adaptable or cost Wsystem

ADCOLA

SOLDERING INSTRUMENTS AND EQUIPMENT

DESIGNED FOR
THE AMATEUR'S
RADIO STATION

ILLUSTRATED
List No. $70 \frac{17}{8}$ BIT IN
PROTECTIVE
SHIELD
List No. 68
for catalogue apply direct to:-
Sales and Service Dept.
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON, S.W. 4

Telephone
016220291
Telegrams
SOLJOINT LONDON SW4

JACKSON
the big name in PRECISION components

No. 6/36 DRIVE
Price 24/-

Incorporating the Dual Ratio Ball Drive providing 36-1 Slow drive and 6-1 Fast drive under one knob with co-axial control. Scale is calibrated $0-100$ and an extra blank scale is provided for individual calibration. Overall size 47 $\times 3 \frac{3}{4} i n$.
The unit consists of aluminium back plate, drive unit, scale, spare scale, transparent cover, hair-line pointer, escutcheon and knob. Fits in front of panel which may be any thickness up to $\frac{1}{2}^{\prime \prime}$ (or more by providing longer screws).

It's reliable if it's made by Jackson!
JACKSON BROS. (LONDON) LIMITED Dept. PW, KINGSWAY-WADDON, CROYDON, CR9 4DG Phone Croydon 2754-5 (01-688). Grams Walfilco, Croydon

RADIO COMSTRUUCTOR

BUILD THIS TRANSISTORISED TELEPHONE AMPLIFIER

Full constructional details

2/6 NOVEMBER ISSUE ON SALE NOW

From your newsagent or 3s. post paid from: DATA PUELICATION LTD., 57 MAIDA VALE, LONDON W. 9.

Transistorised FM Tuner

 SP25 (de-luxe die cabl) ATS.
 Model 2,000 89.19 .0 8.10 .0 \&6.5.0 88.10 .0 12.10.0 818.10 .0 8tereo ceramio cartrid PLINTHS
 Universal fitting de luze Teak Ior SP25, $1,000,2,000,559 /-$ 8,000, AT60 Ditto Persper f5.15.0 LAB80, 401, Snperb Teak/Perspex top finish plinth Normally 818.10. $\quad \mathbf{~} 9.19 .0$ This besutifully compaet 2!in.) will give quieter, more interference free reception. Month or its small power requirements can be drawn from any amplifier. Low noise freq. changer. Smooth 2 gang tnning feeding no less than three I.F. stares coupled to a donble-tuned diseriminato

REDUCED PRICE DUE TO HUGE SALES

HITACHI $\underset{\substack{\text { Lux } \\ \text { ver }}}{\text {. }}$

TAPE RECORDERS
Limited ONREPEATABLE offer of these superb reproducers inst in. Alf A.C. mains, Hi Fi heads. Hi fux speakers, dynamis mikes, sound level meters, tapes. BPare upools, super single hand controls,
structions fabulous fitigh and performanoo. TRA500 2 track 2 speed 5° spooi
TRA505 tack 13^{*} nad now only. 18 ans RASO5 plags stareo records overceids and plays back 2 tracki simpleaneously. Foot- 25 Gns. TR722 8s, Larke semi-professional 50-13.500 R1722 cps on 7
spicer. Wt. 20 Ibs. (lists $447 \% .7$).

BARGAIN PARCELS

Including variable condensers, i.t. collg, loudspeaker plug/sockets, isnobs, pots, condensers. resistors, nuts, bolts, cabinet fltings, switches. translormer choke, Due to heapy demand we now pack them in several sizes-he amazed-try cue now.
3 lbs. (post $3 /-$)
14 lbs. (post 6/-)
$9 /-$
$17 / 6$

FEFIM

FANTASTICALLY POPULAR

GUARANTEED

100 HI-STABS

1\% to $6 \% 100$ n CO-AX, low losg, bd, yd., 25 yds $11 / 6$ 100 RESISTORS

MICROPRONE CABLE. Highest quality black, grey, White, 9d. per yard.
100 CONDENSERS
$9 / 6$
$.3 \mathrm{p} F$
Minature Ceramic, Silver, Mic
to $5 \mu \mathrm{~F}$. LIST VALUE OVER
PLEASE NOTE. 4 wide range of cabinets to callers at all branches.

25 ELECTROLYTICS

Assorted 2 to 500 mid 6 to
volt. LIST
VALUE
OVER
500. 9/6
50 TAG STRIPS
7/6

25 POTENTIOMETERS

 Inclading with switch, long and $9 / 6$ short spindie, pre-sets, log and in. VALUE APPROX.CONNEGTING WIRE
P.V.C. Bright Colours. Five 25it. $4 /$

MAINS-BATTERY Microsonic ?

7 TRANSISTOR RADIOS Superhet, full medium wave coverage amazing volume, clarity and sensitivits pocket wallet. Supplied with rechargeable cadmium colls (2 sets) and 230 VAC charger with 5 smp. plug. Fabulous present. Huke purchase enables us to offer the com pleto oullit at a raction of marsel value (If not a mazed by the valpe and pertorm ance your mithin 14 days).
if returned with $49 /=$ 9/- DACVBS

BY RETURN OF POST-GUARANTEED 3 MONTHS
atisfaction or Moner Bact Guarantee on goods if returned unused within 14 days ALL VALVES ARE NEW UNLEgS OTHERWISE INFORMED. FRER TRANSIT INSURANCE. POSTAGE 1 valve 9 d . $2-11$ 6d, per valve. Free over 18

6BE6	$5 / 6$	7 FF 7	$7 / 6$	80
3BE6	$6 / 6$	787	$14 / 6$	185 BTA
$18 / 8$				

65
65
65
6 f6.10.0 (3 FOR 218) 6 J 7 g
6K7

6 K 7 6K7 | | $9 / 6$ | 20 L 1 | $18 /$ | EBF80 | $7 / 9$ |
| :--- | :--- | :--- | :---: | :--- | ---: |
| 6L 8 GG | $8 / 6$ | 20 P 1 | $9 / 6$ | EBF89 | $7 /$ |
| 6L18 | $7 / 9$ | 20 P 3 | $9 / 6$ | 6 P 25 | $12 /-$ | 6LD20

TRANSISTORS

GUARANTEED TOP QUALITY
Mullard Matched Output $12 / 6$ Kits OC18D and 2-0C81
R.F. Yits Oct4, OC45 (2) $11 /-$ 3 transistors.
 $\begin{array}{llll}\text { AF117 } & 5 / 6 & \text { OC81 } & 5 /- \\ \text { AF187 } & 5 / 6 & \text { OC81D } & 4 / 6 \\ 0 C 26 & 7 / 6 & \text { OC170 } & 6 /-\end{array}$ $\begin{array}{ccc}\text { OC35 } & \text { 9/- } 18 \\ \text { GERMANIUM DIODES }\end{array}$ General Purpose miniature 8d. Gold Bonded ToD Grade 1/ (8/6 doz.).
SILICON RECTIFIERS Guaranteed performance. Top
Makes. Tested 250 v . working $\underset{(3 \text { for } 6 / 6)}{100 \mathrm{~mA}} 2 / 9 \underset{(3 \text { for } 12 / 6)}{500 \mathrm{~mA}} 5 /$

SPECIALS!
Factory fresh loss Cartridges. SRP12
AT6 мк.II 9 gns AT60 $\quad 10 \mathrm{gns}$ (De Luxe Heavy Turntable). Mono first-grade Cartrldges......... 12/ Stereo Ceramic Cartirldges.....19/- extra. EM1 ${ }_{20}^{\text {4-spd heary turntable playe }}$ pick-up (dual cartridges 101- extra)
COLLARO
4 speed Battery Wlth Ilghtwelght plck-up $49 /$ -
(matching dual cartrldge (matching dual cartridge
10/-extra). Postage $5 /$-extra all models)

FHE FLOG LIST No 2 Ewish
 SEND SA.E.OR CALL AT ANY BRANCH FOR YOURS

NAME
ADDRESS
Block Capitals Please
Mark square with cross if Flog Llst No. 1 also reaulred. \quad PW 12

Stockists of Leak, Quad. Ghapman, Goodmam, Armstrong, Triplerone, Linear Rogers, Truvox, Ferrograph, whaffedate, eve., we. .
Post: $1 \mathrm{lb} .1 / 6,1 \frac{\mathrm{lb}}{} / 2 / 6,2 \mathrm{lb} .2 / 9,4 \mathrm{lb} .3 / 8,6 \mathrm{lb} .4 / \mathrm{h}, 14 \mathrm{lb} .5 / 6$. CALLERS A very wide range of alectronic components awail

TEGHNIGAL

RREHT0NI $\begin{aligned} & \text { Pariz Grescent Place. } \\ & \text { Tel. } 880722\end{aligned}$
PORTSMOUTH

WORTHING ${ }^{\text {sen matasum surat }}$

All Mail Orders to Brighton with names and sddreasen
in BLOCK CAPITALS please.

DON'T MISS THISI

GREAT NEWS!

THIS YEAR LASKY'S CELEBRATE THEIR 35th ANNIVERSARY
35 Great Years of service to you based on fair prices and value
To celebrate our success and your satisfaction we are publishing a 12 -page, fully illustrated colour

35th Birthday Pictorial" Catalogue

Printed in large $16 \times 11 i n$. modern magazine format-the "Birthday Pictorial contsins of Radio, Hi-Fi, TV, Test Gear, Components, Communications and other equipment.
PLUS many bargain offers and prices AND in addition every copy of the "Birthday Pictorial" is numyou in our great Birthday Draw with ove $\varepsilon 100$ in Gift Vouchers to be won.
All goods shown in the "Birthday Pictorial" are available over the counter from any of our branches-or by post to any address in the U,K. or overseas-bringing the benefits of shoppin st Lasky's to you in your home.

PUBLICATION DATE—
any moment now, Wake sure of yonr copy NOW-Juat send your address and a 4d, atamp for pogtace.

A MUST FOR EVERY ELECTRON/CS HOBBYIST AND HI-FI ENTHUSIASTI

COMMUNICATION RECEIVERS

NOW AVAILABLE FOR THE FIRST TIME IN GREAT BRITAIN-TWO NEW

TRIO RECEIVERS

MODEL JR-500SE This high performance receiver Is made especialiy to cover the amsteur bands and utillses a crystal controlled double heterodyne circuit for extrs sensitivity all the smateur bands in 7 separ. ate ranges between $3 \cdot 6$ and $29 \cdot 7$ Mc / s. Clrcult uses 7 valves, 2 transtators and 5 diodes plus 8

crystals; output 8 and 500 ohm and 500 ohm phone Jack. Speoial features: Crystal con trolled oacillator Varlable BFO VFO AVC ANL B meter BSB-CW Stand-by awitch especia! double gear dial drive with direct reading down to 1 kHz Remote control socket for connection to a transmitter. Audio output 1 watt. For wae on 115/250 V A.C Mains, Superb modern atyling and control layout-finished in dark grey. Cabinet size $7 \times 13 \times 10 \mathrm{in}$. Weight 18 lbs . Fully guaranteed, complete with instruc-
tion manual and service data. ton manuaf sudi earcrice data.
LASKY'S PRICE £61.19.0 Carriage and Packing $12 / 8$.
MODEL 9R-59DE

HUGE PURCHASE OFFER

DEFINITELY THE MOST AMAZING BARGAIN OF THE YEAR!!!

SHAUBLORENZ

MUSIC CENTER MODEL 5001 COMBINED 126 TRACK TAPE RECORDER AND VHF/MW/LW/SW RADIO

An Incomparable piece of equipment-combining 126 track tape recorder and 4 band radto in one unit of outstanding modern dealgn. The recorder section of the Music Center gives an ajmost unbelievable 46 hours continuous unrepeated playing time-that's right 45 .iat tracks.
126 separate tracks of 22 minutes each. Every track is able to record/replay and runs from track one to 126 completely automatically so that you need not touch tho machine for the total 46 hours record/raplay time. Rewind time for each 22 minute track only 25 seconds. Tape speed $10 \cdot 5 \mathrm{~cm} . / \mathrm{sec}$. Frequency response $14-40,000 \mathrm{~Hz}$. Inputa
 RADIO/Ahath atation required. Bass and Treble controls. Output 10 watts. Bullt-in tuning Into the t weeter. sockets for extension apenkers Beantivly finished built-in 10in. speaker and aize $31 \times 13 \times 11 \mathrm{in}$. Brand New, Boxed and fully guaranteed. Lasky's hage porchase enables us to ofter this amszing ednipm
Value over 2800.
LASKY'S PRICE E61.19.0 Carriage and Packagc anywhere in the U.K. 30/IDEAL FOR CLUBS, DISCOTHEQUES AND ESPECIALIY THE HI-FI ENTHUSIAST

ANOTHER BULK PURCHASE SCOOP STEREO AM/FM RADIOGRAM CHASSIS BY FAMOUS GERMAN MAKER

are bands coverage, plus Whave bands coverage, plus key wave change, separate key wave change, separate
FM, bass, treble and balance controls, and magic eye tuning indicator. Ferrite rod aerla The very latest printed circuitry, Output 5 watte per channel. Complete with multiplex decoder. 5 valves, line-up: ECC85, ECH801, ECC83, ELL80, EAF801. Full vision tuning acale size: 21×6 Ins, Overall dimensions: $21 \times 6 \frac{1}{2} \times 8 i n s$. Made to very bighest standard. LASKY'S PRICE E38.6.6 Carriage and Packing 10\%.
ALSO AVALABLE WITHOUT MULTIPLEX £33.12.0 C. \& P. $8 / 6$.

SPECIAL INTEREST ITEMS!

NEW—LASKY'S MINIATURE TRANSISTOR

 AMPLIFIER MODULESIncorporating the very latest circuitry to provide high sensitivity and good quality compactness. High quality Newmarke ransistors used throughout. All desigued o operate on 9∇. miniature battery Add 1/= on each for Post and Proking
TYPE LRPC 1. 3 transistor. Input sens

TYPE LEPC 4, 5 transistor. Laput sens. 150 mV output 330 mW output imp. 15Ω. Size 24×1ixin. ... PRICE 18/TYPE LRPC 5. 6 transistor. Input sens 8 mV output $3 W$ output imp. 3Ω. Bize $51 \times 1 \frac{1}{2} \times 1 \mathrm{in} .1 . ~ P R I C E ~ 59 / 6 ~$ LRPC 9. Eigh to Low input matching pre-amplifier. Input imp. 1 meg ohm output imp.
 LRPC 10. Magnetic tape replay preamp. designed so that a 450 mH head can be matched into any of the audio amp. modules listed above. Slze $2 \frac{1}{1} \times 1 \frac{1}{1} \times 1 \mathrm{in} . . .$. PRICE $10 / 6$ Note the LRPC 9 and 10 are Ideal for use with the LRPC 1, 4 or 5 and are available at the rednced price of $7 / 6$ if bought with the LRPC 4

GORLER UT 340 FM/VHF TUNING HEART
Permeability toned-covering 87 to $108 \mathrm{Mc} / \mathrm{s}$. For use with one ECC85 valve. In metal case slze $3 \times 24 \times 1 \frac{1}{2}$. Circuit supplled.

CONSTRUCTORS BARGAINS

LONG WAVEBAND COVER FOR THE SKYROVER
4 simple additional circuit provides coverage of the 11001900 M . bands (inis in addition to all exiating Medlum and Short wavebands. All necessary components with construction date.
Only 10/- extra Post Free.
This conversion is suitable for rocelvers that hisve slready been constructed.

THE SKYROVER De Luxe 7 transistor plus 2 diode superbet, 6 waveMand portable recelver ghort waveband $31-94 \mathrm{M}$ Wave also 4 geparate switched band spread ranges, 13 M ., $16 \mathrm{M} ., 19 \mathrm{M}$. snd 26 M . with Band Gpread Tuning for accurate Station Selection. The coll pack and tuning heart is completely factory sssembled, wired and tested, Buperhet, $470 \mathrm{Kc} / \mathrm{s}$. A Mnilard Transistors and Diodes. Uses 4 U2 batteries. Gln. Ceramic Magnet P.M. Bpeaker. 500 mW Output. Telescopio and Ferrite Rod Tunlig Control and Waveband Gelector. In wood cabinet, size $11+\times 61 \times 3$ in. covered wood cabinet, size $11+\times 6, \times 3$ in. covered carrying handle. Car aerial socket itted.
Can now
be built for
E8.19.6
Post
$5 /$-extra H.P. Terms: $60 /-$ deposit and 11 monthly
payments of $12 / 9$. Total
H.P.P.
enc.0.3. Four 0\% batteries 3/4 extra.

Data $2 / 6$ extrat refunded if you purchase the parcel. All components avallable separately.

NEW! LASKY'S CLEAR PLASTIC

 PANEL METERSPrecision made in Japan by HIOKI. Eaoh mater bored and Inlly guaranteed with all firing nuta and washers, Rizes are of front panel. $\Delta d d 1 / 6$ Post on each.

 800 V DC …...... 32/6 Type MK-38A 1 妾们. square 1 mA DC.5 mA
mO \qquad
\qquad $100 \mu \mathrm{~A}$ $22 / 6$
$22 / 6$ $00 \mu \mathrm{~A}$ \qquad
\qquad Type MK-45A 2in. вquare
ype MK-45A 2in. square b mA DO. 300 V DC. $800 \mu \mathrm{~A}$ $.37 / 6$
$.39 / 6$
 1 mas Meter

Type KR-65 $89 \times 31 \mathrm{n}$
 \qquad
 1 mADO B mADO

\qquad
5 mA DO
300 V DO \qquad
300 V D
100 A
$500 \mu \mathrm{~A}$
1 mA м Meter \qquad
\qquad
A 318. вqnare
\qquad
Tэpe MK-65A 3in. sqnare \qquad $49 / 6$
$42 / 6$
$39 / 6$

1 mADC .
5 mA DC
300 V DO
$500 \mu \mathrm{~A}$
1 mA M Meter

361-

TRANSISTOR FM TUNER CHASSIS
 Pully tunable-range 88 to $108 \mathrm{Mc} / \mathrm{a}$. Completely wired on printed circuit. $10 \cdot 3$ Mc/a. TF. 6 transSize $6 t \times 4 \times 2$ in. Operates trom any $9 v$. D.C. source. Full data and circult supplied.

MULTIPLEX ADAPTOR MODEL A1005M

 Now you can enjoy stereo sound with the model Al005 FM Tuner above. Brief spec.:MPX input sensitivity 100 mV . Output 150 mV . Sell powered by av. battery. 4 transistor. and 6 diode circuit. yize $5 \times 2 \times$ in. Also sultable for use with other FM tuers with MPX input.
MASKY'S PRICE 99/6 Post 5/-
PACKAGE PRICE FOR A1005 AND A1005M IF BOUGHT TOGETHER 11 GNS. Post 5/.

SPECIAL PURCHASE—VALVE UHF TV TUNERS Well known British makers surplus stocks. Now availsble for the first time to the Home Constructors. Add e/G Post and Paoking on esoh.
In metal case size $4 \times 6 \times 1$ tin. Fully tunable-complete with PC86 and PC88 valvas. LASKY'S PRICE 29/6 Without valves 7/6

TRANSISTORS

ALL BRAND NEW AND GUARANTEED
GET 81, GET B5, GET 86 2/6; 873A, 874P 3/6; OC45, OO71, OC81D 4/6; OC44, OC70; OC76, OC81 5/6; (match pair 10/6); AF117, 0C200 8/6; 0C42, 0C43, 0C73, 0C82D 7/6, OC201, OC204 15/-; OC205, PC206 19/6; OC28 24/6; OO75 8/

TRANSFILTERS by BRU8H CRISTAL CO. Available trom dook.
TO-01B $465 \mathrm{kc} / \mathrm{s}, \pm 2 \mathrm{kc} / \mathrm{s} \quad \left\lvert\, \begin{array}{ll}\text { TO—O2D } 470 \mathrm{kc} / \mathrm{s} . & 1 \mathrm{kc} / \mathrm{s}, \quad 9 / 6 \text { each }\end{array}\right.$

Branches
 207 EDGWARE RDAD. LONDON. W. 2
 Tel: $01-7233271$
 Tel: 01.6362605
 33 tomenham ct. ro, london, w. 1

 $152 / 3$ FLEET STREET,LONDON, EC4 Tel:FLEaC St: 2833

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST., TOWER HAMLETS, LONDON, E. Tel: 01-790 4821

Eddystone EC10

All transistor communications receiver

Covering the 1.5 to 3.0 MHz maritime band and providing the maximum listening pleasure from medium-wave programmes, the fully tropicalized EC10 gives reliable reception, in any part of the world, of shortwave broadcasting, amateur, aeronautical and other services in the range of 550 kHz to 30 MHz . The 9 -inch tuning scale has a calibration accuracy better than 1% while the logging scale and auxiliary vernier enables station settings to be recorded.
Primary Features: Sensitivity better than $5 \mu \mathrm{~V}$ for a 15 dB signal-to-noise ratio, independent r.f, a.f and b.f.o controls, powered by U2, car, or boat batteries with optional a.c mains unit available. Light, rugged and housed in two-tone steel cabinet for use under adverse conditions. £53.

Comprehensive information from your Eddystone distributor or: Eddystone Radio Limited, Eddystone Works, Alvechurch Road, Birmingham 31. Telephone: Priory 2231. Telex : 33708 a MARCONI COMPANY

OLRUS ELECTRONICS LTD.
 748 High Road, Leytonstone, London E11 Tel: 01-989-2751

g.a.e. for full valyeg hat.

FACTORY NEW FULLY GUARAMTEISD TRANSISTORS

2N1304	6/-	BC107	8j-	NKT408	10/-	0041	61-
2N1305	81-	BC108	6)-	NKT778	6/-	0042	81
2N2926	4/-	BC109	61-	OAS	$8 /$	0043	$91-$
2N3705	$7 / 6$	BCY 10	$7 / 6$	OA6	4/-	OC44	1/-
2N3818	18/-	BCY 12	716	047	4-	OC44M	$5 / 6$
28012	201-	BCY31	19/6	0810	$3 /-$	OC45	$3 / 6$
280124	$251-$	BCY 33	$7 / 6$	0×47	$2 / 6$	OC45M	41
28018	$201-$	BCY84	$8 / 6$	0870	$21-$	OC46	516
ACl07	10/-	BCY 98	$9 / 6$	0473	$2 / 6$	0070	41
AC126	$6 / 6$	BFY17	$7 / 6$	0479	$2 / 6$	0071	81
AG127	7/6	BFY50	8/6	0481	$2 /-$	0072	$51-$
AC128	$6 / 6$	BFY61	71	OA85	$2 / 6$	0078	61
AC176	$7 / 6$	BFY62	$8 / 6$	OA88	4/-	0075	61 -
ACY17	$8 / 6$	BSY27	$6 / 8$	OA90	8/-	0078	8-
ACY18	516	B8Y904	416	0491	2/-	0077	81
ACY19	$8 / 6$	BY 100	$1 / 6$	OA95	$2 /-$	OC78D	$2 / 6$
ACY20	$51-$	BYZ12	101-	OA200	$2 / 6$	0081	5/-
ACY21	$61-$	BYZ18	$6 /-$	OA202	3/6	0081 D	9/-
ACY22	$8 / 6$	CRS110	61-	OA210	7/6	0C81M	6/-
AD140	16/-	CRS140	12/-	0×211	9/6	0081DM	8/-
AD149	16/-	CRS310	7/6	OAZ200	11/-	0C812	8/-
AD161	8/-	CRE340	12/8	OAZ201	101-	$0 \mathrm{C82}$	N-
AD162	8/-	CR74	$17 / 6$	OAZ202	$8 / 6$	0082 D	$8 /-$
ADT140	151-	GET7	51-	OAZ203	$8 / 8$	0 C 8	61-
AF108	18/-	GET20	$3 / 8$	OAZ204	$8 / 6$	$0 \mathrm{C84}$	8/-
AF'114	$8 / 8$	GET102	$51-$	0AZ205	$8 / 6$	0 Cl 22	$12 / 6$
AF115	$81-$	GET108	$4 / 6$	OAZ206	$8 / 6$	00140	$9 / 6$
AF116	$6 / 6$	GET113	5-	OAZ207	$9 / 6$	OC141	12/6
AFl17	51-	GET114	$4 /-$	OAZ208	$6 / 6$	00169	$5 /$
AFl18	10/-	GET115	$91-$	OAZ209	$6 / 6$	OC170	bi-
AF124	$7 / 6$	GET116	$8 / 6$	0AZ210	$6 / 6$	$0 \mathrm{Cl71}$	$61-$
AFl2s	$6 / 6$	GET872	$6 /$	OAZ211	6/6	OC200	$7 / 8$
AF128	$6 /-$	GET874	$51-$	0AZ212	$6 / 6$	0 C 201	101-
AF127	$6 /-$	GRT880	9 9-	OAZ213	$0 / 6$	00202	18/-
4F'139	10/-	GET885	5/-	OAZ247	4/6	00203	10/8
AF178	12/6	GET889	0/6	OAz291	$9 / 6$	00204	19/6
AF186	17/6	GET898	6/-	OC16	15/-	OC205	$12 / 6$
AF239	12/6	NKT121	$8 / 8$	0 Cl 9	$7 / 8$	OC208	$17 / 6$
AFY19	22/6	NET0013	18/6	0 O 20	151-	OOP71	16/6
AFZ11	171-	NKT212	51-	0 C 22	10/-	ORP12	18/6
AFZ12	101-	NKT216	716	0023	12/6		
A8Y26	$8 / 6$	NKT218	6/-	OC24	18/-	P. P. ${ }^{\text {c }}$	
A8Y28	$6 / 6$	NKT227	8/6	0028	716		
A8Y83	61-	NKT274	61-	$0 \mathrm{OC28}$			
A8Y86	$6 / 6$	NKT278	51-	0028	12/6	mum.	
A8Z20	$7 / 6$	NKT279	4-	OC36	101-	S.A.E. for	
A8Z21	12/6	NKT304	8 8-1	0038	12/6	full lidt	

EXPLORER VHF FM-AM RECEIVER FULL KIT $\mathbf{f 4 . 2 . 6}+\mathbf{2 / 6}$ P. \& P.

Whamend pad deat LINEAR PRODUCTS LTD, ELECTRON WORKS, ARMLEY, LEEDS

From Electrical or Hardware shops. If unoblainable write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

Valuabie new hanobooik Finteit ambilious

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?
radio engineering
Advanced Radio - Gen Radio - Radio \& TV Servicing - TV Eng. Telecommunications - Sound Recording - Automation Practical Radio - Radio Amateurs' Exam.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. InstaHutions - Draughtsmanship - Illuminating Eng. -Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Engincering.

CIVIL ENGINEERING Advanced Civil Eng. - Gen. Advanced Civil Eng. Municipal Eivil Eng. - Structural Eng. Sanitary Eng. - Road Eng. -Hydraulics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Electronics - Radar Tech. Frequency Modulation Transistors.

MECHANICAL ENG.
Advanced Mechanical Eng.Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool DesignSheet Metal Work - Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.Gen. Automobile Eng. Automobile Maintenance Repair - Automobile Diesel Maintenance - Automobile Elec. Equipment - Garage Management.

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job.
\star HOW to qualify for rapid promotion.
\star HOW to put some letters after your name and become a key man . . . quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.

* HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE
PRACTICAL INCLUDING EQUIPMENT

Basie Practical and Themetic Coursea for beginners in Radio. T.V., Electronics, Etc A.M.I.E.R.E.City \& Givilds Radio Amateurs Exam. R.T.E.B. Certificate P.M.G. Certificate

Radlo \& Televisionservicing Practical Electronics Electronfcs Engineering Automation

The specialist Electronics Division of B.I.E.T

NOW offers you a real laboratory training at home with practical equipment. Ask for details.
B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than $£ 30$ a week you should send for your copy now-FREE and without obligation.

CLUDING CHEMICALENG. AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase vour earning power? A.M.I.Mech.E., A.M.S.E.. A.M.I.C.E., A.M.I.E.R.E.. B.Sc., A.M.I.P.E., A.M.I M.I., A.R.I.B.A., A.I.O.B., A.M.I.Chem.E., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \&́ GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology 453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

TO B.I.E.T., 453A, ALDERMASTON COURT, 3d. stamp if posted in ALDERMASTON, BERKSHIRE. an unsealed envelope.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).
1 exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

- CONTROLLED TEMPERATURE

Design holds max. temp. of $380^{\circ} \mathrm{C}$. within close limits.

- EASY BIT REPLACEMENT

Simple, fast replacement of low-cost copper bits. Nonwearing PERMATIP bits cut servicing costs.

- BEAUTIFULLY COMPACT

 Length $7 \frac{7}{8} \mathrm{in}$. Weight $1 \frac{1}{4} \mathrm{oz}$. Max. handle dia. 0.715 in .- UNEQUALLED PERFORMANCE Ideal for fast production soldering on the majority of modern electronic equipment.
- all voltages

The LITESOLD range includes six other models (10, 18, 25, 30, 35 and 55 watts), and many accessories. Please ask for colour catalogue L. 10 .

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Tolephone: 01-688-8589 \& 4559

E
 .

 0

It's now ready-the new Eagle Catalogue presenting "The Wonderful World of Electronics". Hundreds of items for the Radio Hobbyist, Hi-Fi En1husiast, Serviceman, Do-it-Yourself, etc. The widest ever choice of sensibly priced Electronic Components, Audio and Tape Accessories, Educational Projects, Home Lighting, Intercoms, Hi-Fi Amplifiers, Tuners, Tape Recorders, Loudspeakers and Speaker Systems all of which are fully illustrated together with technical specifications. There's something for everyone in Eagle's Wonderful World of Electronics so send for your copy now or call in at one of the 6000 Eagle Stockists today.

To: EAGLE PRODUCTS, Dept, P.W.12, Coptic Street, Londor, W.C.L.
Please send me catalogue of the entire "Eagle" range. I enclose 5 s .

Name
Address \qquad

TRANSISTOR MIXER. MODEL TM-1. Four channels. Battery operated. Kit $£ 11.16 .6$. Assembled $£ 16.17 .6$

TRANSISTOR STEREO AMPLIFIER. Model AA-22U. 20 + $20 \mathrm{~W} \pm 1 \mathrm{~dB}$ over 15 to $30,000 \mathrm{c} / \mathrm{s}$ into 8Ω. 5 stereo inputs each channel. Versatile controls. 20 transistor, 10 diode circuit. Modern low silhouette styling . .. matches AFM-1, AFM-2 Tuners. Kit $\mathbf{£ 3 9 . 1 0 . 0}$. Assembled $£ 57.10 .0$ (Cabinet $£ 2.5 .0$ extra).
GARRARD AUTO/RECORD PLAYER. Model AT-60, less cartridge $£ 14.12 .10$. With Decca Deram pick-up $£ 19.7 .4$ incl. P.T.

LOW-COST MONO AMPLIFIER, Model MA-5. 5W. Built in pre-amp. Inputs for Gram, Radio. Separate bass, treble, volume controls. Easy printed circuit construction. Modern functional appearance. Kit $\mathbb{E 1 1 . 9 . 6}$. Assembled $£ 15.15 .0$

HI-FI MONO AMPLIFIER. Model MA-12. 10W output, wide freq. range, low distortion. Use with control units. Models UMC-1 (Mono) or USC-1 (Stereo).

Kit $£ 12.18 .0$ Assembled $£ 16.18 .0$
CONTROL UNITS. Mono, UMC-1, Kit £9.2.6. Assembled £14.2.6. Stereo, USC-1. Kit £19.19.0. Assembled £27.5.0.

DE LUXE STEREO AMPLIFIER, Model S-33H. $3+3 W$ output. Three stereo inputs . . . ceramic/crystal pickup, radio tuner and aux. Separate bass, treble, volume and balance controls. Easy printed circuit construction. Attractive styling. Kit £15.17.6 Assembled £21.7.6
HI-FI STEREO AMPLIFIER, Model S-99. $9+9 \mathrm{~W}$ output. Ganged controls. Stereo/Mono gram, radio and tape inputs. Push-button selection. Printed circuit construction. Matches FM-4U and AFM-1 tuners in styling. Kit $£ 28.9 .6$ Assembled $£ 38.9 .6$

HIGH PERFORMANCE CAR RADIO CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

- Latest semi-canductors (6 transistors, 2 diodes) For 12 volt pasitive or 12 volt negative earth systems Pawerful output (4 watts) Preassembled and aligned tuning unit Push-button tone and wave change controls Positive manual tuning Easy circuit board assombly - Instant operation, no warm-up time Tastofully styled to harmonise with any car colour scheme - High quality output stage will operate two loudspeakers If desired. Can be built for a total price.
Kit (less spkr.) £12.17.0 incl. P.T. ($6^{\prime \prime} \times 4^{\prime \prime}$ LS £1.4.5 extra).

RADIOS

"OXFORD" LUXURY PORTABLE Model UXR-2, 7 transistor, 3 diode circuit. $7^{*} \times 4^{*}$ LS. Push button LW/LM and Tone. Specially designed for use as a domestic or personal portable receiver. Many features, including solid leather case.

Kit £14.18.0 incl. P.T.
TRANSISTOR PORTABLE. Model UXR-1. Pre-aligned I.F. transformers. printed circuit. Covers L.W. and M.W. Has $7^{*} \times 4^{\prime \prime}$ loudspeaker. Real hide case. Kit $£ 12.11 .0$ incl. P.T.
JUNIOR EXPERIMENTAL WORKSHOP Model EW-1. More than a toyl Will make over 20 exciting electronic devices, incl.: Radios, Burglar Alarms, etc. 72 page Manual. The ideal presentl

Kit $£ 7.13 .6$ incl. P.T.
TRANSISTOR STEREO FM TUNER. Elegantly designed to match the Stereo Amplifier, model AA-22U seen above. Many special features include built-in power supply. Available in two units sold separately, can be built for a TOTAL PRICE KIT (STEREO) £24.18.0 incl. P.T. Cabinet $£ 2.5 .0$ extra. (MONO) version £20.19.0 Kit.

SEE HEATHKIT MODELS AT THE heathkit centre 233 Tottenham Court Road, London Tel, 01-636-7349
 Open Mon.-Fri. 9 a.m. -5.30 p.m. (Sat. 9 a.m. -1.0 p.m.)

OPENING SHORTLY THE HEATHKIT CENTRE 17-18 St. Martins House, Bull Ring, Birmingham, 5

TEST INSTRUMENTS

Our wide range includes:
3^{*} LOW-PRICED SERVICE OSCILLO. SCOPE. Model OS-2. Compact size $5^{*} \times$ $7{ }^{\frac{3}{2} / 4} \times 12^{\prime \prime}$ deep. Wt. only $9 \frac{3}{4} \mathrm{lb}$. " Y " bandwidth $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$ Sensitivity $100 \mathrm{mV} / \mathrm{cm}$. T/B $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$ in four ranges, fitted mu metal CRT Shield. Modern functional styling.

Kit $£ 23.18 .0$ Assembled $£ 31$ 18.0 5* GEN.-PURPOSE OSCILLOSCOPE. Model 10-12U. An outstanding model with professional specification and styling. " Y " band width $3 \mathrm{c} / \mathrm{s}-4.5 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{~dB}$. T/B $10 \mathrm{c} / \mathrm{s}-$ $500 \mathrm{kc} / \mathrm{s}$. Kit $£ 35.17 .6$. Assembled $£ 45.15 .0$
DE LUXE LARGE-SCALE VALVE VOLTMETER. Model $1 \mathrm{M}-13 \mathrm{U}$. Circuit and specification based on the well-known model V-7A but with many worth-while refinements, $6^{\prime \prime}$ Ernest Turner meter. Unique gimbal bracket allows operation of instrument in many positions. Modern styling.

Kit $£ 18.1$ 8.0 Assembled $£ 26.18 .0$
VALVE VOLTMETER. Model V-7A. 7 voltage ranges d.c. volts to 1,500 A.C. to 1,500 r.m.s. and 4,000 peak to peak. Resistance $0 \cdot 1 \Omega$ to $1,000 \mathrm{M} \Omega$ with internal battery. D.C. input resistance $11 \mathrm{M} \Omega$. dB measurement, has centre-zero scale. Complete with test prods, leads and standardising battery.

Kit $£ 13.18 .6$ Assembled $£ 19.18 .6$

VVM, 1M-13U

MULTIMETER. Model MM-1U. Ranges $0-1.5 \mathrm{~V}$ to $1,500 \mathrm{~V}$ a.c. and d.c; $150 \mu \mathrm{~A}$ to 15 A d.c.; $0 \cdot 2 \Omega$ to $20 \mathrm{M} \Omega$ $4 \frac{1}{2}{ }^{*} 50 \mu \mathrm{~A}$ meter.

Kit $£ 12.18 .0$ Assembled $£ 18.11 .6$ R.F. SIGNAL GENERATOR. Model RF1 U . Up to $100 \mathrm{Mc} / \mathrm{s}$ fundamentals and 200 Mc / s on harmonics. Up to 100 mV output. Large accurate, calibrated dial scales. Factory wired and aligned coil and band switch assemblies. Ideal for the service shop. Kit £13.18.0. Assembled $£ 20.8 .0$.
TV ALIGNMENT GENERATOR. Model HFW-1. Covers $3.6 \mathrm{Mc} / \mathrm{s}-220 \mathrm{Mc} / \mathrm{s}$ with $0-42 \mathrm{Mc} / \mathrm{s}$ max. sweep width. Stable allelectronic sweep circuit. Built-in marker oscillators- $5 \mathrm{Mc} / \mathrm{s}$ crystal and 20 to 60 Mc / s variable. AGC circuit. Positive action return trace blanking. Kit $\mathbf{£ 3 8 . 1 8 . 0}$. Assembled £49.15.0.
TRANSISTOR POWER SUPPLY. Model IP-20U. Up to 50V, 1.5A output Ideal for Laboratory use. Compact size. Kit $£ 35.8 .0$ Assembled $£ 47.8 .9$

RF-1U

HFW-1
Prices and specifications subject to change without notice

VALVE TUNERS

* HI-FI FM TUNER. Model FM-4U. Covers $88-108 \mathrm{Mc} / \mathrm{s}$. Fly wheel tuning. Pre assembled and aligned. R.F. tuning unit ($£ 2.15 .0$ incl. P.T.) with I.F. output of $10.7 \mathrm{Mc} / \mathrm{s}$ and I.F. amplifier unit, with power supply and valves ($£ 13.13 .0$). For free standing or cabinet mounting.

Total Kit $£ 16.8 .0$

* HI-FI AM/FM TUNER. Model AFM-1. Covers AM 16 to 50 200-550 and 900-2000 metres FM 88-108 Mc/s. Pre-aligned Tuning Heart (AFM-T1-£4.13.6 incl. P.T.) and I.F. amplifier (AFM-A1-£22.11.6). Printed circuit board, 8 valves. Built-in power supply.

Total Kit £27.5.0

* Models available in two units for your convenience.

MULTIPLEX DECODER, Model SD.1. Convert above models to stereo at low cost. Transistorised circuit. Self powered. Compact, matching unit. Kit £8.10.0.

Assembled $\mathbf{~ 1 2 . 5 . 0}$.

LATEST MODELS

STEREO AMPLIFIER, TS-23

AVON SPEAKER

Low-priced $3+3$ watt TRANSISTOR AMPLIFIER, TS-23
Breaks the price barrier in quality stereo amplifier cost. Incorporates all the essential features for good quality reproduction from gram, radio and other sources. 3W rms (15Ω) each channel. Good frequency response. Modern, compact, slim-line styling. Ganged controls. 6 position selector switch. 16 transistor, 4 diode circuit. Walnut veneered cabinet, optional extra. Kit (Amplifier) $£ 17.15 .0$ Cabinet $\mathbf{£ 2 . 0 . 0}$ extra.

Good performance from a Mini speaker with the "AVON' BOOKSHELF SPEAKER SYSTEM. Occupies the minimum space consistent with first class reproduction. Only $7 \frac{3}{4}^{\prime \prime} \times 13 \frac{1}{4}^{\prime \prime} \times 88^{\frac{1}{6}}{ }^{\prime \prime}$ deep. Two special speakers $6 \frac{1^{\prime}}{}{ }^{\circ}$ BASS, $3{ }^{3 \prime}{ }^{\prime \prime} \mathrm{HF}$ unit and crossover network. Kit £4.18.0 incl. P.T. Walnut veneered, Fully finished cabinet, kit £8.18.0.
TOTAL PRICE KIT £13.16.0 incl. P.T.

Build Britain's Best Electronic Kits

Feathlit

No special kit-building skills or Electronic knowledge required

SPEAKER SYSTEMS

HI-FI SPEAKER SYSTEM. Model SSU-1. Ducted-port bass reflex cabinet "in the white". Two speakers. Vertical horizontal models with legs, Kit $£ 12.12 .0$ without legs, Kit $£ 11$ 17. 6 incl. P.T.

The BERKELEY SLIM-LINE SPEAKER SYSTEM, fully finished walnut veneered cabinet for faster construction. Special $12^{\prime \prime}$ bass unit and 4* mid/high frequency unit. Range $30-17,000 \mathrm{c} / \mathrm{s}$. Size $26^{\prime \prime} \times 17^{\prime \prime}$ only $7 \frac{3}{9}{ }^{\prime \prime}$ deep. Modern attractive styling. Excellent value. Kit $£ 19.10 .0$ Assembled $£ \mathbf{2 4 . 0} \mathbf{0}$

COTSWOLD SPEAKER SYSTEMS. Outstanding performance for price.
MFS: Size $36^{*} \times 16 \frac{1}{2}^{\prime \prime} \times 14^{\prime \prime}$ deep.
Kit $£ 25.12 .0 \quad$ Assembled $£ 33.17 .0$ STANDARD: Size $26^{\circ} \times 23^{\prime \prime} \times 14 \frac{1}{2}^{*}$ deep. Kit $£ 25.12 .0$ Assembled $£ 33.17 .0$

- Deferred terms available in UK over £10.
- Extended terms over £75 UK only.
- Full specification sheet of any model available upon request

6rices quoted are Mail Order, retail prices in general slightly higher.

Send for this
 Catalogue it's FREE

36 pages, many models in colour . . . Hi-Fi Audio, Radio . . . Amateur gear, Britains largestselection of top quality, electronic kits.
Mail for your own copy Today! \rightarrow

New! Portable Stereo Record Player, SRP-1

Automatic playing of 16,33,

 45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5in. special loudspeakers. For 220 250v ac mains operation. Over- all cabinet size $15 \frac{9}{16} \times 37 \times 10 \frac{1}{4} \mathrm{in}$.

Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.
KIT $\mathbf{2 7 . 1 5 . 0}$ Assembled price on request.
||II||
"AMATEUR" EQUIPMENT
$80-10 \mathrm{~m}$ TRANSMITTER, DX-40U. Power inputs 75 W . C.W., 60W peak CC phone. Output 40W to aerial. Provision for VFO.

Kit $£ 29.19 .0$ Assembled $£ 41$.8.0
AMATEUR BANDS RECEIVER Model RA-1. To cover all the Amateur Bands from 160-10 metres. Many special features, including: half-lattice crystal fitter; 8 valves; signal strength "S" meter; tuned R.F. Amp. stage.

Kit $£ 39.6 .6$ Assembled $£ 52.10 .0$
160-10M TRANSMITTER. Model DX100U. Careful design has achieved high performance and stability. Completely self-contained.

Kit $£ \mathbf{8 1}$.10.0 Assembled $£ 106.15 .0$

DX-40U

RA-1

[^0]
VIKING TRANSISTOR

40－50 WATT AMPLIFIER

OPERATING INSTRUCTIONS GENERAL．An extremely re－ liable lightweight amplifier cap－ able of giving $40-50$ watts of undistorted sound，made pos－ sible by the use of the latest semi－conductors（transistors） semi－conductors（transistors） and techniques which ensure space－age reliability under the
 most rugged conditions．It is designed as a general purpose amplifier particularly suitable for use with musical instruments that require exceptionally high treble response（not recommended for Bass Guitar）．Tremolo facilities are available on Channel 1 only．INPUTS－CONTROLS－CHANNEL 1 （Tremolo）：this contains two high gain input jack sockets controlled by Volume Control 1 which is mounted directly above the two sockets marked tremolo．BASS 1：gives a controlled boost to the lower frequencies on Channel 1 only．TREBLE 1：gives a controlled boost to the high frequencies on Channel 1 only． TREMOLO：this operates on Channel 1 only and the variations of inten－ sity and speed of the Tremolo beat is adjusted by the controls DEPTH and SPEED．A socket is provided in the rear of the amplifier so that the Tremolo may be switched on and off by the use of a footswitch plugged into the socket．If you wish the Tremolo to be used without plugged switch，this is possible as the footswitch is only used to short foot－ effect．INPUTS AND CONTROLS－CHANNEL contains two high gain input jack sockets controlled by Volume Control 2 which is mounted directly above the sockets marked Normal．TREBLE： gives a controlled boost to the treble frequencies on Channel 2 only． MAINS VOLTAGE：fully adjustable， $200-250$ volts，A．C． 50 cycles． POWER OUTPUT： $40-50$ watts sine wave British rating．Very little distortion．OUTPUT IMPEDANCE： 3 ohms．Price 21 gns．plus $£ 1$ postage and packing．

VALVE VERSION OF THE ABOVE AMPLIFIER 40－50 watt，A．C． mains 200／250 volts for 3 and 15 ohm speakers．Price 27 gas．plus $£ 1$ postage and packing（No tremolo facilities on this amplifier）．

POCKET MULTI－METER

Size $37 \times 21 \times 1$ xin．Meter size $2+\times 1$ xin．Sensitivity 1000 D．P．V．on both A．C．and D．C．volts． $0-15,0-150,0-1000$ ． with test prods，battery and full instructions，42／6．P．\＆P． 3／6．FREE GIPT for limited period only． 30 watt．Electric Soldering Iron value 15／－to every purchaser of the Pocket
Multi－Meter．

600 mW SOLID STATE 4－TRANSISTOR AMPLIFIER

 mers ensures maximum efficiency and frequency response．Automatic heat compensation．Combined AC／DC feed back．Class B output stage． i．e．output power is proportional to total current consumption，this ensures long battery life．Under no signal condition（1Q）current drain is approx．12mA at 9 volts（4mA in the output pair）．Printed circuit construc－ tion，size $24^{\prime \prime} x^{7^{\prime \prime}}{ }^{\prime \prime} \times{ }^{\frac{7}{8} " .}$ ．Speaker output impedance 12 ohms．Output power 600 mW at 5% distortion， 400 mW at 2.5% distortion， 750 mW at 10% distortion．Supply 9 volts．Total current consumption at a reasonable listening level approx． $35-40 \mathrm{~mA}$ at full power（speech and music），average 65 mA ．Sensitivity for 50 mW output is 10 mW ．Frequency response－ 3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$ ．Price $15 /-$ ，plus $1 / \sim$ P．\＆P． $7^{\prime \prime} \times 4^{\prime \prime}$ speaker to suit， $13 / 6$ plus $2 /-\mathrm{P} . \& \mathrm{P}$ ．
8－watt 4－valve PUSH－PULL

 AMPLIFIER \＆METAL RECTIFIERSize： $9^{\prime \prime} \times 6^{\prime \prime} \times 11^{\prime \prime}$ ．A．C．Mains， $200-250 \mathrm{~V}, 4$ valves． For use with Std．or L．P．records，musical instru－ ments，all makes of pick－ups and mikes．Output 8 watts at 5 per cent of total distortion．Separate bass and treble lift control．Two inputs with controls for gram．and mike．Output transformer tapped for 3 and 15 ohm speech coils．Built and tested．£4．4．0．P．\＆P．11／－， 8^{*} x $5^{\prime \prime}$ speaker to sui price $14 / 6$ plus $1 / 6$ P．\＆P．Crystal mike to suit $12 / 6$ plus $1 / 6$ P．\＆P．

GEC KETTLE ELEMENT

3，000W WITH AUTOMATIC EJECTION $200 / 240 \mathrm{v}$ ．Size of hole required $1{ }_{16}{ }^{\prime \prime}$＂． List Price 32／－．Our PRICE
15／－．P．\＆P． $1 / 6$

RADIO \＆TV COMPONENTS（Acton）LTD

21c High Street，Acton，London，W3
Shop Hours 9 a．m．－ 6 p．m．Early Closing Wednesday

Goods not despatehed outside U．K．Terms C．W．O． All enquiries Slamped Addressed Envelope

Also at 323 EDGWARE ROAD，LONDON，W．2．Personal shoppers only． Early Closing Thursday．All orders by post to our Acton address．

STAR SR 150 COMMUNICATION RECEIVER

Frequency range： $535 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ ． 4 wavebands． 5 valve superhet．In－ corporates BFO，bandspread tuning， ＂ S ＂meter，external telescopic aerial and ferrite aerial．Built－in 4 in．speaker Easy－to－read dial．For 240 V A．C operation．Complete，brand new，with full instruction manual． 15 gns．， P．\＆P．10／－．

TRANSISTORISED $1 \frac{1}{2}$ WATT

AMPLIFIER

Incorporating Mullard transistors type： 2，AC128＇s，2，OC75＇s，and 2，AA12＇s． Separate bass and treble volume con－ trols．Complete with Power Supply AC mains， 240 V ．Size $7 \frac{1}{2}^{*} \times 3 \frac{1}{2}^{\prime \prime} \times 2^{n}$ AC mains， 240 V ．Size $7 \frac{\text { the }}{2}$
Price 50／－plus $2 / 6$ P．\＆P．

ANTI－THIEF CAR BURGLAR ALARM

The Melguard Safermatic consists of an electrical device housed in small

 metal box $4^{\prime \prime} \times 2^{\prime \prime} \times 1 \frac{1}{2}$＂，which has been designed and developed to provide protection required by the average motorist at an economic cost．Using this system，an alarm and the immobilised condition is set automatically as soon as you park the car．Should you leave the key in the ignition，no one but you can drive the car away．Upon entering the vehicle the method of starting the car is by switching on the ignition，depressing two hidden switches，and simultaneously operating the starter．Location of the switches is known only to you．Should the alarm be set off it can be stopped by following the normal starting procedure．For 12 V operation． List price 79／6，our price 29／6 plus 2／6 P．\＆P．Full easy－to－follow in－ structions supplied．
3 to 4 Watt AMPLIFIER

$3-4$ watt Amplifier built and tested．Chassis size $7 \times 34 \times$ lin．Separate bass，treble and volume control．Double wound maina transformer，metal rectifler and outpu tranatormer for 3 ohms speaker，Valves ECCC81 and 6V6 2．5．0 plus 『／6 p．\＆p．

＂＇MUSETTE＂6－Transistor Superhet Portable Radio $\star 21^{\prime \prime}$ Speaker．${ }^{6}{ }^{6}$ Transistor Super－ het Output 200 mW ．\ddagger Plastic Cabinet in red，size $44^{\prime \prime} \times 3^{\prime \prime} \times 1 \xi^{\prime \prime}$ and gold speaker louvre．\star Horizontal Tuning Scale．\star Ferrite Rod Internal Aerial． \star IF $\$ 60 \mathrm{kc} / \mathrm{s}$ ．\star All components $\stackrel{\star}{ }{ }^{\star}$ errite Rod and Tuning Assembly mount on printed board．\star Operated from PP3 Battery．\star Fully compre－ hensive instructions and point－to－point wiring diagram．\star Printed Circuit Board．\star Tunable over medium and long waveband．＊Car aerial and earpiece socket．

Prive 39／6．inc．carrying frce with parts．P．\＆P． $3 / 6$ ．

NEW TRANSISTORISED
SIGNAL GENERATOR

Size 5 f $x 32 \times 1$ lin．For LF and RF alignment and AF output 700 c／s frequency coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{mo} / \mathrm{m}$ in switched trequencles．Ideal for alignment to our Elegant Seven and Musette．Built and tested． $39 / 6$
P．P．P．3／6．3

BSR TAPE DECKS

200／250V A．C．mains

Type TD2 Tape speed 3 寻 twin track， $\mathbf{~} 5.19 .6$. Type TD10 2－track， 3 speed，plus rev．counter－ type TD．
Type TD10 4－track， 3 speed，plus rev．counter－ £9．5．0．P．\＆P．on each $7 / 6$ ．

FIRST QUÁALITY P．V．C．TAPE

R \＆TV

砵＂Std．850ft \qquad $5^{\prime \prime}$ L
$3^{\prime \prime}$ T
$5^{\prime \prime}$
$5^{\prime \prime}$ T
$7^{\prime \prime \prime}$ I
$4^{\prime \prime}$ L．P．850ft 850 ft ． F．\＆$\stackrel{5 t^{*} \text { P．on each } 1 / 6,4 \text { or more post free．}}{ }$
$.10 / 6$
$.10 / 6$ $10 / 6$
$.10 / 6$ $.25 / 6$
$.32 / 6$ $.32 / 6$
$.42 / 6$ ． $12 / 6$

GEC

AC Mains $230 / 250 \mathrm{v}$ ． complete with pull switch． Size $6^{*} \times$ $6^{\circ \prime} \times 4^{\prime \prime}$ ．

Price $27 / 6$ | plus |
| :--- |
| P． |

DODRBELL
plete
Complete with mains transformer 240 v ．AC \＆ bell push． Price 12／6 plus

Elegant Seven mk il a combined portable and CAR RADIO

SPECIAL OFFER

Buy yourself an easy to build 7 transistor radio and save at least f10.0.0. Now you can build this superb transistor superhet radio for under $\mathbf{£ 4 . 1 0 . 0}$. No one else can offer such a fantastic radio with so many de luxe star features.

* De luxe wooden cabinet slze $12 \frac{1}{1}^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{1}^{\prime \prime}$.
\star Horizontal easy to read tuning scale printed grey with black letters, slze 111" ${ }^{\prime \prime} \times 2^{\prime \prime}$
\star High ' Q ' ferrlte rod aerial.
* I.F. neutralization on each separate stage
* D.C. coupled push pull output stage with separate A.C. negative feedback.
* Room filling output 350 mW .
\star Ready etched and drilled printed circuit board back printed lor fool proof construction.
\star Fully comprehensive Instructions and point-to-point wring diagrams.
* Car aerlal socket.
* Fully tunable over medium and long wave. 168-535 metres and 1250-2000 metres.
* All components ferrlte rod and tuning assembly mount on printed board.
* $5^{\prime \prime}$ P.M. speaker.
\star Parts list and circuit diagram 2s. 6d. tree with parts.

POWER SUPPLY KIT
To purchasers of 'Elegant Seven' parts, incorporating mains transformer, rectifier and smoothing condenser. A.C. mains $200 / 250$ volts. Output $9 \mathrm{v} 100 \mathrm{~mA} .9 / 6$ extra.

RADIO \& TV COMPONENTS (ACTON) LTD.

All orders by post to be sent to our Acton address
323 EDGWARE ROAD, LONDON, W2
Personal shoppers only. Early closing Thursday.

21C HIGH STREET, ACTON, LONDON, W3
OPEN 9 a.m.-6 p.m. INCLUDING SATS. EARLY CLOSING WED goods not despatched outside u.k. terms c.w.o. All enquiries stamped addressed envelope

CONCORD RECORDING

3 in . Std,		3/11	5 in . D.P.		15/-
3 in . L.P.		4/11	$5{ }_{4}^{3}$ in. L.P.		15/-
$3 \frac{1}{4}$ in. T.P.		12/6	$5^{3} \mathrm{in}$ in. D.P.	..	19/6
5 in . Std.		10/-	7 in L.P.		18/-
5 in. L.P.		12/6	7 in . D.P.		22/6

These tapes are top quality and not cheap sub-standard. Post $1 / 6$ per tape. Post free on 4 tapes or more.

TRANSISTORS at bargain prices!

OC22	9/6	OC77	4/6	AC127	3/6	BCY34	5/9
0023	10/-	OC78	4/-	AC128	3/6	BCY38	5/9
OC25	9/-	OC780	4/-	AD140	10/6	BFY50	5/9
OC26	9/6	OCB1	3/6	AF114	5/3	BFY51	4/6
OC28	10/-	OC81D	3/6	AF115	5/-	BFY52	5/9
OC30	10/-	OCB2	3/6	AF116	5/-	BYZ12	5/9
OC35	12/6	OC82D	3/6	AF117	4/6	BYZ13	5/3
OC36	12/6	$0 \mathrm{C8} 4$	5/6	AF118	4/-	BYZ16	10/-
OC38	12/6	OC123	5/-	AF119	4/-	GET103	4/6
OC44	3/6	OC169	4/6	AF125	4/6	GET113	4/6
OC45	3/6	OC170	4/6	AF127	4/6	GET116	7/6
OC46	4/-	OC171	4/6	AFZ12	6/6	GET887	5/-
0 C 70	3/6	OC172	4/6	BCY10	5/3	GET889	5/-
OC71	3/6	OC200	7/6	BC107	8/3	GET890	5/-
OC72	3/6	OA81	2/6	BCY12	5/3	GET897	5/-
OC75	3/6	AC107	6/6	BCY33	5/-	GET898	5/-
OC76	4/-	AC126	3/6				

C.W.O., P. and P. 2/- in E Min. 1/-

Send 3 d . stamp for catalogue containing $\mathrm{Hi}-\mathrm{fi}$, transistor radios, microphones, auto-changers, etc.
MOORDOWN RADIO LTD.
941 WIMBORNE ROAD, BOURNEMOUTH. Tel. 59866

GOODMANS HIGH FIDELITY MANUAL
A Guide to full listening enjoyment
The Manual is much more than a catalogue of Goodmans High Fidelity Loud-speakers-it contains informative articies, including advice on stereo, special begin You'll find it interesting as well as informative.
The Perfect Combination
МАХАМР 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts . Silicon solid state - Integrated pre-amplifier Negligible distortion - $£ 49.10 .0$.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER
Transistorised - Outstanding specification. Stereo de-coder (optional) $\mathbf{£ 6 0 . 0 . 0}+$ £11.18.3. P.T. inc. Surcharge.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1^{\prime \prime}}{} \times 5 \frac{1^{\prime \prime}}{} \times 7 \frac{1_{4}^{\prime \prime}}{}$ deep) in Teak or Walnut to order.
Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual - send the coupon for your FREE copy or pay an early visit to your Goodmans dealer.

[^1]
PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS. Telephone: cleckheaton 2866

VALVE LIST-Ex. Equipment. 3 months' guarantee: 10F1, EF80, E891, ECL80, EF50, PY82, PZ30, 20P3. All at 10/-per doz. Post paid. Single valves, post 7d.

ARP12	1/6	EL38	5/-	PY8	16	U801	8	,	
EB91	9d.	EY86	5/-	PY82	1/6	10 C 2	5/-	6B8	1/8
EBF80	3/-	KT36	5/-	PZ30	5/-	10P13	2/6	6K7	1/9
ECC81	3/-	PCC84	2/-	U25	5/-	185BT	8/6	6K25	5/-
ECC82	3/-	PCF80	2/-	U191	5/-		3/6	6L6	6/-
ECC83	4/-	PCL82	4/-	U281	5/-	20D		6P25	5/-
ECL80	1/6	PL36	5/-	U282	5/-	20L	5/-	6 U 4	5/-
EF50	1/-	PL38	7/-	U301	5/-	20P1	5/-	6V6	1/9
EF80	1/6	PL81	4/-	U329	5/-	20P3	2/6	6P28	5/-
EF91	9 d.	PY33	5/-	U251	5/-	20P4	8/6	EY51	2/6

NEW VALVES EX UNITS

IT4, 2/-: 1 L4, 2/-; IA3, 2/6; IS5, 2/6; 12AT7, 3/-; 3A4, 2/6; EF91, 2/-; EB91, $1 / 3$; EL91, 2/-; UU8, 4/-; 6SN7, 2/6; box of 50 ARP12 Valves, 22/-, post paid.
Jap Personal Earpiece. Small or large plug, 1/11. Post paid. Silicon Rectifiers. $500 \mathrm{~mA}, 800$ P.I.V. No duds, 2/6. Post paid. Top Grade Diodes, $3 / 6$ per doz. No duds.
Motors, Quarter H.P., 230 Volt. 1400 revs, 26/-. Carriage 10/-. Sixth H.P., 15/-, Carriage 10/-. Ex washing machines. All tested. Top Grade Mylar Tapes. 7-inch Standard, 11/6; L.P., 14/-; D.P., 19/6. 5-inch Standard, 7/9; L.P., 10/-. Post on any tape 1/6 extra.
Speakers ex TV Sets. All 3 ohm P.M. and Tested. $6 \times 4,3 /=$ Post 2/9. Six for 22/-. Post paid. $7 \times 4,5 /-$. Post 2/9. Six for 34/-. Post paid. 5 -inch round, $3 /-$. Post $2 / 9$. Six for $22 /-$. Post paid.
New 12-inch Speakers. 3 or 15 ohm with built-in tweeter. P.M., 28/6. Post paid.

SPECIAL SALE OF EX ARMY SURPLUS

Small S.W. Chassis. 6×4 inch. Complete with slow motion drives, condensers and spares, 3/9. Post 6/6.
New Test Set, Type SB. Complete with valves and 3 -inch $0 \cdot 1$ milliamp meter. Less crystal, 35/-, Carriage 10/-.
Electric Clock Movement. Complete with train of brass gear wheels. Tested on 230-250 A.C. mains, 8/6. P/p 4/6.
U.S.A. Battery S.W. Set. Type 48. 6-9Mc/s. Complete with six valves in clean condition. Not tested, 10/-. Post 6/6.
U.S.A. Tube Unit. Complete with two 5FP7 tubes 6 H 6 Valves and spares, Clean condition. Not tested, 12/6. Carriage 10/-.
88 Set. RX. TX. Less send/receive switch. Valves and crystals, 3/3. Post 5/-.
U.S.A. 6 and 12 volt Stabilized Power Pack, Type PE97A. Used condition. Not tested, 15/-. Carriage 10/-.
U.S.A. tube unit BC993A. Complete with 16 valves tuning meter. 3 -inch tube Type 3EP1. Unit in used condition not tested, 27/-. Carriage 10/-.
Receiver Type 68T. Complete with four battery valves, $3-5 \mathrm{Mc} / \mathrm{s}$. Not tested, 12/-. Post 6/6.
QPP Battery Inter. Com. Amp. Complete with valves in a nice wooden box. New, 5/-. Post 6/6.
Wavemeter Type W1117. $125 \mathrm{Kc} / \mathrm{s}-20 \mathrm{Mc} / \mathrm{s}$. Less meter. Used condition, not tested, 37/6. Carriage 10/-
Type 19 Sets, Mark 3. Good clean condition. B Set removed also 807 valve. Receiver Side Bench tested. All you require is a power pack. This set will not transmit. Price 35/-. Carriage 10/-.
Reclaimed TV Tubes. Six months guarantee. AW43-80, 40/: ; MW43-69, 30/-; CRM172, 30/-; CRM142, 17/-; MW36/24, 17/-. 12 -inch tubes, 10/-. Carriage on any tube 10/-.
Brand New 19-inch TV tubes with slight glass fault, 50/-. Carriage 10/-. 12 months' guarantee.

TUHEYOUR CAR PROEESSIOHALIY-Hetironically-Yourself

* BETTER PERFORMANCE \& MORE M.P.G. * GREATER RELIABILITY

Easy and fun to build these two kits are new to the U.K. and obtainable from Electroniques. A comprehensive tuning chart tells you how to use them and then right away you've got the optimum engine settings for your car to give maximum performance and economy. The cost of the kits is soon recovered and then you're saving a fortune.
AUTO ANALYSER Pinpoints the faults and helps you put them right. Checks voltage and current regulators, genera-
tors and alternator diodes. Detects distributor wear, variations in dwell angle and condition of points. Determines coil resistance and locates poor or open-circuits. Ranges for all engine types. Cost $£ 24.28$.
TIMING LIGHT Built-in power supply gives brilliant 600 V narrow beam flashes. Synchronised with flywheel r.p.m. the timing marks "stand still" for perfect ignition timing. Checks firing intervals in compression cycle, synchronisation of contact breaker

arms, automatic advance/retard mechanismand distributor cam wear. Cost £10.19.6.
Credit terms are available and all kits are fully guaranteed, with our friendly Service Department always available to advise or assist.
Further details on these and dozens of other kits in our FREE 64-page brochure.

0
Heavy cast construction. Latest high efficiency ceramic magnets Treated Cone surround giving low fundamental resonance. "D" indi15 ohms. Response providing extended frequency range. Impedance 3 or IHF510 5 in. 8 watt
IIF 800 D 8 in 8 w HF811D 8in. 8 watt MF811D gig. 10 watt
MFIO1D loin. 15 watt

,	HF120 12in. 15 watt	9
$49 / 9$ $59 / 9$	HFI20D 1火in. 15 wat	19
	IFI26D 12in. 15 watt	

RECORD PLAYING UNITS Ready for plugging in to Amplifier or RP2 Consisting of Garrard SP25 fitted Goldring ctrge with damond stylus. Only $19 \frac{1}{2}$ Gins RP3 As above but with Goldring Lenco GL68 Tra

AUDIOTRINE PLINTHS

FULLY TRANSISTORISEIS, SOLID STATE CONSTRUCTION
IIGII HIHELITY OUTPUT OF 65 WATTS PER CHANVEL IIGII FIIELITY OUTPUT OF ${ }^{65}$ WATTS PERE CHANNEL. Designed for optimum performance
with any crystal or ceramic Gram
P.U. cartridge. Radio Tuner. TapeRe
corder.
switchedike etc. A input sockets on eacharate
nel t Separate Bass and Treble con-
trols \& Slide Switch for mono use 4
Speaker Output $3-15$ ohms 4 For 200 . Speaker Output $3-15$ ohms \& For 200 -
250 v . A.C. Mains R F Frequency
Response $30-20.000$ e.p.s. $2 \mathrm{~dB} \star$ Harmontc Distortion 0.3% at 1000 .p.s. Hum and Noise - 70 dB \& Sensitivities (1) 300 mV (2) 100 mV (3) 100 mV (4) 2 mV t Handsome brushed silver finish Facia and Knobs Complete kit of parts with full wiring diagrams and
instructions. Factory built with 12 mth gntee 144 Gns. 1 GNS Teak finishedcabinet as 1llustrated eis.13.6. extra. 14.0) Carr.10/6

Normally over $£ 33$. Carr. 151 Cartridge $\mathbf{2 6} \frac{1}{2}$ Gins.
HIGH FIDELITY LOUDSPEAKER UNITS Cabinets of latest styling Satin Teak or wainut acoustically lined (and ported where appro
priate). Credit terms available on

The DORSET

 The DORGHESTER 10in. Fitted Audiotrine HFIOID S Rating 15 watts. Impedance 3 or 15 ohrms Frequency $30-20.000$ R.p.s. Response $12 \frac{1}{2}$ Gis.

The GLOUCESTER
 The BRONTE Size $22 \times 15 \times$ 91n.
Fitted Wharfedale Super 8 RSDD or Audiotrine HF Roll speaker, with dual cone, Rating $6 / 10$ watts. Impe-
dance 3 or 15 ohms. Carr, 16/6. 13 Gns.

AT60. SP25 or Goldrig AT6 Mk 2, with clear Perspex cover as
illustrated.
Complete
E.19.11 HI-FI LOUDSPEAKER ENCLOSURES All types of pleasing modern design atcoustically linished and in light Teak or Waltut venerr. Credit terms avallable

AUDIOTRINE HI-FI TAPE RECORDER KIT

 REALISM AT INCREDIBLA LOW COST: Please send CANBE ASSEMBLED IN AN HOURSINTS.AE FOT leafet. LINEAR TAPE PRE-AMPLIFIER. TyDe LP/1 Swithed Equalisation. Positions for Recoringat 1 inn., Reoringe Level indicator, Drsigned primariy as the link between a Magnavox Tape Deek and Hi-Fl amplifier suitable must. $\quad 10 \frac{1}{2}$ Gns.
Taipe Decks. Terms avaulaple. LINEAR SOLID STATE UNITS IN STOCK R.S.C. TA6 6 WATT HIGH FIDEELITY SOLID STATE AMPLIFIER
606 ${ }_{2}^{201-2 \% 0 v . ~ A C ~}$ Frequency Response $30-$
20.000 cps
Distortion Distortion 0.3% at 1000 cps .
Separate 'lift' and 'cut' controls. 3 input Bockets for Treble Gram, Radio or Tape, Input Selector Switch. Output for $3-15 \mathrm{ohm}$ speakers. Max. Sensitivity 5 mV . Fully
enclosed onamelled case, $9 t \times 2 t \times$ 5tins. Attractive
 wiring diagrams and instructions,
Or factory built with 12 months
guarantee e7.19.11. Carr. $7 / 6$.
lifer with switched equalisation for each of 3 speeds. High Flux P.M. Speaker, empty Tape Spool. Reel of Best Quality Tape and hand some Portable cabinet of latest styling. finished darkgrey leather-
clothe $141 \times 17 \times$ bin. and circuit. Purchased separately would

${ }_{\text {Inc. }}^{\text {Inc }}$ Garrard Unit Pizyer
Goldring CStad
high compliance ceramic
cartridge wich
diamone diamond stylus. 44 Gns. Carr. 25/-

Cover and Pair of Dorset Speaker
Units. Total 556 . Ready to use. Units. Total $£ 56.2$ Ready to use.
Or Deposit $£ 5.3 .2$ and 9 mthly.
pymts. $£ 5.3 .2$. (Total $£ 51.11 .8$) AUDIOTRINE HI-FI SPEAKER SYSTEMS 15 ohm high quality speaker;
12.000 line
cross-over I5 ohm high quality speaker; cross-ove
unlt and Tweeter. Smooth response and extended frequency range ensuresurpris-
ingly realistic reproduction. Standard 10 watt rating. Or Senior 20 wat 5 Gns. inc. HF126 speaker \quad G GIS

RSC TITM1 TRANSISIORISED VHIF WM RADIOTUWER

 finlshed cabinet as Tllustrated $19{ }^{19}$ Gins. Terms: Deposit $£ 5$ ments $39 /$

thigh-sensitivity $\boldsymbol{*}^{2}$ (00-250v. A.C. Mains

 to visually match our Super 15 and 30 amplifiers and of the same high standard of perform'ce and reliability. The pre-wired tuning head facllitates sistors and compon'ts used. A quality productat half the cost $25 \frac{1}{2}$ Gns.

STEREO/TEN HIGH QUALITY AMPLIFIER 5 watts high quality output on each channel. Sensitivity 50 milli-
volts. Suitable all crystal or ceramic stereo heads. Ganged Bass and Treble Controls, Valves ECC83, (2) EL84, (2) EZ81. For 2-3 ohm speakers. Complete kit with full wiring diagrams and
instructions. Or supplied factory assembled instructions. Or supplied ractory assembied 88.15 .0 Terms: Dep. 36/-and 9 monthly payments 25/- (Total \&13.4.9).

R.S.C. STEREO/20 HI-FI AMPLIFIER

PROVIDING 10/4 WATT CLTHA LINEAR PUSII-PULL

 GRAM, RADIO OR TAPE, (7) valves ECC83, (2) ECL86. (4) EZ81. Frequency IResponse: down. Sensitivity : 20 mlliv olts max. Harmonic I) istortion: $0 \cdot 2 \%$ AFour-position tone combensation and Inbut setector Switch. 太Ntereo/Mono switch. \star Neon panel indicator tirandsome Perspex Frontplate. ASrbarate IBass "IAft" anil "Cut" controls. Output transformers are high-quality sectionally wound. Outputs for 3 and 15 ohm speakers. withour uet 12 mont

payments 4312 total 822.8.6. Senc s.a.e. Jor teantee. HIGH GAIN

R.S.C. $4 / 5$ watt A5 HIGH GAIN AMPLIFIER A highty-sensitive 4-valve quality amblifier, for the home, small club, etc. Suitable for all crystal or ceramic i. U. heads and practiridib down. Nefative Feedback 15dif. Theserve jower supply 300 v
 diarrams aud instructions.
£4.17.9
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Highly sensitive. Push-Pull high output, with Pre-amp./Tone Control,Stages. Performance
 Frequen equal response most expensive amplifirs. Hum level -output transformer. All frst Erade components. Valles EF86. EF86. ECC83 7, 807. GZ34. Separate Bass and Treble Controls. Sensitivity 12 Designed for Clubs, Seliools, Theatres, Dance Ialis or Outdoor Functions, etc. For use with Electronic Organ, Guitar, String Bass, etc. Gram. Radio or Tape. Reserve L.T, and H.T. for Radio Tuner. Two inputs with associated volume controls so that two separate inputs such as Gram and "Mike" can be mixed. $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ A.C. mains. For
3 and 15 ohm speakers. Complete kit of parts fully punched chassis, point-to-point wiring diagrams and instructions. Supplied factory built with ELB4 output 12 CMS. Carr. 25/-. Send s.a.e. for leaflet. TERMIS: Deposit 48/- and 9 monthly payments of 33/7 (Total

R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER

PUSH-PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE CONTROL PRE-AMP.
 of 'mike'' and gram, etc. etc. High sensitivity. Valves ECC83,
ECCB3, EL84, EIS4, ER81. High quality sectionally wound output transformer and reliable small condensers of current manufacture. INDIVIDUAL CONTROLS FOR BASS AND TREBLE Frequency response $\pm 3 d B 30-20.000 \mathrm{c} / \mathrm{s}$. Six negative feedback loops
Hum level --60dB. SENSITIVITY 23 millivolts. Suitable for Hum level -60dB. SENSITIVITY 23 milliyolts. Suitable for Crystal or Ceramic P. U.s, all types "mikes". Comparable with the very best designs. For Musical Instruments such as String
Rass, Flectronic Gultars, etc. Heserve Power 300 v . 30 mA . and $6.3 \mathrm{v}, 1.5 \mathrm{a}$. for IRadio Tuner or Tape Pre-Amp. Size approx $12 \times 9 \times 7 \ln$. For A.C. mains $200-250 \mathrm{v}$. $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Output for 3 and 15 ohm speakers. $\mathbf{2 8 . 1 5 . 0}$ Metal cover with 2 handles avallable for 25/-. TEIRMS ON ASSEMBLIED UNITS Carr. $11 / 6$ Deposit $36 / 6$ and 9 monthly payments of $25 / 9$ (Total \&13.8.3). Send S.A.E. for leaflet, R.S.C. AIIT TRANSISTORISED VERSION of above complete kit 9 gns. Carriage 9/6.

R.S.C. BASS-REGENT 50 WATT AMPLIFIER AN EXCEPTIONALLY POWERFUL HIGH QUALITY ALL-PURPOSE UNIT For lead, rhythm, bass guitar and all other musical instruments. For vocalists, gram, radio, tape, and general pubbic address.
\star UNUSUALLY POWFRFUL LOUDSPEAKER COMBINATION consisting of a FANE HIGH FLUX 12in. 30 watt unit PLUS a FANE 12in. 20 watt unit with extended frequency response. $\star 4$ Jack inputs and two Volume Controls for simultaneous use of up to 4 phair with mold trimming Rexine/Vynair with gold trimming. Fitted carrying handles. \star Separate Bass and Treble Controls sting int ond cut $49 \frac{1}{2} \mathrm{GnS}$. brand S.A.E. . for leafeet. Or call at one of our many three times the cost.

R.S.C. COLUMN SPEAKERS Covered in two-tone Rexine/Vynair, ideal for vocalists and Publle Address, 15 ohm matching, speakers. Overall size approx. 15 GnS.
$42 \times 10 \times 5$ in. Ordeposit $44 /$ and 9 mthly pmts 34/9 (Totalg18.1.6) 9 mthly pmts $34 / 9$ (Totale 28.1 .6) Carr. $10 /$ 10 watt speakers. Overall size 22 GnS. $56 \times 14 \times 9 i n$ approx. Carr. 15/$50 /$ - (Total £26.3.0).
30 WATT HI-FI AMPLIFIER
for Guitar, Vocal or Instrumental Group
A 4 Input, 2 volume control Hi-Fi unit with
 controls. Latest valves. Strong Rexine covered cabinet with carrying handies. Attractive black/gold perspex facia. For $200-250 \mathrm{v}$. A.C. mains. For
3 or 15 ohm speak- 17 CnS. Carr.
ers. Send S.A.E. ers. Send S.A.E. 1 der 9 monthly

payments of $37 / 5$ (Total £19.16.9)

12in. HIGH QUALITY L'SPEAKERS In teak veneered cabinets. lines. 3 Model. Gauss 12,000

5 Gns.
 18x18x10in.Gauss 12,0001 nes. $10 / 6$ 30 Watt Model. Rexine covered 10 Gne
LOUDSPEAKERS $\begin{aligned} & \text { Limited number at fraction } \\ & \text { of ilst price } 15 \text { ohms im- }\end{aligned}$ pedance. Brand new, guaranteed. Terms available. 12 in. 20 watt DUAL CONE Heavy Duty $£ 5.11 .96 / 9$ 12in. HEAVY DUTY 30 watts 7 Carr. ${ }^{\text {GNS. }}$ (${ }^{\text {Nin }}$ Normally 15 in . EXTRA HEAVY DUTY 40 watts 12 Carr. $15 /$ Massive units. Gauss 17.000 lines. Usually 18 Gns.

FANE 'POP' 10019 Gns. 18 " 100 Watt

Extra heavy duty spaaker. Fantastic power handlling. Guaranteed 2 years.
TRANSISTOR SALE Mullard oct1, OC72, OC81, 2/11, OC44. OC45. 3/11, OC75. 7/9. AF117 6/9. Post 6d. for 3 .

JASON VHF/FM TUNER Complete kit \&6.19.11

INTEREST
CHARGES
REFUNDED
on H.P. and Credit Sale Accounts settied
3 months. Deposit $3 /-\ln$ \&

B20 MULTI-PURPOSE AMPLIFIER especially suitable for Bass Guitar
Incorporating masslve 151 n . high flux loudspeaker. Rating 25 watts. Individual bass and treble controls. Two jack inputs separately controlied.
 or bayments of 861 .- (Total $434.8,6$). Carr. $17 / 6$.

G80 80 WATT AMPLIFIER
2 Channels, 6 inputs. Tremolo. 2 Col2Channels. 1 Baspats. Speakeroroin 2 with
umns and
two 15in. ExtraHeavy Duty Spakers.
 ${ }_{8}^{\text {Carr }}$ Gns. R.S.C. BATTERY/MAINS CONVERSION UNITS
 Type BM1. An all-dry battery Completely replaces batteries supplying 1.5 v . and 90 v . where A.C. mains $200 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ is avallable. Complete kit with diagram $47 / 9$ or
ready for use $59 / 11$.
POWER PACK KIT
Consisting of Mains transformer. Metal Rectifer. Electrolytios, smoothing
choke, chassis and circuit. 200 I250v. A.C. $22 / 11$

G15 15 WATT AMPLIFIER for Lead or Rhythm Guitar, Vocal Groups, etc. High-fidelity output. Separate bass and treble controls. Twin separately controiled inputs so that two instruments or "mike" and pick-ups can be used at the same time. Heavy Duty 12in. Rexinel Yynair. Size $18 \times 18 \mathrm{x} 81 \mathrm{n}$. Deposit 3 gns.

SELENIUM RECTIFIERS F.W. (Bridged)
All 6/12v. D. C. output. Max. A.C. Input 18 V .
1a. 3/11. 2a. 611. 3a. $9 / 9.4 \mathrm{a}$. $12 / 9.6 \mathrm{a}$. $15 / 9$.

R.S.C. 6/12v. CAR BATTERY CHARGERS
Kits consist of Enamelled steel case, Amformer, Fuses. Panels. Plugs and Leads. $2 \mathrm{amp} 39 / 9,4 \mathrm{amp}$. with varge rate sel. $49 / 9$ 6 amp heavy with varlable charge rate sel. $69 / 9$ All types $200-250$ A.c. mains. Ready built $10 /$ - extra.
R.S.C. GRAMAMPLIFIER KITT. ${ }^{4}$ watts output. Negative feedback. Controls: Vol.. Tone and Switch. Mains operation $200-250 \mathrm{v}$.
A.C. Fully isolated chassis. Circuit, etc. A.C. Fully isolated
supplied. Only $49 / 11$.
R.S.C. MAINS TRANSFORMERS

FULLY GUARANTEED. Interleaved and Impregnated. Primaries 200-250\%. 500/a. Soreened. MIDGET CLAMPED TYPE $21 \times 26 \times 24$ in
 FULLY 8BROUDED UPRIGHT MOUNTD
 $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-6-6.3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$
For Mullard 510 Amplifier
cor Mullard 510 Amplifier. $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$.
 $425-0.425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 6.3 \mathrm{v} .4 \mathrm{a}, 5 \mathrm{v} .3 \mathrm{a}$ $50-0-450 \mathrm{v} 250 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~s}$, c.t., 5 v . $3 \mathrm{a} .$. OPP SHROUDED DROP-THROUGE TYP $250-0-250 \mathrm{\nabla} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{a}$
$250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{~F} .2 \mathrm{a}, 6.3 \mathrm{v}$. 1a. $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-6-6.3 \mathrm{v} .2 \mathrm{a}$. $300-0-300 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{vv} 48,4 \mathrm{a}, 6-6-6.3 \mathrm{v} .3 \mathrm{a}$ $300-0-300 \mathrm{v}, 130 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~s}, 6-5-6.3 \mathrm{v}$. Suitable for Mullard 510 Amplicer. $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{~s}$ FILAMENT OR TRA NSISTOR POWER PACK $89 / 11$ $6.3 \mathrm{v} .1 .5 \mathrm{a} 8 / 8,6.3 \mathrm{v}$. $2 \mathrm{a} 7 / 9,6.3 \mathrm{v}-3 \mathrm{a} 9 / 9,6.3 \mathrm{v} .6 \mathrm{a} 19 / 9$, 12 v . la $8 / 9,12 \mathrm{v}$. 3a or 24 v .1 .5 B 19/9, 0-9-18v. 1\& a . 15/9. 0-12-25-42v. 2a 27/9.
CHARGER TRANSFORMERS $0-9-15 \mathrm{v}$. $1 \mathrm{ta}, 18 / 11$ $21 \mathrm{a}, 16 / 11,3 \mathrm{a}, 18 / 11,5 a, 81 / 11,6 \mathrm{a}, 25 / 11,8 \mathrm{a}, 81 / 11$ AUTO (Step UP/SteD DOWN) TRANSPORMERS $-10 / 120 \%-200-230-20$ V.ts $50-80$ watts, $14 / 9$ OUTPUT TRANSFORMWRS
Standard Pentode 5,0000 or 7,0000 to 30
 Push-Pull 10 watta $6 V 6$ ECL86 to $3,5,8$ or 150 Push-Pull EL84 to 3 or 15 a $10-12$ watta.
Push-Pull Ultra Linear for Mullard 510, Push-Pull Ultra Linear for Mullard 510, etc.
Push-Pull $15-18$ watts, sectlonsily wound 6 LB , KT66, etc., for 3 or 150
'ush-Pull 20 watt high quality sectionaily Wound, EL34, 6L8, KT66, etc., to 3 or SMOOTHING CHOKES $150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \Omega 12 / 8$ $100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 9 / 11$. $50 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega 7 / 9$. $0 \mathrm{~mA}, 10 \mathrm{H}, 400 \mathrm{Q}$ 4/ii.

AN APOLOGY

DENCO (CLACTON) LIMITED
 OLD ROAD CLACTON-ON-SEA ESSEX

In the interest of our Home Constructor friends and the Component Retailers who supply their requirements, we have endeavoured with great success to maintain our selling prices for very many years, but we have now reached the stage where we have just got to increase our prices or go out of business if we wish to also maintain our high standard of quality and continue to support articles published in Technical magazines.

On January 1st, 1968 all of our catalogued prices will be increased by approximately 10%, we have done our very best for all concerned and trust to receive your continued support.

Ask your Retail Component Stockist, or if in difficulty write to us direct for a copy of our General Catalogue price 2s. 6d.

TOPIC OF THE MONTH

Amateur Radio Exhibition

N HIS opening address at the R.S.G.B. International Radio Engineering and Communications Exhibition at the Royal Horticultural Society's New Hall on September 27, Dr. J. A. Saxton touched on several points which have an important bearing on all who have made amateur radio their hobby.

Dr. Saxton, in recalling that amateur radio has been dubbed "the greatest of scientific hobbies", commented that many of the exhibits made by amateurs were of a standard of which even professionals would be proud. He also stated that amateurs continue to contribute towards many achievements, one of the strengths of the movement and a guarantee of a fresh look at many problems. For let it be remembered that the amateur is not always so aware in his "ignorance" about the "impossible", but merely attempts to solve a problem in his own way, unimpaired by facts and figures which might hinder the more professional approach.

He went on to express pleasure at the international aspects of amateur radio and how enthusiasts are keeping up to date with advancing techniques, thus making a valuable contribution to radio engineering and research. He cited in particular the extensive investigations during the IQSY programme, the R.S.G.B. v.h.f. beacon service (which is used not only by amateurs but by professional organisations) and the investigations being made to follow the lead of American amateurs in producing their own satellite.

He concluded that it was important for amateurs everywhere to foster and develop this kind of experimental enquiring kind of activity and we would go all the way with him in this sentiment. For while most P.W. readers regard amateur radio as a personal, stimulating and relaxing hobby, the interchange of ideas, contacts with other enthusiasts and new lines of experiment are the ingredients which will lend added purpose and ultimately strengthen our mutual interests.

Furthur details and photographs of the R.S.G.B. Exhibition are given in our News and Comment section on page 564.
NEWS AND COMMENT
Leader 563
News and Comment 564
Practically Wireless by Henry 573
Letters to the Editor 578, 610
On the Short Waves
by John Guttridge and David Gibson, G3JDG 593
Club Spot-
Roding Boys' Society, G3SRE 613
CONSTRUCTIONAL
Adaptable Low Cost Hi-Fi System by W. Cameron 566
General Purpose PSU with Auto Cut-Out
by N. S. Newell 570
Midget Transistor Transmitter by D. L. Gibson G3JDG 581
Integrated Circuit f.m. tuner 588
by L. McNamara, B.Sc. andA. J. McEvoy, B.Sc.In-circuit Transistor Testerby A. Thomas605
OTHER FEATURES
Moving Coil Meters and their repair 568
by J. Law
Guide to Surplus Communica- tions Receivers Part V by K. Adkins B.Sc. 574
P. W. Data Rule Part II by I. J. Kampel 597
january issue will be published ON DECEMBER 8th
W. N. STEVENS—Editor

[^2]
R.S.G.B. EXHIBITION

Photo by permission of Radio and Space Research Station
At the International Radio Engineering and Communications Exhibition at the Royal Horticultural New Hall, Westminster, London, SW1, on September 27-30, 1967. the central feature was the Radio and Space Research display by the Science Research Council. This exhibit demonstrated studies of the atmosphere in relation to radio communications, the effect of the lower atmosphere was illustrated by a working model of a microwave refractometer. There was also a model of the new 25 -metre diameter steerable aerial recently commissioned at Chilbolton in Hampshire which is being used to study radio propagation of radio waves through space and the earth's atmosphere.

Dr. J. A. Saxton, Director of the Radio and Space Research Station, opened the Exhibition at 12 noon on Wednesday, September 27th together with other Government and Armed Services officers who also supported the exhibition. (See picture above).

The General Post Office, Royal Signals, Royal Navy and Royal Air Force displayed their latest equipment and working test equipment for today's services.

Colour television was displayed by Bush Radio.
Manufacturers of communication short-wave receivers and transmitters from several countries showed the latest models with s.s.b. and v.h f. and a wide range of aerials, components and test gear.

Demonstrations of transmitting and receiving television and experimental equipment, a Radio Teleprinter station, and mobile equipment were working daily.

Below is a view of the PRACTICAL WIRELESS stand.

RADIO 1, 2, 3 AND 4 - AN EXPLANATION
Revolution came to BBC radio recently. From now on it's Radio 1, Radio 2, Radio 3 and Radio 4.

The Light Programme divides into two stations. Radio 1 on 247 metres medium wave is the new pop music network. Radio 2 is the Light as it used to be, but joining Radio 1 at certain times. It's on 1500 metres long wave.

Radio 3 (464 metres and 194 metres) is the new title for the Third Programme and the Music Programme. Radio 4 is the new title for the Home Service.

With the exception of Radio 1, all the networks can also be heard on v.h.f.

THE BAKER "MAJOR MODULE"

The "Major Module" is the latest loudspeaker design by Baker Reproducers Ltd.

Its use is not limited to home hi-fi, it has a maximum power rating of 20 watts and is therefore ideal for theatres, halls, schools, discotheques, etc.

The unit comprises a 12 in . Baker "Major"loudspeaker and a high efficiency tweeter, both mounted on a wooden baffle, size $19 \times 12 \frac{1}{2} i n$. ready for housing in any convenient enclosure or conversion of existing cabinets, furniture, etc. The 12in. "Major" speaker has a bass resonance of 40$50 \mathrm{c} / \mathrm{s}$., and overall response of $30-17,000 \mathrm{c} / \mathrm{s}$. The built-in concentric centre cone maintains the necessary balance between bass, middle and treble to produce faithfully your favourite music.

Complete kit is $£ 10$ 19s. 6d. or fully assembled and £12 10s. post free.

BRITISH SCIENTIFIC ACHIEVEMENTS EXHIBITION

The Marconi Company, with a view to expanding its Eastern European markets, was showing a variety of data transmission equipment and microelectronic components at the British Scientific and Technological Achievements Exhibition, which opened in Warsaw on Saturday, October 7th. Marconi has previously sold Marconidata data transmission equipment in Czechoslovakia, and plans demonstrations for Hungary, Rumania and Bulgaria.

The exhibition was held to illustrate a number of themes, selected largely by the Polish authorities. Marconi were represented in two of them; Data Transmission and Planar Techniques. In the Data Transmission section the Company provided a working demonstration of the direct transmission of medium speed data over telephone lines, using the Marconidata H6010 series.

In the Planar Techniques section the Company showed a 16 mm . colour film of the process involved in its own production of silicon microcircuits. In addition, the predominantly technical audience were able to inspect such microcircuits in detail, through a Marconi binocular microscope.

news And comment

LATEST EDDYSTONE BROADCAST RECEIVER

The latest Eddystone broadcast receiver, Model EB36, is now in full production at the Birmingham works of Eddystone Radio. Fully transistorised, this receiver covers Range 1, $8.5 \mathrm{Mc} / \mathrm{s}$ to $22 \mathrm{Mc} / \mathrm{s}$; Range 2, $3.5 \mathrm{Mc} / \mathrm{s}$ to $8.5 \mathrm{Mc} / \mathrm{s}$; Range $3,1.5 \mathrm{Mc} / \mathrm{s}$ to $3.5 \mathrm{Mc} / \mathrm{s}$; Range $4,550 \mathrm{kc} / \mathrm{s}$ to $1500 \mathrm{kc} / \mathrm{s}$; Range $5,150 \mathrm{kc} / \mathrm{s}$ to $350 \mathrm{kc} / \mathrm{s}$.

For 15 dB signal-to-noise ratio, sensitivity is better than 5 microvolts on ranges 1 to 3, and better than 15 microvolts on ranges 4 and 5 .

The bandwidth is $5 \mathrm{kc} / \mathrm{s}$ at the $6 d B$ points and $25 \mathrm{kc} / \mathrm{s}$ at the 40 dB points.

The image rejection is approximately 50 dB at $2 \mathrm{Mc} / \mathrm{s}$ and 15 dB at $18 \mathrm{Mc} / \mathrm{s}$. Breakthrough at the i.f. of $465 \mathrm{kc} / \mathrm{s}$ is at least 85dB down on ranges 1 to 3 and greater than 65dB down on ranges 4 and 5. Audio output is up to 750 mW .

The price of the EB36 (ex works) is £45. In the UK, purchase tax brings this to $£ 545 \mathrm{~s} .7 \mathrm{~d}$.

Photograph shows finished receiver during final testing, before leaving the Eddystone Works in Birmingham.

CALLING ALL DX-ERS

BBC World Radio Club, a weekly 15-minute programme, began in the BBC World Service on July 1st, and within three weeks it had over 1,000 members. Membership is open to anyone who writes in. But as the producer John Pitman says, "If you want to have a real stake in the programme, why not write a letter to tell us how to run it". From October, World Radio Club is broadcast in the BBC World Service on Saturdays at 0745 GMT, Mondays at 0245 GMT, and Tuesdays at 1245 GMT. In addition it is broadcast in the North American Service for the first time; in October on Thursdays at 1615 GMT, and in November and December at 1715 GMT.

World Radio Club helps the listener to improve reception, suggests the best sort of equipment, talks about the world of radio communication, and contains regular news for DX-ers and an invitation to DX-ers in other countries to submit tapes of their experiences. With the BBC's technical resources behind it, it is able to cover a wide field. Recent topics have included the BBC's Monitoring Service, the BBC Relay Station at Ascension Island, the implications of sunspots, maximum, forecasts of propagation conditions, a series on aerials ranging from the simple to the sophisticated.

GUIDE TO BETTER R.F. COMMUNICATIONS DESIGNS
Motorola's Semiconductor Products Division has compiled a new, comprehensive R.F. Circuit Design Library booklet containing actual circuit design and testing information from Motorola's r.f. applications engineering staff. The 150 -page volume includes 10 authoritative applications, notes describing the use of basic techniques for r.f. design, plus specific r.f. applications useful to the communications circuit designer.

Besides application information, the handy guide book also includes "highlight specifications" for Motorola r.f. amplifier transistors (germanium and silicon-both large and small signal devices) to assist the r.f. circuit design engineer in selecting the proper device for every application.

Some of the topics covered in this "all-in-one" r.f. communications guide include, "What's and Why's about Y-Parameters", "Systemising R.F. Power Design", "R.F. Small Signal Design Using Admittance Parameters'", and "A 50 Watt, $50 \mathrm{Mc} / \mathrm{s}$ Solid-State Transmitter".

The convenient loose-leaf binding makes the addition of new r.f. design materials both easy and practical.

The R.F. Circuit Design Library is available from Motorola Semiconductor Products Inc., York House, Empire Way, Wembley, Middlesex.

R.S.G.B. NATIONAL MOBILE RALLY

By permission of His Grace the Duke of Bedford, the 1967 R.S.G.B. National Mobile Rally was held at Woburn Abbey on September 10th. There was the usual car park with the wonderfully fascinating array of whip aerials.

Talk-in stations were GB2VHF and GB3RS on 2 m , 4 m and 160 m , and the Radio Amateur Emergency Network had their time cut out manning a station in a beautifully equipped caravan which doubled up as a "mobile shack".

There were the usual bargain-tents there and many people walked away with a great assortment of equipment really feeling that their visit had been made worth while.

Once again this year, XYL's, YL's and the kids were able to amuse themselves with the facilities offered at Woburn, with the Woburn Safari Service and the fairground, etc.

The picture shows one of the bargain stands at the Rally.

RDAPTRBLE LOWCOST hi-fi SYSTEIII

THE amplifier described here has been developed around low cost transistors. It has a useful one watt output in its basic form, or used as a driver can provide up to 15 watts from the power amplifier described later.

Construction has been made as simple as possible, so some of the finer points of rather complicated HI-FI systems have been avoided, whilst retaining the main considerations of excellent frequency and transient response, low distortion and correct matching.

All of the components are standard and readily obtainable. Construction is made on tag-board to obviate the necessity of a printed circuit, and to make building as straightforward as possible.

The circuit is based on the now almost standard arrangement of transformerless output from a complementary pair of transistors. Transistors specified are supplied as a package consisting of a driver transistor and matched pnp and npn output transistors.

Other transistors which are near equivalents may be used, but some resistor values may have to be altered to secure optimum performance to obtain freedom from crossover distortion. This may be

W. CAMERON

PART 1
difficult, unless the facility of an audio generator and oscilloscope is available.

The amplifier in constructed in three stages. The first is the basic amplifier which on its own will be found extremely useful as a general purpose amplifier. It can be powered from a supply of 9 V to 12 V (battery or mains) and is designed to feed into a loudspeaker load of 10 to 15 ohms.

The frequency response is within 3 dB over the range $30 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{kc} / \mathrm{s}$.

The output power is nominally 1 watt with a 12 V supply, being 1.2 watts into a 10 ohm load and 900 mW into 15 ohms. Determining output power with transformerless output stages will be discussed later.

The second stage of construction adds a preamplifier stage and tone controls, discusses input and impedance considerations, and completes the 1 watt version of the amplifier.

The final stage shows how the amplifier can be used as a driver, and adds a pair of power transistors to provide an output of 5 or 15 watts into speaker loads of 15 or 3 ohms respectively.

Methods of determining power output are con-

Fig. 1 (left): Circuit diagram of the basic amplifier. Cx is required when a battery is used to provide the power supply.

Fig. 2 (right): Resistors in series with the input give a choice of input impedance and sensitivity. Tone correction can be effected by shunting R1 with a capacitor C.
sidered and a mains power supply unit will be described.

BASIC AMPLIFIER

This unit is a complete amplifier in its own right.
The input impedance is approximately 350 ohms and sensitivity for full output is 3 mV rms , which makes it suitable for direct connection to a low impedance microphone or magnetic pick-up, with an impedance of 350 ohms or less.

The input impedance can be raised by inserting a resistor in series with the input. The value of resistor added to the input impedance will then determine the resulting input impedance, and will also reduce the sensitivity by the same ratio. By this means it can be fed from a tuner or other device intended to feed into $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, and with an output of 100 mV to 1 volt rms (Fig. 2).

A crystal pick-up may be connected to the $100 \mathrm{k} \Omega$ input with some loss of bass although this can be improved by shunting R1 ($22 \mathrm{k} \Omega$) with a capacitor of $2000-3000 \mathrm{pF}$. With a high output crystal a higher value of series resistor may have to be used, to prevent overloading the first stage.

The first stage Trl has considerable negative feedback applied from collector to base via R1. This is necessary to maintain high quality at all volume control settings, as varying the control presents a varying load to the collector of $\operatorname{Tr} 1$ due to the low base impedance of Tr2.

The preset control VR2 is to set the centre voltage, i.e. the voltage at the junction of R10 and R11, to half the l.t. If the constructor does not possess a voltmeter, VR2 should be replaced with a fixed resistor of $1.5 \mathrm{k} \Omega$, with perhaps a small loss in maximum output from the amplifier.

R8 is the collector load of Tr 2 . It is returned via C5 to the emitters of $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$, and thus the a.c. signal is applied between the base and emitter of each output transistor. Without it degeneration would be present, considerably reducing the gain of the output transistors, and hence the audio output. R6 provides base bias for $\operatorname{Tr} 2$ and also d.c. and a.c. feedback.
The resistor R 9 is small enough compared to R8 to have negligible effect on the load resistor, but provides a small voltage difference between bases to bias the output transistors correctly and prevent crossover distortion.

The loudspeaker is isolated from d.c. by the coupling capacitor C6. The value of C6 really depends on how good the loudspeaker is.

With a speaker of the type used in ordinary domestic equipment $100 \mu \mathrm{~F}$ is sufficient. On the other hand, if the constructor is fortunate enough to possess a

Fig. 3: Basic amplifier wiring on the group panel.

ATEST meter is a must with all radio constructors and the price ranges and types available are legion. The old faithfuls Avo and Taylor are still perhaps the most popular but European and Japanese meters have in recent years become available at very reasonable prices and ex-Service meters can still be bought cheaply.

All test meters can be relatively easily damaged, both electrically and mechanically. What engineer has not at some time or other dropped a meter accidentally, or overloaded it and winced as the pointer banged against the stop pin? Fortunately a damaged meter can usually be repaired given a steady hand and good eyesight. An understanding of how a meter works helps in diagnosing the trouble.

The popular voltage and current meters used by radio constructors incorporate a moving-coil unit. This is basically a coil of fine wire suspended in end bearings and secured fore and aft by coiled balance springs. The coil is in a magnetic field and supports a pointer as shown in Fig. 1. Current passing through the coil reacts with the magnetic field and the coil rotates. The deflection is propontional to the strength of the current and the pointer traverses a calibrated scale giving a reading according to the range being measured.

Voltage ranges are determined by adding resistors in series with the coil; current ranges by paralleling resistors across the coil. Resistance can be measured by adding a battery in series with the coil and a resistor of sufficient value to move the pointer to the end of the scale when the test leads are shorted together.

Note that irrespective of whether voltage, current or resistance is being read in the scale it is the current passing through the coil which operates the meter. Each type of meter requires a specified current to deflect the pointer fully across the scale.

bottom. One may be buried under the maker's wax seal. Ensure that all the tiny screws are placed in a safe container.

After removal any damage to the case can be repaired with Araldite. A loose glass can foul the pointer; it should be removed, the frame scraped clean and the glass secured with Evo-Stik. Check the zero adjusting knob and ensure that the stop pin is in place. If loose it can be stuck with Evo-Stik also. If missing it can be replaced with a piece of copper wire.

Having taken the movement from its case check the pointer freedom by blowing gently across it. If still catching it may be fouling the scale plate. The pointer is made of thin aluminium and is very fragile. It can be worked gently with tweezers to raise it free of the scale. If bent sideways as a result of an overload care must be taken not to overcorrect the bend or the pointer may break off. Should this happen a satisfactory substitute can be made from a nylon brush bristle. This must be thin enough not to obscure too great a width on the scale but stiff enough not to flex. Evo-Stik will secure the bristle to the pointer support.

If clear of the scale plate check the pointer movement again. It should move freely to the far stop pin and return smoothly to rest. Occasionally a pointer fouls the scale because of excessive slackness in the pivot bearings. The pivots move in cups like a watch balance wheel and these can be screwed up to allow for wear. A fine jeweller's screwdriver will tighten them. It is not essential for the pivots to be a tight fit in the bearings-only sufficient to ensure smooth movement of the pointer.

Dropping a meter can result in fouling of the turns in the balance springs. Inspection with the watch-maker's glass will confirm this fault. Usually gentle manipulation with a fine needle will result in the coils dropping into their correct position again. If the fall has caused the end of a spring to break away from its anchor point it can be re-soldered. For this operation speed is essential as prolonged heat will destroy the temper of the spring. Six turns of 12 s.w.g. copper wire would around the bit of the soldering iron will give a bit small enough for this delicate job. Ensure that the iron gets really hot and use low melting point solder. Clean the end of the spring and the anchor point with Thawpit, dab a minute spot of flux on both surfaces, gently position the end of the spring with tweezers and apply the iron and solder swiftly. Three hands are a help!

Before reassembly into the case check the condition of the ohms battery: if in doubt replace it. Inspect the spring contacts for corrosion. Brasso will remove any and a spot of electrolube grease will protect them for the future. Electrolube on the switch contacts will obviate high-resistance contacts, which can be troublesome on the low ranges. Ensure that the zero setting knob functions-the pin sits in the cut-out in the pointer base.

ELECTRICAL FAULTS

Electrical breakdown in a meter is usually the result of overloading. Expensive meters like the Avo Model 8 and 9 have overload cut-out devices which protect the movement. Others have fuses in the low ranges, but the cheaper meters have no protection. Having removed the movement from its

R can be damaged by overload when switched to 'Ohms'

If potentiometer is overloaded and track is damaged the lead from X can be transferred from tag A to tag Be transferred potentiometer re-set for ohms zero reading.

Fig. 3: Avo Minor layout. (a) Location of R; (b) replacing R.
case check for fuses (wishful thinking). Signs of overload damage include the smell of burnt shellac or Bakelite, blackened or broken resistors or shunt coils, distorted balance springs or even a burnt out coil. Serious damage requires the return of the meter to the makers for professional attention.

If, however, the damage is clearly a burnt out resistor this can be replaced. The original value may be obliterated but can often be deduced. First ascertain the range the meter was switched to when the damage occurred. As a practical example assume the meter to be the popular Avo Minor. If switched to the ohms range and accidentally connected to the h.t. supply the resistor shown in Fig. 3 (a) will burn out. Given a circuit diagram, of course, its value can soon be determined. A careful study of the layout and switching would also enable the value to be ascertained, but it can be deduced by simple trial and error. Remove the damaged resistor and mark the terminal points with nail varnish for future identification. Join the meter leads together, check that it is still switched to ohms and bridge the marked terminal points with a high resistor, say $10 \mathrm{k} \Omega$. A minute movement of the pointer will be seen. Now try a $1 \mathrm{k} \Omega$ resistor; the pointer will move farther across the scale. 500Ω takes it beyond the centre and with a 100Ω resistor the pointer just about reaches zero. Thus the required value is around 100Ω. A preset 500Ω miniature potentiometer can be used to replace the damaged resistor and adjusted to give the exact value required, i.e. to give zero reading on the ohms range. One incidental advantage of using a potentiometer of this value instead of around 100Ω is that if the same accident occurs again the lead can be transferred from the fixed terminal in use to the vacant one and the rotor reset as in Fig. 3 (b). Two replacements for the price of one!

Many of the ex-Service meters still available are good value for money but must be carefully checked before purchase. They may have been in bulk storage for years or damaged in service and patched up or even scrapped as beyond repair. The pivots and bearings may be corroded with age, resulting in a rough movement. Internal batteries can leak and spread corrosion over the unit. If the price is right, however, there are still bargains about; but if the meter is defective be sure you can put it right before parting with your money. The information given above should help.

AGENERAL purpose stabilised power supply is an invaluable asset not only for the serious experimenter, but also the active amateur constructor who may not wish to build a separate power supply for each unit.

The unit to be described was built by the author for all his valve equipment and may be used with anything from a small one valve receiver to a 60 W Iransmitter. Regulated and unregulated outputs are available and an automatic cut-out device included in the ground line dispenses with the need to replace fuses each time an overload current or short circuited output occurs.

No specialised components are used in the construction and spares from the "junk box" may most readily be pressed into service. If every item is bought new, the total cost would be approximately £15. However, the author constructed his supply for a mere $£ 5$ and this included buying mains transformer, relay, meter movements and choke.

Circuit Description

A conventional full wave rectifier (Fig. 1) gives a smoothed but unregulated output voltage which is fed on to the anodes of V2 and V3 connected in parallel. These valves are acting as cathode followers and having a high GM consequently have a low output impedance. This is approximately $=\frac{\mathrm{m}}{\mathrm{Gm}}$ (where m is the gain and is close to unity).

Stabilisation is achieved by including a d.c. amplifier V4 fed from the cathodes of V2 and V3. The anode of V4 is directly connected through parasitic stopper resistors to the control grid of V2 and V3 and hence the voltage across the load resistor R11 will be the bias voltage for the series valves. The stabilising circuit works as follows.

A certain proportion of the voltage across C2 appears across V2 and V3. The remainder appears at the output terminals and is dropped through the external load. If an increasing load is applied (i.e. more current is drawn) the voltage at terminal 4 will tend to fall causing a rise in potential across V 2 and V3. However, a resistor chain formed by R7, R8, R9 and R10 connected across the output sets the bias on the d.c. amplifier, and since the cathode of V4 is held at a steady potential by V5, any change in the output voltage will affect the bias of the d.c. amplifier. This change in the bias conditions will be amplified by V4 and a corresponding change will
appear at V4 anode. This change will also appear on the control grids of V2 and V3 causing these valves to conduct more and hence return their voltage drop to normal. This in turn causes the output voltage to return to normal. A decreasing load also causes the same chain of events in a negative sense and so stabilisation of the output voltage is achieved.

The 30Ω resistor R1 in the ground line was chosen for the relay shunt, as, for an overload current of 230 mA , the volt drop across it would be the minimum firing voltage of the relay. The paralleling effect of the relay coil which was $1 \mathrm{k} \Omega$ may be neglected. When the relay fires it does two things. First it disconnects the ground line and secondly it switches its coil on to a $47 \mathrm{k} \Omega$ (R2) resistor which provides sufficient current to remain in the ON condition. A quick switch on and off at the mains switch will return conditions to normal once again providing the fault is removed or rectified.

If a different relay is used a new value of hold on resistance may be required and this may be calculated as follows:-

$\underset{(\mathrm{k} \Omega)}{\mathrm{R} \text { hold on }}=\frac{$| Voltage of unstabilised |
| :---: |
| supply (V) |}{| relay minimum hold-on |
| :---: |
| current (mA) |}

This gives a maximum value for \mathbf{R} and it is advisable to use a slightly lower value than this. Fig. 4 shows a method of determining the relays minimum firing voltage and hold-on current. The $10 \mathrm{k} \Omega$ resistor should be set to maximum and gradually decreased. When the lamp lights the value of $V_{\text {RL }}$ should be noted and hence knowing the resistance of the relay coil I_{RL} may be calculated
thus $\mathrm{I}_{\mathrm{RL}}=\frac{\mathrm{V}_{\mathrm{RL}}(\mathrm{min})}{\mathrm{R} \text { (coil) }}$.
These are simple Ohm's Law calculations and should cause no difficulty.

Construction and Testing

The chassis will be required to be rigid and strong and nothing less than 16 s.w.g. aluminium or 18 s.w.g. steel will do. The mains transformer is mounted first, the appropriate holes having first been drilled and filed to shape. Having mounted the transformer, preferably with the terminals underneath the chassis other large components may be fitted, holes being drilled to suit.

The valveholder holes are made using chassis punches or by drilling a series of small holes along

Fig. 1: Complete circuit of the stabilised power unit.

Fig. 2: Above-chassis view and drilling dimensions.
the inside periphery of the hole circumference and punching out.

All wiring should be direct and kept as close to the chassis as possible. Pairs of wires or cables carrying alternating current should be twisted together to minimise mains hum.

The parasitic stopper resistors R5 and R6 should be wired as close to the valve holder pins.

The only test applicable to this type of unit providing all is working properly, is that to determine the output impedance and this may be done as follows:

A variable load resistor capable of carrying up to 250 mA at 300 V is placed across the output ter-

Fig. 3: Under-chassis component layout.

Fig. 4: Method for determining relay firing voltage.

Output impedance
Difference in voltmeter
$(M)=\frac{\text { readings }}{\text { current drawn by load }}$ (amps)
This test may be carried out at different load currents and different voltage settings and an average taken.

Having found the output impedance all that remains is to test the effectiveness of the cut-out. This may be done by varying the load resistor and reducing its value until the cut-out fires, thus the current indicated on the ammeter just before the cut-out operated will be the cut-out firing current. This may be adjusted to suit by suitable value of R1.
minals at one output socket and adjusted to maximum resistance. The unit is switched on and allowed to warm up. The voltage is then set to 300 V and the voltmeter reading noted along with the current drawn from the supply. The output is switched off and the voltmeter reading again noted thus:-

Valves:

V1	5U4G
V2	12 EE 1
V3	$12 \mathrm{E1}$
V4	EF91
V5	85 A 2

Transformers:
T1 $450-0-450 \mathrm{~V} 200 \mathrm{~mA}, 6.3 \mathrm{~V} 3 \mathrm{~A}, 6.3 \mathrm{~V} 3 \mathrm{~A}$, $6.3 \mathrm{~V} 4 \mathrm{~A}, 5 \mathrm{~V} 3 \mathrm{~A}$
inductors:
L1 10H 250mA choke
Meters:
M1 0-1mA f.s.d.
M2 $0-300 \mathrm{~mA}$ f.s.d.

Miscellaneous:

RL1 P.O. Relay $24 \mathrm{~V} 1000 \Omega$, 2 change-over contacts or similar; S1 s.p.s.t. on-off; S2 s.p.s.t. on-off; F1 2A fuse and holder; F2 10A fuse and holder; Lp1 $6.3 \mathrm{~V} \quad 0.1 \mathrm{~A}$ dial lamp and holder, etc.

practically wireless commenaver bitivir

AFRIEND described a family bust-up caused by his enthusiastic account of an archeological "dig". Apparently, his dear Aunt disbelieved, on religious grounds, in the existence of anything B.C. Talk of radium measurement, atomic "half-life" or any scientific method of proof simply bounced off the closed door of Auntie's mind, and my friend, who likes all his T's crossed nearly had his eyes dotted into the bargain.

How would Auntie have dealt, we wonder, with Mr. H. J. Hofman, who recently described a few worm-like fossilised objects found when a new road was being blasted north of Lake Huron, in Canada? The geological survey dated them some 2.000 million years old.

Which is something of a turnup for the Rhysonetron*, for the previous record for metazoa was some 700 million years. Next time your bus is twenty minutes late, think of that time-gap.

Nearer our watching brief, but still in the controversial world of relative matters is the question of the sonic boom. With an allergy to aircraft that dates back to the time a burly Sergeant pushed him from one in the belief

[^3]that technical types attached to infantry battalions should learn the hard way, Henry watches "progress" with a wary eye. But some of the arguments make one wonder just what constitutes a noise nuisance.

To the ham searching the 15 metre band for an elusive DX signal, the hash from a neighbour's hair-dryer is more annoying than a psychedelic love-in at the local discotheque.

Silence itself is relative. Peter Black described silence as being "measurable by the small noises that can be heard in it'". Whether it is a dripping tap in the wee small hours, a transistor radio on the beach or a concert-goer's cough, it is not the amount of noise but the character of the sound and its timing that causes the bother,

Professor Gavreau of the Elec-tro-Acoustical Laboratory of the French National Centre for Scientific Research has been investigating infra-sound, those frequencies just below the audible limit: e.g., the feeling of an organ pedal-note that trembles around us without actually being heard.

Anyone who has been jolted out of a clinch on the boat-deck when an ocean liner's siren. sounded knows the feeling of lowfrequency blast. Professor Gavreau built a giant siren and fed it from a compressed-air hose and very nearly put his whole staff in hospital on the first test! "All of us. were sick for hours," he explained. "Everything in us was vibruting-stomach, heart, lungs. People in the other laboratories were sick too. They were very angry".

The Professor went on to develop a $78-\mathrm{ft}$. organ pipe giving off sounds down to $3 \frac{1}{2} \mathrm{c} / \mathrm{s}$. The most dangerous was $7 \mathrm{c} / \mathrm{s}$.

As one might have guessed, this march of progress is being turned to military ends. They are working on a whistle 18 feet across the mouth, mounted on a truck, with

A dripping tap in the wee small hours
a fan turned by an aero-engine. This should give 10,000 acoustic watts.
"Should give. . ." The trouble is that they are afraid to test it, for this particular death-ray which would kill a man five miles away would do as much for its operator. So they are working on a means of focusing by propagating complementary sound-waves backwards, cancelling out the danger frequencies and protecting anyone in the rear.

Which brings us back to Peter Black. He argues that "noise should be turned off at source. Isn't all noise formed by sound waves? And aren't they all different frequencies? Then why can't we have some gadget excluding the jets and letting in the bees?"

There is an idea here. If Prof. Gavreau can turn his sound waves inside out to cancel their lethal effect, could not something be done with a cancellation baffle on the exhaust of an aero-engine? Noise-cancellation is not startlingly new and one circuit in a video tape recorder takes the noise peaks from a waveform, inverts them, delays the original signal minutely and feeds the inverted noise back in the right proportion to cancel the original.

Oh, the relative nuisance of noise! "What's that you said? Lovely music? Sorry, can't hear you for the horrible row the band is making.'

The R206

This receiver has some features in common with the R107, including size and weight. The latter has made it rather unpopular. It was probably first manufactured about twenty years ago. It has a fine specification.

The R206 covers $550 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ in six turret switched ranges. It contains 11 valves, including a separate oscillator stage and b.f.o. The i.f. bandwidth has three switched positions of $700 \mathrm{c} / \mathrm{s}, 2 \cdot 5 \mathrm{kc} / \mathrm{s}$ or $8 \mathrm{kc} / \mathrm{s}$. There is also a $900 \mathrm{c} / \mathrm{s}$ filter switch. The circuit includes a transient interference limiter.

There is a two speed, backlash free tuning control, and also a fine oscillator vernier tuning control. Other controls are: frequency range selector, aerial trimmer, l.f. gain, h.f. gain, a.g.c. switch and b.f.o. control. Sockets are provided for aerial, earth, muting, and headphone and line outputs. The overall size is $25 i n . \times 13 i n$. x $13 \frac{1}{2} \mathrm{in}$.

The set requires an external power supply. The power unit (normally available with the set) operates from 100 to 250 V a.c. or 12 V d.c., and includes a loudspeaker.

Modifications: The set does not require modification, but an "S" meter would be a useful addition.

Availability: A very limited quantity of these receivers, condition unknown, were available in 1960 , at $£ 2910 \mathrm{~s}$., with power unit. In late 1961 , another batch of the Mk. 2 appeared in grade 2 condition at $£ 25$, including power unit. They were available for approximately one year, and by the end of 1962 the price had been reduced to $£ 16$, although the last few may have been in inferior condition.

In 1963 another release of the R206 Mk. 2 in grade 2 condition was made, again at $£ 25$, inclusive of power unit. These lasted about a year, and the price was reduced to $£ 20$ 10s. in mid-1964. None have been released since, as far as can be ascertained. It is believed that R206 manuals are unobtainable.

The R208

The R208 is a little known receiver, and is not easily obtainable. It covers $10-60 \mathrm{Mc} / \mathrm{s}$ in two bands. The circuit includes one r.f. stage and a b.f.o. The i.f. is $2 \mathrm{Mc} / \mathrm{s}$. It has 6 valves: 2 of 6 K 8 G , 2 of EF39, 17 Q 6 G , and 6V6G.

A $6 \frac{1}{2} \mathrm{in}$. speaker is built in, and a phone jack is provided. It has a Muirhead reduction drive.

An a.c. mains power unit is built into the set, and

R208. Photograph by courtesy of Messrs. A J Thompson
also a 6 -volt vibrator pack. Metal rectifiers are a feature of the a.c. power unit. The set is completely self-contained.

Modifications: The main disadvantage is the wide bandwidth, making it unsuitable for serious listening. This is a result of the high i.f., and unfortunately there is nothing that can be done about this, apart from adding a "Q"-fiver (i.e., an amplifier of lower intermediate frequency after the $2 \mathrm{Mc} / \mathrm{s}$, thus converting the receiver into a double superhet, although it is not known whether this has been previously attempted with the R208. If the owner is contemplating carrying out this modification then it would probably be worthwhile replacing the front end with a miniature valve (or adding a pre-selector), and adding an " S " meter.

As it would be a long process to bring the specification of their receiver up to an acceptable standard it is impossible to recommend this receiver to the serious user, particularly in view of its size and weight.

Availability: Some R208's were available before 1960. In 1960, a limited number in grade 2 condition were on sale for about $£ 8$. Since then, none have been available, although it may be possible to obtain one secondhand. R208 manuals probably exist in small numbers.

The R209

The R209 was manufactured for the British Army, and is of quite recent design. It has certain physical similarities with the R216. It has been released in small quantities, and has a good specification although it is not well known. It covers from $1-20 \mathrm{Mc} / \mathrm{s}$, and will receive a.m., f.m., and c.w. signals. There are 10 miniature valves, and the set is hermetically

BARGAIN

FREELIBRARY WALLET ONLY FROM T.R.S.

With each reel of this tape by an internationally famous insnuracturer we give you a beautifully made wallet strongly made in simulated leather with space for a reel of tape each side. This is professional quality full frequency tape with metallised leader/stop foils. These library wallets solve once and for all the problems of storing tapes efficiently and tidily.
oft. $12 / 6$ bing. reel, 1200 it
 with wallet

T.R.S. MULLARD AMPLIFIERS STEREO 10-10

Valve amplifier to exact Mullard spec. With pre-amp tapped o/p transformer and 15Ω, all controls, H.T. and L.T. outlet, mono, stereo and speaker phase
switching. Complete with escutcheon, k nobs, plugs,

3-3 MONO 3 valve 3W amplifier with controls,
sbofutely complet
pauel, knobs,

GARRARD UNITS \& PLINTHS

LM 8000 Record Player with 9T.A. Stereo LM 8000 Record Player with 9T.A. Stereo
Cartridge. Brand new as from factory .. 8 gis. AT. 60 Mk II De-luse Anto-changer, diecast turntable. Lesa cartridge
£10.19.6 SP. 25 De-luxe siugle record player, dic. 9 gens Packing and carriage on any one of above $7 / 6$ extra.
Garrard Plinth. Ifleal mounting for the Garrard units offered here. Will readily suit any hi-ff set up in fine Teak.
Complete with useful soft plastic dust Complete with useful soft plastic dust
cover. Packing and cerriage 5/-. cover. Packing and carriage $5 /-\ldots \ldots$.
Garrard clear-view righl perspex cover (cartiage $3 / 6$)
Garrard Mono Cartridges irom 15/-; Stereo tron Garra
$25 /-$

VEROBOARD-All standard Sizes including $2 \frac{1}{y}$ in. x bin. $3 / 8: 2 \frac{1}{\frac{1}{2} \mathrm{in}, ~ x ~} 3$
 17 in . 12/6. All accessories and tools in stoek.

RESISTORS-Modern ratings, full range 10 ohms to 10 megohms. 10% i-1 W, 4d. each: $20 \% 1 \mathrm{~W}, 6 \mathrm{~d}$. each; $2 \mathrm{~W}, 9 \mathrm{~d}$. each; 5% Hi-stal. $\frac{1}{4} \mathrm{~W}, 5 \mathrm{~d}$. each; $\frac{1}{W}$, ed each; $1-2-10$ meg. 10% 古W, 4 d each; $\frac{1}{2} \mathrm{~W}, 5 \mathrm{~d}$ each. $1 \% \mathrm{Hi}-\mathrm{stab} . \frac{1}{2} \mathrm{~W}$, $1 / 6$ each (hetow $100 \Omega, 2 /$ - each.
WIREWOUND RESISTORS 25Ω to $10 \mathrm{k} \Omega 5 \mathrm{~W}, 1 / 6$ each; $10 \mathrm{~W}, 1 / \theta$ each COW, $2 / 3$ each. CONDENSER-Silver Mica. All ralues 2 pF to $1,000 \mathrm{pF}$ 6d each Ditto ceramics. 0 d. Tub. 450 V T.C.C., etc. $0.001-0.01 \mathrm{mF}, 10 \mathrm{~d}$, each; $0.1-350 \mathrm{~V}, 10 \mathrm{~d}$. CLOSE TOL S/MICAS-100 50 . 0 . T.C.C. $350 \mathrm{~V} 0.25,1 / 9$ each; $0.5,2 /$ e each $11 \mathrm{~d}, ; 100-250 \mathrm{pF}$
ALUMIN. CHASSIS $; 270800 \mathrm{pF}, 1 /-; 800-5,000 \mathrm{pl}: 2 /-$
ALUMIN. CHASSIS-18g. Plain undrilled, folled four sides, 2in. deep. 6 in .

OUR NEW LISTS

feature more lines

 than ever at money savingprices. For latest issue please send $6 d$.
Please incluade S.A.E. vith oll ALL SINCLAIR PRODUCIS STOCNED AS ADVERIISED S.A.E.
enquiries. TRS RADIO

70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
A few doors from Thornton Heath Stn. (S.R. Victoria section.)

7 VALVE AM/FM RG REPLACEMENT CHASSIS
A superbly powerful high verformance instrument for the keenest enthusiakts. Prormeability tuning on F.M. Large clear dial, AV.C., good neg. feedback. Magic eye. SW output. A.C. 200/250V. Circuit diagrams available. Allgaen teated and ready for use (Carr. and insurance 7/6).
8. A.E. brings full details.

C.R. Bridge 32 f10.10.0 Transistorised

NOMBREX

SPECIAL OFFER

with first 50 orders received from this advertisement. WESTEC
ELECTRONICS SLIDE RULE WITH 90 PAGE INSTRUCTION MANUAL A unique double-sided $12^{\prime \prime}$ Yule with 15 scales, simple to advanced maths problems and calculations and hundreds of radio-electronics equations and problems in Ohms Law, frequency, Q , inductance, resonance, reactance, etc.
AT GIFT PRICE $\mathbf{f 1 . 1 0 . 0}$
(NORMAL RETAIL PRICE £6.10.0)

A.F. Generator 30 £19.10.0 Transistorised 6d. stamp for all leaflets | NOMBREX LTD., EXMOUTH, DEVON Immediate Delivery C.W.O

RADIO HANDBOOK

by W. ORR, new 17 th ed. published by Editors and Engineers. 84/-. P. \& P. $4 / 6$.
PAL Colour T.V. by Mullard, Circuits described 12/6. P. \& P. 1/-.
101 Wirs to use your Oscilloscolre by Middleton 21/-. P. \& P. $1 /$
Colour T.V. Servicing mate easy by Lemons
$25 /-$. \& P. D/-. 25/-. P. \& P. 1/-
Circuits for Audio and Tape Recording by
Judd $7 / 6$. P. P. $1 /$. Judd 7/6. P. \& P.1/
Questions and Answers on Ravtio and T.V.
by Hellyer $8 / 6$. P. \& P. 9 .
Radio Valve Data, 8 th ed. by Wireless World 9/6. P. \& P. 1
Short Wave Listening by Vasrenhoud $12 / 6$
Where possible 24-hour service guaranteed.

UNIVERSAL BOOK CO. 12 LITtLE NEWPORT STREET
 LONDON, W.C. 2
 (Leicester Square' Tube Station)

 T-1K 35/-. p.p. 2/-: EP10K 6\%/6. p.p. 3/-: EP20K 75/,, p.p. 3/-: 1 T1-2 $63 /-$, p.p. $3 /-$ EP30K 105/-, p.p. 4/6; EP10KN 85/-, p.p. 4/6; EP20KN 98/-, p.p. $4 / 6$; EP30KN $130 /$-, p.p. 4/6. S.A.E. for further details. NoUGIITS AND CROSSES MACHINE Circuit. Uses standard miniature switches and lamps only. This machine cannot be beaten. Full circuit, wiring diagram and instructions, $3 / 6$ post free. 1% High Stability Resistors $2 /$, $\frac{1}{2}$ watt. full range 10Ω to $10 \mathrm{M} \Omega$. Stock list available. 1% Wirwwound Resistors, 1 watt. 1Ω to $5 \mathrm{k} \Omega 3 / 3$: to $20 \mathrm{k} \Omega$. $4 / 6$; $\frac{1}{1} \%$ add 3 d . Your value wound to order.
PLANET INSTRUMENT CO. ひ(W) DOMINION AVENUE. LEEDS
P.W. HI-FI AMPLIPIER

PARTS FOR BASIC AMPLIFIER
Transistor Package containing:-
$2 \mathrm{CB3} 1 \mathrm{~B}, 2 \mathrm{G} 381 \mathrm{~A}, 2 \mathrm{G} 329 \mathrm{~A}$
2G371B, Pre-iriver
Reabstor Eit (11 resistors)
10 K Volume control $3 /$-or with switch
2K Pre-set
$12 / 6$
$3 / 6$

Group panel
Complete Kit. All above parts, including V/C with switch,
PARTS FOR PRE-AMPLIFIER
OC45
Resistor Kit (6 resistors)
Capacitor Kit (5 capacitors)
2 Controls, Bass and Trehle at $3 /$
2 Controls, Bass and Trehle at 3/-.. $\quad \therefore \quad . .66 /-$ Complete Eit. Pre-amp plus Basic arop as above 22.18 .0
post free. S.A.E. for parts price list of complete amplifier.

C $\&$ D ELECTRONICS

17 St. Lukes Road, Pallion, Sunderland
sealed for use in adverse climatic conditions. Provision is made for the use of rod, open wire or dipole antennae. The R20y contans a built-in speaker, and headphone output is also provided.

The set contains an internal vibrator power supply unit for operation from 6 V d.c. If the power unit has been designed for operation from a.c. mains, this set would no doubt have become very popular. It weighs 23 lb ., and measures: length 12 in ., width 8 in . and depth 9 in.

Modifications: Replacement of the 6 volt vibrator power supply with an a.c. mains unit is the obvious modification. The set will operate perfectly satisfactorily, however, from a 6 volt d.c. source such as a car battery without any modification.

Availability: A batch of R209's were released for the first time early in 1961. They were in grade $1 / 2$ condition, and were sold for about $£ 23$ or $£ 24$, including headphones and supply leads. The same batch was available until late 1964 or early 1965.
R209's have again become available quite recently, and it is believed that they can be obtained at the present time for about $£ 15$ or $£ 20$. Manuals are not a vailable.

The R216

A relatively recent piece of equipment, built for the British Army, this is a magnificent receiver, and unfortunately, difficult to obtain. It is a v.h.f. general coverage receiver for the reception of a.m., f.m. and c.w. between 19 to $157 \mathrm{Mc} / \mathrm{s}$ in five turret switched ranges.

One of the many attractive features is the superb film strip tuning scale, which gives a scale length of eight feet on each band. The set contains 16 miniature valves, is hermetically sealed and pan-climatic.

Other features include two r.f. and four i.f. stages (i.f. is $4.86 \mathrm{Mc} / \mathrm{s}$), two crystal calibrators (5 Mc / s and 1 Mc , a noise limiter, r.f. and i.f. gain controls. The deviation ratio on f.m. is switched for either $50 \mathrm{kc} / \mathrm{s}$ or $120 \mathrm{kc} / \mathrm{s}$. Output is for 600Ω line or 150Ω headphones. The set weighs 25 lb . and its size is $8 \frac{1}{2} \times 12 \frac{1}{2} \times 9$ in.
The matching mains power unit (metered) is for $110 / 200 / 250 \mathrm{~V}$ a.c., and weighs 20 lb .
Modifications: Unnecessary.
Availability: A small quantity in grade 1 were released in May 1964. They were all sold within a month or two. The price of $£ 2910$ s. included the power unit, all connecting leads, and circuit diagram. A few have since re-appeared on the secondhand market at prices up to $£ 35$.

The R220

This is a crystal controlled v.h.f. receiver, made by Marconi. The set will receive on one channel in the frequency range 60 to $100 \mathrm{Mc} / \mathrm{s}$.
The R220 is of quite recent design, and contains 14 miniature valves-3 6AK5, 1 EF91, 3 EF92, 2 EB91, 2 12AT7, 1 QS70/20, 1 EL91, 1 5U4G. The circuit is a double superhet. The set contains an internal stabilised a.c. mains power unit for operation from 230 to 250 V , and also an internal speaker and is therefore completely self-contained. Some were available in pairs fitted in a special cabinet.

Modifications: Although the limitation of single channel reception obviously makes it unsuitable for

R220. Photograph by courtesy of Charles Britain Radio.
amateur band reception, it is believed that some R220's were sold with instructions for modifying the set to continuous tuning. When this has been done, the set would probably give quite a good account of itself on the $70 \mathrm{Mc} / \mathrm{s}$ or $144 \mathrm{Mc} / \mathrm{s}$ amateur bands.
Availability: The R220 was first available in late 1963 in grade 1 condition for about $£ 4$ singly, or for $£ 710 \mathrm{~s}$. in the twin version. At these prices, and for this condition, the set is very good value. They were available until mid-1964, but some have again become available for a similar price in recent months.

Most have been supplied with circuit diagrams, but not manuals. Manuals will probably be unobtainable for some time, as this receiver is quite a recent arrival on the surplus market.

The R1132, R1392, P104

These three v.h.f. receivers are all basically the same. The R1132 and R1392 are R.A.F. receivers, but the P104 is believed to originate from another branch of the services.

The frequency range is approximately 90 to $150 \mathrm{Mc} / \mathrm{s}$. The R1132 and P104 are crystal controlled; the R1392 is fully tunable.

The following details will refer to all three receivers, although there may be some minor differences in the circuitry, and the exact number of valves may vary.

The receiver has 14 valves, including r.f., three i.f., b.f.o., a.g.c. and audio. The i.f. is $5 \mathrm{Mc} / \mathrm{s}$. Panel controls include separate r.f. and oscillator tuning, r.f. and audio gains, b.f.o. control and switchable a.g.c. A meter is provided for monitoring the oscillator and audio signals. It requires an external power unit supplying 250 V at 80 mA and 6.3 V at 4 A .

The set is rather large, $19 \times 10 \times 10 \mathrm{in}$. and this has made the receiver rather unpopular, especially as the circuit design is now obsolete.

Modification: As previously mentioned, it is believed to be a simple modification to convert the crystal controlled versions to continuous tuning.

This receiver, although fairly suitable for fixed frequency operation in the frequency range covered, can hardly be recommended for amateur use. For serious operation on the $144 \mathrm{Mc} / \mathrm{s}$ amateur band, the sensitivity required can only be provided by the use of modern circuits and modern valves. No doubt
-continued on page 610

Infinite baffle

Mr. Lymath's letter amused me; maybe I remember my youth too well. I can imagine what's going to happen to a few chimneys around the Spring!

What prompted this letter was a similar case here.
The only difference was that a ventilating shaft had been bricked up.

I had to do a visit to a sick person nearby and, just before entering my car to return home, my ears caught the sounds of music from the house opposite. Never before, and never (so far) since, have I ever heard such fantastic bass.

It was impossible to resist the temptation to call at the house.

The owner's wife let me in, and I was allowed to wait the arrival of her husband.

The shaft was about 15 ft . high, square in cross section, each side measuring about four feet.

The base of the shaft had been bricked up, an opening for a 15 in . speaker provided, about 2 ft above floor level, and a separate tweeter fed through a suitable network, was resting on a ledge above the bricked up portion.

The amplifier used to drive this column was a home brewed job, using two 6L6's in push-pull. The pick-up was an Acos.

The owner, connected with the radio business, gave me a demonstration of the amplifier's ability by choosing a record with plenty of bass, and turning up the loudness control.
The sitting room was not large by some standards . . . about 11 ft . wide and about 22 ft . long; it was really a dining-cum-sitting room, with only a small divider.

With the unit delivering a healthy output, it was literally possible to rattle the windows and start the little glass objects on the divider walking to their destruction.

There is a much shorter shaft in my house, and many times I have looked up it, and had ideas about indulging in a little brick and mortar work but have so far contented myself with the two 9 cu . ft. speaker enclosures recently installed.-Hugh Wagner (Malaya).

Anyone interested ?

I have been a subscriber to P.W. from 1937 (as a matter of fact since 1935) but some copies have been destroyed. I might say your periodical has given me great pleasure through the years and although I am nearly 72 I still look forward to receiving it.
I have for disposal all copies from 1940 to 1960 in dozens, will send to anyone for generous postage. If no answer to this in a reasonable time, they go in the fire.-L. Fenton (25 Queen Street, East Ardsley, Wakefield, Yorkshire).

Phonetics

How can you suggest that N.A.T.O. Services might adopt the phonetic alphabet as used by amateurs. Your comment page 477 Nov. 1966.

Whilst listening today to v.h.f./ I.A.R.U. one station alone gave three different call signs: George 3 John Fox, Golf 3 John Fox, Golf 3 Juliet Florida.

Such inconsistency could probably create havoc if used internationally.

Incidentally G3ODY/Portable, operating from the Brightling area, used N.A.T.O. phonetics consistently and was perfectly understandable.

I was listening to a R1392 converted to manual tuning, with a loft mounted dipole, and logged quite a few more.

Being a newcomer to v.h.f. band it was most interesting.L. Woodgate (Robertsbridge, Sussex).

Get those elusive issues!

I am soon to retire and move into a smaller house. I have Practical Wireless from No. 1 onwards of the series which commenced in 1950 I think, and up to December 1965.
I would be willing to sell these in bundles of 12 at reasonable cost. If inquirers would state the dates in which they are interested I would try to include them. I may add that many are complete with blue-prints.R. J. Morris (The Manse, 54 Eastfield Avenue, Melton Mowbray, Leicestershire).

My experience of kits

Two months ago I wrote to one manufacturer asking if they could supply a kit of transistors, and the price. These were for some equipment to their design I had seen in a brochure they published, in which it was said that kits of transistors were available. I had the other components necessary for making the equipment.
They replied that they could supply the kit but did not mention the price. They also suggested that I approach another firm who they said could supply, from which I got the impression they preferred I should obtain my needs from this second source. I wrote to the concern specified who in turn sent me a lot of literature on equipment in which I was not interested and about which I had not inquired, but they said they would send me details of the equipment I had written about when it arrived from the printers. In due course it arrived, saying that completely wired and tested kits only could be supplied. No mention of the kit of transistors I had asked about originally, or their cost. I have had to write again to the manufacturers of the transistors to see if they can now supply the kit I require, and of course I have again had to ask them the price. Consequently, for two months I have not been able to proceed with the construction of the equipment because I am without the transistors.
Also, at the same time three months ago, I wrote to another manufacturer asking for information on the characteristics of two types of ferrite pot cores. They have not bothered to reply, and I am beginning to think this is because the nature of the inquiry suggested I intended to use, if possible, some cores on hand instead of buying new ones.
It would seem that if such inquiries are read at all, insufficient attention is paid to them before giving an answer, for half an answer or none at all merely involves one in more letters, unnecessary additional postage, and needless delays.-W. E. Thompson, G3MQT (St. Leonards-onSea, Sussex).

E S V

Stereo amplifier

BARGAIN-A fully Transistorised Amplifier as illustrated - Stereo 5/5 Channel - Mono 10 - Fully built in Black padded Leather Cabinet Five controls - Disc-Radio-Tape/Bass/Treble/Balance/Volume. MonoStereo function - Indicator Neon on brushed silver fascia panel Stereo Tape Recorders and High Sensitivity Stereo Pick-up may be fed directly to the Amplifier. List Price 26 gns.
Our Price 15 gns. Brand new \& guaranteed. P.P. 8/6.

Speakers

"As illustrated" enclosure-size $15 \times 8 \frac{3}{8} \times 8 \frac{1}{2}$, with Condura fascia. Black simulated padded Leather finish. Interior fully damped- 8 ohms- 5 watt rating-a beautiful unit by Electra-Recommended retail price 16 gns. Our Price 8 gns. P.P. 12/6.

Spotlight

Manufactured for Butlers for the Air Ministry-Universal Bracket - dozens of uses - Bench - Car -Photography-Mirrorised Reflector supplied, less bulb, in carton at fraction of price. Our Price 15/- each. P.P. 10/6
SPECIAL HI-FI SYSTEM OFFER
Transistorised Hi-Fi Amp £21 0 0 (as advertised) Two Electra Speakers £16 16 0 ., ." Garrard Model A70 with Sono 9TA
cartridge £11 19 0
XA/70 Plinth £4 10 " ".
The Complete Hi-Fi System for only 47 gns. P.P. free of charge.
BARGAIN-Record Player Cabinets - two tone - complete with Garrard or B.S.R. Motor Board - Our Price 52/-. P.P. 8/6 (Orders over $£ 5$ Free).

BARGAIN-A 3-watt Amplifier - A.C. 220/240V (non live chassis), fully built on printed circuit - Flying panels - Two controls. Will fit all cabinets without trouble. Our Price 52/- each P.P. 10/6. (Brand new and guaranteed).

BARGAIN—A Tape Amplifier—A.C. $230 / 240 \mathrm{~V}$, specially designed for easy mounting-completely built and ready to connect (5 connections only)-2 Valves-Rectifier-Magic eye-Output transformer-Tone control, etc.-Product of National manufacturers. Our Price only £6, P.P. 8/6. (Brand new and guaranteed).

MICROPHONES

Crystal-Brand new in single presentation box-Hand and Desk mounting, a quality product of Electronic Reproducers. Usual Price $£ 2.2 .0$. Our Price 16/- only.

GARRARD 4 SPEED DECKS

SRP-22 Mono Cartridge	\ldots	\ldots	\ldots	\ldots	$£ 4$	7	6
1000 Mono Cartridge	\ldots	\ldots	\ldots	\ldots	$£ 6$	19	0
2000 Mono Cartridge	\ldots	\ldots	\ldots	\ldots	$£ 7$	10	0
3000 less Cartidge	\ldots	\ldots	\ldots	\ldots	$£ 9$	13	0
Model A70 less Cartridge....	\ldots	\ldots	\ldots	$£ 10$	18	0	
Model A70 with Sono 9TA cartridge	\ldots	\ldots	$£ 11$	19	0		
SP-25 less Cartrigge	\ldots	\ldots	\ldots	\ldots	$£ 10$	17	6
Lab 80 less cartridge	\ldots	\ldots	\ldots	\ldots	$£ 24$	10	0

B.S.R. 4 SPEED DECK

UA/25 Mono Cartridge £5 10 0
P.P. $10 / 6$ (orders over $£ 5$ Free)

BARGAIN OFFER
SR-100 MINIATURE PORTABLE TAPE RECORDER. World's smallest-5 transistor (mains unit and foot control available), Philips type Cassette-size $2 \frac{1}{4} \times 4 \frac{3}{4} \times 7 \mathrm{in}$. Supplied complete with carrying case (hand and shoulder strap). Remote control microphone.
Limited quantity only. Our Price 16 gns (normal retail price 23 gns.) P.P. 8/6.
HURRY—HURRY-HURRY—Order while stocks last|

CARTRIDGES-MANUFACTURER

ELECTRONIC REPRODUCERS

Crystal Mono, H/C Ceramic Mono, H/C (Gold Seal)						15/6
						15/6
						30/-
B.S.R.						
$\begin{aligned} & \text { TC8H } \\ & \text { TC8M } \end{aligned}$	\ldots	23/-
	-	23/-
TC8S	\ldots	\cdots	...	42/-
	47/

P.P. 2/6

PLINTHS—For all units (excepting Lab 80) in Black padded simulated leather finish-by Electra. Our Price $£ 4.10 .0$ only. P.P. $8 / 6$ (orders over $£ 5$ free).

REMINGTON RAZORS. Brand new in presentation case ($220 \mathrm{~V}-110 \mathrm{~V}$) while stocks last. Our Price $£ 5.5 .0$ each. P.P. 7/ 6.

> EIECTBONIC SIIES (ViAtoin) ITD 17 gillingham row - witton road LONDON S.W.1.

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

Hatand
SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!

- 7 FULLY TUNABLE WAVEBANDS-MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.
- Extra tuning of Laxembourg, etc.
- Ar spaced ganged tunlug condenser.
- Built in ferrite rod aerial for Medium and Long Ware.
- 5 Section 22 lnch clurome plated telescopic erial or W listening angled and rotated for peak 8.W, listenin
- Socket for Car Aerial.
- Powerful push pull output.

7 transistors and two diodes including Philoo Micro-Alloy R.F. Tranaistors.

- Famous make 7in. $\times 4 i n$. P.M. speaker for tich-tone volume.
- Separate on/off switch, volame control, wave change switchea and tuning control.
- Attractive case with hand and shoulder strape. Size 9 in . I 7in. I 4in. approx.
- First grade components.
- Easy to follow instructiona and diagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs
$£ 5.19 .6$ 路品

Total building costs

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE
Attractive case with red speaker grille. Size $6 \frac{1}{2} \times$ $4 \frac{1}{2} \times 1$ in. Fully tunable. 7 gtages- 5 transistors and 2 diodes, ferrtte rod serisl, tuning condenser, volume control, fine tone super dynamic 3in. speaker, all first grade components. Easy build plans and parts price list 1/6. (FREE with kit).

Total building costs

MELODY SIX

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER
 with gilt trim and band and shoulder straps. Fully tunable over both Medium and Long wavee. lncorporates pre-tagged circult board, 8 stages6 transistors and 2 diodes, ferrite rod aerial, push-
pull output, wave change slde switch, tuning pull output, wave change sllde switch, tuning condenser, volume control, 3in. moving coil speaker etc. Easy build plans and parts price list 2/- (FREE with kit).

Total building costs

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gllt fittings, size 71 I 5 1 inin. World ride reception. Tunable on Medium and Long wavee, two short waves, Trawler Band Plus an extra M.W. band for easier tuning of Lax-
embourg, etc. Sensitive ferrite rod aerial and embourg, etc. Sensitive ferrite rod aerial and
telescopic aerial for Bhort waves. All top grade telescopic aerial for Bhort waves. Al top grade
components, 8 stages- 6 translstors and 2 diodes components, 8 stages- 6 translstors and 2 diodes
including Philco Micro-Alloy R. F. Transistors etc. including Phico Micro-Aloy Re.F. Transiswors etc. parts price list $2 /$-(FREE with ldt).

Total building costs
$3818 P_{3 / 6} P$

Total building costs (8)/8 P.\&P.

POCKET FIVE

TWO WAVEBAND PORTABLE

WITH 3in. SPEAKER
Attractive black and gold case. size $5 \frac{k}{3} \times 1 \frac{1}{2} \times$ 3in. Fully tunable over both Medium and Long waving of Luxembourg. etc. All first grade comatuning of Luxembourg. etc. Aistors and 2 diodes, supersensitive ferrite rod aerial, fine tone 3 in. moving coil speaker etc. Easy build plans and parts price list. 1/6 (FREE with kit). POCKET FIVE Medium and Long Wave version with miniature speaker ONLY 29/6. P. \& P. 3/6.

MELODY MAKER 6

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Smart pocket size cage, 6\& $\times 3 \times \frac{\pi}{4} \times 1 \frac{1}{2}$ in. with gilt fittings. Fully tunable over both Medium and Long Waves with extra M.W. band for easier tuning of Luxembourg, etc. 8 stages -6 transistors and 2 diodes, top grade 3in. speaker, 2 R.F. stages for extra boost, high "Q" ferrite rod aerial. Easy build plans and parts price list 2/- (FREE with kit).

Total building costs
8 -18 $\underset{3 / 6}{\text { \& } P}$

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size $7 \frac{1}{2} 5\left\{\times 1 t i a_{0}\right.$ wth gilt fittings and cartying strap. The ideal radio 10 r home, car or outdoors. Covera Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. Stages, push pull output, ferrite rod aerial, 7 transistora and 2 diodes, firs, grade components. Easy build plans and parts, Price list $2 /$ - (FREE with kit).

midget TRANSISTDR TRANSMITTER

D.L.GIBSON G3JDG

SOME years ago when transistors were first made available to the amateur constructor, their price was very high and their frequency response very low. To use these devices for transmission was quite impossible and they were restricted to audio and r.f. stages in simple m.w. receivers. Even then these transistors often required specialised circuitry in the form of carefully calculated feed-back networks to neutralise them. Some years later devices became available which could be used for transmission but again problems arose. The price of such devices was one big stumbling block together with a lack of circuitry and information about how they would behave in various configurations. Today all these arguments are groundless, and any experimenter with a transmitting licence can afford to play with solid state transmitters.
Transistors offer a very efficient means of generating r.f. and, in the writer's opinion, are far superior to valves in this application. In the case of topband, $1.8-2.0 \mathrm{Mc} / \mathrm{s}$, one might consider that a sensible choice of valve for the p.a. stage would be a 6BW6 perhaps driven by an EF80 crystal oscillator. The heater current alone of these two valves is 750 mA . This is merely to keep the valves alight and this power is completely wasted on receive. The power continually wasted in this mythical but not unpractical transmitter would be 4.7 watts ($6.3 \mathrm{~V} \times 750 \mathrm{~mA}$). Transistor devices on the other hand require no heater voltage, and current can be switched off when receiving.
Considering actual r.f. power itself which, after all, is the business end of any rig. Doubling the power results in an increase of one " S " point and, by the same token, reducing power by half results in a signal decrease of one " S " point at the receiving end all things being equal. Let us consider a fairly , local signal say 20 miles on topband. If the signal report is S 9 for 10 watts input, then reducing the power to 5 watts will result in an S8 report. Reducing power still further to 2.5 watts will still bring an $\$ 7$ report which is very easily readable other things being equal. Reducing the power to 1.25 watts will result in an S6 signal again still quite readable. This point should be noted by those running 807 p.a's on topband. The consumption of the heaters alone for this valve is 900 mA resulting in a waste of power of some 5.67 watts and by our

> K This unit might easily cause television and broadcast interference, and must not be operated unless the user holds a Transmitting Licence. Details of the Licence are obtainable from the Radio
> Services Dept., Radio Branch, G.P.O.. St. Martin's-le-Grand, London, E.C.1.

A. View of the front panel. The positioning of the key jock is not

B. The prototype as seen from above.
C. Rear view of the transmitter.

reckoning above, this sort of power can bring us an S8 signal report!

Thinking along these lines the writer thought it might be a useful idea to design a transistor transmitter of low power (and therefore low current drain on the battery) which could be used on topband. Transistors are now available which can deliver the full permitted output on 160 metres- 10 watts, and these are now quite reasonably priced and well within the ränge of the average constructor. In fact three of the devices used in the transmitter to be described, when wired in parallel, will provide 10 watts-and they will not guzzle precious heater current either.

CIRCUITRY

The circuit of the midget transmitter is shown in Fig. 1. This is the complete circuit, you don't need any extras like power units or linears etc. Just a morse key, an aerial and you're in business. The transmitter will modulate and results on the station receiver sound good with clean speech. For local nets and cross-town natters this type of rig would prove very useful and certainly very economical. It will require approximately 500 mW to modulate it and in the writers case this was provided by a small commercially built amplifier intended for a small tape recorder. It has 2 OC81's in push-pull in the output stage.
The transistors are both Mullard type BFY51 currently available for as little as 5 s . each. The figures for this device are shown in the table. The values

V_{C}	Vceo	Icm		$\mathrm{hfe}_{\text {(a) }} \mathrm{lc}$	${ }_{\text {ft }}$	T_{1}	$\mathrm{max}_{=25^{\circ} \mathrm{C}}$
60 V	60 V						

Relevant characteristics of the BFY51 transistor.

shown in Fig. 1 proved optimum in the prototype and the output appeared to be unaffected when changing the p.a. transistor for another BFY51. Capacitor C 1 was varied but 150 pF gave greatest output.

To secure maximum efficiency from transistor transmitters it is important that the input and output impedances are matched. This has not been done in Fig. 1 regarding the input to Tr2. The output from Tr 1 is fed to a capacitive tap formed by $\mathrm{C} 2 / \mathrm{C} 3$. Increasing C2 reduced the output from Tr 2 and reducing the value of C 3 also gave less output. For those interested in matching these impedances more closely the circuit of Fig. 2 is suggested as a line of experiment. Here the impedance of the collector is matched by the capacitive tap formed by C and C^{\prime}, while the base impedance of $\operatorname{Tr} 2$ is matched by using the coil as an auto-transformer and tapping up it until optimum position is found. The values of L, C and C^{\prime} should be chosen so that the circuit is resonant at the crystal frequency.

CRYSTALS

The crystal used was an HC6U series type on $1819 \cdot 8 \mathrm{kc} / \mathrm{s}$. The circuit functions just as efficiently with a 10 x type on $1900 \mathrm{kc} / \mathrm{s}$ and with the large 10 XJ on $1950 \mathrm{kc} / \mathrm{s}$. A $3.5 \mathrm{Mc} / \mathrm{s}$ FT243 also gave a very healthy output and by tuning the p.a. to $3 \cdot 5$ Mc / s the rig could be used on eighty metres. A simple switching arrangement could be added to
switch crystals and also switch L2 thus making this a two-band rig. As it stands the oscillator circuit appears unsuitable for $7 \mathrm{Mc} / \mathrm{s}$ and two crystals (7010 and $7040 \mathrm{kc} / \mathrm{s}$) refused to oscillate, although alteration of the circuit values might remedy this.

The p.a stage is in grounded or common emitter configuration and will function well at $8 \mathrm{Mc} / \mathrm{s}$. Using two BFY51's in parallel in grounded base will provide 3 watts at $30 \mathrm{Mc} / \mathrm{s}$, thus a QRP (lower power) transmitter for all six amateur bands is a practical possibility. Even in common base configuration a pair in parallel can give some 7 dB gain at $30 \mathrm{Mc} / \mathrm{s}$.

The output or tank circuit consisting $\mathrm{L} 2 / \mathrm{VCl}$ is unusual in that it is series tuned. Various' arrangements were tried-parallel tuning with link coupling etc., and although a pi-tank gave approximately 10% greater output than the arrangement shown it did require an extra twin-gang loading capacitor with a subsequent rise in the size of the chassis. For those who do not mind this increase in size the pi-tank is recommended.

The tank coil was wound on a piece of ferrite rod broken from a defunct transistor receiver. This

Fig. 1: Complete circuit diagram of the midget transmitter.
allows a very small coil to be made and saves a good deal of space. A "normal" type tank coil was tried i.e., wound on a $1 \frac{1}{4} \mathrm{i}$. former, but substituting the ferrite coil made no significant difference and thus the latter was used. "In theory, since the ferrite has far less turns, the " Q " of the coil should be higher since there is less wire and thus less resistance. However it would be even better to use a toroidal core thus eliminating the surrounding magnetic field at the same time.

KEYING

Keying the oscillator is generally regarded as bad practice. However the oscillator only draws some $5-6 \mathrm{~mA}$ and thus arcing at the key contacts is virtually negligible. This very low current is aided by avoiding the more common arrangement of a bleeder network to supply the base bias for Trl. Keying the p.a. would mean breaking 100 mA and although this has not been tried it might give superior keying. The characteristics of the keyed oscillator were examined on an oscilloscope and displayed the waveform shown in Fig. 3. There were a few whiskers on the original trace but this was found to be due to dirty key contacts. The shape
is rather soft on break but no detrimental reports have been receved to date. Due to this wave-shape and reports received, the insertion of key-click filters and the like were deemed unnecessary.
The p.a. stage operates in class B / C, that is, with no drive applied it is automatically cut-off and draws no current. By keying the oscillator therefore, in the key-up condition the entire rig draws no current from the battery and the transmitter is thus very economical to run. Using valves it would be necessary to key both stages and by the same token large currents would be present at the keying con-

Fig. 2: Suggested lines of experiment for matching Tr1 output and Tr2 input. Left, the keying waveform of the prototype as seen on the oscilloscope.
tacts with a much greater tendency to arcing and key-clicks. Also, if valves had been used, even if both stages were cut-off during key-up periods, the heaters would still draw power, they would do this on receive too.

Regarding the class B / C operation of the p.a. stage. Some authors advocate the use of a low value resistor in the base-emitter circuit (suitably by-passed) in order to ensure that when drive is applied the p.a. stage is biased to true class C, the r.f. drive applied supplying the extra bias. However, inserting various resistors even as low as 1 ohm in the circuit of Fig. 1 resulted in a decrease in output and this idea was abandoned as the rig works very well without these extra components anyway.

It is important to appreciate that the only tuned circuit in the rig is the p.a. tank components and because of this the use of an a.t.u. is strongly recommended. This transmitter could easily cause t.v.i. and b.c.i. if suitable precautions were not taken although many contacts were made with the rig as is i.e., with no a.t.u. In this respect the pi-tank referred to earlier would prove advantageous.

The current consumption of the rig with key down is nominally 106 mA , the c.o. and p.a. stages drawing 6 mA and 100 mA respectively representing a d.c. input to the p.a. of 1200 mW or 1.2 watts. The aerial used was extremely poor consisting of 70 ft . end-fed wrapped around the house and terminating in a wooden peg 2 ft . off the ground. At its highest point the antenna is barely 15 ft . above ground. The
earthing system likewise left much to be desireda single wire 10 ft . long soldered to a 12 in . copper pipe $\frac{3}{8}$ in. diameter. Using this set up and no a.t.u. the best QSO to date was a 569 on c.w. from Portsmouth, a distance of some 90 miles. Many other QSO's have been made over shorter distances and the best on phone was a 5 and 7 from 10 miles.

CONSTRUCTION

Building any unit is largely a matter of individual taste and is sometimes also influenced by components which are already to hand. For this reason the positioning of the pins on the perforated board as shown in Fig. 3 should be taken only as a guide for the approximate positioning of the components. This is one of the advantages of using perforated board construction in that individual components can be laid in position on the board and the pins then placed to suit them. The pins are tapped into the holes until they are approximately halfway through. Having laid all small components on the board and attached them to their relevant pins the crystal holder and transistor heat sinks should be bolted to the board. Holes for the bolts are easily drilled with a 6BA clearance drill, and the two holes for the crystal holder tags can be made by cutting the board with a sharp pen-knife using a rocking action. When all board-mounted components are fixed and wired the p.a. coil may be mounted as shown in Fig. 4.

The front panel should now be cut and drilled as in Fig. 5. It is important to make the cut-out and fixing holes for the meter exact. The meter is held in position by two 6BA nuts and bolts, and the heads of the bolts must be filed flat on one side

Fig. 3: Layout above chassis and wiring diagram. The dotted lines depict wiring on the underside of the chassis.
in order to clear the plastic body of the meter. Alternatively, smaller bolts could be used but these were not to hand when the prototype was built. Note that the bolt holes in the meter are only thin Perspex and therefore very fragile. It is thus very important to avoid any undue strain on them as they fracture very easily. Make the cut-out for the meter face first, then put the meter in place and accurately mark the exact position for the holes. This is easy because they can be clearly seen through the Perspex front panel. The same method
 the p.a. coil, and positioning of the components around the meter.

Fig. 5: Dimensions and drilling details for the front panel. Note: Care is required when drilling perspex.

Check the transistor leads after wiring. Counting clockwise from the pip the first lead is emitter, then base, and finally collector. This is easy to spot because the collector lead is connected directly to the case.

It is possible to run the rig on 6 volts at greatly reduced efficiency although for initial tuning up this is a sound idea. The transmitter is tuned up by means of a built-in field strength meter or perhaps more accurately an r.f. probe. The particular meter used has an f.s.d. of $400 \mu \mathrm{~A}$. If this had been inserted in series with the p.a. collector supply it would have meant finding a suitable resistor to shunt it with. Also, using that method would have required tuning for a dip in the meter reading at resonance. It was decided to use the arrangement shown partly because of the shunt problem, and partly because as shown, it can be tuned for peak output to coincide with peak reading on the meter.

TUNING

A separate meter set to read 200 mA should be inserted in the positive supply lead. With power applied but the key up this meter should read zero current. This is because the power supply lead to Tr 1 is broken by the key lead, and $\operatorname{Tr} 2$ is cutoff and will thus draw no current. Pressing the key down should result in the mA meter immediately reading around 150 mA and the front panel $\mu \mathrm{A}$ meter should also give some indication. Do not depress the key for more than a couple of seconds at a time on tune-up, just long enough to read the current on the mA meter. With the key depressed the p.a. tuning capacitor is swung from minimum to maximum observing the $\mu \mathrm{A}$ meter on the front panel. At some point the meter should peak. This peak reading (or dip on the mA meter in the positive supply lead) will probably be very slight. The type of aerial will have a direct bearing on this, and, dependent upon the length or impedance, might require either a series or parallel capacitor wired
with VC1.
-continued on page 609

\star components list

Capacitors:		Resistors:	
C1	150pF silver mica	R1	$220 \mathrm{k} \Omega$
C2	400pF silver mica	R2	$1.8 \mathrm{k} \Omega$
C3	52 pF silver mica	R3	180Ω
C4	100pF tubular ceramic		
VC1	365pF variable	Coils	
	Jackson		2.5 mH r.f.c.
Semico	nductors:		and figs.
Tr1 Tr2 D1	$\left.\begin{array}{l} \text { BFY51 } \\ \text { BFY51 } \\ \text { OA81 } \end{array}\right\} \text { Mullard }$		
Miscellaneous:			
Crystal and holder to suit; Two T0-5 finned heat sinks; 12 volt battery; Meter- 400μ A f.s.d.; Miniature jack socket; Perforated board $4 \frac{3}{4} \times 2 \frac{1}{4} i n$. . Pins for board; Perspex $5 \frac{1}{4} \times 2 \frac{1}{2}$ in.; Plastic knob; 6BA and 4BA nuts and bolts; Aluminium $2 \frac{1}{2} \times 2 i n$.; Angled aluminium $4 \frac{5}{6} \times \frac{5}{16} \mathrm{in}$.; wire, solder tags etc.			

Hole sizes-A....6BA clearance B....4BA clearance C.... $9 / 16$ dia. of mounting and drilling applies to the p.a. tuning capacitor. Drill and/or file the large hole for the spindle first, fit the capacitor into this hole, and then mark the exact position of the mounting bolt holes. Before bolting the p.a. tuning capacitor to the front panel, solder a six inch wire from the bottom lug and bend it out to the rear. This wire will go direotly to the top of the p.a. coil. It will not be possible to reach this lug after the front panel is bolted to the perforated board.
With the meter, p.a. tuning capacitor and key jack mounted, the front panel may now be bolted to the board by means of the small strip of angled aluminium. The next step is to solder the floating wire from the lower lug of VCl to the top of the p.a. coil. Next, wire a pair of twisted insulated wires batween the key jack and the appropriate pins on the board.
Check all wiring and when this is in order turn the board over and complete the "under-chassis" wiring as per Fig. 3. This is carried out with 18s.w.g. tinned wire although it might be an idea to use sleeving too. When all other component wiring is completed the transistors may be wired in. They should be orientated as shown and care taken to ensure that the collector and base leads of Tri are kept apart. Sleeving would be a sensible precaution. The transistor leads require no pruning except for the collector lead of $\operatorname{Tr} 2$.

STABILITY has to be closely maintained in a transformerless amplifier, and the greater effect of component tolerances makes setting-up procedures necessary in some cases. One aspect is stability of the quiescent voltage. Drift tends to be amplified with direct coupling, but an amplifier that is intended only for a.c. signals can easily overcome this by reducing d.c. amplification to the minimum by means of heavy negative feedback, decoupled so that it takes effect only below the a.f. range.
Many transformerless amplifiers have only a single voltage-amplifying stage, which can be stabilised in the usual way with a capacitively-decoupled emitter resistor. The base bias network is of ten connected to the mid-point of the output stage (see Fig. 5) to improve the stabilising. Decoupling is usually omitted from this network, as it also serves to provide some a.c. negative feedback. Additional a.c. feedback, if required, can be applied more directly from the loudspeaker via a resistor.

PRESET ADJUSTMENTS

To accommodate the maximum signal, the quiescent voltage at the mid-point of the output stage requires to be centred approximately between the positive and negative of the d.c. supply. Component and transistor tolerances will affect this and some variation will occur due to changes in temperature and supply voltage. In the manufacture of

Fig. 5: 10-watt amplifier using AF10 silicon transistor package. Each output transistor requires $80 \mathrm{sq} . \mathrm{cm}$. of $16 \mathrm{~s} . \mathrm{w.g}$. aluminium for adequate heat dissipation.
amplifier modules, selective assembly makes it possible to take up the component spreads.

A variable resistance can be included at the input to the amplifier for bias adjustment, so enabling the quiescent voltage at the output to be set to accommodate the maximum output. It can afterwards be replaced by a fixed resistor of the appropriate value, or the preset variable resistance can be retained in the amplifier.

Silicon transistors have lower leakage currents, and by using resistors of $\pm 5 \%$ tolerance it is possible, with a matched set of transistors, to dispense altogether with amplifier adjustments. Straightforward construction, without need to use test instruments, is an advantage, but preset adjustments allow precise settings of quiescent conditions to be made.

An amplifier can also be made self-adjusting by introducing a voltage reference into the d.c. stabilising loop. In the amplifier of Fig. 6, this is provided by the resistors in the base circuit of the AC127 predriver stage. In addition to amplifying the a.c. input signals, the predriver stage compares the direct voltage level at the mid-point of the output stage (linked by the $1.2 \mathrm{k} \Omega$ feedback resistance to the emitter of the predriver stage) with the d.c. reference voltage at its input. The d.c. loop gain of the circuit is large and the quiescent output voltage is therefore closely tied to the voltage set by the potential-dividing resistors at the input. There is an advantage in using silicon transistors in this circuit, although germanium transistors have been used throughout, and are suited to the output stage with a low-voltage supply.

CROSSOVER DISTORTION

Stabilising the quiescent voltage level does not also stabilise the quiescent current of the ouput transistors, which depends on the bias potential in the base circuit of the output transistors.

In one type of transformerless amplifier, the π-mode Class AB, an extra d.c. feedback loop is used to stabilise the average current at a constant level, thus making compensating diodes or thermistors unnecessary. The d.c. from the supply is constant, but transistor dissipation is increased.
It is not possible to stabilise the average current in a Class B output stage, and other methods must be used to compensate for the effects of temperature and other variations upon the small quiescent current.

Sufficient quiescent bias must be maintained in a Class B amplifier to prevent crossover distortion. This type of distortion, when it occurs, is especially noticeable at small amplitudes of signal where most forms of distortion are at a minimum. A discontinuity at the crossover point between the output
transistors tends to set off an oscillatory response in the inductance of the loudspeaker, although this is less severe than with transformer coupling, where bifilar windings are sometimes used to reduce leakage inductance.
The amount of quiescent current necessary can be minimized by using matched high-gain output transistors, and also through the application of heavy negative feedback to linearize the output stage in the crossover region.

Some allowance is necessary for a decrease of quiescent current at low temperature, or with a drop in supply voltage, and there is also the effect of component spreads, so an adequate minimum has to be ensured. It should be reasonably small, however, for reasons of current economy, and to avoid the risk of thermal runaway.
Typical quiescent currents when cool are $3-10 \mathrm{~mA}$ with small germanium transistors, and $5-25 \mathrm{~mA}$ with power transistors. Large signals, especially continuous sinewave test signals, cause heating of the output transistors, and the quiescent current may increase considerably. The use of a large heat sink helps to reduce this variation.

THERMAL STABILITY

In the original form of single-ended output stage, consisting of a matched pair of transistors of identical type, the quiescent voltage depends on the upper transistor, and the quiescent current on the lower transistor. In the complementary and quasicomplementary arrangements, the quiescent current is controlled by the potential difference between the bases of the complementary pair of transistors. This bias voltage is developed by the current of the driver stage flowing in the resistance of the components in the base circuit of the complementary transistors, and can be varied independently of the mid-point voltage.

A variable resistance can be included between the bases of the complementary output (or driver) transistors to enable transistor and other component spreads, which could alter the value of the quiescent current in the output stage, to be taken up. With germanium transistors there is an especial risk of thermal runaway if the forward bias on the output stage is increased too far, so the preset control should only permit a small range of adjustment. It can be replaced by the appropriate value of fixed resistor after setting up, although it might be difficult to select a close enough value. Adherence to a good design should exclude the risk of thermal runaway, but it is a possibility, requiring care while setting up the amplifier, to avoid any broken connections and also to avoid short-circuiting the amplifier output.

Small resistors inserted at the emitters of the output transistors, by reducing the rate at which the quiescent current increases with temperature, assist in maintaining thermal stability. These should be non-inductive, and fuses have been used for the purpose in some amplifiers to give additional protection against thermal runaway. Alternatively the resistances can be made from enamelled Constanton wire: $3 \frac{1}{2} \mathrm{in}$. of $34 \mathrm{~s} . \mathrm{w}$. . will give 1 ohm , and can be doubled to make it non-inductive. Resistances made of copper wire would give negligible temperature compensation, since the emitter resistors have only a small potential drop under quiescent conditions.

Fig. 6: 500 mW amplifier using LFK4 germanium transistor package. Each output transistor requires $12.5 \mathrm{sq} . \mathrm{cm}$. of 18 s.w.g. aluminium for adequate heat dissipation.

A fraction of the output power is lost in them, so the values are often 1 ohm or less for output powers above 1 W .

BIAS COMPENSATION

Forward-conducting junction diodes (BA130 in Fig. 5) may be used to provide a bias more stable than could be derived from a resistance in the base circuit of the complementary transistors. The diodes can have characteristics similar to the base-emitter junctions of the transistors, and compensate for variations in the base-emitter potential of the transistors caused by supply voltage and temperature changes. The variation in potential of the baseemitter junction occurs also in the diode and the change in quiescent base current is thus minimized.

With germanium transistors, gold-bonded diodes and germanium junction diodes are used as compensating elements, and have a forward drop of about $0 \cdot 4 \mathrm{~V}$. Silicon junction diodes, with their larger forward drop of 0.7 V , are especially suitable with silicon transistors. Instead of miniature diodes, transistors, connected as diodes, with the base and collector leads joined together, can be employed.

Temperature compensation by the diodes will only be adequate if their temperature is equal to the junction temperature of the transistor. Attempts are made to mount them close to the transistor in clips on the heat sink. This is not entirely practicable with miniature diodes.

A thermistor (VA1040, Fig. 6) is more sensitive to temperature changes and, included in the bias network as an alternative to diodes, can, if suitably chosen to have the required resistance when carrying the current of the driver stage, give effective compensation for changes in ambient temperature. Disc-type thermistors can be used. The characteristic does not match the base-emitter junction of the transistor and cannot give precise temperature tracking with it. It is not therefore mounted on the heat sink.

Fig. 7: Small germanium transistor derating characteristic.
A preset variable resistance can be included with diodes or thermistors to take up component and transistor spreads, enabling the quiescent current to be set at a particular value.

TRANSISTOR DISSIPATION

In Class B amplifiers, maximum dissipation in the output transistors occurs at 40% of full drive. An estimate of the maximum dissipation in each of the output transistors can be made from

$$
P_{t o t} \simeq \frac{V_{s}^{2}}{32\left(R_{L}+R_{E}\right)}
$$

where V_{s} is the voltage of the amplifier supply, R_{L} the loudspeaker impedance, and R_{E} the value of the emitter resistors.
Individual types of transistor may differ in their ratings, even if outwardly of the same construction. Data on small transistors gives the maximum dissipation in free air at $25^{\circ} \mathrm{C}$, while for power transistors it is often at a case temperature of $45^{\circ} \mathrm{C}$.
Complete information on maximum dissipation is expressed as a derating characteristic. An example for a small germanium transistor is shown in Fig. 7. The junction temperature for this transistor must be limited to a value, Tj max, of $85^{\circ} \mathrm{C}$. At $85^{\circ} \mathrm{C}$

Fig. 8: Medium power germanium transistor derating characteristic.

Fig. 9: Medium power silicon transistor derating characteristic.
ambient temperature, therefore, the dissipation must be zero. When the maximum dissipation at some other ambient temperature is given, e.g., $25^{\circ} \mathrm{C}$, the two points thus obtained can be joined to yield a straight line graph. This enables the dissipation at any ambient temperature to be found that will raise the junction temperature to $85^{\circ} \mathrm{C}$, the absolute limiting value.
Each straight line graph in Fig. 7 has a different slope, and is for a different value of thermal resistance. The graph (i) is for the transistor casing at ambient temperature, i.e., for zero heat sink resistance: the transistor can be imagined to be on an infinite heat sink.

The lowest characteristic (iii) is for the transistor in free air, when the only heat sink is the transistor case itself. The thermal resistance is then at its highest value.

An intermediate line, (ii), shown dotted, is the characteristic for the transistor mounted on a particular heat sink. It is not reliable to specify the thermal resistance of the heat sink by itself, because the effective value depends very much on the area contacted by the transistor. The same heat sink may yield different thermal resistance values for a small transistor and for a large power transistor, and if the heat sink is small, heat loss between the transistor and the surrounding air may also influence the value obtained.
The derating characteristic of a small silicon power transistor of TO-5 construction is shown in Fig. 9, and it can be seen that the power-handling capacity is much higher, because $\mathrm{Tj} \max$ is $200^{\circ} \mathrm{C}$; and that the internal thermal resistance is rather lower because, in a power transistor, the collector is internally connected to the metal of the case.

Power transistors of TO-3 construction have a thick copper mounting-plate, and this substantial construction can provide an internal thermal resistance as low as $1^{\circ} \mathrm{C} / \mathrm{W}$. There is also an appreciable area of thermal contact with the heat sink, which should result in more definite values for heat sink thermal resistance.
Germanium high power transistors have this form of construction, and have the advantage of a lower saturation voltage and better linearity than silicon transistors, but require larger heat sinks and are more prone to thermal runaway.

To be continued

NTE G sat , E Gircu

THE current revolution in the field of industrial electronics resulting from the introduction of the integrated circuit could not for long fail to have an impact on the amateur enthusiast's activities, and over the next few years it is inevitable that the pages of this magazine will reflect this fact. Originally the manufacturers concentrated on the production of units for logic applications, for computers and control systems, since these promised the opportunity for the very large volume sales required to justify the effont in development and tooling up that each type of integrated circuit represents. However, it was equally inevitable that this method of fabricating complete circuits in a single chip of semiconductor no larger than one conventional transistor would eventually be extended to linear circuits, and units appear which could be immediately applied as i.f. amplifiers, etc. From the manufacturer's point of view there is the advantage that the product will be in demand for the foreseeable future, as there seems little prospect of a further development to bypass the I.C., so that production of a standard module may be planned on a longterm basis. There is also the point that labour costs involved in the production of an I.C. are not significantly greater than those for single planar transistors, so that there is an opportunity to nullify the advantage of cheap labour held by manufacturers of domestic electronic gear in the Far East.

Considering these facts, R.C.A. in the U.S.A. began the development of an I.C. suitable for use as an i.f. amplifier in television sets, and this is now available at a very moderate price from the U.K. subsidiary of the parent firm. Following American TV practice, the unit is designed to handle an f.m. signal, at a frequency of $4.5 \mathrm{Mc} / \mathrm{s}$. However, as it is not yet feasible to incorporate inductive elements into an I.C., the frequency-selective circuit is external to the I.C. itself, so that if a conventional $10.7 \mathrm{Mc} / \mathrm{s}$ i.f.t. were used, the unit would function satisfactorily at the higher frequency, with a drop in gain of a mere 7 dB , from 70 to 62 dB . Furthermore, the manufacturer was able to provide not only the i.f. amplifier, but also a.m. and noise limitation, with an f.m. detector and audio preamplifier facilities in the one unit. The unit therefore appeared ideal for a low cost solid state f.m. tuner, and this article reports on the writer's success with such an exercise.

The Integrated Circuit

First, a short consideration of the circuit evolved by the R.C.A. engineers. It is a monolithic silicon unit, that is, all the functions of the circuit are achieved within a single slice of silicon, whose properties were modified by diffusing traces of other

Fig. 1: Equivalent circuit in discrete components of the R.C.A. integrated circuit. Note that the component numbering is not related to the component numbering in Fig. 2.

L. McNAMARA, B.Sc.

A. J. McEVOY, B.Sc.

Fig. 2: The complete tuner circuitry. As the output goes to the "barrel" of the jack plug, note that the mounting screw must be insulated from the aluminium panel, e.g. by plastic washers.

components list

Resistors:

R1	$39 k \Omega$	R5	$12 k \Omega$
R2	$220 \mathrm{k} \Omega$	R6	$1.5 \mathrm{k} \Omega$
R3	470Ω	R7	180Ω
R4	$1.5 \mathrm{k} \Omega$		
(All	10%	$\frac{1}{4} \mathrm{~W}$)	
(

Capacitors:

C1 $15 \mathrm{pF} 5 \%$ silver mica
C2 33pF 5\% silver mica
C3 470pF ceramic
C4 $10 \mathrm{pF} 5 \%$ silver mica
C5 $\quad 4 \cdot 7 \mathrm{pF} 5 \%$ silver mica
C6 470 pF ceramic
C7 $4 \cdot 7 \mathrm{pF} 5 \%$ silver mica
C8 33pF 5\% silver mica or ceramic
C9 $10 \mathrm{pF} 5 \%$ silver mica
C10 $0.001 \mu \mathrm{~F}$ min. paper
C11 $0.05 \mu \mathrm{~F}$ min. paper
$\mathrm{C} 12 \quad 0.05 \mu \mathrm{~F}$ min. paper
C13 $0.05 \mu \mathrm{~F}$ min. paper
C14 $10 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C15 $10 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic
VC1/VC2 $15+15 \mathrm{pF}$ twin gang with s.m. drive

Semiconductors:

Tr1 AF114 Tr2 AF114 D1 OA90

Inductors:

L1 Aerial coil, blue spot v.h.f. (0.5 cm . dia. former).
L2 9 turns, solid core insulated wire wound on a $7 / 64 \mathrm{in}$. drill to control diameter.
L3 5 turns as above.
L4 1st i.f.t., orange spot, $10.7 \mathrm{Mc} / \mathrm{s}(0.5 \mathrm{~cm}$. dia. former).
L5 8 turns as L2.
Discriminator $10.7 \mathrm{Mc} / \mathrm{s}$ ratio detector transformer.
Henry's Radio Ltd. can supply L1 and L4, alternatively they can also supply L2, L3, L5 and discriminator; these are described as R.F. coil/code red; reactor coil-enamel wires; Osc. coil-code black; Discriminator transformer-code yellow.

Note re coils:

L1; aerial winding is nearer the flanged end of the former.
L4; end of the larger winding to Tr2, bottom end of the smaller winding to 1 inch on I.C. i.e. to B on circuit board.
The integrated circuit CA3014, is available from R.C.A., Great Britain, Ltd., Lincoln Way, Windmill Rd., Sunbury-on-Thames, Middlesex: price 25/plus post and packing.

Fig. 3: Printed circuit layout showing position of components. Note that R2 is mounted on the copper side.

Fig. 4: Relates recovered audio signal to input signal. ($10 \cdot 7 \mathrm{Mc} / \mathrm{s}$).
elements into it at carefully chosen locations, so that various parts acted equivalently as the discrete components shown in the circuit of Fig. 1 would. This chip is mounted in a transistor-type can conforming to the international TO-5 standard, with ten leads instead of the usual three. Though R.C.A. have perfected the technique of incorporating the two varieties of transistor, $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$, in the one chip, this particular unit employs only n-p-n types. The first eight transistors are equivalent to a three stage wide-band amplifier. The input is applied to the base of Trl , which operates in the emitter follower mode. Its output is developed across R1 and therefore passes into the common-base amplifier, $\operatorname{Tr} 2$. Tr3 may be regarded as an emitter follower, matching into a second three transistor amplifier system operating in a manner similar to Tr1-Tr3. Alternatively, the circuit may be analysed by regarding Tr3 and Tr4 as a super alpha pair,
coupled through Tr5 to a similar pair, Tr6 and Tr7. Either way, the amplified signal appears across R8, and enters the emitter of Tr8, a further commonbase amplifier, which is loaded by the frequencyselective discriminator transformer, connected to pin 5 of the I.C. The twin outputs of this transformer re-enter the I.C., being connected to the detector diodes D3 and D4 through pins 6 and 7. The resulting audio is applied to the two transistor preamp, with a high-level audio output appearing at pin 9.

Design Procedure

Perhaps the most interesting aspect of the design, however, is the procedure adopted to bias the transistors, ensuring that each is operated to best advantage with a d.c. supply of between 5.5 and 10 volts. There is also the question of decoupling, as both i.f. and a.f. circuits are operating from a common supply and inside the one I.C. Tri0 establishes a constant voltage across R9, and from this point transistors Tr5, Tr8 and Tr11 are biased. An external capacitor between pin 4 and earth decouples this bias supply. Trl also receives its base current from this line, through R14 and secondary winding of the tuned input transformer L4 (the 1st i.f.t. of the tuner). $\operatorname{Tr} 2$ and $\operatorname{Tr} 7$ are biased separately, being held at the potential of the emitter of Tr6, and decoupled by the external capacitor from pin 3. Tr9 is an active decoupling element for the d.c. supply line to the other transistors of the i.f. amplifier chain, i.e. $\operatorname{Tr} 1$ to $\operatorname{Tr} 5$. The audio output of the detector appears across diode D7, and therefore has some effect on the level of the bias line originating with $\operatorname{Tr} 10$. Naturally, with such a high gain, the amplifier will "clip", but whereas this would result in intolerable distortion in an a.m. tuner, in an f.m. line up it is a definite advantage, and would have to be added were it absent, since it results in the suppression of a.m. signals and the elimination of impulsive interference. As a result the a.m. rejection of the circuit is greater than 50 db ,
and this limiting action is initiated by all input signals of an amplitude greater than $300 \mu \mathrm{~V}$. Fig. 4 is a graph relating the recovered audio signal to the input signal, and confirms the efficiency of the limiting action.
The circuits of the r.f. and frequency changer stages are conventional. AF114 p-n-p transistors were available, and it was decided to use them, rather than to attempt a completely new design for the front end with planar silicon $n-p-n$'s at the same time as I.C.'s were introduced for the rest of the tuner, even though they would have been more compatible with the negative earth circuitry of the I.C. The signal is applied to the emitter of the r.f. amplifier Trl from a broadly tuned transformer, with the dipole aerial across its primary winding. This transistor operates in the common base mode, to avail of the better high frequency performance of a transistor in this configuration. There is a rejector circuit in the collector load of TrI, tuned by one section of the gang, which directs the signal through a capacitor to the emitter of Tr 2 . This is a self oscillating mixer, with the oscillator frequency set by a tuned filter in the collector circuit, with feedback from the collector to the emitter through C7. A clamp diode, as well as the capacitor C 8 , is used to feed the filter from the transistor collector. The collector current actually flows through the primary of an untuned first i.f.t., inducing in the secondary the i.f. signal which enters the I.C.

Construction

We may now proceed to the actual construction of the tuner. As is well known, layout can be very critical at high frequencies, due to the small capacitances involved in the tuned circuits, so that the effect of strays and hand capacitance is much more severe than in the a.m. bands. Therefore it is recommended that the printed circuit technique be adopted, and the pattern of Fig. 3 closely adhered to in painting the copper laminate preparatory to etching away the excess copper in a bath of FeCl_{3} (ferric chloride) solution, in accordance with the procedure often described in these pages. "CirKit" self-adhesive copper foil may be used as an alternative, though the above warning that the writers will not be responsible for poor results if the conductor pattern is not accurately observed, applies here too. When the etching process is complete, and the paint removed, the component mounting holes are drilled, also observing the diagram, Fig. 3. For the aerial and first i.f., larger holes are drilled to accept the ends of the coil formers, which are then firmly fixed in position with polystyrene cement. The connecting wires from these coils are left at the length as supplied by the makers, and soldered to the appropriate circuit board conductors without being cut. This is because these components are fairly accurately prealigned, and this may be disturbed if the wiring is altered. The ratio transformer, also prealigned, is next mounted on the circuit board, then the tuning capacitor. The smaller components, resistors, transistors, diode and capacitors, are soldered into position so that the tuning capacitor has a free swing and the complete assembly is even and neat. Components are mounted on as short leads as possible to minimise stray capaci-
tance, e.g. the transistors should not have more than $\frac{1}{4}$ in. of wire for each electrode beyond the seals of the cans. The leads to the integrated circuit must be inserted with care, and the more accurately the circle of ten holes for it is drilled, the more convenient the mounting operation becomes. Pin 10 is clearly marked by the spigot, and the orientation of this guideline should be checked before applying the soldering iron to the pins-this item is very difficult to remove from the board undamaged if any mistake is made. There is no need to resort to

Fig. 5: (left) tuning gang assembly and (right) pin connections for the R.C.A. intregated circuit CA3014.
the excessive precautions recommended in the early days of transistor circuitry; care as normally given to an expensive component, and reasonable skill with a hot clean iron and good solder are all that is required. Anyway, the I.C. is a silicon component, and as such is very rugged and tolerant of heat.

Fitting the Coils

Figure 5 illustrates the mounting of the coils, L. 2 and L5, and also C10, on the tuning capacitor. Note that R1 and Cl are not mounted on the circuit board in the usual fashion; R1 is soldered to the foil side of the board, close up to the copper, while C 1 goes from the earth side of C 2 to the aerial coil. The illustration shows how this component is placed on top of C 2 , so that they use a common connection to the earth line. The audio output is taken from pin 7 of the I.C. through a capacitor, the other terminal of which is later taken to a jack socket on an aluminium panel. The primary purpose of this panel is to screen out hand capacitance when tuning the set, and the circuit is now ready to be

Fig. 6: (a) Aerial coil (L1) connections and (b) the 1 st i.f.t. (L4) connections.
fitted on to it. It is folded from a sheet of 16 gauge aluminium, $9 \frac{1}{2} \times 2 \mathrm{in}$.; and incorporates at one end a battery compantment $2 \times 1 \mathrm{x}$ lin. for a PP4 9 -volt battery. It is attached to the printed circuit and earthed to it by screws fitting the tapped holes in the front of the tuning capacitor. Before fitting, it is drilled to take a coax socket for the aerial, a 3.5 mm . jack socket for the audio output as mentioned above, and also clearance holes to permit access to the cores of the coils for purposes of alignment. The writers intend to use the prototype as a tuner and for test purposes only, so no volume or tone controls were fitted, and the output jack was arranged to serve at the same time as the on/off switch, by a simple modification to the spring contact incorporated in it; when a plug is inserted, this contact, which carries the positive battery line, is pressed upwards by the tip of the plug and makes contact with a fixed terminal and so connects with the circuit of the tuner. Three of the coils used in the front end of the tuner are merely small spills of wire, and the table gives winding data for these; if a constructor does not feel confident in winding them, the table of parts specifies equivalents available.

Alignment and Testing

The tuner is now ready for test and alignment. The circuit has a current drain of approx. 15 mA . from a 9 volt source, and if the current is significantly above this level the circuit should be checked for shonts before proceeding further. If the coils are wound as instructed, they will be close to alignment already, and of course the aerial coil and ratio transformer, 1st i.f.t. and aerial coil are supplied pre-aligned, as noted above. Therefore when an aerial is inserted some activity should be observable on the band, and in fact the writer's prototype operated fairly well first time, even though located at a distance of 20 miles from the "local" station.

Correct Tracking

Proper tracking is obtained by stretching out L5 until the stations fall in the desired portion of the swing of the tuning capacitor. The setting of the aerial coil can then be adjusted for best quality. of reception, and the length of L3 may be found to have some similar effect. It may also prove advantageous to try the settings of the i.f.t. and ratio detector, though without a wobbulator it is not possible to fix accurately the bandwidth of these coils at the specified $250 \mathrm{kc} / \mathrm{s}$. In the prototype, satisfactory reception proved possible on a short "throw out" aerial, though, of course, there was an undoubted advantage in a proper dipole. In fact, in an area of strong signal, it is possible to insert an earphone into the output socket, and use the tuner as a personal portable. Therefore, the writers are pleased to repont that, although the project began as a design exercise, the result is a tuner with few equals in performance among the kits currently available, and no chailenger for simplicity of construction or economy, costing under $£ 4$ to make.

Thanks are extended to Messrs. R.C.A. Great Britain Ltd. for co-operation, especially in regard to the diagrams.

an efficient new 5 -stager
to be featured in the January PRACTICAL WIRELESS. Suitable for 160 and 80 metre amateur bands, it is simple to construct from readily available parts at minimum cost, with facility for adding extra stages and refinements.

PLUS

Intermittent Fault Locator designed to find those hard-to-trace faults-self-contained with own power supply. Learning Morse with instructions and circuitry for suitable practice oscillator.
Simple Crystal Tuner, ideal as a present for a youngster or project for a novice.

January issue on sale December 8th
ORDER YOUR COPY NOW!

EUROPE

Albania: Radio Tirana (Rue Ismail Quemal, Tirana) has replaced 9,715 by 11,715 for the 2200-2330 English TX.

Andorra: Radio Andorra (Obispo Catala 42, Barcelona 17, Spain) has now moved its second m.w. TX to 701 from 718. The s.w. outlet is now reported as 6,190.

Austria: Osterreichischen Reudfunk (P.O. Box 700A, 1040 Vienna) has made following changes: 6,155 additionally on air 1300-1800; 7,245 additionally on air $2000-2200 ; 11,850$ replaces 11,785 at $1300-1500$. The 2300-0200 TX on 9,770 re-timed at 0000-0200, and this frequency additionally used 1000-1300; the 1900-2200 TX or 15,210 re-timed to $1800-2100 ; 17,730$ replaced by 17,800 at 1400-1600; extra TX at 2300-2400 on 15,360.

German Federal Republic: Deutschlaedfunk (KolnMarienburg, Lindenalle 7) now has foreign service TX on 1,268 as follows: English 1900-1930, 2000-2030; Dutch 2030-2100; Danish 2100-2120; Norwegian 21202140; Swedish 2140-2200. At other times the home German programme is carried.

Great Britain: BBC (CEXB, Bush House, London, W.C.2) transmits in German to Europe at 1945-2100 on $9,600 / 6,195$. At 1945-2045 there is Hungarian on 6,180. A further Hungarian TX is aired at 2200-2215 on 6,125 .

Greece: Radio Athens (Mourouzi Street 16, Athens 138) reported with English at 1830 and French 1835 on 9,605/11,720.

Holland: Radio Nederland (P.O. Box 222, Hilversum) has replaced 21,570 by 9,525 for the 0730-0820 English TX. Other outlets remain 11,730/9,715.

Voice of America: Munich relay (Washington, DC, 20547, USA) noted with Lithuanian at 1530 on new outlet of 9,660 .

Norea Radio: (Grensen 19, Oslo 1) has a programmein Norwegian at 1700-1730 on 9,630 over TX of TransWorld Radio, Monte Carlo.

Portugal: Radio Lisbon (Rua Quelhas 21, Lisbon). Opinions differ as to the $16 \mathrm{~m} . \mathrm{b}$. frequency used for the 0700-0900 English TX. It is variously given as 17,740, 17,890 and 17,895 . All agree on 21,495 for the $13 \mathrm{~m} . \mathrm{b}$. TX.

Roumania: Radio Bucharest (P.O. Box 111, Bucharest). Frequency changes have been made for the following transmissions: 1930-2030 11,940/9,570; 2230$2300 \quad 9,570 / 7,195 ; 0130-0230 \quad 9,510 / 9,570 / 11,725 /$ 11,810/11,940/15,250; 0300-0330 and 0430-0500 9,510/ 9,570/9,590/11,725/11,810/11,940/15,250.

Spain: Radio Nacional de Espana (General Yague 1, Madrid) appears to have a new schedule. The station has been noted on 9,370 at 2030 in Spanish; or 9,360 at 2030 in Hungarian; or 7,105 at 1500 in Spanish; on

6,140 at 1900 in Spanish; on 6,130 at 1930 in French and at 2100 in Spanish.

USSR: Radio Moscow (Moscow) noted as follows: on 11,785 in Norwegian at 1945; 11,755 Turkish 1030; 11,630 Russian 1900; 9,640*1600; 9,620 *1800; 9,550 Spanish 1815; 9,500 Turkish 1545; 9,490 Russian 1600; 9,470 Arabic 1800; 7,340 Russian 1930; 7,100 Russian 1815. *Language unknown.

Radio Kiev: (Ukrainske Radio, Radio Centre, ul Khreshchatik 24, Kiev) has English Mondays, Thursdays and Saturdays 1900-1930 11,730/11,760/12,020; $2230-2300$ 1,240; 0030-0100 and 0430-0500 11,750/ 12,030/9,810/9,710/9,680. In German Tuesdays and Fridays 1910-1930 9,740/11,730/11,760.

AFRICA

Algeria: Radiodiffusion-Television Algerienne (21 Boulevard des Martyrs, Algiers) now transmits in French $0630-08306,080 ; 1200-1500 \quad 11,835 / 11,715$; 1500-1700 9,510; 1700-2300 6,080.

Libya: Libya Broadcasting and TV Service (P.O. Box 333, Tripoli, P.O. Box 274, Benghazi) transmits over 5,965 at 0500-0900 and 1800-2100 and over 9,565 at 1100-1700.

Nigeria: Nigerian Broadcasting Corporation (Broadcasting House, Lagos) reported around 0600-0700 on further new outlet of 15,365 .

Biafra: Radio Biafra reported to have external service in French at 0725 and 1830-2000, and English 2100-21 30 over 4,855 .

Senegal: Radiodiffusion du Senegal (B.P. 1765, Dakar) reported in French 1530-1600 on 21,685.

ASIA

China: Radio Peking (Broadcasting Administration, Fu Hsin Men, Peking) has been noted as follows: on 11,675 in German at $1820 ; 9,575$ Russian 1930; 9,490 *1600; 9,480 Hindi 1600; 7,620 Italian 2050; 7,075 German 1845; 6,620 Russian 1900; and 6,560 French 1915. "Language unknown.

China (Taiwan): Broadcasting Corporation of China (Ren Ai Road, Taipei) now uses 7,120/9,655/9,685/ 11,825/17,890 for the 1030-1100 English TX.

Indonesia: Radio Republik Indonesia (P.O. Box 157, Djakarta). The home service in Indonesia can be heard in the afternoon on YDF, 6,045 until close down at 1600.

Pakistan: Radio Pakistan (Broadcasting House, Bunder Road, Karachi) now uses 11,750/15,134 for the 1945-2030 transmission in English to Europe.

Contributors this month were Roy Patrick, R. J. Warner, A. E. Roxburgh, A. G. Clarke, Swiss Broadcasting Corporation, Radio Sweden, International Short Wave Club. Many thanks go to all of them.

DOWN in the forest something stirred-so the song goes anyway. This past month on the amateur bands has echoed this refrain and, I am pleased to report, all bands have offered some very good openings.
On topband the Europeans have been in evidence on c.w. and reports of the odd W have come in. Several listeners logged some good DX on $7 \mathrm{Mc} / \mathrm{s}$ and it looks quite a promising band to watch this Winter. Fourteen and twenty one Mc/s have supplied some very nice long-haul stuff and at times have positively hummed.
Surprise surprise, ten metres is "at it" again. By next year we should have some really good openings on this band. Now is the time to start thinking about a ground plane for Ten, this will give all-round reception and would be well worth the effort to erect.

H.F. BANDS

Some people reading this page are, perhaps, just starting on short wave listening and all these funny little numbers are a bit confusing. The first two or three letters and/or numbers in a callsign fix the country in which the station is situated. You can get a "Countries List" from the R.S.G.B. which helps enormously, but just for fun let's take the first \log this month and list the countries heard rather than a long list of callsigns.
R. Street (Surrey) has a t.r.f. receiver ($0-\mathrm{V}-2$), and a 110 ft . long wire aerial. On 20 metres ($14 \mathrm{Mc} / \mathrm{s}$) he heard amateur stations transmitting from-Clipperton Island, Korea, Panama City, Virgin Islands, Canal Zone, Guantanamo Bay, Australia, South Orkney Islands, Hong Kong, Laos, Venezuela, New Zealand and Singapore.
Incidentally, with a "Countries List" and a cheap map of the world you can learn quite a bit of geography in a very short time, and have fun while you're doing it.
R. King (Yorks.), R1155, a.t.u. (good lad), 36 ft . vertical and 66 ft . l.w. says that the best time to listen on twenty metres for the Far East is from 1500 on, with Australian and New Zealand stations coming in between 0500 and 0800 . On twenty metre phone Richard logged-CR61K,OL7MP, DU1FH, EA3NA, EP2BQ, ET3VRJ, F3KW, FG7XD, FP8CA, HB9UT, HK3RQ, HK HP1JC, HS4AK, HV3SJ, IIWX, K1HVV, K2RFZ/ MM, K4AIM, K5QHS, K9CFV, KH6FIL, KL7WAH, KR6KN, KZ5MB, LU7ABV, OD5CN, OE1GWA, OHØNI, PX1NV, PY3HT, TG9EP (Guatemala), TI2CJ, UA9KAJ, UW9WR, UL7JA, VE2DE, VK2ID, K1DEU/P/VE8, VK3NW, VK5CV, VP8IE, VQ8CCR, W6MBA, W7HQC, XW8AX, ZL1AQE, ZL3U', ZL4BX, ZS5GY, ZS6BAD, 3A2CP, 5L2KG, 7XøAH, 9H1AG, 9K2BY, 9N1MM, 9Y4VT.
L. Rowland (Cheshire), Trio 9R-59, 150 ft . 1.w. claims the bands are very busy. This statement is backed up by his \log for 15 metres-CE3PR, CE4ZN, CE \varnothing AE (Easter Is.), CN8BB, CO8RA, CP1AW, CR6YZ, EA8CB, HC1XC, HI3XCH, JA1BB, JA2EDG, JA3NUC, JA4EVI, JA6BCE, JA \varnothing BFM, K70YJ, KG6SF, KL7DTA, KP4IB, KV4CX, LU5AH, LU7PK, MP4BGE, MP4PBA, OD5BZ, OX5BW, PY1CAD, PY2SD, PY4UK, SV $\varnothing W B$, TF2WKM, TN8AA, UA9OW, VP9FB, VS9MB,

VU2BK, W6GMM, W7BWE, WA7EYP, XW8EZ, YA1FV, YV1EJ, ZC4AK, ZD8BIL, ZL1AH, ZS5KS, ZS6DB, 4U1ITU, 4X4RW, 5Z4DQ, 6W8EX, 7Q7BM, 9H1AM, 9M2JSW, 9V1NV. All these on s.s.b.

On ten metres South America and Africa are in evidence plus most of Europe.
R. Burt (Essex), Lafayette HA-63A plus a 90ft. l.w. heard these on Ten-CT2AO, CT1IW, DL's, EA8CR, FG7XC (Guadeloupe), K's, OK, ON, PY2DBU, W's, YO9CN, ZC4MO, ZS1JA, 4X4BL, 5H3KJ.
A. Darragh (Yorks.), AR88D, 33ft. l.w. logged these on Ten s.s.b.-CR7FM, PY1CAD, PY2DSG, UA3WD, UF6ACR, UP2NX, VK6SR, VK9TC, ZC4AK, ZSIFF, ZS6AW, ZS6U, ZS6VIG, ZS9JM, 5N2ABF, 9J2DT.
R. Spencer (Yorks.), Hallicrafters SX111," . . triangular shaped long wire" listened on Ten s.s.b. for CR7CZ, CR7ER, CR7FM, CX9CX, FH8CD, LU8DKA, OD5EP, OH2AM, OK1MP, PY1CAD, PY4MV, PY9HL, SM5SI, UF6ACR, VQ8CHR, VQ9TC, ZC4MO, ZE2JA, ZS6U, 4X4BL, 4X4DH, $5 \mathrm{H} 3 \mathrm{KJ}, 5 \mathrm{~L} 2 \mathrm{KG}, \quad 5 \mathrm{~N} 2 \mathrm{ABF}, 5 \mathrm{Z} 4 \mathrm{AA}, 5 \mathrm{Z} 4 \mathrm{KN}$, 9J2GT, ZD7DI.

L.F. BAND

Down to 40 metres again, but look what's been about, and you missed it too!
F. Simpson (Yorks.), HA700, heard these on phone-CN8BC, K1UBE, K3BDU, KP4AEB, PY7LAK, PY8QQ, VP1RA, VK2AVA, W1EFG, W2TXP, W3PHL, W4TUT, WAIDXN, WB2PDA, YV1BI, YV7DQ, ZL2BCG.
A. Milewczyk (Manchester), Lafayette KT340, 70ft. 1.w. managed these on s.s.b.-CN8AW, K1HRT, OH3QA, PA \varnothing GKO, PY4BLH, PY7ACN, PY7AST, PY7AUT, PY7LAK, PZICF, W1AK, W3FPB, W3OYY, W3PHL, W8QQGP/P/4, ZD7KH (St. Helena).
D. Henbry (Sussex), HA500, 14Mc/s dipole at 25 ft ., managed these on 40 s.s.b. CN8AW, CN8BV, PX1IE, PY7AST, PY7GV, PZ1CF, VK2AVA, ZB2AP, 9H1AM.

CONTESTS

Now that the Mobile Rally season has finished we'll just have all those lovely contests to get into. There are four of them this month that I know of. These are-November 11/12th, R.S.G.B. $7 \mathrm{Mc} / \mathrm{s}$ c.w. contest; 12th, OK DX contest, this one is c.w. too; 18/19th, Top Band contest; 25/26th, CQ World Wide DX contest (c.w.). On December 3rd, there's the $70 \mathrm{Mc} / \mathrm{s}$ c.w. contest.

LOGS

Sorry to say that at least 50% of the logs received this month were not usable. They left out the information needed to make them of any use at all. Things like the mode, whether c.w., s.s.b., or a.m. Several logs were very good indeed but were not in alphabetical order and there just isn't time this end to stop and sort out a huge pile of callsigns no matter how good the \log is. If you do send in a \log, please put it in alphabetical order with the date, callsigns, frequency or band, time GMT, the receiver, aerial etc.

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

U N D E R S T A N D CIRCUIT DIAGRAMS

4 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK...INCLUDING ...

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER

PHOTO ELECTRIC CIRCUIT

- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SiMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^4]

8 WATT，PUSH－PULL OUTPUT AM－ PLIFIER， $200-250$ Volts A．C．EZ80， ECC83，2－EL84．Bass，treble，vol／on． in．high．

20 ELEMENT MAST CLIPPING BBC－2 OUTDOOR AERIAL State station required $55 /$－（7／6 carr．）．BBC－2 Coax Cable 1／6 yd．

6 TRANSIBTOR＂SUPER SIX＂M．W． and L．W．kit， 84 （5／－P．\＆P．）．Wooden cabinet $11 \times 7 \pm \times 3 \frac{1}{2}$ ．All parts may be purchased separately．
3 ifin ． 10,000 line speaker，or $7 \times 4 \mathrm{in}$ ． 6000 line．

TKSTED AND ASSEMBLED I．T． TRANSISTOR STRIP． 3 IFs（doubie
 P．\＆P．）．

9－12 VOLT TRANSISTOR AMPLIFIERS （1） 200 mW for 3 ohm speaker $30 /$－．（2） 350 mW with switch，vol．control，for 3 hm speaker $40 /=$ ．（3） 1 w．for 8 or 15 ohm speaker， $5216,6^{6}$（4）${ }^{3} \mathrm{w}$ ．for 8 or 15 ohm apeaker $67 / 6$（ $2 / 6$ P．\＆P．each gpe）．Type（1）can be supplied in metal cor 3 z I 3 y I $1 \mathrm{lin}$. higb with vol．f
on－off．Internal PP3 battery or larger externally，Bocket for input and output only 40／－．Post paid

VER／FM TUNER． $88-102 \mathrm{MHz}$ ．Self－ powered．Valves ECC85，EF89， 6 BW 7 ， ECC82，two diodes and metal rect． circuit diagrams etc $8 / 8$ ；tree with chasals．With front panel and brackets s7．19．6 tax pald and carr．paid．Can be supplied built for 88．17．6．
TRANSISTORISED F．M．TUNER．GIze $6 \times 4 \times 21 \mathrm{in}$ ．Model A1005．Requires 9v． $10 \mathrm{~mA}, 88-108 \mathrm{MHz}$ printed circuit，Cap． 10 mV output with 10 microv．input． Transigtors 28A235 x 2；28A350 \＆3： SB75 and diodes 1N34，1N60（2）．Only \＄7．5．0（4／6 P．\＆P．）．Compare this price before purchasing elsewhere．
2 x 4 WATT STEREO AMPLIFTER． Printed circuit．Separate power pack． Metal rectifler，ECC83 and 2－EL84． Negatlve feedback．Vol．，base，treble each channel．Muting switch and on／off． 25．10．0（7／6 P．\＆P．）．

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS－ 2 or 4 TRACK

 A．C．Record／Playback amp．switch；Off／On－Tone；Vol．／Mic．；Vol．／Gram；Mic．Input Gram．Input；Monitor；speaker socket．Valves 6BR7；12AX7；EMB4；EL84；6X4 geparate power pack．Complete amp．and power pack，88．17．6．（b／－P．\＆P．）．Rexine covered cabinet（ \tan ） 151 $17 \times 9 \frac{1}{2} \mathrm{~m}$ ．high with sloping front for amp；complete with two tweeter speakers，and special adwing 10.176 ，4－track 819150 $85 /-$（ 87 －carr．） 3 speed Magnas Womplete 110 more on normal retail prices．

STEREO AMPLIFIER 2×3 watt

$200-250$ v．A．C．Mains，EZ80 and $2 \times$ ECL86．Vol．，Tone，Balance controls．With ．Trane 7／6 extra）．
Three tone grey record player cabinet（by well known manufacturer）taling above amplifier，complete with two $6 \frac{1}{\mathrm{i}} \mathrm{in}$ ．speakers（one speaker in removable lid）． 812. （plus $7 / 6$ cerr．）．
Complete Stereo Record Player using above equipment 18gns．carriage paid．

NEW 6 PUSH－BUTTON STEREOGRAM CHASSIS

M．W．；8．W．1；B．W．2；V．H．F．； Gram；Stereo Gram．Two separate channela for stereo gram with balance control． Apeakers on Radio．Chassl size： $15 \times 7 \times 6 \frac{1}{2} \mathrm{in}$ ．high．Dla cream and red． 15 I 3in． 190 VHF ； $18-51 \mathrm{M} ; \quad 80-187 \mathrm{M}$ VHF 86－100 Mc／g．Valve日 ECC85，ECH81，EF89， 2 Price \＆it E19．0，carr．pald or e6．18．0 deposit and 5 monthly payments of 58／6．Total H．P price eq0．15．6．Gream moulded escutcheon included．

BATTERY ELIMINATOR

anv HT and $1.4 V$ L．T．Size $5 \times 3 \times 31 \mathrm{n}$ ．State valve line－up．Fully built． 125 mA L．T．or 250 mA L．T．＂Open＂type for mounting inside set． $50 /$－post paid．

GLADSTONE RADIO

66 ELMS ROAD，ALDERSHOT，Hants．
（2 mins．from Station and Buses）．F
CLOEED WEDNESDAY AFTERNOON
FULL GUARANTEE
Alderahot 22240
Catalogue 6d．

NEWMAR Dept PW10 30132．SHUDEHIL MANCHESTER4． Telephone．（061） 8327710 FREE GIFT OFFER
OF A BRAND NEW WORLD FAMOUS E．M．I．FISK SOLARSCOPE VALUE 2220 WITH EVERY ORDER VALUE 25 AND OVER．THIS UNIQUE INSTRUMENT WHICH I A BOON OF DAYLIGET AND DARKNESS ALL OVER THE EARTH AT ANY GIVEN HOUR MINI－MOTORS $3 V$ to 4.5 V operation．Ideal for mini－racing cars，toys＂Large＂（ $11 / 8 \times$

BRAND NEW！Why use Sapphire Styli in your record－player when at very little extra oost you can have a frit－grade GENUINE DLAMOND 8TYLUS at 7／11 pius 6d．P．P Available as repiacements for the following popular types only at present：B8R TCSLP －BSR TC8 STEREO－B8R TCS LP／ETEREO－COLLARO STUDIO＂O＂LP／RONETT －GARRARD GG8 LP－ACOS GP 65／67LP－RONETTE BF4O／LP－GARRARD GC2 LP． SPEAKERS． 12 in ．round high quality British fitted tweeter cone， 6 watts，in 300 $15 \Omega, 29 / 6$ P．P． $3 / 6$ ．ROUND 12 in ．R．A A． $3 \Omega 25 / 6$, P．P． $3 / 6$ ． 21 round apeaker 80 a for your miniature equipment－ $4 /-$ each，P ．\＆P ． $1 /$ ．Many other speakers from 2 in ．to 13 in ．available．Extension type，with vol．control，attractive finish includea 7×4 in，speaker． $32 / 6$ ，P．a P． $4 / 6$ ．Ats to suit all transistor seta for home or car．17／6．P．\＆P． $2 / 6$ ． Jacks ther
10 16 plus 1／6 P．\＆P
MICROPHONES．LAPEL／HAND MMKE－litn．dia．Lapel Clip，ideal for tape CRYSTAL HAMD MIKE．Robust and sensitive．Cream plastic case．Jast the thing for tape recorders $8 / 6$ ，P．\＆P．1／6．
sTUDIO CRYSTAL MIEE．Professional，omni－directional，Providing features naually only available at many times the price．Sensitivity－50db．Response： $50 \cdot 12000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ Black plastic with chronium case，swivels，standholier and shielded cable－only 48／－ P．\＆P．2／－．The stand below fits this Mike，
ACOS MIC 40 －World famous Desk Mike， $18 / 8$ plus P．\＆P． $1 / 3$ ． ACO8 M1C 45－8plendid Curved Hand Grip Grystal Mike，14／6 pl．
ACOS MIC 60－＂Btick＂Type Crystal Mike 18／6 plos P．\＆P．1／6．
ACOS MIC 60－＂Stict＂TYpe Crystal Mike $18 / 6$ plus P．\＆P，1／6
ACOB ROUND Grystal mice TELEPEONE PICK－UP COIL．For recording or ampliflying both aldea of telepbone convergation．guction cup fitting to telephone，with lead，7／6．P．\＆P 1／－
INTER－COMM．DE－LUXE 8－WAY．Ideal for offces，workshops，thestres，etc．Highly efficient，safe BABY ALARH．No mains－works ofl PP3 battery，which lasts for months，obtainable everywhere．Buzzer call system，complete with lead．plugs． battery，in handsome carton．55／－．P．\＆P．2／6．
PHOTO－ELECMRTC CELL．（APC．1）Suitable replacement for ORP 12．Max．voltg 200 ；current 1A；Power ratio 250 W ．Res．rante 500Ω to 2 meg Ω ．Price $7 / 6$ eaoh， P．\＆P． 6 d ．
4 TRANEISTOR 8 W AMPLIFIERR．Size $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}, 3,8$ or 15Ω output． 9 volt battery operated．Highly sensitive．Price（less battery）58／6．P．\＆P．1／6．
RECORD PLATER DECK8．GARRARD
SP25 DE LUXE 4－SPEED 8INGLE PLAYER 暗 10 $6\left\{\begin{array}{l}\text { All latest models．All } \\ \text { fitted Mono Gartridge．}\end{array}\right.$ MODEL 1000 4－SPEED AUTOCHANGE MODEL 80004 －SPEED AUTO－CHANGE

B．S．R．ADTOMATIC REGORD－GHANGER DECKS．LATEST MODELS． UA2S－Very popular－4 speed．Csp．six $7 \mathrm{inh} ., 10 \mathrm{in}$ ．， 12 in ．records UAl $888-81 i m$ Design－first class 4 speed．Two－tone grey．
P．\＆on either of the above 7／6．Price includes Free Gift．

MAGNAVOX＂368＂TAPE DECES．LATEST MODELS
 $200 / 250 \mathrm{~V} 50$ cycles a．c． 3 speed，digit counter，plano key controls． 7 in．reels．Every modern feature．8peeds 173 3 and $7 \$$ i．p．s． With t track Bradmatic heads
P．\＆P．10／－．Price includes Free Gift．
PICK－UP CARTRIDGE REPLACENENTS
STANDARD FIXING FOR MOST RECORD－PLAYER ARMB．AJL TURN－OVER TYPES WITH STYII FOR L．P，\＆ 78 R＿P．M．
ACOS GP／67－2 MONO 12／6 each．ACOS GP／73．2 STEREO 25／－each．ACOS GP／91－1 MONO－DE－LUXE 17／6 each．Postage and packing 9d，each，
Finest quality Britith made IHILAR Rocording Tape Fully Guaranteed．In Cartong．

5in． 60.850 standard Play ．．．．．．．．．．\quad 11／6 \quad Sin． 1200 ft ．Double Play

7 in .1200 Standard Play ．．．．．．．1016 7 in． 2400 ft ．Double Play
P．\＆P．1／－per reel．Four reels and over post paid． c．Current： $0-1-100-500 \mathrm{~mA}$ ．Resistance： $0-100 \mathrm{k} \Omega$ ．Complete with test prods． nstructions． $37 / 6$ ．P．\＆P． $1 / 6$
ULTI－TEST 息ETER．Pocket size： $4 \frac{1}{3} \times 34 \times{ }^{15} / 46$ in． $20,000 \Omega$ per volt．D．C．Volts $20,000 \Omega$ P．V．） $0 / 5 / 25 / 250 / 500 / 2500$ D．C．Current $0-50 \mathrm{micro}$ armp／2．5mA／250mA A．C．volts 10,0000 P．V．） $0 / 10 / 50 / 100 / 500 / 1000$ Resistance： $0 / 6 \mathrm{k} \Omega$－ $0 / 6$ mega． Capacity： $10 \mu \mathrm{~F}$ to $001 \mu \mathrm{~F}, \cdot 001 \mu \mathrm{~F}$ to $\cdot 1 \mu \mathrm{~F}$ ．Decibels：
with battery，instructions，leads，72／6．P．\＆P．1／6．
TRANSISTORS：Bome popular types from our range： 010 ， 0 －each．
OC44 and OC45 8／6 each．OC71 2／9．OC72 8／6．OC81 and OC81D 8／－each．
OC169 8／9．0C170 8／6．AF117 4／－．OC26 7／6．QET8 5／9．Gederal purpose
O169 8／9．OC170 8／6．A
（Approx．OC7 1）l／－each．TRANSISTORS，ginclair ST140－4j－BT141－8／－both capable of operating up to $700 \mathrm{Mc} / \mathrm{s}$ ．ALSO MAT 100 － $7 / 9$ ，MAT 101－8／6，MAT 120 －7／9，MAT 121－8／6，ADT 140－15／－．High speed switching transistore－B8Y 26 BEY 28, BSY 65－51－each．
THYRIBTORS， 100 PIV SA： $12 / 6 ; 200$ PIV 5A：15／．All Transistors．Postage 6d po to 3．Over 12 sent P．\＆P．paid．
R．F．FIGLD INDICATOR．Ideal for use with radio controlled models．Checks radiation trom existing antenna．Tunes 1 to 250 Mc in 5 bands．Sensitlve 200 mA meter move ment． 5 section plug－in aerial．Phone jack and crybtal earplece for monttoring．No attery required Powerful magnet for attaching to metal Burfaces．Complete with nstructions，47／8 P．P．2／6．
Erids．Cash with order．No C．O．D．Orders total es and over bent carriage paid if goods returned perfect within 7 days of despatch

REMEMBER THE NOVEL FREE GIFT EXCLOSIVE TO US！
 Sat BTOCK18T8 GF

FULL instructions concerning the use of the Practical Wireless Data Rule appeared in last month's issue, together with the free copy of the rule. These instructions were sufficient to enable anyone with experience of slide rule scales to make full use of the rule. There now follows a short series of articles which will explain its use more fully, enabling even the beginner to take full advantage of this rule.

For those who did not purchase last month's issue of Practical Wireless, the Data Rule is available from the Practical Wireless Blueprint Department, price 5 s .

Let us begin with a definition. A linear scale is one in which the divisions of the scale are separated by equal distance, i.e., starting at 1 the distance between 1 and 2 will be the same as the distance between 2 and 3 and identical to the distance between 3 and 4 and so on all along the length of the scale (two linear scales are shown in Fig. 1).

Fig. 1: Slide rule with two linear scales. This scaling is not practicable as explained in the text.

A logarithmic scale is quite different. The divisions get closer together as one moves along the scale. Thus the distance separating 1 and 2 on the scale will be larger than the distance between 2 and 3. Similarly the distance between 3 and 4 will be less than that between 2 and 3 and so on along the length of the complete scale.
Slide rules use logarithmic scales although at first sight it might appear far simpler to stick to linear ones. However it will be appreciated that it is far easier to add and subtract than it is to multiply and divide. This applies particularly when the numbers involved are not simple single digits but consist of several digits. For example to multiply 3.087 by $2 \cdot 981$. Adding these two numbers would be easier than multiplying them.

By using logarithms we can avoid multiplication and division by automatically converting them to simple addition and subtraction respectively. To use logarithms or logs as they are commonly known we find the log (from log tables) of the two numbers we wish to multiply and simply add these two logs together. The resultant number is looked up in a table of antilogs and the answer given opposite.

Similarly to divide any two numbers we can find their logs, subtract these logs, and look up the antilog of this number in tables for the answer to the problem. Some might doubt that all this business with tables is really so very much quicker than multiplying and dividing by longhand. But consider a problem like $3 \cdot 8^{-2} \times 56 \cdot 14^{4}$. This is far simpler with logs than it is to work out by longhand multiplication.

The slide rule, with its log scales is compact and quite easy to use once the principle of operation has been grasped. Instead of looking up the logs of numbers in the log tables, adding or subtracting these and then looking up the antilog to find the answer, the slide rule
does all this in one go. It is only necessary to set the rule and read off the answer direct.

ANALOGUE CALCULATIONS

Analogue methods of calculation give close approximations to given calculations, and in usual slide rule scale lengths, three-significant figures is normally all that is expected. Figure 1 illustrates the basic principle of operation.

Here two linear scales are shown, scaled identically from 0 to 10 . To perform addition, for example $3+5$, place the zero of the upper scale adjacent to the 3 of the lower scale, and read the answer, 8 , in the lower scale, opposite the 5 in the upper scale. Obviously, all this process does is to count five along from the 3 , thus giving 8 . Since the upper 0 is aligned with the lower scale 3 , the rule is set for all additions of the form $3+n$, where " n " is any other number.

A problem arises when we go off the lower scale length, as in the case of $3+9$ for example, for there is nothing below the upper scale 9 . In this example, the rule should be reset, with the other scale end opposite the lower scale 3, i.e., the upper scale 10 aligned with the lower scale 3, and then opposite the upper scale 9 (shown dotted in figure), we see 2 in the lower scale. It is necessary to correct for the scale reset, and since the scale is 10 units long, 10 must be added to this result, giving the answer $10+2$, or 12 .

Had we wished to add two numbers that were not whole numbers, for example $2 \cdot 59+3 \cdot 76$, in this case, the upper scale 0 would be set opposite 2.59 in the lower scale, and with more subdivisions than in the figure (this is not too difficult to estimate), then we may read the answer, 6.35 , in the lower scale opposite 3.76 in the upper scale. The practical use is thus more obvious with awkward numbers.

Subtraction is simply the reverse process, and had our sum been $6.35-3.76$, we would place the 3.76 of the upper scale opposite the 6.35 of the lower scale, and read the answer, 2.59 , in the lower scale, opposite the end mark of the upper scale.
lt is not usually practical to actually use this principle for addition and subtraction, for they are relatively simple computations. The same principle applied for multiplication and division, however, would obviously be a great deal more useful. This is possible, by firstly converting our numbers to logarithms.

LOG TABLES

Suppose that the required calculation is a very simple case, 2×4. Now using log tables, this is represented as follows. Using \log tables we find that the \log of 2 is 0.3010 , and the log of 4 is 0.6021 . Remembering that when we use logs multiplication becomes simple addition we proceed as follows:
$2 \times 4=\log 2+\log 4=0.3010+0.6021=0.9031$.
Now we turn to our table of antilogs and look up 0.9031 and we find the answer is 8 .

By converting the 2 and the 4 into logarithms we have reduced the calculation to an addition, and thus
the above principle can be employed. Now we might look up the logs from the tables, then add these values with linear scales, returning to antilog tables for the answer, however this is obviously far too cumbersome, and would take far too long. The next improvement would be to put a scale next to the linear scale, giving the appropriate \log conversion, i.e., a log scale adjacent to, and aligned with the linear scale. We could then easily transform the number to its \log value, add the \log values as shown before for linear addition, and then read the answer from the linear scale, adjacent to the log scale answer.

The more efficient method, however, is to eliminate the linear scale altogether, just leaving the log scale, but scaled in terms of the linear numbers it represents. Figure 2 represents two log scales as described, corresponding to the L and M scales on the Data Rule. Now we perform the addition process to multiply, and the figure shows how the example 2×4 is carried out. Place the end mark, or 1 of the upper scale, opposite the 2 of the lower scale, and read the answer 8 , in the lower scale, opposite 4 in the upper scale.

Fig. 2: Multiplication using logarithmic scales.
Obviously this is very much simpler than long multiplication of a more involved calculation, such as 5.42×2.8 for example. By long multiplication, we obtain the correct answer of $15 \cdot 176$. Now, by logarithms (four figure) we can only expect to get the first three significant figures, and achieve this in the same manner as before, i.e.:
$\log 5 \cdot 42+\log 2 \cdot 8=0 \cdot 7340+0 \cdot 4472=1 \cdot 1812$
To obtain the answer we take the antilog of this, remembering that the " 1 " indicates the power of 10 , and looking only for the ". 1812 " portion in the antilog table, thus: antilog $1 \cdot 1812=15 \cdot 18$, which must be corrected to 3 significant figures, giving 15.2, the same as the long multiplication answer, also corrected to 3 significant figures. To do the same calculation with the slide rule, and again obtain the 3 significant figures answer, set the appropriate end mark of the upper scale, in this case the 10 , opposite the $5 \cdot 42$ position in scale M, and read the answer, as presented on the rule, 1.52 , opposite 2.8 in scale L . Note that the significant figures are correct, but that the decimal point is not correct.

DECIMAL POINTS

In any calculations on the slide rule, allowance must be made for the fact that if every individual possible number had to be represented on the rule, the rule would be of infinite length, and would consist of an infinite number of log cycles, identical to the one shown in the figure, all placed end to end, increasing by a power of ten at every cycle end. We get over this problem by accepting that the slide rule will only give us the significant figures, and we must use common sense to place the decimal point. A quick calculation that will in no way strain the mind is all that is necessary, and

Fig. 3: Example of multiplication using the data rule.
to do this, we round-off the numbers to be multiplied, and thus do a rough calculation to get an idea of the
order of the magnitude of the answer. In our example we have to multiply $5 \cdot 42$ by $2 \cdot 8$. Roughly, then, let us mentally work out, say 5×3, giving 15 . We know that the answer will be round about 15 , thus the correct answer must be $15 \cdot 2$. The other nearest possibilities, namely 1.52 and 152 are obviously outrageous.
Thus the L and M scales of the data rule may be used to rapidly multiply two numbers together. In the previous example, with linear scales, it was shown that the reverse process for addition was the correct procedure for subtraction. The same applies with the logarithmic scales for division, since we subtract logarithms to divide.

DIVISION

Consider the following example:
$70 \cdot 4 \div 3 \cdot 2$
Now when we convert to logs division becomes simple subtraction thus:

$$
70 \cdot 4 \div 3 \cdot 2=\log 70 \cdot 4-\log 3 \cdot 2
$$

looking up 70.4 in log tables we find that this is 1.8476 and the \log of $3.2=0.5051$ therefore the complete calculation reads:
$70 \cdot 4 \div 3 \cdot 2=\log 70 \cdot 4-\log 3 \cdot 2=1 \cdot 8476-0 \cdot 5051$ $=0.3425$.
We look up the antilog of 0.3425 in the antilog tables and find the answer is $2 \cdot 20$. (This is correct to 3 significant figures.) Using the rule, place 3.2 in scale L opposite 70.4 in scale M , and read answer, $2 \cdot 20$, opposite 1 of scale L.

Fig. 4: Example of division. Although 7.04 is set, this is regarded mentally as 70.4.

The equivalent scales on a conventional slide rule are far more convenient to use than on the data rule when it comes to longer calculations, perhaps consisting of several multiplication and division steps, due mainly to the luxury of a cursor, a sliding piece of perspex with a line marked on it. This line may be set up anywhere on the rule to assist the user in longer calculations, and to remind him of an intermediate answer in a longer calculation. Obviously a cursor is not practical with this calculator, however, it must be stressed that although the L and M scales enable ordinary multiplication and division, their main purpose is for units conversion, and this will be dealt with fully in another article. For inter-units conversion, the Data Rule does provide a luxury that the conventional slide rule does not-a fixed decimal point, and direct conversion between many electrical units.

COMPLEX OPERATIONS

With a mathematical slide rule complete with cursor the following problem would resolve merely to moving the cursor and slide about and reading off the answer direct with no mental arithmetic at all other than placing the decimal point.

$$
\frac{22.7 \times 678 \times 34.015 \times 92.501}{3.02 \times 0.45 \times 346 \times 0.89}
$$

Imagine working this out by long division and multiplication!

For those who would like to study the mathematical slide rule further, a trip to the local library should be fruitful since many books have been written on the subject, or a book may be purchased, such as S/ide Rule Manual, published by George Newnes, price 8s. 6 d .

OUR PRACTICAL CHRISTMAS OFFER

 TO YOU!
Practical Wireless Presents THE TRIED AND TRUSTED SWISS KELEK 18ct. GOLD-PLATED WATCH

The KELEK DE LUXE 21-Jewel Lever, a watch of classic elegance with all the built-in qualities described below. Plus automatic self-winding.
Yours for only $\mathbf{£ 1 0} \mathbf{1 0 s}$. Od.

The KELEK 17-Jewel Lever, beautifully designed, ultra-accurate and with all special features below.

Yours for only $£ 7$ 7s. Od.

HERE'S the most practical present you can give to yourself-or to a friend-this Christmas . . . a superb quality watch. By special arrangement with a famous Swiss manufacturer of International repute, PRACTICAL WIRELESS has been able to obtain a supply of famous Kelek Wrist Watches and present two for you to choose from as your Christmas gift to yourself. The special price of each is most attractive, you will agree, and your choice will be sent to you in a presentation box, post free. And what superb watches they are! Whichever you choose you'll have unfailing time-keeping.

15 Special Features:-

JEWEL LEVER MOVEMENTS. AUTOMATIC DATE CHANGE-shows the date day by day, month by month. PRESSURISED AND WATERPROOF TO 3 ATMOS-PHERES-if you unfortunately went swimming in yours it would still keep perfect time. RUSTPROOF STAINLESS STEEL BACK-free from corrosion from dampness, rain, perspiration. SHOCKPROOFED-eliminates the risks of knocks and shock. ELECTRONICALLY TIME-TESTED in different positions to ensure accuracy in day-to-day wear and movement. TEMPERATURE-COMPENSATED HAIRSPRING-adapts itself to changes in climate. GOLDPLATED. ANTI-MAGNETIC. UNBREAKABLE MAINSPRING. SWEEP SECOND HAND. DUSTPROOF. COMPLETE WITH LEATHER STRAP and PRESENTATION BOX. 12 MONTHS' INTERNATIONAL GUARANTEE WITH EVERY WATCH.

How To Get Your Watch

Complete the coupon below and write your name and full address twice where shown. Send coupon with postal order or cheque crossed "\& Co." and made payable to George Newnes, Ltd. Write your name and address on back of remittance.
Post to: PRACTICAL WIRELESS Watch Offer (PW/W1), 136 Long Acre, London, W.C.99.
Christmas Delivery-Latest date for receipt of orders is 6th December, 1967. If gift is for an address other than your own, please address the label section accordingly on coupon.
We regret that this offer is not available in Eire or overseas.

ORDER ON THIS FORM

PRACTICAL WIRELESS WATCH OFFER

Please send me the KELEK Watch indicated here:KELEK 17-Jewel Lever $£ 77 \mathrm{~s} .0 \mathrm{~d}$. $\}$ Tick KELEK DE LUXE 21-Jewel Lever $£ 1010$ s. Od. \} one

Cheque/P.O. No. \qquad Value $£$.. ..s......d.

Please check that coupon is complete with your name and address in two places, and that your remittance is correct.

NAME

```
(Block Letters)
```

ADDRESS \qquad
(PW/W1)

LABEL WRITE IN BLOCK LETTERS

NAME
ADDRESS \qquad
(PW/W1)
If undelivered please return to: PRACTICAL WIRELESS
136 Long Acre, London, W.C.2.

GEARED MOTOR GALF REV. PER MMNDTE Made by famous Smith Electric, mains operated and quite
 deep. Secondary use as process
timer. Internal switch can be made to break cricuith caith be \& period up to 2 mins. 17/6 ${ }_{\text {P }}^{2}$ a Per P. $2 / 6$ unless ordered with other goodis.

BECKASTAT
An Instant Thermo stat. Simply push it into 15A Wall socket and plug your fare or Kner appliance into it. Knob setting. Will saveits 39/6. We offer at 10/6. plus

/- post.

Miniature

 WAFER SWITCHES4 pole, 2 way- 8 pole, 3 way3 pole, 4 way-2 pole, 4 way1 pole, 12 way. All at $3 / 6$ each $30 /$ - dozen, your assortment.

ALL PRICES GREATLY REDUCED

Type		Type		Type	
No.	Price	No.	Price	No.	Pric
2N1727	181-	OA5	5/-	OC75	$8 /$
2N1728	101-	OA10	61-	0 C 76	$8 /$
2N1742	25j-	$0 \mathrm{A47}$	81	0 C 77	71
2N1747	85j-	OA70	2/-	$0 \mathrm{C78}$	81
2N1748	101-	OA79	$2 / 6$	OC78D	$8 /$
AC107	91-	OA81	$2 / 6$	$0 \mathrm{C81}$	81
10127	4/-	OA85	2/6	$0 \mathrm{C81}$	$8 /$
ACY17	8/6	OA90	216	$0 \mathrm{C82}$	$8 /$
ACY18	5/6	OA91	$2 / 6$	OC82D	31-
ACY19	6/6	OA200	$8 / 8$	$0 \mathrm{C83}$	4/-
ACY20	516	OA202	$4 / 8$	$0 \mathrm{C84}$	4/6
ACY21	6/-	0020	18/6	00139	8/6
ACY22	$4 / 6$	$0 \mathrm{CL}^{2}$	101-	0 C 140	$12 / 6$
AF114	$4 /$	0 O 23	81-	0 Cl 170	81-
AF115	41-	$0 \mathrm{OC24}$	151-	$0 \mathrm{Cl71}$	4
AF116	$41-$	0 C 25	$81-$	OC200	9/-
AF117	41-	0026	$7 / 6$	0 C 201	18/6
AF118	4/-	0 C 28	8)-	00202	$18 / 6$
AF139	12/6	0029	$17 / 8$	00203	12/6
AF186	176	$0 \mathrm{OC35}$	101-	$0 \mathrm{OP71}$	151-
AFZ12	151-	0C36	15%	ORP 12	8/6
A8721	18j	0 C 38	1216	ORP60	101
BC107	14/6	$0 \mathrm{C42}$	$8 / 6$	SB078	$6 / 1$
BY100	$4 / 6$	$0 \mathrm{C4} 4$	$81-$	S8305	81
BYZ13	$7 / 6$	OC45	81-	gB251	101
Mati00	719	0046	81-	ST140	81
MAT101	8/6	0070	8/-	8 S141	
MAT120	719	00671	3/-		
MAT191	6/8	0072	8		
SCR's (THYRISTORS)					
Piv				00V	400V
1 amp				$8 / 6$	$9 / 6$
3 mmp				$9 / 8$	10/6
25 amp				16	60\%
SILICON RECTIFIERS					

8 A 00v. glass encased-only approx. tin | long wire ended. |
| :--- |
| $400 \mathrm{~mA}, 50 \mathrm{v} .1 / 6$ |

FLUORESCENT CONTROL KITS Each kit comprises seven items-Choke, 2 tube ends, starter, starter holder and 2 tube clips, with wiring instructions. Buitable for norma fluorescent tubes or the new "Grolux" tubes for fish tanks and indoor plants. Chokes are supersllent, mostly resin alled. Kit A. $-15 \cdot 20$ w. $19 / 8$,
Kit $B-30-40$ w. $17 / 6$ Kit $\mathrm{C}-80$ w. $17 / 6$. Kit B-30-40 w. $17 / 6$. Kit C-80 w. $17 / 8$.
Kit $\mathrm{D}-125$ w. $22 /$., Kit $\mathrm{F}-65 \mathrm{w}$, $19 / 6$, Kit MF1 is for 6 in ., 9 in . and 12 in . minlature tubes 19/6. Postage on KIts A and B 4/6 for one or two kits then $4 / 6$ for each two kits ordered. Kits C, D and E $4 / 6$ on first kit then $3 / 6$ for each kzt ordered. Kit MFl $3 / 6$ on first kit then $3 / 6$ on each two kit, ordered.
11 RANGE TEST METER

For checking car electrica, radlo, TV, ignition systems, household lighting etc. Mensure AC/DC volts. DC current. Resistance. will last a lifetime. 89/6. P. \& P. 3/6.

HURSEAL AUTOMATIC TIME SWITCH
12 hour. 15A to control heating, ilghting, radio, immersion heaters, etc. Regular price 84.4 .0 .

INFRA-RED HEATERS
Make up one of these latest type
 They are simple to make from oir easy-to-follow instractions-uses silice enclosed elements designed for the cor-
rect infre-red wavalength (3 microms). Pricefor 750 watts element, all parts, metal casing as iltustrated, 19/6, plus $\$ / 6$ post and tusurance. Puil switeh 3/- extra,
 AMPLIFIER

4 trangistors including two in push-pull imput for crystal or magnetic micioro phone or pick-up-reed-back loopssensitivity 5 mV . Price 19/6. Post and Insurance $2 / 6$. Speakers: 3 in. $18 / 6$, $5 \mathrm{in}, 18 / 6,6 \times 4 \mathrm{in}$. $14 / 6$.

DRILL CONTROLLER

Electronically changes speed from approximately 10 reis. to masimum. Frull power at all speeds by fingertip control. Kit includes all parts, case, everything and full instructions. 19/8, plus 2/6 post and insurance. Or available made up 32/6.

NTERCOM BARGAIN

Will save time and improve efficiency. Ideal th home-office-shopsurgery, etc. Complete outfit comprises Master unit and three substations each of which can call the master and have full two-way working. No sockets. Also tmeluded is packet of staples-and battery. Nothing else to buy-S4.19.6, plus 4/6 post and insurance.

GARRARD
AUTO RECORD PLAYER Model 2000
This is one of the latest produrct of the Word's most experienced maizer of tue record reproducers. It superior features inchude-automatic playing of up to 8 mixed size recordsmanual playing-pick-up pivots to give low stylus pressure-iarge diameter turn-table for max stability adjustment include pick-up height-pick-up dropplag poattion and stylus pressure. Size is $13 \frac{1}{4} \times 11$ inn. clearance $4 \hat{z} i n$. above. $2 \nmid i n$ below-fitted with latest bi-compliance cartridge for stereo-and mono. L.P. And 78. Aupplied complete with mounting template and service sheet. Offered this month at the Special Snip price of £6.19.6 plus $7 / 6$ carriage and insurance.

THE VECTRONOME
CAPSTAN DRIVEN
TAPE RECORDER

CIRCULAR FLUORESCENT

Brings sunshine Into your home. 150 wat of light but uses only 40 we . Beautifu fitings with glass, non-plastic centre Regular price e4.15.0. Speoial hudget price 69/6, plus $8 / 6$ carr. and ins. Please state colour of glass centre, white, pink, blne, red, black, yellow or cream. Also
whether phag into lamp holder or ceilthg mounting model. 80 watt model 99/6. 10/-carr. \& ins.

RADIO STETHOSCOPE

Easiest way to fault find-traces signal from aerial to speaker-when sigral stops you've found the fault use it on Radio, TV, ampliffer anything-complete thcluding probe tube and crystal earpiece 29/8-twin stetoset instead of earpiece 7/6 extra-post and ins. $2 / 9$.

This la a truly portable, belf-contained instrument with built-in microphone and loudspeaker using a 5 -transistor amplifier with P.P. output and suitable for operation from mains or by chargeable batteries. Tape capacity is 25 minutes on easily changed spools. A tape pooition indicator gives quick reference to any part of dictation. Recording level is automatically prejosted to suit operator. Interlock prevents unintentional erasures. Tape speed controlled by fly wheel driven capstan. Very portable in neat case with carrying handle, overall size of which is approxtmately 6 in. Price with tape, nickel cadmum rechargeable batterfes and mains battery charger t9.19.6 (rather less than surance $7 / 6$. Unused and in perfoct morrance 7/8. Unused and in perfoct

ELECTRONICS (CROYDON) LIMITED

(Dept. P. W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY S.A.E. with enquiries please

A final reminder that when a required number is off the scale on the L and M scales, it is only necessary to reset the L scale, so that the opposite end mark (1 or 10) is adjacent to the number that the present end mark (10 or 1) is adjacent to in the M scale.

RECIPROCALS

The reciprocal of a number, " n ", is defined as $\frac{1}{\mathrm{n}}$.
Thus, the reciprocal of 2 is $\frac{1}{2}$ or, converting to a decimal, 0.5 . The reciprocal of 8 is $\frac{1}{8}$ or in decimal form 0.125 etc. A reversed \log scale opposite a normal log scale in fact gives reciprocals in decimal form at adjacent points, and, as with multiplication and division, the decimal point is placed by inspection. Thus, to obtain the reciprocal of a number it is only necessary to look at the scale in direct line with the number in Scale L, the Z scale giving the required reciprocal. To enable the line to be taken from one scale to the next with greater accuracy, simply align the number in Scale L with one of the end marks of scale M, the reciprocal then being given opposite the appropriate mark in the incomplete Scale Y. Thus, reciprocal of 2 may be found by placing the 2 in scale L opposite the 1 of scale M, and reading off 5 , corrected mentally to $0 \cdot 5$, opposite the mark in Y.

For those likely to use a slide rule after this, a useful point to note is that if we have a calculation of the form $z \div y$, another way of expressing this is to convert one number to its reciprocal and multiply, thus giving: $\mathrm{z} \times 1 / \mathrm{y}$. Similarly, a calculation of the form $\mathrm{z} \times \mathrm{y}$ could be expressed as $z \div 1 / y$ i.e, take the reciprocal of one number and now multiply, for a previous division, or vice-versa. For example let $z=8$, and let $y=4$. Then $z \div y=$ answer i.e. $8 \div 4=2$. Using the other method $\mathrm{z}=\frac{1}{\mathrm{y}}$ we have $8 \times \frac{1}{4}=2$. The use of this comes in long calculations on the slide rule, where alternate multiplication and division is the quickest approach, and to achieve this, the habit of using a reciprocal, where necessary, soon comes automatically. This is, of course, only done when a reciprocal scale is provided on the slide rule, and, for example, instead of placing an end mark against a number in the middle of a calculation, it may be more convenient to place the reciprocal of the number, in the reciprocal scale, opposite the number. The simple proof that this will work is offered at any slide setting, when it will be seen that whatever the scale Lend mark points to on scale M, this number is also adjacent to the mark in Y, read off in scale Z. The "end mark" is of course either the 1 at one end of a scale or the 10 at the other depending which end mark is being used for a particular calculation.

For instance, increase 10 by $5 \%=10 \cdot 5$ i.e., $\frac{105}{100} \times \frac{10}{1}=10 \cdot 5$

COMPONENT TOLERANCE

Usual component tolerance ratings are 1, 2, 5, 10 and 20 per cent. Now this may be positive or negative, but in all cases, each of these tolerances uses a constant portion of scale length to compute the tolerance. The reader will be familiar with the fact, for example, that to increase a number by 5% it is only necessary to
multiply that number by $\frac{105}{100}$ or 1.05 . Similarly to increase a number by 10% we multiply that number by $\frac{110}{100}$ viz. Increase 20 by $10 \%=22 . \quad \frac{110}{100} \times \frac{20}{1}=22$
This process will be carried out on the reciprocal scale Z in conjunction with the small Component Tolerance Scale immediately above it in red.

Fig. 6: The component tolerance scale.
To give the $+5 \%$ tolerance, it is only necessary to mark the length representing the \log of 1.05 next to the appropriate log scale. This length is shown between the central line of the tolerance scale, and the indicated $+5 \%$. Verify this by placing the 1 of Scale Z opposite the central mark, and the $+5 \%$ mark is seen to be opposite 1.05 on Scale Z. In a similar manner, to give the -5% mark on the scale, the scale length representing 0.95 must be marked off, and with the slider set as described above, it will be seen that -5% is adjacent with 0.95 in Scale Z . The rest of the tolerance scale is similarly constructed. The $\pm 1 \%$ marks can easily be estimated. Decimal points are placed by inspection. An example of how the scale is used in practice is shown with the aid of Fig. 6.
Say, for example, a resistance of 320 ohms is required, with a tolerance specified of $\pm 5 \%$. Now 320 ohms is not a preferred value of resistance, but by setting 3.2 in scale Z opposite the central mark of the tolerance scale, we can read off the limiting values of resistance at a tolerance of $\pm 5 \%$. Thus it is seen that the preferred resistance value of 330 ohms is within the tolerance.

LOG SCALE

It has already been shown that the scales represented by L and M are \log versions of a linear scale. Thus, a linear scale adjacent to the log scale allows conversion between the two, as shown in Fig. 7. On our slide rule the linear scale is not adjacent to the L scale but is drawn to project in the windows K and H higher up on either side of the rule. The red arrows and lines at either end of the M scale are the lining up points to couple the L scale with the K and H windows. Thus the drawing in Fig. 7 is for clarity only, the actual arrangement being shown in Fig. 7b.

The \log scale has been marked in terms of linear numbers, and thus the linear scale is marked in terms of \log numbers. Thus $\log x$ is read on the linear scale, opposite x on the \log scale. It is thus seen that $\log 2$ is 0.301 to 3 sig. figs. reading the 2, in the figure, in scale L , and the log value, $0 \cdot 301$, in scale K . On the rule this alignment of scales is automatic, if the number " x " is set in scale L, opposite the 10 mark in scale M , as indicated by the arrows on the rule. The $\log x$ value is then obtained from window K, opposite the arrow. The window only provides, to three significant figures, the part of the logarithm that would be obtained from the \log tables. The positive portion of the logarithm, the portion preceding the decimal point, technically
known as the mantissa, is obtained by inspection, in the normal manner. Thus, $\log 20$ is read off as $1 \cdot 301$, and similarly $\log 0.2$ as $\overline{1} .301$.

DECIBEL EQUIVALENTS

Amplifier gain is frequently expressed in terms of decibels, where a decibel is approximately the smallest change in sound that the ear can detect. A power ratio, that is the ration of output power to input power, may be expressed as NdB (decibels), where $\mathrm{NdB}=10 \log$ $\frac{\text { Pout }}{}{ }_{\text {Pin }}$ That is to say that the decibel ratio is expressed in terms of the logarithm of the power ratio, and the $\times 10$ factor, always applied since this is a constant in the expression, lifts the log value sufficiently high to be a little more manageable. Thus, if input and output powers are known, then Pout divided by Pin is simply calculated by the division method, using scales L and M, and the answer to this calculation can then be converted to a \log value by using the log scale. It is then only necessary to multiply by 10 to get the final decibel equivalent of the power ratio. It should be mentioned here that to be technically correct, this is only the correct procedure if the input and output impedances of the system are identical.
Let us take an example where the input power of an amplifier is 100 mW , and the output power is 3 W . Now the power ratio is thus $\frac{3 \cdot 0}{0.1}=30$ Thus, $\mathrm{N} \mathrm{dB}=$ $10 \log 30$. The mantissa is seen to be 1 .
To get the complete log value, the process is as in the case of getting a normal log, however, for clarity, a separate window has been provided for decibel calculations (bottom section of the window used for voltage and current ratio conversions to decibels), window H . This achieves exactly the same thing, however, on the same scale, the only difference being that the power ratio is set in scale L, opposite the 1 of scale M.
In the example, set 3 in scale L opposite the 1 of scale M , and read off approximately 4.8 in window H , opposite the arrow, in the upper portion of the window. The note on the upper portion of the window, to the left, signifies the upper scale for POWER ratios. The precise value is 4.77 , however the 4.8 should be near enough. The full logarithm is thus $1 \cdot 48$, and then, for the final answer, we multiply by 10 , giving 14.8 dB .
To enlarge upon this, if the power ratio is between 1 and 10, the decibel equivalent is given directly in scale H . If the ratio is greater than 10 , then add 10 dB for every factor of 10 , as indicated to right of the window. Thus, to repeat the previous example, when using the rule, and forgetting the formula, set the ratio of 30 as a number between 1 and 10, times an appropriate factor of 10 , i.e., 3.0×10^{1}. There is thus a single factor of 10 involved in the answer.
Set 3 in scale L opposite 1 of scale M and read off 4.8 in window H , for the power ratio portion of the dB scale. Now, since there is a single factor of 10 operating, add 10 dB to the computed answer of $4 \cdot 8 \mathrm{~dB}$, giving the correct result of 14.8 dB .

dB TO POWER

Another example, of the reverse procedure, will now be given. Let us convert the decibel equivalent of 35dB into a power ratio. The reverse procedure applies. We see that three multiples of 10 must apply, thus we take 30 from the original 35 to give us a number between 0 and 10 on the decibel scale, namely 5 dB . 5 dB opposite the arrow in window H indicates the ratio 3.16 in
scale \mathbf{L}, following the indicating arrow, and we then simply multiply this by the three factors of ten, i.e. the power ratio is 3.16×10^{3}, or 3,160 . Conversion to decibel equivalents of voltage and current ratios is basically the same as for power ratios, however the formula is now $\mathrm{NdB}=20 \log \frac{\mathrm{~V}_{\mathrm{V}} \text { out }}{\mathrm{V}_{\text {in }}}$ or $20 \log \frac{\text { Iout }}{\mathrm{I}_{\text {in }}}$
Fig. 8 thus shows the linear scale required adjacent the \log scale for this conversion. Again the H scale is shown adjacent to the L scale for clarity only, on the rule the H scale is in the large right hand window and is used in conjunction with the L scale as advised.

Fig 8: Decibel current/voltage ratios.
The voltage or current ratio may be computed using L and M scales, and the ratio obtained is then set opposite the 1 of scale L, as before, but the lower scale in window H is now employed, giving direct decibel readings, this time for $0-20 \mathrm{~dB}$, but again being the decibel exact equivalents for ratios between 1 and 10 . As before, convert to ratio form as previously described, but now, instead of adding 10 dB for every factor of 10 , add 20 dB , as note to right of window H reminds.

Thus, the decibel equivalent of the current or voltage ratio 17.8 is obtained as follows. Place 1.78 in scale L opposite appropriate mark, (taking the ratio in the form 1.78×10^{1}), and read off 5 dB in lower portion of scale in window H . Now adding 20 dB for every factor of 10 , since there is only one factor, this gives the final answer of 25 dB .

IMPEDANCE CORRECTION

The previous decibel equivalents have assumed identical input and output impedances. To correct this figure if this is not the case, complete the first stage with power, voltage or current ratio as before, and then add to the decibel figure thus obtained, the decibel figure obtained from the following expression: $\mathrm{N}_{\mathrm{Z}} \mathrm{dB}=10 \log \frac{\mathrm{Z}_{\text {in }}}{\mathrm{Z}_{\text {out }}}$

Scales L and M can be utilised to get the impedance ratio, and obviously the upper portion of the scale in window H is used for the evaluation of the rest of the expression, where the procedure previously used for power ratios is adopted, as reminded by IMPEDANCE at the upper-left of window \mathbf{H}.

To be continued

With a Weller 'Expert' Dual Heat Gun in hand you can successfully tackle any soldering job-from a small printed circuit up to sheet metal work I You get INSTANT HEAT at the press of a trigger-and tip is cool within 10 seconds of releasing trigger. Completely safe for operator ...
 $120-140$ watts.
Expert Dual Heat Gun 66/- (Kit 89/6). Also available: Marksman Soldering Iron 29/- (Kit 38/-).

Manufactured by the world's largest makers of quality soldering tools.

Write for literature on Weller Soldering Equipment.
TO: WELLER ELECTRIC LIMITED Horsham, Sussex.
Telephone: Horsham 61747

f 8 7 0彩

you live, with guaranteed cash values for emergencies.
(You can have a larger amount. of course.)
Premiums are eligible for income tax relief. Assuming you pay tax at the standard rate, approximate monthly costs are as follows:At age $25 \ldots$ under $£ 2$ 10s. 0 d . At age 30. . , under $£ 2$ 18s. 0 d . At age 35. . . under $£ 3$ 10s. $0 \mathrm{~d} \cdot$ At age 40 ... under $£ 49 \mathrm{~s}$. 0 d .

This policy could form the basis of your family's Financial Security Programme. It provides maximum protection in the early years, when you need it most. For example:FOR YOUR WIFE if you had died last night, $£ 1,500$ now and £30 MONTHLY until December, 1987-a total of $£ 8,700$.
FOR YOU, retirement benefits if

The

MANUFACTURERS LIFE INSURANCE COMPANY

INCORPORATED IN CANADA WITH LIMITED LIABILITY

 ASSETS EXCEED E500,000,000. ESTABLISHED 1887.PLEASE COMPLETE AND POST THIS
THE MANUFACTURERS LIFE INSURANCE COMPANY,
THE MANUFACTURERS LIFE INSURANCE COMPANY,
ENQUIRY DEPT. 197, KNIGHTSBRIDGE, LONDON, S.W. 7
I would like to have further information about your Famliy Income Policy and detalls of your Personal Financial Planning Service. Without obligation, of course.
\qquad
\qquad Date of Birth.. 8,700 PW1/12/67 0780

HI-FI WITH THESE PLUS FEATURES RELIABILITY, QUALITY, ADD-ONABILITY, AND TRUE ECONOMY

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness withcut sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTINit's simple to instal, good to listen to, and looks completely professional.

AMPLIFIER SYSTEMS • TUNERS • RECORDERS

MARTIN AUDIOKITS are available for Mono, and can be doubled up for stereo, or as complete stereo units. 3 ohm and 15 ohm systems are available. There is a special pre-amp for low output pick-ups and escutcheon panels to suit the arrangement you choose. The tuner is styjed to match.

- 5-stage input Selector $£ 2.7 .6$ - Pre-amp/tone controls £3.2.6 - 10 watt amp. (3 ohms) £5.12.6 - 10 wattamp. (15 ohms) £6.12.6 ■ Mains power supply $£ \mathbf{£ 2 . 1 5 . 0}$ ■ FM Tuner £12.19.3

MARTIN ELECTRONICS

154 High Street, Brentford, Middlesex Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name ...
Address ...

FULL-TIME COLLEGE COURSE IN RADIO AND TELEVISION

Our Course, of sixteen months' duration, provides a fundamental training for radio and television engineers. It includes theoretical and practical instruction on transistor television receivers, U.H.F. television receivers and colour television.

COLLEGE

OF ELECTRONICS

Exactly half the time is spent on practical work and the course provides excellent practical experience on valve and transistor radio receivers and high-fidelity equipment and all well known makes of television receivers.
The Course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations.
Next Course commences 3rd January, 1968.
To: The Pembridge College of Electronics (Dept. P12)
34a Hereford Road, London, W.2.
Please send, without obligation, details of the | R \cap Full-time Course in Radio and Television.
Name
Address

IT-CIRCUIT TRANSISTOR IESTER A.THOMAS

IT has been found that whilst repairing transistor radio sets, especially the miniature type, nothing is more infuriating than to suspect a particular transistor of being faulty, and be unable to remove it for testing, in case other components and the printed circuit are damaged.

The test unit to be described here enables a simple test to be carried out whilst the transistor is still connected to the components. The test is the leakage current, Icbx, between collector and base. This test is similar to Icbo, where the former has the emitter connected and the latter has it disconnected.

Figure 1 shows the basic circuit diagram of the unit; it can be seen that if the part within the dotted lines were not present, the current would flow from the collector via R1 and R2 to earth and from the collector to the base, and from the collector to the emitter through R3 and R4 to eanth. The circuit within the dotted lines balances the potentials at R1, R2 junction and R3, R4 junction with that appearing at the collector, therefore no current can flow in R1 from the battery B1. The meter M1 will then indicate only the current from collector to base.

Referring to Fig. 2, the battery B2 supplies the voltage via the control VR1, this is adjusted until MI shows no reading at all. The more accurate the zero adjustment is the more accurate the measurement.

Fig. 1: Theoretical circuit

Both of the batteries are reversible by $S 1$, this enables pnp or npn types to be tested. The circuit has been devised to test mainly germanium transistors, the silicon types have leakage currents well below the range of this unit.

Diodes D1, D2 and D3 protect the meters against large currents by conducting if the voltage dropped by R1 +M 1 or $\mathrm{R} 2+\mathrm{M} 2$ exceeds 150 mV . R1 and R2 are selected to suit the meter obtained, the

components list

Resistors:

Diodes:

D1	OA200
D2	OA200
D3	OA200

Miscellaneous:
M1 $50 \mu \mathrm{~A}$ meter, M 2 50-0-50 $\mu \mathrm{A}$ centre zero meter, S1 4 pole 3 way switch, S2 1 pole 3 way switch, B1-B2 6 volt battery, (PP1), VR1 $1 \mathrm{k} \Omega$ wire wound potentiometer, four crocodile clips, etc.

TABLE 1

Code	Icbo $(\mu \mathrm{A})$	Icbx $(\mu \mathrm{A})$
OC71	$18 \cdot 0$	$36 \cdot 0$
OC72	$6 \cdot 0$	$12 \cdot 0$
OC45	$6 \cdot 0$	$12 \cdot 0$
OC83	$10 \cdot 0$	$20 \cdot 0$
OC84	$10 \cdot 0$	$20 \cdot 0$
AF118	$1 \cdot 5$	$4 \cdot 0$
AF127	$1 \cdot 3$	$3 \cdot 0$
AC153	$8 \cdot 0$	$18 \cdot 0$
ACY19	$10 \cdot 0$	$20 \cdot 0$
ASY26	$3 \cdot 0$	$7 \cdot 0$
NKT211	$10 \cdot 0$	$20 \cdot 0$
NKT239	$10 \cdot 0$	$20 \cdot 0$
2N2613	$4 \cdot 0$	$8 \cdot 0$

resistance of the meter should be determined and the total made up to $2 k \Omega$. The current range shunts are determined from the formula $\mathrm{Rm}(\mathrm{Im} / \mathrm{Is})$ where Im is the current through the meter $(50 \mu \mathrm{~A})$ Is is the current through the shunt $(450 \mu \mathrm{~A}$ for the $500 \mu \mathrm{~A}$ range) and Rm is the resistance of the meter.
The circuit of Fig. 2 may be modified by additional switching such that a single meter may be used for both positions; if this is done then a resistor (R5) must replace the meter which is out, see Fig. 3.
M. $\$$ should be a centre zero meter, but a normal meter may be used and a reverse meter switch provided.

The circuit may be checked by placing a resistor from the collector lead to the base, a value of $240 \mathrm{k} \Omega$ is suggested as this will give a half scale reading on M2. Two more resistors are then connected, one from B- to collector and the other from B+ to base, the control VR1 is then adjusted until M1 reads zero, M2 should still read $25 \mu \mathrm{~A}$ within 20%.

USING THE UNIT

Table 1 gives a list of transistors widely used in commercial and home constructed radio sets. The majority of transistor specifications give lcbo tests at 6 V , and this value has been chosen here. The table gives specification values for Icbo and the expected maximum reading on this unit.

The battery should be removed from the radio

Fig. 2: Basic circuit of the unit.
set and the B- and B+ leads connected, if there is any series resistance (decoupling) in the battery leads, this should be short circuited. The base and collector leads are then connected, and the type of transistor (pnp or npn) selected, this will switch on the unit. M1 and M2 should now deflect; adjust VR1 until M1 reads zero, M2 will now read the leakage current.
When the collector load resistance is small, for example an i.f. transformer coil, it becomes more difficult to zero MI, as the small current through the load produces only a small voltage to drive M1 meter. Extra care should be taken when checking such stages.

Fig. 3: Modified version using one meter only.

Q MAX CHASSIS CUTTER

Complete: a die. a punch, an Allen screw and key

 ACOS XTAL. GP67, 15/-. PICK-UP ARM complete with ACOS LP-78 Turnover Head and Styli 20/-; Stereo 30/SPEAKER FRET Tygan various colours 52 in . wide, irom
$10 /-1$ i. 26 in . Wide frora $5 /-\mathrm{ft}$. SAMPLES S.A.E.
EXPANDED METAL Gold or Silver $12 \times 12 \mathrm{in}$. $6 /$ -
FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12 V. outputs, $1 \frac{1}{2}$ amp., $8 / 9 ; 2$ a. $11 / 3 ; 4$ a., $17 / 6$.
CHARGER TRANSFORMERS. P. \& P. 2/6. Input $200 / 2504$ for 6 or 12 v., $1 \frac{1}{2} \mathrm{amps}$, $17 / 6: 2$ emps.. $21 /-; 4$ amps., $25 /-$. MOVING COIL MULTIMETER TK $25.47 / 6$ $\begin{array}{lll}0-1,000 v & \text { A.C./D.C. ohms o to } 100 \mathrm{k} \text {. eto., } \\ \text { MOVING COIL MULTMETER EP10K. } 79 / 6\end{array}$
 Ohms 0 to 6 mes. 50 Microamps (Full list Meters S.A.E.)

NEW MULLARD TRANSISTORS $\begin{array}{lll}\text { OC71 } \\ \text { AF14 } \\ \text { AF; OC72 } & \text { O/-; OC81D } & \text { B/-; OC81 } \\ \text { 6/-; } & \text { AF115 } & 8 /-;\end{array}$

REPANCO TRANSISTOR TRANSFORMERS TT45. Push pull Driver. 9:1 CT OC71, OC81D
TT46. Push Pull Output. CT 8:1. OC72, 0 C81
TT49. Interstare etc. 4.5:1
TT52. Output 3 ohms. 20:1
TRANSISTOR MAINS ELIMINATORS. FAMOUS "POWER MITE". 9 VOLT. SAME SIZE AS PP9 BATTERY. $45 /$ FPECIAL 9 VOLT 500 mA POWER PACK.

WEYRAD P50 Transistor Coils RA2W 6 in. Ferrite Aerial
with car aerial coil....1266
Ose $550 / 14 \mathrm{l}$ Spare Cores.
Driver Trans 8d 5/4 Printed Circuit, PCA1 Printed Circuit, PCA
J.B. Tuning Gank Weyrad Booklat
80 obm Coax 6d. Semi-air spaced Cable
100 yd. drum $50 /-$ post free 100 yd. drum $50 /$-post free
FRINGE LOW LOSS FRINGE LOW LOSS 1/6
Ideal 625 lines yd.

THE E.A.R. RECORD PLAYER CABINET Strongly built wooden cabinet covered in Blue and Grey leathercloth. Size $15 \times 17 \times 8 \mathrm{in}$. Motor Board $141 \times 12 \mathrm{i}$ in. ready cut out for B.S.R. Monareh UA12/14/15/16/25 decks. Gilt fittings. strong carrying handle. Amplifter
space size $14 \times 7 \times 3$ in. is completely enclosed. The baffle board is cut out for a $6 \frac{1}{2}$ in. dia. speaker. Post 5/6. 59/6 NEW TUBULAR ELECTROLYTICS CAN TYPES NEW
$2 / 350$
$4 / 350$
$4 / 350 \mathrm{\nabla}$.
$8 / 450 \mathrm{\nabla}$.
$8 / 450$ च.
$16 / 450 \mathrm{v}$.
$32 / 450 \mathrm{\nabla}$.
$25 / 25$ V
$50 / 50$ v
 8/600 v.
$16 / 600$ $9 / 8$
$12 / 8$
$7 / 8$

$60 / 50$				
SUB-MIN	$2 /-$	$32+32 / 350$ v. $4 / 6$	$100+200 / 275$	₹. $12 / 6$

$350 \mathrm{v} .-0.19 \mathrm{~d} ., 0.52 / 6,1 \mathrm{mfd} .3 /-: 2$ mid. $150 \mathrm{v} .3 /-$
$500 \mathrm{v},-0.001$ to $0.059 \mathrm{~d} .00 .11 /-: 0.251 / 6 ; 0.53 /$
$500 \mathrm{v},-0.001$ to $0.059 \mathrm{~d} . ; 0.11 /-; 0.251 / 6 ; 0.53 /-\%$ E.H.T. CONDENSERS. 0.001 mfd., 7 kV .. B/B; $20 \mathrm{kV} ., 10 / 6$ SILVER MICA. Close toiersnce (plus or minus pF.), 5 to $47 \mathrm{pF} ., 1 /$-; ditto $1 \% 50$ to $800 \mathrm{pF} ., 1 /-; 1.000$ to $5.000 \mathrm{pF} ., 2 /-$ TWIN GANG. "0-0" $208 \mathrm{pF} .+176 \mathrm{pF} ., 10 / 8 ; 365 \mathrm{pF} .$. minia ture $10 /-; 500 \mathrm{pF}$ standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$
midzet less trimmers, $7 / 6 ; 500 \mathrm{pF}$. slow motion, standard $9 /-$

 $100 \mathrm{pF} .160 \mathrm{pF} .5 / 6$ each. Can be eansed. Couplers 9 d , each. TUNING. Solid dielectric. $100 \mathrm{pF} ., 300 \mathrm{pF} ., 500 \mathrm{pF}$., $3 / 6$ each TRIMMERS. Compression ceramic $30,50,70 \mathrm{pF} ., 9 \mathrm{~d}$.
$100 \mathrm{pF} ., 150 \mathrm{pF} ., 1 / 3 ; 250 \mathrm{pF} ., 1 / 6 ; 600 \mathrm{pF} .750 \mathrm{pF} ., 1 / 9$. 250 v . RECTIFIERS. Selenium $\frac{1}{3}$ wave $100 \mathrm{~mA} 5 /-$; BY1 $0010 /$ CONTACT COOLED CONTACT COOLED 1 wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$.
Fuil wave $75 \mathrm{~mA} 10 /-150 \mathrm{~mA} 19 / \mathrm{F}$; T.V. rects. from $10 /-$
NEW B.A.S.F. LIBRARY BOXED TAPE 7 in. L.P. $1.800 \mathrm{ft} .45 /-; 7 \mathrm{in} . \operatorname{D.P}$ 2. $400 \mathrm{ft} .70 /-$ 60 min. Cassette C 60 (For Philips, etc.) 17/6 Spare Spools 2/0. Tape Splicer $5 /-$ Lender Tape 4/6.
$\frac{\text { Tape Heads: Coltaro } 2 \text { traok 28/6 pair. B.S.R. } 4 \text { track 99/6 }}{\text { Post }}$
MAINS TRANSFORMERS
Post
$2 / 6$ each
$350-0-35080 \mathrm{~mA} .6 .3$ v. 3.5 a .6 .3 v .1 g , or 5 v . 2 Mr. $51000-0-300 v .120$ mA., 6.3 v. 4 в
MIDGET 220 v. $45 \mathrm{~mA} ., 6.3$ v. 2 z .
EEATER TRANS. 6.3 v. 1 i $\mathrm{s} ., 8 / 6 ; 6.3$ v. 4 a ,
Ditto tapped seo. 1.4 v., 2, 3, 4, 5, 6.3 v. $1 \frac{1}{} \mathrm{amp}$
GENERAL PURPOSELOW VOLTAGE. Ontputs 3, 4, 5,
 AUTO TRANSFORMERS $0-115-230$ v. Input/Output 30w. 18/6;150w. 25/-;500w. 92/6; 100Uw. 175/-

CRYSTAL MIKE INSERTS Moving COIL MIKE with Remote Control Switeh. 19/6 ALL PURPOSE HEADPHONES MOVING COIL HEADPHONES 100 ohms (ex. Govt. E.R. EEADPHONES 2000 ohms. $12 / 6,4000$ ohm
H.R. HEADPHONES 2000 ohms Super Quality
H.R. Ron

1967

GRAM

CHASSIS

Post $5 /$

Three Wavebands: Five Valves: ECH81, EF89, Long.. Med. Short, Gram. EBC8, EL84, EZ80. 12-month guarantee. A.C. 200-250 v. Ferrite Aeria 13 watts $\times 4$ in. Two pilot Lamps. Four Knobs, 110.10 Aligned calibrated. Chassisisolated from mains MW $19-50 \mathrm{~m}$. SW $60-180 \mathrm{~m}$. Magic eye, push buttons,f19.19
6 valve plus rect. Size 15×7 x TAPE DECK AMPLIFIERS FOR B.S.R. T.D. 2 ETC With Pre Amplifer. Oscillator, all valves, "magic eve" tuning ind D 2 Tape Deck. Bolts directly to tape deck chassis In. for mike and radio/Rram. Output $3-5$ ohms. A.C. 200/250v. Ready built. PRICE \& 7 .19.6. Carriage and Insarance 5/0. BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2in. sides, $\times 4$ in., $5 / 8 ; 9 \times 7 \mathrm{in} .6 / 8 ; 11 \times 3 \mathrm{in}, 66 / 6 ; 11 \times 7 \mathrm{in} ., 7 / 8$
 $4 / 6 ; 12 \times 8 \mathrm{in}$.. $3 / 6: 10 \times 7 \mathrm{in}$.. $2 / 9 ; 8 \times 6 \mathrm{in}$.. $2 /-6 \times 4 \mathrm{in}$. $1 / \mathrm{B}$

BAKER MAJOR "MODULE

Ideal mono or stareo conversion of existina 12in. Baker Major Full range speaker on $19 \times$ 12 in. bafle bosrd with 2 ing. tweeter and watts. Response 30 Impedance 15 ©.p.8. In kit form with instructions
£10.19.6
or fully assembled
£12.10.0 ${ }_{\text {trise }}^{\text {Pote }}$
Group 25' 'Group 35' 'Group 50 ${ }_{25 \mathrm{~m}}^{12 \mathrm{inn}} 5 \mathrm{gns}$.
"Bondacoust" Wadding for Cabinet lining 15/-sq. yd.
Qualing Horn Tweeters 3-16ko/s. 10w. 27/6. Crossover 14/6. LOUDSPEARERS P.M. 3 OHMS. 23in., 8in.. 4in.. 5in., 7in. $\times 4$ in. $15 / 6$ esch 8 in. $22 / 6 ; 6$ in. $18 / 6 ; 10$ in. $30 /-;$
 SPECIAL OFFER! 8 ohm .24 in ., Ein. $; 80 \mathrm{ohm} .21 \mathrm{in}$., 21 in .
 JACK SOCKET Std. open-cirenit $2 / \beta$. closed circuit $4 / 8 ;$ Chrome Lead Sooket \%/6. DIN 3-pin 1/3, 5-pin 1/6: Lead 3/6. Phono Plugs 1/-. Socket 1/-. JACK PLUGS Rtd. Chrome $3 /$ 2.5 mm ; 3.5 mm . $1 / 9 ;$ DIN 3 -pin $3 / 6 ; 5-$ pin $5 /-$

WAVE-CHANGE SWITCEES WITH LONG SPINDLES.
2 p . 2-why, or 2 p . 6 -way, or 3 p . 4 -way $3 / 6$ each.
p. 12-way, or p. 2-w, 1 p. 0 way, 16 eac

Wavechange "MAKITS" 1 p. 12-way, 2 p. 6-way, 3 p. 4-way, p. 3-way, 6 p. 2-way. Prices inclade click spindles. adjastable TOGGLE SWITCEES. sp. $2 /-; \mathrm{sp}$. $\mathrm{dt} .3 / \mathrm{A} ; \mathrm{dp} .3 / 6 ; \mathrm{dp} . \mathrm{dt} .4 /-$
DE LUXE TAPE SPLICERS Guts. trims, joins $14 / 6$
tor editing and repairs. With 3 blades. tor editing and repairs. With 8 blades.
4 CHANNEL TRANSISTOR MICROPEONE MIXER. Add musical highights and sound efrects to with
mix Microphone, records, tape and t
separate controls into single output.
52/6
DYNAMIC MICROPHONE. DUal impedance. f6.6.0 AM TUNER MEDIUM WAVE. Three Transistor Superhet. Ready built. Prinked Ciroult. Ferrite Aerial. $79 / 6$
Sizes $5 \ddagger \times 3 \mid \times 1$ in. Ideallor Tape Recorders.
FM TUNER 88-108 Mc/s Six Transistor. Superhet. Ready built. Printed Cireuit. Calibrated slide dial f6.19.6 3 WATT QUALITY AMPLIFIER. 4 Transistor
Push Pull Ready built, with volume control
\star RADIO BOOKS \star (Postage Od.
High Fidelity Spenker Emclosures and Plans
Mullard Audio Amplifier Manual
Radio Valve Guide, Books 1, 2, 3 or 6
Practical Radio Insid Out
Transistor Audio Amplifier Manaal Book $1,3 / 6$; Book 2,6
Shortwave Transistor Receivers
Transistor Communication Sets
International Radio Stations List
Modern Transistor Circuits for Beginners
Sub-Miniatare Tranisistor Receivers
At a glance valve equivalents
Valves. Transistors. Diodes equivalents Mancal
RESISTORS. Preferred values. 100 ohms to 10 meg.
 Ditto 5%. Preferred valueg 10 ohms to 22 meg., 9 d . $\left.\begin{array}{l}5 \text { watt } \\ 10 \text { watt } \\ 15 \text { watt }\end{array}\right\} \quad \begin{array}{r}0.5 \text { to } 8.2 \text { ohm } 3 \text { W. } \\ \text { WIRE-WOUND RESISTORS } \\ 10 \text { ohms to } 6.800 \text { ohms }\end{array}$
MAINS DROPPFRS $10 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 88 \mathrm{~K}, 10 \mathrm{~W} .3 /$
. 3 . K., 0.2 a., $12 \mathrm{~K} \quad 0.15 \mathrm{a}, 1.5 \mathrm{~K}$., $8 /$ - each
LINE CORD 100 ohms ft . twin plus resistance, $1 /-1 \mathrm{~T}$. WIRE-WOUND 3-WATT $\left\lvert\, \begin{aligned} & \text { WIRE-WOUND }\end{aligned}\right.$ POTS. T.V. Type. Values
10 STANDARD
Lo $30 \mathrm{~K} . .3 / 3, ~ L O N G ~ S P I N D L E ~ V A L U E S ~$ Carbon 30 K, to $2 \mathrm{meg}, 3 /-. \quad 50 \mathrm{OHMS}$ to $100 \mathrm{~K} .7 / 6$. VALVE HOLDERS. Int. Oct. 6d. Mazda Oct. 6d.; B7G. Cans $1 /-$. Valve base plugs B7G. B9A. Int. Oet. $2 / 3$.

60 ONLY -SANGAMO 3 inch SCALE LABORATORY MOVING COIL METERS Various calibrations and movements. 100 Microamp 55/-;
1 Milliamp 50/-, etc. Post $5 /$ - extra. Send S.A.E. for list.

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Cream plastic cabinet, 20ft. lead and adsptors. For sny radio, intercom, tape recorder, ete. 3 to
Size: $7 t^{\prime} \times 5 t^{\prime} \times 3$
3^{\prime}

TRANSISTOR STEREO $8+8$

A really first-class Hi Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push pull output per channel (16W mono). Integrated pre-amp with Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohms. Compact design, all parts supplied including drilled metal work, Cir-Kit board, attractive front panel, knobs, wire. solder, nuts, bolts-no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief Specification: Freq. response $\pm 3 \mathrm{~dB} 20-20.000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative feedoack 180 B over main amp. Power requirements at 25 V at -6 amp.

QUALITY RECORD PLAYER AMPLIFIER A top quality record player amplifer employing heavy duty double wound mains transformer, ECC83, EL84, EZ8n valves. Separate Bass Treble and Volume controna
Complete with output transformer matched for 3 ohm speaker. Size Tin. F. x 3 in. d . X fin. h. Ready built and tested. PRICE 69/6. Po. \& P. $6 /$ -
ALBO AVALLABLE mounted on board with output transformer and sapeaker ready to tit into cabinet
below. PRICE 89/8. P. \& P. 7/6. below. PRICE 89/8. P. \& P. $7 / 6$.
DE-LUXE QUALITY PORTABLE R/P CABINET
Cncut motor board size $14 t \times 12 i n$. Clearance 2 in. below, $5 \frac{1}{2}$ in. above. Will take above amplifler and any B. A. R. or Garrard Autochanger or Single Player Unit (except AT60
and 8 P 255 Size $18 \times 15 \times 8 \mathrm{in}$. Price 23.9 .6 . Carr. 9/6.

STEREO AMPLIFIER

Incorporating 2 ECL86s and 1 EZ880, heavy duty,
double wound mains transformer. Output 4 watts double wound razins transformer. Outpat 4 watts (1)

10/14 WATT HI-FI AMPLIFIER KIT

panel, size 6×3 in

- Gane, size 6×3 xin. Drize and Output Transformers. Output transformer tapped for 3 ohm and 15 ohm
sucakers. Transistors (GET 114 or Sl Mullard OC811) speakers. Transistors (CET 114 or 81 Mullard OC811)
and matched pair of OC81 o/p. 9 volt. operation. and matched pair of OCS o/p. 9 volt operation. - Everything ripplied, wire battery elips, soliter, etc. circuit diagram $1 / 6$. (Free with Kit). All parts sold separately.
SPECIAL PRICE 45/-, P. \& P. 3/-
Also ready built and tested, 52/6. P. \& P. 3/-
A pair of TAis are ideal for stereo.
BRAND NEW TRANSISTOR BARGAINS GET 15 (Matched Pair) 15/-; V15/10p, 10/-; 0 C71 5/-; OC76 $6 /-$: AF1177/6.
Set oned vair OC81 25/, OC44, 2-0C45 OC81D matched pair OC81 25/-, ORP12 Cadmium sulphide

3-VALVE AUDIO AMPLIFIER HA34

Designed for $\mathrm{Hi} \cdot \mathrm{Fi}$ reproduction of recorils. A.C. Mains operation. Ready built on plated heavy gauge metal chassis, size $7 \frac{1}{i n}$, w. x 4 in. d. x 4 gin. h. Incorporates ECC83 EL34, EZ80 valves. Heavy duty, double wound maips former matched for $\mathbf{3} \mathbf{~ o h m}$ speaker, separate Bass, Treble former matched for 3 ohm speaker, separate Bass, Treble watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves. etc., wired and tested for maly \&4.5.0. P. \& P. 6/--

HSL 'FOUR' AMPLIFIER KIT

A.C. Mains 200/250v., 4 watt. using ECC83, EL84 EZ80

valves.
Heavy duty doulble-wound mains transformer with electrostatic screen. Beparate Bass, Treble and
trols, giving fully variable trols, giving fully variable
beost and cut with minimum insertion loss. - Heavy negative feedback loup over 2 stages ensures high out put at excellent quality with very low distortion factor. Suitable for use with guitar, microphone or record player. Provision for remote mounting of controls or direct on chassis. Chassis size only 7 in. wide x ain. deep. Overall height very clear and conciae instructions enable even the inexperienced amateur to construct with 100% success. - supplied complete with valves output transformer (3 ohms only), screened lead, wire, nuts, bolte, solder, etc. (No extras to buy). PRICE 79/6. P. \& P. 6/.
Comprehenaive circuit diagram, practical layout and parts list $2 / 6$ (free with kit)
This hit although similar in appearance to $H A 34$ emplogs
entirely different and advanced circultry. Bntirelv different and adeanced circultry. SOUND AND VISION I.F. PANEL
By world famous maker. Suitable for use in conversion of TV sets to BBC2 (625 line reception). OFFERED
(less valves) AT THE BARGA1N PRICE OF ONIS (less valves) AT THE BARGAIN PRICe
27/6. Pist paid. (The components are worth far more than our price for the complete unit and due to the very high value we regret that no correspondence can be entered into re rarding this item.)

FM/AM TUNER HEAD Beantifully designed and precision engineered by Ltd. Supplied ready fitted with twin 0005 tuning condenser for AM connection. Prealigned FM section covers $86-102 \mathrm{Mc} / \mathrm{s}$. I.F. output $10 \cdot 7 \mathrm{Mc} / \mathrm{s}$. Complete with ECC85 (6 L 12) valve and fu'l circuits diagram of tuner head. Another special bulk purchase
enables us to offer these at $27 / 6$ each. P. \& P. 3/-. Order enables us to offer these at $27 / 6$ each. P. \& P. 3/-. Order quick in! Limited number also available with precision
Eeared $3: 1$ reduction drive, $30 /$. P. \& P. $3 /$

MATCHED PAIR AM/FM I.F.'s Comprising lst I.F. and 2nd I.F, discriminator (465ke/s $\mid 10 \cdot 7 \mathrm{Mc} / \mathrm{g})$. gize $1 \times 1 \frac{1}{\frac{1}{2}} \mathrm{x} \frac{1}{\mathrm{l}} \mathrm{in}$. high. Will match above tuner head. 11/- pair. P. \& P. 2/-.
SPECIAL PURCHASE! TURRET TUNERS By famous maker. Brand new and unused. Complete
with PCC84 and PCFr80 valves $34-38 \mathrm{Mc} / \mathrm{I}$.F. Biscuits for Channel 1 to 5 and 8 and 9. Circuit diagram supplied. for Channel 1 to and 8 and 9 . Circuit diagram supplied.
ONLY $25 /-$ each. P. \& P. $3 / 9$.

GORLER F.M. TUNER HEAD
88-100 Mc/s, 10.7 Mc/s 1.F. 15/-plus 2/-P. \& P. (ECC85 ralves $8 / 6$ extra).
TWIN TELESCOPIC AERLAL. Comprising two 3 -section heavily chromed rods. Closed $12 i 11$, each extending to supplied complete with universal mounting bracket, coax lead and plug. Suitable for F.M. or TV. 12/6. P. \& P. $2 / 6$.

G-WAY NON-TANGLE TELEPHONE CABLE. Lateat spring back coil type, extends 12 in . to 4 ft . 6 in . ONLY 8/- each. P. \& P. $1 / 6$.
S.T.O. SILICON AVALANCEE HALF-WAY RECTIFIERS, Type RAS, 508 AF, 6 amps. 960 P. $1 . V$. lin. long \times bin.

PRICES
Amplifier Kit
f9 100 P. \& P. 4/6.
Power Pack Kit
f2 100 P. \& P. 4/-
Cabinet (as illus.) £2 100 P. \& P. $5 / 6$.
(Special offer-f14.10.0, post free if all above ordered at same time.)

Circuit diagram, construction details and parts list (free with kit) $1 / 6$ (S.A.E.)
4-SPEED PLAYER UNIT BARGAINS Mains Models. All brand new in maker's original packing. B.S.R. TU/12 SINGLE PLAYERS Carr. $5 / 6$ G.8.R. TUR12 B.S.R. (iU7 with unit mounted pickup arm. Carr. 5/6

$$
\text { AUTO CHANGERS (Cart, } 1 / 6 \text { on each) }
$$

. 8.8 .6 GARRARI 2000 £7.10.0. GARRARD $\mathbf{3 0 0 0}$ \&8.15.0 LATEST GARRARD AT60 Mk. I1 212.0 .0 All the above units are complete with mono head and sapphire stylus or can
stereo head for $12 / 6$ extra.

BRAND NEW CARTRIDGE BARGAINS acos GP 69/1 MONO CARTRIDGE. For E.P. and L.P. Complete with stylus. ONLY 12/6. P. \& P. $1 j-$
SONOTONE OTAHC COMPATIBLE STEREO CARTRIDGE with diamond stylus 50/- or with sapphire stylus 40/P. \& P. 1/-each

BRAND NEW 3 OHM LOUDSPEAKERS $5 \mathrm{in.} 12 / ,6 ; 6 \frac{1}{\mathrm{in} .} 15 /-$; $8 \mathrm{in} .22 / 6$; 10 in . 27/6; $7 \mathrm{in} . \mathrm{x} 4 \mathrm{in}$. 6/-; 10in. x 6in. 27/
E.M.I. 13. x 8in. with high flux ceramic magnet, $42 /$
 3/6 per speaker.

35 OHM SPEAKERS

$3 \frac{1}{2} \mathrm{in} .12 / 6 ; 7 \times 4 \mathrm{in}$. $21 /$-. P. \& P. $2 /$-per speaker.
E.M.L. PLASTIC CONED TWEETERS, 2tin. 3 ohm Limited number $12 / 6$ each. P. \& P. $1 / 6$.
BRAND NEW HEAVY DUTY 12in. SPEAKERS.
Response $45 \mathrm{c} / \mathrm{s}-13 \mathrm{Kc} / \mathrm{s}$. $1 \frac{1}{\mathrm{in}} \mathrm{in}$. voice coil. Available in 3 or 15 ohms. Guaranteed full 15 watta British rating. Heavy cast aluminium frame. These are current prowell hon wormitted to disclose the name. LIMITED NUMBER ONLY. UNPEPEATABLIE at 89/6. 1' \& P. $5 /$-. Also 25 watt Guitar Model available

FYNAIR AND REXINE SPEAKER AND CABNET FABRICS. Approx 54in. winle. Usually 35/- yard. Our PRICE 13/6 per yard length. P. \& P. 2/6 (min. one yd.) S.A.E. for samples.

LATEST COLLARO NAGNAVOX 383 TAPE DEOK DE LUXE. Three speeds, 2 track, take up to 7 in spooks OULITY PORTABLE TAPE RECORDER CASE Brand new Beantifully maie. Only 49/6. P \& P. $8 / 6$ Dual Purpose Bulk Tape Eraser and Tape Head Demagnetiger $35 / \mathrm{m}$. P. \& P. $3 /$.
ACOS CRYSTAL MIKES. High imp. for deak or hand use. High sensitivity, 18/6. P. \& P. 1/6.
ACOS HIGH IMPEDANCE CRYSTAL STICK MIKES. Listed at 42/-, OUR PRICE 21/-. 1'. \&1'. 1/6.

NEON A.C. MAINS INDICATOR. For panel mount ing, cut out size $1 \% \times$ x x in. deep inc. terminal. White case with lens giving brighter light. For ma
P. \& P. Gd. (6 or more post free).

VJBRATORS. Large aelection of 2, 4, 6, 12, 24 and 32 volt. Non sync $8 / 6$; Sync 10/-. P. \& P. $1 / 6$ per vibrator 3.A.E. with all enquiries

MAINS TRANSFORMER. For transistor power supplies. Tapped pri. 200-250 v. Sec. 40-0-40 at 1 amp (with ecetrostatic screen) and 6.3 v . al . 6 smp for diallamps 3 Drop thro m
P. \& P. $4 / 6$.
MANS TRANSFORMER. For Transistor power dupplies. Pri. 200/240 v. Sec. 9-0-9 v. at $500 \mathrm{~mA}, 11 /$-. P. \& P. 2/6. MATCHED PAIR OF 2 \ddagger WATT TRANSISTOR DRIVER AND OUTPUTTRANSFORMERS. Stack size $1 \frac{1}{2} \times 1 \ddagger \times 1$ in. Output trans tapped for 3 ohms and 15 ohm output 10/-pair, plus 2/- P. \& P P.
7-10 watt OUTPUT TRANSFORMERS to match pair of ECL 86 's in push-pull to 3 ohm output. ONLY 11/ P. \& P. 2/6.

10-12 waft OUTPUT TRANSFORMERS. Size if $x 2 i n$. Clamp fitting. For two EL84's In push pull. State 3 or 15 ohm impedance. 12/6 P. \& P. 2/is.

Open all day Saturday
Early closing Wed. 1 p.m.
A ferm minutes from South Wimbledon Tube Station.

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W. 19
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO D.K. ONLY P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

? YOUR QUESTIONS ANSWERED

UNMARKED ZENERS

I have bought a number of zener diodes which are not marked in any way, and I would like to discover the nominal voltage of these units. The dissipation of them does not really interest me. Is there any way of finding out the voltage of zeners?L. T. Roberts (Liverpool, 14).

To test your zener diodes, first assess their maximum probable safe dissipation. To do this, look up zener diodes in data books and compare the physical size of those you have with those listed. You will then need a low voltage variable stabilised power supply and a resistor. The resistor should be chosen so that when the power supply is delivering its maximum voltage (say 20) the maximum current which can flow through the resistor when placed across the terminals of the supply is less than the current which when flowing through one of your zener diodes of that voltage would result in its maximum safe dissipation. The resistor must of course be of adequate wattage rating,

To test a diode, connect it in series with the resistor across the supply with the output at zero. The diode must be reverse-connected. Monitor the voltage across it as the output voltage from the supply is increased. When the voltage across it steadies even though the output voltage is still increasing, this is the zener voltage at the particular current flowing. Books in your local lending and reference libraries will deal with more comprehensive tests.

BACKGROUND HISS

I recently purchased an integrated mono amplifier for use with a record deck. This gives very satisfactory reproduction but there is a loud background hiss which would not be obtrusive in a large room or hall, but is a nuisance in ordinary domestic conditions at low volume. Is there any way to reduce this effect without sacrificing upper frequencies too drastically?-S. Reed (Wanstead, London, E.11).

The hiss you mention is probably due to noise developed in the anode and screen resistors of the first valve in the amplifier. It is essential that such resistors in the early stages of amplifiers be of the low-noise type. If you wish to renew the resistors, then we suggest you use a type such as the Radiospares "metal oxide". These resistors are available from a number of our advertisers.

TUNER/DECODER CONNECTIONS

Would you please let me know the method of connecting a negative earth f.m. tuner to a positive earth decoder.-R. Townsend (London, E.17).

If your f.m. tuner and your decoder feature their own power supply units then you can connect the output from the tuner direct to the input of the decoder. If, for example, the units are both transistorised and are to use a common power supply, then care must be taken to avoid short-circuiting the power supply. The way out of this is to omit the "earth" connection between the tuner and the pre-
amp or input section of the decoder. Just joint the audio lead to the decoder. No harm can then result provided that there is a capacitor in series with the audio lead somewhere. The "earth" connection will automatically be provided by the common power supply, although it would be a good idea to connect a $0 \cdot 1 \mu \mathrm{~F}$ capacitor across the negative and positive lines of the tuner unit.

Midget Transistor Transmitter

continued from page 584
In the prototype, with no a.t.u. and a 70 ft . endfed wire, the system required a 470 pF capacitor wired in parallel with VCl and the peak on the front panel meter was very slight indeed as was the dip on the mA meter. The mA meter was an AVO set to the 1000 mA range and a meter with an f.s.d. of, say, 200 mA would doubtless make the slight dip far easier to read. The final current in the prototype was 104 mA for $\operatorname{Tr} 2$ representing 1200 mW or 1.2 watts input. Trl consumed only 6 mA .

MODIFICATIONS

The transmitter could be much smaller. A heat sink is not really a necessity for $\operatorname{Tr} 1$ although it does anchor the transistor firmly in place. The two heat sinks could be mounted on either side of the screen and fixed with two common bolts. This would save some space but heat from Tr2 might be conducted to Trl. This should not prove troublesome because the heat involved is small and the screen itself will act as a large heat sink, also, Trl is crystal controlled so frequency should remain reasonably stable. VCl might be made a pre-set or even a fixed capacitor-L2 being adjusted to resonate at the particular crystal frequency.

It would be practical to add another BFY51 in parallel with Tr 2 , use the crystal oscillator stage as a tuned buffer and add a v.f.o. This would make a very useful topband transmitter and inputs of 3-4 watts would be easily possible without danger to the p.a. transistors.
The prototype has only one fault and that is hand-capacity effects on VC1. This is not too troublesome since once VCl is set it doesn't require further adjustment unless the crystal is changed and even then the front panel could be calibrated and pre-set marks made for VCI on initial tune-up.

Alternatively the cure might be to either use a different p.a. output configuration, or mount VCl at the back of the board and use an insulated rod plus a coupler, bringing L2 to the front.
The front panel must not be aluminium or indeed any conducting material otherwise it will short the frame of VCl to earth. Alternatively if the angled aluminium was not earthed and VCl insulated from the front panel by the insulated rod and coupler arrangement then a metal front panel duly earthed would be in order. Skl would also need to be insulated.
A good deal of fun can be had from QRP working. Every contact is an achievement. It is especially pleasing to picture the other chap's face when you are working him on a rig which draws less current than his p.a. valve heaters alone. See you on 160 metres?

GUIDE TO COMMUNICATIONS RECEIVERS

-continued from page 57

the front end of this receiver could be replaced by a modern circuit and other extensive modifications made, but the amount of work involved would hardly justify the end result.

Availability: Large numbers have been released. Grade 1 P104's were available in 1960 for $£ 5$, power
units $£ 3$ extra. R1132's in grade 3 condition were available at the same time for about $£ 7$, hardly a bargain.

R1392's were available in 1961 in grade 2 for between $£ 4$ and $£ 7$.

None was available in 1962 and 1963, but in 1964 another batch of P104's were released, in grade 2 at $£ 310$ s. 1392 's were also available at about $£ 7$, during late 1964.

Manuals probably exist in small quantities.

Infinite baffle mods

Regarding Mr. Lymath's letter on p. 364 of the September issue. The troubles he mentions simply do not happen. Nor are his figures correct for a closed pipe!

I have been using 28 ft . chimney loading for a long time, and with a Wharfedale 12 in . $16-20,000 \mathrm{c} / \mathrm{s}$ loudspeaker unit and no special precautions.

The resonances are inappreciable, largely, I suppose, because the pipe is uneven in structure internally and is highly damped by remaining soot etc. so that the supposed harmonics are flattened beyond recognition.

I gave the theory in my 1957 book The Gramophone Handbook and wrote a further article about the use of a chimney loudspeaker as a third (Dynaco) stereo channel in The Gramo-
phone in 1965.-Percy Wilson (Oxon).

The last word

May I add yet another one of the famous "last words" on the R.A.E. Like Mr. Webster I am very tired of these miserable bleatings about this exam. Quite frankly the standard required in the theory is extremely low; how can anybody call Amateur Radio their "hobby" if they can't be bothered to reach this standard. I can well imagine the QSO's mentioned by Mr. Webster.

I passed the first section by a similar method to Mr. Webster in 18 months but in spite of this I have been nine years trying to reach the required standard in the Morse test and am still unsuccessful. I'm not bleating, I'll be all the more proud of my ticket when?

I get it.-D. J. Tivey (Sunbury on Thames, Surrey).

International short wave club

Every three years the ISWC conducts an official Short Wave Station Popularity Vote to determine, in listeners' opinion, the most popular short wave station.

We ask listeners, all over the world, to send to us, the International Short Wave Club, London, S.E.16, a list of their five most popular short wave stations in order of preference. together with a short note saying why their No. 1 choice is their most popular station. The latest time for sending in entries is 6th January, 1968. The results will be published in ISWR for February, 1968. Publicity begins now. -Arthur E. Bear, Secretary (London, S.E.16).

SPRING INTO ACTION!

The December issue of P.E. includes:

SPRING LINE REVERBERATION UNIT * ANTI-DAZZLE DRIVING MIRROR

 and the FIRST of a new series for beginners on SEMICONDUCTOR BASICS with a full page display of * CIRCUIT SYMBOLSPRACTICAL ELECTRONICS DECEMBER ISSUE OUT NOV. 17

Practical Television - December

COLOUR IS HERE!

To launch the introduction of the new colour programmes, full details on the new B.B.C. Test Card F are given, in relation to the setting up of receivers.

VIDEO CIRCUIT EXPERIMENT

Many of the components associated with the Video output valve have an effect on the frequency response of the stage. This gives the experimenter the chance to vary the characteristics to acheive different results.

\star SERVICING WITH A NEON TESTER

A pocket neon tester can be extremely useful in diagnosing faults. Its uses are obviously limited, but it is surprising how numerous the tests that are possible with this aid.

plus all the regular features

on sale November $24-2 /-$

RADIO CLEARANCE（1965）LTD．

ELECTROLYTIC CONDENSERS

$1 \mu \mathrm{~F}$	25 v	年×星＂W．E．			$50 \mu \mathrm{~F}$		12 v	暑＂×昌＂	W．E．	$\stackrel{5}{1}$	d_{6}	2，500 F ．．	30 v	$3^{\prime \prime} \times 1{ }^{\text {P／}}$ T． 2	S．	${ }_{6}$
$1 \mu \mathrm{~F}$	350 v	1＂×妾＂W．E．	2	0	$50 \mu \mathrm{~F}$		25 v	1＂×㨞＂	W．E．	1	6	2，500 2 F ．.	50 v		10	0
$2 \mu \mathrm{~F}$	12v	W．E．	1	6	$50 \mu \mathrm{~F}$		50 v		W．E．		9	4，000 $\mu \mathrm{F}$ ．	25 v	$3^{\prime \prime} \times 1{ }^{\text {² }}$＂T． 2		0
$2 \mu \mathrm{~F}$	150 v	W．E．	1	6	$50 \mu \mathrm{~F}$		275 v		T． 1	3	0	5，000 ${ }^{\text {F }}$	25 v	$3^{\prime \prime} \times 11_{10}{ }^{\prime \prime}$ T． 2	10	0
$2 \mu \mathrm{~F}$	$275 v$	$\times \frac{1}{2 \prime} \quad$ W．E．	2	0	$50 \mu \mathrm{~F}$		350 v	$2^{\prime \prime} \times 1^{\prime \prime}$	T． 1	3	6	10，000 2 F	$25 v$		27	6
$2 \mu \mathrm{~F}$	350 v	$1^{\prime \prime} \times \frac{1}{1 \prime \prime}$ W．W．E．	2	0	$64 \mu \mathrm{~F}$		450 v	$2^{\prime \prime} \times 11^{\prime \prime}$	T． 1	4	6	30，000 F	30 v		45	0
$2 \mu \mathrm{~F}$	500 v	$1 \frac{1}{\prime \prime}^{1} \times \frac{1}{2}{ }^{\prime \prime}$ W．E．	2	6	$100 \mu \mathrm{~F}$		15 v	1 ＂× ${ }^{\text {最＂}}$	W．E．	1	6	$32 \times 32 \mu \mathrm{~F}$	350 v	$2 \frac{1}{2 \prime \prime}^{\prime \prime} \times 1$＂$\times$ T． 3	4	6
$4 \mu \mathrm{~F}$	25 v	$1^{\prime \prime} \times \frac{1}{1 \prime \prime}$ W．E．	1	6	$100 \mu \mathrm{~F}$		25 v	$1^{\prime \prime} \times \frac{1}{2 \prime}$	W．E．	1	6	$50 \times 50 \mu \mathrm{~F}$	350 v	$2^{\prime \prime} \times 10^{* \prime} \times$ T． 3	6	6
$4 \mu \mathrm{~F}$	150 v	年＂\times 矿＂W．E．	1	6	$100 \mu \mathrm{~F}$		50 v		W．E．	2	6	$60 \times 100 \mu \mathrm{~F}$	$275 v$		6	0
$4 \mu \mathrm{~F}$	275 v	$1^{\prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\text {a }}$ W．E．	2	0	$100 \mu \mathrm{~F}$		100v	$1 \stackrel{3}{4 \prime}^{\prime \prime} \times{ }^{\text {a }}$	T． 1	4	0	$60 \times 250 \mu \mathrm{~F}$	350 v	$4^{\prime \prime} \times 1 \mathrm{I}^{\prime \prime} \mathrm{T} .2$	12	6
$4 \mu \mathrm{~F}$	350 v	$1^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$ W．E．	2	6	$100 \mu \mathrm{~F}$		250 v	$3^{\prime \prime} \times 1^{\prime \prime}$	T． 1	4	6	$100 \times 100 \mu \mathrm{~F}$	150 v	$3{ }^{\prime \prime} \times 1$＂${ }^{\prime \prime}$ T． 3	4	6
$4 \mu \mathrm{~F}$	500 v	$11^{\prime \prime} \times{ }^{\frac{5}{8}}{ }^{\text {a }}$ ，W．E．	3	0	$100 \mu \mathrm{~F}$		350 v	$3^{\prime \prime} \times 1$＂	T． 2	5	0	$100 \times 200 \mu \mathrm{~F}$	275 v	$4^{\prime \prime} \times 1{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$ T． 2	9	6
$5 \mu \mathrm{FRev}$	20 v	$1 \frac{1}{2} \times \times{ }^{\text {b }}$＂W．E．	2	6	100 20 F		450 v	$3^{\prime \prime} \times 1{ }^{\text {a }}$	T． 2	7	6	$150 \times 200 \mu \mathrm{~F}$	350 v	$4^{\prime \prime} \times 1 \frac{11}{\prime \prime}$ T． 2	12	6
$5 \mu \mathrm{~F}$	50 v	新× \times 最＂W．E．	1	6	$125 \mu \mathrm{~F}$		500 v	$4^{\prime \prime} \times 13^{\prime \prime}$	T． 2	9	0	$250 \times 250 \mu \mathrm{~F}$	$325 v$	$4 \frac{1}{4}{ }^{*} \times 1 \frac{1}{2}{ }^{\prime \prime}$ T． 2	14	0
$5 \mu \mathrm{~F}$	70 v	W．E．	1	6	$200 \mu \mathrm{~F}$		$275 v$	$2^{*} \times 1{ }^{*}{ }^{*}$	T． 2	6	0					
$6 \mu \mathrm{~F} \mathrm{Rev}$	50 v	11＂× ${ }^{\prime \prime}{ }^{\text {² }}$	2	6	$200 \mu \mathrm{~F}$		350 v	$3{ }^{\prime \prime} \times 1{ }^{\text {² }}$	T． 2	7	6					
$8 \mu \mathrm{~F}$ Rev	20 v		2	6	$250 \mu \mathrm{~F}$		12 v	1＂×署＂	W．E．	2	6		RMIN	ION CODING		
$8 \mu \mathrm{~F}$	150 v	$1^{\prime \prime} \times 1 /{ }^{\prime \prime}$ W．E．	1	6	${ }_{2}^{250 \mu \mathrm{~F}}$		18 v	$11^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$	W．E．	2	${ }_{0}$	W．E．Wir	Ended			
$8 \mu \mathrm{~F}$	275 v	$11^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ W．W．E．	2	0	$250 \mu \mathrm{~F}$		25 v	11゙メ年	W．E．	3	${ }^{0}$	T． 1 Tag e	ach en	of condenser		
$8 \mu \mathrm{~F}$	350 v	$11^{\prime \prime} \times{ }^{\text {最 }}$ W．E．	2	6	$200 \mu \mathrm{~F}$		50 v	$1{ }^{\text {² }} \times$	W．E．	4	6	T． 2 S Single	end t	termination		
$8 \mu \mathrm{~F}$	500 v		3	0	$350 \mu \mathrm{~F}$		12 v	$1{ }^{\prime \prime}{ }^{\prime \prime} \times{ }^{\text {c／}}$	W．E．	2	6	T． 3 Single	end	termination		
$10 \mu \mathrm{~F}$	6 v			6	$350 \mu \mathrm{~F}$		25 v	11 ${ }^{\prime \prime}{ }^{\prime \prime} \times{ }^{\text {a }}$	T． 1	3	0	1．3 Twist	prong			
$10 \mu \mathrm{~F}$	50 v		1	6	$400 \mu \mathrm{~F}$		15 v		W．E．	3	${ }^{0}$					
$10 \mu \mathrm{~F}$	150 v	$1^{\prime \prime} \times{ }^{\frac{1}{2}}{ }^{\prime \prime}$ W．W．E．	1	9	$400 \mu \mathrm{~F}$		30 v 50 v		W．E．	3	${ }^{6}$	$8 \times 8 \mu \mathrm{~F}$ $8 \times 16 \mu \mathrm{~F}$	450 v 450 v		4	0
$10 \mu \mathrm{~F}$	${ }_{2500}$		2	0	$400 \mu \mathrm{~F}$		50 v 275 v	$1{ }^{18^{\prime \prime}} \times{ }^{\prime \prime} \times 1{ }^{\prime \prime}$	W．E．	4	0	$8 \times 16 \mu \mathrm{~F}$ $16 \times 16 \mu \mathrm{~F}$	450 v 2750		4	${ }^{6}$
$16 \mu \mathrm{~F}$ $16 \mu \mathrm{~F}$	250 v 350 v		2	0	$400 \mu \mathrm{~F}$ $500 \mu \mathrm{~F}$		$275 v$ 6 v	$14^{\prime \prime} \times 1{ }^{\text {a }} \times 1{ }^{\text {a }}$	T．${ }_{\text {W．}} \mathrm{E}$ ．	9	${ }^{0}$	$16 \times 16 \mu \mathrm{~F}$ $16 \times 16 \mu \mathrm{~F}$	275 v 450 v		4	6
$16 \mu \mathrm{~F}$	500 v	$1{ }^{\text {a }} \times{ }^{*} \times 1 *$ W．E．	2	0	$500 \mu \mathrm{~F}$		15 v	14＂×喜＂	W．E．	2	6	$16 \times 32 \mu \mathrm{~F}$	$275 v$		4	－0
$25 \mu \mathrm{~F}$	12v		1	6	$500 \mu \mathrm{~F}$		25 v	1考＂×弾＂	W．E．	3	6	$32 \times 32 \mu \mathrm{~F}$	$275 v$	$2^{*} \times 1^{*}{ }^{*}$ T． 3	4	0
25.4 F	25 v		1	6	1，000 ${ }^{2} \mathrm{~F}$		15 v	$2^{\prime \prime} \times{ }^{\text {P }}$	W．E．	3	9	$50 \times 50 \mu \mathrm{~F}$	300 v	$2^{*} \times 1{ }^{\text {a }}{ }^{*}$ T． 2	4	6
$25 \mu \mathrm{~F}$	50 v	$1^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ W．E．	1	9	$1,000 \mu \mathrm{~F}$		18 v	$11^{* *} \times$	W．E．	3	9	$50 \times 150 \mu \mathrm{~F}$	300 v	$3 \frac{1}{2}{ }^{\prime \prime} \times 1^{\prime \prime} \times{ }^{\text {n }}$ ，T． 2	6	${ }^{6}$
$30 \% \mathrm{~F}$	6 v		1	6	1，000 ${ }^{\text {F }}$		25 v	$1{ }^{\text {P }}{ }^{\prime \prime} \times 1{ }^{\prime \prime}$	W．E．	7	6	$60 \times 250 \mu \mathrm{~F}$	275 v		12	0
$30 \mu \mathrm{~F}$	10 v	星＂×星＂W．E．	1	6	1，000 ${ }^{\text {\％}} \mathrm{F}$		50 v	$2^{2 \times} \times 11^{\prime \prime} \times{ }^{\text {a }}$	T． 2	5	6	$80 \times 40 \mu \mathrm{~F}$	${ }^{450 \mathrm{v}}$		12	6
$32 \mu \mathrm{~F}$	150 v		2	${ }_{6}^{6}$	$1,500 \mu \mathrm{~F}$ $1,500 \mu \mathrm{~F}$		525		W．E．	5	6	$100 \times 100 \mu \mathrm{~F}$ $100 \times 400 \mu \mathrm{~F}$	$275 v$ $275 v$		${ }_{13}^{6}$	6
$32 \mu \mathrm{~F}$	850 v	$2^{\prime \prime} \times 1^{\prime \prime}$ T．${ }^{\prime \prime}$	3	6	$1,500 \mu \mathrm{~F}$		50 v	$3^{\prime \prime} \times 1^{\prime \prime}$	W．E．	7	6	$100 \times 400 \mu \mathrm{~F}$	${ }^{2750} \mathrm{v}$		13	6
$32 \mu \mathrm{~F}$	450 v	$1 \mathrm{I}^{\prime \prime} \times 1^{\prime \prime}$＂W．E．	4	6	$2,000 \mu \mathrm{~F}$		25 v	${ }^{3 \prime \prime} \times 1^{\prime \prime} \times 1{ }^{\prime \prime}$	T． 2	6	0	$200 \times 200 \mu \mathrm{~F}$ $300 \times 300 \mu \mathrm{~F}$	300 v 300 v		14	${ }^{6}$
$32 \mu \mathrm{~F}$	500 v	$2^{\prime \prime} \times 1{ }^{\text {最 }}$ T． 2	4	6	2，000） F		50 v	$2 \frac{1}{2}^{\prime \prime} \times 1{ }^{\text {c }}$	T． 2	9	0	$300 \times 300 \mu \mathrm{~F}$	300 v	$4^{\prime \prime} \times 11^{\text {a }}$ T． 2	14	0

The abe list not heaitate to contact us for quotations on bulk quantities．If you do not see the exact condenser you require pleage let us know your exact requirenenta．
Please send S．A．E．Ior Lists of Transformers，Transistors，Diodes，Rectifera．Speakers and other components at Bargain Prices．

EXPERIMENTER'S PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS on a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX

CONTENTS: (1) 2 Copper Laminate Boards $4 \frac{1}{4} \times 2 \frac{1}{2}^{\prime \prime}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio. etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Booklet Printed Circuits for Amateurs. (9) 2 Minlature Radlo Dlals SW/MW/LW. Also free with each kit. (10) Essential Design Data, Circuits, Chassis Plans, etc. for building.

40 TRANSISTORISED PROJECTS

A very comprehensive selection of clrcuits to sult everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time including 10 new circuits.

EXPERIMENTER'S

 PRINTED CIRCUIT KIT
8/6

Postage \& Pack. 1/6 (UK) Commonwealth SURFACE MAIL $2 /-$ AIR MAIL $8 /-$
Australia, New Zealand, South Africa, Canada
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Amplifier. (5) Carrier Power Conversion Receiver. (6) Split-Load NeutralIsed Double Reflex. (7) Matchbox or Photocell Radio. (8) "TRIFLEXON" Triple Reflex with self-adjusting regeneration (Patent Pending). (9) Soiar Battery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor anywhere in the World. 3 Subminiature Radio Receivers based on the "Triflexon" circuit. Let us know if you know of a smaller design published anywhere. (10) Postage Stamp Radio. Size only $1 \cdot 62^{\prime \prime} \times \cdot 95^{\prime \prime} \times \cdot 25^{\prime \prime}$. (11) Wristwatch Radio $1 \cdot 15^{\circ \prime} \times$ $-80^{\prime \prime} \times \cdot 55^{\prime \prime}$. (12) Ring Radio $\cdot 70^{\prime \prime} \times \cdot 70^{\prime \prime} \times \cdot 55^{\prime \prime}$. (13) Bacteria-powered Radio. Runs on sugar or bread, (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifler. (16) Intercom. (17) 1 -valve Amplifier. (18) Reliable Burglar Alarm. (19) LightSeeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Mant Woman Discriminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required). (27) Constant Volume Intercom. (28) Remote Control of Models by induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmitter/Wire-less Microphone. (32) Wire-less Door Bell. (33) Ultrasonic Switch/Alarm. (34) Seismic Car Alarm. (35) Quality Stereo PushPull Amplifier. (36) Light-Beam Telephone. "Photophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed Controller.

PHOTOELECTRIC KIT

BUILD 12 EXCITING PHOTOELECTRIC DEVICES
CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Cadmium Sulphide Photocell, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control. Terminal Block. Elegant Case, Screws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

photoelectric kit 39/6
Postage \& Pack. 2/6 (UK)
Commonweath:
SURFACE MAIL $3 / 6$ AIR MAIL $£ 1.0 .0$
Australia, New Zealand S. Alrica, Canada \& U.S.A Also Essential Data Circuits And Plans for Building
12 PHOTOELECTRIC PROJECTS. (1) Steady-Llght Photo-Switch/Alarm. (2) Modulated-Light Alarm. (3) Long-Range Stray-light Alarm. (4) Relay-Less Alarm (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector-Lamp Stabiliser. (8) Electronic Projector Modulator. (9) Mains Power Supply. (10) Car Park Ing Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for bullding: 1, Invisible-Beam Prolector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 2 45-degree wooden blocks, infra-red filter prolector lamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack 1/6 (UK). Commonwealth: Surface Mail $2 /-$; Air Mait $8 /-$.

LONG RANGE OPTICAL KIT 29/6 p p. 1/6
obtainable from larger electronic components distributors or direct from
EXPERIMENTAL ELECTRONIC ENG. KITS YORK ELECTRICS, 333 York Rd., London S.W. 11
Send a S.A.E. for full details, a brief description and Pholographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects assembled

teghnical trainirg in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

\author{

- Institution of Electronics \&i Radio Engineers C. \& G. Telecommunication Techns' Certs.
 C. \& G. Supplementary Studies
 R.T.E.B. Radio/T.V. Servicing Certificate
 - Radio Amateurs' Examination
 - P.M.G. Certs in Radiotelegraphy
 - General Certificate of Education, etc.
}

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator and multimeter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

HOW does a boys' club start? Especially one devoted to the advancement of scientific interests. No doubt it is one of two things which starts off an organisation to enable young people to meet for common goals and enjoyment. The most obvious is the person with the idea and means to establish it in practice, who patrons some group or scheme. The other is a vague feeling of need in the young people themselves.

The Roding Boys' Society was a gradual development from the latter situation. At a time when a truly popular interest in scientific things by boys appears to be at a low ebb (compare practical articles in boys' papers during the ' 20 s and ' 30 s), the boys of the R.B.S. show that interest and creativity is still possible when the dry unreal cramming in most school situations is lifted.

The start of the Roding Boys' Society took place in 1961, when half a dozen keen boys in the Wanstead and Woodford Radio Society came to the "Junior Section" meetings, began because of objections by some older members to "kids' stuff" and high spirits at club meetings.

During August 1961 the first camp and expedition was organised and this established the group. Soon after, the now growing band of young members changed the name to Roding Boys' Society... the River Roding flowed nearby. It was at this time that the senior section ceased to function.
With Ken. Smith, G3JIX, as the leader, the group's character developed, and the R.B.S. now followed the lines of interest of the various members. Papers were read, and visitors were soon challenged to prepare and read a short account of their first scientific topic. This contribution usually took place at the time of their election to membership.
During 1962, an attempt was made to organise

G3JIX and G3TAJ lecturing at a Club meeting.

Members' display during an exhibition. On the right is Ron, G3TAJ.
a weekend radio course for youth at an Essex County residential youth centre, but out of the whole county, so few boys applied that two-thirds were R.B.S. members. The time had not yet arrived for successful social projects for boys, in radio hobby work at least. The first club R.A.E. course was launched during 1962, and the club went ahead with its own call, G3SRE (Science and Radio Experimenters.) News began to arrive about Old Members. One was now in Australia. The second camp and expedition was held, this time farther along the River Lea valley, at a site we have continued to use ever since.

1963 saw Ron, G3TAJ, on the air, and the R.B.S. headquarters took on the character of a laboratoryworkshop. The Test Equipment Bay was conceived, the idea being to set this up as a centre for any boy or amateur to calibrate and align his equipment, with expert advice and assistance. We hoped this service would be the first of many outwardlooking projects in which the boys could become involved:
During 1963 pressure was brought to bear for us to enter the Radio Communications Exhibition with a stand. This became a powerful all-pervading project, demanding a great effort from all concerned. But it was a success. We met many old friends, and made many new ones at the exhibition. Many young visitors were obviously encouraged to know what boys could do, and went back to their various localities carrying seeds of the Youth Amateur Radio idea. Although little seems to have developed (due
to lack of leaders apparently) many letters have been received telling of encouragement and ideas.
The Press began to report our activities, and the R.B.S. found itself becoming known by a wider circle. The R.S.G.B. was convinced at the time for work to be started among boys, and the Education Committee was set up with the R.B.S. Leader as a member. Also the associate members' page began to appear in the Bulletin of the R.S.G.B. as a direct result of the work of our small group. Mr. Jan Foster of the London Federation of Boys' Clubs saw our stand-and we were straightaway earmarked for a further exhibition a month or two later, at a London boys' club.
Letters began to arrive from overseas readers of the Journals, and it was an important privilege to correspond with these young enthusiasts around the world.

1964 passed roughly as the previous years, with the camp and exhibition work taking up much energy. A number of RAE passes were obtained in the May examination. Around the beginning of 1965, correspondence with Mr. Black, organiser of the Youth Radio Scheme in Australia, began. Many interesting exchanges have taken place since. The Australian scheme is nationwide, and many boys receive great help in their radio experimenting.

During April, a visit to the Science Museum was organised. Readers of "P.W." and "P.E." were invited and the outing was very successful, as reported in the July '65 issue of Practical Electronics. Later, in September, the "Ollerton Venture" took place. The Newark (Notts) Radio Society organised this weekend conference for youth leaders, to interest them in Radio Hobbies for Young People, and G3JIX gave an illustrated talk on the work of the R.B.S. It was here that we met and exchanged friendship links with a most enthusiastic group of boys, the "Mount Radio Club" a school group in Newark.

The first award of the "Roding Trophy" was received during 1965 by Clive Bennis. He is now at teachers training college. This trophy was given to the R.B.S. by our old friend and supporter Percy Mourton, G8QU. Finally, this hectic year 1965, would not be complete without a mention of the

Typical group of members during a meeting.
London Federation of Boys' Clubs adventure training ground at Hindleap Warren in Sussex. It was here that the R.B.S. set up and operated an amateur radio station in the log cabin built by the boys of the London Fed. This was over the weekend of the official opening. Thus an inroad was made for amateur radio to forge ahead as a boys' club activity in the Fed. After the Christmas social for parents and members, we entered 1966. This was to be the year in which the greatest changes of all were to occur in the work of the R.B.S. After a period of difficulties and inactivity, the change to new and larger headquarters became possible. This also led to the R.B.S. establishing a much more businesslike and professional relationship with the Education Authority and Youth Service.

Do we have any ideas that we feel you share? Yes. For instance, we think that radio and television should offer a little more in the way of programmes for electronically minded people. Where are the men who would lead a group of boys in forming their own local group? We are still surprised so little is evident in this country regarding club work.

We hope we can still co-operate in various projects, from helping a fellow enthusiast with his technical problems, to the W.V.S. in fixing up a radio for an old or blind person. In particular, we wish all boys everywhere " 73 and good listening through 1967".

LOW COST HI-FI SYSTEM

-continued from page 567
and the junction of R10 and R11 adjust VR2 to give a reading of 4.5 volts.

The current consumption of the amplifier should now be checked. It should be 10 to 12 mA with a 9 volt supply and 12 to 15 mA with 12 volts. This is the quiescent current. It will rise to approximately 100 mA on peaks of signal.

The amplifier is now ready for use.
The speaker can have an impedance greater than 15 ohms, with a reduction in output power, but must not be less than 10 ohms.

For its full rated output, the amplifier should be connected to a 12 volt supply. On 9 volts the output will be approximately 600 mW .

HEAT SINK

On 12 volts it is necessary to use a heat sink on the output transistors. This is made with a piece
of aluminium 20 s.w.g. and size $3 \frac{1}{8} \times \frac{3}{3}$ in. The ends may be bent into shape round suitably sized twist drills. To effeot a good heat transfer, the transistors should be smeared with silicon grease.

If the 2G339 transistor has an insulating sleeve fitted, it is advisable to leave this on, as this transistor has its base internally connected to the case. The sleeve will not drastically affect the heat transfer provided it is smeared with silicon grease.

CHASSIS DETAILS

If a suitable chassis is not readily available one may be purchased from H. L. Smith \& Co. Ltd., quoting the following specifications. Material 16 s.w.g. aluminium. Chassis type N length 10 in ., width 9 in., depth $2 \frac{1}{2}$ in., flange $\frac{1}{2}$ in. The cost will be 16 s . 3d. including postage and package.

Also if a front plate is required the dimensions are:- 16 s.w.g. front plate $10 \frac{1}{2} \times 9 \mathrm{in}$.

The cost will be 3 s . 6 d . extra to the cost of the chassis, i.e total cost 19s. 9d.

to be continued

BY BUYING THE COMPLETE
KIT
Originally 59/6 complete with earpiece, solder and instructions in pack, the Micromatic Kit now costs

FOR IMMEDIATE DELIVERY

Two long-life Mercury cell batteries for either of above

With sales and export orders for the Sinclair Micromatic breaking all records, we have changed over to new production methods to meet the ever-increasing demand for the world's smallest radio set. This has enabled us to effect dramatic economies because of the large quantities of materials involved. At the same time, we have appreciably improved the set's quality. We now supply a magnetic earpiece which matches perfectly to the powerful output of the Micromatic, and what was superb performance before, now sounds better than ever. Now that your Micromatic costs you less (49/6, kit: 59/6 built), you can afford not only to have one for yourself, but give them as gifts. But be quick. At the new prices, everyone is going to want the Micromatic. Order yours now.

FULL SERVICE FACILITIES AVAILABLE WHEN YOU BUY THE KIT AND BUILD IT YOURSELF

Order form and more Sinclair designs SEE PAGES 2 AND 3 SINCLAIR ADS

SINCLAIR
 1.14

A no-compromise highfidelity loudspeaker of outstanding quality

Price need no longer stop you enjoying the best possible high-fidelity loudspeaker reproduction nor is size any longer a problem. (These considerations are of utmost importance to every audio enthusiast for stereo.) In the Sinclair 0.14 you will find a loudspeaker of such superb quality and so compactly and attractively styled that you will want to change over to Sinchair immediately you hear it. This is no ordinary loudspeaker. A vast amount of money, time and research have gone into producing a design which proves beyond question that good reproduction does not have to be expensive. Users of the $\mathbf{Z . 1 2}$ for instance, know that full well, and coupling the 0.14 to this Sinclair amplifier assures the keen listener of superb audio reproduction.
£6.19.6

The Sinclair 0.14 has been tested in an independent laboratory and shows exceptionally smooth response between 60 and $16,000 \mathrm{c} / \mathrm{s}$ with well sustained output both below and above these readings. Its remarkable transiant rasponse ensures cleancut separation between instruments, voices, etc. The unusual shape of the sealed, seamless pressure chamber allows the $\mathbf{Q} .14$ to be conveniently positioned on shelves, in wall corners, or flush mounted in assemblies of one or more units.

Try the 0.14 in your own home now. If you are not satisfied send it baek and your money plus the cost of posting your 0.14 to us will be refuncled in full.

SINCLAIR RADIONICS LTD, 22 Newmarket Road, Cambridge

Phone OCA-352996

SINCLIAR 1.12

12 WATT INTEGRATED HIGH FIDELITY AMPLIFIER AND PRE-AMP

- IDEAL FOR
 BATTERY OPERATION

- 15-50,000c/s $\pm 1 \mathrm{~dB}$

PZ. 3 Mains Supply Unit for for $Z .12$ and Stereo $79 / 6$
25 users.

The ambodiment of power, officiency, reliability and economy. Nothing could be better than this fine amplifier for use with space-saving plinthmounted motor and pick-up assemblies. Equally, its light weight makes the $\mathbf{Z . 1 2}$ ideal for guitar amplifier or electronic organ. It operates efficiently on any power supply between 6 and 20 V. D.C. The pre-amp of this 8 -transistor masterpiece will accept the outputs of pick-up, radio and microphone, etc. Full details for matching control and selector switching circuits are in the manual supplied with each unit. The $\mathbf{Z . 1 2}$ is now in use all over the world and is the accepted standard for all hi-fi needs.

TECHNICAL DETAILS

- Class " B " ultra-linear output.

RESPONSE $15-50,000 \mathrm{c} / \mathrm{s} \pm 1 \mathrm{~dB}$.
Suitable for $3,7 \cdot 5$ or 15Ω speakers. Two 3Ω speakers may be used in parallel.

- INPUT- 2 mV into $2 \mathrm{k} \Omega$.
- Signal to noise ratio better than 60 dB .
- Use two for stereo.
two for stereo.
BUILT, TESTED AND
GUARANTEED.

ALL ITEMS POST FREE•SATISFACTION OR MONEY BACK GUARANTEE•PROMPT DELIVERY

ORADIONIC

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

PROBABLY THE WORLD'S BEST SYSTEM FOR: BEGINNERS

TEACHERS EXPERIMENTERS

Clear, simple, versatile, this rugred system can build almost any electronic circuit. Ideal for the experimenter; the teacher; and the complete beginner. Already used by well over 1,000 'schools in the U.K.
Selected by the Council of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.
Beautifully engineered; battery operated; no soldering; no prior knowledge needed. Results guaranteed by our technical department People say:
"I can only describe the results as brilliant, absolutely brilliant."
"You have opened up a new world."
"he kit has been used by my son (aged 10) with complete success."
"Most impressive-a stroke of genius whoever devised it."
UNIQUE: Our "No soldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.
No. 1 Set 25.18 .6 14 Circuits (Earphone)
No. 2 Set 26.19 .6 20 Circuits (Earphone)
 Prices (Post Free)
(Plus P.T. increases of $1 / 8 ; 1 / 11 ; 3 / 1 ; 4 / 2 \mathrm{~d}$ respectively)

Full detalls from:

RADIONIC PRODUCTS LIMITED STEPHENSON WAY, THREE BRIDGES CRAWLEY, SUSSEX

Tel. CRAWLEY 27028
(Trade Enquiries invited)

A No. 4 SET and 6-TRANSISTOR SUPERHET

Practical Layout

Theoretical Circuit

NEW RANGE BBC 2 AERIALS
All U.H.F. aerials now fitted with tiling bracket and 4 element grid reflectors.
Loft Mounting Arrays, 7 element. 35/-. 11 element, 42/6. Wall Mounting with Cranked Arm, 7 element, $60 /=11$ element $67 /-14$ element. $75 /$. 18 element. $82 / 6$ Mast Mounting with 2in. clamp, 7 element. 42/6; 11 element. 55/-; 14 element, 62/-; 18 element. 70/-. Chimncy Mounting Arrays, Complete, 7 element, 72/6; 11 element, 80/-; 14 element, $87 / 6 ; 18$ element. $85 /$-. Complete assembly instructions With every unit.
Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps. from 75/-. State clearly channel number required on all orders.

BBC • ITV AERIALS

BBC (Band 1). Telescopio loft, $21 / \%$ External S/D. 30/-. "H" £2.10.0.
1TV (Band 3). 3 element loft array, 25/-. 5 element, mounting. 3 element, $35 /$. 5 element, $45 /$ -
Combined 13 BC/ITV. Loft $1+3,41 / 3 ; 1+5,48 / 9 ; 1+7$, $58 / 9$; Wall mounting $1+3$. 56/3; $1+5,63 / 9 ;$ Chimney $1+3,63 / 9: 1+5$. $71 / 3$. VHF transistor pre-amps. 751 -
COMBBINED BBC 1 -ITV - BBC 2 AERIALS $1+3+9$. $70 /-1+5+9,80 /-1+5+$ $14,90 /=1+7+14,100 / \%$. Special leafet available.
F.M. (Band 2). Loft S/D. 12/6, "H", 30/-, 3 element, 52/6. External units available. Co-ax. cable, 8d. yd. Co-ax. plugs, 1/3. Outlet bW O or COD P. \& P. 5/-. Send 6d. stamps for illustrated lists.
Callers welcome - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, New Addington Surrey-CRO-OJB LODGE HILL 2266

SUPPLIERS OF ELECTRONIC EOUIPMENT TO . . .

- Industrial research ESTABLISHMENTS
- RADIO ENTHUSIASTS
* UNIVERSITIES AND TECHNICAL COLLEGES
OFFICIAL SUPPLIERS TO MANY EDUCATION AUTHORITIES
Usual Educational Discounts
OUR NEW 1967/68 illustrated catalogue NOW AVAILABLE
(send $2 /-$ in stamps for your copy)

INCLUDES

Valves, Transistors, Transformers, Loudspeakers, Recording Tape, Coils, Resistors, Condensers, Potentiometers, Chassis, Rectifiers, Test meters, Microphones, Tools, Solder etc.
DISTRIBUTORS OF EAGLE PRODUCTS WHOSE NEW ENLARGED CATALOGUE is now available 5/-
ALPHA RADIO SUPPLY CO
103 Leeds Terrace, Leeds 7, Tel: 25187

TRADER SERVICE SHETS

4/- each plus postage.
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio/TV

1967 List
available at $2 / 4$
plus postage
If list is required Indicate with X

From
\qquad
\qquad

1 enclose remittance of
(and a stamped addressed envelope) s.a.e. with enquiries please MAIL ORDER ONLY (Dec. PW)

R.S.T. valve mail order co. 144-146 WELLFIELD ROAD, STREATHAM, S.W. 16

Mon.-Sat. 9 a.m
 -5.45 p.m.

Closed Sat. 1.30-2.30 p.m. Open Daily to Callers brand new Tel. 769-0199/1849

OA2	$5 / 9$	6BH6	70	6K6GT	$51-$	787	17/9	2012 14/-	b0L6GT	6/-	DH77	4/-	ECF82	7\%	EM81	717	Pcc89 10/-	8130	25/-	UM80	
0 C 3	5/.	6BJ6	7	6 K 7 M	519	7Y4	7/6	20 Ll 17/-	75	71.	DK 32	$7 / 19$	ECH21	$18 / 6$	EM84	71.	PCC189 $9 / 8$	SP4	81	UU6	$18 / 6$
1A7	$7 / 9$	6BQ7A	71	6K7G	$1 / 9$	9BW6	71 -	20 P 4 19/-	78	51-	DK91	3/-	ECH35	11/-	ESU15	20]-	PCF80 6/3	SP 41	$3 / 6$	UU7	13/6
1D5	71.	6BR7	816	6K7GT	$4 / 6$	10C1	12/6	20P5 18/-	80	5/-	DK92	81	ECH42	9/-	EY51	$71-$	PCF82 6/-	SP61	2/6	UU8	$8 /$
LH5	71 -	6BR8	$5 /$ -	6 K 8 M	816	10C2	12/6	2546519	85.2	78	DK96	7%	ECH81	5/8	EY86	6/6	PCP84 8/-	SU25	$19 / 6$	UY21	$9 / 6$
ILDS	B/-	6B87	16/9	8K8G	8/-	10F1	97.	25L6GT 5/6	$150 \mathrm{B2}$	$9 / 6$	DL66	151-	ECH83	$7 /$	EZ35	$4 / 6$	PCF88 8/-	SU2150	12/6	UY41	$6 / 8$
INEGT	8/-	6BW6	$7 /-$	6K8GT	71.	10F3	$8 /$	$25 Y 5$ 6/-	150C4	716	DL92	$4 / 9$	ECL80	6/6	EZ40	$7 /-$	PCF801 $9 / 6$	T41	15/-	UY85	5)-
1 R 5	5\%	6BW7	916	6 K 25	201-	10F9	$9 / 9$	$25 \mathrm{Z4}$ 6/8	801	6/-	DL93	3/6	ECL82	$6 / 8$	EZ41	8/-	PCF802 $9 / 6$	TDD	10\%	VMP4	17/
184	$5 /-$	$6 \mathrm{C4}$	$2 / 9$	6L1	916	10 F 18	$91-$	$252571 /$	807	$7 /$	DL94	$5 / 9$	ECL83	$9 / 6$	EZ80	51.	PCF805 1816	U10	$7 / 8$	VP4B	25/-
185	4/-	6C5G	$4 /-$	6 L 6 G	71.	10 LI	$8 /$	25Z6 $\quad 8 / 6$	813	$751-$	DL95	$6 / 8$	ECL86	8/9	E281	51	PCF806 12/-	U14	$7 / 8$	VR105	30
1 T 4	8%	$6 \mathrm{C6}$	$3 / 9$	6 L 18	51-	10 LD 11	15\%	28D7	866 A	$18 / 6$	DL.96	7%	ECLL800		GZ30	101.	PCF80811/6	U19	$35 /-$		5/-
3 A 4	$8 / 6$	6C8G	61-	6Q7G	61-	10 P 13	15/6	30 Cl 6/8	954	$4 / 6$	DM70	5%		$801-$	GZ92	$9 / 6$	PCL82 7/-	U25	18/6	VR1	
304	$6 / 6$	6CD6G	20/\%	607GT	$8 / 6$	11E3	4210	$30 \mathrm{Cl5}$ 18/6	1625	$5 / 6$	DY86	$81-$	EF9	$201-$	QZ34	101-	PCL83 816	U26	18/6		$5 /-$
305	6/8	6 CH 6	519	6887M	71	12AT6	4/6	30 Cl 7 14/-	40228	$50 /-$	DY87	61-	EF37A	7%	KT3	17/6	PCL84 7/-	U78	$8 / 6$	VT25	15/-
884	$4 / 9$	6CWW 4	12/.	$68 \mathrm{C7}$	7%	12AT7	$8 / 9$	$300 \mathrm{C1} 81816$	5763	10/-	E88C0	12/-	F39	6/-	KT61	$12 / 6$	PCL85 816	U191	$12 / 6$	VT31	$801-$
874	519	6D6	$2 / 9$	${ }^{68 G 7}$	$51 /$	12AU6	$5 / 9$	30 FS 14/-	7198	2/-	EA50	81	EF41	$8 / 6$	T66	16/-	PCI888 8/6	U251	$12 / 8$	VU111	$7 / 6$
6R4GY	$8 / 9$	6ES	7/6	$68 \mathrm{H7}$	8/8	12AU7	1	$30 \mathrm{FL1} 18 /-$	7475	4/-		8/6	EF50	$2 / 6$	T81	351.	PENA4 801-	U301	1816	VU120	$12 / 6$
8U4G	4/-	6F1	91.	68J7	$51-$	12AX7		$30 \mathrm{FL12} 18 /-$	ATP4	$8 / 8$	EAF42	$8 /$	EF80	B/-	KT81	C6)	PENB4 20/-	U403	$6 / 6$	VUS08	35\%-
8V4G	8\%	6F5G	81	68K7GT	$4 / 9$	12BA6		$30 \mathrm{FL14} 1818$	ATP5	71	EB41	$4 / 6$	EF85	$6 / 6$		10\%	PEN45 7/-	U404	1019	W81M	$8 /$
6Y3GT	5\%	6F6G	4/-	68L7GT	$4 / 9$	2BE6		30L15 $15 / 8$	ATP	$5 / 6$	EB91	8/-	EF88	6/8	KT88	$25 /$	PEN46 819	U801	171	X 79	41/-
624G	$8 / 8$	6F8G	4/6	6SN76	$4 / 6$	C8GT	- $4 / 8$	$30 \mathrm{L17} 14 / 8$	AU2	80/-	EBC33	71	EF89	$5 /=$	KTW61	10/.	PL36 9/-	UABC80	$5 / 6$	XH1-5	$5 /$
6/30 L2	13/-	6 6F11	71	68Q7	8/-	C8GT	$17 / 6$	30 P 12 12/-	AUS	716	EBC41	8/8	EF91	$8 / 6$	KTZ41	6)-	PL81 $7 / 6$	UAF42	$8 / 9$	XP1-5	51-
6 A7	16%	$6 \mathrm{FP13}$	$5 /-$	6U4GT	12\%	12JTSGT		30 Pl 1918 l	AZ1	81	EBC90	4/6	EF92	8	MLA	17/6	$\begin{array}{ll}\text { PL888 } & 8 / 6 \\ \text { PL83 } & 8 /-\end{array}$	UBC41	$8 / 6$	X8G1-	101-
6A8G	12/6	$6 \mathrm{F14}$	12/6	6UBG	718	12JEGT		$30 \mathrm{PL1} 15 /$	AZ31	91-	EBF80	6/6	EF98	9%	ML6	8/-	PL83 PI84 P/8	UBC81	$7 / 6$	Y63	$7 / 6$
$6 \mathrm{AC7}$	8/-	6 F 23	$18 / 6$	6V6M	81			$30 \mathrm{PL13} 151-$	CBL31	15\%	EBF83	71	EF183	6/-	MSP4	10/-	PL84 6/6	UBF80	6/8		
6AK6	$4 / 6$	6 F 24	121-	6VBG	$4 / 6$			30PL14 15/-	CCH35	21/-	EBF89	$6 / 6$	EF183		MU14	716	PL500 18/6	UBF89	$8 / 6$	Tubes	
6AL5	$8 /-$	$6 \mathrm{~F}^{2} 85$	12/	6V6GT	616	12		35A5 12/6	CL33	201-	EBL1	14/-	EL32		MX40	$12 / 6$	PX4 14/-	UCC84	$8 / 6$	3EG1	60/-
6AM5	216	6F28	11/6	6X4	$8 / 6$	12Q7GT		3516	CY31	10\%	EBL21	10/-			N37	10/6	PY33 8/6	UCO85	8/6	3FP7	19/-
6AM6	$8 / 6$	606	216	6X5G	$4 / 6$	12947	6/6	35 W4 4/6	DAC82	7%	EBL31	$27 / 6$			$N 78$	15/-	PY81 6/-	UCF80	816	3CP1	$351-$
6AQ5	$5 / 8$	6H6	2%	6X5GT	$5 / 6$	128G7	$4 / 8$	3573 101-	DAF91	4/-	EC90	$2 / 9$	L3	8	N108	15/-	PY82 5/6	UCH42	$8 / 6$	CV1526	40/-
6As7G	15\%	6J5M	$6 / 6$	786	101-	128E7	3/-	85Z4GT $5 / 6$	DAF96	$6 / 8$	ECC81	819	EL41	$8 / 6$	NGT1	$8 / 6$	PY83 6/-	UCH81	818	ACR13	
6AT6	4/.	${ }^{6 J 5 G}$	2/8	$7 \mathrm{B7}$	71.	12SJ7 7	$8 / 9$	3525 5/6	DOC90	$7 /$	ECCO82	$4 / 9$	EL42		NGT7	55/-	PY800 7/-	UCL82	71.		5.0 .0
GAU6	$5 / 6$	6J5GT	4/6	705	101-	128K7	$4 / 9$	37 5/-	DF33	$8 /$	ECC83	$5 / 9$	EL90	$5 / 8$	OZ4	4/6	PY801 7/-	UCL88	819	VCR97	351-
6B8G	21.	6 J 6	8/-	$7 \mathrm{C6}$	6/-	12sR7	$5 /-$	42 6/-	DF70	71.	ECC84	6/-	EL90	/6	PC86	$8 / 6$	R2	UF41	$81 /$		
6B4G	15/6	${ }^{6.57 M}$	$7 / 6$ $4 / 9$	7D5 7 H 7	8.	14H7	$\stackrel{9}{9 /-}$	$\begin{array}{ll}50 \mathrm{B5} & \text { 6/6 } \\ 50 \mathrm{Cb} & 5 / 8\end{array}$	DF91	8/6	ECCO85	51-	EL95	50\%-	PC88	$8 / 6$ $7 / 6$	R19 R (G5/500	UF89	$81 / 8$	VCR517	
6BE6	$4 / 6$	$6 \mathrm{J7GT}$	6/6	7R7	17/6	20D1	101-	500D6G $81 /$ -	DF96	6/3	ECF80	8/6	EM80	71	POC84	5/6	80/-	UL84	1		48/-

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Postage 6d. per valve.
C.W.O. No C.O.D.

Special 24 Hour Express Mail Order Service

DAF96, DF96, DK96, DL96

$\triangle \mathrm{Cl} 277^{7 / 6}$ OC25 | AC127 | $7 / 6$ | OC25 | $11 /-$ | $0 C 71$ | $4 / 6$ | $0 \mathrm{OC81}$ | $4 /-$ | $0 \mathrm{C82D}$ | $6 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AF114 | $7 / \mathrm{F}$ | OC28 | $16 /-$ | 0 C 72 | $6 /-$ | OC81m/pr | 0 O 83 | $6 /-$ | |

You'll find it easy to learn with this outstandingly succeasfu new pictorial method-the essential facts are explained in the aimplest language, one at a time; and each is illustrated by an accurate cartoon-type drawing.

The books are based on the latest research into simplified learning techniques. This has proved that the Piotorial Approach to learning is the quicke

TO SELRAY BOOK CO.
60 HAYES HILL, HAYES, BROMLEY, KENT
Please send me Without Obligation to Purchase, one of the above sets on 7 Days Free Trial. I will either return set, carriage paid, in good condition within 7 days or send the following amounts. Basic Electricity 70/-. Cash Price or Down Payment of $15 /$ followed by 4 fortnightly payments of $15 /$ each. Basic Electronics $82 /$ Cash Price or Down Payment of $15 /$ - followed by 5 fortnightly payments of $15 /$ - each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order. Tick set required (only ONE set allowed on free trial).

BASIC ELECTRICITY 70/- \square BASIC ELECTRONICS 82/-
BASIC ELECTRONIC CIRCUITS 40/-
BASIC INDUSTRIAL ELECTRICITY 40/-
BASIC SYNCHROS \& SERVOMECHANISMS 38/-
All prices
BASIC TELEVISION PART 1 22/-
Signature \qquad
(If under 21, signature of parent or guardian)
NAME
full postal
ADDRESS
\qquad

Fully guaranteed Individually packed VALVES

TRANSISTORS, ZENER DIODES etc.

OA5 31-	$002812 / 6$	2N1306	AF139		A
OA10 81-	OC36 10/-	2N1307 7/6	AF178 18,6	1/6	$\text { A } 88 / 6$
OA47 2/6	0070 4/-	AAZ18 4/-	AFY19 29/6	40	K20A 17/6
216	0071 8/-	AC107 10/-	AFZ11 17/-	18/6	
A81 2/- 900 $8 /-$	$\begin{array}{ll}0072 & 6 /- \\ 0078 & 6 /-\end{array}$		$\begin{array}{ll}\text { AFZ12 } & 10 /- \\ \text { ASY26 } & 6 / 6\end{array}$	/50 81-	MEAT100 7/9
A200 2/6	$0 \mathrm{C76}$ 5/-	AC128 6/6	ASY28 8/6		MAT101 8/6
OA202 8/6	OC81D 8/-	AC176 $7 / 8$	ASZ21 12/6	10/-	MPF102
OAS10 7/8	$0 \mathrm{C82}$ 5/-	7 8/6	A8Z28 80/-		
04211 9/8	$0 \mathrm{OC139}$ 7/6	ACY18 5/6	AU101 30j-	$10^{11 / 6}$	$039 / 6$
OAz20011/-	$0 \mathrm{Cl169}$ 5/-	ACY19 6/6	BC107 6/-	140	04
OAZ20110/-	O0170 5/-	ACY20 5/-	BCY81 18/8	($\begin{aligned} & \text { 18/6 } \\ & \text { 25/- }\end{aligned}$	10
OAZ202	00200816	ACY21 6/-	BCY83 7/6	B 20/-	MPF105
to	02201 10/-	ACY22 8/6	BOZ11 10/-	GET102 8/-	10/-
OAZ206 6/6	OC202 $12 / 6$	ACY28 $4 / 8$	B8Y26 4/-	GRT108 $4 / 8$	08AF
OAZ207 9/8	OC203 10/6	AD140 18/-	B8Y27 8/6	GET105 8/6	
OAZ208	OC204 17/8	AD149 16/-	BgY28 51	/-	SCR61 19/6
to	$0 \mathrm{C205}$ 12/6	AEY11 15/-	BSY61 7/6	11 9/-	645 15/-
OAZ213 6/6	$0 \mathrm{OC208} 17 / 6$	AEY12 18/6	BYZ10 18/-		Z Range
$\mathrm{OAF22}_{\text {to }}^{\text {OAR }}$	$\begin{array}{ll}\text { IN21 } & 8 / 6 \\ \text { IN21B } & 5 /-\end{array}$	AF109 18/-	BYZ11 10/6		er dioden
OAZ22510/	$\begin{array}{ll}\text { IS111 } & \text { 4/- }\end{array}$	AF115 6/-	BYZ13 6/-	GET872	
$0 \mathrm{C16}$ 15/	Ig118 4/8	AF116 6/6	BYZ15 80/-	GEXE4 8/6	
10/	I8116 6/-	AF118 10/-	BYZ16 15/-	GJ8M 4/6	
0023 12/6	2N686 $7 / 6$	AF124 7/8	CR74 17/8	GT43 5/-	nge
$0 \mathrm{O} 2415 /-$	2N1040 80/-	AF125 6/6	CRE1/10 5/-	JK9A 2/8	-
OC25 716	2N1090 7/6	AF'126 6/-	CRE1/20 9/6	JK10A 15i-	ge
0 C 26 6/-	2N1091 9/6	AF127 6/-	CR81/3010/-	JK10B 15/-	7/8
PY83 6/-	14)	-	3 Q 4	8As7G 15/	666G 2/6
PY800 9/-	U27 8/-	X 65	305GT 6/	6at6 4/	6H6GT 1/9
PY801	U82 4/8	X66 $\quad 7 / 6$	384 5/-	6AU6 51-	6H6M 9j-
	U81 18/-	X 76 M 71-	3V4 519	6AX4 8/-	8J4WA 101-
$8-10$	$\begin{array}{ll}\text { U191 } & 14 /- \\ \text { U404 } & 15 /-\end{array}$	X 81 M 18/-	4D1 $5 /-$	6B4G 15/-	6.J6 81-
-6-40	U404 15/-	X118 8/-	5A173G 8/-	6 6 7 \% $/-$	6J5G 8/-
851	U801 17/-	X145 6/-	5A174G 5/-	6B8G 8/6	$6 \mathrm{J6}$ 8/8
QVO-	UAB680 S/8 UAF42 $6 / 8$	$\begin{array}{ll}Y 63 & 5 /- \\ \mathbf{Y} 65 & 4 /-\end{array}$	5B251M 40-	6BA6 4/-	6J6W 6/-
40A 100/	UAF42 $6 / 8$	Y65 4/-	5B252M 86	6BA7 18/6	6J7G 51-
Q8150/15	UBP80 5/6	Z801U	5B/253	6BE6 6/6	657M
10/-	UCC85 618	2900 T 12/-	5 B 2	6B. 68 6857	${ }_{6 K} 6 \mathrm{FGT}$
Q81200 10/-	UCF80 $9 / 6$	$1 \mathrm{B22}$ 80/-	5B255M	6BN6	
Q81202 8/-	UCH42 8/-	1CSGT 8/-	6R4GY 9/-	6BQ7A 6/-	6K7GT /19
QV04/7 8/8	UCE81 6/-	1D8GT 8/-	5 T 4 7/-	6BR7 17/-	6K8G 8/-
R10 17/6	UCL82 8/-	1G6GT 8/-	5 S 4 G 8/-	6BR8 5\%-	6K8GT 7/8
1/240A	UCL83 $7 / 8$	1La $2 / 6$	5V4G 7/6	6BW6 7-	6K25G 24/-
$251-$	UF41 8/6	1LA6 8/-	5X4G 8/	$6 \mathrm{BW7}$ 9/-	

25/-

TELEPHONE HANDSET, Standard G.P.O. type; new 12/-. P. \& P. 2/
©" Meter for H.R.O. Recelverk, Brand new £2.10.0. Carriage pald U.K.
CRYBTALS for H.R.O. In original National Union Housing 25/-. P. \& P. 2/-.
VARIOMETER for No. 19 sets, 17/e. P. \& P. 3/a.
INEET MICROPHONE for telephone handset $\mathbf{2 / 6}$. P.\&P.2/-

SIGNAL GENERATOR TYPE TS 418. Slgna frequency $100-1,000 \mathrm{Mc} / \mathrm{s}$. direct callbration. Pulse rate $40-400 \mathrm{c}$ (X1 or X10), pulse delay varlable, less than $3 \mu s e c$. to more than $300 \mu s e c$. Pulse width varlable less than $1 \mu s e c$. to more than 10 1 sec . Polarity -Internal or external sources, positive or negatlve pulses. AN and $C W$, Outputattenuator $0.2 \mu \mathrm{~V}$ to 200 mV continuous
ly varlable. Infully testedcondition, $£ 150$. Carriage pald FIELD TELEPHONES TYPE "F" housed in portable wooden cases. Excellent for cummunication In- and out-doors for up to 10 miles. For palr Including batteries and $1 / 6$ th mille flold cable on drum. $£ 5.10 .0$. Carriage 10/-

FIELD TELEPHONES TYPE "LL". As above but in

 portable metal cases. Por psir Including bafterles and 1/6th mite field cable on drum. e5.15.0. Carriage 10/LABORATORYTYPEVOLTMETERS160V ACIDC $3^{\prime \prime}$ mirror Scale In wooden boxes, $9 \frac{1}{2 \prime}^{\prime \prime} x$ 8先 $\times 3 \frac{1}{2}^{*}$ with carrying handle, new, $32 /-$, P. \& P. $3 /$ SIGNAL GENERATOR MARCONI S95A/3/8. $1.5-220 \mathrm{Mc} / \mathrm{s} \ln 5$ ranges. Internal modulation AM:0$50 \%$ at $1000 \mathrm{c} / \mathrm{s}, \mathrm{FM}: 0-25 \mathrm{Kc} / \mathrm{s}$ and $0-75 \mathrm{Kc} / \mathrm{s}$. External mod. $50 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s}$. Brand new with all accessorles. £185.4.0.

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12
 (01) 7434946

ALL TEST \& COMMUNICATION EQUIP. MENT has been thoroughly prepared in our Laboratorie by fully qualified Electronic
Engineert.

Neters, $4 \frac{1}{2 \prime}^{\prime \prime} \times 4 \frac{1}{\prime \prime}^{\prime \prime} \times 4^{\prime \prime}$ long mirror scale panel moun ted, callbrated 0-1mA, 55/=. P. \& P. 3/-.
29/41ft. AERIALS each consisting of ten 3 ft . 者in. dla. tubular screw-In sections. 11tt. (6-section) whip eerlal with adaptor to fit the 7in. rod, Insulated base. stay plate and stay assemblles, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag. \&3.9. 8. P. \& P. 10/B.

MINIATURE METERS

General Electrle $1 \frac{1}{*}^{*}$ round flush, elip mounted: 1 mA DC, $22 / 6 ; 25 \mathrm{~mA} \mathrm{DC} 20 /,-; 75 \mathrm{~mA}$ DC, $18 /-; 150 \mathrm{~mA} \mathrm{DC}$ 6/-. P. \& P. 3/
MARCONI SIGNAL GENERATOR TYPE TFIA4G $85 \mathrm{kc} / \mathrm{s}-25 \mathrm{Me} / \mathrm{s}$. Excellent labotarory tested condition with all necessary accessorles with Instruction manual, £45. P. \& P. 15/-
BOONTON STANDARD EIGNAL GENERATOR MODEL 80 . Frequency $2-400 \mathrm{Mc} / \mathrm{s}$ in six ranges. A.M. 400 and $1,000 \mathrm{c} / \mathrm{s}$. and external modulation. Provision for pulse modulation. Piston type attenuator, $0-1 \mu \mathrm{~V}$. 100 mV . Separate meter for modulation level and carrler level. Precision flywheel. 117V. AC Input with nstruction manual. £95, Cartlage 30/-.
COLLNS TCS MICROPHONE TRANS FORMERS. Turns ratio $41: 1$ Test voltage $1,000 \mathrm{~V}$, $4 \frac{1}{4} \times 1 \times 24 \mathrm{in}$. Ideal for moblle and portable Instaliatlons. Brand new, 10/-, P, \& P. 3/-.
SUB MINIATURE "PENNY" EIZE METERE $1^{\prime \prime}$ round. flush, ring nut mounted 500 mA FDS, Callbrated 0-1 mA, 20/-. P. \& P. 3/\%.
MICROWAVE SPECTRUM ANALYZER TYPE SA18 made by Racal. 2400 to $\mathbf{4 5 0 0 \mathrm { Mc } / \mathrm { s } \text { . IF Ampl. } \mathrm { f }}$ Bandwidth $30 \mathrm{Kc} / \mathrm{s}$ to $200 \mathrm{Kc} / \mathrm{s}$ at 3 db . Senslilvity $100 \mu \mathrm{~L}$ at $100 \mathrm{Kc} / \mathrm{s}$ produces a deflection of not less than 1 Inch

Open 9.30-12.30, 1.30-5.30 p.m. Thursday 9-1p.m. PERSONAL CALLERS WELCOME
on CRT. Video Ampl.: 3db down at $150 \mathrm{Ke} / \mathrm{s}$. Timebase varlable repettion rate 20 to $100 \mathrm{c} / \mathrm{s}$. RF input level:
300 LV to 300 mV . Unused with hand $300 \mu \mathrm{~V}$ to 300 mV . Unused with handbook 8300.0 .0 . Few only loft.
RADIO FREQ.: THERMO COUPLE METERS
$\begin{array}{ll}350 \mathrm{~mA} & 2^{\prime \prime} \text { round plug-in } \\ 1 \text { Amp } & 2 \text { " }^{\prime} \text { round prol }\end{array}$
$14 / 6$
1 Amp 2 round proj. $3 /$. ë.
D-GIA MIN ${ }^{\text {" }}$ HOUR WETERS
$200 \mu \mathrm{~A} \quad 2^{2}$ round proj. \quad 2 2 ronel sealed Calibre- 30 .. $200 \mu \mathrm{~A} \quad 31^{\prime \prime}$ rourd panel
$750-0-750 \mu A 2^{\prime \prime}$ round plug-In
$2 \mathrm{~m}^{\prime \prime}$ round cllp fix, metal clad
$1 \mathrm{~mA} \quad 21^{\prime \prime}$ round panel
$1 \mathrm{~mA} \quad 2^{\prime \prime}$ round panel sealed " .. $\quad . .30 /$
$1 \mathrm{~mA} \quad 31^{\prime \prime}$ round panel
$5 \mathrm{~mA} \quad 2^{2}$ round clip fix panel or proi.
5-0-5mA $10.1 \frac{18}{12}$ round panel
$0-30 \mathrm{~mA}$ 21 round panel
75 mA 2i plug in
$\begin{array}{ll}100 \mathrm{~mA} & \text { 1t proj, } \\ 100 \mathrm{~mA} & \text { 13 round panel }\end{array}$

$100 \mathrm{~mA} \quad 3 \frac{1}{2 \prime}^{\prime \prime}$ round panel
2 Amp ${ }^{21}{ }^{2 \prime}$ "round panel
5-0-5 Amp 21" round panel
8 Amp 24^{*} round panel
25 Amp $31^{\prime \prime}$ round proj.
50 Amp $21^{\prime \prime}$ round panel
150 VDC $4^{\prime \prime}$ round panel
15 KV with res $2^{\text {F }}$ round panel $\because{ }^{2}$.
WHEATSTONE BRIDEE. Amerlcanmade.Mensures 0.001Ω to $10 \mathrm{M} \Omega$ with internal galvanometer. $\mathrm{Ez27.10.0}$. ALL OVERSEAS ENGUIRIES AND ORDERE
Please address to
Colomor (Electronics) Ltd., 170 GOLDHAWK ROAD, LONDON W.12. Tel: 01-743 0899.

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 6 \mathrm{~d}$. per word (minimum order $18 /$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting £4. 12s. 6d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

METAL WORK

METAL WORK: All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List $1 / 6$. S.A.E. Enquiries. TELRAY, Maudling Bk., Preston.

SERVICE SHEETS $(75,000) 4 /$ - each: please add loose 4d. stamp: callers welcome: always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS for all makes, Radio, TV., Tape Recorders, 1925-1967. Prices from 1/-, Catalogue 6,000 models $2 / 6 \mathrm{~d}$. Free faultfinding guide with all Sheets. Please send stamped addressed envelope with all orders/ staquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

RADIO TELEVISION over 3,000 models. JOHN GILBERT TELEVISION. 1b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS

4/- each, plus postage
We have the largest display of Service Sheets for all makes and types of Radios and Televisions, etc., in the country. Speedy service.
To obtain the Service Sheet you require please complete the attached coupon

Name:m m
Address:
\qquad

To: S.P. DISTRIBUTORS
35/36 Great Marlborough Street, London. W. 1
Please supply Service Sheets for the following
Make:
Model No...................... Radio/TV
Make:e. net m=, n:o me ..n no
Model No.. . - m................ Radio/TV
Make:
Model No..................... Radio/TV
I require the new 1967 List of Service Sheets at $1 / 6$ each plus postage.
(please delete items not app/lcable)
/encloso romittance of (which includes postage)
MAIL ORDERS ONLY
(Dec.) PW

SITUATIONS VACANT

TV Service Engineer \& Trainee for London retail business of the highest standing; estd. over 40 years; good position and prospects for suitable applicants with high standards of service; state age and details of experience, Box No. 71 .

> RADIO \& TV Exam. and Courses by Britain's finest Home-study School. Coaching for Brit.I.R.E.B City \& Guilds Amateur's Licence, R.T.E.B.,P.M.G. Cert., et. FREE brochure from BRITISH NATIONAL RADIO SCHOOL, Russel Street, Reading.

ALDERMASTON COURT POSTAL TRAIN. ING for B.Sc. (Eng) Part 1, A.M.I.E.R.E. ING for B.Sc. Eng Part 1, A.M.I.E.R.E.,
A.M.S.E., City \& Guilds, G.C.E., etc. prepares A.M.S.E, City \& Guids, G.C.E., etc. prepares Technician or Technologist. Thousands of passes. For details of Exams \& Courses in all branches of Engineering, Building, Electronics, etc. (including latest information on C.Eng.), write for 132 -page handbook-FREE. Please state interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

RADIO TECHNICIANS

A number of suitably qualified candidates are required for permanent and pensionable employment (mostly in Cheltenham, but from time to time there are some vacancies in other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer "O" level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19 - $\mathbf{8 1 2}$, at $25-£ 1,046$ (highest age pay on entry) rising on 1.1.68 to; at 19-£828, at 25-£1,076.

Prospects of promotion to grades in salary range $£ 1,159-£ 1,941$. There are a fow posts carrying higher salaries.

Annual Leave ailowance of 3 weeks 3 days rising to 4 weaks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT).
Government Communlcations
Headquarters
Oakley, Priors Road
CHELTENHAM, Glos.

SITUATIONS VACANT
 (continued)

TV and Radio City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Feo' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132 -page handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

EDUCATIONAL

RADIO OFFICER training courses. Write? Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

CITY \& GUILDS (electrical, etc.) on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, T.V., automation, etc., send for 132 page Handbook-FREE. B.I.E.T. (Depı. 168 K), Aldermaston Court, Aldermaston, Berks.

BECOME 'Technically qualified' in your spare time, guaranteed diploma and exam home-study courses in radio, T.V. servicing and maintenance. T.T.E.B., City and Guilds, etc: highly informative 120 -page Guide-frea CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.l.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Closed circuit TV, Numerical control \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS DEPT. 541 PARKGATE ROAD LONDDN, S.W.11.

BOOKS \& PUBLICATIONS

WIRELESS WORLD, bound 1928/38, unbound 1939/48. Offers. ELLIS, 354, North Road, Hull.

SURPLUS HANDBOOKS

19 set Circuit and Notes
. $4 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$. H.R.O. Technical Instructions 38 set Technical Instructlons. 46 set Working Instructions .. 88 set Technical instructions.. BC. 221 CIrcult and Notes Wavemeter Class D Tech. Instr. 18 set CIrcult and Notes BC. 1000 (31 set) Clrcult and Notes CR. $100 / \mathrm{B} .28$ Clrcult and R. 107 Clrcult and Notes
AR. 88 I Instruction Manual .. 62 set CIrcult and Notes \qquad 62 ser Circult and Notes ... $\quad . \quad 15 / \sim p / p 1 / 6$ Circuit Dlagram 3/* each post free. R.1116/A R.1224/A, R.1355, R.F. 24, 25 and 26 , A.1134, T.1154, CR. 300 , BC. 312, BC. 342, BC. $348 \mathrm{~J}, \mathrm{BC} .348$ (E.M.P.), BC.624, 22 set .

52 set Sender and Recelver clrcults $6 /-$ post free
Reslstor colour code Indlcator, $1 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
S.A.E. with all enquirles please. Postage rates apply to U.K. only.

Mail order only to:

INSTRUCTIONAL HANDBOOK SUPPLIES
DEPT. PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

TAPE RECORDERS, TAPES, Etc.

TAPES TO DISC-using finest professional equipment $45 \mathrm{rpm}-18 /$. S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

GEE'S Recording Tape and Audio Accessories cost less! Send $1 /$ - for illustrated catalogue. Gee Bros. Radio, 15 Little Newport Street, London, W.C.2. Gerrard 6794

ELECTRICAL

240 VOLT ELECTRIC POWER FROM

 YOUR 12 volt or 6 volt CAR BATTERYRun your malns $A C / D C$ equlpment direct from your car battery with this compact low battery consumption dyns51n. x 3ln. Sturdy construction. Con verts a 12 volt Input to a 240 volt output. Huge purchase enables us to offer them at only $39 / 4$ each, post and packing $6 /-.6$ volt input model only $35 / \mathrm{m}$, p.p. $6 / \mathrm{H}$. Thousends already sold.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors Silvered Mica, Ceramic, etc. Carbon, Hystab Vitreous, $\frac{1-20}{}$ watt, 12/6 Post Free. WHIT SAM ELECTRICAL, 18 Woodrow Close, Perivale, Middlesex.

BARGAIN PARCELS! 120 (minimum) radic parts etc., mostly new 12/6. G. HART, Lings Lane, Chelmondiston, Ipswich, Suffolk.

COMPONENTS GALORE, CRT's, Valves, Transistors, tools, Electrolube, all your Service requirements at WILLOW VALE, THE SERVICE WHOLESALERS, 69 Station Road. Hanwell, London, W.7. Free catalogue by return.

MURPHY B4O NAVAL RECEIVERS
δ bands $650 \mathrm{Kc} / \mathrm{Q}-30 \mathrm{Mc} / \mathrm{s}_{0}$ 10 valves. Built in speaker, phones output. 2 R.F. and 8 1.F. stages, xtal bandpass fllter, noise limiter etc. etc. $150 / 230 v$ A.C. Slze 191 I
 working with circuit dlaworking with circuit duaAlso B41, L.F. version 815. Carr. 30i-.
SPECIAL OFFER: Both above receivers 23810.0 . Cart. ex.

32 ft . TELESCOPIC AERIAL MASTS Comprising 20ft. 4 section tubular ateel telescoplo mast and 12 ft . folding whip; can be erected in less than 5 minutes. Closes to Bit. 91n. Welght 21 lbs . Must have cost well over 220 . Price 70/\%. Carr. 10\% NATIONAL H.R.O. SENIOR RECEIVERS
 ST MODEL
In excellent tested with 9 coils 50 Roplet womo/a colls and Power Unith e81.010.0. Powrr 301-
REJECTOR UNITS $1.2-10 \mathrm{Mc} / \mathrm{s}$ switched, 4 ranges. Primarily R. C R.C. Suitable for harmonlc
 Tuning dial with lock. Aerlal

4 VALVE 4 WATT AMPLIFIER
 "C" Core transformers
A.C. Mains $110 / 230$ volts A.C. Mains $110 / 230$ volts
600 ohms of high imped600 ohms of high imped 600 ohms (state cholce) Controls: On/Off switch. Gain control. Indicator light. Valve inspection panel. $19 \times 7 \times 7 \mathrm{in}$. Brand new in waker's carton. 79/6. Carr. 10/

ROTARY TRANSFORMER
12v. D.C. input, 250 v . D.C. output at 120 mA . Size $3 \ddagger$ x $5 \ddagger$ in. Brand new, 17/6. P. \& P. $5 /-$
R.F. ANTENNA TUNER (A.T.U.)

Calibrated acale, Ideal 160/80/40 metres. Limited aumber only. Brand new with instructions, 1\%/6.
ALL 19 SETS AND PARTS AVAILABLE
S.A.E. ALL ENQUIRIES-LIST 1/-

Aw.THOMPSON (Dopt.PW.)
"EILING LODGE", CODICOTE, HITCHTN, HERTS.

RECEIVERS \& COMPONENTS
(continued)

PHILIPS 625 UHF conversion kits, two complete IF and time-base panels, Escutcheon Kit and knobs. 22/6 each post paid. BARTLETTS, 38 Clifton Road, Greenford Middx.

PRICES DOWN!

2N2926 sillicon planar NPN, 200 mW , IT 200 MEX . Fce 18 v , colocur coded in four groups of beta-65-110 \& $00-180,8 / 9 ; \quad 150-300,8 /-$; $236-470,8 / 8$ BURiPLUE type, simillay to above in T018 can-

beta $V \mathrm{Ve}=16 v$	$25 v$	40%	
$20-40$	$1 / 8$	$1 / 8$	$2 /-$
$40-80$	$1 / 9$	$2 /-$	$2 / 8$
$80-160$	$2 /-$	$2 / 8$	$2 / 6$
$160-400$	$2 / 6$	$8 /-$	$8 / 6$

2 N 706 or $2 \mathrm{N706A}, 2 /-\mathrm{A}, \mathrm{AOl7}$ (aimilar to A 128), 2/6 20339A (AC127 but TOS), 2/6; 2N697 40\% 80 MH $600 \mathrm{~mW}, 8 / 6$; BFY50 $80 \mathrm{v} 60 \mathrm{MHz} 800 \mathrm{~mW}, 5 / 6$; BC109 aquiv $2 \cdot 2 \mathrm{~dB}$ NF, $2 / 6 ;$ BY100 or equivalent, $8 / 6$; AF114 4-; AF117, 8/6; AFZ11, 4/-; 1N21, 8/-8 OA95 equive alents. 2/6 dosen.
FREE! with all orders over $80 /$ from the above, goodien worth at least flve bob. NO RUBBIBH. All items are post pald with money-back guarantee. Ilsta on requeat

J. R. HARTLEY
 2 Waterloo Terrace Bridgnorth, Shropshire

MULLARD BY100 rectifiers, genuine new branded, not cheap rejects, $6 / 6$ each or $70 /$ dozen. BARTLETTS, 38 Clifton Road. Greenford, Middx.

Pocket-Size TRANSISTOR TESTER
Tests Transistors in or out of set - Tests both P.N.P. and N.P.N.
Price 30/- Battery and Post Free.
$300 \mathrm{~m} /$ W AMPLIFIER KITS
Comprising: Full instruction manual Transformers - Printed circuit - Transistors - Resistors - Electrolytics - Potentiometer - Flex - Copper wire - and solder Price $35 /$ - post free.
9-VOLT POWER PACK KITS
Comprising: Full instruction manual $\underset{\text { Rains lead }}{\text { Resistors }}$ Tlex - Printed circuit Mains lead - Fle Price 27/6. Post Free.

BROOK \& HILL ELECTRONICS 695/697 SEVEN SISTERS ROAD. LONDON N. 15
 (50 yds. from Wards Corner).

R \& R RADIO

51 BURNLEY ROAD, RAWTENSTALL ROSSENDALE, LANCS.

Tel. Rossendale 3152

Boxed Valves		Fully Guaranteed			
EF80	$4 /-$	PCC84	$5 /-$	PY33	$7 / 6$
ECC82	$4 /-$	PCF80	$5 / 3$	30 P19	$7 / 4$
ECL80	$6 /-$	PL81	$5 /-$	$30 P 4$	$7 / 4$
EB91	$2 /-$	PY81	$5 /-$	U191	$7 / 6$
EF85	$5 /-$	PY800	$5 /-$	U301	$7 / 4$
EY86	$5 / 6$	PL36	$7 / 6$	PCL83	$7 / 6$

Postage: One valve sd, extra, Two valves ed. each extra, Three to Six valves 2d. oach extra, over Slx post pald. Speakers ex T.V, 5 Inch round $3 / 5_{6} 6 \times 4$ 3/6. Post 2/6, 8 Inch round $8 / 6$, post $4 / 6$ for one or two. Transistors
OC45 3/-, ACY27 4/-, ACY28 4/-, ACY30 10/-, 2N697 10/=, 2N607 3/=, AC128 2/6, G.E.C. Rect. 60 volt P.I.V. 1/-. Postage 6d, per order.

RECEIVERS \& COMPONENTS (continued)
"PRACTICAL WIRELESS". Two Voltmeters for the Workshop. All components available. Send s.a.e. for an itemised price list. AJAX ELECTRONICS" 18A, Rumbold Road, Fulham, London, S.W.6.

WILSON ELECTRONICS

8/- osoh $\mathrm{AC126}, 127,128,0 \mathrm{OC7}, 819 \mathrm{~T}$ (0 C 83).
2/6 each OC44, 45, $810,81,82 \mathrm{D}, 82$.

4/- esed AF114, 0 ocili, 172 .
$71-$ each OCZ2, $23,25,28,28,30,200$
11/6 each AD 140, 149, 0c35, 36, 38.
Reaistors \& watt, $5 \% 10$ n to $10 \mathrm{M} Q 4 / 6 \mathrm{doz}$.
Cape $15 \mathrm{~V} 8,10,30,50,100 \mathrm{mfd}$. $1 /$ e each.
Mylars $\cdot 001, \cdot 002, \cdot 005, \cdot 02, \cdot 055 /-\mathrm{doz}$.
Lasts 6d. P. \& P. 6d. per order.
80 Eradbourne Avenue, Wilford, Nottingham.

This bet is made up of 3 separate units; (1) a two valve amplither using a 6 V 6 output valve; (2) (some only, not built in the very latest models) a V.H.F. tranareceiver covering $229-241 \mathrm{Mc} / \mathrm{s}$ using 4 valves; (3) the mainshort wave transmitter/receiver covering in two switched bands, just below $20 \mathrm{Mc} / \mathrm{s}-4 \frac{1}{2} \mathrm{Mc} / \mathrm{s}_{\text {; }}$
 using 9 valves. For r.iver W. and M.C.W. The receiver is superbeterodyne having 1 R.F. stage,
frequency changer, two I.F. (465 Kc/8) signal frequency changer, two I.F. (465 Ke/8) Bignal
detector, A.V.C. and outputstage. A B.F.O. Included for C.W. or single side-band reception. T.X. output valve 807, other valves octal bases. Many extras, e.g. netting awitch, quick fllck dial settinge, squelch etc. Power requirements LT 12 volts, HT receiver 275 volts D.C. HT transmitter 500 volts D.C., size approx. $17 \pm \times 7 \frac{1}{x} 11$ ins. Every set gupplied in new or as new condition in carton with book in cluding circuits, only 24.10 .0 d , or Grade 2 slightly used sol-carriage both $15 /-$ -
A FULL KIT of brand new attachments for this and mike, aerial tuning unit, co-axial head etc. at only $45 /$-carriage $5 /-$. WE MAKE A MAINS $200 / 250$ VOLT POWER UNIT in louvred metal case to plug direct into set power socket to run (1) receiver, $70 /$ post $5 /-$. (2) TX and RX, 28.10 .0 post $7 / 6 \mathrm{~d}$. (3) 12 Volt DC P.U. for receiver, 50/- carriage $5 /-$, A charge of $10 /-$ to unpack and test the
these sets is made only if requested.
v.h.f. transreceiver me. 1/1

This is a mudern self contained tunable V.H.F. 10 w powered frequency modulated transreceiver for R.T. communication up to 8 - 10 milea. Made for the Ministry of 8upply at an extremely high cost by well known British makers, using 15 midget B.G. 7 vaives, recever incorporating R.F. smpliner. the dlal calibrated in 41 channels each $200 \mathrm{Kc} / \mathrm{s}$ spart. The frequency covered is $39 \mathrm{mc} / \mathrm{s}-48 \mathrm{mc} / \mathrm{s}$. Alao has bult-in Cryatal calibrator which gives plpe to coincide with marks on the tuning dial. Power required LT $4 \frac{1}{2}$ volts, HT 150 volts, tapped at 90 volts for receiver. Every set supplied complete with valves and cryatals. New in carton, complete with adjustable whip aerial, and circuit. Price \$4.10.0 carriage $10 /$. Headset or hand telephone $80 /$ - internal power unit
AC input 8.10 .0 extre.

A Pair of 572B Transmitter Valves, new boxed and unused. Offers. Box 70.

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns.-Special Offer $55 /$ - each. MINIFLUX 4-Track stereophonic/ MINIFLUX 4 -Track Stereophonic/
monophonic Ferrite Erase Heads. List monophonic Ferrite Erase Heads. List
Price $\mathbf{£ 3 . 1 0 . 0 \text { .-Special Offer } 3 2 / 6}$ each, or supplied together (one of each) at £3.17.6. SKN4 $\frac{1}{2}$-track stereophonic record/play heads for Transistor Circuits at 55/- each. Also available $\frac{1}{8}$-track and full-track monophonic Ferrite Erase Heads. All heads complete with technical specifications. Send S.A.E. for details. LEE ELECTRONICS, 400 Edgware Rd., Paddington 5521.

AIR DRYING - JUST BRUSH ON

(covers 5 sq, ti.)
3/9
+9 d . post. AMAZING RESUUL
$t \mathrm{pt.8/-1} 1 \mathrm{pt} .16 /-$.Cart :orders tpt.8/-1pt.16/-.Carr :orders
up to $1 /-9 \mathrm{~d} ;$ up to $10 /-1 / \mathrm{gd}$; up to $5 /-, 9 \mathrm{~d}$; up to $10 /-$, $1 / 9 \mathrm{~d}$; ailver, black, bronze. Other available. No primer needed. Panel transfers, fireproof spray thinners etc. LIST FREE. INDUSTRIALIST SAVE TIFE AND Agse's
(2 plnte will do a Mini). IALITY PAINTS (PW) NNIGAN SPECIALITY PAINTS (P Tel. 8tocksfield 2280

CURSONS TRANSISTORS

ALL GUARANTEED
1/- each, BAY31, BAY50, DK10, OA70, OA81, OA10, OA200, OA90, OA91, OA259.

2/- each. XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACY22.

3/- each. OC139, OC140, 2N706, 2N708, 2N2894, BY100, RAS310AF, 2N914, 2N916, BSY25, BSY26, BSY27, BSY95A, AFZ12, BFY18, BFY19, BFY26, BFY36.

7/6 each. RAS508AF, CRS3/40, BLY10, BLY11, BUY10, BUY11, ADY22, ADY23, ADY24, 2N2234, 2N2235, OC22, OC26, OC28, 0C35.

ZENER DIODES

$3.9 v$ to $26 v, \frac{1}{4} w 3 /-$ each, $1.5 w$ 4/-, 7w 5/- each.

SAE, full new list:-

B. W. CURSONS

78 BROAD STREET CANTERBURY, KENT

FOR SALE

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear-lots of unusual stuff. This Cat. is free for the asking. K. R. WHISTON (Dept. PWC), New Mills Stockport.

Christmas Computer

Just think . . . with this desk-top mini-analog computer you can multiply and divide, take square roots or powers, and do log operations -simply by turning the dials and keeping your eye on the null meter. The Instruction Manual covers MAC-1's applications in electronics and physics, engineering and trigonometry.
Complete in kit form, MAC-1 is $\mathbf{2 3} \mathbf{1 0 s}$. $\mathbf{6 d}$ or $£ 319 \mathrm{~s} .6 \mathrm{~d}$. built and ready for use. (For either please add $6 s$. carriage.)

You would probably like more information: just write to:

I-COR SYSTEMS (File PW6)
4 Manor Road, London N. 16

MORSE $\begin{gathered}\text { MADE } \\ \text { EASY } \\ \text { ! }\end{gathered}$

FACT NOT FIGTION. If you start RIGET you will be resding amateur and commercial Morse within a month. (Normal progress to be expected.)
Using sclentilicelly prepared 3-speed records yon atomatically learn to reoogulae the cicie RHYTHM without tranglating. You can't helpit, it's easy as learnin tune. 18 W.P.M. in 4 weekg guaranteed.
For delalla samp froe e.in. ring, s.t.d. 01-660 2896 gend sd. stamp ior explanatory booklet to:
G8GES/P. 45 GRERN LANE, PURLEY, SURREY

WANTED

WE BUY New Valves and Transistors, State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details quotation by return. WALTON'S details, quotation by return, Wolverhampton.

WANTED: Popular Brand New Valves. R.H.S., Stamford House, 538 Great Horton Road. Bradford 7.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

WANTED
(continued)

DAMAGED AVO METERS wanted. Models 7 and 8. Any condition. Any quantity. Send for packing instructions. HUGGETTS LTD., 2-4 Pawson's Road, West Croydon.

VALVES WANTED, brand new popular types boxed. DURHAM SUPPLIES (C) 175 Durham Road, Bradford 8, Yorkshire.

WANTED: New valves, transistors etc.; state price. E.A.V. Factors, 202 Mansfield Road, Nottingham.

SHORT-WAVE LISTENERS

INTERESTED IN SHORT-WAVE RADIO? Then you'll be interested in the Radio New York Worldwide Listeners' Club! Each month thousands of Club members throughout the world receive a Club magazine filled with special features and news about international communications . . . about short-wave radio. Radio New York Worldwide (WNYW) is the only commercial, non-government short-wave station broadcasting from the United States. We're a special radio station with a very unique Listeners' Club, in fact it's the largest Club of its typers in the world today! We invite you to write in and request a free sample issue of the Club Magazine now. . you'll enjoy it! RADIO NEW YORK WORLDWIDE LISTENERS' CLUB, 485 Madison Avenue, New York I0022, USA.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availablefull circuits, drawings and notes! It has 5 octaves. 2 manuals and pedals with 24 stops-uses 41 valves. With its variab attack you can play Classics and Swing. detalls to C. for free leaflet and further Darlington, Durham. Send 3d. stamp.

SEE THE WORLD-FAMOUS
HEATHKIT
Electronic Kits
at
233 Tottenham Court Road,
London, w. Tel. 01-636-7349
Send for FREE Catalogue
Dept. TC3

PADDED MOVING COIL HEADPHONES AND NEW CONDITION HIGH QUALITY HIGH IMPEDANCE Bargain 13/-, Post Paid S.A.E. for Lists of other Bargains SALOP ELECTRONICS 9a GREYFRIARS ROAD, COLEHAM SHREWSBURY, SHROPSHIRE

Covering a wide range of gardening topics, this beautifully produced and illustrated Annual goes into detail on several important technical trends. Dr. Walter Heydecker of Nottingham University writes on dwarfing plants with chemicals. A. G. L. Hellyer describes the revolution taking place with seed and potting composts. Roy Hay shows how to base watering needs on actual rainfall. A. E. Canham talks on out-of-season chrysanthemums. Well-known designer G. K. Coombs provides a labour-saving, paved garden plan. Roses, trees and shrubs, annuals, herbs, succulents, greenhouse plants-just a few of the other subjects dealt with by outstanding authors. 108 PAGES-7/6

Magnificent 'Continental' Siereophonfic Radiogram Chassis with plano wipy switches, bulltIn ferrite rod aerlal. Comes conplete with two 10^{*} elilptlcal loudspeakers, plus a meno/stereo 4-speed automatic record chanizer. Complete 291 gna. (Units avallable separately it required. Chatasis only, 21 gns.).
Special term: avaliable isf e7.15.0 deposit followed by is monthly payments of £1.10.8 (total H.P. of E35.7.0) $+17 / \mathrm{H}_{\text {P }}$. \& P. Send £.12.6 now.

The Imperlal Stereophonic wayeband chassis has the most advanced specifications vet offered In this country. There is a bulli. In ferriterod aerlal, seven plano key buttons, conirolling mono/stereo selection. GramLongl-Mediust-Shart-FM-ON/OFF. The unit comes complate with two 10^{*} elliptical loudspeakers plus a mono/sterec 4 speed automatic record changer. Complete $541 . \Phi 6$.
Chassis only, 29i gns.
Speclal terms available of c10.7.6 deposit followed by 24 mantily payments of $£ 1.12 .6$ (total H.P. \&49.7.6) $+17 / 6$ P. \& P. Send E11.5.0 now.

This most advanced radlogram chassis with automatlc push button selection covers short, medum and long wavebands pulus V.H.F.IF.M. Offered complete with 210×6 speakers 4 speed Stereo/Mono autochanger only £ only, $25 \frac{1}{2}$ ons. Special torms ayailable of E deposit followed ty ti monthly payments of £1.15.8 (total H.P. E41.2.6) $+17 / 6 \mathrm{P}$. E_{B}. Send £9.17.6 now.
All Lewls Radio equipmemt including valves are fully guaranfeed for oneyear tree of charge. For other Stereophonic Equipment and Cabinets, \$ee page 629.
Send your cheque or P.O. today while stocks last to Dept. P.\{27.

Personal callers welcome

LEWIS radio

LEWIS RADIC, IOC, CHASE SIDE, SOUTHGATE LONDON, N.14. Telephone PAL 3733/9666

GARRARD 4 spEED DECES WITH CARTRIDGE: Autoohangers: AT8 Mk. 11 88.19.6. AT60 210.19.6. 3000 28.8.0. 2000 26.19.6. 1000 e5.19.6.
T5-Mono E8.10.0. P. \& P. sll ohanges $7 / 6$.
SWGLE PLAYERS:
8P25 with cartiridge atereo or mono, caat turntable 210.19.6. P. \& P. 7/6.

OARTRIDGRS:
Atereo: EV26 25/-. GP83 15/a Reater RTD/2 17/6. Mono Sonotone, $2 \mathrm{TR8} 15 / \%$ Acos, GP67 15\% TC8 lesa bracket 18/6. P. \& P. 1/-.

MICROPHONES:
 Xtal Had Mite

BM3 and $200 \mathrm{C} 80 /$ - P. \& P, $2 / 6$, stand for mame 18/6. P. \& P. $2 /=, ~ A C O B$ Mike $45,21 / \ldots$ ACOS Mike 40, 18/6. Dyn, Mike DM-391, 22/6. CM21 Xtal 12/0. CM20 Xtail, 9/6. Magnetic Hm 630 with remote control owitch 16i-. Telephone Pick-up 10/6. P. \& P. 1/.. X tal Lapel Mike 7/6. Guitar Mike 12/6. P. \& P. 1/mTEBCOM BABY ALARMS
Complete with battery and connecting wire e.15.0. P. \& P. 2/6.
"BATELLITE" TRANSISTOR RADIOS
Complete with cass, earphone and battery. All tested before despatch, 8 transigtor. Size $21^{\prime \prime}$ wide by 4° $61^{\prime \prime}$ wide by $4^{\prime \prime}$ high by $I^{\prime \prime}$ deep, with telescoptc aerlal. *4.19.6. P. \& P. 3/6.

BARGAINS IT TRANBISTORR:
118, 118, 0C169, 170,
 81, 8/-. R.F. Packs 1 OC44, 2 OC45 8/6. A.F. Packb 1 Oc810, 20081 (Mullard), 8/8. GET113, Red spot 2/-. 0028, 28, 29 9/6. ORP12 Light Cell 8/6. Diodes OA81 8/8. OA91, OA95 1/9. P. \& P. 1/.
TRANBIBTOR RLECTROLYTICS:
$1,2,4,6,8,10,16,25,32,50,100 \mathrm{mfd} 15$ volt working $1 / 8$. P. \& P. $1 / .5500 \mathrm{mf} 12 \mathrm{~V}$ DC $8 / \mathrm{m} .500 \mathrm{mfd} 25 \mathrm{~V}$
$250 \mathrm{mid} \mathrm{DO} 8 / .500$ DC 8/6. P. \& P. I/-.
RESISTORS. \ddagger watt 10% from 4.7 ohm to 10 meg 5 C . each, $4 /-$ doz. P. \& $P .1 / \cdot($ minimum order $2 / 8$).
PAPER CONDRNSERE for Cross.Over Unita 2 mfd

SPEAKER SYSTEMS
The cazton column This is a column cabinet.
Bine $22 \mathrm{f}=6 \times 61$ in., fitted with 3 speakers. This will hande 10 watts and will mprove the quality of any tape recorder, or in wood prain cloth and in wood grain cloth and bargain at 83 plus $10 /-$ P. \& \mathbf{P}.

THE MILTON. A HI-F1 Bootcase Cabinet. Size I I 1 Gin, with $\delta i n$, speaker. Finished in T ea

THE STEREO. A quperior extension cabinet atted with two $7 \times 4 \mathrm{in}$. speakers. Bize 16 I 9 I 8in. Finiahed to tawn andar \%3. P. \& P.

THE IMP. Extension Speaker Cabinet. Wedge ahaped size $7 \frac{1}{3}$ x 8 in . fit ted with
$7 \times 4 \mathrm{in}$.
apeaker. Covered with attractlve 7 I 4in. speaker. Covered with attractive wale slot in back. Only 25/6. Post 2/6. Note: All cablinets new and made with in. chipboard. All speakers ex TV reconditioned hi flux magnet. All carefully tested before despatch.

SPEAKER ENCLOBURES
Cony Corner Cabinet $20 \times 10 \times 7 \mathrm{in}$. takes $10 \times 6 \mathrm{in}$. speaker covered in Reyine and Vynair, 45/-, P. \& P,
Blake Cabinet size $18 \times 24 \ddagger \times 91 \mathrm{in}$, fabric covered 4.10.0. P. \& P, $10 / \mathrm{F}$.

Hayion, $161 \times 15 \times 7$ in. $1 \times b r i c$ covered suitable for 12in. \&peaker, 45/-. P. \& P. 7/6. abinet 10 I 51 I 7 tin Toas foam lined, P. \& P. $3 / 6$.

Wooter for above $\mathbf{s s . 0 . 0}^{2}$. P. \& P. 2/6. Tweeter $12 / 6$. P. \& P, 1/6. Condenser for crossover 8/6. Terminali 8/6 pair. P. \& P. $1 /$.
PLDiTH Teak finlah to match sbove Hi-FH peaker alze $17 \frac{1}{2} 14$ I 4 in , for Garrard $1000,2000,3000$, $\Delta T 60,8 P 25$, 22.17.6. P. \& P. 4/6.
SPEAKERS:
Elac Heary duty Ceramic Magneta 11,000 line, 10 in. round 10 I 6 in .3 ohm or $15 \mathrm{ohm}, 42 / 6$. P. \& P. $3 / 6$.
8 in . round 15 or 3 ohm, $88 / 6$. P. \& P. $3 / 6$. E.M.I $8 \mathrm{in}$. . round 15 or 3 ohm, 38/6. P. \& P. 3/6. E.M,L. 134 I 8 in. 16 or 3 ohm, 42/6. P. \& P, 3/6. E.M.I.
Tweeter, 18/6. P. \& P. 1/6. R.T.C. 124n. 20 watt 10 Tweeter, 18/6. P, \& P. 1/6. R. T.C. $12 \mathrm{in}, 20$ watt 10 Elliptical 30 ohm $30 /-$. P. \& P. $3 / 6$. All other speakers supplied-Goodmans, Bakers, W.B., Wharfedale, Eagle, Tripletone.
CARPIECES WITH CORD AND 3.5 mm . plag. 8 ohm magnetic, $8 /-250$ ohm 4/-. 180 ohm with clip, $6 / 6$. Xtal $4 /=$, P. \& P, 6d.
TRANSISTOR SPEAKERS 8 ohm 2in. 8/6; 3in. 10/6; $8 \frac{10}{}$ in. 12/6. P, \& P. 1/-.
PANEL LIGHT8, 8v Red, Blte, Green, Yellow, White (uses Lilliput bulbs) 8/- each. P. \& $P_{\text {. }} 1 /$. EON PANEL LIGHTS $200-250 \vee 8 /-$ each. P. \& P. $1 /$ ROTARY SWITCHES:
2 pole Maing Switch $8 /-1$ pole 12 way, 2 pole 2 way, 8 pole 3 way, 3 pole 4 way, 4 pole 3 way, $3 / 6$ each P. \& $P .1 / \cdot$

PLANO EEY BU\&H BUTTON SWITCEES. 7 button ncluding mains on/oft. 6 banks of 6 P.C.O. 8/8. PERROX
ERRROX ROD AERLAL with wills, $8 \times 5 \mathrm{ln}$. $/ 6$.

Stockists of Eagle Producta Goodmans Linear, all makes of amplifiers and speakers supplied s.A.E. please. Trade terms to bona fide dealers

92 MITCHAM ROAD, TOOTING BROADWAY,

EAYDON SPBAKER SYSTEM. Size 18% I 15 I $7 \ddagger \mathrm{~m}$., fitted 1210. Epeaker and volume control. Fabric covered. 84.17.6. P. \& P. $10 /$.

LONDON, S.W. 17
Telephone BALham 3984 (Closed all day Wednesday)
(four minutes from Tooting Broadway Underground Station)

SOLDERING

 -you need the Antex SOLDERING TOOL KIT

- Model CN240 15W Precision Iron with $\frac{3}{16}$ " bit, - Two spare Interchangeable Bits ($\frac{5^{\prime \prime}}{32^{\prime}}$ and $\frac{3^{n}}{32^{\prime \prime}}$) - Reel of Solder Heat Sink Cleaning Pad - PLUS 36-page booklet on "How-to-Solder"

British made. From The Army \& Navy
Stores, Harrods, and Radio Shops, or if unobtainable locally, direct from:
ANTEX LTD
GROSVENOR HSE - CROYDON•CR910E
Telephone: 01-686 2774

VALVES

SAME DAY SERVICE NEWI TESTED! GUARANTEED! SETS 1R5, 185, 1T4, 3B4, 3V4, DAF91, DF91, DK91, DL92, DL94

147G	7/6	Y4 6/6	DH81	12/6	EF183 6/6	PCLA	8/8	UCH42	
1H6GT	$7 / 8$	10F1 9/8	DK32	719	EF184 5/8	PCL86	$8 / 6$	UCH	
1N5G	719	10P13 10/6	DK91	$5 / 6$	6H90 6/6	PENA4	6/9	UCL82	$7 /$
1RS	516	12AT7 8/9	DK92	8/-	EL33 6/6	PEN36C	15/-	UCL83	$8 / 8$
184	4/9	12406 //8	DK96	$8 / 6$	EL41 8/6	PFL200 1	$18 / 6$	UF41	$8 /$
185	$8 / 9$	12AU7 $4 / 8$	DL33	$8 / 9$	EL84 4/9	PL36	9/-	UF80	
1T4	$2 / 9$	$12 \mathrm{AX7} 4 / 9$	DL35	51	EL90 5/-	PL81	$8 / 9$	UF89	19
3A5	7%	12K8GT 7/6	DL92	$4 / 9$	EL95. 5/-	PL82	$8 / 6$	UL41	$8 / 9$
8Q4	516	$20 \mathrm{~F} 210 / 6$	DL94	$5 / 6$	EM80 5/9	PL83	$6 / 8$	UL4 4	20/-
384	4/9	20L1 14/6	DL96	6/-	EM81 0/9	PL84	6/8	UL84	$6 /$
8V4	5/6	20P1 9/-	DY86	5/9	EM84 0/8	PL500	18/6	UY21	8/9
SU4G	4/6	20P3 14/8	DY87	$5 / 9$	EM87 6/6	PX25	719	UY41	
5V4G	$7 / 9$	20P4 17/-	EABC8	8/-	EY51 0/8	PY82	$8 / 8$	UY85	
5Y3GT	5/-	25U4GT11/6	EAF42	$8 / 6$	EY8B 6/-	PY33	8/6	VP4B	$10 / 6$
5Z4G	716	80015 11/6	EB91	$8 / 8$	EZ40 0/9	PY80	$5 / 8$	VP13	21/
6/3012	$11 / 8$	$30017812 / 6$	EBC33	7%	EZ41 6/9	PY81	$5 / 8$	W77	8/
6AL5	$2 / 8$	30 C 18 11/9	EBC41	8/-	EZ80 4/6	PY82	5/-	277	$8 / 6$
8AM6	816	30F5 12/-	EBF80	6/-	E281 4/6	PY83	$5 / 9$	Transi	Ors
6AQ5	4/9	30FL1 $18 / 9$	EBF89	5/9	GZ32 8/-	PY88	718	AC107	10/-
6AT6	4 -	30FLl4 12/6	ECC81	$8 / 9$	KT61 8/6	PY800	6/-	AC127	8/-
6BA6	4/6	$30 \mathrm{L15}$ 18/-	ECC82	$4 / 9$	KT81 12/-	PY801	67-	AD140	15/6
BBE6	4/8	30L17 18/-	RCC88	7 -	N18 5/6	R19	71-	AF102	18/-
6 BGGG	15/-	30 P 4 12/-	ECC84	6/8	N78 1419	R20	12/9	AF115	(
6BJ6	6/9	$30 \mathrm{P} 12 \mathrm{11/}$	ECC85	5/6	$\begin{array}{ll}\text { N } 108 & 14 / 6\end{array}$	U25	11/6	AF116	3/6
6BR7	$7 / 9$	30 P 19 18/-	ECF80	$7 /$	PC86 8/-	U26	11/6	AF117	
6C86	8/6	$30 \mathrm{PL1} 14 / 6$	ECF82	6/9	PC88 81-	U47	$18 / 6$	AF118	
6 F 1	$7 / 9$	30PL13 14/6	ECF86	8/-	PC97 5/9	U49	18/6	AF124	18
6 F 13	8/6	30PL14 14/6	ECH35	6/-	PC900 $7 / 9$	U52	$4 / 6$	AF125	$7 / 6$
6 F 14	9/-	35L6GT 7/6	ECH42	9/-	$\begin{array}{ll}\text { PCC84 } & 5 / 6\end{array}$	U78	8/6	AF128	
6 F 23	12/6	36W4 4/6	ECH81	\$/8	PCC89 $9 / 9$	U191	11/-	AF127	7/2
6K7G	1/6	35Z4GT 4/6	ECH84	6/8	PCC189 816	U301	18/-	OC22	$9 / 9$
6K8G	4/8	6063 12/6	ECL80	6/-	PCF80 $6 / 6$	U801	18/-	OC25	$9 / 6$
$6 \mathrm{K8GT}$	7/8	AZ31 9/-	ECL82	6/8	PCF82 6/-	UABC80	5/9	OC26	19
6L18	6/.	B36 4/9	ECL86	$7 / 9$	PCF86 9/-	UAF42	719	0 O 44	19
6V6G	$8 / 6$	B729 $12 / 6$	EF39	$8 / 8$	PCF80011/6	U841	$8 / 6$	OC45	818
6V8GT	8/6	DAC82 $7 / 8$	EF41	916	PCF801 $8 / 9$	UBC41	$6 / 8$	0071	816
6X4	$8 / 8$	DAF91 3/9	EP80	4/9	PCF802 9/8	UBF80	61-	OC72	18
6X5GT	$5 / 9$	DAF96 6/-	EF85	5%	PCF805 11/9	UBF89	519	0 C 75	19
$7 \mathrm{B6}$	$10 / 8$	DCC90 7/-	EF86	6/8	PCF80611/6	UBL21	9/-	OC81	$8 / 6$
$7 \mathrm{B7}$	7%	DF33 7/9	EF89	$5 /$	PGF80818/6	UC92	5/8	OC81D	8/6
$7 \mathrm{C5}$	18/-	DF91 2/9	EF91	$8 / 6$	PCL82 018	UCC84	719	$0 \mathrm{C82}$	
$7 \mathrm{C6}$	8/9	DF96 6/-	EF92	$8 / 8$	PCL83 818	UCC85	8/6	OC82D	
7 H	5/6	DH77 4/	EF97	7/6	7	UCF80	818	$0 \mathrm{Cl70}$	

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7447
Postage on 1 valve 9d. extra, On 2 valves of more, postage 6d. per vaive extra. Any Parcel Insured against Damage in Transit 6d.extra.

NATIONAL AIR TRAFFIC CONTROL SERVICES Radio Technicians

The Board of Trade has vacancies for men wanting vital and interesting work on the latest equipment in TELECOMMUNICATIONS FOR CIVIL AVIATION at Civil Airports, Air Traffic Control Centres, Radar Stations, and other Engineering Establishments.
Qualifications. Practical experience in at least one of the main branches of Telecommunications. Preference will be given to those candidates with City and Guilds Certificates or O.N.C. in Engineering.
Age. 19 or over.
Salary. From $£ 812$ (at 19) to $£ 1,046$ (at 25 or over) ; scale maximum $£ 1,201$. From 1st January 1968 these rates will become $£ 828$ (at 19) to $£ 1,076$ (at 25 or over) ; scale maximum $£ 1,242$. Non-contributory pension for established staff.
Career Prospects. Radio Technicians are encouraged to study for higher technical and professional qualifications. They are helped in this by part-time and, in special cases, full-time release. Once qualified, there are excellent prospects of established posts and promotion to higher grades with a salary maximum of $£ 2,174$ ($£ 3,105$ from 1st January 1968).

LOW-COST FIELD-EFFECT TRANSISTORS are now available, for Immediate despatch, from 8/- each.									
These top quality Junction field-eflect transistors are now available at a price comparable with that of valves, for use In AF and RF applications where space and efficlency are at a premlum.									
Brlef specifications of a few of the many devices held in stock, are given below. For further Information on these and a great many others send 2/6 P.O. for copy of our FET "DATA SUMMARY", which will be avallable later thls month.									
Type	Channel	Package	$\left\|\begin{array}{c} \text { GV } \\ \text { GSS } \\ \text { (max.) } \\ \text { Volts } \end{array}\right\|$	$\underset{(\max .)}{\substack{\text { GSS }}}$		S max. A	$\begin{gathered} y_{\text {is }} \\ \text { min. max. } \end{gathered}$	$\left\|\begin{array}{l} C \\ \text { Iss } \\ \text { max. } \end{array}\right\|$	Price
MPF 104	N	TO-92	25	1.0	1.0	5.0	1000/5000	7.0	8/-
MFE 2094	N	TO-72	50	$0 \cdot 1$	0.4	1.4	350/700	$6 \cdot 0$	$26 / 3$
2N 3819	N	TO-92	25	2.0		20	2000/6500	8.0	22/6
2N 3820	P	TO-92	20	20	0-3	15	800/5000	32	22/6
2N 3909	P	TO-72	20	10	0.3	15	1000/5000	32	20/3

We can also supply hundreds of other semlconductors and a comprehenslve selection of electronlc components, some of whlch are llsted below:
TRANSISTORS: AF 106, 8/3; AF 139, 12/6; OC 29, 25/6; OC 35, 16/6; OCP 71, 24/0: NKT 212, $4 / 3$; NKT 218, $3 / 11$; NKT 271, 3/4; NKT 274, 3/4; NKT 676, 4/-; NKT 773, 4/8; 2G 302, 4/-: 2N 706, 3/9; 2N 2147, 16/6; 2N 2646, 10/6; 2N 2926 (yellow), 3/6;2N 3563, 6/3 2N 3638, 5/9; 2N 3640, 11/8; 2N 3646, 8/3; 2N 3702, 3/9; 2N 3703, 4/-, etc.
DIODES and RECTIFIERS: OA 91, 2/-; OA 95, 2/-; OA 200, 3/-; OA 202, 4/-: BYZ 11 14/3; BYZ 12, 11/3; BYZ 13, 7/3; BZY 88/C6V2, 6/-, etc.
VARICAP DIODES: BA 110 ($8-12 p f$), 5/9; BA 111 ($45-65 \mathrm{pf}), 7 / 3$; BA 112, ($80-120 \mathrm{p}$) 12/9, etc
RESISTORS: $\frac{1}{2}$ W. Carbon film $5 \% 10$ ohm-10 Megohm., $3 / 3$ per doz. (min. qty.) CAPACITORS: Electrolytlc from 1/5. Polyester from 9d. Polystyrene from 10 d . Tanfalum from $3 / 6$. Silver Mica from 9d. Send us a Ilst of your requirements for a compeililve quotatlon.
TRANSFILTERS: Ceramic filters for use in transistor I.F. stages.
(INFORMATION ON REQUEST) TF-01D (470 KHz), (Emltter Bypass), 7/*; TO-01D (470 KHz) (Interstage Coupling), $8 / 9$.

M. R. Clifford \& Company (Components Dept.)

209a Monument Road, Edgbaston, Birmingham, 16
P.S.: Are you on our malling IIst ? If not, send 2/-P.O. and recelve our current transistor price Hst (800/2) and amendment bulletin, and further Information as it becomes available.
P.P.S.: We are now an ELECTRONIQUES DEALER which makes us a single supply source for almost every component need.

BI-PRE-PAK LTD

889-894 WEST ROAD WESTCLIFT-ON-GEA ESRE PHONE: SOUTHEAD (OBO

LOOK-TRANSISTORS 1/- EACH
gILICON \star PLANAR \star N.P.N. \star P.N.P

All these bypes available			
2N929	28131	2N696	2N1131
28501	28512	2N697	2N1132
2N2411	29102	2N1507	2N2906
2N726	28103	2N1613	2N2904
2N706	28104	2N1711	28731
2N706a	2N2220	2N1893	28732
2N3011			28733

UNM TESTED AND GUARANTEED TRANBIGTORS PAK range.

Transistors	Price
AF114	4/-
AFl15	8/-
AF116	3j-
AFl17	4/-
AF118	3/6
AF119	3/8
AF178	101-
BSY95A	$51-$
0022.	7/6
0 C 23	. $101-$
OC25 .	. 81
0 C 26 .	. . 51-
OC28	.. 7/6
0035	51-
0 Cas	$7 / 6$
$0 \mathrm{CA1}$. 2/6
0 C 42	2/6
$0 \mathrm{C4} 4$	1/11
$0 \mathrm{C45}$	1/9
$0 \mathrm{C71}$	2/8
0072	$2 / 6$
$0 \mathrm{C73}$. 5J-
0081	$2 / 6$
OC81D	2/6
$0 \mathrm{C83}$	41-
00139	2/6
0 Cl 40	51-
00170	3/=
00171	4/-
00200	. 51-
00201	. 8/-
2N1302 or 9	4-
2N1304 or 5	. 51-
2N1306 or 7	6/-
2N1308 or 9	81

* ALL OUR SEMICONDUCTORS EAVE A WRITTEN GUARANTEE \star Send for our FREE lists and catatogue of all our products. Check your own equivalents with our free substitution chart.
FIRST EVER LOGIC KITS. Learn for yourself bow computers work, even make one for yourself. Ful! Instructions for a noughts and crosses machine blaary counters, timers, etc. L. $15 \mathrm{gns} . L_{0} 210 \mathrm{gns}$. No need to purchase both kits, you can start with L.2, which incorporates L.1. DETALLS FREE NO CONNECTION WITH ANY OTRER FIRM. MINIMUM ORDER 10/CABE WITH ORDER PLEABE, $\begin{gathered}\text { odd } 1 /- \text { post and packing. } \\ \text { OVERSEAB ADD EXTRA FOR AIRMAIT. }\end{gathered}$

g3nap AMATEUR RADIO g3poo SPECIALISTS

Eddystone E A 12
Amateur Band Communications receiver

The Amateur bands double-conversion superheterodyne receiver, for a.m., c.w., and s.s.b. reception. For all Amateur Bands from 160 m through to 10 m (inclusive) in nine 600 Kc / s wide bands. £185. S.A.E. Illustrated Brochure. See your new EA1 2 demonstrated at:
SWANCO PRODUCTS LTD.-THE AMATEUR RADIO SPECIALISTS SHOP-THE WIDEST RANGE OF AMATEUR COMMUNICATIONS TRANSMITTERS AND RECEIVERS IN THE MID-LANDS-IN STOCK

SWANCO PRODUCTS LTD 247 HUMBER AVENUE COVENTRY

Open all day Saturday
TeI: COV 22714

NORTH COURT AMPLIFIERS

30 WATT AMPLIFIER. A versatile amplifier of outstanding quality. The output of 30 Watts is ideal for Clubs, Factories, Public Address Groups etc.
Four input jack sockets, two high, two low gain are provided to enable mixing.
Loudspeaker can be either 3 or 15 ohm , tone is variable by separate bass and treble controls.
12 mV is the minimum required for full output. A.C. mains only $200 / 250$ volts $50 \mathrm{c} / \mathrm{s}$. Six valves, two EF86, one ECC83, one GZ34, two EL34 are used.
A well designed and robust cover can be supplied for those wishing to transport the amplifier at 25/6.

Retail Price £19.17.6

ALSO AVAILABLE

15 Watt amplifier at £15.19.6. Cover can be supplied at 19/11. 5 Watt amplifier at $\mathbf{2 6 . 1 9 . 1 1}$. Cover can be supplied at $12 / 6$.

* Available from most dealers, but if in difficulty write for name of nearest stockist and fully illustrated brochure to

North Court (Electrical Bradford) Ltd South Pärk Mills Pudsey Yorkshire

* Trade Enquiries Inviled.

PR PR PA spovh RADO GHSSE OFEES
 HI-F1 KUBA ROYAL STEREOPHONIC TUNER AMPLIFIER.

High Fidelity stereoftuner amplifler. A four wave band tuner unit integrated with a stereo amplifier. The most adve push-pull prehensive chassis yet destgned.
8 Piano Key Selectors.
Separate bass and treble controls.
Full tape recording and play back facilitjes. Complete with a 4 speaker system (2-41n. tweeters, 2-10in. bass speakers) plus BSR 4 speed record changer. Model UA70 with ceramle cartridge and diamond stylus. Fully guaranteed for one year including all valves.
Special Package offer only £74.5.0. (Chassis only $49 t$ Gns.)
Terms
£18.11.3 deposit followed by 24 Monthly Pay ments of £2.18.0 (total H.P. £as.3.3) $+17 / 6$ P. 8 P. Send £19.8.9 NOW.

For other stereophonic equipment see page 625.

- Illustrated in this advertisement is just one fine cabinet from the Lewis Radio Range.
- Each Lewis Radio Cabinet is carefully made by British Craftsmen and soundly constructed from the best materials
- Flll in coupon below to obtain FREE catalogue showing this wonderful range of cabinets.

THE NEW LEWIS RADIO CATALOGUE

Designed to assist your cholce of

 Cabinet.The New Lewis Radio Cabinet Cata-logue-the most comprehensive ever prepared. Sent absolutely FREE!
Also available comprehensive range of stereophonic radiogram chassis and matching equipment. See page 625 Pleasesend your FREEcabinetcatalogue Stereophonic equipment leafeis \square
NAME
ADDRESS

Capitals please
Personal callers welcome

LEWIS radio

LFWIS RADIO, 100, CHASE SIDE, SOUTHGATE

 LONDON, N. 14, Telephone: PAL 3733/9666

4-Station Transistor Intercom problems with this 3 subs), in de-luxe plastic cabinets for desk or wall mounting. Cal//talkilisten from Mater to 8ubs and Subs to Master. Ideally sultable for Business, Surgery, Schools, Hospital, Office and Home. Operates on one 9V battery. On/Off switch. Volume control. Complete with 3 connecting wires each 66it, and
WIRELESS INTERCOM
No batteries-no wires. Just plug In the mains for instan ttwo-way, loud and clear communication On/off awitch and volume control. Price 8 gns poest paid.

Same as 4-station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 66ft. conmecting wire. Batuery 2/6. P. \& P. 3/6
 clency with this incredible De-luxe Telophone AmpliHer. Trate down long telephone mesages or converse without holding the handset. A useful office aid. On/ off switch. Volume Control. Battery $2 / 6$ extra, P. \& P. 2/6. Full price refunded if not satilifled in 7 days. WEST LONDON DIRECT SUPPLIES (PW/12)
169 KENBINGTON HIGH STREET, LONDON W. 8

TV TUBES

REBUILT \& RESCREENED

by Britain's largest

independent Tube

Rebuilder

MIDLAND TUBES LTD.
467/483 Oldham Road, Manchester, 10 Tel.: Collyhurst 4412

SUFFOLK TUBES LTD.
1/3 Upper Richmond Road. Putney, London, S.W. 15
Tel.: Vandyke 4304/5267

Ardeen (Radio) every transistor we sell is comprehensively guaranteed (12 months). Top manufacturers, new, tested products only.
ACl 26,128 ; OC44, 45, 71, 8181 D OC170, 171, BC108, 109; AF126, 127 BC107, (replaces 50 other N.P.N's) $4 /-$
$4 / 6$ M/w Tuner: complete with 12 months guarantee Many other items in stock Lists . 88 Always by return of post.
\ldots.. 6 d
C.W.O. Mail Order only to:280 Croxted Road - London S.E. 24

BUY THIS BEST SELLER

TV FAULT FINDING 405/625 LINES

REVISED \& ENLARGED

Edited by J. R. Davies

124 pages ONLY 8/6

Over 100 illustrations, including 60 photographs of a television screen after the appropriate faults have been deliberately introduced.

Comprehensive Fault Finding Guide cross-referenced to methods of fault rectification described at greater length in the text.

Price 8/6 from your Bookseller
or post this Coupon together with remittance for 9/2
(to include postage) to
DATA PUBLICATIONS LTD.
57 Maida Vale, London W. 9

Please send me the 4th revised edi- I tion of TV Fault Finding. Data Book
No. 5.
I enclose cheque/crossed postal order for.........
| NAME
|ADDRESS
I ...
\qquad
\qquad
I
BLOCK LETTERS PLEASE 24－HOUR SERVICE

IRS	4／6	DL98	$5 / 11$	EX51	5／8	PL500	18／6
155	$8 / 9$	DY88	5／6	EY86	5／6	PY32	$8 / 6$
IT4	$2 / 9$	DY87	5／6	EZ40	$6 / 6$	PY33	$8 / 6$
884	4／8	FABC80	5／6	EZ80	810	PY81	51.
874	$5 / 6$	EBC41	719	EZ81	4／－	PY88	9
6AQ5	$4 / 6$	EBF80	$5 / 9$	GZ32	$8 / 9$	PY8	
6 FI	$6 / 8$	EBF89	$5 / 9$	KT61	$6 / 8$		
6L18	6\％－	ECC81	8／9	N78	$14 / 6$		
10F1	$9 / 6$	ECC82	4／8	PC86	$7 / 8$		8
10P13	1018	ECCO8	$4 / 3$	PC88	$7 / 8$	U25	$10 / 8$
12 K 8 G	71.	E0C85	4／9	C8	$5 / 8$	U26	$10 / 9$
20 F 2	910	ECH35	6／9	PC900	716		10／8
20P1	716	ECH 42	$8 / 9$	PCC84	$8 / 8$		5／1
80P4	11／－	ECH81	$6 / 3$	CC8	$9 / 9$	UBC41	6
30 P 19	11／－	ECH84	6／8	PCC189	$8 /$	UBF89	19
DAC32	819	ECLR 0	5／9	PCF80	8／8	UCC84	719
DAF91	$8 / 9$	ECL82	8\％	PCF82	$5 / 9$	UCC85	6／－
DAF96	5／11	WCL86	7／6	PCF801	81	UCF80	8／－
DF33	716	EF39	$8 / 6$	PCL82	6／8	UCH42	$8 / 6$
DF91	219	EF80	419	PCL83	8／6	UCH81	519
DF96	5／11	EF85	$5 /$	PCL84	71.	UCL82	$8 / 9$
DK 32	71－	EF86	6／	PCL85	8／8	UCL83	816
DK91	$4 / 6$	EF89	410	PFL200	12／6	UF41	$7 / 9$
DK96	6／3	EF183	6\％	PL36	91.	UF89	$5 / 6$
DL33	816	EF184	$5 / 6$	PL81	8／6	UL41	$8 / 6$
DL35	$4 / 9$	EL33	$6 / 8$	PL82	$5 / 9$	UL84	6／－
DL92	$4 / 8$	ELA1	8\％	PL83	$5 / 11$	UY41	5／8
DL94	5／6	EL84	4／6	PL84	6／－	UY85	4／9

Postage on 1 valve 9d．extra．On 2 valves or more poatage 6d．per valve extra．Any parcel insured agains mage in transit 6d．extra．Office address no callers．
GERALD BERNARD
83 OSBALDESTON ROAD
STOKE NEWINGTON
LONDON，N． 16

ELECTRONICS GALORE！in the dca CATALOGUE
THE CONVENIENT WAY TO SHOP FOR ALL YOUR ELECTRONIC NEEDS． EVERYTHING FROM SINGLE COMPONENTS EVERYTHING FROM COMPLETE EQUIPMENT ALL AT BEST TO COMPLETE EQ
SEND 2／6 NOW FOR YOUR COPY TO：－ dca ELECTRONICS LIMITED 28 UXBRIDGE ROAD．EALING，W． 5

LISTEN TO THE WORLD on TELSTAR our

1－VALVE SHORT WAVE RADIO
Receives speech and music from world．Price includes valve and one coil covering $40-100$ metres．Can be extended to cover 10－100 motres．Can be converted to 2 or 3 valve and all－
mains speaker use．
Total building costs $35 /-\quad$ P．\＆P． $2 /-$

P．\＆P．2／－

POCKET RADIO

Covers Medium waveband．No earplece． $12 / 6$

P．\＆P． 21 號
MAINS POWER PACKS The ideal economical and safe way of running祭祭 Transistor Radio．Record Player．Tape The Majo＂Ppower，plus＂for 9 y ．Tiv． The MAJOR＂Power Plus＂for 9v．； 7 7y $j 6$ 39／6
 Please state outputs regutred
The BIJOU＂Power Plus＂．For the 17／6 smaller set using PP3 type battery．17／6
NOW AVAILABLE－MAINS POWER PACK FOR CASSETTE RECORDER For use with Philips，Stella and all types opera－ ting on 74 volts．Complete With DIN $45 /-$
plug，ready to use．P．\＆P．2／6．ONLY plug．ready to use．P．\＆P．2／6．ONLY double wound transformer ensuring 100% safety．

FOR THE CONSTRUCTOR！
Crystal Radio 8／6 M．W．Tape Tuner 20／－
with case． with case．with easy for your recorder
Bupplied
instructions． Bupplied with easy to follow
All parts available separately．
R．C．S．PRODUCTS（RADIO）LTD． （Dept．P．W．）． 11 Oliver Road，London，E． 17

＂＇GLOBE－KING＂

2－4 Metres 10－180 Metres

ALL TRANSISTOR
AMATEUR VHF and SHORT－WAVE KITS
Send stamped addressed envelope for free oopy Interesting literature describing latest pro－ ducts：Unique VHF klt model SR2／P，70－150 Mcs． 69／6 p．p．4／－．Short－Wave kit model TR2，79／6 p．p． $5 /-$－＂Mini－Amp＂self－contained．cabinetsize a mere $44^{\prime} \times 34^{\prime} \times 21^{\circ}, 139 / 6$ p．p．4／－．Despatch： Within 21 days from recelpt of order．Overseas enthusiasts send local stamp for literature and special postal charges for your particular speclal postal charges for your particular
country：Sole makers＂Globe－King＂（Regd．） country：Sole makers produots：Tel．：24864：Est． 1943.

JOHNSONS

（RADIO）

St．Martins Gate，Worcester

RESISTORS
$\frac{1}{2}$ watt carbon film 5%
All preferred values in stock from 10 ohms to 10 megohms．2d．each．
Send S．A．E．for free sample

CAPACITORS

Mullard miniature metallised polyester P．C． mounting，all 250 V d．c．working． 0.01 mF ， mounting，
0.022 mF,
0.047 mF,
0.1 mF,
0.22 mF, at 6 d ．each．
Hunts tubular $0.1 \mathrm{mF}, 200 \mathrm{~V}$ working at 3d．each．
Send 6d．stamp for extensive list of low－priced Electronic Components，Instru－ ments and Equipment．
Please include $1 /$ postage and packing on all orders under $£ 1$ ．

Dept．P．W．1．
BRENSAL ELECTRONICS LTD． CHARLES STREET，BRISTOL

PLEASE MENTION
＂PRACTICAL WIRELESS＂
WHEN REPLYING TO
ADVERTISEMENTS

Famons for over 30 years for Short－Wave Equip－ ment of quality．＂H．A．G．＂were the original suppllers of Short－Wave Recelver Kits for the amateur constructor． $\begin{gathered}\text { Over } \\ \text { customers－Including } \\ 10,000 \text { satiafied } \\ \text { Cechnical }\end{gathered}$ Colleges，Hos． pltals，Public Schools．Technical Colleges，Hos．Army，Hams，eto．

IMPROVED 1967 RANGE
One－चalve model＂DX＂，complete kit－price 58／6 （Postage and packing 3／6）．
Customers eay：＂Definitely the best one－valve S．W．Kit a vailable at ary prioe，＂Thia kit contains all genuine short－wave components，drllled chassis，valve，accessories and full instructions． Ready to assemble，and of Fuyse，as of other S W yits still gatiable，including the famons model＂K＂（recommended by radio cluba）．All orders despatched by return．（Mail order only．） Bend now for a descriptive catalogue，order form． etc．，to：－
＂＇H．A．C．＂SHORT－WAVE PRODUCTS
29 Old Bond Street，London W． 1

STELLA NINE RANGE CASES

Manufactured in Black，Grey，Lagoon or Blue Stelvetite and finished in Plastic－coated SteeI， Morocco Finlsh．The frame ts of Dura with Alu－ minium end plates．Rubber feet are attached and there is a removable back plate with removable Aluminium front panel．

LIST OF PRICES AND SIZES
Whloh are made to ft Standsrd Alloy Chansis

Width	Depth	$\begin{aligned} & 4^{\prime \prime} \\ & \text { Height } \end{aligned}$	$\begin{aligned} & 6^{\prime \prime} \\ & \text { Height } \end{aligned}$	$71^{\prime \prime}$ Height	
		\＆ 8 d	\％ 8 d		d
64＊	37＊	100	126	14	6
66^{*}	470	116	146	16	6
$8{ }^{*}$	87	186	160	17	9
$8{ }^{\prime \prime}$	67＂	178	1186	15	
1018＊	$7{ }^{\circ}$	180	180	111	9
121＊	320	179	1189	14	9
121＂	52°	188	170	110	6
121＊＊	8\％＊	188	1148	118	9
14！＂	37	106	150	17	8
14t＊	97	1150	249	27	0
161＂	62＂	1110	1170	81	3
164＂	10^{*}	1198	8100	817	6

CHASSIS in Aluminium，Standard Bizes，with Gawset
 Post on＇all orders $\% \%$ ．
E．R．NICHOLLS
Manufacturer of Electronic Instrument Cases
46 LOWFIELD ROAD STOCKPORT，CHESHIRE Tef：STOckport 2179

BHPAK SENICONDUCTORS (DEPTS)
 8 Radrior House 93197 Regent St London W 1

NEW AND TESTED VALUE PAKS

 One $10 /$ pack of your own cholce free with order valued $£ 4$ or over2 Drift Trans. 2N1225 Germ. PNP $100 \mathrm{Mc} / \mathrm{s}$. 6 Matched Trans. 0C44/45/81/81D 16 Red Gpot AF Trans. PNP 5 Eilicon Rects. 3 A 100400 PIV 2 10A silicon Rects. 100 PIV 20 OCl 39 Trans. NPN Switching 1 12A SCR 100 PIV
12 Assorted Compus PN
12 Assorted Computer Diodes
4 NPN Med. Speed
4 Zener Diodes 250 mW 8-12 Trans.
6 2 G417 Trans. Equt. AF117
$8200 \mathrm{Mc} / \mathrm{s}$ 8il. Trans. NPN BEY26/27
2 Bidirectional Trang. A8Y66 PNP
3 Zener Diodes $400 \mathrm{~mW} 33 \mathrm{Y} 5 \%$ ToL
4 High Corrent Trans. OC42 Eqvt
${ }_{2}$ Power Tranaistors 1 Ory26 1 OC3s
5 Bilicon Rects. 400 PIV 250 mA
40 O 5 Transigtora Mullard Type
1 Power Trans. OC20 100 V
04202 gil Diodes Sub
2 Low Nolse Trans. NPN 2N929/3
1 Bil, Trans, NPN VOB 100 ZT86
80.881 Diodes (UV448)
$40 C 72$ Transistora Mullard Type
40077 Transistors Mullard Type
5 Metal Alloy Transistors Mat Type
4 Bil. Rects. 400 PIV 500 mA
5 Ger884 Trans. EqVt. OC44
2 GETO
3 VHF atl Epary Trang NPN Heat + sink
2 2N708 gil Trans $900 \mathrm{Mc} / \mathrm{sNPN} 100 \mathrm{Mc}$
6 GT41/45 Germ. Trans. PNP Eqva, OC71 8 GT31 LF Low Noise Germ. Trans. PNP 6 IN 144 Sil. Diodes 75 PIV 75 mA 8 OA95 Germ. Diodes Sub-min. IN69 3 NPN Germ. Trans. NK'C773 Eqvt. AC130 20 0c25 Power Trans. Germ. 0 Ocza Mulard Tran. Ge 4 AC128 Trang PNP A0127/128 Comp High Gain 2 Adisorted Gold Bonded DNP/NPN
6 TK22C Germ. Switching Trans.

20 Germ. Diodes General Purpos 7 Ca62H Germ. Diodes Eqvt. OA71 3 AFl16 Mullard Type Trans.
12 Assorted Germ. Diodes Marked 130 Amp Power Rectiller $100 \mathrm{~F} / \mathrm{V}$ 4 AC126 Germ. PNP Trans. 1 ORP61 Photo conductive cell
4 gilicon Recta. 100 PIV 750 m
3 AF1I7 Trans, Mullari Trpe
OC81 Type Trans.
3 OO171 Trans. Mullard Type
32 N 2926 sit. Epoxy Trans.

7 OC71 Tppe Trans.

2 GET9 Power Trans, 60 VaB . 8 A
25 Trans. Hestsinks ft TO18, s012, et
1 TK400A Power Germ. Trans. ADY2 2
3
3
BFY16 sil. Trans. Texas
GTO
${ }_{2}$ Zeners Z2A150F, 15 V IW
3 BCY 43 gil. Trans. $100 \mathrm{Mc} / \mathrm{s}$ 312 Volt Zeners 400 mW
2 GLT571 Germ. Trans, OC28 2104600 PIV git. Rects. 18425 E . 3 BCl08 Sil. NPN High Gain Trans 2 Zener biodes 25W 18 and 22 V 12 N910 NPN Sill. Trans. VOB $100080 \mathrm{MiO} / \mathrm{s}$ 21000 PIV Sil. Rect. 1-6A R8310 AF 8 BgY 9 EA Ail. Trans. NPN ACY 30 C 200 Bj 1 . Trans. Mullard 2 sill. Power Rects. BYZ13
1 sil. Power Trans. NPN $100 \mathrm{Mc} / \mathrm{TK} 201 \mathrm{~A}$ 6 Zener Diodes 3-15V Sub-mln.
1 2N1132 PNP Epitazial Planar dil. Trans.
2 2N697 Epitaxial Planar Trans. £dl.
4 Germ. Power Trans, Eqvt. OCli Mullard 1 Unjunction Trans. 2N2646 Eqvi. D5E29 2 sil . Trans. $200 \mathrm{Mc} / \mathrm{a} 60 \mathrm{Vcb}$ ZT8z/84 1 Sil. Planar Trans. NPN $100 \mathrm{Mc} / \mathrm{s}$ B8Y25 2 SORe 50 PIV la TO 5 can 1 Tunnel Diode IN3720 (TD5) Gं.

$$
1 \text { Unljunction Trans. 2N2160 To-5. }
$$

$$
2 \text { 8il. Rects. } 5 \text { A } 400 \text { PIV stud Type }
$$

2 Germ. Power Trank. OC28/29
110 A Eil. Stud Rect. 800 PIV
1 Tunnel Diode AEY $111050 \mathrm{Mc} / \mathrm{a}$ STC
22 N2712 Bil. Epoxy Planar HFE 225 max 12 NY 125^{7} PNP Gil. Planar TO-b can

Minimum Order 10/-. CASH WITH ORDER PLEASE. Add $1 /$ - postage and packing per Order. GUARANTEED by retura postal service. Orerseas add extra for Aimmil.
Our vast stocks change daily with hundreds ol Semioonduotor bargains becoming availeble. Just send $2 / 6$ to 00 ver 8 months
mailing of our latest stock lists, equt. charts, oironits, ete.

\section*{BI-PAK EXCLUSIVE-SILICON TRANS.
 Price $\quad 2 /-\quad 300 \mathrm{Mc} / \mathrm{s}$ NPN Planar sim. 2N70
 | Price | $2 /-$ | $1 / 9$ | $1 / 6$ | $1 / 3$ | $1 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Qty. | $1-24$ | $25-99$ | $99-499$ | $500-999$ | 1000 up |}

SILICON PLANAR DIODES. 1/- (1-99); 10d. (100-499) 60 P.I.V. 200 mA , Sub-min. 9d. ($500-999$); 7 d. (1000 up) ALL BRAND NEW-TEBTED AND GUARANTEED Full Data and List of possible Replacementa avallable

AF117	$3 / 6$	M	D	OA91	1/3
AF゙139	10/-			OA182	1/6
AFZ12	10/-	U	E	OA200	3/-
BC107	61 -	L	V	OA202	3/6
BC108	6/-	L	V	OC44	1/9
BFY50	10/-	L	I	0045	1/9
BFY51	716		C	0 O 71	2/3
BFY52	101-	A	C	0 O 73	$3 /-$
OAS	1/9	R	E	$0 \mathrm{OC7}$	$31-$
OA10	1/9			$0 \mathrm{C810}$	2/3
0847	2/-	D	S	OC82D	$2 / 3$
OA70	1/3			0 Cl 170	$2 / 6$
OA79	1/9	BRA		OC200	4/-
0 O 81	$1 / 6$			0 C 201	7/6
0485	1/6	N		ORP12	$8 / 6$

NEW - UNTESTED DEVICES - NEW

120	Glass Bub-Min.	GERM. DIODEs	$10 /-$
50	Mixed Germ.	TRANSISTORS	$10 /-$
20	Mixed Volts	ZENERS	$10 /-$
30	NPN, PNP, MIXED	SILICON TRANS.	$10 /-$
60	200mA Aub-Min.	SLICON DIODES	$10 /-$
20	Germ. 1 Amp.	RECTIFIERS	$10 /-$
40	Llise OC8I AC 128	TRANSISTORS	$10 /-$
10	2 Amp. Stnd	SIL. RECTIFIERs	$10 /-$
25	Sil. NPN, 200 Mc/s	TRANSISTORS	$10 /-$
16	Top.Hat 750mA	SILICON RECT.	$10 /-$
75	Germ. Diodes	GOLD BONDED	$10 /-$
10	1 Amp. $50-400$ PIV	SCR's	$20 /-$

THE 1968 CALL BOOK
This lists all the British Amateur Radio call-signs up to G3WOM, and also includes amateur TV stations, call-signs of foreign amateurs possessing licences in this country, and Irish calls. It is also a valuable source of information on DX 6/6/6 post paid prefixes and beam headings, the Q -code band plans, and radio clubs in the British Isles.

RADIO DATA REFERENCE BOOK (RSGB)

Compiled by G. R. Jessop, AMIERE, G6JP
New second edition Designing receivers, transmitters, or just adjusting them usually calls for considerable juggling of formulae. This new Reference Book not only provides most of the information that you would require, but also simplifies the task with numerous charts and tables. Power supply design, aerial arrays, transmission lines,

13/6 post paid etc. increase its scope, and the book even extends to TV channels, in this country and abroad, Great Circle calculations, and meteorologica! data. Invaluable.

WORLD AT THEIR FINGERTIPS

(RSGB)

By J. Clarricoats, OBE, G6CL

This is the first and only complete story of the evolution of radio, and latterly Amateur Radio, in this country to be published. It begins by acknowledging the early experiments conducted by Michael Faraday etc., and draws into an entertaining account of notable events and progress through the two wars. Two styles have been published:
a hardbound library version and a paperback, both containing 308 pages.
45/- (hardbound), 47/- post paid
12/6 (paperback), 14/- post paid
Further details of the Society's range of publications, and information on membership, may be obtained on application to:
RADIO SOCIETY of GREAT BRITAIN, Dept. PW. 28 LITTLE RUSSELL. STREET, LONDON, W.C. 1

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mech anisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks. Please send FREE BROCHURE tos
NAME...
ADDRESS.. Caps.
..Please
12/67
BRITISH NATIONAL
RADIO
SCHOOL

Tel. PARK 5641/2/3

Z \mathcal{C} I AERO SERVICES LTD.

Please send sill correspondence and Mail-Orders to the Fead Offle

When sending cash with order, pleane laclude $2 / 6$ in ε for postage and handling MINIMUM CHARGE 2/-. No C.0.D. orders accepted
We wish to buy $723 \mathrm{~A} / \mathrm{B}, 2 \mathrm{~K} 25,813,4 \mathrm{C} 35,5 \mathrm{C} 22$, at $30 /$-, aiso other speoigls.

Retail Shop 85 TOTTENHAM COURT ROAO LONDON WI
Tel. LANgham 8403 Open all day Saturday

TRANSISTORS
${ }_{0} \mathrm{OCl}_{16}$ 201- OC170

${ }_{0}^{0} \mathbf{O C 4}$
$\underset{\substack{\text { OCd5 } \\ \text { OC5 }}}{ }$

 주줌 Tํㅜ열

och
$\substack{\text { OCSD } \\ \text { OCS }}$

OC81
OC8

MULTIMETERS

A.C. and D.C. voltage ranges 0-10-50-250-500-1000 $500 \mu \mathrm{~A}-10-100 \mathrm{ma}$
Resistance ranges: $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$. The meter to also calibrated for Inductance $(10-1000 \mathrm{H})$, capscity $(0.6 \mu \mathrm{~F})$ and output level measure ments. Bensitivity 2000 gV ,
Accuracy $\pm 2.5 \%$ for D.C. and Accuracy $\pm \mathbf{2 . 5} \%$ for D.C. and
$\pm 4 \%$ for A.C. measurements.

ZENER DIODES

 $260 \mathrm{~mW} 15 \%: 4.3 \mathrm{~V}$ OAZ208 878; 4.7 V OAZ209 816 6.2V OAZ210 6/-; 7.5V OAZ211 6/-; 9.17 OAZ212 8/6;
12.0V OAZ213 6/6. 1.0W 5\% = 2.4V Z2A24CF; 2.7V Z2A27CF; 3.0V Z2A30CF 3.6 V Z2A36CF; 3.9 V Z2A39CF; 10.0 V Z2A 160 CF
l.5W $5 / 6$. 5.0 V Z3B30CF; 27.0 V Z3B270CF; 30.0 V Z3B300CF: 33.0 V 73 B 330 CF ; all at $6 / 8$
$2.25 \mathrm{~W} 10 \%: 4.25 \mathrm{Y}$ VR425B; 4.75 V V1R475B; all at $6 / 6$. $5.25 \mathrm{~W} 10 \%$: 4.25 V VR425A; 5.75 V VR575BA; 7.0 V VRTA; 11.0 V VR11A; 13V VR13A; all at $8 /-$
$7.0 \mathrm{~V} 5 \%: 5.6 \mathrm{O}$ OAZ222 9/6; 6.8V OAZ294 $10 /$

THYRISTORS

$3 / 40,400$ p.i.v. 3 amp, stud mounted, Gate BLUE SPOT, 200 p.i.s. 5amp, st ud mounted. Gate voltage 3.25 v . at 120 mA max.
GREEN BPOT, 400 p.i.v. 5 amp , stud mounted
Gate voitage $3.25 v$. at 120 mA max

25 WATT SOLDERING IRONS

$200-250$ watt exceptionally well made lightweight solder. ing irons with polished wooden handles and chrominm plated body. Angle bit of sufficient length for long life No breakable plastics used in construetion. PRICE 16/

Our new price list of valves, tubes and semiconductor is now ready. Please send stamped and addressed quarto

AVALANCHE SILICON RECTIFIERS

Type Ras508AF, 960 p.i.v. at 6 amps . max., stud

TEXAS SILICON FULLWAVE BRIDGE RECTIFIERS

 1 18100м 10,100 p.i. 10 amps., dimetisions $2 t x$ Postage $1 / 6$ per rectitier

SILICON HALF-WAVE POWER RECTIFIERS

RY100, $700 \mathrm{p} . \mathrm{i} . \mathrm{v}_{\text {. }}$
 BYZ10, see \$1 800 .

BYZ12, 400 p.i.v, at 6 a., stud muunted. BYZ13, 200 p.i.v., 6 smps., stud mounted BYZ19, reversed polarity version of BYZ13 DDo00, 50 p.i.v., 500 mA ., whre ended LDD0e, 400 p.i.c., 500 mA ., wire ended DD058, 800 p.i.v.. 500 mA ., wire ended DD226, 400 p.l.v., 1 amp., wire ended OAZ10, $400 \mathrm{p} . \mathrm{i} . \mathrm{F}_{\text {. }} 500 \mathrm{~mA}$., wire ended $0 \mathrm{~A} 211,800$ p.l. . . 400 mA ., wire ended Rg27AF, 600 p.l.v., 100 mA ., wire euded R8350 AF, 700 p.i.s., 3 amps., wire ended Rs360AF, 840 p.i.v., 3 smps., wire ended RS380AF, 1,120 p.l.v., 3 atnps., wire ended
$\mathrm{g.j} 102 \mathrm{~A}, 100$ p.i.v., 2.4 A , st ud mounted SL800, 800 p i.v., 6A., stud mounted

blueprints

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Litd., Tower House, Southampton Street, London, W.C.2.

The Strand Amplifier The PW Signal Generator	(Oct. 1962)	5/-	The Celeste 7 -transistor Port Radio The Spinette Record Player	(June 1963)	5/-
$\left.\begin{array}{l}\begin{array}{l}\text { The Berkeley Loudspeaker Enclo- } \\ \text { sure } \\ \text { The Luxembourg Tuner }\end{array} \\ \text {. . . }\end{array}\right\}$	(Dec. 1962)	5/-	Transistor Radio Mains Unit $7 \mathrm{Mc} / \mathrm{s}$ Transceiver	(June 1964)	5/-
			The Citizen (December 1961)		5/-
The PW Troubadour The PW Everest Tuner	(June 1962)	7/6	The Mini-amp (November 1961)		5/.
The PW Britannic Two			The Beginner's Short Wave Supe	c. 1964)	5/-
The PW Mercury Six	May 1962)	6/-	The Empire 7 Three-band Rece	y 1965)	5/
Beginner's Short Wave Two			Electronic Hawaiian Guitar (June		5/.
S.W. Listener's Guide			Progressive SW Superhet (Februa		5/.
PW "Sixteen" Multirange Meter Test Meter Applications Chart	(Jan. 1964)	5/-	Beginner's 5-Band Receiver Home Intercom Unit	(Dec. 1966)	5/-

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN \star the above list. nor are we able to supply service sheets for commercial RADIO. TV OR AUDIO EQUIPMENT.

PRACTICAL WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answep queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 8th December, 1967 and must accompany all queries in accordance with the rules of our Query Service

PRACTICAL WIRELESS, DECEMBER 1967

[^0]: To DAYSTROM LTD. Gloucester. Tel. Glos. 20217.
 Please send me FREE CATALOGUE
 YES/NO
 Further details of model(s)
 I NAME
 | ADDRESS
 ..

[^1]: FiE $\begin{aligned} & \text { Please send } \\ & \text { of my nearest Goodmans dealer. }\end{aligned}$
 Name..

 ## Address

 GOODMANSTNTUSTRIES
 AXIOM WORKS . WEMBLEY • MIDDLESEX, Tel: 01-902 1200
 A Division of Radio Rentaset Products Lid.

[^2]: All correspondence intended for the Edltor should be addressed to : The Editor, "Practical Wireless", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363 . Telegrams: Newnes London, W.C.2. Subscriptlon rates, including postage: 36 s . per year to any part of the world. (C) George Newnes Ltd., 1967. Copyright in all drawings, photographs and articles publlshed in "Practical Wireless" ls specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or Imitations of any of these are therefore expressly forbldden.

[^3]: *The word means "'a wrinkled spindle". This column is nothing if not educational.

[^4]:

 POST NOW for BROCHURE
 or write if you prefer not to cut page
 To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME
 BLOCK CAPS
 ADDRESS
 PLEASE PW12

