PIAGTGAL Min =60
 MARCH

SITPETHET

THE PEAK OF EFFICIENCY!

LLLUSTRATED
WIDELY USED BY INDUSTKY \&
THE DISCERNING ENTHUSIAST FOR RADIO,
T.V. \& PRINTED CIRCUIT WORK

FROM YOUR LOCAL DEALER
OR SEND DIRECT TO:-
ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD, LONDON. S.W.4.
TELEPHONE 01.622.0291

Send coupon for latest leaflet

PADGETTS RADIO STORE

OLD TOWN HALL, LIVERSEDGE, YORKZSHIRE.

 Telephone: Cleckheaton 2866Indicator Unit type 26
Size $12 \times 9 \times 9$ in. with outer case. Fitted with $2 \frac{1}{2}$ in. tube C.R.T. type CV1526. Nine B7G valves. Clean condition, but not tested. 32/6, p. \& p. 10%

Lumerator and Secant Gear Unit. Delight for the model maker. 12/6, p. \& p. 8/6.

Silicon Rectifier 500 rin , 800 P.I.V. No duds. 2/6, post paid. $24 /$ - per dozen, post paid
Jap Ear Piece. Magnetic 8 ohm . Small and large plug. 1/11, post paid. Reclaimed TV tubes with six months guarantee. 17in. type AW43/88 AW $43 / 80$, $40 /-$; MW43/69, $30 /-$. 14 in . types, $17 /-$. All tubes, $12 /$ carriage.
Speakers removed from TV sets. All PM and 3 ohms. 8 in . round and 8×5 in., 6/6, p. \& p. 3/6.
6 in . round, $3 / \mathrm{F}$, p. \& p. $3 /-; 6$ for $24 / \mathrm{-}$, post paid
$6 \times 4 \mathrm{in}$., $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid. $7 \times 4 \mathrm{in} ., 5 / \mathrm{-}$, p. \&. p. $3 /-$; 6 for $34 /-$, post paid. 5in. round, $3 /-$, p. \& P. $3 /-; 6$ for $24 /-$, post paid. Slot Speakers, 8×2 iin., $5 /-$, p. \& p. $3 / ; 6$ for $30 /-$, post paid.
Untested 12 channel 14 in . TV sets, $20 /$-, carriage $15 /-$ Passenger train, double rate. Untested Pye, KB, RDG, Ekco 17 in . TV sets. Bush 17 in . TV sets, 50/- each, carriage $15 /$. Passenger train double rate.

VALVE LIST
Ex. Equipment. 3 months' guarantee
Single Valves Post 7d., over 3 Valves p. \& p. paid. 10F1, EF80, EB91, ECL80, EF50, PY82, PZ30, 20P3. All at 10/- per dozen, post paid.

ARP12	1/6	EF91	9 d.	PL8	4	U329	5	185	8/6
EB91	9d.	EY51	2/6	PY33	5/-	U251	5/-	20 Dl	3/-
EF85	3/-	EY86	5/	PY81	1/6	6B8	1/8	20 P 1	5/-
EBF30	3--	PCC84	$2 /$	PY8:	1/6	6 BW	2/6	20P3	2/6
ECC81	3/-	PCF80	2/-	PZ30	5/	6 k 7	1/9	30PL	5/-
ECC82	3/-	PC1. 82	4/-	U191	5/-	6 U 4	5/-	$30 \mathrm{Pl}{ }^{2}$	5/-
ECC83	4/6	PCL83	5/-	U281	5/-	6V6	$1 / 9$	30 F 5	2/6
EF50)	1/-	PL36	5/-	U282	5/-	6 P 28	5/-	$30 \mathrm{FL1}$	5/-
EF80	1/6	PL38	6/-	U301	5/-	10 Pl 3	2/6	6/30L2	5/

17in.---f11.10.0
19in. SLIMLINE
SOBELL-24 Gns.

TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED
LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS SIZES AND PRICES
DEMONSTRATIONS DAILY
TWO-YEAR GUARANTEED RANTEED TUBES 100\% REGUNNED 14in.-69/6 17in.-89/6
213n. and ALL SLIMLINE TUBES 99/6
EXCHANGE BOWLS Carr 1016
Ex MAINTENANCE TESTED TUBES
17in.-35/-. Carr. 5/- (not slimilne)

COCKTAIL/STEREOGRAM CABINET £25

Polished walnut veneer with eiegant
 glass fronted cocktail compartment, padded. Posltion for two 10in. elliptlcal speakers. Record storage space. Helght $35 \frac{1}{4} \mathrm{in}$., width $52 \frac{3}{4} \mathrm{in}$., depth $14 \frac{1}{1} \mathrm{in}$. Legs 1 gn . extra
 P \& P 2/6 Acos Mics 35/-Stand . \& P, 2/6. Acos Mics. 35/-Stand ard: Stick Mic. 2gns. P. \& P. $3 / 6$ Assid. Condensers. $10 /$ for 50 P. \& P, 7/6. Asstd. Resistors: 10/* for 50. P. \& P. 4/6. Asstd. Controls : 10/-for 25. P. \& P. 7/6. Transistors : Mullard matched output kit 9/0 OC81D-2 OC81's. P. \& P. FREE. Ferrite Rods $3 / 6: 6^{*}, 8^{\prime \prime} \times$ 者" complete with LW/MW Coils. P, \& P. FREE. $^{\prime}$. TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1}{2} \times 6 \frac{1}{4} \times 3 \frac{1}{4}$ P. \& P. 4/6. SImilar cases in plastic $7 / 6$.

TRANSISTOR RECORD PLAYER CABINETS 19/6. Dim. $11^{\prime \prime} \times 14 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime}$ P. \& P. 7/6.

SINGLE PLAYER CABINETS 19/6. P. \& P. 7/6.
STRIP LIGHT TUBES $3 / 9$ each. $11^{\prime \prime}$ (284 mm .) $230 / 240$ volts, 30 watts. Ideal for cocktail cabinets, illuminating plctures, diffused lighting etc. 6 for $£ 1$. P. \& P. Iree

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12 Tel. 01-478 6001/2/3

HOME RADIO (Mitcham) LTD., Dept. PW, 187 London Road, Mitcham, Surrey, CR4 2Y0 Phone : 01-648 3282

VALUABLE NEW HANDBOOK Fís Eio ambintious

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. -Teleconimunications-Sound Recording - Automation Practical Radio - Radio Amateurs' Exam

ELECTRICAL ENG
Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draitghtsmanship - Illuminating Eng. - Refrigerarion - Elem. Electrical Science - Electrical Supply - Mining Elec. Englmeering.
CIVIL ENGINEERING Advanced Civil Eng.-Gen. Civil Eng. - Municipal Eng. - Siructural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining Waver Supply - Petrol Tech.

ELECTRONIC ENG. Advanced Electronic Eng. Gen. Electronic Eng. Applied Electronics - Prac Electronics - Radar Tech. Frequency Modulation Transistors.
MECIIANICAL ENG Advanced Mechanical Eng.Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Meial Work \longrightarrow Welding - Eng. Pattern Making Inspection - DranghtsmanInspection - Dranghtsman-
ship - Meiallurgy - Proship - Mei
duction Eng.

AUTOMOBILE ENG.
Advanced Altomobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Alitomohile Diesel Maintenance - Automobile Elec. Equipment - Garage Management

We have a wide range of coursses in other subiects including chemicaleng. aero eng. Management. nstrument technologr, works study, mathematics, etc. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng.. A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology 453A Aldermaston coubt. Aldegmaston, berkshire easily.

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job. HOW to qualify for rapid promotion.

* HOW to put some letters after your name and become a key man . . . quickly and
* HOW to benefit from our free Advisory and Appointment Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER-GUIDANCE

PRACTICAL EQUIPMENT

Banic Practical and Theore tic Course for beginners in Radio,T.V., Electronics, Etc A.M.I.E.R.E. City \& Guilds Radio Amateurs Exam R.T.E.B. Certificate Practical Madio Radio \& Televisionservicing Practical Electronics Electronics Engineering Automation

INCLUDING TOOLS
The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with mig at home with
practical equipment. practical equipm B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without obligation.

- © ST NOM.

I TO B.I.E.T., 453A, ALDERMASTON COURT.
I ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING
OPPORTUNITIES." I am interested in (state subject,
Please send me a FREE copy of "ENGINEERING
OPPORTUNITIES." I am interested in (stare subject,
exam., or career).

I NAME
ADDRESS
I ADDRESS

Here's a Selection of Models from the FREE HEATHKIT CATALOGUE

AVAILABLE AS EASY TO BUILD KITS OR READY-TO-USE MODELS

Kit K/AR-14
Ready to use A/AR-14
$£ 76.11 .7{ }_{13 \mathrm{p}}^{\text {p }}$
13/6
13/6
,
Cabinet $£ 4$ 10.0. extra

Kit K/AR-17
f39.0.0

Ready to use A/AR-17

Cabinet $£ 3.10 .0$. extra

Kit K/AR-27
£22.10.0
P.P.
$10 / 6$

10/6
C
Ready to use A/AR-27
£32.13.6
P.P.
$10 / 6$

BERKELEY LOUDSPEAKER SYSTEM
Use two for stereo. Best performance from a slim-line cabinet. Uses less than 1 sq . ft. of floor space. Available in Teak or Walnut finish.
Kit
Ready to use
£21.4.0
£24.0.0
P.P.

13/6

Top Value in a 30 Watt FM Stereo Receiver, AR-14

- 31 transistor, 10 diode circuit for cool, instant operation with the transparent, natural sound only transistors can deliver $\pm 1 \mathrm{~dB}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel continuous (20 watts total). 15 watts per channel IHF music power (30 watts total) Wideband AM/FM stereo tuner plus two preamplifiers and two power amplifiers. Front panel stereo headphone jack. Compact-iust $3 \frac{7 z^{\prime \prime}}{} H \times 15 \frac{1}{4}^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{D}$. Custom install it in wall, your own cabinet, or use as a free standing unit. Build it in 20 hours.

Kit K/AR-14 (less cab.)
kit £54.0.0. P.P. 13/6
A/AR-14 (less cab.)
£76.11.7. P.P. $13 / 6$
Cabinet extra: Teak or Walnut finish £4.10.0

Unbeatable Value in a 14 Watt FM Stereo Receiver, AR-17

- 28 transistor, 7 diode circuit for natural transparent sound, instant operation, long trouble-free life. 14 watts music power, 10 watts RMS from $25-35,000 \mathrm{~Hz}$ at $\pm 1 \mathrm{~dB}$. Automatic stereo indicator light. Adjustable phase control for maximum separation. - Complete front panel controls. Flywheel tuning. All critical circuits including FM "front-end" factory assembled and aligned. - Circuit board assembly. Compact $10 \frac{3^{\prime \prime}}{} \mathrm{D} \times 3^{\prime \prime} \mathrm{H} \times 12^{*} \mathrm{~W}$. Front panel stereo headphone jack.
Kit K/AR-17 (less cab.)
kit $£ 39.0 .0$. P.P. 10/6
A/AR-17 (less cab.)
f60.4.10. P.P. $10 / 6$

Cabinet extra: Teak or Walnut finish £3.10.0

A Quality Table Radio FM Mono Receiver, AR-27

13 transistor, 6 diode circuit for high-fidelity sound reproduction, long life, low heat, freedom from hum, and service-free operation. 7 watts music power. $\pm 1 \mathrm{~dB}, 25$ to $60,000 \mathrm{~Hz}$ at 5 watts. - Input connectors for phonograph and auxiliary signals. Complete front panel controls. Flywheel tuning. Preassembled and prealigned FM tuner, alt other critical parts factory aligned. Easy, circuit board assembly. Compact bookshelf size. 3-way installation ... wall, free standing or in a suitable cabinet. 117 v . A.C. or $210 / 240$ v. A.C., 50 Hz operation.

```
Kit K/AR-27 (less cab.)
kit \(£ 22.10 .0\). P.P. \(10 / 6\)
A/AR-27 (less cab.)
£32.13.6. P.P. \(10 / 6\)
```

Cabinet extra : Teak or Walnut finish £3.10.0

See how easy it is to build any Heathkit model. Purchase a manual only. British manuals 10/- each. American manuals $£ 1$ each incl. P.P. Price of manual deductible from kit if you buy later.

Showrooms: LONDON, Tottenham Ct. Rd. BIRMINGHAM, St. Martins Hse. GLOUCESTER, Bristol Rd.

There's Something for Everyone in the HEATHKIT Electronic Range . . .

STEREO TAPE RECORDER, STR-1
A complete stereo system including speakers in one compact Transportable. Versatile recording facilities. Powerful output, 4 watts rms per channel.
Kit K/STR-1 £58.0.0 P.P. 10/6

STEREO AMPLIFIER, TSA-12
Fully transistorised. Fantastic performance at Iowest cost. Man'y exceptional features. Kit K/TSA-12 £32.16.0 P.P. 10/6 Cabinet $£ 3.16 .0$ extra

PORTABLE VOM, IM-17
The latest solid-state circuit, plus rugged polypropylene case. For homeawners, hobbyists, service.
Kit K/IM-17 £13.12.0 P.P. 6/-

RF SIGNAL GENERATOR, RF-1U
100 kHz to 200 MHz in six bands. The specification is outstanding for price. A dependable service instrument. Kit K/RF-1U£13.18.0 P. 9 .

VALVE VOLTMETER,
V.7A

Popular size, 7 AC, DC, ohms range. Popular price.
Kit K/V-74
f14.16.0 P.P. $4 / 6$

STEREO RECORD PLAYER, SRP-1
A complete stereo system including speakers in one compact portable. Plays mono or stereo records. Cool, crisp, bold sound.
Kit K/SRP-1 £28.6.0 P.P. 10/6

4 BAND RECEIVER, GR-64
Offers you the exciting world of shortwave at low-cost. Modern styling.
Kit K/GR-64 £22.8.0 P.P. 9/-

UXR-2

Send for the FREE

 Catalogue and see for yourself, Today!
TRANSISTOR PORTABLES

UXR-1. The popular choice. Many de-luxe features.
Kit K/UXR-1 teather $\mathbf{£ 1 3 . 8 . 0 ~ P . P . ~} 4 / 6$
Kit K/UXR-1 colour case £12.8.0 P.P. 4/6
UXR-2. For clean, bold sound. Rugged leather case in black or brown.
Kit K/UXR-2 £15.10.0 P.P. 6/-

BOOHS BY G.A. BRIGGS

A QUARTER OF A MILLION COPIES SOLD SINCE 1948

AERIAL HANDBOOK (second edition)

176 pages, 144 illustrations.
Price (semi-stiff cover) 15/- (16/6 post free). Cloth bound $\quad 22 / 6$ (24/-post free).

CABINET HANDBOOK

112 pages, 90 illustrations.
Price 7/6 (8/6 post free). Semi-stiff cover.

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound.
Price 25/- (27/- post free).

MUSICAL INSTRUMENTS AND AUDIO

 240 pages, 212 illustrations. Cloth bound. Price 32/6 (34/6 post free).
LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations. Cloth bound.
Price 25/- (27/- post free)

A to Z in AUDIO
 224 pages, 160 illustrations. Cloth bound.
 Price 15/6 (17/-post free).

\square
 O.P.V. on hoth A.C. and D.C. volts. 0-15, 0-150, $0-1000$ with test prods, battery and full netructions, 42/6. \mathbf{P}. A P. $3 / 6$. FREE GIFT for limited period ouly. 30 watt Electric Soldering Iron value 15/- to every punchaser of the Pocket Multi-Meter.

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud speaker aystem on one frame, combining three matched ceramle
magnet speakers with a low loes cross magnet speikers with a low loes cross
over network. Pesk handling power 10 watts. Impedance is ohms. Ftux density 11,000 gauss. Resonance 40$60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size $131 \times 8^{1} / 10 \times 44$ inches. By famous manufacturer. List Price $\mathbf{£ 7}$. Our price 89/6 plus $5 /-\mathbf{P}$. \& \mathbf{P}.
Similar speaker to the above without tweeters in 3 and $15 \mathrm{ohm} 39 / 8$ plas
$5 / P$ P. P .

600 mW FOUR TRANSISTOR AMPLIFIER

Features N.P.N. and P.N.P. complementary symmetrical output stage,
 3 dB points $30 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{kc} / \mathrm{s}$. Price $19 / 6$ plus $1 /-\mathrm{P} . \& \mathrm{P} .7^{\prime \prime} \times 4^{\prime \prime}$ Speaker

2六 watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} \times 4 \mathbf{y}^{\prime \prime} \times 13^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Semi conductors, two OC 75 's two AC 128 's and two siabilizers AA129. Tone and volume controls on tlying leads. $£ 2.10 .0$ plus P. \& P. $3 / 6$. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high flux speaker, $18 / 6$ plus $2 /-\mathrm{P}$. \& P.

FIRST QUALITY P.V.C. TAPE
$53^{\prime \prime}$ Std
$7^{\prime \prime}$
$3^{\prime \prime} \mathrm{Std}$
$5^{\prime \prime} \mathrm{L}$.
$7^{\prime \prime \prime} \mathrm{L}$.
$53^{\prime \prime} \mathrm{D}$

iweeters in 3 and 15 ohm $38 / 6$ plas
$5 / P$. P.

X101 10 W SOLID-STATE HI-FI AMP WITH INTEGRALPRE-AMP
Specifications: RWS Poucer Ow mut (into, 3 ohms speaker); 10 watts. Sewsitivity for rated ouput): 1 mV into 3 K ohnts $\{0.33$ microamp). Told mistordion at 1 KHz . at 5 wat 0.35° on at rated and 40 KHz . Npeaker: 3 d 4 ohnos ($3-15$ ohms may be used). Supply voltage: 24 V (l.c. at 800 mA ($6-24 \mathrm{Y}$ may be used).
Control assembly: incinding resiatom and capacilors.
Control assembly: incitht

1. Volume: PKICE $5 /=$
2. Tolume: PRICE $5 /$
3. Connirehernive bass and trehte: IVICE 10/-.

Price 49/6
plus 2/tip. \& p .

$53 "$
P. \& P. on each $1 / 6,4$ or more post free

50 WATT AMPLIFIER A.C. MAINS 200-250V

 An extremely reliable general purpose valve amplifier-with six electronically mixed inputs. Suitable for use with: mics, guitars, gram, tuner, organs, etc. Separate bass and treble controls.
Price 27 gns. Plus $20 /-$ p. \& p.

RECORD PLAYER SNIP A.C. MAINS 240V

The "Princess" 4-speed autonatic record changer and player engineered with the utniost precision for
beauty. long life, and trouble free service. Whit take heauty. long life, and trouble free service. Wh to ten records which may he mixed $7^{\prime \prime}$ to 10° or up to ten recards which may he mixed ${ }^{\prime \prime}$ to 10° or
l2atent stylus bruah cleans stylus after each playing and at shut oft, the pick-up locks thaelf into its recess, a most useful feature with portahle eyuip-ment-other features inclusle pick-up height ailfustment. and stylus pi ssure adjust ment. This truly is a
 flne instrument which you cen purchase this month at only $£ 5.19 .6$ complete with cartridge and realy to play. Post and insurance $7 / 6$ extra.

CAR TRANSISTOR IGNITION SYSTEM

(by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.).
PRICE £4.19.6. (post and packing 5/- extra)

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in . spool. Incorporating 3 motors.
A.C. mains, 240 volts, listed at £21.0.0.
Our Price £9.19.6, plus $10 /-\mathrm{P}$. \& P.

Akrial Wire: Colis of 25 yd , solid core $2 / 3$, 1/- P. * P.
battisiv eliminators for Transistor Supplies. 9v., 7tv., 6v. 29/8. plus 2/6 P. \& P.

COADENSERS. Large range available from Bd. each.
COAX SOCKETS. Flush bd. plus 6d. P. \& \mathbf{P}.
CARTRIDGES. Acos, BSR, sonatone.
EAR PIECES. $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Mag. $2 / 6$ plus 1/- P. \& P. $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Crystal. $5 / 6$ plus 1/- P. \& P.

HIGH IMPEDANCE HORNs. If to $4 f$ volt, ideal for alarms. 3/8 plus $1 /-\mathbf{P}$. \& \mathbf{P}.

LOUDSPEAEEKRS. Large range from 2in. 8 ohm $7 / 6$ plus 1/-P. \& \mathbf{P}.

TRANSISTORS. Full range, i.e. OC44, OC45, 0C71, OC82, R/6; OC35 9/-; Fet. MPF103, 9/6.

TRANSFORMERS. 12 -volt battery charger 21.2.6. $250-0-250$ volt $60 \mathrm{~mA} .18 / 8 ; 0-250$ with 6.3 volt, 19/6, plus 3/6 P. \& \mathbf{P}

RELAYS. 12 volt, suitable for car alarm, 21/-, plus 1/6 P. \& P.

Send 8.A.E. for Free Price List.

Many other items, plesase send stamp for free price list.

BOTHWELL ELECTRIC
UPPLIES (Olasgow) LTD
54 EGLINTON STREET
GLASGOW, C.b. Tel. 041 south 2004
Meraber of the Lander Group

 IT'S A MUST OUR CATALOGUE JOIN THE THOUSANDS OF SATISFIED CUSTOMERS SEND NOW FOR

OUR NEW 1968/69 illustrated catalogue NOW AVAILABLE

(send 2/- in stamps for your copy)

Catalogue contains prices and details of Amplifiers - $\mathrm{Hi}-\mathrm{Fi}$ Tuners - Loudspeakers -Pick-ups - Playing Decks Microphones - Test Meters - Hand Tools - Valves Soldering Irons - Tape Recording Accessories, etc.

ALPHA RADIOSUPPLYCO
103 Leeds Terrace, Leeds 7. Tel: 25187

The Ideal, economical and safe way of running Translstor Radlos, Record Players, Tape Recorders, AmpIIfiers etc. from A.C. Mains. All unlts are completely Isolated from mains by double wound transformer ensuring 100% safety.
PLUS-3
MAINS UNIT
Prouldes three separate switched output voltages $6 \mathrm{~V}, 7 \mathrm{iv}$. and 9 v . DC. Attractive case with indicator light, mains lead output socket, plug and lead. Size $4 \frac{1}{4} \times 3 \frac{1}{2} \times 2 \frac{1}{2} \ln$.

Extra lead with Din plug for C $5 / / 6$ P. \&P. $2 / 6$

POWER PLUS MAINS UNIT for Cassette Tape Recorders using $7 \frac{1}{2} v$. Complete with DIN plug for recorder power socket. Can also be supplled for a 6 -volt out put complete with sult able plug (Please stat make model and volte 45/- P.\&P.2/6 required.)

MAINS UNIT for FI-CORD 202A
TAPE RECORDER P.\&P.5/
£4.15.0
MAJOR POWER PLUS

MAINS UNITS

or single outputs, $9 \mathrm{v}, 6 \mathrm{v}, 39 / 6$. P. \& P. $2 / 6$. For two separate outputs, $9 \mathrm{v}+9 \mathrm{v}$ $6 \mathrm{v}+6 \mathrm{v}, 42 / 6$. P. \& P. 2/6. (Please slate output's required)

R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.W.), 31 Oliver Road, London, E. 17

After working on radio it's the next logical step. You'll find all you want to know to get cracking in our companion magazine, PRACTICAL TELEVISION. It's packed with know-how on this fascinating subject expert guidance on set and equipment construction, repair, maintenance, detailed analyses of latest TV developments . . the lot. Why not follow through now? Ask your newsagent for a copy today.

MONTHLY 2/6 pracitical
TELEVISION

EXCLUSIVE PURCHASE！

PORTABLE

AMPLIFIER
UNIT
BY WELL－ MAKER
A luxury unit a
a bargain price．Only 35／－，P．\＆P．4／6
Designed as a Telephoue Amplifier but can be used in many diferent ways－a booster amplitier for tranaistor radion，a baby alarm，Intercom，paging system ete，ete． High gain four transistor amplifier unit housed in attrac－ tive leathercloth covered wooden cabinet with upward
facing 3in．high flux P．M．，apeaker covered by neat plastic lacing 3in．high flux P．M．，speaker covered by neat plastic
gritle．Fitted 3.5 mm jack socket and volume／on／off
 control．Size $7 \times 4 x^{x}$ inn high．Operated ot stanuard
PP6 or VTb battery．Snpplied complete with telephone plck－up induction coll atted suction pad，lead and 3.5 mm jack plug

OUR \＆PECIAL PRICE ．．．35／－P．\＆P．4／6． Or as above with 3.5 mm plug and DLR5 unit for use as gensitive microphone for baby alarms，communication systems etc．Will operate over distances of up to
more when connected with twin flex or bell wire．

PRICE 40／－P．\＆P．4／6
（Batteries and tlex not included．）
BRAND NEW 8 OHM LOUDSPEAKERS 5 in ．14／－；6才in． $18 / 6 ; 8 \mathrm{in} 27 /-7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{inı} .27 / 8$ E．M．I． $8 \times$ Sin．With high flux magnet $21 /$－．E．M．I． $13 \ddagger \times$ 81 n ．With bigh flux ceramic magnet $42 /-(15$ ohm $45 /-)$ ．M．1． 13×8 in．with 4 gns．P．$\&$ P． 5 in． $2 /-, 6 \nmid \& 8$ in． $2 / 6$ $10 \& 12$ in． $3 / 6$ per speaker
BRAND NEW． $12 \operatorname{in}$ ． 15% ．H／D Speakers， 3 or 15 ohms． Current production by well－known British maker．Now with Hiflux ceramic ferrobar magnet assembly 25．10．0． P．\＆P．5／－Guitar models： 25 w．E6． 0.0 35w．\＆8．0．0．
K．M．I． 8 in．HEAYY DUTY TWEETERS．Powerfui cera－ mic magnet．Available in 3 or $8 \mathrm{ohms} 15 /$－each； 15 ohma $18 / 6$ each．P．\＆P． $2 / 6$ ．
12in．＂RA＂TWIN CONE LOUDSPEAKER． 10 watte peak handling． 3 or 150 hm ， $5 /-$ P．\＆P． $3 / 6$
31 in ． $12 / 6 ; 7 \times 4 \mathrm{in} .21 /-$ P．\＆P． $2 /$－per speaker
VYNAIR AND REXINE SPEAKERS AND CABINET VYNATR AND REXINE SPEAKERS AND CABINET FABRIC8 app． 54 in ．Wide．Usu8lly 35／－yd．，our price $13 / 6$
yd．length．P．\＆P． $2 / 6$（min． 1 yd．）．S．A．E．for samples．

LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECK．Three speeds 4 track，takes up to 7 in ．spools GUALITY PORTABLE TAPE RECORDER CABE Dual Purpase Bulk Tape Eraser and Tape Head Demagnet－ iser 35／－．P．© P．3／－i \quad Higes．High imp．for deak or hand use．High sensitivlty． $18 / 6$ ．P．\＆P． $1 / 6$ ．
ACOS HIGE IMPEDANCE CRYSTAL STICE MIKEs． ACOS HIGH IMPEDANCE CRYSTAL STICK MIKES．
OUR PRICE 21／－．P．\＆ $1 / 6$ ．

NEW S．T．C．TYPE 25 MINIATURE RELAYS－ 12 volt． $48 / \mathrm{p}$ ，c／a contacts． 1 smpp rating．Coil resiatance 185 ohma．
Also some similar to bove unt coil reaistance 5,800
ohms 48 volt operation．8／－each．P．\＆P． $1 / 6$ ．
SPECLAL OFFER！PLESSEY TYPE 28 TWIN TUNING GANG． $400 \mathrm{pF}+{ }^{2} 46 \mathrm{pF}$ ．Fitted with trimmers and

TRANSFORMER BARGAINS

MAINS TRANSFORMER．Primary $200-240 \mathrm{~V}$ tw
separate wave secondaries giving appros． 16 V at 1 amp and 20 V at $1 \cdot 2 \mathrm{amp}$ ；secs．can be connected in
series for 36 V at 1.5 amp ．Ideal for transistor power supplies．Drop through mounting．Stack size $2 \frac{2}{2} \times 3 \| \times$
In．15／－．P．F． f / F－ Pri． $200 / 240 \mathrm{v}$ ．8ec． $8-0-9$ at 500 mA ． $11 /$－ P ．\＆P． $2 / 6$ ．
$\mathrm{Pri} .200 / 240 \mathrm{v}$ ．Bec． $12-0-12$ at 1 ampp ．14／6．P．\＆ P ． $2 / 6$ ． Pri．200／240v．Bec． $12-0-12$ at $1 \mathrm{arap} .14 / 6$ ．P．\＆．P． $2 / 6$.
Pri．200／240v．Sec． $10-0-10$ at 2 amp 27／6．P．\＆P． $3 / 6$ ． 1ri．200／240v．Sec． $10-0-10$ at 2 amp ．27／6．P．\＆P． $3 / 6$.
MATCER PAIR OF 2 WATT TRANSISTOR DRIVER MATCHED PAIR OF 2 1 WATT TRANSISTOR DRIVER
AND OUTPUT TRANSFORMERS．Stack size $1+1+x$ AND OUTPUT TRANBFORMERS．Stack size $1 \frac{1}{4} \times 1 / \times$
in．Output trans，tapped for 3 ohm and 15 ohn output． in．Output trans，eapped for 3 ohm and 15 ohm output
$10 /-$ pair plus $2 /-\mathbf{P} .8 \mathrm{P}$ ． ECL8 ${ }^{\text {th }}$ s in push－pull to 3 ohm output．ONLY $11 /$－ P．\＆P． $2 / 6$ ．
BRAND NEW MAINS TRANSFORMERS for Bridge Reotifer．Pri． 240 v ．AC．Bec． 240 v ．at 50 mA and $6-3 \mathrm{v}$ ．at
$1 \cdot 5$ amp．8tack size $2 \times 3 \times 2 \mathrm{in}$ ． $10 / 6$ ． \mathbf{P} ．\＆ $\mathrm{P} 3 / 6$ ． 1.5 amp．8tack size $2{ }^{4} \times 7 \times 2 \mathrm{hin}$ ．
（Special quotatlons for quantities）．

HIGE GRADE COPPER LAMINATE BOARDS
$8 \times 6 \times 1 / 8 \mathrm{in}$ ．FIVE for $10 /-\mathrm{P}$ ．\＆P． $2 /$ ．

TRANSISTOR STEREO 8 ＋ 8 MK II
Now uaing silicon Tranaistors in flrat five atages on each channei resulting in even lower noise level with improved sensitivity．A really fret－ciass Hi－Fi Stereo Amplifter Kit Uses 14 transistord giving 8 watts push pull output pe chanmel（16W．mono）．Integrated pre－smp．with Bass Treble and Volume controls．Suitable for uge with Ceramic or Crystal cartridges．Output stage for any
speakers from 3 to 15 ohms．Compant design，all parts speakers from 3 to 15 ohms．Compact design，al part supplicd incluning panel，knobs，wire，solder，nute，bolts－ no extras to buy．Eimple step by step instructions euable any constructor to buidd an amplifler to be proud of Bricf specification：Freq，response $+31 \mathrm{~B} .20-20,000 \mathrm{c} / \mathrm{s}$ Base boont approx．to +12113 ．Treble cut approx．to -16 dB ．Negative feedback 18 dB over main amp Power requirements 25 V at 6 amp． 0 ：POWER PACK KIT £3．0．0；CABINE＇23．0．0．All Post Free． Circuit diagram．construction details and parts list（free

with kit） $1 / 6$ ．（B．A．E．）．SPECIAL PORCEASE！
 0 SPECIAL PURCEASEI EM．I．4－SPEED PLAYER Heavy 8in．metal turntable． Low Hutter performance 200 Low flutter periormance 200 tap）．Complete with latest type ilghtweight pick－up arm and mono cartridge with t／o atylii for LP／78．LIMITED atylii for LP／78．LIMITED NUMBER ONLY 68／－．P．\＆ P．6／6．

Mains 4－8PRED RECORD PLAYER BARGAINS Mainz models．All brand new in maker＇s paoking．
E．M．I．MODEL 999 Single Player with nit mounted piok－up arm and mono cartridge

85．5．0 B．S．R．UA25 with latest mono compatible oa LATEST GARD LP95 8000 ARARD PLINTH DNITS cut out for Garrard Modela 1000,1025 ， P000 000 AT60，8P25．With OUR PRICE 5 gna，complete．P．\＆P．8／6．
LATEST RONETTE T／O STEREO／COMPATIBLE CARTRIDGE for EP／LP／Btereo／78．Oniy 32／6，P．aP．2／ LATEST RONETTE T／O M mono equipment．Only 30／－P．\＆P． $2 /$ ． SONOTONE 日TAHC compatible Stereo Cartridge with diamond sty
FEWLY

GUALITY RECORD PLAYER AMPLIFIER MKII A top－quality record player amplifter employing beavy duty double wound mains transiormer，ECC83，EL84，
EZ80 valves．Eeparate Basa，Treble and Volume controls， Complete with output transformer matched for 3 ohm speaker．Size $7^{\prime \prime} \mathrm{w}^{\circ} \times 3^{\circ} \mathrm{d} . \times 6^{\prime \prime} \mathrm{h}$ ．Ready built and tested． PRICE 75／－．P．\＆P． $6 / \%$
ALSO AVAILABLE mounted on board with output transformer and apeaker ready to fit into cabinet below．
PRICE 87／6．P． Uncut motor board size $14 \ddagger \times 12 \mathrm{in}$ ．clearance 2 in ．below， Uncut motor board size $14 t \times 12 i n$ ．clearance $2 i n$. be low，
5 fin．above．Winl take above amplifler and any B．s．R．or Sin．above．Will take above ampliner and any Bial（except GARRARD autochanger or Bingle Player Unit（except
ATG0 and SP25）．Size $18 \times 15 \times 8 \mathrm{in}$ ．PRICE 78／6 P．\＆P． $9 / 6$ ．

FM／AH TUNER HEAD

Beantifully designed and pre－
chaionengineered by Dormer Wadsworih Ltd．Supplled reedy fitted with twin－ 0005
tuning condenser for A M con－ tuning condenser for AM con－ tion covers $86-102 \mathrm{Mc} / \mathrm{s}$ ．I．F output $10-7 \mathrm{Mc} / \mathrm{s}$ ．Complete
with ECC85（ 6 L 12 ）valve and

full circust diagram of tuner head．Another apecial bulk purchase enables us to offer these st $27 / 6$ each．P．\＆P． $3 /-$ GORLER F．M．TUNER HEAD． $88-100 \mathrm{Mc} / \mathrm{s} .10 \cdot 7 \mathrm{Mc} / \mathrm{s}$ ． I．F．15／－plus $2 / 6 \mathrm{P}$ ．\＆ P ．（ECC85 valves，8／6 extra）
 3－VALVE AUDIO
AMPLIFIER MODEL HA34 D signed for Hi－Fi reproduc－ tion of records．A．C．Mains
operation．Ready built on
 chassis，size $71^{\circ} w . \times 4^{\circ} \mathrm{d} . \times$
$41^{\prime \prime} \mathrm{h}$ ．Incorporates ECC83， 4：＂h．Incorporates ECC83，
EL84，EZ80 valves．Heavy EL84，EZ80 valves．Heavy
duty，double wound mains
transiormer transformer and output trans－ apeaker，separate Bass，Treble and volume controls．Nega tive feedback line．Output 41 watta．Front panel can be
detached and leads extended for remote mounting of detached and leads extended for remote mounating of
controls．Complete with knobs，valves，ete．，wired and controle．Complete with knobs，valves，etc．，wired a
tested for only $£ 4.5 .0$ ． \mathbf{P} ．$\&$ P．$/ /=$ ． KSL＂FOUR＂AMPLIFIER KIT．Similar in appearance t HA34 above but employs entirely different and advanced
 BRAND NEW TRANSISTOR BARGAINS．GET 18
（Matched Pair） $15 /-$ ；VIS $/ 10 \mathrm{p}, 10 /-$ OC71 $5 /-$ OC76
0／－
AF117 7／B． matched pair ACl2s 25／－；Mulbard LFH3 Audin Tran sistor Pack AC128D and matehed pair AC128 12／6；
ORP12 Cadmium Sulphide Cells 10／6．All post free．

SPECIAL OFFER

transistor radios eta．，aiso ideal for clasaroom
unit ete．Works perfectly with our spectal after aCOS unit ete．Works perfectly with our spectal offer ACOS Stick Microphone（ $21 /-$ ）．Output 1000 mW ．Usen standart
9 volt bettery．8mart two tone carrying case aize $12 \times 4 \times$ gin．Atted standard imput jack socket，volume controls， 7×4 in．speaker．Completely bullt and teated，brand new

Only 79／6 ${ }^{\text {p．} 8 \text { 品 }}$

STEREO AMPLIFIER

Incorporating 2 ECL868 and 1 EZ80，heavy duty，double wound mains transiormer．Output 4 watts per channel Output impedance 3 ohms．

high aain 4 transistor

 PRINTED CIRCUIT
AMPLIFIER KIT

Type TA1

of watts．
All stan－
dard British
components．
－Bu
printed circuit panel aize $6 \times 3 \mathrm{in}$ ．Ontput Tranaformer
－Generous size Driver and Output Tranaformers． speakers．Transigtors（GET114 or 81 Mulard AC128D and patched pair of $\mathrm{ACl} 28 \mathrm{o} / \mathrm{p}$ ）． 9 volt operation －Everything supplied，wire，battery clips，aonder，etc diagram $2 / 6$（Free with Kit）．All parta sold separately SPECLAL PRICE 45／－．P．\＆P．3／－．Also ready built and

HARVERSON＇S SUPER MONO AMPLIFIER
A super quality gram amplifier using a double wound malns transformer，EZ80 rectifler and ECL82 triode pentode valve as audio amplifler and power output atage．
Impedance 3 ohma．Output approx． $3 \cdot 5$ watts．Volume and tone controlas．Chassis size only $7^{\prime \prime}$ wide $\times 3^{-}$deep \times 6^{*} high overall．AC mains $200 / 240 \mathrm{v}$ ．Supplied absolutely Brand New completely wired and tested with valves and good quality output transformer．LIMITED NUMBER ONLI．

OUR HOCK BOTTOM
BARGIN PRICE

Fully shrouded gection wound output transformer to match 3－15 Ω speaker and 2 independent volume controls， and separate bass and treble controls are provided giving good lift and cut．Valve line－up 2EL84s，ECC83，EFF86 and
EZ80 rectifier．Simple instruction bocklet 2／6（Free with EZ80 rectifier．Simple instruction bocklet 2／6（Free with Also availlale ready bullt and tested complete with std． Input sockets，\＆8．5．0．P．\＆P．8／ti．

Open all day Saturday
Early closing Wed． 1 p．m．
${ }_{4}^{4}$ frew minuten from Soulh Wimbledon ${ }_{\text {Tube Slation }}$

HARVERSON SURPLUS CO．LTD

170 HIGH ST．，MERTON，S．W． 19
Tel．：01－540 3985

send stamped addressed envelope with all enouiries

Please write clearly
 P．\＆P．ON OVERSEAS ORDERE charged extra．

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM \star Moderate size. only $3 \times 14 \times 1$ lin. Complete Kit 18 Gns.
 cast chassis. Roll rubber cone surround for ultra low resonance, and ceramic magnet. (2) 3-way quarter section series cross-over system. (3) $8 \times 51 \mathrm{n}$. high flux middle range 'speaker. (4) High efficiency tweeter. (5) Measured weight of woollen acoustic damping material. (6) Teak veneered cabinet. (7) Circult and DEMONSTRATIONS AT ALL BRANCHES.
R.S.C. STEREO/20 HI-FI AMPLIFIER

RPMEULLOUPUT ON EACH CHANNEL. SUITABLE FOR "MIKE". (4) EZ81. Frequeney Response: $\pm 2 \mathrm{~dB} 30-20.000 \mathrm{c}$. p . s . Hum Level: 65 dB down. Sensitlvity: 30 millivolts max. Iarmonic Distortion: 0.2% tFour-position tone compensation and Imput Selector Switch. AStereolMono switch. *Neon panel indicator. H Handsome Perspex Frontplate. tSeparate ally wound. Outputs for 3 and 15 ohms speakers. Complete set of parts, point15 Gins. to-point wiring diagrams and instructions. Or factory assem	Carr. $12 / 6 \quad 9$ monthly payments $£ 2$ (Total £22.10.0). Send S.A.E. for leafiet.

R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER $\begin{gathered}\text { Highly sensitive } \\ \text { high output. with } \\ \text { Pre-ment }\end{gathered}$
 lovel-70dB. Frequency response $\pm 3 \mathrm{~dB} 30-20.000 \mathrm{c} / \mathrm{s}$. grade components. Valves EFB6, EF86, ECC83 807, 807, GZ34. Separate Bass and Treble Controls. Sensitivity 36 millivolts so that any kind
of Microphone or Pick-up is suitalile. Deof Microphone or Piek-up is suitalile. De-
signed tor Clubs, Selionls, Theatres, Danee Signed or Clubs, Selionds, Theatres, Danee with Electronic Organ, Gultar, String Bass, etc. Gram, Radio or Tape, Reserve L.T. and H.T. for Radlo Tumer. Two inputs with associated volume controls so that two separate inputs such as Gram and "Mike" can be
mixed. $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ A.C. mains. For 3 and 15 ohm speakers. Complete kit of parts with point-to-point wiring diagrams and instructions, 14 Gns.
Twin-handled perforated, cover 27/6. Supplied factory built with EL34 and 9 monthly payments of $31 / 3$ (Total £ig.15.3). Send S.A.E. for leafet. R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER PUSH-PULL ULTHA LINEAR OUTPUT Two input sockets with associated controls allowing mixing of "mike" and gram, etc, etc,
High sensitivity. 5 valves-ECC83 (2), EL84 (2), High sensitivity 5 valves-ECC83 (2), EL84 (2),
EZ81. High quality sectionally wound output EZ81. High quality sectionally wound output TROLS. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Hum level-60dB. SENSITIVITY 23 millivolts. etc. Size approx. $12 \times 9 \times 7 \mathrm{in}$. For AC mains $200-250 \mathrm{v}$. 50 cps 9 Gins.
Output for 3 and 15 ohm splers. SAE for leaflet. Complete kit. Full instructions and point-to-point wiring diagrams. Carr $11 / 6$ (or factory
built 12 Gins.) Twin handled metal cover 2\%/6. TERMS ON ASSEMBLED Ouilt 12 Gns.) Twin handled metal cover 27/6. TERMS ON ASSEMBLED
UNITS. Deposit $87 / 6$ and 9 monthly payments of 22/., (Total 214.5.6). RSC AHT TRANSISTORISED VEIRSION of above completekit 9 Gns
(Assembled 13 Gns) R.S.C. BASS-REGENT 50 WATT AMPLIFIER
 An exoeptionally powertul all-purpose unit for lead, rhythm, bass gultar, vocal-
ists. gram, radio, tape. \$ Two extra heavy duty \star Four Jack inputs and two Volume Controls for simultaneous use of up to
four pick-ups or "mikes" four pick-ups or "mikes"
Bass and Treble controls. 52 Gis. Carr. 30t- or and 9 monthly payments of Send S. A. for leaflet. Send S.A.E. for leatlet. 2w Spkr. 294 gns, G15 Inc.
12ln. 20 w Spr. 19 gns. R.S.C. BATTERY/MAINS CONVERSION UNITS Type BMi An all-dry minator

Size $5+x 44 x$ Completely replaces batteries supplying $1-5 \mathrm{v}$. and 90 v . where A.C. mains $200 /$ 250 v . $50 \mathrm{c} / \mathrm{s}$ is available. Complete kit with diagram 49/11 or assembled $58 / 11$. | SELENIUM | F.W. |
| :--- | :---: |
| RECTIFIERS | (Bridged) | All $6 / 12 v$. D.C. output. Max A.C. input 18 v . 1 a . $3 / 11$.

$2 \mathrm{a} .6 / 11.3 a .9 / 9.4 a$. $12 / 9.6 a$. 2a. 6/11.3a. 9/8. 4a. 12/9.6a. 15/9.

R.S.C. MAINS TRANSFORMERS

FULLY GUARANTEED. Interleaved and Impregnated. Primaries $200-250 \mathrm{v}$. 500/s. Sareened MIDGET CLAMPED TYPE $2 \| \times 2 \pm \times 2 t i n$. $250 \mathrm{v}, 60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{~s}$.
$250-0-250 \mathrm{v}, 60 \mathrm{~mA} .3$.
FULLY SHROUDED UPRIGHT MOUNTING $250-0-200 \mathrm{v} .60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. $2 \mathrm{~s} ., 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{~s}$. $250-0-2000 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$
$300-0.300 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~B}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$ $300-0.300 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, 0-5-6 \cdot 3 \mathrm{v}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA} .6 \cdot 3 \mathrm{v}$. 4 a .
For Mullard 510 Amplifer For Mullard 510 Amplifier
$350-0-350 \mathrm{v} .100 \mathrm{~mA} .6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{~s}$
$350-0.350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a} .0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ $350-0.350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a} . .0-5 \mathrm{~s}-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$
$425-0-425 \mathrm{v}, 200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, \mathrm{c}, \mathrm{t}, 5 \mathrm{v}, 3 \mathrm{~s}$ $420-0-425 \mathrm{v}, 200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s} \cdot, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 5 \mathrm{v}, 3 \mathrm{~s}$
TOP SHROUDED DROP-TEROUGH TYPE $350-0-250 \mathrm{v} .100 \mathrm{~mA}$ 6-3v 3. 3
$260-0.250 \mathrm{v} .100 \mathrm{~mA}, 8 \cdot 3 \mathrm{v} .2 \mathrm{~m}, 6.3 \mathrm{v} .1 \mathrm{~s}$
$360-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 2 a . $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ $\begin{aligned} & 300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{~s} . \\ & 300-0-300 \mathrm{v}, ~\end{aligned} 30 \mathrm{~mA}, 6-3 \mathrm{v}, 4 \mathrm{n} .0-5-6 \cdot 3 \mathrm{v}$. $300-0-300 v$. $130 \mathrm{~mA}, 6-3 v$. An., 0-5-6.
Suitable for Mullard 510 Amplifier
$350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{~A} ., 0.5 \cdot 6 \cdot 3 \mathrm{v}$. $350 \cdot 0 \cdot 350 \mathrm{v}$. $150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. $4 \mathrm{~m}, 0-5-6.3 \mathrm{v}$. 3 a . $43 / 11$ FILAMENT or TRANSISTOR POWER PACK Types $6 \cdot 3 \mathrm{v} .1 \cdot 5 \mathrm{~s} .7 / 9 ; 6 \cdot 3 \mathrm{v}, 2 \mathrm{~s}, 8 / 8 ; 6.3 \mathrm{v} .3 \mathrm{~s} .10 / 8 ; 6 \cdot 3 \mathrm{v}$ $0-9-18 \mathrm{v}$. 1 ta . $17 / 9 ; 0-12-25-42 \mathrm{v}$. $2 \mathrm{a} .29 / 9$. CEARGER TRANSFORMER8 0-9-15v. 1 ta. 14/11; AUTO (SteD UP/sted DOWN) TRANSPORMERS AUTO (Sted UP/ated DOWN) TRANSFORMERS 150 watts, $89 / 11 ; 250$ watts $49 / 9 ; 800$ watts $89 / 8$ OUTPUT TRANSFORMERS
Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Puah-Pull 8 watts EL84 to 3Ω or 15Ω $\begin{array}{ll}\text { Puah-Pull } 10 \mathrm{watta} \\ 6 \text { V6 ECLS6 } \\ \text { to } 3,5,8 & \text { or }\end{array} 12 / 9$ Push-Pull ELs 4 to 3 or $15 \Omega \quad 10-12$ watta $21 / 8$ Puah-Pull Ultra Linear for Mullard 510, e Push-Pull 15-18 watts, sectionally wound 6LA, KT66, etc., for 3 or 15 a
Push-Pull 20 watt high quality sectionally SMOOTHING CHOKES
$50 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \Omega 12 / 9=100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 1019$ $80 \mathrm{~mA}, 10 \mathrm{H}, 350 \cap 8 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{~B}, 400 \cap 4 / 11$.

IR.S.C. COLUMN SPEAKERS Covered tone Rexine Ciair. ideal for vocalists and Public Address, 15 ohm matching Type c48s, 30 watts. Fitted four 8in. high flux 8 . Overall size approx. $42 \times 10 \times 51 n$. Or deposit $65 /-$ and 9 mthly pmis $34 / 8$ (Total 218.17 .9) Carr. 101-. Type C412s, 50 watts. Fitted four $12 \ln$. 11,0001 ine 15 watt 24 Gns.
speakers. Overall size $56 \times 14 \times 9 i n$. approx. Carr. $15 /-$. Or Deposit £4.13.6 and 9 monthly payments of $52 / 6$ (Total £28.5.0).
30 WATT HI-FI AMPLIFIER
for Guitar, Vocal or Instrumental Group
A 2 or 4 Input, 2 vol. control Hi-Fi unit with Sep arate Bass and Treble controls. Current valves. Peak output rating. Strong Rexine covered cabinet with handles. $200-250 \mathrm{v}$. A.C. mains. Fors 3 or 15 ohm 18 indicator. For $200-250 \mathrm{v}$. A.C. mains. For 3 or 15 ohm 18 GnS.
speakers. Send S.A.E. for leaflet.

12in. HIGH QUALITY LOUDSPEAKERS

LOUDSPEAKERS
imited number

$\text { ‘POP' } 100$	
loudspeaker	Circuit etc. supplied. Chassis.
0 Watt	IT Consisting or Rectifier. Elect
	hole. chassis and circui
	mA 6.3v. 2a. Supplied with case $24 / 11$

CLEARANCE LINES

HIGH QUALITY $8^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKERS $\begin{gathered}10000 \text { Gauss } \\ 3 \\ \text { ohm only } \\ 11 / 9\end{gathered}$

14 WATT HI-FI AMPLIFIERS High sensitivity Two separcontrols for mixing purposes. Separate Bass and Treble Controls. Valves A. C maln op. EL8. Slz. On | A.C.mainsoperation. Size approx. $8 \times 8 \times 6 \mathrm{in}$. Factory |
| :--- |
| bullt and fully guaranteed. Limited number to clear at $\mathbf{f - 1 9 - 1 1}$ Carr. |

EXTENSION 'SPEAKERS 29/9
Cabinet size $12 \times 8 \times 5$ in
attractive grey lizard skin finish.
Fitted
speaker.

PHONE AMPLIFIERS

free. Standard dry battery operated. Attractive black moulded case. $59 / 9$
1 WATT TRANSISTOR AMPLIFIERS
loudspeakers. Miniature size. Brand new bexed
PRINTED CIRCUIT KITS
EMI PLAYER TURNTABLES
with P.U. 4 speed. Turnover cartridge. Limited number

59/9
69/9

Complete with 72 square ins. laminated board and necessary fluids.	$12 / 9$

J.B. VHF/FM DIAL \& DRIVE ASSEMBLIES

Complete with escutcheon. Size $7^{\circ} \times 41^{*}$. Escutcheon 71
Eye Recording level indicator. For 3 ohm L/S. All normal $\mathbf{~} 7.19 .11$
facluties. Less Facla plate. For 2001250 A. C. mains. Carr $8 / 6$.
HEAVY DUTY 15in. 40 WATT LOUDSPEAKERS ONLY
MINI-8 HI-FI LOUDSPEAKER UNITS
Teak veneered cabinet, slze $98 \times 6 \pm \times 71$. Peak power
handung 8 watts 3 ohms or 15 ohms.
JASON VHF/FM TUNER DESIGNS
All parts fmis 5 Gins. fmé $£ 6.19 .11$. JTV2 $9 \frac{1}{2}$ Gns. $\begin{gathered}\text { Please state } \\ \text { channel }\end{gathered}$
STEREO/TEN HIGH QUALITY AMPLIFIER
AnN
0.00 .0 sie

5 watts high quality output on each channel. Sensitivity 50 millivolts. Suitable all crystal or
ceramic stereo cartrldges. Ganged Bass and ceramic stereo cartridges, Ganged Bass and
Treble Controls. Valves ECC83(2), EL84(2), EZ81. For 2-3 ohm speakers.
Assembled with 12
months'guarantee
R.S.C. $6 / 12 \mathrm{~V}$ CAR BATTERY CHARGERS 4 amp

49/9 $6 \mathrm{amp} \begin{aligned} & \text { heavy with variable charge rate } \\ & \text { delector } \\ & \text { duty }\end{aligned} 69 / 9$ All types $200-250 \mathrm{v}$. A.C. mains. Ready built 101 - extra.

SENSATIONAL R.S.C. HIGH FIDELITY STEREO PACKAGE OFFERS

*PACKAGE Goldring Transcription Turntable on Plinth \star Shure Masnetio Pick-up Cartride A Pair of Stanton Loudspeaker Units
 TERMSAVAMABLEALLPACKAGE OFFERS AUDIOTRINE HIGHFID

LOUDSPEAKERS

onstruction. Latest high efficiency ceramic magnets. Treated Cone sur round giving low fundamental resoproviding extended frequency range $40-15.000$ o.p.s. Impedance 3 or 16
ohms. Please state choice. Excepohms. Please state choice. Excep-
tional performance at low cost. Hriculi HF8011 HFi02D
 HIGH FIDELTTY LOUDSPEAKER UNITS Cabinets latest style Satin Teak or AirormosiavePorted where appropriate. Credit tims available.
 DORSET Size $16 \times 11 \times 9$, Range $45-$
15.000 o.p.s. Rating $8-10$ watts. Fitted
High fux 8in. Dual Conef8. 19.9
speaker. Imp. 3 or 15 ohms.
Inc. Carr. STANTON IIIS Size $18 \times 11 \times 101$ Inc. Rating

 pedance
reallstic sound output. GLOUCESTER S1ze $25 \times 16 \times 10 \mathrm{in}$. 12 in . High flux Rating 10 watts. Freavency range $12 \frac{1}{2}$ Gns. E2 EQUIPMENT CABINET
 and orther ampliters. supar
perspex cover. Satin
peak or
 MOTOR BOARDS
 R.S.C. TA6 6 Watt HIGH FIDELITY SOLID STATE AMPLIFIER
\qquad Hift' and 'cut' controls Sorate Bass and And Treble. Gram. Radio or Tape. Input solectorkets swor Mike, Output
 enciosed enamelled case, $9 t \times 2 t \times 5 \mathrm{iln}$. Attractive
brushed silver finish facia plate $10 t \times 31 \mathrm{n}$. and matchng knobs. Complete kit of parts with full
wiring diagrams and instructions. (wisting of Garrard SP25 Mk

Matched for optimum performance. Send for coloured brochure showing other money saving
offers.
"PACKAGE 2" 30 WATT SYSTEM * Garrard SP25 Mk II Turntable on Plinth * Goldrlag CS90 Ceramic P.U. Cartridge * Goldring Cs90 Ceramic P.U. C * Super 30 Amplitier in cabinet

* Pair of Stanton Loudspeaker Units Special inclusive price. Fuly 75 Gns. Carr.
wired units ready to "plug-in". "PACKAGE 1*" 13 WATT SYSTEM
$*$ Garrard SP25 Mk II 4 SDeed Player Unit "PACKAGE 1" 13 WATT SYSTEM
Garard SP25 Mk II 4 speed Player Unit on plinth
Goldring CS90 Ceramic P.U. Cartridge
* TAl2 Amplifier in cablinet Pair of Dorset Loudspeaker $49 \frac{1}{2}$ Cins. OrDop.£10 and 9 monthly
 AGENT kiono parme unis BLACKPOOL APPOINTED
RSCTAR IB WATT SUEWEDAMPLIIJTR

Goldring C玉90 high compli ance ceramic Stereo/Mono
cartridge with diamond stylus. Mounted on Plinth. Inc. Perspex cover, Cart. 22 Gns.
$15 /$ - Plus $8 / 7$ P.T. surcharge. above but with
RP3 As Goldring Lenco GL68 Transcription unit and CS90
Cartridge. Supplied with Perspex Cover. Carr. 21/-. f28 Inc. P.T. surcharge

R.S.C. PLINTHS

3000 AT6, AT60, SP25 or Gold ring GL.68. Available with yer as ill. Inc. Carr. 6 Gns. Perspex cover sold separately at 3 Gns. Limited number o covers slightly damaged but
repaired by makers. $39 / 8$ Sales settled in 3 months. FULLY TRANSISTORISED, SULID STATE CONSTRUCTION HIGGEFDDELTY OUTPUT OF 6.5
 Speaker Output 3-1.5 ohms \star For
$200-250 \mathrm{v}$ A.C. mains \star Frequency Response $30-20,000$ c.p.s, $-2 \mathrm{~dB}+$ Harmonic Distortion 0.3% at 1000 c.p.s. Hum and Noise-70dB $*$ Sensitivities (1) 300 mV (2) 50 mV (3) 100 mV (4) 2 mV * Handsome brushed silver finish Facia and
 Depositf4.16.0 and 9 mthly pymts $29 /-(T 10 t a 17$ Gins. Dep. £4.19.0 and

AUDIOTRINE HI-FI SPEAKER SYSTEMS

Consisting of matched12in. 12.000 line 10 watt 15 ohm high quality speaker. cross-over unit and tweeter. Smooth response and extended requency range ensure surprisingattinc. HF 126
Or Senior 15 waiter $6 / 6$ Gns. Carr. $6 / 6$ Carr. $5 / 9$
15,000 line Speaker 6 .
HI-FI SPEAKER ENCLOSURES Toak or Afrormo~
sla veneer finish. Modern design, Acoustically mined an
ported. Inc. carr.
IFs Size $16 \mathrm{x} 11 \times 91 \mathrm{n}$. Pressurised. Gives 4 Gns . pleasing restilis with any 8 for optimum performance with any 81n. 5 Gns.
H1-F1 'speaker. Slze $22 \times 15 \times 91$. SE10 For outstanding results SE12Forexcintprimncewith12in Fi-
With 10in Hi-F1'spkr $55.10 .0 \quad$ Fi'spkrandTwtr. Size $25 \times 6 \mathrm{GnS}$.
Slze $24 \times 15 \times 10$ in.

R.S.C. TFM1 SOLID STATE VHF/FM RADIO TUNER

FULLY TRA NSISTORISED 200/250V. A.C. Mains OUTPUT 10 WATMSR.M.S. cont, into 15 ohms. TRANSISTORE, 9 current ty pes of high quality by leading manufacturers. 5 . EQUALISATION to Standard R.I.A.A. and O.C.I.R. Characteristics or Gram and Tape Heads. SENSITIVITLES: Magaetic P.U. 4 mV . Crystal or FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} 20-20,000$ o CONSIDERABLY MORE

TREBLECONTROL $:+15 \mathrm{~dB}$ to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. NEG FEEDBACK $: 52 \mathrm{~dB}$ BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HUM LEVEL: -75 dB MARMONIC DISTORTION at 10 Watts 1.000 c.p.s. 0.2%. $11 \frac{1}{2}$ Gns. point to point wiring diagrams. Carr, 12/6. Terms: Deposit 4 Gns. and 9 monthly payments $31 / 1$ (Total 218.3 .9). Or in Teak or Afrormosia veneer
ALL COMPONENTS ETC. ARE OF A HIGEI STANDARD AND ALL COMPONENTS ETC. ARE OF A HIGR ST
SUPPLIED BY LEADING MANUFACTURERS. BRADFORD 10 North Parade. (Hall-day Wed.) Tel. 25349 BRISTOL 14 Lower Castle St. (Half-day Wed.) Tel. 22904 BIRMINGHAM $\begin{aligned} & 30131 \text { Gt. Western Arcade opp. Snow Hill } \\ & \text { Statilon } 021-235-1279 \text { (Hali-day Wed.) }\end{aligned}$ DERBY 26 Os maston Rd. The Spot (Hall-day Wed.) Tel. 41361 DARLINGTON 18 Priestgate (Hall-day Wed.) Tel. 68043
EDINBURGH 133 Leith SI. (Hall-day Wed.) Tel. Waverley 5766 GLASGOW ${ }_{403}^{326 \text { Argyle St. (Hall-day Tues.) Tel. CITy } \mathrm{S} \text {. } 1158}$
HULL $\begin{gathered}\text { Tues.) Tel. }{ }^{2} \text { Paragon Street. (Hall-day } 1 \text { Thursday) Tel. } 20505\end{gathered}$

A DUAL CHANNEL VERSION OF THE SUPER 15.

Employing Twin Printed Circutts. High quality CONTROL, 52 dB position Input Selector. Bass Control. Treble Coptrol. Volume control. Baiance Control. Stereo/Mono Switch. Tape Monitor Switch. Mains Switch. INP UT
SOCKETS (Matched Pairs). (1) Magnetic P.U. (2) Ceramic or Crystal P.U. (3) Radio/Aux. (4) Tapa Head/Microphone. Operation of the Imput Selector Switch assures appropriate equalisation. Rigid 18 s. W.g. Chassis. Size approx. 12in. Wide, 3in. high and Bin. deep. Neon Panel indicator. Attractive Faetc., except for Ganging and Balance Control. apply also to Super 15 . THESE UNITS ARE EMINENTL SUITABLE FOR USE WITH ANY MAKE OF PICK-UP OR MICROPHONE (CRYGLal Ceramic
Magnetic, Moving Coll, Ribbon) CURRENTLY AVAILABLE
 USING WITEI FIRST RATE ANE All required parts, point to point wiring $-\frac{1}{2}$ Gins. Unit factory built 28 Gns. or deposit $£ 7.5 .0$ and 9 monthly payments 56/3. (Total £32.13.3). Or in veneered housing 31 Gns Carr

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m. -5.30 p.m
Closed Sat. 1.30-2.30 p.m
Open Daily to Callers Tel 769-0499/1648

SEND S.A.E. FOR LIST OF 2,000 TYPES

Build yourself a quality transistor radio

 after sales service!
roamer seven mk IV SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDSMW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive black and gald case. Bize $51 \times 11 \mathrm{x}$ Aln. Tuable over both Medium and Long Waves
with extended with extended M.W. band for easier tuning of
Luxembourg, ete. All first grade componentsLuxembourg, ete. All Arst grade components-
7 stagey -5 transistors and 2 diodes, supersensitive 7 stage日-5 transistors and 2 diodes, supersensitive also Personal Earpiece with switched socket for private listening. Easy bulld plans and parts price List 1/6 (FREE with parta).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red apeaker grille. Size $6 \frac{1}{x}$ $4 \nmid \mathrm{in} . x 1 \mathrm{in} .7$ stages- 5 transistors and 2 diodes, territe rod aerial, tuning condenser, volume control, Ane tone moving coil speaker also Personal Earpiece grade components. Easy build plins and parts price liet 1/8 (FREE with parts.)

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case alze $71 \times 5 \frac{1}{2} \times 1$ in. with gilt fttinge. The ideal radio for home or outdoors. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. Stages, push pull output, ferrite rod serial, 7 transigtors speaker) and all first grade components. Easy spuild plans and parta grice ligt $2 /-$ (FREE with parts). (Persoual Earpiece with switched socket for private listening 5 (- extra.)

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
 1ұin. Tunable on Medhum and Long waves, two short waves, Trawler Band Plus an extra M. W. Band
for easler tuning of Luxembourg. etc. Sensitive short caaler tunning of Luxembourge ete. Sensitive
for
ferrite rod aerial and teleacopic acrial for short territe rod aerial and telescopic acrial for short
waves. All top grade components. 8 stages- 6 wapes. All top grade components. 8 stages- 6
transistors and 2 diodes lncludlug Mis Mo.Aloy R.F. Trangistors etc. (Carrying strap $1 / 6$ extra). Easy build plans and parts price list 2 . (FREE With private listening $\mathrm{s} /$-extra.)

* Callers side entrance Stylo Shoe Shop-

[^0]Extra M.W. band for
easier tuning of Luxembourg,
etc. Built in ferrite rod aerial for
chrome plated telescopic seris! for Bhort Waves
can be angled and rotated for peak B.W. listening. Socket
for Car Aerial. Powerful push pull output, transigtors ani a
diodes including Micro-Alloy R.F. Transiators. Famous make 7 I 4 in . P.M. speaker for rich-tone volunie. Air spaced ganged tuning condenser. Beparate onjoff switch, volume control, wave change switches and tuning control. Attracave case
Size $9 \times 7 \times 4 \mathrm{in}$ approx. First grade components. Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build.

Total building costs
Q 8 P. \& P. $\quad \underset{7 / 6}{\text { Personal Earpiece with switched socket }}$
Parts price list and easy build plans $3 /-$ (Free with parts).

NEW LOOK melody six

two waveband portable

8 stages- 6 transistors and 2 diodes. Covers Medium and Long Waves. Top quality 3in. Loudspeaker for quality output and also with Personal Earpiece ing. Two R.F. gtages for extra boost. High "Q". Ferrite Rod Aerial. Push-pul output. Handsome pocket size case with gilt fittings. Bize $6 \frac{1}{x} 4 \times 2 \mathrm{in}$, Easy build plans and parts price list 2/- (FREE with parts).

Total building costs
$8018 \quad \begin{gathered}P . \& P \text {. } \\ 4 / 3\end{gathered}$

RADIO EXCHANGE CO

| 61 HIGH STREET, BEDFORD. Tel. Bedford 52367
I enclose $\mathrm{f} \ldots \quad$ please send items marked

ROAMER SEVEN	\square	ROAMER SIX
TRANSONA FIVE	\square	SUPER SEVEN
POCKET FIVE	\square	MELODY SIX

I Parts price list and plans for
Name
Address
PW3

MULTIMETERS for GUERY purposel

DE－LUXE 100K $\frac{1}{2 / V O L T}$ meter pratection $0 / 5$ 1，000－D C． $0 / 3 / 10 / 50$ $250 / 500 / 1.000$ V A．C． 0 $10 / 100 \mu \mathrm{~A} / 10 / 100$ $1 \mathrm{~K} / 10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M}$ $10 \mathrm{M} \Omega-10$ to 49.4 dB 218．18．0．

LAFAYETTE 57 Range Super $50 \mathrm{k} \Omega /$ volt Multi meter． $-1000 \mathrm{~V}$ $0 \mathrm{ha}-10 \mathrm{amp}$ Ohms 0 13．Overs -20 to +8 112．10．0．Carr 3

NEW MODEL 50030,000 O．P．V．With overload protection，mirror sale
$0 / 5 / 2.5 / 10 / 25 / 100 /$ $20 / 500 / 1,000 \mathrm{E} . \mathrm{D} .0 / 2 \cdot 5$
$10 / 25 / 100 / 250 / 500 /$ 1，000v．A．C．0／50 HA／5／50 500 mA .12 amp D．C． £8．17．6．Post paid．

MODEL TE－90 50，000 O．P．V muror scale overioad protec D．C． $0 / 6 / 30 / 120 / 300 / 1200 \mathrm{v}$ | $16 \mathrm{C} / 160 \mathrm{~K} / 1-6 / 16 \mathrm{meg} \Omega$. | -20 |
| :--- | :--- | :--- | $10+63 \mathrm{~dB} .87$

MODEL TE－1？ 20,000 O．P．V． $0.0 \cdot 6 / 6 / 30 / 120$ $680 / 1,200 / 3,000 / 5.000 v$. $0 / 6 / 30 / 120 / 600 / 1.200=$ $0 / 60$ 领 $/ 6 / 60 / 600 \mathrm{~mA}$ $600 \mathrm{~K} / 6 \mathrm{Meg} .60 \mathrm{Meg} . \Omega \quad 50 \mathrm{pF}$ 0.2 mFd ． 85.18 .6 ．P．\＆P． $3 / 6$.

MODEL TE－80．20，000 O．P．V． $0 / 10 / 80 / 100 / 500 /$ $1,000 \mathrm{v}$ ．A．C． $0 / 6 / 25 / 50 / 250 /$ $500 / 1.000 \mathrm{v}$ ．D．C． $0-50 \mu \mathrm{~A}$ K／6meg \＆4．17．6．1．\＆P 3／－
 scale．Ranges： $1 / 10 / 50 / 250 / 500 / 1,000$ volta D．C ．and A．C． $0-500 \mu \mathrm{~A}, 10 \mathrm{~mA}, ~ 550 \mathrm{~mA}$
 TE－900 20，000 ת／VOLT GIANT MULTIMETER mirotection．bin．full view meter． 2 colour scale， 0 ， $10 / 250 / 1,000 / 5,000$ ． C．0／25／12．5：10150／250 $50 \mu \mathrm{~A} / 110 / 100 / 500 \mathrm{ma}$ 00 amp D．C． 02 K 215．P．\＆ $\mathrm{P} \overline{\mathrm{j}} / \mathrm{C}$ ．
 TE－51．NEW $20,000 \Omega /$
VOLT MULTMETER with overload protection and mirror scale．0／6／60／120 $1,200 \mathrm{v}$ ．A．C． $0 / 3 / 30 / 60 / 300 /$ 600／3，000v．D．C． $0 \cdot 60 \mu \mathrm{~A} / 12$ 1300 mA ．D．C． $0 / 60 \mathrm{~K} / 6 \mathrm{me}$ olim．92／6．P

MODEL TE－10A． $200 \mathrm{k} \Omega$ D．C． $10 / 50 / 100 / 500 / 1,000$
$0 / 50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA} \mathrm{D.C}$ $0 / 5 \mathrm{~K} / \mathrm{f}$ meg．ohm +22 dB
10.0 $69 / 6$ ．

NEW STAR SR－200 SSB AMATEUR RECEIVER An exciting new recciver covering 6 mateur bands $160 / 80 / 40 / 20 / 15 / 10$ metres．Iluminated slide rule dial － 8 meter ©rystal calibrator e Product detector Automatic nolse limiter RF tuting and gain con－ slators， 2 dionles $220 / 240 \mathrm{~V}$ ．A．C．Suppled braml new and guaranteed．$£ 40.0 .0$ ．C

GWisnoch

35

Phone：GERRARD．8204／915S
Cables：SMITHEX LESQUARE
3.34 LISLE STREET，LONDON，W．C． 2

TRIO COMMUNICATION RECEIVER MODEL 9R－59DE + band receiver covering $550 \mathrm{Kc} / \mathrm{a}$ to 30 Me ia continuous and electrical bandspread on 10，16． 20 40 and 80 metres． 8 valve plua 7 diode circuit． $4 / 8$ ohm output and phone jack．B8B－CW－ANL －Varlable BFO © meter－Sep，bandepread Variable RF and AF gadn controls． $115 / 250 \mathrm{~V}$
service data．239．15．0，carriage psid
TRIO COMMUNICATION TYPE EEADPEONES．Normally $\& 5.19 .6$
CR PRICE $\mathrm{E}_{2} 15.0$ if purchased with above receiver
LAFAYETTE PF－60 SOLID STATE VHF FM RECEIVER
A completely new transistorised receiver covering 152－174 Mc／s．Fully tunable or crystal controlled （not suppliced）for fxed frequency operation．In－ corporates 4 INTEGRATED CIRCLITS．Bullt in speiker and illuminated dial．Bqueich and vol－ ume controls．Tape recorder output． 75Ω aerial
input．Headphone jack．Operation 230 V ．A．C．
12V．D．C．Neg．earth 237.10 .0 ．Carr． 10
LAFAYETTE LA－224T TRANSISTOR STEREO AMPLIFIER
19 transibtors， 8 diodes． $1 H$ P music power， 30 W at 8Ω ．Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W ．Dis
tortion 1% or less．lnputs 3 mV and $2 \delta 0 \mathrm{mV}$ Output 3 －16 Ω ．Separate L and R ．volume con Lrois．Treble and bask control．Stereo phone jack Brushed aluminium．gold anodiged extruded fron panel with complementary mpta，case．Size $10!\times$
$3 / 16 \times 713 / 16 i n$. Operatlon $116 / 230 \mathrm{~V}$ ．A．C 428．Carriage $7 / 6$

GARRARD

full current range offered BRAND NEW AND GUARANTEED AT antastic savinus

Carriage／insurance $7 / 6$ extra any model．©pechal offer bane and cover avallabie for thes
models at 24．15．0．Carr．$\overline{0} /$－．Fuill range of Garrard acceasorles arallable

E．MI．SINGLE PLAYERS
4 speed whith separate arm and cartridge
52／6．Carr． $3 / 6$ ．

FIELD TELEPHONES TYPE L
Generator ringing，metal cases．Operates from two $1.5 V$ ．batle ries（not supplied）．Excellent
condition．$£ 4.10 .0$ per pair．Carr． 10 －

UNR－30 4－BAND

LAFAYETTE SOLID STATE HAgDO RECEIVER 5 BAND AM／CW／SSB AMATEUR AND SHORT WAVE $150 \mathrm{KC} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $550 \mathrm{KC} / \mathrm{s}-30 \mathrm{mC} / \mathrm{s}$ disl Varion Bandepread or pay A．C 12 V D．C ner earth operation－RF gain control Size 15in，$\times 9$ gin年 Weigh 18 lhe EXCEP＇IIONAL VALUE． £45．Carr．10／－．S．A．E．for full detnils． COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ ．Incorporates varlable BFO for CW／89／B reception．Built in speaker and phone

PRACTICAL!

VISUAL!

 EXCITING!
a new 4-way method of mastering ELECTRONICS by doing - and - seeing

a modern and professional CATHODE RAY OSCILLOSCOPE

UNDERSTAND CIRCUIT DIAGRAMS

4

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
(5) COMPUTER CIRCUIT
(BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

PRACTICAL WIR EL ss

TOPIC DF THE MONTH

Ancient and Modern

W
E would dearly like to meet the character who coined the phrase "the customer is always right". Many organisations are either blissfully unaware of this sentiment or feel that such consideration is below their dignity. As readers of Practical Wireless, you who are (we hope) eagerly scanning these lines are in a sense customers of the Editor. And before you all rush for pens and typewriters, let it be said that all of us on the editorial staff are anxious to please our customers-at least to the extent that as we have so many customers it is impossible to please everyone all the time!

In recent months it has been our policy to lay a greater emphasis on semiconductor devices. Most of the industry, including the domestic equipment field, is using semiconductors; not only that but as the months go by more and more sophisticated devices become available. It is obvious that the home constructor generally wants to be as up to date as possible and we hope that the articles we publish give him the raw material to achieve this end.

However, the postbag during this period has contained a large number of letters from readers deploring the fact that we appear to be debarring the humble valve from our pages. The readers who write thus have perfectly valid arguments for their case. The valve champions say that they have plenty of valves in their spares boxes which are still capable of giving good results; they say that they prefer using valves to semiconductors; they point out that in some applications, valves can still give as good a service, or better, than transistors.

There is no doubt that the valve is far from obsolete to the home constructor or to those who repair equipment either as a hobby or professionally. People are still buying valves in some quantity and they are cheap and plentiful; as an exercise take a look through the advertisement pages and see how many valves are being offered for sale!

As the customer is (nearly) always right, we will therefore make a point of incorporating information on valve projects (and the main article this month describes a valve receiver) but must bear in mind advancing technology and place the main emphasis on more modern circuitry. We might then please all readers-though we doubt if this is strictly possible!
W. N. STEVENS-Editor.

NEWS AND COMMENT

Leader825News and Comment 826, 827
MW Column by C. Molloy 833
On the Short Waves
by Christopher Danpure and David Gibson, G3JDG 840
Your Questions Answered 847
Practically Wireless by Henry 857
Letters to the Editor 862, 865
CONSTRUCTIONAL
Progressive Superhet by F. G. Rayer, G3OGR 828
One-Sixty Superverter by A. S. Carpenter, G3TYJ 844
Six Transistor FM Tuner, Part 2 by W. Cameron 852
Microphone Preamplifier
by J. A. Jebb 858
OTHER FEATURES
Repairing Radio Sets, Part 3 by H. W. Hellyer 834
Home Workshop Practice, Part 1 by P. Hamley 848
Magnetic Sound Recording, Part 2 by W. S. Fowler 866
P.W. Guide to Components, Part 4, Modern Electronic Components, by M. K. Titman, B.Sc. 870
APRIL ISSUE WILL BE PUBLISHED ON MARCH 7th

[^1]
FILMSHOW 1969

The annual filmshow, organised jointly by Mullard Ltd., Practical Wireless and Practical Television magazines is to be held once again at Caxton Hall, Caxton Street, Westminster, London, S.W.1. The date this year is 28 March and the show will start at $7.30 \mathrm{p} . \mathrm{m}$. prompt.

The programme will include a lecture on Colour Television, covering the setting-up procedure and dealing in detail with degaussing, purity, convergence and grey-scale tracking.

The film is entitled It's the Tube that makes the Colour and describes the manufacture of Mullard Colour Screen TV picture tubes.

Refreshments, free of charge folks, will be served at half-time.

Application for tickets-which are also FREEshould be made to "Filmshow", Practical Wireless, Tower House, Southampton Street, London, W.C. 2. A stamped, addressed envelope enclosed with all applications please.

MOBILE RALLIES SO FAR

APRIL 20-North Midlands at Drayton Manor Park, near Tamworth, Staffordshire.
MAY 18 - Northern Mobile Rally.
JUNE 1 -Amateur Radio Mobile Society.
JUNE 29-Longleat at Longleat Park, near Warminster, Wiltshire.
JULY 6-South Shields Mobile Rally.
AUGUST 10-RSGB Mobile Rally at Woburn Abbey. AUGUST 17-Derby and District.
AUGUST 24 - Torbay Amateur Radio Society.
Club Secretaries: if you want us to publish details of your Mobile Rally, drop us a line and we'll try and put information in the next issue

AH, THAT'S BETTER!

There is a persistent, boring, increasing pain about a burn that won't let you forget it and it can turn into a nasty sore, if neglected.

The beginner dealing with tools with which he isn't familiar is apt to have a burning accident, and the professional, with all his know-how, sometimes gets a trifle careless.

All sorts of domestic remedies can be tried and fail-butter, baking powder, iodine. The answer now is a quite new product-"Burneze", price 7s 3d.

Burneze is neither sticky, messy nor glutinous and to spray for 8 to 10 seconds, which thoroughly chills the area, is sufficient. It is a scientifically developed product which takes the heat out of the burn immediately so that tissue damage is reduced. A topical anaesthetic is included to soothe pain. It also reduces the over-release of histamine which causes blisters, and inhibits the spread of toxic molecules.

MULLARD AT BRISTOL SCIENCE EXHIBITION

At the exhibition arranged by the Association for Science Education in the School of Chemistry, Bristol University, from 1st to 3rd January 1969, Mullard Educational Service demonstrated a simple high-impedance d.c. voltmeter and microwave system, both primarily intended for construction by schools and technical college pupils or staff.

The voltmeter can measure up to 500 V d.c. in eight ranges. It incorporates a d.c. amplifier using a field effect transistor type BFW64, so that on every range the input impedance exceeds $10 \mathrm{M} \Omega$. It requires a supply voltage of 9 V and takes a current of approximately 6 mA .

The Gunn effect device greatly facilitates the construction of a simple, compact microwave system for demonstrating the properties of radio waves. The transmitter consists of a transmitting horn attached to a short length of waveguide containing a Gunn effect device. An adjustable screw in the cavity behind the device provides a means of tuning the transmitter by matching the wave guide to the device. Power is supplied by a 9 V battery and the current drain is approximately 100 mA . With a Gunn effect device type CXY11A the output is about 6 mW at $10 \mathrm{Gc} / \mathrm{s}$.

The receiver has a horn and a waveguide similar to those of the transmitter. The signal is detected by a microwave diode and is indicated on a $50 \mu \mathrm{~A}$ meter.

The microwave transmitter being tuned in the photograph consists simply of a Gunn effect device inside a short length of waveguide attached to the transmitting horn. A resistor in series with the Gunn device and a zener diode in parallel with it ensures that the applied voltage is of the correct value.

NEW WELLER CATALOGUE

Weller Electric Ltd., the manufacturers of soldering tools, have just published a new catalogue which deals with their range of temperature controlled soldering tools.
This four page, coloured catalogue deals with many aspects of soldering with temperature-controlled soldering pencils and their inherent advantages over more conventional tools. Details are given on the curie point principle-the control factor behind these soldering pencils, with information concerning cost saving Wellertips safety aspects, and temperature and tip size choices for the TCP range. A price list for the complete range of Weller soldering tools and accessories is included with the catalogue.

This catalogue is available on request to Weller Electric Ltd., Redkiln Way, Horsham, Sussex.

nEWS AND COMmEnT...

GET IT BOXED

The complete range of Electroniques die-cast boxes now extends from $4 \times 3 \times 1 \mathrm{in}$. to $11 \times 7 \times 6 \mathrm{in}$.

The new larger sizes incorporate the slot guide system unique to Electroniques boxes used on the original range.

The four larger sizes, which are not available elsewhere, will prove useful in housing equipment for which fabricated steel cases are currently used.

The greater depth offered by the new boxes also permits the inclusion of larger components such as wafer switch assemblies and multi-ganged potentiometers.

Further inquiries to: Electroniques, Edinburgh Way, Harlow, Essex. (Manufacturing industry inquiries to Electronic Services, same address).

RADIO, TV AND ELECTRONICS BOOKS

The Modern Book Co., 19-21 Praed Street, London, N.W. 2 announce their new catalogue of technical books. Price of this invaluable booklet is 2 s .

COMPONENT SHOW IN MAY
Space for the 21 st London Electronic Component Show in May which celebrates its majority in 1969 by going fully international is now completely booked up.

The organisers, Industrial Exhibitions Limited, report that a substantial influx of foreign exhibitors, added to the fact that many of the UK firms taking part have increased their stand space, means that the show is 25\% bigger than before.

NORTHERN POLYTECHNIC AND MULLARD LTD. RUN JOINT COURSE ON I.C. LOGIC SYSTEM DESIGN

This picture shows members of the first one-week course in the theory and practice of integrated circuit logic system design at Northern Polytechnic, London. The courses are organised jointly by Mullard Ltd. and the Northern Polytechnic. The picture was taken on the last day when

* members took part in individual projects involving the use of integrated circuits. Typical examples included a traffic light control system, vending machine sequence logic and adder circuits. One course a month is planned until May of next year. December and January courses had their full complement of members and bookings for the remainder of the courses are coming in.

A YEAR OF ACHIEVEMENT

During 1969, BSR Ltd., the makers of record changers, confidently expect to achieve over 50% of the world's market following 1968's 47\% share. In Great Britain nine out of ten record changers are made by BSR, vet this accounts for only a fifth of the output, the remainder are exported to over eighty countries throughoui the world.

The photograph shows record changets of the MA 65, MA 70 and MA 75 range being manufactured at Old Hill, one of their three British factories.

LATEST HEATHKIT CATALOGUE

Heathkit will be pleased to forward a free catalogue to readers who care to write to them at their factory at Gloucester.

MORE GEN FROM MULLARDS

Pamphlet No. 21 in the series Educational Electronic Experiments issued by Mullard Educational Service describes a simple motor speed controller using a thyristor.

The circuit described is intended for the speed control of fractional horse power, a.c. series motors of the type normally used in electric hand drills and food mixers ($\frac{1}{2}$ h.p. maximum). The controller not only enables the speed of the motor to be varied but also maintains a reasonably constant speed under varying load conditions.

Also available from Mullard Ecucational Service is a pamphlet entitled Introducing silicon planar transistors. Its description of how silicon planar transistors are manufactured will be of use to teachers and students of electronics, and of interest to engineers using semiconductor devices.

Copies of these two pamphlets can be obtained from Mullard Educational Service, Mullard Limited, Mullard House, Torrington Place, London, W.C.1.

WITH the larger type of receiver, progressive stage-by-stage construction has several advantages. A simple but efficient working receiver is first obtained without very complicated construction, reducing chances of wiring errors and also initial expense. Extra valves and other circuitry can be added later, each being tested when fitted.

This receiver is built initially as a 4 -valve (plus rectifier) superhet, having frequency changer, intermediate frequency amplifier, detection and output stages. In this form, it gives excellent results, covering one chosen waveband, without the complication of band-switching, a straightforward project of this kind should not present any difficulty even for a beginner.

Band-switching is then added, so that the receiver has five switched ranges, as follows: (1) $150-$ $400 \mathrm{kc} / \mathrm{s}$, (2) $525-1500 \mathrm{kc} / \mathrm{s}$, (3) $1.7-4 \cdot 6 \mathrm{Mc} / \mathrm{s}$, (4) 4.1 $12 \mathrm{Mc} / \mathrm{s}$, and (5) $11.5-31 \mathrm{Mc} / \mathrm{s}$. These cover long, medium and short waves. The receiver can be used on any of these bands as the coils are added and by testing it on each band as the coils are wired, difficulty or confusion in switching is eliminated.
A radio frequency amplifier is then added, without disturbing existing work. This r.f. stage increases sensitivity, and greatly reduces second channel interference on the h.f. bands; again the receiver can be tested as each r.f. coil is added. As the complete circuit has fifteen coils to cover the five bands, with associated switching, padders, etc., this method of proceeding step-by-step is very helpful in avoiding errors in wiring.
The complete coil and switch section is built into a screening box easily made from "universal chassis" flanged members, giving complete screening and a rigid assembly. The oscillator and mixer coils have small trimmers incorporated, and this saves space and work. The aerial coils have no preset trimmers, but a panel variable aerial trimmer, which is almost essential for best results with any aerial. All unused coils are shorted to avoid absorption losses.

To increase sensitivity and selectivity, a further i.f. amplifier can then be added. The other additions described can be added later. They include a signal-strength or S-meter with panel zero control, manual control for r.f. and i.f. gain, heterodyne oscillator for c.w. and for s.s.b. carrier insertion, and headphone jack. The dial allows direct calibration for all frequencies and also has a $0-500$ logging scale. A ready-made, sprayed aluminium cabinet and panel are used resulting in a finished receiver of quite professional appearance and performance.

Basic Circuit

This is shown in Fig. I, and it can be wired in this form before adding the band-switching. Assuming that the r.f. stage will in any case be added later, $\mathrm{VC1}$ and VC2 are two sections of a 3 -gang tuning capacitor. V1 is the frequency changer, and the grid coils are temporarily used as aerial coils by taking blue to aerial, and red to chassis. When
the r.f. stage is present, blue goes to r.f. valve anode and red to h.t. positive supply.

Each oscillator coil has its own particular padder capacitor value, as listed, and these are added with each coil, as the coils are wired in later. The grid and oscillator coils each have a small trimmer (TC) incorporated. The layout allows trimmers to be adjusted from below the chassis, and coil cores from above.

The aerial coils for the r.f. stage, when added, have no pre-set trimmers, and their cores are adjusted from under the chassis. V2 is the usual i.f. amplifier, V3 provides automatic volume control bias from one diode (pin 6), this being applied to V 2 . In the completed receiver, a.v.c. is applied to the r.f. stage and both i.f. stages. V3 also gives audio amplification, and finally the output stage V4 drives a speaker (or phones when required). V5 is an indirectly heated rectifier, and this avoids high initial surge voltages, a fuse protects this valve and the transformer. The final receiver requires a 100 mA h.t. supply, this is easily provided by the transformer recommended. With this transformer, R15 and R16 (150ת) are fitted to reduce the h.t. voltage a little, especially when fewer valves impose a lighter load, and to limit peak rectifier anode current.

When the r.f. stage is added, it does, of course, come in before the existing stages V1, the extra i.f. amplifier is placed between V 1 and V 2 in Fig. 1 , the S -meter is operated by V2 cathode circuit, so could, if wished, be added to Fig. 1.

Chassis Dimensions

The chassis measures $13 \times 8 \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$. deep, the depth being needed to clear the coil box. Figure 2 shows the most important dimensions. The easiest method is to fix a piece of paper $13 \times 8 \mathrm{in}$. to the chassis with tape or a few spots of adhesive, and mark out on this in pencil then pierce through all drilling positions with a centre-punch or pointed tool, the paper is then removed and the chassis is drilled.
The 9 -pin holders require ${ }_{3}$ in. diameter holes (ECH81, 6BW6 and EZ81), and other holders need $\frac{5}{8} \mathrm{in}$. holes, these sizes are easily made with a screwup chassis punch. It is wise to make the holes for the r.f. stage, extra i.f. stage, and b.f.o. at the

Fig. 1: The basic circuit of the Progressive Superhet; only one set of coils are shown.
same time. All coils occupy $\frac{1}{4}$ in. diameter holes, aerial coil 1 is under the ganged capacitor, but does not have to be adjusted from above. Mixer grid and oscillator coils for band 3 have to be reached from above with a core tool, with the ganged capacitor nearly closed.

Seven holes are necessary for each of the i.f. transformers, those to clear the four tags should be $\frac{3}{10}$ in while two $\frac{1}{8} \mathrm{in}$. holes take fixing screws. A central $\frac{3}{16}$ in. hole allows one core to be reached from below. The mains transformer is bolted over a hole which will clear all tags and a piece $3 \times 1 \frac{1}{2} i n$. is cut from the front of the chassis to take the
tuning drive mechanism A paper template is provided with the drive, this is placed on the panel so that holes etc, can be marked and the large aperture is made by sawing between corner holes. Fixing holes should be cleared of burr with a countersink bit or a few turns with a larger drill, and all fragments and filings, etc., should be cleared away before fitting the switch, ganged capacitor, and other items. The ganged capacitor is raised by threaded spacers, long bolts with extra nuts, or some similar means, so that capacitor shaft and drive shaft are in line. Before fitting the capacitor, solder a lead to the bottom tags of each section (Fig. 2) and

Fig. 2: The layout and details of the chassis viewed from the top.
take these wires down through holes in the chassis. If preferred, the receiver can be wired before actually fixing the panel and drive on.

Under the Chassis

The first step is to complete the circuit as in Fig. 1 , and test this to make sure it performs correctly on the one waveband for which coils are connected. Band 2, or medium waves, is probably most suitable. Figure 3 shows the underside of the chassis, and a few points should be noted. The mains transformer T2 and rectifier V5 are wired first, and the
smoothing choke L1 is then bolted to the side of the chassis, over the position occupied by V5. Negative tags or leads of the smoothing capacitors C16 and C17 are soldered to a tag bolted to the chassis. A tagstrip with two insulated tags is bolted near the positive ends of the capacitors to support them.

The mains lead is 3-core flexible cord, taken through a grommet placed in a hole near the "speaker" sockets and soldered to a tagstrip near T2, Fig. 3; the switch of VR1 is included in the live lead to T2 primary. The transformer shield is wired to the chassis.

As the transformer has a separate 6.3 V 1 A wind-

Fig. 3: The wiring of the basic receiver. Note that the smoothing choke $L 1$, when in position, lays beneath V5; this is clearly shown in the photograph below.

Underside view of the chassis with the coil box cover in position.
ing, this is used for the rectifier heater, which is not earthed to the chassis, the 6.3 V 4 A winding supplies all other heaters. The fuse-holder is bolted near L1, a little clear of the chassis. Heater, power circuit and similar leads are run against the chassis. It is helpful to use various colours to identify certain circuits, such as blue for heaters, red for h.t. positive, etc., the central spigots of the valveholders are earthed to the chassis.

The connection from tag 1 of V3 to VR1 slider, and from VR1 to Cl1, should be screened, the brading is taken to the nearest chassis connecting point at both ends of each screened lead. The triode section anode resistor, R10, is supported by a tagstrip which serves as an anchor point for other leads. The small components R7, R8, C9, C10, Cll are wired on a further tagstrip which is then bolted in place.

Take care that the i.f.t.s are bolted so that their tags are arranged as shown in Fig. 3, short pieces of insulated sleeving on the tags will prevent possible shorts to the chassis due to fragments of solder etc. Figure 3 shows the position occupied by the coil box, but the holder for V1 (Fig. 1) is wired before making and fitting this box. When the box is fitted later, run V1 anode lead out through a hole as shown, as this will later be taken to the adjacent extra i.f.t. The 6.3 V heater lead then passes through the rear of the box to $V 2$, while the h.t. positive lead will go through the box to the strip holding R 10 .

When the wiring of the basic circuit is completed, as in Fig. 3, it is wise to test the circuit. Figure 3 shows the positions of the b.f.o. pitch control. c.w./a.m./s.s.b. switch, band switch, aerial trimmer, and r.f./i.f. gain controls, but these will not yet be present; the coil box is also absent

Take range 2 (medium wave) oscillator coil and the 270 pF padder, the tags are identified by colours. Connect green to C3, using the lead marked "switch" in Fig. 3, similarly take blue to C4, yellow to the padder, and black to chassis. Assuming that the r.f. stage will be added later, connect the m.w mixer grid coil blue to aerial, green to V1 pin 2 , and red and black to chassis. The receiver can now be aligned and tested, and should give good results on this waveband.

If any wiring errors are made, these are most likely to be in the band-switching, so when the coil box and switch have been assembled and fitted, it is recommended that the set is tested again with only the same m.w. mixer and oscillator coils, but this time selected by the appropriate switch position, results should be the same as before. This is better than making a mistake which perhaps would result in a whole series of other coil connections being made incorrectly.

Coil Box

The coil box is made from a $6 \times 5 \times 2 \mathrm{in}$. "universal chassis" with the addition of two extra $6 \times$ 2 in . runners. The chassis has two $6 \times 2 \mathrm{in}$. runers, two $5 \times 2 \mathrm{in}$. runners, and a $6 \times 5 \mathrm{in}$. flat plate. The two extra $6 \times 2 \mathrm{in}$. runners have about $\frac{3}{8} \mathrm{in}$. removed from the flanges at each end, so that they will fit inside the flanges of the $5 \times 2 \mathrm{in}$. runners. They can then be bolted together to form a box with three sections as shown in Fig. 3.

Drill 6BA clearance holes and punch a $\frac{1}{2}$ in. hole so that the switch mechanism can fit against the front runner. Similar holes are made in each $6 \times$ 2 in . runner, including the back one, this allows the switch shaft to pass through all runners and also two 6BA screwed rods, to hold the switch wafers. To avoid any inaccuracy, the box is taken apart and the front runner used as a template to mark drilling holes on the other runners, if this is done all holes will be exactly in line when the box is assembled.

Drill the flanges so that the box can be bolted to the chassis, position it with the switch shaft in the panel hole, mark through the flange holes on to the chassis and drill. Also drill or punch holes in the box sides for the heater, h.t. and other leads. One flange is cut to clear the r.f. valveholder.

The box, with switch, is assembled complete before bolting it to the chassis. The mixer stage
components list
Resistors:

R1	$33 \mathrm{k} \Omega 1 \mathrm{~W}$	R9	$1 \mathrm{M} \Omega \frac{1}{2} \mathrm{~W}$
R2	220@ $\frac{1}{2} \mathrm{~W}$	R10	220k $\Omega \frac{1}{2} W$
R3	$47 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	R11	$3 \cdot 3 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R4	$33 \mathrm{k} \Omega 1 \mathrm{~W}$	R12	$1 \mathrm{MS} \frac{1}{2} \mathrm{~W}$
R5	$33 \mathrm{k} \Omega 1 \mathrm{~W}$	R13	470k $\Omega \frac{1}{2} W$
R6	68, $\frac{1}{2} \mathrm{~W}$	R14	$270 \Omega 1 \mathrm{~W}$
R7	$33 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	R15	150』 1W
R8	VR1 $500 \mathrm{k} \Omega \log$ pot with switch		

Capacitors:

C1 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$
C2 $0.1 \mu \mathrm{~F} 150 \mathrm{~V}$
C3 100 pF silver mica
C4 200 pF silver mica Padders :
C5 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ Band Value
C6 0.04μ F $150 \mathrm{~V} \quad 1 \quad 110 \mathrm{pF}$
C7 $0.1 \mu \mathrm{~F} 150 \mathrm{~V} \quad 2$ 270pF
C8 33pF silver mica 3 1000pF
C9 200 pF silver mica $4 \quad 3000 \mathrm{pF}$
C10 100pF silver mica 5 3900pF
C11 $0.01 \mu \mathrm{~F} 150 \mathrm{~V}$ silver mica
C12 $50 \mu \mathrm{~F} 25 \mathrm{~V}$
C13 $0.01 \mu \mathrm{~F} 350 \mathrm{~V}$ or mica
C14 $0.01 \mu \mathrm{~F} 350 \mathrm{~V}$
Trimmers TC: Built on
C15 $25 \mu \mathrm{~F} 25 \mathrm{~V}$
C16 $32 \mu \mathrm{~F} 450 \mathrm{~V}$ coils
VC1/VC2 2 sections of
C17 $16 \mu \mathrm{~F} 450 \mathrm{~V} \quad 3$-gang Jackson JB/4507 /10/320, 320pF
Coils:

Band	Aerial circuit	Mixer grid	Oscillator
	Qoilmax:	Stabqoil:	Stabqoil:
1	MZ8	MX8	OS8
2	MZ9	MX9	OS9
3	MZ10	M×10	OS10
4	MZ11	MX11	OS11
5	MZ12	MX12	OS12

1FT1 S3D/6/460
1 FT2 S3D/1/460 (Electroniques)
Switch (to include R.F.)
Four TSW6/2/S six-way all unused shorting wafers
TSW/SH/5/2 mechanism
Studding (6BA rod) (Electroniques)
Eddystone No. 898 drive. Flexible coupler
Aluminium case $15 \times 9 \times 8 \mathrm{in}$. Type W (H. L. Smith \& Co. Ltd.)
L1 P3141 120 mA 5 H smoothing choke (Electroniques)
T1 45:1 60mA speaker transformer
T2 P2931 250/0/250V $150 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ (Electroniques)
Chassis $8 \times 13 \times 2 \frac{1}{2}$ in. Pair 4×4 in. Type C brackets (H. L. Smith \& Co. Ltd.) Coil box, "Universal Chassis" $6 \times 5 \times 2 \mathrm{in}$. with two extra $6 \times 2 \mathrm{in}$. sides (Home Radio, Mitcham)

valveholder is wired before the box is fitted, as described, flying leads being left for heater and anode circuits.

Later, when all wiring is finished in the box, take a scrap piece of transparent sheet about $6 \times 5 \mathrm{in}$. and place it on the box. Put a dot with paint or ink directly over the centre of each coil core and trimmer, place the sheet on the $6 \times 5 \mathrm{in}$. aluminium plate, mark through at the dots, and punch or drill fifteen $\frac{1}{4} \mathrm{in}$. holes. The plate is fixed to the box flanges with self-tapping screws. Drill these holes in the plate first, mark through on to the runner flanges, then drill these to take the screws.

The 50 pF trimmer occupies a $\frac{5}{8} \mathrm{in}$. diameter hole, with a washer each side, this allows a little freedom to line up the shaft with the panel bush.

Switch Assembly

The switch mechanism has a stop plate which can be loosened and this is set so that there are five positions; each wafer has two poles, six ways, one way being unused. Each wafer has shorting contacts included, so that all coils not in circuit are shorted to chassis, the sixth tag of each set is earthed to the chassis for this purpose. Since the shorting contacts are common to both poles of a wafer, two separate wafers are necessary to isolate h.t. positive and earthed circuits in the mixer grid position, the h.t. positive wafer is not earthed to chassis.

Place the wafers so that contacts come as in Fig. 4, for each wafer, when viewed from the front. If there is any doubt about working, check for continuity with a meter for each position. Errors should in any case be avoided if the receiver is tested with coils for one band only, other coils afterwards being added systematically.

The switch mechanism, $6 \times 2 \mathrm{in}$. runners, and switch wafers are all secured together by two lengths of 6BA screwed rod, with extra nuts, washers or spacers, as required. A fibre or spring washer is placed against the wafers, and nuts holding them should not be overtightened. Those switch contacts which will lie near the underside of the chassis cannot be reached when the box is fixed. so solder on leads which can join those to pass through chassis holes to the ganged tuning capacitor. Also solder on leads for the three wavebands where the contacts will be near the chassis, and for the tags which short all unused coils to the chassis.

The box is then arranged on the chassis, with leads passing through and is bolted. The ganged capacitor, mixer, oscillator and aerial circuits can then be wired. When this has been done, replace the oscillator and mixer grid coils for one band. Place the switch in the correct position, and check that proper results are obtained.
Coil and switch connections can be more readily checked if a different coloured wire. or sleeving, is employed for each band. For example, blue for

Fig. 5: The skeleton circuit of the r.f. and oscillator coils. Note the wiring differences in the oscillator section between ranges 1 and 2 and 3, 4 and 5.
all long wave coil leads from switch to coils, yellow for all medium wave leads, and so on.

Coil Wiring

Note that for long and medium bands (ranges 1 and 2) the oscillator feedback windings go to the chassis, but with ranges 3,4 and 5 , these are joined to the tuned windings and padders. Mixer grid and oscillator coils are placed so that the cores can be reached from above with the correct tool. These coils have small trimmers already fixed and these are reached through the holes in the 6×5 in. plate, as described. (The aerial coils have no trimmers, the cores are reached through the cover plate holes.)

It is best to wire m.w. coils (range 2) first, followed by l.w (range 1), then ranges 3, 4 and 5, in that order. Range 4 and 5 coils are immediately adjacent to the switch wafers, so if wired first the switch tags are not easily reached for other bands.

Leads from the ganged capacitor rotor contact tags are connected directly to two tags bolted to the chassis. These bolts also secure tags under the chassis which are used as earth return connecting points for the h.f. coils. These leads need to be short and those in the switch and grid circuits are also short and away from earthed items, if not, the upper frequency limit may not be reached on band 5 .

The completed receiver with the loudspeaker mounted on top.
The specified l.w. padder is 110 pF , but correct alignment was found possible with either 100 pF or 120 pF . Note that the oscillator and mixer l.w. coils each have a 22 pF or similar fixed capacitor in parallel with the trimmer. These are necessary, for the h.f. end of this band falls near the receiver i.f. of $460 \mathrm{kc} / \mathrm{s}$.

The band 5 oscillator coil has a 100Ω resistor in series with the feedback winding. It is wise to mark the range numbers on the coil box plate for later identification when aligning. Test the receiver on each waveband, when the coils for it have been connected to the switch, Fig. 5 shows the coil circuitry
Next Month: Aligning the receiver and adding the R.F. Stage, the extra I.F., the SMeter and the B.F.O.

T1 HE North American path opened up late in November after a period of unsettled reception during the autumn. Conditions were outstanding during the early hours of 1st December. WOAI (1200) San Antonio, Texas, was clear and steady at 0240 hrs GMT, WLS (890) Chicago was weak while KMOX (1120) St. Louis was fair at 0300hrs. Tentative loggings were made of WLW (700) amid strong QRM and of KOMA (1520) Oklahoma City behind WKBW. Conditions were still good in mid-December (the time of writing). Among the better loggings during this period were WGN (720) Chicago; tentative; WSB (750) Atlanta, Georgia; WJR (760) Detroit, "The Great Voice of the Great Lakes"; WGY (810) Schenectady, N.Y.; WCFL (1000) Chicago; CFRB (1010) Toronto; KDKA (1020) Pittsburg; CKBL (1250) Matane, Quebec. Stations heard consistently at good strength were CBN (640); WNBC (660); WABC (770); WCBS (880); WINS (1010); CBA (1070); WBAL (1090); WKBW (1520); WQXR (1560). Two US stations have changed their callsigns recently. WAVY (1350) is now WCVU while WZOK (1320) has changed to WVOJ
Other North American and Caribbean loggings were Godhavn, Greenland (650); CMGN (720) Radio Rebelde, Cuba; Radio Belize (830) British Honduras; ZBM-I (1235) Bermuda; WBMJ (1190) San Juan, Puerto Rico, in English; WMDD (1480) also in San Juan, in Spanish. Little of note was heard from South America, probably because of the predominance of signals from the north. The only loggings were SRS (725) Surinam and HJDK(750) Medellin, Colombia, relaying the Caracol programme.

Local radio is well established in Spain, every main town possesses at least one low power commercial station. There are four major networks operating groups of stations under the callsign prefixes EFE, EFJ, EAJ, ECS, CES. There are also a number of high power regional stations run by the Government (RNE). The commercial stations-there are about 150 of them scattered across the country-can be a source of interesting DX to the newcomer to the MW band. Stations to look for are: EAl7 (800) Radio Madrid; EAJ5 (809) R. Seville; EAJ1 (827) R. Barcelona; EAJ101 (872) R. Zaragoza; EAJ8 (1025) R. San Sebastian; EFE14 (1097) La Voz de Madrid; EAJ3 (1259) R. Valencia; ECS1 (1385) R. Centro; EAJ28 (1412) R. Bilbao. The shared channels-1133, 1394, 1412, 1475 are interesting after midnight when stations close down in succession, generally with full identification. Some rare catches can sometimes be made under these conditions.

Youthful reader Alan Mercer of Wigan, Lancashire sends in a \log of recent DX which includes WINS, WBAL, CBA and KMOX. Well done, Alan, welcome to MW DXing. Alan, aged 12, is probably our youngest medium wave enthusiast. Can anyone claim to be the oldest? It would be interesting to hear from someone with experience of MW DXing in the early days of radio. CHARLES MOLLOY

repairing radio sets

PART 3 (Third Series) REPAIRING THE UNKNOWN SET

WE are faced with the unknown set and a damaged transformer. The next question is: 'What do we use to replace it?' And it is no use quoting matching formulae to us, for the shop down the road sells us a multi-ratio job designed to match anything to anything else. Which ratio to use?

First, we need to know the loudspeaker impedance. This will normally be about one-third to a half more than the measured d.c. resistance. Remember that impedance is an arbitrary figure, varying with frequency, and normally taken at 800 to $1,000 \mathrm{Cs}$. Our task is made considerably easier by the habit of manufacturers to keep within the brackets of 3, 7.5 and 15 ohms. Next, we need to know the output impedance of the valve. Recourse to valve tables is the correct way, but, of course, we have left the valve tables behind, so we need to remember a few popular values and relate our experiments to these. The table below gives anode impedances, anode currents and voltages of some common valves, with the transformer load impedances and ratios for 3 and 15 ohm loudspeaker speech coil matching. Remember that the higher the anode impedance, the more exact the match should be, but to make this less critical, and improve matters all round, some negative feedback can always be added.

					atio
Valve type	Va.	Ia. R	Ra. Load	3Ω	15Ω
ECL80	200	17.5 mA	11k	60:1	28:1
ECL82	250	28	9k	55:1	25:1
ECL83	200	27	7.5 k	50:1	22:1
ECL86	250	36	7 k	48:1	22:1
EL34	250	100	2 k	22:1	10:1
EL84	250	48	$4 \cdot 5 \mathrm{k}$	38:1	18:1
EL95	250	24	8 k	62:1	22:1
ELL80	250	24	10 k	58:1	25:1
UCL82	200	35	$5 \cdot 6 \mathrm{k}$	42:1	20:1
UCL83	170	30	$5 \cdot 5 \mathrm{k}$	42:1	20:1
UL41	200	45	4.3k	38:1	18:1
UL84	200	60	$2 \cdot 4 \mathrm{k}$	30:1	15:1
Turns ratio $=\sqrt{\bar{Z}_{1} / Z_{2}}$ where $Z_{1}=$ anode impedance and $Z_{2}=$ loudspeaker impedance					

Commonly used output valves giving typical working conditions and output transformer ratios.
Two small practical points: the output transformer is an electro-magnetic device and can contribute greatly to your hum problems unless you (a) mount it in the same plane and with the same axis as the old one, and (b) make sure the clamp has a good earth contact and is tight. Second point: in accordance with Henry's First Law, as I once heard it described, "the fixing holes of the new component will never line up". Do not be tempted to mount it precariously with a single screw; neither, I implore you, drill holes in the loudspeaker casting for a new fit. (In accordance with the Second Law, "the swarf will always descend to the leąst accessible place".)

H. W. Hellyer

The correct method is to cut a piece of metal long enough to encompass the transformer base or mounting bracket, whichever is the greater, then drill this so that it can be mounted on the speaker, with the new transformer screwed to it and thus taking up approximately the same position as the old. This is to assume that the transformer is mounted, as so often, on the speaker casting. If it is on the main chassis, all that is needed is a new fixing hole.

TRANSISTORISED OUTPUTS

Test procedures around the output stages, and throughout the audio section of the set, have been adequately covered in previous articles. But before leaving the subject, it is perhaps wise to insert a warning again about transistorised output stages. Except on the higher quality audio amplifiers, protection circuits will not be fitted-they are too expensive. The loudspeaker then, if it fails, needs replacing with one of exactly similar impedance unless one is prepared to alter the circuit to suit the new one. Quite a few of the earlier "little-uns" had transformer output stages, and speakers will usually be $3-8$ ohms and matching is not quite so critical. But with many transformerless output stages, the impedance of the transformer is a vital part of the current balance of the stage, and reducing it from the 25 ohms or more that was often used will result in transistors over-running.

For the same reason, the adding of an extension loudspeaker by paralleling with the old one is not a feasible proposition. As we have already seen, it is fairly common practice to fit an earphone socket which will usually isolate the internal speaker. If we know the impedance, or can work it out, then an external loudspeaker will almost invariably improve matters.

On the subject of protection, some readers have asked about the simple matter of fusing the common line of the output stage, especially of the transformer type of circuit, usually Class B. This is in order as long as it is remembered that even a fuse has resistance and signal currents cause a varying current to flow through it, which can upset the bias if we are not careful. The answer is to tap off the bias equalising resistor from the "inner" end of the fuse, that is the negative voltage end. This resistor, which limits the base-emitter current, is vital for prevention of crossover distortion-a prevalent fault with these circuits.

Output transistors, especially in these push-pull circuits of older design, tend to run hot. They should
be adequately heat-sinked (if that term may be excused), but there may still be some doubt about the ambient temperature. One particular car radio had a high incidence of output transistor failure simply because it was a convenient size to mount under dashboards and in glove compartments where there was not adequate ventilation or where the airstream from the heater did an unnecessarily good job in warming up the back of the set.

For added heat dissipation in unavoidable locations, a coin taped to the collector casing can sometimes make all the difference. Before halfpennies get out of date completely, you might consider this additional use for them-they won't buy much, so may as well earn their keep.

Again, the insulator between collector (i.e. transistor casing), and chassis has to be a good heat conductor; this is imperative. Mica is often used, or some form of plastic that is fine enough to

Good heat conductivity is essential for power output transistors. Check that fixing screws are correctly insulated from chassis by sleeves and washers when remounting. Outer case is the collector.
afford good heat conduction yet still able to act as an insulator. It is rather easy to damage-or even lose when the transistor is removed from its mounting. If no mica is available-and this material has a habit of being generously abundant when not needed-then a piece of thin varnished cambric, such as is used for transformer protection, may do the job quite well, and is easily cut to shape. When fitting this, and also when fitting the mica after handling, make sure the surfaces are clean, and smear a thin layer of silicon grease over the heatsink, this helps heat conduction enormously.

Of the i.f. and frequency-changer sections of the receiver, little remains to be said. The problem when tackling an unknown set is to identify which is which! Layout of a transistor radio seldom follows any given pattern, being a matter of production convenience, and valved sets are more and more turning to unit panel designs. So the best bet is to trace

Oscillator coils can usually be identified by different construction, mounting or colour coding. Note in this picture the use of a simple slide switch of the type described in the text.
from the tuning capacitor, remembering that the oscillator coil is likely to be identified by a colour spot and will have a switch connection, whereas the i.f. transformers will be interstage units whose connections can generally be traced directly to the succeeding transistor.

Aerial circuits and the practical aspects of both rod and external aerials have been treated pretty fully and should need no further remarks from me. From the practical point of view, one has only to identify the coils of the rod aerial, remembering that the more turns the higher the wavelength (lower frequency), then patiently trace through the switch circuits, there are no real short-cuts. But on the contrary, much time can be lost if one omits to make a rough sketch of connections, colour codes, layout, and so on when removing multi-connection components. I speak with feeling, having had to rebuild many pieces of equipment thus butchered.

TRANSISTOR SUBSTITUTES

Unlike valves, whose equivalences are well documented, transistors fall into less neatly defined categories. There are several substitute lists, hedged about with provisos, but as is the way of life, the particular transistor we wish to replace will never be mentioned (Third Law?). Our correspondence shows that readers get a bit worried about the Japanese and American types with strings of apparently meaningless numbers as their only identification.

First thing to determine is what the function of the transistor may be, and whether it is an n-p-n or $p-n-p$ device. The stage of the receiver gives us the first clue and voltages will tell us the second fact. All the popular bases have been given in previous articles and wall charts, and the collector and base connections will be identifiable. If the collector is negative to the base, the transistor is $\mathrm{p}-\mathrm{n}-\mathrm{p}$, and if positive to the base, $\mathrm{n}-\mathrm{p}-\mathrm{n}$.

Next, we need to know something about ratings. Maximum collector-base voltage is one of the limiting factors, and the circuit voltages will give us a clue. Most designers keep well within this rating, and our replacement needs to have a $V_{\text {CB }}$ greater than the measured voltage. Collector current must also be great enough to be safe, and this is not so easy to determine if-taking the gloomiest view-
the transistor we wish to replace is not conducting at all to give us a clue. The collector voltage will then, of course, be equal to the rail voltage. The collector load is our next clue. If we work out what current through this load would drop the collector volts to about two-thirds of the rail voltage, this again should give us a clue.

TRANSISTOR RATINGS

Total dissipation is the next factor, and here we are limited to common sense. Obviously, we are not going to try an a.f. driver with a $P_{\text {tot }}$ of 50 mW in place of a silicon planar device with a 300 mW rating, or an output type of 6 watts power dissipation. Again, intelligent assessment of the stage of the receiver will be needed.

For radio frequency types, the f_{T} rating will also be important, and again we need to know what the circuit is expected to do. Luckily for us, most of the germanium alloy-diffused types are quite generously rated, and mixer-oscillators for a.m. receivers with an f_{T} figure of $75 \mathrm{Mc} / \mathrm{s}$ are well within specification for our substitution. Even those designed for i.f. amplification will have an $f \mathrm{~T}$ of $30 \mathrm{Mc} / \mathrm{s}$ or more. But for f.m. oscillators, we need to be more careful. The important thing to remember is that lead length at these higher frequencies plays its part and our replacement may tend to be unstable. If so, reduce the value of the emitter bias. Often, this will be derived from a pair across the voltage line, and in this case, the upper resistor should be changed. The emitter feedback capacitor may also need changing to suit our new transistor. This is a matter for trial.

Likewise, the i.f. transistors are substituted in f.m. receivers, the upper resistor of the emitter bias network may be increased to reduce bias, but this reduction should not be to less than half of the value first noted. If instability persists, check the neutralising capacitor (not always fitted on later receivers), and experiment with values near the original. As a final expedient, damp the i.f. coil with a resistor across it; value again a subject for experiment.

FAILURE TO OSCILLATE

With a.m. mixer stages, the usual trouble is a reluctance to oscillate. This may indicate we need a little more emitter current, and a compromise between no oscillation and squegging will have to be reached. If there is no leeway, and squegging persists, reduce the emitter decoupling capacitor or even, in desperation, damp the oscillator tuned circuit with a resistor.

It may seem a retrograde step to fit a neutralising capacitor where a designer has managed to do without it, but we are plunging into the unknown and are forced to "suck it and see". Gordon King has dealt with these components, and there is no need for me to draw out details of the circuitry. A value of between 1 to 10 pF should do the trick. More than this will indicate we need try another transistor. But before admitting defeat, try the transformer damping trick also, especially with i.f. stages.

CORD DRIVE SYSTEMS

Finally, a purely practical point. In the fourth article of the original series, way back in April 1967,

A quick test for noisy components is a squirt of freezer from an aerosol.

Even the simplest of drive cords can be troublesome if spring tension is lost or the wrong relationship of drum to spindle prevents sufficient cord 'wrap' to turn the drum at the end of its travel. Note that in this view, the slide switch has been removed to show printed circuit connections (right of P.C. board)

I gave as much advice as I could muster about the fitting and adjustment of drive cords, and included a few typical diagrams. Correspondence shows that readers are often faced with the problem of restringing a drive cord with no clue at all as to its run or the desired number of turns around spindles and drums. To help matters somewhat, I include a few typical drive cord systems, drawn in the flat dimension to show cord run and spindle and drum turns. From these, it should be possible to work out a clue, even if the exact type is not depicted.

Indeed, that has been the purpose of this whole series of articles, and I am sure my colleague Gordon King will join with me in expressing the hope that they have proved helpful in solving some of the ticklish problems of radio repair, both theoretical and practical.

SOLDER ON with

 0CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}(1 \mathrm{~mm})$ up to $3 / 16^{\prime \prime}$ For $240,220,110,50$ or 24 volts.

If you want the best in soldering. Antex irons are for vou. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable efements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.
Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.

Antex, Mayflower House, Plymouth. Devon
Telephone : Plymouth 67377/8. Tolex 45296. Giro No. 2581000

15 watts - 240 volts
Fitted with nickel plated bit (3/32') and in handy transparent pack. From Electrical and Radio Shops or send cash to Antex.

from
 32 '6

BENTLEY ACOUSTIC CORPORATION LTD．

ALL GOODS LISTED BELDW，ACTUALLY IN STOCK，ALL GOODS ARE NEW，BEST QUALITY MANUFACTURE ONLY，AND SUBJECT TO MAKERS＇FULL GUARANTEE，PLEASE NOTE THAT WE DD NOT SELL ITEMS FROM USED EQUIPMENT NOR MANUFACTURERS SECONDS AND REJECTS，WHICH ARE OFTEN DESCRIBED AS＂NEW AND TESTED＂BUT HAVE A SHORT AND UNRELIABLE LIFE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 5／9 \& 6CL6 8／6 \& 12A6 3／6 \& 53KU 14／6 \& \& \& \& \& \& \& \\
\hline OB2 6／－ \& 6CW4 121－ \& I2AC6 7\％－ \& \(\begin{array}{lr}72 \& 6 / 6\end{array}\) \& \& \(\begin{array}{ll}\text { EF86 } \& \text { 6／－} \\ \text { EF89 } \& 4 / 9\end{array}\) \& \begin{tabular}{cc}
LZ319 \& \(6 / 8\) \\
LZ329 \& \(6 / 6\)
\end{tabular} \& \(\begin{array}{lr}\text { R11 } \& 19 / 6 \\ \text { R12 } \& 6 / 9\end{array}\) \& VT501 3／－ \& A8Y29 10／－ \& 0 O70 3／－ \\
\hline OZ4 \(4 / 3\) \& \(6 \mathrm{DB} \quad 7 / 6\) \& 12AD6 81－ \& \(\begin{array}{ll}77 \& 6 / 6 \\ 78\end{array}\) \& \(\begin{array}{ll}\text { DL92 } \& 4 / 9 \\ \text { DL94 } \& 5 / 6\end{array}\) \& \(\begin{array}{ll}\text { EF89 } \& 4 / 8 \\ \text { EF91 } \& 3 / 3\end{array}\) \& \(\begin{array}{ll}\text { L／7329 } \& 8 / 6 \\ \text { MHD4 } \& 8 / 3\end{array}\) \& \(\begin{array}{lr}\text { R112 } \& \text { 6／9 } \\ \text { R16 } \& 34 / 11\end{array}\) \& VU111 7／3 \& \[
\text { BAlld } 2 / 8
\] \& OA73 3／－ \\
\hline \(\begin{array}{ll}1 A 3 \& 4 / 6\end{array}\) \& 6DB \(\quad 3 /-\) \& l2aE6 \(7 / 6\) \& \(\begin{array}{ll}78 \& 4 / 8\end{array}\) \& JL96 \(37-\) \& \(\begin{array}{ll}\text { EF91 } \& 3 / 3 \\ \text { EF92 } \& 2 / 8\end{array}\) \& \(\begin{array}{lr}\text { MHD4 } \& 8 / 3 \\ \text { MHL4 } \& 12 / 6\end{array}\) \& \(\begin{array}{lr}\text { R16 } \& 34 / 11 \\ \text { R17 } \& 17 / 6\end{array}\) \& VU120 12／－ \& \& 0479119 \\
\hline 1 AS 5／－ \& 6ES 7／6 \& 12AT6 4／6 \& 85A2 816 \& 10Ls10 9，6 \& \(\begin{array}{ll}\text { EF92 } \& 2 / 6 \\ \text { EF94 } \& 5 /-\end{array}\) \& MHLA \({ }^{12 / 6}\) \& \(\begin{array}{lr}\text { R17 } \& 17 / 6 \\ \text { R18 } \& 9 / 6\end{array}\) \& VU120A12／－ \& BA129 \(2 / 6\) \& OA81 1／9 \\
\hline \(\begin{array}{ll}1.47 \mathrm{GT} \& 7 /- \\ 1 \mathrm{Cl} \& 5 / 8\end{array}\) \& 6FL \(\quad 8 / 9\) \& 12AT7 3／9 \& 90土G \(87 / 6\) \& DM70 \(61-\) \& \({ }_{\text {EFPS }}\) EF／8 \& MHLD6
MU12／14
／－ \& \(\begin{array}{ll}\mathrm{R} 18 \& 9 / 6 \\ \mathrm{R} 19 \& 6 / 6\end{array}\) \& \(\begin{array}{ll}\mathrm{WU13} \& 7 / \\ \mathrm{W} 2 \& 10 / 8\end{array}\) \& \(\begin{array}{ll}\text { BA130 } \\ \text { BCY10 } \& 2 /- \\ 5 /-\end{array}\) \& OA8S \(1 / 8\) \\
\hline 1015 \& 6F6G 4／－ \& 12AU6 4／9 \& 90AV 67／6 \& DM71 7／6 \& EFY9 10／－ \& MX 40 12／6 \& \& \(\begin{array}{ll}\text { W42 } \\ \text { W81M } \& 10 / 6 \\ 24 / 6\end{array}\) \& BCY10 5／－ \& OA88 \(4 /-\) \\
\hline \(1 \mathrm{C} 23 / 9\) \& 6F6M 12／6 \& 12AU7 \(4 / 6\) \& \(9000834 /\) \& DW4／350 \& EF98 10／6 \& \& \(\begin{array}{ll}\text { RK34 } \& 7 / 6 \\ \text { SP4 } \& 9 /-\end{array}\) \& \(\begin{array}{ll}\text { W61M } \& 24 / 6 \\ \text { w63 } \& 10 / 8\end{array}\) \& \begin{tabular}{l}
BCY12 \\
BCY33 \\
\(5 /-\) \\
\hline
\end{tabular} \& \(0.490 \quad 2 / 6\) \\
\hline 1 C 3 7／－ \& \(6 \mathrm{Fl2} \quad 3 / 3\) \& 12AV6 5／6 \& \(90 \mathrm{CV} 33 / 6\) \& 8／6 \& EF183 5／8 \& \(\begin{array}{lll}\text { N } 188 \\ \mathrm{~N} 108 \& 38 / 4\end{array}\) \& \(\begin{array}{lr}\text { SP4 } \& \text { 9／8 } \\ \text { SP13C } \& 12 / 6\end{array}\) \& \(\begin{array}{lr}\text { W63 } \& 10 / 8 \\ \text { W76 } \& 5 / 9\end{array}\) \& BCY33 \(5 /-\) \& OA91 \(1 / 8\) \\
\hline \(\begin{array}{ll}1 \mathrm{C} 5 \& 4 / 9 \\ 1 \mathrm{l} 5 \& 8 / 9\end{array}\) \& \({ }_{6}^{6 F 13} 3\) \& 12AY7 81－ \& \(90 \mathrm{Cl} 18 /-\) \& D W \(4 / 500\) \& EF184 5／9 \& N108 \({ }^{\text {N } 152 / 7} 7\) \& \(\begin{array}{lll}\text { SP13C } \& 12 / 6 \\ \text { SP42 } \& 12 / 6\end{array}\) \& \(\begin{array}{ll}\text { W76 } \& 5 / 9 \\ W 77 \& 2 / 6\end{array}\) \& \(\begin{array}{ll}\text { BCY34 } \& 4 / 6 \\ \text { BCY38 } \& 5 /-\end{array}\) \& \[
0 \mathrm{~A} 182 \text { 2/- }
\] \\
\hline \(\begin{array}{ll}\text { 1D5 } \& \text { 6／9 } \\ \text { 1D6 } \& 9 / 6\end{array}\) \& \(\begin{array}{lr}6 F 14 \& 15 /- \\ 6 F 15 \& 9 / 6\end{array}\) \& 12AX7 4／6 \& \(15013214 / 6\) \& \(8 / 6\) \& EF804 20／5 \& 「339 25／－ \& \& W81M \(8 / 6\) \& \(\begin{array}{ll}\text { BCY38 } \& 5 /- \\ \text { BCY } 39 \& 4 / 6\end{array}\) \& OA200 \(1 /-\) \\
\hline 1FD1 8／－ \& \(\begin{array}{lr}6 F 15 \\ 6 F 17 \& 12 / 6\end{array}\) \& \(\begin{array}{ll}\text { 12AY7 } \& 9 / \theta \\ \text { 12BA6 } \& 6 /-\end{array}\) \& \(150 \mathrm{C}^{2}\) 5／9 \& DY86 5／9 \& EH90 6／6 \& N359 7／3 \& TDDA 8／3 \& Wlol \(26 / 2\) \& BCZ11 \(3 / 6\) \& OA202
OA210 \\
\hline \(1 \mathrm{FD9} 3 / 8\) \& 6 F 18 7／6 \& 12BE6 5／8 \& 1818 BT 15／－ \& D80F \& \({ }_{\text {E143 }}{ }^{\text {E／3／6 }}\) \& P61 2／6 \& TH4R 101－ \& W107 7／－ \& BC107 4／－ \& OA211 18／6 \\
\hline \(1 \mathrm{G6}\) 6／－ \& 6 F 23 12／3 \& 128 H 7 6／－ \& 301 20／－ \& E83F \({ }_{\text {E4／－}}\) \& \({ }_{\text {ELL34 }}{ }_{\text {EL3 }} 12 /-\) \& \begin{tabular}{l}
PABC80 \(7 / 3\) \\
PC86 \\
\hline \(8 / 6\)
\end{tabular} \& TH233 7／－ \& W729 10／－ \& BC108 3／6 \& OAZ20012／－ \\
\hline 1H5GT 7／－ \& 6 ド2 \(2411 / 8\) \& 12 El 17／－ \& 302 16／6 \& E88CC 12／－ \& ELL34 \({ }_{\text {EL3 }}\) 10／6 \& \(\begin{array}{ll}\text { PC86 } \& 9 / 6 \\ \text { PC88 } \& 9 / 6\end{array}\) \& TP＇22 5／－ \& X24 18／6 \& BC109 4／3 \& OAZ20110／6 \\
\hline 1L4 \(2 / 6\) \& \(6 \mathrm{~F}^{25}\) 11／9 \& 12J5GT \(2 / 6\) \& 303 15／－ \& Ei800C 8／－ \& \(\begin{array}{ll}\text { ELL36 } \& 10 / 7 \\ \text { FL36 }\end{array}\) \& \(\begin{array}{ll}\text { PC88 } \& 9 / 6 \\ \text { PC95 } \& 8 / 3\end{array}\) \& TP45 \({ }^{\text {TP2620 }} 8 / 8\) \& \(\begin{array}{ll}\mathrm{X} 41 \& 10 /- \\ \times 61 \& 5 / 9\end{array}\) \& BCl13 5／－ \& OAZ202 9／－ \\
\hline 1LD5 5／－ \& 6 F 28 10／6 \& 1237GT 6／6 \& \(305 \quad 16,6\) \& E180F \(17 / 6\) \& EL37 17／3 \& \(\begin{array}{ll}\text { PC95 } \& 8 / 3 \\ \text { PC97 } \& 7 / 8\end{array}\) \& TP2620 8／9 \& X61 5／9 \& BC115 3f－ \& OAZ203 9／6 \\
\hline ILNS 8／－ \& \(6 \mathrm{F32}\) 3／－ \& \(12 \mathrm{~K} 510 /-\) \& 306 13／－ \& EA50 1／6 \& EL4！9／3 \& PC900 \(8 / 3\) \& TY86F \({ }_{\text {UABC }} 12 / 2\) \& \(\mathbf{X} 63\) 5／8 \& BC116 5／－ \& 0.48204 9／－ \\
\hline 1N5GT 7／9 \& 6G6G \(2 / 6\) \& 12K70T \(5 / 8\) \& 807 11／9 \& EA76 13／－ \& \(\begin{array}{ll}\text { EL41 } \& 9 / 3 \\ \text { EL42 } \& 8 / 9\end{array}\) \& \(\begin{array}{ll}\text { PC900 } \& 8 / 3 \\ \text { PCC84 } \& 6 /-\end{array}\) \& \begin{tabular}{l}
UABC80 \\
U／F42 \\
\hline \(1 / 8\)
\end{tabular} \& X64 12／6 \& \(\begin{array}{ll}\text { BC118 } \& 4 / 6\end{array}\) \& OAZ205 9／－ \\
\hline 1 Pl 7／－ \& \(6 \mathrm{H6GT} 1 / 9\) \& 12K8GT 7／6 \& 956 \& EABC80 \(6 /\) \& \(\begin{array}{ll}\text { EL42 } \& 8 / 8 \\ \text { EL81 } \& 8 /-\end{array}\) \& \(\begin{array}{ll}\text { PCC84 } \& 6 /- \\ \text { PCC85 } \& 6 / 6\end{array}\) \& \(\begin{array}{ll}\text { UAF42 } \& 9 / 8 \\ \text { UB41 } \& 8 / 6\end{array}\) \& \(\times 65\) \& BD119 8／－ \& OAZ206 9／－ \\
\hline 1 P10 \(4 / 9\) \& \(6 \mathrm{S5G} \quad 3 / 9\) \& 12Q7GT 4／6 \& 1821 10／8 \& EAC91 3／－ \& EL81 \({ }_{\text {EL83 }}{ }^{8 /-}\) \& \(\begin{array}{ll}\text { PCCRb } \& 6 / 6 \\ \text { PCes8 } \& 9 / 9\end{array}\) \& UB41 \({ }_{\text {U }}\) \& \(\times 66 \quad 7 / 6\) \& BFY50 4／－ \& OAZ20710／6 \\
\hline 1 P11 5／6 \& \(65 ⿹ \mathrm{GT}\) 4／8 \& 128A7GT8／9 \& 5703 10\％－ \& EAF42 \(8 / 3\) \& \(\begin{array}{ll}\text { EL83 } \& 8 / 8 \\ \text { EL84 } \& 4 / 6\end{array}\) \& \(\begin{array}{ll}\text { PCC88 } \& 9 / 9 \\ \text { PCC89 } \& 8 / 6\end{array}\) \& UBC41 \(7 / 8\) \& X76M \(7 / 6\) \& BFY51 4／－ \& OAZ210 \(71-\) \\
\hline \(1 \mathrm{R} 5 \quad 5 / 6\) \& 6，56 3／－ \& 128 C 7 4i－ \& \＄0060 5／6 \& EB34 \(7 / 6\) \& \(\begin{array}{ll}\text { EL84 } \& \text { 7／6 } \\ \text { EL85 }\end{array}\) \& PCC189 \({ }_{\text {P／6 }}\) \& \begin{tabular}{ll}
UBC81 \\
UBF80 \& \(7 / 7\) \\
\hline 19
\end{tabular} \& X81M \(30 / 6\) \& Bry52 4／6 \& OAZ213 7／－ \\
\hline 1.84 \& \(6 \mathrm{J7G}\) 4／9 \& \(128 \mathrm{G7} 3 /\) \& 7193 10／6 \& ER41 \(4 / 6\) \& EL86 8／－ \& \(\begin{array}{ll}\text { PCF＇80 } \& 8 / 6 \\ \& 8 / 6\end{array}\) \& \(\begin{array}{ll}\text { UBF80 } \& 5 / 9 \\ \text { UBF89 } \& 8 / 8\end{array}\) \& \(\times 101\) 29／1 \& BF154 5／－ \& OAZ224 \\
\hline 185 8／9 \& 6．J7GT 0／6 \& 128 H 7 3／－ \& 7.75 4／－ \& EB91 2／3 \& EL91 \(2 / 8\) \& \begin{tabular}{ll}
PCFPa \\
\\
\hline \(1 /-\)
\end{tabular} \& URF89 6／8 \& X109 28／－ \& BF159 5／－ \& 18／6 \\
\hline \(1 \mathrm{~T} 4 \quad 2 / 8\) \& 6K6GT 5／－ \& 128.57 4／6 \& \& EBC41 \(8 / 6\) \& CL95 5／－ \& \(\begin{array}{ll}\text { PCF88 } \& 8 /- \\ \text { PCF84 } \& 8 /-\end{array}\) \& UBL21 \({ }_{\text {UC92 }}\) \& Y63 5／－ \& BF163 4／－ \& \(0 \mathrm{Cl} \mathrm{S}^{25 /-}\) \\
\hline \(1845 / 9\) \& \(6 \mathrm{6K7}\) 2／－ \& 128 K 7 4／9 \& AC2PEN \({ }^{\text {A }}\) \& EBC4 \(\begin{array}{ll}\text { EBC81 } \& 5 / 8\end{array}\) \& EM71 51－ \& \(\begin{array}{ll}\text { PCF84 } \& 8 /- \\ \text { PCF86 } \& 8 / 6\end{array}\) \& \(\begin{array}{ll}\text { UC92 } \& 5 / 6 \\ \text { UC084 } \& 8 /-\end{array}\) \& Y655 5／－ \& BF167 \(2 / 6\) \& Oc2 \(51-\) \\
\hline 1 U5 6／9 \& 6K7GT 4／6 \& 128Q7GT7／6 \& 18／6 \& EBC90 4／－ \& EM80 5／9 \& PCF86

PCF 801
$7 /-$ \& UCC84 8／－ \& Z63 $4 / 8$ \& BFI73 2／8 \& 0 O 23 5／－

\hline $2 \mathrm{~A} \mathrm{l}^{12 / 6}$ \& $6 \mathrm{K8G}$ 3／－ \& 128 F 7 5／－ \& AC2PEN／ \& EBC91 5／6 \& $\begin{array}{ll}\text { EM81 } & 8 / 9 \\ \text { EM }\end{array}$ \& ${ }^{\text {PCFF802 }} 80$ \& UCC83 $6 / 6$ \& $\begin{array}{ll}777 & 3 / 3 \\ 73 \% 9\end{array}$ \& BFIAO 12 \& OC24 5／－

\hline 2D13C 7／－ \& 6K8GT 7／－ \& $12 Y 4$ 2／－ \& DD 19／6 \& EBF80 5／8 \& $\begin{array}{ll}\text { EM84 } & 6 / 9 \\ \text { EM }\end{array}$ \& PCF802
PCF805
$8 / 9$ \& UCF80 ${ }^{\text {UCH21 }}$ \& 7329 11／9 \& BF191 8j－ \& 0025 5／－

\hline 2 D 21518 \& filagT $7 / 9$ \& $13 \mathrm{D} 15 /-$ \& AC6PEN $4 / 8$ \& FBF83 8／－ \& EM85 11／－ \& ${ }_{\text {PCFP806 }}$ \& UCH21 ${ }_{\text {UCH }} 9 /-$ \& 2729 6／－ \& BFI8J 8j－ \& OC26 5／－

\hline 2X2 $4 / 9$ \& 6L1 10／6 \& 13D3 9／－ \& AC／PEN（5） \& EBF89 6／3 \& EM87 7／3 \& PCF808 12／6 \& $\begin{array}{lll}\text { UCH42 } & 9 / 3 \\ \text { UCH81 } & 6 / 6\end{array}$ \& \& BTX $3+400$ \& 0 O 28 5／－

\hline $3 \mathrm{~A} 4 \quad 3 / 6$ \& 6 L 18 5／－ \& $14 \mathrm{H7} \quad 9 / 6$ \& 19／6 \& EBL21 11／－ \& EY51 6／9 \& PCFL81 ${ }^{\text {P／}}$ \& $\begin{array}{ll}\text { UCH81 } & 8 / 6 \\ \text { UCL82 } & 7 /-\end{array}$ \& Tranzistors \& 40\％－ \& OC229 23／6

\hline $34510 /$－ \& $6 \mathrm{L19}$ 10／－ \& 1487 15／－ \& AC／PEN（3） \& EC52 4／3 \& EY81 \％－ \& PCL82 $7 /-$ \& UCL83 \& und diodes \& BY 100 3／8 \& OC30 5／－

\hline $3 \mathrm{B7}$ 5／－ \& 6LD20 8／6 \& 18 12／6 \& 19／6 \& EC53 12／6 \& EY83 8／3 \& $\begin{array}{ll}\text { PCL82 } & 7 /- \\ \text { PCL83 } & 8 / 9\end{array}$ \& $\begin{array}{ll}\text { UCL83 } & 9 / 3 \\ 1741 & 9 / 6\end{array}$ \& $2 \mathrm{C} 22510 / 6$ \& BY101 11／6 \& OC35 5／－

\hline 3D6 $\quad 3 / 9$ \& 6N7GT 8／6 \& $19 \quad 10 / 6$ \& AC／TH110／－ \& EC54 6／－ \& EY84 $7 / 8$ \& PCL83 819 \& UF41 \& $2 \mathrm{CH25}$ 10／6 \& BY105 10／6 \& OC36 7／6

\hline 3Q4 6／6 \& 6 Pl 12／－ \& 19AQ5 4／9 \& AC／TP 19／6 \& EC70 4／9 \& EY86 $6 /-$ \& $\begin{array}{ll}\text { PCLA4 } & 7 / 8 \\ \text { PCLA } & 8 / 3\end{array}$ \& UF42 9／－ \& ${ }^{2} \mathrm{~N} 404 \mathrm{C} /-$ \& BY114 6／6 \& OC38 11／6

\hline 3Q5GT 6／－ \& $6 \mathrm{CP}^{25}$ 12／－ \& 18 H \& AC／VPI12／－ \& EC86 10／3 \& EYg7 6／－ \& $\begin{array}{ll}\text { PCLA } & 8 / 3 \\ \text { PCL86 } & 8 / 3\end{array}$ \& UF80 8／8 \& $2 \mathrm{~N} 22974 / 6$ \& BY126 6／6 \& OC41 10\％

\hline 384 4／9 \& $6 \mathrm{P}^{2+5}$ \& 20Dl 13／－ \& AC／VP：10／6 \& EC88 10／3 \& EY88 $7 / 6$ \& PCL88 15／－ \& UF86 $6 / 8$ \& 2N2369A4／3 \& 13 Y 234 4／－ \& $0 \mathrm{C42} 610$

\hline $3 \mathrm{~V} 4 \quad 5 / 8$ \& 6 P 28 25／－ \& $2013420 / 5$ \& $\mathrm{ATP4}^{\text {A }}$ 2／3 \& EC92 6／6 \& EY91 3／ \& PEN45 7／－ \& $\begin{array}{ll}\text { UF86 } & \text { B／－} \\ \text { UFR9 }\end{array}$ \& $2 \mathrm{~N} 312150 /-$ \& BY＇236 $41-$ \& $0 \mathrm{OC43}$ 23／6

\hline $4 \mathrm{Dl} \quad 3 / 9$ \& 6470 6／－ \& 20 F 2 14／－ \& AZ1 8／， \& ECC31 15／6 \& Ez35 5／－ \& PEN45D ${ }^{\text {P }}$ \& UFR9 ${ }^{\text {UL41 }}$ \& 2N 3703 3／9 \& BY238 4／－ \& $0 \mathrm{C44}$ 2／－

\hline 5R4GY $8 / 9$ \& 6Q7aT 8／6 \& $20 \mathrm{L1}$ 13／－ \& $\begin{array}{ll}\text { AZ31 } & 8 / 9\end{array}$ \& \& EZ\％40 \& PEN45DD ${ }^{\text {12／}}$ \& $\begin{array}{rr}\text { UL41 } & \text { 9／6 } \\ \text { UE46 } & 12 / 6\end{array}$ \& 2N3709 ${ }^{\text {2N }} 3861$－ \& BYy23 20f－ \& OC44PM 8／8

\hline 5U4G 4／9 \& 6 R7G 7／－ \& 20 Pl 17／6 \& AZ41 7／6 \& ECC33 2912 \& ER，41 7／3 \& PEN46 ${ }^{12 /-}$ \& UL46 $\begin{array}{ll}\text { UL84 } & \text { 6／8 }\end{array}$ \& 2N3866 201－ \& BYZ10 5／－ \& $0 \mathrm{OC45} 1 / 8$

\hline 5V4G 7／6 \& 68170T \％ \& 20 PA 18\％ \& B36 4／8 \& ECC34 29／6 \& EZ780 $4 / 3$ \& PEN46 ${ }^{\text {PE }}$ O／－ \& $\begin{array}{ll}\text { UL84 } & 6 / 6 \\ \text { UM80 } & 5 /-\end{array}$ \& AA120 3／－ \& BYZ11 5／－ \& OC45M 8／－

\hline 5Y3GT 5／6 \& $6847{ }^{7 /-}$ \& 20 P 41816 \& B319 8／－ \& HCC35 $4 / 9$ \& E7881 $4 / 8$ \& PEN384 ${ }^{\text {PEN }}$ \& UM80 ${ }_{\text {UR1C }} 5 /-$ \& AAl29 3／－ \& BYZ12 $51-$ \& $0 \mathrm{C4B}$ 3／－

\hline 523 8／－ \& 68C7GT 6／8 \& $2015518 /$ \& BLf3 10／－ \& ECC40 9／6 \& EZ90 3／6 \& 11／6 \& $\begin{array}{lll}\text { URIC } & 1076 \\ \text { UUS } & 7 /-\end{array}$ \& AAZI3

ACIO7
$3 / 8$ \& BYZ13 5／－ \& $0 \mathrm{C65}$ 22／6

\hline 5240819 \& 68G7 6／－ \& $254607 / 6$ \& CK506 6／6 \& EGC81 ${ }^{\text {che }}$ \& $\begin{array}{ll}\mathrm{FC} 4 & 12 / 6\end{array}$ \& 1176 \& UU5 ${ }_{\text {UU8 }}$ 14／－ \& ${ }^{\text {ACl07 }}$ 3／－ \& BYZ16 351－ \& OC\％ $2 / 3$

\hline 6／30L2 12／6 \& $68 \mathrm{H7}$ 3j－ \& $25 \mathrm{LGG} \quad 5 / 6$ \& Cla 19／6 \& ECC82 4／6 \& FW4／5008／6 \& \& UU8 14／－ \& ACl13
ACl1
5／－ \& CG12E 4／－ \& 0 OCl 2／－

\hline $6 \mathrm{ABG} 5 / 6$ \& 685 J 7 6／6 \& 25 Y 5 ${ }^{\text {／－}}$ \& CL33 18／6 \& ECC83 $4 / 6$ \& FW4／800 \& PENA4 19／6 \& $\begin{array}{ll}\text { UUl2 } & \text { 4／6 } \\ \text { UY＇IN } & 8 /-\end{array}$ \& ACl14
ACl26
8／－ \& CG64H 4／－ \& $0 \mathrm{C72}$ 2／－

\hline $6 \mathrm{AC7} \quad 3 /-$ \& $68 \mathrm{~K} 7 \mathrm{GT} 4 / 8$ \& $25 Y 50816$ \& CV6 10／6 \& ECC84 $5 / 6$ \& FW4／800 $10 /-$ \& PEN／DD \& $\begin{array}{ll}\text { UY1N } & 9 /- \\ \text { UY21 } & 8 / 6\end{array}$ \& $\begin{array}{ll}\mathrm{ACl26} & 2 / \\ \mathrm{ACl} 27 & \end{array}$ \& GD3 $\quad 6 / 6$ \& $0 \mathrm{Cl} 316 /$－

\hline 6AG5 $3 / 6$ \& 68170T 4／9 \& $25 \mathrm{Z4G}$ 6／－ \& CV63 10／6 \& ECC85 5／－ \& GZ30 7／－ \& PEN／DD ${ }_{4020}$ \& $\begin{array}{ll}\text { UY21 } & 9 / 6 \\ \text { Ur41 } & 6 / 9\end{array}$ \& $\begin{array}{ll}\mathrm{AC127} & 2 /- \\ \mathrm{ACl28} & 2 /-\end{array}$ \& GD4 $6 / 8$ \& $0 \mathrm{OC74} 2 / 6$

\hline 6AG7 5／9 \& 68N7GT 4／6 \& $25 \mathrm{Z5}$ 7／－ \& CV271 12／6 \& ECC88 7／－ \& （232 9% \& PFL200 $12 /-$ \& $\begin{array}{ll}\text { UY85 } & 5 / 8\end{array}$ \& ACl28 2／－ \& GD5 $5 / 8$ \& 0 O 75 2／－

\hline 6 6－5 $8 / 6$ \& 88Q7GT 6\％－ \& 25 ZRG 8／6 \& CV428 19／－ \& ECC91 3／－ \& $\begin{array}{ll}\text { G233 } & \text { 12／6 } \\ \text { GZ3 }\end{array}$ \& PFI33 \& $\begin{array}{ll}\text { UY85 } & 5 / 6 \\ \text { U10 } & 8 /\end{array}$ \& ${ }^{\text {ACl5 }}$ ACI55 ${ }^{5 /-}$ \& G136 $5 / 6$ \& $0 \mathrm{C76}$ 2／6

\hline 6AKS 4／6 \& 6887 3／－ \& 30 Cl 1 $8 / 8$ \& CY1 16／4 \& ECC189 9／6 \& GZ34 10\％－ \& $\begin{array}{ll}\text { PL33 } & 19 / 8 \\ 8 / 6\end{array}$ \& $\begin{array}{ll}\text { U10 } & 9 / 8 \\ \text { U12 }\end{array}$ \& ACI55 8／6 \& GD8 4／－ \& $0 \mathrm{C} 77 \quad 2 / 8$

\hline 6AK6 6／－ \& 6U4GT 12／－ \& $30 \mathrm{Cl} 1513 / 6$ \& CY1C $00 / 6$ \& EOC804 12／6 \& $\begin{array}{ll}\text { G237 } & 14 / 6\end{array}$ \& $\begin{array}{ll}\text { PL36 } & \text { P／6 } \\ \text { PL3／8 }\end{array}$ \& $\begin{array}{lll}\text { U12／} & \\ \text { U17 } & 15 / 6\end{array}$ \& ${ }_{\text {ACl56 }}$ 4／－ \& GD9 4／－ \& $0 \mathrm{C78}$ 8／～

\hline 6AK8 8j－ \& 6 U 6G 5／－ \& $30 \mathrm{CI7}$ 12／6 \& CY31 $7 / 6$ \& ECC80727／－ \& H30 $5 /-$ \& $\begin{array}{ll}\text { PL38 } & 19 / 8 \\ \text { PL／3 }\end{array}$ \& | U16 | $15 /$ |
| :--- | :--- |
| U17 | |
| 10 | | \& ${ }_{\text {ACls }}{ }^{\text {ACl65 }}$ 5／－ \& GD10 4／－ \& OC78D 3／－

\hline 6 A15 2／3 \& 6U7G 7／－ \& 30 Cl 18 8／9 \& D1 1／3 \& ECF80 8／6 \& HABC80 8\％－ \& PL81a 10／8 \& U17 51－ \& AC165 5／－ \& ODI1 4／－ \& $0 \mathrm{OC79} 81-$

\hline 6AM4 18／6 \& 6V60 $3 / 6$ \& $30 \mathrm{F5} \quad 11 / 8$ \& D41 10／6 \& ECFR2 $6 / 6$ \& 1129818 \& $\begin{array}{ll}\text { Pl81A } \\ \text { PLS2 } & \text { 10／} \\ \text { 6／6 }\end{array}$ \& $\begin{array}{ll}18 / 20 & 10 /- \\ \text { U19 }\end{array}$ \& AC166 5／－ \& GD12 4／－ \& $0 \mathrm{OC81}$ 2／－

\hline 6AM5 $\quad 2 / 8$ \& 6V6GT 8／－ \& $30 \mathrm{FLI} 15 /-$ \& D63 5／－ \& ECr＇si ${ }_{\text {9／－}}$ \& 11L13C $4 /-$ \& $\begin{array}{ll}\text { PL82 } & 6 / 6 \\ \text { PLe3 } & 6 / 6\end{array}$ \& $\begin{array}{rr}\text { U19 } & 34 / 8 \\ \mathbf{U 2 2} & 7 / 9\end{array}$ \& AC167 12／－ \& OD14 10／－ \& OC8ID $2 /-$

\hline 6 AM6 3／3 \& $6 \times 4 \quad 3 / 6$ \& $30 \mathrm{FL1216/-}$ \& 1077 2／3 \& ECF80442／－ \& ${ }_{\text {HLis3 }}$ \& | PL | |
| :--- | :--- |
| P L84 84 | $6 / 6$ |
| 18 | | \& $\begin{array}{ll}\mathrm{U} 22 & 7 / 9 \\ \mathrm{U} 25 & 13 /-\end{array}$ \& AC168 7／6 \& GD15 8／－ \& OC81M 5／－

\hline 6AQ5 4／8 \& $6 \times 5 \mathrm{GT} 5 /-$ \& $30 \mathrm{FL13} 8 /-$ \& DAC32 7／－ \& ECF＇805 12／6 \& H231）D5 ${ }^{\text {H－}}$ \& $\mathrm{PL}^{\text {P182 }}$ 12／－ \& U25 13／－ \& ${ }^{\text {ACl }} 1698686$ \& GD16 4／－ \& $0 \mathrm{C82}$ 2／3

\hline 6 6R6 20／－ \& 6Y6G 8／－ \& $30 \mathrm{FLl4} 12 / 6$ \& DAF91 3／9 \& ECH21 12／6 \& HL41 3／9 \& PLS502
PLS
12／－ \& U26 $111 / 8$ \& AC176 11／－ \& GET102 4／－ \& OC82D $2 / 3$

\hline 6AT6 4／－ \& 6Y7 12／6 \& 30 LI 8／－ \& DAF96 6／－ \& ECH35 5／9 \& HLAIDD ${ }^{\text {a }}$ \& PL504 $12 / 6$ \& U33 29／6 \& $\begin{array}{lll}\text { AC177 } & 5 / 6 \\ \text { ACYI7 } & 3 /-\end{array}$ \& GET103 4／－ \& $0 \mathrm{OC83}$ 2／－

\hline 6AU6 5／－ \& 7 A 7 12／6 \& $30 \mathrm{LI5}$ 13／9 \& DCC90 10／－ \& ECH42 $8 / 6$ \& 19／6 \& P1509 28／9 \& U35 16／6 \& ACY17 3／－ \& GET10518／－ \& OC84 3／－

\hline 6AV6 5／6 \& 7AN7 6／－ \& $30 \mathrm{LIT} 13 /-$ \& $1) \mathrm{D} 410 / 6$ \& ECHB1 5／3 \& H La2DD8／－ \& PL802 15／－ \& $\begin{array}{lr}\text { U35 } & \text { 16／6 } \\ \text { U4／11 }\end{array}$ \& ACF18 $3 / 8$ \& GET113 $4 /-$ \& $0 \mathrm{Cl23}$ 4／6

\hline $6 \mathrm{B8G}$－ $2 / 6$ \& $713610 / 9$ \& 30 P 4 12／－ \& D）D41 12／6 \& ECHB3 8j－ \& HN309 27／4 \& $\begin{array}{ll}\text { PM84 } & \text { 15／9 }\end{array}$ \& $\begin{array}{lr}\text { U37 } & 34 / 11 \\ \text { U45 } & 15 / 6\end{array}$ \& ACY19 $3 / 8$ \& GET11517\％ \& $0 \mathrm{UC139}$ 12／－

\hline 6BAB 4／－ \& $7 \mathrm{~B}_{7} \quad 71-$ \& 30P4M R \& DUT4 8／3 \& ECE84 7－ \& HVR：${ }^{\text {H／8 }}$ \& $\begin{array}{ll}\text { PM84 } & 7 / 9 \\ \text { PX4 } & 14 /-\end{array}$ \& $\begin{array}{lr}\text { U45 } & 15 / 6 \\ \text { U50 } & 5 / 8\end{array}$ \& $\begin{array}{ll}\text { ACY20 } \\ \text { ACY21 } & 3 / 6 \\ \end{array}$ \& GETT116 8／6 \& $0 \mathrm{Cl140} 19 /-$

\hline $\begin{array}{ll}\text { 6BE6 } & 4 / 3 \\ 68 G 6 G & \end{array}$ \& 7C\％6／－ \& 17／6 \& 1F33 7／8 \& ECLAO 6／6 \& HVR2A $8 / 8$ \& | PY41 | $19 /-$ |
| :---: | ---: |
| $8 / 6$ | | \& $\begin{array}{ll}\text { U50 } & 5 / 8 \\ \text { U52 } & 4 / 9\end{array}$ \& $\begin{array}{ll}\text { ACY21 } & 3 / 9 \\ \text { ACY } 22 & 3 / 8\end{array}$ \& GET119 4／－ \& $0 \mathrm{OC169}$ 3／6

\hline $6 \mathrm{BG6G} 20 / 5$ \& 706 15／－ \& $30 \mathrm{Pl2}$ 13／－ \& DF72 30／－ \& ECLs2 6／－ \& IW3 ${ }^{\text {H／6 }}$ \& | PY32 | $9 / 6$ |
| :--- | :--- |
| 18 | | \& U52 4 4／9 \& ACY22 ${ }^{\text {ACY }} 816$ \& GET573 7／8 \& $0 \mathrm{Cl17} \quad 2 / 6$

\hline ${ }_{68 \mathrm{BH}}{ }^{\text {6／8 }}$ \& 7H7 5／6 \& 30 P 19 12／－ \& DF91 $2 / 9$ \& ECL83 ${ }_{\text {ch－}}$ \& 1 W 4／350 5／6 \& $\begin{array}{ll}\text { PY32 } & 9 / 6 \\ \mathrm{PY} 3 & 9 / 6\end{array}$ \& $\begin{array}{ll}\text { U76 } & 4 / 9 \\ \mathrm{U} 78 & 3 / 6\end{array}$ \& ACY28 $4 /-$ \& GET3878／6 \& OC171 3／4

\hline 6RJ6 6／9 \& 7 7 7 12／～ \& 30 PLI 15 － \& DF96 8／－ \& ECL84 12／－ \& IW4／500 8／－ \& $\begin{array}{ll}\text { PY83 } & 9 / 6 \\ \text { PY8 }\end{array}$ \& $\begin{array}{lr}\text { U78 } & 3 / 6 \\ \text { U107 } & 18 / 3\end{array}$ \& AD140 $7 / 6$ \& GET87210－ \& 0 OCl 72 4／－

\hline $6 \mathrm{6QS} \quad 4 / 6$ \& 787 \& $30 \mathrm{PL13} 15 /-$ \& DF97 101－ \& ECL85 11／－ \& KT2 5／－ \& $\begin{array}{ll}\text { PY80 } & 5 / 3 \\ \text { PY81 } & 5 / 3\end{array}$ \& $\begin{array}{ll}\text { U107 } & 18 / 3 \\ \text { U191 } & 12 / 6\end{array}$ \& AD149 8／－ \& GET873 3／－ \& OC200 4／4

\hline 613974 \& 7 77 5／－ \& 30 PL14 15／－ \& DH30 15／6 \& ECL86 8／－ \& $\begin{array}{ll}\text { KT8 } & 34 / 6\end{array}$ \& $\begin{array}{ll}\text { PY81 } & 5 / 3 \\ \text { PY82 } & 5 /-\end{array}$ \& $\begin{array}{ll}\text { U191 } & 12 / 6 \\ \text { U251 } & 18 /-\end{array}$ \& $\begin{array}{ll}\text { AF114 } \\ \text { AFll } & \text { 4／－}\end{array}$ \& GET88210／－ \& OC201 5／6

\hline ${ }^{68 R 7} 8 / 6$ \& $7 \mathrm{Y} 4 \quad 6 / 6$ \& $30 \mathrm{PLIS} 15 /-$ \& DH63 8／－ \& ECLLS800 ${ }^{\text {－}}$ \& | KT32 | $3 / 6$ |
| :--- | :--- |
| 186 | | \& $\begin{array}{ll}\text { PY82 } & 5 /-7 \\ \text { PY83 } & 5 / 6\end{array}$ \& $\begin{array}{cc}\text { U251 } & 16 /- \\ \text { U281 } & 8 /-\end{array}$ \& AF115 3／－ \& GET887 4／6 \& $\mathrm{OC2}^{\text {O } 202} 41 / 6$

\hline 6BR8 8／－ \& 724 4／6 \& 35 AS 15／－ \& DH76 4／6 \& 30－1－ \& $\begin{array}{ll}\text { KT32 } & \text { 5／6 } \\ \text { KT411 } & 19 / 6\end{array}$ \& $\begin{array}{ll}\text { PY83 } & 5 / 6 \\ \text { PY88 } & 6 / 3\end{array}$ \& $\begin{array}{ll}\text { U281 } & 8 /- \\ \text { U282 } & 8 /-\end{array}$ \& $\begin{array}{ll}\text { AFll6 } & 3 /- \\ \text { AFl17 } & 2 / 9\end{array}$ \& GET889 4／6 \& $0 \mathrm{OC203}$ 4／6

\hline 6B87 16／6 \& $9^{9 B W} 67-$ \& $35 \mathrm{D} 511 / 9$ \& DH7\％4／－ \& EF22 12／6 \& $\begin{array}{ll}\text { KTT44 } & \text { 20／－}\end{array}$ \& PY88
PY301 12／6 \& $\begin{array}{lr}\text { U282 } & 8 /- \\ \mathbf{U} 301 & 11 /-\end{array}$ \& $\begin{array}{ll}\text { AFl17 } \\ \text { AFil9 } & 2 / 9 \\ 3 /-\end{array}$ \& GET830 4／8 \& OC204 516

\hline 6BW6 12／3 \& $9 \mathrm{D7}$ 9／－ \& 35L6GT 5／9 \& DH81 10\％－ \& EF36 3／6 \& KTね！12／－ \& 1PY800 6／6 \& $\begin{array}{ll}\text { U329 } & 11 /-\end{array}$ \& AF119 3／－ \& GET896 4／6 \& OC205 7／6

\hline 6 BW 7 11／－ \& $10 \mathrm{C} 1 \quad 12 / 6$ \& $35 \mathrm{~W} 4 \quad 4 / 6$ \& DH101 25／－ \& FFA7A 7\％－ \& \& $\begin{array}{ll}\text { PY801 } & 6 / 6\end{array}$ \& $\begin{array}{cc}\text { U329 } & 18 /- \\ \mathbf{U 4 0 3} & 6 / 6\end{array}$ \& $\begin{array}{ll}\text { AFl24 } & 7 / 6 \\ \text { AFI25 } & 3 / 8\end{array}$ \& GET897 4／6 \& $00^{0206} 10 \%-$

\hline $6 \mathrm{BX6} \quad 4 / 8$ \& $10 \mathrm{C}^{2} 101-$ \& 307310 － \& DH107 \& EF39 5／－ \& КТ66 17／3 \& $\begin{array}{ll}\text { PY30 } & \text { 9／6 }\end{array}$ \& $\begin{array}{ll}\text { U403 } & \text { \％／6 } \\ \text { U } 104 & 7 / 6\end{array}$ \& $\begin{array}{ll}\text { AFI2S } & 3 / 6 \\ \text { API26 } & 5 / 3\end{array}$ \& GEX13 3／6 \& $0 \mathrm{OB12} 81-$

\hline ${ }_{6}^{6826}$ \& $10 \mathrm{D1} 81-$ \& 33Z40T 4／8 \& 16／11 \& EF40 8／8 \& $\begin{array}{ll}\text { K＇74 } & 12 / 6\end{array}$ \& QP＇21 $51-$ \& $\begin{array}{ll}\text { U801 } & 17 / 6 \\ \\ \text { U80 }\end{array}$ \& $\begin{array}{ll}\text { AFP126 } & 5 / 3 \\ \text { AF127 } & 3 / 6\end{array}$ \& OEX 35 4／6 \& OCP71 27／6

\hline ${ }_{604}^{604} \quad 8 / 8$ \& $10 \mathrm{D}{ }^{2} 14 / 7$ \& $35 \mathrm{Z5GT}$ 6／－ \& DK32 7／－ \& EF41 9／－ \& KT76 ${ }^{\text {K／8 }}$ \& QQVo3／10 \& $\begin{array}{cc}\text { U801 } & 17 / 8 \\ 6 / 8\end{array}$ \& AF127
AF139
11／6 \& GEX $3610 /-$ \& ORP12 15／－

\hline 6C5GT 6／－ \& 10 Fl 15／－ \& 42 5／－ \& DK40 10／－ \& EF42 $3 / 6$ \& KT88 29j－ \& 2Q 27／6 \& $\begin{array}{cc} \\ V\end{array} 4 \mathrm{~B} \quad 10 / 6$ \& AF139 ${ }_{\text {AFl78 }} 11 /-$ \& GEX45 6／6 \&

\hline $6 \mathrm{C0} 3 / 9$ \& 10 Fg 9／－ \& 43 －10\％－ \& DK91 5／6 \& EF50 2／6 \& KTW61 8／6 \& Q875／20 \& VP13C 7／－ \& AF178 $10 /-$ \& GEX66 15／－ \& $110 / 15$ A

\hline $6 \mathrm{C9}$ 11／－ \& 10 F 18 7／6 \& \& DK9 \％7／9 \& EF54 10\％ \& KTW6210／－ \& Q815／20／6 \& VP23 $2 / 8$ \& | AF179 |
| ---: | :--- | ---: |
| AF180 |
| $18 / 6$ | \& $\begin{array}{ll}\text { GT3 } & \text {／－} \\ \text { M1 } & 2 / 10\end{array}$ \& MAT100 ${ }^{12 /-}$

\hline 6CDig 19／8 \& $10 \mathrm{LD3} 1110 \%$ \& $50 \mathrm{C5}$ 6／3 \& DK96 7／－ \& EF73 6／6 \& KTW63 5／9 \& QS 150／15 \& VR75 24／－ \& AF181 14／－ \& | M3 | $2 / 10$ |
| :--- | :--- |
| 10 | | \& Mat100 7／8

\hline 6CD7 9／8 \& 10LP13 10／－ \& 50CD6G41／－ \& ${ }^{\text {DL3 }} 38$ 6／－ \& EF80 $4 / 6$ \& KTZ41 8／－ \& Q89／6 \& YR105 5／－ \& AFE12 $5 /-$ \& $\begin{array}{lr}\text { M3 } & 2 / 10 \\ \text { OA5 } & 5 / 6\end{array}$ \& MAT1018／6

\hline 3CH6 6／－ \& $10 \mathrm{Pl4} 12 / 6$ \& ${ }_{5}^{50 \mathrm{LGUS}} 14 / 6$ \& $\begin{array}{lr}\text { D1／35 } & \text { 4／9 } \\ \text { DL72 } & 15 \%\end{array}$ \& EJP83 ${ }^{\text {P／6 }}$ \& $\begin{array}{ll}\text { LN309 } & 8 / 9 \\ \text { LP2 } & 9 / 8\end{array}$ \& QVO4／7 8／－ \& VR150 5／－ \& ABY27 8／6 \& OA9 2／6 \& MAT1218／6

\hline \& \& 52k 14／6 \& $1 \mathrm{~L} / 2 \mathrm{~L}$ \& EF85 5／3 \& LP2 9／6 \& R10 15／－ \& VT61A 7／ \& ABY28 8／6 \& OA47 2／－ \&

\hline
\end{tabular}

[^2]
WE REQURE FOR PROMPT CASH SETTLEMENT ALL TYPE
 WE REOUIRE FOR PROMPT CASH SETTLEMENT ALL TYPES OF ABOVE GOODS LODSE OR BOXED，BUT MUST BE NEW

 $27 / 9 ; 1000 \mathrm{mfd} / 50 \mathrm{v} 9 / 9 ; 2000 \mathrm{mfd} / 50 \mathrm{v} 13 / 3 ; 5000 \mathrm{mfd} / 25 \mathrm{v} 15 / \mathrm{v} ; 5000 \mathrm{mfd} / 50 \mathrm{v} 27 / 9 ; 8 \mathrm{mfd} / 600 \mathrm{v} ; 11 / 3 ; 16 \times 16 \times 16 \mathrm{mfd} / 275 \mathrm{v} 23 / 3 ; 100 \mathrm{mfd} / 100 \mathrm{v} 7 / 6 ; 200 \mathrm{mfd} / 350 \mathrm{v} 12 / 3 ; 200 \times 200 \times 100 \mathrm{mfd} / 350 \mathrm{v}$ Tubular types $1 \mathrm{mfd} / 500 \mathrm{v} 2 / 6 ; 2 \mathrm{mfd} / 500 \mathrm{v} 2 / 9 ; 4 \mathrm{mfd} / 500 \mathrm{v} 3 / \mathrm{F} ; 8 \mathrm{mfd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mfd} / 500 \mathrm{v} 3 / 6 ; 8 \times 8 \mathrm{~m} / \mathrm{d} / 450 \mathrm{v} 2 / 9 ; 8 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / \mathrm{mf} / 35 \mathrm{mfd} / 50 \mathrm{v} 2 / 3 ; 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 6 ; 16 \times 16 \mathrm{mfd} / 4 / 6$

Fig. 11: Collection of cord drive systems from popular receivers, old and new. Note the importance of correct number of turns around spindles, drums, etc., and relative direction of cord run to main gang.

THE BROADCAST BANDS

 by CHRISTOPHER DANPUREWITH the winter now coming to an end and spring around the corner this is the time of the year to hear stations in the Pacific area and Far East in the mornings and afternoons. But now here are this month's propagation conditions.

West Africa: 0800-1400 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; $1400-160025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1600-180025,21$, $17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2000-220017,15,11,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$; 2200-2400 15, 11, 9, 7, 6, 5, 4 and $3 \mathrm{Mc} / \mathrm{s} ; 2400-040011$, $9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 0400-06009,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$; $0600-080015,11,9$ and $7 \mathrm{Mc} / \mathrm{s}$.

South Africa: 0800-1400 25, 21 and $17 \mathrm{Mc} / \mathrm{s} ; 1400$ $160025,21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 1600-180025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1800-200017,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 2000-$ $220015,11,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s} ; 2200-020011,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s} ; 0200-040011,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0400-0600$ 11,9 and $7 \mathrm{Mc} / \mathrm{s} ; 0600-080017$ and $15 \mathrm{Mc} / \mathrm{s}$.

East Africa: 0800-1200 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-$ $140025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1400-160025,21,17,15$, 11 and $9 \mathrm{Mc} / \mathrm{s} ; 1600-180021,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s}$; $1800-200017,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 2000-220011,9,7$, 6,5 and $4 \mathrm{Mc} / \mathrm{s} ; 2200-0200 \mathrm{11}, 9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s}$; $0200-04009,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0400-060011$ and $9 \mathrm{Mc} / \mathrm{s}$; 0600-0800 17,15 and $11 \mathrm{Mc} / \mathrm{s}$.

South Asia: 0800-1200 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-$ $130025,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1300-140021,17,15$, $11,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 1400-160017,15,11,9,7,6$, 5,4 , and $3 \mathrm{Mc} / \mathrm{s} ; 1600-180011,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$; 1800-2000 11, 9, 7, 6, 5, 4 and $3 \mathrm{Mc} / \mathrm{s} ; 2000-22009,7,6$, 5,4 and $3 \mathrm{Mc} / \mathrm{s} ; 2200-24007,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 2400-$ $02007,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 0200-04007$ and $6 \mathrm{Mc} / \mathrm{s}$; $0400-06009 \mathrm{Mc} / \mathrm{s}$ only; 0600-0800 17, 15 and $11 \mathrm{Mc} / \mathrm{s}$.

South East Asia: 0800-1000 25, 21 and $17 \mathrm{Mc} / \mathrm{s}$; 1000-1200 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-140025,21,17$, 15,11 and $9 \mathrm{Mc} / \mathrm{s} ; 1400-160021,17,15,11,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s} ; 1600-180015,11,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 1800-$ $200011,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 2000-22009,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s} ; 2200-24009$ and $7 \mathrm{Mc} / \mathrm{s} ; 2400-0600$ circuit closed; 0600-0800 17 and $15 \mathrm{Mc} / \mathrm{s}$.

North East Asia: 0700-1000 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; $1000-120015$ and $11 \mathrm{Mc} / \mathrm{s} ; 1200-140011$ and $9 \mathrm{Mc} / \mathrm{s}$; $1400-20009 \mathrm{Mc} / \mathrm{s}$ only; 2000-0600 circuit closed; 0600$070015 \mathrm{Mc} / \mathrm{s}$ only.

Australia via Asia: 0700-1000 $21 \mathrm{Mc} / \mathrm{s}$ only; 1000 -1200 $17 \mathrm{Mc} / \mathrm{s}$ only; $1200-140017,15,11 \mathrm{Mc} / \mathrm{s} ; 1400-160015$, $11,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 1600-180011,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 1800-20009,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 2000-0700$ circuit closed.

West Coast South America (North of Chile): 1200180025 and $21 \mathrm{Mc} / \mathrm{s} ; 1800-200021$ and $17 \mathrm{Mc} / \mathrm{s} ; 2000-$ $240015 \mathrm{Mc} / \mathrm{s}$ only; $2400-040011$ and $9 \mathrm{Mc} / \mathrm{s} ; 0400-1000$ $9 \mathrm{Mc} / \mathrm{s}$ only.

Now on to this month's DX-tips, but first please note that on Sunday, 2nd March, most international stations will change over to spring/autumn schedules and information in this column will be liable to alteration on that date.

AUSTRALASIA

New Zealand: Radio New Zealand is now operating to the Pacific Isles from 1700-1945 on 11,780 and 9,520; 2000-0545 on 15,110; 0600-0800 daily on 11,780 and 9,$540 ; 0800-0845$ weekdays on 11,780 and 9,$540 ; 0800-$ 0845 Sundays on 11,780 only. To Australia from 20000545 on 17,$770 ; 0900-1145$ on 11,705 and 9,520 . To the Antarctic on Sundays only from 0815-0845 on 9,520.

AFRICA

Ruanda: R. Deutche Welle relay at Kingali is now operating as follows. To East Africa and Central Africa from 0300-0530 on 9,565; 1015-1045 Sundays only on 11,$785 ; 1045-1145$ daily on 11,$785 ; 1415-1445$ on 15,$435 ; 1500-1730$ on 9,735 . To West Africa from 05450745 on 11,$905 ; 1200-1400$ and $1745-2015$ on 17,765 ; $2030-2325$ on 15,380.

EUROPE

Denmark: Voice of Denmark, Copenhagen, is now on the following schedule. 0730-0845 on 15,165;1015-1030 Saturdays only on 9,$520 ; 1030-1100$ Saturdays and Sundays on 9,$520 ; 1100-1145$ Sundays only on 9,520 ; $1130-1315$ on 15,$165 ; 1330-1345$ on 15,$165 ; 1400-1515$ on 15,$165 ; 1730-1815$ on 15,$165 ; 1830-1945$ on 15,165 ; $2100-2215$ on 15,165 ; 0100-0215 on 9,520 . English is broadcast for last 30 minutes on weekdays only 0730 , $1200,1400,1830$ and 0100 . The 1015 and 1030 transmissions at weekends are all in English. On weekdays the last 30 minutes of the 2100 transmission is in Spanish.

MIDDLE EAST

Israel: Kol Israel, Jerusalem, is now operating as follows: 1530-1600 Russian, 1600-1630 in Yiddish, 1630-1700 in Persian, 1700-1730 Russian, 1730-1745 Hungarian, 1745-1800 Rumanian, 1800-1815 Ladino, 1815-1830 Mograbit, 1830-1900 Yiddish, 1900-1930 Hebrew, 1930-2000 in Russian, all on 9,725 and $9,009$. 2015-2030 on 9,725 and 9,009 ; 2030-2045 on 9,725 ; and 2045-2100 on 9,725 and 9,009 in English; 2100-2130 in French; and 2145-2200 in Russian on 9,725 and 9,009.

Well that's about it for this time. Deadline this month is 10th February, so good DX-ing and 73s.

DRY JOINT TESTER

The most reliable way or leating for a dry joint is to measure the resistance belween ane our lead and the printed circuit board. Onr kit doing this corpses resistance for aljusting zero settiog and a wiring diagram with instructions. The only additional itema youl will need are battery, some wire, a pair of test rods. Price 19/6, postage and insurance $2 / 6$
MINIATURE WAFER SWITCHES

4 pole, 2 way- 3 pole, 3 way- 4
pole, 3 way- 2 pole, 4 way -3 pole,
4 way- 22 pole, 6 way -1 pole, 12 4 way--2 pole, 6 way -1 pole, 12 Four assort

WATERPROOF HEATING 26 yards length 70WENT 26 yards
temperature control. $10 /$ - post free BLANKET SWITCH into side so luminous in dark. ideal for dark ryom light or for use with

PHOTO-ELECTRIC KIT

All parts to make light onerated switch/hurglar alarm/counter, etc. Kit comprises printed circuit. Infra-red sensitive l'hotocella amd Hooll, 2 tran sistors, cond., termitual hlock. Plastic case, Essential data, circuits and P.C. chassis plars of 10 photo-electric devices including auto. car parking light, riodulated light alarui. simple invisible ray switch-counter-stray light alarm-warbling tone electronic alarim-project lamp stabillser,

PP3 ELIMINATOR. Play your pocket radio from the mains! save \&a. Com plete component kit comprises 4 recthers-inains dropper resistances. smoothing comdenser and instru
tions, only $6 / 6$ plus $1 /-$ post.

BECKASTAT

This is an instant plug your applianceino it and its lead into rall plug. Adjustable ettling for normal air temperatures. 13 A oading. Will save its cont in a season $19 / 8$.
Post and ins. $2 / 9$.

KETTLE ELEMENT 230/240V 1500 watt Made by Best for kettle with ${ }^{9 / 10}$ inctuating: Best, Besco Chalfunt, Davidson. Dim plex, Graftom. Hawkins,
Monogram, Pifco, Revo, Jurynaid, Mirioware, Monogram, Pifco, 15 - plus Towen, 8 2/6 post.

QUICK CUPPA Mini Immersion Heater, 350 w $200 / 240 \mathrm{v}$. Boils ful! cup in about two minutes. Use any socket or lamp holder. Have at bedaide for tea, baly's food, etc. 19/6 model also available.

MAINS TRANSISTOR POWER PACK 1) Migned to operate tralinistor seta and ampliffer

 1)euigned to operate tralifintor sets and smpllffers. 500 mA (class 13 working). Takes the place of any PP^{7}, Pl'g, and others. Kit comprises: mains transformer rectifier, smoot hing and load resistor, condensers and instructions. Real suip at only 18/6, plus $3 / 6$ postage.

THERMOSTATS

Type "A" 15 amp . Tor controlling room heaters, greenhouses, airing cuphoard. Has spindle for $9 / 6$ plus $1 /-$ post. Suitable box for wall mounting. Type "B" 15 amp. This is a 17 in . long rod type
this alters the setting so this could be $1000^{\circ} \mathrm{F}$. Buitable for controlling
furmace, oven kiln immeraion heater or to make flame-start or fire alarm, $8 / 6$ plus $2 / 6$ post and insurance. ype out. We call this the Ice-atat as it cuta lim tanny uses one of which would be to keep the 10 ft plpes from ireezing, if a length of our blanket wire 16 yds. $10 /-$) is wound round the pipes P. \& P'1/

Type "E". Thals is standard refrigerator thermo stast. spindle adjustmente cover norinal refrigerator temperature. $7 / 6$, plus $1 /$-post
Type "F". Hlass encased for controlling the temp. of liquid-particutsrly those in glass tank θ, vata rubinks-thermostat is held (half submerged) by rubber sucker or wire cllp-Ideal for tish tanksdevelopers and chemical bathis of all types Adjustable over range $5 \emptyset^{\circ}$

ELECTRIC CLOCK WITH 25 AMP. SWITCH
Mide by Smith's these units are an fited to muny top quality cookers Io control the wen. The chock is mains driven and frequency controlled su it is extremely accurate. The two small fiais enable switch on and off times to be accurately set. Ideal for awteching on tape recorders. Offered at ony a raction of the regular price sew and nost ind iturarance less
$2 / 9$.

INFRA-RED HEATERS

Make up one of these fatest type

 heaters. Ideal for bathroom, etc. hey are simple to make from our nclosedect infrements (tesigned (3 micro1 18). Price for 750 watts element, all parts, metal saing ased wavelength (3) microns. Price for harance. Pult switch $3 /$ extra.

REPAIRABLE RADIOS

THIS MONTH'S SNIP

5A, 3 pin switch sockets

An excellent opportunity to make that bench dis board you have needed or to stock up tor future jobs. This month we ofter 6 British made (H icraft) bukelite tlush mountiog shuttered 5 A switch suckets for only $10 /$ plus $3 / 6$ post and insurance. (20 boxes post free)

THERMOSTAT WITH PROBE This has a sensor attached to a 15 A switch by a range is $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ so it is sultable to control soil heating and liquild heating especially when in buckets or portable vensels as the sensor can be raised out and lowered into the
vessel. This thermostat coulit also be used to yessel. This thermostatarm when critical temp.
sound a bell or other alater sound a bell or other alarm when orincal temp.
is reached in stak or heap subject to is reached in statk or heap subject or heated by gas or other means not controllable by the switch. Made by the

ELECTRIC CLOCK WITH 3A SWITCH
Electric Clock with 3 amp switch made by sniths for Dreamland. These are natins driven and frequency contrulled so are extremely accurate. The dial erables "switch-on" time to be accurately set. Switch off is 3 hours later or by manual control. Intended for switching electrie blankets this needs only one seltimp
for the season. Suitable also to control tape for the season. Suitalile also to control tape
recorder, rallio and latmp etc. up to 600 W . In recorder, raino and with etc. ins case with mains leal two neat plastic case with maing leal and two
outlet plugs. New and unused, $39 / 6$, post ond outlet plugs.
FLUORESCENT LIGHTING SNIP

FLUORESCENT CONTROL KITS Each kit comprise日s seven items-Cluke. 2 tube
ends. starter, starter holder and 2 tube clips. ends. starter, starter holder and 2 tube clips,
with wiring instructions. Buluble for normal with wiring inst ructions. Suluable for thormal
fluoreacent tubes or the new "Grolux' tubes for fluorescent tubes or the new fiah tanks and Indoor plants. Chokes are superfleh tanks and ndoor plants. Kit A-15-20 w 19/8. Kit B- $30-40 \mathrm{w} .19 / 8$, Kit $\mathrm{C}-80 \mathrm{w}$. $19 / \mathrm{B}$ Kit $\mathrm{E}-65 \mathrm{w}$. 19/6. Kit MF1 is for
and 12 in .. miniature tubes, $19 / 6$. Pootage on Kits A and B $4 / 6$ for one or two kiles then $4 / 6$ for each 1 wo kits ordered. Kits C, D and E $4 / 6$ on tirst kit then $3 / 6$ for each kit ordered. Kit MFl $3 / 6$ on first kit then $3 / 6$ on each two kits ordered.

TELESCOPIC
AERIAL for portable, car ralin
trainmitter. Chrome pla-
AERIAL

,

 ted-six sections, extends frotu7 ta to 47 in . Hole in bottom for 6 BA
w. $7 / 6$.

Be first this year! SEED AND PLANT

 RAISINGSoil heating wire and former. Suitable for standard
size garden frane.
Post and ins. $3 / \mathrm{h}$.

BLANKET SIMMERSTAT

Although looking like, and fitted as an ordinary blanket wwitch, thin is in fact a de vice for switch ing the blanket on lor varying time perioss. thus giving a complete controll from off to
Also suitable for controlling the temperature of Also suitable for coner uing up to 1 amp. Listed an $27 / 6$ each. we offer these while our stocks last at $27 / 6$ each, we of
at only $12 / 6$ each.

16 RPM GEARED MOTOR

Made by Smith's Electriss, these are almost allemt running, but are very powert the fhey shaft speed is
normat to 240 V . maine and the final $16 \mathrm{r} . \mathrm{p} . \mathrm{m}$. 15/-. Post \& ins. $2 / 9$.

REED SWITCH

suituble for dozens of different upplications. such us burglar alarms, conveyor helt switching. Tbene are simply glass in cased suitches which
can be operated by a pasiug permanent magnet can be operated by a paskug permanent masce to offer these at $2 / 6$ each, or $24 /-$ a dozen. Suitable magnets are 1/- each.

MINIATURE RELAY
American make 630 ohm coif 20 - 30 volt.
ton- 2 pole change over $4 / 6$ each, $48 /$-doz.

Where potage is not stated then ordera
 semi-conductors addl $1 /$ post. Over post free. B.A.E. with encuiries please.

TEGHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEMV SELF-BUILD RADIO courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

Field-effect Transistors at Realistic Prices

2 N 3819 N -channel. RF Amplifier. Low Noise. 2 N 3820 P-channel. Complement to 2 N 3819. 2 N 3823 N -channel. V.H.F. Amplifier. BFW 10 N-channel. V.H.F. Amplifier. MPF 102 N-channel. V.H.F. Amplifier MPF 103 N -channel. AF Amplifier. MPF 104 N -channel. AF Amplifier. MPF 105 N -channel. AF Amplifier/Switch. MFE 2094 N -channel. AF Amplifier/Switch.

0/- each (5 or more $9 / 6$ each $17 / 6$ each (5 or more $16 / 3$ each) 33/6 each (5 or more 28/6 each) 45/- each (5 or more 39/- each) $8 /-$ each (5 or more $7 / 6$ each) $7 / 9$ each (5 or more 7/3 each) 7/9 each (5 or more 7/3 each) $7 / 9$ each (5 or more $7 / 3$ sach) 31/6 each
All of the above items are Ex-stock delivery at $31 / 8 / 68$.
All components offered for sale are guaranteed to be brand new first grade items only. All items are subject to the guarantee terms of their individual manufacturer, where applicable.
M. R. CLIFFORD \& COMPANY (PW) Component Stockholding Services 66, Old Oscott Lane,
Great Barr, Birmingham, 22A.
Terms: C.W.D. MAIL ORDER ONLY. (Nett monthly a/c to approved accounts) Suppliers to: Government and Educational Establishments, H.M. Forces, etc. Please add $2 /$-postage and packing per order.
SILICON TRANSISTORS. EX-STOCK-many others available.

BC 107	$3 / 6$	BC 172	$3 / 2$	$2 N 697$	$5 /-$	$2 N 3704$	$3 / 8$
BC 108	$3 /-$	BC 173	$3 / 9$	$2 N 706$	$2 / 6$	$2 N 3705$	$3 / 2$
BC 109	$3 / 6$	BC 182L	$4 /-$	$2 N 706 A$	$3 / 2$	$2 N 3706$	$3 / 7$
BC 115	$10 /-$	BC 183L	$3 / 3$	$2 N 2926$	$2 / 6$	$2 N 3707$	$3 / 10$
BC 116	$12 /-$	BC 184L	$4 / 9$	$2 N 3053$	$6 /-$	$2 N 3708$	$2 / 6$
BC 167	$3 /-$	BFY 50	$5 / 3$	$2 N 3054$	$15 / 6$	$2 N 3709$	$2 / 4$
BC 168	$2 / 6$	BFY 51	$4 / 4$	$2 N 3055$	$21 /-$	$2 N 3710$	$2 / 7$
BC 169	$2 / 9$	BFY 52	$5 / 3$	$2 N 3391 A$	$7 /-$	$2 N 3711$	$3 /-$
BC 170	$3 /-$	BFY 53	$4 / 4$	$2 N 3702$	$3 / 6$	$2 N 3793$	$3 / 3$
BC 171	$3 / 8$	BSY 95A	$3 / 9$	$2 N 3703$	$3 / 2$	$2 N 4292$	$3 / 3$

We are also an Electroniques Agency (960 page Catalogue $16 / 6$ post free)

STRONGHOLD steel shelving that adjusts every inch of its height!

Immensely strong-completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the bay! Cash with order $73^{\prime \prime}$ high $\times 34^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep unit with six shelves in heavy-gauge steel, stove enamelled grey or green! $£ 3.15 \mathrm{~s}$. -Brand New! See the

토몽 N C. BRONNLTD.
 pacesetters in storage equipment

[^3]Name......
Address
Address
Dept. PW Eagle Steelworks, Heywood, Lancs. Tel: 69018. London: 25-27 Newton St., W.C.2.
Tel: 01-405 7931 Tel; 01-405 7931

IIY thanks this month to the eighteen thousand s.w.l.s, ironmongers, watercress pickers and everyone who has written in to inform me that LG5LG is legit. Please fellas, I'm convinced.

Each year a new flock of people arrive at the s.w.l. door armed with various types of receivers and antennas. Judging by the many queries raised in the mail this month, the invasion is already in full swing. In answer to the commonest inquiriesyou can obtain a list of countries and their prefixes from the RSGB at 35 Doughty Street, London W.C.1. There is no such thing as "the best aerial" The "best" receiver is a matter of opinion, although there are some very nice solid state marine receivers going these days-for around $£ 800$

If you want the latest news on the Amateur scene with the accent entirely on Ham Radio, then you should listen out every Sunday morning when the RSGB transmit a bulletin especially for this purpose. These transmissions are on 80 metres and 2 metres. Exact frequencies and times are as follows: South-East England, listen at 0930 hrs . on $3.6 \mathrm{Mc} / \mathrm{s}$ or for the station in the S.E. beaming North on $145 \cdot 1 \mathrm{Mc} / \mathrm{s}$ at the same time; at 1000 hrs. , a station in the Severn area on $3.6 \mathrm{Mc} / \mathrm{s}$ and also on $145.1 \mathrm{Mc} / \mathrm{s}$ beaming West. Also at 1000 hrs ., there is a 2 metre station at Aberdeen beaming West on $145 \cdot 8 \mathrm{Mc} / \mathrm{s}$: at 1030 hrs ., on $3.6 \mathrm{Mc} / \mathrm{s}$ the Midlands is covered while at the same hour, two stations on 2 metres areAberdeen, beaming South-West and Birmingham on $145.3 \mathrm{Mc} / \mathrm{s}$ beaming North-West; for North-West England listen at 1100 hrs ., on $3.6 \mathrm{Mc} / \mathrm{s}$ or on $145 \cdot 3 \mathrm{Mc} / \mathrm{s}$ for a signal from the Birmingham area beaming South-West; at 1130 hrs . (they get up later up North), there is a $145.5 \mathrm{Mc} / \mathrm{s}$ Leeds signal beaming North and a $3.6 \mathrm{Mc} / \mathrm{s}$ transmission for South-West Scotland; finally, at 1200 hrs ., a transmission for North-East Scotland on $3.6 \mathrm{Mc} / \mathrm{s}$ and a $145.5 \mathrm{Mc} / \mathrm{s}$ transmission from Leeds beaming East. Thus the whole of England is covered and you should be able to hear one of these signals. The call sign to listen for is GB2RS

For those who haven't heard, they're mucking about with the callsigns again. The PJ prefixes have been given a shuffle (Netherlands Antilles) so they now read: special stations-PJI; Curaçao-PJ2; Aruba-PJ3; Bonaire-PJ4; St. Eustacius-PJ5; Saba-PJ16; Sint Maarten-PJ17. Visitors to islands with a PJ5, 6 or 7 prefix will use PJ8, while visitors to PJs 2, 3 and 4 will use PJ9. Wonder what prefixes will be given to those "novice licences" which the GPO were rumoured to be giving a ruling on last year? I suggest the prefix TVI or BCl might be a sensible choice (even my transistor grid-dipper can flatten channel one right down the road if I'm not careful.

A very good month for all six bands although, as usual, some periods were better than others. Twenty metres dies the death at around 2100 hrs , while 10 metres has been very good but with its now established temperamental nature. My two best on this band were ZD9BE and VQ9DH both between 0900 and 1100 using phased verticals in the loft.

What about all these DXpeditions these days. Amsterdam Island, Chatham Island, Kerguelen and

Tromelin were all rumoured to be waving antennas around but it seems that no one has heard an r.f. dickie bird from any of them, although a couple of PYø stations were at it from Santa Barbara Island.
G. Taylor writes from S.W. 6 and confesses envy at some of the logs printed. Some months I'm green too but that's just how it goes. Being able to read c.w. helps as often there's quite a bit of DX readable on key, while the phone signals are virtually impossible to interpret.

Messrs. Littlefield and Sams (Essex), query the call ZX 3 HX . Wonder if that might not be ZS misread?

John Moore (Leicester), tells of 80 metres opening up and 75 metres loaded with W and VE stations. John`s \log is a good illustration of persistence and keeness. You have to listen often and diligently and not just a quick QRX now and again expecting the DX to be there just waiting for the privilege of adorning your lugs.

John's log reads: 160 metres-EI7AF, GI6TK, GM3BQA, GW3SRG, OH5SM: 80 metresK2AAS, K2MPK, LG5LG (I know, I know), OY2Z, PA $\varnothing D X / M$, W $1 E B C$, WISZJ/KP4, W3BMS, W4BUV, VEIAAW, VOIFG, ZB2A; 40 metres EA8EC, ISIDMN/P, PXIBW (Andorra), ZC4MO, 9Y4TA; 20 metres-CE6EZ, ET3USA, HI3MPW, HP1HXG, K4PHY/YV5, LG5LG (nuff sed), OD5BU, OX5BA, PY7ACQ, TF3BV, VE3CBG, VOIHH, YV5AG, 5A3TE, 5Z4LG, 9K2AM, 9K2CF: 15 metres-EA6AR 9 (Majorca). JA2GES, KA2NY, MP4BGY, PY8YZ, TF2WLM, UlA (?), VE2AFC, VE3GHL, VK2FA, VK2XT, W $\varnothing V X O /$ KV4, YA5RG, YNIURI, YV1WX, ZFiEP (Grand Cayman Is.): 10 metres-ET3USA, HV3SJ, KR6NR. KV4AD, OD5FA, PJØMM, PZ1BI, VE2DJR, VE3CVX, WI-W \varnothing, YAIHD, YVILA, YV5CPA, 9K2BJ, 9Q5DS. All the \log on s.s.b. and with a CR $100 / 2$ plus 60 ft . end fed.
L. Boucher (Near Swansea), has a virgin 1155 and 75 ft . of wire. Twenty s.s.b. produced audibilities from-CE8CP. CN8CS, CR6LF, CT2AA, EA6AR. EA7ID, EA8FM, EP2DA, KL7EBK, MP4TCE. OD5FM, PYITX, PY5AJ, PJøCC, PZIDF, SVØDD, TA3AR, VE5BF, VK2AZ, VK4PX, VK6XW, W6HYG, W7KQ, YV5BFK, ZB2A, ZB2BC, ZE6JM, ZL3LE, ZS!NU, ZS6OY, 3A2EE, 4X4HT, 5A3TX, 5A4TE, 7P8AR, 8P6CC, 9J2VX, 9K2AV, 9Y4VT
R. Dinning (Ayrshire), HA350 and PR3OX, 380 ft . long wire logged these on 10 metres s.s.b.-CR7FM. EP2JP, HRIJMS, HV3SJ, ISIGS, KP4AQX/KG6. KV4AD, LU6DRB, MP4BVX, VK6XX, YNIHSM, YNiGLB, 5A5TH, 9J2DT, 9K2CC, 9N1MM plus millions of JAs". Fifteen metres with the same set up raised-CT2AM, EL2BD, HR1JS, KG4AM, KG6ALY, KP4BCL, KR6JT, KV4FQ, KZ5WL, MP4MBB, OX3LP, TA3AR, VK2ADV, VK3SM, ZLIAJU

Activities and happenings in February include: 15th-16th, topband contest; 16th, 4 metre fixed station contest: 22nd-23rd, YL/OM phone contest (see how many YLs you can log): March 1st2nd, 2 metre contest.

DESIGNED for "Top Band" mobile working in conjunction with a 12 V transistorised car radio receiver, this rugged solid-state Superverter has proved to be completely satisfactory. Consuming but 3.5 mA of current the prototype is so quiet in operat tion that under no-signal conditions one wonders if in fact it is operating. Doubt on this point is rapidly eliminated, however, on receipt of a signal!!

The Superverter is designed to accept signals in the 160 m . Amateur Band $(1800-2000 \mathrm{kc} / \mathrm{s})$, converting them to a new frequency $1.6 \mathrm{Mc} / \mathrm{s}$ or thereaboutsso that they may be heard on the car radio, the tuning of which is adjusted to the high frequency end of the Medium waveband. The car radio then performs as a second amplifier. The output from the unit could alternatively be fed to other types of receiver capable of being tuned around $1.6 \mathrm{Mc} / \mathrm{s}$ subject to a point being located on the scale where no spurious unwanted signals break through.

Power can be in the form of a small diy battery and adequate space exists in which to incorporate
"on the move" operators usually find it difficult to adjust the control to the correct point. Fortunately, on "Top Band", a.m. is used mostly for daytime QSOs.

Since the required i.f. output is approximately $1600 \mathrm{kc} / \mathrm{s}$, local oscillations generated by the Superverter in the range $3400-3600 \mathrm{kc} / \mathrm{s}$ will supply the necessary product. The purist maty prefer to fully tune the three circuits simultaneously (this entails use of a 3 -gang variable capacitor) but the practical-minded find it more convenient to preset tune the r.f. and mixer stages around mid-band position-say $1900 \mathrm{kc} / \mathrm{s}$ and to tune only the oscillator over the necessary $200 \mathrm{kc} / \mathrm{s}$ segment. This is the method adopted, the oscillator being tuned from the panel by means of a reduction drive legended "Tune"

Circuitry

The complete circuit of the Superverter is shown in Fig. 1 where TR1 is the r.f. amplifier with TR2 the combination mixer/oscillator. The emitter-follower,

one - or the car battery may be used. Switchery for various operating modes will be included later.

Physical size is of importance in connection with items used for "mobile" usage and although dimensions associated with the prototype Superverter will be given these can be modified considerably to suit the needs of the individual.

The Superverter is not a "general coverage" design for the simplified tuning system adopted restricts frequency coverage to a few hundred kilocycles to provide a "one band" affair. Two bands could perhaps be catered for by introducing switching; an alternative method is to use plug-in coils. Plug-in coilsbut rigidly located--are in fact embodied in the prototype Superverter and suggestions regarding other frequency bands will be given in a later article.

Although no 3 -gang tuning capacitor is used the Superverter does employ an r.f. amplifier stage ahead of its mixer/oscillator stages. This is possible because the frequency bands available to radio amateurs are but $200 \mathrm{kc} / \mathrm{s}$ or so wide overall and the phone section is considerably less. Top Band covers $1800-$ $2000 \mathrm{kc} / \mathrm{s}$ but few QSOs take place near the band edges.

The prototype Superverter cannot resolve singlesideband (s.s.b.) transmissions nor can c.w. be made intelligible since a b.f.o. is not fitted. The inclusion of a b.f.o. is not entirely a practical proposition, for

TR3, is included to isolate the i.f.t. secondary tuned winding from the associated receiver which is connected to socket SK2. Panel controls are associated with TI (R.F. Trim). VCl (Tune) and VRI (R.F. Gain).

In order to strengthen signals receivable higher or lower in frequency than the $1900 \mathrm{kc} / \mathrm{s}$ mid-band position the core of Tl is made adjustable from the panel. The safety diode D1 is only needed when a transmitter is being used nearby.

Plenty of decoupling is included and all values specified are as used in the prototype unit. The value of RII is governed by the power supply to be used; a negative potential of 9 V d.c. at TR3 collector is suitable and remembering that the unit requires about 3.5 mA the value of R 11 is easily calculated.

If improved selectivity and higher gain are desired TR3 can be used as an additional amplifier by adopting the final circuitry of Fig. 2 when an additional i.f. transformer (a Denco type IFTI7) is required plus the other items as legended in the diagram.

Constructional

The prototype Superverter is made to stand on top of the car radio receiver with which it is used and is secured thereto firmly. All metalwork is of 18 s.w.g.
-continued on page 846

Fig. 1: The circuit of the Superverter.

Fig. 2: An alternative output stage.

Fig. 4: Above-chassis layout and wiring details.

Fig. 3: Front panel dimensions.
-continued from page 844
aluminium and front panel dimensions are given as a guide in Fig. 3. The top of chassis layout can be seen in Fig. 4 where the location of T1 should be noted, the coil being locked to the front panel with its brass core adjusting stem projecting and fitted with a brass bush to accommodate a small control knob. A Noval valve holder is then "push-on" fitted to the spills at its other end. All three coils are so designed that they may be plugged in to Noval valve holders and one holder is required for each. The selector switch shown will be mentioned later.

Essential dimensions of the main chassis are given in Fig. 5 which also shows the orientation of the two coil holders associated with T2 and T3. The screening cans associated with these two coils (these are the containers the coils come in) are not fitted initially. It should be noted that the chassis dimensions shown allow of no bends and front and back flanges should thus be added. The rear flange need be no more than $\frac{3}{4}$ in. deep. A simple L-shaped bracket is also made to carry VCl .

The i.f. transformer is simply fitted by cutting a square in the chassis to afford a firm fit for the screening can without distorting it. The i.f.t. can is then pushed through the chassis a short distance and its mounting lugs bent outwards to be soldered to tags suitably positioned. Three small tagstrips are located as shown and wiring up carried out along the lines indicated.

All items used must be of modern design and miniature in type. Coil Tl can also be mounted vertically if preferred when a small variable capacitor may be panel fitted for peaking purposes and connected across its tuned winding.

The Coils

Ready-made coils are used and for the oscillator coil T3 a Range 2 "White" specimen is selected from the Denco range of transistor types. The induc-

Fig. 5: Below chassis layout and wiring with dimensions.
tance of this coil is approximately $66 \mu \mathrm{H}$. At the midband position for an input r.f. signal of $1900 \mathrm{kc} / \mathrm{s}$ the oscillator must be tuned to $3500 \mathrm{kc} / \mathrm{s}$ for $1600 \mathrm{kc} / \mathrm{s}$ output and a tuning capacitance of about 30 pF is thus called for: components C1I, C12 and VCl are appropriate in value.

Denco Range 2 Aerial and Interstage coils (Blue and Yellow respectively) are also used for TI and T 2 but have to be modified since their inductance is too great. The coils are easily modified. A side view of the signal frequency coils is shown in Fig. 6, the aerial coupling winding being " A " plus a 2 -pie tuned winding at " B " and " C ". A transistor base coupling

components list

Resistors:		
R1 $15 \mathrm{k} \Omega$	R7	$1 \mathrm{k} \Omega$
R2 $2 \cdot 2 \mathrm{k} \Omega$	$R 8$	$1 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$	$R 9$	$470 \mathrm{k} \Omega$
R4 $1 \mathrm{k} \Omega$	$R 10$	$1 \mathrm{k} \Omega$
R5 $15 \mathrm{k} \Omega$	R11	See text
R6 $3 \cdot 9 \mathrm{k} \Omega$	VR1	$5 \mathrm{k} \Omega$ pot.
All $\frac{1}{4}$ watt, 10%		

Capacitors:

C1 47pF ceramic
C2 $10,000 \mathrm{pF}$ ceramic
C3 $100 \mu \mathrm{~F}, 15 \mathrm{~V}$
C4 $10,000 \mathrm{pF}$ ceramic
C5 $0.04 \mu \mathrm{~F}$ paper
C6 47 pF ceramic
C7 $10,000 \mathrm{pF}$ ceramic
C8 $\quad 0.1 \mu \mathrm{~F}$
Semi-conductors:
TR1 AF117
TR2 OC44M

TR3 OC45M
 D1 OA70

Coils:

T1 Miniature Blue Transistor type Dénco range 2
T2 Miniature Yellow Transistor type Denco range 2
T3 Miniature White Transistor type Denco range 2
See text for above three coils.
IFT1 Miniature transformer Denco type IFT18/1. $6 \mathrm{Mc} / \mathrm{s}$.

Switch:
See text

Tuning Unit:
Vernier Drive, 2in.-Eagle T502

Miscellaneous :

Chassis and panel material 1.8 s.w.g. aluminium, Tagstrips (3), Noval valve holders (3), Control knobs (3), Coaxial sockets, etc.
Note: In cases of difficulty all items can be obtained from: Alpha Radio Supply Co., 103 Leeds Terrace, Wintoun Street, Leeds.
winding associated with spills 5 and 7 is not shown: this is wound on top of winding " B ".

To modify the Blue and Yellow coils for 160 m . band working the wire is cut free from spill No. 6 tag and turns are carefully removed from winding "C" without causing damage to connections running from winding " A " to spills No. 8 and 9. Turns are slowly removed until only one-quarter or slightly less of the winding remains when compared to winding " B ". The loose end of the winding is then soldered to spill tag No. 6 after cutting off the wire freed. The precise number of turns left on the winding need not be known since the co.e is adjustable and affords compensation. It may be thought that the next coil "down" in the maker's range could be used unmodified and although this is true-using Range 3 Blue and Yellow coils--a large shunt capacitor is required across each tuned winding; the approximate capacitance value is 270 pF . It should be noted that the Range 2 White oscillator coil specified for T3 must not be modified in any way!

The Yellow and White coils are each screened by means of the metal containers they are supplied in. These containers are cut off to a length of $1 \frac{1}{2} \mathrm{in}$. as is shown in Fig. 7a; a $\frac{1}{4} \mathrm{in}$. diameter hole is also cut as shown. The two coils are plugged in to their appropriate holders, the lock nuts removed and the containers inverted over them. The lock nuts are then screwed on thumb tight and a 6BA brass lock nut is screwed lightly on to each core stem. A length of

Fig. 6: Aerial and inter-stage corls

Fig. 7a: Screening can modifications; 7b: Mounting method
twin nylon cord attached to a pair of small springs of the type used for cord drives is used to hold each container firm under all mobile conditions. The coils can, however, be easily removed very quickly if this is required. The mounting method is shown in Fig 7b.

TO BE CONTINUED

Youn
 QUESTIONS ANSWERED

Ripple Current

With reference to the higher voltage types of electrolytic capacitors and some obscurities that seem to exist. There seems to be no indication on the majority of them to indicate permissible ripple current. Is there any way by which this can be deter-mined?-J. Wackett (Devon).

Details of the ripple-current rating of electrolytic capacitors can normally be obtained from the manufacturer concerned. A useful rule of thumb for determining whether or not the leakage current of a capacitor is excessive is: $\mathrm{mA}=\mathrm{V} \times \mu \mathrm{F} / 2000$, in other words, the permissible leakage current in mA is taken as the product of the working voltage and the capacity in $\mu \mathrm{F}$ divided by 2000 .

Speaker Damage

I have an all-transistor tuner/amplifier. Would any damage be done if it were switched on with all speakers disconnected? Also, would any damage occur if too many speakers were switched in?-H. Smith (Perth).
Loading of transistor amplifiers can be regarded as "roughly" the opposite of valved amplifiers in that they will usually suffer no damage by discon-
necting the loudspeaker $/ \mathrm{s}$, but short-circuiting of the output increases the current in the output stage dangerously. An inadvertent short-circuit of loudspeaker wiring has ruined many an output transistor, and there is generally no leeway-thus the utmost care is necessary. From this it follows that the addition of extra loudspeakers reducing the load impedance, also increases the output current. In fact, this is sometimes used to boost, artificially, the output from an amplifier. For example, where an amplifier is rated to deliver ten watts to a fifteen ohm speaker and actually delivers more like four watts (!) the device of connecting a well-rated 4Ω speaker gets more output with comparative distortion figures. But it is not to be recommended-for the reasons I have stated. If more speakers are needed, it is advisable to equalise the load. For example, a single speaker of nominal X ohms impedance can be replaced by four similar impedances in series parallel.

Volume Control

1 should be grateful if you could give me some advice regarding the fitting of a tone control to my transisitor set. The output is class B push-pull with one OC81D and two OC81s, transformerless with a 30Ω speaker.-G. Lawton (Herts).

You can probably alter the tone of your transistor radio by connecting an $8 \mu \mathrm{~F} 6 \mathrm{~V}$ or a $4 \mu \mathrm{~F} 6 \mathrm{~V}$ capacitor in series with a variable resistor, say, $5 \mathrm{k} \Omega$, and connecting this combination across the volume control. It might also be wired from the base of the driver transistor to the positive line. However, this must be a matter for your personal experiment.

PART 1 HOME WORKSt

IN order to construct radio and electronic apparatus, hand tools are required. The problem confronting the beginner to radio construction is to know which tools to buy initially and which tools may be left until more ambitious projects are undertaken. The purpose of this article is to outline a kit of tools which the author considers to be the minimum necessary for starting serious construction work; with these tools, additional tools can be made at home and details of these will be given in subsequent articles. Finally, more sophisticated tools will be mentioned.

In the main the raw materials are copper, aluminium and their alloys, and it is to cut, join, shape, pierce, measure and smooth these materials that tools will be required. The basic tools required by the beginner are: Vice, clamps, hacksaw, chisel, tinsnips or shears, scissors, rule, punches, trysquare, hammers, hand-drill complete with twist drills, spanners, screwdrivers, pliers and soldering iron.

Unfortunately for the beginner, many of these tools can be obtained in a variety of forms and sizes, and the author will attempt, in the brief discussion of each item which follows, to indicate the type of tool most suited to the beginner in terms of value and versatility. Before leaving the subject of value, a word of warning here. No matter how limited the budget, on no account should quantity of tools be allowed to take precedence over quality of tools.

Good quality tools are actually easier to use than inferior tools, and have an immeasurably longer useful working life. The British market is flooded with inferior tools imported from Europe and the Far East, as experience is gained, these cheap tools can be made to work within their limitations but the beginner is strongly advised to start with good, branded British products.

Returning now to our list, we start with the vice. This is one of the most useful tools in the workshop and an engineer's vice with 3 in. or 4 in . interchangeable jaws is preferred. A possible drawback with this type is that it has to be bolted down through the workbench and where it is intended to use the
kitchen table as a makeshift workbench, a clampon portable vice makes a good substitute. A range of excellent aluminium alloy vices is currently available, and the constructor can make his own jaws to suit from scraps of wood, etc.

To augment the vice, a pair of "G" clamps are invaluable, although one will do for a start. In normal use, "G" clamps are subjected to severe tensional stresses, and cast-iron clamps should be avoided because these are very weak in tension. Good clamps are made of forged steel, and will withstand considerable abuse indefinitely. A 5 in. clamp is a good size to start with.

The hacksaw should be of the adjustable type, ranging between 8 in . and 12 in . Imported hacksaws often have fixed adjustments corresponding to metric sizes and will not accept English blades unless modified.

A range of cold chisels is useful in the workshop but where it is intended to purchase only one, a 6 in . chisel of about $\frac{3}{3} \mathrm{in}$. diameter will serve. More will be said about chisels later.

Metal-cutting shears or tinsnips are available in a range of sizes, with either flat jaws, straight or curved, or with plump jaws, invariably straight. This latter type is known as a Goosebill shear because of its shape. Both types have their uses, but the Goosebill is recommended for its ability to cut a straight line through sheet metal. A 10 in . shear will cut 20 gauge aluminium without undue effort, and if it is necessary occasionally to cut heavier gauges, one handle of the shear can be gripped in the vice, whilst the other handle is pumped to obtain the required leverage.

A pair of scissors is included in the list to cover those occasions when aluminium foil, cardboard, fabric, fuse-wire, etc., need to be cut.

A six-foot extending rule is a useful accessory in the workshop and a cheaper type with printed graduations will be accurate enough for most marking out.

A steel trysquare is included in the list, but if a combination square is obtained it will have a number
of additional features such as a removable rule with engraved graduation with which more accurate measurements can be made. Most squares of this type also incorporate a useful little scriber and a spirit level.

Punches for use in the workshop include centre punches, pin punches and piercing punches. One of the uses of the centre punch is to make a small conical indentation in a surface that is to be drilled, the small pop mark guides the drill accurately into the desired position. Centre punches do not vary much in size, but a punch of square section, or with an enlarged square head, is less likely to roll off the workbench. Pin punches are used to drive cotter pins and retaining pins and could probably be left out of the basic kit without too much inconvenience. On the other hand, the piercing punch is one of the most useful, but neglected, tools in the constructor's kit. Proprietary punches are quite expensive to buy, but fortunately satisfactory substitutes are not at all difficult to make, as will be described later. The
pared for the radio worker. Make sure your set includes at least one of the Phillips type blade.

Of the many types of pliers available, three are preferred for a start, these are combination, sidecutting, and long-nosed. Insulated handles can be obtained if desired, although the author has a strict rule that metal tools will not be used in the vicinity of live power circuits. Cheap side-cutters rapidly become blunt and cannot be sharpened.

The last of the basic tools is the soldering iron, these are obtainable at prices ranging from 10 s upwards, and wattages from about 25 upwards. The writer prefers a big, powerful, soldering iron, but the choice is rather a matter for the individual. The beginner might be well advised to start with a 30 watt iron and to consider others as dexterity is acquired. A solder gun should be the ultimate goal, of course. The elements of the cheaper irons usually burn out after a couple of hours, and are often irreplaceable. Other cheap irons have recently been found to be lethal owing to faulty insulation. A well-known
piercing punch is a round piece of tool-steel with a concave relief in the cutting end which is driven through the panel by a firm blow from the hammer, taking a small slug of metal with it, the panel is supported on a piece of softwood to prevent damage to the punch as it breaks through.

Holes can be produced more accurately and quickly with a punch than with a drill and, with careful planning and marking out, a complete radio chassis can be punched in the flat before the sides are raised into the box shape. Large holes are difficult to punch by this method, however, and for this reason a set of screw-up type chassis punches is specified. These are available as a set of the most popular sizes and full instructions are included.
Many workshops have a large selection of hammers, but for our purpose only two are considered to be essential. These are a perfectly standard one pound ball-pein, and a fibre, plastic or rubber hammer for sheet metalwork. The resilience of the latter hammers helps to prevent damage when soft metals are being worked.

The hand-drill should have well-fitted bearings, preferably including a proper thrust race, and an idler pinion to balance the crown wheel. A $\frac{1}{i n}$. capacity chuck is usual, although a larger drill with a $\frac{3}{8}$ in. chuck has much to commend it.

A set of twist drills with the diameters increasing by increments of $\frac{1}{6} \mathrm{in}$. from say $\frac{1}{32}$ in. to $\frac{1}{4} \mathrm{in}$. should be obtained. Beware the very cheap imported sets often labelled "Hi-carbon" or similar, which are in fact made of iron wire and will not drill even hard wood satisfactorily. A good British set is indicated here, the extra cost is easily justified.

A set of BA extension socket spanners will be required right from the beginning, and is especially useful when dismantling scrap equipment to reclaim parts. Look for neatly broached sockets when purchasing, and a long clearance hole inside the shaft is useful when running nuts on to long screws. The type with an interchangeable plastic handle is convenient to use and takes up little space.

Screwdrivers are obtainable in sets especially pre-
brand name is the best safeguard.
As the projects undertaken become more complex, the need for more tools will be felt, and these can be bought when necessary. Other tools might already be knocking around the house or garage such as files and oilcans.

SOURCES OF COMPONENTS

Armed with the kit of tools described the wouldbe constructor now requires components and materials with which to work. It is possible, of course, to purchase all that one requires, brand new, from the radio supplies shop, but the expense involved often imposes a serious limitation on the number of projects which can be undertaken. Often the necessary materials and components can be obtained free of charge or at a purely nominal cost.
The most prolific source of components is the scrap TV or radio chassis, any number of which can usually be obtained from the local radio and TV repair shop simply for the asking. More than once the writer has had the boot of his car filled with scrap chassis by the grateful proprietor of the local repair shop, who would otherwise have had to pay to have these removed. Old radios and radiograms can often be picked up for a couple of shillings at second-hand furniture stores or jumble sales.

Those fortunate enough to live near a war surplus shop will find that a few shillings will buy a complicated piece of apparatus which undoubtedly cost the Government hundreds of pounds when new. The writer particularly remembers buying an ex-W.D. valve-tester and having a large box of valves "thrown in to practice on".

Most electronic projects are built on a chassis of some sort or other. It is often found possible to utilise a chassis salvaged from an old set, but where this is not posssible, a new chassis can either be purchased ready made up or fabricated by the constructor from sheet material. A cheap substitute used by the author is the oven meat tin obtainable from all chain stores. Unlike aluminium, components can be soldered directly on to the tin-plate chassis and
wiring, is greatly facilitated since earth leads can be kept short and direct by soldering to the chassis at the nearest point.

Biscuit tins can sometimes be pressed into service, as the photo of the G.D.O. shows. Larger biscuit tins can be cut into panels which in turn are formed into small chassis as required. A slight disadvantage with ordinary tin-plate is that it lacks rigidity and special attention must be given to stiffening up tin-plate chassis.

The Authors' Grid Dip Oscillator built in a biscuit tin.

Inevitably the constructor will come across a design where a definite shape and size of chassis is called for. Here, a sheet of aluminium will be required for making up and most good radio shops will stock this. However, anyone living near a coachbuilder or caravan building works should first try a visit to the works manager with a view to buying offcuts of aluminium at the scrap rate. The writer was able to buy 7 lb . of 20 gauge aluminium in useful size sheets for a shilling from such a source. Before leaving the subject of chassis and chassis materials. consideration should be given to sandwich tins, tobacco and mustard tins and similar containers, the choice is limited only by the imagination of the constructor.

Having found the necessary components and built a chassis, the constructor will require wire to wire up the project. Single- and multi-stranded copper wire, PVC covered, can be purchased on small drums for a few shillings, but owing to political troubles in the copper producing areas of the world, copper is today rather an expensive commodity and economies can be made by using wire stripped from scrap sets. When insulation is needed, the wire can be threaded into rubber or plastic tubing, obtainable in bundles for a few pence; another very good sheath goes under the trade name of "Systaflex" and is a varnished cambric and it is somewhat easier to thread than rubber or plastic. For insulating fairly straight lengths of wire, an ordinary plastic drinking straw can be tried and will be found to possess a resistance of $500 \mathrm{M} \Omega$ at quite high potentials. In the absence of heat or physical abrasion it will last for ever.

FINISHING IT OFF

Summarising our discussion so far, we have considered some methods by which components can be
obtained; assembled to a chassis; wired up; and tested under power. All that remains is to fit the project into a housing of some description. A wooden or plastic cabinet can be made or purchased, but the author's preference is to make a metal cover, the main reason being that the equipment is then screened to r.f. both ways. In the vast majority of cases, the equipment will consist of a chassis with components above and below deck, and a vertical front panel to which tuning and volume controls, inputs and outputs, meters and lamps etc. are attached, depending on the type of equipment.

An attractive cover for the remaining three sides and top of the equipment can be fabricated from expanded metal available in many anodised finishes from trade advertisers in this journal. However, the really dedicated improviser will find that perforated zinc, sold in rolls by most hardware shops, makes an excellent substitute for expanded metal at rather less than half the price. The zinc is extremely easy to cut and form into any shape, and is joined merely by pressing adjacent pieces together with a hot soldering iron. The accompanying photo of a homemade preamplifier shows one application of this material.

The cover of this pre-amp is made from perforated zinc. Note the finish on the front panel, made by rubbing with stee/ wool.

The edges of aluminium and similar sheets and panels can be bound quite attractively with plastic tape. Other possibilities include gilded plastic strip such as is sold for edging hardboard, etc., and possibly the simplest way is to file and smooth the edge and spray the panel. Decorative finishes can be applied to the natural metal in various ways-for instance a pad of steel wool rubbed firmly round and round in small adjacent circles on the surface produces an attractive finish. Another method of achieving a similar result is to attach a small piece of medium emery cloth to the end of a $\frac{3}{4}$ in. diameter wooden dowel and revolve the dowel between the hands. pressing the emery cloth lightly against the surface.

So much then for the ways and means of gathering together the raw materials for the constructional project. Next month special techniques for dismantling. reclaiming and rebuilding components and equipment will be described, and finally a list of more advanced hand and power tools for the guidance of those fortunate enough to have the space to provide themselves with a fully-equipped home workshop.

TO BE CONTINUED

W. CAMERON'S

GTRANSISTOR

PART 2 - continued from February

WTork may now proceed on the wiring and soldering of the small components (see underchassis layout details, Fig. 7). It is as well to start at the output end, TR6, working forward to the first i.f. TR3, up to the dotted line on the circuit diagram Fig. 1. The i.f. amplifier must now be checked and given the rough alignment described below, after which the front end can be completed.

Initial I.F. Alignment

The i.f. amplifier is now ready for testing and rough alignment. Plug the output into an amplifier and connect the supply leads to a 9 volt battery. Check all voltages with Table 1. Clicks should be heard during these tests, perhaps becoming progressively louder as the tests proceed towards the first i.f., parcicularly when collector and base voltages are measured. Any fault that may be apparent at this stage must obviously first be located and corrected before proceeding to the actual alignment. Disconnect the battery, disconnect capacitor C15 and connect a length of 3 or 4 yards of wire to the emitter of TR3. Re-connect the battery. The i.f. amplifier can now be considered as a rather wideband t.r.f. receiver, the length of wire connected to TR 3 emitter being the aerial, and provided no fault exists short wave signals, mainly Morse, on a frequency somewhere between 10 and $11 \mathrm{Mc} / \mathrm{s}$ will be clearly heard.

The nominal frequency to which the i.f. transformers should be tuned is $10.7 \mathrm{Mc} / \mathrm{s}$, but any frequency within the tuning range of the transformers (approx. 10-11Mc / s) will do just as well. With a trimming tool and starting with the core of L.11, adjust for maximum

TABLE 1 - Transistor Voltages

Transistor	E	B	C
TR1	8	7.25	0
TR2	7.8	7.2	0
TR3	2.2	2.4	8.4
TR4	1.6	$\mathbf{1 . 8}$	8.4
TR5	1	1.2	8.6
TR6	0.4	0.58	6.2

The total current is 11 mA . All voltages were measured with a $20 \mathrm{k} \Omega / \mathrm{V}$ meter.
output, progressively working forward adjusting each of the cores in turn for maximum, finishing with L6. Precise tuning does not matter at this stage, but it will help if one signal can be singled out and the adjustments made to bring out this one at maximum, disregarding others. The final adjustments to the i.f. come later, when the front end is completed and operating. Now re-connect C15.

For those with access to a signal generator, a 10.7Mc / s signal is injected into the emitter of TR3 via a capacitor of $0.01 \mu \mathrm{~F}$, and the i.f.'s adjusted for maximum as above, the output from the signal generator being reduced to prevent overloading as the i.f.s come into alignment. The discriminator can also be adjusted at this stage in the manner described next under
"Tuning and Alignment". Use an unmodulated signal and meter the output as described in this method.

No mention will be made of wobbulator alignment as it is assumed that the limited number of constructors who might have access to one of these instruments will know how to use it.

The front end wiring should now be completed and voltages checked with Table 1.

Tuning and Alignment

Connect a shorting link of wire across C 12 to cut the a.f.c. Connect a d.c. voltmeter, 2.5 volt scale to start with, across C27 and in the same polarity. Connect the aerial. The type of aerial will depend on location and distance from the transmitter, but a simple dipole mounted in the correct direction will be suitable in most cases. The author, who lives 20 miles from a transmitter, found a 2 ft . 6 in . length of wire to be sufficient, but this is not recommended. Adjust the tuning gang until a signal is received, when a reading will be seen on the voltmeter. Adjust all the i.f.t. cores in the order L11 to L6 for maximum reading on the meter, switching the meter to the next highest range if necessary. As a guide, the reading should finally be about 4 V if the received signal is of reasonable strength.
With a signal being received, the discriminator is correctly tuned when the d.c. voltage from each diode of the ratio detector is equal and opposite with respect to chassis, or in other words, when the voltage across C 27 is maximum and the voltage between the test point (junction of C26 and R22) and chassis is zero.
To tune the discriminator, transfer the meter $(2.5 \mathrm{~V}$ scale) to between T.P. and chassis. The reading will be
either positive or negative depending on whether LII is detuned higher or lower than the i.f. Adjust the core of Lll until the reading is zero, at the point where further adjustment of the core will swing the reading positive or negative depending on which way the core is turned. The i.f. alignment is now complete.

The r.f. and oscillator stages will now require some adjustment. The oscillator coil L4 is adjusted by squeczing the turns closer together, or by widening the spacing between the turns as required, to get the tuning gang and hence the scale pointer in the correct position. Squeezing the turns together will result in less tuning capacitance being required, and vice versa. The calibration will be approximately correct when Radio 2 (Light Programme) is received with the gang at about seven-eighths full capacity (plates almost fully in).

The r.f. coil is also adjusted by squeezing or widening. and is adjusted to give maximum on the meter connected across C27. A plastic trimming tool is useful for making these coil adjustments as it will have little self-effect on the tuming when touching the coils.

The coil L.2 on the aerial coupling T1 may be tuned if necessary, by optimising the value of Cl. Capacitors of between 12 pF and 20 pF should be tried, choosing the value which gives greatest reading on the meter.

Remove the shorting link from Cl 2 to restore a.f.c.

The diode will be at its nominal capacitance when the d.c. voltage from the discriminator is zero. Any frequency drift would result in this voltage becoming either negative or positive depending on whether the drift was to the high or low frequency side of the received signal. The diode capacitance would then be either increased or reduced, maintaining the oscillator on a set frequency.

In this receiver where the oscillator is highly stable and frequency drift is unlikely, the main advantage of the a.f.c. is the easy and positive tuning it provides. When tuning, it will be noted that this is quite broad. Tuning through a signal will produce a "plop" when the a.f.c. locks onto the signal, and again when tuning through the signal and beyond the range of the a.f.c.

Scale and Drive

Two pulleys are fitted to the front panel with 4BA screws, and two nuts, one on each side of the panel, lock the screws while allowing the pulleys to run free. Approximately 30 inches of nylon drive cord are required for the drive, details of which were shown in Fig. 4.

The scale may simply be a strip of good quality paper marked appropriately where the BBC stations appear,

Fig. 7: Component wiring diagram of the basic tuñer.

Automatic Frequency Control

The diode $D 1$ is a special variable capacitance diode, type BA102. Other silicon diodes have been tried but without much success. except for the type BA 100 which gave reasonable results.

The diode is biased by the fixed voltage provided by the potential divider R9-R10. The fact that this divider also supplies bias to TR3 is of no consequence as the junction is at chassis potential to r.f. via capacitor C14.

The a.f.c. control voltage is taken from the centre point of the discriminator via R7 and R15. The junction of these resistors is by-passed to a.f. by C12. Improved linearity at the expense of gain can be obtained by leaving out C12, when the audio component will swing the oscillator in opposition to the received f.m. signal, giving in effect negative feedback, but more correctly volume compression.

The diode, in series with C10 and C11, is across L. 4 and in parallel with the tuning capacitor C4b.
or else calibrated in frequency. On the model, the scale is a strip of black plastic tape, lettered with Radiospares white marking transfers.

A second front panel of $\frac{1}{8} \mathrm{in}$. Perspex is fitted over the scale, using countersunk 4BA screws and distance pieces to clear the pointer drive and drum. The back of the Perspex is painted, or preferably, sprayed, using a flat paint or aerosol primer, A lin. wide strip of masking tape or Sellotape is placed in the scale position before painting, and when removed provides the scale window. If a case is to be fitted over the unit, the Perspex should be the same size as the aluminium front panel, but if the tuner is to be installed in a cabinet, the Perspex should be made larger than the cabinet aperture to facilitate fixing.

Power Supplies

A 9 volt dry battery is very suitable for supplying

power to the tuner, and will have a long life as the current requirement is modest. It does, however, have the disadvantage that it must be replaced occasionally, and the performance of the tuner will fall off as the battery voltage falls. Even so, the tuner will perform satisfactorily until the voltage falls to 6 volts.

The tuner can be conveniently powered from the mains supply using the circuit Fig. 8. The mains transformer can be a small type with a centre tapped secondary supplying any voltage between 8-0-8 volts and 12-012 volts. The resistor R is chosen to give 9 volts at the output of the supply with the tuner connected, and will be approximately 180Ω with an 8 volt transformer and 390Ω with a 12 volt transformer. The capacitors CI and C2 will both be 12 volt working with an 8 volt transformer, but should be 15 v.w.g. with a 12 volt transformer. Almost any general purpose type of diode will serve for the rectifiers.
With either of these supplies, it will be desirable to fit an on-off switch.

If the tuner is to be used with a transistor amplifier, the supply can be taken from this provided it is either regulated or very adequately decoupled. For example, with an amplifier such as the PW Low Cost Hi-Fi, power can be taken from the 12 volt negative line via a $270 \mathrm{ohm} \frac{1}{2}$ watt resistor, and decoupled with a capacitor of not less than $5000 \mu \mathrm{~F}$. The large decoupling capacitor is necessary to remove all trace of a.f. from the amplifier supply.

I.F. Rejection

In fringe reception areas where a particularly good aerial is a necessity, trouble may be experienced with i.f. breakthrough, as in the unit described no i.f. trap is incorporated.

An i.f. trap is shown in Fig. 9. L consists of 25 turns of 26 s.w.g. enamelled wire close wound on a Radiospares former with core. C is a 30 pF capacitor. The trap should be mounted on the chassis top adjacent to TR1 and connected between the emitter and feedthrough insulator.
The core of L is adjusted to the point where i.f. breakthrough is completely eliminated.

Automatic Gain Control

A.g.c. was not found necessary as the maximum output is set by the limiting action of TR5.
In areas of very high signal strength where overloading might occur, a.g.c. may be desirable and a suitable arrangement is suggested in Fig. 10.

Acknowledgements

The author wishes to thank: C \& D Electronics Ltd for their assistance and for supplying all of the components for the prototype.
Jackson Bros Ltd and Weyrad Ltd for their very willing and helpful co-operation.

P.W. F.M. TUNER

Complete kits of specified parts
Resistor Kit (31 pieces)
Capacitor Kit (28 pieces)
Semiconductor Kit (9 pieces)
Coil Kit. Comprising set of 3 Weyrad IF Transformers, Formers and wire etc for L1, 2 and 3
Tuning gang Kit. Comprising Jackson C21 with $\frac{1}{4}{ }^{\prime \prime}$ shaft, Drive, Drum, Pulleys, Pointer and cord
Drilled chassis
Aluminium front panel, undrilled
Hardware Kit. Comprising 2×28 tagged strip, Paxolin 4" $\times 2^{\prime \prime}$ for transistor mounts all screws and nuts
P.T.F.E. feed through insulators, set of 3
Scale, printed card, frequency calibrated
Complete Kit All of above
Post paid: $£ 8.0 .0$
Post and Packing per order 2/6
Kits of parts for P.W. Low Cost Hi Fi
Amplifier (P.W. Jan.-Feb. 1968) S.A.E. for list

C. \& D. ELECTRONICS 17 St. Lukes Road, SUNDERLAND

4STITIONINTERCOM

Solve your comnumica-
tion problems with this
4-Station Transistor Intercom pystem (1 master and 88 ubs), in de-luxe plastic cabinets for desk or wall Subs to Master. Ideally suitable Master to Subs and gery, schools, Hospltal, Office and Home Opergte on one gV battery. On/off switch. Volume control Complete with 3 connecting wires each fift. and other accessories connecting wires each rift. an

WIRE-LESS INTERCOM
No batteries-no wires. Just plug in the maink for instant two-way, loud and clear communication On/off 8 witch and volume control. Price 12 gns

Same an 4-Btation Intercom for two-way ingtant communication. Ides as Babs Alarm and Door Phone. Complete with 66it. connecting wire
 ciency with this incredible De-luxe Telephone Amplifier. Take down long telephone mesaager or converse without holding the handset. A useful ottice aid. On/ off switch. Volume Control. Battery $2 / 6$ extra. P. \& P 3/6. Full price refunded if not satietled in 7 days 169 KENSINGTON DIGH

TRADER SERVICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES LIMITED

30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	RadiolTV

1968 List
available at 2/-
If list is required
plus postage
indicate with X

From

Address
enclose remittance of
(and a stamped addressed envelope)
MAIL s.a.e. with enquifles please
 \section*{17111.
 \section*{17111.

 }

 } The'New Picture-Book'way of learning 3AS C ELECTRICITY(5vols.) ELECTRONICS (6vols)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the cssential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT
This carefully planned series of manuals has proved a valuable course in training technicians in Electricity Electronics, Radio and Telecommunications.

WHAT READERS SAY

"May I take this opportumity to thank you for such enlightening works and may I add, in rerms, easily understood by the novice
L. W. M., Birmingham.
"I find that the new pictorial method is so easy to understand, and I will undoubtedly enjoy reading the following five volumes: thank you
for a wonderful set of books." C. B., London.
"Please accept my admiration for producing a long felt want in the field of understanding Electronics." S. B. J., London.
"The easiest set of manuals it has been my pleasure to study."
A TECH-PRESS PUBLICATION
 To The SELRAY BOOK CO.. 60 HAYES hILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of $20 /$ - followed by 3 fortnightly payments of $20 /$ - each. BASIC ELECTRONICS $90 /$-Cash Price, This offer Payment of $15 /$ - followed by 4 fortnightly payments of $20 /$ - each, This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
4 Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS \square Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
敞 NAME
BLOCK LETTERS
FULL POSTAL.
ADDRESS

Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. MANY OTHERS IN STOCK include Cathode Ray Tubes and Special Valves. U.K. Orders up to $10 /-1 /-; 10 /-$ to $81,2 /$-: over $81,2 /$ per 81 ; over 23 posi iree. C.O.D. $4 /$-extra

AlL valves
guaranteed

5	5
4	$31-$
3	51
21	4/9
4	$4 /$
4WG	A
	$27 / 6$
7	$5 /$
24	14/
6	31
29	501 -
4	81-
20:T	$6 /-$
4	5/9
4	6/6
1	4/-

5A174G 5/. 5B251M40/-	
$\begin{aligned} & 5 \mathrm{~B} 252 \mathrm{M} 35 \\ & 5 \mathrm{~B} 254 \mathrm{M} 40 \\ & 5 \mathrm{~B} / 255 \mathrm{M} \end{aligned}$	
	35/-
5 FtGY	9/
5 T 4	7
5 U 4 G	4/6
5 V 40	7/8
5×46	8/8
5Y3GT	5/6
5Y3W	1 B
	15/-
3W	GTB
	9 -
524\%	$7 / 6$
6AB7	4

$6 \mathrm{AC7}$	$31-$
6AG5	2/6
fiAG7	61-
GAH6	11/6
$6 \mathrm{AJ7}$	$3 /-$
$6 \mathrm{AK5}$	$5 /-$
fak6	12/6
6. ${ }^{\text {a }} 7$	8/-
6AK8	81-
6ALJ	31-
6ALsw	71-
fAM5	2/6
6AM6	31-
GAN6	201
GAN8	10/-
6AQ5	5/6
6AQ5W	9/-
$6 \mathrm{AB4}$	6/

TRANSISTORS, ZENER DIODES etc.

	OC2\%	12/6	0 Cl 72	$7 / 6$	AD149 161-	Crsi/10 si-	
	OC29	151-	OC200	$7 / 6$	AEY11 15/-	CRS1/20 9/6	
	OC35	10/	OC20 1	101-	AEY12 18/8	CRS1/3010 -	
16	OC36	12/8	0 OCO 2	12/6	AF114 $6 / 6$	CRS1/35	
	$0 \mathrm{OC38}$	51-	$0 \mathrm{CO}_{2} 03$	$10 / 6$	AF115 6/-	11/6	
	OC4 1	$8 \mathrm{~J}-$	$\mathrm{OCO2O}_{4}$	$17 / 6$	AP116 $6 / 6$	CRS $/ 40$	
/6	OC42	$5 \cdot$ -	00206	$17 / 6$	AF117 5/-		
	$0 \mathrm{OC4}$	4)-	IN21	$3 / 6$	AFl18 10/-		
	OC45	3/6	1N 218	5/-	${ }^{\text {AF'124 }}$	CRS3/20 10 /-	
	OCio	4 /-	1N25	121-	AFl25 6/6	Crs3/30 ${ }^{10 /-}$	
	$0 \mathrm{OCF}^{1}$	$3 /-$	IN 43	$4 /-$	AF126 6/-	CRS3/30 11/6	
/6	$0 \mathrm{OC72}$	$51-$	IN70	4/-		$\begin{array}{r} 11 / 6 \\ \text { CRSa } 25 / 025 \end{array}$	
/6	0 O 73 0 O 75	$81-$	2N $\mathrm{N}+56 \mathrm{~A}$ 2N 585	$7 / 1$ $7 / 8$	AFI39 AF173 10/- 12/6	$\begin{aligned} & 025 \\ & 15 /- \end{aligned}$	
/6	00^{76}	$51-$	2N1090	716	AFY19 22/6	CRS3/40	
$1-$	$0 \mathrm{C81}$	$5 /-$	2N 1091	8/6	ABY26 $6 / 8$		
-	OC81D	3/-	2N1306	7/6	ABY28 6/6		
	OC81 inm	$31-$ $5 /-$	${ }^{2} 2 \mathrm{~L} 13307$	7/8	$\begin{array}{ll}\text { A8Z21 } & 12 / 6 \\ \text { A8Z23 } & 30 /\end{array}$	GETT115 ${ }^{\text {G/- }}$	
8/6	2DM	$5 /-$ $3 /-$	AAZ12	4/-	$\mathrm{BCl}^{7} 8 \mathrm{~F} /-$	GETII $8 / 6$	
	OC83	5/-	AClı6	6/6	BCY31 8/6	GET872 $^{6 /-}$	
8/6	0C83B	3/-	ACliz	$7 / 6$	BFYS1 5/-	GETS80 9/-	
to	OC84	$5 /-$	ACl28	6/6	BFY52 5/-	GEX54 2/6	
01-	OC122	10/-	$\mathrm{ACl}^{\text {Cl }}$	$7 / 8$	B8Y27 6/8	GJ6M 4/6	
5-	OC139	7/6	ACYI\%	$8 / 6$	B8Y28 ${ }^{5 /-}$	T43	
01-	0 Cl 140	9/6	ACY18	$5 / 6$	B8Y51 $7 / 6$	H(t500) 2)	
2/6	0 Cling	$5 /-$	ACH19	816	BYZ13 87-		
$7 /$	OC170	51-	ACY 28 ADI	4/6	B YZ16 BYZ16 15	JK10A JK15/	

DC MOVI\&$2 \frac{1}{2 \prime \prime}$ round proj.
$200 \mu \mathrm{~A}$$2 \frac{1_{3}^{\prime \prime}}{2}$ round panel
$500 \mu \mathrm{~A}$
$2 \frac{1}{\xi}{ }^{\prime \prime}$ round proj.mA
$2^{\prime \prime}$ roun
$2 \frac{1 "}{2}$ rou
$10-0-10 \mathrm{~mA}$$2 \frac{{ }^{\prime \prime}}{2}$ round panel$2 \frac{3}{4}$ " square pane
$2 \frac{1_{3}^{\prime \prime}}{}$ plug-in
75 mA100 mA
100 mA
$1 \frac{1}{2}$ " round panf
29/41ft. AERIALS each consisting of ten 3H.aerlal with adaptor to fit the 7 In . rod, Insulated basestay plate and stay assembiles, pegs, reamer, hammer,etc. Absolutely brand new and compleFIELD TELEPHONES TYPE "F" housed In portablewooden cases. Excellent for communication in- andterles and $1 / 6$ th mile fleld cable on drum. Completely terles and $1 / 6$ th mile fleld cable on
new, $£ 6,10.0$. Slightly used, $£ 5.10 .0$. Carriage $10 /$

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12

(01) 7434946

brand
\qquad 6$\begin{array}{lll}\text { JK19A } & 12 / 6 \\ \text { JK } 22 / 8 \\ \text { JK2 } & 17 / 6\end{array}$
\qquad
all overseas enquiries and orders
Colomor (Electronics) Ltd. 170 GOLDHAWK ROAD. LONDON W12

Tel.: 01-743 0899

Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive full length trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip. 6 extension barrel, double ended probe, gun and solder. £4 126 Full details and nearest stockist from: Burgess Products Co Ltd Sapcote, Leicester LE9 6.JW

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchange able chuck) 79/6, p.p. 2/6 De Luxe Professional Kit

practically Wire ess commentary by IENKI

SORTING through some papers to learned societies. Came across a blatant case of ideas piracy. Shocking: Henry is hurt.

You know how it is. Some guy blazons a scheme for making millions out of rubberised magnets or reversible diodes, just after you had the whole invention perfected, produced and packaged. All you wanted was the time to actually invent it. Henry's bright notion was an anti-fubble device.

Fubble, I should mention, is not a patentable description. If Revox can coin the term "Wobble" to describe Wow and Flutter, surely Henry can get away with Fubble as a portmanteau word for flutter and rumble?

An anti-fubble device is essentially simple. Anything electronically impelled can be electrically controlled. So we receive the output from a non-linear source, process it, use the result to control that source and the output should be linear within the acceptance time of the detecting system.

The principle is applied to gramophone and tape dećk motors. In these cases, current consumed by the d.c. motor depends partly on any mechanical resistance. Torque varies-current varies. The variation is sampled, controlling a transistorised circuit which effectively damps the

A walk around the block.
supply line. So the motor attempts to turn always at the same speed.

I say "attempts" for in practice the device has fairly narrow limits. When the retarding force causes the drive mechanism to vary beyond those limits, the effect can be wild, man, wild. Not all servo systems are as effective as the Sony 3000 turntable, whose control circuit is more comprehensive than the average gramophone amplifier, and whose "black box" (well, silver, actually) is larger than the motor it controls. But when one has a turntable so finely engineered that one has to take a walk around the block after fitting the turntable, to allow the air bearing to settle, who is arguing about a few extra refinements? Not this green-eyed critic.
Logically, in audio engineering. the next step is to control whatever is outside the feedback loops. Perfectionists tell us that the ultimate is a signal injected directly into the brain. But I do not fancy calling in the surgeon every time I want the slope filter adjusted. We shall have to settle for a perfectly controlled system feeding some sort of transducer. Which, with loudspeaker output, is what we have.

There are various methods of damping an amplifier-loudspeaker combination to reduce resonances, maintain a constant drive, keep some sort of equilibrium. But the mechanics of the system always add some kind of coloration. As long as we are aware of the cone former puffing in and out of that gap, we shall feel uneasy.

For those who say the electrostatic speaker is the answer, I can only point mutely to the little woman, who refuses to take any more furniture out of the lounge. The room is not big enough for the siting of a stereo pair at least four feet from any wall. Henry wants to sit and listen, not prop himself in the doorway.

So let's be inventive and defeat fubble with a method of including the loudspeaker in the feedback loop.
We shall float a transducer at the focal point of the loudspeaker cone, read off pressure variations, convert them to an electrical signal and combine it with the audio output. Brilliant! Why didn't someone think of that before?

The little woman who refuses.
Trouble is, someone has. Cutting right across Henry's bows, Messrs. Philips describe what they call motional feedback with loudspeakers in Technical Review Vol. 29, 1968, No. 5. The paper is by J. A. Klaasen and S. H. de Koning and is far too long and detailed for my exposition here. Briefly, however

An acceleration transducer consisting of a piezo-electric device is fixed to the moving coil. At low audio frequencies it produces a feedback signal which is integrated and added to the main feedback, giving a flat amplitude characteristic, to below the mechanical resonant frequency of the loudspeaker. Substantial improvement in bass is reported. They have beaten fubble-or have they simply made it possible to hear it with greater clarity?

Ah well, back to the drawingboard.

MICROPHONE PREAMPIIIIER

J. A. JEBE

A HIGH-GAIN RUGGED UNIT FOR BOOSTING LOW-LEVEL AUDIO SIGNALS

THIS unit was designed to meet the needs of general amateur tape-recording systems, both indoor and outdoor, for insertion in a signal line carrying insufficient signal for the purpose for which it is intended. Such a unit must have a very high gain, high stability, be small in size, and have good frequency response. Several two-transistor designs were tried, and it was found that these had low noise levels, but rather insufficient gain. Moreover, loading of the output resulted in alteration of the a.c. negative feedback level in one case, and this produced severe distortion.

A three-transistor circuit was then tried, and it was found that an increase in gain resulted. This circuit was originally designed by A. R. Bailey and described in Wireless World. Dec. 1966, and the author claims no credit for the exact details. The characteristics of this circuit were found to fit the needs of the unit, having an input impedance of about $200 \mathrm{k} \Omega$ with an output impedance of 200Ω and that the feedback point was at low impedance, so no loading effects caused by any feedback network used were apparent.

Silicon transistors are used throughout, giving a gain of 30 dB . The type of transistor is not of critical importance, but if others than the types specified are used, then care must be taken to ensure that the d.c. operating point of the amplifier is satisfactory. The voltage supply is quite high (18 V), this is to ensure that the amplifier does not easily bottom and square off the wave-form. This high voltage presents difficulties as far as size of battery is concerned, but this can be overcome by careful layout. The current drawn is between 2.1 and 2.5 mA .

Frequency response will be the least of the constructor's problems; the unit has been used by the author at $200 \mathrm{kc} / \mathrm{s}$ while still providing useful gain. The lower limit is about $20 \mathrm{c} / \mathrm{s}$.

Circuit description

$\mathrm{Tr}!$ is a simple amplifier operating in common emitter mode, coupled by an R.C. parallel network to the d.c. connected pair, Tr2 and Tr3. This network allows the d.c. operating point to be stabilised over the whole amplifier, rather than independently over Tr 1 then over Tr 2 and Tr 3 . The output is at low

Fig. 1: The crrcurt of the preamp. Networks a, b and c are inserted at x for correct equalisation.
impedance, being of the emitter-follower configuration as the connection of long leads could load a high impedance output to an intolerable level. Feedback is applied between Trl emitter and Tr3 emitter at both d.c. and a.c. It is possible to modify the response curve of the unit by alteration of the a.c. part of the feedback loop, as will be explained later.

Construction

The unit was built in an Eddystone die-cast steel box, type 896 . These boxes are a little expensive, but are ideal for this purpose as the close-fitting lid and the rigid construction are necessary features.
Veroboard was used, the components being arranged on the circuit-board corresponding to their relative positions in the circuit as far as possible. The input capacitor and several of the inter-circuit capacitors were ceramic types of only 10 V working, for reasons of size limitation. It is therefore essential that the input does not contain any d.c. component.
The input and output plugs were of the flush-

EverythingYou need to know about 7 Inusis El:GidGal repalis

 AMAZING ‘KNOW HOW’ BOOK

 AMAZING ‘KNOW HOW’ BOOK Brings You RIGHT UP TO DATE!
 576
 Dacs
 57
 470
 ILLUSTRATIONS
 REVISED AND ENLARGED-this essential handbook for the enthusiast, handyman or professional repairer, is packed with detailed information and easy-tofollow instructions on how to service radio and TV sets (including all-transistor and U.H.F. circuits), audio equipment and domestic appliances of every kind. Shows every step in fault tracing and the use of modern test gear. from simple meters to complex oscilloscopes. Also provides practical guidance on household electrical installation work. 576 pages. Over 470 illustrations. Mammoth value-Special Library Edition, superbly bound in Leatheruoth, 50/-, or on eass terms: 13/- down and 3 monthly instalments of $14 /$ - (total credit price $55 /$-). But first accept 7 Days ${ }^{*}$ Home Trial Offer-without obligation!

 COVERS ALL THE LATEST TECHNICAL ADVANCES!

 COVERS ALL THE LATEST TECHNICAL ADVANCES!}

U.H.F. TELEVISION

Here are basic circuits and full instructions to enable you to service modern sets-get perfect 625 -line reception.

Getting the best from RADIO AND TELEVISION SETS

How to make adjustments and repairs in order to get the best possible performance from any set.

All you need to know about DOMESTIC INSTALLATIONS

Learn from these helpful pages how to carry out modifications and extensions - with efficiency and safety! Complete guidance on lighting and power circuits, practical wiring work, safety regulations, cables, earthing, fuses, etc. Also Fluorescent Lighting, Time Switches and Thermostats.
Junction Boxes for Lead-covered Cobles

Water heating

All you should know about water heaters and how to install them and keep them in perfect working order. How to service FIRES and SPACE HEATERS.

HOW TO MAINTAIN AND REPAIR DOMESTIC APPLIANCES
From irons, toasters. hair dryers. etc. to cookers. washing machines and refrigerators. Also covers the repair and rewinding of small motors.

SPECIAL SECTION ON COLOUR TELEVISION

Explains clearly and concisely the principles of all the main colour systems.

SAND NO MONEY NOW!

To: Dept. AFZ, Odhams Books, Basted. Sevenoaks, Kent.
WITHOUT OBLIGATION please send me, on 7 Days' Home Trial, Radio, Television and Electrical Repairs. Within 8 days I will either (a) send the Cash Price of 50/- (plus charge for postage and packing), or (b) send a down payment of 13/(plus postage charge), followed by a 3 monthly payments of 141 - (Total Credit Price $55-$. Alternatively, I will return volume in good condition, postage paid, within 8 days.
Cross out words NOT applicable below:
I wish to pay by CASH TERMS. I am (a) houseowner; (b) tenant in house or flat; (c) temporary resident; (d) single; (e) married; (f) over 21 ; (g) under 21
please sign here
Your Signature
(Or, if you are under 21, signature of purens or guardian)
block letters below
NAME (Mr.'Mrs./Miss)
Full Postal
ADDRESS.

FAULT FINDING

This grand book is invaluable for tracing faults in radio and TV sets (both valve and transistor circuits). Deals fully with tools and bench work -shows how to make the best use of test instruments. Tells everything you want to know-fram how to carry out preliminary tests to how to align tuned circuits.

Servicing DOMESTIC AUDIO EQUIPMENT

How to locate and rectify faults in hi-fi equipment (mono or stereo). record players, tape recorders. etc.

ACT NOW!

Simply complete form, indicating method of payment preferred, and post without delay. Offer applies in U.K. coly. Hurry, make sure of your copy NOW!

ONE GREAT VOLUME covers:

Current, Voltage and Resistance, Coils, Capacitors and Tuning. Valves, Tubes and Transistors, Radio Components, Receiver Design Principles, Transistor-Radio Circuits. Valve-Radio Circuits, ValveTelevision Clrcuits. Transistor-Television Circuits, Colour-Television Systems, Audio Amplifier Clrcuits, Audio Equipment and Gramophones, Tape Recorders, Radio and television Aerials, Tools and Bench Work, Test Instruments and Their Use, Fault Tracing and Circuit Testing, Alignment of Tuned Circuits, Television Fault Tracing, Interference Suppression, Domestic Power Supply Circuits, Electrical Wiring Work, Fluorescent Lighting, Thermostats and Time Switches, Motor Repair and Rewinding, Small Appliances, Space and Water Heaters, Electric Cookers, Washing, Drying and Ironing Machines, Electric Refrigerators, Suction Cleaners and Floor Polishers.

BANDREC \qquad			
		$\underset{\substack{\text { onree for } \\ \text { ther } \\ \text { poot } \\ \text { pose }}}{ }$	SHIAPING/SO.S/BAND RECEIVER
TRANSFORMER - ․․ \square	Also manulactured by us are AC malns laput Power Auppis unitu handsomenty appointed da bove with tull connecting ieade end ins operating the tolowios KECEIVERS		
	No. 19 set Receiver, 88.10 .0 .0 carralage 10 - R. 1132 		
		$\underset{\substack{\text { three tor } \\ \text { th/h } \\ \text { poot iree. }}}{2 \mathrm{~N} 706}$	
ONE WATT TRANSISTOR AMPS 	19 SET HEADPRONES AND MIKE. Not new but		

FULLY BUILT BTEREO AMPLIFIER. 2×3 watts, mains trans, metal rect., $2 \times$ on front. $11 \times 3 \frac{1}{2} \times 41 \mathrm{l}$. high. 88 ($8 /-\mathrm{p} . \& \mathrm{p}$.)

Write for details of our F.M. (V.H.F.) tuner, melf powered, mains, valves ECC85, EF89, 6BW7, ECC82. Fully built 87.10 .0 or as kit \&5. Book of instructions $2 / 6$ (free with kit).

DULCI SOLID STATE TRANSISTOR AKPLIFIER. 2×7 watts, radio, tape and gram inputs. For outputs of 4 to 15 ohms. $\$ 19.19 .0$ or with input for magnetic cartridges 223. 8.A.E. for colour leaflet

Full range of Garrard auto and single record decks usually in stock
TRANSISTORISED F.M. TUNER A1005. ©ize $6 \times 4 \times 2 \mathrm{in} .8$ 1.F. stages, double tuned dith dlscriminator, eap. timed, 26.17 .8 post paid, correspondmg atereo de
\& 5 post paid or \&il the two items if purchased together. $88-108 \mathrm{mc} / \mathrm{s}$.

The "IMMEDIATE" bulk tape eraser and recording head demagrietiser, only 34/ post paid

BUILT PRINTED CIRCUIT BOARD. $8 \frac{1}{} \times 3$ in, with osc., 3 i.f. stages, driver trans. ready for output transistors (can
OC45. A bargain at $30 /$ post paid

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS

Chassis $12 \frac{1}{x} \times 5 \frac{1}{2} \times 4 \frac{1}{2}$ in. high Front panel atum. and black Record/Playback amp. switch Recordionone; Vol./Mic.; Vol.
Onfon-Tic. Minput; Gram. Gram; Mic. Input; Gram Gram; Monitor; Speaker
Input: Moll
Souket Valvea 6BR7; ECC83; Solket Valve 6BR7; ECC83;
EM84; EL84 \& Rect.; Power EM84: EL84 \& Rect, Powe ${ }^{\text {pack, }}{ }^{2}{ }^{2}$ Track 812 (12/6 p . $\% \mathrm{p}$.) Rexime covered cabinet (tan) sloping front for amp; complete with two tweeter
Deck $85 /-(8 /-$ carr. $) 3$ apeed 4peakers, and apecial adapting brackets for Magna vox pack $8 \times 1-2$ Stereo deck 220

[^4]SPEAKERS IN CABINETS. $20 \times 15 \times 6 \mathrm{tin}$. Finished Vynair and Rexine, various colours. With E.M.I. 13×8 in. 3 or 15 ohm speaker $90 / 0$; with 12 in . Elac 15 -ohm $15 W$ 日peaker. 88.10 .0 (post 10 on erther). Top quality speakers $6 \times 4 \mathrm{in}$. (3 or 16 ohm),
 speaker 15 ohm, 20 watt, 28.6 .0 ($10 /$ - post).

8 W. PEAZ PUSH-PULL OUTPUT AMPLIFIER, 200-850 Volts A.C. EZ80, ECC83 2-EL84, Bass, treble, vol/on-off, 27.17.6 (post paid). Size 12×3 x 5in. high. Fo Record Player, Radio Tuner, etc.
MAINS TRANS. o.p. trane. for 3 ohm

 Dial $13 \times 4 \mathrm{in}$. gold and brown. Controls beneath dial, Tone, Volume/on/of, MW/LW Gram Tuning. Ferrite rod merial. Valves UY8s rect., UCL82, UBF89, UCH81

1.W MAINS GRAMOPHONE AMPLIFIGRS. EZ80, ECLE82, O.P. Transformer (3 ohm) Vol. $/ 0 n$-off and Tone Control. Double wound mains transformer. $2 f$ I 21 in . x 24 in . separate but 6 tin. Speaker. ($68 / 6$ less speaker.)

6 PUSH-BUTTON STEREOGRAM CHASSIS

M.W.; S.W.1; S.W.2; V.H.F.; Trane: Mains Trans; 200250 Volts ; 2 o.p. for 3 ohm. Alao operates with two
speakers on Rarlio. Chassis speakers on Rario. Chassis
size: $15 \times 7 \times$ ftin. high. Dlal silver and black $15 \times 3 \mathrm{in} .190$ -
$650 \mathrm{M} ; 1851 \mathrm{M} ; 60-187 \mathrm{M} ;$
 ${ }_{\text {ECLAB' }}$ EM84, and Rect. Price 119.19 .0 carr. paid.
With
Stereo Decoder fitted 87.10.0 extra.

GLADSTONE RADIO
 66 ELMS ROAD, ALDERSHOT, Hants

 (2 mins. from Station and Buaes). FUY.CLOBED TUESDAY AND WEDNESDAY.
mounted Belling-Lee type, these are quite strong, and the plugs will not pull out very easily. The base-bias resistors of Trl are very important, as they determine the current that flows through the system. Consequently, resistors of good thermal and long-term stability are essential here, though the others in the circuit are not critical.
Because of the low impedances used in the circuit, no problems with feedback oscillations should occur, but a low-impedance earth path is essential as the circuit may oscillate under certain conditions, e.g. input shorted. The components used are all available from Radiospares, with the exception of the diecast box and transistors, which the author obtained from Electroniques, (STC) Ltd. and Mullard Lrd. respectively.

Operation

Care must be taken when switching-on for the first time, for if a mistake has been made, transistors may start to illuminate the workbench! A multimeter and a few resistors or a resistance box are of great assistance here, since then the battery voltage may be increased gradually, and watch be kept on the total current, which should be around 2 mA . The circuit will not operate at about 12 V , so do not be discouraged if nothing happens below this level. With the input open-circuit, the noise may seem excessive, but on connection of a $50 \mathrm{~K} \Omega$ or less input load, the noise should disappear.

The unit should find use among tape enthusiasts, as it is suitable for use with a microphone at the distant end of a long coax cable, thus feeding the cable at volt rather than millivolt level, and also alleviating the treble-loss due to cable capacitance by reduction of the impedance of the signal.

The author's own unit has proved reliable over a period of about 18 months, and has withstood several hard landings on various floors, and even immersion in water.

Fig. 2: Both sides of the veroboard are shown actual size. The two batteries fit on each side of the centre "waist" as in the heading photograph.

What an un-holy business

I was delighted to note in Mr. Sinclair's article on Transistors, (Part one, January 1968), that "hole" theory is a fiction. Working in semi-isolation as I do, with contact mainly with students, I was under the impression that I was quite alone in believing this was so.

When I was called upon to take an RAE Course for the first time some years ago, transistor theory was a hole in my knowledge which needed filling.
I found it quite impossible to believe what I read in various textbooks, many of which varied in their statements anyway, and I was forced to think for myself. I found it extremely simple to explain $\mathrm{p}-\mathrm{n}-\mathrm{p}$ by electron flow only and developed a theory to explain all the observable facts.

No text-book that I have seen "explains" in any other way than by "holes" so I sent my effort to a National Radio Society which is supposed to encourage the work of its amateur members with a view to publication and consequent controversy. What other scientific process is there in the constant search for truth?

The "acknowledged experts"their description of themselves, not mine-seemed to shy away in horror for they sent it back with neither reason nor counterargument. A subsequent challenge from me to meet either of them in a public debate brought no reply at all. But as I told them later, anyone who actually believes-and publishes diagrams to make that belief very plain-that current in a high vacuum valve flows in at the anode and screen grid and out through the cathode, can hardly expect to be taken seriously as experts on anything.

One could laugh at their behaviour if it wasn't for the harm they do. Every batch of students I get each year confess that they have become stuck on this very point. I tell them to ignore it and ask themselves always "What are the electrons doing?"

People seek to justify "hole theory" as an aid to understanding the transistor. Such people cannot be teachers, for nothing is further from the truth. My own belief is
that comparatively few people actually make any real effort to understand them. They follow the circuit directions and, since they usually work, that's all they bother about. This, in my experience, is because they find "hole" theory incomprehensible. I would also say here in this connection that young people becoming interested in radio for the first time invariably turn to Practical Wireless.

Unlike people who just write text-books, I have to stand and justify every statement I make, not only to mature students, but also to myself. Twenty-five years ago I had to write about another fiction in order to obtain my City \& Guilds Certificates in "Radio Communication". This fiction was called AETHER. I've hardly heard of it for the past quarter of a century.

Now, so that my students can satisfy City \& Guilds examiners in RAE, I have to teach them another fiction--"hole" theory.

Does any "expert" deny that large quantities of electrons enter a p-n-p transistor at the COLLECTOR terminal and leave at the EMITTER? If they do not deny this, how do these electrons get through?

As far as 1 am aware, I am the only person who has gone to the trouble to try to explain this and I have yet to discover anyone who can "shoot it down". You will certainly not find any mention of electron flow in $\mathrm{p}-\mathrm{n}-\mathrm{p}$ in any text-book or periodical. For one great moment I thought Mr. Francis (The Semiconductor Diode, P.W. May 1968), was on his way to it but it was not to be.

So, sir, if you are interested, may, I say that I do not believe in "holes" which carry a positive chargenothings which are current carriers. I regard "hole" theory as a disease. May I suggest the name HIATITIS PUNGENS for this distressing clinical condition?-B. R. Meredith, G2CYV (London, S.W.16).

Switch off and make room

I note in the December issue that letters are still appearing as a result of Mr. Meachim's comments last September.
I agree and would go even further:

Why have an RAE which re-
quires such a high standard of radio knowledge, when many of the successful candidates immediately purchase commercially built equipment (including aerial systems) sit down at their rigs and rabbit on for hours about their warts etc?

Admittedly a certain amount of humour is to be welcomed but to say that a radio amateur can advance his knowledge very little, and that it is a hobby not to be taken too seriously, amazes me!
Amateurs who have this outlook will quickly lose interest and we will soon see their gear offered for sale in these columns.

To those genuinely interested, radio is a wonderful and rewarding pastime, one learns something new every day, and can never learn enough.

To the chatterboxes I say, "Switch off and make room!"-D. M. Seager (Wales).

I'm for it too

1 think a lot of people's views on the Beginners' Licence are completely wrong, as 1 and I am sure many others, would love to have the chance to become licensed to transmit. As there is not a s.w.l. club in the district, all I can do is go on listening and hoping too that I can become licensed.A. Bradley (Huddersfield).

The RAE is not beyond anyone who is really keen and the sort of examination the "aspiring GW3" suggests is such a short step from the present RAE that it will make little difference in the amount of study required.

I also fail to see how a Beginner's Licence would raise the standard of the RAE and I too would like to know when Mr. Williams would possibly find time to transmit (I say nothing of even building his rig) if he did have a Beginners' Licence since he is so tied up with "O" level studies.

I am studying for " A " levels and still find time to prepare for the RAE. I therefore believe that people are only trying to find an easy way out in seeking a Beginners' Licence.
Do we really want to transmit with "L plates"? I think not.J. Kojminihi (Bournemouth).

INCREASE YOUR KNOWLEDCE

MANY COURSES TO CHOOSE FROM incl
RADIO \& TV ENGINEERING \& SERVICING, TRANSISTOR \& PRINTED CIRCUIT SERVICING, CLOSED CIRCUIT TV, ELECTRONICS, NUMERICAL CONTROL ELECTRONICS TELEMETRY TECHNIQUES, SERVOMECHANISMS PRINCIPLES OF AUTOMATION COMPUTERS, ETC.

ALSO EXAMINATION COURSES FOR
C. B. Telecommunication Technicians' Certs C. \&. Electronic Servicing
R.T.E.B. Radio/TV Scrvicing Certificate
P.M.G. Certificates in Radiotelegraphy

Radio Amateurs' Examnation
General Certificate of Education, etc
BUILD YOUR OWN RADIO AND INSTRUMENTS With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your sound knowledge of circuits and applications as you build your own 5 -valve Superhet Receiver, Transistor Portable, and high-
grade test instruments, incl. professional-type valve volt meter grade test instruments, incl. professional-type valve volt meter
(shown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post coupon below.

THERE IS AN CO COURSE FOR YOU

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.

There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY
You will receive the FREE ICS Prospectus listing the examination and ICS technical courses in radio, television and electronics PLUS details of over 150 specialized subjects.

PLEASE SEND FREE BOOK ON
NAME

ADDRESS

OCCUPATION
AGE
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 170. INTERTEXT HOUSE, PARKGATE ROAD, London, SW11
3/69

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W.1.
 KING OF THE PAKS SUPER PAKS
 SEM ICONDUCTORS

PAK NO.

		Mixed Germanium Transistors AF/RF
		5 Germaniuni Gold Bonded Diodes
		0 Germanium Transistors like OC81, AC128
U5	60	200 mA Sub-min. Sil. Diod
U6		Silicon Planar Transistors
U7		,
U8		Sil. Planar
	20	Mixed Volts 1
U11		0 PNP Silicon Planar Tran
U12		Silicon Rectifiers EPOX
U13		NP-NPN Sil. Transistors OC200 \& 2S
	150	Mixed Silicon and Germanium Diodes
U15		NPN Silicon Planar Transistors
		3-Amp Silicon Rectifiers Stud T
U17		0 Germanium PNP AF Transistors TO-5 lik
U18		6-Amp Silicon Rectifiers BYZ13
U1		Silicon NPN Transistors like
		1.5 Amp Silicon Rectifiers Top
		A.F. Germaniumalloy Transistors 2G 300 S
U22		1-Amp Glass Min. Silicon Rectifiers Hig
		Madt's like MAT Series PNP Transistors
		Germanium 1-Amp Rectifiers GJM up to
		$300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2N708, BSY
U26		30 Fast Switching Silicon Diodes like IN914 Micro-min
U28		Experimenters' Assoriment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces
		1 Amp SCR's TO-5 can up to
U30		Plastic Silicon Planar trans. NPN 2N2
1		Sil. Planar NPN trans. low noise 2N3707
U32		Zener diodes 400 mW DO-7 case

03315 Plastic case 1 Amp silicon rectifiers W4000 series
Code Nos. mentioned above are given as a guide to the type of
device in the Pak. The devices themselves are normally unmarked

FULLY TESTED	
AC107	$3 / 6$
AC126.7-8	8/6
AF116-117	$3 / 6$
AF139 ...	101-
AL102	15/-
BC107-8-8	51-
BFY50-61-52	$7 / 6$
BSY26-7.	3/6
BSY28-9	4/6
BSY95-954	4/6
OC22-25	$51-$
OC26-35	$51-$
OC28-29	$7 / 6$
OC44-45	$1 / 8$
Oc71-81	$1 / 6$
0072.75	$2 / 6$
OC81D-82D	$2 / 8$
0 CR 2.	$2 / 6$
0 Cl 40	$51-$
Oci 70	${ }^{2 / 6}$
$0 \mathrm{Cl71}$	$8 / 6$
0 C 201.	$7 / 6$
ORP12-60	816
OCP71	$8 / 8$
OAS-10	$1 / 9$
OA47	$2 /$
0×70	1/8
OA79	1/9
OA81-85	1/8
0491	1/8
O495	1/8
OA200	3/-
OA202	3/6
2N696-7	$51-$
$2 N 706$	3/6
2N708	$5 / 5$
2N2160	151-
2N2646	15/-
2N2712	$5 / 6$
2 N 2926	$2 / 8$
MAT100-101	$3 / 18$
MAT120-121	$3 / 6$
BT140	$81-$
BT141	4)-

SIL. RECTS TESTED TESTED SCR'S PIV $750 \mathrm{~mA} 3 \mathrm{~A} \quad 10 \mathrm{~A} 30 \mathrm{~A}$ PIV 1 AMP 7A 16A 30 A $\begin{array}{ccccccccc}50 & 1 /- & 2 / 8 & 4 / 3 & 9 / 8 & 25 & & 7 / 8 & 301 \\ 100 & 1 / 3 & 3 / 8 & 4 / 8 & 15 /- & 50 & 7 / 6 & 8 / 6 & 10 / 8 \\ 201\end{array}$

| 1000 | $5 /-$ | $9 / 3$ | $12 / 8$ | $50 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1200 | $8 / 6$ | $11 / 6$ | $15 /-$ | |

PRINTED CIRCUITS
EX.COMPUTER Packed Fith semicon-
ductors and components. ductors and components,
10 bosrds give a guaran. teed 30 trans and 30 diodes. Our price 10 boards 10/-. Plus 2F- P. \&

UNIJUNCTION

UT46 Eqvt. 2N2646, 7/6 Eqve. T1843

FET's

2N3819 2N3820 | MPF105 |
| :--- |

AD161-1E2 NPN-PNP
 Comp. Pair $12 / 6 \mathrm{pr}$.

28034.

INTEGRATED

 CIRCUITS1.C. Operational Amplifer with zener output. Type 701C. Ideal for P.E. projects. 8 Lead TO-5 case. Full Data. Our Price 18/6 each. 5 ofl 11 - each. Large qty pricen quoted for Fairchld Eposy TO-5 8 uL900 Bufter uL914 Dual Gate 10/6 uL923 J.K. Flip.Flop 14/1.C. Data Circuits etc. 1/6 Mullard 1.C. Amplifers ${ }_{70}$ TAA343 ORP.AMP. 70/TAA263 Min AF Amp 18/6
TAA293 G.P. Amp 28/RCA CA3020 Audlo Amp

TRAMSIBTOR EOUIVALENT BOOK

52 pagee of Crose References for transistors and diodes, Specially lmported by B1-PAK $10 /$ - each

PLEABE NOTE.-To Avoid any further Increaned Poatal Charges to our Cuntomers and enable us to keep our "By
hich la second to none, we have re-organized and streamReturn Postal service which is second to none, we have re-orgsend all your orders lined our Despatch Order Department sad wo nw reques you Despatch Department, together with your remitrance, Direct to our Ware HKRTS. Postage and Packing still 1/- per order. Minimum Order 10/-

forquisk,crasy, rediaide soldaring

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Allov also reduces wear of copper soldering iron bits.

SIZE 5 HANDY SOLDER DISPENSER
Contains 10 ft . coil of 18 s.w.g. Ersin Multicore Savbit Alloy. 2/6 each. SIZE 12
Ideal for home
constructors.
Contains 90 ft .
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /-$ each. SIZE 12
Ideal for home
constructors.
Contains 90 ft .
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /-$ each. SIZE 12
Ideal for home
constructors.
Contains 90 ft .
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /-$ each. SIZE 12
Ideal for home
constructors.
Contains 90 ft .
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /-$ each. SIZE 12
Ideal for home
constructors.
Contains 90 ft.
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /$ - each. SIZE 12
Ideal for home
constructors.
Contains 90 ft .
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /-$ each. SIZE 12
Ideal for home
constructors.
Contains 90 ft.
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /$ - each. SIZE 12
Ideal for home
constructors.
Contains 90 ft .
of 18 s.w.g. Ersin
Multicore Savbit
Alloy on a plastic
reel. $15 /-$ each.

SIZE 15

 SOLDER DISPENSERContains 21 ft . coil of $60 / 40$ Alloy. 22 s.w.g. Ideal for small components transistors, diodes. etc. $3 /$-each.

BIB MODEL 8 WIRE STRIPPER AND CUTTER Strips insulation cleanly and quickly, fitted with unique 8 gauge wire selector. Plastic handles. 9/6 each.
from Electrical and Hardware shops. II unobtainable, write to: Multicore Solders Lid., Hemei Hempstead, Herts.

RECORD PLAYER
Build your own Hi-Fi Record Player with the seronade lully transistorised ampling which comes complan wid the 2-10" $\not 6^{\prime \prime}$ speakns and the letast 8SR 4 Spend Starmo Mono Ricord Changer. Advanced solid state amplifier Ady $4 t^{\prime \prime}$ deep. 14 transistors only $4 \frac{1}{4}$ deep. separate Bass plus 4 diodes. 10 watts total and Treble-10 watr response power, Freque $50-15,000 \mathrm{c} / \mathrm{s}$.
EASY TO INSTALL NO TECHNICAL KNOWLEDGE FANTASTIC BARGAIN OFFER!
"TRANSCONTINENTAL"
FULLY TRANSISTDRISED STEREDPHONIC RADIOGRAM CHASSIS
Complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer - a complete radiogram at half normal price ONLY 10 Watts Total output
ransistors \& 10 diodes 17 transistors \& 10 diodes EASILY FITTED ND TECHNICAL KNOWLEDGE NECESSARY H.P. avallable £12.1.6 dep. plus 18 monthly payH.P. avallable $£ 12.1 .6$ dep. plus 18
ments of $32 /$ (Total H.P. £40.17.6).
 H. P. terms avalable. Dep. $£ 9.16 .0$ \& 12 monthly payments of $36 / 9$ (Total H.P. £31.17. Send $£ 10.13 .6$ today. Amplifier avallable seg.
\square PLEASE SEND ME FREE DETAILS OF YOUR RANGE 3

LEWIS radio
iou chase sioe, soutitaate Dod. pabg

No excuses please!

Recently several correspondents, particularly some of the younger enthusiasts, have written to you advocating a Beginners' Licence so that they can operate a transmitter without having to sit for the Radio Amateurs' Examination. There seems to be a gencral complaint that forthcoming " O " levels, or other commitments, leave no time to study for the RAE.

One can appreciate the difficulty in this respect, but I would like to put just one question-if these poor unfortunates have no time to study for the RAE, how could they find time to operate the transmitters they have such a burning desire to put on the air?-W. E. Thompson, G3MQT (Sussex).

1 am becoming apalled by young readers who are sending in correspondence in greater and greater amounts, all grumbling and bemoaning either the terrible "work" for GCE and other exams, or the absence of easy or beginners' transmitting licences. (As if Amateur Radio has not survived for quite a long time without.) I want to assume that J. Waters and C. Williams are not using the reasons given as excuses for not aiming at the requirements (international I might add) for a full transmitting licence. I want to concentrate on the signs of inhibition and straitjacketing that is the only other answer to their attitude.

I have had a great deal of experience with youth Amateur Radio schemes, and radio/electronic club work, as some of your readers might know. Always, those boys with fears, and excuses, and cramming tendencies about exams and school work make by far the worst club members. So often they are inhibited by this pressure; coming, I'm afraid, from unenlightened parents, and from a competitive school situation. Teachers too, use this pressure as an offshoot of the Authoritarian system we still have in the schools. I have waged war against this kind of thing as a teacher inside the system, and will continue to do so outside it. The social development and creativity of youths with the attitude I have mentioned, particularly suffers. To see a conflict between Amateur

Radio/Electronic hobbies for boys and this pressure for "progress" is, well frankly, very depressing, and all of us who know how releasing and worthwhile our activities are should attack the creeping paralysis of the freedom and fun and personal exploration which is a right for youth. I have even had a case where a Headmaster more or less demanded that a boy leave his Scout Troop, for the sake of some school requirement. There was a case of school trying this kind of thing on with a member of the Roding Boy's Society, and we were ready for a real battle . . . a few well-aimed mental kicks up the appropriate region of these pompous teachers, but they climbed down.

What is the usual excuse given? "You won't get a good job", or "The school must keep up its record", or perhaps "What will the neighbours think, if he isn't suffering with his work; good heavens he shouldn't enjoy it!" For an answer, read the first few paragraphs of A Career in Physics published by the Institute of Physics. (About boys building amplifiers, and its preferability to academic swots.) Also, I have known young possessors of an Amateur Licence gain great advantage in employment with industry. Personnel officers being quite impressed, at the least RAE being equal to a GCE (Although all this is not the reason for the RAE!) And finally, I assure you, the attitude of many a college department head, or professor is, "Yes, yes, OK on the GCEs, you have a few, I'm not interested in them; now what projects have you carried out. what clubs have you been in? Can you take respon-sibility-have you been an officer in a club or society?" I think Amateur Radio with its socialscientific experience, its national, no international, friendship forming powers and other advantages, is uniquely placed regarding this. So let's not have this inhibited grumbling from young people who should have the opposite view.Ken Smith, G3JIX (Kent).

I disagree

I disagree with C. Williams (January issue) on having a beginners' licence. I too have " O " levels coming up this year, but I foresaw
the amount of studying coming up and so took the RAE last year.
If C. Williams is really keen he will be able to wait until next December and anyway, if he cannot find the time to study, how is he going to find the time to go on the air? I'll be removing my PA bottle! -J. O. Parkinson, G3XJB (Manchester 23).

Not telegraph ops

It would appear that Mr. Dixon ("P.W." January 1969) would like to see the G.P.O. issue an Amateur licence to cover all bands with a special licence for the morse key. He implies that Amateurs only use morse because it is a skill they have been forced to acquire in the process of obtaining a licence. He goes on to say that if the morse test is abolished, Amateur morse will be killed and radio Amateurs will be struck down with some sort of malady leaving them unable to send morse at more than two words per minute.

I fear I cannot agree with Mr. Dixon's views. I still feel that the morse test is unnecessary. If it were abolished I don't think that morse would disappear or that the standard would be lowered. Amateurs realise that if they are to work DX under difficult conditions then obviously AI is the best form of emission. If they want to operate under bad conditions then they will learn morse. If they are motivated in this way they will learn the code very quickly and enjoy doing so.

At present a radio Amateur has the option of using either phone or c.w. Under the new system where there is no longer a morse test, there would be the same choice of modes of operation. Mr. Dixon feels that only phone would be used under the new system. I hold that if the morse test were abolished morse would still continue to be used as the most effective mode under difficult conditions. R.T.T.Y. operators are not required to obtain an $80 \mathrm{w} . \mathrm{p} . \mathrm{m}$. certificate before they are allowed on the air. Why then should radio Amateurs be required to obtain a certificate in morse? We must continue to bear in mind that radio Amateurs are supposed to be experimenters and not telegraph operators.-T. Wright (Northern Ireland).

THE chief difficulty with the type of tape recorder described last month lies in the fact that the tape speed is constantly varying, because the spool drive diameter gradually increases during the recording process, thus pulling the tape off the supply spool at a gradually increasing rate. A typical machine of the type described may commence recording at a speed of about 3 i.p.s., and towards the end of the spool the speed may have increased to over 7 i.p.s. This is wasteful of tape and furthermore as the quality of the recording is dependent upon the speed of the tape travel, the recording will be uneven in quality.

Furthermore, as this simple "spool drive" system does not employ any kind of governor or regulator to stabilise the actual motor speed, any variations or irregularities in the load will produce variations in tape speed which give rise to "wobbles" in reproduction known as wow and flutter. For this reason such machines are not suitable for the recording and reproduction of music, etc.

For serious recording work. especially of music. it is necessary to use a drive system which will allow the tape to traverse past the record/play head at a constant speed (usually $3 \frac{3}{4}$ i.p.s., with alternatives of $7 \frac{1}{2}$ in. for high quality work and $1 \frac{1}{8} \mathrm{in}$. for speech etc.) This constant speed is achieved by the use of a small capstan in conjunction with a pinch wheel, revolving at a constant speed (see Fig. 9).
As with the spool-driven recorder, the tape is fed from the left hand tape spool, which usually "freewheels" for this function. (With quality decks, a slight reverse pull is applied in order to maintain an even tape tension). The tape leaves the feed spool and passes around the left hand guide pillar and along to the erase head, followed by the record/play head. Before continuing to the take-up spool via the right hand tape guide it is pressed against the constantly revolving capstan (see diagram) by the pinch wheel.

This arrangement ensures that. regardless of the increasing size of the take-up spool as the tape "builds up" on it during recording, the actual speed of tape traverse past the heads remains constant. It follows that some kind of "clutch" system of power drive to the take-up spool is necessary, in order to avoid a constantly increasing tension, since the takeup spool is increasingly working against the constant drive of the capstan.

THREE MOTOR DECKS

Some commercial decks employ three separate electric motors for the tape drive system; motor I is connected directly to the left hand feed spool and is used to provide rapid rewinding of the tape
before replay, see Fig. 9. It may also be used in conjunction with a dropper resistance to provide a slight "reverse drag" during normal operation.
Motor 2 drives the capstan at a constant speed. to produce tape speeds of $1 \frac{7}{8} ; 3 \frac{3}{\frac{1}{3}} ;$ or $7 \frac{1}{2}$ i.p.s. The drive from the motor spindle is generally via a stepped pulley and a rubber idler wheel which drives against the flywheel rim of the capstan itself. The manner of construction closely resembles that of the motor drive of a gramophone turntable providing for various speeds.
The drive motor is usually mounted on rubber bushes to minimise vibration etc., and on high quality tape decks the flywheel is dynamically and statically balanced, as is the motor armature, in order to minimise the irregularities which produce wow and flutter, noticeable as a "whine" on playback, especially with piano music. The wow and flutter specification for a satisfactory tape recorder for music use should not be in excess of 0.15% at a tape speed of $7 \frac{1}{2}$ i.p.s., and 0.2% at a tape speed of $3 \frac{3}{3}$ i.p.s.

Fig. 9: The arrangement of the feed and takeup spools, the heads and the pinch wheel on a three motor tape deck.

Motor 3 is the "take-up" motor which spools the tape after it has passed the capstan. The motor spindle is usually directly coupled to the spool platform. This motor is also brought into function to provide a "fast forward" facility when it is desired to reach a certain point which may be, for example. half-way through the tape length.

Many satisfactory tape recorders, while using the capstan principle, have dispensed with the "three motor" principle described. The alternative system uses a single motor which drives the capstan by means of a rubber pulley. On its return journey the pulley is taken back to the motor via a flanged wheel; this wheel is coupled to the take-up spool by means of a felt clutch, which allows for the varying

Wharfedale High Fidelity single unit speaker -Super 8

£7.10.0.

The Super 8 is a single, wide spectrum loudspeaker unit. The massive magnet gives it very high sensitivity and it will give a much louder and purer sound volume than ordinary speakers.

It is simplicity itself to install in a home-built cabinet, needing no special skills.

The Super 8 will transform the results from your radio or radiogram. The sound of your television set can be greatly enhanced by using the Super 8 with a Wharfedale transforn.er.

Installed in your car, you will achieve a wonderful depth of sound from a normal car radio.

The Super 8 is a real high fidelity loudspeaker and gives a response from 20 Hz to $20,000 \mathrm{~Hz}$ in a good enclosure.

RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS.

enjoy exciting new scope now in

Air Traffic Control

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 869$ (at 19) to $£ 1,130$ (at 25 or over); scale maximum $£ 1,304$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.
Write for details to: Mr. T. H. Mallett, B.Sc. (Eng.), C. Eng.,
M.I.E.E., Room 705, The Adelphi, John Adam Street,
London, W.C. 2 marking your envelope 'Recruitment'.
Name
Address
Not applicable to residents outside the United Kingdom.
RPW7

Packed with ideas and step-by-step instructions for a wide range of attractive home improvements indoors and out

DECORATING MADE EASY \square CENTRAL HEATING KEEPING OUT THE RAIN \square LAYING A DRIVE GET DOWN TO FLOORS \square KITCHEN FITMENTS KNOW-HOW ON DRAINS \square A LOFT TO LIVE IN FIXING FENCES \square POWER TOOLS
speed of take-up during the recording and playback processes. In order to provide a "fast rewind" facility, a second pulley (or rubber idler wheel) is brought into action to connect to the rewind spool.

SPOOL SIZES

The smallest size of spool in common use is the "message" size of 3 in . diameter. $5 \frac{3}{2} \mathrm{in}$. is a size often used on popular tape recorders, while the 7 in . spool is the standard for serious recording work. Semi-professional tape recorders will usually accommodate reels up to $10 \frac{1}{2} \mathrm{in}$. in diameter. The size of the spool of course determines the length of play which can be achieved at one "run" of the machine. Another factor affecting total playing time is the number of "tracks" used by the recorder.

Professional machines usually employ full-width heads but the standard for domestic use has become half-track. Here the tape heads cover a little less than half the available tape width (see Fig. 10). When the recorder is being used for normal monaural work, it can therefore be reversed at the end of the run, so that the previously blank half of the tape is brought into use. The same side of the tape (the dull, coated side) must of course always be in contact with the record/play head.

For sterophonic use both tracks are used simultaneously, and a stereo record/play head is necessary. This type of head consists of an "upper" track and a "lower" track head stacked vertically and connected to the left and right channels of the input signal. It is of course possible to use a stereo recorder for "mono" work and if desired, music can be recorded on the upper track and speech on the lower track. On replay, the two channels can be mixed, to give the effect of a commentary with background music.

Fig. 10: The recorded track widths showing directions and safety gaps for both two and four track standards.

A further development of the normal "two track" system has been the division of each of the two tracks into two further tracks, making a total of four tracks in all (see Fig. 10). The disadvantages of the four track system are (a) the signal to noise ratio is poorer; (b) there is more likelihood of crossinterference between channels; (c) extra care is necessary over tape quality and condition because the recording area comes to the edges of the tape; (d) editing of recordings is more difficult because, wherever a cut is made, four separate recordings will be involved.

RECORDING TAPE

As has already been remarked, the standard tape
width is $\frac{1}{4} \mathrm{in}$., and the magnetic oxide is generally backed on to clear plastic. In the earlier days of tape recording, paper tape was commonly used, and this was referred to as "craft based" tape; this had a low breaking point, and also a high noise factor due to the comparatively brittle nature of the backing. It is interesting to note that the very earliest experiments in magnetic recording employed, among other media, waxed paper impregnated with iron filings!

The cheaper variety of tape on sale today may be acetate based, and although this is generally satisfactory, the breaking point is again fairly low, and it tends to become brittle, especially in cold weather. Better quality tape has a plastic backing known as polyester, and high quality tape will also have been pre-stretched before spooling; this is known as tensilised polyester tape. Different varieties of tape also have their own characteristic and can vary considerably in background noise and in high frequency response. An interesting experiment is to splice together several short pieces of different brands of tape and use it to make a sample recording. The most acceptable tape can usually be spotted upon replay as the quality and sound level vary between each joined piece.

An important factor in assessing the playing time of a spool of tape is the actual tape thickness. A 7 in . spool will hold $1,200 \mathrm{ft}$. of standard thickness tape giving about half an hour of playing time at $7 \frac{1}{2}$ i.p.s. (a further half-hour is obtained when the tape is reversed). With the introduction of thinner tape backings, "long play" tape is now common, giving 45 minutes playing time. Double play tape is also available, giving one hour's playing time at the same speed, and triple and even quadruple play tapes are now on the market.

A SOLID STATE RECORDER

From what has already been discussed, it will be obvious that the drive and capstan mechanism constitute a piece of precision engineering which is out of the range of most constructors. Battery tape decks using capstan drive are available for around $£ 4$ however, and as the amplifier etc., can be taken from the previously mentioned spool driven machine, this constitutes virtually the only expense.

Apart from the battery connection, the only other connections which have to be made between amplifier and the tape deck consist of two leads from the record/play head on the tape deck. These are connected to the piano key switches, and in the record position the signal take-off lead (from C6) should be connected to the head via the record switch.
On replay, the record/play leads go via the play piano key to the input section of the transistor amplifier. This will have a microphone jack socket in circuit, M 1, and the flying lead from the piano key is connected to the jack socket so that it connects the base circuit of TR1 via C1 when the microphone jack is removed. If it is desired to leave the microphone in the jack socket during replay, then the contacts on the play and dictate keys should be used to provide the requisite "switchover" from microphone input (on record) to head input (on replay). Erasure is automatically achieved by permanent magnet when the dictate key is depressed, and d.c. bias is provided on record via R13

TO BE CONTINUED

P.W. CUIDETO Corso PART 4 Nillili

Iicrophone transformers have special requirements due to the high sensitivity and impedance associated with the circuit. Great care is taken in design, and very large high inductance windings are used. The coil is usually resin potted in a cylindrical aluminium or in a quality transformer mumetal can. Lead-out wires usually protrude as flying leads. The transformers are thus fully screened both magnetically and electrically from surrounding fields. Prices are relatively high, from 15 s . to $£ 10$.

Pulse and inverter transformers often use iron cored coils and for these types special methods are required. In general, thin laminations and low resistivity windings are used. Occasionally air gaps are deliberately introduced to prevent saturation, and thus extend the limits of usefulness, although this reduces the inductance.

As coils of a given power requirement reduce drastically in size as the frequency is increased, high frequency transistor inverters are used increasingly in miniature circuits. Often the inverter transformer is designed to saturate and provide the transistor switching action.

Swinging chokes are also used increasingly to cut down circuit size. These inductors decrease in inductance as the standing d.c. current through them increases. This effect is achieved by using two different core materials one of which saturates at low current, or by using an air gap in part of the core. The inductance is therefore high until saturation at which point it reduces to the portion of material which has not saturated.

Former Wound Coils

These coils are extremely common and find their greatest use in radio circuitry. The formers are made of various plastic materials such as polystyrene and generally have provision for a dust core to be inserted. The core material is of fairly low relative permeability, from 2 to 100 , and therefore the inductance is low, from $0 \cdot 1 \mu \mathrm{H}$ to 10 mH . Figure 1 shows a typical former wound coil with an iron dust core. Both iron dust and

Fig. 1: Former wound coil.
ferrite cores are used and because of the inherent air gaps they are non-saturable. The winding terminations are soldered to the pins on the base of the former, which usually provides the screw mounting holes.

These inductors and transformers are used for radio frequency chokes, aerial tuning coils and transmitter tank circuits, and are often wound by the home constructor. Because of the rather hit-and-miss methods of winding that are employed many newcomers are dismayed by coil winding. This is further aggravated by the lack of information displayed on circuit diagrams. Much information is published on coil winding and various charts and abacs can be used. One useful formula for an air-cored coil is due to J. H. Reyner:

$$
\begin{equation*}
\mathrm{L}=\frac{0 \cdot 2 \mathrm{~N}^{2} \mathrm{~d}^{2}}{3 \cdot 5 \mathrm{~d}+8 l} \times\left(\frac{\mathrm{d}-2 \cdot 25 \mathrm{D}}{\mathrm{~d}}\right) \mu \mathrm{H} \tag{1}
\end{equation*}
$$

where L is the inductance, N the number of turns, d the external diameter in inches, l the winding length and D the depth of winding.

For a single layer coil the bracketed term is unity. As a very rough guide however $20-36$ s.w.g. can be used from $100 \mathrm{kc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ and $16-20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. for coils up to $100 \mathrm{Mc} / \mathrm{s}$.

On a $\frac{1}{2} \mathrm{in}$. diameter former approximately 4 turns of 18 s.w.g. will give tuning with a 100 pF capacitor at $30 \mathrm{Mc} / \mathrm{s}$ whilst 10 turns gives $15 \mathrm{Mc} / \mathrm{s}, 20$ turns $8 \mathrm{Mc} / \mathrm{s}$ and 40 turns of $30 \mathrm{~s} . w . g$. gives $4 \mathrm{Mc} / \mathrm{s}$. Hence trial and error and common sense readily result in the desired coil. Cores and formers cost from 6 d . to 2 s . 6 d .

Ranges of r.f. and oscillator coils are available from 4 s . to 10 s ., and many people prefer to purchase coils ready wound. I.F. transformers are also wound on formers, and can be purchased between 10s. and $£ 2$ in matched pairs. These particularly require careful design since a very important factor is the Q or quality of the coils. I.F. transformers require a high \mathbf{Q} to give good rejection of unwanted signals and to define the bandwidth. The value of Q depends on the formula:

$$
\begin{equation*}
\mathrm{Q}=\frac{2 \pi f \mathrm{~L}}{\mathrm{R}} \tag{2}
\end{equation*}
$$

where f is the frequency in c / s, L the coil inductance in henrys and R the dynamic (r.f. + d.c.) resistance in ohms.

The formula shows that to obtain bigh \mathbf{Q} factors the ratio of inductive reactance to resistance must be high, and coils with Q factors of $100-1,000$ are readily available. I.F. coils are usually screened with aluminium alloy cases and have ferrite or iron dust cores to give tuning adjustment.

The resistive portion of the formula for Q consists of both the d.c. and r.f. resistances and this is due to the skin effect. At radio frequencies the current path is

PORTABLE

TRANSISTOR
AMPLIFIER

PLUS DYNA

MICROPHONE
A self-contained fully portable mini p.a. system.
Many uses - ideal for Partiea, or as a Baby Alarm, Intercom, Telephone or Record Player,
Amplifer, etc. Attractive resine eovered cabinet size 12 rexine ONLY 90/- POST powerfal 7 I 4 in . speaker and lour transistor one watt batiery. Brand new in Makers' carton with in ses PP9 guarantee. World tamous make.

WEYRAD P50-TRANSISTOR COILS
 Oso. P50/1AC 1.F. ITS. P50/3CC J.B. Tunlag Gang . Weyrad Booklot

VOLUME CO Long spindles. Midget Size SK. ohms to 2 Meg. LOG or
 SK. S.P. zdge type, 5/-. Ideal 685 lines
$21 \times \sin .3 / 8.21 \times 31 \mathrm{in} .3 / 2.31 \times 3 / \mathrm{in} .3 / 8.32 \times 5 \mathrm{in} .5 / 2$. EDGE CONNECTORS 16 wAy $5 /-$; 24 way $7 / 6$. S.R.B.P. Board 0.16 MATRIX $2 j$ in. wide 6d. per 11 in .8 sin, wide 9d. Per 1 in.; 5 in. wide $1 /-$ per 1 in . (up to 17 in .
BLANK ALUMINIUM CHAS8IS. 18 s.w.g. 2/In. side:
 ALUMINIUMPANELSI' 8 s w. 12×12 in $6 / 6 ;$ $12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7$ in. $8 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 8 \times 4$ in. $1 / 6$

O MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen sorew and key

'SONOCOLOR' CIME RECORDING TAPE

5 " reel, 900^{\prime} whth LP strobe markinge, also oine ligh

 defleotor-mirror for synohronisation.UNIVERSAL TAPE CASSETTES C60. OUR PRICE $14 /-\mathrm{each}$ Tape Spools E/B. Tape Splioer $5 /-$.
Leader Tape $4 / 6$.
Reuter Tape Heads for Collaro models 2 traok $21 /-$ pair.

'THE INSTANT

BULK TAPE

ERASER AND RECORDING HEAD

BARGAIN STEREO/MONO SYSTEM
Attractive Slimline PLAYER CABINET with B.B.B
Attractive Slimline PLAYER CABINET with B.B.R. UA25 LOUDSPEAKERS Carr. 10/6 fateded Carr. 10/6
f19.19.
NIW TUBULAR ELECTROLYTICB

KEW T	AR	ELECTROLYTICS	CAN TYPES
2/850V	2/3	100/25V .. 2/-	8/600V
4/850V	2/3	250/25 7 . $2 / 6$	18/600V .. 12
$8 / 450 \mathrm{~V}$	$2 / 3$	500/25V .. 4j-	$18+500 \mathrm{~V}$
16/450V	8/-	$8+8 / 450 \mathrm{~V}$. $3 / 6$	$32+32 / 250 \mathrm{~V}$
$32 / 450 \mathrm{~V}$. 3/9	$8+16 / 450 \mathrm{~V}$. $3 / 9$	$50+50 / 350 \mathrm{~V}$
25/25V	1/9	$16+18 / 45074$	$60+100 / 350 \mathrm{~V}$
50/50V	21-	$32+32 / 850 \mathrm{~V}$ 4/6	3000/30V

$2 / 6 ; 2000 \mathrm{mF} 25 V$
$7 /-$

 $1,000 \mathrm{~V}-0.001,0.0028,0.0047,0.01,0.02,1 / 6 ; 0.047,0 \cdot 1,2 / 6$. SILVER MICA. Close toleranoe 1\%. 5-500p $1 /-; 580-2,200 \mathrm{pF}$ $2 /-; 2,700-5,600 \mathrm{pF} 8 / 6 ; 6,800 \mathrm{pF}-0 \cdot 01$, mid $6 /-$ eaoh.
TWIN GANG. ${ }^{4} 0-0^{\prime \prime} 208 \mathrm{pF}+176 \mathrm{pF}, 10 / \mathrm{B}$; 365 pF TWIN GANG. "0-0" $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pF}$, minia-
 small 8-gank 500 pF 18/9. Singia " 0 " 885 pF 万/ $/ 8$ Tand 8 SORT WAYE. Siagle $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each. Can be ganged. Couplers 9 d . each TUNING. Solid dieleotric. $100 \mathrm{pF}, 800 \mathrm{pF}, 500 \mathrm{pF}, 7 /$ - eaoh.
 $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{pF}, 2 / 6$ 250V RECTIFIERS. Selenium \& wave $100 \mathrm{~mA} 5 /$ - BY100 $10 /$ CONTACT COOLED \& wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$
FuI Ware Bridge 5 mA 10/-: 150 mA 19/6; TV re
NEON PANEL INDICATORS. 250 v . AC/DC, $8 / 6$.
RESISTORS. Preferred values, 10 ohms to 10 meg

Ditto 5%. Prelerred values 10 ohms to 22 meg., 9 d .
$\left.\begin{array}{r}5 \text { watt } \\ 10 \text { watt }\end{array}\right\} \quad$ WIRE-WOUND RESISTORS
10 watt $\} \quad 10$ ohms to 6,800 ohms
FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12v. outputs. $1 /$ smp. $8 / 8 ; 2 \mathrm{a} ., 11 / 8 ; 4 \mathrm{a}, 17 /$ CHHARGER TRANSFORMERS, P. \& P. S/-. Input 200/250v. for 8 or 12 F ., $1 \frac{1}{2}$ amps., $17 / 6 ; 2$ amps., $21 /-; 4 \mathrm{amps} ., 30 /-$ WIRE-WOUND 3-WATT WIRE-WOUND 4-WATT POTS. T.V. Type. Values STANDARD SIZE POT8.
 VALVE GOLDERS, 8 Ci CERAMIC $1 /-;$ CANS 1/NEW MULLARD TRANSISTORS 6/- each 0C71. OC78, OC81, OC44, OC45, OC171, OC170, AF117 TT45. Push Pull Drive, 8 IISTOR TRANSFORMERS
TT45. Push Pull Drive, $9: 1$ CT, $6 /$-. TT48 Outpat, CT8:1, $8 /$ TT49. Interstage $20: 1,8 /-$; TT62 Output 8 ohms, $4.5: 1,6 /$
TT23/4 PAIR 10 Amp. Translormers and cirent $451 /$ TTR3/4 PAIR 10W Amp. Transformers and circuit 45/TRAN8ISTOR MAINS POWER PACKS. FULL WAVE Solt 500 mA Size
Switched. Metal case, crackio finish. On/off switch. \quad 49/6 Half Wave 9 volt 50 mA Size 21×1 in Snap terminals $32 / 6$ Half Wave 9 volt 50 mA Size $2 \frac{1}{2} \times 1$ hin. Snap terminals $32 / 6$
9 volt 500 mA TRANSFORMER ONLY. $2 \mathrm{q} \times 1 \ddagger \times 1 \mathrm{jin}$. $10 / 8$

MAINS TRANSFORMERS

$250-0-25050 \mathrm{~mA} .8 \cdot 3 \mathrm{y} .2 \mathrm{a}$. Centre tappe

$350-0-35080 \mathrm{~mA} .6 .8 \mathrm{v}$. 3.5 s .8 .3 v . 1 s . or 5 v .2 $300-0-300 \mathrm{v} .120 \mathrm{~mA} ., 8.3 \mathrm{v} .4 \mathrm{a}$. G.T.; 6.3 v . \&a
MINIATURE 200v. 20 mA, , 8.3 v . $1 \mathrm{a} .21 \times 2 \times 1 \mathrm{llin}$
 HEATRR TRANS. $6.8 \mathrm{v}, 11 \mathrm{a}, 8 / 6 ; 6.3 \mathrm{v}, 4 \mathrm{~s} . .$.
Ditto ta pped $880.1 .47,2,3,4,5,8,3 \mathrm{~g}, 11 \mathrm{am}$ GENERAL PURPOSE'LOW VOLTAGE, Outpute 3 $4,5,6,8,9,10,12.15,18,24$, and 30 v , at 2 a . $1 \mathrm{amp} .6,8,10,18,16,18,20,24,80,36,40,48,6035 /$

3 gmp. 0-127. and 018 v A OTO TRANSFORMERS 0-118 23Ov. Input/Output, | A |
| :--- |
| $60 \mathrm{w} .18 / 6 ; 150 \mathrm{w} .30 /-; 500 \mathrm{w}, ~$ |

COAXIAL PLUG 1/3. PANEL SOCKETS 1/3. LINE 2/-
OUTLET BOXES. SURFACE OR FLUSH 4
BALANCED TWIN FEEDERS 1/- yard 80 or 300 ohms. ACK SOCKETS Std. open-circuit 2/6, closed circuit 4/6 Chrome Lead Socket 7/6. Phono Plagi 1/-. Phono Sooket 1/ JACE SOCUGS Std. Chrome $3 /-; 3 \cdot 5 \mathrm{~mm}$ Chrome $2 / 6$ DIN SOCEETS Lead 3 -pin $3 / 6$; 5 -pia $5 /-$
DIN PLUGS 3 -pin $3 / 6$; 5 -pin $5 /-$
WAVE-CRANGE 8WITCEES WITH LONG SPINDLES.
2 p . 2-way, or 2 p .6 -way, or 8 p .4 -way $4 / 6$ oa oh.
Waveohsnge "MAEITTS" 1 p. 12 p. ${ }^{\text {way, } 2 \text { p. }} \mathbf{~ p - w a y , ~} 3$ p. 4 -way 4 p. 3 -way, 8 p .2 -way, 1 wafor 12/-. 2 wafer $17 /$, 3 wafer $22 /-$ TOGGLE SWITCHES, sp. $2 / 6$; sp. dt. $3 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp} \mathrm{dt} .4 / 6$.

BAKER 12in.

 DE-LUXE MKII LOUDSPEAKERSuitable for any HI.F
System. Provides truly rich sound recreating the musl al spectrum virtually flat from 25-16,000cps. Latest double cone with apecial Ferroba" ceramic mag net. Flux densify 14,000 gauss. Bass resonance 32 38cps. 15W British rating voice colis avaliable 3 or 8 or 15 f 9 Post
48 page Enclosure
Manual $5 / 9$ post paid
BAKER "GROUP SOUND" SPEAKERS-POST FREE 'Group 25" ${ }^{\circ}$ Group 35" ${ }^{\circ}$ Group 50' 12in. 6 gns. ${ }^{25 \mathrm{~m} . \mathrm{in} . ~} 8 \frac{1}{2}$ gns. 15 in .18 gns.

ALL MODELS "BAEER SPEAKERS" IN STOGR
Super Cone Tweeter 21 th, square, $3-17 \mathrm{kc} / \mathrm{s}$. $10 \mathrm{~W} 17 / 6$ Quality Horn Tweetors 2-18ko/s. 10W 29/6. Crossover 16/6 LOUDSPEAKERS P.M. 3 OHMS, $21 \mathrm{in}, 8 \mathrm{in}, 4 \mathrm{in}, 3 \mathrm{in}, 7 \times 4 \mathrm{in}$. $15 / 8$ each; $8 \operatorname{in} 27 / 6 ; 6 \mathrm{kin} 22 / 6 ; 10 \mathrm{in} 37 / 6 ; 8 \times$
Donble cone 3 or 15 ohm $35 /-10 \times 6 \mathrm{in} .30 /-$
Donble cone 3 or $15 \mathrm{ohm} 35 /-; 10 \times 6 \mathrm{in} .30 /-$. E.M.I. Donble Cone 13i \& 8 in., 3 or 15 ohm models, $45 /-, 0$ WPith twin tweaters, crossover and H/D magnet, $70 / 6$ $15 / 6 \underset{\text { TYPF }}{\mathrm{EACE}} \quad 25$ ohm, $0 \times 4 \mathrm{in} ; 35,0 \mathrm{hm}, 8 \mathrm{in}$: Sin. WOOFER. 8 watte maz. $30-10.000 \mathrm{cps} .8$ or 15 ohm $89 / 6$ OUTPUT TRANS. EL84 etc. $4 / 6$; MIKE TRANS. $50: 1,3 / 8$ SPEAKER FRET Various Tygan samples. Send S.A.E.

MINETTE AMPLIFIER
A.C. Matns Transformer Chassis gise $7 \times 81 \times 4 i n$ High. Valves ECL82,
EZ80. Quality output 3 E280. Quanty output cia, valves, krobs, volume and tone controls,
wired and tested. 12 month guarantee. Post $5 / 6$ $\mathbf{6 9 / 6}$

ALL EAGLE PRODUCTS SUPPLIED AT LOWEST PRICRS

BARGAIN AM TUNER. Medium Wave.
Transistor Superhet. Forrite aerial. $\begin{aligned} & \text { O volt. }\end{aligned} \quad 79 / 6$ BARGAIN DE LUXE TAPE SPLICER Cuts,
trims, joins for editing and repairs. With 3 blades. 17/6 BARGAIN 4 CHANNEL TRANSISTOR MIXER musioal highlights and sonnd effeots to reoordings.
Will mix Mierophone, reoords, tape and tuner
with separate oontrole into single output. 9 volt. BARGAIN FM TUNER 88-108 Mc/s Six Trangistor. Ready built. Printed Circuit. Calibrated slide dial f6.19.6.
tuning. Size $6 \times 4 \times 2$ in, θ volt. BARGAIN 3 WATT AMPLIFIER. 4 Transistor
Puah $-P a l l$
Ready built, with volume oontrol. $9 v$. 45-PAGE EAGLE CATALOGUE 5/-Post Free
\star RADIO BOOKS \star (Postage 9d.
Practical Transistor Reocivers
Practioal Stereo Handbook
upersensitive Trazsistor Pooket Radio
Righio Valve Gpide, Books 1, 8, 3, or 4 ea. 5 / Rratioal Radio Inside Out
Shortwave Trausistor Reoejver
Transistor Communication Sets
Modern Transistor Cirouits Ior Beginners
Sub-Miniatare Transistor Sub-Miniature Transistor Receivers
Wireless World Radio Valve Data
Wireless World Radio Valve D
Valves, Transistors, Diodes equivalente manal How to recelve Foreiga T.V programmes on 10 by simple modifications

SANGAMO 3 inch SCALE METERS arious osllbrations/movements, 600 Mioroamp;
 $0-1,000$ AC./DC. ohms 0 to 100 k , etc. 49/6 SUPERIOR MOVING COIL MOLTIMETER

99/6
$0-2-600 v$. D.C. 20,000 ohma per volt, $0-1,000$. A.C.
0 hms 0 to 8 meg. 50 Mioroampa (Full list Metern S.A.E.

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Black plastio cabinet, 20ft. laad and adaptors. For any radio, intereom, tape reeorder, oto. 3 to 15 ohms. PRICE 30/-
Size: $74 \times 51 \times 3$ in. \quad POST $2 / 630$

PRAK SOUND
 Aids to economical high fidelity

BAXANDALL SPEAKER

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P.J Baxandall in Wireless World (Aug. and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range60 to $14,000 \mathrm{~Hz}(100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB})$; impedance- 15 ohms; loading up to 10 watts R.M.S.; size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. Here indeed is quality performance of a very high order for a very modest outlay. Equaliser assembly 36/- ($p / \mathrm{p} \quad 1 / 6$): Speaker unit 38/- + 8/11 P/T (p/p 5/-)
Teak finished cabinet assembly $£ 6.3 .6$ £9.17.6 Teak finished cabinet assembly
$+12 / 8 \mathrm{P} / \mathrm{T}$ (Carr. 8/6). Cross-over choke 21/7d. P/Tax. for additional woofer, $£ 1.2 .6$ ($\mathrm{p} / \mathrm{p} 2 / 6$). (Carr. in U.K. 11/6)

A new

Peak Sound

Power

Amplifier

THE PEAK SOUND PA/12-15 (12 watts R.M.S. out into 15Ω) is for the constructor who appreciates both sensible design

and genuine power and hi-fi performance. Available built or in kit form. Response $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$. Distortion at max. output -0.1% 43 dB neg. feed back. Size $5^{\prime \prime} \times 3 \frac{2_{3}^{\prime \prime}}{3} \times 1 \frac{1_{8}^{\prime \prime}}{}$. With full instructions. Pre-amp. details available.

The professional fouch

A really professional training-that's what you get in the Army. 15 months course in electronics with the Royal Signals (for instance) with the most modern equipment and the best instructors soon makes the whole business second nature to you. And quite apart from setting you up for life, it'd give you a good deal of pleasure. Because Army life's varied enough to make every day full of interest. Look into it.

confined to the surface layers of the conductor and hence the resistance tends to increase. In order to limit this effect in high \mathbf{Q} circuits the conductor is often silver plated, or with multi-turn coils Litz wire is used. Litz wire consists of a number of thin conductors bundled together. This has the result of increasing the surface area and thus giving lower r.f. resistance values.

Many radio circuit coils are now made in ultra miniature form for mounting directly on printed circuits. As these versions are only slightly larger than the average transistor they have great application in miniature receivers. They are available in sets consisting of r.f., oscillator and two i.f. coils from 15 s . to $£ 3$.

Self-supporting Coils

Commonly v.h.f. and transmitter power coils are self-supporting. As the frequencies are high the number of turns is small, and in order to reduce skin effect large diameter conductors of 12-18 s.w.g. are used. The better quality coils are silver plated to further reduce the r.f. resistance.

The home constructor usually winds these coils around a tube and experiments to obtain the correct inductance. Most f.m. circuits give details of any coils to be wound. Lack of information should not deter the novice, for experiment is simple and 20 turns of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wound on a pencil and then chopped gradually to give the required inductance is usually successful.

For transmitter coils $\frac{1}{8} \mathrm{in}$. copper tubing is often used, and many varieties are available on the market. Variable types with sliding contacts are available and silver plating is common. These coils are fairly large, $6 \times 2 \mathrm{in}$. in diameter or more, and reasonably expensive, from $£ 1$ to $£ 10$. When building these coils it is as well to remember that porcelain supporting members should be used as sparingly as possible since high r.f. power results in great stress in the material.

Ferrite Pot Cores

A very wide range of core types and mountings is produced. An average form of core is shown in Fig. 2. The coils are wound on a small plastic bobbin, and end wires left protruding 5-6 inches out of the bobbin. This is slipped over the centre spindle of the half-core and the other core located on the top. The end connections are located in grooves in the cores. The core is rigidly held by a metal clamping assembly which usually incorporates the terminals for end connections. The coils are mounted on the circuit by one or more bolt connections.

Ferrite cores are designed for use in the general range $1 \mathrm{kc} / \mathrm{s}$ to $15 \mathrm{Mc} / \mathrm{s}$ for both inductors or trans-

formers and the number of turns for 1 mH inductance varies from 20 to 250 . As the permeability varies from 20 to 400 they are not as effective as iron cores at low frequencies but due to the inherent air gaps in the material they tend to be non-saturating. They have no eddy current losses whilst hysteresis losses are kept to a minimum.
Ferrite core inductors and transformers are used from audio frequencies to r.f. as low power transformers, filtering inductors, tuned loads, oscillator transformers, thyristor trigger transformers, etc. Most circuits give details of the winding of transformers and the type of core to be used. However, the design is readily modified to suit existing cores by adjusting the winding to give the correct frequency, inductance and turns ratio. The costs vary from 10 s. to $£ 4$, depending on the fittings used.

Ferrite Rods

Ferrite rod cores are used extensively in modern transistor receivers as the aerial coil circuit up to $20 \mathrm{Mc} / \mathrm{s}$. They consist of ferrite material in rod form of approximately $\frac{3}{8}$ in. diameter and from 4 to 10 in . long. The rods are available at 1 s . to 5 s . each. In common with the alternative former wound coils the number of turns is dependent on the frequency range (waveband) to be covered. The rods have a permeability of between 10 and 25 , which increases with length up to approximately 10 in.; the resulting Q factors are from 100 to 500. Figure 3 shows the construction of a ferrite rod aerial with coils wound for medium and long waves.

Fig. 3: Ferrite rod aerial.
Table 1: Ferrite Rod Aerial Windings

Waveband	Frequency	Turns	Wire sype	Tinding form
Long	$250 \mathrm{kc} / \mathrm{s}$	175	Litz 9-strand	Wave
Medium	$1 \mathrm{Mc} / \mathrm{s}$	54	Litz 22 strand	Close
Short	$10 \mathrm{Mc/s}$	6	22 s.w.g.	lin.
Short	$20 \mathrm{Mc} / \mathrm{s}$	$4 \frac{1}{2}$	22 s.w.g.	lin.

The coils are wound on card formers with terminals for the coil termination. Using a tuning capacitor of 500 pF the winding details are as given in Table 1. The long wave coil is wave wound in which the turns cover the entire length of the coil many times. Close wound coils are wound with each turn in close proximity to the last. Short wave windings are open, and cover the full 1 in . with $4 \frac{1}{2}$ to 6 turns.
When the coils are wound the receiver is lined up and tuned by adjusting the coil positions relative to the ends of the rod. The card formers are then fixed in position with drops of wax.

Toroids

Ferrites, iron dust and iron cores are available in toroidal form. The advantage of this construction is that stray magnetic fields are held to a minimum.

Mechanical winding of toroids is more difficult than bobbin coils and therefore they tend to be slightly more expensive.

Toroids are used for filters, magnetic stores, magnetic amplifiers, saturating inverter coils, pulse transformers, etc. A typical toroid is shown in Fig. 4.

Ferrite and iron dust cores are usually pre-moulded and ceramic covered whilst iron cores are made of iron alloy tape wound in a reel and surrounded by a plastic cover to protect the windings. Windings are usually of enamel covered wire covered with tape. The coils are either mounted directly with the coil terminations as flying leads, or the whole is resin encapsulated in a metal container and connections made to terminals or printed circuit pins projecting through the casing.

Ferrite and dust toroidal cores can be obtained readily at 1 s . to 5 s . each, and inductance information is usually supplied. They are very suitable for differentiating and trigger transformers for switching thyristors and power circuits. Trial and error will produce the required transformer, whilst the inductance required can be calculated from the pulse width, voltage and current using the formula:

$$
\begin{align*}
V & =-L \times \frac{d i}{d t} \\
\text { or } L & =-\frac{V}{\Delta l} \tag{3}
\end{align*}
$$

where L is the coil inductance, V the voltage across the winding (volts), τ the pulse width (secs) and $\Delta 1$ the change of current (A).

Recapitulation and Future Trends

We have seen that the range of coils manufactured is wide and the construction and materials are dictated largely by circuit requirements. Standard coils are

Fig. 4: Toroidal transformer
available for most applications but are difficult to obtain for unorthodox or new requirements. Prototype coils are built as a service by most manufacturers but these are expensive and take between 2 and 6 months to make. Therefore the only solution for the home constructor is to wind and build his own coils using available materials.

In general, satisfactory coils can be reconstructed with a very limited knowledge of coil design. The main requirement is common sense and trial and error. The novice to coil design, once he takes the plunge, is often surprised at the simplicity of obtaining the desired results. They may not always be ideal in design but will fill the bill, which is all that matters.

Future trends will be towards even greater diversity of coil type, especially in the field of switching, inverter and pulse circuits. Power supplies, which at present are limited in size by the large mains transformer, will reduce in size as high frequency switching supplies take over. Most coils will reduce in size as better materials become available.
to be Continued

In the March issue of

 PRACTICAL TELEVISION
\star PRACTICAL AERIAL DESIGN

Start of a new series explaining aerial design and characteristics. Construction is dealt with in a practical way indicating the dimensions that are critical and those that are not, with simple formulae for calculating the dimensions for particular channels. Both v.h.f. and u.h.f. designs will be featured.

* VIDEO AMPLIFIER

Details of a simple video amplifier for use with a photomultiplier tube in our flying-spot scanner. Also details of the receiver modifications required for scanning and display.

* WORKSHOP HINTS

Start of a new series providing useful hints and guidance on workshop techniques. The opening part deals with the practical problems of faulty transistor diagnosis and replacement, how to remove excess solder from printed panels and techniques for temporarily bridging components.

* VALVE AND COMPONENT OVERHEATING

Many TV faults cause valve or component over-heating. Do you know exactly what can be deduced and what remedial action to take? This article provides a systematic guide to fault diagnosis when confronted with the symptom of overheating.

DISCOVERY OF CATHODE RAYS

The cathode-ray tube was one of the first thermionic devices and played an important part in the development of electronic theory. This account of early experiments provides a lively introduction to electronic phenomena.

POWER SUPPLY TESTING

Gordon J. King continues his treatment of this subject by telling how to test the h.t., boost h.t. and e.h.t. supplies in television receivers. He also takes a look at the use of silicon rectifiers for voltage dropping and colour receiver supplies.

12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output.

This is the recommended amplifier for those requiring great power versatility and reliability. This eight transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $Z .12$ performs satisfactorily from a wide range of voltages and it can easily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $Z .12$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size- 3 in $\times 1 \frac{3}{4} \mathrm{in} \times 1 \mathrm{din}$. Class B Ultralinear Output: Frequency response from 15 to $15,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$: Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohm speakers may be used in parallel: Input 2 mV into 2 K ohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements 6 - 20 V d.c. from battery or PZ. 4 Mains Supply Unit. Ready built, tested and guaranteed.

89/6

SINCLAIR STEREO 25

De Luxe Pre-amp and Control Unit for use with Z. 12 Stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz}$ $\pm 1 \mathrm{~dB})$, Radio and auxilliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/ Treble/Volume/Balance/Input are solid aluminium. Size $-6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed.
£9.19.6

SINCLAIR PZ4

STABILISED MAINS POWER SUPPLY UNIT
Heavy duty transistorised power supply unit to deliver 18 V d.c. at 1.5 A . Designed specially for use with two Z.12 Amplifiers together with Stereo 25. Built, tested and guaranteed.

99/6

\longrightarrow 而

SINCLAIR MICROMATIC

The world's smallest radio

This fantastic little British pocket receiver is available in kit form to build for yourself or ready built, tested and guaranteed. Its range and selectivity must be experienced to be believed; its power and quality everything you could want. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier; in fact, you will find your Micromatic performing where other sets cannot be heard at all. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.
(iokh quality mag netic earpiece

- Choice of many stations
- Pays anywhere

solder and instructions.
59/6
Mallory Mercury Cells RM. 675 (2 regrd) each 2/9

the most challenging loudspeaker design in years

It is more than a matter of saving money when you choose the 0.14. This is the loudspeaker that delights experts and critics alike for its fine forward quality, its clarity and exceptional adaptability. Designed on original lines and from unusual materials, the 0.14 will easily carry up to 14 watts and has very smooth response from 60 to $16,000 \mathrm{~Hz}$. Size- $9 \frac{3}{4}$ in square $\times 4 \frac{3}{4}$ in deep, with matt black finish and solid aluminium bar embellishment. Input impedance - 8 ohms.
The 0.14 costs about a quarter of what you might expect to pay for a good stereo speaker system. A pair used with two Z.12s and the Stereo 25 will give you superb high fidelity to stand comparison with far costlier equipment.

Try the 0.14 in your own home without delay. If it does not delight you, sendit back and your money including cost of postage £7.19.6 will be refunded in full.

THE SINCLAIR Q. 14 LOUDSPEAKER has a seamless sealed acoustic pressure chamber contoured to ensure forward sounding presence and wide dispersal of sound. The driver unit employs a massive ceramic magnet, special cone suspension and alu minium speech coil resulting in brilliant transient response. The input impedance of 8 ohms makes the Q .14 particularly suitable for use with transistor amplifiers. It can be used as a bookshelf speaker, a corner reflect or flush mounted on any appropriate flat surface, etc.

GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.

ORDDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

TRANSISTORS etc.

$\mathrm{ACl}^{0} 7$	$31-$	OC28	8/6
AC126	21 -	0 C 35	${ }^{716}$
${ }_{\text {ACl }} 85$	31	OC44	210
AC147	4 4-	0 C 45	$2 / 0$
ACY19	$3 / 9$	OC70	$2 / 3$
ACY21	$3 / 9$	0 C 71	2/-
AFlis	31-	OC72	12
AF'16	$31-$	0c73	2/3
AF17	$2 / 8$	OC75	$2 / 2$
BFY18	$4 / 6$	OC81	$2 /-$
BFY51	$4{ }^{-}$	0 Cc 1 D	$21-$
B8Y26	$3 /-$	OC82D	$2 / 3$
B8Y28	$3 / 8$	OC140	$51-$
B8Y65	$31 /$	0 Cl 69	$3 / 6$
B8Y95A	${ }^{31}$		212
GETLI3	218	$0 \mathrm{Cl} 1 \mathrm{~F}_{1}$	$2 / 2$
OA5	116	OC200	4/6
OA9	118	OC202	4/6
OA8!	$1 / 6$	- 6203	$4 / 6$
0 A 85	$1 / 8$	0 O204	$5 / 6$
$\mathrm{OAPM}^{\text {a }}$	119	TK220	1/6
0023	$8 / 6$	TK22C	176
OC25	$5 /-$	2N743	4/8
00^{26}	51	2 N 753	2/9

SILICON DIODE
REGTIFIERS

RECTIFIERS	
BY100 800 piv	$2 / 10$
New 500 mA	1/9
Avalanche 11/	
1200 pir	$4 /$
Six Amp Series	
BYZ13 300 plv	3/6
BYZ12 600 piv	$4 / 8$
BYZ11 900 piv	$51-$
BYZ10 1200 piv	5/6
Mullard Stack FW	
12A 100 piv 39/6	(3/-)
THYRISTORS	
5 amp series	
100 piv	7/6
200 piv	9/-
300 piv	1016
400 piv	121-
10 amp serics	
50 piv	101-
100 piv	121-
100 amp нeries	prices

Cryatal Diodes-6 for 2/6. (7a.). | available on request. lso $14 \mathrm{~F} 350 \mathrm{~V} 1 / 2$, $25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 3$ and $50 \mu \mathrm{~F} 50 \mathrm{~N} 1 / \theta$. Other lostage, Packing and insurance all above 7 d . up to $3: 1 /$ - from $4-11$. 12 and over paid 2 gang Var. CONDENSER: Mod., mmall, air-spaced, 0005 ea. sec. $5 /-(1 /-)$
TRANSFORMERS: Sub-min Output (3Ω for OC72 etc.) and Driver $2 / 6$ each (8 d.) MULTIMETER: $20,000 \Omega / \mathrm{v}$. D.C., $10000 \Omega / \mathrm{v}$. A.C. $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ volte D.C - $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ volts A.C. - $0-50 \mu \mathrm{~A} / 2 \cdot \mathrm{bmA} / 250 \mathrm{~mA}$ D.C. - $0-6 \mathrm{~K} \Omega / 6$ meg Ω $10 \mu \mu \mathrm{~F}^{-}-001 \mathrm{mdd} / \mathrm{imfd}$. -20 to +22 dB . In leather carry chase. Conpenement $4.7 .6(2 / 6)$ IUNIOR MODEL at 35/-(1/6) $1000 \Omega / \mathrm{V}$. deseribed in iree list OLDER OLDERIN IRON. Blim Mod British High gpeed, 8jin, all parta replaceable, fill Built in tranaformer for instant power, $45 /$ - ($4 / 6$)
DIAMOND STYLI: Repiacements for TC8LP, TC8/Stereo, TC8LP/Stereo, Studio O Br401P Ronette, GC2. GC8, AP37, $3 / 3$ GP91 at B/9 GP91-LP/8 at 18/8. SA 78 rpn avaliable in diamondi or sapphire. PICK-UP CARTRIDGES, sil fitted Hono de Laxe GP91/2, 17/-. © Stereo--Compat steren, top quality for expensive outnts, GP94, $38 / 8$ (all 1/-)
PP3 ELIMINATOR (A.C.) 17/8. (1/6) TWO STATION TRANS. INTER-COM. Excellent PP3 ELLMINATOR (instant. eawy fitting. All your require $52 / 8(3 /-)$. FOUR TRANSISTOR
TELEPHONE AMPLIFIER,
tree when phoning $5 / / 8$ (1/
Exee when phoning $52 / 8(1 / 6)$.
EXT REV COUNTER to 999 , long spindle, reset wheel, for T/recorders etc. 4/8 (1/-) BATTERY CHARGERS: Smallo sturdy, neat; 2 amp. 12 Vv . $35 /$-; $6 \mathrm{v} / 12 \mathrm{v} 38 /-4 / 6$ either type). Larger British 6v and 12 v with meter, fuse, etc. $42 / 6$ ($8 /-$). All absolutely complet ($4 / 6$ elther type).
RECORDING TAPE: Finest quality British Mylar. STANDARD: 5in. 600ft. 7/3, 5\%in $850 f \mathrm{tt} .8 / 9,7 \mathrm{in}$. 1200 ft . $11 / 3$. LONG PLAY $5 \mathrm{in} .900 \mathrm{ft} .10 /-, 6 \mathrm{in}$. 1200 ft . $11 / 3$, 7 in . 1800 ft . 18/-. (1/3 reei). Other types in our liat.
MICROPHONES-CRYSTAL. MIC91, Deak, 18/3; MIC45, curved hand grip 17/3: Btick "60" $20 / 3$; Stick " 39 " 26/6 (1/6 each type). Cream plastic hand type 7/6, or with "strut"
 (1/3 each type). Lapel (or hand) with clip $6 / 6$ (1/-). Machined metal ,

 similiar, bnt fixeld on thexible swan neck to swith-fitted bare inside tbread 33/8 (1/6). CARDIOID DYNAMIC OMNL-DIRECTIONAL: Professinnal types now available to all at reatly sensible prices. Extremeiy handsome wih every possible new fenture making
perfection in sound amplifcation. For use in or out of doors-full details in our list. Both perfection in mound ampl. Tor stind mounting : "Square" type, 208, £5.10.0 dellvered free. "Ball Type" with bult-in wol. control, on/off switch and optional hi/h inpedance ($60 \mathrm{k} \Omega$ or 600Ω), $\mathbf{~} 5.17 .6$ delivered free An exactly simpliar mike bearing a worid famous name is sold at over twice this price. All mikea are suppiled with leads
SPEAKERS: 12 in round, fitted Tweeter, $6 \mathrm{~W}, 3$ or 15Ω (state which), $35 / 8$ ($5 / 6$): 24 in . 80Ω British, $5 /-(1,-) ; 2$ th. $3 \Omega 8 / 8(1 /-) ; 6 \times 4$ heavy duty $3 \Omega 13 / 8(2 / 6)$ or fir 8 stereo
 (either 6 d .).
MICROPHONE 1NSERTS: Diatneter 1.75 in . or 0.9 in either size $5 / 6$ (6 d .).
AERIALS. Car Types: Teleacopic, vandal proof, locks retracteri, 22 keys and all tittinge,

 screw hole in base. $12 / 6$ ($1 /-$ all sizes)
SWITCHES: Btandard toggle, metal, 250v 2A. One hole Hxing: SPST 2/3, SPDT $2 / 9$. DPRT 3/-. DrDT 3/3. Slide types, subb-min. DPDT 1/8 each. 8mall DPDT 3 way, centre "off $1 / 8$, Reed maignetle on /off $1 / 9$ (7 h, . each, all types). Rotary 8 witches etc. in list. VIBRATORS: Famous makes only. 12 volt ${ }^{4}$ p
MAINS NEON TESTER: Fly leads 2 -(7fi). Pocke1screwd river type $3 / 6$ (6 (i) . PLUGS: Std MAINS NEON TESTER: FIG leads $2 /-$ (7i.). Pockel screwdiver Aype HOLDERS: B7G or B9A, Moulded 8 d . (7d. up to 4, 1/-over 4). CONNECTING WIRE: 5 coils asstd. cols each B9A, Moulded 8d. 7d. up to 4, 1/- over 4) Chin for transistor wiring etc. $3 /-$ (6d. all types, per 5 colle). PICK-UP WIRE: Twin super thin Flex, screened, Sheathed, $1 / 3$ yd. (6 d , up
 free. SINGLE MIKE C
sereened and alheathed.

screened and sheathed

VOLUME CONTROLS: Famous British makes only-small modern types. Virtually all values from 5 K to 2 Meg Without switch 1/9. With double pole awitch $3 /-$ (9 c either RECORD DECKS: Latest popular types of famous British rakes a
time at lowest prices. Your enquiries invlted, but no litats available.
CURRENT LIBT sent with all orders or free for S.A.E. Detatls of all types of plugs and socketa for co-ax, car radio, contlaental DIN types for European recorders and equipment etc., etc,, cable, wire. test equipment, portabie caps:LIt driven tape reco and lists supplied
FELSTEAD ELECTRONICS
(PW16)
LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE, SK8 4EE TERMS: Cash with order only. No C.O.D. or caller service. Post, packing and insurahice
charges are shown in brackets atter all items. Regret orders under $5 /$ plus carriage cannot be sccepted. Charges, which apply to G.B. and Eire ontr, are paid by us on ordern value \&5 and over. Oversens air or surface mail extra at cost

TRS MROM TO CHOOSELESS TO PAY

A NEW DE-LUXE FM MONO/STEREO TUNER FROM TRS

- A.F.C. \& A.G.C.

This alvanced design commutable Hi $\mathrm{F}^{2} \mathrm{~m}$ monol stereo FM tuner comes in easy-to-assemble predards of efficiency and performance. Valuable retine matic noise suppression, tly wheel tuning. sterco indication light, excellent audio response Sensitivity better than 5 baicrovolth. Btereo can be added later if so requested. Tnelusion of a
wirlid famous (lorler I.F. amplifier ensures wirlid famous (torler l.F. atmplither ensures
superb performance. Excellent chaskis denigr superb performance. Excellent chaskin denigy mate specially to fit the standird Trateh the TRs Stereo 4.4.
S.A.E. brings ful details.

Total price (for mains operation) 229.10 .0 (Carriage 10

Noise Limiter

- Chassis Ready Built
- pre-tuned Kit to make MONO
turer ine. chansigs
and tuning apsembly
gns. and tuning (pasembl

10 gns.
Add-in Stereo Un\}
250
Power Unit

TRS STEREO 4-4

INTEGRATED AMPLIFIER
AT.R.B.design based on newly developed Amitches.
Mullard 4 wath modules with BC108 Amplifier
\&7. 19.6 Complete kit Mulard 4 watt modules with BC108 pre-imp. suitathe for speakers
3 to 15
ohms. Bass and tireble cut/boost. Response 60 to $14 \mathrm{kHz} \pm 3 \mathrm{~dB}$. This excellently engineered layout requires only wiring between controls and modules. Complete with metal chassis and T.R.S. simplex teak-ended cabinet for instant
assembly. Stereo/Mono and Hatlio/I'U (p/p 3/6) \qquad T. (p/P 2/6) T.R.S. Simpler Cabinet £1.17.8 (p/p 2/6)
4 prs . IDN plugs and ockets sockets if pur
separately, $15 /$.

PLAYING UNITS BY GARRARD AND E.M.I.

with 9T.A.Stereo $6 / .$.) $67 / 6$.

 Cartridge. 910.15 .0 .AT. 80 Mk . II De-Lure Auto-changer, dieAT. 80 Mk. II De-Lure Auto-changer, die-
cast turntable. Less cart ridge. $£ 13.17 .6$. SP. 25 De-Lure slngle record player, diecast turntable. Lema cartridge, £12.10.6. Brand new in mazere carriage on any one of above $7 / 6$. GAM carriage OLINTH WB.I. In fine Teal MX2M 27/6. for aliove units. (Packing and carriage

MAKE A BOOKSHELF SPEAKER

With a set of matched speakers and cross-over from TRS. Comprises modern style
 response fron 80 to $20,000 \mathrm{~Hz}$. Loading up to 6 watts. Made by a world-famous manufacturer. A genuine bargain tor only

SKELETON PRESETS for P/circuit use. 100 ohms -2.5 Mea $2-$ STANDARD W/WOUND POTS. LOUS 100,000 ohms each $8 / 9$.
VOLUME CONTROLS 1 in. dia. Long Bpimilles. 000 Ohms-2 Megohms. Guaranteed 12
 3/6. DP Su, 5/-. Log or Linear tracks Centre Tapped Megohm Log, Megohm 11 in . dia., Long Spindles. All values 5000 ohms to 2 Megohms leas Sw, ear. 8/6. Al ea. $10 / 8$.
STEREO BALANCE CONTROLS
Log/Anti-Log $\overline{\mathrm{K}} \mathrm{K} .10 \mathrm{~K}, \frac{1}{6}$ Meg... 1 Meg VEROBOARD-All standard sizes in-

 'CIR-KIT' Adhesive copper strip tor cir RESISTORS Modern ratinga, juil range 10 ohms to 10 megohms, 10%, $\frac{1}{6}-\frac{1}{b}$ w
4d. ea.; 5% Hi-Stab. $t-\frac{1}{2}$ w., 6 d . ea. (belov

100 ohms and over 1 meg. ©d. ea.)
1% Hi-Stah, \mid w. $1 / 6$ ea, (below 100
ohms, 2/-ea.). Silver Mica. All value 2 pF to $1,000 \mathrm{pF}$, 6d. ea. Ditto ceramics 9 d Tub. 450 v . T.c.c., etc. 001 mPd to $0.1 \mathrm{mF} / 350 \mathrm{v} .10 \mathrm{~d} .02 \mathrm{mP}$ to 0.1 mFd
$500 \mathrm{~m} / 1 /-.25 \mathrm{~T} . \mathrm{C} .1 / 8.5 \mathrm{~T} . \mathrm{c.c} .2 /-$ 500 V. $1 /-, 25$ T.C.C. $1 / 9.5$ T.C.C. $2 /-$.
CLOSE TOL. S/MICS. $10 \% ~ 5 ~ p F-500 ~ p F ~$ Gd. $600-6,000 \mathrm{pF}^{2} 1 /-1 \% \% \mathrm{pF}-100 \mathrm{pF}$ 11d. $100-250 \mathrm{pF}^{\prime} 1 / 2 \cdot 270-800 \mathrm{pF} 1 / 4$ ALWAYS IN STOCE AT KEENEST PRICES. Transistors. Coils. Switches, Taives, Speakers, Materials. See latest TRS lists.

ORDERING-Send cash with order Fom and packing where nol stater nind 61b . $6 / 6,10 \mathrm{ib}$: $8 /-, 1 \mathrm{lib}$., over, $10 /-$ S.A.E. with enquiries please LISTS-Eight large printed pages packed with bargain offers including
iffficult to find lines. Gend 6d. for ifffeult to find lines. Gend 6d. for latest copy.

frfe! handymanis putty knifíe

BLADE EXTENDABLE ADHESIVE SPREADER ATTACHMENT MADE IN DURABLE PLASTIC

Plus special feature

Practical Householder has designs on your kitchen
-and other rooms in your house too. Packed with ideas for unusually attractive wall and floor treatments, and simple furniture fitments you'll find easy to build.

Also

Wall-to-Wall Cupboard for Your Bedroom
How to do Ornamental Ironwork
Wiring for Light and Power
How to Get the best from FurnitureKits and Whitewood Units
MARCH ISSUE OUT NOW 2/-

SIIR

with a Deutron 'NEW DIMENSIONS'" 3Dimensional effects amplifier. Gives Big Hall Stereo effect to most radios, tapes, etc. PLU's fully adjustable echo, vibrato and tone. 9 volt model, 8 gns. Speaker, $25 /$ - extra. 6/12V car model, 10 gns. hel, speaker. Post and ins. 5/- either mode1. Write now-right now.

D.E.W. LTD.,

P.W., RING WOOD ROAD, FERNDOWN, DORSET

Est. 1943 JONNSONS Tel: 24864
VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, 70-150Mc/s, 75/6, p.p. 4s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

NEW VALVES!
Guaranteed Set Tested 24-HOUR SERVICE

IR5	$4 / 9$	DY86	5/6	NZ80	3/9	PL500	
IR5	4/3	DY87	5/6	E781	4/6	PL504	12/6
T4	$2 / 9$	EABC80	$5 / 9$	KT	8/3	PY39	101-
384	$5 / 9$	EBC41	81	K Tf	$15 / 9$	PY33	101-
3 V 4	5/6	EBF80	5/9	N78	14/6	PY81	5/-
GAQS	$4 / 6$	EBF89	5/9	PABC80	8/9	PY82	4/8
6 L 18	B/-	ECT81	3/8	PC86	9/3	PY'83	5/3
$30 \mathrm{Cl8}$	$8 / 9$	HCC88	4/3	PC88	$9 / 3$	PY88	$6 /-$
30 FL 1	12/3	ECC8	$4 / 9$	P'97	$7 / 9$	PY800	6/8
30 FL	14/3	ECC85	4/8	PC900	$81-$	PY801	6/6
30 FL	10/3	ECH35	5/6	PCC84	5/9	R19	6/3
30 P 4	11/6	ECH42	$9 / 9$	$\mathrm{I}^{\text {'CC89 }}$	9/8	U25	$12 / 8$
30 P 19	11/6	ЕСН81	5/3	PCCl89	$9 / 8$	U26	$11 / 6$
30 PLL	12/3	ECLB0	8/3	PCF80	6/3	U191	$12 / 8$
CH35	$9 / 9$	ECLR2	8/3	PCF82	$5 / 9$	UABC8	5/9
CL33	18/6	ECL83	$8 / 9$	PCF80 1	6/9	UBC41	7/6
DAC32	$6 / 9$	ECL8	7/6	PCP'805	8/8	UBF89	6/3
JAF91	$4 / 3$	EF39	3/6	PCF808	1013	UCO84	$7 / 8$
DAF'9	5/11	EF80	$4 / 8$	PCLA?	6/8	UCC85	6 fi
DF33	$7 / 6$	EF86	$51-$	PCL83	8/9	UCF80	8/-
DF91	$2 / 9$	EF86	6/3	PCL84	71	UCH42	9/6
DF96;	5/11	EF89	$4 / 9$	PCL85	81	UCH81	8/-
DK32	$8 / 9$	EF183	5/9	PCL86	81-	UCL82	6/8
DK91	$4 / 8$	EF184	5/6	PFL2001	12/-	UF41	$9 / 6$
DK96	$8 / 6$	EL33	8/3	$\mathrm{l}^{\prime} \mathrm{L} 36$	8/3	UF89	5/11
DL35	$4 / 9$	EL41	$9 / 3$	PL81	71	UL4	$8 / 8$
DL92	$5 / 9$	EL84	4/6	PL82	5/9	UL84	$5 / 8$
DLO4	5/6	EY51	6/9	PL83	6/-	UY41	6/6
DL96	6/6			PL84	61	UY85	5/3

GERALD BERNARD
83 OSBALDESTON ROAD STOKE NEWINGTON LONDON, N. 16

PTEII!

FANTASTICALLY POPULAR大 TA
We offer you fully tensilised polyester/mylar and P.V.C. tapes of identical quality hi-H, wide range recording characteristics as top grade tapes. Quality control manufacture. They are truly worth a few more coppers than acetate, sub-standard, jointed or Standard Play Long Play

	Standard Play			Long Play	
3 in	150 ft .	2/3	3in	225 ft .	$2 / 9$
4 in .	3001 t .	4/6	4 in .	45015.	$5 / 8$
5 in .	60016.	$7 / 6$	5 in .	90 oft.	10/6
5 lin.	900 ft .	$10 / 6$	5 in .	1.200 ft .	13.
7 in .	1,200ft.	12/6	7 ln .	1,800ft	18/6
	Double Play			Triple Pley	
3 in .	300 ft .	4/-	4 in .	900 ft .	13/
4in.	600 ft .	8/-	5 in .	1.800 tt .	$25 /$
5 in.	1,2001t.	15/	5 jin .	2.400 ft .	$34 /$
51 in .	1,800ft.	$19 / 6$	7 in .	3,600ft.	44/-
7 in .	2.400 ft .	27/-		andruple P1	

Postages 1/-reel
Post Free less 5% on three reels.
NOTE: Large lape slocks al all branches.
7 C 5 C $\begin{aligned} & \text { Hizhest Quality- } \\ & \text { Compare Our Prices }\end{aligned}$

Most Mullard Marda Cossor. Emitron. Emiscope Brimar. Ferranti types processed in our own factory. NOTE: ALL tuhe noders only to Portsmouth branch NEW and SPECIAL Lines at the keenest prices
AM/FM STEREO MULTIPLEX RECEIVERS 18 transistors, 9 diodes, 1 varisble diode, 2 Silicon Rectiliers. Push-pull Stereo Amplifers. FM Stereo Sower output 10 W R.M.S., 220/240V A/C Mains. Beautiful wooden plinth case-approximstely $15^{\prime \prime}(\mathbf{w}) \times 6^{\prime \prime}(\mathrm{h}) \times 9^{\prime \prime}(\mathrm{d})$. Controls: Function Switch Balance, Base/Treble Control, Volume. Tuning. Fine finish. Special purchase enables us to ofer these superb machines of tamous make at a ridiculously low price. Unrepeatable offer at a Iractlon of list price . . . only 26 GNS. POST FREE.

SHARP RD504 Mains Battery Tape Recorder. List 36 gns	28 gns
HITACHI Marine D/F Receivers SW/MAR/MW/LW	27 gns
GARRARD ${ }_{\text {Stereo Cangers with }}^{1025}$	f810s
JASON 12in. Diecast full range twin cone Speakers	f410s
AJAX $\underset{\text { Radio }}{\text { Mainstery, AM/FM larger }}$	12 gns
WELESMERE $\begin{aligned} & \text { AM/FM High Sensitivity } \\ & \text { Black Leather }\end{aligned}$	7 gns
HITACHI WH837E All-Wave, full size. Excellent Short Wave	13 gns
By Leak, Wharfedaie. Goodmang, Dulci, Arona. Teleton, etc., etc.	

Allitems previously advertised Ft and Component stocks at all branches. Please call and view without

RETAAL BRANCHES
LONDON, 10 Tottenham Court Road (MUS 2639) PORTSMOUTH, 350-352 Fratton Road (Tel. 22034) SOUTHAMPTON, 72 East Street (Tel. 25851) RBIGHTON, 6 Queen's Road (Tel. 23975)

MAIL ORDER WAREHOUSE:
Devonian Court, Park Crescent Place, Brighton.
(Tel. 680722)

BARGAIN PARCELS

Including variable condensers, i.f. ccils, loudspeaker plug/ sockets, knobs. pots, condensers, resistors, nuts, bolts, transistors at a amall traction of list value. Due to hesey demand we now pack them in several sizes-be amazedtry one now.
3 lbs. (post 3/-
7 lbe. (post $5 / \%$
14 lbs. (post $6 /-$)

PRINTED CIRCUIT KIT
 BULLD 40 INTERESTING PROIECTS on a PRINTED CIRCUIT CEA88IS with

 PARTS and TRANSISTORS trom your SPARES BOXCONTENTS: (1) 2 Copper Laminate Boarda $4 f^{*} \times 21^{*}$. (2) 1 Board for Match box Radio. (8) 1 Board for Wristwatch Radio, ete. (4) Reslat. (5) Resist Solvent. (6) Etchant. (7) Clemnaer/Degreaser. (8) 16 -page Boakjet Printoc Circufis for Amateurs. (9) 2 Miniature Radio Dials $8 W / M W / L W$. Also free with each kit. (10) Essential Degign Data, Circuits, Chassis Plsns, etc, for 40 TRANBIBTORIBED PROJECTB A very comprehensive gelection of circuita to suit everyone's requirements and constructional ability. Many recently devel for the first time, lacluding 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT

8/6

Postage \& Pack. 1/6 (UK) Commonwealth gURFACE MAIL $2 /-$ AIR MAlL $8 /-$ Australia, New Zealand South Africa, Canada.
(1) Crystal Set with biased Detector. (2) Grystal Set with volfage-quadrupler detector. (3) Crygtal get with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifler. (5) Cartier Power Conversion Receiver, (6) Split-Load. Neutraised Double Reflex. (7) Matchbox or Photocell Radlo. (8) "TRI-FLEXON" Triple Reflex with nelf-adjusting regenerstion (Patent Pending). (9) Bolar Battery Loudspeaker Radio. The anosllest 3 designs yet offered to the Home Constructor anymbere Let us know 3 subminlature Radio Receivera babed on anywhere (10) Postage Stamp Radlo.
 Ring Radio $\cdot 70^{\circ} \times \cdot 70^{\circ} \times \cdot 55^{\prime \prime}$. (13) Bacteria-powered Radlo. Runs onisugar or Ring Raw. (14) Radio Control Tone Recelver. (15) Transistor P/P Anplifier. (16) Intercom. (17) 1 -valve Amplifier. (18) Reliable Burglar Alarm. (19) Light-Seeking Animal, Guided Misalle (20) Perpetual Mothon Machine. (21) Metal Detector, (22) rransistor Teater. (23) Human Body Radiation Detector, (24) Man/Woman Discriminator. (25) Signal Lnjector. (26) Pocket Tranacelver (Lasention. (29) Inductive-Loop Volume Intercom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Refiex Radio. (31) Wratwatch Transmitter/ Wh) Stereo Microphone. (32) Wire-less Door Bell. (33) Amplifer. (36) Light-Beam Telephone Preampllfer. (35) Quaity Stereo Push-P11 Ampliner. (38) SV Bound Adajtor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Bpeed Controller.

PHOTOELECTRIC KIT

CONTEN'S: 2 P.C. Chassis Boards, Chemicals, EtchIng Msnual, Infra-Red Phototransiator, Latching Relay, 2 Transistors, Condensers, Resistora, Gain Control, Terminal Block, Elegint Case, Borews, etc. In ract everything you need to build a steady-Light modulated-light operation.

PHOTOELECTRIC KIT 39/6
Postage and Pack. 2/6 (UK) Commonwealth sURFACE MAIL $3 / 6$ AIR MAIL EL.0.0 Australis, New Zealand, 8. Africa, Canald and U.8.A Also Essential Data Circuita and Plans for Building
2 PHOTOELECTRIC PROJECTS. (I) Steady-Light Photo-Bwitch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Stray-light Alarm. (4) Relay-less Alarm. (5) Warbing-Tone Alarm. (6) Clobed-Loop Alarm, (7) Projector Lamp slabilizer (8) Electronic Projector Modulator. (9) Mains Power Supply. (10) Car Parking Lamp INVISIBLE BEAM DPTICAL KIT
Eyerthing needed (except plywood) for building: 1 Invisible-Beam Projector and Pratocell Recelver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, ete.
CONTENTS: 2 lenses, 2 mirrors, 24 -degree wooden blocks, Infrs-red filter, projector lamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack. lamp holder, builing plans, perfarmance-: Air Mail 8/-
JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Photo-8witch, Burglar Alarm, Donr Opener, Counter, etc., for the Fxperimenter.

3 Transistors, Chassis, Plastic Photoelectric Destgns
Photoelectric Designs" Pack. $1 / 6$ (UK). Commonwealth 2/-; Air Mail 4/-
JUNIOR OPTICAL KIT
CONTENTR: 2 Lenses, Inira-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniatare invisible beam projector and photocell receiver (except plywhoti) for use with Junor Photoelectric Kit.
Price 10/6. Post and Pack. 1/6(UK). Commonwealth: Surface Mail 2/: : Air Mail 4/-

PHOTOELECTRIC PARKING LAMP SWITCH

Automatically turns parking lamp on at dusk, off at dawn. Protects your car. Saves the battery. Miniature cons

THYRISTOR LIGHT DIMMER

Add s touch of luxury to your home. Adjust the lightat parties, while watching TV, etc Ideal for Children's bedroom. (100 watts max.) Replaces on-off switch Price: 59/6. Post \& Packing 2/6 (U.K.)

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full detalls, a brief deseription and Photographs of all

PUBLICATIONS FOR RADIO AMATEURS AND ENTHUSIASTS

Amateur Radio Call Book (1968 ed. RSGB)	$7 / 3$
Amateur Radio Circuits Book (RSGB)	$11 / 6$
Antenna Book (10th ed. ARRL)	$18 / 6$
Amateur Radio Techniques (RSGB)	$13 / 3$
Basic Theory and Application of Transistors (Dover)	$11 / 6$
Course in Radio Fundamentals (ARRL)	$10 /-$
Cubical Quad Antennas (Radio Pubs.)	$22 /-$
Foundations of Wireless (Iliffe)	$22 / 6$
Guide to Amateur Radio (12th ed. RSGB)	$6 / 9$
How to Listen to the World	$26 /-$
Mobile Handbook (CQ)	$23 /-$
Mobile Manual for Radio Amateurs (ARRL)	$23 / 6$
Radio Amateur Operator's Handbook (Data)	$5 / 6$
Radio Amateur's Operating Manual (ARRL)	$7 / 9$
Radio Amateur's Vocabulary (German/English)	$9 / 3$
Radio Communication Handbook (RSGB)	$69 /-$
RTTY Handbook (CQ)	$30 /-$
Service Valve and Semiconductor Equivalents	$5 / 6$
Single Sideband for the Amateur (4th ed. ARRL)	$23 / 6$
S-9 Signals (Radio Pubs.)	$8 / 6$

Further details of other publications,

 information about membership, and a sample copy of the Radio Communication (4s.) (the RSGB monthly journal), may be obtained by writing to:RADIO SOCIETY of GREAT BRITAIN, Dept. PW. 35 DOUGHTY STREET, LONDON, WC1

MARTIN is high Fidelity
 ADD-ON-ABILITY THRILLING POWER DEPENDABILITY
 GENUINE ECONOMY
 Details from: - Trade enquiries invited
 MARTIN ELECTRONICS LTD., 155 High St., Brentford, Middlesex. ISLeworth 1161

SILICON N.P.N.TRANSISTORS. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at 1/6 each or $£ 5$ per 100
12 VOLT TRANSISTORISED FLUORESCENT LIGHT. * 8 WATT 12 in TUBE. Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only! Or in kit form

*Post and Packing 3/-
TRANSISTORS
OC200, OC203, OC204, all at 2/- each
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A, 2G378A, all at $1 / 6$ each.
Transistors similar to OC44, OC71 and OC72, all 1/- each.
Unmarked, untested transistors, 7/6 for 50
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each.
30 watt transistors (ASZ17), 10/- each.
ORP 12 Cadmium sulphide light-sensitive resistors, $9 /-$
RECTIFIERS
RY100, 800 p.i.v., $2 / 6$ each, $24 /$ - per doz., $£ 7 / 10 /-$ per
BY100, 800 p.i.v., $2 / 6$ each, $24 /$ - per doz., $£ 7 / 10 /-$ per 100 , $£ 50$ per 1,000. BYZ1 3, 6-amp, 400 p.i.v., a available on same terms.

MULLARD POLYESTER CAPACITORS

$0.001 \mu \mathrm{~F} 400$ volts FAR BELOW COST PRICE!
$\begin{array}{llll}0.001 \mu \mathrm{~F} & 400 \text { volts } & \ldots & 3 \mathrm{~d} \\ 0.0015 \mu \mathrm{~F} & 400 \text { volts } & 0.15 \mu \mathrm{~F} 160 \text { volts }\end{array}$
$\begin{array}{llll}0.0015 \mu \mathrm{~F} 400 \text { volts } & \cdots & \text { 3d } & 0.22 \mu \mathrm{~F} 160 \text { volts } \\ 0.0018 \mu \mathrm{~F} & 400 \text { volts }\end{array}$
$0.0018 \mu \mathrm{~F} 400$ volts
$0.0022 \mu \mathrm{~F} 400$ volts $\quad \therefore \quad 3 \mathrm{~d} \quad 0.27 \mu \mathrm{~F} 160$ volts $0.01 \mu \mathrm{~F} \quad 400$ volts $\quad \therefore \quad 3 \mathrm{Bd}, 1 \mu \mathrm{~F} \quad 125$ volts
$0.01 \mu \mathrm{~F} \quad 400$ volts $\quad \cdots \quad \mathbf{3 d}, 1 \mu \mathrm{~F} \quad 125$ volts .. $\quad . \quad$ 1/-

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. 10 /- per 100 . PAPER CONDENSERS, MIXED BAGS, 0.0001 to $0.5 \mu \mathrm{~F}$. 12/6 per 100.
RESISTORS! Give-away offer! Mixed types and values, \ddagger to $\frac{1}{\frac{1}{2} \text { watt }}$ $6 / 6$ per $100,55 /-$ per 1,000 . Individual resistors 3 d each. Also $\frac{1}{2}$ to 3 watt close tolerance. Mixed values. 7/6 100, 55/-1,000.
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. 16 for 10 /
RECORD PLAYER CARTRIDGES
ACOS

GP	$67 / 2$	Mono.	15/-complete	with needles.
GP	$91 / 3$	Steroo Compatible	£1/--	,
GP	$93 / 1$	Stereo Ceramic	£1/5/-	",
GP	$94 / 1$	Stereo Ceramic	£1/5/-	

Small pick-up arms complete with cartridge and needle, $10 /$ - only.

UNREPEATABLE OFFER! GIANT SELENIUM PHOTO-CELLS PRODUCE UP TO 6ma. FROM DAYLIGHT!

67 mm . Diameter (29. $2 \mathrm{sq} . \mathrm{cm}$.) $10 /-$ each. $50 \mathrm{~mm} . \times 37 \mathrm{~mm}$. ($16.5 \mathrm{sq} . \mathrm{cm}$.) 2 for $10 /-$ each.

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/-only
TRANSISTORISED SIGNAL TRACER KIT 10/- only
TRANSISTORISED REV. COUNTER KIT 10/-
VEROBOARD
$2 \operatorname{tin} \times \operatorname{lin} 0.15$ in matrix $\quad 1 / 6$
3 in $\times 2$ in $0 \cdot 15$ in matrix $3 / 3$
3 in $\times 2$ in 0.15 in matrix $3 / 3$
3 in
3
3 in $\times 3$ in 0.15 in matrix $3 / 11$
5 in $\times 2$ in 0.15 in matrix $3 / 11$
$\begin{array}{lll}\text { Sin } \times 2 \frac{1}{2} \text { in } 0.15 \text { in matrix } & 3 / 11 \\ 5 \text { in } \times & 3 \text { in } 0.15 \text { in matrix } & 5 / 6\end{array}$
17 in $\times 2$ in 0.15 in matrix $11 /$
17 in $\times 3$ in $0 \cdot 15$ in matrix $14 / 8$
3 in $\times 2 \frac{1}{2}$ in 0.1 in matrix $4 / 2$ 3 in $\times 2$ in 0.1 in matrix $4 / 2$ $3 \frac{1}{2}$ in $\times 3$ in 0.1 in matrix $4 / 9$ $\begin{array}{llll}\sin \times 2 \operatorname{lin} 0.1 \text { in } & \text { matrix } & 4 / 7 \\ \sin \times 3{ }^{\text {in }} 0.1 \text { in } & \text { matrix } & 5 / 6\end{array}$ Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins $3 / 6$ - 36
MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$ d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}$
d.c. $2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$.

Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$.
Special price $£ 4$ only.

ELECTROLYTIC CONDENSERS

$0.25 \mu \mathrm{~F}$	3 volt	$14 \mu \mathrm{~F}$	4 volt	10μ	25 volt	$64 \mu \mathrm{~F}$	
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 \mu \mathrm{~F}$	$6 \cdot 4$ volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at	each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20	sorted
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt		ction)
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	2.5 volt	1	/-.

SMALL TRANSISTOR OUTPUT TRANSFORMERS $\mathbf{2 / 6}$ each
SMALL TRANSISTOR DRIVER TRANSFORMERS $2 / 6$ each.
Orders by post to
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma
Course which gives a thorough fundamental
The next full time 16 month College Diploma
Course which gives a thorough fundamental training for radio and television engineers, starts on 16th April 1969.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW7), 34a Hereford Road, London,W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME

ADDRESS
Renn

\qquad

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

METAL WORK

METAL WORK: All types cabinets. chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

BOOKS \& PUBLICATIONS

AUDIO. America's foremost journal. Year's subscription 50/-. Specimen copy 4/6. All American radio journals supplied-list free. Willen (Dept. 40), 61 a Broadway, London E. 15 .

This useful handbook gives detailed information and circuits for British and American Government Surplus Recelvers, Transmitters, and Test Equipment etc., plus suggested modification details and Improvements for the equipment. Also a Surplus/commercial cross reference valve guide and Government component codings and references. Invaluable to Radio enthusiasts, Universlties and Laboratories.
Avallable only from us at:

GUILTEX

24 Stansfield Chambers, Great George Street Leeds 1, Yorkshire. at $30 /$ - per volume, post paid. Extra postage for Foreign Orders

SITUATIONS VACANT

TESTERS AND TROUBLE-SHOOTERS required by manufacturers of car radios. tape recorders, record players. etc. Good rates of pay. Apply to Elizabethan Electronics Lid., Ref. PW2, Crow Lane, Romford, Essex. Telephone: Romford 64101.

SITUATIONS VACANT

(continued)

DESIGN DEVELOPMENT ENGINEER for laboratory work in the design of audio amplifiers, V.H.F. tuners and quality tape recorders. Only persons holding a similar position need apply. Salary according to experience. Apply to Elizabethan Electronics Lid., Ref. PW1. Crow Lane, Romford, Essex. Telephone: Romford 64101 .

RADIO and tape recorder testers and trouble shooters required. Canteeni, excellent rates of pay. 8.00 a.m. to 5.00 p.m. 5 -day week. Elizabethan Electronics Limited, Crow Lane, Romford, Essex. Phone: Romford 64101.

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C. Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds. A.M.I.M.I., A.I.O.B. and G.C.E. Exams. Diploma courses in all branches of Engineering Diploma courses in all branches of Engineering -Mech., Elec., Auto., Electronics, Radio, Computers, Draughts., Building, etc. For full
details write for FREE 132 page guide: details write for FREE 132 page guide:
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

TRAINEE RADIO TECHNICIANS

A PROGRESSIVE CAREER IN THE
 FIELD OF RADIO AND ELECTRONICS

Applications are now invited for an intensive training course of 3 years, leading to appointment as a fully qualified RADIO TECHNICIAN, with further prospects of progression to the Telecommunication Technical Officer Class.

Generous Pay and Conditions while under training.
Candidates must be over 16 and under 21 years of age as at September 8th, 1969, on which date training commences.

Minimum educational qualifications required are passes at G.C.E. 'O' Level in English Language, Mathematics and Physics (already held or expected to be obtained in the Summer 1969). Equivalent passes in Scottish or Northern Ireland Certificates and C.S.E. Grade I passes are also acceptable.
Closing date for applications 3|st March. 1969. Interviews will be commenced about end of April.

Apply for full details and application form to
THE RECRUITMENT OFFICER (TRT/37),
GOVERNMENT COMMUNICATIONS
HEADQUARTERS, OAKLEY, PRIORS RD,
CHELTENHAM, GLOS, GL52 5AJ

SITUATIONS VACANT
 (continued)

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or kefund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132 page Handbook-FREE. Please state subject BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137 K), Aldermaston Court, Aldermaston, Berks.

TRAIN TODAY FOB TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Electronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- CLOSED CIRCUIT TV
- ELECTRONICS-many new courses
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND SERVOMECHANISMS
- COMPUTERS
- PRACTICAL RADIO (with kits)
- PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS

Guaranteed Coaching for

- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Cert.
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education

Start today-The ICS Way

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 173. Parkgate Rd., London, S.W. 11
Please send FREE book on
Name
Address
\qquad

EDUCATIONAL

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C. 1.

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.
CITY \& GUILDS (electrical, etc.) on "Satis" faction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168K), Aldermaston Court, Aldermaston, Berks.

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies during 1969. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College, Colwyn Bay.

MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box-simply, cheaply. Realistic sound guaranteed. S.A.E. for details. D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.
BUILD IT in a DEWBOX quality cabinet. $2 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. x any length. D.E.W. Lid., Ringwood Road, FERNDOWN, Dorset. S.A.E. for loaflet. Write now-Right now.

ELECTRONIC MUSIC ?

Then how about making yourself an electric orran? Constructional data available5 full circuits. drawings and notes It has 5 octaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable
attack you can play classics and Swing

Write NoW for free leaflet and further dotails to C. \& S., 20 Maude Sireet, Darlington, Durlian. Send 3d. stamp.

CONVERT ANY TV into an Oscilloscope. Instructions \$2. REDMOND, P.O. Box 38397, Los Angeles, California 90038.

GEARED MOTORS

Rectifiers, Potentiometers $6 d$ Stamp for Catalogue
F. HOLFORD \& CO.

6 Imperial Square, Cheltenham

UFO DETECTOR CIRCUITS, data. 10 s (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts

ELECTRICAL

240 ELECTRICITY ANYWHERE

MOST BRILLIANT PERFORMANCE EVER from 12 vol: Car Battery
BRILLIANT HEAVY DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvellous for TELEVISION ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT Marvellous for Fluorescent lighting. Thousands of uses. Tremendous purchase of this model makes fantast ically low price possible.
ONLY $£ 5.19 .6$ each plus $10 / 6$ delivery, C.O.D with pleasure. MONEY BACK if not DELIGHTED Please send s.a.e. for full illustrated details (Dept. PW) STANFORD ELECTRONICS Rear Derby Road, North Promenade, BLACKPOOL, Lancs.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List $1 / 6$. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS. TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from $1 /$-. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 1 b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS $(75,000) 5 /-$ each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford

C. \& A. SUPPLIERS

SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)

Only $5 /-$ each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of
Service Sheets (strictly by return of post) Please state make and model number alternative.

Mail order only

WANTED

DAMAGED AVO METERS, Models 7 \& 8, any quantity. Send for packing instructions. HUGGETT'S LTD., 2/4 Pawsons Road, West Croydon.

NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. DURHAM SUPPLIES, 367 c Kensington Street, Bradford, 8, Yorkshire.

WANTED FOR CASH. Car radios, Transistor radios. All surplus Radio. T.V. and electrical radios. All surplus Radio. T.V. and electrical equipment. Complete parcels bought. Write
details, M. ALEXANDER, 20 Pauline House, details, M. ALEXANDER
Hanbury St., London E. 1.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

WANTED
 (continued)

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WE BUY New Valves, Transistors and clean new components, large or small quantities, al details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton

WANTED: Popular Brand New Valves. R.H.S Stamford House, 538 Great Horton Road Bradford 7.

FOR SALE

MINIFLUX HEADS

Special offer SKN4 $\frac{1}{2}$-track stereo record/playback head (list 8 gns.). Special offer 55/-. Miniflux LF6-0 self oscillating half-track mono erase head, list $£ 3.10 .0$. Offered at 22/6. VLF4 $\frac{1}{6}$-track ferrite erase head, list $£ 4.5 .0$. Offered at 32/6. S.A.E. for full lisis.

LEE ELECTRONICS

400 EDGWARE ROAD. PADdington 5521

HIGH CLOSS METALLIC

 HAMMERED ENAMEL MAKES FANTASTIC DIFFERENCE TO PANELSsay hundreds of enthusiastio users
crackle pattern appears like magic on wood and metal. No undercoat. Air BRUSH dries 15 min. io hard OR SPRAY-ON glosg hinigh. Hest, Iquid
and acrstch.proot. Bronze, silver, Green, Black, Lt .
and Dk. Blue. Send NOW for free 1 lst , or $8 /-(+1 / 9$ post and packing) for trial ipt. tin, colour samples and inst ructions.
FINNIGAN SPECIALITY PAINTS, Dept. P.W. STOCKSFIELD (TeI, 2280), Northumberland.

TOP TRADE DISCOUNTS FOR ALL
 COMPONENTS VALVES TUBES
 TRANSISTORS
 Free Trade Catalogue
 Engineers \& Service Dealers Only WILLOW VALE THE SERVICE DEPT. WHOLESALERS,
 4 The Broadway, Hanwell,
 London, W. 7
 01-567 5400/2971

£6,000 IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills Stockport SK 12 4HL

THE IDEAL Panel Mounting Meter Movement for any Sensitive Test Meter etc 200 Micro Amp F.S.D. 4 tin . $\times 4 \mathrm{lin}$. In clear plastic case. Our special price only 39/6d P. \& P. free. Limited number only. WALTON'S WIRELESS STORES, 55A Worcester Street, wolverhampton, Staffs.

MORSE $\underset{\substack{\text { MADE } \\ \text { EASY }}}{\text { ! ! }}$

FACT NOT PICTION. It you start RIGHT you will be reading umateur and commercial
Using seientifically prepared 3 -speed records you automatically learn to recoguine the code RHYTHM without translating. You can't help It, it's easy as learning a tune, 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring, s.t.d. 01-660 2896 Gend 8d, stamp for explanatory booklet GBCHS/P, 45 GREEN LANE, PURLEY, SUREE

RECEIVERS \& COMPONENTS

McMURDO Silver, 6 band, chassis and speaker. Offers SUFF, 48 East Street, Hereford.

WHAT OFFERS for 5-10 Amplifier (Gilson transformers). F.M. Tuner and 1 valve tone unit. all as book. F. H. REEVES, c/o Sun Inn, St. Nicholas at Wade, Birchington

COMPONENTS AT GIVE AWAY PRICES. Digital Counters. Rev Counters, Thyristors, Transistors, Valves, Tool Bags, Track Heads, Transistors, Rape, Aerials, Intercoms, MicroRecording Tape, Aerials, Intercoms, Microphones, Micro Switches etc. 6d. Stamp only to
DIAMOND MAIL ORDER PRODUCTS, DIAMOND MAIL ORDER PRODUCTS,
PROSPECT HOUSE, CANAL HEAD, PROSPECT HOUSE, CANAL H
POCKLINGTON, YORK. NO4 2NW.

WE ARE BREAKING UP COMPUTERS EX COMPUTER PRINTED CIRCUIT PANELS $2^{\prime \prime} \times$ 4" packed with semiconductors and top quality, resistors, capacitors, diodes etc. Our price: 10 boards $10 / \pm$ P. \& P. $2 /-$, with a guaranteed minimum of 35 transistors.
Special Bargain Pack. 25 boards for £1, P. \& P. 3/6, with a guaranteed minimum of 85 transistors.
100 boards, $65 /-$. P.\&P. $6 / 6$, with a guaranteed minimum of 350 transistors
PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards $(4 \times$ OC28) $10 /-$ P. \& P. 2 !

NPN GERMANIUM TOS 1 WATT POWERTRAN. SISTORS on small heat sink, on $2^{\prime \prime} \times 4^{\prime \prime}$ panel. 5 lor 10/0, P \& P. $2 /$.
POWER TRANSISTORS sim. to 2 N174 ex-eqpt. 4 for 10/-, P. \& P. $2 /$
 Heat Sink (10D) 4 for £1, P. \& P. 3
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 13/6 doz., DPDT 22/6 doz., DPST 17/- doz. P. \& P. all types $2 /$-doz.
ORGAN BUILDERS speclal 500 TO18 transistors on panels \&4, P. \& P. 6
OVERLOAD CUT OUTS. Panel mounting in the following values ... 5/- each. 3, 11, 2, 3, 4, 5, 7, 8 amp. P. \& P. 1/6.
P. \&P. $1 / 6$. NEW MIXED DISC CERAMICS. 150 for $10 /$ P. \& P. 2/-.

LARGE CAPACITY ELECTROL

$\begin{array}{ll}4,000 \mathrm{mF} & 72 \mathrm{~V} \text { d.c. } \mathbf{w k g} \\ 10,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } \mathbf{w k g}\end{array}$
$6,300 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. wkg.
$1,500 \mathrm{mF}$
$16,000 \mathrm{mF}$
150 V d.c. whg
$16,000 \mathrm{mF}$
$25,000 \mathrm{mF}$
25 V d.c. wkg.
Send 1/- stamps for list.
KEYTRONICS, 52 Earls Court Road London, W.B. Mail order only

RECEIVERS \& COMPONENTS (continusd)

ELEGTROVALUE RAPID MAILORDER SERIICE

PROMPT DELIVERV very large stocks everything brand new and to specification

* Unbeatable Value in SEMICONDUCTORS

30W BAILEY AMPLIFIER

MJ481 and M.5491 matehed pair output. 59j-; 40361 and 40362 matched pair driver, 30/3; 40361 12/6;
 whith each complete transistor set
Total for one channel \&7.8.0 list with 10% dilscount; only \&6.13.3. Total for two channels e14.16.0 list. with 15% discount only 212.11 .8 . Complete power supply kit $\& 4.5 .0$ list. Circuit reprints $1 /$-each.
G.E. EN2928 PLASTIC RANGE

Price reductions
Red spot $=55$ to $1108 / 3$; Orange spot $=90$ to 180 Red spot $=55$ Yellow spot $=150$ to $300 \mathrm{Q} / 6$; (Green spot $=233$ to $4702 / 9$.
All the above brand new stock

TEXAS SILECT RANGE 30 V 800 mA npn. 2N3704-90 to $330 \quad 3 / 8$ $2 N 3705=45$ to $165 \quad 3 / 5$ 25 V 200 mA pnp: $2 \mathrm{~N} 370 \%=60$ to $300 \quad 3 / 6$ $2 \mathrm{~N} 3703=30$ to $1:$
small signal upn. small signal npn.
2N 3707 low noise 2N3707 low noise
2N3711 $=180$ to $6603 / 1-$ small slgnal prop $\begin{array}{lll}\text { 2N } 4058 \text { low noise } & 4 / 9 \\ \text { 2N40062 } & 180 \text { tn } 660 & 4 / 3\end{array}$ BC107 serles 300 mW 300 MHz TT TOIS BC107 45V 125 to $5002 / 8$ PRICE 3010820 V
BC108 20 V Betavalues for ahovelmme

HClin7 sertes 125 to 900 300 MHz fT, TO92): BC167 45 V
BClu8 20 V
BC169 20 V
BCl09 an low noise,
BC167, BC

Betavalues for ahovelmmediately quoted after type Nos.
FETs Pricen reduced
MPF105 $25 V$ max.. $\mathrm{gm}=2$ to $6 \mathrm{~mA} / \mathrm{V}$, low noise $7 /$ 2 N 381925 V max $\cdot \mathrm{gm}=2$ to $6 \mathrm{~mA} / \mathrm{V}$, low nolse $8 /-$.

MINI TRANSISTORS-Prires reduced
2N 4285 pnp hFe 35 to 150 nt 10 mA iT 7 HHz min. Veb 35 V max. 2 N 4286 npa 30 VhFE over 100 at $10 \mu \mathrm{~A}$ to 1 mA fT 280 Mllz typ. 2N4289 prp 60 V hFE over 100 at $100 \mu \mathrm{~A}$ to ImA fT 170 MHz typ. 2 N 4291 pup 40 V nFE over 100 at 100 mA . 2N3794 npn 40 V hFE over 100 at 100 mA , complementary driver/out-
 femp. 35 V , hPE over 100 at 0.5 A . Inalited TO66 nize mount ing surface. aize mounting ourtace
Prlce: : 2N4285 to $2 N 4292$ and $2 N 3794$ 2/11; B5041 13/6.
1,000V 1-6A GENERAL PURPOSE RECTIFIER type 1N50543/8 only
$1,0000.75 \mathrm{~A}$ miniature rectiffer type Tsi $1 / 0 ; 400 \mathrm{~V}$ type Ts 4 2/3,
ZENER DIODES 3V to $2 . \mathrm{V} 5 \% 400 \mathrm{~mW}$ all preferred voltinges, $4 / 6$ eirch

NEW TRANBISTOR BARGAINS						
2N696	5/6	2N1711 \%/4	2 N 4060	4/3	BCl48	3/6
2N697	6/-	2N214716/9	40250	151-	BCI49	1/3
2N706	3/5	2N2369A	40406	$16 / 3$	BDI23	24/3
2N1132	3/-	6/8	40408	14/8	BF194	7/-
2N1302	41-	2N26-6 9/6	ACi26	6/6	BFX29	2/3
2N1303	4/-	2N2924 5/-	AC128	$61-$	BFX84	$7 / 5$
2N1304	4/-	$2 \times 29255 / 9$	AC176	11/-	BFX85	$8 / 3$
2N1305	4)-	2N3053 5/6	ACY17	8/-	BFX88	718
2N1306	6/9	2N3054 15/6	AD161	7	BFY51	$4 / 3$
2N1307	6/9	2N3055 16/6	AD162	7)-	B8X20	6
2N 1308	$8 / 8$	2N3391A	AF114	71.	NKT403	
2N1309	8/8	5/6	AF124	716		14/10
2N1613	818	2N3706 3/3	BC147			

* RESISTORS

METAL OXIDE type TR5 0.5W 2\% tolerance. Very low noise, low temperature coefficient. low drift. A Professional renistor. All E 24 preterred values 10Ω to 1M Ω. Price: 1 to $1110 \mathrm{~d} ; 12$ to $259 \mathrm{~d} ; 25 \mathrm{up} 8 \mathrm{~d}$. CARBON FILM high stab low nolse W $10 \% 1 \Omega$ to $3 \cdot 3 \Omega$ and 1 w $5 \% 3 \cdot 9 \Omega$ to $1 M \Omega 1 / 10$ doz. 14/6 100 .
dW $10 \% ~ 4.7 \Omega$ to $10 \mathrm{M} \Omega, 1 / \theta$ doz., $13 / 6100$.
iW $5 \% 4-7 \Omega$ to $10 \mathrm{~m} \Omega 2 / 2$ doz., 17/- 100 .
IW $10 \% 4.7 \Omega$ to $10 \mathrm{M} \Omega, 3 / 3$ doz.. $25 / 10100$. $1 / 6$ less per 100 is ordered in complete $100 \mathrm{~s}_{\text {of }}$ of one ohmic value.
Please state resiatance valurs required.
Carbon Skeleton presets: $100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega$, $200 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 6 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega .100 \mathrm{k} \Omega$. $10 \mathrm{M} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega$. $1 \mathrm{M} \Omega, 2 \mathrm{M} \Omega, 25 \mathrm{M} \Omega, 5 \mathrm{M} \Omega$, gmall high gia or horizontal mounting.

* PEAK SOUND PRODUCTS

Peak Sound PA.12-5 Power Amplifier has a maximum distartion lewel of only 0.1% it $11.5 W$, into 150 . In kit form $£ 3.10 .6$, plus 12/- for readr prepirred heat sink and mounting lnoard. Power supply P8.45 Kit 84.10.0.

Pre-amp kit 27/-plus controls mono; 8/3; ntereo 20/Active tone filter kit $18 /$ - plus controle: mono $5 /-$ atereo 16/-. No discounts allowable of baskc klts only

* ELECTROLYTICS

SUB-MIN.
C426 range ($\mu \mathrm{F} / \mathrm{V}$): $\mathbf{0 . 6 4 / 6 4 .} 1 / 40.1 \cdot 6 / 25,2 \cdot 5 / 16$, $2 \cdot 5 / 64,4 / 10.4 / 40,5 / 64,6 \cdot 4 / 6 \cdot 4,6 \cdot 4 / 25,8 / 4,10 / 2 \cdot 5.10 / 16$, $10 / 64$, 12.5/25, $15 / 10$. $16 / 40,20 / 16,20 / 64$, $25 / 6 \cdot 4$. $25 / 25,32 / 4,32 / 10,32 / 40,32 / 64,40 / 2 \cdot 5.40 / 16,50 / 6-4$, $50 / 25.50 / 40,64 / 4,64 / 10,80 / 2 \cdot 5,80 / 14,80 / 25,100 / 6 \cdot 4$, 125/4. 120/10, 120/0, 50/2.2, $320 / 2 \cdot 5,320 / 6 \cdot 4,400 / 4,500 / 2 \cdot 5$. *-Price reduction $1 / 3$ each.

MINIATURE ($\mu \mathrm{F} / \mathrm{V}$):
$5 / 10, \quad 10 / 10, \quad 25 / 10, \quad 50 / 10, \quad 9 \mathrm{~d}$ each, $25 / 25$. $5 / 10,10 / 10,25 / 10,150 / 10, ~ 9 d$ each, $25 / 25$.
$50 / 25,100 / 10,200 / 10,1 /-$ each; $50 / 60,100 / 25,1 / 6 ;$ 100/50, 25/25, $2 /=$
LARGE ELECTROLYTICS ($\mu \mathrm{F} / \mathrm{V}$)
1000/50 7/-: 2000/50 9/3; 5000/50 17/6; 5000/25 10/3; $2500 / 6415 /$. Vertical clipw for abave types 9 d each.

* CAPACITORS

Ceramic dise $20 \% 500 \mathrm{~V}: 1,000 \mathrm{pF}, 2,000 \mathrm{pF}, 5,000 \mathrm{pF}$. $50 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$, $0.05 \mu \mathrm{~F}$. Mylar film 10%. $100 \mathrm{~V}: \quad 1,000 \mathrm{pF} . \quad 2,000 \mathrm{pF}, \quad 5,000 \mathrm{pF}, 0.01 \mu \mathrm{~F}$,
 ferred values to 820 pF . AllL at 5 d each. Polyester $250 \mathrm{~V} 20 \%: 0 \cdot 01,0 \cdot 015,0.022,0.033,0.047,0.068 \mu \mathrm{~F}{ }^{7 \mathrm{~d}}$

- POTENTIOMETERS

Short spindle 100Ω to $10 \mathrm{M} \Omega \operatorname{lin} .5 \mathrm{~K} \Omega$ to $\overline{\mathrm{M}}$ 亿 \log, strt. values. Only $2 /$ - each
Long spladie $4 \cdot 7 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 270$ K $\Omega, 470 \mathrm{~K} \Omega, 1 \mathrm{M} \Omega, 2 \cdot 2 \mathrm{M} \Omega$, lin. or log. Only $2 / 6$ each. Long spind le dual stereo: $10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega+47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ $220 \mathrm{k} \Omega \mathrm{lin}$ or \log. Only $8 / 6$ each.

ALL GOODS BRAND NEW-NO SURPLUS

1968 CATALOGUE now realy. fu!t of most up to date infromation essential to every serious user. Bend $1 / 8$ for your cony
COMPONENT DISCOUNTS
10% on tial POSTAGE AND PACKING on ordera 11ρ to il, add $1 /$-i over, pont free in U.K.
OVERSEAS ORDERS WELCOMED. Carriage charged at cowt

32A ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY
Telephone: EGHAM 5533 (STD 0784-3)

RECEIVERS \& COMPONENTS

 (continued)SUB-MINIATURE ELECTROLYTICS, 15 Volt, 2, 6, $8,10,15,20,30,40,50,100 \mathrm{mufds}$. $8 / 6$ per doz. 30 for 11 . The C. R. SUPPLY CO., 127 Chesterfield Road, Sheffield 8.
COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, moters, cabinets, microphones, etc. StephensJames Ltd., 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, erc. Carbon, Hystab, Vitreous, $t-20$ watt, $12 / 6$ Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W.13.

PLEASE MENTION

PRACTICAL WIRELESS

WHEN REPLYING TO

ADVERTISEMENTS

NEW RANGE BBC 2 AERIALS

AlJ U.H.F. aerials now fltted with tilting bracket and 4 blement grid reflectors. Loft Mounting Arrays, 7 element. $37 / 8$. 11 element, $45 /$. 14 element. $52 / 6$. 18 element, 80/- Wall Mounting with Cranked Arm, 7 element. $60 /$ - 11 element. 67/-. 14 element. 75/-. 18 element. 82/6. 42ist Mounting with element, $55 /$. 14 element. $62 /$-. 18 42/8. 11 element, $55 /$-. 14 element. 62/-. 18 element, $70 /$. Chmmey
Complete. 7 element. $72 / 6.11$ element, $80 /-$. 14 element. $87 / 6$. 18 element, $85 /$ - Complete assembly instructions with every unit. low Loss Cable, $1 / 6$ yd. U.11.F. Preamps from 75/-. State clearly channel number required on all orders.

BBC • ITV AERIALS

COMBINED HBCI ITV - HBCZ AEIRIALS $1+3+9$. \quad C/- $\quad 1+5+9 . \quad 80 /-$ $1+5+14,90 /=1+7+14,100 /-$. Loft mounting
only. Special leafiet available. "H". F.N. (Band 2). Loft S/D. 15 j -. "H" $32 / 6$. 3 element, $55 /$. External units available. Co-ax, cable 8a. yd. Co-ax. plugs. $1 / 4$.
Outlet boxes, 5%. Diplexer Crossover Boxes. Outlet boxes. $5 /$ - Diplexer Crossover Boxes.
$13 / 6$. C.W.O. or C.D. P. \&P. $5 /-$ Send 6 d. 13/6. C.W.O. or C.O.D. P. \&
stamps for illustrated lists. Callers welcomed - open all dall Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 27 Central Parade, New Addington Surrey (CRO-OJB) LODGE HILL 2266
 WORLD-WIDE RECEPTION

Famous for over 30 years for Ghort. Wave Equip ment of quality, "H.A.C." Were the original suppliers of Short-Wave Receiver KJts for the
amateur constructor. Over 10,000 satisfled amatenr constructor- over 10,000 satisted pitals. Public Schools, R.A.F., Army, Hans, etc.

IMPROVED 1969 RANGE

One-vaive model "DX", complete kit-price 56/6 (Postage and packing $3 / 6$).
Customer writes:- "Deflnitely the beat one-valve B.W. Kit available at bny price. America and Australia received clearly at good volume." This kit contains alt genuine short-wave components. Irilled chassib, vaive accessories and full instruc tons, Ready to assemble, and of course, as a other s.W. kits still gapailalle, including the famou ruodel "K" (recommended by radio clubs). Al orders despatched by return. (Mail order only.) Bend now for a descriptive catalogue, order form
''H.A.C.' SHORT-WAVE PRODUCTS
29 Old Bond Street, London W. 1

CALLERS WELCOME

POST

THIS Name
COUPON NOW!

LEWIS radio
100 CHASE SIDE, SOUTHGATE Dept. P1G9. LONDON, N.14
TELEPHONL $01-886$ 3733/9868

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be glady sent without any obligation.

To: British National Radio School, Reading, Berks. Please send FREE BROCHURE to:

NAME

Block

ADDRESS
Caps.

PARTRIDGE APOLOGISE TO DEALER AND CUSTOMER

FOR delivery delays due to heavy demand
... We are doing our best

SEE YOUR
 JOYSTICK
 V.F.A. STOCKIST

All branches of R.S.C. Hi-Fi Centre Ltd.

ASHFORD Middx. Echelford Communications
Ryland Huntele
BARKENHEAD. B.8. Radio \& Electrical Stores BIRMINGBAM. Amateur Electronica
BOURNEMOUTE FOrresters Nation Radio Supplie
BRADFORD Ratio Ham Shack
BRIGHTON. Arthur Ballim
BURNLEY. Trafalgar supplies
CARDIFF. Wenak Radio
CEELMSFORD. Radio Service
CHELTENHAM, Spa Radio
CHESTERFIELD. J. \& A. Tweedy Ltd
Coventry. Bwanco Producta Ltd
ROYDON. Huggetts
EDINBURGH. F. Brow \& Co
EXETER. Elect rosure Ltd.
FOLKSTONE. John Guilding
GILLINGHAM Kent. B. J. Kayes GLASGOW. R.M.E. Burplus Bupplies GOODMAYES. Unique Radio Ltd HALIFAX. Albert Htnd Ltd

All direct from:

GIMIETRANGE OF SOLID STATE A.C. MAINS AMPLIFIERS Employing only

high grade components and transistors.

LT55 6 WATT AMPLIFIER

A HIGH FIDELITY UNIT PROVIDING EXCELLENT RESULTS AT MODEST OUTPUT LEVELS.
Sensitivity 5 mv (max).
Recommended
Retaii price
9 gns
Retail price Size $_{9} \times 2 \ddagger \times 5$ in
Controls (5) Volume, Bass,
Treble, Mains Switch, Input
Selector Switch

LT66 12 WATT STEREO AMPLIFIER

A TWIN CHANNEL VERSION OF THE LTS5 PROVIDING UP TO 6 WATTS HIGH FIDELITY OUTPUT ON EACH CHANNEL

Switched Input Facilities

Socket (1) Tape or crystal PU
(2) Radio Tuner (3) Ceramic PU

Microphone.
Controls (6) Volume, Bass, Tre
Frequency Response $30-20,000 \mathrm{cps}-2 \mathrm{~dB}$ Harmonic Distortion 0.5% at $1,000 \mathrm{cps}$ Output for $3-8-15$ ohm Loudspeakers. Input Sockets for "Mike," Gram and Radio Tuner/Tape Recorter.

Facia Plate Kigid Perspex with black/silver background and matching black edged knobs with spun silver centres.

LINEAR PRODUCTS LTD, Electron Works, Armley, Leeds

hartlepools. The Specialist Radio Shop
EERNE BAY. Purdys
HUDDERSFIELD. Kadio Craft Ltd
EULL. Bhort Wave
ILFORD. Radio Development Ltd
LEEDS. George Blakey
Henry Electric Ltd
LEICESTER. 8. May Ltd.

All branches of Lasky's Radio

NEWARK. George Francis Electronic Supplies NEWCASTLE UNDER LYNE. Sidney T. Chadwick NEWCASTLE UPON TYNE. Richley \& Freeman Ltd NEWPORT Mon. K. F. Paul Ltd. NOTTINGHAM. Petes Electronics Ltd OLDHAM. The Electronic Centre PGADING M Milne een Lane READING. M.J. Hine \& gons Ltt SCARBOROUGE. Derwent Radio SOUTRAMPTON. Frank Victor SOUTH SHIELDS. J. R. Gough Elect ronics ST. EELENS. Harold Statt Lta SUNDERLAND. The Red Radio Shop
WESTCLIFY ON SEA. Radio Constructors Co WOLVERERAMPTON Porter litd WORTHING. G.W.M. Radio Ltd

BROADSTAIRS, KENT Phone: 0843-62535 (C.O.D. Orders)

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

CETS 1R5, 185, 1T4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94

OZ4	,		
A70	$7 / 6$	19BG6G17/6	DL35
H5GT	7/3	20F2 $13 / 6$	DL92
NsGT	719	$20 \mathrm{L1} 18 / 9$	
1 R 5	$5 / 6$	20P3 11/9	6
55	$4 / 3$	20P4 18/	DY86
1 T 4	$2 / 9$	25 U4GT11/6	DY87
	$5 / 9$	30 Cl 6/8	EABC
	$5 / 8$	$30 \mathrm{Cl5}$ 13/-	EAF4
UG	4/8	30 C 18 9/-	B8
Y3GT	5/9	30F5 13/6	EBC
5Z4G	7/6	30FL1 12/6	E
/3012	12/6	30FL12 14/6	EBF80
AL5	2/3	30FL14 10/6	EBF89
6 AM6	3/6	$30 \mathrm{~L} 1 \mathrm{~B} /-$	ECC81
AQb	4/8	30 L 15 14/-	ECC82
6 AT6	4	$30 \mathrm{L17} 13 /-$	CC83
AU6	$4 / 9$	30 P 4 12/-	ECC84
1 A 6	4/6	30P12 11/9	$\mathrm{CC85}$
BE6	4/3	$30 \mathrm{P19}$ 12/-	ECC80
BJ6	$71-$	$30 \mathrm{PL} 112 / 6$	ECF80
W \mathbf{W}	13/-	30PL13 14/6	ECF82
C4	$2 / 9$	30PLI4 15/	ECH35
13	$3 / 6$	35L6CT 8/-	ECH4
14	$91-$	35W4 4/6	ECH81
F23	13/6	35Z4GT 5/-	C
K 7 G	$2 / 8$	$606312 / 8$	ECL 80
K8G	$4 / 3$	A731 9\%-	ECL 82
18	6/-	B729 12/6	EC
16G	3/6	CCH35 101	ECL86
V6G	6/8	C133 18/6	EF39
X 4	$3{ }^{6}$	CY31 8/9	41
5G	$5 / 8$	DAC32 7/3	F80
B	$10 / 9$	DAF91 4/3	EF85
	7)-	DAF96 6t	EF86
C6	8/9	DF33 7/9	EF89
Y4	$6 / 6$	DF91 2/9	EF91
0FI	151.	DF96 6/-	EF94
10P13	15/8	DH77 4/-	EF183
	$3 / 9$	$\begin{array}{lll}\text { LI8 } & 10 / 8\end{array}$	EF184
12AU6	4/9	DK32 7/6	EH90
UU7	4/9	DK!1 5/6	EL33
A	41	DKY2 9/3	

71-	ELA1
$5 /-$	EL84
$5 / 9$	EL90
$5 / 9$	EL95
$7 /-$	EM880
5/8	EM81
5/9	EM84
BC80 $8 / 8$	EM87
F42 8/9	EY51
2/3	EY8 ${ }^{\text {a }}$
33 7/8	EZ40
41 8/3	EZ4 1
80 6/-	EZ80
89813	E7.81
81 3/9	GZ32
4/8	KT61
83 7/-	KT66
84 5/6	ME14
5/-	N 78
$80412 / 6$	PABC80
80 7/-	PC86
82 6/9	PC88
35 6/-	PC96
H2 10/6	${ }^{\prime} \mathrm{C} 97$
$815 / 9$	P'900
184619	PCC84
80619	P'CCss
82 6/8	1'CC88
83 9/-	PCC89
86313	PCC189
318	1'CF80
9/6	PCF82
$4 / 9$	PCF86
5/6	PCF800
6/3	PCF801
$5 / 3$	PCF802
3/6	PCF805
$4 / 9$	PCF'80t
83 6/-	PCF808
$84 \quad 5 / 9$	PCL82
6/6	PCL83
$8 / 9$	PCL84
$8 / 6$	PCLE85

$5 /-$
$5 / 8$
$5 / 8$

$\begin{array}{ll}6 / 9 & \\ 6 / 3 \\ 7 / 6 & \end{array}$
\qquad PL82

$$
4
$$

DUXFORD ELECTRONICS ${ }_{\text {pew }}$ 97/97a MILL ROAD, CAMBRIDGE Tel: 0223-63687

(Visit us-at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE $5 /$ C.W.O. Post and Packing $1 /$ DISCOUNT 10\% over $£ 2$

CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \%$: 100, 220, $330 \mathrm{pF} .-20 \%+80 \% ; 470,680$. 1000 pF . 5 d each ELECTROLYTIC CAPACITORS (Mullard). $-10 \% 10+50 \%$ Subminiature (all values in $\mu \mathrm{F}$)

\section*{| 4.4 V |
| :--- |
| 1 |
 10 V

16 V
25 V
40 V
64 V
Price}

8	32	64	125	250
$8 \cdot 4$	25	50	100	200
4	16	32	64	125
$2 \cdot 5$	10	20	40	80
$1 \cdot 6$	$6 \cdot 4$	$12 \cdot 5$	25	50
1	4	8	16	32
0.64	$2 \cdot 5$	5	10	20
$1 / 6$	$1 / 3$	$1 / 2$	$1 /-$	$1 / 1$

Small (atl values in $\mu \mathrm{F}$
 6.4 V 10 V
 16 V 25 V
 64 V
 800 640 400 250 160 100 64 $1 / 6$ (Mullard)
 | 1,250 | 2.000 | 3.200 |
| ---: | ---: | ---: |
| 1.040 | 1,600 | 2.500 |
| 640 | 1,000 | 1,600 |
| 400 | 640 | 1.000 |
| 250 | 400 | 640 |
| 160 | 250 | 400 |
| 160 | 160 | 250 |
| $2 /-$ | $2 / 6$ | $3 /-$ |

Tubular $10 \% 160 \mathrm{~V}: 0.01,0.015 .0 .022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 .0 .047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$ $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 \cdot 15 \mu \mathrm{~F}$, I1d. $0 \cdot 22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}, 1 / 3.0 \cdot 47 \mu \mathrm{~F}, \mathrm{I} / 6.0 \cdot 68 \mu \mathrm{~F}$, $2 / 3$. $1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}: 1.000,1,500.2 .200,3,300.4 .700 \mathrm{pF}, 6 \mathrm{~d} .6 .800 \mathrm{pF}, 0.01,0.015 .0 .022 \mu \mathrm{~F}$ $7 \mathrm{~d}, 0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068 .0 .1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}$, $1 / 6.0 \cdot 33 \mu \mathrm{~F}, 2 / 3.0 \cdot 47 \mu \mathrm{~F}, 2 / 8$.
Modular, metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01 .0 .015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F} .8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, ild. $0.22 \mu \mathrm{~F}$. $1 / \mathrm{H} .0 .33 \mu \mathrm{~F}$. 1/5. $0.47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.
POLYSTYRENE CAPACITORS: 5%. 160V (unencapsulated): 10.12. $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390$. $470,560,680,820 \mathrm{pF}, 5 \mathrm{~d} .1,000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d} .3 .300,4,700,5,600 \mathrm{pF}$, 7d. $6,800,8,200,10.000 \mathrm{pF} .8 \mathrm{~d}$. $15,000,22.000 \mathrm{pF}, 9 \mathrm{~d}$.
$1 \%, 100 \vee$ (encapsulated): 100), 120. 150, 180. 220, 270, 330, 390. 470. 500. $560,680,820 \mathrm{pF}, 1 /-1,000,1,200,1,500,1.800,2,200,2,700,3,300.3 .900 \mathrm{pF}$ $1 / 3,4,700,5.000,5,600,6,800,8,200,10,000,12,000,15,000 \mathrm{pF}$. $1 / 6$. $18,000,22,000,27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 \cdot 047,5.000,0 \cdot 056 \mu \mathrm{~F} .2 /-$
$0 \cdot 068,0 \cdot 082,0 \cdot 1 \mu \mathrm{~F}, 2 / 3.0 \cdot 12 \mu \mathrm{~F} .2 / 9.0 \cdot 15,0 \cdot 18 \mu \mathrm{~F}, 3 /-.0 \cdot 22 \mu \mathrm{~F}, 4 /-.0 \cdot 27$. $0.068,0.082,0 \cdot \mu \mathrm{~F}, 2 / 5 / 0.12 \mu \mathrm{~F} .2 / 9.0 \cdot 15,0$
$0.33 \mu \mathrm{~F}, 5 /-0.39 \mu \mathrm{~F}, 5 / 9.0 .47 .0 .5 \mu \mathrm{~F}, 6 / 3$.
JACK PLUGS (Screened): Heavily chromed, in Standard: 2/9 each. Side-entry: $3 / 3$ each.
Standard (Unscreened): $2 / 3$ each.
JACK SOCKETS (tin Plug): With chrome insert. 2/9 each. Available with: Break/Break, Make/Break. Break/Make, Make/Make contacts.
POTENTIOMETERS (Carbon): Long life, low noise, $\ddagger \mathrm{W}$ at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \ddagger \mathrm{M} . \pm 30 \%<\frac{1}{4} \mathrm{M}$. Body dia., in. Spindle. I in \times fin. $2 / 3$ each. Linear: $100,250,500$ ohms. etc.. per decade to 10 M . Logarithmic: 5k, 10k, 25k, etc. per decade to 5M. 250,500 ohms, etc., per decade to 5 M
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \mathrm{M} \leq \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Horizontal $(0.7 \mathrm{in} \times 0.4 \mathrm{in}$ P.C.M.) or Vertical $(0.4 \mathrm{in} \times 0.2 \mathrm{in}$ P.C.M.) mounting, $1 /-$ each.
Submin. 0.1 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq 1 \mathrm{M} . \pm 30 \%>1 \mathrm{M}$. Horizontal ($0.4 \mathrm{in} \times$ 0.2 in P.C.M.) or Vertical ($0.2 \mathrm{in} \times 0 \cdot 1 \mathrm{in}$ P.C.M.) mounting. 10 d each. RESISTORS (Carbon film). very low noise. Range: $5 \%, 4.7 \Omega$ to $1 \mathrm{M} \Omega$ (E24 Series): $10 \%, 10 \Omega$ to $10 \mathrm{M} \Omega$ (EI2 Series).
1W $\left(10 \%\right.$), 1id (over $\left.99,1 \frac{1}{2} \mathrm{~d}\right) .100$ off per value $12 /-$. $\mathrm{W}(5 \%$). 2d (over 99 , 18 d$), 100$ off per value $13 / 9$. $\frac{1}{2} \mathrm{~W}(10 \%)$. 2 d (over 99 . 13 d), 100 off per value $13 / 9$. WW (5%), 2 fd (over $99,2 \mathrm{~d}), 100$ ofl per value $15 / 6$.
SEMICONDUCTORS: OA5, OA81, i/9. OC44. OC45, OC71, OC81 OC81D, OC82D, 2/- OC70. OC72, 2/3. AC107, OC75. OC170, OC171. 2/6. AFII5, AFII6, AFI17. ACY19. ACY21, 3/3. OC140. 4/3. OC200. 5/-. OC139, 5/3. OC25, 71-. OC35. 8/-. OC23, OC28. 8/3.
SILICON RECTIFIERS: (0.5A). 170 P.I.V.2 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1250 P.I.V. 3/9. 1500 P.I.V. 4/- $(0.75 \mathrm{~A}) ; 200$ P.I.V.. $1 / 6.400$ P.I.V., 2/-. 800 P.I.V., 3/3. (6A); 200 P.I.V., $3 /-.400$ P.I.V., 4/-. 600 P.I.V.. 5/-. 800 P.IV. 6
THYRISTORS (5A): 100 P.I.V., $8 /-.200$ P.I.V.. $10 /-, 400$ P.I.V., $15 /-$
SWITCHES (Chrome finish, Silver contacts): $3 \mathrm{~A} 250 \mathrm{~V}, 6 \mathrm{~A} 125 \mathrm{~V}$. Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST. 3/6. SP/DT. 3/9. SP/DT (with centre position) 4/-. DP/ST. 4/6. DP/DT, 5/PRINTED CIRCUIT BOARD (Vero).
$0 \cdot 15$ in Matrix: 3 条in $\times 2 \frac{1}{2}$ in. $3 / 3$. $5 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in, $3 / 11$. 3 in $\times 3$ in $3 / 11$ 5 in $\times 37 \mathrm{in}, 5 / 6$.
$0 \cdot 1$ Matrix: $3 / 6 \mathrm{in} \times 2 \mathrm{i} \mathrm{in}, 4 /-.5 \mathrm{in} \times 2 \mathrm{i} \mathrm{in}, 4 / 6$. $3 \mathrm{gin} \times 3\} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3\} \mathrm{in}$ 5/3.
RECORDING TAPE (Finest quality MYLAR almost unbreakable).
Standard Play: $5 \mathrm{in}, 600 \mathrm{ft}, 7 / 6$. $59 \mathrm{in}, 850 \mathrm{ft}, 10 / 6.7 \mathrm{in}, 1,200 \mathrm{ft}, 12 / 6$.
Long Play: $3 \mathrm{in}, 225 \mathrm{ft}, 4 /-.5 \mathrm{in}, 900 \mathrm{ft}, 10 / 6.53 \mathrm{in}, 1,200 \mathrm{ft}, 13 / \mathrm{H} .7 \mathrm{in}, 1.800 \mathrm{ft}$. 18/-

SEND S.A.E. for JANUARY, 1969 CATALOGUE

INTEGRATED CIRCUIT AMPLIFIERS

RCA Type Ca30zo
Integrated Circuit Audio Amplifier in TOS encapsulation (size of a mmall tranststor), equivalent to seveln n-p-L
ailicon tranaistors, 3 diodes and ill resistora. Power output silicon tranaistors, 3 diodes and
550 m W. Total harmonic diatortion 1%. Will operste on
$30 /-$ plus $2 /-\mathrm{p} . \mathrm{p}$. voltage from 3 to 9 volts.
GENERAL ELECTRIC Type PAZ22
Epoxy moulded in-line package equivalent to aix n-p-n put of up to 22 voltes.

40/-plus 2/-p.p. The construction of amplifier using the above integrated circuits had been described in March and August issues of
P.W. please note that we only supply the IC's ind no other parts are supplied by us.
SPECIAL OFFER OF SILICON RECTIFIERS 1N5054; 1,000 p.i.p., 1.5 Amp. miniature wire ended
$4 / 8$ each
epoxy encapsulated. $\begin{array}{ll}\text { epoxy encapsulated. } & 4 / 8 \text { each } \\ \text { For orders of } 12 \text { or inore. } & 3 / 6 \text { each }\end{array}$

- RCA. TRIACS

Type 40432, Rating 400 V at 6 amps max. D.C. hohling current 30 mA max. Bupplien complete with Data sheets.
application sheel for dimmer units and heat gink. 39/6. applicati
p.
.
2/6.

SILICON TOP HAT RECTIFIER DIODES D226B 400 p.i.v. 300 mA D226V 300 p.i.v., 300 mA

HIGH CURRENT THYRISTORS

[^5]23/-
$231-$
$301-$
$35 \%-$
$40 \%-$
$40 \%-$
$45 /-$
50%
$50 /-$
$60 \%-$
$601-$
$701-$

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, I.P.C. Magazines, Tower House, Southampton Street, London, W.C.2.

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN \star THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL \star RADIO, TV OR AUDIO EQUIPMENT.

PRACTICAL辟WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

OUERYCOUPON

This coupon is available until 7th March, 1969 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, MARCH 1969

[^6]| | | | |
| :---: | :---: | :---: | :---: |
| SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT | | Acclaimed by everuane | |
| | | | |
| Mon | | | |
| | | | |
| | | | |
| | | | |
| $£ 15.5 .($ | | | |
| | | mot | |
| | | | Ant |
| | | | |
| | | | |
| | | | | | |
| | | | | | |
| | | $\frac{\square}{\text { OTM }} \boldsymbol{\square}$ | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | TRANSISTORS-SEMICONDUCTORS COMPLETELY NEW 1969 LIST OF | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

HTFFI equipment to suit EVERYPOKKCI Fully IIIstrated CATALOCUB

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD.

COMPLETELY NEW 9th EDITION (1969) The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with 10/-worth discounit vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 210 pages of components and equipment.
* 70 pages of microphones, decks and Hi.Fi

6,500 ITEMS 320 BIG PAGES

[^0]: * Open 10-1. 2.30-4.30 Mon-Fri. 9-12.30 Sat

[^1]: All correspondence Intended for the Editor should be addressed to: The Editor, "Practical Wireless", IPC Magazines Ltd., Tower House, Southampton Street, London. W.C.2. Phone: 018364363 . Subscriptlon rates, Incjuding postage: 42s. per year to any part of the worid. (C) IPC MagazInes Lid., 1969. Copyright in all drawings, photos graphs and articles published In "Practlcal Wireless" Is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^2]: MATCHED TRANSISTOR SETS 1

[^3]: I Send your free broCHURE [] or Send \square (how many) bays of steel shelving (a) $£ 3.15$ s. in green $\square \square$ grey (tick which)

[^4]: "SUPER SIX" L.W. and M.W. TRANSI8TOR RADIO KIT, Mark 2. Complete se列. parts 84.2 .6 (5/- post). PPG, batt. $2 / 9$ extra. Instructions and 1 ist Superhet;
 diode, etc.

[^5]: CR80-021A, 8
 CR100-151A, 100 amps, 200 p.i.
 CR100-215A, 100 amps, 250 p.i.v
 CR100-301A, 100 amps, 300 p.h.v
 CR100-351A, 100 amps, 350 p.i.v.
 CR100-501A, 100 amps, 500 p.i.v.

[^6]: Published on or about the 7th of each month by I.P.C. MAGAZINES LIMITED. Tower House. Southampton Street. London. W.C.2. at the recommended maximum price shown on the cover. Printed in England by Index Printers. Dunstable. Beds. Sole Agents for Australia and New Zealand: GORDON \& GOTCH SUPPLIES L'TD. Subscription rate including postage for one year: To any part of the World e2.2s.0d.

