

SIMPLE

RECEIVERS Beginners

ONE TRANSISTOR

IWU TRANSISTORS

THREE TRANSISTORS

$\rightarrow D \mathrm{OO}$

SOLDERING INSTRUMENTS AND EQUIPMENT

DESIGNED FOR THE AMATEUR'S RADIO STATION

ILLUSTRATED
List No. $70 \frac{1}{8}{ }^{\prime \prime}$ BIT IN PROTECTIVE SHIELD List No. 68
for catalogue apply direct to:-
Sales and Service Dept.
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON, S.W. 4

It's reliable if it's made by Jackson's
JACKSON BROS. (LONDON) LTD. Dept. P.W., KINGSWAY WADDON, CROYDON, CR9, 4DG -Phone: (01-688) 2754-5. 'Grams: Walfilco, Croydon

Canadlan Agents: Messrs. R. Mack \& Co. Ltd., 1485 South West Marine Drive, Vancouver
14, B.C., Canada.
American Agents: M. Swedgal Electronics, 258 Broadway, New York 10007, N.Y., U.S. A.

E.S.V.

BUSINESS AS USUAL

WATCH FOR OUR FUTURE ADVERTISEMENTS AFTER REORGANISATION

EIECTRONIC SIIES (Vidatio) ITD 17 gillingham row - wilton road LONDON S.W.1.

Telephone Victoria 5091

DON'T MISS THISI
 have rou got rour lasky's catalogue
 FREE Seoond Great Reprimt Lsueve Noo Rasdy.
 Just send your name, address and $1 /$ - for post only,

CONSTRUCTORS BARGAINS

SINCLAIR SPECIAL

THE MICRO FM
THE WORLD'S ONLY COMBINED FM TUNER AND POCKET RECEIVER A unique 7 transistor FM superhet tuner-receiver for and which uses pulse counting detection for bett iulity. Can be used as a tuner for amplifier, taperecorder, ete., or as a self-contalned pocket FM recelver contained with battery in a case no bigger than a parket of tern cigarettes! The Miero FM is heautifully atyled, with brushed and polishel aluminium front panel amd epun aluminium stow motion Technical spec.: 7 transistor 2 diode superhet FM with one output to anmp., or taper recoredr and one which enables set to be used as a self-contained pocket FM receiver. Law [f'. Pulac cornting dis. criminatur. Telescopic aerial. Audio reaponse: 10 to
 Typically 8 microvilta. Petwer sourre: Standard 9

LASKY'S PRICE £5.19.6 in KIT FORM. Post 2/6

THE Z-12 INTEGRATED 12 WATt AMP AND
PRE-AMPLIFIER
Eight special H.F. Transistornare used in this remarkable integrated twelve watt amplifier Outstanding features are its great versatijity, comphetness, power and brilliant perfortio ance. The Z-12 is equally suitable fur use as a true Hi-Fi amplifier, in an elect ric guitar,
as a P. A. unit for car radio or in an intercuns system. The inputs can be matched to all piok ups, microphones and rallio tuners and detulled eireuits for appropriate tone and votume contrila are given in the manual supplied with every Z -1:2. Technical specifleation: Ontput: Class R, ultra linear, with generous negative feed-back. Output: 1's watta K.M.s.
 tivity: '2mV into 2 K whms. Aignal to nuixe ratio: better than 6018. Output impedane Auitable for $8,7.5$ and 15 ohms upwakers. (Two 3 ohma qpeakers may be used in parallel.) Power requirements: 61020 vilta 10. 'or $^{\circ}$ Hinclair PZ. 4 mains powergupply unit which is

LASKY'S PRICE 89/6 fully bullt. Post 3/-

STEREO 25

DE LUXE STEREO PRE-AMP AND CONTROL UNIT
A first clans pre-amp and tome formance of any hi-h system and particularly where a moleru light-weight stereo pick upan! high quality loud speakern are
 been designed to match the eveellent characteristics of the 2.12 Controls: Bass lift/unt.

 Enobs in solid abmanum. Thestered 25 is unusually empact and a delight to use, Tedhilpower supply unit. Aensitivity: fir 10 wates into 1.5 ohm load per channel. Aio: $2 \mathrm{~m} V$ into
 ponse: (Mic and Radio) $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{~K} \cdot / \boldsymbol{*}+11 \mathrm{~B} 10100 \mathrm{Kc} / \mathrm{s}+3 \mathrm{~dB}$. RIAA equalivation

LASKY'S PRICE £9.19.6 FuLly bullt. Post $3 / 6$
SINCLAIR PACKAGE DEALS
Package "A", Micro FM with Z. IV Amplitic'
Parkage 'B", Two Z.12 Amplitierm
29.9.0 Post $3 / 6$ - ${ }^{2} Z .4$ power paek, 25 puntrol unit. 2 - Zincia amplifier
\&85.0.0 Post $10 /-$

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST., TOWER HAMLETS, LONDON, E.1 Tel.: 017904821

NORMAN EISEWBERG

WROTE ABOUT BOOKS BY G. A. BRIGGS IN HIGH FIDELITY MAGAZINE (U.S.A.) JANUARY 1968 Is there any reason why audio books can't be written in high style? G. A. Briggs has been doing it ever since High Fidelity first emerged from the exclusive domain of engineers and began to be cultivated by the cultivated. Consider his temerity in opening a chapter on distortion in his classic Sound Reproduction with a quotation from Milton: ". . dire was the noise of conflict" Or recall his wit in replying to a letter from a man who back on his home-made speaker enclosure, and why the speaker sounded better when he took the back off again. Briggs wrote sounded better when he took the back of again. Briggs wrote from the wall ... use the system which sounds best, even if contrary to every textbook. In any case, as the body has disappeared, there would not be much point in screwing down the lid of the coffin". Nobody else writes them with quite that flair.
The BRIGGS books listed below are still obtainable

AERIAL HANDBOOK (Second edition)
176 pages, 144 illustrations
Price (semi-stiff cover) $15 /-(16 /-$ post free) Cloth Bound 22/6 (24/-post free)

\qquad

\square

CABINET HANDBOOK

112 pages, 90 illustrations
Price 7/6 (8/6 post free)

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth Bound
Price 25/- (26/6 post free)

MUSICAL INSTRUMENTS AND AUDIO

240 pages, 212 illustrations. Cloth Bound Price 32/6 (34/- post free)

LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations Cloth Bound
Price 25/- (26/6 post free)

A TO Z IN AUDIO

224 pages, 160 illustrations. Cloth Bound Price 15/6 (17/-post free)

MORE ABOUT LOUDSPEAKERS

136 pages, 112 illustrations
Price 8/6 ($9 / 6$ post free)
PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth Bound
Price 18/6 (20/- post free)

AUDIO AND ACOUSTICS

168 pages, 140 illustrations
Price 12/6 (13/6 post free)

ABOUT YOUR HEARING

132 pages, 112 illustrations
Price (semi-stiff cover) 15/6 (16/6 post free)

$$
\text { Cloth Bound } \quad 22 / 6 \text { (24/-post free) }
$$

Sold by Radio Dealers and Book Shops or In case of difficulty direct from the
RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS. Tel. Bradford 612552

LIND-AIR COMPONENT BAREANS

LONDON'S LOWEST PRICES!

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Valves \& \& 6 LD 3 \& 10/6 \& 84 \%/- \& PCFP08 15/- \& 2N1132 12/6 \& T120 7/0 \\
\hline 1 A7 \& 9/6 \& \(6 \mathrm{LD20}\) \& \(71-\) \& 141DDT 9/6 \& PCL80 14/8 \& 1692 \& 2 U \\
\hline \(1 \mathrm{AD4}\) \& 18/6 \& 6N5 \& \(8 /-\) \& 150B2 13/- \& PCL82 \(10 / 6\) \& 1001- \& 5 \\
\hline \(1 \mathrm{AJ4}\) \& 716 \& 6 P 1 \& 13/- \& 177 6/- \& PCL83 101- \& 2N1755 15/- \& NKT211 6/- \\
\hline \(1 \mathrm{B3}\) \& 916 \& 6P15 \& \(5 / 6\) \& 277 6/- \& PCLA4 101- \& 2N2160 12/6 \& NKT214 4/- \\
\hline 1 C 3 \& \(9 / 8\) \& 6Q4 \& \(301-\) \& 409 A 12/6 \& PCL85 11/6 \& 2N2398 29/6 \& NKT2186/- \\
\hline 1D5 \& \(91-\) \& \(6 \mathrm{R7}\) \& \(81-\) \& 879 6/- \& PCL86 11/6 \& 2N2894 \(8 / 8\) \& NKT228 6/- \\
\hline \(1 \mathrm{D13}\) \& 5/6 \& 687 \& 121- \& \(1221 \quad 6 / 6\) \& PCL88 15/- \& 2N3412 \(7 / 8\) \& NKT225 3/6 \\
\hline \(1 F 2\) \& \(5 / 6\) \& \(68 \mathrm{D7} 7\) \& 717 \& 1274 \(10 / 6\) \& PCL800 15/- \& 2N3528 \(12 / 6\) \& NKT228 61 \\
\hline 1 FD 1 \& \(7 / 8\) \& 6SG7 \& \(81 /\) \& 1638376 \& PCL801 15/- \& 2N3707 7/6 \& NK'T265 9/6 \\
\hline \(1 \mathrm{G4}\) \& 10\%- \& 68 K 7 \& \(81-\) \& 1853 8/6 \& PFL20016/6 \& 2N3819 12/- \& NKT273 4/- \\
\hline 1H5 \& \(8 / 6\) \& 6 EQ 7 \& \(9 / 6\) \& 2101 1016 \& PTa36 12/6 \& \[
28002 \quad 10 / 6
\] \& NKT2775!- \\
\hline 1 LA 6 \& \(81-\) \& \(6 \mathrm{ST7}\) \& \(81-\) \& 6498 71- \& PL38 17/6 \& \[
\begin{array}{ll}
29005 \& 151- \\
00017
\end{array}
\] \& NKT3048/- \\
\hline \(11 . \mathrm{H} 4\) \& \(9 /-\) \& \(6 \mathrm{6V} 4\) \& 101- \& \(\begin{array}{ll}38807 \& 18 / 6 \\ 44051 \& 1966\end{array}\) \& \(\begin{array}{ll}\text { PL81 } \& 9 / 6\end{array}\) \& \[
\begin{array}{ll}
29013 \& 801- \\
29018 \& 17 / 6
\end{array}
\] \& NKT404 \\
\hline 1M3 \& \(9 / 6\)
\(8 /\) \& 654
\(6 \times 2\) \& 9/6 \& \(\begin{array}{ll}\text { A4051 } \& 12 / 6 \\ \mathrm{AC} 2 \& 9 / 6\end{array}\) \& PL82 9/- \& 283011818 \& NKT453 \({ }^{12 / 6}\) \\
\hline 1 N 25 \& 18/6 \& 6 Y 6 \& \(13 / 6\) \& AG5211 916 \& \(\begin{array}{ll}\text { PL83 } \& \text { P/- } \\ \text { PL84 }\end{array}\) \& \(293222^{7 / 6}\) \& - \\
\hline 1 N 38 A \& 6/- \& 7A4 \& 101- \& ARP34 \(9 / 6\) \& PL302 \(11 / 8\) \& \(2851219 / 6\) \& NKT673 50- \\
\hline 1N72 \& \(81-\) \& 7A7 \& \(81-\) \& AU4 8/6 \& PLat 2116 \& 283210 101- \& NET77\% 8/- \\
\hline 1N869 \& 416 \& 7AG7 \& \(91-\) \& AZ11 101- \& \& \(25 \mathrm{H2} 20\) 251- \& NKT0013 \\
\hline \(1{ }^{1} 11\) \& 818 \& \(7 \mathrm{B5}\) \& 121- \& AZ41 9/6 \& Y39 \(11 / 8\) \& 80As 5/6 \& \(12 / 6\) \\
\hline \(1 \mathrm{R5}\) \& 816 \& \(7 \mathrm{B8}\) \& 101- \& B63 8/8 \& PY32 11/6 \& 400/1-25 6/- \& MPF103 9/6 \\
\hline 184 \& \(81-\) \& \(7 \mathrm{C6}\) \& 816 \& B152 5/6 \& PY33 \(11 / 6\) \& 600/5 7/6 \& OA5 3/- \\
\hline 1T5 \& \(7 / 6\) \& 7D5 \& 81 - \& B329 818 \& 78 \& AAZ13 2/8 \& OA10 3/- \\
\hline 2 A 3 \& \(71-\) \& 7DJ8 \& 4- \& B719 816 \& 718 \& A0126 6/6 \& 0 A 70 2/- \\
\hline 2 A 7 \& 101- \& 7 E 7 \& 121- \& BF62 11/- \& PY89 718 \& A0128 \(6 / 8\) \& OA81 21- \\
\hline 2 C 26 \& 71- \& 7F'16 \& 11/6 \& DAF41 12/6 \& PY83 7/6 \& ACY17 8/6 \& OA90 21- \\
\hline \(2 \mathrm{C5} 1\) \& 101- \& 7H7 \& 81 \& DAF96 7/9 \& PY88 9/6 \& ACY20 5/- \& 0 A 99 2/6 \\
\hline 2 D 2 \& 71 \& 7K7 \& 121- \& DF92 4i- \& PY301 16/6 \& ACY28 \(4 / 6\) \& OAP10 7/6 \\
\hline 2D21 \& \(12 / 6\) \& 7R7 \& 14/- \& DH77 6/6 \& PY800 \(10 / 6\) \& AD161 8/- \& OAZ:01 \\
\hline 3 A \& 14/- \& 7W7 \& \(81-\) \& DH118 9/6 \& PU801 10/6 \& AEYIL 15/- \& 1- \\
\hline 3 A 8 \& 101- \& 7K4 \& 8/6 \& DH147 9/6 \& PZ30 11/6 \& AF114 8/6 \& OAZ204 816 \\
\hline 3 C 4 \& \(9 / 6\) \& 8D5 \& 17/8 \& DH718 10/- \& R19 10/6 \& AF117 5/- \& OAZZ2079/6 \\
\hline 384 \& 8/- \& 9 A 8 \& 12/6 \& DK92 11/- \& R121 10/6 \& \(\mathrm{AF1}^{\text {A }} 25816\) \& OAZ210 8/6 \\
\hline 4 LD \& 13/- \& \(9 \mathrm{AQ8}\) \& \(9 / 6\) \& DL91 8/- \& U26 12/6 \& AF139 101- \& OAZ213 616 \\
\hline 5 A \& 10/6 \& \(9 \mathrm{D4}\) \& 916 \& DL94 \(8 / 6\) \& U49 12/8 \& AF239 12/6 \& OAZ224 \\
\hline 5 SAS \& 776 \& \(9 \mathrm{C8}\) \& 9/6 \& DN143 18/6 \& 54 141- \& AFZ12 10/- \& 1- \\
\hline 5 T 4 \& 101- \& 10Fl \& 11/- \& EABC80 8/6 \& U78 6/6 \& AsY83 5/- \& OAZ242 4/6 \\
\hline 5v4 \& 101- \& 10F18 \& \(9 / 6\) \& EB34 \(2 / 6\) \& U143 10/8 \& AsZ21 12/6 \& OAZ247 \(4 / 6\) \\
\hline 5 Y \& 10/6 \& \(10 \mathrm{Ll4}\) \& \(91-\) \& EBC41 10/6 \& U151 9/6 \& AU101 801- \& OAZ291 916 \\
\hline 6 L \& 14/- \& 10LD13 \& \(9 / 6\) \& EBC91 7/- \& U154 7/6 \& BCL07 6/- \& \(0 \mathrm{Cl19} 76\) \\
\hline 6 AB \& 8/- \& \(10 \mathrm{P14}\) \& 181- \& EBF89 816 \& U193 10/6 \& BCY10 \(7 / 6\) \& \(\begin{array}{ll}0023 \& 12 / 6 \\ 0626 \& \end{array}\) \\
\hline \(6 \mathrm{AC5}\) \& \(12 / 6\) \& 12 A 5 \& 12/- \& ECC40 12/- \& U291 \(10 / 6\) \& \({ }^{\text {BCY }} 33\) 7/8 \& \({ }^{0} \mathbf{0} 2681-\) \\
\hline 6 AF6 \& 13/6 \& 12AC5 \& 10/6 \& ECCO3 8/8 \& U319 7/8 \& BCY39 1218 \& \[
0 \mathrm{CB5} \quad 10 /
\] \\
\hline 6 AG7 \& \(8 / 6\) \& 12AE6 \& \(9 / 8\) \& ECC86 8/8 \& U349 10/6 \& \(\begin{array}{ll}\text { BFY } 17 \& 7 / 6 \\ \text { BFY52 } \& 8 / 6\end{array}\) \& \(\begin{array}{ll}\text { OC42 } \\ 0 \mathrm{CH4M} \& 5 /- \\ 5 / 6\end{array}\) \\
\hline 6AJ7 \& \(8 / 6\)
\(5 /-\) \& 12ALS \& \({ }_{5 / 8}^{9 /-}\) \& ECC189 14/- \& UABC80 \(8 / 6\) \& BFY52
BSX25
4/6 \& \(\begin{array}{ll}0644 \mathrm{M} \& 5 / 6 \\ 0.46\end{array}\) \\
\hline K \& 5/- \& 12AT7 \& 5/8 \& ECF80
ECF86
12/8 \& \begin{tabular}{c}
UR41 \\
UBF80 \\
13/6 \\
\hline 18
\end{tabular} \& B8Y 25
B8Y51

$7 / 6$ \& $\begin{array}{lr}\text { OC46 } & \text { 17/6 } \\ \text { OC58 } & 176\end{array}$

\hline 6AM5 \& 5/6 \& 12AW7 \& 22/6 \& ECH81 8/6 \& $\begin{array}{ll}\text { UGF80 } & 8 / 6 \\ \text { UC92 }\end{array}$ \& B8Y95A 416 \& 0071 4/-

\hline 6AQ4 \& 12/- \& 12BA6 \& 8/- \& ECL80 8/6 \& UCF80 14/- \& BY100 $4 / 6$ \& 0675 8/-

\hline 6AQ8 \& $8 / 6$ \& 12BL6 \& 101- \& ECL84 13/6 \& 8014 \& BYZ11 10/6 \& 0078 5/-

\hline 6 ARG \& 8 - \& 12DT7 \& 8/6 \& EF37A 10/6 \&	UCF81
UF4	
$13 / 6$	\& BYZ15 201- \& $0 \mathrm{c810} 81-$

\hline 6 A \& 17/6 \& $12 \mathrm{FB5}$ \& 1216 \& EF41 11/6 \& $$
\begin{array}{ll}
\text { UF4 } & 13 / 6 \\
\text { UF85 } & 10 / 6
\end{array}
$$ \& CDT 1322 \& $\begin{array}{ll}00812 & 6 /- \\ 0083 & 5 /-\end{array}$

\hline 6AUS \& 281- \& $12 \mathrm{J7}$ \& $\xrightarrow[9 /-]{9 /-}$ \& $\begin{array}{ll}\text { EF83 } & 12 / 6 \\ \text { EF89 } & \\ 7 / 8\end{array}$ \& $\begin{array}{ll}\text { UL41 } & 10 / 6\end{array}$ \& $\mathrm{CRS}^{(120}{ }^{18 / 6}$ \& $$
\begin{array}{lc}
0008 & 51 \\
0 \mathrm{Cl} 23 & 12 / 6
\end{array}
$$

\hline 6av5 \& 13/- \& 12 K 7 \& 9/- \& EF89 7/8 \& $\begin{array}{ll}\text { UL84 } & 9 / 6\end{array}$ \& CRS1/20 \& $\begin{array}{ll}006123 & 12 / 8 \\ 00141 & 12 / 6\end{array}$

\hline $6 A X 4$
$68 D 7$ \& 10/6 \& 1287 \& 11/- \& $\begin{array}{ll}\text { EF95 } & 7 / 8 \\ \text { EL33 } & 12 / 8\end{array}$ \& $\begin{array}{ll}\text { UU12 } & 9 / 6 \\ \text { UY85 } & 6 / 6\end{array}$ \& ${ }^{(285102}$ P.I.V. \& $\begin{array}{lll}00141 & 12 / 6 \\ 00171 & 8 /-\end{array}$

\hline 6 B \& $14 / 6$ \& 12847 \& 71) \& EL38 $27 / 6$ \& UY85 8/6 \& 1 amp \& $0020310 / 6$

\hline 6BJ5 \& $22 / 6$ \& 1:23L7 \& $9 / 6$ \& EL81 12/6 \& W118 12\% \& Thyristor \& OC206 17/6

\hline 6 BK 7 \& 11/- \& 128R7 \& $71-$ \& E1.90 8/- \& W145 12/- \& 9/6 \& ORP12 8/8

\hline 6BM8 \& 101- \& 128Y7 \& $8 /-$ \& ELL80 17/- \& W149 9/- \& CRS1/40 \& RAs508AF

\hline 6 BN \& $9 / 6$ \& 12 Y 4 \& 4/6 \& EM80 8/6 \& W727 $7 / 6$ \& (2N1599) \& 12/6

\hline 6 BQ 7 \& 101- \& 13D3 \& $7 /$ \& EN85 $12 / 6$ \& WD150 11/- \& 400 P.I.V. \& R834BF 9/-

\hline $6 \mathrm{BR8}$ \& $12 / 6$ \& $13 \mathrm{GC8}$. \& 18/6 \& EY86 9/8 \& X18 11/- \& 1 amp \& 8CR71 15/-

\hline 6BW7 \& 12/6 \& 14E6 \& $8 /-$ \& EZ40 9/6 \& X81M $25 /-$ \& Thyristor \& ST140 4/-

\hline 6BY6 \& 12/6 \& 14 L 7 \& 9/8 \& EZ81 0/6 \& X143 12/6 \& 12/ \& SVCl 15/-

\hline X \& 121- \& 1487 \& $17 / 6$ \& HBC90 0/6 \& $\times 150$ 11/- \& CRS3/20 \& 8X62 8/6

\hline 6 C 6 \& 61- \& 15D1 \& 121- \& H62 12/6 \& Z145 11/- \& 200 P.I.V. \& SX642 3/6

\hline 6 Cl 10 \& 11/- \& 15 E \& $107-$ \& HP6 81- \& Z719 7/6 \& 3 amp \& 9×645 15/-

\hline $6 \mathrm{C31}$ \& 13/6 \& $16 Y 9$ \& 18/6 \& KT61 20/- \& ZD15̄2 9/6 \& Thyristor \& SYL1750

\hline $6 \mathrm{CB6}$ \& $6 / 6$ \& 1723A \& $7 / 8$ \& KT88 $27 / 6$ \& \& 101- \& $9 / 6$

\hline 6CF8 \& 976 \& 19DB \& $7 / 8$ \& LN119 10/6 \& \& CRS4/40 \& 8Zä6a 7/8

\hline 6 CJ 5 \& 11/6 \& 19BX8 \& 10/6 \& LN319 15/- \& du \& 400 P.I.V \& 8ZA100F

\hline 6 CK \& 816 \& 190C8 \& 9/- \& LZZ339 15/- \& tors-Transise \& 3 amp \& ${ }^{7 / 6}$

\hline $6 \mathrm{CM5}$ \& 10/6 \& $19 \mathrm{G6}$ \& $17 / 6$ \& N19 81- \& tora, Diodes, \& Thyristor \& TK20 6/-

\hline 6025 \& $51-$ \& 198U \& 718 \& 5/6 \& oto. \& $12 / 6$ \& TK2S 5/-

\hline $6 \mathrm{CU6}$ \& 18/- \& 19 Y 3 \& $7 / 6$ \& N142 10/6 \& \& CTP1265 ${ }_{17 / 6}$ \& TK36 ${ }_{\text {TK41 }}$ 4/-

\hline 6 CW

6 CY 5 \& 14/8 \& 20 Pl \& 141/- \& $\begin{array}{ll}\text { N147 } & 20 /- \\ \text { N151 } & 11 /-\end{array}$ \& $$
\begin{array}{ll}
1 N 21 R & 5 /- \\
\text { IN34A } & 2 /-
\end{array}
$$ \& Ck707 ${ }^{17 / 6}$ 2/- \& TK41004C ${ }^{\text {//8 }}$

\hline $6 \mathrm{6CY5}$ \& 9/- \& $20 \mathrm{P5}$
2186 \& $21 / 8$
$9 / 6$ \& $\begin{array}{cc}\text { N151 } & 11 /- \\ \text { N154 } & \text { \% }\end{array}$ \& $\begin{array}{ll}\text { IN34A } & \text { 5/- } \\ \text { IN91 }\end{array}$ \& $\begin{array}{ll}\text { Ck707 } \\ \text { CV2919 } & 2 /- \\ \text { 2/- }\end{array}$ \& ${ }^{04} \mathrm{C} 8 / 6$

\hline $6 \mathrm{D8}$ \& 12/6 \& 25 C 5 \& 12/- \& N309 9/- \& 1N255 \& CV2226 201- \& VA1010 2/-

\hline 61118 \& 11/6 \& $25 \mathrm{FG6}$ \& 151- \& N379 8/6 \& \& CG12E 8/- \& VA1027 2/6

\hline $6 \mathrm{LDL5}$ \& 9/- \& 25 Y 5 \& 12/- \& N727 8/- \& IN703A 8/6 \& DD003 3/6 \& VA1066 $2 /-$

\hline 6 D 88 \& $9 / 6$ \& 26Z6 \& 13/- \& PC86 13/- \& \& DK14 2/- \& VR35 6/6

\hline $6 \mathrm{Eb5}$ \& 101- \& 28 AK 8 \& $8 / 6$ \& PC88 13/- \& ${ }_{18111} 183075$ \& FATI/1 8/- \& VR90 ${ }^{\text {V405A }}$ 8/8

\hline 6 EJT 7 \& $9 / 6$ \& 30 AJ \& 9/- \& PC95 9/6 \& 18131418 \& CET 10/-pr. \& V405A
$\mathrm{XAll1}$
12/6

\hline ${ }_{6} 6 \mathrm{FT} 5$ \& 12/- \& 30 Cl 5
30 F 5 \& 15/6 \& PC97
PC900 11/-
14/- \& 18401 6/- \& $\mathrm{GET}^{\text {GET102 }}$ 6/- \& $\begin{array}{lll}\text { XAll1 } & 2 /- \\ \mathbf{X A 1 0 3} & 2 /-\end{array}$

\hline $6 \mathrm{F5}$ \& 101- \& 30F5 \& 13/6 \& $\begin{array}{lr}\text { PC900 } & 14 /- \\ \text { PCCS4 } & 8 / 6\end{array}$ \& ${ }_{18420 \mathrm{R}}^{18 / 8 / 8}$ \& $$
\text { GET106 } 10 /
$$ \& XA103

XAl41-
3/-

\hline ${ }_{6}^{6 F 8} 8$ \& $8 / 6$ \& $30 \mathrm{FLL3}$ \& 14/8 \& $\begin{array}{ll}\text { PCC84 } & 8 / 6 \\ \text { PCC86 } & 9 / 6\end{array}$ \& ${ }_{187075}^{18 / 6}$ \& GETI14 4/- \& XA141
XAI
8j-

\hline 6 Fl 18 \& 11/6 \& 30 P 12 \& 16/- \& PCC88 14/- \& 2 G 301 8/- \& GET571 5)- \& XA162 5/-

\hline 6 F 19 \& 718 \& 30 P 19 \& 151- \& PCO89 14/6 \& ${ }^{2 G 306} 7 / 6$ \& GET687 \& XA701 5/-

\hline $6 \mathrm{~F}^{2} 2$ \& 9/6 \& 30PL14 \& 15/- \& PCC189 14/- \& ${ }^{2 \mathrm{Ca371}} \mathrm{4} 48$ \& 12/6 \& $\times{ }^{\times 1202} 2 /-$

\hline $6 \mathrm{~F}^{26}$ \& $7 / 6$ \& 3543 \& 11/- \& PCC805 14/6 \& ${ }_{2}^{2 G 401}$ 5/- \& GET875 6/- \& ${ }^{\text {X B } 113} 318$

\hline 6 F 30. \& $9 / 8$ \& 35 C 5 \& 8/6 \& PCC80616/- \& $2 \mathrm{2G414} 5 /-$ \& GET883 5- \& XC101A 3/-

\hline 6 FG 6 \& 10/6 \& 35W4 \& $8 / 6$ \& PCE800 14/6 \& ${ }_{2}^{2 G 417} 4 / 6$ \& GET890 7/6 \& XG163 5/-

\hline 6G6 \& $3 / 6$ \& 35Z5 \& 8/6 \& PCF80 12/6 \& ${ }^{2} \mathrm{~N} 25710 / 8$ \& GEX54 2/6 \& $\mathrm{XCl42}^{8 / 6}$

\hline 6GV8 \& 12/6 \& 41 A \& $8 /-$ \& PCF82 9/6 \& 2N388A $9 / 6$ \& GEX 541 \& $\begin{array}{ll}\text { X } 8101 \\ \text { X } & \text { 5/- } \\ 4 / 6\end{array}$

\hline 6H6 \& 51- \& 42MP \& 916 \& PCF84 $10 / 6$ \& 2N555 $12 / 6$ \& 151- \& $\begin{array}{ll}\text { XU604 } & 4 / 6 \\ \mathrm{ZB4} \cdot 3 & 4 / 6\end{array}$

\hline 6HU8 \& 15/- \& 45 BU \& 8/6 \& PCF86 11/- \& 2N598 7/6 \& GEX951 5/- \& ZB4-3 4/6

\hline 6.56 \& $5 / 6$ \& 50BM8 \& $10 / 6$ \& PCF87 15/- \& \& $\mathrm{GG6M}^{\text {G61078 }}$ 9/6 \& $\begin{array}{ll}\text { ZB22 } & 4 / 6 \\ 7 \mathrm{F15} & 4 / 6\end{array}$

\hline $6{ }^{6} \times 8$ \& 101- \& 50L6 \& 10/6 \& PCF80015/- \& 2N708 - 4/6 \& HG1078 2/- \& $\begin{array}{ll}\text { ZF15 } & \text { 4/6 } \\ \text { ZR11 } & \text { 7/- }\end{array}$

\hline 6 K 7 \& 80- \& 54 KU \& 12/6 \& PCF801 12/6 \& 2N865 7/8 \& H81012 3/6 \& ZR11 7\%-

\hline 6 K 2 ล- \& 301- \& 62TH \& 11/- \& PCF802 $12 / 6$ \& 2N1091 9/6 \& JK10B 15/- \&

\hline , \& 12/6 \& 63 TP \& 8/6 \& PCF805 12/6 \& 2N1304 6/- \& JK20A $17 / 6$ \& $\begin{array}{ll}\text { ZS372 } & 7 / 6 \\ 7745 & 8 / 6\end{array}$

\hline 61.16 \& 8/6 \& 65ME \& .916 \& PCF80615/- \& 2N1307 7/6 \& 3 1/6 \& ZT45 B/6

\hline
\end{tabular}

FULLY DETAILEDLISTS ON APPLICATION

LINP－AIFT＂ （OPTRONICE）LTE．Comp shops

25 \＆ 53 TOTTENHAM CT ROAD，LONDON W．1．Tel．：01－580 4534／7679

ALL POST ORDERS TO Dept PW668 25 Tottenham Court Road， London，W． 1

Open 9 a．m．-6 pm Monday to Saturday inclusive．Open Thursday until 7 pm

UNREPEATABLE BARGAINSI

 JRICE $85 /-\mathrm{P} \cdot \AA \mathrm{A} P \cdot 3 / \mathrm{C}^{2}$

BARGAIN OFFER！FANTAVOX CASSETTE TAPE PLAYER

specially designed to replay the well known and popular Musicassettes－prerecorded tape cassette to elassical．Up to 40 minutes of quality reproduction through built－in speaker．simple off／play and vohume controis．Fully transistorised operating on 6 ngen－ ight batleries．Modern compact atyling with earplece socket and wrist strap．Size $5 \ddagger \times 4 \ddagger \times 2$ in．

LIND－AIR
£9．19．6 pkg．and

TRANSISTOR F．M．TUNER

SAVE £2．2．0！

6 Transistor FM tuner．Frequency range $88-108 \mathrm{mc} / \mathrm{s}$ ．Size with most ampliers 9 ，hattery operathor

 tse with most amplifiers， $3 v$ battery operation TMs．79／6 T TC stetho scope 8 ohms，49／6．P．© P．4／ii each．

AUTO TRAMSFORMERS

Iuput 0．200，220， 240 V ．

Output 110% ．		
50 W	£1．7．6	1，000 W 29.9 .0
75W	\＄1．17．0	1，500 W 215.15 .0
100W	22．5．0	2，000以 $£ 18.10 .0$
150W	£2．15．0	3，000W £25．10．0
200 W	£3．5．0	4，000W 534.18 .0
300W	44．5．0	（1） $30 \mathrm{~V}, 1 \mathrm{~A} 30 /-$
400W	建4．19．6	10．30V，A 17／9
500 W	25．8．6	0．30レ゙，2A 37／6
600 W	£6．9．6	0．30V，3A 42\％

SEE OPPOSTE

INEAR AMPLIFIERS

Latest A．C．Mains Models offering highest quality LT66．All Transistor 12 watts stereo．Inputs for Tuner，Gram．，Mike，Sepirate Bass，Treble Teak case $£ 3.10 .0$ extra． PTA 15 （ass illiss．）．All Trasisistor， 15 wattg Mono， Iuputs for Thner，Gram，Mike，Guitar．Bass，T＇reble and two volume controts，$£ 15.15 .0$ ．Csirr． $7 / 6$ ．Teak case £3．10．0 extra．LT45， 2 Valve 3 watts Mono． coutrols，£6．19．6．Carr． $7 /$ क．Metal cover 1 ถ̃

SYNCHRONOUS CLOCK

MOTORS
Geared for 40 revolu fions per hour． 2307 mounting fan size approximately diameter．ONLY 22／6．P．\＆P．2／6．

pules and off
pit 15．An Auxiliary contset is nommally on but off 1 in every 23．Complete with suppressor，reaistors．plus series contact for continuous operation．Ineal window dig－
plays，switehing lamps，nodels，etc． 12% ．or $24 v$. D．C．Brand new and boxed，12／8．
$\frac{1}{8}$ H．P．MAINS MOTOR

Made by Crompton Parkinson．Single phase th h－p．Motor $230 / 250 \mathrm{r} .50$ cycies． $1-3$ amps． 1 in in dia．Overallisize leas splndle spproz $8 \times 6 \ln$ ．Perfect condition．A bargaln for the work bench．ONLY 79／6．Carr．20／－（t h．p． Motor also available，99／6．Carr．29／ DELAY ACTION TIME SWITCH

Made by Smiths． A．C．operation 200／250v．Double pole．WIll give 0－10 minutes．Slze 2 tin ．dia，$\times 2 \mathrm{f} \mathrm{in}$ ．long inc． fln．x $3 / 16 \mathrm{in}$ ．dia spindle．BARGAIN PREE

R.S.T. VALVE MAIL ORDER CO. 144-146 WELLFIELD ROAD, STREATHAM, S.W. 16

042	6/3	6BH6	7/6	6K6GT	$51-$	787	20/-	20L1	18/9	75	$7 /$	DF96	6/9	ECF82	$7 /$	EM81	$7 / 6$	PC97	$8 / 9$	RG5/5		9	
OC3	$5 / 6$	6BJ6	9/5.	6K7M	5/9	7 Y 4	$8 / 6$	20P4	19/-	78	5/-	DH77	4/6	ECH21	$12 / 6$	EM84	776	PCO84	$8 / 8$		80/-	Ul41	9/6
1 A7	$7 / 9$	6BQ7A	71	6K7G	8/-	9BW6	7/.	20P5	19/8	80	$5 /$.	DK32	719	ECH 35	11/=	ESU15	20/	PCC89	11/=	\$130	$251-$	UL84	7%
1D5	71 -	6 BR 7	$8 / 6$	6K7GT	4/6	10 Cl	$12 / 6$	25A6	$5 / 9$	$85 \mathrm{A2}$	7/8	DK91	$5 / 6$	ECH42	11/-	EY51	$7 / 6$	PCC189	11/8	8 P 4	$81-$	UM80	6/-
$1 \mathrm{H}_{5}$	$7 /-$	68R8	$5 / 6$	6K8M	$8 / 6$	10C2	12/6	26L6GT	5/6	15032	$9 / 6$	DK92	8/-	ECH81	5/9	EY86	7/-	PCF80	7/-	8 P 41	$3 / 6$	UU6	$13 / 6$
1LD5	$5 /-$	6887	18/9	6K8G	8\%	10F1	9/-	25 Y 5	81-	150 C	$7 / 6$	DK96	$7 / 9$	ECH83	81	EZ38	$4 / 6$	PCF82	6/-	GP61	$3 / 8$	UU7	13/8
1N5GT	81	6BW6	14/-	6K8GT	71	10F3	81 -	25Z4	6/3	801	6/-	DL66	15/-	FCL80	71	EZ40	8/-	PCFg4	8)-	gTV28	180	UU9	81
1R5	5/6	6BW7	14/-	6 K 25	20/-	10F9	$9 / 9$	2525	71	807	71	DL92	$4 / 9$	ECL82	$71-$	EZ41	10/-	PCF86	9/-		90/-	Y21	6
184	5/-	6C4	219	6 Ll	$9 / 6$	10F18	9/-	${ }^{25} \mathrm{z6}$	8/6	811	30/-	DL,93	$3 / 6$	ECL83	$10 / 3$	EZ80	5/8	PCF801	10/-	$8{ }^{\text {SU25 }}$	18/6	UY4	
185	4/-	6 CbO	4/-	6L6G	$7 / 6$	10L1	81-	28187	$51-$	813	75/6	DL94	$5 / 9$ $8 / 6$	ECLerf	9/-	EZ81 GZ30	5/8	${ }^{\text {PCFP80 }}$	10/-	S41150	12/6	VMP5	8/8
1T4	8\%	6 C 6	$3 / 9$	6L18	51.	10LD11	15/-	30 Cl	6/3	${ }_{954} 81$	18/6	DL95	$8 / 6$ $7 / 6$	ECLL8		G2330 GZ32	9/6	PCF80	$18 / 6$	T41	15/-	VMP4B	-
3 A 4	$3 / 6$	6C8G	61-	6Q7G	61-	10P13	$16 / 3$	30015	13/8	954	4/6	DL96	$7 / 6$		$301-$	GZ332	11/-	PCF80	18/6	T10	101 $7 / 6$	\checkmark P4B	25/-
3 Q 4	6/6	60D6G	22/-	6Q7GT	$8 / 6$	11E3	42/-	30 Cl 7	15/6	1625	516	DM70	6/-	EFF9	201-	GR5	11/6	PCF808	11/6	U10	$7 / 6$		5/-
3 Q 5	6/6	6 CH 6	$5 / 9$	68A7M	71	12AT6	4/6	30 Cl 8	13/6	${ }_{5763}$	10\%-	DY86	6/-	EF37A	$7 /$	KT36	17/6	${ }^{\text {PCL }} 82$	$7 / 8$ $9 / 3$	U19	376		
384	4/9	6CW4	12/-	6SC7	$7 /$ 5%	12AT7	$3 / 9$ $5 / 9$	30 F 5	15/6	7193	101-	D88CC	12/-	EF39	81-	KT61	$12 / 6$	PCLE83	$9 / 3$ $7 / 9$	U25	$35 / 6$ $18 / 6$		5/-
$3 \mathrm{VR4}$	5/9	${ }_{6}^{606}$	$2 / 9$ $7 / 8$	$6 \mathrm{6SG7}$	5/-	l2AU6	5/9	30 FLL 30 FL 12	18/-	7475	4/-	EA500	12/-	EF50	10/-	KT66	181-	PCLL85	719 $9 / 8$	U26	$13 / 6$ 1816	VT25	15/-
$5 \mathrm{5V} 4 \mathrm{C}$	$81-$	${ }_{6} 6 \mathrm{F5G}$	$81-$	6 SK 7 GT	4/9	12ABA6	$81 /$	$30 \mathrm{LL5}$	15/8	ATP4	$2 / 8$	EAF42	10/-	EF85	$8 / 6$	KT81	7C5)	PENA4	$201-$	U191	$18 / 6$	VU111	716
EY9GT	5/6	6F6G	4/-	68L79T	$4 / 9$	12BE6	$5 / 9$	30L17	14/3	ATP5	7/6.	EB41	4/6	EF86	$8 / 9$		15/6	PENB4	201-	U251	12/6	VU130	18/6
5Z4G	6/9	6 F 8 G	$4 / 6$	6SN7GT	4/6	12C8GT	4/6	30 P12	18/8	ATP2	818	EB9C33	3/-	EF89	5/-	KTW6	270	PEN45	71.	${ }_{1}$	16/3	W81M	35j-
6/30L2	18/-	$6 \mathrm{Fl1}$	$71-$	6897	$81-$	12 E 1	$17 / 6$	30 P 19	13/-	AU2	801-	EBC33	919	EF91	$3 / 6$ $8 / 6$	KTZ41	$81-$	PEN 46	$2 / 9$	U403	18/8	W81M $\times 79$	41/-
6 A7	15/-	6F13	5/-	6U4GT	12/-	12J5GT	2/6	30PL1	15/-	AZ1	81	EBC90	4/8	EF92	2/6 $10 /$.	MLA	$17 / 8$	PL36	101-	U801	23/6	XH1-5	51-
6 A 8 O	12/6	$6 \mathrm{Fl4}$	12/6	6U50	$7 / 6$	12 J 7 GT	7/-	30 PL 13	17/3	AZ31	$9 / 6$	EBF80	$71 /$	EF98	10/6	ML6	8/-	${ }_{\text {PL }}{ }_{\text {PL82 }}$	$8 / 6$	UABC	$081-$	XPl 5	5/-
6AC7	8/6-	${ }_{6}^{6 \mathrm{~F}^{2} 23}$	13/6	6V6M	$8 /$	12K7GT	8/-	30 PL 14	18/3	CBL31	151/	EBF83	$8 / 3$	EFF183	$6 / 6$ $6 / 6$	MSP4	10/-	${ }_{\text {PL83 }}$	718	UAF'42	10/3	XSG1-5	$510 /-$
6AK5	4/6	$6 \mathrm{~F}^{2} 24$ $6 \mathrm{~F}^{2} 25$	13/-	6 V 6 a 6 V 6 T	$4 / 6$ $6 / 6$	12K8GT	8/6	35A5	$12 / 6$ $5 / 9$	CCH35	$21 /$	EBF89	8/6	EL32	6/6 $3 / 6$	MU14	$17 / 8$	${ }^{\text {PLL83 }}$	$8 / 8$	UBC41	8/6	Y63	7/6
6AM5	$2 / 8$	6 F 28	11/6	6×4	$3 / 6$	128A7	6/6	35 W 4	4/6	CY30	16/3	EBBL21	11/\%	EL33	$12 / 6$	N37	$17 / 6$	PL500	15/-	UBF88	$8 / 3$	Tubes	50)-
6AM6	$3 / 6$	$6 \mathrm{G6}$	2/6	6×59	4/8	12897	418	35z3	10\%	CY31	101.	EBL31	27/6	EL34	$10 / 6$	N78	15/-	PX4	14/-	UBF89	$7 / 3$	3FP7	19/-
6AQ5	6/-	6H6	$21-$	6X5GT	6/-	$128 \mathrm{H}^{7}$	$31-$	$35 \mathrm{Z4G}$ '	$5 / 6$	DAC32	$7{ }^{10}$	EC90	2/9	EL41	101/	N108	15/-	PY33	$9 / 6$	UCC84	8/6	$5 \mathrm{CP1}$	$35 /$
6A87G	151-	6J5M	6/6	7B6	11/6	128.J7	$3 / 9$	35Z5	$5 / 6$	DAF91	4/=	ECC81	$3 / 9$	EL42	101-	NGT1	3/6	PY81	6/6	UCC85	$7 /=$	CV1526	6 40/-
6AT6	4/6	$6 \mathrm{J5G}$	$2 / 6$	7B7	$7 / 6$	128K7	4/8	37	$51-$	DAF96	8/9	ECC82	4/9	EL84	$4 / 9$	NGT7	55/-	PY8\%	$81 /$	UCF80	8/6	ACR13	100/-
6AU6	6/-	6J5GT	4/6	7C5	151-	I2S167	5/-	42	${ }^{6 /-}$	DCC90	71	ECC83	613	EL9	8/6-	0A2	8/8	PY88	8/6	UCH42	$110 / 6$	VCH97	85/-
$6 \mathrm{B8G}$	2/-	656	8/-	7 C 6	6/8	14H7	9/-	50 B 5	6/8	DF33	81 -	ECC84	6/	-	$9 / 6$	OC3	$5 / 6$	PY800	101-	UCH81	$8 / 8$	VCR51	7B
6 B 4 G	15/-	6.57 M	$7 / 6$	$7 \mathrm{D5}$	8/-	19AQ5	5/-	$0 \mathrm{C5}$	6/8	DF70	71	ECC85	51.	El.Lso	$201-$	OZ4	4/6	PY	10/-	UCL82	81		46/-
6 BA 6	$51-$	6.J76	$4 / 9$	7H7	0/6	2011	10/-	50CD6G	31/-	DF91	3/-	ECC88		EM34	15/-	PC86	11/6	R's	$7 / 6$	UCLR3	101-	VCRE 1	70
6BE6	5/-	6 J 7 GT	6/6	7 R	$17 / 8$	20	14/-	50L6GT	61-	DF92	$2 / 6$	ECF80	6/6	E	7/6	PC	11/6	R19	718	UF41	10/-		46/-

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Postage 6d. pervalve.

Special 24 Hour Express Mail Order Service

SETS OF VALVES
DAF91, DF91, DK91, DL92 or DL94
DAF96, DF96, DK96, 1UL96
BRAND NEW TRANSISTORS

AF115	$7 /-$	OC35	$11 / 6$	OC75	$6 /-$		$12 / 6$	OC170
AF116	$7 /-$	OC44	$4 / 6$	OC76	$6 /-$	OC81D	$4 /-$	OC171
O/								
AF117	$5 /=$	OC45	$4 /-$	OC77	$8 /-$	OC82	$8 /-$	OC200
$7 / 6$								

GR = TO AMBITIOUS ENGINEERS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio and Electronic Courses, administered by our Specialist Electronics Training Division-the B.I.E.T. School of Electronics, explains the benefits of our Appointments Dept. and shows you how to qualify for five years promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than f30 a week, send for your copy of
"ENGINEERING OPPORTUNITIES"
todayFREE.

Redio
Television
Electronics
Electrical
Mechanical
Civil
Production
Automobile
Aeronautical
Plastics
Building
Draughtsmanship
B.Sc.
City \& Guilds
Gen. Cert. of
Education
etc., etc.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

344B, Aldermaston Court, Aldermaston, Berks.

PRACTICAL EQUIPMENT

Basic Practical and Theoretic
Courses for beginners in
Radio, T.V. Electronics, etc.
A.M.I.E.R.E., City \& Guilds Radio Amateur's Exam R.T.E.B. Certificate P.M.G. Certificate Practical Radio Radio \& Television Servicing Practical Electronics Automation

InCluding
TOOLS!

This specialist Electronics Division of B.I.E.T. NOW offers youl a real laboratory training at home with practical equipment. Ask for details.

THE B.I.ET, IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD:

BUILD YOURSELF A OUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

 SW3 AND TRAWLER BAND.Extra tuning of Luxembourg, etc.

- Built in ferrite rod aerial for Medium and Long Waves.
- 5 Section 22 inch chrome plated telescopic aerial for short Waves-can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial
- Powerful push pull output.

7 transistors and two diodes including Phile Micro-Alloy R.F Transistors.

- Famous make 7in. x 4in. P.M. speaker for rich-tone volume.

Himander 7

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!

- 7 FULLY TUNABLE WAVEBANDS—MW1, MW2, LW, SW1, SW2,
- Air spaced ganged tuning condenser.
- Eeparate on/off awitch, volume control, wave change switehes and tuning control.
- Attractive case with hand and shoulder straps. Size 9in. x 7 in . x 4 in . approx.
- First grade components
- Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs
£5.19.6 ${ }^{\mathrm{R}_{6}^{6} b_{0}^{2}}$

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE

Attractive case with red speaker grille. Size $61 \times$ $4 \frac{1}{2} \times 1$ in. Fully tunable. 7 gtages- 5 transistors and 2 diodes, ferrite rod aerial, tuning condenser, volume control, fine tone super dynamic 3in. speaker, all first grade components. Easy build plans and parts price list 1/6. (FREE with parta).

Total building costs $39^{\prime} 6 \underset{3 / 6}{\text { P. \& } P \text {. }}$

POCKET FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE Attractive black and gold case. Size $51 \times 1 \frac{1}{x}$ 3 in. Fully tunable over both Medium and Long Waves with extended M.W. band for easier tuning of Luxembourg, etc. All first grade com-ponents- 7 stages- 5 transistors and 2 diodes, supersensitive ferrite rod aerial, fine tone 3 in . moving coil speaker etc. Easy build plans and parts price list. 1/6 (FREE with parts).

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE
covers medium and Long Waves and EXTRA BAND FOR EASIER TUNING OF LUXEMBOURG, ete. Top quality 3in, Loud speaker for quality output. Two RF stages for extra booat. High "q"'. Ferrite Rod Aerial. Push-pull output. Handsome speaker for quality output. Two RF stages for extr

This amazing receiver $80 / 6$ Parts Price List and easy build plans 2/This amazing receiver
may be built for only 69/6 P. \& P. 3/6 (Free with parts)

Total building costs

7816 P. \& P 3/6

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt flttings, size $7 \ddagger \times 5\} \times$ 1 in. Worid wide reception. Tunable on Medium and Long waves, two short waves, Trawler Band mbourg, etc. \&ensitive ferrite rod aerial and embourg, etc. telescopic serial for Short waves, All top grade
components, 8 stages- -6 transistors and 2 diodes including Philco Micro-Alloy R.F. Transistors etc. (Carrying strap $1 / 6$ extra.) Easy build plans and parts price list $2 /-$ (FREE with parts).

Total building costs

$$
6966^{\circ}
$$

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case aize $7 \frac{1}{5} \times 5 \frac{1}{3} \times 1 \frac{1}{2} \mathrm{in}$. with gilt fittings. The ideal radio for home, car or outdoors. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. 8 tages, push pull output, ferrite rod aerial, 7 transistors speaker) and all first grade components. Easy build plans and parts. Price liat $2 /$ - (FREE with parts).

RADIO EXCHANGE CO.

61 HIGH STREET, BEDFORD
Callers side entrance Barratts Shoe Shop Open 9-5 p.m. Saturday 9-12.30 p.m.

 Consisting of
（1）Gar

AUDIOTRINE HIGH FIDELITY

CLOUDSPEAKERS Heavy cast construction．Latest high officiency ceramic magnets．Treated Cone sur－ round giving iow fundamental reso－ providing extended frequency range． Impedance 3 or 15 ohms．Please state choice．Response $40-18,000$ c．p．s．Ex－ $\begin{array}{lll}\text { HF510L } & 5 & 8 W\end{array}$ HF811D HF101D $10^{*} 15 \mathrm{~W}$ \＆5．19．9 HF126 $12^{\prime \prime} 15 \mathrm{~W} 89 / 9$ HIGH FIDELITY LOUDSPEAKER UNITS Cabinets of latest styling Satin Teak or Walnut acoustically lined（and isorted where app
priate）．Credit terms available on ail units．
 DORSET Size $16 \times 11 \times 91 n$ ．Response $45-$ 18,000 c．p．s．Rating 8－10 watts．Fitted
Audiotrine HF810D speaker． $\mathbf{8 8} 19.9$ Impedance 3 or 15 ohm STANTONIIS Size $18 \times 11 \times 101 \mathrm{n}$ ．Rating 10 watts．Incorporating Audiotrine HF B15 speaker with roll rubber surround and 15000 line magnet．High flux tweeter． Handsome Scandinavian design cabinet． Response 30－20，000 c．p．s．Impdnce 3 or 1516 Gns．
ohms．Givessmoothrealisticsound output． DORCHESTER Size $24 \times 15 \times 10 \mathrm{in}$ ，Fitted Audiotrine HF101D speaker．Rating 15 watts．Impedance 3 or
15 ohms．Response $30-20,000$ c．p．s． $12 \frac{1}{2}$ Gns． Provides really pleasing sound quality． 12，000 line speaker．Cross－over unit and Tweeter． Rating 10 watts．Smooth response $12 \frac{1}{2}$ Gns．
$40-20,000$ c．p．s．Impedance 15 ohms． GINEAR TAPE PRE－AMPIIFIER．TYpe LIP／I at 1 in 32 in．rin．per sec．，and Playback．EM84 at ifin，${ }^{\text {Recording Level indicator．Designed primarily }}$ as the link between a Magnavox Tape Deck and
Ti－Fi anplifier suitable most $10 \frac{1}{2}$ CinS．
Tape Decks．Temisavailable． R．S．C．TA6 6 Watt HIGH FIDELITY SOLID STATE AMPLIFIER 200－250v．AC mains operated Frequency Response $30-$
20000 c．p．s． $2 d B$ ．Harmonic Distortion 0.3% at 1.000 c．p．s． ＇lift＇and＇cut＇controls． 3 input sockets for Mike， Gram，Radio or Tape．Input selector switch．Output enclosed enamelled case， 91 x 2% x 51 jn ．Attractive brushed silver finish facia plate 101 x 31 in ．and matching knobs．Complete kdt of parts with full wiring diagrams and instructions．Carr． $7 / 6$
Or factory built with 12 months
6 Gils．

Garrard Mk
iisp25
eed Tur and many other fastures inc Plug in P．U．head．Fitted device P．U．Cartridge ready wired on plinth（baseboard）．Fitted plugs for instant use．（2）Super 30 Amplifier fully wired and fitted in cabinet above．（3）Pair of Stanton IIIL Loudspeaker
Units．Extremely attractive cabinets finished Satin Teak Units．Extremely attractive cabinets finished Satin Teak
ble with equipment at twice the cost and saving approx．£ 18 on above $69 \frac{1}{2}$ Gils．
unlts．Special inclusive price Terms：Dep．£18 and 12 mthly payments
of $£ 5$ ．Total $£ 79$ ．Send S．A．E．for leaflet．
RECORD PLAYING UNITS
Ready to plug into Amplifier RP2 sisting of Garrard SP2 Mk II（with heavy turntable） pliance ceramic StereolMono cartridge with diamond sty－ maily approx．$x 6.22$ Gns． RP3 Goldring Lenco bLut with cription unit and CS90 Car－ tridge．Normaly approx． 32
mas．Carr． $15 / /, 27 \frac{1}{2}$ Gns．

AUDIOTRINE PLINTHS ${ }_{\text {for }}$

 ing GL68．Available with clear Perspex co－ $\mathbf{~ v e r ~ a s ~ i l l . ~ C a r r . ~} 7 / 6 \mathbf{1 9 . 1 1}$ Or deeper type cut for TA12， cover 26．19．11．Perspex cover sold separately at 3 gns． damaged but repaired by Manufacturer． $39 / 8$ to clear．

INTEREST CHARGES

 REFUNDEDSales settied in 3 months．

 heavy cast turn－ table）on plinth． ready wired，
with plugs and
fitted Goldring pliance ceramic cartridge with diamond stylus．Ass embled TA12 Stereo Amp．in cabinet and Pair of Dorset Speaker Units．Total for abore saving
Perspex cover $59 / 9$ extra with above． 5 （total 453.13 ）

RSGGARIB WATT STEREO AMPIITIIS FULLY TIRANSISTORISED，SOLID STATE CONSTRUCTION IIGII FIDELITY OUTEUT OF 6．5 WATTS PER CHANNEL Designed for optimum performance with any crystal or ceramic Gram corder，M1ke etc．$\quad 3$ separate switched input sockets on each chan－ nol \star Separate Bass and Treble con－ trols \star Slide Switen for mono use \star

 Speaker Output 3－15 ohms t For$200-250 \mathrm{v}$ ．A．C．mains t Frequency
Response $30-2000 \mathrm{c.p.s}-2 \mathrm{~dB}$ Harmontc Distortion 0.0 c Response $30-20,000$ c．p．s．－ 2 dB 大 Harmonic Distortion 0.3% at 1000
c．p．s．Hum and Noise－70dB $\&$ Sensitivities（1） $300 \mathrm{mV}(2) 100 \mathrm{mV}$（3） c．p．s．Hum and Noise－ $70 d B$ \＆Sensitivities（1） 300 mV （2） 100 mV （4） 2 mV \＆Handsome brushed silver finish Facta and Knobs． complete kit of parts with full wiring diagrams and in－ 1 Carr． Complete kit of parts with full wiring diagrams and in－ $1 /$ Carr．
structions．Factory built with 12 mth gntee 15 GNS．Or
Deposit e4．16．0 and 9 mithly pymts．29／－（Total 17 GNS．）．
GNS．
Teak finish cabinet as above $73 / 6$ or as in stereo system
Consisting of matched $121 \mathrm{n} .12,000$ line 10 watt 15 ohm high quality speaker，cross－over unit and tweeter． Smooth response and extended frequency range en－ Or Senior 15 watt inc．HF 126 Carr．5／9
FR3b 3－Speaker System inc．HF 122 L 12 in ． 20 watt Bass＇speaker with roll rubber cone surround for very low fundamental resonance， priate choke／capacitor cross－overs．Imped． 15 ohms．Frequency response $20-20,000$ c．p．s．Circuit and recommended 11 Gns．

HI－FI＇SPEAKER ENCLOSURES Teak veneer finish． Modern design．Acoustically ined and ported． JE8 Size $20 \times 11 \times 81 n$ ．Gives pleasing results 4 Gins． With any 8in．Hi－Fi speaker．
SE8 For optimum performance with any 81n， 5 Gins．
H1－Fi speaker．Size $22 \times 15 \times 91 n$ ． S1－F1＇speaker．Size 22 x

SOLID STATE VHF／FM RADIO TUNER
 R．S．C．TFM1 SOLID STATE VHF／FM RADIO TUNER

 Or factory built
16 \＆ns．Or in Teat 16\％Ens．Or in Teak finished cabinet as
illustrated 191 gins． Terms：Deposit 195 Terms：Deposit 45
and 9 monthly pay－ and monthy pay－
 tion．toutpint ample for any amplitier（approx． 500 miv ．）．太Simple allgnment instructions．太Out
put avalaiole for fealing tuning meter．$\underset{\text { output }}{ }$ put available for feeding tuming meter．大output for feeding Stereo Multiplexer．太Tuner head
using sillcone Planar Transistors． \boldsymbol{t} Designed for standard 80 ohm co－axial input．Visually matching our Super 15 and The pre－wired tuning head facilitates speed of performance and reliability． Printed circuitry．Only frst grade transistors andicity of construction． quality product at half the cost of comparable units．Stereo version．all quality product at half the cost of comparabl
parts 101 gns．Assembled 254 Rns．Carr． $10 /$
\qquad

R．S．G．SMPGR 5 HIRTAM

FULLY TRANSISTORISED 200／250v．A．C．Mains． OUTPUT 10 WATTS R．M．S．cont．Into 15 ohms． LATEST MULLARD TRANSISTORS．AD149． AD149．OC1272，OC81Z，OC44，OC44，OC81Z，OC44，AC107． EQUALISATION to Standard R．I．A．A．and C．C．I．R． Charactertstics for Gram and Tape Heads． SENSITIVITIES：Magnetic P．U． 4 mV ．Crystal or Ceramic P．U． 400 mV ．Microphone 4.5 mV ．
2.5 mV ．Radio／Aux or Ceramtc P．U． 110 mV ． FREQUENCY IRESPONSE： $\pm 2 \mathrm{~dB} 20-20,000 \mathrm{c} . \mathrm{p}$ ． TREBLE CONTROL：+15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$ ．NEG FEEDBACK ： 52 dB ． BASS CONTROL：+17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ．HUM LEVEL：-75 dB ． HARMONIC DISTORTION at 10 Watts 1,000 c．p．s． 0.25% ． $1 \mathbf{1}$（ind Gns．
Complete Kit of parts with full constructional details and point to point wirlng diagrams．Carr．12／6．Terms：Deposit 4 Gns．and 9 Supplied factory bullt 151 Gns．Carr．12／6．Terms：Deposit 4 Gns．and
monthly payments 311 （Total ci8．3．8）．Or fitted In beautiful walnut or s．extra． PPLIED BY LEADING BRITISII MANUFACTUREES．

BRADFORD 10 North Parade．（Half－day Wed．）Tel． 25349

BRISTOL 14 Lower Castle St．（Hall－day Wed．）Tel． 22904 BIRMINGHAM ${ }^{30 / 31}$ G1．Western Arcade opp．Snow HIII DERBY 26 Osmaston Rd．The Spot（Hall－day Wed．）Tel． 41361 DARLINGTON 18 Prlestgate（Half－day Wed．）Tel： 68043
EDINBURGH ${ }_{133}$ Leith St．（Half－day Wed．）Tel．Waverley 5766 GLASGOW ${ }^{326}$ Argyle St．（No half－day）Tel．CITy 4558 403 Sauchiehall St．（Opp．Locarno）Tel．332－1572

HI－FI CENTRES LTD．
MAIL ORDERS TO： 102 Henconner Lane，Bramley， Leeds 13．No C．O．D．Under f1．Terms C．W．O．or C．O．D． $5 / 9$ extra under £5．Trade supplled．S．A．E．withenqulles please．HI－FI Catalogue 4／6．

SPECIFICATIONS COMPARABLE
WITH UNITS AT ALMOST TWICE WITH UNITSAT ALMO
THE COST
 -52 dB at $1,000 \mathrm{c} . \mathrm{p.s}$ ． CONTrROL： 5 ＇position Input Selector．Bass Control．Treble
Control．Volume Control．Balance Control．Stereo／Mono Switch．Tape Monitor Switch．Malns Switch．INPUT SOCKETS（Matched Pairs）．（1）Magnetic P．U．（2）Ceramic or
Crystal P．U．（3）RadiolAux．（4）Tape Head／Microphone． Crystal P．U．the Input Selector Switch assures appropriate equalisation．Risid i8 s．w．g．Chassis．Size approx． $12 i n$ ．Wide． equalisation．Rin deep．NeonPanel indicator．Attractive Fas－
3ln．highand cia ． Plate and Spun Sjlver Matching Knobs．Above facilities． etc．except for Ganging and Balance control aphe FOR USE WiTH ANY MAKE OF PICK－UP OR MICROPHONE（Grystal，Ceramic， Marnetic，Moying Coll Ribbon）CURRENTLY AVAILABLE USING WITH FIRST RATE ANCILLARY diagrams and detailed instructions．\quad Carr． $15 /-$－ 2 ayments $56 / 3$ ． （Total £31．8．3）．Fitted cablnet as Super 1530 Gns．Carr．15／－or Deposit （Total £31．8．3）．Fitted cablnet as（Total £34．18．6）

AUDIOTRINE HI-FI TAPE RECORDER KIT REALISM AT iNCREDHLY LOW COS ONIY 4 AIRSOFSOLDERED IOINTS PLUSMANS. Tape Amplifier with maitched Tapedeck. High quality 3 speeds. High Flux P.M. Speaker. empty Tape Spool, Cabinet of latest styling, finished dark grey leathercloth. Size $143 \times 17 \times 8$ in. and circuit. Purchased separately would total approx. £36, Performance equal to pryments 59/6 (Total 29! Ens). 4 grack. and 9 monthly extra.

R.S.C. STEREO/20 HI-FI AMPLIFIER
 IOH WATT ULTRANAEARPUGR PROMDIVG What 10610 O combensation and Inmont selector Sux 0.2% \&Four-position tone *Neon banel indicator. \star liandsome Perspex Frontplate. 太Separate Bass and Treboe controis. Output transformers are high quality section14 ons. 14 Gns. to-point wiring diagrams and instructions. Or factory assemCarr. 12/6 9 monthly payments $£ 2$ (Total $£ 22.10 .0$). Send S. E $_{2} 4.10 .0$ and
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI

AMPLIFIER Highly sensitive Push-Pull Tone Control Stages. Performance figures equal Fo most expensive amplifiers. Hum level - 70 dB . wound output transformer. All first grade components. Valves EF86, EF86, ECC83, 807 807. GZ34. Separate Bass and Treble Controls.
Sensitivity 12 millivolts so that any kind of Sensitivity 12 millivolts so that any kind of
Microphone or piek-up is suitanle. Designed Microphone or Piek-up is suitable. Designed
for Cluth, Schools, Theatres, Dance litalls or Out door Functions, etc. For use with Electronie Organ, Guitar, String Two inputs with associated volume controis so that two separate inputs such as Gram and "Mike" can be mixed. $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ A.C. mains. For 3 and 15 ohm speakers. Complete kit of parts with point-to- 12 Gns.
point wiring diagrams and instructions. Twin-handled perforated cover $25 /-$. Supplied factory buit with EL34
output valves. 12 months' guarantee for 15 Ens. TERMS Deposit $£ 4.130$ output valves. 12 months' guarantee for 15 Ens. TERMS: Deposit $£ 4.13 .0$
and 9 monthly payments of $28 / 9$ (Total $£ 17.11 .9$). Send S.A.E. for leaflet.
R.S.C. A11T 15 WATT HIGH FIDELITY AMPLIFIER
 DUAL, PURPOSE P.A. or HI-FI. SOLID STATE
CIRCUUTRY. \star input sockets. $\star 2$ vol. controls CIRCUITRY. $\star 3$ input sockets. $\star 2$ vol. controls
for mixing purposes. \star Input Selector. \star Output for speakers between 3 and 15 ohms. \star separate Bass Microphone, or Guitar P.U. For Vocal Radio, Tape mental groups. Frequency Response $20-40,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. - 3 dB . Hum level - 80 dB .
Harmonic Distortion 0.2% at 10 watts R.M.S. Operation on $200-250 \mathrm{~V}$. Harmonic Distortion 0.2% at $\begin{aligned} & \text { mats } \\ & \text { mains. Size } 9!\end{aligned} \times 2!\times 5 \mathrm{in}$. Complete Kit of parts with 9 Gns. Carr mains. Size $94 \times 2\} \times 54 \mathrm{in}$. Complete Kit of parts with 9 Gns. Or Factory built with 12 mths guarantee 13 gns. Carr. 9/6. Terms: Deposit ments 25/6 (Total £15.9.6).
R.S.C. BASS-REGENT 50 WATT AMPLIFIER
 An exceptionslly powerful high quality
sll-purpose nnit for lead. rhythm, bass
guitar, vocalguitar, vocal-
ists,
Rram. radio, tape

* Two extra heavy duty F. Loudspeakers. \star Four Jack inputs and simultaneous use of up to four pick-ups or "mikes" plus Bass and Treble $49 \frac{1}{2}$ Gns. Carr. ${ }^{301}$. ${ }^{\text {an }}$ or and 9 monthly payments of
e5.10.10. (Total 55 gns.). E5.10.10. (Total 55 gns.) Also 5 25w.Splir. 29 Ens. Gisine
12in. Uw. Splir. 19 vins. RS.C. BATTERY/MAINS CONVERSION UNITS Type BM1
An all-dry An all-dry battery eli-
minator Size 5$\} \times 4 \frac{1}{x}$ Completely replaces batteries supplying 1.5 v . and 90 v . Where A.C. mains $200 /$
$250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is available. Complete kit with diagram 47/9 or assembled $59 / 11$. SELENIUM F.W. RECTIFIERS (Bridged) All $6 / 12 \mathrm{v}$. D.C. output. Max.
A.C. input 18 v . 1 a . $3 / 11$. 2a. 6/11.3a. 9/9. 4a. 12/9.6a.
R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impreg*
nated. Primaries $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$. Sceened. MIDGET CLAMPED TYPE $25 \times 28 \times 21 \mathrm{in}$.
 FULLY SHROUDED UPRIGHT MOUNTING $250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}$.
$250-0 \cdot 250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \mathrm{v} .3 \mathrm{a}$.
$300-0.300 \mathrm{v} .100 \mathrm{~m}$, $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} .$, c.t., 6.3 v .1 a $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$. 43 a ,
For Mullaril 510 Amplifier. $350-0-350 \mathrm{v}, 100 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{a}, 1,0-5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $425 \cdot 0-425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. 4 a. c.t. $425-0-425 \mathrm{v}, 200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 8 \mathrm{v} .3 \mathrm{a}$.
$450 \cdot 0-460 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, ~ c . t ., 5 \mathrm{v} .3 \mathrm{a}$. TOP SHROUDED DROP-THRODGH TYPE $250 \cdot 0-250 \mathrm{v}$. $70 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} .2 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{Za}$. $250-0-250$ ซ. $100 \mathrm{~mA}, 6-3 \mathrm{v} .3-5 \mathrm{a}$.
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a} ., 6 \cdot 3 \mathrm{v}, 1 \mathrm{~s}$,
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6-3 \mathrm{r}, 2 \mathrm{a} .0-5 \cdot 6 \cdot 3 \mathrm{v}$ $350 \cdot 0-350 \mathrm{v} .80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. $2 \mathrm{a} ., 0-5 \cdot 6 \cdot 3 \mathrm{v}$. 2 a .
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $250-0-260 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$.
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot \mathrm{v} .4 \mathrm{a}, 10-5-6 \cdot 3 \mathrm{v}$. E_{n} itable for Mullard 5.0 A mplifier $350-0-350 \mathrm{v}, 100 \mathrm{~mA}, 6,3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$,
$350-0-350 \mathrm{v}, 150 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5 \cdot 6 \cdot 3 \mathrm{v}$. FLLAMENT or TRANSISTOR POWER PACK $39 / 11$ $6 \cdot 3 v .1 \cdot 5 a .6 / 9 ; 6 \cdot 3$ v. 2a. $7 / 9 ; 6-3 y^{2}$ 3a. 9/9 Types a. 19/9; 12 v . 1a $8 / 9 ; 12 \mathrm{v}$. 3 a . or 24 v . $1-5 \mathrm{a}$. $19 / 9$; $0-9$-18v. 11a. 15/9; 0-12+25-42v. 2a. 27/9. CHARGER TRANSFORMERS 0-9-15v. lia. 13/11; 212. 16/11; 3a. 18/11; 5 a. 21/11; 6a. 25/11; 8a.31/11 AUTO (Step UP/Step DOWN) TRANSFORMERS 150 watts, $29 / 11 ; 250$ watts $49 / 9 ; 500$ watts $90 / 9$ OUTPUT TRANSFORMERS
Etanidard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Push-Pull 8 watts ELB4 to 3Ω or 15Ω Puah-Pull 10 watts 5 VV ECL 86 to $3,5,8$ or 15 Push-Pull ELR4 to 3 or 15Ω 10-12 watto.
Push-Pull Ultra Linear for Mullard 510 . Push-Pull Ultra Linear for Mullard 510, etc.
Push-Pull $15-18$ watts, sectionally wound 6 LB . KT66, etc., for 3 or 15Ω
Push-Pull 20 watt high quality sectionally
wound EL34, 6L6, KTibe etc. to 3 or SMOOTHING CHOKES
$80 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega \mathrm{H} / 8 ; 60 ; 100 \mathrm{~mA} .10 \mathrm{H}, 200 \Omega 9 / 11$
 R.S.C. COLUMN SPEAKERS tone Rexine/Vynair. ideal for vocalists and Public Address. 15 ohm matching. Type C4s, \%30 watts. Fitted four 8 in. high flux 7 watt speakers. Overall size approx. $42 \times 10 \times 5 i n$. Or deposit $44 / \sim$ Type C412, 40 watts. Fitted four 12 in. 12000 iine speakers. Overall size $56 \times 14 \times 9$ in. approx. Carr. $15 /-22$ Gns. 2n Deposit $£ 3.13 .0$ and 9 monthly payments of 50/- (Total £26.3.0)

30 WATT HI-FI AMPLIFIER

for Guitar, Vocal or Instrumental Group

Separate Bass and Treble controls. Peak rating 60 watts. Latest valves. Strong Rexine covered cabinet with indicator. For 200 z 250 v . A.C. mains. 18 Gns Carr for leaflet. Deposit 3 gns. and 9 monthly payments of $39 / 8$ (Total £21)
12in. HIGH QUALITY LOUDSPEAKERS In Trak venerred or Rexine covered Caninets
Io watt 12,000 lines 5 Gns 20 Watt 12.000 line

LOUDSPEAKERS Limited number at fraction of
Brand new. guaranteed. Terms available over s8.

 59/11 $\mathbf{f 5 . 1 5 . 0} |$| | $\mathbf{f 6 . 1 9 . 9}$ |
| :--- | :--- | :--- |

- FANE 'POP' 100 loudspeaker

18 " 100 Watt ${ }^{\text {PRESE }}$ handiling. Guar- 19 Gns
aiteed years.
R.S.C. $4 / 5$ watt
R.S.C. GRAM AMPLIFIEIR KIT. 4 watts
output. Negative feedback. Contro Tone and Switch. Mains operation $200-250 \mathrm{~V}$ $\begin{array}{ll}\text { A.C. Fully isolated chassis. } \\ \text { Circuit etc. supplied. } & \mathbf{4 9 / 1 1}\end{array}$
POWER PACK KIT
transformer. Metal Rectifier. Electrolytics smoothing choke, chassis and circuit. 2001 250 v . A.C. mains. Output 250 v . $22 / 11$
60 mA
6.3 v .2 a . Supplied with caso in lieu of chassis 26/11. Or assembled 39/11.

A5 HIGH GAIN AMPLIFIER

home small clube 4 -valve quality amplifer for the home, Small club, etc, Suitable for all crystal or ceraTreble controls. Hum level 71dB down. Negative FeedTreble controls. Hum level 71dB down. Negative Feedf4.17.9 3 ohms. Complete Kit with point-to
4.17.9 point wiring diarrams and instructions.

麗
SOLATRON CD711S.2. DOUBLE BEAM OSCILLOSCOPE
 An extremely high originally costing est00. Switched beam. Identical Y1, Y2 Ampliflers
D.0. to 8 Mc/s. Eensitivity $3 \mathrm{mV} / \mathrm{CM}$ to 100 V/CM. Time base $10 \mu /$ sec. to $10 \mathrm{M} / \mathrm{secs}$. Calibrator. X amplifier D.C. to 2 -5 Mc/a. Z Modulaupplied in good worting order ges carriage. £2, or 12 ,
 extra.)

MARCONI TEST EQUIPMENT TF. $144 G$ STANDARD BIGNAL GENERATOR $85 \mathrm{Kc} / \mathrm{s} .25 \mathrm{Mc} / \mathrm{a} .200 / 250$ V. A.C. 225 . Carr. $30 /-$
 OSCILLATOR. $\quad 0-40 \mathrm{Kc} / \mathrm{s}$. $200 / 250 \mathrm{~V}$, A.C. $£ 20$. Cart. 30/-. All above offered in excellent condition, fully tested and checked and offered at a fraction or original cost.
AM/FM SIGNAL GENERATORS
TYPE 13A DOUBLE BEAM An excellent $\begin{gathered}\text { general } \\ \text { purpose } \\ \text { cope. } \\ \text { D/B. } \\ \text { oscillos- }\end{gathered}$
2cpa-750

 Kc / s, Bandwith $5 \cdot 5$
Mc / s. Sensitivity $33 \mathrm{MV} /$
CM . Operating voltage CM. Operating voltage
$0 / 110 / 200 / 250 \mathrm{~V}$. A.C. Supplied in excellent working condition,
w22.10.0. or complet.
with all

AVO CT. 38 ELECTRONIC MULTIMETERS
High quality 97 range instrument which measures A.C. and D.C. Voltage, Current, Resistance and Power output. Ranges
D.C. volts $250 \mathrm{mV}-10000$ v. (10 meg $110 \mathrm{mg} \Omega$ input). D.C. current $10 \mu \mathrm{~A} 25$ amps. Ohms: $0-1,000$ ineg Ω. A.C. vol $100 \mathrm{mV}-250 V$. (with R.F. measuring ${ }_{25}$ head up to. 250 Mc/s. A.C. current $10 \mu \mathrm{~A}$ wata. Operation $0 / 110 / 200 / 250 \mathrm{v}$. C supplied in perfect condition compl with circuit lead and R.F. probe 225. Carr. 15/-

Vaviable yolcase Than irinulifi

Brand new, gusranteed and carriage paid
High quality construction. Input 230V. $50-60$ cycles
Output full variable from $0-260$ volts. Bulk quantities available

$8 \mathrm{amp}-214.10 .0 ;$
$20 \mathrm{amp} .-237.0 .0$.

ECHO HS-606 STEREO

 Wonderfuliy com Wonderfuliy corn- Lortable. weight adjustable vinylheadband. 6 t. vinylheadband. 6it. cable and stereo cable and stereo jack plug. $25-17,000$

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering $550 \mathrm{Kc} / \mathrm{a}$ to 30 Mc/s. continuous and electrical band
spread on $10,15,20,40$ and 80 metres. spread on 10, $15,20,40$ and 80 metres.
8 valve plus $\%$ diode circuit. $4 / 8$ ohm output and phone Jack. S8B-CW ANL - Variable BFO g meter. Gep. band spread dial IF $455 \mathrm{Kc} / \mathrm{a}$ Audio output $1 \cdot 5$ W. Variable RF and AF gain controls. $115 / 250 \mathrm{~V}$. A.C. Maine. Beautifully deslgned, slue: $7 \times 15 \times 10 \mathrm{in}$. With instruction manusa and
data, 837.10 .0 . Carriage 12/6.

AUTO TRANSFORMERS $0 / 115 / 230 \mathrm{v}$. Step
Fully shrouded.
500 W. 88.10 .0 P. \& P. $6 / 6$. $1,000 \mathrm{~W} .85 .10 .0 \mathrm{P} .8 \mathrm{P} .7 / 6$.
 ${ }_{7,500}$ W. 815.10 .0 P. \& P. 20/-

SOLARTRON MONITOR

 OSCILLOSCOPE TYPE 101 An extremely high quality oscilloscope with time base of $10 \mathrm{Q} / \mathrm{sec}$. to $20 \mathrm{~m} / \mathrm{sec}$. Internal \mathbf{X} amplifler. Separate mains power aupply $200 / 250 \mathrm{~V}$. supplied in excellent condition with cables, probe,etc., as recelved from Ministry. 28.19.6.

$\begin{array}{l}\text { etc., as recelved from Midistry. e8.19.6. } \\ \text { Carriage } 30 / \text {. }\end{array}$
SE6.12.6. P.
SINCLAIR EQUIPMENT

Z12 12 watt amplifier, 89/6. PZ4 Power Supply Unit 99/6. Sterbo 25 Preamp. 8 89.19.6. Q14 Speakers, Buist 59/6. Mioro FMI Radio Kit 5.19.6. All Port Paid.

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM

Operative over amazingly long distances. Separate call and press to talk buttons, 2 -wire connection. 1000 's of applications. Beautifully fin-
ished in ebony. Supplied ished in ebony. Supplied
complete with batteries and complete with batt
wall brackets. wail brackets.
25.19.6. P. \& P. $3 / 6$.
INTERCOM/BABY SITTER Transistorised In
 tercoms, deal for
home / office / workshop etc. 2 -wsy
buzzer call system buzzer call system.
For desk or wall mounting. Supplied complete with connecting wire, bat teries, instructions, 2 station 59/6. P. \&
f6.12.6. P. \& P. $5 /-$.

8PECLAL OFFER
2 z12 Amps., PZ4 Power
Supply, Stereo 25 f22
Preamplifer.
Orwith two
Q14 Speakers. \&35.

T.E. 40 HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges: $3 / 1 / 3 / 10 / 30$ $-2 \mathrm{Mc} / \mathrm{G}$. Decibels -40 to +50 dB . Supplied brand new complete with leads and instructions. Opera Carr. 5/-
 Carr. 5/-

PRINTED CIRCUITS

 Five assorted printed circuit
bcards with
transistors diodes transistors, diodes,
resistors,
conden sers, etc. Guaran20transistors Idear for experi-
Ideal menters,
for $10 /-P$.
a 2/-.
LAFAYETTE TE46 RESISTANCE CAPACITY ANALYSER
$2 \mathrm{pF}-2,000 \mathrm{mfd}$ 2 ohms 200 meg ohma. Also checks
impedance, turns ratio, insulation, 200/250V A.C Brand New 215 . Carr. 7/6.

ARF-100 COMBINED AF-RF SIGNAL GENERATOR

AF. SINE WAVE $20-200,000$ c/s.
Square wave 20
. $\begin{array}{lll}\text { Square wave } & 20- \\ 30,000 & \text { c/b. } & 0 / \mathrm{P} \\ \text { HIGH } & & 01 \mathrm{MP}\end{array}$ HIGH IMP. 91 V
$\mathrm{P} / \mathrm{P} 600 \Omega 3 \cdot 8 \mathrm{P} / \mathrm{P}$ TF $100 \mathrm{Kc} / \mathrm{s}-300$
Mc / s. Variable R.F. attenuation int/ext. modulation. Incorpor
ates dual purpose meter to monitor AF out ates dual purpose meter to monitor AF out-
put and $\%$ mod. on R.F. $220 / 240$ V A.C put and \% mod. on
e27.10.0. Carr. $7 / 6$.

TE-20RF SIGNAL GENERATOR | Accurate wide range signal generator cover- |
| :--- |
| ing $120 \quad \mathrm{Kc} / \mathrm{s}-260$ |
| Mc / s on 6 bands. |

 Directly calibrated Variable R.F. at-
tenuator. Operation tenuator. Operation 200/240V. A.C.
Brand new with in Brand new with in
atructions. $\$ 15.0 .0$ structions.
P. \& P. $7 / 6$. S.A.E. for details.

TE22 SINE SQUARE WAVE AUDIO GENERATORS

Bine: $20 \mathrm{c} / \mathrm{g}$ to
200 Ke on 4 200 Ke 纤 on ${ }^{4}$ bands. Square: $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Kc} / \mathrm{s}$ Output impedance 5,000 ohms, 200/250V A.C Gupplied brand and new guaran
teed with instruc
tion manual and leads, \&15. Carr. 7/6.

NOMBREX TRANSISTORISED TEST EQUIPMENT
All Post Paid with Battery

AMERICAN TAPE
First grade quality American tapes. Brand new. Discount on quantities. $3 \mathrm{in} ., 225 \mathrm{ft}$. L.P. acetate,
34 in , H00 ft. T.P. mylar.
5 in. 600 ft .std. plastic.
$5 \mathrm{sin} .900 \mathrm{ft.L.P}$.acetate. .
$5 \mathrm{sin} .1,200 \mathrm{ft}$. D.P. mylar

$5 \mathrm{in} .1,800 \mathrm{ft}$. T. P. mylar
5 ? in.

5 zin . $1,200 \mathrm{ft}$, L. P. mylar.
5 in. 1,800 th. D.P. mylar.
7 in. $1,200 \mathrm{ft}$. atd. acetate
Tin. 1,800ft. L.P.acetate.
7in. 1,800ft. L.P. mylar
in. 2, 3.600 ft . T.P. mylar
Model 22. Power Supply 0-15V DC
Model 30. Audio Generator.
$\$ 19.10 .0$ Model 30. Audio Generator.
Model 31. R.F. Signal Generator. Model 32. C.R. Bridge. Model 66. Inductance Bridge. Model 61. Power Supply.

210.10 .0 e20.0.0

 \&20.0.0218.0 .0 218.0.0
26.10.0

COSSOR DOUBLE BEAM

 OSCILLOSCOPESType 1085. General purpose. A.C. Cnupled Type 11048

LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS
$0-20 \mathrm{Kc} / \mathrm{s}$. Output 5 K or 500 ohms. $200 / 250$ Vi2. A.c. offered in excellent condition.

R.C.A. AR88 SPEAKERS

8 in . 3 ohm speakers in metal case. Black crackle fnish to match our 88 Recrivers 59/6, Сагr. 7/6.

MAINS INTERCOMS

No wires, no in

 atallation, just plug into A.C. power polnt andoperate. Ex. tremely sensitive 28.18.6. P. \& P.

EVERSHED VIGNOLES SERIES II 500
VOLT MEGGERS. Perfect condition $2 \& 1$. CT. 53 SIGNAL GENERATORS. $8.9-15 \cdot 5$ and $20-300 \mathrm{Mc} / \mathrm{s}$. Ontput $1 \mu \mathrm{~V}-100 \mathrm{MV}$. Mains
operated. Pertect condition less charts. operated. Periect
$£ 12.10 .0$. Carr. $151-$

WS. 88 TRANS/RECEIVERS. A and B sets available. Complete with valves. $30 / 8$ each P. \& P, 4/6. Accessories available

No. 10 MICROPHONE AND HEADSET. Moving coil Accessory for 19 set. Unused 15/-. P, \& P, 4/-

DUBILIER NITROGEL CONDENSERS.
2 nufd. 5,000 V., 42/6. P. \& P. 5/-.
LUCAS 20/0/20 AMMETERS. Brand new P. \& P. $2 /$ suitable car/motorcycle. $12 / 6$

\section*{GEM PANEL METERS
 Send S.A.E. for full lists. Other ranges avallable. Please include poatage.
 pecial quotations for quantities. CLEAR PLASTIC METERS
 Type MR.38P. 121/32in, square fronts.

 | $50 \mu \mathrm{~A}$ | 37/6 | 750 mA | 251- | $41 \mathrm{in} . \times 4$ isin. Ironts. | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50-0-50 2 LA | 351- | 1 amp | $251-$ | $50 \mu \mathrm{~A}$ | 6 | 5 amp . | 16 |
| $100 \mu \mathrm{~A}$... | $351-$ | 2 amp | 25t- | $50-0-50 \mu \mathrm{~A}$ | $59 / 6$ | 30 amp. | $49 / 6$ |
| $100-0-100 \mu \mathrm{~A}$ | . $32 / 6$ | 5 amp
 3 y D. | $\begin{aligned} & 251- \\ & 25 /- \end{aligned}$ | $100 \mu \mathrm{~A}$ | 38/8 | $20 \mathrm{~V} . \mathrm{D} . \mathrm{C}$. | 48/6 |
| $200 \mu \mathrm{~A}$ | 82/6 | 10 V. D.C. | 25/- | $200 \mu \mathrm{~A}$ | .59/6 | 50 V. D.C. $150 \mathrm{~V} . \mathrm{D} . \mathrm{C}$. | 18 |
| $500 \mu \mathrm{~A}$ | $37 / 6$ | 20 V. D.C. | 251- | $500 \mu \mathrm{~A}$ | . $52 / 6$ | 300V. D.C. | 49/6 |
| 800-0-500 $\mu \mathrm{A}$ | 251- | $50 \mathrm{~V} . \mathrm{D} . \mathrm{C}$. | 25/- | 500-0.500 ${ }^{\text {a }}$ A | . $49 / 6$ | 15 V . A.C. | 49/6 |
| 1 mA | 25/- | 100 V . D.C. | 25/- | 1 mA | .49/8 | 300 V. A.C | 49/6 |
| 1-0-1mA | 251- | $150 \mathrm{~V} . \mathrm{J.C}$ | 25/- | 1-0-1 ma | . $49 / 8$ | 8 Meter 1 mA | 55/- |
| 2 mA | 251- | $300 \mathrm{Y} . \mathrm{L}, \mathrm{C}$. | $25 /-$ | 5raA ... | . 4916 | VU meter. | 89/6 |
| 5 mA | 251- | 500 y D.C. | 25/- | 10 mA | .49/6 | 1 amp A. | 49/8 |
| 10 mA | 251- | $750 \mathrm{~V} . \mathrm{D} . \mathrm{C}$. | 251- | 50 ma | .49/6 | 5 amp. A.C. | 49/6 |
| 20 mA | 25/- | $18 \mathrm{~V} . \mathrm{A.C}$. . | 25j- | 100 mA | .49/6 | 10 amp A.C | 49/6 |
| 50 mA | 251- | $50 \mathrm{~V} . \mathrm{A.C}$. | 251- | 500 mA | .49/8 | 20 amp. A.C. | 49/6 |
| 100 mA | 251- | 150 V . A.C. | 25j- | 1 amp . | 49/6 | 30 amp A.C | . $49 / 6$ |
| 150 mA | 25/- | 300 V . A.C. | 251- | 5 amp. | 49/6 | 30 amp. A.C. | |
| 200 mA | 25]- | 500 V . A.C. | 25]- | | | | |
| 300 mA | 251- | S meter 1 mA | 29/6 | | | | |
| 500 mA | 5- | VU meter | 39/6 | 50¢A....... | | 50 V . I).C. . | 39/6 |
| Type MR.45P. 2in. square tronts. | | | | 50-0-50¢น. | 52/6 | 150 V . D.C. | 39/6 |
| $50 \mu \mathrm{~A}$ | .42/6 | 10V. D.C. | 27/6 | $100 \mu \mathrm{~A}$ | .52/6 | 300V. D.C. | 39/6 |
| 50-0-5012A | 39/6 | 20V. D.C. | 27/6 | 100-0-100 2 | . 49/6 | 15V. A.C. | 39/6 |
| 1001 A . | 39/6 | 50V. D.C. | 27/8 | 500 LA | . $451-$ | 50 V . A.C. | 39/8 |
| 100-0-100¢LA | . 351 - | 300 V . D.C. | 27/6 | 1 ma | 30/6 | 150 V . A.C. | . $39 / 6$ |
| $500 \mu \mathrm{~A}$ | 29,6 | 15 V . A.C. | $27 / 6$ | 5 mA | 30/6 | 300V. A.C. | . $39 / 6$ |
| 1 mA . | 27/6 | 300 V . A.C. | $27 / 6$ | 10 mA | .39/6 | 500 V . A.C. | .39/6 |
| 5 ma | $27 / 6$ | \& meter lmA | $35 /-$ | 50 mA | 39/6 | 8 meter lmA | .45/- |
| 10 mA | 27/6 | VU meter. | $42 / 6$ | 100 mA | . $39 / 6$ | VU meter | 651- |
| 50 mA | 2716 | 1 amp . A.c. ${ }^{\text {a }}$ | . $27 / 6$ | 500 mA | .38/6 | $50 \mathrm{~mA} \mathrm{A.C}$. . | 39/6 |
| 100 mA | 27/6 | 5 amp. A.C.* | .27/8 | 1 amp . | 8916 | $100 \mathrm{~mA} \mathrm{A.C}$. | $39 / 8$ |
| 500 mA | 27/6 | 10 amp . A.C. | .27/6 | 5 amp . | 39/6 | 200 mA A.C. ${ }^{\text {c }}$ | . $30 / 6$ |
| 1 amp . | $27 / 6$ | 20 amp . A.C.* | .27/6 | 10 amp . | 3916 | $600 \mathrm{~mA} \mathrm{A.C.*}$ | .39/6 |
| $\delta \mathrm{amp}$. | 27/8 | 30 amp A.C.* | .27/6 | 15 amp . | . $89 / 6$ | $1 \mathrm{amp} . \mathrm{A.C}$. * | . 3816 |
| Type Mr.52P. 2lin. square tronts. | | | | 20 amp . | 38/8 | 5 amp . A.C. ${ }^{\text {* }}$ | 39/6 |
| $50 \mu \mathrm{~A}$ | .59/6 | 100-0-100 2 A | .451- | 50 amp | . $39 / 6$ | 20 amp. A.C.* | . $39 / 6$ |
| 50-0-50 2 L | $49 / 6$ | 500pa | . $42 / 8$ | $10 \mathrm{~V} \mathrm{D} . \mathrm{C}$. | . 3976 | 30 amp A.C.* | 39/6 |
| $100 \mu \mathrm{~A}$ | $49 / 6$ | 1 mA . | . $37 / 6$ | $20 \mathrm{Y} . \mathrm{D} . \mathrm{C}$. | $39 / 6$ | | |

BAKELITE PANEL METERS Type MR.65. $3 \frac{1}{2} \mathrm{jn}$. square fronts.

$25 \mu \mathrm{~A}$. $67 / 6$	500 mA
50上A $45 /-$	1 amp .
50-0-50 μ A . . $42 / 6$	δ amp.
100/LA $42 / 6$	15 amp .
100-0-100 LA . $42 / 6$	30 amp .
$500 \mu \mathrm{~A}$. 39 ; 6	50 amp .
$\underline{1 m A}82 / 6$	5V. D.C.
1.0.1mA ., $32 / 6$	10V. D.C.
5 mA $32 / 6$	20 V. D.C.
10mA $38 / 6$	50 V. D.C.
50 mA $32 / 6$	150 V. D.C.
100 mA $32 / 6$	300 V . D.C.

NEW RANGE OF "SEW" EDGEWISE METERS MODEL PE70. Dimensions 3 17/32 $\times 111 / 32$ 50 microamp.......57/6 500 microamp $\begin{array}{ll}50 \text { microamp.......57/6 } & 500 \text { microamp } \\ 50-0.50 \text { microamp } & 55 /- \\ \text { I milliamp. } \\ 100 \text { microamp } & 300 \text { volt }\end{array}$ 100-0-100 microsmp 58/6 VU meter. 200 microamp.....58/6 Post extra.

MULTIMETERS for EVERY purpose!

MANY OTHER MODELS FROM AS LOW AS 39/6

\star Hi-Fi Equipment \star Test Equipment \star Electronic \star Communication Components Equipment
Fully illustrated catalogue listing thousands of items, many at bargain prices. Free dis count coupons with every catalogue.

SEND NOW-ONLY 5 -P\&P 1 .

RADON 404 STEREO SYSTEM Comprising Hi-Fi solid State integrated atereo amplifler, 8 watts per channel, two matching compact speaker units, Garrard
SP25 transcription record unit with stereo cartridge in cabinet. Blond oak satin finish. All necessary plugs and leads sup plied. Notbing more to buy

PRICE 48 GIS. Carr. 15/(Also available in teak 12/- extra.)

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, $1 H F$ muaic power, 30 W at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis.
tortion 1% or less. Inputs 3 mV and 250 mV Output $3-16 \Omega$. Beparate L. and R, volume controls. Treble and basa control. Stereo phone jack. panel with complementary metal case. Bize $104 \times$ 3 $9 / 16 \times 7 \times 13 / 16 \mathrm{in}$. Operation $115 / 230 \mathrm{~V}$ A.V.
$\mathbf{2 2 5}$. Carr. $7 / 6$. 285. Cart 7 .
\qquad LAFAYETTE LA-85T

UNR-30. 4-BAND
COMMUNICATION RECEIVER

Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates variable BFO for CW/S8B reception. Bullt in speaker and phone brand new, gusranteed with instruc- f12. | brand new, gusranteed with instruc- |
| :--- |
| tions. |
| Carr. 7/6. |

LAFAYETTE MODEL HA-700 AM/CW/SSB AMATEUR COMMUNICATION RECEIVER
 8 Valves, 5 bandg incorporating 2 MECHANICAL
FILTERS for exceptional selectivity and senai tivity. Frequency coverage on 5 bands $150-400$ $\mathrm{Kc} / \mathrm{s}, 550 / 1,600 \mathrm{Kc} / \mathrm{s}, 1 \cdot 6-4 \cdot 0 \mathrm{Mc} / \mathrm{a}, 4 \cdot 8-14 \cdot 5 \mathrm{Mc} / \mathrm{s}$, 10.5-30 Mc/s. Circuit incorporates R.F. stage,
aerial trimmer, noise limiter B.F. aerial trimmer, noise
detector, electrical bandapread,
s rule dial. Output for phones, low to $2 k \Omega$ or speaker 4 or 88 . Operation $220 / 240 \mathrm{~V}$ A.C. Size $7 \mathrm{z} \times 15 \times 10 \mathrm{in}$. 8 up plied brand new and guaranteed with handbook. 86 GNS. Carr. 10/- s.A.E. for leaflet.
LAFAYETTE MODEL HA-500 SSB/AM/CW 80 THROUGH 6 METRE RECEIVER
New outatanding Ham Bands only receiver covering the $80 / 40 / 20 / 15 / 10 / 6$ metre bands. Incorporates 10
valves, product detector, two mechanical glters, valves, product detector, two mechanical ilters,
Meter, dual conversion on all bands, cryatal callbrator, B.F.O. noise limiter, aerial trimmer, 1.F.s. 2.608 Mc / s and $455 \mathrm{Kc} / \mathrm{f}$. Output 8 ohms and 500 ohms.
Operations $220 / 240$ volto A.C. supplied brand new and guaranteed with handbook 42 Gas . Carr. $10 /=$ $100 \mathrm{Kc} / \mathrm{g}$, crystal, $35 /-$

ISED FM TUNER OUALITV ONLY $6 \times 4 \times 2 \mathrm{IN} .3 \mathrm{SIZE} \mathrm{I} . \mathrm{F}$. stages. Double tuned diafeed most amplifiers. Operates on 9 V battery. Coverage 88 $108 \mathrm{Mc} / \mathrm{s}$. Resdy built ready for use. Fantastic value for money. £6.7.6. P. \& P. 2/6. Btereo multiflex adaptors 5 gns

- \% \% M M GARRARD DECES Brand New and Guaranteed 6P.25 ME II leas cartridge.
A70 Mk II less cartridge
LAB 80 Mk II lesa cartridg
LAB $80 \quad \begin{array}{lll}228.10 .0\end{array}$
401 Transeription
£27.6.0
Camiage 7/6 $\frac{(\pi}{3.34}$

Open the pages of The RADIO CONSTRUCTOR this month for ．．． OSCILLOSCOPE VOLTAGE／ TIME CALIBRATOR

Build This First Class Design By H．T．Kitchen
This printed circuit 3 semi－conductor device offers a closely controlled voltage with accurate routine frequency measure－ ments．

Other constructional features include： Adding Echo to a Tape Recorder Wave Trap for Medium Waves Automatic Buzzer Alarm
－ーーーー－Also in this issue ーーーーー－

FREE 2 detachable DATA SHEETS

bado gonistilution

MAY ISSUE NOW ON SALE 3／－

HOLDINGS
 CENTRE

for your better STEREO AND FM RADIO holdings stereo booster
 holdings

AT THE＂＇STEREO BOOSTER＂IS The＂Stereo Booster＂is a high－gain low noise pre－amplifer．It is simply con nected by plugging the aerial lead Into the input socket，and connecting the Booster＇s output lead to the aerial socket on the tuner．Power is provided byalns operated psio

WHAT THE＂＇STEREO
BOOSTER＂WILL DO
The＂Stereo Booster＂will increase the atrengih of all British F＇M stations，but Is peaked for maximum gain on the third programme．Due to ita high gain it Hil appreciably improve results on mono or stereo where prevousiy the 13 ming fact has been lack of gain in＂he FTEREO
WHAT THE＂STERE BOOSTER＂WILL NOT DO The＂Stereo Booster＂will not greatly improve resuits if an exceptionally efficient tuner is aiready in use（i．e．say
a Fisher）nor can it work miracles if the tuner is badly aligned，or＂third rate＂ Stereo Booster with Battery $£ 3.18 .0$ $\begin{array}{lr}\text { Mains－op．Power Supply Unit } & \text { £1．19．6 } \\ \text { Postage and package } & 2 / 6\end{array}$ Postage and package
GPECIAL OFFER．P．B．U．\＆BOOBTER 55.15 ． BO TT PATD． It really work！Many reports of imp It really works．Many reports of imp－Available roved reoeption received．S．A．E．lor Thurs，Open more details．

FREE WITH EVERY FISEER Now only $17 / 6$ ，including postage． 300Ω Aerial input aockets to British coaxtal cable．
J．BEAM AERIALS

Element wide spaced aerial 86 includ． ing carriage．
Type FM48，\＆4．7．0，carriage pald FM4s Aerials with matehng unit， details．
HI－FI EQUIPMENT
IF IT＇S WORTH BUYING WE PROBABLY HAVE IT ON DEMONSTRATION
\qquad

IT＇S ALWAYS SALE TIME

 AT THEWIRECOMP BARGAIN CENTRE！！！
BARGAINS＊BARGAINS BARGAINS
There＇s something for everyone in our vast stocks of surplus and first－class reconditioned equipment－
RECORD PLAYERS • HI－FI EOUIPMENT TELEVISIONS（from £4！！）© RADIOS TAPE RECORDERS－W／TALKIES SPECIALISTS IN THE UNUSUAL I COME AND LOOK TODAY 48 TOTTENHAM COURT ROAD，W． 1 Telephone 01－636 0647

HEATHKIT Models for Family Entertainment
 AVAILABLE READY-TO-USE OR A'S KIT MODELS

Latest STEREO TAPE RECORDER, STR-1

Fully portable-own speakers
Kit $£ 58.0 .0$ incl. P.T.
Ready-to-Use $£ 70.6 .0$ incl. P.T.
FOR THIS SPECIFICATION
$\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{1}{6} \mathrm{ips}$. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumbwheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/headphone and external amplifier outputs . . . front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two high efficiency $8^{\prime \prime} \times 5$ " speakers. Operates on 230 V a.c. supply.
Versatile recording facilities. So easy to build-so easy to use.

Latest STEREO AMPLIFIER, TSA-12
12×12 watts output.
Kit £30.10.0 less cabinet
Ready-to-Use $£ 42.10 .0$
Cabinet $£ 2.5 .0$ extra
FOR THIS SPECIFICATION
17 transistors, 6 diode circuit $\pm 1 \mathrm{~dB}, 16$ to $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.

Full range power . . . over extremely wide frequency range. Special transformerless output circuitry. Adequately heat-sinked power transistors for cool operation-long life, 6 position source switch.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semi-conductors (6 trensistors, 2 diodes). For 12 volt positive or 12 volt negative earth systems. Powerful output (4 watts). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly. Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
KIT (less speaker) $£ 12.18 .6$ incl. P.T.
$8^{\prime \prime} \times 5^{\prime \prime}$ Loudspeaker $£ 1.10 .0$ extra.

Latest Portable Stereo Record Player, SRP-1

Automatic playing of 16,33, 45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5in. special loudspeakers. For 220250 V ac mains operation. Over-
 all cabinet size $15 \frac{9}{16} \times 3 \frac{7}{3} \times 10 \frac{1}{4} i n$.
Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.

KIT £28.6.0 incl. P.T. Ready-to-Use $£ 35.4 .0$

RADIOS for Luxury Listening

 "OXFORD" PORTABLE UXR-2 This De-Luxe, 7 transistor, 3 diode portable radio covers long and medium wave-bands with an easy-tune dial and uses battery-saving circuitry to ensure longer life and more hours of listening pleasure. Choice of Brown or Black real leather case.KIT $£ 15.10 .0$ incl. P.T.
PORTABLE UXR-1
'This luxury 6-transistor, 1 diode receiver covers long and medium wavebands. Its robust case is now available in real brown leather or chaice of colours: Navy blue. coral pink, lime green (please state second choice).
KIT $£ 12.8 .0$ incl. P.T. colour case KIT E14.8.0 incl. P.T. real leather

UXR-1

SEE HEATHKIT MODELS AT
GLOUCESTER
Factory and Showroom, Bristol Road.

LONDON

233 Tottenham Court Road, W.1.
BIRMINGHAM
17-18 St. Martins House, Bull Ring.
Deferred terms available over $£ 10$ (UK oniy).
Prices quated are Mail Order prices.
"Mohican" General Coverage Receiver, GC-1U
Powerful 10 transistor, 5 diode circuit.
Tunes 580 to $1550 \mathrm{kc} / \mathrm{s}$ and 1.69 to 30 Mc / s in five bands. Bandspread on all bands. Fixed-aligned ceramic IF transfilters for best selectivity. Pre-assembled and aligned 'front-end' for fast, easy assembly. Built in $6 \times 4 \mathrm{in}$. speaker. Tuning meter for pin-point tuning. Completely self-contained for portability-can be operated on 230 volt AC with Model UBE-1. Kit £2.17.6 extra.
Kit £37.17.6. Ready-to-Use £45.17.6.

Send for Latest FREE Catalogue

36 pages, many models in colour.
HEATHKIT

Please address all enquiries to:'
 DAYSTROM LTD., Dept. PW-6, GLOUCESTER

\square Please send me FREE CATALOGUE
\square Full details of model(s)

NAME
ADDRESS
Prices and specification subject to change without prior notice.

VIKING AMPLIFIER

50 WATT AMPLIFIER

An extremely reliable general purpose valve amplifier. Its rugged construction yet space age styling and design makes it by far the best value for money

TECHNICAL SPECIFICATIONS

4 electronically mixed channels, with 2
inputs per channel, enables the use of 8 sep-
arate instruments at the same time. The volume controls for each channel are located directly above the corresponding input sockets.
SENSITIVITIES AND INPUT IMPEDANCES
Channel $1 \quad 4 \mathrm{mV}$ at 470 K$\}$ These 2 channels (4 inputs) are suitable for Channel 24 mV at $470 \mathrm{~K}\{$ microphone or guitars.
Channel 3200 mV at 1 m \{ Suitable for most high output instruments Channel 4200 mV at 1 m$\}$ (gram, tuner, organ etc.).
Input sensitivity relative to 10w output.
TONE CONTROLS ARE COMMON TO ALL INPUTS
Bass Boost +12 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Bass Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$.
Treble Boost +11 dB at $15 \mathrm{KHz} / \mathrm{s}$. Treble Cut -12 dB at $15 \mathrm{KHz} / \mathrm{s}$.
With bass and treble controls central -3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and ${ }_{20} \mathrm{KHz} / \mathrm{s}$
POWER OUTPUT
For speech and music 50 watts rms. 100 watts peak.
For sustained music 45 watts rms. 90 watts peak.
For sine wave 38.5 watts rms. Nearly 80 watts peak.
$\left.\begin{array}{lr}\text { Total distortion at rated output } & 3 \cdot 2 \% \\ \text { Total distortion at } 20 \text { watts } & 0.15 \%\end{array}\right\}$ at $1 \mathrm{KHz} / \mathrm{s}$
Output to match into 8 or 15 ohms speaker system.
NEGATIVE FEED BACK 20dB at $1 \mathrm{KHz} / \mathrm{s}$. SIGNAL TO NOISE RATIO 60dB.

MAINS VOLTAGES

Adjustable from $200-250 v$ A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit. VALVE LINE UP
Double purpose ECC83 $\times 3, \mathrm{EL} 34 \times 2$ and

Price
27 gns
P \& P 20/-

GZ34.

FOUR PLUS FOUR Stereo Amplifier

A superb high quality, yet inexpensive stereo amplifier. Due to pensive great demand we are now able to offer this precision made instruto offer this precision made instru-
ment at a fantastically low price. ment at a fantastically low price. styling has been maintained in spite of its low price.

SPECIFICATIONS

Elegant styled cabinet (sizes 16^{*} wide $5^{\prime \prime}$ high $8 \frac{1}{2}^{\prime \prime}$ deep) in black rexine and woodgrained sides. Brushed aluminium front panel with contrasting black/silver knobs.
CONTROLS
Stereo/Mono switch. Gram/Aux switch. Volume left. Volume right. Treble (cut and lift). Bass (cut and lift). Separate on/off switch. Neon pilot indicator.
INPUTS AND OUTPUTS
(per channel)
Gram, aux, tape out and speaker out. A switched mains socket is

8-watt 4 -valve PUSH-PULL

AMPLIFIER \& METAL RECTIFIER
Size: $9^{\prime \prime} \times 6^{n} \times 1 \frac{3}{4}^{\prime \prime}$. A.C. Mains, $200-250 \mathrm{~V}, 4$ valves. For use with Std. or L.P. records, musical instruments, all makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate bass and treble lift control. Two inputs with bass and treble lift control. Two inpats with controls for gram. and mike. Output transformer tapped for 3 and 15 ohm
speech coils. Built and tested. £4.4.0. P. \& P. $11 /-8^{\prime \prime} \times 5^{\prime \prime}$ speaker to suit speech coils. Built and tested, £4.4.0. P. \& P. $11 /-, 8^{\prime \prime} \times 5^{\prime \prime}$ speaker to suit
price $14 / 6$ plus $1 / 6 \mathrm{P}$. \& P. Crystal mike to suit $12 / 6$ plus $1 / 6 \mathrm{P}$. \& P.

GEC KETtLE ELEMENT

3,000W WITH AUTOMATIC EJECTION $200 / 240 \mathrm{v}$. Size of hole required $1 \frac{10}{16}$ List Price 32/=. Our PRICE 15/-. P. \& P. 1/6.

RADIO \& TV COMPONENTS (Acton) LTD

21c High Street, Acton, London, W3
Shop Hours 9 a.m.-6 p.m. Early Closing Wednesday Goods not despatched outside U.K. Terms C.W.O.

AU enquities Stamped Addressed Envelope
Also at 323 EDGWARE ROAD, LONDON, W.2. Personal shoppers only. Early Closing Thursday. All orders by post to our Acton address.

STAR SR 150 COMMUNICATION RECEIVER
Frequency range $535 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ four wave bands, four valve plus metal rectifier superhet circuit incorporates B.F.O. band spread tuning, " S " meter external telescopic aerial - ferrite aerial, built-in 4" speaker, easy to read dial. For 240 V A.C. operation complete brand new with full instructional manual. 17 gns, plus $10 /-\mathrm{P}$. \& P.

POCKET MULTI-METER

Size $37 \times 2 \neq x 13$ Meter size $2 k \times 1$ in Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. 0-15. 0-150. 0-1000 D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete with test prods, battery and full instructions, 42/6. P. \& P. 3/6. FREE GEFT for limited period only. 30 watt Electric Solderlng Iron valte 15/- to every purchaser of the Pocket Multi-Meter.

CYLDON U.H.F. TUNER

 Complete with PC88 and PC86 Valves. Full varlable tuning. New and unused. Stze $41 \times 5 \frac{1}{2} \times$ 1 in. Complete with circuit diagram. 35/- p. \& p. 3/6

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud Speaker gystem on one frame, combining three matched ceramic magnet speakers with a low loss cross over network. Peak handling power 10 watts. Impedance 15 ohms. Flux density 11,000 gauss. Resonance $40-$ $60 \mathrm{e} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$.
Size $13 \mathrm{x} \times \mathrm{g}_{1 / 18} \times 4 \frac{1}{4}$ inches. By famous Size $13 \# \times 81 / 18 \times 4 \frac{1}{4}$ inches. By famous
manufacturer. List Price \&7. Our price 69/6 plus $3 / 6$ P. \& \mathbf{P}.

3 to 4 Watt AMPLIFIER

3-4 watt Amplifter built and tested. Chassis size $7 \times 3 \frac{1}{x}$ 'lin. Separate bass, treble and volume control. Double Wound mains transformer, metal rectifer and output
tranaformer for 3 ohms speaker. Valves ECCB1 and 6 V 6. \&2.5.0 plus $5 / 6 \mathrm{p}$. \& p .

600 mW FOUR TRANSISTOR AMPLIFIER

Features N.P.N. and P.N.P. complementary symmetrical output stage,
 3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$. Price $19 / 6$ plus $1 /-\mathrm{P}, \& \mathrm{P} .7 \times 4^{\prime \prime}$ Speaker to suit, $13 / 6$ plus 2/- P. \& P.

2年 watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} \mathrm{x} 44^{\prime \prime} \times 13^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Semi conductors, two OC 75's two AC 128's and two stabilizers AA 129. Tone and volume controls on flying leads. $£ 2.10 .0$ plus P. \& P. 3/6. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high flux speaker, $18 / 6$ plus 2/- P. \& P.

NEW TRANSISTORISED SIGNAL GENERATOR

size $5 \frac{1}{2} 3 \ddagger \times 1$ in. For IF and $R F$ alignment and AF output $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{mc} / \mathrm{s}$ in awitched frequencies. Ideal for alignment to our Elegant Seven and Musette. Built and tested.
P. \& P. $3 / 6.39 / 6$

FIRST QUALITY P.V.C. TAPE 58" Std. 850ft. 9/- $5^{\prime \prime}$ L.P. 850ft. . . 10 $7^{\prime \prime}$ Std. $1200 \mathrm{ft}11 / 63^{\prime \prime}$ L.P. $\quad 850 \mathrm{ft} . \quad .10 / 6$

 54" D.P. $1800 \mathrm{ft}18 / 64^{\prime \prime}$ T.P. $900 \mathrm{ft} . . .15 /-$ P. \& P. on each $1 / 6,4$ or more post free.

AC Mains 230/250 v. complete with pull switch. Size $6^{\prime \prime}{ }^{\prime \prime}$ x Price 27/6 $\begin{array}{ll}\text { plus } & 5 /- \\ \text { P. \& }\end{array}$

AC MAINS MOTOR

1400 R.P.M. 230/250v

PRICE
9/6
P. \& P. 3/-

R,M.S. Power Output: 13 WCIFICATIONS (music power), 10 W (Sine Wave), Sensitivity: for rated output 1 mV into 3 K ohms load. Frequency Response: minus 3 dB points are 20 Hz and 40 KHz .
Total Distortion: at ikHz for rated output 15%. for 5 W output Output impedance: 3 ohms ($3-15 \mathrm{ohms}$ may be used),
Supply Voltage: 24 V D C. at at 800 mA ($6-24 \mathrm{~V}$ may be used) output at Size: $21^{\circ} \times 3^{+} \times 101{ }^{\circ}$.
The fully comprehersive instruction manual does not only show the basics, such as circuit diagram and connections, but also gives practical easy-to-understand detailed information about the X101 Standard equalisation networks are given for most types of con-
ventional nputs. They include: Tape Head, Mag. P.U., Xtal P.U., ventionalinputs. They include: rape
Tuner; Mic.etc. $49 / 6+2 / 6$ p. \& p.

POWER SUPPLIES FOR THE X101

PIIIM
 A HIGH QUALITY MONAURAL PREAMP \& GONTROL UNIT

> Particularly suitable for use with the X101 if a ready-built, comprecontrois
> Selector Switch, Tape Speed Equalisation Switch (3i and 7 position rumble filter
> Sensitivities for 200 mV output at 1 KHz .
> $\begin{array}{lll}\text { Tape Head: } & 3 \mathrm{mV} \text { (at } 3 \mathrm{l} \text { i.p.s.) } \\ \text { Mag. P.U.: } & 2 \mathrm{mV} & \text { Radio: } 100 \mathrm{mV} \\ \text { Aux.: } & 100 \mathrm{mV}\end{array}$
> Cer. P.U.: 80 mV
> Tapelkec Output: 100 mV
> Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.)
> Tone Control Hange: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz

$$
\begin{aligned}
& \text { Supply Voltare: } 24 \text { V D.C. }
\end{aligned}
$$

$59 / 6$ plus 2/6p. \& p
A STEREO VERSION (PR101/S) WILL BE ANNOUNCED SHORTLY

跬
 \&DID-3AE AMPLIFIER (MONO)

MEM! THE Dorseet

 POTRIBLERMDIO

CAN BE USED AS BABY ALARM

600 milliwatt solid state 7 transistor plus diode and thermistor. Completely modulised high quality portable radio
teaturing complementary NPN and PNP output
stage. The comprehensive easy-to-follow drawings
supplied make this the easiest-ever transistor radio set or parts, with the following festures

- Simple connections to only 6 tags on the R.F./I.F. wodule, 3 I.F. stages, osc. coil and 3 transistors which - Only 4 connections on the A.F. module to complete the 4 - Prealigned R.F./I.F. molinle built and tested - Prealigned R.F./I.F. molule built and tested - A.F. module built and teated. $540-1040 \mathrm{Kc} / \mathrm{s}$ ($557-183$ metres). L. W. lands. M.W. (2000-1100 metres).

Ius $7 / 6$ postage - Sensitivity: M.W. at I $470 \mathrm{Kc} / \mathrm{s}$.
 Ke/8 40 microvolt plus or nimns 4 dB

- High Q internal ferrite rod aerial on both wavebands.
- Class 'B modulised output stage with thermistor controlled heat atabiligation to the output stage ensures long battery life. Current drain is proportional conditions is 1012 mA . At reasont drain of the receiver under no signal - Extension socketa for car serial iaput, tape recorder $20-30 \mathrm{~mA}$.
volume control) and Exerial input, tape recorder output (Independent - All components (except speaker) mount on
do-follow instructions. Size of cabinet 12 in . long printed cireuit board. Easy nger-tip controls.

Speoial Ofer-Power Sapply Kit to purchasers of Dorset Portable Radio parts incorporating mains transfortaer, rectifer and smoothing condenser, AC mains
$200 / 250 \mathrm{~V}$ output 9 V 100mA, $8 / 6$ extra

ELEGANT SEVEN Mk III COMBWED PORTM 3
 and GAR RADO

Buy yourself an easy to build 7 transistor radio and save at least £10.0.0. Now you can build this superb transistor superhet radio for under $\mathbf{\$ 4 . 1 0 . 0}$. No one elae can offer such a fantastic radlo with eo many de luxe star features.

* De laxe wooden cablet size \star Horizontal casy to read tuning \star Bale printed grey with black letters, size $111_{\frac{1}{2}}{ }^{\frac{1}{2}} \mathbf{x} 2^{*}$.
\star High 'Q' ferrite rod aerisl. \star I.F. neutralization on each of parate вtage.
\star D.C. coupled push pull output tage with separate A.C. negative feed back.
\star Room filling output 300 mW .
\star Ready etched and drilled printed circuit board back printed for foolproof
\star Fully comprehensive instructions and point-to-point wiring diagrams.
* Car aerial socket.
* Fully tuaable over medium and long wave. 168.535 metres and 1250-2000 metres.
\star All components ferrite rod and tuning assembly mount on printed board. $\star 5^{+}$P.M. speaker.
* Parta list and circuit diagram 2/6, free with parts.

RADIO \& TV COMPONENTS (ACTON) LTD. 21C high street acton london. wo
OPEN 9 a.m.-6 p.m. INCLODING SATS. EARLF CLOSING WED.
GOODS NOT DESPATCIED OUTSIDB U.K. TERMSC.W.O. All enquiries stamped addressed envelope
All orders by post to be sent to our Aoton address
$\mathbf{3 2 3}$ EDGWARE ROAD, LONDON W2
Personal shoppers only. Early closing Thursday.

10Gins
 WRAPS UP YOUR SPEAKIR PROBLILIS

with Wharfedale's Unit 3 Speaker kit

Wharfedale have designed a new genuine high fidelity system that you can build yourself. With the Unit 3 Kit you get: an 8" speaker (with a magnetic field of 12,000 oersteds) which covers the bass and middle ranges; the new Wharfedale tweeter with acoustiprene dome; an electrical cross-over unit; acoustic wadding, wiring, etc., and a complete assembly instruction leaflet, in
fact, everything you need to build a compact speaker system.

You can build the Unit 3 Kit into one of two cabinet sizes. In the smaller cabinet the system will give a faithful and rich reproduction of all musical sounds from $65-17,000 \mathrm{~Hz}$. The larger cabinet increases the range from $40-17,000 \mathrm{~Hz}$.

RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKSHIRE.

TOPIC DF THE MONTH

Edward in Wonderland

UST WHAT is happening to the GPO these days? It seems to be fast sinking into a kind of dream world, with the PMG, Mr. Edward Short, playing Alice.

The latest case of midsummer madness appears to have been stimulated by pressure from an M.P. (Mr. George Wallace) for an extension of facilities in the "B" licence conditions. As a result, Mr. Edward Short announced that holders of " B " licences will soon be allowed to use the $144-146 \mathrm{Mc} / \mathrm{s}$ band in addition to the existing $427 \mathrm{Mc} / \mathrm{s}$ band.

OK, nothing objectionable here. But-out of the blue and to the great surprise of everyone-the PMG announced at the same time that he is to introduce a new "Beginner's Licence" in the autumin. What frequencies? What power? What conditions? What limitations? What facilities? What-to come down to it-is it all in aid of?

You may well ask. Nobody knows. The announcement came as a complete surprise to the R.S.G.B., who were not even consulted on the issue. And we would lay odds that the Radio Services Branch of the GPO knew no more about it.

The whole episode is highly unsatisfactory to everyone. The only conclusion one can arrive at is that the PMG sprang this one out of the hat (and seemingly on the spur of the moment) without even consulting the departments and society responsible for devising and maintaining the laws of amateur radio.

For in effect Mr. Short has proclaimed: "In the autumn, we are to introduce a new amateur licence for beginners. In the meantime, we are going to work out what it's all about." Legislation by White Paper we have seen and deplored. Now it seems we are to have legislation by casual announcement. Pragmatism has struck amateur radio.

Let us wish those now faced with the task of sorting out the details the very best of British luck, for they are certainly going to need it!
W. N. STEVENS—Editor.

[^0]
NEWS AND COMMENT

Leader 95
News and Comment 96
CQ! CQ! CQ! 100
Physics Exhibition 1968 104
Your Questions Answered 106
Practically Wireless by Henry 119
Letters to the Editor 122
On the Short Wavesby Christopher Danpure andDavid Gibson, G3JDG131
CONSTRUCTIONAL
Simple Receivers for Beginners by T. Simon 98
Integrated Circuit Preamplifier by Leslie McNamara, B.Sc. 102
Experimental Transistor Millivoltmeter by Peter Williams, B.Sc. 116
The "Clubman" Part 6
by J. Thornton-Lawrence, GW3JGA 124
The 'Ten-Fifty' Transmitter by A. S. Carpenter, G3TYJ 135
OTHER FEATURES
Adaptable Low Cost Hi-Fi System Further notes by W. Cameron 101
Repairing Radio Sets, Part 3 by Gordon J. King 109
Five Steps to Hi-Fi, Part 2 by lain Smith 120

[^1] Convention and the U.S.A. Reproductions or Imitations of any of these are therefore expressly forbldden.

Ultra Electronics Limited (UEL), Western Avenue, London, W3, England, announce a new range of solid state audio amplifiers, providing outputs of 10 W , 25 W , and 50 W .

The 10 W general purpose amplifier, type TA10 (illustrated), has been introduced to meet the growing number of small P.A. and sound reinforcement applications in industry and commerce. The unit accepts three inputs, two low impedance microphones, plus music with full mixing facilities. Outputs are provided for both low and high impedance speaker systems.

The 25 W and 50 W amplifiers accept five inputs, four microphones and one music, plus full mixing and tone control facilities. These two units also incorporate priority override facilities if required.

ELECTRONIC SPEED CONTROL

M. \& J. Supplies \& Sales have recently introduced a new low cost electronic drill speed controller, Vari-speed. It is housed in a robust unbreakable polypropylene case measuring $5 \times 2 \frac{1}{2} \times 2 \mathrm{in}$. It operates on standard $220 / 250 \mathrm{~V}$ a.c. household supplies and, the makers claim, is suitable for all standard power drills with a chuck capacity of up to $\frac{3}{8} \mathrm{in}$. The Vari-speed incorporates advanced type thyristors, and provides smooth precise control from zero to full drill speed without loss of power, at the turn of a knob, claim the makers.

The Vari-speed is completely safe and is supplied with easy-to-follow instructions. It is guaranteed for twelve months and is available from M. \& J. Supplies Ltd., 30/40 Dalling Road, Hammersmith, London W.6, priced at 39s. 6d. plus p.p. 2s. 6d. or write for a fully descriptive leaflet.

WESTINGHOUSE TRIAC TRIAC (from TRlode A.C. switch) is a semiconductor device which can block voltage in either direction, be triggered on in either direction by positive or negative gate signals and can, therefore, conduct current in either direction. This single device can then be compared to an inverse parallel connected pair of thyristors.

Up to its rated blocking voltage the triac blocks in both directions and only a small leakage current flows. If the applied voltage exceeds the rated blocking voltage the device will turn on without gate signal. Because this effect occurs in both directions the triac is self-protecting against high voltage transients and will merely turn on, remaining undamaged provided the load current and the rate of rise of current are within the triac capability.

The triac is triggered by applying either positive or negative pulses between gate and terminal T1, which removes that region of the V-I characteristic between open gate breakover and conduction in either direction so that the characteristic becomes essentially that of a diode rectifier.

TEACHING MORSE

A London company that can teach anyone to touch type in 12 hours is developing a revolutionary method for teaching Morse code. If all goes well, it may be possible later this year to learn Morse up to Radio Amateur Examination requirements with only a few hours training.

Based on a technique similar to that successfully used to teach thousands of people to touch type, Sight and Sound of Oxford Street are confident that they will be able to teach Morse far quicker than by conventional means.

Development work is at an advanced stage using a visual signal board containing all the letters of the alphabet, numbers and punctuation, which flashes pulses of light from each character representing the Morse.

NEW LICENCE FOR RADIO AMATEURS

Two changes in amateur radio licensing arrangements were announced in Parliament by the Postmaster-General, the Rt. Hon. Edward Short, M.P.

A new "Beginners" licence is to be introduced in the autumn. The details of this licence have not yet been settled, but its purpose is to encourage interest in radio in people (especially young people) who have not yet reached the standards of qualification needed for a full " A " or " B " licence.

Holders of the Amateur (Sound) Licence "B" (for which Morse qualifications are not required) have now been authorised to operate in the frequency band $144-146 \mathrm{Mc} / \mathrm{s}$. Hitherto, amateurs wishing to use any band below $427 \mathrm{Mc} / \mathrm{s}$ have had to obtain " A " licences, for which a Morse test is necessary.

LASERS AND SPEEDOS

Among the many developments to be introduced at the Instruments, Electronics and Automation Exhibition held at Olympia, May 13th-18th, is a new American laser memory for computers. It can not only store massive amounts of information-645 million items of digital data on a square inch of tape-but can accept information at the formidable speed of 12 million binary digits a second. A laser with a finely focused beam "burns" minute holes in the tape surface. These holes can be detected by a second laser reading beam.

Another new application of electronics is an easy-to-read car speedometer which presents the road speed in digits. There is no needle: the speed appears in inch-high numerals. The development has been made possible by the use of microcircuitry. A tiny silicon chip, carrying the equivalent of 300 transistors. is used. This is a standard production component and the speedometer circuit in fact uses only three-quarters of its capability. But, by using a microcircuit already in production, the cost of the speedometer is kept to a minimum. The producers, General Instrument (UK) Ltd., say that it is already comparative in cost to conventional electronic instruments and could well compete in price with mechanical speedometers in a year's time.

ST. DUNSTAN'S ON THE AIR

War-blinded amateur radio operators met for their annual airing of the callsign GB3STD at St. Dunstan's, Ovingdean, near Brighton, on March 22-24th.

While the modern s.s.b. station was on the air busily making contacts with other amateurs all over the world, everyone was asking the same questionwould they be able to contact Miss Iris de Reuck, ZS2PY, in Port Elizabeth, South Africa? Miss de Reuck is St. Dunstan's only blinded girl radio ham, and last year she opened the conference-by radio! The photograph shows war-blinded, former Marine Commando, John "Tiny" Pointon, G3MTX, on the mike.

The interesting menu included lectures by R. J. Hughes (R.S.G.B.) on transmitters and receivers for beginners, and Dr. R. G. Manton (BBC Aerial and

Planning Dept.) on aerials.

Verdict was-a very successful weekend, and a special vote of thanks to the four 30 foot antennas on the roof who did such a grand job of squirting the r.f. in just the right places.
If you know someone who is blind, why not nip round and read this out to them. They'd appreciate it, and you never know, you might be responsible for giving another blind person an interest. Oh yesthey did work Iris in Port Elizabeth; well done both stations.

GOONHILLY AERIAL No. 2

Post Office engineers report encouraging progress with the construction of Aerial No. 2, which is now taking shape as a recognisable structure on the skyline near the existing aerial at the Goonhilly Earth Station in Cornwall.

The $75 \frac{1}{2}$ ft. radius, 340ft. long track, running from 66° to 326° E. of N. has been laid and levelled. Some 200 tons of steel have so far been used in the construction of the aerial base structure, which is mounted on a large centre pivot and a pair of bogies which run on the azimuth track. The $25 \frac{1}{2} \mathrm{ft}$. long screw, weighing about 30 tons, required for the elevation drive, has been landed on the base structure and the four elevation bearings positioned on the massive cross beam. Work is also proceeding on cladding the base structure to provide apparatus rooms for the sophisticated equipments required for a commercially orientated earth station.

Manufacture of most of the telecommunications equipment, including the operational control console, is nearing completion and the British manufactured equipment is now undergoing the initial phases of system testing at the contractors' works. Meanwhile, at the works of an Ipswich contractor, the fabrication of the GOft. reflector with its large backing structure and stainless steel plated petals proceeds. The weight on the elevation bearings, including that due to the counterbalance weights, is expected to be some 300 tons.

The aerial is required to work to an improved type of synchronous satellite positioned over the Atlantic Ocean later this year, thus releasing the first Goonhilly aerial from operational duty. The first aerial will then be equipped to work to an Indian Ocean satellite in 1969.

(1) SIMPLE FOR
 RECEIVERS Begimers

\% Int rumlisuran

NUMBER ONE . . . in a brand new series of articles describing the design and construction of simple single-band receivers suitable for the novice. This month's set uses only one transistor in a reflex circuit suitable for the medium waveband.

THERE are many people who would like to build a small uncomplicated radio receiver but begin to pale at the sight of several stages of transistor or valve circuitry together with numerous other components. Valve equipment has the disadvantage for the beginner of requiring a power supply, which adds to the cost, coupled with the increased hazard of getting a shock. All things considered, perhaps the best "first project" would be a simple transistor receiver capable of covering the medium waveband. It should be devoid of complicated switching and fairly simple and straight forward, both in circuit and construction. If you think along these lines and you would like to build a small set, perhaps for the bedside or even for a youngster, then the following circuit is recommended.

The receiver uses only one transistor and two diodes all of which are easily obtainable from a number of advertisers in this magazine, and they are very cheap too. The voltage required to power the set is nominally 8.4 volts obtained from a special Mallory battery. This battery is more expensive than the usual type used but will last very much longer. An ordinary PP3 or equivalent may be used which has a fractionally higher voltage- 9 volts.

Circuitry

Figure 1 shows the circuit of the complete receiver. The signal is tuned in by VCl in conjunction with L1-one of the windings on the small ferrite rod. A small secondary winding L2 is necessary to couple the signal developed to the base of Trl. This small winding is required because the impedance of the tuned circuit $\mathrm{VCl} / \mathrm{Ll}$ is a high whereas the input to the base of $\operatorname{Tr} 1$ is low impedance which is what L2 provides. The two resistors R1/R2 supply the base of Tr 1 with bias.

After amplification at radio frequency by Trl the signal arrives at Tr 1 collector. It cannot travel up to the phones terminal because of the high impedance offered by the tuned circuit C2/L3. It therefore travels through C3 to the two diodes. These detect the signal and D1 feeds this (now an audio signal) back again to the base of Tr1. The transistor now amplifies the signal again, this time at audio fre-
quency and it again appears in amplified form at the collector. The tuned circuit C2/L3, although presenting a high impedance to radio frequencies only has a very low impedance at audio frequencies and thus the audio signal is allowed to pass unhindered to the phones.

Decoupling

In some circuits you will see a large value $(10-100 \mu \mathrm{~F})$ wired from the positive line to earth in order to bypass any signals which might find their way onto the positive line and thus modulate the power supply-a most undesirable feature. In the

Fig. 1: Circuit diagram of the receiver.
circuit of Fig. 1 such a capacitor was not found necessary though if trouble were experienced, it would be very easy to wire one in. A value of $100 \mu \mathrm{~F}$ would be suitable and a midget electrolytic type of 12 volt working would be satisfactory. If you do find this necessary, note that the electrolytic must be wired in the right way round. The positive end is usually marked but if you are in any doubt, ask your supplier which end is which and mark it accordingly.

Construction

First. obtain a small piece of veroboard $1 \frac{3}{4} \times$ ${ }^{1} \frac{1}{1}$ in in. The piece used in the prototype has holes 0.04 in . diameter but the veroboard with the larger diameter holes will suit equally well if it is found easier to obtain.

Mark out and drill the three holes for the variable capacitor VCl and mount this with the aid of two 6 BA bolts. These should not be longer than $\frac{5}{3} \mathrm{in}$. from the underside of the head to the end of the protruding thread. If they are made any longer, they could easily push right through into the capacitor itself and damage the plates inside. If it is necessary to cut the existing bolts down to size, thread a nut onto the bolt first, cut the excess length off with a fretsaw fitted with a metal cutting blade, and gently unscrew the nut. This will re-form the end of the bolt and remove any burr. If this is not done, the burr could cause the bolt to seize up and enter the threaded holes on the tuning capacitor at an angle and could ruin the thread.
The coil L3 is a modified Osmor QHF5 with the top winding removed. This is easily done by cutting through the coil former gently with a fretsaw, but remove the core first. The two tags normally employed as terminals for this winding are used as anchor tags. It is quite in order to substitute a midget r.f. choke for this coil and C3 if one is to hand, but this will rob you of two convenient terminals for wiring up later on and also require a modification to suit in mounting the choke.
Enlarge the four holes to accommodate the coil L3 with a 6BA clearance drill. This is slightly smaller than $\frac{1}{8}$ in. in diameter. The coil tags will fit easily into the holes indicated and L3 is held in place by slightly bending these tags over on the reverse side of the board. When soldered connections are made to these tags, this will further help to hold the coil onto the board.

Mount the remaining small components, including the two diodes, onto the board by bending their wire ends at right angles to their bodies and inserting these wires into the relevant holes. Soldering up may now commence, the only two components not on the board are the transistor, which is soldered last of all, and the ferrite rod and its two coils. Note that C 2 is soldered to the top tags of the coil "above chassis", and that C3 is wired in "below chassis" as shown in Figs. 3 and 4.

Winding L1/L2

Obtain a piece of ferrite rod $1 \frac{3}{3} \mathrm{in}$. long and $\frac{3}{8} \mathrm{in}$. diameter. If a longer piece is bought this can be "cut" to size by scoring the ferrite at $1^{\frac{3}{4}} \mathrm{in}$. from one end. Place the rod in the vice at the scored mark, and tap the rod sharply with a hammer, whereupon the rod will break at the score mark.

Wind on close wound turns of 24 s.w.g. enamelled
copper wire until the rod is full i.e., as many turns as possible. These may be secured with a scrap of insulating tape at each end. Now wind four turns of the same gauge wire over the centre of the first winding again making these turns close wound and twist the two free ends together. The two free ends of the first winding may now be twisted together.

The ferrite rod is held to the veroboard with glue. Small strips of polystyrene such as used for packing are cut to the length of the rod and the width of VC1 respectively. These are smeared with "EvoStik" and pressed onto the board and side of the capacitor VC1. Their exposed surface is now lightly smeared with the same glue and the ferrite rod pushed firmly into place and allowed to set. This particular glue will dissolve the polystyrene and thus the rod can be pushed well into it forming a good adhesion. The on/off switch is mounted in a similar

Fig. 2: Drilling details of the veroboard chassis.

Fig. 3 (left): Layout of components on upper side of veroboard.
Fig. 4 (right): Wiring of the other side of the veroboard.
fashion with the aid of small pieces of polystyrene and glue. The small terminals will fit exactly into the holes on the veroboard and protrude through for soldering. Allow the glue to set well before using the switch.

Completion

Wire the coil into the circuit and note that one wire of the coupling winding (L2) goes to a spare unused tag on the coil L3.

Lastly, wire in the transistor using a pair of longnosed pliers as a heat shunt. Three "take-off" points are made for the headphones and earth by looping wires through the last holes on the board as shown in Figs. 3 and 4.

Check all wiring thoroughly to ensure no mistakes. This applies particularly to the transistor and the
two diodes where confusion could easily arise. In the original receiver, the diodes were selected for their different appearance to avoid confusion when wiring up as to which one was Dl and which was D2.

Testing

Connect a pair of high resistance headphones to the appropriate tags on the board. Connect the battery leads ensuring correct polarity-check once again, just to make sure. Switch on and swing the tuning capacitor from max to min.

If you are in an area of good signal strength the ferrite rod will provide sufficient pickup without an aerial or earth. If this is not the case, connect an earth lead to one terminal of VCl and an aerial to the other as indicated in Fig. 1. It is probable that two stations will be received, Radio 1 and Radio 4 in the London area.

Conclusion

This little receiver will give hours of pleasure and cost very little to run since battery drain is very low. less than two milliamperes. A suitable case could be made from plastic or thin wood if required and details are left to individual taste. In the event of a case being used, the spindle of the tuning capacitor will prove too short to protrude through to allow a knob to be fitted. In this instance, a small extension coupling could be fitted to VCl spindle.

The photograph shows the wiring on the "underside" of the veroboard. Note that the transistor and the capacitor C 3 are wired in on this side of the veroboard.
components list

Miscellaneous:

Ferrite rod $1 \frac{3}{4} \times \frac{3}{8}$ in.; 24 s.w.g. enam. copper wire; veroboard $1 \frac{3}{4} \times 1 \mathrm{in}$.; miniature switch (Henry's Radio); battery-Mallory TR146; high resistance headphones ($2,000 \Omega$); two 6BA bólts; Evo-Stik glue; scraps of polystyrene; wire; solder etc.

An OC171 could be used in place of the OC44 specified, the only minor circuit modification would be to take the screen lead from the OC171 to the positive or earth line.
Various other r.f. types were tested in the prototype, making adjustments where necessary, however, the type specified has the advantage of being easily obtainable and at a very reasonable price. Some n-p-n types were tested and worked, but it is not recommended that this be done since various polarities must be reversed, and the arrangement offered no great improvement in performance over the humble OC44.
This set will not have super sensitivity nor compare with the more advanced type of t.r.f. receiver and superhet, but it should receive local stations in most areas with the aid of an aerial.

NUMBER TWO . . . in next month's Practical Wirelessa two-transistor receiver using even fewer components. Circuitry, photographs and full constructional details.

CQ! CQ! CO! CQ! CQ! CQ!

WANTED

.. circuit for a transistorised converter giving $230-250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$ and at least 60 watts from 12 volt input.-J. Ross, 5 Vulcan Crescent, North Hykeham, Lincs.
. wanted for Halicrafters S27-circuit diagram, acorn valve holders, mains transformer ratings.-J. Sartorius, 35 Lingham Lane, Moreton. Wirral, Cheshire. ... record/playback head for a Walter 101 tape recorder.-A. Holmwood, 8 Dock Street, Pembroke Dock, Pembs
... issues of Practical Television January-December 1962, 1963, 1964, 1965 (except Apri1), 1966, and July, September, October, November, December, 1961.-L. Huxton, 187 Drake's Drive, St. Albans, Herts.
issues of Practical Wireless March, June, September, 1965; March, May, November, December, 1966; January-December, 1967.-i. Nicholls, 15a Iverson Road, Kilburn, London, N.W.6.
. two optical units from projection television complete with focus and scanning coils, three e.h.t. units complete with three field and line output transformers.C. Jervis, 32 Moatizouse Lane East. Wednesfield, Staffs.
handbook for B40 receiver.-R. Hooper, 206 Teignmouth Road, Torquay, Devon. handbook for B40 receiver.-R. Hooper, 206 Teignmouth Road, Torquay, Devon. collection only.-J. Foy, 101 Sandringham Road, Birmingham $22 B$.
.. manual for TCS receiver.-L. Levell, Popes HIII, Newham, Glos.
. . issues of Practical Wireless 1951-1966.-L. Levell, Popes Hill, Newham, Glos.
copy of October 1965 Practical Wireless.-H. McConnel, Blackyett, KIrtlebridge, nr. Lockerbie, Dumfriesshire.
. issues of Practical Wireless-July, August, September, November 1966 and June, July, August 1967.-J. Rigg, 139 Broad Lane, Rochdale, Larics.
manual or circuit diagram of receiver type P58 (300-650Mc/s).—R. Hayward, "Sunnyfields", Lighthouse Road, St. Margaret's Bay, Kent.
with anybody my own age (1612), interested in s.w.l., fadios and fishing.R. Russell, Stanley House, Wellington College, Crowthorne, Berks.

- Praclical Wireless January 1958 and April 1959.-D. Barron. 77 Naworth Drive, Newcastle upon Tyne.
. Praclical Wireless July 1963 for iniormation on Signal Injector.-W. Fell, 77 James Street, Frenchwood, Preston, Lancs.
. Practical Wireless March 1965.-R. Sharpe, 99 Halcyon Road, Newton Abbot, Devon.
... circuil of a 100-watt amplifier using 807's, KT88's or EL34's etc.-P. Watson, "Ferrlea", Latimer Road, Alvechurch, nr. Birmingham.

Practical Wireless March and April 1966.-B. Dunn, 8 Lancaster Drive, Clayton-le-Moors, Accrington, Lancs.
tapespond with anyone my own age (15), interested in amateur radio. My machine is a cassette $1 \frac{7}{8}$ i.p.s.-J. Stewart, 8 Semerled Avenue. Paisiey, Renfrewshire. Scotland.
adding an " $\$$ " meter to the R107 receiver.-M. Howarth, 4 Spencer Street, Burnley, Lancs.

Practical Wireless October 1964 containing article on the "Spectreuphon".P.O. Wilmer, C. J., Officers' Mess, R.A.F. Leeming, Northallerton, Yorks.
correspond with someone my own age (12), Interested in simple radio and wireless.-R. Walker, 72 Rutland Avenue, Nuneaton, Warwickshire.
help and advice regarding construction to save another set from the dustman.I. Murray, 77 Heath Lane, Upper Hale, Farnham, Surrey.
tapespondant my own age (14), interested in s.w. amateur radio, and who has a eceiver. My T/R is a Ferguson 3224 two-track $3 \frac{3}{4}$ i.p.s.
. Practical Wireless-over a hundred copies from 1957-1968.-A. Starreveld, 127 Welldon Crescent, Harrow, Mddx

February 1965 issue of Practical Television and January 1967 issue of Practical Wireless. Also any details of converting televisions into oscilloscopes.-M. Davies, Beechcroft, Northwood, Wem, Salop.
circuitry (buy or borrow) for a high quality monophonic amplifier with an output from 30 to 70 watts.-D. Brown, Electronics Society, Lymm Grammar School, Oughtrington Lane, Lymm, Cheshire.
correspondence with anyone interested in short wave listening, and hi-fi (I am thirteen years old).-A. Cockerill, 23 Cortina Avenue, High Barnes, Sundefland, Co. Durham.

Issues containing mods to the 19 set Practical Wireless, March to April 1966.C. Guellard, 121 Heol-y-Frenhines, Bridgend, Glamorgan.

Practical Wireless October and November 1963.-A. Hearey, 8c Moveen House, Benmore Drive, Belfast.

nopptabie towt05t

The author discusses some of the points arising from readers queries on his hi-fi system, that appeared recently, as a series of articles in this magazine (December 1967—March 1968)

BECAUSE of the wide interest shown in his recent series of articles, the author has selected the most frequent or interesting queries from readers with his answers to them, for the benefit of others who may be interested in exploring the possibilities of increasing the versatility of the amplifier.

Tape facilities

An additional socket may be fitted to provide an output for "Record", and connected via a resistor to the positive side of C3 (Fig. 1). The resistor will be typically $470 \mathrm{k} \Omega$, but can be between $100 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$, the actual value chosen to give a suitable output level for the particular tape recorder.
This will provide a fixed output, unaffected by the volume control in the amplifier.
The "Aux" input can be used for playback if a suitable series resistor is fitted. This should be chosen so that the tape recorder does not overload the amplifier. The value of resistor will be between $100 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$, depending on the output level from the recorder.

Low output cartridges

The amplifier as it is, has just not sufficient gain to give full output when ceramic cartridges with an output less than $100 \mathrm{mv} / \mathrm{c}$ are used. However, a substantial increase in gain can be made by reducing R5 to $4 \cdot 7 \Omega$ or even 2Ω. A further increase may be obtained by reducing R6a to 330Ω.

Alternative transistors

It was advised earlier in the article that transistors $\operatorname{Tr} 1$ to $\operatorname{Tr} 4$ should be of the specified types. More recent tests have shown, however, that the amplifier gives identical results when other transistors are used as follows:

For driver 2G371, use OC81D or OC71 $\}$ LFK3
 The pre-driver can be either a 2 G 371 or OC71. A guide to approximate voltage readings in the driver amplifier is given in the table opposite.

Higher output power

Higher voltages may be used on the output transis. tors to provide a higher power output.
Voltages up to a maximum of 60 V can be used (i.e. 30 V negative and 30 V positive with respect to common).

Sufficient drive is available from the driver amplifier, to drive the output stage to about 30 W into 15Ω or 45 W into 7Ω, when the total h.t. across the output pair of transistors $\operatorname{Tr} 5$ and 6 is 60 V . R19 and R20 should then be 0.75Ω, R14 and R15, $500 \Omega 5 \mathrm{~W}$, R15 and R17, $3 \cdot 3 \Omega$ half watt, and R18, $330 \Omega 1 \mathrm{~W}$.
R5 in the driver amplifier should be reduced in value to $2 \cdot 2 \Omega$.
The supply voltage to the driver amplifier must remain at 12 V max, and this can conveniently be obtained via a voltage regulator from the negative supply line. A suggested regulator circuit is shown (Fig. 2).

Fig. 1: An output for "Record" can be taken from the positive side of C3 via R.

Fig. 2: A small heat sink is required for the OC28. The resistor R2 avoids unnecessary dissipation in the OC28.

TABLE

Voltage	E	B	C
$\operatorname{Tr} 1 \mathrm{a}$	0.35	0.5	0.8
$\operatorname{Tr} 1$	0.65	0.8	4.0
$\operatorname{Tr} 2$	0.1	0.3	5.7
$\operatorname{Tr} 3$	6.0	6.1	12.0
$\operatorname{Tr} 4$	5.8	5.75	0

Approx. voltage readings. Driver amplifier h:t. supply 12 volts. Measured with $20,000 \Omega / \mathrm{V}$ meter.

Integrated Circuit Preamplifier lESLIE MeNaMARA B.Sc.

REGULAR readers of this magazine will be familiar with the recent developments in integrated circuitry, and not a few will have introduced themselves to these devices through one or other of the published practical projects.

All will appreciate that a particular circuit can be marketed at an attractive price only if the manufacturer can reasonably expect to spread the cost of designing and tooling up for that type over a large number of units sold. The amateur electronics market, of course, is much too small to justify such an investment, so that we can expect to be offered only types which are already an economic proposition on other grounds, such as industrial or military applications for the same design. If really large orders for a special type are not available, the supplier's only hope is to produce units which are sufficiently flexible as to permit the same unit to operate effectively in a variety of applications.

The device to be described takes this line of reason ing to its ultimate extreme, and in fact it will be seen from the approach to the successful application to be described that opportunities for its use are limited only by the resourcefulness of its users.

The unit is the R.C.A. type CA3018 Multiple Transistor Array, containing four epitaxially diffused n -p-n silicon transistors in a single monolithic chip. and supplied in a 12 -lead package to TO-5 standard specifications. All four transistors are electrically identical; two are completely independent, but as the substrate (the silicon base into which the transistor junctions are diffused) requires an earth connection, for a reason to be explained later, only five terminals are available for the other two transistors. so they appear as a "super-alpha pair", with the emitter of Tr 3 and Tr 4 base, taken to a common terminal.

Since the transistors are fabricated by the epitaxial diffusion technique, their high frequency performance is extremely good, extending up to $200 \mathrm{Mc} / \mathrm{s}$, while as silicon units, they can function at higher temperatures than germanium types, with consequent higher dissipations. However, all are $n-p-n$ varieties, so that if there is a requirement for complementary circuitry, external p-n-p units must be added. Further, due to the method of manufacture, there are effectively diode junctions between the transistor collectors and the substrate; in practical circuits these are rendered inoperative, since the earth connection to the substrate, already mentioned, applies a reverse bias to these junctions. It is therefore evident that the designer has taken pains to eliminate any undesirable side effects of the fabrication process. In transistors $\operatorname{Tr} 1, \operatorname{Tr} 2$ and $\operatorname{Tr} 4$, he has even arranged the internal emitter leads to screen the bases from the collectors of the transistors, so reducing to a minimum stray capacitative feedback between input and output circuits; in a similar fashion the substrate lead shields the base from the collector of Tr 3 . These precautions maintain the stability of the unit in high-frequency high-gain amplifiers.

In any application for which transistors of closely matched performance are required, the CA3018 is particularly useful, since its elements are fabricated side by side in the same chip of silicon under the same conditions. They will, therefore, be closer than even the most carefully selected discrete transistors, and furthermore in operation will be subjected to identical thermal and other effects which can force even closely matched transistors to drift apart. These features are attractive in differential amplifiers, or in v.h.f. applications.

Preamplifier Details

To introduce this unit to readers it was decided to develop a version of a previously investigated and developed circuit; application of the same technique to other situations would presumably have equally satisfactory results, and a few particularly promising circuits are mentioned. The application worked out in detail is a high impedance preamplifier, the original of which was described by F. L. Thurston in P.W., Jan. 1967. Readers are referred to that article for a full description of the method of operation of the circuit, as a bare minimum of details are repeated here for the understanding of the modified version.

Mr. Thurston explained the limitations placed on the performance of crystal microphones in transistorised circuits by the generally much lower input impedance of the solid state amplifier which fails to

Fig. 2: Circuit diagram of the sub-miniature high impedance amplifier (Practical Wireless Jan. 1967).

Fig. 3: Integrated circuit version of the high impedance subminiature amplifier (preamplifier).

Fig. 4: Printed circuit layout for the sub-miniature amplifier (preamplifier).

Fig. 5: A twin super-alpha circuit suitable for providing a better match for the two channels of a stereo record player.

Fig. 6: An untuned final amplifier and detector stage for a.m. radio applications. Selectivity would be provided by earlier tuned transformers.

components list (Fig. 3)

Resistors:

R1	$100 \mathrm{k} \Omega$	R4	$10 \mathrm{k} \Omega$
R2	$150 \mathrm{k} \Omega$	R5	$47 \mathrm{k} \Omega$
R3	$330 \mathrm{k} \Omega$	R6	$4.7 \mathrm{k} \Omega$

Capacitors:
C1 $\quad 0.1 \mu \mathrm{~F}$ miniature
C2 $2 \mu \mathrm{~F}$ to $30 \mu \mathrm{~F}$
C3 $\quad 2 \mu \mathrm{~F}$ to $30 \mu \mathrm{~F}$
C4 $30 \mu \mathrm{~F}$
Integrated Circuit CA3018 (RCA Great Britain Ltd., Lincoln Way, Windmill Rd., Sunbury-on-Thames, Middlesex.)
match the high output impedance of the microphone. Even an emitter follower is marginally effective with some microphones, and the article went on to describe the result of "bootstrapping" a circuit of this type to increase its impedance still further, to a value of several megohms, quite sufficient for any amateur purposes. In turn, this was followed by an emitter follower output stage to eliminate the possibility of an external load shunting the output impedance of the preamp and losing effectiveness by mismatching at that point. Fig. 2 is a reprint of Mr. Thurston's original circuit diagram, in which these features are evident. Comparing that with Fig. 3, the integrated circuit development, it is obvious that Tr 3 and $\operatorname{Tr} 4$, the super alpha pair in the I.C. are ideally arranged to replace TrI and $\operatorname{Tr} 2$ in the discrete arrangement. The availability of two closely matched separate transistors, Trl and Tr2 can then be exploited to reduce further the output impedance of the system by parallel operation, replacing Tr3 of Fig. 2. .

Both circuits are illustrated to avoid any confusion between them, and so that their differences as well as there similarities will be evident. The chief of these is that due to the opposite polarity of the transistors fabricated in the CA3018, the battery polarity and that of each one of the electrolytic capacitors in the circuit also must be reversed.
It is unnecessary to repeat the details of construction and operation of units such as this, which follow established practice familiar to readers; Fig. 4 shows
-continued on page 115

T|HE world of the physicist is indeed a fascinating one, and at the 1968 Physics Exhibition I was privileged to enter this precision fairyland. Here, the English language becomes confusing as such terms as Lenticular Stereogram are cheerfully bandied about. There was a YIG on show, and a modulated one at that. A portable laser was offered as was a 60 kV multiple arc low inductance spark gap-just the thing for local broadcasting!

A glance around this exhibition soon indicated quite clearly how the sharp divisions between the various professions are fast diffusing, and in many cases it is difficult, if not impossible, to determine where Chemistry and Physics ends and Electronics begins. The pace of research is accelerating at such a rate that speculation about next year's exhibits becomes nothing more than an educated guess.

Afraid of the dark? For some exhibitors darkness doesn't exist and even if it does there's no problem. EMI Electronics Ltd., displayed their photomultiplier type 9740. This is a production model of a photomultiplier originally intended for nuclear applications, which could be used for modulated light detection in a modern communications system. It employs the crossed electric and magnetic field technique and produces an output pulse of some 20 mA from a single electron at the input.

Also of interest from EMI is their Thermal Imaging Equipment. Here, the image or scene is scanned by mirrors and fed to a detector, which in turn feeds the display signal to the indicator. Since the wave length involved is in the micron-band region, i.e., infra-red, it doesn't matter if the scene is in daylight or total darkness. If you're thinking of knocking one up you should also know that the detection is done by indium antimonide detectors cooled to liquid air temperature by a Joule-Thomson cooler. No, you can't modify the frig!

English Electric Valve Co. Ltd. can really claim to see in the dark. Their Image Isocon can produce good television pictures when the photocathode illumination is only $10^{-4} \mathrm{ft}$. candles. Even when this

The E.M.I. 9740 photomultiplier which can produce an output pulse of 20 mA from a single electron input.

Photograph of parked cars taken in sunlight by conventional means. Compare this with the same view shown at the foot of the page.
drops to $10^{-6} \mathrm{ft}$. candles, the makers claim that acceptable pictures are still obtainable. Certainly the one on show lived up to this claim. In the darkened room it was quite impossible to detect anything but the faintest outline of the scene, and this only after being in there for quite some time to allow the eye to adjust. However, outside, the scene was clearly displayed with great clarity and detail on the monitor screen.

Associated Semiconductor Manufacturers Ltd., is a joint Mullard/G.E.C. company responsible for the development and manufacture of Mullard semiconductors. Three items of interest, all connected with transistor devices. First-a technique called IonImplantation.

A semiconductor is first made very pure and then certain controlled amounts of impurity are added. It is often necessary to perform some of these processes at high temperatures. However, with IonImplantation, the dopant is ionised, and these ions accelerated to a high energy and then passed through a strong magnetic field to remove unwanted ion impurities. The "pure" ion beam then bombards the semiconductor surface through photo-engraved windows in an opaque mask. The implanted atoms

This is the result using thermal imageing equipment in total darkness-not even a moon!
occupy lattice sites and become electrically active.
By this method a very wide range of dopants, many of which cannot be thermally diffused, can be introduced into the semiconductor lattice. The process does not require the high temperatures of thermal diffusion and thus the number of unwanted impurities entering the crystal is limited. Work on this is also being carried out at the UKAEA at Harwell.

Both n-p-n bipolar transistors and p-channel MOST's can be fabricated on the same epitaxial material (on p-type substrate). The n-layer forms the bipolar collector region and the MOST substrate. A p-diffusion is used for the bi-polar base and
of Surgeons might have a circuit for you. They're using a helium-neon laser with a YIG modulator to measure alcohol in the breath. Sorry-kits not available.

Most solid state electronic devices rely for their operation on the transport of electrons through a very pure, nearly perfect, single crystal. Interest has been revived recently, however, in the electrical properties of much less perfect material. In the limit, this class is represented by vitreous materials. Such materials are characterised by an absence of ordered arrangements extending over distances of more than two or three atomic diameters.
The device demonstrated by S.T.L. (Research)

A simple bead of special glass capable of use a's a memory store in computer applications.
the MOST source and drain regions. The bipolar emitter can be formed by a second n-diffusion. A gate oxide and metallisation are also added. By these means integrated circuits may be made which exploit the best characteristics of both devices, the MOST providing the high input resistance and the bipolar supplying the gain.

Some of the snags with the FET and MOST are low gain and the need to neutralise plus a limited power dissipation. Using a technique involving Silicon Nitride, A.S.M. Ltd., have produced a high power version which they call a MNST. It has a transconductance more than twice that of MOST equivalent, and with very good a.c. stability. One high power FET is claimed to have a gain of greater than 10 dB , will supply 11 watts p-e-p of single sideband, and has intermodulation distortion products better than -30 dB . These figures are all for $20 \mathrm{Mc} / \mathrm{s}$. Look out all you transistor-loving Hams, it looks like it's back to the old high-impedance valve type circuitry soon.
Electric Power Storage Ltd., displayed their truly remarkable fuel cells. Batteries convert chemical energy into electrical energy directly. However, conventional storage batteries cannot be used to produce electricity continuously because the active material in the electrodes undergoes chemical change and reconversion by recharging. In batteries of fuel cells, the active material is in the form of a fuel continuously fed into the electrodes. Thus, with a continuous supply of the relevant fuel, these cells can generate power continuously and still retain the advantage of a higher efficiency compared with generating systems utilising internal combustion and steam turbines.

A cell $6 \times 6 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{in}$. can deliver 100 amps at 0.55 V , and cells of this type have operated continuously for over 12,000 hours. A battery comprising 63 such cells producing $3 \frac{1}{2} \mathrm{~kW}$, has been operating a truck at the company's laboratories for 2 years.
Want to build a sophisticated breathalyser? The Research Department of Anaesthetics, Royal College
better than $10^{\text {switching }}$ in both directions is memory sec. In its application as a memory element, the device will retain information indefinitely, in open-circuit, short-circuit, or under load conditions. Read-out is not frequency limited, and is non-destructive. The size of the bead on show was about $3 / 32 \mathrm{in}$. diameter.

Also, from S.T.L., comes a Cold-cathode Optical Display Panel. Basically, a bank of push-buttons was used, these being depressed in any desirable pattern.

Cold cathode optical unit shown by S.T.L.
This identical pattern was then immediately displayed on a small flat illuminated screen some 4 in . square and lin. deep. Letters of the alphabet were easily formed as were digits. Makes one think about very small flat cathode ray tubes and possible applications in other fields.

National Research Development Corporation exhibited a non-mechanical ammeter. This has no moving parts and uses simple toroids to detect the current. Read-out is arranged by using small neons. The ammeter accuracy is solely determined by the spread of the characteristics of the ferrite toroids and the number of turns on the windings. With lowtemperature coefficient square loop ferrites, high absolute accuracies of the order of 1% can be achieved by using up to fifty read-out neons.

Youn
 CUESTIONS ANSWNEED

Impedance Problems

I have read that it is not desirable to tape record using a high impedance microphone and a long lead, but that it is better to use a low impedance microphone with a step-down transformer at the end of a short lead, connected to a long lead followed by a step-up transformer at the recorder.

If this is so, can you give details of types, specifications e.g. ratios etc., required for the transformers together with details of screening the leads? -C. Whitehead (Edinburgh).

Although it is possible to use two microphone transformers in the way you suggest, with balanced line connection and the screen of the lead connected only to the amplifier end of the microphone step-up transformer at the tape recorder end, we would suggest that a cheaper and much more effective way is to construct a simple two-transistor matching unit at the microphone end, suitable to drive the medium impedance input of the average tape recorder. A bootstrap circuit into a $10 \mathrm{k} \Omega$ load should be about 250 mV sensitivity-the input impedance of the average tape recorder microphone socket would be higher and the sensitivity lower, so that a suitable drive with better signal-to-noise ratio would be obtained.

The objection to using transformers is that the crystal microphone, which we presume you are using, is a capacitative source and to load it with the inductance of the transformer is to invite a loss of low frequencies. Quite frankly, we think your best method is to get a dynamic microphone (probably cheaper, too) and preserve the frequency response.

Sound on Sound!

I have a modest audio set-up which works very well with the exception of one factor. When the transistor amplifier is switched on, but no signal applied, I can hear nothing less than BBC-1 TV sound coming from the speaker. The sound is faint with much background noise, but it is most definitely BBC-1 TV.
There is no TV connected to my system, in fact the nearest set is at the other side of the house, and even when this set is off, I can still "receive" BBC TV1.-S. Becket (London, S.E.12).

Interference of the type you mention often arises due to a rectifying contact somewhere in the amplifier system. We therefore suggest that you check that the input socket of the amplifier is making good contact with the input plug. If the loudspeaker is fed via a plug-and-socket arrangement, check that these connections are good ones. If the interference is present with the input socket of the amplifier short circuited, then it may be being picked up on the loudspeaker leads. Try adding a capacitor of 50 pF or 100 pF across the loudspeaker itself.

If you are still unable to get rid of the interference, we suggest you contact the Radio Services Branch of your local GPO and ask one of their officers to help you.

Locked I.F.T's

To align, say, a transistor set with a signal generator, the service sheet may say "align the core of an i.f.t. or slide $\mathbf{L} 2$ along the ferrite rod". These are usually covered with paraffin wax. What is the professional way of dealing with this. Hot iron, or solvent, in which case, which solvent, or ? Also, how should circlets be removed without damage?H. E. Thornton (Surrey).

If cores are fixed in position with wax, the usual way of dealing with them is to melt the wax with a soldering iron or other source of heat. Generally, it is best to withdraw the cores completely and clean the wax from the threads so that adjustment is made easy. The best way of locking cores in position is to use a core-locking compound available from a number of our advertisers including Home Radio.

We are not quite clear what you mean by "circlets". If you mean circlips, these can be removed with a pair of pliers especially made for the job.

Pickup Arm Pivot

Could you give me any information about locating the position of the pivot of a pickup arm?

I fitted a turntable and motor on a board together with the pickup arm, but when I tried it, the stylus head slid across the record (twelve inch) from the outside edge to a position about one inch from the end of the track.-B. Downward (Staffs).
You do not state what turntable, motor and pickup you are using, so it is impossible to give you precise placing for the pickup pivot in relation to the turntable.

The essential thing is to reduce tracking error, and the maker will have curved the arm, offsetting so that the pickup head angles toward the centre of the record and the stylus deviates as little as possible from its required arc-thus cancelling, out compliance variations.

In the absence of the details, which should be supplied by the makers, we suggest you draw a line at a tangent to the edge of the turntable (or a 12 in . disc if the turntable exceeds this). Then measure the exact distance between stylus and pivot of arm. Mark off this distance from the centre boss of the turntable until it meets the tangent. This is the pivot point. Make sure the turntable is level and the cartridge correctly aligned and the stylus properly seated.

Improving Reception

I would be grateful if you could offer some help regards my radio-Pye Q5 transistor. I am anxious to gain good reception from Radio Eirean on medium waves (550 metres). Could you advise me in the purchase of a tuner or some other means of getting a better signal on my set. At the moment

- the signal is fairly good during the hours of darkness, but there is nothing during daylight hours. -J. Broune (N.W.1).
We doubt very much whether you will be able to improve the reception of the station you mention to any degree during the day. However, you could try the effect of using an aerial-tuning unit such as are described in the Amateur Radio Handbook published by the Radio Society of Great Britain, 28 Little Russell Street, London, W.C.1. This book and other books of interest will be in your local lending and reference libraries.

Nearly 1,700 Circuits and Diagrams plus full repair data for 800 POPULLAR MODELS
 EDITION Radio \& TV Servicing

 Big time-saving repair library to step up your earnings

Now off the Printing Presses-a great new edition of RADIO $\&$ TV SERVICING, to save your time, to boost your earningpower. Packed with CIRCUITS, REPAIR DATA and vital information, it covers all the popular 1965-1968 TVs, Radios, 'Grams, Record Players and Tape Recorders-including latest data on COLOUR TV. Thousands of sets of previous editions sold. Now you can examine this big NEW edition free for a week. 3 handsome volumes-over 1,500 pages written by a team of research engineers-there's no other publication like it. Speeds up repair work for year after year. Hurry-send no money - simply post this coupon below... There can be no reprint once stocks are sold and there's absolutely no obligation to buy under this free trial offer.

FULL DATA AND CIRCUITS FOR REPAIR OF

- TELEVISIONS including

COLOUR TV

- RADIOS, RADIOGRAMS
- CAR RADIOS
- RECORD PLAYERS
- TAPE RECORDERS

SERVICING DATA FOR ALL THESE MAKES'

Aiwa, Alba, Baird (including colour TV), Beogram, Beolit. Bush, Carousel, Cossor, Dansette, Decca, Defiant, Dynaport, Dynatron, Eddystone, Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidelity, G.E.C. (including colour TV), Grundig. H.M.V.: Kolster-Brandes, Hitachi, Invicta, McMichael, Marconiphone, Masteradio, Motorola, Murphy, Naticnal, Newmatic, Pam. Perdio, Peto-Scott, Philips (including colour TV). Portadyne. Pye, Radiomobile, R.G.D.. Regentone, Roberts' Radio. Sanyo, Sharp. Smith's Radiomobile, Sobell (including colour TV). S.T.C.. Sony, Standard, Stella, Stereosound. Teletron. Thorn. Trans Arena, Ultra, Van Der Molen, World Radio.

Printed panel diagrams

Component layout diagrams

Drive-cord diagrams

Block diagrams

PLUS LATEST
DEVELOPMENTS IN RADIO AND TELEVISION Including-Integrated Tuners, Stereo Multiplex Broadcasting-The Zenith-G.E. System: Receiver, Decoder and adjustments, Aerial, etc. Colour TV Receivers, Colour TV Test Card F, Servicing Transistor Equipment, Chemical Aids to Servicing, Batteries and Rechargeable Cells, Sound-on-Sync., Double Line Sync., Silicon Transistors, etc.
IT'S SENT TO YOUR HOME CARRIAGE PAID ON 7 DAYS'

Absolutely no obligation to buy

OVER 1.500 PAGES, PACKED WITH CIRCUITS, COMPONENT LAYOUT DIAGRAMS, PRINTED PANEL DIAGRAMS, TABLES AND WAVEFORM GRAPHS
Handsomely bound in rich maroon and gold.

ITo:

Buckingham Press Ltd., 18/19 Warren Street, London, W.I. | Please send Radio and TV Servicing. 3 volumes, without obligation to buy if you accept my application. I will return | the books in 8 days or post:
Tick $(\sqrt{ }) \square$ Full cash price of $£ 12$, or
I here $\bar{\square}$ 15/-dep. and 16 monthly payments of $15 /$

ateselat

20WATT soldering INSTRUMENT

- CONTROLLED TEMPERATURE

Design holds max. temp. of $380^{\circ} \mathrm{C}$. within close limits.

- EASY BIT REPLACEMENT

Simple, fast replacement of low-cost copper bits. Nonwearing PERMATIP bits cut servicing costs.

- BEAUTIFULLY COMPACT

Length $7 \frac{7}{8} \mathrm{in}$. Weight $1 \frac{1}{4} \mathrm{Oz}$. Max. handle dia. 0.715 in.

- UNEQUALLED PERFORMANCE

Ideal for fast production soldering on the majority of modern electronic equipment.

The LITESOLD range includes six other models ($10,18,25$, 30,35 and 55 watts), and many accessories. Please ask for colour catalogue L. 10 .

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688-8589 \& 4559

Well worth reading through

GUARANTEED BRAND NEW GOODS OF FINEST QUALITY AT THE LOWEST PRICES YET : IMMEDIATE DISPATCH
RECORDING TAPE: FINEST PROFESSIONAI QUALITY MYLAR BRITISH PRODUCTION. STANDAR 8/9; 7 in. $1200 \mathrm{ft} . .11 / 3$. LONG PLAY: 5 in . $900 \mathrm{ft} ., 10 /-; 5!\mathrm{in} .1200 \mathrm{ft} ., 11 / 3 ; 7 \mathrm{in}$ 800ft., 18/-; 3 in . 225ft. Message. 3/6. (Postage and packing 1/- per reel: 3 or more reels post paid
MICROPHONES: CRYSTAL: Acos 40. Desk, 15/6 (1/3); Acos 45 Curved handgrip. $17 / 3$ (1/6). Acos 60 Stick, 20/3 (1/6). Acos 39 Stick. 28/6 (1/6). Reo 6/6 (1/-). DYNAMIC: MS10, $50 \mathrm{~K} \Omega$. 34 in. x fin.. instantly removable from a foor stand. with adaptor to fit on base provided, lavalier included. 37/6 (2/6). MSil, similar, but fixed on flexible swan neck to switch-fitted base, 42/- (2/6). ALL with leads. SPEAKERS: British made. high quality 121 n Round, fitted tweeter. 6 watts, 3Ω or $15 \mathrm{~g} .33 / 8$ (3/6); 7in. x 4 in. Elliptical 3 n for TV. Car, domestic sets, 15/-(2/6). 21in. 80 (Fane), 4/-(1/-) 21 in. 3Ω (Emp.). 6/6 (1/-). HEADPIIONES: H.R. 2000 n each earpiece, $18 / 6$ (1/6). DYNAMICSTEREO8-160 each phone, 38-pr. (o) GA.) TELEPHONE PICK and min. plug. Magnetic 16; Crysta1 22 (either, 6 .). TELE CARTRIDGES. All stylii fitted standard replacement fittings: Mono GP/67-2 12/6; GP73-2 Stereo 20/-: GP93 newest stereo 22/-: GP91 mono de luxe 18/-; GP/91SC Stereo Compatible (both mono and stereo) 18/6 GP/94SS Stereo Compatible. CERAMIC, top quality for expensive outfits 38/8 (1/- on all types). REAL DIAMOND STYLII: TC8LP TCBStereo TC8LP/Stereo. Studio 0 LP Ronette. BF40 LP Ronette. GC2, GC8, GP65/6 all at 6/11 each, and GP91/LP $12 / 6$ (Post all types 8 d .). INTERCOM/BABY AL,ARM: 2-station. PP3 battery operated, with buzzer for'remote cal (3i-) Fitted easily by anyone in minutes. PP3 type RATTERIES: new guaranteed stock 1 - each. AMPLIFIER: $3 W$. 4 transistor 2 in. $\times 2$ in. x $1+$ in., 9 v batt. operated, 15,8 or 3Ω output. very efficient 45/6 (1/6). Battery not supplied. TAPE RECORIDER: Latest portable, batt. operated RA65: 8 inin. x $7 \times 2 t i n .$, fxed handle, 3in. reels, 2 track complete with reels, tape,
mike, batt. and earpiece for optional private listening, still only 25.5 .0 4/6).
TEST EQUIPMENT: MULTITESTER: 20,000 亿 p. volt D.C. 41 in. x 3 in. x
 $10,000 \Omega$ D. volt D. C. current-0-50 1. 300
to +22 dBs . at centre scale: $(3 / 6)$ with prods, batt. instructions. POCKET TESTER 1000 n per volt. 31 in . $x 2$ in. $x 11 \mathrm{in}$. A.C. and D.C. volts- $0-12$, $0-120$ $0-1200$ D.C. Current $0-1 \mathrm{~mA}$ and $0-120 \mathrm{~mA}$. Res. $0-200,000 \Omega$ with prods, battery and instructions 35/-(1/6). PANEL METER: O-1mA, clear, plastic, precision 13 in . sq. 23/- (1/6).VACUUM TUBE VOLTMETER: Model TE65: for highly accurate and stable measurements. D.C, and A.C. voits rom 1.5 to 100 in 7 stages fuly comprehensive r. Fil Resistance and tage, with handle, probe
 High sensitivity A.C. 10 ranges 01 to 300v: -40 to +50 dBs : RMS $4 \mathrm{cps}-1 \cdot 2$ Mcs. 230 vA A.C. Can be used as an amplifer for 10 cps to 350 Kc response. First class instrument, with leads and instructions complete $£ 17$ (bl-). OSCILLOSCOPE: TO2 $2 \mathrm{in} ., 10 \mathrm{in} . x 7 \mathrm{in}$. x $44 \mathrm{in} .:$ designed for TV servicing and alignment with very many other uses. weighs only 7lbs. Carry handled bench stand, standard mains voltage. sweep frequency $60 \mathrm{cps} / 2-4,15-7 \mathrm{Kc} /$ 2-4. Tube 2BP1+6AV6 $+12 \mathrm{BH} 7+2$ silicon diodes: F.R. $2 \mathrm{C} / \mathrm{S}$ to $1 \mathrm{MC}-3 \mathrm{ABS}$. Full instructions. complete e22. 44.0 (to $280 \mathrm{Mc}(6$ sep. scales) complete with Transistorised, for meesuring tuning frequencies, oscillating frequency circuit measured without oscillation, earphone monitoring heterodyne frequency meter sub as a test oscillator, relative fleld strength meter
 put (high) $100,000 \mathrm{~V}$ max, R.F (10 W) 100 v max. Audio output 400 cps (approx). Bv. adjustable. Modulation 400 cps internal. One $12 \mathrm{BH7}+$ one 6 ARF + 1 Sil. rectifier, 7 in . x 10 in . 58 in . Standard mains, weight just over 61 bs . With instruction book £14.14.0(5/-). SWITC1EES: Standard Toggle. metal, 250v2A. ne hole fixing:SPST on/off 1/9 (7d. each. all types).
SEMI-CONDUCTORS, FTC: All fully tested genuine guaranteed. TRANSISTORS: AC107 3/-AC128 2/3; AC128 213 ; ACY19 3/9: AF115 4/-; AF116 3/6; AF117 $3 /-$; BCY 41 II-; BFY18 7/6; BSY65 3/6; BSY95A 3/6; GET113 2/6;

 3/6: OC170 2i2: OC171 2/2: TK22C 1/6: 2N706A 3/4; 2N743 8/-̇ 2N753 2/6. DIODES: OA5 1/8; OA9 1/8: OAB1 1/6:0A85 1/6: 400 piv 1/9: 200 piv 1/4. SIX RECTIFIERS: 750mA Series: BY 100800 piv $2 / 6 ; 400$ piv 1/9; 200 piv 1/4. Six AMP. SERIES: BYZ13 300 PiV 3/6; BYZ 12600 PiV $4 / \mathbf{B}$; BYZ11 900 piv $5 /-$ BYZ10 1200 piv 5/6. MULLARD STACK 200 piv 9/-; 300 piv 10/6: 400 piv 12/, 10 Amp Series: 50 piv $10 /-; 100$ piv $12 /-; 200$ piv $16 /-; 400$ piv $20 /$ - (On all 1smiconductors. 7d. up to 3, 4 to $11,1 /-12$ and over post and packing paid.)
TRANSFORMERS: Output: 3 a 5 W .7000 imp. for $6 \mathrm{~V} 62 / 6$ (1/-): sub-min. in. lin. $x^{7} / 1$ in. Output: 3Ω for Oc72 etc., and Driver $2 / 6$ each (6d.) Stepdown, $110 / 240$, 40 W shrouded with fuse. $10 / 6$ (3/-). AERRIALS: Car types, 5 sec . retractable. vandal-proof lockable with keys, highiy suitable Minis. $2^{7 / 6}(2 / 6)$. Motor-diven (12v), 5 section £7.10.0 (5/-). Telescopic 6 ex, 51 in . $27 / 82 / 6)$. Motor-driven (12V), section ideal for F.M. and transistor sets $5 /(1 /-)$. YMRATORS: 12 v .4 pin non-synch 2/6: $6 \mathrm{~V}, 6$ or 7 pin. sinch. 101(1/). MAINS NEON TESTER ; Fly leads $2 /-(7 \mathrm{~d}$.). PLUGS AND SOCK ETS: Standard screened Jack plug, screw connection, 2/9; plastic body $2 /-$ Screw panel mtg. Socket for either, 1/6 (all 7d.). Screened lead-coupled phono plugs, with block, $2 /-(7 \mathrm{~d}$.$) . Phono plugs, gd. 3.5 \mathrm{~mm}$. min. Jack plugs or sockets, 1/- each (6d.) (Dozen may be assorted. of these items, sent post paid.)VALVEHOLDERSi STG spindle 1in. 1/6. Ganged 200 k Lin. +1 Meg-log. D. P. switch. concentric long spindles. $4 / 6$ (10d.). MOTOR: 230 v . Varley. $1 / 24 \mathrm{th} \mathrm{hp}$. spindle $9 / 10 \mathrm{in}$. x $3 / 16$ th in., 2500 r.p.m., $10 /-(2 /-)$

FELSTEAD
 ELECTRONICS
 (P.W.7)

Longley Lane, Gatley, Cheadle, Cheshire.
Terms: Cash with order only. No COD. MINIMUM ORDER 5/-+P \&P. Money refund guarantee if goods returned perfect within seven days of despatch Postage and packing charges are shown above in brackets after most items where NOT indicated. charges are $1 /-$ on orders to $5 /-, 2 /-$ for $5 / 1$ to $10 /-, 3 /-$ for $10 / 1$ to $£ 2,4 / 6$ for over $\& 2$ to $£ .19 .11$. Oraers value 23 and over sent p and p paid. Elsewhere air or surface mail charges should be added. only. Elsewhere air or surface Mail charges should

PLEASE ALLOW 5 DAYS FOR CHEQUE CLEARANCE
LOOK OUT FOR OUR ADVERTISEMENT IN NEXT MONTH'S PRACTICAL WIRELESS-MORE INTERESTING BARGAINS

repairing radio sets

PART 3
 GORDON J. KING

This month we look at the transistor under signal conditions and then go on to examine what happens when associated components fail or change their value.

PART 1 (April 1968 issue) investigated the basic principles of semiconductor diodes and transistors and expounded how they work from the d.c. point of view. In radio equipment, however, transistors and diodes are concerned essentially with r.f., i.f. and a.f. signals-to amplify, detect, convert and generate them-the d.c. conditions being, so to speak, the "stage" set-up to make signal handling possible. In some semiconductor applications, d.c. switching is the prime consideration, but this is certainly not true of radio receivers.
In this article, therefore, we examine the transistor mainly under signal conditions; and by being aware of what is normal behaviour in signal circuits, we shall be in a strong position to determine whether the operation in practice veers towards the abnormal -and if so, why.
When commencing to repair a transistor radio set, for instance, irrespective of the fault condition or symptom, it pays to have clearly in mind that the set was designed to work within its specifications and that it has been working properly, so that any abnormal operation must be caused by a fault somewhere in the circuit or in a component, no matter how impossible these things may seem at the time. Although this might appear pretty obvious, it is surprising how many "repairers" endeavour to restore "normal" working by changing the circuit or component values, from the original design, to establish conditions (albeit, unwittingly) to mask the fault.

Fig. 14: Basic common-emitter circuit showing dynamic tests (see text),

This may not, of course, be true when the inactive equipment under initial test is home-designed or constructed from a published design, for then one lesser skilled in the arts cannot be certain that the design is without flaw. The best approach when the construction is from a published design, and fails to work as apparently it should, is to assume to start with, anyway, that the design is correct and that the trouble is due to bad construction or to mixed-up component values. Indeed, many efforts of the home-constructor fail to work properly, simply because transistor leadouts have been wrongly connected and because resistor and capacitor codes have been misread. Although this series of articles is focused towards repairing commercially-produced equipment, it will have value also to the home-constructor-giving him hints and tips as to what might be wrong.

No matter how complex the equipment under repair may be, it is composed of components of known ways of working. A capacitor acts as a capacitor and a transistor as a transistor whether it is in a single-stage transister hook-up or in the most complicated of colour television sets. This is a good maxim to remember. Another one is that any fault is caused by an open-circuit, a short-circuit or degrees between these two absolute conditions. Servicing thus resolves to a logical approach to the problem in hand, starting first with an awareness of the trouble or symptom (and this is not always obvious), going on to locating the section responsible (diagnosing) and then finding and replacing (or repairing) the defective component.

CIRCUIT BLOCKS

Past articles in this series (March-September 1967) have indicated fault symptoms (and more will be given later in this new series, dealing with the repairing of specific faults in transistor sets) and have shown how the area in the set responsible can be located and how repairs can be effected. While these have applied to valved equipment, the same general principles apply to transistor equipment. However, since transistor equipment has a somewhat different mode of operation d.c.-wise, at least, it will be desirable to look at "transistor circuit blocks" and see how faults in components associated with these can influence the transfer of signals from input to output.

Figure 14 shows the basic common-emitter amplifier which can be used for r.f., i.f. and a.f. signals; but to start with, let us suppose that this is handling a.f. signals, applied through C 1 and taken out through C2. Base bias is set by R1 and R2 to pro-
vide the correct signal working point for the transistor, giving a specific value of collector current (see Part 1). R3 is the collector load across which the amplified signal is developed, while R4 helps to stabilise the d.c. point and avoid thermal runaway.

The a.f. signal is superimposed, so to speak, on the base bias, and since the base impedance is not very high, Cl is an electrolytic whose value is in terms of microfarads, depending on the required bass response aimed for by the designer. C3 bypasses signal developed across the emitter resistor and thus prevents degenerative feedback.

Now, let it be supposed that all these components, in conjunction with the transistor, have been worked out by the designer to yield optimum operating conditions. This means that signal up to the level rating of the stage passes through with specified amplification and minimal distortion. It is best to assume that the stage is isolated (and highlighted) from a piece of equipment containing a number of stages of diverse types. Let us see now what happens when components fail or change in value.

C1 Shorting

This will certainly affect the base bias because its input end will be connected to a component or circuit carrying a potential differing from that at the junction of R1 and R2. Thus, the base bias will change to a lower or higher value, depending on the nature of the circuit connected to the input of Cl . The effects resulting from this are considered under R1 and R2.

C1 Open-Circuit

This is easy as it will simply stop the signal arriving at the base. Thus, the symptom will be zero output from C 2 .

C1 Reduced in Value

This will still allow some signal through to the base, but the coupling impedance will rise at the normal low frequencies, and so the signal transfer to the base will become less effective as the signal frequency is reduced, giving an output as shown in Test I from a flat input signal at the base, as shown. The result is a loss of low-frequency response but an abundance of treble output.

R1 Open

This is another easy one as it would simply cut off base bias. The standing collector current would drop to zero (almost), as also would the output signal.

R1 Reduced in Value

This would upset the designed-for base bias by causing it to rise. The collector current would be higher than normal and the amplifier would bottom on peaks of negative signal cycles. This would reflect as clipping of the positive peaks at the output, as shown in Test 2. This happens because the commonemitter stage changes the phase of the signal. Thus, saturation or bottoming on negative half-cycles will show on positive half-cycles at the output.

R1 Increased in Value

This reduces the base bias, reducing the standing collector current. On low-level inputs this may not produce any adverse symptom, but towards maximum output the transistor would tend to clip (cut-off) on positive half-cycles, showing up as clipping of the negative half-cycles at the output, as shown in Test 3.

R2 Open

This would cause a substantial rise in base bias and collector current and might, under certain conditions, ruin the transistor. The clipping effect on signal
would be the same as with R1 reduced in value (see Test 2).

R2 Reduced in Value

This would give symptoms as those for R1 increased in value.

R2 Increased in Value

This would give symptoms as those for R1 reduced in value.

N-P-N TRANSISTOR

All that has so far been said applies to the p-n-p transistor in Fig. 14. If an n-p-n transistor is used the clipping on the output waveform is the reverse of that shown in Tests 2 and 3.

R3 Open

This could cut off collector voltage and mute the stage completely.

R3 Reduced in Value

The main effect here would be a reduced voltage gain, while a complete short-circuit (unlikely with a resistor) would not have a great deal of effect on the d.c. conditions but would reduce the signal output to zero.

R3 Increased in Value

This could result in a rise of signal voltage gain, depending on the exact nature and design of the stage, but excessive value increase would be more likely to result in limited output signal level before the onset of waveform clipping.

R4 Open

Normally this would mute the stage, cutting off all output signals, but in practice slight leakage across the parallel electrolytic, which with the resistor open-circuit is often overloaded voltage-wise, retains a degree of emitter circuit conduction and gives the symptom of low gain and output voltage with excessive distortion and clipping.

R4 Reduced in Value

This has virtually no effect on the performance at all.

R4 Increased in Value

This reduces the emitter current and increases the voltage developed across the emitter resistor because of the resistance increase. However, the fall in current tends to counteract the voltage rise to some extent. The main effect is a reduction in base bias, reducing the collector current further, and giving symptoms similar to those caused by RI increased in value and R2 decreased in value.

C3 Open

Contrary to some people's thoughts on this defect, the stage does not tend towards oscillation or instability. In fact, if anything, it becomes more stable because the signal voltage across the emitter resistor with the capacitor effect removed produces negative current feedback. In other words, the stage drops in sensitivity and with a given input signal voltage, the output voltage falls.

C3 Shorting

This has similar effects as the emitter resistor decreasing in value. While a short in the capacitor may not affect the stage working to any large extent unless, perhaps, negative feedback is taken from the emitter circuit, the defect will impair the d.c. stability, causing the transistor to veer towards overload should its temperature rise unduly and should the combined values of R3 and R4 allow a collector/ emitter current of destroying magnitude. In a stage

TRANSISTOR

 STEREO 8+8A really first-class Hi Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push-pull output per channel (16W mono). Integrated pre-amp with Bass. Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohms. Compact design. all parts supplied including drilled metal work, Cir-Kit board, attractive front panel, knobs, wire, solder, nuts, bolts-no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief Specification: Freq. response $\pm 3 \mathrm{~dB} 20-20.000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative feedback 18dB over main amp. Power requirements 25 V at $\cdot 6$ amp.

QUALITY RECORD PLAYER AMPLIFIER A top quality record player amplifer employing heavy
tuty double wound mains transformer, ECC83, EL84, luty dooble wound mains transfirmer, ECC83, ELR4,
EZ80 valves. Separate Bass 7 Treble and Volume controls, Ez80 ralves. separate Bass Treble and oclume controls. Complete with output ransormer matched hor ${ }^{3}$ ohm
speaker. Size 7 in. w. x Sin. d. x bin. h. Ready built and tested. PRICE 751-. P. \& P. ALSO AYAILABLE mounted on board with out put transtormer and speaker ready to ft into cabinet
below. PRICE 日7/6. P. \& P. $7 / 6$.

DE-LUXE QUALITY PORTABLE RECORD PLAYER CABINET Uncut motor board size $144 \times 12 \mathrm{in}$. Clearance 2 in . below, 5 Sin. above. Will take above amplifier and any B.S R. or Garrard Autochanger or Single Player Unit (except A.
8nd $\$ P 25$. Size $18 \times 15 \times 8$ in. Frice E8.9.6. Cart. $9 / 6$.

STEREO AMPLIFIER
Incorporating 2 ECL86s and 1 E780, heavy duty, double wound mains transformer. Output 4 wattis
per channel. Full tone and volume controle. Absolutely complete
ONLY £5.9.6
P. \& P. $8 /$ Super De withe version with ECL86
valves separate bass treble and balance controls. Full feedback 8gns.

10/14 WATT HI-FI AMPLIFIER KIT
 announceruents to follow each other. Fuly shrouded speaker and 2 independent votume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, FF86 and EZ8
 All parts sold separately. ONLY e7.8.6. P. \& P. $8 / 6$.
Also available ready built and tested complete with std. Also avaiable ready built and tes
input sockets. \&.5.0. P. \& P. 8/b.

HIGH GAIN 4 TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT
Type TA1 put in excest put in excess - All BtantBuilt on printed circuit

panel, size $6 \times$

- General size Driver and Ontput Transformers. - Output transiormer tapped for 3 ohm and 15 ohm apeakers. Transistors GET 114 or S1 Mullard OC81D
and matched pair of OC81 o/p. 9 volt operation. and matched pair of Everything supplied, wire battery clips, solder, etc. - Everything supplied, wire battery clips, solder, etc. circuit diagram 1/6. (Free with Kit). All parts sold separately.
SPECLAL PRICE 45/- P. \& P. 3/-
Also ready built and teated, $52 / 6$.
A pair of TAls are ideal for stereo.
BRAND NEW TRANSISTOR BARGAINS (GET 15 (Matched Pair) 15/-; V15/10p, 10/-: OC71 5/-: OC76 6/-; AF117 7/6. Set of Mullard 6 transistors OC44, 2-OC45 OC81D matched pair OC81 $85 /-$, ORP12 Cadmium Sulphide
Cell 10/6. All powt free.

Open all day Saturday

Early closing Wed. 1 p.m.
A few minutes from Soulh Wimbledon True Station
(Please write clearly) please note: p. \& pharges QUOTED APPLE TO U.K OMLY. P. AP PR ON OVERAEAS ORDER
CEARGED EXTRA.

SANGAMO 3 inch SCALE METERS 45/- ea. Yarions oalibrationg and movements. 100 Mioroamp; 1 Killismp; $50-0-50$ Kiterosmp, ete. 8.A.E. for list.

SELCOL

 guitar practice AMPLIFIERONE WATT OUTPUT, Portable oabinet $18 \times 4 \mathrm{x}$ 9in.s all tranaistor, ftted 7 I 4 hm . speaker. Volume
sontrol. Jaok sooket. Unes PP9 battery. OUR PRICE 79/6 Post 5/6.

RETURN OF POST DESPATCH

THE E.A.R. RECORD PLAYER CABINET 59/6
 leatheroloth. Size $15 \times 17 \times 8$ in. Motor Board 144×121 in.
ready out out for B.s.R. Monsroh
UA12/14/15 $/ 16 / 2$.
 decks. Amplifer space size $14 \times 7 \times 3$ in. The baffie is out
Poost $5 / 6$
REW TUBULAR ELECTROLYTICS CAN TYPES

 SUB-MIN. ELECTROLYTICS. 1, $2,4,5,8,18,25,30,50,100$,
 CERAIIIC. 500 v . I PF. to 0.01 mfd ., 8 d . Disen $1 / \mathrm{l}$.
od PaPER TUBULARS
$500 \mathrm{v} .00 .18 \mathrm{~d} ., 0.52 / 6 ; 1 \mathrm{mfd} 3 /-; 2 \mathrm{mfd} .150 \mathrm{p} .8 /-$
$1.0007 .-0.001,0.0022,0.0047,0.01 .0 .02,1 / 6 ; 0.047,0.1,2 / 6$. R.E.T. CONDENSERS. 0.001 mid., $7 \mathrm{FV} ., 6 / 6 ; 20 \mathrm{kV}, 10 / 8$.

 ture 10/-: 500 pF standard with trimmers, $9 / 8 ; 500 \mathrm{pF}$.

 100 pF., $160 \mathrm{pFF}, 5 / 6$ esch. Can be ganged. Couplers gd, eadh.

250\%. RECTIFIERS. Selenium at wave $100 \mathrm{~mA} 5 /-\mathrm{BF} 100$ 10/-

'SONOCOLOR' CINE RECORDING TAPE

JACE SOCEET 8td. open-oircuit 2/6 olosed oironit 4/6; Chrome Lead 8ooket 7/8. DNN 3-pin 1/8, 5-pin 1/8; Lead 3/6. 8.5 mm . $; 8.5 \mathrm{~mm}, 1 / 9 ;$ DIN 8 -pin $3 / 8 ; 5$-pin $5 i$-. WAVE-CHANGE SWITCEES WITH LONG SPINDLES. 8 p .2 -way, or 2 p. 6 -way, or 3 p. 4 -way $4 / 8$ each.
1 p. 12 -way, or 4 p. 2 -way, or 4 p. 8 -way. $4 / 6$ each. 1 p. 12-way, or 4 p 2-way, or 4 p . 8 -way, $4 / 6$ each. Wavechange "MAkITs" $1 p$. 12 . way, 2 p. 8 -way, 8 p. 4 -way
 PICK-UP ARM Complete with Acos LP-78 Turnover ${ }_{G P 67}$ and AREM Complete With Acos LP-78 $25 /-$ Acos GP67 15/-; Stereo $85 / \%$.

CANCELLED EXPORT SHIPMENT!

15" BAKER WOOFERS

20-10,000 oph. Bass Resonance $18-85$ ep
Massive Ceramic Massive Ceramio Ferrobar masget,
Finx dengity 15,000 Finx dengity 15,000 lines. Rated 20 watts,
15 ohms . Overall dept 15 ohms. Oversil depth
only $6 \ell \mathrm{in}$. Weight 15 lb .

OUR PRICE

£11.19.6
 Made to
 sel/ at $\$ 60$

"BONDACOUST"' CABINET WADDING 18in. wide, $2 / 6$ ft
BAKER GROUP SPEAKERS-POST FREE
'Group 25' 'Group 35' 'Group 50

E.M.I. Cone Tweeter 8$\}^{\prime \prime}$ square, 8 r20ko/g. $10 \mathrm{w} .17 / 8$. Quality Horn Tweeters 2-18ke/g, 10w, 29/6. Crossover $18 / 6$
 Double vone 8 or 15 ohm $35 / c ; 10 \times 8 i n$. Bo/c; $8 \times 51 \mathrm{ln}$. $21 / c$; E.M.I. Double Cone 184×8 in., 3 or 15 ohm models, $45 /$ -

MINETTE

AMPLIFIER
For Hi-Fi Record Players. AC Malds Transformer. Eeavy ohassis size $7 \times 8 \frac{1}{2}$
$\times 41 \mathrm{n}$. high. Valves ECL 82, EZ80. Two stage nerative feedbaok. Quality output 3 ohm matching. Bargain offer complete with valves, knobs, volume and tone controls, wired
and tented.
Post $5 / 6$

CALLERS WELCOME

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors. Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, ${ }^{45 / \cdot}$. 14 element, 52/6. 18
element. $60 /-. \quad$ mall clement. 60/-. Wall Mounting with Cranked Arm, 7 element. $60 /$ - 11 element, 67/ast Mounting with in. clamp. 7 element, 42/6. 11 element, $55 /-, 14$ element, $62 /-18$ element, $70 /$-. Chimney Mounting Arrays, Complete. 7 element, 72/6. 11 element, 80% 14 element, 87/6. 18 element, $85 /=$. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.II.F. Preamps from on all orders

BBC • ITV AERIALS

$\underset{\text { scopic loft }}{\text { BBC }}$ (Band . Telescopic loft, $25 /-$, External S/D, $30 /=$ 'H', £2.15. 0 ment loft array, 30/-. 5 element, $40 /$-. 7 element. 50/-. Wail mounting. 3 element, $47 / 6.5$ element,
$52 / 6$. Combined 52/6. Combined
ITV: Loft $1+3,40 /-; 1+5$,
$50 /-1+7$ mounting $1+3,57 / 6 ; 1+5$,
$67 / 6 ;$ Chimney $1+3.67 / 6 ;$ $1+5,75 \%$
VHF VHF transistor pre-
amps, 75/-. COMBINED BBC1 - ITV - BBC2
 only. Special leafet available. "H'" $32 / 6$. 3 element, 55% Extornal units available. Co-ax. cable $8 d$. yd. Co-ax. plugs, $1 / 4$. 13/6. C.W.O. or C.O.D. P. \& P. $5 /-$. Send 6d. stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, Now Addington Surrey (CRO-OJB)
LODGE HILL 2266

H.A.C
 SHORT-WAVE KITS

WORLD-WIDE RECEPTION

Fsmous for over 30 years for Short-Wave Equipment of quality, "H.A.C." were the original amateur constructor, Over 10,000 satisfled amatomers-including Technical Colleges, Hospitals, Public Schools, R.A.F., Army, Hims, etc. TMPROVED 1968 RANGE
One-valve model ' DX", complete kit-price 56/6 (Postage and packing 3/6).
Customer writes:-"Deflaitely the best one-Falve B.W. Kit available at any price. Armerica and Australis received clearly at good volume." This kit contains all genuine short-wave components, drilled chassis, valve, accessories snd full instructions. Ready to assemble, and of course, as all our products-fully guarlabe, including the famous 9. W. kits stif available, including the famous
model ${ }^{\circ} \mathrm{K}{ }^{*}$ (recommended by radio clubs). All orders despatched by return. (Mail order only.) Bend now for a descriptive catalogue, order form.
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

AERIAL WIRE: Colb of 25yds. Single Strand $2 / 8$ plus 6 . p. \& p .
RELAYS

1. Minlature Plug-ln Relayn. 185 Coil 4•5/18v, 2

Change over Contacts $13 / 6$ plus $1 / 6$ p. \& p.
Miniature Plug-in Relays. 130 Coil 4 , Light. Duty
Contacts. $9 / 15$ volta. $18 / 9$ plus $1 / 6 \mathrm{p}$. \& p
8. 6 volt octal base A/C Relays. 2 pairs heavy duty
contacts c/o. Complete with octal base 23/- plus 1/6 p. \& p.
4. Single change over Relay. 875 Coil, 18 volts for printed circuit. $15 /$ plus $1 / 6 \mathrm{p}$. \& p . State whether wired or printed circuit. p. \& p TEST METER: 20K per vo't ITI-2 A. PT34 small test meter \&1.14.0. plus 3/-p. TAYLOR Jun. \&10.10.0. AVO Minor 29.10.0., and rusuy others.
LOUDSPEAKERS: 8 ohm . 2 in . to 5 in . from $7 / 6$ to 13/6 plus $1 / 6, p$. \& p .
Gar Speakers 7 i 4 in. Car speakers 7×4 in, $13 / 6$ plus $2 /$. p. \& p . TRANSFORMERS: $\mathbf{2 5 0 . 0 - 2 5 0} \mathrm{sec} .60 \mathrm{M} / \mathrm{A} / 6 \cdot 3$ volte $18 / 9$ plus $3 / 6 \mathrm{p}$, \& p . $250-0.250 \mathrm{sec}$. $100 \mathrm{M} / \mathrm{A} / 6 \cdot 3$ volts. $88 / 6 \mathrm{plus} 3 / 6 \mathrm{p} . \& \mathrm{p}$, TRAN8FORMER8 SUITABLE FOR SMALL POWER SUPPLIES:
8/11/17 volts at 4 ampis. 27/6 plus $3 / 6 \mathrm{p}$. de p . 3 to 30 volts tapped 2 amps, $30 /$ - plus $3 / 6 \mathrm{p}$. \& p .
$0.9-15$ volts, 14 amps, $16 / 6$ plus $3 /-\mathrm{p}$. p 0-9-15 volks. 1i amps, $10 / 6$ plus $3 /-\mathrm{p}$.
suto tranaformers. $10 / 8$ plus $2 / 6 \mathrm{p}$, \& p . OUTPUT TRANBFORMERS: Suitable for EL85/ UL84 singles $8 / 6$ plus $2 / 6 \mathrm{p}$. \& p. Midget Choke Output $6 / 6$ plus $2 / 6 \mathrm{p}$. \& p .
CONDENSER8 ELECTROLYTIC: $2,4,10,16,30,30,100$ m.s.d. 15 volts. $1 / 6$ plus 4d, p. \& p. each.

CARBON CONTROLS: 5 K to 2 M Lin, or Log. $3 / 9$ plus 1/- p. sp. ©K to 2M Lin. or Log. with s/W. $5 / 8$ plus 1/-p. A p
EAR PIECES: $2.5 \mathrm{~m} / \mathrm{m}$ or $3.5 \mathrm{~m} / \mathrm{m}$ Magnetic' $2 / 6$. Crystal $2 \cdot 5 \mathrm{~m} / \mathrm{m}, 3 \cdot 5 \mathrm{~m} / \mathrm{m} 5 / 6$,
SNNCLAIR PRODUCTS: All units and Mat. Trans. TRANEISTORS: Popuiar Range OC44, OC45, OC71, OC72, OC81, OC82, all at R/6.
POWER TRANSISTORS: OC26, 10/9; 0028, 15/8; OC3S, 13/6; ADT149, 15/
OSMOR RANGE OF IFs Coils, Driver and output tris. ELECTRONIC KITS: Suitable for beginners s2.17.6.
Write or call for our free Components List.

BOTHWELL ELECTRIC

8UPPLIES- (Glasgow) LTD.
54 EGLINTON STREET,
GLASGOW, C.5. Tel. 041 soUth 2904
Member of the Lander Group
such as that shown in Fig. 14, R3 is usually of such a high value that even the shori-circuit current through it would be insufficient to ruin the transistor. However, without R4 the stage might be encouraged to run towards its bottomed condition.

C2 Open

As with C 1 , this would cut-off signal passage to the subsequent stage and give the symptom of zero output.

C2 Shorting

While this would not affect the signal passage to the output of the stage in isolation, it would most certainly affect the d.c. conditions of the stage which C2 fecds. This is because the potential at the collector of the transistor in Fig. 14 is bound to differ substantially from the required potential at the input (possibly base) of the next stage.

C2 Reduced in Value

Again, as with Cl , this would give a falling bass response into the subsequent stage, producing a response characteristic as shown in Test 1.

It will be noticed that capacitors have not been considered as increasing in value. This very rarely happens, and even if it does, the circuit set-up can usually take a bit of extra capacitance without a significant change in its dynamic working conditions. This is not true, however, so far as critically-valued capacitors are concerned in tuned circuits and timeconstant circuits, as we shall see.

Fig. 15: Simplified common-emitter stage, often used with silicon transistors.

Figure 15 shows a similar amplifier, but this time employing an $n-p-n$ transistor without the base potential-divider. Part 1 (April 1968) explained the d.c. aspects of this, and signal-wise it is virtually the same as that in Fig. 14. C1 feeds the signal in and C2 feeds it out. R3 is the collector load, while R1 sets the base bias in terms of current from the positive supply passing through the resistor and base circuit. R2 is a stabilising resistor, and in some circuits the junction of R2 and R3 is bypassed to the "earthy" side of the circuit through an electrolytic capacitor of some $10 \mu \mathrm{~F}$ or so.
This kind of circuit is sometimes found in a.f. amplifiers of tape recorders and record reproducers embodying a silicon transistor. This type of transistor is less sensitive than germanium to temperature and junction leakage effects, which is one reason why R1 alone is used for base bias, as distinct from the potential-divider (R1 and R2) in Fig. 14.

In passing, it is worth noting that either the positive or negative side of the circuit may be made
"earthy". For instance, thes chassis point in Fig. 15 can be connected either to the plus line or the negative line. It is usual practice to return any decoupling or bypassing capacitors to the side selected as "earthy", but this is not always the case.

AUDIO OUTPUT STAGE

There are two basic audio driver/output stages in current use, one uses transformers for coupling to the driver stage and to the loudspeaker, and the other is so-called transformerless. We shall look at both of these.

The scheme with transformers is shown in Fig. 16 Here Trl is the driver transistor in a common-emitter circuit. This is the same as the circuit in Fig. 14 except that the collector is loaded to the primary of the driver transformer T1 instead of to a load resistor.

Tr 2 and Tr 3 are the push-pull output transistors in the common-emitter mode with their bases fed from the secondary of T 1 . Base bias is applied to both of them by the potential-divider R1 and R2 connected to the centre-tap of T1 secondary, and a degree of protection against thermal runaway is given by the emitter resistor R3, common to both transistors.

The collectors are loaded to the primary of the speaker transformer T2, and negative potential is applied to them by the centre-tap on the primary connecting to supply negative. Push-pull operation implies that the signal drive to the base of one of the output transistors is negative-going while simultaneously to the base of the other it is positive-going. This is achieved by the "phase-splitting" action of the driver transformer with its centre-tapped secondary. The amplified signals are then reconstituted in the tapped primary of the speaker transformer.

The output transistors are adjusted for class B working. This means that the collector current is almost zero under zero signal drive, and is attained by careful tailoring of the values of R1 and R2. That is, the base bias is adjusted for just a little above zero total collector current without signal input. Now, when drive occurs, collector current rises alternately to follow the signal waveform and the average total collector current then rises to a maxi-

Fig. 16: Transformer-phased and speaker-coupled puish-pull stage.
mum value depending on the output power delivered by the stage. A current meter connected in series with the supply would indicate substantial kicks of current with increasing output power.

CROSSOVER DISTORTION

The output transistors are biased so that a little collector current flows under quiescent conditions to avoid an effect called crossover distortion. This happens by the effective switching on and off of the output transistors alternately due to the positive and negative half-cycles of drive signal. If the transistors are switched right off (i.e., biased for zero collector current), the reconstituted wave at the output is asymmetrical, since the two halves fail to fit together accurately. However, by adjusting the base bias for a small collector current this distortion does not occur (see Fig. 17).

This means that the biasing is critical, and stabilisation has to be used to ensure that the biasing remains accurate over the normal temperature working range of the equipment and transistors. This is where the thermistor (R2B) comes in. R2, in fact, is composed of R2A in parallel with R2B, the thermistor.

Fig. 17: Showing the phasing in a push-pull audio stage, and the effects of "under-biasing" the output transistors, resulting in crossover distortion.

Without the thermistor, an increase in transistor temperature would increase the collector current, while a decrease in temperature would reduce the current. The thermistor is effectively "geared" to the ambient temperature, so should the collector current rise (due to temperature increase) the resistance of the thermistor would fall, and since this is in the bottom leg of the base potential-divider it pulls back the base current and hence the collector current. Conversely, with an opposite change in temperature.

R3 is a very low value, to avoid power loss, a typical value being $4 \cdot 7 \Omega$, so it does not have a great protective influence regarding thermal runaway, but heat-sinks on which the output transistors are mounted greatly reduce the possibility of this happening.

R4 in conjunction with Cl gives supply decoupling. and with Cl open-circuit I.f. instability might result. Motor-boating (Symptom 7 on the record) will occur should the main electrolytic bypass, C2, go open-circuit, especially when the battery veers towards exhaustion. Sometimes, due to a high resis-
tance battery and C2 open, a whistle of about $500 \mathrm{c} / \mathrm{s}$ develops. It can be immediately cleared by replacing C2.

Bad distortion can be caused by low battery voltage, bad output transistors and incorrect biasing. The latter should lead straight away to checks of R1 and R2, including the thermistor and its mounting.

The transformerless circuit is shown in Fig. 18. Here Tr 3 and Tr 4 are the push-pull output transistors, driven by Tr and Tr 2 in complementary d.c. connection. Both Tr 1 and Tr 2 are in commonemitter mode (the emitter of Trl getting its circuit through the emitters of Tr 3 and Tr 4 for stabilisation), the former being an n-p-n device can be coupled directly from its collector to the base of the latter which is $\mathrm{p}-\mathrm{n}-\mathrm{p}$. This circuit was considered from the d.c. point of view in Part 1.
The bases of both output transistors are driven together from Tr 2 collector, again, with d.c. coupling. This is possible, as mentioned in Part 1, because Tr 3 is $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{Tr} 4 \mathrm{n}-\mathrm{p}-\mathrm{n}$. Thus, a positive-going signal half-cycle, for instance, will drive the former into cut-off and the latter into conduction; conversely with a negative-going signal half-cycle. The current pulses "pumped" into the speaker from the output stage emitters through Cl reconstitute as

Fig. 18: Transformer-less complementary push-pull output stage, showing two tests for biasing.
full waveform output power.
This circuit, too, is arranged for a little quiescent current in the output pair collectors, and temperature stabilisation is provided by the diode D1 and the thermistor Thl in the base circuit. VRI and VR2 preset potentiometers are for adjusting the biasing of the output stage, and this is achieved by connecting a high resistance voltmeter at the connected emitters of $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$ and adjusting VRI for a reading of 4.8 V (Test 1). Next, by connecting a milliammeter in Tr4 collector circuit and adjusting VR2 for a quiescent current of 4.5 mA (Test 2). This is the current for the least crossover distortion.

Note that these voltage and current values relate to circuits in which $\mathrm{Tr} 1, \mathrm{Tr} 2, \mathrm{Tr} 3$ and Tr 4 are transistors type $\mathrm{ACl} 27, \mathrm{ACl} 28, \mathrm{ACl} 28$ and $\mathrm{AC1} 27$ respectively (or equivalents, of course).

The other conditions relating to component faults
in this circuit correspond almost equally to those already expounded, so there is no need to repeat them here.

I.F. AMPLIFIER "BLOCK"

To finish this episode, let us investigate an i.f. "circuit block". Such is given in Fig. 19. In spite of the tuned circuits, this has very much in common with the basic circuit in Fig. 14, R1 and R2 form the base potential-divider, but this time the secondary of the i.f. transformer T1 is interposed. This fails to alter the d.c. conditions and makes sure that the i.f. signal is applied straight to the transistor base. The "earthy" side of the winding is made low impedance signal-wise by Cl to chassis. In other words, this makes one side of the winding "earthy" so far as the i.f. signal is concerned.

Fig. 19: I.F. amplifier "circuit block" described fully in text.
The emitter resistor. R 3 , is still here, but this time it is bypassed by a lower value capacitor (C2) since the signal frequency is that much higher than audio.

The collector is loaded into the primary winding of i.f. transformer T2, while C3 feeds back antiphase some of the signal at the collector to the base to provide neutralisation. R4 is simply a damping resistor across the primary.

Now let us investigate the effect of component faults on the operation.

R1 and R2 Open or Changed Value

The effect will be almost the same as that detailed for a.f. amplifiers, but there are slight differences. For instance, if the change results in increased base bias and collector current the stage could go into oscillation owing to the working gain of the transistor being higher than designed for. Moreover, the change could alter the loading and capacitances as "seen" by the tuned circuits and thus alter the tuning. Further, the feedback capacitance could change, and this will affect the neutralisation, again resulting in instability.

Cl Open

This will take the "earth" from the lower end of T1 secondary and prevent tuning.

Cl Shorting

This will remove the base bias and render the stage inoperative.

R3 Open or Changed Value

Symptoms would be similar to those described for an audio "block", but an increase in value could reduce gain, while a decrease in value could increase gain and alter the tuning and encourage instability.

C2 Open

Gain will be reduced, and here there could be a tendency towards instability, depending upon the phase sensitivity of the tuned circuits and stage generally.

C3 Shorting

See under R3.
C3 Faulty
This will certainly upset the neutralisation and possibly cause instability and/or "peaky" tuning.

R4 Open or High

This will also encourage instability and give rise to "peaky" tuning.

Faults in I.F. Circuits

Faults in the i.f. transformers will be revealed by the inability to obtain correct i.f. alignment within the range of the dust-iron cores. If the d.c. conditions of the transistor are correct, and CI normal, the trouble in this event could be caused by (i) broken cores. (ii) windings slid down former and (iii) altered value parallel tuning capacitors in the i.f. cans.

TO BE CONTINUED

INTEGRATED CIRCUIT PREAMPLIFIER

_continued from page 103
a plan for an etched circuit for those who agree with this writer in preferring such an approach. Others would follow Mr. Thurston's use of veroboard, and in this context a new variety suitable for use with integrated circuits may be mentioned. As for the performance of the circuit, it was stated in the article January 1967 that an input impedance of the order of 10 megohms could be expected, and the prototype integrated circuit version bears this out. As Mr. Thurston implied, this promises applications outside the audio range, e.g. as the basis of a transistorised voltmeter, the unit would draw no more than about $0 \cdot 2 \mu \mathrm{~A}$ from a circuit under test, compared with the $50 \mu \mathrm{~A}$ of a good multimeter; it could equally
function as an oscilloscope buffer amplifier.
For the experimenter, two further circuits are illustrated, but constructional details are omitted. In the first of these (Fig. 5). Trl and Tr 2 are connected as a super alpha pair, externally, just as $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$ are wired into this configuration by connections within the I.C. can. Due to the features of the manufacturing process already mentioned, the I.C. now can operate as a pair of closely matched high impedance preamps., perfectly suited to the task of matching a crystal stereo record cartridge into a "hi-fi" amplifier. Fig. 6 is even more interesting, as an untuned A.M. final amplifier and non-linear detector for a radio receiver.

It is the aim of this article to stimulate interest in these and other possible applications of this unit so that it will achieve the commercial success which alone can ensure a continuous supply of these exciting innovations in our hobby.

EXPERIMENTAL TRANSISTOR

IANY excellent circuits have been described for a.c. millivoltmeters, with wide frequency response, high input impedance and other desirable characteristics. Unfortunately they require carefully selected components and offer the user facilities not always wanted. For example, in testing amplifiers it may be sufficient to measure the frequency response across the output terminals where the impedance is low, and the simplest of measuring instruments will be adequate. The frequency response need only be from $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$, and this is easily obtained with sensitivity down to 10 mV or so.

The circuit described here has a full scale sensitivity of between 10 and 500 mV with corresponding input impedance ranging from about $12 \mathrm{k} \Omega$ to just over $100 \mathrm{k} \Omega$. It can use almost any pair of transistors, germanium or silicon, together with a bridge of general purpose diodes. The meter used in the original was a surplus 0.5 mA movement, but any similar moving-coil unit of between, say, 50 mA and 2 mA sensitivity could be used. Because of the flexibility of this circuit, a particular version will be covered first and then a list of modifications and alternatives will be suggested. This should enable one to be made up out of the most limited spares box.

CIRCUIT

From Fig. 1 it can be seen that the circuit is a two-transistor direct-coupled amplifier. There are two feedback paths. The first is from the emitter of $\operatorname{Tr} 2$ to the base of $\operatorname{Tr} 1$ and provides the base current for the first transistor.

The emitter of $\operatorname{Tr} 2$ is by-passed at audio-frequencies so that this feedback (which is negative
shunt feedback) does not lower the input impedance. Its operation can be understood by assuming that, for example, the current in the first transistor tries to increase. This could be due to increasing temperature, and would result in a falling collector voltage. The base-emitter voltage of Tr 2 is small and relatively constant, i.e., this fall in collector voltages transmitted to the emitter of Tr2. There is now a smaller voltage across R2 which reduces the base current of Tr1. Hence the original change is opposed by the feedback. If this feedback were allowed to operate at audio frequencies, the large changes in current through R2 would have to be supplied by the source, and the circuit would have a low input impe-dance-this is clearly undesirable where the aim is to measure a voltage from a source which might itself have a relatively high impedance.

It is the second feedback path that helps particularly with such problems. There are basically four functions performed by this feedback: (i) it raises the input impedance because it is fed back in series with Trl emitter, this requiring a greater input voltage for a given input current; (ii) it stabilises the gain, ensuring that the meter current is determined primarily by the value of VR1; (iii) it linearises the circuit's response to small signals by raising the output impedance and swamping the varying impedance of the diodes; (iv) it extends the frequency response of the amplifier.

As usual there must be some penalties paid for these rewards. Most important is the loss of gain, and, as a rough guide, the gain is reduced by the same factor as the stability, impedance etc. are improved. To explain a little further, assume that with VR1 $=\mathrm{O}$,

must be stressed at this stage. In multi-stage amplifiers each transistor will contribute phase-shift at high frequencies and should this total ever reach 190 degrees, then the feedback has been reversed. At these frequencies the gain will be greater than in the absence of feedback. Normally the gain without feedback will have fallen considerably, and this positive feedback may or may not be sufficient to cause oscillations.

ANALYSIS

On a simple analysis, a two-stage amplifier will have only two significant phase-shifting networks each able to contribute up to 90 degrees. This in turn will only be achieved at frequencies tending to infinity where the stage gains approach zero. Positive feedback can hardly do any harm to an amplifier with zero gain! The above is a considerable over-simplification of "real life" and some two-stage amplifiers may oscillate where there are other sources of phase shift present. In addition, the phase shift may still produce an increase of gain in a feedback amplifier just prior to cut-off as shown in Fig. 2. This is a plot of meter current against frequency for a constant amplitude of input voltage. With most transistors such a peak will only appear well outside the audio band and can be easily eliminated if desired. Figure 3 shows the fall-off in input impedance with rising frequency. As the gain of the amplifier falls so does the effectiveness of the feedback.

The actual sensitivity of the circuit is meter current divided by input voltage, and could be expressed in such units as mA/volt. This indicates that the

MILLIVOLTMETER

PETER WILLIMS B.Sc.

a 1 mA meter reads full scale for an input of 1 mV . If VR1 is increased to 9 , for example, and we still require a full-scale reading on the meter, then the input voltage would have to be $10 \mathrm{mV}-1 \mathrm{mV}$ still for the base-emitter and 9 mV for VR1. The sensitivity is now reduced by a factor of ten, but the inpuit impedance is similarly increased, since the transistor is still receiving the same signal (1 mV) and hence draws the same base current, while the overall input voltage is ten times up.

A most important point about negative feedback

Fig. 1: Circuit diagram of the basic version. Component values are non-critical.
circuit has a "gm" or transconductance and it is found to be mainly dependent on VR1. For an amplifier of infinite gain, $\mathrm{gm}=\frac{1}{\mathrm{VR} 1}$ since then all the input voltage appears across VR1, and all the output (meter) current flows through it. With larger values of VR1 we would expect this ideal to be approached since the base-emitter voltage would be small. This neglects an important point about the meter response which was glossed over in the earlier explanation. The meter deflection is proportional to the mean value of the rectified output whereas the

Top view of the layout of components assembled on the S-Dec. Positioning is not unduly critical.
input is specified in terms of its root-mean-square (r.m.s.) value. These are different for all except perfect square waves, though for most waveforms, including sine-waves, the difference is within 10% or so.
it is customary in measuring instruments using moving-coil meters for the measurements, to calibrate the meter in terms of the r.m.s. value of a perfect sine-wave while the reflection is proportional to the mean value. Thus, for sine-waves, the reading can be taken as correct while for other waveshapes there will be varying but small errors. Figure 4 shows the actual input voltages required for full-scale output on a 0.5 mA movement using a range of values for R 2 .

If the circuit is to be built using surplus germanium transistors, then biasing may be more of a problem. Resistor R2 would probably have to be reduced to allow for the increase in leakage currents at higher temperatures, though this is somewhat offset by the
that their value is rarely critical. This is fortunate in that the manufacturing tolerance is broad-they may be up to 50% or more above their marked value. Reducing all the quoted values by a factor of two would still leave the circuit able to cover the audio band adequately. The voltage rating of Cl need only be a few volts unless the source voltage contains an appreciable d.c. term. C 2 will typically have about 3 V across it and a rating of 6 V or above should be satisfactory. The voltage across C3 will be less than the supply voltage, but for safety a voltage rating of, say, 15 V would be better.

Nor are resistor values critical, and they could be scaled up or down by factors of two or more without impairing the basic operation, of course, with low values of resistance the input impedance would also fall, and would be roughly proportional to the resistance values. If wide tolerances in the com-

Fig. 2 (left): Phase shift in the amplifier can increase gain at frequencies close to cut-off. This peak in response can be removed (as in dotted curve) by the addition of a CR network between collector and base of Tr 2 . (Meter current for R2 $=20$, Vin $=20 \mathrm{mV}$). Fig. 3 (centre): Input impedance/frequency. B elow $20 \mathrm{kc} / \mathrm{s}$ the input impedance remains fairly constant.
Fig. 4 (right): Input voltage/R2 for constant meter current of 0.5 mA . The curve shows that a minimum signal of around 1.5 mV is required even with $R 2=0$. For high values of $R 2$, input voltage becomes proportional to $R 2$ which alone determines circuit sensitivity.
lower value of $\mathrm{V}_{\text {be }}$ on the first transistor (it must be remembered that the potential at the emitter of Tr 2 is equal to the sum of that $V_{\text {be }}$ and the voltage dropped across R2). Choose R2 such that the emitter of $\operatorname{Tr} 2$ is at about 2 to 3 V above ground.

CHOICE OF TRANSISTOR

It is good practice to choose the transistor with lower leakage as the first stage of such an amplifier. This reduces the above bias problem and often produces less noise, since some of the noise-generating mehanisms in transistors are also sources of leakage current. The frequency response is likely to be worse than that of the original version. but there should be no difficulty in covering the audio band. Should there be any "peaking" of response as occurred in the circuit of Fig. 1, then a capacitor and resistor in series may be connected between collector and base of Tr2. The values used in the original are shown in Fig. 5-again the components would have to be selected to suit the transistor. A larger value capacitor would have to be used if the problem were to arise with cheap germanium transistors.

At the other extreme, the many excellent epoxy and plastic cased planar silicon transistors would perform excellently in this circuit. The problem might be that, retaining their gain to frequencies in the multimegacycle range, they will be prone to high frequency oscillation due to stray coupling between input and output. The CR network described above should provide a solution if screening is difficult. If the transistors used are n-p-n then the polarity of supply voltage and electrolytics should be reversed.

While considering capacitors it is worth noting
ponents leave less than, say, 2.5 V across Tr 2 , then VR1 should be reduced. The upper and lower limits of the resistors are set by leakage and dissipation problems respectively. If another value of supply voltage is preferred, then it should be sufficient to select R2 for a voltage across Tr 2 of a quarter to a third of the supply voltage. Various versions of the circuit have been used with supplies between 6 V and 30 V .

The choice of meter and bridge circuit is equally wide. To allow full drive to the meter, the standing current in Tr 2 has to be greater than the peak current required by the meter. It is suggested that a standing current in Tr^{2} of about $5 \times$ the meter full-scale reading should be suitable. In the interests of battery drain and transistor dissipation it is probable that currents above 10 mA would be undesirable.

Fig. 5: Additional components reduce gain of amplifier at high frequencies and remove peak response. This limits the choice of meter movements to a maximum of 2 or 3 mA . Probably cost will place a limit on the most sensitive meter that could be used, though for currents below 100 mA the bridge would benefit from the use of silicon diodes. This is because the germanium diodes have a reverse leakage current that might become an appreciable fraction of the meter current at high temperatures. Meters of fullscale sensitivity between 50 mA and 2 mA have proved satisfactory in circuits of this type.

practically Wireless commentary by IEINII

YOU are always going on about computers, Henry: have you seen the latest news?

About the Edinburgh University computer that taught itself to balance a pole on a moving cart for 90 minutes, you mean? That must have been fun for Professor Donald Michie. The best his students could do was five seconds flat.

No, I was not being frivolous. I was referring to the chess matches.

Old hat! Computers have been

Whacking men at noughts and crosses. whacking man at chess and noughts and crosses since the abacus was invented by Confucius' nephew.
That is just the point. This was a Russian

Confucius' Red nephew then. What's the difference? Moscow has been crowing ever since their M-20 beat an American version last year.

Actually it was the $M-20$ that was involved in this incident, in a contest sponsored by the Uralsky Rabochy and the Soviet Academy of Sciences' Institute of Theoretical and Experimental Physics.

You must be making this up! Don't be sceptical, Henry. I am indebted for my information to Janus of Electronics Weekly, and the Soviet chess champion, Lev Polugayevsky. The contest went on for four months. Playing against the computer were chess fans from 80 towns in the Urals,
the first mass competition to involve an electronic computer.

Evidently, you haven't heard about Operation Match.

Frivolity again! I am not concerned with computer selection of dating couples. The point I am trying to impress upon you is that the USSR competition was arranged by feeding moves suggested by fans to the M-20 computer, which worked under the same program it had used to heat the Americans in the straight computer match last year.

So what! First prize a trip to Siberia; second prize a longer trip. The computer always wins, so what's the point?

I'll tell you. During the play, the computer exhibited some "human" weaknesses. It began by taking an opposing pawn without due caution and after 19 moves, the computer resigned.

SAY THAT AGAIN!

After nineteen moves the computer resigned. It could foresee an inevitable mate in three further moves. This would seem to indicate a triumph for the human mind, and some hope for the future of mankind in a world rapidly becoming more and more dominated by-

OK, OK,-but surely it is obvious that the computer was just bemused by the variation in approach, in style of play, by the 80 groups of fans, many of them probably mere enthusiastic amateurs. Had Lev Whatsisnamesky been playing solo against the computer, there would have been a harder-fought game, but no doubt about the outcome.

Janus suggested the machine may have been corrupted by previous contact with the bourgeois American imperialist model.

Now who is being frivolous? We must be careful how we treat our electronic brains. Look at what happened at St. Louis, and again at Harvard, for example. In the first case, an engineer fed
a computer with the listed numbers in four local exchanges and the machine gave him back all the non-listed numbers, which he used to get access to privateleased trunk lines. The Wall Street Journal doesn't tell us whether the computer was arrested as an accessory.

In the second case, students at Harvard used a computer, a recorder (the type you blow through), and their native ingenuity to imitate signalling tones and bypass the telephone

First prize a trip to Siberia
company's billing computer, getting free calls anywhere. They even obtained access to Defence Department trunk lines-when they were finally caught. There is a thousand dollar fine for this Federal offence, but apparently these lads got away with it, after they had told the Trunks and Telegraphs Company exactly how they performed their anti-social swindle.

It couldn't happen here, Henry.

Couldn't it just! Although the PMG has so far ordered no computers for hire to outside users, he has made provision for a $£ 500,000$ commitment on commercial National Data Processing Service business in 1968-9, and sums of $£ 2 \cdot 5-3 \mathrm{~m}$. pounds are envisaged for the next two years. What with the Science Research Council coming out in favour of project 50 , the ICT supercomputer designs, we are well on the way to your "machine-dominated age".

ivesteps to hi-fi

PART TWO TURNTABLE DRIVES

THE quality of reproduction of your equipment is limited by the capabilities of its poorest component. It is no good having the best pickup in the world working with a bad turntable drive. It is with this in mind that we come to the question of turntables and their associated driving gear.
Over the past half-century, many experiments have been conducted to determine the best possible form of drive from the motor to the turntable and hence the record. Berliner's spring drive motivated the centre spindle about which the turntable rotated and this method was carried on into the era of the electric gramophone. The rim drive was then devised and this is the most widely used form of drive today. This drive relies on friction. The motor shaft, which is vertical, is fitted with a pulley. The pulley may be stepped in diameters corresponding to the number of different speeds required, usually three or four. It may also be tapered on models which have infinitely variable speed over the range. The pulley drives a rubber-tyred wheel which runs on the inside of the turntable rim. To effect speed selection the pulley is moved in a vertical direction against the appropriate pulley diameter. This is shown in Fig. 2.

Squirrel Cage Motors

The type of motor most commonly used in cheap and moderately priced equipment is the shaded pole squirrel cage induction motor so called because a movement of flux across the pole face sets up a "rotating" field causing the rotor to turn at a speed just below synchronous speed. The movement of flux across the pole face is caused by copper bars set in one side of each steel pole face thereby causing a flux lag due to the different materials. This 'type of motor has one drawback in that speed fluctuates with load, and a turntable, due to record groove modulations, is under a constantly fluctuating load.

Synchronous Motors

More expensive, or transcription, units overcome this problem by utilising synchronous motors. They are normally slow running in order to increase the pulley diameter. This increases the motor inertia and stability. Apart from sometimes using synchronous motors the only major difference between a transcription unit and a less expensive drive is the quality of components used. In a transcription unit bearings, spindles, turntable and motor are of heavier construction in order to give the sort of continuous service expected in broadcasting studios. On transcription units a $\pm 5 \%$ speed variation control may be
fitted for correction purposes. This is an eddy current brake with an aluminium disc attached to the motor shaft. By movement of the control a magnet is moved across the disc increasing the load on the motor.

Wow and Flutter

Earlier on inertia was mentioned in connection with the motor pulley. Inertia plays an important part in record reproduction. Ideally the turntable should be of heavy cast construction to provide a flywheel effect, and help in ironing out high rate fluctuations in speed known as "flutter". One effect of flutter is to make soprano voices sound as if they are gargling. A heavy turntable also helps overcome "wow" which is similar to flutter i.e. fluctuation in speed, but at a much lower rate.

Fig. 2: A typical fourspeed turntable drive.

Intermediate wheel

Both flutter and wow are expressed as a percentage of variation of the nominal running speed. A figure of 0.05% or less is acceptable and would not be noticed. Higher figures probably would not be noticed either but it is always best in hi-fi to aim high. A heavy turntable will also help to reduce "rumble", This is a low frequency background noise caused by the mechanics of the drive system.

How heavy should your turntable be? As a rough guide it should be so heavy that it takes more than 60 seconds to stop from $33 \frac{1}{3}$ r.p.m. When disconnected completely from the drive. It should also be more than 10 inches diameter. If your turntable is heavy and stops in much less than 60 seconds then this could either be due to the bearing needing attention or the turntable being out of balance or both.

Turntable Truth

One factor so often neglected in cheap turntables (from bitter experience) is turntable truth, i.e., the variation of the turntable surface. The British Standard Specification for the reproduction of gramophone records states that the turntable surface should be true to within 0.020 in . Now this may satisfy
the British Standards Institute but it does not satisfy a high fidelity fan. Turntable truth in the order of 0.005 in . or less is a must. Many record player manufacturers claim that this is unnecessary accuracy and that even 0.050 in . is far truer than many records. This argument is rather like motor-car manufacturers claiming that there are so few rough stretches of road now that suspension is obsolescent. It is obvious to see that excessive variation in turntable truth causes undue record wear because of the record having to lift the pick-up mass.

If your turntable drive shows obvious signs of speed variation then it is probably due to the drive slipping. All driving surfaces such as motor pulley, intermediate wheel and turntable rim should be thoroughly cleaned with a grease solvent. If the trouble is still experienced, then the motor should be suspected.

Summing Up

To sum up this part the following points should be noted when purchasing a turntable drive:

1. All bearings etc. should be heavy duty type.
2. Flutter and wow should be a minimum.
3. The turntable should be of heavy cast construction.
4. Turntable truth should be 0.005 in . or thereabouts.
5. Rumble should be at a low level.

To be continued

Build this Radio-Controlled MODEL BOAT

A pleasure to construct and a joy to run, this 34 in . kit-built diesel-powered high speed craft carries a multi-channel control system which will make it the king-pin of any water on which it is sailed. Incorporates proportional rudder and progressive throttle control for good manoeuvrability, with simultaneous or one-at-a-time operation of these systems. Full how-to-build instructions, with details of transmitter and receiver (including control gear). Begins in next month's issue. Don't miss it!

Practical ELECTRONICS

JUNE ISSUE ON SALE FRIDAY, MAY 17
Order your copy now!

AN APOLOGY

We much regret that, due to circumstances beyond our control, it has proved impossible to include the Portable Keyless Organ and the Variable Frequency Oscillator in this month's issue as was our intention.

We apologize to readers and give our assurance that these articles will be featured as soon as possible in Practical Wireless.

THETEPTROM.

An electronic stopwatch for the darkroom. Uses two transistors and four diodes to control the enlarger and two
safelights automatically.

2transistor receiver, the second in our popular beginner's series. Super-simple circuitry, easy to build. A crystal set pr a twotransistor receiver at the flick of a switch.

portable KFYIIESS OREAN

A solid state musical organ with unique "keyless" notes. Has built-in vibrato, its own preamp and output stage. Full instructions including tuning-up and playing techniques.

aLL INNEXT MONTH'S

DON'T MISS THE JULY ISSUE
ON SALE JUNE 7th

Not always true!

It would appear that Mr. R. Haworth (March 68) has misinterpreted "You get what you pay for." (July 67). If he reads my letter again he will find it referred to the very controversial subject of kits with suggestions for the would-be buyer.

The unfortunate who haven't a spares shop around the corner naturally turn to mail order, some not realising that care is needed to avoid falling into this pit of suffering, others just asking for trouble.

One correspondent had five complaints on his order and says the next order from the same firm was even worse. Now surely if one orders a pair of trousers and receives the wrong size and a leg missing they don't send a repeat order in the hopes that the next pair will be all right. Mr. H. waited ten days for his not-tooclear price list, after five days I'd have moved on. Any advertiser interested in inquiries for orders will act promptly and all the old excuses we hear about regarding delays give more reason to shop elsewhere. Some firms give a very good service even if it does cost a few extra coppers.

Errors do of course occur even with the conscientious types, just the same as the guy who neatly writes out his order then forgets to add his address, or errors printed in P.W. circuits and parts lists.

Readers have a very good and varied choice of advertisements in Practical Wireless, thousands of orders large and small must be dealt with each year. I wonder what percentage of customers are satisfied. How about a vote, or would that put an end to this now drawnout subject of suffering.

Just think though if everything was perfect, the educated would be unable to write in and correct the mistakes, others couldn't tell us how they'd been caught. Mr. H. wouldn't have lost his Is. 3d. and then I couldn't have passed away two hours typing this with one finger on a 1920 Oliver typewriter.

To finish off, a word of thanks to the poor guy who has to sort out all these heartaches besides giving us a good interesting magazine month
after month, Mr. W. N. Stevens. Thanks also to Henry who solves reader's problems on their super noiseless specials without the aid of strait-jacket or ether.-K. Marlow (Surrey).

Not quite so

In the March issue of Practical Wireless, your correspondent M. Francis suggests that a 110 V (75 watt) soldering iron can be used from 220 volts a.c. if a BYIOO is put in series.

I am afraid this is not so. Ohm's law tells us that the iron, if connected without the diode, will dissipate 300 watts on a 220 volt supply. Thus, with the diode, its dissipation will only be reduced to 150 watts, which will soon lead to its destruction.
A. Jefford's suggestion, to use a 75 watt bulb in series, is technically correct, provided the 75 watt bulb is a 110 volt one. I would imagine a 100 W or 150 W 220 volt bulb to be more suitable but the position is complicated by varying filament resistance with temperature.

Has Mr. J. MacFarlane considered using a "simmerstat" energy regulator. He could then adjust this to be on for 25% of the time. This also has the advantage that he can cut back to "background heat" when the soldering iron is on standby.

For best results the simmerstat should be adjusted to go on and off fairly rapidly, thus ensuring an even temperature.-C. P. Finn (Nuneaton, Worcs.).

It won't work

With reference to Mr. N. Francis' letter in the March 1968 issue suggesting that 110 volt mains equipment can be run from the 220 volt mains if a diode is placed in series, 1 should like to point out the fallacy.

Power is proportional to the square of voltage; so that 110 volt equipment will dissipate four times the intended power on 220 volts. If one-half of the mains cycle is removed, the power will still be double.

I have of course neglected the
small increase in resistance of a filament at the higher temperatures obtained.-Peter J. A. Moult (London, S.W.1).

"Not the only one"

With reference to the letter from R. Haworth in the March issue, he definitely is lucky!

My first encounter with one well-known firm was last November when they supplied the wrong capacitor. It took five letters and five weeks to obtain a reply enclosing a refund and stating that the component was out of stock!

At my second encounter with this firm in January; my order arrived-a bundle of GPO sticky tape and broken Veroboard, for which privilege the firm levies a surcharge of 2 s . 6d.-"To maintain the high standard of our postal service." Three of the components were totally incorrect, so back to the firm went a very rude letter. By return of post I received a post card: "Please return incorrect items for immediate replacement" it stated. lt was a further TWO WEEKS before 1 eventually received a refund-the components were out of stock!-D. G. Chappell (Bangor, Caerns.).

Auto clocks, etc.

I was interested to read the encouraging remarks by Mr. Blunden of Guildford, regarding my letter which appeared in the January issue of P.W., in connection with the Auto-Clocks etc.

One would form the opinion that he is in the employment of the Electricity Board or similar undertaking using such clocks.

The remarkable thing is that the description he so far gave, was of the same idea as I approached the British firm with, who turned it down saying it had no practical value.

I would be interested to hear more, if Mr. Blunden will write me and let me have his address so that I can communicate with him privately on this interesting matter. -Herbert S. Barker (15 Buttermere Drive, Dalton-in-Furness, Lancashire).

"'"'CLUBMAN' J. THORNTON-LAWRENGE GW3JGA

continued from the May issue

PROBABLY the amateur radio club activity in which short wave listeners can most actively participate is the Direction Finding Contest. In this contest a portable amateur transmitting station is usually hidden in a park or in the country. The station makes short transmissions of about 1 minute duration, every 30 minutes, usually at some specified frequency in the $1.8 \cdot 2.0 \mathrm{Mc} / \mathrm{s}$ band. Contestants have to locate the hidden station using a d.f. receiver, the first contestant to discover the location of the transmitter being the winner.

To determine the position of a transmitting station it is necessary for the receiver to have a directional receiving aerial. This aerial can take the form of a large diameter coil, as used in many of the older portable receivers and known as a loop or frame aerial, or a ferrite rod aerial.

The radio wave arriving at the receiving aerial consists of an oscillatory electric field with an

The MkV Clubman; employing direction finding facilities.
associated magnetic field at right angles to it. Considering the magnetic field only, for the moment, this cuts across the turns of wire in the loop aerial and produces a signal voltage. The signal voltage induced in a loop aerial by a magnetic field arriving from different directions is called a polar diagram and that, for an ideal loop, is shown in Fig. 34a.

It will be seen that the direction for minimum induced voltage is much more sharply defined than that for the maximum voltage. The minimum position is used when detecting the direction from which a signal is being received, as this enables the greatest accuracy to be obtained. In practice an ordinary loop of wire will also have voltages induced into it by the electric field and so the minimum positions will be distorted and give an unreliable indication of direction. It is necessary, therefore, to eliminate the electric field by surrounding the loop of wire with an electrostatic shield. This can be done by winding the loop inside a circle of metal tube. A small break has to be left in the tube so as not to form a "shorted turn". This form of construction is employed in the Clubman Mk V aerial system as shown in Fig. 36.

An electrostatically shielded loop aerial will have two sharply defined minimum positions at 180 degrees from each other. The direction of the station will be at 90 degrees from one or other of these minima, but it is not possible to detect which is the correct direction. To overcome the problem, a vertical rod aerial is provided, which responds mainly to the electric field. The effect of coupling the signal from the vertical rod "sense" aerial to the signal from the loop aerial is to change the shape of the polar diagram to give only one maximum and one minimum position both in line with the direction of the loop, as shown in Fig. 34b. By checking with a signal, whose direction of origin is known, and marking the aerial accordingly, it is then possible to check at any time the true direction by switching-in the "sense" aerial.

Loop Aerial Metalwork

Standard metal parts for making the loop aerial are not available as such, but no difficulty should be encountered in obtaining the necessary items. The loop is made of $5 / 16 \mathrm{in}$. o.d. copper tube (petrol

GOODMANS HIGH FIDELITY MANUAL

A Guide to full listening enjoyment

MAXAMP 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts . Silicon solid state - Integrated pre-amplifier Negligble distortion ' $£ 54$.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER
Transistorised - Outstanding specification - Stereo de-coder (optional) $\mathbf{£ 6 5 . 5 . 0} \mathbf{+} \mathbf{£} 15.14 .0$ P.T.

Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1}{2} \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 7 \frac{1}{4}{ }^{\prime \prime}$ deep) in Teak or Wa/nut to order.
Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS.

Telophonm: Cleckhoraton 2866
Special 0ifer: New Boxed 17-inch TV Tubes MW43/69. TOPGRADE 12 month's guarantee. 47/-, carr. 10/
Smakers 1 pemowed rom TV Sets, Perfect Cones all 3 ohms. sin round $6 / 6$. post $3 / 6$. 6 in round, $3 /=$, post $2 / 9.6 \times 24$ slot $5 /-$, post $2 / 6 ; 6 \times 43 /-$ post $2 / 9$. Six for $22 /-$, post paid. $7 \times 45 /=$, post $2 / 9$: six for $34 / \mathrm{m}$. post paid.
New 12in. Sperkers with Brilitin Twecter, 28/6, post paid, 3 or 15 ohm Coll.

VALVE LIST
Ex Equijment. 3 months' Fuarantee
10F1. EF80. EB91, ECL80. EF50. PY82. PZ30, 20P3. All at 10/० per doz Post paid. Single valves post 7 d

EF50, 10 -doz. Post Paid
Indicator C.IR.T. Type 7421. Complete with 5in. Tube Trype 2292. Front marked in figures, also many spares, loss valves. clean condition 10 - plus 10 -carriage.
Lx R,A.F. Tube Unit Tybe $\boldsymbol{\sim} 66$. Fitted with VCR97 tube mu meta scroen. full of EF50 valves. Many spares. Grade 1 27/- plus 10 carriage. Grade 222 -plus 10 -carriage.
Cntested T.V.Sets. 17 in . 50/-carriage 15/-, 14in. 30/-carriage 15/All sets complete with tube valves and back
Hush 1 inn. T.V. Se1. Type TV53, \&5, carriage 15/-. Ideal for 625 line picture conversion. Complete with good tube, Tested working, al BBC1 and ITV channels. Cabinet fair
Jit Personal Earpieces, Small or large plug 1/11 post paic. Silicon rectiners $500 \mathrm{~mA}, 800 \mathrm{P} .1 . \mathrm{V}$. , no duds. $2 / 6$ post paid.
Top Gradr Mylar Tapmas. 7 in . Standard 11/6. L.P. 14/-, D.P. $19 / 6$ 51 n . Standard $7 / 9 . \mathrm{L} . \mathrm{P} .10 /$-. Post on any Tape $1 / 6$ extra
TV Tuhes. New regunned with slight glass fault 12 months guaran tee. All types 19 and 17 in.. $50 /$-. Carriage 10/-
Reclaimed TV 'Tubes with six months' guarantee. 17in. types AW43/88, AW43/80, $40 /$ - each. MW43/69, $30 /-14 \mathrm{in}$ types: 17/12in. types, $10 /-$ All tubes $10 /$-carriage

techinical TRAINING in radio television and electronics

Whether you are a newcomer to radio and elec－ tronics，or are engaged in the industry and wish to prepare for a recognized examination，ICS can further your technical knowledge and provide the specialized training so essential to success．ICS have helped thousands of ambitious men to move up into higher paid jobs－they can help you too！ Why not fill in the coupon below and find out how？

Many diploma and examination courses available， including expert coaching for：
－Institution of Electronics \＆Radio Engineers
－C．\＆G．Telecommunication Techns＇Certs．
－C．\＆G．Electronic Servicing
－R．T．E．B．Radio／T．V．Servicing Certificate
－Radio Amateurs＇Examination
－P．M．G．Certs in Radiotelegraphy
－General Certificate of Education，etc．
Examination Students coached until successful

NEM $\mathbf{N E L F}_{\text {SUUILD RAdio courses }}$

Learn as you build．You can learn both the theory and prac－ tice of valve and transistor circuits，and servicing work while building your own 5 －valve receiver，transistor portable， and high－grade test instruments，incl．professional－type valve volt meter－all under expert tuition．Transistor Portable available as separate course．

POST THIS COUPON TODAY

for full details of ICS courses in Radio，T．V．and Electronics．
INTERNATIONAL CORRESPONDENCE SCHOOLS｜

Solder with the NEWEIMPROVED PRIMAX OR PRIMAXA SPOTLIGHT SOLDERING GUN

Distributors：
S．KEMPNER LIMITED
384A Finchley Road－LONDON•N．W．2．
Tel ：01－794 2371—01．4356365

VALVES

SAME DAY SERVICE NEW！TESTED！GUARANTEED！

0 O 4	4／6	10 P 13 14／6	DH77 4／－	EF91 3／6		UCO84	$7 / 9$
1 ABGT	$51-$	12AT7 3／9	DH：${ }^{\text {D }}$ 12／6	EF97 $7 / 6$	PCL85 813	UCC85	6／6
1A7CTT	$7 / 6$	12AL＇ $4 / 9$	DK32 $7 / 9$	RFLES $6 / 8$	PCL86 8／6．	UCF80	$8 / 3$
1 H5GT	7／3	$12 \mathrm{AU7}$ 4／9	DK91 5／6	ド「×4 6／6	PENA4 $6 / 9$	UCH42	$9 / 9$
1N5GT	$7 / 9$	12AX7 $7 / 9$	DK92 9／8	EH90 6／6	PEN36C15／－	UCH81	6／6
1R5	$5 / 6$	12 KRGT 716	DK96 7\％－	EL33 8／9	PF＇L200 13／－	UCLS 2	$7 / 8$
184	419	$20 \mathrm{~F} 210 / 6$	DL33 6／8	EL34 9／8	Pla6 9／6	UCLA3	$9 / 3$
145	$3 / 9$	201181819	D135 5／－	EL41 9／6	PL81 7／8	UF41	10／6
1T4	219	$20 \mathrm{P} 314 / 9$	DL92 5／6	EL84 4／9	PL82 616	UF80	$7 /-$
3A5	$8 / 6$	$20 \mathrm{P4}$ 171－	DL94 5／9	ETA0 5／－	PLA3 $71-$	UF89	$6 / 8$
384	$5 / 6$	2514 3 ＇T11／6	UL9 \％8／8	E1，95 5／－	PL84 6／3	UL41	8／9
3 V 4	$5 / 9$	$30 \mathrm{Cl} 71-$	DY86 5／9	EM34 13／9	PL500 18／－	UL4．	201－
b 646	4／8	$30 \mathrm{Cl} 1511 / 6$	DY87 5／9	EMFO 5／9	PL504 13／6	UL84	6／6
5゙4	$81-$	$30 \mathrm{C17}$ 12／6	EABC＊0 $8 / 6$	EMM1 8／9	PLS20 15／－	UY41	$71-$
－Y3GT	510	30 Cl 18 91－	EAF42 8／6	EM84 6／3	$\begin{array}{lll}\text { PX25 } & 10 / 6\end{array}$	UY85	$5 / 9$
5Z413	$7 / 6$	$30 \mathrm{~F}^{5} 121-$	EB91 2／3	EM47 7／6	PY32 101－	VP4B	$10 / 6$
6／30L2	11／9	30 FL1 12／6	EBC33 7／6	EY51 71－	PY33 10／－	VP1321	21／－
$6 \mathrm{AL5}$	2／3	$30 \mathrm{FL} 1412 / 6$	EBC41 8i－	EY\％ $6 / 3$	PY80 5／3	277	3／6
GAM6	$3 / 6$	30 LI 8／－	EBfso 6／－	E $240 \quad 7 / 6$	$\begin{array}{ll}\text { PY81 } & 5 / 3\end{array}$	Transisto	tors
6AQ5	$4 / 9$	30 L 15 14／－	EBF89 6／3	ER4 716	$\begin{array}{ll}\text { PY82 } & 5 /-\end{array}$	AC107	3／6
6AT6	$4{ }^{4}-$	30 L 17 131－	EC90 2／8	EZ80 4／6	PY83 5／8	AC127	$21-$
6AUB	$5 / 6$	30 P 4 12／－	ECOXI $3 / 9$	EZy $14 / 9$	PY88 7／3	AD140	7／6
6BA6	4／6	30 P 12 11／－	ECCs2 4／8	K＇til 8／9	pY800 6／8	AF102	18／－
6BEf	$4 / 8$	$30 \mathrm{Pr9}$ 12／－	ECCR3 7／－	КT81 15／－	PY801 6／8	AF゙115	$31-$
6 BCan	151－	30PL1 12／6	ECC84 516	N7\％14／9	H 19 6／6	AFll 6	31.
6BJ6	6／8	30PL13 14／6	Ecc85 4／9	PCR6 $\quad 9 / 6$	W20 12／9	AF117	$3 / 3$
6 Fl 13	8／6	$30 \mathrm{PLI} 414 / 6$	ECC804 11／9	PCNR $\quad 016$	$1{ }^{1} 25311 / 6$	AF118	$31-$
6Fl4	$91-$	25 Lbit 81－	ECF＂s0 7／－	PU97 816	U26 11／6	AF124	$7 / 6$
$6 \mathrm{~F}^{*} 3$	$12 / 6$	35W4 4／6	ECP＇82 8／9	Pc900 9／－	$\begin{array}{ll}147 & 18 / 6\end{array}$	AF125	$3 / 6$
6K7\％	$2 / 6$	35744 T 5／－	ECF＇Nif $91-$	Prrest 8／－	U49 13／6	AF1：6	$71-$
6Kx（；	4／3	K5A2 $7 / 3$	FCH35 6／－	Prx	1：52 $4 / 6$	AF127	$3 / 6$
6if18	61－	6063 $12 / 8$	ECH42 101－	Prxisu $9 / 9$	$\begin{array}{ll}\mathrm{U} & 78 \\ \text { 3／6 }\end{array}$	0 C 22	$51-$
6106	$3 / 6$	A731 91－	ECHE1 5／9	PUF＊ $71-$	1191 11／－	$\mathrm{OCP2}^{\text {O }}$	$51-$
6Ybut	6／6		ECHR4 713	P1F＊3 8／－	L301 13／6	OC44	$2 / 3$
6×4	3／8	$\begin{array}{lll}\text { B729 } & 12 / 6\end{array}$	ECL4i）6／9	PCFwt $9 / 9$	U801 18／8	OC45	$2 / 3$
6X5GT	519	CCH35 10／－	ECL8＇ 619	PCFmot $11 / 6$	UABC80 $8 / 3$	OC71	$2 / 6$
7186	$10 / 8$	1bAC32 713	ECLA 813	PCFH01 $7 / 8$	CAF42 7／8	OC72	$2 / 6$
7137	$71-$	DAF91 3／9	EF＇39 3／9		UB41 $6 / 6$	OC75	$21-$
705	151－	DAF96 6／－	EF41 9／6	$1^{1} \mathrm{CF} \times 0581$－	UBC41 $7 / 8$	OC81	$2 / 3$
7 Cbs	$6 / 8$	DCO90 816	EF＇s0 $4 / 9$	PCF40t $11 / 6$	UBF80 6／－	OC81D	$2 / 3$
7H7	5／6	I）F゙信 $7 / 9$	EF＇R5 5／6	PCF゙ャ1＊12／6	UBF89 $6 / 8$	OC82	$2 / 3$
7 Y 4	6／8		EF86 6／3	PCLx 713	UBL2l $9 /-$	OC82D	2／6
10F1	15／－	DF96 8／－	EF89 5／3	PCLAS 97－	UC92 5／－1	OC170	2／6

READERS RADIO

85 TORQUAY GARDENS，REDBRIDGE，ILFORD， ESSEX．

Tel．01－550 7441
Postage sti 1 valve 9d．extra．On 2 valvew in more，postage 6d．per vaive extra．Any Parcel Insured against tamage in＇rransit 6 d ．extra．
piping from the local garage) and is mounted on a circular "tin" having a diameter of about $2 \frac{3}{1} \mathrm{in}$. (Four Square tobacco tin). About 2 ft . 2 in . of copper tube is required. This is gently bent by hand to form a circle having an internal diameter of 8 in . It is useful to draw an 8 in . circle on paper and keep fitting the loop to it. Excessive bending and unbending will cause the copper tube to harden and produce an irregular shape. When a good circle of the correct internal diameter has been obtained the ends should be cut with a small hacksaw to leave a $1 \frac{1}{2}$ in. gap between the ends of the loop. All burrs should be removed carefully. The tin box should now have one $\frac{3}{8}$ in. diameter hole cut in the centre of the bottom and two $5 / 16 \mathrm{in}$. diameter holes cut on opposite sides, near the top. It is not easy to drill large diameter holes in thin tin, so a small file is used to open up a small ($\frac{1}{8} \mathrm{in}$.) pilot hole. The ends of the copper tube are now passed through these holes to form the completed shape of the loop aerial. The ends of the tube inside the tin box should still be $1 \frac{1}{2} \mathrm{in}$. apart. The copper tube is now soldered to the tin. This may be done using a heavy soldering iron, by heating with a blow torch or simply by heating on a gas stove. The last method was in fact used quite successfully. The loop and tin box are placed on an odd piece of steel sheet over a gas stove burner. The loop is checked as being vertical and then the temperature raised slowly until solder will run when touched on the copper tube. The soldering of the tube into the tin box is carried out using ordinary cored soft solder, no extra flux was found to be necessary.

Wiring the Aerial

With the tube soldered to the tin box it is now possible to cut a piece out of the top of the loop so as to leave a $\frac{1}{4} \mathrm{in}$. gap. This is necessary, or the "shorted turn" of the tube would not allow any signal to be received. Again the ends of the tube must be carefully de-burred. The next stage is the winding of the aerial coil. This is done using thin plastic-covered wire. The type actually used was 7/0048in. tinned copper wire with pvc covering having an outside diameter of 0.031 in . (stranded pve wire). A length of about 14 feet is required.

Fig. 34a (upper): Polar diagram of voltage induced in a loop aerial. Fig. 34b (lower): Effect of coupling a short vertical aerial to the loop.
"earthy" and soldered to the tin. A small length of single screened cable is connected with the screening braid soldered to the tin and the inner joined to the other end of the aerial winding.
Before fitting to the receiver, the loop may be painted a suitable colour.

The completed loop aerial is fitted to the receiver using a $\frac{1}{4} \mathrm{in}$. spindle bush. This bush has an o.d. of $\frac{3}{8} \mathrm{in}$. and passes through the $\frac{3}{8} \mathrm{in}$. diameter hole in the bottom of the tin and in the top of the cabinet. See Fig. 37. To enable the direction of the aerial to be measured, a circular protractor (obtainable from an office stationery store) is drilled in the centre with a $\frac{3}{8} \mathrm{in}$. diameter hole and glued to the underside of the tin. (Evo-Stik is a suitable adhesive). The 90 degree and 270 degree marks should be in line with the loop. The top of the receiver cabinet is drilled as shown in Fig. 37. and a white circle of Fablon or Contact material equal in diameter The end of the wire is fed around the inside of the loop of tube, commencing at the bottom. When one turn is completed the end should be taped with Sellotape to the next turn. Make a neat job of the taping and this will prevent the end jamming as the remaining turns are wound on, by feeding in the wire. A total of six turns is required and these should fit in the tube without much difficulty. When the winding is completed one end is taken as

Fig. 35: Circuit details of the d.f. system including the receiver front-end.

Fig. 36: Constructional details of the loop aerial.
to the protractor is stuck to the top of the cabinet so that the protractor markings are easily readable. A cursor line is marked on this at right angles to the front of the cabinet. The spindle bush is held in place with two locknuts and the aerial should be free to rotate easily without feeling "sloppy". The screened cable from the aerial is connected to a B9A valveholder plug, the outer to pin 1 and the inner to pin 6. This plug is plugged into the aerial coil socket and connects the loop aerial as shown in Fig. 35. (The aerial coil as used in the Clubman III and IV is removed.) The sense aerial consists of a short rod of $14 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. tinned copper wire soldered in a 4 mm . banana plug and mounted in a 4 mm . socket as shown in Fig. 37. This socket is connected to the slide switch S4 and then to pin 6 of the B9A valveholder plug as shown in Fig. 35.

Operation

The signal is tuned-in in the normal way but with the a.v.c. switched off and the r.f. gain control adjusted as required. The signal is peaked up with the "PEAK AE" control. The sense switch S4 is put to the off position and the loop aerial rotated for minimum signal. Both minimum positions should be tried. If one is not the exact complement of the other the average should be taken. Switch in the "sense" aerial by putting S 4 to the "on" position

* components list

```
2ft. 2in. \frac{5}{16}\mathrm{ in o.d. copper tube}
1 Tobacco tin. 2\frac{3}{4}\textrm{in}\mathrm{ . diameter}
14ft. 7/.0048in. stranded "Miniature" pvc wire.
    Radiospares
    Spindle bush. \frac{1}{4}\textrm{in.}\frac{3}{8}\textrm{in}.\mathrm{ thread. Denco}
    Circular protractor. Office supplies
    B9A valveholder plug
    4mm.banana plug
    4mm. socket
    Slide switch (S4)
Fablon or Contact; single screened cable; Sellotape
and Evo-Stik; nuts, screws etc.
```


Fig. 37. Plan of cabinet top cover showing positioning of the loop aerial, "sense" aerial and slide switch S4.
and determine which is the true direction of the signal. The "sense" direction must initially be checked and the aerial marked as described previously.
The technique of operating in d.f. contests is, unfortunately beyond the scope of this article, but a lot of fun can be had and experience gained by checking the location in the Amateur Radio Call Book of the various amateur signals heard.

CLUBMAN (MARCH 1968)

In Fig. 18, the positions of S3 (b.f.o. switch) and S2 (a.v.c. switch) are incorrect. Fig. 22 shows these components in their correct position.

TO BE CONTINUED

PRACTICAL TELEVISION-ON SALE MAY 24th

ABC OF COLOUR TV

This new series will cover the terms that will have to be understood in dealing with colour from day to day. The series is not a list of definitions: instead each term is dealt with in a practical manner to show just what it means concerning colour transmission or reception, with emphasis placed on the practical techniques involved in each case.

NOVEL TV SYSTEMS

Is the scanned picture and 625-line standard the practical ultimate in television performance, or are there other possibilities? This two-part article describes some of the alternative approaches to optical analysis that have been suggested from time to time and illustrates how they can be realised.

USING A SIGNAL TRACER

The signal tracer is a simple piece of test equipment that has been neglected in TV servicing. There are many times when its use can speed and simplify test procedures. This article tells how to test with a signal tracer, including many helpful tips.

3 READ and

 UN D ER ST AN D CIRCUIT DIAGRAMS

2) BUILD ${ }_{\text {and }}$

 a modern and professsional CATHODE RAY OSCILLOSCOPE
 \section*{a new 4-way method of mastering
 \section*{a new 4-way method of mastering ELECTRONICS ELECTRONICS by doing - and - seeing} by doing - and - seeing}

 powered. Valves ECC85, EF89, 6BW7, ECC82, two diodes and ruetal rect. $8 \times 6 \times 5 \frac{1}{2} \mathrm{in}$. high. Full instruction book, circuit diagrama, ete. 2/6; free with chassis. With front panel and lirackets e7.19.6 tax paid and carr. paid. C'an be supplied built for $£ 8,17,6$.
2×4 WATT STEREO AMPLIFIER Printed circuit. Beparate power pack.
Metal rectifier. ECC83 and $2-$ LLR4. Metal rectifier. ECCAs and 2-ELRA. Negative feedback. Vol., base, treble
each channel. Mirting swith and on/off. 25.10.0 (7/6 P. \& P.).

8 WATT. PUSH-PULL OUTPUT AMPLIFIER, 200-250 Volts A.C. EZ80, ECCR3, 2 -E1.84, Bass, t reble, vol/on. Eif. 2 in. high (5in. high.

6 TRANSI8TOR "SUPER SIX ${ }^{6}$. M.W. and L. W. kit, $£ 4$ (5/-P. \& P.). Wooden cabinet $11 \times$ if $\times 3$ in. All parta inay be purchased separately.
3 ing. 10,000 line speaker, or $7 \times 4 i n$. 6,000 line

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS -
$200-250 \mathrm{v}$. A.C. Mains. EZ80 and $2 x$ ECL86. Vol., Tone, Balance controls. With o.p. Trans for 3 ohma. 9×3 in. (plus trans. 2in. extra) x 3 Thiree tone Three tone grey record player cabinet (iny well known manufacturer) taking above $17 \frac{1}{2} \times 15 \frac{1}{2} 7 \frac{1}{2}$ in. high. Takes Garrard 1000, 2000, 3000 autochangers. $\mathbf{~ 4 . 1 7 . 6}$ (plus $\overline{6} 16$ carr.).

Chassis $12!\times 5!\times 4!i n$. high:
Plastic front panei Plastic front panel "gold"
flnish- 12] x tin. 200.250 finish- 12$]$ x $4+111$ 200-250
A.C. Recond/Playback amp. A.C. Kecord/Playback amp.
switch: Off/On-T'one; Vnl/. switch: Off/On-Tone;
Mc.; Val./iram; Mic, lnput; tram. liput; Monitor: Speak12AX7; EM84; EL84; 6X4; Separate power pack. Compeparate power pack. Compack, e8.17.6. ($6 /-$ P. \& P.). Rexine covered cabinet (tain) $15!\times 17 \times 9$ in . high with sloping front for ainp.; comspeakers, and special adapting brackets fur Magnavox leck $85 /-$ (K - carr.) 3 speed speakern, and special adapting brackets
Magnavox 4 track tape deck $£ 16.3 .5$.

6 PUSH-BUTTON STEREOGRAM CHASSIS

M.W.; S.W.1; A.w.2; V.H.F.; Grain: Stereo (iram. Two separate channels for stereo-

gram with balance contrul. Aram with balance contro. speakers on Radio. Chassis | speakers on Ractio. Chassis |
| :--- |
| size: 15 x | silver and black $15 \times$ xin. 190. $550 \mathrm{M} ; \quad 18.51 \mathrm{M}$; 60.187 M ; VHF 86.100 Mc/a. Valves: FCUS5, ECHSI, ELPs9, y ECLME, EMB4 abl Rect. Price \&19.19.0, carr. paid or £6.13.0 leposit and 5 monthly

payments of $58 / 6$. Total H.P. payments of 58/6. Total H.P.
price ego.15.6. Cream moulded escutcheon included.

MARTIN IS HIGH-FIDELITY PREFERRED FOR RELIABILITY, QUALITY, ADD-ON-ABILITY AND ECONOMY

F.M. TUNER

MARTIN AUDIOKITS are available for Mono. and can be doubled up for stereo. or as complete stereo units. 3 ohm and 15 ohm systems are availab/e. There is a special pre-amp for low output pick-ups and escutcheon panels to stit the arrangement you choose. The tuner is styled to match.
Start by sending for leaflet at once

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTIN - it's simple to install, good to listen to, and looks completely professional.

AMPLIFIER SYSTEMS • TUNERS - RECORDERS

UNITS INCLUDE;

- 5-stage input selector
- Pre-amp/tone controls
- 10 watt amp. (3 ohms)
- 10 watt amp. (15 ohms)
- Mains power supply
- F.M. Tuner

Trade enquiries invited 154/5 HIGH STREET, BRENTFORD. MIDDLESEX. ISLeworth 1161/2

MARTIN ELECTRONICS

154 High Street, Brentford, Middlesex
Please send Recordakit/F.M. Tuner/Audiokit
Hi-Fi Leaflets. (Strike out items not wanted)

Name

Address

THE BROADCAST BANDS

 by CHRISTOPHER DANPURE1S we are nearly at the height of another maximum in the sunspot cycle, conditions will be best for DX on 25,21 and $17 \mathrm{Mc} / \mathrm{s}$ during daytime, and at night-15, 11 and $9 \mathrm{Mc} / \mathrm{s}$. During summertime, conditions are best for reception of stations within Europe on lower frequencies and these last right through most nights. So now on to this month's frequency predictions.

South Africa: From $0800-1400,25$ and $21 \mathrm{Mc} / \mathrm{s}$; 1400-1600, 25, 21 and $17 \mathrm{Mc} / \mathrm{s}$; 1600-1800, 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1800-2000,25,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$; $2000-2400,21,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 2400-0200$, $17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 0200-0400,11.9$ and $7 \mathrm{Mc} / \mathrm{s}$; $0400-0600,11,9$ and $7 \mathrm{Mc} / \mathrm{s}$ at first, then after 0500 use $21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0600-0800,21,17,15$ and up until $0700,11 \mathrm{Mc} / \mathrm{s}$.

West Africa: 0800-1800,25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; after 1700 add $11 \mathrm{Mc} / \mathrm{s} ; 1800-2000,25,21,17,15,11,9,7,6$, 5 and $4 \mathrm{Mc} / \mathrm{s}$; 2000-2200, as for $1800-2200$ except $25 \mathrm{Mc} / \mathrm{s} ; 2200-0200,21,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ;$ $0200-0600$, as for $2200-0200$ but add 4 and $3 \mathrm{Mc} / \mathrm{s}$; $0600-0800,25,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$.
East Africa: $0800-1600,25,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; $1600-1800$ as for $0800-1600$ except after 1700 add $11 \mathrm{Mc} / \mathrm{s} ; 1800-2200,21,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s}$; $2200-2400,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 2400-0200$, 17, 15, 11,9 and $7 \mathrm{Mc} / \mathrm{s} ; 0200-0400,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0400-0800,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$, up until 0600 also $11 \mathrm{Mc} / \mathrm{s}$.
South Asia: 0800-1400, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; 1400$1600,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1600-1800,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-2200,17,15,11,9,7,6,4$ and $3 \mathrm{Mc} / \mathrm{s}$; $2200-0200,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-0400,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0400-0800,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$.
South East Asia: 0600-1200, 21 and $17 \mathrm{Mc} / \mathrm{s}$; 1200$1400,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; $1400-1600,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1600-1800,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-$ $2000,21,17,15,11,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 2000-2200$ 17, 15, 11, 9, 7, 6, 5 and $4 \mathrm{Mc} / \mathrm{s} ; 2200-2400,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 2400-0200,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 0200-0400$, $15 \mathrm{Mc} / \mathrm{s}$ only, but after $0300 \mathrm{add} 17 \mathrm{Mc} / \mathrm{s} ; 0400-0600$, 21,17 and $15 \mathrm{Mc} / \mathrm{s}$.
North East Asia: 0400-1200, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-$ $1600.21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 1600-1900,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$; $1900-2200,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 2200-0400,15 \mathrm{Mc} / \mathrm{s}$ only.
Australia via Asia: $0400-1200,21 \mathrm{Mc} / \mathrm{s}$ only; $1200-$ 1600 , $17 \mathrm{Mc} / \mathrm{s}$ only, after 1300 add $15 \mathrm{Mc} / \mathrm{s} ; 1600-1800$, 15 and $11 \mathrm{Mc} / \mathrm{s}$ after 1700 add $9 \mathrm{Mc} / \mathrm{s}$; 1800-2200, 11, 9, 7 and $6 \mathrm{Mc} / \mathrm{s} ; 2200-2400,17,15$ and $1 \mathrm{Mc} / \mathrm{s} ; 2400-0100$, $15 \mathrm{Mc} / \mathrm{s}$ only; $0100-0400$, circuit closed for Broadcast Bands.
South America (North of Amazon): 1200-2000, 25 and $21 \mathrm{Mc} / \mathrm{s} ; 2000-2300,21,17 \mathrm{Mc} / \mathrm{s}$ after $2100 \mathrm{add} 15 \mathrm{Mc} / \mathrm{s}$; $2300-0100,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0100-0400.17$, 15. 11 and $9 \mathrm{Mc} / \mathrm{s}: 0400-0600,17$, 15 and $11 \mathrm{Mc} / \mathrm{s}$; $0600-$ 1200,17 and $15 \mathrm{Mc} / \mathrm{s}$.
Those were the frequency predictions for May as
supplied by Cable and Wireless Ltd., London. I have had various letters about queries on hearing stations on various bands which I gave as not open at the times they were heard. Firstly, these predictions do not apply 100% of the time, when conditions are extra high as to the daily sunspots, some bands will stay open longer. Days when conditions are below normal, bands will tend to close earlier. One or two stations in particular have confused listeners about these predictions. First station has been R. Peking, China. People think where the studios are so are the transmitters, but this is not always so. R. Peking has a dozen or so s.w. transmitter sites scattered all over China. For Europe, they beam from sites on the USSR border, to Japan from East China coast as well as for North America, and South East Asia from sites around Canton. Thousands of miles of studio cable links are used. Now Radio Australia, for its 0645-0745 transmission, is beamed to Europe at 128 deg . from Shepperton, Victoria via New Zealand, South Pacific, South America and Atlantic Ocean to Europe. But the afternoon transmission on $11,740 \mathrm{Mc} / \mathrm{s}$ from $1500-1730$ is beamed via Asia at 308deg. from Shepperton.
Now on to the DX-tips for May, deadline again is the 20th of this month.

AUSTRALASIA

Australia: In July, the Radio Australia transmitter site at Darwin, Northern Territory, will start operations. When the site is completed there will be $3 \times 250 \mathrm{~kW}$ s.w. transmitters and antennas to cover all of the continent of Asia. There have also been alterations to the Radio Australia schedule printed in the March issue. English to South Asia now from 1500-1730 on 11,740 and 9,540. A new Mandarin transmission to S.E. Asia now from 1430- 1500 on 11,790 and 9,540. The Vietnamese transmission now from 0515-06is on 21,740 and 17,820 . Thai transmission 1330-1430 on 11,790 and 9,540, English to N.E. Asia from 1100-1215 now on 15,390 and 11,810 . English to Mid-Pacific now from 1800-2100 on 11,840. English to North America now from 1115-1215 on 11,710 and 9,580 instead of 1215-1315 on 11,710. English to Africa now 0330-0500 on 17,820 and 15,320. French to Africa now 0500-0600 on 15,320 only.
New Zealand: Radio New Zealand now uses 11,780 and 9,755 for transmissions to the Pacific Isles from 1700-1945, and 0600-0800 on Sundays and 0600-0845 on weekdays for $9,755,11,780$ runs daily $0600-0845$ to Pacific Isles.

NORTH AMERICA

Canada: Radio Canada as of May 5th will transmit to Europe from 0555-0630 on 11,760 and 9,625, 0715-0800 on 11,765 and 9,625, to Australasia from 0825-0935 on 9,630 and 5,970. To Europe from 2001-2152 on 21,595, 17,820 and 15,320.

AREALLY good month for DX with a high rate of activity on all six amateur bands. It does my ageing cranium a power of good to think of all those happy little heads tightly clamped between the cans, hooking country after country. You lucky lot!

My recent eavesdrop on topband proved very fruitful. Hoards of G stations lurking on all modes, plus some nice topband DX. DL9KRA was heard as was ZC4RB and ZB2AY. The DL9 station acting as a sort of "Grand Net Master" in organising ZC4/G contacts. Also on the band but on c.w. were OLIAGS and OKIATP plus a few GM and GW's. With the news that the MP4's are now licensed for 160 it looks like an interesting summer. All the above were heard between 2400 and 0300 hrs . GMT.

VK5KO and ZL3RB are at it on this band, and there are quite a number of W stations loose too. Fred, G3SVK, hopes to do an expedition to the Channel Islands this year (listen for GC3SVK), and hopes to do all four islands.

On the other bands there's been some pretty good conditions too, with twenty really going strong closely followed on the outside by fifteen and ten.

H.F. LUCKY DIP

D. Higgins (Lanarkshire), KT340, 40ft. wire indoors, sends in a terrific log. Here's the best from the fifteen metre catch-CN8BV, CN8FV, CP5AR, CP6FT, CR6GS, CR6KL, CT2AP, EL2F, EP3AM, ET3USA, F9UC/FC, FP8CS. G3UHR/P/VO2, HCICP, HI8LAL, HI8TT, HK3AIR, HK5BDS, HK7FI, HL1KH. HR1KA, JA1GEA, JA2KZQ, JA3JGB, JA7EHU, JA8BFO, K1KCT, K2IXY, K3HTZ, K4SVQ, K5CKB/MM, K6AHV, K7PVE, K8ZTT/M, K9OZY, KøPSG, KAlXWJ, KG4DH, KG6ALY, KP4DQ, KR8EA, KV4AD, KZ5MV, LUIDAV, LU5DBS, LU8DKA, OA4AI, OA6AB, OX3BX, PA $\varnothing \mathrm{GKS} / \mathrm{W} 2, \mathrm{PJ} 2 \mathrm{CE}, \mathrm{PY} 2 \mathrm{SO}, \mathrm{SL} 3 Z V$, SVøWQ, TF2WKM, TI2MC, TJ1AL, TU2BQ, VE7BQF, VK2FA, VK3QX, VK5GM, VK6XX, VS9MB, WA5RAH/P/KG6, W6CHY, W7EOJ/MM, XE3RE, YNIJBL. YV1CS, ZC4CN, ZC4RB, ZD7KH, ZD8HAL, ZL3GJ, ZS6AR, $5 Z 4 K K$, 7P8AR, 7XøAH, 9G1BG.
F. McVerry (Lanarkshire), BC set plus RF24 unit as a front end, 40 ft . indoor end-fed, also had a go on fifteen metres s.s.b. Rewards include-CEIDF, CP5DG, CR61V, DU1AC, EA6BJ, EA8EX, EP3RB, HCIEG, ISIPPB, JAIAYT, KH6FEK/P5, KZ5AA, LUIDAB, LXIDB, MP4MBC, OA4ON, OX3BX, PJ2CR, TI8CAB, VO8OA, VP2AA, VP8JC, VQ9JW, VS9MB, W6FSJ, XEIAA, YNIJBL, YS1XEE, ZD3D, ZD7KH, ZS5CC, ZS6AR, 4X4VB, 5H3JL, 6W8PY, 6OIGB, 8P6BC, 9U5CR.
D. Grant (Kent), KT340, dipole at 20 ft . went s.s.b'ing on twenty for-CN8EK. CTIMZ, EA3NJ, EP2DW, HB9WW, KL7EBK, KR6KN, TF2WKS, UT5RP, VE3GS, VK9OM, VOIFB, VP2AA, W6TNS/TA, W1- $\varnothing, ~ Z B 2 B M, 3 V 8 B Z$.
D. Clark (Bucks), modified P.W. progressive s/het plus PR30, 60 ft . end-fed NW/SE, says that twenty has been open in the early evenings to most of Africa, while VK and ZL has been appearing around 2000hrs. His list for twenty s.s.b. includes-CT2AA,

G3WBL/5A. HKøBKW, HS1AZ, HZ1AB, VK3AAV, VK4TY, W6TNS/TA, XE2YP, XW8BS, YN1GLF (Nicaragua), XW8BS (Laos), ZD7KH, ZD9BE (Brian, on Tristan Da Cunha), ZL1LBO, 4S7PB (Ceylon), $5 \mathrm{H} 3 \mathrm{KJ}, 5 \mathrm{Z4KO}, 6 \mathrm{~W} 8 \mathrm{DY}, 6 \mathrm{Y} 5 \mathrm{AR}$, 7P8AR (Lesotho), 7Q7PBD, 8P6CC, 8RIG (Guyana), 9J2BC, 9K2BV, 9N1MM (Nepal), 9Q5PI, 9Y4DS.
A. Darragh (Yorks.), AR88D, 40 metre dipole, has been doing some homework on ten metres. If you don't listen on this band, look what you're missingCR6BF, CX2CO, EL6IV. KR6TAB, KV4AD, LU6DRB, OA4BI, OD5BZ, PJ2CQ, PZ1DF, UT5SH, VK2FU, VK5XV, VK6DI, VS9MB, VU2KX, YA5RG, YVISB, ZC4AK, ZEIPPG, ZS5LB, ZS9L, 4S7PB, 5N2AAF, 9H1BA, 9GIFV, 9J2BC, 9LIDW, 9M2BO, 9NIMM, 9Q5PT, 9Y4DS.

LOW CYCLES

D. Henbry (Sussex), HA500, 7 ft . vertical rod at 30ft. sends in an interesting log of happenings on 3.5 and $7.0 \mathrm{Mc} / \mathrm{s}$. On eighty s.s.b.-G3WBL/5A, K2DX, K3UZE, K4DHZ, OY4OV, VO1AL, VOIGL W1FZJ/KP4, W2GO, W2JKI, W3BGN. W3BMS, W4BVV, W6EWN/3, WA8VQT, WB2FON. ZD3F. On dreaded forty, David hooked CN8AW, K2GXI, W3BGN, W3KT, W3MFH, W3WJD, W4BVV, WB4DRZ, ZSIJA. David is working on the "Clubman" receiver and is hoping to make it a Mk 3. Gd luck OM.
N. Prince (G3VSI) aboard MV Oreton described his QTH as ". . . at sea". His digits are now able to massage the controls of an IMR54 receiver with a " . . . crystal filter and dozens of controls, fed by a twin inverted L, 73 ft . horizontal and 29 ft . vertical, 24.4 metres above sea level". He informs that up in the Arctic Circle, generally 160 and eighty are very noisy, but no ham stations, while twenty, fifteen and ten are very quiet. So if you're going portable this year, give the Arctic Circle a miss-settle for Margate instead!
C. Morris (Worcs), "homebrew receiver" plus Joystick indoors, will be moving to a QRN -free QTH soon. His log for topband c.w. from the old noisy location includes-DL5YZ, DL9KRA, EI9J, GW, GM, GI, GC3IEW, HB9TT, K2ANR, K3EKO, OK, PA $\varnothing \mathrm{GMU}$, VP2VL (British Virgin Islands).

NEWS

For the contest enthusiasts the following are down in my diary for the merry month of May. Incidentally, even if you are not a keen contest type, the contests are the best times to listen since you can always be sure of a great deal of activity. On May 4 th- 5 th, $432 / 1296 \mathrm{Mc} / \mathrm{s}$ contest, you need special gear for this one; 4th-5th, RSF c.w. contest. You should hear quite a bit of r.f. during this one-if you can read c.w.; 19th, 2 metre portable contest; 1 st and 2nd June, DARC contest. This is another c.w. one which is on all five bands $3.5-28 \mathrm{Mc} / \mathrm{s}$.

Mobile rallies include-May 12th, Thanet R.S. at Ramsgate; 12th, Northern A.R.M.S., Harewood Park, near Leeds; 26th, Scarborough A.R.S., at Bridlington. Listen on topband for the talk-in stations. Deadline for logs this month is, as usual, the 20th.

PP3 Eliminator. Play vour pocket radio irom the mains, save Es. Comnplete cowponent kit comprises gmoothing condenser and instructions. Ony 6/8 pius $1 /$ - post.

MINIATURE WAFER SWITCHES (f) 1 (6) pole, 4 way- 2 pole, 6 way- $1-$
pole, 12 way. All at $3 / 6$ each, $36 /-$
\qquad
WATERPROOF HEATING temperature control. 10/-post free
E.L FRACTIONAL H.P. MOTOR. 200/250v $50 / 60$ c.p.s. encloset continuous rating $1 / 40 \mathrm{~h} . \mathrm{p}$. Ex. equip., perfect order. 19/6 pias 4/6.
A.C. FAN. Powerfol mains motor with $6 \frac{1}{2}$ in. blade Ideal blow or extract. 17/6 pins $3 / 0$.
$1 \cdot 2 \mathrm{v}$ NICKEL CADMIUM CELLS. Dia. sin. by
din. thick (approx.). $8 / 6$ each. Charger for two din. thick (approx.). 3/6 each. Charger for two cells 12/6.
OIL THERMOSTAT. Teddington type T.B.B. with eapiltury tulue atud sensor adjustable by knob (not supplied) controls $\frac{1}{2}$ h.p. motor or up to 15 amp. resistive load. 9/6
5PUSH SWITCH. One push operates mains on/off switch the other four operate various on/off and change/overswitches. 2/6.
QUICK CUPPA Mini Immersion Heater, $3 \pi 0 w$. $200 / 240 \mathrm{v}$. Boils fult cup in
about two minutes. Use any socket or lamp holider. Have at bedside for tea, ba br's food, etc. 19/6, post and insurance

NO SOLDERING POCKET 3

Lots of fun to buiki and good results whes
fintahed. Complete kit with detailed instruetions and crystal earpiece. Batteries $1 / 2$ extra- $\mathbf{5 5}$ value

B7G Valve Holders with bottom screen-ptfe insulation flest for UF and VHF, 1/- each, 10/-doz.
Fractional H.P. Motor. 240 v .50 cps-open con-struction-ideal for ventilation fan blower heater, etc. $19 / 6$ plus $4 / 6 \mathrm{p}$. \& p .
Clock Motor, 330 v .50 e.p.s. syachronous-self starting. 6/6.
Pentode Output Transformar. Stanclars size, $40-1$, ex equipment but $0 \mathrm{~K} .4 / 3$ each, $48 /-d 0 z$ Port paid.
E.H.T. Condenser, $0.1 \mathrm{mfd} .5 \mathrm{KV}, 8 / 6$ each. Neon Mains Tester. 1/3 each. 12/- doz.
Power Pack Transformer. 12v. $\frac{1}{\frac{1}{2}}$ amp. 240 v MAINS TRANSFORMER. Upright mounting with primary tapped $200,220,240 \mathrm{v}$. H.T. secomlary is 250-0-250v, at 100 mA ., and it has two L.T secondaries of 6.3 v . 11 amp.-unnsed (removed
fromequipment.). $15 /-$ plus $3 / 6$ posi and insurance.

RADIO STETHOSCOPE Easiest way to fault findtraces signal from aerial to speaker-when signal siopss
you*ve found the fitult. Use it
 on Radio, TV, amplifier, anyplete kit comprises
two special transistors and all parts including probe tube and crrstal earpiece. 29/B twin stethostet instead of edrpiece $7 / 6$ extra-post and insurauce $2 / 9$

50 OHM 50 WATT WIRE WOUND POT-METER,
1 MEG MINIATURE. Pot-meter Morganite tandaril in. anindle 1 -- each, $9 /$ - per dozen 1 MEG MINIATURE Pot-meter Morganite preset screwiriver control, 9d. each, 8/- per dozent
PRE-SET 100K hy Welwy with intrical bakelite PRE-SET 100K hy Welwyn 5 ,
knob. $1 /$ - each. $9 /-$ per dozen
100 K POT-METER. Miniature type with double pole switch and slandard $\frac{1}{4} \mathrm{in}$. spindle, by Mor HAESTAT MSS Ent
BLANKETSTAT GLASS. Enclosed, mormally clowed circuit, will open should blanket overheat. THERMA
THERMAL RELAY. Can be used to delay the supply of $11 T$ while heaters warm up, or will ensbte 15 amp. loads to he controlled by miniature Price $7 / 6$ each
SIEMENS HIGH SPEED RELAY. Twin 1000 ohm coils. Platinum points changeover contacts-Ex TOGGLE SWITCH BARGAIN. 10 amp. 250 v . normal one hole fitting $2 / 9$ each or $30 /-$ per doz.

Electronically changes speed from approximately 10 revs. to maxi

CENTRIFUGAL FAN

Centrifugal blower or extractor by Torrington very low noise but large capacity air flow, designed for central heating and air concitioning, ideal also for fume extraction over cooker, duct type outlet, $200 / 250$ г. 50 c.p.s. motor. £3.19.6. Post and insurance 7/6.

FOOD MIXER

The famous Dutch made food mixer, 2 gpeed interchangeable teaters $220-240$ volt. Normally 7 gns. Our
price $59 / 6$ plus $6 / 6$ postage.

Full-Fi 12in THIS MONTH'S SNIP

Full-Fi 12in. loudspeaker. This is undoubtedly one o the finest houdspuakers that we have ever offered,
produced ly on of this country's most famons makers. It has a dienost metal frame and is strongly recom If has a dienchat metal frame and is strongly tecom-
mended for H . Fi load and Rhythm Guitar and pullic address. Flux Density 11,000 gauss-Total F'lix 44,000 Maxwells-l'ower Handling 15 watis r.m.s. Cone Moulded Gbre-Freq. response $30-10,000$ c.p.s. Input Impedance 15 ohms Mains resonance $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$ Chassis Diam. L2in.- 12 in. over mounting lugg -

 insurance.

GARRARD AUTO RECORD PLAYER Model 3000
This is one of the latest prollucts of the World's most experienced naker of the record reproducers. Its sirperior features include-automatic playing of np to 8 mixed size records-stopping and starting without rejecting-thanual playing-pick-up
pivots to give low stylus pressure-largic diameter turntable for max. stability. Adinutrnents include pick-up height-pick-up
 2tin. below. Fitted with the vers siperior ceranic atcreo cartridge type 9TA HC insurance $7 / 6$.

BARGA MICRO-SONIC

7 transiator Key chain kadio

 very pretty case sham ${ }^{3}$, ${ }^{1}$. - complete with soft leather ripped hag. Specification: Circuit: ${ }^{7}$transistor superieterodyne. Freguency range: $\overline{5} 30$ to $1600 \mathrm{Kc} / \mathrm{s}$ Hensitivity: $5 \mathrm{mv} / \mathrm{m}$. Intermediat irequency: $465 \mathrm{Kc} / \mathrm{s}$, or $455 \mathrm{Kc} / \mathrm{s}$ Power ontput: 40 mW . Antenna ferrite roil. loudspeaker: l'erma nent magne type.
In transit from the In transit from the East these sets sufferen shght corrosion as the bat
teries were left in them but when this corrosion is cleared away they
 new, work perfecty--olferen without guara

SUPERTONE G.C.V.

Saves you work-

Like itty predecessors this latest Companion has full fi performance-sueh as only a good wooden cabinet and binux speaker can give and due to its being partly buit you will have it going in an evcning. Note these
7 Transistors, superhet circuit

- Twansistors, superhef circuit
- Two tone Cabined, size $11 \times 8 \times 3 \mathrm{in}$.
- put-A.V.C. and ferd hack, etc.
- Primind circuit hoard all wired only
 Tuning Condenser
plus Pre-aligned $1 F$ stages complete with full instructions. Price only 24.9.6 plus 6/b post and insurance

SOLID STATE IGNITION

Big things are clamed of Electronic ignition systems and if you would like to try for yourself a circuit was described in "Practical Electronics" (Sepl, 19i63. This requires a silicon controlled rectifler, iour transistors and other components arailable as a kit. I'rice £6.15.0 post free.

See in the Dark INFRA-RED BINOCULARS

These infra-red hinoculars when fed from a high voltage source wili enable objecta to be seen in the lark, provided the objects are in the rays of an infra-red bean. Each eye tube contains a complete optical lens systens as well as the infra-red cell. These optical systems can be used as lenses for The binoculars iorm part, ctc. (delais supplied). Tabby equipinent). They are unnsed and believed to be in cood working order but sold without guarantee. Price £ 3.17 .6 , phas $10 /$ carr. and ins. Handbook $2 / 6$.

MAINS TRANSISTOR POWER PACK
Designed to operate transistor seta and amplifiers. Aljustable output 6 v ., 9 v ., 12 velts tor up to 500 mA (llass B working). Takes the place of PP6, PP', IPP9 and others. Kit comprises: mains transformer rectifier, smoothing and load resistor, condensers and instructions. Real snip at only $16 / 6$ plus $3 / 6$ postage.

FLOOD LAMP CONTROL

Our dim and full switch is inleal
for controlling photo flool lamps: it gives two larmps in series, two off. Similar contrij of other appl ances can be arrange.l where use in pair or where circuit can be split exactly in half. Techuically the
switch is known as a double-pole change over with on'. Our price $4 / 6$.

THERMOSTATS
Type "A" 15 amp for controlling room heaters, greenhouses, airing cupboard. Has spinille for pointer knobs. Quickly arljustable from $30-80^{\circ} \mathrm{F}$.
$\mathrm{g} / 6$ plus $1 /-$ post. Suitalle box for wall mounting $9 / 6$ plus $1 /-$ post. Suitabile box for wall mounting
$5 /-$ P. \& P. $1 /-$. Type "B' 15 amp. This is a 17 in . long rod type (紋) this from $50-550^{\circ}$ F. Internad screw alters the setting so this could be
adjustable over 30° to $1000^{\circ} \mathrm{F}$. Suitable heater or to marnace, ontrong oven immersion heater or to make flame-start or fre alarm. $8 / 6$ plus $2 / 6$ post and insurance Type "D". We call this the Fee-stat as it cuts in an out at cron of wheczing point, $2 / 3$ amps. Has nipes from treezing, if a length of our blanket wire (11i yils. 10/-) is wound round the pipes. 7/6. Type "E". This is standard refrigerator thermo stai. Spindle adjustanents cover normal refrigera tor teinperatire 7/8, plus $1 /$ post. of liguids- particularly those in flang the temp or tinks-tliermostat is held (half subnerged) bits rubber sucker or wire clip-ideal for fish tanksdevelopers and chemical batlis of all types. Adjustable over range 50° to $150^{\circ} \mathrm{F}$. Price $18 /-$,
plus $2 /$ post and insurance. plus $2 /$, post and insurance.

GANGED POTS

Standard type and size with good length of spindle made ly Morganite. List price is 10% each but if you act quickly you can
have them at $12 /$ - doz for $1 / 8$ eat if 10 and have them at $12 /$-doz (or $1 / 6$ each if less than
loz.). Following valves in stock all "lin"- 10 K $+10 \mathrm{~K}-100 \mathrm{~K}+100 \mathrm{~K}-500 \mathrm{~K}+500 \mathrm{~K}$, all new and numed. Post $2 / 9$ on 1st doz. then $1 /-$ ver doz if do $\%$ isr more post free.

When postage is not detinitely stated as an extra then orders over $£ 3$ are post free
Below 83 add 29 , Semi.conductors add $1 /$ post. Over \&l post free. S.A.E. Fith enquiries post. 0

ELECTRONICS (CROYDON) LIMITED

(Dept. P.W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY S.A.E. with enquiries please

New type low drain converter unit The main feature of this unft is its very low battery drain, not to be confused with dynamotors or rotary converters. radios, fluorescent lighting, and A.C. only equipment. Complete and brand new with full connecting leads and battery clips Price 84.10 .0 , carriage 10 /

A Two-way Intercom fet, Ideal for all 2-way communication, indoor/outdoor use. Homefoffice use They will work up to great distances. No G.i'. O. licence required. used by Tank Commanders. The complete set ready to used, inctuding batterles' $\mathbf{~} 2,10.0$. Carrlage $10 / \cdot$. Bargain offer to Pracical Wireless readers: Two complete sets 25, post free. Limited stocke

MONSTER BARGAIN PARCEL

Comprises 10 sesorted electronic units of remarkable and parts Money lack if not delighted. 19/B, carr. $5 / 6$.

Brand new fully transistoriged Communication Recelver. Bpeciftcations: 4 complete ranges $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, covering all amateur bands, shipping and trawler bands, and lroadesut bands. A highly efficient double tuned superhet, comprising R/F gerial thaning reception. Ideal for fixed or mobile reception. Operates from Standard g volt battery, provided that fits internally. Gives 3 watto audio output. With speaker and headphone output. Hammer finished robust ateel case of pleasing modern design with all controls on well set-out front panel. Size spprox. $97 \times 6 \mathrm{in}$. British manufacture. Due to huge purchase we can offer these excellent recelvers at less than half their normal price. Complete with handbook $\mathrm{E}_{16} 10.0$ carr. and ins. 1 FR FREE First orderg received up to p.p. 3.6. Fer publication date of thls advertisement will recelve free a wonderful battery eliminator enabling you to rin this receiver and most transistor ralios direct from the mains.

Aerial Tuner units for Tx/Rx use. Will load almost anything. Calibrated control dial. Housed in compact steel case. Ideal for all radio amateurs and S.W.L.s, 25/-, p. and p. 7/6.

STOP PRESS SCOOP PURCHASE OF COMPONENTS SEMICONDUCTORS AND KITS

OC45 Transistors, First Grade, 2 - each, post free. General Purpose Germanium Diodes, 7d. each, ${ }^{3}$ for $2 / 6$, post free. 12 amp. Miniature Silicon Rectifiers, mains voltage, $7 / 6$ each, carriage $1 /$.. Moving Coil Mike Inserts, $3 / 6$ each, p.p $1 /-$; four for $10 /$ post free. Heavy Duty 12 -volt Rotary Relays. One pair D.P.D.T. contacts. Many low current contacts. Ideal for acrial changeover switches, car electrical systems, Price 7/6 each; four for 25/-, post free. 10 Henry 60 mA Miniature Srnoothing Chokes, $2 / 6$ each, p.p. 1/-; four for $9 / 6$ post free. 3 watt Transistorised Miniature Amplifiers, operate from 9 volt battery, 59/6, p.p 3/6. Matchbox Xital Set Kit, 10/-, post free. Short Wave Listeners Station Guide 4/6, p.p. 6d. 1mFd Block capacitors, ideal for crossover units, 2/6, p.p. 6d. Trawler Band Receiver kit, easy to build, remarkable results, 59/6, p.p. 5/-; fully transistorised, full instructions Heavy Duty Battery Clips $1 / 6$ per pair, p.p. 9 d 10 amp 24 volt Glass Fuses, 5d, each, 10 for $2 / 6$ post free. Moving Coil Headphones and Mike, in maker's boxes, 17/6, p.p 2/6. Breast Microphones 15/p.p. $2 / 6$, two for $25 / \rightarrow$, p.p. 2/6. Toggle Switches $2 /-$ each, post free. Heavy Duty D.P.D.T. switches, Centre off, 10 amp rating, $2 / 6$ each, p.p. 6 d .
Miniature Moving Coil Speakers $1 \frac{2^{\prime \prime}}{}$ dia, $4 / 6$ each, p.p. 1/6. Two for $8 /$

WATCH THIS SPACE NEXT MONTH

AMATEUR RADIO CIRCUITS BOOK
2nd edition, Compiled by G, R Jessop G6JP
Whenever you try to find a circuit for part of a radio recelver, transmitter or test equlpment it is likety that you will be faced with a dispiriting pile of magarines to wade through. So we have pubilshed a book with the single aim of providing a convenient single source of hundreds of circuits likely to be needed by the beginner and ambitious experimenter alike. The second edition has grown to 120 pages, with an average of two clrcuits on each, and is collated in a special plastic blnding which allows the book to lie perfectly flat at any selected page.

ils. 6d. inc. postage.

SERVICE VALVE AND SEMICONDUCTOR EQUIVALENTS

(RSGB)
More and more transistors and diodes are appearing on the surplus market bearing only Service indentification, but without knowledge of the device characterlstics they are virtually useless. We have endeavoured to take this in hand by expanding our established booklet on valve equivalents to include semiconductors likely to be found and used by amateurs.
5s. 6d. inc. postage
WORLD AT THEIR FINGERTIPS
(RSGB)
By J. Clarricoats, OBE, G6CL
This is the first and only complete story of the progress of Amateur Radio in this country. It begins by acknowledglng the early experlments by Michael Faraday, and draws Into an entertaining account of notable events and achievements through the two wars. Two styles have been published: a hardbound Ilbrary version and a paperback, both containing 308 pages.
145. (paperback) inc. postage

47s (hardbound) inc. Dostage
Further details of the Societv's range of publications, and information on membership, may be obtained on appifation to:
RADIO SOCIETY of GREAT BRITAIN, Dept. PW. 28 LITTLE RUSSELL STREET, LONDON W.C. 1

SHORT WAVE ONE VALVE RECEIVER KIT $39 / 6$ + 2/6 P.P. PEAC ANALOGUE COMPUTER KIT IN STOCK CLUBMAN Mk. I KIT COMPLETE E6.17.6 + 5/- P.P. Without metal work
£4.12.6 + 2/6 P.P.
CLUBMAN Mk. II KIT COMPLETE
£10.17.6 +5/- P.P.
Without metal work
f8.12.6 + 4/6 P.P.
EXPLORER KIT COMPLETE
£4. $2.6+2 / 6$ P.P.
STABILIZED POWER SUPPLY KIT 0-20V.
500 mA COMPLETE
£4.17.6 + 5/- P.P.
RHODIAN TAPE RECORDER KIT
PORTABLE TEST UNIT KIT
AUDIO OSCILLATOR FREQUENCY METER KIT IN STOCK, S.A.E. FOR DETAILS
S.A.E.FOR TRANSISTORS, SEMI-CONDUCTORS, FULLL LIST, 700 TYPES 3 SILICON RECTIFIERS, BY100 TYPE 10/-
10 MIXED MARKED TESTED TRANSISTORS 10/-
40 UNMARKED UNTESTED TRANSISTORS NEW $10 /$
1 LIGHT SENSITIVE CELL ORP12 8/6
25 MIXED UNMARKED TESTED TRANSISTORS 10/-
2 TRANSISTOR COMP. PAIR AD161/162 16/-
P.P.1/-

DUR COMPONENTS CATALDGUE 5/- Post Paid with 10/worth of discount vouchers.

OLRUS ELECTRONICS LTD. 748 HIGH ROAD, LEYTONSTONE (NEXT TO GREEN MAN)

LONDON, E. 11.
Tel. 01-989 2751
CALLERS WELCOME-CLOSED ALL DAY friday

THE
 'TEN-FIFTY' TRANSMITTER

A.S.CARPENTER G3TYJ

SOME interested visitors commented recently that they thought it must be an expensive business becoming a licensed radio amateur, and it may be true that equipment produced commercially for use in amateur stations does tend to be "pricey". A great deal of enjoyment can be found, however, without expensive and sophisticated commercially made apparatus, much of which is designed nowadays with single sideband (SSB) as the main operating mode in mind. Despite criticism, CW remains a favourite operating mode by a large number of radio amateurs, for it is certainly effective and allows use of comparatively simple equipment.

Although an input of up to 150 W is permitted on the amateur h.f. bands, excellent DX results are obtainable with considerably less power. Into this category comes the "Ten-Fifty" Transmitter which is a four-band rig embracing the $7 \cdot 0,14 \cdot 0,21 \cdot 0$ and $28.0 \mathrm{Mc} / \mathrm{s}$ amateur bands. To build the "Ten-Fifty" some 30 hours of construction time are needed at a total components cost of not more than $£ 10$, even when all new items are purchased.

The transmitter is optionally crystal or v.f.o. controlled. When using crystal control-and this is the method initially recommended-a single type FT-243 item in the range $7010-7050 \mathrm{kc} / \mathrm{s}$ enables all four

Fig. 1: Complete circuit of the transmitter.
bands to be worked via harmonic action of the oscillator Alternatively, a v.f.o. covering $7000-7050 \mathrm{kc} / \mathrm{s}$ may be used, and a suitable powering socket is provided together with an input socket on the rear chassis apron of the transmitter. A suitable v.f.o. will be described in a later article.

Circuitry

The complete and fairly conventional circuit diagram is given in Fig. 1. A 6CH6 valve, VI, operates as a crystal oscillator when switch S 2 is set as shown due to grids No. 1 and 2 forming with the cathode the elements of a triode. The crystal frequency plus multiples thereof appear at the anode of the valve and are extracted via capacitor C 8 . The required harmonic is selectable due to S1A which enables the fundamental frequency f to be taken or frequencies of 2 f , 3 f and 4 f via coils L1-L4. These easily-wound coils are required to tune over a very limited range only; coarse tuning is provided by dust iron cores.
Peaking is accomplished by means of panel-fitted VC1. When VCI is peaked some $4-5 \mathrm{~mA}$ drive may be secured but this is more than is required, 2.4 mA being adequate. Fixed capacitor C5 prevents VC1 from becoming "hot" to d.c. and these two items are effectively across their appropriate coils due to C4. Winding details for coils L1-L5 are given in Table I. When S2A is moved to its alternative position and a v.f.o. connected to socket SK1, V1 operates as a conventional r.f. amplifier.

Power Amplifier

The p.a. stage utilises the popular 6146 valve in conjunction with a familiar pi-tank output circuit. Anti-parasitic stoppers are included in both grid and plate circuits and a modern miniature moving coil meter may be switched, via S4, to indicate either grid or cathode current. A $0-5 \mathrm{~mA}$ meter movement, scaled $0-5$. is utilised for grid current indication, the readings being mentally multiplied by a factor of ten to show $0-50 \mathrm{~W}$, full scale corresponding to a current of 100 mA when 500 V d.c. is applied. To enable 100 mA to be taken on the 5 m A f.s.d. meter resistor Rs is fitted its value being approximately $0 \cdot 4 \Omega$. This item consists of a few turns of fine copper wire

TABLE I

$\begin{array}{\|l\|} \hline \text { Coil } \\ \text { No. } \end{array}$	Wire gauge	Turns	Former	Spacing	Core	Band metres
L1	30s.w.g. enamelled	8	0.25 in .	Close	Iron	10
L2	30s.w.g.	13	$0 \cdot 25 \mathrm{in}$.	Close	Iron	15
L3	30s.w.g.	20	$0 \cdot 25 \mathrm{in}$.	Close	Iron	20
L4	30s.w.g. ..	23	$0 \cdot 25 \mathrm{in}$.	Close	Iron	40
L5	18s.w.g. tinned ("tapped" at 4, 6, 1 from "hot" end	21 turns	1:25in.	Wire dia.	Air	Tank

Fig. 2 (above): Essential panel drilling details and size.
Fig. 3 (below): Above-chassis layout and dimensions. Chassis plate and flanges laid flat for clarity.

wound on to a 100Ω resistor.
In the tank circuit, sections of coil L5 are switched simultaneously with the oscillator anode coils via SIB, capacitors VC2 and VC3 being the usual tuning and loading items respectively. Cathode keying is used satisfactorily with chokes PC1 and PC2 as the anti-parasitic items. As is common an external power supply unit is used with the transmitter and for full output, requirements are 500 V d.c. @ 120 mA plus 6.3 V a.c. 3.0 A .

Function Switching

A simple 3-position yaxley-type switch, S 3 , selects either "Net", "Receive" or "Transmit" as required. When the switch is in position 1 the "Ten-Fifty" is "hot" and the aerial connected. Moving S3 to position 2 "kills" the transmitter and connects the aerial to

Also at: 15 WHITECHAPEL, LIVERPOOL (Near Lord Street)

FREE GIFT OFFER

OF A BRAND NEW WORLD FAMOUS E.M.I. FISK SOLARISCOPE VALUE £2.2.0 WITH EVERY ORDER VALUE £5 AND OVER. THIS UNIQUEINSTRUMENT WHICH IS A BOON TO SHORT WAVE LISTENERS CLEARLY SHOWS THE AREAS OF DAYLIGHT AND DARKNESS ALL OVER THE EARTH AT ANY GIVEN HOUR.
MINI-MOTORS $3 Y$ to 4 "5V operation. Ifleal for mini-racing cars, etc. "Large" ($1 / 5 \times$ GENUINE DIAMOND STYLUS at $7 / 11$ plus 6 d . P. I^{2}. Available as replacements for the following popular types only at present: BSR TC8LP-BSR TC8 STEREOBSR TCS LP/BTEREO-COLLARO STUDIO "O" LP/RONETTE-GARRARD GC8 LP-ACOS GP65/67 LP-RONETTE BF40/LP-GARRARD GCO LP. All these types now available in Bapphire. Value at only $3 / 11$ each.
BPEAKERS, l2in. round high quality Britiah fitted tweeter cone, 6 watts, in 3 a or $15 \Omega .85 /-$ P.P. 3/6. ROUND 12/n. R. \& A. 3 $\Omega, 25 / 6$, P.P. 8/6. Many other speakers available. 8 in .3 or $15 \Omega, 29 / 6$. 10 in .3 or $15 \Omega, 35 / 6$. 10 watt bass speaker by E.M.I. $13 \operatorname{in} . x \sin , 15 \Omega, 39 / 11$. With double tweeter. very sensitive, 79/11. P. \& P. 3/6. TWEETER. 2 inin. Black plastic cone, square Frame, E.M.I. $3 \Omega, 12 / 6$, plus $1 / 6$ P. \& P. MICROPHONES. LAPEL/EAND MIKE- $1 \frac{1}{2}$ in. dia. Lapel Clip. jdeal for tape recording. Very eensitive, 7/6. P. \& P', 1/-. Similar but stick type AM4, 14/6. CRYSTAL HAND MIKE. Robust and sengitive. Cream plastic case. Just the thing for tape recorders, 8/6. P. \& P. 1/6. Similar with buitt-in atand, $10 / 6$.
STUDIO CRYSTAL MIKE. Professional, Omni-directional, providing features usualiy only available at many times the price. Sensitivity -50 dB . Response- $50-12,000$ c.p.s. Black Plastic with punched chromium case, swivels, stand-holder and shiclded cable. Only 48/-, 1’. \& P. 2/-. The stand below fits this mike (as well as many others), ACOS MIC 40 -World famous 1)esk Mike. $18 / 6$ plus P. \& P. $1 / 3$.
ACOS MIC 45 -_Splendid Curved Hand Grip Crystal Mike, $18 / 3$
ACos MIC 45--Splendid Curved Hand Grip Crystal Mike, $18 / 3$ plus P. \& P. $1 / 6$. ACOS MIC 60-"Stick" Type Cryatal Mike, $21 / 3$ plus P. \& P. I/6.
ACOS 3日-1-High Quality Stick Mike. High Impedance, 33/- plus P. \& P. $1 / 6$.

TELESCOPIC FLOOR STAND. HEAVY BASE. Standard thread, ext, to 4 ft . 7 in . $9 / 6$, Carriage and Packing 4/6. Desk stand for stick mikes, 7/6.
TELEPHONE PICK-UP COIL. For recording or amplifying both gides of telephone conversation. Suction cup fitting to telephone, with lead. 7/6. P. \& P. 1/SIREN MODULE8. Encapsulated solld state circuit. Only requires 3Ω speaker, switch and battery (9 v .) to complete. Gives screaming siren note. Special half price offer Listep INTER-COMMS-DE-LUXE MODEL 2-WAY. Highly efficient, gafe. Ideal BABY ALARM. Transistorised. Remote station can call master with latter switched off. We can also offer a limited supply of model made by philips to retail at 6 . We can asso offer a limited supply of a model made by Philips to retail at 6 gns.battery $3 / 6$ extra. This is a high quality product and fully guaranteed.
AMPLIFIER. Compact for use in mains portable grams $6 \frac{1}{9} \times 2 \downarrow \times 5 \ddagger i n$., vol, and tone controls attached by fy leads, over 2 watto output, 59/6. P. \& P. 4/6. 4 TRANSISTOR 8 W AMPLIFIER. Size $2+x 29 \times 1 \frac{1}{2}$ n., 3,8 or 15Ω output, 9 volt battery operated. Highly sensitive. Price (less battery) 52/6. P. \& P. 1/6.

GARRARD RECORD PLAYER DECKS. Model 2000, Mono cartridge .. \&8 26 Model 8000. Stereo certridge	f10	
10	0	AT60 Mk. II

A70 Mk. II Laboratory Series 117 17 0
SP25 Mk. II Heavy Turntable f12

Cartriages for these players Mono
Stereo
Garrard Plinths
Garrard Pinths $\begin{array}{lll}51 & 10 & 0 \\ 53 & 10 & \end{array}$ $\begin{array}{lll}53 & 16 & 0 \\ \text { 83 } & 19 & 11\end{array}$

CAR RADIOS. Pushbutton, all trangistor, two wave, fits-most cars, absolutely complete. Positive or negative earth. Preset or manual tuning. Free Aerial. 12 \ddagger gns Also available manually operated, otherwise as above, 9 gns.

MAGNAVOX " 363 " TAPE DECKS. LATEST MODELS. WORLD FAMOU8. $13+\times 11 \times 51 \mathrm{in}$. below board. For $200 / 250 \mathrm{~V}$ s0 cycles A.C. 3 speed, digit counter, piano key controls, $i n$. rechs. wivery modern feature. speeds ik, 3t and 7, i.p.s.

TAPE RECORDER. Magnificent portable solid atate, battery tape recorder The beat yet. speeds, capstan drive, as good for music as speech 3 in reels absolutely complete with remote control, mike, tape, batteries, etc. $\$ 10.19 .6$. P. \& P. $5 /-$. PICK-UP CARTRIDGE REPLACEMENTS (Standard Fitting for all Record Players) ACOS GP/67-2 MONO 15/-. ACOS GP/73-2 STEREO 30/- ACOS GP/91-1 MONO. DE-LUXE 21/-. SONOTONE 8TA EERAMIC ETEREO 37/6. P, \& P. 9d.
Finest Quality British made MYLAR Recording Tape. Fully Guaranteed. In Cartong. 3in. 150ft. Message 3/11 53in. 1200ft. Long Play $15 / 6$ 3in. 240 ft . Mengage 5/6 7in. 1800ft. Long Play.. 5 in . 600 ft . Standard Play...... $10 / 8 \quad 5 \mathrm{in}$. 1200 ft . Double Play
 5 in . 900 ft . Long Play 13/3 Leader tape various colours P. \& P. 1/- per reel, Four reels and over post pald. Tape splicer $17 / 6$ plu $\quad 31-$ POCKET MULTI-TEST METER. 1000Ω per volt. Volts $0 / 10 / 50 / 250 / 500 / 1000$ A.C and D.C. Current: $0-1-100-500 \mathrm{~mA}$. Resistance: $0-100 \mathrm{k} \Omega$. Complete with test prods, instructions. 37/6. P. \& P. 1/6. De-I uxe model, large scale, 55/11 plus P. P. $1 / 6$. MULTITESTER-Pocket size: with built in meter proteetion. Wide angle, jewelled meter movement. $20,000 \Omega$ per volt D.C. $10,000 \Omega$ per volt A.C. 19 ranges- $0,5,25$ $50,250,500,2500$ volts D.C. $0,10,50,100,500,1000$ volts A.C. $0-50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~mA}-$ Mirror Ncale. Complete in cloth-lined leather case with carry strap and test leads Exceptional value at \&4.11.8 (P. \& P. 3/6).
TRANSISTORS: Bome popular types from our range: OC44 and OC45 $3 / 6$ each. TRANSISTORS: Bome popular types from our range: OC44 and OC45 3/6 each OC26 7/6. GET8 5/9. General purpose (Approx. OC71) 1/-each.
NEW HIGH FREQUENCY TRANSISTORS. Sinclair STI40 4/-; ET141 6/-, both capable of operating up to $700 \mathrm{Mc} / \mathrm{s}$. ALSO MAT100 7/9. MAT101 8/6. MAT120 $7 / 9$. MAT121 8/6. ADT140 15/-
All Transistors postage 6d. up to 3. Over 12 sent P. \& P. paid.
New de livery of BAKER SPEAKER8 at special low price. Heayy duty 25 watt bas speaker "Group 25", 86.6 .0 . High Fidelity 15 watt Apeaker $45-13,000 \mathrm{cps}$ "Stalwart," 86.6.0.

TERMS. Cash with order. No G.O.D. Orders total 45 and over aent carriage paid (excepting record player decks where carriage is shown). Guaranteed money refunded if goods returned perfect within 7 daye of despatch.

Want to get going in a careerasa technician? Join the Army

2 years from now you could be earning over £15 a week, all found, as a qualified technician. Qualified in a career that'll set you up for life.

If you're between 17 and 25 you can join the Army as a trainee technician and get started on a 15month course in aircraft, electronics or instruments. About eight months after successfully completing the course, you'll get promotion to Corporal. And from there on it's up to you. The sky's the limit.

The equipment you'll be working with-whether it is radio transmitters, transceivers, closed-circuit T.V., gunfire control equipment or helicoptersis the most advanced of its kind anywhere. And you'll be training with it from the start.
The pay As a trainee technician you can get as much as $£ 9$ a week (clear) from the age of $17 \frac{1}{2}-$ food arid accommodation free. After about 15 months this rises to nearly $£ 14$ on passing a trade test and, after about 2 years and promotion to Corporal, to over $£ 15$. After that, there's every chance of more promotion and still more pay.

And don't forget that in the Army, besides moving fast in a worthwhile career, you've every opportunity for travel, action, sport and excitement, too!

SEND OFF THE COUPON FOR ALL THE FACTS

JOHN'S RADIO

LARGE QUANTITY OF SARAE V.E.F. TRANS RECEIVERS
AVAILABLE FOR IMMEDIATE EXPORT
General Information. This aet is normally carried in the life jacket of Airmen. It is a complete miniature lightweight radio Trans/Receiver, Which is used to give a of finding themselves in the sea. It comprises a Trans-mitter-Receiver, a speech unft, a coding unit and a power supply either Battery or Transistor. These three items are permanently interconnected and all units are completely sealed and water tight uaing a combined apesker/mike. Press to talk or listen buttons, fold up aerial, a total of Chree valves are used, power requred 6.3 volts LT Transmitter output pulse power. Beacon 15 watts, Talk Tradmitter output pulse power. Beacon 15 watts, Talk condition singly at $45 /$-, post $5 /$. with circult. New batteries if available 7/6 each.

B44MKIII TRANSRECEIVERS

We have a few of these V.H.F. 12 valve transreceivers operating on 3 switched channels between $60 \mathrm{Mc} / \mathrm{s}-$ $95 \mathrm{Mc} / \mathrm{s}$ complete with all 6 erystals, headiphones, mike, mobile aerial and djpole aerial, all connectors plus alloy tripod for mounting the set on. Power input 12V D.C. All air tested $0 . \mathrm{K}$. Supplied in good grade 2 condition at £10.0.0. each, carr. 30/-. Also available in matched pairs 225 per pair, carr, $30 /$ - tested

TRANS/RECEIVER TWO TWO
This is one of the latest releases by the govt. of an extremely recent R / T get coveriag $2-8 \mathrm{Mc} / \mathrm{A}$ in two switched which can be used for morse CW or R/T. Also has netting trimmer, BFO, RF and AF controls, Bwitched meter for checking all parts of set, kize 17 x $8 \times 12 i n$. Power required LT 1:V D.C., HT 325 V D.C. Supplied brand new and bored with headphones and mike aloo two spare valves and circuit of set. Few only at 25.10 .0 ., carr. $30 /-$ New plug in power supply made by us for either 12 V D.C.
input $£ 3.10 .0$ or $200 / 250 \mathrm{~V}$ A.C. $\mathbf{\$ 3 . 1 7 . 6}$.

FAMOUS ARMY SHORT-WAVE TRANSRECEIVER MK.III
This set ia made uf of 3 separate units: (1) a two valve amplifier using a 6 V 6 output valve; (2) (some only, not built in the very latest models) a V.H.F. transreceiver covering $229-241$ Mc/s using 4 valves: (3) the mainshort.
wave transmitter/receivercovering in two witched bands, just below' $2 \mathrm{Mc} / \mathrm{s}-41 \mathrm{Mc} / \mathrm{s}$, and $4 \frac{\mathrm{Mc}}{\mathrm{L}} \mathrm{s}-8 \mathrm{Mc} / \mathrm{s}$ (approx. $160-37 \cdot 6$ metres) using 9 valves. For R.T., O.W. and M.C.W. The receiver is superhetrodyne having il R.F.
stage, frequency changer, two I.F. (465 Kc/a) signal detector, A.V.C. and output atage. A B.F.O. included for C.W, or single side band receptlon. T.X. output valve 807 , other valves octal bases. Manv extras, e.g. nettims
switeh, quick fliek dial settings, squelch etc. Power requirements LT 12 volts, HT receiver 275 volts D.C quirements LT 12 volts, HT receiver ${ }^{\text {HTT }}$ transmitter 500 volts D.C., size approx. $17 \times 7 \frac{1}{2} \times$ HT transmitter 500 volts in.c., \&ize approx. Cuery set supplied in new or as new condition in carton with book including circuits, only $£ 4.10 .0$, or Grade 2 slightly used $50 /$. Graie 3. used mut complete, 35/-. Carr. ALL I5/. WE MAKE A. MAINS 200/250 VOLT POWER UNIT in louvred metal case to plug direct into set power socket to run (1) receiver, $70 /-$ post 5/-. (2) TX and RX, $£ 6.10 .0$, post 7/6. (3) 12 volt D.C. P.U. (original). FAR CONDITION, 40/-, Carr. б/: A charge of 10/- to unpack and teat the receiver of these new and boxed.

V.H.F. TRANSRECEIVER MK. I/I

This is a modern self contained tunable V.H.F. low powered frequency modulated transrecelver for R.T. communication up to $8-10$ miles. Made for the Ministry of supply at an extremely high cost by well known British makers. using 16 ruidget B.G. 7 valves, receiver incorporating R.F. ampllfier. Double superhet and A.F.C. Blow motion tuning with the dial calibrated in 41 chan nels each $300 \mathrm{Kc} / \mathrm{s}$ apart. The frequency covered is $39 \mathrm{Mc} / \mathrm{s}-48 \mathrm{Mc} / \mathrm{s}$. Aiso has buit-in Crystal calibrator dial. fower required LT $4 t$ volts, HT 150 volts, tapped at 90 volts for receiver. Every act supplied complete with valves and crystals, New in carton, complete with adjustable whip aerial, and cireult. Price 24.10 .0 ., carriage $10 /-$

the associated receiver whilst position 3 permits V1 to operate only for netting purposes. The v.f.o. power supply socket is "hot" h.t.wise in both "Net" and "Transmit" positions of the function switch.

Since it is undesirable to carry large d.c. potentials on a rotary swich the pat plate circuit is left complete at all times the 6146 valve screen circuit being controlled by S3B; here the d.c. operating potential is not allowed to be more than 150 V . It may be noted that in selecting the central switch position for "Receive" (or "Stand-by") a single movement only is required, to right or left, for "Net"and "Transmit"respectively.

Constructional

Basically, two pieces of 16 s.w.g. aluminium are required on which to build the "Ten-Fifty" and details of one of these-the panel -are given in Fig. 2. All metalwork is easily prepared using simple tools. Two small flanges are provided on the chassis underside so that a flat aluminium base plate may finally be located; this baseplate protects under-chassis components and also confers rigidity.

Essential dimensions and layout of the main components both above- and below-chassis may be seen in Figs. 3 and 4 respectively and it is doubtful if any improvements can be made. Some interaction among coils LI-4 is likely and it is advisable to place them so that the 10 -metre coil, L1, is closest to the bandswitch S1, with coil L2 nearby. All wiring-to the coils in particular-should be carried out with stiff copper wire adequately sleeved. Coils L1-L4 are adjusted when in çircuit to their appropriate operating frequencies of $7,14,21$ and $28 \mathrm{Mc} / \mathrm{s}$ using a g.d.o. each coil core is peaked with the vanes of VCl half enmeshed.

Testing

Initially, the h.t. voltage used should be no more than 300 V d.c. With S3 at "Receive" a 40 W domestic lamp bulb is connected to socket SK2, switch S2 moved to "Crystal", a crystal in the frequency range $7010-$ $7050 \mathrm{kc} / \mathrm{s}$ plugged in and switch S4 moved to indicate grid current. A testmeter set to read $0-100 \mathrm{~mA}$ is then inserted in the circuit at the h.t. end of choke r.f.c. 2. With the key connected, power is

Fig. 4: Below-chassis layout of principal components.
applied and S3 rotated to "Net" whereupon an indication should be seen on the panel meter; grid current should now be peakable via VCl to at least 4 mA when the key is depressed. Grid current is then set to 2.4 mA , the key released, the function switch returned to "Receive" and S4 set to read anode or plate current.

When the vanes of both VC2 and VC3 have been fully enmeshed the function switch is placed at "Transmit". Care is now required and the key should be quickly depressed and released whilst noting the maximum reading on M1. Should the meter appear to be over-driven place S4 at "Grid" and use the

Fig. 5: A suitable solid-state power supply.
externally connected meter to load up.
To load the "Ten-Fifty" depress the key then quickly rotate VC2 to reduce the current indicated to the lowest possible level. Monitor the grid current and readjust drive to 2.4 mA if necessary. Next open VC3 slightly to increase anode current, immediately reducing it again via VC2. When this procedure has

components list

Resistors:

R1	$47 \mathrm{k} \Omega$	R8	50Ω
R2	$1 \cdot 2 \mathrm{k} \Omega 1 \mathrm{~W}$	R9	$180 \Omega 1 \mathrm{~W}$
R3	$1 \mathrm{k} \Omega$	R10	$100 \mathrm{k} \Omega$
R4	$27 \mathrm{k} \Omega$	R11	$5 \mathrm{k} \Omega 2 \mathrm{~W}$
R5	$22 \mathrm{k} \Omega$	R12	$56 \mathrm{k} \Omega 5 \mathrm{~W}$
R6	50Ω	Rs	See text
R7	180Ω		

Capacitors:

C1 22 pF silver mica
C2 220pF silver mica
C3 $\quad 0.01 \mu \mathrm{~F}(10,000 \mathrm{pF}$ ceramic $)$
C4 $\quad 0.01 \mu \mathrm{~F}(10,000 \mathrm{pF}$ ceramic)
C5 1000pF ceramic
C6 2000 pF ceramic
C7 2000pF ceramic
C8 50 pF silver mica
C9 2000pF ceramic
C10 1000pF ($0 \cdot 001 \mu \mathrm{~F}) 1000 \mathrm{~V}$ d.c.
C11 2000pF ceramic
C12 2000 pF ceramic
C13 2000pF ceramic
C14 2000pF ceramic
C15 $0 \cdot 005 \mu \mathrm{~F}(500 \mathrm{pF})$ ceramic
C16 2000pF ceramic
C17 2000 pF ceramic
C18 $1000 \mathrm{pF}(0 \cdot 001 \mu \mathrm{~F}) 1000 \mathrm{~V}$ d.c.
C19 2000pF ceramic
C20 $0.05 \mu \mathrm{~F}$ paper 500 V
C21 120pF silver mica
VC1 50 pF air spaced variable trimmer
VC2 160pF air spaced (Wavemaster)
VC3 $2 \times 470 \mathrm{pF}$ (nominal) twin-gang

Valves:

V1 6CH6 V2 6146
Switches:

S1	2-pole, 4-way
S2	DPDT slide type
S3	3-pole, 3-way
S4	DPDT toggle type

Sockets:
SK1 Miniature jack type
SK2 Coaxial TV type
SK3 I.O. valve holder
Chokes:
RFC1 -2.5 mH miniature
RFC2- 2.5 mH transmitter type

Miscellaneous:

B9G skirted valveholder, I.O. valveholder ceramic. Dust-cored coil formers, $\frac{1}{4}$ and $\frac{3}{8} \mathrm{in}$. (see text). Meter—MRP2, 0-5mA f.s.d. Crystal X1 see text. Aluminium for panel and chassis, case, etc. Control knobs (5), etc.
been repeated several times the lamp "load" will begin to glow and a wavemeter should then be brought into use to verify that output is occuring in the appropriate band as selected by Si. Thereafter, it is merely a case of adjusting resistor Rs to obtain a half scale reading on meter Ml when a current of 50 mA is indicated on the externally connected testmeter; this may require several attempts to be made.

The "Ten-Fifty" Transmitter is now virtually complete and with the lamp load and external meter removed a trial QRP call may be made via the station aerial provided there is no risk of causing interference to others; it should be appreciated, however, that re-loading into the aerial proper will normally be necessary.

Later, the 6146 valve may be fed from a source voltage capable of giving a d.c. input of 50 W and if meter M1 indicates a full scale reading for 100 mA the required voltage is 500 V d.c.

Power Supply Circuit

A suitable method of obtaining the required operating voltages may be seen in the simple solid-state p.s.u. arrangement given in Fig. 5 and h.t. potentials should not rise to a dangerous level under key-up conditions with this configuration which is selfdischarging. No high d.c. potentials are left across the unit at switch-off but bleed resistors R3 and R4 must on no account be omitted; slight changes to the values of R3 and R4 are permissible, however, if it is found that the intermediate d.c. potential is inadequate.

POWER SUPPLY UNIT

* components list

Resistors—10 Watt:								
R1	$1.5 \mathrm{k} \Omega$	R4	$20 \mathrm{k} \Omega$					
R2	$1.5 \mathrm{k} \Omega$	R5	$35 \Omega-5 \mathrm{~W}$					
R3	$20 \mathrm{k} \Omega$		R6	$35 \Omega-5 \mathrm{~W}$				

Capacitors:

C1 $\quad 8 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic
C2 $8 \mu \mathrm{~F} 600 \mathrm{~V}$ electrolytic
C3 $\quad 16 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic
C4 $\quad 16 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic
C5-8 1000 pF ceramic 500 V
C9 $0.01 \mu \mathrm{~F}$ paper, 1 KV
C10 $0.01 \mu \mathrm{~F}$ paper, 1 KV
C11 5000 pF ceramic 500 V

Miscellaneous:

$4 \times$ BY100; LFC1- 10 to 20 H Choke, 120 mA . Mains Transformer 250-0-250V $120 \mathrm{~mA}, 6.3 \mathrm{~V} 3 \mathrm{~A}$; On/off Toggle, 250 V a.c.; Torch bulb 0.3A; Chassissee text.

The simple p.s.u. may be built on a chassis measuring $8 \times 5 \times 2$ in., but all "hot" points should be kept below chassis in the interests of safety. Adequate ventilation must be provided and the output socket can be a I.O. valveholder. If a 0.3 A torch bulb is wire in the circuit at point " X " it will offer a degree of protection to the rectifiers should a short-circuit accidentally occur; it will also provide an excellent visual keying indicator.

AIRMEC FREQUENCY STANDARD METEK TYPE 761. $10 \mathrm{c}, 100 \mathrm{c}, 10 \mathrm{kc}, 1 \mathrm{Mc}$, 玉80. Carriage $30 /-$
SOATRON OSCILLOSCOPE, Laboratory type CD 643. £130. Carrlage 40/-

COSSOR OSCILLOSCOPE TYPE 1049. £45. Carralge 301-.
R.F. METERS

300 mA , 2 in. clip fix
BOOMTOM STANDARD SIGNAL GENERATOR MODEL 80 Freque 400 and $1,000 \mathrm{c} / \mathrm{s}$ and external modulation. Provision for pulse modulation. Piston type attenuator, $0.1 \mu \mathrm{~V}$ for pulse modulation. Piston type attenuator, $0.1 \mu \mathrm{~V}$ -
100 mV . Separate meter for modulation level and carrler 100 mV . Separate meter for modulation level and carrler
level. Precision flywheel 117 V AC input with instructlon manual. £95. Carriage 30/-
MARCONI SIGNAL GENERATOR TYPE TFIA4G $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$. Excellent laboratory tested condition with all necessary accessories with instruction manual. £45. P. \& P. 15/-.
COMPLETE V.F.O. UNIT from TX53. Freq. range in 4 switched bands trom 1.2-17.5 Mc/s. Two V.T. 501 s as oscillator and buffer, 807 as driver, two 5130 s as voltage stabilizers. Output sufficient to drive two 813s in parallel. Slow motion drive directiy calibrated in Mc / s. Provislon for crystal control, metering of buffer and driver stage. Power requirements 400 v . and 6.3 v .
D.C. Can also be used as low power transmitter. In excellent condition with valves and circuit diagram. £5.19.6. P. \& P. 15/-.

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12 (01) 7434946

ALL TEST \& COMMUNICATION EQUIP.
MENT has been thoroughly prepared in our
Laboratories by fully qualified Electronic
Engineers.

CR 150 RECEIVER. $2 \mathrm{Mc} / \mathrm{s}-60 \mathrm{Mc} / \mathrm{s}$, with specially built PSU for malns. £49/10/-
BC 221 FREQUENCY METERS $125-20,000 \mathrm{kc} / \mathrm{s}$. Accuracy 0.01%. Complete with Individual Calibration book. In brand new condition with headphones and Instruction book, £45. P. \& P. 20/-.
Mains P.S.U. for above, $\mathbf{E 1 1 . 1 0 . 0 , ~ C a r r i a g e ~ 5 / - . ~}$
FIELD TELEPHONES TYPE 'F'' housed in portable wooden cases. Excellent for communleation in- and out-doors for up to 10 miles. For pair including batteries and $1 / 6$ th mile field cable on drum. Completely new, $£ 6 / 10 / 0$. Slightly used, $£ 5.10 .0$. Carrlage 10/-.
TELEPHONE HANDSET. Standard G.P.O. type; new 12/-. P, \& P. 2/-.
"S" Meter for H.R.O. Receivers. Brand new $\mathbf{£ 2 . 1 0 . 0}$. Carrlage paid U.K.
AVO VALVE TESTER with construction Manual, £35. Carriage, 30/-
VARIOMETER for No. 19 sets. 17/6. P. \& P. 3/-.
LABORATORY TYPE VOLTMETERS. 160 V AC/ DC $3^{\prime \prime}$ mirror Scale in wooden boxes, $91^{\prime \prime} \times 81^{\prime \prime} \times 31^{\prime \prime}$ with carrying handle, new, 32/-. P. \& P. 3/-.
29/41 ft. AERIALS each consisting of ten 3 ft . $\frac{7}{8} \mathrm{in}$. da. tubular screw-in sections, 11 ft . (6 -section) whip aerial with adaptor to fit the 7in. rod, insulated base, stay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag. £3.9.6. P. \& P. 10/6.
INSET MICROPHONE for telephone handset $\mathbf{2 / 6}$. P. \& P. 2/-.

SUB MINIATURE "PENNY" SIZE METERS. $1^{\text {" }}$ round, flush, ring nut mounted 500 mA FDS, Caiibrated $0-1$ mA, $201-$, P. \& P. 3/-.

Open 9.30-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. PERSONAL CALLERS WELCOME

true to specification

STMGARISABS

0.14 сомраст HIGH-FIDELITY LOUDSPEAKER

- Size $9 \frac{3}{4}$ in. $\times 9 \frac{3}{4}$ in. $\times 4 \frac{3}{4} \mathrm{in}$. deep plus detachable base. 15 ohms impedance - Up to 14 watts loading Smooth response between 60 and 16.000 Hz - British manufacture

When Sinclair Radionics decided to design and manufacture a new loudspeaker, it was required from the start that its performance should be worthy of today's best high fidelity standards and be so reasonably priced that the greatest numbers could afford it. By using ultra-low resonant materials to form its acoustically contoured housing, outstandingly brilliant performance resulted. Furthermore, the unusual form of the 0.14 meant it could be used as a free-standing shelf speaker, as a wall-corner sound radiator or flush mounted singly or in multiple units on a flat surface such as a wall. The correctness of the design of the 0.14 has amply proven itself since within a few months of its introduction, it is already amongst the four most demanded loudspeakers irrespective of price. Independent laboratory tests have already shown that the 0.14 has amazingly good performance characteristics. As a judge of good sound yourself, your ear will confirm this instantly. At its price, there is nothing to stop you changing to Sinclair at once.

The 0.14 is finished in matt black with solid aluminium bar embellishment on the front. Supplied in strong fitted carton and sent post free under money back guarantee if you are not satisfied.
£7.19.6
IDEAL FOR Z.12 MONO AND STEREO SYSTEMS

SINCLAIR RADIONICS LTD, 22 Newmarket Road, Cambridge
 AMPLIFIER AND PRE-AMP

No constructor"s transistor amplifier has ever achieved such success as the Sinclair Z.12. It favours the user in so many ways--with fantastic power-to-size ratio, with far greater adaptability, with freedom to oper-

Buift, tested and guar $\begin{aligned} \text { alaled. }\end{aligned}$ from batteries or mains power supply unit (the new PZ.4 is ideal Ior this) and with the opportunity to obtain superb stereo reproduction for very little outlay. Countless thousands of $Z .12 \mathrm{~s}$ are in use throughout the world in hi-fi installations, electronic guitars and organs, P.A. installations, intercom, systems etc. This true 12 -watt amplifier is supplied ready built, tested and guaranteed together with the $\mathbf{Z . 1 2}$ manual which details a number of control circuits enabling you to match the $\mathbf{Z .} .12$ to your precise requirements. For complete listening satisfaction, use your Z .12 system with 0.14 loudspeakers. It assures superb quality with substantial savings.

A heavy duty stabllised power supply unit of advanced design developed specially for systems using one or more Z.12s. For running from standard A.C. Mains supplies, the PZ. 4 dellvers 18V. D.C. at 1.5A. Supplied built, tested and guaranteed.

SINCLAIR STEREO 25

- Input swltchin/Treble/Bass/Volume/Balance Controls
- Sensitivity for 10 watts Into 1.5 ohms per channel
Mic.-2mV Into 50 K ohms P.U. 3 mV Into 50 K ohms Radlo- 20 mV into 4.7 K ohms
Equallsation correct to within $\pm 1 \mathrm{~dB}$, RIAA curve, $50-20,000 \mathrm{~Hz}$. $6 \frac{1}{1} \times 21 \times 2 \frac{1}{7}$ Ins, plus knobs. Aluminlum front. Ready bullt and tested. £9.19.6

SIIGEAR MIBBROMATC

No increase in price

Prices for this leantastically IIny, powerful recelver remaln the same In spite of Increased purchase tax so that the Sindialr micromatic Is not only the most so that the Sind and efficient set of Its kInd ever produced. It Is the besi value too. As easy to take wlth you as your wrist watch. Includes superb magnetlc earplece tunes over M. $W_{\text {w }}$ and plays anywhere.

YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. FULL SERVICE FACILITIES AVALLABLE TO ALL
SINCLAIR CUSTOMERS

[^2]
BARGAINS DIRECT FROM
 TRS

UNBEATABLE VALUE IN

 SPEAKER ENCLOSURESOwing to demand for our previously advertised 84.15.0 enclosure, it is now offered sas bn even better bargain as a rack Flat kit which easily assembles to a fine professional looking enclosure. All wood accurately machined. State If for 10 in ., or
8 in . unit. Hole for tweeter included. Now $72 / 6$ 8in. unit. Hole for
(Part P. \& P. 7/6)
A wide range of nnits by Goodmans, W.B. etc. available for the above at attractive prices.
TRS MULLARD AMPLIFIERS STERE

With pre-amp tapped
of p transformer 3 and 15Ω, all controls, H.T. and Complete with escutcheon, knobs, plugs, etc. Ready built. (P. \& P. 12/6) I21.0.0 Kit £17.10.0
(P. \& P. 12/6) 18 gni. (P. \& P. 7/6)

3-3 MONO
8 valve, 3 W amplifer with controls, absolutely complete kit including panel, knobs, etc.
(P. \& P. ${ }^{\text {P }}$ 7/6) $\quad £ 7.12 .6$

5-10 MONO

5 valve, 10w basic amplifer kit
complete. (P. \& P. 7/6) £9.19.6
with passive control network and panel 811.19 .6 2 valve pre-amp kit 96.12 .6 Carr . $5 / 6$.
GARRARD UNITS and PLINTHS

See latent TRS List (6d. post f

LM3000 Record Player with 9T. A. Stereo Cartridge. AT. 60 Mk II De-Juxe Auto-changer, dlecast turn table. Leas cartridge
taple. Lese cartridge
Brand new la makers' cartons. Packing and carriage on any one of above $7 / 6$.
GARRARD PLINTH WB.1. In fine Teak for any of aboye unlta. (Packing and carriage 5/-) 75/Garrard clear-view rigid perspex cover 60/-
(carriage $3 / 6)$
 CARTRIDGE OFFER TO STEREO SONotone 9TA/HC Ceramio with iamond 47/8; Decca Deram with diamond 79/6:
PEAK-SOUND 8A 8-8 STEREO AMP. 14 Transistor Kit. SW per channel (16 W mono) integrated preamp to take high quality ceramic p.u. One of the best and most economic we haveever orered. AMPLIFIER KIT £8.10.0 (P.P. 4/-); POWER PACK KIT 22.10 .0 (P.P. 4/-); M. F/F); COMPLETE ASSEMBL Y \&14.10.0 post free if ordered at same time.

IMPORTANT NOTICE
The latest printed and illustrated TRS List, 8 large pages packed with everything you want at bargain prices. Send 6d. for your copy now

TRS RADIO
 COMPONENT SPECIALISTS

 Established 194670 BRIGSTOCK ROAD THORNTON HEATH, SURREY

Telephone: 01-684 2188
Hours 9 a.m. -6 p.m. 1 p.m. Wednesdays A few doors from Thornton Heath Station. (S.R. Victoria section.)

No goldering AMAZING
CIGARETTE RADIO ONLY 25/-

Yes a perlectly ordinary paeket of oigarettes !
But watch your friends astonishment on hearing it fetch in station after station, loud and
clearl 8 till holds 10 cig
arettes yet cleverlyo
conceala highly sensitive, fully transistorisen circuit (in-
ciuding battery). Bven a foung boy can assemble it cluding battery). Even a young boy can assemble it
under 2 hours. No soldering. No experience neceasary. under 2 hours. No soldering. No experience nedegsary. Only 16 connections to make. Ideal for taking to work
with you. From our bulging testimonial file Mr D. B. of Huddersfleld, writes: ${ }^{\prime \prime}$... I have filled the parts in il and Hud erarting wile \rightarrow ALL PARTg including Semi-Conductors, ABC Plans, etc.
post ete. Parts available separately.

MAEE 5 DIFFERENT TRANSISTOR 39/6 No experience necessary No soldering. Only 8 comnections for first
radio to work. Just radio to work. Just
look, you get Easy look, you get Easy
ABC Plans, Cabinet,
Loudppeaker (alone 17/6). Earphone, 4 semi-conductors, Coils, Condensers,
Resistors,
uner, Switch, screws, etc. FES-EVERYTHING 1 Loud clear English and Foreign reception. As supplied to Educational Authorities, H.M.
Forces, ete. TESTIMONIALS GALORE. Complete course-originally E6. Now only $39 / 6$ plus $4 / 6$ post ete.
NEW FULLY TRANSISTORISED PORTABLE RADIOS
A FRACTION OF THE NORRACTION OF THE $34 / 6$ WHY PAY MORE P All the latest reflnements are packed into this
new MULTI-STATION ALL Tran aiator radio-the internal aerial picks up even the remote stations and the poweriul built-in speaker gives room filling volume. Individ Purchase with confidence-parked in original manufacturers' cartons. (Personal aarpiece and battery 4 / 6) plus 4/6 CONCORD ELECTRONICS LTD. (PW50) p. \& p. 8 Weatbourne Grove, London, W.2.

NEW VALVES!

Guaranteed Set Tested

 24-HOUR SERVICE

Solve your communica-
tion problems with thlo 4-Station Transistor Intercom system (1 master and 3 Subs), in de-luxe plastic cabinets for desk or wall
mounting. Call/taly/listen from Master to Subs and mounting. Cail/talx/histen from Master to Subs and Subs to Master. Iaealy suitable for Business, Surv
gery, Schools, Hoapital, Office and Home. Operates on one 9 V battery. On/off switch. Volume control. Complete with 3 connecting wires each 66ft. and other accessories. P. \& P. 7/6.

WIRELESS INTERCOM

No batteries-no wires. Just plug in the mains ior onstant two-wsy, loud and clear communication. P. \& P. 7/6 extra

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alsrm and door Phone. Complete with 66ft. connecting wire. Battery 2/6. P. \& P. 3/6.

ciency with this incredible De-luxe Telephone Amplifier. Take down long telephone messages or converse without holding the handset. A useful office sid. On/
off switch. Volume Control. Battery $2 / 6$ extra. P. \& P. $2 / 6$. Full price refunded if not satisfled in 7 days. 2/6. Full price refunded if not satisfled in 7 days.
WEST LONDON DIRECT SOPPLIES (P/WG)

COLOUR T.V. PAL SYSTEM

by PATCHETT 40/-, P. \& P. 1/-. World Radio \& T.V. Handbook by Johansen. 42/- P. \& P. 1
HI-FI Year liook, 1968. 15/-. P. \& P. 1/3. Transistorised Amateur Radio Projects, by Caringella. 25/=. P. \& P. 1/-.
F.E.T. Circuits by Turner, 25/-. P. \& P. 1/-. Radio Amateurs' Ilandbook by A.R.R.L. 1968 ed. 45 -. P. \& P . $4 / 6$.
Electronic Novelty Designs by Kampel, $8 / 6$. P. \& P. 9d.

Computer Circuit Projects you can Build by Boschen 24/-. P. \& P. 1/-.

Where possible 24 -hour service guaranteed.
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT STREET LONDON, W.C. 2
(Leicester Square Tube Station)

[^3]

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.

Please send FREE BROCHURE to:
NAME...Block
ADDRESS ... Caps.

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS On a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $4 \frac{1^{\prime \prime}}{} \times 2 \frac{1^{\prime \prime}}{4} .(2) \dagger$ Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent, (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Booklet Printed Circuils for Amateurs. (9) 2 Miniature Radio Dials SW/MW/LW. Also free with each kit. (10) Essential Design Data, Circuits, Chassis Plans, etc. for

40 TRANSISTORISED PROJECTS

A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S PRINTED CIRCUIT KIT 8/6
Postage \& Pack. 1/6 (UK) Commonwealth: SURFACE MAIL 2/AIR MAIL 9/Australia, New Zealand, South Africa, Canada'
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifier. (5) Carrier Power Conversion Receiver. (6) Split-Load Neutrallsed Double Reflex. (7) Matchbox or Photocell Radio. (8) "TRIFLEXON" Triple Reflex with self-adjusting regeneration (Patent Pending). (9) Solar Battery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor anywhere in the World. 3 Subminiature Radio Receivers based on the "Triflexon' circuit. Let us know if you know of a smaller design published anywhere (10) Postage Stamp Radio. Size only $1 \cdot 62^{\prime \prime} \times \cdot 95^{\prime \prime} \times \cdot 25^{\prime \prime}$. (11) Wrlstwatch Radlo $1 \cdot 15^{\prime \prime} \times \cdot 80^{\prime \prime} \times \cdot 55^{\prime \prime}$. (12) Ring Radio $\cdot 70^{\prime \prime} \times \cdot 70^{\prime \prime} \times \cdot 55^{\prime \prime}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplfier. (16) Intercom. (17) 1 -valve Amplifier. (18) Reliable Burglar Alarm. (19) Light-Seeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required). (27) Constant Volume Intercom. (28) Remote Control of Models by induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Ultrasonic Switch/Alarm. (34) Stereo Preamplifier. (35) Quality Stereo Push-Pull Amplifier. (36) Light-Beam Telephone "Photophone". (37) Light-Beam Transisitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed

Controller.

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Cadmium Sulphide Photocell, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control. Terminal Block, Elegant Case, Screws, etc, In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

39/6

Postage \& Pack. 2/6 (UK) Commonwealth: SURFACE MAIL $3 / 6$ AIR MAIL $£ 1.0 .0$
Australia, New Zealand, S. Africa, Canada \& U.S.A. Also Essentiai Data Circuits and Plans for Building 12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Stray-light Alarm. (4) Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector Lamp Stabiliser. (8) Electronic Projector Modulator. (9) Mains Power Supply. (10) Car Parking Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mlrrors, 2 45-degree wooden blocks, Infra-red filter, projector iamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack 1/6 (UK). Commonwealth: Surface Mail 2/-; Air Mail 8/-.

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photoswitch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive PhototransIstor, 3 Transistors, Chassis,
Plastic Case, Resistors, Screws etc., Full Size Plans instructions, Data Sheet "10 Advanced Photoelectric Designs"
Price: 19/6. Post and Packing 1/6. (U.K.) Commonwealth 2/-. Air Mail 4/-.

JUNIOR OPTICAL KIT

CONTENTS: 2 Lenses, Infra-Red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 minlature invlsible beam projector and photocell receiver. Price: 10/6. Post and Packing $1 / 6$ (U.K.). Commonwealth: Surface Mail 2/-, Air Mail 4/-
YORK ELECTRICS, 333 York Road, London, S.W. 11 Send a S.A.E. for full detalls, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Photoolectric Projects assembled.

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 6 \mathrm{~d}$. per word (minimum order $18 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting £4. 12s. 6d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

TAPE RECORDERS, TAPES, Etc.

TAPES TO DISC-using finest professional equipment $45 \mathrm{rpm}-18 / \mathrm{F}$ S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

SHORTWAVE LISTENERS

INTERESTED IN SHORT-WAVE RADIO? Then you'll be interested in the Radio New York Worldwide Listeners' Club! Each month thousands of Club members throughout the world receive a Club magazine filled with special features and news about international communications . . about short-wave radio. Radio New York Worldwide (WNYW) is the only commercial, non-government short-wave station broadcasting from the United States. station broadcasting from the United States. We're a special radio station with a very unique
Listeners' Club, in fact it's the largest Club of Listeners' Club, in fact it's the largest Club of
its type in the world today! We invite you to write in and request a free sample issue of the Club Magazine now...you'll enjoy it! RADIO, NEW YORK WORLDWIDE LISTENERS' CLUB, 485 Madison Avenue, New York 10022, USA.

METAL WORK

METAL WORK: All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities. all details, quotation by return. WALTON'S WIRELESS quotares, 55 Worcester Street, WIRELESS STOR

WANTED: Popular Brand New Valves. R.H.S., Stamford House, 538 Great Horion Road, Bradford 7.

VALVES WANTED, brand new popular types boxed. DURHAM SUPPLIES (C), 175 Durham Road, Bradford 8, Yorkshire.

WANTED: New valves, transistors etc.; state price. E.A.V. Factors 202 Mansfield Road, Nottingham.

WANTED NEW
 VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD
103 North Street, Leeds 7

WANTED
 (continued)

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

DAMAGED Avo Meters, Models 7 and 8 , Damaged Meggers, any quantity. Send for Dacking instructions. HUGGETT'S LTD., 2/packing instructions. HUGGETT'

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

SERVICE SHEETS $(75,000) 4 /$ - each: please add loose 4d. stamp; callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS. RADIO, TELEVISION, TAPE RECORDERS, 1925-1968 by return post, from $1 /$-with free fault-finding guide. Catalogue 6,000 models $2 / 6$. Please send Catamped addressed envelope with all orders/ stamped addressed envelope with all orders/
enquiries. HAMILTON RADIO, 54 w London Road, Bexhill, Sussex.

RADIO, TELEVISION over 3,000 moders. JOHN GILBERT TELEVISION, 16 Shepherds Bush Rd., London W.6. SHE 8441.

EDUCATIONAL

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio. TV., automation, etc.. send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168 K), Aldermaston Court, Aldermaston, Berks.

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: maintenance. T.T.E.B., City and Guilds, etc.
highly informative 120 -page Guide-free highly informative 120 -page Guide-free.
CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C. 1.

SITUATIONS VACANT

EDUCATIONAL

(continued)
RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

TRAIN FOR SUUCCESS WITH 1 CS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS. DEPT, 541, INTERTEXT HOUSE, LONDON, SW11

SITUATIONS VACANT
 (continued)

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc, write for $132-$ page Handbook-FREE. Please state subject. page handish INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137 K), Aldermaston TECHNOLOGY (Dept. ${ }^{\text {Court, Aldermaston, Berks. }}$

RADIO and tape recorder testers and trouble shooters required. Canteen, excellent rates of pay. $8.00 \mathrm{a} . \mathrm{m}$. to $5.00 \mathrm{p} . \mathrm{m}$. 5-day week. Elizabethan Electronics Limited, Crow Lane, Romford, Essex, Phone: Romford 64101.

FREE TO AMBITIOUS ENGINEERS! 132 page Guide to B.Sc. (Eng.), A.M.I.E.R.E., A.M.S.E., A.M.I.M.I., CITY \& GUILDS, A.M.S.E., A.M.I.M.I., CITY \& GUILDS, A.I.O.B, A.R.R.C.S., G.C.E., etc. On Satis-
faction or Refund' terms. Thousands of passes -over 600 Home Study Courses in all branches of Engineering. Building, Radio, Electronics, etc. Write: B.I.E.T. (Dept, 169 K), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT

A Vacancy exists for a young man aged 18 years or over, who possesses some knowledge of Transistor Circuitry and FaultFinding. Further "on the job" training will be given in the field of Telecommunications.

Please apply to Personnel Manager, Cambridge Works Ltd., Haig Road, Cambridge.
Tel. Cambridge 51351 Extn 327

TECHNICIANS

MINISTRY OF TECHNOLOGY

Requires Technicians

Are you interested in electrical, electronic, or mechanical engineering? If so, there are excellent opportunities for you in the Ministry of Technology. The work involves the testing of radar, telecommunications apparatus, electrical power and navigation equipment, as well as the calibration of mechanical and electrical measuring devices.

These posts are mainly in the Woolwich, Harefield and Bromley areas, but vacancies also exist in other parts of the home counties and the UK.

If you have an Ordinary National Certificate or a final City and Guilds Technicians' Certificate you may well be the type of person we need.

The starting salary is $£ 1,004$ (age 24) rising by annual increments to $£ 1,149$ (age 28) and thence on to $£ 1,283$ with additional allowances for the London area and good prospects for promotion. There are also a few posts in the salary range $£ 1,283$ to $£ 1,490$ for well qualified and experienced candidates.

If you are interested, please send a post card to Mr. A. G. Stewart, Ministry of Technology, Aquila, Golf Road, Bromley, requesting an application form.

ELECTRICAL

With Most Brilliant Performance Ever from 12 Volt Car Battery. BRILLIANT HEAVY DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for fluorescent lighting. Thousands of uses. Tremendous purchase makes fantastically low price possible. ONLY $£ 7.0 .0$ each plus 10/- delivery. C.O.D. with pleasure. MONEY BACK if not DELIGHTED. STANFORD ELECTRONICS Dept.P.W. Generator Specialist
No. 4 Rear Derby Road.
North Promenade, Blackpool
Please send S.A.E. for illustrated detalls.

BOOKS \& PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes 1155 set Circund Notes 5/6 p/p 6d H.R.O. Technical Instructions 38 set Technical Instructions.. 46 set Working instructions .. 4/6 p/p 6d. 88 set Technical Instructions. . 6/- p/p 6d. BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr. Wavemeter Class D Tech
18 set Circuit and Notes 18 set Circuit and Notes $\ddot{ }$ CR.100/B.28 Circuit and Notes R. 107 CIrcuit and Notes AR.88D Instruction Manual 62 set CIrcuit and Notes Circuit Diagram 4/ $\quad . \quad . \quad 5 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$ R.1224/A, R.1355, R.F, T.1154, CR.300, BC.312, BC.342, BC.348, BC. 348 (E.M.P.), BC.624, 22 set,

52 set Sender and Receiver circuits $7 / 6$ posl free Resistor colour code Indicator, 2/- p/p 6d. S.A.E. with all enquiries please. Postage rates apply to U.K. only, Mail order only to:
Instructional handbook SUPPLIES
DEPT. PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

MISCELLANEOUS

```
3 GANG 500pF TUNING CAPACITORS.
    New and boxed 7/6 post paid.
    BIG BARGAIN PARCEL
Capacitors, resistors some high stab, rectifiers,
potentiometers, diodes. transistors, connecting
wire, etc., only 10/- post paid.
    S.A.E. for lists of other bargains.
        SALOP ELECTRONICS
9a Greyfriars Road. Coleham. Shrewsbury, Salop.
```

ELECTRONIC sound and musical devices required for exploitation. Adequate finance available. Projects developed to pre-production stage required. Royalty payments guaranteed. Details only Box No. 74.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availablefull circuits, drawings and notes! It has 5 octaves. 2 manuals and pedals with 24 stops-uses 41 valves. With its variable attack you can play Classics and Swing.
Write Now for free leaflet and further detais to C. $\quad 30$ Maude Street Darlington, I)uriam. Send 3d. stamp.

FOR SALE

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear-lots of unusual stuff. This Cat. is free for the asking. K. R. WHISTON (Dept. PWC), New Mills, Stock port.

Boxes of B.A. Nuts and Bolts, all Brand new and high grade nachine cut items, invaluable to all Service men. experimenters etc. Bolts include 2.BA 4.BA and 6.BA up to $2^{\prime \prime}$ long, yarious heads, mainly brass, approx. 3-400 items per box, our Special Price $7 / 6 \mathrm{~d}$. plus $2 /$-d. Post and Packing. WALTON'S WIRELESS STORES. 55a Worcester Street, Woverhampton, Staffs.

FOR SALE
(continued)

400 Speakers, 5 inch, 8 ohm, ex stock. Box No. 78.

20ft. 2-section $1 \frac{1}{1} \mathrm{in}$. dia. Wooden Masts. 10/plus $4 /$ - post. G4MH, 18 Town End, Golcar, Huddersfield.

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns.-Special Offer 55/- each. MINIFLUX 4-Track stereophonic/ monophonic Ferrite Erase Heads. List Price $£ 3,10.0$.-Special Offer $32 / 6$ each, or supplied together (one of each) at £3.17.6. SKN4 $\frac{1}{2}$-track stereophonic record/play heads for Transistor Circuits at $55 /$-each. Also available $\frac{1}{2}$-track and full-track monophonic Ferrite Erase Heads. All heads complete with technical Heads. All heads complete with technical
specifications. Send S.A.E. for details. specifications. Send S.A.E. for derails.
LEEELECTRONICS, 400 Edgware Rd., Paddington 5521 .

CURSONS TRANSISTORS

all guarantefd

1/- each. BAY31, BAY50, DK10, OA70, OA81, OA10, OA200, OA90, OA91, OA259.
2/- each. XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACY22.

3/- each. OC139, OC140, 2N706, 2N708, 2N2894, BY100, RAS310AF, 2N914, 2N916, BSY25, BSY26, BSY27, BSY95A, AFZ12, BFY18, BFY19, BFY26, BFY36.

7/6 each. RAS508AF, CRS3/40, BLY10, BLY11, BUY10, BUY11, ADY22, ADY23, ADY24, 2N2234, 2N2235, OC22, OC26, OC28, 0C35.

ZENER DIODES
3.9 v to 26 v , $\frac{1}{4} \mathrm{w} 3 /-$ each, 1.5 w 4/-, 7w 5/- each.

SAE, full new list:-

B. W. CURSONS
 78 BROAD STREET CANTERBURY, KENT

MORSE MADE
 PACT NOT FICTION. If you start RIGET you will be

 eading amateur and commercial Morse within a month reading amateur and commercialNormal progresa to be expected.)
Using scientifically prepared 3-apeed records you without translating. You can't heip it, it's easy as learnang a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring, s.t.d. 01-660 2896 end 8d. stamp for explanatory booklet to

GBGHS/P. 45 GREEN LANE, PURLEY, 8URREY

RECEIVERS \& COMPONENTS

WILSON ELECTRONICS

Gtaranteed Transistors
2/- each, AC126, 127, 128, OC75, S18T (OC83).
2/6 each, OC44, 45, 81D, 81, 82D, 82.
3/- each, OC71, 72, 170, 84, AF118, 119.
4/6 each, AF115, 116, 117, 125, 127, OC77. $5 /$ - each, BCY10, 12, 33, 34, 38, $39, \mathrm{BF}^{5} 50,51,52$ 5/- each, GET113, 116, 118,119, 887, 889, 890, 896, 898 . 7 -each, $0 \mathrm{C} 22,23,25,26,28,30,200$.
$11 / 6$ each, AD140, 149, OC85, 36,38 .
Min. Order 5/- 6d. P. \& P
23 WADHAM ROAD, WOODTHORPE, NOTTINGIIAM

> SUPER/OR $\because / / A L / T Y$ NEW RES/STORS Carbon film Low noise High stability

student electronic services

194 Regent Road, Salford 5
Your reliable, prompt and inexpensive Service of components

Resistors 5% tol. $\frac{1}{4}$ and $\frac{1}{2}$ watt
4.7ohm-10M. ohm, 2d. each

Capacitors (5d.-10d. each), FET's (10/-)
Silicon Rectifiers (3/6)
Sole distributors of I,M.E.L. assembly stand. Stockists of LEKTROKIT
Enclose 6d. for price list.

[^4]THE TRANSISTOR WITH EVERYTHING. High gain (250-500), low noise (2dB), high freq. (300 MHz). BCI 68 Silicon NPN. 5 for 10/-, brand new. List 3d. AMATRONIX LTD., 396 Selsdon Road, Croydon, Surrey, CR2 ODE.

SILICON TRANSISTORS		
BC 107	amps and switches	$4 /-$
BC 108	amps and switches	$3 / 9$
BC 109	lownoise amps	$4 /-$
2N 3053	amps and switches	$10 /-$
2N 3055	amps and switches	$19 /-$
FET MPF105 suit for 2N3819 appl.	$10 /-$	
SI DIODES	1S 940 30V 50mA	$1 / 2$
Send 6d.stamp forcomponent catalogue.		
MAIL ORDER ONLY. C.W.O. P \& P. 9d.		
ANDOR		ELECTRONICS LTD
7	HINDLEY STREET, STOCKPORT	

FAMOUS NO. 19 SET TRANS/RECE\{VER
Covers 2-8Mc/s in 2 bands 11 valve superhet transceiver including 807 PA . ceiver including 807 Power reqs. LT $12 \mathrm{~V}, \mathrm{H}$. rec. 275 v.
slightly used 55/-.
Selected condition 85/-
All 19 set ancillary parts available.
COLLINS (U.S.A.) RECEIVER 7 valve superhet. (Int, Octal valves). Exceptionally stable for s8B
Frequency coverage $1.5-12 \mathrm{Mc} / \mathrm{s}$. Power required 250 v .D.C.80mA. 12 v . A.C. $1 \cdot 25 \mathrm{~A}$ Excellent condition 212.0 .0

No, 31 TRANSCEIVER. VHF $40-48 \mathrm{Mc} / \mathrm{s}$. Tunable $90 / 60 / 44 \mathrm{\nabla}$. battery operation. 70/-
No. 88 TWO WAY RADIO, 40-42 Me/s. Crystal con trolled. 4 channel. $50 /$ - each
B44 VHF RADIO TELEPHONE. 60-95 Mc/s. Crystal controlled. 12v. DC operation. 87.10 .0 .
No 62 TRANSMITTER RECEIVER, $1 \cdot 6-10 \mathrm{Mc} / \mathrm{s}$. Tunable or crystal controlled. 12v. D.c. operation. £18.10.0,
R.C.A. C29 TRANSMITTER RECEIVER. $2-4 \mathrm{Mc} / \mathrm{s}$. Complete station. Brand New. 12 or 24 v . 1).C operation. £19.10.0.
No. 52 RECEIVERS, Few left. Used
(serviceable). $87,10.0$.
TUBULAR STEEL TELESCOPIC AERIAL MASTS. 20 ft .4 нection 70/-.
321 t . as above with l2ft. whip 80/-.
34 ft .6 section $90 /$ -
MAKE YOUR OWN AERLAL MAST!
5 ft . 8 in, , 2 in . dia. interlocking steel sections. (7 sections make 351 t. mast). $\quad 20 /$ - per section NYLON GUY ROPES with gemi-automatic tensioner. 33 ft . $8 / 6 ; 50 \mathrm{ft} 7 / 6 ; 60 \mathrm{ft} 9 /-$ ROTARY TRANSFORMERS BY HOOVER. 12 v . D.C. input, Output 250 v . D.C. at 125 mA $25 /-$. 12v. D.C. input. Output 490 v . D.C. at 65mA. 25/-.
REJECTOR UNIT. For rejecting unwanted Elgnals. Switched 4 ranges. $1-2-10$ Mc/s. 30/R.F. ANTENNA TUNER (A.T.U.). $160 / 80 / 40$
metres. $25 /$-. metres. $25 /$-.
MOVING COIL HEADPHONES. Soft rubber earpads. 19/6.
D,L.R. BALANCED ARMATURE HEADPHONES, 12/8.
HEADSET WITH BOOM MICROPHONE, As used with 88 Bet. $22 / 8$.
MOVING COIL HEADPHONES AND MIKE 21/6. TRANSMITTER. $1-75-16 \mathrm{Mc} / \mathrm{s} .3$ waveband tunable. 813 PA . Complete all valves, circuit. $\mathbf{8 7 . 1 0 . 0}$. POWER SUPPLY. 12 v . D.C. input, 285 and 1300 v . D.C. 300 mA output. Incorporating 230 v . D.C. 80 mA vibrator pack. Circuit. e\% ${ }^{10.0}$
All items Carriage Paid Msinland only. List giving fuller details of these and many other surplos
bargains $2 /-$ S. A.E. all enquiries (Please print clearly)

A.J.THOMPSON (Dopt.P.W.)

"EILING LODGE", CODICOTE, HITCHIN, HERTS. Phone: CODICOTE 242
Hours of business Mondey to Friday 8-5 Sat 8-12 NOTE: CLOSED FOR ANNUAL HOLIDAY8.
APRIL 27th to MAY 18th incl.
(continued on next page)

BRAND NEW TELEVISION TUBES 2 YEAR GUARANTEE. HUGE RANGE 12" £3; $14^{\prime \prime}$ £4.15.0; $17^{\prime \prime}$ £5.15.6 19^{*} £6.17.6, etc., etc. Carriage, etc. $12 /-$ Also British and Telefunken valve lists! PHILIP H. BEARMAN, 6 Potters Road, New Barnet, Hertfordshire. Tel. 449/1934

COMPUTER PANELS

Eight assorted printed circuit panels, with tranGistors, diodes. resistors, capacitors etc Experimenters. 8 Poard 10% POST FREE 100 Boards $65 /$ - Post Free
$1500+2000$ MFD Electrolytics 25 volt DC wkg. 3/- each. 9d. P. \& P.
KEYIRONICS, 52 Earls Court IRoad, London W.8. Mail order only

DUXFORD ELECTRONICS (PW) Duxford, Cambs.

C.W.O. P. \& P. 1/-. MInimum order value $5 /-$. (Trade inquiries invited)
CAPACITORS (Tubular, Axial Leads): Electroiytic (Mullard): -10% to $+50 \%$. $4 V: 8 \mu F, 32 \mu F, 64 \mu F, 125 \mu F, 250 \mu F, 400 \mu F$. $0.4 V: 6-4 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 200 \mu \mathrm{~F}, 320 \mu \mathrm{~F}$. 10V: $4 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125 \mu \mathrm{~F}, 200 \mu \mathrm{~F}$. 16V : $2.5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}, 40 \mu \mathrm{~F}, 80 \mu \mathrm{~F}, 125 \mu \mathrm{~F}$. 25V: $1.6 \mu F, 6.4 \mu F, 12.5 \mu F, 25 \mu F, 50 \mu F, 80 \mu F$.
$40 V: 1 \mu \mathrm{~F}, 4 \mu \mathrm{~F}, 8 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 50 \mu \mathrm{~F}$. $64 V: 0.64 \mu F, 2.5 \mu F, 5 \mu F, 10 \mu F, 20 \mu F, 32 \mu F$. All values $1 / 3$ each.
Polyester (Mullard): $\pm 10 \%$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$, 7d. $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 10 \mathrm{~d}, 0.22 \mu \mathrm{~F}, 11 \mathrm{~d}$. $0.33 \mu \mathrm{~F}, 1 / 2.0 .47 \mu \mathrm{~F}, 1 / 5.0 .68 \mu \mathrm{~F}, 2 / 1$. $1 \mu \mathrm{~F}, 2 / 6$.
$400 \mathrm{~V}: 0.001 \mu F, 0.0015 \mu F, 0.0022 \mu F, 0.0033 \mu F, 0.0047 \mu F$ $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}$ 8d. $0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.1 \mu \mathrm{~F}, 10 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 1 / 1$ $0.22 \mu \mathrm{~F}, 1 / 5.0 .33 \mu \mathrm{~F}, 2 / 1.0 .47 \mu \mathrm{~F}, 2 / 6$.
Polystyrene: $\pm 5 \%$. 160V: $5 p \mathrm{FF}, 10 \mathrm{pF}, 15 \mathrm{pF}, 22 \mathrm{pF}$, $33 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}, 100 \mathrm{pF}, 150 \mathrm{pF}$, 220 pF , 330 pF , 470pF. $680 \mathrm{pF}, 820 \mathrm{pF}, 5 \mathrm{~d} .1,000 \mathrm{pF}, 1,500 \mathrm{pF}, 2,200 \mathrm{pF}, 6 \mathrm{~d}$. 3,300pF, 4,700pF, 5,600pF, 7d, 10,000pF, 8d. $15,000 \mathrm{pF}$, $22,000 \mathrm{pF}$, 9d.
POTENTIOMETERS (Carbon): Long life, low nolse. $\frac{1}{4} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \frac{1}{2} \mathrm{M}_{1} \pm 30 \%>\frac{1}{2} \mathrm{M}$. Body dia. in, Spindle, 1 in \times tin. 2/- each. Linear: 100. 250 , 500 ohms, etc., per decade to 10M. Logarthmic: 5 k , $10 \mathrm{k}, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \frac{1}{4} \mathrm{M}, \pm 30 \%>\frac{1}{4} \mathrm{M}$. Horizontal ($0.7 \mathrm{in} \times 0.4 \mathrm{in}$ P.C.M.) or Vertical ($0.4 \mathrm{in} \times$ 0.2 in P.C.M.) mounting, 1/- each.

Submin. 0.1 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Horizontal $(0.4$ in $\times 0.21 n$ P.C.M. $)$ or Vertical $(0.21 n \times$ 0.1 in P.C.M.) mounting, 10d. each.

RESISTORS (Carbon film): High stabillty, very low nolse. $\frac{1}{4} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. Body $\frac{1}{3} \ln \times \operatorname{lin}$. Values in each decade: $10,11,12,13,15,16,18,20,22,24,27,30,33$, $36,39,43,47,51,56,62,68,75,82,91$ from $4-7 \Omega$ to 1 M . $\pm 5 \%, 2 \mathrm{~d}$. each. $1.2 \mathrm{M}, 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2.7 \mathrm{M}, 3.3 \mathrm{M}$ $3.9 \mathrm{M}, 4.7 \mathrm{M}, 5.6 \mathrm{M}, 6.8 \mathrm{M}, 8 \cdot 2 \mathrm{M}, 10 \mathrm{M}$. 士 10%, 2d. each. SEMI-CONDUCTORS (All new): OA5, OA81, 1/6. OC44, OC45, 1/9. OC71, OC72, OC73, OC81, OC81D, OC82D, OC170, OC171, 2/3. OC140, AF115, AF116, AF117, 3/-
SILICON RECTIFIERS: 0.5 A at $70^{\circ} \mathrm{C}$. 400 P.I.V. 3/-. 8 CO P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.I.V., //SEND S.A.E. FOR JANUARY 1968 CATALOGUE

RECEIVERS \& COMPONENTS
(continued)

\section*{MICROMINIATURE MICROPHONES
 | - | Sensitlve dynamic type. Will pickup rustle of newspaper from 30 feet. Size $9 \mathrm{~mm} . \times 9 \mathrm{~mm} . \times 3.5 \mathrm{~mm}$. Impedance $1 \mathrm{~K} \Omega$. |
| :---: | :---: |
| | ONLY 28/6
 Post free-C.W.O. |
| SHOWN | MICRO DATA SYSTEMS |
| SIZE | 30 BAKER ST., LONDON, W. 1 |

QUALITY NEW VALVES Guaranteed six months. Postage 4d.							
Daf9	8/3	ECC82	4/	EF1		Pl36	
DF91	2/3	ECC83	5/3	EL84	4/6	PL81	$7 / 3$
DF96	6/3	ECH81	5/3	EY86	$5 / 9$	PY33	$8 / 8$
LK 92	6/6	ECL82	6/-	EZ80	4 4-	PY81	$5 /$
DK96	71	Ef80	$4 / 9$	PCC84	516	PY82	
DL92	3/9	EF85	$5 / 3$	PCC89	101-	UABC80	519
DL93	$2 / 6$	EF86	$61-$	PCP80	$8 / 6$	UBF89	8/3
DL96	71	EF91	1/9	PCL82	6/8	UCH81	6/3
EABC80	0 5/6	EF93	3/6	PCL83	9/-	UCL82	0/9
EbF89	5/9	EF95	216	PCL84	$7 / 6$	UL84	51
ECC81	$3 / 8$	EF183		PCL85		UY85	
SEMICONDUCTORS							
Guaranteed twelve months. Post iree.							
AC107	4/-	BC108	3/6	OA91	1/8	0C75	
AF114	$3 / 2$	BF180	81 -	Oc35	${ }^{8 / 6}$	OC81	$2 / 2$
AF117	$2 / 9$	BFY50	5/6	0 C 44	$1 / 6$	OC83	3/-
AF239	11/-	BY100	3/6	OC71	2/3	OC170	3/-
Lists valves, semiconductors, components, on requ							
J. R. HARTLEY 2 Waterloo Terrace							
Bridgnorth, Shropshir							

STELLA NNE RANEE CASES

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plasticcoated Steel Morocco Finish. The frame is of Dura with Aluminium end plates. Rubber feet are attached and there is a removable back plate with removable Aluminium front panel.

LIST OF PRICES AND SIZES which are made to fit Standard Alloy Chassis					
Width	Depth	4* Height	$\mathbf{6}^{n}$ Height		71° Height
	4"				
	33.*	11			
	6^{6}	17	11	${ }_{6}$	
101°	$7{ }^{*}$	13	18	0	119
${ }^{12 t^{*}}$	$3{ }^{\circ}$	17			
122*	6\%**	123	17	0	
12t**		189	114	${ }^{6}$	18
142*******	31**	10	15		
$14{ }^{*}$	$9{ }^{\text {a }}$	115	2		
161.	6i\% 10	$\begin{array}{lll}1 & 11 & 0 \\ 1 & 19 & 3\end{array}$	117 210		
CHASSIS in Aluminium, Standard Sizes, with Gusset					
Sizes to ft Cases			All $2 \mathbf{1 a}^{\prime \prime}$ Wal		
${ }^{6} \times{ }^{6} \times{ }^{*} \times{ }^{\text {a }}$	${ }_{5}^{5} 8$	${ }^{10^{*} \times 7^{*}} 1$	${ }_{6}^{6} 14{ }^{14}$	$4^{*} \times 3^{* *}$	
$8^{*} \times 3^{*}$	6	$12^{*} \times 5^{*}$	616^{6}	$16^{*} \times 6^{*}$	10
$8^{* *} \times 6^{\prime \prime}$	79	$12^{*} \times 8^{*} 10$	$16^{\prime \prime}$	$6^{\prime \prime} \times 10^{*}$	160
		sio	3/-.		
Transistor Boards containing at least 12 Texas Transistors (mixed) plus diodes, + resistors, + condensera. All for 10/-. POST FREE.					
scoop. 100 mixed condensers. All new in packets. 100 for 7/6. POST FREE.					

E. R. NICHOLLS
 Manufacturer of Electronic Instrument Cases
 46 LOWFIELD ROAD STOCKPORT, CHESHIRE

TeI: STOckport 2179

RECEIVERS \& COMPONENTS

(continued)

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $1-20$ watt, $12 / 6$ Post Free. WHITSAM ELECTRICAL, 18 Woodrow Close, Perivale, Middlesex.

RESISTORS

\pm watt carbon film 5%.
All preferred values in stock from 10 ohms to 10 megohms. 2d. each. Send S.A.E. for free sample

CAPACITORS

Mullard miniature metallised polyester P.C. mounting, all 250 V d.c., working. 0.01 mF , $0.022 \mathrm{mF}, \quad 0.047 \mathrm{mF}, \quad 0.1 \mathrm{mF}, \quad 0.22 \mathrm{mF}$, all at 6 d . each.
Hunts tubular $0.1 \mathrm{mF}, 200 \mathrm{~V}$ working at 3d, each.
Send 6d. stamp for extensive list
of low-priced Electronic Components.
Please include 1/- postage and packing on all orders under f1. Dept. P.W.12.

BRENSAL ELECTRONICS LTD.

 CHARLES STREET, BRISTOL
TRADER SERVICE SHEETS

4/- each plus postage.
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio/TV

1968 List
available at 2/plus postage

| If list is required
 indicate with X |
| :--- | :--- |

From ..
Address \qquad
enclose remittance of.
(and a stamped addressed envelope) s.a.e. with enquiries please

MAIL ORDER ONLY (June PW)

MOBILE S.W. LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING

The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil
an.17.6, plus 3/6. Extra colls as.17.8, plas 3/-.
New Sprung Extension safeguards your whip from damage. From leading amateur radio stores or direet from the manufacturers:
HALSON ELECTRICAL SERVICES
Dover Road, off Ansdell Road, Blackpool

Broadway necrmomes

GARRARD 4 SPEED DECKS
Autochangers: Model 3000, with cartridge, 88.8 .0 . Moiel 2000, with cartridge, 88.8 .0 . Model 1000, with
cart ridge, £11.19.6. AT60 Mk II, lesa cartridge, e12.19.8. P. \& P. all changera $7 / 6$.

The 'EDE' TEAE FINISH WOODEN PLINTE Size $14 \times 121 \times 3 \mathrm{gin}$. Cutout for Garrard 1000,2000 , 3000 , AT60, SP25. Jecord Decks (less cover) £2.15.0. \mathbf{P}. \& P. \mathbf{P}.6/6.
CARTRIDGES:
GP83 15/-. Reuter STD/2 1\%/6. GP91/1 201-. Mono
 bracket 18/6. P. © P. $1 /$-each.
MICROPHONES:
Xtal Hand Mike
BM3 and $200 \mathrm{C} 35 /-$ P. \& P. 2/G. Stand for same ${ }_{40}$ 12/6. P. \& P. 2/-ACOS Mike 45, 21/-. ACOB Mike 40 18/6. DVn. Mike DM-391 22/6. CM21 Xtal $12 / 8$.
CM20 Xtai $9 / 6$. Magnetic Hm fi3C with remote CM20 Xtal $9 / 6$. Magnetic Hm 13 C with remote
control switch 15 -. Telephone Pick-up 10/8. P. \& \mathbf{P}. 1/-. Xtal Lapel Mike7/8. Gultar Mike 12/6. P. \& P.1/bARGAINS IN TRANSISTORS:
AC127, AF114, 115, 116, 117, 118, 119, 0C169, 170, AF212, BCYio $12,33,204$, ACl20, ACY40, ACY17, A $2,5 / 6$ each. P. \& P. 6 d. 0 A2002 $1 / 3$. P. \& P. 6d $\mathrm{OA}_{2} 206,208,5 / \mathrm{B}, \mathrm{P}$ \& P. 6 d . $0 \mathrm{C} 72,75,82,83$, AAZ12, BY38, BCZ11, 3/6. OC71, 81, 3/-, R.F. Packs 1 OC44, 2 OC45, 8/B. A.F. Packs 1 OC81D, OC81 (Mullard), 8/6. GET113, Red Spot 2/-. OC26, 28. 299/8. ORP12 Light Cell 8/6. Diodes OA81 2/3. TRANSISTOR ELECTROLYTICS:
$1.2,4,5,8,10,16.25,32,50,100 \mathrm{mpl} 15$ volt working

RESISTORS. $\frac{1}{\text { watt }} 10 \%$ from 4.7 ohm to 10 meg 5 d . each, 4/- doz. P. \& P'. $1 /$ - (minimum order $2 / 6$). PAPER CONDENSERS for Cross-Over Unlts 2 mid 2/6. P. \& P. I/
 FERROX RODS WTTH COILS. $41^{\prime \prime} \times \frac{1}{y^{\prime}}, 3 / 6$; $8^{\circ \prime} y^{3} /{ }^{\prime \prime \prime} 5 / 6$. P. \& P. I/- each.
PIANO KEY PUSH BUTTON SWITCHES. 7 button. inc. matus on off. 6 banks of 6 P.C. $0.8 / 6$. P. \&P. 1/:

SPEAKER SYSTEMS

THE CAXTON COLUMN
THE CAXTON COLUMN This is a colnhin cabinet.
Size $32 \times 5 \times 6 \downarrow$ in, titted
with 3 speakers This will handle 8 watts and will improve the quality of any tape recorder, or record player. Finished in wood graili cloth and sandatone Vynair. A real bargain at $59 / 6$ plus $10 / 6$

THE MILTON. A Hi-Fi Bookcase Cabinet. Size $9 \times 5 \times 6 i n$. with 5 in, apeaker. Finished in Teak

THE STEREO. A sup erior extension cabine fitted with two 7×4 in. speakers. Size $16 \times 9 \times$
$8 \downarrow$ in. Finisbed in fawn 8tin. Finished in fawn
Vynair with naturalteak ends. £3. P, \& P. $5 /$

THE IMP. Extensinn Speaker Cabinet Wedgeshaped, stze $7 \frac{1}{2} \times 6 \frac{1}{2}$. fitted with $7 \times$ tin. Bueaker. Covered with attractive
walnut wilh iawn walnut with iawn Yynair front. Key.
hole slot in back. Only $25 / 6$. Post $2 / 6$. Note: All cabinef new and made with fote: chiphord. An speakers ex TV sin. shaphard. Al speakers ex Al
reconditioned hi flux magnet. Al carefilly tested before despatch.

HAYDON SPEAKER SYSTEM. Size $16 \frac{1}{2} \times 15 \times 71 \mathrm{in}$, fitted 12 in,
Speaker and volume control. Fiabric covered. $£ 4.17,6$. \mathbb{P}. \& P. $10 /-$,
SPEAKER ENCLOSURES
Tony Corner Cabinet $20 \times 10 \times 7 \mathrm{in}$. takes $10 \times 6 \mathrm{in}$ apeaker covered in Rexine and Vynair, 45/-. P. \& P. $7 / 6$.
Hayd
Haydon, $16 \frac{1}{2} \times 15 \times 71 \mathrm{in}$. fabric covered suitable for 12inl, apeaker, $45 /$ - P. \& P. 9/-
Table top or wall mounting enclosure for $131 \times 8 \mathrm{in}$. speakers $37 / 6$. P. \& P. 6i/,
Corner Cabinet in natural teak finish for $131 \times 8 \mathrm{in}$. Mpeaker also cut out for tweeter, $£ 3.15 .0$. P. \& P. $8 / 6$. Mi-Fi Bookshelf speaker enelosure foam lined,
cabinet size $10 \left\lvert\, \times 5 \frac{1}{2} \times 7 \frac{1}{n}\right.$. Teak finish, $£ 3.0 .0$. P. \&P. 6/P d J^{\prime}. 1/4 . Conlenser for crossover 2/6. Terminala 2/6 pair. P.
SPEA KERS:
Ela. Heavy inty Ceramic Magnets 11.000 line. 10 in . rolund $10 \times$ biin. 3 ohm or 15 ohm, 48/6. P. \& P. $3 / 6$. 8 in . rumd 15 or 3 ohm, 42/6. I' \& P. 3/6. R M.I. $131 \times 8 i n, 15$ or 3 ohm, $42 / 8$. P. \& P, 3/6. E.M.1.
Tweeter, $15 /$. P. \& P. $1 / 6$. Bakers 12 in .20 watt 15 Tweeter, 15, P. \&P, 3/6. Bakerg 12 ml . 20 watt 15 $30 /-$. P. \& P. $3 / 6$. 5in. round $30 \mathrm{ohm} 17 / 6$. P. \& P. $2 / 6.5 \times 3 \mathrm{in}$. 15 ohm $17 / 6$. \mathbf{P}. \& \mathbf{P}. $2 / 6.7 \times 4 \mathrm{in}$. 35 ohm, 22/6. P. \& $\mathrm{I}^{\prime} \cdot 2 / 6$. All other speakers supplied Goodmans, Bakera, W.B., Wharfedale, Eagie, Tripletone.

PYE TV REMOTE CONTROL UNITS. Grey and Red plastic case. 2 white/silver knohs. 2 volume 5 -way cahle with octal ping li rand new bored Only $5 / B$. P. \& P. $1 / 9$. arinetic, 3/-. 250 ohm 4/-. 180 ohm with clip, 6/6.

 SPEAKER MATCHING TRANSFORMERS. 3, 7, 15 ohms, 8 watts $11 / 6$. F. \& P. 1/6.
PANEL LIGHTS. fv Reil, Blue, Green. Yellow, White (naes Lilliput bubs) $3 /=$ each. P. \& P. I/ NEON PANEL LIGHTS $200-250 \mathrm{y} 3 /$-each. P. \& P. $1 /$ ROTARY SWITCHES: 2 pole Mains S witch $3 /-1$ pole 12 way, 2 pole 2 way, 3 pole 3 way, 3 pole 4 way, 4 pole 3 พау, $3 / 6$ each. P. \& P. 1/-
Stockiste of Eagle Product e Grootmans W. W. Wharfedale All makes of amplifiers and speakers aupplied. S.A.E. please. Trade terms to bona fide dealers.

92 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W. 17

Telephone 01-672 3984 (Closed all day Wednesday)
(four minutes from Tooting Broadway Underground Station)

All items previously advertised available. Huge Hill branches

\star LONDON (MUS 2639) 10 Tottenham Court Road PORTSMOUTH (Tel. 22034 350-352 Fratton Road SOUTHAMPTON

72 East Streat
\star BRIGHTON (Tel. 23975)
6 Queen's Road
all mill order Brighton

RELIABLE COMPONENTS!—AT THE RIGHT PRICE!!

SUBMINIATURE TAGBOARDS uide), 6-way, $1 / 3$; 18 -way, $3 /$ each. CAPACITORS,-CERAMIC TUBULAR (Standard Values) $4 \cdot 7 \mathrm{pF}-0 \cdot 01 \mu \mathrm{~F}, 8 \mathrm{~d}$ RESISTORS.-CARBON FILM. wat $5 \% 10 \mathrm{ohm}$ to 10 megohm, 31d. each or
$3 / 3$ per doz. $3 / 3$ per doz
POTENTIOMETERS. - MINIATURE CARBON. $5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ $250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{Megohm}$. LOG.: 5 K $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}$, Megohm. LIN. Less Bwitch.-all at
$3 /$ - each (8/9 each in quantities of 4 or $3 /$ - each ($8 / 9$ each in qua
more of the same value).
DIODES,-OA47, OA70, OA71, OA79 OA81, OA90, OA91, OA200, OAZ0'4 at 2/- еach.
M. R. CLIFFORD \& COMPANY (Components Dept.)

209A, MONUMENT ROAD, EDGBASTON, BIRMINGHAM, 16.

The Dewtron Wave Trap for portables Boosts Radio 1, Luxembourg, Pops etc. Eliminates 'fading'

* Replaces car aerial for portable set $\star 7$-day refund trial. $£ 2$ post free.

ADO

The revolutionary N.D. Effects Amplifler adds fabulons "Big Hall Btereo"' effect to any transistor, radio, tape or player. Adjustahle echo, vibrato and tone. Requires only speaker and PP9 battery

${ }^{\text {Est. } 1943}$ JOHNSONS ${ }^{\text {Te: } 24864}$

VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2 $/ \mathrm{P}, 70-150 \mathrm{Mc} / \mathrm{s}$, $69 / 6$, p.p. 4 s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet size, a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)

17in.-f11.10.0
 19in SLIMLINE
 FERGUSON- 24 Gns.
 TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE illustrated

TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1}{\frac{1}{2}} \times 6 \frac{1^{\prime \prime}}{} \times 3 \frac{1}{2}$ P. \& P. 4/6. Similar cases in plastic $7 / 6$.

SINGLE PLAYER CABINETS 19/6. P. \& P. $7 / 6$.
TV TURRET TUNERS, $5 / \cdot$. New, less valves. Press button models 19/6. P. \& P, 4/6.

VALVES $\$ 1$ per 100. Assorted T.V. Surplus ex-rental dismantled receivers Post 4/6. Send for list.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12
Tel. 01-478, 6001/2/3

BI-PAK SEMICONDUCTORS
 3 RADNOR HOUSE, 93-97 REGENT STREET, LONDON, W. 1

LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS SIZES AND PRICES
demonstrations dally

- WO-YEAR GUARANTE =

TWO-YEAR GUARANTEED TUBES 100\% REGUNNED 141n.-69/6 17in.-89/6 21 in . and ALL SLIMLINE TUBES MAINTENANCE TESTED TUBES 17in.-35/-. Carr. 5i- (not slimline)
COCKTAIL/STEREOGRAM CABINET £25

Polished walnut veneer with elegant glass fronted cocktail compartment, padded. Position or two 101 n . elliptical speakers Record storage space. Height $5 \frac{1}{4} \mathrm{in}$., width $52 \frac{\text { min., depth }}{}$ $4 \frac{1}{2} \mathrm{in}$. Legs 1 gn, extra. OTHER MODELS, SEND FOR FREE LIST
TRANSISTORCHASSIS 59/6
6 Transistors, LW/MW, TeleTransistors, LW/MW, Telecopic Aerlal. Brand New Famous British Manulacturer. (LESS SPEAKERS) P. \& P. 4/6

Z \& I AERO SERVICES LTD.

Pleste send all correspondence and Mail-Orders to the Hoad Offoe
When aending cash with order, please include $2 / 6$ in $£$ for postage and handling MINIMUM CHARGE 2/-. No C.O.D, orders aceepted We wish to buy 723A/B, 2K25, 845, 4-85A, 4C35, 5C22, at 30/-, also other speciala,

Retail Shop 85 TOTTENHAM COURT RDAD LONDON W1
TeI. LANgham 8403 Open all day Saturday

First Quality Fully Guaranteed

P4 19/-	85A2	7/6	CBL31	15	EBF80	$7 / 6$
$2015519 /-$	90 AG	481-	CCH35	91-	EBF83	81-
25L6GT 8/6	90AV	48/-	CY1	81-	EBF89	8/6
$25 \mathrm{Z4G}$ 8/-	90 Cl	121-	CY31	71-	EBLI	14/-
25\%5 81-	90 CG	251-	DAC32	8/6	EBL31	22/6
25Z6GT 11/-	90 CV	251-	DAF40	101-	EC86	11/6
$30 \mathrm{A5} 7 /-$	150 C 2	61-	DAF41	101-	EC88	101-
30 Cl 6/3	807	81 -	DAF91	4/6	EC92	8/6
$30 \mathrm{Cl5} 1818$	811A	351-	DAF92	6/-	ECC33	101-
30 C 17 14/6	813	801-	DAF96	8/6	ECO34	8/-
$30 \mathrm{C18}$ 14/-	866A	14/-	DF96	8/6	ECC35	17/-
30 FS 14/-	872A	501-	DH81	12/6	ECC40	$9 / 6$
$30 \mathrm{FL1}$ 15/-	884	101-	DH101	$7 / 6$	ECCS1	4/-
$30 \mathrm{FL12} 17 \mathrm{I}$ -	931A	651-	DK32	73 -	ECC82	$5 / 6$
$30 \mathrm{FL13} 81-$	955	3/-	DK40	10j-	ECC83	5/6
Due to devaluation, increase in P.T. and consequent rise in purchase costs we have to increase all the above prices by 2 d , in $1 /-$. When remitting please make sure that this surcharge is included.						
30FL14 14/-	991	71 -	DK92	$7 / 6$	ECC84	5/6
30L1 5/6	2050	151-	DK96	776	ECCs5	5/-
$30 \mathrm{L15}$ 15/-	5654	91-	DL66	$201-$	ECC86	7/-
$30 \mathrm{L17} 15$ -	5670	101-	DL91	5/-	ECC88	$81-$
30 P 16 7/-	5768	121-	DL94	6/-	ECC91	816
30 Pl 18 6/-	5842	601-	DL95	ว1-	ECC180	7-
30 P 19 14/-	5847	601 -	DL96	71-	ECC189	11/-
30PL1 16/-	6080	27/6	DM70	5/6	ECC804	$12 / 6$
$30 \mathrm{PL13} 16 /-$	6146	27/6	DM71	6/-	ECC807	13/6
$30 \mathrm{Pl} 416 /-$	6159	$32 /-$	DM160	8/-	ECF80	6/6
35D5 12/-	6360	251-	DY30	$8 /-$	ECF82	6/6
$35 \mathrm{L6GT} 81-$	6939	401-	DY80	71	ECF83	121-
35W4 4 4/6	7199	15/-	DY86	61-	ECF86	$9 / 6$
$\begin{array}{ll}35 Z 3 & 101- \\ 35 Z 4 G T & 8 / 6\end{array}$	7360	${ }_{20 / 6}$	DY87	8/6	ECF200	13/-
$35 Z 4 G T ~ 8 / 6$ $35 Z 5 G T ~ 6 /-$	7586 7591 A	22/6	DY802	$97-$	ECF'201	13/-
$\begin{array}{ll}45 & 8 /-\end{array}$	7895 A	22/6	E88CC	12/6	ECH21	9/6
$50 \mathrm{C5}$ 6/-	9002	5/6	E180F	$17 / 6$	ECH35	11/-
50CD6G	9003	$9 /-$	EabCb	0 8/6	ECH42	10/-
27/6	A2293	18/-	EAF42	8/6	ECH81	5/3
50L6GT 7/6	AR8	8/-	Eb91	81-	ECH83	$7 / 6$
$52 \mathrm{KU} 71-$	ARP12	4/6	EbC33	71	ECH84	9\%-
53KU 12/6	ATg25	9/-	EBC41	817	HCL80	71.
58CG 45/-	AZ11	$7 / 6$	EBC81	6/-	ECL81	7/6
62BT 20/-	AZ31	98 -	Ebc90	4/6	ECL82	6/-
75 Cl 13j-	CBL1	15/-	EBC91	51-	EC'L83	9/6

ECL84 11/- E

25 WATT SOLDERING IRONS

200-250 watt exceptionally well made lightweight soldering irous with polished wooden handles and chromium plated body. Angle bit of sufficient length for long life.
No breakable plastica nsed in construction. PRICE $16 /$ (P.P. 2/-). Spare, bits 1/9, Apare elements 3/B.

THYRISTORS

$3 / 40,400$ p.i.v. 3 amp , stud mounted, Gate $7 / 6$ voltage $3 \cdot 0 \mathrm{v}$, at 20 mA max. $\quad 7 / 6$
BLUE SPOT, 200 p.t.v. 5 mp st voltage 3.25y. at 120 mA mex........................ $12 / 6$ GREEN SPOT, 400 p.i.v. 5 amp, stud mounted.
Gate voltage $3.25 v . a t 120 \mathrm{~mA}$ max. $\quad 17 / 6$

AVALANCHE SILICON

 RECTIFIERSType RAs508AF, 960 p.i.v. at 6 amps. max., stud mounted
$10 / 6$

FOR P.W. CLUBMAN RECEIVER

One each 0C170, OC15, 0C71. Two OA81 and TC1, TC2 Trimmers (3-30pF Beehive), 19/-, post free.

DRY REED INSERTS

Glass dry reed inserts approx. $\frac{t i n}{}$. dia. x lin. long with 5 arial leads. One make contact of 100 mA capaeity at Amp-turns relay coils. PRICE $18 /$ /pér doz. post free.

TEXAS SILICON FULL-WAVE BRIDGE RECTIFIERS 1B20K 10100 piv, 2 ampa, dimensions $1-4 \times 1 * 4 x \cdot 6 \mathrm{in}$. 25/1B100M10 100 piv 10 amps, dimengions 20 Postage $1 / 6$ per rectifer.

MOVING COIL METERS

We announce the introduction of a range of tirst quality noving coil meters with 1.5% accuracy Metera ar flanges. Please write for illustrated leaffets.

SILICON POWER
 RECTIFIERS

BY100, 700 p.i.v., 450 mA , W.E BYZ10, 800 p.i.v., 6 Amps, 8.M BYZ12, 400 p.i.v., 6 Amps, S.M. BYZ13, 200 p.i.v., 6 Ampr., S.M. BYZ 13 , 200 p.i.v., Ampr., S.M. BYZ 19 , as BYZ. 13 but atud negative BYZ 19, ss BYZ. 3 but stud nes D D000, 50 p.i.v., 500 mA , W.E. DD00f, 400 p.i.v., $500 \mathrm{~mA}, W_{1}$ F: , Vote: W.E.-Wire Ended; S.M.-Stud Mounted
 GERMANIUM POINT CONTACT DIODES

OAB. 60 piv/115 mA Gold Bonded
OA79, 30 plv/35 mA, $40 \mathrm{mc} / \mathrm{s}$
OA81, 115 piv/60mA, High Back Resistance
OA95, 00 piv/ $/ 50 \mathrm{~mA}$ subminiature
25% discount for orders of 24 or more of each type

Our 1967/68 price list of Vaives, Tubes and Semiconductors is now ready. In addition to listing prices of some 2,300 types it is a usefulireference work giving: Valve and Tube Equivalents, Specifica tion of Microwave Tubes, Cathode Ray Tubes and Semiconductors. Send S.A.E. (Quarto) now to get your copy free of charge.

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN * THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL RADIO, TV OR AUDIO EQUIPMENT.

住PRACTICAL WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 7 th June 1968 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, JUNE 1968

16 PAGE BROCHURE ON REQUEST. No 21 All units sold separately.

- MP8 mono preamplitier! control unit $\mathbf{£ 6 . 1 9 . 6 \text { p.p. 3/- }}$
- SP4-A monolateren verwion of

MP3 \quad £11.19.6 p.p. $4 / \mathrm{B}$

- SP6-2 mono/atereo (takes thag. pick-up as wetl) $\mathbf{f 1 5 . 1 0 . 0}$ p.p. 5/-
- MPA12/3 12 watt amplitier

E4.10.0 p.p. 2/6

- MPA12/15 12 to 16 ohm

12 watt $\quad 55.5 .0$ p.p. $2 / 6$

- MPAE5 25-30 watt amplider for £7.10.0 p.p. 3/6
- PS24/40 power supply for ©312.
E3.12.6 p.p. 3/£4.10.0 p.p. $3 / 6$
- MU80 power supply for

All sogtems complete with ereyisitver panels and matching silver knobs
Audio Equipment developed Irom Dinsclale Mk. II-each unit or system will compare favourably with other professional equipment selling at much higher prices. Briel details are below:

Complote sumpested systems		Price
1 A	$\mathrm{MP3}+\mathrm{MPA12} / 3+\mathrm{MUP4}$	\$15.5.0 p.p. $5 /-$
2A	$\mathrm{MP} 3+\mathrm{MPA} 12 / \mathrm{L} 5+\mathrm{MU} 40$	216.0.0 p.p. 5/
4	$\mathrm{MP} 3+12) \mathrm{MPAL2/13}+\mathrm{MU} 40$	281.8.6 p-p. 7 -
6	$\mathbf{M 1 3}+\mathrm{MPA} 23+\mathrm{M} \mathrm{UKO}^{\mathbf{0}}$	£18.15.0 p.p. 7 /-
8A	B1'4-A $+(2) 3$ MPA12/15+MU40	£26.0.0 p.p. $8 / \mathrm{h}$
10	AP6.2+(2) MPA12/15 +MU 40	229.5.0 \%.p. $8 / 6$
12A	SP4-A + (2) MP'425 +(2) MU60	£35.10.0 p.p. 16/-
18	MP3-2+(2) MPA25 + (2) MU60	£38.17.6 \%.p. 10/.

THE FINEST VALUE IN HIGH FIDELITY-CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS - complete range of suitable player decks, speakers and tuñers in stock.-ask for latest list 16 -

NEMI INTEGRATED 7 WATT AMPLIFIER AND PREAMPLIFIER - MA 7

New desigu for 3 to 10 ohm speakers, Input for mag. real/ceramic pu's. Tape, tuner mic. etc. Battery operated or mains anit Full Treble Bass controls 8 trainsistor design.
price $£ 8.10 .0$ p.p. 4/-
Leaflet on request (Mains int PS20 62/6. P.P. 3/-)

TRANSIBTOR F.M.STEREO DECODER LH. 1 Brochure 4.	MW/LW QUALITY TRAN SISTOR RADIO TUNER Brochure 5 .
TRANSISTOR CAR RADIO Send for Brochure 15	BRITISE MADE 6-Transistor MW/LW. 12 volt 3 watt output. Push-button wave-change. Boxed, ready to use with Speaker and Battle. Car tixing kit and manufacturers' guarantee. Special Bargain
	Offer. Positive or Negative Earth.
	5 Push-bution E10.10.0 P.P
	de-tuxe version 210.10.0 4/6
	9.6. Positive

TBANSISTORS - SEMICONDUCTORS COMPLETELY NEW 1968 LIST OF 1000 types avallable from stock. Send for your FREE COPY TODAY. (LIst No. 36) *S.C.R.'s from 5/* FIELD EFFECT TRANSISTORS from 9/6 * POWER TRANSISTORS from 5/*DIODES AND RECTIFIERS from 2/30 page illustrated brochure as above including Vaives and Quartz Crystals. 1/- post paid.

MAYFAIR

 PORTABLE

GARRARD DECKS
ALL THE LATEST MODELS

COMPLETE
RANGE IN RTOCK
FROM £5.19.6 STOCK Send for illustrated brochure 16 \& 17 ESTED 128 gns Deferred terms available.
DEPOSIT $\mathbf{3 6 . 8 . 0}$ and 12 monthly payments of f9. Total f144.8.0. EIT of PARTS Delerred terms:-DEPOSIT f29.19.0 12 monthly payments of 土 $^{2} 7$. ORGAN COMPONENTS We carry a counprebensive

Build a Quality TAPE RECORDER with MARTIN RECORDAKITS stock of orkan components TOR TRANSISTOR AND VALVE FREE PHASE
designs. Brocture 10.
TOTAL COST TO BUILD 99 GNS.
Ask for Brochure 9
\star Build this instrument stage by stage in your own A truly portable instrument for all enthusiasta.
Fully TRANSISTORISED POLYPHONIC. Brilish design.

EXPORT PRICES * Call in for a DEMONSTRATION and see for yoursell.

13 NOTE PEDAL KIT £18.0.0.

883 DECK * TWO.TRAOK. Decik 812.19.8. Amplifer

CATALOCUE

LATEST EDITION
£14.19.6. Cabinet sni speaker 7 gns. Complete
kits with MICROPHONE and 7in. 1.200 it. tape, sqиаге эрооы
Today's Value $255 \quad 32$ gns. P.P. $22 / 6$

* FOUR-THACK. Deck £15.19.6. Ampilitler E15.19.6. Cabinet and speaker 7 gns. Complete kits with miCROPHONE aud in. 1;200it. tape, Todas's Value $860 \quad 35$ gns. P.P. $22 / 6$
Asle lor Bochure 6

7-TRANSISTOR
MW-LW SUPERHET
NEW! PORTABLE
New printed circuit design with full power output. Fully tuabie on both mis/lw hands. 7 trancistors plus diode, pust-pull circuit. Fitted 5 inch apeaker, large ierrite aerial and Mullard transistors. Bany to build with terrifte results. All kea! and Continentul TOTAL $\operatorname{cost} \mathbf{E} \mathbf{6 , 1 9 . 6}$
TO BUILD Send for Brochare
P.P. 4/6
BUILD THESE PRACTICAL WIRELESS DESIGNS

CLUBMAN	I.C. F.M. TUNER	SWITCHED F.M.
Leks Chassis	bec. 19 m 7	TUNER
MK I 89/6	99/6	g. 19
MK II $\quad 72 / 6$	$\mathrm{P} \times \mathrm{st}-2 / 6$	77/6
	Including RCA CA3014.	Poat 2/6 List 39.

* 25 pages of transistors and semiconductor devices, valves and crystals
t 150 pages of components and equipment. + 50 pages of microphones decks and $\mathrm{Hi}-\mathrm{fi}$ equipment.
he most comprehensive-Concise-Clear components atalome in Gt. Britain. Complete w

Senditoday $8 / 6$ Poir

HR

303 EDGWARE ROAD

WE CAN SUPPLY FROM STOCK MOST OF THE PARTS SPECIFIED FOR CIRCOITS IN THIS MAGAZINE. SEND LIST FOR QUOTATION.

[^0]: Following the Government reshuffle, which took place after the above leader was written, the new PMG is Mr. Roy Mason. Our comments, however, remain valid.

[^1]: All correspondence intended for the Edltor should be addressed to: The Edltor, "Practlcal Wireless", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscriptlon rates, Including postage; 36 . per year to any part of the world. (C) George Newnes Ltd., 1968. Copyright in all drawings, photographs and articies published in "Practical Wireless" is speciflcally reserved throughout the countries signatory to the Berne

[^2]: To: SINCLAIR RADIONICS., 22 NEWMARKET ROAD, CAMBRIDGE
 Please send POST FREE
 NAME....
 ADDRESS

[^3]:

 T-1K 38/6, p.p. 2/-; EP10K 79/-, p.p. 3/-; IT1-2 70/-, p.p. 3/-: EP30K 120/-, p.p. 4/6; EP10KN 108/-, p.p. 4/6; EP20KN 88/-, p.p. 4/6: EP30KN 150/-, p.p. 4/6. S.A.E. for further details. $0-50$ microamp Level Meters 15/-, p.p. 1/-. Binary Adder/Subtracter Circuit Ideal demonstration in schools. Circuit and text 2/6, post free.
 $\mathbf{1 \%}$ High Stability Resistors 2/-, watt, full range 10Ω to $10 \mathrm{M} \Omega$. Stock list available. 1% Wirewound Resistors, 1 watt, 10 to $5 \mathrm{k} \Omega 3 / 3$; to $20 \mathrm{k} \Omega$ 4/6; 1% add 3d. Your value wound to order.

 PLANET INSTRUMENT CO. 25(W) DOMINION AVENUE, LEEDS 7

[^4]: Transistor ferrite rod aerials, MW and LW 8in. long, /- no data.
 Small 7 tranbistor radios ideal for spares, or repair, in makers boxes with 4 nickel cadmium batteries battery charger, leather case, store soiled and no guarantee, bargain at $22 / 6+2 /-\mathrm{P}$. \& P
 Double gang potentiometers, $250 \mathrm{k}+250 \mathrm{k}$ log., $500 \mathrm{k}+500 \mathrm{k}$ lin., $3 /-$ each.
 Disc ceramios, $1,000 \mathrm{pF}$ ' (P.C. type) short leads, 8 d each; $2 / 3 \mathrm{doz}$. $(500 \mathrm{VW})$
 Transistor capacitors, $0 \cdot 1 \mathrm{mF}$ 50YW, 4 d . each; $3 /$-doz. $2 \mathrm{mF} 6 \mathrm{VW}, 4 \mathrm{~d} ; 4 \mathrm{mF} 64 \mathrm{VW}, 50 \mathrm{mF}$, $6 \mathrm{VW}, 100 \mathrm{mF}$ $6 \mathrm{VW}, 10 \mathrm{mF}$ 12yW, 日d. each: $100 \mathrm{mF} 9 \mathrm{VW}, 150 \mathrm{mF}$ $12 \mathrm{VW}, 350 \mathrm{mF}$. $9 \mathrm{VW}, 8 \mathrm{~d}$. each; 400 mF 15 VW . 500 mF 9VW, $1 /-$
 Small silver mios oapacitors $\frac{1}{3} \times$ in. 80 pf . 200 VW $10 \% 71$ - per 100 (new),
 Mired bag of silver mica capacitors. 100 for $8 /-$ mized bag of silver mica and tubular ceramics Transistors (our selection).
 Transistors, GT45B (0C45) 1/6 each.
 Zener diodes. OAZ247 2/6. OAZ224
 3/6, IS7051A IS7075A 3/8.
 P.C.board, single sided, ${ }^{1} / 18$ in, thick, approx. $5 \mathrm{in} . \times 2 \mathrm{ln}$. $4 \mathrm{~d}^{2} 4 \mathrm{in}. \times 4 \frac{1}{1 \mathrm{in} ., 9 \mathrm{~d}}$.
 Polystyrene capacitors, $1,000 \mathrm{pF} 5 \%, 5,000 \mathrm{pF} 21 \%$ 3d. each; 2/6 doz. (30VW).
 Silver mica oapacitors, $25,30,47,50,75,82,137$, $820,330,375,500,1,000 \mathrm{pF}$, wire ended, 350 VW type, $200 \mathrm{VW}, 2 \mathrm{~d}$. each.
 Minimum order $5 /-$
 POBTAL SERVICE ONLY. Postage: under £1, $1 / 6$; £1 to £2, 2/3. Over $£ 3$ post free. S.A.E. for
 ista.
 A. J. H. ELECTRONICS (GBAQN)
 59. WAVERLEY ROAO, THE KENT RUGBY, WARWICKSHIRE

