

SOLDERING EQUIPMENT

FOR CATALOGUES APPLY DIRECT
ADCOLA PRODUCTS LTD. ADCOLA HOUSE GAUDEN ROAD LONDON, S.W. 4

Telephone: 01622 0291/3

PHOTOELECTRIC KIT

COSTENTA : P C. Chassis Roards, Cherainals, Etching Hanmal, Infra-Rell Photo-

 momblated-tight queration.

12 PHOTOELECTRIC PROSECTS. (1) Bteady-Light whato-Switeh/Alarm. (2) Moilulated-Light Alarin, (3) Long-Range siray-Light Alarm. (4) Relay-legu Alarm (5) Watectronic Profectur Modulatot (9) Nains Darm. (7) Projentor Larop Statitiser Switch. (11) Autumatic Ileallamp Dipper. (12) Super-Sensitive Alarm.

INVISIBLE BEAM OPTICAL KIT

Everything needed (excepl plywood) for huitding: I Invisible-Beam J'rojectot and 1 Photocell Receiver (an illusirated). Enllable for all Photoelectrie Burglar Alarms, Chuntwre, Door Upeners, "tc. CONTENT's: 2 lenses, "' chirrurs. + trage data, etc. Price 19/6. Pustage and Paek Jamp hokser, huitding plans, performance data, etc. Price 19/6. Pustage and Paek
$1 / 6$ (U|i). Conmonwealth: Suriave Mail $2 /$;- Air Mail $8 /-$
JUNIOR PHOTOELECTRIC KIT
Yersatile Invisible-beam, Relay-less, Ateady-light Photo-Switch, Burglar Akarm, 1 bor Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Nensitive Phototransistor, 3 Transistors, Chassis. I'last Cass. Itesinturs. Screws, etc. Full Bize Plans. Instructions, Data Bleet " 10 Advanced Price 19/6. Postage a
JUNIOR OPTICAL KIT
CUNTENTS: 2 Lenses. Infra-red Filter, Lampholder, Bracket, Plans, etc. Fivery thing (except plywod) to build 1 miniat ure insisible beam projector and plotwell recejver P'rice 10/6. Postage and l'ack. 1/li (K). Commonwealth: Surface Mail $2 / \sim$; Air Mail $4 /$
YORK ELECTRICS, 333 York Road, London, S.W. 11
Send a S.A E. for full drtaits, a brief description and Photographs of all Kita and all 52 Kadio. Etectronic and Photoelectric p'rojects Assembled.

JACKSON

Precision built radio components are an important contribution to the radio and communications industry.

SL 16
DRIVE

A general purpose slide rule Drive for F.M./V.H.F. Units, short-wave converters, etc. Printed in two colours on aluminium, with a $0-100$ scale and provision is made for individual calibrations. Complete with bronze escutcheon and glass.

It's reliable if it's made by JACKSON! MADE IN ENGLAND
JACKSON BROS. (LONDON) LTD.
Dept. P.W., Kingsway-Waddon, Croydon, CR9 4DG Telephone 01-688 2754-5 Telegrams Walfilco, Croydon

LASKY'S HIFI SPECIAL

TRIO
Model TK-500E SOLID STATE FM MULTIPLEX STEREO TUNER

Anothergreat Lanky'a apecial purchase-the TK-500E is a truly outstanding 21 transistor FM Multiplex Stereo Tuner by 'TRIO-Japan's foremost producer of transistorised Hi-Fi equipment. The extremely sophisicated circuitry of the unique Thio features including Autimatic electrical awheration noise muting circuit and mono lankes with stere indicator beacon circuit eliminates secondary signal and -beat" interference even in fringe area reception Nuvistor cascode front end and 5 IF stages assure the highest sensitivity reception Pinpoint meter tuning bow impedance steren, mono and tape outputs. BRIEF SPECIFICATION: 21 transistors, 15 Germantum and 8 silicon diodes and 1 Zener diode. 3 valves. Frequency range: 88108Mc/s. Sensitivity: $0 \cdot 8 \mu A$ (20 dB quieting with 72Ω antenna). Output: 2 V . Frequency response: $20-20,000 \mathrm{c} / \mathrm{s} \pm \mathrm{ldB}$. Channel separation: better than 35 dB . Distortion ess than $0-6 \%$ at $400 \mathrm{c} / \mathrm{s} 100 \%$ mod. Capture ratio: 2 clB . 8 uperbly styled and inished hammer enamel and brushed alloy cabinet, size $15 \frac{1}{4} \times 12$
operation. Today's comparative value over 865 .
Lasky's Price 38 Gns. Carriage and Packing 12/6.

TRIO

Model TK-150T SOLID STATE STEREO AMPLIFIER

Abstract

Trin equipment is refor quality-now this amous eompany break the price barrier new budget priced Hi-Fi unit. The TK. Hi.Fi unit. The Th. compact 19 transistor and 8 diode stereo mplifier giving 40 watts music power, 13W HMB power per provided for Magnetic pick-up ($2 \cdot 1 \mathrm{mV}$). Tuner (130 mV), and 2 Auxiliary Inputs (130 mV each) for use with another Tuner or Tape Recorder, sep. input for tape recorder (130 nV). Built-in tape monitoring circuit. Outputs tor speakers, stereo headphones, tape play, 00 A.C. power outlet also provided. Controls include: Volume ($L \& R$), bass, treble, input selector power on/off, loudness, mode (stereotmono), tape moner play the last better than $65 d \mathrm{~B}$, Tuner/Aux. 1 and 2 -better than RTAA equalisation, Built -ith power ransistor protection circuit. Power mily $10!\times 98 \times$ 4 ia. leark matit finish control panel with silver anodised trim and black/silver controls Complete with detalled instruction manual and circuit data. Lasky's Price $£ 35$ Carriage \& Packing 8/6.

HI-FI BOOKSHELF SPEAKER BARGAIN-FOSTER FCS-166 This extremely high quality bookshelf speaker system by the worla wopfer and cone tweeter in a sealed inflite baffe enclosure with handsome oiled walnut finish. The performance of the FCS-166 is superior to many larger and far more expensive unita and at Lasky's epecisl purchase price is quite without equal! SPECIFICATION: Air suspension type $6 \frac{1}{i n}$. bass-midrange wooter with rolled cloth edge. tim. 1fF cone tio tweeter. on impedance. Cabinet construce ted from sin laminate with oiled wainut veneer Anish; size $139 \times$ ain. square. Dark green woven acoustic ganze. Phono input at rear.
Lasky's Price £9.19.6

Lasky's Price for 2-£18

Branchos
 207 EDG WARE ROAD, LONDON, W: 2
 Tel: 01-723 3271
 Osen all div Saturday, erty cleaing $1 . \mathrm{pm}$. Thuschay
 33 TOTTENHAM CT. RD., LONDON. W. I Tél: 01-636 2605 Open all day. a a.m. -8 p.m. Mondesy to Saturday 152/3 FLEET STREET, LONDON, E.C.4 Tel. FLEat St 2833 Open all day Thurstoy, early rlosing 1 p.m. Saturday

LASKYS HI-FI SPECIAL

NEW
STEREO MOVING MAGNET CARTRIDGE - Model AD-76K -GREAT PRICE BREAKTHROUGH
Lasky's are first again with this new bigh compliance moving magnet stereo cartridge that really breaks the quatity/price barrier. The performance of this cartridge is equal the others latest microgroove recordings and is suitable for use with all the latest high gensitivity amplifters. APECIFICATION: Diamond Stereo LI stylus. Compliance $10 \times 10^{-8} \mathrm{~cm} / \mathrm{dyne}$. Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$. Channel separation 20 dB . Output 7 mV . Tracking pressure 2 grammes $\pm 0 \cdot 5 \mathrm{grm}$. Standard tin. mounting.
Total length (inc, pins) $1^{3 / 1} / 1$ in. Replacement Diamond stylus Total length (inc. pins) $1^{3} / \frac{1}{1}$ in. Replacement Diamond stylus
 Lasky's Price 85/- post $2 /$.

PACKAGE DEALS

Lasky's money saving Package Deal Plan guarantees you a substantial cash saving when you buy a complete system plus the assurance that each item has been carefully chosen for comprising equipment on this page.
PACKAGE DEAL A
TRIO TK-500E FM \&tereo Tuner . 838.18 .0
TRIO TK-150T Stereo Amplifier. 885.0 .0
2 FOSTER FCS-166 Speaker systems . \quad £18.19.0
GARRARDAT.60 Mk II 4 speed autochanger. $\quad \$ 18.19 .8$
Base and cover for AT. $60 . ~$
TOTAL LIST VALUE $\$ 181.17 .8$
Lasky's Package Price £106
C. \&
$301-$
H.P. Terms: \&26.10.0 dep. 12 monthly payments of 87.9.1. Total H.P.P. \&15.18.8 PACKAGE DEAL B

GARRARD AT. 60 Ms 11, 4-speed autochanger
Base and cover for AT. 60
TOTAL LIST VALUE
Lasky's Package Price $£ 72 \underset{\substack{\text { c. } \\ 30 /-}}{ }$
METER BARGAIN
Model C-1051
A completely new design 20,000 O.P. 7 . pocket mnltimeter with mirror acale and built in thermal protection circuit. Kxceptionally iarge easy to read meter with D'Arsonval movement. Colour coded scales. Single positive click-in, recessed selection
switch for all ranges. Ohms zero adjustment switch for all ranges. Ohms zero adits $0-6 \cdot 30-300-1200 \mathrm{~V}$ a Range spec.
$10 \mathrm{~K} / \mathrm{ohma} / \mathrm{V}$. volts: $0-6 \cdot 30-300-1200 \mathrm{~V}$ volts: $0-3-15-150-300-1 \cdot 2 \mathrm{KV}$ at $20 \mathrm{~K} /$ ohms $/ \mathrm{V}$. Resistance: $0-60 \mathrm{~K}-6 \mathrm{megs}$. DC current: 0-60 LLA-300mA. Decibels: $-20 \mathrm{dl3}$ to +17 lB . Hand calibration given extremely high standard of accuracy on all ranges. Uses
 Lasky's Price 75/- Post $2 / 6$

LASKY'S INCAPSULATED SOLID STATE MODULES

8 completery new apecial function circuit modules

 Size of each module only $2 k \times 1 \frac{1}{2} \times 3 \mathrm{in}$. Ready for immedlate use-just connect to power source (usually 9 V batt.), input and output. Incapsulated mothales full ins. Post $1 / 6$ each. E-1811 Phono Pre-amp Module-max. output $3 V$RMS, input 50 mV , input imp. $100 \mathrm{k} \Omega$, gain 28 dB RIAA compensation, PRICE 29/6 E-1312 Tape Head Pre-amp Module-max. output 3V RMs,' input 50 mV , 'input imp. E100k Ω, gain $2 \overline{5}\lrcorner B$ NARTB compensation. $\quad 4 \mathrm{~V}$ RMS, input 50 mV PRICE $28 / 6$ E1813 Microphone Pre-amp Module-max. output 4 V RMS, input 50 mV , input imp. 100k Ω, gain 28 dB , response $10-50 \mathrm{kc} / \mathrm{s}$. E-1314 Power Amplifer Modale-max, output 300 mW , Input imp. 1k Ω, gain 20dB,
responpe $50-10 \mathrm{ke} / \mathrm{s}$, distortion 3% at $200 \mathrm{n} W$. responae $50-10 \mathrm{ke} / \mathrm{s}, \mathrm{distortion} 3 \%$ at 200 nuw .
$\mathrm{E}-1815$ Eleotronic Organ (tone oscillator) Module-irequency $200-1000 \mathrm{c} / \mathrm{s}$, output 80 mW For use with teyboard, variable resistors and 8Ω speaker. c / s, output 80 PRICE $25 /$ E-1316 Morse Code Practice Oscillstor Module-frequency $400 \mathrm{c} / \mathrm{s}$, output 80 mW . For use
PRICE $25 /-$ with morse key and speaker. $400 \mathrm{e} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{g}$, tone freq. $400 \mathrm{c} / \mathrm{s}$. For use with any AM receiver. For pre with 6 V ,

High Fidelity Audio Contres

42 TOTTENHAM CT. RD. LONDON, W.
 Tel: 01-580 2573

 Open all des Thursday, early cloging 1 pm . Saturday118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01.7239789 Open all day Saturdsy, early closing 1 am. Thursdsy

TRANSISTOR POWER OUTPUT STAGE on P.C. Board (with diagram). EIjin. x $2 \mathrm{in} . x$ litn. hgh. Tested and working, OC71, OC8ID and $2 \times 0 C 81$ and Heat sinks. With Post pald $6 K$. Post paid. 6 K Log Pot + Dwitch 4/-. 8 in . x 2 i in . 35 ohm. Speaker 18/6.

1. W MAINS GRAMOPHONE AMPLIFIERS. EZ80, ECL82, O.1. Transformer (3 ohrn) Vol./On-off and Tone Control. Double wound mains transformer. $2 \mathrm{~g} \times 2 \mathrm{z}+\mathrm{in}$. $\times 2 \mathrm{c}$ in
 61 in . Speaker. ($52 / 6$ less speaker.)

NEW F.M. TUNER. Range 87 to 107 MIIz Attrac tively fintshed metal container with cast frout escutcheon. Case size 13 in . x \quad in. x 3 in. high Mains transformer. Metal Rectifier and Valves ${ }^{1}$ ECO85, EF89, EF80, ECC82 as cathode follow'er EM84 tuning lndjeator, $2 \times$ AF117 and 2 diodes paid and cart paid or with stereo Decoder. £22.10.0. Terms available this iten.

2I4WATT STEREO AMPLIFIER. Printed circuit. Separate power pack and separate control panel. Metal rectiner. ECC83 and 2-EL84. Negative feedback. Vol,, base treble each channel. Muting switch and on/off. Printed circuit $4 \frac{7}{3} \mathrm{in}$. $\mathrm{x} 4 \frac{3}{4} \mathrm{in}$., Powe Pack $7 \operatorname{lin} . x 4\{\ln . x 3$ in. and control panel 4 in . x bin., whth output transiormers for 3 -ohm speakers on power pack. $£ 5.10 .0$ ($7 / 6 \mathrm{P}$. \& P.)

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS - 2 or 4 TRACK

Chassis $12 \frac{1}{y} \times 5 \frac{1}{2} \times 4$ in. high Front panel "gold" finish-
$12, ~$ Record/Playback amp, asitch On/On-Tone; Vol./Mic.; Vol. Input: Monitor: Gpeaker
 EM84; ELs4; 6X4 Beparate рошer pack, 2 Track £8.19.6; 4 Track $£ 10.4 .6$ ($6 /$ post each) Rexine covered cabmet (tan) $15 \mathrm{k} \times 17 \times 9 \mathrm{lin}$. hlgh vith mloping front $\begin{aligned} & \text { for amp; com. } \\ & \text { plete } \\ & \text { two } \\ & \text { tweeter }\end{aligned}$ peakera, and apeclal adapting brackets for Mastavex Deck $85 / \mathrm{F}$ ($8 /$ - carr.) 3 speed Magnavox 4 trikt tape deelk, Type 363 e $£ 16.10 .0$, carr, paid $8 / \%$ ($8 /$ carr.) 3 speed "SUPER SIX" L.W. and M.W. TRANSISTOR RADIO KIT, Mark 2. Complete set
 Buperbet;
diode, etc.

SPEAKERS IN CABINETS. $20 \times 15 \times 6 \mathrm{lin}$. Fintsbed Vynair and Rexine, carious colours. With E.M.I. $13 \times 8 \mathrm{in} .3$ or 15 ohm speaker $90 /-$ - with 12 in . Elac 15 -ohm

RADIOGRAM CHASSIS qnused but very slightly tarnished. Size 13 是 x $5 \frac{1}{2}$ x 7 in . Lial 13 x ing. gold and brown. Controls beneath dial, Tone, Volume/on/off, MW/LW Gran Tuning Ferrite rod aerial. Valves UY8s rect., UCL82, U1BF89, UCH81.
Limited quantity. 87.7 .0 , carr. paid.

EX GOVERNMENT AVO METER, Model 7. Excellent condition, fully checked, with leather carrying case. List price new over t29. Our price £18. Carr. paid

CLEAR PLASTIC PANEL METERS D.C. Type KA/38C. Tin. su. 50 microa 30/CLEAR PLASTIC PANEL METERS D.C. TYpe KA/38C. Tin. sq. 50 m/croA 30/-
$50 \cup$ IticroA $27 / 6 ; 1 \mathrm{~mA}(\mathrm{~B}$ meter) $27 / 0 ; 5 \mathrm{~mA} 27 / 6 ; 100 \mathrm{~mA} 25 /-; 300 \mathrm{~V} 27 / 6$. Post $1 / 6 \mathrm{~d}$

6 PUSH-BUTTON STEREOGRAM CHASSIS

M.W.; S.W.1; B.W.2; V.H.F. Gram: Stereo Gram Two
separate channels for Stereo gram with balance control Also operates with two speakers on Radio. Chassis size: $15 \times 7 \times 61 \mathrm{in}$. high. Dial silver and black $15 \pm 3 \mathrm{in} .190$ 550M; 18-51M; 60-187M VHF 86-100 Mc/s. Vaives ECL88, EM84, EF89, 2 Price E19.19.0, carr. pald or \&8.13.0 deposit and 5 monthly paymentes of $58 / 6$. Total II.P price £20.15,6. Cream moulded cscutcheon included.

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. from station and Buses). FULL GUARANTEE. Adershot 22240 CLOSED WFDNEBDAY AFTERNOON.

ALL ITEMS FULLY BUILT UNLESS OTHERWISE STATED

MARTIN IS HIGH-FIDELITY

The first and still the most satisfactory unit assembly system

MARTIN HIGH-FIDELITY AUDIOKITS cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups-escutcheon panets to suit the arrangement you choose. Tuner is sty/ed to match.

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated module-type units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims tor years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification. When new units

AMPLIFIER SYSTEMS
UNITS INCLUDE
5-stage input selector
霜 Pre-amp tone controls

- 10 watt amp. (3 ohms)
- 10 watt amp. (15 ohms)

E Mains power supply

Trade enquiries invited
154/5 HIGH STREET. BRENTFORD MIDDLESEX. /SLeworth 1161/2
are introduced, they are designed for adding to those produced so far, making it easy and economical to extend and Improve your existing Martin Audlokit set-up. Anyone can assemble Martin equipment with ease and the foreknowledge that when finished, he will be in possession of a true hi-fi assembly of the very best kind which looks and sounds completely professional in every way-and MARTIN AUDIOKITS remain as ever, the units that have true add-on ability.

VALUABLE NEW HANDBOOK FDEETO AMBIIIOUS
 ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.
WHICH OF THESE IS
YOUR PET SUBJECT?

RADIO ENGINEERING
Advanced Radio - Gen Advanced Radio - Radio \& TV
Radio - Rall Radio - Ralio \& TV
Servicing - TV Eng. Servicing - TV Eng. -
Telecommunications-Sound Telecommunications- Sound
Recording - Anomation Recording - Allomation -
Practical Radio - Radio Practical Radio
Amaterrs' Exam.

ELECTRICAL ENG. Adranced Electrical Eng. Gen. Electrical Eng. Installations - Drattghtsmanship - Illuminating Eng. -Refrigeration - Elem, Electrical Science - Electrical 'Supply - Mining Elec. Engineering.

CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. -Hydrawlics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG. Advanced Electronic Eng. Gen. Elecfronic Eng. Applicd Electronics - Prac. Electronics - Radar Tech. Electronics - Radar Tech. -
Frequency Modulation Frequency
Transistors.

MECHANICAL ENG.
Advanced Mechanical Eng.Gen. Mechanical Eng. Maimtenance Eng. - Diesel Eng. .-. Press Tool Design Sheet Mctal Work - Welding - Eng. Pattern Making Inspection - Draughtsman ship - Metallurgy - Pro duction Eng.

AUTOMOBILE ENG.
Advanced Auromobile Eng.Gen. Automobile Eng. Autonobile Maintenance Repair - Auromobile Diesel Maintenance - Antonobile Elec. Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S.r M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& ${ }^{\circ}$ GUILDS, GEN. CERT. OF EDUCATION, ETC.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to qualify for rapid promotion.
\star HOW to put some letters after your name and become a key man ... quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
\star HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT
 INCLUDING TOOLS

Basic Practical and Theoretic Courses for beginners in Radio,T.V., Electronics, Ete A.M.I.E.R.E. Cty \& Guide R.T.E.B. Certificate P.M.G. Certificate Practical Radio
Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

The specialist Elecronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ash for derails.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without obligation.

British Institute of Engineering Technology453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE
: TO B.I.ET. 453A, ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE
ALDERMASTON, BERKSHIRE 3d. stamp if posted in
an unsealed cnvelope.I
Please send me a FREE copy of "ENGINEERINGOPPORTUNITIES." I am interested in (state subject,exam., or career).
NAME
1 I

I OPPORTUNITIES." I am interested in (state subject, exam., or career).
\squareI
IIII
ADDRESS
ADDRESS
1IF
THE B.RE.T. IS THE LEADING INSIITUTE OF IIS KIND IN THE WORLD

SENSATIONAL R．S．C．HIGH FIDELITY STEREO PACKAGE OFFERS

＂PACKAGE 3 ＂ 30 WATT SYSTEM

\＆Goldring Transcription Turntable on Plinth \＃Shure Magnetic Pick－up Cartridge太 Super 30 Amplifier in Teak ven
＊Pail of Stanton Loudspeaker Units special inclusive price Fully wired units ready to＂plug－in＂Saving substantially on total cost

＂PACKAGE 2＂ 30 WATT SYSTEM

\star Garrard SP2s Mk II Turntable on Plinth ＊Goldring CS90 Ceramic P．U．Cartridge ＊Super 30 Amplifier in Teak veneer housing \star Pair of Stanton Loudspeaker Units Special inclusive price．Fully wired
units ready to＂plug－in＂．Saving $\mathbf{G n s}$ ． units ready to＂plug－in＂．Saving Carr．35／－
substantially on total cost．
＇PACKAGE 1＇ 13 WATT SYSTEM
＊Garrard SP25 Mk II 4 speed Player Unit ＊Goldring CS90 Ceramic P．U．Cartridge ＊TA12 Amplifier in Teak veneer housing ＊Pair of Dorset Loudspeaker Unit Special inclusive price．Saving $£ 9$ on total cost．Perspex cover $59 / 9$ extra．$\quad 47 \frac{1}{2}$ Gns．
Or Dep．$\& 8.0$ and 9 mthly pmts Or Dep． 88.7 .0 and 9 mth ．
$\mathbf{8 5 . 3 . 0 \text { ．（Total }} \mathbf{~ £ 5 4 . 1 4 . 0) .}$

EXTREMELY ATTRACTIVE AVAERMS

AND VERSATILE PLINTHS
finished in Satin Teak veneer． with satin chrome handle
RECORD PLAYING UNITS
Money saving units．Ready to
RP2 plug into Amplifier or
Sisting of Garrard SP25 Mk I （with heavy turntable）fitted
Goldring Cs90 high compli ance ceramic Stereo／Mono cartridge with diamond sty－ lus．Mounted on Plinth Pers－
pex Cover 3 gns.
19 Gns RP3 extr Goldring Lenco GLbt Trans

 AUDIOTAINE PLINTHS ${ }_{\text {for }}$ 59／9
3000，AT6．ATE0，SP25 or Gold ring GL68．Available with clear Perspex co－
ver as ill．Inc．Carr．
\＆．19．9 ver as ill．Inc．Carr．Ev． at 3 Gns．Limited number of at 3 Gns．Limited number of covers slightly damaged but
repaired by makers． $39 / 9$
PHONE AMPLIFIERS Speak and listen with both
hands free．Standard． $59 / 9$
dry batteryoperated． dry battery operated

R．S．C．TFM1 Total cost of parts with detailed wiring diagrams
tions． $12 \frac{1}{2}$ Gns． Carr $12 \frac{1}{2}$ Gns． 164 gns．Or in Teak finished cabinet as illustrated 19% pns． Terms：Deposit $\boldsymbol{£ 5}$ and 9 monthly pay－

Record
Playing
laitsin units． fuish
cut for

Matched for optimum performance and comparing favourably with equipment of almost twice the cost．Send S．A．E．for leaflet
RECORD PLAYING TURNTABLES COMPLETE Fully wired．Fitted phono plugs and mounted on base－ $17 \frac{1}{2} \mathrm{Gns}$ ． SP25 MkII with Goldring CS90 Cartridge．
Goldring GL68 with CS90 Cartridge．．．．．．

IB WATTT STITRED AMPUITITF FULIY TLANSISTOIISED，SOLID STATE CONSTIUCTION
IIGII FIDELIIY OUTPUT OF 65 WATTS PEF CIIANNEL
Designed for optimum performance Designed for optimum performance
with any crystal or ceramic Gram
P．U．cartridge，Radio tuner．Tape re－
corder，Mike，etc，\star 3 separate
Switched input sockets on each chan－
nel \star Separate Bass and Treble con－
trols \star Slide Switch Ior mono use \star $200-250 \mathrm{v}$ ．A．C．mains ohms \star Frequency
Response $30-20,000$ c．p．s．-2 dB ＊Harmonic Distortion 0.3% at 1000 100 mV （4） 2 mV ＊Handsome brushed silver finish Facia and K nobs Complete kit of parts with full wiring diagrams and in－1
structions．Factory built with 12 mth gntee 15 GNS．Or Deposit 24.16 .0 and 9 mthly pymts，29／－（Total 17 GNS．）．GNS．

$6(8) d 8$AUDIOTRINE HI－FI SPEAKER SYSTEMS
Consisting of matched $12 \mathrm{in} .12,000$ line 10 watt 15 ohm hith quality speaker，cross－over unit and tweeter． sure surprisingly realistic reproduction． 5 Gis．

HI－FI＇SPEAKER ENCLOSURES Teak veneer finish
Modern design，Accoustically lined and ported．
JE8 Size $16 \times 11 \times 9$ ．Gives pleasing results 4 Gns．
SE8 For optimum performance with any bin $\mathrm{f} 4 / 19 / \mathbf{9}$

 SOLID STATE VHF／FM RADIO TUNER
太lligh－sensitivity \star \＆illosin．A．C．Mains opera－
tion．\downarrow Shary
 $500 \mathrm{~m} . \mathrm{v} \cdot \mathrm{O}$ ．\star Simple alignment instructions．\star Out－ put available for feecling tuning neter．丸output or feeding Stareo Multiplexer．＊Tuner lead or standard 80 ohm co－axial input．Visually matching our super 15 and 30 amplifiers and of the same hish standard of performance and reliability Printed circuitry．Only first grade transistors and components used Printed circuitry．Mnly frst grade transistors and components used．A
quality oroduct at hall the cost of comparable units．Stereo version．ali
parts 18 Ens．Carr． $10 /-$ ．Assembled $22!$ sns．inc．carr．

 LATEST TRANSISTORS．NKT275．NKT275，NKT274， 5 PGSITIGN INPUTSELECTOIR SUYITCII EQUALISATION to Standard R．I．A．A．and C．C．I．R Characteristics for Gram and Tape Heads． SENSITIVITICS：Magnetic P．U． 4 mV ．Crystal or
Ceramic PU． 400 mV ．Microphone 4.5 mV ．Tape Head Ceramic P．U． 400 mV ．Microphone 4.5 mV ．
2.5 mV ．Radio／Aux or Ceramic P．U． 110 mV ．

SPECIFICATIONSCOMI＇AIEABLE
WITII UNITSAT ALMOST TWICE THE COST FIREQLIENCY IRESIPONSE： $\pm 2 \mathrm{~dB} 20-20.000 \mathrm{c}$ ．p．s． TIREIHLECONTIR $12:+15 \mathrm{~dB}$ to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$ ．NEG FEEDHACK ： 52 dB HASS CONTROL，+17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ．IIUM LEVEL：-75 dB IIARMONIC DISTGRTRON at 10 Watts 1,000 c．p．s． $0 \cdot 1 \%$
Complete Kit of parts with full constructional details and $1 \frac{1}{2}$ GnS．
point to point wiring diarrams． point to portory 126 Terms．Deposit monthly payments $31 / 1$（Total £18．3．9）Or in Teak veneer housing as ALI COHPONENTS ETC．ARE OF A HIGH STANDARD AND AII CRMPONENTS ETC ARE OF A HIGHETANBAE

BRADFORD

BRISTOL

BIRMINGHAM 30／31 Gt．Western Arcade opp．Snow Hill DERBY 26 Osmaston Rd．The Spot（Half－day Wed．）Tel． 41361
DARLINGTON 18 Priestgate（Half－day Wed．）Tel． 68043
EDINRURGH 133 Leith St．（Half－day Wed．）Tel．Waverley 5766 GLASGOW 326 Argyle St．（No half－day）Tel．CITy 4158 Sou Sauchiehall St．（Opp．Locarno）Tel．332－1572

MAIL ORDERS TO： 102 Henconner Lane，Bramley Leeds 13．No C．O．D．under £1．Terms C．W．O．or C．O．D Postage $4 / 6$ extra under £2 $5 / 9$ extra under $£ 5$ ．Trade supplied．S．A．E．with enquiries please．Hi－Fi Catalogue $4 / 6$ ．

A IDUAL CHANNEL VETSSION OF TIIE SUPEIR 15 Employing Twin Printed Circuits．Close tolerance Ganged Pots．Matched CONTKOL： 5 position Input Selector，Bass Control．Treble Control．Volume Control．Balance Control．Stereo／Mono Switch．Tape Monitor Switch．Mains Switeh．INPUT Crystal P．U．（3）Radio／Aux．（4）Tape HeadMicromic or operation of the Input Selector Switch assures appropriate equalisation．Rigid 18 s. w．g．Chassis．Size approx．12in．wide， cia Plate and Spun Silver Matching Knobs．Above facilitias， TILSE UNITS AIE EMINENTLY SUITABLE FOR SUSE WITI Magnetic，Moving Coil，IRibhon）．CURHENTLY AVAILABLE USIVG WITH HIRSTIRATEANCLLAIIEAN BE OIBAINED ISI EQUIPMENT，All required parts，point to point wiring
diagrams and detailed instructions．
Carr． $15 /-\frac{1}{2}$ GnS． Unit factory built 27 Gins．or deposit $£ 6.2 .0$ and 9 monthly £6．2．6 and 9 monthly pask veneer housing 30 Gns．Carr

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM
\star Moderate size, onty
Complete Kit * IResyonse $30-20,000$ c.p.s. Impedance 15 ohms. \star Performance comparable with units costin verc40 Consists Carr. $12 / 6$ overesu. Consists of (1) 12 in. 20 watt Bass unit with castchassis, diam. pole pieces and ceramic magnet. (2) 3 -way quarter section series cross-over system. (3) 8×5 in. high flux middle range speaker. (4) High efficiency tweeter. (5) Measured weight of woollen acoustic damping material. (6) Teak veneered cabinet (7) Circuit and full instructions. DEMONSTRATIONS AT ALI.
BRANCHES.

R.S.C. STEREO/20 HI-FI AMPLIFIER

 * Neon panel indic mput selector Swren. Astereolmono switeh. Bass and Treble controls. Output transformers are high quality section14 wound. Outputs for 3 and 15 ohms speakers. Complete set of parts, point14 G月S. bled with our usual 12 mths' gntee 19 gns. Or Dep. \&4. 10.0 and Carr. 12/G 9 monthly payments £2 (Total \&22.10.0). SendS.A.E.for leafet.
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Hithly sensitive Push-Full Tone Control Stages. Performance flgures equal to most expensive amplifiers. Hum level - 70 dB . Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Sectionally wound output transformer. All frst grade components. Valves EF86, EF86, ECC83, 807 807. GZ34. Separate Bass and Treble Controls. Mierophoneor Pick-up is suitable. Designed for Clubs. Sehools. Theatres, Dance Halls or Outdoor Functions, etc. For use with Electronicorgan, Guitar, String Bass, etc. Gram, Radio or Tape. Reserve L.T. and H.T. for Radio Tuner Two inputs with associated volume controls so that two separate in puts such as Gram and Mike can be mixed. 200-250V. 50c/s A.C. mains. For 3 and 15 ohm speakers. Complete kit of parts with point-to- 13 Gns. point wiring diagrams and instructions. Supplied factory built with en 3 Twin-handled perforated cover $25 /$. Supplied factory built with EL34 output valves. 12 months guarantee or 16 gns. 9 . 2 . R.S.C. ATI HIGH FIDELITY $12-14$ WATT AMIPLIFIER PUSH-PULL ULTRA LINEAR OUTPUT Two input sockets with associated controls Two input sockets "with associated controls allowing mixing of "mike" and gram, etc. etc. EZ81. High quality sectionally wound output transformer. FOR BASS AND TREBLE CON-
TROLS. Frequency response $+3 \mathrm{~dB} 30-20.000 \mathrm{c} / \mathrm{s}$ Hum level Frequency response $\pm 3 \mathrm{~dB} 30-20.000 \mathrm{c} / \mathrm{s}$ Sum level-60dB. SENSITIVITY 23 millivolts.
 Suitable for Crystal or Ceramic PUs. all types mikes". For Musical Instruments such as String Bass, ale etc. Size approx. $12 \times 9 \times 7$ in. For AC mains 200-250v. 50 cps 9 GnS.
Output for 3 and 15 ohm spkrs. Send $S A E$ for leaflet. Full instructions and point-to-point wiring diagrams. Carr 11/6 (or factory built 12 Gins.) Twin handled metal cover $25 /$. TERMS ON ASSEMBLED UNITS. Deposit $87 / 6$ and 9 TGRISLD VERSHON OF abovecomplete kit 9 Gns R.S.C. BASS-REGENT 50 WATT AMPLIFIER
 An exceptionally powerful high quality all-purpose anit for lead,
rhythm, bass rhythm, bass ists, gram, radio, tape.

* Two extra heavy duty 12in. Loudspeakers * Four Jack inputs and two Volume Controls for simultaneous use of up to four pick-ups or "mikes" 491 Gns Carr. 30/- or and 9 monthly payments and 9 monthly payments of S. 5.10 .10 . (Total 55 gns.). Send S.A.E. for leaflet. 25w.Spkr. 29 gitns. G15inc 12in. $20 w$. Spkr. 194 gns. R.S.C. BATTERY/MAINS CONVERSION UNITS
 Aype all-dry An altery eliminator
Size $5 \frac{1}{2} \times 4 \frac{1}{2} \times$ 2in approx. Completely replaces batteries supplying $1 \cdot 5 \mathrm{~V}$. and 90 V . Where A.C. mains $50 \mathrm{c} / \mathrm{s}$ is available. Complete kit with diagram $47 / 9$ or assembled $59 / 11$. SELENIUM F.W. RECTIFIERS (Bridged) All $6 / 12 \mathrm{v}$. D.C. output. Max. A.C. input 18v. 1a. 3/11.
$2 \mathrm{a} .6 / 11.3 \mathrm{a} .9 / 9.4 \mathrm{a} .12 / 9.6 \mathrm{a}$. $15 / 9$.
R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impregnated. Primaries $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$.
MIDGET CLAMPED TYPE $24.828 \times 2 \frac{1}{6}$ in $250 \mathrm{v} ., 60 \mathrm{~mA}, 63 \mathrm{v} ., 2 \mathrm{a}$. $250 \mathrm{v} ., 60 \mathrm{~mA}, 63 \mathrm{v} ., 2 \mathrm{a}$.
FULLY SHROUDED UPRIGHT MOUNTENG $250-1.250 \mathrm{v}, 60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{a}, 0-5-6.3 \mathrm{v}, 2 \mathrm{a}$. $300-0-300 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v}$. $130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. 4a., c.t., $6 \cdot 3 \mathrm{v}$. For Mullard 510 Amplifer $350-0-350 \mathrm{v} .100 \mathrm{ma}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ $350-0-350 \mathrm{v}, 150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$
$425-0-425 \mathrm{v}, 200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}$. c.t. $5 \mathrm{v}, 3 \mathrm{a}$ $425-0-425 \mathrm{v} 200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}$. $5 \mathrm{v}, 3$ $425-0-425 \mathrm{v}$. $200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 5 \mathrm{v} .3 \mathrm{a}$
$450-0-450 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}$, , c.t., 5 v .3 a . TOP SHROUDED DROP-THROUGH TYPE $205-0-250 \mathrm{v}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .3 \cdot \mathrm{Ba}$
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a} ., 6 \cdot 3 \mathrm{v} .1 \mathrm{a}$. $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}$.
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a} .0-5-6 \cdot \mathrm{v} .3 \mathrm{a}$ $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$
$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$300-0-300 \mathrm{v}$.
$330 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. 4a.. $0-5-6 \cdot$
Suitable for Mullard 510 Amplifier. $350-(1-350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~g} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ TH AMEYT OH TANSTOP POWED PACE $39 / 11$ FILAMHNT OF TRANSISTOR POWER PACK Types
$6 \cdot 3 \mathrm{v} .1+5 \mathrm{a} .8 / 8 ; 6-3 \mathrm{v} .2 \mathrm{a} .7 / 9 ; 6.3 \mathrm{v} .3 \mathrm{a} .9 / 8 \cdot 6 \cdot 3 \mathrm{v}$

CHARGER TRANSFORMERS 0-9-15v. 11 a . $13 / 11$ 2a. 16/11; 3a. 18/11; AUTO (Step UP/Step DOWN) TRANSFORMERS $150 \mathrm{watts}, 29 / 11 ; 250$ watts $49 / 9 ; 500$ watts $90 / 9$ OUTPUT TRANSFORMERS
Atandard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Pugh-Pull 8 watte ELS4 to 30 or 15Ω. Push-Pull ELSA to 3 or $15 \Omega 10-12$ watta 8 Pubb-Pull Ultra Linear for Mullard 610, e Push-Pull 15-18 watta, sectionally wound 6 L , KT66, etc., for 3 or 15Ω
Push-Pull 20 watt bigh quality sectionally
wound EL34, 616 , 30r15 . $85 / 9$

SMOOTHING CHOKES

$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250018 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \mathrm{~g} 9 / 11$ $80 \mathrm{~mA}, 10 \mathrm{H}, 350 \mathrm{Q} 7 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 11$.
 R.S.C. COLUMN SPEAKERS Covered in twotone RexinelVynair, Ideal for vocalists and Public Address. 15 ohm matching. Type c48, 2 . Overall size approx. $42 \times 10 \times 5$ in. Or deposit $65 /$ and 9 mthly pmts 34/9 (Totale18.17.9) Carr. 10/-

HI-FI GENTRES LTD.
15 Gns. Type C412, 40 wat ts. Fitted four 12 in. 12,000 ine iowatt 22 Gns. speakers. Overall size $56 \times 14 \times 9 \mathrm{in}$, approx. Carr. $15 /-122$
Or Deposit£3.13.0 and 9 monthly payments of $50 /$ (Total £26.3.0).

30 WATT HI-FI AMPLIFIER

for Guitar, Yocal or Instrumental Group Separate Bass and Treble controls. Peak rating 60 watts. Latest valves. Strong Rexine covered cabinet with handles. Attractive black/gold perspex facia. Neon indicator. For $200-250 \mathrm{v}$. A.C. mains. 18 Gns. Carr.
 For 3 or 15 ohm speakers. Send S.A.E. 10 Gis. $12 / 6$
for leafiet. Depusit 3 kns . and 9 monthly payments of $39 / 8$ (Total eg1).
12in. HIGH QUALITY LOUDSPEAKERS

In Teak veneered or Rexine covered cabinets

LOUDSPEAKERS Limited number or heavy duty
ohms impedance. Brand new, guaranteed. Terms availabie over 88 .

 $59 / 11 |$

(2) | FANE |
| :--- |
| 'POP' 100 |
| LOUDSPEAKER |

R.S.C. GRAM AMPLIFIER KIT. 4 Watts output. Negative feedback. Controls: Vol., Tone and Switch. Mains operation
A.C.
Fully
isolated
chassis.

POWER PACK KIT Consisting of Mains transformer. Metal Rectifier. Electrolytics, smoothing choke, chassis and circuit. $200 /$

R.S.C. 4/5 watt

A5 HIGH GAIN AMPLIFIER

A highly-sensitive 4 -valve quality amplifier for the homet small club, etc. Suitable for all crystal or ceramic P. U. heads and most "mikes". Separate Bass and Treble controls. Hum level 71dB down. Negative Feed-

3 ohms. Complete Kit with point-to-
point wirins diagrams and instructions,

(4)

Eddystone

 SLOW MOTION DIALS
Catalogue No. 598 epicyclic dial

This full vision dial incorporates an epicyclic, ball-bearing drive mechanism of improved design and giving a reduction

ratio of approximately 10 to 1. The movement is smooth and free from backlash. Dial escutcheon measures $6^{\prime \prime}$ long by $4 \mathrm{t}^{\prime \prime}$ wide, finished ripple black. Four lines are provided on the semi-circular scale for individual calibrations, the outer line being marked from 0 to 100 over 180°. Supplied complete with black instrument knob $2 \frac{1}{\prime \prime}^{\prime \prime}$ diameter.

Catalogue No. 898 gear driven dial

A high grade assembly for precision instrument applications. Gear driven, flywheel-loaded mechanism, with a reduction ratio of 110 to 1 , giving smooth, positive control.
Pointer travel is 7". A circular vernier scale, marked 0 to 100 , is read in conjunction with the lowest line on the main scale, which has five lines for individual calibration. Overall di mensions $9 t^{\prime \prime}$ by $5 \frac{t}{}_{\prime \prime}$. Diecast escutcheon finished glossy
black to match $2 \frac{1}{3}^{\prime \prime}$. diameter instrument knob. Complete with fixing screws and mounting template.

Eddystone Radio Limited

Eddystone Works, Alvechurch Road, Birmingham 31
Telephone: Priory 2231. Cables: Eddystone Birmingham.Telex:33708
A MARCONI COMPANY

REMOVAL TO LARGER WAREHOUSE stocks at slashed prices to save

Pre-Budget prices whilst stocks, 250, last 50\% Purchase Tax afterwards Made under licence from Philips
CASSETTE TAPE PLAYER
£7 100
You recognise this tatest twin-track modelt- Fou know the price, fully transistorised-play your favourite recordings (takes all standard cassettes). Instant operation indoors or out (weight only 2 lb .). Life-llke reproduction-astounding power, Two-tone onyx black/silver satin with mains adaptor socket, earphone socket, etc. 8parea available. Must be worth
19 gas. Brand now in maker's oartons with written g'tee 87.10.0 plut 4/6 carriage. Six standard batteries $3 /$-extra. Money back guarantee.

GIANT POWER LUNAR TELESCOPE (2) Fantastic Magnification 40×40 ONLY Soper \quad Soop purohase of Limited Stook, 800 only at Iraotion of th true value. Bpecial Grade A. 1 de luxe model-in white ensmel finished with ohromiam plated parts, Special polished optical lens gives astounding magnification power of 1600-1 areas. Single draw focussing tube enables you to study the MOON, PLANETS and gTARS. Focus on subjects miles away or fust across the road. Brand new, complete with collapsible
tripod. $58 / 11$ plus $4 / 7 \mathrm{p}$. \& p. Money back guarantee. tripod. $58 / 11$ plus $4 / 7$ p. \& p. Money back guarantee.

 REMOVAL EXPENSES AND TROUBLE

3 TURRET SUPER 300 MICROSCOPE

only 49/6

 Not a penny more to pay, Grade A. 1 De Luse Model. All metal construction curate racksad phion focusing gives erystal clear definitlon. 8 optioally polished lenses on revolving turret giving $100 \mathrm{x}, 200 \mathrm{x}, 300 \mathrm{x}$ magnithcation powers. Adjustable mirror Ideal or students, hobbyists, nature-Atudy, etc. Should last a nature-study, etc. Should last a Board of Inspection. Brand new in bor, at a fraction of real worth 49/6 plus $4 / 6$ p. \& D. Money backguarantee.
 connecting wire. Fized in a flash. Fida bebs crying worries Ideal for Workshop to House, gickroom hundreds of usecibrings on wall or stands up. Our price 47/6, battery $2 / 6$ ex. Post, etc. 4/6. Money back guarantee.
CONCORD ELECTRONICS LTD. (Dept PW51)

As used in most flats and houses built today. Now offer ed at fraction of original price Callerpresses button and hear. your voice answer from metal protected, weather-proot, tamper-proot weaker-proot, only 5×3 in. Place your pushbutton speaker anywhere in the house, uncannily senaitive A/f transistor, uses standard
$2 / 6$ battery which lasta months. Our bargain price due to amazing deal only $79 / 6$ plus $4 / 6 \mathrm{p}$. \& p. (add $2 / 6$ for months. Our bargain price due to amazing deal only 79/8
battery). Brand new and giteed. Money back guarantee.

SAVE YOUR LEGS! $\begin{aligned} & \text { Proit trom the Credit Squeeze-only } 850\end{aligned}$ INTERCOM OUTFIT and BABY ALARM $\operatorname{Ready}_{\text {ONLY Built }}$ 47/6
Robustly made, brand new current models. You get 2 separate fully transistorised intercommunicating aeta isten to the other

Frustrated Import Shipment OFFERED BELOW HALF PRICE TO CLEAR

PERSONAL TRANSCEIVER SETS

Our price £7.19.6

You've heard about them - You've read sbout them. Now's YOUR CEANCE TO OWN THEM. Highly sensitive two-way transistor transceiver sets. Telescopic aerial pulls in the volce
from the other set over tremendons diatances-no wiresgenuine transceiver as used only by oficial bodies and forces, 500 sets only at $£ 7.19 .6$ plus $5 / 6$ p. \& D. Money back if not delighted with the performance. PORTABLE ELECTRIC VACUUM CLEANER Never again price bristle brush. Powerful rolary fans suck out all ingrained dirt. Noert ul rolary fans minch ust bag brush-head ungcrews for easy clemning. Two tone gleaming chromium and cream finlah Essential for Motorists (clean inside of car in 2
mins.). Campers, travellers, etc. Keevs clothes, mins.). Campers, travellers, etc. Keens clothes Repeat orders pour in daily, 29/6 plus 2/6 p. \& pervice. Your money refunded in full if mot 100% satigfled. 8 WESTBOURNE GROVE, LONDON, W.2.

GQODMANS HIGH FIDELITY MANUAL

A Guide to full listening enjoyment
The Manali is muth more than stalat:

 nets nage, end itul cabinet drawings: rouil tind it mitestsing as well os The Perfect Combination MAXAMP 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLI. FIER $15+15$ watts - Silicon solid state - Integrated pre-amplifier Negligible distortion $\mathbf{£ 5 4}$.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER
Transistorised - Outstanding specification - Stereo de-coder (optional) £65.5.0 + £15.14.0 P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1}{2}^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{4}^{\prime \prime}$ deep) in Teak or Walnut to order.
Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

- Player with the Serenade qully transistorised amplifiet which comes complete with 2-10" $¥ 6^{\prime \prime}$ speakers and the latest BSR 4 Speed St Mano Record Changer.
Advanced solid state amplifier oaly $44^{\prime \prime}$ deep, 14 transistors plus 4 diodes, separate Bass and Treble-10 watis total power. Frequen
$50-15.000 \mathrm{c} / \mathrm{s}$.

EASY TO INSTALL NO TECHNICAL KNOWLEQGE
Only H. P. terms avallable. Deposit £7.1.9. \& 12 monthly payments of
(Total H. P. e34.9.9. Send £7.19.3. today. Send Elifler available sep
Ampl
arlely at only 16 Gns .

'TRANSCONTINENTAL'

 FULLY TRANSISTORISED STEREOPHÓNIC RADIOGRAM CHASSISComplate with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer - a complete radiogram at half normal price ONLY

10 Watts Total output 17 Transistors \& 10 diodes

P\& P
$17 / 6$

Send $£ 10$ today
 PLEASE SEND ME FREE DETALIS OF YOUR RANGE
THIS COUPON NOW:

AXIOM WORKS . WEMBLEY . MIDDLESEX. Tel: 01.9021200

Transistorised FM Tuner

CALLERS WELCOME
SAVE £2．10．0．

STEREO

 DECODERModel A1005M．Simple instructions to convert any FM tuner．Max input 100 m volts．Power supply 8－14 volts．Mains or batt．（ 5 mA at 12 V ．）Output $1.5 \times$ input． 4 transistors（2 each） 2SB－2O2；2SB－186． 7 idiodes IN34（six）IN60 SAVE 34／－ 5 Gins． Keen offer if purchased with A1005 tuner making STEREO TUNER 11 gns．

This beautifully compact 6 transigtor machine（size 6×4 I
din．）will give quieter，mora interference Iree reception．Months of ase from a standard 9 volt battery or its small power requirements osn be drawn from any amplifer．Low noise Ireq．changer．8mooth 2 gang tuning feeding no less than three I．F．stages coupled to a conble－tuned disoriminator output for all quality amplifiers．

REDUCED PRICE DUE TO HUGE SALES

£6．19．0

（3 FOR f19）

TRANSISTORS
 GUARANTEED TOP QUALITY

Muliard Matched Output Kits OC18D $12 / 6$ and 2－OC81 Kits OC44，OC45（2） 3 trang－ $11 /-$ $\begin{array}{lllll}\text { AF102 } & 17 /-\quad \text { GET115 8／6 } 8 \text { OC35 } & 12 / 6\end{array}$ $\begin{array}{ccccc}\text { AF102 } & 17 /- & \text { GET115 8／6 } & 0635 & 12 / 6 \\ \text { AF14 } & 6 / 6 & \text { GET11610／－} & 0644 & 4 /-\end{array}$ $\begin{array}{lllll}\text { AF115 } & 6 /- & \text { MAT121 } 8 / 6 & 0045 & 3 / 6 \\ \text { AF116 } & \text { B／6 } & \text { OA5 } & \text { OC } & 0071 \\ 4 /-\end{array}$ $\begin{array}{ll}\text { AFF118 } & \text { 6／8 } \\ \text { AF117 } & 5 /-\end{array}$
 $\begin{array}{cc}\text { AF188 } & \text { 18／－} \\ \text { BC107 } & 7 / 6\end{array}$ BC107
BSY 65 $\begin{array}{lllll}\text { FXA143 } 7 /- & \text { OA95 } & 2 / 6 & \text { OC81D } & 4 / 6 \\ \text { OA202 } & 3 / 6 & \text { OC82D } & 5 /-\end{array}$ $\begin{array}{lllll}\text { GET111 } & 8 / 6 & \text { OC19 } & 19 / 6 & 0 \mathrm{OC170} \\ \text { GET113 } & 4 /- & 0 \mathrm{O} 28 & 6 /- & 0 \mathrm{C} 171 \\ 6 /-\end{array}$ SILICON RECTIFIERS Gnaranteed performance．Top Makes，Teated $\begin{array}{lll}100 \mathrm{~mA} \\ (3 \text { for } 6 / 6) & 2 / 9 & 500 \mathrm{~mA} \\ (3 \text { for } 12 / 6) & 5 /-\end{array}$

BARGAIN PARCELS

Including varisble condensers，i．f．coils，loudspeaker plag／sockets．knobs，pots，condensers，resistors，nuts， bolts，cabinet fiftings，switches，transformer ohore，
rectinsistors at a small fraction ol list value． Due to heavy demand we now pack them in several sizes－be amazed－try one now．
8 lbs．（post 3／－）
14 lbs．（post $6 /-$ ）
$9 /-$
$17 / 6$

FROM

FANTASTICALLY POPULAR

 ＊TAPE 大 We offer you tully tensiliged polyester／mylar and P．V．C．tapes of identical quality hi－fi，wide range recording characteristics as top grade tapes．Quality control manufacture．They are truly worth a few more coppers than scetate，sub－stadard，jointed or oheap importsTRY ONE AND PROVE IT YOURSELF． Standard Play

Postages $1 /$－reel．
Post Free less 5% on three reels．
Quantity and Trade enquiries invited

STEREO PORTABLE

 CABINETSLatest black and silver metal finish．Con
 10 z 6 spealer oabinets whioh olip on ends of main aghinet size 4 in， 18 in 8 in making overall size of $25 \frac{1}{2} \mathrm{in}$ ．$x 13 \mathrm{in}$ ．$x 8$ in． High quality chrome fltings．Will take almost any aulochanger or tape deck．
Approx．hall price at Ditto，but less ohrome．tales $\mathbf{f 2 . 1 9 . 9}$ MONO PORTABLE CABINETS．B．S．R． tape deck or single reoord player，19／6 AUTOCHANGE PORTABLE CABINETS As used on 18 gns，record player．Dta to tortunste purchase we offer complete with motor board and all fttings． PLEASE NOTE．A wide range of cabinets to callers at all branches．
100 HI－STABS
9／－
1% to $5 \% 100 \Omega$ to $5 \mathrm{~m} \Omega$
CO－AX，low loss．8d．yd．， 25 yds．11／6；
 100 RESISTORS 6／6
SIZES－-3 watt．
Marophone CABLE．Highest quality，
100 CONDENSERS $9 / 6$ Miniature Ceramio，Silver，Mios eto．，3pF to $5 \mu \mathrm{~F}$ ．LIST VALUE OVER $\& 4$ ．

25 ELECTROLYTICS

50 TAG STRIPS
7／6
25 POTENṪIOMETERS Including with switoh，long and a／6 short spindle，pre－sets． \log and lin． $9 / 6$ unused， $1 \mathrm{k}-2 \mathrm{~m} \Omega$ ．
VALUE APPROX．

CONNECTING WIRE

P．V．C．Bright Colours．Five 25ft．4／－

GUARANTEED

＊VALVDS

BY RETURN OF POST－GUARANTEED 3 MONTHS Satisfaction or Money Back Guarantee on goods if returned unused within 14 days
ALL VALYES ARE NEW UNLESS
OTHERWISE INPORMED． TRANSIT INSCRANCE．POSTAGE 1 valve 9d，2－11 6d，per valve．Free over 19 1 L 4 2／6｜G5J7GT ब／6｜30FL1 14／－｜ECC40 10／6｜EZZ81 $7 /-\mid$ SP61

GAK5	$5 / 8$	788	11／6	351	$8 / 6$	ECH42	$11 / 6$	N37	10／6		8
6AQ5	61－	787	$7 / 6$	35 W 4	5／6	ECE81	71	N78	14／－	U301	$13 / 6$
6AT6	5／8	705	18／－	35Z5	9／6	ECL80	$71-$	PC88	$10 / 6$		${ }_{7}$

－

${ }_{6}^{6 J 5}$

6 GK

6K7GT $5 /$
8L1

$6 L 18$	$7 / 6$	$95 L 6 G T$	$7 /$	EBC3	$8 / 6$	EY51
6LC4	$10 / 6$	EY88				
6LD20	$7 / 6$	$\mathbf{2 5 Z 4 G}$	$7 / 6$	EBC81	$7 / 9$	EY88

6Q7G	$6 / 6$	$30 \mathrm{Cl7}$	$14 /-$	EBF83
6Q7GT	$8 / 9$	30 F	$14 /-$	EBF89

Tubes
 HIGHEST QUALITY
 GUARANTEED
 > CAFT. \& Ins. $12 / 6$ MOST MULLARD, MAZDA, COSSOR, EMITRON EMISCOPE, BRIMAR, FERRANTM TYPES PROCESSED IN OUR OWN FACTORY

 Carr．\＆Ins．12／6

 Carr．\＆Ins．12／6

 MOST MULLARD

 MOST MULLARD MAZDA，COSSOR MAZDA，COSSOR EMITRON，EMI－ EMITRON，EMI－ FERRANTI TYPES FERRANTI TYPES PROCESSED I PROCESSED I OUR OWN OUR OWN FACTORY FACTORY
 6 Months £3．10．0 15－17in．f3． 5.0 19in．f3． 5.0 21in．f3．15．0 f3．15．0
 12 months £4． 5.0 £4． 5.0 £5．15．0 £5．15．0

SATISFACTION GUARANTEED NOTE：ALL TUBE ORDERB
ONLY TO PORTSMOUTH BRANOH PLEASE

JUST OUT－SEND NOW FOR

H！ 5 HO
 SEND SA．E．OR CALL AT ANY BRANCH FOR YOURS

NAME
ADDRESS

Block Capitals Please ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 9
ruvox，Fes rograph，Wharfcaate，etc．，etc． Post： $1 \mathrm{lb} .1 / 6,1 \mathrm{l} \mathrm{lb} .2 / 6,2 \mathrm{lb} .2 / 9,4 \mathrm{lb} .8 / 3,6 \mathrm{lb} .4 /-, 14 \mathrm{lb} .5 / 6$ ．CALLERS A very wide range of elsetronic components avait

TEGHIIIGAL TRADING

』円】』』 10 Tottenham Court Road，W．1．
PORTSMOUTH $\begin{aligned} & 350-352 \text { Fration Road．} \\ & \text { Tol．22034 }\end{aligned}$
SOUTHAMPTON ${ }^{\text {zank }}$

All Mail Orders to Brighton with names and addressen to All，Mail Orders to Brighton With names and addressenth）

HEATHKIT Models for Family Entertainment

AVAILABLE READY-TO-USE OR AS KIT MODELS

Latest STEREO TAPE RECORDER, STR-1

Fully portable-own speakers
Kit £58.0.0. P.P. $10 / 6$
Ready-to-Use $£ 70.6 .0$, P.P. $10 / 6$
FOR THIS SPECIFICATION
$\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{8} i p s$. Sound-onsound and sound-with-sound capabilities. Stereo record, stereo playback mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumbwheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/ headphone and external amplifier outputs ... front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two high efficiency $8 \times 5 \mathrm{in}$. speakers. Operates on 230 V a.c. supply.
Versatile recording facilities. So easy to build-so easy to use.

Latest Portable Stereo Record Player, SRP-1
Automatic playing of 16. 33,
45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5in. special loudspeakers. For 220250 V ac mains operation. Overall cabinet size $15 \frac{9}{16} \times 3 \frac{7}{6} \times 10 \frac{1}{4} \mathrm{in}$.
Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.

KIT f28.6.0 incl. P.T. Ready-to-Use £35.4.0. P.P. $10 / 6$

Latest STEREO AMPLIFIER, TSA-12

12×12 watts output.
Kit $£ 30.10 .0$ less cabinet. P.P. 10/6
Cabinet $£ 2.5$. 0 extra
Ready-to-Use £38.0.0. P.P. 10/6.

FOR THIS SPECIFICATION

17 transistors, 6 diode circuit. $\pm 1 \mathrm{~dB}, 16$ to $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.
Full range power . . . over extremely wide frequency range. Special transformerless output circuitry. Adequately heat-sinked power transistors for cool operation-long life, 6 position source switch.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semi-conductors (6 transistors, 2 diodes) For 12 volt positive or 12 volt negative earth systems. Powerful output (4 watts). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly.
Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
KIT (less speaker) £12.18.6 incl. P.T. P.P. 4/6.
Ready-to-Use £19.12.6 P.P. $4 / 68 \times 5 \mathrm{in}$. Loudspeaker f 1.10 .0 extra.

RADIOS for Luxury Listening "oxford" pobtable uxh-2 This De. Luxe, 7 tunsistor, 3 diodo porabie ratio covers Song and medium wave-anans with an easy, tune dial and uses batater.saing circuitry io onsure longer itie and more nours of hisering plasasura. Chicice of Brown or Black real Reather cose.
Kit Elf.50.0 P.P. 6/-
Oxtord Roady-to-Use E17,1.0.0 P.P. 6/-
pobtable UXR-1

This luxury 6 -transistor, 1 diode receiver covers long and medium wavebands. Its robust case is now available in real brown leather or choice of colours: Navy blue, coral pink, lime green (please state second choice).
KIT £12.8.0 colour case. P.P. 4/6
Ready-to-Use E14.8.0 P.P. 4/6 KIT £13.8.0 real leather. P.P. 4/6 "Mohican" General Coverage Receiver, GC-1 U Powerful 10 transistor, 5 diode circuit. Tunes 580 to $1550 \mathrm{kc} / \mathrm{s}$ and 1.69 to 30 Mc / s in five bands. Bandspread on all bands. Fixed-aligned ceramic IF transfilters for best selectivity. Pre-assembled and aligned 'front-end' for fast, easy assembly. Built-in $6 \times 4 \mathrm{in}$. speaker. Tuning meter for' pin-point tuning. Completely self-contained for portability-can be operated on 230 volt AC with Model UBE-1. Kit £2.17.6 extra.
Kit £37.17.6. Ready-to-Use £45.17.6. P.P. 10/6.
SEE HEATHKIT ELECTRONICS at
GLOUCESTER. Factory and showroom, Bristol Road. LONDON. 233 Tottenham Court Road. BIR MINGHAM. 17/18 St. Martin's House, Bull Ring.
Deferred terms available in UK over 110 Ready-to-Use $£ 15.10 .0$ P.P. 4/6

$-$

HEATHKIT for the 'New Look' in INSTRUMENTATION
 (Available in ready-to-use or kit form)

Kit IM-25 Ready to use
£48.10.0 £59 p.P. 7/6

Kit IP-17
f37,4.0
f46
P.P. 10/6

IP-27 not illustrated, but similar in styling.

The newest and most practical innovation in electronic instrumentation is the exciting new ultra-functional styling format from Heath.

New Solid-State, High-Impedance Volt-OhmMilliammeter . . . IM-25

- 9 AC and 9 DC voltage ranges from 150 millivolts to 1500 volts full scale 7 resistance ranges, 10 ohms centre scale with multipliers $\times 1, \times 10, \times 100$, $x 1 k, x 10 k, x 100 k$, and $x 1$ meg ... measures from one ohm to 1000 megohms - 11 current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale 11 megohm input impedance on DC 10 megohm input impedance on AC AC response to 100 kHz - $6 \mathrm{in} .200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or $120 / 240$ VAC, 50 Hz - Circuit board construction for extra-rugged durability.

New Solid-State Volt-Ohm-Meter . . . IM-16

- 8 AC and 8 DC ranges from 0.5 volts to 1500 volts full scale 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of $x 1, x 10, x 100, x 1 \mathrm{k}$, $\times 10 \mathrm{k}, \mathrm{x} 100 \mathrm{k}$, and $\times 1$ megohm - 11 megohm input on DC ranges, 1 megohm on AC ranges Operates on either built-in battery power or 120/240 VAC, 50 Hz Circuit-board construction.

New Variable Control Regulated High Voltage Power Supply . . . IP-17

- Furnishes 0 to 400 volts DC at 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variaton Furnishes 6 VAC at 4 amperes and 12 VAC at 2 amperes for tube filaments - Provides 0 to -100 volts DC bias at 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage Terminals are isolated from chassis for safety - High voltage and bias may be switched "off" while filament voltage is "on" - Modern circuit board and wiring harness construction $120 / 240 \mathrm{VAC}, 50 \mathrm{~Hz}$ operation.

> New Improved Version of the Famous Heathkit Solid-State, Voltage-Regulated, Current-Limited Power Supply. .. IP-27
> New zener reference New improved circuitry is virtually immune to overload due to exotic transients 0.5 to 50 volts DC with better than ± 15 millivolts regulation Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5 amperes Adjustable current limiter: 30 to 100% on all ranges Panel meter shows output voltage or current "Pin-ball" lights indicate "voltage" or "current" meter reading Up-to-date construction Unequalled performance in a laboratory power supply.
> Kit IP-27 £46.12.0. Ready to use $£ 55 . P . P .9 /-$.

New Solid-State Volt-Ohm-Meter, IM-17

- Just right for the home owner, boater, model builder, hams, sophisticated enough for even radio and TV servicing - Solid-state circuit FET input 4 silicon transistors, 1 diode circuit 4 AC voltage ranges 4 DC voltage ranges 4 ohm ranges. 11 megohm input DC, 1 megohm input AC, $4 \frac{1}{2} \mathrm{in}, 200 \mu \mathrm{~A}$ Meter Self powered Rugged polypropylene case with self cover and handle. Storage space for own flex leads. PCB construction.

Kit $£ 12.12 .0$. Ready to use $£ 17.10 .0$. P.P. $\mathbf{4 / 6}$.

Made by Crompton Parkinzon, Ilingle phase Ith h.p. Motor $230 / 250 \mathrm{v}, 50$ cycles, $\mathbf{1 \cdot 3}$ amps. if x iln. dis. Overall size lesa spind espprox 8 ェ 6 in. Perfect condition, A bargain for the

TEAK FINISH PLINTHE with Perspex cover 81 gns. (for LAB80 8i gne.) P. \& P. 12/6. Agents for Tborens, Dual Goldring, etc

GARRARD DECKS

3000 with Sonotone 9TAHC Itereo Cartridge. £9.19.6
3000 with Sonotone 9TAHO Dlamond Stere Cariridge
T 60 MK . II less cartridge
AT60 MK. II with Decea D
PP. 25 MK . II less cartridge
SP. 25 MK. II with Deas cartridge
LAB, 80 MK , II less cartridge
All pl
Mono Cartridge 17/6 extra

SYNCHRONOUS CLOCK TYPE MOTORS
Geared for 40 revolu* thone per minute, 230w. 50 cycle, with mounting flanges Size approximately
 diameter. ONLY 22/6. P. \& P. 2/6

dELAY ACTION TIME SWITCH
Made by Emiths. A.C. operation 200/250v. Duable pole. Will give tlme delays from $0-10$ minuter, Size 21 m . dia . I 23 m , long inc. if. I $3 / 16 \mathrm{in}$, dis. spindle. BARGADN PRICE 17/6. P. \& P. 2/6.

Numerous applications. Electro magnet and brass tooth wheel. A switch wafer and contacts are coupled to this and arranged to be on for 10 pulses and of for 15. An Auxiliary contact is normally on but off 1 in everv 25. Complete with suppressor, resiators, plus series contact for contlinuous operation. Ideal window displays, switch-
lag lamps, models, etc. 128 or 24 v D.C. Brand new and bored, 12/6. P. \& $\xrightarrow[\text { P. } 2 / 6 \text {. }]{ }$

LONOONS LOUEST component priase

SENO 4d. POSTAGE FOR OUR NEW FULL Y CDMPREHENSIVE 14 PAGE CAT. ALOGUE OF VALVES, TRANSISTORS, OIOOES, SEMI-CONOUCTORS, TRANS. FDRMERS, ETC. THOUSANOS OF ITEMS LISTED ANO PRICED. SEND NOW ANO SAVE MONEY WITH LINO. AIR COMPONENTS.
work beach, 69/6. Cart, 12/6.

GPNERAD

 The'New Picture-Book'way of learning BAS C ELECTRICITY(5vols.) ELECTRONICS(6vols)
 You'll find it easy to learn with this out-
 the latest research into simplified learning

standingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on

This carefully planned series of manuals has proved a Valuable course in training techniciams in Electricity technicians in Electicity Electronics, Radio and
Telecommunications.

WHAT READERS SAY

"May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice."
L. W. M., Birmingham
"I find that the new pictorial method is so easy to understand, and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books." C. B., Londion.
"Please accept my admiration for producing a long felt want in the field of understanding Electronics." S. B. J., London.
"The easiest set of manuals it has been my pleasure to study,"
A TECH-PRESS PUBLICATION
techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects

TO TRY IT, IS TO PROVE IT

To The SELRAY BOOK CO., 60 HAYES HILL, BROMLEY BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 70/-. Cash Price or Down Payment of $15 /$ - followed by 4 fortnightly payments of $15 /$ - each BASIC ELECTRONICS $84 /-$ Cy 4 Price or Down Payment of $15 /-$ followed by 5 fortnightly payments of $15 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overses each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial) BASIC ELECTRICITY \square BASIC ELECTRONICS \square Prices include Postage and Packing.

Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS FUll postal. ADDRESS

RADIO SOCIETY GREAT BRITAIN SEE world's finest communication receivers \& RADIO EQUIPMENT

AT THE

INTERNATIONAL RADIO ENGINEERING COMMUNICATIONS EXHIBITION

ROYAL HORTICULTURAL NEW HALL Greycoat Street, Westminster, London S. W.1.

Wednesday to Saturday 2 to 5 OCTOBER 1968 2 OCTOBER BY POSTMASTER GENERAL

OPEN 10 a.m. to 9 p.m.
ADMISSION 3/6

DISPLAYS BY

- diplomatic WIreless service
- ROYAL AIR FORCE
- ROYAL SIGNALS
- ROYAL NAVY
- POST OFFICE
- HOME CONSTRUCTION AND DESIGN COMPETITION \& DISPLAY
- COMPLETE TRANSMITTING STATIONS WORKING THE WORLD
- EDUCATION AND TRAINING INFORMATION

GEW PANEL METERS

Send S.A.E. for full listr. Other ranges available. Plesse include postage liste. Other ranges availahfe. Ple
Special quotations for quantities.

Type MR.38P. $121 / 32$ in. square front
50 . $50 \mu \mathrm{~A} \ldots .$.
$50-0-50 \mu \mathrm{~A}$.
$100 \mu \mathrm{~A}$
$100-0-100 \mu \mathrm{~A}$
$200 \mu \mathrm{~A} . . .$.
$500 \mu \mathrm{~A}$ 500-0-5 $1 \mathrm{~mA} \ldots$ 2 mA
10 mA.
20 mA .
100 raA .
150 ma .
300 mA
500 mA .
${ }^{2}$

50	39/6	20
100 LA		
100-0-100		30
$500 \mu \mathrm{~A}$	29/6	15 V
1 ma	27/6	300V. A.C.
5 mA	27/8	8 meter Im
10 mA	$27 / 6$	VU meter
50 mA	27/8	1 amp .
100 mA		5 amp
500 mA	27/6	10 amp .
1 amp	27/6	20 smp . A
5 amp	27/6	30 amp A.C.*

AVO CT. 38° ELECTRONIC MULTIMETERS

High quality 97 range instrument which measures A.C. and D.C. Voltage. Current, Resistance and $10,000 \mathrm{~V}$. (10 meg $\Omega-110$ meg Ω input). D.C. current $10 \mu \mathrm{~A}-25 \mathrm{amps}$. Ohms: $0-1,000 \mathrm{meg} \Omega$. A.C. volt $100 \mathrm{mV}-250 \mathrm{~V}$. (with R.F. measuring head up to $250 \mathrm{Mc} / \mathrm{B}$). A.C. current $10 \mu \mathrm{~A}-25$ amps. Power output 50 micro-watte-5 watts. Operation 0/110/200/200V. A.C. Supplied in perfect condition complete with circuit lead and
R.F. probe. £25. Carr. 15/-.

TYPE 13A DOUBLE BEAM OSCILLOSCOPES

An excellent general pur
pose D/B oscilloscope T.B. 2cps-750 Kc/s Bandwidth $5 \cdot 5 \mathrm{Mc} / \mathrm{s}$ Sensitivity 33mV/CM Operating voltage 0/110 200/250V. A.C. Supplie dition. £22.10.0. Or com plete with all accessories probe, leads, lid, etc 225. Carriage $30 /-$

ADMIRALTY B. 40 RECEIVERS

 Just released by the Ministry. High quality 10 valve receiver manufactured by Mur- Mc / s. I.F. $500 \mathrm{Kc} / \mathrm{s}$
Incorpor Incorporates 2 R.F. band-pass filter, noise
limiter, limiter, crystal con trolled B.F.O., cali etc. Built-in speaker output for phones.
Operation $150 / 230$ volt A.C. Size $191 \mathrm{x} 13 \frac{1}{\mathrm{~g}} \mathrm{x}$ 16in. Weight 114 lbs.
Offered in good working condition. diagrame. Also available $\mathbf{B} 41$ diagrams. Also available $\quad \mathrm{B.41} \mathrm{~L} . \mathrm{l}$
version of above. $15 \mathrm{Ke} / \mathrm{s}-700$
Kc / s. £17.10.0. Carr. 30/-

CLASS D WAVEMETERS

A crystal controlled hetro dyne frequency meter
covering $1-7-8 \mathrm{Mc} / \mathrm{s}$. Operacovering 1.7-8 Mc/s. Opera-
tion on 6 volts D.C. Ideal
for amateur use. Available for amateur use. Available
in good used condition. 35.19.6. Carr. $7 / 6$.
Or brand new with acces

AM/FM SIGNAL GENERATORS

Oscillator Test No 2. A bigh quality precision instrument made for the miniatry by Airmec $20-80 \mathrm{Mc} / \mathrm{B}$. AM/ porates precision dial level meter precision attenuator 1 "V-100mV volt D.C. or $0 / 110 / 200 / 250$ volt A C. Size $12 \times 8 \frac{1}{2} \times 9 \mathrm{in}$. Supplied in brand new condition complete with all connectors fully tested. £45. Carr. 20/-

MARCONI CT44/TF956

AF Absorption

Watimeter
$1 \mu /$ watt to 6 watts. £20. Carr. 10/-

COSSOR DOUBLE BEAM

 OSCILLOSCOPESType 1035. General purpose. A.C. Coupled. Type 1049. L.F. D.C. Coupled. $£ 35$ each.

AVOMETERS

Supplied in excellent condition, fully tested and checked. Complete with prods, leads and instructions. Model 47A 89.19.6. Model 8218.
P. \& P. 7/6 each.

MARCONI TEST EQUIPMENT

EX-MILITARY RECONDITIONED STANDARD GIGNAL GENERATORS, $85 \mathrm{Kc} / \mathrm{G}-$ $25 \mathrm{Mc} / \mathrm{s}, 925$, Carr. $30 /-$. T.F. 885 VII)EO OBCILLA TOR 0-5 Mc/s, £45. Carr. 30/-. TF. 195 M BEAT A.C. £20. Carr. 30 - All above offered in excellent A.C. £20. Carr. 30/-. All above offered in excellent

MISS1ON TEST \&E'T, Brand New, 275.

Varichle Voltage Tinarisionimilis

Brand new, guaranteed and carriage paid
High quality construction. Input 230 V. $50-60$ cycles

8 amp . $-\mathbf{£ 1 4 . 1 0 . 0 ; 1 0 \mathrm { amp } . - \$ 1 8 . 1 0 . 0 ; 1 2 \mathrm { amp } . - £ 2 1 . 0 . 0 7}$
20 amp.- 837.0 .0 ;

AMERICAN TAPE
First grade quality American
Brand new. Discount on quantities. 3 in . 225 ft . L. P. acetate
5 in . 600 ft . std plastic
5 in .900 ft . L.P. acetate
5 in. 1,200ft. D.P. mylar
$5 i n .1,800 \mathrm{ft}$. T.P. mylar
5 in. 1,200ft. L.P. acetate
5 in. 1,200ft. L.P. mylar 5 in. $2,400 \mathrm{ft}$. T.P. mylar
$7 \mathrm{in} .1,200 \mathrm{ft}$. std. acetate
7 in . $1,800 \mathrm{ft}$. L.P. acetate $7 \mathrm{in} .1,800 \mathrm{ft}$. L. P. mylar. $7 \mathrm{in} .2,400 \mathrm{ft}$. D.P. mylar 7in. 3,600ft. T.P. mylar

TAPE CASSETTES

C60-60 minutes

tapes.
$. .3 / 6$
$.10 /-$
$.8 / 6$
$.10 /-$
$.15 /-$
$.22 / 6$
$.12 / 6$
$.16 /-$
$.22 / 6$
$.38 / 6$
$.12 / 6$
$.15 /-$
$.20 /-$
$.25 /-$
$.45 /-$

$.12 / 6$
$.17 / 6$
LUCAS 20/0/20 AMMETERS. Brand new boxed. suitable car/motorcycle. 12/6. P. \&
EVERSEED VIGNOLES SERIES II 500 VOLT MEGGERS. Perfect condition 221. PUBLIER NTTROGEL CONDENSERS. Brand new. 8 mfd. 800 V . 8/8. P. \& P. $2 / \cdot ;$ 2 mid. 5,000V., 42/6. P. \& P. $6 /$.

SOLARTRON MONITOR OSCILLOSCOPE TYPE 101 An extremely high quality oscilloscope Internal Y amplifier. Separate mains power supply $200 / 250 \mathrm{~V}$. Supplied in excellent condition with cables, probe, etc., as received from Ministry. \&8.18.6. Carriage $30 /-$

LELAND MODEL 27 BEAT

FREQUENCY OSCILLATORS
$0-20 \mathrm{Kc} / \mathrm{s}$. Output 5 K or 500 ohms. 200 250 V. A.C. offered in excellent condition.

W8.88 TRANS/RECEIVERS. A and B sets available. Complete with valves. $39 / 6$ each.
P. \& P, $4 / 6$. Accessories available.
G. W. SMITH \& CO (RADIO) LTD. 3-34 Lisle St., W.C. 2 Also see oppos. page

MULTIWETERS for GUERY purposed

LAFAYETTE DE-LUXE 100K 8/VOLT
 2.5/10/50/250/07.50 $1,000 \mathrm{~V}$ IB.O. $0 / 3 / 10 / 50 /$
$250 / 50011,000 \mathrm{~V}$ A.C. $0 /$ $10 / 100 \mu \mathrm{~A} / 10 / 100$ $1 \mathrm{KmA} / 2 \cdot 5 / 10 \mathrm{~A}, 0$
$1 \mathrm{~K} / 10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M}$ $10 \mathrm{M} \Omega$. - 10 to 49.4 dB

 GIANT MULTIMETER mirror seale and overload protection. 6in. full view meter. 2 colout scale. o/
$2-5 / 10 / 250 / 1000 / 5,000 \mathrm{y}$. A.C.0/25/12'5/10/50/250 1,000/5,000v. $\quad \mathrm{D} . \mathrm{C}$.
0 $50 \mu \mathrm{~A} / 110 / 100 / 500 \mathrm{ma} /$ 10 amp MEG. 0 HM .
$200 \mathrm{~K} / 20$
$£ 15 . \mathrm{P}, \& \mathrm{P} .5 /-$. £15. P. \& P. 5/-,

NEW MODEL $500 \quad 30,000$ protectio with overload $0 /-5 / 2.5 / 10 / 25 / 100$ $250 / 500 / 1,000 \mathrm{v}$. L.C. $0 / 2 \cdot 5$
$10 / 25 / 100 / 250 / 500$ 1,000 v. A.C. $0 / 50 \mu \mathrm{~A} / 5 / 50$ $\begin{array}{lll}500 \mathrm{~mA} . & 12 \\ 0 / 60 \mathrm{~K} / 6 & \mathrm{Meg} . / 60 \\ \mathrm{Meg} . \Omega\end{array}$ 88.17.6. Post paiu

PROFESSION-

 AL $20,0000 \mathrm{DE}$LAB. TYPE Multitester, Automa
overioad

MODEL AF-105. $50 \mathrm{k} \Omega /$ Volt. Mirror scale, built-in meter pro-
tection. $0 /-3 / 3 / 12 / 60 / 120 /$ $300 / 600 / 1,200 \mathrm{v}$. I).C. 0/6/ $30 / 120 / 300 / 600 / 1,200 \mathrm{v} . \mathrm{A} . \mathrm{C}$ $0 / 30 \mu \mathrm{~A} / 6 / 60 / 300 \mathrm{~mA} / 12$
$0 / 10 \mathrm{~K} / 1 \mathrm{M} / 10 \mathrm{M} / 100$ $\begin{array}{ll}\mathrm{Amp} . & 0 / 10 \mathrm{~K} / \mathrm{M} / 10 \mathrm{M} / 100 \\ \mathrm{M} \Omega, & 20 \text { to }+17 \mathrm{~dB} .\end{array}$ £ 20,000 O.P. MODEL TE-12 20,000 O.P.V;
$0 / 0 \cdot 6 / 6 / 30 / 120 / 600 / 1,200 i$ 3,000/6,000\%. D.C. o/f/301

tection, mirror scale. Ranges
 $0-500 \mu \mathrm{~A}, 10 \mathrm{~mA}, 250 \mathrm{~mA}$ P. \& P. $2 / 6$ MODEL TE-70. 30,00n O.P.V. 0/3/15/60/300/600
$1,200 \mathrm{~F} . \mathrm{D.C.0/6/30/120}$ $600 / 1,200 \mathrm{v}$. A. © , 0/30 1 La $13 / 30 / 300 \mathrm{~mA}, 0 / 16 \mathrm{~K} / 160$ $\mathrm{K} / 1-6 \mathrm{M} / 16 \mathrm{Meg} . \Omega$.
$\mathrm{s}, 10.0$ P. \& P. $3 /-$

TE-51. NEW $20,000 \Omega /$
VOLT MULTMETER With overload protection and mirror seale. 0/6/60/120/
$1,200 \mathrm{v}$. A.C. $0 / 3 / 30 / 60 / 300 /$ $600 / 3,000 \mathrm{v} .1, \mathrm{C} .0 / 60 / 6 \mathrm{~A} / 12$

thm. $85 /-$.
P. \& P. $2 / 6$.

$\begin{array}{lr}\text { MODEL } & 250 \mathrm{~J}, \\ 0.000 \\ 0.10 / 50 / 500\end{array}$ 2.500 v D.C. $\quad 0 / 10 / 50 /$
$500 / 2,500 \mathrm{v}$ A.C. $0 / 2$ $\begin{array}{ll}500 / 2,500 \mathrm{v} . & \text { A.c: } 0 / 2 \\ \mathrm{Mfeg} . & 0 / 250 \mathrm{~mA} .\end{array}$ -20 to +36.1 B.
$49 / 6 . \mathrm{P} . \& \mathrm{P} .2 / 6$.

INTERCOM/BABY SITTER
 8, ideal for home office/workuhop etc 2-way buzzer ca system. For desk or
wall mounting. Sup wall mounting. Supconnecting batterien instric.12.6. P. \& P' 5/-.

AUTO TRANSFORMERS shrouded
 7,500 W. \&15.10.0. P. \& P. 20/\%.

HOSIDEN DHO4S 2-WAY

120/600/1,200v. A.C. $0 / 60 \mu \mathrm{LA} / 6$ $3 \mathrm{Heg} . / 60$ Meg. Ω 50pF.
mFd .25 .19 .6 . P^{2}. \& P. $3 / 6$. MODEL TE-10A. 200 10/50/100/500/I,000v $0 / 50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~m}$
 +22 dB.
$10 \cdot 0,100 \mathrm{mFL} .0 \cdot 100-0 \cdot 1 \mathrm{mFU}$
 69/6. P. \& P. $2 / 6$

ombon mkz

 RELAYSBrand New and Boxed 24V. D.C. coils. ${ }^{2}$ Pol tacts. $7 / 6$ each. P. \& P.1/6

R.C.A. AR88 SPEAKERS

 8 in . 3 ohm apeakers in metal case. Black crackle fluish to match our 88 rect leals. 59/6. Carr. 7/6MODEL ZQM TRANSISTOR CHECKER 1t has the fullest capacity to Equally adaptable for checking diodes,
Spec: A:0.7-0.997.
B: $5-200$. Ico: $0-50$ B: incroamps
Resistance for diode
$200 \Omega-1 M \Omega$. Supplied

STEREO HEADPHONES

Each headphone contains a $2 \frac{1}{2} \mathrm{in}$. woofer and a sin. tweeter. Buit in indivi-
dual level controls $25-$ dual level controls $25-$
18,000 c.p.s. 80 18,000 e.p.s. 8Ω imp.
with cable and stereo plug. e5.19.6. P \&
comp, battery and leads. 25.19.6. P. \& P. 2/6 No. 10 MICROPHONE AND HEADSET Moving coil Accessory for 19 set. Unused $\frac{15 /- \text { P. } 2.4 /-}{\text { MAGNAVOX } 363 \text { 3-SPEED }}$ TAPE DECKS
 10.0 Carriage

UNR-30 4-BAND
COMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates varia
BFO for $\mathrm{CW} / \mathrm{gsB}$ reception. Built in speaker a phone jack. Metal cabinet. Operation $220 / 240 \mathrm{~V}$. A.C Supplied brand new, guaranteed with 13 GnS.
$\begin{aligned} & \text { instructions. } \\ & \text { Carr. } 7 / 0\end{aligned} \quad 1$.

LAFAYETTE HA-700 AM/CW/SSB AMATEUR COMMUNICATION RECEIVER

fillen b bands morporating 2 MECHANICAL Frequency coverage on 5 bands $150-400 \mathrm{Ke} / \mathrm{s}, 550$ $1,600 \mathrm{Kc} / \mathrm{s}, 1 \cdot 6-4 \cdot 0 \mathrm{Mc} / \mathrm{s}, 4 \cdot 8-14 \cdot 5 \mathrm{Me} / \mathrm{s}, 10 \cdot 5-30 \mathrm{Mc} / \mathrm{s}$ Circuit incorporates R.F. stage, aerial trimmer, noise spread, \& meter, slide rule dial. Output for phones low to $2 k \Omega$ or speaker 4 or 8Ω. Operation $220 / 240 \mathrm{~V}$ A.C. Size $73 \times 15 \times 10 \mathrm{in}$. Supplied brand new and guaranteed with

NEW LAFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/CW/S8B AMATEUR AND SHORT WAVE. $150 \mathrm{Mc} / \mathrm{s} . \mathrm{E} . \mathrm{E} . \mathrm{front}$ end -2 mechanical flters Huge dial Product detector Crystal calibrator Variable BFO Noise limiter © S Meter e $24 y$ in. Bandspread $230 V$ A.C./12V. D.C. neg. earth peration RF gain control. Size 15in, x9in. \times Bin. Wi. 18 lba. Carr. 10/-. S.A.E. for Iull details.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

 19 transistors, 8 diodes, 1 HF music power, 30 W
at 8Ω. Response $30-20,000+2 \mathrm{~dB}$ at 1 W . In is at 8Ω. Response $30-20,000 \pm 2 d B$ at $1 W$. I is
tortion 1% or less. Inputs 3 mV and 250 mV . tortion 1% or less, Inputs 3 mV and 250 mV
Output $3-16 \Omega$ Separate 1 . and F , volume con trolp. Treble and bass control. Stereo phone jack Brushed aluminium, gold anodised extruded fron pancl with complementary metal case. Size 101
$\times 3916 \times 73 / 16$ in. Operation $115 / 230 \mathrm{~V}$. A.C.
e2s. Carriage $7 / 6$.

TRANSISTORISED

 TWO-WAY INTEPHONE Operative over amazingly long distances. Saparate call and press to talk buttons,2 -wire connection. 1000's of applications. Beautifully finished in ebony. supplied complete with batteries and wall brackets.

TAPE MOTORS

Brand
stock
an
new
used
\star TRANSISTORISED FM TUNER $*$

 Til ovistor
 Double tuned dis-
criminator criminator. Ample
output to feed most ouppliflers. Operates
amper Ready built ready for use. Fantaatic yalue for money. £6.7.6. P. \& P. 2/6.
terco muit plex adaptors o gns.

GARRARD DECKS

1025 mono and Guaranteed
1025 mono
2025 TC less cart. .
SP'25 Mk. II less cart
A70 Mk. II less cart.
AThB Mk. Mk. 11 less cart. with \quad...........18.19.8
base 227.10 .0
ward 10/6. Fast Rewind 10/6. P. \& P. 3/-
Set of three notors $32 / 6$. P. \& P. $5 / \%$.
RECORDING HEADS Reuter $\frac{1}{2}$-track. As fitted to Collaro Mk. IV antl Studio Decks. Iligh imp. record playback, low imp. erase. Brand new. 19/6 pair. Miniflux $\frac{1}{t r a c k}$, record
Cosmocord with mounting plate: cosmocord with mounting platid
TR1-500/P/W recorl/replay. TR1-500/P/W recorl/replay. TR1-120/P/W recoru/replay TEL1-6P/W
Post extra.

WOODEN PLINTHS for Garrard seriea 1000 2000,3000 , etc. with perspex cover. 84.10 .0 P. \& P. 4/6.
E.M.1. SINGLE PLAYERS. \& speed, with separate arm and cartrige. JTV. Carr. with stereo cartridge. £6.10.0. Carr. 5/-

required now for vital work in Air Traffic Control
Join the National Air Traffic Control Service, a Department of the Board of Trade, and play a vital part in the safety of Civil Aviation. Work on the latest equipment in Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments in the South of England, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 828$ (at 19) to $£ 1,076$ (at 25 or over); scale maximum $£ 1,242$ (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

National Air Traffic Control Service

IT'S BARGAIN
 TIME AT

MORE TO CHOOSE FROM-LESS TO PAY

TRS-MULLARD STEREO 10-10

An unsurpassed 20 watt bigh fldelity valve powered atereo amplifier to exact Mullard spec. With passive pre-amp network Input sensitivity $210 \mathrm{~m} V$ tapped o/p transformer, 3 and 15Ω, all controle, H.T. and L.T. outlets, mono, stereo and speaker phase switching. Complete with escutcheon, knobs, plugs, etc. Ready built or in kit form,

KIT complete with valves, $\mathbf{f 1 7 . 1 0 . 0}$ structions, Carriage and packing on either $12 / 6$.
$2+2$ PRE-AMP/CONTROL UNIT FOR ABOVE
TRS-Mullard design, ready assembled and absolutely complete.

TRS MULLARD 3-3 MONO AMPLIFIER
ANPLFIER
3 value 3W aroplifier with controls, absolutely complete
panel knobs, etc. (p. \& p. $7 / 6$). Ready bulit $47 /$ - extrs.
£7.12.6
TRS MULLARD 5-10 MONO AMPLIFIER
5 valve 10 watt hi-fl amplifier unlt, has neverbeen bettered. Avallable 19.19 .6
as basic kit with pasaive control network and 4 nput switching. Assembled 11419.6 . Carr, and packing and 4 npput switching.
£6.12.6
YOUR LAST CHANCE TO BUY AT THIS PRICE
Owing to steep rige in timber priees, We cannot continue to offer our famous
TRA 'Pack Flat' Speaker Cabinet kit at $75 /-$ once atocks are exhausted
Bize $21 \times 15 \times 7$ in, teak finished to finest professional standards. State it
for 8 or 10 in. unit when ordering. 3in. tweeter cut-out ls atandard. (Carr.
for 8 or 10 in, unit when ordering. 3in. tweeter cut-out is atandard. (Carr. 75/- $7 / 6$).
and Packing 7 /

ALL THE LATEST
FROM SINCLAIR
We stock all these famous products as advertised in this journal including Micromatic Kit (49/8); Q.14 speaker (87.10 .6 .7 ; $Z .12$ ($89 / 6$) ; PZ. 4 ($09 / 6$) etc. eto. ORDER YOUR SINCLAIR ITEMS FROM TRS WITHOUT DELAY

AN IMPORTANT NEW FM STEREOTUNER FROM TRS
Available shortly, this de-luxe transistor F.M. Stereo Tuner comes to you in prefabricated module form ready for instant and simple Including ercellent sensitivity, switchable AFC, automatic atereo function, rugged construction and modern appearance. B.A.E. brings details of thly worthwhile tuner.

GARRARD UNITS AND PLINTHS

LH3000 Record Player with 9T.A. GARRARD PLINTH WB.I. In fine Teak

Stereo Cartridge. 110.5 .0 . for any of above units. (Packing and AT. $60 \mathrm{Mk} \mathrm{II} \mathrm{Do-luxe} \mathrm{Auto-changer}, \mathrm{die-}$ cast turntable. Less cartridge. \$18.5.0. 8P. 25 De-luxe single record player, diecast turntable. Less cartridge. t11.19.6. Brand new in makers' cartons. Packing and carriage on any one of above $7 / 6$. Autochanger. 225 . (Cartridge extra). Autochanger.
C./P./Ins. 12/6. carriage $5 /-$). 65/0.
Garrard elear-view, rigid persper cover
(carriage $4 / 6$), 62/6. (carriage 4/6), 62/B. CARTRIDGE OFPER TO PURCAASERS OF PLAYER UNTTSsTEREO Bonotone 9TA/HC Cersmic with diamond $49 / 8$; Decea Deram with
diamond $92 / 6$; MONO Acos GP91-1 21/-; Goldring MX2M 26/6.

PEAK SOUND PRODUCTS

8A 8-8 STEREO AMP. 14 Transistor Kit. SW per channel. One of the beat and most economic we have ever offered. AMPLIFIER KIT 59.10 .0 (P.P. 4/-); POWER PACK
KIT 82.10 .0 (P.P. 4/-); WOOD ENDED CABINETT 22.10 .0 (P.P. $5 /-)$; COMPLETE A8s making your own circuit boards, reduced from $15 /=$ to $10 /=$ ($\mathrm{P} / \mathrm{P} 1 /-$), 5 ft . spool of adhesive copper strip, 2/- (P/P 1/-). MS 8-5 Bookshelf Speaker Kits, $\mathbf{2 7 . 1 9 . 0}$ inc. cabinet ($\mathrm{P} / \mathrm{P} \mathrm{E} / \mathrm{C}$).

WE ARE COMPONENT SPECIALISTS
RESISTORS-Modern ratinga, full range 10 ohms to 10 megohms. 10% t- $\frac{1}{2}$, 4d. each; $20 \% 1 W$, 8 d , each;
 1% Hi-atab. IW, $1 / 6$ each (below 100%, $2 /$ - each) WIREWOUND RESISTORS-25 Ω to $10 \mathrm{k} \Omega 5 \mathrm{~W}, 1 / 6$ each; $10 \mathrm{~W}, 1 / 8$ each; $15 \mathrm{~W}, 2 / 8$ each.
CONDENSERRS-Silver Mics. All values 2 pF to $1,000 \mathrm{pF}$, 6 d, each. Ditto oeramies, 9d. Tub. 450 V each: $0.02-0.1 \mathrm{mF}, 5007 \mathrm{i} /=$ each. T.c.c. 850 F 0.25 each; $0 \cdot 02-0 \cdot 1 \mathrm{mF}, 600 \mathrm{~V}, 1 / \cdot$ each. T.c.C. 850 V 0.25 CLOSE TOL. $8 / \mathrm{MCAS}-10 \%$ 5-500pF, 8d.; 600$6,000 \mathrm{pF}, 1 /-; 1 \% 2-100 \mathrm{pF}, 11 \mathrm{~d} ; \mathrm{c}^{2} 100-250 \mathrm{pF}, 1 / 8$; $270-800 \mathrm{pF}, 1 / 4 ; 800-5,000 \mathrm{pF}, 2 /-$
TALVES-TRANSISTORS-SPEAEERS

MONEY SAVING LISTS Eight large printed pages packed with bargain offera including difflcult to flnd lines. Send 6d. for latest cepy.

WHEN ORDERING
Send eath with arder. Post and packing where not stated add $1 /$ - per $\ddagger \boldsymbol{l b}$; stated $a d d 1 /-$ per $=l b$;
$1 / 9,1 \mathrm{lb} ; 3 / 6,2 \mathrm{lb} ; 5 /-, 6 \mathrm{lb}$; $6 / 6,10 \mathrm{lb}$; $8 /-, 14 \mathrm{lb}$; over 10/-

TRS RADIO
 COMPONENT SPECIALISTS

70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY Telephone: - 9 a.m. $\mathbf{6}$ p.m. daily \quad A few minutes Irom Thornton Telephone:
$01-6842188$
$1 \mathrm{p}, \mathrm{m}$. Weds.

BUILD YOURSELF A OUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

BaxMan

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!
2) 7 FULLY TUNABLE WAVEBANDS-MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND

- Extra tuming of Luxembourg, etc.
- Built in ferrite rod aerial for Medium and Long Waves.
- 6 Beetion !e2 inch chrome plated telescopic aerial for mart waves-can ie angled and rotated for peals s.W. listening
- Socket for Car Aerial.
- Powerful fush pull output.
- Ttransistors and two diodes including Micro-Allog H.F. Transistorg
- Famous make 7in. x tin. P.M. speaker for rich -tone volume.
- Air spaced ganged tuning condenser.
- Separate on/off switch, volume coutrol, wave change switches and tuning controt.
- Attractive case with hand and shoulder straps. Bize 9in. x 7in. x 4in. approx.
- First grade components.
- Eagr to follow instructions and cliagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs

Persona' Earpiece with switched socket
for private listening $5 /-$ extra.

NEW
LOOK MELODY SIX
two waveband PORTABLE

- 8 stages- 6 transistors and 2 diodes

Covers Medium and Long Waves. Top quality 3 in. Loudspesker for quality output and also with l'ersonal Earpiece with switched socket for private distening. Two RF stages for extra boost. High "Q". Ferrite Rod Aerial. Push-pull output. Handsome pocket size oase with gilt flttings. Size $61 \times 4 \times 2 \mathrm{iu}$.

Total building costs
(0) P P. \& P.

Parts Price List and easy build plans 2/- (Free with parts).

Total building costs
471E $\quad \begin{aligned} & \text { P. \& } \\ & 3 / 9\end{aligned}$

POCKET FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive black and gold case. Bize $5 \frac{1}{2}$ I 14 3kin. Fully tunable over both Mediuro and Long
Waves with extended M.W. band tor easler tuning of Luxembourg, etc. All first grade com-ponente- 7 stages- 5 transigtors and 2 dlodes, 8 opersensitive ferrite rod aerial, fine tone moving coil speaker, also Personal Earplece with switched socket for private listening. Easy build plans and
parts price list. $1 / 6$ (FREE with parts).

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE Attractive case with red speaker grille. Bize 6 ${ }^{4} \frac{1}{2}$ Ifin. Fully tunable. 7 stages- 5 tranizitora volume Personal Earpiece with switched socket for private listenligg. All first grade components. Easy build plans and parts price list $1 / 6$ (FREE with parts).

Total building costs

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt fittings, size 7 I $\times 5 \frac{1}{3} \times$ 1 in. World wide reception. Tunable on Medium and Long waves, two short waves, Trawler Band Plus an extra M.W, band for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and
telescopic aerial tor short waves. All top grade componente. 8 stages- 6 transistors and 2 diodes components. 8 atages-- ransistors and 2 diodes (Carrying strap $1 / 6$ extra.) Eass build plans and parts price list $2 /$-(FREE with parts). (Personal Earpiece with switched socket for private listening

Total building costs © $\underbrace{\mathrm{P}} \underset{4 / 6}{\mathrm{P} P} \mathrm{P}$.

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size $7 \ddagger \times 5 \times 1$ inn. with gilt Attings. The ideal radio for home, car or outdoors, Covers Medium and Long Waves and Trawler Band. Specias circuit incorporating 2 R.F. Sages
push pull output ferrite rod actial, 7 transistors and 2 diodes, 3in. speaker (will' drive larger gpeaker) and all first grade components. Easy build plans and parts. Price list 2/- (FREE with parts). (Personal Earpiece with switched socket for private ligtening 5/-extra.)

RADIO EXCHANGE CO.

61 HIGH STREET, BEDFORD
Callers side entrance Stylo Shoe Shop

- Open 9-5 p.m.

Telephone: Bedford 52367 Saturday 9-12.30 p.m.

VIKING AMPLIFIER

50 WATT AMPLIFIER

An extremely reliable general purpose valve amplifier. Its rugged construction yet space age styling and design makes it by far the best value for money.

TECHNICAL SPECIFICATIONS

 4 electronically mixed channels, with inputs per channel, enables the use of 8 sep-arate instruments at the same time. The volume controls for each channel are located directly above the corresponding input sockets.
SENSITIVITIES AND INPUT IMPEDANCES
Channel $1 \quad 4 \mathrm{mV}$ at 470 K Channel $2 \quad$ These 2 channels (4 inputs) are suitable for Channel 24 mV at 470 K$\}$ microphone or guitars.
Channel 3200 mV at 1 m \{ Suitable for most high output instruments Channel 4200 mV at 1 m$\}$ (gram, tuner, organ etc.)
Input sensitivity relative to 10 w output.
TONE CONTROLS ARE COMMON TO ALL INPUTS
Bass Boost +12 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Bass Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$
Treble Boost +11 dB at $15 \mathrm{KHz} / \mathrm{s}$. Treble Cut -12 dB at $15 \mathrm{~K} \mathrm{~Hz} / \mathrm{s}$ With bass and treble controls central -3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and $20 \mathrm{KHz} / \mathrm{s}$.
OOWER OUTPUT
For speech and music 50 watts rms. 100 watts peak. For sustained music 45 watts rms. 90 watts peak. For sine wave 38.5 watts rins. Nearly 80 watts peak Total distortion at rated output $\left.\begin{array}{r}3 \cdot 2 \% \\ 0.15 \%\end{array}\right\}$ at $1 \mathrm{KHz} / \mathrm{s}$

Price
27 gns
P \& P 20/- Output to match into 8 or 15 ohms speaker system. NEGATIVE FEED BACK 20 dB at $1 \mathrm{KHz} / \mathrm{s}$. SIGNAL TO NOISE RATIO 60dB. MAINS VOLTAGES Adjustable from $200-250 v$ A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit VALVE LINE UP Double purpose ECC83 x 3, EL34 $\times 2$ and GZ34.

FOUR PLUS FOUR Stereo Amplifier

A superb high quality, yet inex- also provided at the rear of unit.
pensive stereo amplifier. Due to the great demand we are now able to offer this precision made instrument at a fantastically low price. The high quality, reliability and styling has been maintained in spite of its low price.
SPECIFICATIONS
Elegant styled cabinet (sizes $16^{\prime \prime}$ wide $5^{\prime \prime}$ high $8 \frac{1}{2}^{\prime \prime}$ deep) in black rexine and woodgrained sides. Brushed aluninium front panel Brushed alumunium front panel
with contrasting black/silver With
knobs.
CONTROLS
Stereo/Mono switch. Gram/Aux switch. Volume left. Volume right. Treble (cut and lift). Bass (cut and lift). Separate on/off switch. Neon
pilot indicator.
(per channel)
gram, aux, tape out and speaker out. A switched mains socket is

Employs Mullard valves throughout. ECC83 and $2 \times$ ECL86 with a metal bridge rectification.
TECHNICAL SPECIFICATIONS Gram sensitivity 40 mV at 1 KHz . Aux sensitivity 50 mV at 1 KHz . (Sensitivities are given for rated output). 4 watts r.m.s.
(8 watts r.m.s. In monaural position) Output matches ino standard 3 ohms speaker system. Suitable $10^{\prime \prime} \times 6^{\prime \prime}$ speakers are avail-
able at $29 / 6$ each, plus $5 /-$ p. \& p. Bass control at 100 Hz lift +9 dB 10 KHz lift +8 dreble control at Total +8 dB cut -13 dB . t 3 watts and 2% distortion 0.35% at 1 KHz . Negative rated output at 1 KHz . Negative feedback 13 dB at 1 KHz. Mains supply $220-250 \mathrm{~V}$
A.C. $50-60 \mathrm{~Hz}$.

Price
13 gns
PGP ${ }^{15 /-}$

SPEEDEX the SPEED CONTROLLER for ELECTRIC POWER DRILL

infinitely variable electronic speed controller for your electric power drill. Varies the sped of all power tools (up to 600 W) between 12 r.p.m. and maximum r.p.m. Instantly adjustable with simple single
 control overriding switch for instant maximund speed. Simply connected into lead of power tool. Only $25 /-$ plus $3 / 6 \mathrm{P} . \& \mathrm{P}$.

GEC KETTLE ELEMENT

3,000W WITH AUTOMATIC EJECTION $200 / 240 \mathrm{v}$. Size of hole required 1 星 List Price 32/-. Our PRICE 15/-. P. \& P. 1/6.

Goods not đespatched outside U.K. Terms C.W.O.
All enquiries Stamped Addressed Envelope

RADIO \& TV COMPONENTS (Acton) LTD 21c High Street, Acton, London, W.3. 323 Edgware Road, London, W.2.
 All orders by post to our Acton address.

POCKET MULTI-METER

Size $3 z \times 2 \frac{1}{5} \times 1$ in Meter size 21×11 in gensitivity 1000

 O.P.V. on both A.C. and D.C. volts. $0-15,0-150,0-1000$ D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete With teat prods, battery and full instructions, 42/6. P. \& P. 3/6. PREE GIFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket Multi-MeterCYLDON U.H.F.TUNER

Complete with PC88 and PC86 Valves. Full variable tuning. New and unused. Size $4 \frac{1}{\$} \times 5!\times$ 1 inin. Complete with circuit diagram. $35 /-$ p. \& p. $3 / 6$

600 mW FOUR TRANSISTOR AMPLIFIER

Features N.P.N. and P.N.P. complementary symmetrical output stage, $2 ل^{\prime \prime} \mathrm{x} 7^{\prime \prime} \mathrm{x}$ 多" Speaker. Output impedance 12 ohms frequency response 3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$. Price $19 / 6$ plus $1 /-\mathrm{P} . \& \mathrm{P} .7 \times 4^{\prime \prime}$ Speaker to suit, 13/6 plus 2/-P. \& P.

$2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} \times 4 ł^{\prime \prime} \times 13^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Semi conductors, two OC 75's two AC 128's and two stabilizers AA129. Tone and volume controls on flying leads. $£ 2.10 .0$ plus P. \& P. 3/6. Suitable $g^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high fux speaker, $18 / 6$ plus $2 /-\mathrm{P}$. \& $\&$ P.

NEW TRANSISTORISED	Size $5 \mathrm{t} \times 3 \pm \times 1$ in . For IF and RF alignment and AF output $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{mc} / \mathrm{s}$
SIGNAL GENERATOR	in 3 witched frequencies. Ideal for alignment to our Elegant Seven and Musette Built and tested.
SIGNAL GENERATOR	Elegant Seven and Musette. Built and tested. $49 / 6$

THE RELIANT 10W SOLID-STATE HIGH QUALITY AMPLIFIER SPECIFICATIONS

Output-10 watts RMS Sine-wave

 \qquad
 Output Impedance- 3 to 4 ohms

Inputa 10 watta RMS Music-power
Tone Controls-Treble control range $\pm 12 \mathrm{~dB}$ at 10 KH 2 Frequency Rram/radio 250 mV Bass control range $\pm 13 \mathrm{~dB}$ at $100 \mathrm{H2}$ Bignai to Noise Ratio-better than-60dB. Transistors-4 ailioon Planar type and 3 Germanium type. Mains input- $220-250 \mathrm{~V}$. A.C. Size of chassis- $10^{\circ} \times 32^{\prime \prime} \times 2^{\prime \prime}$. A.C. Mains, $200-250$ V. For use with Std or L. P. records, musical Instruments, all makes of pick-ups and mikes. Separate bass and treble lift control. Two inputs with control for gram.

RECORD PLAYER SNIP

The "Princess" 4-apeed automatic record changer and player engineered with the utmost precision for beauty, long life, and trouble free service. Will take $\operatorname{up}_{12 *}$ to ten records which may be mixed $7^{\prime \prime}$ to $10^{\prime \prime}$ or playing and at shut off, the pick-up locks itself into its recess, a most useful feature with portable equip-ment-other features include pick-up height adjust. ment and stylus pressure adjustment. This truly is a
 ine instrument which you can purchase this month

ANTI-THIEF CAR BURGLAR ALARM

The Melguard safermatic consists of an electrical device boused in small metal box $4^{\prime \prime} \times 2^{\prime \prime}$ average motorist at an economic and developed to provide protection required by the condition is set automatically as soon as you park the car. Should you leave the key in the ignition, no one but you can drive the car away. Upon entering the vehicle the method of starting the car is by switching on the ignition, depressing two hidden awitches, and simultaneously operating the starter. Location of the switches is known only to you. Should the
alarm be set off it can be stopped by following the normal starting pred alarm be set off it can be stopped by following the normal atarting procedure. For 12 V operation. List price 79/6, our price $29 / 6$ plus $2 / 6$ P. \& P. Full easy-to-follow instructions
supplied. supplied

AC MAINS motor 1400 R.P.M. 230/250v
PRICE
9/6
P. \& P. 3/-

 10 WATTS (RMS) SOLID-
 STATE HI-FI AMP WITH INTEGRAL PRE-AMP
 Its great versatility ran ges from: A simple interCom. to a modern Hiare required for Stereo)
 The X101 is a brilliant highiy successful range of products. Its professional performance and adyanced solid-state circuitry techniques ensures reliability. combined with high fidelity reproduction at AN
 R SPECIFICATIONS

R.M.s. Power Output: 13 W (music power), 10 W (Sine Wave) sensitivity: for rated output 1 mV into 3 K ohms load.
Total Distortion: at 1 KHz for rated output 1.50 Hz and 40 KHz .
$0-35 \%$.
Outint Imperiance: $3 \mathrm{ohms}(3-15$ ohms may be used)
Supply Voltace: 24 V D.C. at 800 mA ($6-24$ V may be used) output at Size:24* $\mathrm{K} 3^{-} \times 1^{9}$. supply with 3 ohms speaker. 7 watts
ize full ${ }^{16}$
The fully comprehensive instruction manual does not only show the practical easy-to-understand detailed information about the Xives. Standard equalisation networks are given for most types of conventional inputs. They include: Tape Head, Mag. P.U., Xtal P.U., Tuner Mic, etc. $49 / 6+2 / 6 \mathrm{p}$ \& p .

Control hssumbly: (Including resistors and capacitors) 1. Volume: PRICE 5/-. 2. Treble: PRICE 5/-

The above 3 items can be purchased for use with the X101.
POWER SUPPLIES FOR THE X101

[D] 1$] / 1$ a high quality monaubal
 PRE-AMP \& CONTROL UNIT

Particularly suitable for use with the X101 if a ready-built. comprehensive, multi-input system is desired.

CONTHOLS

Selector Switch. Tape Speed Equalisation Switch (37 and 7 i.p.s.), Volume. Treble, Bass, 3 position scratch fitter and position rumble filter.

SPECIFICATION

Sensitivities for 200 mV output at 1 KHz
Tape Head: 3 mV (at 3i i.p.s.) Radio: 100 mV
Mag. Pu.: $\quad 2 \mathrm{mv}$
Tapertere Ontput: 100 mV
Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz .
Tone Control ltangl: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz
Total Distortion : (for Treble 200 mV output) 14 dB at 15 KHz
Sifnal Noise: $>-60 \mathrm{~dB}$
$79 / 6$ plus $2 / 6$ p. \& p.
A STEREO VERSION (PR101/S) WILL BE ANNOUNCED SHORTLY

Th ACQB HIGH qUALITY SOLID-STATE AMPLIFIER (MONO)

SPECIFICATION

Switched inputs for: Tape Head, Mag. P.U., Cer P.U., Radio and Aux
 Mains Input: : 2n(1-250) A.C. 50 Hz
THE CLASSIC is THE COMBINATION OF THE ABOVE DESCRIBED ITEMS (K101, P101/M AND PR101/M) ON ONE COMMON CHASSIS: ITS PERFORMANCE AND SPACE-AGE STYLING MAKE IT THE IDEAL CHOICE FOR THE VALUE-CONSCIOUS HI-FI Size $12 \frac{1}{2} \mathrm{in}$. long, $4 \frac{1}{4} \mathrm{in}$. deep, $2 \underset{3}{3} \mathrm{in}$. high. leak finished case.

WKW! TME Dorset Pranevetion
poribuerio

CAN BE USED AS BABY ALARM

600 milliwatt solid gtate 7 transistor plus diodes and thermistor. Completely
modulised high quality portable radio
fasturing complementary NPN and PNP output
stage. The comprehensive easy-to-follow drawinge
supplied make this the essiest-ever transistor
supplied make this the easiest-ever transistor radio aet
al parts, with the following festures:

- Simple connections to only 6 tags on the R.F./I.F module, 3 I.F. stages, osc. coil and 3 transistors which with their associated components a re completely wired
- Only 4 connections on the A.F', module to complete the 4
transistor 600 milliwatt solid state amplifier.
- Ere-aligned R.F./I.F. modnle built and tested
- A.F. module built and tested.

Fully tuasble over M.W. and L.W. bands. M.W. $540-1640 \mathrm{Kc} / \mathrm{a}$ ($557-183$ metres). L.W. $150-275 \mathrm{Kc} / \mathrm{s}$
(1000-1100 metres).

- latermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$.
 Kc/a 40 microvolt plus or minus 4 dB
- High Q internal ferrite rod aerial on both wavebsnds
- Class 'B' modulised ontput stage with thermistor controlled heat stabilisation. Class 'B' outputstage ensures long battery life. Current drain is proportional to the output level. Total current drain of the receiver under no aignal conditions is $10-1^{2} \mathrm{~mA}$. At reasonable listening level $20-30 \mathrm{~mA}$.
- Extenslon sockets for car aerial input, tape recorder output (Independent
- All compenents (except apeaker) meaker
to-follow instrul - Finger-tip controls.

Special Ofer-Power Supply Kit to purchasers of Dorset Portable Radio parts inoorporating mains transtormer, rectitier and smoothing oondenser, AC maina $200 / 250 \mathrm{~V}$ output $9 \mathrm{~V} 100 \mathrm{~mA}, 9 / 6$ extra.
ELEGANT SEVEN Mk III

SPECIAL OFFER

£4.9. 6

POWERSUPPLY KIT
To purchasers of 'Elegant
Seven parta, incorporat-
ing mains tranformer.
rectifler and smoothing condenser. A.C. mains
$2000 \% 250$ volts. Output 97 $200 / 250$ rolts. Ontput 9 v
$100 \mathrm{ma} .9 / 6$ extra $7 / 6 \mathrm{P}$ \& P Parta
Plus $1 / 6 \mathrm{P}$. \& P. Parts List and parts.

Buy yourself an easy to build 7 transistor radio and save at least £10.0.0. Now you can build this superb transistor superhet radio for under $£ 4.10 .0$. So one else can offersuch a fantastic ratio with so many de luxe star features.
t De luxe wooklen oathinet size
 \star Horizontal easy to real tuning Bcale printed gres with black letters, size $111^{*} \times 2$
\star High 'Q' territe rod aerial. \star I.F, neutralization on each separate stage
\star D.C. coupled push pull output atage with separate A.C. negative feedlias-k.

* Room sling output 300 ruW
* Ready etched and drilled printed oircuit board back priated for foolproof construction.
* Vuliy couprehensive instructions and point-to-point wiring diagrans.
* Car aerial socket.
 metres.
* All components ferrite rod and tuning assembiy mount on printed board. $\star 5^{*}$ P.M. speake
* Parts list and circuit diayram 2/6, free with parts

RADIO \& TV COMPONENTS (ACton) LTD.
21C HIGH STREET . ACTON . LONDON . W3
OPEN 9 a.m.-b p.m. INCLUDING SATS. EARLY CLOSING WEV GOODS NOT DESPATCHED OUTSIDE D.K. TERMS C.W.O.

All enquiries stamped addressed envelope
All orders by post to be sent to our Acton address
323 EDGWARE ROAD, LONDON W2
Personal shoppers only. Early elosing Thursday.

TOB RECEIVER FANS AMATEUR BANDS
 amahs 12 vols，recelver．Eflclen $4 / 8$ ． mobile or home pecelver，Carr $4 / 8$ ．

CRUS MAINS T．R．F．SHORTWAVE CRUS MAINS T．R．F．
RECEIVER
Separate electrical hand
Wat ion
 spread．＊3 slow mo．＊Valves ECC81，EL8，with 3 coils
 Size $12^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 7^{n}$ ．CoDeR （10－28， 25 ready bu
each．

BANK HOUSE，SOUTHWICK SOU A M al Order Service

R．F．PRE－SELECTOR MODEL P．R．JO image R．F．PRE－SELE
R．5－30Mc／s
Provides in to 200 B gain plus substantial image Provides improved signal noise rates 12 mA ．H．T tivily．Power requirements Size $85^{\prime \prime} \times 5^{\prime \prime} \times 4^{4}$ ．Ready instructions 6.3 volts， 3 and L．T．Sire plugs and instruchans． complete whit cables，
$£ 5.10 .0$ ．Carr． 4,6 ．Selt－powered P．R．30x 27.4 .0 ．
Carr． 46.

```
Please supply...-
``` tick as required？ （tick as pequiren）chequed
 \(]_{\mathrm{c}}^{\mathrm{Na}}\)

CIPPER－OUR FAMOUS MINI．CLIPPERERECEIVER COM－ SHOR be built in one evening．＊Cores pete with valve，one coll \(25-7\) ．Price and \＆page instruction 5／－each－ 39！6．Carr 3！－Extra coils 5 ／－each－

\section*{\(\square\)}
 \(\int \begin{aligned} & \text { gut stamp enclosed } \\ & \text { for leathers }\end{aligned}\) \(\int \begin{aligned} & \text { Bu stamp enclosed } \\ & \text { for leathers }\end{aligned}\) I 1shoum details
H．P．deli

\(\square \square \square \square \square \square\)

\section*{TOPIC ロF THE MONTH}

\section*{The Sound Scene}

MANY "radio enthusiasts" are interested in subjects not strictly speaking radio at all, such as electronic devices, test equipment and the type of interest referred to collectively as "audio".

The last decade has seen a remarkable growth in audio interest. At one time, an amplifier was a relatively simple proposition involving perhaps two or three valves in one of several conventional configurations, and associated equipment was similarly fairly "standard". Since then, great strides have been made in the design of components and circuitry, helped along by several innovations in recording and playback techniques.

First came microgroove disc recordings, with attendant raising of standards in playback equipment, then came the rapid development of tape recording and now we have the introduction of stereo on disc and tape recordings and for f.m. radio broadcasting.

During the time that audio has been flourishing, a multitude of specialist shops have sprung up and even many ordinary radio and TV dealers have made an effort to establish departments capable of handling and exploiting today's sophisticated audio products.

Also, in that time, the spread of participation has grown accordingly and an audio enthusiast today may design his own equipment, build it from P.W. articles, make it up from kits, or buy build-up units and interconnect them into a system. He may, in fact, be anything from a keen technician to a complete layman.

A result of this audio explosion has been a bewildering proliferation of products-commendable in that the prospective buyer has a wide choice but an inbuilt disadvantage because of the confusing variety available.

Our new series of special supplements is aimed to help readers sort out the wheat from the chaff, to provide a concise but informative survey of what to look for in the constituent units in a modern audio complex. The supplements will be useful even to those who normally build their main equipment, for certain items-such as loudspeakers, deck mechanisms and microphones-must be purchased.

This month we cover the main units of an audio set-up, next month we deal with the end links, the transducers, and finally we will cover workshop practices. Plus, next month, a special wall chart of reference material.
W. N. STEVENS-Editor.

\section*{CONSTRUCTIONAL}
\[
\begin{array}{lc}
\begin{array}{l}
\text { A. F. Amplifier Module } \\
\text { by R. Leyland }
\end{array} & 390 \\
\text { Transistorised Calibration } & \\
\text { Osillator by F. L. Thurston } & 393 \\
\text { Pyramid All Purpose System, } & \\
\begin{array}{l}
\text { Part 2, M.W. Superhet Tuner } \\
\text { by F. G. Rayer }
\end{array} & 398 \\
\begin{array}{l}
\text { Making a Ground Plane Aerial } \\
\text { by R F. Graham }
\end{array} & \\
\begin{array}{l}
\text { Optical Communication } \\
\text { by Stuart Gillies }
\end{array} & 406 \\
\begin{array}{l}
\text { An Automatic Parking Light } \\
\text { Switch by D. Lewis }
\end{array} & 420 \\
& 430
\end{array}
\]

\section*{GENERAL INTEREST}

Leader 387
News and Comment 388
Practically Wireless
by Henry
A Look at Infra Red 408
Audio Supplement 409
Letters to the Editor 422
Your Questions Answered 405
Modifying V.H.F. Portables by L. Case

On the Short Waves

by Christopher Danpure and
 David Gibson, G3JDG 426
GB2LO 434
Re-activating Mercury Cells by L. B. Stott 437

\footnotetext{
"With this month's issue the price of PRACTICAL WIRELESS has been increased to \(3 /-\). This is the first increase since May 1966. Since that time all costs have increased and the position has now been reached when we must ask our readers to make some contribution if the standard and authority that has been associated with PRACTICAL WIRELESS from its foundation is to be maintained. With the next issue we change our production methods to web-offset and this will permit better reproduction of photographs which will be of great benefit in constructional articles.
We are sure our readers will appreciate this improvement in production and will understand the reasons for the increase in price."
}
nOVEMBER ISSUE WILL be published on OCTOBER 4th

\footnotetext{
All correspondence intended for the Editor should be addressed to : The Editor, "Practical Wireless'", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscription rates, including postage: 42s. per year to any part of the world. (C) George Newnes Ltd., 1968. Copyright in all drawings, photographs and artlcles published in "Practical Wireless' is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressiy forbidden.
}

\section*{MICRO-MASSIVE}

Microelectronics, small as the resultant units are, is spreading. Marconi-Elliott have recently opened what they claim is Britain's largest and most modern micro-electronics plant, at Witham in Essex. Personnel already approaches the 450 mark.

The standard of air cleanliness in production areas is controlled to very precise limits. Dust concentrations in the air are filtered out conforming to Class 1,000 conditions-no more than 1,000 particles greater than 0.5 of a micron in diameter in every cubic foot. Typical figures for air in the average office could be 500,000 particles up to 250 microns in diameter.

After primary filtration, the air passes through a refrigerator bank circulating 270 tons of refrigerant per hour which removes the water vapour. It is then split. part being raised in temperature by a heater supplying over \(2 \frac{1}{2}\) million B.Th.U's per hour. Any area is then controlled in temperature by blending the two supplies. Some areas have even cleaner air -Class 100! (100 particles less than 0.5 microns in diameter per cubic foot).

ELECTRONIC SLIDE RULE

The HP 9100A is a programmable, electronic calculator which performs operations commonly encountered in scientific and engineering problems. The easily-readable cathode ray tube instantly displays entries, answers and intermediate results. Not much larger than an office typewriter, this midget mathematical brain will perform a wide variety of intricate mathematical functions. It will read up to 10 significant digits with automatic decimal point placement.

Operations appear almost endless and includeaddition, subtraction, multiplication, division and finding the square root. Other operations include- \(\log x ; \ln x\) and \(e^{x} ; \sin x ; \cos x ; \tan x ; \sin ^{-1} x ; \cos ^{-1} x\) and \(\tan ^{-1} x(x\) in radians or degrees). Also available are the hyperbolic functions \(-\sinh x, \cosh x, \tanh x, \sinh ^{-1} x, \cosh ^{-1} x\) and \(\tanh ^{-1} x\). In addition, the calculator will provide coordinate transformation from polar to rectangular, rectangular to polar, cumulative addition and subtraction of vectors. The unit can be programmed and this can be recorded on small magnetic cards, the capacity being 196 steps. Further details are available from the makers, Hewlett-Packard, 224 Bath Road, Slough.

AUDIO EQUALISER

Leevers-Rich have introduced a new audio equaliser. model A501. which covers the audio spectrum in seven separately adjustable, overlapping. logarithmically spaced bands. Control knobs for the seven "constant B" type equalisers are arranged on the front panel to provide a graphic display of the correction applied.

Features of the A501 include negligible distortion, low noise, zero insertion loss, switchable HP and LP filters and a wide control range. The equipment is all solid state.

Specifications are: Input-600 ohms, bridging or terminating, balanced or unbalanced: Gain-unity, adjustable \(\pm 10 \mathrm{~dB}\); Output-isolated, to feed 600 ohm load at +20 dBM max: Frequency range \(-30 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s}\) \(\pm 2 \mathrm{~dB}\) : Noise level-below - -60 dBM ; Centre frequencies - 40, 100, 250, 630. 1.600, 4,000 and 10,000 cycles: Control range- +8 dB to -8 dB (each band): HP filter—Off \(/ 70 \mathrm{c} / \mathrm{s} / 100 \mathrm{c} / \mathrm{s}\); LP filter— \(7,000 \mathrm{c} / \mathrm{s} / 10,000 \mathrm{c} / \mathrm{s} /\) off; Low level switch-reduces both maximum output and noise level by 20 dB , other parameters not affected.

Further details may be obtained from Leevers-Rich Equipment Ltd., 319 Trinity Road. London. S.W. 18.

\section*{WAFER SPEAKERS}

Oakland Trading Company, announce the new PolyPlanar "Wafer-Type" wide-range electro-dynamic speakers in a 5 watt model. The unit is extremely thin, about one-fifth the depth of conventional cone speakers in the same power range. Weighing only 11 oz . the P5 shown measures only \(8 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{13}{16} \mathrm{in}\). and is made of expandable polystyrene plastic.

Further details are available from the Oakland Trading Company, 68 Lupus Street, London S.W.1.

\section*{R.F. BOMB}

A safe-area power rating of 100 watts and an \(F_{T}\) of \(30 \mathrm{Mc} / \mathrm{s}\) are features of the latest discrete-emitter power transistor from SGS-Fairchild. They are designating this little r.f. bomb the BLY72.

The transistor has 262 discrete-emitter sites and a diffused channel stopper. In addition to its 100 watt safe area power rating it features high voltage (60 V minimum LVCEO), high current (\(\mathrm{V}_{\text {CE }}\) sat. \(=1.7\) volts at 10 Amps. Encapsulation is in a TO-61 isolated collector stud package.

\section*{HOBBIES MANUAL}

Electroniques have just published the second edition of their Hobbies Manual. This new, enlarged and entirely revised 1968 edition contains 960 Pages and costs 16 s .6 d . although this cost is offset by vouchers valued at \(£ 25\). It comprises a vast catalogue of goods from single components to complete kits, in fact just about everything the home constructor is likely to need for almost any project. The Manual is available from Electroniques dealers or from Electroniques, Edinburgh Way, Harlow, Essex.

OWL OPTICS

Seeing in the dark without the aid of a source of infra-red radiation to illuminate the object or scene being observed is now possible using an image intensifier tube say Mullard.

The tube operates by using a wide diameter objective lens to collect up as much light as possible reflected by the object or scene being observed. This light is then focussed on to a photoemissive surface (known as a photocathode) which converts it into electrons. These electrons are then directed and greatly accelerated by means of metal plates, connected to a high positive voltage on to a phosphor screen. Because of their very high velocity they cause more photons to be emitted from this screen than were first received by the first photocathode. hence the original "image" is "intensified".

To ensure that as much of the light as possible is transferred from the phosphor screen of the first tube to the input photocathode of the second tube (and so on) it is guided by means of special transparent fibres (fibre optics). finally ending up as a visible image on a miniature "television type" screen 25 mm in diameter. The sensitivity of the tube makes it possible to see clearly and recognise individuals and objects under starlight conditions.

The present viewer uses three tubes coupled by fibre optics and requires a total e.h.t. of 45 kV at a minute current.

HI-FI EAGLE

B. Adler \& Sons (Radio) Ltd., 32a Coptic Street, London W.C.1. have sent the following specifications of the new Eagle RA. 96 tuner amplifier.

Tuner section: \(88-108 \mathrm{Mc} / \mathrm{s}\) with a sensitivity of \(2 \mu \mathrm{~V}\) for \(20 \mathrm{~dB} \mathrm{~s} / \mathrm{n}\) ratio and image rejection better than 55 dB . F.M. stereo separation better than 28 dB at \(1 \mathrm{kc} / \mathrm{s}\). The a.m. range covers \(535-1,605 \mathrm{kc} / \mathrm{s}\) with a sensitivity of \(700 \mu \mathrm{~V}\) and image rejection of 35 dB .

The amplifier section has an output of 20 watts r.m.s. (10 watts r.m.s. per channel) with less than \(1 \%\) distortion measured at 8 watts and a response of 20 to \(20,000 \mathrm{c} / \mathrm{s}\) \(\pm 2 \mathrm{~dB}\). Five inputs are available: Magnetic, Ceramic, Aux, Tape monitor and Tape recorder output. Tone controls are bass- \(\pm 12 \mathrm{~dB}\) at \(50 \mathrm{c} / \mathrm{s}\) and treble- \(\pm 12 \mathrm{~dB}\) at \(10 \mathrm{kc} / \mathrm{s}\). A low-cut filter provides -10 dB at \(50 \mathrm{c} / \mathrm{s}\), while the high-cut filter allows -13 dB at \(10 \mathrm{kc} / \mathrm{s}\). Channel separation is given as better than 45 dB .

The circuit uses 2 integrated circuits (preamp), an f.e.t. front end (f.m.), 24 transistors and 16 diodes. Size is \(14 \times 11 \frac{5}{8} \times 5 \mathrm{in}\). and the price is \(£ 86\) which includes purchase tax of \(£ 172 \mathrm{~s}\).

NEW P.S.U.

A new improved version of the Heathkit transistorised, regulated low voltage power supply, model IP-27, is offered by Heathkit at a price of \(\mathbf{£ 4 6 1 2 \mathrm { s } \text { or }}\) assembled at \(£ 55\) p \& p 9s. With an input of \(120 / 240 \mathrm{~V}\) a.c. at \(50 / 60 \mathrm{c} / \mathrm{s}\) an output of \(0.5-50\) volts d.c. is available with better than \(\pm 1.5 \mathrm{mV}\) regulation from zero to full load. There are four current ranges\(50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}\) and 1.5 Amps. The unit is entirely solid state with an adjustable current limiter for 30 to \(100 \%\) on all ranges and is fully portable.

\section*{amplifier module}

\section*{R. LEYLAND}

THIS mains-powered a.f. amplifier is constructed on a small Veroboard panel measuring approximately \(2 \frac{1}{2} \times 3 \frac{3}{4} \mathrm{in}\). At each end, a heat sink gives protection to the components and also serves as a support during soldering. Components are mounted upright to occupy the minimum area, and hole spacing on the Veroboard accommodates capacitor lead spacing satisfactorily. Flat mounting of components would secure them more firmly, but a board of larger area would be required.

An output on speech and music approaching 3 watts is obtained in a high flux \(15 \Omega\) loudspeaker. When a continuous sine wave test signal is applied, more current is drawn from the supply and there is an appreciable drop in voltage. This restricts the output available under test conditions to about 2 watts. A loudspeaker of less than \(15 \Omega\) impedance should not be connected as the currents in the output transistors to provide the increased power output would be excessive and would cause overheating and damage to these transistors.

\section*{Circuit Description}

Included on the circuit board, in addition to the power amplifier, is a two-stage preamplifier with provision for connecting a treble control. The coupling capacitor, C6, between the pre-amplifier and power amplifier allows separation of the d.c. conditions in the two circuits. It is arranged that the collector voltage of Tr 2 is at a lower voltage than at the base of \(\operatorname{Tr} 3\), so ensuring the necessary polarizing voltage for the electrolytic capacitor, C6.

The mid-point voltage at the output is closely maintained by \(\operatorname{Tr} 3\), to a value set by the potential divider consisting of the resistors R9, R10, R11 and R4 in series across the 24 -volt supply. Carbon film resistors of \(5 \%\) tolerance are used throughout the amplifier, making pre-set adjustments unnecessary, except for the choosing of a suitable value for R17.

The d.c. feedback loop via R14 also stabilises the currents in \(\operatorname{Tr} 3\) and \(\operatorname{Tr} 4\). The current in \(\operatorname{Tr} 3\) is determined by the base-emitter potential of Tr 4 across

R12 and will be under 1 mA . This current also flows in Tr5 and forms part of the quiescent current of this transistor. The current in the driver transistor, Tr 4 , is the amount required to drop half the supply voltage across the total resistance in the collector circuit. Because the driver transistor is a Class A stage, its quiescent current is much larger than the quiescent current in the Class B output stage.
Even with negative feedback, it is only possible to eradicate every trace of crossover distortion in the output stage by providing a small quiescent current of about 3 mA . This is increased in Tr5 by an additional 1mA flowing from Tr 3 to a total of about 4 mA . The amount of this quiescent current is adjusted by changing the value of R17 as already described. Variation of the quiescent current with temperature is compensated by a Varite thermistor, type VA1077. This thermistor is rectangular in shape and measures \(7.5 \times 18 \times 1.5\) millimetres. It is colour-coded black, red, orange, and is the standard component for the circuit, which is on conventional lines in the driver and output stages.
The bootstrap capacitor, CII, applies the output voltage to the upper end of the driver load resistance R16, and providing the value is restricted to \(25 \mu \mathrm{~F}\), permits a large drive voltage to be obtained with less inherent distortion.

Anything short of severe mismatching in the output stage will tend to be disguised by the action of the negative feedback. Nevertheless a matched complementary pair of transistors is necessary for optimum performance. These transistors, p-n-p type AC128 and n-p-n type AC176 must be put in their correct positions, otherwise the transistors will be damaged. Special care should be taken as the transistors look alike, and the markings can no longer be seen when the transistors are in the cooling clips.

Emitter resistors of \(2 \cdot 2 \Omega\) are required with the output transistors to improve thermal stability. Resistors of this value can be obtained, but the majority of suppliers only have values down to \(4 \cdot 7 \Omega\). Two \(4 \cdot 7 \Omega\)
resistors are therefore used in parallel at each emitter, giving a slightly higher effective value of \(2 \cdot 35 \Omega\).

The driver transistor, Tr4, dissipates 240 milliwatts, and is mounted in a cooling clip on the same heat sink as Tr6. Preceding the driver transistor is an n-p-n transistor type AC127, and this should be enclosed in an insulating sleeve, since in this transistor, the collector is joined to the metal case.

The preamplifier, consisting of the transistors Tr 1 and \(\operatorname{Tr} 2\) increases sensitivity to about 8 millivolts r.m.s. for maximum output on a sine wave input signal. Decoupling of the two stages by R5 and C3 prevents undesirable feedback via the supply. Direct coupling between the preamplifier stages enables d.c. stabilising feedback to be applied over the two stages via R1. Negative signal feedback is applied through R11 to R4 in the emitter circuit of Tr1. The capacitor C3 reduces high-frequency distortion and noise. Additional frequency-dependent feedback can be applied by means of an external \(100 \mathrm{k} \Omega\) treble control. At maximum treble, the h.f. response extends to -3 db at \(15 \mathrm{kc} / \mathrm{s}\), and at minimum, it is about 14 db down at \(10 \mathrm{kc} / \mathrm{s}\).

The bass response extends to -30 dB at \(60 \mathrm{c} / \mathrm{s}\), some attention being provided by the low value of C12. If loudspeaker resonance occurs at about \(60 \mathrm{c} / \mathrm{s}\), the bass response may be increased, but only slightly, because of the low output impedance. Capacitor C12 is kept outside the main feedback loop via R14, since low capacitance values in the feedback loop would tend to produce a peak in the low-frequency response. One advantage of the \(200 \mu \mathrm{~F}\) capacitor is that it takes up a minimum of space, and its working voltage need only be greater than half the supply voltage.

\section*{Construction}

To improve heat transfer between the transistors and the cooling clips, silicone grease is applied before inserting the transistors. Burrs should be removed at holes when the cooling clips are to be fastened. As neither the heat sink nor the cooling clip are perfectly flat, it is best to smear some silicone grease on the cooling clips to fill any minute air gaps existing between them, air being a poor conductor of heat. The heat sinks are painted matt black except for the area occupied by the cooling clips, and a margin of \(1 / 16 \mathrm{in}\). around them. Electrical connection is made to the heat sinks on the flanges, and a small area around the securing bolts can be left unpainted for the purpose.

The leads of the output and driver transistors should be straightened to avoid contact with the heat sink or with each other. The mode in which
the transistors are inserted into the cooling clips is shown in the diagrams of Fig. 3.
At some positions on the Veroboard, two jumper links have to be inserted into the same hole. This is possible by using 24 s.w.g. tinned copper wire for the jumper links. When the hole has been located on the Veroboard, the wire is passed through from the copper side and back through the other hole where it is bent and held while the wire is drawn tight and pressed flat. The bent portions on the copper side are clipped with side cutters, leaving enough for soldering. If the bends are in opposite directions, the jumper link will stay in place until it is soldered. The jumper link adjacent to R11 should be insulated; similarly the lead of R12 adjacent to C10. All electrolytic capacitors should be fully insulated, either by a sleeve or if necessary by wrapping them with plastic tape before putting them into the circuit.

Fig. 3: Details of the heat sinks and transistor connections.
Efficient soldering depends upon the quick transference of heat, so that the temperature rise is localized. The tip of an instrument-type soldering iron is filed flat and tinned, and requires to be at the right temperature. With sufficient downward pressure on a flat joint, the 18 s.w.g. printed circuit solder melts immediately and can be fed in to produce a good soldered joint in less than a second. This can be recognised by the absence of gaps or irregularities. The solder should have flowed evenly all over the component lead (which must not be moved when the solder is setting) and spread on the metal to produce a bright smooth dome of solder. This method is ideal for transistor leads which, in common with the jumper links, are bent over and clipped to leave enough for soldering. The transistors are inserted after the soldering of the other components is completed, and heat sink tweezers are applied on the particular transistors lead being soldered. The length of the leads of the output transistors is determined by the position of the cooling clips on the heat sinks. The height of the other transistors can be made just enough to allow a cooling clip, held vertically, to slide underneath the transistor. In making connections to the amplifier, the soldering iron should not be allowed to come against any of the transistors.
The possibility of inserting components into the wrong positions, and later needing to remove them,

Fig. 4: Circuit of a suitable mains power supply.
encourages the use of another method for the resistors and capacitors, with their thicker leads. This is to keep the component leads straight, clip them to length, and hold the component in position until one lead is temporarily secured with solder. Solder is then run in around the leads. A clearance of about \(\frac{1}{8}\) in. between components and the circuit board is usually advisable and allows the use of heat sink tweezers. It is not so quick and easy a method as the other one, and the soldering iron is only applied for a moment at a time, allowing the joint to cool before any further attempt is made.

Resistors are prepared for upright mounting by bending one lead over some form of \(1 / 16 \mathrm{in}\). diameter mandrel. Capacitors similarly have the negative lead brought down their sides, preferably inside the insulating sleeves. Components should be inserted as shown in Fig. 2.

\section*{Test Procedure}

By following a cautious procedure in trying out the amplifier for the first time, it is possible to discover any mistake before damage is caused. There is only a narrow margin of safety with germanium output transistors, and small types are particularly susceptible to failure from thermal runaway. It is inadvisable to switch on without making some preliminary adjustments and measurements. A shortcircuit or open-circuit if present in the amplifier is liable to cause immediate damage.

Apart from errors such as the omission of a jumper link, or wrong placing of components. the closely-spaced copper strips could become bridged with solder at some point. For example, solder could fall from the tip of the soldering iron without being. noticed. The careless use of test prods or similar methods of making temporary connection is not recommended and steps should be taken to see that the amplifier cannot come into accidentay contact with metal objects.

A check is first made on the voltage of the power supply unit before connecting the amplifier: It should not exceed 26.5 volts and will be less when the amplifier is connected and drawing current. It is necessary to measure the current taken by the output transistors on no signal, while gradually increasing the voltage from zero up to its full value. This can be done by connecting the amplifier to the power unit via a suitable wire-wound potentiometer of \(1,000 \Omega\). A value has to be selected for resistor R17 to give a current of between 4 and 5 mA in Tr5. This current is measured by omitting the link wire between the terminal pin at the collector of Tr 5 and the tag
—continued on page 407

\title{
transistorised CALIBRATION ostillation
}

AN invaluable aid in any amateur or professional electronics workshop is an accurate frequency calibration standard, this device being essential for the accurate calibration of oscilloscopes, audio generators, radio receivers, etc. Such a device should have a frequency accuracy at least ten times greater than that of the instrument to be calibrated, and an absolute accuracy of better than \(0.1 \%\) will generally prove to be more than adequate in most applications. Ideally, the unit should be portable, reasonably inexpensive, and easy to use.

The unit described meets all of these requirements, consisting of a crystal controlled oscillator, followed by two decade frequency dividers, the device giving switch-selected output frequencies of \(100 \mathrm{kc} / \mathrm{s}, 10 \mathrm{kc} / \mathrm{s}\), and \(1 \mathrm{kc} / \mathrm{s}\). A seven transistor circuit is used. The amplitude of the output signal can be varied by means of a built-in attenuator.

\section*{How it Works}

The full circuit diagram of the unit is shown in Fig. 1. The crystal oscillator section is made up by Tr 1 and Tr 2 . Basically, Tr 1 is wired as a grounded base amplifier, with its base-bias fixed by R1 and R2 and decoupled by Cl ; the input signal is applied to the emitter of such an amplifier, and the output taken from the collector. If a positive-going signal is applied to the emitter, the emitter-base potential

\section*{F.L.THURSTON}
of the circuit will be increased, and the collector current will rise, so increasing the potential drop across the collector load, R3, and causing the collector to move in a positive direction. Thus, the input and output signals can be seen to be in phase.

Transistor Tr2, on the other hand, is wired as an emitter follower, with its base wired to Tr 1 collector. This transistor also gives an output, from its emitter, which is in phase with the input signal to its base, but this circuit gives an impedance transformation, with unity voltage gain. Hence, it can be seen that Tr 1 gives voltage gain, and the output signal at Tr2 emitter is in phase with the input at Tr emitter; these are the essential requirements for oscillation, and the circuit can be made to oscillate by simply coupling the two emitters together via a blocking capacitor.

In the circuit diagram, this coupling is achieved via the crystal, and, since the crystal represents a very low impedance at its designed operating frequency, the circuit oscillates at the frequency of the crystal with which it is used. The output signal can be taken, at low impedance, from Tr2 emitter.

Since exceptionally high orders of accuracy are not

Fig. 1: Complete circuit of the calibration oscillator.
required from this circuit, there is no need to take measures to counteract the slight shift in phase characteristics that occurs in the transistors at the \(100 \mathrm{kc} / \mathrm{s}\) operating frequency, and, as it stands, the operating frequency will be accurate to considerably better than \(0 \cdot 1 \%\).

The \(10 \mathrm{kc} / \mathrm{s}\) frequency standard is obtained from the \(\operatorname{Tr} 3-\operatorname{Tr} 4\) astable multivibrator, which is synchronised to the crystal oscillator by means of sync pulses fed to \(\operatorname{Tr} 3\) base via C3. This synchronising action is best understood with reference to Fig. 2a, which shows the waveforms involved in the circuit. This diagram shows that, in the conventional free-running version of the astable multivibrator, the base of Tr 3 is biased in a positive direction, thus reverse biasing the emitter-base junction, when Tr 3 is off. This positive bias decays exponentially, and as soon as the

Fig. 2a: The effect of the synchronising pulses and "locking action" on the main waveform.
emitter-base junction again becomes forward biased the transistor begins to conduct and the circuit "flips" or changes state. In the triggered version of the circuit, on the other hand, brief negative-going synchronisation pulses are imposed on the base waveform, and, as indicated in the diagram, these bring Tr 3 into conduction prematurely and trigger the circuit. Thus, the operating frequency of the multivibrator is "locked" to the frequency of the trigger signal, and accurate frequency division is achieved.

In this particular circuit, the synchronising signal is applied to one transistor (Tr 3) only, and the output

General view of the completed instrument.
waveform has an uneven mark/space ratio: this is of little importance in most applications, however, and has the advantage of giving very stable operation.

The second frequency divider stage, Tr5-Tr6, on the other hand, has the synchronisation signal applied to both transistors. Here, the two transistors share a common emitter resistor, R14, across which the sync signal is applied. This sync signal is derived from the output of the \(10 \mathrm{kc} / \mathrm{s}\) multivibrator, and is differentiated by C6-R14 and discriminated by D1, to give a final series of unidirectional pulses of short duration, which synchronise the multivibrator in a manner similar to that already outlined.

The main disadvantage of this method of operation, which is essential if a \(1: 1\) mark/space output waveform is required, is that the two time constants of the astable circuit must be fairly closely matched if stable operation is to be achieved. Satisfactory operation can be achieved, however, by using fairly close tolerance values of timing components and taking reasonable care in initial setting up of the division frequency. The prototype unit gives stable operation even when the supply potential is reduced from 9 to 3 volts.

The final stage of the circuit is the emitter follower output transistor, \(\operatorname{Tr} 7\), which uses variable resistor VR3 as its emitter load. The input to Tr 7 is selected by Sla, and may be either \(100 \mathrm{kc} / \mathrm{s}\) from Tr2 emitter, \(10 \mathrm{kc} / \mathrm{s}\) from Tr 4 collector, or \(1 \mathrm{kc} / \mathrm{s}\) from Tr 6 col-

Fig. 2b: Veroboard connections and layout of components.
lector, and the final output signal is taken from VR3 slider and fed, via C9, to the output socket, SK1. The built-in 9 volt battery supply is connected to the circuit via Slb.

\section*{Construction}

For ease of construction, the major part of the electronic circuitry is wired up on a small piece of Veroboard panel, thus retaining all of the advantages of printed circuit construction, while involving none of the complications of marking out, etching, etc., which are normally involved in printed circuit practice.

Start construction by cutting the Veroboard panel to size, as shown in Fig. 2b, and then break the copper strips, with the aid of a small drill or the special cutting tool that is available, as indicated. Now drill the two small mounting holes, to clear 6BA screws, where shown, and cut back the copper around them to eliminate any danger of shortcircuits when the panel is finally secured in place on the main chassis.

Now assemble the components and leads on the plain side of the panel, as shown in Fig 2b, and solder them in place. Note that all components are mounted vertically on the panel, and the layout is fairly cramped; insulated sleeving should be used where there is any danger of short-circuits occurring.

Before attempting to secure VRI and VR2 in place on the panel, the width of their mounting legs should be reduced, with the aid of a small file, so that they fit easily in the small holes in the Veroboard panel. Heat shunts should be used when soldering all semiconductors in place.

When assembly is complete, double check all wiring and ensure that no short-circuits are occurring between the copper strips on the underside of the panel. If satisfactory, the circuit should now be given a functional check and adjusted to give the correct output frequencies, as follows.
Temporarily wire VR3 and S1 to the unit, to conform to the circuit diagram, and connect the crystal and the battery in place. Switch on, and check on an oscilloscope that the \(100 \mathrm{kc} / \mathrm{s}\) signal is available at Tr 2 emitter. Now monitor the waveform at Tr 3 base; it should be possible to clearly see the sync pulses superimposed on the multivibrator waveform. Carefully adjust VRI until ten sync pulses are obtained for each complete cycle of the multivibrator; the unit is now operating at \(10 \mathrm{kc} / \mathrm{s}\).

Now monitor the voltage at Tr6 base, and adjust VR2 until ten sync pulses are again obtained for each complete cycle of the multivibrator; a \(1: 1\) mark/space ratio should be obtained. Check that \(\operatorname{Tr} 3\) is still operating correctly.

Fig. 3a (top left): Drilling and bending details of the "main" chassis.

Fig. 3b (centre left): Details for making the front panel.
Fig. 3c (below): Bending and drilling details for the crystal mounting and battery brackets.

Having completed the initial setting up, the rest of the unit can now be made up. Cut the main chassis, from light gauge aluminium, as shown in Fig. 3a. Next, make up the front panel, using a medium gauge aluminium, as shown in Fig. 3b. When ready the front panel should be covered with Fablon or a similar selfadhesive decorative plastic material; a material with a light woodgrained finish was used on the prototype.

Now make up the crystal holder bracket and the two battery holder brackets, as shown in Fig. 3c, and assemble them, as indicated in the inset, on the main chassis. Now secure the front panel to the chassis. Secure the Veroboard panel to the chassis using two 6BA screws passed through the mounting holes that are provided, and using two small rubber grommets interposed between the panel and the chassis to act as spacers! insulators. Fix S1, VR3, and Sk1 in place on the front panel, and complete the wiring up of the unit. When ready, the operating frequencies of the multivibrator sections of the unit should again be checked, as already outlined, and, if necessary, final adjustments should be made.

An attractive cabinet can be made up, with very little skill, as shown in Fig. 4. The two side pieces, the top, the base, and the rear panel should be cut from \(\frac{1}{8}\) in. hardboard, using the dimensions shown, and the four corner pieces should be cut from \(\frac{5}{8} \times \frac{7}{8}\) in. timber, and the unit should then be assembled as indicated. The hardboard parts should be nailed or screwed to the timber corner pieces, and care should be taken to ensure that all nails and screws are sunk flush with the outer surfaces of the cabinet. When assembly is complete, remove any rough spots with sandpaper, and then cover the entire cabinet with Fablon or a similar material.

The unit is held in place in its cabinet by means of four self-tapping screws passed through the holes at

Fig. 4: Dimensions and details for making a suitable case.
the corners of the front panel and screwed into the timber corner pieces of the cabinet. The unit can be given a final attractive finish by marking the front panel with pressure sensitive lettering, as indicated in the photographs.

The unit is now complete and ready for use; it should be noted, however, that fairly frequent checks should be made on the accuracy of frequency division of the multivibrator circuits throughout the life of the instrument.

\section*{\(\star\) components list}

\title{
practically wireless commentary by ILEITI
}

LONG as Henry may be in the tooth, decrepit as he may appear on one of those mornings after the gentlemen of the Press have been regaled by some self-seeking manufacturer, bloodshot as those orbs may seem, he can nevertheless hit a barn door with a well-aimed clod when called upon to do so.

Which makes it all the more annoying when a circuit has to be scanned with the sort of scrutiny your wife affords a post-party handkerchief, to find, not smudges of red, or any other colour, but conventional shapes, lines and symbols that custom has taught us ought to be in a particular place.

Custom may stale, and perhaps it is the same incentive our avantgarde artists have to present us with the unexpected which makes circuit drafters perform their convolutions. Whatever the reason, their efforts have an infinite variety. Searching for a particular component in some drawings is worse than digging for an errant sixpence under the eagle eye of a traffic warden.

Readers who become accustomed to the circuits that bespangle these pages may consider themselves well served. From jottings that would not disgrace the back of one of Alan Blumlein's envelopes, the careful lads of Newnes turn out an understandable print. The joints dot in where

. . . the eagle eye of a traffic warden.
they should, the cross-overs follow a set pattern, there is a satisfying constancy about the illustration of components. This is, in short, what is known as the "house style".

In the radio trade, a very different situation obtains. No two manufacturers think alike. In fact, one would be tempted to conjecture that many of them are as violently opposed to their rivals as they can be-even to the extent of wilfully making their service manuals just that little bit different.

Life would be dull if we were all the same. But life would be a lot easier if, in the technical manual field, at least, there was some measure of conformity. Some circuit diagrams defy analysis until one has taken a course in identification; where resistors and capacitors both appear as little boxes, where strange dots and triangles tell us what sort of component the ambiguous block is meant to be, provided we can find the key tucked away in the corner that always gets teastained first.

Provided, also, that we happen to have the visual acuity of a halfstarved hawk. Why do some illustrators specialise in the sort of lettering more used to scribing texts on the head of a pin than underlining vital items on a circuit diagram? And why are some of the circuits that have more parallel lines than the approach to Clapham Junction printed in a scale so minute that magnifying glass and miniature pointer must be used to trace an inter-connection? Is it the work of those devils, conspiring in their chapels, chuckling in their Gutenberg ale?

Some sadistic draughtsmen lay out their originals on one of those drawing boards the size of a hoarding that one sees in fascinating glimpses as one flashes past in the train. But, in an effort to eliminate the masses of close-

. . . just recovered from the dog. woven lines, some circuit designers bend over the other way. Here we find an output from stage \(B\) with an angled arrow marked 22. Somewhere on another part of the circuit there will be an answering arrow. By the time you have found it in the tangled mass of transistors, the set will have gone up in smoke.

On other types of circuit, there is no common earth or chassis return line. Each return is a dinky little black bar, easily overlooked and often unexpectedly "high" in the circuit layout-a dead trap for we oldies who still think that the voltage rises the higher up the drawing we go. The catch with these circuits is the odd audio circumstance when a true earth and a chassis return are not the same thing, or where some returns go to a common point to avoid the bugbear of hum loops.

Crossovers are a very dodgy business. There are four main systems: the hump-backed bridge where two wires cross but do not connect; the broken line that is almost the same thing, but which can be ambiguous; the plain line, except where dotted to show a joint, and the plain line which crosses except where it terminates against another line-no dots needed. There is a good case to be made out for all, but I fear those who conjure with the arguments do not have to crouch behind a radiogram in a dark corner of the lounge, with a crumpled wad of circuit just recovered from the dog.

1THIS tuner is primarily designed for plugging into the "Pyramid" amplifier, for immediate reception over the medium wave band. Long wave coverage can be added later, if wanted. The tuner could be used with other amplifiers, or for excellent phone reception, for personal listening.

Figure 1 is the circuit, and current is drawn from the amplifier. L1 is a ferrite rod winding, dispensing with any need for an external aerial. Ll and the oscillator coil L2 are tuned by the ganged capacitor \(\mathrm{VC1} / \mathrm{VC2}\), which has trimmers TCl and TC 2 , and an oscillator padder C3.

There are two stages of intermediate frequency amplification, followed by the diode D1, which provides audio signals and automatic volume control bias through R12 to Tr 2 . The amplifier volume control supplies the diode load. If the tuner is used with other equipment, a \(5.6 \mathrm{k} \Omega\) resistor may need wiring across C11, for this purpose. Medium or high impedance phones may be connected across CII. A straightforward circuit of this type is generally easy to build and align. When used in conjunction with the "Pyramid" amplifier, a large number of stations can be received at excellent volume.

\title{
INCREASE YOUR KNOWLEDCE
}

\section*{TELEVISION \\ 0 ELECTRONIC ENGINEERING}

MANY COURSES TO CHOOSE FROM incl. IRADIO \& TV ENGINEERING \& SERVICING, TRANSISTOR \& PRINTED CIRCUIT SERVICING, CLOSED CIRCUIT TV, ELECTRONICS, NUMERICAL CONTROL ELECTRONICS, TELEMETRY TECHNIQUES, SERVOMECHANISMS, PRINCIPLES OF AUTOMATION, COMPUTERS, ETC.

ALSO EXAMINATION COURSES FOR
Institution of Electronic and Radio Engineers C. \& G. Telecommunication Technicians' Certs C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Certificate
P.M.G. Certificates in Radiotelegraphy

Radio Amateurs' Examination
BUILD YOUR OWN RADIO AND INSTRUMENTS With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your own 5-valve Superhet Receiver, Transistor Portable, and highgrade test instruments, incl. professional-type valve volt meter ishown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post coupon below.

\section*{THERE IS AN 9 \\ COURSE FOR YOU}

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY
You will receive the FREE ICS Prospectus listing the examination and ICS technical courses in radio television and electronics PLUS details of over 150 specialised subjects.

\footnotetext{

\(\qquad\)
NAMEI
ADDRESS

AGE
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 170, INTERTEXT HOUSE, PARKGATE ROAD, London, SW11
}

\section*{BENTLEY ACOUSTIC CORPORATION LTD.}

ALL GOODS LISTED BELOW, ACTUALLY IN STOCK, ALL GOODS ARE NEW, BEST QUALITY MANUFACTURE ONLY, AND SUBJECT TO MAKERS' FULL GUARANTEE, PLEASE NOTE THAT WE DO NOT SELL ITEMS FROM USED EQUIPMENT NOR MANUFACTURERS' SECONDS \& REJECTS, WHICH ARE OFTEN DESCRIBED AS "NEW AND TESTED" but have a Short and unreliable life.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 & \(5 /-\) & \(6 \mathrm{D} 3 \quad 7 / 6\) & 12AU6 4/9 & 900才 83/6 & DW4/350 & EF184 6/3 & N78 38/4 & TDD4 7/6 & W81M 6\% & BCZ11 3/6 & \\
\hline \(\mathrm{OB}^{\mathrm{OH}}\) & 6/- & \({ }_{6}^{6 D 6}\) 81/ & 12AU7 \(4 / 6\) & 90 Cl 16/- & 8/6 & EH90 6/6 & NI08 28/7 & TH4B 10\% & W101 26/8 & BC107 4/- & OA90 \(2 / 6\) \\
\hline OZ4 & 4/8 & 6E5 \(9 / 6\) & 12AV6 \(5 / 8\) & 150B2 14/6 & DW4/500 & E1,32 3/- & N152 7/6 & TH233 8/* & W107 10/8 & BC108 3/9 & O491 1/9 \\
\hline 143 & 4/6 & \({ }_{6}^{6 F 1} \quad 8 / 9\) & 12AX7 \(7 / 6\) & \(150025 /-\) & 816 & EL33 12/\% & N339 25/- & TP22 5/- & W729 11/8 & BC109 \(4 / 8\) & OA182 2/- \\
\hline 1 A 4 & \(12 / 6\) & 6F6G \(4 /-\) & 12AY7 9/9 & 161 15/- & DY86 518 & EL34 9/6 & N359 7/6 & TP25 5/- & X24 16/6 & BC113 5f- & OA200 1/* \\
\hline 1 AF & \(5 /\) & \(6 \mathrm{~F} 6 \mathrm{M} \quad 7 / 8\) & 12BA6 \(5 /-\) & 185BT 85/- & DY87 \(5 / 9\) & EL35 10/- & P61 2/6 & TP2620 8/9 & \(\times 41\) 10\% & BCl15 3/- & OA202 2j- \\
\hline 1A7GT
1 Cl & \(7 / 6\)
\(4 / 8\) & \(\begin{array}{ll}\text { 6F12 } & 3 / 8 \\ 6 \mathrm{Fl13} & 3 / 8\end{array}\) & \(\begin{array}{ll}\text { 12BE6 } & 5 / 3 \\ 12 \mathrm{BH7} & 6 / 6\end{array}\) & 301 20/- & E80F 84/- & EL36 \(8 / 9\) & PABC80 \(7 / 6\) & TY86F 1212 & \(\times 61\) 8/9 & BC116 5/- & OA210 9/6 \\
\hline \({ }_{1 \mathrm{Cl}}^{1 \mathrm{C}}\) & \(4 / 9\)
\(7 / 9\) & \(\begin{array}{cr}6 \mathrm{~F} 13 & 3 / 8 \\ 6 \mathrm{~F} 14 & 15 \%\end{array}\) & 12EH7
12 E
17/6 & \(\begin{array}{ll}302 & 16 / 6 \\ 303 & 15 / 6\end{array}\) & \(\begin{array}{ll}\text { E83F } & \text { 24/- } \\ \text { E88CC } & 18 /-\end{array}\) & \(\begin{array}{cr}\text { EL37 } & 16 / 6 \\ \text { EL41 } & 9 / 3\end{array}\) & PC86
PC88
P10 & UABC80 5/9 & X64 & BC118 \(4 / 6\) & OA211 13/6 \\
\hline 1 C 3 & \(6 / 6\) & \(6 \mathrm{FW} 1610 / 9\) & & \(\begin{array}{ll}303 & 15 /- \\ 305 & 16 / 6\end{array}\) & \(\begin{array}{lll}\text { E88CC } & 18 /- \\ \text { E180F } & 17 / 6\end{array}\) & \(\begin{array}{ll}\text { EL41 } & 9 / 3 \\ \text { EL42 } & 9 /\end{array}\) & \(\begin{array}{ll}\text { PC88 } & 9 / 9 \\ \text { PC95 } & 8 / 8\end{array}\) & \(\begin{array}{ll}\text { UAF42 } & 9 / 6 \\ \text { UB41 } & 10 / 6\end{array}\) & \begin{tabular}{l}
\(\times 65\) \\
\(\times 66\) \\
\(\times 66\) \\
\hline
\end{tabular} & BDI19 9/- & OAZ20012/- \\
\hline 1 C 5 & \(4 / 9\) & \(6 F 17\) 12/6 & 12J7GT \(6 / 6\) & \(\begin{array}{ll}305 & 16 / 6 \\ 306 & 13 /=\end{array}\) & EA50 \(1 / 6\) & \(\begin{array}{ll}\text { EL42 } & 9 / 0 \\ \text { EL81 } & 8 /-\end{array}\) & \(\begin{array}{ll}\text { PC95 } & 8 / 8 \\ \mathrm{PC97} & 7 / 8\end{array}\) & \(\begin{array}{cc}\text { UB41 } & 10 / 6 \\ \text { UBC41 } \\ 7 / 8\end{array}\) & \begin{tabular}{ll}
\(\times 66\) & \(7 / 6\) \\
\(\times 76 \mathrm{M}\) \\
\hline
\end{tabular} & BFY50 5/- & OAZ \(20110 / 6\) \\
\hline \(1 \mathrm{C6}\) & \(10 / 6\) & 6 F 18 8/8 & 12K5 11/6 & 807 11/9 & EA76 18\% & EL83 8/9 & PC900 \(9 /\). & \begin{tabular}{ll}
UBC4 \\
UBC81 & \(7 / 8\) \\
\hline 186
\end{tabular} & \(\times 76 \mathrm{M}\) 7/9 & BFY51 4/6 & OAZ202 9/- \\
\hline 119 & \(6 / 8\) & \(61^{4} 1312 / 3\) & \(12 \mathrm{K7GT} 3 / 6\) & 856 & EABC80 8/- & EL84 4/6 & PCC84 8/- & \(\begin{array}{ll}\text { UBC81 } & 6 / 6 \\ \text { UBF80 } & 5 / 9\end{array}\) & X81M \(29 / 1\) & BFY52 5/- & OAZ203 9/6 \\
\hline 106 & 9/6 & \(6 \mathrm{~F}^{2} 4\) 10\% & 12K8GT \%/8 & 1821 10/0 & EAC91 3/8 & EL85 7/6 & PCC85 6/9 & UBF80 \(5 / 8\) & \(\times 101\) 2971 & BFI54 5/- & OAZ204 \(01-\) \\
\hline 1FD1 & 61- & 6 F 25 10/- & 12Q7GT 3/6 & 5763 10/- & EAF42 8/3 & EL86 8/- & PCC88 11/- & & X109 28/- & BF'159 5/- & OAZ205 9/- \\
\hline 1FD9 & 3/9 & 6F28 10/6 & 12SA7GT818 & 7193 10/8 & EB34 7/6 & EL91 2/6 & PCC89 10/3 & UC92 5/6 & Y65 5\% & \(\begin{array}{ll}\text { BF163 } \\ \text { BF167 } & \text { 2/- } \\ \text { 2/6 }\end{array}\) & OAZ206 9/- \\
\hline 166 & 8/- & 61732 8/- & \(12 \mathrm{SC7}\) 4/- & 7475 4/. & EB41 4/9 & EL95 5/- & PCC189 9/3 & UCC84 8/- & Z63 4/9 & \({ }_{\text {BF173 }}\) & OAZ40710/6 \\
\hline 1H5GT & 71- & 6G6G \(2 / 6\) & 12847 8/- & A1834 20/- & EB91 \(2 / 3\) & EM71 14/- & PCF80 616 & UCC85 6/6 & 277 3/3 & BF180 12\% & OAZ210 7/- \\
\hline 11.4 & 2/6 & 6H6GT 1/6 & 128.57 6/- & ACO44 14/- & EBC3 20/6 & EM80 5/9 & PCF82 6/3 & UCF80 8/8 & Z329 11/9 & BF185 81- & OAZ224 \\
\hline \(1 \mathrm{LD5}\) & \(5 /-\) & \(6 J 5 G \quad 3 / 9\) & \(12 \mathrm{SK} 78 /-\) & AC2PEN & EBC41 9/6 & EM81 7/6 & PCF84 8\% & UCE21 9/- & Z729 6/3 & BTX34/400 & OAZ224 \({ }^{16 / 6}\) \\
\hline 1LN5 & \(4 / 6\) & 6JJGT 4/6 & 12897aT8/- & 19/8 & EBC81 6/3 & EM84 6/- & PCF86 8/9 & UCH42 10/- & Z759 28/ & 40/0 & OC19 25/- \\
\hline 1N5GT & 718 & 6J6 6 \% & 128 F 7 5/- & AC2PEN/ & EBC90 4/- & EMB5 11\% & PCF801 7/- & UCH81 6/\% & 375 & BY100 \({ }^{\text {a/8 }}\) & \(0 \mathrm{C22}\) 5/- \\
\hline 1 Pl & \(7 / 8\) & 6J7G 4/9 & \(12 Y 4\) 2/- & DD 18/6 & EBC91 5/- & EM87 7/3 & PCF802 \(9 / 6\) & UCL82 7/- & Transistors & BY101 11/6 & 0 C 23 7/- \\
\hline 1 P 10 & \(4 / 9\) & 6J7GT 8/6 & 13 Dl 5/- & AC6PEN 4/8 & EBF80 5/9 & EY51 0/6 & PCF805 818 & UGL83 \(9 / 6\) & and diodes & BY105 10/6 & OC24 \(14 / 6\) \\
\hline 1P11 & \(5 / 6\) & \({ }_{6 K 6 G T} 5 /-\) & 13D3 \(9 \%\) & AC/PEN (5) & EBF83 7/- & EY81 7/- & PCF80611/6 & UF41 \(9 / 8\) & 2G225 10/6 & BY114 6/6 & 0025 5/- \\
\hline 1R5 & \(4 / 9\) & & \(\begin{array}{lr}14 \mathrm{H7} & \text { 9/6 } \\ 1497 & 19 / 8\end{array}\) & 19/6 & EBF89 \(8 / 9\) & EY83 8/3 & PCF80812/6 & UF42 9/- & 2 N 404 6/- & BYL20 6/6 & 0 Ca 2 5 5- \\
\hline 184 & \(4 / 9\) & \begin{tabular}{l}
6 KFGT \\
6 K 8 Cl \\
\hline \(1 / 6\)
\end{tabular} & \(1497 \quad 19 / 8\) & EN (7) & EBL21 \(10 / 8\) & EY84 9/6 & PCL81 9/- & UF80 6/9 & 2N2297 4/6 & BY234 4/7 & OC28 5/, \\
\hline 185 & \(3 / 9\) & 6K8G 6 K 8 GT 7/8 & \(\begin{array}{ll}18 & 12 / 6 \\ 19 & 10 / 6\end{array}\) & 19/6 & EC52 4 [413 & EY86 6/- & PCL82 616 & UF85 713 & 2N2369A4/3 & BY236 4/- & OC29 16/6 \\
\hline 172 & 34/11 & \(\begin{array}{ll}\text { 6K8GT } & 7 / 8 \\ \text { 6L6GT } & 7 / 9\end{array}\) & \(\begin{array}{lr}19 & 10 / 6 \\ 19 \text { AQ5 } & 4 / 8\end{array}\) & AC/THI 10/- & EC53 12/6 & EY87 8/- & POL83 8/9 & UF86 9/- & 2N31+21 50/- & BY238 4/- & OC30 7/- \\
\hline \(1 T 4\)
104 & \(2 / 9\)
\(5 / 8\) & \(\begin{array}{lr}\text { 6L6GT } & 7 / 9 \\ 6 \mathrm{~L} 1 & 19 / 6\end{array}\) & \begin{tabular}{ll}
\(19 \mathrm{AQ5}\) & \(4 / 9\) \\
19 El & \(40 \%\) \\
\hline 18
\end{tabular} & AC/TP 19/6 & \(\begin{array}{ll}\text { EC54 } & 6 /- \\ \text { EC70 } & 4 / 8\end{array}\) & EY88 7/6 & PCL84 713 & UF89 5/9 & 2N3866 20j- & BYY Y 3 \(30 /-\) & \(0 \mathrm{O} 5510 \%\) \\
\hline 1 LU & \begin{tabular}{l}
5/6 \\
\(5 / 3\) \\
\hline 18
\end{tabular} & \(\begin{array}{lr}6 \mathrm{~L} 18 & 19 / 6 \\ 6 \mathrm{~L} 18 & 7 / 6\end{array}\) & \(\begin{array}{ll}19 \mathrm{El} & 40 \% \\ 201) \\ 13 \%\end{array}\) & AC/VP112/. & \(\begin{array}{lr}\text { EC70 } & 4 / 9 \\ \text { EC86 } & 10 / 8\end{array}\) & EY91 3/* & \(\begin{array}{ll}\text { PCLA5 } & 8 / 3 \\ \mathrm{PCL86} & 8 / 3\end{array}\) & ULA1 9/- & AA120 3/- & BYZ10 5/- & 0C36 7/6 \\
\hline 2 A 7 & 12/6 & 6 L 19 18\% & 20D4 20/5 & AC/VP2 11/- & C88 \(10 / 8\) & EZ35 5/- & 86 8/3 & UL46 9/6 & AA129 3/- & BYZ11 5/- & OC38 11/6 \\
\hline 2 D 13 C & 7/- & \(6 \mathrm{LD} 20 \quad 6 / 6\) & \(20 \mathrm{~F} 214 / \mathrm{F}\) & \(\begin{array}{ll}\text { ATP4 } & 8 / 3 \\ A^{2} & 81\end{array}\) & EC92 8/6 & EZ40 7/3 & 15/= & UL84 6/- & AAZ13 3/6 & BYZ12 50- & OC41 10/ \\
\hline 2D21 & 8/6 & 6N7GT 7/- & 20 L 1313 & \begin{tabular}{ll}
AZ1 \\
\hline 1891 \\
816
\end{tabular} & ECC31 15/6 & EZ41 7/3 & \(45{ }^{7 /}\) & \(51-\) & 107 3/6 & BYZ13 5\%- & OC42 6/9 \\
\hline \(2 \times 2\) & 3/- & \(6 \mathrm{P}^{1} 1\) 12/- & 20P1 17/6 & \(\begin{array}{ll}\text { AZ31 } & 8 / 9 \\ A Z 41 & 8 / 8\end{array}\) & ECO32 4/6 & E280 3/9 & 19/6 & \(\begin{array}{ll}\text { UR1C } & 10 / 6 \\ \text { UU5 } & 7 /-\end{array}\) & AC119
AC114
\(8 /-\) & BYZ15 35/- & \({ }_{0}^{0 C 43} 18 / 6\) \\
\hline 3 A 4 & 818 & 6 P 25 12/- & \(20 \mathrm{P3}\) 18/- & \begin{tabular}{ll}
AZ41 \\
B36 & \(8 / 8\) \\
\hline 19
\end{tabular} & ECC33 89/1 & \(\begin{array}{ll}\text { EZ81 } & 4 / 6 \\ \text { E790 } & 3 / 6\end{array}\) & PEN46 4/- & UUS 16/6 & \(\begin{array}{ll}\text { AC114 } \\ \text { AC126 } & \text { 8/- }\end{array}\) & \(\begin{array}{ll}\text { CG12E } & 4 /- \\ \text { CG64H } & 4 / \mathrm{c}\end{array}\) & OC44 0 2/- \\
\hline 3A5 & \(8 / 6\) & \({ }^{6 P 26} 1818 /-\) & \(20 \mathrm{P4} 178\) & B319 8/- & ECC34 29/6 & LW4/5006/6 & PEN383 9/6 & UU12 \(4 / 6\) & ACl27 2/- & & \(0 \mathrm{C45} 1 / 9\) \\
\hline 3 B 7 & 5/- & \(\begin{array}{ll}6 \mathrm{Pr28} & 25 /- \\ 607 \mathrm{~g} & 5 /-\end{array}\) & \(20 \mathrm{P5}\) 17/\% & \({ }_{\text {BL63 }} 10 / 6\) & ECC35 \(4 / 9\) & FW4/8008/6 & PEN384 & UY1N 10/3 & ACl28 2j- & GD4 \(6 / 6\) & OC45M 8/- \\
\hline \(3 \mathrm{B6}\) & \(8 / 8\)
\(5 / 8\) & \(\begin{array}{ll}\text { 6Q7G } & 5 /- \\ 6079 \mathrm{~T} & 8 / 9\end{array}\) & \({ }_{25}^{25 A G G} \quad 7 / \mathrm{B}\) & CK506 \(0 / 6\) & ECC40 \(9 / 6\) & FW4/8008/6 & 11/6 & UY21 9/- & ACL54 5/- & G115 \(\quad\) b/6 & 0 O 46 3/- \\
\hline \(3 \mathrm{C4}\) & \(5 / 3\)
\(6 / 6\) & \(\begin{array}{ll}\text { 6Q7GT } & 8 / 9 \\ \text { 6R7G } & 5 / 6\end{array}\) & \(\begin{array}{ll}25 L 6 \mathrm{Ca} & 8 / 9 \\ 25 \% 5 & 6 /-\end{array}\) & \(\begin{array}{ll}\text { CL4 } & 19 / 6\end{array}\) & ECC81 \(4 /-\) & G230
\(\mathbf{G Z 3 2}\)
\(9 /-\) & PEN453DD & UY41 \(6 / 6\) & AC155 \(6 / 6\) & GD6 5/6 & OC65 22/6 \\
\hline 3 BESGT & \(6 / 6\)
\(4 / 8\) & 6R7G
6847 T
\(7 / 6\) & \(\begin{array}{ll}25 Y 5 & 6 /- \\ 25 Y 59 & 8 / 6\end{array}\) & CL33 19/6 & \(\begin{array}{ll}\text { ECC82 } & 4 / 6 \\ \text { ECC83 } & 4 / 6\end{array}\) & \(\begin{array}{ll}\text { G233 } & \text { 12/6 } \\ \text { G23 } & 18\end{array}\) & 19/6 & UY85 5/8 & ACl56 4]- & GD8 4/- & 0 OCO 2/3 \\
\hline 384
3 V 4 & \(4 / 8\)
\(5 / 6\) & 68A7GT \(6 / 6\) & \(\begin{array}{ll}25 Y 5 G & 8 / 6 \\ 25 \mathrm{Z4G} & 6 / 8\end{array}\) & CV6 \(10 / 6\) & \(\begin{array}{ll}\text { ECC83 } & 4 / 6 \\ \mathrm{ECC84} & 8 /-\end{array}\) & \(\begin{array}{ll}\text { Q234 } & 101- \\ & \text { 12/ }\end{array}\) & PENA4 19/6 & \(\begin{array}{ll}\text { U10 } & 8 /- \\ \text { U12 } & 7 / 6\end{array}\) & AC157 5/- & GD9 4/- & 0 OCl 2/- \\
\hline 4D1 & \(8 / 9\) & 68G7 719 & \(25 \mathrm{Z5}\) \%/. & CV63 10/6 & ECC85 5\% & \({ }_{\text {GZ37 }}\) 14/8 & PEN/DD \({ }_{\text {4020 }} 17 / 6\) & \(\begin{array}{lll}\text { U12/14 } & 7 / 6 \\ \text { U15 }\end{array}\) & AC165
AC166
5/- & QD10 4/- & \(0 \mathrm{C72}\) 21- \\
\hline 5 F 4 GY & \(8 / 9\) & \(68 \mathrm{H7} 3 /-\) & 25269 8/6 & CV271 12/6 & ECC88 & H30 5/- & 4020
PFL20012/6 & \(\begin{array}{ll}\mathrm{U} 16 & 15 /- \\ \mathrm{U} 17 & 5 / 7\end{array}\) & AC166
AC167
12\% & GD11 4/- & \(0 \mathrm{OC73} 181-\) \\
\hline SU4G & 418 & 68 J 7 5/- & \(30 \mathrm{C1} \quad 6 / 6\) & CV428 18/- & ECO189 9/6 & HABC80 \(9 / 8\) & PFL20012/6 & \(\begin{array}{ll}\text { U17 } & 5 / 7 \\ \text { U18/20 } & 6 / 6\end{array}\) & \(\begin{array}{ll}\text { AC167 } \\ \text { ACl } 68 & 12 / 6\end{array}\) & GD12 \({ }_{\text {GD14 }}\) 4/- & \(\begin{array}{ll}0074 \\ 0 C 75 & 8 /- \\ 0\end{array}\) \\
\hline 6V4G & 8/- & 68K7 4/6 & 30015 13/6 & CYI 16/4 & ECC80412/6 & HL2 7/6 & PL33 9/- & U19 40/- & AC169 6/6 & \begin{tabular}{ll}
GD14 \\
GD15 & \(8 \%\) \\
\hline
\end{tabular} & \begin{tabular}{ll}
\(0 C 75\) \\
0076 & \(2 /-\) \\
\hline
\end{tabular} \\
\hline 5Y3GT & \(5 / 9\) & 68L7GT 4/9 & 30017 13/- & CY1C 10/6 & ECC807 27/- & HL13C 4/- & \(\begin{array}{lr}\text { Pl3 } & 19 / 9\end{array}\) & U22 6/9 & AC176 11/. & GD16 4/- & \(\begin{array}{ll}0076 & 3 /- \\ 0077 & 3 / 4\end{array}\) \\
\hline 6\%3 & \(7 / 6\) & 68N7GT 4/6 & 30018 8/9 & CY31 7/9 & ECF80 7\%- & HL23DD 5/- & \({ }_{\text {PL81 }}\) & U25 13/- & AC177 5/6 & GET102 4/9 & \(\begin{array}{ll}0077 & 3 / 4 \\ 0078 & 3 / 4\end{array}\) \\
\hline 5Z4G & 7/6 & 68Q7GT 61- & \(30 \mathrm{~F} 511 / 8\) & D1 1/8 & ECF82 8/9 & \(\mathrm{HLA1}^{\text {8/9 }}\) & PL81A 7/6 & U26 10/6 & ACY17 3/4 & GET103 4/- & \(\begin{array}{ll}0 C 78 & 3 /- \\ 0078 \mathrm{D} & 3 /-\end{array}\) \\
\hline 6/30L2 & \(12 / 6\) & \({ }^{6887}\) \%/- & \(30 \mathrm{FL1}\) 15/- & D15 15/6 & ECF86 9/- & HLalod \({ }^{\text {de/6 }}\) & PL82 5/9 & U31 8/3 & ACYt8 \(5 / 8\) & GET10518/- & OC79 \\
\hline 6 A 8 G & 8/8 & 6U4GT 9/6 & \(30 \mathrm{FLl2} 15 /-\) & D63 5/- & ECF804 42/- & \(18 / 6\) & PL83 6/- & U33 13/6 & ACY19 6/8 & GET111 & \(0 \mathrm{C81} \mathrm{2/-}\) \\
\hline 6AC7 & 81- & \({ }^{645 G} 5 /-\) & \(30 \mathrm{FL} 1412 / 6\) & \({ }^{\text {D77 }}\) 2/3 & ECF80512/6 & HL42 DD 8/- & \({ }^{\text {PL84 }} 818\) & U35 16/6 & ACY20 4/9 & 15/6 & OC81D \(2 /-\) \\
\hline 6AG5 & \(2 / 6\) & 6U7G 7/- & 30 Ll 6/- & DAC32 7/- & ECH21 9/6 & HN309 27/4 & PL302 11/- & U37 34/11 & ACY'21 5/9 & GET113 4/- & OC81M \({ }_{\text {B }}\) \\
\hline 6AG7 & 5/8 & \({ }_{6}^{6 V 6 G}\) & \(30 \mathrm{L15}\) 18/9 & DAF91 3/8 & ECH33 \(22 / 8\) & HVR2 8/8 & PL500 12/8 & U45 1516 & ACY22 3/6 & GET11517/- & \(0 \mathrm{C812} 5\) \\
\hline 6AJ5 & \(8 / 6\) & \({ }^{6 \times 6 G T}\) 6/6 & \(30 \mathrm{L17}\) 13/- & DAF96 \(8 / \mathrm{l}\) & ECH35 5/9 & HVR2A 8/8 & PL504 13/- & U50 5/9 & ACY28 4/3 & GET116 7/6 & per pair \\
\hline 6AK5 & 4/8 & \(\begin{array}{lll}6 \times 4 & 8 / 6 \\ 6 \times 5 \mathrm{GT} & 5 / 8\end{array}\) & \(30 \mathrm{P4} 12 /-\) & \(\begin{array}{ll}\text { DCC90 } & 8 / 8 \\ \text { DD4 } & 10 / 8\end{array}\) & ECH42 9/6 & IW3 \(5 / 8\) & PL802 15/- & U52 4/9 & AD140 8/- & GET119 4/6 & \(0 \mathrm{C82}\) 2/3 \\
\hline 6AK6 & 61. & \(\begin{array}{ll}\text { 6X5GT } \\ \text { 6Y7G } & \text { 12/6 }\end{array}\) & 30P4MR & \(\begin{array}{ll}\text { DD4 } & 10 / 8 \\ \text { DD41 } & 12 / 6\end{array}\) & ECH81 \(6 / 6\) & IW4/350 5/6 & PM54 9/8 & U76 4/9 & AD149 8/- & GET573 8/6 & OC82D \(2 / 6\) \\
\hline 6AK8 & 6/- & \(\begin{array}{ll}6 Y 7 G & 12 / 6 \\ 747 & 12 / 6\end{array}\) & \({ }_{30 \mathrm{P} 12}{ }^{17 / 6}\) & \(\begin{array}{lr}\text { DD4 } & 12 / 8 \\ \text { DDT4 } & 7 / 6\end{array}\) & ECR83 7/9 & TW4/500 6/E & PX4 14/- & U78 8/6 & AF'102 18/- & GET5878/6 & 0 O 83 2/- \\
\hline 6AL5 & \(2 / 8\)
\(16 / 6\) & \(\begin{array}{lr}\text { 7A7 } & \text { 12/6 } \\ \text { 7AN7 } & 6 /-\end{array}\) & \(\begin{array}{ll}30 \mathrm{Pl2} & 13 /- \\ 30 \mathrm{P} 19 & 11 /-\end{array}\) & \(\begin{array}{ll}\text { DDT4 } & 7 / 8 \\ \text { DF33 } & 7 / 9\end{array}\) & \(\begin{array}{ll}\text { ECH84 } \\ \text { ECL80 } & 7 /= \\ \end{array}\) & KBC32 \({ }_{\text {KF35 }}^{\text {K }}\) 12/5 & \(\begin{array}{ll}\text { PY31 } & 6 / 6 \\ \text { PY } 32 & 9 / 8\end{array}\) & \(\begin{array}{ll}\mathrm{Ul07} & 17 / 6 \\ \mathrm{U191} & 12 / 6\end{array}\) & AF114 4/- & GET87210/- & OCB4 3/- \\
\hline 6AM5 & 2/6 & 7B6 10/9 & \(30 \mathrm{PL1}\) 15/- & DF72 30/- & ECL82 6/6 & KL35 11/6 & PY32 9/6 & \(0191{ }^{12 / 6}\) & AF115 3/- & GET873 4/- & \(\mathrm{OCl}^{123}\) 4/6 \\
\hline 6AM6 & 8/8 & \({ }_{7} 7 \mathrm{B7}\) 7\%- & \(30 \mathrm{PL13} 15 /-\) & DF91 \(2 / 9\) & ECL83 9/- & KLL32 \(21 / 7\) & \(\begin{array}{ll}\text { PY33 } \\ \text { PY80 } & \text { 9/6 } \\ \text { 5/- }\end{array}\) & \(\begin{array}{lr}\text { U251 } & 12 / 6 \\ \mathrm{U} 281 & 8 / 9\end{array}\) & \(\begin{array}{ll}\text { AFl16 } \\ \text { AFl17 } & 3 / 4\end{array}\) & 23/8 & \(0 \mathrm{OL139}\) 12/- \\
\hline 6AQ5 & \(4 / 9\) & 7 CD 40\% & 30PL14 15/- & DF96 6/- & ECL84 12/- & KT2 5/- & PY881 5/\% & \begin{tabular}{lr}
U281 & 12/8 \\
\hline 2818
\end{tabular} & AF117
AF119
8/4 & GET88210/6 & \(\begin{array}{ll}006140 & 19 /- \\ 00169 & \\ \\ 0\end{array}\) \\
\hline BAR6 & 201- & 768 6/6 & \(30 \mathrm{PL15} 15 /-\) & DF97 10/- & ECL85 11/- & KT8 15/- & PY82 5/- & \(\begin{array}{ll}\text { U301 } & 18 / 6\end{array}\) & AF124 7/6 & GE1'887 4/6 & 0C170 2/6 \\
\hline 6AT6 & 4/- & 7H7 5/6 & \(35 \mathrm{A5}\) 15/- & DH30 15/6 & ECL86 719 & KT32 4/9 & PY83 \(\quad 5 / 6\) & U329 12/6 & AF125 3/6 & GET889 4/6 & \(0 \mathrm{Cl71}\) 3/4 \\
\hline 6AU6 & 5/6 & 7R7 12/6 & \(35 \mathrm{DF} 11 / 9\) & DH63 5/- & ECLL800 & KT41 19/6 & PY88 6/8 & \(\begin{array}{ll}\mathrm{U} 403 & 6 / 6\end{array}\) & AF126 7/- & GET890 4/6 & \(0 \mathrm{Cl72}\) 4/- \\
\hline 6AV6 & 51. & 7V7 5/- & 35L6GT 6/8 & DH76 8/6 & 301- & KT44 5/8 & PY800 6/8 & U404 7/6 & AF'127 3/6 & GET896 4/6 & 0 C 200 5/. \\
\hline \(6 \mathrm{B8G}\) & 2/6 & \(7 \mathrm{Y} 4 \quad 6 / 6\) & \(35 W 4 \quad 4 / 6\) & DH77 4/- & EF22 12/6 & KTb1 12/- & PY801 8/6 & U801 18/- & AF139 11/- & GET897 \(4 / 6\) & \(0 \mathrm{C201}\) 28/- \\
\hline \(6 \mathrm{BA6}\) & 4/6 & 9BW6 \(\quad 9 / 6\) & \(35 \mathrm{Z8}\) 10/- & DH81 10/9 & EF36 8/- & KT63 4/- & P230 9/6 & U4020 6/0 & AF178 10/- & GEX13 8/6 & 00202 \\
\hline \(6 \mathrm{BE6}\) & \(4 / 8\) & 9D7 716 & \(35 \mathrm{Z4GT} 4 / 9\) & DH101 25/- & EF37A 7/- & KT66 16/6 & QP21 5/- & VP4B 11/- & AFl79 13/6 & GEX35 4/6 & OC203 5/6 \\
\hline 6BG6G & \(20 / 5\) & 10C1 \(12 / 6\) & \(35 \mathrm{Z5GT} 5 / 6\) & DH107 & EF39 5/- & \(\begin{array}{lr}\text { KT74 } & 18 / 6 \\ \text { KT76 } & \\ 7 / 6\end{array}\) & QQV03/10 & VP13C 7/- & AF180 9/6 & GEX \(3610 /-\) & \(0020410 / 6\) \\
\hline \({ }_{6}^{68 \mathrm{BH} 6}\) & 7/- & \(\begin{array}{ll}10 \mathrm{C} 2 & 18 /- \\ 10 \mathrm{Dl} & 7 / \%\end{array}\) & \(\begin{array}{lr}42 & 5 /- \\ 43 & 10 /-\end{array}\) & DK32 16/11 & EF40
EF41
8/9 & \(\begin{array}{lr}\text { KT76 } & 7 / 6 \\ \text { KT88 } & 29 / 6\end{array}\) & 8875/20/- & VP23 2/6 & AF181 14/- & GEX45/17- & \(00^{0205}\) 7/6 \\
\hline 6BJ6
6 BQS & \(8 / 9\)
\(4 / 6\) & \(\begin{array}{ll}10 \mathrm{D} 1 & 7 / 7 \\ 10 \mathrm{D} 2 & 14 / 7\end{array}\) & \(\begin{array}{ll}43 & 10 /- \\ 5045 & 21 / 10\end{array}\) & \(\begin{array}{lc}\text { DK32 } & 7 /- \\ \text { DK40 } & 10 / 6\end{array}\) & \(\begin{array}{cc}\text { EF41 } & 9 /- \\ \text { EF42 } & 8 / 6\end{array}\) & \(\begin{array}{llr}\text { KT88 } & \text { 28/6 } \\ \text { KTW61 } \\ \text { K/g }\end{array}\) & Q875/20 \({ }^{10 / 6}\) & VP41
VR75
V/- & & GEXES/1 & 00612 8/- \\
\hline 6BQ7A & 71 & 10 Fl 15/- & 50B5 6/3 & DK91 4/9 & EF50 2/6 & KTW6218/6 & \(15^{10}\) & VR715 24/- & ASY27 8/6 & 15/* & OCP71 27/6 \\
\hline \(6 \mathrm{BR7}\) & 9/- & \(10 \mathrm{F9}\) 9/- & \(50 \mathrm{C5} 519\) & DK92 \(7 / 9\) & EN54 6/- & KTW63 6/- & Q8150/15 & VR159 5\% & A8Y28 \(6 / 6\) & GHX 66 16/- & ORP12 15/6 \\
\hline 6BR8 & 8/. & \(10 \mathrm{Fl} 88 / 6\) & \(50 \mathrm{CD6G441/}\) & DK96 6/6 & EF73 6/6 & KTZ41 6/- & R10 15/- & VT61A 7/- & AY100 \(88 \%\) & M1 2/10 & T32 12/8 \\
\hline \({ }^{6 B 87}\) & 18/6 & 10LD3 \(7 / 8\) & 50L6GT 6/- & DL33 6/6 & EF80 4/6 & LN309 8/9 & R11 19/6 & VT501 3/- & BA115 2/8 & M3 2/10 & T93 15/- \\
\hline \(6 \mathrm{BW7}\) & 5/6 & 10LD11 14/6 & 52 KU 14/6 & DL35 4/9 & EF83 \(9 / 9\) & LP2 9/6 & R12 616 & VU111 8/- & BA116 9/\% & OA5 5/6 & V10/15 \({ }^{\text {a }}\) \\
\hline 6 BXB & \(4 / 6\) & \(10 \mathrm{P} 1315 / 8\) & \({ }^{53 \mathrm{KUU}} 14 / 6\) & DL72 15/- & EF85 4/9 & LZ319 6/6 & H16 34/11 & VU120 12/- & BA129 2/6 & OA9 2/6 & 12/- \\
\hline \(6 \mathrm{C5GT}\) & \(8 /\) & 10 P 14 15/8 & \(72 \quad 6 / 6\) & DL75 30\% & EF86 6/8 & LZ329 6/8 & R17 17/6 & VU120A18/- & BA130 2/- & OA10 6/6 & X \(\triangle 102\) 19/6 \\
\hline 6 C 6 & \(8 / 8\) & 1246 6/- & 77 5/- & DL92 4/9 & EF89 4/9 & MHD4 \(7 / 6\) & \(\mathrm{R18} 916\) & VU133 7/- & BCY10 5j- & OA47 2/- & XA103 15/- \\
\hline 6 Cl 9 & \(12 / 6\) & 12AC6 0f- & 78 4/9 & DL94 5/6 & EF91 3/3 & MHLD6 & R19 6/6 & W42 11\% & BCY12 5/- & OA70 8/- & MAT1007/9 \\
\hline \({ }_{6}^{6 C D O}{ }^{\text {a }}\) & 19/6 & 12AD6 \(10 / 3\) & 85 A2 \(8 / 6\) & DL96 7/6 & EF92 216 & 12/6 & RK34 7/6 & W61M 24/6 & BCY 33 \$/- & 0 0A73 8/- & MAT1018/6 \\
\hline 6CD7 & 9/8 & 12AE6 8/6 & 90AG 67/6 & DLS10 10/6 & EF97 8\% & MU12/14 4/0 & SP13C \(12 / 6\) & W63 10/6 & BCY34 5/- & 0479 1/9 & MAT120 7/9 \\
\hline \({ }^{60186}\) & 6/- & 12A'T6 4/8 & 90AV 67/6 & DM70 7/6 & EF98 10/6 & MX \(4018 / 6\) & \(\mathrm{gP42}^{12 / 6}\) & W76 3/6 & BCY 38 5/\% & OA81 1/9 & MAT121 8/6 \\
\hline 6CW4 & 18\% & \(12 \mathrm{AT7} \mathrm{4/-}\) & 90CG 34/- & DM71 7/6 & EF183 6/3 & N37 88/8 & 8P61 2/m & W77 2/6 & BCY39 \%/- & OA85 1/6 & ZE12V7 1/9 \\
\hline
\end{tabular}

MATCHED TRANSISTOR BETS 1-OC44 and 2-OC45 8/6; 1-OC81D and 2-OC81 7/6;1 -0C82D and 2-0C82 8/6; Set of three-0C83 (OET118/119) 8/6; LP15 package (AC113, AC154, ACI57, AA120) 12/6; Postage 6 d . per set.

\section*{WE REQUIRE FOR PROMPT CASH SETTLEMENT ALL TYPES OF ABOVE GOODS LODSE OR BOXED, BUT MUST BE NEW}

ELECTROLYTICS. Can types: \(8 \times 8 \mathrm{mid} / 500 \mathrm{v} 6 / 9 ; 8 \times 16 \mathrm{mfd} / 500 \mathrm{v} 7 / 3 ; 16 \mathrm{mid} / 500 \mathrm{v} 5 / 6 ; 16 \times 16 \mathrm{mfd} / 500 \mathrm{v} 8 / 9 ; 16 \times 32 \mathrm{mfd} / 450 \mathrm{v} 9 /-; 32 \mathrm{mfd} / 500 \mathrm{v} 7 /-; 32 \times 32 \mathrm{mfd} / 450 \mathrm{v} 4 / 9 ; 50 \times 50 \mathrm{mfd} /\) \(350 \mathrm{v} 5 / 6 ; 50 \times 50 \mathrm{mfd} / 275 \mathrm{v} / 6 ; 60 \times 250 \mathrm{mfd} / 275 \mathrm{v} 9 / 9 ; 60 \times 250 \times 10 \mathrm{mid} / 275 \mathrm{v} 13 /-\mathrm{i} ; 64 \times 100 \mathrm{mfd} / 450 \mathrm{v} 18 / 9 ; 64 \times 120 \mathrm{mfd} / 350 \mathrm{v} / 6 ; 100 \times 200 \mathrm{mfd} / 275 \mathrm{v} 8 /-; 100 \times 200 \mathrm{mfd} / 350 \mathrm{v} 17 / 9 ;\) \(100 \times 200 \times 60 \mathrm{mfd} / 300 \mathrm{v} 17 / 9 ; 100 \times 300 \times 100 \times 16 \mathrm{mfd} / 275 \mathrm{v} 22 /-; 100 \times 400 \mathrm{mfd} / 275 \mathrm{v} 12 / 9 ; 100 \times 400 \times 16 \mathrm{mfd} / 275 \mathrm{v} 20 / 9 ; 200 \mathrm{mfd} / 350 \mathrm{v} 10 / 9 ; 100 \mathrm{mfd} / 100 \mathrm{v} 7 / 6 ; 200 \times 200 \times\) \(100 \mathrm{mfd} / 350 \mathrm{~V} 24 / 9 ; 1000 \mathrm{mid} / 50 \mathrm{~V} 9 / 9 ; 2000 \mathrm{mfd} / 50 \mathrm{v} 11 / 9 ; 5000 \mathrm{mfd} / 25 \mathrm{v} 13 / 6 ; 5000 \mathrm{mfd} / 50 \mathrm{~V} 24 / 9 ; 8 \mathrm{mfd} / 600 \mathrm{v} 9 / 9 ; 16 \times 16 \times 16 \mathrm{mfd} / 275 \mathrm{v} 6 / 6 ; 50 \times 50 \times 50 \mathrm{mfd} / 350 \mathrm{~V} 11 / \cdot ; 16 \mathrm{mfd} / 600 \mathrm{v} 13 /-\) \(32 \mathrm{mfd} / 450 \mathrm{v} 7 / 6 ; 47 \mathrm{mfd} / 450 \mathrm{v} 7 / 9 ; 10000 \mathrm{mfd} / 30 \mathrm{v} \mathrm{26/6.Tubular} \mathrm{types:} 1 \mathrm{mid} / 500 \mathrm{v} 2 / 3 ; 2 \mathrm{mfd} / 500 \mathrm{v} 2 / 6 ; 4 \mathrm{mfd} / 500 \mathrm{v} 2 / 9 ; 8 \mathrm{mfd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mfd} / 500 \mathrm{v} 3 /-; 8 \times 8 \mathrm{mfd} / 450 \mathrm{v} 2 / 9 ; 8 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 /-\mathrm{s}\) \(10 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 16 \mathrm{mid} / 450 \mathrm{v} 2 / 6 ; 16 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 16 \times 32 \mathrm{mfd} / 350 \mathrm{v} 3 / 6 ; 32 \mathrm{~m} / \mathrm{d} / 350 \mathrm{v} 3 / \mathrm{F} ; 32 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 32 \times 32 \mathrm{mfd} / 350 \mathrm{v} 4 / 9 ; 50 \mathrm{mfd} / 350 \mathrm{v} 5 / 3 ; 100 \mathrm{mfd} / 450 \mathrm{v} 9 / 6 ; 64 \mathrm{mfd} / 450 \mathrm{v} 8 / 9\).

\footnotetext{
Terms of business-Cash with order only. Post/Packing 6d. per item. Orders over es post free. No C.O.D. All orders cleared day of receipt. Any parcel insured against damage in transit phones, etc. with terms of business 6d. Please enquire for any item not listed with S.A.E. Please note that no enquiries can be answered unless a 3 . A.E. is enclosed for reply.
}

\section*{components list}
\begin{tabular}{ll}
\multicolumn{2}{l}{ Resistors: } \\
R1 & \(56 \mathrm{k} \Omega\) \\
R2 & \(10 \mathrm{k} \Omega\) \\
R3 & \(3 \cdot 9 \mathrm{k} \Omega\) \\
R4 & \(680 \Omega\) \\
R5 & \(56 \mathrm{k} \Omega\) \\
R6 & \(680 \Omega\) \\
R7 & \(4 \cdot 7 \mathrm{k} \Omega\) \\
R8 & \(22 \mathrm{k} \Omega\) \\
R9 & \(1 \mathrm{k} \Omega\) \\
R10 & \(1 \cdot 2 \mathrm{k} \Omega\) \\
R11 & \(3 \cdot 9 \mathrm{k} \Omega\) \\
R12 & \(8 \cdot 2 \mathrm{k} \Omega\) \\
All & \(10 \% \frac{1}{4}\) watt
\end{tabular}

\section*{Semiconductors:}
\(\begin{array}{llll}\text { Tr1 } & \text { NKT152 or OC44 } & \text { Tr3 } & \text { NKT154 or OC45 } \\ \text { Tr2 } & \text { NKT153 or OC45 } & \text { D1 } & \text { OA70, OA81, etc. }\end{array}\)
Inductors:
L1 Medium wave ferrite rod aerial for OC44 or similar, Osmor QFR2B etc. for 208pF tuning.
L2 Oscillator coil for OC44 or similar, Osmor Red Spot etc., for 176 pF .
IFT1 and IFT2, 1 st and 2nd IFT's for OC45 or similar, Osmor White Spot, etc.
IFT3 3rd IFT, Osmor Blue Spot, etc.
Miscellaneous:
Knob; paxolin; tag strip; chassis about \(6 \times 3 \times 2\) in. deep; \(5 \times 3 \mathrm{in}\). Universal chassis single side; DL32 drive spindle; \(2 \frac{1}{8} i n\). diameter drum; cord; spring; wheels (Home Radio).

Transistors and most other parts are assembled on a paxolin panel \(5 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}\). This oscillator/i.f. \(/\) detector strip is later placed in a chassis \(6 \times 3 \times 2 \mathrm{in}\). or \(2 \frac{1}{2} \mathrm{in}\). deep. The chassis supports a drive panel carrying VCI/VC2, so that a cord drive and horizontal tuning scale can be provided.

\section*{Drive Panel}

To avoid metalworking, this is a "Universal Chassis" single side, \(5 \times 3 \mathrm{in}\). This item has a \(\frac{1}{2} \mathrm{in}\). flange all round, and can be bolted to the chassis. \(\mathrm{VCl} / \mathrm{VC} 2\) occupies the position shown in Fig. 3, with its spindle through a clearance hole. Three 4BA bolts secure the capacitor, and these must be short, or have extra washers or other spacers, or screwing them home will damage the capacitor.

Trimmers TCl and TC2 were soldered to tags bolted to the capacitor. A capacior already fitted with trimmers may be used instead. VCl is the larger section, having most plates; VC2 has fewer plates and is to the rear.

Two supports are cut from wood or other insulating material, Fig. 3, and screwed to the drive panel. For easy identification, coloured leads were soldered to the winding tags, as in Fig. 3. The winding is then put on the rod, which is held with string or elastic. Three leads pass through the chassis, to be connected to the oscillator transistor circuits later. Earth returns are completed by the drive panel and chassis.

Two 4BA bolts, with extra nuts, support the scale plate (cut from hardboard \(5 \times 2 \mathrm{in}\).) and small wheels, Fig. 4. Clearance holes are punched in the chassis, for the cord. The spindle drive is situated in

Fig. 2. Wiring and component layout of the receiver.
the middle of the chassis front runner. Arrange the drive, small wheels, and drum so that all are in line. This can be done by moving the drum on the capacitor spindle, adjusting the small wheel spacing nuts, and putting washers or extra nuts on the driving spindle bush, if necessary.

\section*{Drive Assembly}

The cord is taken out through the drum slot, given half a turn round the drum in a clockwise direction, and passed down through the hole. It is given a complete turn round the driving spindle, goes up through the second hole and over the left-hand pulley, across to the right pulley, down to the drum and round this to the drum slot. The ends are tied
with the spring, which goes on the drum projection, under tension.
If necessary, adjust the drum to allow proper 180 degree rotation of VC1/VC2. A small piece of tinplate is clipped on the cord with pliers, and a wire pointer soldered to it. The end goes under and behind the scale plate, Fig. 4, with enough clearance for free horizontal movement. With this diameter drum the actual scale is 3.4 in . long.

\section*{Component Panel}

Figure 2 shows the insulated panel, with all components except R4 one side, and wiring the other side. Coil L2, i.f.t.1, i.f.t. 2 and i.f.t. 3 have can tags which are bent over to hold them in position, and all are joined to the earth or positive line. With

Fig. 3 (right): Method of mounting ferrite rod assembly and tuning capacitor.

Fig. 4 (below): Arrangement of the tuning drive assembly. Note that the drive cord goes through holes in the chassis to the drive spindle-ensure that they have sufficient clearance.

L2, a coloured dot comes
 between pins 1 and 6. I.F. transformers i.f.t.l, i.f.t. 2 and i.f.t. 3 each have pin 4 unused. Other wires must not touch these pins.

The simplest way to avoid errors is to mark each component and lead with coloured pencil, as it is fitted and connected. This shows at once if anything is omitted. The diode and electrolytic capacitor C5 polarity must be as shown. Leads should be quite short and direct, and covered with 1 mm . insulated sleeving where necessary. Connections can be 26 s.w.g. or similar tinned copper wire. Leave a short flexible lead for the negative connection, and another from the diode. Also leave short wire ends projecting from C3, R2 and Trl base.

The finished strip is held in place by two \(\frac{1}{2}\) in. bolts, with extra nuts to leave enough clearance for wiring and R4. One bolt has a tag, connected to the strip positive circuit, so that this is common to the chassis when

\[
\begin{aligned}
& \text { a new 4-way method of mastering } \\
& \text { ELECTRONICS } \\
& \text { by doing - and - seeing.. }
\end{aligned}
\]

\section*{\(1 \geqslant \begin{aligned} & \text { OWN and } \\ & \text { HANDLE a }\end{aligned}\)}
complete range of presentday ELECTRONIC PARTS and COMPONENTS

4
carry out over 40 experiments on basic electronic CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .
- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to reaily understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

\title{
PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS. \\ Telephone: Cleckheaton 2866
}

Untested 12 Channel 14in. TV Sets, 20/-. Carriage 15/-. Passenger train double rate.
Bugh TV 53 14in. 12 Channel. Tested with good tube 25. Carriage 15/-, Cabinets fair. Passenger train double rate.
Untested Pye, K.B., R.D.G., Fkeo, Bush 17in. TV Sets. 50/- each. Carriage 15/-, Passenger train double rate.
Speakers removed from TV Sets. All P.M. and 3 ohms. Bin. round and \(8 \times 5\) in. 6/6. Post and packing \(3 / 6\).
6in. Kound, 3/-. P. \& P. 3/-. 6 for 24/-Post Paid.
\(6 \times 4 i n .3 /-\). P. \& P. 3/-. 6 for 24/- Post Paid.
\(7 \times 41 n .5 /-\). P. \& P. 3/-. 6 for 34/-Post Paid.
5in. Round 3/*. P. \& P. 3/-. 6 for 24/- P. \& P. Paid.
Slot Speakers, \(8 \times 2\) in. 5/-. P. \& P. 3/-. 6 for 30/-. Post Paid.
Spectal offer of TV Sets just off 1 eental, 12 Channeis. R.D.G. Deep 17 in .25. Bush TV85 \&8. K.B. New Queen 25 . Sets tested with good tubes, cabinets fair, could do with cleaning out. Carriage \&l. Passenger train double rate.
New Boxed Rebuilt Tibe. TYpe.MW43/69. Top grade not a second. 12 months' guarantee 47/-. Carriage 12/-.
New TV Tubes with slight glass fault all types 19 and 17 in , 50/-. Carriage 12/-. Twelve months' guarantee.
Reclaimed TV Tubes with six months' guarantee 17 in . types AW43/88. AW43/80, 40/\%. MW43/69, 30/-. 14in. types, \(17 \%\). All tubes 12/-Carriage.
Good TV Tubes. Tested perfect but no guarantee. TYpe AW43/80 and MW43/69, 17/-each. Plus 12/-Carriage.
New 12in. Speakers with built in Tweeter, 3 or 15 ohm, 28/6. Post Paid.
Special Sale of ex W.M. (Gear. R.A.F. tube unit type 266 just like the 62A unit. Fitted with VCR97 tube mu-metal screen full of E.F. valves complete with outer case. Grade I 27/-. Grade II 22\%. Both units 10/-carriage each.
Motors Removed from Washing Machines \(\frac{1}{4}\) h.p. 1.400 revs 250-200 volt A.C. 26\%. P. \& P. 10/-.
V.C.R. 97 tube complete with mu-metal screen 10/.. P. \& P. 5/-.

Top Grade Mylar Tapes. 7in. standard \(11 / 6\). 7in. Iong play 14/-. 7in. double play \(19 / 6\). 5in. standard \(7 / 9\). 5in, lons play 10/-. Plus post on any tape 1/6.
Jap Ear Piece small or large plug 1/11. Post paid.
Silicon Rectifier 500 M.A. 800 P.I.V. No duds 2/6. Post paid. 24/- doz. P. \& P. paid.
G. P. Dlodes all perfect. Guaranteed \(3 / 6\) doz. P. \& P. paid.

Callbrator type 1. Complete with 250 A.C. Power Pack. 330, 80 M.A. 6.3.3.2 amp., 6.3.1.4 amp. 5 volt, 2 amp.. \(5 Z 4\) and 8 more valves. Clean condition, \(37 / 6\). Carriage \(10 /\).
Test set Type 210. Complete with meter \(0-50\) mils slow motion drive,
\(5 Z 4\) and other valves 29/. Carriage \(10 /-\). Clean condition.

VALVE LIST
Ex Equipment, 3 months' guarantee
Single valves post 7 d . over 3 valves \(P\). \(\& P\). paid.
10F1, EF80, EB91, ECL80, EF50, PY82, PZ30, 20P3, All at 10/-per doz.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ARP12 & 1/6 & KT36 & 51- & U191 & \(5 /-\) & 185BT & \(8 / 6\) \\
\hline EB91 & 91. & PCC84 & \(21-\) & U282 & \(51-\) & \(20 \mathrm{D1}\) & \(31-\) \\
\hline EF85 & \(31-\) & PCF80 & \(21-\) & U281 & \(51-\) & 20 Ll & \(51-\) \\
\hline EBF80 & 31- & PCF89 & 4/- & U329 & 5/- & 20 P 1 & 51- \\
\hline ECC81 & 31- & PCL82 & 41- & U801 & \(8 / 6\) & 20P3 & \(2 / 6\) \\
\hline ECC82 & \(31-\) & PCL83 & 51- & 688 & \(1 / 8\) & 20 P 4 & \(8 / 6\) \\
\hline ECC83 & \(41-\) & PL36 & \(5 /-\) & 6 BW 7 & 216 & 30PL1 & \(51-\) \\
\hline ECL80 & \(1 / 6\) & PL38 & 6/- & 6K7 & \(1 / 9\) & 30 P 4 & 51- \\
\hline EF50 & 1/- & PL81 & 4/- & 6 K 25 & 51 & 30 P 12 & \(51-\) \\
\hline EF80 & \(1 / 6\) & PY33 & 51- & \(6 \mathrm{U4}\) & \(51-\) & 30 F 5 & \(2 / 6\) \\
\hline EF91 & 9 d . & PY81 & \(1 / 6\) & 6 V 6 & 1/8 & 30 FL 1 & \(51-\) \\
\hline EL36 & 51- & PY82 & \(1 / 6\) & 6 P 28 & 51- & 6/30L2 & 51- \\
\hline EY51 & \(2 / 6\) & PZ30 & 51- & 10 C 2 & 51- & 50CD6 & 61- \\
\hline EY86 & 5/- & U25 & 51- & 10 P 13 & 216 & R19 & \(51-\) \\
\hline
\end{tabular}

Performance Tester. Complete with 200 microamp meter. Clean condition. Meter perfect 39\%- Carriage \(10 \%\).
Special Offer 19in. tubes AW47/91 40/.. 6 Months' guarantee. Carriage 12/*.

FIRST CLASSPRECISIONTOOL THE HEATHCFAFT Mini-Dril WITH 6 MINI-TOOLSFOR precision drilling grinding, polishing etching, cutting gouging,shaping
SUPER MODEL 5in. long Powered by a \(9 / 12\) volt external battery, completely portable. shockproof. Indispensable for printed circuits, model making, precision engineering, car maintenance, optical work and every job where a tool with exceptional accuracy, power and speed is required. Fully guaranteed. STANDARD
Mini-Drill with smaller motor 39/6 p \& p 1/6. C.W.O. to:

Heathcraft Metal Products Ltd 54 Poland St., London W.1.

\section*{there are differences...}

There are differences, to be sure in the reproduced sound between amplifiers of simllar specification and price, but of different manufacture. Often these differences are not readily appreciated, and untll recently have been relatively Insignificant.

Our claim that the RIchard Allan A21 ampllfier is audibly better than any of Its compettors at any price up to \(\mathbf{5} 95\) (where the A41/C41 combination takes over). Is no ldle boast.

Certaln reputable HI-FI dealers, once sceptical of the claims of Class A are rapidly convinced of the superiorlty of the A21 by simply connecting up in their comparitor systems and listenlng for themselves. These comparitor facilitles are available to you too, and when you hear the difference the cholce will be obvious.
Loudspeakerwise, the difference between systems of different manufacture are quite significant and readlly appreclated.
Within (and beyond) their price range, Richard Allan produce loudspeaker systems to compete with anything on the market, and we would particularly draw your attention to the PAVANE, a new 3-speaker system of medium size which retalls at \(£ 32\).
For those requiring something a little smaller, the CHACONNE makes an ideal cholce at £19.4.10, whilst those who appreclate the effortless ease of the large reproducer may care to Investlgate the SARABANDE which at \(£ 39.17 .6\). represents quite exceptional value.

LTD
Bradford Road, Gomersal, Cleckheaton, Yorkshire Telephone: Cleckheaton 2442
the strip is in position. The brown and black leads are cut and soldered to the correct points, and also the lead from VC2 to C 3 .

\section*{Connections}

A tag strip having one earthed and two insulated tags is bolted to the rear of the chassis inside. The strip negative lead is soldered to one insulated tag, which anchors a black flexible lead passing out of the chassis, and fitted with a plug.

The end of a co-axial lead is prepared, and the outer brading taken to the earthed tag. This forms the battery positive return with the "Pyramid" amplifier. The remaining tag is a junction point for the co-axial cable inner conductor, and lead from diode positive.

Current is obtained from the amplifier by inserting the co-axial and negative plugs. For use alone or with other equipment, the tuner requires a 6 V supply.

\section*{Alignment}

For alignment without a signal generator, tune in any station and adjust the cores of i.f.t.1, i.f.t. 2 and i.f.f. 3 for best volume. A meter in the negative supply lead should also show a drop in current as this is done. Then tune in a transmission with VC1/ VC2 nearly fully open, and adjust TC1 and TC2 for best results. Afterwards, find a station with VC1/ VC2 nearly fully closed, and adjust L2 core, and the position of L1 on the ferrite rod, for best reception. Repeat all the adjustments mentioned, using transmissions of low signal strength, if possible.

If band coverage is unsuitable, this is due to the settings of TC1, TC2, L1 on the rod, and core L2. Should it be found that transmissions around 200 metres cannot be reached with VC1/VC2 fully open, unscrew TC1 and TC2, and re-trim. At the low frequency or high wavelength end of the band (VC1/ VC2 fully closed) coverage can be modified by adjusting the core of L2 slightly, and also moving the winding L1, as required to maintain best reception. The scale can now be calibrated in frequencies or wavelengths by means of a signal generator, or by tuning in transmissions whose frequency is known.

The optimum value for R4 depends somewhat on individual transistors, and is best as low as possible, provided oscillation is not audible when tuning. With some transistors R4 can be omitted. If the tuner is not used with the amplifier mentioned, remember a resistor of about \(5 \cdot 6 \mathrm{k} \Omega\) must be provided in parallel with C 11 , or at the equivalent position in the amplifier.

\section*{TO BE CONTINUED}

\section*{DIARY DATE}

2-5 OCTOBER 1968

Don't forget to visit the PRACTICAL WIRELESS stand at the RSGB EXHIBITION, Royal Horticultural New Hall, Greycoat Street, Westminster, London, S.W.1.

Your
QUESTIONS ANSWERED

\section*{Record Player Interference}

I have a Garrard 1000 record player but find that the reproduction is spoilt by interference from the pickup lead. This interference consists of the distorted reproduction of the record and is still present when the cartridge is disconnected and the turntable unit only is switched on. I have ensured that there are no loose connections.-B. Bishop (Falmouth).

It seems obvious that your amplifier is picking up radiated interference from the motor circuit of the Garrard 1000. First, we would want to know whether the trouble derives from the motor circuit or from the "open" circuit of the pickup. Shortcircuit the pickup input at the amplifier. If this cures the fault, look for common earth connections at the head shell, connector bracket or tagstrip. There should be no common return for the signal via the deck chassis. The deck should be separately earthed and the motor circuit adequately suppressed. If no switching suppressors are fitted try a \(0.01 \mu \mathrm{~F}\) in series with a \(100 \Omega\). The capacitor should be at least 500 V working and the resistor 1 W . A suppressor per switch pole is the normal requirement. The separate earth should not return, in this case, via the amplifier. All signal return leads should return to the amplifier, and not to the deck.
Always watch for hum loops caused by signal earth lines.

\section*{Bandspread?}

I am puzzled by the term bandspread which I have seen used. This appears to apply both to transmitters and receivers. Can you explain please? -A. Davies (Wales).

The term bandspread refers to a system of tuning used in receivers (and transmitters) whereby a small variable capacitor is connected in parallel with the larger main tuning capacitor. This means that for any setting of the main tuning capacitor the small extra capacitor can be used to tune a small band in the region of the main setting. In effect, the extra capacitor permits small increments and decrements in the main tuning.

Another method is to connect a variable voltage capacitor to the tuned circuit controlling the tuning of the transmitter or receiver. This is a capacitor whose extra value depends on the voltage applied to it. Thus by varying a d.c. voltage applied to the capacitor, it is possible to vary its capacitance and therefore the tuning of the circuit. In this instance, a d.c. bias voltage (normally quite low) can be made to alter frequency.

\section*{Radio Club}

I wish to join a radio club, how do I find out where the nearest one is?-F. Mallory (Derby).

Your best bet is to join the Radio Society of Great Britain (R.S.G.B.). Their address is 28 Little Russell Street, London, W.C.1. They will give you the address of the secretary of your nearest radio club.

THE ground plane aerial provides low angle radiation and omnidirectional coverage. It was decided to try such an aerial, as a change from the dipoles, long wires and doublets previously favoured, and after comparing the signal strength of a number of stations who themselves were using ground planes.

For those not familiar with the ground plane, Fig. 1 gives the essential details. The vertical element (usually self-supporting, though it can be wire) is a \(\frac{1}{4}\)-wave long for the chosen band. Each radial is usually a little longer. At least four radials are recommended, more or less evenly spaced round the pole. They also act as guys. The whole is as high as convenient above surrounding objects, and can be fed with \(50 \Omega\) co-axial cable. The cable inner conductor goes to the bottom of the vertical element. and the outer conductor to all the radials.

\section*{Constructional Work}

It was apparent that the whole could be prepared and put up in two or three hours. Clamps were made from \(1 \frac{1}{2} \mathrm{in}\). wide strips of stout sheet metal, Fig. 2. These were fashioned by taking two round pieces of wood, one the size of the pole and the other equivalent to the vertical element, shaping the strips to suit in a vice, and drilling them for 2 in . long \(5 / 16 \mathrm{in}\). bolts. Stout gauge tubing was used for the vertical, and seemed in no danger of collapsing.

The radials were 14s.w.g. aerial wire, looped through two turns of similar wire round the pole. This was drawn tight, twisted, and all joints were soldered. (A large iron is needed.) The co-axial outer conductor is soldered to the ring (radials). The inner conductor is bolted to the vertical element. Joints, and the exposed end of the co-axial insulation, are painted to keep out moisture. The co-ax was stapled a little way down the pole, to take stress off the end.

It was found that the whole could be easily raised into a vertical position, using the method for lifting a long ladder. The bottom end of the pole is pivoted on a post, tied to a strong peg, or placed against something which will not allow movement outwards. The top end of the pole is then raised above the head with both hands. Walking towards
the pole base and simultaneously moving hand over hand along the pole raises it. The pole was tied temporarily to its post, and the radials loosely attached to surrounding objects (a tree, post, and house). The pole was then raised to its higher position (Fig. 1) and the radials drawn tight at 45 degrees to keep it vertical.

\section*{Dimensions}

The aerial erected was designed for near \(14 \cdot 2 \mathrm{Mc} / \mathrm{s}\). The vertical was 16 ft . 6 in . and each of the four radials was 17 ft . long. The standing wave ratio was better than 1.5:1 throughout the \(14-14.35 \mathrm{Mc} / \mathrm{s}\) band. The pole was 18 ft . long, fixed with its bottom

Fig. 1: Elements of the ground plane aerial
end 5 ft . above the ground. For the 10 m or 15 m bands, the length of the vertical, in feet, can be found from \(234 \mathrm{M} / \mathrm{cs}\). The radials are a trifle longer, equal to \(240 \mathrm{Mc} / \mathrm{s}\).

Fecd impedance is low with the radials at 90 degrees to the vertical element (e.g., horizontal) but rises as the radials are sloped downwards. An angle of about 45 degrees is suitable for \(50 \Omega\) co-ax feed, this cable being any length. If circumstances permit, the ends of the radials can be raised or lowered, and the effect on the SWR noted.

\section*{Results}

When first used with a receiver, the ground plane furnished results of about \(5 / 5\) from Australia, South Africa, Philippines, Guiana, and other prominent distant signals. Nearer ranges, such as USA, were around \(5 / 7\) to \(5 / 9\). Closer stations, and Europeans, were generally well up in strength, and one SP (Poland) station also using a ground plane gave a reading of 20 db over \(S 9\).

When transmitting, the ground plane allowed the P.A. to be easily loaded by adjusting the pi tank capacitors. When used with a transceiver in which the method of tuning and particular i.f. caused bad 80 m breakthrough on 20 m with a long wire, the breakthrough disappeared. This was a great benefit when listening.

The best long distance contact reports were \(5 / 5\) with VK and ZL (Australia, New Zealand). This was with 150 watts input. The relative polarisation of aerials, depending in this case on the polarisation used by the other station, seemed to have no bearing on signal strength. On the basis of the reciprocal relation between receiving and transmitting with a given aerial, the ground plane seemed sometimes better and sometimes worse than a dipole and long wire, as would be expected. In any case this relationship does not

Fig. 2: Details of fitting etc. hold for long distance short wave transmission. Equipment used was free from TVI with horizontal aerials. As the home and other local TV aerials were vertical, it was thought that TVI might commence with the ground plane. But in this particular instance TVI was also absent with the ground plane.

The final opinion was that the ground plane was quite a useful aerial to have, and that its actual construction was not a matter of much difficulty. With radials at 45 degrees, such an aerial as that described requires a minimum diagonal space of about \(25-26 \mathrm{ft}\)., or a square of about \(18 \times 18 \mathrm{ft}\).

\section*{A.F. AMPLIFIER MODULE}
-continued from page 392
on the heat sink (Fig. 2) and connecting a millammeter in its place.

Beginning with a low value for R17, higher values are substituted ranging from 10 to \(39 \Omega\), until a current of between 4 and 5 mA is obtained in \(\operatorname{Tr} 5\) at full voltage, care being taken not to warm up the thermistor when soldering. To facilitate the selection of a resistor for R17, temporary lead wires

\section*{\(\star\) components list}

\section*{Resistors:}
\begin{tabular}{|c|c|c|c|}
\hline R1 & 33 k , & R12 & \(470 \Omega\) \\
\hline R2 & 15 k ת & R13 & 33@ \\
\hline R3 & \(2.7 \mathrm{k} \Omega\) & R14 & \(330 \Omega\) \\
\hline R4 & \(100 \Omega\) & R15 & \(180 \Omega\) \\
\hline R5 & \(8 \cdot 2 \mathrm{k} \Omega\) & R16 & \(470 \Omega\) \\
\hline R6 & \(4 \cdot 7 \mathrm{k} \Omega\) & R17 & Seetext \\
\hline R7 & \(1 \mathrm{k} \Omega\) & R18 & \(4.7 \Omega\) \\
\hline R8 & \(2 \cdot 2 \mathrm{k} \Omega\) & R19 & \(4 \cdot 7 \Omega\) \\
\hline R9 & \(680 \Omega\) & R20 & \(4.7 \Omega\) \\
\hline R10 & \(10 \mathrm{k} \Omega\) & R21 & \(4.7 \Omega\) \\
\hline R10 & \(10 \mathrm{k} \Omega\) & & \\
\hline \multicolumn{4}{|l|}{All \(\frac{1}{2}\) watt \(5 \%\) miniature} \\
\hline
\end{tabular}

Capacitors:
\begin{tabular}{ll}
C 1 & \(10 \mu \mathrm{~F} 25 \mathrm{~V}\) electrolytic \\
C 2 & \(100 \mu \mathrm{~F} 16 \mathrm{~V}\) electrolytic \\
C 3 & \(100 \mu \mathrm{~F} 16 \mathrm{~V}\) electrolytic \\
C 4 & \(4,700 \mathrm{pF}\) ceramic \\
C 5 & \(100 \mu \mathrm{~F} 16 \mathrm{~V}\) electrolytic \\
C 6 & \(10 \mu \mathrm{~F} 25 \mathrm{~V}\) electrolytic \\
C 7 & 1000 pF ceramic \\
C 8 & \(64 \mu \mathrm{~F} 40 \mathrm{~V}\) electrolytic \\
C 9 & \(100 \mu \mathrm{~F} 16 \mathrm{~V}\) electrolytic \\
C 10 & 330 pF ceramic \\
C 11 & \(25 \mu \mathrm{~F} 25 \mathrm{~V}\) electrolytic \\
C 12 & \(200 \mu \mathrm{~F} 16 \mathrm{~V}\) electrolytic
\end{tabular}

Transistors:
\begin{tabular}{llll}
Tr1 & AC156 & Tr4 & AC128 \\
Tr2 & AC156 & Tr5 & AC128 \\
Tr3 & AC127 & Tr6 & AC176
\end{tabular}

Miscellaneous:
Th1 Varite Thermistor type VA1077; Veroboard \(2 \frac{1}{2} \times 3 \frac{3}{4} \mathrm{in}, 0.15 \mathrm{in}\). pitch; 3 transistor cooling clips; \(18 \mathrm{~s} . \mathrm{w} . \mathrm{g}\). aluminium (see Fig. 4); VRY \(100 \mathrm{k} \Omega\) potentiometer
can be soldered in place to which trial resistors can be attached by soldering, the voltage being reduced to zero to enable a new value of resistor to be substituted for R17 and then increased while measuring the collector current of Ti5, taking care that it does not reach an excessive amount.

The chief risk to guard against is an open circuit at R17, and the soldered joints at R17 must remain completely reliable, otherwise electrical failure will occur and replacement of the output transistors will become necessary. In each instance the joints should be tested mechanically before gradually turning up the supply voltage. The total current taken by the amplifier under quiescent conditions is about 27 mA .

\title{
h IOOK qI Infra-RED
}

ADAY by the seaside, that's what the Signals Research Development Establishment offered the press on Thursday, July 11th. When material becomes unclassified, the Establishment makes the information available to industry, and one or two firms were there showing some of their products resulting from this.

To describe the whole tour would be impossible, so let's look at some of the more interesting items. Infra-red was the main attraction and to illustrate advancements in this field, S.R.D.E. promptly set about proving that night or day, you can still be watched.

Two types of system were shown-active, and passive. The active system requires a source of infra-red light but the passive type will "see" a scene in almost total darkness. A moonless night gives adequate illumination for the image intensifier devices.

A pair of binoculars had been converted for use as a communications system, as the photograph and block diagram shows. The image is selected by drilling small holes opposite the prisms. One lens system acts as a transmitter and the other as a receiver, thus one can not only see the other "station" but can talk to them once the binoculars are lined up. A range of around 1 kilometre should be possible with modern Gallium Arsenide devices.

Another fascinating unit appeared to be two blackened cocoa tins mounted on a tripod. These contained a small lens system and a sensitive infra-red detector. Its special trick was that it could detect a man walking in front of it some thirty feet away. "It can tell that the man is not the same temperature as the background," explained our guide. It consumes less than 1 watt too and has a range of 100 metres-no false alarms. The resolution accuracy is 1 degree and the sensitive element which does all the magic is called a thermistor bolometer.

In some situations it might be useful to transmit messages from a fixed transmitter to a receiver situated anywhere in a room, with the provision that the messages must not be intercepted outside. This was demonstrated by illuminating a room with invisible infra-red rays which were modulated with the required signal. Anyone in the room with a suitable receiver could pick the signal up. This might offer useful possibilities in place of the inductive loop principle of radiating a signal around the house. The power used in the demonstration was only 3 milliwatts from a Gallium Arsenide device. Note-the human eye has a maximum tolerance of 60 milliwatts in this area of the spectrum, any increase would be dangerous.

The photograph above shows a pair of infra-red binoculars in use. Below. is a photograph and block schematic of the converted binoculars which form ant optical transceiver. The bottom photograph is of a commercial infra-red viewer for use with an infra-red frght source.

AUND

\section*{No. 1 - AMPLIFIERS, TUNERS, TAPE RECORDERS}

WHAT do we mean by Hi-Fi? The term can be taken literally-faithfulness to the original sound-but if we consider just what we are demanding by this over-simplified approach, we may realise that no equipment, however cleverly designed, would satisfy our requirements. It is necessary to consider the conditions under which we are listening to the reproduced sound. A ninety-piece symphony orchestra in the living room would be a trifle overwhelming!

The first thing we must get clear is the matter of acoustics, the characteristics of the human ear, the range of sounds we can expect to hear (and feel!) their intensity, pitch and effect in combination, together with a consideration of the listening room.

Useful guiding principles have been dealt with by Iain Smith (Five Steps to Hi-Fi. Practical Wireless, May-September) and our present brief is to discuss
some of the equipment parameters that limit the highness of the fi we are able to get.

What we mean by hi-fi is the attainment of a subjective replica of the original sound: the equipment must convey the original sound in its true tonal proportions and not add any coloration of its own. It must be capable of delivering sufficient acoustic power to give us a true impression of the original.

The first thing is to take a look at the sound source from the dynamic point of view. What is the frequency range we wish to reproduce, and what sort of sound power has to be handed? Figure 1 and the frequency scale on the chart give some answers to these questions, but in doing so, raise others, connected with the dynamic range of musical sounds, sound effects (note the "natural" sound scales of Fig. 1) and speech.

Although the ear responds to sounds from below

Fig. 1: Equal loudness curves based on measurements by Robinson and Dadson (reproduced by courtesy of Blandford Press from their forthcoming book \(\mathrm{Hi}-\mathrm{Fi}\) in the Home, by John Crabbe).
\(30 \mathrm{c} / \mathrm{s}\) to above \(15 \mathrm{kc} / \mathrm{s}\) (extended to some \(20 \mathrm{kc} / \mathrm{s}\) in healthy youngsters and limited to about \(10 \mathrm{kc} / \mathrm{s}\) when we get a little grey), our ability to interpret the sounds we hear is modified by the loudness of these sounds.

The vast range in loudness and in frequency demands the utmost care in design if our hi-fi equipment is to handle it successfully. For example, a normal orchestra during a loud passage may produce some 70 watts (acoustic) whereas the solo violin in its quiet passage produces perhaps 0.0000038 watts. This is an intensity ratio of 18 million to one. Taking the square root of this, we find we still have a soundpressure ratio of \(4250: 1\).

We hear logarithmically. That is, our ears respond to proportional changes in sound level, not absolute levels. Every time the sound intensity doubles we hear an equal change in loudness; this applies whether we are listening to a whisper and then one twice as loud or comparing the whumps of a doublebarrelled gun. (In a similar way. our sense of pitch follows a logarithmic law, each frequency doubling representing an octave change, very approximately. See chart.)

\section*{Decibels}

Because of this trick of our hearing, it is more convenient, when talking of sound levels, to express ourselves in decibels. These are ratios, not concrete amounts. It is important to grasp this concept before going any further. It is quite wrong to say that a sound of 60 decibels (dB) was heard. The statement

Fig. 2: Comparison of relative intensities of familiar sounds, showing the audibility limit contours. Compare with Fig. 1.
only acquires meaning when we relate the sound to some known standard. Thus, in Fig. 1 the decibel range is related to a definite sound pressure, i.e. \(0 \mathrm{~dB}=0.002\) dynes per centimetre squared. Then, all increases in sound intensity can be compared with this level, and decreases can also be expressed, as minus quantities. This reference level relates to the threshold of human hearing, which, as the contours of Figs. 1 and 2 show us, change with frequency, being most sensitive at about \(3,000 \mathrm{c} / \mathrm{s}\).

Because of this convenient doubling property of decibels, we can now make the 18 million to one ratio easier to handle, this ratio being 72 dB . Although a front-stall concert-goer may expect even a hundred decibel change when listening to, say, Prokofiev's Fifth Symphony, the average dynamic range our hi-fi equipment is expected to handle is around 60 dB . This 72 dB is the ratio of the softest to the loudest sound, and as we see from Fig. 1, may be between

30 and 102 dB , the 30 dB above threshold referring to the ambient and irreducible noise level in the concert hall.

The unit of loudness, which is the same as the decibel above zero at a frequency of \(1,000 \mathrm{c} / \mathrm{s}\), is known as the Phon, and this can be used as a definite unit-but, just to be awkward, the exact relationship between phons and decibels only applies at this frequency, which is often taken as a reference level.
The decibel has a more useful function than simply expressing ratios of sound pressure. It can be used to compare powers, voltages or current. The difference in level between two powers (P 1 and P 2) is given by \(\mathrm{NdB}=10 \log _{10}(\mathrm{P} 2 / \mathrm{P} 1)\). Voltage and current ratios are expressed as \(\mathrm{NdB}=20 \log _{10}\) (V1/V2) or \(20 \log _{10}(11 / 12)\), because \(P=I^{2} R\) or \(V^{2} / R\), and logarithmically, when we square, we multiply the logarithm by 2 . The 10 and the 20 simply indicate that the decibel, used for convenience, is actually a tenth of the unit, the Bel.
No advanced mathematics are needed to remember the decibel relationship. For practical purposes, it is enough to remember a few key ratios, as, for example:
Voltage: \(2: 1=6 \mathrm{~dB} .10: 1=20 \mathrm{~dB}\).
\(100: 1=40 \mathrm{~dB} .1,000: 1=60 \mathrm{~dB}\).
For combinations, we simply add decibel amounts, thus,
\[
\begin{aligned}
20: 1 & =20+6=26 \mathrm{~dB} \text { (i.e., } 10 \times 2: 1) \\
200: 1 & =40+6=46 \mathrm{~dB}(100 \times 2: 1)
\end{aligned}
\]

Having considered the convenience of decibels, we can begin to use them directly in talking about the dynamics of hi-fi. One of these points is directly related to the loudness phenomenon we have already touched upon. At middle and high frequencies we can judge level differences over a wide dynamic range fairly comfortably, but at lower frequencies, especially below about \(100 \mathrm{c} / \mathrm{s}\), our ears are not so sensitive.
At the lower frequencies, the curves are closer together than at mid and high frequencies and quite large loudness changes produce small stimuli. Which is one reason why the bass end of the audible spectrum is lost first when we turn a gain control down. To overcome this, compensated gain controls are sometimes found, which alter the levels of bass and treble ends of the spectrum in some relationship to the characteristic of the human ear. These loudness controls should be approached with care, as should any form of filtering that attempts to reduce system noise electronically, where, in so doing, some of the basic information may be lost. Nevertheless, listening is a compromise between the ideal and what we can afford, and rumble filters, top-cut controls and loudness compensators may be a necessary evil if we cannot afford to engineer them out!

\section*{Stereo}

For various reasons that have to do with the ambience in the concert hall or studio and the relative deadness (or spirited liveliness) of the domestic surroundings, minus the audience and the original
reverberation, much better effect is gained if we listen binaurally. Stereo systems are to be desired, not only on the grounds of realism, but also for unwanted interference reduction and the proper assessment of complicated waveforms.

Complex waveforms should be studied briefly before we can regard the amplifier practically. Our brains identify sounds by the waveform structure and also by a complicated time-conscious business that can be best described as "hearing the attack".

As an example, let us take the readily identifiable thwack on a bass drum, a sound common both to "serious" and "pop" music. The aural effect that enables us to identify it is the time integral of the pressure levels, a function of the product of level and duration, and is contained in the first fraction of a second. After this, we have a reverberant sound that continues to reassure us, as it were, that it was really a bass drum we heard, not a clap of thunder.

The clash of cymbals is another example, the plucked harp and guitar, the percussive sound of the piano are others. These sounds require equipment responsive to the sudden increase in sound level and the decay that follows it. If you tape record a piano arpeggio and then replay it an immediate sense of loss occurs, because the notes come to us without the attack, or as G. A. Briggs describes it, "like a home-made harmonium suffering from anaemia and groaning in agony". He is not far wrong!

All this means that our equipment must have not only adequate power levels and wide and faithful frequency response, but also a capability of reproducing those sudden attacking sounds--the transients. Of the chain of equipment from source to speaker, the amplifier is the link which can be engineered to the closest tolerances. Having got the heart of the matter right, we can then consider the other parts of the chain-what specifications we require our equipment to have, and why.

\section*{Amplifier specifications}
(1) Frequency response. Accuracy of reproduction depends on the range of frequencies which the system can handle, without distortion. We can detect sound level changes of about 1 dB under good conditionsand this needs very careful engineering.

Even a \(\pm 2 \mathrm{~dB}\) specification over the normal frequency range from \(30 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{kc} / \mathrm{s}\) is asking rather a lot. It is possible to keep the variation to within

less than \(\pm 1 \mathrm{~dB}\) over a range 40 to \(15 \mathrm{kc} / \mathrm{s}\), at all levels of output power, but to improve upon this specification costs progressively more as the limits extend and the response gets more "flat".

Although we cannot hear the frequencies above, say \(15 \mathrm{kc} / \mathrm{s}\), there are one or two design considerations that apply. First, for an amplifier with a fair amount of negative feedback (see Fig. 3), the bandwidth should extend at least an octave beyond the audio range to maintain stability. Second, to avoid "ringing" caused by a sharp cut-off at the upper end, the curve must slope away at not more than 6 dB per octave attenuation, and this means an extended overall range. And, thirdly, to reproduce square-wave effectively needs a pass-band of ten times the frequency.
(2) Distortion. Even though the response of an amplifier may be reasonably flat, its handling of the signal can still produce a vague feeling of discomfort. Nothing very tangible, until a comparison is made with a better piece of equipment. This effect is often due to a distortion figure higher than the recommended maximum of \(1 \%\).

Non-linear distortion happens when spurious harmonics are added to the original sound because of faults in the reproducing chain. In the amplifier, this may be caused by biasing inconsistencies, especially in transistorised push-pull output circuits, where these are supplied from a badly regulated power source. In fact, this is so important that the latest DIN recommendations are for distortion factors not to exceed \(1 \%\) at full output from \(40-4,000 \mathrm{c} / \mathrm{s}\) for preamplifiers and from full power down to -20 dB over a power bandwidth of \(40 \mathrm{c} / \mathrm{s}\) to \(12.5 \mathrm{kc} / \mathrm{s}\). This latter recommendation is to test transistorised amplifiers at low signal levels, where distortion can arise.

In practice, distortion figures of well below the \(1 \%\) level are attainable, and the magic figure of "Point One" has for years been a valuable (and justifiable) advertising slogan of a well-known British manufacturer. One per cent overall distortion is just detectable by a discerning listener, and the trained ear can

Fig. 3: Block diagram of typical preamplifier showing the extensive use of feedback in fitters and to achieve stable amplification. Gram and tape filtering and equalisation is often in the source equipment but may be incorporated in the preamplifler.
detect half this amount. \(2 \%\) is plainly audible to the music-lover, and \(4 \%\) becomes intolerable to all but the cloth-eared few. By comparison, the cheap transistor radio may produce as much as \(50 \%\) distortion and this will be tolerated!

There are several quite different sorts of distortion. Second harmonic distortion has been virtually eliminated by the use of push-pull output circuits. Figure 4 shows a basic push-pull circuit, each valve (or halfsection of a single valve) handling an opposite phase of the signal.

When one grid is going positive and the anode current is rising, the other is going negative, with anode current falling. Even-order harmonics tend to cancel out. With correctly applied negative feedback, third-order harmonics will also be greatly reduced, and the push-pull stage, with its greater power handling capacity, is extensively employed as a result.

A refinement for hi-fi applications is the distri-buted-load technique. A tapped output transformer from which the screen grids of a tetrode pair are fed gives a characteristic between the triode and tetrode, getting the best of both worlds. This "ultralinear" design requires less negative feedback, reduces total d.c. variations at high output levels and has a relatively smaller capacitative shunting effect at high frequencies as well as less phase shift. Against this, a special transformer is needed, and the position of the tapping point is critical. See Fig. 4 (b).

Most of the non-linearity and phase-shift leading to distortion originates in the output transformer. Experiments to eliminate this led to several interesting circuits, but it was the advent of transistors that made a high power, high fidelity, push-pull output circuit without transformers a tenable proposition.

Figure 5 (a) shows one channel of a stereo amplifier, where we see a complementary pair of transistors in the driver stage perform the function of phase-
changing, eliminating the input transformer, and where the sharing of the signal by a directly coupled Class B push-pull pair of output transistors drives the loudspeaker directly. Figure 5 (b) shows the signal path through this network, with the phase of the signal at any given moment drawn in as a sinewave.
Intermodulation distortion has a very disturbing effect. It arises from sum and difference frequencies of the original tones being produced because of nonlinearity of amplifier response. When a complicated piece of music is being played, with a large number of required fundamentals and harmonics, the extra beat notes of intermodulation distortion can be quite intolerable. DIN specifications require that intermodulation distortion be assessed separately and must be less than \(3 \%\) maximum when two test signals of \(250 \mathrm{c} / \mathrm{s}\) and \(8 \mathrm{kc} / \mathrm{s}\) are simultaneously applied at an amplitude ratio of 4:1.

From the practical standpoint, there are two identifying features of IMD (Inter-Modulation Distortion) which can be spotted when, for example, a choir accompanied by an organ, has been recorded. The long-term IMD produces a blurring effect as the harmonies become more complex, and the beat-note distortion due to mingling of two fundamentals close together gives a low frequency "blasting" effect, most noticeable with organ music.
The foregoing spec. is quite generous, and most manufacturers of high-fidelity equipment would aim at a figure of \(1 \%\) IMD.
(3) Transient response. Transients are short-term peaks of sound. We have already seen that the attack is important in identifying a sound and aiding stero location. Unless an amplifier has good transient response, the initial \(10-50 \mathrm{~dB}\) increase in a period as short as \(100 \mu\) S will be flattened out, or, worse, will give rise to a "ringing" of circuits and spurious distortion effects.

Fig. 5 (right): Transistor Class \(B\) push-pull transformerless output stage (a); signal paths of push-pull amplifier showing phase reversal effect of complementary push-pull driver pair.

Fig. 4 (below): Basic pushpull circuit (a), basic ultra linear circuit (b).

(b)

Figure 6 shows the simplified response curves taken from four amplifiers with similar overall specifications but different transient response characteristics. A square wave applied to each amplifier produces an output as shown in A, B, C, and D, and the curves resulting from this distorting effect are shown on the graph.

Amplifier A has a slight overshoot due to a small peak at about \(60 \mathrm{kc} / \mathrm{s}\) (well above the audio range), and \(B\) has a larger peak.

Amplifier A might be acceptable, but would possibly be triggered off by switching transients into some instability, especially if loudspeaker loading was poor. Amplifier B would certainly sound harsh, and transients would cause instability. The frequency

10kc/s square wave input
Fig. 6: Four different frequency response curves and the effect on a \(10 \mathrm{kc} / \mathrm{s}\) based square wave of each of the four amplifiers. (Transient response is affected by the overall response curve of the amplifier).
response of C tails off too rapidly at the higher end, although still only about 3 dB down at \(10 \mathrm{kc} / \mathrm{s}\), which some mid-fi makers consider acceptable. An applied square wave would come out something like the peculiar shape below, and the sound from it would be dull and lacking in attack. In a piano arpeggio, the notes would tend to run together instead of being individual and distinct as they should be with D.

Transient response is affected by some tone (and even gain) control circuits, and for this reason testing is done at different levels and frequencies. The effect on the response curve of different tone control circuits can be seen in Fig. 7. The passive type of tone control has the effect of "hingeing" the response about a \(1 \mathrm{kc} / \mathrm{s}\) centre, but with the Baxandall type the boost and cut is initially confined to the ends of the scale.
This is most useful when the lower bass frequencies need boosting without affecting the \(300-500 \mathrm{c} / \mathrm{s}\) region. Where slope filters are fitted--providing topcut fairly steeply to reduce distortion from the source, an ordinary passive tone control may be enough, but a combination of both is better. See Fig. 8.
(4) Signal-to-noise ratio. Noise can consist of hum, rumble (from turntables, etc.), hiss (from tape or preamplifiers) and random crackles, etc. While the power amplifier can be engineered to a very good specification, noise from preamplifiers, where the switching, tone controls and filters will be situated, is still difficult to eliminate.

(a)

DIN specifications for noise level stipulate better than -50 dB for preamplifiers at the nominal input signal amplitude and similarly for power amplifiers up to 20 watt rating, with a 50 dB figure also for a 100 mW output, which is a test for transistorised amplifiers.

The minus 50 dB indicates that the level is measured in decibels below the maximum output of the equipment, this maximum determined by the specified distortion figure. A 50 dB signal-to-noise ratio (which is the same thing stated positively) is generous. Most amplifiers would be better than 60 dB , and a good hi-fi amplifier would have a \(\mathrm{S} / \mathrm{N}\) ratio of 70 to 100 dB , much better than the figures of the source material, whether from tape, disc or radio.

As an example of the expected figures, we quote the requirements of one notable reviewer for hum and noise content of a hi-fi amplifier: these are minimum figures from various sources, each terminated by the appropriate load resistor.
\begin{tabular}{|lcc|}
\hline \multicolumn{1}{|c|}{ Source Input } & Sensitivity & \begin{tabular}{c}
Hum and Noise \\
(rel. 10W)
\end{tabular} \\
Tape Head & \(2 \cdot 5 \mathrm{mV}\) & -48 dB \\
Magnetic pickup & 3 mV & -55 dB \\
Crystal orceramic & 50 mV & -60 dB \\
\begin{tabular}{l}
pickup \\
Radio
\end{tabular} & 200 mV & -65 dB \\
\hline
\end{tabular}

Noise figures may be weighted or unweighted. This means that in testing some account has been taken of the peculiarities of our hearing apparatus. The ear is less tolerant of some kinds of noise than others, and will put up with a lot of mid-frequency components (where the ear is most sensitive). The main noise spectrum of transistor amplifiers lies in the mid-region and a weighted figure gives a better idea of transistor amplifier performance, subjectively.
(5) Power Output. Here we have what may be a stumbling block to many readers, because of the different methods of measurement-and the habit of some manufacturers to give a bald " \(X\)-watts Output" statement, without saying whether this is r.m.s., continuous sinewave, music power or what-have-you. Be wary of such specifications !

Fig. 7: Typical curves showing the effect of (a) passive and (b) active-in this case Baxandall-tone control circuits.

Fig. 8: Passive (a) and B-axandall (b) tone control circuits as used in practice.

DIN specifications recommend at least 10 watts mono and 6 watts each channel stero, with a capability of producing sinewave signals of \(1 \mathrm{kc} / \mathrm{s}\) for a period of 10 minutes. Power output figures are related to a given level of distortion.

In this country, an r.m.s. figure is generally stated, referring to a maximum continuous output power at the specified distortion figure.

Peak power ratings are more generally quoted by American and Japanese manufacturers. We find the term "music power" in use. The IHFM definition states that: "Music power shall mean the greatest single frequency power that can be obtained without exceeding the total rated harmonic distortion when the amplifier is operated under standard test conditions, except that the measurement shall be taken immediately after the sudden application of a signal and during a time interval so short that supply voltages have not changed from their no-signal values."

To begin with, this argues a well-regulated power supply, or an external stabilised power supply. The peak power is obtained by doubling the power rating. Figure 9 shows a half-cycle of a sinewave, with the comparison between peak and r.m.s. values. The effective continuous voltage is 0.707 times peak voltage and continuous power is half \(\left(0.707^{2}\right)\), the peak power. Music power figures may give a false impression, often being some \(30 \%\) above sinewave ratings. Care must be taken when studying these specifications.

Power bandwidth is also important when considering specifications. This relates to the frequency range lying between the extremes where power output falls by 3 dB -or a half. Figure 10 compares the response related to power output of two quite dissimilar amplifiers. Both have a peak power handling capacity of 10 watts, and were both, in fact, sold as such. But whereas A gives a half-power figure at \(15 \mathrm{c} / \mathrm{s}\) and \(30 \mathrm{kc} / \mathrm{s}, \mathrm{B}\) is restricted to \(60 \mathrm{c} / \mathrm{s}\) at the lower end and only \(10 \mathrm{kc} / \mathrm{s}\) at the upper end. Definitely midfi!

Power output at the upper end is important for good transient response and the half-power point should be \(30 \mathrm{kc} / \mathrm{s}\) or above for a good amplifier. At the lower end, half-power at \(40 \mathrm{c} / \mathrm{s}\) is desirable, and at \(20 \mathrm{c} / \mathrm{s}\) even better, although the fundamentals of few instruments go down so far. The piano and contra-bassoon and the lower strings of the harp go below \(40 \mathrm{c} / \mathrm{s}\), but as the second and third harmonics are greater than the fundamental, losses are not too obvious.

But the organ can only be reproduced in the region where its music is "felt" rather than heard, with an amplifier (and accompanying system) whose half-

power rating is \(20 \mathrm{c} / \mathrm{s}\) or below. This is where transformerless amplifiers have a decided advantage.
(6) Stereo separation. Although some authorities maintain that this specification is not so important, because a separation as poor as 10 dB will still give a good stereo impression if the frequency range is wide enough and the transient response is good, the higher the separation the better.

DIN recommendations require crosstalk between stereo channels to be better than -50 dB at \(1 \mathrm{kc} / \mathrm{s}\) and -30 dB between \(250 \mathrm{c} / \mathrm{s}\) and \(10 \mathrm{kc} / \mathrm{s}\). Breakthrough between inputs should be -50 dB or better at \(1 \mathrm{kc} / \mathrm{s}\) and -40 dB or better between \(250 \mathrm{c} / \mathrm{s}\) and \(10 \mathrm{kc} / \mathrm{s}\). Limiting factors are often sources, such as pickup cartridges and the discs themselves.

Tapes can achieve a better preparation, provided the tape recorder is properly adjusted and the preamplifier correctly designed. V.H.F. tuners should achieve a -30 dB figure. For an amplifier of any pretensions to quality, -60 dB should be aimed at.
(7) Sensitivities. Nominal sensitivities should relate to the specified output. When an input goes through a volume control, non-linear distortion should be less than 1 dB when inputs are 12 dB above nominal levels. Magnetic pickup: loading, \(47 \mathrm{k} \Omega\), input sensitivity 5 mV .

Crystal and ceramic cartridges: sensitivity is less, often 50 mV or so, and impedances much higher. But it is possible to attenuate externally, or to apply a ceramic cartridge as a pressure-gradient source.

Radio tuner: many Continental tuners are designed to match a high sensitivity, \(47 \mathrm{k} \Omega-100 \mathrm{k} \Omega\)

Fig. 9 (left): Peak power and r.m.s. values with output volts related to time and one half of the sinewave test signal shown.

Fig. 10 (right): Half-power figures are useful to indicate the power capability of an amplifier, where a peak figure is practically meaningless. Power bandwidth relates response to output power.
input whereas British tuners generally deliver a higher output into \(500 \mathrm{k} \Omega\) or so. But matching presents few problems. Outputs are specified as 1 volt across \(47 \mathrm{k} \Omega\) for matching or a preamplifier to a power amplifier, and for connection to a tape recorder should be \(0 \cdot 1 \mathrm{mV}\) to 2 mV for every \(1 \mathrm{k} \Omega\) of resistance from \(1 \mathrm{k} \Omega\) to \(50 \mathrm{k} \Omega\). There are many practical variations of this and selection should be made with care.

Power output matching is recommended at 4 and \(16 \Omega\), (our normal 3 and \(15 \Omega\) loudspeakers suit these requirements). It should be remembered that transistor amplifiers tend to deliver greater power into a lower impedance, but are easily damaged by shunting with too small a matching impedance-the opposite to a valved amplifier, which dislikes an open-circuit.

Common practice with good quality equipment is to protect against overloads, short-circuits and power failures, but discussion of this is beyond the scope of these notes.

\section*{RADIO TUNERS}

The radio tuner is nowadays an integral part of any hi-fi set-up. Many good programmes are available, and broadcasting quality on v.h.f. is capable of as fine results, provided reception conditions are sufficiently good. The tuner is, basically, a radio set without a power amplifier (and in some cases, without

IOTIIT suppaneli
a "line-of-sight" pattern, about 50 miles or so radius, a network of stations has been (and is still being) built up by the BBC to give full population coverage.
But it is necessary to employ a good aerial to get the best from v.h.f., not only because of signal strength, but to eliminate multipath effects (ghosts) which cause a buzzing background noise or distortion and tuning in some cheaper equipment.
It is also false economy to make do with an inefficient aerial on the grounds of noise suppression. Electrical interference is impulsive in nature, varying the amplitude of the signal. The f.m. signal is transmitted at a constant amplitude and thus we can eliminate impulsive noise by limiting the amplitude of the signal within the tuner, "chopping the peaks off", so to speak. But to get the best limiting effect, it is necessary to drive the tuner as hard as possible. Overloading is protected by automatic gain control circuits, which are a common feature.

Multi-element aerials give greater gain and better a power supply unit also), but, because it is specially designed for the purpose of matching other hi-fi equipment, the standards to which it may be designed and constructed will be much more rigorous.
A.M. and f.m. tuners, and some with combination of a.m./f.m. facilities, are available, but for the purposes of high fidelity reception we should consider f.m. The only reason for having broadcast bands on our tuner would be the need to reproduce stations not available on the v.h.f. band-and as the quality of programme from such stations is often dubious (from a technical point of view !) serious consideration should be given whether it is cheaper to buy a good v.h.f. tuner and a separate cheap radio for the odd a.m. broadcast, or pay a lot more for a combination a.m./f.m. tuner.
With a.m. the bandwidth is limited by factors beyond the broadcaster's control. Broadcast bands are very crowded; interference is rife. Transmissions can fade due to weather conditions and with time of day. Locally generated noise due to electrical apparatus presents the same pattern to the receiver as the modulating signal, and cannot thus be reduced without some curtailing of vital programme information. Highly selective and highly sensitive receivers can be designed, and are on the market at high prices, but these are more attractive to DX listeners than to the hi-fi enthusiast whose prime aim is high quality of sound. Restricted frequency response and high noise level are the two main drawbacks to a.m.

\section*{V.H.F. Band}

There is more room in the v.h.f. band. The frequency range transmitted can be higher and, in fact, \(15 \mathrm{kc} / \mathrm{s}\) is reckoned to be available on many broadcasts, although land-lines between studio and transmitter and between stations limit the upper frequencies somewhat. Because the service range of the higher frequency transmissions extends mainly over

Fig. 11: Block diagram of f.m. tuner with decoder expanded to show operation (see text).
directivity and provide the correct match to the aerial input terminals of the tuner, which may be 300 or \(75 \Omega\), the latter favoured by most British manufacturers. Even a simple H aerial, erected out-of-doors and at an adequate height, is sufficient for most purposes. But although an indoor aerial may appear to give enough signal to drive the tuner, spurious signals can occur as it is "shadowed" by people moving about, or by reflections from internal plumbing, etc.

A loft aerial is a partial solution but housewiring, water-tanks and even the difference in field-strength of the signal shaded by a wet or a dry roof can give rise to reception changes. Height of aerial is a vital factor. Doubling the receiving aerial height is equivalent to multiplying the transmitter power four times !

Preamplifiers can be used to boost the f.m. signal, but there are drawbacks. The preamplifier must be of equal bandwith to the aerial, it must not of itself contribute noise to the system, and it should, for best effect, be mounted as near the aerial as possible, i.e. at the masthead-which raises powering problems.

It cannot contribute to directivity and, if the aerial is picking up noise, will amplify both noise and sig-
nal together. The solution, in all cases, is to capture as good a signal as you can with as good an aerial as you can erect, taking care over its siting.

Matching to the tuner is no difficulty. Normal coaxial cable is self-screening and has a nominal \(75 \Omega\) impedance. Where a tuner only has a \(300 \Omega\) input, a match can be made by connecting the outer braid of coaxial to the tuner chassis and the inner to one of the terminals, leaving the other unconnected. This gives an impedance match of \(1: 4\) and uses the tuner input circuit as a 1:2 transformer.

Three hundred ohm cable (actually 240-300 \(\Omega\) rib-bon-type) is not screened and its installation presents difficulties. It must be kept parallel at all times, should not run alongside guttering, pipes, etc., and should be spaced evenly away from all securing points. Aerial polarisation is horizontal for f.m. transmissions.
a \(19 \mathrm{kc} / \mathrm{s}\) pilot tone) and amplified, doubled and fed to the synchronous detector is also applied to the matrix. This translates back into the original A and B signals of the stereo broadcast for application to the main amplifier.

The important thing to note is that both the \(19 \mathrm{kc} / \mathrm{s}\) pilot tone and the \(38 \mathrm{kc} / \mathrm{s}\) carrier are available at the output from the tuner. This is no problem as far as radio reception via the hi-fi amplifier is required, but becomes a difficulty when tape recorders are part of the link-up. Either or both of these can beat with the tape recorder oscillators, giving rise to spurious notes within the audio spectrum.

Suppressors need to be fitted, usually in the form of notch filters, to eradicate these continuous tones. Many tape recorders in the high quality bracket already have these. Regrettably, not all are as effective as they might be, and as stereo broadcasting

\section*{Stereo}

Stereo broadcasts thoroughly justify the use of f.m. tuners with hi-fi gear, although these are at present limited to part - time broadcasts from only six stations. The BBC is extremely keen on high quality broadcasting, and the stereo network will grow. But although the same frequencies are used, the extra information needed

for stereo reception is conveyed by a suppressed sub-carrier. This, with the pilot tone necessary to operate the decoder, means that a stereo signal has to be some 20 dB stronger than a mono signal to obtain a comparable signal-to-noise ratio. Another point in favour of a good aerial installation.

The important factor in drawing up the specifications for stereo broadcasting was the need for compatibility. As with colour TV transmissions, the new service had to coincide with, rather than supplant the old. Receivers of mono transmissions must be able to pick up the stereo broadcasts in mono and stereo receivers had to accept the mono transmissions still being broadcast. The stereo signals contain all the mono information plus stereo information for the individual channels and a pilot tone to enable the decoder to work.

\section*{Typical Tuner}

Figure 11 shows the block diagram of a stereo tuner, with the decoder section expanded to illustrate its operation. Up to the detector output, it is a normal mono f.m. tuner. From the detector the M and S signals plus the \(19 \mathrm{kc} / \mathrm{s}\) pilot tone are passed to the decoder. The \(M\) signal is the sum of the individual channel signals at the transmitter, and the S signal is the difference between them, with the \(38 \mathrm{kc} / \mathrm{s}\) suppressed so that only the sideband signals are transmitted. All three signals, M, S and pilot tone, modulate the carrier simultaneously.

In the decoder, Filter 1 selects the mono signal and passes it to the matrix. The \(S\) signal is passed via. Filter 2 and is passed to the synchronous detector where the \(38 \mathrm{kc} / \mathrm{s}\) carrier, picked up via Filter 3 (as
increases, we shall find ourselves carrying out suppression experiments on all classes of equipment. Specifications for tuners and tuner-amplifiers take this into account.
It should be remembered that not all f.m. tuners can be converted to stereo simply by the addition of a decoder. Although most foreign-made tuners already have decoders, because they were originally designed for use in countries where f.m. stereo broadcasting has been an accepted thing for many years, in the UK we find that manufacturers have geared production to demand and are only lately speeding up decoder production.
Cost of an additional decoder, including fitting, may put twenty pounds or so on the price of a tuner, and this factor should be considered when choosing. Again, some tuners will only accept the decoder designed by the same makers-unless one happens to be a handy constructor.
DIN recommendations relating to tuner-amplifiers are as follows: The standard is based on an aerial input of 1 mV across \(240 \Omega\) and an a.f. output 6 dB below full volume except for distortion factor measurements.
Frequency range must be at least \(40 \mathrm{c} / \mathrm{s}\) to \(12.5 \mathrm{kc} / \mathrm{s}\) with permissible deviations (relative to \(1 \mathrm{kc} / \mathrm{s}\)) of \(\pm 4 \cdot 5 \mathrm{~dB}\) from 40 to \(50 \mathrm{c} / \mathrm{s}, \pm 3 \mathrm{~dB}\) from \(50 \mathrm{c} / \mathrm{s}\) to \(6 \cdot 3 \mathrm{kc} / \mathrm{s}\) and \(\pm 4 \cdot 5 \mathrm{~dB}\) from 6.3 to \(12 \cdot 5 \mathrm{kc} / \mathrm{s}\).

Channel balance must be not worse than 6 dB from 250 to \(6 \cdot 3 \mathrm{kc} / \mathrm{s}\) and not worse than 9 dB when balance control is fitted giving an adjustment of at least 8 dB .

PLEASE TURN TO PAGE 418

\section*{Don't miss next month's}

\section*{Special quolo lisue}

\section*{FREE! AUDIO REEEREMCE CHART}

Packed with useful reference data on pick-up connections and colour codes-standard plugs and sockets-frequency spectrumtape track and head data-gramophone record standards-metric equivalents.

\section*{EKTRP - 12-PAGE AUDIOPULL-OUTSUPPLEMENT}

What to look for and how to get best results in the audio field, with guidance on Loudspeakers and Enclosures, Pick-ups, Cartridges, Stylii, Playing Decks. Tape Decks, Microphones and a detailed article on arranging and installing hi-fi systems.

PLUS Special Feature
BUILDING A SIMPLE TRANSISTOR GRAM AMPLIFIER

-continued from page
416
Distortion should be less than \(2.5 \%\) at \(1 \mathrm{kc} / \mathrm{s}\) with \(40 \mathrm{kc} / \mathrm{s}\) deviation--when the same signal is applied to each channel-with a power bandwidth of \(40 \mathrm{c} / \mathrm{s}\) to \(12 \cdot 5 \mathrm{kc} / \mathrm{s}\), the output correctly terminated.

Crosstalk: permissible figure is given as 24 dB at \(1 \mathrm{kc} / \mathrm{s}, 18 \mathrm{~dB}\) from \(250 \mathrm{c} / \mathrm{s}\) to \(6.3 \mathrm{kc} / \mathrm{s}\) and 14 dB from 6.3 to \(10 \mathrm{kc} / \mathrm{s}\).

Signal-to-noise ratio (unweighted) relative to 100 mW (mono) and \(2 \times 50 \mathrm{~mW}\) (stereo) from systems up to 20 W output should be better than 40 dB from \(40 \mathrm{c} / \mathrm{s}\) to \(15 \mathrm{kc} / \mathrm{s}\) with input of \(1 \mathrm{kc} / \mathrm{s}\) at \(40 \mathrm{kc} / \mathrm{s}\) deviation initially. Overall noise is given as better than 50 dB for both mono and stereo systems between \(40 \mathrm{c} / \mathrm{s}\) and \(15 \mathrm{kc} / \mathrm{s}\).

Pilot tone \(\mathbf{S} / \mathbf{N}\) ratio, when measured selectively at \(19 \mathrm{kc} / \mathrm{s}\) and \(38 \mathrm{kc} / \mathrm{s}\) should be equal to, or better than 19 dB and 29 dB respectively. This is with the input signal of \(1 \mathrm{kc} / \mathrm{s}\) deviated by \(67.5 \mathrm{kc} / \mathrm{s}\) and a level of 1 mV into \(240 \Omega\).

Fig. 13: (a) short-term flutter on a longer term wow may not be easily measureable by simply reading peak values; (b) pen recording showing the recurrent "pips" in waveform coinciding with mechanical vibrations in the tape transport.

TAPE RECORDERS.
Here we introduce another factor into the hi-fi specifications-mechanical variations. Most readers will be familiar with the terms "Wow" and "Flutter", but a few words on the exact meaning of the terms may help to explain the specifications.
Speed variations take three forms: long-term stability, slow variations of the one to ten cycles per second periodicity and rapid variations that may extend well into the audio range. The effect of longterm speed variation may not be very noticeable, except on exchange of tapes or other methods of direct comparison, as pitch is the only thing affected to any extent, unless the variation is so severe as to be immediately audible.

Slow variations in the form of wow can be very obvious indeed, especially on piano and flute notes, where the speed variation causes pitch wobble of a quite distinctive nature. Our hearing mechanism is sensitive to this kind of change. As little as \(0.15 \%\) is quite evident on piano notes around the midfrequency region. In fact, the ear is a very good judge of wow, and instruments capable of making a comparable assessment are quite expensive pieces of laboratory equipment. The DIN recommendation for a combined wow and flutter content of less than \(0.2 \%\) peak-to-peak would be too generous for most hi-fi enthusiasts.

But much depends on the basic speed of the tape transport. Wow is much worse at slower speeds. High quality recording is generally done nowadays at \(7 \frac{1}{2} \mathrm{in} . / \mathrm{sec}\)., even though much pre-recorded material is available at \(3 \frac{3}{4} \mathrm{in} . / \mathrm{sec}\). A wow and flutter figure of \(0 \cdot 15 \%\) should be regarded as the maximum at \(3 \frac{3}{4} \mathrm{in}\)./ sec. for any sort of quality to be gained.

Flutter is the short-term variation, which can be caused by a number of small discrepancies in the tape transport system and pressure pad arrangement, and shows itself as a harshness much like the sound of intermodulation distortion in the amplifier. The two effects, though measurable separately are more often lumped together as overall speed variations, and, indeed, more than one authority is now doing this and using the blanket term "wobble".

Wobble may be measured as an r.m.s. value-sinewave signals being used for the test-or as a peak-to-peak value, which may be easier to understand, but can be misleading unless stated as such. Peak-to-peak values will be twice the peak value, and r.m.s. values are 0.707 or roughly two-thirds of peak value. It is therefore necessary to know, before buying, whether the wow and flutter figure was made under peak, peak-to-peak or r.m.s. conditions, and at what speed.

Fig. 14: Frequency response curve of amplified tape recorders are specified to fall within the tolerance limits shown

In the DIN specifications, variations between medium and average speeds over 30 seconds are not to exceed \(\pm 1 \%\). Reproduction range of tape equipment should cover the 40 to \(12.5 \mathrm{kc} / \mathrm{s}\) range, with the response lying within the shaded area of Fig. 14. Full amplitude, measured at \(333 \mathrm{c} / \mathrm{s}\) is reached by a cubed distortion factor of \(5 \%\), at peak recording level, and the signal-to-noise ratio, referred to peak recording level should be better than 45 dB .

For stereo machines, track separation should be 60 dB and channel separation 25 dB . Erasure should be 60 dB below peak recording level.

Amplified tape recorders, i.e. decks with preamps, are given additional specifications. These may be summed up as the foregoing, plus:

Stereo crosstalk to be at least 24 dB at \(1 \mathrm{kc} / \mathrm{s}\) and at least 21 dB between 250 and \(10,000 \mathrm{c} / \mathrm{s}\). Signal/noise ratio better than 41 dB (which is remarkably modest).

Output power is as for amplifiers, 10W mono and \(2 \times 6 \mathrm{~W}\) stereo, the power to support a sinewave signal for at least 10 minutes (\(1 \mathrm{kc} / \mathrm{s}\)).

Normál input and output sensitivities and impedances on tape recorders are much as amplifiers, except that a "line" output of 775 mV at \(100 \mathrm{k} \Omega\) is becoming widely used and many variations of diode input between manufacturers-to match units of their own make-have rendered any standardisation impossible.

Ever had trouble locating a particular piece for your project? Ever wasted time thumbing through confusing price lists? Ever been foot-weary and frustrated tramping round the shops?
Sigh no more. Just sink into an armchair and enjoy life with a Home Radio Catalogue!
Pick your parts. Grab your pen. Make for a letter-box. Your chosen items will be with you almost before you can get back to that armchair!

This Catalogue really is a must if you're interested in Radio and Electronics. It has 256 pages, over 7,000 items listed, over 1,300 illustrations. With each catalogue we supply a Bargain List, a Book Mark giving Electronic Abbreviations, an Order Form and an Addressed Envelope. All this for only \(7 / 6\) plus \(3 /-\) post and packing. By the way, every catalogue contains 5 vouchers, each worth 1/-when used as directed, Send the coupon today with

0VER the years a large amount of material has been published in this magazine concerning optical communication systems. All of these systems have been concerned only with short range work, i.e. up to 30 yards or so using small lenses, and the writer decided to see what could be done about transmitting over longer distances. Two types of transmitter were tried: neon bulb and torch bulb. A third type will be tried some time in the near future using infra-red, obtained from a Gallium Arsenide electroluminescent diode, type CAY12. At present this is available from Mullard Ltd., but only through the trade.

\section*{Neon Transmitter}

The circuit chosen for this unit was that published in the April 1967 edition of Practical Wireless and designed by H. L. Mason. This comprised a one valve two stage amplifier using an ECC82 valve. The anode load was a neon bulb plus current limiting resistor. The transmitter was built into a small aluminium case \(4 \times 4 \times 3\) in. high which also housed the power unit. A co-axial socket was mounted on the top with the on-off switch and two wander plug sockets were mounted on the side for the neons. WARNING: High, voltage is present at these sockets.

When the unit was being set up a small transistor multivibrator was used to provide a tone, but when speech was required a crystal microphone was used with a pre-amp. If the quality of the speech is of no concern then a carbon microphone plus battery and transformer could be used in which case the pre-amp would not be needed. The neon is capable of providing high quality sound and has a very good high frequency response. The current taken by the neon is about 2.5 mA with no input, falling to about \(750 \mu \mathrm{~A}\) when fully modulated. The

unit can provide power for up to four neons plus resistors in parallel, but it is difficult to use them all due to the small focal point of any reflector.

The reflectors used in the prototype were approx. 15 in . in diameter and parabolic in shape. In theory a parabolic reflector will produce a parallel beam of light if a point source is placed at the focus. This was far from true in the reflectors used, but even so there was little to be gained from having more than one neon.

The neons were mounted in old discarded ball-pen tubes of the 'Biro' type. The ink tubes and end stops were removed, and the constriction at the end removed with a hack-saw. The neons used, made by MK, had a \(270 \mathrm{k} \Omega\) resistor soldered on to one lead, which was replaced by a \(100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}\) type. There is not much space available in the tube so this could profitably be replaced by two \(47 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}\) types in series. During this operation small pieces of sleeving were slipped on to the wires to insulate them. Two leads are then soldered on and the assembly mounted in the tube. If the unit is operated with no input then the resistor will run a little warm but this is nothing to worry about. The neon(s) were mounted at the focus of the reflector with standard laboratory type clamps and bosses.

\section*{Torch Bulb Transmitter}

This unit used the amplifier from the neon transmitter with the neon replaced by an output transformer. A series resistor was also included to reduce the no signal current to below the limit for the valve. It was not considered worthwhile to change the bias on the valve because the author did not, at first, anticipate using the system for more than test purposes, and it worked well like this anyway. The output transformer was a small low power pentode type which was to hand. Most types should work in this circuit. Here again watch out for high voltages on the primary tags.

The bulb unit was the main beam part of a battery lantern. The connection between the centre pip on the bulb and the contact spring on the torch was broken by inserting a piece of p.v.c. tape, and two wires were soldered, one to each of the connections.

Fig. 1: Three of the receiver circuits tried by the author; (left) photo-voltaic cell, (centre) emitter follower transistor circuit and (right) phototransistor connected to a simple amplifier.

These wires were connected at the other end to the secondary of the transformer. As the lantern was powered by a six volt battery, the input did not fully modulate it. Even so the modulation could be seen, and the extra brightness helped to carry the signal.

The torch system is totally unsuitable for carrying music due to the very bad frequency response of the bulb (caused by the fact that it takes a finite time to heat up and cool down each cycle), but this does not matter where speech is concerned as intelligibility is the main requirement. The lantern gave a good beam which was only about 15 degrees across.

\section*{Reflectors}

The most important link in the chain is the pair of reflectors or lenses used. Reflectors are to be preferred to lenses of the same diameter at the transmitter, as a larger solid angle is covered and thus a larger proportion of the light is collected and aimed at the receiver. There is no reason why a lens should not be used at the receiver, as it is only the area covered that is of importance, and a lens will probably have a better focal point than a reflector. The problem with lenses is that large ones are hard to come by, the best are probably those from old signal lamps. If reflectors are to be used then the best easily obtainable types are WD surplus searchlight reflectors, or those removed from a car headlamp.

Fig. 2: Circuit of the torch bulb transmitter.

\section*{The Receiver}

Several types of receiver were tried: photovoltaic cell connected across the input of an amplifier. This was not very sensitive and was discarded. Emitter follower circuit using a photo-resistive cell as part of the biasing network. This was fairly sensitive but was changed for experiment's sake to a phototransistor itself connected in a simple amplifier circuit. This was not found to be as sensitive as the final circuit chosen which was a battery, resistor, and photoconductive cell in series. When light falls on the cell its resistance decreases causing the current through it, and thus the resistor to increase. Thus the voltage drop across the resistor increases and the input
signal is formed. The cell used was an OC71 transistor with the opaque paint removed, connected by the emitter and collector leads with the base left unconnected. A \(3.3 \mathrm{k} \Omega\) resistor was used with a 4.5 volt battery which passed a few milliamps through the cell, not enough to exceed the rating.

The input signal was fed to a pre-amplifier (Eagle type EM-3) and then to a Heathkit 10 watt amplifier. The battery used in the prototype to power the photo cell was separate from that used for the preamp, but no doubt the same one could be used.
When the system was assembled in the lab. the receiver was completely overloaded, producing distortion. In the case of the neon transmitter acoustic feedback occurred whenever the microphone was connected, even though it was thirty feet away from the loudspeaker. To prevent feedback the gain of the amplifier had to be turned right down. When the torch bulb transmitter was used feedback of the normal sort was avoided. Instead, a low pitched gurgle was produced.

Fig. 3: Final receiver design used by the author.
The system was put into operation across a play-ground-a distance of about 75-80 yards, between a lab. and a workshop. The beam had to pass through two windows en route. When the neon was used it took some time to align the reflectors for optimum performance. This was due to the beam being red, and also spread over a large area of reflector. With the reflectors used it was possible to utilise about \(2 / 3\) rds. of the area at any one time. The only efficient way to increase the power from this transmitter is to use more than one neon, each neon having its own reflector. As it was, plenty of power was available to operate a telephone handset. It was felt that this was the useful limit of the neon as regards distance.

With the bulb connected greater power was available at the receiver and the distance could be increased to 300 feet or more. It was found much easier to line up the receiver due to the beam being concentrated from a point source. To achieve the greatest distances the per cent modulation of the beam should be increased.

\section*{ADJUSTING AND SERVICING COLOUR RECEIVERS \\ -start of a new series in the OCTOBER issue of PRACTICAL TELEVISION}

On sale September 20th Also
COLOUR BROADCASTING

\section*{PRACTICAL ELECTRONICS}

Free piece of printed circuit board-start of new constructional seriesin the
OCTOBER issue on sale NOW

\section*{Radio Eireann}

In the June 1968 issue of Practical Wireless in "Your Questions Answered", a Mr. Browne of London, N.W.1, requested information \(r e\) better reception of Radio Eireann on 530 metres.

As I am a regular listener of this station I feel that I can help Mr. Browne with his problem. Briefly, the effective improvement I use is to resonate a short indoor aerial to the desired frequency by means of a series inserted coil wound on a ferrite rod and placed beside the receiver, effecting coupling to the receive aerial.-D. Walsh (13 Sixth Avenue, Chelmsford, Essex).

\section*{P.O.P.}

Reader's letter in issue No. 738, Postal Order Problem, J. Martin, Halifax. I had a postal order returned to me, so here is the procedure I carried out. I took the P.O. and the counterfoil to the office of issue. Postal order signed in the usual manner in the presence of the postmaster, money refunded. If unable to contact Post Office of issue, contact the Head Postmaster for instructions.-J. Wright (Co. Durham).

\section*{Things that go Bump}

Re Mr. S. Pinder's letter "Your Questions Answered" headed Audio Thump.

I feel that his trouble does not lie in the power supply, as he suggested, but (assuming his amplifier has a transformerless output stage) in the loudspeaker decoupling capacitor.

The remedy in this case is to connect two large capacitors of similar value across the power supply, and to connect the speaker to the centre tap. This simple modification provides an artificial a.c. centre-tap across the supply lines, and has completely cured a similar problem in my own ampli-fiers.-G. Fecitt (Lancs.).
I have read this month's "Questions Answered" and I wish to offer a few words on the Audio Thump from S. Pinder.
This thump, has, I suppose, nothing whatever to do with the
power supply in any way. Almost without exception transistor power amplifiers have this thump which occurs only when switched on after being off for some time. Most amplifiers are designed for class B and as such require a large capacitor to supply current of an opposite direction to the transistor that is on and discharges through the speaker. This capacitor has to fill up-this is done via the speaker hence the displacement, thump. when the supply is switched on. It does, however, fill up to half the supply voltage in a fraction of a second and should cause no concern.

For peace of mind this thump can be avoided by placing a similar value capacitor in position from the mid-point to the opposite supply side.-R. King (Beds.).

\section*{Solid State. That letter}

I would like to take the opportunity to answer the query of Mr. W. J. Tomlinson, in the July edition of Practical Wireless, concerning the "solid state".
This term is of a somewhat nebulous nature to define. Strictly speaking, it applies to the group of substances known as solids, i.e., those substances which possess both definite volume and definite shape; in contrast to these are the substances known as fluids, which depend on their surroundings for their shape.

The study of substances in the solid state, a branch of physics, deals with the structure and properties of solids, and may be divided into three approximate groups. Firstly, the structure of solids, i.e., crystallography, the structure of metals, etc.; secondly, the natural phenomena exhibited by solids, i.e., specific heats, thermal and electrical conductivity, intrinsic semiconductivity, magnetic and dielectric properties, etc., and finally, the defects of solids, such as impurity semiconductivity, lattice defects, etc.
From this rather broad division, it will be seen that included are the substances known as semiconductors. It is to this small group of substances that the term "solid state" has been widely, though incorrectly, applied.

Thus, when Mr. Tomlinson notices the words "solid state" on a piece of electronic equipment, he will now realise this. I hope that these few remarks may prove useful in some way to the people concerned, if not to others.-C. J. Gibbins, B.Sc. (Liverpool).

\section*{S.W.L. Cards}

I have just received a most disappointing B.C. verification card from the other side of the world, the result of many nights of patient listening

On the front, there is a photograph of a landscape which could just as well have been in Scotland, New Zealand or the USSR. The station name, along with the usual verification details is given on the back. This is only one of many I have received. Most S.W.L.s like to display their "catches" on the wall next to the receiver, and therefore prefer the station name, along with a simple design and/or station information to be shown on the front.
B.C. stations should bear in mind that the S.W.L. is primarily interested in the station and not in views of their country, which can be found in most school geography books anyway.-R. Mitchell (Glasgow).

\section*{Son of Instant Silence}

Beginning to tire of large super sets and such like, I decided to return to something very simple, as the weather was hot. So I disinterred an old Tungstalite detector and made a crystal set. Result: utter and complete silence. So I then made a one diode and one transistor set. Result: the same only more so. This made me somewhat wild (reasonable-Ed.), so I set to and made up a two diode and two transistor set from a reliable "expert" design. I tried this out on a long garden aerial. Result: an intensified silence, far more so than the other silences had been.
So it's now to hell with transistors with me. I'm going to carry on with a sturdy little two valve set right away. You can always rely on a jolly good little stout two valver. - A. Trowbridge (Middlesex).

BATTERY RECORD DECKS
2 speed model \(331 / 3\) and 45 r.p.m. 9v. operated. Complete with pick-tp itted orystal cartridae. Plays \(7,10,12 \mathrm{in}\)
 4 speed Model 9 yolt. \(10 /-\) extra.
THE ABOVE GRANADA AMPLIFIER AND PLAYER DECK POST FREE IF PURCHASED TOGETHER

\section*{MAINS TRANSFORMERS}
\(250-0-25080 \mathrm{~mA} .6 \cdot 3\) v. 3.5 a .6 .3 v. 1 a , or 5 v .2 a . \(30 /-\)
 MINIATURE 200 v. \(20 \mathrm{~mA}, 6.3\) v.
MIDGET 2R0 \(\forall 45 \mathrm{~mA}, 6.3\) v. 2 a
HEATER TRANB. 6.3 v. 14 a., \(8 / 6 ; 6.3\) \%. 4 a .
Dltto tapped sec. 1.4 v. \(2,3,4,5,6.3 \mathrm{v} .1 \frac{1}{2} \mathrm{mp}\). \(6,8,9.10,12,15,18,24\), and 30 ₹. at 2 a \(6,8,9.10,12,15,18,24\), and 30 . at 2 a
1 amp., \(6,8,10,12,16,18,20,24,30,36,4\) 3 amp., \(0,12 v\). and \(0-18 \mathrm{v} . \ldots, \ldots, 30,40,48,60,35 /-\) AUTO TRANSFORMERS \(\quad 0-115-230\) จ. Input/Outpat
\(60 \mathrm{~W} .18 / 6 ; 150 \mathrm{w} .30 /-; 500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .175 /-\).
\[
\text { VEROBOARD } 0.15 \text { MATRIX }
\]
\(2 \frac{1}{2} \times 5 \mathrm{in}\). \(3 / 8\). \(2 \frac{1}{2} \times 3\) in. \(5 / 2.35 \times 3 \mathrm{in} .3 / 8\)
EDGE CONNECTORS 16 Way \(5 /-; 24\) way \(7 / 6\).
PlNS 38 per packet 3/4. FACE CUTTERS \(7 / 6\). S.R.B.P. Board \(0 \cdot 15\) MATRIX 2 inin. wide 6d. per 1 in. 3 in BLANK ALUMINIUM CHASSIS. 18 s.w.g. \(2 \ddagger\) in sides \(7 \times 4 \mathrm{in} ., 5 / 6 ; 9 \times 7 \mathrm{in}, 6 / 6 ; 11 \times 31 \mathrm{n} . .8 / 6 ; 11 \times 7 \mathrm{in}\). \(7 / 6\);
 ALUMINIUM PANELS 18 s.w.g. \(12 \times 12 \mathrm{in}\). \(8 / 6 ; 14 \times 9 \mathrm{in}\).
\(6 / 6 ; 12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in} .3 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6 \times 4 \mathrm{in} ., 1 / 6\).

\section*{O MAX CHASSIS CUTTER}

Complete: a die, a punoh, an Allen sorew and key

BARGAIN STEREO PARCEL
E.A.R. STEREO PLA YER CABINET suitable for B.S.R.
Player Deeks with \(4+4\) STEREO AMPLIFIER aud TWO 0 in. LOUDSPEAKERS BULLT INTO f13196 CABINET AND LID. Post 10/6. \(\mathbf{f 1 3} \mathbf{3} 19.6\)

\(2 / 350 \mathrm{~V}\)
\(4 / 350 \mathrm{~V}\)
\(4 / 350 \mathrm{~V}\)
\(8 / 450 \mathrm{~V}\)
\(16 / 450 \mathrm{~V}\)
\(16 / 450 \mathrm{~V}\)
\(32 / 450 \mathrm{~V}\)
\(25 / 25 \mathrm{~V}\)
\(50 / 50 \mathrm{~V}\)
\(\begin{array}{lll}2 / 3 & 100 / 25 V \\ 2 / 3 & 250 / 25 \mathrm{~V}\end{array}\)
\(2 / 3\)
\(2 / 3\)
\(3 /-\)
\(3 / 8\)
\(1 / 8\)
 SUB-MIN. ELECTROLYTICS. 1, 2, 4, 5, 8, 18, 25. 30. 50,100 \(250 \mathrm{mF} 15 \mathrm{~V} 2 /-500,100 \mathrm{mF} 12,3 / 8 ; 2000 \mathrm{mF} 25 \mathrm{~V} 7 /-\) CERAMIC.

PAPER TUBULARS
\(350 \mathrm{~V}-0-19 \mathrm{~d} ; 0.5 \mathrm{R} / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3 /-\)
\(500 \mathrm{~V}-0.001\) - \(0.059 \mathrm{~d} 0.11 /-0.251 / 6.0 .5\)
\(1.000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 8 ; 0.47,0.1,2 / 6\) SILVER MICA Close tolerance \(1 \% .5-500 \mathrm{pF} 1 /-580-2.2200 \mathrm{pF}\) \(2 /-; 2,700-5,600 \mathrm{pF} 3 / 6 ; 6.800 \mathrm{pF} 0.01\), mid \(6 /-\); each. TWIN GANG. " \(0-0\) " \(208 \mathrm{pF}+176 \mathrm{pF}\). \(10 / 6\); 385pF. minial lure \(10 /-; 500 \mathrm{pF}\) standard with trimmers. \(9 / 8 ; 500 \mathrm{pF}\) midget less trimmers, \(76 ; 500 \mathrm{pF}\) slow motion. standard \(9 /-\) small 3-gang 500pr \(18 / 9\). Single \(0^{\prime \prime} 365 \mathrm{pF}\) 7/6. Twin \(10 /-\) SHORT WAVE. Single \(10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}\) \(160 \mathrm{pF}, 5 / 6\) each. Can be ganged. Couplers \(\theta \mathrm{d}\) each.
TUNING. Solid dielectric. \(100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 5 /\) TRIMMERS. Compression ceramio \(30,50,5 /-\) each \(100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}\). \(1 / 8.1000 \mathrm{pF}, 2 / 6\).

250V RECTIFIERS. Selenium \(\frac{1}{8}\) wave \(100 \mathrm{~mA} 5 /-\) - BY100 10/-CONTACT COOLED \(\frac{1}{2}\) wave \(60 \mathrm{~mA} 7 / 8 ; 85 \mathrm{~mA} 9 / 6\). Full wave \(75 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 19 / \mathrm{B}\); TV rects. Irom \(10 /-\)
RESISTORS. Preferred values. 10 ohms to 10 meg .
 Ditto \(5 \%\). Preferred values 10 ohms to 22 mes., 9 d .
\(\left.\begin{array}{r}5 \text { watt } \\ 10 \text { watt }\end{array}\right\} \quad\) WIRE-WOUND RESISTORS 15 watt \(10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 88 \mathrm{~K}, 10 \mathrm{~W}\).
FULL WAVE BRIDGE CHARGER RECTIFIERS: 6 or 12 V . outputs. 1i amp. \(8 / 9 ; 2 a ., 11 / 3 ; 4 \mathrm{a} ., 17 / 6\).
CHARGER TRANSFORMERS, P, \& P, \(5 /-\) Input \(200 / 250 \mathrm{v}\). for 6 or \(12 \mathrm{v} ., 1\) it amps., \(17 / 8 ; 2\) amps., 21/-; 4 amps., \(30 /-\) WIRE-WOUND 3-WATT WIRE-WOUND 4-WATT POTS. T.V. Type. Values STANDARD SIZE POTS. \(\begin{array}{ll}10 \text { ohms to } 30 \mathrm{~K}, \\ \text { Carbon } 30 \mathrm{~K} \text { to } 2 \mathrm{meg} . & 4 / 6 \quad \mathrm{LONG} \text { SPINDLE } \\ 500 \mathrm{MS} \text { to } 100 \mathrm{~K} . & 7 / 6\end{array}\) VALVE HOLDERS, MOULDED 8d.; CERAMIC 1/- EACH. NEW MULLARD TRANSISTORS 6/- each 0C71, OC72, OC81, OC44, OC45, OC177, OC170. AF117. TT45 P TT45. Push Pull Drive, 8:1 CT, \(6 /-\). TT46 Outpat, CT8:1
TT49. Interstake \(20: 1, ~ 8 /=;\) TT52 Output 3 ohms \(4 \cdot 5: 1\), TT49. Interstage \(20: 1,8 /=\); TT52 Output 3 ohms \(, 4 \cdot 5: 1,6 /-\) TRANSISTOR MAINS POWER PACK. FAMOUS MAKE FULLY SMOOTHED. FULL WAVE CIRCUIT \(49 / 6\) 8 Volt 500 mA Size \(5 \times 31 \times 2 \mathrm{in} \times 1 \% \times 11 \mathrm{in} .9\) volt \(10 / 6\).

WEYRAD P50-TRANSISTOR COILS

 \begin{tabular}{ll|ll}
I.F. P50/2CC 470 ko/s. & \(5 / 4\) & \(\begin{array}{l}\text { Printed Circuit. PCA1. } \\
\text { J.B. Tuning Gang }\end{array}\) & \(10 / 6\)
\end{tabular} 3rd I.F. P50/3cC...... 6/- Weyrad Booklet 21 Telescopio Chrome Aerials 6 in . extends to 23 in . \(8 /\)
VOLUME CONTROLS 80 ohm CDAX \(8^{D}\) y. Long spindles. Midket Size
5 K . ohms to 2 Meg. LOG or
SEMI-AIR SPACED

COAXIAL PLUG \(1 / 3\). PANEL SOCKETS \(1 / 3\). LINE SOCKETS 2/- OUTLET BOXES. SURFACE OR FLUSH 4/6. BALANCED TWIN FEEDERS \(1 /\) - yd. 80 or 300 ohms . CAR AERIALPLUGS1/6;SOCKETS1/8;LINE SOCEETS2/JACK SOCKETS Std. oper-circuit \(2 / 6\), closed circuit \(4 / 6\) Chrome Lead Sooket 7/6. DIN 3-pin 1/6, 5-pin 2/-; Lead 3/6 Phono Plugs \(1 /-\) Socket \(1 /-\) JACK PLUGS Std. Chrome \(3 /-\) WAVE-CHANGE SWIN \(3-\) pin \(3 / 6 ; 5-\) pin \(5 /-\)

NG SPINDLES
2 p. 2-way, or 2 p .6 -way, or 3 p. 4 -way \(4 / 6\) each.
 4 p. 3-wвy, 6 p. 2 -way. 1 wafer \(12 /-, 2\) wafer \(17 /-3\) wafer \(22 /\) TOGGLE SWITCHE8, sp. \(2 / 6 ; \mathrm{sp} . \mathrm{dt} .3 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp} . \mathrm{dt} .4 / 6\)

 BAKER "GROUP SOUND" SPEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50'

ALL "BAKER SPEAKERS" IN STOCK
E.M.1. Cone Tweeter 3 in. square, \(3-20 \mathrm{ke} / \mathrm{s}\). \(10 \mathrm{~W} 17 / 6\) Quality Horn Tweeters \(2-18 \mathrm{ko} / \mathrm{s}\). 10 W 29/6. Crossover \(18 / 6\) \(15 / 6\) each; \(8 \mathrm{in} 22 / 6 ; 6 j\) in 18/6;10in 30/-; 12in. Double oon
 E.M.I. Double Cone 13 i \(\times 8\) in., 3 or 15 ohm models, \(45 /\)
 \(15 \mathrm{ohm}, 10 \times 2 \mathrm{in}, 75 \times 4 \mathrm{in}\), 7 in SPEAKER FRET Tygan various colours, 52in. wide, from 10/- It; 28 in . Wide from \(5 /-\mathrm{tt}\) SAMPLES S.A.E
EXPANDED METAL Gold or Silver \(12 \times 12 \mathrm{in}\)., \(8 /-\).

\section*{ALL PURPOSE HEADPHONES}
H.R. HEADPHONES 2000 ohms General Purpos
H.R. HEADPHONES 2000 ohms Supar Sonsitiv DE LUXE PADDED STEREO PHONES 8 ohms

\section*{MINETTE}

AMPLIFIER
For Hi-Fi Reoord Players A.C. Mains Transformer. High. \(\begin{aligned} & \text { Valves ECL82, }\end{aligned}\)

tive leedbaok. Quality output 3 ohm matohlng. Bargain off \(\begin{aligned} & \text { complete with engraved control panel, valves, knobs, } \\ & \text { volumeand tone controls, wired and tested. Post } 5 / 6\end{aligned} \mathbf{7 9} / 6\)
 SANGAMO 3 inch SCALE METERS
Varioug oalibrations/movements, 100 Mioroamp;
1 Milliamp; \(50-0-50\) Mioroamp, ete. S.A. E. Iorlist.

 Ohms 0 to 6 meg. 50 Miorosmps (Full list Meters S.A.E.)

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Craam plastic cabinet. 201s. lead and adaptors. For any radio, intercom, tape reoorder, eto. 3 to \(15 \mathrm{ohms}\). PRICE 30/-
Size: \(7 \pm \times 54 \times 3\) in.

\section*{COILS \& TRANSFORMERS FOR CONSTRUCTORS}

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values, details of which are given in the latest edition of the Constructors' Booklet priced at 2/-.
\begin{tabular}{|c|c|c|c|c|}
\hline Oscillator Coil & P50/1AC (For OC45) & P50/1AC & (For AF117) & 5/4 \\
\hline 1st I.F. Transformer & & P51/1 & (For AF117) & 5/7 \\
\hline 2nd I.F. Transformer. &P50/2CC (For OC45) & P51/2 & (For AF117) & 5/7 \\
\hline 3rd I.F. Transformer & & P50/3V & (For AF117) &6/- \\
\hline & Rod AerialR2W & & 12/6 & \\
\hline & Driver TransformerLFDT4/ & \(1 . . .\). & 9/6 & \\
\hline & Output Transformer.....................OPT1 & & 10/6 & \\
\hline & Printed Circuit...............................PCA1 & & 9/6 & \\
\hline
\end{tabular}

\section*{I.F. TRANSFORMERS \& COILS FOR VALVE CIRCUITS}

Production of Tuning Coils (Type "H") and I.F. Transformers is being continued and details of these and our other components are given in an illustrated folder which will be forwarded on request with 4d. postage please.

\title{
WEYRAD (ELECTRONICS) LIMITED
}

SCHOOL STREET, WEYMOUTH, DORSET
H.A.C. \begin{tabular}{c}
short.wave \\
kits \\
\hline
\end{tabular}

WORLD-WIDE RECEPTION

Famons for over 30 yeara for Short-Wave Equigment of quality, "H.A.C." were the origual auppliers of short-Wave Receiver Kits for the amateur constructor. Over 10,000 satisfled customers-including Tecbnical Colleges, Hospitals, Public Schools, R.A.F., Army, Hame, etc.

IMPROVED 1968 RANGE
One-valve mode1 "DX", complete kit-price 56/6 (Postage and packing \(3 / 6\))
Customer writes:-'Definitely the best one-valve A. W. Kit svailable at any price. Americs and kit containa all genulne short.wave components, drilled chassis, valve, accessorles and full instructions. Ready to assemble, and of course, as all our products-sully guaranteed. Full range of other 8.W. Kits still avallable, Including the famous model "K" (recommended by radto clubs). All orders despatched by retura. (Mail order only.) Send now for a descriptlve catalogue, order form.
"'H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

\section*{Also in THE NEW 'PICTURE BOOK' way of learning}
(SEE PAGE 378)
Essential facts are explained using the modern visual/text technique.
BASIC ELECTRONJC CIRCUITS
. . 38/-
BASIC INDUSTRIAL ELECTRICITY .. 38/-
BASIC SYNCHROS \&
SERVOMECHANISMS 38/BASIC RADAR 17/-
BASIC TELEVISION Pt. 1 22/-
Tick set required. All prices include post. From the Post Bag:
/find the data as written very easy to follow due to the clear and concise presentation.
A.S. Southgate

I have found these books helpful, most enlightening and pleasing, to work through,
J.B. Welling

Ifind these books a most excellent way of learning and at the price tremendous value. J.S. Oxford

Maney returned if books not suitable for your requirements.
SEND NOW TO:
SELRAY BOOK COMPANY
60 HAYES HILL
HAYES
BROMLEY BR2 7HP

\section*{BBC • ITV AERIALS}

BBC (Rand 1). Tele-
scopic loft, \(25 /-\) External
 S/D. \(30 /-{ }^{1} \mathrm{H}^{\prime}\) " 22.15 .0 . ITV (Rand 3). 3 element loft array, 30/-, 5 element \(40 /-7\) element. 50/-. Wall mounting. 3 element, 47/6. 5 element, ITV: Loft \(1+3.40 /-; 1+5\).
50/-; \(1+7.160 /-\) Wall mounting \(1+3\), \(57 / 6 ; 1+5\);
\(67 / 6 ;\) Chimney \(1+3\). \(67 / 6\); \(1+5,75 /\) VHF transistor pre-
amps, 75/ .
 AERIALS \(1+3+9,70 /-\). \(1+5+9,80 /-\).
\(1+5+14,80 /-1+7+14,100 /\). Loft mounting \(1+5+14,90 /-1+7+14,100 /\)-. Loft mounting only. Spectal leaflet avallable. F-M. (Band 2). Loft S/D, \(15 /-{ }^{\circ}\) " \(\mathrm{H}^{\prime}\) ', \(32 / 6\). Co-ax. cable Bal. External units avallable. Outlet boxes. 5/-. Diplexer Crossover Boxes. 13/6. C.W.O. or C.O.D. P. \& P. 5/-. Send 6d. stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, Now Addington Surrey (CRO-OJB)
LODGE HILL 2266

> The author discusses a practical approach to a means of making a "standard" v.h.f. radio cover other segments of v.h.f. such as the aireraft and amateur bands.

FIOR quite a number of years now, requests, from Practical Wireless readers have appeared in these columns asking for various types of v.h.f. receivers covering frequencies outside the standard Band II allocation (\(88-108 \mathrm{Mc} / \mathrm{s}\)). Many asked for a fully tuneable superhet type of receiver with a band coverage of say \(60-170 \mathrm{Mc} / \mathrm{s}\), and although this is possible produces many design headaches as far as the switching of the signal frequency circuits is concerned. An admirable solution would be to utilise some form of turret tuner to switch the aerial, mixer and oscillator tuned circuits and feed the output into a standard \(10.7 \mathrm{Mc} / \mathrm{s}\) i.f./a.f. amplifier. Attempts were made to obtain v.h.f. coverage with a standard television receiver by altering the inductances of the biscuit tuning coils, employed in the turret tuner, and results obtained have been quite resonable only to be spoilt by the extremely wide sound channel i.f. bandwidth which can be up to \(200 \mathrm{kc} / \mathrm{s}\) wide. Consequently when tuning over a particular band of frequencies it was possible to receive two, or sometimes even three, stations at the same time at one particular frequency setting. For the reason stated above this approach was abandoned and other ideas were looked for.

\section*{FRESH APPROACH}

Since the introduction, by the BBC, of v.h.f. local radio stations the v.h.f. Band II has been introduced to many more transistor portables and there has been quite a drop in the price of such items. On acquiring one of these sets, having medium wave, long wave and v.h.f./f.m. coverage, ideas on how to

\section*{Capacitor \(=-\mathrm{O}\)
terminals -O}

Fig. 1 (above): Method of obtaining a smalf capacitive effect by twisting two insulated wires together.

Fig. 2 (below): Alternative trimmer layouts discussed in the text.

(a)

(b)
modify the set for other v.h.f. frequencies were sought after. The standard v.h.f. coverage was 88\(108 \mathrm{Mc} / \mathrm{s}\) and it was soon realised that by the addition of suitable values of capacity, wired in parallel with the aerial and oscillator tuning capacitors, the tuning could be brought down to cover the \(80 \mathrm{Mc} / \mathrm{s}\) commercial band. The first thought was to utilise small trimmers, having a maximum capacity of about \(20-30 \mathrm{pF}\), but the set was so compact and neatly built that there was not enough space for their inclusion.

\section*{WIRE CAPACITOR}

A well known method of obtaining small values of capacity is by twisting together two lengths of insulated wire, the basic idea being shown in Fig. 1. The wire used can be standard insulated solid core tinned copper wire, adjustment of the capacity value being achieved by altering the length of the twisted wires. Two of these capacitors were prepared, each having a length of about 8 inches, and wired across the appropriate aerial and oscillator tuning capacitors. In order to discover which terminals on the tuning capacitor to use, the following procedure should be carried out. Tune to the local Radio 2 station (about \(90 \mathrm{Mc} / \mathrm{s}\) on the tuning dial) and, in turn, adjust each small trimmer screw on the back of the tuning capacitor. Two of these trimmers will control the v.h.f. coverage and the remaining two the m.w./l.w. coverage. If no difference is noted in the Radio 2 signal, on adjustment of a particular trimmer, then the trimmer should be returned to its original position. If, however, the signal decreases slowly in strength then this will be the v.h.f. aerial trimmer, and should be noted as such. If, on the other hand, the signal disappears completely on turning a particular trimmer only fractionally, then this will be the v.h.f. oscillator trimmer.

\section*{TRIMMER LAYOUTS}

Figure 2a shows the four trimmers as mounted on the tuning capacitor and the appropriate terminals to use. Figure 2 b shows another type of tuner layout very often used. If Tcl is found to be the aerial trimmer then the capacitor should be wired across terminals 1 and 2. Similarly, if Tc4 was found to be the v.h.f. oscillator trimmer, then the remaining capacitor should be wired between terminals 2 and 3. The oscillator capacitor was next cut down to

\section*{THE BROADCAST BANDS}

WELL here we are in the autumn/spring transmission period which started on Sept. 1 and finishes on Nov. 3. During this period the conditions on 25 and \(21 \mathrm{Mc} / \mathrm{s}\) provide excellent DX during daylight and early evening hours, with again good signals from the Americas all hours of the day. So now here are the propagation conditions for the main circuits in the United Kingdom.

South Africa: 0800-1400 25, 21 and \(17 \mathrm{Mc} / \mathrm{s}\); 1400\(160025,21,17\) and \(15 \mathrm{Mc} / \mathrm{s} ; 1600-180025,21,17,15,11\) and \(9 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17,15,11,9,7\) and \(6 \mathrm{Mc} / \mathrm{s}\); \(2000-240017,15,11,9,7,6\) and \(5 \mathrm{Mc} / \mathrm{s} ; 2400-020015\), \(11,9,7,6\) and \(5 \mathrm{Mc} / \mathrm{s} ; 0200-040011,9,7\) and \(6 \mathrm{Mc} / \mathrm{s}\); 0400-0600 15, 11, 9 and \(7 \mathrm{Mc} / \mathrm{s} ; 0600-080021,17\) and \(15 \mathrm{Mc} / \mathrm{s}\).

East Africa: 0800-1400 25, 21, 17 and \(15 \mathrm{Mc} / \mathrm{s}\); \(1400-160025,21,17,15\) and \(11 \mathrm{Mc} / \mathrm{s} ; 1600-180025\), \(21,17,15,11\) and \(9 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17,15,11,9,7\) and \(6 \mathrm{Mc} / \mathrm{s} ; 2000-220017,15,11,9,7,6\) and \(5 \mathrm{Mc} / \mathrm{s}\); \(2200-240015,11,9,7,6\) and \(5 \mathrm{Mc} / \mathrm{s} ; 2400-020011,9,7\), 6 and \(5 \mathrm{Mc} / \mathrm{s} ; 0200-0400 \mathrm{11}, 9\) and \(7 \mathrm{Mc} / \mathrm{s} ; 0400-0600\) 15,11 and \(9 \mathrm{Mc} / \mathrm{s} ; 0600-080025,21,17,15\) and \(11 \mathrm{Mc} / \mathrm{s}\).

South Asia: 0800-1200 25, 21, 17 and \(15 \mathrm{Mc} / \mathrm{s} ; 1200-\) \(140025,21,17,15\) and \(11 \mathrm{Mc} / \mathrm{s} ; 1400-160021,17,15,11\), 9 and \(7 \mathrm{Mc} / \mathrm{s} ; 1600-180017,15,11,9,7,6,5\) and \(4 \mathrm{Mc} / \mathrm{s}\); 1800-2000 15, 11, 9, 7, 6, 5 and \(4 \mathrm{Mc} / \mathrm{s} ; 2000-240011\), \(9,7,6,5\) and \(4 \mathrm{Mc} / \mathrm{s} ; 2400-02009,7,6,5\) and \(4 \mathrm{Mc} / \mathrm{s}\) : \(0200-040011,9,7\) and \(6 \mathrm{Mc} / \mathrm{s} ; 0400-060015,11\) and \(9 \mathrm{Mc} / \mathrm{s}, 0600-080021,17,15\) and \(11 \mathrm{Mc} / \mathrm{s}\).

North East Asia: 0800-1200 21, 17 and \(15 \mathrm{Mc} / \mathrm{s}\); 1200-1400 17, 15 and \(11 \mathrm{Mc} / \mathrm{s} ; 1400-160015\) and \(11 \mathrm{Mc} / \mathrm{s}\); \(1600-2200 \quad 11\) and \(9 \mathrm{Mc} / \mathrm{s} ; 2200-2400 \quad 11 \mathrm{Mc} / \mathrm{s}\) only; 2400-0400 circuit closed; 0400-0600 15 and \(11 \mathrm{Mc} / \mathrm{s}\); \(0600-080017\) and \(15 \mathrm{Mc} / \mathrm{s}\).

Australia via Asia: 0800-1000 25 and \(21 \mathrm{Mc} / \mathrm{s} ; 1000-\) 120021 and \(17 \mathrm{Mc} / \mathrm{s} ; 1200-140017\) and \(15 \mathrm{Mc} / \mathrm{s} ; 1400-\) 160017,15 and \(11 \mathrm{Mc} / \mathrm{s} ; 1600-1800 \mathrm{l} 5,11,9\) and \(7 \mathrm{Mc} / \mathrm{s}\); \(1800-200011,9,7\) and \(6 \mathrm{Mc} / \mathrm{s} ; 2000-220011,9\) and \(7 \mathrm{Mc} / \mathrm{s} ; 2200-240011 \mathrm{Mc} / \mathrm{s}\) only; 2400-0600 circuit closed; \(0600-080021 \mathrm{Mc} / \mathrm{s}\) only.

West Coast South America (North of Chile): 1200180025 and \(21 \mathrm{Mc} / \mathrm{s}\); \(1800-200025,21\) and \(17 \mathrm{Mc} / \mathrm{s}\); \(2000-220021,17\) and \(15 \mathrm{Mc} / \mathrm{s} ; 2200-240017,15\) and \(11 \mathrm{Mc} / \mathrm{s} ; 2400-0200 \mathrm{15}, 11\) and \(9 \mathrm{Mc} / \mathrm{s} ; 0200-080011\) and \(9 \mathrm{Mc} / \mathrm{s} ; 0800-100017,15\) and \(11 \mathrm{Mc} / \mathrm{s} ; 1000-1200\) 17 and \(15 \mathrm{Mc} / \mathrm{s}\).

During the last few weeks I have had letters from beginners to DX-ing asking me to list all the DX programmes that they can listen to, so here goes, The programmes listed here are only the ones beamed to Europe, I have put in the frequencies if they are given for the period Sept-Nov., otherwise I have not listed the frequencies.

Sundays: DX-ers calling, R. Australia 0730-0740 on 11,710, 9,560; World Radio Club, \(B B C\), London \(0930-0945\) try \(21 \mathrm{Mc} / \mathrm{s}\) and 15,070 ; DX Window, R. Denmark, Copenhagen 1015-1035 on 9,520; DX-ing

\section*{by CHRISTOPHER DANPURE}

Worldwide, R. New York Worldwide 1930-1935 on 17 and 15; Finland's DX-Club Programme, Helsinki over Finnish Broadcasting Co. 1615-1630 on 15,185.

Mondays: World Radio Club, \(B B C\), London 02450300 on 6,110; Swiss S.W. Merry Go Round, Berne \(0730-0800\) on \(9,535,6,165\) and 3,985; Deutsche Welle DX-Programme 0915-0930 every 2nd Monday on 6,075; Swiss SW Merry Go Round, Berne 1200-1230 on 11,865 and 9,\(665 ;\). Berlin International DX-Club during 1730-1800, 2015-2045, 2200-2230 and 2300-2330; Deutsche Welle DX-Programme 1830-1845 every 2nd Monday on 6,075 ; Swiss S.W. Merry Go Round, Berne \(2000-2030\) on 9,665 and 11,865 or 6,015 ; Emissora Nacional, DX Club, Lisbon during 20452130 on 7,130 and 6,025; R. Stn. HCJB, Quito,DX-party line 2100-2130 on 17,880 and 15,325.

Tuesdays: Sweden Calling DX-ers, Stockholm 11201130 on 9,625 ; Polish Radio DX-programme every 1st Tuesday during \(1830-1857\) on 11,815 and 7,125 ; \(R\). Budapest DX-programme during 2130-2230 on \(11,910,9,833,7,220,7100\) and 3,995 ; Polish Radio DX-programme every 1st Tuesday during 2130-2155 on 11,815 and 7,125 ; Sweden calling DX-ers, Stockholm 2105-2115 on 6,065.

Wednesdays: \(R\). Stn \(H C J B\), Quito DX-party line 0930-1000 on 15,325; R. Prague DX-programme during 1200-1230 on \(15,285,11,960\) and 9,\(560 ; 1630-\) 1700 on 7,345 and \(5,930,1900-1930\) on 7,345 and 5,930 ; R. South Africa DX-corner 1925-1935 on 17,790 and 15,245; R. Bucharest DX-programme during 19302030 and 2200-2300.

Thursdays: R. Nederland DX-jukebox 1442-1512 on 6,020 ; \(B B C\) World Radio Club \(1245-1300\) on \(21 \mathrm{Mc} / \mathrm{s}\) and 15,070; R. Kiev DX-club during 1900-1930 on 11 and \(9 \mathrm{Mc} / \mathrm{s} ; ~ R\). Nederland DX-jukebox 1912-1942 on 6,020, 2012-2042 on 11,730 and 6,020.

Fridays: R. Prague DX-programme every 2nd and 4th during 0700-0755 on 9,575 and 6,055; Finland's Dx-Club programme over R. Finland 1815-1830 on 15,185; R. Bucharest DX-programme during 19302030 and 2200-2300; Trans-World Radio "DX-special" via Bonaire \(2100-2115\) on \(15,245 \mathrm{Mc} / \mathrm{s}\); R. Sofia DXprogramme during 1930-2000 and 2130-2200 on 9,660 and 6,070 .

Saturdays: DX-special. Trans-World Radio, Monte Carlo 0610-0625 on 41,18; Radio Canada S.W. club, Montreal 0730-0740 on 9,625 and 5,990; Radio Japan DX-corner, Tokio 0825-0830 every 1st and 3rd on 21,535 and 17,825 ; Radio Canada S.W. club, Montreal 1235-1245 on 17,820; DXing Worldwide, \(R\) New York Worldwide 1730-1800 on 21,525 and 17,845; R Budapest DX-programme, during 2130-2230 on 11,910, 9,833, 7,220, 7,100 and 3,995; Radio Canada S.W. Club, Montreal 2123-2133 on 17,820, 15,320 and 11,720.

Deadline is the 15 th September, so until next month 73's and good DX-ing.

\section*{Open the pages of The RADIO CONSTRUCTOR this month for . . . O MULTIPLIER UNIT}

An outstanding constructional project for the radio amateur

Other constructional features inc/ude:
THREE BAND 550-25 METRE
TRANSPORTABLE SUPERHET
SHORTED TURNS TESTER
SOLID STATE WINDSCREEN WIPER UNIT

\author{
Also \\ 'EASY-VIEW' DIARY (4th Quarter) and \\ DETACHABLE DATA SHEET No. 13
}

\section*{RADIOGONBTRUGTOR}

SEPTEMBER ISSUE NOW ON SALE 3/-

\title{
Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.
}

The next full time 16 month College Diploma Course which gives'a thorough fundamental training for radio and television engineers, starts on 1st January 1969.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.

The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW4), 34a Hereford Road, London,W. 2
Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

Aerial Wire: Coils of 25 yds. stranded 2/3 plus 6d. P. \& P.

Relays: Small for 6 to 24 volts 130 to 800 ohm, 6 and 250 volt A.C. from 13/6

Coils: OSMOR, WEYRAD, etc.
Test Meter: Full range in stock AVOTAYLOR, our special offer Model ITI-2
 1,000 ohm per volt TIK at 35/- plus 2/P. \& P.

Loudspeakers: 3, 8, 15, 35 and 70 ohm all popular sizes, example: 2 in . 8 ohm \(7 / 6\) plus 1/-P. \& P. Car size \(7 \times 4 \mathrm{in}\). \(15 / 6\) plus 2/- P. \& \(P\).

Transformers: Mains 250-0-250 60 mA with 6.3 volt, \(18 / 9\). For small power units \(0-9-15\) volt \(1 \frac{1}{2}\) amps, \(15 / 9\).

Ear Pieces: 2.5 mm . and 3.5 mm . magnetic, 2/6.

Transistors: OC44, OC45, OC71, OC72, OC81 all at 2/6. Power Transistors OC26, 10/9; OC28, 12/9; OC35, 13/6 (limited number at 9/- each!); OC140, 15/-; OC149, 15/-.

\section*{Write or call for Price Lied}

BOTHWELL ELECTRIC
SOPPLIEs (Glasgow) LTD.
54 EGLINTON STREEET,
GLABGOW, C.5. TeI. 041 'south 2904
Member of the Lander Group

with a Dewtron 'NEW DIMENSIONs'] 3 . Dimensional effects amplifter. Gives Big Hall Btereo effect to any radio, tape, ete. PLITS fully
adjustable echo, vibrato and tone. 9 volt model,
 10 gas , incl. speaker. Post and ins. \(5 /-\) either model. Write now-right now. P.W., RING WOOD ROAD, FERNDOWN, DORSET

tion problems with this 4-Station Transistor Intercom system (1 master and 3 Subs), in de-luxe plastic cabinets for desk or wall moung. Call/alk/nisten from Master to subs and ery, Master, n une 9 V batterv. On/off switch. Volume coutrol. Complete with 3 connecting wires each 66 ft . and ther accespories \({ }^{3}\) \& \(P\) 7/t)

WIRE-LESS INTERCOM
No batteries-no wires. Just plug in the mains for iastant two-way, loud and ciear communication. on/off switch and volume control. Price 12 gns. P. \& P. \(7 / 6\) extra

same as 4-station Intercom for two-way instant communication. Jueal as Baby Alarm and Door Phone. Complete with 66it. connecting wire.
Battery \(2 / 6\). P. \& P. 4/6.
 business efficiency with this incredible De-luxe Telephone Amplifer. Take down long telephone messages or converse off switch. Volume Control. Battery \(2 / 6\) extra.P. \& P. 2/6. Fill price refunded if not satibfled in 7 days. WEST LONDON DIRECT SUPPLIES (P/W10) 169 KENSINGTON HIGH STREET, LONDON. W. 8

\section*{TRADER SERVICE SHEETS}

\section*{5/- each plus postage.}

We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

\section*{OAKFIELD ENTERPRISES}

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2
\begin{tabular}{|c|c|c|}
\hline Make & Model & Radio/TV \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

1968 List
available at \(2 /-\)
If list is required
plus postage
indicate with \(X\)

From

enclose remittance of...
(and a stamped addressed envelope)
s.a.e. with enquiries please MAIL ORDER ONLY (October PW)

WHATEVER happened to poor old 10 metres? I've listened, you've listened, but no one seemed to hear very much at all. The band seems to be getting worse and the openings are rarer and shorter. Anyone offer any theories as to why this should be so just at the time when 10 should be giving us some FB DX? It certainly can't be the gear or the individual since there is such a variety of receivers in use and a vast number of s.w.l's.

Most logs were the result of "easy" DX heard on 20 and 15 metres. Few ventured lower than 20 , and only two logs arrived for 7 megs. How about only listening on 160-80-40 metres this month-go on, I dare you.
J. Baker (Lancs.) says that the 4A callsigns have been given to Mexican stations (normally XE) to commemorate the Olympic Games and may only be used for the period March 31st-December 31st 1968. The SK callsigns are issued only to Swedish club stations and SK6AB was heard to say that there are about 15 SK calls at present. Another callsign confusion comes from Indonesia, where there are now three sets-YB (500 watts), YC (75 watts) and YD (10 watts). Only the YB stations are permitted to work foreign stations. PK8's are legal but have to apply for new licences within the next year.
W. Mantovani (Yorks.) writes in with his solutions to queries raised in past pages. First, QQ7A claiming to be on Ganzo Istand is definitely flying the Jolly Roger. I \(\varnothing\) ARI is apparently a goodie. The correct call should read I \(\varnothing\) ART and was heard April/May when it was the call of a special station in Florence at some obscure festival. Also reported was the arrival on topband of AC4AN (Tibet) on s.s.b. on July 2nd. The last AC4 I can recall which was heard on topband was found to be located in the Bermondsey area of London! Never mind, there's no cause for Alahma.

I hear that some of the gang from Leyton intend to set up a station at Harringay dog track! I've heard of DX hounds but this is ridiculous. Apparently they discovered that there is a nice fat pipe (or something conductive) which goes right round the entire track. With this as an earth, plus a good vertical, they hope to work some real DX. They also have their sights set on Fred (G3SVK) when he does his Channel Islands DX pedition.

\section*{LOW LOGS}

One interesting suggestion this month is that local nets should take place on 40 metres with a 10 -second pause between overs for any stations from further afield who would like to call in. This would keep the band inhabited and dissuade those nasty commercials from invading too. On the other hand, 40 metres is only \(100 \mathrm{kc} / \mathrm{s}\) wide for \(G\) stations. Anyone any views?
M. Pasek (Notts), QP1 66 into an HRO, 2-element fixed wire beam (inverted V's), hooked some FB DX on 40 metres s.s.b., including-HP1JC, PY2ENR, VK2ABZ, VK2AVA, VK2SA, VK3AHT, VK3HW (at 5 and 9 plus 10 dB), VK3OZ, VK3ZL, YV1BI, YV1EL.
W. Mantovani (Yorks.), Ham-1, 600ft. long wire (cor, that's what I call a long wire), a.t.u. reports

PA \(\varnothing\) BRM and EI2BG using s.s.b. on 160. On 80 s.s.b. the log reads - EI8BT/P, G3WMZ/5A, IZ6KDB (Ponza Island), WIDRS, W1EBC. Forty metres s.s.b. produced sigs from-CN8BV, DU2BU. EA4JV, EA6BG, LA2PH/MM (near Capetown), PY6NG, PY6WA, PY7ASM, PY7GAY, TA2BK, TJIAL, TU2AK, UW3FA, VK3HW, YV1PW, YV2VO, 5A2MJC, and a 6OIAT who was suspected of being a pirate.

\section*{HIGH LOGS}

Now we pass on to the lush DX pastures of 20 and 15 metres. Certainly no shortage of activity here.
M. Collins (Leeds), HE5O plus a 90 ft end fed snuffed these out on 15 s.s.b.-CE1HU, CE2VX, CN8BV, CN8FV, CO2FM, CP6HI, CR6GM, EL3C, EP3AM, HC5BZ, HK4BFF, HK4BIW, K \(\varnothing F B L\), K6EVR, KC4AM, KC4CA, KP4FA, KZ5BU, LU2OF, LXIRB, OA4OA, OA4ZI, OD5BZ, OX3DM, PJ5BE, PZIBX, SVØWL, VEØAE, W7HRH, YV3KW, YV5CR, ZC4RB, ZD7KH, ZD8CC, ZD8NK, ZD8HAL, ZP3TW, ZS4AA, ZS6AD, 4U1ITU, 4Z4HE, 5H3KJ, 6W8CZ, 7Q7BN, 9G1GD, 9H1K, 9Q5DG, 9U5IV, 9X5AA.
G. Coomber (Essex), HRO-MX, dipole, 15 s.s.b. -CR6BF, EL2AK, ET3REL, HK5MO, JAIQWT, JA3APL, KP4AST, MP4MBB, LU9DM, PY2ARS, SV1BK, YV4QG, ZD8AB, ZP5JB, ZS2GF, 4Z4HF, 9G1FL, 9M2DQ, 9U5CR, 9V1OC.
G. Maitland (Isle of Wight), R107T, PCR30, 50 ft end fed, logged these on 20 metres s.s.b.-CN8AW, CR6FC, CR7IC, EA8AV, EL2Z, EP2JP, FR7ZC, HSIHI, JAICEU, K6JN/P, K6TXQ/MM, KA3TZN, KR6BD, LU2BU, MP4BEU, MP4TCE, TA2EL, TN8BRW, VK3AHF, VQ8AS, G5PP/P/W2, W6BMG, XW8AX, ZD8CC, ZL2EM, ZL3UY, 5V2TS, 9AIU/M, 9G1GD, 9K2BJ, 9M2BD.
A. Robnett (Herts.), CR7OA, PR30, 66ft. end fed, \(14 \mathrm{Mc} / \mathrm{s}\) s.s.b. - CR6DU, HSIMAG, HV3SJ, JAØADY, JX1BH, OA6MI, PY3BXW, SV1CB, TA2BK, VE1ASY, ZE5JU, 5H3JL, 9M2YC.
P. Leybourne (Glos.), HRO-M and Racal RA245, dipole, 20 s.s.b.-HB1AB, HC2CB, K \(\varnothing\) TXF/MM, KP4DAC, KZ5AA, LU6MJ, LU8KAE, MP4TCE, OA6RP, PY6NX, SVØWMM, TA2BK, UO6GR, VE2YA, VE3FIE, VK3MO, VK7RX, VP7DL, W5ZPD, XE1EW, YN1GBH, ZL4BO, 4A1MZ, 6Y5DW, 8R1F.
R. Dinning (Ayrshire), HA-350, dipole, logged these on \(14 \mathrm{Mc} / \mathrm{s}\) s.s.b.-AP6GGB, CP5DB, CR6GQ, FO8BY, FR7ZL, GC2LU, HV3SJ, KL7FBO, KV4FA, OH2AM/P/OHØ, PK1TH, TA2BK, UF6CR, UJ8AC, VK2SB, ZC4RB, 4A3AF, 4U1ITU, 5AITK, 5H3JW, 5H4TH, 9Q5CR, 9Q5HS, plus countless W's.

\section*{CONTESTS}

Unfortunately, the contests list for this month (September) was given last month, so you'll have to dig out your previous copy of P.W.-Sorry.

Please note that all logs should reach me by the 20th of each month. Those arriving later, no matter how good, are, unfortunately, just too late for publication in the current issue, and will be too out of date for the following one.

\section*{AN AUTOMATIC PARKING LIGHT SWITCH}

THIS unit was designed and built to be used on a motorcycle having a small six volt battery, but it can also be used with a little modification on cars.

It would be convenient if the parking lights would switch on automatically, instead of somebody having to go out to turn the lights on when they are needed. If the parking lights are switched on when the vehicle is originally parked, there will be an unnecessary drain from the battery which may lead to difficulty in starting the engine or even ruining the battery due to excessive discharge. This unit was needed in particular for the author's motorcycle because the accumulator is rather small (14 A.H.) and there is no room for a larger battery.
As soon as it gets dark enough to need the parking lights, the automatic parking light switch will turn them on, and will not turn them off until daylight. The device is not affected by the headlamps of moving vehicles if a little sense is used when positioning the photoelectric cell.

\section*{CIRCUITRY}

The light sensitive element is an ORP12 photoconductive cell-an ORP12 was used because the author had one conveniently at hand, and other cells might be cheaper and more effective, but the author has not tried any other types specifically intended for the purpose. However, an OC70 was tried for reasons of economy. The OC70 (or OC71 or any other transistor with a glass encapsulation) is prepared by scraping off the black paint and carefully filing a hole in the glass. The opaque jelly is then dissolved out using carbon tetrachloride (which incidentally is very useful for cleaning and degreasing variable condensers, resistors, switches

Fig. 1: Circuit diagram of the unit as built and tested by the author.
etc) and the hole in the glass covered up to prevent contamination (covered by Sellotape). Like all semiconductors, these modified transistors are sensitive to light, but unfortunately the resistance in the dark (of the one OC70 tried) was too low, causing the lights to be permanently off, and also the sensitivity to light was inadequate for this particular application.

\section*{CONSIDERATIONS}

A simple d.c. amplifier was first tried, but as expected, it was rather inelegant because the lights turned on slowly, causing rather excessive dissipation in the final stages of the amplifier and hence being perhaps rather apt to failure unless large transistors were used. Therefore it was decided to use a Schmitt trigger, which is in effect a d.c. amplifier with infinite gain, and therefore permanently overloaded in either of two states, viz Tr 2 conducting (i.e. "on") or Trl conducting (i.e. "off").

This circuit solved the problem very neatly, the lights now being turned on suddenly when the ORP 12 is dark enough. The consumption when the circuit is "off" is of the order to 5 mA (depending on the amount of light), so that the drain on the battery is negligible, when the lights are off. The switch alone takes about 200 mA (i.e. slightly more than the base current of the OC35) when "on" but this current is small compared with the current taken by the parking lights (\(2 \frac{1}{2} \mathrm{~A}\) in the author's case).

\section*{OPERATION}

The operation of the circuit is quite simple. Assume first that there is enough light on the ORP12 to keep the lights switched off. The ORP12 has a low resistance, causing increased base current in Trl and hence Tr 1 is conducting heavily with a low voltage between its collector and emitter. This voltage is in fact too low to allow \(\operatorname{Tr} 2\) to conduct, and therefore Tr 3 and Tr 4 cannot conduct either, since they have no base currents. (The effect of leakage is negligible). If the light on the ORP12 now gradually decreases, its resistance will rise until eventually the current through it is insufficient to maintain the collector current in Tr 1 . The collector current of Tr 1 then starts to fall, causing the baseemitter voltage of \(\operatorname{Tr} 2\) to rise and eventually Tr 2 starts to conduct, making the common emitter voltage rise and hence reducing further the current in \(\mathrm{Tr} 1 . \mathrm{Tr} 2\) is now driven rapidly into full conduction and the current through it is multiplied by Tr 3 and Tr4 to supply current to the lights. The \(47 \mathrm{k} \Omega\)

THERMOSTAT WITH PROBE
 This has a semsor attached to a 15 A length of flexible capillary tubing\begin{tabular}{c}
control range \\
\(20^{\circ} \mathrm{F}\) \\
to \\
150 \\
\hline
\end{tabular} \(20^{\circ} \mathrm{F}\) to \(150^{\circ} \mathrm{F}\) so it is suitable to control soil heat. ing and itquid
heating especlally weating especially when in buckets
or portable vessela as the sensor can be raised out and lowered into the vessel. This thermostat could also be used to bound a bell or other alarm when critical temp. is reached in stack or hesp subject to spontaneous combustion or If liquid is being heated by gas or by the famou Teddington Co., we offer these at by the fam
12/6 each.
CAPSTAN DRIVEN TAPE
RECORDER. Only £5/19/6.
 apeed controlled by a fywheeldriven capstan. Ncat caus with carrying handle, size apprux. \(6 \frac{1}{x} 7 \frac{1}{4}\)
2 in. Postage and insurance \(7 / 6\). 2in. Postage and insurance \(7 / 6\)
 KETTLE ELEMENT \(280 / 240 \mathrm{~V} 1500\) watt. Made by Best for kettles
with \(10 / 18\) in. dia. hole including: Hest, Besco, Chalfont, Davidson, Dimplex. Grafton, Hawkins, Jurymald, Mirroware, Towen, Bwan. Normally 32/6. Our price \(15 /\) plus 2/6 post.
GEARED MOTOR HALF REV. PER MINUTE Made by famous Smith and quite powerful. Size \(3 t x\) at \(x\) litin. deep 3 secondary une as proces. timer. Internal switch can be made to break circuit within a perlod up to 2 ming. 17/6. P. \& P. \({ }^{2 / 6}\) uniess ordered with other goods.

Just arrived a almillar geared motor but thls hat tinal speed of 16 r.p.m., 14/6 each

\section*{HI-FI BARGAIN} PULL FI 12 INGH LOUD. SPEAKER. This is undoubtedly one of the finest loudopeacers
offered, prodnced by one of the country's most famous mak. ers. It ham a dle-cast metal rame and is atrongly recommended for Hi-Fi load and Rhythm Guitar and publle
gauss-Total Flux 44,000 Maxwells-Power Gauss-Tata Flux 44,000 Maxwells-Power
Handling 15 watts R.M.S. Cone Moulded abreFreq.response 30-10.000 c.p.s.-Input Impedance 15 ohms-Main resonance 60 c.p.s--Input Jmpedance 15 ohms-Maid resonance 60 c.p.s. Chasais Diam. 12ln.-12tin. over mounting lugsBaffle hole IIin. Dlam.-Mounting holes 4 holes-in. diam. on pitch circle Ilitin. dlam. Overall height 5 in. A es speaker offered for onl
es. 0.6 plus \(7 / 6\) p. E p. Don't miss this offer.

DOOR INTERCOM Know who is calling and speak or them without leaving bed, or chair. Outfit comprises
microphone with call push button, connectora and master inter-com. Simply pluga to-nter-com. simply pluga toGpecisi snip price 69/6, plus \(3 / 6\) postage.

MOTOR BARGAIN silent running malns motor by very famous maker. recorder, framophone, tape recorder, fan, etc., etc.
\(200 / 250\) volts AC., shaded pull start. Size spprox. \(2{ }_{2} \times 2 \pm \times 1\) gins. \(1,400 \mathrm{r}, \mathrm{p} . \mathrm{m}\). Spindle diameter \(5 / 3 \mathrm{in}\). Spindle length fin. Brand new, guaranteed. Price \(9 / 6\),
Plua \(3 /\) - post.

\footnotetext{
Where postage is not defnitely atated as an extra then orders over \(\& 3\) are poat free. Below \&3 add 2/9. Bemi-conductors add \(1 /\) - post. Over \&1 post free.8.A. E. with enquirea please.
}

\section*{DON'T BUY ANOTHER BATTERY}

Nickel Cadmium cells are rechargeable from the mains so if these replace the normal batteries in Your radio and if you fit a battery charger to itfact be malns operated. Our outft comprises (1) full wave battery charger with high low awitch (2) 9 volt (approx.) 120 mA hour Battery stack, (3) full instructions for ftting. Price is \(20 / 8\) (lese
than regular price of bsttery stack) plus \(2 / 6\) post than regular pr
and insurance.

PROTECT VALUABLE DEVICES Transistors, rectifiers, thyristors can be saved from thermal runaway by fitting this contact thermostat on the hestsink. As its name implies just atrap it to the water tank or hold it with magnets). Has dozena of applications, e.g. let the wife's smoothing Iron or yonr soldering iron rest on it, will stop it from overheating whilst keeping It always at the ready. Fitted with callbrated dial for setting between \(90^{\circ}-190^{\circ} \mathrm{F}\). or with dial re. moved range setting is between \(80^{\circ}-800^{\circ} \mathrm{F}\).

TANGENTIAL HEATER UNIT
Winter is coming but act today and you won't diamay. This heater unit and very latest type, most efficient, and quiet running. Is as fitted in fl5 and more, We have a few only. Units complete, wired ready to fit into cases, i.e. motor, impeller, 3 Kw . heater switching 1, 2 and 3 Kw , and with thermal safety cut-out. Can be fitted into on/off switch 59/6. Postage and Insurance \(6 / 6\) Don't miss this.

AC FAN
Bmall but very powerful maing motor with 61 in . blades. Ideal for cooling equip* tor. Bilent but very efficient. 17/6, post 4/6. Mounts from beck or front with \(4 B A\) gerews.

\section*{MAINS TRANSISTOR POWER PACK}

Designed to operate transistor sets and ampliflers. Adjustable output 6v., \(9 \mathrm{v}_{\mathrm{o}}, 12\) volts for up to of the following batteries: PP1, PP3, PP4, PP6 PP7 PP9 and others Kit comprises: Peine transformer rectifier, amoothing and load resistor, condenaera and instructions. Real anip at only 16/6, plus \(3 / 6\) postage
MAINS TRANSFORMER SNIP Making a power pack for
amplitier or other equipment? These transformers have normal mains primarles (\(230 / 40 \mathrm{~V}\)) and bsolsted secondaries. Two typea: (I) 12 V 500 mA at 9/6. (2) 15 V 800mA at

PP8 Eliminator. Play your pocket radio from the mains! Save \&s. Comaplete component kit comprises \& smoothing condenser and lnstrictions. Only 6/8 plua \(1 /\). post. lnstruc SNIPERSCOPE

Famous war-time "cat's eye" used
for seeing in the for seeting in the
derk. This is an infra.red image converter cell with silver caesifum scroen which Ilghts up (uike a cathode ray tube) when the electrons released by the Infra-red strike It. A golden opportunsty for some interestian \(2 / 6\). Dats

MINIATURE WAFER SWITCHES

4 pole, 2 way- 3 pole, 3 way- 4
pole, 3 way- 2 pole, 4 way- 3 pole, pole, 3 way-2 pole, 4 way- 3 pole,
4 way-2 pole, 6 way-1 pole, 12 way- 2 pole, 6 way- 1 pole, 12,
way. All at \(8 / 6\) each, \(88 /-\) dozen, your mssortment.

\section*{WATERPROOF HEATMVG ELEMENT} 26 yards length 70 W . Self-regulating temperature control. 10/- poat free.

BLANKET SWITCH
Double pole with
neon let into side 80
ideal for dark room ligh or for use with waterprool eleruent-new plastic case. 2/6 each.

\section*{FLUORESCENT CONTROL KITS} Each mit comprises aeven items-Choke, 2 tube ends, starter, starter holder and 2 tube clips, with wiring instructions. Suitable for normal fluorescent tubes or the new "Grolux" tubes for Gish tanks and indoor plants. Chokes are supersilent, mostly resin flled. Kit A-15-20 w. 19/6. Kit B-30-40 w- 19/6. Kit C-80w. 17/6, Kit D-125 w. 28/-. Kit E-65 w. 19/6. Kit 19/6. Postage on Kits \(A\) and \(B 4 / 6\) for one or two 19/6. Postage on kith a and kits ordered. Kits 0 , D and \(\mathbf{E} 4 / 6\) on first, kit then \(3 / 6\) for each kit ordered. Kit MFI \(3 / 6\) on first kit then \(3 / 6\) on

\section*{QUICK CUPPA}

Mini Immeraion Heater, 350 w \(200 / 240 \mathrm{v}\). Boils full cup in about two minutes. Use any socket on lamp holder. Have at bedside poat and insurance \(1 / 6\). 18 poat and insurance \(1 / 6.12 \mathrm{v}\). ca
model also available.

> each two kits ordered.

\section*{ELECTRONICS (CROYDON) LIMITED}
(Dept. P.W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY S.A.E. with enquiries please

\section*{PEAK SOUND}

\section*{ES.10-15} LOUDSPEAKER

As described in ' Wireless World August 1968

\section*{A revolutionary advance in design logic}

In the Peak Sound ES.10-15, low priced components are combined in an original way to produce a loudspeaker so startlingly good that it has no difficulty in comparing with speakers costing six or seven times as much. Mr. P.J. Baxandall, world recognised for his work on tone control systems, designed and describes this speaker in "Wireless World" August and September issues, and Peak Sound are privileged to offer the designer-approved assembly exact to specification.

Response \(100-10,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}\). Loading up to 10 watts R.M.S.: Impedance 15 ohms. Performance is characterised by exceptional clarity and definition at all frequencies. Both size and cost make the ES.10-15 ideal for stereo. Full, simple assembly instructions with each speaker.
Equaliser assembly
Spectal loudspeaker unit
Purchase tax
Pack-flat Cabinet (18 \(x\)
\(12 \times 10 \mathrm{in}\).) in natural
Afromosa Teak, all parts
cut and drilled.

Cross-over choke for using ES.10-15 with additional woofer \(£ 1.2 .6\)

\section*{IT ADDS UP TO BETTER QUALITY FOR FAR LESS OUTLAY}

Peak Sound products, including "Cir-Kit" adhesive copper strip for circuit building; the MS.8-5 bookshelf speaker, etc. are available from most dealers. In case of difficulty please send direct. Trade enquiries invited.
PEAK SOUND (HARROW) LTD.
32 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY Telephone EGHAM 5316
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Please send. .} \\
\hline \multicolumn{2}{|l|}{for which I enclose f................. .s. d..} \\
\hline \multicolumn{2}{|l|}{NAME. .} \\
\hline \multicolumn{2}{|l|}{ADDRESS .} \\
\hline Block letters please & PW10 \\
\hline
\end{tabular}

\section*{techinical training in radio television and electronics}

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:
- Institution of Electronics \& Radio Engineers
- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

\section*{Examination Students coached until successful}

\section*{NEMV SELF-BUILD RADIO COURSES}

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

\section*{POST THIS COUPON TODAY}
for full details of ICS courses in Radio, T.V. and Electronics.

resistor shown dotted was not needed in the original, but it may be necessary with some transistor types (particularly if Tr and Tr 2 are germanium). However, \(\operatorname{Tr} 1\) and \(\operatorname{Tr} 2\) were bought as unmarked, untested silicon transistors and were not selected, but they worked well. Two 2N2926's were at hand and these planar transistors were also tried with no apparent change in performance, as was expected because the Schmitt trigger circuit is very tolerant of transistor parameters. An OC35 was used only because it was the cheapest power transistor that the author could find. Its ratings are quite ample for this circuit (maximum collector voltage 32 V , at Ie \(=6 \mathrm{~A}\), max. collector current 8 A , max. dissipation 30 W) and since it only dissipates about 1 W it does not need a heat sink. In fact, in the prototype it was soldered directly to the Veroboard on which the circuit was built, the whole lot being wrapped up in \(\frac{1}{4}\) in. thick foam rubber and insulating tape (of the thick black variety) to protect the unit from vibration.

\section*{COMPONENTS}

The component values are not critical. The two \(56 \Omega\) resistors connected in parallel are to act as a \(28 \Omega\) IW resistor, as no 1 W resistors were available in the junk box when this unit was built. The value of the resistor used in this position should be about \(30 \Omega\), but definitely not less than \(25 \Omega\) or the ratings of the OC81 may be exceeded. Since the base current of the OC35 when turned on is about 200 mA this unit will only switch a current of up to 4 A using a typical OC35, though OC35s with a larger \(\beta\) than normal will naturally handle a greater current.

If the unit is used on a car (with a 12 V battery), then the resistor R 2 should be increased to \(1 \cdot 2 \mathrm{~K} \Omega\) with possibly some increase in the values of the other resistors. A relay will have to be used instead
of the OC35. The relay is connected instead of the two \(56 \Omega\) resistors and the OC35 is also omitted. This is because there must be a very good connection from the battery positive pole to "earth" because of the very large current taken by the starter motor.

\section*{PROTECTION}

It is essential that the OC81 is protected when the power is switched off. As the current in the relay winding falls, a large voltage is developed across it and this would almost certainly damage the OC81 if this high-voltage pulse were not suppressed. This if done by means of a diode capable of carrying at least five times the relay current. This diode is connected across the relay windings so that it is reverse biased when the relay is energised.

As mentioned above the unit was built on a piece of Veroboard. This measured \(2 \frac{1}{2}\) by \(1 \frac{1}{2} \mathrm{in}\). with holes 0.15 in . apart. In the prototype the ORP 12 was fitted on the board, but it was later decided to have it separate from the board to make it easier to put it in the best place. The ORP12 was also wrapped up in foam rubber and insulating tape, leaving the "element" exposed and about a foot of thin twin flex was used to connect the cell to the rest of the circuit.

\section*{CONCLUSION}

It may be necessary to connect a resistor in parallel with the ORP12 in order that the lights go on at the right time. A few hundred \(\mathrm{k} \Omega\) would be a suitable value to try first.

The author's unit has easily repaid for the cost and time involved in building it and it has performed reliably since it was fitted to the motorcycle, in spite of the vibration and temperature.

\section*{MODIFYING V.H.F. PORTABLES}
—continued from page 425
\(6 \frac{1}{2}\) inches in length. when it was possible to adjust the associated trimmer so that the Radio 2 transmission was just off the scale at the high frequency end of the band. Tuning back over the dial should now produce several of the higher powered or local commercial signals and one selected at the centre of the scale.

\section*{FINAL ADJUSTMENTS}

The aerial capacitor was then cut to a length of \(7 \frac{1}{2}\) inches and by adjustment of the aerial trimmer it was possible to peak the selected station for maximum volume. Once these adjustments have been carried out the two twisted wire capacitors should be placed parallel with the ferrite rod aerial along the receivers length and bent if necessary to facilitate the fitting of the receiver's back cover. Final adjustments to the trimmers can now be carried out for correct band coverage and maximum volume and the back cover replaced.

The coverage of the receiver will now be from about \(70 \mathrm{Mc} / \mathrm{s}\) to just below \(90 \mathrm{Mc} / \mathrm{s}\), the \(80 \mathrm{Mc} / \mathrm{s}\) band taking up about \(\frac{2}{3}\) rds. of the scale length. The number of stations heard will vary from area to area but if you live near a reasonably large town or city there will be no shortage of signals for you
to monitor. If coverage is required below \(70 \mathrm{Mc} / \mathrm{s}\) or so then the addition of extra capacity across the tuning capacitor should make this possible. Initial adjustments could be carried out by temporarily fitting \(3-30 \mathrm{pF}\) beehive trimmers, and then replacing them with miniature fixed capacitors of the appropriate estimated values.

\section*{COVERAGE}

For coverage of frequencies above \(110 \mathrm{Mc} / \mathrm{s}\) or so, it will normally be necessary to remove a turn or two from the aerial and oscillator coils, depending upon the actual coverage required. This is not advisable unless the necessary test equipment is available. One particular receiver modified for reception over these higher frequencies luckily had a 20 pF fixed capacitor wired across the v.h.f. tuning capacitors for normal Band II reception. Removal of these capacitors brought in the \(144 \mathrm{Mc} / \mathrm{s}\) Amateur Band at about mid-scale, the signals received being peaked for maximum strength by means of the v.h.f. aerial trimmer. Unfortunately, the sensitivity over the 2 metre band was rather poor, and allowed reception of only very local amateur transmissions. Matters could be improved, no doubt, by preceeding the receiver with a suitable transistorised 2 metre preamp or the set could be used, without the pre-amp as a \(144 \mathrm{Mc} / \mathrm{s}\) monitor for your own signals.

\title{
CO de GB2LO
}

\section*{SUCCESS OF RSGB FESTIVAL AMATEUR STATION}

EVER seen an amateur station operating from the pavement of a city street? You would have, if you happened to have been passing the Daily Mirror building between July 8 and 20. As part of the City of London Festival, the Radio Society of Great Britain manned a special studio erected outside 33 Holborn by courtesy of the Daily Mirror who provided the facilities and bore the cost of the portable building.
The callsign of GB2LO was selected in honour of the famous 2 LO which broadcast from Savoy Hill in the early 1920s. And another link with the past was the fact that the site of GB2LO was only about 200 yards from Hatton Garden where the pioneer London Wireless Club-the direct forerunner of the RSGB-held its meetings as far back as 1913.

Through the glass panels of the station building, the general public were able to see amateur radio in operation and a P.A. system relayed both sides of QSO's to loudspeakers in the street. A team of about a dozen radio amateurs gave up their time to operate the station in relays and these included G2MI, G2OS, G3IUZ, G3UML, G5AAM and G6RC. During the run of the activity some 1,500 contacts were made with 108 countries, mostly on 'phone for obvious reasons. Schedules were maintained with the ARRL headquarters station W1AW and with

the British Exhibition station VE3LON at London, Ontario. Most contacts were on 15 and 20 m bands.

The station attracted considerable attention and also welcomed amateur radio enthusiast visitors from 30 countries. As a public relations operation the scheme was an outstanding success although it may be questioned whether the array of KW Electronics equipment conveyed the conventional "amateur" radio image! Also, by virtue of the rotatable 2 element cubical quad aerial 200ft. up aloft on top of the Daily Mirror building, coupled with the "exotic" callsign, it was not so much operating an amateur radio station as conducting a non-stop performance! We hope that Mr. General Public did not go home with the impression that amateur radio was as easy as (or simpler than) calling up Auntie on the GPO telephone!

Now using silicon Transiators in first five stages on each channel reaulting in even lower noise level with improved
senitivity. A really frst-class Hi Fi Stereo Amplifier Kit. Uses 14 translstors giving 8 watts push pull output per channel (16 W . mono). lutegrated pre-amp. with Bass, Treble and Volume controly. Suitable for use with Ceramic or Crystal cartridges. Output stage for any
speakers from 3 to 15 ohms. Compact deagn, all parts speakers from 3 to 15 ohms. Compact deaign, all parts supplied inctuding drilled metal work. Cir-kit board, no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be prond of. Brief specification: Freq, reaponse \(\pm 31 \mathrm{~B} .20-20,000 \mathrm{c} / \mathrm{s}\). Basa bonst approx. to \(+12 d^{2}\). Treble cut approx. to -16 dB . Negative feeduack 18 dB over main amp. Power requirements 25 V at \(\cdot 6\) gmp. PRIC 83: A. C CABINET 88.0 .0 . Ail Post Free CIrcuit diagram, construction detaila and parts list (free with k|t) 1/6. (B.A.E.).

SPECIAL PURCEASE! E.M.I. 4-SPEED PLAYER Hervy \(8 \frac{3}{2}\) in. metal turntable.
Law flut ter performance 200 Low futter performance \(200 /\)
250 v . shaded motor (90 v . tap). Complete with latest tap). Complete with latest and mono cartridge with t/o
stylii tor LP \(/ 78\). AIMTE aIM lii tor LP/78. LIMITED
NUMBER ONLY 68/-. P. \& NUMBE
P. \(6 / 6\).

4-SPEED RECORD PLAYER BARGAINS
Mains models. All brand new in maker's packing E.M.I. MODEL 999 Single Player with unit mounted piok-up arm and mono cartridge. . . .
85.5.0
28.18. All plua Catriage and Packing 6/6. LATEST GARRARD MODELS. All types available 1000 \(\mathbf{\$ P 2 5 , 3 0 0 0 , ~ A T 6 0 ~ e t c . ~ S e n d S . A . E . ~ I o r ~ l a t e s t ~ B a r g a i n P r i c e s ! ~}\)

LATEST B.S.R. XIE MONO COMPATIBLE CARTRIDGE With turnover sapphire styli suitable for playing 78, EP, LP and Stereo records with mono equipment. ONLY \(28 / 6\).
P. \& P. 2/-. SONOTONE 9TAHC compatille Stereo Cartridge with diamond stylus \(50 /-\). P. \& P. \(2 /-\)
MONO T/O CARTRIDGE. complete with LP \& 78 sapphire styli. Brand new 12/8. P. de \(13.2 /-\). FEW ONLY ! ACOS GP69/1. For EP and LP 10/e. P. \& P.

\section*{QUALITY RECORD PLAYER AMPLIFIER} A top-quality record player amplifler employing heavy duty double wound mains transformer, ECC83, ELS4,
EZ80 valves. Separate Bass, Treble and Volume controla, Complete with output transiormer matched for 3 ohm
 PRICE 75/-. P. \& P. 6/-.
ALso AVAILABLE mounted on board with output trangformer and apeaker re
PRICE 97/6. P. \&. \(7 / 6\).

DE LUXE QUALITY PORTABLE R/P CABINET Uncut motor board aize \(14!\times 12 \mathrm{in}\), clearalice 2 in . below, \(5 \not / i n\). above. Will take ahove amplifier and any B.8.1. or AT60 and SP25). Bize \(18 \times 15 \times 8 i n\). PRICE 23.9.6. P. \& P. \(9 / 6\).

\section*{HARVERSON'S SUPER MONO}

\section*{AMPLIFIER}

A auper quality gram amplifier using a double wound mains transformer, EZ80 rectiffer and ECis \& 2 triode pentode valve as audio muplitier and power outputstage.
Impedance 3 ohms. Output approx. \(3 \cdot 5\) watts. Volume and tone controls. Chassis size only \(7^{*}\) wide \(\times 3^{\prime \prime}\) deep \(x\) \(\mathbf{j}^{\prime \prime}\) high overall. AC mains 200/240v. Supplied absolutely Brand New completely wired and teated with vaives and good quality output transiorner. LIMחTED NUMBER ONL, Y.
BARGAIN PRICE
49/6

8 WATT AMPLIFIER. Pusb Puil using ECC83, LZZ80 and two EL84 valves. Bultable for use with tuner or gram. Beparate hass, treble and volume controls. Absolutely complete with attractive facia pariel. size \(12^{*} \times 31^{\prime \prime} \times 5^{\prime \prime}\)
high. Brand new and tested \(£ 7,17,6\). P. \& P. 8/6.

BRAND NEW 8 OHM LOUDSPEAKERS Sin. 14/-: \(6 \frac{1}{\mathrm{i}} \mathrm{in}\). \(18 / 6 ; 8 \mathrm{in} .27 /-7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6\) E.M.I. \(8 \times 5\) Sin. With high flux magnet 21/-. E.M.I. \(134 \times\)
8in. with high flux ceramic magnet \(42 /=(15 \mathrm{ohm} 45 / \mathrm{J})\) E.M.I. \(13 \times 8 \mathrm{in}\). with two inbuilt tweeters and crossover network. 3 or 15 ohms 4 gns . P. \& P. 5 in. \(2 /-, 6 \frac{1}{2} \& 8 \mathrm{in}\). \(2 / 6\), 10 \& \(12 i \mathrm{in} .3 / 6\) per speaker. BRAND NEW. 12in. 15 w . H/D Bpeakers, 3 or 15 ohms. Current production by well-known British maker. Now With Hiflux ceramic ferrobar magnet assembly 95.10 .0 . E. \&.I. By in. HEAVY DUTY TWEETER8. Powerful c E.M.I. 3in. HEAVY D UTY TWEETER8. Poweriul cera\(18 / 6\) each. P. \& \(\mathbf{P} .2 / 6\).
12 in . "RA" TW IN CONE LOUDSPEAKER. 10 watts peak 12in. "RA" TWIN CONE LOUDSPEAK
bandling. 3 or 15 ohm, \(35 / \mathrm{P}\). \& P. \(3 / 6\)
3 in. 12/6; \(7 \times 4\) in. \(21 /-\) P. \& P. \(2 /\) - per speaker.
VYNAIR AND REXINE SPEAKERS AND CABINET FABRICS app. 54in. wide. Usually 35/- yd., our price I8/6 yd. length. P. \& P. \(2 / 6\) (min. I yil.). S.A.E. for samples.

LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECK.'Three speeds 4 track, takes up to 7 in . sporis B.S.R.TDE, 4 -TRAGK STERE 0 TAPE DECK. Send S.A.E. for latest price. QUALITX PORTABLE TAPE RECORDER CASE
Brand new. Beautifully maite. Only \(49 / 8\). P. P. \(8 / 6\). Dual Purpose Bulk Tape Eraser and Tape Head Demagnetiser 35/-. P. EPSAL MIKES. High imp, for desk or hand ABe. High rensitivity, \(18 / 6\). P. ©RYSTAL STICK MIKES. Listed at 42/-, OUE PRICE 21/-1 ' \& P. 1/6. onfort switeh for remote oontrol. High quality. High or low impedance. (8tate imp. required). BARGALN PRICE 80/-. P. \& \({ }^{\prime}\). \(2 / 6\).

VIBRATOR8. Large selection of \(2,4,6,12,24\) and 32 IBRATORS. Large selection of 2, 4, 6, 12, 24 and
volt. Non sync \(8 / 6 ;\) sync \(10 /-\) P. \& P. \(1 / 6\) per vibrator. B.A.E. with all enquiries.
S.T.C. SILICON AVALANCEE HALF-WAVE RECTIFIERS Type RAS. 508 AF. 6 amps. \(9 t i 0\) P.I.V. 1 in . Iong

SPECIAL OFFER! PLESSEY TYPE 29 TWIN TUNING GANG. \(400 \mathrm{pF}+146 \mathrm{pF}\). Fritted with trimmers and \(5: 1\) integral slow motion. Sultable for nominal \(470 \mathrm{kc} / \mathrm{s}\) 1. . . Size approx. \(2 \times 1 \times 1\) in. Only 8/6. P. \& P. \(2 / 6\). MAINS TRANSFORMER. For trankistor power supplies.
Pri. 200/240ष. Sec. \(9-0-0\) at \(500 \mathrm{~mA}, 11 /\). P. \& P. \(2 / 6\). Pri. 200/240v. Sec. \(0-0-9\) at 500 mA . 11/ \(\rightarrow\) P. \& P. \({ }^{2 / 6}\) Pri. 200/240v. Sec. \(12-0-12\) at 1 amp. 14/6. P. \& P. \(2 / 6.6\)
Pri. 200/240y. Sec. \(10-0-10\) at 2 amp. 27/6. P. \(\&\) P. \(3 / 6\). Pri. 200/240v, sec, \(10-0-10\) at 2 amp. 27/6. P. \& P.
MATCHED PAIR OF \(2 t\) WATT TRANSI\&TOR DRIVER AND OUTPUT TRANSFORMERS. Stack wize \(1 \frac{1}{2} \times 1 \frac{1}{2} \times\) \({ }^{3}\) in. Output traus. tapped for 3 ohin and 15 obm output. 10/- pair plus \({ }^{2} 2 / \cdot \mathrm{P}\). R P P
PARMEKO \(7-10\) watt OUTPUT TRANSFORMERS match pair of ECL882s in push-pull. Nec. tapped \(3 \cdot 75\). 7.5 and 15 ohm. Stack size 2\(\rfloor \times 1 \times 2 \mathrm{it}\). approx. ONLY 12/-. P. \& P. \(3 /\) ECL86's in push-pull to 3 whm output. ONLY II/-. P. \& P P \({ }^{2 / 6}\). Rectiflet. Pri. 240 v . AC. Sec. 240 v . at 50 mA and \(6 \cdot 3 \mathrm{v}\). at
\(1 \cdot 5 \mathrm{mmp}\). Stack size \(2 \mathrm{z} \times 3 \times 2 \frac{1}{2} \mathrm{in} .10 / 6\). P . \& 1 . \(3 / 6\). 1.5 amp . Stack size \(2 \frac{3}{2} \times 2 \times 2 \mathrm{in}\).
(Special quotations for quantities).

NEON A.C. MAINS INDICATOR. For panel mounting, cut out size \(1 \frac{s}{g} \times \frac{3}{8} \times \mathrm{in}_{+}\)deep inc. terminal. White case with
lens giving brighter light. For mains \(200 / 250 \mathrm{v}, 2 / 6\) each. lens giving brighter light. For thai
P. \& 1 . 6d. (6 or more post free).

HIGE GRADE COPPER LAMINATE BOARDS
BRAND NEW TRANSISTOR BARGAINS. GET I5 (Matched Pair) 15/-; V15/10p, 10/-; OC'il 5/-; 0C76 6/-; AFl17 \(7 / 6\).
Bet of Mul
matehed pair 6 transistors OC44, 2-OC45, AC128D, istor Pack AC1281, and matched pair ACles 12/6; istor Pack Aclasis and matched par Acles
ORPl: Cadmiura Bulphide Cell 10/6. All pont frep.

3-VALVE AUDIO AMPLIFIER MODEL HA34 D signed for \(\mathrm{Hi} \cdot \mathrm{Fi}\) reproduc-
tion of records. A.C. Mains tiont of records. A.C. Mains
operation. Ready built an plated hesvy gauge metal
chassis, size \(7{ }^{*} w . \times 4{ }^{\prime \prime}\) i. \(\times\)
 4E" h. Incorporates ECC83,
EL84, EZ80 ratves. Heavy EL84, EZ80 valves. Heavy
duty, double wound mains
trangformeraul output transtransformer aill out put transspeaker.scparate Bass, Treble and volume controls. Negative feedback line. Output \(4 \frac{1}{1}\) watts. Front panel can be detached and leads extended for remnte monnting of
controls. Complete with knobs, valves, ete., wired and testel for only 84.5 .0 . P. \& P. 6 /--
HSL "FOUR"' AMPLIFIER KIT- Sinnilar in appearance to HA34 above but employs eatirely lifferent and advanced
circuitry. Complete set of parts, etc. 79/6, P. P \(8 /-\mathrm{l}\)

SPECIAL OFFER!
 Baby Alarm, Booster unit for
transistor radios etc., also ideal for classroom transistor radios etc., also ideal for classroom
unit ete. Works perfectly with our special offer High unit etc. Works perfectly with our speciat offer Higa
Impedance Dynamic Microphone (\(30 /\)). Output 1000 mw . Uses standard 9 volt battery. 8mart two tone carrying case size \(12 \times 4 \times 9\) in. fitted standard input jack socket, volume controls. \(7 \times 4\) in. speaker. Completely built and tested, brand new with full maker's guarantee.

\section*{STEREO AMPLIFIER}

Incorporating 2 ECLSBs and 1 Ez80, heavy duty, double wound mains transformer. Output 4 watts per channel. Full tone and volume controls. Absolutely complete.

printed circuit pancl sice \(6 \times 3\) in.
- Generous alze Driver and Output Tranaformers. Ontput transformer taphed for 3 ohm and 15 ohm speaker. Transiators (HET114 or 81 Mullard OCB1D and matched pair of OC81 o/p). 9 volt operation. - Comprehensive easy to follow Instructions and circuit diagram 2/B (Free with Kit). All parts sold separately. SPECIAL PRIGE 45/-. P. \& P. 3/-. Also ready built and teated, 52/b. P. \& P. 3/-.

full circuit diagram of tuner head. Another special bulk
 1.f. 15/- phis :2/ti P. \& P. (ECC8s valves, \(8 / 6\) extra).

Open all day Saturday
Early closing Wed. 1 p.m.
A few minutes from Soulh 1 itmbiedon

170 HIGH ST., MERTON, S.W. 19
Tel. : 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. charged extra.

\title{
Want to get going in a career as a technician? Join the Army
}

\section*{2 years from now you could be earning over} £15 a week, all found, as a qualified technician. Qualified in a career that'll set you up for life.

If you're between 17 and 25 you can join the Army as a trainee technician and get started on a 15month course in aircraft, electronics or instruments. About eight months after successfully completing the course, you'll get promotion to Corporal. And from there on it's up to you. The sky's the limit.
The equipment you'll be working with-whether it is radio transmitters, transceivers, closed-circuit T.V., gunfire control equipment or helicoptersis the most advanced of its kind anywhere. And you'll be training with it from the start.

The pay As a trainee technician you can get as much as \(£ 9\) a weep (clear) from the age of \(17 \frac{1}{2}\) food and accommodation free. After about 15 months this rises to nearly \(£_{14}\) on passing a trade test and, after about 2 years and promotion to Corporal, to over \(£ 15\). After that, there's every chance of more promotion and still more pay.

And don't forget that in the Army, besides moving fast in a worthwhile career, you've every opportunity for travel, action, sport and excitement, too!

\section*{SEND OFF THE COUPON FOR ALL THE FACTS}

for yuibk, R83y rl difible sadidining

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

From Electrital and Hardware shops. If unobtainable, write to:Multicore Solders Ltd., Hemel Hempstead, Herts.

\section*{A Guide to Amateur Radio (RSGB)}
the best way to get acquainted with Amateur Radio
Radio Amateurs' Examination Manual (RSGB) 5/9 covers the whole syllabus of the Radio Amateurs' Examination set by City and Guilds
Radio Data Reference Book (RSGB) 14/provides concisely virtually all information and charts needed by the Radio Amateur
Service Valve and Semiconductor Equivalents (RSGB) 5/6
equivalents of most Service valves and semiconductors
Morse Code for Radio Amateurs (RSGB) 2/a booklet to help you pass the GPO Morse Test
A Course in Radio Fundamentals (ARRL) 11/6
an American publication which can break you
in on the technical aspects of Amateur Radio
Understanding Amateur Radio (ARRL)
a valuable handbook for the newcomer
Receiving Station Log Book (RSGB)
7/3
for recording radio stations heard on the air
Spiral bound
Antenna Book (ARRL)
the theory and construction of all the aerials and
matching systems which you are likely to need
All prices include postage. You can obtain a list of all other publications available, including details of membership of the RSGB, by writing to:
RADIO SOCIETY OF GREAT BRITAIN, Dept. PW 28 Little Russell Street, London, WC1

\title{
Re-activating \\ MERCURY CELLS \\ BY L.B.STOTT
}

THE primary cell, by definition, is one which generates electricity, usually by chemical action, within itself. The secondary cell accepts electricity from an outside source. stores it, and gives it up as required.

It is usually assumed that there is a rigid line between the two, and that the primary cell cannot accept and store electrical energy from an outside source. Most dry cells in use are of the Leclanche type, and because of their reasonable price little attention has been paid to the possibility of prolonging their life by the supply of current from an outside source.

Such prolongation is, however, quite feasible and an article on the subject was published in the April 1961 issue of Practical Wireless. That article is still quite sound, but only refers to Leclanche cells.

\section*{COSTS}

Lively interest in the subject has recently been aroused by the spectacular increase in the price of some mercury cells. These tiny cells, used in behind-the-ear and other miniature deaf aids were at the beginning of the year suddenly increased in price from 1 s .10 d . to 2 s .9 d . each, and this increase bears hardly on the users, many of whom are pensioners and persons living on fixed incomes.

The cells, in good condition, give a useful life of two or three days, and thus cost 1 s . to 1 s .6 d . a day to run. Many are not sold in good condition. and their useful life is accordingly shorter. Any re-activation which is possible is therefore well worth while. Re-activation is in one way a misleading term; the cells must not be allowed to run down very far before they receive attention, and the process is therefore one of keeping them in good condition over a longer period.

There is on the market at least one "charger", but the price is \(£ 118 \mathrm{~s}\). 6 d ., and to do the job effectively and conveniently at least two, and preferably more, "chargers" are required. This rules the commercial article out of the question for most people on grounds of cost.

\section*{D.I.Y.}

Fortunately it is possible to make up simple "chargers" at very small cost, thus making the operation well worth while, as the effective life of the mercury cell can be at least doubled, and with care three or four times the ordinary life can be achieved. Two such "chargers" are described in this article.

It will be observed that the term "charger" has been used with inverted commas. It is, of course, quite incorrect. The correct term would probably be
"re-activators" but for simplicity we will call them boosters.

The mercury cell should have a voltage when new of 1.4 V , and has a reputed life of \(35-40\) milliamphours. The usual discharge rate is one to two milliamps an hour. The Leclanche cell has a voltage of 1.5 V and quite a small cell can stand up to a continuous drain of 5 milliamps. At a discharge rate of one to two milliamps it will maintain its voltage of at least 1.5 for a considerable time, and this gives us the key to the design of our boosters.

\section*{CHARGING}

The commercial "charger" uses two Ever Ready D14 cells (or equivalent) in series and thus has a voltage of 3 ; a 2,000 ohm resistor in series gives a charging rate of about 1.5 milliamps. The makers advise that the cells be used for 5 hours and then re-charged for 7 hours. It will be seen from this that more than one "charger" is required to maintain three cells (a day's supply at 5 hours each) in good condition.

The voltage used is rather high and if the time is substantially exceeded the cell may be damaged.

If a single Leclanche cell is used the time may be exceeded with impunity. Under these conditions a current of approximately 1 mA flows from the Leclanche to the mercury cell. Typical conditions are as follows:
\begin{tabular}{ccc}
& \begin{tabular}{c}
At the \\
outset
\end{tabular} & \begin{tabular}{c}
After \\
7 hours \\
1.48
\end{tabular} \\
\begin{tabular}{l}
Voltage of Leclanche cell \\
Voltage of partly discharged \\
mercury cell
\end{tabular} & 1.5 & 1.2
\end{tabular}

After 7 hours the voltage of the two in parallel remains steady at about 1.45 volts and the current ceases to flow. On separating the two the voltage of the Leclanche cell quickly returns to 1.5 and the other drops to 1.4 .

\section*{CELL CONDITION}

One important condition must be observed: it is no use trying to re-activate a nearly exhausted cell; the newer the cell the more efficient the result. The best plan is to bring three cells into use and to have two in boosters and one in the deaf aid. Four cells with three boosters is even better. The writer has five boosters in use and cannot remember when last he bought a packet of six mercury cells; it is certainly more than three months ago. The Leclanche cells have been replaced twice; it is important to have them in good condition, and showing as high a voltage as possible.

The nominal voltage of the mercury cell is 1.4 , but it can drop to 1.25 and still give an effective output. It is better not to let it go any lower. These voltages should be measured on a 1,000 o.p.v. meter if possible. The indication will then be the voltage on load.

\section*{CONSTRUCTION}

The author has two "boosters" and they are essentially identical. The circuit of one is shown in Fig. 1 and is the simplest ever published.

The larger of the two boosters is more suitable for use by an inexperienced person and it will be described first.
The body is a wooden bobbin approximately 2 in . long with a central hole \(\frac{9}{16}\) in. in diameter. The bobbin used in the prototype was originally the core of a roll of paper tape, but another source of material could be the core from a reel of copper wire with the cheeks removed. The central hole must be opened out to a diameter of \(\frac{9}{1}\) in. so that the D14 cell slides easily into it.

Figs. 1, 2 and 3 indicate graphically the simple ideas outlined in the main text.

An additional smaller hole about \(\frac{3}{32}\) in. in diameter is drilled parallel with the larger one, and into this is inserted a length of 6BA studding or a long bolt if available; this should be a tight fit in the hole. On the ends of the 6BA studding are bolted two strips of springy brass, one close to the bobbin and the other fitted with spacers at a distance to ensure that the mercury cell is kept in firm contact with the Leclanche cell. The construction is shown in Fig. 2.
The only critical measurements are those specified.

\section*{ALTERNATIVE}

The other booster, although it could not possibly be simpler, is equally efficient, but it requires greater care in use; if the mercury cell is inserted the wrong way round it would be ruined.
It consists of nothing more than a strip of hard brass with the two ends bent at right angles. The original was made from brass strip \(\frac{1}{4}\) in. wide and \(\frac{1}{15}\) in. thick, but these measurements may be varied according to what is available. It is essential, however, that the inside measurement should be exact, and to take a D14 cell with a 657 mercury cell the measurement should be \(2 \frac{1}{8} \mathrm{in}\). If the distance is slightly exceeded matters can be adjusted by soldering a washer on one, or if need be on both, ends. The cells must be inserted in the booster as shown in Fig. 3.
It will be observed that a positive "earth" has been adopted. The outside of the Leclanche cell, being shrouded by the zinc negative pole, a negative "earth" is more usual. The mercury cell is, however, shrouded by the positive pole, and if the frame of the booster were negative, the positive pole of the mercury cell could easily come into contact with it and this would run down the cell.

The Leclanche cell is fixed to the frame by means of Sellotape, care being taken to ensure firm contact between the positive pole and the frame. The mercury cell is inserted between the negative pole of the Leclanche cell and the frame, care being taken to observe the correct polarity.
The voltage of the Leclanche cell should be checked frequently under load conditions, to ensure that the voltage appreciably exceeds \(1 \cdot 4\) volts.

\section*{CONCLUSIONS}

Both types of booster have been given an extensive field trial by elderly people who are probably below average in mechanical aptitude. Although it cannot by any means be claimed that the devices are foolproof no serious difficulties were encountered. Perhaps the consciousness that a mistake would cost 2 s . 9d. was salutory.
These users were all anxious to know how they could be sure that the devices were operating correctly. Provided reasonably fresh "pen cells" were used they could be assured they were not at fault. It was found useful to show them how to test with a 3 V bulb and to note the condition of the cell by the intensity of the glow. If the pen cells were in good condition the users could easily judge the condition of the mercury cells which, if faulty, would be found to be satisfactory for a few minutes and thereafter rapidly fade away. After a further period on charge, to ensure that a mistake had not been made, the mercury cells would be rejected if they became ineffective within a short period.

The pen cells lasted for about a month, and six mercury cells, using each cell in turn for four hours and leaving all the others in boosters, lasted two months, and some cases longer.

\section*{WIRELESS INDEX}

The index to Volume 43 of Practical Wireless is now available from the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

The price is 1 s .6 d . inclusive of postage.

\section*{IMPORTANT}

DON'T BUY PRACTICAL WIRELESS and then allow it to become torn and dirty. Don't search frantically through your back issues for that particular article either.

Treat yourself, and your magazines, to a Practical Wireless Binder and Index. A complete year's issues all in one place with an index for quick reference. The Binder is available for just 15 s . Od., and the Index costs only 1s. 6d., postage and packing included. State which volume number you want on the binder, if you don't, we'll send you a blank one.

Available from the Binding Section, George Newnes Ltd., Tower House, Southampton Street, London, W.C. 2

\section*{the world's most advanced high-fidelity amplifier}

The Sinclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts, is a chip of silicon only a iwentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.
Monolithic I.C's. were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most
important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc.
The photographic masks required for producing monolithic I.C's. are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR RADIONICS LTD, 22 Newmarket Rd. Cambridge. Tel: OCA3-52996

\title{
 Einclic Amplife
}

\section*{Specifications}

Power Output
Frequency response
Total harmonic distortion Less than \(1 \%\) at full output. Load impedance 3 to 15 ohms. Power gain \(110 \mathrm{~dB}(100,000,000,000\) times \()\) total. Supply voltage 8 to 18 volts.
Size
Sensitivity
Input impedance

10 Watts peak, 5 Watts R.M.S. continuous. 5 Hz to \(100 \mathrm{KHz} \pm 1 \mathrm{~dB}\). \(1 \times 0.4 \times 0.2\) inches. 5 mV .
Adjustable externally up to 2.5 M ohms for above sensitivity.

\section*{Circuit Description}

The circuit diagram of the IC-10 is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class \(A B\) with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

\section*{Construction}

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE Telephone OCA3-52996

Applications
Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifjer, radio receivers.
The transistors in the IC-10 have cut off frequencies greater than 500 MHz so the preamp section can be used as an R.F. or I.F. amplifier making it possible to build complete
 radio receivers without any additional transistors.

The complete IC10 with the manual and 5 year guarantee costs just

Post free

- \(1 \frac{1}{5}^{4 \pi} \times 1_{1}^{3} 0^{3 \prime} \times 2^{1 "}\)
- Tunes over medium waves
- Playsanywhere

\section*{SINCLAIR Z.12}

INTEGRATED 12 WATT HI-FI AMP AND PRE-AMP

\author{
Size \(3^{\prime \prime} \times 1 \frac{13^{\prime \prime}}{} \times 1 \frac{11^{\prime \prime}}{4}\) \\ - Suitable for car battery operation \\ - For all high quality audio applications
}

Completekitinc. magnetic ear-piec and instructions.

H0/ \(\left.\begin{array}{l}\text { Ready } \\ \text { buitt } a \\ \text { tested }\end{array}\right]\)

Mallory Mercury Cell RM. 675 (2 needed) each 2/9.

ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

The Sinclair Micromatic is available ready built or in kit form. This latter now comes in a convenient new presentation pack complete down to a generous free supply of solder. The moulded polystyrene interior enables you to check the contents in an instant, and helps to make building even easier and surer. Now, the Micromatic is better than ever-more powerful and better sounding to assure superb listening. Selectivity is better than many larger sets. Whether you build it, or buy your Micromatic ready built, it is the best and the smallest personal radio in the world-and it's British. In elegant aluminium fronted black caṣe with slow motion tuning.

15 to \(50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}\), using ultralinear Class \(B\) output. Input sensitivity -2 mV into 2 k O. OUT-PUT-12 WATTS R.M.S. CONTINUOUS SINE WAVE (24 w. PEAK), 15 WATTS MUSIC POWER (15 w. PEAK): Suitable for 3-15) loudspeakers. Two 3 n speakers may be used in parallel. READY BUILT, TESTED AND gUARANTEED.

\section*{SINCLAIR}

PZ. 4 STABILIZED POWER SUPPLY UNIT

A heavy duty A.C. mains power supply unit delivering 18 v. D.C. at 1.5A. Designed for \(\operatorname{Sin}-\) clair IC-10 or for assemblies using two 2.12 s and stereo 25 unit.
Ready built
and tested. \(\quad 99^{\prime} 6\)

\section*{sinclatr guarantee}

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.

SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD CAMBRIDGE

OCA3-52996

\section*{AR/RESEATRANS/REC.}

Compact V.H.F. Trans/Rec. Pocket size Consists of Mike/Speaker, amplifer aerial, Trans/Rec. Operates up to 100 miles batteries. Completely self contained. Cost Govt. over 550 each. Regulations state must be exported or dismantled. So when ordering please state for dismantling purposes only. Price \(£ 2.10 .0\) each. p. \& p. 10/2 sets 25 post free. Four sets \&8, p. \& p. \&1. Special bulk price of 10 sets for \(£ 15\) post free. Export enquiries invited.

\section*{}

\section*{}

GANDY METAL CASES
Size approx. \(7 \times 6 \times 51\) in. With hinged lid and clasp. Very robust. Hammer finish. Price 7/6 AIIRCRAFT/POLICE BAND RECEIVERE. A small transistorised receiver that will receivecivOp aircrait and police/firejambulance broadcasts. ally. Robust metal cabinet size approx. 5 x \(4 \times\) 4in. Attractive front panel. Speaker or headphone output. Price £7.10.0, carriage 10/-. Few only. Brand new and unused.

40 METRE BAND \% RECENER

These excellent receivers were will cover the complete 40 M . Amateur band. Aircraft, and Marine and other Government Stations. It is a 5 valve superhet and works from
standard dry batteries. Built in a robust metal standard dry batteries. Built in a robust metal tuning dial. Phone or speaker output. Not new but in excellent condition. £3.10.0. Carriage 10/Few only. With an associated transmitte covering the same band only \(£ 5.10 .0\). carr. \(10 /\) -

New Component Centre open at this address.
 DEPT. P.W. 14-24 CAWOODS Y ARD

\section*{POWER CONVERTER}

\section*{SCOOP PURCHASE}

The latest electronic 12 volt d.c. to 240 volt a.c converter unit. Ideal for running fluorescent lighting and a.c. only equipment from your 12 volt car battery. These transvertors have a re markably low battery drain. They employ the latest highly efficient method of power conver sion. Complete with full connecting leads and chips. As supplied to hospitals Universities and Govt. Depts. Price Only \(£ 5.10 .0\). carr, \(10 /\). C.O.D. if required.

\section*{COLLAPSIBLE AERIAL}

IN 5 SECTIONS
fully
CLOSED 13, \({ }^{\prime}\)

\section*{\(\qquad\)} effoionle highly OPEN 5'-6" \(\underset{\substack{\text { speciflice } \\ \text { sectifer }}}{ }\) Made to exacting ted sections. Brass base. An ideal aerial for TX/RX use. Easily adaptable for cars, scooters, walkie
talkies etc. Brand new in maker's boxes. Only 21 each, post and packing \(2 / 6\). Two aerials for \(35 /-\), post free. AERIAL TUNER UNITS
for TX/RX use. Will load almost anything. case. Ideal for all radio amateurs and Sact steel case. Ideal for all radio amateurs and S.W.L.'s.
\(25 /=\), p.p. \(7 / 6\).

RvMMLT-PDPPOSE Switching Relay 50
One of the most versatile relays ever made sists of one pair of Heay duty Dip in T. Con which are ideal for switching up to 20 amps. Plus many low current switching contacts. Metal base-plate. Ebonite terminal block. Ideal for aerial changeover units. Car or house burglar ize only \(3 \times 2 \times 2\) in. approx. Special price of \(17 / 6\) each. p. \& p. 2/6. Two for 30/-, post free. Fow 24 volt input versions available.

MOVING COIL HEADPHONESAND MICROPHONES. Brand new in makers' cartons, \(25 /-\) p. \& D. 5

MINIATURE TRANSISTORISED B.F.O This is a miniature transistorised B.F.O. unit (tunable) that will enable your set to receive C.W. or S.S.B. reception. Compact. Single hole fixing. This small unit will anywhere. Ideal or all Ex-Govt, Communication Recejvers and instructions. \(49 / 6\), post free complete with fitting instructions. 49/6, post free

This wonderfullittle set will provide hours of lis tening pleasure. Listen to the thrilling sound of an sos al sea. super or listening to the Hams at work. A printed circuit layout makes it simple to ouild in a short time. Fullycomprehensiveinstru ctions. Employs the latestcomponentsand tran ideal project for beginners. Price 65/-. Post 5/Money back if not delighted.

BI-PAK SEMICONDUCTORS
3 RADNOR HOUSE; 93-97 REGENT STREET. LONDON, W. 1

Solder with the NEWEIMPROVED PRIMAX OR PRIMAXA SPOTLIGHT SOLDERING GUN

Distributors:
S. KEMPNER LIMITED

384A Finchley Road - LONDON - N.W.2.
Tel: 01-794 2371—01-4356365

OE A BRAND NEW WORLD FAMOUS E.M.I. FISK SOLARISCOPE VALUE £2.2. WITH EVERY ORDER VALUE £5 AND OVER. THIS UNIQUE INSTRUMENT WHICHIS A BOON TO SHORT WAVE LISTENERS CLEARLY SHOWS THE AREAS

SEND for a fabulous colour illustrated sound and science catalogue, 88 pages crammed with pictures and information on all the latest electronic and scientific GADGETS, ACCESSORIES AND EQUIPMENT. ONLY 1/6. P.\&P. 1/:

NEW "QUICK-CONNECT" RANGE OF TRANSISTORISED MODULAR UNITS.; Self contained compact units with integral fxing holes f
mounting; screw terminals for straight forward connection. Each operates as an
 AODIO AMPLIFIER MODULE. For audio freq. applications with Tuners, Gramophone Pick-ups, Test Equipment etc. [nput imp. 5,000 ohms; output 8-16 nhms. With 9 volt bittery, output is 700 mV into 8 ohm gpeaker. Requires only mono record player. 37/6 \(\mathrm{P}^{3}\), \& P .
mono record payer. 376. P. \& P. Magnetic cartridges up to 50,000 ohmas. Jinp. GRAM PRE-AMP MODULE, For magnetic AUDIO AMP MODULE to provid Mono Reproduction from R/P fitted with Magrelic Cartringes. 27/6. P. \& P', 1/-PRE-AMP TAPE MODULE. Amplinies and equalizes output from tape heads to playback pre-recorded tapes direct to an audio amplifier. Matches every tape head; cutput up to 1-5v. 27/6. P. \& P. 1/
CODE OSC MODULE. Operates from 3 6 volt battery add 3-16 ohn apeaker and
telegraph key to make a complete Morse ('icle mractice unit, 20/- P. \(\&\). \(1 /-\).
SYNCHRONISE your TAPE RECORDER with your SLIDE PROJECTOR with an ORTOSLIDE UNIT. Fits any tupe recorder, 2 or 4 track. Can be fitted in minute List Price E8.17.6. Our Price ONLY 58/11 (2/.). Send B. A. E. for Leaflet PICK-UP CARTRIDGE REPLACEMENTS (for all Record Players) ACOA GP/67MONO 17/6. ACOS GY/73-2 GTE REO 30/-ACOS GP/91-1 MONO-DE-LUXE 21/BONOTONR, 8TA CERAMIC STEREO 37/6. SONOTONE 9 TAHC CERAMIC 58/6 COLLEL SCUT STEREO ('RJGTAL, 49/11. B8R AXIM STEREO CRYBTALA8/6.
 3 in. 225ft. Message 5/6 \(5 \frac{10}{3}\) in. 1200ft. Ling Play \(15 / 6\)
 Sin. 600 ft Standard Play....... 10/6 5in. 1200 ft . Double Pla
 \(\begin{array}{llll}7 \mathrm{in} .1200 \mathrm{ft} \text {. Standard Play } & 16 / 3 & \text { Tin. } 2400 \mathrm{ft} \text {. Double Play } \\ 5 \mathrm{in} .900 \mathrm{ft} \text {. Long Play. } & 13 / 3 & \text { Ieadertape varions colours }\end{array}\) P. \& P. \(1 /\)-per reel. Four recls and over post paid. Tape splicer \(17 / 6\) plus P \& P i/ POCKET MULTI-TEST METER. \(1000 \Omega\) per voit. Volts \(0 / 10 / 50 / 250 / 500 / 1000\) A.C.
 Mrods, instructions, Pocket size: with huilt in meter protection. Wide angle, jewelled meter novensent. \(20,000 \Omega 2\) per volt D.C. \(10,000 \Omega\) per volt A.C. 019 ranges- \(0,5,25\) \(50,250,500,2500\) volts IB.C. \(0,10,50,100,500,1000\) volta A.C. - \(0-50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~mA}\)
250 mA D.C. \(0-1000 \Omega-6\) megohms. \(10 \mu \mu \mathrm{~F}=0.001 \mathrm{mFd}\). -20 to +2.2 dIF 250 mA D.C. - \(0-6000 \Omega-6\) megohms. \(10 \mu \mu \mathrm{~F}=0.001 \mathrm{mFA}\). -20 to \(+2 \underline{2} \mathrm{dIs}\). Mirror Scale. Complete in cloth-lined leat
Exceptioual value at \(\& 4.11 .6\) (P. \& P. 3/6).
Exceptioual value at \(£ 4.11 .6\) (P. \& P. \(3 / 6\)). OC71 2/9. OC \(24 / 6\). OC81 and OCX1D 3/-each. OC109 3/9. OC170 3/6. AF117 4/OC26 7/6. GET8 5/9, General purpose Appr, ginclair sT140 4/
NEW HIGH FREQUENCY TRANSISTORS. Rinclair \&T140 4/-; \(8 T 1416 /\) bot capable of operating up to \(700 \mathrm{Mc} / \mathrm{s}\). ALSO MAT100 7/9. MAT101 8/6. MAC120 7/9 F.M.WIRELESS. MIC. Range 25 yds. Uses PPS batt. Can be used with any standard BATTERY ELIMINATORS. replacement for PP9. 29/11 (2/-): PP3. 19/11 (1/6). MINI-MOTORS 3 V to \(4 \cdot 5 \mathrm{~V}\) operation. Ideal for mini-racing cars, etc. "Large" \((11 / 6\) \({ }^{1} / 10 \times 1^{2} / 6\) in.) \(3 / 11\). Medium \((1 \times 3 / 5 \times 1 \neq i n\).) 3/9. P. \& P. 9 d .
GENUINE DIAMOND STYLUS at 7/11 plus bl. P.P. as replacements for the following popular tyes: BSR TC8LP-BSR TC8 STEREO-BSR TCS LP/STEREO-COLLARO
STUDIO " 0 " LP/RONETTE-GARRARD GC8 LP-ACOS GP65/67 LP-RONETTE SF40/LP-GARRARD GC2 LP. Sapphire also a vailable at \(3 / 11\) each.
SPEAKERS, 12 in , round high quality British iitted tweeter cone, 6 watts, in \(3 \Omega\) or \(15 \Omega, 35 /-\) P.P. \(3 / 6\). ROUND 12 IN. R. \& A. \(3 \Omega, 25 / 6\). P.P. 3/6. Many other speaker available. 8 in. 3 or \(15 \Omega, 28 / 6,10 \mathrm{in} .3\) or \(15 \Omega, 35 / 6.10\) watt brse speaker by E.M.I TWEETER. 2 in. Black plastic cone, Square Frame. E.M.I. \(3 \Omega, 12 / 6\), plus \(1 / 6\) P. \& I' MICROPHONES. LAPEL/HAND MIKE-Ilin. dia Lapel Clip, ideal for tape record ing. Very sensitive. M/6. P. \& P. I/-. Similar but stick type AM4, 14/6. CRYSTAL HAND MIKE. Robust and sensitive. Cream plastic case. Just the thing for tape recorders, \(8 / 6\). P', \& \(1^{\prime}\). \(1 / 6\). Similar with built-in stand, 10/6
only available at many times the price. Sensitivity- 50 dB . Response- \(50-12,000\) c.p.s. Black Plastic with punched chrominm case, swivels, stand-holder and shielded cable. Only \(48 /-\). P. \& P. \(2 /\). The stand below fits this mike (as well as many others). ACOS MIC \(40-\) World famous besk Mike. \(16 / 8\) plus P. de 1 . \(1 / 3\).
ACOS MIC 45-Splendid Curved Hand Grip Crystal Mike, \(18 / 3\) plus P. \& P. 1/6 ACOS MIC 60-"Stick" Type Cryglat Mikp, \(21 / 3\) plus P. \& P \(1 / 6\).
ACOS \(39-1\) - Figh Quality stick Mike. High Impedance, \(33 /-\) plus P. \& 1 . 1/6. ACOS ROUND Crystal Mike invert, 1fin, dia..7/6. P, \& P. 6t 49/6. Carriage and Paukul \(4 / 6\). Thonk stabd for stick mikes. 7/6
SIREN MODULES. Encsposulated solid atate circuit. Only requires \(3 \Omega\) speaker, switch and battery (9 v .) to complete. Gives screaming siren note. Special half price offer List \(25 /\)-. Our price \(12 / 6\). p.p. \(1 / /\). Make ideal burglar alarm or warning system. INTER-COMMS-DE LUXE TRANSISTORISED PHILIPS "VOXIPHONE" R-Way With cable. Uses PP5 batt. List Price 6 gns. OUR PRICE 50/11. P. \& P. AMPLIFIER. Compact for use in mains portable grama \(6 \frac{1}{9} \times 2 \frac{1}{4} \times 5 \frac{1}{2}\) in., vol, and tone controls attached by lly leads. over 2 watta output, 59/6. P. \& P. 4/6. 4 TRANSISTOR 3 W AMPLIFIER. Size \(2 \frac{1}{2} \times 2 \pi \times 1 \frac{1}{2}\) in. 3,8 or \(15 \Omega\) output, 9 volt battery operated. Highly sensitive. Price (less battery) 52/6. P. \& P. 1/6
TERMS. Cash with onder. No C.O.D. Ordera total \(\mathbf{2 5}\) and over sent carriage pailu (excepting record player lecks whete carriage is shom m). Guarantced money refunded if goods returned perfect within 7 days of despatch.
in our Budget combination storage unit!

Think what you could put in it!
Storage Lots of it, for at thousand things you stock: replacement pars; light bulbs: cameras: anything up \(107^{\prime \prime} \times 8^{\prime \prime} \times 10 j^{\prime \prime}\). Salety drawer-stops as standard. Smooth guide runners thoo All in a compast \(3 \mathrm{ft}-6\) in hight, 2 1t-1 1 in wide, 1 fl deep area. Ready assenbled, in slove enamilled green. With f15.19s worll every penny See the res

\section*{븜몽 NC. BRONNLTD. \\ pacesetters in storage equipment}
```

Send your FREE BROCH. NAME
Send Your FREE BROCH.
URE }\square\mathrm{ or Send }\square\mathrm{ (how
many) Budget Stotage
(a2) \&15.19s. in green
Dept.PW Eagle Steelworks. Heywood, Lancs. Tel: 69018

```

\section*{YOUR CAREER in RADIO \& ELECTRONICS?}

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the linest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation

To: British National Radio School, Reading, Berks. Please send FREE BROCHURE to:

NAME.
Block
ADDRESS
Caps

Please
10|68
BRITISH NATIONAL RADIO SCHOOL

\section*{VALVES \\ SAME DAY SERVICE NEW！TESTED！GUARANTEED！}

SETS
1R5，185，1T4，384，3V4，DAF91，DF91，DK91，WL92，DL94． Set of 4 for 17／6．DAF96，DF96，DK96，DL96， 4 for \(28 /\) ．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 024 & 4／6 & \(12 \mathrm{AU7} 4 / 9\) & UK91 5／6 & EL34 9／6 & PEN36C15／－ & CCF80 & 8／3 \\
\hline 1 A 7 GT & 7／6 & 12AX \(74 / 9\) & 1）K92 9／3 & EL41 9／6 & 13 & UCH42 & \(9 / 9\) \\
\hline 1 H 5 G & 7／3 & 12K8GT \(7 / 6\) & DK96 7／－ & EL84 4／9 & PL36 9／6 & UCH81 & 6／6 \\
\hline 1N5GT & 718 & 20F－10／6 & 1犍 5／－ & EL90 5／－ & PL81 7／8 & UCL82 & 7／6 \\
\hline 1R5 & 5／6 & 20L1 16／9 & 10L92 5／9 & EL95 5／－ & PL89．\(\quad 8 / 6\) & UCL8 & 9／3 \\
\hline 184 & 4／9 & \(20 \mathrm{P} 314 / 8\) & ［ L04 5／9 & EM80 5／9 & PL83 7／－ & UF41 & \(9 / 8\) \\
\hline 185 & 418 & 20 P 4 18／6 & 10196 7－ & EMSI 6／9 & \(\mathrm{P}^{\text {PR84 }}\) 6／3 & UF80 & \(71-\) \\
\hline 1T4 & \(2 / 9\) & 25U4GT11／6 & 1）Y86 5／9 & EM84 6／3 & PL500 13／－ & UF85 & 6／9 \\
\hline 384 & \(5 / 9\) & \(30 \mathrm{Cl} 71-\) & DY87 5／9 & EM97 7／6 & PL504 13／6 & UF＇ヶ9 & 6／3 \\
\hline 3V4 & \(5 / 9\) & \(30 \mathrm{Cl5} 11 / 8\) & FABCKO © 6 & EY51 7／－ & PL508 15／－ & UL41 & \(9 / 6\) \\
\hline 3U4G & 4／6 & \(30 \mathrm{C17} 12 / 6\) & JAFF42 8／6 & EY86 6／3 & РM84 7／9 & UL44 & \(201-\) \\
\hline 5 V 4 G & 8！－ & \(30 \mathrm{Cl8}\) 9／－ & EB91 2／8 & EZ40 7／8 & \(\begin{array}{ll}\text { PX25 } & 10 / 6\end{array}\) & U 1.84 & \(6 / 6\) \\
\hline 5Y3GT & \(5 / 9\) & 30 Fs 121－ & EBC33 7／6 & EZ41 7／6 & PY32 101－ & UM84 & \(7 / 6\) \\
\hline 524G & \(7 / 6\) & \(30 \mathrm{FLl} 12 / 6\) & EBC41 7\％－ & EZ80 4／6 & PY33 101－ & UY41 & \(7 /-\) \\
\hline 6／30L2 & 1218 & 30FL14 12／6 & WBF80 6／－ & E281 4／9 & 1Y80 5／3 & UY85 & 5／9 \\
\hline 6 6L5 & 213 & 30 L 1 6／－ & EBF89 6／3 & KT61 8／9 & PY81 5／3 & \(\checkmark\) ¢4B & 10／6 \\
\hline 6AM6 & 316 & 30 LI 5 14／－ & ECCA1 3／9 & KT81 15／－ & PY82 51－ & \P132 & 21／－ \\
\hline 6AQ5 & 419 & \(30 \mathrm{L17} 13 /-\) & ECC82 4／9 & N78 14／9 & PY83 519 & Z77 & 3／6 \\
\hline 6AT6 & \(4{ }^{\text {i }}\) & \(30{ }^{3} 412 /-\) & ECC83 7／－ & PABC80 \(7 / 3\) & PY88 6／8 & Transi & rs \\
\hline 6AU6 & \(5 / 6\) & \(30 \mathrm{P} 1211 /-\) & ECC84 5／6 & PC86 9／6 & PY800 \(6 / 8\) & AC107 & 3／6 \\
\hline 6BA6 & 4／6 & 30 P 19 12／－ & ECC85 4／8 & PG88 9／6 & PY801 \(6 / 8\) & AC 127 & \(2 j-\) \\
\hline 6 F & \(4 / 8\) & 30PL1 12／6 & ECC804 12／6 & PC97 8／8 & \(\begin{array}{ll}\mathrm{R} 19 & 816\end{array}\) & Al140 & \(7 / 6\) \\
\hline \(6 \mathrm{6P56}\) & 8／9 & 30PL13 14／6 & EClr80 7\％－ & PC900 8／3 & TH21C 9／9 & Al＇102 & 18j－ \\
\hline 6 C 4 & \(2 / 9\) & 30PL14 14／6 & ECr＇82 6／9 & PCC84 61 － & U 25
\(13 /-\) & AF115 & \(31-\) \\
\hline 6 Fl 13 & 3／6 & 25LAGT 8／－ & ECH35 6／－ & PCC85 6／6 & Uels 121－ & AF116 & 3／－ \\
\hline 6F14 & \(91-\) & 35w \(4 / 6\) & ECH42 10／6 & PCC88 9／9 & U47 13／6 & AF117 & \(3 / 3\) \\
\hline \(6 \mathrm{~F}^{\prime 2} 2\) & 12／6 & 3574GT 5／－ & ECH81 5／9 & P＇CO89 10／6 & U49 13i6 & AF118 & \(3 /-\) \\
\hline 6K7c & \(2 / 6\) & \(85 \mathrm{~A} 2 \quad 7 / 8\) & ECH84 7／3 & PCC189 9／8 & U52 4 4／8 & AF124 & \(7 / 6\) \\
\hline 6K8G & 4／8 & 6063 12／6 & ECL80 6／9 & PCliso \(71-\) & U78 3／6 & AF＇125 & 3／6 \\
\hline 6L18 & \(6 /-\) & AZ31 9／－ & ECLA＇2 6／9 & PCF＇82 6／－ & U191 11／－ & AF1こ6 & \\
\hline 6V6G & \(3 / 6\) & 1336 rr \(4 / 9\) & ECLs3 9／－ & \({ }^{\text {PCFP66 }} 8 / 9\) & U301 13／6 & AF127 & 3／6 \\
\hline 6V6GT & 8／6 & B729 12／6 & ECL86 813 & PCF80011／6 & U801 18／9 & \(0 \mathrm{OLS}^{2}\) & \(51-\) \\
\hline 6 X 4 & 3／6 & CCH35 10／－ & Ek＇39 3／9 & PCF＇801 7／3 & UABCRO \(8 / 3\) & OC26 & 51－ \\
\hline 6 X 5 GT & 519 & CL33 18／6 & FF41 916 & PCF802 \(9 / 6\) & UAF42 9／6 & \(\mathrm{OC}_{4}\) & \(2 / 3\) \\
\hline \(7 \mathrm{B6}\) & 1019 & DAC32 \(7 / 3\) & Er80 4／9 & \(\mathrm{P}^{2} \mathrm{CF} 805 \mathrm{~g} 9\)－ & UB41 6／6 & \(0 \mathrm{C45}\) & \(2 / 3\) \\
\hline \(7 \mathrm{B7}\) & \(71-\) & DAF91 4／3 & EF＇85 5／6 & PCF\＄06 11／6 & UBCA1 \(7 / 9\) & OU71 & \(2 / 6\) \\
\hline \(7 \mathrm{C5}\) & 15／－ & DAF96 6j－ & EF86 6／3 & PCF＇808 12／6 & UBC81 7／－ & 0 CZ 2 & \(2 / 6\) \\
\hline 7 C 6 & \(8 / 9\) & DF33 7／9 & EF89 5／3 & PCL82 713 & UBF80 6／－ & 0С76 & \(2 /-\) \\
\hline \(7 \mathrm{Y}{ }^{\text {a }}\) & 6／6 & DF91 \(2 / 9\) & HF91 3／6 & PCL83 \(91-\) & UBF89 \(6 / 9\) & OC81 & \(2 / 3\) \\
\hline 10 Fl & 151－ & DF96 8／－ & EF＇183 5／9 & PCL84 716 & UBL21 9／－ & OC81D & 2／3 \\
\hline 10P13 & 15／6 & DH77 4／－ & EF184 \(\quad 5 / 9\) & PCL85 813 & UC92 5／－ & OC82 & 2／3 \\
\hline 12AT7 & 3／9 & DH81 12／6 & EH90 8／8 & PCL86 8／8 & UCC84 7／日 & OC82 \({ }^{\text {D }}\) & 2／6 \\
\hline 12 A U 6 & \(4 / 9\) & DK32 7／9 & EL33 8／9 & NA4 8／9 & CC85 6／b & & \\
\hline
\end{tabular}

\section*{READERS RADIO}

85
ESS
Tel．01－5507441
Patage on I valve 9d．extra．On 2 valves or more，postage 6d，per
valve extra．Any Parcel lnsured against Damage in Transit id．extra．

17in．－E11．10．0
19in．SLIMLINE
SOBEL－24Gns．

TWO－YEAR GUARANTEE EX－RENTAL TELEVISIONS

FREE ILLUSTRATED LIST OF TELEVISIONS \(17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}\)
WIDE RANGE OF MODELS SIZES AND PRICES
dEMONSTRATIONS DAILY
－WWOYEAR GUARANTEDD
TWO－YEAR GUARANTEED
TUBES \(100 \%\) REGUNNED
14in．－69／6 17in．－89／6
21in．and ALL SLIMLINE TUBES 99／6
EXCHANGE BOWLS．Carr．10／6
ex．maintenance tested tubes
17in．－35／．．Carr． \(5 /\)－（not slimline）

COCKTAIL／STEREOGRAM CABINET £25
 Pollshed walnut veneer with elegan glass fronted cocktail compartment， padded，Position for two 10 in ．ellip－ tical speakers．Record storage space．Helight \(35 \frac{1}{4}\) in．，width \(52 \frac{3}{4}\) in depth \(14 \frac{1}{2} \mathrm{in}\) ．Legs 1 gn ．extra． OTHER MODELS．SEND FOR FREE LIST
TRANSISTOR CHASSIS D1 49／6
6 Transistors．LW／MW．Brand New Famous British Manufacturer． （LESS SPEAKERS）．Dia． \(7 \frac{7^{\prime \prime}}{}{ }^{\prime \prime} \times 3 \frac{3^{\prime \prime}}{4}\) ．P，\＆P，4／6．
TRANSISTOR CASES 19／6．Cloth covered，many colours．Size \(9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2} \times 3 \frac{1}{2}^{\prime \prime}\) P．\＆P．4／6．Similar cases in plastic \(7 / 6\) ．
TRANSISTOR RECORD PLAYER CABINETS 19／6．Dim． \(11^{\prime \prime} \times 14 \frac{1}{4} \times 5 \frac{1}{4}\) P．\＆P．7／6．
SINGLE PLAYER CABINETS 19／6．P．\＆P．7／6．
TV TURRET TUNERS \(5 / \mathrm{m}\) ．New，iess valves．Press button models 19／6． P．\＆P．4／6．
STRIP LIGHT TUBES \(3 / 9\) each． \(11^{\prime \prime}(284 \mathrm{~mm}) 230 /\).240 volts， 30 watts．Ideal for cocktall cablnets，illuminating pictures，diffused lighting etc． 6 for \(£ 1\) ． P．\＆P．free．

DUKE \＆CO．（LONDON）LTD．
621／3 Romford Road，London，E12
Tel．01－478 6001／2／3

with Wharfedale＇s Unit 3 speakerkit
Wharfedale have designed a new genuine high fidelity system that you can build yourself．With the Unit 3 Kit you get ：an 8＂speaker（with a magnetic field of 12,000 oersteds）which covers the bass and middle ranges；the new Wharfedale tweeter with acoustiprene dome； an electrical cross－over unit；acoustic wadding， wiring，etc．，and a complete assembly instruction leaflet，in fact，everything you need to build a compact speaker system．

You can build the Unit 3 Kit into one of two cabinet sizes．In the smaller cabinet the system will give a faithful and rich reproduction of all musical sounds from \(65-17,000 \mathrm{~Hz}\) ．The larger cabinet increases the range from \(40-17,000 \mathrm{~Hz}\) ．

RANK WHARFEDALE LTD．， IDLE，BRADFORD，YORKS．

WHARFEDALE

\section*{Letesolat}

\section*{SOLDERING INSTRUMENTS}

With the introduction of the latest moulded Nylon handle, the change-over to this type throughout the range is now complete. The LITESOLD range includes seven models (\(10,18,20,25,30,35\) and 60 watts), and many accessories.

The newest handle is fitted to the 30 , 35 and 60 watt models, the latter being an improved version of the 55 watt model which it supersedes.

Other improvements featured on the 60 watt model are the simplification of the bit mounting and element fixing arrangements, which bring it into line with the other LITESOLD models. There is also an increase in performance.

All LITESOLD models are now available, to special order, with neon indicator lamps. This feature is valuable in reducing the risk of burns, and of fires caused by instruments left on.

The indicators are mounted inside the handles, which are made from translucent Nylon for this application. An orange glow is clearly seen through the handles whenever the supply is switched on.

Please ask for colour catalogue L10

\section*{LIGHT SOLDERING DEVELOPMENTS LTD}

\author{
28 Sydenham Road, Croydon, CR9 2LL \\ Telephone: 01-688-8589 \& 4559
}

\section*{Fane Loud Speakers}

Type 183-18in. diam. 60 watts r.m.s. 15 ohms. Listed at £25.4.0.

Type 8012-8in. diam. Roll rubber surround, twin cone. 10 watts r.m.s. 15 ohms.
SALE PRICE 60/- \(\underset{\substack{\text { P. \& } P \text { P. } \\ 2 / 6}}{ }\)
Type 8018 -8in. diam. 10 watts r.m.s. 15 ohms.
SALE PR/CE 50/- \(\quad \underset{2 / 6}{\text { P. \& P. }}\)

\section*{Venner Re-chargeable Silver}

Cadmium Battery type xd-3157. 12 volt at 4AH. Size \(3 \frac{1}{6} \times 3 \frac{1}{8} \times 4 \mathrm{in}\). New and perfect.
SALE PRICE 99/6
P. \& P.

\section*{Battery Eliminator Units}

For 200/250 A.C. mains. Output 8 volts, 300 mA . Size \(3 \times 4 \times 2\) in. \(\begin{aligned} & \text { New and } \\ & \text { perfect. }\end{aligned} \quad S A L E \quad P R / C E \quad 13 / 6 \quad\) P.\& \(2 /-\)

\section*{Remote Control Transmitter}

Designed for remote switching of famous make radiogram (export model). Output \(27 \cdot 2 \mathrm{Mc} / \mathrm{s}\). Fitted with 5 valves, crystals, etc. For use on 117 volts A.C. Size \(12 \times 8 \times 5 \mathrm{in}\). New and boxed. No circuit or data available SALE PRICE 59/6

\section*{Armstrong Amplifiers}

FEW ONLY-Model 220 . Stereo valve power amp. 10 watts per channel. Original list \(S A L E P R / C E \in 17.17 .0\) CALLERS

Armstrong PCU-25 (225) Stereo control unit, for use with Model 220
Amplifier. Few only.
Original list \(S A L E\) PRICE \(£ 14.14 .0^{\text {Callebs }}\) price E22.10.0

\section*{Leak Power Amplifiers}

Designed for PA installations. Fitted with 100 volt line output transformer.

\(\begin{array}{llll}\text { TL-12 } & \text { MALE } \\ \text { Model } \\ \text { TL-25 }\end{array} ~ S A L E ~ P R / C E ~ E 17.17 .0 ~ P . \& P\). \(10 / 6\)
Note-These Leak amplifiers are not designed for general Hi-Fi use, unless a suitable control unit and a step down speaker transformer are fitted.
Goodmans Stereo Divider/Mixer Cross-over 300 c.p.s.

\section*{SALE PRICE 10/- Post Free.}

Model A-1004 Plug-in FM Tuner
Self powered by \(9 v\) batt. 5 transistor. Covers \(88-108 \mathrm{Mc} / \mathrm{s}\). For use with tape recs., amps., wireless mics., etc. Size \(5 \frac{1}{4} \times 2 \frac{3}{7} \times 1 \frac{1}{1} \mathrm{in}\).
\(\begin{aligned} & \text { List price } \\ & \text { was } £ 7.7 .0\end{aligned} \quad S A L E P R / C E \quad 89 / 6\) Р. \& P. 100's and 100's of Other Bargains don't delay - all items subject to avallability PERSONAL CALLERS TO:

\footnotetext{
48 TOTTENHAM CT. RD., W. 1 Tel:01-6360647 MAIL orders to:
378 HARROWROAD, PADDINGTON, LONDON, W.9.
}

\title{
R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16
}

Mon.-Sat. 9 a.m - \(5.45 \mathrm{p} . \mathrm{m}\).

All valves Closed Sat. 1.30-2.30 p.m. brand new Open Dally to Callers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

SPECIAL 24 HOUR SERVICE OBSOLETE TYPES A SPECIALITY
QUOTATIONS FOR ANY VALVE NOT LISTED Postage 6d, per valve.

8ETS OF VALVES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Special 24 Hour & \[
\begin{aligned}
& \text { DAF91 } \\
& \text { DAF9 }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { DK9 } \\
& \text { DK } 9
\end{aligned}
\] & \[
\begin{aligned}
& \text { DL92 } \\
& \text { DL96 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { eTS OF } \\
& \text { or DL9 }
\end{aligned}
\] & ALV & & & \[
\begin{aligned}
& 19 /-\mathrm{t} \\
& 27 / 6 \mathrm{t}
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{Express} & \multicolumn{10}{|c|}{BRAND NEW TRANSISTORS} \\
\hline & \(\mathrm{ACl27}^{2}\) & \(7 / 8\) & OC25 & 11/- & 0071 & 4/6 & 0081 & 4/- & OC82D & 8/- \\
\hline \multirow{4}{*}{Order Service} & AF114 & 7\% & OC28 & 18/- & \(0 \mathrm{C7} 2\) & 6/- & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{OC81DM \({ }^{\text {/- }}\)}} & OC83 & 6/- \\
\hline & AF'115 & 71 & OC35 & \(11 / 6\) & \(0 \mathrm{C75}\) & 6/- & & & OC170 & \(7 \%\) \\
\hline & AF116 & \(7 \%\) & OC44
\(0 \mathrm{CH5}\) & 4/6 & OC76 & 8/- & & 8/- & OCl71 & 81/ \\
\hline & AFIL7 & 7/- & \(0 \mathrm{C45}\) & 4/- & 0C77 & 8/- & 0082 & 8/- & OG800 & 7/6 \\
\hline
\end{tabular}

The Ideal, economical and safe way of runnling Translstor Radlos, Record Players. Tape Recorders, Ampllfiers etc. from A.C. Malns. All units are completely Isolated from mains by double wound transformer ensuring \(100 \%\) safety.

\section*{PLUS-3}

MAINS UNIT
Provides three separate switched output voltages \(6 \mathrm{v}, 71 \mathrm{v}\), and 9 v . DC. Attractive case with Indicator Ilght, malng lead, output socket, plug and lead.
 Size \(4 \frac{1}{2} \times 3 \frac{1}{2} \times\)

57/6 P.\& P. 2/6 (Extra lead with DIN plug for Cassette Recorders \(7 / 6\))
 POWER PLUS MAINS UNIT for Cassette Tape Recorders using 7辛v. Complete with DIN plug for recorder power socket. Can also be supplied for a 6-voit output complete with suitable plug. (Please state make, model and voltage

\section*{45/- P. \& P. \(2 / 6 \begin{gathered}\text { make, mo } \\ \text { required.) }\end{gathered}\)}

\section*{MAINS UNIT for FI-CORD 202A}
£4.15.0

\section*{MAJOR POWER PLUS}

\section*{MAINS UNITS}

For single outputs, \(9 \mathrm{v}, 6 \mathrm{v}, 39 / 6\). P. \&P.2/6. For two separate outputs,
\(6 \mathrm{v}+6 \mathrm{v} .42 / 6\). P. \& P. \(2 / 6\). \(6 \mathrm{v}+6 \mathrm{v} .42 / 6\). P. \& P. \(2 / 6\).
(Please state outputs required)
R.C.S. PRODUCTS (RADIO) LTD. (Dept. P.W.), 31 Oliver Road, Landon, E. 17

\section*{Learn at home... First Class Radio and TV Courses}

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV, Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
'Satisfaction or Refund of Fee'
Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885-Over 150,000 successes
CHAMBERS COLLEGE
(Incorp. National Inst. of Engineering)
(Dept. 849F) 148 Holborn, London, E.C.1.

\section*{OUR NEW 1968/69} illustrated catalogue NOW AVAILABLE
(send \(2 /-\) in stamps for your copy)
Catalogue contains prices and details of Amplifiers - \(\mathrm{Hi}-\mathrm{Fi}\) Tuners Loudspeakers - Pick-ups - Playing Decks - Microphones - Test Meters Hand Tools - Valves - Soldering Irons - Tape Recording Accessories etc.

\section*{OFFICIAL SUPPLIERS TO MANY EDUCATION AUTHORITIES AND RESEARCH ESTABLISHMENTS} Usual Educational Discounts

ALPHA RADIO SUPPLY CO
103 Leeds Terrace, Leeds 7. Tel: 25187

A SMALL SELECTION ONLY OF THE GOODS WEE OFFEREAT

\section*{SEMI-CONDUCTORS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TRANSISTORS} & \multicolumn{2}{|l|}{\begin{tabular}{l}
SILICON IIODE \\
RECTIFIERS
\end{tabular}} \\
\hline AC107 & 3/- & OC & \(1 / 11\) & 750 mA series & \\
\hline AC126 & 2/- & OC45 & 1/11 & BY100 800 plv & 6 \\
\hline AC165 & 3/- & OC70 & 2/3 & 400 plv & \({ }^{9}\) \\
\hline \(\mathrm{ACl17}\) & \(4 \cdot\) & OC71 & 1/11 & & \\
\hline ACY19 & \(3 / 9\) & 0 O 72 & 2/- & BYZ13 300 piv & \\
\hline \({ }_{\text {AF }}^{\text {A }} 115\) & 3/9 & OC73 & 2/3 & BYZ12 600 piv & 4/6 \\
\hline AF116 & \(31-\) & \(0 \mathrm{C81}\) & 2 & BYZ11 900 piv & \\
\hline AF117 & \(2 / 8\) & OC81D & 1/11 & BYZ10 1200 piv & 6 \\
\hline BFY18 & \(4 / 6\) & OC82D & \(2 / 3\) & Mullard Stach & \\
\hline BFY51 & \(4{ }^{4}\) & OC140 & 5)- & \({ }^{\text {Bridge }}\) 12Aloo piv & \\
\hline BSY26 & 319 & OC169 & \(3 / 6\) & 12Al00 piv & 39/6 \\
\hline BSY65 & \(3 /-\) & OC170 & \(2 / 2\) & 5 THERISTORS & \\
\hline BSY95A & 3/- & \({ }^{\circ} \mathrm{OC} 171\) & \(4 / 2\) & 100 piv & 6 \\
\hline GET113 & \(2 / 6\) & & & 200 piv & \\
\hline OA9 & 1/8 & OC203 & \(4 / 6\) & \({ }^{300} 400 \mathrm{piv}\) & 10/6 \\
\hline \(0 \mathrm{OC23}\) & \(6 / 6\) & OC204 & 5/6 & 10 amis series & \(12 /\) \\
\hline OC25 & 51- & TK22C & 1/6 & 50 piy & - \\
\hline 0 O 26 & 5 - & \({ }^{2 N 706 A}\) & & 100 piv & 21 \\
\hline OC28 & & 2N753 & 4/6 & 200 p & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(\underset{\substack{\text { Crystal } \\ \text { (7d.). }}}{\text { Diodes-6 for } 2 / 6 .}\)}} & 100 amp & \\
\hline & & & & availab & \\
\hline
\end{tabular} Postage. Packing and Insurance all above 7I. up to 3;1/- from 411; 12 and

MIDGET CONDENSEISS wire ends for transistors
AT 6d. each \(\begin{array}{cr}0-8 \mu \mathrm{~F} & 25 \text { volt } \\ 1 \mu \mathrm{~F} & 275 \text { volt } \\ 2 \mu \mathrm{~F} & 150 \text { volt } \\ 4 \mu \mathrm{~F} & 64 \text { volt } \\ 4 \mu \mathrm{~F} & 150 \text { volt }\end{array}\) \(\begin{array}{cc}640 \mu \mathrm{~F} & 2.5 \text { volt }\end{array}\) At 9d. each \(\begin{array}{cc}2 \mu \mathrm{~F} & 300 \text { volt } \\ 10 \mu \mathrm{~F} & 25 \text { volt } \\ 16 \mu \mathrm{~F} & 16 \text { volt } \\ 30 \mu \mathrm{~F} & 10 \text { volt } \\ 80 \mu \mathrm{~F} & 6.4 \text { volt } \\ 100 \mu \mathrm{~F} & 6 \text { volt } \\ 125 \mu \mathrm{~F} & 4 \text { volt } \\ \text { At I/-each } \\ 16 \mu \mathrm{~F} & 250 \text { volt } \\ 50 \mu \mathrm{~F} & 10 \text { volt } \\ 64 \mu \mathrm{~F} & 25 \text { volt } \\ 200 \mu \mathrm{~F} & 16 \text { volt } \\ 320 \mu \mathrm{~F} & 10 \text { volt }\end{array}\) Other electrolytics in current lis 2GANG VAR. CONDENSER : Mod.. small. air-spaced. 0005 ea. sec. 4/6(1/-) TR ANSFORMERS: Sub-min Output (\(3 \Omega\) for OC72 etc.) and Driver \(2 / 6\) each (6d). Output \(3 \Omega 5 \mathrm{~W} 7000 \Omega\) for 6 V 6 (ex-equip. but perfect) \(2 / 6\) (1/6).
PRINTED CIRCUIT PANELS: Eight boards with minimum 30 Transistors, also Diodes, Capacitors, Resistors \(8 /-(2,-)\) TEST EQUIPMENT MULTETESTER: \(20,000 \Omega\) P. VOIt D.O. 4t \(\times 3 \frac{1}{2} \times 11 \mathrm{in}\). D.C. \(30 \mathrm{k} \Omega\) at centre scale. Cap. \(100 \mu \mu \mathrm{~F}\) to \(0.01 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}\) to \(0.1 \mu \mathrm{~F} .-20\) to + 22dBS. BOCN \(^{7 / 6(3 / 6) \text {, With prods. battery and instructions. }}\)
POCKET TESTER: \(1000 \Omega\) P. volt \(34 \times 2 \downarrow\) K 1 inin. A.C. and D.C. volts 0-12. \(0-120,0-1200\) D.C. current \(0-1 \mathrm{~mA}\) and \(0-120 \mathrm{~mA}\). Res. \(0-200 \mathrm{k} \Omega\), with prods, instructions and battery. 35/- (1/6).
PANEL, METER: \(0-1 \mu A\) Clear, Plastic, Precision 1 in. sq. 23/- (1/6). Details
on request of Valve Voltmeters. 2in. Oscilloscope, Sig. Gen. etc.
DIAMOND STYLII: Replacements for TC8LP TC8LP/Stereo, Studio 'O' BF40LP Ronette, GC2, GC8, GP65/7, all at 6/11 each. Also GP91-LP/S at 12/6. SAPPHIHE STYLII All these types at \(2 / 11\) GP91 at 6/-(6d.each all types).
PICK-UPCARTRTDGES all with stylii and standard replacement fittings Mono GP67/2 12/6. Newest Stereo GP93 22/-, Mono de Luxe GP91 16/-. Stereo Compatible (both mono and stereo) GP/91 SC 18/6. Ceramic Stereo Compatibie. top quality for expensive outfits GP94 \(38 / 6\) (all 1/-).
INTERCOM/ISABY AIARIRM: 2-Station, PP3 Batt. operated, remote call, 50 ft. cable, battery, plugs, instructions. No mains, perfectly safe. 52/6 (3/-). PR3 ELLMINATOIt (A.C.) 1\%/6 (1/6).
TRANSISTORISED ATR, 3 WATT AMPLIFIER: \(24 \times 24 \times 149\) volt: 8 or 160. Also excellent results with 3 ohm speakers 45/6 (1/6),

TAPE RECORDEIR: LATEST solid state, Capstan drive, 2 speed, Batt. Portable, Excellent design. \(3 \neq 1 n\). reels, dynamic mike with remote control pilit mar. British. Profess
RECORDING TAPE: Finest quality mylar. British. Professional quality. Standard: Long Play:
 7 in .1200 ft . \(\quad 11 / 3\left|\begin{array}{lll}7 \mathrm{in} . & 1800 \mathrm{ft} \text {. } & 18 /-\end{array}\right| \begin{aligned} & \text { vertised due to time factor }\end{aligned}\) Message: 3 in . 225ft. \(3 / 6\) (P.P. \& I. on tape \(1 / 3\) per reel. 9 d . on Message). MICROPIIONES, CRYSTAI, ACOS 40 Desk Type 15/6 (1/3); ACOS 45 Curved Hand Grip \(17 / 3(1 / 6)\); ACOS 60 "Stick" 20/3 (1/6). ACOS 39 "Stick"
 with Base. Adaptor and Neck Cord 3y/6 (2/6). MS11, similar, but fixed on fiexible Swan neck to switch-fitted base 42/6 (2/6). All mikes supplied with leads. SPEAKEIKS: 12in round, fitted Tweeter, \(6 \mathrm{~W}, 3\) or \(15 \Omega\) (state which), \(33 / 6\) (4/6): \(2 t i n, 3 \Omega 6 / 6(1 /-) ; 6 \times 4\) heavy duty \(3 \Omega 13 / 6(2 / 6)\) or for Stereo \(30 /\) pair.
post etc. paid: \(8 \times 3,15 \Omega 13 / 6(1 / 6)\) HEAIPIIGNES High Res. \(2000 \Omega\) ea. EARPIECE \(18 / 6(1 / 6)\) - Stereo Dvn \(8-16 \Omega\) (1)/ (3/-) Earpieces, with lead etc., Min. Plug. Masnetic 1/6; Crystal \(2 / 9\) (either 6d.)
AERIAIS,CCar, telescopic, vandal proof: locks retracted, 2 keys and all fittings. 22/6 (2/6). For F.M. and all sets. Telescopic 6 extn. shin.-22in. with

HIDE TOOL BAG \(13 \frac{1}{4} \times 5 \frac{5}{2} \times 3\), with \(\operatorname{strap} 6 / 6\) (3/6)
SWTTCHES: Standard toggle, metal, 250 v 2 A . One hole fixing: SPST \(2 / 3\). SPDT \(2 / 9\) DPST 3/-. DPDT "3/3 Slide types, Sub-min. DPDT \(1 / 6\) each,
Small DPDT, 3 way, centre "off" \(1 / 9\) Reed magnetic on/off \(1 / 9\) (7d. each, Small DPP
VIBRATORS: 12V 4 pin, non-synch., 2/6; 6V, 6 or 7 pin, Synchronous, \(10 /-\) (1/-all types).
MAINSNEON TESTER: Fly leads 2/- (7d.); PLUGSstd. Jack, plastic body 2/- Screened 2/9, Socket \(1 / 6\) (All 7d.). VALVE HOLDERS: B7G or B9A, cols. each 5 yds. Solid Core 2/3, Flexible Core 2/6 (either 6d.). PICK-UP Cols, each Sis. Solid Core 2/3, Flexible Core 2/6 (either 6d.). PICK-UP Co-ax, Microphone (Single and twin) and other Cables and Wires in General

\section*{FELSTEAD ELECTRONICS}

LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE
rerms: Cash with order by post only. No COD or caller service. Regret no orders acceptable under 5/- plus P.P.\& Ins. Money refund guarantee if goods charges are shown in brackets after all items. Orders value a 5 and over, except where indicated. sent oharges paid. Charges apply to and only. overseas air or surface mail extra at cost.

\section*{BI-PRE-PAK LTD}

222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX PHONE: SOUTHEND (OSO2) 46344

\section*{BRAND NEW PAK ! ! !
JUST RELEASED}

REPLACES OUR VERY POPULAR B39 PAK. Short Lead Components, all Brand New and Factory Marked on 10 Printed Circuit Panels.
Approximately
80 TRANSISTORS AND DIODES 85 HIGH TOLERANCE RESISTORS \(\quad\) 25 VARIOUS CAPACITORS
Please state when ordering Pak. P.1. 2/6 Post and Packing with this pack.

BRAND NEW PRE-PAKS
No. 50 Uninarked Trans, Untested
B1 50 Unmarked Trans. Untested 4 Solar Cells inc. Book of Instructions
\(\begin{array}{ll}\text { B2 } & 4 \text { Solar Cells inc. Book of Ins } \\ \text { B6 }\end{array}\)
B6A 17 ORP12 Light Sensitive Cel
B53 25 silicon Transistors \(400 \mathrm{M} / \mathrm{c}\)
\({ }^{1354} 40\) Silicon Transistors NPN To5 New, tested
B55 40 gilicon Transistors NPN Tol8
B56 40 Eilicon Tratusistors N PN/PNP
B61 25 BSY2b/7 Transistors new, untested
B62 25
B64 25
BFY
Bo/1/2 Transistora new, untested
136525 BO107/8/9 Transistors new, untested
\(\begin{array}{ll}365 & 1 \text { Unijunction Transistor 2N2 } \\ \text { C2 } & 160\end{array}\)
A3 25 Mixed Marked and Tested Transistors
A21 5 Power Transistors, one AD149, one OC26 and three more
FEW LEFT 70 amp/400 p.i.v. SCR's
\begin{tabular}{|c|}
\hline Transistors \\
\hline AC107 \\
\hline AC126 \\
\hline AC127 \\
\hline AFil7 \\
\hline \({ }^{\text {AClif6 }}\) \\
\hline BC107-8- \\
\hline OOPII \\
\hline BSY95A \\
\hline OC22 \\
\hline 0 C 23 \\
\hline 0 CL 5 \\
\hline 0 C 26 \\
\hline OC28 \\
\hline 0 C 35 \\
\hline OC36 \\
\hline 0 C 41 \\
\hline 0 C 42 \\
\hline 0 C 44 \\
\hline 0045 \\
\hline 0 C 71 \\
\hline 0 C 72 \\
\hline 0 C 73 \\
\hline 0 c 81 \\
\hline OC81D \\
\hline OC83. \\
\hline OC139 \\
\hline OC140 \\
\hline OC170 \\
\hline 0 C 171 \\
\hline OC200 \\
\hline OC201 \\
\hline 2N1302 or 3 \\
\hline 2 N1304 or 5 \\
\hline 2N1306 or 7 \\
\hline 2N1308 or 9 \\
\hline
\end{tabular}
rice
\(3 /-\)
\(2 / 4\)
\(2 / 4\)
\(3 / 6\)
\(4 /-\)
\(5 /-\)
\(10 /-\)
\(3 /-\)
\(6 /-\)
\(6 /-\)
\(7 / 6\)
\(5 /-\)
\(10 /-\)
\(5 /-\)
\(7 / 6\)
\(2 / 6\)
\(3 /-\)
\(1 / 11\)
\(1 / 9\)
\(2 / 6\)
\(2 / 6\)
\(3 / 8\)
\(2 / 6\)
\(2 / 6\)
\(4 /-\)
\(2 / 6\)
\(3 / 6\)
\(3 /-\)
\(4 /-\)
\(5 /-\)
\(8 /-\)
\(4 /-\)
\(5 /-\)
\(8 /-\)
\(8 /-\)
* ALL OUR SEMICONDUCTORS HAVE A WRITTEN GUARANTEE \(\star\) Send for our FREE ilsts and catalogue of all our products. Check your own equivalents with our free substitution char
FIRGT EVER LOGIC KITA. Learn for yourself how computers work, even make one for yourself. Full instructions for a noughts and crosses machine,
binary counters, timers, etc. ENTIRELY NEW RANGE, Norkit Junior, £8, make counters, timers, etc. ENTIRELY NEW RANGE, Norkit Junior, £8,
binary count
Norkit Senior, £16. Norkit Senior, £16.

DETAILS FREE.
NO CONNECTION WITH ANY OTHER FIRM. MINIMUM ORD CABU WITH ORDER PLEASE,
OVERGHAS ADD EXTRA FOK AIRMAIL.

\section*{YOUR JOM CHM v.f.A. STOCKIST} Can't be far away - Drop in and ask him for the facts

BATH—Ryland Huntley.
BIRMINGHAM—Chas H. Young Ltd. BIRMINGHAM-R.S.C. Hi-Fi Centres Ltd. BOURNEMOUTH—National RadioSupplies BRADFORD-R.S.C. Hi-Fi Centres Ltd. BRADFORD-Radio Ham Shack.
BRIGHTON-Technical Trading Company. BRISTOL—R.S.C. Hi-Fi Centres Ltd. BURNLEY-Trafalgar Supplies.
CARDIFF-Wesak Radio.
CHELTENHAM - Spa Radio Ltd. CHESTERFIELD-J. Tweedy Ltd. COVENTRY-Swanco Products Ltd. DARLINGTON-R.S.C. Hi-Fi Centres Ltd. DERBY-R.S.C. Hi-Fi Centres Ltd. DONCASTER-B. Page.
EDINBURGH——R.S.C. Hi-Fi Centres Ltd. EDINBURGH—F. Brown \& Co. Ltd. EXETER-Electrosure Ltd. FOLKESTONE-John Golding Ltd. GLASGOW-R.S.C. Hi-Fi Centres Ltd. GLASGOW-R.M.E. Surplus Supplies GOREBRIDGE-Gilmour Stewart.

HALIFAX—Albert Hind Lid.
HARTLEPOOL-The Radio Shop.
HUDDERSFIELD-Radio Craft (Hudd.) Ltd. HULL—R.S.C. Hi-Fi Centres Ltd. HULL-Short Wave (Hull) Ltd. ILFORD-Radio Developments Ltd. LEEDS-R.S.C. Hi-Fi Centres Ltd. LEICESTER-R.S.C. Hi-Fi Centres Ltd. LEICESTER—S. May Ltd.
LIVERPOOL-R.S.C. Hi-Fi Centres Ltd.
LIVERPOOL-Stephens-James Ltd.
LONDON-Daystrom Ltd.
LONDON-G. W. Smith \& Co. Lid.
LONDON-Lasky's Radio Ltd.
LONDON-R.T. \&I. Electronics Ltd. LONDON—Alfred Imhof Ltd.
LOUGHBOROUGH-Taurus Electrical Services.
LUTON-Coventry Radio Ltd. MANCHESTER-R.S.C. Hi-Fi Centres Ltd. MIDDLESBROUGH-R.S.C. \(\mathrm{Hi}-\mathrm{Fi}\) Centres Ltd.
NEWARK—George Francis.

NEWCASTLE-UNDER-LYME-Sidney Chadwick.
NEWCASTLE-UPON-TYNE—Richley \& Freeman Lid.
NEWCASTLE-UPON-TYNE-R.S.C. Hi-Fi Centres Ltd.
NEWPORT (Mon.) -K. F. Paull Ltd. NOTTINGHAM-Pete's Electronics Lid. PLYMOUTH—Radio Parts-Components Specialists.
PORTSMOUTH--Technical Trading Co. PURLEY-G3HSC.
SCARBOROUGH—Derwent Radio Ltd. SHEFFIELD-R.S.C. Hi-Fi Centres Ltd.
SOUTHAMPTON-Technical Trading Co.
SOUTH SHIELDS--J. R. Gough Electronics. ST. HELENS—Harold Scott Ltd.
STOKE-ON-TRENT-(see Sidney T. Chad-
wick, Newcastle-under-Lyme).
SUNDERLAND-The Red Radio Shop.
WALSALL—Normal Service Ltd.
WORCESTER - Jack Porter Ltd.
WORTHING-G.W.M. Radio Lid. WORTHING-Technical Trading Co.

If you can't get there you can always write to:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{5}{|l|}{\begin{tabular}{l}
personal callers welcome \\
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. \\

\end{tabular}} & \multicolumn{3}{|l|}{COOMOR} \\
\hline & & & & & & & & & & \\
\hline & \[
\begin{gathered}
\text { OLDH } \\
(01)
\end{gathered}
\] & 743496 & & \[
x_{121}
\] & & tandard G.P.O. type & & \[
\begin{aligned}
& \text { ERSEAS } \\
& \text { mor } \\
& \text { DLDHAW }
\end{aligned}
\] & & \begin{tabular}{l}
ltd \\
Lwd.
\end{tabular} \\
\hline
\end{tabular}

\section*{DESIGNERS GUIDE TO BRITISH TRANSISTORS}

\author{
By KAMPEL 25/- P. \& P. 1/-
}

\section*{Amatres} Theerinurers Gude to Transistors by Reddi-
hoter
 1 Practical Transistar Theors by wiesner \(20 /\) Eifectratic Games and Toys you can Build py Buckwalter 24/- P. © PO
 F.E.T. Circuits by Turner 25l-P. \& P. 1/-

\section*{UNIVERSAL BOOK CO. \\ 12 LIttLE NEWPORT STREET,}

LONDON, W.C. 2
(Leicester Square Tube Station)

\section*{Est. 1943 JOHNSONS Tel: 24864}

VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, 70-150 Mc/s, 69/6, p.p. 4s. New super 5V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere \(4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}\). Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

\section*{FOOTBALL POOL COMPUTER}

5 FORECASTS RESULTS - CHEAP, EASY TO BUILD ANYONE CAN OPERATE IT SCIENTIFIC AID TO WINNING

Analogue Computer
(3) Very simple, cheap, easy-to-build circuit. Multiplies and divides.
* Fascinating demonstration of computer principles.
Circults of the above, with two further simpie Electrical Analogue circuits, BInary Adder/Subtracter and Noughts and Crosses Machine Circults. 4/6 post 6d.
PLANET INSTRUMENT CO. 25(W) DOMINION AVE. LEEDS 7

\section*{Practical Wireless Classified Advertisements}

The pre-paid rate for classified advertisements is \(1 / 6 \mathrm{~d}\). per word (minimum order \(18 /-\)), box number \(1 / 6 \mathrm{~d}\). extra. Semi-displayed setting £4. 12s. 6d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

\section*{SERVICE SHEETS}

SERVICE SHEETS-Radio, T.V., Players, Grams, Tape Recorders. from \(1 /-\), Send for lists 1/-(s.a.e.). Fountain Press, 46-47 Chancery Lane, London W.C.2.

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS. RADIO, TELEVISION, TAPE RECORDERS, 1925-1968 by return post, from \(1 /\) - with free fault-finding guide. Catalogue 6,000 models \(2 / 6\). Please send stamped addressed envelope with all orders/ stamped addressed envelope with 54 w London Road, Bexhill, Sussex.

SERVICE SHEETS (75.000) 5/- each: please add loose 4d. stamp: callers welcome; always add loose 4 d . Stamp: calers, womas BOWER, 5 South Street, Oakenshaw, Bradford.

\section*{C. \& A. SUPPLIERS}

\section*{SERVICE SHEETS}
(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)

Only \(5 /-\) each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

\section*{71 BEAUFORT PARK LONDON, N.W. 11}

We have the largest supplies of Service Sheets (strictly by return of post) Please state make and model number alternative.

Mail order only.

\section*{SITUATIONS VACANT}

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs. etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio. TV. Electronics, etc. write for 132of Radio. TV, Electronics, etc. Write for 132 page Handbook-FREE, Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 13
Court, Aldermaston, Berks.

\section*{SITUATIONS VACANT (continued)}

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C. Eng., A.M.I.E.R.E, A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.1.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering Computers; Draughts.. Building, etc. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court. Aldermaston, Berks.

\section*{TRAIN TODAY FOR TOMORROW}

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Electronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include :
- radio/tV eng. \& Servicing
- AUDIO FREQUENCY
- closed circuit tv
- ELECTRONICS -many new courses
- ELECTRONIC MAINTENANCE
- instrumentation and SERVOMECHANISMS
- computers
- PRACTICAL RADIO (with kits)
- PROGRAMMED COURSE ON electronic fundamentals
Guaranteed Coaching for :
- Inst. Electronic \& Radio Engs.
- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Cert.
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education Start today-The ICS Way

\section*{international} CORRESPONDENCE SCHOOLS Dept. 173, Parkgate Rd., London, S.W.11. Please send FREE book on

Name
Address

\section*{SITUATIONS VACANT (continued)}

INTERESTING \& VARIED WORK for experienced P.A. engineer for custom-built equipment. Good rates of pay and liberal overtime at present. Magneta (B.V.C.) Ltd, Parsons Green Lane, S.W.6. (Mr. Stuttle. 736-5566.)

RADIO and tape recorder testers and trouble shooters required. Canteen, excellent rates of pay. \(8.00 \mathrm{a} . \mathrm{m}\). to \(5.00 \mathrm{p} . \mathrm{m}\). 5 -day week. Elizabethan Electronics Limited, Crow Lane, Romiord, Essex, Phone: Romford 64101.

\section*{EDUCATIONAL}

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all basses. For of electrical engineering, electronics, branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132 -page Aldermaston Court, Aldermaston, Berks.

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.1.

\section*{BOOKS \& PUBLICATIONS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SURPLUS HANDBOOKS} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{15}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{52 set Sender and Receiver Circuits \(7 / 6\) post free} \\
\hline \multicolumn{2}{|l|}{Resistor colour code Indicato S.A.E. with all enquiries} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Mail order only to:} \\
\hline \multicolumn{2}{|l|}{INSTRUCTIONAL HANDBODK} \\
\hline \multicolumn{2}{|l|}{pt. PW, talbot house.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

Boxes of B.A. Nuts and Bolts, all Brand new and high grade machine cut items, invaluable to all Service men, experimenters etc. Bolts include 2.BA 4.BA and 6.BA up to \(2^{\prime \prime}\) long various heads, mainly brass, approx. \(3-400\) items per box, our Special Price 7/6d. plus \(2 /\)-d. Post and Packing. WALTON'S WIRELESS STORES. 55a Worcester Street, Wolverhampton, Staffs.

\section*{HIGH GLDSS METALLIC HAMMERED ENAMEL MAKES FANTASTIC DIFFERENCE TO PANELS -say hundreds of eathusiastic users 'Crackle' pattern appears metal. No undercost air dries 15 min . to hard glossy finiwh. Heat, liquid \\ and seratch-proof. Lt. and Dk. Blue; Bronze; silver Green; Black. Send NOW for free list, or \(8 /-(+1 / 9\) post and packing) for trial \(\frac{1 \mathrm{pt}}{}\). tin, colour samples and \\ FINNIGAN SPECIALITY PAINTS, Dept. P.W. STOCKSFIELD (TeI. 2280), Northumberland.}

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear-lots of unusual stuff. This Cat. is free for the asking. K. R. WHISTON (Dept. PWC), New Mills, Stock port.

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns. MINIFLUX 4-Track stereophonic/monophonic Ferrite Erase Heads. List Price \(£ 3.10 .0\), supplied together (one of each) at \(£ 3.17 .6\). SK N4 \(\frac{1}{2}\)-track stereophonic record/play heads for Transistor Circuits at \(55 /-\) each. Also available \(\frac{1}{2}\)-track monophonic Ferrite Erase Heads Type LF6.0 with built-in osc. coil, 22/6 each. All heads complete with technical specifications. Send S.A.E. for details. LEE ELECTRONICS, 400 Edgware Rd., Paddington 5521.

\section*{MORSE MADE ! !}

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month (Normal progress to be expected.)
Using selentifically prepared 3 -speed records you automatically learn to recognias the code RHYTHM without translating. You can't help it, it's easy as learning a tune. 18 W.P.M. in 4 weeks guaranteed. For detalis and course E.O.D. ring, s.t.d. 01-660 2896 end 8d. stamp for explanatory hooklet to:

G3CHS/P, 45 GREEN LANE, PURLEX, SURREY

\section*{WANTED}

WANTED particulars "Practical Wireless" issue containing improved circuit of ScottTaggart Supergram de Luxe in "Wireless Constructor," September, October 1934, by D. R. Heeramaneck, 12 Alexandra Road, New Gamdevi, Bombay 7-WB, India.

WANTED
(continued)
WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S
WJRELESS STORES, 55 Worcester Street Wolverhampton.

WANTED: Popular Brand New Valves. R.H.S., Stamford House, 538 Great Horton Road, Bradford 7.

WANTED: New valves, transistors etc.; state price. E.A.V. Factors, 202 Mansfield Road, Nottingham.

DAMAGED Avo Meters, Models 7 and 8, Damaged Meggers, any quantity. Send for packing instructions. HUGGETT'S LTD., 2/4 Pawson's Road, West Croydon.

VALVES WANTED, brand new popular types boxed. DURHAM SUPPLIES 367c, Kensington Street, Bradford 8, Yorkshire.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, grams, transistors, etc. STAN WILLETTS,
37 High Street, West Bromwich, Staffs. Tel.: WES 0186

\section*{WANTED NEW VALVES ONLY}

Must be new and boxed Payment by return
WILLIAM CARVIS LTD
103 North Street, Leeds 7

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

\section*{ELECTRICAL}

LLIANT PERFORMANCE EVER from 12 volt Car Battery BRILLIANT HEAVY UUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 VISION, ELECTRIC DRILLS, MEL MANS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for Fluorescent lighting. Thousands of uses. Tremendous purchase makes fantastically new low price possible.
ONLY \&4 each plus 10/- delivery. C.O.D. with pleasure. MONEY BACK it not DELIGHTED. Please send s.a.e. for illustrated details. (Dept. PW) STANFORD ELECTRONICS Rear Derby Road, North Promenade, IBLACKPOOL, Lancs.

\section*{RECEIVERS \& COMPONENTS}

BARGAIN PARCELS of new surplus Electronic Components, \(3 /-, 5 /-, 10 /-\), post free. DOLPHIN ELECTRONICS, 5 Pooles Way, Briar Close, Burntwood, nr. Lichfield.

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, \(1-20\) watt, \(12 / 6\) Post Free. WHiTSAM ELECTRICAL, 33 Drayton Green Road,

RECEIVERS \& COMPONENTS
(continued)

SPECIALISTS IN READY TO ASSEMBLE Speaker Enclosures from bookshelf to the larger 3 speaker system models. Satisfaction assured. Send S.A.E. for details. EATON AUDIO FITMENTS, Dept. W1, Leopold Street, Long Eaton, Nottingham.

\section*{BARGAIN LIST}

OC70. OC71. OC72, OC81, OC81d, OC45, OC170. 0 C 171 at \(2 /\) - each

MAIL ORDER ONLY. P. \& P. 1/-
S.A.E. for List

HALSE SERVICES
36 gloucester road, feltham, MIDDLESEX

TRANS/RECEIVER TWO TWO
This is one of the latest releases by the govt. of an extremely recent R/T set covering \(2-8 \mathrm{Mc} / \mathrm{s}\) in two switched bands, containing 13 valves (3 ELi32s in TX output) which can be used for more CW or R/T. Also has netting checking all parts of set, size \(17 \times 8 \times 12 \mathrm{jn}\). Power required LT 12 V D.C., HT 325 V D.C. Supplied brand new and boxed with beadphones and mike also two sparo valves and circuit of set. Few only at 25.10 .0 . carr. \(30 \%\) New plug in power supply made by us for either 12V D.C. input \(£ 3.10 .0\) or \(200 / 250 \mathrm{~V}\) A.C. \(£ 3.17 .6\).

This is a modern self contained tunable V.H.F. low powered frequensy modulated transrecejver for R.T. communication up to \(8-10\) miles. Made tor the Ministry of Supply at an extremely high cost by well known British makers, wing 15 midget B.G. 7 valves, receiver Slow motion tuning with the dial calibrated in 41 chan nels each \(200 \mathrm{Kc} / \mathrm{s}\) apart. The frequency in 41 chan\(39 \mathrm{Mc} / \mathrm{s}-48 \mathrm{Mc} / \mathrm{s}\). Also has built-in Crystal calibrator which gives pips to coincide with marks on the tuning dial. Power required LT \(4 \frac{1}{2}\) volts. HT 150 volte, tapped at 90 volts tor receiver. Every set supplied complete with valves and cryatals. New in carton, complete with adjustable whip aerial, and circuit. Price \(\mathbf{4} 4.10 .0\), carriage
\(10 \%\)

\section*{JOHN'S RADIO}

\section*{OLD CO-OP. WHITEHALL ROAD. DRIGHLINGTON BRADFORD. Tel: DIIGHLINGTON 2732}

RECEIVERS \& COMPONENTS (continued)

MINIATURE ELECTROLYTICS, 15 volt, \(2,6,8,10,15,2040,50,100 \mathrm{mfds} .8 / 6\) per doz., 30 for E . The C.R. SUPPLY CO., 127 Chesterfietd Road, Sheffield 8.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{quality new valves Guaranteed six months. Post Paid.} \\
\hline & 5/8 & EF & & PC & & PL500 & \\
\hline eabc & 5/8 & H1P86 & \(6 / 3\) & PCC84 & 6/6 & PY3 & \(91-\) \\
\hline B91 & 2/3 & EF89 & 6/3 & PCC89 & 101- & PY81 & \\
\hline C82 & 4- & EF91 & 2/3 & PCr'so & 8/8 & PY8 & \\
\hline ECC83 & 4/9 & EF183 & 6/3 & PCL82 & 8/6 & PY8 & \\
\hline ECC85 & \(5 / 6\) & EF184 & 6/3 & PCL83 & 9/3 & PY80 & 6/6 \\
\hline Cc91 & 85 & EH90 & 8/9 & PCL84 & 7/9 & PY80 & \\
\hline ECH81 & \(5 / 3\) & EL84 & \(4 / 9\) & PCL85 & 8/- & UCC & 6/9 \\
\hline ECLSO & \(6 / 9\) & EY86 & 81 & PCL86 & 719 & UCH & 6/6 \\
\hline 22 & \(8 / 3\) & Ez80 & \(4 / 3\) & PFL200 & & UCL8 & \\
\hline ECL86 & \(7 / 6\) & Ez81 & 4/9 & P1,36 & \(9 / 9\) & UL84 & \(6{ }^{6}-\) \\
\hline & 4/9 & 88 & 101- & L81 & 7/6 & & \\
\hline \multicolumn{8}{|c|}{SEMICONDUCTORS} \\
\hline ACJ07 & 4/- & BD121 & 161- & OC35 & 8/6 & & \\
\hline AF239 & 11/- & BFY50 & 5/3 & OC45 & \(2 / 6\) & 0C81D & \\
\hline BC108 & \(2 / 9\) & BY100 & \(3 / 6\) & \(0 \mathrm{C7} 1\) & \(2 / 5\) & 263 & 315/6 \\
\hline BC109 & 41- & OC28 & 6/8 & 0075 & \(2 / 8\) & 2N3819 & 12/6 \\
\hline
\end{tabular}

\author{
Special bonus on orders of \(£ 2\). Lists on request.
}

\section*{J. R. HARTLEY (Dept W1), 2 Waterloo Terrace. Bridgnorth, Shropshire.}

Micro Sonic transistor radios, 4 nickel cadmium batteriea, battery charger, leather case, store soiled, no guaranitee, OK for repair or spares, in original boxes, \(24 / 8\) post paid.
Audio Amplifiers approx. 750 mW , size \(5 \times 2 \frac{1}{2}\) in., 2 ,
AG154s, ACl13, OC71, supplied with 1 watt output transformer for 3 ohm speaker and connecting data hargain at \(1 \% /-\)
3-Gapg Tuning Condensers 365 pF per section 6-1 and 18-1 dital reduction drive with anti-backtash gears, long spindte, size only \(2 \times 18 \times 1{ }^{3} \mathrm{in}\). (brand nev) \(7 / 6\) each
Transistor audio tranaformers, suit \(0 \mathrm{C81s}, \mathrm{ACl54s}\), etc., driver and output 1 watt rating for 3 ohm
speaker, \(5 / 6\) pair, \(3 / 6\) each; 500 mW rating \(4 /\) - pair. speaker, \(5 / 6\) pair, \(3 / 6\) each, approx. 150 (brand new) components, \(9 /-\).
80 pF Small Sitver Mico Components, \(9 /-\mathrm{i} \mathrm{V}\), ideal for transistors, \(4 /\) - per 100 .
Trassistor Capseitors. (\(0 \cdot 1 \mathrm{mFd}\), 50 V W (polyeater). \(3 /-\) doz. 0.01 mF d 12 i w disc ceramic wire ended 3/- thoz, Transistor Electrolyties, 2 nF 6VW 4 d .4 mF 64 \(\mathrm{VW}^{\mathrm{F}}\),
 each. \(350 \mathrm{mF}, 9 \mathrm{VW}, 400 \mathrm{mF}\). \(15 \mathrm{VW}, 500 \mathrm{mF}\), 9 VV
9d. earth.
Small Paper capacitors: \(0 \cdot 005 \mathrm{mF} 500 \mathrm{VW}, 40\) for \(4 /-\); a \(04 \mathrm{mF} 125 \mathrm{VW}, 40 \mathrm{for} 4 /-\)
Double Gang pots. 100 k
Double Gang pots. \(100 \mathrm{k}+100 \mathrm{k}\) rev. log., \(450 \mathrm{k}+\) 250 k log., \(500 \mathrm{k}+500 \mathrm{k}\) lin., 1 meg, +1 lueg. \(\log\) long spindles 1 in. dia. (brand new) 3/- each.
2-Gang Tuning condenters. \(325 \mathrm{pF}+375 \mathrm{pF}\) 6-1 reductiongears, \(4 / 6\) each. MAIL ORDER ONLY
 Costage up
orer \&
A. J. H. ELECTRONICS

59 WAVERLEY ROAD, THE KENT, RUGBY WAR WICKSHIRE. Rugby 71068

\section*{SUPERIOR QUALITY NEW RESISTORS}

Garbon film Low noise
Power.
range \(\quad \begin{gathered}\text { High stability } \\ \text { serics perdoz jer } 100\end{gathered}\) \begin{tabular}{lllll}
Power & & range & serics perdoz ler 100 \\
\(+1 W\) & \(5 \cdot 1 \Omega\) & to \(330 \mathrm{k} \Omega\) & Fiz4 & \(1 / 10\) \\
\hline
\end{tabular}
 \(\begin{array}{ccccc}\text { iW } 5 \% & 4.7 \Omega \text { to } 10 \mathrm{M} \Omega & \text { E2 } 24 & 2 / 2 & 17 \%- \\ \text { IW } 10 \% & 4.7 \Omega \text { to } 10 \mathrm{M} \Omega & \text { E12 } & 3 / 3 & 25 / 10\end{array}\) 1/6 less per 100 in 100 's of one ohmic value QUALITY CARBON SKELETON PRE-SETS \(100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 2 \cdot 5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega\) \(2 \mathrm{M} \Omega, 2 \cdot 5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega\)
A vailable in horizontal or vertical mounting \(1 /\)-each. LOW COST VOLUME CONTROLS: \(100 \Omega\) to \(10 \mathrm{M} \Omega\) \(\operatorname{lin} 2 / 3\) each. \(5 \mathrm{k} \Omega\) to \(5 \mathrm{M} \Omega \log 2 / 3\) each.
CERAMICS: \(1000,2200,4700 \mathrm{pF}, 500 \mathrm{~V}\) 5d, 0.005 , \(0 \cdot 01,0 \cdot 02,0.03 \mu \mathrm{~F}\) 50V 5d. POLYSTYRENE 10pF to 820 pF 5d
 \(10 \mu \mathrm{~F} 25 \mathrm{~V} 9 \mathrm{~d} .100,200 \mu \mathrm{~F} 10 \mathrm{~V} . .25,50 \mu \mathrm{FF} 25 \mathrm{~V} 1 /-\)
ginh-min Mullard Ct 26 range: all valuea 10 stock. BIB - PEAK SOUNDPODUCTS AND KITS AVAII ALL PEAK SOUND PRODUCTS AND KITS
ABLE AT ADVERTISED PRICES. EVERYTHING BRAND NEW . NO 'SURPLUS' SEND \(1 /\) - for our catalogue containing data on 200 up-to-date semiconductors avaitable from stock, as well as many other components, also transistor equival. enfsiabie. hnatiabis io every seriows axperth DISCOUNTS: \(10 \%\) over \(13,15 \%\) over \(£ 10\).
Post and Packing: \(1 \%\) urder \(£ 1\), free orer \(£ 1\).

ELECTROVALUE
\({ }^{\text {Deph. }}\) 6 MANSFIELD PLACE ASCOT BERKSHIRE

RECEIVERS \& COMPONENTS (continued)

WE ARE BREAKING UF COMPUTERS

COMPUTER PANELS (as shown) \(2 \times 4 \mathrm{in}\). 8 for \(10 \%\) POST FREE, with min. 30 transistors.
\(100 \operatorname{lor} 65 /-+\) p. \& p. \(6 / 6.1,000\) for \(£ 30+\) carr.
 Inductors on each borrd. 3 for f 1 . l'ost Free. Inducturs on each bower Transistors sim to OC28 on each hoard + conlponents. 2 Boards (\(4 \times 0 \mathrm{OC} 28\)) 101 ROWER TRANSISTORS, sim 2Ni74 ex. eqpt. 4 for \(10 /\)
OVERLOAD CUT OUTS Panel Mounting in the following walues at \(5 /-\) each. \(1 \frac{1}{2}, 2,3,4\)
TOS TRANSISTOR COOLERS. \(76 / 6\) doz
MINIATURE GLASSNEONS. \(12 / 6\) doz
LONG ARM TOGGLE SWITCHES, ex eqpt. 15/- doz.,
NEW MIXED DISC CERAMICS, 150 for \(10 /-, p\). \& \(p\).
LARGE CAPACITY ELECTROLYTICS, \(4 \frac{1}{2} \mathrm{in} .2 \mathrm{in}\). diam. Serew Terminals. All at 6/- each. \(+1 / 6\) each
p. \& p . p. \& 1 .
4,000

6,300 Mft. 75 v . D.C. wkg. \(25,000 \mathrm{Mfd}\). 15 v . D.C. Wkg. \(6,300 \mathrm{Mff}\). 75 v . D.C. wkg. \(25,000 \mathrm{Mfd}\). 15 vv . D.C. Wkg.
\(10,000 \mathrm{Mld} .35 \mathrm{v}\) D.C. wkg. 1,500 Mfd. 180 D . D. \(\mathbf{w k g}\).
KEYTRONICS, 52 Earls Court Road. London, w.8.
Muil order only. Send 1/-stampa for list.

\section*{DUXFORD ELECTRONICS (PW)}

Duxford, Cambridge. (Sawston 3031)

MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing \(1 /-\) DISCOUNT \(\begin{aligned} & \mathbf{1 0} \% \text { over } \mathbf{£ 2} \\ & \mathbf{1 5} \% \text { over } \mathbf{£ 5}\end{aligned}\)

POLYESTER CAPACITORS (Mullard
Tubular \(10 \%, 160 \mathrm{~V}: 0.01,0.01 \bar{n}, 0.022 \mu \mathrm{~F}\), 7d. 0.033 , \(0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d}\). \(0 \cdot 18 \mu \mathrm{~F}, 11 \mathrm{~A}, 0 \cdot 22 \mu \mathrm{~F}, 1 /-\) \(400 \mathrm{~V}: 1.000,1.500,2,200,3,300\) 4.700pF, \(6 \mathrm{~d}, 6,800 \mathrm{pF}\) \(0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d}\). \(0 \cdot 068.0 \cdot 1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 15 \mu \mathrm{~F}, 1 / 2.0 \cdot 2 \mu \mu \mathrm{~F}, 1 / 6.0 \cdot 33 \mu \mathrm{~F}\), 2/3. \(0 \cdot 47 \mu \mathrm{~F}, 2 / 8\).
Modular. metalised, P.C. mounting, \(20 \%\). \(250 \mathrm{~V}: 0.01\),
 \(\begin{array}{ll}0 \cdot 16 \mu \mathrm{~F}, & 11 \mathrm{~d} . \\ 0.22 \mu \mu \mathrm{~F}, 1 / \\ 0.6 / 3 . & 1 \mu \mathrm{~F}, 2 / 8 .\end{array}\)
POLYSTYRENE CAPACITORS: \(5 \% 160 \mathrm{v}\) (unencapsulated): \(10,12,15,18,22,27,33,39,47,56,68,82,100\), \(120,150,180,220,270,330,360,470.660,680,820 \mathrm{pF}\), \(6,800,8.200,10,000 \mathrm{pF}, 8 \mathrm{~d} .15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}\). \(1 \%\). 100 V (encapsulated): \(100,120,150,180,240,220\), \(330,390,470,560,680,8: 20 \mathrm{p}, 1 /-1 /-1,000,1,200,1,500\) \(1,800,2,200,2,700,3,300,4,700 \mathrm{pF}^{2}, 1 / 3.5,600,6,800\),
\(8.200 .10,000,12,000,15,000 \mathrm{pF}, 1 / 6.18,000,222,000\), \(27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 \cdot 047,0 \cdot 056 \mu \mathrm{~F}, 2 /-\) \(0 \cdot 068,0 \cdot 082,0 \cdot 1 \mu \mathrm{~F}, 2 / 3.0 \cdot 12 \mu \mathrm{~F}, 2 / 9.0 \cdot 15.0 \cdot 18 \mu \mathrm{~F}, 3 /-\) \(0 \cdot 22 \mu \mathrm{~F}, 4 /-.0 \cdot 27,0 \cdot 33 \mu \mathrm{~F}, 5 /-.0 \cdot 39 \mu \mathrm{~F}, 5 / 9.0-47 \mu \mathrm{~F}, 6 / 3\), POTENTIOMETERS (Carbon), miniature. lin. \(\times \frac{1}{2} \mathrm{in}\).
spindle. Lin. \(100 \Omega\) to \(10 \mathrm{M} \Omega, \log 5 \mathrm{k} \Omega\) to \(5 \mathrm{M} \Omega, 2 / 3\). spindie. Lin. LORESETON PRE-SET POTENTIOMETERS (Carbon): 1, in. \(100 \Omega\) to \(5 M \Omega\). Horizontal and vertical \(P^{\prime}\). C. mounting. Miniature (\(0 \cdot 3 \mathrm{~W}\)), 1/-. Submin (\(0-1 \mathrm{~W}\)), 10 d .
RESISTORS (Carbon flm), very low noise. Range: \(5 \%, 4 \cdot 7 \Omega\) to \(1 \mathrm{M} \Omega ; 10 \%, 10 \Omega\) to \(10 \mathrm{M} \Omega\).
tW (\(10 \%\)), 1 gd (over 99,1 (i), 100 oft per value \(12 /-\)

 SEMI-CONDOCTORS: OAS, OAB1, 1/6, OC44, 2/-. OC45. 1/9. OC71, OC72. OC73. OC8I, OC81D, 0082D, OC170, OC171, \(2 / 3\). OCl40, AP115,
SILICON RECTIFIERS (0.5 A): 170 P.I.V., 2/9. 400 \(\begin{array}{lllll}\text { SILICON RECTIFIERS } \\ \text { P.I.V., } \\ \text { 3/-, } & 800 & \text { P.I.V., } 3 / 3 . & 1,350 & \text { P.I.V., } \\ 3 / 9 . & 1,500\end{array}\) P.I. \({ }^{\text {P., }}\). \(3 /-\).

Send S.A.E. for May, 1968 Catalogue

RECEIVERS \& COMPONENTS (continued)
AUDIO TRANSISTORS, like OC72, NKT251 etc. Good, New, Tested, \(1 /-\) each, minimum arder 5/-. Post 6d. J. BLACKER, 221 Loughborough Road, Leicester.

COMPONENTS AT GIVE-AWAY-PRICES: Comprising: Transistors; 1\% Resistors. Condensers: Diodes: Valve Holders: plus a very useful 9 -way plug/sockets. Over 100 components from ex-Brand New Equipment, 10/or 250 assorted as above \(20-\). Post paid. Order now and avoid disappointment. DIAMOND MAIL ORDER PRODUCTS, Prospect House, Canal Head, Pocklington, York.

\section*{MICROMINIATURE MICROPHONES}

35FT AERIAL MASTS
Seven bit. 8in. interlocking sections of 2 in, diameter heavy gauge steel tube,
complete with swivel base calibrated in regrees, nine nylon guy lines and ground spikes. Finished olive green. E16. Carr. 30/.
70FT. MAST. 14 rections as ahove with 12 nylon guy
lines and spikes phas tiock and tackle, \(£ 32.10 .0\). Carr.

\section*{MAKE YOUR OWN AERIAL MAST!}

5 ft . 8 in. sections as above \(20 /\) - per section. Carr. 3/. each. Nylon guy lines with semi-autnmatio each P. \& P. 2/. esch. swivel base \(30 /\)-. Corr. \(10 /\) Ground spikes \(4 / 6\) each. P. \& P. \(1 / 6\) each.
TELESCOPIC AERIAL MASTS. Tubular stee copperised spray finish, ring carn lock ing on each section provides for full or any helght required.
Suital)h all fxings and bane focatlons. Botton suilathe all ixings and bane ocatlons. Bottoin
gection 1 \#in. diameter. 20ft. 4 section. Cloged stt. 9 ir . Weight 181b. 70/-. Carr. 15/:. 20 ft . 4 section plus 12it. whip. Weight 17 lb . \(80 /-\) Carr. \(15 /\). Carr. 15/
11-12FT, WHPP AERIALS. With captivated /h. 8 it ditto \(/ 6\). \(P\) er AERIAL with llexilie base \(15 /-\) P. \& \(\boldsymbol{l}^{\prime} .3 / 6\). ROTARY TRANSFORMERS BY HOOVER 12v. W.C. input. Ontput. 250 . D.C. at 125 mA D.C. at \(65 \mathrm{~mA} 25 /-\) P. \& P. \(4 / 6\).

REJECTOR UNITS. For rejecting un wanted signals. Switched 4 langes \(1-2-10 \mathrm{Mc} / \mathrm{s} .30 / \mathrm{F}\). I' \& l' R.F. ANTENNA TUNER (A.T.U.). 160/80/40 metrese, 230.....
D.L.R. BALANCED ARMATURE HEAD-

FAMOUS NO. 19 SET TRANS/RECEIVER

Covers \(2-8\) Me/s in 2
bands. 11 valve superhet
bands. 11 valve superhet transcelver including 807 P.A. Power reqk. LT 12 v . tranemit 500 F D. C Slightly used \(55 /\)-. Carr Carr. 10/-. All 19 set anciliary parts available

\section*{A.SHOMPSUN (Dept PV)}
"EILING LODGE", CODICOTE HITCHIN, HERTS Phone: CODICOTE 242
Hours of business Monday to Friday 8-5. Sat. 8-12. Prices correct at time of press but subject to increase

RECEIVERS \& COMPONENTS (continued)

\section*{Mains Transformers}

The following transformers all have 120 v \(50 \mathrm{c} / \mathrm{s}\) primaries and are supplied in pairs for wound C. core types fitted terminal blocks and fixing brackets open construction, O/P voltages are for series or parallel conn of Sec Type A. Secs 135 v at 16 amps or 270 v at 8 amps or by using sec as pria 100 v at 16 amps or 200 v at 8 amps. Size \(8 \times 7 \times 6\) in.
Type B. Secs \(9 v\) at 120 amps car
rype B. Secs 9 v at 120 amps or 18 v at 60 amps ,
price 6 xlus.
Type C. Secs 40 v at 8 amps or 80 v at 4 amps also aux winding of 15 v at 500 Ma , size 6x4x4in.
Price 22 plus 7/6 carr

\section*{Smoothing Chokes}

All C. core type fitted terminal blocks and fixing brackets.
Type A. To smooth 8 amps D.C.size \(6 \times 5 \times 5\) in. Type B. To smooth 4 arr.
 Type C. To smooth 500 M Price 12s. bil. plus \(4 / 6\) post

\section*{Smoothing Condensers}

All have fully insulated cases terminal connections and fixing clips
\(5600 \mu \mathrm{fl} 150 \mathrm{v}\) Wk 185 v Surge size \(6 \times 3\) in \(4000 \mu \mathrm{f} 50 \mathrm{v}\) Wk 75 v Surge size \(5 \times 2 \mathrm{in}\). Price 30 s . \(2500 \mu \mathrm{f} 75 \mathrm{v}\) Wk 100 v Surge size \(4 \times 2 \mathrm{in}\). Price 10 s . 800 цf 50 v Wk 75 v Surge size \(5 \times 1 \frac{1}{2}\) Price \(7 / 6\) \(700 \mu \mathrm{f} 150 \mathrm{v}\) Wh 185 v Surge size \(5 \times 1 \frac{1}{\mathrm{i}}\) in Price \(\mathrm{r} / 6\) All plus \(2 / 6\) post

\section*{Ammeters}

Two types both 2 in scale \(24 i n\). OSD F1 Rd M.C internal shunt ruggerised 0 to 5 amps Price both types

\section*{Variac \& Motor}

This is a \(120 \mathrm{v} 50 \mathrm{c} / \mathrm{s}\) variac rated at 74 amps 0 to 140 v out driven by an enclosed 120 v speed of approx 1 P.PM Motorcanbereversed and limit swts are fitted.
Price £6 10s. Dlus \(10 /\)-carr
Transistor control unit for above. Price 30 s .

\section*{Transistor Units}

As follows. Type A this is finned Ali heat sink fin ished in matt black size \(11 \times 9 \times 1 \frac{1}{6}\) in. and is fitted with 4 type \(2 \mathrm{~N} 1022 \mathrm{H} . \mathrm{V}\). power transistors these are P.N.P. type rated VCcase temp. there are also 41 ohm em its at 25 The heat sink can be cut to make 4 separate units
Price 50s. plus \(4 / 6\) post.
Single 2N 1022 on H/S 1 \%/6 plus \(2 j\)-post. Type B. This has 32 N 1022 transistors and type 1 N 120 S Sil Diodes these are rated 600 PIV 12 amps each also 2 type 1 N 2991 diodes and a number of other small parts, these are Mrice 3 On in size \(11 \times 9 \times 1+1 \mathrm{l}\)
Set of 4 IN1206 diodes 45 s
Type C. This has 2 type 2N1184B Med Pw P.N.P. trans rated Ve-80V Ic 3a Col Disp. 7.5 these are mounted on H/S \(11 \times 2 \frac{1}{2}\)., there are also 5 type 1 N3016 Zener Diodes these are \(6.8 v 1\) watt, 2 type 1 N941B Zener Diodes 12 v diode and other small parts inc plus and \(S\) Price \(22 / 6\) plus \(2 / 6\) post.

\section*{Transistor Stabiliser Unit}
lisedo/P of in tended to give a highly stabiand 8 Sil diodes amps uses 5 Transistors A.C. at 4 amps and requires an I/P of 40 V O/P can be adjusted over range 22 to 28 v ext smoothing is required, with circ, Price 2410 s, plus 6/- post
We can supply as a set the above plus 2 trans type choke and smooth conds at, £6 10 s

The above goods are all ex USAF electronic

\section*{B. SLATER \\ 55 Handsworth Road, SHEFFIELD. S9 4AA.}

RECEIVERS \& COMPONENTS (continued)

TRANSISTORS/VALVES - lowest prices. S.A.E.-list. G.T. Mail Trading Co., Alexandra Park, Mablethorpe.

WHARFEDALE UNIT 3. This amazing Hi-Fi Speaker Kit complete with ready-to-assemble Cabinet to Wharfedale specifications. Send S.A.E. for details to:

EATON AUDIO FITMENT
Leopold Street, Long Eaton, Nottingham.

\section*{STELLA NNE RANGE CASES}

Manufactured in Black, Grey, Iagoon or Blue Stelvetite and finished in Plastic-coated Steel, Moroceo Finish with Aluninium end plates. Rubber feet are attached and there is a removable wack plate. There is also a removable fron panel in 18 s.r.g. Allos

LIST OF PRICES AND SIZES
 Cases-Port 4s. 6d.

CHASSIS in Aluminium, Standard Sizes with Gusset Plates gizes to fit Cases. All 2 la" Walls \(^{\prime}\)

\section*{E. R. NICHOLLS}

Manufacturer of Electronic Instrument cases
46 LOWFIELD ROAD STOCKPORT - CHESHIRE

Tel: STOckport 2179

\section*{METAL WORK}

METAL WORK: All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

\section*{MISCELLANEOUS}

BUILD IT in a DEWBOX quality cabinet. 2in \(\times 2 \frac{2}{2}\) in \(\times\) any length. D.E.W. Lid., Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet. Write now-Right now.

\section*{ELECTRONIC MUSIC ?}

Then how about making yourself an electric organ? Constructional data availablefull circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable

Write NOW for free leaflet and further details to C. \& S., 20 Maude Street Darlingion, Durham. Send 3d. stamp

\section*{MISCELLANEOUS}
(continued)

\section*{4 WATT GRAM AMPS. \\ Volume and tone controls, mains operation, \(3 \Omega\) output, new and boxed \(65 /-\begin{aligned} & \text { POST } \\ & \text { PAID }\end{aligned}\) \\ BY 100 RECS 3/- \\ SALOP ELECTRONICS \\ 9a Greyfriars Road, \\ Coleham, Shrewsbury \\ S.A.E. for //sts}

\section*{AERIALS}

\section*{Enthusiasts THE T.M.P. EXPERIMENTAL AERIAL KIT}

A unique collection of alloy elements, dipoles, booms, clamps, mast reflectors, nuts \& bolts, cables even a compass! etc., to nake up various experimental aerials to cover all bands.
This includes TV transmissions, SW for the radio amateur, VHF for BBC FM. Amateurs on 2 and 4 MTrs, Aircraft, Police etc., UHP for experiments on BBC 2 and Ultra High Frequencics. These Kits can be used indoor Frequencics. Rhese
or outdoor. Robust construction with simplior outdor. Robust construction with
fied detailed plans for easy assembly.
The Wonder T.M.P. Kit costs only
89/6-no extra for carriage.
Despatched to any address in UK within 7 days.
TUBULAR METAL PRODUCTS
7. LOWESMOOR TERRACE, WORCESTER.

\section*{PLEASE MENTION}
"PRACTICAL WIRELESS"
WHEN REPLYING TO
ADVERTISEMENTS

NEW VALVES!
Guaranteed Set Tested 24-HOUR SERVICE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & DL94 & & EM81 6/6 & & \\
\hline & 4/3 & DL96 & 6/6 & EY51 619 & PY3 & \(9 /\) \\
\hline \(1 T 4\) & 2/9 & DY8 & 5/6 & EY86 61- & PY3 & 91 \\
\hline 4 & \(5 / 9\) & DY87 & 5/6 & E280 3/9 & PY8 & \(5 /\) \\
\hline V4 & \(5 / 6\) & EABC8 & 6/3 & EZ81 4/6 & PY8: & \(4 /\) \\
\hline 4 C & \(8 / 6\) & EBC41 & 6/9 & KT61 8/3 & PY83 & \(5 /\) \\
\hline AQ & \(4 / 6\) & EBF80 & \(5 / 9\) & N78 14/6 & PY88 & 8/8 \\
\hline CFl3 & & EBF89 & \(61-\) & PABC80 \% & PY800 & d \\
\hline 6 L 18 & 61 & ECC81 & \(3 / 9\) & PC97 \(7 / 8\) & PY801 & \\
\hline 12 F 8 G & \(71-\) & ECC82 & 4/3 & PC900 8/ & R19 & \(6 / 6\) \\
\hline 20F2 & 101- & ECC83 & 4/8 & PCC84 5/9 & U25 & \(2 /\) \\
\hline 30 Cl 8 & 8/9 & ECC8 & 4/9 & PCC89 10/3 & U26 & \(11 /\) \\
\hline F & 12/3 & ECH35 & 5/9 & PCC189 9/6 & U191 & \(10 / 6\) \\
\hline 30 P 4 & 11/- & ECH42 & 9/9 & P'OF80 6/9 & UABC & B/ \\
\hline 30 P 19 & 11/- & ECH81 & 5/3 & PCF82 \(5 / 9\) & U RC41 & \(7 /\) \\
\hline 30 PLI & 12/3 & FCLL80 & \(6 / 8\) & \(\mathrm{l}^{\text {COF801 }} 71 /\) & UBr' & \\
\hline COH35 & \(9 / 9\) & ECL8: & 8/3 & PCH805 8/9 & CO84 & \\
\hline CL33 & 18/6 & ECL83 & 8/9 & PCL82 6/9 & UCC85 & 6 \\
\hline DAC32 & 6/9 & ECL8 & \(7 / 9\) & PCL83 818 & UCh's0 & \(8 /\) \\
\hline AF92 & 4/3 & E|T39 & 3/6 & PCL84 7/3 & UCH42 & 9/6 \\
\hline DAF96 & 5/11 & EF80 & 4/8 & PCL85 8/3 & UCH81 & 6/3 \\
\hline DF33 & 7/6 & EF85 & \(5 /-\) & PCL86 81 & CCL82 & \\
\hline Dr91 & 2/8 & EF86 & 6/8 & PFLL200 \(12 / 6\) & UCLs & \\
\hline DF96 & 5/11 & EF89 & \(4 / 8\) & PL36 9/3 & UF41 & \(9 / 6\) \\
\hline DK32 & \(7 / 8\) & EF183 & \(5 / 9\) & PL81 7/- & UF's9 & 5/11 \\
\hline DK91 & bl- & EF184 & 5/6 & PL82 5/9 & UL41 & \(8 / 9\) \\
\hline DK96 & \(6 / 9\) & EL33 & \(8 / 3\) & PLAB \(6 / 6\) & U1,44 & \(5 / 9\) \\
\hline DL35 & \(4 / 8\) & EL41 & 9/3 & P1.84 6/- & UY41 & 8/6 \\
\hline DL92 & 5/9 & & 4/6 & PL500 12/6 & UY85 & \\
\hline \multicolumn{7}{|l|}{Postage on 1 vaive 9d. extra. On 2 valves or more, poatage 6d. per valve extra. Any parcel insured against damage in transit 6d. extra. Offee address, no callers.} \\
\hline \multicolumn{7}{|c|}{} \\
\hline & 83 & \[
\begin{aligned}
& \text { OSBAL } \\
& \text { TOKE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LDE } \\
& \text { NE }
\end{aligned}
\] & TON ROA VINGTON & D & \\
\hline
\end{tabular}

\section*{Z \& I AERO SERVICES LTD.}

Please send all correspondence and Mail-Orders to the Head Omoe
Whensending cash with order, plesse include \(2 / 6\) in \(\&\) for postage and handing MINIMUM CHARGE 2/-. No C.O.D. orders aooepted

Retail Shop
85 TOTTENHAM COURT ROAD LONDON W1

\author{
LANgham 8403
}

Open all day Saturday

1

First Quality

\section*{ELECTRONIC VALVES}

\section*{}

```

E

```
\(\stackrel{\rightharpoonup}{1}\)
- ELL80

\section*{}

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
EFl84
EF804
EH90
ECL
EC
EC
EC
E
E
E

L80 15/-

\section*{INTEGRATED CIRCUIT AMPLIFIERS}

RCA Type CA3020
Integrated Circuit Audio Amplifter in TOS encapsulation (gize of a sniali transistor), equivalent to seven n-p-n silicon transistors, 3 diodes and 11 resistors. Pow'er output 550 mW . Total harmonie distortion \(1 \%\). \(30 /\)-plus \(2 /\)-p.p.
voltage from 3 to 9 volts.
GENERAL ELECTRIC Type PA\&z2
Epoxy moulded in-line package equivalent to six n-p-n trangistors, one diode and six resistors. It will provide output of up to \(1 \cdot 2\) watts into 15 ohms. Battery operation
The construction of amplifier using the above integrated circuits had been described in March and August issues of P. W. please note that we only supply the IC's and no
other parts are aupplied by us.

\section*{LOW and MEDIUM CURRENT THYRISTORS}
\(3 / 40,400\) p.i.v. 3 amp , stud mounted. Gate voltage 3.0 v . at 20 mA max

BLUE SPOT, 200 p.i.v. 5 amp, stud mounted. Man spot 400 pi 5 amp at
Gate voltage \(3 \cdot 25 v\). at 120 mA max................ \(17 / 6\)

\section*{HIGH CURRENT THYRISTORS}

CR80-021A, 80 ampe, 25 p.i.i.v. .
28/-
CR100-151A, 100 amps, 150 p.i.v.
CR100-201A, \(100 \mathrm{amps}, 200\) p.i.v.
CR100-251A, 100 amps, 250 p.i.w.
CR100-301A, 100 amps, 300 p.i.w.
CR100-3F1A, 100 amps, 350 p.i.v.
CR100-401A, \(100 \mathrm{amps}, 400\) p.i.v.
CR100-501A, 100 smps, 500 p.i.v.

\section*{AVALANCHE SILICON RECTIFIERS}

Type RAs508AF, 960 p.i.w. at 6 amps. max., stud mounted

\author{
\(10 / 6\)
}

\section*{DRY REED INSERTS}

Glass dry reed inserts approx. lin. diak \(x\) lin long with axial leads. One "make" contact of 100 mA capacity at ov. Can be operated by permanent magnet or \(30-50\)

\section*{CURRENT PRODUCTION CATHODE RAY TUBES}

2AP1-2in, gereen. E1IT 500 to 1000 V . Typical senBase. Overall length 7 in in. \(40 /-\) 3BPI-3in. screen. EHT 1500 V . Typical sensitivity \(\mathrm{X}-150 \mathrm{~mm} / \mathrm{V} ; \mathrm{Y}-200 \mathrm{~mm} / \mathrm{V}\). B 14 A Base. Overall length 10 in. 5CP1A. 5im. screen, with P.D.A.; EHT 4000 and 2000 V . Typica sensing 1001 All the above tubes have \(6-3 \mathrm{~V}\) heaters and are suitable for general oscilloscope to use

\section*{GERMANIUM POINT CONTACT DIODES}

CG4E = CV448 2/-; OA5 3/-;OA64/-;OA7 4/-;0A47 2/6; OA70 2/-; OA798/3; OA81 1/9; OA85 1/B; OA90 2/OA91 2/-; OA95 2/.

\section*{OUR NEW 1968/1969 CATALOGUE IS NOW READY}

THE TECHNCAL INFORMATION SECTION HAS BEEN of SEmicondoctors. please send s.A.e. (quarto Size) For FRE CATALOGOE.

TRANSISTORS
\begin{tabular}{ll|ll|ll|l|l|}
\(\mathrm{OC16}\) & \(15 /-\) & ACl 25 & \(6 / 6\) & \(\mathrm{BC107}\) & \(6 /-\) & \(\mathrm{V} 30 / 30 \mathrm{P}\)
\end{tabular} \begin{tabular}{ll|ll|llll}
OC 23 & \(12 / 6\) & \(\mathrm{ACl26}\) & \(5 /-\) & \(\mathrm{BCl08}\) & \(4 /-\) & \(20 /-\) \\
0 AC 24 & \(15 /-\) & \(\mathrm{ACl}^{2}\) & \(5 / \mathrm{B}\) & BCV 30 & \(17-\) & 20309 & \(5 /\)
\end{tabular} OO
0
0
0
O
O
OC
OC
O
0

:
!
00
00
:

0 C
0 C
0
0 OCl
061
\(0 C 1\)
0 Cl
OC
0 C
OC
OC
OC
\(\mathrm{OCL}_{2}\)
\(\mathrm{OC}^{2}\)
\(0{ }^{0} \mathrm{C}\)
\begin{tabular}{rl|l|l|l|l|}
\hline 0 C206 & \(14 /-\) & ASZ21 & \(8 / 8\) & MAT120 7/6 & 28104 \\
A0107 & \(10 /-\) & AUY10 20/- & MAT121 & 8/- & 28702 \\
\hline
\end{tabular}
10-watts STUD MOUNTED
ZENER DIODES
\(4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}, 6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 11.0 \mathrm{~V}\)
\(12.0 \mathrm{~V}, 15.0 \mathrm{~V}, 16.0 \mathrm{~V}, 18.0 \mathrm{~V}, 20.0 \mathrm{~V}, 24.0 \mathrm{~V}, 27.0 \mathrm{~V}, 30.0 \mathrm{~V}\) \(33 \cdot 0 \mathrm{~V}, 36 \cdot 0 \mathrm{~V}, 43 \cdot 0 \mathrm{~V}, 47 \cdot 0 \mathrm{~V}-811\) at \(\mathrm{B} / 6\).

\section*{blueprints}

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

\section*{PRACTICAL WIRELESS}

\section*{query service}

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

\section*{QUERY COUPON}

This coupon is available until 4 th October, 1968 and must accompany all queries in accordance with the rules of our Query Service. PRACTICAL WIRELESS, OCTOBER 1968

\footnotetext{
Published on or about the 7th of each month by GFORGF NEwNES IIMI'IWD, Tower House. Southampton Street. I ondon. W. C. 2 . at the recommended maximum price shown on the cover. Printed in Lngland by WATMOUGHS LIMITED. Idle. Bradiord; and London. Sole Agents for Australia and New Zealand GORDON \& GOTCH (A/sia) Ltd. South Arica: CENTRA1ANEWSALENCY LTD. Rhodesia. Malawiand Zambia: KINGSTONS LTD. East Africa: S'ATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage tor one year' 'To any lart of the World \&2. 2.0 d .
}

\section*{SOLID HIGH FIDELITY AUDIO EQUIPMENT BRITISH MADE}

16 PAGE BROCHURE ON REQUEST. No 21 All units sold separately.
- MP3 nono preanpliney

- \(\begin{aligned} & \text { SP6-2 inomeistereo (takes matg. } \\ & \text { pick-up as well) }\end{aligned}\)
£15.10.0 n.p. 5/-
- MPA12/3 I2 watt amplilie

E4.10.0 p.p. 2/6
- MPA12/15 12 tolf ohtu

12 watt \(\quad \mathbf{5} 5.5 .0\) p.n. \(2 / 6\)
- MPA25 \(25-30\) watt cuntiller for E7.10.0
- PS24/40 power supply for
£3.12.6
- Mu60 porver suppls ta

MPA25 \(\quad\) £4.17.6 p.p. 4
the finest value in high fidelity-chdose a SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

Audio Equipment developed from Dinsdale Mk. II each unit or system will compare favourably with other professional equipment selling at much higher prices. Briel details are below:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Complete shomentiot items} & Price \\
\hline 1 A & M13 \({ }^{\text {+ MPA12/3 }}\) + MU24 & \$15.5.0 p.p. \(5 /=\) \\
\hline 2 A & \(5193+M 15 A 12 / 55+M U 40\) & ¢18.0.0 p.p. \(5 /-\) \\
\hline 4 & MP貟+(2) MPA \(12 / 15+\mathrm{MU} 40\) & £21.2.6 1.p. \(7 /-\) \\
\hline 8 & - \(1 \times 3\) - MPrava + MU60 & \$18.15.0 p.p. \(\overline{7}\) \\
\hline 8A & A1PA + (2) Mr-A12M5+MU40 & ¢26.0.0 [1.p. \(8 / 4\) \\
\hline 10 & APlj-2 + (2) M1'Al? \(15+\) M 40 & £29.5.0 p.p. \(8 / 6\) \\
\hline 12A & & £35.10.0 p.p. [10/- \\
\hline 13 & & £33.17.6 p.p. \(10 / \mathrm{F}\) \\
\hline
\end{tabular}

87/105 Mc/a Transistor Huperhrt Geared tunhg. Terifle quality arm kefleitivit. Tin Complete with chal plate. 5 Multard Iransistors. plus 4 Dodes. (Cathinet Assembly \(20 /-\) extra.)

Asts for Brochure 3.

\section*{TRANSISTOR F.M. STEREO DECODER}

For use with any VAlVE or TRANSISTOR FM TUNER. Complete set of narts. For use with any Valve or
85.19.6. P.P 2/6. Brochute 4.

 We will quote lor quantities on reque

RDER with a MARTIN RECORDAKIT -TWO-TRACK Deek Amplifier Cabinet and speaker. Complete kits with MICRO PHONE 7 in . 1,200ft. tape, spare spool.
Todes's value s5s 36 gns. P.P. 22/6 *FOUR-TRACK Deck Amplifier Cabinet and speaker. Complete kits with MICRO
PHONE 7in. 2.200 ft , tape, spare spool. das's Value \(£ 60 \quad 39\) gnS. P.P. 22/6

Build this instrament stage by stage in your own home. A truly portable instrament for all enthusiasts. Fully TRANSISTORISED POLYPHONIC, British design. Ea EPORT PRICES ON APPLICATION. TOTAL COST 99 GNS.

8-TRANSISTOR integrated 7 watt amplifier NEW MODEL and Preamplifier - MA 7

Optional Mains Unit PSSO. 62/6. P.P. \(3 /\)
Illustrated Broohure No. 12

7-TRANSISTOR
MW-LW SUPERHET
MW-LW SUPERH
New printed cirouit design with fall power ontput. Ftully tunable on both mw/lw banils. 7 transistors plus diode push-pull eircuit Fitted 5 inch apeaker, large ferrite aeriz turrific resulta. All local and Contineutal stations. \(\underset{\text { TOTAL } \operatorname{cost}}{\text { TOLD }}\) f.19.6 Send for Brochure 1

Thansistons - SEMICONDUCTORS COMPLETELY NEW1968 LIST OF 1000 types available from stock. Send for your FREE COPY TODAY. (List No. 36) *S.C.R.'s
*FIELD EFFECTTRANSISTORS
\(\star\) POWER TRANSISTORS
from 5
\(\pm\) POWER TRANSISTORS from 5/ © DIODES AND RECTIFIERS from 2/30 page illustrated brochure as above includ-

\section*{CATALOGUE}

The most COMPREHENSIVE-CONCISECLEAR - COMPONENTS CATALOGUE. Com plete with WITH EVERY COPY.
* 32 pages of transistors and semi conductor devices, valves crystals.
* 200 pages of components and equipment.
* 65 pages of microphones, decks and Hi-fi equipment.

\section*{Send today \(8 / 6\) pout}

TWO STOP SHOPPING FOR ALL YOUR NEEDS 303 EDGWARE ROAD, LONDON W.2. Tel. 01-723 1008/9 Mail Order Dept. all types of Components, Organ Dept. 309 EDGWARE ROAD, LONDON W.2. 01-723 6963 High Fidelity Sales, P.A. and Test Equipment, Record Decks etc,```

