ADCOLA Soldering Instruments

IN THE JET AGE.......

EFFICIENCY AND RELIABILITY,
AND CONSISTANT, SUSTAINED PERFORMANCE
ARE BASIC REQUIREMENTS.
ADCOLA SOLDERING INSTRUMENTS MEET THESE NEEDS
AND GO ON MEETING THEM, DAY AFTER DAY, YEAR AFTER YEAR, WITH UNFAILING REGULARITY.

LEADING MANUFACTURERS THROUGHOUT THE WORLD LIKE THIS,
THEY ALSO LIKE THE QUICK SERVICE WHEN REPLACEMENTS DO BECOME NECESSARY. SO THEY SPECIFY ADCOLA.

WHY DON'T YOU!

AVAILABLE FROM SHOPS EVERYWHERE OR DIRECT FROM

SALES \& SERVICE DIVISION, ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD, LONDON, S.W.4.
TELEPHONE 01-622 0291

SPEAKERS

FOSTER CRITERION HI-FI BOOKSHELF

 SPEAKER SYSTEMThis extremely high quallty bookshelf apeaker system by the world famous Fonter Co. of Japan incorporates an acoustical auspenaion woofar and cone tweeter in a woinut finish. The parformance of the Griterion is superior to many larger and far more expenslve units and at Lasky s specia parchare price is quite without equail BPECIFICATION: AIr suspenaion type 6 in. HF cone lype wooler with rolled cloth edge. 2 in. Maximum power handins 15 W . 80 Impedance Cabinet constructed from in. laminate with oiled walnut veneer flnish; alze $131 \times 77_{i} \mathrm{in}$. square. Dark green woven acountic gauze. Phono input at rear. List Price 818.10 .0 each
Lasky's Price $£ 8.8 .0$ or $\mathbf{2}$ for $£ 16$

TEST EQUIPMENT

TTC Model C-1000
A really tiny 1,000 O.P.V. pocket multi-tester with 'blg' meter performance. Preclsion 2 jewel meter movement Hand calibrated to $\pm 3 \%$ accuracy on full acsie of d.c TIONEs, 4% on a.c. ranges. 2 in , square meter. gPECIFICAa.c./V ranges: $0-10,80,250,100 \mathrm{~V}$ at $1 \mathrm{~K} / 0 . P$.V. D.e. current: $0-1-100 \mathrm{~mA}$. Resistance: $0-100 \mathrm{~K} / \mathrm{ohms}$ (8,000 ohms centre acale). Decibels: -10 to +22 dB . Operated on one penlight cell. Two colour bafispeen case-slze only $31 \times 2 i \times 1 \mathrm{in}$. Click stop range selection switch. Ohms zero edjustment. Complete with teat leads, battery and instructions with Lasky's Price 39/6 Post $2 / \mathrm{s}$

TTC Model C-1051
A completely new desigio 20,000 O.P. F. pocke multimeter with mirror scale and built in therma protection circuit. Exceptlonally large easy to read meter with D'Arsonval movement. Colour coded scules. Bingle positive click-in, recessed selection wwitch for all ranges. Ohris zero adjustment Range mpec. AC volts: $0-6-30-300-1200$ V at
$10 \mathrm{~K} / \mathrm{ohms} / \mathrm{V}$
DC
volts: $0-3-13-150-300-1.2 \mathrm{KV}$ st $20 \mathrm{~K} / \mathrm{obmas} / \mathrm{V}$. Resiatance: $0-60 \mathrm{~K}-6 \mathrm{megs}$. DC
 +17 dB . Hand calliratlon given extremely high standard of accuracy on all rangen. Use one 1\% V penlight bsttery, strong impact resistant plastic cabinet-size only $4 \ddagger \times 31 \times 1 / \mathrm{Lm}$. Two colour buff/green finish. Complete with test leads and battery. Original list prite 25.5 Lasky's Price 75/- 'rote $2 / 6$

PHOTO ELECTRIC RELAY
 TTC MODEL \&4001 Photo Relay System unit. Any interception of the light beam instantly triggers the relay which in turn ulll operate light, alarm bell or buzzer, electronic counter, heavy duty relay or
elevtric motor. Many useful applleations electric motor. Many useful applleations In the home, otfice, shop, factory, etc.
Operates on 240 V . A.C.; exclter lamp $12 \mathrm{~V}, 20 \mathrm{~W}$. enfectlve up to 15 ft . In daylight or 50 ft . at night. Very simple to anstall. In strong meta! cases size (each $6 \times 4 i \times \sin$. Complete with m
brackets wire ant instructions.

Lasky's Price $£ 7.19 .6$. Post $5 /-$

NEW INTERNATIONAL TAPE
 FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES
 3 in. Mearage tape, 150 ft
 3 nn . Message tape, 295 ft
 3 in . Message tupe, 300 ft
 3 iln . Triple play, 600 ft . Mylar 4in. Triple play, 900 ft . Mylar 5in. Double play, 12001t. Mylar sin . Long plag, 900 ft . Acetate 5 In . Standarl play, 600 ft . PVC Sin. Standart play, vooft. PVC 5 in. Double play, 1800 ft . Mylar 36 Sinn. Bouble play, 1800 ft . Mylar 22 5 in . Long play, 1200 ft . Acetate $128 \quad 7 \mathrm{in}$. Long play, 1800 ft . Acetate. 150 P. \& P. $1 /$ - exira per reel. 4 reels and over Rost Pree play, 3600 ft . Mylar, . 600

SPECIAL INTEREST ITEMS!

ORDER YOUR NEW LASKY'S CATALOGUE

FREE $\quad \begin{aligned} & \text { Third Great Issue in Prepapation with } 1,000 \text { 's of Items from our vas } \\ & \text { stocks. Just send your name, address and } 1 / \text { - for post only }\end{aligned}$

NEW LASKY'S EXCLUSIVES

FANTAVOX TV-1008 VHF AIRCRAFT BAND AND AM RECEIVER
The flrst pocket size Receiver of its ype allowing you to "tune-in" ground, ground-to-atr communtea tions band covered by $108-137 \mathrm{Mc} / \mathrm{a}$ in addition to full AM medlum wave band cover of $635-1605 \mathrm{Kc} / \mathrm{s}$. An extremely sensitive 10 transistor and 2 diode, superbet circuit plus 1 ntermediate frequancies themistor $\mathrm{Kc} / \mathrm{s} ; \mathrm{VHF}-10^{-7} \mathrm{Mc} / \mathrm{s}$. Output ower: 200 mW . 24 in . Permanent Dynamic 8 ohm speaker, earphone also provided for "silent'" listening A built-in ferrite rod serial is provided tor AM reception and a fully directional telescople antenna for VEFF receptionthe latter when collapsed nestly clips across the top of the set. Power in from $4-1 \cdot 5$ penlight cells and a jack socket for connection to a suitable AC converter is also provided. The Model TV-1008 is extremely well made and finiohed in grey plantio with metallio Bize 6 is $\times 3$ a $\times 1 \| \mathrm{in}$. Complete with batteriea, magnetic earphone, Inatructions and circult data.
Lasky's Price $\mathbf{£ 1 1 . 1 0 . 0 ~ p . ~ \& ~ P . ~ 5 / - ~}$

MIDLAND Model 10-502 VHF

 AIRCRAFT BAND CONVERTERAn entirely new item for the radlo enthusiast bringing instant reception of the ground-to-sir, sar-to-ground wavebsad. For uas
with any standard AM or FM radlo covering 535 to $1605 \mathrm{Kc} / \mathrm{s}$, 88 to $108 \mathrm{Mc} / \mathrm{s}$ respectively with no electrical conversion of connec tlon required. The Model 10-502 (seli powered by one 9V (PP3 type) battery) is merely placed close to the recelving set and then tuned over 110 to $135 \mathrm{Mc} / \mathrm{s}$ which covers the whole aircratt communtications band. Volume and reception effectiveness is allusted by movigg both seta to the most ravourable popition and balsnclag the vol. controls of each accordingly. The Model $10-502$ has a panel and 18 in . chrome telescopic antenns (inc. knobs). Complete with hatery and full instructions Lasky's Price 79/6

Post $3 / 6$
REMOTE CONTROL SWITCHING SYSTEM
 An extremely compact, simple to use and inatall range of mains opersted equipinent. HIgh trea signal from the transmitter is relayed to the rewhich the unith are plugged - provising inatant Which the units are plugged-providing instant tramalator and 1 diode circult. Frequency $190 \mathrm{Ke} / \mathrm{s}$ (pre-set). Power $220 / 240 \mathrm{~V}$ AC. $50 / 60 \mathrm{c} / \mathrm{s}$. Max power of equip. to be awitched- 300 W plastic cabinets size: $5!\times 2 \& \times 1 / \mathrm{ln}$., each with meon tndicator larap. Comp. with fiex and Instructlons
Lasky's Price $£ 7.19 .6$ post bl
MOVING MAGNET CARTRIDGE AD-76K
Lanky's are first again with this new higb compliance moving barrier. The pertormance of this cortridge in equal to others costlag many ferfmore and will bring out al the equasietles of the finest microgroove recordings and is suitable for whe with all the lateat high sensitivity amplifiers. SPECIPICATION: Dlamond Stereo LP styliss. Compliance $10 \times 10^{-0} \mathrm{~cm} / \mathrm{dynt}$. Prequency Tracking pressure 2 grammes $\pm 0.5 \mathrm{grm}$. Standard 1 ja . mounting
 svailable. Fully guspanteed
Lasky's Price 85/- post $2 /$

Branches
 207 EDGWARE ROAD, LONDON, W. 2 Tel:: 01-723 3271 Opan all day Saturdey, eally closing 1 pm . Thuisday
 33 TOTTENHAM CT. RD. LONDON. W. 1 Tel: 01-636 2605 Open all day. 9 a.m- $6 p . \mathrm{m}$. Monday to Saturday
 152/3 FLEET STREET. LONDON. E.C. 4.
 Open all day Thurscay, early closing 1 p.m Saturday
 High Fidelity Audio, Centres
 42 TOTTENAAM CF. RD., LONDON, W. 1 Tel: $01-5802573$ Open all day Thurscdy, early cloaing 1 pm Saturnay
 118 EDGWARE ROAD, LONDON. W. 2 Tel: $01-723.9789$ Open all day Saturday, erly closing $1 . \mathrm{pm}$. Thussdar

MOVING COLL HRADPHONES AND MICROPHONES Brand new in makers cartons, 25/-, p. \& p. 5/..

Make your own aerial systems. Ideal for transmitting or
receiving on all bands. Save pounds with this full set of parts plus installation fittings and Instructions. Even build aerials of your own design. Only $55 / 0$ per kit
p. p. b

TRANS/RECEIVERS AIR/SEA/RESCUE TYPE
uist he dismantled or exported. Complete with raike peaker serlal. Work up to 100 mlles . Coat Govt. over $£ 40$ each. $28,10.0$ per set, $10 /-$ P. \& P. 2 eets 85 , post free. LOUDSPEAKER UNIT SALE Famous manufacture 8in. Moving Coil 10 watt Loudpeakers. In Wooden Cabinets. Not brand new but in good for 84.10 .0 , post tree

IMPEDANCE MATCHING UNITS These unique piecen of equipment will match a high impedance output to a low hmpedance load such an speaker or headphones. Also will match a low hmpedance output to a high impedance load. Ideal for all typen of matching, radios, microphones, pickupe, guitars etc. It a compact plast free

.
Linten to the thrilis of Aircraft. Pilota and airporta at work Also Pollce, Fire, ambulance, Taxis and Clvil Depts. Ideal 2 metre Ham Bands. A fully transiatorised recelver covering $97 \cdot 100$ Mejs V.H.F. bromdcasts. Robust louvered $6 \times 4 \times 41 \mathrm{n}$. Operates from a 9 volt battery that fita inside. Speaker or hesdphone output. Simple to use. Worth over fis. Our Prioe 88.10 .0 carriage and insurance $10 /$. C.W.O. or C.O.D.

STABILIZED SOWER SUPPLIES

A limited quantity only. Famous manufacture. Input $220 / 240$ volts A.C. Output $0-30$ volta D.C. at 4 ampa fully variable transistorised power supply units. Completely volitneter. Input and output fused. Super regulation Brand new in makers dartons. Must be worth 850. scoop purchase price $£ 22.10 .0$. carrlage and insurance $30 /$. Ideal for laboratory or induscrial use

SHIPPING/SO:S/BAND RECEIVER

An Amateur/Maritime Communications Receiver. Hear hipping irom all over the world. Covern the complete maritime, trawler and amateur bands. A neat little uperhet. Attractive biack crackle inish case iapprox $7 \times 5 \times 5 \mathrm{in}$. Fully transistorised. 9 volt battery fits itaide Speaker or headphone output. Brand new direct from Our price only 20. Carr. and Ins. 10/-. C.W.O. or C.O.D.

RECENE $\rightarrow \mathrm{CW} / \mathrm{SSE}$ MODS ONANY RECEIVER

This miniature fully tranalstorised tunable B.F.O. will be a valuable addition to any receiver. A compact unit rith single hole fixing that will fit anywhere. Ideal for all ExGovt. and commercial receivers. Complete with installation instructlons, $49 / 8$ post free.
MINIATURE MOVING COIL SPEAKERS $1 \frac{1}{2}$ in. diameter. Only $3 / 6$ each, p. \& p. $1 / 6$. Two for $8 / 6$ post iree. Four for 15/-pout free

Brand new fully transistorised Communications Recelver Specifications; 4 complete ranges $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mo} / \mathrm{s}$ covering all arnateur banda, shipping and trawler bande. and brosdeast bands. A highly efficient double tuned uperhet, comprising R / F aerial tuning section, A.V.C and bult-in B.F.O. for C.W, or BEB reception. Ideal tor Axed or mobile reception. Operatea from Standard 9 vol audio output With apeaker and headphone output Hammer finished rohust steel cape of pleaning modern design with all controls on well get-out front panel. Size approx. $9 \times 7 \times 6 \mathrm{in}$. British manufacture. Due to huge purchaning we can offer these excellent receivers at less han halt their normal worth. Complete with handbook 18.10.0. Carr. and ins. 15/. Headphones if required 17/6 per pair. p. p. 2/6

TOP BAND TRANSMITTER

 A fully transiatorised compact transmalter for Licensed Amateur use. Fully portable. Suitable for mobile use Fully Tunsble 1.8 triame/h. Contains R/F output meter
AERIAL TUNER UNITS

for TX/RX use. Will toad almost anything. Cailbrated control dlal. Housed in compact ateel case. Ideal for al radio smateura and 8.W.L.'s. 25/-, p.p. $7 / 6$

MORSE PRACTICE OSCILLATOR SET complete with 'Hints on Learning Morse'' manual Fully Transiatorised. 19/6, p. कt p. 3/6.

न HDD: E SMETMITIC TIO
 DEPT. P.W.21, 24 CAWOODS ID MILL. STREET, LEEDS, 9.

EAGLE'S range of sub-miniature push-pull transistor audio ampll fiers featuring prlnted circuits heat slnks to protect the oower output transistors and supplied whth clrcuit diagrams and con nection charts. Widely supplled o equipment manufacturers and now available to hobbylsts experimenters and students. EG.2004-250mW: EG. 104 . 1 Watt; EG.304-3 Watt
Visit your EAGLE dealer to inspect these versatile sub minlature audlo amplifierssuch good value at 49/6, 59/6 and 67/6.

FOR VERSATILITY RELIABILITY ANO SOUND VALUE INSISTON

Distrlbuted by B. Adier \& Sons (Radlo) Ltd Coptic Street, London, W.C.

Valuable new hanobooik Fiffio iongilious

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or
 REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. -Telecommunications-Sound Recording \rightarrow Automation Practical Radio \rightarrow Radio Amareturs' Exam

ELECTRICAL ENG
Advanced Elecrrical Eng. Gen. Electrical Eng. Installations - Drailghismanship \rightarrow Illuminating Eng. Electrical Refigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Engineering.

CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Sirictural Eng. Sanitary Eng. - Rond Eng. - Hydranlics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. Applied Elecironics - Prac. Electronics - Radar Tech. Frequency Modulation Transistors.

MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Gen. Mechantical Eng. -
Maintenance Eng. - Diesel Maintenance Eng. - Diesel
Eng. \rightarrow Press Tool Design -Eng. \rightarrow Press Tool Design
Sheet Meral Work -Welding Sheet Meral Work-Welding

- Eng. Pattern Making Inspection - Ding. Pattern Making ship - Metallurgy - Production Eng.

AUTOMOBILE ENG
Advanced Automobile Eng. Gen. Automobile Eng. Auromobile Maintenance Repair - Ausomobile Diesel Maintenance - Automobile Elec. Equipmen - Garage Elec. Equipm.
Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN.. CERT OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON CDURT, ALDERMASTDN, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to qualify for rapid promotion
* HOW to put some letters after your name and become a key man ... quickly anid easily.
* HOW to benefit from our free Advisory and Appointment Depts
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE
PRACTICAL
INCLUDING

EQUIPMENT
Basic Practical and Theoretic Course for beginners in Radto,T.V.. Electronicas, Etc A.M.I.E.R.E.City \& Guild Rad to Amateura' Exsm. R.T.E.B.Certiticale P.M.G. Certificate

Radio \& Televisionservicing
Radiod Televisionservici Electronics Engineering Automation

TOOLS

The specialist ElecBromics Division of B.I.E.T NOW offers you a real laboratory training at home with practical equipment. Ask for details.

You are bound to benefit from reading "ENGINEERING

OPPORTUNI TIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without obligation.

! TO B.I.E.T., 453A, ALDERMASTDN COURT,
I aloermaston. berkshire.
Please send me a FREE copy of "ENGINEERING opPORTUNITIES." I am interested in (state subject, exam., or career).

THE E.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

BARGAINS * BARGAINS BARGAINS

Fane Loud Speaker-Few Only

Type $183-18 \mathrm{in}$. diam. 60 watts r.m.s. 15 ohms. Listed at £25.4.0. SALE PRICE £16.19.6

Remote Control Transmitter

Designed for remote switching of famous make radiogram (export model). Output $27 \cdot 2 \mathrm{Mc} / \mathrm{s}$. Fitted with 5 valves, crystals, etc. For use on 117 volts A.C. Size $12 \times 8 \times 5 \mathrm{in}$. New and boxed. No circuit or data available.

SALE PRICE 29/6
 P. \& P.

Model A-1004 Plug-in FM Tuner

Self powered by 9 V batt. 5 transistor. Covers $88-108 \mathrm{Mc} / \mathrm{s}$. For use with tape recs., amps., wireless mics., etc. Size $5 \frac{1}{4} \times 2 \frac{2}{6} \times 1 \frac{1}{1} \mathrm{in}$.

p. ε p.

2/6

Voice Actuated Microphone Model B-5001

Voice actuated microphone designed for use with tape recorders with facilities for remote control. Fitted with a three position switch allowing normal hand remote control, voice sensitivity action and off. Sound level required to operate the recorder can be adjusted. The microphone is self powered by one 9V (PP3 type) battery giving 6 to 10 hrs . operating time. 6 transistor circuit. Strong black plastic case. Length $7 \frac{1}{2}$ in. Fitted with 2.5 and 3.5 mm . plugs for fitting polarised sockets. List price £8.19.6. SALE PRICE 89/6

Push Button Two Band Car Radio

A high quality all transistor superhet car radio that really breaks the quality/price barrier. A unique feature of this set are the four M/W band station preselection buttons which you yourself set to your own four favourite stations-this is in addition to full M/W band cover over 535$1605 \mathrm{Kc} / \mathrm{s}$ and full L / W band cover over $150-300 \mathrm{Kc} / \mathrm{s}$ (IF frequency $455 \mathrm{Kc} / \mathrm{s}$). Externally adjustable aerial trimmers ensure maximum output. Six transistors (including one drift type) and one diode circuit provides powerful 2 W output. Adjustable for use on either positive or negative ground 12 V systems (external line fuse fitted). Standard mounting size $6 \frac{3}{8} \times 5 \frac{3}{4} \times 2 \mathrm{in}$.-front panel $\frac{1}{8} \mathrm{in}$. larger all round-finished in anodised aluminium with black push buttons. Complete with mounting brackets, full installation instructions and 2 baffle boards (for round or elliptical speaker). Fully guaranteed. Complete with $6 \times 4 i n$. elliptical 8Ω

dynamic speaker.
 SALE PRICE £10.10.0
 P. \& P.
 3/6

Crown Model TR-960C

LW/MW/SW 9 Transistor Radio

Superb quality 9 transistor three band radio. Covers LW 150-350 Kc/s, MW $525-1605 \mathrm{Kc} / \mathrm{s}$, SW $6-18 \mathrm{Mc} / \mathrm{s}$. Fine tuning and tone controls. Illuminated dial. Telescopic aerial. Complete with simulated leather case, earpiece and $4 \times 1 \frac{1}{2} V \cup 7$ batteries.
List price SALEPR/CEF111010 P. \& P. 16 Gns. SALE PRICE £11.10.0 0/0 DON'T DELAY-ALL ITEMS SUBJECT TO AVAILABILITY

100's and 100's of Other Bargains

There's something for evervone in our vast stock of new, shop soiled and first-class reconditioned equipmentRECORD PLAYERS HI-FIEQUIPMENT TELEVISIONS (from £4 | 1) RADIOS TAPE RECORDERS, ETC..

ALL BY WORLD FAMOUS MANUFACTURERS

```
COME AND LOOK TODAY
```

PERSONAL CALLERS TO:
48 TOTTENHAM CT. RD., W. 1
Tel. 01-636 0647
MAIL ORDERS TO:
378 HARROW ROAD, PADDINGTON, LONDON, W. 9

forquibk,
Rasy rl diaide
solitaring
Contains 5 cores of non-corrosive flux. instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Allov also reduces wear of ccpper soldering iron bits.

SIZE 5

HANDY SDLDER DISPENSER
Contains 10 ft . coil of 18 s.w.g. Ersin Multicore Savbit Alloy, 2/6 each.

SIZE 12

Ideal for home constructors. Contains 90 ft . of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Ersin Multicore Savbit Alloy on a plastic reel. 15/-each.

SIZE 15

 SOLDER DISPENSERContains 21 ft . coil of $60 / 40$ Alloy. 22 s.w.g. Ideal for small components, transistors, diodes. etc. $3 /-$ each.

BIB MODEL 8 WIRE STRIPPER AND CUTTER Strips insulation cleanly and quickly, fitted with unique 8 gauge wire selector. Plastic
handies. 9/6 each.
From Electrical and Hardware shops. If unobtainable. write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

RADIO TECHNICIAN TRAINING

IN THE

Vacancies exist in the Royal Australian Air Force for men who are interested in being trained in the Technical Radio fields. Applicants should be United Kingdom citizens resident in the U.K. aged between 18 and 33 years. Qualified personnel up to the age of 43 years are also invited to apply.

> Free passage to Australia is provided for families and pay commences from date of enlistment in London.

Further information can be provided by writing or phaning:RAAF CAREERS OFFICER (Dept. PW) AUSTRALIA HDUSE STRAND, LONDON W.C. 2 Telephone No: 01-836 2435

CALLERS WELCOME Demonstration without SAVE £2.10.0.
obligation at all branches

STEREO DECODER

Model A1005M. Simple instructions to convert any FM tuner. Max input 100 m volts. Power supply 8-14 volts. Mains or batt. (5 mA at 12 V .) Output $1.5 \times$ input. 4 transistors (2 each) 2SB-202; 2SB-186. 7 diodes IN34 (six) IN60 SAVE 34/- 5 Gis. Keen offer if purchased with A1005 tuner making STEREO TUNER 11 gns.

This beautifully compact 6 transistor maching (size $6 \times 4 x$ $2 \dagger$ in.) will glve quieter, more interference free reception. Months of use from a standard 9 volt battery or its mall power requirements oan be freq. ohan any amplerier. ang tuning feeding no legs than three I.F. stages ooupled to a double-tuned disoriminator terminating in an L.F. stage gtving ample
output for all quality amplifers.

REDUCED PRICE DUE TO HUGE SALES

£6.19.0

(3 FOR f19)

TRANSISTORS
GUARANTEED TOP QUALITY $\begin{array}{ll}\text { Mullard Matohed Oatput Kits OC18D } & 12 / 6\end{array}$ and 2-0c81

 $\begin{array}{llllll}\text { AF114 } & 8 / 8 & \text { GET116 } & 10 /- & \text { OC44 } & 4 /- \\ \text { AF115 } & 8 /- & \text { MAT181 } & 8 / 6 & \text { OC45 } & 3 / 8 \\ \text { AF116 } & 8 / 6 & \text { OA5 } & 3 /- & \text { OC71 } & 4 /-\end{array}$ $\begin{array}{llllll}\text { AF118 } & 8 / 6 & \text { OA5 } & 3 /- & \text { OC71 } & 4 /- \\ \text { AF117 } & 5 /- & \text { OA10 } & 6 /- & \text { Oc72 } & 5 /- \\ \text { AF127 } & \text { B/- } & \text { OA79 } & 2 / 6 & \text { OC73 } & 7 / B\end{array}$ ${ }_{\text {AF127 }}$ $\begin{array}{ll}\text { AF186 } & 18 /- \\ \text { BC107 } \\ 7 / 8\end{array}$ BC107
B8Y85

 $\begin{array}{llllll}\text { GET118 } & 4 /-\quad \text { CC28 } & 18 / 8 & 0 \mathrm{O} 171 & 6 /-\end{array}$

SILICOA RECTIFIERS Guaranteed performance. Top Makes. Tested 100 mA .

$3 \operatorname{tar} 8 / 8) \quad 2 / 9$

500 mA

BARGAIN PARCELS

Inoludigg variable oondensers, i.f. ooils, londspeaker plug/ 1800 keta, knobs, pots, oondensern, resistors, nuts, ont. odinek attinge, switohes, transormer oboke, reotifier, trangistora at a small fraotion of list value. Due to heavy demand we now paok them in geveral iizbs- be amazed-try one now.
3 libs. (post $5 /-$
14 lbs. (post $8 /-$)
${ }_{17 / 6}^{9 /-}$

(2) CrTs

FANTASTICALLY POPULAR

We offer you felly tensillsed polyester/mylar and P.V.C. tapes of ideatical quality hi-f, wide range recorangs charactertitics as top krade tapes. Quality oontrol manufacture. They are truly worth a fow more coppers ithan
aoetate, anh-standard, jointed or cheap imports TRY ONE AND PROVE IT YOURSELP

Postages 1/-reel.
Post Free less 5% on three reels
Quantity and Trade enquiries invited.
NOTE. Large tape sfocks at ali branches.

STEREO PORTABLE

CABINETS

Lateat hlaok and silver metal flaish Con sisting of oentre osbinet size 18 fin . $\mathbf{x} 13 \mathrm{in}$. I 8 in . deep with lift up lid together with two 10 I 6 speaker osbinets whioh olid on ends of main obbinet size 4 jin. I 181 n . I 81 in . making overall size of 25 inin. X 18 in . $x 8 i n$. uigh quaility ohrome allug. Approx. half prioe at deok. $£ \mathbf{~ 3 . 1 9 . 0}$ Ditto, but less ohrome, takes
I 4 , peaker \quad £2.19.9
mono portable cabinets. b.s.R. $\begin{array}{ll}\text { thpe deok or single reoord player. } & 19 / 6\end{array}$ adtochange portable cabinets. As used on 18 kns. reoord plager. Die to fortunate purobase we offer oomplete with motor board and all fittings 49/-
please note. a wide range of cabinets to callers at all branches.
$100 \mathrm{HI}-\mathrm{STABS}$
9/-
 50 yis. $22 /-; 100$ yds. $42 / 6$. Plugs $1 / 3$. 100 RESISTORS 6/6
SIZES-
MICROPHONE CABLE. Highest quality, 100. grey, white. 白. per yard.

100 CONDENSERS 9/6 Miniature Ceramic, Silver, Mioa etc., 3 DF to $\begin{array}{r} \\ \mu\end{array} \mathrm{F}$. LIST VALUE OVER \&4.

25 ELECTROLYTICS
Assorted 2%
volt. LIST
ta
VALUE
50 TAG STRIPS 7/6
Mixed sizes 2 to 15 way
25 POTENTIOMETERS
tncluding with switeb, long and short spindle, pre-sets, log and lin.
unused, $1 \mathrm{k}-2 \mathrm{~mm}$?
CONNECTING WIRE
p.v.c. Bright Colours. Five 25tt coila only.

A comprehensive selection of
 PRESENTS
awaits you at all branches, inc/uding NEW and SPECIAL Lines at the keenest prices-Max.

SHARP Rd504 mains battert tape $\underset{\substack{\text { Recorder } \\ \text { List } 36 \\ \text { ons }}}{ } 28 \mathrm{gns}$ NOVAC teak stereo tape recorders, | List 88 ans |
| :---: |
| 56 |
| ghs | HITACHI marine d/f recelvers. sw/mar/mw/Lw 27 gns

 GARRARD ${ }^{1025}$ changers with garrard stred case $\mathbf{f 8 1 0 s}$

 AJAX mann battery, amifm larger badio 12 gns ROXY am/fm/lw attractive laraer radio 12 gns WELESMERE am/pm high sensitivity, bLack $_{\text {Leather }} 7 \mathrm{gns}$ HITACHI wha7ze ali wave, roli size mave 13 gns H-FI BY LEAK, wharfedale, goodmans, wb, dulur,
Please call at your nearest branch and view without obligation-We would like to wish all our customers, old and new, a Very Merry Xmas and a Prosperous New Year.

7 COS MIGHEST QUALITY-			
GUARANTEED			
Carr stins. 1		6 Montha	12 Monthe
most mullard,	12 in .	£2. 0.0	f3. 0.0
MAZDA, COSSOR.	14in.	£2.10.0	£3.10.0
EMCOPE, BRIMAR.	15-17in.	£3. 5.0	£4. 5.0
FERRANTI TYPES	19 in .	f3. 5.0	£4. 5.0
PROCESSED IN	21 in .	£3.15.0	£5.15.0
OUR OWN factory	$23 i n$.	£3.15.0	£5.15.0
SATISFACTION GUARANTEED			
NOTE: ALL TUBE ORDERS ONLY to portgmouth branch pleabe			

JUST OUT - SEND NOW FOR

 SEND S.A.E ORCALL AT ANY BRANCH FOR YOURS
 NAME
 ADDRESS

- ND』N $\begin{aligned} & 10 \text { Tottenham Court Rosd, w.1. } \\ & \text { Tel. MOSeum } 2639\end{aligned}$

DORTSMOUTH $\begin{aligned} & 350-352 \text { Fration Road } \\ & \text { Tel. } 22034\end{aligned}$
-0UTMANMTON $\begin{aligned} & 72 \text { East Stree } \\ & \text { Tel. } 25851\end{aligned}$
88 RHTSM Park Crescent Place.
All Mail Orders to Brighton with names and addresses in

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM
\star Moderate size, only $25 \times 14 \times 10 \mathrm{in}$. Complete Kit 18 Gns.
\star Response $30-20,(00)$ e.D.s. Impedance 15 ohms. 18 Git * Performance comparable with units costing Carr. 12 considerably more. Consists of (1) 121 n . 20 watt Bass unit with
cast chassis. Roll rubber surround for uitra low resonance. cast chassis, Rowis. rubler pleces and ceramic magnet. (2) 3 -way quarter section series cross-over system. (3) $8 \times 5 \mathrm{in}$. hish flux middle range 'speaker. (4) High effciency tweeter. (5) Measured weight of woollen acoustic damping material. (6) Teak veneered cabinet. (7) Circuit and full instuctions.
DEMIONSTRATIONS AT ALL BRANCHE
R.S.C. STEREO 20 HI-FI AMPLIFIER
 PROVIDING ON EACH CHANNEL.
\% 060 (0 (um Level : 65 dB down. Sensitivity: 20 millivolts max. nonsent Harmonie Distortlon: 0.2% tFour-position tone compensation and Input Selector Switch. 太Stereo/Mono switeh. \&Neon panelinalicator, tHandsome Perspex Frontplate. tSeparate Bass and Treble controls. Output transformers are high quality section15 Gns. to-point wiring diaarams and instructions or factory Carr. $12 / 6$ bled with our usual 12 mths'gntee 19Ens. Or Dep. \&4.10.0 and
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Hiphly senstive Push-Pull Tone Control Stages. Performance ifsures. Hum level-70dB. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$.
 trois. Sensitivity 1 2militvolst so that any kind
of Microphone or Pick-up is sultable signed for Clubs, Schools. Thestres, Dance Halls or Outdoor Functions, etc. For use with Electronic Organ, Gultar, String Bass, efc. Gram, Radio or Tape.
Reserve L.T. and H.T. for Radio Tuner, Two Inputs with associated volume Reserve L. Ao that two separate inputs such as Gram and "Mike" can be of parts with point-to-polnt wiring diagrams and instructions. 14 Gns. Twin-handled perforated cover 27/6. Supplied factory buitt with EL34 output valves. 12 months $\begin{aligned} & \text { and } 9 \text { monthly payments of } 31 / 3 \text { (Total ह18.15.3) Send S.A.E. for leaflet. }\end{aligned}$

FIDELITY 12-14 WATT AMPLIFIER PUSH-PULL ULTRA LINEAR OETPUT Two input sockots with associated controls allowing mixing of "mike" and gram, etc, etc.
High sensitivity. 5 vaives-ECC83 (2), EL 84 (2), EZ81. High quality sectionally wound output TROLS. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$.
Hum level 60 dB . SENSITLVITY 23 millivolts. "mikes". For Musical Instruments such as String Bass, Elect Output for 3 and 15 ohm spkrs. SAE for leafiet. Complete kit. 9 Gis. built 12 Gns.) Twin handled metal wing diagrams. Carr il/ (or factory IRSC A11T TRANSISTORISED VERSION of
above complete kit 9 Gns (Assembled 13 Gins) R.S.C. BASS-REGENT 50 WATT AMPLIFIER

 high quality all-purpose unit for lead, rhythm, bass
guitar, vocalists gram,
radio, tape. T Two extra heav
12in. Loudspeakers. * Four Jack inputs and two Volume Controls for simultaneous use of up to four pick-ups or "mikes"
52 Gns. and 9 monthly payments of E5.11.9. (Total 5 Hil gms.). Also B 20 Bass inc. isin. diso Bze Bass inc. 12 m . 20 w Spkr. 191 gns . R.S.C. BATTERY/MAINS CONVERSION UNITS Type BMI An all-dry minator.
Size $5+x 4 x$ 2ine approx. Completely replaces batteries supplying 1.5 v . and
90 v . where A.C. mains 20 o 250 v . sods is available. $49 / 11$ or assembled 59/11. SELENIUM RECTIFIERS (Bridged) All 6/12v. D.C. output. Max. A.C. input 18v. 1a. 3/11. 2a. $15 / 8$.
R.S.C. MAINS TRANSFORMERS

FULEY GUARANTEED. Interleavad and ImpregMated. Primaries $200-250 \mathrm{v}$.
MIDGET CLAMPED TYPE $21 \times 21 \times 2 \% \mathrm{in}$. FULLY SHROUDED UPRIGHT MOUNTING
$250.0-250 \mathrm{v}, 60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{~A}, 0-5 \cdot 6 \cdot 3 \mathrm{v}, 2 \mathrm{~s}$.
 For Muliard 610 Amplifer
$350 \cdot 0 \cdot 350 \mathrm{v} .100 \mathrm{~mA},{ }^{6} \cdot 3 \mathrm{v}$. 4 a .
$350 \cdot 0-350 \mathrm{v}, 150 \mathrm{~mA} .6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, 0 \cdot 0 \cdot 5-6 \cdot 3 \mathrm{v}, 3 \mathrm{~A}$
 TOP SEROUDED DROP-THROVGH TYPE $250-6-250 \mathrm{v}, 70 \mathrm{raA}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 3 \mathrm{~A}, 5 \mathrm{~s}, \mathrm{~s} \cdot 6 \cdot 3 \mathrm{v}, 2 \mathrm{a}$
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{z}, 8 \cdot 3 \mathrm{v} .1 \mathrm{z}, 2 \mathrm{~B}$,
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{~s}, 0-5-8 \cdot 3 \mathrm{v}, 2 \mathrm{~s}$, $250-0.250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, .0 \cdot 5 \cdot 6 \cdot 3 \mathrm{v}, 3 \mathrm{~s}$.
$300-0-300 \mathrm{v} .100 \mathrm{~mA} .6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0.5 \cdot 6 \cdot 3 \mathrm{v}, 3 \mathrm{~s}$.
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, .0 .5-6 \cdot 3 \mathrm{v}$, guitable for Muliard 510 Amplifler $350-0.350 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, 0 \cdot 5-8 \cdot 3 \mathrm{v}, 3 \mathrm{~s}$. FILAMENT OR TRANSISTOR POWER PACE $43 / 11$
 17/9; 0 20-42v. 2s. 29/8
GHARGER TRANSFORMERS 0-8.16v, $1 \% \mathrm{a} .14 / 11$ AOTO (Step UPIstep DOWN) TRANSFORMERS $0-110 / 120 \mathrm{v}$. $200-230-250 \mathrm{v}$. $950-80$ watte $15 / 9$
150 wetts. $20 / 11 ; 200$ watt $49 / 9 ; 500$ watta $89 / 9$ OUTPUT TRANSFORMERS
Standard Pentade $\$, 000 \Omega$ or 7.000Ω to 3Ω
Puash-Pull 8 watta EL84 to 3Ω or 15Ω
Push-Pull 10 wat th 68 ECLA to 3 5, 8 or 15 12/9
Puhh-Pull ELSA to 3 or $15 \Omega 10-12$ watta
Puhh-Pull Ultra linear for Mulard 510 , e
Push-Pull 18-18 watts, sectlonally wound 6L8.
KTGG, etc.. for 3 or 15 n
Push-Pull 20 watt high quality ectionally
wound ELS4, 6L6, KT66 ete, to 3 or 16 B SMOOTRING CHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{~B}, 250 \Omega 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{~B}, 200 \Omega 10 / 8 ;$
$80 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega 8 / 8: 60 \mathrm{~mA}, 10 \mathrm{~B}, 400 \mathrm{Q} / 11$

BLACKPOOL
AGENT APPOINTED
o. \& C. ELECTIRONICS 227 CHURCH ST.

12in. HIGH QUALITY LOUDSPEAKERS

10 watt 11,000 lines $\mathbf{f} 5.15 .0$

LOUDSPEAKERS
121 n . 30 watt $6-8$ ohms 15 ohms impediance 151 n . 30 watt 15 ohme

$\begin{aligned} & \text { 'POP' } 100 \\ & \text { LOUDSPEAKER } \end{aligned}$	
	PO
2 years.	. 2
R.S.C. $4 / 5$ watt	
A5	

CLEARANCE LINES

HIGH QUALITY $8^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKERS $\begin{aligned} & 10000 \text { Gauss } \\ & 30 \mathrm{hm} \text { Only } \\ & 11 / 9\end{aligned}$

EXTENSION 'SPEAKERS 29/9
 Fitted high flux 6 fin . 5 w .3 ohm

PHONE AMPLIFIERS

1 WATT TRANSISTOR AMPLIFIERS

for $3-5$ ohm $39 / 11$ PRINTED CIRCUIT KITS
for making printed circuits. 14/11 J.B. VHF/FM DIAL \& DRIVE ASSEMBLIES 9/9

TAPE RECORD/PLAYBACK AMPLIFIERS

 HEAVY DUTY 15 in .40 WATT LOUDSPEAKERS ONLY STEREO/TEN HIGH QUALITY AMPLIFIER

5 watts high quality output on each channel. ceramic stereo cartridges. Ganged Bass and
Treble Controls. Valves ECC83(2), EL84(2), EZ81.

£11.19.6
MINI-8 HI-FI LOUDSPEAKER UNITS

VERDIK HIGH FIDELITY AMPLIFIERS 12 Gns
R.S.C. $6 / 12 \mathrm{~V}$ CAR BATTERY CHARGERS

4 amp with variable charge rate selector $49 / 9$
$6 \mathrm{amp} \begin{aligned} & \text { heavy } \\ & \text { duty }\end{aligned}$ with variable charge rate $\begin{gathered}\text { relector } \\ \text { sic } \\ 69 / 9\end{gathered}$ All types $200-250 \mathrm{v}$. A.C. mains. Ready built $10 /$ extra.

17in.-f11.10.0
19in. SLIMLINE
SOBEL-24Gns.
TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
Wide range of models SIZES AND PRICES DEMONSTRATIONS DAILY
 TWO-YEAR GUARANTEED TUBES 100\% REGUNNED 14in. $-69 / 6 \quad 17 \mathrm{ln} .-89 / 6$
211n. and ALL SLIMLINE TUBES 99/6 EXCHANGE BOWLS. Carr. 10/6
Ex. MAINTENANCE TESTED TUBES
171n.-35/-. Carr. 5/- (not sllmiline)

COCKTAIL/STEREOGRAM CABINET £25

Polished walnut veneer with elegant glass fronted cocktall compartment, padded. Positlon for two 10 in . elliptical speakers. Record storage space. Height $35 \frac{1}{2} 1 \mathrm{n}$., width $52 \frac{1}{8} \mathrm{in}$., depth 14 itin. Legs 1 on. extra. OTHER MODELS. SEND FOR FREE LIST
TRANSISTOR CHASSIS D1 49/6
Transistors, LW/MW. Brand New. Famous British Manufacturer. (LESS SPEAKERS), DIa. $7 \times 3 \frac{3}{4}$. P. \& P. $4 / 6$
TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1}{1}{ }^{\prime \prime} \times 6 \frac{1}{4} \times 3 \frac{1}{4}$ P. \& P. 4/6. SImilar cases In plastic $7 / 6$.

TRANSISTOR RECORD PLAYER CABINETS $19 / 6$. DIm. $11^{\prime \prime} \times 14 \frac{1}{2^{\prime \prime}} \times 5 \frac{t^{\prime \prime}}{}$ P. \& P. 7/6.

SINGLE PLAYER CABINETS 19/6. P. \& P. 7/6.
AUTO CHANGERS £8.19.6. Garrard 3000 with sonotone 9T, A.C. D/S stereo cartridge.
STRIP LIGHT TUBES $3 / 9$ each. 11^{77} (284 mm .) $230 / 240$ volts, 30 watts. Ideal for cocktall cabinets, lluminating plctures, diffused lighting etc. 6 for £1. P. \& P. frea.

DUKE \& CO. (LONDON) LTD.

621/3 Romford Road, London, E12 Tel. 01-478 6001/2/3

The voice coil is the heart of a loudspeaker. This Peerless voice coil is wound around an aluminium former. It sounds so easy -but it is the result of years of experimenting and it represents a revolution within the field of tweeters.

The aluminium voice coil former enables the production of even more effective tweeters. They can withstand s times greater input due to the Al-former conducting and giving off heat far better than the voice coil formers used until now.

They are far more reliable
due to the Al-voice coil former retaining its form far better than the voice coil formers used until now, and due to the good thermal conductivity of aluminium which allows short great overloading without the coil annealing.

They are 3 times cheaper
than other types of tweeters having the same load and sound characteristics because the Al-voice coil former enables the use of a lightweight and in every respect simple and thoroughly tested construction. It is emphazised that the new tweeters have an extraordinary flat frequency response, excellent spatial sound diffusion and low non-linear distortion. The new 5 watts tweeters fully comply with the intensified demands of modern times for modern advanced reproduction of sound, both regarding quality and power capacity. Peerless has more than 20 years experience in producing tweeters and our laboratories continue to place us in a leading position in their development.

[^0]
WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

Oscillator Coil	P50/1AC (For OC45)	P50/1AC	(For AF117)	5/4
1st I.F. Transformer	\cdots.............P50/2CC (For OC45)	P51/1	(For AF117)	.5/7
2nd I.F. Transformer		P51/2	(For AF117)	5/7
3rd I.F. Transformer	P50/3CC (For OC45)	P50/3V	(For AF117)	.6/-
	Rod Aerial .anamenananan RA2W		12/6	
	Driver TransformerLFDT4		9/6	
	Output TransformerOPT1		10/6	
	Printed Circuit		9/6	

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

T41/1E	1st I.F. Transformer	/6
T41/2E	2nd I.F. Transformer	7/6
T41/3T	3rd I.F. Transformer	.10/6
T41/3T	B.F.O. Coil	10/6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4d. postage please.

WEYRAD (ELECTRONICS) LIMITED SCHOOL STREET, WEYMOUTH, DORSET

AERIAL WIRE: Coll of 25 yde., solld $2 / 8$, plus 1/. P. \& P

TEST METERS: AtIl available ITI/2 20 K ohms per volt, at \&3.e.8, plus $3 /-\mathrm{P}$. \& P. Also stocked Taylor AVO T.M.K.

TRANSFORMBRS: Instrument, 250 volt primary 250 volt secondary $6: 3$ volt $19 / 6$, plus $3 / 9 \mathrm{P}$. \& \mathbf{P}. Charger, 4 amp for 6 or 12 volt, $£ 1.2 .6$, plus $3 / 9$ P. \& P. Mains $250: 0: 250$ sec $6: 3$ volt 60 mA . $18 / 9$, plus 3/9 P. \& \mathbf{P}.
HIGF FREQUENCY EORNS: 1 it to 41 volt, Ideal for alarm circuits. $8 / 6$, plus $1 /$ - P. \& P.
RELAYS: 12 volt suitable for car alarm, heavy duty contacts, 81.1 .9 , plut $1 / 6 \mathrm{P}$. \& P. Small relays for electronic uses, 130 ohm coll, 4 change over contacts operate 6 to 18 volt. 19/6, plus 1/. P. \& P. IV-6V Relay, 1 NOC, 30 OHM, 5/-, plus 1/6 P. \& P.

EAR PIECES: $3 \cdot 5 \mathrm{~mm}, 2.5 \mathrm{~mm}$ magnetic, $2 / 6$, plus 6d pastage $3.5 \mathrm{~mm}, 2 \cdot 6 \mathrm{~mm}$ crystal, $5 / 8$, plus 6 d . postage

LOUDSPEAKERS: still available 8 ohm $2 \frac{2}{2}$ in 7/8, plus 1/-P. \& \mathbf{P}

FALVE HOLDERS: B7g, B8a, B8g octal 6d., plus 6d. postage.

COAX SOCKETS: flugh T.V. 日d., plus 6d. P. \& P. PHONO PLUGS: $5 /$ - doz, plus $1 /-\mathrm{P}$. \& P .

WAVE CHANGE SWITCEES: 2 pole 6 way, $3 / 8$. plus 1/- P. \& P.

Many other items, please send stamp for free price list.

BOTHWELL ELECTRIC SUPPLIES (Glasgow) LTD
54 EGLINTON STREET, GLASGOW, C.5. Tel. 041 BoUth 2904
Member of the Lander Group

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors. Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, $45 /$ - 14 element, $52 / 6$. 18 element, $60 /-$. Wall Mounting with 67/-. 14 element, $75 /-18$ element, $82 / 6$. Mast Mounting with2in. clamp. 7 element 48/6. 11 element. 55/-. 14 element, 62/-. 18 element. $70 /$-. Chimney Mounting Arrays. Complete. 7 element, $72 / 6.11$ element, $80 /$. 14 element, 87/6. 18 element, $95 /-$. Complete assembly instructions with every unit. Low Loss Cabie, $1 / 6$ yd. U.H.F. Preandins from 75/-. State clearly channel number required

BBC • ITV AERIALS

BBC (Band 1). Tele
scopic loft. 25/-. External S/D, 30/-. ' H^{\prime} " $£ 2.15 .0$. ITV (Band 3).
ment loft array, $30 /-5$ ment loft array, 30/- 5
element. $40 \%-7$ element element ment. $47 / 6$. 5 element. 52/6. Combined BRC/ $\begin{array}{lll}\text { ITV. Loft } 1+3,40 /-; & 1+5 \\ \text { 50/-; } 1+7, & 60 /-; & \text { Wall }\end{array}$ mounting $1+3,57 / 6 ; 1+5$, 6\%/6; Chimney $1+3$, 67/6; $1+5,75 \%$ YHF transistor pre-
amps. 75/-.
$\begin{array}{llll}\text { COMBINED BBC1 } & \text { ITV } & \text { BHC2 } \\ \text { AERIALS } & 1+3+9, & 70 /-1+5+9, & 80 /-\end{array}$ $1+5+14,80 /-1+7+14,100 /-$. Loft mounting
only. Speciai leaflet available F.M. (Band 2). Loft S/D $15 /$ F.M. (Band 2). Loft S/D, $15 /-$ " "H" $_{3} 32 / 6$. 3 element, 55/-. External units available Co-ax cable 8d. yd. Co-ax. plugs, $1 / 4$.
Outlet boxes, $5 /$. Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \& P. $5 /-$. Send 6 d stamps for illustrated lists
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, New Addington Surrey (CRO-OJB) LODGE HILL 2266

4SSTATION INTERCOM
 4-Station Transistor Intercom system (1 mastor and 3 Subs), in de-luxe plantic cmbineta for desk or wall mounting. Call/talk/listen from Master to Subs and Subs to Master. Ideally yultable for Business, Surgery, Schnols, Hospltal, Office and Home. Operates
on one 9 V battery, On/off switch. Yolume control on one $9 \vee$ battery, On/oft switch. Volame control. other sccessorles. P. \& P. $7 / 6$

WIRE-LESS INTERCOM

No batteries-no wires. Junt plug in the mains for instant two-way, loud and clear communication On/oif switch and volume control. Price 12 gns
P. \& P. $9 / 6$ extra.

Same as 4-Btation Intercom for two-way instant communication. Ideal as Baby Alarm and Door communication. Ideal as Baby Alarm and Door
Phone. Complete with 6 fit. connecting wire. Battery 2/6. P. \& P. 4/6.
 ciency with this incredible De-luxe business effifler. Take down long telephone mesages or converiwithout holding the handsel maseful of converse off switch. Volume Control. Battery $2 / 6$ extra P . On/ $3 / 6$. Full price refunded if hot natiofied in 7 dsy WEST LONDON DIRECT SUPPLIES (P/W1) 169 EENSINGTON HIGH STREET, LONDON, W. 8

HARVERSON＇S EXCLUSIVE BARGAIN HI－FI GUITAR AMPLIFIERS

Refurblshed unit with a peak to peak output of

approx． 20 w＇atts． Brief spec：AC Mains 200 240v． EF8B，ECC83， $2 \times$ ECLB2，Bridge
Rect．Two inputs Rect．Two inputs via standard jack
sockets for 1 or 2
guitara or mikes $\begin{array}{ll}\text { gutara or } & \text { mikes } \\ \text { controlled } & \text { by }\end{array}$ aingle volume control．Separate bass and treble controls． Tremolo with varisble apeed control and stindard jack Standard jack socket for speaker output（ 3 or 16 ohm） Completely as if－contained unit in attractive portable case
finahed in dark rexine with gold trise and folding handle． Size approx． 14 ？$\times 11\} \times 8$ Bin．Also copable of really $\mathrm{Hi}-\mathrm{Fi}$ size approx．14！x 11 \＆x gin．Also capable of really Hi－F
reproduction when used with a gram deck or radio tuner Each amplifier is carefully tested and checked by us before despatch，and due to the fact that the cabinets are slightly store solled we are offering them at the unrepeat able price of $£ 18.18 .0$ ．Carr．10／－．Standard Jack Plugs
$2 / 8$ each，if required．FOOT SW1TCH tor tremolo on／oft 2／8 each，if required．FOOT EW WhCH for tre
control complete with lead and jack plug $27 / 8$.

BRAND NEW 3 OHM LOUDSPEAKERS $5 \mathrm{in} .14 / ; 6 \mathrm{jin} .18 / 6 ; 8 \mathrm{in} .27 /-7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6$ E．M．I． $8 \times$ stn．with high flux magnet $81 /-$ ．E．M．I． $13 / \times$
8in．with high flux ceramic magnet $42 /-(15 \mathrm{ohm} 45 /-)$ E．M．I． 13×8 in．With two inbuilt tweeters and crossover network． 3 or 15 ohms 4 gnis，P．\＆P． 5 in． $2 /-, 6 \frac{1}{2}$ \＆ 81 n ． $2 / 6$ 10 \＆ 12 in ． $3 / 6$ per speaker
BRAND NEW． 121 n． $16 w$. H／D Speakers， 3 or 15 ohms
Current production by well．known British mat Current production by well－known British maker．Now with Hiflux ceranic ferrobar magnet aasembly 85.10 .0
 E．M．I． 3 tn．HEAVY DUTY TWEETERS．Poweritul cera－
mic magnet．Available in 3 or 8 ohma $15 /-$ each； 15 ohms mic magnet．Aval． $18 / 6$ ．
181 each ．＂RA＂TWIN CONE LOUDSPEAKER． 10 watte peak 18in．＂RA＂TWIN CONE LOUDSPEAKE
handing． 3 or 15 ohm， $35 /-$ P．\＆P． $3 / 6$
35 OHM SPEAKERS $3 \mathrm{fin} .12 / 6 ; 7 \times 4 \mathrm{in}$ ． $21 /-$ P．\＆\＆P． $2 /$－per speaker
VYNAIR AND REXINE SPEAEERS AND CABINET FABRICS app． 54 nn．wide．Usuallg 35／－yd．，our price $18 / 6$
yd．length．P．\＆P． $2 / 6$（min． 1 yd．）．S．A．E．for ssmples． ydenst COLLARO MAGNAVOX 363 STEREO TAPE LATEST COLLARO MAGNAVOX 363 STEREO TAPE Send S．A．E．for lateat prices．
B．S．R．TD2，4－TRACK8TEREO TAPE DECK．Send S．A．E QUALITY PORTABLE TAPE RECORDER CABE Brand new，Beautifully made．Only 49／6．P．di P．8／8． iser 35／－P．\＆P． $3 /$－ ．ERE．Hlgh imp，for degk or hand ACOS CRYSTAL MIKES．High imp，for degk or hand use．High senaitivity．18／6．P．\＆P． $1 / 6$.
ACOS RIGE IMPEDAFCE CRYSTAL 8TICK MIEES． SPECLAL OFFER！MOVINO DOIL STICK MIKE．Fitted on／ofit switoh for remote control．Eigh quality．Bigh or low impedanoe．（State imp．required）．BARGAIN PRIO 30／－．P．\＆
NEW 8．T．C．TYPE 25 MINTATURE RELAYS－
 10／－each．P．\＆P． $1 / 6$ ．
Also some aimilar to shove but coll realstance 5,800
SPECLAL OFPER！PLESEEY TYPE 28 TWIN TUNING
GANG． $400 \mathrm{pF}+146 \mathrm{pF}$ ．Fitted with trimmers and $5: 1$ tntegral slow motion．Suitable for nominal $470 \mathrm{kc} / \mathrm{s}$
 MAINS TRANSFORMER．Primary $200-240 \mathrm{~V}$ two
geparate 1 amp and 20 V at 1.2 amp ：secs．can be connected In
geries for 36 V at 1.5 amp ．Ideal for translstor power series for 36 V at $1 \cdot 5$ amp．Ideal for translstor power
gupplies．Drop through mountlag．Stack size $2!\times 3 \frac{1}{2} \times$ inpplies．P．\＆P． $6 /$
MAANS TRANSFORMER．For tranaistor power supplies． MANS TRANBFORMER．For traniator power supplies．
Prl． $200 / 240 \mathrm{v} .8 \mathrm{Sec}, \mathrm{B-0-9}$ at $500 \mathrm{~mA} .11 /-\mathrm{P}$ ．\＆ $\mathrm{P} .2 / 6$. Pri． $200 / 240 \mathrm{v}$ ．Bec． $1000-10$ at 2 amp ． $27 / 6$ ．P．\＆P． $3 / 6$.
MATCHED PAIR OF $2+$ WATT TRANISTOR DRIVER MATCERD PAIR OF 2 + WATT TRANSISTOR DRIVER
AND OUTPUT TRANSFORMERS．Stack size $11 \times 1+x$
 In ．Output trans．tapped for 3 ohm and 15 ohm output
$10 /$－pair plus $2 /-. P$ ．\＆ P ． PARMEXO 7 －10 watt OUTPUT TRANSFORMERS to match pair of ECL82＇a ln pueh－pull．Sec．tapped 3－75，
7.5 and 15 ohmm．Stack aize $2 \downarrow \times 1 \times 2$ n．approx．ONLY $18 /-\mathrm{P}$ ．\＆P．3／－
$7-10$
watt
OUTPUT TRANEFORMER
to ECL86＇s in pusb－pull PRAND NEW MAINE TRANSFORMERS for Bridge Reetifer．Pri． 240 v ．AC．Sec． 240 v ．at 50 mA and $6 \cdot 3 \mathrm{v}$ ．at
1.6 arn．Stack alze $21 \times 1 \times 24 \mathrm{in} .10 / 6$ ． P ． $\mathrm{P} 3 / 6$ ． （Special quotations for quantities）．

HIGH GRADE OOPPER LAMINATE BOARDS
$\times 1 / 2 \mathrm{In}$ ．FIVE for $10 /-\mathrm{P}$ ．\＆P． $2 /-$ ．

TRANSISTOR STEREO $8+8$ MK II

Now using sillcon Transistors in first flve stagea on each channel reaulting in even lower nolse level with improved sensitivity．A really first－class Hi．Fi Stereo Amplifter Kit
Uses 14 transiators giving 8 watts push pull output per Uses 14 trannistors giving 8 watts push pull output per
channel（ 16 W ．mono）．Integrated pre－amp．with Bass， channel（16W．mono）．Integrated pre－amp．With Bass， Ceramic or Crystal cartridgea．Output stage for any speskers from 3 to 15 ohms．Compact design，all parts stapplled including drilled metal work．Chr－Kit baserd attractive front panel，knobs，wire，solder，nuts，bolts－ no extras to buy－Simple step by step instructions enable any constructor to build an amplither to be proud o／ Brief apecification：Freq．reaponse $\pm 3 \mathrm{~dB} .20-20,000 \mathrm{c} / \mathrm{e}$ -16 dB ．Negative feedback $18 d B$ over main amp Power requirements 25 V at $\cdot 6 \mathrm{gmp}$
PRICES：AMPLIFIER KIT 110.10 .0 ；POWER PACK KIT 88．0．0；CABINET 83.0 .0 ．All Pobt Free
Circuit diagram，construction details and parta list（free with kit） $1 / 6$ ．（8．A．E．）
 SPECLAL PURCHASE！ E．M．I．4－8PEED PLAYER Heavy $8 \% \mathrm{in}$ ．metal turntable．
Low futter performance $200 /$ $250 \forall$ ．shaded motor（ 90 tap）．Complete with latest type lightweight pick－up arm
and mono cartridge with t／0 and mono cartridge with t／o NUMBER ONLY 63／4．P．\＆

4－8PEED RECORD PLAYER BARGAINS Mains models．All brand new ln maker＇h monnted pick－up arm and mono cartridge． B．S．R．UA25 with latest mono compatible osrt LATEST GARRARD MODHMA Ps Alking 6／6． SPOs 3000 ARRARD MODEMS．AIf types svailable 1000 8P85，3000，AT80 ete．Send S．A．E．Ior latant Bargain Prioes
PLINTH UNITS cut out for Garrard Models 1000， 1025 ， PLINTH UNITS cut out tor Garrard Models 1000， 1025 OUR PRICE 5 gna，complete．P．\＆P． $8 / 6$ ．
SONOTONE 日TAEC compatible Stereo Cartridge with diamand stylus 50／－P．\＆P ．
MONO T／O CARTRIDGE
MONO T／O CARTRIDGE．Complete with LP \＆ 78 sapphire atylii．Brand new 12／6．P．\＆P． $2 / 2$
PEW ONLE！ACOS GP69／1．For EP and LP 10／－．P．\＆P．
QUALITY RECORD PLAYER AMPLIPIER A top－quality record player amplitier employing heary duty double wound mains transiormer，ECC83，EL84，
EZ80 valves．Separate Bass，Treble and Volume controls． Complete with output tranaformer matched for 3 ohm peaker．Slze $7^{\prime \prime}$ w．$\times 3^{-}$d．$\times 6^{\circ}$ a．Ready built and tested PRICE 76／－．P．\＆P． $6 /$
ALSO AVAILABLE mounted on bosrd with output transformer and spesker ready to fit into cabinet
PRICE $97 / 6$ ．P． 8 ． $7 / 6$ ．
PRLUXE QOALITY PORTABLE R／P CABINET
URCut motor hoard size $144 \times 121 \mathrm{n}$ ．clearance 21 n ．beiow Uncut motor board size $14 \downarrow \times 121 \mathrm{n}$ ．clearance 2 in ．below，末iln，above．Will take above ampiner and any b．．or
 AT60 and 8P25）．Size $18 \times 15 \times 8 \mathrm{ln}$ ．PRICE 23．8．6．
P．\＆ P ． $8 / 6$ ．

FM／AM TUNER HEAD
Beautifully designed and pre－ Wadaworth Ltd．Supplled ready fitted with twin 0005 tuning condenser for AM con－ nection．Prealigried FM sec－ output 10.7 Mc／s．Complete
 full circuit diagram of tuner head．Another special bulk purchase enables us to offer these at $27 / 6$ each．P．\＆P． $3 / 6$ ． GORLER F．M．TUNER HEAD． $88-100 \mathrm{Mc} / \mathrm{s} .10 \cdot 7 \mathrm{Mc} / \mathrm{s}$,
I．F． $15 /-\mathrm{plus} 2 / 6 \mathrm{P}$ ．\＆P．（ECC85 valves， $8 / 6 \mathrm{extr}$ ）

3－VALVE AUDIO AMPLIFIER MODEL EA84 D signed for HI－Fl reproduc－
tion of recorde．A．C．Mains tion of records．A．C．Mains
operation．Ready bullt on
plated heavy gauge metal plated heavy gauge metal
chasis，size $7 f^{2} w, x 4^{\circ} d . x$ $42^{\circ} \mathrm{h}$ ．Incorporates ECCB ${ }^{2}$ EL84，EZ80 valves．Heavy
duty，double wound mains duty，double wound mains former matched for 3 ohm speaker，aeparate Bams，Treble and volume controla．Nega detached and leads extended for remote mounting of controls．Complete with lenobs，valves，etc．，wired and tested tor only 24．5．0．P．\＆P．
HSL＂FOUR＂AMPLIFIER KIT．Similar in appearance to HA34 above but employs entirely different and advanced circuitry．Complete get of parts，etc． $79 / 8 .{ }^{\text {P．\＆}}$ ．
BRAND NEW TRANSISTOR BARGAINS．
GET （Matched Pair）15／－；V15／10p，10／－； $0 C 715 / 1-$ ；OC76 b／－ AF117 7／8．
Set of Muliard 6 transistors OC44，2－OC45．ACl28D matched pair AC128 25／－；Mullard LFH3 Audio Tran siator Pack AC128D and matched pair ACl28 12／6；
ORP12 Cadmlum Sulphide Cella 10／6．All poot free．

SPECIAL OFFER！

Baby Alarm，Boonter unit for
tramastor radios etc．，alao ideal for clasaroom
transistor radios etc．，ailo ideal for classroom ofer High Impedance Dynamic Microphone（ $\mathbf{3 0} /-$ ）．Output 1000 mw ． Uses standard 9 volt battery．Bmart two tone carrying case alze $12 \times 4 \times 9 \ln$ ．Atted standard input fack socket， volume controls， 7×4 in．speaker．Completely bullt and teated，brand new with tull maier＇s guarantee．

Only 79／6 ${ }^{\text {R．} 8 \text { 品品 }}$

STEREO AMPLIFIER

Incorporating 2 ECL86s and ］EZ80，beavy duty，double wound mains transformer．Output 4 watts per channet．

Drinted circuit panel size $6 \times 3 \mathrm{in}$ ．Output Transformers
－Output transformer tapped for 3 ohm and 15 ohm speakera．Transistora（CPET114 or Sl Mullard AC128D and patched palr of AC128 o／p）． 9 volt operation． －Everythng supplled，wire，battery clips，solder，etc． Comprehensive essy to follow instructlons and clrcalt
diagram 2／B（Free with Kit）．All parte sold geparately diagram 2／B（Free with Kit）．All parts sold separately，
8PECIAL PEICK $45 /-$ P． 4 F． $3 /$ ．Also ready built and 8PECIAL PRICE 45／－．
tested，62／6．P．\＆P． $3 /$.

HARVERSON＇S SUPER MONO AMPLIFIER

A super quallty gram amplifier using a double wound mains tranaformer，EZ80 rectifier and ECL82 triode pentode valve as audio amplifier and power output stage．
Impedance 3 ohms．Output approx．3－5 watts．Volume Impedance 3 ohms．Output approx．3－8 watts．Volume 6^{*} high overall．AC malns $200 / 240 \mathrm{v}$ ．Supplied absolutely Brand New completely wired and tested with valves and good quality output transformer．LIMITED NUMBER ONLY．

 and separate basa sud and 2 tndependent volume controls， good Hit and cut．Valve line－up 2EL 84 a ECC83，EF86 and Ez80 rectiner．Simple issitructlon booklet $2 / 6$（Free with parts）．All parts sold separately．ONLY E7．9．6．P．\＆P．8／6． input sockets，80．5．0．P．\＆P．8／6．

HARVERSON SURPLUS CO．LTD．

170 HIGH ST．，MERTON，S．W． 19
Tel．：01－540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
Please write clearly
 P．© P．ON OVERSEAS ORDERS PGARGD EXTRA．

Open all day Saturday

Early closing Wed． 1 p．m．
a few ininutes from South Wimbledon Tube Station

Here's What's NEW from HEATHKIT in SOLID STATE RECEIVERS

AVAILABLE AS EASY TO BUILD KITS OR READY-TO-USE MODELS

Kit K/AR-14

Ready to use A/AR-14
P.P. 13/6
£75.0.0
P.P.
$13 / 6$

Cabinet $£ 4.10 .0$. extra

Ready to use A/AR-17

P.P. £59.0.0 P.P.
$10 / 6$

Cabinet $£ \mathbf{\$ 1 0 . 0}$. extra

Kit K/AR-27

Ready to use A/AR-27
P.P.
$10 / 6$
£32.0.0 P.P.
$10 / 6$

Cabinet $£ \mathbf{£} \mathbf{1 0 . 0}$ extra

CHOOSE A QUALITY HEATHKIT LOUDSPEAKER SYSTEM TO GET THE BEST FROM YOUR AUDIO SET-UP.

Top Value in a 30 Watt FM Stereo Receiver, AR-14

- 31 transistor, 10 diode circuit for cool, instant operation with the transparent, natural sound only transistors can deliver $\pm 1 \mathrm{~dB}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel continuous (20 watts total). 15 watts per channel IHF music power (30 watts total) Wideband FM/FM stereo tuner plus two preamplifiers and two power amplifiers. Front panel stereo headphone jack. Compact-just $3 \frac{7}{2}^{\prime \prime} \mathrm{H} \times 15 \frac{1}{4}^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{D}$. Custom install it in wall, your own cabinet, or use as a free standing unit. Build it in 20 hours.
Kit K/AR-14 (less cab.)
kit $£ 54.0 .0$. P.P. $13 / 6$ 。
£75.0.0. P.P. 13/6

A/AR-14 (less cab.)
Cabinet extra: Teak or Walnut finish $£ 4.10 .0$

Unbeatable Value in a 14 Watt FM Stereo Receiver, AR-17

28 transistor, 7 diode circuit for natural transparent sound, instant operation, lang trouble-free life. 14 watts music power, 10 watts RMS from $25-35,000 \mathrm{~Hz}$ at $\pm 1 \mathrm{~dB}$. Automatic stereo indicator light. Adjustable phase control for maximum separation. - Complete front panel controls. Flywheel tuning. All critical circuits including FM "front-end" factory assembled and aligned. - Circuit board assembly. Compact $10 \frac{3 z^{\prime \prime} \mathrm{D}}{} \times 3^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W}$. Front panel stereo headphone jack.
Kit K/AR-14 (less cab.)
kit $\quad \mathbf{~} 39.0 .0$. P.P. 13/6
A/AR-14 (less cab.)
£59.0.0. P.P. 13/6

Cabin'et extra: Teak or Walnut finish $£ 3.10 .0$

A Quality Table Radio FM Mono Receiver, AR-27

- 13 transistor, 6 diode circuit for high-fidelity sound reproduction, long life, low heat, freedom from hum, and service-free operation. 7 watts music power. $\pm 1 \mathrm{~dB}, 25$ to $60,000 \mathrm{~Hz}$ at 5 watts. - Input connectors for phonograph and auxiliary signals. Complete front panel controls. Flywheel tuning. Preassembled and prealigned FM tuner, all other critical parts factory aligned. Easy, circuit board assembly. Compact bookshelf size. 3-way installation . . . wall, free standing or in a suitable cabinet. 117 v . A.C. or $210 / 240$ v. A.C., 50 Hz operation.

Kit K/AR-27 (less cab.)
kit £22.10.0. P.P. $10 / 6$
A/AR-27 (less cab.) £32.0.0. P.P. $10 / 6$
Cabinet extra : Teak or Walnut finish $£ 3.10 .0$

See how easy it is to build any Heathkit model. Purchase a manual only. British manuals 10/: each. American manuals $£ 1$ each incl. P.P. Price of manual deductable from kit if you buy later.

HEATHKIT Models for Family Entertainment

OFFERS THE BEST IN SPECIFICATION AT LOWEST COST

Latest STEREO TAPE RECORDER, STR-1
Fully portable-own speakers

Kit K/STR-1
£58.0.0. P.P. $10 / 6$
Ready-to-Use A/STR-1
£72.0.0. P.P. 10/6
FOR THIS SPECIFICATION $\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{6} \mathrm{ips}$. Sound-onsound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumbwheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/ headphone and external amplifier outputs . . . front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two high efficiency $8 \times 5 \mathrm{in}$. speakers. Operates on 230 V a.c. supply.
Versatile recording facilities. So easy to build-so easy to use.

Latest STEREO AMPLIFIER, TSA-12

12×12 watts output.
Kit K/TSA-12
£32.16.0. less cabinet. P.P. 10/6
Cabinet f3.16.0. extra
Ready-to-Use A/TSA-12
£39.10.0. P.P. 10/6
FOR THIS SPECIFICATION
17 transistors, 6 diode \pm circuit. $1 \mathrm{~dB}, 16$ to $50,000 \mathrm{~Hz}$ at 12 watts per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling. Attractive aluminium, golden anodised front panel Handsome assembled and finished wainut veneered cabinet available Matches Heathkit models TFM-1 and AFM-2 transistor tuners.
Full range power . . . over extremely wide frequency range. Specia transformerless output circuitry. Adequately heat-sinked power transistors for cool operation-long life, 6 position source switch.

RADIOS for Luxury Listening

"OXFORD" PORTABLE UXR-2
This De-Luxe, 7 transistor, 3 diode portable radio covers long and medium wave-bands with an easy-tune dial and uses battery-saving circuitry to ensure longer life and more hours of listening pleasure. Choice of Brown or Black real leather case.
Kit K/UXR-2 £15.10.0. P.P. 6/-
Ready-to-Use A/UXR-2 £17.10.0. P.P. 6/-

PORTABLE UXR-1

This luxury 6-transistor, 1 diode receiver covers long and medium wavebands. Its robust case is now available in real brown leather or choice of colours: Navy blue, coral pink, lime green (please state second choice)
Kit K/UXR-1 £12.8.0. colour case. P.P. 4/6 Ready-to-Use A/UXR-1 £14.8.0. P.P. 4/6 UXR-1 Kit K/UXR-1 £13.8.0. real leather. P.P. 4/6 Ready-to-Use A/UXR-1 £15.10.0. P.P. 4/6

Latest Portable Stereo Record Player, SRP-1
Automatic playing of 16,33 , 45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5in. special loudspeakers. For 220 -
 250 V ac mains operation. Overall cabinet size 15 号 $\times 3 \frac{7}{8} \times 10 \frac{1}{4} i n$.

Compact, economical stereo and mono record playing for the whole family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.

Kit fe8 Ready-to-Use A/SRP-1 K/SRP-1 \mathbf{K}, 6.O incl. P.T. £35.4.0. P.P. $10 / 6$
 High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semi-conductors (6 1rânsistors, 2 diodes). For 12 volt positive or 12 volt negative earth systeins. Powerful output (4 watts). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly.

Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
Kit K/CR-1 (incl. speaker) £14.12.0. incl. P.T. P.P. 4/6
Ready-to-Use A/CR-1 (incl. speaker) £19.12.0. incl. P.T. P.P. 4/6
 'Mohican' General Coverage Receiver, GC-1 U

Powerful 10 transistor, 5 diode circuit. Tunes 580 to 1550 kHz and 1.69 to 30 MHz in five bands. Bandspread on all bands. Fixed-aligned ceramic IF transfilters for best selectivity. Pre-assembled and aligned 'front-end' for fast, easy assembly. Built-in $6 \times 4 \mathrm{in}$. speaker. Tuning meter for pin-point tuning. Completely self-contained for portability-can be
 operated on 230 volt AC with Model K/U8E-1. Kit £2.17.6. extra.
Kit K/GC-1U Ready-to-Use A/GC-1U £38.8.0. £46.8.0. P.P. 10/6

OTHER MODELS FOR SW LISTENERS
Gen. Cov. Receiver RG-1 Kit
£39.16.0. P.P. 9/-
SW Receiver GR-64 Kit
f22.8.0. P.P. 9/£50.2.0. P.P. 9/-
Enclosed is f ._. plus packing and cartiage.
Please send model (s)
Please send FREE Heathkit Catalogue.
Name
Adrass
City

1

SPEAKER SYSTEMS

THE STEREO，A wuperior exten． ion speaker cablinet fitted with
we $7 \rightarrow$ fin．speaken．Size 16 9 x 8 in．Fininhed in fawn Griair with matural／teak ends．

The Baker．Nize x a las x
 antreret frint．（itt init fur ther when purt add internel
 thither feet，\＆6．15．0．If．\＆P
intif）． 10,41 ．
10．

THE SCOTT．Tanle top or wal nomuling speaker．size litis teal．Fittod $131 \mathbf{x} \times \mathrm{Km}$ ．Speake wieh volumie contril．Finished in teak cloth abn coutrastiug Vraar．©Pleave rtate 3 or 15 cahm imp．） 24.5 .0 ．P．\＆P

The Tennyson．Wertge shape

 133，xinh．mpeaker with purt． anll matchlug V＇siair，e2．2．6

The Vernon．Table tap nr wall mannting enclowire for $3 \mid x$ Mla．，speaker（Ritnilar to The Sent！illux．alowe．）． The Haydo P \＆ The Haydon． $181 \times 15 \times$ at in．．Woal grail cluth and suitulle for itin．speaker $72 / 6$ ． 5 P． $9 /$ ．
SPEAKERS：Flac Hoary duty Ceranic Manncta 11.000 ilne， 10 in ，rubil． $10 \times$ din， 3

 npeakers nippliet Mhomlanam，Bukers，W＇，B．．Wharfetale．Eagle，Jrupleton．

VYNALR Widthe frum 40 tu $341 \mathrm{n}, \mathrm{l} 18 / 6$
 FORMERA．3． 7,15 whis，wath，11／8． 1．※1゚．1／月
CARTRIDGE：Henter gTID，2． $17 / 6$ ©P91．I，20／－．Mons Methtone．2T48，
 MICROPHONES：Xtal Hand Mikes acos mike $45,21 /$ Acos Mike 40 18／6．Dyn．Mike DM－ibl，30／－．（M291 Xtal，12／6．Telephone riek－up．10／6． P．\＆P．1／．Xital lapel Mike，7／6．tiuitar
Mike，12／6，P．\＆P ． $1 /$ ． TRANSISTOR ELECTROLYTICS

EARPIECES WITH CORD and $x-5 \mathrm{~mm}$

 phrg．N ohn magnet ie． $3 /-250$ ohm， $4 /-$ ．INO than with clip． $6 / 8$ ．Xtal．P．\＆P．tid． （1） | TRANSISTOR SPEAKERS 8 ohnu |
| :--- |
| $8 / 6.311 . .10 / 6,3 / 11 ., 12 / 6 . ~$ |

 FERROX RODS WITH COILS． $41 \times$ sin．， ROTARY sW WITCHES：z lore Mains Bultch． $3 /-$ ； 1 pole 12 way． 2 pule 2 Lay 3 pole 3 way， 3 pule 4 way． 4 pole 3 way，
PIANO KEY PUSH BUTTON SWIT CHES，${ }^{T}$ buttog ince mains on vfi． IIEMENS CONTACT COOLED RECTI IERS． 50 N VACUUM CLEANER LEAD．Jiyds，twin eable with innuhted 5 mup twoplaplug

BROADWAY Electronics

 92 MITCHAM ROAD，TOOTING BROADWAY， LONDON，S．W． 17 Telephone 01－6723984（Closed all day Wednesday） （Few minutes from Tooting Broadway Underground Station）TRANSISTORS etc．

AC107	3／－	OC35	$7 / 6$
AC126	$2 /-$	OC4	1／11
ACL63	3／－	OC45	1／11
ACl67	41－	0070	8／3
ACY19	$3 / 9$	0 CO 1	1／11
ACY：21	$3 / 8$	0072	2／－
AFl15	$31-$	0073	2／3
$4{ }^{+116}$	$31-$	0075	$21-$
AF11＊	2／9	$0 \mathrm{C81}$	2／－
BFY18	4／6	OC81D	$1 / 11$
Bry ${ }^{\text {cid }}$	4／－	OC82D	$2 / 3$
H8Y24	$3 /-$	OC1 10	$5 /-$
BSY 28	3／9	OC169	3／6
H8Y65	$3 /-$	OCLIO	$2 / 2$
	$3 /-$ $8 / 6$	OC171	$2 / 2$
OAS ${ }^{\text {a }}$	2／6	OC200	$4 / 6$
OA9	$1 / 8$	OC202	$4 / 6$
OABI	$1 / 6$	OC203	4／8
OA91	$1 / 9$	OC204	$5 / 6$
OCe3	6／6	TK220	1／6
OC゙25	51－	$\because \mathrm{N} 70 \mathrm{H}$ A	3／－
Oc2h	$51-$	2N743	$4 / 6$
$0 \mathrm{O}_{2} \mathrm{~A}$	8／6	2N753	$2 / 9$
Crystal	Diod	s－6 for	$2 / 6$.

SILICON DIODE

750mA Series

BY 1000800 ply 400 ply

BYZ13 300 piv
BYZ12 600 plv BYZ11 900 piv Mallard Staok FW Bridge

THYRISTORS

100 plv
200 piv
300 piv
300 piv
400 piv
10 ampg series
50 piv
100 piv
tho amp series price

Midget Eleotrolytio Conds．Wire Ends

At Ed．eaoh $0-8 \mu \mathrm{~F}$	25 volt
$1 \mu \mathrm{~F}$	275 volt
$2 \mu \mathrm{~F}$	150 rolt
$4 \mu \mathrm{~F}$	150 volt
$640 \mu \mathrm{~F}$	$2 \cdot 5$ volt
At 8d．meoh	
$2 \mu \mathrm{~F}$	300 volt
$\pm \mu \mathrm{F}$	12 molt
$8 \mu \mathrm{~F}$	12 volt
$10 \mu \mathrm{~F}$	25 voit
$16 \mu \mathrm{~F}$	16 volt
$30 \mu \mathrm{~F}$	10 volt
$43 \mu \mathrm{~F}$	10 volt
$80 \mu \mathrm{~F}$	$6 \cdot 4$ volt
$100 \mu \mathrm{~F}$	6 volt
$123 \mu \mathrm{~F}$	＋volt
At 1／－eaoh	
$16 \mu \mathrm{~F}$	250 volt
$50 \mu \mathrm{~F}$	10 volt
$6+\mu{ }^{\circ}$	23 voit
$100 \mu \mathrm{~F}$	12 volt
$200 \mu \mathrm{~F}$	15 volt
320 HF	10

Alan $A \mu \mathrm{~F} 350 \mathrm{~V}^{\prime} 1 / 2,25 \mu \mathrm{~F}^{2} 25 \mathrm{~V}^{\mathrm{C}} 1 / 3$ and $30 \mu \mathrm{~F} 50 \mathrm{~V}^{2} 1 / 8$ ．Other electmiytics in current ibst． Postafe，Parking and Insurance all abme 7d．up to $3 ; 1 /$－frunt $4 \cdot 11$ ； 12 and over pail． 2 GANG VAR．CONDENSER：Mod．，small，air－space．l，0005 ea．nec． $5 /-(1 /$ ）

TRANSFORMERS：Sub binin Output（ 3Ω fur Ociz etc．）and loriver $2 / 6$ caw（bi．）．Output $3 \Omega 25 \mathrm{~W}$ 万bon Ω for flo（ex－equip．Unt perfect） $2 / 6(1 / 9)$
PRINTED CIRCUIT PANELS：Eight boarchs with minlmum 30 Transistors，also Divien， TEST EQUIPME
 $0-50 \mathrm{~mA}, 0-2 \cdot 5 \mathrm{~mA}, 0 \rightarrow 250 \mathrm{nA}$ ．Ren． $0-50 \mathrm{k} \Omega, 0-\mathrm{iM} \Omega, 300 \Omega 30 \mathrm{k} \Omega$ at centre scate．Cap

 fronts in 10， 50 ．110， 150 ，200， $300,500 \mathrm{~mA}, 1,5$ and $15 \mathrm{anup} 24 /-;$＂g＂Meter $25 / 6 ; 500$ DIA MOND
DIAMOND STYLII：Replacemeatx for TCBLP，TC8／Btered，TC8LP／8tereo．Studio＇O＇
 STYLII．All these（spen，aiso GP37 it R／11，GP91 at 6／－（bol，each all typey）．No 78 r．p．mp居保
PIOK－UP CARTR1DGES all with atylii ant standard replacement fittngs Mono GP＇s7／2
12／6．Nerent Stcreo GP93 $22 /$ ．Monn and sterea）（3P＇91 \＆：18／6．Ceramic Steren Compatible，top quality for expensive untits （：P94 38／6 tall ！
PP3 ELIMINATOR（A．C．） $17 / 6$（ $1 / k$ ）．TWO STATION TRANS．INTER－COM．Excellent FOUR TRANSISTOR 3 WATT AMPLIFIER
（2）$\times 2!\times 1!: 9 \times: 8 \Omega * 16 \Omega$ ，excellent on 3Ω TELEPHONE AMP

Hech．REV．COUNTER to 999，long spludle，reset wheel，for T／recorderm sc． $4 / 6(1 /-)$ ， BATTERY CEARGERS：stmall，sturdy，neat； 2 amp．12v． $35 /-$ ； $6 \mathrm{v} / \mathrm{L} 2 \mathrm{v}$ 39／－．Larger British Branler with ingter，fuse，cte． $42 / 6$ ．All x bsolutely complete．（ $4 / 6$ ench，ill types）

RECORDING TAPE：Finemt itualty British Mylar．STANDARD；3in． $500 \mathrm{ft} 7 / 3.5 \operatorname{in} 850 \mathrm{it}$ 8．9． 1 in ．
（lar）．MEs
M1CROPEONES：CRYSTAL：MIC40．1）esk， $15 / 6$ ：MIC45，curved hand grip 17／3；Stick＂ 60 ＂ $20 / 8$ ；Stich $* 39 * 26 / 6$（ $1 / 6$ each type）．Cream plintle hand type 7／6，or with struct stand

 fieal on thexlbe swan neck th seritch－fitted lawe $42 / 8(2 / t)$ ．PIEZO $50 \mathrm{~K} \Omega$ black／chrome 2in．Nia．x 11 for atand tue mils．Standard inside threal $33 / 6$（1／G）．All mikes supplie

 30／－pair．powt ete．pull：$R \times 3,15 \Omega 13 / 8(1 / 6)$ ；HEADPEONES High Res． 2000Ω eia

AERLALS－Car，teleseopic，vandal prooi：lockn retractell， 2 keyn and all fittings，22／6（2／6） For F．M and rll wets，telexcople 5 siction 3 inn，-22 in ．with switel， $5 /-$（L／．）． 7 sectio

SWITCHES：Standaril toggie，metal，250．2A．One hale bixing：APBT 2／3．SPDT 2／9 DPST 3／a．DI＇DT 3／3．Slkle types．Suhtmin．DPDT $1 / 6$ each．Small DPDT， 3 way，centre

 EDGE VOL．CONTROL： 30 К $1 /-$（hit．）．
MAINS NEON TESTER：Fly Jeads 2／－（id．）：PLUGS：Bul．Jack，plastic body 2／－．Bercened 2／9．Snckets 1／8（All id．）．VALVE HOLDERS：BIG or B9A．Monalded 8d．（id．up th 4， $1 /$ 2／6（either fid．）．PICK－UP WIRE：Twin Super thin bilex Scr．Bolid Core 2／3．Fiexlble Core
 prowt ree．SINGLE MIKE CABLE Td．Wrl．（up to ts Fda．\＆d．，aver pout free）．Both fiextble screencll and sheatherl
RECORD DECKS：Latest pupulir twper of farmous Britioh nakes arailable from time t thme it lowest prices．Your enquiries invited，but mo bista available

CURRENT LIST sent with all orilers or free for B．A．Fnvelope－details of cable，wire

FELSTEAD ELECTRONICS

（PW14）
LONGLEY LANE，GATLEY，CHEADLE，CHESHIRE，SK8 4 EE
TERMS：Cawh with order onl5．No C．O．D．or caller service．Post，packing and insurance charges are whinn in bracikets after all fitoms．Charges，which apply to G．B．and Eire only，


```
AC107
AC126
AC127
AC128
ACY17
AF114
AF115
AF116
AF117
AF118
AF239
AF186
AF139
BFY25
BSY26
BSY27
BSY28
BSY29
OC41
OC44
OC44
OC71
OC72
OC73
OC81
OC81D
OC83
OC139
```

TRANSISTORS PRICE

U
$\frac{1}{m}$

います。
AAY42
OA95
OA95
$0 A 70$
$0 A 79$
OA70
OA79
OAS1
OA81
$0 A 73$
IN914

$3 / 6$	$2 N 711$
$3 / 6$	$2 N 1302-3$
$3 / 6$	NN1304－5

$2 \mathrm{~N} 1308-9$ $2 N 1308-9$
$2 N 3844 A$
2N3844A
Power
Transistors
Transistors
0 OCzo
$\mathrm{OC2}$
OC25
OC 26
OC
0 C 3
OC 3
AD149 AUY10
Diodes

PACKS OF YOUR OWN CHOICE UP TO the value of 10／－WITH ORDERS OVER 24

TRY OUR＂X PAKS＂FOR UNEQUALLED value．

XA PAK
Germanium PNP typetransistors，equivalents to a large part of the OC range，i．e．44，45，71，72， 81 ，etc．

PRICE 15 PER 1000

XB PAK

Silicon TO－18 CAN type transistors NPN／PNP mixed lots，with equivalents to OC200－1，2N706a， BSY27／29，BSY95A

PRICE C5．5．0 PER 500
PRICE C10 PER 1000
XC PAK
Silicon diodes miniature glass types，finished black with polarity marked，equivalents to OA200． OA202，BAY31－39 and DKIO，etc．

PRICE 5 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMI－ CONDUCTORS．FREE PACKS SUSPENDED WITH THESE ORDERS，ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK

P／P 2／6 PER PACK（U．K．）

TRANSISTORS ONLY 1／－EACH
 SILICON

All these types available

2N929	2N706	2S131	2S103	2N696	2N1613	2S733	BFY10
2S501	2N706A	2S512	2S104	2N697	2NN171	2N726	2S731

All tested and guaranteed transistors－unmarked．
Manufacturers ovar runs for the new PRE－PAK range．

NEW UNMARKED UNTESTED PAKS	
25 ESY95A	TRANSISTORS 10／．
$10 \begin{aligned} & \text { OC4－}{ }^{\text {Mull．Glass Type }} \text { OC81 }\end{aligned}$	TRANSISTORS 10／－
$25 \begin{aligned} & \text { BSY26-27 } \\ & \text { NPN Silicon } \end{aligned}$	TRANSISTDRS 10／－
10 All Watt Silicon All Voltages	ZENERS 10／－
BFY50－1－2 NPN Silicon	TRANSISTDRS 10／－
$10 \begin{aligned} & \text { dimp．Stud．} \\ & \text { Silicon }\end{aligned}$	RECTIFIERS 10／－
$25 \begin{aligned} & \text { BCi07-8-9 } \\ & \text { NPN Silicon } \end{aligned}$	TRANSISTORS 10／－
$40 \begin{aligned} & \text { 1N914-6 OA200r202 } \\ & \text { Sub. Min. Silicon } \end{aligned}$	202 DIODES 10／－
$150 \begin{aligned} & \text { Min. Germ } \\ & \text { High } \\ & \text { Quality } \end{aligned}$	OIODES 10／－
$25^{2 N 706}$ A NPN Silicon	TRANSISTORS $10 /-$

PRE－PAK．N．605 POWER TRANSISTOR EQUVALENT $5 /=$ eaCh TONKTJOI－2－3．4
 COMPLIMENTARY SET 2／6 pair

PRE－PAKS

Selection from our lists

Price No．
B1 50 Unmarked Trans．Untested B2 4 Photo Cells Inc．Book of Instructions B6 17 Red Spot AF Transistors17 Red Spot AF Transistors10／－B6A 17 White Spot Rf TransistorsB9 1 ORP 12 Light Sensitive Cell10／－10／＝
$9 / 2$
$10 /$35325 Sil．Trans． $400 \mathrm{Mc} / \mathrm{s}$ ，Brand New
85440 ．．＂NPNTo5 Trans Voltage－10／．
85540 NPN To 18 Galn Fallouts
35640 ．．NPN／PNP All Tested86810 Top Hat Recs． $750 \mathrm{M} / \mathrm{A} 100-800$ PIVB69 20 Diodes．Gld－Bnd．Germ Sil．PlanerB74 5 Gld－Bnd．Diodes．2－OA9，3－OA5B75 3 Comp．Set．2G371，2G381，2G339 A
C2 1 Unliunction Transistor 2N2160
C32 6 Top Hat Recs. 1 S100 Type
$\begin{array}{ll}\text { C32 } & 6 \text { Top Hat Recs. } 1 \text { S100 Type } \\ \text { C35 } & 3 \text { Unijunction Transistors to } 2 N 2160\end{array}$
C35 3 Unijunction Transistors to 2 N 2160
A1 7 Silicon Rectifiers BY100 Type
ts $-10 /-$
$=10 /-$
10/-
10/ $=$
10/-
10/-
10:-
15/-
A3 25 Mixed Marked and Tested Transistors
15.
A21 5 Power Transistors 1-AD149/1-OC26 and
3 olhers
AND MANY MORE

BRAND NEW PAK • JUST RELEASED

replaces our very popular b． 39 pak brand new short lead components all factory marked and mounted ON PRINTED CIRCUIT PANELS．
80 TRANSISTORS \＆DIODES
50 HIGH TOLERANCE
RESISTORS
20 VARIOUS CAPACITORS
please state when order par 2／－P．\＆P．WITH THIS PAK．

Make a Rev．Counter for your Car．The ＇TACHO BLOCK＇．This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate re counter for any car． State 4 or 6 cylinder． \qquad
FREE CATALOGUE AND LISTS for：－

ZENER DIODES

 TRANSISTORS，RECTIFIERS FULL PRE－PAK LISTS \＆SUBSTITUTION CHARTMINIMUM ORDER 10／．CASH WITH ORDER PLEASE．Add $1 /$－post and packing per order．OVERSEAS ADD EXTRA FOR AIRMAIL．

THERE IS ONLY ONE BI－PRE－PAK LTD BEWARE OF IMITATIONS

FREE！A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS $-1-\square-1$ DEPT．A． $222-224$ WEST ROAD，WESTCLIFF－ON－SEA，ESSEX

required now for vital work in Air Traffic Control
Join the National Air Traffic Control Service，a Depart－ ment of the Board of Trade，and play a vital part in the safety of Civil Aviation．Work on the latest equipment in Computers， Radar and Data Extraction．Automatic Landing Systems and Closed－Circuit Television，at Civil Airports．Air Tratfic Control Centres，Radar Stations and other engineering establishments in the South of England，including Heathrow．Gatwick and Stansted

If you are 19 or over，with practical experience in at least one of the main branches of telecommunications，fill in the coupon now．Your starting salary would be $£ 869$（at 19）to $£ 1.130$（at 25 or over）；scale maximum $£ 1.304$（rates are higher at Heathrow）．Non－contributory pensions for established staff． Career Prospects．Your prospects are excellent with opportunities to study for higher qualifications in this expand－ ing field

Apply today，for full details and application form．

National Air Traffic Control Service

VALVES

SAME DAY SERVICE NEW！TESTED！GUARANTEED！

SETS

$185,185,1$ TA，384，3V4，DAF91，DF91，DK91，DL92，
Set of 4 for 17／6．DAF96，DF96．DK 96, DL96， 4 for $26 /-$ ．

	4／6	12AX7 4／8	DK96	$71-$	El42	$9 / 9$				
$1 \mathrm{~A} 7 \mathrm{GT}$	$7 / 6$	$12 \mathrm{K8GT} 7 / 8$	DL35	$51-$	Elat	$4 / 8$		5／－	Uaces	8
1H5GT	$7 / 3$	$20 \mathrm{~F} 213 / 8$	DL9	$5 / 9$	EL90	5／－	PF	2／－	UCF80	8／3
1NSGT	$7 / 8$	20L1 16／9	DL94	5／9	EL95	$5 /-$	PL36	$9 / 6$	UCH42	818
185	$5 / 6$	20P3 14／8	DL96	$71-$	EM80	5／9	PL81	$7 / 3$	UCH81	6
185	4／8	20P4 18／6	DY86	$5 / 9$	EM81	$8 / 9$	P LS2	6／6	UCL82	7／8
174	$2 / 9$	26t゙4GTl1／8	DY87	5／8	EM84	8／3	PL83	6／8	－CLs3	19
384	$5 / 9$	30 Cl 6／9	EABC80	6／6	EM87	$7 / 8$	PLe4	8／3	UF41	${ }^{8}$
3 V 4	$5 / 9$ $4 / 6$	$\begin{array}{ll}30 \mathrm{Cl} 5 & 13 /- \\ 30 \mathrm{Cl} 17 & 12 / 6\end{array}$	EAF42	8／6	EY51	7／－	PL500	12／－	UF80	$71-$
3 CT	$4 / 8$ $5 / 8$	$\begin{array}{cc}30 \mathrm{C} 17 & 12 / 6 \\ 30 \mathrm{Cl} 8 & 9 /-\end{array}$	EB91	$2 / 3$	EY86	${ }_{7 / 8}^{6 / 3}$	PL504	12／8	UF85	8／9
$5 \mathrm{S4G}$	$7 / 6$	$\begin{array}{ll}30 \mathrm{~F} 5 & 13 / 6\end{array}$	EBC41	8／3	EZ4］	7／8	PM54		89	$8 / 8$
6／301／2	12／8	$30 \mathrm{FLl} 12 / 8$	EBF80	$81-$	EZ880	$4 / 6$	P $\times 25$	10／8	UL44	20／－
6AL5	$2 / 3$	30FL14 12／6	EBF89	6／3	EZ81	$4 / 8$	PY32	101－	UL84	8／6
6AM6	3／6	30 Li 8／－	ECC81	3／9	CZ32	$8 / 8$	PY33	10／－	UM8．4	$7 / 6$
6AQ5	$4 / 9$	30 L 15 14／－	ECC82	4／8	KT61	$8 / 8$	PY80	5／3	UY4	71
6AT6	4／－	$30 \mathrm{~L} 17 \mathrm{13} / \mathrm{-}$	ECC83	71	KT81	15／－	PY81	5／3	UY85	5／9
6AU6	5／8	30 P 4112 l	ECC84	5／6	N78	14／9	PY82	$5 /-$	P	10／6
A6	$4 / 6$ $4 / 3$	$\begin{array}{ll}30 \mathrm{P} 12 & 11 / 9 \\ 30 \mathrm{P} 19 & 12 /-\end{array}$	ECOC85	$5 /-$	PABC	7／－	PY83	$5 / 9$	Pr	21／－
6BJ6	7／－	$\begin{array}{ll}30 \mathrm{Pl} 19 & 12 /- \\ 30 \mathrm{PL} 1 & 12 / 6\end{array}$	ECC80	2／6	PC86	$9 / 6$	PY88	$8 / 3$ $8 / 9$	277	3／6
6BW6	13／．	30PL13 14／8	ECF82	8／9	PC96	816	PY800	$6 / 9$ $8 / 9$	Tr	
$8 \mathrm{CC4}$	2／9	30PL14 15／－	ECH35	61－	PC97	$8 / 6$	R19	6／6	${ }^{\text {ACL }} 127$	2
${ }_{6} 6 \mathrm{Fl} 3$	3／6	35L6GT 8／－	ECH 42	10／8	PC900	$8 / 3$	H20	12／8	AD140	7／6
6 Fl 14	81－	35 W 4 4／6	ECH81	5／9	PCC84	$8 /-$	TH21	$9 / 8$	AF102	18／－
$6 \mathrm{6K23}$	$13 / 3$	35Z4GT 5／－	ECH84	$6 / 9$	PGC85	6／6	U25	131－	AFI15	$3 /-$
6 K 7 G 6 K 80	$2 / 6$ $4 / 3$	$\begin{array}{cr}6063 & 12 / 8 \\ \text { A } 731 & 9 /-\end{array}$	ECL80	619	PCC88	$0 / 9$	U26	12／－	AF116	$3 /-$
6 K 80 6 LI 18	4／3	A331 9／－	ECL82	8／9	PCC889	$10 / 6$	U47	$13 / 6$	AF117	3／8
6 V 6 d	$3 / 6$	B729 12／6	ECL8	8／3	PCF80	8／9	U82	$13 / 8$ $4 / 8$	AFl24	7／8
6V6GT	6／6	ССН $3510 /-$	EF39	$3 / 9$	PCF82	8／－	－78	3／6	AF126	
6 N 4	3／6	CL33 18／6	EF41	$9 / 6$	PCF86	9／3	「191	12／6	AF12i	$3 / 6$
$6 \times 5 \mathrm{Fr}$	519	DAC32 $7 / 3$	EF80	4／8	PCF8001	13／6	U301	13／6	OC26	5／8
${ }^{7} \mathbf{7 8} 6$	$10 / 9$	DAF91 $4 / 3$	EF85	5／6	PCF801	71 －	U801	181－	$0 \mathrm{C44}$	$2 / 3$
787 7 Cb	7\％－	DAF96 6／－	EF86	6／3	PCF802	$9 / 6$	UABC80	618	0 C 45	$2 / 3$
7 Cb	15／－	DF゙33 $\quad 7 / 8$	EF＇89	5／3	PCF80s	$81-$	UAF42	$9 / 6$	0 C 71	／6
7 Cb	$6 / 8$	DF91 $2 / 9$	EF91	$3 / 6$	PCF8061	$11 / 8$	UB41	8／6	0 C 72	$2 / 6$
7 Y 4	6／8	DF96 6 6／－	EF183	5／8	PCF808	$12 / 6$	UBC41	718	0 C 75	$2 / 6$
10Fl	15／	DH77 4／－	EF184	$5 / 9$	PCL82	$71-$	UBC81	7／－	$0 \mathrm{C81}$	2／3
	15／6	DH81 $10 / 9$	EH90	$6 / 6$	PCL83	9／－	UBF80	6／－	OC81D	2／3
12AU6	4／9	$\begin{array}{ll}\text { DK32 } & 7 / 8 \\ \text { DK91 } & 5 / 6\end{array}$	EL33	8／9 $8 / 6$	PCL84	$7 / 6$ $8 / 3$	UBF89	6／9	0 C 82	$2 / 3$
12AUT	4／9	DK92 9／3	ELA1	$9 / 6$	PCL86	8／6	UC92	3／－	OC82D	$2 / 6$ $2 / 6$

85 TORQUAY GARDENS，REDBRIDGE，ILFORD， ESSEX．

STEREOPHONIC KUBA ＂RDYAL＂RADIOGRAM ＂RDYAL RADIN This radiogram chassills matohed complete with anstem．two 10 in ． lounsers，two 4in．Cone Tweeters sperkerte
and litent BSR UA70 Monolstereo snd
record ohsuger－s oomplete
and ity stereophonis al prioe． hall norma proe． 8 piano 4 wavebands－A 8 watt push．pull
keya control． keya contror．chaunel－prequency
output per Tesponye $30-20.0$ TECHALCAL TO INBTALLEREREQUIRED． ONLY E79．19．6． H．P．termas avaliable
Deposit
£20 And
monthaty monthly prymetnts 62／6（total H．P．write Bend iree leaflet．

KUBA＇IMPERIAL 666＇STEREOPHONIC HI－FI RADIOGRAM CHASSIS－complete with two 101 in ．x 6 in speakers and the latest BSR Mono／Stereo record changer－a complete AM／FM chassis with normal price． 4 Wavehand AM／FM chassis with the very latest priated cir－
cultry－ 7 push button control． cutput．Provision for atereo decoder Ontal $49 \frac{1}{2}$ Gns．plua P．\＆P．17／6．EABILY FITTED， NO TECHNICAL KNOWLEDGE NECESS－ ARY．H．P．avaliable \＆13．0．0 depoeit plua os ARY．H．P．日vailable R13．0．0 deposit plus ${ }^{24}$
monthy payments $40 / 8$（total H．P． 661.16 .0 ）． Send $£ 13.17 .6$ today．

CALLERS WELCOME Dept．P189，LONDON，N．14
TELEPBONE O1－888 3733／9886 TELEPRONE 01－886 3783／9868

S-DeC BREADBOARDING

- Fast, reliable, solderless circuit assembly
- Contacts last indefinitely Use ordinary components again and again
- Test all the circuits in the magazines

This breadboard is used professionally by development engineers throughout the world. Over 80% of current production is exported A booklet of projects is included with each kit giving construction details for a variety of circults such as amplifers, oscillators. VHE transmitter, radio, etc
S-DeC Kit: One S-DeC with Control Panel. Jig and Accessories for solderless connections to controls, etc., with booklet "S-DeC 29/6d retail.
2-DeC KIt: Two DeCs, control panel and accessories, with divided component tray. all contained in plastic atorage case. 67/6d
4-DeC Kit: Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet "S-DeC Protects" all contained in a strong. attractive, plastic case. Ideal for the professional user. 25.17 .6 retall.

AVAILABLE FROM LEADING SUPPLIERS
or in case of difficulty from

S.D.C. PRODUCTS (Electronics) LTD

THE CORN EXCHANGE, CHELMSFORD, Essex Telephone: Chelmsford (OCH 5) 56215

STRONGHOLD steel shelving that adjusts every inch of itsheight!
 Immensely strong-completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the bayl Cash with order $73^{\prime \prime}$ high $\times 34^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep unit with six shelves in heavy-gauge steel, stove enamelled grey or green! £3.15s.-Brand Newl See the rest of the N.C. Brown range!

N.C. BROWNLTD.

pacesetters in storage equipment

[^1]
Opportunity of a lifetime!

Big price reductions on top quality Knight-Kits

Easy to build. Advanced design. Invaluable for both the professional and amateur. Faultless performance guaranteed

KG635 5-inch Oscilloscope Kit
For Colour TV Servicing and General Wideband
Testing. D.C. to $5.2-\mathrm{MHz}$ Bandwidth. 5 Linear time
bese ranges. Response: ${ }^{+} 1.5 \mathrm{~dB}$, DC to 5.2 MHz
Complete kit: $£ 62.19 .6$. Postage $15 \mathrm{~s} .0 \mathrm{~d} .+4 \mathrm{~s}$. Od. per probe.
KG687 Solid State
wesp/Marker Generator Silicon transistors. Covers all colour/monochrome TV, FM, IF and VHF frequencles, Sweep oscillator covers to 220 MHz on 5 fundamental bands. Marker
 oscillator covers 2 to 225 MHz on four bands
Complete kit: 854.2 .6 . Postage 15 s . 0 d .

KG663 Regulated 0-40 Volt Solid
State DC Power Supply Kit
Compact. 6 sllicon transistors. 12 diodes. Output voltage and current $0-40 \mathrm{~V}$ DC. $0-1.5$ A, continuously variable. Complete kit: $£ 40.19 .6$. Postage 10s. Od.

KG661 Solid-State Regulated Low-Voltage DC Power Supply Kit Compact and rugged. 4 silicon transigtors. 7 diodes. Voltage output $0-25$ volts
DC. at $00-6 \mathrm{amp}$. Complete kit: $\mathbf{£ 1 5 . 6 . 6 .}$

Postage 10s. od.

KG686 Lab. Quality RF Signal Generator $100 \mathrm{kHz} / 1 \mathrm{MHz}$ Crystal Calibrator 10 sillicon transystors. 6 diodes. Frequency coverake fundamental bands. Complete $\mathrm{k} 1 \mathrm{t}: \mathrm{k}^{2} 39.13 .6$

KG688 Solid-State
Sine/Squara Wave Generator Kit
Sine Weye: 20 Hz to $2 \mathrm{MHz} \ln 5$ ranges. Square Wave: 20 Hz to Sulzer oscllator circult. All silicon transistors: Complete kit: £:36.5.6. Postage 10s. Od.

G30 Grid-dip Meter Kit

Covers all frequencles from 1.5 to 300 MHz in 6 overlapping ranges Extremely compact. supplie with 6 coils in plastic cas
Complete kit. \&.12.15.6.
KG675 R \& C Substitution Box Eliminates need for soldering and resoldering when substituting. 36
 9 Switch-selected Capaci PIV SLicon Diode 40 míd Com $450 V$ Capacitor

KG650 RF Signal Generator Kit

 For TV. AM and FM alignment etc. Wide range stable Colpitts type oscillator. Complete kit: §15.19.6. Postage 125. 6d Easy credit facilities available,New 960 page Hobbies Manual
12 Hobbies Sections - over 12,000
units \& components for dozens of
Hobbies 16/6
Please send me: Free Knight-Kits brochure \square The new Electroniques Hobbles Manual. (16/6) \square Enclosed is a cheque/postal order for $16 / 6$ (which includes the $5 /-\mathrm{pD}$) made payable to Electroniques (Prop. STC) Ltd

Name.

Address
AITITHE
Electronics (Prop. STC) Ltd.
PW6

VALVESSENT-COUDUCTORS BRAND NEW \& GUARANTEED

TRANSISTORS
\qquad 7/3 $10 \mathrm{OC73}$

TE-20RF SIGNAL GENERATOR|LAFAYETTE TE46 RESISTANCE ang generatar cover. $120 \mathrm{Kc} / \mathrm{h}-260$
Mc / s on
6
bands Directive catiorated
Variable R.F. Variable
tenuator.
ton 240 V 200240 V
Brand new Brand new with in
 PY801 8/-11/-

0232	$11 / 6$	PY 8

 U26
U191
U281 U191 U301
U801 UABC80 B/
UAF42 10 UAF42 10 TBF80 0
0
0
0.0
0
0
 OTHE BTOCK
\qquad
ARF-100 COMBINED AF-RF SIGNAL GENERATOR

T.E. 40 HIGH SENSITIVITY A.C
\qquad

$20-200$ $\begin{aligned} & \text { Bquare } \\ & 30,000\end{aligned}$

 $\begin{array}{ccc}30,000 & \mathrm{c} / 4 . & 0 / \mathrm{P} \\ \mathrm{HIGH} \\ \text { IMP. } & 21 \mathrm{~V}\end{array}$ Mc/s. Variable R.F attenuation int/ext. modulation. Incorpor put and $\%$ moi. on R.F. $220 / 240 \mathrm{~V}$. A.C $15 /-$
$15 /-$

AVO CT. 38 ELECTRONIC MULTIMETERS

High quality 97 range instrument which measures A.C. and D.C. voltage. Current, Resistance and
Power Output. Ranges D.C. volts 250 m Power Output. Ranges D.C. Volts 250 mV -
$10,000 \mathrm{~V}$. ($10 \mathrm{meg} \Omega-110$ meg Ω input). D.C. current $10 \mu \mathrm{~A} 2.5$ amps. Ohms: $0-1,000$ meg Ω. head up to $250 \mathrm{Mc} / \mathrm{s}$) A.C. current $10 \mu \mathrm{~A}-25$ amps. Power output 50 micro-walts 50 watte. Operation $0 / 110 / 400 / 250 \mathrm{~V}$. A.C. Supplied in perfect condltion complete with circuit lead and

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

pose D/
T.B. $/ 2$
Bind wh
gentieral put
oectloscon
Heneitith $3.5 \mathrm{Mc} / \mathrm{s}$
Operating voltage 0 V 110 $200 / 450 \mathrm{~V}$. A.C. Supplicd it excellent working con. dition. 222.10.0. Or complete with all accessories. probe leadn
a15. carriage 30

ADMIRALTY B. 40 RECEIVERS
Jutt released by the Ministry. High quality 10 valve recelver manufactured by Mur-
phy. Coverage in 3 banda 650 Ke $30-30$

AM/FM SIGNAL GENERATORS

$\%$. Alator Test No 2. Aishigh quality
precision
instrument made for the ministry hy Airmec. Frequency coverage
$20-80 \mathrm{Mc} / \mathrm{s}$. CW/Fic/s. AM/
\qquad attenutior $1 \mu V-100 \mathrm{mV}$. Operatlon mecision volt D.C. or $0 / 110 / 200 \quad 250$ volt A.C. 8 ize $12 \times$ a \times 9in. Supplied in brand new condition complete with all oonnectors fully tested. 245. Carr. 20/

MARCONI CT44/TF956 AF Absorption Wattmere
μ watt to 8 watt
s20 Carr. $10 /-$

AvOMETERS

supplled in exce
lent conclition, fully teated and checked
prods. leads and
instructions.
Model 474 a 29196

CLASS D WAVEMETERS

A cree fronuenc
covering $1.7-8, ~ M$

MARCONI TEST EQUIPMENT

Ex.military reconditioned. TF. 144

 8TANDAR1D BIGNAL GENERATORB, $85 \mathrm{Kc} / \mathrm{B}-$ TOR O-S Melt \& 45 . Carr $30 /$. T.F. 195 M BEAT FREQUENCY O8CILLATOR 0-40 Ke/g, 200/250V. Meter $£ 20$. Carr. 20:-. Aill alhove offered in excelient condithen, fully tested and checked. T.F. 1100 VALVE MIS8ION TE\&T SET Brand New 475 T. F. 37
Variable Voltage Thansinnulis

Brand new, giaranteed and carriage paid.
High quality conatruction. Input 230 V . $50-60$ cycles
High quality construction. Input 230 V . $50-60$ cycles.
Output full variable from $0-260$ volts. Bulk quantitiea available 1 инр. - $5.10 .0 ; 2-5$ amp-26.15.0; 3 amp.- 89.15 .0 ; 8 atıp. $£ 14.10 .0 ; 10$ amp.- $£ 18.10 .0 ; 12 \mathrm{amp} . £ 21.0 .0$;

ADVANCE D. 1 SIGNAL GENERATORS

 A high quality U.H.F. slgnal generator covering $10310 \mathrm{Me} / \mathrm{m}$. Operatem $2 \mathrm{ma} 200 / 250$ volt
A.C. Supplied in excellent condition com piete with calihration charts. E15. Carr. 15/-

 $20 \mathrm{c} / \mathrm{s}$
Output
ance 3,000 ohms ance 5,000 ohtms
$200 / 250 \mathrm{~V}$ A. C
gupplied hirund new and guarall

TE-65 VALVE VOLTMETER

High quality instrument with quranges. Dinstrument $1.5-1.500 \mathrm{v}$. A. C., volts $1.5-$
1.500 v . Resiatance up to 1.000 megohms. $220 / 240 \mathrm{v}$. with probe and instructions £17.10.0. b^{\prime}. \& P. $8 t_{-}$. Adilitionat probecs avait
tbit: R.F. $35 /=$. II.V. $48 / 8$.

OMRON MK2 RELAYS
Brand New and Boxed 24 V. D.C. coils. 2 Pole changeover. \$amp. contacts. 7/6 each. P. \& P. 1/6.

MULTMETERS for GUERY puposel

UNR-30 4-BAND
COMMUNICATION RECEIVER
Covering $350 \mathrm{Kc} / \mathrm{g}-30 \mathrm{Mc} / 8$. Incorporates variable BFO for OW/8s/B reception. Bulit in speaker and phone brand new, guaranteed with inatruc. 13 gns

LAFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/CW/SSB AMATEDR AND SHORT WAVE. $150 \mathrm{Kc} / \mathrm{a}-400 \mathrm{Kc} / \mathrm{s}$ and $530 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. F.E.T. Front end o 2 mectanical filtert Euge
 Variable BFO Noiselimilter 8 meter © 24 in. Bandspread - R30V. A.C./12V. D.C. nog. aarth operation R R gain control. size 15 in. $\times 9$ in \times

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE 4 band recelver covering $650 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$.
continuous and electrical bandepread continuous and electrical bandspread on $10,16,20$, 40 and 80 metres, 8 valve plus 7 diode circait. 4/8 ohm oulpat and phome Jack. B8B-CW ANL ANL

 10in. With instruction manual Normally $£ 5 \cdot 19.6$. OUR PRICE $£ 3.15 .0$ if purchased with

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

A completely new transistorised receiver covering 152-174 Mc/s. Fully tuneable or cryatal controlled
(not supplied) for fixed frequency operation. In(not supplied) for fixed irequency operation. In-
corporates A INTEORATED CIRCUITB. Built in speaker and illuminated dial. Bquelch and volume controls. Tape recorder output. 750 aerial input. Keadphone jack. Operation 230 V
12 V . D.C. Neg earth. 837.10 .0 . Carr. 10/-.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

$100 \cdot 0-100 \mu \mathrm{~A}$ ${ }_{500}^{200 \mu \mathrm{~A}}$ cortion 1% or less. Inputa $\pm \mathrm{mV}$ and 250 mV . Output $3-16 \Omega$. Beparate L and R. volume conrola. Treble and bass control. Stereo phone jack. Brwhed aluminium, gold snodised extruded front
 £28. Carriage 7/6.
CLEAR PLASTIC PANEL METERS First graile quality Moving Coll panel meters available exgheck. B. A.E. for
Type MR $38 \mathrm{P}, 1^{21} / \mathrm{siz}$ in. square fronts. ${ }_{5000-500 \mu 25 i-}{ }^{\text {Ty }}$ \qquad

2-wiay buzzer call
syntem. For desk or wall mounting. Bup plied complete with connecting batterles, instruc-
tions. 2 station $59 / 6$.

ARRARD TAPE MOTORS

ARRARD DECKS
1000 stereo
1025 mono
2000 atereo
2025 TC less cartridge 2025 TC stereo sp2s Mk. II lesa cartridgo A70 Mk. II lesm cartridge. AT60 Mk. 11
Wooden Plinths for Garrard Series 1,000 2,000, 3,000 , etc, with perspex cover aw [3$] 1]$

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

4

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

POST NOW for BROCHURE
I or write if you prefer not to cut page To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please
send your free Brochure, without obligation, to: we do not employ representatives
NAME
ADDRESS
BLOCK CAPS

prActical WIRELESS

TDPIC DF THE MDNTH

State-of-the-Art

CEMICONDUCTORS personify the modern image of Dradio and electronics, even for the home constructor, yet on looking back over the years some quite surprising facts emerge. We can, in fact, go back to Munk Af Rosenshold who in 1835 discovered that certain solid substances possessed rectifying properties. As is so often the case, he was in advance of his times and the idea lay dormant until rediscovered by F. Braun in 1874.

A year before this, a checker working on underwater telegraph cables noticed that the resistance of a certain material varied according to the light falling on it. The material was selenium and three years later it was discovered that this material possessed the property of rectification.

These facts lay virtually untapped until the turn of the century when, strangely enough, thermionic valves and what we now call semiconductors vied with each other for popularity. For many years, however, it was the semiconductor which reigned supreme and it is interesting to note that in 1906 Pickard invented a silicon detector for use in wireless equipment, a device which was in fact a point-contact rectifier. Three years later Eccles devised a crystal diode oscillator. Later, in 1924, Lossev achieved oscillations with semiconductor diodes.

During the late 1920's and the 1930's the thermionic valve ousted semiconductors but during World War II crystal detectors were widely used in radar equipment. Then in 1941 came another landmark-the invention of the junction diode-and the way lay open for a remarkable comeback of semiconductors.

In December 1947, Bardeen and Brattain produced in the Bell Telephone Laboratories a crude prototype of a crystal triode and this device, named the transistor, was the one which can be said to have administered the coup de grace to the future of thermionic valves. From this starting point sprang the junction transistors and other modern semiconductor devices, leading to the integrated circuits now beginning to become a vital factor in the progress of radio an electronics.

The age of the solid state can, therefore, be said to have really begin 21 years ago, and in saluting the many pioneers who have made this possible we celebrate the occasion with a special feature starting on page 664.

NEWS AND COMMENT

Leader 661
News and Comment 662
Radio Engineering and Communi- cations Exhibition 669
Letters to the Editor 674, 677
CQICQ!CQICQ!CQ!CQ! 683
Practically Wirelessby Henry693
New Books 702
On the Short Waves by Christopher Danpure and David Gibson, G3JDG 705
Club Spot-Leyton and Walthamstow, G3WHY 709
MW Column by C. Molloy 710
CONSTRUCTIONAL
Miniature IC Hearing Aid Amplifier by L. McNamara, B.Sc. 670
Simple Capacitance Bridge by P. Cassidy 678
Pyramid-All Purpose System,Part 5
Three Waveband Superhet Tunerby F. G. Rayer680
5-15Mc/s Converter by R. F. Graham 690
OTHER FEATURES
The Solid State by I. R. Sinclair 664
Repairing Radio Sets, Part 1 by H. W. Hellyer 684
P.W. Guide to Components
Part 2-Capacitors by M. K. Titman, B.Sc. 694
FEBRUARY ISSUE WILL BE PUBLISHED ON JANUARY 10th

[^2]
news and comment

TRUVOX INTEGRATED CIRCUIT STEREO TUNER

The first British f.m. stereo tuner using integrated circuits and field-effect transistors has been introduced by Truvox Ltd. (of Hythe, Southampton).

Designed from the outset specifically for stereo reception (mono reception is of course automatic when stereo is not being received), the new model is designated the Truvox Series 200 IC Stereo Tuner. It joins the recently introduced Truvox Series 200 range; hi-fi amplifier, tuner, loudspeakers, mono and stereo tape recorders.

Sensitivity is $2.0 / \mu \mathrm{V}$ for 30 dB quieting IHFM, $1.5 / \mu \mathrm{V}$ for -3 dB limiting, $5.0 / \mu \mathrm{V}$ for $200 \mathrm{kc} / \mathrm{s}$ bandwidth. Frequency response is: $20 \mathrm{c} / \mathrm{s}$ to $15 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}$ before de-emphasis and steep notch filters. Price is $£ 59$ 10s. Od.

ISWC ANNIVERSARY 1929-1968

Surely something to celebrate. The existence of the ISWC for 40 years. The ISWC image was created on 4th October, 1929, by a little band of short wave enthusiasts in the USA, among them Arthur J. Green, Jacob Kieimans, Joseph B. Session, Charles Schroder and George F. Brooks. To form a medium for the exchange of short wave station information and a contact among those who were interested. Short wave radio was a new thing. There were only a few experimental stations on the air. No one had ever thought to publish news on short wave stations. It was essential for the listeners who were interested to have some information on the stations that were to be heard if they were to have an equal chance of hearing them, for there was no other guide. No other short wave clubs. No World Radio Handbooks. No Sweden Calling DX-ers or the like. No DX Parliament or European DX Council. ISWC were publishing International Short Wave Radio and membership was spreading across the world, bringing with it a greater exchange of information and the fostering of international friendship through short wave radio and the ISWC. ISWC is a non-commercial organisation end for those who work for it, it is a labour of love.

RODING BOYS' SOCIETY: HOLLOWAY BRANCH

The active boys ${ }^{\circ}$ Radio/Science Club based in Walthamstow, and known as the R.B.S. has a group going in the Holloway area now. Any keen young people in this area who would like to join in helping to build up the club room and facilities, are very welcome to contact us. Please write or call: David Huntly, 262 Hornsey Road, N. 7.

Any boys in the other area (Waltham Forest) are, of course, very welcome to visit the Club there. Any enquiries concerning the Society can be sent to: Ken Smith, G3JIX (Leader), 82 Granville Road, Walthamstow, E. 17.

RADIO 2 COVERAGE IN SCOTLAND

On 1st October the BBC opened two additional transmitters, at Dundee and Redmoss (Aberdeen) transmitting Radio 2 on 202 metres ($1484 \mathrm{kc} / \mathrm{s}$). The cities of Dundee and Aberdeen, and their environs, are served by the new transmissions.

On the same date the wavelength of the existing Radio 3 transmitter at Dundee will change from 194 metres ($1546 \mathrm{kc} / \mathrm{s}$) to 188 metres ($1594 \mathrm{kc} / \mathrm{s}$).

The new transmitters at Dundee and Redmoss will join the existing stations at Edinburgh and Glasgow on 202 metres in augmenting the medium-wave coverage of Radio 2 in Scotland. The Edinburgh and Glasgow transmitters were recently increased in power to provide further improvements in the service. These four stations offer good reception of Radio 2 to many listeners who have difficulty in receiving the long-wave transmissions on 1500 metres ($200 \mathrm{kc} / \mathrm{s}$) from Droitwich.

NEW RADIO 1 TRANSMITTER

On 3rd November the BBC opened a new Radio 1 transmitter to serve the Bournemouth area, on 202 metres $(1484 \mathrm{kc} / \mathrm{s})$. This transmitter extends the coverage of Radio 1 to Bournemouth and Poole and their environs bringing the number of Radio 1 transmitters to seventeen.

PUT ON A CHARGE!

A low-priced battery charging system called "Pencel" is announced by DCB Instrument \& Lighting Company of Austin House, Croft Road, Crowborough, Sussex.

Recent field tests have demonstrated that the MN 1500, the popular battery in the transistor radio and photographic fie/ds, can be recharged between ten and thirty times (depending upon operation conditions) by the "Pencel" Battery Charger.

As a replacement set of alkaline manganese 1500 type cells costs 11 s . and has a limited life in a transistor radio, it is apparent that the initial outlay of 79s. 6d. which includes four alkaline manganese 1500 type cells, is soon recovered. For further details contact DCB Instrument and Lighting Company, Austin House, Croft Road, Crow. borough, Sussex.

news And comment...

HOME ELECTRICIANS KIT

The new Bib Home Electricians Kit comprises of the new Model 5 self-opening wire stripper and cutter, a reel of insulating tape, 5 and 15 amp fuse wire, Ersin Multicore match melting tape solder (no soldering iron required), two Bib flex shorteners, for shortening leads and cables without cutting, and plug size screwdriver to suit all types of domestic plugs. Price is $14 \mathrm{~s} .6 d$.

GET IT TAPED LADSI

Philips Electrical have invited Britain's half-amillion Scouts to take part in a $£ 1,000$ tape recording contest.

Trips to Holland, tape recorders and accessories and special tours of recording studios are among the prizes offered. Cub Scouts ($8-10$ years), Scouts (11-15 years), Venture Scouts (16-20 years), adult leaders and regular supporters are all catered for in the various sections of the contest.

Typical recording assignments asked for by the organisers are: a tape-recorded report of an expedition, a dramatic or musical item including pop and folk music, a series of sound effects, a message for Scouts overseas and interviews with local personalities.

Entries have to be between three and five minutes' duration and recorded at $1 \frac{7}{8}$ or $3 \frac{3}{4}$ inches per second. Closing date is 1 st March, 1969. Entry forms are available from all major Philips agents and Gilwell Park International Adult Leader Training Centre, Chingford, London, E.4.

CONCRETE-TRANSISTOR??

A "concrete-transistor" developed at the USSR Institute for Industrial Concrete Structure and Goods Prefabrication is employed at leading Soviet enterprises for reinforcedconcrete element prefabrication. It is designed for controlling the strength and homogeneity of steel-concrete elements and structures and can be used for the defectoscopy of wood, ceramics and other building materials.

The instrument measures the rate of the diffusion of longitudinal ultrasonic waves in the material under investigation; quality can also be appraised by the magnitude of these waves. Errors in determining the strength of concrete lie within a narrow range, as compared with the results of compression tests by mechanical methods.

The measuring principle employed in the circuit does not require the use of an electron-beam oscillograph which is essential for measuring the time of supersonic diffusion. The system of discrete time count makes lower demands on the operator and precludes objective errors.

MW-DXers PLEASE NOTE

If you are interested in medium wave DX, please note that the fifteenth series of Medium Wave News is now being published. Issued to subscribers monthly from November to April, plus an extra one in June, this newsletter is packed with comprehensive and up-to-date news of medium wave DX happenings. It includes as regular features, the monthly DX log, World of Radio and Verification Section, together with such articles as Antenna Forum, Reception Analysis and other information features. This publication is essential for the keen MW-DX fan. Details from K. Brownless, 7 The Avenue, Clifton, York, YO3 6AS. Please enclose a s.a.e. Please note that we are starting our MW Column on page 710.

GERMAN STEREO

Two new mains operated stereo record players are announced by Bruns of Hamburg, Germany. They are model SH 41 St with a manual 4 -speed deck and model WH 50 St with 4 -speed autochange deck (see photograph). Double wide frequency response transistorised amplifiers feed separate $6 \frac{1}{2} \mathrm{in}$. speakers through individual gain and tone controls. Output is 2×2 watts. The speakers are neatly housed in the twin cabinet lids. Dimensions: $17 \frac{1}{4} \times 10 \times$ $5 \frac{1}{2} \mathrm{in}$. Finish is dark walnut. Recommended retail prices: SH 41 St 30gns. (inc. P.T.); WH 50 St 40 gns. (inc. P.T.)

OTLEY RADIO SOCIETY

Meetings are held every Tuesday evening at our own premises in Otley. The Society has its own call sign -G3XNO-which is on 160 metres every Tuesday evening. Four members recently passed the Radio Amateurs' Examination and are now learning morse while another nine members are running an RAE course for next year's examination.

On 10th September we held an open evening welcoming wives and friends of members, forty people in all being present. Members had been making radio and electronic equipment for several months to enter the Construction Competition which was judged by three visitors during the evening. The winner of the senior section was K. Pickard with an Electronic Time Switch with Binary readout, and in the junior section P. Fox with a Transistor Stereo Amplifier.

Further details about the Society are available from the Publicity Officer, M. T. George-Powell, G3NNO, 82 Forest Avenue, Starbeck. Harrogate.

PART 1

IT is now almost exactly twenty-one years since William Shockley, working at the Bell Telephone Laboratories, announced that he had constructed the first working transistor. In the intervening years that primitive point-contact laboratory curiosity has grown into a precision device produced in millions, and has bred a host of newer devices, including f.e.t.s, thyristors, tunnel diodes and diode lasers all of which were undreamt of only twenty-one years ago.

That discovery did more than produce a new device, a new technology and a new industry: it brought to the attention of everyone the remarkable advances in a branch of physics which had up till then been the province of a few researchers-the physics of the solid state. Those of us who had been familiar with the ideas of vacuum physics and their application in thermionic valves suddenly had to accustom ourselves to talking of holes, lattice defects, impurity conductivity, traps, tunnelling and all the rest of the language which solid state electronics developed. Since then it has been as much as electronics engineers could do to keep up with the circuit behaviour of new devices without having to cope with their theory of operation.

The time has come, however, when it is more and more difficult to understand the newer devices without at least a smattering of such understanding. The physics which we learned at school is of little use to us in this connection: even at " A " level it deals with very little which was not known in 1850. We must now learn the physics which has developed in this century, containing ideas which seem so strange as to be almost unbelievable but whose proof is all around us.

Electronics may be said to have started with the discovery that atoms, the basic units from which all substances are made, can be split into nuclei, which
are heavy and positively charged, and electrons, which are light and negatively charged. Before the end of the nineteenth century it had been shown that electrons were the same as the "cathode rays" which had been observed in gas discharge tubes, and their important properties, attraction to a positive plate and repulsion by a negative one, deflection by a magnet, heating a substance struck by them and fluorescence in certain minerals, were all well known.
At that time the atom was thought to consist of a core, the nucleus, with the electrons clinging to it tightly, but the work of Rutherford and others (including Geiger, of Geiger-Müller counter fame) showed that the structure behaved much more like a very small positive core, the nucleus, surrounded by electrons at a distance very large compared with the diameter of the nucleus (about 100,000 times). The nucleus was positively charged and the number of negatively charged electrons was just enough to balance the positive charge on the nucleus.
The problem which next arose was why the atom did not collapse due to the attraction of the positive nucleus and the negative electrons. The most obvious answer was that the electrons were spinning round the nucleus at such a speed that the centrifugal force exactly balanced the electrical forces, but this still did not explain why the electrons should not gradually spiral into the nucleus, just as a weight tied to a string and revolving round a pole gradually loses energy and moves in "ever decreasing circles" in the manner of the legendary oozlem bird.

This puzzle was solved by a series of guesses. Anyone can guess, but it takes a genius to guess correctly in matters of this sort, and the guessers in this case were called Planck, Bohr and Sommerfield. In 1900 Planck had put forward his Quantum Theory which implied that everything was atomic, and that there were atoms of light, electrical and mechanical energy, and all radiated waves. These "atoms" of light and radiation he called "quanta". One quantum, he thought, was the least amount of energy change which could take place. At first sight this did not seem reasonable; it was like saying to an electrical engineer "You may have supplies of $200 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$ etc., but never $210 \mathrm{~V}, 230 \mathrm{~V}$ etc." Nowadays we are accustomed to the idea of quantities varying in steps; we have tapped transformers, wire wound potentiometers, preferred value resistors, and although these are large steps the idea is there. The quantum is a very small amount of energy ($6.6 \times 10^{-27} \mathrm{erg} / \mathrm{sec}$.) and our senses could hardly distinguish such small steps of energy from a smooth change. When we are dealing with atoms, however, the difference is important, and we must use the quantum theory. The quantum theory was extremely successful: it explained exactly the relation between the energy of radiation and the temperature of the radiating object, and was used by Einstein

to explain photoemission-the idea being that one quantum could eject only one electron from a substance.

When Bohr and Sommerfield applied quantum theory to the atom (Fig. 1) they used the principle that the energy of an electron could only be one of a series of energies or energy states which were each a quantum of energy apart. This idea, dating from 1915, is one of the most important principles in physics. In its later form of Quantum Mechanics it has explained and led to the construction of such devices as masers, lasers and transistors in the field of electronics alone.

One more point remains before we can move on to the problems of solid state physics. Experiments in 1927 showed that beams of electrons could behave exactly like beams of short-wave light, and that there was a direct connection between the energy of the electron beam and its apparent wavelength. Mathematicians later showed that the same equations which were used to describe light and other forms of radiation could also be used to describe electrons, and this approach, founded by de Broglie and Schrodinger, has been immensely useful in work on the theory of solids.

PROBLEMS OF SOLIDS

To any physicist of the last century the structure of solids seemed to be one of the most difficult of all problems and one least likely to be solved. It was generally agreed that the difference between solids, liquids and gases was one of the spacing between the atoms, the atoms in liquids being rather farther apart than in solids, and the atoms in gases much farther (ten times) apart. This was sufficient to explain such matters as boiling and freezing and latent heat but many others could not be explained.

Among the inexplicable problems was electrical conductivity. If we compare the electrical conductivity of different solids, the most striking fact is the huge range of values. The conductivity of the best conductor at room temperature (silver) is about 10^{30} (a short way of writing the figure 1 followed by 30 zeroes) times the conductivity of the poorest (p.t.f.e.), yet both these substances are solids, made of atoms which are constructed of nuclei and electrons. If, as we believe, electrons are the means of carrying electric current in solids-and they certainly are in gases (at low pressure)-why is there this difference, which is the greatest span of difference in all measurable quantities?

Solids also differ greatly in their ability to conduct heat. Schoolboys used to be taught that a good electrical insulator was a good heat insulator, but experiments on the conduction of heat at low temperatures showed that sapphire crystals were better conductors of heat than any metals, though they were electrical insulators.

These questions were difficult enough, but there were many other curiosities to explain. Why should certain metals and alloys be strongly magnetic though the remainder of solids were only very weakly magnetic? What was so special about the arrangement of atoms which decided whether a substance was a metal or a non-metal? Why did some crystals (such as quartz) vibrate in an alternating electric field? These and scores of other questions had to be explained by any theory of the solid state.

BAND THEORY OF SOLIDS

The simplest possible case of atomic structure is the structure of hydrogen gas, whose atom consists of a nucleus with one electron. Simple here is a comparative term; neither the physics nor the mathematics of the problem is simple, but the basic ideas can be simply described. The electron belonging to one nucleus can have various possible values of energy but no intermediate values (Fig. 2). At room temperature most of the electrons are in the

Fig. 2: Energy diagram for one electron in an atom. Note how the levels become crowded together until separate levels become indistinguishable when the electron is free (atom ionised).
lowest state of energy, but by very great heating or by the effect of light or electric current electrons can be made to have higher energies. Note particularly that they must change instantly from one energy value to another without ever having any intermediate value, and the amount of energy used to cause this change must be exactly the difference in energy between the two states. When electrons return to the normal low state, this energy is given out; in most cases this appears as light of a definite wavelength.
When we examine more complex atoms we find the same type of structure-a nucleus surrounded by electrons-but it turns out that there is a special restriction on the way electrons can be arranged. If we take a given energy level, which for convenience is described by a set of "quantum numbers" which act as map references, we find that only two electrons can occupy a level, and even these two are not identical in energy because they spin around their own axis in opposite directions. We may imagine the system as a ladder with the nucleus at the foot and two electrons on each rung (though the laws about the spacings of the rungs are rather more complex) so that electrons can climb up the ladder when a suitable amount of energy is put into the atom, and fall to the lowest unoccupied rungs when left alone, releasing energy in this process.

Fig. 3: Energy diagram for a nucleus with eight electrons (oxygen). Note that level 2 is split into three sub-levels each containing the maximum two electrons allowed.

This picture of the structure of a substance (Fig. 3) works well for gases, where the atoms are so far apart that each nucleus affects only its own electrons. In a solid, however, the atoms are so close that there is a considerable amount of interaction between one nucleus and the electrons belonging to the neighbouring nuclei, and this interaction holds the clue to the differences in the behaviour of solids. To deal accurately with the interactions of just two atoms is a problem in mathematical analysis of the greatest difficulty; to describe accurately the behaviour of millions of atoms is impossible, but a combination of experiment and theory has enabled us to arrive at ideas of solid structure which have fulfilled the most important test-that they work. The theory is called the Band Theory of Solids.

If we take two atoms at a considerable distance, each with its electrons arranged in their appropriate energy levels, and then force the atoms together, the energy levels do not remain unchanged. Instead the attraction of each nucleus for the other's electrons causes the levels to be displaced in such a way that a range of energies is possible for the electrons which formerly occupied the various levels in the two atoms (Fig. 4). When this happens, we refer to each range of energies as a band.

When a large number of atoms is arranged in a regular way in a crystal of a solid the bands of energy are fairly wide and contain a large number of electrons. If the energy levels of each atom which has contributed to the band are completely occupied by electrons then the band also will be completely occupied.
However, if the energy levels are not filled either because the atom naturally had these levels unfilled or because the electrons have moved to a higher level because of energy changes, then the band formed by the atoms coming together will also not be filled. In general if a band is formed from a given number of atoms then it will be full if it

Fig. 4: How the energy levels broaden into energy bands as atoms approach.
is occupied by exactly twice that number of electrons.
There is a vitally important difference between a filled band and an unfilled band. When a band is filled, there is no possibility of electrons moving from one nucleus to another. A full band is like a road completely jammed with cars; unless some gap occurs, no movement is possible except some shunting. In a band which is not filled, however, there is no restriction on electron movement. There is no change needed in energy for an electron to move from one nucleus to another, providing that there is not another electron of the same energy there, and in an unfilled band there need not be. When this occurs, then the solid is a conductor of electricity. A metal could, in fact, be defined as a substance containing unfilled energy bands. Conversely a substance with its energy bands completely filled is an insulator. If we heat such a substance sufficiently we can give the electrons sufficient energy to move to a new band which is unfilled, so causing the insulator to conduct, a fact which is known and used.

ENERGY GAPS, OVERLAPS, HOLES

The theory that the energy levels of single atoms merge with each other to form bands does not ignore the differences in energy between different levels in the same atom. When atoms come together, the energy bands may still be separated from each other-our ladder rungs may have become sloping platforms-but there may still be a jump from the top end of one platform to the bottom end of another. In some substances, however, the bands may overlap, allowing electrons which had been at the lowest level in one atom to reach a higher level of another with no jump. There may on the other hand be large gaps between the bands, and no electron can ever have an amount of energy corresponding to an amount in a gap, just as no one can stand on a rung which is missing! If the gap between bands is large a large amount of energy (heat, light etc.) must be put into the substance to move electrons from one band to another; if the gap is small, very little energy is needed.
This then is the difference between insulators and semiconductors. Both have filled energy bands, but higher energy bands exist which are empty. In an insulator the gap between the top filled band and the empty band is large; in a semiconductor this gap is small and even at room temperature a few electrons can make the crossing to the unfilled band to cause some degree of conductivity.

This is not the whole story, however, as it turns out that electrons in the unfilled band do not form the only contributor to conductivity. Since the electrons have come from a filled band they have caused vacancies in this formerly filled band allowing some movement in that band; i.e. gaps have appeared in our traffic jam. Since it is easier to think of one gap moving in a band rather than millions of electrons shuffling around, we talk of this gap or hole as if it were an object with mass and a positive charge, and in fact it behaves as if it were just this (Fig. 5).
The contributions of holes to conductivity were discovered by measurement of the Hall effect, which was predicted in the last century. If current is

Fig. 5: How a hole is formed in semiconductor material.
passed through a slab of material to which a magnetic field is applied at right angles to the direction of current, the electrons moving in the material are deflected in exactly the same way as the electrons in a cathode-ray tube are deflected by a deflection coil (Fig. 6). This deflection causes one side of the slab to be more negative than the opposite side. because of the deflection of electrons to that side. The voltage difference is extremely small so that accurate measurements of Hall effect were not possible until comparatively recently, but it is detectable and the predicted negative voltage can be found in several metals. In other metals, however, the voltage is positive, indicating that the charge carriers are either positive or moving in the opposite direction.

It is sometimes argued that holes are not real particles having mass and charge and that it is misleading to write as if they were. Such fictions are often desirable, however. Electrons in semiconductors often respond to voltages as if they had less mass (even negative mass, if such a thing can be imagined) or charge than normal free electrons and it is easier to keep the usual equations of movement and use the effective mass or charge of the electron as if it were real. In the same way, the hole is a convenient way of treating a problem and for practical purposes it is no less of an experimental reality than is the electron.

SEMICONDUCTORS

In a pure specimen of semiconductor crystal there is a vacant energy band which is only slightly separated from a full band. The gap between these

Fig. 6: The Hall effect. A magnetic field (above) causes the path of current in a material to be deflected just as electrons in a c.r.t. (right) are deflected, causing a difference in voltage between opposite sides of the material.

bands varies from one material to another (and is less in germanium than in silicon) but is small enough to allow some electrons to be kicked into the vacant band even at room temperature. Increasing the temperature of the crystals causes very many more electrons to cross over so increasing the conductivity rapidly as temperature rises. It is for this reason that all semiconductor devices are sensitive to temperature changes (as would be valves if they had to work in an atmosphere which was at the same temperature as their cathodes), germanium being more sensitive than silicon because of its smaller energy gap.

Heating a semiconductor increases the number of electrons contributing to conduction and also increases the number of holes since each electron leaves a hole in the otherwise full band. This type of conductivity in pure or "intrinsic" semiconductor crystals is called electron-hole pair production and is not caused by heat only. Electron-hole pairs can also be produced by light (photoconductors) or by radioactive bombardment (radiation detectors). It should be noted incidentally that electrons and holes do not contribute equally to conductivity; the electrons move faster than the holes and so carry a greater share of the current.

What transformed the study of semiconductors into a technology which has changed the whole of electronics is the effect of impurities on the semiconductor crystal. Each germanium or silicon atom in a crystal of germanium or silicon has four electrons in its highest energy level. If we introduce as an impurity among a set of germanium or silicon atoms a material which has five electrons in its

Fig. 7 (left): N-type material has more free electrons than nuclei; a surplus of negative carriers.
Fig. 8 (right): P-type material has fewer free electrons than nuclei-the "holes" will act as carriers (positive).
highest energy level, this causes an excess of electrons in the crystal and so makes for a great increase in conductivity by electrons. The amount of impurity required is very small; one atom of impurity in every hundred million of semiconductor causes the conductivity to increase by a hundred thousand times. In this case we say that the conductivity is n-type, because the main or majority carriers of the current are negative electrons (Fig. 7).
In the same way the addition of atoms which have only three electrons in the highest energy levels causes gaps-holes-to appear in the semiconductor crystal structure and so increases the conductivity, though by a lesser amount since the majority carriers are now holes. Such material is called p-type (Fig. 8) because the majority; carriers are the holes which behave as if they were positively charged particles.
The action of adding the impurities is called doping, and the amount of doping which has been carried out can be measured most accurately by measuring the electrical resistance of the doped material in comparison with an undoped sample.

THE DIODE

We are now in a position to understand how a semiconductor diode works. Imagine a single crystal in which one half has been doped to p-type material and the other half to n-type material. This constitutes what is called a p-n junction and may be made by a variety of methods; in fact the main developments in transistors during the last fifteen years have been better methods of creating such junctions. The normal state of such a junction when no bias is applied is shown in Fig. 9, with an excess

Fig. 9: An unbiased p-n junction. The + and symbols denote holes and electrons only: nuclei are not shown since they do not transfer but are fixed in the crystal.
of electrons on the n side and an excess of holes on the p side. When a negative bias is applied on the p side and a positive bias on the n side (Fig. 10) the positive holes are attracted towards the negative bias and the negative electrons to the positive bias and the result is that there are practically no carriers left near the junction. This lack of carriers means that there cannot be any movement of carriers across the junction and hence the diode does not conduct; it is said to be reverse biased.

Fig. 10: When a diode is reverse biased as shown here it does not conduct.

As the reverse bias is increased a voltage is reached at which holes from the n region and electrons from the p region can be attracted across the junction and the movements of these carriers causes collisions allowing other pairs of electrons and holes to move. This is the breakdown of reverse-biased junctions called the avalanche effect; a similar zener effect occurs at a sharply defined voltage which is utilised as a stabilised voltage in the zener diode.

Forward bias causes carriers to cross junction-diode conducts

Fig. 11: When a diode is forward biased as shown here current carriers flow across the junction.

When the diode is forward biased (Fig. 11) so that the p side is positive and the n side negative both types of carriers move over the junction carrying their charge with them and so producing conductivity. It is important to note that both the p -type and n -type regions must be formed in a single piece of crystal; it is impossible to form an effective diode by putting separate pieces of n and p type material in contact since the atoms can never be made to approach the close spacing which they have in a crystal, and without this spacing the energy bands of the material are quite different.

THE JUNCTION TRANSISTOR

The first transistors made were not junction transistors, nor are all diodes junction diodes. A point contact made with wire of a suitable composition on to a semiconductor crystal can produce a rectifying contact when a large current is passed in what later becomes the forward direction. It is thought that the action is that of transforming some of the metal from the wire into the semiconductor, so producing a doped region around the point contact. Although point-contact diodes behave in essentially the same way as junction diodes, the long-obsolete point-contact transistor differed from the junction transistor in one very important respect; it had current gains of more than unity when operated in the common-base connection, and was extremely unstable in the common-emitter connection. For these reasons and because the commercial production and development of junction transistors was more promising, the point-contact transistor is today a museum piece-a good reminder of the rate of scientific progress.

A junction transistor has three separate and

Fig. 12: A junction transistor consists of two p-n junctions back-to-back as shown. When biased as shown here current flows through the transistor.
distinct regions in its crystal. Two regions of similar doping form the bread of a "sandwich" whose meat is a region of opposite doping. The sandwiched region is very lightly doped, compared to the other two regions, and is also very thin, with widths measured in millionths of an inch.

In Fig. 12 the principle of the n-p-n transistor is shown. One n region is designated the emitter and the other the collector, while the middle p region is the base. The emitter and collector could be interchanged for low current work, but commercial transistors are usually built so that the n region designated as collector is better able to dissipate the power of operation.
-continued on page 701

1968 INTERNATIONAL Radio Engineering and Communications Exhibition

THE organisers, sponsors and exhibitors were all pleased at the support given to the 1968 RSGB exhibition at the Horticultural New Hall, London, which ran from 2nd to 5 th October. Although attendance figures were some 400 down on last year, more than 8,000 enthusiasts passed through the turnstiles, many of them from overseas. As usual, the exhibition provided a good opportunity to meet fellow enthusiasts and judging by the many groups of amateurs gathered around the stands or chatting over a coffee or glass of beer it still retains the atmosphere of an annual reunion. There was also a series of lectures this year, which were fairly well attended

The exhibition was formally opened on 2nd October at noon by W. J. Sharpe, CBE, the Director of Communications, Diplomatic Wireless Service, Foreign Office, standing in for the PostmasterGeneral who was unable to attend due to pressure of business. Mr. Sharpe commented on the very important role that Amateurs can still play in the field of radio communications. We were all more than a little disappointed that the expected announcement on the proposed new Beginners' Licence did not materialise and could get no satisfaction from the GPO.
Exhibitors occupied 38 stands, ranging from component and equipment manufacturers, publishers. associations and Services. The RSGB had the largestever display and featured the latest edition of the Radio Communication Handbook, a fine new publication which will shortly be reviewed in these pages.

The three Practicals-Wireless, Electronics and Television-shared a large stand, displaying equipment and providing an opportunity for readers to meet members of the staff. On the P.W. section were previews of various constructional projects scheduled for publication in the near future. These

Here can be seen some of the constructional projects that will be featured in Practical Wireless in the near future.
included a new f.m. tuner (to be published in February), a progressive superhet receiver (March), a calibration oscillator (April), a comprehensive audio mixer and a transistor tester. Look out for these on our future-announcement notices.

The theme of the Practical Television display was "colour television" and this was backed up by an operational GEC 2029A colour receiver, which gave excellent results under often adverse viewing conditions. It was running from an 18 -element J-Beam aerial mounted on the roof of the exhibition hall and it was a matter of some surprise that the signals being radiated from the forest of aerials on the roof from the various amateur stations operating throughout the exhibition caused virtually no interference.

Another regular feature of the exhibition was the presentation of awards for various pieces of home

Part of the Practical Television display showing the GEC 2029A colour television receiver.
constructed equipment in different categories. Those awarded this year were:

The Exhibition Organisers Award (G4KD Plaque), awarded for the best piece of equipment on display went to B. C. Seedle, G3UIT/G6ACJ/T for his four metre a.m./c.w. transmitter and $28 \mathrm{Mc} / \mathrm{s}$ s.s.b. transverter.

The Horace Freeman Trophy, awarded for the most original piece of equipment went to S. Weber, G8ACC for his solid state $432 \mathrm{Mc} / \mathrm{s}$ transmitter.

Merit prizes were awarded as follows:
For the best transistorised equipment; C. Sharpe, G2HIF ($144 \mathrm{Mc} / \mathrm{s}$ solid state linear amplifier).

For the hest valved equipment; G. R. Jessop, G6JP (The 2-50 transmitter).
For the best ancillary equipment; C. F. Dorey, BRSI 6468 (Filter response curve, display unit).
Special Merit Prize for the "Amateur-Amateur"; R. C. Arnold, BRS29738 (All band communications receiver).
We very much enjoyed the show, not only as exhibitors but as an opportunity to meet old friends and make new ones. Thank you, RSGB, and we look forward to another successful exhibition next year.

miniture ic. c . nearinina 10 amplitier L. Mc Namara B. Sc.

THE use of integrated circuits in amateur equipment is becoming more popular especially since their prices have come more into line with their discrete counterparts. The amateur can now decide to use them on their own merits. Their small physical size, durability and ruggedness make them ideal in applications where they are liable to get rough handling. The present article describes the construction of a miniature hearing aid amplifier which compares in performance and cost with commercial units more than double its size.

CIRCUIT DESCRIPTION

The prototype amplifier was built around a Westinghouse type WC183 integrated circuit. The circuit as shown in Fig. 1 consists of an eight transistor balanced amplifier whose operation can best be understood by considering it as two independent four transistor amplifiers fabricated on a single silicon chip. The input signal is fed to Tr which acts as a common-emitter amplifier stage whose output is directly coupled to Tr 2 which also operates in the common-emitter mode. Biasing for Trl is provided by the d.c. feedback loop from the collector of $\operatorname{Tr} 3$ which in turn also provides a certain amount of degeneration or negative feedback since

the output of Tr 3 is opposite in phase to the input signal applied to Trl. The emitter of Tr3 will usually be decoupled to earth in a practical amplifier circuit. Direct coupling is also provided between Tr 3 and the output transistor $\operatorname{Tr} 4$ which in the present design operates in conjunction with $\operatorname{Tr} 8$ as a class AB output stage. Tr5, $\operatorname{Tr} 6$ and $\operatorname{Tr} 7$ operate in a similar fashion and since the whole unit is direct coupled throughout there are no frequency limiting components and the unit can operate well above the audio range of frequencies.
Figure 3 shows the circuit diagram of the complete amplifier. The input from the microphone is fed to pins 3 and 7 of the i.c. via two isolating capacitors Cl and C 2 . As the input impedance of Tr 1 and Tr 5 is fairly low the use of a magnetic microphone with an impedance in the range of $10-50 \mathrm{k} \Omega$ is recommended for really satisfactory operation. If a crystal microphone is to be used an external emitter-follower stage would be needed to provide proper matching.

OUTPUT TRANSFORMER

The primary winding of transformer TI forms the load for the output pair Tr 4 and Tr 8 , each terminal being bypassed by an $001 \mu \mathrm{~F}$ capacitor. These help to stabilise the circuit by preventing spurious high frequency oscillations. Choice of output transformer is not critical and any surplus transformer with a primary coil resistance between $100-$ 500Ω will suffice. Its output impedance should match the type of earphone used to ensure maximum efficiency and a crystal earphone was found to work quite satisfactorily with a high output impedance transformer. The transformer specified
Fig. 1 (left): Complete circuit of the Westinghouse WC183 integrated circuit.

Fig. 2 (right): Physical dimensions and outline of the i.c.top view of the unit. Lead 1 is identified by the spot of paint adjacent to it.

INCREASE YOUR KNOWLEDGE

MANY COURSES TO CHOOSE FROM incl.
RADIO \& TV ENGINEERING \& SERVICING,
TRANSISTOR \& PRINTED CIRCUIT SERVICING, CLOSED CIRCUIT TV, ELECTRONICS,
NUMERICAL CONTROL ELECTRONICS,
TELEMETRY TECHNIQUES, SERVOMECُHANISMS PRINCIPLES OFAUTOMATION, COMPUTERS, ETC.

ALSO EXAMINATION COURSES FOR

C. \& G Telecommunication Technicians' Certs
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Certificate
P.M.G. Certificates in Radiotelegraphy

Radio Amateurs' Examination
BUILD YOUR OWN RADIO AND INSTRUMENTS
With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your own 5-walve Superher Receiver, Transistor Portable, and highown 5-valve Supernet Receiver, grade test instruments, incl. professional-type valve volt meter
(shown below). Everything simply explained. All components (shown telow), Everything simply explained. All components
and tools supplied. For illustrated brochure, post coupon below.

THERE IS AN CO course FOR YOU

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.
fILL IN AND pOSt this coupon today
You will receive the FREE ICS Prospectus listing the examination and ICS technical courses in radio, television and electronics PLUS details of over 150 specialized subjects.

Mult Purpote Neon Test Unit. Robust, une ful and instructive, teeto insulation, capacity, continulty, resucor, volume controla, hiso acto as signal injector and L.T. fault Ander, kitt comprises neon indlcator, 4 -ray water owitch, obonite tubes, gram, only $9 / 6$, plua $2 /$ poot and innurance suin, witch, the other four operate varlous on/off and Change-over awttches, $8 / 6$. 2001250 v. $50 / 80$.p.s. enclosed, continuous rating $1 / 40 \mathrm{~h}, \mathrm{p} .$, ex. equip. Perfect order, 19/6, plus 4/6.
Experimenting with ultrs violet P Phllips U.V. lamp. 18/6; holder and control gear 19/6.
G.E.C. Black Light Tube for experiments and 14/8 enching enfects - 40 watt $24 t$ t. tubes only. 4/6 each: hold Clook M. starting, $8 / 8$.
Pentode Output Transformer, Standard eize, 40-1 ex-equipment but OK, 4/3 each, 48/- doz. Post
E.H.T. Condenser, 0-1 mfd. $5 \mathrm{kV}, 8 / 8$ each

Neon Malns Tester, $1 / 3$ each, 12/-doz.
Flood Lamp Control. Our dim and full awitch is weal for controling photn flond ampa; it glves lampn off. Similar control. of other appliances can be arranged where used in palr or where circuit can be apilit exactly in half. Technulcally the switch is known au a double-pole change over with off Our price $4 / 8$.
Sub-miniature silicon Diodes. Oeneral purpose type with gold-plated leads, $1 /$ - each or $\overline{7} / 6$ per dozen.
Message Tapes. 225ft. Tape on 3 in . spools, nor mally $4 / R$ each, we offer 4 tapea for $12 / 8$.
twin masideular Flex. Ideal for lighting drops, twin made by BICC. Usually $8 d . y d ., 100 \mathrm{yd}$ colt
Edgewise Control. Morganite, as fitted many transistor redios, 2 K or 5 K with awitch, $2 / 8$ each or $24 /$ - per dozen
20 watt fluorescent transistorised for operating a 20 whit fluorescent tube, nize 61 ln . Iong $\times 1 \mathrm{f} \times 1 \mathrm{~h}$ 23.10.0. Poat and insurance s/

Silioon Reotifer. Equiv. BY 100750 mA 400 v ., 10 for $20 /$
Miniature Plokup for 7 in , records made by Cosmocode, crystal cartridge with napphire atylus only $3 / 9$ or $36 /$-dozen
Telesoopic Aerial for radlo or transmalter, chrome plated, 6 section extends from 78 in . to 47 in . 76 each, 44 per dozen.
Midget Neons for mains indicators, ete., $1 / 3$ each or 12/- dozen
Compression Trimmers. Twin $100 \mathrm{pF}, 1 /$ - each, 3in. PM Loudspeaker. 3 ohm, 12/6; $80 \mathrm{ohm}, 13 / 6$.

MAINS MOTOR
Precialon made-an used in record decke and tape recorders-Ideal also for extractor fans, blower, for first one then $1 / \mathrm{m}$ for esch one ordered 12 and over post free

WORKSHOP or REFRIGERATOR?
Many remders will have found to their diamay that the loft, garage or shed, whoh they so careluliy converted into a workahop, is just a because it never gets warm untll it is trie to finlsh. The miswer is "RADIANT is thme to HEATING". Benetit from this type of heating is Immediate und low in coat Our Radiane Zone Heatera (made by the famour Phillps Company) are Interalaly mirrored glass tubes with bult in 500 watt heat gind light eicments. Four of these over the average aize bench is all you need and will coat only about 4 d an hour to run. Ides! also under typiste' desks. Keeps legs and kaeen trarm, no quantity. mini the min. Price is 2"/8, poat and insurance $4 / 6$ on one or any quantity

RADIO STETHOSCOPE

Easiest way to fault find-traces signal from aerial to opeaker -when slgnal stops you've found the fault. Usp it on Radlo, TV, amplifier, anything-complete kit comprises two specia. ransistora and all parta Including probe tube and crysta carplece twin tethoset instead of earplece 11 /-extrs post and Ins., 2/9.

ELECTRIC CLOCK WITH 25 AMP. SWITCH Made by Smith's these units are as fitted to many top quallity coorern to control the oven. The clock is malns driven and mall diala enable awitch on anul of times to be sccurately set. Ideal tor switchlag on tape recorders. Offered at only a fraction of the regular prloe-new and unused only 30/6, ess than the value of the clock alone-poat and insurance $2 / 9$.

DEAC RECHARGEABLE BATTERY
3-fV-500mA hr.-size $1+\times 1 \frac{1}{2} \mathrm{n}$. dis. really poucerful will deliver $1 / 8 \mathrm{mp}$ for thour. Regular price
price $12 / 6$ each unused but ex-equitoment
Preciaion Wheatstone Bridge. Opportunity to bulld cheaply. 100 K 15W rating, only $5 /$ -
Sheet Payolin. Ideal for transtat or projects. 12 panels each $\delta \mathrm{in} . \times 8 \mathrm{inn}$., $5 / \mathrm{m}$

Rotary Cam Operated Switoh. 12 positions each of Which close a separate pair of contacts except the 250 V 16 anper $15 /$ them ail open. Contacts rated at Rotary Cam Operated
posttlon all oontacts open: 2nd contact 1 cloged 3 rd contacts 1 and 2 closed; 4th contacte 1,2 and 3 cloged. Contact rated $250 \mathrm{~V} 18 \mathrm{mmps}, 8 / 6$ each. Under Carpet Heating Element. Waterproo plastle covered eiement 12 Jds . long, 900 wat
12/6 each.
Breast Miorophone. Fine American made dynamic type, adjustabie on breast plate with neck straps Cireular Fluo
Circular Ftuoresoent. 22 watt, 91n. diam. tube complete with choke, starter, holders and chrome Midget Re port, etc., 4/6.
lin. x lin x thin 250 ohm coils, size approx 7/6 each.
P.O. Type
P.O. Type R

3 in. $\times 2$ in Relay. Twin 200 ohm colis, size approx $8 / 6$ each.
Printed Cirouit Board, Edge Conneotor, solder terminations. 32 contacte, standard apacing for veroboard, etc. 6in. long bnt easily cut. $7 / 6$ each 1,000W Fire Spiral, replacement for most fres. $1 / 8$ each, $2 /-\mathrm{d}$.
50 ohm 30 watt Wire Wound Pot-meters, $8 / 6$ each 1 Meg Miniature. Pot-meter Morgznite standari ifn. gpindle $1 /$ - 世ech; $9 / \sim$ per dozen
1 Meg Ministure. Pot-meter Morganite preset acrewdriver control. Gd. each; $8 /-$ per dozen. Pre-set 100K by Welwyn with intrical bakelite
00K Pot-Meter. Miniature type with double pole switch and atandard tin. spindle, by Morganite.

Blanketstat Glass. Enc
Clrcuit wlll open ahould blanket normally closed Thermal Rolay. Can be uaed to delay the supply of HT while heaters warm up, or will onable 15A loads to be controlled by miniature switches or relays. Regular list price over $£ 2$, price $7 / 6$ each. Slernens Etgh Speed Rolay. Twin 1,000 ohm coils. Platinum polnts changeover contacts-Ex quipment, $8 / 0$ each
Toggle 8witoh Bargain. 10A 250 V normal one Ele fitting $2 / 8$ each; or $30 /$-per doz
Electric Lock. 24 V coll, but rewindable to other
voltagea, $4 / 6$ each.

Where postage is not atated then orders over $£ 3$ are post free. Below 83 add $2 / 9$. semi-conductors add $1 /$-posi. Over \& post

Dept PW 266 London Road, Croydon CRO-2TH

READ THIS ADVERTISEMENT IT WILL SAVE YOU MONEY!!

INTEGRATED CIRCUITS
RCA CA 3020 audio amplifer in TO5 can, contalns 7 transistors, 3 dloles, and 11 resistors. Output 550 mW 3 v to 9 v operation, $28 /$ -
GE PA234 1 Watt into $2-3$ ohms. Contains 7 transistors, 32/-
SINCLAIR IC-10 Superb Hi-Fi ampliffer giving 10 watts. Bargain, 55/-.
GE PHOTO-DARLINGTON AMPLIFIER Phototransisior and amplifier in one, 25/B.
TRANSISTORS AC126, AC127, AC128, BA130, BF167, BF173, OC44, OC45,
 $26 / 28,8 / 8$ eac
$200,2 / 3$ each.
STC 1 Watt Zener Diodes, list $17 / 6$. Our price 15/-1or 3. 2•4/2:7/3/3•6/4•3/13/16/ $18 / 30 \mathrm{v}$. Over 5,000 different semi-conductors are available from us SAE with
enquiry.
LINEAR 5 Watt amplifer, 87.10 .0 GARRARD 1000 dectrs, 87.19 .6 . A VO 4 Multi minor, 28.18.8. EAGLE TY144 Transistor tester, e4.5.0. SINCLAIR Micromatic Kit \&2.7 8. Assembled, 22.16 .8 . 1,000 OPV Multimeter AC/DC current, resistance, with leads battery and guasantee,45/-
Sub. Min. mains TRANSFORMERS 6.0 .0 v . 100mA or 12.0 .12 v .50 mA . Bargaina at $5 / 6$ each. TRANSISTOR POWER PACK KIT, same size as PP3 battery, 12/6.
9v DC SK. VOLUME CONTROLS with spindle, on/off switch, 4/6. Display pack of 100 \& watt carbon RESISTORS, range from 10 ohme to $2 \cdot 2$ meg. ohms, $18 /$ Transistor ELECTROLYTIC CAPACITORS, 5 P. per. pack, 25 v or 15 v working S, 10,30 mid., $7 / 8.50$ and $100,9 / 6$ per pack
bARGAIN PARCELS, contain many useful iteme, all new stock, iucluding Transistors, tranatormers, resistors, plugs, sockets, solder, wire, etc., etc. A bargain at only $25 /-$, pp. $5 /-2$ or more $7 / 6$.
PRINTED CIRCUIT KIT, 4 boards, bath, chemicals, instructions, pians tor
dozens of projects, $11 / 6$,
N. B.-Cash with order only, no C.O.D. Goods are all brand new, of best manu facture, and covered by makers full guarantee. Poat free (UK) unless shown.
(MAIL ORDER ONLY)

OFTEN THE ONLY CHOICE! ALWAYS THE BEST CHOICE!!

THE WORLD RECORD
AWARD WINNING

WTMETIEK.REGD.
VARIABLE FREQUENCY ANTENNA

On display and available from all the best dealers.

Or direct from:
PARTRIDGE ELECTRONICS LTD., Caister House, Prospect Road, Broadstairs, Kent.

Fig. 3: Circuit diagram of the miniature hearing aid amplifier incorporating the WC183 i.c.
is a driver transformer used in reverse, i.e. with its primary winding feeding the earphones and its centre-tapped secondary being the load for $\operatorname{Tr} 4$ and Tr8.

CONSTRUCTION

The layout for the printed circuit board is shown in Fig. 4. The design should be carefully painted on a piece of copper laminate board $1 \times \frac{3}{4}$ in. and then dry etched in the usual manner in a solution of ferric chloride.
As the WC183 i.c. in the flat pack version measures a mere $\frac{1}{4} \times \frac{1}{8}$ in. great care should be taken in bending its leads to enable them to fit through the mounting holes, and of course these holes must be reasonably accurately drilled to prevent straining the leads.
Some constructors may wish to dispense with the volume control and operate the unit by inserting a fixed value resistor with a modified jack socket acting as an on-off switch. The value of this resistor will depend on the sensitivity of the microphone but its optimum value can easily be found by connecting a $5 \mathrm{k} \Omega$ variable resistor between pins 2 and 8 and finding the value which just prevents positive feedback. In the prototype the volume control was soldered directly to the copper board through the terminals of the on-off switch.

The unit is quite versatile in its operation and will give very satisfactory results from power supplies between 4.5 and 9 V . On a 6 V supply it drew 5 mA and so small batteries will give a reasonably long operating life. The manufacturers claim for the unit an efficiency in excess of 55% with an overall gain of 90 dB .

components list

```
Capacitors:
    C1 }\quad10\mu\textrm{F}6\textrm{V}\mathrm{ miniature electrolytic
    C2 }\quad10\mu\textrm{F}6\textrm{V}\mathrm{ miniature electrolytic
    C3 }\quad10\mu\textrm{F}6\textrm{V}\mathrm{ miniature electrolytic
    C4 }\quad10\mu\textrm{F}6\textrm{V}\mathrm{ miniature electrolytic
    C5 0.01\mu\textrm{F}\mathrm{ miniature}
    C6 0.01\mu\textrm{F}\mathrm{ miniature}
Others:
    VR1 5k \Omega miniature pot with switch
    T1 Type LT44 transformer (Henry's Radio)
        or any suitable alternative with 100-500\Omega
        primary winding
    WC183 Westinghouse linear integrated circuit
```


Fig. 4: The printed circuit pattern of the copper laminate board used in the prototype. Actual board size $1 \times \frac{3}{4}$ in.

The amplifier could also be used as a miniature audio preamplifier and if the two channels are considered as completely separate amplifiers and suitable load resistors are inserted between pins 1 and 9 and the positive supply it could provide a very neat stereo preamplifier.

PRACTICAL TELEVISION

\star INSTRUMENT C.R.T.s

The requirements of an oscilloscope tube differ widely from those of the well-known receiver picture tube. This article provides a detailed account of instrument c.r.t.s including such sophisticated types as multi-gun and multitrace tubes. Design improvements in recent years are described, giving at the same time an insight into the associated equipment. How bandwidths of $1,500 \mathrm{Mc} / \mathrm{s}$ and over are achieved is explained.

\star TV RECEIVER TESTING

Basic fault diagnosis techniques in the timebase generator stages and also how to check the operation of the field output stage.

CONVERTING 405-ONLY

 SETS to 625-LINE OPERATION Remarkably good conversions of 405 -only receivers for 625 -line operation are possible using readily available surplus u.h.f. tuners and i.f. panels. This article, the first of two, provides detailed guidance on the problems involved and the best approach to adopt.
COLOUR SERVICING

Continuing our series on this important subject, in the current issue the topic of what servicing equipment is necessary for colour work is dealt with.

R.F. AMPLIFIERS

The characteristics that determine the performance of an r.f. amplifier are set out and the various common TV r.f. amplifier circuits described.

ALL IN THE JANUARY ISSUE ON SALE DECEMBER 20th

The Beginner's Licence

I read the letter by Mr. Curtiss with a great deal of interest. May I be permitted to add a few comments to redress the balance?
There are a great many people who aspire to holding an Amateur Radio Licence and who would be prepared to study hard to achieve this. At the same time, the conditions under which they live and work may make this aim virtually impossible. For example, people whose work entails shifts or a great deal of travelling precludes their attendance at night classes or even severely curtails the working of a Postal Study Course.

Are we all to be singled out as lazy and illiterate as Mr. Curtiss (whose opinion I respect) would have us believe?

An "easy" licence would do nothing but harm to the Amateur Radio Movement. On the other hand a "Beginner's" licence could do a great deal of good by raising the standard of the RAE and therefore of the Movement as a whole.

Such a licence could be based quite simply on the following terms and conditions:

1. A written examination comprising: (a) The compulsory Section One of the RAE as it exists at present.
(b) Part Two based entirely on (i) Frequency control and measurement. (ii) Interference, types of interference, the causes and the suppression thereof. (iii) Operating Procedure. (Which by the way, may help relieve Mr. Meacham from long dissertations on warts etc!!)
2. The GPO Morse Test.
3. (a) The Licensee to be restricted to a very small part of one of the Amateur Bands. (b) Very low Power Emission (not more than say 2 watts). (c) c.w. telegraphy only. (d) The allocation of a Beginner's Prefix.
4. Closer supervision by the GPO to be paid for by
5. A $£ 3$ Licence Fee.

The conditions of such a licence would, by their very nature, urge the willing and genuine Amateur to climb from what could be regarded as a sort of Limbo to the Elysian Fields that the Full Licence permits, while the lazy, the incompetent and the less enthusiastic would fall by
the wayside or get sent off the air or just go QRT, rather than scrape up the licence fee for another year.

I could weep tears of caustic soda for poor Mr. Curtiss who, after such a fantastic achievement, does not append either his call sign or the number of his Amateur Radio Certificate! - "Aspiring GW3" (Llanberis).

Keep the morse test

I must disagree with Mr. Wright's suggestion that the morse test be abolished (November issue). If this came about the result would be hundreds of Amateurs using 'phone only and, as 'phone takes up broader bandwidth, a MORE overcrowded band. Does Mr. Wright want to kill Amateur morse? If he does the result will be chaos with people using c.w. at two words a minute.
I see no reason why the "B" licence should not be extended to cover all bands. Those with the "A" licence would still have the advantage of c.w. operation which is the best form of emission when conditions are bad or bands over-crowded.-R. A. Dixon (Glasgow W.4).

Anti-Ioudness

Congratulations on your interesting "Audio Supplement" in the October 1968 issue. Quite correctly you caution readers on the use of loudness controls. I would like to go one step further if I may and ask enthusiasts to avoid them altogether.

Some manufacturers include them on cheaper amplifiers as a sales gimmick but other manufacturers of high quality equipment include a loudness control out of a sincere belief in a misconceived theory. This theory states that because the sensitivity of the ear falls in the lower frequency range, some compensation should be provided which boosts the low frequencies when the volume is reduced.
The misconception is this. If one were at a live concert and moved from a front seat to a back seat in the concert hall the sound intensity would appear to fall with a more noticeable loss in the lower frequencies. Therefore to produce a natural sound a system should give the impression of being at a greater
distance from the source when the volume is turned down, without frequency compensation!

With a loudness control one gets the impression of low register instruments being near while the rest of the orchestra is in the distance, which is hardly natural! And the murky obscure sound which results from the use of a loudness control can hardly be called hi-fi. To give a natural sound, which is what is required, the system must give a natural tonal balance.

Why then use tone controls at all you might argue? Fair comment, but I would say that tone controls should really be set flat. Any adjustment to compensate for a system deficiency should not cause a deviation from a flat response. Once set for a particular condition they should remain at that setting regardless of the sound level used.Iain Smith (Rugby).

Thank you Scotland

Thank you for printing my request for information on converting TVs to oscilloscopes in your "CQ" column in the November 1968 issue. Would you please extend my thanks to an anonymous Scottish reader whosent mesomeinformation on how he did it. If he has any further hints or anyone else has any advice I would be glad to hear from them.-G. Johnson (3 Bixley Road, Ipswich, Suffolk).

I agree

May I fully endorse the views of Jonathan Wates (November issue) regarding the Beginner's Licence.
I too am a keen s.w.l. who is also tied up with "O" level studies, making it very difficult for me to allot enough time to study for the RAE.
I feel that it would be a great help for Jonathan and I, and a great many others, to be given the opportunity to transmit on the Amateur bands, as this would be a very good grounding for when we get our full licence.
So, you licensed experts, spare a thought for the volume of our school work before you heartily condemn the Beginner's Licence and all s.w.1.s-C. Williams, A5376 (Brierly Hill, Staffs.).

Wharfedale High Fidelity single unit speaker -Super 8

£7.6.7

The Super 8 is a single, wide spectrum loudspeaker unit. The massive magnet gives it very high sensitivity and it will give a much louder and purer sound volume than ordinary speakers.

It is simplicity itself to install in a home-built cabinet, needing no special skills.

The Super 8 will transform the results from your radio or radiogram. The sound of your television set can be greatly enhanced by using the Super 8 with a Wharfedale transforncer.

Installed in your car, you will achieve a wonderful depth of sound from a normal car radio.

The Super 8 is a real high fidelity loudspeaker and gives a response from 20 Hz to $20,000 \mathrm{~Hz}$ in a good enclosure.

RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS.

Bargain-Car Radios. Our Price 9 gns. Retail/Intercom/Baby Alarm System. Fully value 16 gns . Negative or positive earth (switched) transistorised ideal for home, office or fully transistorised (12v) medium and long waves. workshop. Robust construction, offered Speaker and fitting kit supplied at no extra cost. at a fraction of retail price $47 / 6+2 / 6$ P/p. 5/-

Sonotone 9TA and 9TA/HC. Diamond Cart TR10 Stereo Moving Magnet Cartridge ridge brand new, boxed in manufacturers Model AD76K. Diamond Stereo LP Stylus carton $49 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$ output $91-3$ stereo compatible cartridges, new in 7 mv tracking pressure 2 grammes ± 0.5
sealed manufacturers' cartons $22 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. grm. Fully guaranteed. Price $85 /-\mathrm{p} / \mathrm{p}$ free

The greatest HI-FI Budget system to-day-Can't be beatenprice or quality anywhere-look at these great features-then
compare. ompare
Teleton F2000 tuner amp. AM-FM with multiplex
decoder and A.F.C. $-2 \times 5 \mathrm{w}$ channels R.M.S. Bass
volume Treble Balance controls, a truly outstanding unit
Garrard SP 25 Mk II Transcription deck
Teleton SA 1003 matching speaker enclosures Sonotone 9 TA Dlamond Cartridge Plinth and perspex cover

Exclusively offered by SBE at the remarkabls $\overline{\mathbf{E 7 0 \quad 1 6 \quad 1 0}}$ $£ 59 \mathrm{gns}$.

$\mathrm{H} \mid-\mathrm{Fl}$

 The Baker Sefhurst stalwar BARGAINS $12 i n$. round, 15 watt rating OHMS response 12,000 lines GAUSS, 3 or 15 ance, $40-50 \mathrm{c} / \mathrm{s}$ solid Our price £4.19.6| Bargain-Changer Decks at Lowest Prices Ever | | | |
| :---: | :---: | :---: | :---: |
| Plinth WB1 | Garrard 1025 | p/p. 7/6 | |
| £2.15.0 | Garrard 2025 | p/p. $7 / 6$ | £8.10.0 |
| Cover SPCI | AT60 Mk. II | p/p. 8/6 | £12.19.6 |
| £2.15 | SP25 Mk. II | p/p. 8/6 | E12. 0.0 |
| | 3500 with So | TA Cart | £10.10.0 |

This month's SBE offer $5 \times 5 \mathrm{~W}$ transistorised stereo amplifier. Undoubtedly a most remarkable offer-outstanding performance, comparable with amplifiers in the £ $25-£ 30$ price range. Brief specification includes volume, bass, treble, balance control, stereo, mono, switch, inputs, sockets, tape tuner pick up AUX. Being Manufacturers' distributors of this fine stereo amplifier, as an initial promotion we are prepared to offer this unit at fractionally above cost for a limited period only. 15 gns . p/p free.

The Baker Selhurst guitar group 25, E.M.I. 8×5 elliptical 5 watt 3 ohm alcomax mag

12 in . round. 25 watt rating, 12,000 lines GAUSS. 15 ohms response $30-10,000 \mathrm{c} / \mathrm{s}$ solid aluminium chassis, heavy duty cons. Our Price £4.19.6, p/p 6/6. Brand new. 12 month's p/p unconditional guarantee.
E.M.I. 8×5 elliptical 5 watt 3 ohm alcomax mag-
 13×8 elliptical 13.000 lines GAUSS 3 or 15 Ohm watt twin cone HI-FI 10 watt alcomax magnet usually £4. Our price speaker as sold by 47/6 p/p free. 13×8 elliptical with double tweeter teading manufacturer and cross over unit, IMP 3 or 15 ohm 10 watt Usual price $£ 5.17 .6$ Bass res. 40.50 hz . Magnadure 11 Mapnet. Usu- Our prlce $87 / 6$ p/p $5 /$. ally $£ 6.10 .0$. Our Price $59 / 6 \mathrm{p} / \mathrm{p}$ free

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially
for the CITY \& GUILDS EXAMS (Technicians' Certififor the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO
AMATEUR'S I.ICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be glady sent without any obligation.

To: British National Radio School, Reading, Berks Please send free brochure to:

NAME
ADDRESS

Modifying V.H.F. portables

My attention has been drawn to the article "Modifying V.H.F. Portables" in your October issue.

British Standard 905 quotes limits for osciilator radiation from such receivers and manufacturers make considerable efforts to keep radiation down to acceptable levels. Modifications such as those described are liable to increase the levels of radiation. Any spurious oscillations and the extension of the tuning range would increase the number of services liable to suffer interference.

This is a practical matter: some of your readers will no doubt be aware that we have been investigating complaints of serious interference in the v.h.f. range caused by excessive radiation from certain receivers. Measurements have shown that this sort of interference can occur at surprisingly large distances and that a variety of radio services may be affected, including those concerned with safety of life.
I should also point out that in this country unlicensed use of radio receivers is an offence. Broadcast receiving licences are valid only for reception of transmissions from authorised broadcasting stations and licensed amateur stations, and we do not issue licences to overhear private services such as those your writer describes (not entirely correctly) as "Commercial".

I should be grateful if you would make these facts known to your readers in the next issue.- T. Dawson, Director of Public Relations, GPO (London, E.C.I).

The Author Replies:

I can quite understand how excessive oscillator radiation from a set modified as shown in my article could possibly occur, due
to the increased coupling between the oscillator and aerial tuned circuits. If, however, the homemade capacitors are replaced by conventional components of similar values, it does seem unlikely that the limits quoted in British Standard 905 would be exceeded.

The question of extending the tuning range, to cover say 75 to $90 \mathrm{Mc} / \mathrm{s}$, causing interference does seem rather strange to me. With the modified set the oscillator will now cover a range of 86 to $101 \mathrm{Mc} / \mathrm{s}$ approximately. If we examine the oscillator frequencies used in a standard television receiver covering Band I we find that they cover a range of 89 to $111 \mathrm{Mc} / \mathrm{s}$ and to my mind would be of greater amplitude than those emitted from a transistor portable utilising a simple rod aerial at ground level.

As Mr. Dawson states my broadcast receiving licence allows me to tune into authorised Broadcasting stations and licensed Amateur stations. Does this then mean that it is illegal to tune into the aircraft, satellite, USA "CB" and Short Wave commercial bands? If this is so it seems strange that receivers are openly on sale covering one or more of these frequency segments.

In the past, articles have appeared, from time to time in the popular radio publications making direct reference to such reception, and I can personally recall articles in the national press stating that a particular person or persons have monitored a pilot's last words before an aircrash, and of groups of school-children tracking Russian satellites.
I believe that further clarification concerning illegal reception of stations is badly needed and may have been overshadowed in recent years by the excellent publicity given to the illegal use of imported transceivers. L. Case (Widnes, Lancashire).

Top band echo

1 was very interested to read, amongst your readers' letters in the November issue of P.W., about the use of "one man bands" and "echoes" on Amateur frequencies.

Being a little tired of the "old man-Rig here is-Antenna here is-best 73 s and BCNU " routine, I fixed an extra replay head to my tape recorder and produced a very pleasing 3-time delay and variable intensity echo.
I had been on the air for only 25 minutes, the station worked saying that the echo was like "a breath of fresh air", when I was visited by a Wireless Telegraphy Officer from the GPO, who advised me that I was almost certainly violating the licence conditions and I should return to normal "plain" speech rather than use echo, which he said was unpleasant to listen to.

It appears that, as the echo is not "plain" language and as amateurs are not supposed to play recordings of their own voices on the air (though some do this for CQ's), the echo is not permitted.

It seems rather sad that, when amateur radio is supposed to encourage experiment and ingenuity, such audio experiments as echo and, presumably, tremolo, and phase, should not be allowed.John R. Green, B.Sc., G3WVR (Brentwood, Essex).

Anyone help?

In the September 1903 edition of Practical Wireless, there is a constructional article on a simple stroboscope.
The circuit is built round a NSP1 or NSP2 which I cannot obtain. I would be very grateful if any readers could inform me where I might get one from, and the price. $-\mathbf{N}$. Lord (53 Keepers Drive, Norden, Rochdale, Lancs.).

A SIMPLE
 ctpacitance brioce

T|HE instrument to be described is very simple in design and construction but is nevertheless a very useful addition to the workshop especially when one is confronted with variable capacitors whose values are not known.

The Circuit

The circuit is based on the Wheatstone Bridge Circuit and in fact compares the a.c. resistance of the unknown capacitor with that of a capacitor whose value is known. Since the a.c. resistance of a capacitor is proportional to its capacitance then by comparing the a.c. resistances we are effectively

Fig. 1: The basic principle of the unit which is based on the Wheatstone Bridge. The a.c. resistance of the unknown capacitor C_{x} is compared with that of a capacitor C of known a.c. resistance. The bridge is completed by the resistance wire ACB. The value of $C x$ is found from the formula

$$
C x=C \frac{A C}{C B}
$$

comparing the capacitances. The theoretical circuit is as follows (Fig. 1).

The capacitor C represents the known capacitance and Cx represents the unknown one. The pointer is moved along the resistance wire until a null point is reached. At this point the a.c. resistance and therefore the capacitance of C and $C x$ are in
the ratio:

$$
\frac{C}{C x}=\frac{C B}{A C}
$$

For a standard capacitance C the ratio $\frac{C B}{A C}$ will change with the value of $C x$ i.e. the null point will move along the resistance wire. Hence the instrument may be calibrated against a standard capacitance using different known values of Cx.

The instrument, then, consists of two separate parts, the a.c. source and the bridge circuit. Let us first consider the a.c. source. This simply consists of a free running multivibrator about which little need be said. The transistors used were OC72 and the circuit was built on Veroboard.

In this circuit the resistance wire of the theoretical circuit is replaced by a 100Ω linear pot. The detector is replaced by a set of headphones and the standard capacitance is replaced by the switched arrangement which allows the standard capacitance to be varied from 10 pF to $0 \cdot 1 \mu \mathrm{~F}$ in five switched ranges. The range may be extended to about $10 \mu \mathrm{~F}$ if desired without altering the circuit. The multivibrator is connected across the potentiometer and capacitances in parallel as shown and the unknown capacitance is connected across the terminals T 1 and T2.

Construction

The instrument was mounted in a small wooden case with a paxolin front panel. The potentiometer, range switch, terminals T 1 and T 2 , jack socket for headphones and on/off switch were mounted on the front panel. The capacitances C3 to C7 were wired directly to the range switch. The circuit board for the multivibrator and battery were then mounted inside the case. A cursor and scale were then prepared as follows. The scale consisted of a semicircular piece of stiff white paper with five semicircles shown on it marked A to E. This was pasted on to the front panel in the appropriate position. The cursor consisted of a piece of clean plastic with a line drawn along it with a sharp tool. Small holes

Fig. 2: In the practical circuit used in this equipment the free-running multivibrator circuit Tr1. Tr2 provides the a.c. source for the bridge whilst a pair of headphones (preferably high impedance) is used as the detector.

Fig. 3: Veroboard layous and wiring details of the multivibrator circuit

Fig. 4: Layout of the components mounted on the front panel and wiring of S2. For convenience a two-wafer switch is used in position S2.

components list

A-MULTIVIBRATOR CIRCUIT

Resistors:

R1 $10 \mathrm{k} \Omega$	R3	$2 \cdot 2 \mathrm{k} \Omega$
R2 $2 \cdot 2 \mathrm{k} \Omega$	R4	$10 \mathrm{k} \Omega$
all 10%	$\frac{1}{2} \mathrm{~W}$	miniature.

Capacitors:
C1 $\quad 0.25 \mu \mathrm{~F}$
C2 $\quad 0.25 \mu \mathrm{~F}$

Transistors:
TR1 OC72
TR2 OC72

Miscellaneous:

Single pole on/off switch, Veroboard, PP9 battery.

B-BRIDGE CIRCUIT

Potentiometer:
VR1 100Ω linear $w /$ w potentiometer

Capacitors:

C3	10 pF	C6 $0.01 \mu \mathrm{~F}$
C4	100 pF	C7 $0.1 \mu \mathrm{~F}$
C5	$0.001 \mu \mathrm{~F}$	all close tolerance

Miscellaneous:

T1 and T2 post terminals; jack socket for head phones; S2 single-pole 5 -way switch (two-wafer type used by author for convenience); headphones; cabinet.

Fig. 5: Front panel drilling details.
were drilled along it to coincide with the semicircles on the scale. The cursor was then glued to an instrument knob and fixed on the spindle of the potentiometer.

If a metal front panel is used it will be necessary to insulate the components mounted on the front panel.

Calibration

The instrument was then calibrated as follows. The range switch was set to its lowest position10 pF and the instrument switched on. A known small capacitance (about 20 pF) was placed across the terminals Tl and T 2 . The knob of the potentiometer was then moved until a null point was heard in the headphones. The point was marked on the scale by inserting a sharp-pointed pencil in the small hole in the cursor. This process is then repeated using different known values of capacitors until all five ranges have been calibrated. It may seem that quite a number of capacitors are needed for the calibration but this can be avoided. If a capacitance substitution box is available this will prove invaluable. Failing this, placing capacitors in parallel and in series will greatly reduce the number of capacitors required for calibration purposes.

CORRIGENDA NOVEMBER ISSUE

UNIJUNCTION TRANSISTOR CIRCUITS
The connections to the base of the 2 N 2646 unijunction transistor used in the circuits in this article were not shown. These are as shown in Fig. 1 below.
In Fig. 2 in the article a positive-going instead of a negative-going pulse output was shown at the base 2 connection of the unijunction transistor.

TRANSISTORISED SIGNAL GENERATOR

VC1 referred to in the text and components list is shown on the diagrams as C8. R6 referred to in Fig. 6 is VR1.

T1HIS tuner covers approximately $20-580$ metres in three switch-selected bands $5-15 \mathrm{Mc} / \mathrm{s} \quad(60-20$ metres); $1 \cdot 67-5 \cdot 3 \mathrm{Mc} / \mathrm{s}$ ($180-57$ metres): $515-$ $1,545 \mathrm{kc} / \mathrm{s}$ ($580-194$ metres)

The $515-154 \mathrm{kc} / \mathrm{s}$ range is the usual "medium wave" band, while the other bands include the more useful short wave frequencies 80 . 160 metres, shipping transmissions, etc.
The tuner is designed to operate in conjunction with the "Pyramid" amplifier, but could be used with almost any other amplifier.

Mixer Circuit

This is shown in Fig. 1. L1, L2 and L3 are the aerial coils, and selected by means of a three-way switch. One switch pole transfers the aerial to the required coil, another pole switches the tuning capacitor VCl , while the third pole selects the coupling winding for the OC170 mixer base.

To avoid the need for several pre-set trimmers, a panel trimmer VC3 allows peaking up the aeria! circuit on each band throughout the tuning range. This allows maximum efficiency with any aerial, and simplifies trimming.

L4, L5 and L6 are the oscillator coils, tuned by VC2. The emitter, collector and VC2 circuits are switched to the required coil by a second wafer of the switch (also three-pole three-way). TCI is the oscillator circuit trimmer.

Each oscillator coil has its own padder. Cp1, Cp2 and CP3. Each of these capacitors is of different value, and is connected to a different coil pin, as shown.

The mixer section is assembled on an aluminium chassis, and the i.f. amplifier strip is wired on a paxolin panel and fitted to the chassis at a later stage.

I.F. Strip

Figure 2 shows the circuit using two AF117 transistors with double-tuned intermediate frequency transformers, i.f.t. 1 and i.f.t.2. I.f.t. 3 is single-tuned, and incorporates the detector diode and by-pass capacitor. Using these transistors, and five tuned circuits, high gain and selectivity are achieved.

Automatic volume control bias is applied to the first AF117, through R9, in the usual way. When the tuner is plugged into the "Pyramid" amplifier, the $5 \mathrm{k} \Omega$ audio gain control is present in circuit from pin 5 of i.f.t. 3 to the chassis. If the tuner is employed with a different amplifier, and the amplifier input circuit is not as used in the "Pyramid" equipment, a fixed resistor of similar value (around $5 \mathrm{k} \Omega$) must be wired from i.f.t. 3 pin 5 to chassis.

Mixer Wiring

Layout of components under the chassis appears in Fig. 3. Six $\frac{1}{4}$ in. holes are drilled for the coils LI to L6
The ganged capacitor must have an efficient reduction drive. This may be a ball drive, be integral in the capacitor, behind the panel, or of any other usual type; the ball drive is the least expensive. The capacitor is also given as 365 pF each section, but may be 315 pF each section, or of similar value. This merely alters the tuning range slightly but this is of no importance as there is some overlap at the band ends.
The ganged capacitor is bolted to the chassis. Leads from front and rear sections pass down through holes to the nearest switch tags, Fig. 3. TC1 is soldered in parallel with VC2, above the chassis.
Wiring is most easily undertaken by placing the coils so that the pins all come in the same relative positions, Fig. 3. Each coil is then wired to the

switch, following Fig. 4. Leads should be short and direct, especially to the short-wave coils,
If this wiring is done systematically, and with care, no error should arise. If preferred, the chances of making a mistake can be reduced by placing only L3 and L6 in, and wiring these first. With the switch in the appropriate position, medium-wave reception should then be obtained. L2 and L5 can then be added and tested. Finally, L1 and L4 may be connected.

I.F. Amplifier Construction

This section is wired completely on a piece of $\frac{1}{16}$ in. thick paxolin, $4 \times 2 \frac{1}{4} \mathrm{in}$. Small holes are drilled so that the resistor leads and other parts may be fitted as in Fig. 3.

The paxolin panel is turned over and wired as in Fig. 5. One can tag of each i.f.t. is earthed to the positive line, which is in turn soldered to a tag. When the strip is completed, it is held in the chassis by two bolts, each with extra nuts to allow clearance for wiring. The i.f. strip positive line is thus common to the metal chassis, Fig. 3.

Fig. 3 (above): Under chassis wiring. Note that leads should be short and direct

Fig. 4 (below): Wiring to the wave change switch.

front wafer
Sleeving should be put on the transistor wires to avoid short-circuits. It is helpful to use different colours for identification, e.g. red for collectors, green for emitters, yellow for bases, with shield wires left bare. It is then much easier to check connections when the transistors are in position. Their leads should be quite short, and must be soldered rapidly in the usual way to avoid overheating.

External Connections

These are shown in Fig. 3. For the "Pyramid" amplifier, the negative supply is drawn from a socket on the panel. The negative lead, Figs. 3 and 5, shows a plug to insert in this socket. If the tuner is used with other equipment a supply of about 6 V is required.

Audio signals go from pin 5 of i.f.t. 3 to the amplifier input (volume control). The outer braiding of the screened or coaxial lead forms the positive or "earth" return between tuner and amplifier. This is provided automatically when plugging into the "Pyramid" amplifier.

If an earth is available, this can be connected to the chassis via a socket or terminal. The aerial goes to a socket or terminal insulated from the chassis, Fig. 3.

Aligning the I.F.T.s

If a signal generator is available, set it to provide a modulated output on about $470 \mathrm{kc} / \mathrm{s}$. Connect the output to pin 5 of i.f.t.2, and adjust the core of i.t.f. 3 for best results. Then transfer the generator lead to pin 5 of i.f.t.1, and adjust both cores of i.f.t.2. Finally, inject at the mixer base and adjust i.f.t. 1 cores.

The input level should be kept down to avoid overloading. Output can be shown by a meter in one battery lead to the amplifier, but when trimming for maximum current, reduce audio gain so
that this is not unnecessarily heavy (say not usually over 30 mA).

If the i.f.t.s are prealigned, and are not badly off frequency, a signal will be obtained at once through the whole amplifier, by injecting at the mixer base, and aligning all cores. However, if some cores are much out of position. this may res-
rear water

ult in no signals being obtained and the procedure previously described should then be taken.
If no generator is available, it is necessary to tune into a transmission, and adjust the cores for best results, each core should tune quite sharply. A properly shaped and fully insulated trimming tool is necessary. Cores should be touched up finally, with a weak signal, when the strip is fixed in the chassis.

Fig. 5: I.F. board wiring (underside).

Mixer Alignment

Screw TCI about half-way down. With the switch in the medium wave position, adjust the core of L6 for suitable band coverage. At the high-frequency end of the band (VC1/2 nearly open) VC3 should peak for best sensitivity around one-third to one-half closed. Tune towards the LF end of the band, and adjust the core of L3 for best results, and to make necessary the least re-adjustment of VC3.

The $1.67 .5 \cdot 3 \mathrm{Mc} / \mathrm{s}$ range should be dealt with next by adjusting the cores of L2 and L5. Finally, switch to the highest frequency range, and adjust the cores of L1 and L4.

The actual coverage of each band depends on the settings of the oscillator coil cores, L4, L5 and L6, but if VC3 can be peaked up for maximum results, and is not fully open or fully closed, satisfactory efficiency will be obtained. A signal generator is most convenient for aligning the mixer coils, and obtaining suitable frequency coverage for each band.

With the highest frequencies it is possible to tune L1 to the wrong side of the oscillator coil frequency, this is usual with a superhet. Where L1 can be peaked to two frequencies, each giving maximum performance, the correct setting is the lower frequency of the two, so that the oscillator is working
at a higher frequency than that of the aerial circuit.
It may be noted that the coil manufacturer specifies $3,000 \mathrm{pF}$ for $P 1$, and $1,100 \mathrm{pF}$ for $P 2$. Should these values be available, they furnish the same results in this circuit as the $2,700 \mathrm{pF}$ and $1,000 \mathrm{pF}$ capacitors listed.
Should it be found during alignment that VC3 always needs to be nearly open, at the h.f. ends of all bands, then screw down TCl a little.

If the aerial is at all long, results are improved by placing a small capacitor between aerial lead and receiver, a 50 pF pre-set should usually be suitable.

components list

Mixer Section :			
R1	$10 \mathrm{k} \Omega$	C2	$0.01 \mu \mathrm{~F}$
R2	$2.7 \mathrm{k} \Omega$	Cp1	2,700pF
R3	$1 \mathrm{k} \Omega$	Cp2	1,000pF
C1	$0.01 \mu \mathrm{~F}$	Cp3	350pF
VC1/VC2 2-gang 365pF or similar.			
VC3 50pF variable. TC1 30pF beehive pre-set. Denco Coils: "Blue" "Red"			
L1 Range 4T L4 Range 4T			
		L2 ., 3T	L5 ." 3T
		L3 .. 2T	L6 ., 6T
Chas pole case	sis $8 \times 5 \frac{1}{2} \times$ three-way $10 \times 6 \times$	$2 i n$. OC170. Twoeach wafer. Drive, in. (Electroniques)	afer switch, threenobs, etc. "Dinki-
IF Strip:			
R4	$1 \mathrm{k} \Omega$	C3	$0.1 \mu \mathrm{~F}$
R5	$56 \mathrm{k} \Omega$	C4	$10 \mu \mathrm{~F} 6 \mathrm{~V}$
R6	$1 \mathrm{k} \Omega$	C5	$0.1 \mu \mathrm{~F}$
R7	$22 \mathrm{k} \Omega$	C6	$0.04 \mu \mathrm{~F}$
	$4 \cdot 7 \mathrm{k} \Omega$	C7	$0.04 \mu \mathrm{~F}$
	$8 \cdot 2 \mathrm{k} \Omega$	C8	$0.1 \mu \mathrm{~F}$
R10 $1 \mathrm{k} \Omega$			
XT50/2, i.f.t. 3 XT50/3. Two AF117s. Screened lead, etc.			

Ca! Ca! Ca! Ca! CQ! CO!

ISSUES WANTED

Practical Wireless 1963 to 1967. State prices. All letters answered. - M. D. Ellse 86 Bennetthorpe, Doncaster.

February 1967 issue of Practical Wireless.-H. S. Ciark, "Cromford", 24 Broadmoor Lane, Upper Weston, Bath, Somerset.

Sell or loar the September 1967 issue of Practical Wireless, also the issue, containing mods, to the 19 set (issued in one of the last issues of 1967).-B. M. Oddy, 2) Gimble Way, Pembury, Kent.
. Sell or Ioan May 1963 issue of Practical Wireless.-K. Portman, 23 Fell Wilson Street, Warsop, Mansfield, Nottinghamshire.
... Copies of 1961 August and September Practical Wireless. All expenses met. -J. Watson, 20 Watson Road, Sheffleld 10.

November and December 1964 issues of Practical Wireless, Also, will anyone sell or give me any of the i.f.t.'s and coils for the "Ten-Five" recelver, contained in these Issups.-P. Hudson 338 Bennett Street, Long Eaton, Nottingham NG10 4JD

January 1967 issue of Practical Wireless containing detalls of the 'Explorer' v.h.f. receiver.-S. Kendall, "Handsel"', Peel Crescent, Ashton, Chester.
... March and April 1966 issues of Pract/cal Wireless containing mods to the 19 set-A. M. Laird, The Tower, Patra Road, Kirkmichael, Ayrshire,
. . . Copies of Practical Wireless from October 1953 to July 1954, contalning the P.W Electronic Organ.-A. D. Varley, "Belfairs", 252 Liverpool Road, Penwortham, Lancashire, PR1 OLY.

Juns 1967 issue of Practical Wireless. Buy or Ioan.-C. M. Davos, 1 Willesden Road, Hughesdale 3166, Victoria, Australla

Any Issues of Practical Wireless containing circults, constructional articles on electron musical instruments, particularly P.W. Electronic Organ, published in the electron musical instruments, Darticularly P. W. E. Bray, 104 Fulmerston Road, Thetford, Norfolk
... October 1966, November 1966, and all issues of 1964 and 1965 which had informa tlon on the R.A.E.-C. J. Bourne, 11 Woodhouse Lane, Bishop Auckland, Co Durham ... October 1962 issue of Practical Wireless contalning the "Tudor" 4 -valve battery portable.-M, J Darby, 266 Canley Road, Coventry, Warwickshlre, CV5 6AP. ... January-December 1964, January-August 1965, November-December 1965, January-June 1968 (all Inclusive) and August 1966 Issues of Practical Wireless, preferably including any blueprints.-D. L, Edwards, 18 Parkdale Crescent, Worcester Park Surrey.
. . January 1967 issue of Practical Wireless containing 'Explorer'' v.h.t/f.m.-a.m. eceiver and any other issues with same details.-S. Marklew, 4a George Street. Wombweli, Nr. Barnsley, Yorkshire.
.. Does any reader remember the periodical in which an article about the conversion of W.S. 38 to top band appears? If so, please let me have issue number, -A. Carter. "Rosemary", Shakespeare Avenue. Langdon HIlls, Basildon, Essex.

June 1965 issue of Praclica/ Wireless or descriptive text of Hawaian Gultar.Taylor, 21 Tower MIII Road, Millield Estate, Bungay, Suffolk.
N. Taylor, Anyone sell or loan April 1966 issue of Practical Wirefess dealing with the second Alth 50 B Aldershot Road, Guildford, Surrey. part mods. to the Issues of Practical Wireless from 1961 Ao ties and curios of equivalent amounl--K. B. Tendulkar, Goregaon (East), Bombay 63 (NB), India

I would be very grateful if any reader could selt me the July 1963 issue of Practical Wireless and the September 1967 issue of Wireless Worid.-S. Saethern, Box 336, N-3101 Tonsberg, Norway-
the issue of P. W. with the articie on a domestlc "colour organ.-4269206 S. A.C. Swift D G. "B' (S.C.S.), R.A.F. Stanbridge, Leighton Buzzard, Bedfordshire
the issue of P.W. containing E. J. Wooton's T.R.F. receiver.-V. Reed, 25 Arlington, Ashford, Kent.

ISEUES FOR DISPOSAL

Praciical Wireless, from December 1963 to February 1966. Most blueprints included. Sell or exchange for components suitable for transistorised circuits. - A. Beveridge. The Schoolhouse, Tiffermore, Perth
... Practical Wireless 1951-1966 for disposal -L. W. Levell. Popes Hill, Newnham, Gloucestershire.

57 issues of Practical Wireless from 1961 to 1966 In excellent condition, and 47 coples before 1961 (reasonable). Any reader wanting these please send 25 s, and stamped addressed envelope (for return of money).-M. Pardoe, 3 Dunwell Avenue, Newby, Scarborough, Yorkshire.

Quantity of Practical Wireless and Television for sale.-J. Foy, 101 SandrIngham Road, Birmingham 22B.

Practical Wireless from January 1956 to April 1968 Inclusive and would sell or swap for anythine interesting electronic or otherwise - R. W. Bram, 38 Muirfield, Perth

Items in this section are included free of charge.

repairing radio sets

PART 1 (Third Series)

The first series ran from April-September 1967 and dealt with repairing sets with valve circuits. The second series, running from April-September 1968, dealt with transistor sets. We now present a short third series covering the repair of sets with unknown circuits.

0WING to requests by readers of this series for a final, two-part article dealing with the nontheoretical and practical approaches of servicing valve and transistor sets of unknown circuit, it has been decided to extend the series by two articles adopting the same pattern as the previous ones. That is, one by my pen on the circuit and fault-diagnosing side and the other by my colleague H.W. Hellyer on practical matters.

DETERMINING THE CATEGORY

Starting first with the valve models, these can be divided into four primary categories: (i) the a.c.-only model, (ii) the a.c./d.c. model, (iii) the battery (alldry) model and (iv) the mains/battery model. Thus, the first thing to do when an unknown species comes into our hands is to put it into one of the above classifications.

The true a.c.-only set is easy to identify because it possesses a rather hefty mains transformer, often carrying on its top metal cover some means of adjusting the mains input voltage requirement. This, of course, must always be adjusted to correspond as closely as possible to the household mains voltage on which the set is to be operated. As this still tends to vary about the 240 -volt "standard" from district to district the correct tapping must be selected at the place where the servicing is to be undertaken.
This type of set is generally the least "lethal" from the servicing point of view because the mains supply is fully isolated from the circuits and metal chassis by a primary winding on the mains transformer. Secondary windings deliver power for the h.t. rectifier (usually a valve in older models and a metal or semiconductor unit in more recent ones) and for the heaters of the valves. This sort of set, therefore, can be worked on quite safely without taking undue precautions against electric shock, though it is desirable to connect a good earth to the earth terminal or socket, so that a mains supply short to chassis will blow a fuse rather than encouraging the flow of current through the body of the repairer touching the metal chassis while being "earthed".

SAFETY PRECAUTIONS

At this juncture it must be stressed that there is a variety of a.c.-only set which employs a mains tranformer arranged rather in the form of an autotransformer for the h.t. supply-having isolated

windings only for the heaters of the valves. Here the primary winding, which is connected via the on/off switch to the mains supply, is tapped to give the necessary voltage for the h.t. rectifier, and one side is connected to h.t. negative and/or the metal chassis of the set. In other words, one side of the mains supply is connected to chassis, and if this happens to be the "live" side the repairer is likely to receive a nasty shock on touching it while being in circuit with earth.

The a.c./d.c. set is completely devoid of a mains transformer, for such a device can only work on a.c. If d.c. is connected across the primary of a mains transformer, there would be no transformer action and the supply current would be limited only by the resistance of the winding. The transformer would almost certainly blow up! The mains current is reduced to a value suitable for the heaters of the valves-series-connected heaters being used here instead of the parallel-connected heaters of a.c.only models-by a large, wire-bound resistance unit, called a "mains dropper". The "anode" of the h.t. rectifier is connected to the mains supply either direct or more usually through a low value, wire-wound resistor, called the "surge limiter" (as it limits the initial switch-on current through the h.t. circuits), and is often a part of the mains dropper. This sort of set, of course, can be lethal to work on when it is connected to the mains supply so that the "live" side is in termination with h.t. negative or chassis.
The battery-only set is perfectly safe to work on since the h.t. supply rarely exceeds 90 volts. Such sets of the last two decades have employed small low-consumption valves with $1 \cdot 4$-volt filaments, and they run either with their filaments connected in series or in parallel, and a 1.t. battery corresponding to the mode of connection is then employed.

The battery/mains model is basically the same as the battery-only set but with additions for working the valves-h.t. and l.t.-from the mains supply. The usual plan is for the filaments of the valves to be switched to series-connection on mains and then to be connected across the h.t. supply via a series resistor. The h.t. supply is derived either via a small mains transformer or, more usually, from a mains dropper, with a valve or metal rectifier. As the latest all-dry valves require only 25 mA of filament current, the load the series-chain presents to the h.t. supply can easily be catered for, bearing in mind that the total h.t. current is little more than 20 mA , anyway.

In the mains mode, therefore, this sort of set
can also have a chassis which is "live" with respect to earth; but possibly the biggest servicing problem lies in protecting the very delicate 25 mA filaments of the valves while servicing, for one false move with a meter test prod can often result in a substantial rise in filament current especially with the set switched to mains-either straining the valves so they no longer work with the correct current or burning out their filaments altogether.

POINTS OF DETAIL

Mains sets-both a.c.-only and a.c./d.c.-mostly have long and medium wavebands, while many also incorporate one or several short wave bands. This sort of detail is revealed by the tuning scale. Sets within the last two decades have also tended to cater for the v.h.f. f.m. transmissions in Band II as well as for the ordinary a.m. transmissions in the long, medium and short wavebands. A.m./f.m. sets are basically the same as their a.m.-only counterparts, but carrying a v.h.f. tuner, a f.m. detector of some kind (usually a ratio detector-a pair of diodes in series) and i.f. stages which can be switched between $470 \mathrm{kc} / \mathrm{s}$ for a.m. and $10.7 \mathrm{Mc} / \mathrm{s}$ for $\mathrm{f} . \mathrm{m}$.

The switching in this variety of set is somewhat complex because several parts of the set as a whole have to be switched simultaneously. A long, slider type of switch-with switching sections along its length-is often arranged along the length of the chassis, thereby allowing local switching of the v.h.f. tuner, the a.m. frequency changer to an additional i.f. stage on f.m., the a.m. local oscillator, the i.f. transformers and the a.m. and f.m. detectors.

The majority of the battery-only and battery/ mains models cater only for the long and medium wavebands, with a few carrying a short waveband in addition There were very. very few models of this kind with facilities for f.m. as well as a.m.

Fig. 1: Block diagram of typical valve a.m. receiver.

Typical mains sets. as well as most of the battery and battery/mains models. have four main "receiving" valves plus either a valve or metal rectifier, as shown by the block diagram in Fig. 1. If there is a "magic-eye" tuning indicator, this represents an

Fig. 2: Typical lavout for an a.m./f.m. valve receiver. Note the placing of the a.m. and f.m. tuning components, the i.f. sections, the mains and output transformers and the smoothing choke.
extra valve, but which if missing or faulty will not usually cause the set to cease working. There is also an extra valve in those models which cater for f.m. as well as a.m., this being in the v.h.f. tuner.

COMPONENT IDENTIFICATION

A typical example layout of an a.m./f.m. a.c.only model is given in Fig. 2. V1 is a double-triode in the v.h.f. tuner (ECC85), one section working as the v.h.f. amplifier and the other as the self-oscillating frequency changer. V2 is the a.m. frequencychanger (ECH81), a triode-heptode, with the heptode as mixer and the triode as local oscillator. On f.m. the triode is muted and the heptoce is arranged to work as an extra $10.7 \mathrm{Mc} / \mathrm{s}$ i.f. stage. V3 is the i.f. amplifier (EF89) working in conjunction with a.m. and f.m. i.f. transformers, as already mentioned. V4 is the a.m. and f.m. detector, one diode for the former and two for the latter (the norm in this sort of set-up), combined with the a.f. triode amplifier, the valve thus being a triple-diode-triode (EABC80). V5 is the output valve (EL84), invariably a pentode. V6 is the tuning indicator (EM34)-not directly concerned with the operation of the set. And, finally, V7 is the h.t. rectifier (EZ80).
Points to note are (i) the location of the twogang tuning (a.m.) capacitor in relation to the fre-quency-changer valve, (ii) the siting of the v.h.f. tuner and the way that its mechanical tuning is often ganged to the two-gang a.m. capacitor, (iii) the position of the i.f. transformers between the frequency-changer and i.f. valves and between the i.f. and detector valves, (iv) the mains transformer (T2) as far as possible removed from the front-end of the set, (v) the position of the output (or speaker) transformer (T1, but below the chassis) adjacent to the output valves, (vi) the smoothing choke (CH 2) close to the h.t. rectifier, (vii) the tuning indicator arranged to show at the front of the set and (viii) the relative positions of the controls. The tuning and wavechange controls are always towards the front-end, while the volume is as close as possible to the a.f. amplifier. Not all models feature both
bass and treble controls, but most have one "tone control" which, at least. provides a variable degree of treble cut!
A.c./d.c. sets follow closely in layout, but using a mains dropper instead of transformer, while battery-only models are that much less complicated to service-the vulnerability of the filaments apart --due to the lack of power supply components. The top-view of a typical a.c./d.c. model is depicted in Fig. 3, where V1, V2, V3, V4 and V5 respectively are the frequency-changer, i.f. amplifier, detector/ a.f., output and rectifier valves. The mains dropper is R10, shown also in inset. The overall mains dropping resistance appears between tags 1 and 4 , while the two taps along the resistance, given at 2 and 3 , produce a volts drop suitable for lighting a small dial bulb: tag 3 also connects to the anode of the h.t. rectifier, thereby making the top two resistance sections the surge limiter.

Fig. 3: Layout of a typical a.c./d.c. radio.
A battery-only portable top-of-chassis layout is given in Fig. 4, with V1, V2, V3 and V4 representing the frequency-changer, i.f. amplifier, detector/ a.f. and output valves-respectively DK96, DF96, DAF96 and DL96. Notice again the location of the wavechange switch close to the front-end (frequencychanger), with the volume control at the far end, close to the a.f. stage. OPI is the speaker transformer in this diagram, with the primary and secondary windings represented by L9 and LIO.

Fig. 4: Common layout of a value battery portable radio.
As with battery/mains versions and some a.c.only and a.c./d.c. table models, the battery portable now always uses a ferrite rod aerial (for a.m. and medium-frequency signals) in place of the former frame aerial. The ferrite rod acrial in Fig. 2 is shown above the a.m. tuning-gang, carrying windings $\mathrm{L9}$, L10, LII and L12. This works, of course, on a.m. only (not f.m.). The aerial in Fig. 4 runs the whole length of the chassis-the longer, the greater the signal pick-up-and carries m.w. winding L1, which is connected in series with winding L2 for I.w. reception. The wavechange switch performs the connection changes. while also changing over the local oscillator coil or adding parallel capacitance to a single coil for l.w, working, depending on the actual design.

ALL-DRY PORTABLE CIRCUIT

The circuit of a battery-only set, corresponding to the chassis layout in Fig. 4, is given in Fig. 5. This set has all the filaments in parallel, thereby requiring 1.5 volts I.t. Notice that the output valve, V4, has a tapped filament. and that the tap is connected to l.t. negative, while the two outer connections are joined. This puts the two half-sections in parallel. In series-connected filament circuits, the two half-sections, of course, remain in series to give the correct filament current balance.

Fig. 5: Typical circuit of a two waveband battery portable; note the arrangement of filament wiring.

A characteristic fault in this scheme is lack of oscillation brought about by (a) low 1.t. battery and (b) low emission or strained V1 or both. Another defect is low sensitivity often caused by increase in value of R9 or R10. Distortion is invariably caused by a leaky C24 or a low emission V4, while severe microphony usually means either that V3 is in need of replacement or that the 1.t. battery is nearing the end of its useful life.

An even older battery/mains model (Decca), using a frame aerial, is shown circuit-wise in Fig. 6. On mains the small metal rectifier feeds d.c. to the anodes and screen grids of the valves, while also feeding a small filament current to the seriesconnected chain via Rx. Sets of this kind suffer badly during the winter months with muted local oscillators due to mains power cuts, for even a small reduction in mains voltage is often sufficient to drop the filament current sufficiently to prevent the local oscillator from working.

Fig. 6. Circuit of an older type battery/mains model.

The following hints and tips will also be useful to keep in mind when handling an unknown valve model for the first time. When the set is a.c.-only make sure that all the heaters are lit. If one (or more) is out the valve will almost certainly be in need of replacement. Look out for overheating of a valve when first switching on. If the h.t. rectifier glows red hot and the set is dead a h.t. shortelectrolytic capacitor failure-will almost certainly be responsible, though, sometimes, a short in the rectifier itself causes this symptom.
If the components are suffering no apparent discomfort after the set has been powered for several minutes, check the temperature of the valve envelopes with a finger; a barely warm h.t. rectifier could indicate open-circuit of that valve, even though the heater is lit, while a cool output valve could mean lack of screen grid or anode voltage. The latter trouble, invariably caused by open-circuit of the speaker transformer primary, results in the screen grid of the output valve glowing red hot. This is a good point to check on a dead set.
With a.c./d.c. sets, one opencircuit valve heater will remove power from all the other heaters, so no valves will be alight. Check each valve in turn with an ohmmeter or, with the set switched on, check with an a.c. voltmeter from the heater connected to the mains dropper relative to chassis along the heater chain back to chassis. A.c. volts will be indicated at the start of the chain and fall to zero at the far side of the valve whose heater is open-circuit. Of course, the same symptom will result with an open-circuit mains dropper, on/ off switch, fuse, thermistor (if used) and so forth, but the use of an

The trouble is aggravated by a worn VI and metal rectifier or by attempting to run the set with the mains tapping adjusted to a value above the input mains voltage. Sadly, if the tapping voltage is reduced, the filaments will be likely to suffer permanent damage on upward surges of mains voltage. Fortunately, sets like this have long since been superseded by the economic transistor model. Even so, there are still many thousands in use, repaired yearly by the amateur, so no excuses are offered for their brief inclusion in this text!

SERVICING HINTS AND TIPS

To summarise on valve models: one, check in which category it falls; two, make absolutely sure that it is safe to handle, especially when of the a.c./d.c. kind-make sure that the chassis is in connection with the neutral side of the mains and check with a neon tester, which will glow when the chassis -or anything else pertaining to the set-is "live"; and avoid becoming "earthed"-wear rubber-soled shoes; three, locate the primary components and valves so that the circuits around them can also be identified, and then proceed with the servicing exercise along the line expounded in the previous articles.
a.c. voltmeter will soon bring this sort of trouble to light.

UNKNOWN TRANSISTOR SET

So much, then, for valve models, now let us glance at the unknown transistor set. The typical transistor set follows similar lines to the basic valve set. There is one transistor working as a self-oscillating fre-quency-changer, one or more operating as the i.f. amplifier, a semiconductor diode for detection followed by an audio section comprising either a single driver transistor transformer-coupled to a pushpull pair or two pre-push-pull transistors without transformer coupling. There are numerous variations of these two themes, especially in the a.f. stages, whose details just cannot be given within the compass of a single article. However, up to the a.f. sections or detector most sets have a great deal in common. Earlier models, employing OC45 transistors, generally have two.i.f. stages, while more recent designs, using the AF117 transistors, can secure virtually the same overall gain with just one i.f. transistor. The majority of models have six transistors and two semiconductor diodes in total, the second diode working in a signal overload protection circuit,
coming into action with the a.g.c. and damping down the signal at the output of the frequencychanger.

General layout is not at all "standardised" as it is with valve sets. This is because printed-circuit boards are invariably adopted, as distinct from the wired-circuits of valve designs. The trend now is towards the employment of circuit board "modules" or sub-sections, and these are sited in the cabinet more to suit the mechanics of the situation rather than the electronics. Fortunately, great liberties can be taken over well-designed circuit boards, so the earlier problems of instability and the like now rarely occur.

The predominant feature of all transistor sets is the ferrite rod aerial, which takes pride of place. The coils on this constitute the aerial tuned circuits, and one section of the two-gang tuning capacitor resonates these over the l.w. and m.w. bands. The frequency-changer transistor will always be found close to the aerial side of the tuning gang. In sets with two i.f. stages there are three i.f. trans-formers-much smaller than those of valve setsand two transformers when only one i.f. stage is employed. The local oscillator coil or transformer is connected between the collector and emitter of the frequency-changer transistor, and one isolated winding on the assembly serves to swing the oscillator frequency in conjunction with the oscillator section of the tuning gang. The oscillator coil then usually taps into the primary of the first i.f. transformer, thereby coupling the i.f. signal to the base of the first i.f. transistor. Earlier models feature some kind of neutralisation in the i.f. stages to prevent them from oscillating, but this is no longer necessary with the latest, high-gain, low-capacitance transistors.

The detector diode is sometimes hidden within the screening can of the final i.f. transformer, and the d.c. voltage that this yields after rectification of the signal constitutes the a.g.c. bias. This is fed back to the base of the i.f. transistor as an increasing (with increasing signal strength) positive voltage when the controlled transistor is a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ type. The a.g.c. bias pulls down the emitter current, thereby reducing the gain of the stage. This, called "forward
a.g.c.", requires a negative voltage when the controlled transistor is an n-p-n type. Some transistors, however, are designed for so-called "reverse a.g.c.", where the bias causes an increase in emitter/ collector current and, sometimes, an increasing volts drop across a resistor, suitably decoupled, and connected in series with the collector circuit. The

Fig. 7: Showing the circuit (a) and the layout (b) of a six transistor super radio.

stage gain in this case is reduced by the effectively falling collector voltage.

Audio from the detector is developed across the volume control-which is only about $5 k$, compared with the 500 k of valved circuits-and the slider, ganged to the spindle, taps off the required level of signal to the audio amplifier.

One transistor set design is shown in Fig. 7, the circuit at (a) and the board layout at (b). This adopts a three-transistor audio section, with TR4 driver transistor coupled to the push-pull pair (TR5 and TR6) through transformer T1. the output transistors are biased towards class B working-with a vestige of quiescent current to minimise crossover distortion-by the preset potentiometer R20. The diode across it serves to stabilise the selected working point. In this circuit the speaker, too, is tran-former-coupled to the collectors of the output transistors by T2. Negative feedback is applied to the base of the driver transistor TR4 from the secondary of T2.

TIPS FOR TRANSISTOR SERVICING

The theme of this particular article implies that we have no circuit of the defective set and that we have not come across the model before. What, then, do we do when we are presented with a "dead" set of this kind? The best plan first of all is to get some idea where the various stages are located on the printed-circuit board or modules.

We can easily locate the major components and then identify the transistors on terms of stages from these. We can trace the wiring from the ferrite rod aerial to the frequency-changer transistor and next locate the oscillator coil and its trimmers relative to the collector circuit of the frequency-changer transistor. It will not be very difficult then to trace through to the i.f. stage or stages, thence to the detector diode. remembering that it may be hidden in a can, and on to the volume control. After that we come to the audio stages and, as already mentioned, this could take a variety of forms, but they all end up with the speaker, either transformercoupled as in Fig. 7(a) or coupled capacitively through a fairly large value electrolytic.

Keep in mind that complete failure following the dropping of a transistor set-and this is not particularly uncommon!-will almost certainly be caused by a fracture of the printed-circuit board somewhere, but with the knowledge that we have now acquired this should not take long to locate. Distortion creeps on as the battery gradually falls in power; but excessive distortion at normal battery voltage with abnormally high total, quiescent current should immediately lead to a check of the output stage biasing preset-such as R20 in Fig. 7(a). Conversely, too little quiescent current will emphasise crossover distortion, which would also point to maladjustment of the biasing preset. A fair value for the output transistors of an ordinary transistor portable is 5 mA quiescent at normal room tempera-ture-about $18^{\circ} \mathrm{C}$.

Well, then, that takes care of the circuit and general theory side of the unknown set.

Next month Mr. H. W. Hellyer will be dealing with the practical aspects of the unknown.

NEXT MONTH IN P.W.

F.M. TUNER

Full details are given of an f.m. tuner covering the B.B.C. stations between 87 and $108 \mathrm{Mc} / \mathrm{s}$, including the new local ones. Designed for easy construction and simple alignment, this tuner is ideal for the less advanced constructor.

G.D.O.

Construct a Grid Dip Oscillator, an invaluable addition to your test equipment. Useful for winding coils, calibrating transmitter and receiver dials, alignment of receivers or for measuring inductance or capacitance, this unit may be built for under £5.

HIGH IMPEDANCE PROBE

An extremely useful addition for your test gear. Using an F.E.T. (Field Effect Transistor) built into a compact probe, this overcomes the problems of testing high impedance circuits.

NEW SERIES:

MAGNETIC SOUND RECORDING

The principles and practice of tape and wire recording described in considerable detail and including several simple experiments. The series builds up to complete valve and transistor recorders.

All in the FEBRUARY issue on sale JANUARY 10th

ORDER YOUR COPY NOW!

$5 \cdot 15 \mathrm{Mgs}^{*}$

R.F. GRAHAM

TTHE output of this converter is inductively coupled to the aerial circuit of any ordinary transistor receiver having only medium wave or medium and long wave coverage, giving short wave reception over a band of approximately $5-15 \mathrm{Mc} / \mathrm{s}$ ($60-20$ metres). Though it has primarily been used with the "Experimenters' 6" it will operate perfectly with similar receivers.

Figure 1 shows the circuit; the $\mathrm{OC170}$ frequency changer provides an output in the order of $1.6-$ $1.4 \mathrm{Mc} / \mathrm{s}$, the broadcast receiver being permanently tuned to the output frequency near the high end of the medium wave band. The overall circuit becomes that of a double superhet. First conversion is by the OCI70 to the receiver frequency: second conversion is by the receiver frequency changer, generally to about $470 \mathrm{kc} / \mathrm{s}$. The detector, audio and output stages of the receiver operate in the usual way, with reproduction from the receiver speaker, or headphones if there is provision for these.

Freedom from second channel interference is greater than with the popular all-wave receivers using a $470 \mathrm{kc} / \mathrm{s}$ i.f. Sensitivity, selectivity and results generally are very good.

Construction of the single OC170 stage is simple and straightforward, but a few points should be noted.

Fig. 1: Circuit of the converter.
$\mathrm{VCl} / \mathrm{VC} 2$ is a ganged capacitor for tuning, and though a double 300 pF or similar component is recommended, larger values give the same results except for some extending of coverage towards the low frequency end of the band. VC3 allows aerial circuit trimming, so the actual converter output frequency (and the frequency to which the receiver is set) is not critical. L1 is the aerial coil and L2 the oscillator coil, C6 being the padder. For $1.6 \mathrm{Mc} / \mathrm{s}$ with the listed coils, a 960 pF padder is specified, but in the present circuit either 960 pF or $1,000 \mathrm{pF}$ may be fitted.

It was found that the inexpensive surplus type of OC170 varied somewhat, and C2 and R3 are optional, these items being required to avoid excess oscillation. One OC170 tried also operated best with a 470 ohm resistor at X . It is also worth trying $3 \mathrm{~V}, 4.5 \mathrm{~V}$ and 6 V as a supply voltage, though 4.5 V was generally best.

It is probably best to wire the converter without C 2 and R3, and no changes need be made if excess oscillation does not spoil reception.

CHASSIS AND CONSTRUCTION

Figure 2 shows layout of components and wiring, only the battery, ganged capacitor and coils being on top of the chassis; the capacitor is bolted directly to the chassis.

An efficient reduction drive is necessary; the capacitor fitted had such a drive incorporated. A separate drive, behind the panel or fitting the capacitor spindle on the front of the panel, would be equally satisfactory.

In Fig. 2, C2 and R3 are omitted, for the reason explained. TCl is soldered to a tag bolted to the chassis. Insulated leads pass through holes to VCl and VC 2 .

L3 is 25 turns of thin insulated wire (about 32 s.w.g.) wound on a $\frac{1}{2}$ in. diameter former, afterwards removed. Turns were bound with thin tape. Two pieces of thin flex, about 6 to 8 in . long, are soldered to the coil ends, joints being covered with sleeving.

If your interest lies in last year's gear, or next year's if you go for transmitting, receiving, reproducing, or the lot . . . if you're working on a tight budget, or an elastic one .. the HOME RADIO Components Catalogue is a MUST! In its 256 pages, listing over 7,000 items (more than 1,300 of them illustrated) you can track down any component you're ever likely to need. At $7 / 6$, plus $3 /-$ p. \& p. it's the best ever bumper book ... and every copy contains 5 vouchers, each worth a shilling when used as directed. Send the coupon now with your cheque or P.O. for 10/6. It'll be the best Christmas gift you've ever given yourself.

[^3]

Fig. 2: Under chassis wiring.
The flex is twisted together, to pass through a hole and connect as in Fig. 2.

COUPLING

This is from L3 to the transistor receiver ferrite rod aerial winding, achieved by slipping L3 onto the ferrite rod. Coupling was sufficient with L3 on the end of the rod opposite to that bearing the medium wave winding.

Some receivers have a coupling winding, for external aerial. This generally has roughly ten turns, and can be used as L3. It is then possible to arrange that the converter can be plugged into the receiver aerial socket. A long flexible or screened lead should not be used between converter and receiver.

With a miniature and enclosed receiver, coupling can be obtained by situating L3 near the end of the ferrite rod, adjacent to the m.w. winding, but outside the case. It is also possible to put a ferrite rod or core in L3, and situate this near the receiver aerial rod.

The "Experimenters 6" receiver has variable aerial trimming, so no loss of sensitivity results from misalignment. But with other receivers coupling needs to be fairly loose, or alignment of aerial and oscillator circuits will be upset.

NOTES ON USE

The receiver is tuned to a point near the high frequency (low wavelength) end of the m.w. band where no station is heard. This will generally be around 1.6 to $1.4 \mathrm{Mc} / \mathrm{s}$ ($188-210$ metres).

All tuning is then done on the converter. VC3 should be adjusted to peak for best volume throughout the band. Incorrect adjustment of TCl or L 1 and L2 cores will not normally cause lack of efficiency provided VC3 peaks up for best volume and is not fully open or fully closed.

For correct alignment and band coverage, adjust L 1 and L 2 cores near the 1.f. end of the band, and TCl near the h.f. end, until little adjustment of VC3 is needed.

If a medium wave transmission is received when the converter is switched off, output from the converter will beat with this signal when the converter
is in use, causing whistles on all signals. This is avoided by tuning the receiver carefully to avoid any signal when the converter is off.

The high i.f. gives reasonable freedom from second channel whistles, but some always become apparent on high frequency short wave ranges. Generally, they are not particularly troublesome.

Should any form of continuous oscillation be experienced, keep the converter aerial lead away from the broadcast receiver. If this continues it is worth trying an earth on the converter. Also place the receiver to avoid unnecessary coupling between its coils etc. and the converter. With a receiver close to the converter chassis and coils, it was found helpful to use the coil cans and lids as screens for the coils. With the same receiver clear of the coils, screening the latter was unnecessary.

As mentioned previously some receiver circuits require a resistor at X, see Fig. 1. If soldered directly to tag 8 of the coil holder, this can greatly help reduce whistles from excess oscillation.

Top view of completed converter.

\star components list

Resistors:

R1	$10 \mathrm{k} \Omega$	R3	$1.2 \mathrm{k} \Omega$
R2	$2.7 \mathrm{k} \Omega$	R4	$1 \mathrm{k} \Omega$

All $10 \% \frac{1}{2}$ watt miniature
Capacitors:

C1	100 pF	C4	$0.1 \mu \mathrm{~F}$
C2	$0.04 \mu \mathrm{~F}$	C5	$0.01 \mu \mathrm{~F}$
C3	$0.01 \mu \mathrm{~F}$	C 6	1000 pF

VC1/VC2 Twin gang air-spaced variable 300pF or similar
VC3 50pF small air-spaced variable
TC1 30 pF beehive trimmer
Coils:
L1 Denco Blue Range 4
L2 Denco White Range 4
L3 See text

Miscellaneous:

Reduction drive, two B9A valveholders, OC170 transistor, chassis (about $7 \times 5 \times 2 \frac{1}{2} \mathrm{in}$.), on/off toggle switch, knobs, tagstrip etc.

practically wireless commentary by ILINI

TEARING up some back copies of Electronics Weekly for the local chip-shop, Henry came across an article previously overlooked.

It seemed a pity to wrap a cod fillet and six-pennorth in anything as tantalising as "The art of specification'. The use of the word 'art' again proved the value of serendipity, and Charles Gunner of GEC-AEI certainly made this scribe think twice about what he had always taken to be a science.

As a Member of the Institute of Measurement and Control, Mr. G. may be excused for saying. provocatively: 'Electronic engineers are perfectly familiar with specifications, but the individual engineer probably has never stopped to consider either why specifications are necessary or what they really expect a specification to tell them.

Overlooking his own lack of control over the tensing of that statement, we must ask what the top lad of Inspection requires a specification to tell him. And we find that even a simple resistor amasses a dossier as involved as a holly roth plot. When Joe calls: 'Chuck us over a forty-seven-K, mate; you can make him feel it would be easier to go and fetch it himself by simply querying all of the fourteen different limiting tolerances one by one. No

[^4]wonder the Stanmore Laboratories report that test time for a 'simple item’ like a resistor costs more than the bill for making it!
Now, please-before you descend on Henry for belittling the need for specifications, let's see what else Mr. Gunner had to say about the gentle art. Specifications are necessary, he says, for quality control, reliability assessment and economy of effort. All concerned with production should try to convince laboratory and design staff that specs are not just a tool for the convenience of production staff. They are as much a part of production as a set of drawings ... a good laboratory engineer will consider the specification to be as much an end product of his work as the unit or component which he has designed.

Those are my italics, not Mr. Gunner's. They make one realise if one discounts the slight whiff of sour grapes, that the airy world of upper-echelon electronics is as much beset by inter-departmental war as the factory floor. As one who did his stint in the inspection department of a couple of radio factories, as well as the cosier regulated world of the Services, Henry can speak with some feeling on the bending of specifications to suit the Production Manager's bonus chart.

A small hint of this is gleaned from a later example quoted in the article which is currently giving us a subject to chew over. Component engineers, while admitting that a sales sheet for their product states it 'complies with an American MIL specification', go on to tell you that in that particular case', whole sections of this very comprehensive specification have 'been conceded'

Lovely term-conceded. Can you not see it on the brochure of a 'High Fidelity System'? The equipment conforms with British Standard XYZ:1969:47Q, sections 3 a to 45 conceded. Mr.

The slight whiff of sour grapes
Gunner would probably wave a deprecatory hand toward such unimportant gear as our domestic music-boxes. but the consumer industry needs someone as dedicated as he, especially in the field of so-called high fidelity.
Let us conclude with one beautiful example, from M. Horowitz book: 'Measuring Hi-Fi Amplifiers'. By means of juggling the output power ratings, he tells us. it can almost be proved that no low-power amplifiers exist! Take a modest 12 -watt stereo amplifier. Two 12 watts r.m.s. can be said, tongue-in-cheek, to equal a total of 36 watts IHFM 'Music Power:. Now the specifications of music power assume no power supply voltage change with signal change and define test conditions. Sinewave power at a predetermined distortion level is measured. But peak IHFM power is twice the sinewave power, so the copy-writer can fairly legitimately double his figures, to get a 72 -watt 'Peak-IHFM Amplifier'
What about the distortion level? Well. if we come back along the roll-off curve, and carefully forget to state that the frequency response figure was measured at a different power level. you can get away with calling this modest amplifier an 80 -watt job. Look carefully at those 'specifications' before buying!

P.W. GUIDE TO Cox Po

CYAPACITORS are essential components in electronic circuits. They function as tuning, smoothing, timing and d.c. blocking components. The basic unit of capacitance is the farad, though microfarads ($\mu \mathrm{F}$ or m.f.d.) and picofarads (pF) are in practice used: they are farads divided by 10^{+6} and 10^{+12} respectively. Nanofarads and kilopicofarads are also in use: $\operatorname{lnF}=1 \mathrm{kpF}=1,000 \mathrm{pF}=0.001 \mu \mathrm{~F}$.

Values and Tolerances

Capacitors are frequently marked numerically with their capacitance value, usually together with the voltage rating and polarity if any. However microminiaturisation has resulted in an increase in the use of colour coding. Due to the diversity of shapes and sizes of capacitors colour coding is not standardised and the manufacturer's data should be consulted. As a general rule the value is given as for the resistor coding but with the capacitance in picofarads. Tolerance and voltage ratings are given special colours by the manufacturer.

(a) Fixed

(b) Electrolytic

(c) Variable

Fig. 1: Capacitor circuit symbols

Fig. 2: Basic capacitor construction.

Fig. 3 (right): Capacitor equivalent circuit:
the inductance of the leads and resistance of the dielectric affect the performance of a capacitor in practice

Capacitors are available in the capacitance range 0.5 pF to $500,000 \mu \mathrm{~F}$ and with tolerance ratings of better than $\pm \frac{1}{2} \%$ to $+100 \%-20 \%$. Tolerance generally increases with the larger values of capacitance. Cost increases for miniature styles, high capacitance values, and very high voltage working.

Commonly low value capacitors are available in the values given in Table I. This cannot be regarded as a definite standard as in the case of resistors, and for the higher values of capacitance above approximately $1,000 \mathrm{pF}$ many non-standard values appear. Most
manufacturers follow the values of Table 2 for the higher values of capacitance.

Notable exceptions are values such as 200 pF and 500 pF which appear in the various ranges up to $0.5 \mu \mathrm{~F}$. For electrolytic capacitors above $0.1 \mu \mathrm{~F}$ many nonstandard values appear. As electrolytics are mainly used for smoothing or coupling and their tolerance is often $+50 \%-10 \%$ these variations are insignificant as the absolute value is rarely important.

Ideal Capacitor Characteristics

Ideally a capacitor is constructed as shown in Fig. 2, with two conducting plates separated by a perfect insulator or dielectric. As the plates are isolated they effectively block the passage of direct currents and the resistance of the dielectric determines the usefulness of the capacitor for this purpose. Capacitors do however transmit alternating currents. This is because of the large area of the plates which require a large increase of charge to give a change of voltage across them. Thus the voltage across a capacitor cannot change instantly,

Table 1: Generally Available Capacitors $2 \cdot 2 \mathrm{pF} — 1000 \mathrm{pF}$

Common Values	Other Values	Common Values	Other Values
10	-	39	-
15	-	47	50
18	20	56	-
22	25	68	75
27	30	82	-
33	-	100	-

Table 2: Generally Available Capacitors-High Values (values in microfarads $-\mu \mathrm{F}$)

Noll- Electrolytic		Elecriolytic		Electrolytic	
Common Values	Other Values	Common Values	Other Values	Common Values	Other Values
0.001	0.0015	1	1.5	500	-
$0 \cdot 0022$	0.002	2	4	1000	1250
0.0033	-	5	6	2000	1500
$0 \cdot 0047$	0.005	10	8	2500	-
0.0068	-	15	16	5000	-
$0 \cdot 01$	-	25	32	10,000	12,500
Up	Up	50	60	25,000	20,000
to	to	100	-	50.000	--
10	5	150	200	100,000	-
		250	-	500,000	-

PORTABLE
TRANSISTOR

AMPLIFIER

Many uses, Interoome, Praotice Tarm, Guitar Praotiee, Telephone or ONE WATT OUTPUT Wooden transiators. 7×4 in. speaker Uransiators.
Uses PP9 battery. WORTM DoUBLE
OUR PRICE
$79 / 6$ Post $5 / 6$.

COLLARO BATTERY RECORD DECKS 4 speed model 9 v . operater. Complete with plok-up fitted oryatal oartridge. Plays 7, 10, 12in. reoorda, Fitted auto, | atop sud atart. Ideal for wae with above | $\mathbf{6 9} / 6$ | POST |
| :--- | :--- | :--- |
| transiator amplifiers. | OUR PRICE | | THE ABOVE GRANADA AMPLIFIER AND PLAYER DEOE POST FREE IF PURCEASED TOGETHER.

WEYRAD P50-TRANSISTOR COILS

 Teleseopio Cbrome Aerials 6in. extends to 23in. 5
Ferrite Eod $8 \geq$ in. $4 /-; 6 \times \operatorname{in} .5 /$
VOLUME CONTROLS 80 ohm Coax 8^{D} yd. Long apindile. Midget Sive SE, ohmp to 2 Meg. LOG or
 ERDGE CONNECTORS 16 wAY $\operatorname{B/-;} 24$ WAY $7 / 6$,
8.R.B.P. Board 0-15 MATRIX $2 \downarrow$ in. wide 8 d . per in. 3in. Fide 9d. per lin.; 5 in. wide $1 /-$ per lin. (up to 17 in .)
S.R.B.P. undrllled $1 / 1 \mathrm{gin}$. Board, $10 \times 8 \mathrm{in}$. 3/

BLANK ALUMINIUM OHABSIS. 18 B,W.g. 2 ing. sides
 ALUMINIUKPAWELS 18 ETE 12×12 in $8 / 8 ; 14 \times 8$ in $5 / 8$ $12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in} .8 / 8 ; 8 \times 6$ in. $2 / 6 ; 6 \times 4 \mathrm{ln} .1 / 6$.

O MAX CHASSIS CUTTER

Complate: a die, s punoh, an Allen sorem and key
 in. $18 / 81^{1 / 18}$ in $19 / 61 / \mathrm{in}$. $21 / 6$ gin. $39 /-1 \mathrm{in}. \mathrm{sq} 36 /$.

N MERRY CHRISTMAS BARGAIN STEREO/MONO SYSTEM
Attractive slimline PLAYER CABINET with B.S.R. UA25 Deck, $4+4$ AMPLIFIER and TWO matched
LOUDSPEAKERS LOUDSPEAKERS

Post $10 / 6$
oin).
f19.19.6.
NEW TUEULAR ELEECTROLYTTCS
$2 / 350 \mathrm{~V}$
$4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$18 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$
$35 / 25 \mathrm{~V}$

| $25 / 25 \mathrm{~V}$ | $\cdots 3 / 9$ | $8+8 / 450 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |
| $50 / 18 / 450 \mathrm{~V}$ | | |

$50 / 50 \mathrm{~V}$				
SUB.MIN	$2 /$	$16+16 / 450 \mathrm{~V}$	$4 / 3$	$60+100 / 350 \mathrm{~V}$
2	$11 / 6$			

$250 \mathrm{mF} 1 \mathrm{sV} 2 /-; 500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 8 ; 2000 \mathrm{mF} 25 \mathrm{~V} / \mathrm{m}$ CERAMIC. 500 V 1 pF to 0.01 mF, . d . Dises $1 /-$. PAPER $350 \mathrm{~V}-0.19 \mathrm{~d} ; 0.52 / 6 ; 1 \mathrm{mF} 3 / ; 2 \mathrm{mF} 150 \mathrm{~V} 3 /-\mathrm{m}$
$500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-; 0.251 / 8 ; 0.53 /-\mathrm{l}$ $500 \mathrm{~V}-0.001$ to $0.059 \mathrm{~d} ; 0.11 /-; 0-251 / 8 ; 0.53 /$
$1.000 V-0.001,0.0022,0.0047,0.01,0.02,1 / 8 ; 0.047,0.1,2 / 6$.
SILVER MICA. Cloge tolerance $1 \% \cdot 5-500 \mathrm{pF} 1 /-580-2.2200 \mathrm{FF}$ SILV ER MiCA. Close tolerance $1 \% .5-500 \mathrm{pF} 1 /-; 560-2,2200 \mathrm{pF}$ TWIN GANG. "0-0" $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6 ; 365 \mathrm{pF}$,
TUIN GANG. "0-0" $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 8 ; 365 \mathrm{pF}$, minis-
ture $10 /-; 500 \mathrm{pF}$ standard with trimmers, $0 / 6 ; 500 \mathrm{pF}$ ture
midget less trimmers, $7 / 6 ; 500 \mathrm{pF}$ slow motion, standard $9 /=$; small 3-kang 500 pF 18/9. Single "0" $365 \mathrm{pF} 7 / 8$. Twin $10 /-$ SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 5 / 8$ each. Can be ganged. Couplerz 9 d . esoh.
TONING. Solid dieleotric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 4 / 6$ en TRIMMERS. Compression 0eramio 30, $50,70 \mathrm{pF}$. $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / \mathrm{E} ; 1000 \mathrm{pF} .2 / 6$. 250V RECTIFIERS. Selenium \ddagger wave $100 \mathrm{~mA} 5 /$-; BY100 10/CONTACT COOLED \& WAVE 60mA 7/6; 85mA 9/6. Full Wave Bridge $75 \mathrm{~mA} 10 /-150 \mathrm{~mA}$, $10 / 6 ;$ TV reots. $10 /-1$ -
NEON PANEL INDICATORS 250 m NEON PANEL INDICATORS. 250 v . AC/DC, $3 / 6$.
RESISTORS. Preferred values, 10 ohms to 10 meg.

 5 watt 0.5 to 8.2 ohm 3 w . 10 watt WIRE-WOUND RESISTORS 15 watt 10 ohms to 8,800 ohms
$10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3$ FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12v outputs. 1z amp. 8/9; 2a., 11/3; 4a., 17/8.

CEARGER TRANSFORMERS, P. \& P. E/-, Input 200/250 Cor 6 or 12 p . It $\mathrm{amps}, 17 / 6 ; \varepsilon$ a | for 6 or 12 F ., 1 t amps., $17 / 6 ; 2$ smps., 21/-; 4 amps., $30 /-$. |
| :--- |
| WIRE-WOUND $3-$ WATT | WIRE-WOUND 3-WATT

POTE. T.V. Type. Values STRE-WOUND 4-WATA
STANDARD 8IZE POTE $\begin{array}{llll}\text { POTS. T.V. Type. Values } & \text { STANDARD 8IZE POTS. } \\ 10 \text { ohms to } 30 \mathrm{~K} ., & \mathbf{4} / 6 & \text { LONG SP1NDLE } \\ \text { Cerbon } 30 \mathrm{~K} & \text { to } 2 \mathrm{meg} & 7 / 6\end{array}$ VALVE HOLDERS, MOULDED 9d.; CERAMIC 1/-EACH. NEW MULLARD TRANSISTORS 6/- each 0071, OC72, OC81, OC44, OC45, OC171, OC170, AF117
REPANCO TRANSISTOR TRANSFORMERS
TT45. Push Pull Drive, $9: 1$ CT, $8 /$ - TT46 Output, cT8:1, 6/-
TT49. Interstage 20:1, 6/-; TT'8 Output 8 ohms, $4 \cdot 5: 1,6 /-$ PAIR 10W Amp. Transformer and circuit 45/-.
TRANSISTOR MAINS POWER PACK, FAMOUS MAKE. 9 Volt 500 mA Ajze5. FULL WAVE CIRCUIT $\times 21 \times 2 \mathrm{~T}$. 49 TRANSFORMER ONLY. Slze $2 f^{\circ} \times 1 \% \times 1$ in. 9 rolt $10 / 6$.

MAINS TRANSFORMERS Pil-esth

$250-0-25080 \mathrm{~mA} .6 .3 \mathrm{v} .3 .6 \mathrm{a} .6 .3 \mathrm{v}$. 1 a . or 5 v . 2a
250 $350-0-35080 \mathrm{~mA} .6 .3 \mathrm{v} .3 .6 \mathrm{a} .6 .8 \mathrm{v}$. 1 a . 0 ह 5 v . 2 s . $300-0-300 \vee$. 120 mA .6 .3 v . 4 a . C.T.; 6.3 v . 2 a . MINIATURE 200v. $20 \mathrm{~mA}, 6.3 \mathrm{v}, 1$
MIDGET 220v. 45 mA ., 8.3v. 2 a
HEATER TRAN8. 6.3 v . $1 \mathrm{a} ., 8 / 6 ; 6.3 \mathrm{v}$. 4 a .
HEATER TRANS. $8.3 v .1 \frac{1}{2}, 8 / 6 ; 6.3 v .4 a, \ldots$
Ditto tapped seo. $1,47,2,8,4,6,6.3 v .1$ amp.

$$
\begin{aligned}
& \text { GENERAL PURPOSELOW VOLTAGE, Outpati } \\
& 4,5,8,8,9,10,12,15,18, ~ 24, \text { gad } 30 y, ~ 8 t ~ 28 .
\end{aligned}
$$

$$
\begin{aligned}
& 4,5,6,8,9,10,12,15,18,24 \text {, and } 30 \mathrm{v} \text {. } 8 \mathrm{t} 2 \mathrm{~s} \\
& 1 \mathrm{mmp}, 6,8,10,12,16,18,20,24,80,36,40 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { amp., } 0-12 v, ~ a n d ~ 0-18 v ., ~ \\
& \text { ATTO TRANSFORMFRS }
\end{aligned}
$$

AOTO TRANSFORMERS O-115-830v. Inpmi/Ousput. A0w. 18/6;150w. 80/-; $500 \mathrm{w} .88 / 6 ; 1000 \mathrm{w} .175 / \mathrm{z}$.
COAXIAL PLUG I/3. PANEL SOCKETS 1/3. LINE 2/OUTLET BOXES. SURFACE OR FLUSH 4/6. BALANCED TWIN FEEDERS $1 /-\mathrm{yd} .80 \mathrm{ohms}$ or 300 ohms. JACE Lead Socket $7 / 8$. Phono Plugs $1 /-$. Phono $\$$ ocket $1 /-$ JACK PLUGS Std. Chrome $3 /-; 3 \cdot 5 \mathrm{~mm}$ Chrome $2 / 6$. DIN SOCKETS Chessis 8 -pin 1/6; 5 -pin $2 /$
DIN SOCKETS Lead 8 -pin $3 / 6$; 5 -pin $5 /$
WAVE-CEANGE \& WITCRES WITH LONG SPINDLES
2 p. \&-way, or \& p. 6-way, or 3 p. 4-way 4/6 8ioh. 1 p. 12 -way, or 4 p. 2-way, or 4 p. 3-way, $4 / 8$ eaoh.
Waveohange "MAKITS" 1 p. $12-w a y, 2$ p. 6-way, 3 p. 4 -way. Wareohange "MAKITS
4 p. 8 -way, 8 p. 2-way, 1 wafer 12/-, 2 waler 17/-, 3 wafer 22/-. Additionsl walers $5 /-$ each wafer up to 12 mar. TOGGLE SWITCEESS, $1 \mathrm{p} .2 / 8 ; \mathrm{sp} . \mathrm{dt} .3 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp} \mathrm{dt} .4 / 8$.

 E.M.I. Cone Tweeter 3Hin. square, 3-20ko/n. 10 W $17 / 6$ QunDspan 15/6 esoh; 8in 22/6; thln 18/6; 10in 30/-: i2in. Double onn 3 or 15 ohm $35 /-; 10 \times 8 \mathrm{in} .30 /-; 8 \times 51 \mathrm{n} .21 /-$. E.M.I. Double Cone $134 \times 8 \mathrm{ta}$., 3 or 15 ohm models, $45 /-$, or with twin twenters crossover and E/D magnet, 79/8,
 $0 / P$ TRANS. EL84 etc. $4 / 6$: MIKE TRANS. $50: 1,8 / 0$ SPEAKER FRET Tygan varions. SAMPLES 8.A.E.

ALL PUPPOSE HEADPHONES

 H.R. HEADPEONES 2000 ohms General Parpose. H.R. HEADPHONES R000 obms Super Senaitive DE LUXE PADDED STEREO PHONES 8 ohms
MINETTE
 AMPLIFIER

For all Record Playery A.C. Hains Trandormer Chassis size $7 \times$ aid $\times 4 \mathrm{in}$.
High. Falves ECL88,

hm matohing. Eargain ofier complete with engraved oontro panel, valves, knebs, volumesnd tone oontrola, wired $79 / 6$
and tested. 12 month guarantee. Post $5 / 6$

Fully guaranteed Individually packed VALVES

Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. MANY OTHERR DR STOCK include Cathode Ray Tubes and 8pecial Valves. U.K. Orders

brand

ALL valves guaranteed

| $\mathrm{AC} / \mathrm{HL}$ | $6 /-$ | ECF82 | 6/6 |
| :--- | :--- | :--- | :--- | ARP

ARP
AR8

 ECH42 10 ARTP1 $8 /-$ \begin{tabular}{ll|l}
ARTP1 \& $6 /-$ \& E

ATP4 \& $2 / 3$ \& E

ATP4 \& $2 / 3$

AZ31 \& $9 /-$

BD78 \& $40 /-$

\&
\end{tabular} $\begin{array}{ll}\text { BD78 } & 40 /- \\ \text { BL63 } & 10 j- \\ \text { B2134 } & 18 /-\end{array}$ $\begin{array}{ll}\text { B1663 } & 10 /- \\ \text { B2134 } & 16 /- \\ \text { BT35 } & 55 /- \\ \text { BT45 } & 150 /- \\ \text { BT83 } & 35 /- \\ \text { CV10 } & 3 /\end{array}$ $\begin{array}{ll}\text { CV102 } & 3 /- \\ \text { CV103 } & 4 /-\end{array}$ CV315 (nat ched pair)

$120 /-$ CV31
gle)
CY31

\qquad

$6 /-$
$6 /-$
$6 /-$
$2 / 6$
$6 /-$
$7 /-$
$4 /-$
$6 /-$
$5 /-$
$4 / 6$
$3 /-$
$5 /-$
$4 / 9$
$4 /-$
$5 /-$
$14 /-$
$3 /-$

3Q4
3Q5GT
384
3V4
4D1
$5 A 173 G$

501$50 /-$
$8 /-$
$6 /-$
$5 / 9$
$6 / 6$
$4 /-$
$\mathrm{G} 5 /-$
$\mathrm{G} 5 /-$
$\mathrm{M} 40 /-$
$3 \mathrm{M} 5 /-$
$4 \mathrm{M} 15 /-$
$5 \mathrm{M} 40 j-$
$\mathrm{M} 35 /-$
9/-
VGA
$27 / 6$
$7 /-$

$4 / 8 \mid 6 \mathrm{AK} 8$
 $\begin{array}{ll}\text { AAK8 } & 5 / 8 \\ \text { AL5 } & 3 / \\ \text { AAL5W } & 7 /- \\ \text { 6AM5 } & 6 \\ \text { 6AM6 } & \\ \text { 6AN5 } & - \\ \text { 6AX5 } & \\ \text { 6AX5W } \\ \text { 6AS6 } \\ \text { 6AS7G } \\ \text { 6AT6 } \\ \text { 6AU6 } \\ \text { 6AX4 } \\ \text { 6B4G } \\ \text { 6B7 } \\ \text { 6B8G } \\ \text { 6BAB }\end{array}$ 6F12
${ }^{-78}$

Table 3: Comparison of Capacitor Types

Type	Value	Tolerance	Voltage	Temperature	Insulation Resistance	Cost
PAPER TubularE.H.T.	$\begin{gathered} 1000_{\mathrm{pF}}-10_{\mu} \mathrm{F} \\ 100 \mathrm{p}_{\mathrm{p}}-100 \mu \mathrm{~F} \end{gathered}$	$\begin{gathered} \pm 10 \% \text { to } \pm 25 \% \\ \pm 20 \% \end{gathered}$	$\begin{gathered} 200 \mathrm{~V}-800 \mathrm{~V} \\ 200 \mathrm{~V}-2500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 2000 \mathrm{M} \Omega / \mu \mathrm{F} \\ \text { or }>2,000 \mathrm{M} \Omega \end{gathered}$	$\begin{gathered} 8 \mathrm{~d}-4 /- \text { up to } 30 /- \\ 11 /-\mathrm{f} 710 \mathrm{~s} . \end{gathered}$
PLASTIC	$\begin{aligned} & 10 \mathrm{pF}-1 \mu \mathrm{~F} \\ & 1 \mu \mathrm{~F}-10 \mu \mathrm{~F} \end{aligned}$	$\begin{gathered} \pm 0 \cdot 1 \% \text { to } \pm 20 \% \\ \pm 20 \% \end{gathered}$	$\begin{gathered} 30 \mathrm{~V}-500 \mathrm{~V} \\ 30 \mathrm{~V}-63 \mathrm{~V} \end{gathered}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	From $1,000 \mathrm{M} \Omega$ to $1,000,000 \mathrm{M} \Omega$	$\begin{aligned} & 8 \mathrm{~d} .-5 / 3 \text { up to } 15 /- \\ & 2 /-7 / 3 \text { up to } 35 /- \end{aligned}$
CERAMIC	$\begin{gathered} 0.5 \mathrm{pF}-220_{\mathrm{pF}} \\ 200_{\mathrm{p}} \mathrm{~F}-10.000 \mathrm{pF} \\ 0.01 \mu \mathrm{~F}-0.47 \mu \mathrm{~F} \end{gathered}$	$\begin{aligned} & \pm 0.25 \mathrm{pF}, \pm 5 \% \\ & \pm 10 \% \\ & +40 \%-20 \% \\ & +50 \%-25 \% \end{aligned}$	$\begin{gathered} 500 \mathrm{~V}-12 \mathrm{kV} \\ 500 \mathrm{~V}-750 \mathrm{~V} \\ 6 \mathrm{~V}-30 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$>7,000 \mathrm{M} \Omega$	$\begin{aligned} & 8 \mathrm{~d} .-2 /- \\ & 7 \mathrm{~d} .-2 / 6 \\ & 10 \mathrm{~d} .-4 / 6 \end{aligned}$
SILVER MICA	1pF-10,000pF	$\pm 1 \%$	350 V	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$25,000 \mathrm{M} \Omega$	7d. - 177-
ALUMINIUM ELECTROLYTIC	$\begin{gathered} 0.5 \mu \mathrm{~F}-300 \mu \mathrm{~F} \\ 0.5 \mu \mathrm{~F}-10,000 \mu \mathrm{~F} \\ 10.000 \mu \mathrm{~F}-500,000 \mu \mathrm{~F} \end{gathered}$	$\begin{aligned} & -20 \% \text { to }+100 \% \\ & \text { and } \\ & -20 \% \text { to }+50 \% \end{aligned}$	$\begin{gathered} 250 \mathrm{~V}-500 \mathrm{~V} \\ 3 \mathrm{~V}-150 \mathrm{~V} \\ 3 \mathrm{~V}-70 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.15 \mathrm{CV}^{*} \\ & \text { or not less } \\ & \text { than } 100 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 1 / 6-17 \% \\ 1 / 3-42 / \\ 40 /-200 \% \end{gathered}$
TANTALUM ELECTROL.YTIC Metal Case Resin Coated 	$\begin{aligned} & 0.1 \mu \mathrm{~F}-330 \mu \mathrm{~F} \\ & 0.1 \mu \mathrm{~F}-50 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \pm 20 \% \\ & +50 \% \\ & -20 \% \end{aligned}$	$\begin{aligned} & 6 \mathrm{~V}-75 \mathrm{~V} \\ & 3 \mathrm{~V}-40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$0.02 \mathrm{~mA} / \mathrm{CV}^{*}$	$\begin{aligned} & 3 / 6-42 /- \\ & 3 /-5 /- \end{aligned}$
VARIABLE	2pF-500pF	-	100V upwards	$-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	1,000M Ω upwards	1/-upwards

- Permissible leakage current where $\mathrm{C}=$ capacitance in $\mu \mathrm{F}$ and $\mathrm{V}=$ working voltage.
and at high frequencies it acts as a short-circuit.
The ideal capacitor should therefore have a perfect insulator as the dielectric, and the plates and leads should be perfect conductors with no resistance or inductance. In practice parasitic elements are present as shown in the equivalent circuit of Fig. 3. They consist of a series inductance (Ls) formed by the lead inductance and the wound construction, and a parallel leakage resistance (RL) which is due to the resistance of the dielectric and any discontinuities and impurities in it. The inductance limits the upper frequency at which the capacitor may be used and the leakage resistance limits the impedance of the circuits in which it may be used.

Design Limitations

Other design limitations are maximum voltage rating, tolerance, operating temperature range, reliability, noise generation, temperature coefficient, maximum ripple current capability, humidity rating, size and cost.

Table 3 gives the more important parameters for the various types of capacitor available. This should be used as a rough guide only, since the range of types of capacitor in each section can be very wide.

The capacitance value of a capacitor is determined by the area of the plates and the thickness of the dielectric. Capacitance is increased by increasing plate area or decreasing the dielectric thickness. Each form of construction and dielectric has particular properties and these will now be considered in greater detail.

Paper

Foil and paper capacitors were one of the earliest forms of capacitor. They are formed by winding two strips of foil with a layer of thin paper between as an insulator, as shown in Fig. 4. The foils are made to extend at either end so that foil 1 overlaps the paper dielectric and forms one end connection while foil 2 overlaps at the other end to form the other connection.

This construction used to be insulated by wax and paper, but now either resin or plastic moulding is utilised. Oil-filled and metal encased capacitors are used for e.h.t. working. Metallised paper capacitors are also available, and these generally give smaller dimensions.

Fig. 4: Construction of a wound foil and paper capacitor, a widely used general purpose type.

Paper and foil capacitors are used as general purpose capacitors and have high working voltages, low leakage, and low cost. Oil-filled capacitors are used for e.h.t. voltage applications. They tend, however, to be bulkier for the same capacitance and voltage rating than modern plastic capacitors.

Plastic Film

Plastic film and metallised capacitors are the natural development of paper capacitors, and they have the same basic construction. Many types of plastic film are used as the dielectric, and each type has properties such as stability or smaller size which constitutes an improvement on the foil and paper styles. Metallising of both paper and plastic film has also considerably reduced the size.

Most plastic capacitors employ metallised film which
is a process whereby the film is coated with a thin film of metal by vacuum deposition. Two such rolls of film are wound together to form the capacitor as shown in Fig. 5. The end-overlapping technique is used to provide end connections and a metal is sprayed on to these overlapping ends to provide a solid base for joining the wire connections by soldering or other methods. Encapsulation is usually with plastic, though some of the flat types use lacquer.

Fig. 5: Metallised film capacitor construction.
Metallised paper capacitors are used for general purpose applications and are smaller than foil and paper types. Polyester capacitors are also used as general purpose capacitors and are low cost, small size, medium voltage (400 V) capacitors. They have a wide operating temperature range, close tolerance, and excellent stability. Polystyrene dielectric capacitors, although generally larger than polyester types, are excellent replacements for silver mica capacitors. They are extremely stable, have a negative temperature coefficient, high reliability, extremely high insulation resistance (greater than $10^{8} \mathrm{M} \Omega$), close tolerance ($\pm \frac{1}{2} \%$) and have excellent high frequency characteristics $(1,000 \mathrm{Mc} / \mathrm{s})$. Polycarbonate capacitors have similar performance to the polyester capacitors but are appreciably smaller in size, though their cost is higher. They are useful for miniature circuits and are used in space satellites and rocket equipment. Tefion capacitors are high quality capacitors with high insulation resistance and wide temperature range with a low temperature coefficient. They can be supplied to $\pm 0.1 \%$ tolerance and matched for temperature coefficients of 5 p.p.m. $/{ }^{\circ} \mathrm{C}$.

Plastic capacitors therefore are of many sorts and are suitable for most applications provided the correct dielectric material is chosen. Polyester capacitors are now utilised as the general purpose low leakage capacitor for medium and low voltage applications over the capacitance range $0.001 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$.

Ceramic

Ceramic capacitors are found in both tubular and disc form. Figure 6 illustrates the construction of a low value tubular capacitor. The capacitance is formed by silvering a ceramic cylinder or disc, the ceramic forming the dielectric. Wire connections are made to each separate coating and the whole construction is insulated with synthetic resin. They are therefore rugged in construction.

The main advantages of this type are extremely smail size, low cost, and high frequency of operation. They have a high insulation resistance and can be used up to e.h.t. voltages. The main disadvantage is a very poor temperature coefficient (800 p.p.m. $/{ }^{\circ} \mathrm{C}$) which renders them unsuitable for critical applications. They should

Fig. 6: Tubular ceramic capacitor construction.
not be used for tuning or timing circuits. However they are extremely useful as coupling, decoupling and bypass capacitors, and also as feed-through capacitors up to $5,000 \mathrm{Mc} / \mathrm{s}$. Low voltage microminiature plaquette types the size of a match-head are now available.

Silvered Mica

Silvered mica capacitors are manufactured as shown in Fig. 7 by utilising plates of mica with fired-on silver electrodes. The sheets of coated mica are bonded together and the wire connections soldered at each end of the plates. The whole structure is then dipped in resin to give a robust finish.

Fig. 7: Construction of a silvered mica capacitor.

Fig. 8: Construction of an aluminium electrolytic capacitor.

These capacitors are produced in the range $1-10,000$ pF , usually with $\pm 1 \%$ tolerance They exhibit great stability, reliability and have a high insulation resistance. Hence they are very suitable for critical applications such as timing and oscillatory circuits.

Electrolytic

Two basic forms of electrolytic capacitor are in common use: the aluminium electrolytic and the tantalum electrolytic.

The aluminium electrolytic is the general purpose electrolytic capacitor and is produced over the range $0.5 \mu \mathrm{~F}$ to $500,000 \mu \mathrm{~F}$. They are constructed as shown in Fig. 8 by rolling two strips of aluminium foil with paper dipped in electrolyte as the dielectric. The construction is sealed in a metal case to which one electrode (usually negative) is connected. The case is insulated if required by a plastic sheath. As the electrolyte is a corrosive paste sealing is important to prevent leakage.

These capacitors operate by electrolytic action and are analogous to batteries. They have definite polarities to d.c. voltages and oppose a.c. voltage changes by

Complete precision soldering kit

This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3}{16}$ " bit.
- Interchangeable spare bit, $\frac{55}{32}$ ".
- Interchangeable spare bit, $\frac{3}{32}{ }^{\prime \prime}$.
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36 -page booklet on "How-to-Solder"--a mine of information for amateur and professional.

From Electrical and Radio Shops or
send cash
to Antex.
pin-point precision soldering . . . fingertip control bits that do not stick to shafts . . . bits that slide over elements . . . sharp heat at the tip .. reliable elements ...spares always available ... in Europe, Africa, Asia, America... ANTEX soldering irons are used by experts and amateurs alike; they have found out the advantages of Antex .
you can too ... buy one in a shop or direct from us . . . or ask for our catalogue first.

Antex, Mayflower House, Plymouth, Devon
Telephone: 0752-67377/8. Telex 45296.
Telephone. 0752-67377/8. Telex 45296. Giro No. 2581000

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from .040" (1 mm) up to $3 / 16^{\prime \prime}$. For 240 , $220,110,50$ or 24 volts.

From Electrical and Radio Shops or send cash to Antex.

32/6

G 18 watts. Ideal for ministure work on production lines. Interchangeable spare bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$. For 240 . 220 or 110 volts. $32 / 6$.

E 20 watts. Fitted with $1 / 4^{\prime \prime}$ bit.
Interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$.
$3 / 16^{\prime \prime}$. For $240,220,110$ or 24 volts. $35 /$ -

ES 25 watts. Fitted with $1 / 8^{*}$ bit.
Interchangeable bits $3 / 32^{\prime \prime} .3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$. Ideal for high speed production lines. For $240,220,110,24$ or 12 volts. 35/-

F 40 watts. Fitted $5 / 16^{\circ}$ bit.

Interchangeable bits $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Very high temperature iron. Available for $240,220,110,24$ or 20 volts. $42 / 6$.

Spare bits and elements for all models and voltages immediately available from stock.
 To: Antex, MayHower House, Plymouth, Devon
\square Please send me the Antex colour catalogue
Please send me the following irons
Quantity Model Bit Size Volts Price

I enclose chéque/P.O./cash value
NAME
ADDRĖSS
PW1

TRANS18TOR POWER OUTPUT STAGE on P.C. Board (with diagram). 5 in. $x 24 \mathrm{in}$. x $1 \% \mathrm{tm}$. high. Tested and working. OC71, OC81D and $2 \times 0 \mathrm{x} 81$ and Heat Blnks. Wit O.P. Trans. for 35 ohm speaker. Requires 5K Pot, Bpeaker and 9v. supply. Price 27/6 Pot paid. 5 K Log Pot + Bwitch 4/-. 8 in . $\times 2$ in. 35 ohm. Speaker 16/6.

17W MAIN 8 GRAMOPHONE AMPLIFIERS. EZ80, ECL82, O.P. Tranaformer (3 ohm) Vol. $/$ On off and Tone Control. Doúble wound mains transformer. $24 \times 24 \mathrm{in}$. $x 2$ in 6 i in. Bpeaker. ($52 / 6$ less speaker.)

NEW F.M. TUNER. Range 87 to 107 MHz Attrac tively finished metal container with cast fron escutcheon. Case size 13 in . I 7 in . I 3 iln. high ECC85, EF89, EP80, ECC82 as cathode follower EM84 tuning indicator, $2 \times$ AF117 and 2 diodes. A really fantantic performer. Price 217.17 .0 , tax paid and carr. paid or with Btereo Decoder 225.
2×4 WATT STEREO AMPLIFIER. Printed circuit. Separate power pock and separate control panel. Metal rectifter. ECC83 and 4-EL84. Negative feedback. Vol., base, treble each channel. Muting switch and on/off. Printed circuit 4$\}$ in. $x 4 \frac{3}{2} \mathrm{~m}$., Power Pack $7 \ddagger$ x 41 in . $x 3 \mathrm{itn}$, and control panel 4 in . x 5 ith ,, with output tranformers for 3-ohm speakers on power pack. 25.10 .0 ($7 / 6 \mathrm{P}$. \& P.)

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS

Chassis $12 \downarrow \times 5 \$ \times 4 t i n$. high Front panel "gold" finist $12 x_{\text {R }}$ flin. 200-250 A.C. Record/Playback anip. 日witch On/On-Tone; Vol./Mic.; Vol.
Gram; Mic. Input: Gram Input; Monitor; speaker socket Valves 6BR7; 12AX7; EM84: EL84; 6X4 Separate power pack. 2 Track 88.19.6; 4 Track 210.4 .6 (12/6 p. \& p.) Rexine covered cabinet (tan) $151 \times 17 \times 94 \mathrm{in}$. bigh with sloping front for amp; com-
plete witb two tweeter plete with two tweeter speakern, and special adapting brackets for Magnavor Deck $85 /-(8 /$ - carr.)
Magnavox 4 track tape deck, Type 363.816 .10 .0 , carr. paid. 2×2 stereo deck $\varepsilon 80$.
"gUPER SIX" L.W. add M.W. TRANSIGTOR RADIO KIT. Mark 2. Complete set parts £4.2.6 (5/-post). PP6 batt. $2 / 9$ extrs. Instructions and list $2 /$-(free with kit), diode, etc
sPEAKERS IN CABINETS, $20 \times 15 \times 8 \mathrm{in}$. Finished Vynair and Rexine, various coloura. With E.M.I. $13 \times 8 \mathrm{in} .3$ or 15 ohm speaker $90 /-\mathrm{i}$ with 12 in . Elac 15 whm
 (3 or 15 ohm) 41 (- (post $3 / 8$) all others pont $1 / 6$ emch. 12in. heavy duty Elac Loud-日peaker $15 \mathrm{ohm}, 20 \mathrm{watt}, ~ £ 6.6 .0$ ($10 /-\mathrm{post}$).

8 W. PEAK PUSE-PULL OUTPUT AM PLIFIER, 200-250 Volts A.C. EZ80, ECC83 2-EL84, Bass, treble, vol/on-of. 87.17.6 (post paid). Bize $12 \times 3 \mid \times 5 \mathrm{ln}$. high. For Record Player, Radio Tuner, etc.

 Dial $13 \times 4 \mathrm{in}$. gold and brown. Controls beneath dial, Tone, Volume/on/off, MW/LW Grain Tuning. Perrite rod aeris.

EX GOVERNMENT AVO METER, Model 7. Excellent condition, fully checked, with leather carrying case. List price new over e29. Our price \&18. Carr. paid.

CLEAR PLASTIC PANEL METERS D.C. Type KA/38C. 14 in . sq. 50 microa $30 /-$ $500 \mathrm{microA} 27 / 8 ; \operatorname{lmA}(8-m e t e r) 27 / 6 ; 5 \mathrm{~mA} 27 / 6 ; 100 \mathrm{~mA} 25 j ; 300 \mathrm{~V} 27 / 8$. Poet $1 / 6 \mathrm{~d}$

6 PUSH-BUTTON STEREOGRAM CHASSIS

M.W.; B.W.1; 8.W.2; V.H.F.: Gram: Btereo Gram Two geparate channels for Stereogram witb balance control.
Also operatea witb two apeakers on Radio. Chassia size: $15 \times 7 \times 6 \mathrm{in}$. high. Dial
silver and black $15 \times 3 \mathrm{hn} .190-$ silver and black
$550 \mathrm{M} ; \quad 18-51 \mathrm{M} ; \quad 60-187 \mathrm{M}$: 5HF $\quad 86-100 \mathrm{Mc} / \mathrm{m}$. Valven: ECC85. ECH81. EF89, 2x ECL8B, EM84 and Rect. Price f19.19.0, carr. paid. With 8tereo Decoder fitted 27.10.0 extra.

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(8 mins. from 8tation and Buses). FULL GUARANTEE. Aldershot 22240 CLOEED WEDNESDAY AFTERNOON

ALL ITEMB FULLY BUILT UNLESS OTEERWHEE STATED $1 /-$ in the 8 discomit on orders over 210 .

R.S.T. valve mail order co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16 brand new and boxed

Mon.-Sat. 9 a.

- $5.45 \mathrm{p} . \mathrm{m}$.

All valves Closed Sat, $1.30-2.30$ p.m. Open Dally to Callers

Tel. 769-0199/1649

147	$7 / 8$	6BH6	7/6	6K6GT	$5 /-$	787	301
1 D 5	71	6 B 56	$9 /-$	6K7M	5/9	7 Y 4	8/6
1H5	71-	6BQ7A	7/-	6K7G	2/-	98W6	$71-$
1LD5	$51-$	6BR7	8/8	6K7GT	4/6	10 Cl	12/6
1N5GT	81-	6BR8	$5 / 6$	6 K 8 M	8/6	10C2	12/6
1 R 5	$5 / 6$	6887	$16 / 9$	$6 \mathrm{K8G}$	3/-	10 Fl	$91-$
184	5/-	6BW6	14/-	6 K 8 GT	${ }^{71-}$	10F3	$81-$
185	4/-	6BW7	141-	6 K 25	201-	10F9	$9 / 9$
1T4	8/-	6C4	8/9	${ }_{6} \mathrm{Ll}$	$9 / 6$	10F18	81-
3 A 4	$3 / 6$	$6 \mathrm{Cs} G$	4/-	6L6G	$7 / 6$	10 Ll	$81-$
3Q4	6/6	6 C	3/9	6 L 1	5/-	10LD13	$15 / 6$
3Q5	6/6	6C8G6G	22/-	6Q7GT	8/6	11E3	42/-
384	$4 / 9$	BCH6	5/9	68A7M	7/-	12AT6	4/6
3 V 4	5/9	6CW4	12/-	68C7	71 -	12AT7	$3 / 9$
5 CHOY	819	6D8	210	6897	$5 /-$	12AU6	5/9
5 U 4 G	4/-	6 E 5	$7 / 6$	68 H 7	3/8	12AU7	4/9
5 V 4 G	8/-	${ }_{6} \mathrm{Fl}$	91-	68.7	5/-	12AX7	8/3
3Y3GT	5/8	6F5G	81-	$68 \mathrm{K7GT}$	4/9	12BA6	81
524G	6/9	$6 \mathrm{F6G}$	4/-	68 L 7 GT	4/9	128E6	$5 / 9$
6/30L2	13/-	8F8G	4/6	68N7GT	$4 / 6$	12C8GT	$4 / 6$
6 A 7	15/-	6 F 11	71	$68 Q 7$	61-	12 E 1	17/6
6ASG	18/6	6F13	$51-$	6U4GT	121-	12 J 5 GT	216
$6 \mathrm{AC7}$	3/-	$6 \mathrm{Frl}^{4}$	12/6	6U5G	$7 / 6$	12J7GT	71
$6 \mathrm{AK5}$	4/8	6F23	13/6	6 V 6 M	81-	12 K 7 GT	81-
6 ALS	81-	6F24	121-	6V6G	$4 / 6$	12K8GT	81-
6AM5	$2 / 6$	$6 \mathrm{~F}^{25}$	12/-	6V6GT	8/6	1207ct	$4 / 6$
GAM6	3/6	$6 \mathrm{~F}^{28}$	11/6	6×4	$3 / 6$	128A7	$8 / 6$
6AQ5	6/-	6G6	2/6	6X59	$4 / 6$	12997	$4 / 8$
BAS7G	15/-	6H6	2/-	${ }_{786}^{6 \times 50 T}$	11/6	12847	$3 /-$
6AT6	4/6	6.50 C	$2 / 6$	7B7	1176	129 K 7	$4 / 9$
6aU6	8/-	${ }^{\text {6JougT }}$	4/6	7 C 5	15/-	128R7	$5 /-$
6B4G	151-	6 J 6	3/-	7 C 6	18)-	$14 \mathrm{H7}$	91-
$6 \mathrm{B8O}$	2/-	6J7M	7/6	7D5	$81-$	19AQ5	51.
6 BA 6	5/-	6J7G	4/9	7H7	$8 / 6$	20Dl	101-
6BE6	51-	6.77 GT	8/6	7R7	17/6	20 F 2	14/-

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY
QUOTATIONS FOR ANY VALVE NOT LISTED Postage 6d. per valve.
C.W.O. No C.O.D

Special 24 Hour Express Mail Order Service

$7 / 6$	PC97	$8 / 8$
$7 / 9$	PCC84	$6 / 3$

$\begin{array}{ll}20 \mathrm{LI} & 17 /-78\end{array}$

78
80
85
150
150
801
807
813

ECF82 71 EM80

chemical reaction in a similar fashion to a battery. Generally they are of large physical size, and have a definite lifetime which is determined by the drying up of the electrolyte. By this action very high values of capacitance are achieved. The voltage ratings must be strictly observed, as must the polarities. Since their insulation resistance is low large leakage currents can flow. The explosion of an under-rated electrolytic capacitor is dangerous and very messy. It is worth mentioning that reliability of these capacitors is increased by operating them near to their rated voltage.

Generally these are only used in non-critical applications such as smoothing and decoupling. Tolerances are very large, usually $+50 \%-20 \%$.

Tantalum capacitors, although they employ electrolytic action, use a solid electrolyte. They are considerably smaller than aluminium electrolytics, though more expensive, and are extremely useful for low voltage miniature circuits. Until recently they were only available in a metal-cased form but are now available in a resin encapsulation which has resulted in a considerable price reduction.

Variable Types

Both air spacing and mica dielectric types are available. The capacitance variation is obtained by varying the proximity of the movable vanes to the fixed vanes as shown in Fig. 9. The larger types, which have capacit-

Fig. 9: Typical larger type of air-spaced variable capacitor for oscillator and tuned circuit tuning.
ance variations of $5-500 \mathrm{pF}$, are used for oscillator and tuned circuit tuning purposes and are available in dual and triple ganged configurations. The smaller flat, beehive, or cylindrical types are used as trimming capacitors and after initial tuning are locked in position. These generally have a capacitance range of $2-60 \mathrm{pF}$.

Summary

Metallised paper and polyester capacitors are suitable as general purpose capacitors, with polycarbonate as a miniaturised alternative. Ceramic capacitors are useful for coupling and decoupling at medium and high frequencies, and electrolytic capacitors for these functions at low frequencies. Silvered mica and polystyrene capacitors are ideal for critical applications.

The Future

Trends will be towards the development of cheap, close tolerance, high stability capacitors, probably through the use of modern plastic films. The present types of capacitors will continue to shrink in size and improve in quality. Miniaturisation in the electrolytic sphere will be a continuing trend.

THE SOLID STATE

Consider the device of Fig. 12 biased as shown. The positive bias on the base relative to the emitter means that current is flowing between the emitter and base. Since the emitter has a considerable surplus of conduction electrons (being heavily doped) and the base has only a slight surplus of holes (being lightly doped) most of this current is carried by electrons.

The other junction, between the base and collector, is reverse biased. Electrons on the n side and holes on the p side are pulled back from the junction and no current would be expected to flow. The base region, however, is very thin, and the electrons which are moving rapidly from the emitter to the base come under the influence of the much higher positive bias at the collector than at the base. Thus most of the electrons from the emitter keep moving straight on, cross the base-collector junction and end up in the top n region to be collected at the positive bias connection of the collector. If the base region is thin enough, a very large proportion of the electrons moving from emitter to base will end up at the collector. For example, we might have an emitter current of $1,000 \mu \mathrm{~A}(=1 \mathrm{~mA})$ with $10 \mu \mathrm{~A}$ flowing through the base contact and the remaining $990 \mu \mathrm{~A}$ appearing at the collector. This gives us a ratio of collector current to base current of $990 / 10=99$ and this is the quoted figure of current amplification given the symbol $\mathrm{h}_{\mathrm{f}_{6}}$. This figure is not absolutely constant: it usually reaches a maximum at some value of collector current (Fig. 13)-

Fig: 13: Typical graph of current gain against emitter (or collector) current for small transistors (common emitter circuit).
usually 1 mA in small transistors-so that perfectly linear amplification is not possible though good linearity is possible if the graph of $h_{\text {le }}$ against collector current is flat-topped and the operating conditions are within this region.

The maximum values of $h_{\text {fe }}$ which can be obtained depend on how thin the base region can be made, and in this respect very great improvements in performance have been achieved by modern techniques. Probably the most important advance has been the discovery that a crystal of semiconductor exposed to the vapour of the same material will grow in the same crystalline form, but at a slow controllable rate, so that very thin layers can be grown which are still part of the original crystal. This technique is called epitaxy, and the word epitaxial occurs in nearly every description of recent transistor construction.

TO BE CONTINUED

三 STEREO HANDBOOK

By G．W．Schanz．Published by Ilifie Books Lid．

 135 pages．Size $8 \frac{1}{2} \times 5 \frac{3}{2} \mathrm{in}$ ．Price 168.THERE have been so many books on stereo that one more may seem something of a luxury． By producing it as a stiff paper－back and keep－ ing the cost reasonable，Iliffe have made this Philips original a luxury we can all afford．The considerations we must apply are thus：does it say all it should，and，does it add anything new？

On both counts we can recommend this book．With－ out getting too technical，yet without talking down to the interested reader with babytalk explanations of fundamentals that too often introduce such volumes， the principles of stereophony from the 1,550 experi－ ments of Adraan Willaert with two choirs to the present－day multiplex broadcasts，are intelligently discussed．In particular，the treatment of stereo broadcasting，various methods of decoding and test－ ing decoders will be of interest to PW readers．

The early part of the book quotes some interesting data on room acoustics（we particularly liked the illustration describing reverberation and the frequency dependency of absorption of various materials）．Tape and disc recording processes are outlined and practical stereo connections to DIN standard are shown in detail．It is in such matters that the average man，perhaps convinced by a demonstration that stereo is an undoubted advan－ tage，finds the stumbling block．Numerous practical facts on microphones，tape recording and pickups will be found scattered through these early pages．As may be expected，examples of constituent parts of the stereo chain are drawn from Philips products；but this is no deterrent．The overall impression is of a book written with a true desire to impart know－ ledge，and an undoubted ability to do so．－$B R G$ ．

三 POINTS ON PICK－UPS

By P．Wilson．Published by A．C．Farnell． 140 pages．

VERY often，the best work on a particular subject is a manufacturer＇s brochure，or，in some exceptional case，the service manual． Here we have a reference work by a distributor who must originally have commissioned the paperback －some ten years ago－to foster the sales of the goods he handled．Now，though we could not go so far as to say the sales of the book have outstripped the sales of the goods，they must certainly form a pleasing entry in the ledger．

There have been five previous editions of Points on Pick－ups，and this，the sixth，has been brought fairly well up to date．It is impossible to keep abreast with innovations in this field，so ripe for development as new materials and newer tech－ niques come along，but the majority of the well－ known and popular pickups，cartridges and stylii are illustrated．

The method is to list the cartridges alphabetically as to maker，with a photograph and basic details．

On a facing page the stylus appropriate to that cart－ ridge is drawn，with details such as colour code and tip size．Head shells for some cartridges are included， and one section is devoted to pickup arms where these are complete with a particular cartridge． Accessories also receive attention，again with photo－ graphic illustration wherever possible．
The introduction to this edition debates the case against compromise while describing the main requirements for compatible（mono－stereo）cartridges， and a two－page note on stylii includes a number of tips on their use（if you will pardon a pun almost as provocative as the title of the book！）

This is such a regular part of the bookshelf of a radio and hi－fi dealer that one tends to forget its additional usefulness to the ordinary chap，who merely wants to identify his stylus before he can order a replacement，or who may，perhaps，be wondering what changes of cartridge he can make． There are omissions：a section on cartridge con－ nections，and a few notes on matching may save un－ witting expense for the unwary．But at the price，who can carp？Well worth anyone＇s half－guinea．－HWH．
\＃FUNDAMENTALS OF DIGITAL MAGNETIC TAPE UNITS
By Univac．Published by Foulsham－Sams Technical Books Lid．三 96 pages．Size $8 \frac{1}{2} \times 5 \frac{1}{2} i n$ ．Price 218 ．

WHO is this bloke Univac，you may ask？This book，whose title is almost as long as the authorship credit，has that classic formulae of having been written by a committee．Well，almost．It was prepared by the Field Engineering Depart－ ment，Univac Data Processing Division，of the Sperry Rand Corporation，and，as ever，has the introductory chapter for we poor foreigners who cannot understand American，contributed by our old friend，W．Oliver．

Let it be stated at the＇outset，that digital magnetic tape units are a different proposition from our humble domestic tape recorders，although the fundamental principles remain．Which is not to say that the book is of no interest to the tape recording enthusiast．It may serve as a fruitful source of ideas especially if circuits are studied with care and a trifle of inspiration．This reviewer can see some possibilities in an amplitude detector and a two－ polarity RZ＂write＂circuit for future experiment．

The early chapters deal with magnetic theory， tapes and heads，and the middle section goes into some well－illustrated detail of mechanisms．Again， this is unlikely to be of direct use to the amateur， and it is to be hoped that the professional will have a deeper knowledge than this book endeavours to test．

Nevertheless，the method of writing，with terminal questions to each chapter and an absence of ponderous overstatement，makes the book an interesting addition to the enthusiast＇s library－if he feels that his marginal interest will justify the layout of a guinea．$-A W B$ ．

Build yourself a quality transistor radio

 guaranteed results backed by our after sales service!
roamer seven mk IV

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE I

7 FULLY TUNABLE WAVEBANDS-
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size 5 i x if I 3 in. Fully turabie over both Medium and Long
Waves with extended M.W. band for easier tunlog of Luxembourg, etc. All flrst grade com-ponente- -7 stages - 5 transistors and 2 diodes, supersensitlve ferrite rod aerial, fine tone moving coll speaker, also Personal Earplece with switched oocket for private lintening. Eesy build plans and parta price List 1/6 (FREE with parta).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red apeaker grille. Sise $61 \times$ If x lin. Fully tunable. 7 atages- tranaistors volume control, fine tone moving coll speaker alao Personal Earpiece with switched socket tor private listening. All first grade components. Easy build plans and parts price liat 1/6 (FREE with parts).

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size $7 \frac{1}{2} \times 1 \times 1 \mathrm{in}$. with gilt Attings. The ideal radlo for home, car or outdoors. Covers Medium and Long Wrves and Trawler Band. spectal circuit incorporating 2 R.F. Stages,
push pall output, ferrtte rod gerial, 7 transistors ${ }^{\text {pund }} 2$ diodes, 3in. speaker (will drive larger speaker) and all first grade componenta. Easy bulld plans and parts price list 2/- (FREE with parts). (Personsl Earplece with switched socket for private listening $5 /$ - extra).

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt Bitings. Slze 7\& x 5l x 1 \downarrow in. World wide reception. Tupable on Medium and Long waves, two short waves, Trawler Band Plus an extra M.W. band for easier tuniug of Luxembourg, etc. sensitive ferrite rod aerial and telescoplc serina for short waver. All top grade components. 8 stages- 6 transistors and 2
including Micro-Alloy
R. (Carrying strap 1/6 extra). Easy build plans and parta price liat $2 /-$ (FREE with parts). (Personal Earplece with switched socket for private bistening 5/5extra).

Total building costs
$4418 \quad$ Р. \& P .

Total building costs
$4718 \quad \begin{aligned} & \text { P. \& } P \\ & 3 / 9\end{aligned}$

* Callers side entrance Stylo Shoe Shop
* Open 10-1. 2.30-4.30 Mon-Fri. 9-12.30 Sat

Extra M.W, band for
easier tunting of Luxembourg,
easier tuntig of Luxembourg,
etc. Built in ferrite rod aerial for
Medium and Long Waves. 5 Section $22 i n$.
chrome plated telescople serial for Short Waves-
can be angled and rotated for peak S.W. listening. Socket
for Car Aerial. Powerful push pull
diodes inciuding Mero-Alloy R.F. Transistors. Famous make 7 E 4 in. P.M. speaker for rloh-tone volume. Air spaced ganged tuning condenser. Beparate on/off awitch, volume control, wave change switches and tuning control. Attractive case with hand and shoulder atraps. Bize 9 I 7 I 4 in. approx. Firat grade components. Easy to follow instructions and
diagrams make the Roamer 7 a pleasure to build with guaranteed resulta.

Total building costs

Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK melody six

TWO WAVEBAND PORTABLE
8 stages - 6 transistors and 2 diodes. Covers Medium and Long Waves, Top quallty 3in. Loudspeaker for quality output and also with Personal Earpiece with switched socket for private listenHigh "Q". Ferrite Rod Aerial. Push-pull output. Handsome pocket size case whil plans and parta price list $2 /-$ (FREE ${ }_{\text {with }}$ parts).

Total building costs
89/B P. \& P

RADIO EXCHANGECO

| 61 HIGH STREET, BEDFORD. Tel. Bedford 52367
| enclose f please send items marked ROAMER SEVEN \square ROAMER SIX TRANSONA FIVE \square SUPER SEVEN POCKET FIVE $\quad \square \quad$ MELODY SIX
| Parts price list and plans for

Total building costs 7018 P. \& P. 4/6
Total building costs
$8016 \quad P \cdot \&_{4 / 6}^{P}$

Name
Address

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W.1.

KING OF THE PAKS SUPER PAKS
 Unequalled Value \& Quality BRAND NEW-UNTESTED SEMICONDUCTORS

	120 Glass Sub-min. General Purpose Germanium Diodes	
U	60 Mixed Germanium Transistors AF/RF	
U	75 Germanium Gold Bonded Diodes sim. OA	
U	40 Germanium Transistors like OC81, AC128	
U5	60200 mA Sub-min. Sil. Diodes	
U	40 Silicon Planar Transistors NPN sim. BSY95A	
U7	16 Silicon Rectifiers Top-Hat 750 mA up to 100	
U8	50 Sil. Planar Diodes 250inA OA/200/20	
U9	20 Mixed Volts 1 Watt Zener Diodes	
U11	30 PNP Silicon Planar Transistors TO-5 sim. 2N1132	/-
U12	12 Silicon Rectifiers EPOXY 500 mA up to 800 PIV	-
U	30 PNP-NPN Sil. Transistors OC200 \& 2S104	
U14	150 Mixed Silicon and Germanium Diodes	
U15	30 NPN Silicon Planar Transistors TO-5 sim. 2N697	-
U16	10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV	10/-
U17	30 Gerınanium PNPAF Transistors TO-5 like ACX 17-22	0/-
U18	8 6-Amp Silicon Rectifiers BYZ13 Type up to 600 PI	0/-
U	30 Silicon NPN Transistors like BC108	$0 / \mathrm{F}$
U20	21.5 Amp Silicon Rectifiers Top Hat up to 1000	
U21	30 A.F. Germanium alloy Transistors 2G300Series \& OC71	10/-
U22	10 1-Amp Glass Min. Silicon Rectifiers High Volts	
U23	30 Madt's like MAT Series PNP Transistors	1-
U	20 Germanium 1-Amp Rectifiers GJM up to 300 PIV	0/-
U25	$25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2N708, BSY27	-
U28	30 Fast Switching Silicon Diodes like IN914 Micro-min	-
U®8	Experimenters' Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces	-
29	101 Amp SCR's TO-5 can up to 800 PIV CRSI $/ 25 \cdot 600$	$20 /-$
U	15 Plastic Silicon Planar trans. NPN 2N2024	0/-
$\overline{31}$	20 Sil Planar NPN trans. low noise 2N3707	10/-
U32	25 Zener diodes 400 mW DO-7 case mixed Vlts. $3-1$	-
U33	15 Plastic case 1 A mp silicon rectifiers W4000 series ..	10/-
Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked		

FULLY TESTED	
ACL07	3/6
AC126-7.8	$2 / 8$
AF116.117	3/6
AF139	101-
AL102	151-
BC107.8.9	$51-$
BFY50.51-52..	$7 / 8$
B8Y26-7	$3 / 8$
B8Y28-9	$4 / 6$
B8Y93-95A	$4 / 8$
OC22-25	8 -
$0 \mathrm{C}^{26} \cdot 35$	
OC28-29	$7 / 8$
OC44.45	$1 / 9$
0 O 71.81	$1 / 6$
OC72-75	$2 / 6$
OC81D-82D	${ }^{2 / 3}$
OC82	2/6
OC140.	$51-$
$0 \mathrm{OC170}$	8
OC171.	$3 / 8$
OC201.	$8 / 6$
ORP12-80	$8 / 8$ $8 / 6$
OAD 10	1/8
OA47	8/-
OA70	1/3
OA79	1/9
OA81-85	1/8
0 A 91	$1 / 8$
0 A95	1/8
OAz20	$3 /-$
OA202	${ }^{3 / 6}$
2N696-7	5/-
2N706	8/6
2N708	3-
2N2160	$151-$
2N2646	
2N2712	$5 / 6$
2N2926	2/8
MAT100-101	$3 /-$
MAT120-121	$8 / 6$
ST140	$31-$
8 T 141	41-

SIL. RECTS TESTED	TESTED SCR's
IV 750mA 3A 10a 30	PrV 1 AMP 7A
50 1/- $2 / 9$ 4/3 9/6	$25 \quad 7 \quad 78$
$\begin{array}{llllll}100 & 1 / 3 & 3 / 3 & 4 / 8 & 15\end{array}$	$\begin{array}{lllllll}50 & 7 / 6 & 8 / 6 & 10 / 6 & 35 /-\end{array}$
$\begin{array}{llllll}200 & 1 / 8 & 4 /-4 / 9 & 20 /\end{array}$	$10088 / 810 /-15 /$
$\begin{array}{llllll}300 & 2 / 3 & 4 / 6 & 6 / 8 & 22\end{array}$	200 12/6 131-20
$400 \quad 2 / 6 \quad 5 / 6$	
$\begin{array}{lllll}500 & 8 /- & 8 /-1818 & 30 / \\ 600 & 3 / 8 & 8 / 9 & 9 /- & 37 /\end{array}$	$\begin{array}{ll}400 & 17 / 8 \\ 500\end{array}$
$\begin{array}{llllll}0 & 3 / 8 & 8 / 9 & 9 /- & 37 \\ 0 & 3 / 6 & 7 / 8 & 11- & 40\end{array}$	
1000 5/- 9/8 $12 / 8$ 50]	
	INTEGRATED
PRINTED CIRCUITS EX-COMPUTER	RCUITS
	I.C. Operatlonal Amplis
Packed with semicon ductors and components, 10 boards 'glve a guaranteed 30 trans and 30 diodes. Our price 10 boarda 10/-. Plus 2/. P. \& P.	with zener output.
	Type 7010. Ideal for P.E prolects. 8 Lemd TO-5 case.
	${ }_{\text {Fach }} 5$ off $11 /$-each. Large
	each. 5 orr 11-- each. Large
UNIJUNCTION UT46, Eqvt. 2 N2646, $7 / 6$ Eqvt. TIP43	Fairchild Epoxy T0-3 8
	uL900 Buffer 10
FET's	$\begin{array}{ll}\text { uL923 J.K. Flip-Flop } \\ \text { I.C. Data Circuits etc. } & 1 / 6\end{array}$
2N3819	Mullard I.C. AmpliflersTAA243 ORP.AMP.70/-
	TAA263 Min AF Amp 18/6
AD181-162 NPN-PNP Comp. Pair 12/0 pr.	$\begin{array}{ll} \text { TAA293 G.P. Amp } & \text { R8/- } \\ \text { RCA CA3020 } & \text { 80f } \\ \text { Audio Amp } & \end{array}$

TRANSISTOR EQUIVALENT BOOK

\$2 pages of Cross References for transiators and dtodes, ypes include British, Europesn, American and Japanese. specially imported by BI-PAK $10 /$ - each.

PLEASE NOTE. - To Avold any further Increased Postal Charges to our Customere and enable us to keep our "By Return Pontal service which ia second to hone, we have re-organized and airesa. lined our Deapatch Order Department and we now request you to aend all your orders logether with your remittance, Direct to our Warehouse abd Denpatch Department pastaladrean.-BI-PAK Bill

TESTED SCR's
PTV 1 AMP 7A 16A 30A $\begin{array}{lllll}25 & \overline{7 / 6} & 7 / 8 & \overline{8} & 801 \\ 50 & 801\end{array}$ $\begin{array}{ccccc}50 & 7 / 6 & 8 / 6 & 10 / 8 & 35 /- \\ 100 & 8 / 6 & 10 /- & 15 /- & 45 /-\end{array}$ $\begin{array}{ccc}8 / 8 & 10 /-15 /-45 /- \\ 1200 \\ 12 / 8 & 15 /-80 /-51\end{array}$
 300 30/- 401-45j- 85/-

NTEGRATED

 CIRCUITSc. Operational Amplifer with zener output.
Tyo 7010. Ideal for P.E Full Data. Our Price 18/B each. 5 off 11 /- each. Large Fairchild Epoxy TO-3 8 Lem.I.C.
L914 Dune 1016
uL923 J.K. Filp-Flop 14/L.C. Data Circuits etc. 1/6 Mullard I.C. Ampliffer TAA243 ORP.AMP. 70/ TAA293 G.P. Amp $26 /-$ CA CA3020
-

A

Peak Sound

Power

Amplifier

THE PEAK SOUND PA/12-15 (12 watts R.M.S. out into 15Ω) is for the constructor who appreciates

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer. P. J Baxandall in Wireless World (Aug. and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range60 to $14,000 \mathrm{~Hz}(100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB})$; impedance- 15 ohms; loading up to 10 watts R.M.S.; size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. Here indeed is quality performance of a very high order for a very modest outlay. Equaliser assembly £1.16.0: Special loudspeaker unit $£ 1.18 .0$: Purchase Tax 8/1: Afrormosia Teak cabinet cut and drilled $£ 6.15 .0$. Cross-over choke for additional woofer, £1.2.6

A new

and genuine power and hi-fi performance. Available built or in kit form Response $10 \mathrm{~Hz}-45 \mathrm{KHz} \pm 0.5 \mathrm{~dB}$, distortion at max. output -0.1% 43 dB neg. feed back. Size $5^{\prime \prime} \times 33^{\prime \prime} \times 1 \exists^{\prime \prime}$. With full instructions. Pre-amp. details available

BUILT $\left\{4,4 \begin{array}{l}\text { Kit less } \\ \text { heat sink } \\ \text { and board }\end{array}\right\}$

From your dealer or direct in case of difficulty.
PEAK SOUND (HARROW) LTD., 32 St. Judes Road.
Englefield Green, Egham, Surrey Telephone: EGHAM 5316
-TO PEAK SOUNDi-
Please send (post free)
for which I enclose $£$
NAME
ADDRESS

Block letters please

THE BROADCAST BANDS

by CHRISTOPHER DANPURE

IANY of you may be DX-ing over the Christmas and New Year periods and may be wondering what stations put out good seasonal programmes. Well R. Japan usually puts out some interesting programmes round about Christmas and New Year in Japan. On Christmas Day I usually disten to R. Sweden, R. Nederland, R. Australia, R. Japan, Voice of Germany, Cologne, Swiss Shortwave Service, R. South Africa, R. Portugal and R. Canada.

Here now are the circuit predictions for December.
West Africa: $1000-140025,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; 1400$160025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1600-180021,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s}$; 2000-2200 17, 15, 11, 9, 7, 6, 5 and $4 \mathrm{Mc} / \mathrm{s}$; 2200-2400 15. 11, 9, 7, 6, 5 and $4 \mathrm{Mc} / \mathrm{s}$; 2400-0200 15, 11, 9, 7, 6, 5 and $4 \mathrm{Mc} / \mathrm{s} ; 0200-0600 \mathrm{H}, 9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$; $0600-080015,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 0800-100025,21,17$, 15 and $11 \mathrm{Mc} / \mathrm{s}$.

South Africa: 0800-1400 25, 21 and $17 \mathrm{Mc} / \mathrm{s}$; $1400-$ $160025,21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 1600-180021,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s}$; 2000-2200 17, 15, 11, 9, 7, 6 and 5Mc/s; 2200-2400 15, 11, 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s} ; 2400-0200$ 11, 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s}$; $0200-040011,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 0400-060011$ and $9 \mathrm{Mc} / \mathrm{s}$; 0600-0800 17 and $15 \mathrm{Mc} / \mathrm{s}$.

East Africa: 0800-1200 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; $1200-140025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$; $1400-160025,21$, 17, 15, 11, 9 and $7 \mathrm{Mc} / \mathrm{s}$, 1600-1800 21, 17, 15, 11, 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s}$; 1800-2000 17, 15, 11, 9, 7,6 and $5 \mathrm{Mc} / \mathrm{s}$; 2000-2200 15, 11, 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s}$; 2200-0200 11, 9, 7,6 and $5 \mathrm{Mc} / \mathrm{s} ; 0200-040011,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 0400-0600$ 11 and $9 \mathrm{Mc} / \mathrm{s} ; 0600-080017,15$ and $11 \mathrm{Mc} / \mathrm{s}$.

South Asia: $0800-100025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$; $1000-120025,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1200-1400$ $25,21,17,15,11,9$ and $7 \mathrm{Mc} / \mathrm{s} ; 1400-1600 \mathrm{17}, 15,11,9$, $7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 1600-180011,9,7,6,5,4$ and 3 $\mathrm{Mc} / \mathrm{s} ; 1800-02009,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 0200-04009,7$, 6 and $5 \mathrm{Mc} / \mathrm{s} ; 0400-06009$ and $7 \mathrm{Mc} / \mathrm{s} ; 0600-080021$, 17, 15 and $11 \mathrm{Mc} / \mathrm{s}$.

South East Asia: 0800-1000 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; $1000-120025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1200-140025,21$. 17, 15, 11 and $9 \mathrm{Mc} / \mathrm{s}: 1400-160021,17,15,11,9,7,6,5$, 4 and $3 \mathrm{Mc} / \mathrm{s} ; 1600-180011,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$; 1800-2000 9, 7, 6, 5 and $4 \mathrm{Mc} / \mathrm{s} ; 2000-22009,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2200-24009$ and $7 \mathrm{Mc} / \mathrm{s} ; 2400-02009 \mathrm{Mc} / \mathrm{s}$ only; $0200-0600$ circuit closed; $0600-080021,17$ and $15 \mathrm{Mc} / \mathrm{s}$.
North East Asia: 0800-1000 17, 15 and $11 \mathrm{Mc} / \mathrm{s}$; $1000-120011$ and $9 \mathrm{Mc} / \mathrm{s} ; 1200-18009 \mathrm{Mc} / \mathrm{s}$ only; $1800-$ 2400 try 9 and $7 \mathrm{Mc} / \mathrm{s} ; 2400-06009 \mathrm{Mc} / \mathrm{s}$ only; $0600-0800$ 11 and $9 \mathrm{Mc} / \mathrm{s}$.

Australia via Asia: 0800-1000 21 and $17 \mathrm{Mc} / \mathrm{s}$: 1000120021,17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-1400$ 21. 17. 15. 11 and
$9 \mathrm{Mc} / \mathrm{s} ; 1400-160021,17,15,11,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s}$; 1600-1800 II, 9, 7, 6, 5 and $4 \mathrm{Mc} / \mathrm{s}$; 1800-2000 9 and 7 $\mathrm{Mc} / \mathrm{s} ; 2000-22009 \mathrm{Mc} / \mathrm{s}$ only: 2200-0600 circuit closed; $0600-080017 \mathrm{Mc} / \mathrm{s}$ only.
West Coast South America (North of Chile): 1200-1800 25 and $21 \mathrm{Mc} / \mathrm{s} ; 1800-200021$ and $17 \mathrm{Mc} / \mathrm{s} ; 2000-2200$ 17 and $15 \mathrm{Mc} / \mathrm{s} ; 2200-0600$, up until $240015,11,9,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$, after 2400 drop $15 \mathrm{Mc} / \mathrm{s} ; 0600-080011,9$ and $6 \mathrm{Mc} / \mathrm{s} ; 0800-100015,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1000-120021,17$ and $15 \mathrm{Mc} / \mathrm{s}$. Now here are this month's DX-tips:

AUSTRALASIA

Australia: During the winter season listen out for the new R. Australia transmitter station at Darwin. At the time of going to press no schedule details are available.

ASIA

Japan: R. Japan, Tokyo up until March 2 will transmit the morning service to Europe on 17,825 and 15,135 from 0700-0830. The evening service to Europe from 1930-2100 will be heard on 11,965 and 9,700.

EUROPE

Fed. Rep. Germany: R. Deutsche Welle is now on the following schedule for its English transmissions which are beamed to Africa, S. Asia, Far East and Pacific and North America, from transmitters at Juilich. 0600-0630 $17,845, \quad 15,275, \quad 11,785 ; \quad 0845-0940 \quad 21,650, \quad 17,845$, $15,275,11,785$; $1045-105511,965,11,905,9,605$; 1045$110021,560,17,875,15,275 ; 1550-162017,875,15,275$; 1900-1910 15,405, $11,795,9,605 ; 2110-2200 \quad 15,275$, $9,765,7,290 ; 2145-220511,925,9,735 ; 0130-02509,735$, $9,640,6,025 ; 0300-034011,945,9,6409,545$ and from 0445-0545 9,650, 9,545 and 6,145.

Sweden: R. Sweden, Stockholm, is now operating the following schedule up until March 2. 0830-0900 11,880, 9,$625 ; 0900-09309,625 ; 0930-103021,690,9,625$; 103011009,$625 ; 1100-121011,705,9,625$; $1230-133021,690$, 9,$760 ; 1400-1530 \quad 21,675,15,240 ; 1600-1700 \quad 17,770$, 15,$310 ; 1730-1800 \quad 15,240,6,065 ; 1800-1830 \quad 15,240 ;$ 1830-1930 15,240 11,865; 1945-2015 6,065; 2015-2115 $9,625,6,065 ; 2130-223011,705,6,065 ; 2245-234511,810$, 11,705; 2400-0230 11,705, 5,990; 0300-0430 11,705; 0445-0615 21,675 and 0630-0715 6,065.

Switzerland: Swiss Shortwave Service, Berne, now has English programmes until March 2 at the following times. 0700-0800 on 11,775 and 9,590 daily, week days only also on 9,535 and 6,$165 ; 0845-094515,135,11,775$; $1000-1100 \quad 21,520,17,855,15,305 ; 1130-1230 \quad 11,865$, 9,$665 ; 1315-1415 \quad 21,520,17,845,15,305 ; 1500-1600$ $17,830,15,305 ; 1815-191515,305,11,775 ; 1930-2030$ $9,665,6,015 ; 0130-023011,715,9,535,6,120 ; 0445-0545$ $9,720,6,120$. So until next month a merry Christmas and good DX-ing in 1969.

THERE'S no doubt about it, the flavour of the month is 10 metres. Every other letter told me to stop moaning and start listening, and they sent a huge pile of DX scalps from $28 \mathrm{Mc} / \mathrm{s}$ just to prove the point. Even little lads with BC receivers plugged into the television aerial have been hearing things so we can't say it's beginner's luck.
Talking about kicking a man when he's down. No sooner do I finish with the 10 metre logs than all the L.F. sleuths give me a right verbal bashing with choice callsigns logged on 40 and 80 . Some very good openings have been in evidence all the way up the bands and it could be a FB Winter for aerial danglers everywhere.
Under the heading of News and Views comes a report that this week's callsign is OM, which could be a bit confusing. These tabs are worn by OK stations to commemorate the "formation" of Czechoslovakia.

Congratulations to two s.w.l's who have been reincarnated with an R.A.E. pass. Robert Dinning is one, and Francis McVerry has got the call GM3XUV and is loose on 40 metres with a rockbound homebrew running 10 watts. He has already worked most of Europe with the rig.
Listen on $3804 \mathrm{kc} / \mathrm{s}$ for W1FZJ/KP4 who listens for callers on $3800 \mathrm{kc} / \mathrm{s}$, but if you're transmitting remember that the frequency tolerance for bandedge working on 80 metres is 0.26%.

FORTY AND DOWN

William Mantovani (Doncaster), heard 80 metres sigs from-ET3USA, VOIFX, VE \varnothing MD and W1FZJ/ KP4. He says that he heard this last station last January but that the W is now four S-points up by comparison. Wish someone would say that about my signals. On 40, the log reads-PY7AUT, WB2WYZ1 $\mathrm{P} / 4 \mathrm{X} 4,8 \mathrm{P} 6 \mathrm{BH}, 9 \mathrm{~N} 4 \mathrm{KR}$, 9M2DQ. Gear in use, HAM-1 and an a.t.u. plus a 260 ft . long wire.
A. Houghton has reached the ripe old age of twelve (congratulations Sir) and has a Bush AC71 domestic receiver. He reports that 160 is very busy and managed to grab an EI callsign too. On 40, his best is VQ3VAA. The antenna is a 110 ft . double L . (Wonder what the double L that is?)
R. King (not at the key contacts I hope) is a 40 metre fan judging from the log. Located in Yorkshire with an HA500 and a 66 ft . end fed he claimsCM2DC, CT1LJ, EA3QW, EA4JV, F6AFP, GC5ALO, GD3JIU, HC4WM, HPINBR, ISIEP, IT1AVA, K1MBH, K2MRG/MM, KP4BRY/MM, LXISL, OZ7NQ, PAØDX/M, PYIDAH, PY2ENX, PY6ABB, PY7LC, VK3OZ, VP1CP, WA1GNE, W2EQM, W4MPE, W80O/M/4, ZSIJA, 4X4IX, 5N2ABG, 9M2DQ.
S. Krol (Lancs.), P.W. transistor superhet modified as per "April 1967", $\frac{1}{4}$ wave end fed advises-listen $3775 \mathrm{kc} / \mathrm{s}$ just after midnight for AP2MR, for ZL's (ZL2BCG) at 0600 every morning, W1FZJ/KP4 and WøVXO/KV4 around $3804 \mathrm{kc} / \mathrm{s}$ about 0430 onwards most mornings. Don't forget ON4UN's DX net on 80 on Friday and Monday nights.

TWENTY AND FIFTEEN

Jim strikes again, Jim Baker that is. He relates the hair-raising tale of LG5LG. Apparently this call was located at Morokuilen (I couldn't even find it in my atlas). This is a field on the LA/SM border and amateurs of any nationality are permitted to operate on that piece of "free territory". "Cor, now I've 'eard it orl', says he, packing the transistor rig and looking up the boat trains.
D. Redmond (Holyhead), ground plane plus an RA-1 had some FB s.s.b. sigs on 20 from-CE3NI, CE6EF, CE6EW, CP6GO, TI2DVH, PJ2AW, PY \varnothing ARM, PY3HT, PY7AKL, VK3NO, VP1RD, YV3DA, YV5LOR. On 15-PY2EFF, VK2FA, VK2FU, VK2JM, VK5DE, 9V1OW
P. Lovell (Kent), 4 -valve s'het with a home-brew b.f.o. 30 ft . vertical plans to take the R.A.E. in December. He heard IIBPW in QSO with guess who-JX3DH. (No comment.)

Robert Dinning (Ayrshire), HA350 plus PR30 plus RQ10 plus a pair of hi-fi headphones (I don't hear much but the quality of what I don't hear is marvellous!), went s.s.bing on 20 for-AP2KJ, CR7HY, HB $\varnothing A G, H P 4 B I O$, JX4EJ (never said a word), KA9NF, KC4USV, KG6IH, KR6SO, KX6DQ, LG5LG (funny Dud, funny), PYØARM, MP4BGU, OX5AP, TAIAV, VK3EU, VK5FU, VP8HZ, VQ8CS, VS5OJ, VS6DR, WA4WMA/AM (region 2), WB4IRT/AM, (region 1), YUøJ, ZL1APZ, ZS9Q, 3A2CP, 9J2MJ, 9K2AM, 9M2XX, 9VINV, 9X5AA. On 15 the best were CR6BA, CX2CN, DU1RZ, HK5AZA, HR1JMS, HS3MK, KG6AJQ, KR6RB, KV4FQ, MP4TCF, TG9RN, TU2AY, VK2AVT, VK9LR, VQ9OH, VR1L, VS6DR, VU2DKZ, XW8AX, YBøAB, YN1PS, ZD8CC, ZS3T, 3A2CX, 3V8AA, 9K2BV, 9N1MM.

TEN

Who heard VU2GGB, UF6HO, 6Y5NY, 8R1S, CX8DM, CO2BY, 4A1WS, KG4DH, $9 J 2 R V$, HI8XJP, ZE8JY, 9 V 1 PB and VP8JT all on 10 metre phone? Confession of the above from A4862 (Essex). He also has an SB300 and a 4 element beam at 60 feet. Crikey, you could almost see them as well from up there!
P. Baker (Wales), HE 30, 150 ft . long wire lassoed these on phone-CN8MI, CR4BC, CR6GU, CR7LI, ET3REL, HR3AC, MP4BGU, PY1AGP, SV \varnothing WO, VE1YO, VQ9DH, W6DRB, W6FMR, YVIDA, ZC4GM, 5Z4AA, 8P6CA, 9G1UQ, 9J2VX, 9K2BJ, 9Q5IA, 9Y4BF.

RESOLUTIONS

How about checking the gear? The aerial and earth system needs an annual going over. Just think, a dodgy aerial or a bad connection could cost you a lot of 1969 DX. The station receiver too, when was it last lined up? The real experts check their receivers once a year at least.
If you have trouble finding the countries of origin of all those callsigns, then a ninepenny postal order to the R.S.G.B. will bring a countries list which will solve all your problems.
A VY MX OM'S ES YL'S (?) ES HPE CUAGN NXT YR DE G3JDG.

> OUR NEW 1968/69 illustrated catalogue NOW AVAILABLE
(send $2 /$ - in stamps for your copy)

Catalogue contains prices and details of Amplifiers - $\mathrm{Hi}-\mathrm{Fi}$ Tuners - Loudspeakers -Pick-ups - Playing Decks Microphones - Test Meters - Hand Tools - Valves Soldering Irons - Tape Recording Accessories, etc.

ALPHA RADIOSUPPLYCO
103 Leeds Terrace, Leeds 7. Tel: 25187

Est. 1943 JOHNSONS Tel: 24864
VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, 69/6, p.p. 4s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

EAGLE MULTIMETERS

EP30K, 120/-, p.p. 4/6; EP10KN, 108/-, p.p. 4/6; EPP20KN, 90/, p.p. 3/-; EP30KN, 150/-, p.p. 4/6; EP50LN, 210/-', p.p. 4/6, details on request.
High Stability Resiatorg 1% W, 2/*. Full standard range plus many multimeter values. $5 \% \quad 1 \mathrm{~W}, 4 \mathrm{~d}$.
$0-50$ microamp level meters, $15 /-$, post $1 /$-.
High Res. Phones, $2,000 \Omega, 15 /-$, p.p. 1/-.
Multimeter ITI-2, 20,000 o.p.v. d.c., 0-5. 25, 50 , $250,2.500 \mathrm{~V}$ d.c., $10,50,100,500,1,000 \mathrm{~V}$ a.c.; $0-50 \mu \mathrm{~A}, \quad 0-2.5 \mathrm{~mA}, 250 \mathrm{~mA} ; 0-60 \mathrm{k} \Omega, 0-6 \mathrm{M} \Omega$, capacity and dB ranges, B7/-, post $3 /-$

Postage extra, cash with order.
PLANET INSTRUMENT CO. 25(W) DOMINION AVENUE, LEEDS 7
H.A.C. suofirsive WORLD-WIDE RECEPTION

Famous for over 30 years for Short-Wave Equipe ment of quallty, "H.A.C." were the original ment of quallty, "H.A.C." were the original
suppllers of Bhort-Wave Receiver Kits for the arnateur constructor. Over 10,000 satisfied customers-including Technical Colleges, Hospitals, Public schools, R.A.F., Army, Hams, eta.

IMPROVED 1869 RANGE

One-valve model 'DX'", complete kit-price $50 / 6$ (Postage and packing 3/6).
Customer writes:-'Defintely the best one-valve s.W. Kit available at any.price. America and Australla received clearly at good volume." This kit contains all genuine short-wave components, drilled chasais, vatve accesoorlea and full instruc tions. Ready to assemble, and of course, as all our products-fully guaranteed. Full range of other 8.W. kits still available, meluding the famous
model "K" (recommended by radio clubs) All model $\mathrm{K}^{\text {" }}$ (recommended by radio clubs). All send now for a deamriptive catalogue, order form.
''H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

- ••••••••• •••• RSGB PUBLICATIONS

 00000000

Amateur Radio Techniques
(new edn.) 13s 6d.
A complete and practical book dealing with all aspects of Amateur Radio. Includes hundreds of practical circuit diagrams.

Amateur Radio Circuits Book (new edn.) 11s 3d.
 A new enlarged second edition of a very popular book. Within 120 pages are circuit diagrams from which constructors both old and new will be able to construct the moment inspiration strikes !

RADIO COMMUNICATION HANDBOOK

The Fourth Edition of the famous RSGB Amateur Radio Handbook

63s.
69s. post paid

This is the LARGEST EDITION yet produced, running to 832 pages, containing dozens of designs for receivers, transmitters, test equipment, V.H.F. gear, aerials and filters. Early chapters cover the theory of radio and design of equipment. The book is well illustrated, and there is even a special fold-out sheet for two particularly large circuits of a receiver and a transceiver. It is a British publication, and therefore all the components specified can be obtained in this country.

Leyton \& Walthamstow AMATEUR RADIO SOCIETY

IMAGINE being interested in radio, yet living in a district where there was no radio club. No ensemble of happy smiling understanding faces who were enthusiastic about the hobby.

Of course, if you live in London E.10, or thereabouts, then you don't have a thing to worry about 'cos you've got the Leyton and Walthamstow Amateur Radio Club practically on your doorstep, and they are always very pleased to welcome a new face too.

The present membership has crept above twenty -why not drop in on the club and make it above thirty? Meetings are held at 7.30 p.m. on Tuesdays and at least ten members hold current callsigns so there will be no lack of activity from the practical aspect. The club also boasts its own callsignG3WHY, which is aired at every opportunity. The club station is frequently on the air on 160 metres and 2 metres although plans are being hatched to extend activity to the h.f. DX bands in the very near future.

Help is always to hand for those needing any assistance whether practical or theoretical. Regular classes are held for those wanting to learn Morse and advice is on tap for anyone with problems regarding the R.A.E.

At least two members have braved the u.h.f. region and have taken the precaution of arming themselves with a / T licence. Several demonstrations both $/ \mathrm{T}$ and / A have been given in local clubs and at various events.

The club has a keenness for contests and although no pots have been won this doesn't deter them from having a go and having a good time in the process. Not only does the club enter both h.f. and v.h.f. field days but also runs its own mini-field-days during the long Leyton summers. Although not professing to be on a par with the national events, these are a great success and perhaps more important, everyone who attends seems to have a great deal of fun.

The club has a variety of interests and thus the meetings vary in content. Junk sales, lectures, natter-nights, etc. all form part of the club menu.

The Hon. Sec. assures that the members are a ". . fairly normal bunch of blokes with all the usual vices". Almost worth while going along just to see isn't it?

Place for the weekly meetings is the Leyton Senior Evening Institute, Essex Road, London, E. 10 . If you'd like to check first. then why not give "Charlie" a buzz? You can find him at 114 Farmillo Road, Leyton, London, E.17, and the phone book says you can reach him on LEY 4673.

Above: Some of the gang caught hovering near a few of the entries for the annual construction contest which took plece last June.
Right: Will it work and what's that bit doing? Two critical pairs of eyes examine one of the entries in the constructors contest. Below: CO two-COtwo. here G3WHY. The club station in action on 144Mc/s from the Senior Evening Institute on a typical Tuesday evening.

WITH the season well established and a fall predicted for the sunspot count, DXers will be looking forward to a good winter on the medium waves. Conditions to North America were very good during the summer-KMOX (1120) St. Louis was logged several times during August. In the autumn however, this path became rather unstable, conditions varying rapidly from day to day. No reports yet of the west coast of the United States though the writer did log a weak station on 1000 on 22nd October at 0624 hours GMT which was heard, during a peak, to mention the Seattle Police Force (KOMO?). Recent loggings from North America include CBN (640), CBH (860), WCBS (880), CJCH (920), CJON (930), WINZ (940), CHNS (960), ZFB1 (960), WINS (1010), KDKA (1020), WBZ (1030), CBA (1070), WBAL (1090), WNEW (1130), and Radio St. Pierre (1375). The latter is in the French islands of St. Pierre et Miquelon located near Newfoundland. This is a "medium wave only" country as St. Pierre is the sole broadcasting station.

Further south, XEOY (1000) in Mexico City has been heard a number of times with the call "Es Radio Mil". A new one in the Caribbean is WBMJ (1190), San Juan, Puerto Rico, with programming in English. It was fair at 0130 GMT on 25th October. CMBQ (1060) in Havana, Cuba, is the only other station heard recently from this area. Radio Americas (1165) has now gone off the air for good.

Brazil has been coming in well at about 0200 hours GMT with PRA3 (860), PRE8 (880), PRF4 (940), PRG2 (1040), PRE3 (1180), all in Rio de Janeiro. From Argentina, LR3 (950) Radio Belgrano, LR1 (1070) Radio el Mundo and LS10 (1030) Radio Libertad, all in Buenos Aires, together with LU6 (1150) Radio Atlantica La Plata, have been logged. From the northern part of the Continent

PJB2 (800) Bonaire, Netherlands West Indies, with programming in English, is an easy station for the newcomer to the band. ZFY (760), the Voice of Guyana has been heard at midnight GMT with a weakish signal. From nearby Surinam, SRS (725) in Paramaribo, broadcasting rather attractive local music, occasionally has announcements in English, and can often be heard. A loop aerial is a great help here in reducing splash from the all-night German station on 728. The letters SRS incidentally, although used as a callsign, are actually the initials of the organisation running the station. An interesting logging from the west coast of South America is OAX4U (1010) Lima Peru. This station is now 50 kW and it has been heard frequently in England and the United States since midsummer, sometimes with a strong and steady signal. The call is Radio America, followed by a trumpet fanfare.

A number of African stations are audible in the late evening. Dakar (764) in Senegal is usually strong, with programming in French, also Conakry (1403) in Guinea, again in French. There are two regulars from the Canary Islands, R.N.E. (620) in Las Palmas and CES4 (1097) in Tenerife. The latter is invariably mixed with EFE14 Madrid but it is worth the effort to get material for a report to this station as it issues a rather pretty, coloured, embossed QSL card. CSB91 (1529) in Funchal, Madeira, closes down at midnight GMT with a rather weak signal. The language used is Portuguese.

From the Near East, Baghdad (760) is often strong at 0300 hours GMT when signing on. The two BBC relay stations in Cyprus on 638 and 719 are also audible, in English, at this time, the latter being much the weaker of the two. Finally, Kuwait (1345) has been heard at 0335 with a good signal.

CHARLES MOLLOY

Practical Gift

FOR A PRACTICAL MAN!

Abstract

AFULL-YEAR series of Practical Wireless issues delivered by post each month would be an ideal Christmas present. Why not give a subscription to a friend? He would certainly find the magazine just as interesting as you do and each issue would remind him of your good wishes.

But don't think too long-Christmas is very close. Act now and send your friend's name and address, together with your own and a remittance to cover each subscription to: Subscription Manager, Practical Wireless (Dept. Z), Tower House, Southampton Street, London, W.C.2. We will despatch first copies to arrive in time for Christmas, and send an attractive Christmas greetings card in your name to announce each gift.

RATES (including postage) for one year (12 issues) United Kingdom and Overseas £2.2.0.

To avoid disappointment, make sure of
 your own copy by placing a regular order NOW with your newsagent.

SINCLAIR Z.12
 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output.

This is the recommended amplifier for those requiring great power versatility and reliability. This eight transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $\mathbf{Z . 1 2}$ performs satisfactorily from a wide range of voltages and it can easily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $Z .12$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

Size-3in $\times 1 \frac{\overline{a ̄}}{\text { in }} \times 1 \frac{1}{4} \mathrm{in}$ Class B Ultralinear Output: Frequency response from 15 to $15,00 \mathrm{0Hz} \pm 1 \mathrm{~dB}$: Output suitable for loudspeakers from 3 to 15 ohms impedance. Two 3 ohm speakers may be used in parallel: Input 2 mV into 2 K ohms: Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements $6-20 \mathrm{~V}$ d.c. from battery or PZ. 4 Mains Supply Unit. Ready built, tested and guaranteed.

89/6

SINCLAIR STEREO 25

De Luxe Pre-amp and Control Unit for use with Z.12 Stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz}$ $\pm 1 \mathrm{~dB}$), Radio and auxilliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/ Treble/Volume/Balance/Input are solid aluminium. Size- $6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2}$ in plus knobs. Built, tested and guaranteed.
£9.19.6

SINCLAIR PZ4

STABILISED MAINS POWER SUPPLY UNIT
Heavy duty transistorised power supply unit to deliver 18 V d.c. at 1.5 A . Designed specially for use with two Z.12 Amplifiers together with Stereo 25. Built, tested and guaranteed.

99/6

SINCLAIR MICROMATIC

The world's smallest radio

This fantastic little British pocket receiver is available in kit form to build for your self or ready built, tested and guaranteed. Its range and selectivity must be exper ienced to be believed; its power and quality everything you could want. The Micromatic tunes over the nedium wave band and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier: in fact, you will find your Micromatic performing where other sets cannot be heard at all. The neat black case with aluminium tront panel and tuning control give the Micromatic elegantly modern appearance.

- High quality mag netic earpiece
- Choice of many stations
- Plays anywhere
atan $49 / 6$ solder and Instructions.

Mallory Mercury Cells RM. 675 (2 reqrd) each 2/9

the most challenging loudspeaker

 design in years
Abstract

It is more than a matter of saving money when you choose the 0.14 . This is the loudspeaker that delights experts and critics alike for its fine forward quality, its clarity and exceptional adaptability. Designed on original lines and from unusual materials, the 0.14 will easily carry up to 14 watts and has very smooth response from 60 to $16,000 \mathrm{~Hz}$. Size- $9 \frac{3}{4}$ in square $\times 4 \frac{3}{4}$ in deep, with matt black finish and solid aluminium bar empellishment. Input impedance- 8 ohms.

The 0.14 costs about a quarter of what you might expect to pay for a good stereo speeker system. A pair used with two Z.12s and the Stereo 25 will give you superb high fidelity to stand comparison with far costlier equipment.

Try the 0.14 in your own home without delay. If it does not delight you, send it back and your money including cost of postage
£7.19.6 will be refunded in full.

THE SINCLAIR 0.14 LOUDSPEAKER has a seamless sealed acoustic pressure chamber contoured to ensure forward sounding presence and wide dispersal of sound. The driver unit employs a massive ceramic magnet, special cone suspension and aluminium speech coil resulting in brilliant transient response. The input impedance of 8 ohms makes the 0.14 particularly suitable for use with transistor amplifiers. It can be used as a bookshelf speaker, a corner reflect or flush mounted on any appropriate flat surface, etc.

GUARANTEE

Should you not be completely satisfied with your purchase when you receive ! from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.

ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

DUXFORD ELECTRONICS ${ }_{\text {(pw) }}$ 97/97a MILL ROAD, CAMBRIDGE
 Tel: 0223-63687
 (Visit us-at our new Mait Order, Wholesale and Retail Premises)

MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 /-$

DISCOUNT 10\% over £2
15\% over £5
CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \%$; 100, 220 , $330 \mathrm{pF}-20 \%+80 \% ; 470,680,1,000 \mathrm{pF}$. 5 d each ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.

Subm									
4 V	8	32	64	125	250	400
$6 \cdot 4 \mathrm{~V}$. .	.		$6 \cdot 4$	25	50	100	200	320
10 V	.	.	*	4	16	32	64	125	200
16 V		.		2.5	10	20	40	80	125
25 V	.	\cdots	-	1.6	$6 \cdot 4$	$12 \cdot 5$	25	50	80
40 V	.	\cdots	.	1	4	8	16	32	50
64 V	\cdots	...	\because	$0 \cdot 64$	2.5	5	10	20	32
Price				1/6	1/3	1/2	1/-	1/1	1/2
Small (ail values in $\mu \mathrm{F}$)									
4 V	析		.	800		1,250	2,000		3,200
6.4 V	. .			640		1,000	1,600		2,500
10 V	.	.		400		640	1,000		1,600
16 V	\ldots	.		250		400	640		1,000
25 V	160		250	400		640
40 V	\ldots	..	-	100		160	250		400
64 V	\ldots	.	\cdots	64		100	160		250
Price				1/6		2/-	2/6		3/-

POLYESTER CAPACITORS (Mullard)
Tubular, $10 \% .160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}$, 2/3. 1/LF, $2 / 8$.
2/3. $400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$ $7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}$, $1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$.
Modular, metallised, P.C, mounting. $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 \cdot 15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 22 \mu \mathrm{~F}, 1 /-.0 \cdot 33 \mu \mathrm{~F}$, $1 / 5.0 .47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 9$
POLYSTYRENE CAPACITORS: 5%. 160 V (unencapsulated): 10,12 , $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390$, $470,560,680,820 \mathrm{pF}, 5 \mathrm{~d}$. $1,000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}$, $7 \mathrm{~d} .6,800,8,200,10,000 \mathrm{pF}$, 8 d . $15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}$.
$1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150,180.220,270,330,390,470,500$. $560,680,820 \mathrm{pF}, 1 /-1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}$. $1 / 3.4,700,5,000,5,600,6,800,8,200,10,00012000,15,000 \mathrm{pF}$. $1 / 6$. $18,000,22,000,27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 .047,5,000,0.056 \mu \mathrm{~F}, 2 /-$ $0.068,0.082,0.1 \mu \mathrm{~F}, 2 / 3.0 .12 \mu \mathrm{~F}, 2 / 9.0 \cdot 15,0.18 \mu \mathrm{~F}, 3 /-.0 \cdot 22 \mu \mathrm{~F}, 4 /-.0 \cdot 27$, $0.33 \mu \mathrm{~F}, 5 /-0.39 \mu \mathrm{~F}, 5 / 9.0 .47,0.5 \mu \mathrm{~F} .6 / 3$.
JACK PLUGS (Screened): Heavily chromed, in Standard: 2/9 each. Side-eniry: $3 / 3$ each.
Standard (Unscreened) : $2 / 3$ each.
JACK SOCKETS (in Plug): With chrome insert. 2/9 each. Available with: Break/Break, Make/Break, Break/Make, Make/Make contacts. POTENTIOMETERS (Carbon): Long life, low noise, iW at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \$ \mathrm{M}+30 \%<\$ \mathrm{M}$. Body dia., ${ }^{3} \mathrm{in}$. Spindle, $1 \mathrm{in} \times \frac{1 \mathrm{in} .2 / 3}{2}$ cach. Linear: $100,250,500$ ohms, etc., per decade to 10 M . Logarithnic: Sk, 10k, 25k, etc., per decade to SM. SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, ecc., per decade 105 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leq 4 \mathrm{M}, \pm 30 \%>\neq \mathrm{M}$. Horizontal
 each.
each.
Submin. 0.1 W at $70^{\circ} \mathrm{C} . ~$
0.20% in P.C.M.) or Vertical ($0.2 \mathrm{in} \times 1 \mathrm{M}$, $\pm \mathbf{3 0} \%>1 \mathrm{M}$. Horizontal ($0.4 \mathrm{in} \times$
. M.) mounting, 10 d each.
RESISTORS (Carbon film), very low noise. Range: $5 \%, 4.7 \Omega$ to $1 \mathrm{M} \Omega$ (E24 Series): $10 \%, 10 \Omega$ to $10 \mathrm{M} \Omega$ (E12 Series).
tW (10%), 14d (over $99,1 \frac{1}{2}$). 100 off per value $12 /$-. $1 \mathrm{~W}(5 \%)$, 2d (over $\left.99,1 \frac{d}{}\right)$, 100 off per value $13 / 9$. $\frac{1}{} \mathrm{~W}(10 \%)$. 2 d (over $99,13 \mathrm{~d}$), 100 off per value $13 / 9$. $\frac{1}{2} \mathrm{~W}(5 \%), 2$ d (over 99.2 d), 100 off per value $15 / 6$.
SEMICONDUCTORS: OA5, OA81. 1/9. OC44, OC45. OC71, OC81 OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171 2/6. AF115, AF116, AF117, ACY19, ACY21, 3/3. OC140, 4/3. OC200, 5/- OC1 39 S/3. OC25, 7/- OC $35,8 /-$ OC23, OC28, $8 / 3$.
SILICON RECTIFIERS: (0.5A). 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1250 P.I.V., 3/9. 1500 P.I.V. 4/-. (0.75A); 200 P.I.V.., $1 / 6.400$ P.I.V., $2 /-.800$ P.I.V., 3/3. (6A); 200 P.I.V., $3 /-.400$ P.I.V., $4 /-.600$ P.I.V., $5 /-800$ P.I.V., $6 /$
THYRISTORS (5A): 100 P.I.V., 8/-. 200 P.I.V., $10 /-400$ P.I.V., 15/SW1TCHES (Chrome finish, Silver contacts): 3 A $250 \mathrm{~V}, 6 \mathrm{~A}$ i 25 V . Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/-. PRINTED CIRCUIT BOARD (Vero).
0.15 in Matrix: $3 \frac{3}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}$. $3 / 3$. $5 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 3 / 11$. $3 \frac{\mathrm{in}}{} \times 3 \frac{3}{2} \mathrm{in}, 3 / 11$. 0.15 in Matrix:
$5 \mathrm{in} \times 3$ in $\mathrm{in}, 5 / 6$.
$5 \mathrm{in} \times 3 \frac{3}{2} \mathrm{in}, 5 / 6$
0.1
$5 / 3$ 5/3.
RECORDING TAPE (Finest quality MYLAR-almost unbreakable). Standard Play: $5 \mathrm{in}, 600 \mathrm{ft}, 7 / 6$. 5 采 in, $850 \mathrm{ft}, 10 / 6$. $7 \mathrm{in}, 1,200 \mathrm{ft}, 12 / 6$. Long Play: 3in, 225ft, 4/-. 5in, 900 ft , 10/6. 5 i in, $1,200 \mathrm{ft}, 13 /-.7 \mathrm{in}, 1,800 \mathrm{ft}$, 18/-.

SEND S.A.E. for JANUARY, 1969 CATALOGUE

PRINTED CIRCUIT KIT

BUILD 49 INTERESTING PROJECTS on \& PRINTED CIRCUIT CHAS8IS with PARTS and TRANSI8TORS Irom your 8PARES BOX
CONTENTA: (1) 2 Copper Lamlagate Boards $\left.41^{\prime \prime} \times 2\right\}^{\prime \prime}$. (2) 1 Board for Match-
box Radio. (3) 1 Board for Wristwatch Radic etc (4) (6) Etchant. (7) Cleanser/Desreaser (8) 16 Radio, etc. (4) Resiat. (5) Resiat Bolvent. (9) Etchant. (7) Cleanser/Degremser. (8) 16-page Booklet. Prinued Cifcuits for Amateura. Design Dats, Clrcuits, Chassis Plans, etc. for 40 TRANSISTORISED PROJECTG A very comprehensive selection of circuita to sutt everyone's requirements and constructional abillty. Many recently developed very efficlent designa publshed for the tirst time, including 10 new circuite.

EXPERIMENTER'S

 PRINTED CIRCUIT KIT 8/6Poatage \& Pack. I/6 (UK)
Commonwealth : SURFACE MAIL $2 /-$ AIR MAIL 8/Australla, New Zealand Eouth Arrica, Canada.
(1) Gryatal set with bissed Detector. (2) Crystal Bet with voltage-quadrupler detector. (3) Crystal get with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amphter. (0) Carrier Power Conversion Receiver. (6) Bplit-Load Neutralised Double
Reflex. (7) Matchbox or Photocell Radio. (8) "TRI-FLEXON" Triple Reflex with aelf-adjusting regeneration (Patent Pending). (9) Solsr Battery Loudspenker Radio. The braslleat 3 denigns yet offered to the Home Conntructor anywhere in the World. 3 Subminiature Kadio Receivers based on the "Triflexon" circuit. Let us know If you know of a smailer design published anywhere, (10) Postage Stamp Radio. Blze only $1.62^{\circ} \times 95^{\circ} \times 25^{\circ}$. (11) Wristwatch Railo $1.15^{\circ} \times \cdot 80^{\circ} \times \cdot 65^{\circ}$. (12) Ring Radio $\cdot 70^{\circ} \times \cdot 70^{\prime \prime} \times \cdot 56^{\prime \prime}$. (13) Bacteria-powered Riadio. Runa on augar or
bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifler. (16) Inter. bread. (14) Radio Control Tone Recelver. (15) Trangistor P/P Amplifier. (16) Inter-
com. (17) l-valve Amplifer, (18) Reliable Burglar Alarm. (19) Light.Beeking Animal, com. (17) 1-valve Amplifer. (18) Reliable Burglar Alarm. (19) Light.Seking Animal,
Guided Misslle. (20) Perpetual Mution Machine. (21) Metal Detector. (22) Transistor Teater. (23) Human Body Radiation Detector. (24) Man/Woman Dlacriminator. (25) Slgnal Injector. (26) Pocket Transcelver (Licence required). (27) Constant Volume Intercorn. (28) Remote Control of Modele by Luduction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reffex Radlo. (91) Wristwatch Transmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Utrasonic $\mathbf{B w i t c h}^{\text {Mitarn. (34) Stereo }}$ Presmplifler. (35) Quality Etereo Push-Pull Amplifer. (36) Light-Beam Telephone Ultrasonic Transmitter. (40) Thyristor Drlll Bpeed Controller.

CONTENTS: 2 P.C. Chagaia Boarils, Chemicals, Etching Manual, Inira-Red PhotoBransistor, Latchlag Relay, 2 Translatora, Condensers, Reaistors, Gain Control, Terminal Photo-switch/Counter/Burglar Alarm, etce. (Project No. 1) which can be modifed for modulated-light operation.

Photoelectric kit

39/6

Portage and Pack. 2/6 (UK) Commonwealth: SURFACE MAIL 3/6 AIR MAIL E1.0.0 A. Autralia. New Zealand, Also Essential Dats Cirouits and Plans for Buildtug
12 PHOTOELECTRIO PROJECT8. (1) 8teary-Light Photo-Switch/Alarm. (2) Modulated-Llght Alarm. (3) Long-Range Btray-Light Alarm. (4) Relay-leas Alarm. (8) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector Lamp Btabliser. (8) Electronio Projector Modulator. (9) Malns Power Bupply. (10) Car Parking Lamp switch. (11) Automatlo Headlamp Dipper. (12) Super-Sensitive Alartn.

INVISIbLE beam OPtical kit

Everything needod (except plywood) for building: 1 Inviaible•Beam Projector and I Photocell Receiver (as Illuatrated). Buitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENT8: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Intra-red filter, projector lamp holder, bullding plans, performance data, etc. Price 19/6. Pontage and Pack. 1/6 (UK). Commonwealth: Surface Mall 2/-; Air Mail 8/-.
JUNIOR PHOTOELECTRIC KIT
Versatile Inviatble-beam, Relay-less, Bteady-light Photo-8witch, Burglar Alarm, Door Opener, Counter, ete., for the Experimenter.
CONTENTS: Infra-Red Senaitive Phototransistor, 3 Transistors, Chassia, Plastic Case, Reastors, Bcrews, etc. Full Bize Plans, Instructions, Data Bheet " 10 Advanced Photoclectric Designs.

JUNIOR OPTICAL KIT

CONTENTB: 2 Iensen, Infra-red Filter, Lampholder, Bracket, Plams, etc. Everything (arcept plywood) to butld 1 miniature invisible beam projector and photocell recelver for use with Junior Photoelectric Kit.

photoelectric parking lamp switch

Automaticaly turns parking lamp on at dusk, off at darn. Protects your car. Saves the battery. Miniature cons.)
Post \& Packing $2 / 6$ (U.K.)

THYRISTOR LIGHT DIMMER

Add a touch of lurury to your home. Adjust the lightat parties, while watching TV, etc. Ideal for Childrea's bedroom. (100 watts max.) Replaces on-off switch. Price: 59/6. Post \& Packing 2/6 (U.K.)

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A. \boldsymbol{R}. for full detaits, a brief description and Pholographs of all Kitt and all 02 Radio, Electronic and Photoelectric Projects Assembled.

DRY JOINT TESTER

The most reliable way of testing for a dry joint is to meanure the resistauce between the component lead and the printed circuit hoard. Our kit for doing this comprises a large scale (3in.) moving coil setting, aud a wiring diagram with inutruction The onir additional items you will ueed are battery, some wire, a pasir of test roda. Price 19/6, postage and insurance $2 / 6$.
MINIATURE WAFER SWITCHES

4 pole, 2 way-3 poie, 3 way- 4
pole, 3 way- 2 pole, 4 way- 3 pole, 4 way- 2 pole, 6 way- 1 pole, 12 way. All at $8 / 6$ each. 36/- dozen

Waterproof heating yardu ELEMENT temperature control. 10/- 1

BLANKET SWITCH

Donuble pole with neon let
ideal for dark room light or io
use with waterpmof element
lastic case. $5 / 6$ each

PHOTO-ELECTRIC KIT

All parts to make light operated switch/burglar alarmi/counter, otc. Kit compines printed circuit. Infra-red sensitive Photonells and Hoon, 2 tran bistors, cond . . terminal block. Plautic case . Essential data, clrcuits and P.C. chasslos plans if io photo-electric devicem Including auto. car parking ilght, modulated light alarm. Simple invisible ray switch-counter-stray light alarm-warbling

PP3 ELIMINATOR. Play your pocke rado - mom mainal save Es Corn plete component kit comprises 4 rectitiers-mainh dropper resistances, minothing condenser and inatruc

BECKASTAT Thers is an inetant plug yourap simply to it and its lead into wall plug. Adjutable setting for norimal air temperatures.
loaning. vill arave it cont in a season 19/6.

KETTLE ELEMENT $230 / 240 V 1500$ watt with by in mi clia. hole incluiling Best, Besco. Chalfont, Davidson, Din. Plurymaid. Marroware, Monagram. Pisco, Revo, Towen, Bwan. Normaly ${ }^{2} 2 / 6$. Our price $15 /$-plun 2/6 poist

MAINS TRANSISTOR POWER PACK

 Devighed to operate transistor seta and amplifiera Adjustable ournut $6 \mathrm{~V}, \mathrm{D}, 9 \mathrm{v}$, 12 volts for up to DouniA (class B working). Thkes the place of anyof the following batteries: P'11 PP3, PP4, PPG, PP7, PP9, and others. Kit comprises: mains transformer rectifer, smoothing and load resistor, cundensess sud instructions. Real suin at only 16/6, plus 3/6 postage.

THERMOSTATS

Type "A" 13 amp. For controlling roon heaters, greenhouses, airiug cupbrard. Har spindle for $9 / 6$ plus $1 /$-post. suitabie box for wall mounting Type "B" 15 amp. This is a 17 in . long rod type unde by the fammus sunvic Co. Spindie adjusts
 this from $30-350^{\circ} \mathrm{F}^{\circ}$. Internal screw
alters the setting su this could be alters the setting su this could be
adjuatable over 30° to $1000^{\circ} \mathrm{F}$. Suitable for controlling furnace, oved hester or to make flame-atart or fire Type "D". We $8 / 6$ plus $2 /$ p partat a to cuts in and out at around trie he peint. $2 / 3$ amps. Ha many usen one of which would be to keep the 10 f pipes from treezing, if a length of our blanket wire P. \& "P. $1 /-$. This 18 standard refrigerator thermo stat. 8pindle adjustinents cover normal refrigera tor temperature. $7 / 6$, plus $1 /$ post.
Type "F". Glass encased for controlling the temp. of liquid-particularly those to glass tanks, vats or shaks-thermostat is beld (haif subinerged) by
rubber aucker or wire clip-ideal for finh tanksrubber sucker or wire clip--ideal for fish tanksdevelopers and chemical baths of all types.
Adfustable over range 50° to $150^{\circ} \mathrm{k}^{\prime}$. Price 18/-, plus 2f-post and insurance.

INFRA-RED HEATERS
Maike up one of these latest type heatera, ideal or baibroom, etc. They are simple to make from our enclosed elements designed for the cor
reet infra-red waveiength (3 microns). Price for 750 wathaelement. all parts, meta casing, as illustrated, 19/8, plus 4/- post and insurance. Pull switch 3/- extra.

BREAST MICROPHONE
plate with neek strupa, $/ 7 / 6$, pest $4 / 6$

12V BLOWER

Heavy duty motor with centrifugai blower con
end. Ideal for car heater. $12 / 6$, plus $4 / 6$ post

VARYLITE

Will dins thuorescent or incandescent lighting up to 500 watt frum full brilliance to out. Fitted on M.K. flush plate, satme gize and fixing as sidindard wall switch so mas be sitterl in plastic box with control knob $£ 3.19 .8$

INDICATOR LAMP

anel suounling. consists of neon lamp in phatic lens uith resistor in lead. (102. 2il cach

HEADPHONES

Ex-W.D. innaed titul perfect, single with head

16 RPM GEARED MOTOR

mante smins electics, thege are simust sileut rumaing, but are very powerful. They operate [ron
 16 r.p.m. 15/-. Post \& ws. $2 / 9$.

COPPER CLAD ELEMENT

1250 watts-4ft. lung but bent to C whape, idea for iverhionl heater-must mount reflector above

FLUORESCENT CONTROL KITS

 Each kit comprisen suven ltellas-Choke. :2 tube ents, starter, warter hulder and 2 tule clipeswith wing with wiring inntruethons. Sultahe for nornus
fluoremeent tuber or the new "Grolux" tubes for tliorencent tubes or the new "Grolux" tuben for
fish tanks and induor plants. Choke" are supurfish tanks and induor plants. Choke" are muper-
 Kit j) 125 w. 22/-. KIt E -65 w. 19/6. Kit 19/6. Piotare on kith and 12 Mm . indniature tubes. Eits thell \ddagger fi for tach two kles orilereal. Kita C 1) and E +6 wa flrst wit then $3 / 1\}$ for each kit ordered. Kit MFI $3 / \mathrm{h}$ the fint kit then $3 / 6$ on
each two kitw ortlered.

You never need buy another battery for sobr transiatur rallo. St upenhnus offor this month-a 6-9V Nickel Cadruhm fat tery stak k together with a maink rperatel charger which yuu mount on the hack of yontr vet. The nainif flex unplugs s. the than the enat uf the liat teries altme. OXI, Y 29/6 plos. $3 / \hbar$ posl

REED SWITCH

Sultable for dizens of different applications such as hurglar alarms, enn vegner helt switching Thest are simple giass In cased switches whlc coll. A ppeclal biy enables ue to ofler thage at $2 / 6$ eauh, ir $24 /$ - a dozen. Suitable suagnetw are

CENTRIFUGAL FAN

 CENTRIFUGAL BLOWER
very luw moine but large ior central heating and it conntituning: ideal alsol hor funue extrmetion ove (bunker. chat type nutlet 20.19.6, pent ant insnrance

See in the Dark INFRA-RED BINOCULARS

These infra-real binocnlars when ted from in bigh Voltage souree will enable ubjects to bre aeen in the
 inira-red bean. Each eye thle conimin* it compplet.
 There optlad aystems can he ured as lomese for The hinoculare form purt if he Arme"ulght driviug The binoctars form part of the Army night driving

 Hithlthonk 2/8.

Be first this year SEED AND PLANT RAISING
Sull beating wire intel traths ortauer. Sultable for widutarid 19/6 TELESCOPIC AERIAL

> Where postage is not stated then orler over ℓ^{3} are pust iree. Below ex add $2 / 9$.
Semi-conductors add 1 /- pust. Over $\& 1$ posit Semi-condiuctors add 1 -post. Over $\$ 1$ post free. S.A.E. With enquiries please.

TEOHNIOAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.t.e.b. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW $\mathbf{S E L F}^{\text {sebuild radio courses }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 171, Intertext House, Parkgate Road, London, s.w. 11
(state Subject or Exam.)
NAME
ADDRESS
TNTERNATONAL CORBESPONDENCE SCHOOLS

Field-effect Transistors at Realistic Prices

2N 3819 N-channel. RF Amplifier. Low Noise. 10/- each (5 or more $9 / 6$ each) 2N 3820 P-channel. Complement to $2 \mathrm{~N} 3819 . \quad 17 / 6$ ach (5 or more $16 / 3$ each) 2N 3823 N -channel. V.H.F. Amplifier. $\quad 33 / 6$ each (5 or more $28 / 6$ each) BFW 10 N-channel. V.H.F. Amplifier. MPF 102 N -channel. V.H.F. Amplifier. MPF 103 N -channel. AF Amplifier MPF 104 N -channel. AF Amplifier. MPF 105 N -channel. AF Amplifier/Switch. MFE 2094 N -channel. AF Amplifier/Switch 45/- each (5 or more 39/- each) 8/- each (5 or more. 7/6 each) 7/9 each (5 or more 7/3 each) $7 / 9$ each (5 or more $7 / 3$ each) 7/9 each (5 or more $7 / 3$ each) 31/6 each

All components offered for sale are guaranteed to be brand new first grade items only. All items are subject to the guarantee terms of their individual manufacturer, where applicable.

M. R. CLIFFORD \& COMPANY (PW) Component Stockholding Services 66, Old Oscott Lane,
 Great Barr, Birmingham, 22A.

Terms: C.W.O. MAIL ORDER DNLY. (Nett monthly a/c to approved accounts). Suppliefs to: Government and Educational Establishments. H.M. Forces, etc. Please add 2/-postage and packing per order.

SILICON TRANSISTORS. EX-STOCK-many others available.

BC 107	3/6	BC 172	3/2	2N 697	5/-	2N 3704	3/8
BC 108	3/-	BC 173	3/9	2N 706	2/6	2N 3705	3/2
BC 109	3/6	BC 182L	4/-	2N 706A	3/2	2N 3706	3/7
BC 115	10/-	BC 183L	3/3	2N 2926	2/6	2N 3707	3/10
BC 116	12/-	BC 184L	4/9	2N 3053	6/-	2N 3708	2/6
BC 167	3-	BFY 50	5/3	2N 3054	15/6	2N 3709	2/4
BC 168	2/6	BFY 51	4/4	2N 3055	21/-	2N 3710	2/7
BC 169	2/9	BFY 52.	5/3	2N 3391A	7/-	2N 3711	3/-
BC 170	3/-	BFY 53	4/4	2N 3702	3/6	2N 3793	3/3
BC 171	3/8	BSY 95A	3/9	2N 3703	3/2	2N 4292	3/3

We are also an Electroniques Agency (960 page Catalogue 16/6 post free)

RANGE OF SOLID STATE A.C. MAINS AMPLIFIERS Employing only high grade components and transistors.
LTA15 15 WATT

AMPLIFIER

HIGH FIDELITY OUTPUT
SWITCHED INPUTS FOR
GRAM, 'MIKE', TAPE,
AND RADIO
Frequency Response 10-40,000 Frequency Response $10-40,000$
cps-3dB. Bass Control +18 dB to 16 dB at 40 cps . Treble Control + 17 dB to -14 dB at 14 kcs . Hum and Noise-80dB. Harmonic Distortion 0.2% at rated output. Output for

Recommended Retail Price Size $9 \frac{1}{2} \times 33 \times 51 \mathrm{in}$ 3-8-15 ohm Loudspeakers.

PTA30 HI-FI

PUBLIC ADDRESS AMPLIFIER A SUCCESSOR TO OUR POPULAR CONCHORD 30 WATT UNIT
Input Sensitivity 2 niv (max.) Output 30 watts.
Output Terminals or Loudspeaker or combination of Speakers with total impedance between 3 ohms and 30

Recommended Retail Price
Size $12 \times 3+\times 6 \mathrm{in}$
 mpedance between 3 ohms and 21 gns ohms. Three individually controlled ohask inputs for mixing purposes. Housed Jack Inputs for mixing purposes. Housed in fully enclosed stove enamelled steel case. Controls Vol. (1) Vol. (2) Vol. (3) with mains switch, Treble 'lift' and 'cut'. Bass 'lift' and 'cut'.
AN IDEAI. UNIT FOR VOCAL AND INSTRUMENTAL GROUPS, SUITABLE FOR ANY KIND OF 'MIKE' AND INSTRUMENT PICK-UP, ALSO FOR RADIO, TAPE OR GRAM.

[^5] TD, Electron Works, Armley, Leeds

BENTLEY ACOUSTIC CORPORATION LTD.

 MAKERS' FULL GUARANTEE, PLEASE NOTE THAT WE DO NOT SELL ITEMS FROM USED EQUIPMENT NOR MANUFACTURERS' SECONDS AND REJECTS, WHICH ARE OFTEN DESCRIBED AS "NEW AND TESTED" BUT HAVE A SHORT AND UNRELIABLE LIFE.

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 1st January 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.

The way to get ahead in this fast growing industry —an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' 0 ' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW6), 34a Hereford Road, London,W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME

ORGAN BUILDERS! SILICON N.P.N. TRANSISTORS, ALL INDIVIDUALLY TESTED IN PUBLISHED DIVIDER CIECUIT! GOLD-PLATED LEADS FOR EASY SOLDERING! Unbeatable value at $1 / 6$ each or 25.0 .0 per 100

TRANSIBTORISED FLUORESCENT LIGHT. 8 WATT 12in. TUBE. Current drain
only 700 mA । Complete and tested 22.18 .8 onlyl
Or in Lit form: "Case $10 / \sim$; Transiator $10 /-$ Lamp holders, palr $5 /-$; Condensers etc. 3/-; Transformer 13/6; Tube 8/-. •Post Packing 5/-.

TRANSIRTORS

$0 \mathrm{C200}, \mathrm{OC203}, \mathrm{OC204}$ all at $2 /$ - each
AgY22, 2 N753, B8Y28, BGY65, 2 G344A, $2 \mathrm{G} 345 \mathrm{~A}, 2 \mathrm{G} 345 \mathrm{~B}, 2 \mathrm{G} 371 \mathrm{~A}, 2 \mathrm{G3} 78 \mathrm{~A}$, all st $1 / 6$ each.
Transistore similar to OC44, OC71 and OC72 all $1 /-$ each
Unmarked, untested tranststors $7 / 6$ for 50.
LIGHT SENBITIVE TRANBISTORS (similar OCP71). $2 /$ - each.
30 watt transintora (A8Z 17) 10/- each
DIODES. Very low leakage. Make excellent detectors, slao suitable for keying electronic organs. $1 /$ - each. 20 for 10/-.

RECTIFIBRS

BY100.800 p.i.v. $2 / 6$ each, $24 /$ - per doz., $£ 7.10 .0$ per 100 , 450 per $1,000$.
BYZ13, 6 amp 400 p.i.v. svailable on same terms.

MULLARD POLYESTER CAPACITORS. FAR BELOW COBT PRICE!

$0.001 \mu \mathrm{~F}$ 400 volts			3d.	$0.02 \mu \mathrm{~F}$	200 volts			8 d
$0.0015 \mu \mathrm{~F} 400$ volts	\%		3d.	$0.15 \mu \mathrm{~F}$	160 volts	.	-	6d.
$0 \cdot 0018 \mu \mathrm{~F}^{5} 400$ volts			3 d .	$0.22 \mu \mathrm{~F}$	160 volts	-	\cdots	Bd.
$0.0022 \mu \mathrm{~F} 400$ volts			3 d .	$0.27 \mu \mathrm{~F}$	160 volts	-	\ldots	6 d.
$0.01 \mu \mathrm{~F} \quad 400$ volts			8 d .	$1 \mu \mathrm{~F}$	125 volts			1/-

VERY SPECLAL VALUE : Small Sllver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. 10/- per 100.
PAPER COKDENSERS, mixed bagg, 0.0001 to $0.5 \mu F, 12 / 6$ per 100.

RESISTORS : Give-away offer ! Mired types and valuen. \ddagger to \mid watt
6/B per 100, $55 /-$ per 1,000. Individual resistors 3d. each. Also $\frac{1}{1}$ to 3 watt Close Toler ance. Mured values $7 / 8100,55 /-1.000$.
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. 16 for 10/-

REOORD PLAYER CARTRIDGES

ACOA GP67/2 Mono
15/-complete with reedles.
GP91/3 Stereo Compatible 21.0 .0 complete with needles.
$\begin{array}{ll}\text { GP93/1 Stereo Ceraraic } & 21.5 .0 \text { complete } w i \text { ith needles. } \\ \text { GP94/1 Btereo Ceramic } \\ \text { 21.5.0 complete with needles. }\end{array}$
Small pick-up arms complete with cartidge and needie 10/-only.

TRANSISTORISED SIGNAL INJECTOR KITC. R.F./I.F./A.F. 10/- only. TRANSISTORISED SIGNAL TRACER EIT 10/- only. TRANSIBTORISED REV-COUNTER KIT 10/-.

VEROBOARD
 3 in. $x 21 \mathrm{in}$. 0.15 n . matrix $\cdots 8 / 3 \quad 17 \mathrm{ln} . \times 3$ 3in. $6 \mathrm{in} . \times 3 \mathrm{in} .0 .15 \mathrm{in} . \mathrm{matrix}$ Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 8/6 for 36.

MULTIMETERS. 20,000 ohms per Volt.
Ranges: A.C.: $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$.
D.C.: $250 \mathrm{ma}, 2 \cdot 5 \mathrm{ma}, 50 \mu \mathrm{~A}$. $25 \mathrm{~V}, 5 \mathrm{~V}$

Resistance: $0 / 60 \mathrm{~K} \mathrm{a}$ and $0 / 6 \mathrm{M} \Omega$.
special price $84: 0.0$ only

ELECTROLYTIC CONDENSERS

$0.25 \mu \mathrm{~F}$		3 volt	$4 \mu \mathrm{~F}$.	25 volt	$25 \mu \mathrm{~F}$		25 volt
$1 \mu \mathrm{~F}$.	6 volt	$5 \mu \mathrm{~F}$		6 volt	$30 \mu \mathrm{~F}$		6 volt
$1 \mu \mathrm{~F}$		20 volt	$6 \mu \mathrm{~F}$		6 volt	$30 \mu \mathrm{~F}$		10 volt
$1.26 \mu \mathrm{~F}$	-	16 volt	$8 \mu \mathrm{~F}$		3 volt	$50 \mu \mathrm{~F}$		6 volt
$2 \mu \mathrm{~F}$	\ldots	3 volt	$8 \mu \mathrm{~F}$	\cdots	12 volt	$64 \mu \mathrm{~F}$.	$2 \cdot 5$ volt
$2 \mu \mathrm{~F}$.	350 volt	$8 \mu \mathrm{~F}$.	50 volt	$64 \mu \mathrm{~F}$.	9 volt
$2 \cdot 5 \mu \mathrm{~F}$		16 volt	$10 \mu \mathrm{~F}$.	6 volt	$100 \mu \mathrm{~F}$.	9 volt
$3 \mu \mathrm{~F}$		25 volt	$10 \mu \mathrm{~F}$		25 volt	$320 \mu \mathrm{~F}$.	4 volt
$3.2 \mu \mathrm{~F}$	\cdots	64 volt	$20 \mu \mathrm{~F}$	\cdots	6 volt	$320 \mu \mathrm{~F}$.	10 volt
$4 \mu \mathrm{~F}$		4 volt	$25 \mu \mathrm{~F}$	-	6 volt	$400 \mu \mathrm{~F}$.	$6 \cdot 4$ volt
$4 \mu \mathrm{~F}$.-	12 volt	$25 \mu \mathrm{~F}$.	12 volt			

All at $1 /$ each. 20 assorted (our gelection) 10/-

Orders by post to:

G. F. MILWARD

DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.

Please include suitable amount to cover post and packing. Minimum 2/-
Stamped addressed envelope must accompany any enquiries.
For customera in Birmingham area goods may be obtained from Rock Exchanges 231 Alum Rock Road, Birmingham 8
 Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Radio: 100 mV is correct to within $\pm 2 d B$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm \frac{13 \mathrm{~dB}}{10} \mathbf{\text { at }} 60 \mathrm{~Hz}$. Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Tolal distortion: (for 10 whitt output) $<1.5 \%$. Signal notse: $<-60 \mathrm{~d}$ B. A.C. mains $200-250$ g ize $12 \frac{1}{2} \mathrm{In}$. long, 4 im . deep, 24 in . high. Teak finished case. Price $8 \mathrm{gns} .+7 / 6 \mathrm{p} .8 \mathrm{p}$

THE DORSET (600 mW output)

7 -transistor fully tunable M.W.-L.W. superhet portable -with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$.
MAINS POWER PACK KIT: $9 / 6$ extra
PRICE $\mathbf{~} 5.5 .0$ plus $7 / 6$ p. \& p. Circuit 2/6 FREE WITH PARTS

THE ELEGANT SEVEN MK. III (350mW output)
7-transiator fully tunable M.W.-I.W. portable. Set of parts. Complete with all components, including ready etched and drilled printed circult board-back printed for foolproof construction.
MANA POWER PACK KIT: $9 / 8$ extra.
Price £4.9.6 plus $7 / 6$ p. \& p.
Clrcult $2 / \mathrm{B}$ FRee with parta.

X101 10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP

Spoolfioations: RMS Power Outpet (into 3 ohms spasker):
10 watts continuous (sine wave), 13 watts music power Sensitivity (for rated output): 1 mV into 3 K ohms (0.33 microamp). Total Distortion at 1 Khz): at 5 watta $0-35 \%$, at rated outjut 1.5\%. Frequency Response: Minus 3dB points 20Hz nd 40 K . 24 V d ollage: $24 \vee$ d.c. at 800 mA ($0-24 V$ may be used) ontrol assembly: including resistort and capacltors

1. Volume: PRICE $8 /-$
2. Comprehenaive bsas and treble: PRICE 10/-
3. Comprehemaive bass and trebie: PRICE $10 /$--
The above 3 itemas can be purchased for use with the X101
Power Supplias for the $\mathbf{X} 101$:

P101 M (for mono) $35 /$-plus $4 / 6 \mathrm{p} . \& \mathrm{p}$.
P101 8 (for atereo) 42/6 plus $4 / 6 \mathrm{p}$. \& p

THE RELIANT 10W SOLID-STATE HIGH QUALITY AMPLIFIER spechications
Output- 10 watts RME Sine-wave
Output Impelance- 3 to 4 ohms
Inputs-1

Treble control range $\pm 12 \mathrm{AB}$ at 10 KH 2 Frequency 2. gramiradio 250 ml Bass control range $\pm 13 \mathrm{~dB}$ at 100 H 2 signal to Nolse Ratio-better than -60dB. Tranuistors-4 sllicon Planar type and 3 Germandum type. Maing input- $-220-250$ V. A.C. Size of chassts- $10^{\prime \prime} \times 31^{\prime \prime} \times 2^{\prime \prime}$ A.C. Mains, $200-250$ V. For use with 8 td or L.P. records, muwical instruments, all makes of pick-upa and mikes. Separate base and treble lift control. Two inputs with control for gram. and mike. Built and tested. $8^{\prime \prime} \times 5^{\prime \prime}$ speaker to sult price $14 / 6$ plus $1 / 6 \mathrm{P}$. \& P. Crystai mike
to suit $18 / 6$ plus $1 / 6 \mathrm{P}$. \& P .
PRICE 85.5 .0 plus $5 / \cdot \mathrm{P}$. \& P .

THE VISCOUNT

Integrated High Fidellty Transistor Stereo Aapplifler

SPECLFICATIONS: Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monoral). Input: 6 position rotary selector switch (3 pos. mono and 3 pos, stereo), B.U., Tuner, Tspe and Tape Rec. Sensitiviticn: All inputs 100 mV into 1.8 M ohm. Frequency reaponse: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tone controls: Tone controls flat (Baxanulall type), separate bass and treble controla. Treble 13 db lift and cut at 15 kHz . Bass 15 dr , lift and 25 db cut at 60 Hz . Volume controls: Beparate for each channel. AC Maina input: 200 $240 \mathrm{v}, 50-60 \mathrm{~Hz}$. Bize $121 \times 6 \times 2 \mathrm{in}$. in teak-finlshed case. Built and tested.

PRICE $13 \frac{1}{2}$ Gns. Postage \& l'acking $7 / 6$ extra.

RADIO \& TV COMPONENTS (Acton) LTD

 21c High Street, Acton, London, W.3. All orders by post to our Acton address 323 Edgware Road, London, W.2.Bize $31 \times 21 \times 1 / 1 \mathrm{in}$, Meter size 21×1 in. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. 0-15, $0-160,0-1000$ D.C. curtent $0-150 \mathrm{~mA}$. Remistance $0-100 \mathrm{k} \Omega$. Complete With teat prods, hattery and full inatructions, $42 / 8$. P. \& P P . Soldering Iron value $15 /$ - to every purchaser of the Pocket Multi-Meter.

CYLDON

U.H.F. TUNER

Compiete with PC88 and PC86 Yalves. Full variable tuning New and unused. Size $4 \leqslant \times 5 \times$ 1 zin . Complete with circuits diagram. 35/-p. \& p. 3/6

600 mW FOUR TRANSISTOR AMPLIFIER

Features N.P.N. and P.N.P. complementary symmetrical output stage $2 t^{*} \times \%^{\prime \prime} \times{ }^{\prime}$. Speaker. Output impedance 12 ohms frequency response 3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$. Price $19 / 6$ plus $1 /-\mathrm{P} . \& \mathrm{P} .7^{* *} \times 4$ " Speaker to suit, $13 / 6$ plus 2/- P. \& P.

$2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} \times 44^{\prime \prime} \times 13^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Semi conductors, two OC 75's two AC 128's and two stabilizers AA129 Tone and volume controls on fying leads. $£ 2.10 .0$ plus P. \& P. 3/6 Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high fux speaker, $18 / 6$ plus $2 /-\mathrm{P}$. \& P .

NEW TRANSISTORISEO SIGNAL GENERATOR
size $5!\times 3 \frac{1}{2} \times 1 / \mathrm{m}$. For IF and RF aligrment and AF output $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{mc} / \mathrm{s}$ Ele switched frequencles. Ideal for alignment to our Elegant Seven and Musette. Built and tested. $49 / 6$

50 WATT AMPLIFIER A.C. MAINS 200-250V
 An extremely reliable general purpose valve amplifier-with six electronically mixed inputs. Suitable for use with: mics, guitars, gram, tuner, organs, etc. Separate bass and treble controls.
Price 27 gns. Plus 20/- p. \& p.
RECORD PLAYER SNIP A.C. MAINS 240V
The "Princess" 4 -speed automatic record changer and plager engineered with the utmost precision for beauty, long life, and tronble free service. Whll take up to ten records which may be mixed 7° to 10° or 12^{*}. Patent stylus brush cleans atylus after each playing and at shat off, the plek-up lock: itgelf into Ita recess, a most useful feature with portable equip-ment-other features include pick-up helght adjust
ment and atylus pieseure adjustinent. This truis is a ment and atylua pieasure aljustrument which you can purcheae this month at only $£ 5.18 .6$ complete with cartridge and ready to play. Posi and insurauce $7 / 6$ extra

ANTI-THIEF CAR BURGLAR ALARM
The Melguard Aafermatic consists of an electrical device housed in small metal box $4^{\prime \prime} \times 2^{\text {" }}$ $1 \frac{1}{}{ }^{\prime \prime}$, which has veen dealgned and dcveloped to provide protection required by the average motorlst ast an cconomic cost. Valng this aysten, an alarm and the immobillsed condition is set automatically as soon as you park the car. Should you leave the key lan the ignition, no one but you can the car by sultching on the ignition, depressing two hidden awitches, alld mimultaneourly operating the atarter. Location of the switches is krown only to you, ghould the alarm be set off it can be stopped by following the normal starting procedure. For 12 V operation. List price 79/6, our price $29 / 6$ plus 2/6 P. \& P. Full easy-to-follow inatructions supplied.

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in . spool.
Incorporating 3 motors.
A.C. mains, 240 volts, listed at $£_{21.0 .0}$
Our Price £9.19.6, plus 10/- P. \& P

WOW! A FAST EASY WAY TO LEARN BASIC RADIO and Electronics

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now,
you'll build your own Radio set within a month or so!
and what's more YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors ... even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee nlay be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.
You LEARN-but it's as fascinating as a hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
Dept. 372B , Aldermaston Court, Aldermaston, Berkshire.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 132-page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 132 -page book -'ENGINEERING OP-PORTUNITIES'-Free and without any obligation.

THIS
COUPON TO: B.I.E.I.I, Dept, 372B, ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 132-page book.
name
address
(TO: B.I.E.I.I, Dept, 372B, ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 132-page book.
name
address
(To: B.I,E.I, Dept, 372B, ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 132-page book.
name
address
A To: B.I,E.I, Dept, 372B, ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 132-page book.
name
address
A To: B,I,E,T, Dept, 372B, ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 132 -page book.
name.
address To: B.I,E.I, Dept, 372B, ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 132-page book.
name
address
A

 TO: B.I,E,T, Dept, 372 B , ALDERMASTON COURT,
ALDERMASTON, BERKS.
I would like to know more about your
Practical Radio \& Electronics Course. Please
send me full details and FREE 32 -page book.
name
address

TELEVISION BARGAINS

Due to Bulk Purchase we offer Ex Rental 12 channel T.V.s. Well maintained and tested. Tubes 100\% guaranteed. Slimline 17" Peto Scott 732, Ultra V17/70, Regentone 7en 17, Cossor 874, Alba T44, F.M. all $£ 8.0 .0$. each. $21^{\prime \prime}$ Ultra V21/70 £12.0.0. Semi slim 17" Alba T655, Regentone 7en 4 7en 8, Sobell T178, T179, Bush TV85, £7.0.0. each.

Many others available, all worth double Carriage $£ 1$ Terms C.W.O.

We stock all spares for most pre-1962 T.V.s

Send S.A.E. for price list to:
> D. WEBB

> 58 Chanterlands Avenue, Hull, Yorkshire.

Tel: Hull 43281 and 36016

Take your Wellerchaite

LOW INITIAL COST

Marksman irons to cover all your soldering needs. 25W. $40 \mathrm{~W}, 80 \mathrm{~W}, 120 \mathrm{~W}, 175 \mathrm{~W}$. Nickel-plated factory pre-tinned

Nickel-plated factory pre-tinned

INSTANT HEAT FOR RAPID SOLDERING
THE tool for intermittent work such as servicing: Working heat in a few seconds. The job is done in less time than it takes a normal iron to heat up. Expert dual-heat and Heavy Duty models.

4
TEMPERATURE CONTROL FOR RELIABILITY
For sophisticated production line soldering or to replace several conventional irons. No dry joints. Control of temperature without inhibiting performance. Mains or low voltage.

Send for full information

Weller Electric Limited

TRADER SERVICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets and Manufacturers' Manuais for most makes and types of Radios. Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES
 LIMITED

30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio/TV

1968 List available at $2 /-$ plus postage

> If list is required indicate with X

From

Address
anclose remittance of
(and a stamped addressed envelope) s.a.e. with enquities please

MAIL ORDER ONLY (January PW)

The Ideal, economical and sate way of runnlng Transistor Radlos, Record Players, Tape Recorders, Ampliflers etc. from A.C. Mains. All unlts are completely isolated from mains by double wound transformer ensuring 100% safety

PLUS-3

MAINS UNIT
Provides three separate switched output voltages 8v.. 7ity and 9v, DC Attractive case with indicator llght, mains lead output socket, plug and lead Size $4 \frac{1}{2} \times 3 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{1} \mathrm{In}$
 (Extra lead with DIN plug for Cassette Recorders 7/6)
 POWER PLUS MAINS UNIT for Cassette Tape Recorders using 7v. Complete with DIN plug tor recorder power socket. Can aiso be supplled for a 6 -volt output complete with sult. able plug. Please state able plug. (Please state
make, model and voltage 45/- P. \& P. $2 / 6$ required.)
MAINS UNIT for FI-CORD 202A
TAPE RECORDER P.\&P.5/-
£4.15.0

MAJOR POWER PLUS

MAINS UNITS

For single outputs, $9 \mathrm{v}, 6 \mathrm{v}, 39 / 6$. P. \& P. $2 / 6$. For two separate outputs. 9v For two separate outputs
$8 v+6 v .42 / 6 . P$. \& P. $2 / 6$. $8 v+6 v .42 / 6$. . a P. $2 / 6$.
(Please state outputs required)

R.C.S. PRODUCTS (RADIO) LTD. (Dept. P.W.). 31 Oliver Road, London, E. 17

BUILD THIS

 LUXURY WALL UNITAn easy-to-build unit using standard-size veneered board, requiring only the minimum of skill to erect. It includes storage space for hi-fi, TV, cocktall cabinet, wine racks, records, writing desk and your favourite collector's items.
Also HOW TO ADD £ 1.000 TO THE VALUE OF YOUR HOME ELECTRIC WIRING COLOUR PLANNING YOUR ROOMS
> - 1 CTCI INSIDE HOUSEHOLDER

OUT NOW 2/-

BARGAIN OPPORTUNIIIES FROM

TRS STEREO 4－4 a bargain in quality amplifiers

AMPLIFIER KIT $\mathbf{q}^{7} 7.19 .6$（p．p．3／6） TRS POWER UN1T TRS SIMPLEX CABINET（p．p．2／6） TRS SIMPLEX CABINET
4 prs DIN plugs and sockets if purshased nepirrately，15／－ Complete kit inc．cabinet／power pack DIN plugs and socket． £12．10．0
（post free）
MAKE YOUR OWN BOOKSHELF SPEAKER With a get of matched speskers and cross－over from THs．Comprises modern style high efficlency 5 in．basa unit with apecis，cone assembly；X－o for mounting into your own cabinet or baffle syatem．Smooth a world－famous manufacturer．A gentine bargain for only

Integrated a transistor steveo amp based on newly developed Mullard 4 watt module and BC． 108 pre－amp．Suitable also for
speakers from 3 to 15 ohms．With base and speakers from 3 to 15 ohms．With base and treble cut／bonnt．Response－h0 to 14 KHz requires only wiring between controls and modules．Complete with metal chasgis and aimplex teak－ended cabinet for instant assernbly

This advanced design compatible $\mathbf{H i} \mathrm{Fi}$ mono stereo FM tuner comes in eass－to－aysemble pre iabricated units engineered to the highest atan dards of efficiency and performance．Valuabl efinementa include switchable A．F．C．，sutomatic noise suppreasion，flywheel tuning，，ate reo ind ics ion light，excellent audio response．Senaitivity ater if bo required．Inclusion of a world－famous Gorler 1．F．amplifier ensures superb performance Excellent chasska deaign made specially to fit th standard TRA simplex cabinet systern．Styled t match the TRS Stereo 4－4．
$S . A, E$ ，brings full details．
Total price
（for maina operation） $\mathbf{1 2 9 . 1 0 . 0}$（carr． $10 /-$ ）

GARRARD \＆E．M．I．PLAYING UNITS

LM8000 Record Player with 9T．A．Stereo Cartridge £10．5．0 AT． 60 Mk．II De－Iuxa Auto－changer，die－cast turntable．Less cartridge． P25 25 E13．5．0
 Brand new in makers＇cartons．Packing and carriage on any one of above $7 / 6$ ．
GARRARD PLINTH WB． 1 in fine Teak for any of above units． Packing and carrigge 5／－）． $85 /-$
Garrard olear－view rigid perspex cover（carriage 4／6），62／6．
CARTRIDGES AVAILABLE TO PURCHASERS OF ABOVE PLAYER UNITS－STEREO．Sonotone 9TA／HC Ceramic with dismond $49 / 6$. Decce Deram with dlamond $92 / 6$ ；MONO Acow GP91－1 21／－；Goldring Decce Beram with diamond $92 / 6$ ；MONO Acon GP91－1 21／－；（noldring
M X2M 28／6．

HERE＇S A GREAT BARGAIN RECORD PLAYER AMPLIFIER

Ideal for buitding into a record player． 2 watte ontput with volume
and tone controls．Double wound mains inolating transformer． EZ80 and ECL\＆2 valves．Stylish two－tone eacutcheon panel．Printed circuit assembly．Ready wired and tested for instant assembly． 3 ด matching o／p transformer．Recommended playing unit－E．M．I unit at 69／6 above．Amplifier as described．

79／6

FREE LIBRARY TAPE WALLETS

With each reel of this fine tape by an internatlonally famous manufacturer we give a well made wallet in sinaulated
leather with space for a ree leather with space for a ree
each side．This is profeasional quality full frequency tape with metalised leader／atop foile．
多int．reel， 1200 ft ．，with wallet
jin．Feel， 900 t．，with walket，
Tin．reel， 1800 ft．．with wallet，

TRS MULLARD AMPLIFIERS

STEREO 10－10 Kit with valves and phasive contrnl system KIT－i7．10．0：BUILT 821．（carr．either，12／6）
$2+2$ VALVE PRE－AMP Built，complete with valves，dial，ete 13 grs．（carr．7／6）． 5－10 MONO AMPLIFIER．Basic Kit，with valves，etc．，时 gna Built， $11!$ gns．（carr． $7 / 6$ either） Basic Kit with pansive control system，$£ 11.19 .6$ ．Built $£ 14.19 .0$ （carr． $7 / 6$ either）．
PRE－AMP \＆VALVE KIT $£ 8.12 .6$ ．Built $£ 8.10 .0$（carr． $5 / 6$ either） BASIC 5－10 AMPLIFIER AND 2 VALVE PRE－AMP Assembled， wired and tested，complete 828.10 .0 （carr． $10 / \%$ ）．

Send S．A．E for leaflet giping full technical specifeations on these world famous amplifers．

CHRISTMAS BARGAIN OPPORTUNITY 1 MONTH ONLY

 4 vaive FM Tuner based on famous JAsON FMT． Tuning and genaitivity controls．Factory built，tented and aligned． 100 mV sensitivity for 40 dB quieting．List 13 gns．POST FRFE． EROM TRE． Power requiremen
THS unit availahle

TRS Power Supply Unit

Heavy duty，ready built mains power unit of great reliability and suitable for the hesviest demands． Eithout atrabs or fluctuation，very easy to mount Size： $31 \times 2 \times 2 \mathrm{in}$
PU． 12 giving 12V at $1.5 A:$ PU． 24 giving $24 V$ at 0.75 A ．Wither model（p．p．2／6）．PU／VFM giving $200 \mathrm{~V} / 25 \mathrm{~mA}$ and $6 \cdot 3 \mathrm{~V} / 1 \cdot 5 \mathrm{~A}$（p．p． $2 / 6$ ）．45／＝

WIRE WOUND RESISTORS－COATED TYPES Stand．values 25 ohms－ 10000 ohms， $5 \mathrm{w} .1 / 6,10 \mathrm{w} .1 / \mathrm{g}$ ， $15 w .2 / 3$ ．SPECIAL．VALUES 15 K － 35 K ohmis 5 w ． $2 / 8$ ． PRE－SET WIRE WOUND POTS．Slotted Knurled Knch T．V．Type 25 ohms－ 30 Kohms 3／3． 50 Kohms $4 / 8$. Kite T．V．carbon track $50 \mathrm{~K}-2 \mathrm{Meg} 3 / 8$ ．
SLIDER PRESETS $\mathrm{f} \mathrm{w} .10 \mathrm{~K}-2 \cdot 2 \mathrm{Meg} .2 / \mathrm{F} 10$ ohms－ $5 \mathrm{~K} 2 / 6$ ．
SKELETON PRESETS for P／circuit use， 100 ohms－－2－5 Meg 2／－
STANDARD W／WOUND POTS．Loug Spindle
100 ohrus－ 50000 ọhms each 8／－． 100,000 ohms each $8 / 8$ ． VOLUME CONTROLS 1 f in ．dia．Long spindles． Famous make．All values 5000 ohms－2 Megohms． Guaranteed 12 montha．Log or Linear tracks．Lems $B w$ ． 3／6．DP 8w，5／－．Ing or Linear tracks．Centre Tapped \＆Megohm Log．i Megohm lesa Sw．5／－．TWIN GANGED STEREO 1 kin ．dia．．Long Spindles．All values 5000 ohms to 2 Megohms less Sw．，ets．8／6．All values 100 K to 2 Megohma with DP Sw．．ea．10／8．

2）A．F．C．\＆A．G．C．
＊Noise Limiter
（Whassis Ready Built
－Pre－tuned
Kit to make MONO
tuner Inc．chassis 15 gns ．
Add－on（p．p．3／fere Unit 10 gns.
Power Unit（p．p．2／6） $\mathbf{~} 2.5 .0$
（p．p．2／6）
Cabinet
£1．17．6

STEREO BALANGE CONTROLS
Log／Anti－Log 5 K ，$\frac{1}{\frac{1}{2}}$ Meg．， 1 Meg．， 2 Meg．es． $8 / 6$ VEROBOARD－All standard sizes inoluding $2 \% \times 5 i n$ ．
 ＇CIR－KIT＇Adhesive copper strip for clreuit buikling 60 in ．日pool， $1 / 1 \mathrm{i}^{\mathrm{hn}}, 8 / \mathrm{m}$

$1 F$

T F CAU CAN SAVELLE，
1 Send 6d．now to TRS for their latest barasin－ Crammed lists of oomponents，nocessories，mat－ find items． 8 large pages，well printed．Send for \｜your copy now．
$\mathrm{J}-\mathrm{a}-\mathrm{-}=-\infty-\infty$
RESISTORS－Modern ratings，lull range 10 ohme to 10 megohms， 10% ． $1 \cdot 1 \quad w$, ． 4 d ．ea．； 5% Hi－8tmb ！－1 w．，8d．em．（below 100 ohms and over 1 meg Bd．ea．）． 1% Hi－Stab，$\frac{1}{2}$ w．， $1 / 6$ ea．（1）elow 100 ohms

CONDENSERS 8ilver Mica．All values 2 pt．to 1,000 pt 6d．ea．Ditto cersmics 9d．Tub．450v．T．C．C．，oto．． 001 mfd．to $0.1 \mathrm{ml} . / 350$ ₹． $10 \mathrm{~d} . ~ . ~ 02 \mathrm{mf}$ ．to $0.1 \mathrm{mfd} .500 \mathrm{v} .1 / \mathrm{c}$ 2S т．c．c． $1 / 8 . \$$ т．c．c．2／－．CLOSE TOL．S／MIOs． 10% $5 \mathrm{pt}-500 \mathrm{pf} .8 \mathrm{~d} .600 \cdot 5,000 \mathrm{pt} .1 /-1 \% 2 \mathrm{pf} .100 \mathrm{pt} .9 \mathrm{~d}$ ． $5 \mathrm{pf}-500 \mathrm{pf} .8 \mathrm{~d} .600-5,000 \mathrm{pt} .1 / \mathrm{-} .1 \% 2 \mathrm{pf} . \cdot 100 \mathrm{pt} .9 \mathrm{~d}$ ．
100 pf .9 d .100 pf .500 pf ． $11 \mathrm{~d} .375 \mathrm{pt} .5000 \mathrm{pt} .1 / 6$. ALUM．CEASSIS． 18 g ．Plain undrilled folded 4 aides， tin．deep． $8 \leq 4$ in． $4 / 6 ; 8 \leq 61 n .5 / 9 ; 10 \times 7 \ln$ ． $8 / 9 ; 12$ $\times 8 \mathrm{in} .7 / 6 ; 12 \times 8 \mathrm{in} .8 /$－etc．
EXPANDED ANODISED METAL Attractive Gllt Finish $\frac{1}{2}$ ．x in diamond mesh or finer mesh $5 /-$ per VINAIR－latest I．C．I．speaker covering．Motried Light Grey，Off．White，Fawn，Black，etc．2\％－per wq．it BONDACOUST－speaker Cabinet Acoustic Wadding． 18 ins．Wide． $2 / 8$ per ft ． $6 /$－per yard
ENAMELLED COPPER WIRE in two ounce reels $14-20 \mathrm{~g} .3 /-: 20-28 \mathrm{~g} .3 / 6 ; 30-34 \mathrm{~g} .4 / 8 ; 39-40 \mathrm{~g} .5 /-$ always in stock at Eefenest PRICES．Tran－ sistori，Coils，Switohes，Valves，Speskers，Matariala See latest TRS jists．Please send \＆A．B．with inquíried

7－valve AM／FM／RG Chassis
A superbly powerful high performance instrument．Ideal for building into existing cabinet work，etc．Tunen over long，medium and $\mathrm{F}^{\text {．M M }}$ ．wavebands．Excelient aensitivity． Permeability tuning on F．M．Large clear dial．A．V．C． gool neg．feed back．Magic eve． 3 W output．A．C． $200 / 250 \mathrm{~V}$ Circult diagrams available．Supplied ready bultt and aligned．S．A．E．brings fuil details．213．18．6．（Carr．10／．）

To Order

 send cush wrih orderPooll and packing aber Post and packing where
not stated add $1 /$－per $!3$ ： not nlaled add $1 /-$ per $\frac{1}{2} t h$
$1 / 9$ ． $1 / 6 ; 3 / 6,21 b ; 5 /$ 113：$\theta / 6$ 101b； $8 /-14 / b$ neer 10／－．To help speed your order，quote P1H． when ordering．

COMPONENT SPECIALISTS

Established 1946

70 BRIGSTOCK ROAD，THORNTON HEATH，SURREY
Tel．：01－684 2188．Howrs 9 a．m．－6 p．m． 1 p．m．Wednesdays
A few doors from Thornton Heath Sin．（S．R．Victoria section）

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. 0d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHYLPOTTS METAL WORKS LTD.. Chapman Street, Loughborough.

FOR SALE

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear-lots of unusual stuff. This Cat. is free for the asking. K. R. WHISTON (Dept. PWC). New Mills, K. R. Wh.

MINIFLUX HEADS

Special offer SKN4 -track stereo record/playback head (list 8 gns.). Special offer 55/-. Miniflux LF6-0 self oscillating half-track mono erase head, list $£ 3.10 .0$. Offered at 22/6. VLF4 \mathbf{t}-track ferrite erase head, list $£ 4.5 .0$. Offered at $32 / 6$. S.A.E. for full lists.

LEE ELECTRONICS
400 EDGWARE ROAD. PADdington 5521.
30 WATT Soldering Iron with three core lead. All spares available. 13/6 each. p. \& p. 1/6. H. C. SCOTT, 40 London Road, New Balderton, Newark, Notts.

TOP TRADE DISCOUNTS FOR

 ALLCOMPONENTS VALVES TUBES

TRANSISTORS

Free Trade Catalogue
Engineers \& Service Dealers Only WILLOW VALE THE SERVICE DEPT. WHOLESALERS,
4 The Broadway, Hanwell, London, W. 7 01-5675400/2971

FOR SALE OFFERS, any year, some bound Radio Constructors Sept. 1967 to Oct. 1968.
Practical Wireless 1955 to 1961. R.S.G.B. Bulletin 1953 to 1968. L. TARR. II Oakwood Ave. Wimslow, Cheshire.

[^6]
FOR SALE

(continued)
MICRO MAINS TRANSFORMERS: 6-0-6V; $12-0-12 \mathrm{~V}, 13 / 6$. BELL, 59 Fairfield Drive, Monkseaton, Northumberland.

MORSE $\begin{gathered}\text { Made } \\ \text { EASY }\end{gathered}$!!

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month Normal progresa to be expected.)
Using scientiticaily prepared 3 -speed records you without translatigg. You can't heip It, it's easy as learning a tume. $18 \mathrm{~W} . \mathrm{P} . \mathrm{M}$. in 4 weeks guaranteed.
For detalle and course C.O.D. ring. s.t.d. $01-6602896$ end Bul. stamp for erplanatory booklet to:
GacEs/P, 45 GREEN LANE, PURLEY, SURREY

MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box-simply, cheaply. Realistic sound guaranteed. S.A.E. for details. D.E.W. LTD., 254 Ringwood Road, Ferndown. Dorset.
BUILD IT in a DEWBOX quality cabinet. 2 in . x 2 tin in x any length. D.E.W. Ltd., Ringwood Road, FER NDOWWN, Dorset. S.A.E. for leaflet. Write now-Right now.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ Constructional data available5 ootaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable attack you can play Classics and Swing.
Write NOW for free leaflet and further details to C. S., 20 Maude Street,

CONVERT ANY TV into an Oscilloscope. Instructions \$2. REDMOND, P.O. Box 38397 , Los Angeles, California 90038.

MISCELLANEOUS (continued)

GEARED MOTORS

Rectifiers, Potentiometers

6d Stamp for Catalogue

F. HOLFORD \& CO.

6 Imperial Square, Cheltenham

SITUATIONS VACANT
 (continued)

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C. Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.). City \& Guilds. A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in ali branches of Engineering Diploma courses in alt branches of Engineering Mech., Elec., Auto., Electronics, Radio, Computers, Draughis., Building, etc. For full
details write for FREE 132 page guide: details write for FREE 132 page guide:
BRITISH INSTITUTE OF ENGINEERING BRITISH INSTITUTE OF ENGINEERING Court, Aldermaston, Berks.
RADIO and tape recorder testers and trouble shooters required. Canteen, excellent rates of pay. 8.00 a.m. to 5.00 p.m. 5 -day week. Elizabethan Electronics Limited, Crow Lane, Romford, Essex. Phone: Romford 64101.
TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132page Handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137 K), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT

Wanted for production line TESTERS and FAULT FINDERS

with experience of alignment of Radio Receivers. Average weekly wage including bonus $£ 18$ to $£ 24$, depending upon experience and skill.

\author{

Apply to:

 Mr. W. Eddington,
 Mr. W. Eddington,Fidelity Radio Ltd.,
 6 Olaf Street, London, W.11.
 Telephone No: PARk 0131 -Ext. 54.
}

SITUATIONS VACANT (continued)

Wanted for Factory Service Department ENGINEERS

with experience on Transistor Radios, Tape Recorders and Record Players. A substantial individual bonus is available for fast workers. The present average bonus being earned is $£ 6.10$ s.Od. per week, but there is no limit.

Call or write to:
Mr. Savvides,
Service Department, Fidelity Radio Ltd., 6 Olaf Street, London, W.11.

Telephone No.: PARk 0131—Ext. 28

EDUCATIONAL

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio. TV., automation, etc., send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168 K), Aldermaston Court, Aldermaston, Berks.
BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative i20-page Guide-free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.1.
RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.
RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies during 1969. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College, Colwyn Bay.

WANTED

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S details, quotation by return. WALTON'
WIRELESS STORES, 55 Worcester Street, WIRELESS STOR
Wolverhampton.
WANTED: Popular Brand New Valves. R.H.S. Stamford House, 538 Great Horton Road, Bradford 7.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

[^7]
WANTED

(continued)
DAMAGED AVO METERS, Models 7 \& 8 , any quantity. Send for packing instructions. HUGGETT'S LTD., 2/4 Pawsons Road, West Croydon.
NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. DURHAM SUPPLIES, 367 c Kensington Street, Bradford, 8, Yorkshire.

RECEIVERS \& COMPONENTS

WE ARE BREAKING UP COMPUTERS

 COMPUTER PANELS (as shown) $2^{\prime \prime} \times 4^{\prime \prime} 8$ for to/-. P. \& P. 2/-with min 30 transistors. 100 for $65 / \sim$ +P.\&P.6/6; 1,000 for $£ 30$ + carr.PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 x$ OC28) 10/-. P. \& P. 2/-. NPN GERMANIUM TOS 1 WATT POWER TRANSISTORS small heat sink, on $2^{\prime \prime} \times 4^{\prime}$ panel. 5 for 10%. P. \& P. 2/-.
 TORS sim. to 2N174 ex-eqpi., 4 tor $10,-$, P. \& P. 21. POWER TRANSISTORS sim. to 2N174 ON Finned Heat Sink (10D) 4 for £1, P. \& P. $3 / \cdot$.
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 3/6 doz., DPDT 22/6 doz., DPST 17/-doz. P. \& P all types $2 /$-doz.
TRANSISTOR COOLERS TOS $7 / 6$ doz., TO3 18/-doz, P. \& P. 2/-.
OVERLOAD CUT OUTS. Panel mounting in the following values . . 5/-each. 1, 1六, 2, 3, 4, 5, 7, 8 amp. P. \& P. $1 / 6$.

MINIATURE GLASS NEONS, $12 / 6$ doz. P. \& P. $1 / 6$ NEW MIXED DISC CERAMICS. 150 for 10\%. P. \&P. $2 /$

LARGE CAPACITY ELECTROLYTICS

$\left.4 \frac{1}{2} \right\rvert\, n$. $2 i n$. dlam. Screw terminais
All at $6 /$ - each $+1 / 6$ each P. \& P
72V d.c.whg.
$5.000 \mathrm{mF} \quad 55 \mathrm{~V}$ d.c. whg.
$1,500 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. whg.
$1,500 \mathrm{mF} \quad 150 \mathrm{~V}$ d.c. wkg
$6,000 \mathrm{mF} \quad 25 \mathrm{~V}$ d.c. wkg.
25.000 mF
Send $1 /$ - stamps for list.

KEYTRONICS, 52 Earls Court Road London, w.8. Mail order only

RECEIVERS \& COMPONENTS

 (continued)SUB-MINIATURE ELECTROLYTICS, 15 Volt, 2, 6, 8, 10, 15, 20, 30, 40, 50, mfds. 8/6 per doz. 30 for 1 1. The C.R. SUPPLY CO. 127 Chesterfield Road, Sheffield 8.

COMPONENTS AT GIVE AWAY PRICES. Digital Counters, Rev Counters, Thyristors, Transistors, Valves, Tool Bags, Track Heads, Recording Tape, Aerials, Intercoms, Microphones, Micro Switches etc. 6 d. stamp only to DIAMOND MAIL ORDER PRODUCTS, PROSPECT HOUSE, CANAL HEAD. POCKLINGTON, YORK. NO4 2NW.

COMPLETE RANGE of Amateur, Aircraf, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Ltd., 70 Priory Road, Liverpool 4 Tel. 051-263-7829.

MAKE YOUR OWN AERIAL MAST :
sft. Bin. sectlons above 20/- per section. Oarr 3/. each. Nylon guy Ilnes with serut-automstic tensloner. 37 ft . $7 / 8$ each; 50 ft . $8 / 6$ each; 601t. $10 /-$ each P. \& P. $2 /$ each. Swlvel base 30/-. Carr. 10% Ground spikea $4 / 6$ cach 1 ' \& P. $1 / 6$ each

TELESCOPIO AERIAL MABTB. Tubular steel copperlaed spray firlsh, ring cain locking on each sectlon provtdes for full or any helght reqnired. suitable sil fixings and base licalloas. Bottom section 1 gin. diameter. $20 f t$. 4 mectlon. Cluaad bit 9in. Welght 161b. 70/-. Carr. 15/. 20 ft . 4 sectlors plus 12 ft . whlp. Weight $171 \mathrm{~b}, 80 / \%$. Carr. $15 /$ 34ft. 6 nectlon. Closed 6 ft . 8 In . Weight 201b. $00 /-\mathrm{l}$
Csrr. $16 /$.

EALLICRAFTERS R19H/TRC1 A.M. 16 valve double converston superhet. Crybtal controlled 70-100 Mo/a. Direct crystal irequency. Blze 10° I $\mathbf{1 2}^{\prime} \times 7^{\prime \prime} .115 \mathrm{v}$. A.C. Internal speaker and out let nocket for external speaker. Many other retue ments. Clrcuit Included. 225. Carr. $30 /$

100 SETS OF AB101/TRC1 MAST EQUIPMENT With gise and ricillary parts pes per get (ot warehouse).
MURPBY B40 NAVAL RECEIVERS. Teated 225. Carr. 30/-. Untested as recelved from Minatry 812.10.0. Carr. 30/- B41 REGEIVERS. Tested s16. Carr. 30/-. Untested as recelved from OOLLINS (D.8.A.) RECEIVERS. 7 valve nuperhet (Int. Octal Valvea). Exceptionalls table for S8B. Frequency coverage $1-5-12 \mathrm{Mc} / \mathrm{d}$ Power required 250 v . D.C. 80 mA . 12 v . A.C. $1 \cdot 25 \mathrm{~A}$. Excellent condition. LABT FEW 28.10 .0 . Cirr. 15/ALL 19 BET EQUIPMENT IN gTOCK

A.J.THOMIPSON (Dept.P.W)

"EILING LODGE", OODICOTE, HITCHIN. HERTS. Pbone: CODICOTE 248

Houra of buainean Monday to Priday 8-5. Sat. 8-18 Prices correct at time of press but aubject to Inorease Terms of buanens: C.W.O. Minimum oricra value 88.8.0. Carriage charges apply to Mainland only (ITTS UHEAPER IF YOU゙ UALL AND COLLECT)
(continued on next page)

RECEIVERS \& COMPONENTS

 (continued)150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $\downarrow-20$ watt, $12 / 6$ Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.

BARGAIN LIST

Transigtors. OC70, OC71, OC72, OC81, OC81d, OC45, OC170, OCI71, at $8 /$ - each
AF115, AF116, AF117, at $2 / 6$ each
OC140, BBY26, BYZ12, BYZ16. at 3/- eacl
Metal: Rectiflers, 12 v 1 amp contact cooled TCC $8 / 8$ each Metal Rectiflers, 12v $2 \mathrm{amp} 3 / 6$ each.
Metal Rectiflers, $12 v 4 \mathrm{amp} 7 / 6$ each.
TV Metial Rectifiera $250 \mathrm{v} 300 \mathrm{~mA} 4 / 6$ each.
Edgewise Volume Controls, 5 k Jap Replacement $3 / 6$. Panel Meters, New, Bquare Clear Plastic front, $1 \cdot 65$, x $1 \cdot 65 \mathrm{in} .0-1 \mathrm{~mA} \mathrm{fl}$.
Toggle 8witches, spat 2/-, dpult 3/- each.
New Resistances small it watt 3d. each, all values.
New Resistances smanin watt 3 d . each, all values.
Traniformers-Subminiature, output 3 ohm for 0072 etc. at 8/6 each.
Tranktormers-Subminiature Driver tor above 2/B. Jack Plugs $3.5 \mathrm{~mm} 1 / 6$ each. Pax Panels $6 \times 4 \mathrm{in}$. 10d. each. Small Elictrolytic Condensers
$50 \mathrm{ml} 50 \mathrm{vw} 1 / 6 \cdot 1$ Tubular condensers 500 v 4 d . $25 \mathrm{mf} 25 \mathrm{Fw} 1 /-$. B9A Low hosa $\mathrm{v} / \mathrm{h} 4 \mathrm{~d}$. each $\$ \mathrm{in}$. Iron Dust cores 4d. doz. Miniatare slide switches $1 / 6$ each.
Aluminiurn Panels $6 \times 4 \mathrm{in} .1 / 3 ; 8 \times 6 \mathrm{in} .2 /-$ each Mail Order Oply. P. \& P. 1/-, 8AE for List.

HALSE SERVICES
36 Gloucester Road, Feltham, Middlesex

SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6, P \& P $1 / 6$ S A E for details and lists WILSIC ELECTRONICS LTD., 6 Copley Road, Doncaster, Yorks

TRANS/RECEIVER TWO TWO
This is one of the tatest releases by the govt. of an exremely recent R/T вet covering $2-8 \mathrm{Mc} / \mathrm{s}$ in two swltched
 trimmer, BEO, RF and AF controla, switched meter for checking all parts of set, mize $17 \times 8 \times 12 \mathrm{in}$. Power required LT 12V D.C. HT $32 s$ V D.C. 8 upplied brand new and boxed with headphonee and miko alao two apare Falves and circuit of set. Few only at $£ 5.10 .0$, carr. $30 /-$ New plug in power supply made by us io
input $\$ 3.10 .0$ or $200 / 250 \mathrm{~V}$ A.C. 88.17 .6 .

V.H.F. TRANS/RECEIVER

THIS IS THE AFV VERSION WHICH CONTAINS A SQUELCH CIRCUIT USING 3 MORE VALVES MAKING A TOTAL OF 18. EVERYTHING ELSE AS BELOW.

superhet and A.F.C. Blow motion tuning with the dial calibrated in 41 channels each $200 \mathrm{kc} / \mathrm{m}$ apart. The irequency covered is $89 \mathrm{mc} / \mathrm{h}-48 \mathrm{mc} / \mathrm{a}$. Also han built-in Crystal calibrator which gives pipa to colncide with marks on the tuning dial. Power required L.T. 4t volls, H.T. 150 volta. tapped at 90 volts for receiver. carton complete with adjugtable whip aerlal, and circuit Price $\mathrm{f4} .10 .0$, carriage 10 s .

JOHN'S RADIO
OLD CO-OP,
BRADFORD
WHITEHALL ROAD, DRIGHLINGTON BRADFORD.

RECEIVERS \& COMPONENTS (continued)

WHITE SPOT TRANSISTORS-all tested. 6 for 5/-. GW3ARS, 10 Severn Road, Porthcawl.

ELECTROVALUE

RAPID MAIL ORDER SERVICE MINI transistors

MIGHTY SPECIFICATIONS
2N4285 PNP hFE $35-150$ at 10 mA fT 7MH4 min. 2 N 4286 NPN 30 V hFE over 100 at $10 \mu \mathrm{~A}$ to 1 mA iT 280 MHz typleal.
2N4289 PNP 60 V hFE over 100 at $100 \mu \mathrm{~A}$ to lmA iT 170 MHz typlcal
$2 N 4291$ PNP 40 V LFE over 100 at 100 mA , complementary driver/output.
2N3794 NPN 40 V hFE over 100 at 100 mLA , complementary driver outpnt
N4292 NFN 30 V UHF, N.F. 6 dB max at 100 MHz . B5001 Pow typleal.
base, Ther, 14.3 W at $100^{\circ} \mathrm{C}$ base temp. Insulated
Prices: 2N4285 to 2N 4292, 2N3784, 3/3d; B500118/6.
 $3 / 8$; 1000 V PIV 1.5 A type 1 N5054, $3 / 11$.
\& SUPER QUALITY NEW RESISTORS
Carbon flm high stab, low noise
1/8W $10 \% 1 \Omega$ to $3-3 \Omega\} 1 / 10$ doz., $14 / 6$ per 100 . $1 / 8 \mathrm{~W} 5 \% 3.9 \Omega$ to $10 \mathrm{M} \Omega 1 / 9 \mathrm{doz} ., 13 / 6$ per 100 .

 per 100.
per less per 100 if ordered in complete 100 's of one ohraic value.
Please state resistance values required
QUALITY CARBON SKELLETON PRE-SETS: 100Ω, $250 \Omega, 500 \Omega, 1 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega$, $20 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega, 200 \mathrm{~K} \Omega, 250 \mathrm{~K} \Omega, 500 \mathrm{~K} \Omega$ IMg. $2 \mathrm{M} \Omega, 2 \cdot 5 \mathrm{M} \Omega, 6 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$

* ELECTROLYTIES,

SUB-MIN., C425 RANGE ($\mu \mathrm{F} / \mathrm{V}): 0.54 / 64,1 / 40$. | $1.6 / 25$, | $2.5 / 16$, | $2.5 / 64$, |
| :--- | :--- | :--- |
| $6.4 / 10$, | $4 / 40$, | $5 / 64$, | $\begin{array}{lll}6.4 / 25,8 / 4,8 / 40,10 / 2.6,10 / 16, & 10 / 4 / 25, & 32 / 4, \\ 16 / 40,20 / 16, & 20 / 64, & 25 / 6.4, \\ 25 / 25\end{array}$ $32 / 40,32 / 64,40 / 2.5,40 / 16,80 / 6.4,30 / 25,50 / 40$. $64 / 4,64 / 10,80 / 2.5,80 / 16,80 / 25.100 / 6.4,125 / 4$ $125 / 10,125 / 16,160 / 2.5,200 / 6.4,200 / 10,250 / 4$, 320/2.5, 320/6.4, 400/4, 500/2.5. 1/4 each

MINLATURE ($\mu \mathrm{F} / \mathrm{V}$): $5 / 10,10 / 10,10 / 25,25 / 10$, $50 / 109 \mathrm{~d}$. each. $25 / 25,50 / 25,100 / 10,200 / 10,1 /$-each. 50/50, 2/-. 100/50, 2/6. 250 LLF 26v 2/6.
t POTENTIOMETERS (short spindte): 100Ω to spindle; $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ lin. or $\mathrm{lng} . .10 / 8 \mathrm{~d}$. each
\star COMPONENT DISCOUNTS: 10% over \&3,
$\$ 5 \%$ over $£ 10$. 15% over £10.

* NEW ELECTROVALUE CATALOGUE ready Jan. 69. Send 1/f for your copy
Post snd Packing: 1/- under £1, free onts \&1
Stores Telephone No. EGHAM 5533

ELECTROVALUE ${ }^{\text {Depeft }}$ ow:s

6 MANSFIELD PLACE, ASCOT, BERKSHIRE

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

SERVICE SHEETS. RADIO, TELEVISION, TAPE RECORDERS, 1925-1968 by return post, from $1 /$-with free fault-finding guide. Catalogue 6,000 models $2 / 6$. Please send stamped addressed envelope with all orders/ stamped adressed HAMILTON RADIO, 54 w London Road, Bexhill, Sussex

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 1 b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS

SERVICE SHEETS $(75,000) 5 /$ each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

C. \& A. SUPPLIERS

SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)

Only $5 /-$ each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post) Please state make and model number alternative.

Mail order only.

ELECTRICAL

Run all your transistor equipment direct from A.C. mains. The most economical way of running Transistor Radios, $\mathrm{Hi}-\mathrm{Fi}$ Equipment, RecordPlayers, amplifiers etc. No more expensive batteries to buy. All the units are contained in an attractive case with a full set of accessories. Mk 1 Model-replaces all 9 volt batteries, i.e. PP3, PP4, PP5, PP6, PP7, PP9 and all equivalents, or all 6 volt batteries, i.e. PP1 and PP8. (Please state which voltage). Now only 30/-, p.p. 7/6. Mk. 2 Model. This unique model has three outputs- -6 volts, $7 \frac{1}{2}$ volts and 9 volts and is ideal for cassette taperecorders, price only 55/-, p.p. 5/-. Extra lead with DIN plug for Cassettes 6/6, Mark III. This unit is the same as the Mk. 2 version above with the added refinement that all the outputs are STABILISED making the unit most suitable for running $\mathrm{Hi}-\mathrm{Fi}$ and Test Gear direct from the mains. Only 75/-, p.p. 5/-. All units available from dept PW, Globe Scientific Ltd, 22-24 Cawoods Yard, Mill St, Leeds 9.
(continued on facing page)

240 ELECTRICITY ANYWHERE

MOST BRILLIANT PERFORMANCE EVER from 12 volt Car Battery
BRILLIANT HEAVE DUTY 240 volt AMERICAN DYNANOIN With BIG 220 WATT OUTPUT. Marvellous for TELELIGHTING and AIL UNTVERSAI ACDC LIGHTLNG and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for Fluodous purchase of this model makes fantast ically low price possible.
ONLY £4.19.6 each plus $10 / 6$ delivery. C.O.D. with pleasure. MONEY BACK If not DELIGHTED Please send s.a.e. for full illustrated details (Dept. PW) STANFORD ELECTRONICB Rear Derty Road, North Promenade BLACKPOOL, Lancs.

BOOKS : PUBLICATIONS

AUDIO. America's foremost journal. Year's subscription 50/-. Specimen copy 4/6. All American radio jcurnals supplied-list free. American radio Jcurnals supplied-list free.
Willen (Dept. 40), 6la Broadway, London E. 15.

> SURPLUS HANDBOOKS
> 10 set Circult and Votes
> 6/8 p/p 6d 1155 set Circult and Notes H. R.O. Technical Instructions 38 set Technical I astructions 46 set Working Instructions 88 set Technical mistructlons BC. 221 Circult and Notes Wavemeter Class D Tech. Instr. 18 zet Circult anc Notes BC. 1000 (31 set) Clrcult and Notes CR.100/B.28 Circult and Notes R. 107 Circuit and Notes AR. 880 Inatruct on Manuál 8/8 p/p6d.
5/6 p/p 6d. 5/6 pip 6d.
5/6 p/p 8d. $5 / 6 \mathrm{p} / \mathrm{p} 8 \mathrm{~d}$
$5 / 6 \mathrm{p} / \mathrm{p} 8 \mathrm{~d}$. 5/6 p/p 6d. 7/-p/p 6d
5/8 p/p 6d 5/8 p/p 6d 5/6 p/p Bd. 5/6 p/p 8d. 10/-p/p ed 7/-p/p6d. 62 set Clrcult and Notes 1是-p/p $6 d$ Circult Diagren $5 /$ each post tree $/ \mathrm{p} 1118 \mathrm{pd}$ R.1224/A, R.1355, R.F. 24, 25 and 28, A.1134 T. 1154, CR. 300 , BC. 312 , BC. 342 , BC. 348 J, BC. 348 (E,M.P.), BC.624, 22 set .
> 52 set Sender and Recelver clrculte 7/0 post free
> Resistor cclour code Indicator $2 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$
> S.A.E. with all enquiries please.

> Postage rates apply to U.K. only.
> Mail order only to:
> INSTRUCTIONAL HANDBOOK SUPPLIES
> DEPT. PW, TALBOT HOUSE. 28 TALEOT GARDENS, LEEDS 8

PLEASE MENTION "PRACTICALWIRELESS" WHEN REPLYING TO ADVERTISEMENTS

NEW VALVES!
Guaranteed Set Tested 24-HOUR SERVICE

IRS	$4 / 8$	DL96	6/6	EY86	6/-	504	12/6
155	$4 / 8$	DY86	5/8	EZ80	$8 / 8$	PY32	9/6
1T4	$2 / 8$	DY87	5/8	EZ81	4/8	PY33	$9 / 8$
384	$5 / 9$	EABC80	6/9	KT81	8/8	PY81	51-
3 V 4	$5 / 8$	EbC41	8/-	N78	14/6	PY82	4/9
524G	816	EBF80	6/9	PABC80	818	PY83	6/8
6AQ5	$4 / 8$	EBF89	5/9	PC88	9/8	PY88	6/-
6 L 18	61-	ECC81	8/0	PC88	9/8	PY800	6/6
$12 \mathrm{K8C}$	7/-	ECC82	4/8	PC87	7/8	PY801	6/6
20F2	18/-	ECC83	4/9	PC900	$81 /$	R19	8/8
30 Cl 18	$8 / 9$	ECC85	4/9	PCC84	5/8	U25	12/9
$30 \mathrm{FL1}$	$12 / 8$	ECH35	5/8	PCC89	0/8	U26	11/8
30 P 4	11/6	ECH42	9/9	PCC189	9/6	U191	12/8
$30 \mathrm{P19}$	11/6	ECH81	5/8	PCF'80	$8 / 3$	Uabcb	\%/9
30PL]	12/8	ECL80	6/3	PCF82	6/9	UBC41	7/6
CCH35	$9 / 8$	ECL82	8/8	PCFB01	6/9	UBF88	6/3
CL33	$18 / 8$	ECL83	8/8	PCF805	819	UCC84	719
DAC32	8/9	ECL86	$7 / 6$	PCL82	$8 / 6$	Ucces	6/-
DAF91	$4 / 8$	EF39	3/6	PCL83	$8 / 8$	UCF80	8/-
DAF96	5/11	EF80	4/9	PCL84	71-	UCH42	9/6
DF33	$7 / 6$	EF85	$51-$	PCL85	8/-	UCH81	8/-
DF91	$2 / 8$	EF86	8/3	PCL86	81-	UCL82	6/9
DF96	8/11	EF89	4/8	PFL2001	12/-	UCL83	$9 / 8$
DK32	$8 / 8$	EF183	5/9	PL36	8/3	UF41	9/6
DK91	$4 / 9$	EF184	5/8	PL81	71	UF89	5/11
DK96	$6 / 6$	EL33	8/3	PL82	$5 / 9$	UL41	$8 / 9$
DL35	$4 / 9$	ELA1	$9 / 8$	PL83	61-	UL84	6/9
DL82	5/8	EL84	4/6	PL84	61-	UY41	8/6
DL94	5/8	EY51	6/8	PL500	12/-	Y 85	6/8

GERALD BERNARD 83 OSBALDESTON ROAD STOKE NEWINGTON
 LONDON, N. 16

Abstract

\section*{AMPLIFIERS}

Bsar3. low push-pull output. TW9g output trans. Four valve. Full chassis mounting. New and toxed. Complete with circnit drawings. 28.10.0. BSART. 100 w 88AR7. lo0W output. Three valve. TW132 output trans. Belemmounting. New and boxed Complete with circuit drawings. 22.10.0. P. \& P. 10/-

JUST RELEASED R.A.F. Recelver Type R3673. Details on request. Mixer Units Type 18. H.F., M.F., L.F. Valve V885. 10/-. P. di P. $2 / 6$ Micro-Ammeters for Instrument Mounting, etc. $0-100 \mathrm{~mA} .30 /$. P. \& P. $2 / 6$. O-100mA. $30 /$-. P. \& P. $2 / 6$ Micro-Ammueters Type Y. $0-100 \mathrm{ma}$. Heavy duty in case complete with leads, 23. P. \& P. $5 /-$ Flexible Metal Tubing. Galvanised. Watertight. $3 \mathrm{E} /-100 \mathrm{ft}$. P. \& P. 7/6. ELECTRO-METHODS. Low Inertia Motor 24 V d.e. 2,000 r.p.m., $20 /$-. P. \& P. $2 / 6$

CHABSIS UNIT. 7 valves ECC82 (3), EB91 (3), 6 F33 (1). 45 Capacitors. Resistora, etc. Valve base and cans, $20 /$-. P. \& P. $2 / 6$. GSTR073. Pri. 230V. Sec. 35 V (0.5 A), $6.3 \mathrm{~V}(2 \mathrm{~A})$ $225-0-225 \mathrm{~V}(27 \mathrm{~mA})$, oil flled, $25 /-\mathrm{P}$. \& P. $5 /-$ BET R009. Pri. 230V. Bec. $0-50 \mathrm{~V}(50 \mathrm{~mA})$, $4 \mathrm{~V}(1 \mathrm{~A}$ $6 \cdot 3 \mathrm{~V}$ (8A), 25/-. P. \& P. $8 /$-. 1,000 Transformery In etock. 1,000 Transformery in stock. CAPACITOR8. 30 assorted 0.01 raF to 1 mF (our selection), 10/-. P. \& P. $2 /$ CABLE. BACOF ($100 y$ d. new) with drum assembly TRST INSTRUMENTS, ETC. S.A.E. FULL LIST. STATUS SUPPLIES STATUS EOUSE, WILEINSON AVE., BLACKPOOL

SPECIAL FRINGE AREA
 B.B.C.- 2 \& COLOUR TV AERIAL

国 $4+H H H H H \begin{gathered}\text { Unbeatable Offer } \\ \text { ONLY } 45 /-\end{gathered}$(Carr. $5 /$-)
For loft or roof fixing. Complete with mounting arm. State Channel required or nearest transmitter. Hundreds sold. Special low-loss co-axial cable $2 / 3$ yd. Socket $2 / 6$.

SPEAKER BARGAIN!
Famous English $12^{\prime \prime}$ bigh flux, heavy cone 10 watts speaker with built-in tweeter (excellent bass response) 15 ohms. (P. \& I. 5/6) 35/-
ELECTRAMA
Dept. PW84 WEST STREET, EASTBOURNE

PADGETTS RADIO STORE

OLD TOWN HALL. LIVERSEDGE, YORKS.

Telephone: Cleakbeaton 2886

SPECIAL OFFER

INDICATOR UNIT TYPE 28 Size 12 in . x 91 n . x 9 in .
8iln. C.R.T. type CF1526, gBनG Valves.
Clean condition. Complete but not tested 32s. 8d. pius P.P. 10 /

Abstract

NEW BOXED REBUILT TV TUBES Type MW48/69. Top grade, not a second. 12 months guarantee, $47 /-$. Carriage $12 /$ - Reoiaimed TV Tubes with six months guarantee. 17 in . type AW43/88, AW $43 / 80,40 /-, \quad$ MW'43/69, $80 /-.14 \mathrm{n}$. typer 17/-. All tubes 12/-carriage. Speakers Removed trom TV Sets. All PM and 3 ohms. 8 in. round and $8 \times 5 \ln$., $6 / 6$. Post and Packing $3 / 6$. 6 ln . round $3 /-\mathrm{P} / \mathrm{p} 9 / 2.6$ for $84 / \mathrm{F}$ poast paid. 6 I 4 ln ., 8/F, P/p $3 /-.6$ for $84 / /=$ post paid sin round $8 /-P / p$ $8 /-$, P/p $3 / \% .6$ for $84 /-$, post paid. Sin. round, $8 /-, P / p$

 P/p 3/-. 6 for $30 /$-, post paid.LUUMERATOR AND SECANT GEAR UNIT Delight for the model maker 12s. 6d, plus P.P. $8 / 6$.
Ontested Pye, K.B., R.D.G., Ekoo 17in. TV Sets. Busin 17in. TV sets $50 /=$ each, carriage $15 / \%$. Passenger train double rate.
VCR97 Tube complete with mu-metal screen 10/-, p. d p. 3/-
Top Grade Mylar Tapes, 7in. Btandard, 11/6, 7in. Long Play, 14/-, 7in. Double Play, 19/6, 8 in . Standard 7/0, 8 In . Long Play, $10 / \mathrm{t}$, plus post on any tape $1 / 6$.

VALVE LIST

Er. Equipment. 3 months' guarantes
Single Valves Post 7d.. over 3 Valves p. \& p, paid
10FI, EF80, EH91, ECL80, EF50, PY82, PZ30, 20 P3. All at 10/- per dozen, post paid.

ARP12	1/6	PLa6	51-	6K25	5/-
EB91	9 d.	PL81	4/-	6 U 4	81-
EFB5	8/-	PY33	6/-	6V6	$1 / 9$
EBF80	3/-	PY81	1/8	6 P 28	51-
ECC81	$31-$	PY82	1/8	1 C 20	$81-$
ECC82	8j-	P230	51-	10P15	$8 / 6$
ECC83	4/-	R19	8)-	185BT	8/6
ECL80	1/8	U25	5/-	$20 \mathrm{D1}$	8/-
EF60	1/-	U191	51-	20 Ll	80-
EF80	1/8	U281	$51-$	20 Pl	81-
EF91	9 d.	U282	51-	20 Pl	${ }_{8 / 6}$
EY51	2/8	U301	$51-$	$30 \mathrm{P9}$	8/6
EY86	$51-$	U329	$51-$	30 PLL	81-
KT36	Bj-	U251	$51-$	$30 \mathrm{P4}$	81-
PCC84	2)-	U801	8/6	30 Pl 12	${ }^{\text {B/- }}$
PCF80	$2 /-$	$8 \mathrm{B8}$	1/8	30FS	2/0
PCL82	4/-	6BW7	2/6	30 FL 1	8/-
PCL83	5)-	8K7	1/9	6/30L2	5/-

with a Dewtron "NEW DIMENBIONg" 3Dimensional effects amplifler. Gives Big Hall Stereo effect to any radio, tape, etc. PLUS tully adjustable echo, Flbrato and tone. 9 volt model, 8 gns. Speakers, 25/- extra. 6/12V car model 10 ens. Incl. speaker. Poat and ins. 8/- either model. Write now-right now.
D.E.W. LTD.
P.W., RINGWOOD ROAD, FERNDOWN, DORSET

Hesd Office and Warehouse 44A WESTBDURNE GROVE LONDON W2 TeI. PARK $5641 / 2 / 3$

Z \& I AERO SERVICES LTD.
Please send all oorrespondence and Mail-Orders to the Head Offlce When sending cash with order, please include $2 / 6$ in ε for postage and handling Minimum Charge $2 /$-. No C.O.D. orders accepted.

Retail Shop
85 TOTTENHAM COURT ROAD LONDON W1
Tel. LANgham 8403
Open all day Saturday

INTEGRATED CIRCUIT AMPLIFIERS

RCA Type CA 3020
Integrated Clreuit Audio Ampliner in TOS encapsulation (rize of smain ransiator), equivalent to seven n-p.n
sillcon trangixtors, 3 dlodes and 11 resiators. Power output
 voltage from 3 to 9 volts.
general Electric type pazza
Epoxy moulded in-line package equivalent to aix $n \cdot p \cdot n$. transatoors, one diode and six resistors. It will provide out22 volu.
$40 /$-plus $2 /$ p.p. The construction of amplifer using the above integrated clrcuits had been deacribed in March and the $1 \mathrm{C}^{\prime}$ and no
P.W. please note that we only supply other parts are supplied by os.
special offer of silicon rectifiers 1N5054: 1,0n0 p.i.v., I-3 Amp. mirniature wire ended epoxy encapsulated.

LOW and MEDIUM CURRENT THYRISTORS

$3 / 40,400$ p.i.v. 3 amp $3.0 \mathrm{p}, \mathrm{at} 20 \mathrm{~mA}$ max.

3.0 V at 20 mA max. . BLUE BPOT, 200 p.i.v. B amp, atud mounted Gate voltage $3 \cdot 25 v$. at 120 mA max.
GREEN SPOT. 400 p. $1 . \mathrm{v} .5 \mathrm{mmp}$, stud raounted. Gate voltage $3 \cdot 25 \mathrm{v}$. at 120 mA max.............. $17 / 6$

HIGH CURRENT THYRISTORS

[^8]
AVALANCHE SILICON RECTIFIERS

DRY REED INSERTS

Glass dry reed lnerts approx. In. dia. X lin. long with axial leais. One "make" contact of 100 mA caparity at 30V. Can be operated by permanent magnet or $30-60$
Amp-turns relay coils. PRICE $18 /-$ per doz. port free.

CURRENT PRODUCTION CATHODE RAY TUBES

2APl-2in. screen. EHT soo to 1000 y . Typich sen-

 Overail length 10tin. Sin screen, with PD.D.A: EHT ${ }^{550}$
 Al the above tubes have if-3V heaters and are suitable for general oscilluscope to use.

GERMANIUM POINT CONTACT DIODES

CG4E $=$ CV4482/-; OA5 8/-;OA64/-:0A74/-;OA472/6; OA70 $2 /-;$ OA79 $2 /$ -
OA91 $2 /$ OA95 $2 /$.

OUR NEW 1968/1969 CATALOGUE
 IS NOW READY

THE TECHNICAL INFORMATION SECTION HAS BEEN
FURTHER EXPANDED TO INCLDDE MORE DETAILS

TRANSISTORS

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d, unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

$\left.\begin{array}{l}\text { The Strand Amplifier } \\ \text { The PW Signal Generator }\end{array}\right\}$	(Oct. 1962)	5/-	Transistor Radio Mains Unit $7 \mathrm{Mc} / \mathrm{s}$ Transceiver	(June 1964)	5/-
$\left.\begin{array}{l}\text { The Berkeley Loudspeaker Enclo- } \\ \begin{array}{l}\text { sure } \\ \text { The Luxembourg Tuner }\end{array} \text {.. } \\ \text {. . . }\end{array}\right\}$			The Citizen (December 1961)		5/-
	(Dec. 1962)	5/-	The Mini-amp (November 1961)		5/-
			The Beginner's Short Wave Sup	Dec. 1964)	5/-
$\left.\begin{array}{lll}\text { The PW Britannic Two } & \text {. } & . . \\ \text { The PW Mercury Six } & \text {.. } & . .\end{array}\right\}$	(May 1962)	6/-	The Empire 7 Three-band Recei	y 1965)	5/-
Beginner's Short Wave Two S.W. Listener's Guide	(Nov. 1963)	5/-	Electronic Hawaiian Guitar (June		5/-
			Progressive SW Superhet (February		5/-
The Celeste 7-transistor Portable	(June 1963)	5/-	Beginner's 5-Band Receiver		
The Spinette Record Player	(June 1963)	5/-	Home Intercom Unit	(Dec. 1966)	5/-

> PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL $*$ RADIO., TV OR AUDIO EQUIPMENT.

PRACTICAL WIRELESS

query service

Before using the query service it is important to read, the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

OUERYCOUPON

This coupon is available until 10th January, 1969 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, JANUARY 1969

IIIFI equipment to suit EVSRTPOCKEI

Ask for Hi-Fi- Stock List Leaflet 16.17

Fully Iustroted CATALOcuas

COMPLETELY NEW 9th EDITION (1968) The most COMPREHENSIVE-CONCISE-CLEAR -COMPONENTS CATALOGUE

Complete with $10 /$ worth discount vouchers FREE WITH EVERY COPY.

* 32 pages of transistors and semi-conductor devices, valves and crystais.
* 200 pages of components and equipment.
* 65 pages of microphones, decks and $\mathrm{Hi} \cdot \mathrm{Fi}$ equipment.

6,500 ITEMS

303 Edgware Road, London, W.2. Mail Order Dept. all types of Components, Organ Dept. (01) 723-1008/s 309 Edgware Road, London, W.2. High Fidelity Sates, P.A. and T'est Equipment, Record Decks(ol) 723-0933

[^0]: Derless
 PEERLESS FABRIKKERNEA/S•2860Sø日ORGKD日ENHAVN

[^1]: Send your free bro. CHURE \square or Send \square I. (how many) bays of steel shelving © $£ 3.15 \mathrm{~s}$. in green $\square \square$ grey (tick which)

 Name.
 Address
 Dept. PW Eagle Steelworks, Heywood, Lancs.
 Tel: 69018, London: 25-27 Newton St., W.C.2.
 Tel: 01-405 7931

[^2]: All correspondence intended for the Editor should be addressed to : The Editor, 'Practlcal WIreless'", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams; Newnes Rand London. Subscriptlon rates, Including postage: 42 s . per year to any part of the world. (C) George Newnes to the Berne Convention and the U.S.A. Reproductions or Imitations of any of these are therefore expressly forbldden.

[^3]:

[^4]: Wrap a cod and six-pennorth in it

[^5]: If required an attrac tive wood cablnet with Satin Teak vence finish can be sugplied for any model. 70 s

 Please send a stamped addressed envelope for full descriptive details of above units, also TUNERIAMPLIFIERS STEREO and MONO.

 Prices from
 AVAILABLE FROM YOUR LOCAL HI-FI DEALER
 Wholesale and Relaif enquiries to

[^6]: HAMMERED ENAMEL MAKES FANTASTIC DIFFERENCE TD PANELS

 - Say hundreds of enthusia like mafte on wood and metal. No underooat. Air
 dries 15 min. to hard tio urers

[^7]: WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186 .
 WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

[^8]: CR80-021A, 80 amps, 26 p.i.
 CR 100-201A, 100 amps, 200 p.j.s.
 CR100-215A, $100 \mathrm{amps}, 250$ p.i.v.
 CR100-351A, 100 amps, 350 p.i.v.
 CR100-401A, 100 ampa, 400 pi.v.
 CR100-501A, 100 amps, 300 p.i.v.

