARGAIN Panel metera are always belng needed and they ar jolly costly when you have to buy them in a harry -so you thould take agvantage of this offer: 2 in move actrally F . metere and cont abot is each but if you don't want them for R.F, then all you have to do is to remove the thermooouple and you will have a 2-3 mA meter which you can mal into almoot ansthing by adding shunts or aerie rembior. New and onumed

MINIATURE RELAY
American make- 630 whm coll 20 - 80 volt opera tion-2 pole change over $/ / 8$ each, 48/- dom.

THERMOSTATS
Type "A" 15 amp. for controlling room hasters greenhouses, alring cupboard. Has epindie fo: pointer plus $1 /$ - post. Suitabla box for wall mountint 9/6 plus 1/- pos
Type "B" is amp. Tais da a 17 in . long rod type made by the famous Sunvic Co. Sptadie mdjust alters the setting so this coald be adjustable over 80° to $1000^{\circ} \mathrm{F}$. Buitable for controllin frinace, ove heater or to make flame-stat or fire alarm $8 / 6$ plus $2 / 6$ poat and insurance Type "D". We call this the ice-stat an it cute fin and out at around breezing poink, $2 / 3$ ampa. Ha many uses one of which would be to reep the lot pipes trom ireezing, ta a length of our blanket wire
$(16$ yda. $10 / \mathrm{s}$) to wound round the pipes. $7 / 8$. T. \& "P, "1/". This is standard refrigerator thermo stat. Sppadie adjustments cover normal refrigera tor temperature. 7/4, plus $1 /-$ pont. Type "F". Glase encased for controlling the temp. of llquid-particularly thooe in glass tanks, vat or ainks-thermoetet is hold (half submerged) rubber sucker or wrie olp-ides for an types Adjugtable over range 50° to $150^{\circ} \mathrm{F}$. Price 1e/phas 2/-poot and insurance.

Where poatage is not stated then orders over 23 are poot tree. Below \&s add $2 / 9$. post free. B.A.H. with enquiríes please.
 amplifier and pre-amp in which power suitable, giving much wider than usual compactness and true high-fidelity scope in the applications to which the standards are combined within a unit of $Z .12$ may be put. As well as hi-fi, these
very modest price. The most widely used
include systems for P.A. electronic unit of its kind in the world, the Z .12 has guitars, organs, intercan systems, an output of 12W R.M.S. continuous sine laboratory, education or industry. You wave (24 W peak) or 15 W music power will find the $\mathrm{Z.12}$ in use in such instances
(30 W peak). It has Class B ultralinear again and again. The Sinclair Z.12 is output which can be fed into any loud- agapplied ready built, tested and guaranteed, speaker from 3 to 15 ohms. (Two 3 ohm complete with manual of circuits and $\begin{array}{lll}\text { speakers can be used in parallet.) } & \text { Fre- } & \text { instructions for matching it to your precise } \\ \text { quency response- } 15 \text { to } 50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB} \text {; requirements. Two may be used in stereo }\end{array}$
 The Z. 12 will operate from any power with two 0.14 s , you will have an ideat
source between 6 and 20 V d.c. As such, high fidelity assembly.
from 60 to $16,000 \mathrm{~Hz}$ and outstandingly good transient response It will comfortably handle up to 14 W loading and is positively brilliant in stereo. Measuring $9 \frac{3}{4}$ in.
square by $4 \frac{3}{4}$ in. deep, this loudsquare by $4 \frac{3}{4}$ in. deep, this loud-
speaker is finished in matt black
with solid aluminium bar trim.
Try the 0.14 in your own home
 delighted with it, your money, including cost of return postage to Sinclair, New materials and original design techniques have been used to produce a speaker of fantastic quality
 and reviewers have enthusiastically endorsed its performance. The shape and size of the 0.14 make it far more adaptable to its environment than is the case with conven-

 heard. The Sinclair 0.14 has a substantially flat frequency response

BRAND NEW EMI Emitape

Famous British made tape-brand new and perfect in makérs sealed cartons
Type 88/4

Type 88/6
Туре 881/9
Type 88/12

300 ft 4 " Standard

 List price 11/ 600ft 5" Standard List price 21/10 $900 \mathrm{ft} 5 \frac{3^{3}}{}$ Standard List price 28/10 1,200f7" Standard List price $36 / 2$SALE PRICE 7/6 SALE PRICE 13/6 SALE PRICE 15/SALE PRICE 19/6

Post $1 /$ - per reel. Orders of 6 reels and over POST FREE
 NEW ${ }^{\text {scotch Tape } 5 z^{*}}{ }^{-1,200 f t}$ LP on 7" self-thread spool. List Price 36/-

SALE PRICE 27/11

WHARFEDALE BARGAINS

 Reflex Baffle Extension Speaker6in. L/speaker unit in polished walnut veneered wood cabinet, size $10 \times 8 \times 4 \mathrm{in}$. Volume control fitted. $1 \frac{1}{2}-5$ ohms imp. Complete in maker's carton with 5 ft . flex.
List price 76/11 SALE PR/CE 45/- P. \& P.3/6

Wharfedale "Truqual"

Constant impedance volume control. Provides attenuation from 0 to -24 dB in 5 steps plus OFF. For $1 \frac{1}{2}$ to 5 ohm speaker systems. Flush mounting.
List price 20/-
SALE PRICE 7/6
P. \& P. $2 / 6$

Hi-Sky HS-30 Cassette Recorder

High quality transistorised cassette recorder. Features include: Push button operation Record level meter Safety record button Operates on $4 \times \cup 11$ type batteries Complete with Real Leather case with carrying handle and accessory compartment. Dynamic remote control microphone and $C-60$ cassette. Brand new and boxed.
$\underset{\substack{\text { List Price } \\ \text { E21 }}}{ }$ SALE PRICE $£ 17.10 .0$
P. \& P. 6/6

WIRECOMP SPECIALITIES FOR THE ENTHUSIAST

Special displays of radios, recorders, record decks, tuners, amps.,

100 's of component bargains from our easy to see and choose from self service racks.
100's OF OLD TYPE VALVES - 2/- each
ASSORTED TRANSISTORS 9d each. 7/6 per doz
Huge stocks of shop soiled and reconditioned second hand
radios, record players, tape recorders, etc.
SPOT CASH PART EXCHAMGES
WE OFFER THE HIGHEST RATES IN LONDON
There's something for everyone
COME AND LOOK TODAY (Open 6 days a weekI)
ALL THESE ITEMS ARE AVAILABLE TO CALLERS ONLY

PERSONAL CALLERS TO

48 TOTTENHAM CT. RD., W. 1
Tel. 01-636 0647
MAIL ORDERSTO
378 HARROW ROAD, PADDINGTON, LONDON, W. 9 PLEASE NOTE: Owing to increased handling charges -
MINIMUM Mail Order value E1 (including postage).

NEWMARKET TRANSISTORS

NKT11	9/3	NKT452	12/6	BCY71	3	2N930	$1-$
NKT12	$7 / 3$	NKT453	81.	BCY72	$4 / 8$	2N1131	$8 / 6$
NKT72	$5 /=$	NKT603F	6/6	BDY20	2213	2N1132	10/-
NKT73	$5 /-$	NKT813F	$7 / 3$	BFX29	11/6	2N1302	416
NKT124	$8 / 6$	NKT674F	$51-$	BFX30	13/3	2N1303	4/6
NKT125	$5 / 8$	NKT677F	4/6	BFX84	616	2N1304	$5 /-$
NKT126	$5 /=$	NKT713	$51-$	BFX85	81	2N1305	$51-$
NKT135	$5 /-$	NKT717	$81-$	BFX86	616	2N1306	6/6
NKT137	816	NKTV34	5/-	BFX87	8/-	2N1307	8/8
NKT210	$5 / 8$	NKT736	$8 / 6$	BFX88	7/3	2N1308	816
NKT211	5%	NKT773	4/6	BFY50	5/-	2N1309	816
NKT212	5/-	NK'781	5%	BFY51	$4 / 6$	2N1613	$5 / 9$
NKT213	6/6	NKT10419	$5 /-$	BFY52	$5 /-$	2N1711	616
NKT214	4/6	NKT10519	5/9	BFY53	4/6	2 N 1893	$12 / 8$
NKT215	$51-$					2N2217	713
NKT216	101-					2N2217A	$15 / 6$
NKT217	$10 / 9$					2N2218	$8 / 6$
NKT219	$5 /=$		FERR	-NTI		2N2218A	101/
NKT223	$5 / 9$		TRANSI	STORS		2N2219	$10 / 9$
NKT224	416		TRANS	STORS		2N2219A	12/6
NKT205	4/8		ZTX 300	1/11		2N2220	$7 / 3$
NKT229	$5 / \mathrm{m}$		ZTX302	3/-		2 N 2221	$8 / 6$
NKT237	$7 / 3$		ZT44	12/9		2N22.21A	101-
NKT238	4/8		ZT1613	7/9		2 N 2222	10/9
NKT239	$51-$		ZT1700	17/9		2N2222AA	$12 / 8$
NKT240	4/6		ZT1701	\%2/6		2 N 2297	$9 / 3$
NKT241	5%		ZT3055	$20 / 6$		2N2368	$4 / 6$
NKT242	3/-		KR54	27/6		2N2369	4/8
NKT243	14\%		KR56	$27 / 6$		2N2369A	$5 / 6$
NKT244	$3 /-$		ZR12	16/9		2 N 2483	$8 / 8$
NKT245	$3 / 9$		ZS170	1/11		2N2484	1019
NKT261	$3 / 9$					2N220AA	1019
NKT262	$3 / 9$ $3 / 9$					$\begin{aligned} & \text { 2N2904 } \\ & \text { 2N2904 } \end{aligned}$	1019
NKT264	$3 / 9$ $3 / 9$					2N 2905	15/6
NKT272	$3 / 9$	NKT10339	816	BFY90	2818	2N2905A	18/0
NKT274	$3 / 9$	NKT10439	713	BSX19	418	2N2906	12/6
NKT275	3/9	NKT12329	11/6	BSX20	4/8	2N2906A	13/3
NKT281	$5 /$	NKT12429	14/-	BSX60	$16 / 8$	2 N 2907	14/-
NKT302	1816	NKT13329	5\%-	BSX61	10/-	2 N 2907 A	20/9
NKT304	$13 / 3$	NKT13429	5/=	BSY95A	3/9	2 N 3053	5/9
NKT351	$11 / 6$	NKT35219	22/3	2 N 696	5%	2N3055	$20 / 9$
NKT401	18/-	NKT16229	11/6	2N697	51	2 G 345	4/-
NKT402	$19 / 3$	NKT20329	12/6	2N706	$3 /-$	2G371	4/\%
NKT403	18/:	NKT20339	$8 / 8$	2N706A	$3 /-$	2 G 378	41-
NKT404	$13 / 3$	BC107	4/6	2N708	4/6	$0 \mathrm{OC2}$	101-
NKT405	$14 / 8$	BC108	3/-	2N709	11/6	$0 \mathrm{OC204}$	$61-$
NKT406	13/3	BC109	$4 / 6$	2N914	5/-	OC44	8/-
NKT420	40/-	BCY55	$701-$	2 N 918	11/6	OC45	$61-$
NKT451	13/3	BCY70	6)-	2N929	7/3	AsZ17	10/-
	Qua Dis	nt:	$25 / 49$ $50 / 99$ $100 / 299$ $300 / 999$ 1.000	$\begin{aligned} & 5 \% \\ & 10 \% \\ & 15 \% \\ & 20 \% \\ & 25 \% \end{aligned}$	one		

ORGAN BUILDERS:
SILICQN N.P.N. TRANSISTORS SUTTABLE FOR USE IN DIVIDER CIRCUITS- $1 / 6$ each or 25 per 100 .
UNMARKED TRANSISTORS (tested) slmilar to
2N753 1/6. BSY28 1/6. BSY65 1/6. OC44 1/6, OC71 1/-, OC72 1/-. 9/- each.

GLANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6 mA AT 6 VOLTS FROM DAYLIGFT: 67 mm . diameter $10 /$ - each. 50 mm . $\times 37 \mathrm{~mm}$., 2 for $10 /$ -
MULLARD NOLYESTER CAPACITORS FAR BELOW COST PRICE: $0.001 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.0015 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{tl} ., 0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.0022 \mu \mathrm{~F}$ $400 \mathrm{~V} 3 \mathrm{~d} ., 0.01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.15 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $0.27 \mu \mathrm{~F} 160 \mathrm{~V}$ $6 \mathrm{~d} ., 1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /-$
IRECORD PLAYER CARTRIDGES. COMPLETE WITR NEEDLES GP67/2 Mono 15/-, GP91/3 Compatible 21, GP93/1 Crystal Stereo 25/-, GP94/1 Ceramio 30/-

TRANSISTOIRISED SIGNAL INJECTOR KIT 10/-
SIGNAL THACER KIT 10/-. CAR REV. COUNTER KIT 10/-

VEROBOARD

Spot Face Cutter 7/8. Pin Insert Tool 9/6. Terminal Pins $3 / 6$ for 36 . Special Offer! Spot Face Cutter and $521 \mathrm{x} 1^{\circ}$ boards.......... $8 / 9$ only
PAPER CONDENSERS, M1xed bags $0.001 \mu \mathrm{~F}$ to $-5 \mu \mathrm{~F}$, $12 / 6$ per 100 . ILVER-MICA. Ceramic. Polystyrene Condensers. Well assorted
RESISTORS. Mixed types and values, $\frac{t}{}$ to 1 Watt, $6 / 6$ per $100.55 /-\mathrm{per}$ TRANSISTORS. Mixed unmarked mainly Mixed values. 20 for $10 /-$

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALP NORMAY, PRICE.
8 Watt $12^{\prime \prime}$ tube. Reflector type £2.19.6. 15 watt $18^{\prime \prime}$ Batten type £3.19.6. DEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENTI
ELECTROLYTIC CONDENSERS
$0.25 \mu \mathrm{~F} \quad 3$ volt $4 \mu \mathrm{~F} \quad 4$ volt
$1 \mu \mathrm{~F} \quad 8$ volt
$\begin{array}{ll}1 \mu \mathrm{~F} & 20 \text { volt } \\ 1-25 \mu \mathrm{~F} & 16 \text { volt }\end{array}$
$1-25 \mu \mathrm{~F} \quad 16$ volt
$\begin{array}{lr}2 \mu \mathrm{~F} & 3 \text { volt } \\ 2 \mu \mathrm{~F} & 350 \text { volt }\end{array}$
$\begin{array}{ll}2.5 \mu F & 16 \text { volt }\end{array}$

Orders by post to
G. F. MILWARD. DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and paciring. Minimum order 101-. Stamped addressed envelope must accompany any enquirles. For customers in Birmingham area goods may be obtained from Rock Exchanges. 231 Alum Rock Road, Blrmingham 8.

NEW PRICES ON NEW COMPONENTS

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm.): Body: $\frac{1}{d}$; 8×2.8

$$
\text { WW; } 10 \times 4 \cdot 3
$$

Leads: 35
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series).
5% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Series).
Prices--per Ohmic value.

		each	10 off	25 off	100 off
tW	10\%	2 d .	1/6	$3 / 3$	10/4
+W	5%	21d.	1/9	3/8	11/8
1W	10\%	21d.	1/9	3/8	11/7
1W	5%	3 d .	2/-	4/-	12/10

CAPACITORS

Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
$\pm 10 \%$ tolerance. 100 Volt Working.
Prices-per Capacitance value ($\mu \mathrm{F}$)
$0.001,0.002,0.005$,

$0.002,0.005$,	each	10 off	25 off	100 off
$0.01,0.02$	6 d.	$4 / 3$	$8 / 4$	$30 /-$
0.05	8 d.	$6 / /-$	$12 / 6$	$41 / 8$
0.1	10 d.	$7 / 1$	$15 / 6$	$51 /-$
0.2	$1 / 2$	$10 /-$	$20 / 10$	$68 / 6$
0.5	$2 /-$	$17 / 6$	$37 / 6$	$125 /-$

100 off

Polystyrene film, Tubular, Axial leads. Unencapsulated. $\pm 5 \%$ or $\pm 1 \mathrm{pf}$ tolerance. 160 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
$10,12,15,18,22,27,33$, each 10 off 25 off 100 off $39,47,56,68,82,100,120$,
180, 220, 270, 330, 390.
$470,560,680,820,1,000$,
2,200, 3,300, 4,700, 5,600
$6,800,8,200,10,000,15,000$
22,000
sd.
sd. $\quad 3 / 7$
$7 / 9$
$8 / 8$
$10 / 10$
$13 /-$
$18 /-$ $24 /-$
$26 / 8$
$33 / 4$
$40 /-$
$45 / 4$
Polystyrene film, Tubular, Axial leads. Professional Grade. Hard Epoxy Resin encapsulation.
$\pm 1 \%$ tolerance. 100 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$-except where stated).
100, 120, 150, 180
each 10 off 25 off

220, 270, 330, 390, 470,
$\$ 60,680,820$,
$1,000,1,200,1,500$,
2,200, 2,700
,4,700, 3,600 :
10/2 $21 / 2$
10/8 23/1
100 off
64/6
71/-
92/-
96/-
$6,800,8,200,10,000,12,000$
$15,000,18,000$

$22,000,27,000$
33,000
19,000

47,000, 56,000
68,000
82,000
$0.1 \mu \mathrm{~F}$
${ }_{0}^{0.12 \mu F}$
$0.12 \mu \mathrm{~F}$
$0.15 \mu \mathrm{~F}$
$0.18 \mu \mathrm{~F}$
$0.22 \mu \mathrm{~F}$

POTENTIOMETERS (Carbon)
Superior grade enclosed controls. Low rotational noise. Body Dia. 1 in., Spindle 2 in . $\times \mathrm{tin}$. Tolerance 20% Linear: 1 K to 2 M . (fW . at $40^{\circ} \mathrm{C}$.). Logarithmic: 5 K to 2 M . ($\frac{1}{\mathrm{~W}}$. at $40^{\circ} \mathrm{C}$.).
$\begin{array}{lllll}\text { Prices-per ohmic value each } & 10 \text { off } & 25 \text { off } & 100 \text { off }\end{array}$
GANGED STEREO POTENTIOMETERS (Carbon)
$\$ \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. Long Spindle.
Logarithmic and Linear: $\mathbf{5 k}+\mathbf{5 k}$ to $\mathbf{1 M}+\mathbf{1 M}$.
$\begin{array}{lcccc}\text { Prices per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 8 /- & 70 /- & 162 / 6 & 575 /-\end{array}$

SKELETON PRE-SET POTENTIOMETERS (Carbon)

High quality pre-sets suitable for printed circuit boards of $0 \cdot 1$ in. P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $1 \mathrm{M}, \pm 30 \%$ above $\ddagger \mathrm{M}$. Horizontal ($0.7 \mathrm{in} .+0 \cdot 4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.). Subminiature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above.
Prices-per ohmic value
Miniature (0.3W) . .
Subminiature (0.1 W)

each	10 off	25 off	100 off
$1 /-$	$8 / 9$	$18 / 9$	$66 / 8$
10 d.	$7 / 1$	$14 / 7$	$46 / 8$

JACK PLUGS
tin. Type P1. Standard. Screened. Heavily chromed.
tin. Type SE/P1. Side-entry version of Type P1.
tin. Type P2. Standard. Unscreened. Unbreakable moulded cover. tin. Type P3. Tip-Ring-Sleeve Stereo version of Type P1
in. Type P3. Tip-Ring-Sleeve Stereo version of Type P1.
tin. Type P4. Tip-Ring-Sleeve Stereo version of Type P2.
tin. Type P4. Tip-Ring-seeve Stereo version of Type P2
3.5 mm . Type P5. Standard. Screened. Aluminium cover.
3.5 mm . Type P6. Standard. Unscreened. Unbreakable moulded cover

Prices	each	10 off	25 off	100 off
Pl	3/-	26/8	62/5	233/4
SE/P1	3/6	30/10	66/8	2801-
P2	2/6	23/4	54/2	200/-
$\mathrm{P}^{\text {P }}$	$6 / 6$	60/-	137/6	5001-
P4	6/2	59/6	127.6	455/-
P5	2/2	19/2	43,9	158/4
P6	1/8	15/-	$33 / 4$	$116 / 8$

JACK SOCKETS
tin. Type S3. Stereo version for use with P3 or P4 plugs.
tin. Type S5. Standard. Moulded body. Chrome insert.
3.5 mm . Type S6. Standard. Moulded body. Chrome insert. Available with make or break contacts on Tip, Ring and Sleeve. $\begin{array}{lcccc}\text { Prices } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ \text { S3 } & 3 / 3 & 30 /- & 68 / 9 & 250 /- \\ \text { SS } & 2 / 9 & 25 /- & 56 / 8 & 216 / 8 \\ \text { S6 } & 1 / 6 & 13 / 4 & 33 / 4 & 100 /-\end{array}$
ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.
$\begin{array}{lll}\text { Subminiature (all values in } \mu_{2} F \\ 4 \mathrm{~V} \\ 6.4 \mathrm{~V} & \ldots & \ldots\end{array}$

32	64	125	250	400
25	50	100	200	320
16	32	64	125	200
10	20	40	80	125
$6 \cdot 4$	$12 \cdot 5$	25	50	80
4	8	16	32	50
2.5	5	10	20	32
$1 / 3$	$1 / 2$	$1 /-$	$1 / 1$	$1 / 2$
	1,250	2,000	3,200	
	1,000	1,600	2,500	
	640	1,000	1,600	
	400	640	1,000	
	250	400	640	
	160	250	400	
	100	160	250	
	$2 /-$	$2 / 6$	$3 /-$	

POLYESTER CAPACITORS (Mullard)
Tubular $10 \%, 160 \mathrm{~V}$: $0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6$. $0.68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015$,
$0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2$. $0.22 \mu \mathrm{~F}, 1 / 6.0 \cdot 33 \mu \mathrm{~F}, 2 / 3.0 \cdot 47 \mu \mathrm{~F}, 2 / 8$.
Modular, metalised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0-22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}$, $1 / 5.0 \cdot 47 \mu \mathrm{~F}, 1 / 8.0 \cdot 68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81,
OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AF115, AFi16, AF117, ACY19, ACY21, 3/3. OC140, 4/3. OC200, 5/-. OC139, 5/3. OC25, 7/-. OC35, 8/-. OC23, OC28, 8/3.
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.I.V., 4/-. (0.75A): 200 P.I.V., 1/6. 400 P.I.V., 2/-. 800 P.I.V., 3/3. (6A): 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.I.V., 5 /-. 800 P.I.V., $6 /$-.
THYRISTORS (5A): 100 P.I.V., 8/- 200 P.I.V., 10 \%. 400 P.I.V., 15/SWITCHES (Chrome finish. Silver contacts): 3A 250V, 6A 125V. Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/-.
ROTARY SWITCHES (Wafer)
High quality. Rear tags. Long spindle, tin. dia.
$1 \mathrm{p} / 12 \mathrm{w}$. $2 \mathrm{p} / 6 \mathrm{w} .3 \mathrm{p} / 4 \mathrm{w} .4 \mathrm{p} / 3 \mathrm{w}$. $2 \mathrm{p} / 3 \mathrm{w}$.
Prices
All Types
$\begin{array}{cccc}\text { cach } & 10 \text { off } \\ 4 / 6 & 38 / 4 & \begin{aligned} & 25 \text { off } \\ & 83 / 4\end{aligned} & 100 \text { off } \\ 283 / 4\end{array}$
PRINTED CIRCUIT BOARD (Vero).
 $5 \mathrm{in}, \times 3$ inin., $5 / 6$.
 3站in., 5/3.

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PW) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 53687
(Visit us-at our new Mail Order, Wholesale and Retail Premises)
MINIMUM ORDER VALUE 5/-.
C.W.O. Post and Packing 1/6

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W.1.

KING OF THE PAKS SUPER PAKS
 Unequalled Value \& Quality BI-PAK NEW-UNTESTED SEMICONDUCTORS

Satisfaction GUARANTEED in Every Pak, or money back

	120 Glass Sub-min. General Purpose Germanium Diodes
U2	60 Mixed Germanium Transistors AF/RF
U3	75 Germanium Gold Bonded Diodes sim. OA5, OA
U4	40 Germanium Transistors like OC81, AC128
U5	60200 mA Sub-min. Sil. Diodes
UB	40 Silicon Planar Transistors NPN sim. BSY95A, 2N706
U	16 Silicon Rectifiers Top-Hat 750 mA up to 1000 V
U8	50 Sil. Planar Diodes 250 mA OA/200/202
U9	20 Mixed Volts 1 Watt Zener Diodes
U11	30 PNP Silicon Planar Transistors TO-5 sim.
U12	12 Silicon Rectifiers EPOXY BY126/127
U13	30 PNP-NPN Sil. Transistors OC200 \& 2S104
U14	150 Mixed Silicon and Germanium Diodes
U15	30 NPN Silicon Planar Transistors TO-5 sim. 2N697
U16	10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV
17	30 Germanium PN P AF Transistors TO-5 like ACY 17-22
U18	6-Amp Silicon Rectifiers BYZ13 Type up to 600 PIV
U19	30 Silicon NPN Transistors like BC108
U20	121.5 Amp Silicon Rectifters Top Hat up to 1000 PIV.. 10
U21	30 A.F. Germanium alloy Transistors 2G300 Series \& OC71 10
U22	10 1-Amp Glass Min. Silicon Rectifiers High Voits 10
U23	30 Madt's like MAT Series PNP Transistors 10
U24	20 Germanium 1-Amp Rectifiers GJM up to 300 PIV.. 10
U25	$25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2 N 708 , BSY27
U26	30 Fast Switching Silicon Diodes like IN914 Micro-min
U28	Experimenters' Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces
U29	101 Amp SCR's TO-5 can up to 600 PIV CRSI/25-600
U30	15 Plastic Silicon Planar trans. NPN 2N2924-2N2926.
U31	20 Sil. Planar NPN trans. low noise 2N3707 10
U32	25 Zener diodes 400 mW DO-7 case mixed Vlts. 3-18
U33	15 Plastic case 1 Amp silicon rectifiers W4000 series. ... 10
Code Nos, mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked	

FULLY TESTED	
AC107.	3/6
AC126.7-8	2/6
AF118-11:	3/8
AF139	101-
AL102	151-
BC107-8-9	5/-
BFYB0-51-52..	$7 / 6$
Bsy $26-7$	3/6
BSY 28.9	4/8
BSY95-95A	$4 / 6$
OC22-25	$51-$
OC28-35	B/-
0 C 28.29	$7 / 8$
OC44-45	1/9
OC71-81	$1 / 8$
$0 \mathrm{C72} .75$	$2 / 6$
OC81D-82D	$2 / 3$
OC82	2/8
OC140	5/-
OC170	2/6
OC171.	3/8
$0 \mathrm{CL201}$	$7 / 8$
ORP12-60	$8 / 8$
OCP71	$8 / 6$
OA5-10	$1 / 9$
0 A47	2/-
OA70	${ }_{1 / 9}^{1 / 3}$
OA81-85	1/6
0 OA91	1/3
0495	1/9
OA200	31
OA202	$3 / 6$
$2 \mathrm{~N} 690 \cdot 7$	51.
2N706	$3 / 6$
2N708	5/-
2N2160	151-
2N2646	$151-$
2 N 2712	
2N2926	$2 / 6$
MAT100-101	$81-$
MAT120-121	$8 / 6$
ST140	3/-
ST141	4/-

SIL. RECTS TESTED	TESTED SCR's
PIV 750 mA	1 AMP
$\begin{array}{llllll}50 & 1 /-2 / 9 & 4 / 3 & 9 / 6\end{array}$	25
$\begin{array}{llllll}100 & 1 / 3 & 3 / 3 & 4 / 6 & 15 /-\end{array}$	$\begin{array}{lllll}50 & 7 / 6 & 8 / 8 & 10 / 6\end{array}$
$200 \begin{array}{lllll} \\ 200 & 4 /-4 / 9 & 201\end{array}$	$100 \quad 8 / 610 /-151$
$\begin{array}{llllll}300 & 2 / 3 & 4 / 6 & 8 / 8 & 28\end{array}$	200 12/8 151
$\begin{array}{llllll}400 & 2 / 8 & 5 / 6 & 7 / 6 & 251-\end{array}$	300 15/-20/-
$\begin{array}{llllll}500 & 3 /-\quad 8 /-8 / 6 & 30\end{array}$	$40017 / 6$ 251- 35/
	500801
$\begin{array}{ccccc}800 & 8 / 8 & 7 / 8 & 11 /- & 40 / \\ 1000 & 8 /- & 9 / 3 & 12 / 6 & 50 /-\end{array}$	
$\begin{array}{llll}1000 \\ 1200 & 8 / 8 & 11 / 8 & 15 /\end{array}$	
PRINTED CIRCUITS EX-COMPUTER	IRCUITS
Packed with semicon- ductors and components,	with zener output.
$\begin{aligned} & 10 \text { hoards give a guar } \\ & \text { teed } 30 \text { trans nad } \end{aligned}$	Type 701C. Ideal
	Full Data. Our Pri
UNIJUNCTION	Fairchild Epoxy TO-S
UT46 Eq.t. 2N2646. $7 / 6$	Lead. I.C.
	14 Duar
FET's	uL923 J.K. Flip Flop
2N3819 101	1.C. Data Circuita etc.
	Mullard I.C. Amplife
$105 \cdots \cdots \cdots{ }^{81}$	263 Min AF Amp 18
	Tan293 G.P. Amp
	RCA CA3020
15)	Audio Amp

TRANSISTOR EQUIVALENT BOOK

52 pagea of Cross Referencea for tranaistora and diodes, types include Britibh, European. American aud Japanese
speclally imported by EI-Pa
PLEASE NOTE.-To Avold any further Increased Postal Return Poatal Bervice" which is second to none, we have re organized and streamHued our Despatch Order Department and we now request you to send all your orders together with your remittance, Direct to our Warehouse and Despatch Department. postal address :-BI-PAK GEMICONDUCTORS, Despatch Dept., P.O. BOX B, WARE, HERTs. Pootage and Packing still 1/- per order. Mínimum Order 10/-.

ELEGTROVALUE

everything brand new and to spec. no SUrplus

SPECIALIST SUPPLIERS OF TRANSISTORS

IN TYPES TO SUIT ALMOST ALL APPLICATIONS

- COMPETITIVE PRICES
- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE PACKED WITH UP TO THE MINUTE ITEMS AND INVALUABLE INFORMATION. Send $1 / 6$ for your copy now.
- DISCOUNTS- 10% on orders for components for £3 or more. 15\% on orders for components for $£ 10$ or more.
- POSTAGE on order for $£ 1$, add $1 /-$. FREE on orders for f 1 or over.
Overseas orders welcome-Carriage charged at cost.

ELECTROVALUE

(Dept. PW), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY. Tel: Egham 5533 (STD 0784-3)

in our Budget combination storage unit!

Think what you could put in it!
Storage. Lots of it. for a thousand things you stock; replacement parts: light bulbs; cameras; anything up to $7 \times 8 \times 10 \frac{7}{1} \mathrm{In}$. Safety drawer-stops as 'standard'. Smooth guide runners thro'out. All in a compact 3 ft . 6 in . high, 2 ft .11 ln . wide, 1 ft . deep area. Ready assembled, in stove enamelled green or grey. With 18 handy, 6 large, 8 king-slzed drawers. At $\mathfrak{x} 17 \mathrm{5s}$ worth every penny! See the rest of the N. C. Brown rangel

몸몽 NC. BROWNLTD.
 pacesetters in storage equipment

Send vour free broch. Name
URE \square or Send \square (how
1 manr) Budget Storage Units
at £17. 5 s . in green or
grey.
Dopt. PW Eagle Stoolworks. Hoywood, Lancs. Tel: 69018
(1) 25.27 Newton St., W.C.2. Tel: 01.4057931

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS

Chassia $12 \ddagger \times 5 \neq 4 \ddagger \mathrm{in}$ ．high Front panel alum and black－ 121 I 4inn．200－250 A．C． Maind Trans．Off／On－Tone Vol．／Mic．；Vol．／Gram．；Mic． Input；Gram．Input；Moni－ tor；Valves 6BR7，ECC83 EM84，EL84 and Rect． Track 810.10 .0 ； 4 Track 818 （12／6 p．\＆p．）．Ready for bolt ing direct to Magnavor deck．

PULLI BUILT $8 T E R E O$ AMPLIFIRR． 2×3 watts，mains trans．，metal rect．， $2 \times$ UCL82 2 op trans for 3 ohm vollon－off，tone，balance，chasals type with 3 controls on front． 11×3 ．$\times 4$ in．high． $26(\mathrm{R} /-\mathrm{p} . \& \mathrm{p}$.$) ．$

8W．PEAK PUSH－PULL OUTPUT AM LIPIER，800－250V A．C．EZ80，ECC83， post paid）．Size $12 \times 3+\times 6 \mathrm{~m} . \mathrm{high}$ ．For Record Player，Radio Tuner，etc．
（ains Trans，o．p．trans，for 3 ohm

6 PUSH－BUTTON STEREOGRAM CHASSIS

M．W．；B．W．1；8．W．2：V．H．F． Tone；Mains Trans；200－ 250 Volts； 2 o．p．for 3 ohm． peakera on Radio．Chasai size： $15 \times 7 \times 61 \mathrm{~m}$, high．Dial ilver and black 15 I $3 \mathrm{in}, 190$ V50M； $18-51 \mathrm{M} ; \quad 60-187 \mathrm{M}$ VHF 86－100 Mc／a．Vaivea CCL85 ECH81．EF89， 2 BCL86 EM84 and Rect Wrice 819．18．0，carr．paid \＄7．10．0 extra．

GLADSTONE RADIO
66 ELMS ROAD，ALDERSHOT，Hants．
2 mins，from Btation and Buses）．FULL GUARANTEE．Adorthot geseso CLOGED WEDNESDAY

YOUR CAREER in RADIO \＆ ELECTRONICS？

Big opportunities and big money await the qualified man in every field of Electronics today－both in the U．K．and throughout the world．We offer the finest home study training for all subjects in radio，television，etc．，especially for the CITY \＆GUILDS EXAMS（Technicians＇Certifi－ cates）；the Grad．Brit．I．E．R．Exam．；the RADIO AMATEUR＇S LICENCE；P．M．G．Certificates；the R．T．E．B．Servicing Certificates；etc．Also courses in Tele－ vision；Transistors；Radar；Computers；Servo－mech－ anisms ；Mathematics and Practical Transistor Radio course with equipment．We have OVER 20 YEARS＇experience in teaching radio subjects and an unbroken record of exam．successes．We are the only privately run British home study College specialising in electronics subjects only． Fullest details will be gladly sent without any obligation．

To：British National Radio School，Reading，Berks．

Ploase send FREE BROCHURE to

NAME ．．Block ADDRESS ．．．Caps．

Please
7／69

BRITISH NATIONAL RADIO SCHOOL

TRANSISTORS etc．
AC107
ACl2
AF115
AF116
AF117
BFY18
BFY51
GET113
OAS
OAS
0.9
089
0 A 81
OA85
OA91
0 C 23
0 C 25
0
0 C 26

$0 \mathrm{CB5}$
$0 \mathrm{C45}$
$0 C 70$
0071
$0 C 72$
$0 \mathrm{C73}$
$0 \mathrm{C81}$
OC82D

0 C 28
Crystal Diodea－6 for $2 / 6$ ．（7d．）．

GILCON DTODE		Cidset ．avetroly
		Conds．Wirs \％nds
BY100 800 ply	8／10	At 0d．exoh
New 500 mA		0.8μ

A．	
$0.8 \mu \mathrm{~F}$	-25 volt
$2 \mu \mathrm{~F}$	180 volt
$4 \mu \mathrm{~F}$	160 volt
$640 \mu \mathrm{~F}$	2.5 volt
At 9 d.	
$2 \mu \mathrm{eah}$	
$4 \mu \mathrm{~F}$	300 volt
$8 \mu \mathrm{~F}$	12 volt
$16 \mu \mathrm{~F}$	12 volt
$30 \mu \mathrm{~F}$	16 volt
$100 \mu \mathrm{~F}$	10 volt
$125 \mu \mathrm{~F}$	4 volt
At $1 /-$ sach	

available on request． 1600 MFD .25 V 4／－ Also $8 \mu \mathrm{~F} 350 \mathrm{~V} 1 / 8,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 8$ and $50 \mu \mathrm{~F}$ 60V $1 / 9$ ．Other electrolytics in current litat． Postage，Packing and Insurance all above 7d．up to $3 ; 1 /$－from $4-11$ ； 12 and over patd
2 GANG YAR．CONDENSHR：Mod．，air－spaced， 000 sea ．sec． $5 /-(1 /-1$ ． 2 GANG 7AR．CONDENSER：Mod．，air－spaced， 0008 ea，8ec． $5 /-(1 /-8 / 2$（either 7d）．
 － $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ volts $\mathbf{A . C .} \quad 0-50 \mu \mathrm{~L} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D．C． $0-6 \mathrm{~K} \Omega / 6 \mathrm{meg} \Omega$ －Over－losd protected 1969 model with every refinement． 14.7 .6 （2／G）．JUSIOR MODEI at $47 / 6$（2／6） 1000 ／／V deacribed in free tipt．
SOLDERING IRON．Blim Mod，British High speed， 8 tin．，all parts replaceable，fulty guaranteed for professional，radio and general D．I．Y．use．19／8（1／－）
DIAMOND STYLII Replacements for BAR TC8LP．TC8 and TC8LP／STEREO： COLLARO＂O＂；RONETTE BF40LP；GARRARD GC2LP And GC8LP；ACOB GP65／67： all at $7 / 6$ each（6d．）．ACOB GP91 BT／LP；B8R 8T4 and 8T9；8ONOTONE 9TA and 9TAHC，PHILIPS Ag3306， 8060 （3063，3066，3301， 3302,3304 ）state whe ther long or
short type，all at $18 / 6$（ 6 d. ．
GP91 at 8／9（ $6 d$ ．）．No other typea at present，and no 78 rpm avallable in any type． Mono de Luxe GP91／8，17／－Sted Styli and Btandard fittinga．Mono GFsion monaurally with min．wear，GP91／8C，19／6．Lateat Stereo GP98，88／－．Ceramic Stereo，top quality for expenaive outfits，GP94， $28 / 6$（all 1／－）．
PPS RLMMNATOR（A．C．）17／6．（1／6）TWO STATIOM TRAN8．INTER－COM．EXcellent baby alarm．Instant，easy fitting with leads，plugs and battery．All Fou require $58 / 6$（ $3 /-$ ）． TRANBISTORISED AMPLITIERS， 3 watt， $9 V$ operation， $4 / 6$（ $1 / 6$ ）； 71 writ， 6 trans． 24V operation， $67 / 6$（2／6）．
Extra High Torque Minimotor， $4 \frac{1}{2}$ to $12 \mathrm{~V}, 1 \frac{1}{}$ xin． $8 /$－（9d．）． 9,000 r．p．m．
8UBSIITUTION BOXES，Capacitance 24／9（1／6）．Realstance sg／8（1／i／6）．Both full range and complete．Full details in Hat． 4／9（9 d）．
RTCORDING TAPR：Fineat quality Britigh Mylar．8TAMDARD； $5 \mathrm{in} .600 \mathrm{ft} .7 / 8$ ， 5 fin ．
 18／－（1／3 reel）．Still the fneat quality and value obtsinable．
IICROPHONEB－CRYBTAL．MIC91，Deak，18／8；MIC45，ourved hand grip 17／8；atick ＂ 60 ＂ $80 / 8$ ：Stick＂ 39 ＂ $26 / 6$（ $1 / 6$ each type）．Cream plantic hand type 7／6，or whth＂strut＂ stand，awitch and 2 leads with 2.6 and 3.6 plugs $11 /$－．Lapel（or hand）with clip $6 / 6(1 /-)$ ． 25／－（1／6）．DYNA 10 ．Cresm hand／table 14／－（1／－）．M10 60 K 0 fte standard floor stanas， Adaptor and Neck Cord $87 / 6$（2／6），造811，similar，but fixed on flexible 8 I Im．With Basce， Alted base $42 / 6(2 / 6)$ ．Dinies Uni－directlonal， $50 \mathrm{~K} / 600 \mathrm{ohms}$ imp，ntand adaptor，very high quality $64 \times 2 \times 11^{\prime \prime}$ ，E8． 9.6 （ $\left.5 /-\right)$
CARDIOID DYKA EIC OMNI－DIRECTIONAL：Two recently intraduced highly succesaful mikes＇SQUARE＂208，26．10．0．＂BALL＂＇type，209，with bult－in vol．control，switch $50 \mathrm{~K} / 600$ ohms imp， $25,77.6$（either type $5 f-$ ）．Fall detalls in list．
MICROPHONE IN8GRT8：Diameter 1.75 in, or 0.9 in either sise $8 / 6(8 \mathrm{~d})$ ）． 21 in .80 $6 / 6(1 /-) ; 6 \times 4$ heavy duty $3 \Omega 18 / 6$（3／6）or for Stereo $82 / 6$ pair，post etc．paid； $8 \times 3 \ln$. ， $3 \Omega, 8 / 6(1 /-)$ ．Limited quantity powerful $21^{\prime \prime}$ PM transistor replacement speaker，high ohms，excellent， $5 / 6$（1／－）．HEADPHONEs High Res． 20000 aa．Earplece 18／8（1／6）； Stereo Dyn 8－16』，68／－（3／－）；EARPIECKs with lead etc．，Mu．Plug Magnetic 1／6； Crystal $4 / 8$（elther 7 d.$)$
AERIALS，Ger Types：Telescoplc，vandal proof，locks retracted， 2 keya and all fittinga， \＆2／6（2／6）Motor driven， $12 \mathrm{~V}, 5$ gection，complete $87.10 .0(5 /-)$ ．
 7－Section 5－ 382 in ，no swivel，screw hole in base， $6 / 6$ ． 10 －seotion $61-47 \mathrm{im}$ ，no swivel，

SWITCHRS：Standard toggle，metal， 250 V 2 A ．One hole fixins：SPST 8／8，SPDT $8 / 8$. DPBT 8／－．DPDT 8／8．slide types．Sub－min．DPDT $1 / 6$ each．Smail DPDT 3 way，centre ＂off＂1／9．Reed magnetdc on／off 1／9（7d．each，all types）．Rotary switchea eto．In Hat． VIBRATORs：Famous maker only， 12 volt 4 pin non－synch $8 / 6$ ． 12 volt 7 pin aynch 10／－． 6 volt 7 pin synch $10 /-$（ 1 －each，all types）．
MALTS NEON TERTEE：Fly leads 2／－（7d．）．Pocket acrewdriver type 3／6（6d）．PLOGS；Gtd． Jack，plastlc body $2 / 8$ ．screened 8／－．Sockets $1 / 6$（all 7d．）．VALVF HOLDMRS：B7G or
 per δ colls）．PICK－UP WIRE：Twin 太uper thin Flex，Bereened，Bheathed， $1 / 8$ yd．（ $8 \mathrm{~d} . \mathrm{up}$ to 6 yds．，over 6 yds．post free）．TWIN MIKE CABLE： $1 / 8$ yd．BINGLE THKi OABLE； 7d．yd．Both flexible，screened and sheathed．FBHEDE CABLE：Twin r．f．bal，＂fig．8＂＇ 800 ，or flat $300 a$ transparent polythene inatalated，elther $6 d$ per yd．（all cables up to three yards 8d．，each additional yard，Id．extra）．
R．F．INDICATOR， 5 －Band，with meter antenna，monitoring crystal earplece etc．，48／6 （1／6），Detalls in list．
RETRACTABLE FLIGXIBLE LMADS．Space baving＇Curly＇，many uses to car and home： with pbono plug eacb end， $6 \mathrm{ft.,4/6} ; 12 \mathrm{ft} ., 7 / 9$ ．With phono pluy one end，phono socket at other， $8 \mathrm{ft} ., 5 /-, 12 \mathrm{ft} ., 8 / 8$（ 9 d ，on any）．
CAR RADIO：Splendid new All－Britiah dash－mounting radlo using Mullard transiatoro －chassis．sil．11．0（6／6）．
OURRENT LIST：Fent with all orders or free fors．a．e．detaile of cable，croo．，clips and leads， Contlnental din plugs for Grundig．Telefunken equipment，etc．，digis，plugk and oockets， panel meters，record player and tape recording accessories．BATTERY CRARGERS， test equipment，test prods，tape recorder，special transistors，portable seta，car radio， cancels all previous ones and lists supplied prior to April 30th

FELSTEAD ELECTRONICS

（PW20）
longley lane，gatley，CHEAdLE，ChESHIRE，SK8 4EE
TERMS：Cash with order only．No C．O．D．or caller service．Post，packing and lnsuranoe charges are shown in brackets after all items．Regret orders umder $6 /$－plua carriage cannot aly．Overgeas alr or surface mall extra at cost，plus $3 / 2$ registration or lnsurance fee． S．A．E．please for all enguiries，othernotse repret cantot be replied to．

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /$-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C.4. for insertion in the next available issue.

SITUATIONS VACANT

TV and Radio, A.M.I.E.R.E., City \& Guilds R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For fuil details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc, write for 132 page Handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E. A.M.S.E. (Mech. \& Elec.), City \& Guilds. A.M.I.M.I., A.I.O.B., and G.C.E. Exams Diploma courses in all branches of Engineering -Mech., Elec., Auto., Electronics, Radio Computers, Draughts., Building, etc. For ful details write for FREE 132 page guide details write fris INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

SERVICE ENGINEERS-we are an old established electronics company, but headed by a young management team and we need you to help us. Age is no barrier to a high salary as you will find out when you join us. If you have experience in T.V., Radio or Hi-Fi Service and want a job that looks ahead phone Michael Adler at 01-636 9606 .

RADIO TECHNCIANS

Vacancies to be filled by DCTDBER 1969

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK including London). There are also opportunities for service abroad.
Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of Electro-mechanical equipment will be an advantage.
Pay according to age, e.g. at 19-6869 at 25 - $£ 1,130$ (highest age pay on entry) rising by four annual increments to $£ 1,304$.

Prospects of promotion to grades in salary range $£ 1,217-£ 2,038$. There are a few posts carrying higher salaries.
Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply
Application forms available from:
RECRUITMENT OFFICER (RT 37/54)
GOVERNMENT COMMUNICATIONS HEADQUARTERS,
OAKLEY, PRIORS ROAD,
CHELTENHAM, GLOS. GL52 5AJ

MISCELLANEOUS

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions $19 / 6$ C.W.O. 'Circuitetch', 12 Cambridge Road, St. Albans, Herts.

BUILD IT in a DEWBOX quality cabinet. 2 in. $x 2$ in. x any length. D.E.W. Ltd., Ring wood Road, FERNDOWN, Dorset. S.A.E. for leaflet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10 s . (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

YOUR CALL SIGN ENGRAVED. White Letters Black Plate $6 \times 1 \frac{1}{\mathrm{i}} \mathrm{in}$. 5/6. $2 \times \frac{1}{\mathrm{i}} \mathrm{in}$. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled, Northern Road, Cosham, Portsmouth. PO6 3EP.

ELECTRONIC SOUND and musical devices required for exploitation. Adequate finance required for exploitation. Adequate finance available, Projects developed to pre-production
stage required. Royalty payments guaranted. stage ${ }^{\text {r }}$
Box 87

THE NEW

ELECTRONIC MUSIC FOR YOU
Then how about making yourself an electric organ? Constructional data availablefull circuits. drawings and notes! It has stops-uses 41 valves. With its varlable attack you can play Classics and Swing. Write NoW for free leafiet and further details to C. \& S., 20 Maude Street Darlington, Durhan. Send 4d. stamp.

MUSICAL MIRACLES. Send S.A.E. for details of Rhythm Modules, versatile basspedal unit, self-contained with unique effects kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters, 25/- post paid. HURRY. D.E.W. Lid. 254 Ringwood Road, Ferndown, Dorset.

ELECTRICAL

BEST EVER $200 / 240$ VOLT "MAINS" SUPPLY FRON 12 VOLT CAR BATTERY Exclusive World Bcoop Purchase. The fabulous Mk, 2D Americsn Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most
Brilliant $200 / 240$ volt performance of sll time Marvellous for Telovision, Drills, Power Tool Mains Lighting, AC Fluorescent Lighting and all 200/240 volt Uuiversal AC/DC mains equipment Made at tremendous cost for U.S.A. Govt. by Delco-Remy. This magoificent machine is unobtaid able elsewhere.
Brand New and Fully Tented. only 84.19,6, plus 10/6 postage.C.O.D. with plearure. Money back if no delighted Please send s.a.e. for interesting illus detalls.
Dept. PW 8TANFORD ELECTRONIC8. Bear Derby Road. North Promenade. Blackpool, Lencathire.

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

EDUCATIONAL

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc. highly informative 120 -page Guide-free CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.1.

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132 -page Handbook-FREE. B.I.E.T. (Dept. 168K) Aldermaston Court, Aldermaston, Berks.

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies in September and January. Grants available. Day and Boarding students. Stamp for prospectus Wireless College, Colwyn Bay.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.
ics. dept, 541, intertext hduse.
STEWARTS ROAD. LONOON, SWB

WANTED

DAMAGED AVO METERS, Models 7 \& 8 any quantity. Send for packing instructions. HUGGETT'S LTD., $2 / 4$ Pawsons Road West Croydon.

WE BUY New Valves, Transistors and clean new components, large or small quantities, al details, quotation by return. WALTON'S details, quotation by return. WALTON'S Wolverhampton.

WANTED: Popular Brand New Valves. R.H.S Stamford House, 538 Great Horton Road. Bradford 7.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES, televisions, radio grams. transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel. WES 0186.

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road. Nottingham

WANTED
(cont/nued)

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD
103 North Street, Leeds 7

BOOKS \& PUBLICATIONS

This useful Handbook glves detalled Information and clrcult diagrams for British and Amerlcan Government Surplus Receivers, Transmitters and Test Eculpment etci also contained are some suggested modiflcation detalls and Improvements for the equlpment. Incorporated In thls revised edition It a surplus/commerclal cross referenced valve and transistor gulde. This book is Invaluable to radlo enthuslasts, radlo clubs, unlversities and laboratorles. The latest edition priced at $45 /$-. per volume plus $5 /-\mathrm{p}$ \& p Ie obtainable oniy from us at

Dopt. P.W., 24 Stanefield Chambers, Ot George Street, Leeds 1.
c.a.e. With afl enquirles, please. Extra postage for foralgn orders. Circulte now available individually for most eurplue equipment on fequest

AUDIO. America's foremost journal. Year's subecription 50/-. Specimen copy 4/6. All American radio journals supplied-list free Willen (Dept. 40), 61a Broadway, London E. 15 .

SURPLUS HANDBOOKS	
Resistor colour code indicator $2 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.	
S.A.E. with all enquirles please.	
Postage rates apply to U.K. only.	
Mail order only to:	
INSTRUCTIONAL HANDBOOK SUPPLIES	
DEPT. PW, TALBOT HOUSE,	
28 TALBOT GARDENS, LEEDS 8	

[^4]
SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List $1 / 6$. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.
RADIO, TELEVISION over 3,000 models. JOHN GंILBERT TELEVISION, 1 b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from $1 /-$. Over 8,000 models a vailable. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS $(75,000) 5 /-$ each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

LARGE SUPPLIER OF SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)
Only $5 /-$ each, plus large S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

C. CARANNA 71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request.
Mail order only.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $1-20$ watt, 12/6 Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.
SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6, P\&P1/6SAE for details and lists WILSIC ELECTRONICS LTD., 6 Copley Road, Doncaster, Yorks.

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Ltd., 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

BRAND NEW ELECTROLYTICS, 15 volt $0.5,1,2,5,6,8,10,15,20,30,40,50,100$, $200 \mathrm{mFds}, 7 / 6 \mathrm{~d}$. per dozen, postage $1 /$. The C.R. Supply Co., 127 Chesterfield Road, Sheffield 8 .

COMPONENTS

Samples from our catalogue: Geared motors $300 \mathrm{rpm}-1 \mathrm{r} / 24 \mathrm{H}$ from $7 / 6$; 15 v . 300 mW Zeners $3 /-, 10 \mathrm{~K}+10 \mathrm{~K} 2 \% 3 \mathrm{in}$ ganged pots, $20 /=220$ ohm 200 watt resistors 7/6; 6d stamp for catalogue.
F. HOLFORD \& CO.

6 Imperial Square, Cheltenham.

RECEIVERS \& COMPONENTS

 (cont/nued)COSSOR TWIN BEAM GSCILLOGRAPH SCOPE. Model 1049, Mk IIIa. Complete with Stand, in perfect working order. $£ 55$ or near offer. WADKINS, 177 Miresglas, Cardigan, West Wales.

WE ARE BREAKING UP COMPUTERS

EX CONPUTER PRINTED CIRCUIT PANELS $2 \ln \times 4 \ln$ packed with semiconductors and top quallty resistors, capacitors, dlodes, etc.
Our price, 10 boards $10 /-$. P, \& P, $\rho /-$. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for \&f. P. \&P. 3/6. With a guaranteed minimum of 85 transistors. 100 boards $85 /-$. P. \& P. 6/6, WIth a guaranteed minimum of 350 transistors.
PANELS with 2 power translators sim. to OC28 on each board + components. 2 beards ($4 \times \mathrm{OC28}$) $10 /-$ P. \& P. 2/-

TRIM POTS. on $2 \ln \times 4 \ln$ boards + other components. $100 \Omega, 500 \Omega, 15 K ., 20 K$. State raquirements. 5 boards 100 /-. P. \& P. 2/-.
NPN GERMANIUM TOS 1 WATT POWER TRAN-
SISTORS on small heat sink, on $2 \ln \times 4 \ln$ panel. 5 for t0/-. P. \& P. 2/-.
POWER TRANSISTORS skm. to 2N174 ex eqpt., 4 for $10 / \mathrm{F}$ P. \& P. $2 /$.
Above on Finned Heat SInk (10D). 4 for £1. P. \& P. $5 /-$ LONG ARN TOGGLE SWITCHES ex eqpt. SPST 13/6 doz. DPST 15/- doz. P. \& P. all types 2/- doz. ORGAN BUILDERS' SPECLAL 300 TO18 TRANSisTORS + 200 Si DIODE GATES on panels. \&4. SISTORS
P. \& P. 6/-.
P. \& P. 6/-.
OVERLOAD CUT OUTS. Parel mounting in the fol-
lowing values... 5/- each. 2, 3, 4, 7, 10 amp . P. \& P. $1 /$-.
MINIATURE GLASS NEONS, 12/6 doz. P. \& P. 1/-. 150 PIV. 10 amp . DIODE BREGE RECTIFIERS on HEAT SINK. 12/-+2/-P, \& F', ea.
Above at 150 PIV. 20 amps. \&1. $+3 / 6$ P. \& P. each
LARGE CAPACITY ELECTROLYTICS
$4 \frac{1}{2} \mathrm{In}$, 2 In diam. Scraw terminals.
All at $4 /-$ each $+1 / 6$ each P. \&. P

$4,000 \mathrm{mF}$	72 V d.c. wkg.
$10,000 \mathrm{mF}$	25 V d.c. wkg.
$6,600 \mathrm{mF}$	45^{*} d.c. wkg.
$16,000 \mathrm{mF}$	25 d d.c. wkg.
$25,000 \mathrm{mF}$	12 w d.c. wkg.

KEYTRONICS, 52 liarls Court Road London, W.8.

Mail order only

BRAND NEW
 SEMICONDUCTORS

	$1 / 8$					
021		2N2222 5/-	an 4082	5/8		
025		2N2369A5/6		17/6		
120	2/6	3N2646 11/6	40361	$12 / 8$	BCY	
130	$2 / 8$	2N2904 8/-	40362	14/6	BCY 7	
I\$131	$2 / 6$	2N2904A81-	$\triangle \mathrm{Cl} 07$	$8 / 6$	BCY7	
132)		$\pm \mathrm{Cl28}$		BCY7	
118		2N	${ }^{4} \mathrm{Cl} 27$		BDI	
Z10		8	AC17		BF1	
	$7 / 6$	2N2906A8/-		121	Br18	
Z	51			$12 /$	BF18	
OAS	216	Green 3/6	ACY17	61	BF18	
A79	119	Yellow 818	ACY18	1	BF10	
81	$1 / 6$	Orange	ACY1		BFX	
	118	Red 210	ACY2		B	
A891	$1 / 6$	$8 / 8$	ACY2		BFY	
200		2N3053 6/6	ACY		-	
08212		2N3054 12/6	AD140		BF	
696	倍	2N3055 16/-	AD149	8	B8X	
697	81	2N3391 7/6	AD161	$7 / 6$	B8X	
2N706	2/6	2N3391A ${ }^{\text {d }}$ -	AF114		B8	
2N706a	81-	2N3393 6/6	AFl 16		B	
2N1131	9	2 N 3402816	AF11?		B8	
1132		2N3403 $9 /$	A			
1302	$4 / 6$	2N3404 $12 / 6$	AF12			
1303	$4 / 6$	2N3405 12/6	AF12		-	
1304	5/6	2 N 3702 ff	AF181	$8 / 6$	C2	d
30	$6 / 6$	2N3703 $4 / 6$	AF188	11/-	0 C 3	
1306	6/6	2N3704 $5 / 6$	AF239	$12 / 6$	OC3	
2N1307	6/6	2N3705 4/6	AFZ1		0 OC	
N1308		2N3706	ASY	¢	OC4	
1309		2N3707	AsY2	$5 / 6$	OC71	
613		N9708	A8Z2		C7	
	1	2N3709	BCl0	$8 / 6$	0 O 75	
1893	81	2N3710	BC108	$8 / 6$	$0 \mathrm{C81}$	
$N 2147$	17%	2N3711	BC109	$8 / 6$	$0 \mathrm{C83}$	
2 N 2148	$18 / 6$	2N3819 91	BC118		$0 \mathrm{OC139}$	
2 N 2160	16/6	2N3820 80/	BCl47		OC140	
2 N 2217	-	2N3823 21	BC14	4/8	C2	
2N2218	6/-	2N4058 6/6	BC149		ORP12	8
Send 6d. stamp for complete list. Over 1,000 types Bemiconductors in atock. Capselifors, Resiators and Pota also						
(London) LTD.						
28 Cricklewood Broadway, London, N.W. 2$01-4520161 / 3$						

```
    TELEVISION TUBES
Large stocks of television tubes, London's leading wholesale suppliers, all tubes complete with guarantee card. By return despatch. Terms: Cash
with order, s.a.e. all enquiries.
14in. types. AW36/20, AW36/21, AW36/80, MW36/24, CRM141, CRM144, CME1402 etc.
£417 6
W43/89, CME1 703, CME1705 etc
19in types. AW47/90, AW47/91, CME1901, CME1903, CME1902, C19AH
21 in. types. AW53/88, AW53/89. CME2101, CME2303
    MW53/80, AW53/80, MW53/20, CRM211/2
23in. types. AW59/90, AW59/91, CME2301, CME2303
23in. Twin Panel. CME2306, A59-16W
23in. Panorama. A59/11W etc.
19in. Twin Panel. A47-13W, CME1906 etc.
19in. Panorama. A47/11W etc.
# (arriage and Packing 12/6d per British Road Services
```

We stock all types of tubes.
Large stocks of valves, transistors components. L.O.P.T's, Electrolube, Servisol switch cleaner, Multicore solder. Service Tools.
WILLOW VALE ELECTRONICS LTD.
The Service Dept. Wholesalers, 4 The Broadway, Hanwell, London, W.7. Tel: 01-567 2971/5400
CATALOGUE TRADE ONLY, S.A.E. Please

RECEIVERS \& COMPONENTS

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plastic-coated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy

Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit. All edges are polished

LIST OF PRICES AND SIZES
which are made to fit Standard Alloy Chassis

Discounts available on quantities.

E. R. NICHOLLS

Manufacturer of Etectronic Instrument Cases 46 LOWFIELD ROAD STOCKPORT - CHESHIRE Tel: 061-480 2179

[^5]
FOR SALE

$£ 6,000$ IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK 12 4HL .

TOP TRADE DISCOUNTS FOR ALL

COMPONENTS
 VALVES TUBES

TRANSISTORS

Free Trade Catalogue Engineers \& Service Dealers Only WILLOW VALE the Service dept. WHOLESALERS,
4 The Broadway, Hanwell,
London, W. 7
01-567 5400/2971

MORSE $\begin{gathered}\text { MADE } \\ \text { EASY } \\ \text { ! ! }\end{gathered}$

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month (Normal progress to be expected.)
Using scientificaily prepared 3 -speed records you atomatically learn to recognine the code RHYTHM without translating. You can't help it, it's easy as learning
For details and course C.O.D. ring, at.
For detsils and course C.O.D. ring, s.t.d. 01-680 2896 aend 8d. stamp for explanatory booklet to
G8CHS (BOX 11), 45 GREEN LANE, PURLET, SURRET

NUT DRIVERS in 22 sizes. B.A., A/F, \& M.M. Send S.A.E. for lists to Bargain Spot, 268 London Road, Croydon.

FOR SALE (continued)

THE LDEAL Panel Mounting Meter Movement for any Sensitive Test Meter etc 200 Micro Amp F.S.D. 4 in. x 4 E in. In clear plastic case. Our special price only 39/6d P. \& P. free. Limited number only. WALTON'S WIRELESS STORES, 55A Worcester Street, Wolverhampton, Staffs.

PADGETTS
 RADIO STORE

OLD TOWN HALL, LIVERSEDGE, YORKS. Tel. Cleckheaton 2868
Indicator Unit type 26
Size $12 \times 9 \times 9$ in. with outer case. Fitted with $2 \frac{1}{2}^{*}$ tube C.R.T. type CV1526. Nine B7G valves. Clean condition, but not tested. 32/6, p. \& p. $10 /$
New 12" Speakers with built in tweeter 3 ohm or 15 ohm 6 watts $\max 28 / 6$, post pd. Ex. Washing Machine Motors, Single phase 230 volt \ddagger H.P. 1425 R.P.M. All perfect. $26 /-$ p. \& p. $10 /$
Silicon Rectifier $500 \mathrm{~mA}, 800$ P.I.V. No duds. 2/6, post paid. 24/- per dozen, post pd. Jap Ear Piece. Magnetic 8 ohm. Small and large plug. $1 / 11$, post paid.
Reclaimed TV tubes with six months guarantee. 17 in . type AW43/88, AW43/80, $40 /-$; MW43/69, 30/-. 14 in . types, $17 / \mathrm{l}$. All tubes, 12/-carriage.
Speakers removed from TV sets. All PM and 3 ohms.
6 in. round, $3 /-$, p. \& p. $3 /-; 6$ for $24 /$-, post paid.
6×4 in., $3 /-$, p. \& p. $3 /-$; 6 for $24 /-$, post paid. $7 \times 4 \mathrm{in} ., 5 /-$, p. 8 p p. $3 /-; 6$ for $34 /-$, post paid. 5 in. round, $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid.
Slot Speakers, 8×2 tin., $5 /-$, p. \& p. $3 /-$; 6 for $30 /$-, post paid.
Indicator Unit type 116a VCR97 tube. Mu metal screen and EF50 valves. Good condition, but not tested. 22/6, carriage 10 /Untested Pye, KB, RDG, Ekco 17in. TV sets. Bush 17 in . TV sets, $50 /$ e each, carriage 15/-. Passenger train, double rate. VALVE LIST

Ex Equipment. 8 months' gusrantee Single Valves Post 7d., over 3 Valves p. \& p. pa | ARP12 | $1 / 6$ | PCL83 | b/- | 6BW7 |
| :--- | :--- | :--- | :--- | :--- | EB91 EF86 EBF80 ECC81 ECC82

ECC83 ECL80
EF50
EF80 EF80 EY86
PCC84 PCF80
PCL82 \qquad PL36
PL38
PL81
PY33
PY81
PY82
PZ30
U191
U281
U282
U301
U329
U251
688
曾

Interested in cutting your motoring costs?

You can save a considerable amount of money by tackling some of the car maintenance jobs yourself and the PRACTICALMOTORIST ANNUAL is designed specially to help you.
Authoritative articles and step-by-step instructions show you how to maintain the engine, ignition, cooling, carburation, transmission, suspension and steering, brakes, tyres, bodywork, electrics, etc., and give advice on simple tuning.
With holidays in mind there is a most helpful section on camping and caravanning.

Every motorist needs Practical Motorist Annual
now on sale 3/6

Guaranterd Set Tested 24-HOUR SERVICE

IRE	5/6	DY86	5/8	EY86 5/8	PL500	12/8
185	$4 / 8$	DY87	6/8	EZ80 8/9	PL504	18/8
1T4	$2 / 9$	EABC80	$5 / 9$	EZ81 4/6	PY32	10/-
384	5/9	EBC41	8/-	KT61 8/8	PY33	10\%
3 V 4	8/9	EBF80	8/-	KT66 15/9	PY81	61-
6AQ5	4/8	EBF'89	5/9	N78 14/6	PY82	6/-
6L18	61-	ECC81	$8 / 8$	PABC80 6/9	PY83	6/8
30 C 18	$8 / 6$	ECC82	4/-	PC86 10/8	PY88	8/-
$30 \mathrm{FL1}$	$18 / 6$	ECC83	$4 / 8$	PC88 10/3	PY800	18
30 FL 12	14/8	ECC85	6/6	PC97 7/9	PY801	8/6
30 PL 1	$11 / 9$	ECH35	6/6	PC900 7/6	R19	8/8
30P4	11/6	ECH42	10/6	PCC84 613	U25	12/9
30 P 19	11/6	ECH81	5/9	PCC89 919	U26	11/6
PPL1	18/6	ECL80	6/3	PCC189 11/6	U191	12/8
CCE35	$9 / 9$	ECL82	6/3	PCF80 618	UABC80	\% $5 / 9$
CL33	17/6	ECL86	7/6	PCF801 816	UBC41	8/8
DaC32	8/9	EF37A	61-	PCF805 816	UBF89	6/8
DAF91	4/8	EF39	4/6	PCF80811/9	UCC84	$7 / 9$
DaF96	6/8	EF80	$4 / 9$	PCL82 819	UCC85	6/6
DF33	$7 / 6$	EF85	$5 / 9$	PCL83 $8 / 9$	UCF80	$8 /-$
DF91	$2 / 8$	EF86	8/8	PCL84 7/-	UCH42	$10 / 6$
DF96	$6 / 11$	EF89	4/9	PCL85 $8 / 8$	UCH81	$7 /-$
DK32	6/9	EF183	$5 / 9$	PCL86 818	UCL82	6/9
DK91	$5 / 6$	EF184	5/8	PFL20011/0	UF41	$9 / 6$
DK96	6/6	EH90	81	PL36 9/8	UF89	6/6
DL35	$4 / 9$	EL83	$8 / 8$	PL81 7/-	UL41	$10 / 8$
DL92	$5 / 8$	Elal 1	$10 / 8$	PL82 6/9	UL84	$8 / 8$
DL94	619	EL84	$4 / 9$	PL83 6/9	UY41	$6 / 6$
DL96	6/8	EY51	7/8	PL84 $6 / 8$	UY85	6/8

GERALD BERNARD

83 OSBALDESTON ROAD
STOKE NEWINGTON
LONDON, N. 16

ELECTRAMA

FANTASTIC
SPEAKER BARGAIN

Famous English, 12" high fux, heavy cone, 10 watts speaker | with built-in tweeter. 3 or 15 |
| :--- |
| ohms. |
| . \& I. $4 / 9$ |
| 35 | ohms. for $66 /-$ post $6 / 9$

Two

HI-FI HORN 10 watts
Add this 16 ohms unit to your existing speaker system and create real live sound! ONLY $\quad 25 / 6$
Variable cross-over unit

HI-FI PICK-UP Your reproduction is only as good as your plok-up. Our diamond turnover unit assures quality reproduction of sound. Mono 6/-orstereo 26/- P.\& I. 1/8

- 11 Measures $A C / D C \quad 0-1000 v_{\text {I }}$
AC/DC
$1,000 \quad$ ohms/v. DC AC/DC 1,000 ohms/v. DC current $150 \mathrm{M} / \mathrm{A}_{\text {. }}$ Resistance faults in household and car $\begin{array}{lll}\text { electrics. } & \text { G'toed. } \\ \text { P. \& I. } 3 / 6 & 39 / 6\end{array}$

Send for catalogue price $6 d$.
Dept. PW87, 1 George St., Hallsham, Sussex

PLEASE MENTION

PRACTICAL WIRELESS
WHEN REPLYING TO
ADVERTISEMENTS

FANTASTICALLY POPULAR \star
W. ofler you fully tensilised polyester/mylar and P.V.C. tapes of identical qualisy hi-A, wide range recording characteriatics as top grade tapes. Quality control manufacture. They are truly worth a few more coppers than acatate, sub-standard, jointed on

Standard Play			Long Play		
8 in	150 ft .	2/3	3 in	225 ft .	$2 / 8$
4 in.	300ft.	4/6	4in.	450 \%t.	5/6
5 in.	600 ft .	7/6	5 in.	900 ft .	10/8
5 in.	900 ft .	10/6	57 in .	1,200tt.	18/-
7 in .	1,200tt.	12/6	7 in .	1,800ft.	18/6
	Double Play			Triple Play	
3 in .	300 ft .	4/-	4 in.	900 ft .	18/-
4 in .	$6001 t$.	8/-	5 in .	1,800ft.	251-
Sin.	1,200tt.	15/-	57 in .	2,400ft.	34/-
5 Sin.	1,800tt.	19/6		3,600tt.	44/-
7 in .	2.400 ft .	2\%1-		adruple P	

Postages 1/. reel.
Post Free leats 5% on three roels.
NOTE: Large lape sfocks at all branch

Most Mullard, Maxda, Cossor, Emitron, Emiscope, Brimar, Perranti types processed in our own factory. NOTE: ALL tube orders only to Portsmouth branch please.
NEW and SPECIAL Lines at the keenest prices

RETA/L BRANCHES:
LONDON, 10 Tottenham Court Rd. (MUS 2639) PORTSMOUTH, 350-352 Fratton Road

SOUTHAMPTON, 72 East Street (Tel. 25851)
BRIGHTON, 6 Queen's Road (Tol. 23975)
MAIL ORDER WAREROUSE:
Devonlan Court, Park Crencent Place, Brighton. (Tel. 680722)

BARGAIN PARCELS
inciuding variable condensers, i.t, coils, loucispeaker plug/socketa, knobs, pots, condensars, resistors, nute, bolts, cabinet fittings, awitches, translormer choke, rectifier. transistori at a amall fraction of list valne. Due to hervy demand we now pact them in several tises-be amased-try one now.
3 lbs . (post 8/-)
14 lbs (post $6 /-$)

Head Dffice and Warehouse
44A WESTBOURNE GRDVE
LONOON W2
Tel. PARK 5641/2/3

Z \& I AERO SERVICES LTD.

Please rend all correapondence and Hail-Orders to the Hesd Offee
When sending cash with order, please include a/6 in 2 for poetage and handling
minimum charge $2 / 6$. No C.O.D. orders scoepted.

Retail Shop
85 TOTTENHAM CDURT RDAD LONDON W1
Tel. LANgham 8403
Open all day Saturday

OA2	6/-	6AK8. $11 / 6$	$6 \mathrm{C4}$	$5 / 6$	6P26 18/-	0	I		FU1	G	anteed	ECH42	18/-	EM81 7/6	PCF802 0/-	U80	18/-
OA3	8/6	6AL5 8/-	605GT	$8 / 6$	6P28 181-	I	İ		I		aitaced	ECH81	5/8	EM84 7\%-	PCF805 14/-	U22	$81-$
082	$6 /-$	6AM4 22/-	8С6	4/-	$6 \mathrm{C7}$ 71-							ECH83	8/-	EM87 101-	PCF806 18/-	U25	14/6
OB3	$01-$	6AMS 5/-	6C8G	$71-$	$68477-$							ECH84	9/-	EN32 801-	PCF808 14/6	U26	14/6
OC3	6/6	BAM6 4/-	809	17/8	68G7 6/-							ECL80	$8 / 6$	EN91 6/-	PCL80 16/-	U31	8/-
OD8	61-	6AM8 8/-	6 CB 6	$51-$	68H7 $4 / 6$							ECL81	$7 / 6$	EY51 7/6	PCL81 9/-	U33	801-
OM10	11/-	GAN8 10/-	6CD6GA		6857 7/-							ECL82	8/-	EY80 8/6	PCL82 7/-	U76	4/-
14×2	18/-	$6 \triangle$ 6\%		22/-	68L7GT 6/-						ND	ECL83	11/6	EY81 71-	PCL83 12/-	U81	101-
18SGT	71	6AQ6 10/-	6CG7	81	68N7GT 5/6							ECL84	10/-	EY83 101-	PCLS $81 /$	U281	81 -
105GT	31-	6ARS 6/-	6CE 6	11/-	$68 Q 7$ 7/-							ECL85	$10 / 6$	EY84 9/6	PCL85 816	U282	$81-$
1G4GT	8/-	6AR6 6/-	6CL6	91-	68 A7 7/-							ECL86	$81-$	EY86 7/6	PCL88 8/6	U408	$8 /-$
1HBGT	71-	6AB5 0/6	6 CL 8	161-	6887 8/-	E		IN			$\underline{5}$	EF9	$81-$	EY87 8/-	PCL88 17/-	U404	$81-$
114	8 8-	6AB6 7/-	6CU6	18/-	$6 \mathrm{T8}$ 6/-							RFF39	8/-	EY88 81-	PCL80017/6	UABC8	61-
1R5	6/-	6A87G 151-	6CW4	12/-	6U4GT 18/-							EF40	O1-	HZZ40 8/-	PCL801 $15 /-$	UAF42	$9 / 6$
184	61-	6AT6 4/6	6 CYS	$7 /-$	6086	Combined eft	of inc	He in	Prechas	Tar	d S.E.T, and	EF'41	11/6	E241 8/6	PD500 80/-	URC41	$8 / 6$
185	4/6	6AU4GTA	6D3	7/6	8V6GT 6/-	import restr	Ons lor	U	introd	an	rease of 1d.	EF42	18/-	EZ880 6/-	PE06-40N	UBC81	$8 / 8$
1T4	4/-	9/-	$6 \mathrm{B4} 4$	$17 / 6$	6×4 4/6	per shilling	ch mut	be sd	ed to	tota	asch order.	EFS4	101-	EZ81 5-	88/-	UBF'80	8/6
1U4	$6 /-$	6AUB 6/-	6DC8	18/8	$\begin{array}{ll}\text { 6X5GT } & 5 /- \\ 8 \times 8 & 11 /-\end{array}$							ERFSS	18/-	GY501 16/6	PEN45 6/6	UBF'89	7/-
106	$8 / 6$	GAU8 10/-	6DK6 6DQ6B	81/-	$\begin{array}{ll}\text { 6X8 } & 11 / \\ \text { 6Y6G } & 11 / 6\end{array}$	$\begin{array}{ll}\text { 12E1 } & \text { 20/- } \\ 12 \mathrm{El4} & 58 / 6\end{array}$	${ }^{30 \mathrm{~L} 18}$	16/-	8684 884	14/-	$\begin{array}{ll}\text { EH56L } & 58 / 6 \\ \text { E835 } & \\ \text { 20/- }\end{array}$	EEP80	$4 / 7$ $8 / 6$	$\begin{array}{lr}\text { GY501 } & 16 / 6 \\ \text { GZ82 } & 9 / 6\end{array}$	$\begin{aligned} & \text { PEN40DD } \\ & 18 /- \end{aligned}$	UBL1	8/6
${ }_{1} \times 2 \mathrm{~B}$	71	- 18/-	AD84	151-	7C5 14/6	$12 \mathrm{~K} 510 /-$	30 P 12	15\%	5870	101-	F888C $88 /-$	EFP85	916	GZ84 10/-	PEN388 9/-	UCC85	$71-$
122	201-	6Av6 5/6	6DT6	8/-	787 801-	12 K 8 8/-	30P19	11/-	6751	11/-	E88CC 18/6	WF86	6/-	HLA9pn	PEN384 O/-	UCF'80	$9 / 6$
$2 \mathrm{C26a}$	81-	6AW8A11/-	6EA8	11/-	7 Y 4 11/-	1297GT 5/6	30 PLL 1	15/-	5783	18/-	E180L 100/-	RFP89	$8 /-$	$1-$	PEN453DD	UCH21	9/6
$2 \mathrm{C40}$	81-	6AX4GTB	6EW6	18/-	$7 \mathrm{Z4}$ 7/6	128A7GT8/-	30 PL 18	$17 / 6$	5886	401-	E180F $17 / 6$	EFF91		KT68 [1-	101-	UCH42	18/-
$2 \mathrm{C61}$	81 -	8/-	6F6GB	6/6	9BW6 7-	12807 4/6	30PL14	17/-	6080	87/6	EAF80110/-	EF92	$7 / 6$	кт88 89/-	PF86 10/-	UCH81	6/6
${ }^{\text {CW4 }}$	12/-	6AX5GT	6F7	$0 /-$	9D2 $8 / 6$	12SG7 6/-	${ }^{35 A 5}$	101-	8146	$87 / 6$	EABC80 ${ }^{\text {d- }}$	EF93	$1 /$	MH6 7/-	PF818 14/-	UCL81	$101-$
${ }_{2}^{2} \mathrm{D} 21$	81	18/6	6 Fll	$6 /-$	$9 \mathrm{D7}$ 90-	128178	3585	18/-	6148 B	$47 / 6$	EBC83 8/-	EF94	8/-	MH41 9/-	PFL20018/-	UCL82	71-
${ }_{2}^{2} \mathrm{E} 26$	87/6	8AX7 10/\%	6 F18	8/6	1002 10/-	$128 Q 77 / 6$	36C5	6/6	6197	201-	$\underline{E B C 41} 0 / 6$	EF965	$5 /-$	ML4 8/-	PLS3 8/-	UCL88	11/-
${ }_{9}^{2} \times 2$	51-	6B4G 15/-	6 Fl 14	181-	10D2 8/-	18D8 8/-	3 35D5	181-	6360	$85 /$	ERBC81 $6 /-$	EF96	$8 / 6$	MSPENT	PL36 10/-	UF9	10/-
${ }_{8}{ }^{4}$	4)-	6B8G $2 / 6$	6F'15	11/-	10 Fl 18/-	19AQ5 $7 / 6$	36L6GT	81-	6886	$751-$	EBF80 $7 / 6$	EF188	$8 /$	M-10/-	$\begin{array}{ll}\text { PL81 } & \text { \%/- }\end{array}$	UF41	919
${ }_{8}^{1828}$	401-	6BAG $4 /-$	6 617	91-	$10 \mathrm{Fg} \quad 10 /-$	20CV 62/6	35W4	4/6	6888	$47 / 6$	E8BF83 8/-	EFP184	818	N78 10/-	PL83 8/-	UF'42	11/-
804	716	6BA7 15/-	6 Fl 8	$7 / 6$	$10 \mathrm{~F}^{\prime} 187 / 6$	20D1 9/-	35 zs	101-	6989	$401-$	EBF89 6/-	EFP804	$20 / 6$	ORP61 5/-	PL88 7/-	UF'48	101-
${ }_{864}$	$61-$	68C5 8/6	$6 \mathrm{~F}^{68}$	151-	10 Ll 716	20 L 1 18/-	35Z4G	4/-	7190	151-	EBLL 18/-	EFH90		ORP90 88/6	$\begin{array}{ll}\text { PL88 } & 7 /- \\ \text { PLS4 } & 6 / 6\end{array}$	UF80	71
${ }^{8} 74$	81-	6BE6 1/6	6 F 24	18/-	10LD11 10/-	$20 \mathrm{P1}$ 10/-	85Z5GT	61-	7880	801-	RBBL31 84/-	EK90			PLS00 $18 / 8$		778
${ }_{8} 8882$	$801-$	6BF's 15/-	6F25	14/-	10 P 13 10/-	$20 \mathrm{P3}$ 12/-	60A5	$19 /-$	7561	$801-$	EC88 $11 / 6$	ER934	$1 / 8$ $9 / 6$	PABC80 $7 / 6$	PLS00 PLS04 15/-	UF89	71
ER4GY	10/-	6BF6 9/-	$6 \mathrm{~F}^{288}$	181-	10 Pl 1416	20P4 19/-	60B5	18/-	7581	$28 / 6$	EC88 11/-	HL38	16	PC86 11/-	PL509 80/-	ULA1	11/-
${ }_{5}^{6}$ U4G	5/6	6BF7 18/-	6GH8	11/-	12 ACB 7/-	20P5 19/-	${ }^{50 \mathrm{CS}}$	8/-	7586	82/6	FROCS4 8/-	ELSL38	8916	PC95 7/6	PL802 18/-	4	6/6
${ }_{5}^{6} \mathrm{U} 4 \mathrm{~GB}$	7)-	6BGAG 11/-	6GK6	181-	12AD6 6/-	25BQ6GTB	¢0L6GT	8/6	76014	$801-$	ECCC40 $10 /-$	HLA1	816	PC97 8/-	PY91 5/-	UM4	10/-
${ }^{5} \mathrm{U} 88 \mathrm{Cl}$	8/6	$\begin{array}{ll}\text { 6BH6 } & 8 /- \\ 6 \mathrm{BJ6} & 8 /-\end{array}$	6GW6	11/-	12ALS 12AQS $7 / 8$	$\begin{array}{ll}\text { 25C8 } & 18 / 7 \\ 9 /-\end{array}$	88KU	18/8	7808 AZ1	88	EOC81 6 \%	ELA2	101-	PC900 0/6	PY32 101-	UM84	7/-
$5^{5} 8$	$8 /$	6BK4 $80 /-$	6.J5GT	8/6	12ATB $4 / 6$	${ }_{2}^{20 c 0} 6$ 12/-	80	$87-$	AZ31	8 8-	$\begin{array}{ll}\text { EOC82 } & \text { B/0 }\end{array}$	EL81	9/-	$\begin{array}{ll}\text { PCO84 } & 6 / 6\end{array}$	PY83 18/6	ปU9	7/6
${ }_{5}^{5} \mathrm{Z4G}$	71-	6BK7A 9/-	6J6	$8 / 6$	12AT7 6/-	25LAGT $6 / 6$	8841	$18 / 6$	OCH35	$9 /$	F0C83 $5 /-$	EL83	$7 / 6$	POC85 ${ }^{7 / 6}$	PY80 5/6	UY21	$9 / 6$
$5 / 80 \mathrm{~L} 2$	14/-	6BL7GTA	6.57	$81-$	12AU7 $6 / 9$	25Z4G 6/-	8542	7/6	CY81	7/-	EROC84 $5 / 6$	EL84	$4 / 8$	PCCC88 11/-	PY81 $5 / 6$	UY41	71
648 g	8/8	11/-	6K6GT	9 -	12AVB $6 / 6$	$25 \mathrm{Z5}$ 8/-	85A3	$7 / 8$	DAF96	71-	ECOC86 5/-	EL85	$7 / 8$	PCC89 ${ }^{\text {POC189 10/- }}$	PY82	UY82	$9 / 6$
$6 \mathrm{AB4}$	6/6	6BN6 7/6	6K7G	$2 / 6$	12AX7 616	25Z6GT11/-	904G	$481-$	DF96	7/-	EOC86 8/-	EL86	88	PCC189 10/-	$\begin{array}{ll}\text { PY83 } & 6 / 6 \\ \text { PY88 } & 7 / 6\end{array}$	UY85	$\stackrel{1}{1-}$
6AB7	$4 /$	6BQ8GTB	8 K 23	$0 /-$	12AY7 18/6	$80457 /$	90 Cl	18/-	DH81	101-	ECC88 $7 / 6$	ELS90	6/-	COC80516/-	PY88 ${ }^{\text {PY500 }}$ ($7 / 6$	VU39	$8 / 6$
6AC7	4/-	18/-	6K25	151-	12B4A $0 / 6$	80C15 14/-	90 CG	85/-	DH101	$91-$	ECOK9 11/-	ELP95	6/6	16-	PY500 90/-	VU111	$8 / 6$
6 AD 4	16/-	6BQ7A 7/-	6L8GT	$8 / 6$	12BA6 6/-	$30 \mathrm{Cl7} 16 /-$	90 CV	80-	DK92	$8 / 8$	ECOC91 $8 / 6$	ELL860	82/-	PCE800	PY800 9/-	VU138	8/-
6AF4A	9	6BR7 $76 /$	6 L 7	$61-$	12BA7 6/-	$30 \mathrm{C18}$ 14/-	150B2	11/-	DK96	$7 / 6$	ECC807 14/-	ELL500	17/-	PCFF0	PY801 9/-	W76	71
6405	$81-$	BBR8 12/6	6 L 12	${ }^{61}$	12BE6 6/-	$80 \mathrm{FS} 16 /-$	15083	101-	DL88	18/-	ECF80 6/6	ELS21	10/-	82 9/8	QU37 87/-	W107	71-
6AG7	$6 / 9$	6B87 20/-	$6 \mathrm{L18}$	61-	12BH7 6/-	30FL1 16/-	807	O/-	DL98	71	ECF88 6/6	EL892	171-	PCF84 8/-	8P41 5/6	W729	10/-
8AH8	101-	6BW6 16/6	6 L 19	201-	12BT8 $4 / 6$	30FL12 17/6	8114	$801-$	DM70	$8 /$	ECF83 14/-	ELL80	16/-	P88 916	$8 \mathrm{SP}^{61} 5 /-$	X65	9/-
BALS	$91-$	6BW7 18/-	6LDD20	6/6	12BY7 10/-	80FL18 8/-	8124	601-	DY86	6/-	ECF'86 11/6	EM34	18/-	PCF87 15/-	TP22 101-	Z769	20/-
6A58	5/8	$6 \mathrm{BZ6}$ 6/-	6N7GT	$6 / 6$	12CU6 18/-	$30 \mathrm{FL14} 14 / 6$	818 887	75/m	DY87	8/6	EOF'804 ECH8 11/-	EM71	18/6 71	PCF'800 14/- PCF'901	$\begin{array}{ll}\text { TT21 } & 45 /- \\ \text { U19 } & 40 /-\end{array}$	Z700U $\mathbf{Z 8 0 8 U}$	8/-
6AK\%	$61-$	$6 \mathrm{BZ7}$ 10/-	6 Pl	11/6	12DQ7 101-	30L1 6/-	887	15/-	DY802	91-	ECH 85 11/-	EM80	71-	PCF'901	U19 40/-	Z808U	15/-

INTEGRATED CIRCUIT AMPLIFIERS

ROA Tjpe dasoro
Integrated Circult Audio Amplifier in TOS encapanation (alze of a amai transistor), equivalent to seven $\mathrm{n}-\mathrm{p}-\mathrm{n}$ sillicon tranastora, 3 diodes and 11 reajitora. Power output 550mW. Total harmonle distortion 1%. Will operate on

GemRERAL ELECTRIO Type PA888

Epory moulded in-Hne package equivalent to sin n-p-n transintors, one diode and aix resistora. It will provide out22 volts.
$40 /-\mathrm{plus} 2 /-\mathrm{p} . \mathrm{p}$.
The construction of amplifier uning the above integrated circuits had been described in March and August lssues of P.W. Please note that we only supply the IC's and no

GENERAS ELEOTRIC TYPE PA884
1-watt Audlo Amplifier suitable for mpply voltage of 9 to 25 V and for output losds of 8,16 or 22 ohms. up a complete amplifier dellvering i watt for an input voltage of 600 mW . Epoxy moulded double four-ln-line package. $\quad 27 / 6$ each, plua 2/- P. \& P

GHITERAL ELHEOTRIC Type PA887
Similar to PA234, but 2 watts, 40/-, plus 2/- p.p.
BOA Type OA8088
LW/MW Recelver, RF/TF gection as described in May tesue of P.W

10/-, plus $2 /-$ p.p.

NEW LIET OF TRANSIETORS, INTEORATED CIROUITS AND REOTIFYIHG AND ZRINR DIODES IS NOW READY.
The List gives full speciflastions and prices of over 800 types of 8emiconductort.

Available tree on request

MULTIMETERS

TYPE MFI6

D.C. voltage range:
A.C. voltage range:
A.C. voltaqe range:
D.C. current range:

Reslatance ranges; 100M n-1Mn The meter In also callbrated for capaclity and output level medinare$\begin{array}{ll}\text { ments. Sensitivity } \\ \text { Accuracy } \\ +2000 \% & \text { for } \\ \text { D.0. and }\end{array}$ Accuracy $\pm 2.5 \%$ for D.O. and Accurscy $\pm 2.5 \%$
$\pm 4 \%$ for A.C.
± 1 in. Price 84.5 .0.
Dimenalons: $4 \frac{1}{}$ I 341 I 1 in. Price 84.5 .0 .
Trpe 108-IT: 24 range precinion portable meter, 5000 o.p.V. D.C. Volts: $2 \cdot 5-10-50-250-500-2500$ V. A.C. Volts: Realetadce 2000-20,000 ohms; 2-20 merohms. Power output callbration in A.C. for 600 ohms Ine. Complete with prode and batteries, 86.6 .0 . P. \& P. $5 /-$ -

THYRISTORS

Low ourrent:
at 120 mA $18 / 6$ Modium current:
 High current:

CR 80-021A, 80 Ampe. 26 p.l.v. $80 /$ CR $100-201 \mathrm{~A}, 100$ Ampa, 200 p.i.v.
CR 100-801A, 100 Ampa. 300 p.l.v.
CR $100-381 \mathrm{~A}, 100$ Ampe. 380 p.i.v.
CR $100-401 \mathrm{~A}, 100$ Ampa. $400 \mathrm{p} . \mathrm{iv}$.
CR $100-501 \mathrm{~A}, 100$ Ampe, 500 p.i.v. 150 mA .

DRY REED INSERTS

Glass dry reed inserta approx. $\mathrm{J} \ln$. dia. $x \mathrm{ln}$. long with axial leads. One "make" contact of 100 mA capacity at 50V. Can be operated by permanent magnet or $30-50$
Amp-turna relay colfa. PRICE 18/-per doz. poot free.

SLIDEWIRE WHEATSTONE BRIDGE
£15.15.0

Battery Powered Portable Reslatance Bridge. Range 0.5 to 50 ohms with multiplier setting of $0.1-1-100-1000$, proviract in the midile 3 ranges- 0.5% approz PRICE $\mathbf{8 1 5 . 1 6 . 0}$.

TRIACS TYPE 40488

Gated bl-directional Sllicon Thyristora with Integral trigger. The triac will control up to 1440 watte at 240 V mains frequency. Supplled complete with heat slnk dats ahest and application sheets for motor control and
dimmer circults. $87 / 6$ each. dimmer clrcuits. $87 / 6$ each.

UNIJUNOTION TRANSISTORS 8N8R4A
Power diselpation 300 mW R.M.s. Base-to-Base voltage 35V max. Peak emitter current 2.0A. \&uitable for trigger-
ling of thyristors. 12/6.

D. C. MOVING COIL METERS

ACOURACY 1.5\%

EERIES 70 Rectangular flange $80 \times 72 \mathrm{~mm}$ flush mounted Body dtameter 68 mm . Scale length ca 50 mm .

$60 \mu \mathrm{~A}$	$68 /-$	$600 \mu \mathrm{~A}$	$49 /-$	400 mA	$4 / /-$
$100 \mu \mathrm{~A}$	$68 /-$	1 mA	$48 /-$	600 mA	$46 /-$
$250 \mu \mathrm{~A}$	$54 /-$	40 mA	$48 /-$	1 A	$40 /-$
$400 \mu \mathrm{~A}$	$88 /-$	160 mA	$46 /-$	$2 \cdot 5 \mathrm{~A}$	$48 /-$
6 V	$88 /-$	60 V	$82 /-$	260 V	$58 /-$
40 V	$88 /-$	160 V	$88 /-$	600 V	$68 /-$

$40 \mu \mathrm{~A}$	$82 /-$	25 mA	$58 /-$	15 V	$68 /-$
$60 \mu \mathrm{~A}$	$78 /-$	60 mA	$68 /-$	60 V	$68 /-$
$100 \mu \mathrm{~A}$	$74 /-$	1 A	$68 /-$	100 V	$68 /-$
$250 \mu \mathrm{~A}$	$65 /-$	1.6 A	$58 /-$	260 V	$68 /-$
$600 \mu \mathrm{~A}$	$60 /-$	10 A	$60 /-$	400 V	$69 /-$
2.6 mA	$58 /-$	40 A	$64 /-$	600 V	$77 /-$

VALUABLE NEW HANDBOOK Fí EEENOABBELIOUS

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng- - -Telecommunications-Sound Recording - Automation Practical Radio Amateurs' Exam.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. Gen. Electrical Ens.
Installations - DratughtsInstallations - Iluminating Eng. manship-Iluminating Eng. Electrical Science - Electrical Supply - Mining Elec. Engineering.
CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. -- Road Eng. - Hydraulics - Mining \bar{W} Giter Supply - Petrol Tech.

ELECTRONIC ENG
Advanced Electronic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Electronics - Radar Tech.Frequency Modulation Transistors.

MECHANICAL ENG. Advanced Mechanical Eng.Gen. Mechanical Eng. Maintenance Eng. - Diesel Maintenance Eng. De Diesel
Eng. - Press Tool Design Eng. - Press Tool Design-Sheet Metal Work-Welding Inspection - Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Aufomobile Eng. Gen. Automohile Eng. Automobile Maintenance Repair - Automohile Diesel Maintenance - Automobile Elec. Equipment Automobile Elec. Equipment
Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICALENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power?
B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU	
\star HOW to get a better paid, more interesting	
* HOW to qualify for rapid promotion. \star HOW to put some letters after your name and become a key man . . . quickly and	
\star HOW to benefit from our free Advisory and Appointment Depts.	
\star HOW you can take advantage of the chances you are now missing.	
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.	
132 PAGES OF EXPERTCAREER-GUIDANCE	
PRACTICAL EOUIPMENT	INCLUDING TOOLS
Basic Practical and Theore.	The spec
tic Courpe for beginners inReador. TronicsElectronies, Ete Radio,T.V.E.Electronicy, Ete B.I.E.T.	
P.M.C. Certifcate ing at home with	

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without obligation.

SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT

Mono or Stereo Audio Equipment devel-
oped from Dinsdale Mk. Ml-each unit or oped from Dinsdale Mk.li-each unit
system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS FROM
£15.5.0
THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSIEM TO SUIT YOUR needs and save pounds

SEND FOR FREE BROCHURE (No. 21) TODAY! demonstrations dally at '303' edgware road

INTEGRATED TRANSISTOR AMPLIFIERS

6 WATIS MONO OR 12 WATTS STEREO We are pleased to ofler two new designs with the choice of either
mono or stereo systems. These BRITISH DESIGNED UNITS mono or stereo systems. These BRITISH DESIGNED UNITS quality with far greater adaplability, with freedom lor battery or mains operation.
 istening satisfaction

TRANSISTORS We publibh a OUARTITY, SEM-CONDUCTOR
BULLETIN
 PROM STOCK in medium to targe quanilies at KEEN
PRICES coupled witit PROMPT DELIVERIES.

 PHONE (01) t23 100899 Exin 4 (013) T23 0401 Extn. 4 . 2 Track 36 gns We purchase medium to large quantives of

\qquad

HI-FI equipment to suit EVERYPOCKIT

VISIT OUR NEW HI-FI CENTRE at 309 EDGW ARE ROAO AND SAVE UP YO f25 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE or all leading makes AMPLIFIERS TUNERS DECKS SPEAKERS MICROPHONES TEST EQUIPMENT HEADPHONES CARTRIDGES, etc. All with Terrific Savings It will PAY YOU to pay us a VISIT

COMPLETE SYSTEMS from $£ 46$-Saves $£ 12.10 .0$ SEND FOR NEW 8-PAGE ILLUSTRATED HI-FI LIST 16 I7

ELECTRONIC ORGANS KIIS TO BULLD YOUREL The mayfall Acclaimed by everyone

 sorvice and advice treely availabie.
Once bult the MAYFAIR or GROSVENOR will the provide veors of onioynble ontertainment.

PRACTICAL ELECTRONICS—ELECTRONIC ORGAN KIT
\qquad
ORGAN COMPONENTS: COMPLETE RANGE IN STOCK. 49 ANO 61 NOTEKEYBOAROS - 2 TOSPAIR ASSEMBLIES - PEDAL BOARDS RHODIUM AND GOLD CLAD WIRE, ALSO PRINTED CIRCUITS ETC COMPLETE RANGES FOR TRANSISTORISED ORGANS. ASK FOR NEW PRICE LISTS WITH OETAILS
LEAFLET GB

Fully Ilustrated CATALOCUE

COMPLETELY NEW 9th EDITION (1969) The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE

Complete with 10 - worth discount vouchers FREE WITH EVERY COPY
32 pages of transistors and semi-conductor devices, valves and crystals
210 pages of components and equipmen 70 pages of microphones, decks and Hi-Fi equipment

6,500 ITEMS 320 BIG PAGES

[^0]: INTERNATIONAL CORRESPONDENCE SCHOOLS
 Dept. 171, Intertext House, Stewarts Road, London, S.W. 8
 Please send me the ICS prospectus-free and without obligation.
 (state Subject or Exam.)

 NAME
 ADDRESS

 INTERWATIONAL COBRESPONDENCE SCHOOLS

[^1]: * Callers side entrance Stylo Shoe Shop
 * Open 10-1. 2.30-4.30 Mon-Fri. 9-12.30 Sat

[^2]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representalives

 NAME
 BLOCK CAPS
 ADDRESS
 PLEASE PW 7

[^3]: All correspondence intended for the Editor should be addressed to: The Editor, "Practical WIrelese". iPC Magazines Ltd., Tower House, Southanpton Strest, London,
 part of the world. © IPC Magaxines Ltd., 1969. Copyright In all drawings, photographs and articleg published In "Practlcal Wirelese"' $\mathrm{I}_{\text {s }}$ speciflcally reserved throughout part of the world. © IPC Magaxines Ltd., 1969. Copyright in all drawings, photographs and articies pubished any of these are therefore expressly forbidden.

[^4]: ## AERIALS

 ## BAKER \& BAINES

 FOR TELEVISION and F.M. AERIALS
 Examples of prices: F.M. dipole 21/-, H 38/-, BBC dipole $30 / \mathrm{F}, \mathrm{x} 38 / \mathrm{-}, \mathrm{H} 42 /-, 3$ ele 89/-, ITA 3 ele $26 / \mathrm{j}$, 5 ole 34/-, 8 ele 47/6, it ele 57/6, double 8 t12/\%, combined BBC/ITA $1+545 /-, H+569 / 4, X+575 /-$, BSC2 8 ele 29/-, 14 ole $37 /$ i. 18 ele $54 /$-, 22 ele 63 j-. All types generally avallable Including accessorlesprices inelude mounting clamps and postage. CWO pleate. Please state channels when ordering.

 II DALE CRESCENT, NEW TUPTON CHESTERFIELD.

[^5]: FET HI-FI PRE-AMP MODULE
 Latest low-noise FET in special circuit. Matches ANY ceramic/Xtal PU, Xtal mike, valve pre-amp, FM tuner, etc. 'DIRECTLY into ANY transistor power amp. Input into ANY 2 Medance 2 Dist. $<0 \cdot 2 \%$. 25 Hz impedance 2 Meg . Dist. $<0.2 \%$.
 $200 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Power $6-15$ volts.
 $200 \mathrm{kHz} \pm 1$ dB. Power $6-15$ volts - post free (Stereo pair 45/-). Mail order only, c.w.o.

 ## MORRIS

 1 Birch Drive, Shawbury, Shrewshury.

